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ça crée des liens ! Alors merci Antoine Vinel bravo pour tes filles, chapeau pour ton

embauche chez Apple. J’espère que tu vas gagner ton recent pari, on se refait une session

running quand tu veux ! Merci Yann Soullard, bravo pour ton postdoc, tu as cette qualité
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Gérard Chollet et Yu Ding à Telecom ParisTech avec qui j’ai pu avoir des collaborations

pendant ma thèse.
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Chapter 1

Introduction

Time series or sequential data are defined as a sequence of data points typically measured

at uniform time interval. Their modeling has practical applications like classification of

isolated sequences, recognition which stands for labeling an input sequence into suc-

cessive segments labels corresponding to particular units (e.g. phonemes in a speech

signal), and synthesis new sequence data alike a training set. We will mainly focus in

this thesis on pattern recognition tasks namely sequence classification and labeling.

Such tasks may concern a variety of domains. Speech, gesture, and handwriting recog-

nition are among them. We can also mention other similar tasks like Named Entity

Recognition in Natural Language Processing, the prediction of gene expression from

DNA in biology, the recognition of patterns in financial analysis . . . Figure 1.1 illustrates

few typical examples of time series.

The modeling of time series with the goal of classification and labeling has been stud-

ied for many years. One of the most popular method until now has been the Hidden

Markov Models. These models being generative they have been trained first with a non

discriminative criterion (Maximum Likelihood) which is actually not particularly suited

for discrimination tasks such as classification and sequence labeling. To overcome this

drawback discriminative learning approaches have been proposed for Hidden Markov

Models based on the optimization of discriminative criteria like Minimum Classification

Error, Minimum Phone Error or Maximum Mutual Information. More recently new

approaches have been proposed to tackle what is named the structured output predic-

tion problem (i.e. tasks where the output to be predicted is structured, like sequences,

graphs or trees). Among these works the Conditional Random Field has quickly been

adapted to deal with complex sequences like speech, handwriting and videos.

11
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(a) Speech signal

(b) DNA sequences (c) Handwriting

(d) Financial data (e) Gestures

(f) Text (g) Videos

(h) Medical data (electrocardiogram,
electroencephalogram,...)

(i) Isolated characters

Figure 1.1: Various types of time series
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Yet whatever the family of these models they are not well suited for handling the inherent

variability of the signals. This variability may come from static features like the gender

of the speaker in speech recognition or the morphology of the person whose gesture is

captured in gesture recognition. A sentence may be uttered quite di↵erently according

to the speaker gender, a gesture may have more amplitude if it is performed slower, and

its overall shape may depends on the weight or the height of the performer. Alternatively

the variability may also come from time varying (or dynamic) features like the level of

noise in speech recognition or the emotional state of the speaker in speech recognition.

The usual way for handling variability consists in narrowing it as much as possible

in a preprocessing step, and then to model the remaining variability using standard

strategies. In Markovian systems built on Hidden Markov Models this is done through

multiplying states and through increasing Gaussian mixture size within states. Unfor-

tunately this is a poor way to handle variability. Assuming for instance that one wants

to build a recognition system for signals which have a particular bimodal structure (e.g.

one wants to build a speech recognition system for male and female speakers). Then a

simple solution would be to use an increased number of Gaussian distributions in Gaus-

sian mixtures associated to states, part of these Gaussian distributions are dedicated

to the first mode (e.g. male speakers) and the remaining are for the second mode (e.g.

female speakers). However such modeling would then not be very accurate, for instance

it would model well any signal that changes of mode at every time step although none

sample of this kind was in the training set.

We are concerned in this thesis with the problem of handling variability in a sound

way. We propose strategies for tackling such a variability coming from static as well

as from dynamic features. We investigated these strategies for generative models (Hid-

den Markov models) as well as for discriminative models (Hidden Conditional Random

Fields).

The starting point of our proposal is that an important part of the variability between

observation sequences may be the consequence of a few contextual variables (which

may be hidden or observed) that remain fixed all along a sequence or that vary slowly

with time. Such a global variability cannot always be removed through preprocessing

or normalization and would benefit from a specific handling in HMM. We propose the

framework of Contextual Hidden Markov Models, whose starting point are Parametric

Hidden Markov Models that have been proposed for gesture recognition, to model di-

rectly the influence of contextual information on observation sequences. We introduce

several declinations of our framework to incorporate the influence of contextual variables

at various levels into the models.
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The thesis is organized in six main chapters. Chapter 2 presents useful background

on sequence classification and labeling using statistical modeling and provides neces-

sary details about Hidden Markov Models and Conditional Random Fields. Remaining

chapters include the contributions of this thesis.

In Chapter 3 we propose the framework of Contextual Hidden Markov Models (CHMM)

to model directly the influence of contextual information on observation sequences. We

detail ways to implement this idea into Hidden Markov Models at various levels, by

parameterizing (i.e. making dependent on contextual variables) either the emission

probability density function within states (mean and covariance of Gaussian distribution)

or the transition distributions from states to states. This modeling scheme may be used

either with static or dynamic contextual variables.

Chapter 4 goes one step further and introduces a natural and e�cient way to exploit

contextual information into discriminative models for sequences like Hidden Conditional

Random Fields (HCRF), yielding what we name Contextual Hidden state Conditional

Random Fields (CHCRF). Such models are the discriminative counterpart of CHMMs.

Although the idea of including contextual variables in HRCFs seems simple, its realiza-

tion is problematic. Indeed HCRFs are highly subject to overfitting and are di�cult to

train accurately. Our proposal consists in learning Contextual HRCFs based on first,

learning CHMMs which are less subject to overfitting, and secondly on using an initial-

ization scheme that allows building initial CHCRFs estimates from learned CHMMs.

Our proposal for CHCRF may then be viewed as an e�cient way to learn a HCRF that

exploit contextual information.

Chapter 5 shows a very di↵erent application of our work to the animation of an avatar.

CHMMs are employed to synthesize facial moves of the avatar from the speech signal.

The idea is to learn a CHMM system for modeling facial moves using speech features

as contextual variables. Having learned such a system allows then animating an avatar

(synthesizing its moves) based on the speech signal it is supposed to utter. Since CHMMs

can be more accurate models than HMMs, performing synthesis based on CHMMs may

be more accurate than HMMs based synthesis. This work has been performed in coop-

eration with Yu Ding, Ph.D. student at Telecom ParisTech under the supervision of C.

Pélachaud and T. Artières.

Chapter 6 is related to an optimization problem we sometimes encountered when ex-

ploiting multiple contextual variables, eventually carrying very di↵erent information.

Actually we observed that the optimization did not always succeeded in exploiting the

discriminative power of all contextual variables yielding better results with only few con-

textual variables than with all, even when every single contextual variable was shown

to carry discriminative information. We investigated two particular ways for dealing
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with this problem. The first one is based on a regularization technique recently used

in the Neural Networks literature, the second one relies on multistream modeling which

has been popularized in the speech recognition literature for combining audio and video

streams for improved speech recognition.

Finally we evoke in chapter 7 preliminary works to explore transfer learning for sequence

data, i.e. learning to recognize a class leveraging information from other classes. These

works have been motivated by the idea that contextual models (CHMMs, CHCRFs)

might be good candidates for learning the models of many classes with only few ex-

amples per class. We explored a kind of Transfer Learning approach which relies on

learning a global generative CHMM on the data of all classes and on using a special

type of “class code” contextual variables. Basically the contextual variables for a given

observation sequence may be or include an encoding of its class label. This strategy

e↵ectively allows sharing information between classes during learning. Our results on a

gesture classification task show that a very simple implementation of this scheme helps

in achieving a better generalization compared to classical independent class training of

standard HMMs.

This thesis has been funded by the European Grant UsiXml (ITEA, Eureka #3674).

Usixml is a project aimed at providing natural and multi-modal human interaction with

computers where modalities might be speech, gesture or any sequential data provided

by a human machine interface. A general view of this project which involves several

industrial and academic partners is detailed in Appendices.
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We first present here generalities on modeling time series using statistical models. Then,

we focus on presenting the generative and discriminative families of Markovian ap-

proaches which sets the basis of our work.
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2.1 Statistical models

2.1.1 Notations

First we introduce a number of notations that will be useful for presenting statistical

models for time series.

A database D is defined as N pairs (xk,yk) or examples with k 2 1 . . . N

where x

k 2 X is a sequence of observation vectors for example k

and y

k 2 Y its corresponding sequence of labels

More precisely x

k and y

k are defined as two time series :

x

k = (xk

1

, . . . ,xk

T

)

y

k = (yk
1

, . . . , yk
C

)

- where x

k

t

2 Rd is an observation vector at time t

- and yk
c

2 Y is a label (8c 2 1 . . . C)

- label space Y is assumed here a finite alphabet

When dealing with a single example (xk,yk), the index k is often dropped for clarity.

Lowercase letters are used for scalars, vectors or sequences, while matrices are upper-

cased. Vectors or sequences are noted in boldface but scalars are not.

When annotation is available at the frame level, there is one label y
t

2 Y for each

observation x

t

, thus, y = (y
1

, . . . , y
T

). Alternatively, the dataset D can be annotated

at the level of symbols (e.g y can be a sequence of letters). In this case, the observation

sequence x and its corresponding sequence of labels y have not necessarily the same

length.

We also assume the examples (xk,yk) of D are iid: Independent (2.1) and Identically

Distributed (2.2):

p((x1,y1), . . . , (xk,yk)) =
Y

k

p((xk,yk)) (2.1)

(xk,yk) ⇠ P (X ,Y) (2.2)

- where X is the space of all possible observations sequences x

- and Y is the space of all possible label sequences y

Finally, we will note X
y

the space of observation sequences whose label is y.
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2.1.2 Supervised learning

The tasks of classification, recognition and synthesis can carried out by first training a

model through supervised learning. It consists of finding the parameters ⇤ of a function

or model f
⇤

: X ! Y which minimizes the risk

R(f
⇤

) =

Z
L(f

⇤

(x),y)dP (x,y)

R(f
⇤

) is the expectation of a Loss functional L under the joint distribution of the

observations x and its corresponding labels y.

Various losses can be employed, section 2.2 will present some of which are suited for our

tasks.

2.1.2.1 Empirical risk minimization

The true distribution P (X ,Y) is unknown, so instead, we approximate R(f
⇤

) with the

empirical expectation over a training set D
train

.

R
emp

(f
⇤

) =
1

N

X

D
train

L(f
⇤

(xk),yk) (2.3)

2.1.2.2 Structural risk minimization

Because we do not exactly minimize the true risk, there is a famous problem arising

which is known as the bias variance dilemna.

Generally, the more the model has capacity (for example higher degree polynomial), the

lower its error R
emp

(f
⇤

) on the training set. Unfortunately, because R
emp

(f
⇤

) is not

defined by the true data distribution, using models of increasing capacity can overfit the

training set, and, consequently, the true risk error R(f
⇤

) is growing (the model error

has low bias on the training set but high variance on new data).

On the other hand, we can choose a simpler model, its error will have low variance on

new data but if the model is too simple, its error will be high on the training set (high

bias). Figure 2.1 is a simple illustration of this tradeo↵.
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Figure 2.1: Bias variance dilemna

One of the popular strategy is that instead of choosing the right model capacity, we can

train a high capacity model but regularize it to prevent overfitting.

Regularization is a form of constraint imposed on the parameters of the model ⇤. This

can be easily added by minimizing the new function

J(f
⇤

) = R
emp

(f
⇤

) + �C(f
⇤

)

Typically C(f
⇤

) can impose a sparsity constraint (L1 norm) on the weights ⇤. This

forces the model to drive many parameters towards 0, resulting in a simpler model less

prone to overfitting. Another form of constraint is to add L2 norm on ⇤, which limits the

magnitude of the parameters. Large weights tends to favor sharp decision boundaries

very sensitive to the input, typically what we want to avoid for good generalization.

The hyper-parameter � controls the amount of regularization. If we choose � = 0, the

model is not regularized at all. If the model has enough capacity, its training error

(R
emp

(f
⇤

)) will be small (low bias) but the model errors will be high on a separated test

set (high variance). On the contrary, if � is large the model will be strongly regularized,

resulting in many error on the training set (high bias) but low variance on a separated

test set. Many other regularization schemes can be devised or even combined.

2.1.3 Model types

2.1.3.1 Parametric and non parametric

Parametric models are defined as a function f
⇤

: X ! Y which is di↵erentiable with

respect to its parameters ⇤. We can then train them by directly minimizing the empirical

risk (2.3) with respect to ⇤. This can be done with various forms of gradients descent

or even in closed form depending on the form of f
⇤

.
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On the other hand, non parametric models do not perform training on a parameter

set but build an estimator fD
train

which depends on all the training examples. The

computational complexity is almost completely postponed at test time. Generally, f is

expressed in terms of similarity.

A famous example of such models is k-Nearest-Neighbor (kNN) although not really

suited for sequential data. For a classification task, a 1-NN will give to a new input

x the label y of the most similar example x

nearest

in D
train

. If the input examples x

are fixed sized vectors, a candidate similarity measure can be the Euclidean distance.

For sequential data, x and x

nearest

might not be the same length, and a Dynamic Time

Warping like algorithm [70] must be employed to compute their similarity.

Gaussian Process Dynamical Model (GPDM) [82] are another form of non parametric

models. They define a probability over observation sequences by the use of a kernel

similarity measure in a latent space. They do not have real parameters as they are

marginalized over, instead they directly optimize over the latent representation of the

data.

Nowadays, a vast majority of approaches for modeling sequential data uses parametric

models. They are more compact, (ie do not need to remember the training set), and

their inference time is generally quicker. Nevertheless non parametric methods can be

of interest when there are few examples as their complexity is reduced. Because they do

not estimate parameters, they are also less prone to overfitting.

2.1.3.2 Generative and discriminative

Generative models specify a joint probability distribution between observations and

labels. They are trained to maximize the joint probability of observation sequences and

its corresponding sequence of labels p(x,y).

These models are called generative because it is possible to sample from their distribution

to synthesize new observation sequences (see 2.2.3). Yet they are not restricted to

synthesize data, using Bayes’ rule, one can build a conditional probability function of

the class labels suitable for the tasks of classification and recognition. In inference, the

candidate labeling y for observation sequence x is then selected as

argmax
y

p(y | x;⇤) = argmax
y

p(x | y;⇤)p(y;⇤)

Discriminative models directly optimize the conditional probability p(y | x). They

do not attempt to model the distribution of the data p(x) which can be seen as an
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unnecessary intermediate step for sequence labeling. The immediate drawback is that

we can not sample from their distribution to generate new observation data x. This

makes them unsuitable for synthesis.

2.1.3.3 Discrete and continuous state space

Except for a few non parametric approaches (like GPDM), models of sequential data

are characterized by an internal structure. They are composed of unobserved (hidden)

states taking their value in a discrete or continuous space.

For instance, Hidden Markov Models (HMM) and Hidden Conditional Random Fields

(HCRF) use a set of hidden states. Each of the hidden states assign either a probability

(HMM) or a score (HCRF) to the observations at each time step. Their states are dis-

crete and mutually exclusive. It means that the hidden state variable is a K-multinomial:

out of K possible states, only one is active at each time step.

On the other side, the internal structure of Recurrent Neural Networks (RNN [42], LSTM

[39], . . . ) can be viewed as hidden states in a continuous space. The state (or activation)

of each hidden unit is real valued and influences the final output.

Some successful approaches also combine discrete state and continuous state space mod-

els such as RNN-RBM [9], DBN-HMM [36], LSTM-HMM [33], . . . . In RNN-RBM for

example, the Restricted Boltzmann Machines (RBM) can be viewed as a discrete state

space model because their hidden units are binary-valued. Yet RBM do not explicitly

model the temporal nature of the data which amounts to the RNN part of the model.

The focus of our work mainly concerns the widely popular family of discrete state space

Markovian approaches for modeling time series.

2.2 Tasks and evaluation measures

2.2.1 Isolated classification

We assume here the dataset D is now defined as N pairs (xk, yk) (k 2 1 . . . N) of examples

with x

k an observation sequence and yk a single corresponding label.

Classification of isolated sequences is defined as the task of assigning a unique label yk

to an observation sequence x

k = (xk

1

, . . . ,xk

t

).
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This can be done with a function (a classifier) f which is a mapping from the space of

observation sequences X to the space of individual labels Y .

f(X )! Y

We note ŷ = f(x) the predictive label assigned by a classifier f to observation sequence

x while y is its true label. As opposed to the task of recognition (described in section

2.2.2), isolated classification refers to the fact that we know the time boundaries of each

observation sequence x = (x
1

, . . . ,x
T

). Theses boundaries are assumed to be known at

training and test time.

One can measure the quality of a classifier f in term of its accuracy :

Acc(f) =
1

N

NX

k=1

L
0,1

(f(xk), yk)⇥ 100

L
0,1

(a, b) =

(
1 if a = b

0 otherwise

- L
0,1

is the zero-one loss

- and Acc counts the proportion of right labels given by f on N examples.

When the dataset is unbalanced (i.e. few classes contain much more instances than other

ones in D
train

, a classifier with high accuracy is not always good. Consider the simple

example of a binary classification task where a classifier has to decide whether a data

belongs to its class (positive example) or not (negative one). If there are 99% negative

examples and 1% positive ones, the accuracy of a classifier answering always ’negative’

will be 99% whereas it has clearly not learned anything.

For these kind of situations, the precision and recall give a better understanding of the

classifier behavior.

Precision is defined as the number of true positive examples (tp) over all examples

classified positively. (true positive (tp) and false positive (fp) examples)

Precision =
tp

tp+ fp

If precision is high, the number of false positive will be low. It means the classifier makes

a few mistakes for relevant examples.
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On the other side, recall is the number of true positive examples over true positive and

false negative examples.

Recall =
tp

tp+ fn

For high recall, false negative must be low which means the classifier do retrieve a large

proportion of relevant examples.

Precision and recall convey two di↵erent types of information which can be combined

through the F-measure :

F = 2⇥ precision⇥ recall

precision+ recall

Note that in a multi-class setting (more than 2 classes), precision and recall are generally

averaged over all classes (Macro-Precision/Recall).

2.2.2 Recognition

In a recognition task (or sequence labeling), an observation sequence x must be as-

signed a sequence of labels y. We are then looking for a model f mapping the space of

observation sequences to the space of label sequences.

f(X )! Y

This is a more realistic setting than classification. For example, in speech recognition,

a speaker generally utters a whole sentence of words that we need to recognize. In this

setting, the labels are words or phonemes and observations sequences are feature vectors

characterizing the speech signal at each time step. At test time, there is no information

regarding the number of words uttered nor their time boundaries, our goal is precisely

to find them.

To assess the quality of the match between a predicted sequence of labels ŷ and the

true sequence of labels y, one can measure the edit distance between them ed(ŷ,y).

It is the minimum number of elementary operations (insertions (I), deletions (D) or

substitutions (S)) that transforms y into ŷ or vice versa. Note that operations can have

di↵erent weights but most often, they are equal.

Computing ed(ŷ,y) involves running a dynamic programming procedure whose com-

plexity is O(mn) where m and n are the length of the two strings of labels ŷ and y.
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A normalized version is given by

ed(ŷ,y) =
S +D + I

L

where L = (S + D + H) is the length of the ground truth sequence of labels y and

H = (L� S �D) is the number matched symbols (hits).

We define the edit distance accuracy loss (EDA) L
EDA

as the opposite

L
EDA

(ŷ,y) = 1� ed(ŷ,y) =
L� S �D � I

L

which can be simplified to

L
EDA

(ŷ,y) =
H � I

L

Finally, the accuracy evaluation measure for a recognition task is given by the average

L
EDA

for all predicted sequences of labels.

Acc(f) =
1

N

NX

k=1

L
EDA

(f(xk),yk)

2.2.3 Synthesis

The particularity of generative models is that they can be used to synthesize new obser-

vation data. Given a trained model of a specific class y, we can sample directly from its

distribution P (X , y) to generate unseen realistic observations sequences. This property

has applications in many domains. For example, in text to speech systems, one trains

generative models on words or phonemes and sample from these individual models to

synthesize realistic utterances. In the field of character animation, one uses generative

models trained on gestures to animate an avatar realistically. Other approaches can also

merge speech and motion features to create even more realistic animations (see chapter

5).

There are two ways of estimating the performance of a synthesis system. The subjective

way is to ask a group of people to evaluate the realism of synthesized observations

(utterances, animations etc . . . ) on a scale and average their marks. More objectively, if

there is a reference on which we can compare, we can use the mean square error (MSE)

between the synthesized x̂ observations and the ground truth x. On N sequences the

average MSE is given by

MSE =
1

N

NX

k=1

||x̂k

t

� x

k

t

||2
2
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It measures the squared Euclidean distance at every time steps between the reference

x

k

t

and the prediction x̂

k

t

, hence lower MSE means better synthesis. Note that x and x̂

must be the same length.

2.3 Generative Markov models

2.3.1 Hidden Markov Models

Hidden Markov Models [67] are among the most popular approaches for time series

modeling. As it is the basis of many models presented in this thesis, we will present it

in more details compared to its other variants.

Formally, it can be described by

- H a set of S discrete hidden states

- h
t

2 H the value of current hidden state at time t

- A
i,j

= p(h
t

= i | h
t�1

= j) the transitions probabilities from hidden state j at

time t� 1 to hidden state i at time t with the constraint
P

j

A
i,j

= 1

- p(x
t

| h
t

) a probability distribution function responsible for emitting an observa-

tion x

t

in a state h
t

- ⇡
i

an initial state distribution corresponding to the probability of being in hidden

state i at the beginning of the sequence at time t = 1

A HMM actually hypothesizes that a latent cause (unobservable) is responsible for gen-

erating the observation sequence x. In the following graphic, we show an HMM sketched

as a Directed Acyclic Graph (also known as Bayesian network). Nodes in the graph rep-

resent random variables and a links between two nodes stands for a direct conditional

dependency between two corresponding random variables.

�� �� �� ���� ��

�� �� �� ���� ��

Figure 2.2: HMM with a chain structure, each state ht is responsible for emitting an
observation xt while the model switches from state to state according to a transition

probability matrix.
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In the HMM depicted above, observations (x
t

) are conditionally independent from each

others given the their hidden state (h
t

). Note that we represented a HMM with a chain

structure, that is, the emission and transition probabilities only depend on the current

hidden state. This HMM has a 1 order Markov chain structure. One can add longer

time dependencies between hidden states by defining order two transition probabilities

as p(h
t

| h
t�1

, h
t�2

) for example. However, the number of parameters of the model and

the complexity of its training and inference algorithms grows critically. Hence, from now

on, we will consider the most popular form of HMM with a Markov chain structure of

order 1.

Given an hidden state sequence h which has the same length T as the observation

sequence x, we can compute the joint probability of the hidden state and observation

sequence as :

p(x,h;⇤) = ⇡
h1p(x1 | h1)p(h2 | h1)p(x2 | h2) . . . p(hT | h

T�1

)p(x
T

| h
T

) (2.4)

where ⇤ are the parameters of the model.

Or, equivalently :

p(x,h;⇤) = ⇡
h1p(x1 | h1)

TY

t=2

p(h
t

| h
t�1

)p(x
t

| h
t

)

The probability distribution function p(x
t

| h
t

) is often defined as a Gaussian

p(x
t

| h
t

) = N (x
t

;µ
h

t

,⌃
h

t

)

or a mixture of M Gaussians in each state

p(x
t

| h
t

) =
MX

m=1

p(m | h
t

)p(x | h
t

,m)

p(x
t

| h
t

) =
MX

m=1

c
m

N (x
t

;µ
c

m

,⌃
c

m

) (2.5)

- where c
m

is the Gaussian mixture weight (scalar)

- µ

c

m

is its mean (d vector, same size as an observation x

t

)

- ⌃
c

m

its covariance (d⇥ d matrix)

Although it is possible to share the parameters of the Gaussian distributions between

states, we consider the general case of states with independent parameter sets.

Finally, the parameters ⇤ of a Gaussian mixture HMM are composed of
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- the initial state distribution ⇡ (vector of dimension S)

- a S ⇥ S transition probability matrix A

- S ⇥M Gaussians with parameters µ
h,m

, ⌃
h,m

, c
h,m

2.3.1.1 Inference

So far, we have seen how to compute the joint probability of state and observation

sequence p(x,h;⇤). However, it is rarely the case that we can know in advance the

hidden causes of the observations. One has two choices, whether to guess the hidden

state sequence, or, sum over all possible state sequences (i.e. marginalize).

Infering the best hidden state sequence is described by the following equation :

argmax
h

p(x,h;⇤) (2.6)

which can be handled by a dynamic programming procedure known as the Viterbi algo-

rithm (see [67]).

If one marginalize out (or sum over all) the possible hidden states sequences, it can be

written

p(x;⇤) =
X

h

p(x,h;⇤) (2.7)

However, the summation over all possible hidden state sequences contains an exponential

number of terms with respect to the length of the observation sequence x. Fortunately,

one can compute equation 2.7 e�ciently thanks to a dynamic programming procedure

known as the Forward-Backward algorithm (cf [67]).

Both Viterbi and Forward Backward algorithms have a complexity in O(S2T ) where S

is the number of states and T the length of observation sequence x.

2.3.1.2 Training HMMs by Maximum Likelihood Estimation

Learning a HMM “generatively” consists in finding the parameters ⇤ that maximize

the joint probability of all the observation sequences in the training set. Using the iid

assumption from 2.1.1 one can write :

⇤̂ = argmax
⇤

p(x1, . . . ,xN ;⇤) =
NY

k=1

p(xk;⇤) (2.8)
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which is equivalent to

argmax
⇤

log p(x1, . . . ,xN ;⇤) =
NX

k=1

log p(xk;⇤) (2.9)

This type of estimation is known as Maximum Likelihood Estimation (MLE). However,

due to the presence of constraints in HMMs (
P

j

A
i,j

= 1), it turns out to be easier to

maximize an auxiliary function than 2.9 directly.

This can be done by the Expectation Maximization (EM) algorithm [19][7] which max-

imizes the following auxiliary function Q with respect to the parameters ⇤ for each

observation sequence x

Q(⇤,⇤0) = E
h|x;⇤0 [logP (x,h;⇤)] (2.10)

where ⇤0 is the current value of the model parameters and ⇤ is their updated value

Actually, EM alternates between two steps in an iterative procedure :

- E (Expectation) step : compute p(h | x;⇤) the posterior probability of hidden

variables given the observations sequence under the model with current parameter

values ⇤

- M (Maximization) step : Maximize Q with respect to ⇤. That is, compute the

closed form reestimation of the model parameters ⇤ which maximizes Q using

p(h | x;⇤) and update the current parameters values ⇤0  ⇤

Each iteration of EM increases the value of Q which, in turn, guarantees an increase of

the likelihood function 2.9. When the algorithms stops, or Q no more improves, we are

only guaranteed to reach a local maximum of the likelihood because it is not concave.

Note that a modified form of the M-step is required for certain complex HMM variants

where there is no closed form reestimation of their parameters. Instead of maximizing

Q
k

(⇤,⇤0) with respect to ⇤ at iteration k, we find a ⇤ such thatQ
k

(⇤,⇤0) > Q
k�1

(⇤,⇤0).

This form of the algorithm is called Generalized Expectation Maximization (GEM) and

is also guaranteed to converge.

2.3.1.3 Synthesis, classification and recognition with HMMs

In all the subsequent tasks, a training set is composed of di↵erent labels, or classes. The

first step is to assign each label y a set of hidden states S
y

modeled by a separate HMM

with parameter ⇤
y

. Each HMM is then trained on every observation sequence of its
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class x 2 X
y

. As a result, a HMM with parameters ⇤
y

then model p(X
y

, y;⇤
y

) the joint

probability of observation sequences and its label y (or class).

Synthesis : Once such a HMM is trained, it can be used directly for a basic form of

synthesis. The principle is to sample from its distribution p(X
y

, y;⇤
y

) to synthesize a

new observation sequence. One begins by choosing an initial hidden state h
1

by sampling

from the initial distribution ⇡. Then, a first observation x

1

is sampled from the emitting

distribution p(x
1

| h
1

;⇤). Next one samples from p(h
2

| h
1

;⇤) to choose a second hidden

state h
2

, sample from p(x
2

| h
2

;⇤) and so forth until are reached an ending state or the

number of observation samples desired.

Classification : In this setting, the most likely label y of an observation sequence x

is infered as :

argmax
y

p(x, y;⇤
y

) (2.11)

which encompass computing equation 2.7 via the Forward-Backward algorithm for every

class represent HMM having parameters ⇤
y

Recognition : For this task, it is a bit more complex because an observation sequence

x need to be assigned a sequence of labels y. To infer the most likely sequence of labels

y, a composite HMM must be built from the concatenation of every class HMM (as

depicted in the figure below).

In figure 2.3 we illustrate the topology of a composite HMM built from 3 class HMMs.

Here, the class HMM have a “left right” topology only allowing transitions from the

current state to itself or the following state. The first class is modeled by a 4 states

HMM, the second one a 3 state HMM, and the third one a two state HMM. Counting

an initial and a final state, the composite model has 11 states.

