
HAL Id: tel-01137771
https://theses.hal.science/tel-01137771v2

Submitted on 26 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

T2/ediT2 : a flexible and easy-to-use model/system for
editing and operationalizing learning scenarios

Péricles de Lima Sobreira

To cite this version:
Péricles de Lima Sobreira. T2/ediT2 : a flexible and easy-to-use model/system for editing and op-
erationalizing learning scenarios. Technology for Human Learning. Université de Grenoble, 2014.
English. �NNT : 2014GRENM081�. �tel-01137771v2�

https://theses.hal.science/tel-01137771v2
https://hal.archives-ouvertes.fr

Université Joseph Fourier / Université Pierre Mendès France /
Université Stendhal / Université de Savoie / Grenoble INP

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Péricles DE LIMA SOBREIRA

Thèse dirigée par Pierre TCHOUNIKINE

préparée au sein du Laboratoire d’Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
Technologies de l'Information, Informatique

T2/ediT2 : Un modèle/système
flexible et facile à utiliser pour
l’édition et mise en œuvre de
scénarios d’apprentissage

Thèse soutenue publiquement le 26 juin 2014,
devant le jury composé de :

M. Christophe CHOQUET
Professeur des Universités. Université du Maine, Rapporteur et Président
du jury

M. Serge GARLATTI
Professeur des Universités. Télécom Bretagne, Rapporteur
M. Franck BELLEMAIN
Professor Adjunto IV. Universidade Federal de Pernambuco, Examinateur
M. Jean-Charles MARTY
Maître de Conférences. Université de Savoie, Examinateur
M. Pierre TCHOUNIKINE
Professeur des Universités. Université Joseph Fourier, Directeur de thèse

Péricles DE LIMA SOBREIRA 2

Thèse en Informatique. Université de Grenoble, 2014

Péricles DE LIMA SOBREIRA 3

Thèse en Informatique. Université de Grenoble, 2014

Péricles DE LIMA SOBREIRA 4

Thèse en Informatique. Université de Grenoble, 2014

Péricles DE LIMA SOBREIRA 5

Thèse en Informatique. Université de Grenoble, 2014

Résumé

La question générale envisagée dans cette recherche est le développement

d’une représentation de scénarios d’apprentissage adaptable et facile à utiliser sous

la forme d’une table (considéré comme un artefact de facile manipulation par les

enseignants), associée à un modèle informatique sous la forme d’en arbre (comme

un moyen d’intégrer des services avancés). Cette représentation permet à des

enseignants sans entraînement méthodologique et ayant des compétences

technologiques de base d’éditer et mettre en œuvre des scénarios d'apprentissage

à partir d’une interface graphique intuitive et flexible.

Bien que cette thèse soit centrée sur des scénarios collaboratifs, l'approche

basée sur un modèle table-arbre (nommé T2) que nous proposons présente un

intérêt plus général. Dans une première phase, nous avons développé à partir de ce

modèle un éditeur de scénarios d'apprentissage (nommé ediT2) proposant des

notions de modélisation utilisées dans les scénarios collaboratifs. Dans une

seconde phase, nous avons considéré des questions de généralisation à travers

l'extension de l’implémentation initiale, de telle manière à permettre aux utilisateurs

d’éditer les notions et leurs attributs.

Nous avons examiné à travers des études et expériences comment des

enseignants ont utilisé notre proposition en tenant en compte comme

objectifs/critères d’évaluation: (1) son expressivité pédagogique, i.e., si des éditeurs

basés sur tables peuvent représenter une large gamme de scénarios

d'apprentissage ; (2) sa facilité et son intuitivité ; (3) son expressivité informatique,

i.e., si l'approche permet l’implémentation de services demandant des manipulations

informatiques complexes ; et (4) sa flexibilité informatique, i.e., s’il est facile

d’adapter l'éditeur à des besoins locaux.

MOTS CLÉS : Environnements Informatiques pour l’Apprentissage Humain ;

Environnements Informatiques pour l’Apprentissage Collaboratif ; Scénarisation ;

Langage de Modélisation Pédagogique ; Conception/Edition/Mise en

Œuvre/Surveillance de scénarios d’apprentissage.

Péricles DE LIMA SOBREIRA 6

Thèse en Informatique. Université de Grenoble, 2014

Péricles DE LIMA SOBREIRA 7

Thèse en Informatique. Université de Grenoble, 2014

Abstract

The general issue considered in this research is the development of an

adaptable and easy-to-use representation of learning scenarios in the form of a

table (considered as an artefact of easy manipulation by teachers) associated with a

computational model as a tree (as a way to integrate advanced services). In this

way, teachers with basic technological skills and without methodological training can

edit and operationalize learning scenarios from flexible and friendly graphical

interfaces.

Although this thesis has its focus on CSCL scripts, the table-tree-based

approach (named T2) presents a more general interest. In a first moment, we

implemented from this model a learning scenario editor (named ediT2) using notions

from CSCL scripts. In a second moment, we considered generalization issues

through the extension of the initial implementation, in order to allow teachers to edit

their own notions and respective attributes.

We investigated from different studies and experiments how teachers used

our proposal considering as objectives/evaluation criteria the following features: (1)

pedagogical expressiveness (can table-based editors represent a wide range of

learning scenarios?); (2) usability (do teachers find the editor easy to use and

intuitive?); (3) computational expressiveness (does the approach allow

implementation of advanced services?), and; (4) computational flexibility (is the

editor easy to adapt to local needs?).

KEYWORDS: Technology Enhanced Learning; Computer-Supported Collaborative

Learning; Scripting; Educational Modeling Language; Design/Edition/

Operationalization/Monitoring of Learning Scenarios.

Péricles DE LIMA SOBREIRA 8

Thèse en Informatique. Université de Grenoble, 2014

Péricles DE LIMA SOBREIRA 9

Thèse en Informatique. Université de Grenoble, 2014

Remerciements

Comment remercier en quelques paragraphes à tous ceux qui sont passés

dans ma vie et qui m’ont amené jusque-là ? Impossible, n’est-ce pas ? Mais je vais

essayer…

Tout d’abord, je voudrais remercier à mon bon Dieu, de m’avoir donné les

moyens et les forces d’y arriver. Merci, my Lord.

Bien sûr, à toute ma famille, spécialement à ma mère (Neuza), mes frères

(Tarita et Rhadamés), mon épouse (Joelma) et mes enfants (Hannah, Isabelle et

Péricles Filho), de toujours m’avoir soutenu et dit les bons mots pour m’encourager.

Merci à tous d’avoir été à mes côtés pendant toutes ces années, dans les bons

comme dans les mauvais moments, à me soutenir dans la concrétisation de ce rêve

(sans vous je n’aurais jamais réussi). Merci de tout mon cœur à vous tous.

Si je regarde en arrière, je me souviens de mes maîtres et de mes

collègues de l’école primaire, du collège et du lycée, et en particulier de mon

professeur de mathématiques à Recife qui m’a toujours démystifié les chemins de

l’Algèbre et de la Géométrie, Professeur Reginaldo Gomes. A vous tous, merci

beaucoup. Aussi, à mes collègues de Universidade Federal de Pernambuco, tout

comme à mes professeurs à qui je remercie sincèrement, plus particulièrement à

Franck Bellemain, qui m’a introduit dans le domaine de l’apprentissage assistée par

la technologie, qui m’a aidé à avancer vers le chemin de l’investigation scientifique

et qui finalement m’a recommandé à mon Directeur de Recherche Pierre

Tchounikine, lors de ma démarche d’admission dans l’Ecole Doctorale

Mathématiques, Sciences et Technologies de l'Information, Informatique de

l’Université de Grenoble. Je ne saurais jamais assez te remercier Franck.

En France, je voudrais remercier tous mes collègues qui m’ont

chaleureusement accueilli au sein de l’équipe MeTAH : mes jours sont devenu

meilleurs avec vos mots de réconfort et de motivation. Un grand merci à toutes ces

personnes spéciales : Anne, Aurélie, Ben, Cédric, Celso, Chrysanthi, Claire, Hamid,

Isabelle, Jacques, Jean-Michel, José-Luis, Marjolaine, Muriel, Nachoua, Nadine,

Patricia, Patrick, Pierre, Rachel, Reinaldo, Viviane et Zilora.

Je voudrais enregistrer mes éternels remerciements à mon directeur de

thèse, Pierre Tchounikine, pour m’avoir accepté, avoir cru en moi et en mon

potentiel dès nos premiers échanges alors que j’étais encore au Brésil. Je m’en

souviens aussi des premiers mots que nous avons échangé dès que je suis arrivé

en France. Il m’a demandé « Comment est-ce que vous vous sentez ? », et je lui ai

répondu « J’ai peur », et il m’a soudainement dit : « Ne vous inquiétez pas, nous

sommes là pour vous soutenir ». Aujourd’hui je peux te dire une chose, le doctorat a

été un stage très important dans ma vie, qui s’est très bien passé à tes côtés. Merci

beaucoup pour tout Pierre.

Péricles DE LIMA SOBREIRA 10

Thèse en Informatique. Université de Grenoble, 2014

Mes sincères remerciements à mon jury de thèse d’avoir accepté d’en faire

partie: Christophe Choquet (Université du Maine), Serge Garlatti (Télécom

Bretagne), Franck Bellemain (Universidade Federal de Pernambuco) et Jean-

Charles Marty (Université de Savoie). Vous m’avez montré qu’il existe encore des

étapes à suivre au-delà de mon horizon. Merci aux Messieurs Choquet et Garlatti,

de m’avoir fait l’honneur d’accepter d’être rapporteurs de cette thèse : merci pour

les commentaires et suggestions faites avant et pendant la soutenance. Merci à

Monsieur Marty, pour montrer des points d’instigation à travailler entre notre

recherche et la sienne. Et un autre merci à Franck Bellemain, qui était encore une

fois présent dans cette étape de ma formation et de ma vie.

Merci aux personnes qui ont participé aux expérimentations faites pour la

validation de nos idées. Un merci très spécial à Christine Tchounikine, Hamid

Chaachoua et Philippe Dessus, qui nous ont permis de travailler avec plusieurs

enseignants et de mettre au point nos idées pendant le déroulement de cette

recherche. Merci également au groupe de recherche GSIC de Universidad de

Valladolid, qui a collaboré dans plusieurs points de ce travail. Merci à vous, Chus,

LP, Asensio et Dimitriadis pour tout le soutien donné.

Finalement, un remerciement très spécial à mes amis de Grenoble et du

Brésil : Jai, Guga, Vitão, Marcão, Afonso Henriques, Jauberth, Suely et Bringel, Bia

et Cesar. Vos encouragements m’ont beaucoup aidé. Je garderais de très bons

souvenirs des journées et des nuits où nous parlions de notre avenir en France, des

fou rires, et surtout quand vous essayiez de m’apprendre quelques jeux de cartes.

Merci à vous tous. Je voudrais finaliser ces remerciements à mes amis qui ont eu la

patience de revoir et corriger la version finale de cette thèse : Brigitte, Jack et

Adriano, merci pour toute votre aide et amitié.

Péricles DE LIMA SOBREIRA 11

Thèse en Informatique. Université de Grenoble, 2014

"Don't gain the world and lose your soul.

Wisdom is better than silver and gold"

Bob Marley

Péricles DE LIMA SOBREIRA 12

Thèse en Informatique. Université de Grenoble, 2014

Péricles DE LIMA SOBREIRA 13

Thèse en Informatique. Université de Grenoble, 2014

Contents

1 Introduction ... 21

1.1 General context .. 24

1.2 Thesis organization... 25

2 Representation and edition of CSCL scripts 27

2.1 CSCL scripts .. 30

2.2 Review of activities ... 31

2.3 Learning scenarios languages and platforms 33

2.3.1 General modeling-based perspective 33

2.3.2 CSCL modeling-based perspective .. 34

2.3.3 Pattern-based approaches ... 36

2.3.4 Operationalization-based approaches 36

2.4 Flexibility in CSCL scripts ... 37

2.5 Review of matters of concern and objectives 39

3 Problematic, adopted approach and methodology 41

3.1 Considered issue .. 43

3.2 Research question .. 43

3.3 Adopted approach .. 44

3.4 Historical dimensions and methodology 45

4 The T2 model and the ediT2 editor .. 47

4.1 General considerations ... 50

4.2 The table/tree structure ... 50

4.3 Proof of concept – the ediT2 editor .. 53

4.4 Semantics .. 56

4.5 Offered flexibility ... 59

4.6 Constraints ... 60

4.6.1 The allocation of items into table cells 60

4.6.2 The script-structure ... 61

4.6.3 The 1-n relationship ... 61

4.7 Adding control rules .. 64

4.8 T2 tree manipulation algorithms ... 65

5 Validation of ease of table-tree representation, perceived flexibility
and pedagogical expressiveness .. 67

5.1 Initial considerations ... 69

5.2 Is the model/system easy to use? .. 69

5.2.1 First usability test .. 69

5.2.2 Second usability test.. 71

Péricles DE LIMA SOBREIRA 14

Thèse en Informatique. Université de Grenoble, 2014

5.2.3 Analysis of the technical competences required to use the editor

with respect to teachers’ ICT skills ... 72

5.2.4 Discussion .. 73

5.3 Do teachers avail themselves of the flexibility provided? 74

5.4 Does a table notation allow representation of a wide range of

scenarios? ... 78

6 Enhancing the editor/model through the development of advanced
functionalities .. 80

6.1 General considerations ... 83

6.2 Instantiation support ... 83

6.3 Respect of constraints .. 86

6.4 Representation of complex scheduling structures 88

6.5 Simulation .. 92

7 Operationalization ... 95

7.1 General considerations ... 98

7.2 Middleware-based strategy ... 98

7.3 Ad hoc strategy .. 101

7.4 Focus on technical representation transformations................... 103

7.5 Discussion .. 104

8 Editor generalization ... 106

8.1 Initial considerations ... 109

8.2 Developing a specific variant: the MediaWiki example 109

8.3 A generic editor .. 112

8.3.1 Making the editor generic ... 112

8.3.2 Example #1: using an ediT2 variant to represent preparation

sheets .. 114

8.3.3 Example #2: using an ediT2 variant to represent SceDer

scenarios .. 115

8.3.4 Example #3: introducing monitoring information in the scenario

design .. 116

9 Discussion, conclusions and perspectives 119

9.1 Discussion .. 122

9.1.1 Originality .. 122

9.1.2 Application scope .. 123

9.1.3 Relation with other works ... 124

9.2 Conclusions .. 126

9.3 Perspectives and exploratory work .. 127

9.3.1 General perspectives ... 127

9.3.2 Monitoring perspective: exploratory work 128

Péricles DE LIMA SOBREIRA 15

Thèse en Informatique. Université de Grenoble, 2014

Appendix A – Approach’s architectural considerations 132

Appendix B – t2ML... 134

B.1 t2ML Schema .. 134

B.2 t2ML Document ... 135

Appendix C – Trace files considerations .. 146

Appendix D – Using ediT2 to represent CSCL scripts 147

D.1 MURDER .. 148

D.2 Social .. 148

D.3 Pyramid .. 149

D.4 ConceptGrid .. 149

D.5 Universanté ... 150

D.6 MagicBook .. 150

D.7 RSC .. 151

D.8 Signifié-Signifiant Collaborative Play 151

D.9 Scaffolding Group Feedback and Explanation During Practice

Time 152

D.10 ArgueGraph .. 153

Appendix E – Analysis of the work .. 154

Bibliography .. 158

Péricles DE LIMA SOBREIRA 16

Thèse en Informatique. Université de Grenoble, 2014

List of Figures

Figure 2.1 A reciprocal-teaching script, adapted from (Palincsar and Brown,
1984 apud Kollar et al., 2006) .. 31

Figure 2.2 A jigsaw script, adapted from (Hernández-Leo et al., 2006) 31
Figure 4.1 A jigsaw script (Figure 2.2) as a table ... 51

Figure 4.2 The jigsaw script (Figure 4.1) as a tree ... 51

Figure 4.3 The ediT2 general interface (jigsaw script (Figure 2.2) from the first

usability test, Chapter 5) .. 54

Figure 4.4 Using ediT2 to represent the reciprocal-teaching script (from the first

usability test, Chapter 5) .. 55

Figure 4.5 “Split a cell” algorithm ... 65

Figure 4.6 “Move left/right a column” algorithm .. 66
Figure 6.1 Possible interfaces to inform jigsaw (top) and reciprocal-teaching
(bottom) scripts’ data configuration .. 85
Figure 6.2 Instantiation mechanisms for jigsaw scripts 85
Figure 6.3 Automatic generation of a jigsaw script (the tree (left) and parts of
the table presentation (right)) ... 86
Figure 6.4 Firing out the pattern constraints verification module (to the jigsaw
pattern with “22 students shared in extensible groups of 4 students” as
configuration parameters) .. 87
Figure 6.5 Interoperating ediT2 and jBPM ... 90
Figure 6.6 A generated jBPM skeleton (from the jigsaw script presented in
Figure 4.3) ... 90
Figure 6.7 Completed workflow ... 92
Figure 6.8 Completed workflow + simulation ... 93
Figure 7.1 ediT2-GLUE!-PS mapping (from the jigsaw script presented in
Figure 4.3) ... 99
Figure 7.2 GLUE!-PS–Moodle mapping from the jigsaw script presented in
Figure 4.3 (administrative (teacher) view) .. 99
Figure 7.3 A possible design of a simple role-play script from ediT2 100
Figure 7.4 A simple role-play script deployed into Moodle via GLUE!-PS (from
the script presented in Figure 7.3) ... 101
Figure 7.5 New ediT2 play service (top). List of Moodle courses that a specific
student (“e1”) is enrolled (middle). List of resources of a course assigned to
such student (bottom) .. 103
Figure 7.6 Transforming the representation from one script-structure to another
 ... 104
Figure 8.1 “Brazil” scenario example modeled from the ediT2-MediaWiki
instantiation .. 110
Figure 8.2 The “Brazil” scenario (Figure 8.1) when deployed into MediaWiki 111
Figure 8.3 User rights in the edition of wiki pages (“Debie” and “John”
accessing the “Brazil’s history” Topic).. 111

Péricles DE LIMA SOBREIRA 17

Thèse en Informatique. Université de Grenoble, 2014

Figure 8.4 Instantiation mechanism for a wiki-based pattern 112
Figure 8.5 Defining the general and instance attributes for the “Task” notion 113
Figure 8.6 Learning scenario designed with general and instance lists of
attributes .. 113
Figure 8.7 “Classroom preparation sheet” scenario 114
Figure 8.8 The “Chem Drawing” scenario (extract copied in extenso from
Niramitranon et al., 2010) .. 116
Figure 8.9 The “Chem Drawing” scenario (Figure 8.8) designed from the ediT2-
SceDer tool .. 116
Figure 9.1 ediT2 used as a script conducting cockpit (from the jigsaw script
presented in Figure 4.3): the first activity is run out (top); the first activity is
monitored (bottom) .. 129
Figure A.1 ediT2 general architecture .. 132
Figure D.1 The “MURDER” script narrative (top) and representation (bottom)
(Dansereau et al., 1979 apud Kobbe et al., 2007) ... 148
Figure D.2 The “Social” script narrative (top) and representation (bottom)
(Weinberger et al., 2005 apud Kobbe et al., 2007) .. 148
Figure D.3 The “Pyramid” script narrative (top) and representation (bottom;
instanced for 6 students) (adapted from Karakostas and Demetriadis, 2009) 149
Figure D.4 The “ConceptGrid” script narrative (top) and representation (bottom;
instanced for 2 groups composed by pairs) (adapted from Dillenbourg et al.,
2009).. 149
Figure D.5 The “Universanté” script narrative (top) and representation (bottom;
instanced for triplets from 3 different countries) (Dillenbourg and Jermann, 2007
apud Kobbe et al., 2007) .. 150
Figure D.6 The “MagicBook” script narrative (top) and representation (bottom;
instanced for 3 students) (adapted from Dillenbourg, 2002) 150
Figure D.7 The “RSC” script narrative (top) and representation (bottom;
instanced for 3 students) (Betbeder and Tchounikine, 2003 apud Dillenbourg
and Tchounikine, 2007 (adapted)) ... 151
Figure D.8 The “Signifié-Signifiant Collaborative Play” script narrative (top) and
representation (bottom; here, the change of the teams’ roles is not modeled for
the figure readability sake) (Ioannidou and Dimitracopoulou, 2003, 2004 apud
Van de Velde et al., 2004 (adapted)) ... 152
Figure D.9 The “Scaffolding Group Feedback and Explanation During Practice
Time” script narrative (top) and representation (bottom; instanced for 3 students
and considering that in the second activity all students have agreed on a same
correct answer) (adapted from Roschelle et al., 2009) 152
Figure D.10 The “ArgueGraph” script narrative (top) and representation
(bottom; instanced for 4 students) (Dillenbourg and Jermann, 2007 apud Kobbe
et al., 2007) .. 153

Péricles DE LIMA SOBREIRA 18

Thèse en Informatique. Université de Grenoble, 2014

List of Tables

Table 4.1 A basic interpretation of the is-associated-with generic relationship . 57

Table 4.2 Basic actions to adapt a script (examples from the script presented in

Figure 4.4) .. 57

Table 4.3 Rationale for the 1-n with n ≥ 1 relationship 62

Table 4.4 Examples of manipulations of script representations and propagations

 ... 64

Table 5.1 The French usability test protocol ... 70

Table 5.2 Questions related to the editor and number of answers 71

Table 5.3 The Spanish usability test protocol ... 72

Table 5.4 Script skeletons .. 75

Table 5.5 Number of different involved items ... 76

Table 5.6 Modifications of script-structures .. 76

Table 5.7 Users’ actions ... 77

Table 6.1 Examples of pattern constraint-checking mechanisms (to the jigsaw

pattern) ... 87

Péricles DE LIMA SOBREIRA 19

Thèse en Informatique. Université de Grenoble, 2014

Abbreviations

Application Programming Interface API

Computer Based Pedagogical Setting CBPS

Computer Supported Collaborative Learning CSCL

Educational Modeling Language EML

Information and Communication Technology ICT

Instructional Management Systems – Learning Design IMS-LD

Learning Management System LMS

Learning Scenarios Editor LSE

Not Applicable N/A

Rich Desktop Application RDA

Rich Internet Application RIA

T2 model Table-Tree model

Technology Enhanced Learning TEL

Péricles DE LIMA SOBREIRA 20

Thèse en Informatique. Université de Grenoble, 2014

Péricles DE LIMA SOBREIRA 21

Thèse en Informatique. Université de Grenoble, 2014

1 Introduction

1.1 General context

1.2 Thesis organization

Péricles DE LIMA SOBREIRA 22

Thèse en Informatique. Université de Grenoble, 2014

Résumé en français

Les outils informatiques pour la gestion de scénarios d’apprentissage peuvent

offrir différents services en fonction de leur publics cibles : outils orientés vers le design

pour les ingénieurs pédagogiques ; outils orientés vers l’édition pour les enseignants ;

outils orientés vers la mise en œuvre pour le personnel technique ; ou outils orientés

vers l’accompagnement pour les enseignants/tuteurs.

Si nous considérons des pratiques générales, c’est-à-dire, celles des

enseignants ayant des compétences technologiques de base et sans entraînement

méthodologique, l’utilisation de ces outils est peu développée. L’une des raisons est

que des langages/plateformes devraient prendre en compte le fait que les enseignants

espèrent que les outils pédagogiques soient faciles à utiliser et adaptables à leurs

besoins.

Dans ce contexte, la problématique générale envisagée dans cette thèse est

de comprendre comment offrir à ces utilisateurs des outils pour la représentation et la

mise en œuvre de scénarios collaboratifs et plus généralement, de scénarios

d’apprentissage. L’objectif est de proposer un éditeur flexible, qui offre une interface

intuitive pour des enseignants avec des compétences technologiques de base et sans

entraînement particulier, et qui peut offrir, si/quand nécessaire, des services

additionnels similaires à ceux de l’état de l’art.

La contribution que nous proposons est une approche basée sur la relation

entre : (1) une représentation de scénarios d’apprentissage adaptable et facile à utiliser

sous la forme d’une table (qui est connue comme un artefact de manipulation facile), et

(2) un modèle informatique sous la forme d’un arbre, qui permet notamment d’intégrer

des services avancés. Cette proposition ne vise pas à remplacer les approches

classiques basées sur un méta-modèle détaillé de scénario et une représentation en

graphe. Son but est plutôt d’offrir un modèle alternatif simples, flexible et intuitif, à

utiliser si/quand nécessaire.

Notre approche a comme inconvénients le fait que son modèle de base offre

une expressivité limitée et qu’elle est permissive (i.e., ne contrôle pas les

représentations des utilisateurs autant qu’une méta-modélisation le permet).

Cependant, ces inconvénients peuvent être surmontés avec l’amélioration de ce

modèle de base par des extensions. Dans cette recherche, nous avons considéré

comme des extensions de notre éditeur les services suivants : l’instanciation de

patterns de scénarios ; des mécanismes de simulation et de vérification de contraintes ;

l’interopération de l’éditeur avec d’autres moyens spécialisés, comme les moteurs de

workflow (pour représenter des structures complexes de planification) ou les

plateformes de mise en œuvre (pour l’opérationnalisation et le suivi de sessions de

scénarios).

Péricles DE LIMA SOBREIRA 23

Thèse en Informatique. Université de Grenoble, 2014

De façon à étudier cette approche, nous avons développé un éditeur basé sur

ces principes (l’éditeur ediT2) et avons effectué des expérimentations et des études

exploratoires pour analyser comment les enseignants perçoivent et utilisent cet outil, en

prenant comme objectifs/critères d’évaluation : (1) son expressivité pédagogique, i.e.,

le fait qu’un éditeur basé sur une table peut représenter une large gamme de scénarios

d'apprentissage ; (2) sa facilité et son intuitivité ; (3) son expressivité informatique, i.e.,

si l'approche permet l’implémentation de services demandant des manipulations

informatiques complexes, et finalement ; (4) sa flexibilité informatique, i.e., s’il est facile

d’adapter l'éditeur à des besoins locaux. ediT2 a été initialement conçu de façon à offrir

un ensemble standard de notions collaboratives. Dans une deuxième étape, nous

avons considéré un contexte plus général pour augmenter ses possibilités d’intégration

avec d’autres plateformes, pas forcément collaboratives, en permettant l’édition des

noms des notions et de leurs attributs.

Péricles DE LIMA SOBREIRA 24

Thèse en Informatique. Université de Grenoble, 2014

1.1 General context

A Computer Supported Collaborative Learning (CSCL) script is a learning

scenario designed to enhance collaborative activities.

Computer-based means to manage learning scenarios can offer different

services depending of their target public: design-oriented tools for instructional

designers; editing-oriented tools for teachers; implementation-oriented tools for

technical staff; and conducting-oriented tools for tutors.

If we consider general practices, i.e., teachers with basic technological skills

and no particular CSCL methodology training, the use of these tools has not been really

developed. One of the reasons is that languages/platforms should take into

consideration that teachers expect educational tools to be easy to use and adaptable to

their contexts (Williams et al., 2004).

The general issue we have considered in this thesis is how to offer to not-

specifically-trained teachers tools to edit and operationalize CSCL scripts and, more

generally, learning scenarios.

The contribution we propose is an approach based on relating: (1) an easy-to-

use end-user representation in the form of a table, known as a device of easy

manipulation by teachers, with; (2) a machine model of the script as a tree, as a way to

reach advanced services.

The table-tree model introduces structural expressiveness and semantics which

are limited but straightforward and intuitive. The table presentation enables direct

interaction through natively-simple mouse-manipulations as in office suites (e.g.,

inserting a new activity/task in a script is achieved by the insertion of a new row in the

table).

This proposal is not meant to replace the mainstream approach, which consists

in offering a graph-based representation of scripts based on a meta-model representing

in detail the different conceptual aspects of scripts. Rather, the proposed approach is

meant to offer an alternative featuring simplicity, easiness and flexibility, to be used if

and when needed.

The drawbacks of the proposed approach are that its basic model offers limited

expressiveness and is permissive, i.e., does not control users’ representations as much

as a meta-model approach allows to. However, these drawbacks may be overcome by

enhancing the basic model with extensions. In this work, we considered extensions

related to the following complex services: instantiation support; constraints-checking

and simulation mechanisms; interoperating the editor with other specialized means

Péricles DE LIMA SOBREIRA 25

Thèse en Informatique. Université de Grenoble, 2014

such as workflow engines (to represent complex scheduling structures) or enactment

frameworks (to operationalize and monitor script sessions).

To study this approach, we have implemented an editor based on this principle

(the ediT2 editor) and conducted exploratory studies and experiments to analyze how

teachers perceived and used such a tool. For this, we considered the usability (“is the

model/system easy to use?”), perceived flexibility (“do teachers avail themselves from

the flexibility provided by the approach?”) and expressiveness (“does a table notation

allow representation of a wide range of scenarios?”) features. For these purposes,

ediT2 was designed to offer a standard set of CSCL notions, i.e., “activity”, “group”,

“participant”, “resource” and “role”. Usability was evaluated by in-lab experiments. The

fact that the approach allows offering similar services to state-of-the-art systems was

shown by implementing proofs-of-concepts. In a second phase, we considered

generalization issues. We extended the initial ediT2 implementation to allow editing the

notions and respective attributes to be offered by the editor, which increases the

possibility of integration with other platforms, not necessarily CSCL featured. Although

this thesis has its focus on CSCL scripts, the table-tree-based approach does present a

more general interest.

1.2 Thesis organization

In Chapter 2, we recall CSCL scripts basics, discuss flexibility issues, and

present the main characteristics and services offered by state-of-the-art languages and

platforms.

In Chapter 3, we present in more details the considered issue in this thesis: the

construction of a flexible CSCL script editor offering a friendly interface for teachers

with basic technological skills and without special training; and which can offer, if/when

necessary, additional services similar to that of state-of-the-art systems. We conclude

this chapter presenting the adopted approach and the methodology used.

In Chapter 4, we present the proposed decoupling approach within which a

scenario is modeled as a tree and presented as a table (T2 model). A possible T2-based

script editor (named ediT2) is proposed and developed. We conclude this chapter

discussing the semantics and constraints of the model, and some of its algorithms of

manipulation.

In Chapter 5, we present the results of some studies and experiments

performed to analyze the viability of the use of ediT2 to design and operationalize

CSCL scripts. Usability, perceived flexibility and expressiveness are investigated.

In Chapter 6, we discuss and extend the basic ediT2 implementation through

tree manipulations (still in correspondence with the T2 model) to support, via add-ons,

some advanced services existing in other learning editors/languages: instantiation

Péricles DE LIMA SOBREIRA 26

Thèse en Informatique. Université de Grenoble, 2014

support, respect of constraints, representation of complex scheduling structures and

simulation.

In Chapter 7, we continue to describe the extension of ediT2 through the

development of a new service: the operationalization of the represented scenario on

LMSs such as Moodle (from two different strategies – by middleware and by ad hoc

means).

In Chapter 8, we describe why and how we extended ediT2 (still in

correspondence with the T2 model) to allow users to edit the names and respective

attributes of the notions involved in the modeling of learning scenarios. We describe

how we adapted ediT2 notions/attributes to allow users to: (1) operationalize ediT2

scenarios via a wiki platform; (2) represent preparation sheets; (3) model ediT2

scenarios compliant with another CSCL learning design editor, and; (4) introduce

monitoring information in the ediT2 design interface.

Finally, in Chapter 9 we discuss the originality and application scope of our

proposal, as well as its relation with other learning languages/platforms. Then, we

conclude the thesis outlining some perspectives for the current and future works.

Péricles DE LIMA SOBREIRA 27

Thèse en Informatique. Université de Grenoble, 2014

2 Representation and edition of CSCL scripts

2.1 CSCL scripts

2.2 Review of activities

2.3 Learning scenarios languages and platforms
2.3.1 General modeling-based perspective

2.3.2 CSCL modeling-based perspective

2.3.3 Pattern-based approaches

2.3.4 Operationalization-based approaches

2.4 Flexibility in CSCL scripts

2.5 Review of matters of concern and objectives

This chapter builds on and extends some ideas and concepts presented
in our papers published in the ijCSCL (2012) and in the Computers and
Education (2015) journals.

Péricles DE LIMA SOBREIRA 28

Thèse en Informatique. Université de Grenoble, 2014

Résumé en français

La représentation et la mise en œuvre des scenarios d’apprentissage

comportent différentes activités. Celles-ci peuvent impliquer différents acteurs et être

conceptualisées et articulées de différentes façons.

Une première approche est de considérer les scénarios à partir de langages de

modélisation pédagogique, c’est-à-dire, en prenant en compte, comme principe de base

un langage général, comme, par exemple, l’IMS-LD.

Une deuxième approche est de considérer les notions spécifiques que l’on

trouve dans les scénarios collaboratifs. MoCoLADe est un exemple d’éditeur de script

collaboratif dont la représentation informatisée permet la communication avec d’autres

plateformes à travers différents services, comme, par exemple, l’opérationnalisation et

le monitoring.

Une autre approche est de proposer aux enseignants des patrons/gabarits de

scénarios qui peuvent être instanciés et combinés. La plateforme WebCollage est un

exemple classique d’un tel type de système.

Finalement, une quatrième approche possible est basée sur des langages

instructionnels directement associés à des environnements spécifiques de mise en

œuvre. Deux exemples sont : LAMS (qui permet aux enseignants de concevoir,

partager, distribuer et monitorer des scénarios d’apprentissage à partir d’activités

prédéfinies et d’outils de gestion de séquencement) et CeLS (qui permet aux

enseignants de modéliser, réutiliser, opérationnaliser et monitorer des structures

asynchrones de scénarios collaboratifs).

Ces schémas de représentation peuvent être analysés de différentes façons.

Un regard transversal permet d’identifier les services généraux suivants :

• Support conceptuel. Les outils de représentation doivent permettre de

travailler et de réfléchir sur le scénario (ou script).

• Flexibilité du script. Pendant l’édition du script, les enseignants doivent

pouvoir ajouter facilement ou enlever des activités, changer l’allocation des

ressources ou déplacer un étudiant d’un groupe à un autre. Cette flexibilité

peut aussi être demandée en temps réel.

• Support à l’instanciation. Le système peut proposer un support à l’édition

(semi-)automatisée à partir de patrons.

• Respect des contraintes. Pendant l’édition ou l’adaptation d’un script

(avant et/ou après sa session), les enseignants peuvent avoir un support

pour vérifier certaines contraintes.

• Représentation de structures de planification complexe. La plupart des

scripts sont des constructions simples qui peuvent être représentées

comme des listes d’étapes. Cependant, certains scripts ont besoin de

Péricles DE LIMA SOBREIRA 29

Thèse en Informatique. Université de Grenoble, 2014

structures de planification plus complexes, comme, par exemple, dans des

structures contenant des boucles ou des branchements.

