
HAL Id: tel-01138082
https://theses.hal.science/tel-01138082

Submitted on 1 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Qualité de l’interaction homme machine : interfaces
auto-explicatives par ingénierie dirigée par les modèles

Alfonso Garcia Frey

To cite this version:
Alfonso Garcia Frey. Qualité de l’interaction homme machine : interfaces auto-explicatives par in-
génierie dirigée par les modèles. Other [cs.OH]. Université de Grenoble, 2013. English. �NNT :
2013GRENM015�. �tel-01138082�

https://theses.hal.science/tel-01138082
https://hal.archives-ouvertes.fr


THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Alfonso Garcı́a Frey

Thèse dirigée par Gaëlle Calvary
et codirigée par Sophie Dupuy Chessa

préparée au sein du Laboratoire d’Informatique de Grenoble
dans l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Quality of Human-Computer Interaction:
Self-Explanatory User Interfaces
by Model-Driven Engineering

Thèse soutenue publiquement le 03 Juillet 2013,
devant le jury composé de :

Mrs. Karin Coninx
Professeur à l’Université de Hasselt, Rapporteur

Mr. Jean Vanderdonckt
Professeur à Université catholique de Louvain, Rapporteur

Mr. James Crowley
Professeur à Grenoble INP, Examinateur

Mr. Eric Dubois
Professeur, Directeur au Centre de Recherche Public Henri Tudor, Examinateur

Mr. Vı́ctor Manuel López Jaquero
Professeur à l’Universidad de Castilla la Mancha, Examinateur

Mr. Philippe Renevier-Gonin
Maı̂tre de conférences à l’Université Nice Sophia Antipolis, Examinateur

Mrs. Gaëlle Calvary
Professeur à Grenoble INP, Directrice de thèse

Mrs. Sophie Dupuy Chessa
Maı̂tre de conférences à l’Université Pierre-Mendès-France, Co-Directrice de

thèse





To Ioana. You already know why.





iii

Acknowledgements

Firstly I would like to thank my supervisors, Gaëlle Calvary and Sophie Dupuy Chessa.

Gaëlle Calvary introduced me to the world of HCI while I was a Master student and gave me

the opportunity to enter the HCI research team of the Laboratoire d’Informatique de Greno-

ble. I am very grateful to Gaëlle Calvary and Sophie Dupuy Chessa for being so supportive, and

for giving me the opportunity to work with them. Thanks to them I was able to participate to

many conferences and to meet so many other great researchers from all over the world. It is

unlikely I would have come this far without their guidance, support and patience through all

these years. Thank you very much.

I would also like to thank every member of the HCI group for their collaboration, sup-

port, and discussions; special mention should be made of Eric Céret for his close collabora-

tion. Also big thanks to Joëlle Coutaz and Alexandre Demeure for the fructiferous discussions

on modeling and meta-modeling.

During this research I met incredible people, among these, Anke Dittmar (University of

Rostock). Working with Anke was very enriching as she is a great researcher, colleague, and

very kind person. Thank you.

I am very thankful to the amazing members of the UsiXML consortium. I am glad to

have met such outstanding researchers that have made the UsiXML language possible. The

UsiXML project was funded by the ITEA2.

I extend my sincere thanks to all the members of the jury. It is an honour for me to have

this high quality panel with such valuable and special members. Thank you very much.

Last but not least, a final thank to my family, my friends, and my girlfriend, for their

support and encouragement over the years.





Abstract

In Human-Computer Interaction, quality is an utopia. Despite all the design efforts, there

are always uses and situations for which the user interface is not perfect. This thesis investi-

gates self-explanatory user interfaces for improving the quality perceived by end users. The

approach follows the principles of model-driven engineering. It consists in keeping the de-

sign models at runtime so that to dynamically enrich the user interface with a set of possible

questions and answers. The questions are related to usage (for instance, "What’s the purpose

of this button?", "Why is this action not possible"?) as well as to design rationale (for instance,

"Why are the items not alphabetically ordered?").

This thesis proposes a software infrastructure UsiExplain based on the UsiXML meta-

models. An evaluation conducted on a case study related to a car shopping website confirms

that the approach is relevant especially for usage questions. Design rationale will be further

explored in the future.

v





Contents

1 Introduction 1

1.1 Research Problem and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Working Hypothesis and Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 State of the Art 11

2.1 What is an Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Theory of Explanation in Philosophy of Science . . . . . . . . . . . . . . . . 12

2.1.2 Erotetic Logic: Subject and Request . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Structural Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Expert Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1.1 General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1.2 Knowledge-Based Systems . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1.3 Intelligent Agents and Cooperative Support . . . . . . . . . . . . . 17

2.2.2 Question Answering Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2.1 General Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2.2 Question Types in Question Answering Systems . . . . . . . . . . 22

2.2.3 Model-based explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3.1 Task Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3.2 Behaviour Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



viii CONTENTS

2.2.4 Social-Network Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.5 Personal assistants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.6 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.7 Desktop facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.8 Avatars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Analysis of the approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Criteria and their application . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1.1 Coverage of Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1.2 Quality of Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1.3 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Focus on Model-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 The QAP Problem Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1.1 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1.2 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.2 Reading the QAP Problem Space: Values of the Axes . . . . . . . . . . . . . 51

2.4.3 QAP Problem Space and Related Work . . . . . . . . . . . . . . . . . . . . . 52

2.4.3.1 Crystal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.3.2 PervasiveCrystal System . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.3.3 Cartoonist System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.3.4 Intelligibility Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4.4 Overlapping Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Foundations 67

3.1 Model-Driven Initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 Model-Driven Initiatives: A Brief History . . . . . . . . . . . . . . . . . . . . 68

3.1.2 Model-Driven Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS ix

3.1.2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.2.2 Meta-Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.2.3 Meta-Meta-Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.3 Four-layers architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.3.1 Model Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.3.2 MDA Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.3.3 The MDA Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1.4 Models, Meta-Models, and Meta-Meta-Models . . . . . . . . . . . . . . . . 77

3.1.5 Model-Driven Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1.6 Model-Driven Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.1.7 Model-Based Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Model-Driven Engineering of User Interfaces . . . . . . . . . . . . . . . . . . . . . 80

3.2.1 The Cameleon Reference Framework . . . . . . . . . . . . . . . . . . . . . . 80

3.2.2 Levels of Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.3 The UsiXML Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Quality Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.1 Quality Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.1.1 McCall’s Software Quality Model . . . . . . . . . . . . . . . . . . . . 88

3.3.1.2 Boehm’s Quality Model . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.1.3 Dromey’s Quality Model . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.2 ISO Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.3 QUIM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3.4 Finne’s Quality Meta-Model for Information Systems . . . . . . . . . . . . . 96

3.3.5 Ergonomic Guides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3.5.1 Bastien and Scapin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3.5.2 Vanderdonkt’s Ergonomic Guide . . . . . . . . . . . . . . . . . . . . 99

3.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



x CONTENTS

4 Self-Explanatory User Interfaces 101

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Gulf of Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.1 Help Systems Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.2 The Global Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.3 Design principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.3.1 Building the UI of the Help System . . . . . . . . . . . . . . . . . . 112

4.3.3.2 Building the UI of the application . . . . . . . . . . . . . . . . . . . 113

4.3.3.3 Adding support for computing help . . . . . . . . . . . . . . . . . . 113

4.3.3.4 Weaving the UIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Explanation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4.1 Determining the Appropriate Explanation Strategy . . . . . . . . . . . . . . 118

4.4.2 Procedural Questions - How . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4.2.1 Generating Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4.2.2 Retrieving Information . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.2.3 Providing Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.3 Purpose/Functional Questions - What is it for . . . . . . . . . . . . . . . . . 125

4.4.3.1 Generating Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4.3.2 Retrieving Information . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4.3.3 Providing Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.4 Localization Questions - Where . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4.4.1 Generating Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4.4.2 Retrieving Information . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4.4.3 Providing Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4.5 Availability Questions - What Can I Do Now . . . . . . . . . . . . . . . . . . 134

4.4.5.1 Generating Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.4.5.2 Retrieving Information . . . . . . . . . . . . . . . . . . . . . . . . . 135



CONTENTS xi

4.4.5.3 Providing Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4.6 Behavioural questions - Why I can’t . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.6.1 Generating Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4.6.2 Retrieving Information . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4.6.3 Providing Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Design Rationale Questions 145

5.1 Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 QUIMERA: The Quality Meta-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.2.2 Quality Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2.3 The Quality Meta-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2.4 Global Quality vs Local Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2.5 Quality Models: Instantiation Examples . . . . . . . . . . . . . . . . . . . . 157

5.2.5.1 A quality model covering the ergonomic criteria in HCI . . . . . . 157

5.2.5.2 Application to the evaluation of a design method . . . . . . . . . . 159

5.2.6 How to build a Quality Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3 Design Rationale and Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3.1 Putting the Pieces Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3.2 Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4 Explanation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4.1 Generating Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4.2 Retrieving Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4.3 Providing Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6 Self-Explanatory UIs in Action:

Implementation and Evaluation 171



xii CONTENTS

6.1 UsiExplain: A Model-Based Generic Architecture . . . . . . . . . . . . . . . . . . . 172

6.2 UsiComp: a Services Oriented Framework . . . . . . . . . . . . . . . . . . . . . . . 176

6.2.1 Services and OSGi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.2.2 UsiComp Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.2.2.1 Design Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.2.2.2 Meta-Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.2.2.3 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.2.2.4 Runtime Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.2.2.5 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.2.2.6 Extension abilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.3 Relationship between UsiExplain and UsiComp . . . . . . . . . . . . . . . . . . . . 184

6.4 UsiCars: an UsiExplain Based Prototype . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.4.1 Prototype Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.4.2 Self-explanatory dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.5.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.5.2 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.5.3 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.6 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.6.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.6.2 Unsupported types of questions . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.6.3 Usability Suggestions and Improvements . . . . . . . . . . . . . . . . . . . . 197

6.6.4 Limitations of the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.7 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7 Conclusions and Future Directions 201

7.1 Summary of the Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.2 Answers to Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.3 Advantages of the approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



CONTENTS xiii

7.3.1 Properties of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.3.1.1 Unification of question types . . . . . . . . . . . . . . . . . . . . . . 204

7.3.1.2 Introspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.3.1.3 Flexibility for Weaving . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.3.1.4 Distributability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.3.1.5 Reusability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.3.1.6 Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.3.1.7 Open Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.3.2 Proposed Solution on the QAP Problem Space . . . . . . . . . . . . . . . . . 207

7.4 Limitations of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.4.1 Usability improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.4.2 Semantic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.4.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.6 Short Term Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.6.1 Usability Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.6.2 Interaction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.6.3 Closing the Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.7 Long Term Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.7.1 Initiative Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.7.2 Quality guided development and evaluation . . . . . . . . . . . . . . . . . . 213

7.7.3 Supporting New Question Types . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.7.4 Supporting New Sources of Knowledge . . . . . . . . . . . . . . . . . . . . . 214

7.7.5 Design Rationale for Learning / End-User Programming . . . . . . . . . . . 215

Appendices 217

A Specification of the Quimera Quality Meta-Model 218



xiv CONTENTS

B Meta-Models 224

B.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

B.2 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

B.3 AUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

B.4 CUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

B.5 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

B.6 QOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

C Contributory Papers 232

List of Figures 234

Glossary 259

Acronyms 261



1

Introduction

“ The last thing one knows when writing a book is what to put first.

”
Blaise Pascal,

1.1 Research Problem and Motivation

A recurrent problem in interactive systems is that users may require assistance while interact-

ing with a User Interface (UI). As stated in [100] “Modern applications such as Microsoft Word

have many automatic features and hidden dependencies that are frequently helpful but can

be mysterious to both novice and expert users”.

One of the classic guidelines for user interface design [104] is to have “visibility of system

status” to “keep users informed about what is going on”. And yet, as noticed in [100], “in

an informal survey of novice and expert computer users, everyone was able to remember

situations in which their computer did something that seemed mysterious”. For instance,

sometimes ©Microsoft Word automatically changes “teh” into “the”, but it does not change

“nto” into “not” [100].

The problem of supporting users is not new. It became important in the early 1980s with

the development of personal computers. Software migrated from main frame environments

driven by experts, to new personal computers used by a broader public. In the context of
1



2 1. INTRODUCTION

this migration, software had to be made understandable and easily usable by non-specialist

users. In order to support users’ needs, the software industry started to design so-called user-

friendly interfaces and to produce manuals that would accompany their software. Such so

called “user manuals” were “prepared at great costs by professional writers and pedagogical

advisors” [28] and they aimed to “take the user by the hand to guide him/her through the

sometimes painful learning process of how to appropriately use the software” [28].

However and as stated in [14], there exist inconsistencies between devices and/or software

and the manuals describing how to use them. In [28] these manuals have been shown to be

not enough. The author stresses that the information contained is often “very technical or

not easily accessible”, especially because the vocabulary is often unfamiliar to the user, and

as a consequence, users need to buy third party books that explain them how to use their

software. The author also states that in today’s software, the emphasis on the documentation

is put not so much on explaining how to use the software, but “on answering user’s questions

on the fly”. But again, users have quite diverse requirements, all of which happening in various

interaction contexts as expressed in [4].

Providing support “on the fly” has become the natural evolution of help systems. The

aforementioned “user manuals” have continuously evolved into different forms such as Fre-

quently Asked Questions or FAQs, Guides, and precomputed Tutorials, but nowadays most of

support is integrated into the application, and directly accessible by users at runtime. An ex-

ample of this is the Help menu proposed by most software, or the Tooltips that indicates the

purpose of a button or icon at runtime.

However, this type of integrated help remains insufficient [28]. The lack of good help and

support in most of the today’s software is mainly due to a problem of cost. Software industry

has become very competitive and one way to reduce the product costs is by simplifying the

support that the applications provide either in the form of manuals or integrated into the user

interface.

To illustrate the insufficiency of current help systems, consider for instance the car shop-

ping website illustrated in figure 1.1. Some of the colours of the car are simply not available for



1.1. RESEARCH PROBLEM AND MOTIVATION 3

Figure 1.1: A car shopping website.

specific combinations of leathers. For example, if the user selects the “Sport Design” version

of the “Cabriolet” car model, the leather colour “Boston Perlgrau” is not available. In addition,

some extra equipment is simply added by default with certain car models whereas with other

car models the same options can be either available or not, and it is no longer the system

that chooses these options but the user instead. For instance, selecting the “Sport Design”

version of the “Cabriolet” will add the Bluetooth interface for mobile phones but will sup-

press the “Sport Leather” option of the wheel. The bluetooth option can be added regardless

the version of your model car, but the second cannot. Moreover, novice users could miss the

meaning of some concepts that are used in the UI such as for instance, what does the “Fini-

tion Excellis” stand for, what is the “Shadow Line Brilliant” option, or what is the “Servotronic

Direction at variable assistance”. Sometimes users simply do not know How to add the option

they want to their current configuration such as “How to add the sport leather to the wheel?”,

Where an option is such as “Where are the maintenance contracts?”, and other questions that



4 1. INTRODUCTION

the reader can undoubtedly think of.

All the options and combinations of configurations proposed by the user interface pre-

sented in the image could be quite useful to most users, and probably they have been added

to the user interface for a good reason such as because they are used by most people most of

the time. However, when a novice or expert is unfamiliar with these features, “user manuals”

or current help systems “on the fly” can’t simply help at that point.

All these support facilities cover most of the general topics that users may find. However,

they rely on information that is written and prepared at design time. This is a limitation for

the following several reasons:

• First, as static help systems rely on information that is considered at design time, these

systems can’t cover all the different combinations of questions that the different users

can have with regard to the user interface. For instance, in the car shopping website of

the figure, a novice user could ask himself/herself “How to change the external colour

of the car”, whereas an expert user could ask “How to add the Servotronic Direction to

the car”. With help systems where all the information is written by hand, it becomes

impossible to write all the possible questions of the users and their related answers at

design time. Moreover, writing all these explanations increases the cost of the appli-

cation, which is one of the reasons of lack of good help systems as we have previously

seen.

• Second, even if the application is small enough that one can think of including all the

possible previous questions by hand into the user manual, this remains an utopia. The

reason is simple. Designers are not users so designers have different perceptions of the

same UI than users have. In other words, as the perceptions of both designers and users

are different, the potential question that they can have could be different as well.

• Thirdly, as the users’ perception is mainly based on previous experience, different users

have different perceptions. Consequently, different users will potentially find different

obstacles. Again, designers cannot foresee all the different problems for all the potential



1.2. THESIS APPROACH 5

users. This problem has been pointed out by many authors in the literature such as

Shneiderman [136] or Myers [99].

• Finally, nowadays applications run on a diversity of platforms such desktop computers,

laptops, PDAs, smartphones or tablets, presenting different user interfaces for each of

them, for instance, adapting the UI to different resolutions of each platform or support-

ing new modalities for the interaction. This adaptation from one platform to another

implies that, for the same application, options in the user interface can change, disap-

pear, or even be modified. Tasks could be done in different ways from one platform to

another, for instance, integrating gestures. Again, writing help systems that explain all

the user interfaces for all the platforms is not feasible due to a problem of cost.

As applications inevitably get more and more sophisticated, help facilities will be even

more necessary. The next section describes the approach followed in this thesis to deal with

the previous considerations.

1.2 Thesis Approach

Many works ([80, 100, 122]) have reported on the benefits of supporting users through expla-

nations in interactive systems. These explanations address specific questions that users ask

about the User Interface (UI). For instance, How a task can be accomplished, Why a feature is

not enabled, or Where an option is.

One approach to overcome the lack of good help without increasing the cost because of

the support is to apply the model-based principles to the UI development (see for instance

[61]). In this approach, the UI is directly generated from several design models that are previ-

ously created by the designers.

Based on this idea, this thesis proposes to explore the concept of Self-Explanatory User

Interface as a solution to the problem of cost. A Self-Explanatory User Interface provides users

with support that is automatically generated at runtime using some kind of knowledge base.

This thesis explores whether the concept of Self-Explanatory UI is feasible through the design



6 1. INTRODUCTION

models of the model-based approach of UIs or not, i.e., by using the models created at design

time as the knowledge base at runtime, exploiting these models and the relationships between

them to find answers to the users’ questions.

As these help facilities rely on the same design models that are already created to construct

the UI, the cost of such help facilities should be drastically reduced in comparison with other

traditional solutions. Moreover, the support generated at runtime could evolve with the pro-

gram specification automatically so, as the design models evolve, these help systems should

automatically reflect those changes in the provided support.

Self-Explanatory User Interfaces (SEUIs) can be considered as a more concrete type of

Supportive User Interfaces. A first definition of Supportive User Interfaces was published as a

result of the first workshop on Supportive User Interfaces [29] in 2011. In this workshop, the

participants agreed the following definition that characterizes a SUI (Supportive UI):

A supportive user interface (SUI) exchanges information about an interactive system

with the user, and/or enables its modification, with the goal of improving the effective-

ness and quality of the user’s interaction with that system.

According to this definition, a supportive user interface is a self-explanatory user inter-

face that, in addition to exchanging information about the interactive system with the user, it

enables its modification.

This thesis explores the state of the art on help systems, the concept of Self-Explanatory

UI and its feasibility. This approach is synthesised in the working hypothesis and the thesis

statement described in the next section.

1.3 Working Hypothesis and Thesis Statement

This thesis proposes a model-based approach for supporting users in the interaction process.

The approach is sustained by the classical models that are used in the development of the

user interface. Therefore, this fact leads us to the following hypothesis:



1.4. RESEARCH QUESTIONS 7

Hypothesis

Design models are suitable for supporting end users in the interaction process.

The immediate consequence is that design models can enrich end users’ support, so they

will better understand the UI. Therefore, they’ll have less problems in the interaction. There-

fore it is claimed that,

Thesis Statement

A model-based approach to the dynamic support of users in the interaction process, can

provide benefits for the user in terms of support, increasing the quality of the interaction

and the user’s comprehension of the user interface.

Specific subclaims of this statement are that:

• The approach permits to provide users with different types of explanations about the

user interface, for instance, “how can I do it?” or “Where is it?”.

• The approach provides explicit means for requesting support (users).

• The approach provides explicit means for presenting the support back to the users (UI).

• The support provided to the users is valuable.

Based on the previous thesis statement and the subclaims, the next section introduces the

research questions that will guide our research.

1.4 Research Questions

To study how to support the user in the interaction, this thesis addresses the following re-

search questions:

Is it possible to generate explanations “for free”? The lack of good help support in most to-

day’s software is due to a problem of cost. This thesis explores whether a solution for

the generation of support with a minimum cost is feasible or not.



8 1. INTRODUCTION

What to explain? What type of questions self-explanatory help systems are able to answer?

The explanation capabilities of a help system are restricted by the information avail-

able in the knowledge base from which the support is computed. This thesis explores

whether design models are useful for supportive purposes and, if so, what information

coming from these models is useful for supporting the user.

How to explain? If the user’s support can be computed with information coming from one or

more models, it is necessary to define a mechanism to extract this information from the

different elements of each model in a first step, and then combine all these elements

into a single explanation in a second step.

How to present the explanation? The computed support needs to be presented to the user in

a comprehensible way. This research explores how to translate the computed support

into understandable information for the user.

Is the provided support valuable? This thesis also explores if the computed support presented

to users is valuable and relevant for the users, so it effectively help users to better un-

derstand the UI.

Next section details the organization of this work.

1.5 Dissertation Structure

The remainder of this dissertation is structured as follows:

Chapters 2 and 3 are related to the state of the art. The second chapter introduces the state

of the art. It describes different approaches that have already contributed to supporting users

in different ways. The chapter analyses these approaches and discusses their advantages and

disadvantages. It then focuses on model-based solutions, identifying the possible areas of

interest by defining and analysing a Problem Space.

The third chapter describes the foundations of this research. These works are necessary to

understand the proposed solution. The chapter covers the different model-based initiatives

first. It then explains how these initiatives have been applied to the field of HCI. It explains



1.5. DISSERTATION STRUCTURE 9

the Cameleon Reference Framework along with an example, as well as the UsiXML language

and some of its meta-models that are interesting for our research. Finally, the chapter ends

by providing a review of the most relevant quality models of the literature.

Chapters 4, 5, and 6 describe our contributions beyond the critical analysis of the state of

the art. The fourth chapter presents our conceptual contribution for building model-based

self-explanatory user interfaces. The solution is based on the concept of “Gulf of Quality”, an

extension to Norman’s theory of action. The Gulf of Quality is introduced in the chapter be-

fore presenting the design principles for building self-explanatory UIs. The chapter continues

with the description of explanation strategies that are used for supporting different types of

explanations. For each explanation type, an explanation strategy details how to compute the

questions that the system is able to answer, and the necessary algorithms for answering such

questions, illustrated with real examples and sequence diagrams.

Chapter 5 describes all the necessary elements to answer design rationale questions. The

chapter starts by describing QUIMERA, a quality meta-model to improve the design rationale.

It then details the relationship of the quality meta-model with the rest of the models of the

system, the process for taking quality into account in the development of model-based UIs,

and finally, the process of answering design rationale questions based on instances of the

meta-model.

Chapter 6 presents the Implementation of the conceptual contribution. It describes a

generic architecture for building self-explanatory user interfaces, the implementation details,

and a running prototype. This prototype is later used in the evaluation of the approach, which

is also described in the chapter. The chapter ends with a discussion about the findings and

observations issued from such evaluation.

Chapter 7 discusses the conclusions and future work.

Figure 1.2 provides a visual structure of the thesis organization, showing how the different

contributions are distributed through the chapters.



10 1. INTRODUCTION

Figure 1.2: Thesis structure.



2

State of the Art

“ If I have seen further, it is by standing on the shoulders of giants.

”
Isaac Newton,

This chapter reviews previous works from several computer science fields that provide ex-

planations to better support users during their interaction with the system. We begin by giv-

ing a detailed overview of the concept of explanation. We then review the most relevant works

about explanation from several research domains, including knowledge-based systems, intel-

ligent agents, recommender systems, as well as other help systems that cannot be categorized

into these approaches. We also review the different explanation taxonomies developed in sev-

eral of these research domains.

After reviewing these works, we focus on model-based solutions. We compare different

model-based propositions of some reviewed authors through a Problem Space subdivided in

different areas and axes. This problem space has helped us to identify areas of interest for our

research.

We finally discuss how we draw inspiration from these model-based works that have in-

vestigated explanations over the past several decades, identifying gaps and opportunities for

providing explanations through a model-based approach of user interfaces.

11



12 2. STATE OF THE ART

2.1 What is an Explanation

The concept of explanation has been addressed by many philosophers, scientists and re-

searches along the history. This section gives an overview on how the term explanation has

evolved through different explanation theories, from narrow definitions covering only the re-

lationship of causality, to broader interpretations addressing a larger number of concepts.

This overview sets the basis to understand what are the current dimensions covered by the

term explanation nowadays, and which of them are meaningful in computer science and spe-

cially in the context of this research. These dimensions are presented at the end of the section.

2.1.1 Theory of Explanation in Philosophy of Science

In the Philosophy of Science, the main kind of explanation are scientific explanations. Aris-

totle’s Theory of Causality is considered as one of the ancients theories of explanation. This

theory explains an event or a phenomenon by identifying its cause. In other words, the ex-

planation of why something did happen is an event or phenomenon inducing the causation.

Scientific explanations traditionally followed this definition, trying to explain some facts in

terms of some laws. For instance, one classical definition of explanation in these terms is

given in [129] as follows:

Can some fact E (the explanandum) be derived from other facts A thanks to the applica-

tion of general laws L (the explanans L ∪ A)?

The definition of explanation remained related to the concept of causation until the 20th

century. In this century, the concept of explanation began to evolve through different theo-

ries of scientific explanation1. In this period, explanations are treated either in a realist sense

-the explanation is a literal description of the external reality2- or in an epistemic (anti-realist)

1For a detailed description of the development of theories of scientific explanation since Hempel’s earliest models
in the 1940’s, see[129]

2Descriptions according to http://www.iep.utm.edu/explanat/

http://www.iep.utm.edu/explanat/


2.1. WHAT IS AN EXPLANATION 13

sense -the point of an explanation is only to facilitate the construction of a consistent empir-

ical model, not to furnish a literal description of reality2. This epistemic approach was the

starting point for Hempel to develop the epistemic Theory of Explanation [57] in 1948. In the

epistemic Theory of Explanation, explanations are exclusively based on a logical approach.

This theory had an important impact in the evolution of the concept of explanation and the

understanding of (scientific) explanations. Based on the Hempel’s Theory of Explanation,

Prior and Prior proposed the Erotetic Logic [121] in 1955 for the analysis of questions using a

formal logical approach.

2.1.2 Erotetic Logic: Subject and Request

Erotetics [121] is the part of the logic devoted to the logical analysis of questions. Its formal

logical approach decomposes questions into two parts: the subject and the request. The sub-

ject does not refer to the grammatical subject of the question but “the possible states of the

world that are presupposed by the question” ([119]). The request identifies “how many of

these states are desired in the answer” ([119]) . For instance, in the question “Is there a model

of this car having a diesel engine?”, the set of possible alternatives is that there is such a model

or there is not. This set of alternatives forms the subject. The request identifies that the de-

sired answer is one that specifies which of the alternatives states is true: that either there is or

there is not a car model with a diesel engine.

Erotetic Logic opens a new perspective on explanations from the point of view of ques-

tions, based on the subject and the request. Other approaches decompose questions into

subjects and requests in the same way the Erotetic Logic does. The Jahoda and Braunagel’s

approach in 1980 uses a similar decomposition but in terms of given and wanted elements.

As stated in [119],

According to Jahoda and Braunagel, the given is the subject of the information need, and

the wanted is the type of information needed about the subject.

For example, in the question “I am looking for this car model with a diesel engine” the



14 2. STATE OF THE ART

given is the diesel engine and the wanted is the car model.

For the scope of this research, we take from Erotetic Logic the idea that questions may be

decomposed into a subject and a request.

Different Theories of Explanation provided different insights on the concept of explana-

tion. It is the case of the term structural explanation described next.

2.1.3 Structural Explanations

Structural Explanations were firstly introduced as a kind of scientific explanation (see for in-

stance [32]). We talk about a structural explanation when the properties or behaviour of a

complex entity are explained by alluding to the structure of that entity [92]. A non-formal

definition of structural explanations is given by Hughes in [60]:

A structural explanation displays the elements of the models the theory uses and shows

how they fit together. More picturesquely, it disassembles the black box, shows the work-

ing parts, and puts it together again. “Brute facts” about the theory are explained by

showing their connections with other facts, possibly less brutish.

Our research takes from the concept of structural explanation the idea of supporting the

user of the User Interface by composing explanations with the relevant elements behind this

User Interface. In our particular case, i.e., the model-based approach of user interfaces, these

elements are the underlying models of the User Interface from which this User Interface is

generated. In terms of Hughes, these underlying models and their different elements are the

pieces of our “black box”, i.e., the UI itself.

If Structural Explanations are a type of explanation that employs the modules, parts, or

sections of an entity to answer specific questions about that entity, many other different ex-

planation types started to be developed with the advancement of the computer science in the

last quarter of the twentieth century. The next section reviews the most relevant explanation

types addressed by different computer science approaches in a chronological order.



2.2. APPROACHES 15

2.2 Approaches

During the development of the computer science in the twentieth century, different com-

puter science domains addressed the problem of supporting users in the interaction with the

systems using some forms of explanations. This section summarizes the most relevant con-

tributions for each of these domains (expert systems, agents, explanation facilities, etc.). The

presentation of each approach starts with an introduction explaining the relevant concepts

and terms that are necessary to understand it, and the related work illustrated with some ex-

amples.

2.2.1 Expert Systems

According to [105], expert systems are considered as “the first truly successful forms of Arti-

ficial Intelligence software”. They were introduced by Edward Feigenbaum in the 1970s with

the Dendral system, and actively developed in the 1980s [76].

2.2.1.1 General Principles

In artificial intelligence expert systems are devoted to, among other objectives, explain and

guide the user during the interaction process with the system. According to [63], an expert

system is defined as

“A computer system that emulates the decision-making ability of a human expert.”

In order to be considered useful and acceptable, expert systems must be “able to explain

their knowledge of the domain and the reasoning processes they employ to produce results

and recommendations” [97].

Researchers have identified different reasons why the explanation capabilities of the ex-

pert systems are “not only desirable, but necessary” [97]. Some of these reasons include [16]:

1. Assisting both users and system builders in understanding the contents of the system’s

knowledge base and reasoning processes.



16 2. STATE OF THE ART

2. Facilitating the debugging of the system during the development stages.

3. Educating users both about the domain and the capabilities of the system.

4. Persuading users that the system’s conclusions are correct so that they can ultimately

accept these conclusions and trust the system’s reasoning powers.

Expert systems were firstly structured into two well distinguished parts: the inference en-

gine, and the knowledge base. The inference engine is fixed and independent from the expert

system. The knowledge base is variable, and is used by the inference engine to perform the

reasoning. This division originated the sub-family of expert systems called Knowledge-Base

Systems (KBS).

2.2.1.2 Knowledge-Based Systems

Knowledge-Based Systems (KBS, also known as Rule-Based Systems) focus on the underlying

information -or base of knowledge- represented or modelled inside the system itself. Among

the most popular KBSs of the 80’s are XPLAIN [142], NEOMYCIN [25] and EMYCIN [151]. Ac-

cording to Gregor and Benbasat [54], KBSs cover the following four different types of questions

or categories:

What is - This type of questions provide information about specific terms or domain con-

cepts. This category was identified as Terminological by Gregor and Benbasat and used

by Swartout and Smoliar in [144].

Why (System logic) - Gregor and Benbasat identified this category as Control or strategic.

Answers to these questions provide explanations about the “system’s control behavior,

and problem solving strategy”, giving an insight into the design rationale of the system

logic. This kind of explanations are used in expert systems of this period such as the

NEOMYCIN system [25].

Why (Reasoning) - These questions (also called Trace or Line of reasoning as in [54]), explain

the processes taken by the system to come up with its results. The explanations belong-

ing to this type of questions were used as well by several experts of this time such as the

EMYCIN [151] system.



2.2. APPROACHES 17

Why (Justification) - The Justification category as named in [54], was used by expert systems

such as XPLAIN [142]. They provide the so called “deep explanations” about design ra-

tionale justifications. For instance, in XPLAIN these explanations were used to provide

justifications of the code, not explaining what the code does but its rationale.

Some of these systems started to use different types of models as their knowledge base.

For instance, in XPLAIN the author states that the system “uses a domain model, consisting

of descriptive facts about the application domain, and a set of domain principles which pre-

scribe behavior and drive the refinement process forward”.

These models are here in the form of rules. Using models in any form is a recurrent solu-

tion used by other explanation systems and not only by the expert systems. Our research takes

from expert systems the idea of adopting the system knowledge (in the form of models) as the

source of knowledge that is used to extract the necessary information for the users. In the

context of this research, these models are the same that are used to build the user interface.

In the later 70’s and the beginning of the 80’s, expert systems were mostly presented in a

command-line form. Over the 1980s, researchers added a third component to this structure,

namely a dialogue interface. The role of the dialogue interface is to conduct a conversation

with the users. These interfaces were later called “conversational interfaces” and were one of

the starting points for what are now called intelligent agents.

2.2.1.3 Intelligent Agents and Cooperative Support

Software agents, or simply called agents, appeared in the early 1990s. According to [9], soft-

ware agents are defined as:

Entities capable of voluntary, rational action carried out in order to achieve goals and

holding a representation or ’belief’ in the state of the world. They come to hold these

beliefs through existing data and by deriving new belief from interaction with external

sources and as a result of internal reasoning.



18 2. STATE OF THE ART

Figure 2.1: Different roles of agents. Adapted images from [85].

Other authors propose similar definitions (Bradshaw [15] in 1997, Weiss in 1999, Russell

and Norvig in 1995, or Hayes-Roth in 1995).

Agents try to support users with some tasks. Users can delegate responsibilities to these

agents, so the agents will perform the necessary actions to accomplish the expected tasks.

Agents are usually able to learn from single users or even from other agents thanks to the dif-

ferent learning facilities that they integrate. These facilities are based on behavioural patterns,

that permit to observe and imitate the actions that the user performs on the user interface3.

Figure 2.1 adapted from [85], summarizes the role of software agents. On the left side of the

image, the interface agent does not act as an interface or layer between the user and the ap-

plication. Instead, it behaves as a personal assistant that cooperates with the user on the task.

The user is able to bypass the agent. On the right side of the figure, the interface agent learns

in four different ways:

1. it observes and imitates the user behaviour

2. it adapts its behaviour based on user feedback

3. it can be trained by the user on the basis of examples

4. it can ask for advice from other agents assisting other users

3Interested readers can find a review of agent-based interaction, implementations and design guidelines in [87]
and [85].



2.2. APPROACHES 19

Agents have been classically devoted to assist users in the interaction with the system,

trying to perform routinary tasks in order to improve the user experience. For instance, they

can perform repetitive tasks, which has been proved to increase the users’ efficiency while

performing tasks.

Agents are proactive by definition. They propose help to users when they consider that

it is necessary. One of the most popular agents, in part due to its continuous suggestions, is

Clippy, the office assistant of the Microsoft Office(©) suite.

Figure 2.2: Clippy.

Clippy was able to assist users by means of an interactive ani-

mated character (figure 2.2), which interfaced with the Office help

content. Clippy proposed different type of content that it estimated

helpful for the user according to the user actions. Clippy is not a col-

laborative agent, this is, Clippy does not communicate with other

agents as shown in the right side of the figure 2.1. For frameworks

showing multi-agent collaboration, please see [52, 71, 27, 145].

Collaboration between agents for supporting other agents is

done with several techniques, always based on some kind of lan-

guage or protocol. Examples of these are the knowledge inter-

change languages and agent communication languages, such as

KQML. KQML [39] enables human-agent and agent-agent communication and co-ordination.

As stated in [4], agents can be coupled as well with “advanced interface components (e.g.

speech, facial animation, etc), which make anthropomorphic agent emulation feasible”. An

analysis of agents can be found in [134], and a more detailed discussion of agent-based sys-

tems in [65].

According to [55], agents provide explanations according to four different explanation

types4: what, how do I , how does it work, and why (design rationale). These four groups of

explanations are also referred in the literature as ontological, operational, mechanical, and de-

sign rationale [55]. The explanations given by an agent covers sometimes information about

4For a complete review of explanations in intelligent agents see [55].



20 2. STATE OF THE ART

the agents themselves. For instance, the group of what explanations provides information

not only about definitions or terminology about the domain of the system, but also about the

identity of the agent, or the relations between agents or components of the system.

The explanations behind the Design Rationale category stated by Haynes in [55] addresses

why questions that cover different aspects of the design rationale of a system. Haynes cate-

gorizes these aspects into four different classes: Deductive-Nomological explanations using

laws to describe relations between system components or agents, Functional explanations

that provide information about the purpose of a component or agent, Structural explanations

describing the structure of the system constraints that cause an entity or event to happen, and

Pragmatic explanations that provide answers to questions such as what if or why not.

In parallel to the evolution of expert systems in its different forms such as KBSs or in-

telligent agents, question-answering systems helped to the development of help systems by

providing several explanation taxonomies in the form of questions and answers. The next

section covers these taxonomies.

2.2.2 Question Answering Systems

This section describes what Question Answering systems are, the type of questions that they

address, and the main taxonomies of questions types that have been developed for such sys-

tems. Some of these classifications of question types have inspired ulterior question types for

help systems.

2.2.2.1 General Principles

Question-answering (QA) is defined5 as

A computer science discipline within the fields of information retrieval and natural lan-

guage processing (NLP), which is concerned with building systems that automatically

answer questions posed by humans in a natural language.

5Description according to http://en.wikipedia.org/wiki/Question_answering

http://en.wikipedia.org/wiki/Question_answering


2.2. APPROACHES 21

The first QA systems were basically natural language interfaces for expert systems focused

on specific domains. In contrast, the question-answering systems available nowadays use

text documents as its knowledge base and combine various techniques of natural language

processing.

QA systems are classified according to the nature of the domain of the questions:

Closed-domain QA Systems dealing with questions under a specific domain. They normally

exploit domain-specific knowledge frequently formalized in ontologies. Most of QA sys-

tems in this category answer only a limited type of questions.

Open-domain QA Systems dealing with questions of almost any type about nearly anything.

Interested readers can refer to [6] for a more detailed review of the different QA approaches.

The main goal of QA systems is not to help users in the interaction with a specific system,

but our research pays special attention to this discipline because QA systems have greatly

contributed to classify the different possible types of questions that a system needs to deal

with. Different authors (see for instance [75]) have proposed several question taxonomies in

the last decades that have been lately used not only by QA systems but also by help systems

from other disciplines such as expert systems or many help facilities. The next section reviews

the most relevant classifications of questions.

Figure 2.3: Evolution of question classifications by authors in the last forty years. After 1990,
most of the classifications reuse the same question types.



22 2. STATE OF THE ART

2.2.2.2 Question Types in Question Answering Systems

Figure 2.3 shows the evolution of some question classifications of the last years in QA systems.

The figure shows how most of the work was done before the nineties and, in fact, current re-

search involving question types are mostly based on classifications of question types created

at this period. This section only discusses those that have been found to be relevant for our

research.

In 1972, Robinson and Rackstraw [125, 126] proposed a lexical classification of questions

based on the words that can be used to form an interrogative sentence. They proposed the

following seven categories:

1. Who

2. Which

3. What

4. When

5. Where

6. Why

7. How

This classification based on question types is simple and it has been used by several Ques-

tion Answering systems [58, 96]. One of the problems of this classification is that, for open

questions, some of these questions can be wrong classified regarding only the lexical per-

spective. For instance, the authors consider that what questions are expected to be answered

with definitions. However, the expected answer of the question What I need to do to configure

a car with a diesel engine? is related to the process of configuring itself which is covered by

questions of type How instead. To overcome this limitation, help systems relying on this set of

questions or other similar classifications, tend to propose to users a closed set of questions in

which users are not able to ask open questions but, on the contrary, select a question among

those proposed by the system.

Other contemporary authors also focused in particular Wh- question types. For instance,



2.2. APPROACHES 23

Swartout concentrated in 1983 on two different question types in his expert systems [143,

101]:

1. Why

2. How

These two questions are still widely used in different help systems nowadays and not only

in the expert systems domain.

In 1985, McKeown proposed a question classification [91] in her Text system, based on

a natural-language database. McKeown argued that several experiments [146, 108] “shown

that users often need to ask questions about database structure to familiarize themselves with it

before making requests about its contents”. For this reason, McKeown proposed three question

types corresponding to three communicative goals:

1. Request for definitions

2. Request for available information

3. Request about the difference between database entities

What is important in McKeown’s requests is the inclusion of a general category named

Requests for available information. We consider it as well as an interesting dimension of ex-

planations for help systems in HCI in terms of Availability of actions, because according to

the studies cited by McKeown [146, 108], this could be potentially useful for novice users of a

system.

In the same year, Graesser and Murachver 1985 proposed a classification of question types

in which seven types are cross-classified with three “statement categories”, forming a total of

21 categories in all (see table 2.1). The authors can then characterize a question as a function

of the form:

QType(QConcept, Knowledge)

QType is the question type, for instance What, Who, Why, .... QConcept refers to what

the question is ’about’, classified along three statement categories: Action, Event and State.



24 2. STATE OF THE ART

The Knowledge attribute is the knowledge base used to answer the question, for instance, a

natural-language database. Table 2.1 summarizes this classification.

