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Dans cette thèse, j'étudie d'abord la théorie des Γ-limites. En dehors de quelques propriétés fondamentales des Γ-limites, les expressions de Γ-limites séquentielles généralisant des résultats de Greco sont présentées. En outre, ces limites nous donnent aussi une idée d'une classification unifiée de la tangence et la différentiation généralisée. Ensuite, je développe une approche des théories de la différentiation généralisée. Cela permet de traiter plusieurs dérivées généralisées des multi-applications définies directement dans l'espace primal, tels que des ensembles variationnels, des ensembles radiaux, des dérivées radiales, des dérivées de Studniarski. Finalement, j'étudie les règles de calcul de ces dérivées et les applications liées aux conditions d'optimalité et à l'analyse de sensibilité. i

§1. Motivations ations of perturbation maps, since some advantages of this generalized differentiability were shown in [START_REF] Anh | Variational sets : calculus and applications to nonsmooth vector optimization[END_REF][START_REF] Khanh | Variational sets of multivalued mappings and a unified study of optimality conditions[END_REF][START_REF] Khanh | Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization[END_REF], e.g., almost no assumptions are required for variational sets to exist (to be nonempty); direct calculating of these sets is simply a computation of a set limit; extentions to higher orders are direct; they are bigger than corresponding sets of most derivatives (this property is decisively advantageous in establishing necessary optimality conditions by separation techniques), etc. Moreover, Anh et al. established calculus rules for variational sets in [START_REF] Anh | Variational sets : calculus and applications to nonsmooth vector optimization[END_REF] to ensure the applicability of variational sets.

Optimality conditions

Various problems encountered in the areas of engineering, sciences, management science, economics and other fields are based on the fundamental idea of mathematical formulation.

Optimization is an essential tool for the formulation of many such problems expressed in the form of minimization/maximization of a function under certain constraints like inequalities, equalities, and/or abstract constraints. It is thus rightly considered a science of selecting the best of the many possible decisions in a complex real-life environment.

All initial theories of optimization theory were developed with differentiability assumptions of functions involved. Meanwhile, efforts were made to shed the differentiability hypothesis, there by leading to the development of nonsmooth analysis as a subject in itself. This added a new chapter to optimization theory, known as nonsmooth optimization. Optimality conditions in nonsmooth problems have been attracting increasing efforts of mathematicians around the world for half a century. For systematic expositions about this topic, including practical applications, see books [START_REF] Aubin | Set-valued analysis[END_REF] of Aubin and Frankowska,[START_REF] Clarke | Optimization and nonsmooth analysis[END_REF] of Clarke, [START_REF] Jahn | Vector Optimization -Theory, Applications, Extensions[END_REF] of Jahn, [START_REF] Mordukhovich | Variational analysis and generalized Differentiation[END_REF][START_REF] Mordukhovich | Variational analysis and generalized Differentiation[END_REF] of Mordukhovich,[START_REF] Penot | Calculus without derivatives[END_REF] of Penot, [START_REF] Rockafellar | Theory of vector optimization[END_REF] of Rockafellar and Wets, and [START_REF] Schirotzek | Nonsmooth analysis[END_REF] of Schirotzek. A signicant number of generalized derivatives have been introduced to replace the Fréchet and Gâteaux derivatives which do not exist for studying optimality conditions in nonsmooth optimization.

One can roughly separate the wide range of methods for nonsmooth problems into two groups : the primal space and the dual space approaches. The primal space approach has been more developed, since it exhibits a clear geometry, originated from the famous works of Fermat and Lagrange. Most derivatives in this stream are based on kinds of tangency/linear approximations. Among tangent cones, contingent cone plays special roles, both in direct uses as derivatives/linear approximations and in combination with other ideas to provide kinds of generalized derivatives (contingent epiderivatives by Jahn and Rauh in [START_REF] Jahn | Contingent epiderivatives and set-valued optimization[END_REF], contingent variations §1. Motivations by Frankowska and Quincampoix in [START_REF] Frankowska | Hölder metric regularity of set-valued maps[END_REF], variational sets by Khanh et al. in [START_REF] Anh | Variational sets : calculus and applications to nonsmooth vector optimization[END_REF][START_REF] Khanh | Variational sets of multivalued mappings and a unified study of optimality conditions[END_REF][START_REF] Khanh | Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization[END_REF], generalized (adjacent) epiderivatives by Li et al. in [START_REF] Chen | Higher order weak epiderivatives and applications to duality and optimality conditions[END_REF][START_REF] Wang | Higher-order weakly generalized adjacent epiderivatives and applications to duality of set-valued optimization[END_REF][START_REF] Wang | Higher-order optimality conditions for weakly efcient solutions in nonconvex set-valued optimization[END_REF], etc).

Similarly as for generalized derivatives defined based on kinds of tangent cones, the radial derivative was introduced by Taa in [START_REF] Taa | Set-valued derivatives of multifunctions and optimality conditions[END_REF]. Coupling the idea of tangency and epigraphs, like other epiderivatives, radial epiderivatives were defined and applied to investigating optimality conditions in [START_REF] Flores-Bazan | Optimality conditions in non-convex set-valued optimization[END_REF][START_REF] Flores-Bazan | Radial epiderivatives and asymptotic function in nonconvex vector optimization[END_REF][START_REF] Flores-Bazan | Strict efficiency in set-valued optimization[END_REF] by Flores-Bazan and in [START_REF] Kasimbeyli | Radial epiderivatives and set-valued optimization[END_REF] by Kasimbeyli. To include more information in optimality conditions, higher-order derivatives should be defined.

The discussion above motivates us to define a kind of higher-order radial derivatives and use them to obtain higher-order optimality conditions for set-valued vector optimization.

Calculus rules and applications

The investigation of optimality conditions for nonsmooth optimization problems has implied many kinds of generalized derivatives (introduced in above subsections). However, to the best of our knowledge, there are few research on their calculus rules. We mention in more detail some recent papers on generalized derivatives of set-valued maps and their calculus rules.

In [START_REF] Jahn | Some calculus rules for contingent epiderivatives[END_REF], some calculus rules for contingent epiderivatives of set-valued maps were given by Jahn and Khan. In [START_REF] Li | Calculus rules for derivatives of multimaps[END_REF], Li et al. obtained some calculus rules for intermediate derivative-like multifunctions. Similar ideas had also been utilized for the calculus rules for contingent derivatives of set-valued maps and for generalized derivatives of single-valued nonconvex functions in [START_REF] Aubin | Set-valued analysis[END_REF][START_REF] Ward | Convex subcones of the contingent cone in nonsmooth calculus and optimization[END_REF][START_REF] Ward | Nonsmooth calculus in finite dimensions[END_REF]. Anh et al. developed elements of calculus of higher-order variational sets for set-valued mappings in [START_REF] Anh | Variational sets : calculus and applications to nonsmooth vector optimization[END_REF].

In [START_REF] Studniarski | Necessary and sufficient conditions for isolated local minima of nonsmooth functions[END_REF], Studniarski introduced another way to get higher-order derivatives (do not depend on lower orders) for extended-real-valued functions, known as Studniarski derivatives, and obtained necessary and sufficient conditions for strict minimizers of order greater than 2 for optimization problems with vector-valued maps as constraints and objectives. Recently, these derivatives have been extended to set-valued maps and applied to optimality conditions for setvalued optimization problems in [START_REF] Anh | Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality[END_REF][START_REF] Li | Higher-order optimality conditions for strict minimality in set-valued optimization[END_REF][START_REF] Sun | Weak lower Studniarski derivative in set-valued optimization[END_REF]. However, there are no results on their calculus rules.

The analysis above motivates us to study on calculus rules of Studniarski derivatives and their applications.

Chapter 2 Preliminaries 2.1 Some definitions in set theory Definition 2.1.1. ( [START_REF] Cartan | Thorie des filtres[END_REF][START_REF] Cartan | Filtres et ultrafiltres[END_REF]) Let S be a subset of a topological sapce X.

(i) A family F of subsets of S is called a non-degenerate family on S if / 0 ∈ F .

(ii) A non-degenerate family F on S is called a semi-filter if

G ⊇ F ∈ F =⇒ G ∈ F .
(iii) A semi-filter F on S is called a filter if

F 0 , F 1 ∈ F =⇒ F 0 ∩ F 1 ∈ F .
The set of filters and the set of semi-filters on S are denoted by F(S) and SF(S), respectively. The grill of a family A on S, denoted by A # , is defined by

A # := {A ⊆ S : ∀ F∈A A ∩ F = / 0}.
Therefore A #B is equivalent to A ⊆ B # and to B ⊆ A # .

If F is a filter, then F ⊆ F # . In SF(S), the operation of grills is an involution, i.e., the following equalities hold (see [START_REF] Dolecki | Compactoid and compact filters[END_REF])

A ## = A , i A i # = i A # i , i A i # = i A # i .
(2.1) §2. Preliminaries

Semi-filters, filters, and grills were thoroughly studied in [START_REF] Dolecki | An initiation into convergence theory[END_REF] by Dolecki.

Definition 2.1.2. ( [START_REF] Birkhoff | Lattice theory[END_REF]) (i) A set S with a binary relation (≤) satisfying three properties : reflexity, antisymmetry, and transitivity is called an ordered set S (also called a poset).

(ii) Let S be a subset of a poset P. An element a ∈ P is called an upper bound (or lower bound) of S if a ≥ s (a ≤ s, respectively) for all s ∈ S.

(iii) An upper bound a (lower bound, respectively) of a subset S is called the least upper bound (or the greatest lower bound ) of S, denoted by sup S or S (inf S or S, respectively) if a ≤ b (a ≥ b, respectively) for all b be another upper bound (lower bound, respectively) of S.

Definition 2.1.3. ( [START_REF] Birkhoff | Lattice theory[END_REF][START_REF] Greco | Limitoidi e reticoli completi[END_REF]) (i) A poset L is called a lattice if each couple of its elements has a least upper bound or "join" denoted by x ∨ y, and a greatest lower bound or "meet" denoted by

x ∧ y.

(ii) A lattice L is called complete if each of its subsets S has a greatest lower bound and a least upper bound in L.

(iii) A complete lattice L is called completely distributive if (a)

j∈J i∈A j f ( j, i) = ϕ∈ ∏ j∈J A j j∈J f ( j, ϕ( j)), (b) 
j∈J i∈A j f ( j, i) = ϕ∈ ∏ j∈J A j j∈J f ( j, ϕ( j)),

for each non-empty family {A j } j∈J of non-empty sets and for each function f defined on {( j, i) ∈ J × I : i ∈ A j } with values in L, and ∏ j∈J A j := {ϕ ∈ ( j∈J A j ) J : ∀ j∈J ϕ( j) ∈ A j }, where ( j∈J A j ) J denotes the set of functions from J into j∈J A j .

(iv) A non-empty subset S of a lattice L is called a sublattice if for every pair of elements a, b in S both a ∧ b and a ∨ b are in S.

(v) A sublattice S of a complete lattice L is called closed if for every non-empty subset A of S both A and A are in L.

Some definitions in set-valued analysis

Let X, Y be vector spaces, C be a non-empty cone in Y , and A ⊆ Y . We denote sets of positive integers, of real numbers, and of non-negative real numbers by N, R, and R + , respectively. We Definition 2.2.1. Let C be a convex cone, F : X → 2 Y and (x 0 , y 0 ) ∈ gr F.

(i) F is called a convex map on a convex set S ⊆ X if, for all λ ∈ [0, 1] and x 1 , x 2 ∈ S,

(1 -λ )F(x 1 ) + λ F(x 2 ) ⊆ F((1 -λ )x 1 + λ x 2 ).
(ii) F is called a C-convex map on a convex set S if, for all λ ∈ [0, 1] and x 1 , x 2 ∈ S,

(1λ )F(x 1 ) + λ F(x 2 ) ⊆ F((1λ )x 1 + λ x 2 ) +C.

Definition 2.2.2. Let F : X → 2 Y and (x 0 , y 0 ) ∈ gr F.

(i) F is called a lower semicontinuous map at (x 0 , y 0 ) if for each V ∈ N (y 0 ) there is a neighborhood U ∈ N (x 0 ) such that V ∩ F(x) = / 0 for each x ∈ U.

(ii) Suppose that X,Y are normed spaces. The map F is called a m-th order locally pseudo-Hölder calm map at x 0 for y 0 ∈ F(x 0 ) if ∃λ > 0, ∃U ∈ N (x 0 ), ∃V ∈ N (y 0 ), ∀x ∈ U,

(F(x) ∩V ) ⊆ {y 0 } + λ ||x -x 0 || m B Y ,
where B Y stands for the closed unit ball in Y .

For m = 1, the word "Hölder" is replaced by "Lipschitz". If V = Y , then "locally pseudo-Hölder calm" becomes "locally Hölder calm". §2. Preliminaries Example 2.2.3. (i) For F : R → R defined by F(x) = {y : -x 2 ≤ y ≤ x 2 } and (x 0 , y 0 ) = (0, 0), F is the second order locally pseudo-Hölder calm map at x 0 for y 0 .

(ii) Let F : R → R be defined by

F(x) = {0, 1/x}, if x = 0, {0, (1/n) n∈N }, if x = 0,
and (x 0 , y 0 ) = (0, 0). Then, for all m ≥ 1, F is not m-th order locally pseudo-Hölder calm at x 0 for y 0 .

Observe that if F is m-th order locally (pseudo-)Hölder calm at x 0 for y 0 , it is also n-th order locally (pseudo-)Hölder calm at x 0 for y 0 for all m > n. However, the converse may not hold.

The following example shows the case.

Example 2.2.4. Let F : R → R be defined by

F(x) = x 2 sin(1/x), if x = 0, 0, if x = 0,
and (x 0 , y 0 ) = (0, 0). Obviously, F is second order locally Hölder calm x 0 for y 0 , but F is not third order locally Hölder calm at x 0 for y 0 .

In the rest of this section, we introduce some definitions in vector optimization. Let C ⊆ Y , we consider the following relation ≤ C in Y , for y 1 , y 1 ∈ Y , Proof. (i) Suppose that ≤ C is reflexive, then y ≤ C y for all y ∈ Y . This means 0 = yy ∈ C.

y 1 ≤ C y 2 ⇐⇒ y 2 -y 1 ∈ C. Recall that a cone K in Y is called pointed if K ∩ -K ⊆ / 0.
Conversely, since 0 ∈ C, yy ∈ D for all y ∈ Y . Thus, y ≤ C y. Conversely, let y 1 , y 2 , y 3 ∈ Y such that y 1 ≤ C y 2 and y 2 ≤ C y 3 . It means that y 2y 1 ∈ C and y 3y 2 ∈ C. Since C is cone, 1 2 (y 2y 1 ) ∈ C and 1 2 (y 3y 2 ) ∈ C. It follows from the convexity of C that 1 2 (y 3y 2 ) + 1 2 (y 2y 1 ) = 1 2 (y 3y 1 ) ∈ C. Thus, y 1 ≤ C y 3 .

A relation ≤ C satisfying three properties in the proposition above is called an order (or order structure) in Y . Proposition 2.2.5 gives us conditions for which a cone C generates an order in Y .

We now recall some conditions on C, introduced in [START_REF] Choquet | Representation Theory[END_REF] by Choquet, to ensure that (Y, ≤ C ) is a lattice. Recall that in R n , a n-simplex is the convex hull of n + 1 (affinely) independent points. Proposition 2.2.6. ( [START_REF] Choquet | Representation Theory[END_REF]) Suppose that C is a convex cone in R n . Then (Y, ≤ C ) is a lattice if and only if there exists a base of C which is a (n -1)-simplex in R n-1 .

Proof. It follows from Proposition 28.3 in [START_REF] Choquet | Representation Theory[END_REF].

By the proposition above, (R 2 , ≤ C ) is a lattice if and only if C has a base which is a line segment. In R 3 , the base of C must be triangle to ensure that (R 3 , ≤ C ) is a lattice.

Let C be a convex cone in Y . A main concept in vector optimization is Pareto efficiency.

A ⊆ Y , recall that a 0 is a Pareto efficient point of A with respect to C if (A -a 0 ) ∩ (-C \ l(C)) = / 0, (2.2) 
where l(C) := C ∩ -C. We denote the set of all Pareto efficient points of A by Min C\l(C) A.

If, addtionally, C is closed and pointed, then (2.2) becomes (Aa 0 ) ∩ (-C \ {0}) = / 0 and is denoted by a 0 ∈ Min C\{0} A.

Next, we are concerned also with the other concepts of efficiency as follows.

Definition 2.2.7.

([88]) Let A ⊆ Y . (i) Supposing intC = / 0 1 , a 0 ∈ A is a weak efficient point of A with respect to C if (A -a 0 ) ∩ -intC = / 0. (ii) a 0 ∈ A is a strong efficient point of A with respect to C if A -a 0 ⊆ C.
1 intC denotes the interior of C.

§2. Preliminaries

(iii) Supposing C +i = / 0, a 0 ∈ A is a positive-proper efficient point of A with respect to C if there exists ϕ ∈ C +i such that ϕ(a) ≥ ϕ(a 0 ) for all a ∈ A.

(iv) a 0 ∈ A is a Geoffrion-proper efficient point of A with respect to C if a 0 is a Pareto efficient point of A and there exists a constant M > 0 such that, whenever there is λ ∈ C * with norm one and λ (a 0a) > 0 for some a ∈ A, one can find µ ∈ C * with norm one such that

λ , a 0 -a ≤ M µ, a -a 0 . (v) a 0 ∈ A is a Henig-proper efficient point of A with respect to C if there exists a pointed convex cone K with C \ {0} ⊆ int K such that (A -a 0 ) ∩ (-int K) = / 0. (vi) Supposing C has a convex base B, a 0 ∈ A is a strong Henig-proper efficient point of A with respect to C if there is ε > 0 such that cl cone(A -a 0 ) ∩ (-cl cone (B + εB Y )) = {0} 2 .
Note that Geoffrion originally defined the properness notion in (iv) for R n with the ordering cone R n + . The above general definition of Geoffrion properness is taken from [START_REF] Khanh | Proper solutions of vector optimization problems[END_REF]. To unify the notation of these above efficiency (with Pareto efficiency), we introduce the fol-

lowing definition. Let Q ⊆ Y be a nonempty cone, different from Y , unless otherwise specified. Definition 2.2.8. ([88]) We say that a 0 is a Q-efficient point of A if (A -a 0 ) ∩ -Q = / 0.
We define the set of Q-efficient points by Min Q A. Any kind of efficiency in Definition 2.2.7 is in fact a Qefficient point with Q being appropriately chosen as follows.

Recall that a cone in

Proposition 2.2.9.

([88]) (i) Supposing intC = / 0, a 0 is a weak efficient point of A with respect to C if and only if a 0 ∈ Min Q A with Q = intC. (ii) a 0 is a strong efficient point of A with respect to C if and only if a 0 ∈ Min Q A with Q = Y \ (-C).
(iii) Supposing C +i = / 0, a 0 is a positive-proper efficient point of A with respect to C if and 

only if a 0 ∈ Min Q A with Q = {y ∈ Y : ϕ(y) > 0} (denoted by Q = {ϕ > 0}), ϕ being some functional in C +i . §2. Preliminaries (iv) a 0 is a Geoffrion-proper efficient point of A with respect to C if and only if a 0 ∈ Min Q A with Q = C(ε) for some ε > 0. (v)
∈ Min Q A with Q = intC ε (B), ε satisfying 0 < ε < δ .
The above proposition gives us a unified way to denote sets of efficient points by the following table Let us observe that Proposition 2.2.10. Suppose that Q is any cone given in Proposition 2.2.9. Then Q +C ⊆ Q.

Sets of Notations

C-efficiency

Proof. It is easy to prove the assertion, when

Q = intC, Q = Y \ (-C), Q = {y ∈ Y : ϕ(y) > 0} for ϕ ∈ C +i , or Q is a pointed open convex cone dilating C. Now let Q = C(ε) for some ε > 0, y ∈ Q and c ∈ C. We show that y + c ∈ Q. It is easy to see that d C (y + c) ≤ d C (y) and d -C (y) ≤ d -C (y + c). Because y ∈ Q, we have d C (y) < εd -C (y).
Thus, d C (y + c) < εd -C (y + c) and hence y + c ∈ Q.

For Q = intC ε (B), it is easy to see that C ⊆ Q for any ε satisfying 0 < ε < δ . So, Q +C ⊆ Q + Q ⊆ Q.

Chapter 3

The theory of Γ-limits

Introduction

Γ-convergence were introduced by Ennio De Giorgi in a series of papers published between 1975 and 1985. In the same years, De Giorgi developed the theoretical framework of Γ-convergence and explored multifarious applications of this tool. We now give a brief on the development of Γ-convergence in this peroid.

In 1975, a formal definition of Γ-convergence for a sequence of functions on a topological vector space appeared in [START_REF] Giorgi | Su un tipo di convergenza variazionale[END_REF] by De Giorgi and Franzoni. It included the old notion of Gconvergence (introduced in [START_REF] Spagnolo | Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore[END_REF] by Spagnolo for elliptic operators) as a particular case, and provided a unified framework for the study of many asymptotic problems in the calculus of variations.

In 1977, De Giorgi defined in [START_REF] Giorgi | Γ-convergenza e G-convergenza[END_REF] the so called multiple Γ-limits, i.e., Γ-limits for functions depending on more than one variable. These notions have been a starting point for applications of Γ-convergence to the study of asymptotic behaviour of saddle points in min-max problems and of solutions to optimal control problems.

In 1981, De Giorgi formulated in [START_REF] Giorgi | Generalized limits in calculus of variations[END_REF][START_REF] Giorgi | Operatori elementari di limite ed applicazioni al Calcolo delle Variazioni, Atti del convegno "Studio di problemi limite della Analisi Funzionale[END_REF] the theory of Γ-limits in a very general abstract setting and also explored a possibility of extending these notions to complete lattices. This project was accomplished in [START_REF] Giorgi | Limiti generalizzati e loro applicazioni alle equazioni differenziali[END_REF] by De Giorgi and Buttazzo in the same year. The paper also contains some general guide-lines for the applications of Γ-convergence to the study of limits of solutions of ordinary and partial differential equations, including also optimal control problems.

Other applications of Γ-convergence was considered in [START_REF] Giorgi | Recent Methods in Nonlinear Analysis and Applications[END_REF][START_REF] De Giorgi | Γ-limiti di ostacoli[END_REF] by De Giorgi et al. in 1981. These papers deal with the asymptotic behaviour of the solutions to minimum problems for the Dirichlet integral with unilateral obstacles. In [START_REF] Giorgi | Γ-convergence and the calculus of variations[END_REF], De Giorgi and Dal Maso gave an account §3. The theory of Γ-limits of main results on Γ-convergence and of its most significant applications to the calculus of variations.

In 1983, De Giorgi proposed in [START_REF] Giorgi | G-operators and Γ-convergence[END_REF] several notions of convergence for measures defined on the space of lower semicontinuous functions, and formulated some problems whose solutions would be useful to identify the most suitable notion of convergence for the study of Γ-limits of random functionals. This notion of convergence was pointed out and studied in detail by De Giorgi et al. in [START_REF] De Giorgi | Convergenza debole di misure su spazi di funzioni semicontinue[END_REF][START_REF] De Giorgi | Weak convergence of measures on spaces of semicontinuous functions[END_REF].

In 1983 in [START_REF] Greco | Limitoidi e reticoli completi[END_REF] Greco introduced limitoids and showed that all the Γ-limits are special limitoids. In a series of papers published between 1983 and 1985, he developed many applications of this tool in the general theory of limits. The most important result regarding limitoids, presented in [START_REF] Greco | Limitoidi e reticoli completi[END_REF][START_REF] Greco | Operatori di tipo G su reticoli completi[END_REF], is the representation theorem for which each relationship of limitoids becomes a relationship of their supports in set theory. In 1984, by applying this theorem, Greco stated in [START_REF] Greco | Decomposizioni di semifiltri e Γ-limiti sequenziali in reticoli completamente distributivi[END_REF] important results on sequential forms of De Giorgi's Γ-limits via a decomposition of their supports in the setting of completely distributive lattice. These results simplify calculation of complicated Γ-limits. This enabled him to find many errors in the literature.

In this chapter, we first introduce definitions and some basic properties of Γ-limits. Greco's results on sequential forms of Γ-limits are also recalled. Finally, we give some applications of Γ-limits to derivatives and tangent cones.

Consider n sets S 1 , ..., S n and a function f from S 1 × ... × S n into R. Given non-degenerate families A 1 , ..., A n on S 1 , ..., S n , respectively, and α 1 , ..., α n ∈ {+, -}.

Definition 3.1.1. ([38]) Let Γ(A α 1 1 , ..., A α n n ) lim f := ext -α n A n ∈A n ... ext -α 1 A 1 ∈A 1 ext α 1 x 1 ∈A 1 ... ext α n x n ∈A n f (x 1 , ..., x n ),
where ext + = sup and ext -= inf.

The expression above, called a Γ-limit of f , is a (possibly infinite) number. It is obvious that

Γ(A α 1 1 , ..., A α n n ) lim f = -Γ(A -α 1 1 , ..., A -α n n ) lim (-f ). (3.1)
Given topologies τ 1 , ..., τ n on S 1 , ..., S n , we write

Γ(τ α 1 1 , ..., τ α n n ) lim f (x 1 , ..., x 2 ) := Γ(N τ 1 (x 1 ) α 1 , ..., N τ n (x n ) α n ) lim f 1 . (3.2) Notice that Γ(τ α 1 1 , ..., τ α n n )lim f is a function from S 1 × ... × S n into R. §3. The theory of Γ-limits Proposition 3.1.2. ([50]) (i) If A k ≤ B k , then Γ(..., A - k , ...) lim f ≤ Γ(..., B - k , ...) lim f , Γ(..., A + k , ...) lim f ≥ Γ(..., B + k , ...) lim f .
(ii) Suppose that A i , i = 1, ..., n, are filters. Then

Γ(..., A - k , ...) lim f ≤ Γ(..., A + k , ...) lim f , Γ(..., A + k , A - k+1 , ...) lim f ≤ Γ(..., A - k+1 , A + k , ...) lim f .
It is a simple observation that "sup" and "inf" operations are examples of Γ-limits:

inf B f (x) = Γ(N ι (B) -) f , sup B f (x) = Γ(N ι (B) + ) f ,
where ι stands for the discrete topology, N ι (B) is the filter of all supersets of the set B. If B is the whole space, we may also use the chaotic topology o.

Γ-limits in two variables

Let f : I × X → R defined by f(i, x) := f i (x), where { f i } i∈I is a family of functions from X into R and filtered by a filter F on I. Thus, results on Γ-limits of f implies those on limits of

{ f i } i∈I .
From Definition 3.1.1, we get for x ∈ X,

(Γ(F + ; τ -) lim f) (x) = Γ(F + , N τ (x) -) lim f = sup U∈N τ (x) inf F∈F sup i∈F inf y∈U f(i, y) = sup U∈N τ (x) lim sup F inf y∈U f i (y), = sup U∈N τ (x) Γ(F + ) inf y∈U f i (y), (Γ(F -; τ -) lim f) (x) = Γ(F -, N τ (x) -) lim f = sup U∈N τ (x) sup F∈F inf i∈F inf y∈U f(i, y) = sup U∈N τ (x) lim inf F inf y∈U f i (y), = sup U∈N τ (x) Γ(F -) inf y∈U f i (y), §3.
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(Γ(F + ; τ + ) lim f)(x) = Γ(F + , N τ (x) + ) lim f = inf U∈N τ (x) inf F∈F sup i∈F sup y∈U f(i, y) = inf U∈N τ (x) lim sup F sup y∈U f i (y), = inf U∈N τ (x) Γ(F + ) sup y∈U f i (y), (Γ(F -; τ + ) lim f)(x) = Γ(F -, N τ (x) + ) lim f = inf U∈N τ (x) sup F∈F inf i∈F sup y∈U f(i, y) = inf U∈N τ (x) lim inf F sup y∈U f i (y), = inf U∈N τ (x) Γ(F -) sup y∈U f i (y).
Based on these limits above, we can show that some well-known limits are special cases of Γ-limits as follows.

Remark 3.2.1. (i) If functions f i (x) are independent of x, i.e., for every i there exists a constant

a i ∈ R such that f i (x) = a i for every x ∈ X, then Γ(F + ; τ -) lim f (x) = Γ(F + ; τ + ) lim f (x) = limsup F a i , Γ(F -; τ -) lim f (x) = Γ(F -; τ + ) lim f (x) = liminf F a i .
(ii) If functions f i (x) are independent of i, i.e., there exists g : X → R such that f i (x) = g(x)

for every x ∈ X, i ∈ I, then

Γ(F -; τ + ) lim f (x) = Γ(F + ; τ + ) lim f (x) = lim sup y→ τ x g(y), Γ(F -; τ -) lim f (x) = Γ(F + ; τ -) lim f (x) = lim inf y→ τ x g(y).
In [START_REF] Maso | An introduction to Γ-convergence[END_REF], Γ(F + ; τ -) lim f and Γ(F -; τ -) lim f are called, by Dal Maso, the Γ-upper limit and the Γ-lower limit of the family f i and are denoted by Γ-lim sup τ

F f i and Γ-lim inf τ F f i , respectively.
If there exists a function f 0 such that for all x ∈ X,

(Γ(F + ; τ -) lim f)(x) ≤ f 0 (x) ≤ (Γ(F -; τ -) lim f)(x), then we say that { f i } Γ-convergences to f 0 or f 0 is a Γ-limit of { f i }.
The following examples show that, in general, Γ-convergence and pointwise convergence are independent. §3. The theory of Γ-limits Example 3.2.2. ( [START_REF] Maso | An introduction to Γ-convergence[END_REF]) Let X = R (with a usual topology ν on R) and { f n } be defined by

(i) f n (x) = sin(nx). Then, { f n } Γ-converges to the constant function f = -1, whereas { f n } does not converge pointwise in R. (ii) f n (x) =    nxe -2n 2 x 2 , if n is even, 2nxe -2n 2 x 2 , if n is odd. By calculating, { f n } converges pointwise to 0, but { f n } does not Γ-converge since Γ(I -; ν -) lim f (x) = -e -1/2 , if x = 0, 0, if x = 0, Γ(I + ; ν -) lim f (x) =    - 1 2 e -1/2 , if x = 0, 0, if x = 0,
where f(n, x) := f n (x) and I := {I m } m∈N with I m := {n ∈ N : n ≥ m}.

We now compare the notion of Γ-limits with some classical notions of convergence.

Definition 3.2.3. A family { f i } i∈I is said to be continuously convergent to a function g : X → R if for every x ∈ X and for every neighborhood V of g(x), there exist F ∈ F and U ∈ N τ (x) such that f i (y) ∈ V for every i ∈ F and for every y ∈ U.

It follows immediately from the definitions that { f i } is continuously convergence to g if and only if [START_REF] Kuratowski | Topologie[END_REF]) Let {A i } i∈I be a family of subsets in (X, τ) filtered by F .

Γ(F + ; τ + ) lim f ≤ g ≤ Γ(F -; τ -) lim f. Definition 3.2.4. ([
(i) The K-upper limit of {A i } i∈I is defined by

Limsup τ F A i = F∈F cl τ i∈F A i .
(ii) The K-lower limit of {A i } i∈I is defined by

Liminf τ F A i = F∈F # cl τ i∈F A i . (iii) If there exists a subset A in X such that Limsup τ F A i ⊆ A ⊆ Liminf τ F A i ,
then we say that {A i } K-converges to A. §3. The theory of Γ-limits

It follows from the above definition that x ∈ Limsup τ F A i if and only if for every U ∈ N τ (x) every F ∈ F , there is i ∈ F such that U ∩ A i = / 0; due to the duality of filters and their grills, if for every U ∈ N τ (x) there is H ∈ F # such that U ∩ A i = / 0 for each i ∈ H.

