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Abstract

In this thesis, we studied the effect of electron electron interactions in quantum point
contacts (QPCs). Quantum point contacts are small quasi-one dimensional channels,
designed on a high mobility two-dimensional electron gas (2DEG). A negative voltage
applied on a pair of metallic split gates above the sample surface allows to open or close
the QPC. As a QPC opens, more and more electronic modes are allowed to cross the
QPC, and its conductance increases by discrete steps, separated by a conductance quan-
tum 2e2/h. This can be understood from a single-particle picture in one-dimensional
transport, as each transverse mode carries a conductance quantum.
But from their first realization 25 years ago, quantum point contacts have shown devia-
tions from this picture, attributed to electron electron interactions. The most well known
are a shoulder below the first plateau, around 0.7×2e2/h, called the "0.7 anomaly", and a
peak in the differential conductance that arises at low temperature: the zero bias anomaly
(ZBA).
The tool we used to study these interaction effects is a scanning gate microscope (SGM).
It consists by changing locally the device’s potential with the polarized tip of an atomic
force microscope (AFM), and record the changes in conductance as a function of the tip
position. By performing this technique at very low temperature, we showed that we can
modulate the conductance anomalies of QPCs. We interpret our result as the signature
of a small electrons crystal forming spontaneously at low density in the QPC due to the
Coulomb repulsion: a Wigner crystal. We can modify the number of crystallized electrons
by approaching the tip, and obtain signatures of the parity of the localized electrons num-
ber in transport features. Depending on this parity, the Wigner crystal has a different
spin state, and screening of this spin by the surrounding electrons through the so-called
Kondo effect leads alternatively to a single peak or a split ZBA. This discovery brings
a significant advance in this field, that has attracted research efforts of many important
groups in the world over the past 15 years.
We then performed interferometric measurements thanks to the scanning gate microscope
by creating in-situ interferometers in the 2DEG. We obtained signatures of an additional
phase shift accumulated by the electrons in the ZBA regime. We attribute this effect to
the universal phase shift that electrons accumulate when crossing a Kondo singlet, rein-
forcing that the debated origin of the ZBA lies in Kondo physics.
Finally, we adapted the SGM technique to the study of thermoelectric transport in QPCs,
and for the first time imaged interferences of electrons driven by a temperature difference.
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Résumé en français

Au cours de cette thèse nous avons étudié les effets des interactions entre électrons dans
les contacts ponctuels quantiques (QPCs). Les contacts ponctuels quantiques sont des pe-
tits canaux quasi-unidimensionnels, définis à partir de gaz électroniques bidimensionnels
de haute mobilité (2DEG). Une tension négative appliquée sur des grilles métalliques au
dessus de la surface permet d’ouvrir ou fermer le QPC. Lorsqu’un QPC s’ouvre, de plus
en plus de modes électroniques peuvent traverser le QPC, et sa conductance augmente par
pas discrets, séparés par un quantum de conductance 2e2/h. On peut le comprendre par
le transport unidimensionnel d’une seule particule, car chaque mode transverse contribue
pour un quantum de conductance.
Mais depuis leurs premières réalisations, les QPCs ont montré des déviations par rapport
à ce modèle à une particule. Les plus connues sont un épaulement sous le premier plateau,
autour de 0.7×2e2/h, appelé "l’anomalie 0.7", et un pic dans la conductance différentielle
qui apparaît à basse température: l’anomalie à zéro polarisation (ZBA).
L’instrument que nous avons utilisé pour étudier ces effets d’interactions est un microscope
à effet de grille local (SGM). Cette technique consiste à modifier localement le potentiel
d’un dispositif à l’aide d’une pointe de microscope à force atomique (AFM) chargée néga-
tivement, et enregistrer les modifications de la conductance en fonction de la position de
la pointe. En utilisant cette technique à très basse température, nous avons montré que
nous pouvons moduler les anomalies de conductance du QPC. Nous avons interprété nos
résultats comme la signature d’un cristal d’électrons se formant spontanément à basse
densité dans le QPC à cause de la répulsion Coulombienne: un cristal de Wigner. On
peut modifier le nombre d’électrons cristallisés en approchant la pointe, et obtenir des
signatures de la parité du nombre d’électrons localisés dans le transport électronique.
En fonction de cette parité, le cristal de Wigner présente un état de spin différent, et
l’écrantage de ce spin par les électrons de conduction au travers d’un mécanisme appelé
effet Kondo donne une anomalie à zéro polarisation formant alternativement un simple
pic ou un double pic. Cette découverte apporte une avancée significative à ce domaine,
qui a concentré les efforts de plusieurs groupes importants ces 15 dernières années.
Nous avons ensuite réalisé des mesures interférométriques à l’aide du microscope SGM,
en créant in situ des interféromètres dans le gaz 2D. Nous avons obtenu les signatures
d’un déphasage supplémentaire dans le régime de la ZBA. Nous attribuons cet effet au
déphasage universel accumulé par les électrons à la traversée d’un singulet Kondo, ce qui
renforce le fait que la ZBA trouve son origine dans les phénomènes Kondo.
Enfin, nous avons adapté la technique SGM au transport thermoélectrique dans les QPCs,
et avons imagé pour la première fois les interférences d’électrons se déplaçant sous l’effet
d’une différence de température.
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Introduction

Physics in low dimensions

By reducing the dimensions of conductors and lowering the temperature, one can reach a
scale where electronic transport exhibits quantum effects. The electrons coherence length
becomes of the order of the system size, and their wave-like nature appears in transport
properties. In particular, at this mesoscopic scale, interference effects have first been
detected in universal conductance fluctuations of small wires [1] and Aharonov-Bohm ex-
periments on metallic rings [2].
By reducing the dimensionality with the advent of two-dimensional electron gases (2DEG),
quantum transport in condensed matter physics has turned to a new age. 2DEG made
of Silicon MOSFET (Metal-oxide-semi-conductor field-effect transistor), allowed the dis-
covery of the integer quantum Hall effect [3], that quickly led to the Nobel price of Klaus
Von Klitzing (1985).
This discovery demonstrated the fact that reducing the dimensions of the systems allows
a deeper investigation of quantum effects in condensed matter. By tuning the potential
landscape of semiconductor 2DEG, a new type of devices have been developed, and al-
lowed to study transport across a small electronic island (quantum dots), and quasi one
dimensional channels that are the subject of this thesis: quantum point contacts[4, 5]. A
few years after the discovery of the integer quantum hall effect, experimental signatures
of fractional quantum Hall effect have been reported[6] in cleaner 2DEG made out of
GaAs (that will be the system used in this thesis), and immediately explained as arising
from electron electron interactions leading to fractionally charged excitations[7]. For this
fundamental discovery in the field of many-body quantum physics, the authors were also
awarded a Nobel prize (Tsui, St Örmer and Laughlin, 1998).
This discovery demonstrated that semiconductor 2DEG are not only a testbed for single
particle quantum effects in condensed matter physics, but also allow an investigation of
the many-body problems, opening a new field in experimental quantum mechanics.

Electron interactions in one dimension

Electron electron interactions in one-dimensional devices are the subject of this thesis.
In particular, we are interested in the effects of interactions in quantum point contacts
(QPCs). A QPC is a small constriction defined in a 2DEG, that can be opened or closed
by applying a negative voltage on metallic split gates above the 2DEG. First developed
25 years ago, these devices seem a perfect realization of single-particle one dimensional
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transport. By opening the constriction, one can let one by one transverse electronic modes
go through the QPC, and its conductance evolves by steps of the conductance quantum
2e2/h each time a new mode is opened. But from their very first realization, QPCs have
shown deviations from this picture, attributed to electron electron interactions. The most
well-known deviation is the 0.7 anomaly: an unexpected shoulder around 0.7 × 2e2/h.
The other famous deviation from the single-particle picture is a peak in the differential
conductance of QPCs around zero bias, called the zero bias anomaly (ZBA).
These two anomalies have attracted research efforts of many groups in the world, but
still remain an open problem nowadays. They are of interest on a technological point of
view, because we need to fully understand the QPCs, that are the simplest device one
can design in the field of quantum transport, before fully understanding more complex
nanoelectronics devices. These anomalies are also a fascinating subject from the funda-
mental point of view, as they are supposed to arise from electron electron interactions,
that often lead to the most complicated problems in quantum mechanics.

Scanning gate microscopy

The tool chosen in this thesis to investigate interactions effects in QPCs is the scanning
gate microscope (SGM). It is derived from atomic force microscopy (AFM), and consists
in changing the devices’ conductance at low temperature thanks to the polarized metallic
AFM tip. By recording the device conductance as a function of tip position, one can im-
age quantum transport phenomena in semiconductor nanostructures. But far more than
producing beautiful images of the quantum world, a scanning gate microscope can be
used as an additional transport parameter, and reveal rich physics when combined with
transport measurements. We will see in particular how the polarized tip of a scanning
gate microscope can be used to finely tune the potential landscape of a QPC and reveal
crucial informations on the many-body effects involved in the conductance anomalies. We
will also describe how the polarized tip can be used to create in situ electronic interfer-
ometers allowing to perform phase-sensitive experiments on QPCs.

Organization of this thesis

This manuscript is organized as follows:
In Chapter 1, we present the basics of quantum transport in heterostructures, and the
single-particle picture of QPCs. We discuss the role of disorder in QPCs and introduce
a numerical tool that is used along this thesis to investigate single-particle phenomena:
Kwant[8].
Chapter 2 introduces the conductance anomalies in QPCs and summarizes part of the
long road that has been achieved on these subjects over the past two decades.
In Chapter 3, we introduce scanning gate microscopy and study the potential created by
the tip. We also analyze the interference fringes observed in our SGM images and discuss
their possible origin.
In Chapter 4, we present a new type of ballistic interferometers that we developed to mimic
SGM experiments, on which a sharp gate is designed one micron away from the QPC,
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acting as a local scatterer. We characterize the interferences obtained in these devices
and compare them to the ones observed in SGM. In the light of numerical simulations,
we also discuss the possible role of the disorder in the contrast of these interferences.
Chapter 5 presents the major result of this thesis. We show how the polarized tip of a
scanning gate microscope can be used to tune in-situ the potential landscape of a quantum
point contact, and how it changes the many-body state forming in the QPC channel. We
will first describe the context, and discuss a recent experiment that shows the existence
of several localized electrons in QPCs[9]. We will then show that we can also manipulate
this many-body state by approaching the polarized tip of a SGM towards the QPC.
Our observations confirm their interpretation and shines a new light on the mechanism
involved in the localization of these electrons.
In Chapter 6, we present an interferometric study by forming a Fabry-Pérot cavity between
the QPC and the tip-depleted region. By recording the spectroscopy of the interferences
obtained in this configuration, we show that the zero-bias anomaly induces a phase shift of
the interferences. We describe in detail the characteristics of this phase shift and propose
an explanation based on Kondo physics.
Finally, Chapter 7 presents thermoelectric measurements of QPCs, and shows how we can
successfully adapt the SGM technique to the imaging of thermoelectric transport.
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1.1. QUANTUM POINT CONTACTS

Introduction

The most simple object that one can imagine in the field of quantum transport is probably
a quantum point contact (QPC). It is a small quasi one-dimensional channel connecting
large two-dimensional reservoirs, that carrisies a definite number of transverse electronic
modes. Its conductance is quantized in units of the conductance quantum 2e2/h, reflect-
ing the number of perfectly transmitted transverse modes. In this sense, it beautifully
illustrates the very fundamental principle of quantum transport, known as the Landauer-
Büttiker formula.
On the other hand, closing a quantum point contact below the first plateau, letting less
than a single transverse mode going through, leads to dramatically low electronic density.
Counter-intuitively, reducing the electronic density results in increased electron-electron
interactions, and this leads to rich physics dealing with the most complicated problems
in quantum mechanics.
This makes of a quantum point contact an elegant device to illustrate the basics of quan-
tum transport as well as a perfect platform to study fundamental many-body quantum
physics.
In this chapter, we focus on the single-particle picture of quantum point contacts, inter-
actions effects will be discussed in Chapter 2. In section 1.1.1, I will briefly introduce
the properties of high mobility two-dimensional electron gases (2DEG) obtained with
semiconductor heterostructures, then move to one dimension and describe the first ex-
periments on QPCs, in the linear and non-linear regimes, and the theoretically expected
behavior. In section 1.1.2, I present the basic properties of the QPCs investigated in the
thesis, considering only the single-particle effects (not the interactions effects). For this
purpose, I will describe the sample fabrication, the measurements set-up, show some ex-
perimental results and discuss the particular role of disorder. I will introduce a numerical
code used all along this thesis to perform quantum transport simulations: Kwant.

1.1 Quantum point contacts

1.1.1 GaAs/AlGaAs heterostructures

Among the different possibilities to confine electrons in a single plane, one is based on
III/V semiconductors alloys. In this field, the cleanest electron gases are obtained from
heterostructures of GaAs and AlGaAs. These semiconductors can be grown in a very clean
way by “molecular beam epitaxy” (MBE), leading to pure crystals with very few lattice
defects. The band diagram in these semiconductor heterostructures can be adjusted in
such a way that the conduction band drops below the Fermi energy in an extremely
thin layer, leading to a single conduction plane. The electronic subbands in this plane are
separated by a large energy, and only one subband is usually occupied at low temperature.

Even though different recipes are possible to realize high quality 2DEG, the one in
Fig.1.1 presents the most frequently used structure. On a GaAs substrate is grown a
layer of AlGaAs, in which a silicon doping layer is embedded. The silicon atoms give
electrons that are “trapped” at the GaAs/AlGasAs interface, since the conduction band
drops below the Fermi energy. The electrons trapped in this quantum well experience a
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Figure 1.1 GaAs/AlGaAs heterostructure: typical composition and resulting conduction
band edge of GaAs/AlGaAs heterostructure

very high mobility, because the lattice is very clean due to the epitaxial growth process,
and mainly because the ionized Si donors are really far away from the 2DEG, reducing
scattering events. The 2DEG are typically buried from tens to hundreds nanometers be-
low the sample surface.
Mobilities in these heterostructures reach usually 106cm2/V.s. and the electronic density
is of the order of 1011e−/cm2.
With such high mobilities, the mean free path goes up to several microns. This means
that transport is quasi-ballistic on macroscopic scales, which offers a great platform for
an interesting type of experiments: ballistic electronics.
The typical density of these 2DEG can be compared to three-dimensional metals, by
putting it to the power 3/2, which would give around 1017e−/cm3. This is far below usual
metals, that contain around 1023e−/cm3. This particularly low densities corresponds to
small kinetic energies which tends to increase the effect of electron interactions. These
effects are central in this thesis and will be discussed all along this manuscript.
These low densities correspond to Fermi wavelengths of tens to hundred nanometers. This
means that one can design structures of the order of the Fermi wavelength, offering an
incredible range of quantum nano-electronic devices. Finally, this kind of density gives
typical Fermi energy around 10 meV, and at reasonably low temperatures (for example
4.2K, in liquid 4He at atmospheric pressure), the electrons phase remains well defined on
a few microns, leading to phase coherent ballistic electronics.

To measure transport in these structures, this 2DEG should be contacted electrically.
This is usually achieved by depositing a multilayer metallic alloy on the surface (usually
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Ni/Ge/Au/Ni/Au), and heat up the structure for AuGe to diffuse down to the 2DEG,
defining ohmic contacts and enabling to measure the conductance of the 2DEG.

To enter the field of mesoscopic physics (phase coherence), the 2DEG has to be pat-
terned into a micron-size device. This is achieved by depositing metallic gates in the
sample surface. Applying a negative voltage on these gates repels the electrons in the
2DEG, and enables one to reshape the 2DEG potential landscape into quantum point
contacts (1D confinement) or quantum dots (0D confinement).

1.1.2 Linear conductance

Figure 1.2 Typical scanning electron microscope (SEM) image of a QPC from this
work: Metallic split gates are deposited to split the 2DEG in two parts. On the left (large field),
one can see the shape of the conductive part, defined as the MESA. Four ohmic contacts are
defined to contact the 2DEG and perform 4-point measurements. The ohmic contact have a
different texture compared to the split gate.

The simplest mesoscopic device that can be achieved out of a 2DEG is a quantum
point contact. Thanks to electronic beam lithography technique, a pair of thin metallic
split gates are deposited above the 2DEG, defining a small constriction (Fig.1.2). Ap-
plying a negative voltage on these split gates repels the electrons of the 2DEG below the
gates, letting a finite electronic density only in the central part, through which current
flows. By controlling the applied gate voltage, one can open or close the constriction. The
first experimental realizations of this type of devices have been achieved in the late 80’s,
at the same time in two different groups [4, 5].
The first experimental traces of a QPC conductance vs. gate voltage from these works
are shown in Fig.1.3.

The first experimental observation is that the conductance does not behave at all in a
monotonic fashion, but exhibits striking quantization. As a QPC opens, its conductance is
found to be quantized in units of the conductance quantum 2e2/h, with a good accuracy.
This conductance quantization can be understood as follows: in a narrow 1D channel, the
transverse wave-function is quantized and the propagation along the channel axis involves
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Figure 1.3 Two first experiments demonstrating conductance quantization in QPCs:
a) Resistance of a QPC as a function of gate voltage in units of h/2e2. The trace exhibits steps
corresponding to conductance quantization. Adapted from Ref.[5]. b) Conductance of a QPC as
a function of gates voltage, in units of 2e2/h. Adapted from Ref.[4].

discrete modes, as in electromagnetic waveguides. When the QPC opens, more and more
transverse electronic modes can go through the constriction. As each of these modes
contributes to the total conductance for 2e2/h, the conductance evolves in steps, with one
additional conductance quantum each time a new mode is allowed to cross the QPC.

1.1.3 The saddle-point model

To better understand this conductance quantization, a beautiful calculation [10] has been
proposed soon after the first experimental demonstration. This model can be summarized
as follows. The QPC defines a constriction separating infinite two-dimensional leads. In
the 2DEG, the constriction is defined electrostatically a hundred nanometers below the
metallic split gates, which tend to smooth most of the geometric details of the gates.
A good approximation is then to consider that the very center of the QPC potential
forms a saddle-point, with a positive curvature in the transverse axis (denoted as y in
the following), and negative one along the transport axis (denoted as x). This saddle
potential can then be expressed as follows:

V (x, y) = V0 + 1/2m∗ω2
yy

2 − 1/2m∗ω2
xx

2 (1.1)

ωy and ωx are parameters defining the curvatures in the longitudinal and transverse
directions, I will discuss later how to evaluate them experimentally and numerically.
This simple saddle-point approximation has the advantage to be solvable analytically[10].
The hamiltonian of the problem simply writes:

H = p2/2m∗ + V (x, y) (1.2)

where p2/2m∗ is the kinetic energy, m∗ being the effective mass of the electrons trapped
in the GaAs quantum well.
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The hamiltonian can be separated regarding x and y, and a well known problem of quan-
tum mechanics appears in the transverse direction: an harmonic oscillator in a parabolic
well, defined by V (y) = 1/2m∗ω2

yy
2. The solution of this problem is that the allowed

transverse wave-functions are the eigen-modes of the harmonic oscillator ψn, associated
with discrete energy values En = (n+ 1/2)~ωy.

1.1.3.1 One-dimensional transport

To evaluate the current flowing through this quasi-1D channel, we can proceed as follows:
it is the integral of the current density at all accessible energies, given that one side of
the channel is biased by a voltage Vsd (at zero temperature for simplicity).

I = e
N

∑

n=1

∫ Ef +eVsd

Ef

Dn(E)vn(E)Tn(E)dE (1.3)

where Dn(E) is the 1D density of state, vn(E) is the group velocity of each transverse
mode, and Tn(E) is the transmission probability of each mode. In 1D, the electronic

density of states writes down Dn(E) = 2
2π~

√

2m∗/(E − En) (where the factor 2 stand for
spin degeneracy). The group velocity is independent of the considered subband and can

be expressed as vn(E) = ∂En/∂px =
√

(E − En)/2m∗.
Interestingly, these two quantities depend in an exact opposite way on the energy (and
effective mass), therefore their product is independent of energy, and simply equals 2/h.
For small source-drain voltage (linear regime), the transmission is roughly constant in
this energy window and can be replaced by Tn(Ef ).
Then the current simply writes: I = 2e/h ∗ eVsd

∑

n Tn(Ef ). As a consequence, the linear
conductance I/Vsd of a 1D channel expresses as follows:

G =
2e2

h

N
∑

n=1

Tn (1.4)

,where the Tn are transmission probabilities of each mode at the Fermi level. This for-
mula is known as the Landauer formula and traduces the fundamental law of mesoscopic
transport: the conductance of a mesoscopic device is given by the number of perfectly
transmitted modes times the conductance quantum 2e2/h.

1.1.3.2 Smooth plateaus in QPCs

In an infinitely long wire (ωx = 0), the transmission coefficient is 0 for each subband lying
above the Fermi energy and 1 for those of energy lower than Ef . In such a wire, as the
split-gate voltage is lowered, less and less modes can be transmitted, and the conductance
drops by integer values of 2e2/h, down to 0.
Then one can wonder why the conductance steps of QPCs are experimentally smooth, as
this simple picture shall give infinitely sharp conductance steps. The thermal smearing of
the Fermi distribution is not responsible for the smoothness of the transitions. As it will
be discussed later, the 1D subband separation is of some meV, which corresponds to tens
of Kelvins, whereas the electronic temperature in Fig1.3 is evaluated to be below 100mK,
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Figure 1.4 Saddle-point model: a) Schematics of the transverse harmonic potential and the
authorized transverse wave-functions. Given the drawn scenario (corresponding to a particular
V0), the two first modes (n=1 and 2) are transmitted through the QPC, but the third one is
reflected: G = 2*2e2/h. b) Calculated conductance as a function of V0 for a Ef = 8meV, for
ωx/ωy = 0.8

which cannot account for the smooth transitions.
To understand these smooth transitions, one has to consider the finite length of the QPC
and solve the entire problem of a transmission through a saddle point (i.e. take a finite
longitudinal curvature ωx). The solution [10] then gives a transmission for each subband:

Tn(E) =
1

1 + e−πǫn
where ǫn = 2(E − ~ωy(n+ 1/2) − V0)/~ωx (1.5)

This solution gives smooth transitions between plateaus, even for zero temperature,
where the ”smoothness“ is governed by the ratio ωx/ωy. As sketched in Fig.1.4, a mode
opens on an energy window of width ~ωx, and two modes are separated by ~ωy. A
required condition to see plateaus in the conductance traces is then to have a potential
in the constriction that respects ωx ≤ 2ωy, otherwise plateaus are so smooth that they’re
almost invisible. An other required condition regarding experimental considerations is
that the electronic temperature shall be smaller than the subband spacing and their
natural width, i.e. kBT ≪ ~ωy, ~ωx.

1.1.4 Non-linear conductance

Up to this part, we considered a problem where source and drain are aligned at the same
energy. The differential conductance G = ∂I/∂V |Vsd=0 is then called the linear conduc-
tance. But the differential conductance can be measured in a situation where source and
drain are misaligned, by applying a DC voltage between both, that can be higher than
the 1D subbands energy spacing. The answer of the system is then called non-linear [11].

This non-linear response has early been predicted [14] to exhibit half-integer quan-
tization (by odd values of e2/h), as soon as the DC bias would be of the order of the
subbands energy spacing. This proposition has immediately been verified experimentally
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Figure 1.5 Non linear conductance of QPCs: a) Linear conductance for different source-
drain DC bias, from 0 to 4 mV (left to right). Half-quantized plateaus are visible at high source-
drain bias. Adapted from Ref.[12]. b) Cascade plot of conductance traces G(Vsd) for different
values of gate voltages, between the first and second plateau. Plateau appear as accumulation
of traces. c) Simulation of the corresponding situation, assuming a linear drop of the potential
along the QPC channel. Adapted from Ref.[13]

in the Cavendish group [12]. It has then been shown [13] that an accurate "odd quanti-
zation" is only obtained when the bias voltage drops symmetrically on both sides of the
QPC.

This makes non-linear transport a powerful tool to investigate the energies involved
in a QPC. The first measurement of a QPC non-linear response is presented in Fig.1.5a.
Differential conductance traces are shown for different values of V DC

sd . When V DC
sd ∼ 4meV,

half quantized plateaus are clearly seen in the traces, and integer plateaus are not visible
anymore.
The cascade plot Fig.1.5b presents several traces G(V DC

sd ) for different gate voltages. The
linear response G(Vg) corresponds to a vertical cross-section in the center of this cascade
plot, for V DC

sd = 0. In this type of plot, plateaus appear as an accumulation of traces,
as the conductance on plateaus remain the same for different gate voltages. One can
see that at sufficiently high source-drain bias, plateaus at odd values of e2/h appear in
the differential conductance. As explained in Ref. [13], this half-integer quantization
correspond to a situation where for example the source chemical potential is aligned with
one subband, and the drain is aligned with the next subband.
This type of plots therefore allow to directly measure the subbands energy separation,
corresponding to the value of Vsd for which half plateaus appear.

1.2 Characterization of our quantum point contacts

1.2.1 The samples

1.2.1.1 The heterostructure

All the data presented in this manuscript were recorded from samples designed on the
same GaAs/AlGaAs heterostructure (08JN13). It was grown at LPN in Paris, by An-
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Figure 1.6 Schematic of the 08JN13 heterostructure: The growth process defines an
heterostructure hosting a 2DEG 105 nm below the sample surface. The Si dopants are deposited
in a ”volumic doping layer“, starting 30 nm above the 2DEG.

tonella Cavanna, Abdelkarim Ouerghi and Ulf Gennser, following the growth sequence
presented in Fig.1.6.
A 30 nm thick layer of Al0.3Ga0.7As is grown on top of the GaAs substrate to separate
the doping layer from the 2DEG, followed by a 70 nm thick Al0.3Ga0.7As, in which silicon
dopants are embedded. This technique is called ”volumic doping“, and differs from the
”delta-doping“ often used in the growth of these structures with a single plane of silicon
atoms. Finally, a last thin (5 nm) GaAs layer is grown on top, called the cap layer, to
prevent AlGaAs from oxidation.
The Si atoms give their electrons, parts are trapped at the GaAs/AlGaAs interface and
form the 2DEG, whereas other electrons go to the surface. The 2DEG hosted in this
heterostructure has a mobility around 106cm2/V.s. and the electronic density is about
2.5 1011e−/cm2. It is buried 105 nm below the surface.

1.2.1.2 The lithographic gates

The samples are then fabricated on this heterostructure. The patterns were designed
in Grenoble and the process was realized by Dominique Mailly and Christian Ulysse in
Marcoussis.

First the ohmic contacts made of Ni/Ge/Au/Ni/Au are deposited by evaporation and
lift-off. Then the sample is heated such that the AuGe diffuses down to the 2DEG. The
MESA is then designed by chemical etching of the heterostructure everywhere except on
a region where the 2DEG is preserved. Then metallic gates and markers are deposited on
the surface, and are about 150 nm thick. The split gates of the QPC presented in this
thesis define a 300 nm wide and 270 nm long constriction for samples A and B, and 270 nm
wide and 300 nm long constriction for samples C and D. Though many different geome-
tries have been designed and fabricated, only these two geometries could be investigated
during the time of the thesis, but they revealed a rich and beautiful physics, overcoming
our expectations. 5 different samples are presented in this manuscript, labeled A to E.
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Figure 1.7 Lithographic process: a) and b): design of the lithographic patterns with a layout
editor. Gates are colored in blue, mesa in red, ohmic contacts in red and markers in black. d)
and e): SEM images of an interferometer at different scales. c) and f): zoom on the central
part of an interferometer, and dimensions of the gates.

They will be used all along this thesis in the different figures, that are summarized in this
tabular.

Sample name Length (nm) Width (nm) Figures
A 200 300 1.9a-b, 4.2 to 4.4
B 200 300 3.5c, 3.6, 3.11, 4.7, 5.7 to 5.14
C 300 270 1.9c-d; 3.9; 4.5; 5.15, 5.16, 5.18; 6.1 to 6.8
D 300 270 1.11; 7.5 to 7.10
E ? ? 1.10; 4.5

The other geometries should be studied in the future. On some samples, we designed
a sharp gate (80 nm thin) in front of the QPC (see Fig.1.7). The distance between this
sharp gate and the QPC was varied between 700 nm and 1800 nm. The aim of this sharp
gate is to backscatter the electrons towards the QPC and generate interferences. The
samples on which these gates are defined will therefore be called interferometers in the
following, and their transport properties will be discussed in Chapter 4.
Note that for sample B, studied in Chapter 5 and used in the corresponding publication
(see Appendix B), the length was thought to be 270 nm but a more recent analysis of some
SEM images suggest a length of rather 200 nm. Therefore, the electrostatic simulations
presented in the article consider a QPC a bit longer than the device (270 nm instead
of 200 nm), but this small difference would not change significantly the results nor the
interpretation.
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1.2.2 Measuring quantum transport

1.2.2.1 Measurement principle

Figure 1.8 Measurement setup: a) Schematics of the measurement. A “DC + AC box“ is
used to polarize the sample. The current and the applied voltage are simultaneously measured
thanks to 2 lock-in. b) Conductance G(Vg) in units of 2e2/h, measured by lock-in technique in
4-point measurement, at a base temperature of 20 mK. A series resistance of 600 Ω is added to
take into account the 2DEG resistance.

The conductance of a mesoscopic device is measured either with a voltage bias or with
a current bias, depending on its impedance. High impedance devices are biased by con-
trolling the potential difference between source and drain contacts, while low impedance
devices are biased by controlling the current flowing through the device. The case of a
QPC is special because its impedance varies from a few kΩ when several modes are open
to an infinity when the QPC is closed. It is then prevented to current bias a QPC, because
its impedance is likely to become greater than the polarization impedance when it closes.
The chosen method to measure the QPCs conductance all along this thesis is a third
method called ”4-points measurement“. It consists in polarizing the sample with a small
AC voltage, measure the current flowing through the device and measure the voltage
directly applied at the 2DEG level thanks to two additional ohmic contacts, as sketched
Fig.1.8a. In this way, we can get rid of the voltage drop along the ohmic contacts (that
typically have a 500Ω impedance at low frequency and zero magnetic field) and directly
divide the measured current by the measured voltage. The applied bias is a low-frequency
(typically 100 Hz) AC voltage, of amplitude around 10µV . The current and voltage are
measured using two lock-in operating at the excitation frequency.
Finally, despite the low resistance of the mesa (typically 30 Ω at low temperature), an
undesirable voltage drop along 2DEG from the ohmic contacts to the QPC has to be
taken into account to evaluate the conductance of the QPC itself. This access resistance
is attributed to the squeezing of the current lines near the QPC region and is of the order
of 600 Ω in the samples studied in this thesis. This resistance is evaluated such that the
plateaus in the QPC conductance curve match integer values of 2e2/h.
To perform non linear conductance measurements discussed in section 1.1.4, an ”AC +
DC” box was often used, as schemed on Fig.1.8. This is a simple home-made system that
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add a small AC voltage bias to a “large” DC one, using a floating DC source.

1.2.2.2 The cryostats

These measurements have to be performed at low temperature, and different cryostats
were used during this thesis for scanning gate microscopy and magnetotransport experi-
ments.

Two dilution fridges have been used at the CEA Grenoble in the LATEQS team. They
answer to the nice nicknames of “Bigoudène, and ”La diluette“. Bigoudène is a powerful
20 year old cryostat, carrying a 3 Tesla superconducting magnet, typically working nowa-
days at a base mixing chamber temperature of 30 mK. La diluette is a small cryostat,
aimed to measure tiny samples, operating at a base temperature of 50 mK. Despite the
efficient cryogenic set up on these two machines, it appeared difficult to lower the elec-
tronic temperature of the measured QPCs down to some hundreds of mK. These fridges
have been used for the studies of the interferometers discussed in chapter 4.

Scanning gate microscopy has first been tried in a liquid helium cryostat at 4.2 K
at Institut Néel Grenoble. This thesis began with the design and fabrication of a new
microscope assembly to reach better stability. However the temperature of this 4.2K
cryostat turned out to be too high to observe conductance quantization in our QPC (see
Fig.1.10a).
Scanning gate microscopy experiments reported in this manuscript have therefore been
carried out in a dilution fridge at much lower temperature. The experiments were done
during two long time stays at IMCN in Louvain-la-Neuve, Belgium, in the team of Benoit
Hackens and Vincent Bayot. This really powerful machine, developed under the supervi-
sion of Vincent Bayot, is a 20 years old cryostat in which many important breakthrough
have been performed in both solid state and mesoscopic physics. Since the arrival of
Benoit Hackens in the team first as a post-doc and now as a permanent researcher, a low
temperature scanning gate microscope is embedded in this fridge. Though all the wiring
inherent to the microscope, that can eventually bring heat to the mixing chamber and
deteriorate the fridge performances, this machine still operates at a base temperature of
20 mK, thanks to the clever wiring improvements of Sebastien Faniel. But the major
asset of this machine is definitely the associated electronics. Whereas most recent set-up
usually take advantage of fully numerical instrumentation, this machine is fitted with
really powerful old fashion analogical electronics. Thanks to this clean instrumentation,
the electronic temperature in this setup almost reaches the mixing chamber temperature,
that will be discussed in Chapter 5.

1.2.3 Linear conductance traces

Typical measurements of QPC conductance versus gate voltage of some QPCs obtained
using the different set-ups are presented Fig.1.9. Fig.1.9a and b were recorded on sample A
in CEA at a mixing chamber temperature of 50 mK. As one of the ohmic contacts was not
working, the conductance is calculated using the applied voltage, and taking into account
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Figure 1.9 Different QPCs conductance traces: a) Linear conductance versus split gate
voltage Vg, ranging from 0 to -1.2V, measure on sample A in CEA. The gate voltage required
to disable tunneling below the gates is around -0.4V. b) Same QPC, the conductance curve is
zoomed on the QPC regime. c) Linear conductance of sample C measured in LLN at its first
cooldown. d) Zoom of c) on pinch-off.

a 2.4kΩ series resistance corresponding to the filters impedance, the ohmic contacts and
the access resistance. This series resistance is adapted such that the plateaus match
integer values of 2e2/h. Fig.1.9c and d were recorded on sample C in Louvain-La-Neuve,
in a 4-point measurement, at a mixing chamber temperature of 20 mK. The conductance
is corrected by an access resistance of 600Ω.
The gate voltage required to reach depletion of the 2DEG below the gates can be read on
Figs.1.9a and 1.9c, and correspond to ∼ −0.45V for sample A and −0.3V for sample C.
This difference can be explained by the gates geometry: gates of sample A are 200 nm wide
whereas gates for sample they are 300 nm wide. For gate voltages above this values, the
measured conductance is the one of the 2DEG, and tunneling of the conduction electrons
occurs below the split gates. At the depletion threshold, the sample behaves as a field
effect transistor, and the conductance experiences a fast drop. If the constriction is wide
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enough, a QPC is formed for gate voltages below this threshold value, in the center of the
split gates. Then lowering Vg prevents one by one the transverse modes to flow through
the QPC, and the conductance drops by steps of 2e2/h down to the pinch-off as shown
in Figs.1.9b and 1.9d. Note that these pinch-off values are also different for these two
samples, and the small geometrical difference can account for this difference. Indeed,
QPC A is 300 nm wide and 200 nm long, whereas QPC C is 270 nm wide, and 300 nm
long. Therefore a less negative voltage is required to completely close QPC C.

Figure 1.10 Temperature and magnetic field dependence: a) Traces of G(Vg) for different
temperatures: 500 mK, 1.8 K and 4.2 K. recorded in CEA on QPC A. b) G(Vg) recorded at 20
mK in Louvain-La-Neuve on QPC E, at different perpendicular magnetic fields, ranging from 0
to 5T by steps of 0.7T.

The temperature dependence of the plateaus are presented Fig.1.10a. Increasing tem-
perature tends to smooth the plateaus, that completely disappear around 4K. This is due
to thermal averaging of the QPC modes when the electronic temperature is too high com-
pared to the subbands spacing. This unfortunately prevented us to use the 4K set-up in
Institut Néel during this thesis, as the energy scales of the phenomena studied in this the-
sis are even one order of magnitude lower than the subband spacing, as will be discussed
later on. Note that the plateaus in curves G(Vg) do not evolve anymore with decreasing
temperature below 1K (except the opening of the first mode that will be discussed later
on and all along this manuscript). The shape of the steps is given by the longitudinal
curvature ωx, hence does not depend on temperature if kBT ≪ ~ωx.

A parallel magnetic field would split the plateaus in half-integer plateaus spaced by
e2/h, because it lifts the spin degeneracy due to the Zeeman effect [5]. For technical
reasons, this experiment has not been reproduced during this thesis. But we could apply
a perpendicular magnetic field, that gives rise to interesting orbital effects. In the bulk
2DEG, the Landau levels start to form even at low magnetic field, giving rise to a more
accurate quantization and flat plateaus in the QPC conductance traces (Fig.1.10b). The
plateaus enlarge, the energy scale giving the typical plateaus length becomes the cyclotron
pulsation ωc = eB/m∗, rather than the potential curvature ωx [10]. Together with the
fact that a perpendicular magnetic field prevents most backscattering events, this leads
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to long well-defined plateaus in the conductance traces, as presented (Fig.1.10b).
The effect of a perpendicular magnetic filed on a QPC, together with the role of disorder
and interactions gives rise to incredibly rich physics, that have not been studied during
this thesis. An interesting recent detailed study can be found in Ref.[15].

1.2.4 Non-linear conductance traces

As discussed in section 1.1.4, the non-linear of a QPC can be measured by adding a DC
voltage to the small AC voltage applied to measure the differential conductance. It is
typically used to make the spectroscopy of the energy levels of a quantum device.

Figure 1.11 Non-linear transport of quantum point contacts: a) Traces G(Vsd) for
different Vg. Plateaus appear as accumulation of traces. b) Differential of G with respect to Vg

as a function of Vg and Vsd. Plateaus appear as dark regions and transitions as bright lines.
c) Subband 2 and 3 dispersion relation and chemical potentials of left and right lead (µL and
µR) for different Vsd. These data were recorded in Louvain on QPC D, at a base temperature of
20 mK

A typical measurement of a QPC non-linear response is presented in Fig.1.11. The
cascade plot Fig.1.11a presents several traces G(V DC

sd ) for different gate voltages. As
explained in section 1.1.4 at sufficiently high source-drain bias, plateaus at odd values of
e2/h appear in the differential conductance. This half-integer quantization correspond to
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a situation where for example the source chemical potential is aligned with one subband,
and the drain is aligned with the next subband (schemes of the different situations are
sketched Fig.1.11c).
Another way to look at these data is to plot the transconductance (i.e. the derivative
of this cascade plot w.r.t. Vg, see Fig.1.11), as a function of source-drain bias and gate
voltage. In this landscape, the plateaus appear as black regions (because changing the
gate voltage doesn’t change the device’s conductance), and transitions between plateaus
appear as bright spots, as Vg has a strong influence on the transmission. The bright
transition lines correspond to a situation where the chemical potential of one of the leads
is aligned with one of the subbands edge. This type of plots therefore allow to directly
measure the subbands energy separation, corresponding to the value of Vsd for which the
transition lines intersect. For example, from Fig.1.11b one can directly read that the
second and third subbands are spaced by ∆E = 4meV.
An other interesting information that can simply be extracted from these colorplots is
the so-called ”lever-arm parameter“, which traduces how does the saddle-point rise (in
energy) with the gate voltage. It just requires to extract the gate voltage required to go
from one transition to another at zero source drain bias ∆Vg. For example Fig.1.11c, the
lever arm is given by ∆E/∆Vg ∼ 50 meV/V.
These values for both the energy spacing and the lever-arm parameter are typical of all
the QPCs studied in this thesis, as they were defined on the same heterostructure, and
designed with similar geometries.

1.2.5 Numerical model: introducing Kwant

To go one step beyond single mode approximations or qualitative explanations, an inter-
esting approach is to use numerical tools. The results presented in this section are obtained
with an incredibly powerful tool that makes quantum transport simulations accessible:
Kwant [8]. It is a free-access code that smartly takes advantage of several computation
languages, such that a simple personal computer can solve complicated quantum trans-
port problems. I used only a few percent of the extremely wide possibilities of Kwant,
concentrating on transport in 2DEG devices.
Kwant offers a user-friendly way of solving the Schrödinger equation, using a discretized
tight-binding hamiltonian, through a so-called ”scattering region“.

To solve the Schrödinger equation in the scattering region, one first has to give the
potential landscape V (x, y), which will be used in the hamiltonian. It is important to
note that Kwant does not calculate the potential self-consistently, i.e. screening from
the 2DEG is not taken into account. One therefore has to approximate the potential
landscape using various methods. The particular case of a QPC requires the potential
created by rectangular gates deposited on the sample surface. For this purpose, we use an
exact electrostatic solution proposed in Ref.[16]. Assuming fixed potential on the surface
(Vg on the gates and 0 elsewhere), the authors propose an elegant solution to analytically
calculate the potential created by a rectangular gate at a distance d below the gate. The
solution for a gate defined by L < x < R and B < y < T , at a distance d from the gas is
the following:

Φ(x, y, d) = Vg ∗ [g(x−L, y−B)+g(x−L, T−y)+g(R−x, y−B)+g(R−x, T−y)] (1.6)
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Figure 1.12 Ingredients required to run Kwant: a) Example of a (small) scattering region.
Dots are sites and links between them represent possible hoppings from one site to its neighbors.
Red regions define the connection between the different leads and the scattering region. b) Po-
tential V (x, y) in units of Ef generated following an analytic model [16] of two rectangular gates
at the surface, 100nm above the 2DEG.

where g(u, v) = 1
2π
atan( uv

d
√

u2+v2+d2
)

The resulting potential for two 200 nm wide rectangular gates separated by 300 nm,
on a 2DEG buried 100nm below the surface is plotted Fig.1.12.
The scattering region is then connected to leads, and among the large output functions of
Kwant, the most useful is the total transmission from one lead to an other. Depending on
the chosen electronic density and the lead width, a given number of electronic modes can
propagate in the lead, enter the scattering region, eventually suffer intermode scattering
depending on the potential landscape and come out in other leads.
All these modes contribute to the total conductance of the device, and the sum of all
these contributions give the total conductance of the scattering region, thanks to the
Landauer-Buttiker formula, as discussed previously.