Question Types Question Concepts
- Why
- How
- Enable
- Cons (what is the consequence of)
- When
- Where
- Sig (what is the significance of)

- Action: A behaviour by an animate actor which
is directed toward a goal

- Event: A change of state in the physical or social
worlds or in the mind of an animate being

- State: An ongoing characteristic of an entity or
a relationship between entities

Table 2.1: Graesser and Murachver’s question classification [53]

What is interesting in this approach is the explicit relationship between question types

and answers, as well the practical approximation to the erotetic logic in which subject and re-

quests are explicitly represented. In our research, we keep the idea of explicitly linking ques-

tion types and answers as in the QType relationship.

In 1988, Cawsey defined [20] the question types along three orthogonal dimensions. The

first dimension refers to the nature of the inquiry, regarding whether the subject was request-

ing information, suggesting information, or confirming information with the system. The

second is the type of the question. The third dimension is the type of information involved in

the question. Table 2.2 summarizes the three axes with their respective categories.

Cawsey classifies question types according to their syntax. The dimension named Type of

information does not include some type of questions that can be useful for supportive pur-

poses as, for instance, procedural questions. Cawsey proposes however a category called rest

in which all the questions that do not fit any other previous category can be classified. The

same principle applies to the Type of question category where unconsidered types of ques-

tions fall in the Others category.

In 1988, Waxelblat proposes an alternative question classification in [155]:

1. How shall I do what you ask me to do?

2. Why do you ask me to do that?



2.2. APPROACHES 25

Category Type of Information
Whether the subject was: - requesting information

- suggesting information and asking for confirmation
- repeat/rephrase information to check if it is understood

What type of question is asked - What
- Why
- Others (What if, Why not, How)

What type of information
was involved

- Behaviour
- Part recognition
- Function
- Notation
- Structure
- External actions
- Limits and Assumptions
- Input, output and variables
- Concept
- Information
- Rest (uncategorised)

Table 2.2: Cawsey’s question classification

3. How did you come to that question or conclusion?

4. By what steps did you get here?

5. What shall I do next?

6. What do you know about?

Waxelblat’s classification relies on a rigid and small set of questions. However, we can

see the interest of the author in questions about the behaviour of the system (question 3), or

about the procedures (questions 1, 4 and 5). As in Waxelblats’ classification, these particular

question types have been repeatedly proposed by different authors due to their interest for

the users. For this reason, in this research we keep the same interest about behavioural and

procedural questions.

In parallel to the development of classifications of question types based on Wh- words,

the QA community started to classify questions and answers according to the function of the

question. In 1977 and 1978, Lehnert proposed [74, 75] one of the most used questions classi-

fication for open-domain QA systems. Lehnert defined thirteen types of questions (see table



26 2. STATE OF THE ART

2.3). Not all of them are directly useful for help systems because these types were specifically

designed for open-domain QA systems, but authors from expert systems as well as authors

from closed-domain QA systems started to focus on some particular Lehnert’s types. As an

example, interested readers can refer to the Pilkinghton’s question classification [118], the

Nicolosi’s question classification [103], or the Valley’s question taxonomy [150], all of them

proposed around 1988.

As readers can notice, most of the explanation taxonomies either in the form of question

types based on Wh- words, answer functions, or a mix of them, were developed more than

fifteen years ago. Recent question classifications in QA systems are mostly based on these

classifications, adding specific types for concrete domains. For illustration, a more recent

classification proposed by Tomuro [148] in 2001 and reviewed in 2002 proposes new cate-

gories regarding the function of the answer, as a result of an automatic extraction of question

terminology from a corpus of questions classified by question type. The result of this open-

domain question type classification is summarized as follows:

1. Definition

2. Reference

3. Time

4. Location

5. Entity

6. Reason

7. Procedure

8. Manner

9. Degree

10. Atrans

11. Interval

12. Yes-no

As a synthesis about question types and question classifications, we can conclude that

there are two main different question classifications, one based on Wh- words mainly used

by expert systems, and a second one relying on the function of the question/answer, initiated

by Lehnert in [74] and extensively reused for open-domain QA systems. The common points

of both approaches are that first, they rely on a set of limited categories. Second, they both

identify questions by its nature or type, either in their lexical form in the case of Wh- classi-

fications, or according to their function as in [74]. Third, in both classification systems there



2.2. APPROACHES 27

Question Categories Examples

1. Causal Antecedent
Why did John go to New York?
What resulted in John’s leaving?
How did the glass break?

2. Goal Orientation

How did the glass break?
For what purposes did John take the book?
Why did Mary drop the book?
Mary left for what reason?

3. Enablement
How was John able to eat?
What did John need to do in order to leave?

4. Causal Consequent
What happened when John left?
What if I don’t leave?
What did John do after Mary left?

5. Verification
Did John leave?
Did John anything to keep Mary from leaving?
Does John think that Mary left?

6. Disjunctive
Was John or Mary here?
Is John coming or going?

7. Instrumental/Procedu-
ral

How did John go to New York?
What did John use to eat?
How do I get to your house?

8. Concept Completion
What did John eat?
Who gave Mary the book?
When did John leave Paris?

9. Expectational
Why didn’t John go to New York?
Why isn’t John eating?

10. Judgmental
What should John do to keep Mary from leaving?
What should John do now?

11. Quantification
How many people are there?
How ill was John?
How many dogs does John have?

12. Feature Specification
What color are John’s eyes?
What breed of dog is Rover?
How much does that rug cost?

13. Request
Would you pass the salt?
Can you get me my coat?
Will you take out the garbage?

Table 2.3: Lehnert’s 13 conceptual question categories.



28 2. STATE OF THE ART

Question Types Examples
Goal-Oriented
Descriptive
Procedural
Interpretive
Navigational

What can I do with this program?
What is this? What does it do?
How do I do this?
Why did this happen?
Where am I? Where is it?

Table 2.4: Sellen et al. question classification

are question types that appear repeatedly because of their relevance, as for instance Why or

Behavioural questions, and How or Procedural questions.

In order to answer some of these specific types of questions, the next section describes

some model-based works that propose model-based explanations.

2.2.3 Model-based explanations

The Model-Based approach can be defined as:

A software development paradigm that focuses on the creation and exploitation of do-

main models, i.e., abstract representations of knowledge and activities that govern a par-

ticular application domain.

The first tools to support model-based explanations were the Computer-Aided Software

Engineering (CASE) tools developed in the 1980s. These tools evolved in parallel with expert

systems and it is normal to find in the literature influences from one discipline into the other,

typically in the types of questions supported by each approach. This section briefly explains

how different types of models have been used in different works for supporting users with

different types of explanations that vary regarding the nature of the question asked by the

user. For instance, [132] described five categories of questions (see table 2.4).

Other authors describe similar categories but with different terms. For instance, in [139]

we find:

1. Conceptual explanations (What is this?, What is the meaning of this?),



2.2. APPROACHES 29

2. Why-explanations describing causes and justifications for facts,

3. How-explanations for describing processes,

4. Purpose-explanations (What is this for? or What is the purpose of this?),

5. Cognitive explanations, which “explain or predict the behaviour of ’intelligent systems’

on the basis of known goals, beliefs, constraints, and rationality assumptions” (adapted

from [139]).

As we can see in this classification, we retrieve the same similar question types from most

of the classifications of the previous section.

Many works report on the use of different models for specific explanation types. The rest

of the sub-sections reviews some of these works categorized by the types of models they rely

on.

2.2.3.1 Task Models

The Task Model is probably one of the most used models for providing explanations. An early

example that employs a task model (in the form of user’s actions) for explanation purposes is

Cartoonist [141]. Cartoonist generates GUI animated tutorials to show a user How to accom-

plish a task, exploiting the model for providing run-time guidance.

Pangoli and Paterno [114] allow users to ask questions such as How can I perform this task?

or What tasks can I perform now? by exploiting a task model described in CTT notation [115].

Contrary to Cartoonist, answers are provided in [114] in a pseudo-natural language form.

Tasks modelled in the form of Petri nets [116] are used for similar purposes by Palanque et

al. in [113], answering questions such as What can I do now? or How can I make that action

available again?

Other works report on the usage of task models as a means for creating collaborative

agents able to helps users. An example can be found in [35].

Task models have also been used for supporting purposes in the so called task processing

systems. McGuinness et al. [90] identified several explanation types in the context of task

processing systems. These explanation types are summarized in table 2.5.



30 2. STATE OF THE ART

Question Types Examples
Motivation for tasks why are you doing a task?
Task status what task is being done?

what the status of the task is?
Task history what the system has done recently

what it has started recently
why it did a task (in the past, as opposed to why it is doing)
why it didn’t do a task
how it did a task

Task plans what the system will do next
when it will start the task and why
how it expects to do it

Task ordering why a task is being done before another
why some task has not yet started
what needs to be done to complete a task

Explicit time questions when a task will begin or end
how long a task took to complete
why a task took so long to complete
why a task is already being done instead of later

Table 2.5: Mcguinness et al. question classification for task processing systems.

In some of these task processing question classifications as in the previous one, we find

behavioural explanations answered with task models. Next section covers other models used

by different works for the purpose of explaining the behaviour of a system.

2.2.3.2 Behaviour Models

Behaviour models, presented in different forms, have been also used to support users through

questions such as Why or Why not. In [9] Why questions are answered using the same ap-

proach based on Petri nets that is exploited for procedural questions. By analysing the net it

is possible to answer questions such as Why is this interaction not available?

The Crystal application framework proposed by Myers et al. [100] uses a “Command Ob-

ject model” that provides developers with an architecture and a set of interaction techniques

for answering Why and Why not questions in UIs. Crystal improves users’ understanding of

the UI and help them in determining how to fix unwanted behaviour.

Vermeulen et al. [153] propose a behaviour model based on the Event-Condition-Action



2.2. APPROACHES 31

(ECA) paradigm [3], extending it with inverse actions (ECAA-1) for asking and answering why

and why not questions in pervasive computing environments.

Lim et al. [78, 80] observed that why and why not questions improve users’ understanding

and confidence of context-aware systems.

As we can see, Why questions are answered by different authors using different model-

based approaches. The next section describes a different type of help systems that rely on the

Internet instead of models for supporting users at runtime.

2.2.4 Social-Network Based Systems

Some help facilities make a strong focus on how to exploit Internet as their external source of

knowledge, taking advantage from the interconnection of users. This is the case of the system

proposed in 2012 by Jeffrey Nichols and Jeon-Hyung Kang in [102]. This system uses social

networks as its knowledge-base.

Figure 2.4: An example question/answer regarding the airport security wait time at SeaTac
Airport (image from [102].

The system asks questions of targeted strangers on social networks as Twitter6. An exam-

ple of the system is shown in figure 2.4. The authors state that when people have questions,

6Twitter©(http://twitter.com/) is an online social networking service and microblogging service that en-
ables its users to send and read text-based messages of up to 140 characters, known as “tweets”

http://twitter.com/


32 2. STATE OF THE ART

they often turn to their social network for answers. If the answer is obscure or time sensitive

however, no members of their social networks may know the answer. This work explores the

feasibility of answering questions by asking strangers on social networks. The questions sup-

ported by this work can be, potentially, of any possible type. However, questions cannot be

always answered if strangers do not know the answer, and the approach requires a permanent

connection to the Internet to work.

2.2.5 Personal assistants

Internet is also the source of knowledge employed by different personal assistants. Personal

assistants have emerged thanks to the development of mobile devices. An example of a per-

sonal assistant is Siri. Siri is described7 as “an intelligent personal assistant and knowledge

navigator that uses a natural language user interface to answer questions, make recommen-

dations, and perform actions by delegating requests to a set of Web services.”

Figure 2.5: Siri in action.

To use the Web services, Siri (figure 2.5) also needs an Internet connection as well. For

instance, Siri relies on Bing Answers, the Wolfram Alpha engine, and Evi for factual question

answering. Moreover, Siri works only for a very limited specific set of platforms (those from

Apple). Siri recommendations are similar to those provided by recommender systems, that

are explained in the next section.

7Definition according to http://en.wikipedia.org/wiki/Siri_(software)

http://en.wikipedia.org/wiki/Siri_(software)


2.2. APPROACHES 33

2.2.6 Recommender Systems

Recommender Systems are defined [124] as

A subclass of information filtering system that seek to predict the ’rating’ or ’preference’

that a user would give to an item (such as music, books, or movies) or social element (e.g.

people or groups) they had not yet considered, using a model built from the characteris-

tics of an item (content-based approaches) or the user’s social environment (collabora-

tive filtering approaches).

Recommender systems usually rely on data gathered by user profiles. Most of the ex-

planation types used by recommender systems are founded on similarities of the attributes

of the products or entities of the system. Tintarev [147] classifies the explanations used in

recommender systems in several types such as case-based, content-based, collaborative, de-

mographic, and knowledge-based. Some examples of such systems are the Amazon recom-

mender system that will recommend additional items based on a matrix of what other shop-

pers bought along with the currently selected item, the Netflix recommender system that of-

fers predictions of movies that a user might like to watch based on the user’s previous ratings

and watching habits and the characteristics of the film, and the Pandora Radio recommender

system, that “takes an initial input of a song or musician and plays music with similar charac-

teristics” based on a series of keywords attributed to the selected artist or piece of music). The

stations created by Pandora can be refined through user feedback (emphasizing or deempha-

sizing certain characteristics).

2.2.7 Desktop facilities

Other works have made focus on providing a concrete solution for a specific type of question.

This is the case of the Apple location facility (figure 2.6). Apple uses it on the Help menu of

every application on their desktop platform in order to help users with the navigation. In the

example shown on the left side of the figure, different icons are highlighted when the user



34 2. STATE OF THE ART

types keywords in a searchbox. The figure on the right side shows how an arrow indicates

where the required menu option is located when the user types relevant words in the same

searchbox. This facility is limited in the sense that it only covers Navigational or Where ques-

tions but, on the contrary, its answers are very clear because they use the real options from

the user interface that the user is asking for.

Figure 2.6: Apple location facility.

2.2.8 Avatars

As well as recommender systems give explanations in response to a specific domain (most of

the time for selling or configuring products), other explanation facilities provide explanations

about the context, specially in critical context where users may need assistance. It is the case

of the avatar shown in figure 2.7. The avatars of the figure are located at the entrance of the

Birmingham airport. The avatar tries to assist the travellers giving some directions about the

airport, the customs (airport luggage-check area), and others. The user interface is not inter-

active at all and the video(s) plays in a loop. Even if the avatar do not have any form of “sensing

the context” -for instance, they were not equipped with any kind of sensors to detect the pres-

ence of a traveller in front of the avatar-, it clearly shows an effort to gain the confidence of

the users by representing a real human-being.



2.3. ANALYSIS OF THE APPROACHES 35

Figure 2.7: Avatars providing multimodal information at the Birmingham Airport (picture
taken in September 2012)

2.3 Analysis of the approaches

This section contrasts the related work covered in previous sections. To this end, we used dif-

ferent criteria which is presented first. For each criterion, a discussion about how it applies to

the different approaches is provided. After comparing these works and approaches according

to these criteria, the section finally discusses the possible benefits of a model-based approach

for explanations compared to previous solutions, arguing why it is worth to explore this ap-

proach for help systems.

2.3.1 Criteria and their application

This section describes different criteria that helps to identify advantages and disadvantages

of each of the presented approaches.

2.3.1.1 Coverage of Questions

The number and types of questions that a help system is able to answer can be used as a

criterion for comparing such help systems.

Some approaches are centred on one unique type of question. This is the case of some

desktop facilities such the Apple location facility presented in section 2.2.7, that has been de-



36 2. STATE OF THE ART

signed for answering exclusively Where? questions. In the same manner, recommender sys-

tems provide information about differences (What are the differences?). Also, avatar systems

as the one described in section 2.2.8 are intended to provide only a reduced amount of infor-

mation (for instance, information about exits of the airport and the customs). Moreover, the

avatar does not let the users to choose the information that he/she wants to know, because

the information messages are displayed in a sequential way. Personal assistants can however

answer a wider set of questions as they usually rely on web-services such as those that we

have described for Siri in section 2.2.5.

With respect to the rest of the approaches, the number and type of questions that these ap-

proaches can cover is significantly bigger. Expert systems cover different questions, question

answering systems can even support open questions, and we have also reviewed different

works based on model-based approaches that provide explanations for different questions

such as Procedural questions as How or Behavioural questions as Why.

Of course, those systems that allow for open-domain questions such the QA systems, some

personal assistants, and social-network based systems, can hypothetically cover any type of

question. The problem with those systems is not the number nor type of questions, but the

quality of their answers, as explained in the next section.

2.3.1.2 Quality of Answers

The quality of an answer is subjective to each user. However, we can consider some factors

that can make a difference between different answers:

1. Availability of the answer

2. Time of response

3. Reliability

4. Security

Some works constrain the way in which the user can obtain the answer. For instance,

in some of the previous works such as social-network based systems or personal assistants,



2.3. ANALYSIS OF THE APPROACHES 37

the help system needs to be connected to the Internet to be able to provide an answer. This

is what availability means. Social-network based systems and Personal systems relying on

web-services require a permanent Internet connection to support the user. This can be a

serious limitation regarding the context of the user. For instance, users cannot be assisted

by these technologies in a hospital. On the contrary, expert systems, QA systems and model-

based systems, can continuously support the users as they are usually embedded into the

application.

As part of the quality in the answer, the Time of response can be discriminant for critical

situations requiring fast support. Here again, all the previous approaches that rely on the In-

ternet or those that need to wait for other users to answer such in social-network systems, are

for these reasons slower than implementations of classical approaches such as expert systems

or model-based systems where the help is usually embedded into the application. In the case

of the avatars, as the users can’t choose the desired information (all the help is provided in a

cyclical way), the time of response can be critical if users cannot wait to access the informa-

tion (for instance, for the presented avatar in the airport, because the passengers/users need

to go aboard).

The Reliability of the answer or explanation provided by a help system is dependent of

the source of knowledge used to retrieve the explanation. All the systems relying on exter-

nal services, specially those that rely on external users like the social-network based systems,

could provide answers that are not reliable if the user providing the answer has not enough

knowledge about the question. Classical approaches like expert systems or model-based sys-

tems require however to capture the knowledge necessary for answering the question in some

form, for instance in a knowledge base in the case of expert systems, or in models for model-

based systems, so users can find correct answers to their questions. This information usually

comes from experts of the domain with a deep understanding of the application.

In conclusion, reliability answers usually requires that the necessary knowledge about the

application is available to the help system.



38 2. STATE OF THE ART

Security of help systems is another factor that can affect the users’ experience. This is

crucial in social-network based systems where users cannot openly ask about critical aspects

for them, such as privacy related questions. For instance, in a user authentication banking

system as the one shown in figure 2.8, a user cannot confirm if he/she has correctly introduced

his/her personal identification number or PIN by using help systems relying on unknown

external users as in the social-network based systems, because the user must not share private

information such as his/her PIN code with strangers that could eventually take advantage of

it.

The same problem applies to personal assistant systems where questions and answers rely

on external web-services that are out of the control of the user.

For this reason and under the perspective of privacy, we can argue that those approaches

that do not rely on external services such as expert systems, some QA systems, model-based,

and desktop facilities, are more secure for supporting users with sensible information.

Figure 2.8: Authentication dialogue of a broker bank.

Explanations or answers dealing with all these previous aspects in the best possible way

require to increase the cost of developing such a solution. Next section describes the problem

of cost.

2.3.1.3 Cost

The lack of good help and support in most of the today’s software is mainly due to a prob-

lem of cost. Software industry has become very competitive and one way to reduce the costs



2.3. ANALYSIS OF THE APPROACHES 39

of a product is to simplify documentation at the minimum level. In the previous work, the

different reviewed solutions have also different cost levels. For instance, if we consider the

classical approaches, the development of help systems relying on expert systems that have

been detailed in section 2.2.1 requires the implementation of the the inference engine as well

as the definition of the knowledge base for the specific application. In the same manner, QA

systems require to implement the natural language interpreter as well as the information re-

trieval system. Model-based solutions that demand to adopt a specific frameworks like the

Crystal framework in order to exploit the help system, also implies extra cost because of the

time of integration and adoption of such frameworks by the developers, plus the time of im-

plementing the help itself with the specific programming routines of each framework. On

the contrary, model-based approaches using models that are already defined for the applica-

tion, such as the modelisation of actions in Cartoonist, do not require almost any extra cost

as the modelisation effort has already been done for the application anyway. In these cases,

model-based solutions approaches present a low cost solution in comparison with previous

alternatives.

Most of the last approaches presented in the state of the art show an improvement in

the reduction of the associated cost. For instance, Social-Network Based Systems such as the

one described in section 2.2.4 based on Twitter, reduce the cost of interpreting questions and

composing answers or explanations because this work is done by users that are external to

the application. With respect to the Desktop facilities as the one proposed by Apple that we

have described, they are frequently embedded into the API of the underlying framework so

the functionality comes without almost any cost for the developers as it is provided by the

systems.

The next section analyses all the different criteria extracting a global conclusion about the

different approaches.



40 2. STATE OF THE ART

2.3.2 Conclusion

Table 2.6 summarizes the previous discussion. Each approach shows different advantages

and disadvantages. Considering that we want to cover a diversity of questions and explana-

tion types, we must discard those approaches that are not suitable for a good Coverage. Due

to the performance according to the Quality criterion, we must also discard Social-Network

based systems as well as personal assistants. The three remaining approaches present equiv-

alent results according to the presented criteria.

For those model-based approaches where the knowledge-base is contained into the same

models that are necessary to build the application, we can notice a significant reduction of

cost. Also, these systems provide a high Quality performance because they are usually re-

liable, i.e., their knowledge base is provided by experts or contained in models designed by

experts of the domain.

Coverage of the
Questions

Quality of the
Answers

Cost

Expert Systems X 3/4
QA Systems X 3/4
Model-Based X 4/4 X

Social-Network Based X 0/4 X

Personal Assistants X 0/4 X

Recommender Systems 4/4
Desktop facilities 4/4 X

Avatars 2/4

Table 2.6: Summary of supported criteria by approach.

To summarize the arguments:

Coverage As classical approaches are usually able to cover a larger set of questions, it could

be worth to research what is the real coverage of questions of model-based approaches

for help systems.

Cost In model-based approaches, the design models can nowadays be kept at runtime. Ex-

ploiting these models for explanations becomes then possible. If these design models



2.3. ANALYSIS OF THE APPROACHES 41

can be directly used to support users at runtime, this solution could dramatically reduce

the cost of the resulting help systems, because the design models are already created

during the development process.

Quality With regard to the quality aspects that we have considered, we can say that:

Availability As the models are kept at runtime, model-based answers are usually al-

ways available.

Reliability If the design models can be successfully used to support users at runtime,

these models become the knowledge base of the help system. Thus, answers could

be reliable because all the necessary information about the application is already

captured into these models.

Security As the models are embedded into the application, the help system could deal

with security related issues containing sensible information.

Time of response will be lower than other solutions relying on external services be-

cause the knowledge-base, i.e., the models used for explanation purposes, are em-

bedded directly into the application.

Moreover, help facilities can be taken into account directly into the design process. Be-

cause they rely on the same models of the UI, the support facility is not something that is

written later and added as an external entity of the system. The help facility is an integrated

part of the system from the very beginning of the design of the UI.

Following all these reasons, this research explores how model-based help systems can

achieve a good compromise between all the previous related work. In the next section we

describe the problem space of this research, designed for covering the model-based facili-

ties that have been described here. This problem space will help to better understand how

the different model-based related works are positioned, and so to identify potential areas of

improvement.



42 2. STATE OF THE ART

2.4 Focus on Model-Based Approaches

Our research explores how model-based explanations can contribute to better support end

users when they interact with a user interface. In order to understand what are the contribu-

tions of this research with regard to the existent model-based approaches, this chapter sets

the problem space. This problem space is based on three main areas that have been cho-

sen according to the previous state of the art. After presenting the problem space in a first

section, the second part of the chapter shows how different related works on model-based ex-

planations are projected into the problem space, identifying key areas that have been studied

in this research.

2.4.1 The QAP Problem Space

The QAP problem space (named QAP for its three main areas describing Questions, Answers,

and Properties) is presented in figure 2.9. We have identified three main areas represented

with external circles, each of them subdivided into different axes. The three main areas of the

QAP problem space are described in the following:

1. The questions section represents the input of the help system, i.e., the way in which

the user asks the system for information. It is named questions because, as we have pre-

viously seen in the chapter state of the art, questions are the most common way users

normally use to request information. Questions can be asked in many different ways,

for instance, using some sort of natural language or tooltips8 among others. A question

categorizes the form (presentation) and content (abstraction) of the user’s request that

the help system must address.

2. The answers section represents the output of the help system. As with questions, an-

swers can be provided also in different forms, such as text, images or animations. Simi-

larly to the questions section of the QAP problem space, an answer categorizes the form

8For a definition and examples of tooltips see http://en.wikipedia.org/wiki/Tooltip

http://en.wikipedia.org/wiki/Tooltip


2.4. FOCUS ON MODEL-BASED APPROACHES 43

Extensibility

Initiative

Dynamicity

Extrinsic
Intrinsic

Design
Rationale

Usage

Representation

Structure

Tasks-
Concepts Functionality

Extrinsic

Intrinsic

Questi on

Pr esent ati on

Abstr acti on Pr oper ti es

Abstr acti on Pr esent ati on

Answer

Figure 2.9: The QAP problem space for support systems classification.



44 2. STATE OF THE ART

(presentation) and content (abstraction) of the support provided by the system to the

user.

3. The properties section collects some features of help systems that are relevant in the

context of this research. These properties are Extensibility, Dynamicity, and Initiative.

The subdivision of each of the two first areas, questions and answers, into a Presentation

and Abstraction sections, is motivated by the three classification methods of explanation types

identified by Gregor and Benbasat in [54]. These three methods are: content, presentation

format, and provision mechanism. Contrary to Gregor and Benbasat, we propose a duality

between questions and answers, being both of them subdivided into Abstraction and Presen-

tation. In our problem space, the Abstraction category can be understood as the Gregor and

Benbasat’s content type, and our Presentation category belongs to the presentation format ex-

planation type from the same authors. We will consider the provision mechanism later in the

Properties section of the problem space.

Next sections detail each of the three main areas of the QAP problem space in detail.

2.4.1.1 Questions

The presentation and abstraction subareas in which questions are subdivided are detailed as

follows:

Abstraction represents the nature of the request that the system needs to deal with. It can

address questions about the usage of the system (as for instance, How can I do this?, or

Why this option is not enabled?) and the Design rationale of the system (for instance,

Why these elements are ordered in this way? Why this message is big and red?.

Presentation means how questions or user’s requests are integrated into the user interface.

The presentation can be either intrinsic or extrinsic. In the intrinsic systems the ques-

tion is weaved into the user interface and it uses some of its elements for the creation

of the query or questions. Left part of figure 2.10 shows an example of a help system

presented in an intrinsic way. In the extrinsic systems, the question is formulated via



2.4. FOCUS ON MODEL-BASED APPROACHES 45

an external, non-integrated, and independent interface, that does not necessarily use

elements of the user interface to specify the request. For instance, manuals and on-

line help systems such as the one shown in the right side of figure 2.10 are examples of

extrinsic ways of asking for information.

Figure 2.10: Examples of different types of help according to the Presentation axis. Left: In-
trinsic help (Clippy from Microsoft Word©). Right: Extrinsic help (An online help dialogue
presented outside the application that contains all the supportive information ordered by cat-
egories).

The motivation for the subdivision into intrinsic and extrinsic axes comes from for dif-

ferent studies as for instance in [135], where Sheneiderman et al. also defines the degree of

integration in the interface (from less to more integrated) as

• Online documentation and tutorial: independent interface, even possibly developed by

a different company

• Online help: integrated into the interface, separate window usually invoked from a

“help” button

• Context-sensitive help: a kind of online help that is obtained from a specific point in the

state of the software, providing help for the situation that is associated with that state.

With regard to our taxonomy, the first degree identified by Shneiderman et al. referring

to independent interfaces is equivalent to our extrinsic axis, while the second degree corre-



46 2. STATE OF THE ART

sponding to the integration inside the interface of the application is similar to our intrinsic

axis. In relation to context-sensitive help, in our taxonomy we exclude elements related to

how the answer or explanation is computed by the system because rather than focus on how

the explanation is computed, (i.e., if for instance the state of the application is considered

when computing the answer or not), we prefer to focus on what type of information the ex-

planation is about. The reason is that as this problem space is intended for classifying model-

based related solutions, we estimate that model-based approaches can most of the time know

the state of the application in one way or another. For instance, a tooltip is considered to be

an example of context-sensitive help. According to our taxonomy, tooltips are related to ques-

tions about Usage, and in particular, they answer questions about the Representation of the

user interface (What is this for?).

The Abstraction axis is divided into Usage and Design rationale. First, help systems for

end-users have been traditionally oriented to questions related to the use of the application.

Second, designers have also been supported into the design process through different design

notations. For instance, conception decisions, specially those related to the user interface,

are addressed at design time by the designers. Different design rationale notations have been

traditionally used by the designers to keep track of these design decisions, and some of them

as for instance QOC [84], model these decisions in the form of questions, it seems clear that

this kind of supportive information can be also useful for end-users under certain situations.

Next section covers the description of the answers section of the external circle.

2.4.1.2 Answers

Similarly to questions, answers are also subdivided into presentation and abstraction subar-

eas, both of them described in the following:

Presentation means how answers -i.e., information support- are integrated into the user in-

terface. As for questions, the presentation of the answer back to the support can be

either intrinsic or extrinsic. An intrinsic answer is weaved into the user interface and it

can even use some of its elements for presenting the information support to the user. In



2.4. FOCUS ON MODEL-BASED APPROACHES 47

extrinsic answers, the answer presented via an external, non-integrated, and indepen-

dent interface, that does not necessarily use elements of the user interface to provide

the support.

Abstraction represents the type of knowledge desired in the answer. The possible types are

Representation, Structure, Task-Concepts, and Functionality.

Representation indicates that the type of answer is related to the physical representa-

tion of the user interface. These kind of answers are normally addressed to widgets

or elementary interactors of the user interface, for instance What is this for?.

Structure represents answers about the way in which the parts of the system or the

user interface are arranged or organized. Questions related to navigation issues

are classical examples of this axis (Where is...?).

Task-Concepts indicates answers about goals and their related concepts. This axis cov-

ers traditional questions about goals such as How do I do this? or What can I do

now?

Functionality describes answers related to the functional core of the application. For

instance, What happened?

The subdivision into Representation, Structure, Task-Concepts and Functionality is in-

spired from several previous works.

The first one is the Foley and Van Dam’s levels of abstraction of interactive systems [41].

Here, the authors identified four different levels: the Conceptual level -how the user views the

system in terms of concepts and tasks-, the Semantic level -describes “the meanings conveyed

by the user’s command input and by the computer’s output display”, the Syntactic level -it

defines “how the user’s actions (units, words) that convey semantics are assembled”, and the

Lexical level -dealing with device dependencies and specific syntax of the user’s request”. In

comparison with the Foley and Van Dam’s levels of abstraction, we keep the conceptual level

specifying explicitly both tasks and concepts in the Task-Concepts category, and we group the

semantic, syntactic and lexical levels into the Representation category.



48 2. STATE OF THE ART

The second work inspiring the decomposition of the Abstraction category into four dif-

ferent axes is the “Taxonomy of user documentation, online help, and tutorials” proposed by

Shneiderman et al. ([135]. Shneiderman and colleagues state that the domain covered by a

help system can refer to:

• Description of interface objects and actions (syntactic)

• Sequences of actions to accomplish tasks (semantic)

• Task-domain-specific knowledge (pragmatic)

Here, we consider the syntactic level as our Representation category. The semantic and

pragmatic levels are grouped into the Concepts-Tasks previously described.

This subdivision into these four different axes is also motivated by some architectural pat-

terns. The first one is the Presentation-Abstraction-Control (PAC) architectural pattern [26].

PAC is an interaction-oriented software architecture that divides a system into three different

components. Each of these components is responsible for a specific aspects of the system.

The abstraction component retrieves and processes the data, the presentation component

formats the visual and audio presentation of data, and the control component handles things

such as the flow of control and communication between the other two components.

The architecture of PAC is quite similar to that presented in the Model-View-Controller

(MVC) architectural pattern9.

Both architectural patterns make distinction between the user interface (the Presentation

in PAC or View in MVC) and the functional core of the application (the Control in PAC or the

Controller in MVC.

Other architectures, specially those coming from model-based approaches of user inter-

faces, have also motivated the subdivision of the Abstraction section into four different axes.

In particular, most of model-based approaches of user interfaces separate the UI itself from

the functional core, and subdivide the UI into different levels of abstraction. As an illustra-

tion, we consider here the Cameleon Reference Framework [17]. This framework defines a UI

9Interested readers can refer to [123] for a deeper discussion (chapter nine, “Interaction-oriented Software Archi-

tectures”).



2.4. FOCUS ON MODEL-BASED APPROACHES 49

in terms of four different levels of abstraction10: Task and Concepts level, Abstraction level,

Concrete level, and Final UI level. In this framework, the Abstraction level groups tasks in

a platform independent way, structuring them in a platform dependant way at the Concrete

level. Thus, this level represents for instance the widgets and their arrangement in a Graphical

User Interface. The last level called Final UI represents the code that implements the widgets

in a specific language.

In our problem space, the information about the Representation and the Structure of the

user interface is shared by the Abstraction and Concrete levels of the Cameleon framework.

We keep the Tasks and Concepts level as well as the Functional core, which is present in most

of the model-based approaches that we have reviewed. Table 2.7 summarizes the discussion

about the different works in which these axes are based.

2.4.1.3 Properties

The properties section contains the following axes:

Dynamicity indicates if the information provided by the help system to the user is generated

at runtime, i.e., computed directly by using some source of knowledge. Answers or ex-

planations that are not dynamically generated rely on predefined support that cannot

be modified once the application is running, or in other words, that needs to be rewrit-

10Because of the relevance of the Cameleon Reference Framework for this research, it is described in detail in chap-
ter 3

Foley Schneiderman Cameleon PAC MVC

Representation Semantic, Syntactic
Lexical

Syntactic Abstract
Concrete

Presentation View

Structure Semantic, Syntactic
Lexical

Pragmatic Abstract
Concrete

Presentation
Control

View
Controller

Tasks-
Concepts

Conceptual Pragmatic Task-Concepts Abstraction
Control

Model
Controller

Functionality Control Controller

Table 2.7: Works contributing to the Answer axis.



50 2. STATE OF THE ART

ten and updated by hand at design time.

Initiative represents how the action of providing support is started. This axis represents

those help systems that are able to initiate the support by themselves, rather than wait-

ing for requests from the users.

Extensibility means whether the support provided by the help system can be improved in

some manner, for instance by adding annotations, or new sources of knowledge to the

system.

The motivation for these properties rely on the following literature. First, the Initiative axis

have been also identified for instance by Gregor and Benbasat in the aforementioned work.

The authors describe three types of mechanisms to provide explanations regarding the time

of intervention: user-invoked, automatic, and intelligent.

Schneiderman et al. distinguish however between:

• Before starting (quick guide, manual, and tutorial)

• At the beginning of the interaction (getting started, animated demonstration)

• During the task (context-sensitive, either user or system initiated help)

• After failure (help button, FAQs)

• When the user returns the next time (start-up tips)

“Before starting” help such as guides or manuals is out of the scope of this research. Some

of the rest of the properties are initiated automatically by the system (getting started or start-

up tips) whilst the rest demand the intervention of the user. The Initiative axis helps to identify

and distinguish between both types of help system.

We consider both the Extensibility and Dynamicity axes as important properties because

of the criteria previously described in chapter 2. In particular, the problem of cost requires

help systems that are generated and not written at design time. The cost factor also demands

that the help system should be easily extended without rewriting the whole information sup-

port, for instance, for adding new information or new types of explanations.

Next section explains how to read the different values of each axis.



2.4. FOCUS ON MODEL-BASED APPROACHES 51

2.4.2 Reading the QAP Problem Space: Values of the Axes

All the axes of the problem space illustrated in figure 2.9 have binary values, i.e., a true value

whether the characteristic of the axis is supported or not by the help system under study.

A true value (i.e., a help system supporting the characteristic of the axis) is represented at

intersection between the supported axis and the exterior circle. A false value is represented

at the intersection between the axis and the interior circle. According to this, a help system

is represented into the QAP problem space by finding the different values of the help system

according to each of the characteristics of the axes. For instance, figure 2.11 shows an excerpt

of a help system under study that has been mapped into the problem space. This hypothetical

help system is able to provide answers about the Representation and Structure of the system,

but it does not have support for answers related to Tasks-concepts and Functionality of the

system.

Representation

Structure

Tasks-
Concepts Functionality

Figure 2.11: Hypothetical system under study supporting answers about the Representation
and Structure of the system, and without support for tasks-concepts and functionality related
answers.

Next section illustrates some related work from the state of the art. The main objective

of the QAP problem space is to compare the result of this research with other model-based

solutions. For this reason, we map into the problem space only those works that have been

previously identified as model-based approaches or model-based related for providing expla-

nations, so we can better identify gaps and areas of improvement for this research, using the



52 2. STATE OF THE ART

promising model-based approach of user interfaces.

2.4.3 QAP Problem Space and Related Work

This section maps some works from the section State of the art into the problem space.

2.4.3.1 Crystal System

The Crystal application framework provides an architecture and interaction techniques that

allow programmers to create applications that let the user ask a wide variety of questions

about why things did and did not happen in the user interface, and how to use the related

features of the application without using natural language [100]. The “Why” and “Why not”

questions supported by Crystal are related to user’s actions. Crystal supports then questions

about the Usage or the system (axis Question-Abstraction-Usage).

Crystal uses a Command Object model [10] to implement all of the actions. The com-

mands the user executes are stored on a command list which serves as a history of all the

actions that have been taken, and used later for answering “Why” and “Why not” questions

about user’s actions. As these commands represents the interaction of the user with the

system, they model the tasks the user is performing. For these reason, these specific ques-

Figure 2.12: Left: Crystal answers “Why is the ’p’ bold?” by highlighting the relevant user
interface controls. Right: The “Why?” menu. Images adapted from [100].



2.4. FOCUS ON MODEL-BASED APPROACHES 53

Extensibility

Initiative

Dynamicity

Extrinsic
Intrinsic

Design
Rationale

Usage

Representation

Structure

Tasks-
Concepts Functionality

Extrinsic

Intrinsic

Questi on

Pr esent ati on

Abstr acti on Pr oper ti es

Abstr acti on Pr esent ati on

Answer

Figure 2.13: Myers’ Crystal help system.



54 2. STATE OF THE ART

tions about “Why” and “Why not”provide answers related to the Tasks-Concepts axis (Answer-

Abstraction-Tasks-Concepts). Crystal also supports asking “How can I” questions (see [100]

for more information). The type of answers is also related to the Tasks-Concepts axis.

The way in which the support is requested is by an integrated help menu or by directly

pressing the F1 key. Thus, the presentation of the question is intrinsic as it is embedded into

the same user interface of the application.

The answer is extrinsic because the message support is shown in a separated window, but

it supports intrinsic information as well because answers can highlight the relevant elements

of the user interface as shown in figure 2.12.

The Crystal framework is not easily extensible and only a predefined set of question types

are supported (false value of the Extensibility axis). However the answers are generated dy-

namically from the models (true value of the Dynamicity axis).

Finally, Crystal needs the user to request for support, so the Initiative axis has a false value.

The Crystal system is mapped into the QAP problem space in figure 2.13.

2.4.3.2 PervasiveCrystal System

The PervasiveCrystal [153] system keeps the idea of the previous Crystal framework but adapts

it to pervasive environments. The authors state that there is no pervasive computing frame-

works available that supports why and why not questions about the behaviour of the sys-

tem. Moreover, existing desktop implementations such as the previous Crystal system cannot

be easily integrated into pervasive computing frameworks, since the assumptions underlying

these implementations rarely hold in pervasive computing. For instance, pervasive environ-

ments usually rely on multiple machines from which events originate. As an example, con-

sider the situation where the user starts playing a movie on the TV and the lights go out. The

system involves at least, the TV, the lights of the room, the sensors, and the system processing

such events.x

PervasiveCrystal captures the behaviour of an environment in a model built up from rules

that connect actions and events. These rules are implemented according to the Event - Con-



2.4. FOCUS ON MODEL-BASED APPROACHES 55

Figure 2.14: The PervasiveCrystal system ([153]) answering a Why question.

dition - Action (ECA) paradigm and extended with inverse actions to be able to answer both

“Why” and “Why not” questions about the behaviour of the system.

As PervasiveCrystal is able to answer “Why” and “Why not” questions, following the same

reasoning described for the Crystal system, we can conclude that PervasiveCrystal covers the

Usage axis (Question-Abstraction-Usage). PervasiveCrystal is able to answer questions about

the behaviour of the system (see figure 2.14) so it supports the Functionality axis into the

Answer-Abstraction section of the problem space. As the PervasiveCrystal system also models

the actions of the user or tasks, it also supports the Tasks-Concepts axis positively.

The request for help is performed by users through an integrated help menu that able

them to ask for explanations. This means that questions are weaved into the user interface in

an intrinsic manner.

As in the previous Crystal system, explanations can be provided in both intrinsic and ex-

trinsic ways.