A point x ∈ Liminf τ F A i if and only if for every U ∈ N τ (x) and every H ∈ F # , there is i ∈ H such that U ∩ A i = / 0. Dually, if for every U ∈ N τ (x) there is F ∈ F such that for each i ∈ F,

U ∩ A i = / 0.
When X is equipped with the discrete topology ι, the discussed limits become set-theoretical, that is

Limsup ι F A i = F∈F i∈F A i , and 
Liminf ι F A i = H∈F # i∈H A i = F∈F i∈F A i .
Remark 3.2.5. It is generally admitted among those who study optimization, that modern definition of limits of sets by Painlevé and Kuratowski (see [START_REF] Kuratowski | Sur les décompositions semi-continues d'espaces métriques compacts[END_REF][START_REF] Zoretti | Sur les fonctions analytiques uniformes qui possèdent un ensemble parfait discontinu de points singuliers[END_REF][START_REF] Zoretti | Sur les ensembles de points[END_REF]). However, Peano already introduced them in 1887. Indeed, in [START_REF] Peano | Applicazioni Geometriche[END_REF], Peano defined the lower limit of a family, indexed by the reals, of a subsets A λ of an affine Euclidean space A by Liminf λ →+∞ A λ := {y ∈ X : lim λ →+∞ d(y, A λ ) = 0}.

In [START_REF] Peano | Formulaire Mathématique[END_REF], he also defined the upper limits of {A λ }

Limsup λ →+∞ A λ := {y ∈ X : liminf λ →+∞ d(y, A λ ) = 0}
that he also expresses as

Limsup n→+∞ A λ = n∈N cl k≥n A k .
In 1948, Kuratowski, by his work (see [START_REF] Kuratowski | Topologie[END_REF]), has definitely propagated the concept of limits of variable sets and established the use of them in mathematics, that are called today upper and lower Kuratowski limits.

Recall that, for every A ⊆ X, the characteristic function of A is defined by

χ A (x) := 1, if x ∈ A, 0, if x ∈ A. §3. The theory of Γ-limits Let Ω ⊆ (S 1 , τ 1 ) × ... × (S n , τ n ). We define χ G(τ α 1 1 ,...,τ α n n )Ω := Γ(τ α 1 1 , ..., τ α n n ) lim χ Ω .
Then G(τ α 1 1 , ..., τ α n n )Ω is called G-limit of Ω, see [START_REF] Giorgi | Γ-convergenza e G-convergenza[END_REF]. The following proposition shows that K-limits of a family of subsets can be expressed in terms of G-limits. Proposition 3.2.6. ( [START_REF] Maso | An introduction to Γ-convergence[END_REF]) Let {A i } i∈I be a family of subsets of X. Then

G(F -; τ + )A = Liminf τ F A i , G(F + ; τ + )A = Limsup τ F A i ,
where A is a relation from I into X, i.e. A ⊆ I × X, defined by A(i) := A i .

In particular, {A i } K-converges to A if and only if {χ A i } Γ-converges to χ A .

Proof. We prove only the first equality, the other one being analogous. Since χ G(F -;τ + )A = Γ(F -; τ + ) lim χ A takes only the values 0 and 1, it is enough to show that

(Γ(F -; τ + ) lim χ A )(x) = 1 ⇐⇒ x ∈ Liminf τ F A i . (3.3) 
By (3.2), (Γ(F -; τ + ) lim χ A )(x) = 1 if and only if inf U∈N τ (x) sup F∈F inf i∈F sup x ∈U χ A (i, x ) = 1.
It means that for every U ∈ N τ (x) there is F ∈ F such that for each i ∈ F, there is x ∈ U satisfying x ∈ A i , i.e., U ∩ A i = / 0. Thus, x ∈ Liminf τ F A i . This prove (3.3) and concludes the proof of the proposition.

The next result shows a connection between Γ-convergence of functions and K-convergence of their epigraphs or hypographs. Proposition 3.2.7. ( [START_REF] Maso | An introduction to Γ-convergence[END_REF]) Let { f i } i∈I be a family of extended-real-valued functions, and let

f -:= Γ(F -; τ -) lim f, f + := Γ(F + ; τ -) lim f. Then epi( f -) = Limsup τ F epi( f i ), epi( f + ) = Liminf τ F epi( f i ), hypo( f -) = Liminf τ F hypo( f i ), hypo( f + ) = Limsup τ F hypo( f i ).
In particular, { f i } Γ-converges to f if and only if {epi( 

f i )} (or {hypo( f i )}) K-convergences to epi( f ) ({hypo( f )},
( f i ) ∩ (U × (t -ε, t + ε)) = / 0,
and the sets of the form U × (tε,t + ε), with U ∈ N τ (x) and ε > 0, are a base for the neighborhood systems of (x,t) in X × R, we have proved that (x,t) ∈ epi( f -) if and only if

(x,t) ∈ Limsup τ F epi( f i ).

Γ-limits valued in completely distributive lattices

This section presents some results related to Γ-limits given by Greco in [START_REF] Greco | Limitoidi e reticoli completi[END_REF][START_REF] Greco | Decomposizioni di semifiltri e Γ-limiti sequenziali in reticoli completamente distributivi[END_REF]. More precisely, he defined functionals called limitoids and proved that Γ-limits are special limitoids.

Then he proved representation theorem showing that for which each relationship of limitoids corresponds a relationship in set theory.

Limitoids

Let S be a set with at least two elements and L be a complete lattice with the minimum element 0 L and the maximum element 1 L (0 L = 1 L ).

Definition 3.3.1. ([82]) A function T : L S → L is said L-limitoid in S (or limitoid , in short) if
for every f , g ∈ L S and for each complete homomorphism ϕ of L in L,

(i) g ≤ f =⇒ T (g) ≤ T ( f ), (ii) T (ϕ • g) = ϕ(T (g)), (iii) T (g) ∈ g(S) L ,
where g(S)

L is the smallest closed sublattice of L containing g(S), and L S denotes the set of functions from S into L .

§3. The theory of Γ-limits

We recall that a complete homomorphism ϕ : L → L between two complete lattices is a function verifying two equalities ϕ( A) = ϕ(A) and ϕ( A) = ϕ(A) for each non-empty subset A of L, see [START_REF] Greco | Limitoidi e reticoli completi[END_REF].

Simple examples of limitoids are limit inferior and limit superior. Let f be a function from S into L and A be a non-degenerate family of subsets of S, the limit inferior and limit superior of f along A are defined, respectively,

liminf A f = A∈A x∈A f (x) = sup A∈A inf x∈A f (x) , limsup A f = A∈A x∈A f (x) = inf A∈A sup x∈A f (x) .
The Γ-limit introduced in Definition 3.1.1 is another example of the limitoid.

It is evident that the limit inferior, limit superior and Γ-limit do not change if we use equivalent families. Since A ## = A for each family A , we have

liminf A f = liminf A ## f , limsup A f = limsup A ## f .
The following result characterises of a completely distributive lattice L. 

liminf A f = limsup A # f , (3.4) 
for each non-degenerate family A of subsets of S and for each function f from S into L.

Proof. It follows from Proposition D.3 in [START_REF] Greco | Limitoidi e reticoli completi[END_REF].

Definition 3.3.3. ([83])
The support of a limitoid T in S, denoted by st(T ), is the family of sets defined by

st(T ) := {A ⊆ S : T (χ L A ) = 1 L },
where χ L A : S → L is to 1 L on A and to 0 L on S \ A.

A support of a limitoid T in S is a semi-filter, i.e., st(T ) ∈ SF(S). Recall that, SF(S) is a completely distributive lattice with respect to inclusion, see [START_REF] Greco | Decomposizioni di semifiltri e Γ-limiti sequenziali in reticoli completamente distributivi[END_REF], with its operations and be the intersection and the union of sets, respectively.

n ) ≈ (A α 1 1 , ..., A α n n ) # . (3.5)

Representation theorem

The representation theorem of Greco showed that each limitoid valued in a completely distributive lattice is a limit inferior. 

T ( f ) = liminf st(T ) f , (3.6) 
where st(T ) is the support of T .

Proof. First, we check that for each

f ∈ L S , liminf st(T ) f ≤ T ( f ) ≤ limsup (st(T )) # f , (3.7) 
where (st(T ) 

) # := {A ⊆ S : A ∩ F = / 0, ∀F ∈ st(T )}. For each A ∈ st(T ), we put g := χ L A ∧ ( f (A)) . Since L is completely distributive, the function ϕ(x) := x ∧ ( f (A)) is a complete homomorphism of L in L.
f (A) ≤ T ( f ). Therefore, liminf st(T ) f ≤ T ( f ). §3. The theory of Γ-limits
On the other hand, let A ∈ (st(T )) # and g := χ L S\A ∨( f (A)) . From the definition of (st(T )) # , we have (S \ A) ∈ st(T ), so T (χ L S\A ) = 0 L . Since the function ϕ defined by ϕ(x) := x ∨ ( f (A)) is a complete homomorphism of L in L, so T (g) = f (A). Finally, since g ≥ f , we obtain 

f (A) ≥ T ( f ), which implies T ( f ) ≤ limsup (st(T )) # f .
Γ(A α 1 1 , ..., A α n n ) lim f = lim inf (A α 1 1 ,...,A α n n ) f = sup A∈(A α 1 1 ,...,A α n n ) inf (x 1 ,...,x n )∈A f (x 1 , ..., x n ).
By virtue of (3.4) and (3.5), we get

Γ(A -α 1 1 , ..., A -α n n ) lim f = lim inf (A α 1 1 ,...,A α n n ) # f = inf A∈(A α 1 1 ,...,A α n n ) sup (x 1 ,...,x n )∈A f (x 1 , ..., x n ).
The representation of limitoids allows us to describe the structure of lattice Lim(S, L) of limitoids in S valued in L, where L is a completely distibutive lattice. The set Lim(S, L) of limitoids in S valued in L is the complete lattice with respect to the order defined by T ≤ T if and only if T (g) ≤ T (g) for each g ∈ L S . In Lim(S, L), the limitoids i T i , i T i are defined by

for each g ∈ L S , i T i (g) = i (T i (g)) , i T i (g) = i (T i (g)) .
Furthermore, the function st : Lim(S, L) → SF(S) is a complete homomorphism of Lim(S, L)

on SF(S), see [START_REF] Greco | Limitoidi e reticoli completi[END_REF], since for each semi-filter A in S,

st i T i = i st(T i ), st i T i = i st(T i ), st(liminf A ) = A .
On the other hand, if L is completely distributive, then two limitoids in S with the same supports are equal (by the representation of limitoids). Therefore Theorem 3.3.5. ( [START_REF] Greco | Limitoidi e reticoli completi[END_REF]) (The structure of lattice of limitoids) If L is a completely distributive lattice, then the function that associates each limitoid in S to its support is a complete isomorphism, i.e., a bijective complete homomorphism, from Lim(S, L) into SF(S).

The function liminf : SF(S) → Lim(S, L) that associates each semi-filter A in S to the limit inferior with respect to A is the inverse isomorphism. Therefore, for a completely distributive lattice L, we have

liminf i A i f = i liminf A i f , (3.8) §3.
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liminf i A i f = i liminf A i f , (3.9) 
for each f ∈ L S and {A i } i ⊆ SF(S).

These analyses above mean that with a completely distributive lattice L, each theorem in Lim(S, L) becomes a theorem in set theory in SF(S), and vice versa.

3.4 Sequential forms of Γ-limits for extended-real-valued functions

In this section, we extend Greco's results to more general filters related to sequentiality, like

Fréchet, strongly Fréchet, and productively Fréchet filters.

Let F be a filter on X. We recall that, see [START_REF] Dolecki | An initiation into convergence theory[END_REF] • F is called a principal filter if there exists a nonempty subset A of X such that F = {B ⊆ X : A ⊆ B}. The set of principal filters on X is denoted by F 0 (X).

• F is called a sequential filter if there exists a sequence {x n } n in X such that the family

{{x n : n ≥ m} : m ∈ N} is a base of F . Then, we denote F ≈ {x n } n .
The set of sequential filters on X is denoted by F seq (X).

• F is called a countably based filter if it admits a countable base. The set of countably based filters on X is denoted by F 1 (X).

Principal filters and sequential filters are special cases of countably based filters. If F ≈ {x n } n , then (see [START_REF] Greco | Decomposizioni di semifiltri e Γ-limiti sequenziali in reticoli completamente distributivi[END_REF])

liminf F f = lim inf n→+∞ f (x n ), liminf F # f = lim sup n→+∞ f (x n ).
To facilitate for results in the sequel, we denote Seq(F (iii) first countable if for all x ∈ X, N (x) is a countably based filter.

) := {E ∈ F seq (X) : E ≥ F }. Definition 3.4.1. ([62]) A topological space X is called (i) Fréchet if whenever A ⊆ X,
Definitions of Fréchet and strongly Fréchet spaces can be rephrased in terms of filters as follows, see [START_REF] Dolecki | Active boundaries of upper semi-continuous and compactoid relations closed and inductively perfect maps[END_REF][START_REF] Jordan | Productively Fréchet spaces[END_REF]. §3. The theory of Γ-limits

• A space X is Fréchet if and only if for all x ∈ X, N (x) is a Fréchet filter on X in the following sense: a filter F is Fréchet if

∀ G ∈ F 0 (X) : G #F =⇒ ∃H ∈ F seq (X) : H ≥ F ∨ G , (3.10) 
where

F ∨ G := {F ∩ G : F ∈ F , G ∈ G } is the supremum of F and G .
• A space X is strongly Fréchet if and only if for all x ∈ X, N (x) is a strongly Fréchet filter on X in the following sense: a filter F is strongly Fréchet if 

∀ G ∈ F 1 (X) : G #F =⇒ ∃H ∈ F seq (X) : H ≥ F ∨ G . ( 3 
∀ G ∈ F sF (X) : G #F =⇒ ∃H ∈ F 1 (X) : H ≥ F ∨ G ,
where F sF (X) denotes the set of strongly Fréchet filters on X.

In [START_REF] Jordan | Productively Fréchet spaces[END_REF] 

H ∈ F # ⇐⇒ H c ∈ F , (3.12) 
where H c denotes the complement of H. In fact, by definition, H ∈ F # whenever there is

F ∈ F such that H ∩ F = / 0, equivalently F ⊆ H c , that is, H c ∈ F since F is filter. §3.
The theory of Γ-limits (ii) If F is a filter on a set X, G is a filter on a set Y , and H is a filter on X ×Y , we denote by H F the filter on Y generated by the sets

HF = {y : ∃x ∈ F, (x, y) ∈ H},
for H ∈ H and F ∈ F , and by H -G the filter on X generated by the sets

H -G = {x : ∃y ∈ G, (x, y) ∈ H}, for H ∈ H and G ∈ G . Notice that H #(F × G ) ⇐⇒ (H F )#G ⇐⇒ F #(H -1 G ).
We now recall some definitions introduced in [START_REF] Greco | Decomposizioni di semifiltri e Γ-limiti sequenziali in reticoli completamente distributivi[END_REF] by Greco as follows Definition 3.4.5. ( [START_REF] Greco | Decomposizioni di semifiltri e Γ-limiti sequenziali in reticoli completamente distributivi[END_REF]) Let N be a sequential filter associated with a sequence {n} n , and let A 1 , ..., A k be filters.

(N α 0 , A α 1 1 , ..., A α k k ) seq := ext α 1 {x 1 n } n ∈Seq(A 1 ) ... ext α k {x k n } n ∈Seq(A k ) ext -α 0 m∈N ext α 0 n≥m {(n, x 1 n , ..., x k n )} n ,
where α 0 , α 1 , ..., α k are signs of +,and ext -= , ext + = .

From Definition 3.4.5, the sequential form of the Γ-limit is defined as follows Definition 3.4.6. ( [START_REF] Greco | Decomposizioni di semifiltri e Γ-limiti sequenziali in reticoli completamente distributivi[END_REF]) Let N be the sequential filter associated with a sequence {n} n , A 1 , ..., A k be filters in S 1 , ..., S k , respectively, and f : N×S 1 ×...×S k → R. The sequential Γ-limit is defined by

Γ seq (N α 0 , A α 1 1 , ..., A α k k )lim f := ext α 1 {x 1 n } n ∈Seq(A 1 ) ... ext α k {x k n } n ∈Seq(A k ) ext -α 0 m∈N ext α 0 n≥m f (n, x 1 n , ..., x k n ),
where ext -= inf, ext + = sup, α 0 , α 1 , ..., α k are signs of +, -.

The Γ seq -limit is a limitoid and its support is the family

(N α 0 , A α 1 1 , ..., A α k k ) seq .

Two variables

Proposition 3.4.7. Suppose that F is a Fréchet filter. Then 

F = E ∈Seq(F ) E = E ∈Seq(F ) E # , (3.13) 
F # = E ∈Seq(F ) E = E ∈Seq(F ) E # . ( 3 
E ∈ Seq(F ). Since E ≥ F , there exists E ∈ E such that E ⊆ F, so F ∈ E . This implies F ∈ E ∈Seq(F ) E . Thus, F ⊆ E ∈Seq(F ) E . Since E ⊆ E # , we get F ⊆ E ∈Seq(F ) E ⊆ E ∈Seq(F ) E # .
We now prove

E ∈Seq(F ) E # ⊆ F . It follows from the definition of Fréchet filters that ∀ A ∈ F # =⇒ ∃E ∈ Seq(F ) : A ∈ E . (3.15) Suppose that H ∈ F . This implies H c ∈ F # . From (3.15), there is E ∈ Seq(F ) such that H c ∈ E , i.e., H ∈ E # . Thus, H ∈ E ∈Seq(F ) E # .
Proposition 3.4.8. Let F , G be filters.

(i) Suppose that F is Fréchet. Then (F + , G -) = E ∈Seq(F ) (E -, G -) = E ∈Seq(F ) (E + , G -), (3.16) 
(F -, G + ) = E ∈Seq(F ) (E + , G + ) = E ∈Seq(F ) (E -, G + ). (3.17) 
(ii) Suppose that F is strongly Fréchet and G is productively Fréchet (or vice versa). Then

(F -, G -) = E ∈Seq(F ) (E -, G -) = E ∈Seq(F ) (E + , G -), (3.18) 
(F + , G + ) = E ∈Seq(F ) (E + , G + ) = E ∈Seq(F ) (E -, G + ). (3.19) 
Proof. (i) Since (3.16) implies (3.17), we prove only (3.16).

Because (E -, G -) ≈ E × G , (E + , G -) ≈ E # × G and E ⊆ E # , we get E ∈Seq(F ) (E -, G -) ⊆ E ∈Seq(F ) (E + , G -).
It follows from (3.14) that

(F + , G -) ≈ F # × G = ( E ∈Seq(F ) E ) × G ⊆ E ∈Seq(F ) (E × G ). §3.
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(F + , G -) ⊆ E ∈Seq(F ) (E -, G -) ⊆ E ∈Seq(F ) (E + , G -). Let A ∈ E ∈Seq(F ) (E + , G -), then there exists E ∈ Seq(F ) such that A ∈ E # ×G . It means that there exist A 1 ∈ E # and A 2 ∈ G such that A ⊇ A 1 × A 2 . Suppose that A ∈ (F + , G -) ≈ F # × G . It follows from A 2 ∈ G that A 1 ∈ F # . By (3.12), we get A c 1 ∈ F . Because E ≥ F , we get A c 1 ∈ E , which contradicts to A 1 ∈ E # .
(ii) Similarly, we prove only (3.18). It follows from Proposition 3.4.3 that F ×G is a Fréchet filter. We can see that

(F -, G -) ≈ F × G = ( E ∈Seq(F ) E ) × G (by (3.13)) ⊆ E ∈Seq(F ) (E × G ) ⊆ E ∈Seq(F ) (E # × G ) = E ∈Seq(F ) (E # × ( B∈Seq(G ) B)) ⊆ E ∈Seq(F ) B∈Seq(G ) (E # × B) ⊆ E ∈Seq(F ) B∈Seq(G ) (E × B) # ⊆ D∈Seq(F ×G ) D # = F × G (by (3.13)).
Remark 3.4.9. In [START_REF] Jordan | Productively Fréchet spaces[END_REF] Jordan and Mynard showed that if F is not a strongly Fréchet filter (or not a productively Fréchet filter), then there exists a countably based filter G (a strongly Fréchet filter G , respectively) such that F × G is not a Fréchet filter. On the other hand, by Proposition

3.4.3, E ∈Seq(F ) (E -, G -) is a Fréchet filter. Thus (F -, G -) = E ∈Seq(F ) (E -, G -). Proposition 3.4.10. Let E ≈ {x n } n . (i) If G is strongly Fréchet filter, then (E -, G -) = {y n } n ≥G {(x n , y n )} n , (E + , G + ) = {y n } n ≥G {(x n , y n )} # n . §3. The theory of Γ-limits (ii) If G is countably based filter, then (E + , G -) = {y n } n ≥G {(x n , y n )} # n , (E -, G + ) = {y n } n ≥G {(x n , y n )} n . Proof. (i) We prove only (E -, G -) = {y n } n ∈Seq(G )
{(x n , y n )} n since this formula implies the other one by properties of grills. It follows from Proposition 3.4.3 that E × G is Fréchet filter. We can see that

(E -, G -) ≈ E × G = E × ( B∈Seq(G ) B) (by (3.13)) ⊆ B∈Seq(G ) (E × B) = B∈Seq(G ) ( ( 
D∈Seq(E ) D) × B) (by (3.13)) ⊆ B∈Seq(G ) D∈Seq(E ) (D × B) ⊆ L ∈Seq(E ×G ) L = E × G (by (3.13)). Because E ≈ {x n } n , we get (E -, G -) = {y n } n ≥G {(x n , y n )} n . (ii) We prove only (E -, G + ) = {y n } n ≥G {(x n , y n )} n . Let G ≈ {G n } n , where {G n } n is a de- creasing sequence of subsets, and A ∈ (E -, G + ) ≈ (E # × G ) # .
In other words, for each n and

H ∈ E # , (H × G n ) ∩ A = / 0 ⇐⇒ AG n ∩ H = / 0, (3.20) 
that is, AG n ∈ E ## = E for each n. This means that for every n there is

k n such that {x k : k ≥ k n } ⊆ AG n , hence there exists {y n k : k ≥ k n } ⊆ G n with {(x k , y n k ) : k ≥ k n } ⊆ A.
Using induction, we can get a strictly increasing sequence {k n } n with this property. Let

y k := y n k if k n ≤ k < k n+1 .
Then

{y k } k ≥ G and {(x k , y k )} ⊆ A for each k ≥ k 1 .
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Conversely, let A ∈ {y n } n ≥G {(x n , y n )} n , then there is D ≈ {y k } k ≥ G such that (x k , y k ) ⊆ A.
We can check that (3.20) holds, then A ∈ (E -, G + ).

Theorem 3.4.11. Let f : N × X → R. (i) If G is a strongly Fréchet filter on X, then Γ(N -, G -) = Γ seq (N -, G -), Γ(N + , G + ) = Γ seq (N + , G + ).
(ii) If G is a countably based filter on X, then

Γ(N -, G + ) = Γ seq (N -, G + ), Γ(N + , G -) = Γ seq (N + , G -).
Proof. We check only for Γ(N + , G + ) = Γ seq (N + , G + ). The other cases are analogous. Let E = N , from (3.4.10), we get

(N + , G + ) = {y n } n ∈Seq(G ) {(n, y n )} # n .
It follows from (3.6) and (3.9) that for all f : N × X → R,

Γ(N + , G + ) lim f = liminf (N + ,G + ) f = sup {y n }∈Seq(G ) liminf {(n,y n )} # n f = sup {y n }∈Seq(G ) lim sup n→+∞ f (n, x n ) = Γ seq (N + , G + ) lim f .
The following example shows that the strongly Fréchetness of G in Theorem 3.4.11(i) is necessary.

Example 3.4.12. Let a sequential fan

S N := { n∈N X n } ∪ {x ∞ }, where X n := {x n,k : k ∈ N} and
X n ∩ X m = / 0 for all n = m, be equipped with a topology defined as follows

• each point x n,k is isolated; • a basic open neighborhood of x ∞ in the form O f (x ∞ ) := {x ∞ } ∪ {x n,k : k ≥ f (n)}, §3. The theory of Γ-limits for each function f ∈ N N , where N N := { f : N → N}.
First, we prove that S N is not strongly Fréchet, i.e., there exists {A n } be a decreasing sequence of subsets in

S N such that x ∞ ∈ n cl(A n ), but there is no x n ∈ A n with x ∞ = lim n→∞ x n . Setting A n := {X m : m ≥ n}. It is easy to check that A n+1 ⊆ A n and x ∞ ∈ n cl(A n ). For each n, choose any finite set F n of A n and denote F := n F n . We define a function h ∈ N N by h(n) := 1 + max{k : x n,k ∈ F}, if F ∩ X n = / 0, 1, otherwise. Then, O h (x ∞ ) ∩ F = / 0, i.e., x ∞ ∈ cl F. Since F n is arbitrary for all n, there is no x n ∈ A n with x ∞ = lim n→+∞ x n . Let g : N × S N → [0, 1] be defined by g(n, x) =    1 n √ m , if x ∈ X m , 1, otherwise. 
By calculating, we get

Γ(N -, N τ (x ∞ ) -) lim g = 0.
Let {x m } be a sequence converging to x ∞ . If x m = x ∞ for infinitely many m ∈ N, we get lim m→+∞ g(m, x m ) = 1. We now consider x m = x ∞ for all m ∈ N. Then, there exists n 0 ∈ N such that {x m } ⊆ n 0 n=1 X n . Indeed, if not, for all n ∈ N, there exists m n such that x m n ∈ n l=1 X l . This implies that x m n ∈ A n+1 , where {A n } is the decreasing sequence of subsets defined above. By the previous analysis, {x m n } n does not converge to x ∞ , which is a contradiction. Thus, each

sequence {x m } ( = {x ∞ }) converging to x ∞ is in type of {x p,k : ∃n 0 ∈ N, p ∈ [1, n 0 ], k → +∞}. By calculating, we get lim inf m→+∞ g(m, x m ) = lim inf k→+∞ g(k, x p,k ) = 1.
This implies that

Γ seq (N -, N τ (x ∞ ) -) lim g = 1. Thus Γ(N -, N τ (x ∞ ) -) lim g < Γ seq (N -, N τ (x ∞ ) -) lim g.

Three variables

Proposition 3.4.13. Let F , G be filters. §3. The theory of Γ-limits (i) If F is strongly Fréchet and G is productively Fréchet (or vice versa), then

(F -, G -) = {x n } n ≥F {y n } n ≥G {(x n , y n )} n = {x n } n ≥F {y n } n ≥G {(x n , y n )} # n , (ii) If F is Fréchet and G is countably based, then (F + , G -) = {x n } n ≥F {y n } n ≥G {(x n , y n )} n = {x n } n ≥F {y n } n ≥G {(x n , y n )} # n .
Proof. (i) It follows from Proposition 3.4.3 that F × G is a Fréchet filter. We can see that

(F -, G -) = {x n } n ≥F ({x n } - n , G -) (by Proposition 3.4.8) = {x n } n ≥F {y n } n ≥G {(x n , y n )} n (by Proposition 3.4.10) ⊆ {x n } n ≥F {y n } n ≥G {(x n , y n )} # n ⊆ L ∈Seq(F ×G ) L # = F × G (by (3.13)).
(ii) We can see that

(F + , G -) = {x n } n ≥F ({x n } - n , G -) (by Proposition 3.4.8) = {x n } n ≥F {y n } n ≥G {(x n , y n )} n (by Proposition 3.4.10).
Besides, (i) Suppose that G is strongly Fréchet and H is productively Fréchet (or vice versa). Then

(F + , G -) = {x n } n ≥F ({x n } + n , G -) (by Proposition 3.4.8) = {x n } n ≥F {y n } n ≥G {(x n , y n )} # n (
(E -, G -, H -) = {y n } n ≥G {z n } n ≥H {(x n , y n , z n )} n .
(ii) Suppose that G is countably based and H is strongly Fréchet. Then

(E -, G + , H -) = {y n } n ≥G {z n } n ≥H {(x n , y n , z n )} n . §3. The theory of Γ-limits (iii) Suppose that G , H are countably based. Then (E + , G -, H -) = {y n } n ≥G {z n } n ≥H {(x n , y n , z n )} # n .
(iv) Suppose that G is strongly Fréchet and H is countably based. Then

(E + , G + , H -) = {y n } n ≥G {z n } n ≥H {(x n , y n , z n )} # n .
Proof. We only prove (iii). The other ones are analogous. It follows from Proposition 3.4.3 that (i) Suppose that G is strongly Fréchet and H is productively Fréchet (or vice versa). Then

E × G × H is a Fréchet filter. We have (E + , G -, H -) ≈ E # × G × H = ( {y n } n ≥G {(x n , y n )} # n ) × H (by Proposition 3.4.10) ⊆ {y n } n ≥G ({(x n , y n )} # n × H ) = {y n } n ≥G {z n } n ≥H {(x n , y n , z n )} # n (by Proposition 3.4.10) ⊆ B∈Seq(E ×G ×H ) B # = E × G × H (by (3.13)) ⊆ E # × G × H .
(E + , G + , H + ) = {y n } n ≥G {z n } n ≥H {(x n , y n , z n )} # n .
(ii) Suppose that G is countably based and H is strongly Fréchet. Then

(E + , G -, H + ) = {y n } n ≥G {z n } n ≥H {(x n , y n , z n )} # n .
(iii) Suppose that G , H are countably based. Then

(E -, G + , H + ) = {y n } n ≥G {z n } n ≥H {(x n , y n , z n )} n .
(iv) Suppose that G is strongly Fréchet and H is countably based. Then

(E -, G -, H + ) = {y n } n ≥G {z n } n ≥H {(x n , y n , z n )} n . §3.
The theory of Γ-limits

Proof. It follows from Proposition 3.4.14.

Theorem 3.4.16. Let G , H be filters on X,Y , respectively, and f : N × X ×Y → R.

(i) Suppose that G is strongly Fréchet and H is productively Fréchet (or vice versa). Then

Γ(N -, G -, H -) = Γ seq (N -, G -, H -), Γ(N + , G + , H + ) = Γ seq (N + , G + , H + ).
(ii) Suppose that G is countably based and H is strongly Fréchet. Then

Γ(N -, G + , H -) = Γ seq (N -, G + , H -), Γ(N + , G -, H + ) = Γ seq (N + , G -, H + ).
(iii) Suppose that G , H are countably based. Then

Γ(N + , G -, H -) = Γ seq (N + , G -, H -), Γ(N -, G + , H + ) = Γ seq (N -, G + , H + ).
(iv) Suppose that G is strongly Fréchet and H is countably based. Then

Γ(N + , G + , H -) = Γ seq (N + , G + , H -). Γ(N -, G -, H + ) = Γ seq (N -, G -, H + ).
Proof. Based on Proposition 3.4.14 and Corollary 3.4.15, the proof is similar to that of Theorem 3.4.11.

More than three variables

Let T and T i , i ∈ I, be R-limitoids in S, and st(T ) = i∈I st(T i ). It follows from (3.6) and

(3.8) that for all f : S → R,

T ( f ) = inf i∈I T i ( f ). (3.21)
The following lemma give us a condition for which "inf" in (3.21) can be attained.