The most likely sequence of labels for an observation sequence x is then given as :

argmax
y

p(x,y;⇤
s

) (2.12)

where ⇤
s

are the parameters of the composite HMM.

The most likely label sequence may be computed from a simple Viterbi application.

The most likely state sequence from the composite HMM translates naturally in a label

sequence.
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Figure 2.3: Topology of a HMM built from the HMMs of 3 classes. Non emitting
initial and final state (B and F ) are added to allow transitions between the di↵erent

classes models.

Sometimes, the architecture of the composite model venture o↵ this simple example.

This is the case when the labeling is constrained by a grammar which specify the tran-

sitions between labels.

A last problem we didn’t talk about concerns the frequent absence of frame-wise la-

beling of the training set (label boundaries are missing). For each observation se-

quence x = (x
1

, . . . ,x
T

), we don’t necessarily have a corresponding sequence of labels

y = (y
1

, . . . , y
T

) at the frame level. Instead it can be given at the level of symbols

y = (y
1

, . . . , y
C

) where C < T . Yet, if the boundaries of the labels are unknown in

training, it is still possible to train individual classes HMMs. For each observation se-

quence x

k with labels yk = (y
1

, . . . , y
C

), one builds a “sentence HMM” as a simple left

right concatenation of HMMs modeling each class symbol y
c

of the labels sequence y.

Then, posterior probabilities over the hidden states sequences p(hk | xk) are accumu-

lated in a E step. After all observations sequences have been presented, one can compute

individual M-steps for each class HMM.

To conclude on Standard HMMs, we would like to stress a few important points. Al-

though simple, they are still very popular in the domain of time series. They can perform

various tasks (like classification, recognition or synthesis) in an e�cient way.

2.3.2 Handling variability with HMMs

However, HMMs have several limitations and many variants have been proposed to

improve upon them. One particular shortcoming is that HMM probability distributions

are stationary in a given state. Concretely it means that a HMM models time series

with piecewise constant distribution functions. This is a grossly way of modeling the

variability of observation sequences. In the following, we will expose several approaches
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which introduce non stationary state distributions in Hidden Markov Models. Some of

them especially rely on conditioning HMM distributions with external variables which

will set the basis of our work.

2.3.2.1 Trended HMM

A first attempt at modeling non stationary state distributions in HMM seems to be the

work of Deng et al. [20][21] on Trended HMMs.

In their work, the observation is defined as a polynomial function of the entry time ⌧
i

in hidden state i

x

t

=
MX

m=0

B
i

(m)f
m

(t� ⌧
i

) +R
t

(⌃
i

) (2.13)

- with f
m

a polynomial of order m

- B
i

(m) is the learnable coe�cient for f
m

in state i

- M is the order of the polynomial function

Assuming R
t

is a residual of zero mean and covariance ⌃
i

, the emission probability of

HMMs is defined as the following function of the state sojourn time d
t

= t� ⌧
i

.

p(x
t

| h
t

= i, d
t

) = N (x
t

;µ
i

(d
t

),⌃
j

)

where the mean µ

i

in state i is modeled as a polynomial µ
i

(d
t

) =
P

M

m=0

B
i

(m)f
m

(d
t

)

Trended HMMs belong to the class of non stationary state models because the states’

emission distributions (Gaussian means) is allowed to vary along time. This is a desirable

property to capture more variability in the observation sequence. In [20], Deng et al.

shown how this modeling can better fit test data while being more economical in the

number of parameters.

Inference with this model is slightly modified compared to standard HMMs. Classically,

a Viterbi inference must compute the optimal state sequence, but here, it must be done

for each possible setting of the state sojourn time d
t

. This new Viterbi then associates

each observation x

t

to a state h
t

with a duration d
t

.

During training, estimation of the polynomial coe�cients can be done in closed form by

solving a linear system of (M+1) unknows for each dimension of the observations vector

x

t

and each hidden state h
t

attributed to the observations sequence x. As usual when

estimating HMM parameters, reestimation is performed in an iterative EM procedure.
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The main problem with Trended HMMs is that they become ine�cient for long se-

quences. Inference complexity is now O(S2T 2) instead of O(S2T ) (for standard HMMs)

because of the new dimension of maximization. Hence, to reduce computational time,

Deng et al. use an approximation to the exact Viterbi inference to extract their segmen-

tation. Moreover, they introduce a second approximation. The Expectation Maximiza-

tion based learning algorithm uses only the best hidden state sequence to reestimate the

polynomial parameters instead of a sum over all possible hidden state sequences. The

true posterior distribution over hidden states sequence is in fact approximated by its

mode (maximum).

2.3.2.2 Trajectory HMM

Trajectory HMMs were originally proposed as another form of non stationary state

model for the classification and synthesis of speech utterances. In their work [90], Zen

et al. define an observation vector x

t

as a vector of static features c

t

(M ⇥ 1 vector)

and its first and second order derivatives :

x

t

= [cT
t

,�c

T

t

,�2

c

T

t

]T

Then, they reformulate the training of HMMs with constraints between static and dy-

namic features.

x = Wc (2.14)

where W is a 3MT ⇥MT known matrix transforming a static observation sequence c

(MT ⇥ 1) to a full observation sequence x (3MT ⇥ 1).

The idea is that the full observation sequence x must remain consistent with the defi-

nition of static features c (x
t

shall be computable from c

t

at all time). This is not the

case when using standard HMMs to synthesize new observation sequences. Sampling

from the model distribution p(X ) (explained in section 2.3.1.3) can lead to incoherences

between static features c
t

and their dynamic features �c

t

and �2

c

t

.

To get rid of this problem, they define the statistical model only with respect to Wc :

p(x | h) = p(Wc | h) = N (Wc;µ
h

,⌃
h

) (2.15)

where µ
h

(3MT ⇥1) and ⌃
h

(3MT ⇥3MT ) are the mean vectors and covariance matrix

corresponding to an entire state sequence h.
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Zen et al. then show how Eq 2.15 give rise to a new distribution over the static features:

p(c | h) = N (c; µ̂
h

, ⌃̂
h

)

where µ̂

h

is the mean vector (MT ⇥ 1) and ⌃̂
h

the covariance matrix (MT ⇥MT ) of

static features along the state sequence. Note that for a same state h, µ̂
h

and ⌃̂
h

can

vary along the state sequence h : it is a non stationary state model.

For training, an EM type algorithm is then derived to reestimate µ

h

and ⌃
h

for an

observations sequence x. It iterates between the two following steps :

h̃ = argmax
h

p(c,h,�) (E-step)

�̂ = max
�=(µh,⌃h)

p(c, h̃,�) (M-step)

One can see that it is not (µ̂
h

) and covariances (⌃̂
h

) which are reestimated during

learning but the standard (stationary state) HMM means (µ
h

) and covariances (⌃
h

).

Actually, µ̂
h

and ⌃̂
h

are not real parameters, they can be computed from closed formed

formulas involving W and the standard HMM parameters. However µ̂

h

and ⌃̂
h

are

used during inference (E-step and decoding).

Unfortunately, imposing consistency constraints (eq 2.14) between static and dynamic

features during training is unacceptably costly (O(M3G3) where G is the total number

of Gaussian components (all models)).

In chapter 5, we will experiment and explain in more details a similar method (proposed

by [76]) to improve the synthesis quality of HMMs. Because the method from [76] do

not impose constraints (eq 2.14) during training but at synthesis time only, it does not

su↵er the computational overhead of Trajectory HMM training.

2.3.2.3 Parametric HMM

PHMM is another special class of non stationary state HMM where the Gaussian emis-

sion distributions are allowed to vary as a function of external (or contextual) variables.

In speech recognition, these contextual variables may represent information regarding

the speaker (gender, mother tongue, . . . ). In gesture recognition, it may be the height

or corpulence of the actor etc. . .

A first attempt at conditioning HMM emitting distributions on contextual variables

seems to be the work from [84] who proposed Parametric HMMs for gesture recognition.
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In PHMM, Bobick et al. expressed the Gaussian means as a linear function of a contex-

tual variable ✓:

p(x
t

| h
t

= j) = N (x
t

, µ̂
j

(✓),⌃
j

)

with:

µ̂

j

(✓) = V j

✓ + µ̄

j

where V j is a matrix of d ⇥ c coe�cients for state j (d being the dimension of the

observations and c the dimension of the external or contextual variable ✓) and µ̄

j

an

o↵set vector.

�

�� �� �� ��

�� �� �� ��

Figure 2.4: Parametric HMM as a Dynamic Bayesian Network

Reestimation of the mean parameterization can be done in a classic EM fashion simply

by maximizing of the auxiliary function Q (defined in 2.3.1.2)) with respect to the

parameters Y j = [V j

µ̄

j

]. The linear form of the dependency between the contextual

variable and the Gaussian mean induces closed form reestimation formulas which can

be written as :

Y j =

2

4
X

k,t

�
k,t,j

x

k

t

✓

k

T

3

5

2

4
X

k,t

�
k,t,j

✓

k

✓

k

T

3

5
�1

(2.16)

where �
k,t,j

= p(xk | h
t

= j)

Computing eq 2.16 requires inverting a d⇥(c+1) matrix. Yet if c = (d�1) (the dimension

of the contextual vector is the same as the dimension of the observation vector minus

one), this is not more computationally demanding than training a full Gaussian HMM.

The contextual variable ✓ is always observable (or known) at training time. At test time,

this may not always be the case. To this regard, Bobick et al showed in [84] how it can

be inferred. Once again, it involves maximizing the Q auxiliary function of HMMs with

respect to ✓. This procedure also yields closed form reestimation formulas because of
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the simple linear dependency between the Gaussian mean and the contextual variable:

✓ =

2

4
X

k,t,j

�
k,t,j

V j

T

⌃�1

j

V j

3

5
�1

2

4
X

k,t,j

�
k,t,j

V j

T

⌃�1

j

(xk

t

� µ̄

j

)

3

5 (2.17)

A very similar approach (Multiple Regression HMM, or MR-HMM) has been proposed in

([29]) for speech recognition, using fundamental frequency as external variable. Basically

MR-HMM may be viewed as PHMM with time dependent external variables ✓
t

.

A second class of models called Variable Parameter HMMs (VPHMMs) have been in-

troduced in ([17], [18]). In this approach, the means as well as the (diagonal) covariance

matrices are expressed as a polynomial function of a static scalar environment variable.

2.3.2.4 Input Output HMM

Input Output HMM (IOHMM) [5] and PHMMs share similar mechanism in the way

they parameterize HMM distributions using conditioning variables.

�� �� ���� ��

�� �� ���� ��

�� �� ���� ��

Figure 2.5: Input Output HMM as a Dynamic Bayesian Network

The main di↵erence lie in that IOHMM use time dependent conditioning variables (u)

as well as di↵erent kinds of parameterization. In their work, Bengio et al. proposed

to condition both the state transitions and labels distributions of HMMs using Neural

Networks.

Their architecture is composed of several output networks, and state networks which

are uniquely associated with a hidden state j.

First, the output network O
j

predicts the labels distribution at each time step for a

specific hidden state h
t

= j given an input u
t

.

p(y
t

| h
t

= i,u
t

)
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Secondly, the state network N
j

predict the distribution of the current hidden state h
t

for a previous hidden state h
t�1

= j given u

t

.

p(h
t

| h
t�1

= j,u
t

)

Finally, a softmax layer is used on top of the last layer of the state network to convert

its outputs units activations a
j

to state probabilities.

p(h
t

| h
t�1

= j,u
t

) =
exp(a

j

)P
k

exp(a
k

)

This ensures that the output probabilities sum to 1. Note that there are no weights to

learn in the softmax layer.

The whole system is jointly trained to maximize p(y | u) in a EM fashion just like a

HMM. However, there are no closed form reestimation when the conditioning functions

have non linearities like Neural Networks. In that case, training is performed via a

gradient based Generalized Expectation Maximization algorithm ([7]).

The flexibility of IOHMM make them suitable for tasks like classification, recognition,

or synthesis. In a classification setting, y
t

might be the class, u
t

the observation (x
t

) at

time t.

They have several advantages over simple HMMs. They can introduce non linear condi-

tioning on the state and output variables breaking the state stationarity. They can also

be considered to be discriminatively trained because we optimize over the conditional

likelihood of the class labels p(y | u) into a single model. Yet, in order to condition the

state distributions with external variables (not observations) alike PHMMs, IOHMM

need to define u

t

as the contextual variable (✓) and y

t

as the observation vector (x
t

).

This choice of modeling then result in a non discriminative training criterion.

Finally, this architecture can have a lot of parameters and may require a lot of examples

to be trained accurately. In [45], results indicate that HMMs outperforms IOHMMs on

a gesture recognition experiment. Training this architecture requires a lot of data if we

use complex functions such as Neural Networks to condition the transition and label

distributions. Using two Neural Networks per hidden state make this architecture prone

to overfitting and di�cult to tune.
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2.4 Discriminative Markov models

2.4.1 Conditional Random Fields

These di↵erent models partially alleviates some limitations of HMMs by relaxing sim-

plifying assumptions. However the framework of Hidden Markov Model is not particu-

larly suited for a pure classification task. Indeed, as a generative model, it maximizes

p(x, y) 8 x 2 X
y

independently for each class y. Yet, the only real task in classification

is to discriminate between the classes. That is, for a class y, we should maximize for

p(y/x) 8x 2 X
y

and consequently minimize over p(y0/x) for every other competitive

class y0 6= y, explicitly creating a gap between the probability of the true class and the

others. This is what Conditional Random Fields (CRF) exactly does.

Basically, a Conditional Random Field ([46]) is an undirected graphical model expressing

the joint probability of random variables (y) when globally conditioned on an other set

of random variables (x).

�� �� �� ���� ��

�� �� �� ���� ��

Figure 2.6: Simple example of a CRF with a chain structure

A node in the graph represents a variable which is dependent on its direct neighborhood

(the variables that are linked to it), but conditionally independent from all the oth-

ers variables conditioned on its neighborhood (Markov Blanket property in undirected

graphs).

From the Hammersley-Cli↵ord Theorem [35], the set of distributions consistent with

these conditional independence rules is the same as the set of distributions that can be

expressed as a factorization with respect to the maximal cliques of the graph (For recall,

a clique is subgraph defined as a set of strongly connected nodes such that there is a

link between every pair of two nodes).

We can then express the joint distribution of all variables y as a product of potential

functions  
C

over the maximal cliques (C) of the graph

p(y | x) = 1

Z

Y

C

 
C

(y
C

,x) (2.18)
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where Z is a normalization constant (partition function) which ensures that the distri-

bution p(y | x) remains a valid distribution. It is given by :

Z(x) =
X

y

Y

C

 
C

(y
C

,x)

Potential functions  
C

are not constrained to be true probabilities, but they need to

satisfy  
C

(x) � 0 to ensure p(y | x) � 0. They can be defined as a dot product between

a parameter vector �
C

and a feature map �
C

corresponding to a particular clique C :

 
C

(y
C

,x) = exp(h�
C

,�
C

(y
C

,x)i)

where

h�
C

,�
C

(y
C

,x)i =
KX

k=1

�
k

f
k

(y
C

,x)

- with �
C

= [�
1

, . . . ,�
K

]T

- and �
C

(y
C

,x) = [f
1

(y
C

,x), . . . , f
K

(y
C

,x)]T

Finally, we can rewrite equation 2.18 as :

p(y | x;⇤) = 1

Z
exp

"
X

C

h�
C

,�
C

(y
C

,x)i
#

(2.19)

where ⇤ is the full parameters set of the model (concatenation of the C cliques parameter

vectors �
C

)

The shape of the feature functions f
k

essentially depends on the problem. They can be

boolean or real valued. In Part Of Speech TAGging (i.e. the task of labeling each word

of an input sequence with a tag), common features can be the presence or absence of an

uppercase letter, the presence of particular tags in a clique etc . . .

One can see in equation 2.19 that the conditional likelihood of p(y | x;⇤) involves

the summation of scores. However unlike in HMMs, these scores are not constrained

to be true probabilities, instead, the normalization occurs at the global level of the

computation by a rescaling factor 1/Z. In fact, in [48], LeCun et al. advocate that for

pure classification tasks, this is an unnecessary burden to constraint the distributions to

be true probabilities.

When the graph is a chain or a tree, exact inference (i.e. finding the most probable

sequence of labels) :

argmax
y

p(y | x;⇤) (2.20)
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can be handled via Viterbi or Forward Backward algorithms analogous to the one used

in HMMs ([75]). In general graphs however, exact inference is not possible, but loopy

belief propagation can be employed to give an approximation ([60]). This is why, in

sequence labeling problems, one often assumes a linear chain structure (as shown in

Figure 2.6). This simpler topology involves two types of cliques :

- local cliques relating an observation x

t

to its current label y
t

. They are described

by a vector of parameters �loc and a feature map �(x
t

, y
t

).

- transitions cliques relating two successive labels y
t�1

and y
t

. We note �

trans their

parameter vector and �(y
t�1

, y
t

) their feature map.

If the observation sequence has length T , there are T local cliques and T transition

cliques, however, it is a common practice to share their parameters along time to limit

overfitting problems. Hence, the conditional probability 2.19 can be written as :

p(y | x;⇤) = 1

Z
exp

"
X

t

h�loc,�loc(x
t

, y
t

)i+
X

t>1

h�trans,�trans(y
t�1

, y
t

)i
#

(2.21)

Training can be done by minimizing the expected negative log conditional likelihood on

the training set, which is convex :

L(⇤) = �ED
train

[log p(y | x;⇤)] (2.22)

2.4.2 Hidden Conditional Random Fields

Initially, Hidden CRF (HCRF) have been proposed as an extension of CRFs for dealing

with more complex and structured data [34]. Indeed in CRF-based systems, there is

usually one state per class (e.g. a POS tag) while there are several states corresponding

to a given class in HRCF, alike in HMMs. The presence of several hidden states per

label gives HCRF a clear advantage over CRF to model complex distributions.

Hence HCRF have been applied to signals such as gestures and images [65], handwriting

[80] [23] , speech [74] [34] [68] or eye’s movements [22] whether for signal labeling or

classification tasks. Figure 2.7 gives an example of such a network.

Alike HMMs when used in sequence labeling problems, a label y is assigned a set of

hidden states S
y

. As a result, to a sequence of labels y = (y
1

, . . . , y
T

) corresponds a

state sequences h = (h
1

, . . . , h
T

) 2 ST (where S is the union of S
y

for all classes). We

will note s(y) the set of all possible state sequences that correspond to a particular

sequence of labels y.
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Figure 2.7: HCRF with a chain structure

The conditional probability of HCRFs can then be written as :

p(y|x;⇤) =
X

h2s(y)

p(y,h | x;⇤) (2.23)

Compared to the eq 2.18 of CRFs, we now sum over all possible states sequences h

which implies that the loss L(⇤) (eq 2.22) is no more convex.

To make the model tractable, HCRFs often consider a Markov network with transition

cliques involving two successive hidden states and local cliques relating an observation

and a hidden state at time t as discussed before.

In that case, the joint probability of a hidden state sequence and its corresponding

sequence of labels is given by :

p(y,h | x;⇤) = 1

Z
exp

"
X

t

h�loc,�loc(x
t

, h
t

) +
X

t>1

h�trans,�trans(h
t

, h
t�1

)i
#

(2.24)

Where Z =
P

y

P
h2s(y) p(y,h | x;⇤) is a normalization term.

One can see the similarity between the expression 2.24 and the conditional probability

of standard CRFs exposed in equation 2.21. In fact the hidden state sequence in HCRFs

plays the role of the label sequence in CRFs.

Hence, finding the best hidden state sequence argmax
h2s(y)p(h | y,x;⇤) or marginaliz-

ing out the hidden states sequence
P

h2s(y) p(y,h | x;⇤) can also be done with similar

Viterbi and Forward Backward algorithms as employed in linear chain CRFs.

Note that because we have chosen to encode a direct correspondence between a hidden

state and a label, and because we did not defined any cliques between the labels, inferring

the most likely sequence of labels :

argmax
y

p(y | x;⇤) (2.25)
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can be e�ciently found by simply computing the best hidden state sequences via Viterbi

argmax
h2ST

p(h | x;⇤) (2.26)

2.4.2.1 Training HCRF by maximizing the conditional likelihood

Training is performed through minimization of the expected negative log conditional

likelihood on the training set which is non convex :

L(⇤) =� ED
train

[log p(y | x;⇤)]
=�

X

(x,y)2D
train

log
X

h2s(y)

p(y,h | x;⇤) (2.27)

There is no closed form reestimation of the parameters, so gradient descent must be

employed. For ease of reading, we assume a single sequence in the dataset. Then

the gradient of L(⇤) with respect to the parameters of the local cliques �

loc and the

parameters of the transition cliques �trans are given by :

@L(⇤)
@�loc

i

=�
X

h2s(y)

p(h | y,x)
TX

t=1

�(x
t

, h
t

= i)

+
X

h

02ST

p(h0 | x)
TX

t=1

�(x
t

, h0
t

= i)

@L(⇤)
@�trans

i!j

=�
X

h2s(y)

p(h | y,x)
TX

t=2

�(h
t�1

= j, h
t

= i)

+
X

h

02ST

p(h0 | x)
TX

t=2

�(h0
t�1

= j, h0
t

= i)

When optimizing L(⇤), the gradient with respect to the parameters ⇤ actually contains

two terms. The first term pushes down the energy (or negative likelihood) of the good

labeling y while the second term, pulls up the energy of all labelings. By doing so, the

optimization creates an explicit gap between the likelihood of the correct labeling and

incorrect ones.

2.5 Conclusion

We have exposed here two families of Markovian model for time series modeling.
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First, generative HMMs provide several interesting possibilities to capture the variability

of observation sequences :

- On the one hand, Trended and Trajectory HMMs use non stationary state distribu-

tions while they rely on two di↵erent approaches. The Trended HMM models ob-

servations as a polynomial function of the state sojourn time whereas the Trajectory

HMM introduces constraints between static and dynamic features during training.

- On the other hand, InputOutput and Parametric HMMs condition the state distribu-

tions with external variables which also results in non stationary state distributions.

Yet, compared to other approaches the formulation of Parametric HMMs has several

advantages. The simplicity of its parameterizations make them easier to train and less

prone to overfitting than InputOutput HMMs while they do not su↵er major complexity

problems alike Trended or Trajectory HMMs. Moreover, it seems reasonable to think

that an important part of the variability in observation sequences is indeed the conse-

quence of a few external variables.

Secondly, discriminative models like HCRFs seems more suited to pure classification

tasks. By optimizing the conditional likelihood p(y | x) they explicitly create a gap

between the probability of the correct labeling and incorrect ones. Unfortunately, be-

cause they do not model the data distribution, they lack the modeling ability of previous

methods and their capacity for synthesis.

In the following, we will present the framework of Contextual Hidden Markov Models

(CHMM). Starting from the formulation of Parametric HMM, CHMM will propose new

ways to influence the HMM distributions with contextual variables that may remain fixed

or change along the observation sequence. Subsequently we will show how the similarity

between HCRFs and CHMMs o↵ers a simple and e�cient way to incorporate contextual

modeling into a pure discriminative model, the Contextual Hidden Conditional Random

Field. Finally, our experiments will show how this better modeling capacity can translate

into performance for various tasks.
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3.1 Introduction

One topic we are concerned with in this study is how to handle variabilty. In HMMs (as

well as in HCRFs) states are mutually exclusive so that it requires K states to get K

di↵erent output distributions. The most popular approach to handle variability consists

in increasing the number of states, in increasing the size of Gaussian mixtures in HMMs,

in using context dependent unit (e.g. phone) models. These ideas are easy to implement

but this quickly leads to too numerous parameters yielding over-fitting. To overcome

this di�culty the speech recognition community has focused on di↵erent ways to tie

parameters. Parameters can be shared between states which are acoustically indistin-

guishable ([41], [86], [66]). Another strategy is to tie parameters at the distribution level

([3], [63]). A pool of Gaussian is shared inside a model (partially tied), or across all

models (fully tied). Yet these strategies allow capturing a local variability only, while

keeping the number of parameters limited.

Our starting point is an alternative approach for handling variability. We assume that

an important part of the variability between observation sequences may be modeled by a

few contextual variables (which may be hidden or observed) that remain fixed all along

a sequence or that vary slowly with time. For instance a sentence may be uttered quite

di↵erently according to the speaker emotion. A gesture may have more amplitude if it

is performed slower, and its overall shape depends on the weight and on the height of

the performer. Such a variability cannot always be removed through preprocessing or

normalization and would not be captured accurately by the classical approaches above.

Yet such a variability would benefit from a specific handling in HMMs.

Few researchers have tackled this problem by designing a HMM whose probability distri-

bution depends on contextual variables (i.e. the context, that we note ✓). [84] proposed

Parametric Hidden Markov Models where the means of Gaussian distribution vary lin-

early as a function of the context. As the output distribution depends not only on

the state but also on the context, a model may express many distribution with a lim-

ited number of additional parameters. [89], [18] and [29] investigated rather similar

approaches.

All these approaches di↵er by the nature of the dependency of HMM parameters to

context variables, the ability to deal with dynamic context variables, i.e. evolving with

time, the ability to infer context variables at test time.

We build here upon these pioneer works and propose contextual extension of HMMs. We

first extend parametric HMMs of [84] and we propose Contextual Hidden Markov models

(CHMMs) that rely on the parameterization of the probability distribution of a HMM

(i.e. means and covariances matrices instead of means only in [84]) by a set of contextual
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variables that may vary in time. Than, we show how the transition probability between

states can also be parameterized.

In the following sections, we first motivate and introduce our modeling framework for

generative models and detail the definition and the learning of our Contextual HMMs.

We focus first in section 3.2 on the case of single Gaussian CHMM when ✓ is static and

remain fixed all along a sequence. Then we discuss in sections 3.3.3-3.3.4, two variants,

dealing with dynamic ✓ and using Gaussian mixtures.

Next, we discuss the fundamental di↵erences between CHMMs and similar approaches.

Finally, we present experimental results showing the benefits of such modeling.

3.2 Single Gaussian Contextual HMM

We expose here the parameterizations that can be employed in the Contextual HMMs.

Such a modeling allows the HMM distributions to vary according to a contextual vari-

able. We first begin by introducing the parameterization of Gaussian means, which has

already been proposed by Bobick et al. in [84] under the name of Parametric HMMs.

Next we move on to show how the Gaussian covariances, and transition probabilities

can also be parameterized.

3.2.1 Mean parameterization

Assume that for any observation sequence x = (x
1

, ...,x
T

), where x
t

’s are d-dimensional

feature vectors we are given a set of contextual variables ✓ which is a vector of dimension

c. ✓ might be the age and gender of a speaker for speech signals, or a set of physiological

features such as height and weight for gestures, or some quantities that are computed

from the input sequence x such as its length.

We first define the mean µ̂

j

(d-dimensional vector) of the Gaussian distribution in state

j to be a linear function of ✓. In order to keep notations compact we consider an

augmented ✓ vector with all contextual variables plus a last additional component equal

to 1. Hence, from now on, ✓ is a c-dimensional vector ✓ = [Contextual variables, 1]T

with (c� 1) contextual variables and a cth component equal to 1. We consider that the

mean in state j is defined as:

µ̂

j(✓) = Y j

✓ (3.1)
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where Y j is a d⇥ c matrix.

The above formulation is equivalent to writing

µ̂j(✓) = V j

✓ + µ̄

j (3.2)

with V j , µ̄j and Y j being related by: Y j =
⇥
V j

µ̄

j

⇤
.

The vector µ̄

j

is d ⇥ 1 o↵set vector which may be viewed as an average mean vector

(eventually obtained from a traditionally learned HMM) that is modified by the linear

transform part.

As we already pointed, mean parameterization of Single Gaussian HMMs has already

been proposed by Bobick et al. in [84] as Parametric HMMs (PHMM). For clarity

however, we will note µCHMM contextual HMMs when only mean vectors depend on ✓

or µ⌃CHMM when mean vectors and covariance matrices depend on ✓.

3.2.2 Covariance parameterization

We go further by parameterizing covariance matrices as well. While some authors have

proposed to define similarly diagonal covariance matrix that depends on external vari-

ables ([89]) we propose a full covariance parameterization scheme. Actually we want

the covariance matrix ⌃̄ to be modified in such a way that each of its component ⌃̄
u,v

is transformed into ⌃̄
u,v

⇥ ↵
u

⇥ ↵
v

where ↵ values depend on contextual variables ✓.

