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 Introduction 
     

  Access to reliable, sustainable and affordable energy is viewed as crucial to worldwide 

economic prosperity and stability. Given that nuclear power has very low carbon emission and 

that energy generation currently accounts for 66% of worldwide greenhouse gas emissions, 

nuclear energy is considered an important resource in managing atmospheric greenhouse gases 

and associated climate change. 

  While the current second and third generation nuclear plant designs provides an economically, 

technically, and publicly acceptable electricity supply in many markets, further advances in 

nuclear energy system design can broaden the opportunities for the use of nuclear energy. The 

fourth generation of nuclear reactors is under development. These new reactors are designed 

with the following objective in mind: sustainability, safety and reliability, economics, 

proliferation resistance. Out of six Generation IV systems namely, Gas-Cooled Fast Reactor 

(GFR), Lead-cooled fast reactor (LFR), Molten Salt Reactor (MSR), Sodium-Cooled Fast 

Reactor (SFR), Supercritical-Water-Cooled Reactor (SCWR), Very-High-Temperature Reactor 

(VHTR), this work is dedicated to identify specific fuel type that is compatible with gas-cooled 

fast reactor (GFR) in-core service conditions and could be extended to diagnose potential 

cladding material for SFR. The French strategy is mainly oriented towards the development of 

sodium-cooled fast reactors (SFR) and very slightly focused on GFR. 

  This dissertation is focused on the study of transition metal ceramics which are candidates for 

fuel coatings in GFR and have been considered as potential cladding materials for SFR. The 

specific fuel type in GFR should consists of spherical fuel particle made up of UC or UN, 

surrounded by a ceramic coating which provides structural integrity and containment of fission 

products. The most promising candidates for ceramic coatings are ZrN, ZrC, TiN, TiC & SiC 

due to a combination of neutronic performance, thermal properties, chemical behavior, crystal 

structure, and physical properties. 

  It is obvious that these ceramics (to be used as fuel particle coating for GFR or as cladding for 

SFR) would be exposed to energetic fission products from fuel such as heavy ions and neutrons. 

These high-energy neutron will knock the atoms in the surrounding materials and can induce 

(n, α) reactions, thus producing high concentration of helium atoms during and after reactor 
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operation. The helium atoms produced are energetic and can easily penetrate into the 

surrounding material.  

  Helium atoms are considered to be highly insoluble in previously studied structural nuclear 

materials. The accumulation of helium into solid matrix, can lead to the formation of bubbles, 

cavity, swelling, embrittlement etc.  Helium can strongly induce grain boundary cavitation that 

can produce formation of inter-granular channels, which may serve as pathways for release of 

radioactive elements to the environment or lead to grain-boundary weakening and de-cohesion. 

Particularly in ceramics, large quantities of helium can also lead to dimensional changes and 

cracks due to over-pressurized helium bubbles. Therefore, study of helium behavior in 

advanced nuclear ceramics under high operating temperatures and extreme radiation conditions 

predicted for GFRs and SFRs is viewed as crucial by R&D team involved in the deployment of 

Generation IV energy systems. 

  This study can also be extended to fusion energy systems due to the presence of helium in 

fusion reactors and the use of TiC & TiN as coatings on materials used for permeation barrier 

against tritium. This thesis focuses on the study of helium mobility in transition metal ceramics 

under thermal and radiation environment and is mostly dedicated to investigate transition metal 

ceramics (TiC, TiN, ZrC). Due to the broad range of historic and novel nuclear applications of 

SiC such as advanced nuclear fuel forms, structural components for fission reactor systems, 

blanket structures for fusion energy systems and the immobilization of nuclear waste, SiC has 

been very widely studied in last two decades. Thanks to the abundantly available literature on 

SiC, a comparison between SiC and other transition metal ceramics has been drawn at the end 

of the thesis.  

  With the emergence of single, dual and triple ion beam irradiation facilities around the world, 

it is possible to simulate the radiation environment inside the reactors. It is possible to 

simultaneously implant gases (such as He, Ar, Kr, Xe etc.) and to damage material by one or 

two ions with different energy and masses. Along with this, it is also possible to heat (or cool) 

the material (with temperature ranging from 0 K to 800 K), thus allowing replication of real 

operating conditions inside the reactor. Exposing materials under this environment and their 

characterization, allows predicting material ageing, defect properties, microstructural evolution 

and structure-property relationship.                                                       
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  In this thesis, ion-implantation technique and material characterization techniques are used 

to study diffusion of helium in transition metal ceramics under thermal and extreme 

irradiation environments. Our main aim during this thesis is:     

● To calculate diffusion and migration energies of helium under different experimental 

conditions by applying theoretical models on experimental data.      

● To investigate the microstructural evolution due to helium accumulation and conversely, 

identifying the role of microstructure such as grain boundaries, native vacancies and porosity 

on helium accumulation.                                                                                                                            

● To know the role of helium introduction conditions on helium diffusion.                                                                                                                       

● To establish and validate an approach to calculate pressure built by helium gas inside the 

bubbles and to verify if the pressure approaches mechanical stability limit.                                                                                           

● To understand ‘when and how ion beam analysis (IBA) could be more effective than 

transmission electron microscopy (TEM)’ to study helium behavior in materials.                                          

● To compare the helium effects in different ceramics (such as TiC, ZrC and TiN) for their 

possible use in BISO (Bistructural-isotropic) or TRISO (Tristructural-isotropic) fuel forms for 

Gen IV reactors.  

  Following state-of-art material characterization tools are used namely, (1) IBA (Ion beam 

analysis), primarily NRA (nuclear reaction analysis) and RBS (Rutherford backscattering 

spectrometry) to know the positioning of helium atoms and other matrix atoms, (2) Raman 

spectroscopy to determine different phases and to see the evolution of phases after implantation 

and annealing, (3) TEM (transmission electron microscopy) to observe the microstructure 

evolution at nano-metric scale, (4) X-ray diffraction to determine the lattice swelling and other 

crystallographic information, (5) SEM (scanning electron microscopy) to analyze surfaces, (6) 

Nano-indentation to test material hardness after irradiation, (7) Laser profilometry to measure 

macroscopic swelling, (8) FIB (focused ion beam), electro polishing, PIPS (precision ion 

polishing system) to prepare electron transparent thin foils (~ 100 nm). 

  This thesis work has already led to three publications and other three publications are under 

process. They are planned to submitted by the end of this year. The predominant part of the 

thesis is based on learning to use various state-of-art material characterization tools, irradiation 

experiment, analyzing data and applying theoretical models for data interpretation.  

  This thesis is divided into eight chapters:                                                                                     

Chapter one: In this chapter context of the thesis is provided.                                                        
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Chapter two: Our state of knowledge on helium mobility in inorganic materials and radiation 

effects in transition metal ceramics is presented.                                                                                                         

Chapter three: In this chapter, properties of transition metal ceramics are detailed.                      

Chapter four: Theoretical approach followed during this thesis is detailed.                            

Chapter five: Experimental approach followed during this thesis is detailed.                              

Chapter six: Results on helium mobility in transition metal ceramics under thermal 

environment are presented and discussed.                                                                                        

Chapter seven: Results on helium mobility in transition metal ceramics under radiation 

environment are presented and discussed.                                                                                           

Chapter eight: Finally, general discussion and conclusions are presented.  

It is important to point out that the reference is provided at the end of each chapter. In chapter 

number two and six, reference is provided at the end of each sub-section.  
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Chapter 1 

Context of the study 

 

1.1. Nuclear fission energy 
  Nuclear power currently provides about 13% of electrical power worldwide, and has emerged 

as a reliable base load source of clean and economical electrical energy. In 2011, there were 

435 nuclear reactors in operation worldwide, producing 370 GWe of electricity. Another 108 

units or 108 GWe of electricity are forthcoming (under construction or on order), for a total of 

543 units and 478 GWe of electrical capacity. Given that nuclear power has very low carbon 

emission and that energy generation currently accounts for 66% of worldwide greenhouse gas 

emissions, nuclear energy is considered an important resource in managing atmospheric 

greenhouse gases and associated climate change [1].  

  Nuclear fission involves splitting a heavier nucleus into two lighter nuclei. The most common 

used fuel in most reactors is U-235. The spontaneous fission rate of U-235 is very slow; too 

slow to be of any use in a nuclear reactor. Therefore, a neutron is made to hit U-235 to induce 

fission and if a single U-235 nucleus fissions, the emitted neutrons can induce a fission in two 

or more U-235 nuclei, which each in turn can produce two or more, etc. If enough U-235 nuclei 

are close together, the process can increase rapidly, producing a lot of energy in a short time. 

This chain reaction can be described as: 

                                                     ݊ + ܷଽଶ
ଶଷହ

଴
ଵ  → ܺ + ܻ + ݇ ݊ + ்ܳ௛଴

ଵ                                         (1.1) 

k is the number of neutrons released, generally between 2 & 3, and Qth is the energy generated 

in the form of heat which is equal to ~ 200 MeV. This energy is distributed among the fission 

products X and Y, k number of neutrons, and radiation which is in the form of gamma rays and 

neutrinos.  
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  The typical power densities in commercial nuclear reactor cores are ~ 50-75 MWth m-3, which 

is nearly two orders of magnitude higher than the average power density in the boiler furnace 

of a large-scale coal power plant [1]. 

  To maintain the constant rate of fission, control rods which are generally made of B4C are 

used to absorb the neutrons. The reactor vessel contains the core (i.e., the uranium fuel) and 

water. The heated water in the reactor flows to a steam generator. The steam goes to the turbine 

causing that to rotate which then turns a generator, thus producing electricity. On the exit side 

of the turbine is a condenser. This condenser cools the steam and sends it to the environment. 

Nuclear plants are about 35 to 40% efficient; i.e., 35 to 40% of the heat generated in the reactor 

ends up as electricity; the rest is lost in the environment. 

  The neutrons produced by the fission process are too energetic to induce fission reaction of U-

235 with a small cross section (σfast  ≈ 1 .95 barns against σthermal ≈ 580 barns). Therefore, with 

this energy of neutrons and with natural uranium as fuel (with only 0.7 % fissile nuclei), a 

steady rate of reaction is difficult to achieve. However, a constant rate of fission can be 

maintained if either total number of U-235 atoms (by enrichment of fuel) are increased or the 

energy of neutrons are bought closer to the energy of thermal neutrons to increase the cross 

section of absorption (by using moderators). Therefore, in a reactor, where the fast neutrons are 

moderated by elastic collisions with heavy water or light water and are thermalized is known 

as thermal reactors. However, a nuclear reactor in which the fission chain reaction is sustained 

by fast neutrons is known as fast reactor. Such a reactor needs no neutron moderator, but must 

use fuel that is relatively rich in fissile material when compared to that required for a thermal 

reactor. Over all, there are two main types of nuclear reactor in operation, characterized by the 

speed of the neutrons which induce fission: 

a) Thermal reactors: These are the predominant kind, using slower neutrons to induce fission, 

the basic fissile nuclide being U-235. Mainly, they include:  

1. light water reactor (LWR)  

2. boiling water reactor (BWR)  

3. pressurized heavy water reactor (PHWR) 

4. light water graphite-moderated reactor (LWGR) 

5. gas-cooled reactor (GCR) 
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b) Fast reactors. In these less-common reactors, the fast neutrons are used directly to create 

(breed) fissile nuclides from fissionable nuclides; most commonly Pu-239 is bred from U-

238.  Pu-239 is also used in nuclear weapons. It mainly includes: 

1.  fast-neutron breeder reactor (FBR) 

  All type of reactors are loosely grouped into generations describing the time period in which 

they were first used. Figure 1.1 shows time ranges correspond to the design and the first 

deployments of different generations of reactors and are discussed below:  

 

 

Figure 1.1. Time ranges correspond to the design and the first deployment of different 

generations of reactors [2].  

  In the next paragraph, a brief description of each generation of reactor has been provided: 

1) First generation: The first power generation was introduced during the period 1950-1970 

and included early prototype reactors such as Shipping port, Dresden, Fermi I in the USA and 

the Magnox reactors in the UK. 

2) Second generation: The second generation includes commercial power reactors built during 

1970-1990 such as LWRs, BWRs, and PWRs. In Canada, it includes the CANadian Deuterium 

Uranium heavy water moderated and natural uranium fuelled known as CANDU reactors. In 

Russia, this was the era of pressurized water reactor VVER-1000 and the RBMK-1000 of 

Chernobyl accident notoriety. 
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3) Third generation: The third generation started being deployed in the 1990s and is composed 

of the Advanced Boiling Water Reactor (ABWR) and Advanced Light Water Reactor (ALWR) 

and the system 80+. These were primarily built in East Asian countries. New designs that are 

expected to be deployed by 2010-2030 include the Advanced Passive AP 600 and AP 1000. 

These are considered as evolutionary designs offering improved safety and economics. 

4) Fourth generation: While the current second and third generation nuclear plant designs 

provides an economically, technically, and publicly acceptable electricity supply in many 

markets, further advances in nuclear energy system design can broaden the opportunities for 

the use of nuclear energy. The fourth generation of nuclear reactors is expected to start being 

deployed in 2030. These new reactors are designed with the following objective in mind: 

sustainability, safety and reliability, economics, proliferation resistance. 

 

1.1.1. Generation IV initiative 

  The Generation IV International Forum (GIF) was created in January 2000 by 9 countries and 

today has 13 members, all of which are signatories of its founding document, the GIF Charter. 

Argentina, Brazil, Canada, France, Japan, the Republic of Korea, South Africa, the United 

Kingdom and the United States signed the GIF Charter in July 2001. It was subsequ-ntly signed 

by Switzerland in 2002, Euratom1 in 2003, and the People’s Republic of China and Russian 

Federation in 2006. 

 

A. Generation IV goals 

  The following goals were defined in the original GIF Charter: 

1) Sustainability 
● Generate energy sustainably and promote long-term availability of nuclear fuel.                                    

● Minimise nuclear waste and reduce the long term stewardship burden. 

2) Safety and reliability     
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● Excel in safety and reliability.                                                                                                                                              

● Have a very low likelihood and degree of reactor core damage.                                                                

● Eliminate the need for offsite emergency response. 

3) Economics  

● Have a life cycle cost advantage over other energy sources.                                                          

● Have a level of financial risk comparable to other energy projects. 

4) Proliferation resistance and physical protection 

● Be a very unattractive route for diversion or theft of weapon-usable materials, and provide 

increased physical protection against acts of terrorism. 

 

B. The Technology Roadmap 

  The Technology Roadmap (2002), defined and planned the necessary R&D and associated 

timelines to achieve these goals and allow deployment of Generation IV energy systems after 

2030. This road mapping exercise was a two-year effort by more than 100 international experts 

to select the most promising nuclear systems. In 2002, GIF selected the six systems listed below, 

from nearly 100 concepts, as Generation IV systems: 

1) Gas-Cooled Fast Reactor (GFR) 

  The GFR system is a high-temperature helium-cooled fast-spectrum reactor with a closed 

fuel cycle. It combines the advantages of fast-spectrum systems for long-term sustainability of 

uranium resources and waste minimization. The advantages of the gas coolant are that it is 

chemically inert (allowing high temperature operation without corrosion and coolant radio-

toxicity) and single phase (eliminating boiling), and it has low neutron moderation. 

2) Lead-cooled fast reactor (LFR) 

  LFRs are Pb or Pb-Bi-alloy-cooled reactors operating at atmospheric pressure and at high 

temperature because of the very high boiling point of the coolant (upto 1743 °C). The core is 

characterized by a fast-neutron spectrum due to the scattering properties of lead. 

3) Molten Salt Reactor (MSR) 
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  A molten salt reactor (MSR) is a class of nuclear fission reactors in which the primary     

coolant, or even the fuel itself, is a molten salt mixture. MSRs run at higher temperatures than 

water-cooled reactors for higher thermodynamic efficiency, while staying at low vapor 

pressure, liquid-fuelled MSR has been focused on fast spectrum. 

4) Sodium-Cooled Fast Reactor (SFR) 

  The SFR is a Generation IV reactor project to design an advanced fast neutron reactor with 

the objective of producing a fast-spectrum, liquid sodium-cooled reactor. It allows a low-

pressure coolant system and high-power-density operation with low coolant volume fraction in 

the core. 

5) Supercritical-Water-Cooled Reactor (SCWR) 

  SCWRs are high temperature, high-pressure, light water reactors that operate above the 

thermodynamic critical point of water (374°C, 22.1 MPa). The reactor core may have a thermal 

or a fast-neutron spectrum, depending on the core design. 

6) Very-High-Temperature Reactor (VHTR) 

  The VHTR is a next step in the evolutionary development of high-temperature gas-cooled 

reactors. It is a graphite-moderated, helium-cooled reactor with thermal neutron spectrum. 

 

1.1.2. Use of advanced nuclear ceramics in GEN IV reactors  

  Out of the above selected Generation IV systems, the use of advanced nuclear ceramics has 

been validated for GFR, SFR and VHTR.  

  The French strategy is mainly oriented towards the development of sodium-cooled fast 

reactors and in a less extent towards GFR option [3]. Then, refractory ceramics have been 

considered as potential cladding materials for SFR [4].  

  Identification of a specific fuel type and fuel element/fuel assembly that is compatible with 

gas-cooled fast reactor GFR in-core service conditions is a key part of the overall goal of 

developing a practical version of a gas-cooled fast reactor. Current gas reactor fuel technology 

is not adaptable to a gas-cooled fast reactor. The categories of fuel with the highest potential 
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for success are carbide and nitride-base composite-type fuels. These fuels consist of a fissile 

phase dispersed within a refractory matrix. 

  The most promising candidates for GFR fuel matrix materials are ZrN, ZrC, TiN, and TiC, 

SiC due to a combination of neutronic performance, thermal properties, chemical behavior, 

crystal structure, and physical properties. These advanced ceramics are also considered as 

potential cladding material for SFR.  

  Normally, an advanced BISO (Bistructural-isotropic) fuel particle is considered for GFRs. 

This type of fuel form has a fuel kernel and two ceramic outer layers. The central kernel consists 

of a spherical fuel particle (consists of UC or UN) surrounded by a ceramic coating (TiC, ZrC, 

TiN, ZrN or SiC) which provides structural integrity and containment of fission products. In 

between the coating and the fuel, there is a buffer layer, which is also supposed to be made of 

(TiC, ZrC, TiN, ZrN or SiC).  Buffer allows for changes in thermal expansion, swelling, and 

fission gas release pressure without creating an unacceptable amount of stress on the outer 

containment coating [5]. The fuel particle layers are shown schematically in figure 1.2. 

  The buffer layer is porous in order to reduce its stiffness and the resulting pressure on the 

coating and to accommodate released fission gases. It is composed of the same material as the 

coating. By using the same material for the buffer as the coating, there is reduced expansion 

mismatch and less chance of chemical incompatibilities. These advanced BISO fuel particles 

can be utilized by placing them in a ceramic matrix composed of the same material as the BISO 

fuel particles’ outer ceramic coating. With this design, there is only one major interface of 

different materials: the fuel and the buffer. 

  The new BISO micro fuel particle materials must meet a variety of criteria. Coatings with 

significant neutron absorption cross-sections cannot be used, thus excluding many candidates. 

The potential coatings must have high melting points (excess of 2000°C), adequate thermal 

conductivity (>10 W/m-K) and toughness (>12 MPa-m1/2), and acceptable response to high 

dose neutron damage (swelling <2% over service life (~80 dpa)). Thus, the categories of 

materials with the highest potential for success for the GFR are carbide and nitride based 

ceramics [5,6]. The similar criteria is also expected for the candidates of cladding material in 

SFR.              
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Figure 1.2. One quarter of the cross section showing the layers of a BISO micro fuel particle 

[5]. 

 

  For VHTR reactor, use of TRISO fuel has been considered. Tristructural-isotropic (TRISO) 

fuel is a type of micro fuel particle which consists of a fuel kernel composed of UOx (some- 

times UC or UCO) in the center, coated with four layers of three isotropic materials. The four 

layers are a porous buffer layer made of carbon, followed by a dense inner layer of pyrolytic 

carbon (PyC), followed by a ceramic layer of  SiC to retain fission products at elevated 

temperatures and to give the TRISO particle more structural integrity, followed by a dense outer 

layer of PyC (see figure 1.3). In VHTRs (TRISO) fuel, ZrC will perhaps replace SiC. ZrC 

enables an increase in power density and total power level with the same coolant outlet 

temperature. Under accident conditions, historical data suggest that the ZrC-TRISO fuel may 

be more robust than traditional SiC-TRISO fuel, however lot of research projects are planned 

in near future to conclude this.  
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Figure 1.3. TRISO fuel particle showing fuel as well as ceramic coating [7]. 

 

 1.2. Nuclear fusion energy 

  Fusion power is the power generated by nuclear fusion processes. Fusion happens when two 

(or more) nuclei come close together and forms a heavier one. In light fusion reactions, some 

of the mass is lost in this process. It is converted into energy through Einstein's mass-energy 

equivalence formula E = mc2.  

  To fuse atoms, it is necessary to overcome the repulsive Coulomb force. To overcome this 

"Coulomb barrier", the atoms must slam together at high speeds with high kinetic energy. The 

easiest way to do this, is to heat the atoms. Once an atom is heated above its ionization energy, 

its electrons are stripped away, leaving just the bare nucleus: the ion.                           Most 

fusion experiments use a hot cloud of ions and electrons. This cloud is known as a plasma. Most 

fusion reactions produce neutrons, which can be detected and degrade materials. 

  The fuel for fusion reactors will be a combination of deuterium and tritium. The reaction of 

deuterium with tritium produces alpha-particles and 14.1 MeV neutrons by the following 

equation:  

ܦ                          + ܶ → ݁ܪ  +  ݊ + ଴ݕ݃ݎ݁݊ܧ
ଵ

ଶ
ସ

ଵ
ଷ

ଵ
ଶ .1)                                                        (ܸ݁ܯ 14)   2) 
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where D and T are deuterium and tritium respectively. The leading designs for controlled fusion 

research use magnetic (tokomak design) or inertial (laser) confinement of a plasma. Both 

approaches are still under development and are years away from commercial operation in 

which heat from the fusion reaction is used to operate a steam turbine which drives electrical 

generators, as in existing fossil fuel and nuclear fission power stations.  

 

1.2.1. Use of advanced nuclear ceramics in fusion reactors 

  Tritium as a fuel is difficult to handle and transport. During the tritium breeding and fusion 

reaction, there is the potential for permeation of the tritium through the materials containing it 

and for its release to the environment. Therefore, materials with a low permeability for tritium 

are being considered as barriers to prevent the loss of tritium from fusion plants. There are a 

few metals with relatively small values of permeability, but as a whole, metals themselves are 

not good barriers to the transport of tritium. Ceramics, on the other hand, are typically very 

good barriers if they are not porous. In most cases, the low permeation is due to extremely low 

solubility of hydrogen isotopes in ceramic materials. Carbides, nitrides, aluminides, oxides 

are studied very extensively to be used as barrier to tritium transport.  

  Bulk ceramics, such as silicon carbide, may one day be used as tritium permeation barriers, 

but most of the current barrier development is for coatings of oxides, nitrides, or carbides of the 

metals themselves [8]. TiN coatings are one of the most researched barriers because of their 

good adhesion and the ease of deposition. Titanium carbide has also been tested as a permeation 

barrier. Due to adhesion problems with direct deposition on steel, titanium nitride was used as 

an intermediate layer between the steel and titanium carbide. These carbides and nitrides are 

low-activation, temperature-resistant, and radiation damage tolerant compared to most 

materials. This consideration as barrier was also due to the presence of light element carbon 

and nitrogen in TiC, SiC and TiN. The collisions of the plasma with low mass carbon and 

nitrogen atoms help in less dissipation of heat, and thus maintains high temperature inside the 

plasma [9,10,11]. 

  Last but not least, oxide-dispersed strengthened (ODS) alloys contains dispersed oxide carbide 

and nitride nanoparticles. ODS alloys exhibit very interesting thermo-mechanical properties 

and a promising radiation tolerance due to the multiplication of interfaces within the matrix 

[12,13,14,15]. 
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1.3. Helium in fission and fusion reactors 

  There is large production of helium atom in fusion reactors due to tritium decay. Apart from 

this, neutrons are produced in both fission and fusion reactors by their respective nuclear 

reactions (see equation 1.1 and 1.2). These high-energy neutron will knock the atoms in the 

surrounding materials and induce (n,α) reactions such as: 

 

ܯ                                               + ݊଴ଵ௓
஺  → ܯ  + ଶ݁ܪ 

ସ
௓ିଶ
஺ିଷ  (several MeV)                            (1.3)                                    

 

Consequently, the surrounding materials in both fusion and fission reactor are expected to 

contain a high concentration of helium atoms during and after operation.  