Figure 1.13 Typical useful outputs of Kwant: a) Conductance G of the scattering region
vs gate voltage b) Square modulus of the sum of all wave-functions coming out of lead 1 for a
QPC open to the first (b) and second mode (c).

Using the potential sketched in Fig.1.12, with leads defined on both sides of the QPC
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gates (containing about 60 modes each), one can then change the voltage applied on the
gates Vg and compute the conductance through the scattering region (see Fig.1.13). Note
that this simple picture already completely differs from the Büttiker model previously
introduced, which assumed perfect adiabaticity (i.e. each incoming mode coming from
infinity is an eigen-mode of the QPC). Here the situation is dramatically non-adiabatic,
as about 60 different transverse modes coming from the left lead collapse into one or a
few modes in the QPC. It is interesting to note that for example on the first plateau,
all the 60 incoming modes contribute to the first QPC mode with different probabilities
(they’re ”filtered“ by the QPC), and the resulting single QPC mode carries exactly one
quantum of conductance: this is the beauty of quantum mechanics, and is really close to
what happens in the experiment. It is also really interesting to note that despite the dra-
matic non-adiabaticity of a QPC, the adiabatic model proposed by Büttiker [10] gives an
excellent approximation, suggesting that the physics of a QPC is governed by the central
part of the channel.

Another interesting output of Kwant I will refer to along this thesis is the square mod-
ulus of the total wave-function coming out of the QPC at the Fermi energy. In Kwant, the
wave-functions of the modes coming out of a given lead are separated outputs. To get an
idea of the transmitted electrons repartition, I will often compute the square modulus of
the sum of all wave-functions coming out of one lead (the left one), and hide the left side of
the QPC as most of the electrons are reflected by the gates and only a few are transmitted.

1.2.6 Disorder in quantum point contacts

Major deviations from the perfect case discussed above arise from two distinct phenom-
ena: disorder and electron-electron interactions. These are two complicated problems,
that can in some cases lead to similar signatures. It is therefore primordial to distinguish
their fingerprints.

Fig.1.14 presents an example of some effects induced by disorder on QPCs conduc-
tance curves. It can lead to what is usually called ”resonant structures“, appearing as
shoulders or dips in the QPC characteristic. A way to reveal the role of disorder in this
type of resonant structures is to apply a different voltage on the two split gates, and sweep
the average gate voltage. In this way, the position of the saddle-point displaces laterally,
and the disorder experienced by the electrons is changed depending on the gate voltages
difference. Therefore these resonances are changed depending on this difference, as seen
Fig.1.14, unlike the intrinsic interaction-induced effects, as discussed in the next chapter.

To understand this problem, a microscopic origin of this disorder is required. The dis-
order in GaAs heterostructures is mainly attributed to the residual potential fluctuations
due to the ionized donors above the 2DEG. As discussed before, these donors are pretty
far away from the 2DEG. This prevents most ”hard-scattering“ events of electrons and
provides them a really high mobility. Nevertheless, the electrons in the 2DEG still feel
some potential fluctuations due to the random distribution of ionized dopants, that affect
the electronic transport, especially when the density is reduced [17], which renders this
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Figure 1.14 Experimental example of resonant structures due to disorder: Mea-
surement of QPC A conductance curve for a given cooldown different from Fig.1.9a, showing
resonances. Different traces are presented as a function of Vg1 (one of the gates voltages), for
different values Vg1 − Vg2.

problem fundamental in the study of QPCs as the density is really low when only a few
modes are transmitted.
As this is a problem including random potential distributions and as it leads to nontrivial
transport features such as intermode-scattering [18], numerical quantum transport ap-
pears as an appropriate tool to treat this problem.

Even in clean QPCs, the residual disorder can affect the conductance quantization.
This problem has been extensively studied in the 90’s [19, 20, 21, 22], and I will briefly
discuss the main effects, illustrated with results obtained with Kwant. To model the
residual random potential fluctuations, I use the method proposed in Ref.[17]. The ion-
ized dopants are modeled by randomly distributed punctual charges at a distance d from
the 2DEG and h from the sample surface (this technique assumes zero potential on the
surface, which has the great advantage to give analytic solutions, even though it is not
suitable to model every situations). This distribution gives a random potential in the
2DEG that is correlated on a typical length called σd. As soon as enough dopants are
taken into account, σd is governed by the distance from the doping layer to the gas and
not by the dopant density. Once this type of maps generated, the only parameter that
remains to be scaled is the standard deviation of these fluctuations. I rescale the mean
value of these fluctuations to be zero and the deviation to a given percentage of Ef .

An example of simulation is shown in Fig.1.15. First the disorder displaces the pinch-
off towards more positive values of Vg, in a fashion that is dependent of the exact configu-
ration, and precisely the sign of the local fluctuation at the very top of the saddle-point (a
local negative fluctuation at this point shifts the pinch-off towards more negative values
though no example is given there). Disorder landscapes correlated on small spatial scales
σd tend to create resonances on the conductance steps (configuration A Fig.1.15c), strongly
affecting the QPC conductance as soon as the deviation of the fluctuations reach a few
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Figure 1.15 Influence of disorder correlation length and FWHM: a) 3 different types
of disorder A,B and C corresponding to dopants respectively 30, 40 and 50nm above the 2DEG.
b) Autocorrelation function of these distribution, and corresponding correlation lengths σd. c)
Effect of these different potential distributions on the QPC conductance for different FWHM
ranging from 0 to 12% of Ef . d) Example of specific potential landscape along transport axis
leading to resonant structures for small σd. e) Example of potential landscape for large σd leading
to a change in ωx.

percent of Ef . A scheme of a possible corresponding mechanism is drawn on Fig.1.15d,
where sharp barriers create Fabry-Pérot resonances at specific openings. This can also be
seen as a shallow quantum dot forming in the channel.
Disorder correlated on larger length scales however tend to ”smooth“ the conductance
steps, and this can be understood as follows: the typical length scale σd overcomes the cur-
vature of the QPC saddle-point, changing ωx and smoothing the plateaus (configuration
C Fig.1.15c, a corresponding scheme is drawn on Fig.1.15e). This is consistent with the
extensive simulations presented in Ref.[21]. A global remark is that the disorder-induced
deviations from the perfect case are configuration-dependent, and strongly depend on the
exact potential fluctuations in the very center of the QPC, that governs its behavior. This
study shows that a typical energy scale of 10% of Ef for the potential fluctuations already
strongly affects the conductance steps. This is not surprising as this almost corresponds
to 1 meV, which is comparable to the subbands spacing.
In the samples studied in this thesis, the effect of disorder was sometimes observed, but
most QPCs showed rather clean conductance steps. Note that the same sample could
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present really different curves from one cooldown to an other, and could exhibit clean
conductance steps or some resonances. As an example, sample A is presented Fig.1.9b at
a given cooldown, and shows smooth expected steps, and its characteristic after an other
cooldown is shown Fig.1.14.

1.3 Conclusion

We have seen in this chapter the non-interacting picture of quantum point contacts.
Designed out of high mobility 2DEG, QPCs exhibit conductance quantization. At low
temperature, their conductance versus gate voltage shows quantized plateaus separated
by smooth transitions. The smoothness on the transitions can be understood from the
Buttiker adiabatic model, and arise from the finite length of QPCs. Non-adiabaticity can
be studied thanks to numerical models but does not change much the characteristics.
However, disorder due to the residual potential of ionized dopants can induce deviations
from these clean models.
Before discussing the effect of interactions, that will also lead to deviations from the per-
fect case, we can summarize the effects of disorder.
First, as the way residual potential fluctuations affect the conductance are strongly de-
pendent on the exact potential in the channel, resonances due to disorder are strongly
affected by a displacement of the QPC in real space as presented Fig.1.14. These signa-
tures can also change within the same sample for different cooldowns: the doping layer
”freezes“ below 120 K, giving a definite potential landscape at low temperature.
A second interesting point that is not shown here is that increasing temperature tends to
smooth these resonances, as well as a small perpendicular magnetic field. This has been
extensively studied experimentally [23] as well as theoretically [20], and we will see in the
following how it differs from the fingerprints of the puzzling feature studied in this thesis:
the 0.7 anomaly.
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There are a number of very interesting open problems even in the most simple case of a
ballistic transport through a quantum point contact. 0.7 anomaly is a key word here.

Daniel Loss

This is [...] one of the stubbornest problems in mesoscopic physics: the phenomenology of
a quantum point contact (QPC), which should be a simple ballistic channel but has long
been found to show effects that appear to come from spin and many-body interactions.

Anonymous referee

39
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Introduction

The previous section has shown that despite its apparent simplicity a real QPC exhibits
complex features, even in a non-interacting picture. However, from the very first realiza-
tions of QPCs, additional features have been observed, that cannot be explained within a
single-particle framework. The two main features assumed to arise from electron-electron
interactions are a shoulder around 0.7*2e2/h, called the 0.7 anomaly, and a zero bias
peak emerging at low temperature in the differential conductance: the zero bias anomaly
(ZBA).
This Chapter briefly reviews part of the huge amount of experimental and theoretical
works on these subjects, up to very recent results.

2.1 The 0.7 anomaly

2.1.1 Temperature and magnetic field dependence

The most famous deviation from the expected non-interacting behavior is the so-called
“0.7 anomaly”, an additional plateau around 0.7*2e2/h.
Though it was first observed in pioneers experiments in 1988[4, 11, 23, 24], this structure
has waited until 1996 to be systematically studied in the Cavendish laboratory (Cam-
bridge) [25]. This very first study of the 0.7 structure already achieved some major
breakthrough in this field, suggesting that it arises from electron-electron interactions,
and that it is somehow related to spin physics.
The authors reported that this structure was observed in most QPCs they measured, and
showed two main remarkable behaviors:

– This 0.7 “plateau“ continuously evolves down to 0.5*2e2/h in parallel magnetic field,
which is the signature of Zeeman-split subbands. (Fig.2.1a)

– It is more pronounced as the temperature is increased, unlike disorder-induced res-
onant structures discussed in the previous chapter. (Fig.2.1b)

Under a strong parallel magnetic field, the QPC conductance curve G(Vg) exhibits half
plateaus as well as integer ones, because the 1D subbands are no longer spin degenerate.
This is due to a Zeeman term in the hamiltonian HZ = gµB

~B.~S/~, that unbalances spin
up and spin down subbands in energy. Here µB is the Bohr magneton (µB = e~/2m∗),
g is the Landé factor (which equals 2 for free electrons, and -0.44 for bulk GaAs), and
~S is the electron spin operator. The fact that the 0.7 anomaly evolves down to the half
plateau e2/h (Fig.2.1a) suggests that it is related to the electron spin, and the author
even proposed this effect to be a signature of spontaneous spin polarization occurring in
the QPC, even at zero magnetic field. In this study, they also reported that the effective
g factor strongly increases for the lowest subbands, and attributed this effect to electron-
electron interactions [26], that are stronger at low electronic density.
The second major experimental fact reported in this study is that the 0.7 anomaly is more
prominent at higher temperatures, even being the last remaining feature when the quan-
tized steps have vanished. Though the authors did not understand this surprising behavior
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Figure 2.1 First systematic measurements on the 0.7 structure: a) Evolution of the
0.7 structure under a parallel magnetic field from 0 to 11T by steps of 1T. The measurement
is performed at 60 mK. b) Evolution of the 0.7 structure for different temperatures (without
magnetic field). Adapted from Ref.[25]

at this point, they aptly presented this fact as ruling out possible impurities-induced ef-
fects, as this would lead to resonances that tend to disappear with increasing temperature.
Another point that definitely discards disorder as responsible for this conductance anomaly
is that this feature is insensitive to a lateral displacement of the QPC by playing on the
voltage difference between the two gates [27]. In this way, the residual disordered poten-
tial in the channel is changed (see section 1.2.6), and the fact that the 0.7 anomaly is
almost insensitive to these changes suggests an intrinsic effect.

2.1.2 Bias dependence

The response of the 0.7 anomaly to a DC source-drain bias is surprising, and gives ad-
ditional information on the possible subbands structure that can lead to this non-integer
plateau. A typical non linear behavior of a QPC below the first plateau is presented in
Fig.2.2 taken from Ref.[28].

In this spectroscopy, one can see that under a small DC bias voltage, the 0.7 anomaly
evolves to a much pronounced plateau around ∼ 0.85× 2e2/h. To explain the surprising
bias dependence of the 0.7 anomaly, the authors proposed a phenomenological model in-
cluding an anomalous subband, separated from the normal 1D ones by an energy gap ∆
that would vary with the QPC opening. They showed (Fig.2.2 c) that the conductance
around the 0.7 anomaly grows exponentially with decreasing temperature, associated with
a characteristic activation temperature Ta. According to their measurements and analy-
sis, Ta strongly depends on the QPC opening, ranging from hundred mK to almost 15K
when approaching the perfect transmission first mode (Fig.2.2 d). They repeated this
analysis on 6 different samples, and found that the energy gap ∆ is simply connected to
the activation temperature Ta by the simple relation ∆ = kBTa.
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Figure 2.2 Bias and temperature dependence of the 0.7 anomaly: a) Cascade plot
G(Vds) for different Vg measured at 300 mK applying an AC voltage of 50 µV . The 0.7 anomaly is
more prominent with source-drain and evolves to around 0.8*2e2/h. b) Corresponding transcon-
ductance plot ∂G/∂Vds with labeled normal and anomalous plateaus. c) Temperature evolution
of the conductance below the first plateau, for two different QPC openings. d) Activation temper-
ature Ta, assuming an ”Arhenius“ behavior, as a function of gate voltage below the first plateau.
e) Scheme of the normal an anomalous subbands for two different openings. All these figures
are extracted from [28]

A phenomenological model is detailed in [29], that accounts for several of these exper-
imental observations. It suggests a spin unbalance due to electron-electron interactions
effects, that lead to two different 1D subband for the two spin species, separated by a gap
that would depend on the chemical potential (µ). Under a well chosen (phenomenological)
evolution of this gap with µ, experimental data regarding temperature, bias and magnetic
field of the 0.7 anomaly could be reproduced. However, no microscopic description of the
phenomenon leading to this spin gap was proposed. Note that this interpretation assumes
partial spin polarization in the channel.
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2.1.3 Other experimental observations

These conductance anomalies have been extensively studied over the last 20 years by
different experimental approaches, and I will briefly cite a few results. An impressive
and detailed review can be found in Ref.[30], that details a quasi-exhaustive list of the
state-of-the-art on this subject until 2011.

2.1.3.1 Shot noise

Two beautiful experiments have been performed to measure the shot noise at the 0.7
anomaly [31, 32]. The shot noise is a very powerful technique, that brings interesting in-
formation on the different transmission probabilities of electrons through different modes,
and is really challenging to measure. Unlike the differential conductance that only brings
information on the total transmission, it gives access to the statistics of the electrons
crossing a mesoscopic device. These two experiments reported a reduction of the shot
noise at the 0.7 anomaly, interpreted as an evidence for two different conduction chan-
nels contributing in this regime. This can therefore be interpreted as a support for the
spin-gap model [29].

2.1.3.2 Thermopower

Another experimentally accessible quantity is the thermopower of a mesoscopic device.
This quantity, also called the Seebeck coefficient, traduces the way a (thermoelectric)
voltage sets up across a device when source and drain are set to different temperatures.
Under appropriate assumptions, the thermopower S of a mesoscopic device is simply

related to its conductance by the Mott formula: S =
πk2

B
T

3e
1
G

∂G
∂µ

. One of these assumptions
is to neglect the role of electron-electron interactions in the device conductance. The
study of the thermopower at the 0.7 structure [33], revealed a breakdown of the Mott’s
law in this regime, reinforcing the crucial role of the interactions in this anomaly. The
thermopower of QPCs is extensively discussed in Chapter 7, where our measurements are
presented.

2.1.3.3 Scanning gate microscopy

The main experimental tool that has been used in this thesis is a scanning gate microscope.
It consists in a low temperature atomic force microscope (AFM), with a charged metallic
tip used to affect transport in nanosctructures thanks to an electrostatic effect. The
conductance of the device is measured while this tip is used as a movable gate to affect
transport. A full description and history of this extremely powerful technique is given in
Chapter 3. Concerning the 0.7 anomaly, this technique has allowed partial control of this
feature, and revealed the appearance of an additional plateau at e2/h, interpreted by the
authors as a signature for spontaneous spin polarization occurring in the channel [34].
A more recent investigation of the 0.7 anomaly with this technique has confirmed that
the 0.7 anomaly was an intrinsic phenomenon that happens even in very clean QPCs,
independently of the disordered landscape [35].
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2.2 The zero bias anomaly

2.2.1 First observation

At very low temperature, the 0.7 anomaly shades off and the linear conductance curve
shows no more anomaly. This phenomenon was studied in detail in the (impressive) thesis
of Sarah Cronenwett [36] in the Harvard group, under the supervision of Charlie Marcus
and David Goldhaber-Gordon. The main result of her work concerning the 0.7 anomaly
[37] is summarized in Fig.2.3. In this paper, a clear correspondence is made between the
low-temperature fate of the 0.7 anomaly and the emergence of a zero bias peak in the
non-linear source-drain characteristic of a QPC at low temperature (Fig.2.3a).

Figure 2.3 Possible Kondo physics in QPCs: a) Traces G(Vds) for different QPC openings
below the first plateau, at different temperatures. b) Scaling of the conductance as a function of
temperature for different gate voltages. All the curves fall down on a modified Kondo form (black
line). c) Linear conductance curves G(Vg) at different temperatures and Kondo temperatures
extracted from b) for different openings. d) Evolution of the ZBA with magnetic field at different
openings. These plots are adapted from Ref.[37].

This peak has been shown to scale as a modified form of the Kondo effect, that emerges
when a localized spin is screened by the surrounding conduction electrons at low enough
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temperature. This somehow defines a starting point for a microscopic description of the
low-density regime of QPCs, and redefines the activation temperature proposed in Ref.[28]
as an effective Kondo temperature Tk. Detailed discussion of the Kondo effect and of the
work by S.M.Cronenwett et al. is done in Chapters 5 and 6.
This beautiful experimental work gives an explanation for this zero bias anomaly (ZBA)
based on the existence of a localized spin in the QPC channel.

2.2.2 Other experiments

Since the work of Cronenwett et al., some studies have revealed the existence of bound
states in QPCs, and a few compared the zero bias anomaly in QPCs with the Kondo
effect in quantum dots.
In Ref.[38], the authors built a sample with two nearby QPCs, one tuned below the first
plateau and one used as a sensitive detector. Around the pinch-off of the first QPC, they
observed a peak in the conductance of the second QPC, interpreted as a signature of the
formation of a bound state in the first QPC, thereby supporting the interpretation of the
ZBA as due to a localized state.
In Ref.[39], Sfigakis et al. analyzed and discussed the difference between the 0.7 and
zero-bias anomalies. They showed that these two effects are not completely equivalent,
but they did not claim that these two effects are independent phenomena. They also
conclude that bound states are probably present in most quantum wires.
In Ref.[40] Sarkozy et al. investigated the evolution of the ZBA from 2e2/h down to very
low conductance and observed a non-constant Zeeman splitting under magnetic field.
Their measurements also reveal a different behavior of the ZBA above and below 0.7 x
2e2/h, both for the height and the width of the peak. They interpreted their result as
discarding spontaneous spin polarization in QPC and one-dimensional Kondo physics.
In Ref.[41] , Ren et al. carried out a similar investigation of the ZBA at very low con-
ductance. They reported that the zero bias peak height in the low conductance regime
(down to 10−4 × 2e2/h) is proportional to the average conductance and proposed that
at low conductance the localized state is split into two localized states separated by the
central barrier.
Based on these studies, the Zero bias anomaly appears to be different from the Kondo
effect known in quantum dots, though it shares some similar features. We will discuss in
details these differences in Chapter 6.

2.2.3 Recent breakthrough

More recently, this zero bias peak was found to be split for some gate voltages[9]. This
splitting was observed in many devices, and successive splittings have been reported while
increasing the channel length in specific samples with several metallic gates. These split
peaks (see Fig.5.4) have been shown to scale as non-equilibrium Kondo effect versus tem-
perature and magnetic field, revealing that not only a single spin could localize in QPCs,
but an odd or even number of electrons depending on the QPC geometry. This experi-
ment and the comparison with our results are extensively discussed in Chapter 5.
Both their and our experiments strongly support the scenario of a spontaneous charge
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localization in QPCs, as compared with earlier models involving spontaneous spin polar-
ization of the subbands [29, 25] which are not compatible with the observed Kondo effects.
Finally, as there is no system more open than a quantum point contact, localization in a
QPC is not obvious (keeping in mind that disorder has been ruled out to explain the 0.7
anomaly and the ZBA), but has received extensive theoretical support that is discussed
in the following section.

2.3 Theoretical models of localization

Over the past 20 years, many theoretical approaches have attempted to explain the 0.7
anomaly, but none has fully convinced the whole community yet. I will focus on those who
predict a spontaneous localization channel, as they are the only ones that are compatible
with the most recent experiments (I will therefore skip those based on other microscopic
models like scattering by phonons [42] or plasmons [43]).

2.3.1 Mechanisms for conductance anomalies assuming localiza-
tion

Several proposals attempted to explain conductance anomalies in QPCs relying on the
possible existence of a localized state in the channel. Based on this assumption, Yigal
Meir proposed a mechanism including a localized spin [44, 45], that would affect trans-
port at high temperature and lead to Kondo effect at low temperature, accounting for
the ZBA. The localization of this spin was justified by a numerical simulation discussed
in the next section.
Some other proposals relied on the existence of a Wigner crystal [46, 47, 48], giving differ-
ent explanations. Wigner crystallization is a dramatic effect that can occur in low density
electronic systems, that lead electrons to form an ordered lattice when the Coulomb re-
pulsion overcomes the kinetic energy [49]. It is extensively discussed in Chapter 5, and
I just briefly discuss here some proposals assuming such a 1D Wigner crystal to form
in QPCs. Whereas Ref.[48] proposed that ferromagnetic correlations exist in this elec-
tron chain giving a spin polarized state, Ref.[46] relies on the fact that in a 1D Wigner
crystal, spin and charge excitations are decoupled. These two type of excitations are not
affected in the same way by temperature, possibly explaining the strange behavior of the
0.7 anomaly with temperature. However, this picture does not account for the ZBA as far
as the investigation has been pushed [50]. Finally, Ref.[47] proposed an explanation based
on charge density waves, which are precursors of Wigner crystallization, and the author
demonstrate that this leads to conductance anomalies below the first plateau similar to
the 0.7 anomaly, though the temperature dependence was not discussed.

2.3.2 Spontaneous charge localization in numerical simulations

The way some electrons could localize in a QPC is highly debated regarding the funda-
mentally open character of these devices. In a pure 1D system, it is well accepted that
electrons will tend to form a Wigner crystal as soon as the density is low enough, though
the exact critical density to reach this crystallization is intensively debated and seems
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to depend on the confining potential [51]. However the case of a QPC is tricky because
it is not a pure 1D system. It continuously evolves from 2D reservoirs to a quasi-1D
channel, making it difficult to treat theoretically and numerically. In addition, to reach
such a dramatic effect of the interactions, they shall not be treated pertubatively, pushing
further the challenge to compute this type of system.
Localization in inhomogeneous 1D wires has nevertheless been shown using different nu-
merical methods. Though I do not fully understand the implications of all these different
methods, I will try to briefly summarize the main results.

Figure 2.4 Two different calculations suggesting localization: a) Result of Quantum
Monte-Carlo simulations on a 1D ring containing a low-density region, for different shapes of
the constriction potential. Adapted from Ref.[52]. b) Results of spin-density functional theory
calculations, representing the local density of states (LDOS) along the wire for the two different
spin species. Adapted from Ref.[45].

In Ref.[47], the author performed 1D Hartree-Fock calculations and showed that one
or more charges could separate from the leads in the low-density region. This study has
then been extended in Ref.[53] using two different Hartree-Fock approaches, confirming
this result.
Yigal Meir performed spin-density functional theory (SDFT) and also found that 1 to 3
electrons could localize in a QPC due to electron interactions[44, 45] (see Fig.2.4b). This
work has then been extended to show that up to 7 electrons can localize [9], adjacent
electrons carrying opposite spins. The main criticism about these calculations (as far as
I understand) is that SDFT is based on an artificial spin symmetry breaking, that unbal-
ances the two spin species, and one has then to take the limit of no asymmetry. This is
sometimes criticized as artificially favoring the localization of a single spin.
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In Ref.[51], calculations based on Quantum Monte-Carlo simulations showed that in purely
1D wires localization occurrs at low enough density, discussing the required critical den-
sity.
Quantum Monte-Carlo simulations were also performed in an inhomogeneous 1D wire [52],
and suggest that a few electrons crystal can form in the low-density region (see Fig.2.4a).
Electron spins in this chain have been shown to be coupled antiferromagnetically, which is
consistent with the results of Ref.[45]. Finally, using a numerical density matrix renormal-
ization group (DMRG) approach, the authors of Ref.[54] showed that there is a smooth
transition towards Wigner crystallization in 1D, as the density is reduced.

All those different numerical methods suggest that spontaneous localization of elec-
trons can occur in QPCs, even sometimes suggesting the formation of a small 1D Wigner
crystal, when the interactions are dominant at low density. Many questions then remain.
One can wonder first if this localization really occurs in the experiment, and if so which
form it takes, how many charges and spins are localized, and how they are coupled to the
leads. It is also possible that under given conditions this small electron chain exhibits a
transition toward a zig-zag configuration, as suggested theoretically [55] and experimen-
tally [56], where the ground state would become ferromagnetic. Beginning of answers to
these questions are proposed in Chapter 5 of this thesis, but this does not answer the
ultimate question of how electrons flow through this exotic configuration.

2.3.3 Perspectives : calculation of transport in presence of strong
interactions

It appears a tough problem to treat 1D electronic transport when interactions are taken
into account. In one dimension under strong interactions, the usual Fermi liquid descrip-
tion of the excitations no longer holds, which complicates the problem of transport. The
excitations of interacting 1D systems are no longer fermionic, and charge and spin exci-
tations have to be considered as separate bosonic (collective) excitations. A step in the
treatment of transport in interacting inhomogeneous 1D system has recently been made
in Ref.[57], that pretends to explain all the experimental observations concerning the
conductance anomalies in QPCs. The argument of the authors is based on the Van Hove
singularity, a singularity in the 1D electronic density of states at the bottom of the 1D
subbands. They used two impressively developed numerical methods to justify that this
well known Van-Hove singularity could be responsible for the 0.7 anomaly, when interac-
tions are taken into account. In this 1D model, the interactions are treated pertubatively
and do not lead to dramatic localization in the QPC compared to some other studies
discussed above. This study and the experimental one discussed above[9] supporting lo-
calization of a definite number of electrons in QPC were published back to back in the
Nature journal, though they do not seem compatible with each other.
Our point of view on this work is that they reach a wrong conclusion because they could
not push the interaction parameter high enough to obtain the regime of the conductance
anomalies as they are observed in real experiments. Their conclusion on the absence of
localization is therefore not justified. Note that the simulations presented in the previ-
ous section showing localization can not calculate transport properties. This question is
therefore still an open problem.
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3.1. SCANNING GATE MICROSCOPY

Introduction

In this Chapter, we present the central technique used in this thesis: scanning gate
microscopy (SGM). We will briefly review the history of its invention, and the fields in
which this tool have proved to be really useful since. We then present in a second time
results obtained on the ultra-low temperature SGM in Louvain-La-Neuve, Belgium, on
our QPCs. We will concentrate in this chapter on the SGM images obtained on the
first conductance plateau, and particularly on the interferences that we observe on these
images. We also propose a method to characterize the potential created by the polarized
tip of the microscope and present a numerical way of modeling SGM experiments using
Kwant[8].

3.1 Scanning gate microscopy

3.1.1 Introduction

Among the different methods used to investigate quantum transport, there is one called
scanning gate microscopy (SGM), that is central in this thesis. It consists of disturbing
electrostatically a device thanks to the polarized metallic tip of an atomic force micro-
scope (AFM), and recording the changes in the device’s conductance induced by the tip
potential.
This technique has been developed in the middle of the 90’s in Harvard, and a first step
has been achieved in 1996, demonstrating a local answer by scanning a polarized tip
above a quantum point contact [58](Fig.3.1a). After years of improvement in the same
group, this technique has struck the community, demonstrating both the possibility to
image in real space the wave-functions of electrons coming out of a QPC[59] (Fig.3.1b),
as well as branched flow of electrons in a disordered potential decorated with electronic
interferences[60](Fig.3.1c).

Since these first impressive breakthrough, many groups have developed this technique,
and built low temperature AFM to perform SGM. Scanning gate microscopy has been ap-
plied to many different systems. It is particularly adapted to devices made out of 2DEG,
because direct tunneling from the 2DEG to the tip is prevented by the insulating AlGaAs
layer, forbidding for example scanning tunneling microscopy (STM). Various experiments
have been realized on these heterostructures, including quantum point contacts in zero
[61], small [62] and high [63] magnetic field, quantum dots containing a few [64, 65] or
one electron [66], quantum rings [67, 68] and various interferometers [69, 70].

Concerning QPCs in zero magnetic field, a long road has already been achieved in
the various groups using this technique. Initial works concerned mainly single-particle
effects, such as imaging wave-functions of different modes [59], and investigating the role
of disorder in the observed branched flow [71, 60] as well as in the interferences [70, 61].
A few theoretical investigations following these experiments, tried to understand what is
measured using this technique, and investigating for example the formation of the inter-
ferences and the way they shall decrease with distance [72, 73], the role of temperature
[74], the surprising stability of the observed branched flow [75], and non-linear effects [76].
Different experiments have more recently turned on many-body effects in QPCs, investi-
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Figure 3.1 First scanning gate microscopy images: a) Up: images of the gates recorded
by electric force microscopy (EFM), down: QPC conductance with respect to tip position. A
clear local answer is seen when the tip is above the constriction. Adapted from [58]. b) High
resolution SGM images showing the wave functions of the electrons for the three first modes of
a QPC. Left panel up to down: the QPC is tuned respectively to the 1st, 2nd and 3rd mode.
The right panel shows simulations of the wave-function square modulus for these 3 situations.
Adapted from [59]. c) SGM images of the branched electronic flow. Interference fringes spaced
by λF /2 are clearly seen on the branches. Adapted from [60].

gating electron-electron scattering in the leads [77], and the 0.7 anomaly [?, 35]. Different
possibilities to explore many-body phenomenon by non-local effects using SGM have also
been a matter of theoretical investigations [78, 79].

3.1.2 Branches and interferences

In the years following the invention of this technique, the Harvard’s group carried out a
detailed investigation of the main features observed in SGM images on a QPC. The thesis
of Mark Topinka[80] and Brian Leroy[81], under the supervision of Robert Westervelt,
revealed several interesting characteristics concerning mainly the branches of the electron
flow and the interferences. In parallel with these experimental investigations, interesting
numerical calculations have been performed also in Harvard, detailed in the thesis of Scot
Shaw[82] in Heller’s group, that brought some support to understand the precise role of
disorder in both branches and interferences.

The main features of these work can be summarized as follows. It is first important
to note that all these pioneer measurements were performed at temperatures of 1.7K and
4.2K. The first surprising observation was that fringes were observed up to a few microns
away from the QPC. These fringes appear as parallel ripples, mainly in the branches of
the electron flow and perpendicular to it. They are visible for sufficiently negative tip
voltages, and when the tip is really close to the sample surface (a few tens of nanometers).
As they are spaced by λF/2, they were attributed to electronic interferences.
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The fact that these interferences were still visible microns away from the QPC was com-
pletely unexpected at these temperatures. Indeed, one would expect at these temperatures
that a broad range of wavelength contribute to these interferences, blurring them on a few
hundreds of nanometers as discussed in section 3.3.3.2. The interferences were therefore
suggested to occur not directly between the tip-induced depletion region and the QPC
but rather in small cavities between the tip and hard-scatterers due to disorder in the
2DEG. To support this statement, the Harvard group designed reflector gates in front of
QPCs and showed that these interferences observed at high temperature were induced by
hard scatterer in the 2DEG[70]. Here hard scatterer denotes local potential fluctuations
important enough to backscatter the electrons, in contrast with background random po-
tential fluctuations whose standard deviations is small compared to Ef .

Figure 3.2 Results from the Harvard group: a) SGM image in front of a QPC (the QPC
is on the left of the image) for a given electronic density. b) Same image for a lower density
controlled by a backgate voltage. Adapted from [81] c) Simulated out of equilibrium local density
of states in presence of a smooth disordered potential. d) Simulated conductance as a function
of a scatterer position for the same disordered potential. Adapted from [82]

Moreover, by the means of a backgate used to control the bulk electronic density, the
authors demonstrated that the interferences were spaced by half the bulk Fermi wave-
length far away from the QPC (see Fig.3.2 and Ref.[81]. In parallel, numerical investi-
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gation demonstrated that this hypothesis of interferences occurring between the tip and
hard scatterers is reasonable and essentially explains the spatial repartition of this type of
fringes and their temperature robustness[82]. This numerical investigation also revealed
that the branches observed in the experiment were strongly correlated to the preferen-
tial electron trajectories flowing in the 2DEG reservoirs through the smooth disordered
potential landscape in absence of the tip (see Fig.3.2c and d).

3.1.3 Two types of interferences

The SGM technique has then been developed in Stanford, under the supervision of David
Goldhaber-Gordon, with the expertise of Mark Topinka. In this team, scanning gate
microscopy on QPCs made out of GaAs 2DEG of different mobilities brought some new
insights on the observed interferences. First, a study at 4.2K showed that the interfer-
ences disappear in layers of mobility greater than 106cm2/V.s, and the electronic flow
exhibits less branches[71]. This result therefore confirmed that the originally observed
interferences were strongly assisted by disorder.
In the same group, after the development of a scanning gate microscope in a 3He system,
it has been shown that a new type of interference fringes appear at lower temperatures
(around 350mK) even in samples of mobility 4.106cm2/V.s[83]. These fringes are not
present at 1.7K and are attributed to a mechanism similar to a “Fabry-Pérot” inter-
ferometer occurring directly between the depleted regions below the tip and below the
split-gate. (Fig.3.3).

Figure 3.3 Results from the Stanford group: a) Schematics of the experiment. b) and c)
Two possible mechanisms to explain this new type of interference fringes. d) and e) SGM images
on a high mobility sample (4, 4.106cm2/V.s) at temperatures of 1.7 K and 350 mK. Adapted from
Ref.[83].

Finally, the development of a scanning gate microscope in Cambridge in a dilution
fridge operating at a base temperature of 150 mK, allowed the investigation of the many-
body effects occurring below the first plateau thanks to this technique[?]. The authors
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defined electrostatically a QPC by erasable electrostatic lithography (ELL)[84]. It consists
in depositing negative charges on the sample surface thanks to the charged tip, to repel
the electrons underneath. They defined in this way a QPC that could then be opened and
closed at will by placing the tip above the defined constriction, and applying a variable
negative voltage on it. The authors reported the appearance of an additional plateau
at 0.5 × 2e2/h as well as the 0.7 anomaly, and interpreted their results as a possible
spontaneous spin polarization in the QPC.

3.2 Our scanning gate microscopes

3.2.1 Low temperature atomic force microscopy

The first challenge in the practical realization of SGM is the construction of a low tem-
perature atomic force microscope (AFM). This has to be achieved in order to place the
tip above the desired part of the sample. To do so, conventional AFMs are often based
on the deflections of a cantilever, measured by a laser beam deflection. This detection
technique is forbidden in the case of high mobility GaAs 2DEG because light creates lots
of electron-hole pairs that strongly affect transport and sometimes even induce leakages
from the gates to the 2DEG. The widely used technique to address this problem is to glue
a tip at the end of a quartz tuning fork. The tuning fork is then excited at its resonance
frequency which is tracked continuously by a phase lock loop (PLL). By the means of
motors and a scanner, the tip is approached towards the surface. The tip approaches the
sample step by step, in the following sequence: the Z-scanner is extended to its maximal
range (4 µm at low temperature), retracted it if the tip does not touch the sample, a Z-
motor step (about 1µm) is then made, and this operation is repeated until the tip touches
the surface (this operation can take around one hour). When the tip interacts with the
substrate, the tuning fork resonance is shifted because of the tip/sample interaction force.
The PLL keeps the TF on resonance and measures the applied frequency shift. A feed-
back loop is then used to keep this frequency shift constant (some hundreds of mHz), by
adjusting the height with the Z-scanner, while the tip is moved in the horizontal plane
with the X- and Y-scanners to make a topographic image.
This allows to perform topography without the use of a laser beam. Measuring topogra-
phy as well as SGM images is eased by the use of Nanonis commercial soft and hardwares,
offering a user-friendly interface to perform various scanning probe microscopy techniques.

3.2.2 The microscopes

Two different scanning gate microscopes were used during this thesis. One based in
Institut Néel, in Grenoble, operating at 4K in liquid Helium, and one in IMCN, in Louvain-
la-Neuve (Belgium), embedded in a dilution fridge, at a base temperature of 20mK.
The setup in Grenoble has been redesigned at the beginning of this thesis, to reach a
better stability during cooldowns. Indeed, the tip is aligned with the sample at room
temperature, but the whole setup moves while cooling down. Unfortunately, the base
temperature of 4.2 K in this setup appeared to be too high to study quantum point
contacts, because thermal broadening does not allow to see conductance steps at this
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Figure 3.4 Topography at low temperature: a) Topography of a marker with a clean tip.
b) with a partially broken tip. c) Schematics of a broken tip, where the coating has been broken,
possibly leading to image b). The different apparent topographies of a step for a clean and a
broken tip are shown. d) Topography of a ohmic contact. e) Topography of one side of a (dirty)
sample. a, d) and e) were recorded at Grenoble in the 4K setup, and b) in Louvain-La-Neuve at
20mK, after an unfortunate tip breaking.

temperature (see Fig.1.10).
We therefore used the SGM of Benoit Hackens in Louvain-La-Neuve. This powerful
machine is described in Chapter 1, and all the SGM data presented in this manuscript
were obtained using this setup.

3.2.3 The conductive tips

The tip used during this thesis are sharp commercial AFM tips (from MikroMasch),
placed at the end of a cantilever. The topography nonetheless allows to find the place
of interest on the sample and is used to calibrate the scanner displacement for a given
applied voltage on the piezo, since the size of the markers is well known. It also gives
an idea of the tip shape. Indeed, the apparent topography recorded in AFM is in fact
a convolution of the real landscape and the tip shape (schemed Fig.3.4c). For example
Fig.3.4b is recorded with a tip whose conductive coating has probably been damaged,
leading to artificial intermediate steps when probing a single sharp step.

3.2.4 Imaging quantum transport

Once the sample is found at low temperature thanks to the markers (extreme care should
be taken during this operation in order to keep the tip sharp and clean), we can perform
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scanning gate microscopy. To find the exact position of the QPC, we almost close the
QPC thanks to the gate voltage and perform SGM at large tip height (typically 1 µm).
A negative voltage of a few volts is applied to the conductive tip, and the QPC closes
when the tip is above the constriction, leading to a spot of reduced conductance in the
SGM maps. We avoid doing topography in the constriction at low temperature in order
not to induce surface charges that would affect transport.
Finally, we place the tip in front of the QPC, about 30 nm above the surface, with a
negative voltage of -6V applied on it, and record the conductance of the device. By
moving the tip above the sample surface, we record the conductance of the device for
every tip position. This defines images, namely conductance as a function of in-plane
tip position, called SGM images. Note that the surface shall be kept extremely clean to
perform this technique because the tip has to be moved 30 nm above the surface.

3.3 Interferences

3.3.1 SGM images on the plateau

We present here some typical SGM images recorded when QPCs are open on the first
plateau. Fig.3.5 presents images recorded on samples B (3.5c) and D(3.5d) in Louvain.
For both images, the QPC is open to the first plateau. The tip is scanned about 30 nm
above the sample surface, with a negative voltage of -6V applied on it.

In the SGM maps, corresponding to the conductance of the device with respect to
tip position, some main features can be observed when the first mode is fully open (see
Fig.3.5). The conductance stays quantized to 2e2/h for most positions of the tip, where it
doesn’t seem to affect transport. However, for some specific tip positions, the conductance
is strongly reduced, sometimes by 50 % . For these features to appear, the tip has to be
sufficiently close to the surface (typically 30nm) and with a sufficiently negative voltage
applied on it (typically -6V). The conditions on the tip voltage and height required to
deplete the 2DEG are discussed in section 3.4.
The tip effect can be understood as follows: it creates a depletion region in the 2DEG,
acting as a local scatterer that affects electron transport when placed on their trajecto-
ries. Electrons are then backscattered towards the QPC, consequently reducing the total
conductance. The fact that these tip locations (with strong effect) draw branches sug-
gests that electrons follow preferential paths in the leads, presumably attributed to the
disordered potential [75], and that strongly depend on the 2DEG mobility [71].
An other remarkable feature is that the branches are decorated with interference fringes,
spaced by roughly λF/2. They’re attributed to electronic interferences due to different
number of round trips between the depleted region and the QPC, possibly assisted by
disorder, and are discussed in the following section.