The PervasiveCrystal system share the same properties of its predecessor. It is not easily

extensible for supporting more questions of a different type, the initiative of providing support

needs an explicit request by the user (the system does not propose any help), but on the other

hand, all the answers are dynamically computed and generated at runtime.



56 2. STATE OF THE ART

Extensibility

Initiative

Dynamicity

Extrinsic
Intrinsic

Design
Rationale

Usage

Representation

Structure

Tasks-
Concepts Functionality

Extrinsic

Intrinsic

Questi on

Pr esent ati on

Abstr acti on Pr oper ti es

Abstr acti on Pr esent ati on

Answer

Figure 2.15: Vermeulen’s PervasiveCrystal system.



2.4. FOCUS ON MODEL-BASED APPROACHES 57

Figure 2.16: The Cartoonist system ([141]) in action: “the animated character of the mouse is
shown trailing the cursor which is being moved to click on the Create a NAND gate command
icon.”

The PervasiveCrystal system is mapped into the QAP problem space in figure 2.15.

2.4.3.3 Cartoonist System

The Cartoonist system [141] automatically generates help for explaining how to accomplish

tasks. The explanations given by Cartoonist are provided in the form of animations. Cartoon-

ist employs a kind of task model (in the form of user’s actions) for generating such animations.

The animations constructed by Cartoonist show how to invoke the commands of an applica-

tion. As shown in figure 2.16, the mouse pointer is explicitly represented by a graphic. This

graphic moves around the user interface, picking the objects from a panel of elements, and

setting them up to complete specific tasks.

The questions supported by Cartoonist are then related to the Usage of the user interface.

As the answers supported by Cartoonist cover information about “How can I ...” questions,

this systems relies on the Tasks-Concepts axis.

The way in which questions are asked to the system is by a simple external dialogue in

which the user can type the name of the task that will be shown by the system. This means

that the presentation of the questions is then extrinsic. The answer is an animation of a “three-

button mouse” icon that performs the task directly into the user interface. As the answer uses

the controls of the user interface, its presentation belongs to the intrinsic axis.

The Cartoonist system is not extensible because it only supports the question type “How

can I” for what the system has been designed.



58 2. STATE OF THE ART

Extensibility

Initiative

Dynamicity

Extrinsic
Intrinsic

Design
Rationale

Usage

Representation

Structure

Tasks-
Concepts Functionality

Extrinsic

Intrinsic

Questi on

Pr esent ati on

Abstr acti on Pr oper ti es

Abstr acti on Pr esent ati on

Answer

Figure 2.17: Sukaviriya’s Cartoonist help system.



2.4. FOCUS ON MODEL-BASED APPROACHES 59

The action is initiated by the user so the system does not support the axis initiative.

As we have shown, Cartoonist creates animations dynamically at runtime so it supports

the Dynamicity property represented in the Dynamicity axis.

Figure 2.16 shows how the Cartoonist system is mapped into the QAP problem space.

2.4.3.4 Intelligibility Toolkit

Figure 2.18: Image and description from [79]. This explains “Why” the application inferred
“Breakfast”. The evidences are indicated by the area of bubbles around the corresponding
sensors in the floorplan.

Lim et al. propose [79] the Intelligibility Toolkit for asking several questions about user in-

terfaces in the context of ubiquitous computing. According to [79], “The Intelligibility Toolkit

makes it easier for developers to provide many explanation types in their context-aware ap-

plications. This ease also allows developers to perform rapid prototyping of different expla-

nation types to discern the best explanations to use and the best ways to use them.”

The Intelligibility Toolkit tries to make context-aware applications intelligible11 by “auto-

matically providing explanations of application behavior” [79]. To this end, the toolkit pro-

11For a definition of the term “intelligibility” see [8]



60 2. STATE OF THE ART

Extensibility

Initiative

Dynamicity

Extrinsic
Intrinsic

Design
Rationale

Usage

Representation

Structure

Tasks-
Concepts Functionality

Extrinsic

Intrinsic

Questi on

Pr esent ati on

Abstr acti on Pr oper ti es

Abstr acti on Pr esent ati on

Answer

Figure 2.19: Lim’s Intelligibility Toolkit.



2.4. FOCUS ON MODEL-BASED APPROACHES 61

vides automatic generation of eight explanation types (Inputs, Outputs, What, What If, Why,

Why Not, How To, Certainty) for four different decision model types (rules, decision trees,

naïve Bayes, hidden Markov models). All the Wh- explanation types along with the Outputs

and Certainty types are related to the behaviour of the application. For instance, “What if”

explanations “allow users to speculate what the application would do given a set of user-set

input values”, and the “Why” explanations inform users “why the application derived its out-

put value from the current (or previous) input values”[79].

An example of this is shown in figure 2.18. The figure shows a Home Activity Recognizer

using the Intelligibility toolkit. It shows a map or floorplan indicating why the recognised

activity is Breakfast. The explanation is a floorplan visualization of the evidences in the last 5

minutes:

Sleeping → Toilet → Toilet → Breakfast → Breakfast

For instance, the Hall Bedroom Door being open is a strong indicator of inferring the se-

quence. The microwave is another strong indicator (biggest bubble in top right corner).

The ability of the toolkit for supporting behaviour questions means that it supports the

axis Functionality. And because the toolkit is able to provide information about the input

values of the system through the Inputs explanation type, it supports the Representation axis

as well. The “How to” explanation type makes the system supports the Task-Concepts axis.

All these different explanation types provided by the toolkit are related to the usage of the

system, so it supports the Usage axis.

The toolkit is extensible to support new explanation types and model types all related to

the behaviour of the application. For this reason, the axis Extensibility is supported.

This system supports requests by the user in a intrinsic way, and the presentation of the

answers can be represented in both intrinsic and extrinsic configurations, because the In-

telligibility Toolkit provides different presentation formats so developers can chose the more

suitable presentation format for the explanation in their applications.

Finally, the toolkit requires that the user demands for support (Initiative property not sup-

ported), and the explanations are generated dynamically with explanation generation algo-



62 2. STATE OF THE ART

rithms based on the four aforementioned decision models (rules, decision trees, naïve Bayes,

hidden Markov models).

Figure 2.19 shows how the proposed toolkit is mapped into the QAP problem space.

2.4.4 Overlapping Analysis

Figure 2.20 shows the resulting overlapping of the precedent works. This overlapping gives a

global overview of where most of the works have currently focused for supporting users. Three

main areas of interest have been identified as they are uncovered by the reviewed literature.

The first one concerns questions regarding the Design rationale of the user interface. The

axis is not covered by any work. We did not identify any previous research able to provide

questions about the design rationale of the user interface, that can help users to better un-

derstand “Why” the user interface is the way it is. Design rationale questions can also be

potentially useful for specific learning purposes in, for instance, a user interface design train-

ing course. Design rationale information can be useful as well not only because some in-

teractions can be directly affected by design decisions on the UI, but also because potential

end-user programmers can probably take benefit of accessing this information at runtime.

To address this particular area, we will try in this research to enrich help systems, i.e., the

types of questions that users can ask, with information related to the design decisions that are

made at design time.

The second uncovered axis is related to the Initiative. Initiative has widely covered by

agents as shown in the previous chapter. For this reason, we will not directly address this

issue from a model-based point of view but, instead, we will study what types of questions

can take benefit from active help systems, to open other potential research questions.

The third area of interest is the Structure. Information about the structure of the user in-

terface is not usually provided. Structural information about the user interface can help to

explain the way in which the parts of the system or the user interface are arranged or orga-

nized, so for instance, navigational questions could be finally supported. In the context of this

research we will explore how we can extract structural information to better support the user



2.4. FOCUS ON MODEL-BASED APPROACHES 63

Extensibility

Initiative

Dynamicity

Extrinsic
Intrinsic

Design
Rationale

Usage

Representation

Structure

Tasks-
Concepts Functionality

Extrinsic

Intrinsic

Questi on

Pr esent ati on

Abstr acti on Pr oper ti es

Abstr acti on Pr esent ati on

Answer

Figure 2.20: Overlapping the related work. Identifying potential areas of interest.



64 2. STATE OF THE ART

with this type of information.

We also appreciate in figure 2.20 that some systems allow developers to choose the Pre-

sentation of Answers either in a Intrinsic or Extrinsic way. However, this is not the case for

Presentation of the Questions, imposing one of both alternatives to the design of the user in-

terface. We will explore how to overcome this limitation so designers and developers can fully

customize how both questions and answers are integrated into the system. This will bring the

designers the possibility of choosing their preferred presentation mode, or even combining

both of them at the same time.

Finally, the figure 2.20 shows that there is an implicit problem of unification. In fact, each

of the reviewed model-based works such as Crystal or PervasiveCrystal address a specific type

of questions, but we are not aware of any work that currently unifies different types of expla-

nations at the same time. An approach for asking questions either for the usage or design

rationale in a homogeneous way becomes necessary for supporting different question types

simultaneously. In the same way, providing different types of answers require to uniform the

way in which these answers are computed.

The next section summarizes the chapter.

2.5 Synthesis

First, the chapter starts by reviewing what is an explanation, how explanations have been

considered in the Theory of Explanation of the Philosophy of Science, the role of explanations

in the Erotetic Logic, and how the concept of Structural Explanations has emerged.

Second, explanations have been covered by a large amount of fields in computer sci-

ence. The chapter reviews the different approaches that have contributed to supporting users

through explanations, describing and providing examples for expert systems, question an-

swering systems, model-based systems, Social-Network Based Systems, Personal assistants,

Recommender Systems, Desktop facilities, and Avatars.

Third, the approaches are compared through a set of different criteria, that help the au-



2.5. SYNTHESIS 65

thors to consolidate model-based as a promising research approach for providing explana-

tions to users.

Four, a more deep study is conducted through the QAP problem space specially oriented

to model-based systems. The QAP problem space helps to identify the potential areas of im-

provement by mapping the previous related work into the problem space, and analysing the

overlapping of their areas.

With the identification of the approach and the research axes that will guide this research,

next chapter will present all the elements that are necessary to put into practice the model-

based approach of user interfaces, its models, and other relevant concepts.





3

Foundations

“ If you have built castles in the air, your work need not be lost; that is where

they should be. Now put the foundations under them.

”
Henry David Thoreau, Walden,

In our research we explore whether the model-based approach of user interfaces is suit-

able for helping users in understanding the user interface. In particular, we investigate if it

is possible to generate explanations based on the models of the user interfaces made at run-

time, and whether these explanations are suitable for end users. Thus, the models of the user

interface become the knowledge-base of the help system. To this end, we need to understand

how the model-based approach is used in the development of UIs and what these models are.

This is the purpose of this chapter.

The chapter firstly reviews the relevant concepts and terms used by the model-based ap-

proach. Then, we describe the model-driven engineering of user interfaces in a second sec-

tion. Finally, as quality is an important aspect to provide design rationale explanations, we

also review different quality models at the end of the chapter.

67



68 3. FOUNDATIONS

3.1 Model-Driven Initiatives

This section introduces the model-driven concepts necessary to understand this research.

The section starts with a definition of the different model-driven initiatives (Model-Driven

Architecture (MDA), Model-Driven Development (MDD), Model-Driven Engineering (MDE)

and Model-Based Engineering (MBE)) through a brief review of their history. Then, the sec-

tion provides all the necessary definitions.

3.1.1 Model-Driven Initiatives: A Brief History

In conceptual modelling, models represent concepts or entities and the relationships be-

tween them.

It was in 1976 when Peter Pin Shan Chen proposed [23] the Entity-Relationship Model

(ER), which characterizes the concepts of Entity and Relationships. In words of the author,

“The ER concept is the basic fundamental principle for conceptual modeling.” ([1]). ER was

progressively extended. For instance the version of the Enhanced Entity–Relationship model

by Elmasri and Navathe [36] includes all the concepts introduced by the ER model, adding

the notions of subclass and superclass, with the related concepts of specialisation and gener-

alisation [36]. These concepts were the foundation of the Unified Modeling Language (UML),

firstly published in 1997, after the unification of the three methods of their authors, namely

the Object-Oriented Analysis & Design (OOAD) by Grady Booch [13], the Object Modelling

Technique (OMT) by James Rumbaugh [127], and the Object-oriented Software Engineering

method (OOSE) by Ivar Jacobson [64].

ER and UML are considered the main roots of Model-Driven Architecture, but other com-

puter science disciplines have also contributed to MDA. For instance, the formal concept of

Object in programming was introduced in the 1960s in the language Simula 67. However,

the first Object-Oriented language, Smalltalk, was developed at Xerox PARC in the 1970s.

Smalltalk is considered to be the first Object-Oriented language because it was designed to

be a fully dynamic system in which classes could be created and modified dynamically rather



3.1. MODEL-DRIVEN INITIATIVES 69

than statically as in Simula 67.

Nowadays there is a strong relationship between object-oriented languages and UML.

UML is today used as the standard model-based language for software development. It has

continued to evolve (UML 2.0 dates from 2005) becoming the standard model-based lan-

guage for software development. The MDA initiative is strongly related to UML, and it is the

first model-driven initiative proposed by the Object Management Group (OMG) in 2001 (see

[109, 93]).

Figure 3.11 shows different initiatives that are based on models and the relationships be-

tween them. The central and older initiative is the Model-Driven Architecture which is founded

on the notion of conceptual modelling.

Next section details the different layers shown in figure 3.1, from the most central, Model-

Driven Architecture or MDA, to the most general, Model-Based Engineering or MBE.

Figure 3.1: Relationship between model approaches followed in this research.

3.1.2 Model-Driven Architecture

The current official MDA definition according to [110] is the following:

1Image taken from
http://modeling-languages.com/model-based-engineering-vs-model-driven-engineering-2/

http://modeling-languages.com/model-based-engineering-vs-model-driven-engineering-2/


70 3. FOUNDATIONS

MDA is an OMG initiative that proposes to define a set of non-proprietary standards that

will specify interoperable technologies with which to realize model-driven development

with automated transformations. Not all of these technologies will directly concern the

transformations involved in MDA. MDA does not necessarily rely on the UML, but, as

a specialized kind of MDD (Model Driven Development), MDA necessarily involves the

use of model(s) in development, which entails that at least one modelling language must

be used. Any modelling language used in MDA must be described in terms of the MOF

language, to enable the metadata to be understood in a standard manner, which is a

precondition for any ability to perform automated transformations.

The three primary goals of MDA are portability, interoperability and reusability through

architectural separation of concerns. According to this and as stated in [109], MDA provides

an approach for, and enables tools to be provided for:

• specifying a system independently of the platform that supports it

• specifying platforms

• choosing a particular platform for the system

• transforming the system specification into one for a particular platform

MDA, as well as all the OMG initiatives, follows the principle that “everything is a model”

as stated in [11]. The next section describes the notion of model and its related concepts.

3.1.2.1 Models

Several definitions of model [109, 94, 68] are summarized in [38]. For instance, in the context

of the UML standard, the term model is defined as following:

A model is an abstraction of a physical system, with a certain purpose.

Other authors define the term in function of a language [68]:



3.1. MODEL-DRIVEN INITIATIVES 71

A description of (part of) a system written in a well-defined language.

The OMG also clarifies in [109] that “a model is often presented as a combination of draw-

ings and text. The text may be in a modeling language or in a natural language.”

Figure 3.2 shows an example of a model, where two different entities, Persons and Cars,

are related between them through the Owns relationship.

A model can be considered as a sentence (or just a word) of the modelling language in

which the model is expressed [137]. When we talk of this modelling language, we are in part

referring to the meta-model of the model. This concept of meta-model is reviewed in the next

section.

Figure 3.2: Example of model. The entity Person can own an unlimited number of Cars.

3.1.2.2 Meta-Models

The following definition is given in [37]:

A meta-model is a model of a modelling language.

Thus, meta-models are a meaning for reasoning in terms of the modelling language. Favre

stated in [37] that:



72 3. FOUNDATIONS

A meta-model is a model of a set of models.

Figure 3.3 shows an example of a meta-model. The model previously presented in figure

3.2 conforms to this meta-model.

Figure 3.3: Example of meta-model. An Association is related to Entities thorugh Associatio-

nEnds.

In the same manner that models are defined in terms of meta-models, meta-models are

defined in terms of meta-meta-models, that are introduced in the next section.

3.1.2.3 Meta-Meta-Models

We can reuse the first definition of meta-model to define the concept of meta-meta-model as

“the model of the modelling language of the meta-model”, or simply:

A meta-meta-model is a model of a set of meta-models.

To avoid an infinite number of “meta levels”, meta-meta-models are said to be self-describing

or reflective, meaning that they can be recursively defined by themselves.

Figure 3.42 describes graphically the different levels of abstraction and their relationships

as defined in the Model-Driven Architecture.

2Image from the ATL reference manual.



3.1. MODEL-DRIVEN INITIATIVES 73

Figure 3.4: Model-Driven Architecture.

3.1.3 Four-layers architecture

OMG designates four different levels named with an M and the number of the level. These

levels are summarized in figure 3.5. These four levels determine what is called the “Four-

layers meta-modelling pyramid”. Each of the levels includes one of the previous model, meta-

model, and meta-meta-model concepts already presented. Plus, the pyramid shows the in-

stances of the models or objects at the base.

The description of the levels is as follows:

M3 : Layer containing the meta-meta-models, described in terms of themselves because of

the reflective property.

M2 : Layer containing the meta-models (for example, UML elements such as Classifiers, At-

tribute, and Operation, or definitions of a any modelling language).

M1 : Layer containing the models (for example, a UML class representing vehicles).

M0 : layer containing the objects of the application (for example, an instance of the class

vehicles representing the car with license plate 12345).

All these four different layers become specially important when considering transforma-

tions. The next section describes the concept of model transformations in detail.



74 3. FOUNDATIONS

meta-meta-models

meta-models

models

objects

Figure 3.5: Four layers pyramid showing each of the OMG levels.

3.1.3.1 Model Transformations

Model transformations or simply transformations, are defined in [109] as:

The process of converting one model to another model of the same system.

Transformations are explicitly represented in MDE, becoming first order elements of the

MDE initiative as models or meta-models. They are normally defined as a set of rules that

describe how one or more source models are transformed into one or more target models.

These rules are defined in terms of the meta-model. For instance, when the transformation

transforms models, its rules are defined in terms of meta-models. In the same way, when

the transformation transforms meta-models, its rules are described in terms of meta-meta-

models. Transformations are a key aspect in MDE because, as they are defined in terms of

the modelling language (or meta-model), they can be reused for all the models conforming to

the same meta-models. For instance we could build a transformation to transform an UML

model into java code, and reuse this transformation for every UML model.

As transformations are first order elements, they are models as well. In fact, a transforma-

tion is defined in terms of a transformation language (meta-model). At this point it is possible

to write transformations that transform one or more source transformations into one or more



3.1. MODEL-DRIVEN INITIATIVES 75

target transformations. This special case of transformations are called High Order Transfor-

mations.

Figure 3.6: Model transformation.

Figure 3.6 summarizes the full model transformation process. A model Ma, conforming

to a meta-model MMa, is here transformed into a model Mb that conforms to a meta-model

MMb. The transformation is defined by the model transformation model Mt which itself con-

forms to a model transformation meta-model MMt. This last meta-model, along with the

MMa and MMb meta-models, has to conform to a meta-meta-model MMM.

Figure 3.7 provides an example. The transformation UML2Java converts a UML diagram

into java code. The M-UML box represents the UML diagram model to be transformed, that

conforms to the UML meta-model (MM-UML) or UML language. The transformation gener-

ates a java model named M-Java that holds the information for the creation of Java classes,

such as package references, attributes or methods. This model conforms itself to the Java

meta-model represented by MM-Java. The designed transformation, which is expressed by

means of a transformation language (the ATL language in this case), conforms to the ATL

meta-model. In this example, the three meta-models, MM-UML, MM-Java and ATL are ex-

pressed using the semantics of the Ecore meta-meta-model.

Transformations in MDA play an important role. They transform one MDA model into an-

other. MDA defines three types of models: Computation Independent Model (CIM), Platform

Independent Model (PIM), and Platform Specific Model (PSM). These concepts are explained

next.



76 3. FOUNDATIONS

Figure 3.7: Example of a model transformation. Generation of java code from UML through
an ATL transformation.

3.1.3.2 MDA Models

MDA specifies the following three default models of a system:

Computation Independent Model (CIM) A CIM is also often referred to as a business or do-

main model. It presents exactly what the system is expected to do. It is completely

independent of the system.

Figure 3.8: PIM model (left) and PSM model (right).



3.1. MODEL-DRIVEN INITIATIVES 77

Platform Independent Model (PIM) A PIM exhibits a sufficient degree of independence so

as to enable its mapping to one or more platforms. This is achieved by defining a set of

services in a way that abstracts out the technical details.

Platform Specific Model (PSM) A PSM combines the specifications in the PIM with the de-

tails required to stipulate how a system uses a particular type of platform.

Figure 3.8 illustrates an example of the previous models. On the left side, a platform in-

dependent model is represented with the package containing the UML class diagram of the

application. On the left side, a platform specific model is represented with a package of the

java model of the same application. The relationship between both models is described in the

next section.

3.1.3.3 The MDA Process

A complex system may consist of many interrelated models. The two key concepts of MDA

are models and transformations. The general pattern between them is illustrated in figure 3.9:

Figure 3.9: General pattern of the MDA process.

As an example, consider the models previously illustrated in figure 3.8. The application

model of the car shopping website is the source model, whereas the website on the right side

is the target model. In figure 3.10, the PIM model is transformed into the resulting PSM model

represented by the car shopping website.

3.1.4 Models, Meta-Models, and Meta-Meta-Models

The MDA definition relies on the term MDD or Model-Driven Development. According to

this and as stated by Jean Bezivin in [11], MDA may be defined as “the realization of MDE

principles around a set of OMG standards like MOF, XMI, OCL, UML, CWM, SPEM, etc.”. MDA

is then the OMG’s particular vision of MDD and thus, it relies on the use of OMG standards.



78 3. FOUNDATIONS

Figure 3.10: Example of the MDA process. Two PIM source models are transformed together
to generate a single PSM model.

Therefore, MDA can be regarded as a subset of MDD.

Model-Driven Development is introduced in the next section.

3.1.5 Model-Driven Development

MDD has been formalized in 2003 ([95]) as follows:

Model-Driven Development is simply the notion that we can construct a model of a sys-

tem that we can then transform into the real thing.

MDD is then a development paradigm where the primary artefacts of the development

process are the models. Usually in MDD, the implementation is (semi)automatically gener-

ated from the models.

Contrary to MDA, MDD does not adhere to any of the OMG standards as MDA does. MDA

is usually considered as the OMG’s particular vision of MDD.

According to [131], the main objective of MDD is to increase productivity, maximizing

compatibility between systems, simplifying the design process and promoting communica-

tion between individuals and teams working in the system. MDD can be considered as a

subset of MDE, which is defined in the next section.



3.1. MODEL-DRIVEN INITIATIVES 79

3.1.6 Model-Driven Engineering

In 2006, three years after the definition of MDA, the concept of MDE was characterized in [128]

by Douglas C. Schmidt as “an approach to address the inability of third-generation languages

to alleviate the complexity of platforms and express domain concepts effectively.”

The standard definition3 of MDE is:

Model-driven engineering (MDE) is a software development methodology which focuses

on creating and exploiting domain models (that is, abstract representations of the knowl-

edge and activities that govern a particular application domain), rather than on the com-

puting (or algorithmic) concepts.

Contrary to MDD, MDE goes beyond of the pure development activities and encompasses

other model-based tasks of a complete software engineering process such as the model-driven

reverse engineering of legacy systems.

MDE is a considered to be a subset of MBE, which is defined in the next section.

3.1.7 Model-Based Engineering

The term Model-Based Engineering (MBE), also refered in the literature as Model-Based De-

velopment (MBD), is currently interpreted and approached in many different ways. There is

however a general consensus in the literature that defines the term as a softer version of MDE,

in which models play an important role although they are not necessarily the key artefacts of

the development. In other words, models do not drive the development process as they do in

the rest of the initiatives that are described next.

MDA and its related technologies provide designers and developers with a set of tools for

creating and manipulating models for a variety of purposes. The next section describes how

all these concepts have been applied to User Interfaces.

3http://en.wikipedia.org/wiki/Model-driven_development

http://en.wikipedia.org/wiki/Model-driven_development


80 3. FOUNDATIONS

3.2 Model-Driven Engineering of User Interfaces

This section introduces the model-driven approaches used in the development of user in-

terfaces. The section briefly describes the Cameleon Reference Framework and its different

levels of abstraction. Then, an overview of the UsiXML language is introduced.

3.2.1 The Cameleon Reference Framework

Cameleon [18] is an unifying reference framework that “characterizes the models, the meth-

ods, and the process involved for developing user interfaces for multiple contexts of use, or

so-called multi-target user interfaces”. Here, a context of use is decomposed into three facets:

the user, the computing platform including specific devices, and the complete environment

in which the user is carrying out interactive tasks with the platforms specified. When varia-

tions of one or more of these facets (<user, platform, environment>) appear, they are referred

as a change of the context of use that should or could be reflected in some way in the user

interface.

According to [18], the Cameleon reference framework can be summarized with the follow-

ing assertions (figure 3.11):

1. It clarifies what are the models used (e.g., task, concept, presentation, dialogue, user,

platform, environment, ...), when these models are used (e.g. at design-time vs. run-

time), and how they are used (i.e. at the four levels of concern: task and concepts,

abstract UI, concrete UI and final UI) and according to which process.

2. It allows designers to use either a forward engineering approach from the highest level

of abstraction of the framework (i.e. Tasks and Concepts) to the lowest level (i.e. the

Final UI), a Reverse engineering approach, that takes the inverse path, or a Bidirectional

engineering or re-engineering approach, which is a combination of both forward and

reverse engineering.

3. It allows to use different entry points to the process. This means that the process can be

initiated at any point of the framework and not only at the top (like in a full top-down



3.2. MODEL-DRIVEN ENGINEERING OF USER INTERFACES 81

Figure 3.11: The Cameleon Reference Framework ([18])

approach) or at the bottom (like in a full bottom-up approach).

The transformations used between models of the UI receive special nouns regarding the

levels of abstraction of the source(s) and target(s) model(s):

Reification is the transformation where the source model(s) has a higher level of abstraction

than the target model(s). It is usually related to a top-down transformation process. Is

the normal kind of transformations used in a forward engineering process, for instance,

in the generation of the source code by transformation of a concrete UI model.

Abstraction is the transformation where the source model(s) has a lower level of abstraction

than the target model(s). It is usually related to a bottom-up transformation process,

classically used for reverse engineering purposes.

Reflexion is a transformation that updates the model itself, and in consequence, keeping the

level of abstraction.

Translation is the transformation that produces a target model of the same level of abstrac-



82 3. FOUNDATIONS

tion as the source model. It is specially useful for migrating the UI from one context of

use to another.

3.2.2 Levels of Abstraction

The Cameleon Reference Framework is composed of four main levels of abstraction. These

leves are the Task and Concepts level, Abstraction level, Concrete level, and Final UI level,

each of them representing one different aspect of the user interface. Figure 3.12 shows the

different levels of the framework. Each of the layers represents a model.

Tasks Level

Abstract Level

ConcreteUI Level

Final UI Level

Transformation

Figure 3.12: Cameleon levels from final user interface to tasks level. Two transformations are
drawn with straight lines. The source and the target of the transformations are outlined with
circles.



3.2. MODEL-DRIVEN ENGINEERING OF USER INTERFACES 83

Tasks and Concepts model. It represents the tasks that the user can perform on the UI. The

tasks manipulate the concepts, also represented at this level. Figure 3.13 shows a Task

model in CTT [115] for a help system. The root task is an abstract task that is decom-

posed into four sub-tasks of different types. The first task is a User task in which the

user does not interact with the system. The second task is an Interactive task in which

the user request some information from the help system. The third and fourth tasks are

Application tasks in which the system computes the required information (third) and

provides it back to the user (fourth). Note that these tasks are platform independent. In

this sense, Task-models can be considered as a PIM model from the MDA perspective.

Figure 3.13: Example of task model. Modelisation of a help system that supports three differ-
ent types of questions that the user can ask.

Abstract UI. It groups the tasks in a platform independent way, i.e., without taking into ac-

count the details of the platform or platforms where the user interface will be running

after being generated. For this reason, AUI models can be also considered as PIM mod-

els with regard to MDA. Figure 3.14 shows a proposition of Abstract UI model for the

help system modelled in the previous task model. All the interaction takes place in

the same space, called here AUI Container. Two different units are defined inside such

space.



84 3. FOUNDATIONS

Figure 3.14: Abstract UI model (AUI).

Concrete UI. It structures the elements of the abstract user interface into platform depen-

dent elements. For instance, for Graphical User Interfaces or GUIs, the Concrete UI

defines what widgets are necessary for each element of the abstract user interface. Fig-

ure 3.15 shows a proposition of a Concrete UI model for the previous a AUI model. In

this case, the space of interaction becomes a window whereas the two AUI units have

been transformed into a TextField and a Label respectively.

Figure 3.15: Concrete model (CUI).

Final UI. It represents the source code implementing in a specific programming language the

widgets (in the case of GUIs) of the previous level. In the example shown in figure 3.16,

the implementation of the CUI has been done in a Java framework.

The source code of the UI, i.e., the Final UI, is obtained by iterative transformations of

different UI models, generally from top to bottom. For instance, to obtain the final UI shown



3.2. MODEL-DRIVEN ENGINEERING OF USER INTERFACES 85

Figure 3.16: Final UI (FUI).

in figure 3.16, the task model has been transformed into the AUI model, which is then trans-

formed in turn into the CUI model, from which the Final UI is finally derived. Figure 3.12

summarizes this process graphically.

The Cameleon Reference Framework has been reviewed, extended, and improved, in the

UsiXML language, which will be discussed in the next section.

3.2.3 The UsiXML Language

UsiXML can be considered as a natural evolution of the Cameleon reference framework. The

UsiXML language preserves the four levels of abstraction, from the Tasks level to the FUI,

reviewing their models and meta-models, and it extends the Cameleon Reference Framework

with new models that add new functionality to the UsiXML language.The meta-models of our

research and the UsiXML meta-models have been reciprocally enriched during their mutual

development. This section will briefly present the meta-models of the UsiXML language that

are not covered by the Cameleon Reference Framework, that are relevant in the context of our

research.

The UsiXML language is defined (slightly adapted from [149]) as:

An innovative model driven language that attempts to improve the UI design, for

the benefit of both industrial end-users actors in term of productivity, reusabil-

ity, usability, and accessibility, by supporting the µ7 concept: multi-device, multi-

user, multi-culturality/linguality, multi-organisation, multicontext, multi-modality and



86 3. FOUNDATIONS

multi-platform.

The µ7 concept is supported through a set of models and meta-models that composes the

UsiXML language. The meta-models and models that we have used in our research are largely

inspired by the UsiXML meta-models. Here is a brief description of the most relevant UsiXML

meta-models for our research4:

Task Meta-Model It aims to define the tasks that the user can perform in the system. The

Task Meta-Model represents the same concepts as the one previously described in the

Cameleon Reference Framework.

Domain Meta-Model It consists of a description of the classes of objects manipulated by a

user while interacting with the system. It specifies the main concepts of a User Interface

by identifying the relationships among all the entities within the scope of such User

Interface, their attributes and the methods encapsulated within the entities.

Abstract UI Meta-Model is an expression of the UI in terms of interaction spaces (or presen-

tation units), independently of which interactors are available and even independently

of the modality of interaction. It represents the same information found in the AUI

model from the Cameleon Reference Framework.

Concrete UI Meta-Model It is an expression of the UI in terms of “concrete interaction units”,

that depend on the type of platform and media available. It represents the same infor-

mation found in the CUI model from the Cameleon Reference Framework.

QOC Meta-Model This meta-model supports design rationale based on the QOC (Questions,

Options, Criteria) notation [84]. It supports the exploration of options during design

processes.

Transformation Meta-Model The aim of this meta-model is to define how transformations

are composed in UsiXML.

4For more information about the UsiXML meta-models, please visit http://www.usixml.org/.

http://www.usixml.org/


3.3. QUALITY MODELS 87

Quality Meta-Model It aims at providing means for integrating quality criteria into the design

process of the user interface. This meta-model is a contribution of this research to the

UsiXML language. It provides end users with design rationale explanations based on

design decisions.

The quality meta-model is entirely described in chapter 5. Quality models are useful be-

cause they can help to support the design rationale axis identified in the problem space. To

better understand the role of quality models and how they characterize quality, the next sec-

tion overviews the most relevant quality models of the literature.

3.3 Quality Models

This section reviews the major quality models that have been used in software engineering

as well as some ergonomic guides that are relevant for HCI. This is necessary in order to un-

derstand what a quality model is, what the role and contributions of these different quality

models are, as well as the importance that ergonomic criteria have in user interfaces. Quality

is important for providing users with design rationale explanations.

3.3.1 Quality Model Definition

The ISO 14598-1 Standard for Information technology and Software product evaluation ([62]),

defines the term Quality Model as:

“The set of characteristics and the relationships between them which provides the basis

for specifying requirements and evaluating quality.”

Quality Model definitions are usually generalist. The previous definition does not provide

any information about how to determine a characteristic, how to characterize a relationship

between characteristics or how to specify the requirements that are measured in a quality

evaluation. The next sections will cover how these questions have been addressed by different

quality models. These quality models are summarized in figure 3.17.



88 3. FOUNDATIONS

Figure 3.17: Relevant works on quality in their years of publication.

3.3.1.1 McCall’s Software Quality Model

McCall’s hierarchical quality model [88] is one of the earliest. The model aims to “bridge the

gap between users and developers by focusing on a number of software quality factors that

reflect both the users’ views and the developers’ priorities”.[88]. It also aims to “provide a

complete software quality picture” ([67]). To this end the model organizes the product quality

into two views: the external view for the client and the internal view for the developers. These

views are decomposed in the model (figure 3.18) as follows:

Factors : They describe the external view of the software, as viewed by the users.

Criteria : They describe the internal view of the software, as seen by the developers.

Metrics : They are defined and used to provide a scale and method for measurement.

The external view (the users’ view) consists of 11 quality factors, while 23 quality criteria

describe the internal view of the software (developer’s view).

The idea behind McCall’s Quality Model is that the quality factors synthesized should pro-

vide a complete software quality picture. McCall’s quality model makes a first step forward by

subdividing and categorising Factors, Criteria and Metrics.

3.3.1.2 Boehm’s Quality Model

Boehm’s quality model ([12]) is decomposed in a hierarchical way as McCall’s model does,

but contrary to this, the top of the model addresses the end-users’ concerns while the bottom



3.3. QUALITY MODELS 89

Figure 3.18: McCall’s quality model: 11 quality factors are decomposed into 23 quality criteria.

addresses the designers’ perspective. This is mainly due to the emergence of the user’s per-

spective of quality. However, even if the top of the model addresses end users’ concerns, the

model is quite far from the real perspective of the user as stated by [5]: “this interest wanes

when one reads Boehm’s definition of the characteristics of software quality. Except for Gen-

eral Utility and As-is Utility, all definitions begin with Code possesses the characteristic [...].”

The General Utility characteristic (see figure 3.19) aforementioned in the citation is the

major high-level characteristic of quality in Boehm’s model (users’ perspective at the top of

the model) because, in words of [117], “a software system must be useful to be considered a

quality system”.

Boehm decomposes the overall quality into high-level characteristics, intermediate-level

characteristics and primitive (or lowest-level) characteristics (figure 3.19).

The main difference between Boehm’s and McCall’s quality models, is that McCall focuses

on precise measurements of high level, while Boehm presents a wider range of primary fea-

tures. The high-level characteristics of Boehm’s model (like General Utility and As-is are too



90 3. FOUNDATIONS

generic and imprecise to be useful for defining verifiable requirements. However, some au-

thors declare that “Like the McCall model, this model is mostly useful for a bottom to top

approach to software quality” [5], i.e. it can effectively be used to define measures of software

quality.

Figure 3.19: Boehm’s quality model.

3.3.1.3 Dromey’s Quality Model

Dromey’s model ([33, 34]) takes a different approach to software quality. Dromey states that

quality evaluation differs for each product and that “a more dynamic idea for modeling the

process is needed to be wide enough to apply for different systems” ([33]). For Dromey, a

quality model should be based upon the product perspective of quality: “What must be recog-

nized in any attempt to build a quality model is that software does not directly manifest qual-

ity attributes. Instead it exhibits product characteristics that imply or contribute to quality

attributes”. Dromey suggested three prototypes concerning quality, which are the implemen-



3.3. QUALITY MODELS 91

tation quality model, the requirements quality model, and the design quality model. Figure

3.20 shows the implementation quality model.

Dromey’s model is focused on the relationship between quality attributes and sub-attributes,

trying to connect properties of software with software quality attributes.

The “Software product” is defined by the root of the model named Implementation. The

“Software product” is subdivided into four “Product properties”, from Correctness to Descrip-

tive. Each of these “Product properties” is decomposed into different “Quality attributes”.

Figure 3.20: Dromey’s implementation quality model.

As Dromey’s model relies exclusively on software properties, some authors state that the

model is not suitable for addressing the users’ needs. For instance, [5] states that “this model

is rather unwieldy to specify user quality needs”.

3.3.2 ISO Standards

The International Organization for Standardization (ISO) has actively participated in the de-

velopment of quality standards by presenting several propositions for addressing quality in

different areas. In this report we mainly consider those standards that are useful for HCI, in

particular those dedicated to usability.

In 1991, the ISO published the Software Product Evaluation - Quality Characteristics and

Guidelines for Their Use (ISO 9126 [111]), which represents the first international consensus

on the terminology for the quality characteristics for software product evaluation. Different

approaches or perspectives of the concept of quality start to appear through these standards,



92 3. FOUNDATIONS

and the concept of usability evolves accordingly. The first of these kinds of perspectives ap-

pears in 1996 under the name of external quality, defined in the first part of the ISO/IEC DIS

14598 Information Technology - Evaluation of Software Products as “the extent to which a

product satisfies stated and implied needs when used under specified conditions”.

In 2001, a new standard is published under the name ISO/IEC 9126 Software engineering

- Product quality. This standard has become one of the most important quality standards in

software engineering. It is divided into four parts: one International Standard (IS) and three

Technical Reports (TRs) that have been published in the next years:

• Quality Model (ISO IS 9126-1, 2001)

• External Metrics (ISO TR 9126-2, 2003)

• Internal Metrics (ISO TR 9126-3, 2003)

• Quality in Use Metrics (ISO TR 9126-4)

The quality model proposed in this standard is based on the McCall’s hierarchical model,

and it handles the same notions of Factors, Criteria and Metrics. In this first part, ISO provides

a new definition for usability “as a product measure”, and quality in use as “an outcome of

interaction”. ISO also redefines the concept of External quality as:

the totality of characteristics of the software product from an external view. It is the qual-

ity when the software is executed, which is typically measured and evaluated while test-

ing in a simulated environment with simulated data using external metrics. During test-

ing, most faults should be discovered and eliminated. However, some faults may still

remain after testing. As it is difficult to correct the software architecture or other fun-

damental design aspects of the software, the fundamental design remains unchanged

throughout the testing. (ISO/IEC, 2001a)

On the other hand, the third technical report on Internal Quality describes this concept

as:



3.3. QUALITY MODELS 93

External and
Internal Quality

Functionality

- Suitability
- Accuracy
- Interop-
erability

- Security
- Functionality

Compliance

Reliability

- Maturity
- Fault Tol-

erance
- Recoverability

- Reliability
Compliance

Usability

- Under-
standability

- Learnability
- Operability

- Attractiveness
- Usability

Compliance

Efficiency

- Time Behavior
- Resource
Utilization
- Efficiency
Compliance

Maintainability

- Analyzability
- Changeability

- Stability
- Testability

- Maintainabil-
ity Compliance

Portability

- Adaptability
- Installability
- Co-existence

- Replaceability
- Portability
Compliance

Figure 3.21: ISO 9126 quality model for external and internal quality.



94 3. FOUNDATIONS

The totality of characteristics of the software product from an internal view. Internal

quality is measured and evaluated against the Internal Quality requirements. Details of

software product quality can be improved during code implementation, reviewing and

testing, but the fundamental nature of the software product quality represented by the

Internal Quality remains unchanged unless redesigned. (ISO/IEC, 2001a)

Finally, Quality in Use is redefined in the last technical report as:

the user’s view of the quality of the software product when it is used in a specific envi-

ronment and a specific context of use. It measures the extent to which users can achieve

their goals in a particular environment, rather than measuring the properties of the soft-

ware itself. (ISO/IEC, 2001a)

In parallel with the evolution of the different ISO quality standards, some authors pro-

posed alternative solutions to unify the concept of quality. This is the case of the QUIM model

described next.

3.3.3 QUIM Model

The QUIM model [130] is a framework for quantifying usability metrics in software quality

models. Seffah et al. encompass most of the usability works in the aforementioned QUIM or

Quality in Use Integrated Map.

QUIM defines quality in use as:

Quality in use

Satisfaction

Safety

Productivity

Effectiveness

Figure 3.22: ISO 9126 quality model for quality in use (characteristics).



3.3. QUALITY MODELS 95

Figure 3.23: QUIM Structure and Usages.

The end user perspective of software quality.

QUIM is an integrated framework for measuring and specifying quality in use models.