  Most reactions between neutrons (n) and nucleus (M) are energy dependent. The reaction rate 

(here for (n,α) reaction) in a thermal reactor is a product of the average fission flux cross section 

(i.e. on the probability that a nuclear reaction (n,α) would occur) and the equivalent fission flux 

(here neutron flux). Many (n,α) reactions are exothermic, that is, they can be caused by neutrons 

of all energies down to thermal. It has been recognized in recent years that, because of the 

importance of helium production rates in reactor internals, lot of investigation have been done 

in order to find better cross section data. Table 1.1 presents the crossection data for (n,α) 

reactions to measure directly the helium content for the principle elements found in stainless 

steel.  

 

Table 1.1.  The values of cross section of (n,α) reaction for few elements [16]. 

 

 Principle elements of stainless 

steel 

Cross section of (n,α) reaction in the 

elements (milli-barn) 

1. Chromium 0.2 mb 

2. Iron 0.23 mb 

3. Nickel 4.5 mb 
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  In fusion, the issue of gas production is likely to be a more significant problem than in fission 

because of the higher neutron fluxes and higher average neutron energies. For example, in 

figure 1.4 where a fission spectrum for a fuel assembly of a 3.8 GWt (gigawatts of thermal 

power) LWR-P4 reactor in Paluel, France, is compared to a fusion spectrum computed for the 

first wall (FW) of the 3.0 GWt DEMO concept reactor, the fluxes of neutrons per lethargy 

interval are greater in the fusion spectrum at all energies instead of thermal energies [17].  

                 

          

Figure 1.4. Comparison of the neutron-energy spectra in fission and fusion reactors. For 

fission the average neutron spectrum in the fuel-assembly of a PWR reactor is shown, while the 

equatorial spectrum for the DEMO model of fusion reactor is shown [17]. 

 

  Furthermore, whereas the bulk neutron energy in fission is in the 2 MeV range, for every 

deuterium-tritium fusion reaction in the plasma, a 14.1 MeV neutron is produced. And most of 

the gas-producing nuclear reactions exhibit a cross section threshold, which means that for 

incident neutrons below a particular energy the reaction either does not occur or has a very low 

probability. 
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  Thus, in fusion, while the higher neutron fluxes compared to fission would increase the total 

number of reactions in irradiated components, the larger fraction of neutrons at higher energies 

would also tend to raise the proportion of those reactions which lead to helium gas production. 

For fusion reactor, the value of helium per dpa i.e. (He/dpa ≈ 10) where as in fast fission reactors 

He/dpa << 1. Here, dpa is displacement per atom.  

  But, in the present work, the energy of helium is kept around 3 MeV to simulate the energy of 

neutrons in fission reactors due to the predominant candidature of transition metal carbides and 

nitrides as coating or cladding material in GEN IV reactors. However, the information on 

helium migration parameter for fusion reactor conditions can be derived very easily from this 

work. 

 

1.4. Helium interaction with nuclear materials and its consequences 

  The primary characteristic of He, which makes it significant to a wide range of irradiation 

damage phenomena, is that it is essentially insoluble in solids. Hence, in the temperature range 

where it is mobile, He diffuses in the matrix and precipitates to initially form bubbles, typically 

at various microstructural trapping sites. The bubbles can serve as nucleation sites of growing 

voids in the matrix and creep cavities on grain boundaries (GBs), driven by displacement 

damage and stress, respectively. Helium can severely degrade the material’s properties and an 

example is explained below.  

  Figure 1.5 shows the effects of high He as a function of lifetime-temperature limits in a fusion 

first wall structure for various irradiation-induced degradation phenomena [18].   
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Figure 1.5. Illustration of the materials design window for the fusion energy environment, as a 

function of temperature [18, 19].  

  The above sketch shows a very broad-brush, qualitative description of some of the important 

He effect. On increasing temperature, helium degrades the material properties by precipitating 

into small bubbles followed by void swelling and further by grain boundary cavitation. With 

time, material properties under reactor condition (or strong irradiation condition) as a function 

of temperature deteriorate as follows: 

  At lower temperatures (red curve), irradiation hardening and loss of tensile uniform ductility 

are severe, leading to low-temperature fast fracture embrittlement phenomenon. This is 

believed to be primarily the result of- He-induced grain boundary weakening, manifested 

by a very brittle intergranular (IG) fracture path, interacting synergistically with irradiation 

hardening. 

  At intermediate temperatures (blue curve), the incubation time prior to the onset of rapid 

swelling is controlled by growing voids form on He bubbles, and He accumulation. 

  At high temperatures, (green curve) are primarily dictated by chemical compatibility, 

fatigue, thermal creep, creep rupture, and creep–fatigue limits. In this regime, He can further 
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degrade the tensile ductility and the other high temperature properties, primarily by 

enhancing grain boundary cavitation. 

  The above behavior is mostly noted in structural alloys. There are very few papers in the 

literature on helium behavior in transition metal ceramics. But mostly, surface changes like 

blister formation and similar bubble (or cavity) development leading to swelling and also crack 

formation in extreme conditions have been reported in these ceramics material. Precise details 

from bibliography on helium behavior in transition metal ceramics are presented in next 

chapter. 
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Chapter 2                  

State of Knowledge 

 

  To start with the investigation on helium mobility in transition metal ceramics. It appeared 

important to study the available literature on two topics; firstly on helium mobility in materials 

to understand ‘in general the behavior of helium in materials’, secondly on understanding ‘the 

response of transition metal ceramics on gas implantation and ion irradiation’. Therefore, a very 

broad literature survey was conducted on these two topics before planning the experiments. 

  Our state of knowledge on helium mobility in materials (particularly in inorganic materials) 

has led to the publication of a review paper. This paper presents the review of more than 250 

papers. This review paper can be obtained from the citation given below:                                        

A review on helium mobility in inorganic materials, P. Trocellier, S. Agarwal, S. Miro, 

Journal of Nuclear Materials 445 (2014) 128-142.   

  This chapter is divided into two parts:  

Part 1:  In the first section of the chapter, important features on helium mobility in inorganic 

materials from our recently published review paper have been mentioned. It is important to   

know that only important points from the publication are mentioned in this section.  

Part 2:  In the second section of the chapter, our state of knowledge on transition metal cera- 

mics has been presented. 

 

Part 1  

2.1. Helium mobility in inorganic materials 

  This part of the chapter reviews the available literature devoted to the study of helium    

migration in inorganic solids from both the experimental and the theoretical point of view. The 
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available literature devoted to the study of helium migration in solids first contains some 

pioneering review papers published during the time period 1963–1996 [1–23]. 

 

2.1.1. Statistical details 

  Our broad survey of the literature devoted both to experimental and theoretical studies of 

helium migration in inorganic materials lead us to select a high number of interesting papers.       

All inorganic materials can be easily divided into metallic and non-metallic material. Among 

them, four main classes can be identified: 

● Class I: experimental investigations on pure metals and alloys [24–80]; 

● Class II: experimental investigations on non-metallic compounds [81–156]; 

● Class III: theoretical calculations on metallic materials [45, 157–181, 182–211]; 

● Class IV: theoretical calculations on non-metallic compounds [212–224]. 

 

A. Class I: Experimental investigations on pure metals and alloys  

  Helium diffusion was investigated in a large number of metallic materials. It includes Be [27], 

C [30], Mg [28], Al [29,31,32], Si [33], Ti [28,34], V [35–39], Fe [40–47], Ni [40,48–54], Cu 

[55,56], Zr [40], Nb [37,56], Mo [57,58], Pd [59], Ag [25], Ta [60], W [61–66], Pt [67], Au 

[25], Ag/Au alloy [79], Fe-based alloys [40,48,68–77], and nickel-based alloys [48,78]. Papers 

from Thomas [24], Sciani [25], and Jung [26,27] published in the eighties and at the beginning 

of the nineties give an overview of experimental helium diffusion data obtained in fcc and other 

metals from Be to U. 

  The frequency distribution is plotted and shown in figure 2.1.  This distribution obtained after 

wide literature survey shows that among all the studied metallic material for He effects, almost 

55% of studied metallic material are Fe, Fe alloys, Ni (shown by red color in figure 2.1).  
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Figure 2.1. Results of the literature survey conducted on the experimental study of helium 

migration in metals and alloys. 

 

B. Class II: Experimental investigations on non-metallic compounds    

  Studies of helium diffusion in non-metallic materials include natural and industrial glasses 

[81-106], crystalline and amorphous silica and quartz [33,107,108,140,141], silicon carbide 

[142-147], beryllium oxide [134,135], graphite and diamond [136,137], alumina [135], rutile 

[151], titanite or sphene (CaTiSiO5) [150,151], hydroxyapatite or fluorapatite (Ca10(PO4)6X2 

with X = OH or F), and britholite (Ca4Nd6(SiO4)6X2) [109-125], monazite (rare earth 

phosphate) [125], thorium phosphate [126], zirconia [117,118,152], spinel (MgAl2O4) [138], 

zircon (ZrSiO4) [121], olivine ((Mg,Fe)2SiO4) [148,149], garnet (Ba3Al2(SiO4)3) [155], 

aeschynite ((Y,Ca,Fe)(Ti,Nb)2(O,OH)6) [111], zirconolite (CaZr2O7), and pyrochlore 

(Gd2Zr2O7) [117,118,153], zirconium nitride [154], uraninite (UO2) [127-133], plutonium 

oxide [129]. Figure 2.2 illustrates this repartition. 

  Most of the above studied materials are classified as nuclear waste ceramics, glasses, nuclear 

fuels and inert fuel matrices. These four classes represent 70% of the above studied material. 

  They are represented as green, red, blue and yellow for nuclear waste matrix, glasses, nuclear 

fuel and inert fuel matrix, respectively.  
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Figure 2.2. Results of the literature survey conducted on the experimental study of helium 

migration in non-metallic materials.   

                 

C. Class III & IV: Theoretical calculations on metallic and non-metallic materials 

  Modeling studies related to metallic materials mainly concern pure iron and iron-based alloys, 

i.e. more than thirty papers over fifty six. 

  Theoretical calculations on non-metallic compounds are rather present very little, i.e. thirteen 

papers. This rate corresponds to less than 15% of the total number of papers related to non-

metallic materials and less than 19% of the total number of papers related to modeling.  

  They are mainly focused on binary or ternary compounds: SiC [215, 218], UC [216], β-ErH2 

[219], UO2 [220], ZrSiO4 [221], Ti3AlC2 [223], and more scarcely to complex substrate such 

as sodalite (Na8Al6Si6O24Cl2) [213] or nanostructured materials such as metal/oxide interface 

[222].  

  Figure 2.3 gives a statistical distribution on modeling studies devoted to helium migration in 

both metallic and non-metallic materials. 
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Figure 2.3. Results of the literature survey conducted on the modeling of helium migration in 

inorganic materials. 

 

2.1.2. Experimental methods for the study of helium behavior 

  The experimental configuration applied for the study of helium behavior in the near surface 

region of solids generally follows a three step approach: 

(1) Helium incorporation in the material; 

(2) Thermal annealing under fully controlled conditions; 

(3) Helium measurement. 

  Table 2.1 (presented on the next page) displays the most commonly adopted experimental 

conditions and gives the corresponding references. A brief summary will be given in the four 

following sub-sections in order to describe each of the three steps mentioned above.  

I. Helium incorporation 

  Four options have been considered to introduce helium in bulk solids: 

(1) Presence of radiogenic helium in natural minerals containing β-emitters as U or Th [150]; 
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(2) Interaction between the solid surface and a He gas atmosphere up to saturation using 

thermal equilibration process or permeation through a porous membrane [82,102,103]; 

(3) Long term interaction of the solid surface with tritium. The β-decay of tritium produces 
3He [77];  

(4) Ion irradiation/implantation: This method is used in about 60% of the published 

experimental papers. It includes:  

● Direct helium ion implantation (near the surface or in depth) [110,121,147],  

● High energy proton irradiation to produce helium by (p, α) spallation reactions [3,140, 238],  

● 10B doping of the substrate followed by neutron irradiation to produce 4He according to the 

nuclear reaction 10B(n, 4He)7Li [31,144,145],  

● 244Cm doping in order to detect its α-decay [153]. 

II. Thermal annealing step 

  After helium incorporation, thermal annealing is generally conducted ex-situ using a high 

temperature furnace [24, 52].  

  In the case of the application of Thermal Helium Desorption Spectrometry (THDS), annealing 

is conducted within the characterization device [57, 138]. 

III. Helium measurement 

   The most widely used characterization methods for helium measurement are mass spectro- 

metry in conventional or THDS modes for nearly 50% of the published experimental papers 

[47,95], and Ion Beam Analysis (IBA) for more than 30% of the published experimental papers 

[53]. Section IV gives more detail about IBA. Some special characterization configurations 

have also been developed and applied, for example: 

● Atom probe field ion microscopy investigations by Amano on W [61]; 

● Resistivity recovery measurements by Vassen on Pt [67]; 

● Chemical etching associated to gas chromatography by Chang-An Chen on stainless steel 

[77]; 
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Material Step 1 Step 2 Step3 Reference 
Al Spallation Thermal annealing Conventional mass spectrometry [29] 
V He ion implantation Thermal annealing Alpha particle elastic scattering [35] 

Mg, Ti 
Body centered cubic metals 

 
He ion implantation 

 
Thermal helium desorption spectrometry 

[26] 
[28] 

W He ion implantation Thermal annealing Atom probe field ion microscopy [61] 
Pt He ion implantation Thermal annealing Resistivity measurement [67] 

Stainless steel Long term tritium storage Thermal annealing Chemical etching + gas chromatography [77] 
W He ion implantation Thermal annealing Positron annihilation spectroscopy [63] 

Fe and Fe-Cr alloy He ion implantation Thermal annealing Thermodesorption coupled with transmission electron 
microscopy 

[44] 

Silica glass 
 

Permeation Thermal annealing Conventional mass spectrometry [83 - 94, 
102, 103] 

Graphite He ion implantation Thermal annealing Proton elastic scattering [136] 
Diamond 
Apatite 

Native 4He Thermal annealing Conventional mass spectrometry [137] 
[109] 

Obsidian, basaltic glass Gas saturation Thermal annealing Conventional mass spectrometry [95] 
Spinel He ion implantation Thermal helium desorption spectrometry [138] 

ZrO2, britholite He ion implantation Thermal annealing Deuteron-induced nuclear reaction analysis [114, 115, 
117 – 119, 
124, 147, 

152] 
Zircon, apatite, rutile, 

titanite, monazite 
He ion implantation Thermal annealing Deuteron-induced nuclear reaction analysis [121, 125, 

149, 151] 
Fluorapatite He ion implantation Thermal annealing Heavy ion-induced elastic recoil detection analysis [110] 

SiC 10B + neutron irradiation Thermal helium desorption spectrometry [144] 
Zirconolite, pyrochlore 244Cm doping Thermal annealing Conventional mass spectrometry [153] 

Fluorapatite, britholite, SiC He ion implantation Thermal annealing Deuteron-induced nuclear reaction analysis [120, 147] 

UO2 
Nuclear glasses 

He ion implantation Thermal annealing Deuteron-induced nuclear reaction analysis in 
coincidence 

[131, 132, 
146] 

[104, 105] 
Thorium phosphate Radiogenic 4He Thermal annealing High sensitivity β-spectrometry [126] 

Apatite Radiogenic 4He Thermal annealing Laser ablation depth profiling coupled with mass 
spectrometry 

[123] 

Table 2.1. Summary of experimental approaches developed to study helium migration in the near surface region of inorganic solids. 
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● THDS and Transmission Electron Microscopy (TEM) coupling by Ono on pure iron and Fe-

Cr alloys [44];  

● Positron Annihilation Spectroscopy (PAS) by Debelle on W [63]; 

●  High sensitivity α-spectrometry by Özgümüs on thorium phosphate [126]; 

● UV laser ablation depth profiling coupled with mass spectrometry by van Soest on Durango 

apatite [123]. 

IV. Ion beam methods applied to helium migration study 

  The technique is based on high energy proton irradiation to produce helium via a spallation 

process and also consists in doping the material with 10B and then submitting to neutron 

irradiation. The required large scale facilities are, however, of limited access.  

  The main advantage of helium ion implantation (3He or 4He) lies in its versatility. 

● One can modulate the implantation depth from the near surface (a few hundred of nanometers) 

to larger depth (several micrometers) by simply varying the energy. 

● It is also possible to modulate the ion dose, for example in the range 5.0 x 1019 - 1.0 x 1021 

ions/m2.  

  Nevertheless, the main drawback of ion implantation arises from the defect distribution 

introduced in the sample that may cause helium trapping and undesired deviations in the final 

helium measurements. 

  Ion Beam Analysis techniques have been applied to determine helium depth profiles in the 

near surface region of solids since the middle of the seventies. Four methods have been 

successfully considered: 

(1) The deuteron-induced nuclear reaction 3He (d, p)α [34, 114, 115, 121, 226, 227, 230, 231];  

(2) The proton elastic scattering 3He(p, p)3He and 4He(p, p)4He [136, 228, 229];  

(3) The high energy 4He elastic scattering 4He(p, p)4He coupled with coincidence 

spectrometry [35];  

(4) The high energy Heavy Ion induced Elastic Recoil Detection Analysis (HI-ERDA) [110, 

239].  
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  High-energy alpha particle elastic scattering requires the use of a cyclotron to produce the 

incident helium ion beam (50 to 70 MeV). High energy Heavy Ion induced Elastic Recoil 

Detection Analysis requires high energy heavy ion beam with a kinetic energy about 1 

MeV/mass unit [235,236,242].  

  3He and 4He depth profiling can achieve relatively good depth resolution (less than 50 nm) 

typically on implantation depth of 1 µm [237]. Specific detection devices must be implemented 

both to improve the analyzed depth profile and to discriminate the contributions from the 

different target components to the resulting ERDA spectrum [237]. 

  Deuteron-induced nuclear reaction on 3He is the most useful and widespread method. Helium 

depth profiling is based either on the detection of the emitted protons or alpha particles through 

the 3He(d, p)4He nuclear reaction as a function of the incident deuteron energy. The Q-value of 

this reaction is very high, namely 18.354 MeV. The depth profile obtained by proton elastic 

scattering is affected by the scattering response of all the other elements contained in the target 

that are superimposed in the measured spectra.  

 

2.1.3. Basic mechanisms of helium migration in inorganic solids 

A. Irradiation damage 

  The basic mechanisms of material damage build-up under irradiation such as point defects, 

defect clusters, and helium accumulation effects are carefully detailed in recent review papers 

by McHargue, Zinkle, Chroneos, and Dai [244-247]. A good knowledge of the properties of 

single helium atoms and small clusters in a metal or a ceramic lattice is the basis for any 

fundamental understanding of helium effects. The next step is the nucleation and growth of 

bubbles which then finally lead to the macroscopically observable material deteriorations. 

  Looking at advanced nuclear materials (metallic alloys, ceramics and composites) for 

applications to Generation IV fission reactors and fusion energy systems, all will be facing the 

same radiation degradation phenomena: low temperature hardening and embrittlement; 

radiation-induced segregation or precipitation; radiation-induced phase stability; void swelling; 

irradiation creep; high temperature helium embrittlement; surface blistering and exfoliation; 

and irradiation-assisted corrosion or stress corrosion cracking [8,14,244,245]. 
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B. Mechanisms of helium migration in metallic materials 

  In metallic substrates, helium migration mainly occurs by the following physical mechanism 

[246]:  

(1) The migration of interstitial helium atoms occurs generally with very low migration energy, 

less than 0.1 eV;  

(2) Substitutional helium atoms may diffuse by a conventional vacancy-exchange mechanism. 

This vacancy mechanism can be considerably influenced by the vacancies and interstitials 

produced by the atomic displacements. The measured activation energy is generally close to 1 

eV;  

(3) Substitutional helium atoms may also migrate by dissociation mechanism. In this case the 

associated activation energy is higher than 2.0 eV.  

C. Mechanisms of helium migration in non-metallic materials 

   In most ceramic systems, three main mechanisms to describe atom diffusion are similar to 

metallic system. The mechanism of atomic helium diffusion are [245]: 

(1) The interstitial mechanism in which an interstitial atom jumps from one interstitial site to a 

neighboring one;  

(2) The vacancy mechanism in which a substitutional atom jumps to a neighboring vacancy; 

(3) A mechanism in which an interstitial atom displaces an atom from its normal 

substitutional site. Then, the substitutional atom moves to a free interstitial site. 

  The major physical mechanisms able to affect helium migration are overall the same, i.e. 

trapping/detrapping processes by/from point or extended defects; interactions with grain 

boundaries, and growth of bubbles. 

  However, irradiation-assisted corrosion or stress corrosion cracking will only be of concern in 

metallic systems. And radiation-induced amorphization only concerns ceramic materials such 

as silicon carbide or SiCf/SiC composite, waste immobilization matrix, coating layer and 

ceramic nanophases embedded in metallic substrate such as ODS (Oxide Dispersion 

Strengthened alloys).  

  Helium embrittlement effects are common to metallic and non-metallic materials. 
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2.1.4. Main experimental data on helium migration in metallic substrates 

  According to the reviewed literature concerning the mobility of helium in metals and alloys, 

activation energy data are gathered in figure 2.4 and diffusion coefficient values are gathered 

in figure 2.5. It is important to note that the experimental configurations adopted by the different 

research groups may vary to a large extent in terms of temperature range explored, helium 

content introduced in the substrate, chemical composition and microstructure of the substrate. 

We have plotted the values extracted from studies having different experimental configuration 

on the same material. For eg., in figure 2.4. red, yellow, green, purple represents nickel, iron, 

vanadium and Fe-Cr, respectively.  

 

 

Figure 2.4. Overview of activation energy values determined for migration of helium in metals 

and alloys. Here, red, yellow, green, purple represents nickel, iron, vanadium and Fe-Cr, 

respectively.  
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Figure 2.5. Overview of diffusion coefficient values determined for migration of helium in 

metals and alloys.  

A. Pure iron and iron-based alloys 

  A very detailed work based on THDS measurement by Morishita allows the discrimination of 

the different trapping sites in pure iron and to determine their energy parameters [42]. Several 

features were identified on the THDS spectrum for a pure iron sample implanted at 8 keV and 

they appeared to be dose dependent:  

● A sharp peak at 450 K corresponds to helium atoms desorbed from single vacancy located 

near the surface. It is characterized by a dissociation energy about 1.6 eV; 

● A broad peak located in the interval 750-800 K associated with helium atom desorption from 

small Hen-Vm clusters with a typical dissociation energy of 2.7 eV;  

● A broad peak located in the interval 800 - 1000 K present at high helium dose (> 5 x 1017 m-

2). It is attributed to helium atoms desorbed from Hen-Vm clusters. The calculated dissociation 

energy varies in the range 2.2-3.0 eV;  

● A sharp peak at 1100 K corresponding to the desorption of helium from a single vacancy. 

The corresponding dissociation energy is 3.8 eV;  

-20.00

-18.00

-16.00

-14.00

-12.00

-10.00

-8.00

Mg Al Si Ti V Fe Fe-Cr Ni Cu Nb Ag Ta W Au

lo
g 1

0
(D

)

Material



39 
 

● The peaks located at temperature higher than 1250 K. They are attributed to helium atoms 

desorbed from bubbles. 

  In addition, for helium ion implantation at 150 eV the presence of a new sharp peak located 

around 550 K is detected at high doses (> 6 x 1018 m-2). All these allocations have been rather 

well supported by molecular dynamics and Kinetic Monte Carlo calculations. 

  Very recently, thermal helium desorption spectrometry was coupled with nuclear reaction 

analysis to study the helium release kinetics in pure α-iron [47]. Lefaix and co-workers 

implanted pure α-iron pellets with either 8 keV 4He ions or 3 MeV 3He ions. THDS was used 

for samples implanted near the surface and nuclear reaction analysis for samples implanted 

more deeply. Activation energies for every trapping site (mono-vacancies, clusters) have been 

determined from conventional reaction models and the authors derived the following values: 

D0 = 4.9 x 10-15 m2.s-1 and Ea = 1.13 eV. Preliminary observations indicated that a fraction of 

nearly 50 % of the He remained trapped while helium bubbles migrated in the bulk from the 

end of ion range (i.e. 5.6 µm). 

B. Nickel and nickel-based alloys 

  The first application of deuteron induced nuclear reaction analysis for helium depth profiling 

is due to Lewis [53]. 200 keV helium-3 ions were implanted from room temperature and up to 

1063 K in high purity (< 50 at. ppm impurity) polycrystalline thick nickel disks. The 

implantation dose was about 1.1 x 1020 ions/m2. The alpha particles emitted from the nuclear 

reaction 3He(d, α)1H were analyzed at an angle of 65 or 70° from the incident deuteron direction. 