These interference fringes have been a matter of intensive experimental studies[83, 77,
61, 71], but their deep origin still raises some questions. It is still nowadays unclear which
mechanism gives rise to these fringes, and there might be several mechanisms at play.
Though I cannot answer this complicated question, this section presents some interesting
results that can rule out some possible mechanisms.
According to the standard interpretation, the fringe spacing corresponds to λF /2. In our
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Figure 3.5 SGM on the first plateau: a) Schematics of the SGM principle, on a QPC. b)
G(Vg) traces for sample B, at 20 mK. Blue point represents the gate voltage for which image c is
recorded. c) and d): SGM images obtained when the first mode of the QPC is open, for sample
B (image c) and sample D (image d), at a base temperature of 20 mK. The QPCs are ∼ 100nm
nm on the left side of the images.

case, the bulk Fermi wavelength is 50 nm, hence λF /2 = 25 nm (λF =
√

2π/n where n
is the bulk density 2.5 1015e−/m2). In our SGM images, the fringe spacing is not con-
stant, varying between 35 and 55 nm, which is much larger than the expected value of
half the bulk Fermi wavelength. This would correspond to an average density of of less
than1 1015e−/m2 in the region where these interferences form. This might be due to the
global effect of the tip combined with the long-range effect of the gates voltage that tend
to reduce in average the local electronic density between the tip and the QPC. This non-
constant fringe spacing has also been reported [61], and the different proposed scenarios
could not account for this behavior.

To analyze how these interferences depend on the QPC parameters, we have to sweep
continuously one of these parameters while scanning the tip in space. Recording SGM
images in two spatial dimensions is therefore not possible anymore. Instead, we choose a
specific line (where the desired phenomenon is visible), scan the tip along this line, and
vary the considered transport parameter between two successive lines.
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3.3.2 Dependence on QPC opening

A first interesting question that can easily be answered experimentally is: how do these
fringes depend on the QPC opening? To address this question, we choose a specific line
where these fringes are visible, and record how does the contrast changes for different gate
voltages. Some results are presented Fig.3.6, recorded on sample B.

Figure 3.6 Evolution of the interferences with QPC opening: a) Same SGM image
as in Fig.3.5c, sample B. The red dashed line is the one chosen to study the interferences. b)
Conductance vs. tip position dtip along red dashed line 1), for different values of Vg. c) G(Vg)
when the tip is at the end of line 1) (dtip = 400nm). d)∂G/∂dtip as a function of Vg and dtip.

Fig.3.6a presents the SGM map obtained on the first plateau on sample B, i.e. when
the first mode of the QPC is fully open. All the measurements presented here are recorded
by applying a voltage of -6V on the tip, situated 30nm above the sample surface. The
conductance is measured in 4 points by a lock-in technique, applying an AC voltage of 10
µV on one contact, the mixing chamber temperature being 20 mK.
The line studied in this figure is the red dashed line labeled 1). An abscissa is defined
along this line, labeled dtip, the origin being taken on the QPC side. Looking at conduc-
tance with respect to tip position along this line exhibits interferences. Fig.3.6b presents
these oscillations as a function of dtip, for different QPC openings from the pinch-off to the
first plateau. The interferences seem more contrasted on the plateau than near pinch-off.
Another way to look at these data is to plot the conductance as a function of both dtip and
Vg and differentiate this plot with respect to dtip to get rid of the average conductance
that varies from 0 to 2e2/h along the first mode opening. In this fashion, the interfer-
ences are highlighted and their contrast as a function of the QPC opening can be directly
observed (Fig.3.6d).
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Figure 3.7 Possible simplified scenarios to explain the interferences: A: The two
mirrors of the Fabry-Pérot cavity are the tip-depleted region and the QPC. B: The two mirrors are
the gate depleted region and the tip depleted region. C: Several contributions to the interferences
come from trajectories that bounce on hard-scatterers.

In order to interpret the observed dependence on the QPC opening, we have to choose
a model of interferometer and analyze how the contrast depends on the transmission of the
"mirrors". Different mechanisms could explain interferences, some are sketched Fig.3.7.
The simplest mechanism that could be involved corresponds to scenario A. After crossing
the QPC, the electrons bounce once on the tip-induced depletion region, are backscattered
towards the QPC, then cross it back. They can also be reflected by the QPC, bounce
once more on the scattering region before crossing the QPC. Since electrons behave as
fully coherent waves in quantum mechanics, they experience both paths that interfere
either coherently or destructively, leading to oscillations in the total conductance. In this
scenario, the two paths are dephased by exactly one wavelength when the scatterer is
displaced towards the QPC by λF /2, leading to the same interference state. This forms a
kind of electronic “Fabry-Pérot” cavity between two “mirrors”, here the potential barrier
of the QPC channel and the depletion region below the tip.

Though it is a well-known problem in optics, the main results of the Fabry-Pérot inter-
ferometer shall be reminded at this point. Fig.3.8 shows an example of a 1D cavity. The
two mirrors are inequivalent, and respectively have transmission and reflexion coefficients
t1, r1 and t2, r2. We calculate the total transmission T through the cavity (from which
the reflexion of interest in our case can be deduced by R = 1-T). The figure presents the
transmission as a function of cavity length for different transmission of the first mirror
t1 (modeling the QPC), divided by t2 (1/2 in this example). Fig.3.8b shows the case of
only two bounces in the cavity, whereas Fig.3.8c represents the fully developed formula in
which an infinite number of bounces are taken into account, leading to sharp resonance
peaks where the transmission reaches t2.
This presents some similarities with the experiment of Fig.3.6, where the interference are
observed for different values of transmission for the first mirror (the QPC), assuming a
constant reflexion coefficient at the scattering region. Regarding this, as the interferences
observed experimentally are looking like sinusoids rather than sharp peaks, one can guess
that electrons contributing to these interferences may have crossed the cavity no more
than two or three times.
An other interesting remark is that in the simple Fabry-Pérot model, there is no contrast
as soon as mirror 1 (or 2) is perfectly transmitting (red curves). This is quite intuitive
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Figure 3.8 1D Fabry-Pérot cavity: a) Scheme of an optical Fabry-Pérot cavity. b) Total
transmission as a function of cavity length L in units of the wavelength λF , for different values
of t1, considering only two bounces. c) Total transmission for different values of t1 taking into
account an infinite number of bounces.

but is worth being reminded for the following. This suggests that the simple scenario A
sketched in Fig.3.7 cannot explain the observed interferences, as they are more contrasted
when the first mode of the QPC is fully open. Other models have to be considered that
will be discussed regarding different experimental results. Scenario B offers an interesting
alternative, where of the mirrors of the cavity would be the depleted region below the
gates, as proposed in Ref.[83]. Hence there would be some contrast of the interferences
even when the first mode of the QPC is fully transmitted. However, in this scenario, the
mirror formed by the gates would move away from the tip as the gate voltage is brought
to more positive values. Hence the interferences should accumulate phase monotonically
with gate voltage, that we do not observe in the experiment (Fig.3.6d). Scenario C has
been proposed to explain the interferences that survive at temperature up to 4.2K, in
samples of mobility around 2.105cm2/V.s[71], far away from the QPC. In our case, the
interferences disappear for temperatures above 1K (see section 3.3.3) and the mobility is
around 106cm2/V.s, which suggests a different origin.

Several criticisms can be addressed to these simple models that do not seem to account
for the gate voltage dependence of the interferences. First the system is not purely 1D,
but 2D. Then the electrons can escape from the cavity not only by crossing the mirror
formed by the tip. Indeed, as the 2DEG is depleted below the tip, the electrons can-
not cross this region, but can escape from the cavity by simple geometric spreading of
the wave-function, or by being scattered on potential fluctuations, or directly forward-
scattered by the depletion spot. This can be modeled by taking a finite small reflexion
coefficient r2 and considering only two bounces in the cavity, but it shall be kept in mind
that the electrons do not cross the depletion spot.
An other difference is that the system does not contain only one mode. Even if a single
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mode comes out of the QPC, the cavity can contain several modes and inter-mode scat-
tering is likely to occur because of disorder. This important effect, that could be the key
to understand contrast of the interferences on plateaus is extensively discussed in Chapter
4 and supported by numerical simulations.

Finally, we should say a few words on the phase shift visible below the first conductance
plateau, in the region of the 0.7 anomaly (see Fig.3.6d). The shift is about π and occurs
in a range of gate voltage that depends on tip distance. The same phase shift will be
presented in Chapter 4, as it is also visible not only in SGM experiments, but also in
transport properties of the interferometers (see Fig.4.4). As will be explained in chapter
5 and 6, this phase shift results from the localized state induced by electron interactions
and controlled by the tip position.

3.3.3 Temperature dependence

3.3.3.1 Measurements

The temperature dependence of these fringes also gives interesting informations. The data
presented in Fig.3.9 summarize a measurement done on sample D, the QPC being just
below the first plateau and shows that the interference fringes disappear with increasing
temperature.

Figure 3.9 Influence of temperature: a) Same SGM image as in Fig.3.6d, recorded on the
first plateau. b) Behavior of the interferences along blue dashed line 2), for different temperature.
The interferences disappear around 1K. Curves are not shifted, the decreasing of the average
conductance with increasing temperature is presumably due to the disappearance of the ZBA. c)
Colorplot of the derivative ∂G/∂dtip as a function of T and dtip.

This lost of contrast as the temperature is increased can be understood as follows: with
increasing temperature, electrons with more and more different energies will contribute
to these interferences, in a window EF ± kBT . They will therefore have a spreading in
wavelength λF ± ∆λ. These different contributions tend to blur the contrast, as in optics
experiments with a non-monochromatic source.
It is important to note that the temperature given in those plots is the mixing chamber
temperature. It does not automatically match the electronic temperature, that is difficult
to lower down to the lattice temperature due to imperfect noise filtering of the electrical
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wiring, or due to current-induced electron heating in the sample itself. Another param-
eter limiting the contrast of the interferences is the applied AC voltage used to measure
the conductance, here for example we apply a 10 µV excitation, that corresponds to an
electronic temperature of about 100mK.
The global decreasing of the average conductance as the temperature increases is simply
due to the disappearance of the zero bias anomaly discussed in Chapter 2, as this measure-
ment was performed below the first plateau (around 0.8*2e2/h). For a given temperature,
the average decreasing of the conductance when the tip is approached towards the QPC
is due to the gating effect of the tip, discussed in section 3.4.

3.3.3.2 (Very) simple model

To analyze this temperature dependence, I consider the simple model that follows. Let’s
assume that the interferences arise from a “Fabry-Pérot” like cavity, whatever the exact
location of the reflections. For demonstration, I take reflexion coefficients of the two mir-
rors to be 1/2.

Figure 3.10 Basic model: a) Fabry-Pérot cavity, considering only two bounces, r1 and r2

are set to 1/2. b) Fermi distributions around Ef for temperatures ranging from 0 to 1K. c)
Oscillations of the total transmission as a function of the cavity length for different temperatures.
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To compute the finite temperature transmission of such a model system, one can take
the finite temperature Landauer formula, assuming eV ≪ kBT :

G =
2e2

h

∑

n

∫ ∞

0
τn(E)

∂f

∂E
dE (3.1)

where f(E) is the Fermi distribution function at finite temperature and τn(E) is the
transmission of the nth mode at energy E. This distribution for different temperature
(in our case Ef = 8meV) is presented Fig.3.10b. In this simple Fabry-Pérot model, I
consider only trajectories of electrons crossing twice the cavity, and a single mode with a
transmission τ given by:

τ(E,L) = ||t1t2eik(E)L + t1r2r1t2e
3ik(E)L|| where k(E) =

√
2m∗E

~
(3.2)

Then the integral in equation 3.1 can be simply computed. The resulting transmission
of the cavity as a function of its length is plotted on Fig.3.10c. At zero temperature, the
oscillations due to the interferences do not decrease with distance. At finite temperature
however, different wavelengths contribute to the interferences and the contrast decreases
with increasing the cavity length. At 1K, we clearly see that when the cavity length is
of the order of 1 µm , the contrast has been suppressed by a factor 10 compared to zero
temperature.
Though the decreasing contrast with distance at finite temperature is not completely
clear from the experimental data Fig.3.9, the fact that the fringes disappear around 1K
suggests that the cavity length in which these interference fringes form is of the order of
a micron.
Even if this basic model does not take into account several aspects of the real system, in
particular the inter-mode scattering in the QPC and the angular divergence in the 2DEG
plane, it gives nonetheless an interesting information on the interferences.

3.3.4 Non linear behavior

The spectroscopy of these interferences also give interesting results, a bit more difficult to
interpret. This can be done by scanning the tip along a specific line as before, and vary
the source-drain DC voltage at fixed gate voltage. For example, Fig.3.11a shows how the
interferences evolve when a DC bias is applied to the QPC. The QPC is the one presented
in Fig.3.6a, the chosen line is the red dashed line 1), and the QPC is open to the first
plateau.

A first experimental observation is that the interference fringes are visible up to 2
mV bias, and then disappear at larger biases (not shown here). A blurring of the in-
terferences for energies above 2 meV cannot be explained by the contribution of higher
QPC modes since the subband spacing is 4 meV. It might thus be related to an electron-
electron inelastic scattering process at finite energies above the Fermi level, as suggested
in [77] where similar energy scales are found. Note that the DC bias voltage should not
be translated here into an effective temperature (that would smear out the interferences),
since measuring the differential conductance probes only the electrons at the Fermi level
of the reservoirs, in the narrow energy window given by the AC voltage (10 µV ).
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Figure 3.11 Fringes evolution with source-drain bias: a) Evolution of the interferences
with source-drain voltage. Data are recorded by scanning the tip along the red line 1) Fig.3.6a,
the QPC being on the first plateau. Data are differentiated with respect to dtip to highlight details.
b) Schematics of a Fabry-Pérot cavity when the QPC is in the non-linear regime. c) Plot of the
saddle-point potential top along transport axis, with ~ωx = 1.5meV, for different source-drain
biases, assuming that the voltage drops linearly along the QPC, on a scale of 50 nm.

The second striking fact is that these interferences fringes are shifted to larger tip dis-
tances for more positive source-drain biases (the bias voltage is applied on the contact
located on the side opposite to the SGM tip). This shift can result from the change
in the electron wavelength with energy. It could also result from a change in the cav-
ity length due to a shift of the QPC saddle-point along transport axis under finite bias.
Both effects contribute additively and create a positive slope in the graph Fig.3.11a. The
first effect is to shift the fringes by one period when the electron energy is increased by
∆E/Ef = λF/L, i.e. ∆E = 0.4meV if we consider that the cavity is about 1 micron long.
Since the observed fringes shift by one period for an applied bias of 2mV, the second effect
may also be involved.

To quantify this second effect, the shape of the saddle-point under a DC bias voltage
should be first investigated. This is an interesting question, and the answer is far from
being obvious [85]. We can first rely on the saddle-point model [10] presented in Chapter
1. It is often assumed that the voltage bias drops linearly along transport axis [86]. To
model this, I then chose to take a Büttiker’s saddle-point model [10] presented in chap-
ter 1, with a transverse confinement of curvature ~ωy = 4meV and along transport axis
~ωx = 1.5meV. Then the bias voltage is included as a potential that linearly depends
on longitudinal coordinate x, and drops on a length Ldrop that can be adjusted. The
potential landscape is then given by V (x) = (1/2)m∗ω2

xx
2 + ∆V/Ldropx. The resulting

potential around the saddle-point is drawn on Fig.3.11c, where Ldrop is assumed to be
50nm, for different voltage bias ∆V . One can see that applying a DC voltage displaces
the saddle-point in real space, in a way that depends on ωx. The maximum is obtained for
∂V/∂x = 0, hence the abscissa of the saddle-point xsp is given by xsp = −∆V/Ldropm

∗ω2
x.

Assuming that Ldrop = 50 nm gives a saddle-point displacement of 20 nm for a voltage
bias of 2 mV. Note that this effect is extremely sensitive to both the longitudinal curvature
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of the saddle potential and the assumed length on which the voltage drop occurs, that
are two quantities difficult to evaluate.

Theses two orders of magnitude are consistent with the observed phase shift of the
interferences with source-drain voltage. As we apply source-drain bias, the QPC displaces
in real space and the wavelength of the electrons enlarge, such that the tip has to be
moved towards the QPC to keep the same interference state (i.e. the same cavity length).
Following a specific interference fringe on Fig.3.11a requires to move the tip by 40nm
when the source-drain voltage is changed by 2 mV. The two phenomena described above
probably both play a role in this phase shift, but as they depend on quantities difficult
to precisely evaluate, it is difficult to say whether one clearly dominates. Note that this
is also consistent with a recent more precise theoretical investigation of this problem
(i.e. how do interference evolve with source-drain bias) [76]. An ingredient that is not
taken into account and could also play a role in this phase shift is the way electrons are
backscattered by the tip and by the QPC, that could depend on their energy.

3.4 Tip potential

One of the challenges in understanding the signal obtained in scanning gate microscopy
is to model the tip-induced potential. Pioneers of this technique have already proposed
some interesting analytic [58] and experimental [80] methods to evaluate how the local
electronic density is affected below the tip. It seems that the tip creates a long-range
potential, decreasing with distance on a typical scale that roughly matches the tip/2DEG
distance.
In Ref.[80], the experimental method chosen was to measure the conductance of a QPC
with a large AC bias of 5mV, such that the conductance with respect to the gate voltage
is linear. Then the QPC is closed near pinch-off, and the tip is scanned above the channel.
In this fashion, the SGM maps represent the tip-induced potential in 2D.
In this section, I present alternative methods to measure both the very tail of the tip-
induced potential at the QPC center, and the size of the depletion region induced by the
tip.

3.4.1 Estimating the shape of the tip tail

To measure the long-range effect of the tip, a method is to evaluate the cross-talk effect,
i.e. how does the tip changes the potential at the very center of the QPC.

By approaching the tip toward the QPC, the saddle-point potential rises up, hence the
gate voltage required to close the QPC moves towards more positive values. To evaluate
this, we use the same data as in Fig.3.6. For clarity, these data are presented in Fig.3.12
but the conductance is differentiated w.r.t. Vg. In this way, the pinch-off is more visible,
as the gate voltage strongly affects the conductance at this point. On this graph, we can
directly visualize the way the pinch-off voltage moves when the tip is approached (the red
thick curve). This curve somehow directly represents the shape of the tip tail.
A last step to put real energy scales of this potential tail is to convert the change in
gate voltage induced by the tip to a change in energy of the saddle-point. This is done
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Figure 3.12 Characterization of the tip potential tail: a) and b) Same data as in Fig.3.6
but the colorplot represents the derivative of the conductance with respect to gate voltage (instead
of dtip). The way the pinch-off is affected by the tip is highlighted in red. c) Schematics of the
potential landscape, contributions of the tip and the gates are separated for clarity.

with the lever arm parameter of the gates discussed in Chapter 1. Using this lever arm
(50 meV/V), we find that in the situation presented here, the tip raises in average the
saddle-point by 500µeV when approaching the tip by 500nm. Of course this cross-talk is
not constant (the curve is not linear) and depends on the absolute tip-to QPC distance.

3.4.2 What is the size of the depleted region?

Interestingly, the interferences can bring useful informations on the tip-induced depleted
region, as this is one of the mirrors of the Fabry-Pérot cavity. The first experiment that
can be done is to look at how the interferences depend on the tip-to-surface distance.
This can be done by scanning the tip above a line where the interferences are seen and
vary the tip height. This measurement is shown in Fig.3.13a. The tip is scanned above
the red line 1 shown Fig.3.6, the QPC being on the first plateau. A negative voltage
of -6V is applied to the tip. The data are differentiated w.r.t. horizontal tip distance
dtip to highlight details, but the same informations can be extracted from raw data. The
interferences clearly disappear when the tip is more than 50 nm above the sample surface.
This corresponds to the depletion threshold. For an applied voltage of -6V, the tip has to
be brought lower than 50nm towards the sample surface to create a depletion region and
generate interferences. From this observation, we already know that the diameter of the
depleted region is zero for the tip height of 50nm.

Another information can be extracted from this plot, based on the fact that the phase
of the interferences changes with tip height. This can be understood as follows: as the tip
is brought closer to the surface, the depletion region enlarges. As a consequence, to keep
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Figure 3.13 Characterization of the depletion threshold and depleted region size: a)
Evolution of the interferences with tip height ztip. The chosen line is the red line 1 from Fig.3.6,
the QPC is on the first plateau. The voltage applied on the tip is -6V. b) For a tip/surface
distance of 30nm, evolution of the interference fringes with tip Voltage Vtip. c) Schematics of
the experiment and resulting potential landscape at the 2DEG level created by the tip (blue curve)
and by the gates (green curve).

a constant interference state in the Fabry-Pérot cavity, the tip has to be brought away
from the QPC. For example, to keep the same interference state, the tip has to be moved
by 55 ± 5nm in the horizontal plane when it is lowered by 20nm in the vertical direction
from the depletion threshold (ztip = 50nm) to the working distance (ztip ∼ 30nm). The
depletion region has therefore enlarged by ∼ 110nm (2 × 55nm), hence the diameter of
the depletion spot is about 110 ± 10nm.
Another interesting information is how does the depletion spot enlarge with tip voltage
Vtip. This can be done in the same fashion, by scanning the tip along the same line at
fixed tip height ztip = 30nm and vary Vtip. Fig.3.13b shows how the interferences evolve
with Vtip, between -5 and -8.5 V. A clear change in phase can be observed as the tip
voltage is lowered. Following the same interpretation as previously, the depletion region
enlarges as the tip voltage is lowered (towards negative values), hence the tip has to be
moved away from the QPC to keep the same interference state. Though the data were
not recorded for less negative Vtip, the depletion threshold seems to be around -5V. Then
lowering Vtip to the typical working voltage in this chapter of -6V enlarges the depletion
spot by ∼ 60nm, which is consistent with the previous estimation.

3.4.3 Electrostatic simulations

A different approach to evaluate the tip-induced potential consists in simulating the as-
sociated electrostatic problem. This has to be done taking into account screening by
the 2DEG and the metallic gates. At this point, I would like to acknowledge Guillaume
Bachelier who kindly took from his precious time to perform these simulations thanks
to the Comsol software. It consists in finite elements calculations of the electromagnetic
field in a region of space where metallic parts, dielectric (GaAs layer), the doping layer
and the 2DEG are defined. Then the Poisson equation is solved by successive iterations
and provides the local potential as well as local electronic density in the 2DEG.
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Figure 3.14 Classical electrostatic simulations: a) Geometry of the gates and tip, over
a typical potential map at the 2DEG level. b) Local electronic density when the tip is 400 nm
away from the QPC center, 30nm above the sample surface, with a negative voltage of -6V on
it, and -1V on the gates. c) Saddle-point potential with respect to absolute tip to QPC distance.

The system is modeled as follows: the metallic gates are 120 nm thick and define a
270 nm wide and 300 nm long constriction, corresponding to our sample geometry. The
tip is modeled by a cone with a rounded apex of curvature radius 25 nm (Fig.3.14a). The
2DEG plane is located 105 nm below the surface according to our heterostructure and we
take a dielectric constant ǫr = 12.9 between the 2DEG and the surface to model GaAs.
We model the doping layer by a constant and uniform charged plane (in the 2DEG plane
for stability reasons) of density 2.5 × 1011 cm−2, insensitive to local potential (modeling
ionized dopants). When no voltage is applied neither on gates nor on the tip, the electron
density in the 2DEG is 2.5 × 1011e−/cm2. The local density is computed self-consistently
depending on the local potential by successive iterations. This therefore includes screen-
ing from the 2DEG.

From the Potential map Fig.3.14b, the size of the depleted region is found to be of the
order of 100nm, which is consistent with the value estimated above from the experiment.
A second result is that the global density is in average really reduced between the tip
and the QPC, which might explain why the observed interferences in the experiment are
spaced by more than half the bulk Fermi wavelength.

To simulate the way the tip affects the saddle-point, this simulation has been realized
for several tip positions along the longitudinal QPC axis. Fig.3.14c shows the potential
at the saddle-point when the QPC is close to pinch-off, for different tip positions (here
the tip distance is labeled from the center of the QPC). One can see that approaching
the tip by 500 nm rises the saddle-point by almost 1 meV, which is consistent with what
is measured from Fig.3.12.

3.5 Modeling scanning gate microscopy

To analyze the origin of the interferences, we simulate the transport through the QPC
in presence of the tip using Kwant. As explained in chapter 1, the QPC is modeled
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thanks to an electrostatic model proposed by Davies et al [16] to compute the potential
induced by the gates. Possibly, disorder can be included following a method proposed
in Ref.[17]. Then the tip potential has to be modeled. To do so, the method used for
the gates[16] cannot help as it assumes fixed zero potential on the surface, and the tip is
above the surface. The method we choose to include the tip in this potential landscape is
the following: we therefore assume that the tip potential behaves as a screened impurity
and hence can be described by the expression:

V (x, y) = Vt × L3
tip

[L2
tip + (x− xc)2 + (y − yc)2]3/2

(3.3)

Where xc and yc are the tip coordinates in the 2DEG plane, Vt is the potential energy
at the very top of the tip potential (that has to be larger than Ef to have a finite depleted
region), and Ltip is the typical decay length of the tip potential whose order of magnitude
is given by the vertical distance between the tip and the 2DEG. We used the experimental
characterization proposed in 3.4 to evaluate reasonable values concerning Vt (1.5 ∗ Ef )
and Ltip (100 nm). Note that the exact expression chosen for the tip potential does not
really matter as soon as the tip tail and the depletion spot match the experimentally char-
acterized values. A lorentzian or a Gaussian would essentially give the same transport
simulation considering reasonable values for their maximum and decay length.

To understand how does the tip change the potential landscape, the total transmission
and the wave-functions, we first take a look at transport without tip. The disorder has to
be taken into account, and in this section a specific random background is chosen, corre-
sponding to a random distribution of ionized dopants in the doping layer of the structure
(see Fig.3.15a). The way this residual disorder affects the transmitted wave-functions is
computed Fig.3.15c (clean case) and 3.15d (disordered). The total transmission of the
QPC is shown 3.15b for different values of random fluctuations amplitude ∆V . As dis-
cussed in Chapter 1, including this disordered potential landscape shifts the curves in
Vg depending on the exact fluctuation sign at the center of the channel. Increasing the
disorder amplitude ∆V tends to create resonances in the curve G(Vg) for ∆V > 0.1Ef .

With this unperturbed picture in mind, we now add the tip potential to this landscape
and compute transport through the entire system including the QPC, the tip and the dis-
order potential, choosing an amplitude of 0.1Ef . In particular, we calculate the total
transmission for many positions of the tip, hence recreate what we measure in scanning
gate experiments.
At this point, I would like to open a parenthesis and acknowledge once more Christoph
Groth and Xavier Waintal, not only for the development of kwant and their grateful help
in modeling our system, but for having initiated me to the black art of parallel compu-
tation, and given me unrestricted access to their thousand’s cores cluster. This is really
useful because instead of computing transport for different tip positions by doing loops on
a single computer, one can use hundreds of computers at the same time, each one calcu-
lating transport for a specific tip position. Then a high resolution SGM map is simulated
in a few hours, whereas it would take some days to a simple computer to perform such
a calculation (including a complex random potential), despite the impressive efficiency of
kwant.
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Figure 3.15 Quantum transport simulations: a) disordered potential used in this section.
b) Conductance curve of the QPC G(Vg) for different values of the typical potential fluctuations
∆V , ranging from 0 to 0.12Ef by steps of 0.02Ef . c) Transmitted wave-function square modulus
on the first plateau without disorder (situation A). d) Transmitted wave-function square modulus
with a disorder of amplitude 0.1Ef , on the plateau (situation B).

The results of the SGM maps on the first plateau are presented Fig.3.16e for the clean
case, and Fig.3.16g in presence of disorder (∆V = 0.1Ef ). It is clear that including disor-
der results in a branched flow, decorated with interferences, as observed experimentally.
Interestingly in the disordered case, the branches in the SGM maps reflect the unperturbed
transmitted wave-function, as seen by directly comparing the simulated SGM map and
the electronic wave-function square modulus Fig.3.16f and g.
It is still an ongoing research to understand what is measured in the scanning gate mi-
croscopy of a quantum point contact [72, 73]. Though it is not a detailed theoretical
investigation, our simple calculation including a random potential brings two informa-
tions:
- When disorder is taken into account in a realistic way, a branched flow and some con-
trasted interferences decorating the branches are visible even when the QPC is on a
plateau
- The branches more or less reflect the wave-function square modulus of the electrons
coming out of the QPC in absence of the tip, as discussed in Ref.[82].
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Figure 3.16 Scanning gate microscopy simulations: a) Profile of the tip potential along
one axis. Vt and Ltip are adjusted such that the depletion spot is about 100 nm and the tip tail
is about 1meV on 500 nm. b) and c) transmitted wavefunction square modulus for perfect and
disordered leads, when the tip in in front of the QPC, 1 micron away from the channel center.
d) to g) Unperturbed wave-function square modulus and simulation of SGM maps in the cases
of clean leads (d-e) and disordered (f-g) with ∆V = 0.1Ef . In both situations the QPC is on the
first plateau.
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4.1. SAMPLE AND MEASUREMENTS

4.1 Sample and measurements

4.1.1 The device geometry

One objective of my thesis was the design and study of a new interferometer type, based
on an original idea of Jean-Louis Pichard and Axel Freyn. They proposed that a distant
scatterer could perturb a QPC in a non-local way, to detect electron electron interactions
in the QPC[78, 87].
The theoretical proposal states that electron interactions inside the QPC could lead to
enhanced interference amplitude, and could change the way the interference decay as a
function of the scatterer to QPC distance.
To realize the proposed experiment, we choose to design a distant scatterer by depositing
a metallic 80 nm thin gate, at distances from the QPC center ranging from 0.7 to 1.8 µm.
The devices made by our collaborators at LPN (see section 1.2.1) are in fact the same
as those used for SGM experiments (the tip was on the opposite side and no voltage was
applied to the third gate).

Figure 4.1 Design of the interferometers: a) Example of the typical lithographic pattern
designed with a layout editor. b) SEM image of one of the interferometers provided by Dominique
Mailly after the process.

It is not the first time that one designs a reflector gate in front of a QPC. Soon after
the development of scanning gate microscopy, the pioneers of this technique designed large
reflector gates in front of QPCs and extensively studied this system during the impressive
thesis of Brian LeRoy[81]. Their idea was to investigate the influence of disorder on the
formation of the interference fringes observed in SGM experiments. They performed SGM
on these samples, using the tip as a scatterer to generate interference, and checked how
these interference fringes evolved with the voltage applied on the reflector[70].
The idea in our study is to directly use the reflector gate to generate interference, without
the use of the SGM tip, and to compare the obtained interference with the ones observed
in scanning gate experiments.
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4.1.2 Generating interference

During this thesis, various interferometers of this type have been measured in Grenoble
and in Louvain. Similar behaviors have been observed in every sample, but I will con-
centrate on two of them, sample A and sample B, and give an example of samples E and
C. Samples A and B have been measured in CEA (LATEQS team, in Grenoble), in the
cryostats presented in Chapter 1. Sample A was measured in “La diluette”, and sample
B in “Bigoudène”.
Fig.4.2a shows the conductance curve versus split-gate voltage of sample A, with quan-
tized plateaus and the 0.7 anomaly. Fig.4.2b presents the main effect of a negative voltage
V g3 applied on the third gate, when the QPC is on the first plateau, and Fig.4.2c presents
the effect of negative V g3 for different QPC openings.

Figure 4.2 Generating interference with the third gate: a) Conductance curve of QPC
A G(Vg) at a base mixing chamber of 50 mK. b) Effect of a negative voltage applied on the third
gate on the QPC conductance, on the plateau. c) Effect of the third gate for different QPC
openings from the pinch-off to the plateau.

Below a threshold voltage of -0.5 V, the conductance drops due to two main contri-
butions :
1) The third gate closes the QPC by direct electrostatic coupling (cross-talk) though
though this scatterer is typically 1µm away from the QPC. This “cross-talk” effect will
be characterized in section 4.2.1.
2) The depleted region below the third gate increases the series resistance of the reservoirs
and therefore lowers the overall conductance even on a quantized plateau.
The most striking feature is that the conductance oscillates as a function of Vg3

. This
non-monotonic behavior is similar to the interference observed in SGM experiments as a
function of tip position discussed in the previous chapter. It can be understood as follows:
as soon as a sufficiently negative voltage is applied on the third gate (about -0.5 V), it
depletes the 2DEG underneath and creates a hard scatterer for the electrons coming from
the QPC that backscatter them through the QPC, leading to a reduced conductance.
As V g3 is lowered, the depletion region is brought closer to the QPC, and a Fabry-Pérot
cavity forms between the QPC and the third gate. Therefore the conductance exhibits
oscillations as a function of V g3 depending on the electronic interference state in this
cavity.
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4.1.3 Transconductance

To get rid of the average effect of V g3 on the conductance, we use a measurement trick
often called the transconductance. It consists in differentiating the conductance with
respect to the third gate voltageV g3. Though it can be done numerically, we choose an
analog method to measure directly the quantity ∂G/∂V g3.
To do so, we apply a small AC voltage (typically 10 mV) on the third gate, in addition to
the large DC voltage, at a typical frequency ft of 130 Hz. The sample is polarized with
a small DC voltage bias (typically 100µV ), and the modulation of the current flowing
through the QPC at ft is detected by a lock-in technique. The measured quantity is
therefore ∂G/∂V g3. A scheme of the measurement technique is presented Fig.4.3a.

Figure 4.3 Transconductance measurement: a) Schematics of the measurement. An AC
voltage is applied on the third gate additionally to the DC voltage and a small DC voltage is used
to polarize the QPC. b) DC conductance as a function of V g3 on the first plateau. c) Analogical
transconductance ∂G/∂V g3 as a function of V g3 measured by lock-in technique (red curve) and
numerical derivative of the DC current with respect to V g3 (blue curve).

A typical trace of the obtained signal ∂G/∂V g3 is presented Fig.4.3c, as a function of
V g3. This presents the advantage to hide the global decrease in conductance due to the
cross-talk effect, and hence highlights only the interference. For comparison, we always
record at the same time the raw DC current by the means of a DC voltmeter reading the
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output of the current amplifier. The numerical derivative of the DC current is plotted on
the same graph (blue curve). Though the numerical derivative is less clean, the two signals
exhibit the same variations. The amplitude of the lock-in signal has to be be increased by
25% to match the numerical derivative because the lock-in had a non-zero phase reference
during this experiment. A constant value has also to be subtracted, presumably due to
a capacitive coupling between the measurement wires that bring some signal at the third
gate voltage modulation frequency (127 Hz) to the current amplifier.
In the following, I will then plot the transconductance corrected in this way.

4.2 Influence of different parameters

As we did in scanning gate experiments, we can vary different transport parameters and
see how the interference evolve.

4.2.1 Dependence on QPC opening

The first parameter that can easily be addressed experimentally is the evolution of these
interference fringes with QPC opening. To investigate this effect, we sweep the scat-
terer voltage V g3 and record these traces for several values of V g. We then plot the
transconductance as a function of both V g and V g3. The resulting color-plot is presented
Fig.4.4b.

A trace of the conductance curve G(Vg) with no voltage applied on the third gate is
presented at the same time Fig.4.4a.

Several informations can be extracted from this graph, that are listed below.
- Cross-talk: A negative voltage applied on the third gate tends to move the pinch-off
toward more positive values of Vg, due to a “cross-talk” effect, as discussed for the polar-
ized SGM tip in the previous chapter. From the displacement of the pinch-off line with
V g3 (bright line on the left of Fig.4.4b), we can extract the lever arm parameter of the
third gate, i.e. how does a negative voltage applied on the third gate rises the saddle-point
energy at the QPC center. We can see that applying -3V on the third gate displaces the
pinch-off gate voltage by 0.02V. The lever arm of the split gates, extracted following the
method presented in Chapter1, Fig.1.11, is about 50meV/V, hence the lever arm of the
third gate is about 0.35meV/V.
- Depletion threshold: A clear horizontal line is visible around V g3 = −0.45V , which
correspond to the voltage required to completely deplete the 2DEG below the third gate.
The interference fringes are not visible for third gate voltages below this value, reinforcing
the fact that a hard scatterer is required to generate these fringes.
- Periodicity: Two identical interference states in the cavity forming between the QPC
and the third gate are expected each time the depletion threshold below the third gate
is approached by λF/2(∼ 28nm) towards the QPC. The periodicity of this interference
in V g3 is about 0.5V, meaning that the depletion threshold moves by approximatively 56
nm/V. It is important to note that this fringe spacing is found to vary between different
samples and even presented an hysteretic behavior in the same sample. For example,
applying a negative voltage as low as -5V on the third gate can irreversibly enlarge the
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Figure 4.4 Interference vs QPC opening: a) G(Vg) at 50 mK, recorded by applying an
AC voltage of 50 µV on sample A. No voltage is applied on the third gate. As the data are
recorded with only two ohmic contacts, the total conductance is corrected by a series resistance
of 2.5 kΩ to take into account the filters and the ohmic contacts. b) Colorplot of the analogical
transconductance as a function of Vg and V g3, allowing to follow the evolution of the interference
fringes with the QPC opening.

periodicity of the fringes, that can be reset by heating the sample above 150 mK. This is
not surprising, as applying some volts on a gate situated directly on the sample surface
can induce irreversible charge deposition in the heterostructure. This contrasts with the
SGM experiments where the tip is never in contact with the sample surface.
- Contrast: A striking feature that can be directly observed on Fig.4.4b is that the inter-
ference are as contrasted on plateaus as in the transition in contradiction with theoretical
predictions [73]. The same observation was done in the SGM experiments presented in
the previous chapter. This effect could be the result of the disordered potential landscape
in the 2DEG as will be discussed in section4.3. One shall also note that in Ref.[73], the
calculation is done in the perturbation regime, when the tip is very weak and does not
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fully deplete the 2DEG as in this experiment.
- Unexpected phase shift: Interestingly, these interference fringes are even more con-
trasted at the 0.7 anomaly, and they present a surprising phase shift of π between the 0.7
anomaly and the first plateau. This effect may be related to Kondo physics at play below
the first plateau, and will be extensively discussed in Chapter 6.

Figure 4.5 Dependence on QPC opening for two different samples: a) Sample E:
G(Vg) recorded in 4 points by applying an AC voltage of 10µV , at a base temperature of 20 mK,
for no voltage applied on the third gate. b) Numerical transconductance as a function of Vg

and V g3, allowing to follow the interference with the QPC opening, on sample E. c) G(Vg) for
sample C recorded in the same conditions. d) Numerical transconductance for sample C as a
function of Vg and V g3. All these data were recorded in Louvain-La-Neuve.

This analysis has been realized on several samples, an example is given for two different
samples (E and C) Fig.4.5. These experiments were done in Louvain-La-Neuve, and the
conductance is recorded using a 4-points technique, with an applied AC voltage of 10µV .
The transconductance plotted Fig.4.5b and d is therefore calculated numerically. The
same main features as in Fig.4.4 are visible. Interestingly, the phase shift of π between
the 0.7 regime and the first plateau is visible in both plots, though it is less pronounced
for sample C.
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4.2.2 Dependence on temperature

The temperature dependence brings additional information on these interference fringes.
Traces of the transconductance as a function of the third gate voltage are presented
Fig.4.6a. A complete characterization of the interference as a function of the QPC open-
ing are presented Fig.4.6b to d, at temperatures of 500mK, 1K and 4K, with the same
colorscale. It clearly appears that at a temperature of 1K, the interference fringes are
already weaker than at low temperatures, and they completely disappear at 4K.

Figure 4.6 Temperature dependence of the interference: a) Traces ∂G/∂V g3 for a split
gate voltage V g = −1V, at temperatures of 500 mK, 1K and 4K on sample A. b) Complete
characterization ∂G/∂V g3 as a function of V g and V g3, at 500 mK. c) Same measurement at
1K. d) Same measurement at 4K, interference is not visible anymore.

Though these measurements were recorded on the same sample as the one presented
Fig.4.4 (sample A), the signal is more messy because of an unfortunate electrostatic shock
applied to the sample. The interference spacing is larger (as a function of V g3), and the
dependence on the QPC opening is less clear, suggesting that these interferometers are
highly sensitive to their environment and the history of the sample.
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The fact that the interference disappear between 1 and 4K suggests that the Fabry-Pérot
in which they form is about 1 µm long, as discussed in the previous chapter. It also
reveals that they may be similar to the ones observed in scanning gate experiment, as
they present roughly the same temperature dependence.

4.2.3 Dependence on magnetic field

The effect of a magnetic field applied perpendicularly to the 2DEG brings interesting in-
formations on the interference. A colorplot of the transconductance as a function of both
V g3 and magnetic field is plotted Fig.4.7a, recorded on QPC B open to the first plateau.

Figure 4.7 Effect of a perpendicular magnetic field: a) Transconductance as a function
of V g3 and perpendicular magnetic field strength, the QPC being on the first plateau. This data
were recorded in Grenoble on QPC B, at a base temperature of 50 mK. b) Schematics of the
experiment under magnetic field, the electron trajectories drawn in purple are bent by the Lorentz
force.

On this plot, a striking feature is that the interference disappears for magnetic field
of about 100 mT. This can be understood by the effect of a perpendicular magnetic field
which is to bend the electron trajectories coming out of the QPC. The typical curvature
radius of the trajectories is the cyclotron radius rc = m∗vF/eB. When this radius becomes
of the order of the Fabry-Pérot cavity size in which this interference occurs, the interference
is expected to disappear, as the electron trajectories are too much bent to allow several
round-trips in the cavity. The field at which the interference disappears (∼ 100mT )
corresponds to a cyclotron radius of 900 nm. This therefore suggests that the interference
directly occurs between the QPC and the third gate, situated 1.2 µm away from the
QPC in this specific sample. In case of interference induced by reflections on the disorder
potential and the tip, there would always be some closed paths to interfere even with
strongly curved trajectories.
Some remaining weak interference fringes are visible at higher fields, up to 200 mT, that
might be due to trajectories assisted by disorder in the leads, though a deep understanding
of this effect has not been achieved despite the extensive simulations presented in the
following section.
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4.2.4 Polarization influence

The evolution of the interference with DC source-drain bias is surprising. An example is
given Fig.4.8, when the QPC is open just below the first plateau. The signal is recorded
analogically by applying a 30 mV AC excitation on the third gate and recording the current
flowing through the QPC at this frequency by a lock-in technique. A first noticeable effect
is that the average signal of the transconductance is proportional to the applied DC bias
(see Fig.4.8a). It is not really surprising as the current flowing through the contact is
proportional to this bias, so are its modulations by the third gate. To get rid of this
effect, we subtract the average value of the signal for each value of Vsd. The obtained
signal is plotted Fig.4.8b.