QUIM establishes what factors, criteria and metrics should be developed, and what data should

be gathered to calculate these metrics.

Figure 3.24: Example of components relationships.



96 3. FOUNDATIONS

In QUIM, the analysis of the authors of the existing models conducted them to the defi-

nition and validation of 7 factors, 12 attributes and more than 100 metrics that are integrated

into QUIM. The Quality in Use Integrated Map uses a Graphical Dynamic Quality Assessment

(GDQA) model to analyse interaction of these components into a systematic structure.

Keeping the same idea of unification shown in QUIM, Auvo Finne proposes his own qual-

ity meta-model described in the next section.

3.3.4 Finne’s Quality Meta-Model for Information Systems

Finne’s quality meta-model is depicted in figure 3.25 (adapted from [40]). The numbering

and the arrows in the figure indicate the relative order in which the major model elements

first come into focus during quality modelling. The process starts with selecting informants

and attributes, and it ends by creating quality metrics. The whole model can be divided into

six main parts:

1. actor and informants

2. the attribute set

3. the attribute model

4. metrics

Figure 3.25: Finne’s quality meta-model extracted from [40].



3.3. QUALITY MODELS 97

Figure 3.26: Levels of abstraction in quality modelling according to [40].

5. the information system

6. the environment

According to [40], the meta-model is characterized by its “three-level” nature which in

words of the author (figure 3.26), “this refers to levels of abstraction needed in quality model-

ing. Discussion of the meaning of quality, attribute, collection, domain, attribute model, level

of modeling, etc. belongs to the highest level”. The lowest level is called the instance level and

it makes reference to “all system- and project-specific considerations and descriptions that

can be found at this level”.

The previous meta-model can be applied to general information systems. In the case of

user interfaces, we need concrete quality criteria that we can directly apply to UIs in order

to provide explanations about the design rationale. For this reason, quality guides related to

ergonomic criteria becomes specially relevant in the context of this research. These guides on

ergonomic criteria are the subject of the next section.



98 3. FOUNDATIONS

3.3.5 Ergonomic Guides

This section briefly describes two important ergonomic guides for the ergonomic criteria in

user interfaces.

3.3.5.1 Bastien and Scapin

In 1993, Bastien and Scapin presented a technical report entitled Ergonomic Criteria for the

Evaluation of Human-Computer Interfaces [7]. The technical report presents first a brief sum-

mary of the research conducted towards the design of ergonomic criteria for the evaluation

of human computer interfaces, and then, the full description of the most recent set of crite-

ria. The summary outlines the context in which the criteria were developed, the goal of the

criteria approach, the experiments conducted, and the results obtained.

The set of ergonomic criteria that resulted from this work consists of a list of 18 elementary

criteria (including the 8 main criteria). The criteria are presented along with their definitions,

rationales, examples of guidelines, and comments setting out the distinctions between some

of them.

The main criteria are the following:

1. Guidance subdivided into Prompting, Grouping (either by Location or Format), Imme-

diate Feedback, and Legibility.

2. Workload consisting of Brevity (subdivided itself into Concision and Minimal Actions)

and Information Density.

3. Explicit Control which is composed of the subcriteria Explicit User Action and User

Control.

4. Adaptability subdivided into Flexibility and User Experience.

5. Error Management composed of Error Protection, Quality of Error Messages, and Error

Correction.

6. Consistency that refers to the way the user interface design choices are maintained in

similar contexts.



3.4. SYNTHESIS 99

7. Significance of Codes that qualifies the relationship between a term and its reference.

8. Compatibility referring to the match between, on the one hand, the task characteristics

and users’ characteristics such as memory or skills, and on the other hand, the organi-

sation of the output, input and dialogue.

These criteria have also been used in different other guides. One of them is the Ergonomic

Guide by Jean Vanderdonckt which is presented in the next section.

3.3.5.2 Vanderdonkt’s Ergonomic Guide

Ergonomic rules are designed to enforce one or more criteria in the ergonomic design of

user interfaces. The Vanderdonckt’s Ergonomic guide [152] is composed of more than 3700

rules described along eight selected ergonomic criteria: Compatibility, Consistency, Work-

load, Adaptability, the Control of the dialogue, Representativeness, Guidance and Management

of errors.

Vanderdonckt characterizes each criterion by a name, a definition, a goal, and a hierarchi-

cal decomposition in basic criteria according to linguistic levels also defined in his work.

This guide is probably the largest recompilation of ergonomic criteria until today, and it

clearly shows the big effort that has been put in bringing quality to user interfaces.

3.4 Synthesis

In this chapter we have briefly reviewed the foundations that are necessary to understand our

research. We have firstly described the model-related initiatives as well as their terminology

and underlying concepts. We have then reviewed how the model-driven approach is currently

applied to the domain of HCI, describing the Cameleon Reference Framework, its models for

each level of abstraction, understanding how user interfaces are generated from models with

this approach. We have then briefly review the UsiXML language as well, the natural evolution

of the Cameleon Reference Framework.

Being able to qualify the quality of user interfaces is important to answer questions about



100 3. FOUNDATIONS

the design rationale. To this end, the chapter reviews how different authors have qualify the

quality in different aspects. The chapther then stresses the important of ergonomic criteria

for user interfaces, showing two well-known ergonomic guides.

Despite all this effort in producing high quality user interfaces, users still find problems

in the interaction. Based on these foundations and the related work presented in chapter 2,

we have now all the necessary elements to propose a solution for supporting users through

models, which is the subject of the next chapter.



4

Self-Explanatory User Interfaces

“ Just because we don’t understand doesn’t mean that the explanation doesn’t

exist.

”
Madeleine L’Engle,

RELATED PUBLICATIONS

1. GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Users need your models!

exploiting design models for explanations. In Proceedings of HCI 2012, Human

Computer Interaction, People and Computers XXVI, The 26th BCS HCI Group

conference (Birmingham, UK) (2012)

2. GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Xplain: an editor for

building self-explanatory user interfaces by model-driven engineering. In Pro-

ceedings of the second ACM SIGCHI Symposium on Engineering Interactive Com-

puting Systems (EICS 2010) (2010), ACM Press, pp. 41–46

3. GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Self-explanatory user in-

terfaces by model-driven engineering. In Proceedings of the second ACM SIGCHI

Symposium on Engineering Interactive Computing Systems (EICS 2010) (2010),

ACM Press, pp. 341–344

101



102 4. SELF-EXPLANATORY USER INTERFACES

As argued in previous chapters, the approach used in our research to support users at

runtime is Model-Driven Engineering (MDE). Model-Driven UIs are able to explore the UI

models at runtime, extracting the necessary information to support users. In this thesis, we try

to unify the extraction and exploitation of explanations from design models through different

contributions.

Firstly, the chapter describes the concept of Gulf of Quality, an extension of Norman’s

Theory of Action. The Gulf of Quality couples the perception of designers and users under

the same framework. This extension sets the basis for the hypothesis of this thesis presented

in the introduction, that allows us to state that the models used by designers at design time

are useful for supporting end users at runtime.

After this and based on this hypothesis, the chapter describes the design principles for

building model-driven help systems. They are described through a four steps approach. These

design principles explain a method for developing self-explanatory user interfaces from a

model-based perspective.

Later, the chapter describes a set of explanation strategies that are used by the self-explanatory

user interface to retrieve the necessary information from the underlying models of the UI, and

compose the answer based on that information.

Finally, the chapter ends with a synthesis of the proposed solution.

4.1 Introduction

Self-Explanatory UIs were defined as user interfaces with the ability of providing end-users

with information about the UI, in order to support the users at runtime. As an example, con-

sider the image shown in figure 4.1.

In this screenshot a message is displayed by request when the user asks information about

the window in the background. The objective is to generate these answers automatically at

runtime.

In the example of the figure, the user is requesting information from the UI through a



4.1. INTRODUCTION 103

Figure 4.1: A help message leads the user through the UI. English translation: “To select
the Non-Smoker Kit use the ’Select Non-Smoker kit’ CheckBox. The ’Select Non-Smoker kit’
CheckBox is located in the ’Select Extra Equipment’ panel.”

dialogue that proposes questions to the user. Once the user clicks on the question he/she

wants to ask, a help message is shown with the desired information.

Technically speaking, self-explanatory user interfaces can support users in different ways

using many different technologies. In the chapter State of the Art we have presented several

works from a diversity of computer science domains that address this problem from different

perspectives. In our research, we chose to explore model-based approaches of user interfaces

for several reasons. These reasons are discussed in chapter 2. To build self-explanatory user

interfaces with models, we firstly propose to extend the Norman’s Theory of Action with an

extension called Gulf of Quality. The description of both is the goal of the next section.



104 4. SELF-EXPLANATORY USER INTERFACES

4.2 Gulf of Quality

Inspired by the Isatine framework1 [82], we reuse Norman’s Theory of Action to define the hy-

pothesis on which the concept of Gulf of Quality is based. Norman stated ([106]) that any ac-

tion of the interaction between humans and computers consists of seven cyclic stages. These

stages are categorized into two gulfs (figure 4.2) that designers must ideally overcome:

Gulf of Execution is the gulf getting from the intention to execution.

Gulf of Evaluation is the gulf involved in interpreting and evaluating the system response.

The Theory of Action relies on the hypothesis that end users elaborate mental models of

the interactive systems, and that these models determine end users’ behaviour during the

interaction. We extend the theory to explicitly consider design models (figure 4.3) as follows.

When the designer of a UI interacts with the interface as a normal user does (figure 4.3),

according to the Theory of Action he/she makes mental models that determine the interac-

tion process. However, we claim that the designer’s behaviour is also determined by other

models related to the design process.

Examples of these models that may influence the designers’s behaviour are task models

and design rationale, classically expressed using notations such as QOC ([83]) or DRL ([73]).

Because designers of an interactive system understand the system they design, their mod-

els are supposed to be more complete and accurate than end users’ mental models. This fact

explains why designers don’t need the same support as end users and why they don’t find the

same problems in the interaction. Moreover, some works identify design models as being key

for understanding the UI, for example [133] stated that changing the platform of a UI leads

to the reexamination of the initial designs. This fact sets the basis for our working hypothesis

already presented in the introduction:

1ISATINE [82] is a multi-agent architecture that decomposes the adaptation of a user interface into steps that can
be achieved by the user, the system and by other external stakeholders. The user can take control of the adaptation
engine by explicitly selecting which adaptation rule to prefer from an ad- aptation rule pool in order to express the
goal of the adaptation more explicitly but does not provide a mechanism to utilise multiple configuration techniques
at run-time.



4.2. GULF OF QUALITY 105

Figure 4.2: Norman’s Theory of Action.

Design models are suitable for supporting end users in the interaction process.

The immediate consequence is that design models can enrich end users’ support, so they

will better understand the UI. Therefore, they’ll have less problems in the interaction.

To directly take into account design models for supporting purposes, we introduce the

concept of Gulf of Quality.

We define Gulf of Quality in interaction, or simply Gulf of Quality as

The distance between the design models the designers create at design time and the

mental models the end users make at runtime while interacting with the system.

Figure 4.4 shows a graphical representation of the concept of Gulf of Quality. Note how

the term “design models” considered in the previous definition has a different sense as in the

Theory of Action. Norman denotes “design models” to the designer’s mental model ([107],

page 47), while we explicitly consider the design models used to develop and produce the



106 4. SELF-EXPLANATORY USER INTERFACES

Designer

as End‐User

Figure 4.3: Design models influence the designer’s behaviour in the interaction process.

Designer End‐User

Figure 4.4: Gulf of Quality.

user interface from a model-based perspective.



4.3. DESIGN PRINCIPLES 107

Model-Driven approaches are suited for reducing the Gulf of Quality for several reasons.

Firstly, these design models are explicitly defined by designers at design time. In fact, as shown

in the chapter Foundations, models are used to directly generate the user interface. For in-

stance, the Final UI in the Cameleon Reference Framework is generated from models such as

the Task model or the Abstract UI model.

Secondly, a large effort has been put in model-driven engineering to keep models alive at

runtime. And because these models are alive at runtime, they could be also used not only for

generating the user interface, but also, if possible, to help users to better understand the user

interface at runtime, providing them with explanations extracted from all these models.

The next section describes the design principles that are needed to reduce the Gulf of

Quality by automatically extracting from design models the relevant information that is useful

for supporting end users.

4.3 Design Principles

This section firstly establishes the necessary functionality that we consider for our help sys-

tems. Based on this functionality, we then present the design principles described through

a four steps methodology. These principles are necessary to understand the conceptual so-

lution as well as the architecture that implements this solution, which is presented later in

section 4.4.

4.3.1 Help Systems Functionality

Help systems generated with our approach are responsible for:

• Providing means for asking for support. Designers must choose the way end users will

ask for assistance so the system can understand the request. For instance, natural lan-

guage dialogues or contextual help menus are valid for this purpose.

• Computing the support the end user is asking for. Once the question is understood by

the system, its answer needs to be computed. For instance, if the end user asks how



108 4. SELF-EXPLANATORY USER INTERFACES

to configure the recto-verso printing option, one possible answer the help system can

compute is the necessary steps the end user needs to do to access the dialogue where

this option is. Using our approach, the help system will query some design models to

find the location of the recto-verso option and will compute the required steps that the

end user needs to do to display it.

• Presenting the computed support. The computed answer must be provided to the end

user in an understandable way. Natural language is a common option but designers can

use any others with our approach, for instance, an animation of the mouse cursor that

shows all the steps that are needed to configure the recto-verso option.

Figure 4.5: Explanation through a query paradigm.

We support users through an explanation query paradigm (for instance, [156, 69]), where

users can obtain explanations to questions about the user interface. Figure 4.5 represents this

approach. The user on the left side interacts with the application normally, which is repre-

sented through the regular interaction arrow. The represented application is a model-based

application composed of models, but it could be of any other nature. When the user wants

to request information about the user interface, he/she requests this information by asking

a question to the help facility. This help facility, the self-explanatory facility in our case, re-

ceives the request and retrieves the information from the knowledge-base. This knowledge

base is composed of models in our research. Once the necessary information has been lo-



4.3. DESIGN PRINCIPLES 109

cated and retrieved from the sources, the help facility computes the explanation and provides

the answer back to the user.

As previously stated, our research proposes the use of models to support users at runtime.

According to this and with the aim of supporting the previous functionality, the next section

describes the design principles for building Model-Driven help systems supporting this func-

tionality.

4.3.2 The Global Approach

According to the previous help systems functionality, the self-explanatory facilities generated

with our approach are responsible for:

Generating the set of questions. In our research we consider those questions that the help

system “knows” how to answer by inspecting the underlying models of the UI. For this

reason, it is convenient to generate these questions as well. By doing this, designers can

propose to users the questions for which the system knows an answer.

Generating answers. Once the user asks a question to the help system, the help system needs

to compute an understandable explanation or answer. This is done through the follow-

ing three steps:

Selecting the Explanation Strategy. In this phase the help system selects the explana-

tion strategy that will be used for such a question. The explanation strategy is se-

lected according to the type of the question, meaning that the explanation strategy

responsible for answering “How” questions, will probably inspect different mod-

els, retrieving different information, from the explanation strategy responsible for

“Why” questions.

Inspecting the models. Each explanation strategy will inspect one or more models to

retrieve the elements that have been defined for each strategy. This elements will

be used to compose the information that the user is requesting for.



110 4. SELF-EXPLANATORY USER INTERFACES

Tasks Level

Abstract Level

ConcreteUI Level

Final UI Level

Transformation

Self-Explanatory UI
1

2

3

4

Figure 4.6: Global approach for Self-Explanatory help sytems.

Composing the answer. Once all the elements of the models have been retrieved, the

answer can be composed and prepared to be presented.

Presenting the answer. The computed answer is provided to the user in an understandable

way such as natural language.

Figure 4.6 describes the global approach graphically. First, a question is requested by the

user (1). Each explanation covers a specific type of questions. Thus, the explanation strategy

that corresponds to the question type inspects the models of the user interface at runtime

(2). The explanation strategy retrieves all the elements from the underlying models (3), and it

finally composes the desired answer that will be provided back to the user (4).

Consider the example described in figure 4.7. The user asks the question “How to select

the external colour?” through the self-explanation facility (1). The self-explanatory UI in-

spects the models of the target application at runtime (2). The explanation strategy responsi-

ble for answering How questions, searches for the elements that are necessary to answer such



4.3. DESIGN PRINCIPLES 111

type of questions, it then retrieves these elements from the models, composing the answer

which is presented later to the user (4).

With this global approach in mind, the next section describes the design principles for

building model-based help systems.

4.3.3 Design principles

Design principles for explaining how to get end users’ requests, how to extract explanations

from design models according to these requests, and how to provide the extracted informa-

tion back as support, are described through a four steps methodology. This methodology will

ensure certain properties of these help systems, that are discussed later in the chapter. The

four design principles cover respectively the four following questions:

1. how to build the UI of the help system

2. how to build the UI of the application

3. how to add support for computing help

4. how to weave both UIs into a one single user interface

The goal of these principles is to come up with a model-based self-explanatory facility that

can be used to enrich the user interface of an application. The procedure of building such

self-explanatory facility is summarized in figure 4.8. In the figure, the left side models are

Figure 4.7: Example of the global approach.



112 4. SELF-EXPLANATORY USER INTERFACES

Figure 4.8: The design principles explain how to build a self-explanatory UI based on models
that is able to answer questions about the UI of the Application.

those related to the user interface of the application, i.e., the models used for building such

UI. Similarly, the models on the right side of the figure are those used for building the UI of

the help system. The combination of both produces the full application with self-explanation

ability.

The four principles for building such self-explanatory user interfaces are described in or-

der in the following, illustrated through an example.

4.3.3.1 Building the UI of the Help System

First, we build the UI of the help facility according to a model-based approach as the one

presented in the chapter Foundations, this is, defining the classical UI models in a first step,

and applying then top-down transformations on these models to obtain the code of the user

interface at the end of the process. In our research, we use the same four levels of abstraction

of the Cameleon Reference Framework.

As an example, consider the construction of the help facility shown in figure 4.9. In this

example, the task model at the top of the figure is transformed to a Abstract UI represented

by blue boxes, which is in turn transformed into a Concrete UI represented with a mock-up.



4.3. DESIGN PRINCIPLES 113

This Concrete UI is then transformed into code producing the Final UI at the bottom of the

figure. All the transformations that have been applied are represented with red arrows.

4.3.3.2 Building the UI of the application

In the second phase, the UI of the model-based application needs to be constructed following

the same model-based approach that has been selected before. This is necessary to ensure

certain of the properties that we are going to explain later in the chapter. From a model-

based point of view, the models of the UI of the application and the models of the UI of the

help system must conform to the same meta-models. For instance, if we are building the UI

of the help system with the Cameleon Reference Framework models, the models of the UI

of the application must be built using the same meta-models from the Cameleon Reference

Framework.

Figure 4.9 summarizes this procedure graphically for the UI of an example desktop appli-

cation.

Note that this approach does not set any restrictions on what models are needed to gen-

erate the UI. For those applications having non model-based UIs, reverse engineering tech-

niques can be applied to obtain these models in a bottom-up transformation process from

code to tasks ([81]).

4.3.3.3 Adding support for computing help

According to the hypothesis, the design models are suitable for supporting end users at run-

time. In this phase, designers must add generic ways of computing explanations from these

models in order to support the users at runtime. As previously shown in the chapter State

of the Art, several works describe how to use specific models for this purpose. In particular,

these works present specific solutions for specific types of questions. For instance, Why and

Why not questions ([153] or How questions [114]

Our approach shows how to unify all these methods and how to use them together at

runtime. Designers are free to exploit other models from other model-based approaches as



114 4. SELF-EXPLANATORY USER INTERFACES

Figure 4.9: Building a model-based self-explanatory user interface.



4.3. DESIGN PRINCIPLES 115

Figure 4.10: Building the UI of an example application according to the Cameleon Reference
Framework. Left: Source models. Right: Excerpt of the Final UI.

there are no restrictions about what models to use. Note that these approaches are based

on generic answers, i.e. designers do not need to write all the possible answers for all the

possible “why this happens?” questions, but only the mechanism that computes the answer

from the underlying models. In our research and according to the second hypothesis, we ex-

ploit the Cameleon Reference Framework models at runtime as the knowledge-base of the

self-explanatory user interface. To this aim, we propose a set of Explanation Strategies that

designers can use for computing different answers to different types of questions, all of them

based on the models of this framework. Readers can find all the Explanation Strategies de-

tailed later in this chapter.

4.3.3.4 Weaving the UIs

In the final step, designers can mix the help UI with the application UI at different levels.

Models composition has been discussed by many authors in MDE (e.g. by [77]). As model

composition is not the focus of our research, we briefly discuss some advantages and dis-

advantages of weaving the help UI with the application UI at different levels of abstraction.

Figure 4.11 describes four possible ways of weaving both user interfaces. Each of the central

arrows represent a different way of weaving or mixing both the UI of the application and the

help system. Each colour represents a developing path from which a Final UI, composed with



116 4. SELF-EXPLANATORY USER INTERFACES

both user interfaces, is generated.

Figure 4.11: Generation of a model-based help system. Each column represents the models
and transformations that produces the source code for the application UI (left) and the help
UI (right). Different combinations for weaving both UIs are represented in the centre of the
image.

For instance, the grey path represents a way of weaving both UIs at the task model level,

i.e., weaving the task models of the UI of the application and the help UI into one single task

model, and then transforming this task model into the correspondent Abstract UI, this one

into a Concrete UI, which is finally transformed into the Final UI.

A second alternative path involves mixing both UIs at the Abstract UI level. In this case,

the task models of the application and the help facility remains independent, and one AUI is

composed containing the information from the two different AUI models. At this point, the

procedure for generating the Final UI is again the same, transforming this AUI into a CUI, and



4.3. DESIGN PRINCIPLES 117

transforming the last one into the Final UI.

The third path is similar but mixing the UIs at the Concrete level. Thus, the UI of the

application and the UI of the help system share both the CUI and Final UI models, but the

task and abstract models from the previous levels remain independent.

A fourth possibility is to directly compose the UI at the Final UI level, mixing the code that

has been generated by both transformation chains in an independent way.

Each of these alternatives present different advantages and disadvantages from the per-

spective of the help system. Weaving at higher levels of abstraction implies a decrease in the

total number of models. For instance, if both UIs have been weaved at the task level, the to-

tal number of models in the final composed UI will be six, the two initial task models, one

for the UI of the application and one for the UI of the help system, plus one task model re-

sulting of the mixing of the previous models, plus the necessary AUI, CUI and FUI models.

(Note that we are taking into account only those models directly related to the Cameleon Ref-

erence Framework, and not other external models such as quality models or design rationale

notations).

The total number of models increases at the same time that we decrease the level at which

the mixing is performed. Mixing at the AUI level results in 7 models following the previous

reasoning, 8 models at the CUI level, and 9 models if the composition is done at the FUI level.

The implications of this for the help system are the following. First, as the help facility

exploits design models at runtime, reducing the number of models will result in increasing

the performance of the help system, because the number of models to explore is lower.

However, reducing the number of models by weaving at the more abstract levels has also

the disadvantage of losing the information related to each UI. For instance, if the designer

weave both UIs at the task level, the designer does not really know what elements of each

model belongs to the help UI and what don’t. One may need to make the distinction for many

reasons such as for tuning the visual aspect of the help UI at the CUI level. In the case of weav-

ing at the FUI level, the help models are completely separated from the application models,

so customizing the UI of the help is easier because it only implies modifying the models of the



118 4. SELF-EXPLANATORY USER INTERFACES

UI of the help before generating the code.

The choice of how to weave the UIs remains open for the designers, and our approach

does not set any restrictions about how to do it. For example, the weaving of both UIs can

be done even if only a limited set of models is available for one of the UIs. This is the case

of those legacy applications where only the FUI of the application is available. Here, the self-

explanatory facility can be modelled following the full top-down procedure involving the four

levels of abstraction, and then, mix the resulting FUI of the self-explanatory facility with the

FUI of the application.

According to the Global Approach early presented in section 4.3.2, the help systems built

according to our approach and following these design principles need to define one explana-

tion strategy for each type of question that wants to be supported. These explanation strate-

gies are the subject of the next section.

4.4 Explanation Strategies

Given a question, the self-explanatory user interface needs to retrieve the necessary informa-

tion from the underlying models of the user interface, and compose the answer based on that

information. This is the role of the Explanation Strategies presented in this section.

An explanation strategy is responsible for computing the answer that corresponds to one

specific type of question. In consequence, different types of questions are then managed by

different explanation strategies.

All the explanation strategies are illustrated through a real example. This example is a

car shopping website (figrue 4.12). We will explore the models of the user interface of such a

website for each of the different explanation strategies.

4.4.1 Determining the Appropriate Explanation Strategy

As previously described in the Global Approach, we state that each type of question can be

answered by one specific explanation strategy. We define then different explanation strate-



4.4. EXPLANATION STRATEGIES 119

Figure 4.12: The car shopping website example.

gies, one for each of the different types of questions that we want to be supported by our

self-explanatory help system. These questions are also generated by the self-explanatory fa-

cility.

We describe in the following different explanation strategies for different types of ques-

tions. We currently support six different types of questions that have been reiteratedly used

by one or more approaches as shown in the state of the art. We built all these explanation

strategies upon the main models of the Cameleon Reference Framework. The question types

are:

Procedural answering How questions.

Purpose or Functional, that provides feedback about What is it for questions.

Localization that replies to Where questions.

Availability answering the question What can I do now.

Behavioural explaining Why/Why not things happen in the user interface.



120 4. SELF-EXPLANATORY USER INTERFACES

Figure 4.13: Models used for generating questions (left) and answers (right).

Design Rationale that answers questions about the design rationale of the UI.

Once the user asks a specific question, the self-explanatory facility will automatically re-

trieve the type of the question to determine which explanation strategy needs to be launched,

and thus, what models will be inspected.

Figure 4.13 gives an overview of the different models that are involved in the generation of

the questions with their respective answers. For instance, procedural questions such as “How

to select a car?” are all generated using the task model, which is represented with the link be-

tween the Procedural box on the left side of the image, and Task Model in the centre. Answers

to procedural questions are computed by using elements of the Mapping, Tasks, Abstract UI,

and Concrete UI models, as represented in the image with the four links from the procedural

box on the right side of the image to each model in the centre.

In the following, we detail the different explanation strategies that we have developed for

each of the six question types. For each of them, we provide an explanation of how the ques-



4.4. EXPLANATION STRATEGIES 121

tions of such type are generated, how the answers are computed, and we provide for each a

graphical visualisation of the explanation strategy along with a UML sequence diagram de-

scribing the process of generating the answers. The procedure is also documented with an

example.

4.4.2 Procedural Questions - How

This section explains how to develop an explanation strategy to support How questions. How

questions are requests that ask for the way in which a task can be accomplished. For instance,

for the car shopping website a user can ask “How to select Packs?”. The information that the

user expects is the description of the procedure to accomplish the task, in the example, the

instructions that show the user how to select different packs for a car.

4.4.2.1 Generating Questions

We use the CTT notation in which there are four kinds of tasks: User tasks, Application tasks,

Abstract tasks and Interactive tasks. During the interaction with the system, users perform

interactive tasks by using the elements of the UI. In other words, an interactive task is always

mapped to one or more interactors at the CUI level during the transformation process. It

makes then sense to generate questions of the form:

How to + Task.name + ?

Figure 4.14: Excerpt of the task model of the car shopping website.



122 4. SELF-EXPLANATORY USER INTERFACES

where the task is an interactive task. To generate this type of questions, the explanation

strategy can then explore the task model recursively from the root to the leaves. For each node

representing an interactive task, the explanation strategy creates a question in a textual form

according to the previous grammar.

For instance, if we consider the excerpt of the task model of the car shopping website

example shown in figure 4.14, the list of questions that are generated by this approach are the

following:

• How to Configure the car?

• How to Select packs?

• How to Select extra equipment?

• How to Add external equipment?

• How to Add internal equipment?

• How to Add decorations?

• How to Add functional equipment?

These questions are generated because all these tasks are of type interactive, as previously

explained.

4.4.2.2 Retrieving Information

According to the task model, an interactive task is always mapped to one or more interactors

at the CUI level during the transformation process. Thus, the user needs to interact with

such interactors in order to complete the interactive task (from now on, requested task). A

possible way of answering a procedural questions is then to indicate to the user what are the

interactors that he/she needs to interact with in order to accomplish the requested task. A

possible way of answering a procedural questions is then by retrieving the interactors in the

CUI model, starting from the requested task at the task level.

Figure 4.15 describes the previous process graphically.

The explanation strategy first locates the task inside the task model. Second, it inspects

the mapping model that maps tasks to AUI elements from the AUI model, so it can retrieve



4.4. EXPLANATION STRATEGIES 123

Self-Explanatory UI

“How” questions

1

2

3

4

5

Figure 4.15: Explanation strategy for “How” questions. The question identified as How (1)
is used by the explanation strategy to locate the task of the question (2), then to follow the
mappings to reach the widgets at CUI level (3), retrieve these widgets (4) and provide the
answer back (5).

the abstract UI elements that resulted from transforming the requested task into abstract user

interactors. Once the AUI elements have been found, the explanation strategy repeats the

procedure to locate the CUI element derived from the AUI elements. This is done by inspect-

ing the mapping model that keeps track of the transformations of AUI elements into CUI ele-

ments. Once the CUI elements have been retrieved, these CUI elements are used to composed

the final answer as described in the next section.

As an illustration, consider the models of the car shopping website shown in figure 4.16. At

the top of the figure, an excerpt of the task model shows how the “Select packs” task is trans-

formed into its respective AUI element in the middle of the figure. The AUI element called

“Select packs” is in turn transformed into a CUI panel which is part of a tabs component. For

clarity, the figure only shows those transformations and elements of models that are relevant

in this example.



124 4. SELF-EXPLANATORY USER INTERFACES

Figure 4.16: Example of information retrieving for How questions. Mappings are followed
from the Task model to the AUI (1) to find the AUI elements in which the task is transformed.
Then, CUI elements are retrieved with same procedure (2).

Every time that a transformation is performed, a mapping between the source and the

target is kept according to the mapping model, so the three ATL-rules shown in the figure

will generate three mappings that can be in consequence obtained by inspected the mapping

model.

The figure 4.17 summarizes the previous reasoning in a sequence diagram.

4.4.2.3 Providing Support

The composition of the answer is done according to the following grammar:

Use the + CUI-element.name + CUI-element.type [+, CUI-element.name + CUI-element.type]*

By construction, there is always at least one CUI element in which an interactive task is

transformed. An example of a computed answer using this approach is:

Use the Packs tab



4.4. EXPLANATION STRATEGIES 125

Figure 4.17: Sequence diagram for computing How questions

where the CUI-element.name is “Packs” and the CUI-element.type is “tab”.

Note that the answer can be completed with the information about the localization of the

widget, which is computed later in the Where questions. In this way, a more elaborated answer

for CUI elements that were not directly visible from users can be composed as follows:

Use the + CUI-element.name + CUI-element.type + in the + CUI-element.parent.name +

CUI-element.parent.type

where an example is:

Use the Pack Connected Drive checkbox button in the Packs tab

Here, the CUI-element.parent.name is “Packs” and the CUI-element.parent.type is “tab”.

4.4.3 Purpose/Functional Questions - What is it for

In this section we describe an explanation strategy for questions of the type What is it for,

as well as an algorithm for generating such type of questions at runtime. For instance, the

question “What is the Finitions button for?”.



126 4. SELF-EXPLANATORY USER INTERFACES

This type of question provides information about the goal of a certain component of the

UI. The information that the user expects to have is to know what is the utility of such element.

4.4.3.1 Generating Questions

During the interaction with the system, users perform tasks by using the elements of the UI. If

we consider graphical UIs we then talk about widgets. The ultimate goal of a widget is to serve

for the task in the task model from which the widget has been generated. All the widgets are

then suitable to be used for questions of this type. According to this fact, it makes then sense

to generate the following type of questions for the different widgets of the UI:

’What is the + CUI-element.name + CUI-element.type + for?’

An example of a purpose question is:

What is the Optional Equipment button for?

To generate these questions we then explore the CUI model recursively from the root to

the leaves. For each node representing a widget, we create a question in a textual form ac-

cording to the previous grammar.

For instance, consider the excerpt of the CUI model of the car shopping website in figure

4.18.

Figure 4.18: Excerpt of the CUI model of the car shopping website described in UML (top) and
represented using a mockup (bottom).



4.4. EXPLANATION STRATEGIES 127

The described algorithm for generating questions will generate the following list of ques-

tions for the CUI elements of the excerpt:

• What is the Configure the car tabgroup for?

• What is the Models tab for?

• What is the Engines tab for?

• What is the Finitions tab for?

• What is the Exterior tab for?

• What is the Interior tab for?

• What is the Packs tab for?

• What is the Equipment tab for?

• What is the Visualization tab for?

It is worth mentioning that there exists different widgets that users are usually not aware

of. For instance, Layouts structuring the widgets inside a Window are not visible for users, so

designers can optionally skip these widgets in the generation of questions.

4.4.3.2 Retrieving Information

We can consider this type of question as the opposite of the previous type How. In How ques-

tions, users are asking about elements at a higher level of abstraction (tasks in the task model),

whereas in this case we are being asked about the purpose of elements of a low level of ab-

straction (CUI elements from the CUI model). In the first case, we needed to retrieve CUI

elements from a given task. Now, we need to follow the inverse path to discover the task from

which a CUI element has been generated, which is the reason of the widget existence.

Figure 4.19 describe this process graphically.

As an example, consider the models of the car shopping website illustrated on figure 4.20.

From the bottom at the CUI level, the explanation strategy firstly retrieve the CUI element

from the CUI model. It then inspects the mapping model between the AUI and the CUI mod-

els, to retrieve the AUI element from which the AUI element has been generated. Once the AUI



128 4. SELF-EXPLANATORY USER INTERFACES

Self-Explanatory UI

“What is this for” questions

1

4

32

5

Figure 4.19: Explanation strategy for “What is this for” questions. The question identified as
of type Purpose (1) is used by the explanation strategy to locate the CUI element asked in
the question (2). Once the CUI element has been located, the explanation strategy follows
the mappings to reach the task at the Task level (3), retrieving the task (4) and providing the
answer back to the user (5).

element has been retrieved, the explanation strategy searches for the task originating this AUI

element, i.e., the source of the transformation chain, once again by travelling the mappings

from AUI to Tasks.

The previous reasoning is summarized in figure 4.21, which details the sequence diagram

for computing answers for this type of questions. We can clearly see how these questions are

computed in an opposite way to the How questions.

4.4.3.3 Providing Support

The composition of the answers for these questions is as follows. Once the interactive task has

been retrieved, the explanation strategy directly provide the name of the task as an answer.

For this purpose, the following grammar is proposed:



4.4. EXPLANATION STRATEGIES 129

To + task.name

Figure 4.20: Information retrieving for What is it for questions. Mappings are followed from
CUI to AUI (1) to retrieve the AUI element. Then, from AUI to Tasks (2) to find the task at the
source of the transformation chain.

Figure 4.21: Sequence diagram for computing What is it for questions



130 4. SELF-EXPLANATORY USER INTERFACES

For instance and following with the example of the Packs tab shown in the previous image,

the generated answer is:

To Select Packs

Even if this question is mostly useful for images or icons that have an unclear meaning,

due to the uniformity of the approach, the explanation strategy can also generate questions

and answers for the rest of the CUI elements, even if they are presented with textual infor-

mation that made clear the purpose of the object (such a label) as in the example covered

here.

4.4.4 Localization Questions - Where

We now detail how to generate questions of type Where as well as an explanation strategy

able to answer this type of questions. Where questions aim at localize into the UI a desired

element that the user is looking for. This question makes the assumption that the user knows

what is the element he/she wants to locate, so the user can ask about where this element is.

For instance, if we talk about graphical UIs, users can ask about the location of icons, options,

or any other kind of widget. Following with the car shopping website example, a user can for

instance ask the question “Where is the Non-Smoker kit?”.

The information that the user expects to get is the exact localization of the desired element

in the UI. For the previous question, the user expects to get the exact location of the Non-

Smoker option in the user interface.

4.4.4.1 Generating Questions

During the interaction with the system, users perform tasks by using the elements of the UI.

It is reasonable to consider that users can ask Where questions about CUI elements that they

see, they have seen, or they know that exist in the UI. Because of this, it makes sense to gen-

erate questions for all the elements of the CUI model for which the user can interact with.



4.4. EXPLANATION STRATEGIES 131

According to this, we can then propose the following grammar for the generation of Where

questions:

Where is the + CUI-element.name + CUI-element.type + ?

As in the example:

Where is the Non-Smoker kit?

As an illustration, consider the excerpt of the CUI model of the car shopping website pre-

sented in figure 4.22.

Figure 4.22: Excerpt of the CUI model of the car shopping website.

According to this excerpt, the list of Where questions that the previous algorithm generates

is the following (from bottom to top):

• Where is the Non-Smoker kit checkbox?

• Where is the Audio USB Interface checkbox?

• Where is the Bottle-Holder checkbox?

• Where is the Models tab?

• Where is the Engines tab?

• Where is the Exterior tab?

• Where is the Interior tab?

• Where is the Packs tab?



132 4. SELF-EXPLANATORY USER INTERFACES

• Where is the Equipment tab?

• Where is the Visualization tab?

• Where is the Configure the car tabgroup?

Readers should notice that, as well as in the previous case for What is it for questions, Lay-

outs elements in graphical UIs could be skipped when generating Where questions, because

users are usually not aware of Layouts and in consequence, it makes no sense for them to

ask where these elements are in the UI. But again, the approach presented here is completely

uniform and it generates these questions about Layouts as well. This could be interesting for

instance if we want to provide support for designers instead of end-users, localisation infor-

mation about Layouts could be considered as relevant.

Self-Explanatory UI

“Where” questions

1

4

3

2

5

Figure 4.23: Explanation strategy for “Where” questions. As the question is identified as of type
Where by the help facility (1), it is used by the explanation strategy to locate the CUI element
involved in the question (2). Once the CUI element has been located, the explanation strategy
retrieves the container CUI element inside the same CUI element (3). Once the container is
retrieved (4) its information is used by the help facility to compose the final answer (5).



4.4. EXPLANATION STRATEGIES 133

4.4.4.2 Retrieving Information

If the asked question is identified as of type Where, the explanation strategy defined for this

type of questions acts as follows. Firstly, the explanation strategy locates the CUI element

involved in the question inside the CUI model. When the element is located, the explanation

strategy explores the CUI model to identify the container element. This could be a panel, a

window, a toolbar, or any other container widget in the case of Graphical CUI models. Once

the container is retrieved, it is used by the help facility to compose the final answer. Note that

according to the CUI meta-model there is always one exact parent for all the CUI elements.

Figure 4.23 describes the process graphically according to our global approach.

Following with the car shopping website and considering the excerpt of the CUI shown in

figure 4.24, the parents of a CheckBox inside a Tab element is the Tab element itself. In the

same way, this Tab element is contained into a TabGroup container.

Figure 4.24: Excerpt of the CUI of the car shopping website. All the CUI elements such as Tabs
and CheckBoxes have one parent container by construction.

Figure 4.25 details the sequence diagram for computing answers for questions of type

Where.

4.4.4.3 Providing Support

Once that the CUI element has been located, and its parent container retrieved, the compo-

sition of the answer is done by the explanation strategy according to the following grammar:



134 4. SELF-EXPLANATORY USER INTERFACES

Figure 4.25: Sequence diagram for computing Where questions

’The + CUI-element.name + is on the + CUI-element.parent + CUI-element.type’

So for instance, the answer given by the self-explanatory facility to the question “Where is

the Non-Smoker Kit?” (according to figures 4.22 and 4.24 is:

The Non-Smoker kit is on the Equipment tab

where CUI-element.name is “Non-Smoker kit”, CUI-element.parent is “Equipment”, and

the CUI-element.parent.type is “tab”.

4.4.5 Availability Questions - What Can I Do Now

This section explains how to develop an explanation strategy to support What can I do now

questions. This type of questions are requests that ask about what the tasks currently available

to the user are, regarding the user’s current situation in the UI, i.e., depending on the current

task that the user is currently performing at the moment of asking the question.

The information that the user expects to obtain by asking this type of question is the list of

available tasks that can be performed at the time of asking. For instance, in the car shopping

website, when the user is interacting with the equipment tab as shown in figure 4.26

the possible list of tasks for configuring the equipment, including the selection of embed-

ded equipment, the selection of wheel rims, or the selection of maintenance contracts.



4.4. EXPLANATION STRATEGIES 135

4.4.5.1 Generating Questions

The What can I do now? question provides information about what tasks are currently avail-

able to the user regarding its current situation in the UI. Depending on the task that the user

is performing at the time of asking, some tasks will be available and others will not. As not

all the tasks are always available in every moment, answers for the same question can vary in

time. The presented question is then always of the form:

What can I do now?

4.4.5.2 Retrieving Information

The computation of the answer relies on the task model. The explanation strategy firstly re-

trieve the current task in the task model. As the task meta-model is based on the CTT notation,

we find the available tasks as follows. We firstly locate the current task in the task model. This

task model is always tree-form by construction because of the definition of the meta-model.

Once the current task has been located into the tasks tree, the explanation strategy computes

Figure 4.26: Configuration options under the Equipment tab.