A new deconvolution technique was specially developed by Lewis in 1981 for the data 

processing based on Taylor’s expansion to take into account energy straggling and multiple 

scattering effects [234]. Helium loss was shown to occur at a critical temperature equal to 973 

K. An effective migration energy of approximately 2.6 eV was found to be consistent with the 

set of diffusion equations previously proposed by Ghoniem [20]. 

  The behavior of helium in nickel has been intensively studied [48-54]. Figure 2.4 summarizes 

the major part of the data obtained for the activation energy for helium thermal migration in 

nickel (see red bars in figure 2.4). Values are in the range 0.11-2.5 eV for temperatures varying 

from 80 to 1523 K. As we have mentioned above, due to large discrepancies between various 

experimental configurations adopted by various authors, the direct comparison of results 

become difficult. 
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C. Tungsten 

  The development of research programs for nuclear fusion applications have vastly increased 

the number of experimental studies related to helium effects in tungsten [61 – 66]. 

  Debelle and co-workers have investigated the desorption mechanisms of 3He implanted 

tungsten at low fluence and low energy [66]. Helium desorption has been observed only from 

~1500 K, suggesting a helium trapping at mono-vacancies. Only ~75% of the implanted helium 

has been released after the annealing during 1 h at high temperature (1873 K); besides, the 

desorption rate decreased from 1673 K. The presence of a second type of helium trapping site 

is likely to explain this 25% helium retention, presumably large Hen–Vm complexes. Moreover, 

an effect of the grain boundaries on this strong helium trapping is suggested. 

D. Other metals 

  Among the other metallic materials in which helium behavior has been intensively studied, 

vanadium and vanadium alloys are most widely studied due to their specific properties which 

makes them interesting for fusion applications [35-39]. 

  Ryazanov and co-workers have performed a very detailed study on the behavior of helium in 

vanadium alloys in order to explain the presence of some release peaks not well understood 

during the deformation and embrittlement processes [39]. Two limiting cases were investigated: 

slow and fast strain rates. The authors suggested a sweep out mechanisms of helium atoms and 

helium bubbles by moving dislocations. A different temperature dependence was found for both 

mechanisms. The total helium amount that comes out to the surface through dislocation-

dynamic diffusion has weak dependence on temperature and helium transported by dislocations 

a strong one.  

 

2.1.5. Main experimental data on helium migration in non-metallic substrates 

  According to the investigated literature concerning the mobility of helium in non-metallic 

solids (ceramics, glasses, minerals), activation energy data are gathered in figure 2.6 and 

diffusion coefficient values are plotted in figure 2.7. Taking into account the same remark 

made in the previous section, the direct comparison of data obtained on the same material 

from different research groups requires particular attention.  
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Figure 2.6. Overview of activation energy values determined for migration of helium in 

ceramics and minerals. 

 

     

Figure 2.7. Overview of diffusion coefficient values determined for migration of helium in 

ceramics and minerals. 
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A. Inert matrix fuels 

  Three materials have been mainly selected, thanks to their properties as potential matrices for 

long-live radionuclide transmutation, i.e. cubic zirconia [118,152], Mg-Al spinel [117, 138] and 

MgO [117].  

  Due to the α-decays, the helium content could reach large values (> 1 at. %) for long term 

ageing. Since the solution energy of helium in solids is large (around 3 eV), He atoms tend to 

coalesce and form bubbles inducing detrimental modifications of the material structure and 

mechanical properties [152]. 

  Results have been obtained on polycrystalline α-ZrO2 ceramics and yttria-stabilized-cubic 

(YSZ) single crystals implanted with 3-MeV 3He ions at a depth around 7 µm then 

isochronously annealed in air at temperatures between 200 and 1100 °C. In α-ZrO2, no change 

of the depth profile is found up to 800 °C. In contrast, two regimes are found in YSZ: 

(i) below 800°C, diffusion is controlled by helium trapping at native oxygen vacancies (~10 

at.%), 

(ii) above 800°C, helium escapes out of the profile, with almost complete outgassing at 1100 

°C. 

  Neeft and co-workers have followed the helium release from implanted (100) spinel single 

crystals by thermal desorption spectrometry. Two series of samples were investigated: 

● the first series corresponds to an implantation of 30 keV 3He ions at room temperature with 

high doses 6.2, 16, 20 and 53 x 1019 ions m-2, 

● the second series corresponds to an irradiation of 4.5 MeV 4He with a low dose  1.3 x 1016  

ions m-2. 

  At a very low helium concentration (about 0.0288 appm around 12.4 µm), helium release is 

dominated by helium interstitial diffusion with an activation energy of 1.8 eV. In the case of 

high dose implantation (about 1.74 at.% around 100 nm), helium is released from He-vacancy 

clusters with an activation energy of 2.35 eV. 
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B. Nuclear fuel matrices 

  One of the main consequence arising from the presence of actinides in nuclear fuel matrices 

as UO2 or (U,Pu)O2 is the formation of a large quantity of helium produced by α-disintegration. 

Due to its low solubility in this type of ceramics, He can lead in particular to microscopic and 

macroscopic swelling that may result in cracking of the material [127, 128]. 

  In 2004, Roudil and co-workers published a paper in which they reported experimental 

measurement of helium thermal diffusion coefficient in depleted uranium dioxide matrix [128]. 

Using 3He implantation followed by fully controlled thermal annealing, and deuteron-induced 

nuclear reaction spectrometry, they succeeded to discriminate two types of behavior between 

1123 and 1273 K, depending on the fluence, with a common activation energy of 2 eV (see 

table 2.2). 

 

3He fluence  

(ions/cm2) 
T (°C) Annealing duration (h) D (m2/s) 

0.3 x 1016 1000 4 2.3 - 2.9 x 10-17 

0.3 x 1016 900 30 3.8 – 4.8 x 10-18 

0.3 x 1016 850 48 2.2 – 2.4 x 10-18 

3 x 1016 1000 4 2.2 - 3.7 x 10-18 

3 x 1016 950 8 1.0 - 2.8 x 10-18 

3 x 1016 900 30 3.0 - 7.8 x 10-19 

3 x 1016 850 48 1.6 - 4.2 x 10-19 

 

Table 2.2. Helium diffusion coefficient in UO2 evaluated by NRA measurement [108]. 

C. High level nuclear waste matrices 

  Dimensioning of actinide waste packages for long term storage has to be taken into account 

helium production from natural decay and release rates from the material [119]. 
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  Costantini and co-workers measured helium diffusion coefficients from Nd-britholite in the 

temperature range 200-400 °C [114]. The deduced activation energy is about (1.05  0.03) eV. 

The values published in the entire literature related to helium migration in apatite and/or 

britholite are rather consistent. 

  In their study on helium diffusion in britholite, a mineral matrix considered for actinide 

immobilization, Gosset and co-workers were the first to demonstrate the existence of two 

distinct He populations [119]. They succeeded to fit successfully the experimental 3He depth 

profile obtained after a thermal annealing conducted at 400°C to two Gaussian curves: a narrow 

component associated with helium atoms implanted near the end of range, and a broad 

component slightly shifted towards the surface. The second component was then attributed to 

anisotropic, intragranular diffusion along the channels of the hexagonal structure of apatite. The 

respective apparent diffusion coefficients were 4.17 x 10-17 and 2.88 x 10-16 m2 s-1. In the latter 

case, a second helium population was produced by the microstructure of the material under 

investigation. A similar situation may occur if the material suffers a certain degree of damage 

from the irradiation. This case was discussed by Schuster in Durango apatite [122]. The second 

helium population was attributed to helium atoms trapped within irradiation defects (vacancies 

or vacancy clusters). 

  Many models were proposed to describe the migration mechanisms of helium in inorganic 

media, generally based on Fick’s laws. Miro and co-workers compared different models in the 

case of fluorapatite and Nd-britholite within the framework of the simulation code AGEING 

[120] giving an average D value of 4.13 x 10-17 m2 s-1 at 325°C for Nd-britholite; model 2 leads 

to the following data set: D = 3.44 x 10-17 m2 s-1, v = 0.05 µm/h and f = 9%. 

  Titanate and zirconate-based matrices as zirconolite and pyrochlore have also been 

investigated. Data processing methods, lead to helium diffusion coefficient and associated 

activation energy of 1.05 eV in the zirconolite. The helium diffusion coefficient in zirconolite 

is 1 to 100 million times higher than uranium dioxide matrix [127]. 

D. Other non-metallic compounds 

  Jung investigated the diffusion of helium in silicon carbide by coupling implantation of high 

energy α-particles (5-28 MeV) at current densities from 0.8 to 40 x 1014 He m-2s-1 to doses of 

typically 1017 m-2 at temperatures up to 1100 K and mass spectrometry [30]. The corresponding 

diffusion coefficients are given by: 
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D (m2/s) = 1.1 x 10-6 exp(- 1.14 / kBT) for 800 ≤ T (K) ≤ 1050.                               (2.1) 

 

He applied the same approach to pyrolitic graphite and found: 

 

 D (m2/s) = 5.0 x 10-5 exp(- 1.17 / kBT) for 750 ≤ T (K) ≤ 1050.                              (2.2) 

 

  Recently, using the same experimental approach as developed for fluorapatite and Nd-

britholite, Miro and co-workers studied the thermally assisted migration of helium in 4H- and 

6H-SiC single crystals [147]. They demonstrated for the first time an exchange process between 

two distinct helium populations. A part of 3He remained trapped in the 3He ion end-of-range 

region (population 1), while another part of 3He atoms is detrapped from a zone located close 

to the surface (population 2). 

  The use of 3He to study the migration behavior of helium in a given material raises the 

following question: what about the difference in mobility between 3He and 4He?                                       

As discussed by Trull [101] in his paper on helium migration in basaltic glasses, the 

conventional assumption is to consider the square root of the isotope mass ratio to deduce the 

respective diffusion coefficients (D4He/D3He =  (m3He/m4He) =0.868).   

  The first experimental measurements to discriminate between these diffusion coefficients 

were performed by Schuster and co-workers on Durango apatite [116]. They show that the best 

fit for their entire data set is D4He/D3He =1.03. Considering this result, a refined procedure was 

developed to correct for the (U-Th)/He ages and for partial diffusive loss [3,4]. 

 

2.1.6. Conclusions  

  This bibliographic review allows us to conclude that for any material, helium migration 

kinetics can be affected by a great number of physical and chemical factors:  

● helium content [He],  
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● temperature T,  

● thermal annealing regime (rate of temperature increase),  

● nature and content of impurity atoms,  

● microstructure (grain size and grain boundary density) of the substrate, crystalline 

orientation, 

● presence of native vacancies due to non-stoichiometry, 

● presence of a defect distributions produced by complex microstructural processes in the 

material or induced by irradiation damage. 

 

  Diffusion is a process assisted by defects and controlled by their volumetric distribution. The 

main difference that can be distinguished between ceramics and metallic materials are as under: 

● In terms of atomic diffusion:  In the case of ceramics, owing to the co-existence of two 

separated sublattices, cation and anion diffusion processes can be considered to occur 

independently without any cation/anion exchange. In the case of self-diffusion processes, it 

must be noticed that atom transport can be faster by several order of magnitude in one of the 

sublattices. 

● In terms of the occurrence of unstable charged defects: Moreover, according to the work 

by Ryazanov, a second major difference would be the occurrence of unstable charged defects 

in ceramics due to ionization and covalent chemical bonding, for example point defects 

(vacancies and self-interstitial atoms, small clusters and dislocation loops)  [224,225]. The 

instability of charged defects may cause the multiplication of 1D and 2D defects and 

consequently an increase in defect density. Then, helium migration mechanisms can be affected 

by this increasing density of trapping site. 

  The research related to helium migration/retention mechanisms in alloys and ceramics are now 

oriented towards advanced nuclear materials developed for Generation IV reactors and fusion 

applications. For example:  



47 
 

● In the first field, new fuel concepts such as (U,Pu) O2 [11], oxide dispersion strengthened 

steels [239,250], ceramic-ceramic composites as silicon carbide reinforced by silicon carbide 

fibers (SiCf/SiC) [254,255]. 

● In the second field, very strong efforts are now under development [254-263]. The main issue 

is related to the fact that deuterium, tritium and helium effects determine the long-term stability 

of the selected materials. The most investigated materials are tungsten and tungsten alloys 

[253,256,259], and Fe and ferritic-martensitic steels [257,260,262]. For this area, nuclear 

reaction analysis reveals itself to be a very powerful tool because specific reactions exist for 

almost every isotope 2H(D), 3H(T) and 3He namely: (1) D(d, p0)3He or D(3He, p0)4He, (2) T(d, 

n)4He, and (3) 3He(d, p0)4He.  

  Carrying-over the helium-3 studies discussed in this review paper has been yet successfully 

applied to deuterium depth profiling in the area of fusion related material researches [260, 262]. 

For studies related to 4He behavior, THDS [258] and HI-ERDA [238,240,241] keep their 

advantages and capabilities. 

  Finally, from this broad literature survey, it was tempting to conclude that activation energy 

for helium migration energy in most of the inorganic materials lies in a very broad range  from 

0.1 to more than 5.0 eV. High activation energy values indicate that helium is immobile within 

the material. However, these values strongly depend on material nature as well as on the 

experimental conditions under which material has been studied. 
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Chapter 2 

State of Knowledge 

 

Part 2  

2.2. Radiation damage and gas diffusion in ZrC, TiC, and TiN 

  In this chapter, a literature review on TiC, ZrC and TiN is presented. We did not find many 

papers on the behavior of helium in these ceramics under extreme thermal or radiation 

environment. However, there are few papers available on the microstructure evolution of these 

ceramics after irradiation which helps us in comparing the microstructure changes solely after 

irradiation with the microstructure changes on irradiation and helium implantation together. 

This literature survey also includes the behavior of other gas atoms like xenon, in these 

materials. This part of the chapter is divided into three sections devoted to each material, 

respectively. All the text written in each section of this chapter has also been summarized into 

their respective table. While reading this chapter, one can only refer to the tables for a quick 

overview. 

 

2.2.1. ZrC 

  Data on the effect of irradiation on thermal, physical, and mechanical properties of ZrC is 

extremely limited in the literature. Also, all the available data cannot be compared to present a 

general conclusion. This is due to the variation in irradiation response caused by different C/Zr 

ratio present in materials having different stoichiometric ratio. The variation of multiple 

properties with different C/Zr ratio are detailed in next chapter. However, due to the presence 

of many stable stoichiometric variants of ZrC, this section of the chapter features some common 

conclusions. In each sub-section of the chapter, work from available literature has been 

arranged in inverse chronological order.  

One of the main irradiation effects on the ZrC includes: 



59 
 

1. Changes in density and lattice parameter (or swelling)  

● Recently, Snead et al. [1] reported the effects of fast neutron irradiation on the properties of 

high purity zone-refined ZrC0.87. The samples were irradiated at a high flux ~ 1-10 x 1025 n/m2 

(E > 0.1 MeV) in the irradiation temperature range of ~910-1750 K. The changes in lattice 

parameter determined by X-ray diffraction were within the measurement error and the 

corresponding macroscopic swelling due to lattice expansion was reportedly less than 0.1% [1]. 

 

● Gosset et al. [2] reported the microstructural evolution in hot pressed ZrC subject to 4 MeV 

Au ion irradiation. The ion fluence was between 1011 and 5 x 1015/cm2 with the irradiation 

temperature 300 K. Swelling saturation (0.6%) was observed at fluence close to ~1014/cm2. 

 

● One of the earliest reports of irradiation effect on the physical characteristics of ZrC0.98 was 

documented by Andrievskii et al. [3]. Carbides of Nb and Zr were irradiated to a fast neutron 

fluence of 1.5 x1020 n/cm2 at ~425 and ~1780 K. A decrease in the density with increasing 

irradiation temperature was recorded. A small change in the lattice parameter was also reported.  

 

● Early works on the effects of neutron irradiation on ZrC and other transition metal 

monocarbides were reported by Keilholtz et al. [4], Keilholtz and Moore [5], and Dyslin et al. 

[6]. Anisotropic swelling of the materials was reported in all the studies.                                         The 

magnitudes of volumetric saturation swelling of various ZrC (ZrC1.08–1.27) materials during 

irradiation were reported by Keilholtz [4] to be ~2% to ~3.5% at 403-628 K, and ~1% at 1273–

1373 K, as shown in fig. 2.8. Keilholtz et al. [4] also reported the absence of grain boundary 

separation in ZrC samples irradiated at temperatures between 570 and 970 K to fluence between 

0.8 and 5.4 x 1021 n/cm2.  

 

  Reviewing the available literature, similar to SiC, ZrC undergoes temperature dependent 

lattice swelling at low to intermediate temperatures but exhibits only minor swelling at higher 

temperatures. The swelling behavior reportedly was similar to the low temperature transient 

swelling of silicon carbide [7], saturating at doses as low as <1 dpa. 
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Figure 2.8. Swelling behavior of zirconium carbide during neutron radiation as reported by 

Keilholtz [4]. 

 

2. Microstructural changes with the formation of dislocation loops 

● Snead et al. [1] recently reported the effects of fast neutron irradiation to the range ~1-10 x 

1025 n/m2 (E > 0.1 MeV) in the irradiation temperature range of ~910-1750 K. At irradiation 

temperatures ~910 K and fast fluence 4 x 1025 n/cm2, small unidentified dislocation loops 

aligned in a raft-like structure were reported. As the temperature increased to ~1295 K, 

formation of larger Frank faulted loops was reported. Microstructure of the samples irradiated 

at ~1530 K contained both distinct Frank loops and other unidentifiable dislocation loops. As 

the irradiation temperature increased, a transition from Frank loops to prismatic loops was 

reported. 
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● Gosset et al. [2] reported the microstructural evolution for 4 MeV Au ion fluence between 

1011 and 5 x 1015/cm2 with the irradiation temperature 300 K. They reported that in the 

intermediate fluence range (< 1014/cm2), formation of high density dislocation loops was 

reported. With fluence > 1015/cm2, the growth of these loops led to the formation of a high 

density dislocation network via loop interactions. Further interactions of this dislocation 

network with defects were cited as the reason for swelling saturation beyond 1014/cm2. 

 

● Yang et al. [8] reported the effect of proton irradiation (2.6 MeV) on the microstructure of 

ZrC1.01 irradiated to fluence of 0.7 and 1.5 dpa at ~1100 K. Microstructural observations 

indicated the formation of high density nano-sized dislocation loops with densities increasing 

with irradiation dose. No irradiation induced voids were reported. Yang also reported a change 

in the lattice parameter with irradiation dose (0.09 and 0.11% for 0.7 and 1.5 dpa respectively) 

which was in good agreement with earlier reported data. 

 

● Gan [9] reported the observation of the microstructure of hot-pressed ZrC1.01 (~100% 

theoretical density) irradiated by 2.6 MeV protons up to a fluence of 2.75 x 1019 cm-2 

corresponding to 0.71-1.8 dpa. The irradiation temperature was 1070 K. TEM observation 

revealed small size, high density dislocation loops which had not been observed in ZrC 

irradiated with Kr ions in their previous work [10]. However, no voids were observed, that is 

consistent with the observations recorded for Kr irradiation experiments. This void suppression 

was attributed to the strong covalent bonding inherent to ZrC. 

 

  All the above work on lattice swelling and microstructural changes has been summarized in 

table 2.3a. We have already mentioned that we cannot directly compare this work because all 

the work has been performed on ZrC having different stoichiometric ratio.  

 

Material 

 

Particle 

 

Energy 

 

Dpa (or Fluence) 
& T (K) during 

irradiation   

Swelling 
Measured 

Microstructural Changes 

 

Ref 
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Table 2.3a. Summary of the work on lattice swelling and microstructural changes on ZrC after 

irradiation. 

 

3. Absence of irradiation induced amorphization in ZrC  

● Recently, Pellegrino et al. [11] reported that the accumulation of defects created by nuclear 

collisions induced by MeV Au ion bombardment leads to amorphization of SiC at the lowest 

ZrC0.87 

 

neutron 

 

E > 0.1 
MeV 

1-10 x 1025 n/m2  

~910-1750 K 

< 0.1% 

 

At 4 x 1025 n/cm2 with irradiation 
temperature:                                               
~910 K : small unidentified 
dislocation loops                                                           
~1295 K: formation of larger Frank 
faulted loops                                       
~1530 K: contained both distinct 
Frank loops and other unidentifiable 
dislocation loops 

[1] 

 

ZrC0.95 

 

 

Au ion 

 

4 MeV 

 

1011-5.1015/cm2 

~300 K 

 

Swelling 
saturation at 
0.6% close to 
1014/cm2 

 

At fluence < 1014/cm2: formation of 
high density dislocation loops was 
reported. 

At fluence > 1015/cm2: formation of 

a high density dislocation network 

via loop interactions was reperted. 

[2] 

 

ZrC0.98 

 

neutron 

 

 

E > 0.1 
MeV 

 

1.5 x1020 n/cm2  

~425 & ~1780 K 

 

-small change  in 
lattice parameter 

-decrease in  the 

density 

Not known 

 

[3] 

 

 

ZrC1.08–1.27 

 

neutron 

 

 

E > 0.1 
MeV 

 

See figure 2.7 

 

~ 2%-3.5%                   
at 403–628 K 

~ 1%                      

at 1273–1373 K 

Not known 

 

[4] 

 

 

ZrC1.01 

 

proton 

 

 

E = 2.6 
MeV 

 

0.7-1.5 dpa at  

~1100 K 

 

~ 0.09% at 0.7 
dpa.  

 ~ 0.11% at 1.5 
dpa. 

Formation of high density nano-
sized dislocation loops with 
densities increasing with irradiation 
dose. 

[8] 

 

 

ZrC1.01 proton E = 2.6 
MeV 

 

0.71-1.8 dpa at 

 ~1070 K 

 

Not known TEM observation revealed small 
size, high density dislocation loops. 

 

[9] 
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Au fluence used (2.8 x 1014 cm-2), whereas TiC and ZrC do not amorphize at the highest Au 

fluence used (3.3 x 1015 cm-2).  

                       

4. Irradiation effects on the mechanical properties of ZrC 

Irradiation is known to often cause significant hardening of materials due to, for example, 

accumulation of matrix defect clusters.  

● Snead et al. [1] reported the measurement of room temperature hardness and Young’s 

modulus as determined by the nano-indentation technique and indentation toughness by micro-

Vickers indentation for zone-refined ZrC0.87. The room temperature hardness appears to be 

insensitive to irradiation temperature within the 873-1773 K for 1-10 x 1025 n/m2 fluence range. 

 

● Yang et al. [8] reported an increase in the micro-hardness (~15% at 1.5 dpa) and fracture 

toughness (> 50% at 1.5 dpa) of ZrC1.01 after proton irradiation to 0.7 and 1.5 dpa at 1100 K.  

 

● In an early work, Andreivskii et al. [3] found changes in hardness and elastic modulus of 

ZrC0.98 sintered at ~2900 K, irradiated to a fluence of 1.5 x 1020 n/cm2 at temperatures ~420 and 

~1370 K. An increase of ~1.2% in the room temperature elastic modulus and ~12% in the 

hardness for irradiation at 420 K were measured. No change in the elastic modulus but an 

increase of ~7% in the hardness values were observed for the 1370 K irradiation, indicating that 

the effect of irradiation on the mechanical properties was more significant at lower 

temperatures. 

 

● Kovalchenko and Rogovai [12] reports a ~12% increase in the hardness of ZrC0.98 irradiated 

to a fast neutron fluence of ~1019 n/cm2 at ~320 K.  



64 
 

All the work related to irradiation effects on the mechanical properties of ZrC have been 

summaried in table 2.3b. 

 

 

 

Table 2.3b. Summary of the work on irradiation effects on the mechanical properties of ZrC 

after irradiation. 

 

   

 

Material 

 

Particle 

 

Energy 

 

Dpa (or Fluence) & 
T (K) during 
irradiation   

Change in hardness & elastic modulus  Ref 

 

ZrC0.87 

 

neutron 

 

E > 0.1 
MeV 

1–10 x 1021 n/cm2  

~910-1750 K 

No change in hardness was observed after 
irradiation at temperature range (910-1750 
K). 

[1] 

 

ZrC0.98 

 

neutron 

 

 

E > 0.1 
MeV 

 

1.5 x1020 n/cm2  

at ~425 & ~1780 K 

 

At 420 K:                                                        

~1.2% increase in the room temperature 

elastic modulus                                    

~12% in the room temperature hardness 

for irradiation was measured.                                  

At 1370K:                                                                                        

No change in the elastic modulus but an 

increase of ~7% in the hardness values. 

It indicates the effect of irradiation on the 

mechanical properties was more 

significant at lower temperatures. 