• Simulation. Simuler un script avant sa mise en œuvre peut aider les

enseignants à comprendre et à réfléchir sur la façon dont le scénario

pourrait se dérouler dans des situations réelles.

• Opérationnalisation. La plateforme de mise en œuvre fournie aux étudiants

peut être générée ou configurée à partir de la représentation du scénario.

• Monitoring. La représentation d’un script peut être la base pour le

monitoring des actions des étudiants et pour son adaptation, si nécessaire,

pour des nouveaux contextes/sessions.

Péricles DE LIMA SOBREIRA 30

Thèse en Informatique. Université de Grenoble, 2014

2.1 CSCL scripts

Research in collaborative learning has shown that, in general, collaboration can

increase group performance and individual learning outcomes. However, the fact that a

setting presents a collaborative aspect is not sufficient for learning to occur (see

(Slavin, 1996) for a review) because knowledge-generating interactions do not

necessarily emerge spontaneously (Cohen, 1994; Salomon and Globerson, 1989).

To improve the likelihood of such interactions, two non-exclusive approaches

have emerged.

One is to monitor the process of students and intervene if interactions are not

occurring as expected. This may be based on launching regulative actions or

interaction-analysis methods, i.e., analyzing what students are doing as they

communicate and collaborate with one another as a basis for guiding collaborative

behavior (Diziol et al., 2010; McLaren et al., 2010; Soller et al., 2005).

Another approach is to structure the setting by introducing the notion of

scripting. A CSCL script is a learning scenario dedicated to a group of distant or co-

present students whose actions or interactions are (at least partially) mediated by a

computer-based system.

In the last decade, CSCL scripts have attracted considerable interest and the

International Journal of Computer Supported Collaborative Learning called “Scripting in

CSCL” a “flash theme” (Stahl and Hesse, 2007; Stahl et al., 2013). They have emerged

as a key notion in the context of CSCL (Fischer et al., 2007), and have been supported

by a broad range of studies highlighting how they foster learning activities (e.g., Baker

and Lund, 1997; De Wever et al., 2009; Kollar et al., 2007; Rummel and Spada, 2005;

Schellens et al., 2007; Schoonenboom, 2008; Slof et al., 2010; Stegmann et al., 2007;

Weinberger et al., 2005, 2010).

Although a continuum exists, scripts are often dissociated in micro-scripts and

macro-scripts (Dillenbourg and Tchounikine, 2007).

Micro-scripts are studied at a psychological level and aim at scaffolding

students’ process at the interaction level, focusing on argumentation patterns and

prompting students on the basis of a model of dialogue that is expected to be

internalized by them (typically through the use of structured chats or argumentation

graphical tools). As examples: make a student state a hypothesis and prompt a peer to

produce counter-evidence; constrain interactions by prompting turn taking or imposing

an argumentation grammar; etc.

Macro-scripts, on the other hand, are pedagogy-oriented large-grained scripts,

based on indirect constraints generated by the definition of the sequence of activities or

Péricles DE LIMA SOBREIRA 31

Thèse en Informatique. Université de Grenoble, 2014

the characteristics of the groups. Typically, to a group of students is given a task; this

overall task is broken down into subtasks to be shared; to students are given different

roles and resources; these subtasks and division-of-labor are studied to create a

context within which students have to interact.

CSCL macro-scripts may be defined and implemented as in-presence scripts,

involving students present in a same classroom, using different devices under the

control of a teacher, or as on-line scripts, involving distant students, addressing the

proposed tasks and communicating via a computer-based system only, under the

control of an on-line tutor.

Examples of CSCL macro-scripts (from now “scripts”, for short) are presented in

Figures 2.1 and 2.2.

The setting involves three or four students who are going to work on a piece of text (e.g., a
chapter). First, the teacher introduces different reading strategies: questioning oneself on the
text that is being read, clarifying some issues, summarizing the text and predicting what will
happen next. Then, the students must read the text. Afterwards, one of them, acting as a
teacher, lists a certain number of questions to be considered. The students discuss these
questions, and possibly raise some others. Afterwards, the student in the teacher role
proposes an abstract; the group discusses it and modifies it until agreeing on it. Finally, the
students make some predictions related to what will happen in the following stages of the
text. [The scenario then continues with another piece of text and another student acting as
the teacher]

Figure 2.1 A reciprocal-teaching script, adapted from (Palincsar and Brown, 1984 apud Kollar et al.,
2006)

The scenario involves a group of four students. At the end of the process, they must produce
a common document answering a set of questions. The four students are first given a
common text introducing general principles related to energy saving. Then, two of the
students are given a text focusing on insulation, and must produce a text listing different
possible techniques. The two other students are given a text focusing on heating and, here
again, must produce a text listing different possible techniques. The students are then put
into pairs with one student that worked on heating and another who worked on insulation.
They are given the document listing the insulation techniques, another document listing a set
of questions, and together they must write a document answering these questions. (NB: The
expectation is that, while writing, each will explain some things to the other). Similarly, the
two other students are given the document listing the heating techniques and the same set of
questions, and together they must write a document answering these questions. Finally, the
four students are grouped. They must compare their two lists of answers and prepare a final
team answer.

Figure 2.2 A jigsaw script, adapted from (Hernández-Leo et al., 2006)

2.2 Review of activities

Representing and managing learning scenarios involves different activities.

These activities may involve different players and may be conceptualized and

Péricles DE LIMA SOBREIRA 32

Thèse en Informatique. Université de Grenoble, 2014

articulated in different ways. There is no consensus on a precise life-cycle. However,

analyzing different proposals (Dillenbourg and Tchounikine, 2007; Rodríguez-Triana et

al., 2014; Tchounikine, 2008; Villasclaras-Fernández et al., 2009; Weinberger et al.,

2009), the following general activities may be listed.

Design is the identification of the scenario’s basic principles, i.e., how the

featured tasks are supposed to lead to the intended learning goals, and important

conditions that must be met. Depending on the context or institution, the design may be

developed by instructional designers and/or teachers.

Editing is the adaptation and/or instantiation of the scenario to the subject

being taught, the teaching context and the real students. For instance, using the jigsaw

scenario to have students address energy-saving issues requires instantiation and

editing actions such as deciding that expert groups will focus on “insulation” and

“heating”, deciding how many expert groups will be created and dividing the students,

deciding how the students in the expert groups will be mixed to create the jigsaw

groups and defining the resources provided to students during each phase (e.g., online

documents during the expert phase and a quiz during the jigsaw phase). When editing

scenarios, teachers must keep in mind both the scenario design rationale (e.g., creating

jigsaw groups) and the local and contextual issues (e.g., number and characteristics of

students or difficulty of the actual tasks). This may lead to adaptations (e.g., add

intermediate activity). Edition is achieved by teachers. It is the core activity considered

in this work. Teachers’ basic practice is generally to reuse, adapt and instantiate

existing scenarios designed by instructional designers.

Operationalization refers to deployment of the design on the technical

enactment framework provided to students to perform the scenario tasks. Enactment

platforms include educational modeling language players (e.g., Coppercore (2012) or

LAMS (2013)), semi-specific architectures related to types of scenario (e.g., CeLS

(Ronen et al., 2006) for collaborative scenarios) and specific architectures (e.g., jigsaw-

specific architecture implementing specific principles such as grouping mechanisms

(Dillenbourg and Hong, 2008)). In actual practice, general frameworks (e.g., wikis) and

Learning Management Systems (LMSs; e.g., Moodle (2012)) are frequently used.

Operationalization is not always considered: Learning Scenarios Editors (LSEs) may be

used as a way to prepare sessions only.

Orchestration (Dillenbourg et al., 2013) refers to management of the session.

While students enact the scenario, teachers may conduct the session (e.g., clarify

instructions or provide support) and can also have to manage events requiring run-time

adaptations of the scenario (e.g., add a task, change a resource or move a student from

one group to another).

Péricles DE LIMA SOBREIRA 33

Thèse en Informatique. Université de Grenoble, 2014

2.3 Learning scenarios languages and platforms

The next subsections present a brief description of some general and specific

approaches to the representation and operationalization of learning scenarios and, in

particular, CSCL scripts. This list is not exhaustive. Here, the objective is just to

differentiate different types of approaches and mention some representative systems in

the current state-of-the-art in LSEs. Other interesting instructional languages/platforms

will be mentioned, in context, in the next chapters.

2.3.1 General modeling-based perspective

A first approach is to consider scenarios from a general Educational Modeling

Language (EML) perspective, i.e., taking as a basis a general modeling language.

The prototypical example is IMS-LD (2012), the Learning Design specification

released in 2003 by the Instructional Management Systems Global Learning

Consortium (IMS GLC, 2013). Its objective is to help learning designers to model and

share a large spectrum of learning scenarios (not only specific to CSCL) from the

issues presented in existing proposals as, for instance: pedagogical flexibility,

reproducibility, interoperability, compatibility, reusability and formalization (Lejeune,

2004).

With this purpose, IMS-LD is scaffolded by: (1) the independence of

pedagogical approaches. (2) A set of general notions trying to cover a wide variety of

learning scenarios (from the “activity”, “role”, “environment”, “learning objects”, “learning

objectives”, “prerequisites” and “service” notions). (3) A conceptual separation between

scenarios and their respective resources and services. (4) A computational language as

a support to represent learning activities (XML based), cross-validated by three

compliance levels as a way to facilitate, when needed, the development of scenarios

more sophisticated: level A, describing the scenario itself; level B, adding properties

(about users) and conditions (to improve the control flow and the representation of

complex structures of decision) to level A; and level C, adding notifications (when

events take place) to level B.

The first IMS-LD tool to implement all three levels of the IMS Learning Design

specification was developed at the Open University of the Netherlands: CopperCore

(2012). Coppercore is an open-source initiative offering an engine, that may be

incorporated to other pedagogical projects using the IMS Learning Design specification;

and a player, which final result (a tree-based structure) can be visualized on browser

technologies.

Another open-source architecture implementing the three levels of the IMS

Learning Design specification is the ReCourse LD Editor (ReCourse, 2013), conceived

Péricles DE LIMA SOBREIRA 34

Thèse en Informatique. Université de Grenoble, 2014

from the TENCompetence European project (ended November 2009), which aimed to

support lifelong learning development in Europe (TENCompetence, 2013).

ReCourse extends the CopperCore engine and improves the open-source

RELOAD project (an IMS-LD form-based editor; RELOAD, 2012) in such a way to solve

some of their issues as, for instance, the limitation in the number of services provided

(as well as their execution in real-time), and the XML tree-format or form-based

structures that do not totally hide to their users the complexity of the IMS-LD

specification.

There are other IMS-LD compliant proposals allowing developing their IMS-LD

learning scenarios through graphical environments. Examples are the MOT+LD,

OpenGLM and TELOS platforms, where the first and the last have been developed at

the LICEF Research Center, from the MOT concept map editor; and the second at the

University of Vienna, from the Graphical Learning Modeller platform (GLM).

MOT+LD is a MOT specialization for the modeling of IMS-LD level A. Whether

levels B and C are required, pedagogical scenarios designed from MOT+LD could be

complemented and delivered via other IMS-LD compliant environments, as ReCourse

or RELOAD, for instance (Paquette et al., 2008).

The OpenGLM is a learning design application authoring the levels A and B of

the IMS-LD specification, and providing to its users an opened repository of resources

(tools/materials) and teacher methods (as the jigsaw template presented in Figure 2.2,

for instance). In the same way to the MOT+LD platform, whether the level C is required,

it should be necessary another IMS-LD complaint player to complement and delivery

scenarios designed from OpenGLM (Derntl, 2011).

Finally, the TELOS ontology-driven platform is a MOT+LD specialization

extended by the MOT+OWL architecture and the MISA LD instructional engineering

method for learning design, which reaches all three levels of the IMS-LD specification

(Paquette, 2010). The scenarios produced by this platform can be operationalized on

the platform itself, or delivered on other IMS-LD complaint players.

2.3.2 CSCL modeling-based perspective

With respect to CSCL scripts, a general conceptual framework has emerged

(Kobbe et al., 2007). This framework has been elaborated as a consensus by scientists

from several fields (educational, cognitive and computer sciences) as result of their

experiences based on the analysis of effective scripts, and has proven to allow for

modeling a variety of scripts of different natures. For these reasons, we reused the

notions which it highlighted in our work.

In this framework, scripts are modeled as a combination of components

(participants, groups, activities, roles and resources) and mechanisms (group

formation, task distribution and sequencing).

Péricles DE LIMA SOBREIRA 35

Thèse en Informatique. Université de Grenoble, 2014

Components denote the structural elements of a script. Participants represent

the students (and teachers or tutors, if any) involved in the script. Depending on needs,

participants may be represented by information such as name, age, gender, nationality,

profile, knowledge, skills or preferences. Participants may be involved in groups (that

can evolve during the script execution and can themselves be broken down into sub-

groups). Activities denote what must be done during a script (the tasks and subtasks),

and can be represented by instructions from a low to a high level of abstraction.

Students can be prompted to interpret one or several roles, and can change role during

the script unfolding. Roles can also be associated with a group. Finally, resources

denote the virtual or physical objects used, modified or produced by the

groups/participants during the script execution.

Mechanisms describe the dynamic of a script, and how components are related

to each other. Group formation specifies the way groups of participants are constructed.

Grouping can be conducted by listing participants by name, using rules related to static

data (e.g., grouping by age or skills) or to dynamic data (e.g., students who have

finished a given activity). Task distribution specifies how components (e.g., activities,

roles or resources) must be distributed among participants or groups. Finally,

sequencing specifies how the script’s phases or tasks will be distributed over time. This

can correspond to a simple linear ordering (phases or tasks are to be taken one after

the other) or a complex dynamic structure using some sequencing pattern as

traversion, rotation, fading or a combination of these.

MoCoLADe (Harrer et al., 2007) (standing for Model for Collaborative Learning

Activity Design) is an example of visual CSCL script editor reusing this schema

(another work using this same framework is XSS (Stegmann et al., 2009)). In this

platform, collaborative scenarios are represented by statechart-based structures. The

movement of tokens through such structures enables simulations, e.g., verifying if

edges conditions (e.g., group size), or time limits, are satisfied or not.

The MoCoLADe representation, when exported to an IMS-LD format, can be

interfaced with CopperCore (or other IMS-LD compliant tools, as the RELOAD editor,

for instance) in a way to provide to teachers different services as operationalization

(Harrer et al., 2007) and monitoring (CopperCore is capable to inform at run-time the

actual state of a script enactment (Malzahn et al., 2008)).

MoCoLADe can be interfaced with other computational platforms thanks to its

machine representation, i.e., the internal representation that can be directly interpreted

by a computer and run, or transformed into such a runnable representation. For

instance, MoCoLADe designs can be operationalized on the CeLS learning platform

(see Section 2.3.4).

As an example of another CSCL-specific model, Haake and his colleague

define atomic scripts by an 8-tupla (“roles”, “actions”, “states”, “transitions”, “start”,

“end”, “input document”, “output document”) and composed scripts as atomic script

combinations (Haake and Pfister, 2007).

Péricles DE LIMA SOBREIRA 36

Thèse en Informatique. Université de Grenoble, 2014

2.3.3 Pattern-based approaches

Another possible approach to scenarios’ representation is to offer teachers

high-level scenarios’ patterns that they can adapt and instantiate. The use of patterns is

gaining interest in Technology Enhanced Learning (TEL) in recent years (Goodyear and

Retalis, 2010).

WebCollage (Villasclaras-Fernández et al., 2013) is a web environment based

on Collage (Hernández-Leo et al., 2006), a collaborative learning graphical authoring

platform conforms to the IMS-LD level A specification (both developed at the GSIC

team, University of Valladolid). Collage scaffolds teachers through a methodological

approach from the creation (or reuse) of collaborative learning scenarios via the

utilization of pre-defined educational templates (or patterns), considered as being of

good practice in the CSCL community (Hernández-Leo et al., 2006, 2010). Such

patterns can be used individually, or combined in a hierarchical way, to compose new

scenarios according to teachers’ pedagogical intentions. A classic example of CSCL

pattern is the jigsaw script, presented in Figure 2.2.

As it takes place in the MoCoLADe environment, scripts modeled in

WebCollage can be operationalized with CopperCore. Another possibility is the use of

the GLUE!-PS middleware platform (also developed by the GSIC group; Prieto et al.,

2011), which provides ready-to-use adapters to semi-automatically deploy learning

designs expressed in several design languages, including WebCollage, to different

enactment frameworks, including Moodle (GLUE!-PS maps the notions of each source

learning design language into the notions of each target enactment platform).

2.3.4 Operationalization-based approaches

Another possible approach to scenarios representation is to offer an

instructional language directly associated with a specific enactment environment. LAMS

(LAMS, 2013) and CeLS (Ronen et al., 2006) are general and CSCL-specific examples,

respectively.

LAMS (standing for Learning Activity Management System), is an open-source

platform inspired from the IMS-LD ideas, but not compliant with its specification. It has

been developed through an effort of collaboration between the LAMS Foundation, the

LAMS International and the Macquarie University (LAMS, 2013).

LAMS enables teachers to perform on a single intuitive and friendly web-based

authoring environment the design, sharing, delivering and real-time monitoring of

collaborative learning scenarios from pre-defined activities (e.g., assessment, chat,

forum, spreadsheet, voting or wiki), and sequence managing tools (e.g., stop point (a

synchronization element), grouping or branching).

Péricles DE LIMA SOBREIRA 37

Thèse en Informatique. Université de Grenoble, 2014

LAMS can be used with a stand-alone proposal or in conjunction with a LMS

as, for instance, Moodle (Moodle, 2012), Sakai (Sakai, 2013), Blackboard (Blackboard,

2013) or .LRN (.LRN, 2013). In this case, both platforms become accessible through a

single sign-on, and LMS courses, and respective users, being automatically imported to

LAMS.

CeLS (standing for Collaborative e-Learning Structures) is another web-based

authoring platform, developed at the Holon Institute of Technology, and aiming to

enable teachers to model (from scratch), reuse (and adapt, if necessary), operationalize

and monitoring (without interference) structured asynchronous CSCL scenarios through

a single flexible learning environment (Ronen et al., 2006).

The CeLS script structure is conceived from the arrangement of stages

composed by CeLS objects (presentation, input, interaction and communication) and

properties (indicating grouping configuration by object and/or stage). Also, it is possible

to assign to each stage some conditions as, for instance, “start”, “advance” (when a

stage finishes) or “end”. Different students may visualize different flow of activities. In

this way, the pedagogical scaffolding of a CeLS scenario is obtained from such a

combination (properties, conditions, order and/or composition of each one of its

stages).

CeLS also presents three important characteristics: (1) an output produced by

a stage can be reused a posteriori by another one in the sequence; (2) a CeLS scenario

may be modified at run-time (teachers can add/change objects on its stages, or add

new stages on it), and; (3) CeLS can be used as an independent tool (as described just

here), in association with a LMS (e.g., Moodle; Ronen et al., 2006), or articulated with

other LSEs (Kohen-Vacs et al., 2011), as MoCoLADe, for instance (Harrer et al., 2009).

2.4 Flexibility in CSCL scripts

Although CSCL scripts have proven effective in promoting productive

interaction and student learning (Wecker et al., 2010), script design treads a fine line

between useful guidance and control of student activities. If the scaffolding it provides

is too weak, the script will not produce the expected interactions. Yet, if it is too strong

or irrelevant, it can hinder interaction (Dillenbourg, 2002). Therefore, an important

requirement for managing CSCL scripts is flexibility.

What students must be prompted to do and how they should be supported must

not be decided once for all before the session only (Dillenbourg and Tchounikine,

2007). CSCL scripts must be flexible in order to manage unexpected events at run-time,

taking into account the students’ actual activity (e.g., a subgroup fails a task or two

students unproductively conflict), or to seize some teaching opportunities (e.g., given

Péricles DE LIMA SOBREIRA 38

Thèse en Informatique. Université de Grenoble, 2014

the group’s dynamics, adding some additional activities or re-orientating the students’

current process to engage the group in exploring interesting issues).

Students may also ask for some flexibility, for example by asking to change a

group’s composition, or still to divide or to postpone some task. In such a case, the

teacher must reflect on the request and its consequences with respect to the rationale

of the initial script in order to accept the request (i.e., adapt the script as requested by

students, or in a related way) or refuse it (typically, because this conflict with the

educational purpose of the original design decisions).

As an example, let us consider the jigsaw script presented in Figure 2.2. The

rationale of the script is that in order to answer the questions, the students will have to

share the knowledge they developed during the first stage, and thus get involved in

explanations, questioning or argumentation. The fact that students who have read

different texts are paired during the jigsaw phase is an intrinsic constraint (Dillenbourg

and Tchounikine, 2007), i.e., a constraint bound to the script design-rationale that

should be respected in order to remain consistent with the script’s principle and

conditions that have been identified as enhancing learning (e.g., “make students with

different knowledge interact”). In direct contrast, the way a particular student who

worked on heating is paired with another one who worked on insulation is an extrinsic

constraint: it is contingent and can be changed without affecting the scripts’ rationale if,

for instance, some students experience difficulties working together. Such dissociation

between intrinsic and extrinsic constraints is to be seen as a basis for guiding teachers’

decision-making process.

Considering scripts as control devices, the fact that scripts should be adaptable

(the requirement for script flexibility) has different implications according to the

operationalization approach adopted.

One approach is to consider the script on one hand and the enactment

framework on the other. In this case, the script is an artifact that helps teachers to think

about the session, elaborate a plan and adapt the plan according to what happens

during the session, and that helps students in structuring their process. However, it is

technically disconnected from the enactment framework. This is typically the case when

the students are supposed to use tools they can choose themselves, or a predefined

technological framework that is not adaptable (or that one will not attempt to adapt),

such as LMSs and wikis (and, of course, if they do not use any technological

framework). In such a case, a formal representation of the script is a support for

thinking. The requirement for scripts flexibility is thus that, as a support for teachers to

plan and manage the session, and as the origin of the instructions and hints students

will be given, the script as it has been edited and set up by the teachers should be

adaptable.

Another approach is to automatize or partially automatize the relationship

between the scripts’ representation and the provided enactment framework and, in

particular, provide teachers representation schemes that allow generating or adapting

the enactment framework and, at run-time, adapting the script’s representation (and,

Péricles DE LIMA SOBREIRA 39

Thèse en Informatique. Université de Grenoble, 2014

following, the enactment framework) according to the script’s effective unfolding

(Tchounikine, 2008). In such a case, a formal representation of the script is a means for

its operationalization. The requirement for script flexibility is that teachers must be

provided a representation scheme which makes it possible to modify the enactment

framework through the representation of the script. This raises technical issues such as

adapting the interfaces students are given but, also, managing coherency issues, such

as those related to the dataflow.

2.5 Review of matters of concern and objectives

Representation schemes can be analyzed in different ways such as their

communication and creativity features (Botturi et al., 2006) or their “informedness” and

computable dimensions (Harrer and Hoppe, 2008). Analyzing existing propositions in a

transversal way, the following concerns and objectives may be highlighted:

• Conceptual support. This is a basic common objective. A script is a

complex artifact, within which different and potentially conflicting

constraints are to be integrated. An explicit representation is a means for

instructional designers or teachers to reflect on the script being designed,

edited or shared. Design of representation means (approaches, languages,

editors) may thus consider offering a particular type of users relevant

representation tools to work and reflect on the script independently from

any enactment framework considerations (IMS-LD is an example).

Providing a language/editor featuring relevant notions has a value in itself

(Harrer and Hoppe, 2008).

• Script flexibility. While editing the script, teachers must be allowed to easily

add or remove activities, change resource allocation or move a student

from one group to another (Dillenbourg and Tchounikine, 2007). This

flexibility may also be required at run-time.

• Instantiation support. A script representation may be considered as a basis

for automated editing support. Important aspects of scripts are group

formation and task distribution (Kobbe et al., 2007). Distributing students

and tasks is easy when limited to few items, but becomes tricky if large

numbers are involved.

• Respect of constraints. While editing or adapting a script (before and/or

during the session), teachers have to consider both the script’s intrinsic

and extrinsic constraints (Dillenbourg and Tchounikine, 2007) through

constraint-checking mechanisms.

• Representation of complex scheduling structures. Most scripts are simple

constructions and can be represented as a list of steps to be taken one

after the other (Haake and Pfister, 2007). However, some scripts require

Péricles DE LIMA SOBREIRA 40

Thèse en Informatique. Université de Grenoble, 2014

more complex scheduling structures such as branching, parallelism or

loops (Kobbe et al., 2007; Roschelle et al., 2009).

• Simulation. Simulate a script before it is operationalized may aid teachers

to understand and reflect about how such a script could be unfolded in

actual situations (and then, could support them in decision-making

processes). Some authors have argued that simulating the script on a

workflow engine before introducing it to students provides useful input to

analyze and tune the workflow and dataflow (Harrer et al., 2007).

• Operationalization. The enactment framework provided to students may be

generated or configured from the script description.

• Monitoring. At run-time, during the script’s unfolding, the script’s

representation may be a basis for teachers to monitor students’ processes

and adapt the script, if necessary, for a new context/session or on-the-fly

(Malzahn et al., 2008; Soller et al., 2005).

Péricles DE LIMA SOBREIRA 41

Thèse en Informatique. Université de Grenoble, 2014

3 Problematic, adopted approach and methodology

3.1 Considered issue

3.2 Research question

3.3 Adopted approach

3.4 Historical dimensions and methodology

Péricles DE LIMA SOBREIRA 42

Thèse en Informatique. Université de Grenoble, 2014

Résumé en français

Différents utilisateurs et différentes pratiques demandent différentes

possibilités. A notre avis, ce n’est pas une bonne stratégie de chercher à créer des

moyens de représentation qui présentent, simultanément, des caractéristiques

d’intuitivité, de flexibilité, de complétude (i.e., les moyens qui permettent la

modélisation de tous les aspects d’un scénario) et de calculabilité (i.e., les moyens qui

permettent que la représentation soit directement interprétée par un ordinateur ou

qu’elle soit automatiquement utilisée pour configurer une plateforme de mise en

œuvre).

La complétude présente des avantages, tels que, par exemple, la création

d’une lingua franca qui facilite la création de répertoires, l’interopération et le partage

d’expérience. Cependant, la complétude présente aussi de la complexité et des

contraintes. La simplicité et la flexibilité sont plus en ligne avec la vision de scénarios

comme des structures complexes dont l’édition peut demander des démarches

d’élaboration. Par rapport à la calculabilité, la définition d’une représentation

informatisée demande la prise en compte des contraintes technologiques et, en

conséquence, les caractéristiques de flexibilité sont, par définition, limitées par ces

questions.

Si le développement de plateformes spécifiques ou de langages de mise en

œuvre est pertinent, ce type de mise en œuvre est, dans les pratiques, marginale.

Actuellement, la vulgarisation des Technologies de l’Information et de la

Communication va plutôt dans le sens du développement de solutions à partir de

l’utilisation des outils standard ou d’adaptations locales de plateformes génériques,

avec des utilisateurs choisissant leurs technologies en fonction de leurs contextes et

leurs perspectives.

Dans cette optique, nous avons étudié une approche originale dont le principe

est le suivant : au lieu de tenter concilier des exigences contradictoires au sein d’une

même représentation (avec le risque de générer des interfaces peu intuitives ou très

complexes), nous proposons une représentation répondant à l’exigence qui constitue le

goulet d'étranglement (comment offrir aux enseignants une représentation facile à

utiliser) et à partir de laquelle d’autres services (par exemple, le support à

l’instanciation d’un scénario à partir de mécanismes automatisés) peuvent être

développés et intégrés.

Péricles DE LIMA SOBREIRA 43

Thèse en Informatique. Université de Grenoble, 2014

3.1 Considered issue

Although the introduction of EMLs is recognized as an important contribution to

TEL, mainly due to their attempt to describe learning scenarios through (semi-)formal

graphical syntax (generally from UML diagrams and/or XML representations) (Botturi et

al, 2008; Larnaca, 2012; Tchounikine et. al, 2009), these languages have not been

widely adopted by either practitioners or institutions (Derntl et al., 2011).

One of the reasons is that EMLs often address (or are used as if they were

relevant to address) a plurality of objectives. A first consideration is that EMLs may be

used for different purposes, including elaborating the scenario (instructional design);

adapting existing scenarios to particular settings; configuring the enactment framework

presented to students; and reflecting on how students enact the scenario. Although

these actions all require a representation of the scenario, the requested characteristics

are partly different.

As a consequence, design choices related to one objective may directly impact,

or be poorly adapted, to others, and hinder usage. Another consideration is that EMLs

were originally thought of as modeling languages to be used by professional modelers

(instructional designers). In many cases, however, they are used by teachers, whose

concerns and skills are different.

Instructional designers may benefit from specific training, and are interested in

means to specify scenarios or index them in repositories. Teachers, on the other hand,

generally do not have any specific modeling training, and are mainly interested in

means to adapt scenarios and deliver them effectively in real classrooms (Weinberger

et al., 2009). Complexity of languages/platforms and their use in “basic” settings is an

issue to be considered.

3.2 Research question

Taking into account this evidence, the research question considered in this

work is: can one design and implement representation means that (1) are sufficiently

simple and flexible to allow users (teachers) with basic ICT (Information and

Communication Technology) skills and no particular methodology training to edit scripts

and adapt them to their view and context, and; (2) may be extended to match other

needs and implement advanced features offered by other classical languages/platforms

such as simulation, checking constraints, supporting complex grouping mechanisms

Péricles DE LIMA SOBREIRA 44

Thèse en Informatique. Université de Grenoble, 2014

and scheduling structures, configuring the students enactment framework or monitoring

the script’s unfolding?

The rationale for considering this research question, and considering it in this

way, can be summarized as follows:

• Although usually not in charge of the script design, teachers, as the

persons in charge of reflecting on and managing the classroom (the

students, the overall activities, the institutional context) and the script

enactment, may engage in substantial adaptations before the session

(while instantiating the script) and, possibly, at run-time (while reflecting on

adaptations).

• Editing a script is a possibly complex task, requiring iterative refinements.

• Offering easy-to-use and flexible means is an important feature to allow

teachers to adapt the script to their context (the setting, the domain, the

students, etc.) but, also, to their perspective and practices, and is likely to

facilitate appropriation and usage.

• Most current works related to operationalization consider the link with the

enactment framework as a first class concern, which leads to consider

easiness and flexibility within the space of what is left open given the

comprehensiveness and computability specifications.

3.3 Adopted approach

Different users and different usages require different means. In our opinion, it is

not a good strategy to create representation means that simultaneously allow for

comprehensiveness, ease of use, flexibility and computability. Languages and editors

are tradeoffs. Complexity and inflexibility are generally not design decisions, but a

consequence of constraints related to some other objectives.

Furthermore, constraints and complexity are increased by considering

comprehensiveness (i.e., means to allow modeling all aspects of a script as, for

instance, allowing the representation of all complex grouping mechanisms) or

computability (e.g., allowing the representation to be directly interpreted by a computer

to “play” the script and indicate the activity flow, or to be used to automatically configure

an enactment framework).

With respect to completeness, this property is due to if targeting a kind of

standard (e.g., in the way IMS-LD attempts to be a standard for Instructional Design in

general). Completeness has advantages, such as dealing with industrialization issues

or creating a lingua franca that facilitates repository creation, interoperation and

experience-sharing. However, completeness comes with complexity and constraints.

Péricles DE LIMA SOBREIRA 45

Thèse en Informatique. Université de Grenoble, 2014

Simplicity and flexibility are more in line with viewing scripts as complex

structures whose edition may require an elaboration process, i.e., drawing a general

structure, refining some aspects of it, testing an option, and reversing decisions until

the designer (here, a teacher) considers the built artifact satisfactory. If necessary,

simple representations can be complemented with a more comprehensive or detailed

language/platform: consider how many Instructional Design frameworks or technical

platform meta-models are mapped from or onto IMS-LD (cf. Section 2.3).

With respect to computability, defining a computable representation requires

taking into account technology-related constraints and, as a consequence, flexibility

features are by definition limited by these issues. This is a hard constraint. The

development of script engines (Dillenbourg and Tchounikine, 2007) integrating features

such as automatic configuration of the enactment framework from the script

representation and automatic management of the script’s unfolding is an interesting

research question, which can certainly advance the field of CSCL.

However, not misunderstanding the interest of implementing CSCL settings via

operationalization languages or specific platforms, this is far from being the major

implementation approach, and may not be the pattern that is going to generalize.

Currently, the spread of ICT technologies rather goes into the direction of the

implementation of CSCL settings as mash-ups of off-the-shelf tools (e.g., freely

downloadable and interoperable communication tools or resource-sharing tools) or local

adaptations of generic platforms such as LMSs, with users mobilizing technologies

according to their perspectives and contexts (Jones et al., 2006; Tchounikine, 2011).

Within this perspective, we have studied an innovative approach which

rationale is as follows: instead of attempting to conciliate conflicting requirements within

a single representation (with the risk of over-complex or poorly-intuitive interfaces), we

propose to adopt a representation that fulfills the bottleneck requirement (offering

teachers an easy-to-use representation) and from which other services identified as of

interest (e.g., supporting instantiation and adaptation of the scenario by automated

mechanisms) may be implemented and incorporated.

This approach is based on a technique that consists in using a pivotal-model

that allows different representations and means for different objectives: an easy-to-use

end-user representation of the scenario in the form of a table is put into structural

correspondence with a machine representation as a tree. Modeling the scenario as a

tree allows implementing the targeted services via model analyzes and transformations.

3.4 Historical dimensions and methodology

Initially, we developed a pivotal-model, named T2, from a structural

correspondence between a visual language (described by a table as a device of easy

Péricles DE LIMA SOBREIRA 46

Thèse en Informatique. Université de Grenoble, 2014

manipulation for teachers) and a machine-readable representation (described by a tree

data structure, which manipulations may be implemented by reusable algorithms of

standard practice).

Next we developed, as a proof of concept, a CSCL-focused editor, named

ediT2. This editor offers a table interface as a way to manipulate learning scenarios

through natively-simple mouse-manipulations as in office suites (e.g., inserting a new

activity/task in a script is achieved by the insertion of a new row in the table).

We then performed some studies and tests to analyze if the editor was usable

and how teachers perceived its features.

Thanks to the pivotal-model approach, we enhanced ediT2 through the

development of advanced services identified as of interest in the domain: instantiation

support, respect of constraints, representation of complex scheduling structures,

simulation, operationalization and monitoring.

Finally, due to some observations collected in the experiments and explorative

studies performed, we extended ediT2 again (however still in correspondence with the

T2 model) to enable users to edit the notions (and respective attributes) needed to

model and operationalize, when required, their learning designs.