Lemma 3.4.17. The following properties are equivalent

(i) for each f : S → R, T ( f ) = min i∈I T i ( f ), (ii) for each countably based filter F , st(T ) -, F -= i∈I st(T i ) -, F -. §3.
The theory of Γ-limits

Proof. Suppose that (ii) holds. By setting F := {S}, we get st(T ) = i∈I st(T i ). This implies

T ( f ) = inf i∈I T i ( f ).
Let H ≈ {{r : r < r n } : n ∈ N}, where {r n } n is a strictly decreasing sequence converging to

T ( f ) such that T ( f ) < r n for all n. It follows from (3.6) that T ( f ) = lim inf st(T ) f = sup A∈st(T ) inf x∈A f < r n , that is, {x ∈ S : f (x) < r n } ∈ st(T ) # for all n, that is, ( f -1 (H ))# (st(T )) or else gr( f ) ∈ (st(T ) × H ) # . By (ii), there is i ∈ I such that gr( f ) ∈ (st(T i ) × H ) # , equivalently for all n, T i ( f ) = lim inf st(T i ) f < r n . Then, T i ( f ) ≤ lim n→+∞ r n = T ( f ),
which implies (i).

Conversely, suppose that (i) holds and F ≈ {F n : n ∈ N}, where {F n } n is a decreasing sequence of subsets. We prove that

st(T ) -, F -# = i∈I st(T i ) -, F -# . Let H ∈ (st(T ) -, F -) # ≈ (st(T ) × F ) # . By Remark 3.4.4(ii), H ∈ (st(T ) × F ) # if and only if st(T )#(H -1 F ), that is, H -1 F n ∈ (st(T )) # for all n. Let f H (x) := inf 1 n : x ∈ H -1 F n , if { 1 n : x ∈ H -F n } = / 0, 1, otherwise. Then if n > 1 r , that is, r > 1 n , and x ∈ H -1 F n , then f H (x) < r, so that H -1 F n ⊆ {x : f H (x) < r}. It follows from T ( f H ) = lim inf st(T ) f = sup A∈st(T ) inf x∈A f = inf B∈(st(T )) # sup x∈B f that T ( f H ) < r for each r > 0. By (i), there exists i ∈ I such that T i ( f H ) = 0, i.e., for each r > 0, T i ( f H ) = lim inf st(T i ) f H = sup A∈st(T i ) inf x∈A f H < r, equivalently, {x : f H (x) < r} ∈ st(T i ) # for all r > 0. Therefore, if 1 n < r < 1 n-1 , then H -F n ⊆ {x : f H (x) < r} ⊆ H -F n-1 , so that H -F n-1 ∈ st(T i ) # for each n > 1, that is H ∈ (st(T i ) × F ) # . §3.
The theory of Γ-limits Proposition 3.4.18. Suppose that F is a strongly Fréchet filter, G , H are countably based filters. Then

(F -, G + , H -) = E ∈Seq(F ) (E -, G + , H -). (3.22)
However, there exist countably based filters F , G , H such that

(F -, G + , H -) = E ∈Seq(F ) (E + , G + , H -).
Proof. It follows from Lemma 3.4.17 that (3.22) will be proved if for each extended-real-valued function f ,

Γ(F -, G + ) lim f = min E ∈Seq(F ) Γ(E -, G + ) lim f . (3.23) It follows from (3.17) that (F -, G + ) = E ∈Seq(F ) (E -, G + ). This implies Γ(F -, G + ) lim f = inf E ∈Seq(F ) Γ(E -, G + ) lim f . Setting b := inf E ∈Seq(F ) Γ(E -, G + ) lim f . Let {E n } n be a sequence of sequential filters such that E n ≥ F for all n and b = inf n Γ(E - n , G + ) lim f .
Let {r n } n be a strictly decreasing sequence converging to b and Γ(E - n , G + ) lim f < r n for all n. By the definition of Γ-limits, for all n,

inf G∈G Γ(E - n ) sup y∈G f (x, y) < r n .
It means that for every n, there exists G n ∈ G such that

Γ(E - n ) sup y∈G n f (x, y) < r n , that is, x : sup y∈G n f (x, y) < r n ∈ E # n .

Hence

x : sup

y∈G n f (x, y) < r n n ⊆ F # .
Since F is a strongly Fréchet filter, there is a sequential

E 0 ≈ {x n } n ≥ F such that sup y∈G n f (x n , y) < r n . §3. The theory of Γ-limits This implies inf G n ∈G Γ(E 0 -) sup y∈G n f (x, y) < r n . Thus, Γ(E 0 -, G + ) lim f ≤ b = E ∈Seq(F ) Γ(E -, G + ) lim f , which implies (3.23).
For the second part of (iii), we consider the following example. 

[0, 1] × [0, 1] → R be defined by g(x, y) := 2 -m , if ∃ n, m ∈ N such that x = 2 -n (1 -2 -m ), 0 ≤ y ≤ 2 -m , 1, otherwise. 
Setting

E m := {2 -n (1 -2 -m )} n . It is evident that Γ(E + m , N (0) + ) lim g = 2 -m
. By virtue of (3.8) and Proposition 3.4.18(ii), we get [START_REF] Greco | Decomposizioni di semifiltri e Γ-limiti sequenziali in reticoli completamente distributivi[END_REF]. This implies hypo(g) ∈ (N (0) -, N (0) + , N (0) -). Let E be an sequential filter associated with a sequence {x n } ⊆ [0, 1] converging to 0. If there exists m

0 = inf E ≥N (0) Γ(E + , N (0) + ) lim g = Γ(N (0) -, N (0) + ) lim g. Recall that hypo(g) ∈ (N (0) -, N (0) + , N (0) -) if and only if Γ(N (0) -, N (0) + ) lim g > 0, see Lemma 3.4 in
such that {x n } n ∩ {2 -n (1 -2 -m )} n is infinite, we have Γ(E + , N (0) + ) lim g ≥ 2 -m ; otherwise, Γ(E + , N (0) + ) lim g = 1.
Then, hypo(g) ∈ (E + , N (0) + , N (0) -) for each sequential filter E finer than N (0). In conclusion, we demonstrate that hypo(g) ∈ (N (0) -, N (0) + , N (0) -) and hypo(g)

∈ E ≥N (0) (E + , N (0) + , N (0) -).
Proposition 3.4.20. Suppose that F is a strongly Fréchet filter, and G , H are countably based filters. Then

(F -, G + , H -) = {u n } n ≥F {y n } n ≥G {z n } n ≥H {(u n , y n , z n )} n .
However, there exist countably based filters F , G , H such that

(F -, G + , H -) = {u n } n ≥F {y n } n ≥G {z n } n ≥H {(u n , y n , z n )} # n .
Proof. It follows from Propositions 3.4.14(ii) and 3.4.18. §3. The theory of Γ-limits Proposition 3.4.21. Let E ≈ {x n } n , F be a strongly Fréchet filter, G , H be countably based filters. Then

(E -, F -, G + , H -) = {u n } n ≥F {y n } n ≥G {z n } n ≥H {(x n , u n , y n , z n )} n .
However, there exist countably based filters F , G , H such that

(E + , F -, G + , H -) = {u n } n ≥F {y n } n ≥G {z n } n ≥H {(x n , u n , y n , z n )} # n .
Proof. It is implied from Propositions 3.4.10 and 3.4.20.

The results above define the possibility to express filters. They are mainstay for De Giorgi's Γ-limits, for example, if F , G , H , C are countably based filters then the following extensions of previous results are not true in general

(C + , F -, G + , H -) = {w n } n ≥C {u n } n ≥F {y n } n ≥G {z n } n ≥H {(w n , u n , y n , z n )} n and (C + , F -, G + , H -) = {w n } n ≥C {u n } n ≥F {y n } n ≥G {z n } n ≥H {(w n , u n , y n , z n )} # n .
Theorem 3.4.22. Let F be a strongly Fréchet filter on X, and G , H be countably based filters on Y, Z, respectively. Then, for every f :

N × X ×Y × Z → R, Γ(N -, F -, G + , H -)lim f = Γ seq (N -, F -, G + , H -)lim f .
However, there exist countably based filters F , G , H and an extended-real-valued function f such that 

Γ(N + , F -, G + , H -)lim f = Γ seq (N + , F -, G + , H -)lim f .
f : N × X ×Y × Z → R, Γ(N + , F + , G -, H + )lim f = Γ seq (N + , F + , G -, H + )lim f .
However, there exist countably based filters F , G , H and an extended-real-valued function f such that From the theorem and corollary above, we see that for k ≥ 3, regardless of the sign α 0 there are countably based filters F 1 , ..., F k and α 1 , ..., α k such that

Γ(N -, F + , G -, H + )lim f = Γ seq (N -, F + , G -, H + )lim f .
Γ(N α 0 , F α 1 1 , F α 2 2 , ..., F α k k )lim = Γ seq (N α 0 , F α 1 1 , F α 2 2 , ..., F α k k )lim.

Applications

In this section, applications of Γ-limits to generalized derivatives and tangency are given.

Generalized derivatives

It is generally admitted that definition of differentiability of functions in Euclidean spaces was introduced in [START_REF] Fréchet | Sur la notion de différentielle[END_REF] by Fréchet in 1911. However, the definition of derivative at a point x of a real-valued function defined on a subset of Euclidean space was already given in [START_REF] Peano | Applicazioni Geometriche[END_REF] by Peano in 1887 and generalized in 1908 in [START_REF] Peano | Formulairo Mathematico[END_REF] to function valued in Euclidean space.

Let A be a subset in R m and x be an accumulation point of 

A. A function f : A → R n is said to be differentiable at x if there exists a linear map L : R m → R n such that lim y→x f (y) -f (x) -L(y -x) ||y -x|| = 0. ( 3 
f (y) -f (u) -L(y -u) ||y -u|| = 0. §3. The theory of Γ-limits
He also noticed that strict differentiability amounts to continuous differentiability. This definition is frequently referred to Leach in [START_REF] Leach | A note on inverse function theorems[END_REF], where it is called strong differentiability, and to

Bourbaki in [START_REF] Bourbaki | Variétés Différentielles et Analytiques[END_REF].

Not only recently, a prominent role that nonsmooth analysis plays in connection with optimization theory is widely recognized, especially since the latter has natural mechanisms that generate nonsmoothness: duality theory, sensitivity and stability analysis, decomposition techniques, etc. Therefore, theories of generalized differentiability have been started. One of its important applications is the topic of optimality conditions for nonsmooth and nonconvex problems. References [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF][START_REF] Mordukhovich | Variational analysis and generalized Differentiation[END_REF][START_REF] Mordukhovich | Variational analysis and generalized Differentiation[END_REF][START_REF] Rockafellar | Variational Analysis[END_REF] are recent books that contain systematic expositions and references on generalized differentiation and their applications to optimization-related problems, including optimality conditions. Also, [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF][START_REF] Penot | Are generalized derivatives useful for generalized convex function ?[END_REF] are also detailed treatments on the issues.

Although a whole spectrum of denitions of differentiability can be given in analytical and/or geometrical ways, we can observe that using of kinds of directional derivatives is often a first step for a differential construction; see e.g. [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF][START_REF] Jimenez | Strict minimality conditions in nondifferentiable multiobjective programming[END_REF][START_REF] Rockafellar | Variational Analysis[END_REF] for often-met notions of directional derivatives. Therefore, applying directional derivatives is a simple way to deal with optimizationrelated problems in general and optimality conditions in particular, see [START_REF] Ginchev | Higher-order optimality conditions in nonsmooth optimization[END_REF][START_REF] Ginchev | Second order optimality conditions in nonsmooth unconstrained optimization[END_REF][START_REF] Ginchev | First order conditions for C 0,1 constrained vector optimization[END_REF][START_REF] Ginchev | Second order conditions for C 1,1 constrained vector optimization[END_REF][START_REF] Ginchev | From scalar to vector optimization[END_REF][START_REF] Studniarski | Second order necessary conditions for optimality in nonsmooth nonlinear programming[END_REF].

In this subsection, by using Γ-limits, we introduce a unified notation of derivatives. Let N + (0) := N (0) ∩ (0, +∞) be a filter on (0, +∞), τ be a topology on X, and f : X → R.

Let ϑ f be the supremum of τ and of the coarsest topology in X for which f is continuous.

An unified notation of derivatives of f at x 0 is defined by

D(N + (0) α 1 ; ϑ α 2 f , τ α 3 ) f (x 0 )(h) := Γ(N + (0) α 1 ; ϑ α 2 f , τ α 3 ) lim f (x + tu) -f (x) t (x 0 , h), (3.25) 
with α 1 ∈ {+, -}, α 2 , α 3 ∈ {+, -, * } where α 2 = * (or α 3 = * ) means that x (u, respectively) is fixed and equal to x 0 (h, respectively).

The formula (3.25) can be abbreviated as follows

D (α 1 ,α 2 ,α 3 ) f (x 0 )(h) = Γ (t → 0 + ) α 1 , (x → x 0 ) α 2 , (u → h) α 3 lim f (x + tu) -f (x) t .
By using (3.25), we get the following definition.

Definition 3.5.1. Let f : (X, τ) → R and x 0 ∈ X.

(i) The upper directional derivative of f at x 0 in direction h ∈ X is

D (+, * , * ) f (x 0 )(h) = Γ((t → 0 + ) + ) lim f (x 0 + th) -f (x 0 ) t . §3. The theory of Γ-limits (ii) The lower directional derivative of f at x 0 in direction h ∈ X is D (-, * , * ) f (x 0 )(h) = Γ (t → 0 + ) -lim f (x 0 + th) -f (x 0 ) t .
(iii) The upper tangent derivative of f at x 0 in direction h ∈ X is

D (+, * ,+) f (x 0 )(h) = Γ (t → 0 + ) + , (u → h) + lim f (x 0 + tu) -f (x 0 ) t .
(iv) The lower tangent derivative of f at x 0 in direction h ∈ X is

D (-, * ,-) f (x 0 )(h) = Γ (t → 0 + ) -, (u → h) -lim f (x 0 + tu) -f (x 0 ) t .
(v) The upper paratangent derivative of f at x 0 in direction h ∈ X is

D (+,+,+) f (x 0 )(h) = Γ (t → 0 + ) + , (x → x 0 ) + , (u → h) + lim f (x + tu) -f (x) t . (vi) The lower paratangent derivative of f at x 0 in direction h ∈ X is D (-,-,-) f (x 0 )(h) = Γ (t → 0 + ) -, (x → x 0 ) -, (u → h) -lim f (x + tu) -f (x) t .
In short, the results above can be expressed as follows 

(+,+,+) f (x 0 )(h) paratangent derivative lower paratangent derivative D (-,-,-) f (x 0 )(h) Clarke derivative

Tangent cones

In this subsection, we recall some well-known tangent cones in optimization theory and express them in terms of Γ-limits.

Recently, various types of tangent cones have been studied in the literature. Their definitions depend on variants of the limiting process. The most known contribution to the investigation of these concepts is due to Bouligand in 1932, see [START_REF] Bouligand | Introdution à la géométrie infinitésimale directe[END_REF]. One can find a mention about other §3. The theory of Γ-limits contributors in papers of Guareschi [START_REF] Guareschi | Un concetto di derivazione delle funzioni di più variabili reali più ampio di quello della derivazione parziale[END_REF][START_REF] Guareschi | Sulla differenziabilità delle funzioni di una o più variabili complesse[END_REF], Saks [START_REF] Saks | Theory of the Integral[END_REF], Severi [START_REF] Severi | Su alcune questioni di topologia infinitesimale[END_REF][START_REF] Severi | Un paradosso topologico[END_REF], Federer [START_REF] Federer | Curvature measures[END_REF] and Whitney [START_REF] Whitney | Complex Analytic Varieties[END_REF]. We can say that, for tangent cones, main references are Bouligand in optimization theory, Ferderer in geometric measure theory and calculus of variations, and Whitney in differential geometry.

However, by [START_REF] Dolecki | Towards historical roots of necessary conditions of optimality: Regula of Peano[END_REF], we discover that tangent cones were already known by Peano at the end of 19th century. Indeed, in 1887, Peano gave in [START_REF] Peano | Applicazioni Geometriche[END_REF] a metric definition of tangent straight line and tangent plane, then reaches, in a natural way, a unifying notion as follows

tang(A, x) := x + Liminf λ →+∞ λ (A -x).
Later, in 1908, he introduced in [START_REF] Peano | Formulairo Mathematico[END_REF] another types of tangent cone, namely

Tang(A, x) := x + Limsup λ →+∞ λ (A -x).
To distinguish two above notions, we shall call the first lower tangent cone and the second upper tangent cone. As usual, after abstract investigation of a notion, Peano considered significant special cases and calculated the upper tangent cone in several basic figures (closed ball, curves and surfaces parametrized in a regular way).

Let S be a subset of X. The homothety of S, see [START_REF] Dolecki | Tangency and differentiation : some applications of convergence theory[END_REF][START_REF] Penot | The use of generalized subdifferential calculus in optimization theory[END_REF][START_REF] Rockafellar | Generalized directional derivatives and subgradients of nonconvex functions[END_REF], is the set-valued map from (0, +∞) × X into X defined by

H S (t, x) := 1 t (S -x). (3.26) 
H S can be considered as a relation in (0, +∞) × X × X . If x 0 is fixed, (3.26) is called the homothety of S at x 0 and is denoted by H S,x 0 .

Let τ, θ be topologies on X. Based on the above homothety, we now give a unified notation of cones as follows

v ∈ T S (N + (0) α 1 ; θ α 2 S , τ α 3 )(x 0 ) ⇐⇒ Γ(N + (0) α 1 ; θ α 2 S , τ α 3 ) lim χ (H S ) (x 0 , v) = 1, (3.27) 
with θ S be a topology induced on S by θ , α 1 , α 3 ∈ {+, -}, α 2 ∈ {+, -, * }, where α 2 = * means that x is fixed and equal to x 0 .

The formula (3.27) can be abbreviated as follows

v ∈ T (α 1 ,α 2 ,α 3 ) S (x 0 ) ⇐⇒ Γ (t → 0 + ) α 1 , (x → x 0 ) α 2 , (u → v) α 3 lim χ (H S ) = 1.
By (3.27), we introduce the following definition. §3. The theory of Γ-limits Definition 3.5.2. Let S ⊆ X and x 0 ∈ cl S.

(i) The upper tangent cone of S at x 0 is defined by

v ∈ T (+, * ,+) S (x 0 ) ⇐⇒ Γ((t → 0 + ) + , (u → v) + ) lim χ (H S,x 0 ) = 1.
(ii) The lower tangent cone of S at x 0 is defined by

v ∈ T (-, * ,+) S (x 0 ) ⇐⇒ Γ((t → 0 + ) -, (u → v) + ) lim χ (H S,x 0 ) = 1.
(iii) The upper paratangent cone of S at x 0 is defined by

v ∈ T (+,+,+) S (x 0 ) ⇐⇒ Γ((t → 0 + ) + , (x → x 0 ) + , (u → v) + ) lim χ (H S ) = 1.
(iv) The lower paratangent cone of S at x 0 is defined by

v ∈ T (-,-,+) S (x 0 ) ⇐⇒ Γ((t → 0 + ) -, (x → x 0 ) -, (u → v) + ) lim χ (H S ) = 1. Proposition 3.5.3. (i) v ∈ T (+, * ,+) S (x 0 ) if and only if for every Q ∈ N τ (v), t > 0, there are t ≤ t and v ∈ Q such that x 0 + t v ∈ S. (ii) v ∈ T (-, * ,+) S (x 0 ) if and only if for every Q ∈ N τ (v) there is t > 0 such that for all t ≤ t there is v ∈ Q satisfying x 0 + t v ∈ S. (iii) v ∈ T (+,+,+) S (x 0 ) if and only if for every Q ∈ N τ (v), W ∈ N θ S (x 0 ), t > 0 there are v ∈ Q, x ∈ W , t > 0 such that x + t v ∈ S.
(iv) v ∈ T (-,-,+) S (x 0 ) if and only if for every Q ∈ N τ (v) there are W ∈ N θ S (x 0 ) and t > 0 such that for all t ≤ t, x ∈ W there is v ∈ Q satisfying x + t v ∈ S.

Proof. By the similarity, we prove only (iv). It follows from (3.27) that v ∈ T (-,-,+) S (x 0 ) if and

only if Γ(N + (0) -; θ - S , τ + ) lim χ (H S ) (x 0 , v) = 1, i.e., inf Q∈N τ (v) sup W ∈N θ S (x 0 ) sup t>0 inf t ≤t inf x ∈W sup v ∈Q χ (H S ) (t , x , v ) = 1.
It means that for every Q ∈ N τ (v) there are W ∈ N θ S (x 0 ) and t > 0 such that for all t ≤ t, x ∈ W

there is v ∈ Q satisfying x + t v ∈ S.
Remark 3.5.4. When X is a normed space. We get the sequential form of these tangent cones as follows Let F : X → 2 Y and (x 0 , y 0 ) ∈ grF.

(i) T (+, * ,+) S (x 0 ) = {v ∈ X : ∃t n → 0 + , ∃v n → v, x 0 + t n v n ∈ S}. (ii) T (-, * ,+) S (x 0 ) = {v ∈ X : ∀t n → 0 + , ∃v n → v, x 0 + t n v n ∈ S}. (iii) T (+,+,+) S (x 0 ) = {v ∈ X : ∃t n → 0 + , ∃x n ∈ S : x n → x 0 , ∃v n → v, x n + t n v n ∈ S}. (iv) T (-,-,+) S (x 0 ) = {v ∈ X : ∀t n → 0 + , ∀x n ∈ S : x n → x 0 , ∃v n → v, x n + t n v n ∈ S}. §3.

Traditional terminology Unifying notation Definition

paratangent derivative DF (+,+,+) (x 0 , y 0 ) gr(DF (+,+,+) (x 0 , y 0 )) = T (+,+,+) grF (x 0 , y 0 ) contingent derivative DF (+, * ,+) (x 0 , y 0 ) gr(DF (+, * ,+) (x 0 , y 0 )) = T (+, * ,+) grF (x 0 , y 0 ) adjacent derivative DF (-, * ,+) (x 0 , y 0 ) gr(DF (-, * ,+) (x 0 , y 0 )) = T (-, * ,+) grF (x 0 , y 0 ) circatangent derivative DF (-,-,+) (x 0 , y 0 ) gr(DF (-,-,+) (x 0 , y 0 )) = T (-,-,+) grF (x 0 , y 0 )

Inspired by them, many kinds of generalized derivatives have been defined and applied to optimization. Some of them, e.g., variational sets, radial sets, radial derivatives, and Studniarski derivatives, will be introduced in Chapters 4, 5, and 6. They can also be expressed in terms of Γ-limits.

Chapter 4

Variational sets and applications to sensitivity analysis for vector optimization problems

Introduction

First-order derivatives (of various types, classical or generalized) of a map are used to approximate a given map to simplify a problem under consideration. To have better approximations, higher-order derivatives are applied. For generalized derivatives and their applications in variational analysis, see books [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF] of Bonnans and Shapiro, [START_REF] Mordukhovich | Variational analysis and generalized Differentiation[END_REF][START_REF] Mordukhovich | Variational analysis and generalized Differentiation[END_REF] of Mordukhovich, [START_REF] Rockafellar | Variational Analysis[END_REF] of Rockafellar and Wets, and long papers [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF] of Ioffe, and [START_REF] Penot | Are generalized derivatives useful for generalized convex function ?[END_REF] of Penot. Examining the existing optimality conditions, we can observe that the key argument is included in a separation of suitable sets. To explain the idea, let us take the well-known scheme of Dubovitskii-Milyutin in [START_REF] Dubovitskii | Extremal problems with constraints[END_REF] for first-order optimality conditions in single-valued scalar optimization problems : the intersection of the cone of decrease directions of the objective function and the cone of feasible directions defined by constraints must be empty at a local minimizer. Here, the cone of decrease directions is defined by a kind of derivatives. For other theories of optimality conditions, especially of higher-order conditions, we may have separations of sets, not cones. An important point for a necessary optimality condition of this type is that the larger the separated sets, the stronger the result. This was a motivation for Khanh and Tuan in [START_REF] Khanh | Variational sets of multivalued mappings and a unified study of optimality conditions[END_REF][START_REF] Khanh | Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization[END_REF] to propose variational sets replacing derivatives so that they are bigger than sets defined by known derivatives and can be used in the mentioned separation. Some advantages of this generalized differentiability were shown by Khanh et al. in [START_REF] Anh | Variational sets : calculus and applications to nonsmooth vector optimization[END_REF][START_REF] Khanh | Variational sets of multivalued mappings and a unified study of optimality conditions[END_REF][START_REF] Khanh | Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization[END_REF]], e.g., almost no assumptions are required for variational sets to exist; extentions to higher orders are direct; they are bigger than corresponding sets of most §4. Variational sets and applications to sensitivity analysis for vector optimization problems derivatives, which implies advantageous results in establishing necessary optimality conditions by separation techniques, etc.

In this chapter, we will present our results, published in [START_REF] Anh | Variational sets of perturbation maps and applications to sensitivity analysis for constrained vector optimization[END_REF], on variational sets in sensitivity analysis. We study properties of perturbation maps, in terms of higher-order variational sets.

Regarding solutions of vector optimization, we restrict ourselves to basic notions of (Pareto) efficient points and weak efficient points. Correspondingly, our concern is to deal with perturbation maps and weak perturbation maps. We employ variational sets in both assumptions and conclusions. We also show cases where our results can be employed but some existing results

cannot. Examples are provided to ensure the essentialness of each imposed assumption.

Variational sets of set-valued maps

In this section, we introduce the concept of variational sets of set-valued maps and establish some results on the relationship between variational sets of F and its profile map.

Definitions

Let X and Y be normed spaces, C be a pointed closed convex cone in Y . To approximate multivalued map F : X → 2 Y at (x 0 , y 0 ) ∈ grF, we recall two types of higher-order variational sets as follows. (i) The first, second, and higher-order variational sets of type 1 are the following

V 1 (F, x 0 , y 0 ) := Limsup x F →x 0 , t→0 + 1 t (F(x) -y 0 ), V 2 (F, x 0 , y 0 , v 1 ) := Limsup x F →x 0 , t→0 + 1 t 2 (F(x) -y 0 -tv 1 ), V m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) := Limsup x F →x 0 , t→0 + 1 t m (F(x) -y 0 -tv 1 -• • • -t m-1 v m-1 ),
where x F → x 0 means that x ∈ dom F and x → x 0 .

(ii) The first, second, and higher-order variational sets of type 2 are the following

W 1 (F, x 0 , y 0 ) := Limsup x F →x 0 t→0 + cone + (F(x) -y 0 ), §4.
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W 2 (F, x 0 , y 0 , v 1 ) := Limsup x F →x 0 t→0 + 1 t (cone + (F(x) -y 0 ) -v 1 ), W m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) := Limsup x F →x 0 t→0 + 1 t m-1 (cone + (F(x) -y 0 ) -v 1 -• • • -t m-2 v m-1 ).
(iii) If the upper limits in (i) are equal to the lower ones, then these limits are called the first, second, and higher-order proto-variational sets of type 1 of F at (x 0 , y 0 ). Similar terminology is defined for type 2.

By using equivalent formulations for the upper limit of a set-valued map (see [START_REF] Aubin | Set-valued analysis[END_REF]), i.e., Limsup

x F →x 0 F(x) = {y ∈ Y : ∃ x n ∈ dom F : x n → x 0 , ∃ y n ∈ F(x n ), y n → y},
we easily obtain the following formulae of two types of variational sets.

Proposition 4.2.2. ([7]) (Equivalent formulations of V m ) V m (F, x 0 , y 0 , v 1 , • • • , v m-1
) is equal to all of the following sets

(i) {y ∈ Y : lim inf x F →x 0 , t→0 + 1 t m d(y 0 + tv 1 + ... + t m-1 v m-1 + t m y, F(x)) = 0}, (ii) {y ∈ Y : ∃t n → 0 + , ∃x n F → x 0 , ∃r(t m n ) = 0(t m n ), ∀n, y 0 +t n v 1 + ... +t m-1 n v m-1 +t m n y + r(t m n ) ∈ F(x n )}, (iii) {y ∈ Y : ∃t n → 0 + , ∃x n F → x 0 , ∃v n → y, ∀n, y 0 + t n v 1 + ... + t m-1 n v m-1 + t m n v n ∈ F(x n )}, (iv) {y ∈ Y : ∃t n → 0 + , ∃x n F → x 0 , ∃y n ∈ F(x n ), lim n→∞ 1 t m n (y n -y 0 -t n v 1 -... -t m-1 n v m-1 ) = y}, (v) ε>0 α>0 β >0 0<t≤α x-x 0 ≤β ( 1 t m (F(x) -y 0 -tv 1 -... -t m-1 v m-1 ) + εB Y ), (vi) 
α>0 β >0 cl 0<t≤α x-x 0 ≤β 1 t m (F(x) -y 0 -tv 1 -... -t m-1 v m-1 ). Proposition 4.2.3. ([7]) (Equivalent formulations of W m ) W m (F, x 0 , y 0 , v 1 , ..., v m-1
) has the following equivalent expressions

(i) {y ∈ Y : lim inf x F →x 0 , t→0 + 1 t m-1 d(v 1 + ... + t m-2 v m-1 + t m-1 y, cone + (F(x) -y 0 )) = 0}, 47 §4
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(ii) {y ∈ Y : ∃t n → 0 + , ∃x n F → x 0 , ∃r(t m-1 n ) = 0(t m-1 n ), ∀n, v 1 +...+t m-2 v m-1 +t m-1 n y+r(t m-1 n ) ∈ cone + (F(x n ) -y 0 )}, (iii) {y ∈ Y : ∃t n → 0 + , ∃x n F → x 0 , ∃v n → y, ∀n, v 1 + ... + t m-2 v m-1 + t m-1 n v n ∈ cone + (F(x n ) - y 0 )}, (iv) {y ∈ Y : ∃t n → 0 + , ∃x n F → x 0 , ∃y n ∈ cone + (F(x n )-y 0 ), lim n→∞ 1 t m-1 n (y n -v 1 -...-t m-2 n v m-1 ) = y}, (v) ε>0 α>0 β >0 0<t≤α x-x 0 ≤β ( 1 t m-1 (cone + (F(x) -y 0 ) -v 1 -... -t m-2 v m-1 ) + εB Y ), (vi) α>0 β >0 cl 0<t≤α x-x 0 ≤β 1 t m-1 (cone + (F(x) -y 0 ) -v 1 -... -t m-2 v m-1 ). Remark 4.2.4. For all m ≥ 1, we have (i) V m (F, x 0 , y 0 , v1, ..., v m-1 ) ⊆ W m (F, x 0 , y 0 , v 1 , ..., v m-1 ). (ii) V m (F, x 0 , y 0 , 0, ..., 0) = V 1 (F, x 0 , y 0 ), W m (F, x 0 , y 0 , 0, ..., 0) = W 1 (F, x 0 , y 0 ). (iii) If v 1 ∈ V 1 (F, x 0 , y 0 ) then V 2 (F, x 0 , y 0 , v 1 ) = / 0. If one of the conditions v 1 ∈ V 1 (F, x 0 , y 0 ), ..., v m-1 ∈ V m-1 (F, x 0 , y 0 , v 1 , ..., v m-2
) is violated, then V m (F, x 0 , y 0 , v 1 , ..., v m-1 ) = / 0. The variational sets of type 2 have the same property.

(iv) Variational sets can be expressed in terms of Γ-limits as follows

y ∈ V m (F, x 0 , y 0 , v 1 , ..., v m-1 ) ⇐⇒ inf Q∈N (y) inf W ∈N (x 0 ,domF) inf t>0 sup 0<t <t sup x ∈W sup y ∈Q χ gr(L F,y 0 ,v 1 ,...,v m-1 ) (t , x , y ) = 1 ⇐⇒ Γ(N + (0) + , N (x 0 , dom F) + , N (y) + ) lim χ gr(L F,y 0 ,v 1 ,...,v m-1 ) = 1,
where

N (x 0 , dom F) := N (x 0 )∩dom F, and L F,y 0 ,v 1 ,...,v m-1 : (0, +∞)×X → 2 Y is defined by L F,y 0 ,v 1 ,...,v m-1 (t , x ) := 1 t m (F(x ) -y 0 -t v 1 -... -t m-1 v m-1 ). y ∈ W m (F, x 0 , y 0 , v 1 , ..., v m-1 ) ⇐⇒ inf Q∈N (y) inf W ∈N (x 0 ,domF) inf t>0 sup 0<t <t sup x ∈W sup y ∈Q χ gr(H F,y 0 ,v 1 ,...,v m-1 ) (t , x , y ) = 1 ⇐⇒ Γ(N + (0) + , N (x 0 , dom F) + , N (y) + ) lim χ gr(H F,y 0 ,v 1 ,...,v m-1 ) = 1,
where H F,y 0 ,v 1 ,...,v m-1 : (0, +∞) × X → 2 Y is defined by

H F,y 0 ,v 1 ,...,v m-1 (t , x ) := 1 t m (cone + (F(x ) -y 0 ) -t v 1 -... -t m-1 v m-1 ).
The inclusion in Remark 4.2.4(i) may be a strict inclusion or an equality as shown by the following examples.