136 4. SELF-EXPLANATORY USER INTERFACES

what sister tasks are available regarding the LOTOS operators used by CTT. This is done as

follows:

• If the task is preceded by the operators of Order Independence, Interleaving, or Choice,

the sister is added as an available tasks.

• For each sister identified as available, if it is connected to other sister tasks with the

same operators, this tasks are also added recursively as available.

Consider the excerpt of the task model of the car shopping website shown in figure 4.27.

In this figure, available tasks are highlighted with a square. Giving a current active task “Select

extra equipment”, the sister on the left, called “Select packs” is also available because both

tasks are connected through the binary operator of Interleaving. By repeating the process

recursively, all the right and left sisters are successfully identified as available.

The exploration of available tasks continues by recursively iterating from the current task

to the root task of the tree, adding the rest of available tasks, as well as to the leaves of the

task tree. As an illustration, consider the previous image, where the current task “Select ex-

tra equipment” is subdivided into several tasks (5 shown in the figure). Applying the same

algorithm to the children, all the leaves of the task tree are correctly identified as available.

All the tasks that have been identified as available by the previous algorithm, are used in

the next step to compute the answer that is provided to the user.

The figure 4.28 describes graphically the general process of requesting this type of infor-

mation, providing the general perspective according to the Cameleon models. This procedure

is also provided in the form of sequence diagram for the convenience of the reader (figure

Figure 4.27: Available tasks at the state shown in figure 4.26.



4.4. EXPLANATION STRATEGIES 137

4.29).

4.4.5.3 Providing Support

The Answer Generator receives the list of tasks that are currently available in the system. The

final answer is then composed simply by listing all the elements of the list according to the

next grammar:

You can + task-1.name + . . . + task-N.name

For example and following with the car shopping website, when the user access to the

Equipment tab, the answer to the question What can I do now? according to the excerpt of

Self-Explanatory UI

“What can I do now” questions

1

2

4

3

5

Figure 4.28: Explanation strategy for “What can I do now” questions. The question is identified
as of type Availability by the help facility in (1). The explanation strategy locates the current
active task inside the task model (2). The algorithm for finding all the currently available tasks
is then applied (3). The list of available tasks is recovered by the explanation strategy in (4).
Finally, the help facility composes the final answer (5).



138 4. SELF-EXPLANATORY USER INTERFACES

Figure 4.29: Sequence diagram for computing What can I do now questions

the task model shown in figure 4.27 is:

You can Select packs, Select exterior equipment, Select interior equipment, Add

decorations, Add functional equipment, Add embedded electronics.

Where Select packs, Select exterior equipment, Select interior equipment, Add decorations,

Add functional equipment, and Add embedded electronics, are all the available tasks computed

by explanation strategy in the previous step.

4.4.6 Behavioural questions - Why I can’t

This section explains how to develop an explanation strategy for Why I can’t questions. Why I

can’t questions are requests about why the user cannot achieve a specific task in the user in-

terface. It is normally related to disabled options or unexpected behaviour of the application,

this is, the user expects something to happen in the UI but it does not occur. The information

that the user expects to get is the reason of why he/she cannot do the specified task.

Consider for instance the situation described in figure 4.30. The figure shows the same

panel of the car shopping website in different states. The left side of the image presents the



4.4. EXPLANATION STRATEGIES 139

result that the user encounters when the selected car is not shown as expected. The right side

of the image shows the selected car when the user has correctly chosen the needed options.

A user facing the unexpected behaviour shown in the left side of the figure, could ask to

the user interface “Why I can’t Visualize the car?”.

4.4.6.1 Generating Questions

A mean for generating Why I can’t questions is to inspect what are the tasks inside the task

model that are somehow unreachable, i.e., those tasks that require a certain input to be acti-

vated. For instance, considering the example of a task A that needs some information from

the task B. This is represented in CTT with the following notation:

A []» B

This expression involves the operator Sequential Enabling with Information Passing as

defined in the CTT notation. This means that the task B cannot be started until the task A

has finished and it has provided the required data to task B. Due to this, B will be disable or

unreachable in the UI until that data arrives. For this reason, a possible question is Why I can’t

do B?

Following with this line of reasoning, a general approach for generating this type of ques-

tions is to look for those LOTOS operators into the task model that produces the previous

Figure 4.30: Unexpected behaviour (left) and expected result (right) of the Visualization tab.
The user gets no feedback about why the unexpected behaviour happens.



140 4. SELF-EXPLANATORY USER INTERFACES

Figure 4.31: Excerpt of the Task model of the car shopping website. The task “Visualize the
result” is enabled by all the previous sisters tasks because of the Sequential Enabling operator
represented by “»”.

situation. The explanation strategy that proposed here consider the Sequential Enabling op-

erator represented by the symbol “»”, and the Sequential Enabling with Information Passing

represented by “[]»”. Every time that the explanation strategy finds one of these operators, a

question is composed with the task on the right side of the relationship.

The composition of these questions follows the next grammar:

Why I can’t + task-N.name + ?

Where the task task-N is an unreachable task at some instant as previously defined.

Considering again the task model of the car shopping website, where an excerpt is shown

in figure 4.31, we observe that the task called “Visualise the result” is enabled by all the previ-

ous sister tasks. These tasks are highlighted with squares. In this example, the algorithm will

find that this task is unreachable because the operator, so the next question can be produced:

Why I can’t Visualize the car?

This question is also the unique question generated by the model presented in 4.31, as the

rest of operators are not of the specified types.

4.4.6.2 Retrieving Information

We consider the following explanation strategy to compute answers to Why I can’t questions.

For these questions, only the task model is exploited exactly as we did in the previous case for

the question What can I do now?. The condition for a task to be unreachable is to have either



4.4. EXPLANATION STRATEGIES 141

Self-Explanatory UI

“Why can’t I” questions

1

2

4

3

5

Figure 4.32: Explanation strategy for “Why I can’t” questions. Questions of type Behavioural

are treated (1) by the explanation strategy by locating the disabled task inside the task model
(2). The algorithm for finding the LOTOS operator that activates this task is then applied (3).
This information is recovered by the explanation strategy (4) and the help facility uses it to
compose the final answer (5).

a Sequential Enabling operator or a Sequential Enabling with Information Passing operator

on the left side. In addition, if we look at the task model we notice that all the elements of

a model, being either a task or a binary operator (operator between two sister tasks), have

always one unique parent. With this information, we realise that we only need to travel the

task model recursively to look for binary operators, and check whether the operator is of the

type Sequential Enabling or Sequential Enabling with Information Passing or not.

However, a task can be activated as well because a mother task becomes active. The expla-

nation strategy finds these tasks by travelling the mother tasks (up to the root), and locating

the LOTOS operators that enables the desired task, i.e., Sequential Enabling or Sequential En-

abling with Information Passing operators.



142 4. SELF-EXPLANATORY USER INTERFACES

The final algorithm involves then to travel the sister and mother tasks of the unreachable

task until we find the binary operator that enables such task.

After locating the operator enabling the desired task, the explanation strategy locates the

task or tasks on the left side of such operator. For instance, in the figure 4.31, all the left sisters

need to be done to activate the task “Visualise the result”, as a consequence of the operator

precedence. The computation of such tasks is done as follows. From the binary operator (the

» in the example of the figure), the explanation strategy explores the left task. This task is

identified as required, and the explanation strategy inspects the left operator of this required

task, if any. If this operator is one of Order Independence, Interleaving or Choice, the left task is

marked also as required and the procedure continues recursively. In the case of the example,

the “Select extra equipment” task has an interleaving operator on the left side (|||), so the task

on the left called “Select packs” is identified as required as well, and so on.

This procedure skips those tasks that are defined as optional.

Figure 4.32 describes the global process of answering Why I can’t questions in a graphical

way, whereas figure 4.33 details the algorithm in a UML sequence diagram.

Once all the operators have been retrieved, the explanation strategy has all the elements

for providing the support to the user, which is described in the next section.

4.4.6.3 Providing Support

If a task is not reachable it means that some task or tasks need to be done. The explanation

strategy uses the list of tasks enabling the unreachable task with a grammar that answers these

questions according to the following construction:

You need to + task-1.name [+, task-N.name]

where at least one task enables the unreachable task by construction, i.e., according to the

meta-model2, all the Sequential Enabling and Sequential Enabling with Information Passing

operators have always a source task (the task that enables) and a target task (the task being

2For a detailed description of the meta-models, see appendix B



4.5. SYNTHESIS 143

Figure 4.33: Sequence diagram for computing Why I can’t questions. The algorithm looks for
sister and mother tasks enabling an unreachable task.

enabled). For instance, in the case of the task ’Visualize the car’, the task was reachable by

performing the sister tasks on the left of the operator. The explanation strategy retrieves such

tasks with the same algorithm used in the model of the vehicle first. Then, the provided an-

swer by the system is:

You need to Select the model

where “Select the model” is task-1.name in the previous grammar.

4.5 Synthesis

The chapter describes a set of conceptual contributions issued from our research.

Firstly, the chapter describes an extension to the Norman’s Theory of action through the

concept of Gulf of Quality. The Gulf of Quality couples the perception of designers and users

under the same framework.

The chapter then describes the design principles for building model-driven help systems.

They are described through a four steps methodology.

The chapter then demonstrates how to define explanation strategies for each type of re-

quest. An explanation strategy defines how the necessary information to support users is



144 4. SELF-EXPLANATORY USER INTERFACES

retrieved from the knowledge base of the system, i.e., the underlying models of the user inter-

face, and how this information is provided back to the user.

The chapter illustrates these concepts through different explanation strategies that ad-

dress different types of request for supporting users at runtime. Each explanation strategy

can be customized according to the requirements of the user interface under study.

The chapter also describes how to generate a list of possible questions that the system

knows to answer. The way in which the list of questions is computed is dependent of the

question type, as well as each of the presented explanation strategies.

In total, six different types of questions and answers have been covered through six differ-

ent explanation strategies. These types are Procedural questions answering How questions,

Purpose or functional questions, that provides feedback about What is it for questions, Local-

ization questions that provides answer to Where questions, Availability answering the ques-

tion What can I do now, and finally, Behavioural questions that explain Why I can’t questions.

This set of questions belongs to the Usage axis of the problem space. The next chapter

describes how to address questions that belong to the Design Rationale axis.



5

Design Rationale Questions

“ The purpose of models is not to fit the data but to sharpen the questions.

”
Samuel Karlin,

RELATED PUBLICATIONS

1. GARCÍA FREY, A., CÉRET, E., DUPUY-CHESSA, S., AND CALVARY, G. QUIMERA: a

quality metamodel to improve design rationale. In Proceedings of the third ACM

SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2011)

(2011), ACM Press, pp. 265–270

2. GARCÍA FREY, A., CÉRET, E., DUPUY-CHESSA, S., AND CALVARY, G. QUIMERA -

toward an unifying quality metamodel. In Congrès INFORSID’11 (Lille, France,

May 2011), 6 pages. (2011)

Poor quality may lead to interaction problems. Bad designed UIs are one of the reasons

that increase the Gulf of Quality. Considering quality explicitly in the development of the UIs

can drastically reduce the gulf. Those UIs that have been developed with quality in mind,

have been proven to be better. For instance, as stated in [2], “results showed that the usability

problems identified at this level (FUI level) provide valuable feedback on the improvement

of platform-independent models (PIM) and platform-specific models (PSM) supporting the

145



146 5. DESIGN RATIONALE QUESTIONS

notion of usability produced by construction.”

Quality can however be used not only for reducing the Gulf of Quality at design time, trying

to assure that the UI that will be produced at the end of the development process will be

better because of the quality standards used in such process. Quality can be also used at

runtime for answering questions about the UI. For instance, questions about why the UI is the

way it is? can be supported by the quality criteria behind the decisions made at design time.

Moreover, quality can be also ideally used for addressing problems at runtime in those UIs

that have been designed without considering quality in the development process. With the

aim of using these quality models for explanations purposes, this chapter proposes a quality

meta-model. This quality meta-model is not devoted to HCI but, contrary to this, it unifies

different quality models of the literature. Moreover, this chapter also explains how quality

models can be combined with design rationale notations to keep track of design choices at

design time, bringing an argumentation tool that helps designers to create better products in

general, and better UIs in the case of HCI. This tandem between quality models and design

rationale will be exploited later for explanation purposes.

The chapter begins with the description of the concept of design rationale. It then briefly

describes different notations that have been proposed for keeping track of design decisions

made at design time.

Secondly, the chapter describes QUIMERA, a quality meta-model to improve design ra-

tionale. The chapter explains the different elements of the meta-model, providing also some

examples of how to instantiate quality models.

Thirdly, the chapter provides an approach for evaluating different design rationale alter-

natives through the perspective of the quality. This approach is funded on a design rationale

notation and a quality model based on QUIMERA. The approach is illustrated as well with an

example.

Finally, the chapter describes an explanation strategy to exploit all these elements to pro-

vide user with answers to design rationale questions.



5.1. DESIGN RATIONALE 147

5.1 Design Rationale

Design Rationale is defined in [3] as:

An explanation of why a designed artifact (or some feature of an artifact) is the way it is.

Different design rationale notations have been proposed for representing design deci-

sions. These notations follow two different approaches.

The first one is an argument-based representation. The first argument-based model is the

Issue-based Information System (IBIS) [70]. IBIS uses issues, positions, argument elements

and predefined specific relations among them to represent the design rationale. Several sub-

sequent notations were derived directly from IBIS. The Procedural Hierarchy of Issues (PHI)

[89], the DR language (DRL) [72], or the POTTS model [120] are some examples of this.

A different approach to capture the design rationale is based on functional representa-

tions. A functional representation centres on describing how the device works (or intended to

work) [98]. The Structure, Behavior and Function model (SBF) [42] belongs to this category.

An example of a QOC model is shown in figure 5.1. The example describes two alternative

widgets or interactors for the same task. In this case, designers propose several interactors to

let the user enter a date.

Figure 5.1: Example of a QOC model for choosing between two types of interactors

The first interactor is composed of three input fields, one for the day, one for the month,

and a third one for year. A label indicates format notations that the user must respect.



148 5. DESIGN RATIONALE QUESTIONS

The second interactor is a calendar widget that allows to select a date by clicking instead

of typing.

As shown in the figure, the calendar interactor does satisfy the three criteria (assessments

links represented with a normal line) whilst the interactor composed of three input fields does

not (assessments represented by a dotted line). In particular, the three criteria that we have

used in this example are:

Suitability for the task : A dialogue is suitable for the task if the dialogue helps the user to

complete her/his task in an effective and efficient manner.

Self descriptiveness : A dialogue is self descriptive if every single dialogue step can immedi-

ately be understood by the user based on the information displayed by the system.

Error tolerance : A dialogue is fault tolerant if a task can be completed without erroneous

inputs with minimal overhead for corrections by the human user.

The QOC model does not specify what type of criteria designers must use. In our research,

and following the notion of usability produced by construction discussed in [2], we propose

quality as the criteria that helps designers for choosing between different options. For in-

stance, the criteria shown in the previous example are quality criteria extracted from the ISO

9241-110.

For the purpose of this research, we reuse the “Questions, Options and Criteria” (QOC)

notation [84]. QOC focuses directly on the discussion between the different design alterna-

tives, making explicit what the design Questions are, what are the possible design alternatives

or Options, and the reasons or Criteria used to justify the selection of one of those options

among the others.

The main objective of QOC is the discussion of alternatives on specific artifact features.

For our purposes, we consider the following elements of the QOC notation:

Options that are artifact features under discussion.

Questions that are means of organizing the various Options, since every artifact feature re-

sponds to a specific design issue that can be framed as a Question.



5.2. QUIMERA: THE QUALITY META-MODEL 149

Criteria that are used to determine the choice between Options. Equivalently, they can be

seen as requirements or goals that have to be accomplished.

Assessments are links between Options and Criteria. If they satisfy a Criterion then the link is

represented with a normal line. If not, a dotted line is used instead (an example is given

below).

We have selected QOC because it is the more expressive design rationale representation

that works with different alternatives at the same time. Moreover, QOC makes explicit not only

the design questions but the reasons justifying the selected option by the means of explicit

links.

The use of quality criteria in model-driven approaches requires the construction of quality

models that describe quality in terms of quality criteria. Quality criteria can vary from design

guidelines to quality standards, covering not only HCI but software engineering in general.

With the aim of unifying the different aspects of quality, next section describes QUIMERA,

our quality meta-model. This quality meta-model will serve not only for applying quality to

model-based approaches but also for extracting design rationale questions based on quality

criteria, which will be covered in a later section.

5.2 QUIMERA: The Quality Meta-Model

Software Engineering quality models cover more than usability. They deal with other im-

portant aspects of general quality in the whole System Development Life Cycle. The previ-

ous chapter 3 reviews different quality models that deal with these aspects. However, whilst

several quality models exist in Software Engineering, most of them are oriented to evaluate

source code or final products and not models or modelling activities. Other models (for in-

stance, [88, 12, 67]) don’t deal with evaluation aspects (evaluation methods, results...) or they

just miss the different quality perspectives.

The quality meta-model presented in this chapter has been designed to overcome these

problems. Figure 5.2 shows the quality meta-model in detail. To overcome such limitations



150 5. DESIGN RATIONALE QUESTIONS

and unify the existing quality models under a unique meta-model, our quality meta-model

respects the following four basic principles.

Figure 5.2: Quimera: the quality meta-model

5.2.1 Principles

Our quality meta-model has been designed with respect to the following principles:



5.2. QUIMERA: THE QUALITY META-MODEL 151

1. The quality meta-model must be generic and domain independent.

2. The quality meta-model must be independent of the way in which the measurement is

done.

3. The quality meta-model must be independent of the type of quality criteria that com-

poses the meta-model.

4. The quality meta-model must be independent of the way in which argumentation is

done.

The first principle means that the quality meta-model is not limited to HCI and, in con-

sequence, instances of the meta-model should permit to represent any quality model that is

suitable for any other domains. For instance, one may want to measure the quality of a source

code, so a quality model for source metrics can be useful. In this case, the quality meta-model

must allow to instantiate this quality model to cover such a need.

The second principle prevents any assumption about the manner in which quality is mea-

sured or observed in any instance of the quality meta-model, i.e., in any quality model. In

other words, the quality meta-model must permit to its instances to define their own way to

produce quality measurements on the system under study. Moreover, the quality meta-model

must not force its instances to define quality measurements if they are not desired.

The third principle states that the quality meta-model does not force any specific quality

criteria. This has strong consequences in the design of the quality meta-model, because the

quality criteria of two different instances of the quality meta-model, this is, two different qual-

ity models, can propose a different structure for their quality criteria, and both cases must be

covered by the meta-model whatever the structure of the criteria is. For instance, Boehm’s

quality model [12] decomposes quality criteria into three different levels plus one level for

metrics, while the QUIM model [130] distinguishes between four different levels covering fac-

tors, attributes, metrics and data.

The fourth principle makes no assumption about how the quality models are linked to

the underlying products. To explain this point, consider the previous QOC example in which

quality criteria is used to chose between different design alternatives. Designers can choose



152 5. DESIGN RATIONALE QUESTIONS

one alternative from a group of possible alternatives, regarding which alternative presents

a better quality for the user interface. This discussion between different product alternatives

based on quality assessments can be captured using different design rationale notations as for

instance the QOC model used in this example. The fourth principle states that the previous

argumentation about what alternative/s to consider and how quality contributes to each of

the alternatives, must not be determined or influenced by the quality meta-model itself, i.e.,

the quality meta-model does not make any assumption on how this argumentation is done,

what design rationale notation is used, if any, and in consequence, how the quality criteria of

a quality model is linked to the different alternatives or elements of such alternatives.

A direct consequence of these four principles is that, as the quality meta-model makes no

assumption on the purpose of its instances or quality models, these instances should be able

to represent any of the four different perspectives of quality. These perspectives are analysed

in the following section, as well as how the instances of the quality meta-model relate to them.

5.2.2 Quality Perspectives

Any instance of the quality meta-model, i.e., a quality model, should be able to cover not only

the needs of both Software Engineering and HCI, but the four different quality perspectives in

which quality can be expressed according to [19]. These four quality perspectives are:

Expected Quality or the quality the client or user needs. It is defined through the specifica-

tion of the system under study (SUS).

Wished Quality is the degree of quality that the quality expert wants to achieve for the final

version of the SUS. It is derived from the Expected Quality.

Achieved Quality is the quality obtained for a given implementation of the SUS. Ideally, it

must satisfy the Wished Quality.

Perceived Quality is the perception of the results by the client or user once the SUS has been

delivered.



5.2. QUIMERA: THE QUALITY META-MODEL 153

Figure 5.3: Modelisation of Quality Perspectives

Figure 5.3 details how we relate a quality model to each of these perspectives. As stated in

[24], these four perspectives can be related to the Systems Development Life Cycle along three

dimensions. These dimensions are the Specification (related to the Expected and Wished

Qualities), the Implementation (related to the Achieved Quality) and the Use (related to the

Perceived Quality). We express these four perspectives with four different relationships (fig-

ure 5.3). The System entity represents the product for which a quality model is considered as

for instance, a user interface. SysEval represents a specific evaluation for that product.

We consider these four quality perspectives are four different uses of the same quality

model. The attribute standard of the QualityModel meta-class means that, when true, the

quality model is not linked to System and SysEval as it only represents a quality standard such

as ISO9241-110 or QUIM. In other words, the quality of these standards is not defined in terms

of a product, and it only represents the desired quality standard. This is useful to express that

in a given design process, we have already defined our quality standard but it has not been

applied to a specific product yet, so no quality measurements have been performed. This

attribute allows also to re-use different quality standards to different products. As a conse-

quence of this, some internal parts of the quality meta-model that are related to the evalua-

tion of a product based on the proposed quality standard (or whatever the quality criteria is),

are not necessarily defined when the attribute standard is true. This is detailed in the next

section, along with the quality meta-model that allows to define quality models for all these

different quality perspectives.



154 5. DESIGN RATIONALE QUESTIONS

5.2.3 The Quality Meta-Model

Figure 5.2 details the quality meta-model. A quality model is composed of criteria, that can

be recursively decomposed into subcriteria through the meta-class CriterionAssociation. For

instance, in the ergonomic guide from Bastien and Scapin [7] the Error Management criterion

is subdivided into Error Protection, Quality of Error Messages, and Error Correction.

Different Recommendations can be specified for each Criterion. A Recommendation is a

positive assessment that characterizes Criteria. For instance, a quality expert can suggest a

Recommendations for “keeping the complexity of the code low”. This recommendation can

involve one or more quality criteria.

Different Weights can be specified for each Recommendation to define which of them are

more important than others for the considered system. This allows designers to adjust the

global quality precisely.

The meta-model permits to evaluate the quality of a product. To this end, evaluations can

be performed through AssessmentMethods that are specified by Metrics and/or Practices. In

the first case, the measure is given by a Result that can be comprised between some Limits

when these limits are defined. In the case of Practices, the Result represents if a practice has

been followed with a value of 100% or not (0%). The value of the Result can be any intermedi-

ary percentage as well. Note that a Practice can be either a pattern or an anti-pattern, applied

at the process level, or on a product. Metrics and Practices are directly evaluated on Artifacts

through Recommendations. These Artifacts can be no matter what element of the Software

Development Life Cycle, such as code, classes of a model or even the model itself.

Once a quality standard has been defined through criteria, the quality meta-model can

be reused with the association relatedTo, and extended with several classes such as Assess-

mentMethods, Transformations or Artifacts, to represent the four quality perspectives. For

instance, Metrics can be defined in order to obtain some desired values (Wished Quality). The

importance of every Recommendation can be customized using Weights. Then, evaluations

of the current quality of the SUS can be performed. When a Result of an evaluation does not



5.2. QUIMERA: THE QUALITY META-MODEL 155

satisfy the expectations of the quality expert, this is, the Achieved Quality does not satisfy the

Wished Quality (for instance, the value for a Metric is not within the desired Limits), the de-

signer needs to increase the quality. This can be done by setting a Transformation or a set of

Transformations. These Transformations are performed on the related Artifacts on which the

Result has been previously calculated. Iterations on this process of adjusting quality by ap-

plying transformation on the different elements of the product or artifacts can be done until

the desired values defined by the quality expert (Wished Quality) are reached. GlobalResult

holds the general quality of a SUS at a given moment. The difference between GlobalResults

and LocalResults is explained in the next section.

5.2.4 Global Quality vs Local Quality

Figure 5.4 shows the different subsets of the quality meta-model regarding Global and Lo-

cal quality levels. To explain these levels, three vertical columns make explicit the following

information:

Objects that define quality in a concrete and explicit way using specific terms (for instance

what criteria is considered for the quality model) and how this quality is structured (for

instance, tree-based quality models having factors and metrics).

Methods used to measure the quality of an element in terms of the previous objects.

Results containing the values or output of the previous methods.

Based on these previous elements, we define the terms Global quality and Local quality as

follows:

The Global Quality level is the group of Objects, Methods and Results directly focused on

the general quality of a SUS.

The Local Quality level is the group of Objects, Methods and Results focused on the quality

of a given Criterion (and then, all the associated Recommendations).

As shown in figure 5.4, these levels are interrelated to the three vertical columns, making

explicit what Objects are being measured at the current level, which is the element responsible



156 5. DESIGN RATIONALE QUESTIONS

Figure 5.4: Global quality (green top box), Local quality (pink bottom box), and their relation-
ship to Objects, Methods and Results.



5.2. QUIMERA: THE QUALITY META-MODEL 157

of the measurement Method, and the quality level of the Result for such object.

The Global Quality of a SUS at a given moment according to a Quality Model is represented

by the GlobalResult meta-class, and it is directly computed following the formula described

in an AssessmentMehtod.

At the Local Quality level, the LocalResult meta-class represents partial contributions to

the quality of the SUS. Criteria is evaluated through Recommendations by RecommendationAssess-

mentMethods meta-classes, each of them providing one LocalResult. All these results are

weighed later at the Global level. The importance of each Recommendation is specified by

weights that can be used by the quality expert in the AssessmentMethod formula.

For a more detailed description of each meta-class and its attributes, please, refer to the

appendix A.

The next section describes how to use the quality meta-model to instantiate a quality

model, providing examples of instances and describing the instantiation process.

5.2.5 Quality Models: Instantiation Examples

This section describes two different case studies that shows two quality models for different

purposes. The first one is applied to HCI. The second one is applied to Software Engineering.

5.2.5.1 A quality model covering the ergonomic criteria in HCI

Figure 5.5 shows an excerpt of a quality model of Ergonomic Criteria in HCI according to the

ergonomic rules defined by Bastien and Scapin [7]. The criteria are divided into subcriteria

until the final ergonomic rules are derived. As an example, we describe the following three

subcriteria:

• Error Protection is a subcriterion of Error Management. It refers to the means available

to detect and prevent data entry errors or actions with destructive consequences.

• Minimal Actions is a subcriterion of Workload. It concerns workload with respect to the

number of actions necessary to accomplish a task.



158 5. DESIGN RATIONALE QUESTIONS

• Prompting is a subcriterion of Guidance. It refers to the means available in order to lead

the users to make specifications, providing the required formats and values.

A Recommendation is a positive assessment that characterizes one or more criteria. Fig-

ure 5.5 shows how different Metrics are used for the same Recommendation. This Recommen-

dation says that good quality can be achieved by maximizing the number of criteria that are

satisfied by a User Interface. To evaluate criteria, two different EvaluationMethods are defined

based on different formulas.

On the one hand, the first evaluation method, called Eval1, subtracts the number of un-

satisfied criteria from the total of satisfied criteria. On the second hand, the second evaluation

method, named Eval2, counts the number of quality criteria that are satisfied by the system

under study.

The next section proposes a different case study where a different quality model is applied

to evaluate a design method.

Figure 5.5: A part of the quality model of ergonomic criteria.



5.2. QUIMERA: THE QUALITY META-MODEL 159

5.2.5.2 Application to the evaluation of a design method

Originally developed by the UMANIS Company, Symphony is a method focused on business

components. It has been extended to include the design of complex interfaces [51]. Sym-

phony is based on the iterative identification and description of business components. The

extension of Symphony supports design of HCI concerns in a similar way: interactional entity

objects are basic interactional concepts, i.e. the graphical representation of a concept. Inter-

actional process objects describe the logic of the interactional domain, e.g. the management

of an immersive 3D scene.

The purpose of the research described in [22] is to verify that the use of interactional and

business objects and the management of communication between all these components im-

prove the final quality of the software. Thus, the quality of several implementations of the

same project has been measured and compared, and software quality criteria and metrics

have been defined and valued.

We have modelled these criteria and metrics according to QUIMERA. The resulting model

contains 39 classes. Figure 5.6 presents a subset of these elements. The figure shows two

criteria, reusability and maintainability. These criteria are refined when needed, e.g. main-

tainability is composed of independence, sizes and complexity criteria. Recommendations

are associated to criteria: according to [154], we defined that the cyclomatic complexity - the

number of linearly independent paths in the code, i.e. the minimum number of paths that

should be tested - has to be low so that the code can actually be tested. The different limits for

each metric have been modelled: cyclomatic complexity is good when lower than 4, and too

high when greater than 11 [22]. The numerical results have been represented and associated

to an artifact, here the whole application.

5.2.6 How to build a Quality Model

The previous examples have been built following a similar process. In this section we describe

this process, detailing the steps that the quality expert must follow to define a quality model,



160 5. DESIGN RATIONALE QUESTIONS

Figure 5.6: Subset of the objects of Symphony evaluation model.

i.e., how to correctly instantiate the quality meta-model. This description involves identifying

which classes of the quality meta-model (figure 5.2) are instantiated for each quality perspec-

tive. The whole process consist of the following five different phases:

1. Firstly, the quality expert must identify which quality standard is the more appropriate

to fit the product requirements, i.e., identify the relevant elements in the specification of

the SUS that are related to quality. These requirements are the Expected Quality. Once

the Expected Quality is extracted from the specification of the SUS, the quality expert

can now proceed to select the best quality model for such requirements. For instance,

an ISO standard, any other quality standard, or even a customized quality model based

on the criteria developed by the quality expert.

2. The quality meta-model can be instantiated now to represent the desired quality model

for the particular product. For this, the Criterion meta-class is instantiated using the

CriterionAssociation meta-class to structure the Criteria conforming to the selected qual-

ity model or standard. An example is shown in the right side of figure 5.7. Once all the

Criteria has been defined, specifying attributes and linking Criteria through the Crite-



5.2. QUIMERA: THE QUALITY META-MODEL 161

rionAssociation meta-class, the attribute standard from the QualityModel meta-class is

set to true. This indicates that only a standard is represented at this point and no other

classes are instantiated yet (such as metrics or transformations). This allows the quality

expert to re-use different quality models for other projects.

3. Thirdly, the quality expert can define the necessary recommendations based on differ-

ent metrics and/or practices, as well as AssessmentMethods to allow the system to per-

form automatic quality evaluations. To do this, the quality expert will turn the standard

attribute to false and will extend the quality model with all the necessary Recommen-

dations, Metrics, Practices and AssessmentMethods. This new extended version of the

Quality Model is able to compute the Achieved Quality through AssessmentMethods. For

those Practices that cannot be automatically evaluated such as Antipatterns, the qual-

ity expert can express the necessary LogicalResults as, for instance, if an Antipattern is

present or not.

4. The next step involves the definition of Limits of values for the desired metrics in case

the system has some. This is done instantiating the Limits meta-class for each desired

metric. This part of the Quality Model holds the Wished Quality, i.e., the values the

metrics must ideally reach. This new version of the quality model extended with the

definition of all the evaluation related elements, can be also re-used for different prod-

ucts.

5. The last step consists in defining the Transformation that will modify the underlying

Artifacts to increase the quality of the product, when the Achieved Quality is not enough.

These transformations can apply to one or more different artifacts.

Note that different iterations can be done in order to achieve the expected quality. For

instance, if the result of a metric is not achieved, i.e., the value of the NumericalResult is not

between the limit values, a transformation can be launched (if it has been specified) and per-

formed on one or more Artifacts trying to achieve the desired value. Then, the global quality

can be recalculated again and compared to the previous quality before the transformation.



162 5. DESIGN RATIONALE QUESTIONS

Figure 5.7: Example of an instance of the quality meta-model. The quality model is the stan-
dard ISO 9241-110. The instance shows a subset of seven criteria from this standard.

With the quality meta-model QUIMERA and its instances and a design rationale notation

such as QOC, we have now all the necessary elements to understand how to link both mod-

els and provide explanations for design rationale questions. The next section explains this

through an example oriented to user interfaces.

5.3 Design Rationale and Quality

Our proposition is to combine both the QOC model and the quality model by the use of qual-

ity criteria from the quality model as the criteria specified in the QOC model. To this end,

this section explains the combination of both models and describes how design alternatives

can be quantified from a quality perspective. Then, some advantages and limitations of this

proposition are presented.

5.3.1 Putting the Pieces Together

The combination of a QOC model and a quality model is shown in figure 5.8.



5.3. DESIGN RATIONALE AND QUALITY 163

Note that the quality model is not a merely representation of the ergonomic criteria from

the quality standard ISO 9241-110. Ergonomic criteria play different role because it can launch

transformations that affect to the system under study. To explain this idea, consider that the

quality expert has defined the criteria to be used (a subset of the ISO 9241-110 in this case) as

the one shown in previous figure 5.7.

By combining these criteria directly with the QOC model of the example, linking both

through assessments, we obtain the result shown in figure 5.8.

Figure 5.8: Graphical representation of the connection between the quality model (right) and
a design rationale notation, QOC in this example (left).

The quality model has all the elements of the comparison between both alternatives, the

one with the calendar widget, and the one based on input fields. The comparison can be

done according to the EvaluationMethods defined by the quality expert that are depicted in

the left part of the figure 5.7. These EvaluationMethods allow to quantify the quality of both

alternatives by using their included formulas for computation of the LogicalResults:

Eval1 = Number of satisfied criteria - Number of unsatisfied criteria

Eval2 = Number of satisfied criteria

The computation is based on the number of satisfied versus unsatisfied criteria depicted

in figure 5.7, so the following computation can be now performed for the first evaluation

method:



164 5. DESIGN RATIONALE QUESTIONS

Eval1(Calendar) = 3 - 0 = 3

Eval1(Text fields) = 0 - 3 = -3

and for the second evaluation method we obtain:

Eval2(Calendar) = 3

Eval2(Text fields) = 0

which concludes that the design alternative considering the calendar widget has a better

quality than the input fields, accordingly to the three criteria from the ISO 9241-110 that has

been selected by the quality expert, and the evaluation formulas Eval1 and Eval2 defined for

such criteria in EvaluationMethods inside the quality model.

At this point, a transformation that chooses the Calendar over the text fields could be

launched so that the final product, i.e., the user interface discussed through the design ratio-

nale notation, will contain a calendar as the selected widget instead of the other alternative.

This example illustrates how quality in general, and the quality meta-model in particular,

can be involved in the design process. Quality experts can take benefit of design rationale

questions by directly exploiting quality models through quality criteria, evaluating and ad-

justing the final product according to their quality expectations.

The next section discusses some advantages and limitations of the quality meta-model.

5.3.2 Advantages and Limitations

The tandem quality-design rationale provides interesting advantages for the designers:

1. Quality in design decisions becomes measurable.

2. Design decisions can be explained directly through quality models.

3. As a design rationale can be directly evaluated, two different solutions can be compared.

4. The quality model provides a mean for adjusting the quality of a system. For instance,

as we have shown in the previous example, one transformation could choose the input



5.3. DESIGN RATIONALE AND QUALITY 165

fields while other different transformation could select the calendar widget. This affects

the local results computed for that specific question, and thus, the global quality of

the product is also modified. Thus, our proposition makes explicit ways of achieving

the Wished Quality of a system, i.e., the global quality of a system can be adjusted by

regarding how a transformation increases or decreases the achieved quality.

5. As a consequence of the previous point, adaptation of UIs can be quality driven.

One limitation of the approach is that only one design rationale notation has been pro-

posed. Other different notations that do not have criteria defined in a explicit way, could

probably be used as well, but explicit links with the quality meta-model need to be defined

first.

Another limitation involves that improving the quality of the different elements of a sys-

tem separately, does not ensures that global quality of the system will be improved afterwards.

In other words, improving the local quality that affects to individual elements does not imply

that the global quality of the whole system will increase. This is due to the fact that all the cri-

teria are not necessarily compatible. For instance, the criterion Error Correction could imply

sometimes to increase the number of Minimal Actions needed to accomplish the task. Thus,

increasing one, reduces the other, and vice-versa.

With these concerns in mind, the question of how to evaluate a product semi-automatically

remains open. The quality meta-model can launch transformations that affect the local and

global qualities of the product so, how to search for the best combination of transformations?

What is the optimal algorithm? Is this algorithm automatic or semi-automatic?

As for every type of question, design rationale questions are computed by explanation

strategies. The next section describes the particular explanation strategy for this type of ques-

tions.



166 5. DESIGN RATIONALE QUESTIONS

5.4 Explanation Strategy

Questions about the design rationale of the UI are questions that ask about the reasons behind

the UI itself. We model these reasons as design choices made at design time by the designers

of the UI. The information that the user expects to obtain is the reasons of why the UI is the

way it is. This section explains how to provide design rationale questions at runtime, as well

as how to compute the answer that will be provided back to the user as support.

5.4.1 Generating Questions

Questions are retrieved directly from the QOC model. The explanation strategy reads the QOC

model and presents the possible questions to the users of the user interface.

For instance, an example of question about the design rationale of the UI is:

Why the engines are ordered by price?

5.4.2 Retrieving Information

As explained earlier, the QOC model is used by the designers to discuss different design alter-

natives for the UI. The discussion is sustained by quality criteria that reinforces the arguments

of the designers giving and objective point of view that helps to decide which design option

between a set of design alternatives is the most appropriate from the perspective of the qual-

ity.

As previously described in the section devoted to the QUIMERA quality meta-model, these

quality criteria that sustain the design decisions are elements of the quality model (see figure

5.10. They are linked to the QOC model thanks to a mapping model, in the same way that

we keep track of the transformations of a task to an AUI element. Thus, to retrieve the crite-

ria that justifies a design choice, the explanation strategy needs to, in first place, retrieve the

question in the QOC model. Then, the explanation strategy can follow the mapping that links

the question and options with the criteria that supports that design alternative. These criteria



5.4. EXPLANATION STRATEGY 167

belongs to the quality model. Finally, the explanation strategy can extract the criteria and use

them to compose the answer that the user needs.

Figure 5.9 details the sequence diagram for retrieving the criterion that justifies design

choices.

Figure 5.9: Sequence diagram for computing Design Rationale questions

5.4.3 Providing Support

Answering design rationale questions can be now done with the extracted criteria from the

quality model. These criteria is the reason that justifies the design choice being asked in the

question. Thus, a intuitive answer can follow the next grammar:

Because the ergonomic criterion + criterion.description

in case where only one criterion justifies the design decision, or:

Because the ergonomic criterion1 + criterion1.description + ... + criterionN +

criterionN.description

as for instance in the example below:

Because the ergonomic criterion ’Items of any select list must be displayed either

in alphabetical order or in any meaningful order for the user in the context of the

task’.



168 5. DESIGN RATIONALE QUESTIONS

Figure 5.10: QOC and Quality models linked through quality criteria. Design rationale ques-
tions are directly retrieved from the QOC model. Answers are provided according to the crite-
ria that support (Assessment) the selected option.

The next section provides an overview of the chapter.

5.5 Synthesis

In this chapter we have presented QUIMERA, a quality metamodel that unifies quality aspects

from HCI and Software Engineering, setting the bases for a quality driven adaptation of UIs

through quality models.

The chapter started with a review of the concept of design rationale, describing briefly the

main approaches for design rationale notations, and making focus on a specific notation: the

“Questions, Options and Criteria” design rationale notation, also known as QOC.

The chapter describes then QUIMERA, a quality meta-model to improve design rationale.

The meta-model is introduced by presenting the principles that guided its design, the

quality perspectives and how the quality meta-model deals with such perspectives. Then,

the chapter details the different elements of the meta-model, explaining its structure from

the optic of Global quality and Local quality.

After this, the chapter provides two different examples of instantiations of QUIMERA. The

first example is a quality model for HCI that is based on ergonomic criteria. The second ex-

ample is a software engineering based quality model for code-source metrics. Then, a four



5.5. SYNTHESIS 169

steps method is provided to describe how to instantiate the quality meta-model.

Later, the chapter provides an approach for evaluating design rationale alternatives through

quality criteria. The approach is funded on the QOC design rationale notation and a quality

model conforming to QUIMERA. The approach is illustrated through an example that shows

how to evaluate design alternatives with a real quality model. The discussion continues with

a discussion of some advantages and limitations of the approach.

The chapter ends with an explanation strategy for supporting design rationale questions

at runtime, which is based on both a QOC model and a quality model based on our quality

meta-model QUIMERA.

Next chapter presents the software contribution, which defines an architecture imple-

menting all the presented concepts, provides the details of the implementation of the dif-

ferent explanation strategies, presents a running prototype based on these concepts and the

results of an evaluation that we have carried out with real users.





6

Self-Explanatory UIs in Action:

Implementation and Evaluation

“ Talk is cheap. Show me the code.