Overall, the contribution of the work is an approach that allows designing easy-

to-use and adaptable LSEs. Four objectives / evaluation criteria were considered: (1)

pedagogical expressiveness, i.e., can table-based editors represent a wide range of

scenarios?; (2) usability, i.e., do teachers find the editor easy to use and intuitive?; (3)

computational expressiveness, i.e., does the approach allow implementation of complex

services?; and (4) computational flexibility, i.e., is the editor easy to adapt to local

needs?

The general requirements and services to be offered were identified by

considering the state-of-the-art of LSEs. The pedagogical expressiveness of the table

representation was tested by studying how the editor allowed representing different

types of scenarios. Easiness-of-use was tested via usability tests. Computational

expressiveness and computational flexibility were demonstrated by proofs-of-concept

developments.

Péricles DE LIMA SOBREIRA 47

Thèse en Informatique. Université de Grenoble, 2014

4 The T2 model and the ediT2 editor

4.1 General considerations

4.2 The table/tree structure

4.3 Proof of concept – the ediT2 editor

4.4 Semantics

4.5 Offered flexibility

4.6 Constraints
4.6.1 The allocation of items into table cells

4.6.2 The script-structure

4.6.3 The 1-n relationship

4.7 Adding control rules

4.8 T2 tree manipulation algorithms

This chapter builds on and extends some ideas and concepts presented
in our papers published in the ijCSCL (2012) and in the Computers and
Education (2015) journals.

Péricles DE LIMA SOBREIRA 48

Thèse en Informatique. Université de Grenoble, 2014

Résumé en français

Le modèle que nous proposons dans cette recherche concerne une approche

intentionnellement simple de l’édition et de l’adaptation de scénarios d’apprentissage.

Tout d’abord, nous prenons comme point de départ et ligne directrice un

langage/éditeur basé sur une table en tant que dispositif de structuration basique et

commun. Ensuite, nous fondons la sémantique du modèle sur la structure de table

plutôt que sur un méta-modèle spécifique. Cette approche n’est pas présentée comme

une proposition de remplacement d’autres approches plus classiques basées sur des

graphes et avec des soutiens sémantiques, mais comme une alternative caractérisée

par la simplicité, la flexibilité et la capacité d’extension, à utiliser si et lorsque

pertinente, ou en complément.

Nous gérons cette spécification en mettant l’interface (la table) en relation

structurelle avec un modèle informatique interprétable (un arbre). Ce principe permet la

manipulation d’un scénario pédagogique à partir de manipulations naturellement

simples (manipulations de la souris sur le contenu et la structure de la table, comme

dans des outils bureautiques), au lieu d’élaborer un langage riche et complexe

hypothétiquement rendu facile à utiliser par les utilisateurs grâce à des interfaces

« intelligentes ». Une telle table est composée de colonnes et de lignes (lesquelles

peuvent être fractionnées en sous-lignes), quand on l’envisage comme interface pour

l’utilisateur, et comme une structure n-aire composée de niveaux et de branches, quand

on l’envisage de façon formelle comme un arbre. Ce modèle (appelé T2) introduit trois

contraintes structurelles :

• Allocation des items dans des cellules de la table : un item défini comme

une notion N peut seulement être déposé dans la colonne correspondante

de la table (la sémantique des notions n’est réalisée que par les labels des

colonnes de la table et, par conséquence, liée à la perspective de

l’utilisateur) ;

• Structure du script : la structure de table implique que tous les composants

d’un script aient la même représentation ;

• Relation 1-n : un composant d’un script doit respecter la relation 1-n (n ≥

1), afin d’éviter des constructions ambigües.

Du point de vue de l’utilisateur, l’avantage de la structure de la table est

d’éviter des constructions syntactiques complexes. En considérant la perspective

informatisée, l’avantage est similaire. Des manipulations sur un script correspondent à

des manipulations sur des branches et des nœuds. Les manipulations des utilisateurs

sont interprétées par rapport à la structure de la table et rapportées dans la

représentation en arbre (ou inhibées en cas d’incompatibilité avec le modèle). Du point

de vue informatique, la table et l’arbre respectent une correspondance structurelle,

c’est-à-dire, un élément du modèle correspond à un élément de la table et vice-versa.

Péricles DE LIMA SOBREIRA 49

Thèse en Informatique. Université de Grenoble, 2014

Dans ce chapitre, nous présentons le modèle T2 ainsi que la conception et le

développement d'un éditeur de scénarios collaboratifs spécialement conçu à partir de

ce modèle: l'éditeur ediT2.

Péricles DE LIMA SOBREIRA 50

Thèse en Informatique. Université de Grenoble, 2014

4.1 General considerations

Our model approach (named T2) is an intentionally simple model created to

allow easy edition and adaptation of scripts, in such a way to outline two of the eight

matters of concern presented in Section 2.5 (conceptual support and script flexibility), in

addition to the representation flexibility capability, which concept will be introduced

afterwards, in Section 4.5. The other six of them (instantiation support, respect of

constraints, representation of complex constructions, simulation, operationalization and

monitoring) will be discussed in Chapters 6, 7 and 9, when we will present the

possibility of the extension of such a model through the inclusion of advanced services.

Not misunderstanding the interest of the approaches listed in Section 2.3, our

work explores an alternative built on different premises. First, we take as an entry point

and governing design decision offering a language/editor based on a table, as a basic

and very common structuring device. Second, we consider basing the model semantics

on the table structure rather than on a proper meta-model. This approach is not

proposed to replace more classical graph-based and more semantically-supporting

approaches but as an alternative, featuring simplicity, flexibility and extension

capabilities, to be used if and when pertinent, or in complement.

We manage these specifications by putting the interface (the table) into relation

with a machine-readable model (the tree). This principle allows addressing the

manipulation of the script via natively-simple manipulations (mouse-manipulations of a

table structure and content, as in office suites), instead of elaborating a rich and

complex language hypothetically rendered easy to use by users thanks to smart

interfaces.

4.2 The table/tree structure

The T2 model proposes to consider a CSCL script as (1) a table composed of

columns and rows (which can be broken down into sub-rows) if one addresses it via its

user-oriented visualization, and (2) an n-ary tree composed of levels and branches if

one addresses it as a formal structure. The model is named T2 to denote this double

Table and Tree structure.

From an end-user perspective, the advantage of the table structure is to avoid

complex syntactical constructions, the constraints of which must be understood and

properly used. From a machine perspective, the advantage is similar. Natively, script

manipulations correspond to manipulations of branches and nodes. They are

Péricles DE LIMA SOBREIRA 51

Thèse en Informatique. Université de Grenoble, 2014

interpreted with respect to the table structure, and reported in the tree representation

(or inhibited if inconsistent with the model). From a Computer Science perspective, the

table and the tree respect a structural correspondence, i.e., one element of the model

corresponds to one element of the table interface and vice versa.

Figure 4.1 presents the jigsaw script described in Figure 2.2 as a table, and

Figure 4.2 the corresponding tree representation, which provides a general perspective

on the scripts’ complexity and structure. The number of table rows and sub-rows is

denoted by the tree's width, and the number of table notions by the tree's depth. A

fictive root is added to the tree to tie together the first level nodes.

Activity Group Participant Resource

Read the general text Class P1,P2,P3,P4 General text(in)

Identify techniques
G1 P1,P2 Insulation text(in), Insulation list(out)

G2 P3,P4 Heater text(in), Heater list(out)

Crossing groups
G3 P1,P4 Insulation questions(in), Insulation list(out)

G4 P2,P3 Heater questions(in), Heater list(out)

Regrouping Class P1,P2,P3,P4 Answers(out)

Figure 4.1 A jigsaw script (Figure 2.2) as a table

Figure 4.2 The jigsaw script (Figure 4.1) as a tree

In Figure 4.2 each child in the first tree level corresponds to each cell in the

first table column (Activity column). “Read the general text” and “Regrouping” activities

have a single child (branching factor = 1), whereas “Identify techniques” and “Crossing

groups” activities have two children (branching factor = 2). In this case, none of the

Participant and Resource cells are further broken down, which means that their

corresponding sub-trees are linear (branching factor = 1).

In this representation, we will call script-structure the ordered list of notions

used as columns (e.g., in Figure 4.1, Activity-Group-Participant-Resource); pivotal

notion the notion used as the first column and that defines the modeling commitment

(e.g., in Figure 4.1 the script is modeled as a set of Activities); script-component a table

row, referring to it by its pivotal notion (e.g., the “Read the general text” script-

component); and items the particular values attached to the cells or, within the tree

perspective, to the nodes.

In the basic implementation, each item is represented by a label (Name) plus

an optional textual description (Description). This makes possible, for instance, to

Péricles DE LIMA SOBREIRA 52

Thèse en Informatique. Université de Grenoble, 2014

represent a resource using an identification name along with a textual description

defining an instruction, a configuration data or a link to a document/external tool (e.g.,

in Figure 4.1, the “Class” group could have “Class” and “All class students must be

involved in this activity” as its name and description fields, respectively).

As an abstract model, T2 can be used as a basis for different objectives. For

example:

I. Usage as a general conceptual model. The table/tree structure can be used

as a convenient and simple model to describe CSCL scripts. Such a usage

does not require any specific technical implementation. The table

representing a script can be edited with basic tools (e.g., a text editor

offering table-related features) and, of course, with a pencil, an eraser and

a piece of paper. The model can also be used to represent (part of) scripts

implemented within specific tools or platforms, as a simple intermediation

means. In such cases, however, coherence issues and computability are

not supported.

II. Usage as a basis to design script editors. A T2 editor is natively a table-like

interface. The implementation may be addressed in a variety of ways, and

to different extents, for instance:

a. The editor provides the means to edit and adapt a table, i.e., proposes

features to create and modify columns and rows, to drag-and-drop

items from one cell to another, and to split and merge rows. However,

this is of little interest since such features are proposed by many

existing tools such as tables in text editors. The advantage can be in

the interoperation of this editor with other components of the

educational setting (see here below).

b. The editor provides the means to edit and adapt a table in a way that

respects the structural constraints of the model, i.e., (1) actions that

would lead to incoherent constructions (in the sense of the model) are

made impossible and (2) the implications of modifications that can be

derived from the model are automatically generated and propagated in

order to keep the script (table) coherent. Such an editor provides

support for editing scripts and maintaining their coherence as instances

of the T2 model.

c. The editor provides the means to edit and adapt a table in a way that

(1) respects the structural constraints of the model, and (2) offers

advanced features such as checking specific constraints (for example,

script specific considerations such as the intrinsic constraints of a

jigsaw script), exporting the representation into a format readable by

another software component (for instance, a simulation framework or

an enactment framework), or monitoring the script’s unfolding (e.g., in

a teacher-oriented approach, the script representation could be

completed at run-time in accordance with the students’ advancement).

Péricles DE LIMA SOBREIRA 53

Thèse en Informatique. Université de Grenoble, 2014

The specific interest of the T2 model is that it is natively based on a table

structure, a representation which basic users are highly familiar with, and which can be

easily adapted using direct manipulations (merge, split, drag-and-drop, copy-and-paste

or duplicate). This allows for a rather straightforward specification for usages such as

an editor or a monitoring device. In such cases, a T2 editor may be constructed as a

standalone tool, or as a software component embedded or interoperated with some

other components or ICT means.

4.3 Proof of concept – the ediT2 editor

In order to test whether the model was implementable and to conduct usability

studies (see Chapter 5), we reused the notions proposed in (Kobbe et al., 2007) to the

specification of CSCL scripts (Section 2.3.2) to design and implement a Learning

Scenario Editor (LSE), named ediT2, corresponding to the II.b possible usages of the

T2 model (Section 4.2). In Chapters 6, 7 and 9 the extension of such editor will be

discussed in order to implement the ideas corresponding to the item II.c (the

architecture and technologies employed in the development of this study are described

in Appendix A).

ediT2 has a general menu allowing the following operations:

• “new” to create a new script/template;

• “open” to open a script/template previously created;

• “save” to save the script/template under design. The file saved (.zip)

contains two elements: the script/template file itself (.t2ml, an XML-based

file created in this work to support the T2 model implementation and to

facilitate its interoperability with other platforms; see Appendix B, for

details); and a trace file (.csv) that registers all table-tree manipulations

during the script/template conception/adaptation, for future analyses (see

Appendix C, for details);

• “view” to visualize the tree corresponding to the script/template (table)

under manipulation;

• “print” to print the script/template under design as a .pdf file.

Figure 4.3 presents the general interface of ediT2, which is composed of two

zones. The first zone, on the left side, is an ad hoc feature that allows creating the

items (activities, groups, participants, resources and roles) that will be referred to in the

script. The second zone, on the right side, is the table interface. On the top of each

Péricles DE LIMA SOBREIRA 54

Thèse en Informatique. Université de Grenoble, 2014

column are the notions that have currently been selected (in the example presented in

Figure 4.3: Activity, Group, Participant and Resource (the Role notion not being used)).

Figure 4.3 The ediT2 general interface (jigsaw script (Figure 2.2) from the first usability test, Chapter
5)

In this figure, we have re-written the representation created by one of the

teachers who participated in the tests of the system (see Chapter 5, for details) for the

jigsaw script presented in Figure 2.2, and translated the items (names of activities, etc.)

from French to English. One may notice that for the “Regrouping” activity (last row) the

teacher tagged the “Answers” resource as “.IN” when it is likely to be, rather, an “.OUT”

resource, to represent, in fact, an artefact to be produced (and not to be received) by

the students.

Deciding to use a component notion (i.e., creating a column) requires ticking

the corresponding box in the left side of the interface. This creates the corresponding

column in the table (e.g., the “Activity” column). De-selecting such a box removes the

respective column in the table. For each selected notion, three buttons allow creating

the items that will be referred to in the script (e.g., the activity “Read the general text”),

removing an item or editing it. In an effective system, part of these items may pre-exist

(typically, students and resources lists) and be imported.

Script-components are created by clicking on the “Insert row” button. Script-

components are edited (i.e., associating items to cells) by dragging-and-dropping an

item from a left box into a cell corresponding to a same box notion. Sub-rows are

managed by right-clicking on the corresponding cell(s) and selecting the “split” or

“merge” choice from the contextual menu.

Péricles DE LIMA SOBREIRA 55

Thèse en Informatique. Université de Grenoble, 2014

Different facilities are offered. As a first example, the editor offers to duplicate a

row (with or without its items). In many scripts we found script-components whose

structures were identical or highly similar (see for instance the second and third rows in

Figure 4.3). Duplicating a row (or adding a new branch identical to its left-brother

branch, within a tree perspective) is very convenient, in particular when its internal

structure is complex (sub-rows, merged cells, etc.). As another example, items can be

copied and pasted from one cell to another.

Every column is associated with a left and right arrow that moves it (the column

is moved as an entirety). Similarly, every script-component is associated with two

arrows that move it up or down (and with a bin icon, which removes it from the table).

Finally, columns’ and script-components’ dimensions can be modified (reduced and

expanded; e.g., the “Participant” column is expanded in Figure 4.3).

All manipulations offered to the user are first interpreted in terms of the model.

While the user creates his/her table, the system (1) builds the corresponding abstract

tree and uses it as a reference to accept or reject users’ actions, and then if applicable,

(2) modifies the table, which includes the propagation actions if any.

Figure 4.4 presents a translated representation produced by another teacher

who also participated of the ediT2 tests (Chapter 5), in this case, for the reciprocal-

teaching script (Figure 2.1).

Figure 4.4 Using ediT2 to represent the reciprocal-teaching script (from the first usability test, Chapter
5)

The first steps for a straightforward process to obtain the same representation

displayed in Figure 4.4 could be as follows (other solutions are possible, since some

representations can be obtained via different series of actions):

1. Select the components to be used (left part of the interface, select

“Activity”, “Group”, etc.). This creates the corresponding (empty) columns

in the table.

Péricles DE LIMA SOBREIRA 56

Thèse en Informatique. Université de Grenoble, 2014

2. Use the right and left arrows to put the components in the requested order

(header line of the table). In the example, the adopted order is Group,

Activity, Participant, Resource, Role.

3. If not imported from elsewhere, create the necessary items (left part of the

interface). In the example, three activities have been defined (“Read”,

“Write” and “Discuss”), one group (“G1”) and four participants (“Alain”,

“Julie”, “Isabelle” and “Bilal”). Items can be created at any time and not

necessarily at first as done here.

4. Create a first row by hitting the “Insert row” button. A first empty row

corresponding to the five columns (Group, Activity, Participant, Resource,

Role) is created.

5. Drag-and-drop “G1” in the first row / first column cell (Group column).

6. Right click in the first row / second column (activity cell) to split it, and

create three sub-rows.

7. Fill the remaining cells of the first row by dragging-and-dropping the items

(first sub-row: activity “Read”; participants “Alain”, “Julie”, “Isabelle” and

“Bilal”; resource “Texte1.IN”; roles “Read”, “Clarify”, “Summarize” and

“Predict”).

8. Manage the second sub-row (activity “Discuss”) by dragging-and-dropping

“Discuss” in the Activity cell, right-clicking on the Participant column,

splitting it into four cells, and filling each of these new sub-rows (first sub-

row: participant “Julie”; resource “Texte1.IN”; roles “Teach” and “Question”,

etc.)

4.4 Semantics

Natively, column headings are just type labels. An activity column states that

the values that can be put into this column are edited as of the type activity (i.e., in the

ediT2 interface, are defined as activities in the activity box in the left side of the

interface). The notions’ semantics is only carried out by the label and, thus, related to

the user’s perspective. How an activity relates to groups or roles is natively represented

in the system by a generic is-associated-with relationship denoted by the row structure

(we will refer to this as a structural semantics).

Péricles DE LIMA SOBREIRA 57

Thèse en Informatique. Université de Grenoble, 2014

Table 4.1 A basic interpretation of the is-associated-with generic relationship

 Activity Group Participant Role Resource

Activity N/A
The activity is
achieved by group(s)

The activity is achieved
by participant(s)

The activity is
achieved by playing
role(s)

The activity is achieved by
considering/producing
resource(s)

Group
The group is to consider
activity(ies)

N/A
The group is composed
of participant(s)

The group is to play
role(s)

The group is presented with / is
to produce resource(s)

Participant
The participant is to
consider activity(ies)

The participant is
associated in group(s)

N/A
The participant is to
play role(s)

The participant is presented
with / is to produce resource(s)

Role
The role involves
considering activity(ies)

The role is played by
group(s)

The role is played by
participant(s)

N/A
The role is to be played using /
producing resource(s)

Resource
The resource is to be
considered / produced in
activity(ies)

The resource is
presented to /
produced by group(s)

The resource is
presented to / produced
by participant(s)

The resource is
associated with
role(s)

N/A

Table 4.2 Basic actions to adapt a script (examples from the script presented in Figure 4.4)

 Adaptation of the script Example Nature Table perspective Tree perspective Actions to be processed

S
c
ri

p
t
fl
e

x
ib

ili
ty

Add/Remove an item
within the script

Associate a new role to
Isabelle within the activity
“Discuss”

Change the
definition of a
script-component

Add/Remove an item in/
from a cell

Add/Remove an item
in/from a node

Create the item. Drag-
and-drop it into the cell
(last column, 4

th
 row)

Re-allocate an item
within the script

Associate the roles
“Teach” and “Question” to
Bilal rather than to Julie

Change the
definition of a
script-component

Drag-and-drop an item
from one cell to another

Displace an item from
one node to another

Cut and paste the roles
from Julie’s row to the
cell in Bilal’s row

Add/Remove/Duplicate
a script-component

Remove the G1 script-
component

Change the
script-component
list

Add/Remove/Duplicate
a row (and its sub-rows,
if any)

Add/Remove/Duplicate
a branch (and its sub-
branches, if any)

Click on the bin icon
corresponding to row G1

Change the order of
script-components

Create a step to be
addressed before the one
presently associated to
G1

Change the
script-component
list

Create a row (or sub-
row) and move it up/
down

Create a branch and
move it left/right

Insert a row. Move it up
using the up arrow.
Define its structure and
content

Péricles DE LIMA SOBREIRA 58

Thèse en Informatique. Université de Grenoble, 2014

Introduce a new level
of break-down into
(part of) a script-
component

In the “Read” activity,
associate different
resources to Alain and
Julie on one side, and
Isabelle and Bilal on the
other

Change the
internal structure
of a script-
component

Split a cell into several
cells

Split a leaf/node in
several leaves/nodes

Right click on the first
row participant cell and
split it into two sub-rows.
Distribute participants
and resources as
needed

Regroup different
levels of break-down
of (part of) a script-
component

Regroup the “Discuss”
and “Write” activities

Change the
internal structure
of a script-
component

Merge cells into a single
cell

Merge leaves/nodes

Select the two “Discuss”
and “Write” activities.
Right click and select
“merge” (to be followed
by actions to reorganize
the participants if
necessary)

R
e

p
re

s
e
n

ta
ti
o
n

F

le
x
ib

ili
ty

Use a new (or not
using anymore a)
component notion to
describe the script

Withdraw the group notion
Change the
script-structure

Add/Remove a column Add/Remove a level

Unselect the “Group”
component in the left
side of the interface (the
column is automatically
removed)

Change the order in
which component
notions are used

Highlight the relationship
between participants and
roles

Change the
script-structure

Moving a column left/
right

Moving a level up/
down

Displace the role column
towards the left

Péricles DE LIMA SOBREIRA 59

Thèse en Informatique. Université de Grenoble, 2014

Table 4.1 presents a basic interpretation of the generic is-associated-with

relationship. As an example, within this interpretation, the “Identify techniques”

script-component represented in Figure 4.3 may be read as follows: Activity “Identify

techniques” is achieved by groups G1 and G2; G1 is composed of e1 and e2; each

of these participants is presented with resource “Insulation text” and is to produce

resource “Insulation list”. G2 is composed of e3 and e4; each of these participants is

presented with resource “Heater text” and is to produce resource “Heater list”.

This structural approach is significantly different from representing

relationships and associated constraints semantics by an explicit meta-model (see

for instance (Miao et al., 2005) meta-model of CSCL scripts). If taking a meta-

modeling perspective, the implicit meta-model underlying the T2 model is basic: a list

of notions Ni, Ni related to Ni+1 by a 0..* relationship and, in our case, i ∈ [1..4] and

Ni taking values in {“Activity, “Group”, “Participant”, “Resource”, “Role”}. Such a

perspective, however, does not capture much of the work’s rationale. Another way to

phrase it, more in line with the approach, is to say that a table is an easy-to-use way

to offer end-users with (limited) meta-modeling means, in this case selecting the

notions they want to use and ordering them as they prefer.

4.5 Offered flexibility

As mentioned previously, we consider that editing and setting-up a script is

not a straightforward process. Rather, teachers engage in an elaboration process,

i.e., iteratively refining the script under design until a satisfactory structure has been

obtained. Teachers may come to change their modeling perspective during this

process, i.e., while skipping from a broad idea to a precise description. Finally if, at

run-time, the script requires some important changes, teachers must here again

reflect on and re-design the script (Dillenbourg et al., 2013), which may lead them to

here again adapt the way they consider the script. Flexibility is thus an important

concern.

With respect to flexibility, different types of adapting actions can be

discerned. The first aspect is related to the script-components and, basically, the

possibility to easily manage the table structure, e.g., add rows or displace items.

The second aspect, which we have proposed to call representation flexibility, is

related to the script-structure.

Teachers, as individuals, develop a personal professional experience. Using

a script is just one episode that they harmonize with their practices, not the other

way around. Languages and editors introducing notions provide teachers some

support. Yet, by imposing a particular way of conceptualizing and representing

scripts, they also may poorly correspond to individual teachers’ perspectives or

needs, and may pose an appropriation problem.

Considering the fact that a script is a complex artifact to be elaborated and

adapted, and that teachers may have different perspectives corresponding to their

Péricles DE LIMA SOBREIRA 60

Thèse en Informatique. Université de Grenoble, 2014

modeling perspectives, their interpretations of the scripts and the way they prepare

and manage their sessions, introduces another aspect of flexibility, that we call

representation flexibility (Sobreira and Tchounikine, 2012): teachers should be

allowed to adapt the way the provided representation scheme can be used to

represent the script.

If one considers that the used representation scheme is a conceptualization

tool, this corresponds to some extent to adapting the representation scheme to the

teachers’ conceptual perspective on the script. Just as CSCL scripts must guide and

support students whilst not over-constraining their activity (Dillenbourg, 2002),

teachers should be provided representation means that, while elaborating the script,

guide and support them whilst not over-constraining them, i.e., imposing complex

notions or syntactical constructions that make it difficult or painful (e.g., time-

consuming) to change design decisions.

One of tables’ interests is to natively offer a basic representation flexibility

feature by ordering or re-ordering the columns. This allows to change the way the

notions provided to represent a script are used, e.g., moving from a

conceptualization of the script as “a set of activities to be realized by participants” to

a conceptualization as “a set of participants playing roles associated to resources”.

Such different script-structures correspond to different ways of

conceptualizing a setting, but do not necessarily lead to semantic differences.

Operationalized on an enactment framework (for instance Moodle, see Section 7.1),

different CSCL scripts representations (e.g., Activity-Group-Resource or Participant-

Resource-Activity) may lead the same deployment (courses associated with

students and resources). However, allowing teachers to adapt the representation

structure (as long as representations are equivalent) allows them to use the most

convenient one according to the setting, their practices and/or perspectives.

Table 4.2 takes as example the script presented in Figure 4.4 to summarize

how these different actions allow for the targeted flexibility, i.e., adapting the script

(script flexibility) and the script-structure (representation flexibility).

4.6 Constraints

The model introduces three native structural constraints, presented in the

next subsections.

4.6.1 The allocation of items into table cells

An ediT2 natively-implemented basic constraint is that an item defined as a

notion N (being this item originated from the N editing box of the editor, or some

table cell of its corresponding N column, e.g., N = “participant”) can only be dropped

into the corresponding column of the table.

Péricles DE LIMA SOBREIRA 61

Thèse en Informatique. Université de Grenoble, 2014

4.6.2 The script-structure

Given a script-structure, the table perspective causes all script-components

to have the same representation: a script is a homogeneous construction. The fact

that (for a given script) all script-components must be conceptualized in the same

way is an important design decision, and the rationale and arguments supporting

this decision are:

1. The representation’s homogeneity allows for managing the basic

coherence of scripts in structural terms, which is easy for both humans

and machines, unlike the defining of syntactical rules that would allow

for accepting different forms at the cost of complexity. Instead of

providing end-users syntactical constructions with constraints that must

be understood and properly used, the table structurally denotes the

constraint.

2. From a practical perspective, most of the disadvantages of the

homogeneity imposed by a table representation can be easily

overcome. For instance, the table-interface can be partially filled, i.e., if

a notion is not useful for a given script-component, the corresponding

cell can be left blank; this remains coherent and easily understandable.

As highlighted in Chapter 2, we believe that simplicity is a core argument.

When Computer Scientists often tend to allow all possibilities at the cost of

complexity, we believe that this is not necessarily very positive for the effective use

of software in education. To our opinion, this homogeneity constraint should be seen

and addressed as an issue if and only if it appears to be an effective practical issue,

and an obstacle to the fact the model is perceived as useful but too constraining.

4.6.3 The 1-n relationship

In order to avoid ambiguous constructions, the T2 model introduces as a

constraint the fact that a script-component must follow a 1-n with n ≥ 1 relationship

(or, in other words: a script is a tree perspective and not a graph, i.e., a cell has only

one parent).

If all script-components respect a 1-1 relationship (i.e., a table composed of

full-rows, with no split cells), the order of notions denotes the way the script is

conceptually addressed (e.g., as a set of activities or as a set of roles), but the fact

that columns are displaced does not further change the script semantics as the 1-1

relationships remain identical. In direct contrast, if the script presents 1-n with n > 1

relationships, a change of perspective resulting in a displacement of columns may

deeply affect the tree structure.

In order to explain the implications of this constraint without going into

formal constructions, we will use the example introduced in Figure 4.1. There, the

first and fourth script-components follow a 1-1 relationship, whereas the second and

Péricles DE LIMA SOBREIRA 62

Thèse en Informatique. Université de Grenoble, 2014

third ones a 1-2 relationship. Let us consider that one wants to change the structure

of the “Identify techniques” script-component and state that it will be achieved by a

single group. Visually, it means that the cells containing G1 and G2 are merged into

a single cell. Modified in this way, the script remains coherent with a 1-n

relationship. The script now specifies that “Identify techniques” will be achieved by a

single group from which P1 and P2 will use “Insulation text” to produce “Insulation

list”, and P3 and P4 will use “Heater text” to produce “Heater list”.

Let us now consider in the same figure that one wants to change the

structure of the “Crossing groups” script-component and regroup its participants

(Table 4.3). Visually, it means that the cells containing (P1, P4) and (P2, P3) are

merged. Modified in this way, the script becomes incoherent with the 1-n

relationship: this cell, if created, would have two different antecedents (the cells

containing G3 and G4).

Table 4.3 Rationale for the 1-n with n ≥ 1 relationship

interpretable construction

Activity Group Participant Resource

Crossing
groups

G3 P1,P4 Insulation questions(in), Insulation list(out)

G4 P2,P3 Heater questions(in), Heater list(out)

ambiguous construction (it is no longer a tree)

Crossing
groups

G3
P1,P4,P2,P3

Insulation questions(in), Insulation list(out)

G4 Heater questions(in), Heater list(out)

In the sense of the tree-model, a node would have two fathers, and is

therefore not a tree anymore. Such a structure is discarded by the model and made

structurally impossible. The reason is that, if accepted, the script’s semantics

become ambiguous (the Group-Participant relationship of this script-component

becomes unclear: there are two groups but one set of participants).

This constraint allows keeping the table equivalent to a tree and thus

interpretable within the adopted structural semantics. Some syntactical sugar could

be though to let users specify specific intentions. An interface could thus be offered

to not impose this constraint but, rather, allows cells to have different antecedents

as long as the construction would be interpretable (keeping the machine

representation as a tree to benefit from tree manipulation algorithms). However, as it

is of little interest and would go against the simplicity principle, we have opted to

keep the representation simple and orthogonal.

As is obvious when considering the table structure, the “Crossing groups”

participants can easily be grouped by merging G3 and G4 in a single cell and then

merging the participants. Now, “Crossing groups” is associated with a group

containing all students, who are presented with two different input resources

(“Insulation questions” and “Heater questions”) to produce two different output

resources (“Insulation list” and “Heater list”).

It may be noticed that if G3 and G4 are merged but the participants (P1 P4)

and (P2 P3) are not merged, the script has different semantics (referring here to the

basic semantics as defined in Table 4.1). There is now one group containing all

Péricles DE LIMA SOBREIRA 63

Thèse en Informatique. Université de Grenoble, 2014

students within which pairs of participants are provided with different resources, and

are expected to produce different outputs. Another adaptation (coherent with the 1-n

structure), carrying again different semantics, would be to associate a specific

resource to each of the participants by creating one sub-row per participant (i.e.,

creating a 1-4 relationship).

As a different example, let us consider that one comes back to the initial

structure as shown in Figure 4.1 and that one wants to change the structure of the

“Identify techniques” script-component by regrouping its Resources. Visually, it

means that the cells containing “Insulation text”, “Insulation list”, “Heater text” and

“Heater list” are merged. Modified in this way, the script becomes incoherent with

the 1-n relationship. However, such a change may easily be represented by keeping

the current table structure (the two cells are kept) and duplicating the four items (the

four resources) in each one of the two cells.

Another interesting feature is that some of the modifications required to

adapt a script while keeping coherent with the model can be automatically derived

from the model and thus automatically achieved by propagating actions. For

instance, let us consider that one wants to change the structure of the “Identify

techniques” activity by splitting the G1 group into two different sub-groups G1-1 and

G1-2. In this case, the script becomes incoherent (the {P1, P2} participants cell has

two fathers). However, coherence can easily be maintained by propagating the

implications of the change, in this case duplicating the associated participants’ and

resources’ cells.

As another example, if the Group and Activity columns are swapped, it is

necessary to adapt the table (if not, “Identify techniques” and “Crossing groups”

would have several parents, G1/G2 and G3/G4, respectively). In this case, two new

activity cells must be created (with duplication of values) to represent the G1-

“Identify techniques” and G2-“Identify techniques” relationships and two others must

be created to represent the G3-“Crossing groups” and G4-“Crossing groups”

relationships. This will lead to a script based on the Group-Activity-Participant-

Resource script-structure, and composed of six script-components (all with a 1-1

relationship). In general, such propagation actions are to be processed recursively

through the tree’s branches.

As in the column displacement operation, splitting cell may also require the

propagation of modifications to maintain the representation coherent with the model.

Table 4.4 presents more two examples of propagation action, where the first one is

yet about displacement of columns and the second one, about split cell operation. It

may be noticed that, when propagating changes in the tree structure, the sub-rows

and items may be managed in different ways. For instance, when splitting the {P1,

P2, P3, P4} participant cell into two (Table 4.4, row 2), the resulting participant cells

may be reinitialized to blank, associated to the participant(s) preexisting to the

manipulation or spread over the two new cells. This may be configured and, anyway,

the result may be easily adapted by further merge/split or drag-and-drop actions.

Taking the “Discuss” activity (Figure 4.4) as a last example, three of its

students (Alain, Isabelle and Bilal) have the same “Discuss” role, and in order to

highlight this, one could want to merge these three cells, what would be impossible

Péricles DE LIMA SOBREIRA 64

Thèse en Informatique. Université de Grenoble, 2014

by the 1-n relationship. However, different strategies could overcome this issue. One

is to displace the role column and adopt a Group-Activity-Role-Participant-Resource

script-structure. Indeed, if one analyzes the representation produced by the teacher,

the Role notion seems more structuring than the Resource or Participant ones.

Once this move is achieved, the three “Discuss” cells can be merged.

Table 4.4 Examples of manipulations of script representations and propagations

Script representation Manipulation
Script representation

modified (when applied)

Act Part Role

A1

P1 RL1

P2
RL2

RL3

Displacement of the
Role notion towards the
left (or of the Participant
notion towards the right)

Act Role Part

A1

RL1 P1

RL2 P2

RL3 P2

Act Part Role Res

A1

P1 RL1 R1

P1 P2
P3 P4

RL1
RL2

R2

R3

R4

R5

Split the cell containing
P1, P2, P3 and P4
Participants in two

Act Part Role Res

A1

P1 RL1 R1

P1 P2
P3 P4

RL1
RL2

R2

R3

R4

R5

Another option is to merge the three Participant cells, and then the three

Resource cells (“Text1.IN” in all cases), and finally the three Role cells. Given the

overall representation, however, this second option might convey a different

perspective for the teacher (in the “Read” row he groups the participants and the

roles, thus one may hypothesize that splitting each student’s role in the “Discuss”

activity is an explicit decision). Finally, as the teacher did, one may simply duplicate

the value in the cells.