Example 4.2.5. Let X = R, Y = R 2 and, for n = 1, 2, ...,

F(x) =                        {(0, 0)}, if x = 0, {(-n, n)}, if x = 1 n , 1 n , 0 , if x = ln 1 + 1 n , 1, 1 n 2 , if x = sin 1 n , / 0, otherwise.
Then, for (x 0 , y 0 ) = (0, (0, 0)) ∈ grF and

v 1 = (1, 0) ∈ Y , one has V 1 (F, x 0 , y 0 ) = {(y 1 , 0) ∈ Y : y 1 ≥ 0}, V 2 (F, x 0 , y 0 , v 1 ) = {(y 1 , 0) ∈ Y : y 1 ∈ R}, W 1 (F, x 0 , y 0 ) = {(y 1 , 0) ∈ Y : y 1 ≥ 0} ∪ {(-y 1 , y 1 ) ∈ Y : y 1 ≥ 0}, W 2 (F, x 0 , y 0 , v 1 ) = {(y 1 , y 2 ) ∈ Y : y 2 ≥ 0}.
Example 4.2.6. Let X = R, Y = R 2 and, for n = 1, 2, ...,

F(x) =                {(0, 0)}, if x = 0, {(-n, n)}, if x = 1 n , 1 n , 0 , if x = ln 1 + 1 n , / 0, otherwise.
Then, for (x 0 , y 0 ) = (0, (0, 0)) ∈ grF and

v 1 = (1, 0) ∈ Y , one has V 1 (F, x 0 , y 0 ) = {(y 1 , 0) ∈ Y : y 1 ≥ 0}, W 1 (F, x 0 , y 0 ) = {(y 1 , 0) ∈ Y : y 1 ≥ 0} ∪ {(-y 1 , y 1 ) ∈ Y : y 1 ≥ 0}, V 2 (F, x 0 , y 0 , v 1 ) = W 2 (F, x 0 , y 0 , v 1 ) = {(y 1 , 0) ∈ Y : y 1 ∈ R}.
Remark 4.2.7. Recall that the higher-order contingent derivative of F at (x 0 , y 0 ) (relative to [START_REF] Aubin | Set-valued analysis[END_REF]) defined by

(u 1 , v 1 ), • • • , (u m-1 , v m-1 )) is the map D m F(x 0 , y 0 , u 1 , v 1 , • • • , u m-1 , v m-1 ) : X → 2 Y (see
D m F(x 0 , y 0 , u 1 , v 1 , • • • , u m-1 , v m-1 )(u) := Limsup u →u,t→0 + 1 t m (F(x 0 + tu 1 + • • • + t m-1 u m-1 + t m u )- -y 0 -tv 1 -• • • -t m-1 v m-1 ).
We can say roughly that the contingent derivative is a directional variant of variational set V m . Similarly, most of generalized derivatives (e.g., the (upper) Dini derivative, Hadamard derivative, adjacent derivative, etc) are also based on directional rates, while for the variational sets we allow the flexibility x n F → x 0 . That is why these sets are big

D m F(x 0 , y 0 , u 1 , v 1 , • • • , u m-1 , v m-1 )X ⊆ V m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) ⊆ W m (F, x 0 , y 0 , v 1 , • • • , v m-1 ).
More comparisons between variational sets with well-known derivatives were stated in Proposition 4.1 in [START_REF] Khanh | Variational sets of multivalued mappings and a unified study of optimality conditions[END_REF] by Khanh and Tuan.

Relationships between variational sets of F and those of its profile map

The first simple result about a relation between variational sets of the two maps F and its profile map is as follows.

Proposition 4.2.8.

(i) V m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) +C ⊆ V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ), (ii) W m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) +C ⊆ W m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ).
Proof. By the similarity, we present only a proof for (ii

). Let y ∈ W m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) +C, i.e., there exist v ∈ W m (F, x 0 , y 0 , v 1 , • • • , v m-1
) and c ∈ C such that y = v + c. Then, there are

t n → 0 + , x n F → x 0 and v n → v such that h n (v 1 + • • • + t m-2 n v m-1 + t m-1 n (v n + c)) ∈ F(x n ) +C -y 0 . So, v + c ∈ W m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ).
The inclusions opposite to those in Proposition 4.2.8 may not hold as the following example shows.

50 §4. Variational sets and applications to sensitivity analysis for vector optimization problems Example 4.2.9. Let X = R, Y = R 2 , C = R 2 + , (x 0 , y 0 ) = (0, (0, 0)), and

F(x) = {(0, 0)}, if x = 0, {(-1, -1)}, if x = 0. Then, we have V 1 (F, x 0 , y 0 ) = {(0, 0)} and V 1 (F + C, x 0 , y 0 ) = R 2 . Thus, V 1 (F + C, x 0 , y 0 ) ⊆ V 1 (F, x 0 , y 0 ) + C. Let v 1 = (0, 1) ∈ V 1 (F + C, x 0 , y 0 ). Then, V 2 (F + C, x 0 , y 0 , v 1 ) = / 0 and V 2 (F, x 0 , y 0 , v 1 ) = / 0. Consequently, V 2 (F +C, x 0 , y 0 , v 1 ) ⊆ V 2 (F, x 0 , y 0 , v 1 ) +C.
For variational sets of type 2, one has

W 1 (F, x 0 , y 0 ) + C = R 2 = W 1 (F + C, x 0 , y 0 ) and v 1 ∈ W 1 (F + C, x 0 , y 0 ). But, W 2 (F + C, x 0 , y 0 , v 1 ) = R 2 and W 2 (F, x 0 , y 0 , v 1 ) = / 0. Hence, W 2 (F + C, x 0 , y 0 , v 1 ) ⊆ W 2 (F, x 0 , y 0 , v 1 ) +C.
Proposition 4.2.10. Suppose C have a compact base. Then

(i) Min C\{0} V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ) ⊆ V m (F, x 0 , y 0 , v 1 , • • • , v m-1 ), (ii) Min C\{0} W m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ) ⊆ W m (F, x 0 , y 0 , v 1 , • • • , v m-1 ).
Proof. We prove only (i). Let v ∈ Min C\{0} V m (F + C, x 0 , y 0 , v 1 , • • • , v m-1 ). Then, there exist andc n ∈ C such that, for all n, v n := t -m n (y n + c ny 0 -

t n → 0 + , x n F → x 0 , y n ∈ F(x n ),
t n v 1 - • • • -t m-1 n v m-1 ) → v. Then, y 0 + t n v 1 + • • • + t m-1 n v m-1 + t m n v n -c n ∈ F(x n ). (4.1) 
We claim that c n /t m n → 0 (for a subsequence). For a compact base Q of C, one has c n = α n b n for some α n ≥ 0, b n ∈ Q. If α n = 0 for infinitely many n ∈ N, we are done. Hence, let α n > 0 for all n, we may assume that b n → b ∈ Q. Then, c n /t m n = α n b n /t m n → 0 if and only if α n /t m n → 0 + . Suppose that α n /t m n does not converge to 0. Then, nothing is lost by assuming that α n /t m n ≥ ε for some ε > 0. Let c n := (εt m n /α n )c n . Then, c nc n ∈ -C and

y 0 + t n v 1 + • • • + t m-1 n v m-1 + t m n v n -c n ∈ F(x n ) +C. Since c n /t m n → εb = 0, one has v n -t -m n c n → v-εb, and hence v-εb ∈ V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ). Thus, -εb ∈ (V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ) -v) ∩ (-C \ {0}),
contradicting the efficiency of v. Therefore, c n /t m n → 0. It follows from (4.1) that

y 0 + t n v 1 + • • • + t m-1 n v m-1 + t m n v n - c n t m n ∈ F(x n ),
and v n -t -m n c n → v. So, v ∈ V m (F, x 0 , y 0 , v 1 , • • • , v m-1 ).
For weak efficiency, we do not have a similar result, as indicated by the following example.

Example 4.2.11.

Let X = R, Y = R 2 , C = R 2
+ , (x 0 , y 0 ) = (0, (0, 0)), and

F(x) =                    {(0, 0)}, if x = 0, {(0, -1)}, if x = 1 n , {( 1 n , -1 n )}, if x = sin 1 n for n ∈ N, / 0, otherwise.
Then, we have

V 1 (F, x 0 , y 0 ) = {(x, y) ∈ Y : y = -x, x ≥ 0}, W 1 (F, x 0 , y 0 ) = {(0, y) ∈ Y : y ≤ 0} ∪ {(x, y) ∈ Y : y = -x, x ≥ 0}, V 1 (F +C, x 0 , y 0 ) = W 1 (F +C, x 0 , y 0 ) = R + × R. Consequently, Min int C V 1 (F +C, x 0 , y 0 ) = Min int C W 1 (F +C, x 0 , y 0 ) = {0} × R. Therefore, Min int C V 1 (F +C, x 0 , y 0 ) ⊆ V 1 (F, x 0 , y 0 ), Min int C W 1 (F +C, x 0 , y 0 ) ⊆ W 1 (F, x 0 , y 0 ).
If intC = / 0, for weak efficiency, we have the following analogous properties.

Proposition 4.2.12. Suppose C ⊆ intC ∪{0} be a closed convex cone with a compact base. Then

(i) Min int C V m (F + C, x 0 , y 0 , v 1 , • • • , v m-1 ) ⊆ V m (F, x 0 , y 0 , v 1 , • • • , v m-1 ), (ii) Min int C W m (F + C, x 0 , y 0 , v 1 , • • • , v m-1 ) ⊆ W m (F, x 0 , y 0 , v 1 , • • • , v m-1 ).
Proof. We prove only (ii). Since

C ⊆ intC ∪{0}, any v ∈ Min int C W m (F + C, x 0 , y 0 , v 1 , • • • , v m-1 ) satisfies v ∈ W m (F + C, x 0 , y 0 , v 1 , • • • , v m-1 ) ∩ Min C\{0} W m (F + C, x 0 , y 0 , v 1 , • • • , v m-1 ), (4.2) 
where Min C\{0} W m (F + C, x 0 , y

0 , v 1 , • • • , v m-1 ) is the set of efficient points of W m (F + C, x 0 , y 0 , v 1 , • • • , v m-1
) with respect to the cone C. Hence, there exist t n → 0 + , x n F → x 0 , v n → v, c n ∈ C, and

h n > 0 such that, for all n, v 1 + • • • + t m-2 n v m-1 + t m-1 n v n h n -c n ∈ F(x n ) -y 0 . (4.3) 
For a compact base Q of C, there exist α n ≥ 0 and q n ∈ Q such that c n = α n q n . We may assume that q n → q ∈ Q. We claim that h n α n /t m-1 n → 0 + (for a subsequence). This is true if α n = 0 for infinitely many n ∈ N. Now, suppose to the contrary that α n > 0, and h n α n /t m-1 n does not converge to 0. Then, we may assume that h n α n /t m-1 n ≥ ε for some ε > 0. Let c n :=

(εt m-1 n /h n α n )c n ∈ C. Then, we have c n -c n ∈ C. By (4.
3), we obtain

v 1 + • • • + t m-2 n v m-1 + t m-1 n v n h n -c n ∈ F(x n ) + C -y 0 . As h n c n /t m-1 n → εq = 0, this implies that v -εq ∈ W m (F + C, x 0 , y 0 , v 1 , • • • , v m-1 ). Therefore, -εq ∈ (W m (F + C, x 0 , y 0 , v 1 , • • • , v m-1 ) -v) ∩ (-C \ {0}), which contradicts (4.2). Hence, h n α n /t m-1 n → 0 + and v n -t -(m-1) n h n c n → v. It follows from (4.3) that v ∈ W m (F, x 0 , y 0 , v 1 , • • • , v m-1 ).
To get the equalities in Proposition 4.2.8, we need the following new notions. (i) Let either of the following conditions hold:

V ∞(m) (F, x 0 , y 0 , v 1 , • • • , v m-1 ) := {y ∈ Y : ∃x n F → x 0 , ∃t n → 0 + , ∃λ n → 0 + , ∃y n ∈ F(x n ) -y 0 -t n v 1 -• • • -t m-1 n v m-1 t m n , λ n y n → y} (W ∞(m) (F, x 0 , y 0 , v 1 , • • • , v m-1 ) := {y ∈ Y : ∃x n F → x 0 , ∃t n → 0 + , ∃λ n → 0 + , ∃y n ∈ cone + (F(x n ) -y 0 ) -v 1 -• • • -t m-2 n v m-1 t m-1 n , λ n y n → y}).
(i 1 ) V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1
) has the domination property,

(i 2 ) V ∞(m) (F, x 0 , y 0 , v 1 , • • • , v m-1 ) ∩ (-C) = {0}. Then V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ) = V m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) +C, (4.4) 
Min C\{0} V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ) = Min C\{0} V m (F, x 0 , y 0 , v 1 , • • • , v m-1 ). (4.5) 
(ii) Let either of the following two conditions hold:

(ii 1 ) W m (F +C, x 0 , y 0 , v 1 , • • • , v m-1
) has the domination property,

(ii 2 ) W ∞(m) (F, x 0 , y 0 , v 1 , • • • , v m-1 ) ∩ (-C) = {0}. Then W m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ) = W m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) +C, Min C\{0} W m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ) = Min C\{0} W m (F, x 0 , y 0 , v 1 , • • • , v m-1 ).
Proof. We prove only (i). First, we check (4.4). By Proposition 4.2.8(i), we need simply to verify that

V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ) ⊆ V m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) +C. If (i 1 ) holds, then V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ) ⊆ Min C\{0} V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ) +C.
Hence, (4.4) is satisfied since we have (by Proposition 4.2.10)

Min C\{0} V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ) +C ⊆ V m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) +C. If (i 2 ) holds and v ∈ V m (F +C, x 0 , y 0 , v 1 , • • • , v m-1 ), then there exist t n → 0 + , x n F → x 0 , y n ∈ F(x n ),
and

c n ∈ C such that t -m n (y n + c n -y 0 -t n v 1 -• • • -t m-1 n v m-1 ) → v. If one has n 0 such that c n = 0 for all n ≥ n 0 , then v ∈ V m (F, x 0 , y 0 , v 1 , • • • , v m-1
). If there is a subsequence, denoted again by {c n } with c n = 0, we claim that {||c n ||/t m n } be bounded. Indeed, otherwise we may assume that

||c n ||/t m n → ∞ and c n /||c n || → c ∈ C \ {0}. Setting v n := y n + c n -y 0 -t n v 1 -• • • -t m-1 n v m-1 t m n , λ n := t m n ||c n || , we get λ n y n -y 0 -t n v 1 -• • • -t m-1 n v m-1 -t m n v n t m n → -c ∈ -C \ {0}.
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As λ n → 0 + , this means -c ∈ V ∞(m) (F, x 0 , y 0 , v 1 , • • • , v m-1 ) ∩ -C \ {0}, contradicting (i 2 ). So, {||c n ||/t m n } is bounded and ||c n ||/t m n → a ≥ 0. With v n := ||c n || -1 (y n -y 0 -t n v 1 -• • •-t m-1 n v m-1 - t m n v n ), one has y 0 + t n v 1 + • • • + t m-1 n v m-1 + t m n v n + ||c n ||v n t m n = y n ∈ F(x n ).
It easy to see that

v n + t -m n ||c n ||v n → v -ac. Thus, v -ac ∈ V m (F, x 0 , y 0 , v 1 , • • • , v m-1
) and (4.4) is satisfied. (4.5) is implied directly from (4.4).

The following example shows that conditions in Proposition 4.2.15 are essential.

Example 4.2.16. Let X = R, Y = R 2 , C = R 2
+ , x 0 = 0, y 0 = (0, 0), and

F(x) = {(0, 0)}, if x ≤ 0, {(0, 0), (-1, -1)}, if x > 0.
Then,

(F +C)(x) =      R 2 + , if x ≤ 0, {(y 1 , y 2 ) : y 1 ≥ -1, y 2 ≥ -1}, if x > 0.
By calculating, we get V 1 (F, x 0 , y 0 ) = {(0, 0)} and V 1 (F +C, x 0 , y 0 ) = R 2 . So the conclusions in Proposition 4.2.15(i) does not hold. The reason is that both conditions in Proposition 4.2.15(i)

are not satisfied.

Obviously, V 1 (F + C, x 0 , y 0 ) does not have the domination property. Next, we show that

V ∞(1) (F, x 0 , y 0 ) ∩ (-C) = {(0, 0)}. Indeed, by chosing x n = 1 n → x 0 , t n = 1 n → 0 + , λ n = 1 n → 0 +
and y n = (-n, -n), it is easy to check that

y n ∈ F(x n ) -y 0 t n and λ n y n → (-1, -1). Thus, (-1, -1) ∈ V ∞(1) (F, x 0 , y 0 ) ∩ (-C).
The following result for weak efficiency can be proved similarly as Proposition 4.2.15.

Proposition 4.2.17. Let C ⊆ intC ∪ {0} be a closed convex cone with a compact base.

(i) Impose either of the following two conditions:

(i 1 ) V m (F + C, x 0 , y 0 , v 1 , • • • , v m-1
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(i 2 ) V ∞(m) (F, x 0 , y 0 , v 1 , • • • , v m-1 ) ∩ (-C) = {0}.
Then

Min int C V m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) = Min int C V m (F + C, x 0 , y 0 , v 1 , • • • , v m-1
).

(ii) Let either of the following conditions hold:

(ii 1 ) W m (F + C, x 0 , y 0 , v 1 , • • • , v m-1
) has the weak domination property with respect to C,

(ii 2 ) W ∞(m) (F, x 0 , y 0 , v 1 , • • • , v m-1 ) ∩ (-C) = {0}.
Then

Min int C W m (F, x 0 , y 0 , v 1 , • • • , v m-1 ) = Min int C W m (F + C, x 0 , y 0 , v 1 , • • • , v m-1 ).

Variational sets of perturbation maps

In this section, we apply results of subsection 4. As it is well-known, G and S are called the perturbation map and weak perturbation map, respectively. The purpose of this section is to investigate relationships between variational sets of F and that of G and S, including relations between the set of efficient points or the set of weak efficient points of these variational sets.

A map F is said to have the domination property around u 0 if and only if there exists a neighborhood V of u 0 such that F(u) has the domination property for all u ∈ V . The map F is said to have the weak domination property around u 0 with respect to C if and only if there exists a neighborhood V of u 0 such that F(u) has the weak domination property with respect to C for all u ∈ V , where C ⊆ intC ∪ {0} is a closed convex cone. 

V m (G +C, u 0 , y 0 , v 1 , • • • , v m-1 ) = V m (F +C, u 0 , y 0 , v 1 , • • • , v m-1 ), §4.
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W m (G +C, u 0 , y 0 , v 1 , • • • , v m-1 ) = W m (F +C, u 0 , y 0 , v 1 , • • • , v m-1 ).
(ii) Suppose y 0 ∈ S(u 0 ) and F have the weak domination property around u 0 with respect to

C. Then V m (S + C, u 0 , y 0 , v 1 , • • • , v m-1 ) = V m (F + C, u 0 , y 0 , v 1 , • • • , v m-1 ), W m (S + C, u 0 , y 0 , v 1 , • • • , v m-1 ) = W m (F + C, u 0 , y 0 , v 1 , • • • , v m-1
).

The first result on efficiency is as follows. (i) Assume further either of the following two conditions:

(i 1 ) V m (F +C, u 0 , y 0 , v 1 , • • • , v m-1
) has the domination property,

(i 2 ) V ∞(m) (F, u 0 , y 0 , v 1 , • • • , v m-1 ) ∩ (-C) = {0}.
Then

Min C\{0} V m (F, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min C\{0} V m (G, u 0 , y 0 , v 1 , • • • , v m-1 ).
(ii) Impose either of the following conditions:

(ii 1 ) W m (F +C, u 0 , y 0 , v 1 , • • • , v m-1
) has the domination property,

(ii 2 ) W ∞(m) (F, u 0 , y 0 , v 1 , • • • , v m-1 ) ∩ (-C) = {0}.
Then

Min C\{0} W m (F, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min C\{0} W m (G, u 0 , y 0 , v 1 , • • • , v m-1 ).
Proof. We prove only assertion (i). Remark 4.3.

1(i) yields that V m (G + C, u 0 , y 0 , v 1 , • • • , v m-1 )
also has the domination property. Because either (i 1 ) or (i 2 ) holds, from Proposition 4.2.15 we get

Min C\{0} V m (F, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min C\{0} V m (F +C, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min C\{0} V m (G +C, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min C\{0} V m (G, u 0 , y 0 , y 1 , • • • , y m-1 ).
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Example 4.3.3. Let U = R, Y = R 2 , C = R 2 + , u 0 = 0, y 0 = (0, 0), and F(u) = {(y 1 , y 2 ) ∈ Y : y 1 = u, y 2 ≥ |y 1 |} for u ∈ U. Then, G(u) = {(y 1 , y 2 ) ∈ Y : y 1 = u, y 2 = |y 1 |}. Let v i = (-1, 1) for i = 1, • • • , m -1. Direct calculations give V m (F, u 0 , y 0 , v 1 , • • • , v m-1 ) = W m (F, u 0 , y 0 , v 1 , • • • , v m-1 ) = {(y 1 , y 2 ) ∈ Y : y 2 ≥ |y 1 |}, if m = 1, {(y 1 , y 2 ) ∈ Y : y 1 + y 2 ≥ 0}, if m > 1. V m (G, u 0 , y 0 , v 1 , • • • , v m-1 ) = W m (G, u 0 , y 0 , v 1 , • • • , v m-1 ) = {(y 1 , y 2 ) ∈ Y : y 2 = |y 1 |}, if m = 1, {(y 1 , y 2 ) ∈ Y : y 1 + y 2 = 0}, if m > 1.
We can check that assumptions of Theorem 4.3.2 are satisfied for all m. Direct checking yields

Min C\{0} V m (F, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min C\{0} V m (G, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min C\{0} W m (G, u 0 , y 0 , v 1 , • • • , v m-1 ) = {(y 1 , y 2 ) ∈ Y : y 1 ≤ 0, y 2 = |y 1 |}, if m = 1, {(y 1 , y 2 ) ∈ Y : y 1 + y 2 = 0}, if m > 1.
Similarly, by Remark 4.3.1(ii) and Proposition 4.2.17, we have the following for weak efficiency. (i) Let either of the following two conditions hold:

(i 1 ) V m (F + C, u 0 , y 0 , v 1 • • • , v m-1
) has the weak domination property with respect to C,

(i 2 ) V ∞(m) (F, u 0 , y 0 , v 1 , • • • , v m-1 ) ∩ (-C) = {0}.
Then

Min int C V m (F, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min int C V m (S, u 0 , y 0 , v 1 , • • • , v m-1 ).
(ii) Impose one of the following two conditions:

(ii 1 ) W m (F + C, u 0 , y 0 , v 1 , • • • , v m-1
) has the weak domination property with respect to C,

(ii 2 ) W ∞(m) (F, u 0 , y 0 , v 1 , • • • , v m-1 ) ∩ (-C) = {0}.
Then

Min int C W m (F, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min int C W m (S, u 0 , y 0 , v 1 , • • • , v m-1 ). Example 4.3.5. Let U = R, Y = R 2 , C = R 2 + , u 0 = 0, y 0 = (0, 0), and 
F(u) = {(y 1 , y 2 ) ∈ Y : y 1 = u, y 2 ≥ -y 1 }, if u ≤ 0, {(y 1 , y 2 ) ∈ Y : 0 ≤ y 1 ≤ u, y 2 ≥ 0}, if u > 0.
Then,

S(u) = {(y 1 , y 2 ) ∈ Y : y 1 = u, y 2 ≥ -y 1 }, if u ≤ 0, {(y 1 , y 2 ) ∈ Y : 0 ≤ y 1 ≤ u, y 2 = 0}, if u > 0. Let v i = (1, 0) for i = 1, • • • , m -1. Direct computations yield that V m (F, u 0 , y 0 , v 1 , • • • , v m-1 ) = R 2 + ∪ {(y 1 , y 2 ) ∈ Y : y 1 ≤ 0, y 2 ≥ -y 1 }, if m = 1, R × R + , if m > 1,
and

V m (S, u 0 , y 0 , v 1 , • • • , v m-1 ) = {(y 1 , y 2 ) ∈ Y : y 1 ≤ 0, y 2 ≥ -y 1 } ∪ (R + × {0}), if m = 1, R × {0}, if m > 1.
For each of F and S, variational sets of two types coincide for all m ≥ 1. We can check that assumptions of Theorem 4.3.4 are fulfilled for all m (for an arbitrary closed convex cone

C such that C ∈ int R 2 + ∪ {(0, 0)}). Direct verifying gives Min int C V m (F, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min int C V m (S, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min int C W m (S, u 0 , y 0 , v 1 , • • • , v m-1 ) = {(y 1 , y 2 ) : y 1 ≤ 0, y 2 = -y 1 } ∪ (R + × {0}), if m = 1, R × {0}, if m > 1.
Note that the set of (Pareto) efficient points is much smaller than that of weak efficient points

G(u) = {(y 1 , y 2 ) ∈ Y : y 1 = u, y 2 = -y 1 }, if u ≤ 0, {(0, 0)}, if u > 0.
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For v i = (1, 0), i = 1, • • • , m -1, we have V 1 (G, u 0 , y 0 ) = W m (G, u 0 , y 0 ) = {(y 1 , y 2 ) ∈ Y : y 1 ≤
0, y 2 = -y 1 }, and they are empty for m > 1. We can check that assumptions of Theorem 4.3.2 are satisfied for m = 1 and

Min C\{0} V 1 (F, u 0 , y 0 ) = Min C\{0} V 1 (G, u 0 , y 0 ) = Min C\{0} W 1 (G, u 0 , y 0 ) = {(y 1 , y 2 ) ∈ Y : y 1 ≤ 0, y 2 = -y 1 )}.
In the following case, Theorems 4.3.2 and 4.3.4 can be used, but some recent existing results cannot.

Example 4.3.6.

Let U = R, Y = R 2 , C = R 2 + , u 0 = 0, y 0 = (0, 0), and 
F(u) =            {(0, 0)}, if u = 0, (0, 0); ( 1 n 3 , -1 n 3 ); ( -1 n 3 , 1 n 3 ) , if u = 1 n for n ∈ N, / 0, otherwise. Then, S(u) = G(u) = F(u). For v 1 = (1, -1), v 2 = (-1, 1). Calculations give V 1 (F, u 0 , y 0 ) = W 1 (F, u 0 , y 0 ) = {(y 1 , y 2 ) ∈ Y : y 1 + y 2 = 0}, V 2 (F, u 0 , y 0 , v 1 ) = W 2 (F, u 0 , y 0 , v 1 ) = {(y 1 , y 2 ) ∈ Y : y 1 + y 2 = 0}, V 3 (F, u 0 , y 0 , v 1 , v 2 ) = W 3 (F, u 0 , y 0 , v 1 , v 2 ) = {(y 1 , y 2 ) ∈ Y : y 1 + y 2 = 0}.
We can check that assumptions of Theorems 4.3.2 and 4.3.4 are satisfied. Calculating the lower Studniarski derivative of F at (u 0 , y 0 ) (see [START_REF] Sun | Lower Studniarski derivative of the perturbation map in parametrized vector optimization[END_REF] for the definition), we have d m F(u 0 , y 0 )(u) is empty for all u ∈ R. Hence, Theorems 4.1-4.3 and Corollaries 4.1-4.3 of [START_REF] Sun | Lower Studniarski derivative of the perturbation map in parametrized vector optimization[END_REF] cannot be in use.

Since D 2 F(u 0 , y 0 , u 1 , v 1 )(u) = / 0, for all u ∈ R, Theorems 4.3, 4.7, and 4.10 of [START_REF] Wang | Second-order contingent derivative of the perturbation map in multiobjective optimization[END_REF] in terms of second-order contingent derivatives cannot be applied either.

Proposition 4.3.7. Let (u 0 , y 0 ) ∈ gr S and v 1 , • • • , v m-1 ∈ Y . Suppose F have a proto-variational set of order m of type 1 at (u 0 , y 0 ). Then V m (S, u 0 , y 0 , v 1 , • • • , v m-1 ) ⊆ Min int C V m (F, u 0 , y 0 , v 1 , • • • , v m-1 ). Proof. Let y ∈ V m (S, u 0 , y 0 , v 1 , • • • , v m-1
), i.e., there exist t n → 0 + , u n S → u 0 , and y n → y such that

y 0 + t n v 1 + • • • + t m n y n ∈ S(u n ) ⊆ F(u n ), (4.6 
) §4. Variational sets and applications to sensitivity analysis for vector optimization problems Proposition 4.4.2. Let u 0 ∈ U, x 0 ∈ X(u 0 ), and y 0 ∈ F(x 0 , u 0 ). If F has a m-th order proto variation at ((x 0 , u 0 ), y 0 ), then

x∈V m (X,u 0 ,x 0 ,w 1 ,••• ,w m-1 ) V m q (F, (x 0 [x], u 0 ), y 0 , w 1 , v 1 , • • • , w m-1 , v m-1 ) ⊆ V m (H, u 0 , y 0 , v 1 , • • • , v m-1
).

(4.9)

Moreover, if W is finite dimensional, X(u, y) := {x ∈ R n : x ∈ X(u), y ∈ F(x, u)} is calm around (u 0 , y 0 ), X(u 0 , y 0 ) = {x 0 }, and V 1 q ( X, (u 0 , y 0 [0]), x 0 ) = {0}
, then the inclusion opposite to (4.9) is valid.