Figure 4.8 Effect of a DC source-drain bias: a) Analogical transconductance for sample
B, just below the first plateau (Vg = −1.3V ), as a function of V g3 and DC source-drain bias Vsd.
b) Same data but the average signal over the different V g3 has been subtracted to each vertical
line at given Vsd to get rid of the background signal proportional to Vsd.

The interference survive up to more than 3 mV of source-drain bias. As for the ones
observed in SGM experiments and discussed in Chapter 3 (see Fig.3.11), this corresponds
to energies comparable to the QPC 1D subbands spacing, and it is surprising to see that
interference still survive up to such high biases.
The interference slightly accumulate phase with increasing source-drain bias, but in a
different way that what was observed in SGM experiments. Indeed, the interference
changes by half a period within a 7 mV of polarization difference. This contrasts with
the displacement of the SGM fringes discussed in section 3.3.4, that moved by one period
for a 2mV applied bias. An explanation might lie in the fact that during the experiment
presented Fig.4.8, the bias voltage is applied on the contact located on the other side as
the third gate. Then the two effects discussed in section 3.3.4 (the displacement of the
QPC along transport axis with source-drain and the increasing wavelength that has to be
compensated) have opposite effects. Unfortunately, we do not have data for an excitation
on the side of the scatterer, which would allow to clearly elucidate this point.
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A last feature visible in Fig.4.8 is a phase shift of the interference fringes at zero bias.
This phase shift is related to the one visible Fig.4.4 as a function of gate voltage and will
be extensively discussed in the light of more detailed SGM experiments in Chapter 6.

4.3 Numerical simulations

4.3.1 Interference without disorder

To complement the experiments, we use Kwant to investigate theoretically these inter-
ferometers. The device is modeled with two gates for the QPC and an additional one to
model the scattering gate in front of the QPC. We choose to model the scattering gate
by the analytic expression described in Ref.[16], using several rectangles to define a sharp
apex.

Figure 4.9 Modeling the interferometer: a) Potential map generated following the Davies’
method [16] scaled to Ef . The corresponding gates shape are represented as gray polygons. b)
Conductance as a function of the split gate voltage V g. c) Conductance as a function of the
third gate voltage V g3 for different openings from the pinch-off to the first plateau.

(Fig. 4.6a). The conductance curve versus split-gate voltage is shown in Fig.4.9 in
absence of disorder in the 2DEG. Applying a negative voltage V g3 on the third gate
indeed generates interference in the total conductance (Fig.4.9c). In this figure, traces
of the total conductance as a function of V g3 are shown for different QPC openings. As
in the experiment, a sufficiently negative gate voltage (-5 arbitrary units) is required to
generate interference, that corresponds to the depletion threshold of the 2DEG below the
third gate. Then interference is clearly seen as a function of V g3 for lower gate voltages.
The first difference with the experiment is that the fringes spacing is not constant in V g3,
but tend to enlarge as V g3 is lowered. Though this effect is also present in the experiment,
it is much less important. In the different interferometers, the fringe spacing in V g3 was
found to vary by roughly 30% depending on the sample and the hysteretic effect discussed
above, whereas in this simulation it varies by 100%. This could be attributed to the way
the effect of a gate voltage in the 2DEG is modeled. The way the depletion region enlarges
with V g3 is the key point to understand the periodicity of these fringes, as this governs
the displacement of one mirror of the Fabry-Pérot cavity. As this mirror is the interface
between a completely depleted region and the remaining part of the 2DEG, a correct
calculation should take the 2DEG into account. Therefore, modeling the electrostatics
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with the method proposed in Ref.[16] cannot accurately estimate this effect, which could
explain this difference with the experiment.
A second important difference is that the contrast of the interference when the first mode
is fully opened is really low compared to the case of half transmission. As discussed in the
previous chapter and sketched Fig.3.8, this is what is expected from a simple single-mode
Fabry-Pérot cavity since a perfect mirror does not form any cavity. The 2D quantum
simulations show that it is also the case for the real device geometry, when mode-mixing
between the QPC and the 2DEG and angular divergence of electron waves in the 2DEG
are taken into account. We discuss in the following section how residual disorder could
bring more contrast on the plateaus, as it is observed experimentally.

4.3.2 The role of disorder

The disorder in the 2DEG is now taken into account, following the method explained in
Chapter 1 and Chapter 3 section3.5.

Including disorder in the numerical model reveals that contrasted fringes now appear
also on the plateaus. An example for a specific disorder configuration is presented Fig.4.10.
The disorder tends to increase the contrast of the interference on the plateau, and this
effect is retrieved for a large range of disordered potential landscapes, though a few specific
configurations lead to an opposite effect or strange interference patterns (not shown here).
Fig.4.10b compares the interference for clean and disordered leads (different colors), in
the case of half-transmitted and fully transmitted first mode. It appears clear that in
the disordered case some high contrast is recovered even when the first mode is fully
transmitted, although it remains larger in the transition.
Comparison of Fig.4.10c and 4.10d shows that the interference fringes are visible only in
the transitions in absence of disorder, but everywhere in presence of disorder. Note that
the second mode does not show any interference in absence of disorder due to the node
of the wave function along the horizontal axis where the third gate is located, but that
contrast is recovered in presence of disorder.
We now discuss the phase of the fringes versus split-gate voltage which gives information
on the cavity size. The tilted fringes indicate that the interference accumulates phase
as the QPC opens, in a way that seems overestimated compared to the experiment. A
negative voltage applied on the split-gates affects the interference, and one of the reason
could be that the electrons wavelength enlarges as they approach the QPC, in a way
that depend on the QPC opening. Hence changing the gate voltage Vg can affect the
interference state in the Fabry-Pérot cavity and so the phase of the interference. This effect
tends to be overestimated if one does not take into account screening of the gate voltage
by the 2DEG, which could reasonably explain the difference between the experiment and
the model (see Fig.4.4b).
Another important difference is the dramatic effect that takes place below the first plateau
in the experiment. The dephasing of π of the interference fringes at the 0.7 anomaly visible
Fig.4.4b and Fig.4.5 is not reproduced in the model. The 0.7 anomaly indeed results from
electron-electron interactions, which are not included in the simulations. The π phase
shift observed at the 0.7 anomaly could be attributed to the Kondo effect at play below
the first plateau as discussed in chapter 6.
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Figure 4.10 The role of disorder: a) G(Vg) for different potential fluctuations FWHM ∆V
from 0 to 12% of Ef , for the chosen disorder landscape in this example. b) Conductance as a
function of V g3 at half and full transmission of the first mode, for different disorder amplitudes.
c) Full characterization of ∂G/∂V g3 as a function of Vg and V g3 in the case of a perfect 2DEG.
d) Same characterization for a disorder of fluctuations amplitude FWHM 10% of Ef .

4.3.3 Modeling magnetic field

Kwant also enables us to simulate the effect of an external magnetic field, applied per-
pendicularly to the 2DEG by adding a phase in the hopping term between two adjacent
sites. We use this possibility to investigate the effect of a perpendicular magnetic field in
these interferometers. The main results are summarized in Fig.4.11 for a given disordered
potential landscape.

The main effect of a perpendicular magnetic field is to destroy the interference as soon
as the corresponding cyclotron radius overcomes the distance between the QPC and the
scatterer. The corresponding wave-functions coming out of the QPC under different mag-
netic field are presented Fig.4.11c. With increasing magnetic field, the amplitude of the
density modulation in the Fabry-Pérot cavity become weaker, and eventually disappear
when the electronic trajectories are too much bent to reach the scatterer.
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Figure 4.11 Simulations of magnetic field: a) Experimental trace of the measured
transconductance dG/dV g3 as a function of V g3 and magnetic field (same as Fig.4.7a). b)
Simulation of dG/dV g3 as a function of V g3 and B. c) Transmitted wave functions correspond-
ing to different specific magnetic field. From left to right: 0, 120 and 200 mT.

A computation of the transconductance ∂G/∂V g3 is presented Fig.4.11b, and is strikingly
similar to the experimental result reminded Fig.4.11a. In particular, these interference
fringes disappear around the same value of about 100 mT.
Another similarity with the experiment is the weakening of the interference with increas-
ing field that does not occur smoothly but with oscillations. That is not the case when
the system is modeled without including disorder (not shown here). These oscillations
depend on the exact disorder configuration, but a more detailed investigation would be
required to really understand their origin. In particular, it could be interesting to un-
derstand whether it can be connected to the disorder correlation length. The fact that
these oscillations are not present when the system is modeled without including disorder
indicates that the real devices also contain some disorder. However, the coincidence of the
caracteristic field (100 mT) in both theory and experiment shows that the interference
results essentially from electron trajectories between the QPC and the tip.

4.4 Conclusion

In this Chapter, we have presented a new type of ballistic interferometers formed with
a quantum point contact and a distant scatterer typically one micron away, realized by
a thin metallic gate. Applying a negative voltage on this gate enlarges the depletion
region below this gate and backscatters the electrons coming from the QPC. This creates
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constructive or destructive interference depending on the distance between the depletion
region and the QPC.
Temperature and magnetic field dependence support the fact that this interference prob-
ably take place in the Farby-Pérot cavity formed between the QPC and the sharp gate.
Including a disordered landscape in a numerical model indicates that disorder could be
responsible for the observed contrast on the plateau, that a simple single mode Fabry-
model or a disorder-free numerical model cannot account for.
Striking similarities between these interference fringes and the ones observed in SGM ex-
periments Fig.3.6 suggest that they share a common origin, namely the modulation of
density of states in the cavity formed between the QPC and the distant scatterer.
Finally, a surprising sharp phase shift of the interference occurs between the 0.7 regime
and the first plateau is always observed, that cannot be reproduced within extensive
single-particle simulations, and will be clarified in Chapter 6.
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5.1. KONDO EFFECT IN QUANTUM DOTS AND QUANTUM POINT CONTACTS

Introduction

This chapter presents the major result of this thesis. We will see how the polarized tip of
a scanning gate microscope can be used to finely tune the potential of a quantum point
contact, and how it can affect the many-body state forming in the low density regime.
Thanks to this subtle manipulation of the many-body effects at play in this regime, we
can get crucial informations on some mechanisms involved in both the 0.7 anomaly and
the zero bias anomaly.
Since the Kondo effect is central in the analysis of the experimental results, We will start
by a presentation of the various situations where Kondo-enhanced conductance peaks can
be observed. We will then describe a recent experiment that shares strong similarities
with our results. The group of Caspar van der Wal (Gröningen, Netherlands), during the
thesis of Muhammad Javaid Iqbal [88], demonstrated that a definite number of electrons
can localize in QPCs despite the fact that these devices are by essence open systems. We
will first describe their experiments and before turning to our SGM results.
We will then see how approaching the polarized tip to the QPC modulates both the
zero bias anomaly and the 0.7 anomaly, revealing alternating single or split peaks in
the differential conductance, together with an alternating visibility of the 0.7 anomaly.
We will discuss some possible scenarios and finally interpret these alternations as arising
from a Wigner crystal forming in the channel, containing alternatively an odd or even
number of charges, that can be controlled by the tip position. Depending on this parity, a
resulting odd or even Kondo effect leads to a single ZBA or a split ZBA in the differential
conductance curves.
Simple models and electrostatic simulations have been done to show that the 1D electron
density is low enough to indeed produce Wigner crystallization in the channel.
To confirm our experimental results, we show the reproducibility of these observations on
a second sample. Finally we discuss the fact that this Wigner crystal could survive up to
several open modes in the QPC, possibly explaining the “0.7 analogues” above the first
plateau.

5.1 Kondo effect in quantum dots and quantum point

contacts

Last year, the open problem of conductance anomalies in QPCs has regained interest
thanks to a major result in this field. As stressed in a recent review on these conductance
anomalies[30], a clear experimental investigation of how the exact shape of a QPC poten-
tial does affect the conductance anomalies was still lacking at this time.
In the van der Wal group, an interesting study of how QPC’s geometry influences the
conductance anomalies has been performed, as detailed in Iqbal’s thesis [88]. They first
studied QPCs defined by two finger-gates, and designed several devices in which they var-
ied the lithographic width and length of the constriction. This study was not conclusive,
and no systematic influence of the geometry on neither the ZBA nor the 0.7 anomaly
could be deduced, though these features were found to vary from sample to sample. In-
terestingly, the authors observed in several devices that the zero bias anomaly was not a
single peak centered at zero bias, but found to be a split peak (a pair of peaks at finite
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and opposite biases), for different ranges of QPC openings within the first transition.
The authors stipulate that this split peak was the signature of an interesting out of equi-
librium many-body phenomenon, namely “even Kondo effect”, that we briefly explain in
the following.

5.1.1 The Kondo effect in mesoscopic physics

At this point, it should be clarified what is the Kondo effect. In simple words, it results
from the screening of a magnetic impurity by the surrounding conduction electrons. In
that sense, it is by essence a many-body effect. It was first proposed by Kondo to explain
the anomalous increase in resistivity of metals at low temperature, when they contain di-
lute magnetic impurities. This problem has been studied in the 30’s, revealing that unlike
usual metals, gold exhibits a strange behavior at low enough temperature[89] (Fig.5.1a).

Figure 5.1 Existence of a resistance minimum for metals: a) First experimental evi-
dence that gold resistance re-increases at low enough temperature. Adapted from [89]. b) Re-
sistance of gold as a function of temperature for different magnetic impurity concentrations.
Adapted from [90]

In metals, a dominant mechanism that limits the conductivity of the electrons is their
scattering by the lattice vibrations (phonons). This mechanism tends to decrease with
lowering temperature, so does the metals resistivity. However, in gold containing mag-
netic impurities, the resistivity was found to re-increase with lowering temperature below
a given threshold. This anomaly has waited 30 years to be clearly attributed to magnetic
impurities and the temperature dependence of the resistivity to be systematically studied
depending on the impurities concentration [90](Fig.5.1b). At the same period, this appar-
ently anomalous effect has been theoretically explained by Jun Kondo [91], who calculated
the scattering rate of conduction electrons on magnetic impurities, and its temperature
dependence. Thanks to the very good agreement with experiment and the beauty of the
exact calculation, this example has then become the paradigm of solvable many-body
quantum problems.
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This interesting mechanism has recently regained interest with the advent of nanoelec-
tronics and the ability to study transport through a site containing a single magnetic
impurity. The possibility to observe the Kondo-effect at the single-site level in mesoscopic
physics has first been proposed theoretically, predicting an increased conductance when
the Fermi levels of source and drain of reservoirs connected through a single magnetic
impurity are aligned[14, 92]. This phenomenon, attributed to a resonant transmission
through the impurity eased by collective spin phenomenon was predicted to be observable
for temperatures below the so-called Kondo temperature TK , that exponentially depends
on the tunneling rate between the impurity and the leads.
A suitable system in which this effect can be observed and controlled is a quantum dot, a
small electronic island isolated from the leads by tunnel barriers. The number of localized
electrons is tunable at will with a gate, and one can choose to have an odd number of
electrons in the dot. While sweeping the gate voltage, each electron added to the quantum
dot occupies a new accessible level. If we assume that these levels are spin-degenerate,
each first added electrons on a new level has for example a spin up, and the next one
carries a spin down. In the case of an odd number of electrons in the dot, a single spin
remains unpaired. In this configuration, the resulting island carries a single spin 1/2.
For this single localized spin to be screened by the surrounding electrons from the leads,
some conditions are required. On one hand, the tunnel barriers have to be high enough
such that the number of electrons remains well defined, and on the other hand the tunnel
barriers have to be small enough for the Kondo effect to develop on a large enough en-
ergy scale compared to the experimentally accessible temperature range. This makes the
Kondo effect on such a system challenging to observe experimentally.
This effect has been observed a decade after its proposal, on weakly confined GaAs/AlGaAs
quantum dots[93, 94, 95].

Figure 5.2 Kondo effect in quantum dots: a) Schematics of one of the first experiments on
tunable Kondo effect through a quantum dot. The density of states in the quantum dot contain-
ing an even number of electrons is presented on B(at equilibrium) and C (out of equilibrium).
Adapted from [94]. b) Kondo effect in the unitary limit. The conductance as a function of
plunger gate voltage in the linear regime is presented for different temperatures between 15mK
(blue curve) and 800mK (red curve). In the ranges of gate voltage where an odd number of
electrons are localized, the conductance increases with lowering temperature to reach the conduc-
tance quantum. c) Non-equilibrium spectroscopy of the Kondo resonance centered at zero bias
for different temperatures. Adapted from [95]

By the means of the plunger gate voltage, the number of electrons in the quantum
dot can be tuned. Each time the number of electrons is changed by one, the conductance
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exhibits a peak, known as a Coulomb blockade peak. It corresponds to a situation where
the source and drain Fermi levels are aligned with an energy level of the dot, leading to
an enhanced conductance. This effect can be dramatic in the case of strongly confined
electrons (i.e. high tunnel barriers), leading to zero conductance between these peaks,
whose width are given by the inverse of the tunneling rate in the zero temperature limit.
However, in the experiments presented Fig.5.2, the confinement is voluntary weak to get
an important Kondo effect, hence the Coulomb blockade peaks appear as smooth oscil-
lations in the conductance. These peaks separate situations in which successively odd or
even number of electrons are localized in the dot. With lowering temperature, the conduc-
tance between two successive valleys either decreases with lowering temperature, or rise
to reach the conductance quantum 2e2/h. The explanation lies in the Kondo processes.
In the valleys containing an odd number of electrons, the quantum dot contains a net
spin 1/2, making Kondo screening of this impurity by the leads possible, and leading to
an increased conductance. However, in the valleys with even occupations the total spin is
zero, hence no Kondo effect is possible, and the conductance decreases with temperature
as expected for simple Coulomb blockade.
In the valleys with an odd occupancy, the Kondo effect can be seen as an enhanced density
of states (DOS) in the dot, at the Fermi level of the reservoirs. When the source and
drain are aligned (see Fig.5.2a situation B), this peak in the density of states leads to an
increased conductance through the dot.
The finite bias situation is presented Fig.5.2c. By adding a DC source-drain voltage, the
source and drain levels are misaligned, destroying the Kondo resonance in the transmis-
sion. However, each lead still screens the quantum dot spin, that gives rise to two peaks
in the density of states at the Fermi energy of each lead.[96]. But as these two resonances
do not overlap, this effect does not ease transport through the dot. The corresponding
situation is schemed Fig.5.2a, situation B. At finite bias, dissipative processes occur when
the electrons cross from one chemical potential to the other which tend to minimize the
height of these two peaks[97].

5.1.2 Non equilibrium Kondo effect

When a magnetic field is applied on a quantum dot with an unpaired electron (odd
occupancy), the spin degeneracy is lifted by the Zeeman energy g∗µBB, where g∗ is the
Landé factor that depends on the material, µB is the Bohr magneton and B is the magnetic
field. In order to screen this polarized spin, conduction electrons from the leads now need
a finite energy to tunnel in the excited state and flip the spin. This process is only
possible in a non-equilibrium situation with different chemical potential in the two leads
∆µ = g∗µBB. The resulting Kondo effect is an enhanced inelastic cotunneling process
that screens the spin of the dot.
An equivalent description of this effect can be done by considering the DOS of the dot.
When an external magnetic field is applied to a Kondo system, it unbalances the two
possible spin states. As a consequence it splits each peak of the DOS associated with the
two leads Fermi energy by g∗µBB, as schemed Fig.5.3 . At equilibrium, there is no more
increase of the conductance at low temperature because the peak in the DOS is split [98].
By unbalancing the two chemical potentials, 4 peaks appear in the DOS (Fig.5.3b). Two
situations allow to recover the conductance enhancement due to the Kondo process, when
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Figure 5.3 Kondo effect under magnetic field: a) DOS in an oddly occupied dot under
magnetic field, when the source and drain are aligned. DOS when source and drain are mis-
aligned. Each peak in the DOS associated with one lead splits into two peaks, resulting into 4
peaks in the DOS. c) Splitting of the Kondo peak in a quantum dot under magnetic field from
100 mT (upper curve) to 3.49T (lower curve). d) Spacing of the side peaks as a function of
magnetic field. c) and d) are adapted from[94]

the upper peak (in energy) associated with one lead matches the lower peak associated
with the other lead, and vice versa. These two situations produce peaks in the differential
conductance at positive and negative bias, separated by 2g∗µBB. A good agreement with
this prediction is found in experiments[94, 93] and shown Fig.5.3c and d.

5.1.3 Two-impurity Kondo effects

Interesting theoretical proposals followed these pioneer experimental results: the possi-
bility to explore a ”two-impurity Kondo effect“ in coupled quantum dots [99, 100]. These
works suggested that in well coupled series quantum dots, richer Kondo physics could be
observed, with the possibility of observing a non-equilibrium Kondo resonance at finite
bias at zero magnetic fields. This situation corresponds to two separate quantum dots,
containing each a net spin 1/2. The total state of these two dots can therefore be a singlet
or a triplet, depending on the tunnel and exchange couplings between these two spins.
This therefore resembles to the situation of a single electron under magnetic field, with
two different spin states having a different energy. Using a specific gate in the middle,
the coupling between these two dots can be tuned independently from their occupation
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and respective couplings to the leads. In a situation where the mutual coupling is greater
than the two couplings to the leads, split peaks are expected for two coupled dots in a
singlet state S=0 due to non-equilibrium Kondo effect on the triplet state S=1. This is
indeed observed experimentally by realizing this situation[101].

Finally, the non-equilibrium Kondo effect can also be observed in a single quantum
dot containing an even number of electrons[102]. In this situation, the ground state is a
singlet state that carries no net spin, but a non-equilibrium Kondo effect can arise, as the
excited triplet state carries a net spin 1. This specific situation leads to enhanced con-
ductance when the misalignment of the source and drain Fermi levels exactly matches the
energy separation of the ground and excited state, leading to two peaks at opposite finite
biases in the conductance. Since then, this ”even Kondo effect“ has then been observed
in different systems, including for example molecular junctions [103] (a single molecule
quantum dot), or carbon nanotubes[104]. Note that a singlet-triplet transition of the
ground state can occur for certain quantum dot parameters and appears as a crossover
between finite bias peaks (singlet) and a zero bias peak (triplet).

5.1.4 Odd and even Kondo effect in QPCs

As mentioned in the introduction of the chapter, these two types of Kondo phenom-
ena have been recently observed in quantum point contacts [9], using tunable-in-length
devices.

Figure 5.4 Tunable in length quantum point contacts: a) Lithographic pattern of the
tunable-in length devices. b) Electrostatic potential created by simple split-gates QPCs (QPC2f)
and the tunable devices with 6 gates (QPC6f). Adapted from [105].

These devices were aimed to study the influence of the QPC geometry on the 0.7
anomaly. A first experimental characterization of these devices in the framework of single-
particle transport has been carefully realized, and reported in ref.[105]. The samples are
presented Fig.5.4a. By playing on the voltage difference between the central finger-gates
and the lateral ones, the effective length of the channel formed electrostatically in the
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2DEG can be tuned. To evaluate the resulting geometry, the author used the method
presented in Ref.[16], and performed simulations presented Fig.5.4b.

Figure 5.5 Many-body effects tuned by effective channel length: a) Traces of linear
conductance G(Vg1) for different channel lengths controlled by the ratio Vg1/Vg2. b) Spectroscopy
of the QPC for a given Leff , the ZBA appearing alternatively as a single peak and split peaks
as the QPC opens. c) Linear conductance traces as a function of source-drain bias for a given
QPC opening and different channel lengths. d) Complete analysis of the ranges in which the
ZBA is found to be a split or a single peaks for different QPC openings (below the first plateau),
and different Leff . Adapted from [9].

They also performed an intensive exploration on the transport regimes obtained with
these devices, depending on the gate voltage ratio Vg1/Vg2. They found that for values
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of Vg1 lower than Vg2, the devices essentially behave as usual quantum point contacts,
whereas for values of Vg2 lower than Vg1, quantum dots were formed.
They then investigated the behavior of these devices in the QPC regime, changing the
effective length Leff by playing on the gate voltage ratio Vg1/Vg2, and made a really
important observation. As the QPC channel is made longer, at low temperature (80mK),
the 0.7 anomaly is found to successively appear and shade off, up to three times in the
accessible range of experimental parameters. (Fig.5.5a)
Interestingly, these successive modulations of the 0.7 anomaly correspond to simultaneous
modulations of the ZBA character. For a given QPC opening, the ZBA is found to be
alternatively a single peak or split peaks as Leff is changed (Fig.5.5b).

Figure 5.6 Two-impurity Kondo effect: a) Evolution of double-peak ZBA with temper-
ature, between 3K (red curve) and 80mK (blue curve). b) Evolution of the double-peak with
in-plane magnetic field. c) Evolution of the split ZBA conductance with temperature and com-
parison with a two-impurity Anderson model scaling (inset). d) Electronic density (from 0 to
2.1014m−2) obtained by SDFT for the spin up and spin down species for the unpolarized solu-
tion and spatially symmetric and antisymmetric polarized solutions. Adapted from [9] and its
supplementary informations.

The authors give an interpretation of this phenomenon in terms of a localized state,
containing an odd or even number of electrons that can be controlled by changing the
channel length. When an odd number of electrons is localized, it gives rise to a single-
impurity Kondo effect, and a zero bias peak in the differential conductance, as described
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and analyzed in Ref.[37]. However, when an even number of electrons is localized, simple
Kondo effect cannot be observed as the ground state carries no net spin, but the triplet
excited state can be probed in the spectroscopy, leading to non-equilibrium Kondo effect
as in quantum dots. They performed numerical renormalization group calculations on a
”two-impurity Anderson model“ to justify the scaling of these split peaks with temperature
and magnetic field, in good agreement with the experimental observations (Fig.5.6a-c).
The fact that a finite number of electrons can localize in a QPC is not obvious, neither
the fact that their number can be changed by the channel length.
To justify this interpretation, the authors performed spin-density functional theory to
compute the realistic electronic density in a QPC including spin and coulomb interac-
tions. The main result is presented Fig.5.6d), where a colorplot of the computed spin-up
and spin-down densities is plotted. These simulations indicate that small islands contain-
ing one electron charge and one electron spin form in the channel, leading to a ”chain“ of
adjacent opposite spins.
However, the parameter proposed to control the number of localized spins in this experi-
ment is the effective length of the channel, which is defined based on a simple unscreened
electrostatic model and choosing an arbitrary aspect ratio [105]. Though the signatures
are really clear and the data and analysis pretty convincing, an underlying mechanism
governing this localization is lacking, and we will see in the following that the analysis of
our scanning gate microscopy experiment shines a new light on this point.

5.2 Wigner crystallization revealed by scanning gate

microscopy

5.2.1 Conductance anomalies without tip

In the previous chapter, we discussed the scanning gate experiment in the vicinity of the
fully transmitted first mode. In this section, we will extend our investigations below the
first plateau, where signatures of electron electron interactions are visible in transport
experiments (the 0.7 and zero bias anomalies). The results discussed in the first part of
this chapter (except in section 5.2.6) were obtained on sample B.

Before looking at how SGM can affect many-body effects in the QPC, let’s take a look
at the transport features in the linear and non-linear regime in this sample, in absence
of the tip. Fig.5.7b shows the linear conductance as a function of gate voltage, and one
can see that the 0.7 anomaly is still visible, despite the fact that this measurement is
recorded at a base temperature of 20mK, and an electronic temperature evaluated to be
below 80mK. This contrasts with some studies (see for example Fig.2.3), in which the 0.7
anomaly completely vanishes at low enough temperature. Looking at non-linear trans-
port Fig.5.7c, one can see the ZBA: a peak of increased differential conductance around
zero bias. This peak disappears above 1K and its detailed temperature dependence is
discussed on another sample in Chapter 6, section 6.2.2.1 . In Fig.5.7, the ZBA forms
a single peak for conductances from 0 to roughly 0.6 ∗ 2e2/h and splits into two peaks
centered at +/-250µV above. For clarity, a red curve (single ZBA) and a blue one (split
peaks) have been highlighted. It will be clarified along this chapter that this splitting is
responsible for the visible 0.7 anomaly at low temperature.
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Figure 5.7 Transport measurements at 20 mK. a) Electron micrograph of the QPC gates
and position of the scanning area used in Fig.5.8 (dashed box). The scale bar is 300 nm. b)
Differential conductance G at zero bias versus split-gates voltage Vgate: the 0.7 anomaly is visible
below the first plateau. c) Differential conductance G versus source-drain bias for different gate
voltage Vgate from -1.08 V to -0.96 V: the zero-bias peak in the red curve splits into finite-bias
peaks in the blue curve. d) Numerical derivative of the differential conductance ∂G/∂Vgate versus
bias and gate voltage: yellow lines highlight transitions between conductance plateaus.

It shall be stressed at this point that this spontaneous splitting as the QPC opens is not
an isolated fact found in this specific sample but rather a generic feature, that seems to
occur particularly often in short QPCs. As stressed above, the Gröningen group studied
about 80 different samples made of two-finger gates (QPC2f), and found that the ZBA
was split into two peaks in roughly half of the samples, at different openings[88]. Other
examples can be found in the literature, on different wafers and different geometries. For
example, in the thesis of Sarah Cronenwett [36] fig 6-18 and 6-19, clear split peaks and
triple peaks can be observed on two different samples, below the first plateau for ”QPC2”
and between the second and third plateau for “QPC1” (see Fig.5.17).
This type of splitting has also been observed and extensively studied in Ref.[106] in a
QPC made in a 2D hole gas. In this work, this splitting has also been explained in terms
of two-impurity Kondo effect, though one of the localized spins was claimed to be due to
an impurity in the channel induced by disorder.

5.2.2 Isotropic rings in SGM images

In our case, Maps recorded for different QPC openings are presented Fig.5.8. As in Chap-
ter 3, these maps are recorded with the tip situated 40 nm above the surface, and a
negative voltage of -6V applied on it. The QPC conductance is measured with a 4-point
technique, an AC voltage of about 10 µV is applied at a frequency of 123Hz on one con-
tact, and a current amplifier is connected to another contact on the opposite side of the
QPC, read by a lock-in technique. The voltage across the QPC is measured between the
two remaining contacts and demodulated thanks to a second lock-in. The SGM maps pre-
sented Fig.5.8(1-5) are plotted by dividing the measured current by the measured voltage,
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Figure 5.8 Scanning gate microscopy images for different QPC openings: a) Char-
acteristic of the sample G(Vg), the tip being several microns away, and points corresponding to
average conductance in the following images. b) SGM images for different QPC openings, from
the pinch-off to above the first plateau.

and subtracting a resistance of 600 Ω to take into account the 2DEG resistance between
the voltage probes and the QPC.

The tip parameters have been chosen to locally deplete the 2DEG, hence interferences
are visible on the first plateau and below in specific branches (Fig.5.8), as extensively
discussed in Chapters 3 and 4). These interferences are not of interest in this chapter
and will be put aside to concentrate on a different phenomenon visible below the first
plateau. In Fig.5.8(1-3), a new feature is clearly visible on the SGM images: concentric
rings centered on the QPC channel (situated some hundreds of nanometers on the left of
the images), whose spacing increases with the tip to QPC distance.
It is first important to discriminate these rings from interference effects. For this purpose,
the SGM tip can be scanned in a vertical plane above specific lines, where either these
rings or interferences are visible.

Fig.5.9 presents the behavior of these rings and a comparison with interference fringes
when scanning the tip in a vertical plane. Two lines are chosen to study the evolution
of these phenomena with tip height: purple line 1 to study the rings, and green line 2
to study the interferences. The disappearance of the interferences when the tip is lifted
more than 50 nm away from the surface as been discussed in Chapter 3, Fig.3.13: they
vanish as soon as the tip is too far from the 2DEG to create a depletion region required
to backscatter the electrons and produce interferences. From Fig.5.9, it is clear that the
ring structure behaves in a completely different fashion. The rings indeed survive up to
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Figure 5.9 Three-dimensional SGM images: a) Horizontal SGM image, the QPC recorded
below the first plateau (same as Fig.5.8(2). b) Reconstitution of vertical and horizontal SGM
images differentiated w.r.t. horizontal axis for highlighting details. c) and d) Vertical images
recorded by scanning the tip in a vertical plane above purple line 1 and green line 2, at gate
voltage corresponding to Fig. 5.8b-2 and 4, respectively. Note the different vertical scales. e)
and f) Same images as c) and d) but the signal has been differentiated along the respective tip
position axis to highlight details.

tip heights of 200 nm and bend towards the QPC, unveiling spheres centered on the QPC
channel. This isotropic extension of the ring structure, in all the three dimensions of space
contrasts with the interference fringes, appearing only in the branches of the electronic
flow.

We therefore conclude that the new rings are not interferences but result from a direct
tuning of the electrostatic potential in the QPC. The larger ring spacing at larger distances
results from the smaller potential changes induced by the tip. It reminds the concentric
features that are observed in scanning gate microscopy of quantum dots [64, 65, 66], or
charge traps, that also extend in the three dimensions of space [107].
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5.2.3 Modulation of the 0.7 anomaly

To understand the origin of these rings, the three dimensions of space represent too
many parameters and shall be left aside, to keep only one dimension, and vary another
parameter. For example, to investigate how do rings and interference fringes evolve with
the QPC opening, we choose to scan the tip along the specific lines drawn Fig.5.10a, and
vary the split gate voltage, as presented in Chapter3.

Figure 5.10 Modulation of the 0.7 anomaly. The figure analyses the zero-bias conductance
oscillations when the tip is scanned along the orange line 3 indicated in (a) with the origin on the
QPC side. (b) Trans-conductance dG/dVgate versus tip position and gate voltage: black regions
correspond to transitions between plateaus and oscillations are visible just below the first plateau.
(c) Conductance G versus tip position for gate voltages Vgate = −0.964 V, −0.983 V, −0.992 V,
−1.000 V, −1.006 V, −1.012 V (from top to bottom). Conductance extrema at Vgate = −1 V
(green curve) are labelled A to D (maxima) and A’ to D’ (minima). The global slope corresponds
to the rise of the saddle-point potential when the tip approaches the QPC. (d) Conductance G
versus gate voltage for different tip positions from 0 to 450 nm (successive curves are shifted to
the left). (e) Same as in (d) for tip positions A to D (red curves, shifted vertically) and A’ to D’
(blue curves, shifted also horizontally to be compared with red curves): red and blue curves show
no shoulder and a 0.7 anomaly, respectively. Small differences between plateaus values come
from residual interference fringes.

Fig.5.10b shows that the ring-related conductance oscillations are only visible for gate
voltages in the transition below the first plateau, just where the ZBA and 0.7 anomaly
are observed. Fig5.10c shows how the conductance oscillations evolve when the average
conductance goes from 0 toG0 while changing the gate voltage. The oscillations are clearly
visible above 0.4 G0 and are blurred when approaching G0 because some interference
fringes come into play. The increasing distance between conductance extrema (labeled A
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to D for maxima and A’ to D’ for minima) is consistent with an oscillatory phenomenon
in the QPC governed by an electrostatic coupling between the SGM tip and the QPC
decreasing with distance. Plotting the conductance versus gate voltage (Fig5.10c) reveals
the oscillatory behaviour of the 0.7 anomaly. The amplitude of this modulation can
be read from Fig.5.10e where curves at positions X and X’ are compared two-by-two by
shifting them horizontally to have the same pinch off voltage (as this value changes with tip
position due to cross-talk effect: at first order, approaching the tip is equivalent to lowering
the split-gate voltage). Curves at positions A to D are smooth with no shoulder, i.e. no
anomaly, whereas curves at positions A’ to D’ present a reduced conductance above 0.5
G0, i.e. 0.7 anomalies. The concentric rings observed in SGM images (Fig.5.9a) therefore
correspond to an alternating modulation of the 0.7 anomaly when the tip approaches the
QPC.

5.2.4 Modulation of the zero bias anomaly

We now analyse the behaviour of the ZBA when the 0.7 anomaly repeatedly appears
and disappears, and show that both anomalies are linked. Fig.5.11a shows the differen-
tial conductance versus source-drain bias for different tip positions (same scan line as in
Fig.5.10a). Curves at positions A to D have a peak centred at zero bias (ZBA), whereas
curves at positions A’ to D’ have a dip at zero bias and local maxima at ±250 µV bias
(splitting of the ZBA), on top of the same V-shape background. Scanning the SGM tip
therefore produces a repetitive splitting of the ZBA, that draws a checkerboard pattern in
a color-plot of the spectroscopy versus tip position (Fig.5.11b). Note that a spontaneous
(without tip) splitting of the ZBA of about 250 µV also occurs while sweeping the gate
voltage (Fig.5.7c, already discussed): we show later that these splittings have the same
origin.

To summarize the properties of the concentric rings (Fig.5.9a), tip positions leading
to conductance maxima correspond to a simple staircase in the conductance curve and a
ZBA in the spectroscopy, whereas tip positions leading to conductance minima correspond
to a 0.7 anomaly and a splitting of the ZBA. This demonstrates the fact that the ZBA
restores at low temperature the shoulder created by the 0.7 anomaly [37] only if the zero-
bias peak is not split. The two set of data taken along the same orange line 3 Fig.5.11a and
changing either the gate voltage or the source-drain bias are plotted together Fig.5.12. It
appears clearly that when the ZBA is split, the conductance versus gate voltage exhibits
a 0.7 shoulder analogue to the higher temperature feature. Interestingly, the conductance
modulations are only present above 0.5 × 2e2/h in our sample. It therefore gives 0.7
anomalies. It could have been that the modulations extend from 0 to G0, as the ZBA
modulations reported in the work of Iqbal et al. (we don’t have ZBA measurement below
0.5 in our case). There is therefore something special above 0.5 × 2e2/h which is not yet
understood and makes the 0.7 anomaly linked but not equivalent to the ZBA.
It shall be emphasized at this point that the modulation of both linear G(Vg) and non-
linear G(Vsd) curves with tip position are strikingly similar to the features reported in
Ref.[9] by changing the channel length (Fig.5.5a and c).
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Figure 5.11 Successive splittings of the ZBA with tip position. The figure analyses
the low bias source-drain spectroscopy when the tip is scanned along the orange line 3 indicated
in Fig. 5.10a. (a) Differential conductance G versus source-drain bias at a fixed gate voltage
Vgate = −1 V for different tip positions from 0 to 450 nm (successive curves are shifted upwards
by 0.0075 2e2/h). (b) Color plot of the same data as in (a) but a linear fit of G(dtip) is subtracted
to each vertical line to subtract the average cross-talk effect when the tip is approached towards
the QPC. Peaks positions are indicated by dots: the successive ZBA splittings give a checkerboard
pattern (the tilted pattern is due to a bias-induced change of the QPC position). (c) Schematic of
the QPC potential with one (top) and two (bottom) localized electrons, corresponding respectively
to a S = 1/2 ground state with a zero-bias Kondo peak and to a S = 0 ground state with finite-
bias Kondo peaks involving the excited state S = 1 with Singlet-Triplet energy splitting J . Right:
conductance G versus bias V expected for each state. d) Schematic of the QPC potential with an
increasing number of electrons localized by Coulomb interactions. The antiferromagnetic spin
coupling in this small 1D Wigner crystal gives either a S = 1/2 ground state (ZBA) or a S = 0
ground state (splitting of the ZBA), depending on the parity (respectively odd or even).
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Figure 5.12 Comparison between 0.7 anomaly and ZBA modulations a) Splittings of
the ZBA for different tip positions, corresponding to conductance minima and maxima in the
SGM maps, for fixed gate voltage Vgate = −1 V. Different traces are offset for a clear comparison.
b) Conductance G(Vg) for the same tip positions, shifted horizontally to have the same pinch-off
voltage and vertically by step of 0.1 ∗ e2/h for clarity.

5.2.5 Interpretation in terms of Wigner crystallization

5.2.5.1 Ruling out possible phenomena

First, we would like to stress again that these new conductance oscillations cannot be
explained by interference effects in the 2DEG. One argument already given above is that
interferences require backscattering with a tip close to the surface, whereas the new rings
are observed up to large tip heights (Fig.5.9). A second argument is that interference
fringes would have an increasing spacing for short tip distances because the density is re-
duced close to the QPC and the electron wavelength is larger, but the opposite behavior
is observed.
We now discuss a possible single-particle effect inside the QPC that, at first sight, could
give similar conductance oscillations. In case of a non-adiabatic transmission, wave func-
tions are scattered by the QPC potential barrier and transmission resonances appear
when the barrier length is equal to an integer number of half the longitudinal wavelength.
If the effect of the tip is to change the channel length, such resonances could give con-
ductance oscillations versus tip distance. However, this single-particle mechanism cannot
explain the repetitive splittings of the ZBA, which are simultaneous with the observed
conductance oscillations, and we therefore need another explanation. As explained in the
begining of this chapter, the ZBA in QPCs has been shown to scale with temperature and
magnetic field similar to the Kondo effect in quantum dots[37], and the splittings of the
ZBA have been shown to scale as odd and even Kondo effects [9]. We then propose that
the repetitive splittings we observe as a function of tip position are similar to the ones
observed in Ref.[9], and originate from odd and even Kondo effects. As discussed before,
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this possibility requires that a definite odd or even number of electrons are localized in
the channel, which is not obvious regarding the open nature of a QPC.