”
Linus Torvalds,

RELATED PUBLICATIONS

1. GARCÍA FREY, A., CALVARY, G., DUPUY-CHESSA, S., AND MANDRAN, N. Model-

based self-explanatory UIs for free, but are they valuable? In Proceedings of the

14th IFIP TC13 Conference on Human-Computer Interaction (INTERACT’13), 2-6

September 2013, Cape Town, South Africa (2013), Springer,

2. GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Users need your models!

exploiting design models for explanations. In Proceedings of HCI 2012, Human

Computer Interaction, People and Computers XXVI, The 26th BCS HCI Group

conference (Birmingham, UK) (2012)

3. GARCÍA FREY, A., CÉRET, E., DUPUY-CHESSA, S., CALVARY, G., AND GABILLON, Y.

Usicomp: an extensible model-driven composer. In Proceedings of the 4th ACM

SIGCHI symposium on Engineering interactive computing systems (New York,

NY, USA, 2012), EICS ’12, ACM, pp. 263–268

171



172 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

This chapter firstly describes UsiExplain, a generic architecture for the development of

self-explanatory user interfaces. This architecture respects the design principles that a model-

based help system should follow, as presented earlier in chapter 4.

After presenting the generic architecture the chapter describes our specific implementa-

tion. For the purpose of the implementation, we have created UsiComp, an integrated and

open framework that allows designers to create models and modify them at design time as

well as at runtime.

Once the implementation details have been covered, the chapter introduces UsiCars, a

running prototype entirely based on UsiExplain.

The prototype UsiCars has been used for evaluation purposes. This evaluation is then

presented. It consists in a qualitative study carried on with twenty real users. The chapter

ends discussing the study, describing its findings and conclusions.

6.1 UsiExplain: A Model-Based Generic Architecture

Figure 6.1 introduces the principles of the architecture of the self-explanatory user interface.

The self-explanatory UI consists of a model-based help system or self-explanatory facility,

plus the user interface of the target application. Both UIs can be mixed into one single user

interface by weaving the UIs at different levels of abstraction as previously explained in chap-

ter 4.

Both user interfaces are model-based, so they are both composed of the user interface

models that are used to generate the user interface, plus the functional core, as depicted in

the picture.

The user interface is generated by transformation according to a model-based approach.

In the context of this research we have chosen the Cameleon Reference Framework1. The

models and meta-models involved in the generation of the user interface are directly accessed

by the self-explanatory facility when an explanation is requested by the user.

1For a description of the Cameleon Reference Framework, the different levels of abstraction of a user interface,
and how a UI is generated from models representing these levels of abstraction, see chapter 3



6.1. USIEXPLAIN: A MODEL-BASED GENERIC ARCHITECTURE 173

Figure 6.1: The Self-Explanatory User Interface consist of the UI of the application (right) plus
the self-explanatory facility (middle) being both of them model-based UIs.

This procedure of accessing the underlying models is done in the functional core of the

self-explanatory facility through five different modules. These modules in which this func-

tional core is decomposed are:

The Questions Generator The questions generator (QG) is responsible for generating the list

of questions that the system understand or is able to answer.

The Questions Renderer (QR) is responsible for the presentation of the list of questions.

The Interpreter The module Interpreter (I) is responsible for analysing the users’ request,

inferring the type of question and its different parameters if there is any.

The Processor This module (P) computes the answer or explanation based on the type of

question and the parameters that have been determined by the Interpreter.

The Answers Renderer (AR) is responsible for the presentation of the answer back to the user,

in an understandable way.

Each of these five modules of the self-explanatory facility has full access to the models of

the underlying application at runtime.

Figure 6.2 provides a different overview of the architecture, including the details of the

accessed models and meta-models. In this figure, both UIs are combined into a single UI

(Weaved UI) on which the interaction with the user happens. This interaction is managed

by a Controller. The Controller links the application logic from the functional core to the



174 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

UI and vice versa. For instance, it is in charge of performing navigational operations (for

example, navigating between different windows of the same UI or accessing a different page of

the same website), and linking the functional core with the UI for computational purposes (for

instance, when the application requires to save the document to a file or loading an existent

resource).

Figure 6.2: Generic architecture for model-based self-explanatory help systems. The func-
tional core of the help UI accesses any (meta-)model at runtime.

In this architecture, the UI of the application as well as the UI of the help system have

their own Controller. The three vertical arrows in figure 6.2 represent the access to the differ-

ent model-related elements. For instance, the Controller of the application can access to the

models, meta-models, and transformations of the user interface of the application in order to

generate the UI. In the same way, the Controller of the help system can also access the mod-

els, meta-models, and transformations of the UI of the help system for generation purposes.

The functional core of the help system can access to any model-related element of both ap-

plication UI and help UI, in order to find those elements that are necessary to compute the



6.1. USIEXPLAIN: A MODEL-BASED GENERIC ARCHITECTURE 175

requested explanation.

From the end user’s point of view there is only one weaved UI. The question renderer is in

charge of providing the user with a mechanism for asking questions. This can be by entering

the question in natural language or by selecting the desired one from a list of questions. When

the user requests support, the help controller receives the request and passes it to the inter-

preter in charge of understanding the question. This interpreter can, for instance, parse the

natural language input of the user or even recognise the gesture triggering the question with

a gesture recognition system. The interpreter says to the processor what support information

needs to be computed such as the type of the question and its parameters. The processor

computes such information by accessing the models at runtime, according to the explana-

tion strategy that has been specified for such type of question. This can be done by applying

special help transformations that query the models at runtime, or by accessing the models via

a special API as explained later. The processor can query all the models independently if they

belong to the application or the help system, and using exactly the same help transformations.

This is possible because all the models conform to the same meta-models. Once the informa-

tion has been retrieved from models and computed by the processor, it is prepared for the end

user by the answers renderer. The answers renderer can update the UI with the desired infor-

mation so the user can use it. The answers renderer is then responsible for managing how the

information is presented, for instance, in some text or voice using natural language, or with

an animation of the mouse cursor showing some procedure.

UsiExplain covers all the types of questions and their related explanation strategies that

have been presented in previous chapters, i.e.:

Procedural questions for answering How question.

Purpose that provides feedback about What is it for questions.

Localization that replies to Where questions.

Availability answering the question What can I do now.

Behavioural questions explaining Why I can’t perform a task.

Design Rationale that answers questions about the design rationale of the UI.



176 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

The UsiExplain architecture is prepared to extend this set of generic questions with new

types, according to the principles and the design of explanation strategies introduced in pre-

vious chapters.

To ease the implementation of such architecture, we have develop UsiComp [50]. Usi-

Comp is integrated and open framework that allows designers to create and modify models at

design time as well as at runtime. The next section describes this framework in detail.

6.2 UsiComp: a Services Oriented Framework

In the context of the UsiXML project, we, the HCI group, have created UsiComp. UsiComp

is an open framework for creating models and simplifying the creation of user interfaces

through transformations. UsiComp relies on a service-based architecture. It offers two mod-

ules. A design module for creating and editing models through an integrated tool, and an ex-

ecution module for managing the runtime. The implementation has been made using OSGi

services (Open Services Gateway Initiative, [86]) offering dynamic possibilities for using and

extending the tool. The next section describes these concepts.

6.2.1 Services and OSGi

The term service refers [157] to:

A set of related software functionalities that can be reused for different purposes, to-

gether with the policies that should control its usage.

OSGi is a modular Java framework that allows modules or subsystems, known as bundles,

to be dynamically added and removed from a running Java Virtual Machine (JVM). As OSGi is

layered on top of a JVM it continues to permit access to all the native features of the under-

lying JVM as well as allowing incorporation of native non-Java code via the JNI (Java Native

Interface) framework to an OSGi based application (see figure2 6.3)

2Image by Michael Grammling publicly available at http://en.wikipedia.org/wiki/File:Osgi_

http://en.wikipedia.org/wiki/File:Osgi_layer.png


6.2. USICOMP: A SERVICES ORIENTED FRAMEWORK 177

The choice of OSGi makes it easier to incorporate a multitude of different devices, permits

the modification of the self-explanation related modules at runtime, and eases the property of

distributabitility of the self-explanatory user interface across different platforms at runtime.

Figure 6.3: Overview of the OSGi Layers

As illustrated in figure 6.3, at the bottom of the OSGi layering is the Operating System

and Hardware, which may be a standard PC Desktop operating system such as Windows or

any Linux based distribution, as well as mobile devices such as smartphones or tablets. A

Java Runtime Environment (JRE), which is composed of a JVM and a collection of classes

that implement the Java API for the underlying device operating system and hardware, runs

alongside native applications that may be written in C/C++ or another language. The JRE can

be one of many environments such as Java ME (Micro Edition) for embedded devices, Java SE

(Standard Edition) for desktop platforms and Java EE (Enterprise Edition) for server platforms.

Each platform provides a different set of services which can be exploited by applications using

the same OSGi framework. The implementation of the UsiComp framework uses the Java SE

desktop edition.

There are several implementations of the OSGi Framework; UsiComp is based on the

Equinox3 implementation developed for the Eclipse project. However, this could be replaced

layer.png under the Creative Commons Attribution ShareAlike 3.0 license.
3Eclipse Foundation. Equinox OSGi Release 4 (Equinox), 2009.

http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png
http://en.wikipedia.org/wiki/File:Osgi_layer.png


178 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

by any other implementation conforming to the OSGi standard such as the Knopflerfish4 im-

plementation, or the Apache Felix5 package. We have chosen Equinox to ensure a full integra-

tion with other necessary eclipse related technologies used in the development, such as Ecore

in which the meta-models are described.

Bundles in OSGi are regular JAR (Java ARchive) files with an additional bundle.manifest

file which specifies that bundle’s dependencies (in terms of other packages required for op-

eration) as well as which packages it provides to the OSGi framework which can be used by

other bundles. The bundle manifest specifies an "Activator" class which is called when the

bundle is loaded and unloaded from the framework. This Activator class is responsible for

starting and stopping any services provided by the bundle as well as obtaining references to

services it requires.

Based on OSGi services, we have developed two different modules that compose the Usi-

Comp architecture. An overview of this architecture is provided in the next section.

6.2.2 UsiComp Overview

UsiComp is composed of two different modules as shown in figure 6.4), the design module (at

the top of the figure), and the runtime module (at the bottom). Both modules share common

resources: meta-models, models and transformations. This section describes both modules

in detail, starting with the design module, then providing a brief discussion about the com-

mon resources, and finally describing the runtime module and the code generation.

6.2.2.1 Design Module

The design module includes a visual editor (figure 6.5) for designing and prototyping UIs. The

UsiComp editor offers the following functionalities.

First, it allows designers to define all the models and transformations needed to produce a

UI. The UI of the UsiComp editor is divided into three different areas (figure 6.5): 1) a toolbar

4Makewave AB. Knopflerfish OSGi Release 4 (Knopflerfish 2), 2007.
5Apache Software Foundation. Apache Felix OSGi Release 4 (Felix 2), 2009.



6.2. USICOMP: A SERVICES ORIENTED FRAMEWORK 179

Figure 6.4: UsiComp software architecture: meta-models, models and transformations at the
heart of both design time (IDE for designers) and runtime (FUIs for end-users).

with the most common actions, 2) the workspace presenting graphical representations of the

models, and 3) the right panel which provides access to the different elements of each meta-

model. Designers can create models by picking up the needed components and combining

them. For instance, figure 6.5 shows the UsiComp editor and three models with their respec-

tive transformations. The model at the top of the figure is a task model, represented with

the CTT notation. This task model is transformed into an AUI model represented with blue

boxes. These blue boxes show different Abstract Interaction Units and their arrangement. The

AUI model is in turn transformed into a graphical CUI model that UsiComp represents with a

mock-up.

Transformations between models are composed of rules. A rule specifies how one spe-

cific set of elements of a source model is transformed into a set of target model elements.

Designers can select what rules they want to apply to a given model, and the system will auto-



180 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

matically compose the resulting transformation. These rules are represented by arrows from

the source element to the target. Some common rules are already available in the system (for

instance, transform a AUI unit into CUI widgets such buttons, checkboxes, etc), but design-

ers are free to add other rules if needed. As previously stated, transformations and rules are

written in ATL.

Figure 6.5: UsiComp Development Environ-
ment. From Top to Bottom: Task model, AUI
model, CUI model. Transformations are rep-
resented by arrows.

The UsiComp editor verifies that the

designed models comply with their corre-

sponding meta-models. For instance, a bi-

nary operator in the task model must link

two different tasks. This is done through

the validation facilities provided by the EMF

tools.

The UsiComp editor also composes and

compiles the transformations and rules

thanks to an integrated ATL compiler.

The resulting Final UI, which is the code

of the UI, can be directly executed from the

IDE (green play button on the toolbar) giv-

ing designers the opportunity to preview the

generated UI.

6.2.2.2 Meta-Models

For this research, we use adapted versions of

different UsiXML models. Illustrations and

explanations of such meta-models are pro-

vided in appendix B. All the meta-models

have been implemented using the Eclipse Modeling Framework (EMF). EMF [140] is a mod-

elling framework and code generation facility for building tools and other applications based



6.2. USICOMP: A SERVICES ORIENTED FRAMEWORK 181

on a structured data model. From a model specification described in XMI, EMF provides tools

and runtime support to produce a set of Java classes for the model, along with a set of adapter

classes that enable viewing and command-based editing of the model, and a basic editor. We

have implemented all the necessary meta-models and models according to the Ecore EMF

format.

The models conforming to these meta-models are transformed from one to another by

transformations, that are described in the next section.

6.2.2.3 Transformations

The meta-models have been used not only for instantiating models but also for defining trans-

formations between these models. For these transformations we have chosen ATL, the Atlas

Transformation Language [66]. ATL is the ATLAS INRIA and LINA research group’s answer

to the OMG MOF/QVT RFP. It is a model transformation language specified as both a meta-

model and a textual concrete syntax. In the field of Model-Driven Engineering (MDE), ATL

provides developers with a mean to specify the way to produce a number of target models

from a set of source models.

The ATL language is a hybrid of declarative and imperative programming. The preferred

style of transformation writing is the declarative one: it enables to simply express mappings

between the source and target model elements. However, ATL also provides imperative con-

structs in order to ease the specification of mappings that can hardy be expressed declara-

tively.

An ATL transformation program is composed of rules that define how source model ele-

ments are matched and navigated to create and initialize the elements of the target models.

Besides basic model transformations, ATL defines an additional model querying facility that

enables to specify requests onto models. ATL also allows code factorization through the defi-

nition of ATL libraries.

ATL transformations are used in both UsiComp modules, either at the design time or run-

time. These modules are explained next.



182 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

6.2.2.4 Runtime Module

UsiComp is composed of several services. This section describes only those that are relevant

for self-explanatory user interfaces. These services are the Controller and the Transformer.

The main service is the Controller Service (figure 6.4). The Controller Service is in charge

of orchestrating the whole process in which a UI is generated by successive transformations.

Transformations may be reifications or abstractions. Currently, only reifications have been

implemented and integrated into UsiComp. However, the architecture is fully generic, and so

capable of integrating abstractions as well.

The Transformer Service (Figure 6.4) is a generic transformation service that can apply

any transformation to any model or models, producing as a result models (in the case of a

model-to-model transformation) or text (in the case of a model-to-text transformation). The

Transformer service relies on a set of meta-models that the transformations and the models

must conform with. Next section provides a brief description of these meta-models.

The functionality of the runtime module is described as follows:

• The runtime module is running on the server side listening for incoming connections.

• Once a new device becomes available to the framework (a specific client is installed

into the device for this purpose), UsiComp identifies its specific platform model con-

taining the platform details. The current version of UsiComp contains platform models

specified by hand.

• To produce a UI for the new client, the Controller Service manages the transformations,

their order of execution and their related models and meta-models, calling to the Trans-

former Service as many times as needed. The platform model is considered in the trans-

formation process to produce an adapted UI.

• In the transformation process, the Controller weaves the functional core of the applica-

tion into the UI, embedding the calls from and to the UI.



6.2. USICOMP: A SERVICES ORIENTED FRAMEWORK 183

The models, meta-models and transformations involved in the generation are directly ac-

cessed by the Controller Service, which is also responsible of linking the application logic

from the functional core to the UI and vice-versa.

The development environment can be launched as a normal Desktop application or as a

Web application embedded in an applet. Thanks to the OSGi services, it is possible to dynam-

ically update the editor without stopping the application. For instance, updating a service or

replacing the transformation language for another one can be dynamically achieved.

6.2.2.5 Code Generation

UsiComp currently supports the generation of Java code. The Java code is directly generated

from CUI models with a special ATL transformation from model-to-code. ATL does not only

support model to model transformations, but also model to "primitive value" transforma-

tions. This last type of transformations is called queries. They can be used to generate text

from models. In this particular case, the primitive value is a String data type containing all the

generated code of the UI.

The code generation is directly done by transformation instead of using external tools for

several reasons. First, most of the technologies that already exist focus on one language only

(as for instance JaMoPP [56] for Java), or only one programming paradigm, mainly imperative

in most of the cases. As the generated UI must be platform independent, the code generation

cannot rely on only one specific language or paradigm. For instance, we would like to generate

GTK UIs in the future for a functional language such as Haskell. Not all the languages and

paradigms are supported by external generators, so integrate an external tool each time is not

always possible.

Technically, the code generation is done by parsing the CUI model with a Depth First

Search algorithm, i.e., translating the first element of the CUI model (at the top of the model,

for instance, the main window) and exploring/transforming as far as possible along each

branch before backtracking. This is possible because the CUI meta-model forces a free loops

tree-like CUI models.



184 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

Figure 6.6: Two examples of the UsiComp extensibility. A task model is generated from an
external tool called Compose. A CUI model can also be generated from a mockup instead of
transforming the AUI model.

6.2.2.6 Extension abilities

UsiComp has been developed in common with another PhD student as it is not limited to self-

explanation purposes but also to enrich the UI development process allowing designers to

generate the UI with different models to those specified by the classical Cameleon approach.

This ability to provide extensions is also a research area in our research group. The extensi-

bility feature of UsiComp is studied in Eric Céret’s PhD. Interested readers can refer to [21, 50]

for more information. We show here only two examples for illustration. These examples are

summarized in figure 6.6. In this figure, the classical Cameleon transformation sequence and

its related models and transformations are extended at different levels. The first extension

is done at the task level, where the task model is not provided by the designer but generated

from an external tool called Compose. The second one is done at the CUI level, where the CUI

model is obtained by a Balsamic Mockup instead from the classical AUI level.

6.3 Relationship between UsiExplain and UsiComp

Figure 6.7 shows the relationship between UsiExplain, the generic architecture for self-explanatory

UIs, and the framework UsiComp. As readers may notice by comparing the figures 6.2 and 6.4,



6.3. RELATIONSHIP BETWEEN USIEXPLAIN AND USICOMP 185

the Controller from the runtime module of UsiComp is implemented through two controllers

in UsiExplain as explained before, one for the help system, and one for the target application.

In the same way, the functional core in the figure corresponding to the architecture of Usi-

Comp 6.4 is implemented in UsiExplain through two different functional cores, again one for

the help system, and the other one for the application.

Figure 6.7: Relationship between the UsiExplain generic architecture and the UsiComp frame-
work.

In both cases, the Controllers access to models and meta-models at runtime for generating

the UIs. The difference here between both infrastructures is that the functional core of the

help system has direct access to such models and meta-models at runtime too, to guarantee

that answers can be composed based on these elements at runtime.

The presented architecture follows the MVC architectural pattern, where the “Models” in



186 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

MVC are all the elements represented in the middle of the figure (models, meta-models, and

transformations), the view is the UI used by the user to interact with the application, and

updated by the controller, and the controller keeps the link between the “Model” from MVC

and the “View” or UI in our case.

Moreover, the UsiExplain generic architecture provides designers and developers with:

• a questions generator for computing generic questions.

• an answers generator with a generic coverage of questions.

• a complete set of explanation strategies for computing six different types of generic

questions and its related answers.

The six generic question types supported by the explanation strategies provided with the

architecture are:

Procedural questions for answering How question.

Purpose that provides feedback about What is it for questions.

Localization that replies to Where questions.

Availability answering the question What can I do now.

Behavioural questions explaining Why I can’t perform a task.

Design Rationale that answers questions about the design rationale of the UI.

As previously presented, other different questions and answers can be integrated as well

in the architecture by adding new explanation strategies.

The next section describes a prototype entirely based on UsiExplain.

6.4 UsiCars: an UsiExplain Based Prototype

This section describes UsiCars, a prototype that relies on UsiExplain for supporting users at

runtime. This prototype has been created for evaluation purposes, described later in the chat-

per.



6.4. USICARS: AN USIEXPLAIN BASED PROTOTYPE 187

The section starts with a description of the prototype. Second, it describes the dialogue

that the prototype has used to allow users to request for explanations, discussing some con-

siderations of the current coverage of the questions in the prototype with regard to the UsiEx-

plain infrastructure.

6.4.1 Prototype Description

The prototype consists in a cars shopping website called UsiCars. This website is inspired

by a real site from a real car manufacturer. We have reproduced only the part of the website

that is devoted to the selection and configuration of the vehicles, keeping the options and the

structure of the original website.

This website was chosen for two main reasons. The first one is that we needed to use

an interface that contains knowledge that is understandable and accessible by all the partici-

pants, but complex enough for not being easy to use. A website for configuring cars covered

this point as all the participants understand many of the car related concepts, but at the same

time there are enough specific options with domain related concepts to create complex tasks

that are non trivial to perform. The second reason is that we found the original website diffi-

cult to use by real users in different forums.

The reproduction of the website was done by a reverse engineering process. The first step

was to explore all the different tasks that the user can perform to select and configure the

a vehicle. We created a task model according to this information. Secondly, we created a

transformation to obtain an Abstract UI model that conforms to the structure of the original

website. Thirdly, we wrote another transformation to generate the Concrete UI model from

the Abstract UI model. This transformation produces all the widgets that we find in the origi-

nal website. We also used the same images and we respected the same sizes for all the widgets

from the original site, to ensure that we obtain the same usability properties. Finally, we wrote

another transformation to generate the Java code and produce the resulting site.

In each of the model to model transformation, we generated not only the target model

but also mapping models that keep track of the successive transformations of an element



188 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

from one model to another. For instance, in the transformation from the task model to the

Abstract UI model we generated a Mapping-Task2AUI model that specifies what tasks are

transformed into what Abstract UI elements. The same principle was applied to obtain a

Mapping-AUI2CUI model. This allow us to go through the transformation chain and, for in-

stance, retrieve the source task from which a button has been generated.

Figure 6.8 shows an excerpt of the UI of the prototype. The UI is divided into two main

areas. A big main area in the middle and a thin area at the bottom. The main area of the

UI has two different roles. On the one hand, it serves as a visual feedback for the user when

he/she selects a car model or changes the colour of the vehicle (figure 6.8). On the other hand,

it can show dialogues containing all the possible options that the user can select to configure

the car with. The thin area at the bottom allows users to navigate through several categories

of options for accessing different features of the car such as the electronic equipment or the

external colour of the vehicle (figure 6.9).

The prototype was build according to the UsiExplain architecture. The infrastructure con-

Figure 6.8: Screenshot of the prototype. Choosing the model.



6.4. USICARS: AN USIEXPLAIN BASED PROTOTYPE 189

sists of two model-based UIs, the self-explanatory facility for providing the help, and the UI

of the target application for configuring a vehicle.

6.4.2 Self-explanatory dialogue

The questions were presented in a textual form inside a dialogue (figure 6.10). Textual an-

swers showed up after clicking on the desired question. In the experiment, questions were

presented one by one and only at the end all the questions were shown together. We did not

filter out any question in this dialogue, i.e., all the possible questions that the system was able

to answer were proposed to the users. The reason for this was to show the users all the ques-

tions, so they can better realize if the self-explanatory system could cover their expectations

for the given type of question. For instance, if they realize that their question is not covered

by the system because it is missing in the list.

The next section describes the experiment that we have conducted based on this proto-

type.

Figure 6.9: Screenshot of the prototype. Selecting the external colour.



190 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

Figure 6.10: Self-Explanatory dialogue showing the full list of types and questions.

6.5 Evaluation

We conducted an experiment to evaluate the possible added value of the previous model-

based self-explanations. This section starts describing the participants involved in such ex-

periment, and then, it describes each of the different phases that integrate the evaluation

protocol.

6.5.1 Participants

We selected 20 participants, all between 23 and 39 with an average age of 27.4. From the 20

participants, 12 were male and 8 female. We recruited individuals regardless their experience

with interactive systems because the possible added value of model-based explanations can

vary regarding the experience of each profile.



6.5. EVALUATION 191

6.5.2 Evaluation Protocol

To carry out the study, we broken-down the evaluation protocol into three different phases.

These three phases were performed in order for all the participants.

1. In the first phase, we asked the participants to answer a questionnaire. This question-

naire allowed us to better known the background of participants, to understand their

habits regarding how they use new technologies in general, what are their common

uses, the kind of applications they use with a relevant frequency, the problems they use

to find with these or other applications, as well as their habits for solving these prob-

lems. The questionnaire also included questions regarding how participants used the

help provided by the applications they use, and how they used to proceed in case they

have a problem with the application. A software recorder was used to record all the

answers of all the participants.

2. In the second phase of the experiment, we asked the participants to use the prototype

that we had developed to this aim. We asked them to complete 10 different tasks in an

established order. All the participants received the identical 10 tasks. We randomized

the order of the tasks for each participant to avoid side effects such as the influence

between different tasks or memory effects that can help users to accomplish the tasks

better in a certain order. This part of the experiment was conducted on a laptop and

the audio was recorded. We asked the participants to verbalize their thoughts, specially

the questions they would like to ask to the system and the problems that they find when

accomplishing the tasks.

3. The third part of the experiment presented the prototype including a self-explanatory

dialogue that contained one type of question at a time. The six questions discussed

previously were presented one after another again in a randomized order. For each

type of question, the dialogue showed all the possible questions that the participants

could ask. Every time we showed a new type of question, we asked the participants

their opinion about it, including the possible advantages and disadvantages of asking



192 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

that question to the UI. We asked as well if the given type of question could be useful

in the previous phase of the experiment. At the end of the third phase, all the types of

questions were shown together into the same self-explanatory dialogue, and we asked

some more general questions that are discussed in section 5.

The next section deeps into the second phase of the experiment, providing more detailed

information about the tasks involved in this experiment.

6.5.3 Tasks

The motivation for the second phase of the experiment was to confront the users with differ-

ent kind of problems that are frequently found in UIs. To this end we designed 10 different

tasks. The tasks were selected according to their complexity, ranging from easy tasks to more

complex ones. We did not force any specific problem in the tasks that could be easily solved

by one of the previous questions. Instead, we tried to reproduce a realistic use case with a

varied set of tasks so the answers of the participants in the phase 3 were not influenced by the

second phase.

The 10 different tasks that we asked the participants to complete are shown in the table

6.1. The accomplishment ratio indicates whether the participants were able to complete the

tasks at all. A few users that got stuck and required hints were counted as unsuccessful. The

accomplishment ratio gives an idea of how difficult each task was, regardless the expertise of

the user.

Some of the tasks involved selection with searches through small lists (1, 2, 4, 8) while oth-

ers involved selection through lists having multiple options and categories (5, 7, 9) in different

locations. Tasks 1, 2 and 4 involved selections through images while the rest of the selection

tasks were through options in textual form. Other tasks involved verification (6, 7, 10), com-

parison (7), or manipulate cars related terminology that was more or less easy to understand

(1, 4, 6, 8).

We used the accomplishment ratio in the last part of the experiment, specially when we



6.6. QUALITATIVE ANALYSIS 193

Task Description Accomplishment ratio

Select a Cabriolet model 20/20

Select a diesel engine for less than 35.000e 17/20

Choose a sport finishing touch 15/20

Change the external colour to Le Mans Blau 20/20

Ensure that the model has a navigation system. If not, add one 12/20

Ensure that the model has a Terra leather upholstery. If not,

choose blue leather instead 12/20

Make sure that you can listen music in the car. If not, choose the

best audio system available 12/20

Select the Connected Drive pack 18/20

Select a Maintenance Contract of your choice 10/20

Visualize the result and check that everything is OK. If not, try to

solve the problem 12/20

Table 6.1: List of tasks and their accomplishment ratios. The tasks were randomized to avoid

side effects such as the influence between tasks or memory related effects. The accomplish-

ment ratio give an idea of the difficulty of the task.

asked the participants if they believed that the model-based explanations could help them to

complete one of the problematic tasks, or doing it in a more efficiency way. The next section

discusses the results of the qualitative analysis that we carried out with all the collected data.

6.6 Qualitative analysis

A large amount of qualitative data was collected from the experiment. We extracted around

three hundred comments from the records made during the second phase of the experiment,

the one in which participants were asked to complete the list of tasks. The selected method of

analysis was the thematic type [112], This method is focused on the answers and comments

recorded during the experiment, and classified into categories later. The aim of the thematic

analysis is to group together answers or parts of answers that have the same meaning. The

thematic groups were then analysed to identify the different categories of opinion. The ob-

jective is to gather and list all the themes covered by the answers to reflect the widest possible

range of opinions, distinguishing the positive ones from the negatives.

From the extracted comments, we identified around 250 verbatims that referenced types



194 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

Question type Example Verbatims Occurrences
How I don’t see how to do it 13
Why Why I need to register? 21
Where And where do I find the maintenance contracts 119
What is it for I’m browsing the tabs to see what they do 7
What can I do now I must find my way (inspecting all the UI with the

mouse)
2

Design rationale Why they are not ordered by type? 1
Other types What does Cabriolet stand for? (Definition)

What are the differences between the packs? (Dif-

ferences)

Is it included in the price I guess? (Confirmation)

What happens if I click here? (What if)

81

Table 6.2: Relationship between question types and occurrences extracted from the records
during the second phase of the experiment. An example of verbatim illustrates each type.

of questions either in an explicit or implicit way. Only those verbatims that clearly related a

question type where considered. For instance, verbatims like “I don’t know where the con-

tracts are” were classified as an implicit question of type Where. The table 6.2 shows the re-

sults of this classification, as well as some illustrative verbatims. It is significant that most of

the verbatims addressed navigational problems (where + how) mainly due to usability issues

and to the nature of the tasks (table 6.1). The high number of ’Other types’ is mainly due to

questions about semantic information relating concepts specifics of the domain. These ques-

tions are described in section 6.2, while next section presents the findings for both positive

and negative opinions, as well as some revealed limitations of the approach.

6.6.1 Findings

In the first phase of the study we collected the data described in the previous Participants

section, and we also found that 16/20 liked new technologies, 17/20 use new technology ev-

eryday, and 20/20 have found problems in their use. To face these problems, 11/20 inspect

the UI to try to solve it by themselves, 8/20 ask other people about the problem, 15/20 search

for solutions in the Internet, and 7/20 use the help provided by the system.

The last phase of the study revealed that questions of types How and Where were identi-



6.6. QUALITATIVE ANALYSIS 195

fied by most of the users (15/20) as useful and helpful with statements such as “it can be very

useful in certain situations” or “It could be very helpful for locating all the options of the vehi-

cle in a faster way”. This last statement refers also to a gain of time, which was also identified

as a positive value by a total of 10/20 users with statements such as “It is a gain of time” or “it

makes me go faster without losing my time”. The good acceptance of How questions contrasts

however with the low number of verbatims. This suggests that users find the information use-

ful but they are not thinking of asking it. The help UI could encourage/propose questions in

these situations.

The What is it for and Why questions were also identified as useful by an important num-

ber of participants, but less useful than the previous ones. This was mainly due to the fact that

subjects did not find useful to ask for the purpose of some elements of the UI, such as check-

boxes or labels, that already contain clear information about what they are currently doing. In

the case of Why questions, the results did not showed a good acceptance by the participants

as in the results found by [100, 80]. This was due to the fact that the questions proposed by our

algorithms did not cover all the possible range of questions that the participants asked. For

instance, as our algorithms rely entirely on the task model, our system could not answer why

questions concerning the functional core of the application such as Why there is no diesel

engines? (for specific kinds of Cabriolet cars).

Finally, the What can I do now and design rationale related questions were found to be

not very helpful by most of the participants (16/20), according to statements such as “I don’t

see where I would like to ask this question” (for what can I do now?) or “I am not interested in

this information, all I want is to buy my car” (for design rationale questions). In case of design

rationale questions, this result is due to the fact that the questions proposed in the prototype

were probably simple questions that should be reconsidered with real designers in order to

propose more relevant questions.

At the end of the third phase, when we presented the help UI with all the types of ques-

tions together, the study revealed that in general, model-based self-explanatory facilities were

identified as “useful” and “helpful” by most of the participants (16/20). The study also re-



196 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

vealed question types that were unsupported by our current implemention. The analysis of

the collected data suggest that our model-based self-explanatory UI, with minor design en-

hancements for major usability improvements, could have the potential to easily help the

users in real-time applications. Next section discusses the possible model-based implications

for the types of questions that were unsupported. Then, we discuss the usability suggestions

extracted from the data for our particular implementation of the self-explanatory UI.

6.6.2 Unsupported types of questions

We identified other types of questions not explicitly supported by our system. A minor num-

ber of them referred to What if questions. Even if most of these verbatims come from users

that showed a trial and error approach to understand the consequences of their actions in

the UI (i.e., they don’t know the consequences of an action but they perform such action on

the UI anyway to see what happens), 2 users out of 20 did not use options from the UI be-

cause they did not know their possible side-effects. For instance, subject 9 did not perform

one of the tasks because “I have fear of losing all the options”. Supporting What if questions

can help this minority of users to feel more comfortable with the UI. These kind of questions

can probably be answered by analysing the operators of the task model and how they are

transformed to CUI elements, (what elements of the CUI model become active/inactive as we

enable/disable new tasks. These answers will probably require some improvements for side

effects related to the functional core of the application (external to the UI).

We also identified a high number of verbatims requesting confirmation and validation

from the UI. For instance, “does the car already have a navigation system?”, “are the options

included in the price?”, were recurrent expressions used by the participants. This observa-

tion suggests that the feedback provided by the site was not enough for the users. Supporting

questions about confirming and validating the user actions can help to overcome this usabil-

ity issue. This may require new models for handling user actions, specially those that have

effects beyond the UI.

A third group of questions not supported by the self-explanatory dialogue concerns def-



6.6. QUALITATIVE ANALYSIS 197

initions. Most of these questions were about specific car-related terminology and concepts

such “What is the Tuner DAB?” or “What does Cabriolet stand for?”. To support these ques-

tions, the proposed model-based approach needs to be extended with semantic information,

either by adding new models or by connecting the UI with sources of semantic information

(internet).

Semantic information may be also necessary for answering questions about differences

that we identified in a minor number of verbatims, for instance, What is the difference be-

tween the packs? (or eventually similarities).

6.6.3 Usability Suggestions and Improvements

We were also interested in usability observations. During the third phase of the experiment,

where participants were confronted to the self-explanatory dialogue, 14 out of 20 suggested

that they would like to type the whole question directly instead of clicking on a predefined

answer inside a list. 13 out of 20 would like to access questions by typing keywords in a text

area, and 4 proposed to use a vocal interface instead. These observations sustain some of the

design principles for help systems of the literature, in particular, “Help should be accurate,

complete and consistent” ([31, 135]), and “Help should not display irrelevant information”

([59]).

6 participants suggested to classify questions not only by question types but following the

categories of the underlying site, for instance, grouping them by equipment or car models.

Regarding the answers, some participants argued that they don’t like to read explanations,

specially those that have a significant length. With the models used in this approach, the in-

formation given in the answers can be represented in non textual forms. For instance, as the

CUI model can store the screen coordinates of the widget, Where questions can be answered

by highlighting the region of interest (as currently done in mac systems), and procedural ques-

tions can be explained by means of animations of the cursor over the widget coordinates.

Finally, some participants proposed that it would be preferable to use the questions not

as a means to know how to find a specific option, but to “get there”. This suggests that self-



198 6. SELF-EXPLANATORY UIS IN ACTION: IMPLEMENTATION AND EVALUATION

explanatory UIs could be used as software agents [35] to overcome the usability issues of a UI

not only by explaining to the user how to solve the issue, but solving it directly if possible. For

instance, navigating to the desired website instead of explaining what website the user should

navigate to. This observation opens new research questions: can self-explanatory UIs benefit

from agents? If so, what other models are needed and how this can be done?

6.6.4 Limitations of the experiment

The results obtained in the experiment are only representative for the ages of the registered

participants, i.e., between 23 and 39 years old with an average age of 27.4. Further research is

needed to understand if the sampling led to a bias in the study.

Design rationale questions were also shown to need improvement. Probably a further

research with real designers with help to identify more design rationale questions, so other

questions more relevant for users could be added.

6.7 Synthesis

This chapter describes both the implementation and evaluation of the conceptual contribu-

tions presented in this thesis.

The chapter starts describing UsiExplain, a generic architecture for implementing model-

based self-explanatory user interfaces. This architecture relies on five different modules in

which the functional core is subdivided, the Answers Renderer, the Interpreter, the Processor,

the Questions Generator, and the Questions Renderer.

The chapter continues with a discussion of the implementation of the architecture. This

implementation is based on UsiComp, an integrated framework for the generation of user

interfaces at runtime. We have developed this framework in our research group as a basis for

different research applications. UsiExplain is one of them.

After presenting UsiComp, the chapter describes UsiCars, a running prototype entirely

based on UsiComp. UsiCars is a self-explanatory user interface based on a cars shopping



6.7. SYNTHESIS 199

website. The prototype shows that the unification of different types of questions as described

by our approach is possible and feasible.

The chapter then describes an evaluation experiment that has been carried out to evalu-

ate if our model-driven help system is valuable. The experiment makes use of the previous

prototype UsiCars. The experiment that we conducted shows that most of the users identi-

fies model-based explanations as potentially useful. The chapter has identified key aspects

for further research as, for instance, new possible questions that a help system must include,

the weakness of our current implementation, as well as new ways for improving them. The

study has also collected some interesting suggestions about usability improvements for help

systems, also discussed in the chapter.

The next chapter concludes the research, describing some future work based on all the

accomplished research and the obtained results.





7

Conclusions and Future Directions

“ A story has no beginning or end: arbitrarily one chooses that moment of

experience from which to look back or from which to look ahead.

”
Graham Greene, The End of the Affair,

RELATED PUBLICATIONS

1. DITTMAR, A., GARCÍA FREY, A., AND DUPUY-CHESSA, S. What can model-based

ui design offer to end-user software engineering? In Proceedings of the 4th ACM

SIGCHI symposium on Engineering interactive computing systems (New York,

NY, USA, 2012), EICS ’12, ACM, pp. 189–194

The chapter starts with the presentation of the major contributions of this thesis, review-

ing the research questions and the answers that this work provides for each of them.

The chapter discusses then the advantages and limitations of our approach.

The chapter ends with a number of future directions that have emerged from the work

presented in this research, divided into short term perspectives and long term perspectives.

201



202 7. CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Summary of the Contributions

This dissertation started with a thorough examination of the literature on help systems in

Chapter 2, identifying a lack of systems which can currently accommodate the need of sup-

porting users by covering multiple types of questions at the same time, with a significant re-

duction of cost.

The dissertation has shown in Chapters 4 to 6 that the model-based solution proposed is

possible, feasible, and it has shown to be helpful for most of the proposed questions in the ex-

perimentation that we have conducted with real users in a running prototype. This research

then proves that design models can be successfully exploited for explanation purposes at run-

time.

To come up with this major outcome, a number of contributions have been done:

• The definition of the QAP problem space for comparing different model-based solu-

tions for explanation purposes.

• Design principles for the creation of model-based self-explanatory user interfaces.

• A quality meta-model as a contribution to the UsiXML language.

• Explanation strategies for computing different types of explanations. This thesis pro-

poses six different explanation strategies for six different question types.

• UsiExplain, a conceptual architecture for the implementation of model-based self-explanatory

user interfaces.

• UsiCars, an implementation of the conceptual architecture showing the feasibility of

the approach.

• A running prototype based on the implementation of the theoretical architecture.

• Investigation of caveats and limitations of the provided explanations (usability issues

and explanations acceptance) through an experimentation with real users on the pre-

vious prototype.

All of them permit to answer the research questions that have lead our research through

this thesis. These research questions and their answers are discussed next.



7.2. ANSWERS TO RESEARCH QUESTIONS 203

7.2 Answers to Research Questions

A number of research questions were identified from the problems discussed in chapter 1.

Our research provide the following answers to these questions:

Is it possible to generate explanations “for free”? The lack of good help support in most to-

day’s software is due to a problem of cost. This thesis has shown through the conceptual

contributions described in chapters 4 and 5, that have been put into practice in chapter

6, that the design models can be used not only for building the UI but also as a solution

for the generation of support with a minimum cost.

What to explain? Chapter 2 have identified the most common questions that other related

works have pointed out as useful. In our research, we have shown that we can success-

fully answer questions from six different types. The explanation capabilities of a Model

Driven UI are restricted by the information available in the models from which the UI

is generated, but this research has proven that these models are useful for supportive

purposes.

How to explain? Our research provides a generic architecture for answering user’s questions.

The answers are computed directly from information coming from one or more models,

according to an explanation strategy designed specifically for each type of question.

How to present the explanation? Our model-based solution proposes a set of grammars for

composing answers, so the user can get explanations in a pseudo-natural language.

Is the provided support valuable? We have conducted an experiment to explore whether the

computed support presented to users is valuable, and for most of the question types

supported in our prototype, the results shown that they are. However, a number of

improvements have been also identified in many areas.