Proof. Let x ∈ V m (X, u 0 , x 0 , w 1 , • • • , w m-1 ) such that there exists v satisfying v ∈ V m q (F, (x 0 [x], u 0 ), y 0 , w 1 , v 1 , • • • , w m-1 , v m-1 ). Since x ∈ V m (X, u 0 , x 0 , w 1 , • • • , w m-1 ), there exist t n → 0 + , u n → u 0 , x n X → x such that, for all n, x 0 + t n w 1 + • • • + t m-1 n w m-1 + t m n x n ∈ X(u n ).
Then,

F(x 0 + t n w 1 + • • • + t m-1 n w m-1 + t m n x n , u n ) ⊆ H(u n ). (4.10) Because v ∈ V m q (F, (x 0 [x], u 0 ), y 0 , w 1 , v 1 , • • • , w m-1 , v m-1
), with the above t n , u n , x n , there exists

y n ∈ F(x 0 +t n w 1 +• • •+t m-1 n w m-1 +t m n x n , u n ) such that t -m n (y n -y 0 -t n v 1 -• • •-t m-1 n v m-1 ) → v.
So, we have

y 0 + t n v 1 + • • • + t m-1 n v m-1 + t m n y n -y 0 -t n v 1 -• • • -t m-1 n v m-1 t m n = y n ∈ ∈ F(x 0 + t n w 1 + • • • + t m-1 n w m-1 + t m n x n , u n ). It follows from (4.10) that v ∈ V m (H, u 0 , y 0 , v 1 , • • • , v m-1 ).
Next, we prove the inclusion reverse to (4.9

). Let v ∈ V m (H, u 0 , y 0 , v 1 , • • • , v m-1 ), i.e., there exist t n → 0 + , u n → u 0 , and v n H → v such that y 0 + t n v 1 + • • • + t m-1 n v m-1 + t m n v n ∈ H(u n ) for all n. Then, there exists x n ∈ X(u n ) such that y 0 + t n v 1 + • • • + t m-1 n v m-1 + t m n v n ∈ F(x n , u n ). Hence, x n ∈ X(u n , y 0 + t n v 1 + • • • + t m-1 n v m-1 + t m n v n ). The calmness of X yields M > 0 such that ||x n -x 0 || ≤ M||(u n , y 0 + t n v 1 + • • • + t m-1 n v m-1 + t m n v n ) -(u 0 , y 0 )||.
Then, x n → x 0 and hence

(x n -x 0 -t n w 1 -• • • -t m-1 n w m-1 ) → 0. We claim that {t -m n (x n -x 0 - t n w 1 -• • • -t m-1 n w m-1
)} is bounded. Indeed, we have

x 0 + ||x n -x 0 || (x n -x 0 ) ||x n -x 0 || = x n ∈ X(u n , y 0 + t n v 1 + • • • + t m-1 n v m-1 + t m n v n ). (4.11) 
(iii) F has a m-th order proto variation at ((x 0 , u 0 ), y 0 ), (iv) X is calm around (u 0 , y 0 ),

(v) X(u 0 , y 0 ) = {x 0 } and V 1 q ( X, (u 0 , y 0 [0]), x 0 ) = {0}. Then Min C\{0}   x∈V m (X,u 0 ,x 0 ,w 1 ,••• ,w m-1 ) V m q (F, (x 0 [x], u 0 ), y 0 , w 1 , v 1 , • • • , w m-1 , v m-1 )   = Min C\{0} V m (G, x 0 , y 0 , v 1 , • • • , v m-1 ).
Proof. This follows from Theorem 4.3.2 and Proposition 4.4.2.

Theorem 4.4.8. Let (u 0 , y 0 ) ∈ gr S, x 0 ∈ X(u 0 ), y 0 ∈ F(x 0 , u 0 ), W be finite dimensional, and C be a closed convex cone contained in intC ∪ {0}, and have a compact base. Suppose that (i) Y has the weak domination property around u 0 with respect to C, (ii) either of the following two conditions is satisfied:

(ii 1 ) V m (H + C, u 0 , y 0 , v 1 , • • • , v m-1
) has the weak domination property with respect to C,

(ii 2 ) V ∞(m) (H, x 0 , y 0 , v 1 , • • • , v m-1 ) ∩ (-C) = {0},
(iii) F has a m-th order proto variation at ((x 0 , u 0 ), y 0 ), (iv) X is calm around ((u 0 , y 0 ), x 0 ),

(v) X(u 0 , y 0 ) = {x 0 } and V 1 q ( X, (u 0 , y 0 [0]), x 0 ) = {0}. Then Min int C   x∈V m (X,u 0 ,x 0 ,w 1 ,••• ,w m-1 ) V m q (F, (x 0 [x], u 0 ), y 0 , w 1 , v 1 , • • • , w m-1 , v m-1 )   = Min int C V m (S, x 0 , y 0 , v 1 , • • • , v m-1 ).
Proof. Theorem 4.3.4(i) and Proposition 4.4.2 together imply this theorem.

Theorem 4.4.9. Let (u 0 , y 0 ) ∈ gr S, the assumptions of Theorem 4.4.8 be satisfied, and H have a proto-variational set of order m of type 1 at (u 0 , y 0 ). Then

V m (S, u 0 , y 0 , v 1 , • • • , v m-1 ) = Min int C   x∈V m (X,u 0 ,x 0 ,w 1 ,••• ,w m-1 ) V m q (F, (x 0 [x], u 0 ), y 0 , w 1 , v 1 , • • • , w m-1 , v m-1 )   . §5.
Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems defined by Taa in [START_REF] Taa | Set-valued derivatives of multifunctions and optimality conditions[END_REF] as follows R S (x 0 ) := {u ∈ X : ∃t n > 0, ∃u n → u, ∀n, x 0 + t n u n ∈ S}.

For F : X → 2 Y , X,Y be normed spaces, (x 0 , y 0 ) ∈ grF and u ∈ X, the first-order radial derivative of F at (x 0 , y 0 ) is defined in [START_REF] Taa | Set-valued derivatives of multifunctions and optimality conditions[END_REF] by gr(D R F(x 0 , y 0 )) = R grF (x 0 , y 0 ). A kind of higher-order radial derivatives was proposed by Anh et al. in [START_REF] Anh | Higher-order radial derivatives and optimality conditions innonsmooth vector optimization[END_REF] as follows. The m-th order outer radial derivative of F at (x 0 , y 0 ) ∈ grF is

D m R F(x 0 , y 0 )(u) := {v ∈ Y : ∃t n > 0, ∃(u n , v n ) → (u, v), ∀n, y 0 + t m n v n ∈ F(x 0 + t n u n )}, (5.1)
the m-th order inner radial derivative of F at (x 0 , y 0 ) ∈ grF is

D (m) R F(x 0 , y 0 )(u) := {v ∈ Y : ∀t n > 0, ∃(u n , v n ) → (u, v), ∀n, y 0 + t m n v n ∈ F(x 0 + t n u n )}.
Observe that the graph of the above higher-order radial derivatives is not a higher-order tangent set of the graph of the map, because the rates of change of the points under consideration in X and Y are different (t n and t m n ). The graph of many other higher-order derivatives is such a corresponding graph. For instance, for F : X → 2 Y , (x 0 , y 0 ) ∈ grF and (u i , v i ) ∈ X × Y , i = 1, ..., m -1, recall that the m-th order contingent derivative of F at (x 0 , y 0 ) with respect to

(u 1 , v 1 ), ..., (u m-1 , v m-1 ) is D m F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(u) := {v ∈ Y : ∃t n → 0 + , ∃(u n , v n ) → (u, v), ∀n, y 0 + t n v 1 + ... + t m n v n ∈ F(x 0 + t n u 1 + ... + t m n u n )}.
Its graph is just the m-th order contingent set of the graph of F. In some sense, this property has a better geometry and is more natural.

The discussion above motivates the aim of this chapter: to define another kind of higherorder radial derivatives based on (higher-order) radial sets and use it to obtain higher-order optimality conditions for set-valued vector optimization. It turns out that, in general this kind of radial derivatives is incomparable with our previous definitions in [START_REF] Anh | Higher-order radial derivatives and optimality conditions innonsmooth vector optimization[END_REF], but it provides a tool for establishing new optimality conditions, which also sharpen or improve a number of the existing results in the literature. Note further that the obtained optimality conditions have global characters and do not need any convexity assumptions. The content of this chapter is also our research published in [START_REF] Anh | Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives[END_REF][START_REF] Anh | Higher-order optimality conditions for proper efficiency in nonsmooth vector optimization using radial sets and radial derivatives[END_REF]. §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems Remark 5.2.3. (i) It follows that

D m R F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(X) ⊆ T r(m) F(X) (y 0 , v 1 , ..., v m-1
).

(ii) Radial sets are especial cases of Γ-limits. Indeed,

y ∈ T r(m) S (x 0 , u 1 , ..., u m-1 ) ⇐⇒ inf Q∈N (y) sup t>0 sup y ∈Q χ gr(H S,x 0 ,u 1 ,...,u m-1 ) (t, y ) = 1 ⇐⇒ Γ(R + , N (y) + ) lim χ gr(H S,x 0 ,u 1 ,...,u m-1 ) = 1, y ∈ T r (m) S (x 0 , u 1 , ..., u m-1 ) ⇐⇒ inf Q∈N (y) inf t>0 sup y ∈Q χ gr(H S,x 0 ,u 1 ,...,u m-1 ) (t, y ) = 1 ⇐⇒ Γ(R -, N (y) + ) lim χ gr(H S,x 0 ,u 1 ,...,u m-1 ) = 1,
where R := {(0, +∞)} be a filter on (0, +∞), and H S,x 0 ,u 1 ,...,u m-1 : (0, +∞) → 2 X is defined by

H S,x 0 ,u 1 ,...,u m-1 (t) := 1 t m (S -x 0 -tu 1 -... -t m-1 u m-1 ).
(iii) Radial derivatives can be expressed in terms of Γ-limits as follows

y ∈ D m R F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(x) ⇐⇒ inf Q∈N (y) inf W ∈N (x) sup t>0 sup x ∈W sup y ∈Q
χ gr(H F,(x 0 ,y 0 ),(u 1 ,v 1 ),...,(u m-1 ,v m-1 ) ) (t, x , y ) = 1 ⇐⇒ Γ(R + , N (x) + , N (y) + ) lim χ gr(H F,(x 0 ,y 0 ),(u 1 ,v 1 ),...,(u m-1 ,v m-1 ) ) = 1,

y ∈ D (m) R F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(x) ⇐⇒ inf Q∈N (y) inf W ∈N (x) inf t>0 sup x ∈W sup y ∈Q χ gr(H F,(x 0 ,y 0 ),(u 1 ,v 1 ),...,(u m-1 ,v m-1 ) ) (t, x , y ) = 1 ⇐⇒ Γ(R -, N (x) + , N (y) + ) lim χ gr(H F,(x 0 ,y 0 ),(u 1 ,v 1 ),...,(u m-1 ,v m-1 ) ) = 1,
where

H F,(x 0 ,y 0 ),(u 1 ,v 1 ),...,(u m-1 ,v m-1 ) : (0, +∞) × X → 2 Y is defined by H F,(x 0 ,y 0 ),(u 1 ,v 1 ),...,(u m-1 ,v m-1 ) (t, x ) := 1 t m (F(x 0 + tu 1 + ... + t m-1 u m-1 + t m x ) -y 0 - -tv 1 -... -t m-1 v m-1 .
(iv) Definitions 5.2.1, 5.2.2 correspond to the following known definition of the contingent objects

T m S (x 0 , u 1 , ..., u m-1 ) := {y ∈ X : ∃t n → 0, ∃y n → y, ∀n, x 0 + t n u 1 + ... + t m-1 n u m-1 + t m n y n ∈ S}, gr D m F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 ) := T m gr F (x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1
). §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems Observe another fact, which makes the radial set and derivative different from the contingent set and derivative, and hence also from other tangency notions and derivatives in variational analysis. Let us explain this difference only between T r(2) S (x 0 , u) and T 2 S (x 0 , u) for simplicity. It is known that if u ∈ T S (x 0 ), then T 2 S (x 0 , u) = / 0. But, the simple example with

X = R 2 , S = {0 R 2 , e 1 }, x 0 = 0 R 2 , e 1 = (1, 0
), e 2 = (0, 1) shows that this is not valid for radial cones: u = e 1e 2 ∈ T r S (x 0 ), but e 2 ∈ T r( 2) S (x 0 , u), i.e., the last cone is nonempty.

(v) The objects defined in Definitions 5.2.1, 5.2.2 are called upper and lower radial sets and derivatives, respectively. However, though being applied to establish necessary optimality conditions similarly as the upper radial concept is, this lower radial object yields weaker results, and it is not convenient for dealing with sufficient optimality conditions. Therefore, in this chapter we develop only the upper radial concepts and thus omit the term "upper".

In the following example, we compute a radial derivative and a contingent derivative in an infinite dimensional case.

Example 5.2.4. Let X = R and Y = l 2 , the Hilbert space of the numerical sequences x = (x i ) i∈N with ∑ ∞ i=1 x 2 i being convergent. By (e i ) i∈N we denote standard unit basis of l 2 . Consider F : X → 2 Y defined by

F(x) :=            1 n (-e 1 + 2e n ) , if x = 1 n , y = (y i ) ∞ i=1 ∈ l 2 : y 1 ≥ 0, y 2 1 ≥ ∑ ∞ i=2 y 2 i , if x = n, {0} , otherwise. 
It is easy to see that

C := {y = (y i ) ∞ i=1 ∈ l 2 : y 1 ≥ 0, y 2 1 ≥ ∑ ∞ i=2 y 2 i } is a closed, convex
, and pointed cone. For (x 0 , y 0 ) = (0, 0), we compute T r( 1)

grF (x 0 , y 0 ). If (u, v) ∈ T r(1)
grF (x 0 , y 0 ), by definition, there exist t n > 0 and

(u n , v n ) → (u, v) such that t n v n ∈ F(t n u n ). (5.2) 
If t n u n ∈ {1/n, n}, then from (5.2) a direct computation gives v = 0. Now assume that t n u n ∈ {1/n, n}. Consider the first case with t n u n = 1/n. From (5.2), one has

t n v n = 1 n (-e 1 + 2e n ). (5.3) 
We have two subcases. If u = 0, then u n = 1/(nt n ) → 0, and hence (5.3) implies that v n = u n (-e 1 + 2e n ) → 0, i.e., v = 0. In the second subcase with u > 0, we claim that there is no v such §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems

that (u, v) ∈ T r (1) 
grF (x 0 , y 0 ). Suppose there exists such a (u, v) (with u > 0). Then, from (5.3), the sequence (nt n ) -1 (-e 1 + 2e n ) = u n (-e 1 + 2e n ) converges. Hence, as u n e 1 → ue 1 , the sequence d n := 2u n e n is also convergent. Suppose that d n converges to d. By a direct computation, one has

||2u n e n -d|| 2 = (2u n ) 2 + ||d|| 2 + 2 2u n e n , -d → 0.
Therefore, 4(u) 2 + ||d|| 2 = 0 (since {e n } converges weakly to 0, e n , d → 0), which is a contradiction. Now consider the second case with t n u n = n. From (5.2) we get t n v n ∈ C. Thus, v ∈ C since C is a closed cone. It follows from u n = n/t n that u ≥ 0. Consequently, we have proved that T r( 1)

grF (x 0 , y 0 ) ⊆ ([0, +∞) ×C) ∪ ((-∞, 0) × {0}).
We now show the reverse inclusion. Let (u, v) ∈ ([0, +∞) ×C) ∪ ((-∞, 0) × {0}). We prove that there exist t n > 0, u n → u, and v n → v such that (5.2) holds for all n. Indeed, depending on u and v, such t n , u n , and v n can be chosen as follows.

• For (0, v) such that v ∈ C, we take

t n = n 2 , u n = 1/n, v n ≡ v. • For (u, v) ∈ (0, +∞) ×C, we take t n = n/u, u n ≡ u, v n ≡ v. • For (u, v) ∈ (-∞, 0) × {0}, we take t n = n/|u|, u n ≡ u, v n ≡ 0. So, T r(1) grF (x 0 , y 0 ) = ([0, +∞) ×C) ∪ ((-∞, 0) × {0}).
Therefore,

D 1 R F(x 0 , y 0 )(u) = C, if u ≥ 0, {0}, if u < 0.
By a similar way, with simpler calculations, we get T 1 grF (x 0 , y 0 ) = R × {0}, and hence for all

u ∈ R, D 1 F(x 0 , y 0 )(u) = {0}.
The next example highlights detailed differences between (5.1) and the radial derivative introduced in Definition 5.2.2(i).

Example 5.2.5. Let X = Y = R and F(x) = {x 2 } and (x 0 , y 0 ) = (0, 0). Direct calculations yield

D 1 R F(x 0 , y 0 )(x) = D 1 R F(x 0 , y 0 )(x) = R + .
Without any information, we have

D 2 R F(x 0 , y 0 )(x) = x 2 . Now let (u 1 , v 1 ) = (0, 0) be given, then D 2 R F(x 0 , y 0 , u 1 , v 1 )(x) = R + . For another given direction (u 1 , v 1 ) = (1, 0), D 2 R F(x 0 , y 0 , u 1 , v 1 )(x) = {1 + a 2 x 2 + 2ax : a ≥ 0}. §5.
Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems Definition 5.2.6. Let F : X → 2 Y , (x 0 , y 0 ) ∈ gr F and

(u i , v i ) ∈ X ×Y , i = 1, ..., m -1 with m ≥ 1. (i) If T r(m) F(X) (y 0 , v 1 , ..., v m-1 ) = T r (m) F(X) (y 0 , v 1 , ..., v m-1 )
, then this set is called a m-th order protoradial set of F(X) at y 0 with respect to v 1 , ..., v m-1 .

(ii) If D m R F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(x) = {v ∈ Y : ∀t n > 0, ∀x n → x, ∃v n → v : y 0 +t n v 1 + ...+t m-1 n v m-1 +t m n v n ∈ F(y 0 +t n u 1 +...+t m-1 n u m-1 +t m n x n ), ∀n}, for any x ∈ dom D m R F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )
, then this derivative is called a m-th order radial semiderivative of F at (x 0 , y 0 ) with respect to (u 1 , v 1 ), ..., (u m-1 , v m-1 ).

Note that, following strictly Definition 5.2.2, we would define that

D m R F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 ) is a m-th order radial semiderivative if gr D m R F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 ) = T r (m) gr F (x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 ).
But, this last condition is equivalent to

D m R F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(x) = {v ∈ Y : ∀t n > 0, ∃x n → x, ∃v n → v, ∀n, y 0 + t n v 1 + ... +t m-1 n v m-1 + t m n v n ∈ F(x 0 + t n u 1 + ... + t m-1 n u m-1 + t m n x n )},
which is weaker than Definition 5.2.6(ii). (This weaker condition was used to define protocontingent derivatives in many papers in the literature.) Definition 5.2.6 is restrictive. However, it may be satisfied as shown in the following.

Example 5.2.7. Let X = Y = R, F : X → 2 Y be defined by F(x) = {y ∈ Y : y ≥ x}, and (x 0 , y 0 ) = (0, 0). Then, direct calculations yield T r( 1)

F(X) (y 0 ) = T r (1) 
F(X) (y 0 ) = R and

D 1 R F(x 0 , y 0 )(x) = {v ∈ Y : ∀t n > 0, ∀x n → x, ∃v n → v, ∀n, y 0 + t n v n ∈ F(x 0 + t n x n )} = {v ∈ Y : v ≥ x}. So, T r (1) 
F(X) (y 0 ) is a first-order proto-radial set of F(X) at y 0 , and

D 1 R F(x 0 , y 0 ) is a first-order radial semiderivative of F at (x 0 , y 0 ).
For examples of second-orders, with any

v 1 ∈ R, direct computations show that T r(2) F(X) (y 0 , v 1 ) = T r (2) F(X) (y 0 , v 1 ) = R. Thus, T r(2)
F(X) (y 0 , v 1 ) is a second-order proto-radial set of F(X) at y 0 with respect to v 1 ∈ R. Passing to derivatives, let (u 1 , v 1 ) = (1, 1). Direct computations indicate that both D 2 R F(x 0 , y 0 , u 1 , v 1 )(x) and the set on the right-hand side of the equality in Definition 5.2.6(ii) are equal to 77 §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems {v ∈ Y : v ≥ x}. Thus, F has a second-order radial semiderivative at (x 0 , y 0 ) with respect to (1, 1). However, for (u 1 , v 1 ) = (0, -1), the derivatives are "worse":

D 2 R F(x 0 , y 0 , u 1 , v 1 )(x) = {v ∈ Y : v ≥ x}
and the other mentioned set is empty. So, F does not have a second-order radial semiderivative at (x 0 , y 0 ) with respect to (0, -1).

Proposition 5.2.8. If S is convex, then so is T r (m) S (x 0 , u 1 , ..., u m-1 ).

Proof. If T r (m) S (x 0 , u 1 , ..., u m-1 ) = / 0 or is a singleton, the result holds trivially. Now assume that

there are v 1 , v 2 ∈ T r (m) S (x 0 , u 1 , ..., u m-1
) and λ ∈ (0, 1). It follows from the definition that, for any t n > 0, there exist sequences

v 1 n and v 2 n such that v 1 n → v 1 , v 2 n → v 2 and for i = 1, 2, x 0 + t n u 1 + ... + t m-1 n u m-1 + t m n v i n ∈ S.
From the convexity of S, we have

x 0 + t n u 1 + ... + t m-1 n u m-1 + t m n λ v 1 n + (1 -λ )v 2 n ∈ S. Thus, λ v 1 + (1 -λ )v 2 ∈ T r (m) S (x 0 , u 1 , ..., u m-1
) and the proof is complete.

Proposition 5.2.9. If S is convex and u 1 , ..., u m-1 ∈ S, then

T r (m) S (x 0 , u 1 -x 0 , ..., u m-1 -x 0 ) ⊆ T (m) S (x 0 , u 1 -x 0 , ..., u m-1 -x 0 ) = = T m S (x 0 , u 1 -x 0 , ..., u m-1 -x 0 ) = T r(m) S (x 0 , u 1 -x 0 , ..., u m-1 -x 0 )
Proof. From the definitions, we have

T r (m) S (x 0 , u 1 -x 0 , ..., u m-1 -x 0 ) ⊆ T (m) S (x 0 , u 1 -x 0 , ..., u m-1 -x 0 ) and T r(m) S (x 0 , u 1 -x 0 , ..., u m-1 -x 0 ) = cl t>0 S -x 0 -t(u 1 -x 0 ) -... -t m-1 (u m-1 -x 0 ) t m .
Since S is convex, Proposition 3.1 of [START_REF] Li | Higher-order optimality conditions for set-valued optimization[END_REF] says that the right side of the last equality is equal to

T m S (x 0 , u 1 -x 0 , ..., u m-1 -x 0 ) = T (m) S
(x 0 , u 1x 0 , ..., u m-1x 0 ) and we are done §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems

The inclusion in Proposition 5.2.9 may be strict as for S = [0, 1] and x 0 = 0, since we have

T r (1) S (x 0 ) = {0} and T (1) S (x 0 ) = T 1 S (x 0 ) = T r(1) S (x 0 ) = R + .
It is known (Corollary 3.1 of [START_REF] Li | Higher-order optimality conditions for set-valued optimization[END_REF]) that if S is convex and u 1 , ..., u m-1 ∈ S, then T (m) S (x 0 , u 1x 0 , ..., u m-1x 0 ) is convex. Therefore, Proposition 5.2.9 implies the following.

Corollary 5.2.10. If S is convex and u 1 , ..., u m-1 ∈ S, then T r(m) S (x 0 , u 1x 0 , ..., u m-1x 0 ) is convex.

Proposition 5.2.11. Let S = dom F and (x 0 , y 0 ) ∈ gr F. Then, for all x ∈ S,

(i) F(x) -y 0 ⊆ D 1 R F(x 0 , y 0 )(x -x 0 ), (ii) F(x) -y 0 ⊆ T r(1) F(S) (y 0 ).
Proof. Let x ∈ S, y ∈ F(x)y 0 , then y 0 + y ∈ F(x). Therefore, there exist t n = 1, y n = y and

x n = xx 0 , for all n, such that y 0 +t m n y n ∈ F(x 0 +t n x n ) for all n. Hence, y ∈ D 1 R F(x 0 , y 0 )(xx 0 ). (ii) Let x ∈ S, y ∈ F(x)y 0 , then y 0 + y ∈ F(x). Therefore, there exist t n = 1, y n = y and

x n = x -x 0 , ∀n such that y 0 + t m n y n ∈ F(x 0 + t n x n ) ⊆ F(S). So, y ∈ T r (1) 
F(S) (y 0 ).

Note that these assertions say, in particular, that radial sets and derivatives possess global properties without any (relaxed) convexity assumption. To make this clear, recall that

F : X → 2 Y
is termed pseudoconvex at (x 0 , y 0 ) ∈ grF if epiF -(x 0 , y 0 ) ⊆ T epiF (x 0 , y 0 ). Furthermore, if F is pseudoconvex at (x 0 , y 0 ), then, ∀x ∈ domF, F(x)y 0 ⊆ V 1 (F + , x 0 , y 0 ) (see Proposition 2.1 of Khanh and Tuan in [START_REF] Khanh | Variational sets of multivalued mappings and a unified study of optimality conditions[END_REF]). Roughly speaking, that is why, in the sufficient condition (see Theorem 5.3.7), no convexity assumption is needed.

Sum rule and chain rule

Proposition 5.2.12.

(Sum rule) Let F i : X → 2 Y , x 0 ∈ Ω := dom F 1 ∩ dom F 2 , y i ∈ F i (x 0 ) for i = 1, 2.
(i) If either F 1 (Ω) or F 2 (Ω) has a m-th order proto-radial set at y 1 with respect to v 1,1 , ..., v 1,m-1

or at y 2 with respect to v 2,1 , ..., v 2,m-1 , respectively, then T r(m)

F 1 (Ω) (y 1 , v 1,1 , ..., v 1,m-1 ) + T r(m) F 2 (Ω) (y 2 , v 2,1 , ..., v 2,m-1 ) ⊆ T r(m) (F 1 +F 2 )(Ω) (y 1 + y 2 , v 1,1 + v 2,1 , ..., v 1,m-1 + v 2,m-1
). §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems

The following example shows that the assumption about proto-radial sets in Proposition 5.2.12 cannot be dropped.

Example 5.2.13. Let X = Y = R, C = R + , and F 1 , F 2 : X → 2 Y be given by

F 1 (x) =    {1}, if x = 1 n , n ∈ N, {0}, if x = 0, F 2 (x) =    {0}, if x = 1 n , n ∈ N, {1}, if x = 0.
It is easy to see that F 1 and F 2 have neither first order proto-radial set (of F 1 (Ω) and F 2 (Ω)) nor first order radial semiderivative at (0,0) and (0,1), respectively. We have

T r (1) 
F 1 (Ω) (0) = R + , T r (1) 
F 2 (Ω) (1) = R -,
where

Ω := dom F 1 = dom F 2 = 0, 1 n n∈N , and 
D 1 R F 1 (0, 0)(0) = R + , D 1 R F 2 (0, 1)(0) = R -.
On the other hand,

(F 1 + F 2 )(x) =    {1}, if x = 1 n , n ∈ N, {1}, if x = 0.
Direct calculations yield T r(1)

(F 1 +F 2 )(Ω) (1) = {0}, D 1 R (F 1 + F 2 )(0, 1)(0) = {0}. Thus, T r (1) 
F 1 (Ω) (0) + T r(1) F 2 (Ω) (1) ⊆ T r (1) 
(F 1 +F 2 )(Ω) (1) and

D 1 R F 1 (0, 0)(0) + D 1 R F 2 (0, 1)(0) ⊆ D 1 R (F 1 + F 2 )(0, 1)(0). Proposition 5.2.14. (Chain rule) Let G : X → 2 Y , F : Y → 2 Z with Im G ⊆ dom F, (x 0 , y 0 ) ∈ gr G, (y 0 , z 0 ) ∈ gr F and (u 1 , v 1 , w 1 ), ..., (u m-1 , v m-1 , w m-1 ) ∈ X × Y × Z.
Suppose that F has a m-th order radial semiderivative at (y 0 , z 0 ) with respect to (v 1 , w 1 ), ..., (v m-1 , w m-1 ). Then

(i) D m R F(y 0 , z 0 , v 1 , w 1 , ..., v m-1 , w m-1 )[T r(m) G(X) (y 0 , v 1 , ..., v m-1 )] ⊆ T r(m) (F•G)(X) (z 0 , w 1 , ..., w m-1 ), (ii) D m R F(y 0 , z 0 , v 1 , w 1 , ..., v m-1 , w m-1 )[D m R G(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(X)] ⊆ T r(m)
(F•G)(X) (z 0 , w 1 , ..., w m-1 ). §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems where C X : Z → 2 Y is defined by C X (z) := C(X, z), then

D m R F(y 0 , z 0 , v 1 , w 1 ..., v m-1 , w m-1 )[T r(m) G(X) (y 0 , v 1 , ..., v m-1 )] ⊆ T r(m)
(F•G)(X) (z 0 , w 1 , ..., w m-1 ).

(ii) If, for all (u, w) ∈ X × Z, one has

D m R G(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(u) ∩ D m R F -1 (z 0 , y 0 , w 1 , v 1 , ..., w m-1 , v m-1 )(w) ⊆ D m R C((x 0 , z 0 ), y 0 , (u 1 , w 1 ), v 1 , ..., (u m-1 , w m-1 ), v m-1 )(u, w), (5.6 
)

then D m R F(y 0 , z 0 , v 1 , w 1 ..., v m-1 , w m-1 )[D m R G(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(u)] ⊆ D m R (F • G)(x 0 , z 0 , u 1 , w 1 , ..., u m-1 , w m-1 )(u).
Proof. By the similarity, we prove only (i

). Let w ∈ D m R F(y 0 , z 0 , v 1 , w 1 ..., v m-1 , w m-1 )[T r(m) G(X) (y 0 , v 1 , ..., v m-1 )], i.e., there exists some y ∈ T r(m) G(X) (y 0 , v 1 , ..., v m-1 ) such that y ∈ D m R F -1 (z 0 , y 0 , w 1 , v 1 , ..., w m-1 , v m-1 )(w). Then, (5.5) ensures that y ∈ D m R C X (y 0 , z 0 , w 1 , v 1 , • • • , w m-1 , v m-1 )(w)
. This means the existence of t n > 0 and (y n , w n ) → (y, w) such that, for all n ∈ N,

y 0 + t n v 1 + ... + t m-1 n v m-1 + t m n y n ∈ C(X, z 0 + t n w 1 + ... + t m-1 n w m-1 + t m n w n ).
From the definition of the map C, we get z 0 + t n w 1 + ...

+ t m-1 n w m-1 + t m n w n ∈ (F • G)(X). So, w ∈ T r(m) (F•G)(X) (z 0 , w 1 , ..., w m-1 ).
We now show the essentialness of the assumption (5.6) in Proposition 5.2.15 (it is similar for (5.5)) by the following.

Example 5.2. [START_REF] Beer | A characterization of epi-convergence in terms of convergence of level sets[END_REF].

Let X = Y = Z = R, G : X → 2 Y and F : Y → 2 Z be defined by G(x) = {1, 2}, if x = 1, {0}, if x = 0, F(y) = {0}, if y = 1, {1}, if y = 0.
Then,

(F • G)(x) = {0}, if x = 1, {1}, if x = 0, F -1 (z) = {0}, if z = 1, {1}, if z = 0, C(x, z) = G(x) ∩ F -1 (z) = {1}, if (x, z) = (1, 0), {0}, if (x, z) = (0, 1).
83 §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems Let (x 0 , z 0 ) = (0, 1) and y 0 = 0 ∈ C(x 0 , z 0 ). Direct calculations give

D 1 R G(x 0 , y 0 )(1/2) = {1/2, 1}, D 1 R F(y 0 , z 0 )(1) = {-1}, D 1 R F(y 0 , z 0 )(1/2) = {-1/2}, D 1 R (F • G)(x 0 , z 0 )(1/2) = {-1/2}.
So, the conclusion of Proposition 5.2.15(ii) does not hold. The reason is the violence of (5.6):

for (u, w) = (1/2, -1), D 1 R F -1 (z 0 , y 0 )(-1) = {1}, D 1 R C((x 0 , z 0 ), y 0 )(u, w) = / 0, and hence

D 1 R G(x 0 , y 0 )(u) ∩ D 1 R F -1 (z 0 , y 0 )(w) ⊆ D 1 R C((x 0 , z 0 ), y 0 )(u, w).
Now we apply the preceding composition rule to establish a sum rule for M, N : X → 2 Y . For this purpose, we use G : X → 2 X×Y and F : X ×Y → 2 Y defined in (5.4). For (x, z) ∈ X ×Y , we set H(x, z) := M(x) ∩ (z -N(x)). Then, the resultant multimap C : X ×Y → 2 X×Y associated to these F and G is C(x, z) = {x} × H(x, z).