[3] 

 

 

ZrC1.01 

 

proton 

 

 

E = 2.6 
MeV 

 

0.7 -1.5 dpa 

        at ~1100 K 

 

Micro-hardness increases                        
(~15% at 1.5 dpa) 

Fracture toughness                                                    

(> 50% at 1.5 dpa) 

[8] 

 

 

ZrC0.98 neutron E > 0.1 
MeV 

 

~1019 n/cm2                                          

at ~320 K. 
~12% increase in the hardness  [12] 
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5. Interaction of ZrC with xenon 

 ● Recently, Gutierrez et al. [13] carried out a study to elucidate the role of temperature on the 

diffusion of xenon in zirconium carbide. Two batches (ZrC0.95O0.05) and (ZrC80O20) have been 

studied in order to evaluate the role of the presence of free carbon and zirconia during high 

temperature annealing. Ions of 136Xe2+ have been implanted at an energy of 800 keV 

corresponding to a mean projected range of 160 nm and at an ion fluence of 1016 cm-2 

corresponding to a maximum concentration of 1 at.%. Thermal annealing has been carried out 

in a temperature range from 1775 to 2075 K. The xenon distribution profiles have been 

measured by Rutherford backscattering spectrometry before and after the different treatments. 

The results show that the presence of residual zirconia induces a strong damage at the surface, 

however pure ZrC sintered specimen display less degradation at the surface and better retention 

capabilities for xenon.  

  At high temperature (1800 °C), for (ZrC80O20), the limit of oxygen solubility is exceeded, the 

zirconia is transformed into oxycarbide and constraints generated by this growth induced 

relaxation of xenon. However, nearly stoichiometric (ZrC0.95O0.05) zirconium carbide showed 

excellent capacities of xenon retention.  

 

● In 1967, Auskern et al. [14] also studied the release of 133Xe from ZrC samples (with varying 

C/Zr ratios). He showed that Xe release varied from 84% to 30% for ZrC0.58 to ZrC0.91. The 

fractional release of 133Xe decreased with increasing carbon content to a minimum of 30% for 

ZrC0.91 with an estimated activation energy ~765 kJ/mol (~7.9 eV). 

 

2.2.2. TiC 

  Like ZrC, TiC is also stable over a wide stoichiometry in which the C:Ti ratio is <1. Hence 

this variation of composition influences microstructure and other properties of TiC. 

  Between 1980-1990, a small number of papers have illustrated the measurement of electric 

resistivity to determine the damage caused by neutron (or electron) irradiation. The summary 

of the work in these papers is presented in table 2.4 and is detailed in next paragraph: 
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● Matsui and Iseki [15] examined the fast (14 MeV) neutron damage in titanium monocarbide 

(TiC1-x) by measuring low-temperature electrical resistivity and magnetic susceptibility. Both 

physical properties changed remarkably with neutron damage. They also noted that damage 

process dependence on the non-stoichiometry (the amount of the carbon vacancies) of the 

material. However, they also mentioned that both properties (without damage) are also 

considerably affected by the non-stoichiometry.  

 

● In situ measurement of electrical resistivity of TiCx, (x = 0.56, 0.66 and 0.72) was done at 

liquid helium temperature under fusion (14 MeV) neutrons up to 1.92 x 1021 n/m2. Matsui et al.  

[16] clearly showed that resistivity increases almost linearly with the neutron dose except at the 

beginning of the irradiation runs. The damage rate of TiC, increased with higher carbon content. 

  In the annealing process, there were several recovery stages to which the migration of inter -

stitial type defects contributed. Even after an anneal at 340 K, a large unrecovered resistivity 

remained suggesting that the amount of residual damage depends on the non-stoichiometry of 

the specimen.  

 

● M. Iseki et al. [17] prepared titanium carbide (TiC0.8) by plasma-jet melting and irradiated to 

an electron dose less than 6×1026 e/mm2 from room temperature to 800℃. The number density 

and average size of the defect clusters formed at irradiation temperatures below 400℃ were less 

than those formed above 600 ℃. Since TiC0.8 has an order structure of carbon below around 

600 ℃, the ordered phase is more resistant to radiation than the disordered one in higher 

temperatures. The clusters decrease in number density and develop to dislocation loops during 

post irradiation annealing above 1000 ℃. 

  There were two temperature region for the recovery of the defect clusters. It is conceivable 

that the first one appeared in the temperature region around 600℃ caused by migration of car- 

bon vacancies, and the second one appeared above 1000℃ by migration of titanium vacancies. 

 

● Morillo et al. [18] also measured the electrical resistivities of nearly stoichiometric titanium 

monocarbides (TiC0.97) during fast neutron and 2.5 MeV electron irradiations at 21 K. They 

found the recovery of defects up to 400 K. 
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Table 2.4. Summary of the important results on TiC after irradiation. 

 

● Gan et al. damaged TiC by 1 MeV Kr+ at 800 °C to 10 dpa and 70 dpa. They reported no 

signs of amorphization or the presence of faulted loops, but perfect loops and dislocation 

networks were reported [22].  

 

Material 

 

Particl
e 

 

Energy 

 

Dpa (or Fluence)   
& T (K) during 

irradiation   

Most remarkable points Ref 

 

                      

TiCx,        

(x = 0.56, 

0.66 & 

0.72) 

         
neutron 

 

                        
E = 14 MeV 

                                          
1.92 x 1021 n/m2 

(liquid helium 
temperature -269 

°C) 

Resistivity increases almost linearly with the neutron 
dose (except at the beginning of the irradiation runs).                                         
Damage rate is more in ZrC with higher carbon content.                     
During annealing, the amount of residual damage 
depends on the non-stoichiometry of the specimen. 

[16] 

 

          

TiC0.8 

                           

electron 

                                    

E = 1 MeV 

                                      

6×1026 e/mm2        

(at  room 

temperature to 800 

℃) 

Number density and average size of the defect clusters 

increases with irradiation temperature.                                                          

During post irradiation annealing clusters decrease            

in number density and develop to dislocation loops at T 

≥ 1000 ℃.                                                                                    

Two temperature region for the recovery of the defect 

clusters.                                                                                             

Ist at T = 600 ℃ due to migration of C vacancies,                                                               

IInd T ≥ 1000 ℃ due to migration of Ti vacancies. 

[17] 

                    

TiC0.97 

  

neutron 

& 

electron 

                                     
E > 0.1 MeV  

 

                                                

1.3 x 1018-1.4 x 1019                                 

at 21 K 

Electrical resistivities were measured during 

irradiations to measure irradiation effects.                                                                                                

During post implantation annealing, the recovery of 

defects at 400 K (60% and 80%). 

[18] 

                        

TiC 

                    

Kr+ 

                                      

E = 1 MeV 

                                

10 dpa and 70 dpa at 

800 °C 

No signs of amorphization or the presence of faulted 

loops,                                                                                 

but perfect loops and dislocation networks were 

reported. 

[22] 

                           

TiC single 

crystal 

                         

Au 

                                    

E = 4 MeV 

                                             

3.3 x 1015 cm-2                           

at room temperature 

                                                                                                      

No amorphisation of TiC single crystal. 

[11] 
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● Pellegrino et al. [11] observed no amorphisation of TiC single crystal up to the highest Au 

fluence used (3.3 x 1015 cm-2). 

 

  In the late 80’s, few papers were published by Japan Atomic Research Institute to demonstrate 

the damage evolution in TiC crystal under He or H damage by the use of transmission electron 

microscopy. The essential points mentioned in these papers are mentioned below and are 

summarized in Table 2.5. 

 

● K. Hojou et al. [19] examined the processes of damage evolution in TiC crystals irradiated 

with 25 keV H2+ ions at 12 K and 28 K, and with 25 keV D2+ ions at 18 K and the effect of 

annealing after the irradiation by in situ observation with an electron microscope equipped 

with an ion accelerator. 

  Amorphization was confirmed in TiC irradiated with H2+ ions to a fluence of about 1 x 1021 

H2+/m2 at 12 K, while no amorphization occurred in TiC irradiated with D2+ ions to a fluence 

of 4.5 x 1021 D2+/m2 at 18 K.    

  No amorphization in D2+ irradiation is considered to be due to the difficulty of producing 

chemical bonding species which suppress the recovery of irradiation induced defects in 

comparison to H2+ irradiation.  

 

● K. Hojou et al. [20] observed bubble formation and growth in TiC during 20 keV helium ion 

irradiation over the wide range of irradiation temperatures from 12 to 1523 K. No 

amorphization occurred over this temperature range. The bubble densities and sizes were almost 

independent of irradiation temperatures from 12 to 1273 K. Remarkable growth and 

coalescence occurred during irradiation at high temperature above 1423 K and during annealing 

above 1373 K after irradiation.  
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● K. Hojou et al. [21] irradiated TiC polycrystal with 10 keV helium ions with the flux of 3 x 

1016 ions m2 s-l, a number of dislocation loops were produced at the initial stage of irradiation. 

They became tangled as the irradiation proceeded and saturated in density. Neither an 

amorphous zone nor cavities were formed up to the irradiation fluence of 3 x 1022 ions/m2.   

  

Table 2.5. Summary of the important points on the damage evolution in TiC crystal under He 

or H damage by the use of transmission electron microscopy.  

  

2.2.3. TiN 

   After the broad literature survey, it was concluded that very less research have been carried 

out in the past to study irradiation damage and inert gas behavior in TiN. But during last 10 

years, some groups have studied TiN for Gen IV application and have reported following points 

which are also summarized in table 2.6:  

 

Material 

 

Irradiation condition Most remarkable points Ref 

 

 

TiC      

 

1 x 1021 H2+/m2, 25 keV, H2+ ions at 12 K and 28 
K, 

and with 4.5 x 1021 D2+/m2 , 25 keV D2+ ions at 18 
K 

 

 

Amorphization on irradiation with H2+ ions to a 
fluence of about 1 x 1021 H2+/m2 at 12 K, 

No amorphization on irradiation with D2+ ions to a 
fluence of 4.5 x 1021 D2+/m2 at 18 K. 

No amorphization in D2+ irradiation due to the 
difficulty of producing chemical bonding  as compared 

to  H2+ irradiation 

                               

 

[19] 

 

 

TiC 

 

20 keV helium ion irradiation                                            

Irradiation temperatures from 12 to 1523 K. 

Remarkable bubble growth and coalescence occurred:                               

during irradiation at high temperature above 1423 K.  

during annealing above 1373 K after irradiation. 

 

[20] 

 

TiC  

 

10 keV helium ions with the flux                                          

of 3 x 1016 ions m2 to obtain net fluence of 3 x 1022 

ions/m2  at room temperature.                                                                                             

 

Number of dislocation loops produced at the initial 

stage of irradiation became tangled as the irradiation 

proceeded and saturated in density.                                                    

Neither an amorphous zone nor cavities were formed 

perhaps because the irradiations were done at room 

temperature. 

 

[21] 



70 
 

● Xue et al. [23] recently published paper about improving the radiation damage tolerance of 

titanium nitride ceramics by the introduction of vacancy defects. They irradiated TiN and TiN0.7 

using a 100 keV Ar-ion beam at 600 °C to target doses of 3 × 1017 ions cm-2 and performed 

SRIM estimation, GIXRD and fluorescence analysis to evaluate the effect of pre-existing 

vacancy defect on the radiation tolerance.  

The lattice parameter of TiN increased after irradiation due to interstitial atoms and vacancies 

in as-irradiated TiN. In contrary, the lattice parameter decreased for as-irradiated TiN0.7, which 

indicates that the nitrogen atom vacancies in TiN0.7 acted as sinks for displacement atoms 

generated by irradiation to limit interstitial atoms existing.  

The intensity of peaks in fluorescence spectrum of as-irradiated TiN was higher than that of as-

irradiated TiN0.7 attributing to the presence of color centers formed by Frenkel defects in as-

irradiated TiN. All of the results indicate that introducing vacancy defect in materials would 

offer capability to realize self-heal of irradiation damage. 

 

● Xue et al. [24] also studied lattice expansion and microstructure evaluation of Ar ion-

irradiated titanium nitride. They irradiated TiN ceramic using a 100 keV Ar ion beam at 600 °C 

and at target fluences of 3 × 1017 ions cm−2, corresponding to 115 displacements per atom (dpa). 

X-ray diffraction and transmission electron microscopy were performed to evaluate the 

irradiation damage in TiN. The lattice parameter increased and the lattice expanded by 0.19% 

after irradiation due to interstitial atoms and vacancies in Ar-irradiated TiN. Hills, bubbles and 

dislocations were observed. It is noteworthy that many TiN grains pulled out after irradiation 

and that amorphization of oxide grain boundaries was observed using high-resolution 

transmission electron microscopy, which indicates that the oxygen-containing impurities are 

potentially fatally dangerous to the radiation resistance property of TiN and other candidate 

materials. 

 

● Gan et al. [22] also published a report on ion irradiation study on microstructure stability of 

GFR ceramics. They irradiated TEM disc samples of hot-pressed TiN using 1 MeV Kr ions at 

800°C. The irradiations were conducted at a dose rate of approximately 3.0 x 10-3 dpa/s with 

doses up to 70 dpa. Post-irradiation examination reveals the changes in microstructure due to 
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Kr ion irradiation. No evidence of faulted loops or amorphization is found in TiN. Dislocation 

networks and perfect loops are found in TiN.  

 

● Bes et al. [25] has shown that Xe introduced by ion implantation in sintered TiN tends to be 

release as a result of annealing, due to a transport mechanism towards the sample surface. They 

found that the xenon concentration which is sufficient to form bubbles in TiN matrix is lower 

than 0.4 at.%. These bubbles were found unpressurised at 15 K. Their size increases due to 

temperature and local xenon concentration. For the highest xenon concentrations, a mechanism 

involving the formation of a Xe interconnected bubble network is proposed to explain Xe 

massive release observed by Rutherford backscattering spectrometry experiments. 
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Table 2.6. Summary of literature survey on TiN. 

 

 

Material 

 

Irradiation condition Most remarkable points Ref 

 

 

TiN & 

TiN0.7 

 

Ar-ion beam at 600 °C,                                      

Fluence = 3 × 1017 ions cm-2 

For TiN: lattice parameter increased due to 

interstitial atoms and vacancies in as-irradiated 

TiN.                                                                                      

For TiN0.7: In contrary lattice parameter 

decreased on as-irradiated TiN0.7, the N atom 

vacancies in TiN0.7 acted as sinks for 

displacement atoms generated by irradiation.          

Conclusion: Introducing vacancy defect in 

materials would help in self-healing of 

irradiation damage. 

[23] 

 

 

TiN 

100 keV Ar ion at 600 °C with fluence of 

3 × 1017 ions cm−2, corresponding to 115 dpa 

Lattice expanded by 0.19%.                                          

Bubbles and dislocations were observed. 

[24] 

 

TiN 1 MeV Kr ions, 800°C,                                                

3.0 x 10-3 dpa/s with doses up to 70 dpa. 

No evidence of faulted loops.                                      

No amorphization.                                                                                   

Dislocation networks and perfect loops are found 

in TiN. 

 

[22] 

 

 

TiN 

 

800 keV Xe, 5.0 x 1015 at./cm2                             

at room temperature                                            

+ Post implantation annealing                            

(1300 °C-1600 °C) 

 

Xenon concentration which is sufficient to form 

bubbles in TiN matrix is lower than 0.4 at.%.                                                                     

Xe massive release is due to formation of a Xe 

interconnected bubble network. 

[25] 
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Chapter 3 

Properties of Transition Metal Carbides and 

Nitrides 

 

  In this chapter, important properties of TiC, TiN and ZrC have been summarized. Our main 

objective of this chapter is to highlight those properties which helps them to qualify as one of 

the most promising candidate for nuclear energy application. 

3.1. Crystallographic Structure 

  Transition metal carbides (or nitrides) of group IV e.g., TiC, TiN and ZrC have fcc or NaCl 

type structure which provides octahedral sites large enough for C or N atoms and in turn gets 

stabilized by them. Due to the presence of C or N atoms on interstitial position, they are also 

known as interstitial carbide (or nitride). The typical fcc or NaCl structure representing 

transition metal carbides and nitrides such as TiN, TiC, ZrC etc. is shown in figure 3.1. 

             

Figure 3.1. Typical NaCl type structure of transition metal carbides. 

  The shortest M-M distance is about 30% greater than in the lattice of pure metal for the 

Group IV and V carbides (or nitrides). 

M-Transition metal (Ti, Zr, etc.) 

C or N-Carbon or Nitrogen atom 
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  At 100% site occupancy, the stoichiometry of the carbide is MC1.0 and nitride is MN1.0, though 

this situation is rarely realized. The vacancies that result from a nonstoichiometric M-C or M-

N ratio have a great effect on the thermodynamic, mechanical, electronic, and magnetic 

properties of the metal carbides and nitrides.   

  

3.2 Nature of bonding 

  The carbon atoms in an interstitial carbide can be considered as isolated atoms nesting within 

the framework of the metal atoms. Essentially, no carbon-to-carbon bond exists since the 

spacing between carbon atoms is too large for any significant atomic interaction (see figure 

3.1). The overall bonding scheme is then limited to metal-to-metal (M-M) and metal-to-carbon 

(M-C) bonds and combines the three following types of bonding: 

1. Ionic bonding resulting from a transfer of electrons from the metal to the carbon atoms,                       

2. Metallic bonding with a finite density of states at the Fermi-energy level Ef,                                       

3. Covalent bonding between metal d-state and the carbon p-state, with some metal-to-metal 

interaction. 

  A similar bonding is expected in transition metal nitrides. Due to this complex bonding, 

transition metal carbides and nitrides have a unique mixture of properties from metallic and 

ceramic system. 

 

3.3. Details of the important properties 

  In chapter 1, we mentioned that the structural material for application in Gen IV fission 

reactors and fusion reactors must have high melting point (exceeding 2000 °C), adequate 

thermal conductivity (> 10 W/m-K), toughness (> 12 MPa-m1/2), and acceptable response to 

high dose neutron damage (swelling < 2% over service life (~80 dpa)). In next paragraph, each 

of these properties have been discussed and compared for TiC, ZrC and TiN. 

● High melting point: The transition metal carbides (or nitrides) of Group IV have much a 

higher melting point than their host metals. These materials have also been compared to SiC. 

And we noted that among all the materials, ZrC have the highest melting point.  
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 Figure 3.2. Comparison of host metals with their respective carbides in terms of melting 

temperature, including titanium nitride [1].  

 

● Thermal Conductivity: The thermal conductivity or k (i.e., the time rate of transfer of heat 

by conduction) of transition metal carbides and nitrides is different from other materials as k 

increases with the increase in temperature. Figure 3.3a and 3.3b shows the thermal conductivity 

for transition metal carbides and transition metal nitrides, respectively. It is important to note 

from figure 3.3a & 3.3b that TiC, TiN and ZrC have k >10W/m-K at temperature ranging from 

0 °C to 2400 °C. 
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Figure 3.3a. Thermal conductivities of transition metal carbides [1]. 

 

Figure 3.3b. Thermal conductivities of transition metal nitrides [1]. 

● Hardness: The detailed information on toughness was not available in the literature. 

However, metal carbides like their host metals lower their hardness on increasing the 
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temperature and hence do not fail in response to stress. This property makes them suitable to 

be used under high temperature environment in GenIV fission reactors and in fusion reactors. 

Figure 3.4 shows the decreasing hardness of refractory carbides as a function of temperature. 

 

 

      Figure 3.4. Hardness of refractory carbides as a function of temperature [1]. 

● Radiation tolerance: There is no specific data available for this property, as data for radiation 

tolerance depends on types of ions used for irradiation and other experimental conditions. We 

have already discussed about radiation tolerance properties in section 2.2. However, this section 

is dedicated to the direct comparison of properties, which helps them to qualify as nuclear 

material.  To complete this section we could only find one publication in which the radiation 

tolerance of TiN, TiC, ZrC and SiC have been directly compared. Gan et al. [2] published a 

recent report on irradiation response on these material and showed that TiN and TiC lattice 

expand up to ~ 2% whereas ZrC lattice expands to ~ 7% under 70 dpa damage at 800 °C caused 
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by 1 MeV Krypton ions. Under the same condition, SiC lattice do not expand at all, perhaps 

due to the recrystallisation at high temperature. 

  They mentioned that voids were only seen under the case of TiC and contributes to ~ 0.01 % 

void swelling. They finally concluded that SiC, TiC and TiN perform better than ZrC and ZrN 

on microstructural response to Kr ion irradiation at 800 ºC.  

 

3.4. Variation of properties with M-to-X ratio (M: Ti or Zr & X: C or N) 

   Transition metal carbides and nitrides are stable on wide range of stoichiometric ratios. 

Accordingly, it is reasonable to expect a large stability of these materials under ion irradiation 

due to conservation of their structure with large number of vacancies. The variation of 

properties with different stoichiometric ratios for each material is described in the next 

paragraph:   

 A. ZrC 

  Recently Katho and co-workers provided a survey of properties data for ZrC with a strong 

focus on the variation of properties based on the stoichiometry of ZrC [3]. In other words, there 

are vacancies (or missing atoms) within the lattice. These missing atoms are mostly carbon and 

very rarely metal vacancies are present. The amount of carbon vacancies can be considerable, 

reaching 50% in some cases. Two examples of properties varying with C/Zr ratio are given 

below: 

1. As the C/Zr ratio increases, the Zr–ZrC eutectic melting temperature increases and reaches 

3700 K and drops with further increasing carbon content to form a ZrC–C eutectic with a 

melting point in a range close to 3120 K. This property is shown in figure 3.5. 
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                           Figure 3.5. Phase diagram of Zr-C as reported in literature [1,3] 

2.  As the C/Zr ratio increases, the ambient lattice parameter of ZrC increases and approaches 

a maximum (~0.4702 nm) with C/Zr ~0.83 beyond which the lattice parameter decreases. In 

contrast, carbon-rich ZrC with excess carbon (i.e., C/Zr > 1.0 have small lattice parameter than 

near-stoichiometric ZrC. This property is shown in figure 3.6. 
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            Figure 3.6. Variation of lattice parameter with C/Zr ratio reported in literature [1, 3] 

B. TiC  

  TiC also shows strong variation in property based on stoichiometry. Figure 3.7 and Figure 3.8 

shows phase diagram and lattice parameter of TiC, respectively. 

Figure 3.7 represents the phase diagram of the binary system Ti-C. The extensive homogeneity 

range is shown in shaded portion of the diagram. Due to wide range of stable compositions, 

these carbides are considered as defect structures. 

Figure 3.8 illustrates the variation of lattice parameter with the composition in case of TiC. It 

should be noted that highest value of a0 occurs at carbon/titanium of approximately 0.85 and not 

at (1to1) stoichiometry. This is also where melting point is higher. 
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Figure 3.7. Carbon-titanium phase diagram. Homogeneity range shown in shaded section [1]. 

 

                                                  



84 
 

                            

                        Figure 3.8. Lattice parameter of TiC as a function of composition. 

 C. TiN 

   Like ZrC and TiC, TiN is also stable on wide range of stoichiometry between 0.6 and 1.2.  

The equilibrium solid phases of the titanium-nitrogen system are shown in figure 3.9  and are 

defined below: 

● the terminal hexagonal close-packed (HCP) solid solution (αTi), based on   titanium below 

882 °C, with a wide range of compositions; 

● the terminal body-centered cubic (BCC) solid solution (βTi), based on titanium above 882 

°C, also with a wide range of compositions; 

● the tetragonal Ti2N phase (also referred to as the ε phase ); and  
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● the face-centered cubic (FCC) TiN phase (also referred to as the δ phase), with a wide 

range of compositions. 

 

  

 

              Figure 3.9. Nitrogen-titanium phase diagram [1]. 
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Chapter 4                                                                                                                    

Theoretical Approach 

 

   Radiation damage caused by ion implantation is a powerful technique for studying the 

characteristics of defects because this method can generally control the spatial distribution and 

amount of lattice defects, and introduce impurities in controlled amounts that may exceed the 

solubility limits. Using ion implantation, lattice defects, or crystalline defects, of structural 

materials have been extensively investigated and comprehensive theories of radiation damage 

were well established in 1950s and 1960s. Helium defects, as a special problem of interest have 

attracted many systematic experimental and theoretical studies in the past four to five decades. 

The main difficulty is that helium defect configuration is highly dependent on helium 

introduction condition. In the next section, a brief summary on formation of radiation induced 

defects is given. Section 4.2 provides the basic experimental findings of helium defects and 

related theories. 

 

4.1. Radiation induced defects 

  During irradiation, an energetic incident ion interacts with stationary target atoms into two 

broad categories: the transfer of energy to electrons (ionization and electronic excitations) and 

the transfer of energy to atomic nuclei, primarily by ballistic processes involving elastic 

(billiard-ball-like) collisions. In most of the cases, electronic excitation and ionization are 

caused by highly energetic ions. The partitioning of the energy transferred into electronic 

excitations and into elastic nuclear collisions is an important process controlling the effects of 

radiation.  