We now consider different scenarios to explain the presence of such localized states
in our system. In a recent work on QPCs made out of a 2D hole gas, a spontaneous
splitting of the ZBA as the QPC opens has been reported[106]. This effect was attributed
to a charge impurity forming a potential well close to the channel, containing one or two
charges, leading to different types of Kondo screening. In our case, the spontaneous split-
ting of the ZBA as the QPC opens (Fig.5.7c) could be explained by this effect. However,
the fact that approaching the tip towards the QPC results in four successive splittings
of the ZBA indicates that this impurity should contain at least eight charges, which is
unlikely for a single impurity. Nevertheless, one could imagine that a shallow quantum
dot has formed in the QPC due to potential fluctuations induced by residual disorder[108]
and giving Coulomb blockade oscillations as often observed in long 1D wires[109]. The
major argument to exclude this scenario is that the split gates have a larger capacitive
coupling to the channel than the tip has (that is, a larger lever-arm parameter), so the
gates should induce more charging events than the tip, but we observe the opposite: ap-
proaching the tip by 600 nm produces four successive splittings of the ZBA and sweeping
the gate voltage produces only one splitting. It can therefore not be Coulomb blockade
in a disorder-induced quantum dot.

5.2.5.2 Wigner crystallization

The only remaining possibility to explain the presence of localized states in the chan-
nel is a spontaneous electron localization, which is not induced by potential barriers but
instead by electron–electron interactions. Indeed, a large number of theoretical and nu-
merical investigations show that interactions can localize a finite number of electrons in
the channel[46, 45, 53, 52]. On the first conductance plateau and below, transport can be
considered as 1D, and the electron density is so low that the Coulomb repulsion overcomes
the kinetic energy. When the 1D density n1D fulfills the criterion n1D × aB ≪ 1, where
aB is the effective Bohr radius (10 nm in GaAs), electrons are expected to spontaneously
order in a crystal, with an interparticle distance minimizing Coulomb repulsion[51]. This
many-body state, known as a Wigner crystal[49, 110], has been suggested to be responsible
for the 0.7 anomaly in QPCs[46]. When the electron density in the channel is decreased
below the critical value, the density modulations evolve continuously from the λf/2 peri-
odicity of Friedel oscillations to the λf/4 periodicity of the Wigner crystal[54]. Quantum
Monte Carlo simulations have also shown that electrons in the crystallized region can
be relatively decoupled from the high-density reservoirs and present an antiferromagnetic
coupling J between adjacent spins[52]. In contrast to the case of quantum dots with real
tunnel barriers, electron localization in a QPC is not straightforward and results from
emergent barriers in the self-consistent potential. On the other hand, the Kondo effect
requires a relatively open system with a good coupling to the reservoirs, and this makes
the QPC a suitable platform to observe Kondo phenomena on an interaction-induced
localized state, as shown recently in length-tunable QPCs[9].

This last scenario being the most realistic one in our case, we therefore interpret
the four observed oscillations as a signature of eight successive states of a small non-
uniform 1D Wigner crystal with an alternating odd and even number of localized charges.
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Situations with an odd number of electrons in a spin S = 1/2 ground state show a ZBA due
to Kondo screening of non-zero spin states. Situations with an even number of electrons
in a spin singlet S = 0 ground state show a splitting of the ZBA due to non- equilibrium
Kondo screening[111, 102] of the spin triplet S = 1 excited state with peaks at a finite
bias eV = J (Fig.5.11c). The four oscillations, suggestive of eight successive states, reveal
that a large number of electrons can spontaneously localize in the channel of a QPC, as
shown in Fig.5.11d. Observing Kondo screening on a system with many localized charges
is not so surprising if we compare with quantum dots where the Kondo effect is observed
up to large numbers of electrons[93]. Nevertheless, the particular case of a 1D chain of
localized charges in the Kondo regime still requires theoretical investigations.

This analysis is consistent with the interpretation given in ref.[9] extensively discussed
in section 5.1.4. Our SGM experiment brings additional information on this effect, as
scanning the tip around the QPC, laterally or vertically, changes the shape, extension
and symmetry of the channel potential. The circular and almost isotropic rings in Fig.5.9
show that the localized states survive to all these potential deformations. The regularity
of the successive rings also suggests that this localization occurs rather independently of
disorder, although possible crystal pinning effects should be investigated in the future.
In ref.[9], the parameter controlling the number of localized states is the effective length
of the channel, defined in ref. [105] and computed using an analytical approach assuming
a fixed zero potential at the surface[16]. This method is not suitable to model our SGM
experiment, as the tip is situated above the surface. In the following, we analyze our
experiment with different approaches.

5.2.5.3 Evaluation of the 1D density

To evaluate the one-dimensional electronic density in the QPC channel, a first order ana-
lytic calculation can be done using the Büttiker’s saddle-point model[10]. The potential in
the constriction created by the gate can be approximated by V (x, y) = V0 + 1/2m∗ω2

yy
2 −

1/2m∗ω2
xx

2, where ωx and ωy can be evaluated from the linear and non-linear transport
curves (see Fig.5.7d). The first subbands are spaced by about ∆E = 4meV , and so
ωy = ∆E/~, and the shape of the conductance steps indicates a longitudinal curvature of
ωx ∼ 0.5 × ωy (since T = 20 mK ≪ ~ω, there is no thermal broadening).
The 2D electronic density then writes in the classical limit (or Thomas-Fermi approxima-
tion) :

n2D(x, y) =
m∗

π~
(EF − V (x, y)) (5.1)

To evaluate the 1D electronic density at an abscissa x, the 2D electronic density can be
integrated over the transverse axis, up to the width W(x) accessible for electrons coming
from infinity with energy Ef (see Fig.5.13a).

n1D(x) =
∫ W (x)

−W (x)
n2D(x, y)dy =

4
√

2m∗

3π~ωy

(Ef − V0 + 1/2m∗ω2
xx

2)3/2 (5.2)

This approach has the advantage to be analytically solvable though it can be criticized
for its simplicity (classical and not self-consistent). To evaluate the size of the region over
which the kinetic energy drops below the repulsive Coulomb energy, we have to choose a
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Figure 5.13 Analytical estimation of the 1D density based on Buttiker saddle-point
model a) Schematics of the transverse confinement and the accessible energetic range, at given
longitudinal position x. b) 1D density times the Bohr radius aB along the transport axis for
different tip positions, and Ef − V0 = 0.8~ωy: just above half transmission. Different possible
Wigner crystallization thresholds are plotted as horizontal lines. c) Size of the crystallization
region for different crystallization thresholds, as a function of tip-to-QPC distance.

critical density. This criterion required to reach Wigner crystallization is highly debated,
but a recent numerical study has given interesting insights[51]. This criterion is often
discussed in terms of the Wigner-Seitz radius rs = 1/(2n1DaB), representing the ratio of
the Coulomb repulsion to the kinetic energy. In Ref.[51], the critical rc

s parameter was
found to be in the range 0.5 to 2, depending on the transverse confinement potential.
This typical values combined with equation (5.2) show that below the first plateau, the
length Lcrystal of the region in which the density is critically low ranges from 100 to 300
nm depending on rc

s value, the QPC opening and its geometry (see Fig.5.13b). Finally,
integrating this 1D density over the critically low density region gives a total charge of
a few electrons, justifying that a finite number of charges should localize, though this
very simple estimation does definitely not hold to calculate the number of crystallized
electrons.
The tip can then be added to the saddle potential landscape. As explained in Chapter
3, the tip-induced potential is modeled by a lorentzian potential, which is characterized
experimentally thanks to the tip lever-arm parameter. The same integration as in equa-
tion (5.2) is then done numerically including the tip-induced potential to evaluate how
is the length of the critically low density region modified by the tip. The results are
sketched Fig.5.13b and c. Essentially, approaching the tip by 300 nm toward the QPC
can enlarge the crystallization region by about one hundred nanometers depending on rc

s .
Considering at the very first order that charges are spaced in this small Wigner crystal by
a distance 1/nc

1D shows that approaching the tip could substantially change the number
of crystallized charges. However, the calculations show that the main effect of the tip is
to close the QPC by a direct gating effect. Then the number of localized charges should
change almost by the same amount when the tip is approached and when the gate volt-
age is changed, which is not the case in the experiment (approaching the tip by 500 nm
creates 4 successive splittings of the ZBA whereas opening the first mode generates only
one splitting). An essential ingredient missing to this model is the electrostatic screening.
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As sketched Fig.5.14b, the screening by the metallic gate tends to reduce the effect of the
tip at the very center of the QPC (and hence the cross-talk), but does not prevent the
tip to affect the side of the channel.

A more accurate way to evaluate the electronic density in this complex problem is
to perform self-consistent numerical simulations with COMSOL as explained in section
3.4.3.

Figure 5.14 Calculation of the electron density and estimation of the Wigner crystal
size. (a) Map of the two-dimensional electron density n2D in the 2DEG computed classically
but self-consistently with the potential, when the tip is at 1 µm from the QPC. (b) Scheme of the
screening effect from the metallic gates on the tip induced potential. (c) One-dimensional electron
density n1D obtained by integration of n2D along the y-axis, when the tip is at 1 µm and 400 nm
from the QPC. Choosing a critical density nc

1D = 0.7/aB determines the expected size Lcrystal of
the 1D Wigner crystal. (d) Computed size of the Wigner crystal as a function of tip position in
an horizontal plane 30 nm above the surface (Vgate = −1 V). The region in red corresponds to
a closed contact (the electron density is zero at the QPC center for these tip positions). Black
lines indicate tip positions for which Lcrystal is enlarged by 1/nc

1D, corresponding at first order
to the addition of one charge to the crystal. (e) Computed size of the Wigner crystal for tip
positions in a vertical plane (above line X1 at 35◦ from QPC axis).

To evaluate the size of the region where rs is larger than a given threshold, we calculate
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the 1D electron density by integration of the 2D electron density in the transverse direction
(Fig.5.14a and c). As an example, we choose a critical value rc

s = 0.71 corresponding to
a critical density nc

1D = 0.7/aB, and evaluate the size Lcrystal where the density is lower
than nc

1D. This size is found to vary from 210 to 290 nm when the tip is approached by
600 nm towards the QPC, which shows that the tip can strongly affect the size of the low
density region, and hence the number of localized charges. The tip positions leading to
the same Lcrystal form rings centred on the QPC, both for horizontal and vertical scanning
planes (Fig.5.14d and e), in the same way as the conductance oscillations observed in the
SGM experiment (Fig.5.8).

Our classical simulation holds only for an estimate of the size Lcrystal, but cannot be
used to calculate the number of localized charges, since quantum mechanics dominates
at such a low density. Note that charges in this crystal are not expected to be uniformly
spaced, because the potential of a QPC shows a strong curvature. This non-uniform
situation would require an extension of the concept of Wigner crystal which is usually
studied in a flat potential landscape. A rather crude approach to evaluate how many
charges can be added by approaching the tip is to suppose that one charge is added to
the crystal each time the region is enlarged by 1/nc

1D (about 14 nm for rc
s = 0.71). With

this assumption, about 5 charges can be added to the crystal when the tip is approached
close to the QPC (Fig.5.14d). This value is qualitatively consistent with the 4 oscillations
observed in the experiment, and interpreted as the addition of 8 charges. Simulations
also show that the number of charges can be modified simply by changing the split-gate
voltage. This could explain the ZBA splitting observed above 0.7 G0 in absence of the tip
(Fig.5.7c).

Our assumption that electrons form a 1D system in the low density region is justified
a posteriori by the fact that only the first and second transverse modes are occupied over
the length Lcrystal. The presence of the second mode at the extremities of this region
indicates that the system is not strictly 1D, but theory still predicts the formation of a
Wigner crystal in the second subband of quasi-1D wires, forming a zigzag chain [112],
as possibly observed in experiments [113, 56]. Interestingly, the simulations show that
a small crystallized region survives when the second mode reaches the central part of
the channel, which could explain the 0.7 analogues often observed between the first and
second conductance plateaus, as discussed in section 5.2.7.

5.2.6 Reproducibility in a second sample

As the existence of this spontaneously localized state is supposed to be generic, and pro-
posed to occur in every QPC in the low density limit, these results have to be reproducible.
To support our interpretation, we now investigate the reproducibility of our results in a
second sample. We performed the same experiment on sample C, with a slightly different
geometry. The transport features in this sample are presented Fig.5.15. The linear con-
ductance trace G(Vg) indicates that disorder may play a role in this specific sample (at
least for this cooldown). The plateaus are not flat and well quantized, but present dips,
possibly arising because of resonant effects as discussed in the first chapter of this thesis.
Nevertheless, the non-linear transport features (Fig.5.15c-d) indicate that these resonances
are weak features, and the overall non-linear trace looks like a usual QPC characteristic.
Note that in this specific sample, no spontaneous splitting of the ZBA is observed as the
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QPC opens below the first plateau, but the dip on the first plateau might have a similar
origin as the ZBA splitting in terms of change in the number of localized charges, though
the investigation has not been pushed far enough to conclude.

Figure 5.15 Scanning gate microscopy on a different QPC. a) Linear conductance trace
G(Vg). Plateaus present dips indicating a possible residual disorder in the channel. b) Non-linear
cascade plot, G(Vsd) for different values of Vg. c) Colorplot of the transconductance ∂G/∂Vg as
a function of gate voltage and source-drain bias. rd) SGM image for a QPC in the 0.7 regime,
for a tip height of 60 nm. e) SGM at a gate voltage corresponding to β, ztip = 30 nm f) SGM
image recorded on the plateau, ztip = 30 nm.

SGM images below and on the first plateau are presented in Fig.5.15d-f. For the
image Fig.5.15d, the tip is scanned 60 nm above the sample surface for the interferences
to be less pronounced. This highlights the ring structure. Images in Fig.5.15e-f the tip
scanned 30 nm above the sample surface, with a tip voltage of -6 V. The conductance
is recorded by a 4-points measurement, using an AC excitation of ∼ 10µV , at a base
temperature of 20 mK. On the plateau, we see branches and interferences as observed in
previous experiments and extensively discussed in Chapter 3. Below the first plateau, an
additional structure can be guessed, looking like the ring structure presented above, but
less pronounced.
Nonetheless, to evaluate what do these rings correspond to, the same experiment as
presented before can be realized. For this purpose, we choose a line where the interference
are less pronounced (purple line 1’), lift the tip 60 nm above the surface to avoid the
creation of a depletion spot, and scan the tip along this line while a transport parameter
is varied.

Fig.5.16 presents the main results concerning the dependence in gate voltage and
source-drain bias of these oscillations. Concerning gate voltage, traces G(Vg) for different
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Figure 5.16 Modulations of the 0.7 an zero bias anomalies a) Linear conductance traces
G(Vg) for different tip positions along purple line 1’. Curves are shifted in Vg) for clarity b) Non-
linear conductance traces G(Vsd) for different tip positions along 1’, when the QPC is below the
first plateau. Curves are not shifted, the average conductance decreases because of cross-talk
effect. c) Derivative ∂G/∂dtip as a function of tip position along line 1’ and gate voltage, up to
the first plateau. Same data as a). d) Derivative ∂G/∂dtip as a function of tip position along
line 1’ and source-drain bias. Same data as b).

tip positions along line 1’ are presented Fig.5.16a and the derivative with respect to tip
position is plotted Fig.5.16c. It appears clearly that approaching the tip results in an
alternating modulation of the 0.7 anomaly, that is alternatively pronounced or almost
invisible depending on tip position. This is really similar to the data presented in the
previous section, and those obtained in Ref.[9]. However, a noticeable difference is that
these oscillations seem to re-appear for gate voltage corresponding to the dip on the
first “plateau“. Though this is not understood at the moment, it could be related to
the pinning of the small Wigner crystal by residual potential fluctuations in the channel.
It also suggests that this localized state survives even when the first mode of the QPC
is fully open. We usually do not have signatures of this localized state in the channel
when plateaus are well-quantized (as in the previous section), but if disorder induces non-
perfect transmission, the modification of this Wigner crystal by approaching the tip could
possibly lead to the conductance modulations observed in this sample.
Fig.5.16b and d present the modulations of the ZBA induced by approaching the tip.
The ZBA is alternatively modulated depending on tip position, its width changes and
side peaks alternatively appear and disappear. However, the effect does not lead to clear
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split peaks as in the previous measurements. It is not so surprising as for a non-equilibrium
Kondo effect, decoherence of the Kondo mechanism is expected and would give weaker
split peaks as compared to zero-bias peaks due to an equilibrium Kondo mechanism.
However, differentiating these data with respect to tip position (Fig.5.16d) highlights a
checkerboard pattern really similar to the one shown Fig.5.11b.
Though these measurements confirm the reproducibility of the conductance anomalies
modulation as a function of tip position, the signatures are more complex. Indeed if
residual disorder is responsible for the signatures in the linear conductance trace, on
should stretch one step further the concept of Wigner crystal, usually studied in clean
potential landscapes.

5.2.7 Higher conductance analogues

Other features associated with the 0.7 anomaly are its analogues at higher conductance
values. They usually appear as weak kinks features, below the second and third plateaus
at values around 1.7 × 2e2/h and 2.7 × 2e2/h, that also evolve down to the spin resolved
plateaus under strong parallel magnetic field [114]. Moreover, though it has never been
discussed to our knowledge, the zero bias anomaly is visible in a large range of experiments
up to the third plateau. For example, Fig.5.17 presents some data extracted from Ref.[36],
where we indicate single peak ZBA, split peaks and triple peaks. Note that these rich
structures are visible up to the third plateau, suggesting that Wigner and Kondo physics
are still at play at least up to the third mode.

The fact that a Kondo resonance appearing alternatively as a single or several peaks,
is still present up to the third plateau raises some questions. It has never been discussed
to our knowledge probably because it is somehow inconvenient. Indeed, the parallel is
made between the Kondo effects observed in QPCs is usually compared to those observed
in quantum dots[37, 9], where the Kondo effect cannot be observed for tunnel barriers
more open than the conductance quantum, as this forbids Coulomb blockade. Indeed,
Coulomb blockade generated by potential barriers cannot occur at conductances higher
than ∼ e2/h. Therefore, the situation in a QPC is more subtle.
If these analogues of the ZBA are due to an exotic kind of Kondo effect, it must come from
the same interaction-induced localized state discussed above. This means that Wigner
crystallization is still at play at rather high conductance in QPCs. To investigate this
possibility, we analyze the ring structure above the first plateau following the same analysis
as described above.

On the sample presented Fig.5.15, we scanned the tip along the purple line 1’, and
opened the QPC up to the third plateau. Results are summarized on Fig.5.18. First, it
shall be noticed that the conductance modulations associated with the ring structure and
modulations of the ZBA and the 0.7 anomaly below the first plateau are visible up to the
third mode. It appears clearly on Fig.5.18c, where we have plotted the derivative of the
conductance with respect to the tip position along line 1’, as a function of tip position
and the QPC opening (horizontal axis). One can see that the rings are contrasted up to
the third mode, and not only in the transitions but also on the ”plateaus“ that don’t look
like plateaus in this sample. If our interpretation is correct, this means that the small
Wigner crystal survives up to wide openings of the QPC. It is not surprising in a sense,

- 113 -



5.2. WIGNER CRYSTALLIZATION REVEALED BY SCANNING GATE

MICROSCOPY

Figure 5.17 Split peaks in Cronenwett’s thesis: a) Spectroscopy of a QPC where alter-
nating single (or triple) and double peaks ZBA are visible up to the third plateau. b) Example of
a sample in which a double peak is visible at low conductance, that becomes a triple peak on the
first plateau, suggesting rich spin physics. Both figures are extracted from [36].

as for the criterion rc
s = 0.71 proposed above simulations show that electrons shall be

localized up to the second mode.

The results of the simulations of Lcrystal for the geometry discussed in the previous
section are presented Fig.5.19. The positions of plateaus are estimated based on the ex-
perimental values. Indeed, our classical simulations do not allow to evaluate the electronic
modes, but as the gate voltage required to close the QPC (∼ −1.1V ) is well reproduced
considering the geometry of sample C, we evaluate that the modes should be spaced in
gate voltage by roughly 0.1 V as in the experiment. Under this assumption, it appears
that a finite crystallization region (i.e. a region where the density is lower than the crys-
tallization criterion) survives up to the second mode in this geometry.
Still scanning the tip above the line 1’, the non-linear conductance between the first and
second mode is investigated and plotted Fig.5.18d. Though the peaks are less pronounced
than their low-conductance analogues, it appears clearly that the ZBA forms alternatively
one or two peaks depending on tip position. This suggests that the Wigner crystal is still
present at this conductance, and that approaching the tip can change the number of
charges from odd to even situations leading to different Kondo effects.
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Figure 5.18 Signatures of the ring structure up to the third plateau: a) G(Vg), the tip
being 900nm away from the QPC, at the end of line 1’. b) G(Vg) for different tip positions along
line 1’, up to the third plateau. Curves are shiftes in Vg for clarity. c) Colorplot of ∂G/∂dtip as
a function of Vg and dtip. d) G(Vsd) for different tip positions along 1’, the QPC being opened
between the first and second mode (gate voltage δ in a). Curves are shifted in G for clarity.

Figure 5.19 Simulations of crystal length up to the second plateau: Simulation of the
crystallization region length for the parameters presented in the previous section, as a function
of both gate voltage and tip position along the modeled QPC axis. Estimation of the modes
positions is made compared to the experiment. This region is non-zero up to the second mode.
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5.3 Conclusion

In this Chapter, we have shown how the scanning gate technique allowed us to bring a
significant contribution to a still unelucidated problem in mesoscopic physics.
It has first been reminded the breakthroughs achieved in the late 90’s by observing dif-
ferent types of Kondo effects on controllable localized systems. In these quantum dots,
one or a few electrons are localized, leading to different Kondo effects at low temperature
depending on their total spin state. Soon after, a similar phenomenon has been proposed
to explain the ZBA in QPCs, though no mechanism was proposed to elucidate the fact
that some electrons could be localized in QPCs, that are essentially open systems [37].
Then, a really recent result has been discussed, suggesting that rich Kondo physics can
occur in QPCs, and demonstrating that a finite number of electrons can spontaneously
localize in these systems, whose number can be controlled by the means of several metallic
split gates[9].
Our SGM experiments presented in this Chapter confirmed the existence of such local-
ized state, and the resulting Kondo effects at low temperature. We demonstrate that the
number of localized spins in the QPC channel can be controlled simply by approaching
the polarized tip, which gives concentric rings in the SGM images below the first plateau,
corresponding to successive splittings of the zero bias anomaly. We propose that the
parameter controlling the number of localized electrons is the size of the critically-low
electronic density region, and that electrons form a small Wigner crystal in the channel.
Classical electrostatic simulations show that this interpretation is qualitatively consistent
with the experimental observations.
Finally, we discussed the 0.7 and zero bias anomalies analogues at higher conductance,
and propose that this Wigner crystal survives at least up to the third mode and leads to
Kondo effect in this regime.
This study therefore brings strong support to the interpretation proposed in Ref.[9], and
discards another recent proposition to explain conductance anomalies in QPCs without
invoking localization[57], since this proposition cannot explain peak splittings.

Finally, it shall be stressed that despite revealing the existence of a Wigner crystal
in QPCs, this study does not solve at all the whole problem despite what was claimed
concerning our work [115], but rather gives a starting point. To really explain these
conductance anomalies, some theoretical and experimental investigations are required.
On a theoretical point of view, it shall be calculated how does the current flow through
such an exotic state, formed by a small 1D Wigner crystal smoothly connected to the
leads, in which the interparticle distance probably evolves along the channel. Are spin
and charged excitations decoupled in such a system, as proposed in Ref.[46]? Does the
Kondo effect restore the spin excitations? In particular, it should be found what gives
this shoulder called 0.7 anomaly and why it survives at temperatures much higher than
the zero bias anomaly.
On the experimental point of view, it remains to be clarified how many charges does
this crystal contain. By performing our scanning gate experiment, we get signatures of
the changes induced by the tip in the number of localized electrons, but not on their
absolute number. One can dream that one day advanced scanning probe techniques will
allow to really count these localized electrons, by scanning tunneling microscopy on a
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QPC designed out of a surface 2DEG (device that does not exist at the moment), or on
a buried QPC by subtle electric force microscopy.
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6.1. INTRODUCTION

6.1 Introduction

Although the zero-bias peak observed in QPCs shows very strong similarities with the
Kondo effect known in quantum dots, several aspects differ and are not yet understood.
In a first part, we discuss the temperature dependence of the ZBA whose scaling with
a Kondo temperature has to be different from that in quantum dots, but could not find
any theoretical grounds. Note that the magnetic field dependence of the ZBA, showing
anomalous g factors, is also an open question, but this problem will not be investigated
here (because we cannot apply a magnetic field parallel to the 2DEG in our experiment).
In a second part, we consider another property of the Kondo effect that can be investigated
with the SGM technique and that could shine light on the specificity of the Kondo effect in
QPCs. This feature is the Kondo phase shift. It corresponds to the phase shift experienced
by a conduction electron scattering off a Kondo system, i.e. a spin 1/2 screened by
surrounding electrons, forming a spin singlet. In the low temperature limit T ≪ TK , where
TK is the Kondo temperature associated with the impurity, this universal phase shift is
predicted to be π/2[116]. Though this phase shift cannot be probed in bulk systems, it
has regained interest with the ability to probe the transmission phase of quantum dots.
This type of beautiful experiment was realized by embedding a quantum dot in one of the
arms of an Aharonov-Bohm (AB) ring. First developed in Moty Heiblum’s team at the
Weizmann institute, this type of devices basically consists in an interferometer controlled
by a weak perpendicular magnetic field. Electrons entering on one side of the ring go on
left and right arms and interfere on the other side. Depending on the magnetic flux in
the ring, the two paths accumulate different phases, therefore the total conductance of
this type of devices oscillates periodically as a function of magnetic field, depending on
the interference state between the two paths.
By smartly embedding a quantum dot in one of the arms, the authors were able to probe
the additional transmission phase of conduction electrons flowing through the dot. They
first demonstrated that the transport through the dot is coherent (i.e. interferences are
still visible in this configuration), and that an additional phase shift of π is observed each
time one electron is added to the dot[117, 118].
This experiment has inspired theorists from Karlsruhe, who proposed to use this method
to measure the phase shift due to the scattering off a Kondo singlet[119]. They predicted
that the expected phase shift of π/2 in the ideal case (at zero temperature, in a symmetric
dot) should be visible in the interferences. This experiment has immediately been realized,
and the authors found a phase shift of π when traversing a Kondo valley instead of the
π/2 predicted value[120]. Repeating the same experiment in a more open quantum dot,
exhibiting fully developed Kondo effect, the authors found that the problem is more
complex. They measured a phase shift ranging from 0 to 1.5π, and observed that the
presence of the Kondo resonance in odd occupied valleys of the dot affects the phase in
the even valleys, though no Kondo effect is visible in this even occupation situation[121].
This result has generated a hot theoretical debate in the community, and was presumably
attributed to the too large number of electrons, differing from the ideal one channel case.
This experiment has recently been revisited in different AB interferometers, containing
only a few electrons and a clear phase shift of π/2 was reported when entering a Kondo
valley at low temperature[122, 123].
As QPCs also exhibits a Kondo effect (presumably due to an interaction-induced localized
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state), one can wonder whther the transmission phase through a QPC in the Kondo regime
is also π/2. To answer this question, we use the SGM technique to build a Fabry-Perot
interferometer and analyze the phase of the interference fringes observed in the SGM
images (see Chapter 3).

6.2 Kondo transmission and Kondo temperature in

QPCs

6.2.1 Universal scaling of the conductance

As explained in the introduction, defining the Kondo temperature in QPCs still is an open
question.
For quantum dots, Tk expresses as [124]:

Tk =
√

ΓU/2 exp[πǫ0(ǫ0 + U)/ΓU ] (6.1)

where ǫ0 is the energy of the bound screened spin, ǫ0 + U is the energy of the next avail-
able state (U corresponds to the charging energy to pay to add one more electron to the
dot), and Γ is the width of the tunnel barrier. None of these parameters have obvious
equivalent in the case of a spontaneously localized state in quantum point contacts, which
makes the assert of an unambiguous Kondo temperature a debated subject.

In quantum dots in the Kondo regime, the conductance as a function of temperature
takes a universal form that only depends on TK [125]:

G(T/TK) = G0(1 + (21/s − 1)(T/TK)2)−s (6.2)

where s = 0.22 for a spin 1/2, such that G(TK) = G0/2.
The low temperature limit G0 is equal to the conductance quantum 2e2/h in the ideal
symmetric case. In quantum dots, two tunable tunnel barriers allow to explore the per-
fectly symmetric case, where the two tunnel barriers connecting the electronic island to
the leads are equal, and to reach the unitary limit at low enough temperature [121].
However in quantum point contacts, this symmetry is not obvious and requires to deeply
investigate how the small Wigner crystal forming in the QPC channel and leading to
Kondo effect is connected to the leads.

An empirical modified form of the Kondo effect has initially been proposed in Ref.[37]
to scale the QPC conductance as a function of temperature on a universal function. In
this paper, a detailed investigation of the ZBA temperature dependence is reported, and
the main results are sketched Fig.2.3 in Chapter 2. These results can be summarized as
follows:
1) Above the half transmitted plateau, the conductance of a QPC as a function of temper-
ature scales as a modified form of the Kondo effect, depending only on a fitting parameter
TK that varies with the QPC opening:

G(T/TK) = 2e2/h[1/2 × (1 + (21/s − 1)(T/TK)2)−s + 1/2] (6.3)
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where s = 0.22. Comparing to the case of quantum dots (equation(6.2)), it corresponds
to adding a constant e2/h and change the low temperature conductance increase to e2/h.
The authors justified this empirical form by the fact that a QPC does not show Coulomb
blockade, hence the conductance does not go to zero in the high T limit (T ≫ TK). This
could also be justified if one spin specie is perfectly transmitted and the other is blocked
at high temperature, and restored at low temperature due to the Kondo effect.
2) The fitting parameter TK is found to vary exponentially with gate voltage, ranging
from 200 mK just above half transmission to 12K close to the first plateau. This can be
understood from the quantum dots case where the Kondo temperature exponentially de-
pends on the energy of the last occupied state and of the next available state with respect
the Fermi energy (see equation 6.1). In analogy with this equation, the authors proposed
that ǫ0 and ǫ0 +U represent the energy of the two spin channels whose degeneracy is lifted
by the interactions [36]. The authors also argued that this exponential behavior could
come from the exponential dependence of Tk on the tunnel barrier height. In QPCs, it is
plausible that the more the first mode is open, the better the localized state giving Kondo
effect is connected to the leads, hence the higher is TK .
3) The full width at half maximum of the zero bias peak is found be equal to 2kBTK/e
(where TK is extracted from the fitting process described above at fixed gate voltage),
within a good agreement, which is consistent with a Kondo-like phenomenon.
4) The zero bias peak is found to split under parallel magnetic field, though this splitting
is not uniform in the whole range of gate voltages.

Though this analysis is really convincing to explain that the zero bias anomaly is
related to Kondo effect, the chosen scaling law does not allow to evaluate the Kondo
temperature below half transmission, because the high temperature conductance in this
model is limited to e2/h (equation 6.3).

A detailed analysis of the dependence of the ZBA on temperature and magnetic field
is presented in Ref[41]. The authors reported that the ZBA was visible in many samples
down to conductances of 10−4 × 2e2/h. They aptly stressed that it was difficult to in-
terpret in terms of a single magnetic impurity forming in the QPC, as no electrons are
expected in the center of the channel below the half-transmitted first mode. Interestingly,
they proposed that this low-conductance ZBA could arise from two separated localized
states on both sides of the channel, each of them being smoothly connected to one lead,
and separated by a saddle-point like tunnel barrier. This fact could explain why the ZBA
is visible down to very low conductances, and why the conductance in this regime does
not reach 2e2/h but rather saturates to a value limited by the central tunnel barrier.
Formally, it can be understood from the physics of asymmetric quantum dots, where a
number of localized electrons is asymmetrically connected to the left and right reservoirs
by two different tunneling rates ΓL and ΓR. In this situation, the low-temperature trans-
mission in the Kondo regime does not reach unity but saturates to 2ΓLΓR/(Γ2

L + Γ2
R)[92].

In the case of QPCs, this could explain why (at least in the low conductance regime), the
transmission does not reach unity at low temperature but is limited by the central part
tunneling rate.
Another detailed investigation of the ZBA in undoped GaAs structures (in which the elec-
tronic density is controlled by a top gate to get cleaner 2DEGs) has been performed in the
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Cavendish group (Cambridge) [40]. The authors reported the same kind of observations,
with a qualitatively different behavior of the ZBA below and above 0.7 × 2e2/h.

6.2.2 Analysis of the Kondo peak in our QPCs

6.2.2.1 The full width at 2/3 of the maximum

Following these investigations, we can try to define a “Kondo temperature“ in our QPCs
for different openings. Fig.6.1a shows the temperature dependence of the ZBA for dif-
ferent gate voltages (Fig.6.1a). The ZBA is a sharp peak at low conductance values and
broadens above the 0.7 anomaly, as reported in Refs.[37, 40, 41]. Data for higher con-
ductances are not presented here because the ZBA splits into two peaks. Indeed, these
data are recorded on the same sample presented Fig.6.4, the tip being close to the QPC,
leading to a configuration where the ZBA splits above ∼ 0.9 × 2e2/h.
In analogy with Kondo effect in quantum dots, the width of the ZBA is expected to be
independent of T below TK [124], and be only given by TK within a prefactor. In the zero
temperature limit, the width of this Kondo peak is expected to be given by ∆V = 2kBTk/e.
The early 2000’s experiments found a reasonable agreement with this factor 2 in carbon
nanotubes [126], and also 2 in QPCs, using a modified scaling form[37] (equation 6.3).
Pioneering experiments in open GaAs quantum dots also found a prefactor of 1.7, close
to 2, but nevertheless lower[95].
But this is also a debated subject in quantum dots, as the intermediate regime where the
bias is comparable to the Kondo temperature appears to be a really complicated problem.
More recent theoretical investigation of the Kondo peak dependence on temperature and
bias showed that a better estimate of Tk is obtained at 2/3 of the conductance maximum
instead of 1/2[127], or equivalently by dividing the temperature scale e∆V/2kB by

√
π.

This is in very good agreement with a detailed experimental investigation of this problem
on InAs nanowire-based quantum dots[128]. It has also been carefully checked in spin 3/2
holes quantum dots but a worse agreement was found[129].

Following these recent developments, we performed this analysis of the full width at 2/3
of the conductance peak maximum (FW2/3M) at different openings, labeled A to E (see
Fig.6.1a-b). In contrast to what is done for quantum dots and because of the temperature
independent conductance background in case of QPCs, we take the FW2/3M between the
conductance maximum at zero bias and the average of the local conductance minima at
finite biases (as sketched Fig.6.1b). The FW2/3M is found to be roughly independent
of the temperature from 25 mK to 230 mK within the represented error bars, and then
increase with T for higher temperatures (not shown here). The average value is plotted
in Fig. 6.1d for the different gate voltages and converted into a temperature scale on the
right axis.

6.2.2.2 Scaling of the conductance

In analogy with the Kondo effect in quantum dots, the temperature dependence of the
conductance as a function of T/TK shall follow a universal scaling form. As discussed
above, we cannot use the modified form proposed by Cronenwett [37] (Eq.6.3) because
this formula does not describe the low conductance regime (below half transmission). We
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Figure 6.1 Temperature dependence of the ZBA a) Linear conductance G(Vg) = at
25 mK, in absence of the tip. Gate voltages A to E are corrected by the tip cross-talk effect
to compare with the analysis in b) to d) where the tip is close to the QPC. b) Non-linear con-
ductance for different QPC openings (A to E) and different temperatures. Curves are shifted
by 0.07 2e2/h. c) Temperature dependence of the zero bias peak for a specific gate voltage and
extraction of the FW2/3M. d) FW2/3M ∆V of the ZBA for different gate voltages (left axis)
and corresponding temperature scale e∆V/2kB. These data are recorded in Louvain-La-Neuve
on sample C, in 4 points, using an AC excitation . 10µV and taking into account a series
resistance of 1600Ω.

instead take the universal scaling law Eq.6.2 and replace the low temperature limit 2e2/h
by a reduced value Gmax < 2e2/h given by the transmission of an asymmetric quantum
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dot as explained in section 6.2.3. The conductance as a function of T/TK would then
follow the form:

G(T/TK) = Gmax(T = 0)(1 + (21/s − 1)(T/TK)2)−s (6.4)

In practice, Gmax will be approximated by the value measured at the lowest possi-
ble temperature, and TK appears as the only free parameter. By fitting the measured
conductance versus temperature according to Eq.6.4 for the different QPC openings, we
obtain the values of Tk plotted as triangles in Fig. 6.2b.

Figure 6.2 Scaling of the conductance with the temperature Conductance at zero bias
normalized to the saturation conductance obtained at 25 mK, for the different gate voltages la-
beled A to E. The horizontal axis represents the temperature in log scale divided by the scaling
parameter TK . The different TK for openings A to E are given in the inset. The black curve
shows the scaling law plotted from Eq.6.4. b) Comparison between the temperature correspond-
ing to the FW2/3M extracted from Fig.6.1b (red diamonds) and scaling parameter used in a)
(triangles). c) Scheme of a possible configuration of two crystallized regions on both sides of the
QPC separated by a saddle-point-like region. At low temperature, the conductance would reach
the saddle-point transmission, and not 2e2/h.

Though this analysis would require more temperatures and gate voltages to be con-
vincing, the temperature deduced from the FW2/3M of the ZBA (red diamonds Fig.6.2b)
and Tk used to scale the conductance as a function of temperature on equation 6.4 (trian-
gles Fig.6.2b) match pretty well. Of course at high temperature the conductance deviates
from the proposed scaling law 6.4 inspired from asymmetric quantum dots, because the
conductance of a QPC does not reach 0 at high temperature but rather saturates to a
high temperature curve G(Vg). This curve is itself not understood at the moment and
probably deals with the conductance of the Wigner crystal forming in the channel. Note
that in quantum dots the conductance also deviates from the scaling law at high temper-
ature because of the broadening of the Coulomb blockade peaks, that can be reproduced
by a phenomenological approach[128].
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Nevertheless, the correspondence of Tk extracted from the FW2/3M and from the scaling
of the conductance indicates that equation 6.4 could be considered as a possible modified
Kondo form to describe the ZBA in QPCs.

6.2.3 Discussion

Based on the above analysis, the ZBA in QPCs does not match completely with the
Kondo effect in quantum dots. This non-correspondence has been reported[40, 39] and
(together with the anomalous magnetic field behavior) has been interpreted as a failure
of the Kondo effect to explain the ZBA in QPCs.
On the other hand, our scaling law (Eq. 6.4) could nevertheless be justified if the Kondo
effect occurring in the low-conductance regime of QPCs is somehow due to an asymmetric
coupling as discussed above and proposed in Ref.[41]. This situation also arises in asym-
metric QDs where the linear conductance saturates below 2e2/h [129]. Theory indeed pre-
dicts in this case that the zero temperature conductance saturates to 2ΓLΓR/(Γ2

L+Γ2
R)[92].

A corresponding situation possibly explaining this behavior in QPCs is sketched
Fig.6.2b, where two presumed localized states are present on both sides of the QPC,
separated by a central tunneling region. This scenario could explain why the ZBA does
not reach 2e2/h at low temperature below the first half-plateau but rather saturates to a
conductance limited by a behavior similar to the Büttiker saddle-point model [10], that
depends on gate voltage.
Above half-transmission, if these two localized states exist, they are expected to merge
into a single 1D Wigner crystal with non-uniform charges spacing, and it is possible that
transport is governed by different effects in this regime. This scenario could explain why
both the linear and non-linear conductance seem to present qualitatively different behav-
iors below and above half transmission. Indeed, the linear conductance seem to present a
regular curve from the pinch-off to e2/h but exhibits the 0.7 anomaly above, and the ZBA
in the non-linear conductance curves leads apparently to different forms of the Kondo
effect below and above half transmission [37, 41, 40, 30]).
The possible existence of two separated localized states on both sides of a QPC have indeed
been found in a numerical study[45], but never in other studies to our knowledge[130],
which makes this scenario only an hypothesis .

6.3 Probing Kondo phase shift with a scanning gate

microscope

6.3.1 Description of the experiment

Though the temperature and magnetic field dependence of the ZBA are the cause of its
debated link with Kondo physics, we can wonder if another hallmark of the Kondo effect
could be associated with the ZBA observed in QPCs like the famous Kondo transmis-
sion phase of π/2. This section presents how an effect like the Kondo phase shift can
be detected in scanning gate experiments, that could reconcile the ZBA in QPCs with
Kondo physics. The idea is to perform an interferometric measurement, relying on the
interferences visible in the SGM images, and to investigate the influence of the ZBA on
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these interferences.
In the case of quantum dots embedded in AB rings, the plunger gate voltage is generally
used as the control parameter to go from a Kondo valley to a non-Kondo valley, and the
interferences are followed while sweeping this control parameter. As crossing a Coulomb
peak, which can be modeled by a Breit-Wigner resonance, an additional transmission
phase shift of π is experienced by the conduction electrons crossing the dot. The diffi-
culty to observe the expected π/2 phase shift in the Kondo valleys is still responsible for
the scientific debate on the interpretation of these measurements.