This allows providing an additional but limited degree of freedom to the model, allowing

more expressive power while limiting over-training risk. This may be done according to:

⌃̂j(✓) = Dj(✓)⇥ ⌃̄j ⇥Dj(✓) (3.3)

with Dj(✓) = diag(exp(Zj

✓))

where ⌃̂j is the d ⇥ d covariance matrix in state j, ⌃̄j is a ✓ independent covariance

matrix that is transformed by the above operation (it may be for instance initialized as

a matrix learned in a standard HMM), Zj is a d⇥ c matrix with the same shape as for

the mean parameterization. Actually one may see Zj as Zj =
h
U j f⌃j

i
where U j is a

d ⇥ (c � 1) matrix, f⌃j is a d ⇥ 1 o↵set vector and ✓ is the same vector as before with

a last component which is systematically equal to 1. Here we note the exponential of a

matrix A, exp(A), to be the matrix of the exponential function applied component-wise

to all elements of A, and we note diag the function transforming a vector to a diagonal

matrix. The use of the exponential function ensures elements of Dj(✓) to be strictly

positive, which makes ⌃̂j(✓) a valid covariance matrix provided ⌃̄j is one.
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At the end, as expected, the shape of the covariance matrix makes the term at uth row

and vth column equal to:

⌃̂j

u,v

(✓) = Dj

u,u

(✓)⇥Dj

v,v

(✓)⇥ ⌃̄j

u,v

(✓)

Figure 3.1 shows the e↵ect of such a parameterization on the shape of a covariance

matrix in a two dimensional data space. An original covariance matrix (upper left

figure) is modified by various D matrices yielding three new covariance matrices (three

other plots). Here each of the four covariance matrices is illustrated by few curves of

isoprobability (ellipses).

Figure 3.1: Examples of the parameterization of a covariance matrix in Eq. (3.3)
on 2-dimensional data. An original covariance matrix (Top left) is transformed with
various D matrices: D = diag([1 2]) (Top right), D = diag([2 0.9]) (Bottom left),
D = diag([0.8 3]) (bottom right). Each covariance matrix shape is illustrated by ellipses

corresponding to isoprobability curves.

3.2.3 Transitions parameterization

Finally, transition probabilities also play a role in modeling the data in HMM. We might

also want to parameterize the state transition probabilities by a contextual variable so

that it may increase the fitness of the model to a particular observation sequence. Indeed,

because each observation sequence can be defined by a di↵erent context, it may be better

to use di↵erent state probabilities as opposed to using shared transition probabilities for

all observation sequences in a specific class. In this case, we define the state transition

distribution a
i,j

from ith state to jth state at time t by :

â
i,j

(✓) =
exp(log ā

ij

+w

T

ij

✓)
P

k

exp(log ā
ik

+w

T

ik

✓)
(3.4)

with ā
ij

the original transition probabilities from state i to state j in a HMM or a

CHMM without transition parameterization
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and w

ij

a weight vector the same dimension as ✓.

It is interesting to note that CHMM subsumes standard HMM (with means µ̄j , covari-

ance matrices ⌃̄j and transition probabilities ā
ij

) by setting V j and U j to null matrices

and by setting f⌃j and w

ij

to null vectors.

3.2.4 Bayesian perspective

In CHMMs, the influence of the contextual variables over of emitting and transition

distributions can be represented as the following graphical model

��

��

��

��

��

��

��

��

��

�� �� ��

Figure 3.2: Bayesian representation of Contextual HMMwhen emitting and transition
probabilities are parameterized by a dynamic contextual variable ✓t

This is to oppose to simple Parametric HMMs where the contextual variable is time

independent and can only influence the Gaussian mean of hidden states (graphical model

shown in figure 2.4).

At training time, the contextual variable ✓ is given (or observable) but this may not

always be the case at test time. To this regard, Bobick et al. showed in [84] how the

contextual variable ✓ can be inferred (see 2.3.2.3).

In CHMMs, it is also possible to infer the contextual variable at test time. However,

there are no closed form solutions owing to the new kinds of parameterizations (for

transitions probabilities, and Gaussian covariances). Additionally, the use of dynamic

contextual variables would require inferring ✓

t

for each time step. Hence, CHMM will

be employed with a given context at test time.

3.3 Training

We consider we get a set of training sequences along with their labels (i.e. classes) and

their context variables
�
(xk, yk,✓k|k = 1..N)

 
.
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Training consists in modifying the matrices Y j , Zj and vectorsW
ij

so as to maximize the

likelihood of the training sequences. Optimization is carried in EM style as for standard

HMMs. To learn µCHMM, we use the closed form re-estimation formula detailed in

previous sections in a standard EM setting. Yet when learning a µ⌃CHMM there does

not exist closed form re-estimation formula for parameters on covariance matrices so

that we resort to use gradient ascent in the M step of every EM iteration.

3.3.1 With covariances parameterized

Learning a µ⌃CHMM is performed in few successive steps that we describe now.

• First, we learn a µCHMM with parameterized means only, which is equivalent

to learning a Parametric HMM as proposed by Bobick et al. in [84]. This may

be done by using the following closed form re-estimation formulas (proofs can be

found in [84]) :

Y j =

2

4
X

k,t

�
k,t,j

x

k

t

✓

k

T

3

5

2

4
X

k,t

�
k,t,j

✓

k

✓

k

T

3

5
�1

(3.5)

⌃j =

P
k,t

�
k,t,j

(xk

t

� µ̂

j

(✓k))(xk

t

� µ̂

j

(✓k))
T

P
k,t

�
k,t,j

(3.6)

where we use the usual HMM notation for �
k,t,j

, that stand for �
k,t,j

= p(h
t

=

j|xk, yk).

• Then, for every state j, we set ⌃̄j = ⌃j

• Second, we fix all model parameters and we re-estimate Zj only.

We initialize Zj = 0 which allows starting from the covariance matrix obtained in

first step : ⌃̂j(✓) = ⌃j

Re-estimation of Zj is performed via the Generalized Expectation Maximiza-

tion (GEM) algorithm, by computing the derivative of the auxiliary function Q

of the HMM with respect to Zj and doing a gradient ascent. We recall that

Q(⇤,⇤0) = E
h|x,⇤0 [logP (x,h | ⇤)] where ⇤0 stands for the current set of the

CHMM parameters while ⇤ stands for the updated values of the CHMM parame-

ters.

Omitting details one can show without di�culty that :

@Q

@Zj
=
X

k,t,i

Mk,t,j
i,i ⇥ @Dj

i,i(✓
k)

�1

@Zj
(3.7)
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with M
k,t,j

=

�k,t,j


Dj(✓k)� ⌃̄j�1

Dj(✓k)
�1

(xk
t � µ̂

j(✓k))(xk
t � µ̂

j(✓k))T
�

where
@Dj

i,i

(✓k)
�1

@Zj

m,n

=

8
<

:

�✓

k

n

D

j

i,i

(✓

k

)

if i = m

0 otherwise

We do not perform simultaneous optimization of means and covariance matrices param-

eterization (Y j and Zj) since it appears to bear some di�culties during optimization.

Instead we investigated here a sequential optimization of these two sets of parameters.

Yet one could imagine to iterate these two steps leading to a kind of coordinate ascent

optimization routine but we did not investigate this up to now.

3.3.2 With transitions parameterized

The scheme to train a transition parameterized CHMM is similar to the training of

covariance parameterization. As there is no closed form solution for reestimating w
ij

,

we proceed in two steps.

• First we learn a HMM or a CHMM

• Then for every transition ij between state i and j

set ā
ij

with the transition probability learned in previous step.

set w
ij

= 0 which allows starting from the transition probabilities obtained in first

step.

reestimate w

ij

with GEM by computing the derivative of Q with respect to w

ij

and perform gradient ascent.

It can be shown that the gradient of Q with respect to w

ij is given by :

Q

w

ij

=
X

k,t

2

4�
i,j,t,k

�
X

i

¯

j,t,k

â
i,

¯

j

(✓k)

3

5
✓

k (3.8)
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3.3.3 Dynamic context

Now suppose ✓ depends on time, for instance it may be an estimation of the instanta-

neous speed of a gesture, an estimation of fundamental frequency in a speech signal, etc.

We then use the following definitions :

µ̂j(✓
t

) = Y j

✓

t

⌃̂j(✓
t

) = Dj(✓
t

)⇥ ⌃̄j ⇥Dj(✓
t

)

â
i,j

(✓
t

) =
elog āij+w

T

ij

✓

t

P
k

elog āik+w

T

ik

✓

t

It is straightforward to show that the re-estimation formulas Eq.(3.5)(3.6)(3.7)(3.8) ap-

ply if one changes systematically ✓ to ✓

t

. New re-estimation formulas are then simple

extensions of Eq.(3.5)(3.6)(3.7)(3.8). For instance, the closed form solution for Y j be-

comes:

Y j =

2

4
X

k,t

�
k,t,j

x

k

t

✓

k

t

T

3

5

2

4
X

k,t

�
k,t,j

✓

k

t

✓

k

t

T

3

5
�1

3.3.4 Gaussian mixtures

Extending single Gaussian models to Gaussian mixture modeling may be done easily.

The new pdf of lth Gaussian in state j is then defined as :

µ̂j,l(✓
t

) = Y j,l

✓

t

⌃̂j,l(✓
t

) = Dj,l(✓
t

)⇥ ⌃̄j,l ⇥Dj,l(✓
t

)

There is no di�culty to derive new re-estimation formulas similar to (3.5), (3.6), (3.7)

by adding a component index l to all necessary quantities.

3.3.5 Tuning the gradient step size

For covariance or transitions parameterizations, we use a gradient ascent procedure.

Hence training CHMMs with theses types of parameterizations require setting an appro-

priate gradient step size. It is a di�cult procedure and generally the step size is chosen

after several trials and errors on validation data. On the other hand, one can use an
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easier approach known as linesearch. Basically linesearch test several gradient step sizes

and choose the one that improves the best the likelihood of the data under the model.

In our implementation given below, linesearch is a recursive process which cuts the step

size space into pieces and recursively do so for a maximum depth. At each recursion

level, we evaluate all the step sizes.

Of course, linesearch is much more computationally expensive than choosing the gradient

step size at hand. First because it requires computing the likelihood of training sequences

(or a bunch of them) for each gradient step, and secondly because it evaluates several

step sizes recursively. Hence, we only used this procedure (on smaller validation data)

as a tool to find an acceptable value for the gradient step size.
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Algorithm 1 step size linesearch

1: current energy  compute energy(model) // average negative loglikelihood of the
training data

2: eta initial  0.001
3: depth  1
4: etas  [0 1 2 3 4] ⇥ eta initial
5: energies  [ current energy nan nan nan nan ]
6: function [eta, energy]=Linesearch(model, gradient, etas, energies, depth)
7: // save the initial unupdated model
8: old model  model
9: for k  1 to 5 do

10: // retrieve the initial model
11: model  old model
12: if isnan(energies(k)) then
13: // make gradient update with etas(k) on model parameters
14: model  updateParameters(model, etas(k))
15: // compute the new energy of this update
16: energies(k)  compute energy(model)
17: end if
18: end for
19: // select the minimum energy update
20: k  min(energies)
21: if depth > 0 then
22: if k = 1 then
23: // create 4 new evenly spaced etas between two values
24: etas  linspace(etas(1), etas(2))
25: energies  [ energies(1) nan nan nan energies(2) ]
26: else if k = 5 then
27: // create 4 new evenly spaced etas between two values
28: etas  linspace(etas(1), 4⇥(etas(5)-etas(1)))
29: energies  [ energies(1) energies(5) nan nan nan ]
30: else
31: // fit a two degree polynomial on etas/energies values
32: // compute the value at the minimum for eta
33: eta min  quadraticLineSearch(etas, energies)
34: etas  [ etas eta min ]
35: energies  [ energies nan ]
36: // sort energies and etas by ascending eta values
37: [ energies, etas ]  sort(energies, etas)
38: end if
39: else
40: eta  etas(k)
41: energy  energies(k)
42: end if
43: // recursive call to the next level of linesearch
44: [ eta, energy ]  LINESEARCH(model, gradient, etas, energies, depth -1)
45: end function
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3.4 CHMM relative to similar approaches

Handling variability is a major focus when dealing with sequences and signals. Variabil-

ity may be the consequence of various e↵ects that may be eventually combined. As a

consequence, one may distinguish between di↵erent kinds of variability.

For instance a speech signal is fundamentally di↵erent if the speaker is a male or a female,

and two speakers utter di↵erently a same word. This variability is usually modeled by

multiplying models, e.g. by exploiting one model for male speakers and one model for

female speakers.

There is a more fine-grained variability in that a single speaker never utters exactly the

same way a single word. Also a human will never perform the same gesture exactly the

same way. Such a variability depends on many factors that are usually unknown, like

the emotion, the physical state, etc. This variability may be handled by increasing the

number of Gaussian in Gaussian mixtures. Going further, there is another variability

which is related to noise, to the recording material etc, this is usually handled through

a preprocessing step which aims at removing this variability.

While there are historically standard ways to handle such kinds of variability, a number

of other approaches have considered the benefit of explicitly including their modeling in

the framework of markovian models. We introduce them here and discuss their di↵erence

compared to CHMMs.

3.4.1 Variable Parametric HMMs

A first attempt for conditioning HMM parameters on environment variables seems to be

the work from [84] who proposed Parametric HMMs (PHMMs) for gesture recognition,

context variables were related to the amplitude of the gestures. As we already said our

modeling framework includes PHMM as a special case when ignoring parameterization

of covariance matrices and transitions. A very similar approach (Multiple Regression

HMM, or MR-HMM) has been proposed in [29] for speech recognition, using fundamental

frequency as context variable. Basically MR-HMM may be viewed as PHMM with time

dependent context variables ✓. These models are again embedded in our framework.

A second class of models called Variable Parameter HMMs (VPHMM) are closely related

to our approach. This type of model has been introduced in [18], [17]. It was proposed

in the context of speech recognition to improve robustness to noisy conditions. In this

approach, the means as well as the (diagonal) covariance matrices are expressed as a

polynomial function of a static scalar environment variable v:



Chapter 3. Contextual Hidden Markov Models 57

µ̂
s

(v) =
X

j

w

s,j

vj

⌃̂
s

(v) = ⇤(v)⌃̂
s

where w

s,j

= [w
s,j

(0) . . . w
s,j

(D)]T is a D dimensional parameter vector modifying the

Gaussian mean in state s

vj is the scalar environment variable raised at the jth power exponent

and the scaling matrix ⇤(v) is expressed as :

⇤(v) =

0

BB@

e
P

j

z

s,j

(0)v

j

0
. . .

0 e
P

j

z

s,j

(D)v

j

1

CCA

where z

s,j

= [z
s,j

(0) . . . z
s,j

(D)]T is a D dimensional parameter vector modifying the

Gaussian covariance in state s

In [89], Deng et al refines VPHMM using piecewise spline interpolation instead of poly-

nomial regression and handle time dependent environment multi dimensional variable

v

t

.

It must be clear that that our approach already handle dynamical multi dimensional

contextual variables. Additionally, CHMMs can easily use a P order polynomial re-

gression simply by augmenting the contextual variable ✓ with its power exponents :

✓ =
⇥
✓

1,✓2, . . . ,✓P

⇤
T

.

Also compared to these works, our approach has several advantages. First we propose a

parameterization of the transitions which is not the case of VPHMM. Secondly, we devise

a full covariance matrix parameterization where they provide a diagonal one. Lastly,

in VPHMM the parameterization of the emission distribution make each dimension of

the observation to depend only on a single dimension of the contextual variable. This

makes VPHMM not suited to exploit vector typed variables such as emotion, gender

etc...typically encoded as a variable of several dimensions. In this case, each dimension

of the observation should depend on “every” dimension of the contextual variable.

3.4.2 Maximum Likelihood Linear Regression

There is another well known approach that resemble our framework. It allows the

adaptation of a standard HMM means and covariances. Maximum Likelihood Linear
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Regression (MLLR) has been made popular as a speaker adaptation technique in speech

recognition. Generally, there is not enough utterances of a single speaker to estimate the

parameters of a speech recognition system, so, a speaker independent model is trained

on the utterances of many speakers. However, it is well known that speaker dependent

models are more accurate if one have enough data for each speaker. Hence, once a

speaker independent HMM is trained, one can reestimate its means and covariances for

a specific speaker.

To do so, one has to maximize the likelihood of the speaker adaptation data with respect

to the following transforms parameters.

µ̂ = W
s

⇠

s

⌃̂
s

= H
s

⌃̄
s

HT

s

where W
s

is linear transform (d ⇥ d + 1 matrix) for the hidden state s of the original

HMM. ⇠
s

= [1, µ
1

, . . . µ
n

]T is the extended mean vector of the original HMM in state s.

One can see that the mean transform of MLLR is a special case of CHMM where the

contextual variable ✓ would be a static vector equal to the mean of the original HMM.

The variance transform has also a similar shape compared to eq (3.3) however, it is not

directly comparable as the matrix H can be full and does not depend on any variable.

The paradigm of MLLR is however much more restricted than CHMM. In fact, it is

restricted to posterior means and variances adaptation of the original HMM means

and variances. On the contrary, CHMMs can learn means, transitions and variances

transforms that use any kind contextual information ✓. Furthermore, CHMMs do not

require retraining on separate a dataset to learn its transforms.

3.4.3 Context dependent modeling

For most of signal labeling tasks such as the recognition of speech, gesture or handwrit-

ing, there is another well known variability which comes from some transitional e↵ect.

This is the usual coarticulation e↵ect in speech where the realization of a phone depends

on the previous and of the next phone. A similar phenomenon arises in handwriting

too, it is called ligature, when the beginning of the writing of a letter depends on the

previous letter and the ending of its writing depends on the letter to come. Handling

such a variability has particularly been investigated in the speech recognition literature

first, e.g. [49] used right context dependent phone HMMs while [53] investigated the use

of triphone models (one phone model for every context of a previous and a next phone).



Chapter 3. Contextual Hidden Markov Models 59

To overcome the problem of learning many such triphone models, i.e. to improve gen-

eralization, various strategies have been proposed to cluster the possible contexts using

expert knowledge. Such a strategy has more recently been exploited in the handwriting

recognition field when [6] used a trigraph model for Arabic handwriting recognition,

i.e. one model for every character and for every context of the previous and the next

character. Our approach and the related works that we have described in this section

probably cannot be straightforwardly used to handle such a variability. We rather view

the two approaches, using models exploiting contextual information and using models

for every context, as probably complementary, i.e. meaning that they could and should

be combined easily and with benefit.

3.5 Application to the classification of handwritten char-

acters

We now investigated the behavior of standard HMMs and CHMMs on an isolated o↵-line

handwritten character classification, using a part of the IAM dataset [77]. This appli-

cation only deal with mean and covariance parameterized Contextual Hidden Markov

Models, parameterization of the transitions is discussed in chapter 5.

3.5.1 Dataset

Every sequence is an image of an isolated handwritten character which is pre-processed

and represented at the end as a sequence of 9-dimensional observation vectors.

Precisely, the observation vector computes geometric features extracted on a sliding

window of 1 pixel width over the character image. Theses geometric features include :

- The proportion of black pixels in the sliding window.

- The first and second order moments of black pixels

- The lower and upper contour positions with their respective derivatives

- The number of transitions from black to white pixels.

- The proportion of black pixels separating upper and lower contours.

Figure 3.3: Examples of characters ’m’ and ’e’ extracted from IAM dataset
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The average length of all the sequences in the training set is approximately 42 time-steps

with a min of 8 and a max of 155. The data are normalized so that every feature has

mean 0 and variance 1 on the training set.

3.5.2 Preliminary results

We first report preliminary results on CHMMs gained on one fold while we report later

more significant results gained through 12 folds for CHMMs. In every fold, there are

200 sequences for training, 50 for validation and 50 for testing, for each of the 23 classes

(i.e. lowercase), 3 classes have been removed because they were under represented.

In the following HMMs and CHMMs are left right models without skip, all models

exploit full covariance matrices. µCHMMs and HMMs were trained up to convergence

with a maximum of 150 EM iterations. The training of µ⌃CHMM with covariance

parameterization had an additional 150 GEM iterations with one gradient iteration every

M step. In both cases, model selection is performed as the set of character models, at

a given iteration, that performs best on the validation set. Note that the complexity of

learning µ⌃CHMM is slightly increased, it should be about twice the cost of learning

µCHMM but we observed it was slightly less in practice.

Initialization of HMMs and of CHMMs is performed according to a linear alignment of

training sequences on the left-right models: every training sequence is divided into a

number of consecutive segments of equal length, one segment per state. Re-estimation

formulas are then used with this linear alignment. In case we use Gaussian mixtures,

means and covariance matrices of a mixture are initialized by Kmeans on the set of all

observations aligned with the state.

First of all we report in figure 3.4 the performance of standard HMMs wrt the size of

Gaussian mixtures. The accuracy in test increases up to a plateau while accuracy still

increases on training set, showing the di�culty of learning more complex models.

Next we investigate the use of a contextual information. We explore few definitions of

contextual variables ✓ and we focused in our experiments on information that may be

computed directly from the observation sequence while other type of information (gen-

der, age, etc) could be used as well (but are not always available). We first investigate

the mean
P

t

x

t

(d dimensional vector noted ’µ’) and the variance of features vector (d
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dimensional vector noted ’�2’) computed on the full sequence.1 We have actually ob-

served that such an information may be used with great benefit in CHMMs. Although

it looks like it could be taken into account in a standard preprocessing (normalization)

step such a strategy do not work (see below table 3.1). We believe the reason is that

in CHMM, one learns simultaneously (optimally) the HMM parameters and the way it

uses such a global information.

To explore the possibility to extend the approach to sequence labeling (when one wants

to predict a sequence of labels for a sequence of observations, like e.g. in speech recog-

nition), we investigated the use of dynamic and local contextual variables. A number

in parenthesis su�xing a context variable name, like ’µ(31)’, means that ✓ is a func-

tion of time and is averaged over a window of 31 frames centered at current time (e.g.

✓

t

= mean(x
t�15

, ...,x
t+15

)). The idea is that in a sequence labeling task, such a

dynamic and local mean may convey the same kind of information that the global in-

formation conveys for sequence classification.

We report in figure 3.5 results using contextual parameterization of the means only

(µCHMM), and of means and covariance matrices (µ⌃CHMM), with static and dynamic

✓’s. In this figure, CHMMs are single Gaussian models (with 8 states) and ✓ is defined as

the vector of variances of frame features, computed on the whole sequence or locally on

a sliding window of increasing size (abscissa). As may be seen, all CHMMs with either

static ✓ or dynamic ✓

t

improve over standard single Gaussian HMMs (60.5% accuracy).

Although static ✓ work well, finding a good set up of dynamic ✓ (e.g. window size) is

harder. Yet equivalent or slightly better results may be obtained with dynamic variables,

meaning that one can expect the extension of this framework to signal labeling (where a

static ✓ is less relevant) to work well. Finally, note that the covariance parameterization

gives an additional improvement over mean only µCHMMs.

Figure 3.6 reports similar results but this time ✓ = µ or ✓ = µ(t). We can observe

similar trends. As before, CHMMs outperform single Gaussian HMM but, more inter-

estingly, single Gaussian CHMMs outperform the best HMM models whatever the size

of Gaussian mixtures.

1More intuitively relevant contextual information could be used. For instance one can easily imagine
that the mean of the absolute derivative of feature vectors should bring some useful information about
the speed of a gesture, the speech rate... it should be high if a gesture is performed quickly meaning it
will probably have less amplitude, or if a word is spoken quickly meaning few phones will be shortened...
The reason why we report results gained with the mean and the variance of features in this section is
that these contextual variables have been shown to consistently improve over HMM performances in our
experiments.
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Figure 3.4: Performance of 8 states Gaussian HMMs as a function of Gaussian mixture
size.
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Figure 3.5: Performance of 8 states CHMM with ✓ = �2 or ✓t = �2(t) as a function
of the window’s length used to compute ✓t.
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Figure 3.6: Performance of 8 states CHMM with ✓ = µ or ✓t = µ(t) as a function of

the window’s length used to compute ✓t.

3.5.3 Extended results

We now report results that have been obtained through 12 folds. We built a dataset of

12 folds with the same training/validation/test proportions (200/50/50). Note that the

dataset now contains 20 classes (3 classes have been removed to maintain data balance

between them) so the results are not directly comparable with above results.

This protocol allows us deriving more reliable averaged results, computing their standard

deviation and investigating the performance improvement of one modeling over another

through statistical testing. We used two popular such tests, a 2 tailed paired sample

t-test as well as a Wilcoxon signed rank test (with pvalue < 5%, i.e. testing significance

at a 95% confidence interval). Note that all experiments follow the same procedure as

above with a maximum of 150 EM and 150 GEM iterations.

First of all, Table 3.1 reports extensive results on standard HMMs for various settings

(number of states, size of Gaussian mixtures). The columns with sphering in parentheses

stand for HMMs working on sphered data: it means that the data have been preprocessed

to have a global mean of zero and a global covariance equals to identity on the training

set.

Next, we investigate the usefulness of various contextual information ✓. We made trials

with the instantaneous derivative of the sequence averaged on the whole sequence (noted

’�’), and the instantaneous acceleration, also averaged on the whole sequence (noted

’�2’). In addition to these static context vectors, we investigated dynamic ones, where

these quantities are computed on a sliding window rather than on the whole sequence.
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We tried a few combination of these contextual variables by concatenating these contex-

tual features in a single ✓ vector. We also compared our approach to standard HMMs

that are fed with the same information (we call these AugHMM), by simply adding the

contextual variables as new features in the observation vectors. This is maybe not the

ideal way for a HMM to make use of such features but this modeling allows in some way

to capture correlations between feature vectors and contextual variables (e.g. as is used

in [40]), it must be seen as a naive baseline here.

Table 3.1: Accuracy of HMM baselines as a function of the number of states per class
model and as a function of the number of Gaussians per state. Results are averaged

over 12 folds (Standard deviations are given in parentheses).

nb nb Train Train Test Test
states gauss (sphering) (sphering)

3 1 57.8 (1) 57.6 (0.8) 55.6 (2) 55.5 (2.2)
3 2 59.7 (1.2) 60.1 (1.3) 55.9 (1.6) 56.2 (1.5)
3 3 64.1 (1.3) 64.3 (1.3) 59.6 (1.8) 59.9 (1.7)
5 1 61.8 (0.8) 61.9 (0.7) 58.6 (2) 58.7 (1.6)
5 2 67.7 (1.7) 67.9 (1.2) 62.5 (2.8) 62.1 (2)
5 3 71.9 (1.1) 72.3 (1.2) 64.5 (1.2) 64.5 (0.9)
8 1 67.7 (0,8) 67.8 (1.1) 63.6 (1,7) 63.2 (1.8)
8 2 74.1 (0.8) 74.4 (0.7) 67.3 (1.6) 67.2 (1.7)
8 3 78.1 (0.7) 78.2 (0.8) 68.7 (1.3) 68.6 (1.2)

One sees that µCHMMs systematically outperform corresponding HMMs and that µ⌃CHMMs

systematically outperform corresponding µCHMMs (i.e. same line in Table 3.2). We

ran the statistical tests and found that the improvement of all µCHMMs over HMMs

are statistically significant, and also that whatever the setting (i.e. whatever the line

in Table 3.2) the improvement of µ⌃CHMMs over corresponding µCHMMs are all sta-

tistically significant under the two statistical tests we used, a 2 tailed paired sample

t-test and a Wilcoxon signed rank test (pvalue < 5%). Note finally that improvement of

µ⌃CHMMs over corresponding µCHMMs are consistent across di↵erent topologies and

for various types of contextual variables.