Proposition 5.2.17. Let (x 0 , z 0 ) ∈ gr (M + N), y 0 ∈ H(x 0 , z 0 ) and

(u i , v i , w i ) ∈ X ×Y ×Y . (i) If, for all w ∈ Y , one has T r(m) M(X) (y 0 , v 1 , ..., v m-1 ) ∩ [w -T r(m) N(X) (z 0 -y 0 , w 1 , ..., w m-1 )] ⊆ D m R H X (z 0 , y 0 , v 1 + w 1 , v 1 , • • • , v m-1 + w m-1 , v m-1 )(w), (5.7) 
where H X : Y → 2 Y is defined by H X (y) := H(X, y), then

T r(m) M(X) (y 0 , v 1 , ..., v m-1 ) + T r(m) N(X) (z 0 -y 0 , w 1 , ..., w m-1 ) ⊆ T r(m) (M+N)(X) (z 0 , v 1 + w 1 , • • • , v m-1 + w m-1 ). (ii) If, for all (u, w) ∈ X ×Y , one has D m R M(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(u) ∩ [w -D m R N(x 0 , z 0 -y 0 , u 1 , w 1 , ..., u m-1 , w m-1 )(u) ⊆ D m R H((x 0 , z 0 ), y 0 , (u 1 , v 1 + w 1 ), v 1 , ..., (u m-1 , v m-1 + w m-1 ), v m-1 )(u, w), (5.8 
)

then D m R M(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(u) + D m R N(x 0 , z 0 -y 0 , u 1 , w 1 , ..., u m-1 , w m-1 )(u) ⊆ D m R (M + N)(x 0 , z 0 , u 1 , v 1 + w 1 , ..., u m-1 , v m-1 + w m-1 )(u). §5.
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T r(1) M(X) (y 0 ) ∩ [w -T r(1) N(X) (z 0 -y 0 )] ⊆ D 1 R H X (z 0 , y 0 )(w), D 1 R M(x 0 , y 0 )(u) ∩ [w -D 1 R N(x 0 , z 0 -y 0 )(u)] ⊆ D 1 R H((x 0 , z 0 ), y 0 )(u, w).
Direct computations show that conclusions of Proposition 5.2.17 do not hold:

T r (1) 
M(X) (y 0 ) + T r( 1)

N(X) (z 0 -y 0 ) ⊆ T r (1) 
(M+N)(X) (z 0 ),

D 1 R M(x 0 , y 0 )(u) + D 1 R N(x 0 , z 0 -y 0 )(u) ⊆ D 1 R (M + N)(x 0 , z 0 )(u), since T r(1) (M+N)(X) (z 0 ) = {0} and D 1 R (M + N)(x 0 , z 0 )(u) = {0}.

Optimality conditions

Let X, Y and Z be normed spaces, C ⊆ Y and D ⊆ Z be pointed closed convex cones, not the entire space, S ⊆ X nonempty, and

F : S → 2 Y , G : S → 2 Z . Our problem is (P) Min Q F(x), s.t. x ∈ S, G(x) ∩ -D = / 0.
We denote A := {x ∈ S : G(x) ∩ -D = / 0} (the feasible set).

In this section, both necessary and sufficient optimality conditions for the mentioned efficient solutions of the problem (P) are established. As Q-efficiency (see Definition 2.2.7) includes many other kinds of solutions as particular cases (see Proposition 2.2.9), we first prove necessary optimality conditions of this notion.

Proposition 5.3.1. Let (x 0 , y 0 ) ∈ grF be a Q-efficient solution of (P),

(u i , v i , w i ) ∈ X × (-C) × (-D), i = 1, ..., m -1, and z 0 ∈ G(x 0 ) ∩ -D. Suppose that the open cone Q satisfies Q +C ⊆ Q.
Then, the following separations hold T r(m)

(F,G) + (S) (y 0 , z 0 , (v 1 , w 1 ), ..., (v m-1 , w m-1 )) ∩ (-Q × -int D) = / 0, (5.9) 
D m R (F, G) + (x 0 , y 0 , z 0 , (u 1 , v 1 , w 1 ), ..., (u m-1 , v m-1 , w m-1 ))(X) ∩ (-Q × -int D) = / 0. (5.10)
Proof. Suppose (5.9) does not hold. Then, there exists (y, z) such that

(y, z) ∈ T r(m)
(F,G) + (S) (y 0 , z 0 , (v 1 , w 1 ), ..., (v m-1 , w m-1 )), (5.11)

(y, z) ∈ (-Q × -int D).
(5.12) §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems It follows from (5.11) and the definition of m-th order radial sets that there exist sequences t n > 0,

x n ∈ S, and

(y n , z n ) ∈ (F, G)(x n ) +C × D such that (y n , z n ) -(y 0 , z 0 ) -t n (v 1 , w 1 ) -... -t m-1 n (v m-1 , w m-1 ) t m n → (y, z).
(5.13) From (5.12) and (5.13), one has, for large n, Therefore, y ny 0 ∈ (F(A)y 0 ) ∩ (-Q), which contradicts the Q-efficiency of (x 0 , y 0 ). Thus, (5.9) holds. (5.10) follows from (5.9) and the evident fact that

y n -y 0 -t n v 1 -... -t m-1 n v m-1 ∈ -Q, z n ∈ -int D. ( 5 
D m R F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(X) ⊆ T r(m)
F(X) (y 0 , v 1 , ..., v m-1 ).

Propositions 5.3.1 and 2.2.9 together yield the following result.

Theorem 5.3.2. Let (x 0 , y 0 ) ∈ gr F, (u i , v i , w i ) ∈ X × (-C) × (-D), i = 1, ..., m -1, and z 0 ∈ G(x 0 ) ∩ -D. Then, (5.9) and (5.10) hold in each of the following cases (i) (x 0 , y 0 ) is a weak efficient solution of (P) and Q = intC, (ii) (x 0 , y 0 ) is a strong efficient solution of (P) and Q = Y \ -C, (iii) (x 0 , y 0 ) is a positive-proper efficient solution of (P) and Q = {y : ϕ(y) > 0} for some functional ϕ ∈ C +i , (iv) (x 0 , y 0 ) is a Geoffrion-proper efficient solution of (P) and Q = C(ε) for ε > 0, (v) (x 0 , y 0 ) is a Henig-proper efficient solution of (P) and Q = K for some pointed open convex cone K dilating C, (vi) (x 0 , y 0 ) is a strong Henig-proper efficient solution of (P) and Q = intC ε (B) for ε satisfying 0 < ε < δ .

The next example illustrates Theorem 5.3.2(vi). §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems

G(x) = F(x) =          {0}, if x = 0, {-1}, if x = 1, / 0, otherwise.
Choose the base B = {1}. Then, δ = 1 and C ε (B) = R + for all ε ∈ (0, δ ). Let z 0 = 0. Let us try to use optimality conditions given in [START_REF] Khanh | Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization[END_REF] by Khanh and Tuan in terms of variational sets to eliminate (x 0 , y 0 ) as a candidate for a strong Henig-proper efficient solution. We can

compute directly that V 1 ((F, G) + , x 0 , y 0 , z 0 ) = R + × R + . Let (v 1 , w 1 ) ∈ V 1 ((F, G) + , x 0 , y 0 , z 0 ) ∩ -bd(C ε (B)×D(z 0 )),• • • , (v m-1 , w m-1 ) ∈ V m-1 ((F, G) + , x 0 , y 0 , z 0 , v 1 , w 1 , • • • , v m-2 , w m-2 )∩-bd(C ε (B)× D(z 0 )), for m ≥ 2, where bd A means the boundary of A. It is easy to check that (v 1 , w 1 ) = • • • = (v m-1 , w m-1 ) = (0, 0) and V m ((F, G) + , x 0 , y 0 , z 0 , v 1 , w 1 , • • • , v m-1 , w m-1 ) = R + × R + .
Thus, for all m ≥ 1, we get

V m ((F, G) + , x 0 , y 0 , z 0 , v 1 , w 1 , • • • , v m-1 , w m-1 ) ∩ -int(C ε (B) × D(z 0 )) = / 0.
For variational sets of type 2, by direct calculating we get

W 1 ((F, G) + , x 0 , y 0 , z 0 ) = R + × R + , W 1 ((F, G) + , x 0 , y 0 , z 0 ) ∩ -int(C ε (B) × D) = / 0. Let (v 1 , w 1 ) ∈ W 1 ((F, G) + , x 0 , y 0 , z 0 )∩-bd(C ε (B)×D), (v 2 , w 2 ) ∈ W 2 ((F, G) + , x 0 , y 0 , z 0 , v 1 , w 1 ) ∩ -bd(C ε (B) × D(w 1 )),• • • , (v m-1 , w m-1 ) ∈ W m-1 ((F, G) + , x 0 , y 0 , z 0 , v 1 , w 1 , • • • , v m-2 , w m-2 )∩ -bd(C ε (B) × D(w 1 )), m ≥ 3. We have (v 1 , w 1 ) = • • • = (v m-1 , w m-1 ) = (0, 0) and W m ((F, G) + , x 0 , y 0 , z 0 , v 1 , w 1 , • • • , v m-1 , w m-1 ) = R + × R + .
Thus, for all m ≥ 2, we get

W m ((F, G) + , x 0 , y 0 , z 0 , v 1 , w 1 , • • • , v m-1 , w m-1 ) ∩ -int(C ε (B) × D(w 1 )) = / 0.
So, Theorems 3.4 and 3.5 of Khanh and Tuan in [START_REF] Khanh | Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization[END_REF] [START_REF] Gong | Optimality conditions for proper efficient solutions of vector setvalued optimization[END_REF] and Theorem 1 of Liu and Gong in [START_REF] Liu | Proper efficiency for set-valued vector optimization problems and vector variational inequalities[END_REF] cannot be in use to reject §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems (x 0 , y 0 ) either. On the other hand, since T r(1)

(F,G) + (S) (y 0 , z 0 ) = R × R, Theorem 5.3.2(vi) rejects the candidate (x 0 , y 0 ). Moreover, Theorem 3.2(i) of Khanh and Tuan in [START_REF] Khanh | Variational sets of multivalued mappings and a unified study of optimality conditions[END_REF] says nothing about (x 0 , y 0 ) being weak efficiency for (P). By Proposition 4.1 in [START_REF] Khanh | Variational sets of multivalued mappings and a unified study of optimality conditions[END_REF], we can see that Theorem 7 of Jahn and Rauh in [START_REF] Jahn | Contingent epiderivatives and set-valued optimization[END_REF], Theorem 5 of Chen and Jahn in [START_REF] Chen | Optimality conditions for set-valued optimization problems[END_REF], Theorem 4.1 of Corley in [START_REF] Corley | Optimality conditions for maximization of set-valued functions[END_REF], Proposition 3.1 of Taa in [START_REF] Taa | Set-valued derivatives of multifunctions and optimality conditions[END_REF], Theorem 2.7(a) of Jahn and Khan in [START_REF] Jahn | Generalized contingent epiderivatives in set valued optimization : optimality conditions[END_REF], Theorem 2 of Crepsi et al. in [START_REF] Crespi | First-order optimality conditions in set-valued optimization[END_REF], Theorem 4.1 of Crepsi et al. in [START_REF] Crespi | First-order optimality conditions for constrained set-valued optimization[END_REF] and Theorem 3.1 of Jahn at al. in [START_REF] Jahn | Second-order optimality conditions in set optimization[END_REF] cannot be in use to reject (x 0 , y 0 ) either. On the other hand, by using Theorem 5.3.2(i), (x 0 , y 0 ) is not a weak efficiency for (P).

Finally we discuss sufficient conditions for the mentioned efficient solutions of problem (P). Proposition 5.3.6. Let (x 0 , y 0 ) ∈ gr F and x 0 ∈ A, the feasible set. Suppose that there exists 

z 0 ∈ G(x 0 ) ∩ (-D) such that, for (u i , v i , w i ) ∈ X × (-C) × (-D), i = 1, ..., m -1,
(F,G) + (S) ((y 0 , z 0 ), (v 1 , w 1 ), ..., (v m-1 , w m-1 )) ∩ -(Q × D(z 0 )) = / 0, (5.16) 
D m R (F, G) + (x 0 , y 0 , z 0 , u 1 , v 1 , w 1 , ..., u m-1 , v m-1 , w m-1 )(x -x 0 ) ∩ -(Q × D(z 0 )) = / 0. (5.17)
Then, (x 0 , y 0 ) is a Q-efficient solution of (P), for any non-empty open cone Q.

Proof. By the similarity, we prove only (5.16). Note that (5.16) is required to be satisfied also for

v i = 0 ∈ -C and w i = 0 ∈ -D, i = 1, ..., m -1. Therefore, T r (1) 
(F,G) + (S) (y 0 , z 0 ) ∩ -(Q × D(z 0 )) = / 0. It follows from Proposition 5.2.11 that (y -y 0 , z -z 0 ) ∈ T r (1) 
(F,G) + (S) (y 0 , z 0 ) for all y ∈ F(S), z ∈ G(S). Then,

(F, G)(S) -(y 0 , z 0 ) ∩ -(Q × D(z 0 )) = / 0.
Suppose the existence of x ∈ A and y ∈ F(x) such that yy 0 ∈ -Q. Then, there exists z ∈

G(x) ∩ -D such that (y, z) -(y 0 , z 0 ) ∈ -(Q × D(z 0 )), a contradiction.
From Propositions 5.3.6 and 2.2.9, we obtain immediately the following result.

Theorem 5.3.7. Let (x 0 , y 0 ) ∈ gr F and x 0 ∈ A. Suppose that there exists z 0 ∈ G(x 0 ) ∩ (-D) such that, for (u i , v i , w i ) ∈ X × (-C) × (-D), i = 1, ..., m -1, and x ∈ S, either of (5.16) or

(5.17) holds. Then, one has the following assertions (i) (x 0 , y 0 ) is a weak efficient solution of (P) and Q = intC, §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems

G(x) = {z ∈ Z : z = x 2 -1}.
We see that (x 0 , y 0 ) = (0, 0) is a weak efficient pair of (P). Take z 0 = -1 ∈ G(x 0 ) ∩ (-D). We have T r(1)

(F,G) + (S) (y 0 , z 0 ) = R × R + and hence T r (1) 
(F,G) + (S) (y 0 , z 0 ) ∩ -int(C × D) = / 0.

On the other hand, D(z 0 ) = R. Thus,

T r (1) 
(F,G) + (S) (y 0 , z 0 ) ∩ -int(C × D(z 0 )) = / 0.

Applications in some particular problems

In this section, we apply calculus rules to establish necessary conditions for some kinds of efficient solutions of several particular optimization problems. We first prove a simple characterization of this notion.

Proposition 5.4.1. Let X,Y and Q as before, F : X → 2 Y , (x 0 , y 0 ) ∈ gr F and

(u i , v i ) ∈ X × (-C), i = 1, ..., m -1. Suppose that the open cone Q satisfies Q +C ⊆ Q. Then, y 0 is a Q-efficient point
of F(X) if and only if one of the following separations holds T r(m)

F + (X) (y 0 , v 1 , ..., v m-1 ) ∩ (-Q) = / 0, (5.18) 
D m R F + (x 0 , y 0 , (u 1 , v 1 ), ..., (u m-1 , v m-1 ))(X) ∩ (-Q) = / 0. ( 5.19) 
Proof. It follows from Propositions 5.3.1 and 5.3.6.

Let F : X → 2 Y and G : X → 2 X . Consider

(P 1 ) Min Q F(x ) s.t. x ∈ X and x ∈ G(x).
This problem can be restated as the unconstrained problem: Min

Q (F • G)(x). Recall that (x 0 , y 0 ) is called a Q-efficient solution if y 0 ∈ (F • G)(x 0 ) and ((F • G)(X) -y 0 ) ∩ (-Q) = / 0.
Proposition 5.4.2. Assume for (P 1 ) that Im G ⊆ dom F, (x 0 , z 0 ) ∈ gr G, (z 0 , y 0 ) ∈ gr F, and

(u 1 , v 1 , w 1 ), ..., (u m-1 , v m-1 , w m-1 ) ∈ X × X × (-C).
Suppose that an open cone Q satisfies Q +C ⊆ Q and (x 0 , y 0 ) is a Q-efficient solution of (P 1 ).

92 §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems (i) If either F + has a m-th order radial semiderivative at (z 0 , y 0 ) with respect to (v 1 , w 1 ), ..., (v m-1 , w m-1 ) or (5.5) holds for F + and G, then

D m R F + (z 0 , y 0 , v 1 , w 1 , ..., v m-1 , w m-1 )[T r(m) G(X) (z 0 , v 1 , ..., v m-1 )] ∩ (-Q) = / 0.
(ii) If either F + has a m-th order radial semiderivative at (z 0 , y 0 ) with respect to (v 1 , w 1 ), ..., (v m-1 , w m-1 ) or (5.6) holds for F + and G, then

D m R F + (z 0 , y 0 , v 1 , w 1 , ..., v m-1 , w m-1 )[D m R G(x 0 , z 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(X)] ∩ (-Q) = / 0.
Proof. We prove (i). By Proposition 5.4.1, T r(m) 

(F•G) + (X) (y 0 , w 1 , ..., w m-1 ) ∩ (-Q) = / 0. Proposi
D m R F + (z 0 , y 0 , v 1 , w 1 , ..., v m-1 , w m-1 )[T r(m) G(X) (z 0 , v 1 , ..., v m-1 )] ⊆ T r(m) (F•G) + (X) (y 0 , w 1 , ..., w m-1 ).
From Propositions 5.4.2 and 2.2.9, we obtain immediately the following result for (P 1 ).

Theorem 5.4.3. Assume for (P 1 ) that Im G ⊆ dom F, (x 0 , z 0 ) ∈ gr G, (z 0 , y 0 ) ∈ gr F, and (u 1 , v 1 , w 1 ) , ..., (u m-1 , v m-1 , w m-1 ) ∈ X × X × (-C). Then, assertions (i) and (ii) in Proposition 5.4.2 hold in each of the following cases (i) (x 0 , y 0 ) is a weak efficient solution of (P 1 ) and Q = intC, (ii) (x 0 , y 0 ) is a strong efficient solution of (P 1 ) and Q = Y \ -C, (iii) (x 0 , y 0 ) is a positive-proper efficient solution of (P 1 ) and Q = {y : ϕ(y) > 0} for some functional ϕ ∈ C +i , (iv) (x 0 , y 0 ) is a Geoffrion-proper efficient solution of (P 1 ) and Q = C(ε) for ε > 0, (v) (x 0 , y 0 ) is a Henig-proper efficient solution of (P 1 ) and Q = K for some pointed open convex cone K dilating C, (vi) (x 0 , y 0 ) is a strong Henig-proper efficient solution of (P 1 ) and Q = intC ε (B) for ε satisfying 0 < ε < δ .

To compare with a result of Jahn and Khan in [START_REF] Jahn | Some calculus rules for contingent epiderivatives[END_REF], we recall the definition of contingent epiderivatives. 

F(x) = R -, if x ≤ 0, / 0, if x > 0.
Since G is single-valued we can try to make use of Proposition 5.2 of [START_REF] Jahn | Some calculus rules for contingent epiderivatives[END_REF]. By a direct computation we have T epiF (G(0), 0) = R 2 . So, the contingent epiderivative EDF(G(0), 0)(h) does not exist for any h ∈ X. Hence, the necessary condition in the mentioned Proposition 5.2 says nothing about the candidate point (0, 0) for weak efficiency. However, F + has the first order radial semiderivative at (G(0), 0) and T r( 1)

G(X) (G(0)) = R -. Furthermore, D m R F + (G(0), 0)[T r (1) 
G(X) (G(0))] = R, which meets -intC, and hence Theorem 5.4.3(i) above rejects this candidate.

Our sum rule can be applied directly to the following problem

(P 2 ) Min Q F(x) s.t. g(x) ≤ 0,
where X, Y are as for problem (P 1 ), F : X → 2 Y and g :

X → Y . Denote A := {x ∈ X : g(x) ≤ 0} (the feasible set). Define G : X → 2 Y by G(x) := {0} if x ∈ A and G(x) := {g(x)} otherwise.
Consider the following unconstrained set-valued optimization problem, for arbitrary s > 0,

(P 3 ) Min Q (F + sG)(x).
In the particular case, when Y = R and F is single-valued, (P 3 ) is used to approximate (P 2 ) in penalty methods (see [START_REF] Rockafellar | Variational Analysis[END_REF]). We will apply our calculus rules for radial sets to get the following necessary condition for a Q-minimal solution of (P 3 ). Proposition 5.4.5. Let y 0 ∈ F(x 0 ), x 0 ∈ Ω = dom F ∩ dom G, and (u 1 , v i,1 ), ..., (u m-1 , v i,m-1 ) ∈ X × (-C) for i = 1, 2. Suppose that an open cone Q satisfies Q + C ⊆ Q and (x 0 , y 0 ) is a Qefficient solution of (P 3 ). Then (i) if either F + (Ω) (or sG + (Ω)) has a m-th order proto-radial set at y 0 with respect to v 1,1 , ..., v 1,m-1 (at 0 with respect to v 2,1 , ..., v 2,m-1 , respectively) or (5.7) holds for F + and sG + , then

(T r(m) F + (Ω) (y 0 , v 1,1 , ..., v 1,m-1 ) + sT r(m) G + (Ω) (0, v 2,1 /s, ..., v 2,m-1 /s)) ∩ (-Q) = / 0.
(ii) if either F + (or sG + ) has a m-th order radial semiderivative at (x 0 , y 0 ) with respect to

(u 1 , v 1,1 ), ..., (u m-1 , v 1,m-1 ) ( at (x 0 , 0) with respect to (u 1 , v 2,1 ), ..., (u m-1 , v 2,m-1 ), respectively)
or (5.8) holds for F + and sG + , then, for any u ∈ X,

(D m R F + (x 0 , y 0 , u 1 , v 1,1 , ..., u m-1 , v 1,m-1 )(u)+sD m R G + (x 0 , 0, u 1 , v 2,1 /s, ..., u m-1 , v 2,m-1 /s)(u))∩ (-Q) = / 0.
94 §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems Proof. We prove (i). It follows from Propositions 5.2.12(i) and 5.2.17(i) that T r(m)

F + (Ω) (y 0 , v 1,1 , ..., v 1,m-1 ) + T r(m) sG + (Ω) (0, v 2,1 , ..., v 2,m-1 ) ⊆ T r(m) (F+sG) + (Ω) (y 0 , v 1,1 + v 2,1 , ..., v 1,m-1 + v 2,m-1 ). It is easy to see that T r(m) sG + (Ω) (0, v 2,1 , ..., v 2,m-1 ) = sT r(m) G + (Ω) (0, v 2,1 /s, ..., v 2,m-1 /s), T r(m) F + (Ω) (y 0 , v 1,1 , ..., v 1,m-1 ) + sT r(m) G + (Ω) (0, v 2,1 /s, ..., v 2,m-1 /s) ⊆ T r(m) (F+sG) + (Ω) (y 0 , v 1,1 + v 2,1 , ..., v 1,m-1 + v 2,m-1 ). By Proposition 5.4.1, one gets T r(m) (F+sG) + (Ω) (y 0 , v 1,1 + v 2,1 , ..., v 1,m-1 + v 2,m-1 ) ∩ (-Q) = / 0,
and hence the proof is complete.

From Propositions 5.4.5 and 2.2.9, we obtain immediately the following statement for (P 3 ).

Theorem 5.4.6. Let y 0 ∈ F(x 0 ), x 0 ∈ Ω = dom F ∩ dom G, and (u 1 , v i,1 ), ..., (u m-1 , v i,m-1 ) ∈ X × (-C) for i = 1, 2. Then, assertions (i) and (ii) in Proposition 5.4.5 hold in each of the followiing cases (i) (x 0 , y 0 ) is a weak efficient solution of (P 3 ) and Q = intC, (ii) (x 0 , y 0 ) is a strong efficient solution of (P 3 ) and Q = Y \ -C, (iii) (x 0 , y 0 ) is a positive-proper efficient solution of (P 3 ) and Q = {y : ϕ(y) > 0} for some functional ϕ ∈ C +i , (iv) (x 0 , y 0 ) is a Geoffrion-proper efficient solution of (P 3 ) and Q = C(ε) for ε > 0, (v) (x 0 , y 0 ) is a Henig-proper efficient solution of (P 3 ) and Q = K for some pointed open convex cone K dilating C, (vi) (x 0 , y 0 ) is a strong Henig-proper efficient solution of (P 3 ) and Q = intC ε (B) for ε satisfying 0 < ε < δ .

The next example illustrates a case, Theorem 5.4.6 is more advantageous than earlier existing results. §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems

Example 5.4.7. Let X = Y = R, C = R + , g(x) = x 4 -2x 3 , and F(x) = R -for all x ∈ X. Then, S = [0, 2] and G(x) = max{0, g(x)}. Furthermore, since T epiF (0, 0) = R 2 and T epiG (0, 0) = {(x, y) : y ≥ 0}, the contingent epiderivative EDF(0, 0)(h) does not exist for any h ∈ X and Proposition 5.1 of Jahn and Khan in [START_REF] Jahn | Some calculus rules for contingent epiderivatives[END_REF] cannot be applied. But we have proto-radial sets T r(1)

F + (X) (0) = R and T r(1) G + (X) (0) = R + . So, (T r(1) F + (X) (0) + sT r(1) G + (X) (0)) ∩ (-intC) = / 0.
By Theorem 5.4.6(i), (x 0 , y 0 ) is not a weak efficient solution of (P 3 ). This fact can be checked directly too. §6. Calculus rules and applications of Studniarski derivatives to sensitivity and implicit function theorems

This object is called, by several authors, the Studniarski derivative. In nonsmooth optimization, it was applied in obtaining optimality conditions, e.g., in [START_REF] Jimenez | Strict minimality conditions in nondifferentiable multiobjective programming[END_REF][START_REF] Jimenez | Higher-order optimality conditions for strict local minima[END_REF][START_REF] Li | Higher-order optimality conditions for strict minimality in set-valued optimization[END_REF][START_REF] Luu | Higher-order necessary and sufficient conditions for strict local Pareto minima in terms of Studniarski's derivatives[END_REF][START_REF] Rahmo | Higher-order conditions for strict local Pareto minima in terms of generalized lower and upper directional derivatives[END_REF][START_REF] Studniarski | Necessary and sufficient conditions for isolated local minima of nonsmooth functions[END_REF][START_REF] Sun | Weak lower Studniarski derivative in set-valued optimization[END_REF] and in discussing sensitivity analysis in [START_REF] Sun | Lower Studniarski derivative of the perturbation map in parametrized vector optimization[END_REF] by Sun and Li.

The idea of omitting "intermediate" orders in defining higher-order derivatives was continued in [START_REF] Anh | Higher-order radial derivatives and optimality conditions innonsmooth vector optimization[END_REF][START_REF] Diem | On higher-order sensitivity analysis in nonsmooth vector optimization[END_REF]. Namely, several notions of higher-order derivatives were developed, combining the idea of extending to higher-order the radial derivative proposed by Taa in [START_REF] Taa | Set-valued derivatives of multifunctions and optimality conditions[END_REF] (for the first-order) with this omitting. In that way, global (not local as with the above two derivatives) higher-order optimality conditions were established for nonconvex optimization. (The main technical change in the above definitions is replacing ∃t n → 0 + by ∃t n > 0.) The possibility for global consideration is good for optimality conditions, but for some other topics like sensitivity analysis or implicit function theorems, this may be inconvenient.

Thus, in this chapter, we return to the Studniarski derivative. Namely, we are concerned with two topics. First we develop calculus rules for this derivative, observing that these rules have not been studied, but a kind of derivatives is significant only if it enjoys enough calculus rules.

Later, we use the Studniarski derivative just to the two mentioned topics of sensitivity analysis and implicit function theorems to ensure that in this paper we can investigate what is difficult for the derivatives considered in [START_REF] Anh | Higher-order radial derivatives and optimality conditions innonsmooth vector optimization[END_REF]. The content of this chapter is also our results in [START_REF] Anh | Calculus and applications of Studniarski derivatives to sensitivity and implicit function theorems[END_REF].

The Studniarski derivative

Let X,Y be normed spaces, F : X → 2 Y , (x 0 , y 0 ) ∈ grF, u ∈ X, and m ≥ 1. Definition 6.2.1. The m-th order Studniarski derivative of F at (x 0 , y 0 ) is defined by

D m F(x 0 , y 0 )(x) := Limsup (t,x )→(0 + ,x) F(x 0 + tx ) -y 0 t m , or, equivalently, D m F(x 0 , y 0 )(x) = {v ∈ Y : ∃t n → 0 + , ∃(x n , v n ) → (x, v), ∀n, y 0 + t m n v n ∈ F(x 0 + t n x n )}.
The m-th order Studniarski derivative can be expressed as the Γ-limit as follows

v ∈ D m F(x 0 , y 0 )(x) ⇐⇒ inf Q∈N (v) inf W ∈N (x) inf t>0 sup 0<t <t sup x ∈W sup v ∈Q χ gr(L F,(x 0 ,y 0 ) ) (t , x , v ) = 1 ⇐⇒ Γ(N + (0) + , N (x) + , N (v) + ) χ gr(L F,(x 0 ,y 0 ) ) = 1, §6.
Calculus rules and applications of Studniarski derivatives to sensitivity and implicit function theorems

where L F,(x 0 ,y 0 ) : (0, +∞) × X → 2 Y is defined by L F,(x 0 ,y 0 ) (t , x ) := 1 t m (F(x 0 + t x )y 0 ).

If the upper limit in Definition 6.2.1 is a full limit, i.e., the upper limit coincides with the lower limit for all u, then the map F is called to have a m-th order proto-Studniarski derivative at (x 0 , y 0 ). (-e 1 + 2e n ), if x = 1 n , 0, otherwise and (x 0 , y 0 ) = (0, 0). We find the higher-order Studniarski derivatives of f at (x 0 , y 0 ). It follows from Definition 2.1 that v ∈ D m f (x 0 , y 0 )(u) means the existence of t k → 0 + , u k → u, and v k → v such that

y 0 + t m k v k ∈ f (x 0 + t k u k ). (6.1) 
For all u ∈ X, we can choose t k → 0 + , u k → u such that t k u k = 1/k. So, for all u ∈ X, {0} ⊆ D m f (x 0 , y 0 )(u).

§6. Calculus rules and applications of Studniarski derivatives to sensitivity and implicit function theorems

We now prove that, for each v ∈ Y \ {0}, v ∈ D m f (x 0 , y 0 )(u) for all u ∈ X. Suppose, on the contrary, there exist u ∈ U and v ∈ Y \ {0} such that v ∈ D m f (x 0 , y 0 )(u), i.e., there are t k → 0 + , u k → u, v k → v such that (6.1) holds. If t k u k = 1/k for infinitely many k ∈ N, we get a contradiction easily. Hence, assume that t k u k = 1/k. Then (6.1) Since (e k ) converges to 0 with respect to the weak topology, then e k , -c → 0. From (6.2), we get 4a 2 + ||c|| 2 = 0. If a = 0, then c = v( = / 0) since (-e 1 + 2e k )/(k.t m k ) → v. If a > 0, then 4a 2 + ||c|| 2 = 0. Therefore, we always have a contradiction. Thus, for all u ∈ X, D m f (x 0 , y 0 )(u) = {0}.

We now present a condition for a m-th order Studniarski derivative to be nonempty. Proposition 6.2.4. Let dimY < +∞, (x 0 , y 0 ) ∈ gr F, and x 0 ∈ int(dom F). Suppose that (i) F is lower semicontinuous at (x 0 , y 0 ), (ii) F is m-th order locally pseudo-Hölder calm at x 0 for y 0 .

Then, D m F(x 0 , y 0 )(x) = / 0 for all x ∈ X.

Proof. For x = 0, this is trivial because we always have 0 ∈ D m F(x 0 , y 0 )(0). By assumption (ii), there exist λ > 0, U 1 ∈ N (x 0 ) and V ∈ N (y 0 ) such that ∀x ∈ U 1 , (F(x ) ∩V ) ⊆ {y 0 } + λ ||xx 0 || m B Y .