In our study, the interferometer is not an Aharonov-Bohm ring but rather a Fabry-
Pérot cavity, formed by the QPC and the tip-induced depletion spot in the leads. When
the QPC is below the first plateau, a Kondo resonance develops. We then have an interest-
ing situation of a Fabry-Pérot cavity, in which one of the mirrors contains a Kondo singlet
(a small spin 1/2 Wigner crystal screened by the surrounding electrons), as sketched
Fig.6.3c. We will demonstrate in this chapter that we indeed observe a phase shift of the
interferences at the ZBA, possibly connected to the Kondo phase shift.
In our case, the parameter used to cross the Kondo resonance is the source-drain bias
instead of the gate voltage in AB experiments, and the interferences are recorded by
sweeping the tip distance instead of the magnetic field.
To do so, we perform the same experiment as presented in Chapter 3 Fig.3.11. We first
record an SGM image by scanning the tip in a parallel plane 30 nm above the sample
surface, with an applied negative voltage of -6V. We then choose a line along which these
interferences are visible, and record the interferences for different DC source-drain bias,
at a given QPC opening (for fixed gate voltage). Note that in all the following figures, we
choose as a convention the voltage bias to denote the potential of the reservoir opposite
to the tip.
A first glance at this type of experiment is given Fig.6.3. This figure presents the spec-
troscopy of the interferences at different openings for the two samples discussed in Chap-
ters 3 and 5 (sample B and C).
The SGM images obtained on the plateau are presented in a) and b). A specific line is
chosen for each sample, where interferences are clearly visible. We then record the spec-
troscopy of these interferences, i.e. how these interferences evolve with source-drain bias,
at different two QPC openings, labeled α nd β.
Fig.6.3f and i present these spectroscopies on the plateaus. In this configuration, the
interferences accumulate phase linearly with source-drain bias in a monotonic fashion. As
discussed in Chapter 3, we interpret this phase accumulation by a displacement of the
QPC saddle-point in real space induced by the source-drain bias that deforms the po-
tential landscape together with an increasing wavelength of the electrons with decreasing
energy.
By repeating the same experiment below the first plateau, around 0.7 × 2e2/h (Fig.6.3e
and h), the behavior of these interferences with source-drain bias dramatically changes.
A clear phase shift of the interferences is observed around zero bias, superimposed on a
monotonic accumulation of phase with source-drain. As we will see in the following, this
phase shift can undoubtedly be attributed to the zero bias anomaly, and may be related
to the Kondo phase shift. To show that this phase shift is correlated to the presence of the
ZBA, two profiles of G(Vsd) below and on the first plateau have been extracted Fig.6.3d
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Figure 6.3 Non-linear dependence of the interferences a) SGM image recorded on the
first plateau for sample B. b) SGM image recorded on the first plateau for sample C. c) Schemat-
ics of the interferometric experiment: a Fabry-Pérot cavity with a Kondo singlet as a mirror.
d-e) Data recorded on sample B. d) Conductance as a function of source-drain bias on the plateau
(blue curve) and below (red curve). e) Spectroscopy of the interferences: ∂G/∂dtip as a function
of tip position along red line 1 and source-drain bias, differentiated with respect to tip position
to highlight details. The QPC is open below the first plateau, for gate voltage β f) Same data but
the first QPC mode is fully open, for gate voltage α. g-i) Same experiment recorded on sample C.
g) G(Vsd) for two different gate voltages α′(on the first plateau) and β′(below). h) Spectroscopy
of the interferences at gate voltage β′. i)Spectroscopy of the interferences at gate voltage α′

and g. For sample C, the interferences in Fig.6.3h below the first plateau experience a
shift in a voltage range corresponding to the ZBA in Fig.6.3g (red line), whereas on the
plateau (blue line), the conductance is monotonic and the interference do not experience
any shift except a constant accumulation of phase with source-drain.
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6.3.2 Avoiding ZBA splittings

In the following, we concentrate only on sample C. As detailed in the previous Chapter,
approaching the tip towards the QPC can change the number of localized charges and
hence the nature of the ZBA from a single to a double peak. As the situation of our
experiment is already complex, and has never been studied theoretically, we will try to
avoid the more complicated case where the QPC contains an even number of charges that
lead to a split-peak ZBA, though this situation could be really interesting to investigate in
the future. The phase shift experienced by electrons crossing two coupled quantum dots
in series has to our knowledge never been explored, though recent investigations of two
quantum dots embedded in an AB rings have made a step in this direction [131]. Here
our case of a two-impurity Kondo system leading to even Kondo effect and constituting
one mirror of a Fabry-Pérot cavity is far beyond the scope of this thesis and the actual
theoretical knowledge.

Figure 6.4 Effect of the ZBA splittings a) SGM map recorded on the first plateau for the
sample C. Different lines α, β, δ and ǫ are drawn, that will be used in the following. The origin
of the abscissa is taken on the left side. b) Spectroscopy of the interferences recorded along line
β, differentiated with respect to the tip abscissa along this line to highlight details. c) Non-linear
conductance G(Vsd) for two different tip positions A and B, corresponding respectively to a split
peaks and a single peak ZBA.

Nevertheless, an interesting experimental result that could be analyzed in the future
is presented in Fig.6.4. We place in purpose the system in a situation where moving the
tip away from the QPC generates a splitting of the ZBA. Fig.6.4c presents the non-linear
conductance traces of the QPC for two different tip positions A and B along red line β.
The average conductance of the QPC is about 0.75 × 2e2/h. For position A, with the tip
away from the QPC, the ZBA appears as two peaks centered at +/- 300µV , presumably
attributed to a situation where the Wigner crystal contains an even number of charges.
Approaching the tip to position B leads to a single-peak ZBA, hence an odd number of
localized electrons in the channel.
The spectroscopy of the interferences along this line is interesting. The phase shift seems
to split in two successive phase shifts as the ZBA is brought from an odd situation (B) to
an even situation (A). Though this situation is too complex to be investigated, it is a first
demonstration that the phase shift of the interferences is really sensitive to the nature of
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the ZBA.
In the following, the tip will be scanned along the different lines α, β, δ or ǫ depending on
the QPC opening, to avoid splittings of the ZBA to occur as a function of tip position.

6.3.3 Temperature dependence of the phase shift

Figure 6.5 Disappearance of the Kondo phase shift at high temperature. a) Spec-
troscopy of the interferences near pinch-off, at a base temperature of 25 mK. The tip is scanned
along green line δ Fig.6.4a, the abscissa is oriented away from the QPC. Data are differentiated
w.r.t. tip position along this axis to highlight details. b) Same experiment recorded at a base
temperature of 760 mK. The phase shift has disappeared. The colorscale has been adapted com-
pared to a) because the interferences are less contrasted due to the higher temperature. c) Two
extracted profiles G(Vsd) at 25 and 760 mK, the tip being at the line end (far from the QPC).
d) Spectroscopy of the interferences at 25 mK, the tip is scanned along blue line α Fig.6.4a.e)
Same data recorded at 760 mK. f) Two profiles of G(Vsd) at these two temperatures.

A smoking gun to attribute this phase shift of the interferences to the presence of the
ZBA is its temperature dependence. One has to be in a suitable configuration to observe
this subtle behavior, which explains why the results presented in this section will not be
perfectly systematic but rather give a flavor of what happens.
We shall first consider a gate voltage for which the ZBA disappears rapidly with temper-
ature. One of the subtilities is that TK shall be low enough at this QPC opening for the
ZBA to disappear before the interferences. As explained in Chapter 3, the interferences
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in this SGM experiment are blurred by thermal averaging around 1K. Therefore, we shall
place ourselves in a situation where:
- The ZBA disappears around 500mK.
- The tip follows a line where the interferences are visible and do not disappear up to 1K.
- The tip does not change the nature of the ZBA along the studied line.

Fig.6.5 shows the results of this experiment for two different QPC openings, hence two
different TK . Fig.6.5a to c present data obtained near pinch-off, around 0.35 × 2e2/h. At
this opening, the ZBA presents a clear well-developed peak at 25 mK, that disappears
completely at 760 mK (Fig.6.5c). The corresponding interferences are analyzed for tip
positions along green line δ Fig.6.4a. At 25mK (a), a clear phase shift of the interferences
is observed around zero bias. Note that the width of this phase shift is not uniform all
along the line, but is clearly present for every tip positions. At 760mK (b), though the
interferences are less contrasted due to thermal averaging, the phase shift has disappeared
and the interferences accumulate phase monotonically with source-drain bias, as observed
on the plateau (see Fig. Fig.6.3f and i).
The same analysis is repeated for a different QPC opening Fig.6.5d to f. At this opening,
the average conductance is around 0.6 × 2e2/h and the ZBA is still visible at 760 mK,
presumably due to a higher Kondo temperature. The corresponding spectroscopy of the
interferences is performed by scanning the tip along a different line (blue line α Fig.6.4a),
to avoid ZBA splittings. From Fig.6.5e, it is clear that the phase shift of the interferences
around zero bias is still present at this high temperature. Note that the ZBA width is
the same at both temperatures and that the phase shift also occurs in the same voltage
range at both temperatures.

These data clearly demonstrate that the phase shift of the interferences can undoubt-
edly be attributed to the presence of the zero bias anomaly. At low temperature, below
the first plateau, a clear phase shift is observed in the interferences around zero bias, when
the ZBA is visible in the conductance. However, when no ZBA is visible in the non-linear
conductance (on the plateau or at high enough temperature below the plateau), the phase
shift is not visible and the interferences simply accumulate phase with source-drain, in a
monotonic fashion.

6.3.4 The energy window of the phase shift

A natural question that arises at this point is the energy width on which this phase shift
occurs, and how does it compare to the width of the ZBA. To answer this question, we
analyze the interferences along pink line ǫ, for a gate voltage around half transmission.
Following the discussion of section 6.2.2.1, we will compare the energy on which the phase
shift occurs to the full width at 2/3 of the maximum of the ZBA, which seems to give Tk

more accurately than the FWHM. The results are presented Fig.6.6.
It is first important to note that the ZBA width evolves with tip position along this

line. Though we do not have a conclusive explanation for this fact, it is possible that the
tip-induced potential changes the coupling between the localized state in the QPC and
the leads, hence changes the Kondo temperature, as does the gate voltage (Tk evolves
with the QPC opening). We will use this effect to correlate the width of the ZBA and

- 131 -



6.3. PROBING KONDO PHASE SHIFT WITH A SCANNING GATE MICROSCOPE

Figure 6.6 Analysis of the phase shift energy width. a) Spectroscopy of the interferences
recorded at 20 mK by scanning the tip along pink line ǫ, the QPC being open below the half
transmission. Colored stars represent the evaluated bounds on which the phase shift occurs. b)
Extracted profiles G(Vsd) for different tip position. The corresponding tip positions are drawn
as colored lines in a). c) Extracted FW2/3M (lower curve) and FWHM (higher curve) as a
function of tip position. The enrgy window of the phase shift for specific tip positions is reported
at color stars. The FW2/3M for the 6 specific tip positions in b) are plotted as colored diamonds.

the energy window on which the phase shift occurs.
Some profiles of G(Vsd) are extracted for specific tip positions and plotted Fig.6.6b. On
this figure, one can already guess that the width of the ZBA changes between these tip
positions. To quantify this effect, we numerically extract the FW2/3M and the FWHM of
the ZBA for all tip positions along a part of line ǫ at this opening, following the method
exposed in section6.3.1, and plot both results Fig.6.6c. An interesting observation is that
both FWHM and FW2/3M seem to oscillate as a function of tip position, with the same
periodicity as the conductance, though the signal is noisy.
This fact is interesting by itself because it means that the interference state in the Fabry-
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Pérot cavity formed between the tip-depleted region and the QPC can affect the Kondo
temperature. This type of ”back-action” of the cavity on the Kondo system could be
interesting to investigate in the future, and a recent theoretical work has made a step in
this direction [132].
Letting aside this oscillating effect, we can concentrate on the fact that the width increases
in average as the tip is brought away from the QPC. Six specific tip positions are chosen,
colored from red to blue. For these positions, the energy window on which the phase
shift of the interferences occurs can be evaluated. As this phase shift changes from one
conductance oscillation to another no clean signal treatment allows to extract this width.
We therefore evaluate it by hands, and as this phase shift is quite abrupt, we evaluate
the uncertainty of this method to ±30µV . This estimation is reported Fig.6.6c as colored
stars. For comparison, we reported the FWHM and the FW2/3M on the same graph.
The bias range on which the phase shift occurs seems clearly given by the FW2/3M of
the ZBA rather than the FWHM. Note that the FW2/3M and the bias range of the phase
shift follow the same tendency: as the tip is approached towards the QPC, the FW2/3M
of the ZBA decreases, and so does the energy window of the phase shift, with a similar
average slope.

Two main conclusions shall be emphasized from this analysis. First the phase shift
does not evolve following the zero bias peak continuously, but is rather abrupt and seems
to jump to another value. The bias range on which this phase shift takes place seems to
really match the FW2/3M of the ZBA, and follows the same average variations.

6.3.5 Value of the phase shift

6.3.5.1 Signal analysis

To analyze how much the interferences shift, we use a numerical Fourier analysis. To have
a better resolution, we choose to scan the tip along the longest line where interferences
are visible: pink line ǫ.

Figure 6.7 Fourier analysis along line ǫ. a) Interferences along line ǫ as a function of
source-drain bias and tip position. The signal is differentiated w.r.t. position along this line.
b) Square modulus of the Fourier transform modulus, as a function of spatial frequency and
source-drain bias. The dominant frequency appear as bright spots at 0.022 nm−1. c) Phase of
the interferences normalized to π as a function of DC source-drain bias.
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The results of this analysis are presented Fig.6.7. Fig.6.7a presents the spectroscopy of
the interferences along this line. The data have been differentiated w.r.t. the tip position
to highlight details (note that raw data are used for Fourier analysis). We then perform
the Fast Fourier transform (FFT) and plot the square modulus of the FFT as a function
of the spatial frequency and source-drain bias (see Fig.6.7b). The colorscale is adapted to
saturate the low-frequency component, that dominates due to the average conductance
of the signal (leading to a zero-frequency maximum in the FFT modulus). The dominant
frequency clearly appears around 0.022 nm−1, which corresponds to the spatial period
of 45 ± 5nm. The phase of the interferences is then calculated as the argument of the
complex Fourier transform at this dominant frequency, with an arbitrary reference. The
result of the phase of the interferences as a function of source-drain bias is plotted Fig.6.7c.
It results that the phase shift of the interferences in the ZBA region is slightly less than
π, a first sharp shift occurring around -150µV , and a second around +150µV . Note that
these voltages are average values because the energy width of the phase shift constantly
evolves depending on tip position as discussed above. The FFT computed all along the
scan line can therefore not resolve the position of this phase shift in source-drain bias.

6.3.5.2 Another example

This analysis can be repeated along a different line and for another QPC opening. As an
example, we choose the red line β to perform the same analysis. The results are presented
Fig.6.8.

Figure 6.8 Fourier analysis along line β at 25 mK. a) Interferences along line β as a
function of source-drain bias and tip position. The signal is differentiated w.r.t. tip position
along this line. b) Phase of the FFT at the dominant frequency, normalized to π, as a function
of source-drain bias. c) Profile of G(Vsd) when the tip is at the end of line β( dtip = 500 nm).

Fig.6.8a shows the spectroscopy of the interferences along lineβ, when the QPC is
open around 0.65 × 2e2/h. The ZBA is well developed and forms a single peak in this
configuration, as shown Fig.6.8c where a profile of G(Vsd) is extracted, the tip being at
the end of line β.
We compute the FFT of the raw conductance signal and extract the dominant frequency.
Note that in this configuration, the spatial period of the interferences is larger than along
line ǫ, presumably due to the reduced density. Indeed, this analysis is performed very
close to the QPC, and the Fabry-Pérot cavity between the QPC and the tip fully-depleted
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region may experience in average a reduced density because of the tip and gates voltages.
As explained above, we then extract the phase of the FFT at this dominant frequency and
plot this phase as a function of the source-drain bias. We can note that on one side of the
ZBA (for negative source-drain biases), the phase of the interferences is almost insensitive
to the source-drain bias. It then exhibit a sharp shift of about 0.8π, and a second less
sharp and less important shift. On the other side of the ZBA, for positive source-drain
biases, the interferences continuously accumulate phase with increasing source-drain bias,
as do the interferences on the plateau.

6.3.6 Phase shift versus QPC opening

This section establishes a connection between this phase shift and the one observed in the
three-gate interferometers as a function of the split gate voltage (see Chapter 3, section
4.2.1). To show that the phase shift observed as a function of source-drain bias in SGM
experiments and the one observed as a function of split gate voltage in the three gate
interferometers at the 0.7 anomaly are linked, we proceed as follows. We scan the tip
along red dashed line β Fig.6.4a, and vary the QPC opening from the pinch-off to the
middle of the first plateau. We first perform this experiment at zero DC bias voltage
(i.e. at the top of the ZBA), and plot the result in Fig.6.9a. A phase shift is observed
before the opening of the first plateau, as observed in the interferometers (see Fig.4.4).
We then repeat this experiment, but applying a DC voltage of -350µV to be out of the
ZBA, and plot the result in Fig.6.9b. Interestingly, the abrupt phase shift as the first
mode opens has disappeared in these conditions, which indicates that the observed phase
shift in source-drain bias and the one observed as a function of Vg are intimately linked,
and are the signature of the same phenomenon.

Note that this phase shift at the first mode opening can be guessed in the same kind
of data recorded with a SGM on a QPC presented in Ref.[133] (Fig.4.5), though it has
not been analyzed, as this thesis focused on quantum Hall physics.

6.3.7 Interpretation

Though at this time a clear interpretation of these results is still lacking (but ongoing
work), some hand-waving interpretation can already be drawn. In the experiment de-
scribed above, we are in a configuration of a Fabry-Pérot cavity, which contains a Kondo
singlet on one side. It clearly appears that the interferences developing in the cavity are
phase-sensitive to the Kondo resonance. The question is to understand where does this
phase shift takes place and how it is connected to the universal phase shift by π/2 expe-
rienced by an electron scattering off a Kondo system.

Before taking a look at different possible scenarios, some assumptions shall be made.
We will first make the hypothesis that the problem can be reduced to a single-mode
Fabry-Pérot cavity forming between the QPC and the tip-depleted region, and that the
main contribution to the interferences comes from trajectories crossing once the cavity,
and trajectories making two turns in it, hence reflected once on the QPC. As discussed in
Chapter 4, this is oversimplified because disorder in the leads is responsible for inter-mode
scattering in the cavity, which itself may be responsible for non-vanishing contrast of the
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Figure 6.9 Phase shift as a function of the opening. a) Interferences as a function of
gate voltage, from the pinch-off (Vg = −0.68V ) to the middle of the first plateau (Vg = −0.64V ),
the tip is scanned along red line β Fig.6.4a. Data are differentiated w.r.t. the tip abscissa along
this line to get rid of the average conductance. No DC voltage is applied to the sample. b) Same
data recorded in the exact same conditions, but a DC voltage of -350 µV is applied to the sample.

interferences on the plateau. We remind at this point that in the perfect single-mode
case, the interferences would not be visible on the first plateau, as this would correspond
to a Fabry-Pérot cavity with a transparent mirror. Nevertheless, this simple model can
already give some clues and allows a hand-waving analysis, but is not aimed to catch all
the physics of the problem.

That being said, it shall be emphasized that the transmission phase experienced by
the electrons crossing the saddle-point cannot be probed in this experiment, since all
trajectories contributing to the conductance cross the QPC. Indeed, the path differences
leading to interferences in this model come from the coherent superposition of the blue
and orange trajectories sketched Fig.6.10. The total path difference includes the phase
accumulated by crossing twice the cavity (the orange trajectory crosses twice more the
cavity than the blue one), and eventually an additional phase experienced at the reflexion
on the QPC. In the case of localized states forming in the channel and leading to a Kondo
resonance (scenario b), the orange path experiences once an additional phase due to the
reflexion on this Kondo system. The phase shift would then be of π/2 at the Kondo
resonance.
If an entire Kondo system, including the localized spin and the surrounding screening
electrons was contained in this Fabry-Pérot cavity, we should expect a dephasing of π
at the Kondo resonance, because one path (the orange one) would cross three times the
Kondo singlet and the blue one only once, experiencing each time a dephasing of π/2.
In this situation, represented for example in scenario c) Fig.6.10, the interferences would
shift by 3π/2 − π/2 = π at the Kondo resonance.
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Figure 6.10 Different scenarios to understand this phase shift. a) Simple non-
interacting case. A Fabry-Pérot cavity forms between the QPC and the tip-depleted region.
b)Case of a single Kondo resonance in the center of the QPC, forming one of the mirrors of the
Fabry-Pérot cavity. c) Situation of two separate impurities, on both sides of the channel, and
their respective screening clouds.

Let’s now compare with the experimental results presented in the previous section. As
far as our investigation can tell, the additional phase shift observed at the Kondo res-
onance is more than π/2, but seems less than π. As this signature is superimposed to
a background phase shift with source-drain, this renders the analysis difficult, and we
cannot unambiguously distinguish between π and π/2. Finally, a complete treatment and
theoretical investigation of the problem is needed, that we do not have at the moment,
but which is on the way with the grateful help of Pascal Simon, expert in this field.

6.4 Conclusion and perspectives

In conclusion, we studied in this chapter the features of the zero bias anomaly in QPCs
that can be related to the Kondo effect. We first studied the temperature dependence
of the ZBA and correlated it with its FW2/3M. We showed that the temperature corre-
sponding to the FW2/3M of the ZBA allows to scale the temperature evolution of the
ZBA on a universal scaling function similar to the expected one for the Kondo effect in
an asymmetric quantum dot.

Pushing one step further the similarities with the Kondo effect, we have presented in
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this chapter an interferometric study of the zero bias anomaly. By forming a Fabry-Pérot
cavity between the QPC and the tip-depleted region, we can analyze the dependence of
the interferences with DC source-drain bias. When the QPC is open to the first plateau,
we observe that interferences monotonically accumulate phase with source-drain bias, that
might be attributed to the displacement of the QPC in real space and the changes in λF

with energy.
Below the first plateau, where the zero bias anomaly is present in the differential conduc-
tance, an additional phase shift of the interferences is observed in the bias range of the
ZBA. In addition, the interferences are insensitive to source-drain bias on one side of the
ZBA, and monotonically accumulate phase with source-drain on the other side. Around
zero bias, an additional phase shift is observed, sharp on one side and smoother on the
other, of more than π/2 but less than π. The energy width on which this phase shift is
observed appears intimately correlated to the full width at 2/3 of the maximum of the
zero bias peak, which itself seems to match the Kondo temperature.
This phase shift disappears at high temperature when the ZBA is no longer present, de-
pending on the QPC opening and the tip position. Finally, this phase shift exhibits even
more confusing signatures when the ZBA appears as a double peak, showing that it is
intimately connected to the ZBA.
Though we do not have an exact explanation for this phase shift, we propose that it is
somehow connected to the universal Kondo phase shift. Indeed, simple considerations
show that the studied system is likely to be sensitive to this phase if a Kondo resonance
develops around the interaction-induced state forming in the QPC. Though this state-
ment still requires some theoretical work to be fully convincing, it could be the smoking
gun to rule out the possible non-Kondo scenario proposed to explain the zero-bias peak in
quantum point contacts [57]. Indeed, the additional phase shift accumulated in reflection
in the ZBA regime as well as the splittings of the zero-bias anomaly observed in SGM
and in length-tunable QPCs [9] put some strong experimental bounds on the possible
scenarios to explain the ZBA, and the Kondo effect appears as a promising phenomenon
to explain both of these facts.

I would like to mention a last perspective that this work opens. Though it is well-
known that when scattering off a Kondo singlet the conduction electrons experience a
phase shift of π/2, it is still a hotly debated subject to know where this phase shift
occurs. In particular, the spatial structure of a Kondo singlet remains nowadays a purely
theoretical debate. It is usually accepted that the spin correlations around a magnetic
impurity present a large spatial extend [134]. If Tk is the Kondo temperature, this length
scale is given by ξk = ~vf/kBTK . Simple orders of magnitude show that for the usual
Kondo systems in 2DEGs, this spatial extend ranges from 100 nm to 1µm. Therefore, the
electrons dynamically screening the spin of the magnetic impurity are expected to extend
on a huge length scale, forming what is usually called the Kondo screening cloud [135].
Despite the very large length scale on which these correlations are expected and the large
amount of theoretical proposals to detect the Kondo cloud (a few examples can be found
in Refs.[136, 137, 132]), it has never been observed experimentally.
The experiment presented in this chapter offers a new promising technique to investigate
this phenomenon. We are in a situation of a distant scatterer to a magnetic impurity
forming in the QPC. The interferometric measurements on the Fabry-Pérot cavity formed
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by this system shows signatures of the Kondo phase shift at the Kondo resonance. If the
size of the cavity was reduced below the size of the Kondo cloud, and if the Kondo phase
shift is accumulated by crossing the Kondo cloud as expected theoretically, then this
effect could be detectable in this type of experiment. This offers a promising proposal to
detect the existence of the Kondo cloud with a scanning gate microscope and even one
day measure its spatial extend.
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7.1. INTRODUCTION

7.1 Introduction

This last chapter presents measurements of the thermopower in quantum point contacts.
The purpose of this study is to probe the electron interactions by measuring a quantity
different from the conductance. In particular, deviations of the thermopower from the
Mott’s law is an indication of interaction effects, as has been used for example in the case
of the fractional quantum Hall effect[138], in quantum dots in the Kondo regime[139] and
in QPCs to study the 0.7 anomaly[33]. In addition, in thermopower measurements, the
system has almost the same chemical potential on both sides. There is no intentional
potential drop across the QPC and the thermovoltage is only about 1 µV . One can thus
probe the localized states in the QPC in an unperturbed potential profile. Finally, from a
measurement point of view, the thermovoltage shows a signal only when the transmission
is energy dependent. This is therefore a sensitive probe of small transmission changes.
A first part briefly describes the thermopower in QPCs, and presents the first measure-
ments of this interesting quantity. A second part is dedicated to the measurement tech-
nique we use to measure the thermopower, and the method to evaluate the temperature
difference that we apply to the QPC. We also discuss the deviations observed from the
signal expected from the Mott’s law.
Finally, we describe how the SGM technique can be successfully combined to thermopower
measurement to image a coherent electron flow driven by a temperature difference from
a QPC.
As these measurements were obtained at the very end of this thesis, the analysis is in-
complete and ongoing work. I would like at this point to thank Frederico Martins that
continued this experiment after my departure from Louvain and analyzed part of the data
with Vincent Bayot and Benoit Hackens.

7.2 The thermopower

7.2.1 Definition

Up to this chapter, we considered only the differential conductance of our devices which
consists in probing the current flowing in response to a voltage difference applied between
two reservoirs, namely G = ∂I/∂V |Vds=0, and traduces the transmission of electrons.
However, there are other measurable quantities in condensed matter physics, correspond-
ing to “cross” thermodynamical effects. These are out of equilibrium effects relating
thermal and electrical forces and flows. The first discovered and most famous one is the
so-called Seebeck coefficient or thermopower S, which traduces the fact that a voltage
difference appears between two parts of a conductor submitted to different temperatures.
Formally, it expresses as S = ∂V/∂T |∆T =0.

To understand this effect and how it is connected to the transmission of a device,
we consider a mesoscopic device connected to large reservoirs which are characterized
by thermodynamical quantities. If for example a chemical potential difference is applied
between the two reservoirs, a current flows through the device. The quantity that traduces
this effect is the differential conductance G. As seen in Chapter 1, the conductance is
simply connected to the transmission of the device by the Landauer-Buttiker formula. If
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Figure 7.1 Conductance and Seebeck coefficients. a) Differential conductance scheme:
a scattering region connects two reservoirs at different chemical potentials. b) Thermopower
scheme: a scattering region connects two reservoirs at different temperatures. c) Transmission
of a QPC as a function of energy.

the two reservoirs are placed at different chemical potentials µR and µL, and different
temperatures TL and TR, they have different Fermi distributions fL(E) and fR(E), as
schemed Fig.7.1b. This corresponds on the hot side to some occupied states above the
Fermi energy and some room below the Fermi energy. Electrons with higher energy
can eventually cross the device more easily, if its transmission depends on energy. As a
consequence, fluxes from the hot to the cold side and opposite are inequivalent (sketched
Fig.7.2). To restore the equilibrium where no current flows, a voltage difference develops
across the device.
Formally, the current from one side to the other is given by the Landauer formula:

I = 2e/h
∫ ∞

0
τ(E)(fL(E) − fR(E))dE (7.1)

where τ(E) is the transmission of the device that depends on energy. If the reservoirs are
placed at a chemical difference e∆V ≪ µ and a temperature difference ∆T ≪ T , where
T and µ are the equilibrium chemical potential and temperature, the two Fermi functions
can be expanded with respect to ∆T and ∆V . If the total current is zero (for an open
circuit for example), then the quantity S = ∆V/∆T writes:

S(µ, T ) =
1

eT

∫ ∞
0 τ(E)(E − µ)(∂f/∂E)dE

∫ ∞
0 τ(E)(∂f/∂E)dE

(7.2)

where f denotes here the equilibrium Fermi distribution at temperature T and chemical
potential µ. This is the single-particle integral formula for the thermopower.

- 143 -



7.2. THE THERMOPOWER

7.2.2 Thermopower of a QPC

As for the conductance, the QPC appears as a good pedagogical object to understand the
thermopower. The dependence of the QPC transmission with incident electrons energy
is sketched Fig.7.2b. To understand the basics of thermopower in QPCs, we choose two
different points: 1 and 2, corresponding to different dependence of the transmission with
energy.

Figure 7.2 Conductance and Seebeck coefficients. a) Schematics of different thermally
induced transmission across a potential barrier. More electrons go from the hot to the clod side
because they experience higher transmission as they have higher energy. b) Transmission of a
QPC as a function of energy.

At point 1, the transmission of the QPC strongly varies with energy. If one of the
reservoirs is “hot”, some electrons have a higher energy, due to the finite temperature
that spreads the Fermi distribution of the reservoir on a range kBT . These electrons
will experience a higher transmission through the device, as they have a higher energy.
By crossing the device and thermalizing in the other reservoir, they will not be able to
come back to the first reservoir because they have less energy, and the transmission is
smaller at their lower energy. It results that more electrons go from the hot to the cold
side than the opposite flux. At equilibrium, since the total current through the device
is zero, charges accumulate on the cold side of the QPC and create a voltage difference
called thermovoltage. The potential on the cold side is negative for a QPC (increase of
the chemical potential to restore equilibrium) such that S = dV/dT ≥ 0 where dV and
dT are measured on the same side.
At point 2 however, the transmission does not vary with energy, as we are on a plateau.
Therefore hotter electrons do not experience higher transmission, hence the fluxes from
the hot to the cold side and from the cold to the hot side equilibrate without requiring
an additional voltage to develop: the thermovoltage is zero. This holds of course as soon
as the transmission is flat over the energy range kBT .
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7.2.3 The Mott’s law

The thermopower can be derived from the transmission of the device, using the Cutler-
Mott’s formula 7.3. This formula is obtained by developing the exact single-particle
thermopower formula with respect to the temperature (called the Sommerfeld expansion),
to keep only the linear term. The thermopower can then simply be expressed as a function
of the conductance at zero temperature G(µ, T = 0). The Mott’s approximation is then
to consider in this expression the finite temperature conductance G(µ, T ) instead of the
zero temperature value. In this approximation, the thermopower writes:

SM(µ, T ) =
π2k2

B

3e
T

1

G(µ, T )

∂G(µ, T )

∂µ
(7.3)

Since this expression results from a linear expansion of the thermovoltage, the tem-
perature has to be lower than all the others energy scales involved, in particular the
curvatures of the potential in the case of a saddle-point like QPC (~ωx and ~ωy). A
detailed theoretical investigation of the validity of the Mott’s approximation for QPCs is
done in Ref.[140], and a very good agreement between the exact formula and the Mott’s
law is found as long as the temperature is lower than the subbands spacing. In practice,
it means that the temperature should be kept lower than typically 1 K. A detailed exper-
imental study also points in this direction[141].
Therefore, any observed breakdown of the Mott’s law can be a signature of the electron-
electron interactions, which have not been taken into account in this single-particle deriva-
tion of the thermopower. For example, the Mott approximation has first been shown to
fail for QPCs in the regime of the 0.7 anomaly, a fact attributed to the interactions
dominant in this regime [33].

7.2.4 First measurements on QPCs

The first measurements of QPCs’ thermopower were realized in 1990 by Laurens Molenkamp
et al.[142]. They adapted this technique known for bulk materials to mesoscopic devices,
and first discovered quantum oscillations in the thermopower of QPCs [142]. This work
was done after a calculation that predicted this effect [143], assuming a parabolic trans-
verse confinement. Soon after, a calculation based on Buttiker’s saddle-point model [10]
was proposed to explain the experimental observations, and to show the role of perpen-
dicular magnetic field and base temperature on these thermopower oscillations [144].

The smart device configuration and the first measurement results are presented in
Fig.7.3. The method chosen to heat one side of the QPC is Joule heating. The central
channel is brought to a higher electronic temperature than the bulk by making a DC
current of some µA flow through it. The studied QPC is one of the two constrictions
visible on both sides of the heating channel. The principle of measuring thermopower is
to measure the voltage developing across the QPC when both sides are at different tem-
peratures. As the voltage drops all along the heating channel, the authors measured this
thermoelectric voltage thanks to an additional QPC facing the measured one on the oppo-
site side of the heating channel. This second QPC acts as a local voltage probe, serving as
a reference, its gate voltage being kept constant during the measurement. The measured
quantity is the DC voltage difference V2 − V1 as a function of the first QPC gate voltage.
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Figure 7.3 First experimental measurements of a QPC thermopower Up: Transverse
voltage between both sides of the channel as a function of gate voltage (thick curve, right axis) and
resistance of the QPC (thin curve, left axis) Inset: scheme of the device. Down: Calculations of
these two quantities assuming a square well potential. The broadening of the steps is explained
by thermal averaging.

Clear oscillations are observed in this transverse voltage, corresponding to the plateaus in
the device conductance (see Fig.7.3). As explained above, these oscillations correspond to
alternating situations where the transmission does not vary with energy (plateaus), lead-
ing to zero thermopower, and transitions, producing a finite thermopower. An undesired
background is superimposed to these oscillations, that the authors attributed to a device
asymmetry.

7.3 Thermopower measurements

7.3.1 Experimental technique

Though our devices are not as specifically designed for thermoelectric measurements, we
tried to measure the thermopower of our QPCs. We use the two ohmic contacts on
one side of the QPC to heat the reservoir on this side by Joule effect, and measure the
transverse voltage arising across the QPC. The heating current Ih induces an undesired
voltage drop inside the left reservoir, i.e. between the left QPC entrance and the left
voltage probe (see Fig.7.4), To evaluate the voltage difference only due to thermoelectric
effects, we first have to get rid of the additional voltage difference. Since the Joule power
is proportional to I2

h, we use an AC current at frequency fh to heat one side of the contact,
and the additional temperature ∆T caused by the Joule effect will oscillate at twice this
frequency: 2×fh. Consequently, the voltage Vth measured at frequency 2fh only contains
informations related to ∆T . The current used to heat the reservoir is measured thanks to
a current amplifier connected to a lock-in operating at frequency fh, as schemed Fig.7.4.
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Figure 7.4 Principle of our thermopower measurements. Left: Setup used to measure
the differential conductance. An AC current at frequency ft flows through the device, measured
with lock-in at the same frequency. A second lock-in is used to read the voltage in a 4-point
configuration, at the same frequency ft. Right: setup used to measure the thermopower. A
heating current flows through one side of the device, at frequency fh, measured with a lock-in at
the same frequency. The transverse voltage across the QPC is measured by a lock-in operating
at a frequency 2 × fh.

7.3.2 Differential conductance

The sample measured in this section is sample D (same lithographic dimensions as sample
C). To know the energy scales involved in this QPC, we first measure its conductance, in
linear and non-linear regimes. This characterization is summarized Fig.7.5.

In this sample, the ZBA splits as the first mode opens (see Fig.7.5b), an effect which
we attribute to a change in the number of localized charges in the channel, as detailed in
Chapter 5. This fact explains why the 0.7 anomaly is still visible as a deformation of the
first plateau Fig.7.5a, despite the base temperature of 20 mK during this experiment.
The lever-arm parameter of the gates will be of importance in this chapter and can
be deduced from Fig.7.5c and d. The colorplot of the spectroscopy indicates that the
subbands are spaced by ∆Vds = 4meV , and on the conductance G(Vg) one can see that
about ∆Vg = 70mV is required to go from a transition to the next one. Therefore the
lever-arm is given by α = ∆Vds/∆Vg = 0.057 ± 0.005.

7.3.3 Thermopower

We then measure the thermoelectric voltage developing across the QPC in response to a
Joule heating on one side, as explained section 7.3.1. The typical heating currents range
from 10 to 200 nA. An example of the measured thermoelectric voltage as a function of
gate voltage is plotted Fig.7.6.

Clear oscillations are seen in the thermoelectric voltage as a function of gate voltage.
Fig.7.6a allows a direct comparison between these oscillations and the steps in the con-
ductance curve. The thermoelectric voltage Vth oscillations are of the order of a µV . The
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Figure 7.5 Conductance measurements at 20 mK. a) Linear conductance as a function
of gate voltage, in units of the conductance quantum. b) Traces of G(Vsd) for different gate
voltages Vg, zoomed on the ZBA. c) Traces of G(Vsd) for different gate voltages Vg, up to the
third plateau. d) Differentiate of c) vs. gate voltage, plotted as a function of Vsd and Vg.

oscillations of Vth are intimately correlated to the steps in the conductance curve. Indeed,
Vth reaches maximum values in the transitions between plateaus, and minima on plateaus.
Note that the signal is superimposed to a flat background of 1µV that should be sub-
tracted to obtain the thermopower. The origin of this background will be discussed later.
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Figure 7.6 Thermopower measurements. a) Measured thermoelectric voltage as a function
of gate voltage (red curve, left axis) for a 145 nA heating current, at 7 Hz, together with the
device conductance measured at 20 mK (blue curve, right axis). b) Comparison between the
thermopower (−S/T ) obtained by the Mott’s law from the measured conductance (black curve),
and by dividing the thermoelectric voltage by the temperature difference and the mean temperature
(red curve).

7.3.4 Evaluating ∆T

To evaluate the temperature difference generated by the heating current, we assume the
validity of the Mott’s law, at least above the second mode. Knowing the lever-arm param-
eter, we can extract the expected thermopower from the G(Vg) curve. We use the Mott’s
law (Eq.7.3) and replace µ by −αeVg to obtain the thermopower from the experimentally
measured conductance::

SM =
π2k2

B

3e2α
T

1

G

∂G

∂Vg

(7.4)

This is the experimental version of the Mott’s law. To get rid of the fact that the
thermopower depends on the average temperature T, we plot the expected thermopower
divided by the average temperature SM/T (black curve Fig.7.6b).
Then we have to compare this expected thermopower value to the thermopower extracted
from the measured Vth(corrected from the background) according to S/T = Vth/(∆T ×
T ) = Vth/2(T 2

L − T 2
R) with TR being the known temperature of the cold and TL the

unknown temperature of the hot reservoir.
We evaluate the base electronic temperature (on the cold side) to be about 100 mK in
the following, but we have no precise evaluation of it during this experiment. Note that
assuming 50 mK or 150 mK does not substantially change the following results, justifying
this crude estimation.
Red curve on Fig.7.6c presents the result of this adjustment procedure for a heating
current of 145 nA, that gives a temperature of 480 mK on the hot side, and therefore a
temperature difference of 380 mK. The two curves match pretty well for the three peaks
on the right (modes 3, 4, 5) but show significant differences for the transitions to the
first and second modes, as will be discussed afterwards. Note that a hot temperature
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of 480 mK corresponds to an energy of ∼ 50µeV , which is much lower than the 1 meV
energy scales of the QPC transmission curve, such that the linear regime of the Mott’s
law is valid.

7.3.5 Influence of the heating current

Figure 7.7 Influence of the heating current. a) Thermoelectric voltage as a function of
gate voltage for different heating current values, ranging from 15 nA (blue curve) to 180 nA
(red curve). b) Background signal evaluated from the minimum value at the second mode (along
dashed line in a) as a function of the heating current.

Fig.7.7a shows the different traces of Vth(Vg) obtained for different heating currents.
Since the thermovoltage is at first order proportional to the temperature difference, the
signal Vth strongly increases with the heating current. In addition to the increasing
oscillations, the flat background also increases with increasing power. We determine the
value of this background as the minimum of Vth when the QPC is open to the second
mode. As seen in Fig.7.7b, this background increases almost linearly with the heating
current. Since the signal is measured at 2fh, it could have been simply proportional to
I2

h, but however seems to have a more complex dependence on Ih. We do not know the
origin of this background signal, but it could be due to the non-linear resistance or to
the thermopower of the ohmic contacts or the 2DEG. The thermopower of the 2DEG can
be separated in two main contributions: the thermopower due to the phonons, usually
called the phonon drag, and the diffusion thermopower, that is connected to the electrical
conductivity through the Mott’s formula (7.3). This diffusion part can be expressed as:

Sd =
π2k2

BT

3eEf

(p+ 1) (7.5)

where p traduces the dependence of the electrons scattering rate with energy, that depends
of the scattering mechanism but is close to unity [145]. This gives a contribution to
the thermopower of about 0.6µV/K. Using the evaluated temperature differences as a
function of the heating current (as explained afterwards), we can a posteriori calculate the
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thermopower corresponding to the observed background. It appears that this background
corresponds to 2.7 ± 0.2µV/K, and is independent of the average temperature. This is
much larger than the expected thermopower of the 2DEG (7.5) and does not depend on
the temperature. The 2DEG diffusion thermopower can therefore not account for this
background.
The contribution of phonons could be invoked, but it is likely that the phonon drag
does not contribute to the thermopower in our case, due to the sub-Kelvin temperature,
regarding other works[145, 146, 147].
The thermopower due to the ohmic contacts is not well characterized, and might be
responsible for this background signal.