The model-based solution proposed in this research have also a number of interesting

properties that are discussed in the next section.



204 7. CONCLUSIONS AND FUTURE DIRECTIONS

7.3 Advantages of the approach

Our proposed solution provides several properties for those model-based help systems that

are developed following our approach. This section discusses these properties and then ex-

plores how these model-based help systems compares to other related work according to the

QAP problem space defined in chapter 2.

7.3.1 Properties of the Approach

Our approach does not only provide a method for the Unification of different question types

in the same help system, but it also provides these help systems with the properties of Intro-

spection, Flexibility, Distributability, Reusability, and Customization. The design principles

are also applicable to different architectures and frameworks as a consequences of being an

Open Approach. These properties are described in the following.

7.3.1.1 Unification of question types

The proposed approach aims to be universal in the sense that it unifies different questions

types that have already been covered by other previous works, under a single approach in

a single architecture. Moreover, the presented approach is not restricted to a specific set of

questions but, instead, it is open to new types of questions that designers may consider to

include. In the same manner, the presented approach does not set any restrictions or lim-

itations about how to compute the answers, or what sources (models) need to be used to

compute answers, meaning that new forms of computing answers can be exploited, added,

mixed, all of them under the same principles.

7.3.1.2 Introspection

An introspective help system is able to provide support not only from the models coming

from the application but also from its own models, for instance, to answer users’ questions

about how to use the help system. This is possible because both UIs (application UI and



7.3. ADVANTAGES OF THE APPROACH 205

help UI) are unified by construction as their models conform to the same meta-models, so

the same mechanisms for extracting explanations (the Explanation Strategies presented later

in our case) can be applied. This means that the same set of questions can be used on the

self-explanatory user interface as well with no extra cost.

7.3.1.3 Flexibility for Weaving

The method provides different forms of flexibility regarding how the help UI is integrated into

the target application. Help systems can be then classified into three different types regarding

how the UIs are mixed:

Weaved - where the help UI and the application UI share the same space of interaction

Non-Weaved - if the help UI runs in a different interaction space

Mixed - where some of the options of the help UI are directly weaved into the application UI,

and some others are not.

In the case of Mixed UIs, non-weaved options can be directly accessible from the weaved

ones if needed.

This property ensures full flexibility for designers with regard to the Presentation of the

Questions and Answers according to the QAP problem space. Our help systems will support

both Intrinsic and Extrinsic presentations by construction for both Questions and Answers.

7.3.1.4 Distributability

Distributability is the property that allows a UI to be distributed among several devices. Dis-

tributing non-weaved UIs is specially easy because the models of the help UI are clearly sepa-

rated from those of the application UI. This form of flexibility is specially useful for ubiquitous

systems where not all the platforms are always available, or we want to require support with-

out stopping other interaction processes. For instance, when some users are playing a film

on a laptop, one of them may want to ask about some options of the video player interface

without stopping the film. The UI of the help system can be distributed to the smartphone of



206 7. CONCLUSIONS AND FUTURE DIRECTIONS

this user for this purpose, without stopping the movie and, in consequence, without affecting

the experience of the rest of the users.

7.3.1.5 Reusability

Once designers know how to exploit a specific model for supporting purposes, they can easily

apply the same procedure to the same kind of models of different applications. For instance,

the use case two can benefit of the Where questions of the use case one, as the models of both

use cases conform to the same meta-models. Designers can create their model-based help

systems once and reuse them everywhere.

7.3.1.6 Customization

The design principle related to how to weave the UI of the help system with the UI of the

application allows to perform different customizations of the generated help UIs to fit specific

application requirements. For instance, the look and feel of the application UI is normally

fixed at the CUI level, using some mechanism based on stylesheets or skins stored in the CUI

model. Designers would like to preserve the same look and feel for their help systems and

applications. This can be accomplished by applying the same mechanism to the CUI model

of the help UI. If the help UI is weaved before the CUI level, the look and feel is automatically

preserved as there is no specific CUI model for the help system, this is, there is only one CUI

model containing both UIs.

7.3.1.7 Open Approach

The design principles presented in this section do not set any restrictions on how designers let

end users ask for support, i.e., what is the interaction technique that the user needs to employ

to request information. No assumption is made about how the information supporting the

end user is provided. There is no restriction on what models designers can use and how they

can be exploited. For instance, the computation of the help in the functional core of the help

system can be done with rule-based systems based on the application models, or on machine-



7.3. ADVANTAGES OF THE APPROACH 207

learning algorithms.

In the context of our research, we propose the use of Explanation Strategies to provide

support to the users through the Cameleon Reference Framework models, employing a subset

of the models of the UsiXML language. The architecture earlier presented in this thesis are,

however, applicable to any other set of models and frameworks so designers have always the

freedom of choice.

7.3.2 Proposed Solution on the QAP Problem Space

Considering the design principles and the properties of self-explanatory user interfaces, we

can compare our proposed Self-Explanatory UIs with the existent help systems of the litera-

ture that have been reviewed in previous chapters. Figure 7.1 shows how Self-Explanatory UIs

are mapped into the QAP problem space presented at the end of the state of the art in chapter

two.

As we can see in the image, self-explanatory user interfaces improve the covered previous

work in two main areas.

The first one concerns questions about the design rationale, that were not directly covered

by any of the related work. With our approach, the design rationale becomes inspectable

at design time as well as other information from other models do. This fact not only opens

the range of questions by covering those that can be extracted from the underlying design

rationale, but it opens new way of supporting end-user programming by directly providing to

the users with the design choices that were made at design time.

The second area of improvement is the one related to the structure of the user interface.

In fact, as the structure of the user interface is defined in the models from which the source

code is derived, questions about the structure of the UI such as Where an option is can be

easily answered by inspecting these underlying models.

As we can also see in figure 7.1, there is one point that is not covered neither by the pre-

vious work on model-based help systems nor by our current propositions. This area belongs

to Initiative axis. In fact, this is normal because our proposed solution does not make any



208 7. CONCLUSIONS AND FUTURE DIRECTIONS

Extensibility

Initiative

Dynamicity

Extrinsic
Intrinsic

Design
Rationale

Usage

Presentation

Structure

Tasks-
Concepts Functionality

Extrinsic

Intrinsic

Questi on

Pr esent ati on

Abstr acti on Pr oper ti es

Abstr acti on Pr esent ati on

Answer

Figure 7.1: Overlapping related work with self-explanatory user interfaces.



7.4. LIMITATIONS OF THE APPROACH 209

assumption about how the interaction technique between the user and the help system is. As

we have seen in the previous sections, our approach lets the possibility of choosing the best

compromise for the Initiative axis to the designers, without forcing a particular solution or

interaction technique either for asking a question or for providing the answer.

In the same manner, following our design principles designers can choose the best pre-

sentation axis for their applications. In other words, they have now the possibility of present-

ing Questions to users in an Intrinsic or Extrinsic way, or even combining both of them in the

same application if it is necessary. The same applies to the Presentation of the Answers.

7.4 Limitations of the Approach

This section briefly discusses the limitations that we have found in our approach and the cur-

rent implementation. The section discusses semantic information, scalability, and usability

improvements.

7.4.1 Usability improvements

There is a number of improvements that have been extracted from the experiment that should

be considered in further research implementations. First, as some users have pointed out dur-

ing the experimentation, there is a need of filtering relevant and irrelevant questions that are

proposed by the system. The problem here is that one can’t never be sure about what ques-

tions are relevant for one user, and what questions are not. Assuming an average user with

an average amount of knowledge could be a starting point for filtering out those questions

that are perceived as irrelevant for most of the users. But the problem is deeper and the user’s

profile, including mental models of user’s knowledge and understanding of the user interface

need to be taken into account before adapting the questions proposed by the self-explanatory

facility, or adapting the answers that the system provides.



210 7. CONCLUSIONS AND FUTURE DIRECTIONS

7.4.2 Semantic Information

The models used in our current solution do not include semantic information that could be

exploitable for describing concepts, providing definitions, or completing mental concepts of

the users. More research is needed for enriching the explanations with semantic informa-

tion, either for providing new types of questions or enriching those already presented in this

research.

7.4.3 Scalability

We did not evaluate how the proposed solution performs in large scale applications with a

high number of models. As the list of questions that the self-explanatory facility is able to

answer, as well as the answers that it is able to provide, rely all of them on the underlying

models using some parts of such models in the computation of the explanation strategies, a

high number of models could have a significant impact in the performance of the help system.

This potential problem is related not only to the self-explanation solution proposed in this

thesis but to model-driven approaches in general.

The scalability problem is not only related to the number of models but also to the com-

plexity of them. For instance, the instance of CUI model containing thousands of objects

could perform sensibly worse than an instance with less than a hundred objects.

All these aspects should be empirically evaluated for commercial versions of the proposal

solution.

7.5 Future Work

The work presented in this research has revealed a number of potential directions for future

work. This section covers some areas of research that are particularly interesting. These ar-

eas are: how to improve the usability of help systems, support new question types, support

additional sources of knowledge, add initiative to model-based help systems, investigate in-

teraction techniques for requesting/providing information, how to close the loop between



7.6. SHORT TERM PERSPECTIVES 211

users and designers, implications of supporting design rationale at runtime for learning and

end-user programming purposes, and semi-automatic quality guided design for UIs based on

the quality meta-model.

This section will briefly discuss each of these directions subdividing them into short term

and long term perspectives.

7.6 Short Term Perspectives

This section discusses future work that could obtain results in the short term.

7.6.1 Usability Improvements

Further research needs to be done to explore what is the best presentation and integration of

the proposed questions and their related answers. Improving the usability of the help system

will lead to a better use of the help system and, in consequence, a better experience with the

target application. This research will probably involve techniques for filtering questions out

with regard to the user’s profile, user’s actions, or user’s experience.

The presentation of the answers should also be investigated, integrating techniques for ex-

ploting answers in different ways. For instance, answers about localisation could take benefit

of the model structure to directly propose the desired element to the user instead of providing

the path that the user needs to follow to locate such element.

The adaptation of the answer to each user should consider as well the use of different

vocabulary if necessary, reviewing the quantity and nature of information provided to each

particular user (more information for novice users, less for experts).

7.6.2 Interaction Techniques

The proposed architecture does not set any restrictions about what is the best interaction

technique for requesting for information, or what is the best way of providing the explana-

tion back to the user. This could be considered in a global an homogeneous sense where



212 7. CONCLUSIONS AND FUTURE DIRECTIONS

all the questions and answers are asked and explained in the same way as in the case of our

prototype with a dialog containing all the types of questions, or with specific interaction tech-

niques for each type of question or answer. For instance, tooltips have been classically used

for answering What is it for questions. Model-based approaches should take benefit of these

techniques.

7.6.3 Closing the Loop

Tracking what questions are asked by the users of a user interface can help to improve the user

interface itself. For instance, in the experiment presented in the previous chapter, almost 120

questions were related to navigational issues. This means that users did not find the option

they were looking for easily. The user interface designers could study what question types are

asked and at what precise moment, so they can later improve the user interface based on this

information.

7.7 Long Term Perspectives

This section discusses future work requiring a more deep research. The discussion focuses on

the Initiative Axis unsupported in the QAP problem space, different interaction techniques

for inspecting the questions and answers that the self-explanatory system is able to provide,

the application of the design rationale related questions as a learning tool for new designers

and as a support for end-user programming, and finally, the role of the quality meta-model

for automatically generating high quality user interfaces based on quality criteria.

7.7.1 Initiative Axis

Also revealed by the experimentation was the contrast between the good acceptance of How

questions and the low number of verbatims of such type of questions. This suggests that users

find the information useful, because the high acceptance, but they are not thinking of asking

for this specific type of explanation most of the time. To overcome this situation, one solution



7.7. LONG TERM PERSPECTIVES 213

could be to improve the help UI so it could encourage/propose questions to the user in these

situations. This will cover the Initiative axis of the QAP problem space.

7.7.2 Quality guided development and evaluation

An interesting research based on QUIMERA, our quality meta-model, relies on the ability of

such meta-model to launch transformations that directly modify the element for which the

quality is being measured, and, in consequence, directly affecting the quality of the whole

system under study. In fact, as these transformations can directly modify parts of or the whole

system under study, (for instance, a transformation that chooses between a calendar widget

or a TextField for date input) different versions of the same system under study that are issued

from different transformations, will present different Achieved Quality.

According to this, quality can be semi-automatically re-evaluated with regard to the as-

sessment methods that evaluate different quality aspects of the product. In consequence, dif-

ferent iterations of quality measurements can be semi-automatically done only by applying

different transformations each time, and evaluating the obtained quality for each transforma-

tion.

This open new ways to explore quality guided design processes in which quality becomes

an active factor that semi-automatically guides the design of the system under study accord-

ing to the quality requirements specified by the quality expert through quality criteria.

7.7.3 Supporting New Question Types

Previous chapter has revealed a list of new types of questions that are currently unsupported

by our system. A number of them referred to What if questions that can provide informa-

tion about the possible side effects of using an option in the UI. These kind of questions can

probably be answered by analysing the operators of the task model and how they are trans-

formed to CUI elements, i.e., what elements of the CUI model become active/inactive as we

enable/disable new tasks.

As revealed in the experiment, a number of questions about confirmation procedures



214 7. CONCLUSIONS AND FUTURE DIRECTIONS

were also identified . Supporting questions about confirming and validating the user actions

can help to overcome those situations were the feedback provided by the user interface is not

enough and the user requires validation or confirmation from the application.

Another type of questions, also identified in the experiment, concerns semantic defini-

tions, that ask for the meaning of a concept that appears in the user interface but the user

does not understand. For instance, in the experiment, there were a number of specific car-

related terminology that were difficult to understand for non expert users.

A last interesting type of question, already exploited in recommender systems, is that ex-

plaining the differences between some entities or concepts of the UI, for instance, What is

the difference between the pack sport and the pack excellis? Supporting this type of answer

could help to improve the user’s understanding of the UI, and thus, he/she confidence on the

application.

7.7.4 Supporting New Sources of Knowledge

In this research we have explored how different models can contribute to support users at

runtime. These models are the four models representing the different levels of abstraction

of the Cameleon Reference Frawework, plus some other models that we have identified as

relevant for this purpose such as the mapping model, the quality model, or the QOC model.

Other models could be considered as an alternative source of knowledge. For instance, we

have already discussed in the section findings of the qualitative evaluation that ECA models

[153] or Command Object Models [100] could positively improve the answers for behavioural

questions such as Why does it happen? and Why it does not happen?.

New types of questions could take benefit of new models including semantic informa-

tion, for instance those questions related to definitions of concepts. This could probably be

accomplished either by adding new models containing this type of knowledge or by connect-

ing the UI with sources that already supply the necessary semantic information, such as the

Internet. For instance, using queries to semantic browsers like Wikipedia1 or the Wolfram Al-

1http://www.wikipedia.org/

http://www.wikipedia.org/


7.7. LONG TERM PERSPECTIVES 215

pha engine2 employed by the Personal Assistant Siri. This opens a new research about how

to improve model-based explanations with non model-based sources that already works for

a specific kind of question. Is this way worth exploring? Is there a model or set of models that

can supply the same information? What models? What explanation strategies do we need to

define to correctly exploit such models?

7.7.5 Design Rationale for Learning / End-User Programming

With the integration of design rationale questions, users can better understand the underlying

reasons of the design decisions made by the designers of the user interface. This open a new

research area for learning or training new designers so that they can access in real time to the

rationale of the UI, but also for end-user programming, explaining to the users why the UI is

the way it is, so they can better understand what to modify, how to do it, and the implications

that such modification involve. We have already started to explore the implications of model-

based approaches for end-user programming in [30], where we discuss some interesting an-

notations on the core models that help to decide about the design space for end users and

some Extra-UI3 design patterns to support appropriate representations of this design space.

From a model-based approach, the questions and answers presented by a self-explanatory UI

could be considered as an extra-UI because they provide a different representation of the un-

derlying models. End-user programming will help to explore other different representations,

eventually providing access to the full models of the UI if the user is an expert, or not only

providing explanations about the UI but directly helping users to manipulate the models with

an appropriate extra-UI with self-explanation support.

2http://www.wolframalpha.com/
3An Extra-UI is a UI that represents and provides control over a UI [138].

http://www.wolframalpha.com/




Appendices

217



Appendix A

Specification of the Quimera Quality

Meta-Model

This appendix describes the meaning of the classes of the quality meta-model.

QualityModel The QualityModel meta-class defines the representation of a Quality Model.

Its attributes are:

• name (String): Specifies the name of the Quality Model.

• standard (Boolean): Specifies whether the current instance of the Quality Meta-

Model represents a quality standard or not. If true, the quality model represents

a standard such as ISO 9241-110. This means that the model is composed only

of instances of QualityModel, Criteria, Attribute and CriterionAssociation meta-

classes.

Criterion The Criterion meta-class describes how the Quality Meta-Model is composed. A

quality model is composed of criteria, that can be recursively decomposed into sub-

criteria as well through the CriterionAssociation class. This representation allows to

instantiate different standards from different communities such as the Software Engi-

neering community (for instance to evaluate the quality of the source code) or the HCI

community (for example, instantiating the four layers of QUIM[17].)

Its attributes are:
218



219

• name (String): Defines the name of the Criterion. Example: Usability for the task.

• problem (String): Defines the problem the Criterion is dealing with.

• context (String): Specifies the context in which the Criterion applies.

Attribute Defines a characteristic of a Criterion. Its attributes are:

• name (String): It allows to specify one or more attributes for a Criterion.

• cardinality (Unsigned Int): Defines the cardinality of the attribute. By default, the

cardinality is one.

• type (String): Defines the type of the attribute.

• value (String): Holds the value of the attribute.

CriterionAssociation The CriterionAssociation is an abstract element that defines the re-

lationship of the Criterion accordingly to the definition of the Quality Model. Its att-

tributes are:

• type (AssociationType): Defines the type of the association. This allow to define

how different Criteria are related. Possible values: SupportedBy, UnsupportedBy,

DiscriminatedBy. A Criterion can support other criteria (for instance, in QUIM a

factor at the Factor level is supported by criteria from the Criteria level). It can be

discriminated by other Criterion, typically when two criteria are in conflict, or the

relationship can be unsupported when two Criteria are not in conflict but there is

no support between them.

Recommendation A Recommendation is a positive assessment that corresponds to one or

more criteria. For instance, the Recommendation says that good quality can be achieved

by maximizing the number of criteria that are satisfied by a given UI. Figure 5 shows how

different Metrics are used for the same Recommendation. A Recommendation can be

decomposed or rewritten in sub-recommendations through the isRewrittenBy associa-

tion. Its attributes are:



220 APPENDIX A. SPECIFICATION OF THE QUIMERA QUALITY META-MODEL

• name (String): Defines the name of the Recommendation.

• description (String): Explains the Recommendation.

• author (String): Defines the name of the author of the Recommendation, to keep

trace of the different Recommendations each quality expert has done.

• weight (Integer): Defines the current weight of a Recommendation. The weight al-

lows the quality expert to model how important a Recommendation is with regard

to others.

• weightDescription (String): Explains how the weight is interpreted.

RecommendationAssessmentMethod This class represents the way in which the quality ex-

pert or the system itself can determine if a Recommendation is accomplished or not.

A RecommendationAssessmentMethod is specialized in Metrics or Practices. It can be

subjective or objective. Its attributes are:

• name (String): Defines the name of the Metric or Practice to be used.

• description (String): Explains the Metric or Practice, describing the formula and

its different elements in the case of a Metric, or what does the Practice involve and

how to know if it has been followed or not.

• subjective (Boolean): Explains whether the measurement is subjective (true) or

objective (false). Note that even subjective evaluations can be measured quanti-

tatively (for instance by Metrics) or qualitatively (for instance by a Practice). The

attribute subjective makes explicit this distinction and allows quality experts to

cover both dimensions as depicted in the figure A.1.

Metric Express how to compute a numerical value for a given Artifact. Metrics are associated

to NumericalResults. Its attributes are:

• author (String): The author of the metric.

• numericalExpression (String): Defines the associated formula for the metric.



221

Figure A.1: Quality and Subjectivity.

Limits Holds the desired values for a given metric. Attributes:

• lower (Double): Defines the minimum value the metric is desired to achieve.

• upper (Double): Defines the maximum value the metric is desired to achieve.

• interpretation (String): Explains how to interpret ate the limit values.

Practice The Practice meta-class represents Practices, i.e., proven processes or techniques

that organizations or persons have found to be productive and useful to ensure a good

level of quality (Good Practices), or unproductive and unusable (Bad Practices). “De-

sign patterns” are an example of the first one, whilst “Spaguetti code” is an example of

the second one.

Its attributes are:

• practiceType (PracticeType): Defines if the Practice is applicable to a Process or a

Product. Possible values: process, product.

• patternType (PatternType): Defines if the Practice represents a Pattern or an An-

tipattern. Possible values: pattern, antipattern.

LocalResult Holds the result of an AssessmentMethod. Its attributes are:



222 APPENDIX A. SPECIFICATION OF THE QUIMERA QUALITY META-MODEL

• value (Float): In the case of Metrics, the value represents the result of the com-

putation of the numericalExpression of the Metric. In the case of a Practice, the

value attribute represents the percentage in which a Practice is satisfied. Assess-

mentMethod: This meta-class specifies how to compute Metrics and Practices to-

gether. The global quality of a SUS is computed through AssessmentMethods. Its

attributes are:

• name (String): Defines the AssessmentMethod name.

• formula (Metric U Practice): Defines how the different Metrics and Practices are

combined to computed the result.

GlobalResult This meta-class holds the global quality of a given SUS. The result is computed

using the Results obtained from Metrics and Practices according to the specific Assess-

mentMethod. Its attributes are:

• interpretation (String): Express how the result of the AssessmentMethod must be

interpreted.

• result (Float): Holds the global quality value of a SUS according to an Assessment-

Method.

• timestamp (Date): Information regarding when the quality result has been com-

puted.

• version (Float): Current version of the SUS on which the quality value has been

computed.

Transformation The Transformation meta-class refers to a TransformationUnit from the Trans-

formation Meta-Model. This TransformationUnit will manage all the necessary Trans-

formationUnits (if more than one is required) and it will establish the order in which

they must be triggered accordingly to the Transformation Meta-Model. Please, refer

to the Transformation Meta-Model section for more information about Transformation

Units.



223

Artifact The Artifact meta-class refers to any element of the Software Development Life Cy-

cle, such as code, classes of a model or the model itself. In this case, it is represented

by the Meta- ModelElement from the Transformation Meta-Model. Please, refer to the

Transformation Meta- Model section for more information about Meta-ModelElements.

ContextModel As a same Quality Criterion can have different quality interpretations regard-

ing the context in which the interaction is taking place, the Quality Meta-Model needs

to know exactly what the context is and how it is defined. Linking the Context Model

to the Recommendation meta-class will allow to the quality experts to define different

Recommendations regarding the different contexts in which the interaction can occur.



Appendix B

Meta-Models

This annex describes the different meta-models on which the implementation is based. All

the meta-models have been implemented in ecore, and thus, ecore representations are used

for presenting them. The covered meta-models are those originated from the Cameleon Ref-

erence Framework, i.e., the task meta-model, the AUI meta-model, and the CUI meta-model.

A domain meta-model, also described, is added for representing the concepts manipulated

through the tasks. The link between tasks and concepts, as well as the transformations of

each element from one model to another, is kept in a model conforming to the mapping meta-

model, which is also used in QOC already presented in chapter 4.

B.1 Tasks

Figure B.1 shows the task meta-model in ecore notation. A task model is composed of tasks.

The task model is a tree-form model in which a task can be related to other tasks from the

same level -or sister tasks- by binary operators. A task can also have children tasks through

the CompositionRelationship meta-class. A task can also have an unary operator to indicate

for instance if the task is optional or iterative.

As shown in the figure, the task meta-model has been designed to produce CTT based task

models.

224



B.1. TASKS 225

Figure B.1: Task meta-model implementation in Ecore.



226 APPENDIX B. META-MODELS

B.2 Domain

Figure B.2: Domain meta-model implemented in Ecore.

The domain model represents a set of concepts related between them in any arbitrary way

(figure B.2). Associations between concepts are represented by the Relationship meta-class.

Each concept can have attributes if necessary by instantiating the Attribute meta-class.

B.3 AUI

An AUI meta-model is composed of AbstractInteractorUnits (figure B.3). Each AbstractInterac-

tionUnit is defined either as an AbstractCompoundUI or as an AbstractElementaryUI, follow-

ing a composite pattern. This produces tree-form aui models. Navigation between different

AbstractInteractionUnits is done through AbstractRelationships.

An AbstractElementaryUI can be hierarchically defined either as an AbstractDataUI or as

a AbstractSelectionUI, which is a particular case of AbstractDataUIs.

B.4 CUI

Figure B.5 shows our current implementation of the CUI meta-model. A CUI model can be

either Tactile, Graphical or Vocal. For our current implementation, multi-modal UIs are out



B.5. MAPPING 227

Figure B.3: The implementation of AUI meta-model in Ecore.

of the scope of this research. A Graphical UI is composed of windows. Each Window can be

decomposed into sub-windows if necessary. A Window contains different widgets arranged

into Layouts or Panels, and it can also contain a MenuBar. We have modeled different stan-

dard widgets such as Buttons, ToolBars, TextFields, ComboBoxes, ListBoxes, Images, Labels and

others. Each of these widgets has been decomposed into elementary elements when possi-

ble. For instance, a Button showing the message “Accept” does not contain a Caption attribute

but, instead, a Label which contains itself the aforementioned text.

B.5 Mapping

As reader could notice in the previous meta-models, all the elements of all the different meta-

models inherits from the UsiXMLElement meta-class defined in the Mapping meta-model

(figure B.6). This meta-class has been defined to provide a tracking mechanism through map-

pings. Mappings are not always useful for tracking transformations (for instance, what is the



228 APPENDIX B. META-MODELS

Figure B.4: Detail of the hierarchy decomposition of the AbstractElementaryUI meta-class in
the AUI meta-model.



B.5. MAPPING 229

Figure B.5: CUI meta-model implementation in Ecore.



230 APPENDIX B. META-MODELS

aui element in which a task has been transformed) but also for defining inter-model relation-

ships.

Figure B.6: Mapping meta-model implementation in Ecore.

An example of such situation is the mapping between tasks from the a task model and the

manipulated concepts from the domain model, allowing designers to specify what concepts

are directly manipulated by each task.

B.6 QOC

Figure B.7: QOC meta-model implementation in Ecore.

According to the QOC notation, a QOC model is composed of questions about certain

design options. We model this options as a mapping to any UsiXMLElement as shown in



B.6. QOC 231

figure B.7. Criteria is directly linked to the Criterion meta-class from the Quality meta-model

presented in chapter 5.



Appendix C

Contributory Papers

1. GARCÍA FREY, A., CALVARY, G., DUPUY-CHESSA, S., AND MANDRAN, N. Model-based self-

explanatory UIs for free, but are they valuable? In Proceedings of the 14th IFIP TC13 Con-

ference on Human-Computer Interaction (INTERACT’13), 2-6 September 2013, Cape Town,

South Africa (2013), Springer,

2. GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Users need your models! exploiting

design models for explanations. In Proceedings of HCI 2012, Human Computer Interaction,

People and Computers XXVI, The 26th BCS HCI Group conference (Birmingham, UK) (2012)

3. GARCÍA FREY, A., CÉRET, E., DUPUY-CHESSA, S., CALVARY, G., AND GABILLON, Y. Usicomp:

an extensible model-driven composer. In Proceedings of the 4th ACM SIGCHI symposium

on Engineering interactive computing systems (New York, NY, USA, 2012), EICS ’12, ACM,

pp. 263–268

4. GARCÍA FREY, A., CÉRET, E., DUPUY-CHESSA, S., AND CALVARY, G. QUIMERA: a quality

metamodel to improve design rationale. In Proceedings of the third ACM SIGCHI Sympo-

sium on Engineering Interactive Computing Systems (EICS 2011) (2011), ACM Press, pp. 265–

270

5. GARCÍA FREY, A., CÉRET, E., DUPUY-CHESSA, S., AND CALVARY, G. QUIMERA - toward an

unifying quality metamodel. In Congrès INFORSID’11 (Lille, France, May 2011), 6 pages.

(2011)

6. GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Self-explanatory user interfaces by

232



233

model-driven engineering. In Proceedings of the CHI’10 Workshop on Model Driven Devel-

opment of Advanced User Interfaces (MDDAUI’10) (2010), pp. 1–4

7. GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Xplain: an editor for building self-

explanatory user interfaces by model-driven engineering. In Proceedings of the second ACM

SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2010) (2010), ACM

Press, pp. 41–46

8. GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Self-explanatory user interfaces

by model-driven engineering. In Proceedings of the second ACM SIGCHI Symposium on

Engineering Interactive Computing Systems (EICS 2010) (2010), ACM Press, pp. 341–344

9. DITTMAR, A., GARCÍA FREY, A., AND DUPUY-CHESSA, S. What can model-based ui design

offer to end-user software engineering? In Proceedings of the 4th ACM SIGCHI symposium

on Engineering interactive computing systems (New York, NY, USA, 2012), EICS ’12, ACM,

pp. 189–194



List of Figures

1.1 A car shopping website. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Different roles of agents. Adapted images from [85]. . . . . . . . . . . . . . . . . . 18

2.2 Clippy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Evolution of question classifications by authors in the last forty years. After 1990,

most of the classifications reuse the same question types. . . . . . . . . . . . . . . 21

2.4 An example question/answer regarding the airport security wait time at SeaTac

Airport (image from [102]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Siri in action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Apple location facility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Avatars providing multimodal information at the Birmingham Airport (picture

taken in September 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Authentication dialogue of a broker bank. . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.10 Examples of different types of help according to the Presentation axis. Left: In-

trinsic help (Clippy from Microsoft Word©). Right: Extrinsic help (An online

help dialogue presented outside the application that contains all the supportive

information ordered by categories). . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.11 Hypothetical system under study supporting answers about the Representation

and Structure of the system, and without support for tasks-concepts and func-

tionality related answers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

234



LIST OF FIGURES 235

2.12 Left: Crystal answers “Why is the ’p’ bold?” by highlighting the relevant user

interface controls. Right: The “Why?” menu. Images adapted from [100]. . . . . . 52

2.13 Myers’ Crystal help system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.14 The PervasiveCrystal system ([153]) answering a Why question. . . . . . . . . . . 55

2.15 Vermeulen’s PervasiveCrystal system. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.16 The Cartoonist system ([141]) in action: “the animated character of the mouse

is shown trailing the cursor which is being moved to click on the Create a NAND

gate command icon.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.17 Sukaviriya’s Cartoonist help system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.18 Image and description from [79]. This explains “Why” the application inferred

“Breakfast”. The evidences are indicated by the area of bubbles around the cor-

responding sensors in the floorplan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.19 Lim’s Intelligibility Toolkit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.20 Overlapping the related work. Identifying potential areas of interest. . . . . . . . 63

3.1 Relationship between model approaches followed in this research. . . . . . . . . 69

3.2 Example of model. The entity Person can own an unlimited number of Cars. . . . 71

3.3 Example of meta-model. An Association is related to Entities thorugh Associa-

tionEnds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Model-Driven Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Four layers pyramid showing each of the OMG levels. . . . . . . . . . . . . . . . . . 74

3.6 Model transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Example of a model transformation. Generation of java code from UML through

an ATL transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 PIM model (left) and PSM model (right). . . . . . . . . . . . . . . . . . . . . . . . . 76

3.9 General pattern of the MDA process. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.10 Example of the MDA process. Two PIM source models are transformed together

to generate a single PSM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.11 The Cameleon Reference Framework ([18]) . . . . . . . . . . . . . . . . . . . . . . . 81



236 LIST OF FIGURES

3.12 Cameleon levels from final user interface to tasks level. Two transformations are

drawn with straight lines. The source and the target of the transformations are

outlined with circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.13 Example of task model. Modelisation of a help system that supports three dif-

ferent types of questions that the user can ask. . . . . . . . . . . . . . . . . . . . . . 83

3.14 Abstract UI model (AUI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.15 Concrete model (CUI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.16 Final UI (FUI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.17 Relevant works on quality in their years of publication. . . . . . . . . . . . . . . . . 88

3.18 McCall’s quality model: 11 quality factors are decomposed into 23 quality criteria. 89

3.19 Boehm’s quality model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.20 Dromey’s implementation quality model. . . . . . . . . . . . . . . . . . . . . . . . . 91

3.21 ISO 9126 quality model for external and internal quality. . . . . . . . . . . . . . . . 93

3.22 ISO 9126 quality model for quality in use (characteristics). . . . . . . . . . . . . . . 94

3.23 QUIM Structure and Usages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.24 Example of components relationships. . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.25 Finne’s quality meta-model extracted from [40]. . . . . . . . . . . . . . . . . . . . . 96

3.26 Levels of abstraction in quality modelling according to [40]. . . . . . . . . . . . . . 97

4.1 A help message leads the user through the UI. English translation: “To select the

Non-Smoker Kit use the ’Select Non-Smoker kit’ CheckBox. The ’Select Non-

Smoker kit’ CheckBox is located in the ’Select Extra Equipment’ panel.” . . . . . . 103

4.2 Norman’s Theory of Action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Design models influence the designer’s behaviour in the interaction process. . . 106

4.4 Gulf of Quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Explanation through a query paradigm. . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Global approach for Self-Explanatory help sytems. . . . . . . . . . . . . . . . . . . 110

4.7 Example of the global approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



LIST OF FIGURES 237

4.8 The design principles explain how to build a self-explanatory UI based on mod-

els that is able to answer questions about the UI of the Application. . . . . . . . . 112

4.9 Building a model-based self-explanatory user interface. . . . . . . . . . . . . . . . 114

4.10 Building the UI of an example application according to the Cameleon Reference

Framework. Left: Source models. Right: Excerpt of the Final UI. . . . . . . . . . . 115

4.11 Generation of a model-based help system. Each column represents the models

and transformations that produces the source code for the application UI (left)

and the help UI (right). Different combinations for weaving both UIs are repre-

sented in the centre of the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.12 The car shopping website example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.13 Models used for generating questions (left) and answers (right). . . . . . . . . . . 120

4.14 Excerpt of the task model of the car shopping website. . . . . . . . . . . . . . . . . 121

4.15 Explanation strategy for “How” questions. The question identified as How (1) is

used by the explanation strategy to locate the task of the question (2), then to

follow the mappings to reach the widgets at CUI level (3), retrieve these widgets

(4) and provide the answer back (5). . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.16 Example of information retrieving for How questions. Mappings are followed

from the Task model to the AUI (1) to find the AUI elements in which the task is

transformed. Then, CUI elements are retrieved with same procedure (2). . . . . . 124

4.17 Sequence diagram for computing How questions . . . . . . . . . . . . . . . . . . . 125

4.18 Excerpt of the CUI model of the car shopping website described in UML (top)

and represented using a mockup (bottom). . . . . . . . . . . . . . . . . . . . . . . . 126

4.19 Explanation strategy for “What is this for” questions. The question identified

as of type Purpose (1) is used by the explanation strategy to locate the CUI el-

ement asked in the question (2). Once the CUI element has been located, the

explanation strategy follows the mappings to reach the task at the Task level (3),

retrieving the task (4) and providing the answer back to the user (5). . . . . . . . . 128



238 LIST OF FIGURES

4.20 Information retrieving for What is it for questions. Mappings are followed from

CUI to AUI (1) to retrieve the AUI element. Then, from AUI to Tasks (2) to find

the task at the source of the transformation chain. . . . . . . . . . . . . . . . . . . 129

4.21 Sequence diagram for computing What is it for questions . . . . . . . . . . . . . . 129

4.22 Excerpt of the CUI model of the car shopping website. . . . . . . . . . . . . . . . . 131

4.23 Explanation strategy for “Where” questions. As the question is identified as of

type Where by the help facility (1), it is used by the explanation strategy to locate

the CUI element involved in the question (2). Once the CUI element has been

located, the explanation strategy retrieves the container CUI element inside the

same CUI element (3). Once the container is retrieved (4) its information is used

by the help facility to compose the final answer (5). . . . . . . . . . . . . . . . . . . 132

4.24 Excerpt of the CUI of the car shopping website. All the CUI elements such as

Tabs and CheckBoxes have one parent container by construction. . . . . . . . . . 133

4.25 Sequence diagram for computing Where questions . . . . . . . . . . . . . . . . . . 134

4.26 Configuration options under the Equipment tab. . . . . . . . . . . . . . . . . . . . 135

4.27 Available tasks at the state shown in figure 4.26. . . . . . . . . . . . . . . . . . . . . 136

4.28 Explanation strategy for “What can I do now” questions. The question is iden-

tified as of type Availability by the help facility in (1). The explanation strategy

locates the current active task inside the task model (2). The algorithm for find-

ing all the currently available tasks is then applied (3). The list of available tasks

is recovered by the explanation strategy in (4). Finally, the help facility composes

the final answer (5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.29 Sequence diagram for computing What can I do now questions . . . . . . . . . . . 138

4.30 Unexpected behaviour (left) and expected result (right) of the Visualization tab.

The user gets no feedback about why the unexpected behaviour happens. . . . . 139

4.31 Excerpt of the Task model of the car shopping website. The task “Visualize the

result” is enabled by all the previous sisters tasks because of the Sequential En-

abling operator represented by “»”. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



LIST OF FIGURES 239

4.32 Explanation strategy for “Why I can’t” questions. Questions of type Behavioural

are treated (1) by the explanation strategy by locating the disabled task inside

the task model (2). The algorithm for finding the LOTOS operator that activates

this task is then applied (3). This information is recovered by the explanation

strategy (4) and the help facility uses it to compose the final answer (5). . . . . . . 141

4.33 Sequence diagram for computing Why I can’t questions. The algorithm looks for

sister and mother tasks enabling an unreachable task. . . . . . . . . . . . . . . . . 143

5.1 Example of a QOC model for choosing between two types of interactors . . . . . 147

5.2 Quimera: the quality meta-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3 Modelisation of Quality Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.4 Global quality (green top box), Local quality (pink bottom box), and their rela-

tionship to Objects, Methods and Results. . . . . . . . . . . . . . . . . . . . . . . . 156

5.5 A part of the quality model of ergonomic criteria. . . . . . . . . . . . . . . . . . . . 158

5.6 Subset of the objects of Symphony evaluation model. . . . . . . . . . . . . . . . . 160

5.7 Example of an instance of the quality meta-model. The quality model is the

standard ISO 9241-110. The instance shows a subset of seven criteria from this

standard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.8 Graphical representation of the connection between the quality model (right)

and a design rationale notation, QOC in this example (left). . . . . . . . . . . . . . 163

5.9 Sequence diagram for computing Design Rationale questions . . . . . . . . . . . . 167

5.10 QOC and Quality models linked through quality criteria. Design rationale ques-

tions are directly retrieved from the QOC model. Answers are provided accord-

ing to the criteria that support (Assessment) the selected option. . . . . . . . . . . 168

6.1 The Self-Explanatory User Interface consist of the UI of the application (right)

plus the self-explanatory facility (middle) being both of them model-based UIs. . 173

6.2 Generic architecture for model-based self-explanatory help systems. The func-

tional core of the help UI accesses any (meta-)model at runtime. . . . . . . . . . . 174



240 LIST OF FIGURES

6.3 Overview of the OSGi Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.4 UsiComp software architecture: meta-models, models and transformations at

the heart of both design time (IDE for designers) and runtime (FUIs for end-

users). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.5 UsiComp Development Environment. From Top to Bottom: Task model, AUI

model, CUI model. Transformations are represented by arrows. . . . . . . . . . . 180

6.6 Two examples of the UsiComp extensibility. A task model is generated from

an external tool called Compose. A CUI model can also be generated from a

mockup instead of transforming the AUI model. . . . . . . . . . . . . . . . . . . . 184

6.7 Relationship between the UsiExplain generic architecture and the UsiComp frame-

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.8 Screenshot of the prototype. Choosing the model. . . . . . . . . . . . . . . . . . . 188

6.9 Screenshot of the prototype. Selecting the external colour. . . . . . . . . . . . . . . 189

6.10 Self-Explanatory dialogue showing the full list of types and questions. . . . . . . . 190

7.1 Overlapping related work with self-explanatory user interfaces. . . . . . . . . . . . 208

A.1 Quality and Subjectivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B.1 Task meta-model implementation in Ecore. . . . . . . . . . . . . . . . . . . . . . . 225

B.2 Domain meta-model implemented in Ecore. . . . . . . . . . . . . . . . . . . . . . . 226

B.3 The implementation of AUI meta-model in Ecore. . . . . . . . . . . . . . . . . . . . 227

B.4 Detail of the hierarchy decomposition of the AbstractElementaryUI meta-class

in the AUI meta-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

B.5 CUI meta-model implementation in Ecore. . . . . . . . . . . . . . . . . . . . . . . . 229

B.6 Mapping meta-model implementation in Ecore. . . . . . . . . . . . . . . . . . . . 230

B.7 QOC meta-model implementation in Ecore. . . . . . . . . . . . . . . . . . . . . . . 230



References

[1] SIGMOD Rec. 33, 1 (2004). 68

[2] ABRAHÃO, S., IBORRA, E., AND VANDERDONCKT, J. Usability evaluation of user inter-

faces generated with a model-driven architecture tool. In Maturing Usability, E.-C. Law,

E. Hvannberg, and G. Cockton, Eds., Human-Computer Interaction Series. Springer

London, 2008, pp. 3–32. 145, 148

[3] ACT-NET CONSORTIUM, C. The active database management system manifesto: a rule-

base of adbms features. SIGMOD Rec. 25, 3 (Sept. 1996), 40–49. 31

[4] AKOUMIANAKIS, D., SAVIDIS, A., AND STEPHANIDIS, C. Encapsulating intelligent inter-

active behaviour in unified user interface artefacts. Interacting with Computers 12, 4

(2000), 383–408. 2, 19

[5] ALEXIS CÖTÉ M. ING, M., PHD, W. S., AND GEORGIADOU, E. Software quality model

requirements for software quality engineering. In Software Quality Management and

INSPIRE Conference (BSI) 2006 (2006). 89, 90, 91

[6] ANDRENUCCI, A., AND SNEIDERS, E. Automated question answering: review of the

main approaches. In in the Third International Conference on Information Technology

and Applications (2005), pp. 4–7. 21

[7] BASTIEN, C., AND SCAPIN, D. Ergonomic Criteria for the Evaluation of Human-

Computer Interfaces, 1993. 98, 154, 157

241



242 REFERENCES

[8] BELLOTTI, V., AND EDWARDS, K. Intelligibility and accountability: human consider-

ations in context-aware systems. Hum.-Comput. Interact. 16, 2 (Dec. 2001), 193–212.