As one can see in these examples, the model implements semantics that

are to a large extent structurally represented by the table interface. Using the table-

interface natively produces coherent scripts. In some cases, the 1-n relationship

imposes duplications but, from the point of view of the editor interface, these are

managed by copy-and-paste and drag-and-drop manipulations and do not seem to

significantly disturb users. Moreover, some of the manipulations requested to

maintain coherence are automated by propagation actions, which here again

removes some burden.

4.7 Adding control rules

The basic structural semantics may be enhanced by adding an analysis of

the users’ actions with respect to other constraints. Technically, this may be

implemented through constraints as control rules, and firing these rules when end-

Péricles DE LIMA SOBREIRA 65

Thèse en Informatique. Université de Grenoble, 2014

users act on the table. Control rules may be used to impose a specific semantic

and/or provide modeling support.

For instance, we found many different script-structures in our usability study

(Chapter 5). As an example, we found some teachers denoting what work

participants had to achieve with the Activity notion, some others with the Role

notion, and some others using both (one complementing the other). In some

contexts, these differences in perspectives and usages could be an issue, for

example, if aiming for representations to be indexed into a repository (to be

afterwards reused for others) or, on another dimension, correspondence with the

format of a given enactment framework. In such a case, the model can be enhanced

by control rules imposing a particular pivotal notion or a partial ordering of notions or

constraints related to relationships between items (e.g., constraints related to the

branching factors or to some notions’ cardinality). For instance, it may be imposed

that Activity is the pivotal notion; that different activities in the table must be named

differently (one cannot drop the same activity item into different Activity-cells), and;

that an Activity-cell contains only one item (in other words: a line depicts an Activity

and thus Activities should be different and single).

Other reasons to use additional constraints may be to provide teachers

modeling support (linking constraints to some methodological instructions to avoid,

for example, odd constructions) – this topic will be emphasized in Chapter 6.

4.8 T2 tree manipulation algorithms

A basic advantage of a tree representation is that manipulation algorithms

are simple for most of them and generic. As example, we present here after two

(simplified) algorithms involved in T2 tree manipulations: “split a cell” (Figure 4.5)

and “move left/right a column” (Figure 4.6). In such algorithms, “cell” and “column”

correspond to table interface elements, and, correspondingly, “node” and “level” to

tree model components.

Algorithm: Split a node N in level li
(to be applied recursively over the tree structure containing the N root)

1. Identify the branching factor between N and its descendant(s) in level li+1
2. Apply a strategy to identify the number s of nodes that N will be split in
{Different strategies are possible. One option is to allow the user to split N in any number
of nodes, but this may give rise to incoherent constructions that must be corrected
afterwards. The implemented option is to restrict possibilities according to the set of
divisors in level li+1}
3. Create s – 1 new nodes
4. Apply a strategy to fill the nodes in level li
{As examples of strategies: leave N with its original content and initialize new nodes to
blank; initialize all nodes to blank; replicate the N content to all s – 1 new nodes}
5. Update the connections from level li-1 to level li and from level li to level li+1
{Connections must be updated consistently with the strategy adopted when identifying s}

Figure 4.5 “Split a cell” algorithm

Péricles DE LIMA SOBREIRA 66

Thèse en Informatique. Université de Grenoble, 2014

Algorithm: Move up/down level li
(considering “Move right” operation; the “Move left” algorithm is equivalent to that one)

1. Move down level li, corresponding to the column under manipulation
2. Correspondingly, move up level li+1, corresponding to the right column taking into
account the column under manipulation
{If nodes in li and li+1 maintain a 1-n father-children relationship (n > 1), apply under the
nodes in level li the algorithm presented in Figure 4.5}
3. Update the relationship between levels li and li+1 and, when applied, between levels li-1
and li+1, and li and li+2

Figure 4.6 “Move left/right a column” algorithm

Péricles DE LIMA SOBREIRA 67

Thèse en Informatique. Université de Grenoble, 2014

5 Validation of ease of table-tree representation,

perceived flexibility and pedagogical

expressiveness

5.1 Initial considerations

5.2 Is the model/system easy to use?
5.2.1 First usability test

5.2.2 Second usability test

5.2.3 Analysis of the technical competences required to use

the editor with respect to teachers’ ICT skills

5.2.4 Discussion

5.3 Do teachers avail themselves of the flexibility

provided?

5.4 Does a table notation allow representation of a wide

range of scenarios?

This chapter builds on and extends some ideas and concepts
presented in our paper published in the Computers and Education
journal (2014).

Péricles DE LIMA SOBREIRA 68

Thèse en Informatique. Université de Grenoble, 2014

Résumé en français

Dans ce chapitre nous présentons les résultats obtenus dans quelques

expérimentations et études exploratoires menées pour analyser comment les

enseignants utilisent ediT2. Dans cette perspective, nous avons examiné les

questionnements suivants : « le modèle/système est-il facile à utiliser ? » ; « les

enseignants profitent-ils de la flexibilité fournie par la plateforme ? » ; et « la

notation en table permet-elle la représentation d’une large gamme de scénarios ? ».

Afin de répondre au premier de ces questionnements, nous avons mené

deux expérimentations d'utilisabilité. Dans la première, ont participé cinq

enseignants français d’écoles primaires et secondaires, un spécialiste de

modélisation de scénarios pédagogiques et un spécialiste de modélisation de

données. Dans la seconde expérimentation ont participé dix-huit professeurs

universitaires de différents domaines de l’Université de Valladolid, Espagne. Elle a

permis de comparer l’utilisation de deux outils dont l’ediT2.

Afin de répondre au deuxième questionnement, nous avons considéré les

données de la première expérimentation d’utilisabilité pour étudier si les

enseignants utilisent la flexibilité de l'éditeur, à partir de quatre indicateurs : les

squelettes des représentations produites (les arbres produits) ; la structure et le

nombre des éléments des différents arbres modélisés ; les actions effectuées par

les enseignants pour définir/modifier la structure de chacun des scénarios

représentés ; et le nombre d'actions effectuées par les utilisateurs qui ont participé à

l'expérimentation.

Par rapport au troisième questionnement, nous avons apporté différents

éléments de réponse. Tout d’abord, nous avons examiné les deux expérimentations

d’utilisabilité et, dans les deux, aucun des enseignants n’a rapporté de soucis avec

l’expressivité pédagogique de l’éditeur. Un autre ensemble d’actions d’évaluation a

été exploratoire. Tout d’abord, nous avons récupéré 25 scénarios collaboratifs de la

littérature, qui ont tous pu être représentés par des tables. Ensuite, nous avons

examiné certains scénarios élaborés par la communauté LAMS et, là encore, ils ont

pu être représentés par des tables. Enfin, une dernière action d’évaluation a été

menée avec la version générique d’ediT2 (qui sera présentée dans le chapitre 8)

pour représenter des scénarios collaboratifs modélisés par un autre éditeur de

scénarios d’apprentissage (SceDer), qui a été évalué comme en étant capable de

modéliser des scénarios pédagogiques de référence. Ces actions ont montré que

certains scénarios nécessitant des planifications complexes ou des principes de

dynamisme devraient être représentés à partir d’une version améliorée de l’éditeur.

Nous concluons que la table présente une certaine expressivité, mais qu’elle ne doit

pas être considérée comme un remplacement de moyens plus complets.

Péricles DE LIMA SOBREIRA 69

Thèse en Informatique. Université de Grenoble, 2014

5.1 Initial considerations

In this chapter, we present the results obtained from some experiments and

exploratory studies conducted to analyze how teachers used ediT2. We consider the

questions “is the model/system easy to use?” (Section 5.2), “do teachers avail

themselves from the flexibility provided?” (Section 5.3), and “does a table notation

allow representation of a wide range of scenarios?” (Section 5.4). Complements will

be presented in Chapter 8.

5.2 Is the model/system easy to use?

In order to support our claim that the model/system is easy to use, we

propose two elements: the results of usability tests and an analysis of the technical

skills required to use such an editor with respect to teachers’ ICT skills (Subsections

5.2.1-2 and 5.2.3, respectively). In Subsection 5.2.4 we discuss these elements.

5.2.1 First usability test

This experiment involved five primary and secondary French school

teachers (a sample of 5 is usually considered as sufficient for such an editor

usability test). Also, we involved one learning-scenario modeling specialist (an

instructional designer) and one modeling specialist (a Computer Science university

professor) as a way to get some possibly different input.

The experiment and analyses were conducted to identify teachers’

representations of two CSCL scripts adapted from the literature (the ones presented

in Figure 2.1 and Figure 2.2). We introduced two scenarios to limit the intrinsic bias

that consists in introducing a computer-based tool and, within the same session,

analyze how users use it (although the editor builds on its resemblance with

spreadsheets or table editors, any tool requires some time to be adopted and

adapted to one's needs).

The task of the teachers corresponded to the considered prototypical use-

case: given a script represented in a narrative (and more or less abstract) way,

engage in an edition activity and adapt it in a way that corresponded to how they

would implement it in their classrooms (instead of targeting a “best solution” that

could be compared with that of “experts” in view of quality analysis). Here, they were

asked to stop the process when happy with their representation, highlighting that

there were no “good” or “bad” answers, and that the amount of time spent

representing the script was not important.

Péricles DE LIMA SOBREIRA 70

Thèse en Informatique. Université de Grenoble, 2014

We did not consider if the different representations produced by the

different teachers were or were not semantically equivalent to each other (or to the

canonical patterns). The study was conducted to analyze trends reflecting the

editor’s (and the underlying model’s) usability and, more precisely, whether teachers

succeeded in using the editor to model the script the way they wanted (the editor

was introduced free of any methodological training).

The protocol of this experiment is summarized in Table 5.1.

Table 5.1 The French usability test protocol

Phase Content

1 The teacher was presented with a demonstration of the ediT2.

2

The teacher was presented with the narrative of a first script (the reciprocal-
teaching script as presented in Figure 2.1) and asked to create a representation
with the editor. The teachers were prompted as follows: “You plan to implement
the following script in your classroom. Use the editor provided to create the
synthetic representation you find most suited to plan the different steps and, while
the script unfolds, annotate the plan, if necessary, to monitor what is happening
or adapt the script”.

3

A first questionnaire and debriefing were conducted to collect the teacher’s first
impressions, and respond to any questions related to the editor. It determined
whether users were at ease with the editor features and opened up a first general
discussion. Sample question: “What problems did you experience, if any?”

4
The teacher was presented with the narrative of a second script (the jigsaw script
as presented in Figure 2.2) and asked to create a representation with the editor
(prompted as in Phase 2).

5

The teacher was presented with two events related to his/her jigsaw script
representation and asked to explain how she/he would react and adapt the script
representation. The first event involves one student stating that she/he does not
want to work with his/her assigned partner in one of the pairs defined by the
teacher. The second event involves one student finishing long before the others,
while working in parallel.

6

The teacher was presented with a final questionnaire presenting four parts. First,
questions on the teachers’ perspective on scripts in general, and on the notions
provided by the editor to represent scripts (sample question: “I have difficulties
thinking with the notions provided”). Second, questions on the editor. The
objective of these two first questions was to make sure teachers dissociated the
editor usability (which is what we were interested in) from their personal
perspectives or potential difficulties with the notion of script, the two scripts used
as case studies and/or the notions available. Third, questions on the way
teachers engaged in the process and used the system (sample questions: “I
found that the capacity to adapt the representation […] allowed me to reflect on
the script, to refine my vision”; “When I represented the first script, I got right into
it and adapted things little by little”). Finally, teachers were asked to highlight any
comments or suggestions (open discussion).

The answers to the questions on the editor (see Table 5.2) confirm that the

editor and underlying model are intuitive and easy to use: all five teachers agree or

strongly agree they found the tool easy to use for the second script (and four of

them agree or strongly agree since the first script).

We may notice that the instructional designer found the tool easy to use for

the first script and less for the second (neither agrees nor disagrees). The debriefing

discussion revealed that this answer indicated difficulties with the model’s

Péricles DE LIMA SOBREIRA 71

Thèse en Informatique. Université de Grenoble, 2014

completeness (she wanted to represent the schedule in a more explicit way than the

basic frame allows). The only other severe criticism related to the editor’s

expressiveness came from the modeling specialist (a Computer Scientist) who,

unsurprisingly, raised the issue that such a modeling tool did not support the

modeler by imposing precise rules. She was not at ease with the fact that she could

represent the scripts in different ways or, in other words, with the editor design

rationale.

Table 5.2 Questions related to the editor and number of answers
Ti correspond to teachers, ID to Instructional Designer and MS to Modeling Specialist

Questionnaire results
Strongly
disagree

Disagree
Neither agree
nor disagree

Agree
Strongly
agree

I think the tool looks like a
spreadsheet or an array editor
as can be found in classic
office suites.

 T3
T4 T5
MS ID

T1 T2

Once the demo was over, I
had the feeling I had
understood how to use the
tool.

T1 T4

MS
T2 T3
T5 ID

Looking back, I had correctly
understood how to use the tool
after the demo.

 T4
T1 T3

MS
T2 T5

ID

When I represented the first
scenario I found the tool easy
to use.

 T3
T1 T4
ID MS

T2 T5

When I represented the
second scenario I found the
tool easy to use.

 ID T1 MS
T2 T3
T4 T5

I have the feeling that if I had
to use the tool a third time it
would be easy.

T1 ID
MS

T2 T3
T4 T5

In direct contrast, the teachers’ criticisms were suggestions of extensions

such as an additional column to mention activity length or how the script unfolded

for adaptation in future sessions, i.e., suggestions related to the way they would

effectively use such a tool on a personal level (this functionality was added after the

experiment (see Section 7.3)).

Although no general conclusion is to be drawn given the limited number of

participants, the difference between the input originating from basic teachers and

from modeling specialists may be relevant and confirm the interest of considering

simplicity and flexibility rather than comprehensiveness when targeting such a

public.

5.2.2 Second usability test

A second usability test was organized in collaboration with the GSIC group

of the University of Valladolid (Spain). The experiment aimed at comparing the use

of different tools from which ediT2 (see Prieto et al., 2014, for details).

Péricles DE LIMA SOBREIRA 72

Thèse en Informatique. Université de Grenoble, 2014

Questionnaires included questions related to usability, which is the part of the

experiment we report here.

Eighteen university lecturers from different disciplines at the University of

Valladolid were asked to represent CSCL scripts in a 12 hours blended experiment

split in two classroom sections (4 hours each) intercalated by an individual in-

distance activity (4 hours). These activities were introduced and finalized by pre-

and post-workshop sections, respectively, as described in Table 5.3.

Table 5.3 The Spanish usability test protocol

Phase Content

1 Pre-workshop section. Teachers were presented to an example of CSCL script
and conducted to answer an initial profiling questionnaire.

2 First classroom section. Teachers were introduced to general collaborative
learning approaches and the CSCL tools used in the experiment (ediT2 and
WebCollage). In dyads, teachers modeled a hypothetical CSCL script using a
learning authoring tool (50% using ediT2, 50% using WebCollage). Then, the
ones who modeled such script using ediT2 were to represent it using
WebCollage, and vice-versa). After, teachers individually answered some
questions concerning tools features and usage.

3 Online section. Teachers individually, at their homes, modeled a CSCL script,
that could exist in their realities in classrooms, with one of the two editors
manipulated in the last phase (tool freely chosen by each teacher).

4 Second classroom section. After receiving the feedback concerning the last
phase, teachers individually revised the questionnaires produced in Phase 2. In
dyads, they discussed about the editors to finally agree, in groups composed by
2-3 previous dyads, about the possible issues to the adoption of such authoring
tools. Then, they were introduced to the operationalization architecture used in
the experiment and after, individually deployed their respective scripts produced
in the last phase, into Moodle. Finally, they were conducted to answer an
evaluation questionnaire, concerning professional questions.

5 Post-workshop section. Three weeks later, teachers were conduct to answer a
final questionnaire, reconsidering the subjects discussed in Phase 2 (tools
features and usage), and taking into account the questioning about the possibility
of adoption of such tools in future situations.

In Phase 2, teachers were asked to the questions: “[Do you think that] the

editor is easy to use?”, using a Likert scale 1-6 (6=totally agree). The average

response was 4.9 (std. dev.=0.6, min. value=3) – the questionnaire in Phase 5 gave

similar results.

5.2.3 Analysis of the technical competences required to use the editor with

respect to teachers’ ICT skills

Another more general way to investigate the usability question is to consider

the technical competences required to use the model as implemented by the editor,

and analyze them with respect to teachers’ ICT skills.

The technical skills required to use the editor are those of a table editor in a

word processing office tool: add/remove lines or columns, split or merge cells,

Péricles DE LIMA SOBREIRA 73

Thèse en Informatique. Université de Grenoble, 2014

displace an element, and copy-and-paste. All these actions correspond to mouse

manipulations (left-click, right-click, drag-and-drop).

Teachers’ ICT skills are assessed in a few countries only (Bakia et al.,

2011), and we lack general data. However, in one investigation into the ICT

knowledge and skill levels among Western Australian government school teachers

(Trimmer, 2006), word processing was part of the basic suite of ICT applications

used by more than 95% of teachers.

The ICT skill item map that was constructed from the analysis of teachers’

skills led to a three-score division: competence scores between 0 and 39.9 (22% of

teachers who typically have basic skills such as word processing and Internet),

scores between 39.9 and 60.6 (53% of teachers with more advanced skills) over

60.6 (25% of teachers with even more advanced skills). The “creating tables” skill is

in the middle of stage 1. In other words, the technical skills required to use the editor

are considered as basic skills, accessible to most teachers.

The ediT2 editor works like a table editor rather than a spreadsheet

(spreadsheet specificity is to allow formulas and programming interaction, which

requires more advanced skills; although one may use spreadsheets to manage a

basic table, the overall interfaces is much more complex and impressive). However,

we may notice that the same study mentions that although 35% of teachers have

never tried any of the spreadsheet tasks, 56% have inserted and deleted rows and

columns (this skill being placed in the middle of stage 2).

Different studies have also shown that tables were simple and effective

representation devices that help users shape a representation of their problems

(Mangano et al., 2011; Nardi and Zarmer, 1993).

We also conducted an Internet search to collect examples of learning pre-

structure sheets offered to teachers in the French context, and we found out these

sheets were almost always tables, in which their rows indicated the session phases

and their columns, the scenario / teaching sequence representation notions.

These elements suggest that although teachers’ ICT skills are context-

dependent, a model/editor requiring the technical skills of an office table-editor will

in all likelihood be usable by a large set of teachers.

5.2.4 Discussion

Reconsidering the first usability test in such a way to answer the

questioning of this section (“is the model/system easy to use?”), we found some

positive indicators in the qualitative analysis of the teachers’ responses to the

questionnaire and the open discussion (preliminary results of the second test will be

presented in Chapter 9): all teachers stated that the proposed notions made sense

to them (although some of them suggested using some others, or some more), and

easily reflected on the table representation they had built when asked to react to the

proposed run-time events (fifth phase of the study).

Péricles DE LIMA SOBREIRA 74

Thèse en Informatique. Université de Grenoble, 2014

The following are some examples of feedback: “[for the second script] I

knew where I was going (…) I had “tools to think” (…) it was a pleasure to use the

tool (...) it’s a genuine organizational resource (…) [the proposed notions] “work

well”; “Step by step, I took ownership of the setting thanks to the array (….) it’s a

skeleton (…) one is challenged by the playful aspect of the exercise”; “The tool

helped me to tidy up [the script], even in my head”; “I would like to see a column to

indicate the results, how students reacted, etc.”

With respect to the questionnaire statement “I found that the capacity to

adapt the representation […] allowed me to reflect on the script, to refine my vision”,

3 teachers totally agreed, 1 agreed and 1 disagreed. With respect to the

questionnaire statement “I think this tool could allow me to conduct my session, to

reflect on what is happening during the session and how I could adapt things

according to the effective unfolding of the script”, 4 teachers totally agreed and 1

disagreed. In both cases, the disagreeing teacher is the same. She mentions that

she had the script in her head very clearly from just reading the text, thus the tool

just helped her to organize her thoughts; and, with respect to run-time management,

“It’s a help before the session, but while conducting the session I would be anchored

in the setting and would not come back to it (…) but I would afterwards, to reflect on

the effective enactment”. Analyzing these conceptual dimensions would require a

specific qualitative study involving a larger panel and a longer time-span.

5.3 Do teachers avail themselves of the flexibility provided?

To answer the question “do teachers avail themselves of the flexibility

provided?” we will consider the first usability experiment. The data for the second

experiment is not available as teachers’ representations were transformed for

operationalization (see Chapter 7). We narrow the question to whether teachers use

the flexibility provided when asked to edit a script with the provided editor (which is

the topic we consider here). Whether teachers use the editor and its flexibility within

their current practices is a distinct question, for longer-term study.

Four indicators gathered from the first usability test show that teachers take

advantage of the editor flexibility.

First, with respect to representation flexibility, the seven participants

involved in the experiment individually represented two different scripts, as

described in Section 5.2.1. The analysis of these 14 representations’ skeletons

produced shows that 12 different script-structures were used (9 different script

structures for the 10 representations by teachers), with most of the involved

teachers (4 out of 5) using different script-structures for the first and second script.

Table 5.4 presents the scripts’ skeletons and script-structures produced by the 5

teachers.

We find this variety of script-structures particularly interesting because, in

some sense, the script structure is a modeling engagement that corresponds to the

Péricles DE LIMA SOBREIRA 75

Thèse en Informatique. Université de Grenoble, 2014

way teachers appropriate the script. This illustrates the variety in modeling

preferences and ways teachers addressed these scripts, and the fact they adapt the

script-structure to their perspective and to the script.

Table 5.4 Scripts’ skeletons

Teacher
Representation skeletons

Script#1 Script#2

#1

Group-Role-Participant-Resource-Activity

Group-Participant-Activity-Resource

#2

Participant-Group-Activity-Resource-Role

Participant-Activity-Resource-Role

#3

Group-Activity-Participant-Resource-Role

Participant-Group-Resource-Activity

#4

Activity-Group-Participant-Resource-Role

Activity-Group-Participant-Resource

#5

Activity-Participant-Resource-Role

Activity-Participant-Resource-Role

We may notice that although some representations may be equivalent with

respect to the formal model, the fact that notions are used in a given order seems to

be of importance for teachers. As an example of this, in Table 5.4 we can observe

that although the script#2 was represented by the teachers #4 and #5 through two

different script-structures, the latter is, in fact, an extension of the former, enhanced

by the Role notion.

With respect to the fact some script-structures may be considered as

equivalent, however, we can mention the following interesting episode. While

modeling, teacher#5 attempted to merge two cells when this was not possible given

the 1-n constraint. She realized that she could easily and neatly solve the problem

by changing the column order, but she explicitly decided not to do so, preferring to

Péricles DE LIMA SOBREIRA 76

Thèse en Informatique. Université de Grenoble, 2014

keep two separate cells with duplicate values (which was a less neat way of solving

the problem), stating that “I prefer to view the script this way” (i.e., with this script-

structure). This suggests that the precise script-structure is an important topic for

teachers.

Second, the structure and number of items of the different trees also

illustrate that teachers edit the script in different ways, although all of them

developed an understanding of the script in line with the script principles (Table 5.5).

In this table, the “–” symbol following the name of a notion indicates that it was not

used in the script representation.

Table 5.5 Number of different involved items

Script
Number of items

Teacher#1 Teacher#2 Teacher#3 Teacher#4 Teacher#5

#1

Activities:9
Groups:1
Participants:5
Resources:9
Roles:1

Activities:17
Groups:2
Participants:5
Resources:9
Roles:3

Activities:3
Groups:1
Participants:4
Resources:2
Roles:8

Activities:5
Groups:2
Participants:5
Resources:2
Roles:3

Activities:7
Groups: –
Participants:5
Resources:6
Roles:6

#2

Activities:4
Groups:5
Participants:4
Resources:10
Roles: –

Activities:17
Groups: –
Participants:5
Resources:12
Roles:1

Activities:7
Groups:5
Participants:4
Resources:6
Roles: –

Activities:4
Groups:2
Participants:4
Resources:8
Roles: –

Activities:4
Groups: –
Participants:4
Resources:10
Roles:3

Table 5.6 Modifications of script-structures

Péricles DE LIMA SOBREIRA 77

Thèse en Informatique. Université de Grenoble, 2014

Third, Table 5.6 highlights the actions performed by the teachers to

define/modify the script-structure of each one of the scenarios represented by them.

Every line in grey corresponds to a teacher’s action (chronological order). The

darker lines correspond to actions related to the definition or adaptation of the

script-structure, i.e., inserting, moving or removing columns. All this information was

gathered from the teachers’ traces when manipulating the editor (see Appendix C,

for details).

We find particularly interesting the fact that teachers use the editor flexibility

to define the script-structure they feel at ease during their first steps (and in some

cases, remove columns they did not use, if any, at the end of the process), but also

modify the script-structure while the modeling is advanced and on-going. Teachers

do change their modeling perspective if, at some time, it appears less convenient or

less adapted than expected. This suggests that, at some moments, what is under

edition (analysis, correction, refinement) is not only the internal structure of the

script (e.g., the list of activities or the composition of groups) but, also, the modeling

perspective itself.

Table 5.7 Users’ actions
Ti correspond to teachers, ID to Instructional Designer and MS to Modeling Specialist

Participants’ number of actions

T1 T2 T3 T4 T5 ID MS

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Total number of
actions

135 95 162 206 96 61 59 49 106 67 72 118 52 66

Normalized
number of
actions*

135 96 162 206 96 61 64 67 106 67 84 185 52 68

Minimum
number of
actions**

68 75 142 189 41 52 51 44 89 60 70 129 45 53

* The number of actions is normalized. This means that when teachers use the duplicate feature
(which creates in one step what may require several atomic actions) the corresponding number of
basic actions is counted. The data is cleaned. For instance, in the context of the first script, some
teachers first checked how the editor reacted by inserting and immediately removing a column.
These actions were not taken into account. Similarly, some teachers pre-created a series of empty
rows and, when over with the representation, deleted the ones that were not used. These actions
were not counted.
** The minimum number of basic actions denotes the actions that would be needed to represent
the final structure as produced by the teachers within a straightforward process.

Finally, as contextual information, Table 5.7 mentions the number of actions

performed by the users that participated of this experiment, and indicates the

minimal number of actions that would have been necessary to obtain the same

representations in a straightforward way. This data is not to be over-interpreted. The

difference corresponds both to the users’ explicit changes of some previously

decided design options and to events that are much more difficult to interpret

properly. For instance, some users punctually use the table as an untidy draft,

whereas at some other step, their process is much more structured. Moreover,

Péricles DE LIMA SOBREIRA 78

Thèse en Informatique. Université de Grenoble, 2014

teachers do not necessarily attempt to be efficient, acknowledging they use more

actions than necessary but not bothering as they know they can change the

representation sufficiently easily to obtain their desired end result with little effort

(and this is very interesting with respect to the system’s usability). And, of course,

there are a few simple mistakes such as dropping an item in a different cell than the

one that was targeted. However, a significant part of these actions correspond to

adjustments.

As highlighted by the debriefing session and verbalizations during the

process, teachers do not build an accurate and precise representation in their heads

and then transcript it with the editor, but rather refine the script while editing it. As

examples of verbalizations: “No, I prefer splitting this activity in …”; “Actually, I think

I might differentiate the roles …”; “It might be interesting to …”.

5.4 Does a table notation allow representation of a wide range of
scenarios?

As raised in Chapter 2, scenario editors are usually designed to make it

possible to represent a range of scenarios that can be expressed with a given EML

and its objectives or constraints as, for instance, standardization and

industrialization for IMS-LD, or operationalization within a given framework such as

LAMS. Here, the expressiveness scope is not defined by an EML but by a structural

aspect: scripts that can be represented with a flat table representation.

As the overall approach is to allow additional services (see Chapters 6, 7

and 9), expressiveness may be more or less enhanced. However, to evaluate the

approach’s pedagogical expressiveness we stuck to the basic representation and

considered this question in different ways, and in relation to matters under study.

A first evaluation action was conducted in the context of the two

experiments reported in Section 5.2. Let us recall that the French teachers were

asked to represent scripts as they would like to conduct their sessions in the

classroom, while the Spanish academics have been interested in terms of scripts’

operationalization with Moodle. In both experiments, none of the teachers raised any

issue related with pedagogical expressiveness and the fact that they could represent

the scenario as they wished given their concerns. The fact that the offered notions

were satisfactory is not surprising as it has been proven they could be used to

represent a variety of scenarios (Kobbe et al., 2007). What this study confirmed is

that the table was expressive enough for teachers to express their designs.

Another set of evaluation actions was exploratory.

First, we collected 25 CSCL scripts from the literature (see Appendix D, for

details). All of them could be represented as tables. This representation was more or

less complete and more or less straightforward. For scripts that included loops,

these repetitions could not be directly designed as such, but could be represented

by duplicating some of their rows and/or items. For some scenarios, the

Péricles DE LIMA SOBREIRA 79

Thèse en Informatique. Université de Grenoble, 2014

representation was not complete (i.e., not sufficient for direct operationalization)

because the scenario included specific constraints requiring additional means. For

instance, one scenario is based on the fact that the enactment system requires

students to agree on an answer before moving to the next step (Roschelle et. al,

2009; see Appendix D (Section D.9), for details). This may be represented by using

a dynamic principle (see Section 6.2), or an additional workflow representation (see

Section 6.4).

Second, we considered the scenarios (referred to as “teaching strategy

templates”) elaborated by the LAMS community, such as role-play, problem-based

learning or predict-observe-explain (LAMS, 2013). Here again, most structures are

simple sequences of tasks, and branching constructions may be represented by

using sub-rows. For instance, the role-play scenario general structure is a linear list

of steps (e.g., considering documents concerning a certain subject), branching that

leads different students to consider different activities (e.g., organizing a vote and

making the ones that vote for and against consider different tasks) and then, all

students are regrouped to perform final activities. Such a structure may be

represented as a table in the same form as the jigsaw in Fig. 4.3. As for the CSCL

example previously described, LAMS’s representation of this type of scenario is

based on features related to the operationalization approach: dynamic distribution of

students based on its Voting tool and scheduling implementation (students meet

when they have all gone through their branch). These features are native for LAMS,

which addresses both representation and operationalization means. For a

representation that is decoupled from the enactment framework, they must be

implemented as enhancements (see Sections 6.4 and 7.1, for details).

A final evaluation action was conducted with the generic version of ediT2

(discussed in Chapter 8), but we will report its conclusions here. We considered the

SceDer Authoring tool (Section 8.3.3; Niramitranon, 2009), which has been

evaluated as capable of enacting 9 between 13 high-priority educational scenarios

(Niramitranon et al., 2010). We showed that the table/tree model offers the same

expressiveness by implementing a SceDer adaptation of ediT2.

These elements suggest that basic tables can be used to represent a wide

range of scripts. Moreover, some scenarios requiring complex sequencing or

dynamic principles may be represented via enhancements (see next chapter).

Nevertheless, it may only be possible to sketch some scenarios requiring complex

relationships or layered stratification, or represent them in an indirect way (e.g., if

having to duplicate too many rows). A table presents some expressiveness, but is

not to be thought of as a replacement for more comprehensive means.

Péricles DE LIMA SOBREIRA 80

Thèse en Informatique. Université de Grenoble, 2014

6 Enhancing the editor/model through the

development of advanced functionalities

6.1 General considerations

6.2 Instantiation support

6.3 Respect of constraints

6.4 Representation of complex scheduling structures

6.5 Simulation

This chapter builds on and extends some ideas and concepts
presented in the CSCL International Conference (2013), and in our
papers published in the ijCSCL (2012) and in the Computers and
Education (2015) journals.

Péricles DE LIMA SOBREIRA 81

Thèse en Informatique. Université de Grenoble, 2014

Résumé en français

Le modèle table/arbre et l’éditeur ediT2 peuvent être utilisés sans aucun

service additionnel, c’est-à-dire, simplement comme un moyen de base pour

représenter et partager des scénarios pédagogiques. Cependant, dans cette

proposition, l’expressivité informatisée est limitée et différents services proposés par

d’autres plateformes pédagogiques ne sont pas offerts. Conformément à notre

approche générale, nous avons examiné comment étendre les fonctionnalités

d’édiT2, sans rater ses avantages fondamentaux de simplicité et de flexibilité, afin

d’envisager les services avancés suivants : support à l’instanciation ; respect de

contraintes ; représentation de structures complexes de planification ; et simulation

(les services de mise en œuvre et de monitoring seront présentés respectivement,

dans les chapitres 7 et 9).

Dans le modèle T2 de base, la formation de groupes et la répartition de

tâches sont représentées par extension, c’est-à-dire, à partir de la description des

items associés à chaque nœud/cellule de l’arbre/table. Cette représentation est

suffisante dans de nombreux cas, mais elle peut poser des problèmes dans d’autres

(la création de ces listes peut devenir très complexe ou intraitable lorsque les

scénarios impliquent de nombreux étudiants). D’un point de vue général, surmonter

cette limitation ne demande pas la modification des bases du modèle T2, mais plutôt

la modification de sa mise en œuvre. Pour répondre à cette problématique, nous

avons développé une extension d’ediT2 afin de supporter l’instanciation de

scénarios d’apprentissage à partir de patrons pédagogiques prédéfinis.

Un scénario créé par un mécanisme d’instanciation automatique respecte

naturellement les contraintes de son patron. Cependant, cela peut ne pas être le

cas si un script est construit de zéro, ou créé par instanciation et ensuite édité par

l’enseignant. Offrir des patrons prédéfinis, un support à l’instanciation et des

mécanismes de vérification de contraintes permet des cas d’utilisation comme, par

exemple : générer un scénario à partir d’un patron ; utiliser l’interface de la table

pour éditer le scénario généré ; et recevoir des messages d’avertissement si

l’édition en question modifie le scénario de telle façon qu’il ne respecte plus les

contraintes prédéfinies par le patron.

Une autre limitation intrinsèque du modèle T2 est la représentation de

planifications complexes : la table ne permet que la représentation d’un simple ordre

linéaire descendant de ses lignes. La modélisation de mécanismes complexes de

séquencement et, plus généralement, d’une représentation visuelle et intuitive de

dimensions dynamiques de scénarios, demandent des langages de modélisation

fondés sur graphes. L’approche que nous développons pour répondre à cette

problématique vise à combiner les deux représentations en inter-opérant ediT2 avec

un workflow.

L’utilisation de technologies de workflow offre différentes perspectives

intéressantes dans le domaine de la représentation de scripts collaboratifs dont la

possibilité de simuler certaines propriétés des scénarios. A titre d’exemple, nous

Péricles DE LIMA SOBREIRA 82

Thèse en Informatique. Université de Grenoble, 2014

avons adapté ediT2 afin de tester différentes techniques de formation de groupes.