  When an incident ion undergoes an elastic collision with an atom in the target material, a 

certain amount of kinetic energy, called the primary recoil energy, is transferred to the atom. If 

the recoil energy is sufficient (above threshold energy about 20 to 50 eV in metals) the atom 

will be ‘permanently’ ejected from its original lattice position to an interstitial site, leaving 

behind a vacancy. This interstitial-vacancy pair is called a Frenkel pair. In many cases the 
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primary recoil energy is high enough to create a cascade of atomic collisions by ejecting further 

atoms from their sites, resulting in more Frenkel pairs.  

  The initial defects produced during ballistic collisions are most likely to be point defects 

(vacancy and self-interstitial) that agglomerate to form two or three dimensional defects 

(dislocations, stacking faults, voids). Electronic excitations can lead to formation of ion tracks 

and conversely can also induce partial recovery of defects due to the local thermal spike 

generated by ionizing events. In our study, energy of ions during irradiation is only few MeV 

and they interact mainly by ballistic processes. 

  The spatial distribution of the defects depends on the nature of the incident particles: for 

electrons with energy of the order of 1 MeV one obtains isolated Frenkel pairs; for proton, 

neutron and heavy ion irradiations one generally observes collision cascades due to their high 

mass, which one can imagine as a vacancy rich core surrounded by interstitials along the 

incident ion track. In this case, it is easier to observe higher dimensional defects because point 

defects are created so close to each other within the cascade that they can more easily join 

together to form larger clusters. 

  The number of displacements per atom and per second (dpas-1) characterizes the irradiation. 

It is equal to the rate of production of Frenkel pairs (not the net production). For instance an 

atomic fraction of 10-3 Frenkel pairs is produced per second by an irradiation characterized by 

10-3 dpas-1.  

  Computer codes such as TRIM (Transport of Ions in Matter) are nowadays available to 

calculate defect production (dpas-1) and their spatial distribution. The TRIM [1-3] is included 

in the SRIM (Stopping and Range of Ions in Matter) software [1-3] to simulate the interactions 

between in energetic particle and a solid target made up of stationary atoms. This code is based 

on Monte Carlo statistical approach. To perform calculation, data related to the target (chemical 

composition, density, displacement threshold energy, binding energies of atoms of the target) 

and the ion incident (type and energy) must be introduced into the program. 

  Using stopping power tables and other data, this program determine as a function of depth:  

(i) the trajectory of the projectile and all displaced atoms from the target,                                               

(ii) electronic and nuclear energy losses,                                                                                                    

(iii) the final resting position of the incident (or implanted) ions,                                                            

(iv) the exit of the projectile by the front surface (back-scattering) or by the rear surface 
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(transmission),                                                                                                                            

(v) the displacement of atoms due to cascades. 

 

Following equation is used to determine the number of displaced atoms in the target (dpa):  

                                                                dpa= DTRIM
∅
ࢊ
                                                         (4.1)                                                                    

where: 

 ● DTRIM is the total number of atoms displaced calculated by the TRIM code (number of 

displaced atoms per unit surface);                                                                                                        

● ∅ is the irradiation fluence of ions per unit area;                                                                                                     

● d is the atomic density. 

  However, this value of dpa is only an estimate of the number of isolated defects induced by 

irradiation. In fact, this code does not take into account the effects of recombination (athermal 

or thermally activated) mainly dependent properties of the target; therefore gives an estimation 

of the concentration of point defects created at 0 K, which is generally overestimated compared 

to experimental results.  

  In our study, we used this code to determine the electronic and nuclear stopping powers of 

ions, the ion implantation depth and the number of dpa for each irradiation. To estimate the 

amount of radiation induced defects by SRIM, the displacement threshold energy Ed, 

representing minimum energy necessary to permanently move an atom from its site must be 

known and should be introduced in the code. This value of Ed would differ from one material 

to another.                                     

  There are two type of TRIM calculation available in SRIM code for damage calculation. TRIM 

allows the user to omit certain aspects of collision kinetics in order to increase the speed of the 

calculation.  "Full Damage Cascades" includes all normal kinetics of the ion penetrating the 

target.  The "Quick" calculation ignores target atom cascades and limits the calculation to the 

ion trajectories.  The "Sputtering" calculation includes special plots related to target atom 

sputtering.  Finally, TRIM may be run in a constrained mode, as explained below for calculating 

neutron, electron, and photon cascades [1-3].  
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1. “Detailed Calculation with Full Damage Cascades (FDC) option”: This option follows 

every recoil until its energy drops below the lowest displacement energy of any target atom. 

Hence all collisional damage to the target is analyzed. The one exception is for very rare 

massive cascades which exceed 2000 atoms. At this point TRIM runs out of memory, and an 

error message is posted indicating that the limit of 2000 atoms in a single cascade has been 

exceeded.  

2. “Quick Calculation-Kinchen Pease (KP) option”:  This option should be used if you 

don't care about details of target damage or sputtering. The damage calculated with this option 

will be the quick statistical estimates based on the Kinchin-Pease formalism [3].   

The following data will be calculated correctly with Quick Calculation-Kinchen Pease option”:                                                                                                                             

Final distribution of ions in the target, ionization energy loss by the ion into the target, energy 

transferred to recoil atoms, backscattered ions and transmitted ions.  

  Identical range results for each ion is obtained on using the full damage cascade and KP option, 

since the random number generator for the ions is separate from that used for the recoils. The 

main difference between KP and FDC calculation appears during damage calculation (or dpa). 

FDC gives more precise value to the actual damage into the material as it takes into account the 

displaced atoms caused by recoil. However, KP does the quick calculation by neglecting the 

damage caused by recoil and generally used for range, ions distribution and energy losses. 

 

4.2. Helium defects                                                                                                                                          

  It is important to mention that most of the information provided in this section of the chapter 

has been taken from the work published by H. Trinkaus. He has published atleast 40 to 50 

papers on helium behavior in nuclear materials (primarily metals) between 1979 & 2003. Below 

this, the information which is relevant to this work is provided from his papers [4-7]. 

  Upon introduction into the bulk material, helium atom undergoes three distinct processes: 

diffusion (or transport), bubble nucleation and bubble growth. 

  The diffusion of helium atoms is the basic requirement for bubble nucleation and growth. 

Their diffusion is the result of random jumps from one stable or meta-stable lattice site to 

another. The most important positions of He atoms in a lattice are interstitial sites and 
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substitutional sites (He atoms in vacancy). The preferred positions and dominant migration 

modes depend on temperature as well as on the presence of other intrinsic or irradiation induced 

defects acting as traps, especially vacancies and He-vacancy clusters. 

 

4.2.1. Helium Diffusion 

  The most important basic processes of helium diffusion are described below and shown in 

figure 4.1. 

a) Interstitial migration: The simplest mechanism by which helium atoms transport is the 

interstitial diffusion mechanism, in which the atoms occupy and move between the interstitial 

sites. 

b) Substitutional migration (vacancy migration): Substitutional helium atoms occupy 

vacancies. For e.g., in case of TiC, vacancy could be metal-vacancy or carbon-vacancy. 

However, based on the different paths by which helium atoms transport, the substitutional 

migration mechanism can be subdivided into two categories: 

i) Vacancy mechanism: A transient helium-vacancy complex containing one helium atom and 

two vacancies is formed in which He atom jumps from one vacancy to the other (see figure 

4.1). 

ii) Dissociation mechanism: In this mechanism, a He atom in a vacancy is dissociated from its 

position and diffuses interstitially until re-trapped by another vacancy. Dissociation process can 

be activated thermally, by recombination of vacancies occupied by helium atoms with self-

interstitial atoms or by irradiation induced displacement. 

   

 Figure 4.1. Migration mechanisms of He in a crystalline solid. a) Interstitial migration, b) 
substitutional migration and c) dissociative interstitial diffusion [8]. 
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  In case of negligible radiation damage, for e.g. in case of helium production by tritium decay, 

helium atoms are introduced into material matrix without creation of vacancies, helium is 

transported by interstitial mechanism. However, if energetic helium is introduced into the 

sample from ion accelerators, it leads to the production of vacancies and self-interstitial atoms 

along with helium atoms. In this case, helium diffusion through substitutional vacancy 

mechanism is the dominant mode of diffusion due to the presence of vacancies. 

 

4.2.2. Helium Bubble Nucleation 

  The nucleation of He bubbles within grains of a matrix occurs by the concurrent diffusion and 

clustering of He atoms, vacancies and self-interstitial atoms. The interactions between the three 

fundamental defects lead to the formation of small clusters of one to three helium atoms and 

one to three vacancies, with sizes in the 0.2 to 0.4 nm range. The tiny clusters formed during 

the transport stage are in highly non-equilibrium state and are thus very unstable. For example, 

in case of nickel, a self-interstitial atom can readily replace a trapped helium atom from a 

vacancy site because the formation energy for a vacancy-interstitial pair is 4.5 eV while the 

vacancy-helium binding energy has been estimated to be about 3.6 eV in nickel [9]. For helium-

filled cavities to grow, stable He-V complexes (HeVCs) must first nucleate. It is estimated that 

between 3 to 10 defects must be involved for the formation of critical HeVCs [4]. The sizes for 

critical clusters are in the 0.2 to 1 nm range. 

 

 

4.2.3. Helium Bubble Growth 

  Beyond the nucleation stage, HeVCs are stable up to a temperature that is about 0.3 to 0.4 of 

the melting temperature, particularly in metals. However, limited data is available in case of 

ceramics. Thus the next phase constitutes the growth phase of bubbles or He-V complexes. 

They grow under helium supply and stress- or irradiation-induced vacancy supersaturation. But 

even in the absence of both, they can grow, either by migration and coalescence, or by Ostwald 

ripening via helium resolution. 
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  Fundamentally, under all conditions including annealing, irradiations under heavy ions or 

during helium implantation, He-V complexes (or bubbles) can grow in principle by one or all 

of the three processes [5]:  

● it can accept newly created gas atom, injected gas atom or redissolved gas atoms (Ostwald 

ripening);                                                                                                                                                       

● it can accept vacancies either by producing near-Frenkel pairs in the low temperature    

regime or by absorbing thermal vacancies, if they are mobile at higher temperatures;                         

● it can migrate until it coalesces with other bubbles (MC).  

  In the next paragraph, bubble coarsening upon annealing by migration and coalescence (MC) 

and Ostwald ripening (OR) has been discussed: 

 

● Migration and Coalescence: Coalescence is essentially a collision process between the 

bubbles; the most important basis for this process lies under migration of bubbles. Bubble 

migration is due to random rearrangements of the bubble surface by diffusion of matrix atoms. 

Three routes are available to them: they diffuse via the vapor phase within the bubble; they can 

migrate around the surface of the bubble; or they can diffuse by a vacancy diffusion mechanism 

through the lattice near the bubble. Each process has a characteristic dependence on temperature 

and bubble radius r. In most of the cases, surface diffusion is the fastest mechanism (see figure 

4.2a). 

 

● Ostwald Ripening: Ostwald ripening is due to thermally activated resolution from (small) 

and re-absorption of helium atoms by large bubbles. This suggests that the apparent activation 

energy of bubble density reached by OR is equal to the energy of He dissociation from bubbles. 

In addition to the dissociation and re-absorption of He atoms, OR of He bubbles requires the 

dissociation and re-absorption of vacancies. Accordingly, this basically two-component OR 

process may be He atom or vacancy dissociation controlled, mainly depending on which of the 

two dissociation energies is higher (see figure 4.2b). 

Figure 4.2 shows schematic illustration of the two main bubble coarsening mechanisms taken 

from Trinkaus et al. [5]: 
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Figure 4.2. Schematic illustration of the two main bubble coarsening mechanisms, (a) 

migration and coalescence via surface diffusion, (b) Ostwald ripening due to He fluxes driven 

by differences in the thermal equilibrium He concentrations in the vicinity of small and large 

bubbles [5]. 

 

4.2.4. State of helium bubble 

  The next important concern about helium defects is the development of high pressure inside 

the bubbles which can reach the mechanical stability limit of the material. The energetic state 

of a gas bubble is characterized by two quantities: its volume and the gas pressure (or density) 

in it. The density in gas bubble is defined as ratio of number of He atoms to vacancies. 
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  The energetic state of bubble depends on the conditions and the stage of the bubble evolution, 

i.e. on temperature, He production and displacement rates, He concentration and dose, as well 

as bubble size. 

  For possible values of the pressure inside a bubble, Trinkaus has defined two distinctly 

different limiting cases [5]: 

(1) The mechanical stability limit at which the matrix would yield by spontaneous plastic 

deformation, most likely by dislocation loop punching. Calculations have shown that the 

corresponding upper bound limit of the pressure may be reasonably well represented by: 

                                                                  p ≤  0.2 µ,                                                            (4.2) 

where µ is the shear modulus of the matrix. 

 

(2) The condition of thermodynamic equilibrium yields 

                                                                    p = 2ϒ/r,                                                            (4.3)            

where ϒ is the surface free energy. 

 

  At high He to dpa ratio, high He production rate and concentration, where He dominates the 

bubble evolution since most of the concurrently produced SIAs and vacancies are annihilated 

at existing bubbles, it is likely that the pressure is close to the limit given by Eq. 4.2. For Ni, 

and austenitic steels where μ = 90 GPa, this limit is as high as 18 GPa. 

  A sufficient thermal equilibrium vacancy concentration is required to establish thermal 

equilibrium of bubbles according to Eq. 4.3. which holds around and above T > 0.4 Tm. 

  In small nm-scale bubbles, for instance in Ni and austenitic steels where ϒ = 2 N/m, the 

equilibrium pressure reaches also values in the GPa range, but clearly not as high values as 

those defined by the mechanical stability limit. 

  It is emphasized here that at high He to dpa ratio and high He concentrations, the pressure 

remains significantly above the thermal equilibrium value even above T > 0.4 Tm. 
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  The most important direct method to determine bubble sizes and volume density is 

transmission electron microscopy (TEM). To determine the pressure or helium densities in the 

bubbles, EELS (electron-energy-loss-spectrometry) or UVAS (ultraviolet absorption 

spectrometry) can be used. However, both these techniques are highly complicated and rarely 

available, therefore we developed an approach to calculate helium densities and pressure by 

entering experimental data obtained from TEM into theoretical equation known as equation of 

state of helium (EOS). These EOS have been clearly illustrated in 1983 by Trinkaus [4]. 

  In the next paragraph, our approach and some equations are briefly outlined. 

  The state of helium inside the bubbles could be solid as well as fluid. The solid state of helium 

inside the bubbles is unlikely to occur, because it would generate very high pressure which can 

be far beyond the mechanical stability limit of the material and practically impossible. 

Therefore, we have only discussed the fluid state of helium.  

  A helium bubble may be imagined to be formed in three steps: formation of cavity (FB), 

introduction of helium into cavity considered to be rigid (FHeMe), and relaxation of thus 

formed bubble (Frel).  

  The formation free energy of the bubble, FB, consists of the corresponding contributions FC, 

FHeMe and Frel, respectively. 

                                         FB = FC + FHeMe + Frel                                                                                                   (4.4) 

In this equation: 

● if rB ≥ 1 nm, FC = ϒS, where ϒ is the specific surface free energy of material. 

● FHeMe i.e. the energy required for the introduction of helium into the cavity. This can be 

divided into helium bulk free energy (ܨு௘஻ ) and various interaction energies, for eg. He-He 

interaction to the bubble surface (ܨு௘ௌ ), He-metal interaction to the bubble surface (ܨு௘ெ௘ௌ ). 

  In these terms, what concerns us the most is ܨு௘஻ . Because ܨு௘஻  depends on the particle density. 

The density dependence of free energy ܨு௘஻  can be described by a truncated power series in the 

particle density (n= 1/v) i.e. number of helium atoms present per unit volume and conversely, 

v is volume per helium atom (in Å3).  

  It is important to mention that the gas pressure within the clusters of the limiting size   r = 10 

Å is expected to be 4 x 104 MPa in nickel [4]. This value also corresponds to the mechanical 
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stability limit. For such pressure (and temperature below 104 K) neither the ideal nor Van der 

Waals gas law is valid. Therfore, we have to apply other modified gas law in this pressure 

regime. 

  Before proceeding further, it is important to recall that compressibility factor (Z) is a measure 

of how much the thermodynamic properties of a real gas deviate from those expected of an 

ideal gas. Please see annexe I for details on compressibility factor.                                                                                      

  Precisely, the ideal gas corrected for non-ideality is defined as: PVm = ZRT                                                         

where P is the pressure, Vm is the molar volume, Z is the compressibility factor, R is the 

universal gas constant, and T is the temperature. This law is also known as real gas equation of 

state (EOS). For ideal gas behavior Z=1 as the gas pressure approaches 0; for real gas behavior 

Z could be greater than 1 (for high pressure) or less than 1 (for intermediate pressure).  

  To be easily understandable, if we are able to find the value of Z i.e. compressibility factor 

corresponding to pressure inside the helium bubbles. And, if we put this value of Z into (PVm 

= ZRT), we should be able to extract the value of P (i.e. pressure inside the bubbles). 

   Let us see the formulas mentioned by H. Trinkaus [4] to find the value of Z i.e. compressibility 

factor. 

 

The compressibility factor from Trinkaus equation of state of helium can be expanded into: 

ࢠ  = (૚ − ૚)(࣋ + ࣋ − ૛࣋૛) + (૚ − ࣋૛(࣋ ࡮
࢒࢜

+ (૜ − ૛࣋(࣋૛࢒ࢠ + (૚ − ࢒࢜ᇱ࢒ࢠ૛࣋(࣋                (4.5) 

In equation 4.5: 

B(T) the constant is defined as; (ࢀ)ܤ = ૚ૠ૙ ିࢀ૚/૜ − ૚ૠ૞૙
܂

 ൫࢔࢏ Å૜൯                                   (4.6)  

                                                                                                                                                                                              

࢒࢜ ;௟ the fluid volume upon freezingݒ = ૞૟ ࢓ࢀ
ି૚/૝ܘܠ܍ (−૙.૚૝૞ ࢓ࢀ

ା૚/૝) (࢔࢏ Å૜)            (4.7)  

                                                                                

௟ݖ  the compressibility factor on freezin܏; ࢒ࢠ   = ૙.૚૛૛૞ ࢓ࢀ࢒࢜૙.૞૞૞                                   (4.8)  
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௟ݒ௟ᇱݖ = ቀడ௭
డ
ቁݒ݈݊ ݈ ≈  −50 ; the quasi-harmonic approximation on freezing appears to be 

rather constant along the melting curve between 100 K and 1000 K.                                   (4.9)                                 

  Please note that these equations are not explained in order to keep the application simple. 

Please see reference [4] for details.  

  We can easily observe from eq. (4.6 to 4.8), value of T i.e. annealing temperature and Tm i.e. 

melting temperature is must for all the equations. Both the values of T and Tm are easily known 

in the experiment.  

  The only unknown is ‘ρ’ in the above equation. The value of reduced particle density ‘ρ = 

 ௟/v’ has to be found experimentally with the help of TEM. This would be explained later withݒ

the real data in the result part.  

  Finally once, the value of compressibility factor ‘z’ is obtained by solving above equation 4.5. 

This value can be put into real gas law (PVm = ZRT) to derive the pressure inside the bubbles. 

 

4.2.5. Helium bubble nucleation at extended defects  

   In the preceding section, possible effects of extended defects such as dislocations and grain 

boundaries (GBs) on bubble nucleation were ignored i.e. it was assumed to occur 

homogeneously within an otherwise perfect matrix lattice.  

  The extended defects may play a crucial role in bubble nucleation, bubble growth and 

interlinking of the bubbles especially at grain boundaries may provide channels to expel helium 

atoms out of the material. They can also lead to grain boundary weakening and de-cohesion.  

  Dislocations and GBs act as strong traps for mobile He atoms. The evolution of bubbles at 

extended defects such as dislocations and GBs is controlled by fluxes of He atoms to such sites 

(it constitute effective local He production rates at these defects) and these fluxes are controlled 

by the bubble evolution within the bulk of the matrix as illustrated in figure 4.3. 
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Figure 4.3. Schematic illustration of He fluxes to GBs controlled by the bubble evolution within 

the bulk of the matrix. These constitute effective local He production rates at GBs. Thus, the 

bubble evolution at extended defects is strongly coupled to that in the bulk.                                                

 

  There are few features which are important to mention: 

(1) Premature bubble nucleation at an extended defect results in a reduction of the He 

concentration in the vicinity of grain boundary. This also leads to strongly reduced nucleation 

probability in their vicinity which manifests itself as bubble denuded zones adjacent to the 

extended defect. This has been previously observed by transmission electron microscopy. 

(2) An extended defect collects a substantial fraction of the He atoms produced in such zones. 

 

4.2.6 Homogeneous vs. heterogeneous nucleation 

During helium production at various temperatures, extended defects behave differently: 

 

  At low temperatures: At low temperatures, where thermal dissociation from He atom traps 

is negligible, the globally dominant nucleation mode, homogeneous vs. heterogeneous, is 
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determined by the relation between the partial sink strengths of bubble nuclei according to 

homogeneous nucleation and of pre-existing deep traps.  

Homogeneous nucleation will be dominant if the sink strength of bubble nuclei, i.e. the product 

of their density and their size, is larger than the sink strength of other pre-existing traps, for 

instance the corresponding product of density and size of GBs or precipitates, and vice versa, 

depending on temperature and He production rate.  

 

  At high temperatures: At high temperatures, where thermal dissociation from He atom traps 

must be considered, the relation between the partial sink strengths of possible nucleation sites 

does no longer provide a sufficient criterion for homogeneous vs. heterogeneous nucleation.  

  In this case, effects of dislocation cores, interfaces and GBs on the thermodynamics of 

critical bubble nuclei are important. 

  In figure 4.4 the ‘classical’ understanding of these interfacial effects on the thermodynamic 

state of a nucleus of given volume, i.e. on the radius of curvature of its surface, r, the 

corresponding equilibrium gas pressure inside it, p = 2ϒ/r, where ϒ is the specific surface free 

energy, and c* mentioned in the figure is the thermal equilibrium He concentration around it. 

  Figure 4.4a shows the bubble (with radius r) in the matrix of the material (or far away from 

the GB), however figure 4.4b shows interfacial equilibrium at the triple junctions surface 

segments of a bubble and a GB. In triple junction, two surfaces are provided by bubble and 

other surface is provided by GB. This results in an increase in r and corresponding decrease in 

pressure and c*. 

  These relationships suggest that heterogeneous bubble nucleation at interfaces and GBs would 

occur at lower critical He concentration c* than homogeneous nucleation (assuming that bubble 

nucleation would occur at a certain minimum critical nucleus size), and would be reached earlier 

therefore in the former than in the latter case. 

  Consequently, a significant reduction of the He concentration by substantial premature   

heterogeneous nucleation would prevent additional homogeneous nucleation.  
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Figure 4.4 Illustration of interfacial effects on cavity nucleation at high temperatures; (a) 

spherical nucleus in the matrix, (b) lenticular nucleus at a GB. Under this condition, the radius 

of curvature of the nucleus surface, r, increases while the corresponding equilibrium gas 

pressure inside it, p = 2ϒ/r, and the thermal equilibrium He concentration around it, c*(p), 

decrease, suggesting that the critical concentration required for bubble nucleation decreases 

and bubble nucleation becomes easier from configuration (a) to (b). 
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Chapter 5                                                                                                                    

Experimental Approach  

In this chapter, an overall experimental approach followed during this thesis has been detailed.  

 

5.1. Details of sample manufacturing 

  TiC, ZrC and TiN were manufactured at LTMEX Laboratory, CEA Saclay [1,2]. All the three 

samples were synthesized using hot isostatic pressing (HIP). Hot isostatic pressing (HIP) is a 

form of heat treatment that uses high pressure to densify materials and to improve their 

mechanical properties. Pressure is generally applied by an inert gas, usually argon. Important 

details on HIP for each material have been summarized in 1-5 rows of Table 5.1.  

 

  TiC ZrC TiN 

1. 
Manufacturing 

Process 
Hot Isostatic Pressing Hot Isostatic 

Pressing Hot Isostatic Pressing 

2. T (°C) during HIP 1600 °C 1900 °C 1400 °C 

3. P (bars) during HIP 1600 bars 2000 bars 1400 bars 

4. HIP Duration 2 h 2 h 1 h 

5. 
Chemical additions 

during manufacturing 

Fe (<wt. 400 ppm) 

W (<wt. 6500 ppm) 

Co (<wt. 320 ppm) 

- 

O (<wt. 8500 ppm) 

Fe (<wt. 1600 ppm) 

C (<wt. 800 ppm) 

6. Density 99 % 99 % 96.4 % 

7. Grain size 8-10 µm 1-5 µm 10-20 µm 
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Table 5.1. Summary of various properties of the samples [1, 2]. 