59

[9] BENYON, D., AND MURRAY, D. Adaptive systems: from intelligent tutoring to au-

tonomous agents. Knowledge-Based Systems 6, 4 (Dec. 1993), 197–219. 17

[10] BERLAGE, T. A selective undo mechanism for graphical user interfaces based on com-

mand objects. ACM Trans. Comput.-Hum. Interact. 1, 3 (Sept. 1994), 269–294. 52

[11] BÉZIVIN, J. On the unification power of models. Software and System Modeling 4, 2

(2005), 171–188. 70, 77

[12] BOEHM, B. W., BROWN, J. R., KASPAR, H., LIPOW, M., MCLEOD, G., AND MERRITT, M.

Characteristics of Software Quality. TRW series of software technology. TRW Systems

and Energy, Inc. (1973); also published by North-Holland, Amsterdam., 1978. 88, 149,

151

[13] BOOCH, G. Object oriented design with applications. Benjamin/Cummings series in

Ada and software engineering. Benjamin/Cummings Pub. Co., 1991. 68

[14] BOWEN, J., AND REEVES, S. Modelling user manuals of modal medical devices and

learning from the experience. In Proceedings of the 4th ACM SIGCHI symposium on

Engineering interactive computing systems (New York, NY, USA, 2012), EICS ’12, ACM,

pp. 121–130. 2

[15] BRADSHAW, J. Software agents. AAAI Press Series. AAAI Press, 1997. 18

[16] BUCHANAN, B., AND SHORTLIFFE, E. Rule-based expert systems: the MYCIN experiments

of the Stanford Heuristic Programming Project. Addison-Wesley series in artificial intel-

ligence. Addison-Wesley, 1984. 15



REFERENCES 243

[17] CALVARY, G., COUTAZ, J., THEVENIN, D., LIMBOURG, Q., BOUILLON, L., AND VANDER-

DONCKT, J. A unifying reference framework for multi-target user interfaces. INTERACT-

ING WITH COMPUTERS 15 (2003), 289–308. 48

[18] CALVARY, G., COUTAZ, J., THEVENIN, D., LIMBOURG, Q., BOUILLON, L., AND VANDER-

DONCKT, J. A unifying reference framework for multi-target user interfaces. Interacting

With Computers Vol. 15/3 (2003), 289–308. 80, 81, 235

[19] CARLIER, A. Management de la qualité pour la maîtrise du SI: ITIL, SPiCE, CMMi, CObIT,

ISO 17799, BS 7799, MDA, Six Sigma et IT Gouvernance. Management et informatique.

Hermes Science Publications, 2006. 152

[20] CAWSEY, A., AND OF EDINBURGH. DEPT. OF ARTIFICIAL INTELLIGENCE, U. Explaining

the Behaviour of Simple Electronic Circuits. No. 376 in D.A.I. research paper. University

of Edinburgh, Department of Artificial Intelligence, 1988. 24

[21] CÉRET, E., DUPUY-CHESSA, S., AND CALVARY, G. M2flex: a process metamodel for

flexibility at runtime. 7th IEEE Int. Conf. On research Challenge in Information Science

RCIS’2013 (2013). 184

[22] CERET, E., DUPUY-CHESSA, S., AND GODET-BAR, G. Using software metrics in the eval-

uation of a conceptual component model. In Research Challenges in Information Sci-

ence (RCIS), 2010 Fourth International Conference on (2010), pp. 507–514. 159

[23] CHEN, P. P.-S. The entity-relationship modeltoward a unified view of data. ACM Trans.

Database Syst. 1, 1 (Mar. 1976), 9–36. 68

[24] CHERFI, S. S.-S., AKOKA, J., AND COMYN-WATTIAU, I. Conceptual modeling quality -

from eer to uml schemas evaluation. In Proceedings of the 21st International Conference

on Conceptual Modeling (London, UK, UK, 2002), ER ’02, Springer-Verlag, pp. 414–428.

153

[25] CLANCEY, W. J. The epistemology of a rule-based expert system: a framework for ex-

planation. Tech. rep., Stanford, CA, USA, 1981. 16



244 REFERENCES

[26] COUTAZ, J. Pac, an object oriented model for dialog design. In Proceedings Interact

(1987), vol. 87, pp. 431–436. 48

[27] DECKER, K., PANNU, A., SYCARA, K. P., AND WILLIAMSON, M. Designing behaviors

for information agents. In Autonomous Agents and Multiagent Systems/International

Conference on Autonomous Agents (1997), pp. 404–412. 19

[28] DELISLE, S., AND MOULIN, B. User interfaces and help systems: from helplessness to

intelligent assistance. Artificial Intelligence 18, 2 (Oct. 2002), 117–157. 2

[29] DEMEURE, A., LEHMANN, G., PETIT, M., AND CALVARY, G. Enhancing interaction with

supplementary supportive user interfaces (uis): meta-uis, mega-uis, extra-uis, supra-

uis . . . In Proceedings of the 3rd ACM SIGCHI symposium on Engineering interactive

computing systems (New York, NY, USA, 2011), EICS ’11, ACM, pp. 333–334. 6, 259

[30] DITTMAR, A., GARCÍA FREY, A., AND DUPUY-CHESSA, S. What can model-based ui de-

sign offer to end-user software engineering? In Proceedings of the 4th ACM SIGCHI

symposium on Engineering interactive computing systems (New York, NY, USA, 2012),

EICS ’12, ACM, pp. 189–194. 215

[31] DIX, A., FINLEY, J., ABOWD, G., AND BEALE, R. Human-computer interaction (2nd ed.).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998. 197

[32] DORATO, M., AND FELLINE, L. Scientific explanation and scientific structuralism, Jan-

uary 2010. 14

[33] DROMEY, R. G. A model for software product quality. IEEE Trans. Softw. Eng. 21, 2 (Feb.

1995), 146–162. 90

[34] DROMEY, R. G. Concerning the chimera. IEEE Softw. 13, 1 (Jan. 1996), 33–43. 90

[35] EISENSTEIN, J., AND RICH, C. Agents and guis from task models. In Proceedings of the

7th international conference on Intelligent user interfaces (New York, NY, USA, 2002), IUI

’02, ACM, pp. 47–54. 29, 198



REFERENCES 245

[36] ELMASRI, R., AND NAVATHE, S. B. Fundamentals of Database Systems. Benjamin/Cum-

mings, 1989. 68

[37] FAVRE, J.-M. Foundations of meta-pyramids: Languages vs. metamodels – episode

ii: Story of thotus the baboon1. In Language Engineering for Model-Driven Software

Development (Dagstuhl, Germany, 2005), J. Bezivin and R. Heckel, Eds., no. 04101 in

Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum

für Informatik (IBFI), Schloss Dagstuhl, Germany. 71

[38] FAVRE, J.-M. Foundations of model (driven) (reverse) engineering : Models – episode i:

Stories of the fidus papyrus and of the solarus. In Language Engineering for Model-

Driven Software Development (Dagstuhl, Germany, 2005), J. Bezivin and R. Heckel,

Eds., no. 04101 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und

Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany. 70

[39] FININ, T., FRITZSON, R., MCKAY, D., AND MCENTIRE, R. Kqml as an agent commu-

nication language. In Proceedings of the third international conference on Information

and knowledge management (New York, NY, USA, 1994), CIKM ’94, ACM, pp. 456–463.

19

[40] FINNE, A. Towards a quality meta-model for information systems. Software Quality

Journal 19, 4 (2011), 663–688. 96, 97, 236

[41] FOLEY, J., AND VAN DAM, A. Fundamentals of interactive computer graphics. The sys-

tems programming series. Addison-Wesley Pub. Co., 1982. 47

[42] FOWLER, J. Variant design for mechanical artifacts: A state-of-the-art survey. Engineer-

ing with Computers 12, 1 (1996), 1–15. 147

[43] GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Self-explanatory user interfaces

by model-driven engineering. In Proceedings of the second ACM SIGCHI Symposium on

Engineering Interactive Computing Systems (EICS 2010) (2010), ACM Press, pp. 341–344.



246 REFERENCES

[44] GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Self-explanatory user interfaces

by model-driven engineering. In Proceedings of the CHI’10 Workshop on Model Driven

Development of Advanced User Interfaces (MDDAUI’10) (2010), pp. 1–4.

[45] GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Xplain: an editor for build-

ing self-explanatory user interfaces by model-driven engineering. In Proceedings of the

second ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS

2010) (2010), ACM Press, pp. 41–46.

[46] GARCÍA FREY, A., CALVARY, G., AND DUPUY-CHESSA, S. Users need your models! ex-

ploiting design models for explanations. In Proceedings of HCI 2012, Human Computer

Interaction, People and Computers XXVI, The 26th BCS HCI Group conference (Birming-

ham, UK) (2012).

[47] GARCÍA FREY, A., CALVARY, G., DUPUY-CHESSA, S., AND MANDRAN, N. Model-based

self-explanatory UIs for free, but are they valuable? In Proceedings of the 14th IFIP TC13

Conference on Human-Computer Interaction (INTERACT’13), 2-6 September 2013, Cape

Town, South Africa (2013), Springer.

[48] GARCÍA FREY, A., CÉRET, E., DUPUY-CHESSA, S., AND CALVARY, G. QUIMERA - toward

an unifying quality metamodel. In Congrès INFORSID’11 (Lille, France, May 2011), 6

pages. (2011).

[49] GARCÍA FREY, A., CÉRET, E., DUPUY-CHESSA, S., AND CALVARY, G. QUIMERA: a quality

metamodel to improve design rationale. In Proceedings of the third ACM SIGCHI Sym-

posium on Engineering Interactive Computing Systems (EICS 2011) (2011), ACM Press,

pp. 265–270.

[50] GARCÍA FREY, A., CÉRET, E., DUPUY-CHESSA, S., CALVARY, G., AND GABILLON, Y. Usi-

comp: an extensible model-driven composer. In Proceedings of the 4th ACM SIGCHI

symposium on Engineering interactive computing systems (New York, NY, USA, 2012),

EICS ’12, ACM, pp. 263–268. 176, 184



REFERENCES 247

[51] GODET-BAR, G., RIEU, D., DUPUY-CHESSA, S., AND JURAS, D. Interactional objects: Hci

concerns in the analysis phase of the symphony method. In ICEIS (5) (2007), J. Cardoso,

J. Cordeiro, and J. Filipe, Eds., pp. 37–44. 159

[52] GOOD, N., SCHAFER, J. B., KONSTAN, J. A., BORCHERS, A., SARWAR, B., HERLOCKER, J.,

AND RIEDL, J. Combining collaborative filtering with personal agents for better recom-

mendations. In Proceedings of the sixteenth national conference on Artificial intelligence

and the eleventh Innovative applications of artificial intelligence conference innovative

applications of artificial intelligence (Menlo Park, CA, USA, 1999), AAAI ’99/IAAI ’99,

American Association for Artificial Intelligence, pp. 439–446. 19

[53] GRAESSER, A., AND MURACHVER, T. Symbolic procedures of question answering. Chapter

2 in The Psychology of Questions by Graesser, A.C. and Black, J.B. L. Erlbaum Associates,

1985. 24

[54] GREGOR, S., AND BENBASAT, I. Explanations from intelligent systems: theoretical foun-

dations and implications for practice. MIS Q. 23, 4 (Dec. 1999), 497–530. 16, 17, 44

[55] HAYNES, S. R., COHEN, M. A., AND RITTER, F. E. Designs for explaining intelligent

agents. Int. J. Hum.-Comput. Stud. 67, 1 (Jan. 2009), 90–110. 19, 20

[56] HEIDENREICH, F., JOHANNES, J., SEIFERT, M., AND WENDE, C. Closing the gap between

modelling and java. In Software Language Engineering, M. van den Brand, D. Gaše-

vic, and J. Gray, Eds., vol. 5969 of Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, 2010, pp. 374–383. 183

[57] HEMPEL, C. G., AND OPPENHEIM, P. Studies in the logic of explanation. Philosophy of

Science 15, 2 (1948), 135–175. 13

[58] HERMJAKOB, U. Parsing and question classification for question answering. In Proceed-

ings of the workshop on Open-domain question answering - Volume 12 (Stroudsburg,

PA, USA, 2001), ODQA ’01, Association for Computational Linguistics, pp. 1–6. 22



248 REFERENCES

[59] HORTON, W. Designing and writing online documentation: hypermedia for self-

supporting products. Wiley technical communication library. Wiley, 1994. 197

[60] HUGHES, R. Bell’s theorem, ideology, and structural explanation. In Philosophical con-

sequences of quantum theory: reflections on Bell’s theorem (1989), J. Cushing and E. Mc-

Mullin, Eds., University of Notre Dame Press, pp. 195–207. 14

[61] HUSSMANN, H., MEIXNER, G., AND ZUEHLKE, D. Model-driven development of ad-

vanced user interfaces. Springer, Berlin, 2011. 5

[62] ISO. International Standard ISO/IEC 14598-1: Information Technology - Software Prod-

uct Evaluation - Part 1: General Overview. Geneva, Switzerland, 1999. 87

[63] JACKSON, P. Introduction to Expert Systems, 3rd ed. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 1998. 15

[64] JACOBSON, I. Object-oriented software engineering: a use case driven approach. ACM

Press Series. ACM Press, 1992. 68

[65] JENNINGS, N. R. Agent-based computing: Promise and perils. In In Proceedings of the

16th International Joint Conference on Artificial Intelligence (1999), pp. 1429–1436. 19

[66] JOUAULT, F., ALLILAIRE, F., BÉZIVIN, J., KURTEV, I., AND VALDURIEZ, P. Atl: a qvt-

like transformation language. In Companion to the 21st ACM SIGPLAN symposium on

Object-oriented programming systems, languages, and applications (New York, NY, USA,

2006), OOPSLA ’06, ACM, pp. 719–720. 181

[67] KITCHENHAM, B., AND PFLEEGER, S. L. Software quality: The elusive target. IEEE Softw.

13, 1 (Jan. 1996), 12–21. 88, 149

[68] KLEPPE, A., WARMER, J., AND BAST, W. MDA Explained: The Model Driven Architecture

: Practice and Promise. The Addison-Wesley Object Technology Series. Addison-Wesley,

2003. 70



REFERENCES 249

[69] KO, A. J., AND MYERS, B. A. Development and evaluation of a model of programming

errors. In Proceedings of the 2003 IEEE Symposium on Human Centric Computing Lan-

guages and Environments (Washington, DC, USA, 2003), HCC ’03, IEEE Computer So-

ciety, pp. 7–14. 108

[70] KUNZ, W., AND RITTEL, H. Issues as Elements of Information Systems. Center for Plan-

ning and Development Research, University of California at Berkeley, 1970. 147

[71] LASHKARI, Y., METRAL, M., AND MAES, P. Collaborative interface agents. In In Pro-

ceedings of the Twelfth National Conference on Artificial Intelligence (1994), AAAI Press,

pp. 444–449. 19

[72] LEE, J. Extending the potts and bruns model for recording design rationale. In Pro-

ceedings of the 13th international conference on Software engineering (Los Alamitos, CA,

USA, 1991), ICSE ’91, IEEE Computer Society Press, pp. 114–125. 147

[73] LEE, J., AND LAI, K.-Y. What’s in design rationale? Hum.-Comput. Interact. 6, 3 (Sept.

1991), 251–280. 104

[74] LEHNERT, W. The process of question answering. Yale., 1977. 25, 26

[75] LEHNERT, W. The Process of Question Answering: A Computer Simulation of Cognition.

Artificial Intelligence Series. Erlbaum, 1978. 21, 25

[76] LEONDES, C. Expert systems: the technology of knowledge management and decision

making for the 21st century. No. vol. 2 in Expert Systems: The Technology of Knowledge

Management and Decision Making for the 21st Century. Academic Press, 2002. 15

[77] LEWANDOWSKI, A., LEPREUX, S., AND BOURGUIN, G. Tasks models merging for high-

level component composition. In Proc. of HCI’07 (Berlin, Heidelberg, 2007), Springer-

Verlag, pp. 1129–1138. 115



250 REFERENCES

[78] LIM, B. Y., AND DEY, A. K. Assessing demand for intelligibility in context-aware appli-

cations. In Proceedings of the 11th international conference on Ubiquitous computing

(New York, NY, USA, 2009), Ubicomp ’09, ACM, pp. 195–204. 31

[79] LIM, B. Y., AND DEY, A. K. Toolkit to support intelligibility in context-aware applica-

tions. In Proceedings of the 12th ACM international conference on Ubiquitous computing

(New York, NY, USA, 2010), Ubicomp ’10, ACM, pp. 13–22. 59, 61, 235

[80] LIM, B. Y., DEY, A. K., AND AVRAHAMI, D. Why and why not explanations improve the

intelligibility of context-aware intelligent systems. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems (New York, NY, USA, 2009), CHI ’09,

ACM, pp. 2119–2128. 5, 31, 195

[81] LIMBOURG, Q., VANDERDONCKT, J., MICHOTTE, B., BOUILLON, L., AND LÓPEZ-

JAQUERO, V. USIXML: a language supporting multi-path development of user inter-

faces. In Engineering Human Computer Interaction and Interactive Systems, R. Bastide,

P. Palanque, and J. Roth, Eds., vol. 3425 of Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 2005, pp. 134–135. 10.1007/11431879_12. 113

[82] LÓPEZ-JAQUERO, V., VANDERDONCKT, J., MONTERO, F., AND GONZÁLEZ, P. Engineering

interactive systems. Springer-Verlag, Berlin, Heidelberg, 2008, ch. Towards an Extended

Model of User Interface Adaptation: The Isatine Framework, pp. 374–392. 104

[83] MACLEAN, A., YOUNG, R., BELLOTTI, V., AND MORAN, T. Questions, Options, and Crite-

ria: Elements of Design Space Analysis. Human-Computer Interaction 6, 3 (Sept. 1991),

201–250. 104

[84] MACLEAN, A., YOUNG, R. M., BELLOTTI, V. M. E., AND MORAN, T. P. Questions, op-

tions, and criteria: elements of design space analysis. Hum.-Comput. Interact. 6, 3 (Sept.

1991), 201–250. 46, 86, 148

[85] MAES, P. Agents that reduce work and information overload. Commun. ACM 37, 7 (July

1994), 30–40. 18, 234



REFERENCES 251

[86] MARPLES, D., AND KRIENS, P. P (2001) the open service gateway initiative: an introduc-

tory overview. In: IEEE Commun Mag. pp. 176

[87] MAYBURY, M., AND WAHLSTER, W. Readings in intelligent user interfaces. Morgan Kauf-

mann Series in Interactive Technologies. Morgan Kaufmann Publishers, 1998. 18

[88] MCCALL, J. A., RICHARDS, P. K., AND WALTERS, G. F. Factors in Software Quality. Vol-

ume I. Concepts and Definitions of Software Quality. Technical Report ADA049014,

GENERAL ELECTRIC CO SUNNYVALE CALIF, Nov. 1977. 88, 149

[89] MCCALL, R. Phi: A conceptual foundation for design hypermedia. Design Studies 12, 1

(1991), 30–41. 147

[90] MCGUINNESS, D. L., GLASS, A., WOLVERTON, M., AND SILVA, P. P. D. A categorization

of explanation questions for task processing systems. 29

[91] MCKEOWN, K. R. Text generation: Using discourse strategies and focus constraints to

generate natural language text. Cambridge University Press. 23

[92] MCMULLIN, E. Structural explanation. In American Philosophical Quarterly, Vol. 15,

No. 2 (April 1978), N. Rescher, Ed., University of Illinois Press, pp. 139–147. 14

[93] MDA. Model driven architecture - a technical perspective. Tech. Rep. ab/2001-02-01,

OMG, 2001. Architecture Board MDA Drafting Team Review Draft. 69

[94] MELLOR, S. Mda Distilled: Principles of Model-Driven Architecture. Addison-Wesley

Object Technology Series. Addison-Wesley, 2004. 70

[95] MELLOR, S. J., CLARK, A. N., AND FUTAGAMI, T. Guest editors’ introduction: Model-

driven development. IEEE Software 20 (2003), 14–18. 78

[96] MOLDOVAN, D. I., HARABAGIU, S. M., PASCA, M., MIHALCEA, R., GOODRUM, R., GIRJU,

R., AND RUS, V. Lasso: A tool for surfing the answer net. In TREC (1999). 22



252 REFERENCES

[97] MOORE, J. D., AND SWARTOUT, W. R. Explanation in expert systems: A survey. ISI

Research Report, ISI/RR-88-228, Information Science Institute, University of Southern

California, Los Angeles, CA, 1988. 15

[98] MORAN, T., AND CARROLL, J. Design rationale: concepts, techniques, and use. Com-

puters, Cognition, and Work Series. Lawrence Erlbaum Associates, Incorporated, 1996.

147

[99] MYERS, B., HOLLAN, J., CRUZ, I., BRYSON, S., BULTERMAN, D., CATARCI, T., CITRIN, W.,

GLINERT, E., GRUDIN, J., AND IOANNIDIS, Y. Strategic directions in human-computer

interaction. ACM Comput. Surv. 28, 4 (Dec. 1996), 794–809. 5

[100] MYERS, B. A., WEITZMAN, D. A., KO, A. J., AND CHAU, D. H. Answering why and why

not questions in user interfaces. In CHI ’06: Proceedings of the SIGCHI conference on

Human Factors in computing systems (New York, NY, USA, 2006), ACM, pp. 397–406. 1,

5, 30, 52, 54, 195, 214, 235

[101] NECHES, R., SWARTOUT, W. R., AND MOORE, J. D. Enhanced maintenance and expla-

nation of expert systems through explicit models of their development. IEEE Trans.

Softw. Eng. 11, 11 (Nov. 1985), 1337–1351. 23

[102] NICHOLS, J., AND KANG, J.-H. Asking questions of targeted strangers on social net-

works. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative

Work (New York, NY, USA, 2012), CSCW ’12, ACM, pp. 999–1002. 31, 234

[103] NICOLOSI, E., LEANING, M., AND BOROUJERDI, M. The development of an explanatory

system using knowledge-based models. In Proceedings of the 4th Explanations Work-

shop (KB Design group) (1988), Manchester University, pp. 14–16. 26

[104] NIELSEN, J., AND MOLICH, R. Heuristic evaluation of user interfaces. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems (New York, NY, USA,

1990), CHI ’90, ACM, pp. 249–256. 1



REFERENCES 253

[105] NILSSON, N. Artificial Intelligence: A New Synthesis. The Morgan Kaufmann Series in

Artificial Intelligence. Morgan Kaufmann Publishers, 1998. 15

[106] NORMAN, D. The design of everyday things. New York: Doubleday, 1990. 104

[107] NORMAN, D. A., AND DRAPER, S. W. User Centered System Design; New Perspectives on

Human-Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1986. 105

[108] OF TECHNOLOGY ), P. M. M. I., AND MALHOTRA, A. Design criteria for a knowledge-

based English language system for management: an experimental analysis. 1975. 23

[109] OMG. MDA Guide Version 1.0.1. http://www.omg.org/cgi-bin/doc?omg/

03-06-01.pdf, June 2003. 69, 70, 71, 74

[110] OMG. MDA Guide Working Page. http://ormsc.omg.org/mda_guide_

working_page.htm/, 2007. [Online; accessed 5-July-2012]. 69

[111] ORGANIZATION, I. S. ISO 9126 information technology - software product evaluation -

quality characteristics and guidelines for their use. Geneva, Switzerland, 1991. 91

[112] PAILLÉ, P., AND MUCCHIELLI, A. L’analyse qualitative: en sciences humaines et sociales.

Collection U. Sciences Sociales. Armand Collin, 2003. 193

[113] PALANQUE, P., BASTIDE, R., AND DOURTE, L. Contextual help for free with formal dia-

logue design. 29

[114] PANGOLI, S., AND PATERNÓ, F. Automatic generation of task-oriented help. In Proceed-

ings of the 8th annual ACM symposium on User interface and software technology (New

York, NY, USA, 1995), UIST ’95, ACM, pp. 181–187. 29, 113

[115] PATERNÒ, F., MANCINI, C., AND MENICONI, S. Concurtasktrees: A diagrammatic nota-

tion for specifying task models. In Proceedings of the IFIP TC13 Interantional Conference

on Human-Computer Interaction (London, UK, UK, 1997), INTERACT ’97, Chapman &

Hall, Ltd., pp. 362–369. 29, 83

http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://ormsc.omg.org/mda_guide_working_page.htm/
http://ormsc.omg.org/mda_guide_working_page.htm/


254 REFERENCES

[116] PETERSON, J. Petri net theory and the modeling of systems. Foundations of Philosophy

Series. Prentice-Hall, 1981. 29

[117] PFLEEGER, S. Software engineering: theory and practice. An Alan R. Apt Book Series.

Prentice Hall, 2001. 89

[118] PILKINGHTON, R., TATTERSALL, C., AND HARTLEY, R. Instructional dialogue manage-

ment. In CEC ESPRIT (1988), EUROHELP, p. 280. 26

[119] POMERANTZ, J. Question taxonomies for digital reference. SIGIR Forum 38, 1 (July

2004), 79–79. 13

[120] POTTS, C. A generic model for representing design methods. In Proceedings of the 11th

international conference on Software engineering (New York, NY, USA, 1989), ICSE ’89,

ACM, pp. 217–226. 147

[121] PRIOR, M., AND PRIOR, A. Erotetic Logic. Philosophical Review 64, 1 (1955), 43–59. 13

[122] PURCHASE, H. C., AND WORRILL, J. An empirical study of on-line help design: features

and principles. Int. J. Hum.-Comput. Stud. 56, 5 (Apr. 2002), 539–567. 5

[123] QIAN, K., FU, X., AND TAO, L. Software Architecture and Design Illuminated. Jones and

Bartlett illuminated series. Jones & Bartlett Learning, 2009. 48

[124] RICCI, F., ROKACH, L., SHAPIRA, B., AND KANTOR, P. B., Eds. Recommender Systems

Handbook. Springer, 2011. 33

[125] ROBINSON, W., AND RACKSTRAW, S. A question of answers. No. vol. 1 in Primary social-

ization, language and education. Routledge and K. Paul, 1972. 22

[126] ROBINSON, W., AND RACKSTRAW, S. A question of answers. No. vol. 2 in Primary social-

ization, language and education. Routledge and K. Paul, 1972. 22

[127] RUMBAUGH, J. Object-oriented modeling and design. Object-oriented modeling and

design / James Rumbaugh. Prentice Hall, 1991. 68



REFERENCES 255

[128] SCHMIDT, D. C. Guest editor’s introduction: Model-driven engineering. Computer 39

(2006), 25–31. 79

[129] SCHURZ, G. Scientific explanation: A critical survey. Foundations of Science 1 (1995),

429–465. 12

[130] SEFFAH, A., KECECI, N., AND DONYAEE, M. Quim: A framework for quantifying usabil-

ity metrics in software quality models. In Proceedings of the Second Asia-Pacific Con-

ference on Quality Software (Washington, DC, USA, 2001), APAQS ’01, IEEE Computer

Society, pp. 311–. 94, 151

[131] SELIC, B. The pragmatics of model-driven development. Software, IEEE 20, 5 (sept.-oct.

2003), 19 – 25. 78

[132] SELLEN, A., AND NICOL, A. Human-computer interaction. Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA, 1995, ch. Building user-centered on-line help, pp. 718–

723. 28

[133] SERNA, A., CALVARY, G., AND SCAPIN, D. L. How assessing plasticity design choices can

improve ui quality: a case study. In Proceedings of the 2nd ACM SIGCHI symposium on

Engineering interactive computing systems (New York, NY, USA, 2010), EICS ’10, ACM,

pp. 29–34. 104

[134] SHNEIDERMAN, B. Direct manipulation for comprehensible, predictable and control-

lable user interfaces. In PROCEEDINGS OF IUI97, 1997 INTERNATIONAL CONFER-

ENCE ON INTELLIGENT USER INTERFACES (1997), ACM Press, pp. 33–39. 19

[135] SHNEIDERMAN, B., AND PLAISANT, C. Designing the User Interface: Strategies for Effec-

tive Human-Computer Interaction. Addison-Wesley, 2010. 45, 48, 197

[136] SHNEIDERMAN, B., AND UNIVERSITY OF MARYLAND (COLLEGE PARK, M. H. I. L. Univer-

sal Usability: Pushing Human-computer Interaction Research to Empower Every Citizen.

Computer science technical report series. Human-Computer Interaction Laboratory,

Institute for Advanced Computer Studies, 1999. 5



256 REFERENCES

[137] SOTTET, J.-S. Méga-IHM : malléabilité des Interfaces Homme-Machine dirigées par les

modèles. PhD thesis, 2008. Thèse de doctorat Informatique préparée au Laboratoire

d’Informatique de Grenoble (LIG), Université Joseph Fourier. 71

[138] SOTTET, J.-S., CALVARY, G., FAVRE, J.-M., AND COUTAZ, J. Megamodeling and

metamodel-driven engineering for plastic user interfaces: Mega-ui. In Human-

Centered Software Engineering. 2009, pp. 173–200. 215

[139] SPIEKER, P. Natürlichsprachliche erklärungen in technischen expertensystemen. dis-

sertation. Tech. rep., 1991. 28, 29

[140] STEINBERG, D., BUDINSKY, F., PATERNOSTRO, M., AND MERKS, E. EMF: Eclipse Model-

ing Framework (2nd Edition), 2 ed. Addison-Wesley Professional, Dec. 2008. 180

[141] SUKAVIRIYA, P., AND FOLEY, J. D. Coupling a ui framework with automatic generation

of context-sensitive animated help. In Proceedings of the 3rd annual ACM SIGGRAPH

symposium on User interface software and technology (New York, NY, USA, 1990), UIST

’90, ACM, pp. 152–166. 29, 57, 235

[142] SWARTOUT, W. R. Xplain: a system for creating and explaining expert consulting pro-

grams. Artif. Intell. 21, 3 (Sept. 1983), 285–325. 16, 17

[143] SWARTOUT, W. R. Xplain: a system for creating and explaining expert consulting pro-

grams. Artificial Intelligence 21, N◦ 3 (Sept. 1983), 285–325. 23

[144] SWARTOUT, W. R., AND SMOLIAR, S. W. Ai tools and techniques. Ablex Publishing Corp.,

Norwood, NJ, USA, 1989, ch. On making expert systems more like experts, pp. 197–216.

16

[145] TAKEDA, K., INABA, M., AND SUGIHARA, K. User interface and agent prototyping for

flexible working. IEEE MultiMedia 3, 2 (Mar. 1996), 40–50. 19

[146] TENNANT, H. R. Experience with the evaluation of natural language question answer-

ers. In IJCAI (1979), B. G. Buchanan, Ed., William Kaufmann, pp. 874–876. 23



REFERENCES 257

[147] TINTAREV, N. Explaining recommendations. In User Modeling 2007, C. Conati, K. Mc-

Coy, and G. Paliouras, Eds., vol. 4511 of Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2007, pp. 470–474. 33

[148] TOMURO, N. Question terminology and representation for question type classifica-

tion. In COLING-02 on COMPUTERM 2002: second international workshop on com-

putational terminology - Volume 14 (Stroudsburg, PA, USA, 2002), COMPUTERM ’02,

Association for Computational Linguistics, pp. 1–7. 26

[149] USIXML. The UsiXML Language. http://usixml.eu/about-the-project,

2012. [Online; accessed 10-July-2012]. 85

[150] VALLEY, K. Explanation generation in an expert system shell. University of Edinbugh.

Edinburgh. EH1 1HN. 1988. 26

[151] VAN MELLE, W., SHORTLIFFE, E. H., AND BUCHANAN, B. G. Emycin: A knowledge en-

gineer’s tool for constructing rule-based expert systems. In Rule-based expert systems.

Addison-Wesley, 1984. 16

[152] VANDERDONCKT, J. Guide ergonomique des interfaces homme-machine. 1994. 99

[153] VERMEULEN, J., VANDERHULST, G., LUYTEN, K., AND CONINX, K. Pervasivecrystal: Ask-

ing and answering why and why not questions about pervasive computing applications.

In Proceedings of the 2010 Sixth International Conference on Intelligent Environments

(Washington, DC, USA, 2010), IE ’10, IEEE Computer Society, pp. 271–276. 30, 54, 55,

113, 214, 235

[154] WATSON, A. H., MCCABE, T. J., AND WALLACE, D. R. Special publication 500-235, struc-

tured testing: A software testing methodology using the cyclomatic complexity metric.

In U.S. Department of Commerce/National Institute of Standards and Technology (1996).

159

[155] WEXELBLAT, R. The confidence of their help. In Proceedings of the AAAI’88 Workshop

on Explanation (1988), pp. 80–82. 24

http://usixml.eu/about-the-project


258 REFERENCES

[156] WICK, M. R., AND SLAGLE, J. R. An explanation facility for today’s expert systems. IEEE

Expert: Intelligent Systems and Their Applications 4, 1 (Mar. 1989), 26–36. 108

[157] WIKIPEDIA. Service (Systems Architecture) - Wikipedia. [Online]. Available:

http://en.wikipedia.org/wiki/Service_(systems_architecture). [Accessed: Mar. 20,

2012], 2012. 176



Glossary

µ7 Concept that refers to seven different dimensions of user interfaces: multi-device, multi-

user multi-culturality/linguality, multi-organisation, multicontext, multi-modality and

multi-platform. Glossary: UsiXML

API An Application Programming Interface (API) is a particular set of rules and specifications

that a software program can follow to access and make use of the services and resources

provided by another particular software program that implements that API. 258

Context of use is defined as the trio <user, platform, environment>. Glossary: Plastic UI

Plastic UI is a User Interface that is able to dynamically adapt to the context of use while

preserving usability. Glossary:

Supportive User Interface A supportive user interface (SUI) exchanges information about an

interactive system with the user, and/or enables its modification, with the goal of im-

proving the effectiveness and quality of the user’s interaction with that system [29]. 6,

Glossary: SUI

User Interface refers to the graphical, textual and auditory information the program presents

to the user, and the control sequences (such as keystrokes with the computer keyboard,

movements of the computer mouse, and selections with the touchscreen) the user em-

ploys to control the program. 14

UsiXML The USer Interface eXtensible Markup Language is a XML-compliant markup lan-

guage that describes the UI for multiple contexts of use such as Character User In-
259



260 Glossary

terfaces (CUIs), Graphical User Interfaces (GUIs), Auditory User Interfaces, and Mul-

timodal User Interfaces. It supports the concept of µ7. see. 258



Acronyms

API Application Programming Interface. Glossary: API

ER Entity-Relationship. 68

ISO International Organization for Standardization. 91

KBS Knowledge-Based System. 16

MBE Model-Based Engineering. 68

MDA Model-Driven Architecture. 68, 69

MDD Model-Driven Development. 68

MDE Model-Driven Engineering. 68

Model Driven UI Model-Driven User Interface. 203

OMG Object Management Group. 69

SUI Supportive User Interface. 6, Glossary: Supportive User Interface

UI User Interface. 1, 4, 5, 14, 203, Glossary: User Interface

UML Unified Modeling Language. 68, 69

UsiXML USer Interface eXtensible Markup Language. Glossary: UsiXML

261


	Introduction
	Research Problem and Motivation
	Thesis Approach
	Working Hypothesis and Thesis Statement
	Research Questions
	Dissertation Structure

	State of the Art
	What is an Explanation
	Theory of Explanation in Philosophy of Science
	Erotetic Logic: Subject and Request
	Structural Explanations

	Approaches
	Expert Systems
	General Principles
	Knowledge-Based Systems
	Intelligent Agents and Cooperative Support

	Question Answering Systems
	General Principles
	Question Types in Question Answering Systems

	Model-based explanations
	Task Models
	Behaviour Models

	Social-Network Based Systems
	Personal assistants
	Recommender Systems
	Desktop facilities
	Avatars

	Analysis of the approaches
	Criteria and their application
	Coverage of Questions
	Quality of Answers
	Cost

	Conclusion

	Focus on Model-Based Approaches
	The QAP Problem Space
	Questions
	Answers
	Properties

	Reading the QAP Problem Space: Values of the Axes
	QAP Problem Space and Related Work
	Crystal System
	PervasiveCrystal System
	Cartoonist System
	Intelligibility Toolkit

	Overlapping Analysis

	Synthesis

	Foundations
	Model-Driven Initiatives
	Model-Driven Initiatives: A Brief History
	Model-Driven Architecture
	Models
	Meta-Models
	Meta-Meta-Models

	Four-layers architecture
	Model Transformations
	MDA Models
	The MDA Process

	Models, Meta-Models, and Meta-Meta-Models
	Model-Driven Development
	Model-Driven Engineering
	Model-Based Engineering

	Model-Driven Engineering of User Interfaces
	The Cameleon Reference Framework
	Levels of Abstraction
	The UsiXML Language

	Quality Models
	Quality Model Definition
	McCall's Software Quality Model
	Boehm's Quality Model
	Dromey's Quality Model

	ISO Standards
	QUIM Model
	Finne's Quality Meta-Model for Information Systems
	Ergonomic Guides
	Bastien and Scapin
	Vanderdonkt's Ergonomic Guide


	Synthesis

	Self-Explanatory User Interfaces
	Introduction
	Gulf of Quality
	Design Principles
	Help Systems Functionality
	The Global Approach
	Design principles
	Building the UI of the Help System
	Building the UI of the application
	Adding support for computing help
	Weaving the UIs


	Explanation Strategies
	Determining the Appropriate Explanation Strategy
	Procedural Questions - How
	Generating Questions
	Retrieving Information
	Providing Support

	Purpose/Functional Questions - What is it for
	Generating Questions
	Retrieving Information
	Providing Support

	Localization Questions - Where
	Generating Questions
	Retrieving Information
	Providing Support

	Availability Questions - What Can I Do Now
	Generating Questions
	Retrieving Information
	Providing Support

	Behavioural questions - Why I can't
	Generating Questions
	Retrieving Information
	Providing Support


	Synthesis

	Design Rationale Questions
	Design Rationale
	QUIMERA: The Quality Meta-Model
	Principles
	Quality Perspectives
	The Quality Meta-Model
	Global Quality vs Local Quality
	Quality Models: Instantiation Examples
	A quality model covering the ergonomic criteria in HCI
	Application to the evaluation of a design method

	How to build a Quality Model

	Design Rationale and Quality
	Putting the Pieces Together
	Advantages and Limitations

	Explanation Strategy
	Generating Questions
	Retrieving Information
	Providing Support

	Synthesis

	Self-Explanatory UIs in Action: Implementation and Evaluation
	UsiExplain: A Model-Based Generic Architecture
	UsiComp: a Services Oriented Framework
	Services and OSGi
	UsiComp Overview
	Design Module
	Meta-Models
	Transformations
	Runtime Module
	Code Generation
	Extension abilities


	Relationship between UsiExplain and UsiComp
	UsiCars: an UsiExplain Based Prototype
	Prototype Description
	Self-explanatory dialogue

	Evaluation
	Participants
	Evaluation Protocol
	Tasks

	Qualitative analysis
	Findings
	Unsupported types of questions
	Usability Suggestions and Improvements
	Limitations of the experiment

	Synthesis

	Conclusions and Future Directions
	Summary of the Contributions
	Answers to Research Questions
	Advantages of the approach
	Properties of the Approach
	Unification of question types
	Introspection
	Flexibility for Weaving
	Distributability
	Reusability
	Customization
	Open Approach

	Proposed Solution on the QAP Problem Space

	Limitations of the Approach
	Usability improvements
	Semantic Information
	Scalability

	Future Work
	Short Term Perspectives
	Usability Improvements
	Interaction Techniques
	Closing the Loop

	Long Term Perspectives
	Initiative Axis
	Quality guided development and evaluation
	Supporting New Question Types
	Supporting New Sources of Knowledge
	Design Rationale for Learning / End-User Programming


	Appendices
	Specification of the Quimera Quality Meta-Model
	Meta-Models
	Tasks
	Domain
	AUI
	CUI
	Mapping
	QOC

	Contributory Papers
	List of Figures
	Glossary
	Acronyms