Cette fonctionnalité peut être utile si, dans un scénario avec un nombre

considérable d’étudiants, il peut être difficile d’identifier la façon dont les étudiants

devraient être groupés. Avec la simulation, de nouveaux groupements peuvent être

composés jusqu’à ce qu’un réglage souhaitable soit trouvé.

Péricles DE LIMA SOBREIRA 83

Thèse en Informatique. Université de Grenoble, 2014

6.1 General considerations

The table/tree model and ediT2 implementation may be used free of any

other services, as a basic way to design and share pedagogical scenarios. This is

an interesting feature in itself (Harrer et al., 2007). However, within this basic

implementation, computational expressiveness is limited and different services

offered by state-of-the-art systems are not offered.

In line with our general approach, we have considered how to extend the

ediT2 functionalities without losing its native simplicity and flexibility advantages.

This is based on the manipulation of the tree model. How model-driven approaches

to ELMs allow implementing different specific services on the basis of model

manipulations has been mentioned as an interesting potentiality of such an

approach (Laforcade and Choquet, 2006).

In Section 2.5 we have listed different matters of concerns. The first two of

them have been addressed in Chapter 4 (conceptual support and script flexibility) –

in this same chapter the representation flexibility concept has been introduced and

also discussed. In the current chapter, we address instantiation support, respect of

constraints, representation of complex scheduling structures and simulation.

Operationalization and monitoring modules will be addressed in Chapters 7 and 9,

respectively.

6.2 Instantiation support

Within the basic T2 model, group formation and task distribution are

represented by-extension, i.e., listing the items associated with nodes. While this

may be sufficient in many cases, it may be an issue in others. We may dissociate

two cases, instantiation before the session and dynamic mechanisms.

Instantiation before the session may be an issue if the script involves many

students. Creating these lists may become time consuming and/or over complex.

For instance, managing reciprocal-teaching and jigsaw scripts’ mechanisms (Figure

2.1 and Figure 2.2, respectively) for 4 or 6 students is easy, but may become

intractable for 20 or 200 students.

Dynamic mechanisms are required when the script involves principles such

as “G2 is made up of the five students who finished activity A1 first”, or “G1 is made

up of students whose answers to the quiz Q1 were correct”. This requires the editor

to be interoperated with an enactment framework and retrieve data related to the

script enactment.

Péricles DE LIMA SOBREIRA 84

Thèse en Informatique. Université de Grenoble, 2014

From a general perspective, overcoming the “by-extension description”

limitation does not need to modify the bases of the T2 model but, rather, its

implementation.

For instance, the Universanté script (Dillenbourg and Jermann, 2007)

requires, in some places, to refer to groups studying similar clinical cases and, in

others, to groups made up of students from the same/different countries.

Representing such scripts may be addressed by representing the necessary

information in the participant data-structure (e.g., country) and modify the group

definition box to allow defining a group as the intersection, union or crossing of other

groups, i.e., associating nodes with algebraic constructions and introducing

configuration interfaces in the groups (etc.) definition boxes. This is standard

engineering work. Representing dynamic mechanisms such as “a country-theme set

is made up of students such that the “from a same country” and the “worked at a

same theme” conditions hold” is similar.

As another example, the ArgueGraph script (Dillenbourg and Hong, 2008;

see Appendix D (Section D.10), for details) is based on proposing a task that

identifies students’ opinions on an issue and then, forming groups with students of

conflicting opinions. Such scenarios may be implemented by mixing a direct-

manipulation (by-hand; definition of groups) for the first phase, and a dynamic

mechanism for the second one.

As a way to show how the T2 model allows by-intension descriptions and

configurations, we have considered instantiation before the session issues. More

precisely, we have developed an extension of the ediT2 editor to implement a

pattern-based approach close to Collage, i.e., grouping students and distributing

resources according to a script pattern (Hernández-Leo et al., 2006, 2010).

We considered the classical reciprocal-teaching and jigsaw script patterns.

Let us describe the latter. The configuration data is defined by (1) the list of

students, (2) the list of topics/themes (e.g., two topics: “insulation” and “heating”),

(3) the list of resources tagged with their related topic (i.e., an indication which

documentary resources address “insulation” and which ones address “heating”), and

(4) a set of parameters (participants, topics and resources can be defined in the

editor or imported from an enactment platform, if any).

These parameters include (i) the required number of students per group

(which indirectly defines the number of groups), and how to manage odd cases, and

(ii) the way resources should be distributed. The top of Figure 6.1 presents a

possible example of interface to inform these parameters. The bottom of this same

figure presents another example, when taking into account the reciprocal-teaching

script.

Given the script principles and the configuration data, a specific algorithm

(Figure 6.2) generates a solution, i.e., a tree, by associating expert groups with

topics (e.g., for 5 groups and 2 topics, 3 of them will work with one topic, and the

other 2 with the other one) and, then, from the expert groups, distributing the

resources to the participants for the initial phase and creating the jigsaw groups. If

Péricles DE LIMA SOBREIRA 85

Thèse en Informatique. Université de Grenoble, 2014

the configuration accepts no solution, the algorithm raises the impossibility and the

reason(s) for this.

Figure 6.1 Possible interfaces to inform jigsaw (top) and reciprocal-teaching (bottom) scripts’
data configuration

Algorithm: Generating groups and distributing resources (for jigsaw scripts)

1. Create the sub-tree nodes denoting the expert groups
{When the numbers of groups and students do not fit, two strategies are possible:
increasing the number of students per group or creating an additional small group}
2. Associate expert groups with subjects
3. Distribute resource(s) among expert groups
{Different strategies are possible depending on the number of resources in particular}
4. Create the sub-tree nodes denoting the individual phase
5. Distribute resource(s) among the individuals
{Different strategies are possible, e.g., students receive all resources related to their
subject of study or a subset of the resources to be used by their respective groups in the
expert phase}
6. Create the sub-tree nodes denoting the jigsaw groups
7. Distribute resource(s) among the jigsaw groups
{Different strategies are possible, e.g., each student brings the resource(s) used by
him/her in the individual phase}

Figure 6.2 Instantiation mechanisms for jigsaw scripts

Péricles DE LIMA SOBREIRA 86

Thèse en Informatique. Université de Grenoble, 2014

If we take the case of 22 students, a target number of 4 students per group

and the option of extended groups (i.e., some groups will be composed by more

than 4 participants – 3 groups with 4 students and 2 other with 5 students), a

solution is a tree with 78 nodes (a table with 32 sub-rows; Figure 6.3). Indeed, such

a description would be difficult to manage by-hand.

Figure 6.3 Automatic generation of a jigsaw script (the tree (left) and parts of the table presentation
(right))

However, once the tree is automatically generated, the table representation

is presented and can be used to manage slight modifications using the editor native

features, before or during the session (e.g., breaking down an activity into two

activities, adding a resource or moving a student from one group to another). In this

case, a variety of options are open such as allowing the teacher to apply any

changes or checking whether the changes applied are contrary to the jigsaw intrinsic

constraints via control rules (this is discussed in next section).

6.3 Respect of constraints

Instantiation and constraint-checking support are of interest when facing

complexity. Specific study has shown that supporting teachers in preparing the

group distribution before the class and adapting the groups to unexpected situations

Péricles DE LIMA SOBREIRA 87

Thèse en Informatique. Université de Grenoble, 2014

was useful when there are many constraints to control and a large number of

students (Pérez-Sanagustín et al., 2009).

A script created by an automatic instantiation natively respects the pattern

constraints. However, this may not be the case if a script is defined by hand, or

created by instantiation and then edited by the teacher. Offering scenario patterns,

instantiation support and constraint-checking mechanisms facilitate use-cases such

as: generating a scenario from a pattern and the requested data; using the table

interface to edit the scenario generated as necessary; and receiving a warning if

such editing goes against the pattern’s intrinsic constraints.

Table 6.1 presents some of the constraints associated to the jigsaw pattern

and how they may be checked using the tree representation.

Table 6.1 Examples of pattern constraint-checking mechanisms (to the jigsaw pattern)

Jigsaw constraints
Implementation principle within

the tree representation

1
(Expert/Jigsaw) participants are
uniformly distributed on groups

Compare the cardinality of participants nodes
(taking into account the Expert/Jigsaw groups)

2
All script phases (individual, expert
and jigsaw phases) are performed
by all participants

For each of the individual, expert and jigsaw
tree branches, get the items of the “Participants”
level and check the lists for correspondence

3
The number of expert/jigsaw groups
is the same

Check the number of nodes in the group level
for expert/jigsaw activities

4
In the individual phase, all
participants receive resource(s)
related to one subject only For all three of these constraints the principle is

similar: in the phase branch, check the subjects
of the resource nodes (the checked criteria
varying accordingly)

5
In the expert phase, resources
associated to a group are related to
the same subject

6
Each jigsaw group has, at least, one
resource of each subject

7
Each jigsaw group is made up of
students who did not work together
in the expert phase

Check the jigsaw and expert subgroups
participant lists for intersection (pair by pair)

• Constraint#1 (The number of participants present at Expert and Jigsaw groups should
be uniformly distributed): Not satisfied

o The grouping [Joelma,Leonardo,Brigitte,Nicolas,Pablo,Dominique] should have 4 or 5
students, but, however, it has 6 participants

• Constraint#2 (All phases must be performed by all participants): Satisfied

• Constraint#3 (The number of Expert and Jigsaw groupings should be the same):
Satisfied

• Constraint#4 (In the Individual phase all participants receive, individually, resource(s)
related to only one topic): Satisfied

• Constraint#5 (In the Expert phase all resources used in each expert group must be
related to a same topic): Satisfied

• Constraint#6 (In the Jigsaw phase each jigsaw group must have, at least, one
resource of each topic): Satisfied

• Constraint#7 (Each group in the Jigsaw phase must be composed by students who did
not previously work together in the Expert phase): Not satisfied

o Joelma has already worked together with Dominique
o Dominique has already worked together with Joelma

Figure 6.4 Firing out the pattern constraints verification module (to the jigsaw pattern with “22
students shared in extensible groups of 4 students” as configuration parameters)

Péricles DE LIMA SOBREIRA 88

Thèse en Informatique. Université de Grenoble, 2014

An example is presented in Figure 6.4, based on the jigsaw script

constructed from the data set presented in the last section (22 students shared in

extensible groups of 4 students). Using the ediT2 table, we moved the student

Joelma from a group to another (both groups in the jigsaw phase) and after, we run

out the constraints verification module to analyze if the script still satisfied the

pattern constraints.

As we can observe in Figure 6.4, two between seven constraints were not

satisfied for the new Joelma’s jigsaw group: the first issue informs that its cardinality

is not allowed (Constraint#1); and the second one, that two of its members has

already worked together in the expert phase (Constraint#7).

Offering such constraints-checking mechanisms requires (1) identifying

script patterns (proposals already exist, e.g., Hernández-Leo et al., 2010), and; (2)

defining and implementing the corresponding algorithms, which is technically of little

difficulty. This may be an important price to pay for individual uses, but makes sense

in relation to pattern repositories development.

It may be noticed that, in the case of original scripts, as there is no

predefined model, support such as automatically distributing students according to

the script’s principles or checking intrinsic constraints is not possible. An option,

however, is to predefine and implement general principles (e.g., “all students must

be involved in a collective activity” or considerations such as gender issues) and

offer teachers to check the ones that appear pertinent for the script they designed.

6.4 Representation of complex scheduling structures

An intrinsic limitation of the ediT2 model is the representation of complex

sequencing: tables allow representing sequences through simple top-down linear

ordering of script-components (phases or tasks are to be taken one after the other

as listed in the script).

If used for reflecting on the script only (i.e., human interpretation) and

considering simple cases, lack of sequencing expressiveness is not necessarily an

issue. For instance, in the jigsaw script presented in Figure 4.3, the fact that the

jigsaw activity (“Crossing groups”) takes place after the focus activity (“Identify

techniques”) is implicit but obvious (they are in sequence, and the resources

produced in the context of the latter are inputs for the former). Similarly, the fact that

the focus groups ({e1, e2}; {e3, e4}) – and, later on, the jigsaw groups ({e1, e4}; {e2,

e3}) – may work in parallel is again implicit but rather intuitive.

This, however, would not work for a complex scheduling as, for example, in

the script presented in (Roschelle et al., 2009; see Appendix D (Section D.9), for

details), which involves repetitions and conditions. Although it is possible to find

Péricles DE LIMA SOBREIRA 89

Thèse en Informatique. Université de Grenoble, 2014

more or less explicit and neat ways to represent repetitions or rotations from ediT2

(e.g., duplicating some of rows and/or items), this is more difficult for conditions.

Enhancing the table editor with ad hoc means (e.g., using constructions

based on numbering rows) is possible, but this goes against the approach rationale

of exploiting the intuitiveness of table structures, and, also, would remain limited.

The modeling of complex sequencing mechanisms and, more generally,

visual intuitive representation of the dynamic dimensions of scripts require

languages building on the top of graph-based representation (Botturi et al., 2008)

and workflows. As examples: COW (Vantroys and Peter, 2003), Flex-eL (Sadiq et

al., 2002), (Haake and Pfister, 2007), MoCoLADe (Harrer et al., 2007),

LeadFlow4LD (Palomino-Ramírez et al., 2008)).

The utilization of a workflow-like editor is not a basic ICT skill, and requires

some training. A work related to IMS-LD highlighted that using representations

inspired from data or process modeling, such as XML-like trees or process charts

may be an issue for adoption (Neumann et al., 2010). Nevertheless, such

representations may be required and, in such cases, many languages exist (see

above).

Another approach is to mix both representations, i.e., extending the ediT2

editor with means for representing complex sequencing via a workflow

representation.

Using a complementary workflow-based representation makes different

services possible.

First, to control student enactment of the script, e.g., to prompt them with

activities or make resources such as documents or tools accessible based on the

script scheduling. This goes in the direction of developing workflow-based scripting

languages similar to the one presented in (Haake and Pfister, 2007).

Second, to configure an enactment framework. As an example, it has been

shown how such a statechart representation could be used as a basis to configure

the CeLS platform (Harrer et al., 2009; Ronen et al., 2006).

Third, to assist teachers in monitoring their learning sessions, offering an

instrument of reflection when the script enactment does not correspond to the

design specification. Malzahn et al. (2008) have explored the elaboration of a player

to provide to teachers means of supervision of CSCL scripts modeled via

MoCoLADe, and monitored from CopperCore.

Fourth, to implement pre-session simulations of the script, as a support for

teachers to test options (e.g., the scheduling of the activities or the composition of

the groups) while editing complex scripts (Harrer et al., 2007; Sobreira and

Tchounikine, 2013).

To study how such an ediT2 / workflow engine interoperation may be

addressed, we have designed and implemented an ediT2 extension module that,

focusing on the Activity-Group-Participant-Resource script-structure, transforms a T2

table-script into a jBPM statechart skeleton. jBPM (2012) is an open-source

workflow engine aiming to manage business processes through building blocks such

Péricles DE LIMA SOBREIRA 90

Thèse en Informatique. Université de Grenoble, 2014

as split/join nodes for branching and synchronization, or for-each nodes to represent

repetitions.

The transformation process principles is presented in Figure 6.5 (other

options are possible) from the jigsaw example presented in Figure 4.3. The Figure

6.6 shows the script skeleton generated as it appears when opened within the jBPM

platform, an Eclipse plug-in (Eclipse, 2012).

Algorithm: From ediT2 to a jBPM representation

1. A “Start” node and an “End” node are automatically created. The “Start” node is linked to
a “Setting objects” operation which contains the code automatically generated to set the
different objects’ values, e.g., the list of students per groups.
2. Each activity is transformed into a set of three operations: the first one corresponds to
the activity itself (e.g., “Read the general text”). It is connected via a split connector to a
“Problem” operation (which denotes the state to be reached if the activity fails) and a
“Next” operation (which denotes the state to be reached if the activity succeeds).
3. When an activity is associated with n different groups (or sets of participants), it is
automatically broken down into n operations which correspond to the n instances of the
corresponding activity. For example, the “Identify techniques” activity is associated with
two groups G1 and G2; this is translated into two instances of the “Identify techniques”
operation, one corresponding to G1 and the other to G2.
4. An initial graphical position is set for the different operations and their associated
connectors, ordering the operations by the table top-down structure and juxtaposing
multiple instances of activities, if any.

Figure 6.5 Interoperating ediT2 and jBPM

Figure 6.6 A generated jBPM skeleton (from the jigsaw script presented in Figure 4.3)

Péricles DE LIMA SOBREIRA 91

Thèse en Informatique. Université de Grenoble, 2014

From a user point of view, the overall process is as follows:

1. The script is sketched using the table representation.

2. The user hits the “ediT2-to-rf” button (“rf” is the jBPM’ files extension) in

the ediT2 interface. This generates an XML representation of the script

mapped onto the jBPM’ concepts, i.e., the workflow skeleton.

3. The user opens the resulting XML file with the jBPM Flow editor and

completes the model by drawing the connections denoting the flow. In

this example, the actions to be proceeded are (all these actions

correspond to simple mouse manipulations):

a. Indicate that the first activity is “Read the general text”: draw a

connection from the “Setting objects” operation to the “Read the

general text” operation.

b. Represent the scheduling mechanism (parallelism) of the “Identify-

techniques” activity. First, create a split node, and connect the

“(Read the general text)Next” operation to it. Then, draw two output

connections towards the “Identify techniques_1” and “Identify

techniques_2” operations (which correspond to the activity “Identify

techniques” for G1 and G2, respectively). Set the split connector to

“AND” to state that when the flow reaches the split connector, the

two following operations must be launched simultaneously (in

parallel).

c. Represent the crossing mechanism. First, create a join node, and

connect the “Next” operations of the two “Identify techniques”

instances to it. Second, create a split node, connect the join node

just created to it, and draw output connections towards the two

“Crossing Groups” instances.

d. Represent the regrouping mechanism. In a similar way as above,

join the “Next” operations of the two “Crossing Groups” sub-

activities.

e. Indicate that the “Regrouping” activity is the final one: draw a

connection from the “(Regrouping)Next” operation to the End node

(in this case, the join attached to the End node is useless and can

be deleted).

This example highlights the fact that the T2 model can easily be completed

and transformed into a statechart. Part of these transformations may be automatized

by the generator that could, for example, suggest that the first script-component is

automatically connected to the “Setting objects” operation, or deduce part of the

script scheduling from the resources ending with .IN or .OUT tags. The upper part of

the workflow as completed by this process can be seen in Figure 6.7.

Péricles DE LIMA SOBREIRA 92

Thèse en Informatique. Université de Grenoble, 2014

Figure 6.7 (Part of the) Completed workflow

6.5 Simulation

As discussed in last section, the use of workflow technologies may offer

interesting perspectives in the CSCL scripts representation domain. Among the

opportunities discussed, one interesting possibility presented is their utilization for

simulating some script features.

 As an example of application, we have customized the transformation

process just discussed to generate operations nodes in a way that allows for testing

different group formations (various authors have raised the fact that teachers could

benefit from simulations to refine parameters such as grouping (Weinberger et al.,

2009)).

Such a feature may be useful if, given a large number of students, it can be

difficult to identify in which way students should be paired. A possible approach is to

model students’ profiles, form groups, and simulate the script enactment (i.e., make

the computer compute the fact that activities are achieved or not according to

Péricles DE LIMA SOBREIRA 93

Thèse en Informatique. Université de Grenoble, 2014

students’ profiles). This makes sense if and only if students’ profiles can pertinently

be defined. Here, we will just use this as an example to simulate the script.

The adopted trivial modeling is as follows. Each student is associated with

an activity-skill value (a value between 0 and 1 per activity) and a peer-collaboration

value (a value between 0 and 1 per peer). In a similar way, each activity instance is

associated with two threshold values related to skill and collaboration, respectively.

An activity is considered as achieved if the involved group workforce and group

collaboration values are above the corresponding thresholds.

Given a group formation and an (instance) activity, the simulation calculates

the group workforce and collaboration according to the following formulas (here n

represents the number of students participating in the (instance) activity):

∑
=

=

n

i

Student i
illactivitySkorceGroupWorkf

1
∑
∑

=

≠=

−

=

n

i

n

ijj

StudentStudent

n

orationpeerCollab

borationGroupColla
ji

1

)(1

1

The code of the different operations is automatically generated from the

ediT2 model in the jBPM XML representation. Each operation is associated with the

corresponding activity’s list of students as defined in the ediT2 interface. Therefore,

once the workflow has been completed, the simulation can be launched.

The process goes from one node to another following the different simple,

join and split connections. Activities are defined as failed or succeeded according to

the students’ associated values, the activity’s associated threshold and the used

formulas (all these features being easily modifiable). If an activity fails, the flow

reaches the corresponding “Problem” node and stops the simulation; if it succeeds,

it reaches the “Next” node. “Problem” and “Next” nodes are associated with some

code to print messages on the console.

Activity: Read the general text
Participants: e1, e2, e3 and e4.
Resource: General text.IN.
"Read the general text" performed with success!

Activity: Identify techniques_1
Participants: e1 and e2.
Resources: Insulation text.IN and Insulation list.OUT.
"Identify techniques_1" performed with success!

Activity: Identify techniques_2
Participants: e3 and e4.
Resources: Heater text.IN and Heater list.OUT.
"Identify techniques_2" failed because the skill
summation (0.7) is less than the workforce threshold
(1.0).

Figure 6.8 (Part of the) Completed workflow (left) and simulation (right)

Péricles DE LIMA SOBREIRA 94

Thèse en Informatique. Université de Grenoble, 2014

Figure 6.8 shows an example of execution. On the left side of the interface

we can see the workflow being run within the jBPM debugger facility. The different

operations are highlighted one after the other, whilst a message is printed on the

console (right part of Figure 6.8). Here, the process is stopped on the join connector

because the activity “Identify Techniques” for G2 has failed.

New groupings (new skill, collaboration or threshold values) can be edited

and tested via the current simulation. The simulation can also be adapted by, for

instance, modifying the connections or the criteria attached to the join or split nodes.

Péricles DE LIMA SOBREIRA 95

Thèse en Informatique. Université de Grenoble, 2014

7 Operationalization

7.1 General considerations

7.2 Middleware-based strategy

7.3 Ad hoc strategy

7.4 Focus on technical representation transformations

7.5 Discussion

This chapter builds on and extends some ideas and concepts
presented in our paper published in the Computers and Education
journal (2015). Also, it represents part of the results achieved from a
collaborative research developed with the GSIC group and, in
particular, with the colleague Luis Pablo Prieto (University of
Valladolid, Spain).

Péricles DE LIMA SOBREIRA 96

Thèse en Informatique. Université de Grenoble, 2014

Résumé en français

Dans notre approche de découplage général, le service

d’opérationnalisation est adressé via la configuration de plateformes de mise en

œuvre existantes, à partir de notre modèle pivot. Dans ce chapitre est présenté

comment nous avons intégré notre outil (ediT2, avec lequel les enseignants

représentent leurs scénarios) avec un system externe de gestion de contenu

éducatif (Moodle, avec lequel les étudiants déroulent ces scénarios) à travers deux

stratégies différentes : tout d’abord, à partir d’un intergiciel et ensuite, à partir d’une

mise en correspondance directe (mapping ad hoc).

Le but d’un intergiciel est de faciliter l’interconnexion de différents systèmes

en cachant ses détails internes. Afin d’étudier si cette approche était possible, nous

avons utilisé l’intergiciel GLUE!-PS, dont l’objectif est de faire la correspondance

semi-automatisée, à partir d’adaptateurs, entre différents outils pédagogiques et

différentes plateformes virtuelles d’apprentissage. Utiliser GLUE!-PS pour inter-

opérer ediT2 et Moodle n’a demandé que le développement d’un adaptateur pour

traduire le modèle conceptuel de la représentation table/arbre dans le modèle de

données de l’intergiciel.

La stratégie ad hoc est basée sur un développement informatique

rapprochant les structures de la table et de la plateforme cible de mise en œuvre. La

création d’un cours Moodle à partir de la représentation d’un scénario modélisé via

ediT2 a été développée à travers des manipulations directes de la base de données

Moodle. Les activités d’ediT2 (représentées dans la table par des lignes et sous-

lignes) ont été directement transformées dans des cours Moodle.

Le principal avantage de la stratégie fondée sur un intergiciel est le fait

qu’un seul mapping (entre ediT2 et l’intergiciel) est nécessaire. L’intergiciel permet

ensuite le déploiement de scénarios construits via ediT2 sur différentes plateformes

de mise en œuvre (dont Moodle). Comme inconvénients, nous pouvons mentionner

que cette approche n’est pas souhaitable dans des situations de configuration

dynamique et de flexibilisation en temps réel, car cela demande de re-effectuer la

démarche complète. Par ailleurs, le mapping est générique et n’est possible que si

les modèles conceptuels correspondent.

La stratégie ad hoc est plus flexible que la stratégie par intergiciel,

permettant le développement de fonctionnalités spécifiques selon certains

contextes. Cela permet par exemple l’interconnexion entre des aspects de

représentation et de mise en œuvre pour améliorer le dynamisme des scénarios,

ou la réduction de l’écart entre des outils de conception de scénarios pédagogiques

et des plateformes de mise en œuvre. Un autre avantage de cette stratégie est le

fait que l’on peut décider quand les activités doivent être déclenchées sur Moodle,

ce qui permet de gérer les choses étape par étape (alors que toutes les activités

sont créées d’un coup dès le départ dans l’approche intergiciel). Cependant, la

stratégie ad hoc présente aussi quelques inconvénients : elle n’est pas évolutive,

Péricles DE LIMA SOBREIRA 97

Thèse en Informatique. Université de Grenoble, 2014

et elle peut conduire à réinventer localement du code qui peut avoir déjà été produit

dans l’approche intergiciel.

Péricles DE LIMA SOBREIRA 98

Thèse en Informatique. Université de Grenoble, 2014

7.1 General considerations

Within our overall decoupling approach, operationalization is addressed via

the configuration of existing enactment frameworks from the pivotal-model.

Examples of targetable platforms include CSCL-specific frameworks giving

importance to the implementation of complex workflows (such as in the MoCoLADe-

CeLS integration, discussed in Section 2.3.2) or general LMSs, offering general

features such as means to manage a repository of resources (e.g. documents,

quizzes or URLs), communication tools (e.g., chats, forums or wikis) and means to

organize these elements (Drira et al., 2012).

The integration between learning scenarios platforms and LMSs can be

done through two approaches. One is to embed a scenario player into the LMS. An

example is the GRAIL project: an IMS-LD player (conform to the levels A and B of

the IMS-LD specification) integrated into .LRN (De-la-Fuente-Valentín et al., 2007).

The other approach is to keep two different environments: the learning authoring

tool itself, where teachers design scripts; and the LMS, where students unfold them.

An example is the CADMOS platform, conforming to the levels A and B of the IMS-

LD specification, and which learning scenarios can be exported and operationalized

via Moodle (Boloudakis, 2012).

In our work, we have investigated the second of these approaches from the

mapping of ediT2 designs into Moodle through two strategies: using a middleware

platform and a direct ad hoc mapping.

7.2 Middleware-based strategy

The purpose of middleware is to facilitate gluing together different systems

by hiding internal details. The development of middleware facilitating the deployment

of learning designs on different operationalization frameworks is a desirable

evolution of learning technologies, well in line with the approach presented in this

work.

In order to study if this approach is tractable, we have used the GLUE!-PS

middleware (Prieto et al., 2011), which objective is to semi-automatically map, from

ready-to-use adapters, different authoring learning tools into different virtual learning

platforms (see Section 2.3.3).

Therefore, using GLUE!-PS to interoperate ediT2 and Moodle requires only

implementing an adapter to translate the conceptual framework used in the

table/tree representation into the GLUE!-PS data model concepts (the adapter

responsible to map GLUE!-PS into Moodle is already ready). Such a mapping exists

Péricles DE LIMA SOBREIRA 99

Thèse en Informatique. Université de Grenoble, 2014

for the Kobbe’s et al. CSCL notions, and we therefore used this instantiation to

successfully test this interoperability (experiments using this integration were

performed at Valladolid, Spain; see Section 5.2.2, for details).

Figure 7.1 ediT2-GLUE!-PS mapping (from the jigsaw script presented in Figure 4.3)

Figure 7.2 GLUE!-PS–Moodle mapping from the jigsaw script presented in Figure 4.3
(administrative (teacher) interface)

Péricles DE LIMA SOBREIRA 100

Thèse en Informatique. Université de Grenoble, 2014

This approach allows a use-case such as:

• The students, related to a specific Moodle course, are imported from it

thanks to the GLUE!-PS API (Application Programming Interface);

• The table editor is launched. The participants editing box is initialized

with the labels of the students just imported. Each resource created by

the teacher must mention the address web where it is hosted (in the

“Description” field);

• The editor is used to represent/edit the script (the jigsaw script

represented in Figure 4.3 is reused here as an possible example);

• The user presses the export to GLUE!-PS button, opens the GLUE!-PS

editor, imports such file and selects Moodle as the target platform;

• The adaptor generates a GLUE!-PS representation of the scenario that

can, if needed, be complemented or adapted by the user (Figure 7.1);

• The user presses the GLUE!-PS deployment button to that a second

(ready-to-use) adaptor generates a backup file (.zip) to be imported in

Moodle, through its course restoration process;

• Such file is imported and the course created (or adapted) is associated

with the corresponding resources and participants;

• Finally, the students are grouped and offered resources according to

the script as designed via ediT2 (Figure 7.2). This figure presents the

Moodle interface when visualized by its administrator user (the teacher),

who can access all activities to be accomplished to her/his students.

Figure 7.3 A possible design of a simple role-play script from ediT2

Another example of the ediT2-Moodle operationalization was performed to

model a simple role-play script (LAMS, 2013; see Section 5.4). A possible design

from ediT2 is depicted in Figure 7.3 (for a hypothetical classroom with nine

Péricles DE LIMA SOBREIRA 101

Thèse en Informatique. Université de Grenoble, 2014

students), and its deployment into Moodle, after manipulated from GLUE!-PS, is

presented in Figure 7.4.

Figure 7.4 A simple role-play script deployed into Moodle via GLUE!-PS (from the script presented
in Figure 7.3)

7.3 Ad hoc strategy

The ad hoc implementation strategy consists of implementing a specific

piece of code that directly matches the table structure and the targeted framework

(as developed to the jBPM integration described in Section 6.4).

Particularly for the interoperation discussed in this section, resources may

be defined using the Moodle platform and after, imported to ediT2. The idea here is

to take advantage of this LMS, which offers friendly editors to create on-line artifacts

such as documentary-resources (e.g., files or quizzes) and collaborative means

such as chats or forums.

The generation of a Moodle course from an ediT2 design was implemented

by direct manipulations of the Moodle database. Activities as represented in ediT2

Péricles DE LIMA SOBREIRA 102

Thèse en Informatique. Université de Grenoble, 2014

(i.e., a row or a sub-row) are transformed into a Moodle course (other options are

possible). If there are n-ary relationships (i.e., the activity is spread over different

groups), n Moodle courses are created, where n represents the number of leaves of

the branch representing the script-component in the table.

We implemented a specific web-service since the Moodle API (at least for

the version 2.2.3 we used) does not provide as external services the creation of

resources or their association with courses. Such web service implements the

functionalities to allow mapping the following Moodle resources: assignments, chats,

folders, resources, wikis, IMS-CP objects and quizzes.

This deployment, in particular, considered simple text files as input entry,

which were mapped into Moodle “resource” objects (other types of files could have

been used). On the other hand, the artefacts produced by the students (output

information) were uploaded into Moodle from the use of its “assignment” objects.

This makes possible a use-case such as:

• Using Moodle, the teacher defines the resources to be used to

instantiate the script (if these resources do not exist yet);

• The editor is launched. The teacher clicks on “load resources” and

references to the Moodle resources are uploaded into the editor’s

resource box. The same could be done for participants, as discussed in

last section, but this functionality has not been developed in this

strategy. Here, the technique used was different: we changed the

attributes of ediT2 participants to meet the requirements of the

integration (in this implementation, participants fields are defined by

“user name”, “first name”, “surname”, “email”, “city” and “country”, all

required at Moodle);

• The teacher edits the script;

• Finally, from the ediT2 interface she/he conducts the session by

deciding the activities that should be launched.

The Figure 7.5 presents an example of such an interoperation when

considering only the first activity of the jigsaw script described in Figure 4.3 (the

activity “Read the general text”).

In this version, ediT2 was enhanced to associate each activity or sub-

activity with means to take notes about it (possible observations about its items or

about its unfolding); and a “play” button (the top of Figure 7.5). Hitting this button

automatically creates a Moodle course implementing the activity, i.e., the activity is

launched and the corresponding resources become available for the corresponding

students, as defined by the script.

The middle of Figure 7.5 represents the initial Moodle interface for the

student “e1” (when connected). Here, she/he is presented to the only one course

which she/he is enrolled (“Read the general text”). Finally, she/he may access the

course to know the Moodle activities to perform. Specifically in this example, “e1”

must read the content of the document “General text” (the bottom of Figure 7.5).

Péricles DE LIMA SOBREIRA 103

Thèse en Informatique. Université de Grenoble, 2014

Figure 7.5 New ediT2 notes and play services (top). List of Moodle courses that a specific student
(“e1”) is enrolled (middle). List of resources of a course assigned to such student (bottom)

Another example of mapping between ediT2 and another delivery system

will be discussed in details in the next chapter (Section 8.2).

7.4 Focus on technical representation transformations

From a general perspective, the interoperation between ediT2 and another

system requires the development of a specific module to map ediT2 notions, and the

script internal structure as defined by the tree and branches structure, into the

model representation of the target platform.

Péricles DE LIMA SOBREIRA 104

Thèse en Informatique. Université de Grenoble, 2014

This mapping is to be technically made easier if focusing on a given

representation structure. However, this does not hold if offering representation

flexibility, i.e., if users can adopt different script structures. This tension may be

solved by developing one mapping, based on a canonical structure, and using an

algorithm specially constructed to transform a script representation from one

structure to another (see Figure 7.6) – this was the technique adopted in the

experiment performed at the University of Valladolid, Spain (see Section 5.2.2, for

details).

Algorithm: Changing the representation structure

• Move a notion up/down: Described in Figure 4.6

• Insert a notion: Create new empty leaves in a new level (li), and establish a unary
relationship with the nodes in level li-1, when applied

• Remove a notion: Remove level li and update, when applied, the relationship between
levels li–1 and li+1

Figure 7.6 Transforming the representation from one script-structure to another

When transforming the table/tree from a structure S1 to a structure S2

involving the same set of notions, the process may lead to duplicate values.

However, this is not an issue if S2 is only used as input for a piece of code

implementing a mapping to another system (users do not access it). The same

occurs when S2 introduces new notions (in this case, empty cells/nodes are

created). If notions used in S1 are not used in S2 anymore, the representation is, of

course, different. For example, this may occur if teachers use the “Role” notion to

make some aspects of the script more precise but this notion has no equivalent in

the enactment framework and instead is implemented as specific instructions to

students.