One can finally observe that adding contextual variables to observation vector of stan-

dard HMMs can help a little (compare results of AugHMMs in table 3.2 to results of

HMMs in table 3.1) but it may also degrade performance (e.g. for 8 state 1 Gaussian

HMMs). On the other side, the gap is huge between AugHMMs and CHMMs. CHMMs

manage to exploit the additional information in a more e�cient way. Note also that

decorrelating the data (sphering in table 3.1) does not raise significantly the perfor-

mance in the context of our full covariance HMMs. To this respect, using contextual
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Table 3.2: Accuracy of Contextual HMM baselines for various settings (number of
states per class model, number of Gaussian distributions in a Gaussian mixture) and
for various definition of the contextual information ✓t computed on several windows
sizes (found by trials and errors). All these results are averaged on 12 folds as previous
table (Standard deviations are given in parentheses). Note that for every setting (every
line), the improvement of µ⌃CHMMs over µCHMMs and over HMMs, as well as the
improvement of µCHMMs over HMMs are statistically significant under a 2 tailed paired

sample t-test as well as a Wilcoxon signed rank test (pvalue < 5%).

nb nb Context Train Train Train Test Test Test

states gauss variable ✓

t

augHMM µCHMM µ⌃CHMM augHMM µCHMM µ⌃CHMM

3 1 µ(41) 60.5 (0.6) 66.1 (0.7) 67.2 (0.6) 56.3 (1.4) 61.5 (1) 62.2 (1.3)

3 1 µ(61) �2(55) 64.5 (1) 76.9 (0.7) 79 (1.1) 55.6 (1.8) 67 (1.3) 67.6 (1.7)

3 1 µ(61) �2(55) �(15) 64.6 (0.7) 73.6 (0.7) 77.4 (1.6) 55.8 (1.6) 65.1 (1.2) 66.2 (1.5)

3 1 µ(61) �2(55) �(15) �2(15) 64.5 (0.6) 74.8 (0.8) 77.2 (1) 55.3 (1.7) 64.6 (1) 65.5 (1.2)

3 2 µ(41) 67.7 (1.1) 70.3 (0.9) 73.7 (1.3) 59.8 (1.3) 62.8 (1) 65.5 (1.7)

3 2 µ(61) �2(55) �(15) �2(15) 75 (0.9) 80.4 (1.1) 83.2 (1.7) 59.7 (1.5) 65.6 (1.2) 67.1 (0.9)

5 1 µ(41) 66.1 (0.6) 72.1 (0.7) 73.4 (1.1) 60.1 (1.6) 65.5 (1.2) 66.3 (1.2)

5 1 µ(61) �2(55) 70.3 (0.7) 76.9 (0.7) 79 (1.1) 59.3 (1.3) 67 (1.3) 67.6 (1.7)

5 1 µ(61) �2(55) �(15) 70.2 (0.7) 79.2 (0.5) 81.2 (0.9) 59.1 (1.2) 66.9 (1.1) 68.1 (1.5)

5 1 µ(61) �2(55) �(15) �2(15) 70.5 (0.9) 80.4 (0.8) 81.4 (0.8) 59.5 (1.1) 67 (0.8) 67.4 (0.9)

5 2 µ(41) 75.7 (0.8) 79.7 (1.2) 81.4 (1.2) 64 (1.2) 69.5 (1.8) 70.2 (1.1)

5 2 µ(61) �2(55) �(15) �2(15) 80.7 (0.6) 88.1 (0.6) 88.3 (0.7) 62.6 (2) 69.4 (0.8) 69.8 (0.9)

8 1 µ(41) 70.9 (0.7) 78 (0.9) 79 (1) 63.5 (1.3) 70.3 (1.1) 70.9 (1.1)

8 1 µ(61) �2(55) 74.2 (0.9) 82.6 (0.8) 84.2 (0.7) 61.7 (1.3) 70.8 (1.2) 71.7 (1)

8 1 µ(61) �2(55) �(15) 73.7 (0.6) 84.6 (0.7) 85.4 (0.7) 61.2 (1.5) 71.4 (1.2) 72.1 (0.9)

8 1 µ(61) �2(55) �(15) �2(15) 74.3 (0.8) 85.6 (0.6) 86.3 (0.8) 61.6 (1.6) 70.7 (1.2) 71.4 (1.3)

8 2 µ(41) 80.3 (1) 85.6 (0.7) 86.5 (0.6) 59.8 (1.3) 73.3 (1.5) 74.2 (1.3)

8 2 µ(61) �2(55) �(15) �2(15) 84.3 (0.7) 92.4 (1.1) 92.5 (1.2) 64.5 (2.2) 72.3 (1.2) 72.6 (1.2)

variables in CHMMs is a more accurate way to model the variability of the signal which

can not always be removed through pre-processing or normalization steps.

3.6 Conclusion

In this chapter, we introduced the Contextual Hidden Markov Models. It is a framework

allowing the parameterization of a HMM Gaussian distributions (means & covariances),

and transition probabilities between hidden states with static or dynamic contextual

variables. Compared to other approaches discussed in section 3.4, it is the most complete

proposal belonging to the family of Parametric HMMs.
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Experiments conducted on a handwriting classification task proved the e↵ectiveness of

parameterizing the means as well as the covariances of Gaussians with simple static

or dynamic contextual variables that can be computed directly on the observations

sequence. We measured for example the e�ciency of using the mean or short term

mean of the observations sequence as a contextual variable whereas augmenting the

observation vector of simple HMMs with the same information was far less e↵ective.

Results revealed the important gains achieved by mean parameterization. On the other

hand, the gains achieved by the addition of covariances parameterization appear less

important, yet, they are significant and consistent across several model topologies. An

application of CHMMs using transitions parameterization will be detailed in chapter 5.
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4.1 Introduction

HMMs are a famous class of probabilistic generative models that are well known for their

e�cient algorithms, their simplicity and their robustness for classifying and labeling

sequences. As exposed in section 2.3.1.2, HMMs can be trained through Maximum

Likelihood Estimation (MLE). Yet, this non discriminative training criterion fits well

modeling applications where one wants to learn accurate models of production, e.g. for

synthesis [40, 76], but it is not precisely tuned to classification or recognition tasks.

67
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This is why, in the last years, researchers have proposed various methods for training

HMMs discriminatively. However, in chapter 3 we have shown that Contextual HMMs

seems more e↵ective than HMMs at using contextual information. To this respect, our

goal is here to design a similar and more e�cient way to use contextual information into

a discriminative model.

In a first step, we will review a bunch of methods that have been proposed to train HMM

discriminatively. Then, we will show how another type of purely discriminative model,

the HCRF, can easily simulate the decision function of HMMs. This finally opens the

door to presenting the Contextual Hidden Conditional Random Field (CHCRF), the

discriminative counter part of Contextual Hidden Markov Models. Experiments carried

on a handwriting classification task demonstrate that CHCRF is an e�cient way to train

HCRF.

4.2 Discriminative training of Hidden Markov Models

In section 2.1.3.2 we have seen the di↵erence between generative models and discrim-

inative ones. The former model the joint distribution of observations and their label

p(x, y), while the latter directly model p(y | x), the conditional distribution of the label

given the observation sequence.

Hidden Markov Models are easy to train generatively with Maximum Likelihood Esti-

mation, but, this form of training only increases the probability of the correct labeling

while ignoring what happens for incorrect labelings. Some attempts have been made

however to estimate HMMs with discriminative criteria, more adapted to classification

tasks. Discriminative training of HMMs aims at not only increasing the probability of

correct labelings, but also at decreasing the probability of incorrect ones.

To build more accurate sequence recognition and labeling HMM systems, a first bunch

of methods have been proposed to train HMMs in a discriminative way. The most

famous approaches are Maximum Mutual Information ([1]), Minimum Classification

Error ([44]) and Minimum Phone Error named after its initial application to speech

recognition ([64]). More recently, few works have applied the large margin principle to

HMM learning, most of these works have concerned speech recognition [72], [13], [56]

and handwriting recognition [24, 80].

Before explaining the CHCRF, we will first present some of the most popular approaches

for training HMMs discriminatively.
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4.2.1 MMI

MaximumMutual Information training (MMI) is based on an information theoretic point

of view. Maximizing the Mutual Information between observations and their labels can

be shown to reduce the uncertainty in the labelings y knowing the observations x.

The mutual information between observation sequences x

1...T

= (x
1

, . . . ,x
T

) 2 X and

their labeling y

1...T

= (y
1

, . . . ,y
T

) 2 Y is given by

L
MMI

(⇤) =
X

Y

Z

X
p(x

1...T

,y
1...T

) log
p(x

1...T

,y
1...T

)

p(x
1...T

)p(y
1...T

)
dx

1...T

(4.1)

=
X

Y

Z

X
p(x

1...T

,y
1...T

) log
p(y

1...T

| x
1...T

)

p(y
1...T

)
dx

1...T

(4.2)

= H(Y )�H(Y | X) (4.3)

where H(Y ) = �P
Y

p(Y ) log p(Y ) is the entropy of random variable Y (i.e. the labels

with realizations y
1

, . . . , y
T

) and H(Y | X) =
P

Y

p(X,Y ) log p(Y | X) is the con-

ditional entropy of the labels given the observation random variable (with realizations

x

1

, . . . ,x
T

).

In practice p(y
1...T

) (denominator of Eq 4.2) represents the probability of the label se-

quence and can be estimated with a n-gram language model on a large corpus. p(y
1...T

) =

p(y
1

)p(y
2

| y
1

)p(y
3

| y
2

, y
1

) . . . p(y
T

| y
T�1

, y
T�2

, . . . , y
T�N

).1

From 4.3 we can then see that optimizing L
MMI

(⇤) is equivalent to minimize the con-

ditional entropy H(Y | X).

L
MMI

(⇤) / H(Y | X) = �
X

Y

Z

X
p(x

1...T

,y
1...T

) log p(y
1...T

| x
1...T

)dx
1...T

(4.4)

Finally, to make computation tractable, 4.4 is approximated using the empirical expec-

tation of p(Y | X) over the training set.

L
MMI

(⇤) = �ED
train

[log p(y
1...T

| x
1...T

)]

1 The conditional probabilities can be computed by frequency counts p(y
n

| y
n�N+1, . . . , yn�1) =

count(yn�N+1,...,yn�1,yn)

count(yn�N+1,...,yn�1)
but smarter methods are generally used (Bellegarda [4]) as this would result in

a lot of 0 or 0
0 probabilities.
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One can see that this loss is very similar to the one used in Conditional Random Fields

(2.22). However in MMI training, the distribution p(y
1...T

| x

1...T

) is modeled by a

Gaussian mixture HMM whereas CRFs do not impose such a constraint.

4.2.2 MCE

Minimum Classification Error (MCE) training proposes to minimize the expected recog-

nition rate. It is more directly related to the performance of the classifier as we can

measure it in sequence labeling problems.

L
MCE(⇤)

=
X

y2Y

Z

x2X
y

l
y

(x
1...T

;⇤)p(x
1...T

)dx
1...T

(4.5)

where l
y

is a smooth functional form which allows computing the derivatives of the loss

4.5 with respect to the parameters ⇤.

l
i

(x
1...T

;⇤) =
1

1 + exp(��d
y

(x
1...T ;⇤

) + ✓)

with � � 1, ✓ typically set to 0 and d
y

represents the misclassification measure.

For isolated classification, i.e. one label y for each observation sequence x in the training

set, the misclassification measure d
y

is given by:

d
y

(x
1...T

;⇤) = �g
y

(x
1...T

;⇤) + log

2

4 1

|Y |� 1

X

y

0 6=y

exp(g
y

0(x
1...T ;⇤

))⌘

3

5

1
⌘

where |Y | is the number of labels and g
y

is the classifier score given to correct label

y for the observation sequence x

1...T

. For a HMM modeling class y, this score can be

computed as

g
y

(x
1...T

;⇤) = max
h1,...,h

T

p(x
1...T

, h
1...T

,⇤)

As a result, when the classifier answers the correct label, d
y

> 0 otherwise d
y

< 0 and

decreases proportionally to the sum of scores attributed to all incorrect labels y0. Also

when ⌘ approaches 1 the term in brackets becomes max
y

0 6=y

exp(g
y

0(x
1...T ;⇤

)). Hence

by varying ⌘, d
y

can take whether all competitive labels into considerations or only the

most o↵ending ones (most likely).
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However, it is often the case that the label are not available at the frame level. In this

case, y is a sequence of labels and d
y

penalizes the N most incorrect labelings ȳ1...N

d
y

(x
1...T

;⇤) = �g
y

(x
1...T

;⇤) + log

"
1

N

NX

k=1

exp(g(x
1...T,ȳ

k
;⇤

))⌘
# 1

⌘

(4.6)

In practice, the score g
y

(Eq 4.6) is here assigned by a HMM model representing the

correct labeling. In speech or handwriting recognition, this is called a “sentence HMM”

which is created from the left to right concatenation of HMMs of all symbols in the

sequence of labels y.

Minimizing 4.5 with respect to ⇤ can be seen as increasing the likelihood of the correct

sequence of labels y while decreasing the likelihood of N incorrect ones ȳ1...k. Actually,

summing over all labelings is intractable as there are |Y |T possibles ones. Instead, eq 4.6

sums over a limited number of labelings (N-best) which represents the biggest probability

mass. These N-best incorrect label sequences ȳ

1...N , called contrastive examples, can

be found using the N-Best algorithm ([83]) in the composite model g. 2

4.2.3 MWE/MPE

MCE minimizes the classification errors at the sentence level. However, in speech and

handwriting, error is measured more precisely at the substring level. Minimum Word

Error (MWE) and Minimum Phone Error (MPE) criteria are respectively defined to

minimize the number of word and phone errors.

L(⇤) =
X

(x,y)2D
train

X

y

0
p(y0 | x;⇤)Acc(y0,y) (4.7)

In MWE the true labels y are words, while in MPE y represent a sequence of phones.

Except that, both approaches share the same formulation.

Acc measures the number of words (MWE) or phones (MPE) which are correct in the

label sequence y

0 with respect to the true segmentation y of the observations sequence

x. In sequence labeling problems, Acc(y,y0) is defined as the edit distance accuracy.

As we explained in 2.2.2, it is the minimum of character edits (insertions, deletions or

substitutions) to match y

0 into y.

Loss 4.7 can then be seen as penalizing the probability of a particular labeling y

0 pro-

portionally to its edit distance with the true labeling y. As with MCE, the summation

2the composite model is a HMM composed of the HMMs of each word (ie class) in the vocabulary,
with transitions allowed from word to word or constrained by a grammar.
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over all hypothesis y0 (eq 4.7) could be approximated using a N-Best sequence of labels

in the composite model.

As it is expressed loss 4.7 is however computationally expensive. For each hypothesis

y

0, it requires computing the edit distance accuracy Acc(y0,y) using a costly dynamic

programming algorithm. Nonetheless, one can use the following approximations:

Accuracy of sentence y

0 with respect to the true sentence y is defined as the sum over

all its y0 words accuracies.

Acc(y,y0) =
X

y

02 y

0
Acc(y, y0)

with

Acc(y, y0) =

8
<

:
�1 + 2e if y = y’

�1 + e otherwise

and e is the proportion that the word y0 overlap with the word y in the correct tran-

scription y.

For the interested reader, we refer to the work of [43], [61] and [88] for additional

information on MMI/MCE/MWE/MPE and related discriminative training methods

for HMMs.

4.2.4 Discussion

In the last five years, researchers have also investigated the use of purely discriminative

models for sequence labeling. Conditional Random fields and their extension for dealing

with hidden states, namely Hidden CRFs [46, 65] (see 2.4.1 and 2.4.2).

A first reason to consider this approach is the fact that HCRF are not constrained to

use Gaussian probability distributions as other related discriminatively trained HMMs.

As we pointed in 2.4.1 it may be an unecessary burden for the task of classification.

Secondly, all above discriminative approaches, discriminatively trained HMMs and HCRFs,

have been shown to significantly outperform non discriminatively trained HMMs [13, 28,

34, 54, 56, 71, 74, 80]. Also, there seems to be a slight advantage to MPE and MCE

among discriminative learning criterion for HMMs. Indeed, [72, 74] find that MCE and

MPE slightly outperform MMI (or Conditional Maximum Likelihood, a close variant)

while [13, 56] report similar results for MCE, MPE and MMI. Next, the large margin ap-

proach is most often reported as outperforming MMI and MPE [13, 24, 71, 80]. HCRFs

are also reported as outperforming other discriminative criterion for learning HMMs
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(MMI, MPE, MCE) [28, 34, 54, 74, 80]. Finally HCRF and large margin learning of

HMMs seem to yield similar results [80]. Both methods are state of the art methods

today.

4.3 Exploiting contextual information in Hidden Condi-

tional Random Fields

Motivated by these results, we present here a first approach for exploiting contextual

information in a HCRF system. We first recall basics of HCRF modeling, then we

explain how HMMs may be viewed as special cases of HCRFs, which lead to an e�cient

initializing scheme for learning HCRFs proposed in [34]. Finally we build over these

works to propose an e�cient way for parameterizing and for learning Contextual HCRFs.

4.3.1 HCRF as a generalization of HMM

First HCRF has a non convex loss, secondly because it computes scores instead of

Gaussian probabilities, this model has a high degree of freedom. Consequently HCRF

is particularly subject to overfitting. Yet, one e�cient way to learn HCRFs has been

proposed in recent years [34]. It consists in learning first a HMM system, then to initialize

the HCRF parameters so that it reproduces the same classification as the HMMs.

This strategy also makes sense because HCRF is trained discriminatively which seems

more adapted to pure classification tasks (see 2.4.1). However maximum likelihood

training of HMMs is easily parallelizable because class models are independent of each

others which is not the case in HCRFs. It gives HMM a clear advantage in training

speed. Consequently, casting a HMM into a HCRF and retrain it for a few iterations

can give a little boost in performance for a limited cost.

Now we explain how this initialization can be done. The key point is that the joint

log likelihood of an input sequence and of a sequence of states may be written as a dot

product between a particular parameter vector and a joint feature map depending on

the class, the sequence of hidden states and the input sequence. Indeed, in HMMs for

any state sequence h we have :

log p(x, y,h;⇤) = log(⇡
h1) + log(p(x

1

|h
1

))

+
TX

t=2

(log p(h
t

|h
t�1

) + log p(x
t

|h
t

, µ
h

t

,⌃
h

t

)
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with :
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Hence, we get:

log p(x, y,h;⇤) =
X

t
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t
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)i+ h�loc,�loc(x
t
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)i

This result can be verified with the definitions below :
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with
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The above complex definition for local cliques can be understood as a feature map �

loc

with degree two Cartesian products between observation features while parameter vector

�

loc only involves means and covariances terms of HMMs.

More formally:

- (x
u

)
u

is a vector composed of all dimensions of x. On the same principle (x
u

x
v

)
u,v

is

a vector composed of the Cartesian product of the dimensions of x. Time is removed

from the indices for clarity.

- a
i,j

stands for the probability of the HMM to make a transition from state i to j.

(states indices 2 1..S).

- ⌃�1

u,v

stands for the element line u and column v of the matrix ⌃�1. Also, ((⌃�1

u,v

))
u,v

=
⇣
⌃�1

1,1

,⌃�1

1,2

, . . . ,⌃�1

1,S

,⌃�1

2,1

, . . . ,⌃�1

S,S

⌘
T

is a vector of the elements of ⌃�1 unfolded in

column first order.

The above results yield an e�cient learning procedure for learning HCRFs for sequence

classification. First one learns a HMM system, with one (left-right) HMM per class, using

either a maximum likelihood criterion or a discriminative criterion such as Maximum

Mutual Information as in [74] [34]. Then one initializes a HCRF system with the same

topology (a left right model per class) with the above formulas. This HCRF system

outputs exactly the same decision as the HMM system. Finally one uses the standard

discriminative conditional likelihood criterion of HCRFs for retraining the HCRF system.

At the end the initialization by the HMM system allows starting the HCRF optimization

process in an interesting area so as to reach a relevant local minima of the non convex

HCRF optimization criterion.

4.3.2 Contextual HCRFs

In order to define contextual HCRFs (CHCRFs) one has to define new feature maps

�

trans and �

loc and then to learn a linear HCRF on such representations. A simple
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choice would be to concatenate x and the contextual variables ✓ in � so that the HCRF

would compute a linear function of these inputs. This is what we call Augmented HCRF

(AugHCRF). A more interesting choice consists in defining a feature map � involving

degree two Cartesian products of x

t

and ✓

t

components to make it possible for the

HCRF to simulate the CHMM decision boundary. This strategy has the key advantage

of allowing an initialization scheme by a learned Contextual HMM, overcoming the main

drawback of HCRFs (and consequently of CHCRFs) which is the sensitivity of their

optimization to initialization. Although MLE learning criterion for HMMs is non convex

and HMM learning is sensitive to initialization as well, HCRFs have more capacity than

HMMs (previous section actually shows that HCRFs include HMMs) and may quickly

overfit or fall into a local minima. Actually in our experiments, randomly initialized

HCRF hardly reach 40% accuracy on the IAM dataset using degree two observation

features (Cartesian product of observation vector components). On the other hand

HMMs are simpler models hence less sensitive to over-fitting and, more importantly,

one has prior knowledge on how to initialize HMMs to optimize likelihood, e.g. left-

right HMMs are usually initialized though linear alignment of sequences. At the end,

getting an initial solution from MLE trained HMMs is a natural and practical idea. By

the way discriminative training of HMMs (through MMI, MCE, LargeMargin) usually

starts from MLE trained HMMs.

This led us to the idea of building a feature map � depending on x and ✓ such that

we could initialize a Contextual HCRF to perform exactly as a Contextual HMM. From

this starting point a standard optimization process for HCRF leads to an, eventually

more accurate HCRF system exploiting contextual variables.

To implement Contextual HCRF we therefore define the feature functions �loc and �

trans

and we initialize parameter vectors �loc and �

trans from a Contextual HMM as follows,

we detail the case of µCHCRFs derived from µCHMMs (it is straightforward to follow

the same principle and write an initialization scheme starting from a fully parameterized

CHMM):
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(4.10)
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with:

�

loc

i

(x, y, h
t

,✓) =
⇣
1, (x

u

)
u

, (x
u

x
v

)
u,v

, (✓
u

)
u

, (✓
u

✓
v

)
u,v

, (✓
u

x
v

)
u,v

⌘
T ⇥ �

h

t

=i

8i 2 1..S

�

loc

i

=

0

BBBBBBBBBBBBBBB@

�1

2

h
log((2⇡)d|⌃

i

|+ µ̄i

�
⌃i

��1

µ̄i

i

⇣�
⌃i

��1

µ̄i

⌘

⇣
�1

2

�
⌃i

��1

u,v

⌘

u,v⇣
�µ̄T

i

⌃i

�1

V i

⌘

✓⇣
�1

2

⇣
(V i)T⌃i

�1

V i

⌘⌘

u,v

◆

u,v✓
(V i)T

⇣
⌃i

�1

⌘

u,v

◆

u,v

1

CCCCCCCCCCCCCCCA

8i 2 1..S

where V i in state i is defined (Eq 3.2) as the coe�cients matrix of Gaussian mean

parameterization in CHMMs.

4.3.3 Training Contextual HCRFs

As is usually done when learning discriminative models such as HCRF, we used a L2

regularization term to penalize complexity. The actual optimization criterion is then
P

k

log p(yk|xk;✓k,⇤)� C k⇤k2 where C denotes the weight of the regularization term.

The optimal value C is selected on the validation dataset. Optimization is performed

through batch gradient learning.

4.3.4 Experiments

We investigate now the benefit one can get from exploiting contextual variables in

HCRFs. Basically we are interested in comparing contextual HCRFs to standard HCRFs

which are state of the art models for sequence labeling and sequence classification tasks

[28, 34, 54, 74, 80].

We perform isolated characters classification experiments on a 6 folds version of IAM

handwriting dataset (3.5.1). We report little less exhaustive results here since HCRFs

are longer to train than HMMs. Our results are averaged over 6 folds only, for timing

reasons, hence they cannot strictly be compared to those of previous sections. For the

same reasons, we focused on few definitions of ✓ and investigated 8 states models only,

that were best performer models among the CHMMs we tested.
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We compare HCRFs, AugHCRFs and µCHCRFs. Both AugHCRFs and µCHCRFs use

the contextual information ✓ in di↵erent ways while HMMs and HCRFs are not. The

contextual variable ✓ is here defined as the static or dynamic mean of the sequence alike

in section 3.5.2. Initialization of all HCRF systems (standard, Augmented, Contextual)

is performed from the best corresponding HMM system (standard, Augmented or Con-

textual) on validation data. We recall that Augmented HMM (defined in 3.5.3) is simply

a standard HMM with ✓

t

appended to the observation vector x

t

. In any case HCRF

training was run for a maximum of 50 iterations of batch gradient descent learning.

Selection of the best HCRF system was then done on the validation data again. The

optimal value C of the regularization term is set on the validation dataset using a coarse

grid search. Note that we provide HMMs results for information.

Table 4.1: Classification accuracy of discriminative models : HCRFs, augHCRFs
(with context appended in the observation vector) and contextual HCRFs. Results are
averaged on a 6 folds version of IAM dataset (3.5.1). All models have 8 states per
class and are initialized from corresponding single Gaussian HMMs and CHMMs. All
improvements of CHCRFs over AugHCRFs (using the same context) and over HCRF

are statistically significant.

Model Train Test
HMM 65.6 (0.2) 60.6 (1.5)
HCRF 67.8 (0.2) 63.7 (1.8)

AugHCRF static ✓ = µ 70.9 (0.6) 62.6 (1.1)
µCHCRF static ✓ = µ 78.1 (0.8) 70.7 (1.6)

AugHCRF dynamic ✓ = µ(41) 68.1 (0.7) 58.9 (2.2)
µCHCRF dynamic ✓ = µ(41) 77 (0.8) 68.4 (1.9)
AugHCRF dynamic ✓ = µ(61) 66.6 (1.2) 57.8 (2)
µCHCRF dynamic ✓ = µ(61) 77 (0.7) 68.2 (1.6)

We can draw a few conclusion from Table 4.1. Of course, HCRFs strongly outperform

non discriminatively trained HMMs which is quite normal. Next, Augmented HCRFs

fail to exploit the additional contextual information and perform even lower than HMMs.

This is probably partially due to over-fitting since augmented Augmented HMMs (whose

number of parameters is approximately that of AugHCRFs) have much more parameters

than HMMs. Finally, CHCRFs albeit having also significantly more parameters than

HMMs allow drastic reduction of error rates. Using CHCRF with static (µ) or dynamic

(µ(41)) contextual variables, we get respectively 19.2% and 12.9% relative reduction

of the test error compared to the best standard HCRFs. According to our statistical

tests (two tailed t-test and Wilcoxon sign rank test) the improvements of CHCRFs over

AugHCRFs (using the same context) and over HCRF are significant (pvalue < 1%).
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4.4 Conclusion

There are not much specific works on using contextual information in hidden CRFs for

enhancing robustness to variability although the implementation is rather simple. Most

works, being based on the initialization of a HCRF from a HMM indirectly rely on

standard strategies used for capturing variability in HMMs, i.e. increasing the number

of states or increasing the Gaussian mixture size. An attempt has been made to extend

such methods in [22] for eye movements modeling, where a number of alternative weight

vectors are used within each state to account for various styles. Our work is rather a

way to start from meaningful estimates of the weight vectors while keeping their degree

of freedom during the course of learning. Actually our modeling is rather simple, our

contribution is then more an e�cient way to learn discriminative models that exploit

contextual information.
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5.1 Motivation

The framework of contextual Hidden Markov Models being generative, it is enclined to

data synthesis which is particularly useful in certain domains like text to speech, melody

generation, character animation etc . . . . We present here an approach exploiting CHMM

modeling in conversational agents which is the result of a collaboration with Yu Ding et

al. from Greta team at Telecom-Paristech university. Before moving on to this specific

81
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application using CHMM as a synthesis system, we will first review major works on

synthesizing smooth sequences from a HMM.

5.2 Using HMMs for synthesis

Basically we are interested in the techniques that allow generating an output information

stream from an input information stream using HMMs. Synthesizing a realistic sequence

of observations (called a trajectory hereafter) from a HMM is a key issue. Of course,

synthesizing the most likely observation sequence given a particular state sequence yields

a very unlikely piecewise constant trajectory.

5.2.1 Improved synthesis using non stationary HMMs

On the contrary, non stationary models are particularly suited to synthesizing smooth

observation sequences because the distribution of their hidden states are allowed to

change along time.

One such model is the Trended HMM discussed in section 2.3.2.1 where the probability

of observing x

t

in state j depends on the state sojourn time d
t

.

p(x
t

| h
t

= j, d
t

) = N (µ
j

(d
t

),⌃
j

)

However, there are two problems with this non stationary model. First, its requires a

modified Viterbi algorithm for inference which is quadratic in the length of the sequence,

thus precluding the use of long sequences. Secondly, the model is not parameterized by

an input variable. In the application we want to address, driving animation from speech,

we need to condition the animation (output) stream from an audio (input) stream.

Another candidate model is the Input Output HMM where the HMM emission and

transition distributions can be conditioned on a specific input u
t

which varies in time

p(x
t

| h
t

,u
t

) and p(h
t

| h
t�1

,u
t

)

In [52], Yan Li et al learned audio visual mapping using an InputOutput HMM where the

transition probabilities between S hidden states are modeled by S⇥S Neural Networks.

They use 3D facial animation points as observation features x
t

and audio features such

as MFCC and energy as inputs u
t

given as entry to Neural Networks. At synthesis time,

they use only audio input to define a most likely hidden state sequence. Given this state

sequence, they generate a new likely facial animation by maximizing the likelihood of
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the generated data in a EM style procedure. Yet, their synthesized sequence tends to

converge to the means of the states, this is a solution that we want to avoid with the

help of the technique explained in 5.2.2. Furthermore learning so many Neural Networks

is a cumbersome task.

Finally, the Contextual HMMs are also a candidate as a non stationary HMM for syn-

thesis. Its Gaussian emission probabilities and transitions can depend on dynamic input

variables ✓
t

. In addition, the simplicity of the parameterization we proposed make them

notably easier to train than e.g. Input Output HMMs.

5.2.2 Synthesis with constraints

Apart from using a non stationary HMM for synthesis, one can use any type of HMM

and apply some kind of post-processing to smoothen the generated sequence. In this

regard, a key technique has been proposed by [76] to synthesize more realistic smooth

trajectories from a standard Gaussian mixture HMM. In standard HMMs, the most

likely observation sequence for a state sequence is a piecewise constant function. It

follows the means of the Gaussians in each state. This trajectory is not realistic and do

not look like the training data at all. On the contrary, the Tokuda algorithm uses the

states distributions of a standard HMM to generate non stationnary state and smooth

trajectories which are much more realistic.
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Figure 5.1: Example of a possible Tokuda trajectory along a 7 states sequence of a
HMM. Means of Gaussians in each state are printed as dotted lines.

The idea of Tokuda algorithm is to augment the observation vector of an HMM with first

and second order derivatives as is usually done in speech recognition for a better mod-

eling. But, additionally, we impose consistency constraints between static and dynamic

features during synthesis.