 

  Along with the details on material manufacturing, information on density, grain size, poro- 

sity and stoichiometry of these samples have been summarized in 6-9 rows of Table 5.1. The 

stoichiometric ratios have been calculated by calculating the concentration of C (or N) and Zr 

(or Ti) by nuclear reaction analysis (NRA) and Rutherford backscattering spectroscopy (RBS), 

respectively. Moreover, the value of stoichiometric ratio has been verified by obtaining 

spectrum from Raman spectroscopy and by comparing the position and shape of spectrum with 

various spectrum given in the literature for different stoichiometric ratio. The pictures of 

sample’s surface from scanning electron microscope (SEM) are provided in Figure 5.2. 

  TiC, ZrC and TiN were received by us in the form of small rectangles and squares having an 

average dimensions around 2 cm x 2 cm x 0.5 cm. These sample pieces were polished by 0.1  

µm silicon carbide disc followed by a chemical polishing with colloidal silica to remove the 

surface defects. After polishing, the samples were cleaned ultrasonically with distilled water 

and ethanol. 

 

 

 

 

 

 

 

 

 

Figure 5.1. Pictures of TiN, TiC and ZrC from scanning electron microscope (SEM). 

 

8. Porosity 

a very low density 

(<1%) of intra-granular 

porosity. 

Intergranular 
porosity and 

low intra-
granular 

porosity but 
near grain 
boundaries 

                                       
Spherical 

intragranular 

 

9. Stoichiometry 0.94 ± 0.02  0.92 ± 0.02 0.99 ± 0.02 

20 µm 
10 µm 

10 µm 

TiN TiC ZrC 



105 
 

5.2. Implantation and annealing 

  The goal of this thesis is to study helium mobility under thermal and radiation environment. 

To achieve this goal, two sets of experiments were conducted. A brief description of two sets 

of experiment is given in next paragraph and afterwards a detailed description is provided: 

 

● First set of experiments 

Aim: To study helium mobility under thermal environment.  

Approach: He implantation  Thermal annealing  Sample characterization. 

Remark: About 85 % of the thesis work is devoted to conduct and interpret the result of first 

set of experiment.  

This set of experiment is again divided into two sections. 

First section:  

Aim: To compare helium mobility under thermal annealing between TiC, ZrC and TiN. 

Approach: He implantation (the value of implantation fluence is same)  Thermal annealing 

(at 5 different temperatures)  Sample characterization. 

Remark: TiN, TiC and ZrC were implanted with same helium fluence and annealed at 5 

different temperatures under same conditions to compare helium mobility. 

Second section: 

Aim: To study the effect of implantation fluence on helium mobility under thermal annealing. 

Approach: He implantation (implantation fluence is varied)  Thermal annealing (at only 2 

temperatures)  Sample characterization. 

Remark: These experiments were only done on TiN and ZrC. TiN was implanted with three 

fluence (F1, F2 and F3) and sample with each fluence was annealed at two temperatures. Similar 

experiments were done on ZrC.  

  Among TiN, TiC and ZrC, TiN has maximum grain size and close to stoichiometric ratio 1:1, 

however ZrC has minimum grain size and stoichiometric ratio is far from 1:1. TiC lies in 
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between in terms of grain size and stoichiometric ratio. Therefore, due to limited time, some 

experiments and some characterization techniques (particularly TEM) were only limited to TiN 

and ZrC. 

 

● Second set of experiments 

Aim: To study helium mobility under radiation damage. 

Approach: Damaging the material by self-ion implantation  He implantation  Thermal 

annealing (if required)  Sample characterization. 

Remark: About 15% of the thesis work is devoted to conduct and interpret the result of second 

set of experiment. 

  Before starting with the detailed description of each set of experiment, it is important to 

mention that the sample characterization method employed in each set of experiments are same 

and hence they are described only once at the end of this chapter. Furthermore, all the ion 

implantations were carried out at Jannus Laboratory, CEA-Saclay, hence a brief description of 

Jannus facility is provided below. 

 

 

5.2.1. Brief description of JANNUS Laboratory 

   Figure 5.2 display the complete layout of the multi-irradiation facility at JANNUS Saclay [3].  

  Three accelerators are coupled: a 3 MV Pelletron™ named Épiméthée, a 2 MV Pelletron™ 

tandem named Japet and a 2.5 MV single ended Van de Graaff named Yvette.  

Épiméthée is equipped with an electron cyclotron resonance ion source able to produce multi-

charged ions. Japet is equipped with a charge exchange ion source operating with Cs vapour 

able to produce initially single charged negative ions that are then converted into positive ions 

by a stripping process through a very low pressure argon leak. Yvette includes at its terminal a 

conventional radiofrequency ion source used to produce protons, deuterons and helium-3 and 

helium-4 ions. 
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  The triple beam chamber receives one beam line coming from each of the accelerators, 

allowing single, dual or triple beam irradiation. This chamber is implemented with a movable 

array of 7-Faraday mini-cups allowing a periodic control of the ion flux in each beam. The 

sample holder operates from liquid nitrogen temperature to 850 °C. Three energy degraders 

constituted by rotating wheels mounted with suitable thin metallic layers give the possibility to 

broaden the damage profile accumulated into the sample under investigation. Each of the beam 

line converging towards the triple beam chamber is equipped with a raster scanner unit able to 

move the beam inside a 2 x 2 cm2 area onto the sample surface. A second vacuum chamber is 

linked to Épiméthée. It can be used for single beam irradiation or ion beam analysis. A 5-

Faraday mini-cups device and a heating/cooling stage sample holder are also available in this 

chamber. A third vacuum chamber has been implemented on Yvette. It is a multipurpose ion 

beam analysis chamber equipped with two X-ray detectors, a high purity germanium detector 

for gamma-ray detection and two surface barrier detectors (100 and 1500 µm) usable for 

Rutherford backscattering, elastic recoil detection and nuclear reaction analysis measurements. 
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Figure 5.2. Complete layout of Jannus-Saclay facility. 

 

 

5.2.2. Experimental details for the first set of experiment 

First section 

● He implantation: Three samples each of TiC, TiN and ZrC were implanted with 3 MeV        
3He+ ions at room temperature. The regular monitoring of temperature during implantation was 

done using thermocouples and temperature only varied between 28 ± 10 °C. The beam was 

scanned on the complete sample holder for the homogeneous implantation of helium. The dose 

was about 5 x 1016 ions/cm2 with an average dose rate of 4 x 1012 ions/cm2/s using 3 MV 
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PELLETRON ÉPIMÉTHÉE™ at the JANNUS Laboratory CEA Saclay [3]. The values of the 

projected ion range (see Table 5.2) were around 6.5 µm (calculated by SRIM [4]) to avoid 

undesirable near surface effects.  

 

 TiC TiN ZrC 
3He energy (MeV) 3 3 3 

Average ion flux (1012 cm-2s-1) 4.75  0.45 3.56  0.35  4.75  0.45  

Average dose (1016 cm-2) 5.00  0.50 5.10  0.1 5.00  0.50  
Projected range (µm) 6.78 6.16 6.49 

Δ Rp (nm) 315 289 441 
Maximum 3He concentration 

(%) at the Bragg peak 1.8 at. % 1.7 at. % 1.56 at. % 

                  

Table 5.2. Summary of various details during helium implantation [1,2]. 

 

● Thermal annealing: After helium implantation, each sample was cut into three (or four) 

small rectangle pieces with dimension (0.7 cm x 0.7 cm x 0.5 cm). To avoid contamination 

during annealing, each small piece was sealed in quartz tube under low argon gas pressure (see 

figure 5.3).  

 

 

 
                                          

Figure 5.3. Sealed quartz tube containing helium implanted samples and a virgin sample. 
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  These quartz tubes were annealed at different temperatures ranging from Ta = 1000 °C to 1600 

°C for 2 hours each in PCI laboratory (Physics and Chemistry of Irradiation) at CSNSM Orsay. 

The time duration (t) for annealing at each temperature was 2h. Temperatures in furnaces were 

monitored with conventional thermocouples. These information have been summarized in table 

5.3. 

 

 

Table 5.3. Summary of details on annealing of helium implanted samples.                                               
*Ta1, Ta2, Ta3, Ta4, Ta5  represents the first, second, third, fourth and fifth annealing temperature respectively. 

 

 

Second section: 

● He implantation: Two big samples each of TiN and ZrC were implanted three times under 

the same configuration (as first section) with three different fluences. During the three 

implantations, the He ions were implanted with 3 MeV energy at room temperature using 3 MV 

PELLETRON ÉPIMÉTHÉE™ at the JANNUS Laboratory, CEA Saclay. The values of fluence 

were 5 x 1016 at./cm2 (F1), 0.73 x 1016 at./cm2 (F2) and 0.23 x 1016 at./cm2 (F3). The values of 

the projected ion range (calculated by SRIM [4]) and other details are summarized in table 5.4. 

It is to be noted that value of fluence F1 is same as the value of implantation fluence used in first 

section. 

 

 

Sample *Ta1, t *Ta2, t *Ta3, t *Ta4, t *Ta5, t 

TiC 1000 °C, 2h 1100 °C, 2h 1400 °C, 2h 1500 °C, 2h 1600 °C, 2h 

TiN 1000 °C, 2h 1100 °C, 2h 1400 °C, 2h 1500 °C, 2h 1600 °C, 2h 

ZrC 1000 °C, 2h 1100 °C, 2h 1400 °C, 2h 1500 °C, 2h 1600 °C, 2h 
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   Table 5.4. Summary of various details during helium implantation [1,2]. 

 

● Thermal annealing: After helium implantation, each sample was cut into three (or four) 

small rectangle pieces with dimension (0.7 cm x 0.7 cm x 0.5 cm). To avoid contamination 

during annealing, each small piece was sealed in quartz tube under low argon gas pressure (see 

figure 3) and annealed at two temperatures Ta = 1100 °C & 1500 °C for 2 hours in PCI 

laboratory at CSNSM Orsay. 

 

5.2.3. Experimental details for the second set of experiment 

● Self-ion implantation to damage the material: Before implanting He ions into the samples, 

TiN and TiC samples were damaged by self-ions (Ti6+) and ZrC was damaged by its self-ions 

(Zr6+) by using 2 MV Japet accelerators at the JANNUS Laboratory, CEA Saclay.   The energy 

of self-ions during implantation was kept 14 MeV. TiN and TiC were damaged up to 27 dpa 

(displacement per atom). However, ZrC was damaged only up to 9 dpa due to large 

experimental time (around 3 days) required to obtain dpa > 9 by Zr 6+ ions. The ion range 

calculated by SRIM for each and other details during implantation are summarized in table 5.5. 

The values of dpa mentioned in this paragraph have been calculated by Full Damage Cascade 

Calculation (see chapter 4 for details). 

  An example of ion range and target vacancies created by SRIM is shown in figure 5.4 and 

figure 5.5 respectively. 

 Fluence F1 Fluence F2 Fluence F3 
3He energy (MeV) 3 3 3 

Sample implanted TiN, ZrC TiN, ZrC TiN, ZrC 

Fluence (1016atoms cm-2) 5.10  1.1  0.73  0.2 0.23  0.08 

Average ion flux (1012cm-2 s-1) 3.56  0.7  6.56 1.05 6.04  1.1 

T (°C) during implantation Between                         
(28 -38) °C 

Between                       
(20 -37) °C 

Between                                
(18 -23) °C 

 

Projected range (µm),                  

Δ Rp (Å) 

TiN: 6.16 µm,               

289 nm 

TiN: 6.16 µm,  

289 nm 

TiN: 6.16 µm,                  

289 nm 

ZrC: 6.49 µm,                

441 nm 

ZrC: 6.49 µm,  

441 nm 

ZrC: 6.49 µm,                   

441 nm 
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Figure 5.5. Collision events caused by 14 MeV Zr6+ ion in ZrC 

 
 
 

           Figure 5.4. Ion ranges of 14 MeV Zr6+ ions in ZrC. 
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Table 5.5. Summary of implantation details for Ti6+ and Zr6+ ions. 
 

● He implantation: 2 MeV 3He+ ions were implanted into damaged TiC, TiN and ZrC with 

fluence, 2.83E16 at./cm2. The range calculated by SRIM was Rp = 3.88 µm (ΔRp = 1633 Å), Rp 

= 3.98 µm (ΔRp = 1095 Å), Rp = 3.61 µm (ΔRp = 1641 Å) for ZrC, TiC and TiN respectively. 

Figure 5.6 shows the depth distribution of Ti6+ ions and induced-vacancies in TiC compared 

with 2 MeV 3He implantation profile. 
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Figure 5.6. Comparison between depth distribution of Ti6+ ions and induced-vacancies in TiC 

with 2 MeV 3He implantation profile. 

Sample Ion Energy  
(MeV) 

Fluence 
(ions/cm2) 

Dpa     
(calculated 

by FDC 
option) 

Dpa     
(calculated 

by KP 
option) 

Range 
(µm) 

ΔRp 
(nm) 

   TiC Ti6+ 14  1.326 E16  9 3.7 2.83 189 

3.84 E16  27 9.9 2.83 189 

   TiN Ti6+ 14  1.326 E16  9 3.7 2.66 223 

3.84 E16  27 9.9 2.66 223 

   ZrC Zr6+ 14  4.93 E15  9 3.7 2.53 375 



114 
 

● Thermal annealing: After radiation damage and helium implantation, some samples were 

annealed at Ta = 1600 °C to study the combine effect of damage and annealing. 

 

5.3. Sample characterization 

  Table 5.6 describes the name and purpose of various characterization techniques used during 

this study. However, Nuclear reaction analysis (NRA) and Transmission electron microscopy 

(TEM) are the two vastly used techniques for the characterization of material and hence are 

explained in detail. 

 

 

 Name of the characterizing  technique Purpose of the technique Name of the laboratory equipped 

with characterizing instrument 

 1. Nuclear reaction analysis (NRA) with 

stationary deuteron beam (1 mm size) 

To measure C and N contents in both 

carbides and nitride. 

To know He depth distribution along the 

depth of the sample. 

Jannus Laboratory, CEA Saclay 

 2. Nuclear reaction analysis (NRA) with 

deuteron beam (1 µm size) by beam 

scanning 

To know the helium distribution in lateral 

(x, y) direction. 

LEEL, CEA Saclay 

3. Rutherford back  scattering (RBS) To calculate the stoichiometric ratio of 

the material in combination with NRA 

measurements (see row 1) by knowing 

the concentration of heavy elements (Ti 

or Zr). 

Jannus Laboratory, CEA Saclay 

3. Transmission Electron Microscopy (TEM) 

on cross-section specimen prepared by FIB 

(focused ion beam). 

TEM: To know the effect of helium on 

material’s microstructure (for eg. bubble 

formation, cavity formation, blisters etc.) 

SRMP, CEA Saclay. 

FIB: To prepare cross-section TEM 

specimen. 

IEMN, CNRS, Lille. 

4. X-ray Diffraction To know lattice swelling. LEMHE-ICMMO, University 

Paris SUD-11 
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5. Raman Spectrometry To detect different phases and to see the 

evolution of phases after implantation and 

annealing. 

Jannus Laboratory, CEA Saclay. 

6. Nano-indentation To know hardness of material after 

irradiation. 

SRMP, CEA Saclay. 

7. Scanning electron microscopy (SEM) and 

electron microprobe 

To know the elemental concentration and 

surface changes after irradiation and 

annealing. 

SRMP, CEA Saclay. 

      

Table 5.6. Details of various characterization techniques used. 

 

  In the following paragraphs, firstly detailed description of NRA and TEM is provided and 

other techniques are described later. 

 

5.3.1. Nuclear Reaction Analysis with stationary 1 mm size deuteron beam: To determine 

He distribution along the depth 

  To determine the helium depth distribution into the sample, nuclear reaction analysis (NRA) 

was done. To carry out NRA with 3He(d, p0)4He nuclear reaction, an energetic deuteron beam 

is bombarded on the sample pre-implanted with helium. As a result of reaction between 

deuteron and helium-3, proton and alpha-particles are produced. If helium is implanted deep 

into the sample, then α-particle gets absorb with in the material and hence the chances of its 

detection are reduced. However, protons are easily detected due to its low mass and carry the 

information on position and quantity of helium. 

  The 3He(d, p0)4He nuclear reaction has a wide resonance centered on Ed = 430 keV. These 

measurements were performed on as-implanted and thermally annealed samples by using the 

2.5 MV Van de Graff accelerators Yvette at JANNUS Laboratory.  

  The deuteron milli-beam of 0.5 mm to 1 mm spot size with beam energy of 1.3 MeV was used 

in order to penetrate the depth of ~ 6.5 µm in sample. The protons produced by various (d, p) 

and (d, ) reactions along with the backscattered deuterons were detected with a surface barrier 

detector located at an angle of 150° with respect to the incident beam. A 29 µm thin mylar 
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(C10H8O4) foil was placed in front of the 1500 µm thick surface barrier detector to stop all the 

backscattered deuterons. The solid angle subtended by the detector was 2.44 msr. The 

configuration of nuclear analysis chamber is shown in figure 5.7.  

  The detected spectrum contains several peaks from various deuteron-induced nuclear reactions 

e.g., 12C(d, p0)13C, 16O(d, p0)17O,  16O(d, p1)17O , 3He(d, p0)4He. The energy of each peak was 

checked by using the PYROLE code [5]. The proton signal from the 3He(d, p0)4He nuclear 

reaction (located at about 13 MeV) gave us the information about the quantity and position of 

helium into the sample.  

 

 

 

Figure 5.7. Configuration of nuclear analysis chamber at JANNUS Laboratory, CEA, Saclay. 

 

  The number of detected protons Np for a profile analyzed with a given deuteron beam (having 

energy E0 and deuteron particle Nd) can be determined from equation [6]: 

                                      Np(E0) = Nd(E0)  ∫
 

ቀௗ (ா೏(௫))
ௗ

ቁ
ஶ
௫ୀ଴ (ݔ) ݀(5.1)                                  ݔ 
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where d(Ed(x))/dΩ is the differential cross section for 3He(d, p)4He reaction at energy Ed, 

which describes the probability of the reaction at this deuteron energy. The deuteron energy 

Ed(x) will be attained at some specific depth in the material which depends on the incident 

deuteron energy (E0) and the rate of energy loss for the deuterons with depth within the material. 

In the above integral, (x) represents the depth distribution of He. The values of the cross 

section as a function of deuteron energy corresponding to our detector solid angle were 

calculated using the data from Bosch & Hale [7]. The cross section of 3He(d, p0)4He nuclear 

reaction versus deuteron energy with the data mentioned in the paper from Bosch & Hale  has 

been plotted in figure 5.8. 

 

 

Figure 5.8. The cross section of 3He(d, p0)4He nuclear reaction [7]. 

 

  The energy of deuteron beam was changed from 1.8 MeV to 0.9 MeV using a step size of 0.1 

MeV (or 0.05 MeV) near the maximum of the reaction yield. This step by step decrease of 

deuteron beam energy, shifts the maximum of cross section of the 3He(d, p)4He reaction towards 

the surface to cover the complete helium distribution. 
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  By plotting the variation of incident deuteron energy versus proton count at each energy, an 

excitation curve is obtained giving us the complete distribution of helium into the sample.  In 

figure 5.9, an example of excitation curve is shown for TiC. 

  Two possible methods are available to analyze the data from NRA and to obtain helium depth 

distribution. We can either analyze the proton spectrum at the deuteron energy corresponding 

to the maximum NRA yield (single deuteron energy method or SDEM) with the SIMNRA 

program [8, 9] or the excitation curve method (ECM) using the AGEING code [10, 11, 12]. We 

have sometimes used both the methods to determine the helium depth distribution. This double 

approach of data processing was carried out due to the complex shape of helium implantation 

profile obtained for some samples. In the next paragraph, we have described both the methods, 

briefly. 

 

 

 
Figure 5.9. Excitation curves (proton yield versus incident deuteron energy) measured for as-
implanted and annealed TiC samples. 
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A. Single deuteron energy spectrum method: SIMNRA 

  The proton energy spectrum obtained were analyzed using SIMNRA simulation code 

developed by Matej Mayer [8]. 

  The SIMNRA procedure consists in fitting the proton spectrum recorded at the energy 

corresponding to the maximum NRA yield in order to minimize the error. In our study, the 

energy spectrum corresponding to 1.3 MeV deuteron energy have been fitted to obtain the 

helium depth profile of as-implanted and annealed samples of TiN, TiC & ZrC. 

  In SIMNRA simulation code, complete experimental configuration including the geometry of 

the experiment, detector energy calibration values, mylar foil thickness, incident beam 

characteristics and nuclear reaction cross section values are given as an input. The sample (in 

our case TiN, TiC & ZrC) can be defined to be constituted of many layers of different thickness. 

Each layer can consist of desired elements in which concentration of each element could be 

entered. For eg., during the simulation of  TiC sample containing helium at 6 µm, sample was 

divided into approximately 15 layers, out of which first 8 layers contained Ti & C to simulate 

first few µm of the sample containing no helium, then step by step in next layers He 

concentration is increased to simulate the helium containing part of the sample. While defining 

the sample configuration, one can also play with the thickness of each layer. 

  We divided the sample into layers having same thickness values calculated by code RESNRA 

(RESolution in NRA) [9]. This code calculates the depth resolution as a function of the distance 

from the surface of the sample. The depth resolution is maximum at the surface of the sample 

which degrades with depth due to incident deuteron beam and proton beam straggling. Then, 

the expected theoretical proton energy spectrum corresponding to initial input condition is 

obtained.   

  This theoretical curve was fit to the proton energy spectrum obtained experimentally at the 

same condition by optimizing the sample configuration in terms of the number and thickness 

of the layers as well as the helium concentration (see figure 5.10). The helium profile was 

obtained as an output. 
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Figure 5.10. Red curve denotes the proton spectrum obtained experimentally by NRA. 
However, blue curve is the theoretical proton spectrum obtained by SIMNRA and has been 
fitted to superimpose on experimental curve to extract the helium depth distribution.  

 

  In most of the cases, the data (helium atomic fraction versus depth) obtained for helium depth 

distribution can be fit to a Gaussian function. However in some case, data can only be fit into 

more than one mathematical function. Therefore for such cases, we assume that the helium 

depth distribution obtained from SIMNRA code results from the contribution of two 

mathematical functions. 

  The accurate decomposition of the helium concentration profile into two components was 

done using the FITYK software [13]. Then, considering that both the mathematical functions 

of helium depth profile may obey the following Gaussian approximation (namely G1 and G2):  

 

                       ௜(ݔ) = ௜ܣ . ݌ݔ݁
ିቈ

൫ೣషೣ೎೔൯
మ

మೞ೔
మ ቉

 with    ∫ ௜(ݔ)݀ݔ = ௜ܣ ௜ݏ. ାஶߨ2√.
଴              (5.2) 

 

where Ai is the amplitude, xci is the centroid, si is the standard deviation, i equals to 1 or 2 for 

G1 or G2 Gaussian contributions respectively. Here, G1 is the Gaussian fit of the helium 

distribution which is present at the end-of-range and G2 is the Gaussian fit of the tail which is 

present near the sample surface (see figure 5.11). 
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 Figure 5.11. Fitting of the implantation profile obtained from SIMNRA by FITYK software 
into two Gaussian (G1 & G2). 

 

  Furthermore, it was possible to evaluate the broadening of the FWHM (FWHM = 2.355 s)  for 

both the Gaussian peak with temperature and the following classical formula already applied 

on a wide range of materials [14–18] was used to find diffusion coefficient values: 

 

                                                  D = (sT
2 –s0

2) / (2t)                                            (5.3) 

 

where D is an apparent diffusion coefficient; sT and s0 are the standard deviation values 

corresponding to each component of the helium profile obtained at annealing temperature T 

and the helium profile of as-implanted sample, respectively; t is the annealing time. The 

evolution of the apparent diffusion coefficient with T can be further interpreted in the frame of 

the classical Arrhenius assumption to derive an average activation energy value (Ea) according 

to: 

                                     D = D0 exp (-Ea / kBT)                                            (5.4) 

 

where D0 is a pre-exponential factor and kB is the Boltzmann constant.  
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B. Excitation curve method: AGEING 

  An alternative to the processing of the spectrum coming from a single deuteron energy 

measurement is to simulate the whole excitation curve by means of the simulation code known 

as AGEING. This code was written by Haussy at CEA-DAM Ile-de-France [10, 11, 12]. It was 

developed in PV-wave (Precision Visuals - Workstation Analysis and Visualization 

Environment)/GUI environment. PV-WAVE is an array-oriented 4GL programming language 

to build and deploy visual data analysis applications. PV-WAVE employs FORTRAN-like 

syntax with a huge collection of software libraries of numerical analysis functionality known 

as IMSL (International Mathematics and Statistics Library).  