The transformations that are made possible by the tree modeling may be

used to normalize users’ description and, for instance, change a user’s description

of a script into a canonical description. For instance, canonical representations may

be defined with respect to criteria such as the tree balance or the number of nodes

(e.g., reorganizing the tree to avoid duplications or odd constructions). From an end-

user perspective, this would allow use-cases within which teachers describe the

script and the system reorganizes the description and turns it into an equivalent

though simple table. Although technically implementable, the advantage of such a

service in teaching terms is questionable, and we have not explored this perspective

in this work.

7.5 Discussion

These two implementation strategies have different characteristics, pros and

cons.

Péricles DE LIMA SOBREIRA 105

Thèse en Informatique. Université de Grenoble, 2014

The main advantage derived from the middleware approach is that only one

mapping (from the script editor to the middleware) has to be implemented. Once this

is done, the middleware enables deployment on different delivery platforms. A

related benefit is that any technical modification of the enactment platform will only

have implications for the corresponding GLUE!-PS-TargetPlatform adaptor.

As its drawbacks we could mention that: (1) for run-time flexibility and

dynamic configuration, this approach is not suitable as adaptations require re-

launching the overall process, and; (2) the mapping is generic (cannot be

customized) and is only possible if the conceptual frameworks match. GLUE!-PS

offers a fairly general conceptual framework and thus, unsurprisingly, it was easy to

match it with a consensual framework such as the one proposed by Kobbe and his

colleagues (this does not necessarily work when using a more specific conceptual

framework).

With respect to the middleware strategy, the ad hoc implementation is more

flexible. It allows the implementation of specific features needed to certain contexts

as, for instance, directly linking representation and operationalization aspects to

enhance the dynamism of scripts and/or to reduce the gap between learning design

tools and enactment platforms, when these environments are represented by

different environments (Neumann and Oberhuemer, 2009). This has been identified

as a possible obstacle for teachers to follow the flow of information during the

enactment step (Ronen et al., 2006). This type of issue have been diminished in

proposals such as LAMS and CeLS, for instance, where these environments closely

associate teacher authoring and learner implementation of activities on a specific

enactment platform.

Ad hoc operationalization supports controlling the generation of activities on

the enactment platform. Using the middleware GLUE!-PS approach, all activities are

generated together from start; using an ad hoc implementation, one can decide

when activities should be launched on Moodle, which means that synchronicity

features can be implemented.

In the ad hoc strategy, Moodle courses are directly configured from the

script description, avoiding the fact that teachers have to manage too many

representations. Whereas in the middleware strategy the teacher needs three steps

to achieve her/his script life-cycle ((1) design, with ediT2; (2) instantiation, with

GLUE!-PS, and; (3) operationalization, with Moodle), in the ad hoc approach she/he

needs only two of them ((1) and (3)). Such a reduction minimizes the possibility of

information loss caused by human and/or technological factors intrinsically related to

each mapping between the data models of the tools involved in each step of this

process (Muñoz-Cristóbal et al., 2012).

As disadvantages about the ad hoc implementation, we could mention: first,

this approach can lead to locally re-invent code that to some extent has already

been produced by the middleware designers, which is always a pity. Second, the

fact that evolutions of the LMS may need considerable update of the web service

specially constructed to such finality, which is not a scalable strategy.

Péricles DE LIMA SOBREIRA 106

Thèse en Informatique. Université de Grenoble, 2014

8 Editor generalization

8.1 Initial considerations

8.2 Developing a specific variant: the MediaWiki

example

8.3 A generic editor
8.3.1 Making the editor generic

8.3.2 Example #1: using an ediT2 variant to represent

preparation sheets

8.3.3 Example #2: using an ediT2 variant to represent

SceDer scenarios

8.3.4 Example #3: introducing monitoring information in the

scenario design

This chapter builds on and extends some ideas and concepts
presented in our paper published in the Computers and Education
journal (2015). Also, it represents part of the results achieved from a
collaborative research developed with the GSIC group and, in
particular, with the colleague María Jesús Rodríguez-Triana
(University of Valladolid, Spain).

Péricles DE LIMA SOBREIRA 107

Thèse en Informatique. Université de Grenoble, 2014

Résumé en français

Dans les chapitres précédents, nous avons décrit l’instanciation du modèle

T2 pour la conception et le développement d’un éditeur de scénarios collaboratifs

(l’éditeur ediT2). Cependant, les expérimentations et les études exploratoires

concernant la façon dont les utilisateurs d’ediT2 conceptualisaient leurs scenarios

nous ont fait comprendre que, souvent, ils recherchaient des adaptations locales

et/ou des extensions des notions/attributs proposées et que, parfois, ces

adaptations apparaissaient comme une nécessité pour l’interopération d’ediT2 avec

d’autres plateformes de mise en œuvre.

Sur la base de ces remarques, nous avons considéré comment généraliser

notre approche, selon deux stratégies différentes : d’une part, par le développement

d’une variante d’ediT2 à travers l’adaptation directe de son code (ce qui nous a

permis de confirmer que notre approche générale peut être facilement adaptée à

des besoins locaux) et, d’autre part, en rendant l’éditeur générique (ce qui nous a

permis de confirmer l’utilisabilité de l’éditeur, que la modélisation en table avait un

intérêt général pour la représentation de scénarios, et la flexibilité informatique de

notre approche).

Dans le chapitre précédent, Moodle a été utilisé comme plateforme de mise

en œuvre des scénarios collaboratifs. Ici, nous allons considérer une autre

possibilité technologique basée sur le Web, un wiki, pour étudier ces variations

d’ediT2. La plateforme utilisée pour cette opérationnalisation a été MediaWiki, qui a

été interfacée avec ediT2 grâce à un parseur spécialement construit pour analyser

l’arbre d’un scénario et l’associer avec les propriétés MediaWiki correspondantes.

Pour la deuxième stratégie, nous avons modifié l’implémentation d’ediT2

pour modéliser ses notions à partir d’une liste d’attributs généraux et d’une liste

d’attributs d’instance. Techniquement, ces adaptations sont simples car elles ne

nécessitent que la modification de la structure des données des nœuds et de

l’interface de l’éditeur (pour inclure des boîtes d’édition des instances) – les

algorithmes de gestion générale restent inchangés. Avec cette version générique,

nous avons pu créer trois variantes d’ediT2.

La première de ces adaptations a utilisé des notions et des attributs pris à

partir de fiches de préparation de séances (« Step », « Teacher's Activity », «

Student's Activity », « Organization » et « Resource ») qui ont été testées avec huit

étudiants-enseignants à qui on a demandé de manipuler l’éditeur pour préparer des

séances d’enseignement.

La deuxième est une variante créée pour permettre à des enseignants de

conceptualiser des scénarios SceDer à partir de l’interface d’ediT2. La plateforme

SceDer a été conçue pour la création de scénarios d’apprentissage collaboratif pour

des séances un-à-un (chaque étudiant avec son ordinateur/portable) à partir de cinq

notions conceptuelles (« Provider », « What to do? », « Receiver », « Electronic

Resource » et « Presentation Space »). Avec ce travail, nous avons montré que le

modèle table/arbre offre la même expressivité de SceDer.

Péricles DE LIMA SOBREIRA 108

Thèse en Informatique. Université de Grenoble, 2014

Enfin, la troisième variante d’ediT2 créée grâce à sa version générique a

été utilisée pour permettre à des enseignants d’informer des paramètres de

monitoring lors de la conception de scénarios collaboratifs, à partir de la déclaration

des notions/attributs suivants : la période du monitoring ; les activités à effectuer

(l’échéance, les participants, le niveau social de l’interaction et le soutien

technologique), et les ressources à utiliser (utilisation et le type d’usage).

Péricles DE LIMA SOBREIRA 109

Thèse en Informatique. Université de Grenoble, 2014

8.1 Initial considerations

In the preceding chapters, we described the instantiation of the T2 model to

design and implement an authoring system using the notions presented in (Kobbe et

al., 2007) to represent CSCL scripts (the ediT2 editor).

However, experiments and explorative studies concerning how ediT2 users

conceptualized scenarios made us realize that, often, they looked forward to local

adaptations and/or extensions of the proposed collaborative notions and/or

attributes. For instance, in one of the experiments, a teacher asked for a proper

“duration” notion. Such adaptations also appeared as a need for interoperation with

other systems’ frameworks, e.g., through the adaptation of the participant notion

attributes in the ad hoc strategy for operationalization (Section 7.3).

Actually, we initially used the Kobbe et al. notions as a substratum, in order

to target a large spectrum of CSCL scripts but, however, the T2 model is

independent of these notions, which can be adapted or extended.

Based on these remarks, we considered how to generalize the approach.

Two strategies are possible. One is to go into the code and adapt the system. The

other is to introduce some genericity by rendering editable the notions, and

respective attributes, of the editor.

In this chapter, we present different research actions we conducted to study

these aspects and reinforce different conclusions. First, we present the development

of an editor variant by modifying the code. This allowed us to confirm that the overall

approach allows easy adaptations to local needs. Then, we present how we

rendered the editor generic, and different examples that allowed us to confirm

usability, that the table representation had a general interest for representing

scenarios, and the approach computational flexibility.

8.2 Developing a specific variant: the MediaWiki example

In Chapter 7 a LMS (Moodle) was used as a framework to operationalize

CSCL scripts. Here, we will consider another web-based technological possibility,

wiki. Wiki has produced interesting results in collaborative learning (e.g., Honegger

and Notari, 2009; Larusson and Alterman, 2009), mainly due to the fact that it allows

users without technical knowledge in Internet development to create and edit web

pages, and interact on-line. The platform used to this operationalization is

MediaWiki (2013), with strategy of implementation ad hoc (see Section 7.3, for

details).

Péricles DE LIMA SOBREIRA 110

Thèse en Informatique. Université de Grenoble, 2014

We considered the following type of scenario. The overall objective is to

lead students to edit documents composed of a list of pages, each one

corresponding to a topic. A topic page contains a description, a synthesis text (to be

edited individually or collectively by the students), a list of sections, and some inputs

in the form of URLs. Each section page contains a description, a text zone, and

inputs, if any (other design choices are possible). Editing a scenario consists in

listing the topics and sections that students should work on, defining the editors (i.e.,

the students in charge of editing the different pieces of text), and indicating the

provided inputs.

Such scenarios may be represented by instantiating the T2 model with the

notions “topic”, “section”, “editor” (used twice to allow separate topic and section

editors) and “input”. Figure 8.1 presents an illustrative example of wiki-based

scenario using these notions in which students are invited to study the Brazil’s

geography and history.

Figure 8.1 “Brazil” scenario example modeled from the ediT2-MediaWiki instantiation

This example allows illustrating the approach’s representation flexibility

again. The “Topic-Editor-Section-Editor-Input” structure used in Figure 8.1 suggests

that each topic has one or more editors and sections, and each section has one or

more editors and inputs. However, one can also adopt other combinations. For

instance, a “Topic-Section-Editor-Input” structure suggests that only sections are

editable (no editors for topics); a “Topic-Editor-Input-Section-Editor” structure

suggests that the provided input is common to the topic (rather than local to the

sections). In fact, the table representation allows for a series of different meaningful

constructions (e.g., considering sections or not, having different editors at the topic

and section levels or not, associating inputs to topics or sections), where each of

these corresponds to different wiki structures. In formal ways: ([Topic] [Editor]*

[Input]* ([Section] [Editor])*) || ([Topic] [Editor]* ([Section] [Editor])* [Input]*).

To allow a straightforward operationalization of such scenarios on

MediaWiki, a parser has been implemented. It analyzes the tree (i.e., the topics and

Péricles DE LIMA SOBREIRA 111

Thèse en Informatique. Université de Grenoble, 2014

topics’ sections) and calls the corresponding MediaWiki API feature (through its very

convenient ready-to-use methods such as “edit/create a page”, for instance). Figure

8.2 presents such an operationalization for the “Brazil” scenario example depicted in

Figure 8.1.

Figure 8.2 The “Brazil” scenario (Figure 8.1) when deployed into MediaWiki

Managing the implementation by hand allows customizing the editor and the

operationalization process. For instance, ediT2 was enhanced by a piece of code

that uploads data (here, students’ name) from the MediaWiki database. The

operationalization respects the defined roles: the editors, as defined by the table,

can only edit the wiki-sections “Summary” (in “Topic” pages) and “Text” (in “Section”

pages) in which they were designed to. For instance, taking as example the “Brazil’s

history” Topic page, we can observe in Figure 8.3 that “Debbie” has the rights to edit

this page, but not “John” (as expected, in accordance with the script representation

in Figure 8.1).

Figure 8.3 User rights in the edition of wiki pages (“Debie” and “John” accessing the “Brazil’s
history” Topic)

… …

Péricles DE LIMA SOBREIRA 112

Thèse en Informatique. Université de Grenoble, 2014

This example also allows illustrating instantiation support. We developed

specifically for this ediT2 version an instantiation algorithm concerning group

formation and task distribution mechanisms for wiki scenarios. An example of

pattern is: given a list of n students, each one should be editor for one topic, this

topic being composed of m sections individually edited by one other student. The

instantiation process is simple for a limited set of students and sections (e.g., if n=3

and m=2), but may become a nightmare in effective settings if n=21 and m=4.

Figure 8.4 presents a possible implementation of such algorithm (top), and

the generated tree when n=5 and m=3 (bottom). Many variants of this pattern may

be considered such as working from a list of topics and sections, introducing a

parameter to state the number of editors per section (which was introduced above

as one and only one), or managing the distribution of inputs.

Algorithm: Generating a topics/sections structure
LS (list of students); nst (number of sections per topic)

Let n be the number of students
1. Create L1 = list of topics (a topic by editor; L1 length = n)
2. Create L2 = list of topics’ editors (L2 = LS)
3. Create L3 = list of n sub-lists of nst sections each
4. Create L4 = list of n sub-lists of nst editors (considering LS as a circular list,

distribute student as editors over L3 sections; when the candidate is the topic’s
editor, she/he is moved to LS queue)

Going through the L1, L2, L3 and L4 lists (recursively), construct the tree branches, i.e.,
associate a topic (L1), a topic editor (L2), the sections (L3) and the sections editors (L4)

Figure 8.4 Instantiation mechanism for a wiki-based pattern (top) and generated tree, when n=5
and m=3 (bottom)

8.3 A generic editor

8.3.1 Making the editor generic

We modified ediT2 implementation to model notions as a list of general

attributes, from which a name; and a list of instance attributes. These attributes can

be a text field or a choice list. The list and structure of the notions are set when

launching the editor. Technically, this required adapting the node’s data-structure

and the editor interface (creating instance-editing boxes).

Péricles DE LIMA SOBREIRA 113

Thèse en Informatique. Université de Grenoble, 2014

Albeit there is no theoretical limit concerning the number of notions to be

used, we continued to use five notions to understand that too many columns in the

table would probably lead to reduce the simplicity of the ediT2 interface (this could

easily be defined as a parameter, however).

Figure 8.5 presents the interface for defining notions’ attributes. As an

example, a “Task” notion is modeled from “Type” (Individual/Collective) and

“Duration” (time in minutes) as its general attributes, and “Beginning time” and

“Ending time” as its instance attributes (representing when student(s) allocated to

perform such a task should start and finish it, respectively).

Figure 8.5 Defining the general and instance attributes for the “Task” notion

Figure 8.6 presents the functioning of this reengineered editor. When a

“Task” item is dragged-and-dropped into a table cell, an editing box is opened to

that its specific information (instance attributes) can be edited (instance attributes

are the only editable fields in this operation). This editing box is also showed when

the teacher double-clicks on an item in a cell.

Figure 8.6 Learning scenario designed with general and instance lists of attributes

Péricles DE LIMA SOBREIRA 114

Thèse en Informatique. Université de Grenoble, 2014

The way we rendered the editor generic is aligned with the overall

approach: simplicity. The adopted data structure acts as a basic meta-model. An

implementation with general and instance attributes is fairly general but does not

support every construction. Other choices, however, can be made. Such adaptations

are simple because they require modifying the nodes data structure only. The

general management algorithms remain unchanged.

A natural step forward opened by the ediT2 generic version is to offer editor

variants, i.e., several sets of predefined notions and respective attributes.

Technically, variants can be offered as empty scenarios, i.e., with no rows yet.

A variant may be associated with predefined list of items (e.g., predefined

list of activities); if/then specific constraints related to the used notions (e.g., “If the

activity is [of] Individual [type], then do not allow several participants”); and/or

controls specific to methodological considerations or particular concerns. For

instance, one may offer a predefined list of activities associated with detailed

information such as difficulty or requested level of engagement, and introduce

controls helping teachers to take care of these aspects, e.g., to avoid a particular

series of activities. This goes into the direction of the utilization of predefined

pedagogical patterns (Hernández-Leo et al., 2006, 2010).

8.3.2 Example #1: using an ediT2 variant to represent preparation sheets

We used the generic version of ediT2 to create an instance with the notions

and attributes taken from a standard classroom preparation sheet (Figure 8.7). It

was presented to eight student teachers in pre-service education, i.e., spending part

of the year as students and part of the year teaching. They were asked to

manipulate the system as a possible means for preparing their classroom sessions.

Figure 8.7 “Classroom preparation sheet” scenario

Péricles DE LIMA SOBREIRA 115

Thèse en Informatique. Université de Grenoble, 2014

This mini-experiment allowed confirming the usability aspects. All student

teachers agreed the editor was easy to use. With respect to usefulness, responses

differed. Some of the pre-service students did not find any particular additional

usefulness compared to using a basic word editor. Conversely, others perceived the

table as a very pertinent way to deal with both a synthetic presentation (the table

with the items, easy to reflect on and edit via the drag-and-drop function) and

detailed presentation (the item’s attributes and open text description, accessible by

double-clicking on the item (cf. Figure 8.6)).

8.3.3 Example #2: using an ediT2 variant to represent SceDer scenarios

SceDer Authoring is a visual LSE designed to create learning scenarios for

one-to-one classrooms (one student per computational setting; Niramitranon, 2009).

It represents such scenarios from tables composed by simple rows (steps) with cells

respecting a 1-1 relationship. Its framework introduces five conceptual notions

(“Provider”, “What to do?”, “Receiver”, “Electronic Resource” and “Presentation

Space”) and predefined values for them (e.g., “Teacher”, “Students” or “Groups” for

“Provider” and “Receiver” notions; “Question?”, “Answer” or “Discussion” for “What

to do?” notion).

The SceDer output is a COML Package which consists of an

interchangeable COML Document (an XML file based on a language created

specifically to this project), and resources allocated to the scenario’s unfolding (e.g.,

image files). This package is used to delivery SceDer Authoring designs on the

Group Scribbles collaborative learning tool (Group Scribbles, 2013).

As discussed in Section 5.4, the SceDer Authoring tool is capable of

representing 13 high-priority educational scenarios, and this feature guided this

research action from the creation of an ediT2 variant able to represent SceDer

designs, as a way to reinforce the argument that our approach allows representing a

wide range of scenarios.

With this purpose, we showed that the table/tree model offered the same

SceDer Authoring expressiveness by implementing an adaptation that offers the

same SceDer notions and predefined items, and exports ediT2 scenarios’

representations to COML Document files. We represented some of the scenarios

mentioned in the Niramitranon et al.’s work (e.g., the “Chem Drawing” scenario,

Figure 8.8) and checked that the XML files produced complied with COML

(Niramitranon et al., 2010).

The ediT2-SceDer editor was conceived from the ediT2 generic version (to

the declaration of the SceDer notions and attributes required). Additionally, we

developed a module responsible to map the scenario machine-representation (the

tree) into the XML format complying with the COML Document. The Figure 8.9

depicts a possible modeling of the “Chem Drawing” scenario (Figure 8.8) in such

editor.

In Figure 8.9, the “What to do?” item dropped in the ediT2 table (deep gray

selected cell) is represented by its name (“Question?”) and its list of instance

Péricles DE LIMA SOBREIRA 116

Thèse en Informatique. Université de Grenoble, 2014

attributes (two attributes: “What to do” (with “Work out Nitrous oxide” as text typed);

and “Description” (not yet typed)). In this example, the list of general attributes was

not initially declared by the teacher and, consequently, it is not showed in this

edition box.

In a chemical class, a teacher asks the whole class of students verbally “Please draw the
molecular formula and electron dot of Nitrous oxide, Carbon dioxide, and Carbon
monoxide”. Each student answers the teacher by drawing a molecular form (N2O, CO2, CO)
and electron dot (chemical representation form of electrons) on their personal computing
devices and then submitting back to the teacher. The teacher groups answers both right
and wrong, for each chemical substance. The teacher then divides students into three
groups, passes each group the previous work (a group of right and wrong answers in the
same formula), and asks them to choose or reproduce the correct chemical formula and
electron dot of that substance. Group 1 works out Nitrous oxide. Group 2 works out Carbon
dioxide and Group 3 works out Carbon monoxide. In each group, members discuss to
choose or reproduce the joint answer and then send it back to the teacher. The teacher
then reviews the work of each group and shows a prepared image of the correct molecular
formula and electron dot to the whole class.

Figure 8.8 The “Chem Drawing” scenario (extract copied in extenso from Niramitranon et al.,
2010)

Figure 8.9 The “Chem Drawing” scenario (Figure 8.8) designed from the ediT2-SceDer tool

8.3.4 Example #3: introducing monitoring information in the scenario design

The first CSCL scripts were configured before their applications in real

classrooms (Dillenbourg, 2002). Their monitoring techniques were generally based

on a posteriori analyses of the data of students interaction collected during (and/or

after) sessions. This presented some issues with unforeseen situations that could

take place during scripts’ unfolding (e.g., desynchronized teams, or students in a

same group presenting relationship issues).

Péricles DE LIMA SOBREIRA 117

Thèse en Informatique. Université de Grenoble, 2014

This motivated learning system designers to consider assistance

functionalities during scripts execution, e.g., offering to teachers the enactment

attendance. This included the possibility to adapt the learning designs on-the-fly to

answer to unexpected situations unforeseen during the conception of pedagogical

scenarios (Malzahn et al., 2008; Rodríguez-Triana et al., 2014; Soller et al., 2005).

Analysis of the script enactment may be supported by software modules that

can more or less understand the current state of the script’s unfolding and compare

it with a predefined “ideal” specification. This is a basis to allow teachers to decide

whether an adaptation would be required through operations such as subdividing a

complex activity into simple ones or reallocating students to different tasks.

An interesting example of such techniques is the Script-Aware Monitoring

Process (Rodríguez-Triana et al., 2014), developed by the GSIC team of the

University of Valladolid (Spain), and which objective is allowing teachers to inform

monitoring parameters since the design of CSCL scenarios based on collaborative

patterns.

Following this approach, learning designers / teachers should provide into

the initial script’s conception information related to:

• The period of monitoring.

• The collaborative pattern(s) to be used.

• The activities: deadlines; people (participants/groups); if/when they

should be monitored; social level of interaction (individual/group/class);

participation level (optional/mandatory); interactivity (face-to-face/

through computers/blended); presentiality (face-to-face/remote/

blended); and technological support (total/partial/without support).

• The resources/tools to be used in the activities: if they should be

monitored (and respective action, when applied); type of usage

(individual/group) and utilization (optional/mandatory).

• Additional constraints specified by the teacher to complement the

intrinsic constraints related to the chosen pattern, if any (e.g., some

intrinsic jigsaw constraints have been presented in Table 6.1). They can

be complemented by an additional constraint such as: “each individual

activity must be composed by only one student”.

Since this monitoring information could not be edited in their standard

editor, the Spanish group was interested in using ediT2.

Adapting the ediT2 basic CSCL instantiation to include representation of the

monitoring data required different actions: (1) Defining the items’ data structure to

include the requested information. (2) Allowing users to edit this data when building

a design. (3) Implementing if/then controls and hints, i.e., pieces of code that are

executed when the teacher edits the corresponding data and provides

methodological input. (4) Modifying the “save” feature to export the design (the

scenario) in the format requested by the monitoring device.

Péricles DE LIMA SOBREIRA 118

Thèse en Informatique. Université de Grenoble, 2014

These changes were processed by a member of the GSIC group (“the

adapter”) as someone who had not participated in the editor design or

implementation in any way.

The adapter managed aspects (1) and (2) using the ediT2 generic version

from the definition of an empty design featuring the different attributes that were

required to represent the monitoring information. This was straightforward (~1 hour).

To implement the controls (3), it was given to the adapter the editor code

and a short presentation about it (~1 hour). She considered 10 controls/hints, for

example: “If the type of resource is A, then the actions that can be monitored are B”;

“If participation in the activity is mandatory and there are not enough actions that

can be monitored to ensure student participation, then report the lack of data.” Such

controls require ~ 1 to 2 hours each. In a second version, she decided to modify

again the code to check all controls at the same time after the editing, which was

here again basic.

Editing the export format (4) took ~2 hours.

An important output of this research action was to provide evidence of the

approach computational flexibility (to be discussed in Section 9.1.1).

Péricles DE LIMA SOBREIRA 119

Thèse en Informatique. Université de Grenoble, 2014

9 Discussion, conclusions and perspectives

9.1 Discussion
9.1.1 Originality

9.1.2 Application scope

9.1.3 Relation with other works

9.2 Conclusions

9.3 Perspectives and exploratory work
9.3.1 General perspectives

9.3.2 Monitoring perspective: exploratory work

This chapter builds on and extends some ideas and concepts
presented in our paper published in the Computers and Education
journal (2015).

Péricles DE LIMA SOBREIRA 120

Thèse en Informatique. Université de Grenoble, 2014

Résumé en français

Dans ce chapitre nous proposons une discussion de l’originalité de ce

travail, de son champ d’application et de sa relation avec d’autres approches

existantes dans ce domaine de recherche. Nous concluons avec quelques

perspectives générales et exploratoires pour des améliorations futures.

Le raisonnement sous-jacent au travail effectué dans cette recherche est

qu’il est intéressant, dans le domaine de l'enseignement assisté par la technologie,

d’examiner comment adapter des outils aux enseignants et à leurs contextes. Cette

réflexion nous a amené à deux autres aspects originaux de ce travail. Le premier

est d’étudier un type de représentation qui présente des caractéristiques

intéressantes pour son adoption (simplicité et flexibilité) et peut, par ailleurs, être

étendu avec des services supplémentaires. Le second est d’étudier, en plus du fait

de proposer un éditeur de scénario directement utilisable, le fait de permettre une

adaptation informatique facile de l’éditeur.

En termes de champs d’application et de limites, la représentation

table/arbre est basée sur une sémantique structurelle bien adaptée à des modèles

simples. La table présente une relation « est-associé-avec », et des aspects

sémantiques supplémentaires peuvent être développés comme des services de

« respect de contraintes ». Cette approche est plus limitée que d’autres, par

exemple celles basées sur la spécification IMS-LD et, en particulier, n’est pas

adaptée à des représentations nécessitant un grand nombre de notions, des

séquencements complexes ou des documentations importantes. Le modèle

table/arbre doit donc être considéré comme une alternative présentant des

caractéristiques différentes des approches courantes, à utiliser si et lorsque

nécessaire.

Lorsqu’on compare ediT2 et d’autres approches, les éléments suivants

peuvent être notés :

• En ce qui concerne la représentation, plusieurs éditeurs de scénarios

d’apprentissage proposent à l’utilisateur des interfaces basées sur des

graphes. Dans ce travail, nous avons montré comment une

représentation en table peut être complétée par une représentation en

graphe, ce qui présente un intérêt lorsqu’on essaie de bénéficier, à la

fois, de la simplicité des tables et de l’expressivité des graphes.

• En ce qui concerne l’opérationnalisation, l’approche basée sur un

modèle-pivot que nous avons proposée permet de se concentrer sur

des moyens de représentation et d’édition proposés à l’utilisateur,

l’opérationnalisation étant considérée via le déploiement sur une

plateforme tierce de mise en œuvre.

• En ce qui concerne les caractéristiques de l’interface utilisateur, la

manipulation d’une table est, bien sûr, beaucoup plus simple que celle

d’un modèle multi-niveau. Ceci est en contraste avec des interfaces qui

doivent se conformer à des spécifications complexes.

Péricles DE LIMA SOBREIRA 121

Thèse en Informatique. Université de Grenoble, 2014

• D’un point de vue technique, une alternative à un modèle en arbre

pourrait être l’utilisation de graphes orientés acycliques. Nous avons

opté pour l’utilisation d’arbres pour rester cohérents avec les principes

de simplicité de l’approche.

Nous concluons ce chapitre en présentant quelques perspectives générales

et exploratoires de cette recherche.

Comme perspectives générales, nous présentons de possibles travaux

futurs : l’évaluation de la flexibilité et de l’utilisabilité d’ediT2 lors de l'introduction de

services avancés ; l’évaluation des pertes/modifications sémantiques possibles lors

de la mise en œuvre de scénarios pédagogiques sur des plateformes tierces

d’opérationnalisation ; et l’étude des questions de soutien méthodologique dans

l’éditeur, par exemple, en poussant plus loin les travaux sur la possibilité d’offrir aux

utilisateurs des patrons/gabarits pédagogiques prédéfinis.

Finalement, comme une perspective plus précise, pour laquelle quelques

éléments exploratoires sont présentés, il sera intéressant d’étudier si l'approche est

utile à des fins de surveillance et d'orchestration, avec des questionnements,

comme : « Quelles sont les informations dont les enseignants ont besoin ? » ;

« Quelles sont les données que l'environnement de mise en œuvre peut fournir ? » ;

et « Comment/quand l’enseignant peut-il déplacer un étudiant engagé dans une

tâche en cours de route ? ».

Péricles DE LIMA SOBREIRA 122

Thèse en Informatique. Université de Grenoble, 2014

9.1 Discussion

9.1.1 Originality

The rationale underlying the work conducted in this thesis is that it is of

interest, in the TEL domain, to examine how to adapt tools to teachers and contexts

(Tchounikine, 2011).

Taking into account LSEs, one may consider that these tools should reify

good instructional practices, that teachers should use them according to their

specifications and be trained for this. However, this is a theoretical solution, and in

many cases not practical. Moreover, this approach may also be questioned. One

may also consider that teachers, as the actors in charge of the actual settings, and

as actors having developed a professional practice, should be able to use tools in

line with their practices and perspectives.

This line of thinking let to two other original aspects of this work.

The first one is to study a LSE which is not designed to implement an a

priori EML. We have focused on a type of representation that presents interesting

characteristics (simplicity, flexibility and adoption) and how to address

representation and additional services. Building on the governing decision to use

table interfaces may thus be seen as a techno-centric approach, but this is not the

case. From a historical perspective, the decision to explore this approach is based

on the fact that, with respect to users such as teachers, designing tools that provide

educational value does not guarantee that these tools will be adopted (Tchounikine,

2011). Criteria for adoption include user-friendliness and easy transition from

existing practices and tools. This is the rationale for considering devices that

teachers know and use (tables). It aligns with the “design for all” guiding principle:

representation and manipulation means must be simple and intuitive, avoid complex

constructions and offer high flexibility (Dillenbourg and Jermann, 2010).

The second one is to study the design of directly usable LSEs but, also,

customization by going into the code. One may argue that editors should be usable

off the shelf. This suggests offering generic architecture/languages or using full

fledge meta-modelling means allowing to generate editors with no hand-coding at

all. Generic architecture/languages are useful, and many already exists (e.g., IMS-

LD). Albeit generic means are powerful, teachers may not want to reflect in generic

terms, despite being able to. Not misunderstanding the power of full-fledge meta-

modelling (Drira et al., 2012; Laforcade and Choquet, 2006), these techniques are

however difficult to implement. The approach we studied is more in line with the idea

to allow local teaching institutions or communities of practice to customize systems

to integrate them in their local technical ecosystems.

This adaptation aspect makes sense if the system is computationally

flexible, i.e., can be adapted at low engineering cost. Chapters 6 to 8 showed that

Péricles DE LIMA SOBREIRA 123

Thèse en Informatique. Université de Grenoble, 2014

the table/tree model offers such flexibility. The interest of a pivotal-model approach

is to natively consider adaptation and extensions.

In our implementation, a tree is adopted because it is a classic and simple

data structure, to which manipulations (generation, transformation and analysis) can

be implemented by simple and uniform (and thus reusable) algorithms. Basic table

representation features (e.g., displacing items between cells or creating rows)

correspond to trivial algorithms (displacing items between nodes or creating

branches). Features such as splitting/merging nodes (i.e., creating/merging sub-

branches) or displacing a column while maintaining consistency between the table

representation and the tree model require the propagation of modifications via tree

manipulation algorithms, which are less trivial but of standard practice. These

aspects form the architectural foundation; they do not need to be adapted.

Creating a particular table/tree instantiation is straightforward if one is using

the generic version of the editor. A specific instantiation such as the MediaWiki

version required adapting the data structure to introduce the “topic” (etc.) notions,

implementing the load-students-from-MediaWiki feature, implementing the

operationalization service (configuration of the MediaWiki wiki from the scenario)

and adapting the table’s top-level menu (access to additional services). This took ~4

days of engineering work, half of which was needed for mapping. Also, the

collaboration with the GSIC group showed that adaptation by an external actor was

easy.

9.1.2 Application scope

In terms of application scope and limits, the table/tree representation is

based on a structural semantics which is well adapted to simple models (which is

the case of many scripts). The table introduces an is-associated-with relationship,

taking more precise interpretations according to the involved notions (e.g., Activity

is-carried-out-by Participant(s); Section is-edited-by Editor(s); etc.). Additional

semantics may be implemented as “respect of constraints” services.

This is more limited than general languages/platforms such as the ones

based on the IMS-LD specification (e.g., TELOS; Paquette, 2010) and, in particular,

is not adapted to representations requiring a large number of notions (e.g.,

ReCourse (2013)) and/or complex inter-relations (e.g., MoCoLADe; Harrer et al.,

2007). The table/tree model is thus to be considered as an alternative, presenting

characteristics different from usual approaches, to be used if and when relevant.

With respect to define LSEs that meet the needs and requests of a group of

users (and, in some sense, come close to a participative design process), a possible

use of the ediT2 generic version (Chapter 8) is to explore local instantiations with

informant practitioners. For instance, in an explorative study in which different

teachers were asked to identify the notions and attributes they wanted to use, one of

the teachers introduced notions such as teacher’s role (e.g., “give instructions”, “be

a resource” or “be an animator”), student’s role (e.g., “receive”, “search” or

“present”), resources, activity duration and objectives (e.g., “introduce” or

“institutionalize”). For such a conceptual framework, a flat table representation

Péricles DE LIMA SOBREIRA 124

Thèse en Informatique. Université de Grenoble, 2014

appeared to be an option. In contrast, the editor seemed poorly adapted to teachers’

attempts to represent teaching sequences (i.e., approaching a course’s type of

learning design) for which they introduced notions such as “session”, “objectives”,

“prerequisites”, “transition” and “pedagogical organization”. A flat table

representation is not adapted to characteristics requiring rich documentation.