We will assume an observation vector x
t

consisting of static features c
t

as well as dynamic

feature vectors �c

t

, �2

c

t

, that is, x
t

=
⇥
c

T

t

,�c

T

t

,�2

c

T

t

⇤
T

. Theses dynamic features

vectors are computed with a linear combination of their neighboring static features
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�c

t

=

L

(1)
+X

⌧=�L

(1)
�

w(1)(⌧)c
t+⌧

(5.1)

�2

c

t

=

L

(2)
+X

⌧=�L

(2)
�

w(2)(⌧)c
t+⌧

(5.2)

where {w(d)(⌧)}
⌧=�L

(n)
� ...L

(n)
+

are given coe�cients to calculate the nth order dynamic

features. The widows length L = max
n21,2,s2(�,+)

L(n)

s

to compute static these dynamic

features is generally set from 1 to 4 [30].

Training with full frames x
t

=
⇥
c

T

t

,�c

T

t

,�2

c

T

t

⇤
T

and synthesizing the most likely obser-

vation sequence may lead to inconsistency, that is Eqs (5.1) and (5.2) are not guaranteed

to be verified.

However, there are two methods for synthesis under the constraints 5.1 and 5.2 that we

will detail here after. First, we present the single method which maximizes p(x | h;⇤)
for a given hidden sequence h. Then we explain the integrated method which takes all

hidden states paths into account and maximizes p(x;⇤) independently of h. The key

idea is to directly optimize for c with constraints instead of x in p(x | h;⇤) or p(x;⇤).

5.2.2.1 Single method

Assume h and its associated mixture sequence i is known. We first define c
t

as a M ⇥ 1

dimensional vector of static features for time t. Then, x is a 3MT⇥1 vector representing

the observations sequence so that we can write :

p(x | h;⇤) = �1

2
x

TUx+ x

TUV +K

where K is simply a constant (independent of x) linked to Gaussian terms and

U = diag
h
⌃�1

h1,i1
,⌃�1

h2,i2
, . . . ,⌃�1

h

T

,i

T

i

V =
⇥
µT

h1,i1
, µT

h2,i2
, . . . , µT

h

T

,i

T

⇤
T

µT

h

t

,i

t

and ⌃�1

h

t

,i

t

are respectively the 3M ⇥ 1 mean vector and the 3M ⇥ 3M inverse

covariance matrix associated with mixture i
t

in state h
t

.
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It is clear that without constraints 5.1 and 5.2, p(x | h;⇤) is maximized when x = V .

That is, the best observations sequence x is the sequence of the mean vectors in the

state path h having mixtures i.

Now we can explicitly impose constraints 5.1 and 5.2 by arranging them into the matrix

form:

x = Wc

where

c = [c
1

, c
2

, . . . , c
T

]T

W = [w
1

, w
2

, . . . , w
T

]T

w
t

=
h
w(0)

t

, w(1)

t

, w(2)

t

i

w(n)

t

=
⇥
0
M⇥M

, . . . , 0
M⇥M

, w(n)(�L(n)

� )I
M⇥M| {z }

(t�L

(n)
� )-th

,

. . . , w(n)(0)I
M⇥M| {z }

t-th

, . . . , w(n)(L(n)

+

)I
M⇥M| {z }

(t+L

(n)
+ )-th

,

0
M⇥M

, . . . , 0
M⇥M

⇤
T

, n = 0, 1, 2

The transform matrix is illustrated in the following figure

Consequently maximizing p(x | h;⇤) with respect to x is equivalent to maximizing

p(Wc | h;⇤) with respect to c. Thus, optimizing the emission probability p(Wc | h;⇤)
with respect to c at synthesis do not require reestimating parameters for the dynamic

features. Then, by setting
@ log p(Wc | h;⇤)

@c
= 0

we obtain the equations

W TUWc = W TUV (5.3)

A direct solution of 5.3 for c needs O(T 3M3) because W TUW is a TM ⇥ TM matrix.

However, when U
h,i

is diagonal and by using the special structure of W TUW , 5.3 can

be solved for c by Cholesky decomposition in O(TML2) with L = max
n21,2,s2(�,+)

L(n)

s

(cf [76]).
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Figure 5.2: W transform matrix structured as a block diagonal matrix. Dynamic

features are computed using 5.1 and 5.2 with L(1)
� = L(1)

+ = L(2)
� = L(2)

+ = 1, w(1)(�1) =
�0.5, w(1)(0) = 0, w(1)(1) = 0.5, w(2)(�1) = 1, w(2)(0) = �2, w(2)(1) = 1

5.2.2.2 Integrated Method

Assume the state sequence h is unknown, then we are looking to maximize directly for

p(x;⇤) independently of h. This can be done by maximizing an auxiliary function Q

with respect to x in an Expectation Maximization procedure.

The auxiliary function is defined as :

Q(x,x0) =
X

h

p(x,h;⇤) log p(x0,h;⇤) (5.4)

where x is the current observation sequence and x

0 is the updated one we need to find.

One can show that maximizingQ(x,x0) with respect to x0 and setting x x

0 guarantees

an increase in the likelihood p(x;⇤) unless x is already a local maximum of the likelihood.

(5.4) can be rewritten as (cf [76]) :

Q(x,x0) = p(x;⇤)

✓
�1

2
x

0TUx

0 + x

0TUV +K

◆
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with:

U = diag
⇥
U
1

, U
2

, . . . , U
T

⇤

U
t

=
X

h,i

�
t

(h, i)⌃�1

h,i

UV =
h
U
1

µ
1

T

, U
2

µ
2

T

, . . . , U
T

µ
T

T

i
T

U
t

µ
t

=
X

h,i

�
t

(h, i)⌃�1

h,i

µ
h,i

(5.5)

Maximizing Q(x,x0) with respect to x

0 = Wc

0 imply

W TUWc

0 = W TUV (5.6)

which is similar to eq 5.3, hence we can solve eq 5.6 for c0 in the same way.

Finally, the algorithm can be summarized as this:

Algorithm 2 integrated method
1: Choose an initial vector sequence c

2: Compute �
t

(h, i) = p(h
t

= h, i
t

= i | x = Wc;⇤) with forward-backward
3: Compute U and UV and solve for c0 in eq 5.6
4: c  c

0

5: x  Wc

6: loop to 2 until p(x;⇤) no more improve

5.3 Speech to motion synthesis, an application

Synthesis is particularly useful in the domain of character animation. For instance,

nonverbal communicative behaviors during speech are important to model a virtual

agent able to sustain a natural and lively conversation with humans. In this context,

we investigated the framework of Contextual HMMs. Such non stationary models may

be used to synthesize automatically realistic character animations from synchronized

speech. Furthermore, they can be used in conjunction with the methods of [40] that

we have presented in section 5.2.2. In the following sections we will combine CHMMs

modeling with both methods from section 5.2.2.1 and 5.2.2.2 to synthesize accurate

eyebrow motions from speech.
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5.3.1 Related work

Few researchers have presented statistical models using visual and speech streams to

synthesize realistic animations (including body or face). [50, 51] and [14] generate body

motions from spoken speech. Given the tight relationship between acoustic phonemes

and visual visemes, speech is also used to drive lip motion in [10, 85]. While these works

mainly focused on verbal content, other works have tackled the problem of synthesizing

nonverbal communicative behaviors during speech, such as head and eyebrow motion.

A key idea that was followed by a number of researchers has been to use Gaussian

distribution on feature vectors including speech and motion features to capture the

correlation between these two types of features. [16, 47] used Gaussian Mixture Model

(GMM) while [69] and [11, 12, 40, 55] used HMMs. This latter approach is probably

the most popular one for synthesizing behaviors from speech (we will use this as a

baseline in our experiments). It consists in designing a Gaussian joint HMM, named �

hereafter, working on concatenated observation vectors for the two streams (i.e. a frame

at time t is x
t

=
h
x

1

t

T

x

2

t

T

i
T

where xi

t

T

stands for the transposed feature vector at time

t for stream i). The application here is to predict the second stream x

2 (namely the

movements features) based on the first stream x

1 (the speech). A key point is that one

can build from the joint HMM a Gaussian HMM for every stream, named �
1

and �
2

by keeping only parameters related to the stream. Note that these models �
i

, have the

same architecture and share transition probabilities. Based on this, once a joint HMM

is trained, one can synthesize a trajectory for the second stream from the first stream as

follows. Using �
1

one determines the most likely state sequence. Then using �
2

, one can

determine a synthesized trajectory for the second stream using the single method of [76].

Alternatively, one may use the most likely state sequence determined by �
1

to compute

an initial static feature sequence for �
2

. Concretely, c in algorithm 2 is initialized by

the Gaussian means of static features in �
2

which follow the most likely state sequence

in �
1

. Then using �
2

one can determine a synthesized trajectory for the second stream

using the integrated method.
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Figure 5.3: Representation of a HMM used for speech to motion synthesis in [40]
as a Dynamic Bayesian Network (DBN). Motion and speech features (mt and st) are
coupled in observation frames (xt = [mt, st]) and their interdependency is modeled

through covariance matrices.
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5.4 Speech to motion synthesis using Contextual Marko-

vian models

We present below an approach that is based on the framework of Contextual HMMs.

We will now show how Contextual Markov Models can be used to infer motion from

speech. This reference method generalizes in particular the method in [40] presented in

section 5.2.2.

The proposed modeling is illustrated in Figure 5.4 as a dynamic Bayesian network.

In the following we consider a training dataset where every observation sequence is a

sequence of frames x
t

’s that are composed of motion features m
t

and of speech feature

s

t

.

5.4.1 Parameterizations

For synthesis, we tested two di↵erent types of CHMMs. µCHMM where only the

Gaussians means are parameterized and µTrCHMM with a parameterization of both

Gaussian means and transitions probabilities. Both models use a time dependent speech

contextual variables ✓
t

.

To reduce complexity both at training and synthesis time, we employ diagonal covariance

matrices.

The state transition distribution a
i,j

from ith state to jth state at time t is defined by

eq 3.4 while the mean parameterization is given by eq 3.1.
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Figure 5.4: Representation of CHMM as a DBN. State at time t is noted ht and
short term mean of speech feature vectors (when speech is used as contextual variable)

is noted s̄t.

5.4.2 Training

To design a speech-to-motion system we learn one CHMM with speech features as (dy-

namic) contextual variables and with both motion and speech features as observations
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as in [40]. Note that when used as contextual variables we use short term means of

the speech frames computed on a sliding window of length 10 (we note these contextual

variables s̄). Once such a model is trained, one can determine a CHMM on speech �
s

only by ignoring probability distribution function parameters related to motion features.

Also, one can define a CHMM on motion by ignoring the probability distribution pa-

rameters related to speech features, we note this model �
m|s. Actually, �

s

and �
m|s

are CHMMs which still depend on speech contextual variables s̄

t

. Depending on the

experimental setting, only their Gaussian means (µCHMM) or their means and their

state transition matrix (µtrCHMM) will change with s̄

t

.

5.4.3 Synthesis

At the synthesis step, speech features are first processed with �
s

to find the most likely

state sequence, then we use the single method from 5.2.2.1 (or respectively the integrated

method from 5.2.2.2) to synthesize a trajectory with the motion model �
m|s. While this

approach is close to [40], however, we use contextual HMMs instead of HMMs, which

allows capturing complex dependencies between speech and motion, yielding improved

synthesis as we will demonstrate.

5.4.4 Experiments

5.4.4.1 Dataset

Experiments have been performed on the Biwi 3D Audio-visual Corpus of A↵ective

Communication database (B3D / AC) [27]. 14 subjects were invited to speak 80 short

English sentences. In total, this corpus includes 1109 sequences, each lasting 4.67s long

on average. We used a part of this corpus corresponding to 240 sentences from three

subjects. We manually annotated the data with respect to five labels Y = {c
1

, . . . , c
5

}
that consist in combination of Action Units 1 (including a no move label). A sequence of

observations is then annotated by a sequence of labels (a specific combination of action

units) together with their boundaries, just like a speech signal is annotated in phones.

Every training sequence consists then in a triple (s,m,y) of a sequence of speech feature

vectors (of length T ), a sequence of motion feature vectors (of length T ) and a sequence

of labels y (of length T , with 8t, y
t

2 Y ). We preprocessed each sequence to get a

speech stream and an eyebrow motion stream at the same rate of 25 frames (i.e. feature

vectors) per second (fps). For the motion stream, we gathered four features for each

1An Action Unit AU as defined by [25] is a minimal visible muscular contraction (e.g. raise eyebrow).
Facial expressions are described as a combination of AUs and express emotional state (anger, fear,
sadness, surprise...)
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eyebrow corresponding to four facial animation points (FAP) as defined by the MPEG-

4 standard [62] (see Figure 5.5); these features move with respect to a neutral pose

according to FAPs values. We computed average values for the 4 FAPs between the

two brows. Concerning speech, we used prosodic features (short term pitch and RMS

energy) which we extracted with PRAAT [8]. We used augmented feature vectors both

for motion and for speech streams by adding first and second order derivatives of static

features (i.e. velocity and acceleration). Hence we get 6 dimensional frames for speech

and 12 dimensional frames for motion. In contextual models, the speech feature s̄ used

as contextual variables are short term means of the speech frames computed on a sliding

window of length 10 (found by trials and errors to give the best results).

Figure 5.5: Illustration of the extracted facial animation parameters (arrows illustrate
displacements).

5.4.4.2 Results

We performed experiments with our approaches and with the method in [40]. We con-

sidered as many models as there are eyebrow motion classes (5). We used an ergodic

model for the no motion class and left-to-right models for the other classes. We trained

the models with a dataset including speech and motion features for each sentence. We

first trained independently class models (whatever the models used, HMM, µCHMM,

µtrCHMM) using corresponding segments of training sequences. Then we combined

these submodels into a composite model which is re-estimated on whole sentences. For

the test, we use the sequence of speech features only. We primarily evaluated our meth-

ods with respect to a reconstruction error, i.e. the mean squared error between the

synthesized motion signal (from the speech signal) and the real motion signal (MSE

criterion). To gain more insight on the behavior of the methods, we also evaluated the

methods with respect to their labeling quality, i.e. the recognition of the sequence of

labels. We computed the recognition accuracy with respect to the Hamming distance

(H criterion) and to the edit distance (E criterion) between recognized and manually
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annotated sequences of labels. Reported results are averaged over 20 random splits of

the dataset with 80% for training and 20% for testing (standard deviation in brackets).

Table 5.1: Performance of the models with respect to the synthesis quality (MSE)
and the labelling accuracy where accuracy is computed by evaluating Hamming distance
(H) and edit distance (E). Performance are averaged results gained on 20 experiments

(standard deviation are given in brackets)

Model #state MSE Acc (H) Acc (E)
HMM [40] 3 0.67(0.052) 37%(4.7) 45%(4.2)

5 0.59(0.042) 43%(4.7) 49%(4.4)
7 0.56(0.056) 53%(5.7) 51%(4.3)

µCHMM 3 0.51(0.055) 55%(4.8) 49%(4.4)
5 0.49(0.064) 58%(5.7) 50%(4.9)
7 0.47(0.056) 59%(4.5) 50%(3.4)

µtrCHMM 3 0.55(0.042) 60%(5.3) 57%(4.7)
5 0.46(0.051) 61%(5.1) 61%(3.8)
7 0.45(0.037) 63%(3.0) 62%(3.7)

Table 5.2: Similar results as in Table 5.1 but where we assume the sequence of labels
of each test observation sequence is known (but not the time boundaries). Here Acc(E)

would be 100% in every entry

Model #state MSE Acc (H)
HMM [40] 3 0.43(0.055) 73%(4.7)

5 0.39(0.051) 75%(4.4)
7 0.36(0.063) 78%(4.7)

µCHMM 3 0.37(0.057) 77%(5.0)
5 0.31(0.061) 81%(4.7)
7 0.30(0.061) 82%(5.0)

µtrCHMM 3 0.33(0.043) 80%(4.1)
5 0.28(0.048) 83%(5.3)
7 0.25(0.052) 84%(4.9)

Table 5.1 reports the performance, on the test set, of the 3 methods with respect to

the three evaluation criteria and for a number of states per class model ranging from

3 to 7. For HMM and µCHMM we employ the single synthesis method (from section

5.2.2.1), while for the µtrCHMM we employ the integrated method (5.2.2.2). Note

that only the MSE criterion is a↵ected by the synthesis method, recognition accuracy is

still comparable between HMM, µCHMM , and µTrCHMM .

As can be seen in Table 5.1, our two novel approaches (µCHMM, µtrCHMM) perform

better than conventional HMMs used by [40] and the performance with µtrCHMM is

the best both in synthesis and recognition. Table 5.2 reports similar results in a slightly

di↵erent setting. We computed the same performance criterion as in Table 5.1 but in

that case, the sequence of labels was assumed known for every test sequence (but not

the time boundaries between labels). Of course the H and MSE obtained here show

significant improvements compared to Table 5.1, but the gap is not so big. This means
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that even if the system does not always recognize labels, it does not a↵ect too much the

synthesized motion stream.

2

0

-2
0 5 10 15 20 25 30

2

0

-2
0 5 10 15 20 25 30

2

0

-2
0 5 10 15 20 25 30

2

0

-2
0 5 10 15 20 25 30

Vertical displacement of outer eyebrow

Vertical displacement of middle eyebrow

Vertical displacement of inner eyebrow

Horizontal displacement of eyebrow

Figure 5.6: Comparison of normalized motion sequence synthesized by HMM (green),
µCHMM (yellow) and µtrCHMM (blue). The original normalized motion sequence is
in black. The four boxes correspond to the four motion features. In every box, the
curves show the evolution of motion features values (y-axis) along time (x-axis) when

action unit (AU1+AU2) is performed.

Figure 5.6 shows an example (from the test set) of real trajectories of four motion

features along with their synthesized trajectories (HMM, µCHMM and µtrCHMM).

The trajectories have been synthesized based on speech features only. We can note that

µCHMM and µtrCHMM provide results that are closer to real eyebrow motion.

5.5 Conclusion

In this chapter, we presented a method exploiting contextual hidden Markov models

to synthesize realistic eyebrow motions from speech. We made use of two important

assets: using a non stationary state model which captures correlations between speech

and motion, and, enforcing consistency constraints between the generated features and

their derivatives at synthesis time.

The whole method can be summarized as follows. The first step is to train a contextual

model using speech as contextual variables and with both speech and motion streams

as observations. This gives a joint model of speech and motion that captures the cor-

relation between both streams. The second step is to break up the joint model into

two di↵erent models for the purpose of synthesis. One model of the speech alone �
s

by

ignoring probability distribution function parameters related to motion features, and,

one model of motion given the speech �
m|s by ignoring probability distribution function

parameters related to speech. Though, �
s

and �
m|s are CHMMs still conditioned on
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speech contextual variables s̄
t

. Then, given the speech stream and its model �
s

we can

find the most likely hidden state sequence. Lastly, using this hidden state sequence, the

motion model �
m|s together with the method of [76] can be used to generate a smooth

motion sequence from the speech stream.

Our results show that contextual models combined with the method of [76] are signifi-

cantly better than a benchmark method in the field [40]. Indeed, Tables 5.1 and 5.2 show

that using contextual modeling improves both the recognition ability of the system, and

the quality of generated sequences (MSE) compared to a HMM using the same single

synthesis method exposed in section 5.2.2.1. Also, we can note that parameterizing the

transition probabilities improves the recognition accuracy over a mean only parameter-

ized CHMM. Lastly, combining a µTrCHMM and the integrated method (5.2.2.2) in

place of the single method (5.2.2.1) allows generating the best motion sequences. This

simple application demonstrated that not only the added expressivity of our contextual

models can improve the quality of synthesis, but that they e↵ectively combine with the

reference method of [76].
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6.1 Introduction

In previous chapters, we have seen that contextual variables can improve the accuracy

of the model in a classification setting.

However, a combination of contextual variables does not always generalize better than

only few. Inspecting the results from chapter 3 table 3.2, we can note that the training

accuracy improves relatively well by adding contextual variables, yet the test perfor-

mance doesn’t always follow up. Figure 6.1 illustrates this tendency.

95
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Figure 6.1: Train vs Test classification accuracy of mean+covariance parameterized
CHMMs (5 states (red), 8 states (blue)) for di↵erent sizes of contextual variables ✓.
Results extracted from Table 3.2 (chapter 3) on the 12-folds IAM handwriting classifi-
cation dataset (presented in 3.5.1). Each point of the curve uses a di↵erent setting of
the contextual variables vector. For 9 dimensions ✓ = µ(41), 18 dims ✓ = µ(61) �(55),

27 dims ✓ = µ(61) �(55) �(15), 36 dims ✓ = µ(61) �(55) �(15) �2(15)

The kind of observation from figure 6.1 typically look like an overfitting problem that

could be handled through regularization. As shown in chapter 4, it is straightforward to

regularize the discriminative counterpart of a Contextual Hidden Markov Model. When

transformed into a CHCRF, we can add a L1 or L2 penalty term to the training loss

easily.

Noting L =
P

k

log p(yk|xk,✓k,⇤) the unregularized loss of Contextual Hidden Con-

ditional Random Field with parameters ⇤, we can define a L2 regularized loss L
Reg

as

L
Reg

= L� C||⇤||2

with C a scalar weighting the importance of the regularization.

However standard L1/L2 regularization is not easily achievable in generative HMMs

or CHMMs. The maximum likelihood training algorithm involved in HMMs relies on

optimizing an auxiliary function Q which guarantees likelihood improvement of the data

under the model. We can be tempted to add a penalty term to this loss Q like is it

usually done with L1/L2 regularization,

Q
Reg

= Q� C||⇤||2
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However, by doing this, we loose the guaranty to improve the likelihood of the data

under our model. Safe checks can be made to be sure that an update does not decrease

the likelihood but, this is not particularly elegant.

In this chapter, our goal is to investigate ways to combine contextual variables more

e↵ectively. Our first proposal is a drop out regularization technique inspired by recent

developments in learning Deep Neural Networks. This simple scheme is shown to improve

the results from chapter 3 in the same handwriting classification task. Secondly, we

devise a multistream combination of contextual variables that reveals more suited in a

spoken words classification task.

6.2 Dropout regularization

Recently, the deep learning community came up with an interesting idea to limit over-

fitting. Unlike L1/L2 regularization which takes the form of a penalty term appended

to the loss function, dropout [38] behaves di↵erently.

The idea applied to Neural Networks is to cancel hidden layer activations stochastically

during training. While forwarding an example through the network, each hidden unit

i of Layer l (noted hl
i

) is reset (drop-out) with probability 1-p (and thus retained with

probability p).

Formally the feed forward operation of a neural network having L layers with weights

W l and bias bl in layer l can be described by iterating (for l = 1, . . . , L) the subsequent

operations :

hl�1

i

=

8
<

:
0 with probability (1� p)

1 otherwise

hl = f(W lhl�1 + bl)

- f any activation function such as sigmoid or tanh

- hl the hidden layer l, and hl
i

its ith unit

- h0 being the input x to the network and hL the output

At test time however, there is no dropout but one has to rescale the weights W = pW

to act as in the training regime.



Chapter 6. Combining contextual variables 98

Intuitively, each time an example is presented, it is as if we had a di↵erent network

(depicted in figure 6.2).
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Figure 6.2: During training, for each example presented to the network, a new archi-
tecture is sampled. Dropped out hidden units are marked by red crossed lines, their

outgoing connections then become inactive (light gray)

An interpretation given in [38] is that dropout training can be viewed as a kind of model

averaging with a huge number of models. Indeed, for each example, a new network or

model is sampled, and, at test time all are combined to produce the final output. To do

model averaging the right way, one would normally need to train many separate models

and apply each of them to test data, but, this would be a lot more expensive than the

dropout strategy in training, as well as in inference.

Another form of dropout known as dropconnect [81] do not cancel hidden unit activations

but a proportion of the layer weights. Hidden units in layer l are then computed as :

hl = f((M ⇤W l)hl�1 + bl)

where M is a binary matrix encoding the connection information, and * denotes the

element-wise product

A simpler interpretation of dropout (more evident in dropconnect) is that, because

weights can become inactive, it essentially forces the weights of the model not to rely

on each other to improve robustness.

Finally, dropout and dropconnect have been shown to improve generalization of Neural

Networks over standard training in various tasks, such as image classification [81] or

even phone recognition (using a HMM-NN Tandem architecture) [38]. Also, this new

idea not only restricts to neural network training. In [73], Srivastava et al showed how
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dropout can be applied to linear regression and how it induces a nice interpretable form

of regularization close to ridge regression.

6.2.1 Dropout in CHMMs

As pointed earlier, dropout can be applied to neural networks or linear regression, but

this simple idea can straightly be applied to CHMM training.

The idea is to zero out contextual variables during training, consequently, the model

parameterization coe�cients can no longer rely on each others to maximize the log-

likelihood of the data. Dropout training should lead to a certain amount of redundancy,

and, in the context of high capacity models, this kind of model averaging may increase

generalization as we will see next.

During training, the probability of retaining a dimension of the contextual variable vector

is fixed by a Bernoulli distribution with parameter p. Inversely, the dropout factor or

the probability of canceling a dimension is then 1� p.

Algorithm 3 CHMM Dropout training

1: let X be the set of training sequences
2: let p be the proportion of retained variables
3: ⇥

sav

 ⇥ // saving untouched contextual variables
4: function [CHMM]=CHMM dropout Training(CHMM, X, ⇥, p)
5: for iter  1 to max em iter do
6: ⇥ ⇥

sav

7: for k  1 to card(X) do
8: for i  1 to size(✓) do
9: rand  uniform random value between [0, 1]

10: if rand < p then
11: ✓k

i

 0 // reset ith dimension of ✓k

12: end if
13: end for
14: end for
15: CHMM  EM Training(CHMM, X, ⇥, p) // 1 iteration of EM
16: end for
17: end function

In inference, the coe�cients of the mean and covariance parameterization need to be

rescaled by p

6.2.1.1 Results

To validate this simple regularization technique, we performed a few experiments on a

handwriting classification task, similar to the ones from table 3.2. We use the same
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dataset already presented in section 3.5.1.

nb nb Context Test Test
states gauss variable ✓(t) µ⌃CHMM µ⌃CHMM

dropout
3 2 ✓ = µ(61) �(55) �(15) �2(15) 67.1 (1) 67.6 (1.6)
5 2 ✓ = µ(61) �(55) �(15) �2(15) 69.8 (0.9) 71.6 (1.6)
8 2 ✓ = µ(61) �(55) �(15) �2(15) 72.6 (1.2) 74.5 (1.4)
8 4 ✓ = µ(61) �(55) �(15) �2(15) 71.9 (1.5) 74.5 (1.4)

Table 6.1: Experiments with dropout vs without dropout training using a combination
of 36 contextual variables (✓ is a 36 dimensional vector)

The results from Table 6.1 shows that overfitting can be limited by the use of this simple

drop out technique. 74.5% test performance is our best result on IAM 12 fold dataset and

this is achieved by CHMM using covariance parameterization, dropout regularization

and a mix of contextual variables (resulting in a 36 dimensional contextual vector). We

can notice that drop out training can yield up to 2.5% improvement.

For smaller dimensional contextual vectors, we did not achieve such systematic gains.

This is not surprising because if regularization can have a positive impact, it is more

likely to be seen in higher capacity models.

6.3 Multistream combination of variables

In the following, we conduct a study experiment with CHMMs on a noisy speech recog-

nition task where we will use domain specific contextual variables, characterizing both

intra and extra signal variability. As we observed in section 6.2, dropout regularization

can help when the dimension of the contextual vector increases. Unfortunately, our

initial tests do not seem to give improvements here. This lead us to consider a di↵erent

approach to combine contextual variables more e↵ectively.

The results of chapter 3 suggests that covariance parameterization bring less significant

improvements than mean only parameterization, thus, as a good trade-o↵ between com-

putation time and accuracy, we perform our investigations on mean only parameterized

CHMMs.
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6.3.1 Experimental setup

Data come from CHiME corpus [79] [2]. It contains recordings in a domestic environment

from 34 speakers (18 men and 16 women). Each speaker reads 6 words sentences follow-

ing the grammar : <color:4> <preposition:4> <letter:25> <number:10> <adverb:4>

where the numbers in brackets indicate the number of choices at each point. Each ut-

terance is then mixed with 6 di↵erent level of noise (SNR = -6, -3, 0, 3, 6, 9 dB). More

details about the background noise and recording process can be found in [15]. All data

are provided as 16 bit WAV files sampled at 16 kHz.

The task is to recognize the letter and digit of each utterance at every SNR. Performance

is measured in term of word accuracy. The training set contains 500 utterances from

each of 34 speakers. The test sets contains each 3600 utterances (600 utterances ⇥ 6

SNR). These sets are annotated at the word level by the baseline system (HMM using

forced alignment). The validation set contains also 3600 unsegmented utterance which

we annotated the same way.

The baseline system is a left right HMM with 7 Gaussians using diagonal covariances.

It is trained with HTK [87]. A model is learnt for every (word, speaker) pair using all

available data whatever the SNR. Each of the 51 words of the vocabulary is modeled by

a HMM using the rule of two states per phoneme in the word. These 51⇥ 34 (nbwords

⇥ nbspeakers) speaker dependent models are first initialized by a speaker independent

HMM with the same topology (7 diagonal Gaussians, best choice between 3-5-7 diagonal

Gaussians) trained on all speaker’s utterances.