We then evaluate the temperature difference obtained for each value of the heating
current, repeating the procedure explained above. We first subtract the background signal
and then rescale the measured thermopower to the one obtained by the Mott formula, the
fitting parameter being the hot reservoir temperature, assuming a temperature of 100 mK
on the cold side. We did not precisely evaluate the base electronic temperature during the
experiment, but assuming 50 mK or 150 mK does not substantially change the following
results.

Figure 7.8 Evaluating ∆T as a function the heating current a) Thermopower evaluated
from the measured thermoelectric voltage for different heating currents (colored curves), with
temperature differences chosen to match Mott’s law. Black curve represent the thermopower
divided by the average temperature extracted from the conductance thanks to the Mott’s formula.
b) Fitting parameter ∆T used to scale the different thermopower curves on Mott’s law.

We adjust the hot temperature to make the thermopower match the Mott’s law above
the second plateau. Indeed, we cannot find an appropriate hot temperature that suits
well for the two first transitions and the three following ones. Therefore, we favor the
three last transitions, as the Mott’s law is more likely to be valid at high opening than in
the low-density regime, where electron interactions are more important.
The estimated temperature differences range from 170 mK for a heating current of 55 nA
to almost 460 mK for heating currents of 180 nA. Note that in any case we are far from
the linear regime of small temperature differences compared to the base temperature.
For lower heating current values, the signal was too noisy to precisely operate the fitting
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procedure. However these temperature differences are smaller than the energy scales of
the QPC, including the Kondo temperature which is about 1K. This therefore allows us
to investigate the conductance anomalies in the thermopower signal.

7.3.6 Deviations from the Mott’s law

In the first and second transitions, the measured thermopower seems to be really differ-
ent from what is expected from the Mott’s relation (see Fig.7.8a), as already reported
in Ref.[33]. This breakdown of the Mott’s relation appears at sufficiently low heating
currents, hence low temperature differences, close to the linear regime. These differences
are the strongest in the transition from the pinch-off to the first plateau, but surprisingly
are also present in the transition from the first to the second plateau. This is in contrast
with the study reported in Ref.[33], where the breakdown of the Mott’s law was observed
only below the first plateau. If the deviations from the Mott’s law that we observe are due
to electron-electron interactions, it suggests that they dominate thermoelectric transport
not only in the 0.7 regime but also in the second transition.
Indeed, the anomalous thermopower observed in the first transition is probably related
to the 0.7 anomaly visible as a shoulder in the conductance curve (see 7.5a). Note that a
flat sub-plateau at 0.7 G0 would give a zero in the thermopower, as it is observed at low
heating currents.
The reduced thermopower in the second transition might also be related to an 0.7 ana-
logue at 1.7 G0 (see Fig.5.7 and discussion in section 5.2.7). A smoother transition would
indeed give a smaller thermopower, as it is also observed. The absence of the correspond-
ing features in the signal calculated using the Mott’s law shows that our thermopower
measurements are more sensitive than our conductance measurements regarding the in-
teraction effects.
Note that for small heating currents, the thermovoltage in the region of the 0.7 anomaly
is as low as 0.5 µV, which is much less than AC bias typically used in conductance
measurements, about 5 to 10 µV. This difference could explain the higher capability of
thermopower measurements, carried out very close to equilibrium, to detect interaction
effects like spontaneously localized states and the Kondo effect.

7.4 Scanning gate microscopy of the thermopower

7.4.1 Imaging thermally-induced coherent flow

Now that we have analyzed the thermopower signal and determined the temperature
difference related to the heating current, we can perform SGM measurement of the ther-
mopower, as we did for the conductance in the previous chapters. This original idea was
suggested in the thesis of Adel Abbout[148], Chapter 5, in which a theoretical investiga-
tion of what would be observed by applying scanning gate microscopy to the thermopower
is presented.

To perform SGM of the thermopower, we proceed exactly as for SGM of the conduc-
tance, except that the thermoelectric voltage is recorded instead of the conductance. A
typical image obtained using this technique is shown Fig.7.9b. This image is recorded for
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Figure 7.9 Scanning gate imaging of the thermopower a) SGM image of the conductance
recorded for a QPC open just above the first plateau (Vg = −0.66V ). b) Thermoelectric voltage
as a function of tip position, for the same gate voltage Vg = −0.66V .

a gate voltage of -0.66V, when the QPC is open to first plateau, i.e. the thermopower is at
the bottom of the first dip. A heating current of 200 nA is used leading to a temperature
difference ∆T ∼ 500mK and an average temperature T = 300mK. For comparison, a
SGM image of the conductance at the same gate voltage is given Fig.7.9a. The two signals
exhibit the same main features. In particular, similar interferences are observed in both
signals, revealing that the electron flow is coherent in both experiments. Though it is not
surprising to find the same main features in the thermopower and in the conductance as
they are intimately connected, it is amazing to see that we can directly observe in real
space the coherence of an electron flow driven by a temperature difference since temper-
ature is usually synonym of decoherence.
The reason is that thermalization of the hot electrons is done by electron-electron and
electron-phonon interactions at a distance from the QPC larger than the coherence length
and given by the scattering lengths Le−e and Le−ph. Hot electrons are therefore fully co-
herent in the region scanned by the SGM tip and can interfere to produce the observed
fringes.
On the other hand, the interference fringes will disappear at distances larger than the
thermal length LT of the hot reservoir due to the blurring of the interferences over the
thermal energy window kBThot.

7.4.2 Validity of the Mott’s law

One can wonder if the Mott’s law is still valid in this situation where a micron-size Fabry-
Pérot cavity is formed between the QPC and the tip-depleted region. To verify the validity
of the Mott’s law in the SGM images, we should in principle differentiate the conductance
with respect to chemical potential of the entire scattering region, including the QPC and
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the depleted region below the tip. Since the transmission is dominated by the QPC, an
approximation will be to differentiate the conductance with respect to the gate voltage of
the QPC, as done previously in absence of the tip. Note however that the cavity formed
by the tip is also part of the coherent scattering region and should in principle not be
separated from the QPC. Because we could not find a way to take this into account, we
decide to evaluate the thermopower by differentiating the conductance with respect to
gate voltage only.

Figure 7.10 Validity of the Mott’s law in SGM experiments a) Profile of the expected
thermopower from the Mott’s law, calculated from the conductance, considering ∆T ∼ 500mK
and T ∼ 300mK, the tip being at 640 nm from line 1 origin. b) Measured thermopower for the
same tip position. c) Thermopower deduced from the Mott’s law as a function of gate voltage and
tip position along line 1 dtip, the origin being taken on the QPC side. d) Measured thermopower
for the same range of parameters.

Since the SGM image in Fig.7.9a is recorded for a single gate voltage, we can let aside
one dimension of space and scan a single line while sweeping the gate voltage. We choose
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to scan the tip along blue line 1 Fig.7.9 and vary the gate voltage between two succes-
sive lines. We first measure the thermovoltage, and then start again the same sweep to
measure the conductance. By doing so, we can numerically differentiate the conductance
with respect to the gate voltage, and check the validity of the Mott’s law at different QPC
openings and tip positions.
Fig.7.10a presents a profile of the measured thermopower deduced from the thermoelectric
voltage as a function of the gate voltage, the tip being at 640 nm from the origin of line 1.
The signal is divided by the average temperature. In this experiment, the heating current
is about 200 nA, hence the temperature difference is estimated to be about 500 mK. For
comparison, the thermopower deduced from the measured conductance using the Mott’s
law is plotted Fig.7.10b for the same tip position. Both signals present the same overall
features though different peaks and dips are visible. Note that the differences between
these two signals are strongly dependent on the chosen tip position.
Colorplots of the thermopower obtained from these two methods are plotted Fig.7.10c
and d as a function of gate voltage and tip position. These two plots show that the
interferences obtained in both signals evolve in the same way with gate voltage. Note
that the signals can become negative in some configurations, because of the tip-induced
interferences lead to dips in the conductance curve G(Vg). Hence the thermopower that
is proportional to ∂G/∂Vg can change sign in some configurations.
These results are the starting point of a deeper analysis with smaller heating currents,
hunting for breakdowns of the Mott’s law in the interferences. Indeed, interesting devia-
tions can be seen in both signals near pinch-off, that are not shown here and still under
investigation at the time this manuscript is written..

7.5 Conclusion

We studied in this chapter the thermopower of quantum point contacts. Though the
devices are not designed for this purpose, we can measure a thermoelectric voltage devel-
oping across the QPC when we heat one side by Joule effect. The Mott’s law allows us
to evaluate the applied temperature difference, at least if we consider the law to be valid
when more than two modes are transmitted.
Important differences are seen between the measured thermopower and the one evaluated
from the Mott’s formula at the opening of the first mode and between the first and the
second modes. These differences are greater in the linear regime for small temperature
differences, and tend to blur for important temperature differences, which is counter-
intuitive, and indicates that electron interactions might be responsible for this breakdown
of the Mott’s law.
We then applied the scanning gate microscopy technique, and obtained images of the
thermopower as a function of tip position that exhibit electronic interferences, just as for
the conductance. Data analysis is still ongoing work, especially near pinch-off where the
interferences obtained in the measured thermopower and the one obtained by the Mott’s
law show qualitative differences.
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Conclusion and perspectives

During this thesis, we studied by different means the conductance anomalies of quantum
point contacts. We have seen that the polarized tip of a scanning gate microscope can be
used in two different ways, that bring distinct informations on the system.

We used the long-range potential of the tip to finely tune in situ the potential of the
QPC channel. By approaching the negatively polarized tip, we can enlarge the low-density
region. Consequently, we have seen that approaching the tip can change the nature of the
ZBA, forming alternatively a single or a split peak, that we interpret as arising from odd
and even Kondo effects, depending on the parity of the localized electrons number. We
have seen that a Wigner-like mechanism, in which electrons would spontaneously form
an ordered 1D chain due to the Coulomb repulsion below a given density threshold is
consistent with our observations. This result arrives at a time where the 0.7 anomaly has
regained interest in the community, and its debated origin has once again been put in
the forefront of the scene by a publication of two different studies in the same journal,
proposing different origins for these anomalies[9, 57]. It also received interest from other
journals, that commented this debate[149]. Indeed, the debate on the origin of the anoma-
lies has turned in recent years to a simple question: does localization occur in QPCs? The
Wigner-like mechanism that we propose offers a new way of looking at this problem, fits
a large range of numerical and experimental investigations, and is completely compatible
with the experiment and interpretation of Ref.[9].
This is a great ingredient on the way to understanding this problem, but does not solve the
whole matter. In particular, our work does not explain the 0.7 anomaly, on the contrary
to what was written in Ref.[115]. Indeed, our work shows that localization can explain the
zero bias anomaly in terms of the Kondo effect, arising at low temperature and restoring
the shoulder created above half transmission (the 0.7 anomaly), if the number of charges
is odd at this opening. We have also seen that if an even number of charges is localized
above the half plateau, the zero bias anomaly is split, hence the 0.7 shoulder is still visible
even at very low temperature. This demonstrates that the Kondo effect can in particular
cases really restore the conductance at low temperature, but lets the origin of the 0.7
“plateau“ unexplained. In particular, it should be understood in the future why it is the
only feature that remains at high temperature (above 4.2K) when all the other plateaus
have disappeared and why it becomes a strong plateau around 0.85 × 2e2/h under DC
source drain bias.
Though our work does not solve this question, it shall guide future theoretical and exper-
imental investigations. In particular, the possible existence of a Wigner crystal in QPCs
has been proposed to explain the 0.7 anomaly[46], but this study relied on an infinite
1D Wigner crystal, in which spin and charge excitations are independent. It could be
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interesting to investigate the finite length case that occurs in QPCs, to see if this effect
still occurs. Transport through a chain of non-uniformly spaced charges could also be
interesting to investigate.
Some ingredients are still missing to perform such investigations in a sane way. In particu-
lar, the exact number of localized charges and their spatial repartition shall be investigated
first, both numerically by completely solving the Poisson-Schrödinger equation in a real-
istic environment, and experimentally with advanced scanning probe techniques. Then
it could be conceivable to investigate theoretically the transport through this state and
really understand what happens in the 0.7 regime.

We have also used the scanning gate microscope to create in situ interferometers and
perform phase-sensitive measurements. We used the depletion region created below the
tip as a movable scatterer to generate interferences between this depletion spot and the
QPC. By studying the temperature dependence of these interferences, we have shown
that they possibly arise from the Fabry-Pérot cavity forming directly between the tip and
the QPC. To confirm this eventuality, that differs from the interferences seen at higher
temperatures in lower mobility samples[60, 71], we developed and studied a new type of
interferometers by designing a sharp gate in front of QPCs. The results obtained on these
interferometers are also compatible with interferences forming between the QPC and the
scatterer, as revealed by perpendicular magnetic field and temperature dependence. This
scenario is also supported by our numerical simulations, that indicate that disorder plays
a non-trivial role in the formation of these interferences, and may be responsible for the
observed contrast on plateaus.
By studying the non-linear behavior of these interferences below the first plateau, we
have discovered that they experience a sharp phase shift in the bias range of the zero bias
anomaly. Though we could not clearly conclude on the exact origin of this phase shift,
simple considerations suggest that it is linked to the universal Kondo phase shift. If it
is confirmed, this would be a final proof for the Kondo nature of the zero bias anomaly.
Moreover, it would open the way to a novel type of interferometric study of the Kondo
phase shift, and allow at last to investigate experimentally the predicted existence of the
Kondo screening cloud.

Finally, we successfully adapted the scanning gate microscopy technique to the study
of thermoelectric transport. Using this technique, we imaged the coherent flow of electrons
driven by a temperature difference, coming out of a QPC. This experiment opens the way
to subtle investigations of the interaction effects, as the potential landscape of the QPC
is almost unchanged using this technique compared to conductance measurements.
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Appendix A

Kwant code example

Here is a Kwant code including different possibilities that I used during my thesis. It de-
fines a QPC, possibly including a disordered potential landscape that has to be stored in
a .dat file. Two typical loops are presented: a first one to calculate the total transmission
of the QPC as function of gate voltage and a second one used to simulate SGM maps
by calculating the total transmission for different tip positions, modeled by a Lorentzian
potential.
It is a starting point for every type of simulations, and one can vary magnetic field, dis-
order amplitude, tip position, gate voltage, etc...

from __future__ import division
import math
from math import atan2, pi, sqrt, cos, sin
from cmath import exp
import numpy as np
from numpy import prod
import kwant
import random
import matplotlib.pyplot as plt

#Define potential created by rectangular gates using the "Davies’" method:
class RectangleGate(object):
def __init__(self, voltage, depth, left, right, bottom, top):
self.voltage = voltage
self.depth = depth
self.left = left
self.right = right
self.bottom = bottom
self.top = top
def __call__(self, pos):
x, y = pos
voltage, d, l, r, b, t = (self.voltage, self.depth,self.left, self.right, self.bottom, self.top)
def g(u, v): return atan2(u * v, d * sqrt(u**2 + v**2 + d**2)) / (2 * pi)
return voltage * (g(x-l, y-b) + g(x-l, t-y) + g(r-x, y-b) + g(r-x, t-y))
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#Define a Lorentzian potential for the tip:
class Lorentzian(object):
def __init__(self, voltage, xcenter, ycenter, radius):
self.voltage = voltage #maximum potential value
self.xcenter = xcenter #Tip center abscissa
self.ycenter = ycenter #Tip center ordinate
self.radius = radius #Decay length
def __call__(self, pos):
x, y = pos
voltage, xc, yc, R= (self.voltage, self.xcenter, self.ycenter, self.radius)
voltage = voltage* R**3/(R**2+abs(x-xc)**2+ abs(y-yc)**2)**(3/2)
return voltage

# Define disordered landscape using a normalized matrix contained in a text file gen-
erated in Scilab:
class Disorder(object):
def __init__(self,volt, voltage, amp, x1, x2, y1, y2, Ltot):
self.volt = volt #Matrix extracted from text file
self.voltage = voltage #local potential
self.amp = amp #energy spreading around Ef
self.x1 = x1 #lower abscissa of the disordered region
self.x2 = x2 #uper abscissa of the disordered region
self.y1 = y1 #lower ordinate of the disordered region
self.y2 = y2 #uper ordinate of the disordered region
self.Ltot = Ltot #disordered region size (nm)
def __call__(self, pos):
x, y = pos
volt, voltage, amp, x1, x2, y1, y2, Ltot = (self.volt, self.voltage, self.amp, self.x1, self.x2,
self.y1, self.y2, self.Ltot)
for i in range (0,Ltot//2):
if x1 + (2*i-2)*(x2-x1)/Ltot < x <= x1 + (2*i)*(x2-x1)/Ltot:
for j in range(0,Ltot//2):
if y1 + (2*j-2)*(y2-y1)/Ltot < y <= y1 + (2*j)*(y2-y1)/Ltot:
voltage = (volt[i,j])*amp
return voltage

# Define the system:
class My2DEG(object):
"""A rectangular system with two leads.
The following attributes may be modified:
a : the lattice constant
pot : a function defining the potential
phi : the strength of the magnetic field
"""

def __init__(self, L, W, a=5):
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self.L = L
self.W = W
assert W % 2 == 1, ’Width has to be odd.’
assert L % 2 == 1, ’Length has to be odd.’

self.a = a
self.pot = lambda pos: 0
self.phi = 0 # phase per plaquette

# Make a square lattice whose origin lies at (0., 0.).
self.lat = lat = kwant.lattice.Monatomic([(a, 0), (0, a)],(0., 0.))
# Build scattering region.
b = kwant.Builder()
b[(lat(x, y) for x in xrange(-L//2, L//2)
for y in xrange(-W//2, W//2))] = self._onsite
b[lat.neighbors()] = self.phase_y

# Build and attach leads:
for direction, lead_onsite in [(-1, self._left_lead_onsite),(1, self._right_lead_onsite)]:
sym = kwant.TranslationalSymmetry(lat.vec((direction, 0)))
lead = kwant.Builder(sym)
lead[(lat(0, y) for y in xrange(-W//2, W//2))] = lead_onsite
lead[lat.neighbors()] = self.phase_x
b.attach_lead(lead)

for lead_onsite, direction in [(self._down_lead_onsite, -1),(self._up_lead_onsite, 1)]:
sym1 = kwant.TranslationalSymmetry(lat.vec((0, direction)))
lead1 = kwant.Builder(sym1)
lead1[(lat(x, 0) for x in xrange(-100, L//2))] = lead_onsite
lead1[lat.neighbors()] = self.phase_y
b.attach_lead(lead1)

kwant.plot(b) #Check the system and leads
self.sys = b.finalized()

def _left_lead_onsite(self, site):
y = site.pos[1]
return self.pot((-(self.L//2) * self.a, y)) + 4.

def _right_lead_onsite(self, site):
y = site.pos[1]
return self.pot((self.L//2 * self.a, y)) + 4.

def _up_lead_onsite(self, site):
x = site.pos[0]
return self.pot((x,-(self.W//2) * self.a)) + 4.
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def _down_lead_onsite(self, site):
x = site.pos[0]
return self.pot((x,self.W//2 * self.a)) + 4.

def _onsite(self, site): return self.pot(site.pos) + 4.

def phase_x(self,a, b):
# """Return hopping integral including the phase from magnetic field for vertical leads."""

ap = a.pos
bp = b.pos
phase = -self.phi * (0.5 * (ap[1] + bp[1]) * (bp[0] - ap[0]))
return -complex(cos(phase), sin(phase))

# def gauge_x_to_y(s):
# return np.prod(s.pos)

def phase_y(self, a, b):
# """Return hopping integral including the phase from magnetic field for horizontal
leads."""
ap = a.pos
bp = b.pos
phase = -self.phi * (0.5 * (ap[1] + bp[1]) * (bp[0] - ap[0]) + np.prod(ap) - np.prod(bp))
return -complex(cos(phase), sin(phase))

def plot_potential(self):
pot, lat = self.pot, self.lat
L, W, = self.L, self.W
arr = np.empty((L, W))
for x in xrange(L):
for y in xrange(W):
arr[x, y] = pot(lat(x - L//2, y - W//2).pos)
# Plot transposed array so that the x axis points to the right.
plt.imshow(arr.T, origin=’lower’)
plt.colorbar()
plt.show()

# Calling the system:
def main():
myfile=’test.dat’
fich=open(myfile,’w’)

# Define potential.
def potential(pos): return sum(gate(pos) for gate in gates)
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d = 100 # depth
L=401 #system length (sites)
W=301 #system width (sites)
V=4.2 #Potentiel split gates
Ef=0.47 #correspond a density ns = 3.1015m−2 (depends on a!)
V2=1 #Third gate potential
Vg3=10 #potentiel rugosites
l=700 #Third gate distance
xc=0 #decallage troisieme grille lateralement
wi=120 #Distance between split gates

#Define QPC split gates:
bottom_gate = RectangleGate(V, d, -650, -450, -1000, -20-wi)
top_gate = RectangleGate(V, d, -650,-450, 20+wi, 1000)

#Define sharp scattering gate for interferometers simulations:
right_gate = RectangleGate(Vg3, d,l, l+375, -40+xc, 40+xc)
tri1 = RectangleGate(Vg3, d,l-2,l,-30+xc, 30+xc)
tri2 = RectangleGate(Vg3, d,l-4,l-2,-17+xc, 17+xc)
tri3 = RectangleGate(Vg3, d,l-6,l-4, -12+xc, 12+xc)
tri4 = RectangleGate(Vg3, d,l-9,l-6, -4+xc, 4+xc)

#Define tip for SGM simulmations:
tip = Lorentzian (V2,400, 0, 40)

#Define disordered potential stored in ’potential.dat’ for example
Ltot = 2001
fluc = np.loadtxt(’potential.dat’)
desordre = Disorder(fluc,0,0.47*10/100,-1000,1000,-1000,1000,Ltot)

#Define items used in the potential
gates = [bottom_gate, top_gate, tip, desordre]

################################

#Let’s go!
qpc = My2DEG(L, W)
qpc.pot = potential
sys = qpc.sys
qpc.plot_potential() #Plot the potential landscape
qpc.phi=0 #Zero magnetic field (can be changed in loops)

#Calculate wavefunction
wf_func = kwant.solvers.default.wave_function(qpc.sys, Ef)
wfs = wf_func(0) #Wavefunction coming out of the left lead
ma=len(wfs)
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modes=range(1, ma)
dens = abs(wfs[0])**2
for mode in modes:
dens += abs(wfs[mode])**2 #sum the different modes’ contribution

#Print wafunc in a file:
for n in range(len(dens)):
site=qpc.sys.site(n)
i = site.pos[0]
j = site.pos[1]
fich.write("%.7f %.7f %.7f \n " % (i,j,dens[n]))

#Plot computed wavefunction:
kwant.plotter.map(qpc.sys, dens)

#Calculate for example G(Vg) curve:
volts = np.linspace(4.3,3,num=10)
for volt in volts:
bottom_gate.voltage = volt
top_gate.voltage = volt
smat = kwant.smatrix(qpc.sys, Ef)
G = smat.transmission(0, 1) + smat.transmission(0, 2) +smat.transmission(0, 3)
print volt, G
#Print gate voltage and total transmission in file:
fich.write("%.7f %.7f \n" % (volt, G))

#Calculate SGM map:
bottom_gate.voltage = 4
top_gate.voltage = 4
xcenters=np.linspace(0,400,num=30)
ycenters=np.linspace(-300,300,num=30)
for yc in ycenters:
tip.ycenter=yc
for vc in xcenters: tip.xcenter=xc
smat = kwant.smatrix(qpc.sys, Ef) #Calculate Smatrix
G = smat.transmission(0, 1) + smat.transmission(0, 2) +smat.transmission(0, 3) #Trans-
missions
print yc, xc, G
#Print tip position and total transmission in file:
fich.write("%.7f %.7f %.7f \n" % (yc, xc, G))

if __name__ == ’__main__’:
main()
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Quantum point contacts exhibit mysterious conductance anomalies in addition to well known
conductance plateaus at multiples of 2e2/h. These 0.7 and zero-bias anomalies have been intensively
studied, but their microscopic origin in terms of many-body effects is still highly debated. Here we
use the charged tip of a scanning gate microscope to tune in situ the electrostatic potential of the
point contact. While sweeping the tip distance, we observe repetitive splittings of the zero-bias
anomaly, correlated with simultaneous appearances of the 0.7 anomaly. We interpret this behaviour
in terms of alternating equilibrium and non-equilibrium Kondo screenings of different spin states
localized in the channel. These alternating Kondo effects point towards the presence of a Wigner
crystal containing several charges with different parities. Indeed, simulations show that the electron
density in the channel is low enough to reach one-dimensional Wigner crystallization over a size
controlled by the tip position.

I. INTRODUCTION

Quantum point contacts1 (QPCs) are among the simplest quantum devices made out of a two-dimensional electron
gas (2DEG). Applying a negative voltage on a split-gate creates a quasi-one-dimensional (1D) channel connected to
large 2D reservoirs. This narrow channel behaves as an electron wave-guide and transmits a finite number of modes,
each of them carrying one quantum of conductance G0 = 2e2/h (e is the electron charge and h the Planck constant).
As a result, the conductance versus gate voltage curve shows a series of quantized plateaus with transitions which are
well reproduced by a single-particle model2.

However, since the early days of QPCs, a shoulder-like feature is commonly observed3 at a conductance around
0.7 G0, which cannot be explained by single-particle theories. With lowering temperature, this “0.7 anomaly” rises to
reach the first plateau, and a zero-bias peak called “zero-bias anomaly” (ZBA) emerges in the non-linear differential
conductance4. These anomalies have been extensively studied through transport experiments3–7, revealing the com-
plexity of the underlying phenomena. Different theoretical models have been proposed8–13, but no consensus could
be reached so far on their interpretation14.

Recently, an experiment using several gates to vary the channel length15 revealed the possible existence of sev-
eral emergent localized states responsible for the conductance anomalies. At the same time, a different theoretical
model was proposed16, explaining the anomalies without invoking localized states in the channel. As stressed in
Ref.17, investigating these anomalies using scanning probe techniques could make it possible to check the existence of
spontaneously localized states and discriminate between these two proposals: this is the aim of the present letter.

Here we perform scanning gate microscopy18 (SGM), in which a negatively charged tip is scanned above the
sample surface and modifies the electrostatic potential in the 2DEG. This local potential change induces electron
back-scattering towards the QPC, which can be used to image single-particle phenomena such as wave-function
quantization in the channel19, branched flow in the disorder potential20, interference patterns induced by the tip21–23,
or to investigate electron-electron interactions inside24 or outside25 the QPC. This movable gate can also be used to
tune in situ the saddle potential of the QPC, in a more flexible and less invasive way than fixed surface gates, and
probe intrinsic properties of the QPC such as the 0.7 anomaly26,27.

Here we show that approaching the tip towards the QPC produces an oscillatory splitting of the ZBA, correlated with
simultaneous appearances of the 0.7 anomaly, thereby confirming that both features share a common origin4,15. We
interpret these observations as the signature of a small one-dimensional Wigner crystal28–30 forming in the channel31

(a quantum chain of charges localized by Coulomb interactions in absence of disorder). The number of charges in this
many-body correlated state is tuned by changing the tip position, leading alternatively to a single- or a two-impurity
Kondo effect (screening of a localized spin by conducting electrons), with a conductance peak either at zero, or at
finite bias, depending on the charge parity.

Our observations therefore strongly support the existence of emergent localized states, as suggested in Ref.15 where
the number of localized charges is controlled by changing the effective channel length. Here we show that a similar
effect is observed when changing the distance of an additional gate placed around the QPC. To understand this new
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result, we perform classical electrostatic simulations and evaluate the size of the region where electrons should form a
1D Wigner crystal thanks to the critically low electron density. We show that the calculated size of this small crystal
is in good agreement with the observed change in the number of localized charges, thereby revealing that Wigner
crystallization is, to our opinion, the correct way to understand this spontaneous localization.

II. RESULTS

Transport measurements

The QPC (see Methods and Fig. 1a) is cooled down to a temperature of 20 mK in a cryogenic scanning probe
microscope32. In the absence of the tip (moved several microns away), the linear conductance shows the usual
staircase behaviour versus gate voltage (Fig. 1b). The shoulder below the first quantized plateau is the puzzling 0.7
anomaly. The source-drain bias spectroscopy (Fig. 1c) shows that this shoulder evolves to a clear plateau at 0.85 G0

at finite bias5,33,34. The narrow peak around zero bias is the ZBA and disappears above 1 K (Supplementary Figure
1). Its width of 200 µeV is much smaller than the 1D subband spacing of 4.5 meV (Fig. 1d). Above 0.7 G0, the ZBA
splits into finite-bias peaks15,35 centred at ±250 µV. We show in the following that the presence of the 0.7 anomaly
is related to this splitting of the ZBA.

Scanning gate microscopy

When the tip is scanned near the QPC and polarized such as to deplete locally the 2DEG (see Methods), we observe
two distinct phenomena. On the first conductance plateau (Fig. 2b), SGM images reveal the electron flow coming
out of the QPC, with fringes spaced by half the Fermi wavelength, as already observed by several groups20,22,23.
The fringes result from interferences of electrons backscattered by the depleted region below the tip and reflected by
impurities20,22 in the 2DEG or directly by the gates21,36.

Below the first plateau (Fig. 2a), SGM maps reveal a novel set of concentric rings centred on the QPC, with a
spacing increasing with tip distance (see also Supplementary Figure 2). As opposed to the previous one-particle
interference fringes, these new rings are not linked to the electron flow (black region in Fig. 2b) but extend rather
isotropically around the QPC, not only in the horizontal plane but in all three directions of space. This is revealed
by scanning the tip in a vertical plane (Fig. 2c), unveiling half spheres centred on the QPC (purple line 1). This
behaviour contrasts with that of interference fringes (green line 2) that quickly disappear when the tip is scanned
more than 50 nm above the surface (see also Supplementary Figure 3). Interferences indeed require electrons at the
Fermi level to be backscattered by a depleted region below the tip, a situation which is only obtained for the tip close

FIG. 1: Transport measurements. Base temperature is 20 mK. (a) Electron micrograph of the QPC gates. The scale bar
is 300 nm. The dashed box indicates the position of the scanning area used in Fig. 2. (b) Differential conductance G at zero
bias versus split-gate voltage Vgate. The 0.7 anomaly is visible below the first plateau. Positions α and β are used in Fig. 2a,b.
(c) Differential conductance G versus source-drain bias for different gate voltage Vgate from -1.08 V to -0.96 V. The zero-bias
peak in the red curve splits into finite-bias peaks in the blue curve. (d) Numerical derivative of the differential conductance
dG/dVgate versus bias and gate voltage. Yellow lines highlight transitions between conductance plateaus.
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enough to the 2DEG (and at low enough temperature to avoid thermal averaging of the interferences). We therefore
conclude that the new rings are not interferences but result from a direct tuning of the electrostatic potential in the
QPC. The larger ring spacing at larger distances results from the smaller potential changes induced by the tip.

Conductance anomalies

To demonstrate that these rings correspond to modulations of the conductance anomalies, the tip is scanned along
a single line in a region with almost no interference (line 3 in Fig. 3a) and the QPC parameters (gate and bias
voltages) are varied. Fig. 3b shows that the ring-related conductance oscillations are only visible for gate voltages
in the transition below the first plateau, just where the ZBA and 0.7 anomaly are observed. Fig. 3c shows how the
conductance oscillations evolve when the average conductance goes from 0 to G0 while changing the gate voltage.
The oscillations are clearly visible between 0.4 and 0.8 G0. They are blurred when approaching G0 because some
interference fringes come into play. The increasing distance between conductance extrema (labeled A to D for maxima
and A’ to D’ for minima) is consistent with an oscillatory phenomenon in the QPC, controlled by the decreasing

FIG. 2: Scanning gate microscopy. Base temperature is 20 mK. (a,b) SGM maps of the QPC conductance G versus tip
position in the (X,Y ) horizontal plane for gate voltages Vgate = −1 V (a) and −0.95 V (b) corresponding respectively to points
α and β as defined in Fig. 1b (gate voltages are shifted by 35 mV in presence of the tip). Concentric rings are only visible at α,
and interference fringes are more contrasted at β. Additional data are presented in Supplementary Figure 2. (c) Schematic view
of the SGM experiment showing the tip scanning above the 2DEG near the QPC gates and three SGM maps. The horizontal
map is the same as in (a), but the data have been differentiated with respect to the Y-coordinate to highlight details. The two
vertical maps are recorded in planes perpendicular to the surface along the purple line 1 (size 500 × 200 nm, gate voltage α)
and the green line 2 (size 250×40 nm, gate voltage β) as indicated on the right image (identical to (a)). The two vertical maps
have been differentiated with respect to their horizontal coordinate to highlight details (raw data are shown in Supplementary
Figure 3). The vertical map along line 1 reveals that the concentric rings visible in (a) form also rings in the vertical plane,
whereas the vertical map along line 2 shows that interference fringes disappear rapidly with the tip-to-surface distance.
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electrostatic coupling to the tip. Plotting the conductance versus gate voltage (Fig. 3d) reveals the oscillatory
behaviour of the 0.7 anomaly. The amplitude of this modulation can be read from Fig. 3e, where curves at positions
X and X’ are compared two-by-two (curves are shifted horizontally to compensate for the drift of the pinch-off voltage
while approaching the tip). Curves at positions A to D are smooth with no shoulder, i.e. no anomaly, whereas
curves at positions A’ to D’ present a reduced conductance above 0.5 G0, i.e. the 0.7 anomaly. The concentric rings
observed in SGM images (Fig. 2a) therefore correspond to an alternating modulation of the 0.7 anomaly when the
tip approaches the QPC.

We now analyse the behaviour of the ZBA when the 0.7 anomaly repeatedly appears and disappears, and show
that both anomalies are linked. Fig. 4a shows the differential conductance versus source-drain bias for different tip
positions (same scan line as in Fig. 3a). Curves at positions A to D have a peak centred at zero bias (ZBA), whereas
curves at positions A’ to D’ have a dip at zero bias and local maxima at ±250 µV bias (splitting of the ZBA), on
top of the same V-shaped background. Scanning the SGM tip therefore produces a repetitive splitting of the ZBA,
that draws a checkerboard pattern in a color-plot of the spectroscopy versus tip position (Fig. 4b). Note that the
spontaneous splitting of the ZBA observed without the tip (Fig. 1c) also shows peaks at ±250 µV and probably has
the same origin.

Considering the regularity of the concentric rings in Fig. 2a, this oscillatory behaviour of the 0.7 and zero-bias
anomalies would be observed for any scanning line in a large range of angles (see Supplementary Figure 4 and
Supplementary Note 1). As a consequence, rings with conductance maxima correspond to a simple staircase in the
linear conductance and a ZBA in the non-linear spectroscopy, whereas rings with conductance minima correspond
to a 0.7 anomaly and a splitting of the ZBA. This result shows that the ZBA suppresses the 0.7 anomaly at low
temperature4 only if the ZBA is not split into finite-bias peaks.

FIG. 3: Modulation of the 0.7 anomaly. The figure analyses the zero-bias conductance oscillations when the tip is scanned
along the orange line 3 indicated in (a) with the origin of positions in the QPC direction. (b) Trans-conductance dG/dVgate

versus tip position and gate voltage. Black regions correspond to transitions between plateaus. The conductance oscillations
are only visible below the first plateau. (c) Conductance G versus tip position for gate voltages Vgate = −0.964 V, −0.983 V,
−0.992 V, −1.000 V, −1.006 V, −1.012 V (from top to bottom). Conductance extrema at Vgate = −1 V (green curve) are
labelled A to D (maxima) and A’ to D’ (minima). The global slope corresponds to the rise of the saddle-point potential when
the tip approaches the QPC. (d) Conductance G versus gate voltage for different tip positions from 0 to 450 nm (successive
curves are shifted to the left). (e) Same data as in (d) but for tip positions A to D (red curves, shifted vertically) and A’ to
D’ (blue curves, shifted also horizontally to be compared with red curves). Red curves show no shoulder, whereas blue curves
show the 0.7 anomaly. Small differences between plateau values come from residual interference fringes.
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III. DISCUSSION

First, we would like to stress again that these new conductance oscillations cannot be explained by interference
effects in the 2DEG. One argument already given above is that interferences require backscattering with a tip close
to the surface, whereas the new rings are observed up to large tip heights (Fig. 2c). A second argument is that
interference fringes would have an increasing spacing for short tip distances because the density is reduced close to
the QPC and the electron wavelength is larger, but the opposite behaviour is observed.
We now discuss a possible single-particle effect inside the QPC that, at first sight, could give similar conductance

oscillations. In case of a non-adiabatic transmission, wave-functions are scattered by the QPC potential barrier
and transmission resonances appear when the barrier length is equal to an integer number of half the longitudinal
wavelength. If the effect of the tip is to change the channel length, such resonances could give conductance oscillations
versus tip distance. However, this single-particle mechanism cannot explain the repetitive splittings of the ZBA which
are simultaneous with the observed conductance oscillations and we therefore need another explanation.
The ZBA in QPCs has been shown to scale with temperature and magnetic field like the Kondo effect in quantum

dots4. This effect corresponds to the screening of a single degenerate level by a continuum of states, and therefore
indicates the presence of a localized spin in the QPC channel11. Splittings of the ZBA have been observed recently

FIG. 4: Successive splittings of the ZBA. The figure analyses the low bias source-drain spectroscopy when the tip is
scanned along the orange line 3 indicated in Fig. 3a. (a) Differential conductance G versus source-drain bias at a fixed gate
voltage Vgate = −1 V for different tip positions from 0 to 450 nm. Successive curves are shifted upwards by 0.0075 × 2e2/h.
Conductance peaks are visible at zero and finite bias on red and blue curves, respectively. (b) Color plot of the same data as
in (a) after subtraction of a smooth background to suppress the main gating effect of the tip. Peak positions are indicated
by dots. The successive ZBA splittings give a checkerboard pattern. The asymmetry results from the bias-induced change of
the QPC position. (c) Schematic of the QPC potential with one (top) and two (bottom) localized electrons, corresponding
respectively to a S = 1/2 ground state with a zero-bias Kondo peak and to a S = 0 ground state with finite-bias Kondo peaks
involving the excited state S = 1 with singlet-triplet energy splitting J . The expected conductance G versus bias V is shown
on the right for each state. (d) Schematic of the QPC potential with an increasing number of electrons localized by Coulomb
interactions. The antiferromagnetic spin coupling in this small 1D Wigner crystal gives either a S = 1/2 ground state (ZBA)
or a S = 0 ground state (splitting of the ZBA), depending on the parity (respectively odd or even).
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in length-tunable QPCs15 and interpreted as a two-impurity Kondo effect37,38, involving non-equilibrium Kondo
screening39,40, as commonly observed in quantum dots with even numbers of electrons42, coupled quantum dots43,
and molecular junctions44.

We now consider different scenarios to explain the presence of such localized states in our system. In a recent work
on QPCs made out of a two dimensional hole gas, a spontaneous splitting of the ZBA as the QPC opens has been
reported35. This effect was attributed to a charge impurity forming a potential well close to the channel, containing
one or two charges, leading to different types of Kondo screening. In our case, the spontaneous splitting of the ZBA
as the QPC opens (Fig. 1c) could be explained by this effect. However, the fact that approaching the tip towards
the QPC results in 4 successive splittings of the ZBA indicates that this impurity should contain at least 8 charges,
which is unlikely for a single impurity. Nevertheless, one could imagine that a shallow quantum dot has formed in the
QPC due to potential fluctuations induced by residual disorder45 and giving Coulomb blockade oscillations as often
observed in long 1D wires46. The major argument to exclude this scenario is that the split-gate has a larger capacitive
coupling to the channel than the tip has (i.e. a larger lever-arm parameter), so the split-gate should induce more
charging events than the tip, but we observe the opposite: approaching the tip by 600 nm produces four successive
splittings of the ZBA and sweeping the gate voltage produces only one splitting. It can therefore not be Coulomb
blockade in a disorder-induced quantum dot.

The only remaining possibility to explain the presence of localized states in the channel is a spontaneous electron
localization which is not induced by potential barriers but instead by electron-electron interactions. Indeed, a large
number of theoretical and numerical investigations show that interactions can localize a finite number of electrons
in the channel12,13,47,48. On the first conductance plateau and below, transport can be considered as 1D, and the
electron density is so low that the Coulomb repulsion overcomes the kinetic energy. When the 1D density n1D

fulfills the criterion n1D × aB < 1, where aB is the effective Bohr radius (10 nm in GaAs), electrons are expected to
spontaneously order in a crystal, with an inter-particle distance minimizing Coulomb repulsion49. This many-body
state, known as a Wigner crystal28,29, has been suggested to be responsible for the 0.7 anomaly in QPCs12. When the
electron density in the channel is decreased below the critical value, the density modulations evolve continuously from
the λF/2 periodicity of Friedel oscillations to the λF/4 periodicity of the Wigner crystal50. Quantum Monte Carlo
simulations have also shown that electrons in the crystallized region can be relatively decoupled from the high density
reservoirs and present an antiferromagnetic coupling J between adjacent spins48. In contrast to the case of quantum
dots with real tunnel barriers, electron localization in a QPC is not straightforward, and results from emergent
barriers in the self-consistent potential. On the other hand, the Kondo effect requires a relatively open system with
a good coupling to the reservoirs, and this makes the QPC a suitable platform to observe Kondo phenomena on an
interaction-induced localized state, as shown recently in length-tunable QPCs15.