9.1.3 Relation with other works

If one refers to the classification framework proposed in (Botturi et al.,

2006), ediT2 addresses a conceptual level of elaboration (a general, aggregate view

on the design, indicating its rationale and main elements) and builds on the following

principles: offering a flat stratification (entities of all types are collected into a single

representation) and a single perspective (one view on the entities) via a visual

notation system (the table).

With respect to representation, many LSEs present end-users with graph-

based interfaces (Botturi et al., 2008), in particular when considering complex

sequencing, and build on the top of workflow engines (e.g., Flex-eL (Sadiq et al.,

2002), COW (Vantroys and Peter, 2003), (Haake and Pfister, 2007), MoCoLADe

(Harrer et al., 2007), LeadFlow4LD (Palomino-Ramírez et al., 2008)). LSEs related

to XML-based representations (e.g., LD) usually build on according hierarchical

representations.

Table and graph representations are different options, with different

characteristics. We have shown how a table representation may be complemented

by a graph-representation. This makes sense when attempting to benefit from both

table simplicity and graph expressiveness. Users requiring complex representations

and/or at ease with graph-representation should use editors natively based on graph

representations such as MoCoLADe, and benefit from the specific associated

features.

One may argue that graph-based LSEs can be used to represent both basic

and complex scenarios. This is true but, with respect to adoption and smooth

transitions, presenting practitioners with complex interfaces for the sake of providing

features that may be used only rarely is exactly what should be avoided. More

(comprehensive languages, all-in-one architecture offering a full range of services)

is not necessarily better as it often comes with complexity and reduced flexibility.

The approach we proposed allows designing simple devices, to be offered together

with more comprehensive (and, for some users, more complex) ones.

With respect to operationalization, the pivotal-model approach suggests

focusing on means to represent and edit scenarios, with operationalization being

addressed via deployment on an enactment platform. One important advantage is

allowing consideration of different platforms. This is also the rationale for the

GLUE!-PS middleware and other proposals such as S-COL (Wecker et al. 2010).

This approach is to be contrasted with design languages directly linked to enactment

platforms such as LAMS (LAMS, 2012) or CeLS (Ronen et al., 2006).

Péricles DE LIMA SOBREIRA 125

Thèse en Informatique. Université de Grenoble, 2014

The advantage of systems directly linked to technical platforms is that

scenarios are by definition directly operationalized. A disadvantage, however, is that

these languages/LSEs have to comply with computational constraints that hinder

flexibility (e.g., in LAMS, teachers are forced to use the tools pre-defined by the

platform).

With respect to operationalization and flexibility, the ad hoc implementation

strategy is more flexible then using middleware, and allows specific features to be

implemented. For example, in the specific MediaWiki implementation, we were able

not only to choose the structure we wanted to use but also, to restrict editing to the

students identified as editors. Other examples of attempts to limit flexibility issues

are presented in works exploring learning systems related to a set of pre-defined

scripts and for which some parameters can be adapted by teachers (Dillenbourg et

al., 2009), or platforms within which new tools can dynamically be included during

the script enactment (Belgiorno et al., 2008; Chiara et al., 2007). Also, some

frameworks have pointed out to the use of pre-defined software components to the

construction of dedicated CSCL scripts (Stegmann et al., 2009). As additional

conceptual efforts targeting flexibility, we can mention the configuration of

pedagogical patterns (Hernández-Leo et al., 2006, 2010) or the anticipation of

adaptation patterns (Karakostas and Demetriadis, 2009).

Although the general perspective underlying this work has some similarities

with the approach underlying Collage (Hernández-Leo et al., 2006) and related

works (supporting teachers, considering flexibility, offering pattern instantiation and

constraints-checking mechanisms), one important difference relates to the interface

design and the underlying methodological concerns. In the Collage approach, the

main idea is to offer teachers a pattern-based approach, this idea underlying the

overall process and environment. In direct contrast, the ediT2 entry point is a

generic table representation. We could think in improve the ediT2 editor with a list of

predefined scenarios patterns, but this technique would have a similarity with the

approaches developed in Collage and LDSE (Laurillard et al., 2013). The fact

remains that these approaches are anchored in methodological and integrated

pedagogical life-cycle perspectives, whereas the work presented here is more on

the scenario edition level.

If one considers the end-user interface, visualizing a table is of course much

simpler than a multi-layer model. By construction, the proposed approach suggests

a flat interface, which may be enhanced, for instance, to introduce a menu item

listing patterns and, for each of them, asking for the configuration data (as we have

presented in Section 6.2). This is in direct contrast with interfaces that must comply

with complex information (e.g., ReCourse or the LDSE interfaces).

With respect to software engineering, our use of a pivotal-model may be

seen as a particular case of meta-modeling. In the Learning Design field, some

works have explored using meta-modelling, e.g., (Laforcade and Choquet, 2006) or

(Drira et al., 2012). Full-fledged meta-modeling, however, is technically difficult and

often too complex to use.

From a technical perspective, with respect to a table representation, an

alternative to a tree model could be Directed Acyclic Graphs (DAG). DAGs would

Péricles DE LIMA SOBREIRA 126

Thèse en Informatique. Université de Grenoble, 2014

allow table constructions that, with a tree model, require some duplication. We opted

for trees to stick to the simplicity principles of the approach. The way we use the

tree model to implement different versions of LSEs is similar to the way MoCoLADe

is based on a generic graph-based modeler.

A complementary analysis of our work with respect to the analysis grid

proposed in (Tchounikine, 2011) is presented in Appendix E.

9.2 Conclusions

The fact that teachers use/adopt modeling tools is related to an array of

aspects such as teachers’ technical skills and professional practices, institutional

aspects or schools equipment (Larnaca, 2012; Mor and Craft, 2012). One of these

reasons is related to LSEs as computer-based systems. LSEs to be used by

teachers must be simple, intuitive and flexible (Dillenbourg and Jermann, 2010).

The research question we considered in this work is: can one design and

implement representation means that (1) are sufficiently simple and flexible to allow

users (teachers) with basic ICT skills and no particular methodology training to edit

scripts and adapt them to their view and context, and; (2) may be extended to match

other needs and implement advanced features offered by other current classical

languages/platforms such as simulation, checking constraints, supporting complex

grouping mechanisms and scheduling structures, configuring the students

enactment framework or monitoring the script’s unfolding?

Our results show that offering a table representation coupled with a tree

pivotal-model allows designing easy-to-use and adaptable LSEs. Within its scope of

application, it can be used to offer users who are not specifically trained (e.g.,

teachers) an editor that is easy to use, adaptable to needs and/or practices, not

more complex than needed and easy to interoperate with other (local or not local)

systems if useful.

To study this approach, four objectives / evaluation criteria were

investigated:

• Pedagogical expressiveness: “can table-based editors represent a wide

range of scenarios?”

• Usability: “do teachers find the editor easy to use and intuitive?”

• Computational expressiveness: “does the approach allow

implementation of complex services?”

• Computational flexibility: “is the editor easy to adapt to local needs?”

The pedagogical expressiveness of the table representation was tested by

studying how the editor allowed representing different types of scenarios. Easiness-

Péricles DE LIMA SOBREIRA 127

Thèse en Informatique. Université de Grenoble, 2014

of-use was tested via usability tests. Computational expressiveness and

computational flexibility were demonstrated by proofs-of-concept developments.

9.3 Perspectives and exploratory work

9.3.1 General perspectives

This work opens different perspectives, which we would like to outline here.

We have shown the usability of table-based representation and, then, how

such a representation may be enhanced. This raises the question of evaluating the

extent to which the editor’s usability is preserved when introducing add-ons. This

requires setting-specific studies.

Within our perspective, the strategy should not be to integrate in the basic

editor all the advanced services that can be thought of but, rather, within a specific

context, and working with the users to preserve usability, introducing the services

they identify as useful. Such a strategy will make it possible to study the extent to

which the ease-of-use and flexibility features, coupled with other services as

needed, influence adoption and practices.

As usual when considering editors, we did not consider the quality of the

learning designs produced by teachers during the tests. The reason is that good and

bad designs may be produced using any editor. Nevertheless, considering the

quality of the produced learning designs in the sense of the respect with their

rationale, and/or their fit to a considered setting as, for instance, an enactment

platform integration (e.g., considering if it exists loss of meaning during the mapping

between ediT2 and such environment) remains an important question. At this level,

studying the effect of specific support such as instantiation mechanisms or checking

constraints is also on the agenda.

In the experiments we considered, we did not prompt teachers with any

methodology. This, of course, does not mean we believe providing methodological

support would not be positive. There is probably a balance to be found between

openness (intuitiveness, flexibility) and guidance (support from prompts and/or

methodological training).

As a step forward to this direction, an experiment was conducted to test how

users reacted to ediT2 openness vs. WebCollage guidance, which results pointed

out that “there is no single tool or set of features that are globally perceived as

better, rather preferring the use of the tool that best supports them [teachers] in their

immediate context and constraints” (see Prieto et al., 2014, for details).

Another way to move forward on this question would be to mix these two

approaches. Supporting teachers with repository of scenarios is an approach that is

currently attracting growing interest (Larnaca, 2012). We showed how one can

introduce scenario patterns via a friendly structure (specific configuration interface)

from which a scenario (or a skeleton) is generated. This can then be further adapted

Péricles DE LIMA SOBREIRA 128

Thèse en Informatique. Université de Grenoble, 2014

as necessary via the table representation, possibly with pattern-specific services

such as constraints-checking mechanisms.

Another perspective is to study if the approach is useful for orchestration

and monitoring purposes.

One aspect is how to provide teachers with interesting monitoring

information. We showed how the data stored on an LMS such as Moodle could be

accessed. This, however, is the technical side only. The open question is to define,

via user-centered studies, what data teachers need.

The other aspect is run-time adaptations of the scenario. At this level, the

two operationalization strategies we have presented in Chapter 7 are not equivalent.

The middleware-based strategy is well adapted for static configuration (the

framework is configured once before the session). However, for dynamic

adaptations, middleware such as GLUE!-PS is not directly adapted (e.g., moving a

student, removing an activity or adding a resource requires re-processing the overall

process). Its design rationale is coherent with the Moodle principle of acting as a

repository of resources, and run-time flexibility requirements are not considered as

such. The ad hoc interoperation strategy allows both static and dynamic

configuration (i.e., adapting the framework constructions at run-time). Such

changes, however, raise consistency issues which must be studied as such (e.g.,

how/when can one move a student engaged in an on-going task from one group to

another?).

9.3.2 Monitoring perspective: exploratory work

We analyzed in an exploratory study how monitoring features could be

provided within our approach. For this purpose, we considered the ediT2-Moodle

integration. Moodle offers stable and well-known monitoring capabilities supported

by its community of collaborators such as, for instance, progress bars denoting

activities achieved by students or review features to visualize students’ answers to

quizzes (Mazza et al., 2012).

The work we conducted does not aim at competing with these tools but,

rather, at studying if teachers could be provided with pertinent information within the

design editor. The targeted use-case is as follows:

• The teacher launches ediT2 and creates the items needed for each one

of its notions (Activity, Group, Participant and Role, when needed).

• She/he imports from Moodle the resources to be used in the session

(considering these resources have already been created previously).

There is not a specific order between the steps 1 and 2, and the latter

can be done before the former.

• She/he designs (totally or partially) the script. In this version, every row

is associated with two new buttons, “play” and “monitor”.

• She/he launches the first table row (considering that the first table row

corresponds to the first activity to be run out) using the “play” button.

Péricles DE LIMA SOBREIRA 129

Thèse en Informatique. Université de Grenoble, 2014

• She/he considers the activity progress (using the “monitor” button) and

decides whether she/he steps forward, running out the next activity (i.e.,

hitting its “play” button), or adapts the script before continuing.

Figure 9.1 presents such an enhancement of ediT2. When an activity (a row

or sub-row) is launched, its respective green operationalization button is disabled

and a new monitoring button, specific to the (sub-)row under manipulation, is

automatically showed at the ediT2 interface (top of Figure 9.1). When this new

button is hit, a box with awareness information about the unfolding of the task under

manipulation is popped up, presenting to the teacher whether her/his students have

already accessed, or not, their respective resources in the corresponding Moodle

course (bottom of Figure 9.1).

Figure 9.1 ediT2 used as a conducting cockpit (from the jigsaw script presented in Figure 4.3): the
first activity is run out (top); the first activity is monitored (bottom)

Graphically, each participant is followed by her/his resource(s), represented

by colored horizontal bar(s) as a way to indicate its(their) respective

manipulation(s): a green bar means a resource has already been accessed, and a

blue one, the opposite. All this information is recuperated from the “log” table at the

Moodle data base, as, for instance, timestamp and action performed (e.g., login,

view, edit, talk, update or upload). This new ediT2 component is inspired in the

Progress Bar Moodle block (Progress Bar, 2013).

Péricles DE LIMA SOBREIRA 130

Thèse en Informatique. Université de Grenoble, 2014

Taking into account again the jigsaw script depicted in Figure 4.3 as an

example, we can observe in top of Figure 9.1 what happens when one hits the play

button corresponding to the first row of the table: at this moment a course named

“Read the general text” is created on Moodle (as discussed in Section 7.3; middle of

Figure 7.5). The bottom of Figure 9.1 shows a hypothetical situation where two

students allocated to such Moodle course (“e1” and “e3”) have already accessed

their resources (“General text.IN” for both participants), and two other have not (“e2”

and “e4”).

This work was explorative. It opens the door to, in some sense, transform

the editor in a kind of conducting cockpit for designing, editing and managing the

script unfolding. Within this approach, teachers can directly access the progress of

their students through the ediT2 interface, avoiding log on and manipulations

procedures to access such information from the Moodle interface.

This, however, opens an array of questions. One of them is run-time

intervention issues. If a teacher moves a student from a group to another or

reorganizes activities, the effect of such modifications in the Moodle data base may

create odd situations to students. Another one is that the available information is

limited to the data that can be collected from the Moodle database.

Péricles DE LIMA SOBREIRA 131

Thèse en Informatique. Université de Grenoble, 2014

Péricles DE LIMA SOBREIRA 132

Thèse en Informatique. Université de Grenoble, 2014

Appendix A – Approach’s architectural

considerations

In this appendix we present the general architecture used to implement the

different modules developed in this work: a Rich Desktop/Internet Application

(RDA/RIA) cross-operating different pieces of code through different technologies,

as emphasized in Figure A.1. In this figure, blocks are numbered from 1 to 6 and are

grouped by the technology on which they are developed: Adobe® (module 1),

Haskell (module 2), Java (modules 3 and 4) and PHP (modules 5 and 6).

Figure A.1 ediT2 general architecture

The main component of our proposal is the editor itself (module 1), whose

implementation requires means to: create rich interfaces (tables); generate (and

visually interpret) script-tree structures; access the file system to local storage, and;

interoperate the editor with other platforms. In this module, we have used Adobe®

Flash® (2014) and Adobe® AIR® (2014) technologies to implement, respectively:

the basic/generic Internet-based ediT2 versions (the table/tree editor/model), and;

its enhanced desktop-based version, when performing advanced services with direct

access to the local file system.

The first versions of ediT2 were based on an own format (named “t2”)

conceived to computationally represent learning scenarios modeled on its interface

Péricles DE LIMA SOBREIRA 133

Thèse en Informatique. Université de Grenoble, 2014

and also, as a way to interoperate ediT2 and other platforms. This format, however,

presented two main issues: its readability, and the complexity involved in the

construction of parsers required to such interoperations. Therefore, we improved

ediT2 in order to manipulate an exchangeable machine-readable format based on

XML (named “t2ML”; see Appendix B, for details), specially developed in this thesis

as a way to improve the readability of scenarios’ files from a standard format, and

also to, in future versions, improve the interoperability between ediT2 and new

platforms.

ediT2 has other output/intermediary formats used with distinct purposes

(see Figure A.1): a “coml” output format, used as a way to show that our system

complains to the SceDer Authoring tool; and intermediary Haskell (“hs”) and jBPM

(“rf”) oriented formats, which include additional data to allow interpretation and

operationalization within the corresponding technologies as, for instance, Haskell

headers and Java objects declarations in modules 2 and 3, respectively.

Some manipulations of the tree structure, such as generating the

instantiation of a script, checking constraints or transforming a script structure, can

conveniently be developed with a lambda-calculus based language. With this

purpose, we have used the Haskell language (Haskell, 2012) to specifically

implement such algorithms, and the GHC compiler (GHC, 2012) to interpret and

generate tree-structures (module 2).

The Adobe/Haskell data flow between the modules 1 and 2 could be

described as follows: (A) pattern parameters (instantiation module input); (B) script

transformation and constraint-module’s input; (C) constraint-module’s output

messages, and; (D) transformation and instantiation module’s output. Scripts in the

“hs” format are manipulated by the constraints-checking algorithm (which output is

data to be popped-up in the editor). Transformation and instantiation algorithms

produce intermediary “t2” representations, to be presented as tables in the ediT2

interface.

The interoperation between ediT2 and the middleware GLUE!-PS was

possible thanks to the construction of the ediT2ToGLUE!-PS component, developed

in Java. In this way, scripts produced by ediT2 can then be deployed into Moodle

through its course restoration process (modules 4 and 5, respectively).

We have also interoperated ediT2 and Moodle from a web service created

in PHP to directly manipulate its database through SQL queries aiming to perform

operations such as, for example: creation of courses, enrollment of students,

association of resources and students to courses, etc. This integration allows us to

think about ediT2 as a very basic learning conducting cockpit, where teachers are

able to directly execute (and monitor in real time) scripts from its table interface.

Finally, the modules 3 and 6 were integrated in our proposed architecture

to, respectively: (1) allow teachers to represent and simulate scripts requiring

complex scheduling mechanisms and; (2) operationalize scripts from the MediaWiki

wiki, thanks to the services offered by its API of easy manipulation.

Péricles DE LIMA SOBREIRA 134

Thèse en Informatique. Université de Grenoble, 2014

Appendix B – t2ML

B.1 t2ML Schema

The Figure B.1 presents the t2ML Schema diagram. According to it, a

learning scenario represented in t2ML is composed by the “script” and the “pattern”

elements.

Figure B.1. The t2ml Schema diagram

The first of them (“script”) describes: (1) the course on which participants

are imported, when applied; (2) the list of notions used to model ediT2 scenarios

and for each of them, its general and configuration attributes’ values, when applied

(configuration attributes are parameters used to the integration between ediT2 and

external platforms); (3) the tree structure and the instances of the notions’ items

displaced on table cells (for each of them, its instance attributes and respective

values, when applied), and; (4) the list of teacher notes.

The second element (“pattern”) presents the list of notions and for each of

them, the list of general and instance attributes, when applied. This element also

identifies for each one of these attributes if this is represented by a label (default)

followed by a list of pre-defined values (e.g., for a hypothetical “Interactivity”

attribute, “Face-to-Face”, “Through Computers” and “Blended” as possible values).

Péricles DE LIMA SOBREIRA 135

Thèse en Informatique. Université de Grenoble, 2014

B.2 t2ML Document

In a way to illustrate an example of t2ml Document, we reconsider the

jigsaw script as depicted in Figure 4.3, taking into consideration for each one of its

notions the following attributes (Figure B.2; “GAs" and “IAs” represent the general

and instance attributes, respectively):

• Activity: “Name”, GAs (“Type”, “Duration”) and IAs (“Beginning time”,

“Ending time”);

• Group: “Name”, GAs (“Description”) and IAs (empty);

• Participant: “Name”, GAs (“Age”, “Genre”, “Nationality”) and IAs (empty);

• Resource: “Name”, GAs (“Description”) and IAs (empty);

• Role: “Name”, GAs (“Description”) and IAs (empty).

<?xml version="1.0" encoding="UTF-8"?>

<t2ml ver="1.0">
 <script>
 <name>jigsaw script</name>
 <type>glueps</type>
 <course></course>
 <notions>
 <notionList idColumn="0" type="Activity">
 <notion idObject="0">
 <name>Read the general text</name>
 <generalAttributes>
 <attribute>
 <label>Type</label>
 <value>Class</value>
 </attribute>
 <attribute>
 <label>Duration</label>
 <value>30min</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="1">
 <name>Identify techniques</name>
 <generalAttributes>
 <attribute>
 <label>Type</label>
 <value>Group</value>
 </attribute>
 <attribute>
 <label>Duration</label>
 <value>60min</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="2">

Péricles DE LIMA SOBREIRA 136

Thèse en Informatique. Université de Grenoble, 2014

 <name>Crossing groups</name>
 <generalAttributes>
 <attribute>
 <label>Type</label>
 <value>Group</value>
 </attribute>
 <attribute>
 <label>Duration</label>
 <value>60min</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="3">
 <name>Regrouping</name>
 <generalAttributes>
 <attribute>
 <label>Type</label>
 <value>Class</value>
 </attribute>
 <attribute>
 <label>Duration</label>
 <value>120min</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 </notionList>
 <notionList idColumn="1" type="Group">
 <notion idObject="0">
 <name>G1</name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <value>G1 dyad</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="1">
 <name>G2</name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <value>G2 dyad</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 </notionList>
 <notionList idColumn="2" type="Participant">
 <notion idObject="0">
 <name>e1</name>
 <generalAttributes>
 <attribute>
 <label>Age</label>
 <value>15</value>
 </attribute>
 <attribute>

Péricles DE LIMA SOBREIRA 137

Thèse en Informatique. Université de Grenoble, 2014

 <label>Genre</label>
 <value>Male</value>
 </attribute>
 <attribute>
 <label>Nationality</label>
 <value>French</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="1">
 <name>e2</name>
 <generalAttributes>
 <attribute>
 <label>Age</label>
 <value>15</value>
 </attribute>
 <attribute>
 <label>Genre</label>
 <value>Female</value>
 </attribute>
 <attribute>
 <label>Nationality</label>
 <value>French</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="2">
 <name>e3</name>
 <generalAttributes>
 <attribute>
 <label>Age</label>
 <value>15</value>
 </attribute>
 <attribute>
 <label>Genre</label>
 <value>Female</value>
 </attribute>
 <attribute>
 <label>Nationality</label>
 <value>French</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="3">
 <name>e4</name>
 <generalAttributes>
 <attribute>
 <label>Age</label>
 <value>15</value>
 </attribute>
 <attribute>
 <label>Genre</label>
 <value>Female</value>
 </attribute>
 <attribute>
 <label>Nationality</label>

Péricles DE LIMA SOBREIRA 138

Thèse en Informatique. Université de Grenoble, 2014

 <value>Brazilian</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 </notionList>
 <notionList idColumn="3" type="Resource">
 <notion idObject="0">
 <name>General text.IN</name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <value>Document introducing energy saving principles</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="1">
 <name>Insulation text.IN</name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <value>Document focusing on insulation</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="2">
 <name>Insulation list.OUT</name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <value>Text listing different possible insulation techniques</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="3">
 <name>Heater text.IN</name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <value>Document focusing on heating</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="4">
 <name>Heater list.OUT</name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <value>Text listing different possible heating techniques</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="5">
 <name>Insulation questions.IN</name>

Péricles DE LIMA SOBREIRA 139

Thèse en Informatique. Université de Grenoble, 2014

 <generalAttributes>
 <attribute>
 <label>Description</label>
 <value>Document listing a set of insulation questions</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="6">
 <name>Heater questions.IN</name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <value>Document listing a set of heating questions</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 <notion idObject="7">
 <name>Answers.IN</name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <value>The final team answer</value>
 </attribute>
 </generalAttributes>
 <configurationAttributes></configurationAttributes>
 </notion>
 </notionList>
 <notionList idColumn="4" type="Role"></notionList>
 </notions>
 <tree>
 <node idColumn="0">
 <instances>
 <instance idInstance="0" idObject="0">
 <instanceAttributes>
 <attribute>
 <label>Beginning time</label>
 <value>10:30</value>
 </attribute>
 <attribute>
 <label>Ending time</label>
 <value>11:00</value>
 </attribute>
 </instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="1">
 <instances></instances>
 <tree>
 <node idColumn="2">
 <instances>
 <instance idInstance="0" idObject="0">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="1" idObject="1">
 <instanceAttributes></instanceAttributes>
 </instance>

Péricles DE LIMA SOBREIRA 140

Thèse en Informatique. Université de Grenoble, 2014

 <instance idInstance="2" idObject="2">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="3" idObject="3">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="3">
 <instances>
 <instance idInstance="0" idObject="0">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree></tree>
 </node>
 </tree>
 </node>
 </tree>
 </node>
 </tree>
 </node>
 <node idColumn="0">
 <instances>
 <instance idInstance="1" idObject="1">
 <instanceAttributes>
 <attribute>
 <label>Beginning time</label>
 <value>11:15</value>
 </attribute>
 <attribute>
 <label>Ending time</label>
 <value>12:15</value>
 </attribute>
 </instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="1">
 <instances>
 <instance idInstance="0" idObject="0">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="2">
 <instances>
 <instance idInstance="4" idObject="0">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="5" idObject="1">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="3">
 <instances>
 <instance idInstance="1" idObject="1">
 <instanceAttributes></instanceAttributes>

Péricles DE LIMA SOBREIRA 141

Thèse en Informatique. Université de Grenoble, 2014

 </instance>
 <instance idInstance="2" idObject="2">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree></tree>
 </node>
 </tree>
 </node>
 </tree>
 </node>
 <node idColumn="1">
 <instances>
 <instance idInstance="1" idObject="1">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="2">
 <instances>
 <instance idInstance="6" idObject="2">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="7" idObject="3">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="3">
 <instances>
 <instance idInstance="3" idObject="3">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="4" idObject="4">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree></tree>
 </node>
 </tree>
 </node>
 </tree>
 </node>
 </tree>
 </node>
 <node idColumn="0">
 <instances>
 <instance idInstance="2" idObject="2">
 <instanceAttributes>
 <attribute>
 <label>Beginning time</label>
 <value>14:00</value>
 </attribute>
 <attribute>
 <label>Ending time</label>
 <value>15:00</value>
 </attribute>
 </instanceAttributes>
 </instance>

Péricles DE LIMA SOBREIRA 142

Thèse en Informatique. Université de Grenoble, 2014

 </instances>
 <tree>
 <node idColumn="1">
 <instances>
 <instance idInstance="2" idObject="0">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="2">
 <instances>
 <instance idInstance="8" idObject="0">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="9" idObject="3">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="3">
 <instances>
 <instance idInstance="5" idObject="5">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="6" idObject="2">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree></tree>
 </node>
 </tree>
 </node>
 </tree>
 </node>
 <node idColumn="1">
 <instances>
 <instance idInstance="3" idObject="1">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="2">
 <instances>
 <instance idInstance="10" idObject="1">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="11" idObject="2">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="3">
 <instances>
 <instance idInstance="7" idObject="6">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="8" idObject="4">
 <instanceAttributes></instanceAttributes>
 </instance>

Péricles DE LIMA SOBREIRA 143

Thèse en Informatique. Université de Grenoble, 2014

 </instances>
 <tree></tree>
 </node>
 </tree>
 </node>
 </tree>
 </node>
 </tree>
 </node>
 <node idColumn="0">
 <instances>
 <instance idInstance="3" idObject="3">
 <instanceAttributes>
 <attribute>
 <label>Beginning time</label>
 <value>15:30</value>
 </attribute>
 <attribute>
 <label>Ending time</label>
 <value>17:30</value>
 </attribute>
 </instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="1">
 <instances></instances>
 <tree>
 <node idColumn="2">
 <instances>
 <instance idInstance="12" idObject="0">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="13" idObject="1">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="14" idObject="2">
 <instanceAttributes></instanceAttributes>
 </instance>
 <instance idInstance="15" idObject="3">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree>
 <node idColumn="3">
 <instances>
 <instance idInstance="9" idObject="7">
 <instanceAttributes></instanceAttributes>
 </instance>
 </instances>
 <tree></tree>
 </node>
 </tree>
 </node>
 </tree>
 </node>
 </tree>
 </node>
 </tree>

Péricles DE LIMA SOBREIRA 144

Thèse en Informatique. Université de Grenoble, 2014

 <noteList>
 <note>All students must read a common document</note>
 <note>e1 and e2 must produce a text listing different possible techniques</note>
 <note>e3 and e4 must produce a text listing different possible techniques</note>
 <note>e1 and e4 must write a text</note>
 <note>e2 and e3 must write a text</note>
 <note>All students must prepare a final team answer</note>
 </noteList>
 </script>
 <pattern>
 <notionList idColumn="0" type=" Activity">
 <notion>
 <name></name>
 <generalAttributes>
 <attribute>
 <label>Type</label>
 <values>
 </values>
 </attribute>
 <attribute>
 <label>Duration</label>
 <values>
 </values>
 </attribute>
 </generalAttributes>
 <instanceAttributes>
 <attribute>
 <label>Beginning time</label>
 <values>
 </values>
 </attribute>
 <attribute>
 <label>Ending time</label>
 <values>
 </values>
 </attribute>
 </instanceAttributes>
 </notion>
 </notionList>
 <notionList idColumn="1" type=" Group">
 <notion>
 <name></name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <values>
 </values>
 </attribute>
 </generalAttributes>
 <instanceAttributes>
 </instanceAttributes>
 </notion>
 </notionList>
 <notionList idColumn="2" type=" Participant">
 <notion>
 <name></name>
 <generalAttributes>
 <attribute>
 <label>Age</label>

Péricles DE LIMA SOBREIRA 145

Thèse en Informatique. Université de Grenoble, 2014

 <values>
 </values>
 </attribute>
 <attribute>
 <label>Genre</label>
 <values>
 </values>
 </attribute>
 <attribute>
 <label>Nationality</label>
 <values>
 </values>
 </attribute>
 </generalAttributes>
 <instanceAttributes>
 </instanceAttributes>
 </notion>
 </notionList>
 <notionList idColumn="3" type=" Resource">
 <notion>
 <name></name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <values>
 </values>
 </attribute>
 </generalAttributes>
 <instanceAttributes>
 </instanceAttributes>
 </notion>
 </notionList>
 <notionList idColumn="4" type=" Role">
 <notion>
 <name></name>
 <generalAttributes>
 <attribute>
 <label>Description</label>
 <values>
 </values>
 </attribute>
 </generalAttributes>
 <instanceAttributes>
 </instanceAttributes>
 </notion>
 </notionList>
 </pattern>

Figure B.2. The t2ml Document of the jigsaw script as depicted in Figure 4.3

Péricles DE LIMA SOBREIRA 146

Thèse en Informatique. Université de Grenoble, 2014

Appendix C – Trace files considerations

All actions performed by teachers during ediT2 scenarios’ manipulation (e.g.,

displacement of items between cells, insertion/removal of columns, etc.) are registered

and can be recuperated afterwards by specialists interested in observing, for instance,

when users define or adapt the structure of a learning scenario (i.e., when teachers

insert, move or remove table columns).

With this purpose, ediT2 allows such professionals to get this trace information

from a .csv file containing such actions distributed through a spreadsheet structured by

the following columns: “Timestamp”, “Actor”, “Action”, “Table Dimension”, “Tree

Dimension” and “Operation Description”.

The figure C.1 presents part of a .csv file indicating possible actions performed

by an ediT2 user when modeling the jigsaw script as depicted in Figure 4.3. In this

figure some rows and columns (“Table Dimension” and “Tree Dimension”) were hidden

in order to facilitate its readability.

Figure C.1. Spreadsheet indicating the actions performed by an ediT2 user when modeling the
jigsaw script as depicted in Figure 4.3

In this figure, the operation presented in row #10 corresponds to the action of

hitting the “Insert row” button. Once the teacher clicks on this button, the system

informs that a new table row has been inserted in the interface (row #11), and the

model informs that a new sub-tree has been created in the tree structure (row #12).

Similar examples are the “Split cell” (rows #22, #23 and #24) and the “Insert

component(s) into a cell” (rows #30, #31 and #32) operations.

Péricles DE LIMA SOBREIRA 147

Thèse en Informatique. Université de Grenoble, 2014

Appendix D – Using ediT2 to represent CSCL

scripts

As described in Section 5.4, we performed in this work some tests and

exploratory studies questioning the power of our model/system to represent a wide

range of learning scenarios. Among them, one study was the gathering (and modeling)

of 25 CSCL scripts existing in the literature, as a way to indicate the potential of our

approach when considering this feature.

In this appendix we introduce only 10 of them. They have been chosen based

on the presence of particular characteristics, as, for example: representation of complex

scheduling structures (repetitions, parallelisms and/or conditions); technological

interrelation with their respective platforms of operationalization, and/or; dynamic

instantiations. As we will observe in these scripts, their representations and/or

technological interoperability with enactment platforms (when applied) depend on the

complexity involved in such interactions.

Some of these scripts allow/demand the repetition of some of their activities

several times, according to the needs of the teacher and/or the pedagogical context

(e.g., in the “MagicBook”, “RSC” and “Signifié-Signifiant Collaborative Play” scripts,

Sections D.6, D.7 and D.8, respectively). In these cases, such steps have been

represented only one time in the table, as a way to simplify the readability of their

representations.

Examples of deployment dependence and complex scheduling features can be

found in the script proposed by Roschelle and his colleagues (Section D.9). Another

example of the last feature is also found in the script developed by Ioannidou and

Dimitracopoulou (Section D.8). Other proposals present instantiation dynamic

characteristics, as in the “ArgueGraph” script (Section D.10), where groups must be

composed by students with conflicting opinions developed during its unfolding.

As discussed in the previous chapters, some alternatives to overcome these

issues were proposed and implemented. Taking into account the basic ediT2

implementation (e.g., without advanced features as representation of complex

scheduling), repetitions and rotation mechanisms could be designed from the

duplication of some table rows/items. The level of difficulty increases if the flow

conditions, deployment completeness or dynamic instantiations, which demands the

extension of ediT2 functionalities through advanced services, must be considered.

In all examples discussed in this appendix, we have used the labels .IN/.OUT

suffixing the resources’ names to indicate that they represent respectively input/output

artefacts or, in another way, that they are resources to be used/produced by the

students involved in a certain CSCL activity (as the same way that it has been done in

Figure 4.3, for the jigsaw script).

Péricles DE LIMA SOBREIRA 148

Thèse en Informatique. Université de Grenoble, 2014

D.1 MURDER

“MURDER is short for Mood, Understanding, Recall, Detection, Elaboration, and Review.
Students learn in pairs from a textbook, one being the summarizer and the other the listener.
After setting the mood for studying, both read a text passage for understanding. The
Summarizer recalls what has been read while the listener detects errors or omissions and
gives feedback. Then both elaborate on the read passage and repeat everything with switched
roles for the next passage of text. Finally, both review the read passages and reflect on what
they have learned.”