The models are learnt using a classical speech representation given by 39 MFCC coef-

ficients (12 cepstral coe�cients and 1 energy term augmented by their first and second

temporal derivatives). Speech data is first reduced to one channel by taking the mean of

the left and right channels. Then, the coe�cients are extracted on 25 ms window with

10ms shift.

6.3.2 Contextual variables

We employed both intra and extra signal contextual variables. The intra signal variables

characterize measures derived or estimated from the signal. The extra signal variables

represent quantities that we can not estimate from the signal alone.

Signal to noise ratio Few e↵orts have been employed to make systems more robust

to the variability of noise conditions at test time. Robustness to noise can be improved

for instance directly by training with noisy sequences. However, first it can decrease
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the performance under low noise conditions. Secondly, it has been shown in [31] that

the distribution of HMM parameters greatly varies depending on the level of noise in

the training data. This di↵erence can cause a severe decrease in performance during

recognition. Hence it is not a particular good idea to train a system with mixed levels

of noise.

Based on the experimental setup of Xiaodong Cui and Yifan [18] we trained an acoustic

model on CHiME with a controlled level of noise (SNR). In figure 6.3 we illustrate the

variation of the mean as a function of the SNR in a 4 states HMM model trained on the

phonetic sequence /se/. This figure clearly shows that each dimension of the mean vary

along the SNR. Thus, it seems a good idea to model the speech signal as a function of

the SNR.
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Figure 6.3: Means of a 4 states HMM (as a function of SNR) trained on CHiME
corpus for the character ’c’ (phonetic sequence /se/)

Other extra signal variables The SNR is an important part of signal variability

which can not be perfectly estimated from the signal alone. Yet, an other extra signal

variability is mainly due to the speaker itself. A person can not utter without variation

caused by stress, fatigue, desease, environment etc . . . The speech signal also greatly

vary in function of the gender, the age, the origin or morphology. All these factors can
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be used for a better modeling of the speech signal. In our work, we will experiment two

other types of extra-signal parameters. First is the rate of the speech, which can be

measured by the number of syllable per second. Second is the speaker identity (that we

encode as a 34 dimensional contextual variable).

Spectral flatness We also explored the interest of Spectral Flatness (SFM) which

represents the rate of sinusoidal components in each frequency band. It is estimated

directly on the signal (intra signal variable) by the ratio of the geometric and the arith-

metic mean of the spectrum.

SFM(band) =

�Q
k2banda(k)

�
1/k

P
k2band a(k)

where a(k) is the spectrum amplitude at frequency k and K the number of frequency k

in the band. For a tone like signal, the SFM is close to 0. For a noisy one, SFM is close

to 1. It is computed for the whole utterance.

6.3.3 CHMMs

In these preliminary experiments we used all above contextual variables : SNR (scalar),

SFM (scalar), Rate (scalar), and ID (encoded as a 34 dimensional vector with 1 in

speaker IDth position, 0 everywhere else). Hence, here CHMMs are trained with a 37

dimensional contextual vector. We first searched the topology that worked best between

4,8,16,32 (full or diagonal covariances) Gaussian distributions per state and using 3

states per word model to reduce computational costs. 8 full covariances Gaussians per

state was found performing the best. Note that using full covariances was found better

than using diagonal ones even for MFCC type features (see table 6.2).

SNR Baseline CHMM CHMM
HMM 8 Gaussians 8 Gaussians

(dB) diag full
-6 49.33 55.6 58.1
-3 58.67 64.8 67.6
0 67.5 76.2 76.2
3 75.08 81.3 82.6
6 78.83 85.5 86.4
9 82.92 87.6 89.1

Table 6.2: letters+digit word recognition accuracy using a combination of Speaker
ID, SNR, SFM, and Rate
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Figure 6.4: word recognition accuracy of 8 Gaussians full covariances CHMMs vs
Baseline using di↵erent parameterization variables (SNR, SFM, Rate, speaker ID, or

everything combined)

As we can see here, CHMMs improve significantly over the baseline system (a HMM with

7 diagonal covariance Gaussians). This is noticeable for any variable of parameterization

employed (SNR, SFM, Rate, ID). However, combining contextual variable is surprisingly

less accurate than using only the speaker ID (except for higher SNRs, 6 and 9dB).

Compared to speaker dependent HMMs (i.e. the baseline with 51 ⇥ 34 models), there

are 51 CHMMs, one per word, for any speaker. CHMMs become speaker dependent in

inference only, when a HMM is instantiated with the speaker ID as contextual variable.

The parameterized models hence jointly use all speakers utterances to estimate their

parameters contrary to HMMs. This type of estimation, which seems more robust,

probably explains the important gap between HMM and CHMMs specially on low SNRs.

6.3.4 Multistream CHMMs

Using contextual variables improved performance systematically, but it is surprising that

their combination is sometimes less accurate than using the speaker ID (except for high

SNRs 6 and 9dB). Indeed, it seems natural to think that the speaker ID and the SNR for

example, being two totally uncorrelated informations and each one giving improvements

when used as a single contextual variable should be combined with success, which is not

the case.
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As an alternative to dropout regularization, we investigated if it was e�cient to train

di↵erent CHMM models, one with each contextual variable independently, and combine

them in a more successful way. We refer to this method as a multistream combination

of contextual variables.

For this particular application, we measure the classification accuracy on isolated words

extracted by the baseline HMM system. For each isolated word of the vocabulary we

train 4 CHMMs with a di↵erent contextual vector variable. The first CHMM is trained

with the SNR as contextual variable, the second with the SFM, the third with the Rate

of speech and the last one with the speaker ID. At inference time, the probability of an

isolated word w is then expressed as the weighted average of the 4 di↵erent CHMMs log

probabilities for the word w.

log p(w) = ↵ log p(w | ⇤
SNR

)+� log p(w | ⇤
SFM

)+� log p(w | ⇤
Rate

)+⇣ log p(w | ⇤
ID

)

where ↵, �, �, ⇣ are scalars (stream weights) controlling the influence of each stream.

p(w | ⇤
✓

) is the probability of word w given by the CHMM using ✓ as contextual variable.

Model selection is performed on validation set, and we report here test classification

accuracy of HMM (baseline), CHMM individual streams, and the best combination of

streams found selected on validation set. Please note that to validate this type of reg-

ularization, we moved from a recognition task (in 6.3.3) to a pure classification task in

order to perform fast experiments. Indeed, in isolated classification we can compute

p(w | ⇤
✓

) once for all and e�ciently search for a good combination of stream weights on

the validation set.

SNR CHMM CHMM CHMM CHMM CHMM CHMM CHMM
8 Gauss 8 Gauss 8 Gauss 8 Gauss 8 Gauss 8 Gauss 8 Gauss

(dB) full full full full full full full
SNR SFM Rate ID joint multistream best

uniform combination
combination

-6 55.6 56.9 58.2 63.7 64.4 62.9 65.1
-3 62.7 63.1 63.6 69.3 71.5 70.8 72
0 70.8 71.1 71.3 77.6 78.1 77.5 79
3 77 76.9 77.3 82.2 83.4 83.6 83.7
6 82.9 82.9 83.2 87.7 87.8 87.7 88.7
9 86.6 86 86.8 90.2 90.4 90.5 91.3

Table 6.3: Test letter+digits classification accuracy of CHMM individual streams,
CHMM combination of individual streams, and normal (joint) CHMM trained on all

contextual variables
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This table shows that using naive uniform combination of all streams (↵, �, �, ⇣ set to

1) is less interesting than using a single CHMM to learn all the contextual variables at

once. However, if we search for a good combination of the stream weights on validation

data, multistream give the best results and so, with more streams (more contextual

variables), we get more accuracy contrary to previous results.

6.4 Conclusion

In this chapter we noticed that naively combining contextual variables can decrease per-

formance. This phenomenon occurs both using simple and generic contextual variables

that we can compute directly from the observation sequence, and also using domain

specific variables like the intra and extra signal variables that we employed in a speech

recognition task. As combining contextual variables always increases the training per-

formance but not the test one, this suggests that it can be the result of an overfitting

problem. In this respect, we proposed a regularization scheme that indeed helped achiev-

ing a better test performance when there are many contextual variables. The drop out

style regularization did help in a handwriting classification task using simple generic con-

textual variables. However, it did not help in a speech classification task using domain

specific contextual variables. We believe this may be due to many dimensions of the

speech specific contextual variables being zero. Hence, the e↵ect of canceling dimensions

of the contextual variables is very limited. We then proposed a multistream approach to

combine contextual variables more e↵ectively. This can be viewed as a weighted average

of simpler CHMMs each using di↵erent contextual variables.
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Using more expressive models (e.g. augmenting the number of states, the size of the

Gaussian mixtures, using contextual HMMs) usually comes with a learning problem, how

to reliably estimate the increased number of parameters. We encountered this problem

with Contextual HMMs and we presented in the previous chapter two solutions that

aim at introducing some regularization in the learning (dropout training) or at taking

into account some basic assumptions on the signals to limit the number of parameters

to estimate (Multi-Stream combination of contextual variables).

Yet one may tackle the problem with a di↵erent viewpoint. One way to avoid overfitting

and to overcome the lack of data might be to rely on transfer learning strategies. The

idea would be to enable learning complex models of all classes by exploiting training data

from all classes. Actually it seems a feasible and good idea when thinking at activity

recognition for instance. It is true that a number of di↵erent activities (sitting on a

chair, sitting on the ground, walking, running, etc) will exhibit some similar subparts in

107
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the corresponding motion capture sequences. Our proposal in this chapter is to design

a transfer learning strategy to learn classes with a limited number of training data.

The works we present here are only preliminary and we do not have strong experimental

evidence to demonstrate their relevance, yet they include some interesting ideas that are

worth presenting in our opinion.

7.1 Design of a global model

Starting from the viewpoint described above a simple idea would be to consider that

by using a contextual model for all the classes, with the contextual variable being (or

including) a class indicator, would allow to share some information between all the

classes. The starting point of our proposal is observing that many classes are similar

and would benefit from using the data of other classes to learn their representation.

Consider the example of 2 gesture classes below.

�� �� �� �� ��

�� �� �� �� ��

Figure 7.1: Two examples of similar gesture classes extracted from HDM05 database

In the top gesture, a person is sitting on a chair, while in the bottom gesture, a person is

sitting on the floor. Those two gesture classes can be modeled for instance by a 5 states

HMM. Each state in the HMM represents a probability distribution over the possible

poses during the course of the gesture. Now in this example, the first and the fourth
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poses of the two gestures are very similar and we would like to share at least a part of

their representation. The idea is to learn the representation of states 1 and 4 in the two

classes with the data of both classes.

A very simple way to do that it to consider one single model, that we name global,

equipped with enough capacity (i.e. number of states, size of Gaussian mixtures) and

to use as contextual variables ✓ for an observation sequence x some coding that include

its label information.

In the example below, we draw a global CHMM trained on three gesture classes. Suppose

Figure 7.2: A global CHMM learnt on 3 gesture classes

that only the transition probabilites in the global CHMM are parameterized by a con-

textual vector ✓ containing the class label. For each value of ✓, the global CHMM can

be instanciated into a di↵erent gesture class. The three paths in the global CHMM,

which are printed in di↵erent colors (blue, green and red) represent the three possible

gesture classes.

The idea is that the parameters of the emission probability distributions of similar poses

may be estimated on all classes data. Of course one is not restricted to parameterize

only transition probabilities, means and covariances of the Gaussians may also be pa-

rameterized. In that case, shared states may not be exactly the same between all classes,

they will keep a limited degree of freedom in each class because of the parameterization

of the Gaussian distribution functions.

All along this section we will consider the case of sequence classification only so that the

label information of an observation sequence is a class. If ✓ includes the class information

only then the vector ✓ does not vary along the sequence. This is the case we consider in

the following for the sake of simplicity. Of course ✓ might include a static part including
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the class code and a dynamic part including other kind of external variables as those

considered in previous chapters.

7.1.1 Using a class code as contextual variables

The simplest coding scheme one can imagine is a one-hot code of the class. The vector ✓

has a dimension equal to the number of classes (37 in our experiments). For a sequence

corresponding to the class y there is a 1 in the yth position and 0 everywhere else. Using

such a definition of the contextual variables it is clear that the global model may then

be instanced into the model of any of the considered class by using the appropriate

setting of ✓. It is also quite natural that doing this way will allow learning o↵sets of

parameterized Gaussian means and covariance matrices using all the data from all the

classes thus enabling information sharing and transfer from classes to classes.

To jointly train a global CHMM with all classes data, we then define a particular setting

of the contextual variable ✓

y

which is used for all sequences whose class is y (e.g. one-

hot class code). Setting ✓ to ✓

y

one instantiates the global contextual model ⇤ into

the HMM of class y with parameters ⇤
y

. The global CHMM may then be learned with

all observation sequences from all classes provided all sequences x 2 X
y

are assigned

contextual variables ✓
y

.
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Figure 7.3: global CHMM sketched as a Bayesian network. An observation sequence
x 2 Xy is assigned a class contextual variable vector ✓y.

If |Y | is the number of classes, instead of training |Y | models each with its own training

data, we train here only one global CHMM learned with the data from all the classes.

Performing inference for an input observation sequence x 2 X with such a global CHMM

is a two step process. First, we instantiate individual class HMMs from the global

CHMM by setting ✓ to the |Y | possible class settings ✓

y

. Then we use the |Y | models

to determine the most likely label y 2 Y for this observation sequence x 2 X .

Below we sketch the first step :
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Figure 7.4: a global CHMM conditioned on a class contextual variable ✓y induces a
corresponding HMM for the class y.

From a global CHMM parameterized by a class contextual vector ✓
y

one first instantiates

a HMM with parameters ⇤
y

= [µ
1

, . . . , µ
S

,⌃
1

, . . . ,⌃
S

, A] modeling class y, where µ
s

=

µ̂
s

(✓
y

) is the mean for hidden state s of the HMM modeling class y (Cf. Eq. 3.2), and

⌃
s

= ⌃̂
s

(✓
y

) denotes the covariance matrix in state s (Cf. Eq. 3.3). Finally A = Â(✓
y

)

stands for the transition matrix.

Basically, when conditioned on the class contextual variable ✓
y

, the parameterized means

µ̂
s

(✓
y

), covariances ⌃̂
s

(✓
y

), and transition matrix Â(✓
y

) of the global CHMM define a

HMM with means µ
s

, covariances ⌃
s

and transition matrix A. The parameters ⇤
y

of a

HMM modeling class y no more depends on the class contextual variable ✓

y

.

The second step is performed as a classic inference in Hidden Markov Models:

argmax
y

p(x|y;⇤
y

) (7.1)

7.1.2 Task & dataset

As a preliminary experiment we performed a simple classification experiment on a motion

capture dataset. It consists of isolated gestures from 37 classes extracted from the

HDM05 dataset [59], the gestures are performed by 5 di↵erent actors. The observation

frames are composed of 62 features which are joint angles representing the body pose of

the actor at each time step. From this database, we built 5 folds each with 702 examples

for the training set, 225 for validation, and 203 for test.

7.1.3 Preliminary results with one-hot class coding

We assume here that ✓

y

is a |Y |-dimensional vector (|Y |=37 here) where there is 1 in

yth position and 0 everywhere else. We call this type of contextual variable the one-hot
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Figure 7.5: Motion capture data stream of “cartwheel” gesture represented as a
sequence of poses. The figure shows the 3D trajectory of 3 joints (root, right finger,

left ankle).

class code representation of class y.

For the experiments, we trained 37 left-right full covariances HMMs that we compared

to a global left right CHMM with a one-hot code class representation as contextual

variables. As the data is unbalanced, we output the macro average F1 to measure the

classification accuracy (standard deviation is given in brackets). Here, the global CHMM

has mean and full covariance parameterizations.

model covariance nb nb Train Test number of
states gauss average F1 average F1 parameters

HMM full 8 1 88.2(0.7) 62.2(1.9) 1158544
HMM full 8 5 100(0) 53.1(6.1) 5784728

independent HMM diag 8 1 87.7(0.7) 66.3(3.1) 39072
class models HMM diag 8 2 89.4(1.1) 66.4(3.1) 76368

HMM diag 8 5 91.8(2.5) 65.7(3.4) 185368
HMM diag 8 7 92.4(2) 63.5(2.5) 261368
HMM diag 8 9 94.2(1.2) 63.1(2.9) 335368

global µ⌃CHMM full 8 1 91.4(1.2) 67.4(2.9) 68512
model µ⌃CHMM full 8 5 97.1(0.6) 70.9(3.3) 342344

Table 7.1: F1 Accuracy of standard full Gaussians HMMs vs global CHMMs param-
eterized by a one hot code class contextual variable

In table 7.1, we can clearly notice that standard full Gaussians HMMs quickly overfit the

data. With 8 states and 5 Gaussians per gesture class, its test accuracy decreases (from

62.3% to 53.1%) compared to using only 1 Gaussian whereas its training accuracy jumps

to 100%. Moving to diagonal Gaussian significantly reduces the number of parameters

and clearly improves generalization, but the HMMs accuracy quickly stabilizes at out

around 66%.

The behaviour of the global contextual HMM is di↵erent. Using a bigger model improves

both training and test accuracy. Remarkably, although we did not took much time to

tune the global model learning as much as we did for HMMs, its accuracy is already
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noticeably higher than that of all the HMMs we tested. And of course, the global CHMM

with full Gaussians has less parameters than the many HMMs with full Gaussians,

yet with 5 full covariance matrices Gaussian mixtures per state it has already more

parameters than all the diagonal HMMs investigated in these experiments. Hence it

seems that a globally trained CHMM e↵ectively makes a better use of its parameter set

and of all the training data from all classes.

We were at first quite surprised by such gains because in the global CHMM architecture

we investigated here, the class codes are fully orthogonal resulting in a somehow limited

sharing of the parameters between the classes. Only biases (o↵sets) are shared as the

parameterizations for a CHMM modeling class y for a hidden state s yield:

µ̂
s

(✓
y

) =V
s

✓

y

+ µ̄

s

⌃̂
s

(✓
y

) =D
s

(✓
y

)⌃̄
s

D
s

(✓
y

) with D
s

(✓
y

) = diag(exp(U
s

✓

y

+ e⌃
s

))

where µ̄

s

and e⌃
s

are the biases of respectively the mean and covariance parameteriza-

tions.

Because the biases µ̄

s

and e⌃
s

are common to all classes, the matrices V
s

and U
s

can

be seen as only modeling the remaining di↵erences between the classes with respect to

a tied state.

Actually the biases are learnt with the data of all classes while the coe�cients of pa-

rameterizations for the ith class (the ith row of V
s

and U
s

) are only learnt with the data

of class i. Although it looks like a limited sharing of parameters it still explains that

we get better estimates than learning isolated HMM per class, which is a promising and

encouraging result.

7.1.4 Using a distributed representation of class as contextual vari-

ables

As we just said above the use of a one-hot class code, although it seems e↵ective, does

allow a limited sharing of parameters between classes. A more interesting idea is to

design distributed class codes making the sharing of parameters much more important.

We investigated this idea by designing class codes ✓

y

that are again |Y |-dimensional

vectors but that reflects similarities between classes. Our implementation consists in

designing codes such that the component at position y0 of the class code of class y, ✓
y

,

is proportional to the similarity between class y and y0.
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Actually, using such a similarity based coding of the classes as a contextual variables

defines a special of parameterization of the isolated class models. The more the class y

is similar to the class y0, the more the models of class y and y0 will share parameters

(i.e. and will be learned using data from the other class). Assume for instance a given

similarity matrix on 3 classes as below.

class 1 2 3
1 1 0.8 0.2
2 0.8 1 0.1
3 0.2 0.1 1

Table 7.2: Similarity matrix on 3 classes, class 1 and 2 are close two each others and
more distant to class 3

Assuming the observations are reals (and not real-valued vectors as usual), we illustrate

the e↵ect of using a denser code on the mean parameterization. The mean of a Gaus-

sian distribution in a particular state can be written for the three class HMM models

according to:

µ̂(✓
1

) = w
1

+ 0.8⇥ w
2

+ 0.2⇥ w
3

+ µ̄

µ̂(✓
2

) = 0.8⇥ w
1

+ w
2

+ 0.1⇥ w
3

+ µ̄

µ̂(✓
3

) = 0.2⇥ w
1

+ 0.1⇥ w
2

+ w
3

+ µ̄

where w
1

, w
2

and w
3

are the mean parameterization weights. One can see that the

mean of all 3 classes share the same parameters, hence all parameters here are learnt

with the data of all classes. It is only the contextual variable ✓ that will tend to define

closer Gaussian means for similar classes.

At the end, if two classes are similar, their class codes will be close and will induce similar

e↵ects on the global CHMM. This can be seen as imposing a prior on the estimation of

the parameters of each class model. Here this prior may be interesting because there is

a lack of examples at training time, however when there are su�cient examples for each

class, it may decrease performance.

We investigated this coding scheme by defining a class similarity from the confusion

matrix of a standard HMM system (left-right, 8 states, 1 full Gaussian). The idea

is that the more two classes confuses, the more similar they are. Here is the HMM

confusion matrix.



Chapter 7. Toward Transfer Learning 115

Figure 7.6: Confusion matrix of 8 states 1 Gaussian HMM on the 37 gesture classes.
Each line and row of the matrix represent the 37 gesture classes in the same order.

Brighter color o↵ the diagonal means higher confusion

We define the class similarity matrix (“classSim”) as the symmetrized confusion matrix

of a standard HMM trained on the same task.

classSim = confusMat+ confusMatT

We also row-normalize classSim so that coe�cients are between 0 and 1. At the end,

the ith row of classSim matrix is the contextual variable for class i and expresses its

proximity to every other class.

model nb nb Train Test
states gauss average F1 average F1

µ⌃CHMM (hcode) 8 1 91.4(1.2) 67.4(2.9)
µ⌃CHMM (hcode) 8 5 97.1(0.6) 70.9(3.3)

µ⌃CHMM (classSim) 8 1 89.5(0.9) 71.8(2.7)
µ⌃CHMM (classSim) 8 5 96.5(0.7) 72.6(4.2)

Table 7.3: F1 accuracy of global CHMMs parameterized by a one hot code (hcode)
or class similarity (classSim) type contextual variable

Results of table 7.3 show notable di↵erences between a class hot code and class similarity

based contextual variables. Using classSim type contextual variable produces better

generalization whereas the training accuracy is a little bit inferior. These results are

encouraging, as it shows that a change in the class code representation can encode useful

information during learning for a better generalization. Although we did not investigate

this up to now, it would be interesting to use directly the confusion matrix from the

Contextual Model (with hcode contextual variable) instead of the confusion matrix from

the HMM. This would maybe help define a better classSim contextual variable.
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7.1.5 Retraining discriminatively

The global model we just detailed in previous sections seems better at classifying gestures

than separate HMMs on a small dataset. However, it is a generative model and we could

consider (but did not experimented here) retraining it in a discriminative way.

As explained in chapter 4, we can cast CHMMs into their discriminative counter part

the Contextual HCRFs. Then, one can retrain all the class CHCRF models using the

discriminative criterion exposed in 4.3.3.

In this method, |Y | CHCRFs models are carefully initialized to reproduce the decision

functions of the |Y | individual classes CHMMs. Even if here we have trained only one

global CHMM on all data, we can easily rebuild individual CHMMs for each class. The

|Y | classes CHMMs will in fact have the same parameters as the global CHMM, yet,

they have a di↵erent contextual variable ✓
y

assigned to their class y. Hence, when these

individual CHMMs are cast into their discriminative counter part, the resulting |Y |
CHCRFs actually model di↵erent decision functions for each class.

Altogether, the whole learning process can be interpreted as a transfer Learning ap-

proach. In a first step, reliable probability estimates are extracted from much more data

(all classes) using a generative global model. Then, using this knowledge, one can re-

store individual class models for recognition. Eventually, one could perform a final step

of discriminative training as we described by starting the optimization from meaningful

estimates.

7.2 Dynamic Factor Graphs

A continuous state space model might be more appropriate than a discrete state space

model for the Transfer Learning approach we described. This motivated us to investigate

the use of dynamical Factor Graphs (DFG). We first discuss why a continuous state space

would be interesting here then we detail why and how DFG could be a relevant solution

to the problem we consider here.

7.2.1 Continuous state space models

Very often the data that we model belong to a low dimensional manifold so that these

data, and their dynamics could be well explained in a smooth continuous lower embed-

ding. We first illustrate this concept on the “helix” artificial dataset [78]. In the “helix”
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dataset, points are defined by the following 3 dimensional time series (see Figure 7.5):

x
t

(1) = (2 + 2cos(8⇥ 2⇡ ⇥ t))⇥ cos(2⇡ ⇥ t)

x
t

(2) = (2 + 2sin(8⇥ 2⇡ ⇥ t))⇥ sin(2⇡ ⇥ t)

x
t

(3) = sin(8⇥ 2⇡ ⇥ t)

Figure 7.7: Helix dataset (1000 points, t evenly spaced in [0, 1]). Each point xt is
further noised (Gaussian with variance 0.05) and plotted in a di↵erent color for clarity

It is clear that the structure of these 3D data points lie on an helical manifold. In

figure 7.8 we performed a dimensionality reduction on 2D space with Gaussian Process

Dynamical Models (GPDM). The second figure 7.9 is a 2D projection using an Autoen-

coder, a special type of Neural Network architecture aimed at reducing e�ciently the

dimensionality of the data [37] (For this architecture we used 3 stacked layers of RBMs

with 80 neurons for the two first hidden layers and a final linear layer with two neurons).

Figure 7.8: 2D projections of helix
data points with GPDM

Figure 7.9: 2D projections helix data
points with Autoencoder RBM.
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As one can expect, both projection techniques (GPDM or Autoencoders) manage to

unfold the 3D structure of the data into a smooth 2D latent space. The neighborhood

of data points seems particularly well preserved in both cases.

In figure 7.10 and 7.11, we use a more realistic dataset. We computed two dimensionality

reductions of 10 walk gestures from CMU motion capture database ([32]) performed by

a single actor. Original data is composed as before of 62 joints angles. We abruptly

project these training observations sequences in 2D for ease of visualization.

Figure 7.10: 2D projections of 10
Walks gestures with PCA

Figure 7.11: 2D projections of 10
walks gestures with Autoencoder RBM
(same architecture as in helix dataset)

First image is the projection of the 10 walk gestures by principal component analysis

(PCA). Mean square error between the original data and its reconstruction from the 2D

space is 0.042. Second image is the 2D projection of the same gesture by means of an

Autoencoder. Final mean square reconstruction error after finetuning the network to

reproduce original data is 0.0081, hence far lower than for PCA.

Of course the variability is much contained because there are few gestures performed by

a single actor. Anyhow, in such an extreme example, we can reconstruct the original

data pretty well from as low as 2 dimensions. Furthermore, the trajectory of the latent

space is relatively smooth and predictable, thus giving credits to using a model of the

dynamics in a low dimensional embedding.

This discussion shows that most often the data we consider may lie in a low dimensional

space where modeling their dynamics could be done with much less parameters, hence

much less training data. For instance it is obvious that although we gather and model

62 dimensional data in motion capture applications we don’t have actually 62 degrees

of freedom. The modeling of such data could then be divided in first learning the low

dimensional embedding which probably shares similarities between classes and then,
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learning the dynamics in this low dimensional space where there is less (but still some)

to share between classes.

7.2.2 Analogy with Dynamic Factor Graphs

The dynamical Factor graph [58] is an ideal candidate to implement our Transfer Learn-

ing approach.

In its simplest form, it look alike a Hidden Markov Model with a chain structure :
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Yet DFGs can model the data from a continuous latent embedding by the use of two

functions :

One function g responsible for emitting the observations from the latent space

x

t

= g(W
o

,h
t

)

And one function f predicting the dynamics in latent space

h

t

= f(W
d

,ht�1

t�p

,xt�1

t�p

)

where W
o

, and W
d

are respectively the parameters of the observation and dynamical

models.

A complete description of this model goes beyond the scope of this thesis. However train-

ing Dynamical Factor graphs consists in optimizing over the parameters W = [W
o

,W
d

]

and over the latent representation h such as to minimize :

L
DFG

=
X

t

↵||x
t

� g(W
o

,h
t

)||2
2

+ �||h
t

� f(W
d

,ht�1

t�p

,xt�1

t�p

)||2
2

(7.2)

where ↵ and � are two scalars controlling the trade-o↵ between the observation and

dynamical models. More details about the model and its EM-like learning and inference

algorithms can be found in [57].

Following the discussion above, one could think that maybe the function g could be

learned from all classes’ data while the function f would more be class specific. This
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indicates some possibilities for transfer learning and learning new classes from few sam-

ples.

7.2.2.1 A global Dynamical Factor Graph

As f and g can be any complex function, we could train a DFG with a high capacity

function g such as an Autoencoder and eventually a less complex function f as a linear

model for the dynamics. In such a setting, we think DFG could be employed as an

e�cient global model as we have done with Contextual models.

As before, this global model would be trained on all class data, but note here, we don’t

need to define a class-code contextual variable, hence we can potentially use unsupervised

data from unknown classes to improve the global model.