  In AGEING-1 version, the experimentally obtained excitation curves were fitted by a model 

where the proton yield Np(E0) at a given incident deuteron energy (E0) is the convolution 

product of the 3He concentration profile (ݔ) with 3He(d, p)4He reaction cross section (E(x)) 

as described by equation 5.1. The hypothesis to neglect the angular dependence at greater value 

of solid angle has been explained by Tesmer et al. [19] and the value of (Nd(E0)) is constant at 

each incident energy. Then, with the assumption of (x) being Gaussian distribution, this code 

tries to search the three parameters (A, xc and s) and optimise their value by an IMSL modified 

Levenberg–Marquardt algorithm (also known as NILNLSQ function) which minimises a 

normalised quadratic error function between the simulated and experimental curves. 

  In order to reduce the high error values, a version AGEING-2 code was built by extending 

AGEING-1 and introducing the new modulus called PDE_MOL. This modulus solves a system 

of partial differential equations. Therefore, the model of helium migration was written by 

Costantini [10, 11, 12], where helium is assumed to have two distinct populations in the form 

of following two differential equations: 

 

  C1/dt = D1.2c1/x2 – v1.c1/x – g12.c1                                             (5.5) 

                      C2/dt = D2.2c2/x2 – v2.c2/x + g12.c1 – F2.c2                               (5.6) 

  These equations describes the different physical mechanisms involved i.e., pure diffusion, 

atomic transport and exchange coupled with boundary conditions.  

  Here, equation 5.5 represents the modified Fick's second law applied to population P1 where 

the concentration (C1) of helium atom could be diffused (with diffusion coefficient D1), 
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transported (with transport velocity v1) and could be de-trapped or leaked to population P2 (with 

de-trapping coefficient g12).  

  Equation 5.6 represents the modified Fick's second law applied to population P2 where the 

concentration (C2) of helium atoms could be diffused (with diffusion coefficient D2), 

transported (with transport velocity v2) and could leak out of the sample (with leakage 

coefficient F2). It should be noted that g12 and F2 coefficients denote the rate of de-trapping and 

rate of leakage having the dimension (time-1).  

  In addition to the Gaussian distribution assumption on the implantation profile, a boundary 

condition C2(0, t) = 0 at the sample surface was applied meaning that helium can never 

accumulate at the sample surface. 

  However, it should be mentioned that population P1 cannot go out of the sample directly. It 

first goes to population P2 (having magnitude g12 per unit time) and finally leaves the sample 

through its surface (having magnitude F2 per unit time). The coefficient g12 is kept constant with 

time, until the maximum de-trapped helium fraction (1-TP1) is reached and finally the helium 

content in the population P1 becomes zero. Here, TP1 denotes the population P1 which is 

trapped. This model thus consists in fitting seven free parameters (D1, v1, g12, D2, v2, F2, TP1) 

using a trial-and-error method, based on the minimization of the same NLINSQ error function 

between the experimental and calculated excitation curves. The quality of the fitted parameters 

is always estimated by the minimum error value. 

 

5.3.2. Nuclear reaction analysis with the scanning of 1 µm size deuteron beam: To know 

the helium distribution in lateral  directions. 

  NRA µ-analysis was performed at nuclear microprobe of the LEEL at CEA Saclay using the 
3He(d, p0)4He nuclear reaction [20]. The principal of NRA with µ-beam is similar to that of 

NRA with milli-beam. The difference lies in the sizes of deuteron beam which are 1 µm and 1 

mm for NRA with µ-beam & NRA with milli-beam, respectively. The other important 

difference is that for µ-beam NRA, deuteron beam is scanned on the surface of the sample, 

however, for for milli-beam NRA, deuteron beam is kept stationary on the sample surface.  

  When the size of deuteron beam is 1mm and with energy (for e.g. ED = 3 MeV in our case), 

the information in terms of proton counts comes from the interaction with helium present (6.5 
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µm deep in our case) in the sample area of ~ 1mm. It is important to note that, 1mm of sample 

area has ~100 grains (if the size of each grain in the sample is considered to be 10 µm). 

Therefore, 1 mm deuteron beam size gives an idea about the average quantity of helium present 

in approximately 100 grains. And finally, this large statistics in terms of large number of proton 

counts (coming from interaction of 1mm beam size) allows us to derive helium depth 

distribution. 

  Whereas, when the size of deuteron beam is reduced to 1 µm, and this beam is scanned on the 

surface of the sample. Then, it is possible to separate the information coming from the grains 

and the information coming from the grain boundary. And finally, it is possible to conclude that 

whether more helium is trapped in grain interior or in grain boundary and also it is possible to 

know if the helium distribution within the grain is heterogeneous or homogeneous. Figure 

(5.12a & 5.12b) shows the spatial distribution of carbon and helium in non-annealed samples. 

The color scale starts with white for the lowest counting rate and ends with green for the highest. 

Figure 5.12a exhibits the distribution of carbon in TiC with a homogeneous yellow color while 

Figure 5.12b clearly shows the heterogeneous 3-D helium distribution, i.e. the colour scale now 

extends from blue to yellow. 

  The beam was normal to the sample surface and proton detection was performed at 170 ° using 

an annular 1500 µm thick surface barrier silicon detector. The detector solid angle measured 

with reference samples was (120 ± 10) msr. Backscattered deuterons were stopped using a 23 

µm thick mylar foil in front of the active surface. Samples were imaged by the scanning of 

(~1x1) µm2 beam on (~50 x 50) µm2 area in order to get helium spatial distributions. The energy 

of incident deuteron beam was 1.3 MeV. 
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Figure 5.12a. NRA cartography to show carbon lateral distributions by rastering the beam 
over a 50 x 50 µm2 surface area of TiC sample. This cartography shows the homogeneous 
distribution of carbon within the grains and on the grain boundaries. 

 

 

Figure 5.12b. NRA cartography to show helium lateral distributions by rastering the beam over 
a 50 x 50 µm2 surface area of TiC sample implanted with 3 MeV 3He ions. This cartography 
shows the heterogeneous distribution within the grains. 
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5.3.3. Transmission Electron Microscopy (TEM)  

  The cross-sectional TEM specimens were prepared using focused ion beam micro machining 

(FIB) for implanted and annealed samples. The FIB used a focused ion beam for controlled 

removal of material by sputtering using Ga+ ions. The specimens were investigated in Philips 

CM-20 microscope operated at 200 keV. The main TEM techniques employed were phase 

contrast for identification of small bubbles. Average bubble radii rB were determined by 

counting more than 100 bubbles at least three times in three different areas of the zone under 

analysis. Foil thicknesses needed for volume bubble density measurement were determined by 

contamination spot separation method [21]. 

 

5.3.4. X-ray diffraction 

  X-ray diffraction is a common technique for the study of crystal structures and atomic spacing. 

X-ray diffraction is based on constructive interference of monochromatic X-rays diffracted 

from a crystalline sample. These X-rays are generated by a cathode ray tube, filtered to produce 

monochromatic radiation, collimated to concentrate, and directed toward the sample. The 

interaction of the incident rays with the sample produces constructive interference of diffracted 

rays when conditions satisfy Bragg's Law (nλ=2d sin θ).  

  This law relates the wavelength (λ) of electromagnetic radiation to the diffraction angle (θ) 

and the lattice spacing (d) in a crystalline sample. These diffracted X-rays are then detected, 

processed and counted. By scanning the sample through a range of 2θ angles, all possible 

diffraction directions of the lattice should be attained due to the random orientation of the 

material. Conversion of the diffraction peaks to d-spacings allows identification of the material 

because each material has a set of unique d-spacings. Typically, this is achieved by comparison 

of d-spacing’s with standard reference patterns. 

  All diffraction methods are based on generation of X-rays in an X-ray tube. These X-rays are 

directed at the sample, and the diffracted rays are collected. A key component of all diffraction 

is the angle between the incident and diffracted rays. 

  X-ray diffraction was done using Philips X’Pert Pro Material research diffractometer equipped 

with copper anti-cathode (8.04 keV and 1.54 Å). More details on the general use of 

diffractometer and principal of X-ray diffraction can be found in the literature [22, 23]. 
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  In our study, only the sample implanted with self-ions (for second set of experiments) are 

studied by using X-ray diffraction. The lattice swelling was calculated for TiC, TiN and ZrC. 

More details on the use of X-ray diffraction to calculate lattice swelling in nuclear materials 

can also be found in the literature [24]. Figure 5.12 shows an example for non-damaged and 

damaged TiC (with only two peaks). The peak position of the sample damaged at 9 dpa is little 

shifted towards left. To satisfy the condition of Bragg’s law (nλ=2d sin θ) for constructive 

interference, normally if the value of θ decreases, the value of d increases. So already, the shift 

in the peak position of damaged sample towards ‘lower value of θ’ indicates lattice expansion. 

However, precise information on lattice expansion can be calculated by using mathematical 

formulas. 

  The information on the lattice parameter for damage and non-damage sample can be found 

from equation 5.7. 

                                   ݀௛௞௟ = ቂ ଵ
௔మ

 (ℎଶ + ݇ଶ + ݈ଶ)ቃ
ିଵ/ଶ

                                   (5.7) 

 
             where h, k, l are the miller indices, a is the lattice parameter.  
 

  The value of d is calculated by Bragg’s law by putting the value of θ from peak position. And 

after putting the values of h, k, l from literature and calculated d, the values of ‘a’ (lattice 

parameter) could be found. And by comparing the lattice parameter value for damaged and non-

damaged sample the value of lattice expansion could be found. 
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5.3.5. Nano-indentation 

  Nano-indentation is a powerful technique used for assessing mechanical properties at 

nano/micro-scale. It is used for obtaining material parameters like elastic modulus, hardness, 

plastic or viscous parameters from experimental readings of indenter load and depth of 

penetration.  

  In nano-indentation, an indenter tip, normal to the sample surface, is driven into the sample 

by applying an increasing load up to some preset value. The load is then gradually decreased 

until partial or complete relaxation of the material occurs. We have used three-sided pyramid 

shaped indenter known as Berkovich at SRMP, CEA Saclay to measure the evolution of 

hardness after damaging the samples by ion-implantation. Forces involved are usually in the 

milli or micronewton range and the depth in the order of nanometers. 

Hardness is defined as the mean contact pressure at the maximum load: 

                                                         H = Pmax/A 

  During our experiments, we have repeated the loading many times on one sample to obtain 

the highest precision possible for hardness measurement. 

 

5.3.6. Scanning Electron Microscopy (SEM) and Electron Microprobe 

  The use of scanning electron microscope (Gemini LEO1525 the FEG) at SRMP, CEA-Saclay 

allowed us to know the information about the sample’s surface and composition. The sample’s 

surfaces before and after irradiation and also,  before and after thermal annealing were analyzed 

using SEM. Along with this, the use of Castaing microprobe (CAMECA SX50) identified the 

chemical elements present in the material and their distribution at the micron scale.  

 

5.3.7. Raman Spectroscopy  

  The recently installed micro-Raman spectrometer at JANNUS-Saclay is a Renishaw In Via 

spectrometer coupled with an Olympus microscope containing an x-y-z stage. During 

experiments by Raman spectrometry, the 532 nm line of a frequency-doubled Nd-YAG laser 

was focused on a 1 µm2 spot and collected through a 100X objective. 
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The virgin TiN, TiC and ZrC were passed under Raman spectroscope to get information on 

their stoichiometry. And also, damaged and annealed samples were passed under Raman 

spectroscope to know increase or decrease in the concentration of vacancies.  
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Chapter 6 

Helium behavior under thermal environment 

 

  In this chapter, important findings on ‘helium behavior in transition metal ceramics under 

thermal environment’ would be presented and discussed. It is important to mention that, due to 

differences in the microstructural properties of TiC, TiN and ZrC in terms of grain size, porosity 

and stoichiometry, results are presented and discussed separately for three materials in three 

different sections. 

 

Part 1 

6.1. Helium behavior under thermal environment in TiC 

  Before presenting and discussing results for helium behavior under thermal environment in 

TiC, we have given a quick reminder of experimental approach. The results shown in this 

section of the chapter have already been published. This paper can be obtained from the citation 

given below:     

Diffusion and retention of helium in titanium carbide S. Agarwal, P. Trocellier, S. 

Vaubaillon, S. Miro, Journal of Nuclear Materials 448 (2014) 144–152. 

                                    

6.1.1. Reminder of experimental approach 

                                                                                                                                                                     

 

 

 

 

        He implantation in TiC                     
(3 MeV, 5E16 at. /cm2, Rp = 6.78 µm) 

     Thermal annealing         
(1000 °C, 1100 °C, 1400 
°C, 1500 °C, 1600 °C, 2 h)                        

 NRA  



132 
 

6.1.2. Results and Discussion   

  After helium implantation and annealing at 5 different temperatures, NRA experiments were 

conducted on as-implanted and annealed samples to determine the position and quantity of 

helium into the sample. The deuteron milli-beam of 0.5 mm to 1 mm spot size with beam energy 

of 1300 keV was used in order to penetrate to a depth of 6.78 µm in the sample. The protons 

produced by various (d, p) and (d, ) reactions along with the backscattered deuterons were 

detected. 

  The detected spectrum (see figure 6.1a) contains several peaks from various deuteron-induced 

nuclear reactions e.g., 12C(d, p0)13C, 3He(d, p0)4He.  Please refer to section 5.3.1 for details on 

NRA. 

 

Figure 6.1a. The raw proton energy spectrum obtained with 1.3 MeV deuteron energy for as-

implanted TiC sample. 

 

  By plotting the variation of incident deuteron energy versus proton count at each energy, an 

excitation curve is obtained for TiC (see figure 6.1b). 
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Figure 6.1b. Excitation curves (proton yield versus incident deuteron energy) measured for as-

implanted and annealed TiC samples. 

 

A. Helium release 
 

  For annealing temperature up to 1100 °C (see figure 6.1b) excitation curves are about the same 

within the experimental errors given by ඥ ௣ܰ (ܧ଴)  (where Np(E0) is the proton yield at energy 

E0). For annealing temperatures higher than 1100 °C, a decrease in proton yield was observed. 

The proton yield decreases with increasing annealing temperature from 1100 °C to 1600 °C. 

The direct comparison of the total area under the excitation curve obtained for the as-implanted 

and the annealed samples allowed us to evaluate the helium loss fraction and to describe its 

evolution with temperature.  

  As suggested by Costantini et al. in his study on helium behavior in yttria-stabilized-zirconia 

[1], we have assumed the helium release may obey 1st order kinetics law (see figure 6.2). The 

decrease in the rate of helium concentration (C) in the sample is given by the following 

equation:  
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                                     dC(He)/dt = - C(He) 0 exp (- H / kB T)                                      (6.1)

     

where 0 is the classical frequency factor, H is the activation energy for helium release and kB 

is the Boltzmann constant.  For a given annealing time ta and temperature T, the integration of 

the above equation gives the value of helium lost fraction (f) [1]: 

 

                        f = C0(He) – CT(He) = 1 – exp [-  exp (-H / kB T)]                                   (6.2) 

 

where  is the pre-exponential factor which is equal to 0.ta. The helium lost fraction according 

to equation 6.2 was fitted by adjusting two parameters  and ΔH and the optimized values 

obtained for these parameters were 74.58 and 0.89  0.09 eV, respectively. This value of 

activation energy for helium release is in good agreement with other materials like binary or 

complex oxides, minerals and metals [2,3,4,5,6,7,8].       
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Figure 6.2. Helium lost fraction as a function of temperature fitted according to first order 
kinetics law in order to calculate activation energy for He release [1]. 
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  The excitation curve obtained for TiC annealed at 1600 °C (see figure 6.1b) exhibits a shift in 

the position of its maximum from 1300 keV to 1400 keV. Complementary NRA measurements 

were carried out at Ed = 1.8 MeV corresponding to the maximum cross section value for 16O(d, 

po)17O reaction. Figure 6.3a displays the part of the spectrum coming from this reaction. The 

increase of the signal observed for the 1600 °C annealed sample indicates the sudden growth 

of a titanium oxide layer at the surface of TiC. The 100 keV energy shift of the maximum of the 

excitation curve results from the additional energy loss that incident deuterons encounter for 

the sample annealed at 1600 °C. Using the Pyrole code [9], we can derive the thickness of the 

titanium oxide layer grown at the surface of the 1600°C annealed sample which is about 1 µm. 

  The presence of TiO2 has been confirmed by using Raman spectroscopy technique and 

scanning electron microscope (see figures 6.3b and 6.3c). Figure 6.3b clearly shows the 

presence of two very intense Raman bands located at 445 cm-1 and 610 cm-1 which are 

representative of the rutile phase of titanium oxide [10]. Figure 6.3c displays the picture taken 

by scanning electron microscope to show the crystals of TiO2 formed at the surface of TiC 

sample annealed at 1600 °C.  

 

Figure 6.3a. NRA spectrum showing 16O(d, po)17O peak corresponding to Ed = 1.8 MeV to 
confirm the sudden oxidation at the surface of TiC sample annealed at 1600 °C. 

 

60 65 70 75 80 85 90 95 100

200

400

600

800

1000

1200

 

 

C
ou

nt
s

Channel

 TiC 1600 °C
 TiC 1500 °C
 TiC 1100 °C
 TiC 1000 °C
 TiC As-implanted



136 
 

 

Figure 6.3b. Spectrum from Raman spectroscopy for TiC annealed at 1600 °C in order to 
confirm the formation of TiO2 at the surface. 

  

 

 

Figure 6.3c. Picture from scanning electron microscopy to confirm the formation of TiO2 crystal 
at the surface of TiC annealed at 1600 °C. Inset in the picture presents the magnification of TiO2 
crystal. 
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Figure 6.4. SRIM calculations and corresponding displacement per atom (or vacancy 
concentration per He atom taking a displacement threshold energy of Ti = 50 eV, C = 30 eV) 
of the implantation profile of 3 MeV 3He ions implanted at fluence 5 x 1016 at cm-2 at room 
temperature in TiC. Comparison with experimentally obtained He profile obtained at Ed =1.3 
MeV from SIMNRA.   

                         

B. He distribution in as-implanted sample 

                                                                                            

  The maximum helium concentration [He]max in as-implanted TiC sample is about 1.8 at% at 

the depth of 6.78 µm calculated by SRIM [11]. This theoretical helium distribution and vacancy 

defects created by helium ion implantation (calculated by SRIM software) along with the 

experimental helium distribution obtained from SIMNRA are shown in figure 6.4.   

  For the as-implanted sample, the area under the helium depth profile obtained experimentally 

is equal to the area under the theoretical helium depth profile obtained from SRIM. However, 

their shape and position depicts significant differences. 

  The experimentally obtained helium distribution profile in as–implanted sample exhibits a 

significant broadening and a shift towards the surface, meaning that the distribution could be 

affected by the backscattering of light elements at high energy. Hofker et al. showed clearly the 
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deviation from Gaussian-shaped implantation profile of boron implanted into amorphous 

silicon at 30 keV to Pearson-shaped distribution at 800 keV [12]. However, similar helium 

implantation profiles were obtained by Garcia et al. [13] and Martin et al. [14] in polycrystalline 

uranium dioxide where they explained the role of grain boundaries as effective short circuits 

for helium release and movement at all temperatures. 

   The grain diameter of polycrystalline uranium dioxide investigated by Garcia is of the same 

order of magnitude (6-9 µm) as for the TiC samples studied here. Garcia showed the comparison 

of SEM and micro-NRA cartographies to demonstrate the heterogeneous helium distribution at 

the sample surface and preferential helium release from areas around the grain boundaries. For 

this purpose, we decided to follow a similar approach and performed micro-NRA cartography. 

NRA µ-analysis was performed at nuclear microprobe of the LEEL at CEA Saclay using the 
3He(d, p0)4He nuclear reaction [15]. The size and energy of incident deuteron beam were (~1x1) 

µm2 and 1.3 MeV respectively. Non-annealed samples were imaged by their electrostatic beam 

scanning on (~50x50) µm2 area in order to get helium spatial distributions. Figure (6.5a and 

6.5b) shows the spatial distribution of carbon and helium in non-annealed samples. The colour 

scale starts with white for the lowest counting rate and ends with green for the highest. Figure 

6.5a exhibits the distribution of carbon in TiC with a homogeneous yellow colour while Figure 

6.5b clearly shows the heterogeneous 3-D helium distribution, i.e. the colour scale now extends 

from blue to yellow. This heterogeneity seems to occur in the vicinity of grain boundaries and 

also in the interior of the grains due to the presence of porosity. 

                                                       

 

Figure 6.5 (a & b). NRA cartography to show carbon lateral distributions and helium 
distribution respectively, by rastering the beam over a 50 x 50 µm2 surface area of as-implanted 
TiC. 

Figure 6.5a Figure 6.5b 



139 
 

  Recently, Lefaix-Jeuland et al. explained the effect of grain microstructure on thermal helium 

desorption from pure iron [16]. They attributed the thermal shift and the higher desorption at 

low temperature to the higher density of grain boundaries present in the fine microstructure 2 

µm grain size in comparison with the sample having a larger grain size (40 to 100 µm). The 

large number of grain boundaries acts as short-circuit for the migration of helium. It appears 

that perhaps, the tail towards the surface obtained in as-implanted helium profile seems to arise 

from the motion of helium towards the surface due to short diffusion paths created by grain 

boundaries along with contribution from backscattering of helium ions during implantation. 

However, role of native vacancies due to sub-stoichiometric TiCx (x = 0.96) is still unknown.  

  Also, figure 6.4 demonstrates that the position of the vacancy peak (displacement per atom) 

created by implanted helium ions does not lie over the position of experimentally obtained He 

profiles from SIMNRA. Therefore, it may suggest that helium is not trapped by the vacancies 

created during He implantation.   

 

C. Results from SIMNRA code 

  Due to the presence of large tail towards surface for helium implantation profile, the as-

implanted helium depth distributions obtained from SIMNRA code corresponding to Ed = 1.3 

MeV have been fitted by FITYK code into two Gaussians distributions (named as G1 and G2). 

For details on fitting, please refer to figure 5.11. Similar decomposition of helium profiles 

obtained at higher temperature was carried out. The characteristic parameters of the Gaussian 

distributions (G1 & G2) for the helium depth distribution at different annealing temperatures 

have been summarized in table 6.1. The profiles fitted at temperature 1000 °C show the 

redistribution of helium atoms into the sample, for example the decrease in total area under G1 

Gaussian curve at 1000 °C has been compensated by the increase in area under G2 Gaussian 

curve (see red curve in figure 6.6a), thus the sum of total area under two Gaussian curve (G1 + 

G2) remains equal to total area (G1 + G2) for as-implanted profile. The same phenomenon has 

been also observed at 1100 °C (see green curve in figure 6.6a), where 3He atoms from main 

peak (G1) moves to the tail towards the surface (with no release of helium from the surface) 

and perhaps at temperature higher than 1100 °C helium atoms follow the same path and finally 

are released from the surface of the sample.  
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Figure 6.6a. Fitting of the He depth profiles obtained from SIMNRA by FYTIK software into 
two Gaussians (G1 & G2) up to 1100 °C. These profiles have been obtained corresponding to 
Ed = 1.3 MeV. 

 

 
 

 
 
Figure 6.6b. Fitting of the He depth profiles obtained from SIMNRA by FYTIK software into 
two Gaussians (G1 & G2) above 1100 °C. These profiles have been obtained corresponding 
to Ed = 1.3 MeV. 
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Table 6.1. Summary of the characteristic parameters of the Gaussian distributions (G1 & G2) 
for the helium depth distribution at different annealing temperatures (for 2 hours) obtained 
from SIMNRA code and fitted by FYTIK code. 

 

 
  At temperature higher than 1100 °C, helium undergoes a thermal diffusion and release in TiC. 

Helium depth profiles at higher temperature have been plotted in figure 6.6b. Helium profile 

obtained at 1600 °C was shifted 1 µm towards the sample surface due to oxidation of sample 

(see section 6.1.2). It is important to mention that figure 6.6b presents the corrected helium 

profile for 1600 °C. 

  Helium diffusion coefficient values for G1 population have been calculated by using classical 

Fick’s law (see equation 5.3) which are presented in table 6.2 and plotted in figure 6.7. Over 

the temperature range 1100 °C -1600 °C, the diffusion coefficient data for TiC exhibits a linear 

Arrhenius behaviour. This linear dependence gives an activation energy of 2.50 ± 0.25 eV for 

helium diffusion (see figure 6.7). 