This last scenario being the most realistic one in our case, we therefore interpret the four observed oscillations as
a signature of eight successive states of a small non-uniform 1D Wigner crystal with an alternating odd and even
number of localized charges. Situations with an odd number of electrons in a spin S = 1/2 ground state show a ZBA
due to Kondo screening of non-zero spin states. Situations with an even number of electrons in a spin singlet S = 0
ground state show a splitting of the ZBA due to non-equilibrium Kondo screening39,40 of the spin triplet S = 1 excited
state with peaks at a finite bias eV = J (Fig. 4c). The four oscillations, suggestive of eight successive states, reveal
that a large number of electrons can spontaneously localize in the channel of a QPC, as shown in Fig. 4d. Observing
Kondo screening on a system with many localized charges is not so surprising if we compare to quantum dots where
the Kondo effect is observed up to large numbers of electrons41. Nevertheless, the particular case of a 1D chain of
localized charges in the Kondo regime still requires theoretical investigations.
This analysis is consistent with the interpretation given in Ref.15 for similar observations using a QPC with six

surface gates to tune the channel length. Our SGM experiment brings additional information on this effect, since
scanning the tip around the QPC, laterally or vertically, changes the shape, extension, and symmetry of the channel
potential. The circular and almost isotropic rings in Fig. 2c show that the localized states survive to all these potential
deformations. The regularity of the successive rings also suggests that this localization occurs rather independently
of disorder, though possible crystal pinning effects should be investigated in the future.

In Ref.15, the parameter controlling the number of localized states is the effective length of the channel, defined in
Ref.51 and computed using an analytical approach assuming a fixed zero potential at the surface52. This method is not
suitable to model our SGM experiment, as the tip is situated above the surface. To evaluate the potential landscape
in presence of the tip, we perform 3D classical electrostatic simulations in the Thomas-Fermi approximation (see
Methods and Supplementary Note 2) and compute self-consistently the local potential V (x, y) in the 2DEG and the
local 2D electronic density n2D(x, y) (Fig. 5a). In this way, the tip-induced potential is correctly calculated, with the
screening effects from the 2DEG and the metallic gates taken into account. We obtain a good agreement between
calculated and experimental values regarding the gate voltage required to close the QPC, the tip voltage to reach
depletion in the 2DEG, and the cross-talk between the tip position and the QPC opening. The effective channel length
used in Ref.15 was calculated in Ref.51, using the unscreened gate potential. This length cannot be calculated here
from our self-consistent potential, because screening effects induce non-parabolic transverse confinement potentials.
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We propose instead that the parameter controlling the number of localized charges is the size of the region where
the 1D Wigner crystallization should occur. This interaction-induced spontaneous ordering is often discussed in terms
of the Wigner-Seitz radius rs = 1/(2n1DaB), representing the ratio of the Coulomb repulsion to the kinetic energy. A
recent numerical investigation of the 1D Wigner crystallization shows that the critical parameter rcs varies between 0.5
and 2, depending on the strength of the transverse confinement potential49. To evaluate the size of the region where
rs is larger than a given threshold, we calculate the 1D electron density by integration of the 2D electron density in
the transverse direction (Fig. 5b and 5c). As an example, we choose a critical value rcs = 0.71 corresponding to a
critical density nc

1D = 0.7/aB, and evaluate the size Lcrystal where the density is lower than nc
1D. This size is found

to vary from 210 to 290 nm when the tip is approached by 600 nm towards the QPC, which shows that the tip can
strongly affect the size of the low density region, and hence the number of localized charges. The tip positions leading
to the same Lcrystal form rings centred on the QPC, both for horizontal and vertical scanning planes (Fig. 5d and 5e),
in the same way as the conductance oscillations observed in the SGM experiment (Fig. 2c).

Our classical simulation holds only for an estimate of the size Lcrystal, but cannot be used to calculate the number
of localized charges, since quantum mechanics dominates at such a low density. Note that charges in this crystal are
not expected to be uniformly spaced, because the potential of a QPC shows a strong curvature. This non-uniform

FIG. 5: Calculation of the electron density and estimation of the Wigner crystal size. (a) Geometry of the metallic
gates and SGM tip defined in the Comsol simulation software and example of electrostatic potential map computed for a given
gate voltage and tip position. The Fermi energy EF is 8 meV in the 2DEG. (b) Map of the two-dimensional electron density
n2D in the 2DEG computed classically but self-consistently with the potential, when the tip is at 1 µm from the QPC. (c)
One-dimensional electron density n1D obtained by integration of n2D along the y-axis, when the tip is at 1 µm and 400 nm
from the QPC. Choosing a critical density nc

1D = 0.7/aB determines the expected size Lcrystal of the 1D Wigner crystal. (d)
Computed size of the Wigner crystal as a function of tip position in an horizontal plane 30 nm above the surface (Vgate = −1 V).
The region in red corresponds to a closed contact (the electron density is zero at the QPC center for these tip positions). Black
lines indicate tip positions for which Lcrystal is enlarged by 1/nc

1D, corresponding at first order to the addition of one charge to
the crystal. (e) Computed size of the Wigner crystal for tip positions in a vertical plane (above line X1 at 35◦ from QPC axis).
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situation would require an extension of the concept of Wigner crystal which is usually studied in a flat potential
landscape. A rather crude approach to evaluate how many charges can be added by approaching the tip is to suppose
that one charge is added to the crystal each time the region is enlarged by 1/nc

1D (about 14 nm for rcs = 0.71).
With this assumption, about 5 charges can be added to the crystal when the tip is approached close to the QPC
(Fig. 5d). This value is qualitatively consistent with the 4 oscillations observed in the experiment, and interpreted
as the addition of 8 charges. Simulations also show that the number of charges can be modified simply by changing
the split-gate voltage (see Supplementary Figure 5). This could explain the ZBA splitting observed above 0.7 G0 in
absence of the tip (Fig. 1c).

Our assumption that electrons form a 1D system in the low density region is justified a posteriori by the fact
that only the first and second transverse modes are occupied over the length Lcrystal. The presence of the second
mode at the extremities of this region indicates that the system is not strictly 1D, but theory still predicts the
formation of a Wigner crystal in the second subband of quasi-1D wires, forming a zigzag chain53, as possibly observed
in experiments31,54. Interestingly, the simulations show that a small crystallized region survives when the second
mode reaches the central part the channel, which could explain the 0.7 analogues often observed between the first
and second conductance plateaus.

In summary, we observe a periodic modulation of the conductance anomalies in a QPC at very low temperature while
tuning continuously the potential with the polarized tip of a scanning gate microscope. We explain this experimental
observation by the formation of an interaction-induced localized state in the QPC channel, which gives rise to a
single- or two-impurity Kondo effect depending on the odd or even number of localized charges, respectively. Indeed,
electrostatic simulations show that the electron density in the channel is low enough to result in a spontaneous 1D
Wigner crystallization. Our study gives new information on QPC conductance anomalies, which should guide future
theoretical works, and will open the way to further experimental investigations involving fine tuning of the QPC
potential using various methods.

IV. METHODS

Sample and measurement

The QPC is designed on a GaAs/AlGaAs heterostructure hosting a 2DEG 105 nm below the surface with 2.5×1011

cm−2 electron density and 1.0×106 cm2V−1s−1 electron mobility. A Ti/Au split-gate is defined by e-beam lithography
on a mesa with four ohmic contacts and forms a 270 nm long and 300 nm wide opening. The device is fixed to the
mixing chamber of a dilution fridge, in front of a cryogenic scanning probe microscope32,55,56. The QPC is cooled
down to a base temperature of 20 mK at zero gate voltage. The four-probe differential conductance G = dI/dVbias is
measured by a standard lock-in technique, using a 10 µV AC excitation at a frequency of 123 Hz. A series resistance of
600 Ω is subtracted from all data, in order to have the conductance of the first plateau at 2e2/h. Since the temperature
evolution of the zero-bias peak does not saturate below 90 mK, the temperature of electrons in the QPC is probably
below this value.

Scanning gate microscopy

The tip of a commercial platinum-coated cantilever is fixed on a quartz tuning fork, which is mounted on the
microscope actuators. The position of the QPC is determined by SGM, as the tip position corresponding to the
maximum change in conductance while scanning at large tip-surface distance. Then, the tip is lowered to a few tens
of nanometres above the surface and scanned at fixed height on a single side of the 200 nm thick split-gate in the
scanning area shown in Fig. 1a. All the SGM results reported here are obtained for a tip voltage of −6 V and a
tip-to-surface height of 40 nm (except for vertical scans in Fig. 2c starting at 30 nm). Note that the dilution fridge
stays at its base temperature of 20 mK during tip scanning.

Electrostatic simulations

Classical electrostatic simulations are performed with the Comsol software. We model the system in three dimensions
as follows. The 2DEG plane is located 105 nm below the surface according to our heterostructure. The region between
the 2DEG and the surface is filled with the GaAs dielectric constant ǫr = 12.9. The initial electron density in the
2DEG is set at 2.5 × 1011 e−cm−2 by the addition of a uniform plane of positive charges modelling ionized dopants
(in the same plane as the 2DEG for better computation stability). The metallic gates are 120 nm thick and define
a 270 nm wide and 300 nm long constriction, corresponding to our sample geometry. The tip is modelled by a cone
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Introduction

En réduisant la taille des conducteurs et en abaissant la température, on entre dans un
régime où les effets quantiques se font sentir dans le transport électronique. La longueur
de cohérence des électrons devient de l’ordre de la taille du système, et on voit apparaître
leur nature ondulatoire dans les propriétés de transport. Par exemple, à cette échelle
dite mésoscopique, des interférences entre électrons ont pu être mises en évidence dans
les années 80 par des fluctuations universelles de conductance dans des fils très fins[25] et
par des oscillations de conductance dans des anneaux Aharonov-Bohm métalliques[27].
La physique mésoscopique a pris une nouvelle tournure en abaissant la dimension des
conducteurs, en particulier grâce aux gaz d’électrons bidimensionnels (gaz 2D). Ces gaz
2D, tout d’abord réalisés dans la couche d’inversion de transistors de Silicium, ont permis
la découverte de l’effet Hall quantique entier, qui a valu le prix Nobel de physique à
Klaus Von Klitzing en 1985[11]. Cette découverte a démontré que les gaz 2D ouvrent
une nouvelle voie pour l’investigation des effets quantiques en matière condensée. En
modifiant localement le potentiel des gaz 2D à l’aide de grilles métalliques, le transport
électronique a pu être étudié au travers de petits îlots d’électrons (les quantum dot)
et de canaux quasi-unidimensionnels, les contacts ponctuels quantiques (QPC)[26, 28],
où les effets quantiques dominent le transport. Peu après la découverte de l’effet Hall
quantique entier, dans des gaz 2D très propres fabriqués à base de GaAs, la découverte
de l’effet Hall quantique fractionnaire[24] et son explication en termes d’interactions entre
électrons[13] a également valu le prix Nobel à Tsui, St Ormer and Laughlin (1998). Ces
découvertes ont démontré que les gaz 2D offrent non seulement la possibilité d’étudier les
effets quantiques en matière condensée, mais permettent d’étudier les effets d’interactions,
ouvrant un nouveau champ d’investigations de phénomènes passionnants en mécanique
quantique.

Dans cette thèse, nous étudions les effets d’interactions entre électrons dans les sys-
tèmes unidimensionnels. Nous nous intéressons en particulier aux effets d’interactions
dans les contacts ponctuels quantiques. Les QPCs sont de petits canaux quasi-1D, créés
dans les gaz 2D à l’aide de grilles métalliques situées au dessus de la surface, et que l’on
peut ouvrir ou fermer à volonté en appliquant une tension négative sur ces grilles. La
conductance de ces dispositifs est quantifiée, et cela peut se comprendre simplement par
les effets de confinement. En effet, seuls certains modes électroniques transverses sont
autorisés dans ces canaux, et ces modes ne peuvent contribuer à la conductance que si
les électrons ont suffisamment d’énergie pour les occuper. En ouvrant un QPC, de plus
en plus de modes sont accessibles pour les électrons, et comme chaque mode contribue
pour un quantum de conductance (2e2/h), la conductance totale ne peut prendre que des
valeurs entières du quantum de conductance, et évolue par pas séparés de 2e2/h.
Mais depuis que ces dispositifs ont été inventés, des anomalies contredisant cette expli-
cation simple basée sur la mécanique quantique à une particule sont systématiquement
observées. Ces anomalies sont attribuées aux interactions entre électrons, qui compliquent
largement le problème. L’anomalie la plus connue est un petit épaulement observé sous le
premier plateau de conductance, autour de 0.7 × 2e2/h, appelé l’anomalie 0.7. Une autre
anomalie est également visible dans la conductance différentielle à basse température: un
pic de conductance autour de la polarisation nulle: l’anomalie à zéro polarisation (ZBA).
Ces deux anomalies ont concentré les efforts de beaucoup de groupes reconnus dans le
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monde, et sont toujours très débattues aujourd’hui après plus de 15 ans de recherches
intensives, aucune explication n’ayant intégralement convaincu la communauté pour le
moment. Elles traduisent le fait que même dans un système aussi simple qu’un QPC, une
description complète ne peut être obtenue sans prendre en compte les effets d’interactions,
qui sont souvent à l’origine des problèmes les plus riches et les plus complexes en mécanique
quantique.

L’objet utilisé dans cette thèse pour étudier ces effets d’interactions est un microscope
à effet de grille local (ou SGM, pour scanning gate microscopy). Cette technique, dérivée
de la microscopie à force atomique, consiste à modifier localement le potentiel des gaz
2D à l’aide d’une pointe métallique chargée. L’effet de ces modifications de potentiel se
traduit par des changements de la conductance du dispositif, qui est enregistrée tandis
que la pointe se déplace au dessus de la surface. Si on cartographie la conductance en
fonction de la position de la pointe, on obtient alors des images du transport électronique
quantique dans les gaz 2D. Mais un SGM permet bien plus que l’obtention d’images, et la
pointe peut être utilisée comme un paramètre de transport additionnel, permettant une
investigation subtile des phénomènes de transport dans les gaz 2D.
Nous verrons dans cette thèse deux façons d’utiliser la pointe pour révéler des informa-
tions cruciales sur les anomalies de conductance des QPCs. Nous décrirons comment le
potentiel de pointe peut être utilisé pour modifier in situ le potentiel du QPC par un
effet électrostatique à longue portée, et permet de modifier les anomalies de conductance,
révélant ainsi les mécanismes sous-jacents à ces anomalies. Nous verrons également com-
ment la pointe permet de créer in situ des interféromètres incluant le QPC, ouvrant la
voie des expériences interférométriques, et donc sensibles à la phase des électrons, qui
joue un rôle fondamental en mécanique quantique.

Ce manuscrit est organisé comme suit:
Le chapitre 1 présente le transport électronique dans les QPCs, dans les régimes linéaire
et non linéaire, et se base sur des considérations à une particule. Nous présentons égale-
ment un outil numérique: Kwant[8], qui est utilisé au cours de cette thèse pour étudier
les phénomènes de transport dans les gaz 2D. Nous discutons le désordre dans les gaz 2D,
et ses effets sur la conductance des QPCs.
Dans le chapitre 2, nous présentons les effets d’interactions dans les QPCs, et passons
rapidement en revue les observations expérimentales et les propositions théoriques les
plus pertinentes réalisées sur ce sujet.
Le chapitre 3 présente l’outil utilisé dans cette thèse: le microscope SGM. Nous proposons
différentes méthodes pour évaluer le potentiel créé par la pointe au niveau du gaz 2D,
principalement la taille de la zone de dépletion créée sous la pointe, et le potentiel à
longue portée. Nous étudions également les interférences électroniques obtenues dans les
images SGM et discutons des différents mécanismes pouvant leur donner naissance. Nous
présentons enfin des simulations numériques permettant de mieux comprendre le signal
observé en SGM.
Le chapitre 4 présente des interféromètres créés à l’aide d’une troisième grille située en
face des QPC. Nous discutons le transport dans ces interféromètres, et présentons l’effet
de la température et du champ magnétique sur les interférences obtenues. Un parallèle est
fait avec les interférences obtenues en SGM, et nous verrons qu’elles partagent la même
origine. Des simulations numériques permettent également de mieux comprendre le rôle
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complexe du désordre dans la formation de ces interférences.
Dans le chapitre 5, nous présentons le principal résultat obtenu au cours de cette thèse.
Nous verrons comment la pointe permet de modifier les anomalies de conductance des
QPCs, et conforte une expérience récente proposant que les électrons se localisent spon-
tanément dans les QPCs[9]. A la lumière de nos résultats, nous proposons un mécanisme
de type “cristallisation de Wigner” pour expliquer cette localisation. Nous présentons
également des simulations électrostatiques classiques pour étayer ce scénario.
Le chapitre 6 présente une expérience interférométrique sur les QPCs. Nous utilisons la
pointe pour créer des interféromètres de type Fabry-Pérot entre le QPC et la zone déplétée
sous la pointe. Nous mettons en évidence un déphasage des interférences intimement re-
lié à l’anomalie à zéro polarisation, et proposons une ébauche d’explication basée sur la
physique Kondo.
Enfin, nous présentons une nouvelle piste d’exploration expérimentale dans le chapitre 7.
Nous montrons comment nous avons su adapter la technique SGM à l’étude du transport
thermoélectrique des QPCs, et présentons les premières images du transport thermoélec-
trique cohérent des électrons dans le gaz 2D. Nous proposons des pistes d’explorations
que cette nouvelle technique offre pour étudier les effets d’interactions dans les QPCs.

1. Transport dans les contacts ponctuels quantiques

Ce premier chapitre vise à présenter le transport dans les QPCs, sous un angle faisant
abstraction des interactions entre électrons. Une première partie présente les gaz bidi-
mensionnels de haute mobilité obtenus dans les hétérostructures de GaAs/AlGaAs. Nous
présentons les premières réalisations expérimentales de QPCs de la fin des années 80[26,
28]. Le transport électronique à une dimension et la quantification de la conductance en
résultant sont ensuite discutés. Le modèle de Buttiker pour expliquer que les marches de
conductance d’un QPC sont séparées par des transitions douces et non abruptes[4] est
brièvement présenté. Ce modèle se base sur l’hypothèse d’un potentiel de confinement
parabolique dans les directions transverses et longitudinales, et permet de comprendre la
forme des courbes de conductance à basse température.
Nous discutons la conductance non-linéaire, et le fait qu’une quantification demi-entière
est obtenue quand une tension DC de l’ordre de la séparation entre les sous-bandes 1D
du QPC est appliquée. Cette propriété est utile pour faire la spectroscopie des QPC et
connaître l’espacement énergétique entre sous-bandes.
Différents échantillons mesurés au cours de cette thèse sont ensuite présentés ainsi que les
techniques de mesure en deux ou 4 fils pour s’affranchir des résistances de contact.
Nous introduisons l’outil numérique Kwant[8] développé par Xavier Waintal et Christophe
Groth au CEA Grenoble. Je tiens au passage à les remercier pour leur implication et leur
aide indispensable pour modéliser le transport dans nos QPCs et nos interféromètres.
Enfin, nous discutons le rôle du désordre dans les QPCs et illustrons comment le désordre
peut affecter le transport à l’aide de simulations Kwant.

- 3 -



2. Interactions dans les contacts ponctuels quantiques

Nous discutons dans ce chapitre les anomalies de conductance observées dans les QPCs.
Les deux anomalies systématiques sont l’anomalie 0.7, un épaulement à l’ouverture du
premier mode des QPCs, et l’anomalie à zéro polarisation (ZBA), un pic dans la conduc-
tance différentielle autour du source-drain nul.
L’anomalie 0.7 en particulier, était déja visible dès les premières expériences sur ces dis-
positifs. Comme elle peut se confondre avec des signatures du désordre, il a fallu attendre
1996 pour que sa dépendance en température et en champ magnétique soit systématique-
ment étudiée par le groupe du laboratoire Cavendish (Cambridge)[22]. Nous présentons
dans ce chapitre les premier résultats, montrant que le 0.7 devient un plateau à e2/h
sous fort champ magnétique parallèle, et s’estompe quand on abaisse la température sous
∼ 500 mK. Les auteurs ont dès cette première étude révélé que l’anomalie 0.7 est due
aux interactions et au spin des électrons, en proposant qu’une polarisation spontanée
de spin près du pinch-off (à basse densité) pourrait être la cause de cette anomalie. La
dépendance en source-drain et en température a ensuite été détaillée, et révèle un mé-
canisme d’activation thermique qui suit la loi d’Arhénius, avec une certaine température
d’activation[12]. Les auteurs proposent un modèle phénoménologique considérant dif-
férentes sous-bandes pour les deux espèces de spins, séparés par un gap qui dépend de la
tension source-drain, détaillé en Ref.[3].
Cette dépendance en température et en bias a ensuite été revisitée pendant la thèse de
S. Cronenwett[5], à Harvard, sous la direction de Charles Marcus et David Goldhaber-
Gordon. La disparition de l’anomalie 0.7 correspond à l’apparition d’un pic de conduc-
tance autour de la polarisation nulle qui apparaît à basse température: la ZBA[6]. Les
auteurs attribuent ce pic à l’effet Kondo, qui apparaît lorsque les électrons de conduction
écrantent le spin d’un électron localisé.
Différentes études ont été menées depuis[31, 20, 18, 17], qui font état de différences no-
tables entre la ZBA et l’effet Kondo tel qu’il est connu dans les quantum dots. De plus,
l’effet Kondo nécessite un état localisé et la localisation des électrons dans un système
ouvert comme un QPC n’est pas du tout évidente.
Nous discutons à la fin de ce chapitre les modèles (souvent numériques) proposant une
localisation spontanée des électrons dans les QPCs à cause de l’interaction Coulombienne.
Nous discutons des différents mécanismes proposés pour expliquer les anomalies de con-
ductance en supposant une localisation dans le QPC. Enfin, nous présentons brièvement
le débat qui a animé la communauté au cours de cette thèse, par la publication de deux
articles contradictoire publiés face à face dans le journal Nature proposant deux origines
très différentes pour expliquer ces anomalies[9, 2]. Alors que Ref.[9] propose qu’un nombre
fini d’électrons se localisent spontanément dans les QPCs, donnant naissance à deux types
distincts d’effets Kondo selon leur parité, Ref.[2] propose une explication des anomalies
sans faire appel à la localisation des électrons. Leur argument est basé sur le fait que
la densité d’état à une dimension présente une singularité (dite de Van-Hove), et que
combinées à cette singularité, les interactions pourraient expliquer les anomalies de trans-
port. Cependant, les interactions dans ce modèle sont traitées de façon perturbative et
ne permettent pas d’obtenir des anomalies de conductance telles qu’observées expérimen-
talement. Nous discutons au chapitre 5 comment les résultats obtenus au cours de cette
thèse permettent de trancher entre ces deux propositions et apportent une contribution
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significative au débat sur l’existence d’états localisés dans les QPCs.

3. Microscopie à effet de grille local

no L’outil principal utilisé au cours de cette thèse est un microscope à effet de grille local
(SGM). Cette technique est dérivée de la microscopie à force atomique (AFM). A l’aide
d’une pointe métallique chargée, on vient modifier à basse température le potentiel local
d’un dispositif, et on enregistre les changements de conductance induits par ces modi-
fications de potentiel. En enregistrant la conductance en fonction de la position de la
pointe, on peut obtenir des images qui apportent des informations sur le transport dans
le dispositif. Cette technique est particulièrement utile pour l’étude des systèmes à base
d’hétérostructures semi-conductrices, car l’utilisation d’un microscope à effet tunnel est
impossible à cause de la couche isolante qui sépare le gaz 2D de la surface.
Après une rapide revue de l’invention et du développement de cette technique dans les
différents groupes l’ayant adoptée, nous discutons dans ce chapitre les interférences ob-
servées lorsqu’on réalise cette étude sur des QPCs. En effet, les premières images haute
résolution obtenues en scannant la pointe chargée négativement au dessus de la surface en
face d’un QPC ont permis d’observer des chemins ramifiés suivis préférentiellement par
les électrons, décorés par des franges d’interférences électroniques[23], séparées par λF/2.
Nous discutons de l’influence de la mobilité des échantillons sur le type d’interférences ob-
servées. En effet, deux types de franges semblent observées selon la mobilité, qui n’ont pas
la même dépendance en température. Dans les échantillons de mobilité ∼ 2.105cm2/V.s,
des interférences sont observées jusqu’à des températures de 4K, alors qu’elles ne sont pas
présentes dans les échantillons de mobilité 106cm2/V.s ou supérieures[10]. Cependant,
des interférences réapparaissent dans ces échantillons pour des températures plus basses
que 1K. Nous discutons les différences entre ces types d’interférences et les mécanismes
pouvant leur donner naissance.
Nous présentons le microscope SGM principalement utilisé au cours de cette thèse, situé
à Louvain-La-Neuve, et développé dans l’équipe de Vincent Bayot et Benoit Hackens,
avec l’expertise de Frederico Martins et Sébastien Faniel. Nous discutons les interférences
observées sur nos échantillons, et discutons les différents scénarios possibles pour leur
formation, permettant d’expliquer leur dépendance avec l’ouverture du QPC, leur dépen-
dance en température, et en source-drain.
Nous présentons ensuite des méthodes expérimentales et numériques permettant d’évaluer
le potentiel électrostatique créé par la pointe, en s’appuyant sur les interférences et le
“cross-talk”: l’effet direct de la pointe sur l’ouverture du QPC.
Enfin, nous présentons des simulations numériques du transport électronique et montrons
comment Kwant apparaît comme un outil très efficace pour simuler et comprendre le
signal obtenu en SGM.

4. Interféromètres balistiques

Ce quatrième chapitre présente des interféromètres développés au cours de cette thèse.
Ceux-ci sont réalisés par une troisième grille lithographiée à environ un micron des QPCs.
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En appliquant une tension négative sur cette grille, on crée une zone de déplétion au
niveau du gaz 2D qui rétro-diffuse les électrons vers le QPC et crée une cavité Fabry-
Pérot entre cette zone déplétée et le QPC. En appliquant des tensions plus négatives sur
cette grille, la zone de déplétion s’approche du QPC et des interférences apparaissent dans
la conductance totale comme des oscillations en fonction de la tension appliquée.
L’étude en température et en champ magnétique semble supporter l’idée que ces inter-
férences se produisent dans la cavité formée par la troisième grille et le QPC. Des simula-
tions numériques incluant le champ magnétique confirment cette proposition. Cependant,
cette hypothèse simple ne coïncide pas parfaitement avec le fait que des interférences soient
visibles lorsque le premier mode du QPC est parfaitement transmis. Par des simulations
numériques, nous montrons que le désordre résiduel du gaz 2D pourrait être responsable
de ce contraste.

5. Cristallisation de Wigner et effets Kondo dans les

contacts ponctuels quantiques

Dans ce chapitre, nous présentons les résultats les plus importants obtenus au cours de
cette thèse. Nous commençons par détailler l’effet Kondo dans les métaux puis dans
les quantum dots, tout d’abord pour une impureté magnétique portant un spin 1/2.
Lorsqu’un nombre impair d’électrons est contenu dans un quantum dot, le spin total du
dot est 1/2 et l’écrantage de ce spin par les électrons de conduction des réservoirs donne
lieu à une forte augmentation de la conductance différentielle autour du source-drain nul.
Ceci peut être vu comme une augmentation de densité d’état dans le dot à l’énergie de
Fermi des réservoirs à suffisamment basse température. Quand les deux réservoirs sont
alignés, ces deux pics se superposent et donnent lieu à une augmentation de conductance à
travers le dot, on a donc un pic de conductance différentielle à l’équilibre. Sous l’influence
d’un champ magnétique extérieur, ce pic se sépare en deux pics à tensions de polarisation
finies. Ces doubles pics peuvent aussi être observés sans champ magnétique via ce qu’on
appelle “l’effet Kondo pair”. Cette situation peut être obtenue par exemple dans le cas
d’un dot contenant un nombre pair d’électrons. Le niveau fondamental contient alors
un spin total nul, et l’effet Kondo à l’équilibre n’est pas possible, aucune augmentation
de conductance n’est visible. En revanche, l’état triplet excité correspondant à un spin
total 1 peut mener à une augmentation de conductance lorsque les deux niveaux de Fermi
des réservoirs sont espacés en énergie, d’une différence correspondant à l’écart entre le
niveau fondamental et le niveau excité. On a donc un double pic dans la conductance
différentielle.
Une alternance entre ces deux types d’effet Kondo a été récemment reportée dans des
QPCs[9]. En étudiant des QPCs dont la longueur peut être changée à l’aide de plusieurs
grilles métalliques, les auteurs ont montré qu’au fur et à mesure que le QPC s’allonge, la
ZBA passe alternativement d’un simple pic à un double pic, que les auteurs interprètent
comme des effets Kondo successivement impairs et pairs. Ils attribuent ce comportement
à la localisation d’un nombre bien défini d’électrons dans le canal, dont le nombre dépend
de la longueur du QPC, et donnant lieu à l’un des deux types d’effet Kondo selon leur
parité.
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Nous montrons ensuite comment nous pouvons faire une observation similaire avec un
SGM. Lorsque le QPC est placé sous le premier plateau, nous observons en plus des inter-
férences habituelles une série d’anneaux concentriques, centrés sur le QPC. En analysant
comment ces modulations de conductance dépendent de l’ouverture du QPC, nous avons
pu montrer qu’elles correspondent à des apparitions successives de l’anomalie 0.7. En en-
registrant la spectroscopie de ces anneaux sous le premier plateau, nous avons également
pu montrer que ces modulations correspondent à des splittings successifs de la ZBA.
En approchant la pointe du QPC, la ZBA forme alternativement un pic ou deux pics,
exactement comme l’observent Iqbal et al.[9] en allongeant le QPC. Nous interprétons
également cet effet comme une alternance entre un effet Kondo pair et impair, dû à une
alternance de la parité du nombre de charges localisées spontanément dans le QPC. Le
fait que nous puissions changer ce nombre de charges simplement en approchant la pointe
apporte une information intéressante sur la façon dont ces électrons se localisent. A l’aide
de considérations simples et de simulations électrostatiques classiques, nous aboutissons à
la conclusion que le paramètre gouvernant le nombre de charges localisées est la taille de
la zone où la densité électronique est inférieure à un certain seuil. En effet, si on réduit la
densité électronique, il arrive un moment où la répulsion coulombienne devient supérieure
à l’énergie cinétique. On ne s’attend plus alors à avoir un liquide de Fermi usuel mais les
électrons doivent former un cristal de Wigner[29]. A une dimension, cela se traduit par
une chaîne de charges ordonnées, configuration qui minimise l’énergie d’un tel système.
La valeur de la densité critique requise pour atteindre cet état est un problème débattu,
mais des estimations simples correspondant à notre expérience donnent une valeur compa-
rable à celles déduites d’études théoriques sur le sujet comme par exemple celle présentée
Ref.[21].
Nous avons ensuite réalisé cette expérience sur un autre échantillon, et observé globale-
ment les même résultats, traduisant le fait que ce phénomène de cristallisation de Wigner
est bien intrinsèque, et qu’un nombre pair ou impair d’électrons peut se localiser dans les
QPCs donnant lieu à deux différents types d’effet Kondo.

Ce résultat apparaît comme un résultat important dans le domaine des anomalies de
conductance des QPCs, et a été récemment présenté comme résolvant ce problème[7].
Contrairement à ce qui est brièvement proposé dans ce commentaire, nous pensons que
notre travail ne résout pas le problème, mais offre un point de départ à de nouvelles
investigations. En effet, nous avons pu montrer qu’un nombre déterminé de charges se
localise dans les QPCs, et donnent lieu à différents effets Kondo. Lorsque le nombre de
charges est impair, et la ZBA forme un simple pic, nous avons vu que cet effet restaure
l’anomalie 0.7 à basse température. Mais ceci laisse inexpliquée l’anomalie 0.7, et pourquoi
la conductance semble bloquée dans ce régime. Pour comprendre d’où vient cet effet, il
pourrait être intéressant d’étudier théoriquement la conductance à travers une chaîne finie
de charges cristallisées, dont l’espacement évolue probablement le long du canal, avec un
espacement maximum au centre. En effet, l’existence d’un cristal de Wigner a été proposé
comme une explication possible pour l’anomalie 0.7[14], mais cette explication est basée
sur un cristal infiniment long, où les excitations de spins et de charges sont découplées,
et n’ont pas la même dépendance en température. Il serait intéressant de voir si cet effet
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de séparation des excitations se produit dans une chaîne finie.
En parallèle, il serait indispensable de savoir combien de charges composent ce cristal de
Wigner. Dans notre expérience, nous avons des signatures des changements du nombre
de charges, mais n’avons pas accès à leur nombre absolu. Cette investigation pourra
se faire numériquement, en résolvant complètement l’équation de Schrödinger-Poisson
dans un environnement réaliste, en parallèle d’une investigation expérimentale, à l’aide
de techniques de sondes locales avancées. Par exemple, en utilisant un STM sur QPC
défini sur un gaz 2D de surface (qui n’existe pas encore pour le moment), ou à l’aide de
microscopie à force électrique subtile sur un gaz 2D enterré dans une hétérostructure.

6. Mesurer le déphasage Kondo par interférométrie

Dans ce chapitre, nous nous intéressons à la ZBA, et étudions son effet sur les interférences.
Dans une première partie, nous présentons une étude de la dépendance en température
de la ZBA, et de sa largeur, en fonction de l’ouverture du QPC. Comme déja reporté
par différents groupes (par exemple Ref.[6]), la largeur de la ZBA et sa dépendance en
température évoluent en fonction de la tension de grille. Par analogie avec l’effet Kondo,
ces deux quantités doivent être déterminées entièrement par un paramètre unique: la
température Kondo TK . Dans les QPCs, attribuer une température Kondo non ambiguë
à la ZBA n’est pas évident. Il faut considérer une forme différente pour le scaling en
température, par rapport à ce qu’il se fait dans les quantum dots. Nous proposons une
définition pour la température Kondo basée sur une analogie avec des dots asymétriques
(dont les couplages aux deux réservoirs sont différents), offrant une potentielle explication
au fait qu’à très basse température, la ZBA n’atteint pas 2e2/h, mais semble saturer à
une valeur limite qui dépend de l’ouverture du QPC. En effet, dans un dot asymétrique,
on s’attend à ce que la conductance sature à une valeur inférieure à 2e2/h qui dépend des
deux barrières.
La dépendance de la ZBA avec la température peut suivre ce scaling pour certaines valeurs
de TK , et nous montrons que la largeur aux 2/3 du maximum de la ZBA coïncide avec
TK extrait de cette façon. Bien que n’étant pas une preuve, ceci montre que modéliser un
QPC comme un dot asymétrique mériterait d’être exploré plus en détails.

Pour aller plus loin dans l’analogie avec l’effet Kondo, nous regardons ensuite si l’on
peut observer une caractéristique de l’effet Kondo: le déphasage. En effet, les électrons
qui diffusent sur (ou traversent) un singulet Kondo (une impureté magnétique et son
nuage d’électrons l’écrantant) acquièrent une phase de π/2[16]. Cet effet a été vérifié
expérimentalement en plaçant un quantum dot dans le régime Kondo dans l’un des bras
d’un anneau Aharonov-Bohm[30, 19].
Ici, nous proposons d’étudier cet effet dans un interféromètre dont un des miroirs est un
QPC et l’autre est la zone déplétée sous la pointe du SGM. Nous voyons des interférences
comme discuté au chapitre 5, et regardons comment la ZBA influe sur ces interférences.
Nous reportons un déphasage du système d’interférence dans le régime de la ZBA lorsque
le QPC est sous le plateau et que celle-ci est visible. Nous montrons que ce déphasage
apparaît intimement lié à la ZBA. Il est composé de deux changements de phase abruptes,
qui apparaissent sur une fenêtre en énergie qui semble donnée par les largeur aux 2/3 de
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la hauteur de la ZBA. En élevant la température, dans un régime où la ZBA disparaît
mais pas les interférences, nous observons que le déphasage disparaît également. Enfin,
le déphasage est composé de 3 déphasages successifs lorsque la ZBA forme deux pics.

Des considérations simples montrent que le déphasage observé pourrait être relié au
déphasage Kondo, et nous développons en ce moment de petits modèles avec l’aide pré-
cieuse de Pascal Simon, expert dans ce domaine, pour investiguer cette interprétation. Si
ce scénario était confirmé, ceci apparaîtrait comme une preuve irréfutable de la nature
Kondo de la ZBA, et apporterait une contribution significative à ce domaine. De plus, cela
permettrait de comprendre comment se fait le transport au travers du cristal de Wigner
qui se forme dans les QPCs.

7. Imager un flot d’électrons cohérent induit par une

différence de température

Ce dernier chapitre présente un travail en cours à l’heure où cette thèse s’achève, qui con-
cerne la thermoélectricité. Lorsqu’un dispositif est soumis à un gradient de température, il
apparaît dans certaines conditions une différence de potentiel en réponse à cette différence
de température, ce phénomène est appelé effet Seebeck. Ceci est dû à un déséquilibre de
flux d’électrons d’un côté à l’autre sous l’effet de l’agitation thermique. Nous commençons
par un bref rappel de la thermoélectricité en physique mésoscopique, et une description
des premières mesures faites sur les QPCs[15]. Nous discutons le lien entre la conductance
et le pouvoir thermoélectrique, reliés par la loi de Mott. Nous discutons comment des
déviations de la loi Mott peuvent être interprétées comme des signatures des interactions
entre électrons.
Nous présentons ensuite la technique utilisée pour mesurer le pouvoir thermoélectrique et
nos observations expérimentales. A l’aide de la loi de Mott, nous pouvons évaluer la dif-
férence de température que nous appliquons en chauffant un des réservoirs par effet Joule.
Nous observons des déviations à la loi de Mott sous le premier plateau dans la transition
entre le premier et le deuxième plateau, qui pourraient être dues aux interactions, comme
révélé dans la Ref.[1].

Enfin, nous présentons comment adapter la technique SGM à l’étude du pouvoir ther-
moélectrique, et enregistrons la tension thermoélectrique en fonction de la position de la
pointe. Nous obtenons des images d’interférences qui ressemblent beaucoup aux images
de conductance, démontrant la cohérence des électrons dont le déplacement est gouverné
non pas par une différence de potentiel, mais par une différence de température. Cette
technique pourrait permettre à l’avenir une investigation plus fine des effets d’interactions
par la SGM, car les tensions thermoélectriques impliquées par ces effets sont inférieures
au microvolt. Le potentiel du QPC est donc très peu déformé par cette tension, contraire-
ment aux mesures de conductance.
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8. Conclusion et perspectives

Au cours de cette thèse, nous avons étudié les effets d’interactions dans les contacts
ponctuels quantiques. Nous avons utilisé un microscope à effet de grille local afin de mod-
ifier la conductance des QPCs à très basse température. Nous avons distingué deux façons
différentes d’utiliser le SGM qui apportent toutes deux des informations très intéressantes
sur les anomalies conductance.

Premièrement, nous avons utilisé le potentiel électrostatique longue portée de la pointe
polarisée pour modifier in situ le potentiel des QPCs. Nous avons observé dans les im-
ages SGM un nouveau phénomène lorsque le QPC est placé sous le premier plateau, où
les interactions sont les plus importantes à cause de la faible densité électronique: une
série d’anneaux concentriques, centrés sur le QPC. Nous avons montré que ces anneaux
correspondent à des modulations des anomalies de conductance. Ils correspondent à des
apparitions successives de l’anomalie 0.7, et à une ZBA formant alternativement un sim-
ple pic ou un double pic. Nous interprétons ces signatures comme la conséquence d’un
cristal de Wigner se formant à basse densité dans le QPC, et dont le nombre de charges
peut être changé en approchant la pointe. Un nombre pair ou impair de charges donne
naissance à deux types distincts d’effets Kondo. Ce mécanisme de type cristallisation de
Wigner est compatible avec une récente étude montrant qu’un nombre défini de charges
peut se localiser dans les QPCs, et dont le nombre peut être contrôlé à l’aide de plusieurs
grilles déposées sur la surface[9]. Ces résultats écartent une proposition théorique récente
proposant d’expliquer les anomalies de conductance sans faire appel à la localisation
d’électrons dans les QPCs[2]. Mais ceci ne résout pas le problème de l’anomalie 0.7 vieux
de maintenant 15 ans. Nous avons pu montrer que l’effet Kondo peut restaurer l’anomalie
0.7 à basse température si un nombre impair de charges est localisé dans le canal, mais
ceci n’explique pas l’origine de l’anomalie. Pour comprendre ce problème, l’investigation
théorique du transport à travers un petit cristal de Wigner contenant des charges non
uniformément réparties est nécessaire. Il faudra aussi comprendre combien de charges
contient ce cristal, et comment elles sont réparties, à l’aide de microscopies à sonde locale
avancées, et en résolvant numériquement le problème électrostatique associé à un QPC
en prenant pleinement en compte les interactions et les effets quantiques.

Nous avons également utilisé la pointe du microscope pour créer in situ des inter-
féromètres entre le QPC et la zone déplétée par la pointe. La dépendance en tempéra-
ture, des modèles simples et des simulations numériques du problème grâce à Kwant[8]
suggèrent que les interférences visibles dans les images SGM se produisent entre la pointe
et le QPC. Pour confirmer cette éventualité, nous avons créé des interféromètres à l’aide
d’une troisième grille lithographiée en face des QPCs. Appliquer une tension négative
sur cette grille génère des interférences. Leur dépendance en température et en champ
magnétique montrent que ces interférences se produisent dans la cavité formée par le QPC
et la zone de déplétion sous la pointe, et sont donc de même nature que celles observées
en SGM.
A l’aide de la pointe SGM, nous avons étudié comment ces interférences dépendent de la
tension source-drain. Nous observons un déphasage abrupte dans le régime de la ZBA, que
nous attribuons au déphasage dû à l’effet Kondo. Ce scénario, en cours d’investigation,
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pourrait être la preuve que l’effet Kondo est bien le phénomène responsable de la ZBA
dans les QPCs, qui est un sujet encore vivement débattu aujourd’hui.

Enfin, nous avons adapté la technique SGM à l’étude des effets thermoélectriques
dans les QPCs, et observé pour la première fois un flot cohérent d’électrons induit par
une différence de température.
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