We used the framework of Contextual models with class contextual variables as a way to

e�ciently share information between classes while maintaining a low number of discrete

states in the global model. This limited the problem associated with HMM with a high

number of states, such as overfitting and complexity (quadratic in the number of states).

Overfitting is less a risk with DFGs. First because DFGs can potentially use a low em-

bedding, secondly because they share their parameters natively between hidden states,

and finally because they can use unsupervised data. Lastly, the complexity is linear with

respect to the number of parameters of the functions f and g which can be controlled

at will.

7.2.2.2 Retraining DFG discriminatively

To be able to perform a classification task with these kind of models has not been

explained. In the work of [58], they use DFGs for time series forecasting and synthesis

but not for classification purpose. Yet, there is a simple way to train Dynamical Factor

Graph discriminatively for classification tasks, which is analogous to what is done in

HCRFs. We explain it now.

Let there be |Y | Dynamical Factor Graphs, one per class y with its own parameters

set W y =
⇥
W y

o

,W y

d

⇤
for observation and dynamic factors. One DFG can be trained

independently to maximize the likelihood of all examples of its class y (or equivalently

minimize the loss as in Eq 7.2) with respect to its parameters W y. Meanwhile, the

(|Y | � 1) DFGs modeling the remaining classes could be trained on the same data but

to minimize its likelihood.
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As a result, for an observation sequence x

k

y

belonging to class y, the discriminative loss

L
DDFG

we propose to minimize becomes :

L
DDFG

(W,xk

y

,hk) = L
DFG

(W
y

,xk

y

,hk

y

)�
X

y

0 6=y

L
DFG

(W
y

0 ,xk

y

,hk

y

0) (7.3)

with L
DFG

the generative loss for training a DFG exposed in Eq 7.2

h

k

y

= argmin
h

k

y

(L
DFG

(W
y

,xk,hk

y

))

and W the parameters set composed of all the |Y | DFG parameters.

Ultimately, the whole transfer learning algorithm for training Dynamical Factor Graphs

on few examples would be composed of the following steps:

- Train a single global DFG with parameters W
g

on every class data (and unsuper-

vised data if any)

- Build |Y | class DFGs and initialize their parameters W
y

with the parameters of

the global model W
g

- Retrain the individual DFGs discriminatively using the loss 7.3

We can not show proper results concerning this method as we began to investigate it at

the very end of this Thesis. Setting appropriately the model functions topology (f and

g) and gradient steps has revealed critical to reduce both training and inference time.

Starting from a generative implementation of DFGs gently provided by Piotr Mirowski,

we implemented the discriminative training described above but without su�cient time

to finetune hyper-parameters, we did not achieved the convergence speed required to

run full experiments.

This is only a prospective work that could have been presented as a perspective. How-

ever, exposed here, one may understand a clear connection with the Transfer Learning

approach described on contextual models and be motivated to go a step further.

7.3 Conclusion

In this chapter we have devised a transfer learning approach to learn contextual models

from few examples. The idea is based on first learning a global Contextual model jointly

on the data from all classes.

In this respect we propose to use class-code type contextual variables to share informa-

tion between the classes. In a second step, one can transfer the knowledge of the global

model to individual classes models, to do decoding.
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This strategy revealed e↵ective in our classification experiments on motion capture data.

We achieved noticeable gains compared to training separate HMMs for each class with

various topologies. Our experiments show that a global CHMM make a better use of its

parameter set.

To go a step further toward e�cient transfer learning, we advocate the use of continuous

instead of discrete state space models. The analogy between the structure of Hidden

Markov Models and Dynamical Factor Graphs make them ideal candidates to implement

a similar approach.



Chapter 8

Conclusion & Perspectives

Through this thesis, we devised the framework of Contextual Hidden Markov Models

for a better modeling of time series. The starting point of our proposal is that an

important part of variability between observation sequences may be the consequence

of a few contextual variables (which may be hidden or observed), that remain fixed all

along a sequence or that vary slowly with time. We have shown for example that the

rate of speech or the signal noise ratio can explain an important part of the variation in

speaker utterances. Nonetheless, we have also seen that simple variables like the short

term mean of the observations sequence can also be useful.

Various declinations around this framework were proposed to incorporate the influence

of contextual variables into our modeling. We have shown several ways to implement

this idea into Hidden Markov Models by extending the mean parameterized HMMs to

other types of parameterization. We proposed a full covariance parameterization of the

state’s distributions with dynamic contextual variables, and, subsequently proposed a

parameterization of their transition probabilities.

We then introduced a natural and e�cient way to exploit contextual information into a

discriminative model. First generative CHMMs are trained via a maximum likelihood,

which can be done in parallel for each class model. Then, one can retrain the models for

a few iterations by casting a CHMM into its discriminative counter part, the Contextual

HCRF. At the end, CHCRF can be viewed as an e�cient way to learn a HCRF that

exploit contextual information compared to more standard ways of learning such models.

We applied several types of contextual models for the classification of handwritten char-

acters, speech recognition, or synthesis of realistic eyebrow motions. We investigated

123
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di↵erent types of contextual variables and parameterizations for each one of these do-

mains. For all theses tasks, we have demonstrated that the better modeling ability of

CHMMs can translate into performance gains.

Though, we revealed that the performance gap between mean and covariance param-

eterization may be limited, and that contextual variables do not always combine well.

Part of our work, was to investigate strategies to lessen this e↵ect with regularization

or a multistream combination of contextual variables.

Developing on the idea to learn more expressive models with fewer examples, we finally

envisioned a Transfer Learning approach using Contextual HMMs. The method relies

on learning a global Contextual model which e↵ectively share information between the

classes by using a special type of contextual variable. This “class-code” contextual

variable e↵ectively encodes useful information during learning. Our results on a gesture

classification task show that this simple scheme helps in achieving a better generalization

compared to classic HMMs tested on various topologies, and, more importantly, even

when the CHMMs have more parameters than HMMs.

A future research would be to continue working in that direction, and leverage possible

transfer learning approaches like the one we sketched in the last chapter. A continuous

lower embedding appear to be a relevant hypothesis in the task we addressed. Hence it

seems a good idea to use the capability of DFGs to model the dynamics of the data in

such a space.

Another interesting direction may focus on designing better contextual variables as it is

an important part in the sucess of CHMMs. We have seen how some simple variables like

the short term mean of the signal can help in a handwriting classification task. We have

also seen how more domain specific variables like measures of the signal to noise ratio or

the rate of speech can help in speech recognition. Yet, it would be valuable to investigate

new types of contextual variables more dedicated to their domain. We think for example

to the field of gesture recognition, where one can imagine using contextual variables such

as gender, corpulence or any other characteristics . . . The main problem until recently

was the lack of clean and richly annotated gesture data. However, multi-modal gesture

data now becomes increasingly available through open challenges in gesture recognition

(e.g “ChaLearn” [26]).

A last idea would be to combine CHMM with context dependent modeling, a strategy

better suited at handling the variability of transitional e↵ects. In speech, it is known

as the coarticulation e↵ect, the realization of a phone depends on the previous and the

next phone. In handwriting, it is called ligature, the shape of a letter is influenced by

the previous and the next one. For a better handling of transitional e↵ects, triphone
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and trigraph models are employed instead of simple phones or characters. However, an

important part of intra signal variability still remains inside triphones and trigraphs.

Such a variability might be captured more e�ciently by contextual models.
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A Usixml Project

The project Usixml is the e↵ort of several academic and industrial partners (full list

available at http://usixml.eu/view-all-partners) in order to define, validate and stan-

dardize an Open User Interface Description Language (UIDL).

Currently, the development of the User Interface (UI) of interactive applications is very

di�cult because of the complexity and the diversity of existing development environ-

ments and the high amount of programming skills required by the developer to reach

a usable UI: markup languages (e.g., HTML), programming languages (e.g., C++ or

Java), development skills for communication, skills for usability engineering.

These di�culties are exacerbated when the same UI should be developed for multiple

contexts of use such as multiple categories of users (e.g., having di↵erent preferences,

speaking di↵erent native languages, potentially su↵ering from disabilities), di↵erent com-

puting platforms (e.g., a mobile phone, a Pocket PC, an interactive kiosk, a laptop, a

wall screen), andvarious working environments (e.g., stationary, mobile).

Although designers and programmers are involved in these types of project, the available

tools are mainly target at the developer. Therefore, it is rather di�cult for a designer

to design a UI for multiple contexts of use while avoiding to reproduce multiple UIs for

multiple contexts of use. This work proposes a way to separate responsabilities in these

types of projects.

UsiXML (which stands for USer Interface eXtensible Markup Language) is a XML-

compliant markup language that describes the UI for multiple contexts of use such as

Character User Interfaces (CUIs), Graphical User Interfaces (GUIs), Auditory User In-

terfaces, and Multimodal User Interfaces. In other words, interactive applications with
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di↵erent types of interaction techniques, modalities of use, and computing platforms can

be described in a way that preserves the design independently from peculiar character-

istics of physical computing platform.

• UsiXML consists of a User Interface Description Language (UIDL), that is a declar-

ative language capturing the essence of what a UI is or should be independently

of physical characteristics.

• UsiXML supports device independance: a UI can be described in a way that

remains autonomous with respect to the devices used in the interactions such as

mouse, screen, keyboard, voice recognition system,... In case of need, a reference

to a particular device can be incorporated.

• UsiXML supports platform independance: a UI can be described in a way that

remains autonomous with respect to the various computing platforms, such as mo-

bile phone, Pocket PC, Tablet PC, laptop, desktop,... In case of need, a reference

to a particular computing platform can be incorporated.

• UsiXML supports modality independance: a UI can be described in a way that

remains independent of any interaction modality such as graphical interaction,

vocal interaction, 3D interaction, or haptics. In case of need, a reference to a

particular modality can be incorporated.
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• UsiXML supports other sets of abstraction layers to facilitate the integration of

user profiling, extensions of an UI to multiple organisations or its portability to

other languages.





B Pattern Recognition in

Usixml

The UsiXML project contours is far beyond the scope of this thesis. We discuss here

one of the goal of UsiXML which is to provide natural and multi-modal human interac-

tion with computers where modalities might be speech, gesture or any sequential data

provided by a human machine interface. In this context, the algorithms and statistical

models we presented in this thesis have been employed in a first demonstrator of a rich

3D User Interface following the standards of Usixml.

The User Interface we describe now has been developped with the e↵ort of several labora-

tories (Ecole Navale, Télécom Bretagne, Thales Airbone Systems and Thales Underwater

Systems). This interface helps to manage and coordinate maritime surveillance opera-

tions involving several actors which might be for instance Unmanned Aerial Vehicules

(UAV), Aircrafts, or ground crew operators.
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B.1 SurMap Prototype

The demonstrator called SurMap is composed of an haptic tablet which displays a map

and all necessary informations to conduct and coordinate the surveillance operations.

Several ground crew operators can cooperate around this interface to follow the course

of operations and add relevant informations in real time.

Our role in this demonstrator has been to integrate gesture recognition capability to this

interface to enable richer human machine interaction. For the specific need of gesture

recognition, the User Interface system includes a depth sensor (i.e. a kinect camera)

which records the crew operations on the tablet from an upper position as illustrated in

following picture.

Figure B.1: SurMap prototype with depth sensor for 3D gesture recognition

From the information acquired by the depth sensor, a tracking algorithm extracts the

positions of hand fingers required to recognize several gestures. The Figure B.2 shows

the tracking algorithm at work.

Figure B.2: Tracking the position of fingers with the depth sensor
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B.2 Gesture definition

Several gestures have been proposed to enable a rich and natural human machine inter-

action. We describe them below.

• Enter draw mode : triggered by drawing a polygon in the air simultaneously with

both hands. Each hand draw one half of the polygon.

• Stop mode : triggered by positionning the left hand at vertical and the right hand

perpendicularly. The right hand fingers must point at the left hand palm.

• Non validation : Cross both hands with an X shape.

• Closing : Shake both hands.

• Rotation mode : The index finger of the left hand is straight while the right hand

index finger turns around it. The position of the left finger indicates the axis of

rotation. Di↵erent angles are allowed (quarter, half or three quarter rotations)

• Zoom mode : Both hands are flat next to each other, than the right hand goes up

propotionnally to the zoom desired. Several zoom amplitudes are allowed.

• Center (on selected object) : Draw a double circle with the right hand index finger

around the left hand.

Figure B.3: Example of rotation gesture around the Z axis

B.3 Gesture recognition system

For 3D gesture recognition, the demonstrator employs the Contextual HMM (CHMM)

described in this thesis. The UsiXML user interface is connected to the core recognizer

(CHMM) in a very simple way illustrated in figure B.4.
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Figure B.4: Recognizer integration

The user interface is plugged to the depth sensors and provides finger positions to the

core recognizer for recognition. The beginning and end of gestures are triggered by the

user himself pushing a pedal placed on the ground which is connected to the computer

hosting the interface system.

When a gesture is finished, the interface system queries the recognizer for an answer.

The recognizer which is here a matlab standalone application than process this request

and answers which gesture has been recognized to the interface.

More specifically, the matlab application actually hosts a TCP (Transmission Control

Protocol) server and listens for a query coming from the user interface. When receiving

a gesture, the user interface initiates a query which is a TCP message containing the

Uniform Ressource Identifier (URI) of a gesture file. This gesture file contains the finger

positions extracted by the tracking algorithm. In response to this message, the recognizer

answers a TCP message to the interface containing which gesture has been recognized.

The Contextual HMM which defines the core gesture recognizer has been employed with

very simple intra signal contextual variables for characterizing gestures (i.e. short term

mean of the observation sequence or total length of the gesture). We do not provide

experiments on the database used for the prototype as the lack of gestures examples

and finger tracking problems would introduce an important bias in comparing di↵erent

algorithms. This is why we performed experiments on a cleaner gesture dataset in

chapter 7 and also a reason why we subsequently proposed a training strategy to learn

contextual models from few examples.
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Abstract

Modeling time series has practical applications in many domains : speech, gesture and

handwriting recognition, synthesis of realistic character animations etc . . . The starting

point of our modeling is that an important part of the variability between observation

sequences may be the consequence of a few contextual variables that remain fixed all

along a sequence or that vary slowly with time. For instance a sentence may be uttered

quite di↵erently according to the speaker emotion, a gesture may have more amplitude

depending on the height of the performer etc . . . Such a variability cannot always be

removed through preprocessing.

We first propose the generative framework of Contextual Hidden Markov Models (CHMM)

to model directly the influence of contextual information on observation sequences by

parameterizing the probability distributions of HMMs with static or dynamic contextual

variables. We test various instances of this framework on classification of handwritten

characters, speech recognition and synthesis of eyebrow motion from speech for a vir-

tual avatar. For each of these tasks, we investigate in what extent such modeling can

translate into performance gains.

We then introduce a natural and e�cient way to exploit contextual information into

Contextual Hidden Conditional Random Fields (CHCRF), the discriminative counter

part of CHMMs. CHCRF may be viewed as an e�cient way to learn a HCRF that

exploit contextual information.

Finally, we propose a Transfer Learning approach to learn Contextual HMMs from fewer

examples. This method relies on sharing information between classes where in generative

models classes are normally considered independent.

145





Résumé

La modélisation de données séquentielles est utile à de nombreux domaines : recon-

naissance de parole, de gestes, d’écriture, ou encore la synthèse d’animations pour des

avatars virtuels. Notre modélisation part du constat qu’une part importante de la varia-

bilité entre les séquences d’observations peut être la conséquence de quelques variables

contextuelles fixes le long de la séquence ou qui varient en fonction du temps. Une phrase

peut être exprimée di↵éremment en fonction de l’humeur du locuteur, un geste peut être

plus ample en fonction de la taille de l’acteur etc . . . Ce type de variabilité ne peut pas

toujours être supprimée par des pré-traitements.

Dans un premier temps, nous proposons les modèles Markoviens Contextuels (CHMM),

afin de modéliser directement l’influence du contexte sur les séquences d’observation en

paramétrisant les distributions de probabilités des HMMs par des variables contextuelles

statiques ou dynamiques.

Puis, nous décrivons une approche afin d’exploiter e�cacement l’information contex-

tuelle dans un modèle discriminant, les Champs de Markov Conditionnels et Contextuels

(CHCRF).

Nous testons plusieurs variantes des CHMMs et investiguons dans quelle mesure cette

modélisation est pertinente pour la classification de caractères manuscrits, la reconnais-

sance de parole ou pour synthétiser les mouvements de sourcils d’un avatar à partir du

signal de parole.

Enfin, nous proposons une stratégie d’apprentissage afin d’apprendre des HMM Contex-

tuels plus performants à partir de moins d’exemples. Cette méthode réalise du partage

d’information entre les classes la ou les approches génératives classiques considèrent des

modèles de classes indépendants.
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Résumé français long

9.1 Introduction

La modélisation de données séquentielles est utile à de nombreux domaines : recon-

naissance de parole, de gestes, d’écriture, ou encore la synthèse de comportements

réalistes pour l’animation d’avatars virtuels. Cependant la nature temporelle des données

séquentielles nécessite une modélisation adéquate. Deux familles de modèles Markoviens

sont particulièrement adaptées aux données de séquence.

Une famille générative avec les modèles de Markov à états cachés (HMMs), notam-

ment adaptés à la synthèse, et une famille discriminative incluant les Champ de Markov

Conditionnels à états cachés (HCRF), plus adaptés aux tâches de classification et de

reconnaissance.

Notre modélisation part du constat qu’une part importante de la variabilité entre les

séquences d’observations peut être la conséquence de quelques variables contextuelles

fixes le long de la séquence ou qui varient en fonction du temps. Une phrase peut être

exprimée di↵éremment en fonction de l’humeur du locuteur, un geste peut être plus

ample en fonction de la taille de l’acteur etc . . . Ce genre de variabilité ne peut pas

toujours être supprimée par des prétraitements. Ainsi, il serait judicieux de modéliser

explicitement l’influence du contexte sur la variabilité des séquences d’observations.

Dans un premier temps, nous proposons les modèles Markoviens Contextuels (CHMM),

afin de modéliser directement l’influence du contexte sur les séquences d’observations.

Puis, nous décrivons une approche e�cace afin d’exploiter l’information contextuelle

dans un modèle purement discriminant, les Champs Markoviens Conditionnels et Contex-

tuels (CHCRF). Cette approche qui est le pendant discriminatif des CHMMs génératifs

peut être vue comme une façon e�cace d’apprendre des HCRFs utilisant le contexte.

Nous testons plusieurs configurations des CHMMs en classification de caractères ma-

nuscrits, en reconnaissance de parole ou pour la synthèse de mouvements de sourcils à
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partir du signal de parole pour animer un avatar virtuel. Une part de nos travaux s’attèle

aussi à limiter les e↵ets de sur apprentissage et à proposer des stratégies afin de mieux

combiner les variables contextuelles.

Enfin, nous développons l’idée d’apprendre des modèles contextuels à partir de moins

d’exemples. A cet e↵et, nous proposons une stratégie d’apprentissage générative qui

réalise du partage d’information entre les classes la ou les approches classiques ap-

prennent des modèles de classes indépendants.

9.2 Modéliser la variabilité dans les HMM

Les modèles Markoviens génératifs à états cachés (HMM) font partie des approches les

plus populaires pour la modélisation des données séquentielles. Ils peuvent être utilisés

dans des tâches de classification, de reconnaissance ou de synthèse. La simplicité de leur

procédure d’apprentissage ou d’inférence rend ces modèles particulièrement attractifs.

Pour modéliser les données séquentielles, les HMM partent de l’hypothèse que la séquence

d’observations x est générée par des états latent (non observable).

�� �� �� ���� ��

�� �� �� ���� ��

Figure 9.1: HMM avec une structure de type châıne, chaque état ht émet l’observation
xt. Le modèle peut transiter d’un état à l’autre en fonction de probabilités de transitions

Etant donné une séquence d’états h de longueur T la probabilité jointe de la séquence

d’états et de la séquence d’observations x se calcule comme suit :

p(x,h;⇤) = p(h
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ou comme un mélange de M Gaussiennes dans chaque état

p(x
t

| h
t

) =
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)p(x | h
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) (9.2)

- où c
m

est le coe�cients (scalaire) de la Gaussienne m dans le mélange

- µ

c

m

est la moyenne de la Gaussienne (vecteur de dimension d)

- ⌃
c

m

est la covariance de la Gaussienne (matrice d⇥ d)

Les HMMs se basent cependant sur de nombreuses hypothèses simplificatrices et plu-

sieurs variantes ont été proposées pour y remédier. Une hypothèse particulièrement

limitante est notamment que les distributions de probabilités sont stationnaires dans les

états. Concrètement, cela implique qu’un HMM modélise les séries temporelles avec des

distributions constantes par morceaux. C’est une manière très simplicite de modéliser la

variabilité des séquences d’observations.

De nombreuses approches ont introduit des distributions de probabilités non station-

naires dans les HMMs, on peut citer notamment les HMM polynomiaux Deng et al

[20][21], les HMMs dit de trajectoire Zen et al. [90]. Par ailleurs, d’autres HMM non

stationnaires conditionnent les distributions de probabilités par des variables externes

telles que les Input Output HMMs (IOHMM [5]), ou les HMM paramétriques (PHMM

[84]). C’est sur ce dernier type d’approche que nous élaborons nos propositions.

9.3 Les modèles Markoviens Contextuels (CHMM)

Le point de départ des CHMMs ou HMM Contextuels se base sur le formalisme des

HMM paramétriques (PHMM). Partant des PHMM, les CHMM proposent d’augmenter

l’expressivité de la modélisation en introduisent de nouveaux types de conditionnements

possibles sur les distributions de probabilités d’un HMM (e.g. conditionnement des cova-

riances pleines et des probabilités transitions par des variables de contexte dynamiques).

9.3.1 Paramétrisation de la moyenne des Gaussiennes

Dans les HMM paramétriques, les distributions Gaussiennes dans les états sont condi-

tionnées par des variables externes (ou contextuelles). En reconnaissance de parole, ces

variables peuvent par exemple représenter une information concernant le locuteur (genre,
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langue maternelle, . . . ). En reconnaissance de geste, il peut s’agir de la taille ou de la

corpulence d’un acteur.

Dans les PHMMs [84], Bobick et al, expriment la moyenne des distributions de proba-

bilités Gaussiennes comme une combinaison linéaire des variables contextuelles notées

✓ :

p(x
t

| h
t

= j) = N (x
t

, µ̂
j

(✓),⌃
j

)

avec :

µ̂

j

(✓) = V j

✓ + µ̄

j

où V j est une matrice d⇥ c de coe�cients dans l’état j (d la dimension des observations

et c la dimension des variables contextuelles ✓) et µ̄
j

un biais (vecteur d⇥ 1).

Une approche très similaire est également connue sous le nom de HMM à régression

multiple (MRHMM [29]). Elle peut être vue comme des PHMM où la variable contex-

tuelle dépend du temps ✓

t

. Enfin, une dernière classe de modèles connue sous le nom

de VPHMM conditionnent également les covariances (diagonales) dans les Gaussiennes

([17], [18]).

9.3.2 Paramétrisation des covariances pleines des Gaussiennes

Nous proposons ici un autre type de conditionnement possible des distributions de proba-

bilités en paramétrisant les matrices de covariances pleines des Gaussiennes d’un HMM.

Une matrice de covariance ⌃̄ est ici modifiée de façon à ce que chacune de ses compo-

santes ⌃̄
u,v

soit pondérée par deux facteurs d’échelle i.e. ⌃̄
u,v

= ⌃̄
u,v

⇥↵
u

⇥↵
v

où ↵
u

et

↵
v

sont des termes dépendants des variables contextuelles ✓. Cela permet d’obtenir un

modèle plus expressif, en augmentant ses degrés de liberté.

La paramétrisation proposée s’écrit sous la forme matricielle suivante :

⌃̂j(✓) = Dj(✓)⇥ ⌃̄j ⇥Dj(✓) (9.3)

avec Dj(✓) = diag(exp(Zj

✓))

avec ⌃̂j une matrice de covariance d ⇥ d pour l’état j, ⌃̄j une matrice de covariance

indépendante de ✓ (par exemple initialisée par celle d’un HMM) et Zj une matrice d⇥ c

de la même forme que pour la paramétrisation de la moyenne. Zj =
h
U j f⌃j

i
où U j

est une matrice d ⇥ (c � 1), f⌃j un vecteur de biais d ⇥ 1 et ✓ un vecteur de variables

contextuelle de dimension c où la dernière composante est systématiquement fixée à 1.
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Nous avons noté ici exp(A) une matrice ou l’exponentielle est appliquée sur chacun de

ses termes, et diag une fonction transformant un vecteur en matrice diagonale. Au final,

comme nous l’avons évoqué, la forme de la matrice de covariance paramétrisée implique

que chacun de ses termes ligne u et colonne v peut s’écrire :

⌃̂j

u,v

(✓) = Dj

u,u

(✓)⇥Dj

v,v

(✓)⇥ ⌃̄j

u,v

(✓)

La Figure 9.2 illustre l’e↵et d’une telle paramétrisation sur une matrice de covariance en

2 dimensions. Une matrice de covariance originale (figure haut gauche) est ici modifiée

par diverses matrices D. Chacune des 4 matrices de covariance est représentée par des

courbes elliptiques d’isoprobabilités.

Figure 9.2: Exemples de matrices de covariances paramétrisées Eq. (9.3) en 2 di-
mensions. Une matrice de covariance initiale (Haut gauche) est transformée par plu-
sieurs matrices D : D = diag([1 2]) (Haut droite), D = diag([2 0.9]) (Bas gauche),
D = diag([0.8 3]) (Bas droite). Chaque matrice de covariance est illustrée par des el-

lipses correspondant aux courbes d’isoprobabilitiés.

9.3.3 Paramétrisation des probabilités de transitions

Enfin nous proposons une paramétrisation des probabilités de transitions qui jouent

aussi un role dans la modélisation des données d’un HMM. Dans certains cas que nous

envisagerons par la suite, il est intéressant de paramétriser les probabilités de transitions

afin de définir des séquences d’états plus ou moins probables en fonction du contexte.

En particulier, puisque chaque séquence d’observation évolue dans un contexte qui lui

est propre, il parâıt plus adapté d’utiliser des probabilités de transitions dépendantes du

contexte plutôt que des transitions identiques pour chaque séquence.

Dans ce cas, nous re-définissons la probabilité de transition a
i,j

de l’état i vers l’état j

au temps t par :

â
i,j

(✓) =
exp

h
log ā

ij

+w

T

ij

✓

i

P
k

exp
⇥
log ā

ik

+w

T

ik

✓

⇤ (9.4)
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où ā
ij

est la probabilité de transition initiale de l’état i à l’état j telle qu’utilisée dans

un HMM ou un CHMM sans paramétrisation des transitions et w
ij

un vecteur de poids

de la même dimension que ✓.

Il est intéressant de constater que les CHMMs ainsi définis généralisent les HMMs.

En e↵et, un CHMM devient un HMM (doté des moyennes µ̄j , des covariances ⌃̄j et des

probabilités de transitions ā
ij

) en fixant simplement les matrices V j et U j et les vecteurs
f⌃j et wij à 0.

Notons finalement que l’extension de ces paramétrisation à plusieurs Gaussiennes par

états ou à l’utilisation de variables contextuelles dépendant du temps ✓
t

ne pose pas de

problèmes.

9.3.4 Vue Bayésienne

Dans les CHMMs, l’influence des variables contextuelles sur les distributions d’emisssion

et de transitions peut être représentée par le modèle graphique ci-dessous :

��
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��

��

��
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Figure 9.3: Représentation Bayésienne des HMM Contextuels lorsque les distribu-
tions de probabilités d’emission et de transitions du HMM sont paramétrisées par des

variables contextuelles dynamiques ✓t

En apprentissage on considère la variable contextuelle ✓ connue (ou observable), cepen-

dant, ça n’est pas toujours le cas en test. A cet e↵et, Bobick et al. ont montré [84]

comment ✓ peut être inferée dans les PHMM.

Dans les CHMMs, il est également possible d’inferer la variable contextuelle en test.

Cependant, il n’y a pas de formule analytique pour reestimer ✓ lorsqu’on conditionne les

distributions de probabilités avec les nouvelles paramétrisations (pour les transitions, et

covariances). D’autre part, utiliser des variables contextuelles dynamiques nécessiterait

d’inférer un ✓

t

à chaque instant ce qui est nettement plus couteux. De ce fait, on considère

l’utilisation des CHMM avec l’emploi de variables contextuelles observables en test.
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9.3.5 Résultats en classification de caractères

Nous rapportons ici des résultats obtenus sur une base de données de classification

de caractères (IAM) comprenant 12 folds. Chaque fold est composé de 200 exemples

d’apprentissage, 50 exemples en validation et 50 exemples en test. Les données sont

préalablement normalisées de façon à avoir une moyenne nulle et un écart type de 1.

Chaque séquence d’observations x représente un caractère manuscrit. Les observations x
t

à chaque instant sont des vecteurs à 9 dimensions qui caractérisent une fenêtre glissante

de 1 pixel sur l’image du caractère.