By assumption (i), with V above, there exists U 2 ∈ N (x 0 ) such that ∀ x ∈ U 2 , V ∩ F( x) = / 0.

It follows from x 0 ∈ int(dom F) that there exists U 3 ∈ N (x 0 ) such that U 3 ∈ dom F. Setting U = U 1 ∩ U 2 ∩ U 3 , we get U ∈ N (x 0 ). Let an arbitrary x ∈ X \ {0} and t n → 0 + . Because

x 0 + t n x → x 0 , we get x 0 + t n x ∈ U for large n. Hence, there exists y n ∈ F(x 0 + t n x) ∩V such that t -m n ||y ny 0 || ≤ λ ||x|| m .

So, t -m n (y ny 0 ) is a bounded sequence and hence has a convergent subsequence. By Definition 6.2.1, the limit of this subsequence is an element of the set D m F(x 0 , y 0 )(x). §6. Calculus rules and applications of Studniarski derivatives to sensitivity and implicit function theorems Proposition 6.3.14. Suppose Y is finite dimensional and (x, z) ∈ gr(G • F) is such that C is compact and closed at (x, z).

(i) Assume that (6.17 If, additionally, (6.15) holds for every y ∈ C(x, z), then (6. [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF]) is an equality.

(ii) Assume that (6.18) holds for every y ∈ C(x, z). Then (ii) When S is compact and closed at (x, z), C is compact and closed at (x, z). Hence, the equality in Proposition 6.3.9(ii) holds. In view of (6.21), this relation implies the required equality.

For higher-order sum rules, we have Proposition 6.3.16. Let (x, z) ∈ gr(M + N) and y ∈ S(x, z). Proof. (i) Let w ∈ D m M(x, y)(u) + D m N(x, zy)(u), i.e., there exists y ∈ D m M(x, y)(u) such that y ∈ w -D m N(x, zy)(u). Hence, (6.22) ensures that y ∈ D m p S((x, z), y)(u, w). Therefore, there exist t n → 0 + and (u n , y n , w n ) → (u, y, w) such that y +t m n y n ∈ S(x +t n u n , z +t m n w n ). Setting y n = y + t m n y n , we have y n ∈ S(x + t n u n , z + t m n w n ). Consequently, w ∈ D m (M + y N)(x, z)(u). (ii) This follows from (i) and Proposition 6.3.15(i).

We can impose an additional condition to get equalities in the above sum rules as follows. Proposition 6.3.17. Let Y be finite dimensional and (x, z) ∈ gr(M + N). If, additionally, (6.22) holds for every y ∈ S(x, z), then (6.24) becomes an equality.

Conclusions

analysis, have been investigated. It turns out that Studniarski derivatives possesses many fundamental and comprehensive calculus rules. Although this construction is not comparable with objects in the dual approach like Mordukhovich's coderivatives (see books [START_REF] Mordukhovich | Variational analysis and generalized Differentiation[END_REF][START_REF] Mordukhovich | Variational analysis and generalized Differentiation[END_REF] and papers [START_REF] Ioffe | Metric regularity and subdifferential calculus[END_REF][START_REF] Ioffe | Subdifferentials of performance functions and calculus od set-valued mappings[END_REF][START_REF] Mordukhovich | Generalized differential calculus for nonsmooth ans set-valued mappings[END_REF]) in enjoying rich calculus, it may be better in dealing with higher-order properties.

We have paid attention also on relations between the established calculus rules and applications of some rules to get others. As such applications we have provided a direct employment of sum rules to establishing an explicit formula for the Studniarski derivative of the solution map to a parametrized inclusion in terms of Studniarski derivatives of the data. Furthermore, chain rules have been also used to get implicit multifunction theorems.

Further works 1) Studying on stability theories with respect to solution sets under perturbations of the data has been of great interest in variational convergence. Some papers presented the convergence of solution sets and efficient sets of perturbed problems in general convergence spaces, by using some kinds of convergence, such as adherence and persistence, see [START_REF] Dolecki | Convergence of minima in convergence spaces[END_REF][START_REF] Dolecki | Stability of efficient sets: continuity of mobile polarites[END_REF]. For vector problems, the notion of continuous convergence of the sequence of perturbed vector valued objective functions has usually been used, see [START_REF] Dolecki | Convergence of minima in convergence spaces[END_REF][START_REF] Dolecki | Stability of efficient sets: continuity of mobile polarites[END_REF][START_REF] Luc | Theory of vector optimization[END_REF][START_REF] Rockafellar | Theory of vector optimization[END_REF][START_REF] Wets | Convergence of convex functions, variational inequalities, and convex optimization[END_REF][START_REF] Zolezzi | On the stability analysis in mathematical programming[END_REF]. Extending this convergence, in [START_REF] Oppezzi | Existence and convergence of Pareto minima[END_REF][START_REF] Oppezzi | A convergence for vector valued functions[END_REF], by using Γ-limits, Oppezzi and Rossi introduced the notion of Γ-convergence for sequences of vector valued functions and investigated stability results for convex vector optimization problems. Some recent papers dealing with this convergence are [START_REF] Attouch | Variational convergence for functions and operators[END_REF][START_REF] Lalitha | Stability for properly quasi convex vector optimization problem[END_REF][START_REF] Lalitha | Stability and scalarization of weak efficient, efficient and Henig proper efficient sets using generalized quasiconvexities[END_REF][START_REF] López | Variational convergence for vector-valued functions and its applications to convex multiobjective optimization[END_REF][START_REF] Lucchetti | Stability for convex vector optimization problems[END_REF].

For possible developments of Chapter 3, we think that, by using Γ-limits, ones can get stability results to vector programming problem, where the objective function holds some conditions on convexity as the inequality constraints, while the equality constraints are linear.

A well established practice to solve a vector optimization problem is through an associated scalar optimization problem. There are various approaches, see [START_REF] Luc | Scalarization of vector optimization problems[END_REF][START_REF] Miglierina | Characterization of solutions of multiobjective optimization problem[END_REF][START_REF] Miglierina | Scalarization and stability in vector optimization[END_REF][START_REF] Qiu | Scalarization of Henig properly efcient points in locally convex spaces[END_REF], to scalarize a vector optimization and obtain a complete characterization for several types of solution sets of the vector optimization in terms of solution sets of the scalarized problem. Thus, we can establish the convergence of solution sets of scalarized problems by using Γ-limits.

2) For possible developments of Chapter 4, we think that, besides going deeper in relations for perturbation and weak perturbation maps in terms of variational sets for set-constrained problems, one can consider the most important case of optimization problems with constraints defined by inequalities and equalities. Furthermore, sensitivity analysis in terms of generalized derivatives other than contingent ones and variational sets is a promising research direction. In fact, first results of this kind have been obtained very recently by Diem et al. in [START_REF] Diem | On higher-order sensitivity analysis in nonsmooth vector optimization[END_REF], using the so-called contingent-radial derivatives. This generalized derivative is defined by a combination of the ideas of contingent derivatives and radial ones (for the latter derivative see recent works 

  If A , B are two families, then B is called finer than A (denoted by A ≤ B) if for each A ∈ A there exists B ∈ B such that B ⊆ A. We say that A and B are equivalent (A ≈ B) if A ≤ B and B ≤ A . A subfamily B of a non-degenerate family F is said a base of F (or B generates F ) if F ≤ B. We say that A and B mesh (denoted by A #B) if A ∩ B = / 0 for every A ∈ A and B ∈ B.

  often use the following notations cone A := {λ a : λ ≥ 0, a ∈ A}, cone + A := {λ a : λ > 0, a ∈ A}, §2. Preliminaries C * := {y * ∈ Y * : y * , c ≥ 0, ∀c ∈ C}, C +i := {y * ∈ Y * : y * , c > 0, ∀c ∈ C \ {0}}. A subset B of a cone C is called a base of C if and only if C = cone B and 0 ∈ cl B. For a set-valued map F : X → 2 Y , F + C is called the profile map of F with respect to C defined by (F + C)(x) := F(x) + C. The domain, graph, epigraph and hypograph of F are denoted by dom F, gr F, epi F, and hypo F, respectively, and defined by dom F := {x ∈ X : F(x) = / 0}, gr F := {(x, y) ∈ X ×Y : y ∈ F(x)}, epi F := gr (F +C), hypo F := gr (F -C). A subset M ⊆ X ×Y can be considered as a set-valued map M from X into Y , called a relation from X into Y . The image of a singleton {x} by Mx is denoted by Mx := {y ∈ Y : (x, y) ∈ M}, and of a subset S of X is denoted by MS := x∈S Mx. The preimage of a subset K of Y by M is denoted by M -1 K := {x : Mx ∩ K = / 0}.

(

  ii) Suppose that ≤ C is antisymmetric. If C ∩ -C is empty, we are done. Assume that y ∈ C ∩ -C, then 0 ≤ C y, y ≤ C 0. This implies y = 0. Conversely, let y 1 , y 2 ∈ Y such thaty 1 ≤ C y 2 and y 2 ≤ C y 1 . Then, y 2y 1 ∈ C ∩ -C. Since C is pointed, y 2 = y 1 . §2. Preliminaries (iii) Suppose that ≤ C is transitive. Let y 1 , y 2 ∈ C and λ ∈ (0, 1). Since C is cone, λ y 1 ∈ C and (1-λ )y 2 ∈ C. It follows from λ y 1 ∈ C that 0 ≤ C λ y 1 . Similarly, -(-(1-λ )y 2 ) = (1-λ )y 2 ∈ C means -(1λ )y 2 ≤ C 0. This implies -(1λ )y 2 ≤ C λ y 1 . Thus, λ y 1 + (1λ )y 2 ∈ C.

  Y is said to be a dilating cone (or a dilation) of C, or dilating C if it contains C \ {0}. Let B be, as before, a convex base of C. Setting δ := inf{||b|| : b ∈ B} > 0, for ε ∈ (0, δ ), we associate to C a pointed convex cone C ε (B) := cone(B + εB Y ). For ε > 0, we also associate to C another cone C(ε) := {y ∈ Y : d C (y) < εd -C (y)}.

  C-efficiency Min Q where Q is pointed open convex, and dilating C strong Henig-proper C-efficiency Min intC ε (B) ε satisfying 0 < ε < δ , where δ := inf{||b|| : b ∈ B} For relations of the above properness concepts and also other kinds of efficiency see, e.g., §2. Preliminaries [87, 88, 103, 104, 125]. Some of them are collected in the diagram below as examples, see [88]. Geoffrion-proper C-efficiency strong C-efficiency / / C-efficiency / / O O weak C-efficiency positive-proper C-efficiency / / Henig-proper C-efficiency C has a compact convex base strong Henig-proper C-efficiency O O

Proposition 3 . 3 . 2 .

 332 ([82]) A complete lattice L is completely distributive if and only if

Theorem 3 . 3 . 4 .

 334 ([82]) (The representation of limitoids) Let L be a completely distributive lattice and T be a limitoid in S. Then, for each f ∈ L S ,

  So, from condition (ii) in Definition 3.3.1 and the definition of carriers, we get T (g) = f (A). Since g ≤ f , it follows from condition (i) in Definition 3.3.1 that

  Thus, we have proved (3.7). (3.6) is obtained by Proposition 3.3.2. It follows from (3.6) that

  by Proposition 3.4.10). Proposition 3.4.14. Let E ≈ {x n } n , and G , H are filters.

Corollary 3 . 4 . 15 .

 3415 Let E ≈ {x n } n , and G , H are filters.

Example 3 . 4 .

 34 19. ([83]) Let F = G = H = N (0), where N (0) is a filter of neighborhoods of 0 on S = [0, 1], and g :

Proof.

  It follows from Theorem 3.3.5, Proposition 3.4.21 with E = N . Corollary 3.4.23. Let F be a strongly Fréchet filter on X, and G , H be countably based filters on Y, Z, respectively. Then, for every

  §3. The theory of Γ-limits Proof. It follows from Theorem 3.4.22.

  directional derivative D (+, * , * ) f (x 0 )(h) upper Dini derivative lower directional derivative D (-, * , * ) f (x 0 )(h) lower Dini derivative upper tangent derivative D (+, * ,+) f (x 0 )(h) upper Hadamard derivative lower tangent derivative D (-, * ,-) f (x 0 )(h) lower Hadamard derivative upper paratangent derivative D

Definition 4 . 2 . 1 .

 421 ([105, 106]) Let v 1 , ..., v m-1 ∈ Y .

Definition 4 . 2 . 13 .

 4213 Let (x 0 , y 0 ) ∈ grF, v 1 , • • • , v m-1 ∈ Y ,and m ∈ N. The m-th order singular variational set of type 1 (type 2, respectively) of F at (x 0 , y 0 ) is defined by

Definition 4 . 2 . 14 .

 4214 Let A ⊆ Y . (i) A is said to have the domination property if and only if A ⊆ Min C\{0} A +C. (ii) When intC = / 0, we say that A has the weak domination property with respect to C if and only if A ⊆ Min int C A + C, where C ⊆ intC ∪ {0} is a closed convex cone. 53 §4. Variational sets and applications to sensitivity analysis for vector optimization problems Proposition 4.2.15. Let C have a compact base.

2 . 2

 22 to set-valued optimization. Let U be a normed space of perturbation parameters, Y be an objective (normed) space ordered by a pointed closed convex cone C and F : U → 2 Y . One aims at finding the set of efficient points or the set of weak efficient points of F(u) for a given parameter value u. Hence, we define set-valued maps G and S from U to Y by, for u ∈ U, G(u) := Min C\{0} F(u), S(u) := Min int C F(u).

Remark 4 . 3 . 1 .

 431 (i) Suppose y 0 ∈ G(u 0 ) and F have the domination property around u 0 . Then

Theorem 4 . 3 . 2 .

 432 Let (u 0 , y 0 ) ∈ gr G and v 1 , • • • , v m-1 ∈ Y . Suppose F have the domination property around u 0 and C have a compact base.

Theorem 4 . 3 . 4 .

 434 Let (u 0 , y 0 ) ∈ gr S and v 1 , • • • , v m-1 ∈ Y . Suppose F have the weak domination property around u 0 with respect to C, where C ⊆ intC ∪ {0} is a closed convex cone having a compact base.

. 14 )

 14 As v 1 , ..., v m-1 ∈ -C,(5.14) implies that, for large n, y ny 0 ∈ -Q.(5.15)Because z n ∈ G(x n ) + D, there exist z n ∈ G(x n ) and d n ∈ D such that z n = z n + d n . (5.14) implies also that z n ∈ G(x n ) ∩ (-D) for large n, and then x n ∈ A. Because y n ∈ F(x n ) + C, there exist y n ∈ F(x n ) and c n ∈ C such that y n = y n + c n . Then, (5.15) implies that y ny 0 ∈ -Q for large n.

  and x ∈ S, either of the following separations holds T r(m)

Example 5 . 4 . 4 .

 544 For a multimap F between normed spaces X and Y , Y being partially ordered by a pointed convex cone C and a point (x, y) ∈ gr F, a single-valued map EDF(x, y) : X → Y satisfying epi(EDF(x, y)) = T epiF (x, y) ≡ T grF + (x, y) is said to be the contingent epiderivative of F at (x, y). §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems Let X = Y = R, C = R + , G(x) = {-|x|}, and F be defined by

Example 6 . 2 . 2 .

 622 Let X = Y = R and F n : X → 2 Y , n ∈ N, be defined by, for all x ∈ X, F n (x) = {y ∈ Y : y ≥ x n }. By calculating, we can find the m-th order Studniarski derivatives of F n at(x 0 , y 0 ) = (0, 0) as follows If m = n, then for all u ∈ X, D m F n (x 0 , y 0 )(u) = {y ∈ Y : y ≥ u n }. If m < n, then for all u ∈ X, D m F n (x 0 , y 0 )(u) = R + . If m > n, then D m F n (x 0 , y 0 )(u) = n = 2k -1 (k = 1, 2, ..) and u ≤ 0, R + , if n = 2k (k = 1, 2, ..) and u = 0, example, we compute the Studniarski derivative of a map into an infinite dimensional case. Example 6.2.3. Let X = R and Y = l 2 , the Hilbert space of the numerical sequences x = (x i ) i∈N with ∑ ∞ i=1 x 2 i being convergent. By (e i ) i∈N we denote standard unit basis of l 2 . Let f : X → Y be defined by f (x) :=

  ) holds for every y ∈ C(x, z). ThenD m (G • F)(x, z)(u) ⊆ y∈C(x,z) D 1 G(y, z)[D m F(x, y)(u)]. (6.19) 

  D m (G • F)(x, z)(u) ⊆ y∈C(x,z) D m G(y, z)[D 1 F(x, y)(u)].(6.20)If, additionally, (6.16) holds for every y ∈ C(x, z), then (6.20) is an equality.Now we apply the preceding chain rules to establish sum rules for M, N : X → 2 Y . For this purpose we use F :X → 2 X×Y and G : X ×Y → 2 Y defined in (6.14). For (x, z) ∈ X ×Y , set S(x, z) := M(x) ∩ (z -N(x)).Then, the resultant map C : X ×Y → 2 X×Y associated to these F and G is C(x, z) = {x} × S(x, z).Given ((x, z), y) ∈ gr S, the m-th order y-Studniarski derivative of M + N at (x, z) is defined as, for u ∈ X,D m (M + y N)(x, z)(u) := {w ∈ Y : ∃t n → 0 + , ∃(u n , y n , w n ) → (u, y, w), ∀n, y n ∈ S(x+t n u n , z+t m n w n )}.Observe thatD m (M + y N)(x, z)(u) = D m (G • y F)(x, z)(u). (6.21) One has a relationship between D m (M + y N)(x, z)(u) and D m (M + N)(x, z)(u) as noted in the next statement. Proposition 6.3.15. Let (x, z) ∈ gr(M + N) and y ∈ S(x, z).

(

  i) D m (M + y N)(x, z)(u) ⊆ D m (M + N)(x, z)(u).

(

  ii) If S is compact and closed at (x, z), then y∈S(x,z)D m (M + y N)(x, z)(u) = D m (M + N)(x, z)(u).110 §6. Calculus rules and applications of Studniarski derivatives to sensitivity and implicit function theorems Proof. (i) This is an immediate consequence of the definitions.

( i )

 i Suppose, for all (u, v) ∈ X ×Y , D m M(x, y)(u) ∩ [v -D m N(x, zy)(u)] ⊆ D m p S((x, z), y)(u, v). (6.22) Then D m M(x, y)(u) + D m N(x, zy)(u) ⊆ D m (M + y N)(x, z)(u).

(

  ii) If(6.22) holds for all y ∈ S(x, z), then y∈S(x,z)(D m M(x, y)(u) + D m N(x, zy)(u)) ⊆ D m (M + N)(x, z)(u).

( i )

 i Suppose, for y ∈ S(x, z), D m p S((x, z), y))(0, 0) = {0}. (6.23) Then D m (M + y N)(x, z)(u) ⊆ D m M(x, y)(u) + D m N(x, zy)(u).

(

  ii) If S is compact and closed at (x, z) and (6.23) holds for every y ∈ S(x, z), then one hasD m (M + N)(x, z)(u) ⊆ y∈S(x,z) (D m M(x, y)(u) + D m N(x, zy)(u)).(6.24)
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  a 0 is a Henig-proper efficient point of A with respect to C if and only if a 0 ∈ Min Q A with Q being pointed open convex, and dilating C.

	(vi) Supposing C has a convex base B, a 0 is a strong Henig-proper efficient point of A with
	respect to C if and only if a 0

  respectively). §3. The theory of Γ-limits Proof. By the similarity, we prove only the first equality. A point (x,t) ∈ X × R belongs to epi( f -) if and only if f -(x) ≤ t. By the defininition of f -, this happens if and only if for every

	ε > 0, and for every U ∈ N τ (x) we have
		liminf F inf y∈U	f i (y) < t + ε,
	and this is equivalent to say that for every ε > 0,U ∈ N τ (x), F ∈ F there exists i ∈ F such that
	inf y∈U	f i (y) < t + ε. Since this inequality is equivalent to
		epi

  and x ∈ cl A, there exists a sequence {x n } n on A such that strongly Fréchet if for each a decreasing sequence {A n } n of subsets of X and x ∈ n cl(A n ), there exists a sequence {x n } n such that x n ∈ A n and x = lim

	x = lim n→+∞	x n .
	(ii)	

=⇒ productively Fréchet space =⇒ strongly Fréchet space =⇒ Fréchet space.

  

	, Jordan and Mynard showed that
	first countable filter =⇒ productively Fréchet filter =⇒ strongly Fréchet filter =⇒ Fréchet filter,
	i.e.,
	first countable space Proposition 3.4.3. ([100]) A filter F is productively Fréchet if and only if F × G is a Fréchet
	filter (equivalently a strongly Fréchet filter) for every strongly Fréchet filter G .
	Proof. It follows from Theorem 9 in [100].
	Remark 3.4.4. ([53]) (i) For every semi-filter F , we have

  The theory of Γ-limits These cones, also called the contingent cone, the adjacent cone, the paratangent cone, and the Clarke cone, respectively, were thoroughly studied in[11-13, 17, 50, 60, 61, 77-79, 161] in

	detail.			
	These results above give us a unified way to denote cones as follows
	Unifying terminology	Notation	Traditional terminology
	upper paratangent cone T S (+,+,+)	(x 0 )	paratangent cone
	upper tangent cone	T S (+, * ,+)	(x 0 )	contingent cone
	lower tangent cone	T S (-, * ,+)	(x 0 )	adjacent cone
	lower paratangent cone T		

(-,-,+

) S (x 0 )

Clarke cone

The tangent cones above play an important role in the study of various mathematical problems, including optimization, viability theory, and control theory. Moreover, once one has a concept of tangent cone, one can construct a corresponding derivative of a set-valued map. Some of them are presented in the table below as examples, see book

[START_REF] Aubin | Set-valued analysis[END_REF] 

of Aubin and Frankowska.

  say nothing about (x 0 , y 0 ) being strong Henig-proper efficient or not. By virtue of Remark 3.3 in [106] and Proposition 2.2 in [106], we can see that Theorems 4.1, 4.2, 5.1, and 5.2 of Li and Chen in [115], Theorem 3.1, Proposition 3.1 of Gong et al. in

  becomes v k = 1 k.t m k (-e 1 + 2e k ). If 1/(k.t m k ) → +∞,we get a contradiction to the convergence of the sequence (-e 1 +2e k )/(k.t m k ). Suppose 1/(k.t m k ) → a ≥ 0. As e 1 /(k.t m k ) → ae 1 , the sequence e k /(k.t m k ) converges to some c, i.e.,

				||	2 k k.t m	e k -c|| 2 → 0,	
	that is,							
	||	2 k.t m k	e k -c|| 2 = (	2 k.t m k	) 2 + ||c|| 2 + 2	2 k k.t m	e k , -c → 0.	(6.2)

Let E be a set, then cl E denotes the closure of E.

If (X, τ) is a topological space, then N τ (x) stands for the set of all neighborhoods of x.

Clarke, 41 lower Dini, 41 lower directional, 41 lower Hadamard, 41 lower paratangent, 41 lower tangent, 41 paratangent, 41 upper Dini, 41 upper directional, 40 upper Hadamard, 41 upper paratangent, 41 upper tangent, 41 higher-order contingent, 50 lower radial, 73 proto-Studniarski, 99 pseudo-Studniarski, 107 strict Studniarski, 101 Studniarski, 98 upper radial, 73 Domination property of a map, 56 weak, 56 Domination property of a set, 53 weak, 53 Efficient point Q , 10 positive-proper, 10 strong, 9 weak, 9
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§3. The theory of Γ-limits

The support of Γ-limit in Definition 3.1.1 is indicated with (A α 1 1 , ..., A α n n ). In [START_REF] Greco | Decomposizioni di semifiltri e Γ-limiti sequenziali in reticoli completamente distributivi[END_REF], Greco proved recursively that

where A × B indicates the family generated by {A × B : A ∈ A , B ∈ B}. Some special cases are

Then we get the following property

, ..., A -α n §4. Variational sets and applications to sensitivity analysis for vector optimization problems so y ∈ V m (F, u 0 , y 0 , v 1 , • • • , v m-1 ). Suppose y ∈ Min int C V m (F, u 0 , y 0 , v 1 , • • • , v m-1 ), i.e., there exists some y in V m (F, u 0 , y 0 , v 1 , ..., v m-1 ) such that yy ∈ intC. For the above sequences t n and u n , there exists y n → y such that y 0 + t n v 1 + • • • + t m n y n ∈ F(u n ), and y ny n ∈ intC for large n. Consequently,

i.e., y 0 + t n v 1 + • • • + t m n y n ∈ Min int C F(u n ) = S(u n ), which contradicts to (4.6).

Unfortunately, the similar result is not true for W m , as indicated by the next example.

Example 4.3.8.

Then,

)) ∪ {(x, y) :

The map F has a proto-variational set at (0, (-1, 0)) and W 1 (F, 0, (-1, 0)) = (R + × R) ∪ (R -× {0}). However, we have

W 1 (S, 0, (-1, 0)) = (R -× {0}) ∪ {(x, y) ∈ Y : y ≤ -x, x ≥ 0}, and hence W 1 (S, 0, (-1, 0)) ⊆ Min int C W 1 (F, 0, (-1, 0)).

Can we get a similar result when "G"and "Min C\{0} " replacing "S"and "Min int C " in Proposition 4.3.7? The following example gives a negative answer.

Example 4.3.9.

61 §4. Variational sets and applications to sensitivity analysis for vector optimization problems Then, G(u) ≡ Min C\{0} F(u) is defined by G(0) = {(x, y) ∈ Y : y = -x, x ≤ 0} and G(u) = / 0 for any u = 0. We see that F has the following proto-variational set V 1 (F, 0, (0, 0)) = {(x, y) ∈ Y : x ≥ 0, y < -x} ∪ {(x, y) ∈ Y : y = -x}.

Since Min C\{0} V 1 (F, 0, (0, 0)) = {(x, y) ∈ Y : y = -x, x < 0} and V 1 (G, 0, (0, 0)) = {(x, y) ∈ Y :

Theorem 4.3.10. Let (u 0 , y 0 ) ∈ gr S, v 1 , • • • , v m-1 ∈ Y , and C be a closed convex cone contained in intC ∪ {0} and have a compact base. Suppose the following conditions be satisfied:

(i) either of the following holds

) has the weak domination property with respect to C,

F has the weak domination property around u 0 with respect to C, (iii) F has a proto-variational set of order m of type 1 at (u 0 , y 0 ).

Proof. Obviously, by Proposition 4.3.7, we need to prove only that

Propositions 4.2.12, 4.2.17 and Remark 4.3.1(iii) together imply that

Sensitivity analysis for vector optimization problems

In this section, we consider the following two constrained vector optimization problems, where both the objective map and the constraint set depend on a perturbation parameter, Min C\{0} F(x, u), subject to x ∈ X(u), (4.7) 62 §4. Variational sets and applications to sensitivity analysis for vector optimization problems Min int C F(x, u), subject to x ∈ X(u). (4.8)

Here, as before, U,W,Y are normed spaces, C is a pointed closed convex ordering cone in Y , F is a set-valued objective map from W ×U to Y , and X is a set-valued map from U to W . We define a set-valued map H from U to Y by H(u) := F(X(u), u) = {y ∈ Y : y ∈ F(x, u), x ∈ X(u)}.

So, H(u) is the parameterized feasible set in the objective space. In problems (4.7) and (4. We need the following new definition.

Definition 4.4.1. Let W,U,Y be normed spaces, F : W × U → 2 Y , ((x 0 , u 0 ), y 0 ) ∈ gr F, x ∈ W , and

(i) The m-th order upper (lower, respectively) variation of F at ((x 0 , u 0 ), y 0 ) with respect to

x is

(ii) F is said to have a m-th order proto variation of F at ((x 0 , u 0 ), y 0 ) if and only if, for all x,

We recall that a map M : X → 2 Y is said to be calm around x 0 ∈ dom M if and only if there exist a neighborhood V of x 0 and L > 0 such that ∀x ∈ V ,

We now investigate connections of a proto variation of F and a variational set of X to the corresponding variational set of H. §4. Variational sets and applications to sensitivity analysis for vector optimization problems

We may assume that a n :=

For

)} is bounded and

The following four examples ensure the essentialness of each assumption of Proposition

Then,

. Variational sets and applications to sensitivity analysis for vector optimization problems and

The map X is clearly calm around (u 0 , y 0 ) and we can obtain by direct calculations that

Thus, since X(u 0 , y 0 ) = {0, 1} = {x 0 }, we have

Example 4.4.4. (the calmness around (u 0 , y 0 ) cannot be dropped)

Then,

and H(u) is as in Example 4.4.3 with only "y ≤ u(u + 1)" replaced by the strict inequality.

Hence,

. Variational sets and applications to sensitivity analysis for vector optimization problems

Consequently, because X is not calm around (u 0 , y 0 ), we really have

and

To see the cause, let

Example 4.4.6. (W needs be finite dimensional)

Let U = Y = R, and W = l 1 , the space of all real sequences x = (x i ) i∈N with

. Variational sets and applications to sensitivity analysis for vector optimization problems F(x, u) = {||x||(||x|| -1)}, u 0 = 0, x 0 = 0 ∈ X(u 0 ), and y 0 = 0 ∈ F(x 0 , u 0 ). Then,

and

Hence, X is calm around (u 0 , y 0 ). We can compute directly that

Therefore,

Finally, invoking to Proposition 4.4.2 and results of Section 4.3, we easily establish relations between the set of efficient points and the set of weak efficient points of the mentioned variational sets stated in the following theorems.

Theorem 4.4.7. Let (u 0 , y 0 ) ∈ gr G, x 0 ∈ X(u 0 ), y 0 ∈ F(x 0 , u 0 ), W be finite dimensional, and C have a compact base. Suppose that (i) H has the domination property around u 0 , (ii) either of the following two conditions holds:

) has the domination property, [START_REF] Tanino | Sensitivity analysis in multiobjective optimization[END_REF] dealing with this topic for a map F in a set-constrained smooth singlevalued problem. That paper was limited to first-order results in terms of gradients of F. The present section is the first attempt of higher-order considerations of F for a set-constrained nonsmooth multivalued problem. The extension has been performed in several aspects. Furthermore, we have extended successfully almost directly Theorem 4.1 of Tanino in [START_REF] Tanino | Sensitivity analysis in multiobjective optimization[END_REF]. However, a drawback here is that the results are technically complicated. We hope that, excluding inevitable complexity, e.g., with higher-order derivatives (at least because of long expressions) and a high level of nonsmoothness, improvements can be obtained in future. In this section, we restrict ourselves to making sure that the relatively complicated assumptions imposed in the results cannot be avoided by showing (in examples) their essentialness.

Chapter 5

Radial sets, radial derivatives and applications to optimality conditions for vector optimization problems

Introduction

On optimality conditions for nonsmooth problems, to meet the increasing diversity of practical situations, a broad spectrum of generalized derivatives has been developed to replace the Fréchet and Gâteaux derivatives. Each of them is suitable for several models, and none is universal. Note that the wide range of methods in nonsmooth optimization can be roughly separated into the primal and the dual space approaches. Almost notions of generalized derivatives in the primal space approach are based on corresponding tangency concepts and hence carry only local information. In other words, such derivatives are local linear approximations of a considered map.