Figure D.1 The “MURDER” script narrative (top) and representation (bottom) (Dansereau et al., 1979
apud Kobbe et al., 2007)

D.2 Social

“Three case studies are analyzed and reviewed by groups of three students in parallel. Each
student writes a case analysis, then critiques the other two written case analyses and finally
revises his/her own case analysis based on the critiques received by the other students. Both
roles of case analyst and constructive critic are additionally supported with text prompts that
learners are supposed to act out.”

Figure D.2 The “Social” script narrative (top) and representation (bottom) (Weinberger et al., 2005
apud Kobbe et al., 2007)

Péricles DE LIMA SOBREIRA 149

Thèse en Informatique. Université de Grenoble, 2014

D.3 Pyramid

Initially, each leaner studies a problem and proposes an initial solution. Then, the teacher
encourages the students to compose groups (usually pairs) in order to expand and also
deepen their perspective in the domain to propose a new shared solution. After, the students
must be guided to join in larger groups in order to generate new agreed proposals. This
process must be repeated until that, at the end, all students are put in a debriefing session to
propose a final and agreed solution at the classroom level.

Figure D.3 The “Pyramid” script narrative (top) and representation (bottom; instanced for 6 students)
(adapted from Karakostas and Demetriadis, 2009)

D.4 ConceptGrid

Groups of n students are composed. Each of these groups has to play n roles, one for each of
its participants, associated with papers to read. After, each student reads the papers
associated with his or her role. Then, the group distributes the concepts to be defined among
its members. Each student enters a 5-10-line definition of the concepts that she/he has chosen
to define. The group constructs a grid with these concepts ordered on a map in such a way that
two neighboring concepts can be explained in just a few sentences. Finally, a debriefing
section takes place to reformulate the definitions and relations provided by the students.

Figure D.4 The “ConceptGrid” script narrative (top) and representation (bottom; instanced for 2 groups
composed by pairs) (adapted from Dillenbourg et al., 2009).

Péricles DE LIMA SOBREIRA 150

Thèse en Informatique. Université de Grenoble, 2014

D.5 Universanté

“Students from different nations solve problem cases in mixed and changing teams. Each case
is first read and discussed in teams of mixed nations. National teams then inform each other
about the cases read and create a national fact sheet. These national fact sheets are then
compared and compiled by teams of students with thematically similar cases (mixed nations).
These same teams present their compiled fact sheets to other teams of their same nationality
and receive feedback. Finally, students return to their initial case group and work out a case
solution.”

Figure D.5 The “Universanté” script narrative (top) and representation (bottom; instanced for triplets
from 3 different countries) (Dillenbourg and Jermann, 2007 apud Kobbe et al., 2007)

D.6 MagicBook

The teacher writes the beginning of a story and all participants read it (a participant can be
defined as a student or a whole class of students) – this step can be iterated several times.
After, all participants write a second chapter and propose it as a continuation of the story. The
proposals for the next chapter are read by the participants that finally vote for their favorite,
which will be elected as the official chapter 2.

Figure D.6 The “MagicBook” script narrative (top) and representation (bottom; instanced for 3
students) (adapted from Dillenbourg, 2002)

Péricles DE LIMA SOBREIRA 151

Thèse en Informatique. Université de Grenoble, 2014

D.7 RSC

This approach includes 3 phases (corresponding to its RSC acronym – Research-Structure-
Confront), where the output of a phase is the input of the next one, and which can be repeated
several times. Firstly, each student of a group has to freely research the Internet to discover
some information and become familiar with a given same topic. After, each student has to
structure and/or use the data he/she has recovered according to a task. Finally, the group has
to elaborate a collective construction from the individual productions (confronting the individual
productions and collectively constructing an analysis of the topic researched).

Figure D.7 The “RSC” script narrative (top) and representation (bottom; instanced for 3 students)
(Betbeder and Tchounikine, 2003 apud Dillenbourg and Tchounikine, 2007 (adapted))

D.8 Signifié-Signifiant Collaborative Play

Two groups of students communicate each other while working in one of two concept
representational modes: for example, a base team (BT, working on a 2D map) and a field team
(FT, acting in a 3D natural space). Initially, students agree on the general nature of the task,
the starting point of motion and the instructions of motion execution. BT's participants
formulate and express verbal instructions to FT's participants. These negotiate among them the
transmitted instructions, assess their appropriateness and execute them (in case of
acceptation). BT’s participants interpret the oral reactions of the other team, translate the
feedback represented on the screen and rethink the situation in case of wrong. Groups
negotiate the next step of the motion until the final landmark. They discuss in a debriefing
session to clarify eventual problems appeared during the script execution. Finally, team roles
are changed and the process is re-started.

Péricles DE LIMA SOBREIRA 152

Thèse en Informatique. Université de Grenoble, 2014

Figure D.8 The “Signifié-Signifiant Collaborative Play” script narrative (top) and representation
(bottom; here, the change of the teams’ roles is not modeled for the figure readability sake) (Ioannidou
and Dimitracopoulou, 2003, 2004 apud Van de Velde et al., 2004 (adapted))

D.9 Scaffolding Group Feedback and Explanation During Practice Time

This approach “presents tasks to groups of three students via wireless handheld devices. To
complete a task, a group must work cooperatively. Each student enters an answer
independently; however, the system requires that students agree on an answer and provides
feedback only at the group level. If students do not choose the same answer, the software tells
them they must agree, which generates much discussion. Once students agree, the software
tells them whether they were all right or all wrong. If wrong, they must try again, while the
software makes the previously incorrect choice unavailable so that students individually select
a different answer until they select the correct one.”

Figure D.9 The “Scaffolding Group Feedback and Explanation During Practice Time” script narrative
(top) and representation (bottom; instanced for 3 students and considering that in the second activity
all students have agreed on a same correct answer) (adapted from Roschelle et al., 2009)

Péricles DE LIMA SOBREIRA 153

Thèse en Informatique. Université de Grenoble, 2014

D.10 ArgueGraph

“Students first individually argue for or against items on a questionnaire. Their opinion is
plotted onto a two-dimensional graph. Students with highly conflicting opinions (point distance
in the graph) are grouped together in pairs and receive another copy of the questionnaire to fill
out. Students discuss what arguments to write for each item. The teacher collects the
questionnaires and helps each small group in turn to elaborate on and revise their arguments.
The teacher then groups all arguments by item. Finally, each student is assigned one item for
which to write a synthesis of all arguments.”

Figure D.10 The “ArgueGraph” script narrative (top) and representation (bottom; instanced for 4
students) (Dillenbourg and Jermann, 2007 apud Kobbe et al., 2007)

Péricles DE LIMA SOBREIRA 154

Thèse en Informatique. Université de Grenoble, 2014

Appendix E – Analysis of the work

In (Tchounikine, 2011), an analysis grid for TEL works is proposed. With

respect to this grid, the work conducted in this thesis can be analyzed considering the

design context and the computer-based system (Table E.1) – in this table, CBPS stands

for "Computer Based Pedagogical Setting".

Table E.1 Analysis grid for TEL works (inspired from Tchounikine, 2011)

Characterizing the design context

1. Nature of the work: research work

2. Theoretical background: N/A

3. Nature of the targeted outcome

• Construction of an object, a product or a service

o Constructing a model of some dimension transversal to different domains

o Constructing a piece of software

o Providing teachers with editing tools

• Addressing of a pedagogical objective:

o Some teachers’ tasks have been facilitated or supported

• Elaboration of some statement or lesson learned

• The elaboration of a model:

o Model as a CS design or specification tool

o Model as an intermediate structure in between two objects (other models, software

components, etc.)

o Model as a run-time control or configuration tool for a process (interface adaptation, data

flow control, feedback and support control, etc.)

• Elaboration of a process or methodological considerations:

o A description of issues

o A general approach to some issue

o An engineering or re-engineering process

• Implementation of some software / software components:

o Implement a visualization tool that allows a particular data presentation

4. Rationale for designing software

• Large considerations:

Péricles DE LIMA SOBREIRA 155

Thèse en Informatique. Université de Grenoble, 2014

o Obtain data related to users’ usage in order to elaborate some understanding of something

o Obtain an experimental setting that allows testing of a hypothesis or a model

o Allow understanding of whether some construction can be made computable

(operationalization of a model or process, interoperability means, etc.)

o Allow exploration of an idea

5. How software is considered within the CBPS

• Role of software in the CBPS:

o Software is considered to be merely a resource

• Constraints applying to the design/implementation processes:

o Obtaining software that is usable (i.e., usability may be shown or argued)

6. Design approach

• Design entry point:

o An innovative idea

o A technology allowing new possibilities

o An analysis of some teacher’s (tutor’s, etc.) tasks to be supported

o The identification of an anomaly to be reduced

o A compilation of empirical results allowing elaboration of design guidelines

• The design model:

o Iterative design (testing incrementally different versions)

o User-centered design (placing users at the center of design)

• How users are concerned in design:

o The conditions under which users are involved (by whom, at what time, what to do, etc.):

tests in lab

7. Actors concerned

• Types of actors concerned (or actors’ roles):

o Researcher

o Teacher

8. Context and historical dimensions

• Elements forming the original context of software design:

o An identified learning or teaching issue

o A technology

o An innovative idea

• General context and the history of the project:

Péricles DE LIMA SOBREIRA 156

Thèse en Informatique. Université de Grenoble, 2014

o The history and/or evolution of the project: focused on CSCL, and then generalized

Characterizing the computer-based system

9. Level of analysis of software properties

• Software is considered at the level of the objects and features detailed properties

10. Actions considered at the level of software

• Teachers’ actions when editing a scenario

11. Reification of the pedagogical intention in software

• Features related to pedagogical considerations

12. Nature of the CS treatments

• Acquire data:

o Acquire the computational events (logs) generated by teachers’ editing actions

• Elaborate data:

o Elaborate a tree representation for configuration data

• Visualize data:

o Interface following a particular structure

o Simulation interface

o Supervision tool

• Manage access to data

o Manage access to enactment frameworks data

• Handle a complex task:

o Manage a sequence editing / operationalization / supervision

13. Level of achievement

• Different level of achievement are possible:

o Prototype implementing main functions

14. Results

• Results are related to:

o The artifact (software, CBPS) that has been designed, for instance the fact that software

presents some properties

o The satisfaction of the actors (teachers)

o The fact that a method, a model, a theory or a technology appears to be a base for, guides,

allows or facilitates design of pedagogical-setting support software

Péricles DE LIMA SOBREIRA 157

Thèse en Informatique. Université de Grenoble, 2014

Péricles DE LIMA SOBREIRA 158

Thèse en Informatique. Université de Grenoble, 2014

Bibliography

.LRN, 2013. Learn, Research, Network Consortium (www.dotlrn.org), visited in 12/2013.

AIR, 2014. Adobe AIR 3 (www.adobe.com/fr/products/air.html), visited in 03/2014.

Baker, M. & Lund, K. (1997). Promoting reflective interactions in a CSCL environment.

Journal of Computer Assisted Learning, 13(3), 175–193.

Bakia, M., Murphy, R., Anderson, K. & Trinidad, G.E. (2011). International Experiences

With Technology in Education: Final Report. U.S. Department of Education, Office

of Educational Technology. Washington, D.C.

Belgiorno, F., Chiara, R.D., Manno, I. & Scarano, V. (2008). A Flexible and Tailorable

Architecture for Scripts in F2F Collaboration. In Proceedings of the 3rd European

Conference on Technology Enhanced Learning: Times of Convergence:

Technologies Across Learning Contexts. Springer-Verlag Berlin, pp. 401-412.

Blackboard. Blackboard Learning System (www.blackboard.com), visited in 12/2013.

Boloudakis, M., Katsamani, M., Retalis, S., Georgiakakis P. (2012). CADMOS: A

learning design tool for Moodle courses. First Moodle Research Conference,

Heraklion, Crete, Greece.

Botturi, L., Derntl, M., Boot, E. & Figl, K. (2006). A Classification Framework for

Educational Modeling Languages in Instructional Design. In Proceedings of 6th

IEEE International Conference on Advanced Learning Technologies, pp. 1216-

1220.

Botturi, L., Burgos, D., Caeiro, M., Derntl, M., Koper, R., Parrish, P., Sodhi, T.,

Tattersal, C. (2008). Comparing Visual Instructional Design Languages, A Case

Study, in: L. Botturi, T. Stubbs (Eds.), Handbook of Visual Languages for

Instructional Design: Theories and Practices. Information Science Reference,

Hershey, pp. 155-184.

Chiara, R., Matteo, A., Manno, I., Scarano, V. (2007). CoFFEE: Cooperative Face2Face

educational environment, in: International Conference on Collaborative Computing:

Networking, Applications and Worksharing, pp. 243-252.

Cohen, E. G. (1994) Restructuring the Classroom: Conditions for Productive Small

Groups. Review of Educational Research. 64(1), 1-35.

Coppercore. The IMS Learning Design Engine (coppercore.sourceforge.net), visited in

06/2012.

De Wever, B., Van Keer, H., Schellens, T., & Valcke, M. (2009). Structuring

asynchronous discussion groups: The impact of role assignment and self-

assessment on students’ levels of knowledge construction through social

negotiation. Journal of Computer Assisted Learning, 25, 177–188.

De-la-Fuente-Valentín, L., Pardo, A., Kloos, C. D. (2007). Experiences with GRAIL:

Learning Design support in. LRN. TENCompetence Open workshop on current

research in IMS Learning Design and lifelong competence development

infrastructures, Citeseer.

Péricles DE LIMA SOBREIRA 159

Thèse en Informatique. Université de Grenoble, 2014

Derntl, M. (2011). OpenGLM: The Open Graphical Learning Modeller. Proceedings of

the Art and Science of Learning Design International Workshop. ASLD 2011.

Derntl, M., Neumann, S., Griffiths D. & Oberhuemer, P. (2011). The conceptual structure

of IMS Learning Design does not impede its use for authoring. IEEE Transactions

on Learning Technologies, 5(1), 74-86.

Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning

with instructional design. In P. A. Kirschner (Ed.), pp.61-91.

Dillenbourg, P., Dimitriadis, Y., Nussbaum, M. (2013). Design for Classroom

Orchestration. Computers & Education, 69, 485-492.

Dillenbourg, P. & Hong, F. (2008). The mechanics of CSCL macro scripts. International

Journal of Computer-Supported Collaborative Learning, Springer 3 (1), 5-23.

Dillenbourg, P., Hong, F. & Brahm, T. (2009). The Manyscripts Pedagogical Handbook:

How to build scripts for collaborative learning?. scil Arbeitsbericht. St. Gallen: scil,

Universität St. Gallen.

Dillenbourg, P., Jermann, P. (2010). Technology for classroom orchestration, in: Khine,

I. M. (Ed.), The New Science of Learning: Computers, Cognition and Collaboration

in Education, Springer, Berlin, pp. 525-552.

Dillenbourg, P. & Jermann, P. (2007). Designing Integrative Scripts. F. Fischer, I. Kollar,

H. Mandl & J. M. Haake (Eds.). Computer-Supported Collaborative Learning Series,

Springer, pp.275-301.

Dillenbourg, P. & Tchounikine, P. (2007). Flexibility in macro-scripts for CSCL. Journal

of Computer Assisted Learning, 23(1), 1-13.

Diziol, D., Walker, E., Rummel, N. & Koedinger, K (2010) Using intelligent tutor

technology to implement adaptive support for student collaboration. Educational

Psychology Review. 22 (1), 89-102.

Drira, R., Laroussi, M., Le Pallec, X., Warin, B., 2012. Contextualizing Learning

Scenarios According to Different Learning Management Systems. IEEE

Transactions on Learning Technologies 5(3), 213-225.

Eclipse. The Eclipse Foundation open source community website (www.eclipse.org),

visited in 12/2012.

Fischer, F., Kollar, I., Haake, J.M. & Mandl, H. (2007). Perspectives on collaboration

scripts. In F. Fischer, I. Kollar, H. Mandl & J. M. Haake (Eds.), Scripting computer-

supported communication of knowledge – cognitive, computational, and educational

perspectives, New York: Springer, pp. 1-10.

Flash, 2014. Flash Professional CC (www.adobe.com/fr/products/flash.html), visited in

03/2014.

GHC. The Glasgow Haskell Compiler (www.haskell.org/ghc), visited in 02/2012.

Goodyear, P. & Retalis, S. (2010). Technology-enhanced learning: design patterns and

pattern languages. Sense Publishers, Rotterdam.

Group Scribbles. Rapidly Design Collaborative Learning Activities

(groupscribbles.sri.com), visited in 11/2013.

Péricles DE LIMA SOBREIRA 160

Thèse en Informatique. Université de Grenoble, 2014

Haake, J.M. & Pfister, H.-R. (2007). Flexible scripting in Net-Based Learning Groups. F.

Fischer, I. Kollar, H. Mandl & J. M. Haake (Eds.). Computer-Supported

Collaborative Learning Series, Springer, pp.155-175.

Harrer, A. & Hoppe, H. U. (2008). Visual Modeling of Collaborative Learning Processes

– Uses, Desired Properties and Approaches, in: L. Botturi & T. Stubbs (Eds.).

Handbook of Visual Languages for Instructional Design: Theory and Practices,

Information Science Reference, Hershey, pp. 281-298.

Harrer, A., Kohen-Vacs, D., Roth, B., Malzahn, N., Hoppe, H.U. & Ronen, M. (2009).

Design and enactment of collaboration scripts – an integrative approach with

graphical notations and learning platforms. International Society of the Learning

Sciences, CSCL Conference, pp. 198-200.

Harrer, A., Malzahn, N. & Hoppe, H.U. (2007). Graphical Modeling and Simulation of

Learning Designs. In T. Hirashima, H. U. Hoppe and S. S. Young (Eds.). Supporting

Learning Flow through Integrative Technologies. Amsterdam, IOS Press, pp. 291-

294.

Haskell. The Haskell Programming Language (www.haskell.org), visited in 02/2012.

Hernández-Leo, D., Asensio-Pérez, J.I., Dimitriadis, Y., Villasclaras-Fernández, E.D.

(2010). Generating CSCL Scripts: From a Conceptual Model of Pattern Languages

to the Design a real situation (Appendix). In: Goodyear, P., Retalis, S. (Eds)

Technology Enhanced Learning, Design Patterns and Pattern Languages,

SensePublishers.

Hernández-Leo, D., Villasclaras-Fernández, E.D., Asensio-Pérez, J.I., Dimitriadis, Y.,

Jorrín-Abellán, I.M., Ruiz-Requies, I. & Rubia-Avi, B. (2006). COLLAGE: A

collaborative Learning Design editor based on patterns. Journal of Educational

Technology and Society, 9(1), 58-71.

Honegger, B. D., Notari, M. P. (2009). Over-computing CSCL Macro scripts? Gaining

flexibility by using WikiPlus instead of specialized tools for authoring macro scripts.

Proceedings of the 9th International Conference on Computer Supported

Collaborative Learning. International Society of the Learning Sciences, v.1, pp 482-

486.

IMS GLC. Instructional Management Systems Global Learning Consortium

(www.imsglobal.org), visited 12/2013.

IMS-LD. IMS Learning Design (http://www.imsglobal.org/learningdesign), visited

08/2012.

jBPM. A flexible Business Process Management Suite (www.jboss.org/jbpm), visited in

12/2012.

Jones, C., Dirckinck-Holmfeld, L. & Lindström, B. (2006). A relational, indirect, meso-

level approach to CSCL design in the next decade. International Journal of

Computer-Supported Collaborative Learning. 1(1), 35-56.

Karakostas, A. & Demetriadis, S. (2009). Adaptation Patterns in Systems for Scripted

Collaboration. Proceedings of the 9th International Conference on Computer-

Supported Collaborative Learning. International Society of the Learning Sciences,

pp. 477-481.

Péricles DE LIMA SOBREIRA 161

Thèse en Informatique. Université de Grenoble, 2014

Kobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A., Hämäläinen, R., Häkkinen, P. &

Fischer, F. (2007). Specifying Computer-Supported Collaboration Scripts.

International Journal of Computer-Supported Collaborative Learning, 2(2-3), 211-

224.

Kohen-Vacs, D., Ronen, M., Hammer, R. (2011). Designing, Enacting & Sharing

Collaborative Online Activities with CeLS. Proceedings of the Art and Science of

Learning Design International Workshop. ASLD 2011.

Kollar, I., Fischer, F., Hesse, F. (2006). Collaboration Scripts – A Conceptual Analysis.

Educational Psychology Review, 18(2), pp. 159-185.

Kollar, I., Fischer, F., & Slotta, J.D. (2007). Internal and external scripts in computer-

supported collaborative inquiry learning. Learning and Instruction, 17(6), 708–721.

Laforcade, P. & Choquet, C. (2006). Next Step for Educational Modeling Languages:

The Model Driven Engineering and Reengineering Approach, in: Proceedings of the

6th IEEE International Conference on Advanced Learning Technologies, pp.745-

747.

LAMS. Learning Activity Management System (www.lamsfoundation.org), visited in

08/2013.

Larnaca. The Larnaca Declaration on Learning Design. (www.larnacadeclaration.org),

visited in 12/2012.

Larusson, J. A., Alterman, R. (2009). Wikis to support the “collaborative” part of

collaborative learning. International Journal of Computer-Supported Collaborative

Learning. 4(4), 371-402.

Laurillard, D., Charlton, P., Craft, B., Dimakopoulos, D., Ljubojevic, D., Magoulas, G.,

Masterman, E., Pujadas, R., Whitley, E.A., Whittlestone, K. (2013). A

constructionist learning environment for teachers to model learning designs. Journal

of Computer Assisted Learning 29(1), 15-30.

Lejeune, A. (2004). IMS Learning Design. Distances et savoirs, 2, 409-450.

Malzahn, N., Pokrandt, M., & Hoppe, H. U. (2008) Extending a Learning Design Editor

with a Monitoring Component. International Conference on Computers in Education,

499-504.

Mangano, N., Ossher, H., Simmonds, I., Callery, M., Desmond, M., Krasikov, S. (2011).

Blending freeform and managed information in tables: NIER track. 33rd

International Conference on Software Engineering, pp. 840-843.

Mazza, R., Bettoni, M., Faré, M., Mazzola, L. (2012). MOCLog – Monitoring Online

Courses with log data. In: S. Retalis and M. Dougiamas. 1st Moodle Research

Conference Proceedings. ISBN: 978-960-98516-2-6

McLaren, B.M., Scheuer, O. & Mikšátko, J. (2010) Supporting Collaborative Learning

and e-Discussions Using Artificial Intelligence Techniques. International Journal of

Artificial Intelligence in Education. 20, 1-46.

MediaWiki. A free open source wiki package (www.mediawiki.org), visited in 02/2013.

Miao, Y., Hoeksema, K., Hoppe, H.U. & Harrer, A. (2005). CSCL Scripts: Modelling

Features and Potential Use. International Conference on Computer Supported

Collaborative Learning, Taipei, Taiwan, pp. 423-432.

Péricles DE LIMA SOBREIRA 162

Thèse en Informatique. Université de Grenoble, 2014

Moodle. Open-source community-based tools for learning (www.moodle.org), visited in

08/2012.

Mor, Y., Craft, B. (2012). Learning Design: Reflections upon the Current Landscape.

Research in Learning Technology, 20, 85-94.

Muñoz-Cristóbal, J.A., Prieto, L.P., Asensio-Pérez, J.I., Jorrín-Abellán, I.M., Dimitriadis,

Y. (2012) Lost in Translation from Abstract Learning Design to ICT Implementation:

A Study Using Moodle for CSCL. Lecture Notes in Computer Science. 7563, 264-

277.

Nardi, B.A., Zarmer, C.L. (1993). Beyond Models and Metaphors: Visual Formalism in

User Interface Design. Journal of Visual Languages and Computing, 4, 5-33.

Neumann, S., Klebl, M., Griffiths, D., Hernández-Leo, D., De-La-Fuente Valentín, L.,

Hummel, H., Brouns, F., Derntl, M., & Oberhuemer, P. (2010). Report of the Results

of an IMS Learning Design Expert Workshop. International Journal of Emerging

Technologies In Learning (IJET), 5(1), 58-72.

Neumann, S., Oberhuemer, P., 2009. User Evaluation of a Graphical Modeling Tool for

IMS Learning Design. Lecture Notes in Computer Science, 5686, 287-296.

Niramitranon, J. (2009). Orchestrating Learning in a one-to-one Technology Classroom.

PhD Thesis. University of Nottingham.

Niramitranon, J., Sharples, M. & Greenhalgh, C. (2010). Orchestrating Learning in a

one-to-one Technology Classroom. In Khine, M.S. & Saleh, I.M. (eds.) New Science

of Learning: Cognition, Computers and Collaboration in Education. NY: Springer,

pp. 451-468.

Palomino-Ramírez, L., Bote-Lorenzo, M., Asensio-Pérez, J., Dimitriadis, Y. (2008).

LeadFlow4LD: Learning and Data Flow Composition-Based Solution for Learning

Design in CSCL, in: Groupware: Design, Implementation, and Use, vol. 5411, pp.

266-280.

Paquette, G. (2010). Ontology-Based Educational Modelling – Making IMS-LD Visual.

Technology, Instruction, Cognition and Learning, 7(3-4), 263-296.

Paquette, G., Léonard, M., Lundgren-Cayrol, K. (2008). The MOT+ Visual Language for

Knowledge Based Instructional Design, in: L. Botturi, T. Stubbs (Eds.), Handbook of

Visual Languages for Instructional Design: Theories and Practices. Information

Science Reference, Hershey, pp. 133-154.

Pérez-Sanagustín, M., Burgos, J., Hernández-Leo, D., Blat, J. (2009). Considering the

intrinsic constraints for groups management of TAPPS & Jigsaw CLFPs. In:

Proceedings of the International Conference on Intelligent Networking and

Collaborative Systems, pp. 317-322.

Prieto, L.P., Asensio-Pérez, J.I., Dimitriadis, Y.A., Gómez-Sánchez, E. & Muñoz-

Cristóbal, J.A. (2011). GLUE!-PS: A Multi-language Architecture and Data Model to

Deploy TEL Designs to Multiple Learning Environments. European Conference on

Technology Enhanced Learning, pp. 285-298.

Prieto, L.P., Tchounikine, P., Asensio-Pérez, J.I., Sobreira, P., Dimitriadis, Y. (2014).

Exploring teachers’ perceptions on different CSCL script editing tools. Computers

and Education. 78, 383-396.

Péricles DE LIMA SOBREIRA 163

Thèse en Informatique. Université de Grenoble, 2014

Progress Bar. A Moodle time management tool. (moodle.org/plugins/

view.php?plugin=block_progress), visited in 12/2013.

ReCourse. ReCourse Learning Design Editor (www.tencompetence-

project.bolton.ac.uk/ldauthor), visited 12/2013.

RELOAD. Reusable eLearning Object Authoring & Delivery Learning Design Editor

(www.reload.ac.uk/ldeditor.html), visited in 12/2012.

Rodríguez-Triana, M.J., Martínez-Monés, A., Asensio-Pérez, J.I., Dimitriadis, Y. (2014).

Towards a Script-Aware Monitoring Process of Computer-Supported Collaborative

Learning Scenarios. International Journal on Technology Enhanced Learning.

Special issue on: Learning Analytics. (to appear).

Ronen, M., Kohen-Vacs, D. & Raz-Fogel, N. (2006). Adopt & Adapt: Structuring, Sharing

and Reusing Asynchronous Collaborative Pedagogy. International Conference of

the Learning Sciences, pp. 599-605.

Roschelle, J., Rafanan, K., Bhanot, R., Estrella, G., Penuel, B., Nussbaum M. & Claro,

S. (2009). Scaffolding group explanation and feedback with handheld technology:

impact on students’ mathematics learning. Education Tech Research Dev, Springer,

58(4), pp. 399-419.

Rummel, N., & Spada, H. (2005). Learning to collaborate: An instructional approach to

promoting collaborative problem solving in computer-mediated settings. The Journal

of the Learning Sciences, 14 (2), 201–241.

Sadiq, S. W., Sadiq, W. & Orlowska, M. E. (2002). Workflow driven e-learning beyond

collaborative environments, in: International NAISO Congress on Networked

Learning in a Global Environ-ment, Challenges and Solutions for Virtual Education,

pp. 1-7.

Sakai. Sakai Project (https://sakaiproject.org), visited in 12/2013.

Salomon, G., & Globerson, T. (1989) When Teams do Not Function the Way They

Ought To. International Journal of Educational Research. 13, 89-100.

Schellens, T., Van Keer, H., De Wever, B., & Valcke, M. (2007). Scripting by assigning

roles: Does it improve knowledge construction in asynchronous discussion groups?

International Journal of Computer-Supported Collaborative Learning, 2(2–3), 225–

246.

Schoonenboom, J. (2008). The effect of a script and an interface in grounding

discussions. International Journal of Computer-Supported Collaborative Learning,

3(3), 327–341.

Slavin, R. E. (1996). Research on cooperative learning and achievement: What we

know, what we need to know. Contemporary Educational Psychology. 21(1), 43-69.

Slof, B., Erkens, G., Kirschner, P. A., Jaspers, J.G. M., & Janssen, J. (2010). Guiding

students’ online complex learning-task behavior through representational scripting.

Computers in Human Behavior, 26 (5), 927–939.

Sobreira, P. & Tchounikine, P. (2015). Table-based representations can be used to offer

easy-to-use, flexible, and adaptable learning scenario editors. Computers and

Education. 80, 15-27.

Péricles DE LIMA SOBREIRA 164

Thèse en Informatique. Université de Grenoble, 2014

Sobreira, P. & Tchounikine, P. (2013). CSCL scripts: articulating table and graph

representations. Proceedings of the 10th International Conference on Computer

Supported Collaborative Learning. International Society of the Learning Sciences,

v.2, pp 165-168.

Sobreira, P. & Tchounikine, P. (2012). A model for flexibly editing CSCL scripts.

International Journal of Computer-Supported Collaborative Learning. 7(4), 567-592.

Soller, A., Martínez-Monés, A., Jermann, P. & Muehlenbrock, M. (2005). From Mirroring

to Guiding: A Review of State of the Art Technology for Supporting Collaborative

Learning. International Journal of Artificial Intelligence in Education, 15 (4), 261-

290.

Stahl, G. & Hesse, F. (2007). Welcome to the future. International Journal of Computer-

Supported Collaborative Learning, 2(1), 1–5.

Stahl, G., Law, N., Hesse, F. (2013). Reigniting CSCL flash themes. International

Journal of Computer-Supported Collaborative Learning. 8(4), 369–374.

Stegmann, K., Streng, S., Halbinger, M., Koch, J., Fischer, F., & Hussmann, H. (2009).

eXtremely Simple Scripting (XSS): a framework to speed up the development of

computer-supported collaboration scripts. International Conference on Computer

Supported Collaborative Learning. International Society of the Learning Sciences,

v.2, pp. 195-197.

Stegmann, K., Weinberger, A., & Fischer, F. (2007). Facilitating argumentative

knowledge construction with computer-supported collaboration scripts. International

Journal of Computer-Supported Collaborative Learning, 2(4), 421–447.

Tchounikine, P. (2011). Computer Science and Educational Software Design – A

Resource for Multidisciplinary Work in Technology Enhanced Learning. Springer.

DOI 10.1007/978-3-642-20003-8_6

Tchounikine, P. (2008). Operationalizing macro-scripts in CSCL technological settings.

International Journal of Computer-Supported Collaborative Learning, Springer, 3(2),

193-33.

Tchounikine, P., Mørch, A.I., Bannon, L. (2009). A computer science perspective on

TEL research. In: N. Balacheff, S. Ludvigsen, T. de Jong, A. Lazonder, S. Barnes

(Eds) Technology-Enhanced Learning – Principles and Products. Springer, 271-

284.

TENCompetence. Building the European Network for Lifelong Competence

Development. (tencompetence-project.bolton.ac.uk), visited 12/2013

Trimmer, K. (2006). Teacher ICT Skills: Evaluation of the Information and

Communication Technology Knowledge and Skill Levels of Western Australian

Government School Teachers. Autralian Evaluation Society International

Conference, Darwin, Australia. (retrieved from http://www.aes.asn.au, April 2012).

Van de Velde, W., Häkkinen, P., Järvela, S., Stegmann, K. (2004). Examples of CSCL

scripts within an organisational framework. WP 23 – Mobile Support for Integrate

Learning. Kaleidoscope (JEIRP MOSIL). Deliverable 23.3.1. 52p.

Péricles DE LIMA SOBREIRA 165

Thèse en Informatique. Université de Grenoble, 2014

Vantroys, T., Peter, Y. (2003). COW: A flexible platform for the enactment of learning

scenarios, in: International Workshop on Groupware, Lecture Notes on Computer

Science, Springer-Verlag, 168-182.

Villasclaras-Fernández, E. D., Hernández-Gonzalo, J. A., Hernández-Leo, D., Asensio-

Pérez, J. I., Dimitriadis, Y., Martínez-Monés, A. (2009). InstanceCollage: a tool for

the particularization of collaborative IMS-LD scripts. Educational Technology &

Society, 12(4) pp. 56–70.

Villasclaras-Fernández, E., Hernández-Leo, D., Asensio-Pérez, J.I., Dimitriadis, Y.

(2013) Web Collage: An implementation of support for assessment design in CSCL

macro-scripts. Computers & Education, 67, 79–97.

Wecker, C., Stegmann, K., Bernstein, F., Huber, M.J., Kalus, G., Kollar, I., Rathmayer,

S. & Fischer, F. (2010) S-COL: A Copernican turn for the development of flexibly

reusable collaboration scripts. International Journal of Computer-Supported

Collaborative Learning, Springer New York, 5, 321-343.

Weinberger, A., Ertl, B., Fischer, F., & Mandl, H. (2005). Epistemic and social scripts in

computer-supported collaborative learning. Instructional Science, 33(1), 1–30.

Weinberger, A., Kollar, I., Dimitriadis, Y., Mäkitalo-Siegl, K., & Fischer, F. (2009).

Computer-supported collaboration scripts: Theory and practice of scripting CSCL. In

N. Balacheff, S. Ludvigsen, T. de Jong, A. Lazonder, S. Barnes & L. Montandon

(Eds.), Technology-Enhanced Learning. Principles and Products: Berlin:Springer,

155-174.

Weinberger, A., Stegmann, K., & Fischer, F. (2010). Learning to argue online: Scripted

groups surpass individuals (unscripted groups do not). Computers in Human

Behavior, 26, 506–515.

Williams, D.L., Boone, R., & Kingsley, K.V. (2004). Teacher beliefs about educational

software: A Delphi study. Journal of Research on Technology in Education, 36(3),

213-229.