Figure 9.4: Exemples de caractères manuscrits ’m’ et ’e’ extraits de la base IAM

Nous utilisons ici plusieurs définitions du vecteur de variables contextuelles ✓. Nous avons

utilisé les dérivées des observations moyennées sur toute la longueur de la séquence

(notées ’�’), les accélérations moyennées de la même manières (notées ’�2’). Nous

avons aussi utilisé des variables contextuelles dépendant du temps telles que la dérivée,

l’accélération et la variance des observations à chaque instant. Leur valeur est moyennée

sur une fenêtre glissante dont la taille est indiquée entre parenthèses. Nous comparons

les CHMMs à moyennes paramétrisées (µCHMM) et à moyennes et covariances pa-

ramétrisées (µ⌃CHMM) avec des HMMs (que l’on nomme AugHMMs) dont le vecteur

d’observations à chaque instant est simplement augmenté ou concaténé avec l’informa-

tion contextuelle ✓

t

.

On peut constater que les CHMMs dont la moyenne est paramétrisée (µCHMM) sont

systématiquement plus performants que les HMMs auxquels l’information contextuelle

est rajoutée naivement dans le vecteur de caractéristiques (AugHMM). D’autre part,

la paramétrisation des covariances (µ⌃CHMM) apporte un gain par rapport à la seule

paramétrisation des moyennes. Par ailleurs la performance des HMMs standard sans

information contextuelle n’excède pas 67% avec 8 états et 2 Gaussiennes par état.
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Table 9.1: Performance des HMM Contextuels (CHMM) pour di↵érentes topologies
(nb d’états par classe, nb de Gaussiennes par états et di↵érentes définitions du vecteur
de variables contextuelles ✓t calculé sur une fenêtre de taille variable (trouvée par essais
erreurs sur la base de validation). Les résultats sont moyennés sur les 12 folds (écart
type indiquée entre parenthèses). Notons que les gains des µ⌃CHMMs comparés aux
µCHMMs et aux HMMs sont statistiquement significatifs, de même que les gains des

µCHMMs par rapport HMMs (pvaleur < 5%).

nb nb Context Train Train Train Test Test Test

states gauss variable ✓

t

augHMM µCHMM µ⌃CHMM augHMM µCHMM µ⌃CHMM

3 1 µ(41) 60.5 (0.6) 66.1 (0.7) 67.2 (0.6) 56.3 (1.4) 61.5 (1) 62.2 (1.3)

3 1 µ(61) �2(55) 64.5 (1) 76.9 (0.7) 79 (1.1) 55.6 (1.8) 67 (1.3) 67.6 (1.7)

3 1 µ(61) �2(55) �(15) 64.6 (0.7) 73.6 (0.7) 77.4 (1.6) 55.8 (1.6) 65.1 (1.2) 66.2 (1.5)

3 1 µ(61) �2(55) �(15) �2(15) 64.5 (0.6) 74.8 (0.8) 77.2 (1) 55.3 (1.7) 64.6 (1) 65.5 (1.2)

3 2 µ(41) 67.7 (1.1) 70.3 (0.9) 73.7 (1.3) 59.8 (1.3) 62.8 (1) 65.5 (1.7)

3 2 µ(61) �2(55) �(15) �2(15) 75 (0.9) 80.4 (1.1) 83.2 (1.7) 59.7 (1.5) 65.6 (1.2) 67.1 (0.9)

5 1 µ(41) 66.1 (0.6) 72.1 (0.7) 73.4 (1.1) 60.1 (1.6) 65.5 (1.2) 66.3 (1.2)

5 1 µ(61) �2(55) 70.3 (0.7) 76.9 (0.7) 79 (1.1) 59.3 (1.3) 67 (1.3) 67.6 (1.7)

5 1 µ(61) �2(55) �(15) 70.2 (0.7) 79.2 (0.5) 81.2 (0.9) 59.1 (1.2) 66.9 (1.1) 68.1 (1.5)

5 1 µ(61) �2(55) �(15) �2(15) 70.5 (0.9) 80.4 (0.8) 81.4 (0.8) 59.5 (1.1) 67 (0.8) 67.4 (0.9)

5 2 µ(41) 75.7 (0.8) 79.7 (1.2) 81.4 (1.2) 64 (1.2) 69.5 (1.8) 70.2 (1.1)

5 2 µ(61) �2(55) �(15) �2(15) 80.7 (0.6) 88.1 (0.6) 88.3 (0.7) 62.6 (2) 69.4 (0.8) 69.8 (0.9)

8 1 µ(41) 70.9 (0.7) 78 (0.9) 79 (1) 63.5 (1.3) 70.3 (1.1) 70.9 (1.1)

8 1 µ(61) �2(55) 74.2 (0.9) 82.6 (0.8) 84.2 (0.7) 61.7 (1.3) 70.8 (1.2) 71.7 (1)

8 1 µ(61) �2(55) �(15) 73.7 (0.6) 84.6 (0.7) 85.4 (0.7) 61.2 (1.5) 71.4 (1.2) 72.1 (0.9)

8 1 µ(61) �2(55) �(15) �2(15) 74.3 (0.8) 85.6 (0.6) 86.3 (0.8) 61.6 (1.6) 70.7 (1.2) 71.4 (1.3)

8 2 µ(41) 80.3 (1) 85.6 (0.7) 86.5 (0.6) 59.8 (1.3) 73.3 (1.5) 74.2 (1.3)

8 2 µ(61) �2(55) �(15) �2(15) 84.3 (0.7) 92.4 (1.1) 92.5 (1.2) 64.5 (2.2) 72.3 (1.2) 72.6 (1.2)

9.3.6 Résultats en synthèse

Les CHMM étant des modèles génératifs, ils sont capable de synthétiser des données,

ce qui est particulièrement utile dans certains domaines comme la synthèse de parole

à partir de texte, ou l’animation d’avatars virtuels par exemple. Nous présentons ici

une approche exploitant la capacité de modélisation des CHMMs pour modéliser les

mouvements de sourcils d’un avatar à partir du signal de parole. La base de données

utilisée contient 240 phrases étiquetées par 5 classes d’expression faciales types. 80% des

données sont réservées à l’apprentissage, 20% à la validation et 20% au test.

Pour cette application, nous paramétrisons les moyennes et les transitions des CHMMs

(µTrCHMM) avec des variables contextuelles dynamiques liées au signal de parole (pitch
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Figure 9.5: Illustration de l’animation des sourcils d’un avatar virtuel (les flèches
indiques le déplacement).

et énergie calculés sur 10 trames). Les CHMMs sont appris sur des observations com-

posées de caractéristiques de mouvement et de caractéristiques audio. Au moment de

la synthèse, le signal de parole est utilisé pour calculer les variables contextuelles qui

conditionnent le modèle. Uniquement les séquences d’observations liées au mouvement

sont générées. Le processus de synthèse à partir des modèles fait également appel à la

méthode décrite en [76] qui permet de générer des séquences d’observations ou trajec-

toires plus réalistes.

Table 9.2: Performance des modèles (HMM, µCHMM et µTrCHMM) par rapport à la
qualité de synthèse (critère MSE i.e. erreur aux moindres carrés entre la séquence réelle
et la séquence synthétisée). On rapporte aussi la performance des modèles en étiquetage
de séquences sur la même base (distance de hamming (H) et distance d’édition (E)
par rapport à la séquence d’étiquettes réelles). Les résultats sont moyénnés sur 20

expériences (écart type entre parenthèses).

Modèle #états MSE Acc (H) Acc (E)
HMM [40] 3 0.67(0.052) 37%(4.7) 45%(4.2)

5 0.59(0.042) 43%(4.7) 49%(4.4)
7 0.56(0.056) 53%(5.7) 51%(4.3)

µCHMM 3 0.51(0.055) 55%(4.8) 49%(4.4)
5 0.49(0.064) 58%(5.7) 50%(4.9)
7 0.47(0.056) 59%(4.5) 50%(3.4)

µtrCHMM 3 0.55(0.042) 60%(5.3) 57%(4.7)
5 0.46(0.051) 61%(5.1) 61%(3.8)
7 0.45(0.037) 63%(3.0) 62%(3.7)

Comme nous pouvons le voir, les 2 approches basées sur les CHMM (µCHMM, µtrCHMM)

ont de meilleures performances que les HMM et la performance des CHMMs à moyennes

et transitions paramétrisées est à la fois la meilleure en synthèse et en reconnaissance.
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9.4 les Champs de Markov Conditionnels et Contextuels

(CHCRF)

Dans les dernières années, un certain nombre de chercheurs ont investigué l’utilisation de

modèles purement discriminants pour l’étiquetage de séquences. Les champs de Markov

Conditionnels (CRF) et leur extension à l’utilisation d’états cachés (HCRF) en font

notamment partie. Une première raison de considérer les HCRF par rapport aux autres

approches discriminantes est qu’ils n’ont pas la contrainte d’utiliser des distributions de

probabilités Gaussiennes pour modéliser les données. Comme évoqué par leCun et al.

[48] l’utilisation de distributions de probabilités n’est pas nécessairement utile pour des

tâches de classification.

D’autre part, la performance des modèles discriminants est souvent supérieur à celle des

modèles génératifs en classification ou reconnaissance [13, 28, 34, 54, 56, 71, 74, 80]. Par

ailleurs, les HCRFs figurent parmi les méthodes les plus performances [34, 54, 74, 80].

Motivés par ces résultats, nous présentons ici une approche afin d’exploiter l’informa-

tion contextuelle dans les HCRFs. Nous rappelons brièvement les fondamentaux de la

modélisation HCRF puis nous expliquons comment les HMMs peuvent être vus comme

des cas particuliers des HCRFs, ce qui conduit à un schéma e�cace d’initialisation pour

apprendre les HCRFs [34]. Partant de cette idée, nous élaborons finalement une méthode

e�cace pour apprendre un HCRF tirant partie de l’information contextuelle.

Les HCRFs sont particulièrement sensibles au sur-apprentissage. D’une part parce que

leur apprentissage utilise un critère d’optimisation non convexe et d’autre part car ils

calculent des scores moins contraints que les probabilités Gaussiennes des HMMs. Ce-

pendant, il existe une méthode e�cace pour apprendre les HCRFs qui a été proposée

récemment [34]. Elle consiste à apprendre tout d’abord un HMM, puis initialiser les pa-

ramètres d’un HCRF afin qu’il reproduise la même fonction de décision que les HMMs.

Cette stratégie est aussi intéressante car les HCRFs sont entrainés avec un critère dis-

criminant plus adapté à la classification. Cependant, l’apprentissage par maximum de

vraissemblance dans les HMMs est facilement parallélisable car chacun des modèles de

classe est indépendant ce qui n’est pas le cas avec les HCRFs. De ce fait, il est plus

rapide d’apprendre des HMMs que des HCRFs et initaliser un HCRF avec un HMM

peut améliorer les performances pour un coût limité.

Nous expliquons ici comment le schéma d’initialisation est réalisé. Le point crucial est

d’exprimer la probabilité jointe des séquences d’observations et des états comme un pro-

duit scalaire entre un vecteur de paramètres et un vecteur de caractéristiques dépendant

de la classe, de la séquence d’observations et des états.
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Pour une séquence d’états h d’un HMM on peut en e↵et écrire :
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De ce fait, on a :
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où �

loc et �

trans sont les vecteurs de paramètres du HCRF et �

loc et �

trans sont les

vecteurs de caractéristiques associés.

Afin de définir les HCRFs contextuels (CHCRFs), on doit préalablement définir les

vecteurs de caractéristiques �

trans et �

loc puis apprendre un HCRF linéaire sur cette

représentation. Un choix simple serait de concaténer les observations x et les variables

contextuelles ✓ dans le vecteur de caractéristiques � afin que le HCRF calcule une fonc-

tion linéaire de ces entrées. Nous nommons cette technique HCRF augmenté (AugH-

CRF). Un choix plus intéressant consiste à définir un vecteur de caractéristiques �

incluant le produit Cartésien des composantes de x
t

et de ✓
t

de façon à ce que le HCRF

simule la fonction du décision du CHMM. Cette stratégie a l’avantage de pouvoir être ini-

tialisée par un HMM Contextuel (CHMM), surmontant l’obstacle principal des HCRFs

qui est la sensibilité leur performance par rapport à l’initialisation. Dans nos expériences,

l’initialisation aléatoire des HCRFs atteint péniblement une performance de 40% sur la

base de classification IAM utilisée (en utilisant un produit Cartésien entre les compo-

santes des observations comme vecteur de caractéristique). D’un autre côté, les HMMs

sont des modèles plus simples et moins sensibles au sur-apprentissage, de plus il existe

des méthodes standard pour les initialiser, (les paramètres des distributions Gaussiennes



160

peuvent notamment être initialisés par l’algorithme des K-moyennes). Au final, l’obten-

tion d’une solution initiale par des HMMs entrainés par maximum de vraissemblance

est une idée classique, notamment utilisée pour d’autres techniques d’apprentissage dis-

criminant (MMI, MCE, MPE . . . [43], [61] and [88]).

Nous proposons donc l’idée de construire un vecteur de caractéristiques � qui dépend

de x et de ✓ de manière à simuler la fonction de décision du CHMM par un HCRF

contextuel. De ce point de départ, l’optimisation d’un HCRF conduit éventuellement à

un HCRF plus performant exploitant e�cacement l’information des variables contex-

tuelles.

Afin d’implémenter les HCRFs Contextuels (CHCRF) nous devons définir des vecteurs

de caractéristiques �

loc et �trans et initialiser les vecteurs de paramètres �

loc et �trans

à partir des HMM Contextuels (CHMM) suivant le schéma suivant :

Pour une séquence d’états h, la probabilité d’émission dans les CHMM se formule de la

manière suivante :
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On initialisera �

loc et �

trans avec les paramètres du HMM, tandis que les vecteurs de

caractéristiques �loc et �trans contiendront essentiellement des termes dépendants de ✓

et des observations x. Ce choix permet de définir un CHCRF avec le même nombre de

paramètres que le CHMM.

9.4.1 Résultats en classification de caractères

Nous investigons ici le gain apporté par l’exploitation des variables contextuelles dans les

HCRFs. Nous nous intéressons à comparer les CHCRFs aux HCRFs standards qui sont

à l’état de l’art des modèles de classification et d’étiquetage de séquences. Nous condui-

sons des expériences sur la classification de caractères isolés sur une partie de la base de

données IAM d’écriture manuscrite (6 folds avec chacuns 200 examples en apprentissage,

50 en validation et 50 en test). Nous comparons les HCRFs, AugHCRFs et µCHCRFs
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(µCHCRFs est initialisé par un CHMM dont la moyenne seule est paramétrisée). Les

AugHCRFs et µCHCRFs utilisent l’information contextuelle ✓ de di↵érente manière

tandis que les HMMs et les HCRFs ne l’utilisent pas. La variable contextuelle ✓ est ici

définie comme la moyenne statique ou dynamique de la séquence d’observations comme

dans les expériences sur les CHMMs. L’initialisation du HCRF (Standard, Augmenté

et Contextuel) est faite à partir du meilleur HMM correspondant (standard, Augmenté,

Contextuel) sur la base de validation. Nous rappelons par ailleurs que les HMMs aug-

mentés sont simplement les HMMs standards où ✓ est concaténé au vecteur d’observa-

tions x
t

à chaque instant.

Table 9.3: Performance en classification des modèles discriminants : HCRFs, augH-
CRFs et CHCRFs Les résultats sont moyennés sur les 6 folds de la base IAM. Tous les

modèles ont 8 états par classe.

Modèle Train Test
HMM 65.6 (0.2) 60.6 (1.5)
HCRF 67.8 (0.2) 63.7 (1.8)

AugHCRF static ✓ = µ 70.9 (0.6) 62.6 (1.1)
µCHCRF static ✓ = µ 78.1 (0.8) 70.7 (1.6)

AugHCRF dynamic ✓ = µ(41) 68.1 (0.7) 58.9 (2.2)
µCHCRF dynamic ✓ = µ(41) 77 (0.8) 68.4 (1.9)
AugHCRF dynamic ✓ = µ(61) 66.6 (1.2) 57.8 (2)
µCHCRF dynamic ✓ = µ(61) 77 (0.7) 68.2 (1.6)

On peut tirer quelques conclusions des résultats du tableau 9.3. D’une part, les HCRFs

sont nettement plus performants que les HMMs non discriminants, ce qui semble natu-

rel étant donné que le critère d’apprentissage discriminant des HCRFs est plus adapté

aux tâches de classification. D’autre part, les HCRFs augmentés n’arrivent pas à ex-

ploiter correctement l’information contextuelle car ils sont ici moins performants que

les HCRFs ou les HMMs n’utilisant pas d’information contextuelle. C’est probablement

du au sur-apprentissage puisque les HMMs augmentés (dont le nombre de paramètres

est du même ordre que pour les AugHCRFs) ont beaucoup plus de paramètres que

les HMMs. Cependant, bien qu’ils aient également plus de paramètres que les HMMs,

les CHCRFs sont ici nettement plus performants. Dans cette tâche, le schéma d’initia-

lisation des CHCRFs par CHMMs permet d’exploiter plus e�cacement l’information

contextuelle par rapport à une approche plus simple qui consiste à rajouter le contexte

dans le vecteur de caractéristiques.
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9.5 Approche de type Transfer avec les CHMM

L’utilisation de modèles plus expressifs comme les CHMMs est cependant plus sujet aux

risques de sur-apprentissage que les HMMs lorsque l’on dispose de très peu de données

d’apprentissage. Nous proposons à ce titre une stratégie d’apprentissage de type Transfer

Learning qui permet d’améliorer la performance des CHMMs appris sur peu d’exemples.

Afin d’apprendre à partir de peu d’exemples, nous proposons d’apprendre un CHMM

conjointement sur les données de l’ensemble des classes. Ce modèle unique, que nous

appelons CHMM global, peut permettre de trouver des régularités dans les données

qui sont partagées par les di↵érentes classes. L’idée est qu’en utilisant davantage de

données, on espère que l’estimation des paramètres du modèle sera plus fiable. Une fois

appris, il s’agit de transférer la connaissance de ce modèle global à des modèles de classes

individuels pour le décodage.

Nous définissons d’abord une variable contextuelle de classe ✓

y

représentant la classe y

qui est normalement modélisée par un HMM avec son jeu de paramètres ⇤
y

. Dans le

modèle contextuel global, on attribue une variable contextuelle de classe ✓

y

à chaque

séquence d’observations x 2 X
y

comme illustré dans la figure 9.6.

��

�� �� �� ��

�� �� �� ��

��	
�
�



Figure 9.6: CHMM global représenté tel un réseau Bayésien dynamique. On attribue
un vecteur contextuel de classe ✓y à chaque séquence d’observation x 2 Xy.

Ce mécanisme nous permet d’utiliser les données de toutes les classes conjointement dans

un seul modèle. En d’autres termes, si |Y | est le nombre de classes, au lieu d’entrainer |Y |
modèles avec leur propres données d’apprentissage, un seul CHMM global est entrainé

sur l’ensemble des données de toutes les classes.

L’inférence avec un CHMM global comprend 2 étapes : Premièrement on instancie des

HMMs pour chaque classe à partir du modèle global. Deuxièmement, on réalise une

inférence classique de type Forward Backward sur les HMMs de chaque classe afin de

sélectionner l’étiquette la plus probable pour la séquence d’observations x 2 X .
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Lorsqu’on conditionne le CHMM global par cette variable contextuelle de classe ✓

y

, les

moyennes µ̂
s

(✓
y

), les covariances ⌃̂
s

(✓
y

) et les transitions Â(✓
y

) du CHMM définissent

un HMM avec les moyennes µ
s

, les covariances ⌃
s

et la matrice de transition A. Les

paramètres ⇤
y

du HMM qui modélise la classe y ne dépendent donc plus de la variable

contextuelle ✓

y

.

9.5.1 Résultats en classification de gestes

Nous avons e↵ectué ici des expériences en classification de gestes sur des données de

motion capture (5 folds chacun constitués de 702 examples en apprentissage, 225 en

validation, et 203 en test). La base contient 37 classes de gestes (extraits dela base

HDM05 [59]) e↵ectués par 5 acteurs di↵érents. Les observations sont composées de 62

angles d’articulations qui représentent le squelette de l’acteur à chaque instant. Dans

ces expériences nous utilisons une réprésentation de type 1 parmi N pour le vecteur de

variabes contextuelles ✓

y

(soit un vecteur de dimensions 37 avec 1 à la position y et 0

partout ailleurs).

Figure 9.7: Données de motion capture du geste “cartwheel” représenté comme une
séquence de postures. La figure indique les trajectoires 3D de 3 articulations (centre,

doigt droit, cheville gauche).

modèle covariance nb nb Train Test nombre de
d’états gauss moyenne F1 moyenne F1 paramètres

HMM pleine 8 1 88.2(0.7) 62.2(1.9) 1158544
HMM pleine 8 5 100(0) 53.1(6.1) 5784728

modèles de classes HMM diag 8 1 87.7(0.7) 66.3(3.1) 39072
indépendants HMM diag 8 2 89.4(1.1) 66.4(3.1) 76368

HMM diag 8 5 91.8(2.5) 65.7(3.4) 185368
HMM diag 8 7 92.4(2) 63.5(2.5) 261368
HMM diag 8 9 94.2(1.2) 63.1(2.9) 335368

modèle µ⌃CHMM full 8 1 91.4(1.2) 67.4(2.9) 68512
global µ⌃CHMM full 8 5 97.1(0.6) 70.9(3.3) 342344

Table 9.4: Mesure F1 de performance des HMMs standards vs CHMM global dont
les moyennes et covariances sont paramétrisées par une variable contextuelle de classe

type ’hot code’ (hcode) soit 1 parmi N
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Dans le tableau 9.4 on peut constater que les HMMs à covariances pleines sur-apprennent

les données rapidement. En utilisant des modèles de classe avec 8 états et 5 Gaussiennes

par état, la performance en test des HMMs diminue (de 62.3% to 53.1%) comparé

aux HMMs n’ayant qu’une Gaussienne pleine par état. En utilisant des Gaussiennes

diagonales, le nombre de paramètres est nettement réduit et cela aide naturellement

la généralisation, mais, la performance des HMMs stagne rapidement aux alentours de

66%.

A contrario, avec un CHMM global, ça n’est pas le cas : Utiliser un modèle à plus

forte capacité améliore à la fois la performance en apprentissage et en test. Sans pour

autant avoir fait une recherche aussi exhaustive que pour les HMMs, la performance du

CHMM global est déjà supérieure à toutes les topologies de HMMs testées. Bien sur, le

CHMM global utilisant des Gaussiennes pleines a moins de paramètres que les HMMs

à Gaussiennes pleines, cependant, avec 5 Gaussiennes, il a déjà plus de paramètres que

les HMMs à Gaussiennes diagonales ici présentés.

Il est relativement surprenant de constater ce genre de gains, car les code de classes

sont totalement orthogonaux impliquant des modèles de classes presque indépendants.

Toutefois, les classes partagent un biais commun dans chaque état. Afin de l’illustrer

nous détaillons les paramétrisations d’un état s pour un CHMM modélisant la classe y :

µ̂
s

(✓
y

) =V
s

✓

y

+ µ̄

s

⌃̂
s

(✓
y

) =D
s

(✓
y

)⌃̄
s

D
s

(✓
y

) avec D
s

(✓
y

) = diag(exp(U
s

✓

y

+ e⌃
s

))

où µ̄

s

et e⌃
s

sont les biais respectivement associés à la paramétrisation de la moyenne

et de la covariance.

Puisque µ̄

s

et e⌃
s

sont communs à toutes les classes, on peut voir les matrices V
s

et U
s

comme des paramètres modélisant seulement les di↵érences restantes entre les classes

vis à vis d’un état partagé. Ceci explique probablement pourquoi nous obtenons des

performances bien supérieures aux HMMs sur peu d’exemples.

Supposons maintenant que ✓

y

est encore un vecteur de dimension 37 (le nombre de

classes) mais que chacun de ses coe�cients à la position y0 soit proportionnel à la

similarité entre les classes y et y0. ✓
y

est donc maintenant beaucoup plus dense que

la représentation précédente (hot code). En réalité, utiliser un vecteur contextuel ✓
y

avec une similarité entre les classes définit une pondération sur les coe�cients de pa-

ramétrisation. Plus une classe y est similaire à une classe y0, plus la pondération sur les

coe�cients de paramétrisation devient forte. Nous montrons ci-dessous une matrice de

similarité sur 3 classes afin d’illustrer ce phénomène.
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classe 1 2 3
1 1 0.8 0.2
2 0.8 1 0.1
3 0.2 0.1 1

Table 9.5: Matrice de similarité sur 3 classes, les classes 1 et 2 sont proches et plus
éloignées de la classe 3

Supposons que les observations sont des scalaires, la moyenne d’une Gaussienne dans les

HMMs des 3 classes peut être exprimée par :

µ̂(✓
1

) = w
1

+ 0.8⇥ w
2

+ 0.2⇥ w
3

+ µ̄

µ̂(✓
2

) = 0.8⇥ w
1

+ w
2

+ 0.1⇥ w
3

+ µ̄

µ̂(✓
3

) = 0.2⇥ w
1

+ 0.1⇥ w
2

+ w
3

+ µ̄

où w
1

, w
2

et w
3

sont les moyennes des coe�cients de paramétrisations

De ce fait, 2 classes similaires (1 et 2) auront tendance à définir des moyennes plus

proches alors que la moyenne pour la classe 3 sera plus di↵érente. Au final, si deux

classes sont similaires, les moyennes et les covariances des HMMs représentant ces classes

(qui sont issues du CHMM global) seront proches. En présence de peu de données d’ap-

prentissage on impose ici un a priori fort sur l’estimation des paramètres des modèles de

classes qui pourrait probablement nuire à la discrimination si l’on disposait de davantage

de données.

Nous définissons maintenant la matrice de similarité “classSim” comme la matrice de

confusion symmétrisée d’un HMM entrainé sur la même tâche. L’idée est que plus les

classes sont proches, plus le HMM fait d’erreurs de prédiction les concernant, ce qui

est bien reflété par sa matrice de confusion (notée confusMat) calculée sur la base de

validation.

classSim = confusMat+ confusMatT

Nous normalisons chaque ligne de classSim de façon à ce que les coe�cients soient entre

0 et 1. Finalement, la ieme ligne de la matrice simClass définit le vecteur de variables

contextuelles pour la classe i et exprime sa proximité vis à vis de toutes les autres classes.

Les résultats du tableau 9.6 montrent des di↵érences notables entre l’utilisation d’un

code de classe ✓

y

de type hotcode et un code de classe de type similarité. L’utilisation

d’un vecteur contextuel de type similarité produit une meilleure généralisation alors que

la performance en apprentissage est un peu inférieure. Ces résultats sont encourageants

car ils montrent qu’un changement dans la représentation du code de classe peut encoder

une information utile à la généralisation pendant l’apprentissage.



166

modèle nb nb Train Test
d’états gauss moyenne F1 moyenne F1

µ⌃CHMM (hcode) 8 1 91.4(1.2) 67.4(2.9)
µ⌃CHMM (hcode) 8 5 97.1(0.6) 70.9(3.3)

µ⌃CHMM (classSim) 8 1 89.5(0.9) 71.8(2.7)
µ⌃CHMM (classSim) 8 5 96.5(0.7) 72.6(4.2)

Table 9.6: Mesure F1 de performance pour les CHMMs globaux paramétrisés par un
vecteur contextuel de classe de type hot code (hcode) comparé à un vecteur contextuel

encodant la similarité entre les classes (classSim)

9.6 Conclusion

A travers cette thèse, nous avons défini le paradigme des modèles de Markov Contextuels.

Le point de départ de notre approche est qu’une part importante de la variabilité des

séquences d’observations peut être expliquée par quelques variables contextuelles qui

sont fixes ou qui varient au court du temps. Plusieurs déclinaisons des CHMMs ont été

proposées pour incorporer l’influence de variables contextuelles dans la modélisation des

HMMs. En particulier nous avons montré comment paramétriser à la fois les matrices

de covariances des distributions Gaussiennes et les probabilités de transitions par des

variables contextuelles dynamiques.

Nous avons ensuite pu proposer une méthode e�cace pour exploiter l’information contex-

tuelle dans un modèle discriminant les Champs de Markov Conditionnels et Contextuels

(CHCRFs). Cette approche s’est révélée être un schéma d’apprentissage plus e�cace

pour exploiter l’information contextuelle dans les HCRFs que la forme d’apprentissage

standard.

Nous avons pu expérimenter la performance de ces modèles sur diverses tâches de clas-

sification de caractères ainsi qu’en reconnaissance et en synthèse. Dans toutes ces tâches

les capacités de modélisation des CHMM ont permis d’améliorer les performances des

HMMs.

Enfin, nous avons développé un dernier type de technique permettant d’apprendre des

CHMMs avec peu d’exemples. Cette approche basée sur un modèle global appris sur

l’ensemble des données utilise des variables contextuelles encodant une représentation

de la classe. Ce mécanisme permet de partager de l’information entre di↵érentes classes

pendant la phase d’apprentissage alors que l’apprentissage génératif classique les ap-

prend indépendamment. Nos résultats on montré que cette méthode permet de mieux

généraliser comparé à des HMMs testés sur diverses topologies.
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