Until now, only few concepts of such derivatives have been extended to orders greater than two, which are naturally understood to be inevitable for higher-order optimality conditions, such as contingent, adjacent and Clarke derivatives (see [START_REF] Chen | Optimality conditions for set-valued optimization problems[END_REF][START_REF] Durea | Global and local optimality conditions in set-valued optimization problems[END_REF][START_REF] Flores-Bazan | Strict efficiency in set-valued optimization[END_REF][START_REF] Gong | Optimality conditions for proper efficient solutions of vector setvalued optimization[END_REF][START_REF] Guerraggio | On the notion of proper efficiency in vector optimization[END_REF][START_REF] Jahn | Second-order optimality conditions in set optimization[END_REF][START_REF] Jimenez | Higher-order optimality conditions for strict local minima[END_REF][START_REF] Khanh | Proper solutions of vector optimization problems[END_REF][START_REF] Li | Higher-order optimality conditions for Henig efficient solutions in set-valued optimization[END_REF][START_REF] Li | Higher-order optimality conditions for set-valued optimization[END_REF][START_REF] Liu | Proper efficiency for set-valued vector optimization problems and vector variational inequalities[END_REF][START_REF] Makarov | Unified representation of proper efficiency by means of dilating cones[END_REF], variational sets (see [START_REF] Anh | Variational sets : calculus and applications to nonsmooth vector optimization[END_REF][START_REF] Khanh | Variational sets of multivalued mappings and a unified study of optimality conditions[END_REF][START_REF] Khanh | Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization[END_REF]), etc. (The derivatives constructed in the dual space approach are hardly extended to orders greater than two.) The radial derivative, introduced by

Taa in [START_REF] Taa | Set-valued derivatives of multifunctions and optimality conditions[END_REF], is in the first approach, but encompasses the idea of a conical hull, and hence contains global information of a map as its conical hull, and is closed and can be used to obtain optimality conditions for global solutions without convexity assumptions.

We recall that, for a subset S of a normed space X and x 0 ∈ cl S, the radial cone of S at x 0 is optimization problems

Radial sets and radial derivatives

Definitions of higher-order radial sets and corresponding derivatives are introduced in this section, followed by their properties and basic calculus rules like those for a sum or composition of mappings.

Definitions and properties

Definition 5.2.1. Let X be a normed space, x 0 ∈ S ⊆ X, and u 1 , ..., u m-1 ∈ X with m ≥ 1.

(i) The m-th order upper radial set of S at x 0 with respect to u 1 , ..., u m-1 is defined as

(ii) The m-th order lower radial set of S at x 0 with respect to

(i) The m-th order upper radial derivative of F at (x 0 , y 0 ) with respect to (u 1 , v 1 ) , ...,

).

(ii) The m-th order lower radial derivative of F at (x 0 , y 0 ) with respect to (u 1 , v 1 ), ...,

We easily obtain the following formulae, for x ∈ X,

or F 2 has a m-th order radial semiderivative at (x 0 , y 1 ) with respect to

Then, there exist t n > 0 and u 1 n → u 1 such that

Suppose that F 2 (Ω) has a m-th order proto-radial set at y 2 . Then, with t n above, there exists

Thus,

Hence,

For v 2 , suppose that F 2 has a m-th order radial semiderivative at (x 0 , y 2 ), with t n , u n above, there

Thus,

Hence, there exist t n > 0 and v n → v such that

Because F has a m-th order radial semiderivative of F at (y 0 , z 0 ) with respect to (v 1 , w 1 ), ...,

), there exists z n → z such that

). (ii) This follows from (i) and Remark 5.2.3(i). These rules will be applied in the sequel since they are simple (at least their formulations are). However, being a proto-radial set or radial semiderivative is a restrictive condition. Hence, we develop now another sum rule and another chain rule for possible better applications. For a sum M + N of two multimaps M, N : X → 2 Y , we express it as a composition as follows. Define G : X → 2 X×Y and F : X ×Y → 2 Y by, for the identity map I on X, G = I × M and F(x, y) = y + N(x).

(5.4)

Then, clearly M + N = F • G. So, we will apply a chain rule. The chain rule given in Proposition 5.2.14, though simple and relatively direct, is not suitable for dealing with this composition F • G, since the intermediate space (Y there and X ×Y here) is little involved. We develop another chain rule as follows. Let general multimaps G : X → 2 Y and F : Y → 2 Z be considered, where X,Y, Z be normed spaces. The so-called resultant multimap C :

We can obtain a general chain rule suitable for dealing with a sum expressed as a composition as above, and without assumption about radial semiderivatives, as follows.

Proposition 5.2.15.

) optimization problems

Proof. By the similarity, we prove only (ii

. This means the existence of t n > 0 and (u n , y n , w n ) → (u, y, w) such that

From the definition of H, we get

The following example shows that assumptions (5.7) and (5.8) cannot be dispensed and are not difficult to check.

Example 5.2.18. Let X = Y = R and M, N : X → 2 Y be given by

Then,

Choose the base B = {1}. Then, δ = 1 and C ε (B) = R + for all ε ∈ (0, δ ). Let (x 0 , y 0 ) = (0, 0) and z 0 = 0. It is easy to see that (x 0 , y 0 ) is a strong Henig-proper efficient solution. For any

and hence T r(1) ), optimality conditions (obtained by separating sets as usual) in terms of these variational sets are strong. So, we will compare our results with those using variational sets. However, in general, these sets are incomparable with radial sets as follows Example 5.3.4. Suppose that X = R, Y = R 2 , (x 0 , y 0 ) = (0, (0, 0)), and F : X → 2 Y be defined by

Hence, the latter may be more advantageous in cases as ensured by the following.

, G and F be §5. Radial sets, radial derivatives and applications to global optimality conditions for vector optimization problems (ii) (x 0 , y 0 ) is a strong efficient solution of (P) and Q = Y \ -C, (iii) (x 0 , y 0 ) is a positive-proper efficient solution of (P) and Q = {y : ϕ(y) > 0} for some functional ϕ ∈ C +i , (iv) (x 0 , y 0 ) is a Geoffrion-proper efficient solution of (P) and Q = C(ε) for ε > 0, (v) (x 0 , y 0 ) is a Henig-proper efficient solution of (P) and Q = K for some pointed open convex cone K dilating C, (vi) (x 0 , y 0 ) is a strong Henig-proper efficient solution of (P) and Q = intC ε (B) for ε satisfying 0 < ε < δ .

In the following example, Theorems 5.3.7(vi) works, while several existing results do not.

Choose the base B = {1}. Then, δ = 1 and C ε (B) = R + for all ε ∈ (0, δ ). Let (x 0 , y 0 ) = (0, 0) and z 0 = 0. It is easy to see that A = N ∪ {0}. Then, T r

(F,G) + (A) (y 0 , z 0 ) = R + × R + . It follows from Theorem 5.3.7(vi) that (x 0 , y 0 ) is a strong Henig-proper efficient solution. It is easy to see that domF = N ∪ {0} is not convex and F is not pseudoconvex at (x 0 , y 0 ). So, Theorem 3.6 of Khanh and Tuan in [START_REF] Khanh | Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization[END_REF], Theorems 5.3, 5.4 of Li and Chen in [START_REF] Li | Higher-order optimality conditions for Henig efficient solutions in set-valued optimization[END_REF], and Theorem 2 of Liu and

Gong in [START_REF] Liu | Proper efficiency for set-valued vector optimization problems and vector variational inequalities[END_REF] cannot be applied.

Moreover, it is easy to see that (x 0 , y 0 ) is also a weak efficient solution. But, Theorem 8 of Jahn and Rauh in [START_REF] Jahn | Contingent epiderivatives and set-valued optimization[END_REF], Theorem 6 of Chen and Jahn in [START_REF] Chen | Optimality conditions for set-valued optimization problems[END_REF] and Theorem 3.3 of Khanh and Tuan in [START_REF] Khanh | Variational sets of multivalued mappings and a unified study of optimality conditions[END_REF] cannot be applied.

A natural question now arises: can we replace D by D(z 0 ) in the necessary condition given by Theorem 5.3.2 to obtain a smaller gap with the sufficient one expressed by Theorem 5.3.7? Unfortunately, a negative answer is supplied by the following example.

Example 5.3.9. Suppose that

are given by

Chapter 6

Calculus rules and applications of Studniarski derivatives to sensitivity and implicit function theorems

Introduction

In set-valued analysis, one of the most popular and useful higher-order derivatives is the contingent derivative introduced in [START_REF] Aubin | Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions[END_REF] by Aubin in 1981. However, the set D m F(x 0 , y 0 , u 1 , v 1 , ..., u m-1 , v m-1 )(u) (its definition is given in Remark 4.2.7 in Chapter 4) is non-empty only if

). In applications, even the need of having these m -1 points may lead to inconvenience. In 1986, the following modification was proposed in [START_REF] Studniarski | Necessary and sufficient conditions for isolated local minima of nonsmooth functions[END_REF] by Studniarski, without the "intermediate" orders in definition and hence without the need of these m -1 points,

We can write the following two equivalent formulations as follows

and, by setting

Calculus rules and applications of Studniarski derivatives to sensitivity and implicit function theorems Example 6.2.5. (assumption (ii) is essential) Let F : R → 2 R be defined by

Direct computations yield that D m F(0, 0)(1) = / 0 for all m ≥ 1. Here, F is lower semicontinuous at (0, 0), but the m-th order locally pseudo-Hölder calmness fails.

Example 6.2.6. (assumption (i) cannot be dropped) Let F : R → 2 R be defined by

Then, assumption (ii) is satisfied at (0, 1). Direct calculations give that D m F(0, 1)(1) = / 0 for all m ≥ 1. The cause is that F is not lower semicontinuous at (0, 1), since F is mth-order locally pseudo-Holder calm at 0 for 1. Indeed, pick

Therefore, F(x) ∩V = / 0 for all x ∈ U \ {0}, and

A map F is said to have a strict Studniarski derivative at (x 0 , y 0 ) ∈ grF if

Proposition 6.2.7. Let F : X → 2 Y , (x 0 , y 0 ) ∈ gr F, and F be a convex map and have a strict Studniarski derivative at (x 0 , y 0 ). Then, D m F(x 0 , y 0 ) is convex.

Proof. Let x 1 , x 2 ∈ X and y i ∈ D m F(x 0 , y 0 )(x i ), i = 1, 2, i.e., for any t n → 0 + , there exists
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The next statement is a relation between the Studniarski derivative of F and that of the profile map. Proposition 6.2.8. Let F : X → 2 Y , and (x 0 , y 0 ) ∈ gr F. Then, for all x ∈ X,

If dimY < +∞ and F is m-th order locally Hölder calm at x 0 for y 0 , then (6.3) becomes an equality.

Proof. Let w ∈ D m F(x 0 , y 0 )(x) + C, i.e., there exists v ∈ D m F(x 0 , y 0 )(x) and c ∈ C such that w = v + c. We then have sequences t n → 0 + , x n → x, and v n → v such that, for all n,

Let w ∈ D m (F +C)(x 0 , y 0 )(x), i.e., there exist t n → 0 + , x n → x, w n → w such that y 0 +t m n w n ∈ F(x 0 + t n x n ) +C. Then, there exist y n ∈ F(x 0 + t n x n ) and c n ∈ C satisfying

Because F is m-th order locally Hölder calm at x 0 for y 0 , there exists λ > 0 such that, for large n,

Since dimY < +∞, t -m n (y ny 0 ) (using a subsequence, if necessary) converges to some v and v ∈ D m F(x 0 , y 0 )(x). From (6.4), the sequence c n /t m n converges to some c ∈ C and w = v + c. Thus w ∈ D m F(x 0 , y 0 )(x) +C.
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Calculus rules

and u ∈ X. Suppose either F 1 or F 2 has a m-th order proto-Studniarski derivative at (x 0 , y 1 ) or (x 0 , y 2 ), respectively. Then

If, additionally, dimY < +∞ and either F 1 or F 2 is m-th order locally Hölder calm at x 0 for y 1 or y 2 , respectively, then (6.5) becomes an equality.

Proof. Consider v i ∈ D m F i (x 0 , y i )(u). For v 1 , there exist t n → 0 + , u n → u, and v 1 n → v 1 such that, for all n, y 1 +t m n v 1 n ∈ F 1 (x 0 +t n u n ). For v 2 , supposing that F 2 has the m-th order proto-Studniarski derivative at (x 0 , y 2 ), with t n , u n above, there exists

, there exist t n → 0 + , u n → u, and v n → v such that

This means that there exist y i n ∈ F i (x 0 + t n u n ), i = 1, 2, such that

Suppose F 1 is m-th order locally Hölder calm at x 0 for y 1 , i.e., there exists L > 0 such that, for large n,

Because dimY < +∞, t -m n (y 1 ny 1 ) (using a subsequence, if necessary) converges to some v 1 and hence v 1 ∈ D m F 1 (x 0 , y 1 )(u). From (6.6), the sequence t -m n (y 2 ny 2 ) also converges to some

and

Im F ⊆ dom G.

(i) Suppose G has a m-th order proto-Studniarski derivative at (y 0 , z 0 ). Then, for all u ∈ X,

(6.7)

103 §6. Calculus rules and applications of Studniarski derivatives to sensitivity and implicit function theorems If, additionally, dimY < +∞ and F is locally Lipschitz calm at x 0 for y 0 , then (6.7) becomes an equality.

(ii) Suppose G has a first-order proto-Studniarski derivative at (y 0 , z 0 ). Then, for all u ∈ X,

If, additionally, dimY < +∞ and F is m-th order locally Hölder calm at x 0 for y 0 , then (6.8) becomes an equality.

Proof. By the similarity, we prove only (i). Let w ∈ D m G(y 0 , z 0 )(D 1 F(x 0 , y 0 )(u)), i.e., there

, there exists t n → 0 + , u n → u, and w n → w such that z 0 + t m n w n ∈ G(F(x 0 + t n u n )). Then, there exists y n ∈ F(x 0 + t n u n ) such that z 0 + t m n w n ∈ G(y n ). Due to the local Lipschitz calmness of F and the finiteness of dimY , the sequence v n := t -1 n (y ny 0 ), or a subsequence, converges to some v and v ∈ D 1 F 1 (x 0 , y 0 )(u). This implies that z 0 + t m n w n ∈ G(y 0 + t n v n ) and hence w ∈ D m G(y 0 , z 0 )(v).

We next discuss calculus rules for the following operations. Definition 6.3.3. (i) For F 1 , F 2 : X → 2 R k , R k being an Euclidean space, the product of F 1 and F 2 is the set-valued map

Suppose either F 1 or F 2 has a m-th order proto-Studniarski derivative at (x 0 , y 1 ) or (x 0 , y 2 ), respectively. Then, for all u ∈ X,

(6.9)

If, additionally, F i are m-th order locally Hölder calm at x 0 for y i , i = 1, 2, then (6.9) becomes an equality.

Proof. Consider v i ∈ D m F i (x 0 , y i )(u). There exist t n → 0 + , u n → u, and

Supposing F 2 has the m-th order proto-Studniarski derivative at (x 0 , y 2 ), 104 §6. Calculus rules and applications of Studniarski derivatives to sensitivity and implicit function theorems with t n , u n above, there exists v 2 n → v 2 such that y 2 + t m n v 2 n ∈ F 2 (x 0 + t n u n ). We have

and

This implies that

, there exist t n → 0 + , u n → u, and v n → v such that

We have

This implies that

Because F i is m-th order locally Hölder calm at x 0 for y i , there exists L i > 0 such that, for large n,

This implies that there are two subsequence (the subscripts of the second one are taken among those of the first), denoted by the same notations t -m n (y i ny i ), converging to some v i ∈ R k and v i ∈ D m F i (x 0 , y i )(u), i = 1, 2. Thus, from (6.10), v ∈ D m F 1 (x 0 , y 1 )(u), y 2 + D m F 2 (x 0 , y 2 )(u), y 1 .

and y i ∈ F i (x 0 ) (i=1,2) with y 2 = 0. Suppose either F 1 or F 2 has a m-th order proto-Studniarski derivative at (x 0 , y 1 ) or (x 0 , y 2 ), respectively. Then, for all u ∈ X,

If, in addition, F 2 is m-th order locally Hölder calm at x 0 for y 2 , then (6.11) becomes an equality.

Proof. Consider v i ∈ D m F i (x 0 , y i )(u). There exist t n → 0 + , u n → u, and

Supposing F 2 has the m-th order proto-Studniarski derivative at (x 0 , y 2 ), with t n , u n above, there exists

, and hence

Because F 2 is m-th order locally Hölder calm at x 0 for y 2 , (y 2 ny 2 )/t m n converges to some v 2 with v 2 ∈ D m F 2 (x 0 , y 2 )(u). From (6.12), the sequence (y 1 ny 1 )/t m n also converges to

If, in addition, F is m-th order locally Hölder calm at x 0 for y 0 , then (6.13) becomes an equality.

In the rest of this section, we discuss other sum and chain rules, which may be more useful in some cases (see, e.g., Section 6.4). Let X,Y, Z be normed spaces. To investigate the sum M + N of multifunctions M, N : X → 2 Y , we express M + N as a composition as follows. Define F : X → 2 X×Y and G : X ×Y → 2 Y by, for I being the identity map on X and (x, y) ∈ X ×Y ,

First, we develop a chain rule. Let general multimaps F : X → 2 Y and G : Y → 2 Z be considered. The so-called resultant set-valued map C :

Then, domC = gr(G • F). We need the following compactness properties. Definition 6.3.7. Let H : X → 2 Y be a set-valued map.

(i) H is said to be compact, see [START_REF] Penot | Compact nets, filters and relation[END_REF], at x ∈ cl(dom H) if any sequence y n ∈ H(x n ) satisfying

x n → x has a convergent subsequence.

(ii) H is said to be closed at x if (cl H)(x) = H(x), where cl H is the closure map of H defined by gr(cl H) = cl(gr H).
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Note that when H is compact at x, the image H(x) still may be not closed. Simply think of H : R → 2 R equal to (0, 1) if x = 0, and to {0} if x = 0. Then, H is compact at 0, but

We define other kinds of m-th order Studniarski derivatives of G • F with respect to variable y as follows.

(ii) For an integer k, the m-th order pseudo-Studniarski derivative of the map C at (x, z) with respect to k is defined as, for (u, w)

If k = m, the set in Definition 6.3.8(ii) is denoted shortly by D m p C((x, z), y)(u, w). One has a relationship between D m (G • y F)(x, z)(u) and D m (G • F)(x, z)(u) in the following statement. Proposition 6.3.9. Let (x, z) ∈ gr(G • F) and u ∈ X.

Proof. (i) This follows immediately from the definitions.

(ii) "⊆" follows from (i). For "⊇", let w ∈ D m (G • F)(x, z)(u), i.e., there exist sequences

Since C is compact at (x, z), y n (or a subsequence) has a limit y. Since (x + t n u n , z + t m n w n , y n ) → (x, z, y), one has y ∈ (clC)(x, z). It follows from the closedness of C at (x, z) that y ∈ C(x, z).
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Then

Then, (6.15) ensures that y ∈ D m p C((x, z), y)(u, v). This means the existence of t n → 0 + and

and we are done.

Proposition 6.3.11. Let (x, z) ∈ gr(G • F) and y ∈ C(x, z). Suppose, for all (u, w) ∈ X × Z,

Proof. The proof is similar to that of Proposition 6.3.10.

Note that, when m = 1, we have (D 1 G(y, z)) -1 = D 1 G -1 (z, y), however this is not true for m ≥ 2 as shown in the following example.

Example 6.3.12. Let F : R → R be defined by F(x) = x 2 . Then,
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To get a chain rule for Studniarski derivatives in the form of equalities, we first prove the inclusions reverse to those in Propositions 6.3.10(i), 6.3.11(i) under additional assumptions as follows.

Proposition 6.3.13. Let y ∈ C(x, z) and Y be finite dimensional.

Proof. By the similarity, we prove only (i). Let w ∈ D m (G • y F)(x, z)(u), i.e., there exist t n → 0 + and (u n , y n , w n ) → (u, y, w) such that y n ∈ C(x + t n u n , z + t m n w n ). If y k = y for infinitely many k ∈ N, one has 0 ∈ D m F(x, y)(u), w ∈ D 1 G(y, z)(0) and we are done. Thus, suppose y n = y for all n and, for s n := ||y n -y|| 1/m , the sequence v n := s -m n (y ny) or some subsequence has a limit v of norm one. If t n /s n → 0, since

one sees that v ∈ D m p C((x, z), y)(0, 0), contradicting (6.17). Consequently, t -1 n s n has a bounded subsequence and one may assume that t -1 n s n tends to q ∈ R + . So,

and then one gets q m v ∈ D m p C((x, z), y)(u, w). It follows from the definition of D m p C((x, z), y)(u, w) that q m v ∈ D m F(x, y)(u) and w ∈ D 1 G(y, z)(q m v).
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Proof. (i) Let w ∈ D m (M + y N)(x, z)(u), i.e., there exist t n → 0 + and (u n , y n , w n ) → (u, y, w) such that y n ∈ S(x +t n u n , z +t m n w n ). If y k = y for infinitely many k ∈ N one has 0 ∈ D m M(x, y)(u) and w ∈ D m N(x, z -y)(u), and we are done. Thus, suppose y n = y for all n and, for s n := ||y n -y|| 1/m , the sequence v n := s -m n (y ny) converges to v of norm one. If t n /s n → 0, since

one sees that v ∈ D m p S((x, z), y)(0, 0), contradicting (6.23). Consequently, s n /t n has a bounded subsequence and we may assume that s n /t n tends to q ∈ R + . So,

and then q m v ∈ D m p S((x, z), y)(u, w). It follows from the definition of D m p S((x, z), y)(u, w) that q m v ∈ D m M(x, y)(u) and wq m v ∈ D m N(x, zy)(u).

(ii) This follows from (i) and Propositions 6.3.15 and 6.3.16.

Next, we define two other m-th order Studniarski derivatives, which are slight modifications of those in the above definitions and suitable for applications to variational inequalities in Section 6.4. Let P be also a normed space, F : P × X → 2 Y and N : P × X → 2 Y . Let S : P × X ×Y → 2 Y be given by S(p, x, y) := F(p, x) ∩ (y -N(p, x)). Definition 6.3.18. Given y 0 ∈ S(p, x, y) and (u, v) ∈ P × X, we define 

one sees that l ∈ D m p S((p, x, y), y 0 )(0, 0, 0), contradicting (6.25). Consequently, one may assume that s n /t n tends to q ∈ R + . So,

and thus q m l ∈ D m p S((p, x, y), y 0 )(u, v, w). By the definition of D m p S((p, x, y), y 0 )(u, v, w), one has q m l ∈ D m p F((p, x), y 0 )(u, v) and wq m l ∈ D m p N((p, x), yy 0 )(u, v). (ii) We need to prove that, if S is compact and closed at (p, x, y), then

The containment "⊇" follows from definitions. For "⊆", let w ∈ D m p (F + N)((p, x), y)(u, v). There exist Proof. Let (p, x) ∈ gr D m S(p, x), i.e., there exist sequences p n → p, x n → x, and t n → 0 + such that

x +t m n x n ∈ S(p +t n p n ). This implies that 0 is an element of the set M(p +t n p n , x +t m n x n ). Hence, for z n = 0, the inclusion 0 + t m n z n ∈ M(p + t n p n , x + t m n x n ) holds, i.e., 0 ∈ D m p M((p, x), 0)(p, x).

In parameterized optimization, we frequently meet M of the form

where F : P × X → 2 Z and N : P × X → 2 Z . Let S : P × X × Z → 2 Z be defined by S(p, x, z) := F(p, x) ∩ (z -N(p, x)).

The following theorem gives an approximation of the m-th order Studniarski derivative of S when M is defined by (6.27). If (i) holds, the above inclusion is followed by Proposition 6.3.19. For the case (ii) and y ∈ S(p, x, 0), we see that y ∈ F(p, x) and -y ∈ N(p, x). Let v ∈ D m p M((p, x), 0)(p, x), i.e., there exist t n → 0 + , (p n , x n ) → (p, x), and v n → v such that

Then, there exist

Suppose F is m-th order locally Hölder calm at at (p, x) for y. Then, there exists L > 0 such that for large n,

Because dim Z < +∞, t -m n (y 1 ny), or a subsequence, converges to some v 1 ∈ Z and so v 1 ∈ D m p F((p, x), y) (p, x). From (6.28), the sequence t -m n (y 2 n -(-y)) also converges to some v 2 such that v 2 = vv 1 , and v 2 ∈ D m p N((p, x), -y)(p, x). Thus, v ∈ D m p F((p, x), y)(p, x) + D m p N((p, x), -y)(p, x). Now applying Theorem 6.4.1 completes the proof.

Implicit multifunction theorems

Let M : P × X → Z and S(p) := {x ∈ X : M(p, x) = 0}, be the set of solutions to the parametrized equation M(x, p) = 0. We impose the condition ( * )

∃x ∈ X such that M(0, x) = 0 and

where M p denotes the partial Fréchet derivative with respect to p. Let H = V ∩ M(0, .) -1 , i.e., Let M : P × X → Z be defined by

The following result is a slight modification of that in Proposition 6.3.13(ii). §6. Calculus rules and applications of Studniarski derivatives to sensitivity and implicit function theorems Lemma 6.4.3. Let Z be finite dimentional and either of the following conditions hold (i) M is locally Lipschitz calm at (0, x) for 0;

(ii) C is compact and closed at (0, x) and D m

p C((0, x), 0)(0, 0) = {0}. (6.29)

p M((0, x), 0)(q, x)].

Proof. Let x ∈ D m S(0, x)(q), i.e., there exist t n → 0 + , q n → q, and x n → x such that x + t m n x n ∈ S(0 + t n q n ). This implies that

Then, there exists y n ∈ M(0 + t n q n , x + t m n x n ) such that x + t m n x n ∈ H(y n ). Suppose (i) hold. Because M is locally Lipschitz calm at (0, x) for 0, there exists L > 0 such that, for large n,

p M((0, x), 0)(q, x).

If assumption (ii) holds, it follows from (6.30) that there exists

Since C is compact at (0, x), y n (or a subsequence) has a limit y. Since (0 + t n q n , x + t m n x n , y n ) → (0, x, y), ones has y ∈ (clC)(0, x). It follows from the closedness of C at (0, x) that y ∈ C(0, x) = 0.

If y k = 0 for infinitely many k ∈ N, one has 0 ∈ D m(1) p M((0, x), 0)(q, w) and w ∈ D m H(0, x)(0), and we are done. Thus, one may suppose, for s n := ||y n ||, the sequence v n := y n /s n has a limit v of norm one. If t n /s n → 0, since

p C((0, x), 0)(0, 0), contradicting (6.29). Consequently, one may assume that s n /t n converges to q ∈ R + . So, 0 + t n s n t n v n = y n ∈ C(0 + t n q n , x + t m n x n )

and thus qv ∈ D m(1) p C((0, x), 0)(q, x). It follows from the definition of D m(1) p C((0, x), 0)(q, x) that qv ∈ D m [START_REF] Anh | Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality[END_REF] p M((0, x), 0)(q, x) and x ∈ D m H(y, z)(qv). p M((0, x), 0)(q, x) ∩ (D m H(0, x)) -1 (x) ⊆ D m(1) p C((0, x), 0)(q, x).

(6.31)

Then, x ∈ D m S(0, x)(q) if and only if x ∈ D m H(0, x)[D m [START_REF] Anh | Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality[END_REF] p M((0, x), 0)(q, x)].

Proof. By Lemma 6.4.3, we need to prove that x ∈ D m H(0, x)[D m [START_REF] Anh | Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality[END_REF] p M((0, x), 0)(q, x)] implies x ∈ D m S(0, x)(q). x ∈ D m H(0, x)[D m [START_REF] Anh | Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality[END_REF] p M((0, x), 0)(q, x)] means the existence of v ∈ D m [START_REF] Anh | Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality[END_REF] p M((0, x), 0) (q, x) ∩ (D m H(0, x)) -1 (x). Then, (6.31) ensures that v ∈ D m(1) p C((0, x), 0)(q, x). This means the existence of t n → 0 + and (q n , x n , v n ) → (q, x, v) such that 0 + t n v n ∈ C(0 + t n q n , x + t m n x n ).

From the definition of the map C, we get 0 + t n v n ∈ M(0 + t n q n , x + t m n x n ) and x + t m n x n ∈ H(0 + t n v n ), which imply that x+t m n x n ∈ H( M(0+t n q n , x+t m n x n )). Thus, we have x+t m n x n ∈ S(0+t n q n ) and x ∈ D m S(0, x)(q). Theorem 6.4.5. Impose the assumptions of Lemma 6.4.3. Then, D m S(0, x)(q) ⊆ D m H(0, x)[-M p (0, x)(q)].

(6.32)

If, additionally, (6.31) holds, then (6.32) becomes an equality.

Proof. By Lemmas 6.4.3 and 6.4.4, we need to prove that D m(1) p M((0, x), 0)(q, x) = -M p (0, x)(q). Let v ∈ D m(1) p M((0, x), 0)(q, x). There exist t n → 0 + and (q n , x n , v n ) → (q, x, v) such that 0 + t n v n = M(0 + t n q n , x + t m n x n ) = -M p (0, x)(0 + t n q n )r(0 + t n q n , x + t m n x n ).

Therefore, v n = -M p (0, x)(q n )t -1 n r(t n q n , x + t m n x n ) → -M p (0, x)(q).

Thus, v = -M p (0, x)(q) and we are done.

Conclusions

In this thesis, we have presented results related to some topics of variational analysis. First, we have stated definitions and basic properties of Γ-limits. Then, several generalized results on sequential forms of Γ-limits have been given. We have also got important applications of Γ-limits to tangency and generalized differentiation theory. It turns out that most of generalized derivatives can be expressed in terms of Γ-limits. Finally, we have introduced some kinds of generalized derivatives and their applications. In detail,

• We have discussed higher-order analysis for quantitative properties of perturbation maps of nonsmooth vector optimization in terms of variational sets, a kind of generalized derivatives which is suitable for a high level of nonsmoothness and relatively easy to compute. We have established relations between variational sets of a perturbation map and weak perturbation map or the efficiency/weak efficiency of these sets and the corresponding ones of the feasible-set map to the objective space. These results have been applied to sensitivity analysis for set-constrained vector optimization. As some results look complicated, we have tried to confirm the essentialness of each imposed assumption, as well as to illustrate advantages of our results by a number of examples, which indicate also that computing variational sets is not a hard work.

• Realizing advantages in some aspects of radial sets and derivatives, we have aimed to establish both necessary and sufficient higher-order conditions in terms of radial sets and derivatives for various kinds of efficiency concepts in set-valued vector optimization. We have chosen the Q-efficiency defined in [START_REF] Ha | Optimality conditions for several types of efficient solutions of set-valued optimization problems[END_REF] to unify these concepts. Thus, we have first discussed optimality conditions for Q-efficiency and then rephrase the results for the other kinds of solutions. Besides, we have also discussed properties and basic calculus rules of radial sets and derivatives like those for a sum or composition of maps. Furthermore, direct applications of these rules in proving optimality conditions for some particular problems have been given.

• Some calculus rules for Studniarski derivatives have been given to ensure that it can be used in practice. Most of the usual rules, from the sum and chain rules to various operations in

Further works

of Anh and Khanh in [START_REF] Anh | Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives[END_REF][START_REF] Anh | Higher-order radial epiderivatives and optimality conditions in nonsmooth vector optimization[END_REF]).

3) Note that separation theorems are a basic tool for proving optimality conditions and duality statements. With the development of nonconvex optimization theory, there has come into existence a need for nonconvex separation theorems, see [START_REF] Certh | Nonconvex separation theorems and some applications in vector optimization[END_REF]. So, for possible developments of Chapter 5, we can derive optimality conditions of several kinds of efficient solutions for setvalued optimization problems by using a nonconvex separation function given by Certh and

Weidner in [START_REF] Certh | Nonconvex separation theorems and some applications in vector optimization[END_REF]. Then, we can use these results to derive duality results for vector optimization when the objectives and the constraints are nonconvex. Besides, motivated by [START_REF] Bednarczuk | Tangent sets in some functional spaces[END_REF][START_REF] Cominetti | Tangent sets to unilateral sets[END_REF][START_REF] Cominetti | Tangent sets of order one and two to the positive cones of some functional spaces[END_REF], we can obtain some calculations of higher-order radial sets in certain functional spaces.