  It seems difficult to imagine that helium has out-gassed directly from Gaussian curve G1. 

Instead it went out through the Gaussian curve G2. At temperature above 1100 °C, it was not 

possible to estimate the decrease in area under G2 indicating helium release. Apart from helium 

release, the area under G2 also depends on the addition of area under the curve due to incoming 

helium atoms from G1 and further depends on either the fraction of these atoms would be 

trapped into G2 or released from G2. Therefore, it was difficult to calculate diffusion coefficient 

values and other migration parameters for G2 and, if calculated, these values show large 

incertitude. 

 

TiC 
(Annealin
g Temp.) 

A                                       
( He at. fraction) 

xc (µm) s (µm) A                                 
(He at. fraction) 

xc (µm) s (µm) 

 G1 G2 
As 

implanted 
0.0038±0.0001 6.05±0.6 0.54±0.02 0.0004±0.00004 4.50±0.4 1.13±0.1 

1000 °C 0.0037±0.0001 6.22±0.6 0.53±0.02 0.0006±0.00006 4.96±0.4 1.15±0.1 
1100 °C 0.0036±0.0001 6.16±0.6 0.44±0.02 0.0009±0.00009 5.51±0.5 1.02±0.1 
1400 °C 0.0031±0.0001 6.12±0.6 0.50±0.02 0.0007±0.00007 5.45±0.5 1.21±0.1 
1500 °C 0.0018±0.00005 6.03±0.6 0.73±0.02 0.0005±0.00005 5.17±0.5 1.36±0.1 
1600 °C 0.0014±0.00005 6.06±0.6 0.75±0.02 0.0002±0.00005 5.33±0.5 1.52±0.1 
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Figure 6.7. Effective diffusion coefficient variation versus temperature in TiC showing 
Arrhenius behavior. 

 

D. Results from AGEING code 

 

  The error values obtained by using AGEING2 code are < (3)%. Figure 6.8 shows an example 

the fitting of the excitation curve for TiC annealed at 1600 °C using AGEING2 code. Figure 

6.9 shows the helium profile obtained by the AGEING2 code. The shapes closed to pseudo-

Voigt function have been obtained for samples annealed at temperature up to 1500 °C. This 

shape represents the two populations of helium in the sample. The population P1 is represented 

by the concentration of helium present under the main peak, population P1 corresponds to G1 

population in figure 6.6a & figure 6.6b. Whereas population P2 is represented by the 

concentration of helium present under the two tails, population P2 corresponds to G2 population 

in figure 6.6a & figure 6.6b. The enlargement of tails in the profile at 1000 °C and further at 

1100 °C clearly shows an agreement with the result obtained from section 6.1.2A and 6.1.2B, 

which indicates the redistribution of He into the sample up to 1100 °C. At 1500 °C, there is 

almost a Gaussian shape and further at 1600 °C, the tails seems to have completely disappeared 

indicating the presence of only one population P1. The position of helium depth profile at 1600 

°C is shifted towards the right due to the formation of TiO2 at the surface as described before. 

The values of all migration parameters obtained are shown in table 6.2a and 6.2b. The values 

of diffusion coefficient for population P2 is higher as compared to population P1. Also, the 
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population P2 completely disappears at 1600 °C. Further development of the differential 

equation system would be necessary in order to represent more closely the experimental profile. 

 

 

 

Figure 6.8. An example of the fitting of the excitation curve for TiC annealed at 1600 °C using 
AGEING2 code. 

 

 

Figure 6.9. He depth profile obtained by AGEING code. 
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* For sample annealed at 1400 °C, NRA to plot excitation curve was not done, only one proton energy spectrum corresponding 
to Ed =1300 keV was taken to derive the values of  migration parameters using SIMNRA code.  
 
**Values of diffusion coefficient derived at 1600 °C using ageing code have large uncertainty due to sudden oxidation of 
sample. 
 
Table 6.2a. Effective diffusion coefficients for 3He in TiC derived from SIMNRA code as well 
as from AGEING code. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Values of migration parameters derived at 1600 °C using ageing code have large uncertainty due to sudden oxidation of 
sample. 
 
Table 6.2b. Other 3He diffusion parameters in TiC polycrystal annealed at different 
temperatures (for 2 hours) obtained by using AGEING code. 
 

   

6.1.3. General Discussion 

 

  The presence of a very low density (~ 1 %) of intragranular porosity in the samples indicates 

that the connecting channels (able to accelerate the gas release) formed from combinations of 

pores towards the surface are absent. After annealing up to 1400 °C, no cracks or exfoliation 

on the surface have been observed but segregation of impurities at the grain boundaries is found. 

X-ray diffraction studies (not displayed here) show the polycrystalline structure of TiC is 

randomly oriented indicating that no specific crystallographic orientation is responsible for He 

Temperature (°C) Effective diffusion 
coefficient for G1 
derived from SIMNRA 
(m2 s-1) 

Effective diffusion 
coefficient (D1) derived 
from AGEING (m2 s-1) 

Effective diffusion 
coefficient (D2) derived 
from AGEING (m2 s-1) 

1400* (4.20 ±0.4) x 10-18   
1500 (2.39 ±0.2) x 10-17 (2.8±0.2) x 10-17 (2.8±0.2) x 10-14 
1600** (2.59±0.2) x 10-17 (2.19±0.2) x 10-17 (2.49±0.2) x 10-14 

 
 

T (°C) v1 (µm/h) TP1  g12 
(h-1) 

v2 (µm/h) Error (%) 

1000 0.02 1 51.24 0.90 2.87 
1100 0.02 1 52.01 0.90 1.35 
1500 0.02 0.82 50 1.79 2.25 

1600* 0.02 0.78 50.65 1 0.76 
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migration. Nevertheless, peak area measurement in annealed samples indicates that 37% of the 

total quantity of implanted helium has been released at 1600 °C. 

  Helium diffusion in He-ion implanted materials at high temperature takes place either through 

a substitutional mechanism involving vacancy-assisted diffusion or a dissociative mechanism 

involving (Hen-Vm) clusters in which He atoms are trapped. These clusters can act as nucleation 

centres for gas bubbles at large helium concentration (several tenths of atomic %). [17]. Hojou 

showed the presence of bubbles in TiC at the fluence of 5 x 1016 at/cm2 at room temperature 

[18]. This suggests the presence of stable (Hen-Vm) clusters or bubbles in our sample. 

  Due to mixed bonding characteristics of TiC, we have compared our results to both metallic 

and ceramic systems having a face centered cubic (fcc) crystal structure and finally results are 

compared with other materials. 

  For metallic systems, the presence of more than one population in the helium implanted 

samples has also been observed by Baskes and co-authors [19]. They calculated that the main 

defect after helium implantation at room temperature in copper was He6V with a slight presence 

of He5V and He4V. After annealing at higher temperature, the He6V clusters broke into He2V 

and He3V clusters with release of helium atoms outside the sample. Further high temperature 

annealing was required to break stable He2V and He3V clusters. 

  For ceramic systems, Busker and co-workers [20] calculated vacancy cluster formation 

energies and dissociation energies of clusters with helium in magnesium oxide (MgO). They 

showed that activation energies for dissociation of one helium atom from helium-filled vacancy 

depend on the helium-to-vacancy ratio (n/m) of clusters. The activation energy decreases with 

the increase in ratio. Therefore, less energy was required to dissociate clusters having high 

helium-to-vacancy ratio (n/m) than the small clusters having low helium-to-vacancy ratio. 

  These results provide a clear understanding of the origin and nature of the double-peak depth 

profile we can observe in fig. (6.6a, 6.6b, and 6.9). Hereafter, separate discussion is done on 

two populations:  

  Our measurement show that, as the higher annealing temperatures (above 1100 °C) are 

reached, helium is de-trapped preferentially from the deeper part of the profile which apparently 

bind helium less strongly at the higher temperatures than do the finer scale of small clusters 

closer to the surface. This process of higher de-trapping from G1 population is observed up to 

1500 °C. Up to 1500 °C, it appears that all the unstable large clusters (high helium to vacancy 
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cluster ratio) present in deeper part of the profile may dissociate into stable small clusters (low 

helium to vacancy cluster ratio) and release helium atoms. At 1600 °C, the release of helium 

atoms through de-trapping process continues in G1 but still a large amount of helium atoms 

remain trapped and thus a higher annealing temperature is required to release all helium atoms.  

  Until 1100°C, it should be noted that almost no helium release is observed for G2 whereas 

there is an addition of helium atoms from G1 population (see figure 6.6a). At 1500°C, the G2 

curve becomes wider with almost no change in the area under curve (see figure 6.6b). The 

similar behavior is also shown in figure 6.9 by AGEING code, where the area under tails 

exhibits very less change. At 1600 °C, we observed the complete disappearance of helium atoms 

from the profile present close to the surface. The higher value of D2 parameter than D1 

parameter and high drift velocity (1.79 µm/h) for D2 population indicates that the population 

present close to the surface would gradually out-gas from the sample through diffusion process 

rather than dissociation of clusters. The increase in helium drift velocity at higher temperature 

could be due to the annealing of the pre-existing defects such as dislocation lines. This 

disappearance of dislocation lines has been already observed in TiN [21]. To be discussed in 

the next chapter. In TEM investigation of TiN (3 MeV, 3He implanted and post annealed at 

temperature ≥ 1400 °C ), dislocation lines vanished whereas they were clearly visible at lower 

temperature. This decrease in density of trapping sites perhaps contributes to the increase in 

drift velocity and further to helium release in TiC. 

  Blewer and co-author also observed the double-peak helium depth profile in vanadium [22]. 

After annealing the samples at higher temperature, the peak with greater trapping efficiency 

corresponds to the small clusters whereas the peak from which maximum helium has released 

corresponds to the presence of the large clusters. Recent computational studies on (Hen-Vm) 

clusters in iron also showed that the He binding energy to the cluster is a decreasing function 

of the n/m ratio [23]. The value of binding energy, 5.25 eV for n = 0 changes to 1eV, for n/m 

>6 whereas vacancy binding increases with increase of n/m ratio. When clusters have high n/m 

ratio, it favours thermal emission of He atoms from clusters, whereas vacancies become more 

strongly trapped perhaps leading to the formation of highly stable bubbles and further 

decreasing n/m ratio.  

  Similar observation about low dissociation energy of helium atoms from clusters with high 

n/m ratio and stability of low n/m ratio clusters have been given by many authors in different 

materials including both fcc and bcc crystal structure. Ao and co-workers showed the same 
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phenomenon in aluminum [24], Wang and co-authors in titanium [25], Zhang and co-authors 

in vanadium [26]. The same phenomenon is expected to rule in our case, as to best of our 

knowledge no simulation or experimental study of helium migration in TiC has been done in 

the past. 

  Careful TEM investigations would clearly help us to decide the nature of helium association 

with defects in the two types of population. 

 

6.1.4. Conclusion 

 

  Helium diffusion in TiC was studied with nuclear reaction analysis using 3He(d, p0)4He 

nuclear reaction. Polished slabs of TiC were implanted with 3 MeV 3He at a dose of 5 x 1020 

3He/m2 and annealed over the temperature range 1000-1600 °C for 2 hours under low 

pressurized argon atmosphere. It is important to note that the diffusion coefficient determination 

for 3He could be easily extended to know the value of the diffusion coefficient for 4He [27,28]. 

The conventional assumption is to consider the square root of the isotope mass ratio to deduce 

the respective diffusion coefficients (D4He/D3He = √(m3He/m4He) = 0.868). 

The main conclusions are summarized as follows: 

1. Activation energy of He release is around ~0.89 eV whereas apparent value of activation 

energy for He diffusion is around ~2.50 eV. Dissociative mechanism is supposed. 

2. The helium implantation profile appears to be a non-Gaussian distribution.  Therefore, 

the presence of two populations of helium is assumed. One population is present close 

to the surface in the form of stable clusters (with low He-to-vacancy ratio), whereas the 

other population is present deeper into the sample and contributes mainly to the total 

helium present in the sample, which has less stable clusters (with high He-to-vacancy 

ratio), and hence dissociates at higher annealing temperatures to release helium atoms. 

The diffusion coefficient value for this population varies from 4.20 x 10-18 to 2.59 x 10-

17 m2s-1 and zero drift velocity towards the sample surface. The population present close 

to the surface has diffusion coefficient values around 2.48 x 10-14 m2s-1 and drift velocity 

varies from 0.90 µm/h to 1.79 µm/h towards the sample surface. 

3. The values of diffusion coefficients and other migration parameters derived using the 

two codes are in good agreement. 
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4. The presence of grain boundaries seems to affect largely the He-ion implantation 

profile, diffusion coefficient values and other migration parameters. 

  Data analysis by both AGEING and SIMNRA codes gives almost the same values for the 

diffusion coefficient. This double data processing method allows the description of the whole 

extent of the helium depth profile if a tailing phenomenon. Both the simulation shows the 

presence of two populations for He atoms. For oxidized samples, large incertitude in the 

migration parameters has been observed using both codes. 

 

References 

 

[1] J-M. Costantini, J-J. Grob, J. Haussy, P. Trocellier, Ph. Trouslard, J. Nucl. Mater. 321 (2003) 
281-287. 

[2] S. Miro, J-M. Costantini, J. Haussy, L. Beck, S. Vaubaillon, S. Pellegrino, C. Meis, J-J. 
Grob, Y. Zhang, W.J. Weber, J. Nucl. Mater. 415 (2011) 5-12. 

[3] D.J. Cherniak, E.B. Watson, Chem. Geol. 288 (2011) 149-161. 

[4] E. Oliviero, A. Van Veen, A.V. Fedorov, M-F. Beaufort, J-F. Barbot, Nucl. Instrum. Meth. 
Phys. Res. B186 (2002) 223-228. 

[5] Y. Pramono, K. Sasaki, T. Yano, J. Nucl. Sci. Technol. 41 (2004) 751-755. 

[6] Y. Pramono, T. Yano, J. Nucl. Mater. 329-333 (2004) 1170-1174. 

[7] D. J. Cherniak, E. B. Watson, J. B. Thomas, Chem. Geol. 268 (2009) 155-166. 

[8] D. J. Cherniak, E. B. Watson, Geochimica and Cosmochimica Acta.74 (2010) Supplement 
A173. 

 [9] P. Trouslard, Rapport CEA-R-5703, 1995. 

[10] U. Balachandran, N. G. Eror, J. Solid State Chem. 42 (1982) 276. 

[11] J. F. Ziegler, http://srim.org/SRIM/SRIM2011.htm. 

[12] W. K. Hofker, H. W. Werner, D. P. Oosthoek, H. A. M. de Grefte, Appl. Phys. 2. 265-278 
(1973). 

[13] P. Garcia, G. Martin, P. Desgardin, G. Carlot, T. Sauvage, C. Sabathier, E. Castellier, H. 
Khodja, M.-F. Barthe, J. Nucl. Mater. 430 (2012) 156-165. 

[14] G. Martin, P. Desgardin, T. Sauvage, P. Garcia, G. Carlot, H. Khodja, M. F. Barthe, , Nucl. 
Instrum. Meth. Phys. Res B 249 (2006) 509-512. 

http://srim.org/SRIM/SRIM2011.htm.


149 
 

[15] H. Khodja, E. Berthoumieux, L. Daudin, J-P Gallien, Nucl. Instrum. Meth. Phys. Res B 
181 (2001) 83 -86. 

[16] H. Lefaix-Jeuland, S. Moll, T. Jourdan, F. Legendre, J. Nucl. Mater. 434 (2013) 152-157 

[17] H. Trinkaus, B.N. Singh, J. Nucl. Mater. 323 (2003) 229 - 242. 

[18] K. Hojou, H. Otsu, S. Furuno, K. Izui, T. Tsukamoto, J. Nucl. Mater. 212-215 (1994) 281-
286. 

[19] M.I. Baskes and W.D. Wilson, J. Nucl. Mater. 63 (1976) 126-131. 

[20] G. Busker, M. A. van Huis, R. W. Grimes, A. van Veen, Nucl. Instrum. Meth. Phys. Res. 
B 171 (2000) 528-536.  

[21] S. Agarwal et al, Oral presentation to symposium EE, MRS Fall meeting, Boston, MA, 
USA, 2013 to be published. 

[22] R.S. Blewer, R.A. Langley, J. Nucl. Mater. 63 (1976) 337-346. 

[23] K. Morishita, R. Sugano, B. D. Wirth, T. Diaz de la Rubia, Nucl. Instrum. Meth. Phys. 
Res. B 202 (2003) 76-81. 

[24] B.Y. Ao, J.Y. Yang, X.L. Wang, W.Y. Hu, J. Nucl. Mater. 350 (2006) 83-88. 

[25] Y. Wang, S. Liu, L. Rong, Y. Wang, J. Nucl. Mater. 402 (2010) 55-59. 

[26] P. Zhang, J. Zhao, Y. Qin, B. Wen, J. Nucl. Mater. 419 (2011) 1-8. 

[27] T.W. Trull, M.D. Kurz, J. Mol. Struct. 485–486 (1999) 555–567. 

[28] D.L. Schuster, K.A. Farley, J.M. Sisterson, D.S. Burnett, Earth. Planet. Sci. Lett.   
217(2003) 19–32. 

 

                                                                                                                                                              

 

 

 

 

 

 

 

 



150 
 

Part 2 

6.2 Helium behavior under thermal environment in TiN 

  Before presenting and discussing results for helium behavior under thermal environment in 

TiN, we have given a quick reminder of our experimental approach. The results shown in this 

section of chapter 6 are in process of publishing. Already two manuscripts have been written 

and are planned to be submitted in near future. These publications have the following title: 

  

● ‘When and how ion beam analysis (IBA) could be more effective than transmission 

electron microscopy (TEM)’ to study helium behavior in materials. S. Agarwal, P. Trocellier, 

D. Brimbal, S. Vaubaillon. 

●Mechanisms of helium bubble growth in TiN upon annealing.  S. Agarwal, P. Trocellier,                                                                                                   

T. Jourdan, D. Brimbal, A. Barbu, S. Vaubaillon.  

 

6.2.1. Reminder of the experimental approach 

  

                                                                                                                           

 

          

   

  

 

 

 

  Apart from this reminder, some other points are important to mention here: 

  The results for TiC (see section 6.1) confirm that the two codes namely, SIMNRA and 

AGEING code for NRA data analysis agree with each other and the values of migration 

parameters and diffusion coefficients derived with the help of two codes resemble each other. 

Here, we have used both codes to verify the form of helium depth profiles but diffusion 

He implantation                                         
in bulk TiN at RT                                                

3 MeV, F1= 5 x 1016 at. /cm2, 
Rp= 6.16 µm) 

Thermal annealing                                      
(1000 °C, 1100 °C, 
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coefficients and other migration parameter values have been deduced only with the help of 

SIMNRA code.  

  It is also important to note that the value of fluence F1 used in experimental approach B, is 

equal to the value of fluence F1 used in experimental approach A. 

 

6.2.2. Results and Discussion 

  In the next paragraph, results from experimental approach A on the specimen implanted with 

fluence F1 and annealed at various temperatures (Ta) are presented and discussed (Part A). Later 

on, results from experimental approach B on the role of implantation fluence on helium mobility 

are discussed (Part B).  

 

6.2.2.1. Specimens implanted with fluence F1 and annealed at 

various Ta (Part A) 

 

A. Nuclear reaction analysis 

  The experiments devoted to plot excitation curves were conducted by varying the deuteron 

energy (ED) from 0.8 MeV to 1.8 MeV on as-implanted and annealed TiN specimens at 

annealing temperature Ta = 1000 °C, 1100 °C, 1400 °C, 1500 °C and 1600 °C (see figure 6.10a). 

Similar to TiC, the helium lost fraction (f) versus Ta have been fitted by 1st order kinetic law 

and the activation energy of helium release was obtained, ΔH = (1.20  0.12) eV. This curve 

has been plotted in figure 6.10b. 
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Figure 6.10a. Excitation curves (proton yield versus incident deuteron energy) measured for 
as-implanted and annealed TiN samples corresponding to F1 fluence. 
 
 
 

 
 
                                       

Figure 6.10b. Evolution of the 3He lost fraction (f) versus annealing temperature for TiN. The 
equation of the fit obeys f = 1 – exp[- α . exp(-ΔH / kB . T)] with α = 398.31 and ΔH = (1.20  
0.12) eV. 
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  Figure 6.10c shows helium depth profiles obtained for as-implanted and annealed specimens 

at Ta = 1000 °C, 1100 °C, 1400 °C, 1500 °C and 1600 °C. These helium depth profiles have 

been obtained by using SIMNRA software corresponding to Ed = 1.3 MeV. The helium depth 

profiles obtained for as-implanted and annealed samples have no tailing effect towards the 

surface and could be fitted into single Gaussian shaped curve. At Ta ≤ 1100 °C, the helium 

depth profiles overlap on each other within the measurement error. It implies no migration of 

helium atoms up to this Ta= 1100 °C. Above temperatures of 1100 °C, the peak of helium 

distribution decreases in magnitude (indicating helium release), but very little lateral spreading 

of the profile (as expected in Fick’s law of diffusion) is observed at Ta ≥ 1400 °C.  

             

 

Figure 6.10c. Helium depth profiles obtained from nuclear reaction analysis for TiN samples 

implanted with fluence F1 and annealed between 1000 °C -1600 °C. These profiles have been 

obtained by SIMNRA code corresponding to Ed =1.3 MeV 
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  Table 6.3 presents the effective diffusion coefficient obtained for helium at Ta ≥ 1100 °C by 

using classical Fick’s law formalism. Over the temperature range 1100 °C-1600 °C, the 

effective diffusion coefficient data for TiN exhibits a linear Arrhenius behaviour. This linear 

dependence gives an activation energy of ED= 1.05 ± 0.2 eV for effective helium diffusion (see 

figure 6.10d).     

  It should be noted that the effective diffusion coefficient obtained for TiC at all temperature 

is much higher than for TiN. Accordingly, the value of ED for TiC should be lower than for 

TiN. However, we have obtained the opposite, which is due to the poor regression factor 

obtained while employing Arrhenius law for TiC (see figure 6.7).  

 

 

 

 
 
 
 
 
 
Table 6.3. Effective diffusion coefficient obtained for helium at Ta ≥ 1100 °C by using classical 
Fick’s law. 
 
 
 

 
 
Figure 6.10d. Effective diffusion coefficient variation versus temperature in TiN following 
Arrhenius behavior. 
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  This small broadening (or slight lateral spreading) of helium depth profiles at higher 

temperature could be explained as if the helium atoms were trapped very strongly at (or near) 

its end-of-range location at room temperature and then released in fractions at progressively 

higher temperature. This behavior is similar to the G1 population in TiC, where the helium is 

assumed to be trapped in Hen-Vm clusters which are supposed to be large and unstable and 

releases He atoms to form stable cluster (having low n/m ratios) at higher temperature. It was 

also assumed that large size of Hen-Vm clusters is responsible for their less mobility and hence 

contributing to very small broadening. Evidences have been obtained by TEM which supports 

this hypothesis.  

 

B. TEM observation in grain interior (at the implantation zone) 

  The microstructural changes were observed under TEM in the transverse FIB specimens of 

implanted and annealed samples. The transverse FIB specimen gives the entire depth 

distribution of damage caused by ion-implantation or other microstructural changes (for eg. 

bubbles in our case) from surface to the implantation zone.  

  Transverse FIB specimen of as-implanted samples revealed no unambiguous evidence for 

visible helium bubbles. This means that the majority of bubbles (He-V clusters) formed after 

implantation at room temperature have sizes below detection limit of the microscope.  

  The FIB specimen of samples annealed at Ta ≥ 1100 °C, showed the presence of bubbles under 

TEM observation. TEM micrographs showing bubbles at implantation zone at Ta = 1100 °C, 

1400 °C, 1600 °C are shown in figure 6.11(a, b, & c). 
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Figure 6.11. TEM micrographs of the implantation zone of TiN samples implanted with fluence  
F1 and annealed at (a) Ta = 1100 °C, (b) Ta = 1400 °C, (c) Ta = 1600 °C. The white contrast 
represent helium bubbles in under focus conditions (Bright field, Under focus = -1100 nm).   
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  The size distributions of the bubbles corresponding to figure 6.11 have been plotted in fig. 

6.12 (a, b & c). The size distributions from figure 6.12a (at Ta = 1100 °C) to figure 6.12c (at Ta 

=1600 °C) show shift of the entire distribution towards higher value of mean bubble size. This 

shift suggests bubble growth. 

 

Figure 6.12.  Size distribution of helium bubbles in the implanted zone of TiN annealed at (a) 
1100 °C for 2h (b) 1400 °C for 2h (c) 1600 °C for 2h. 
  

  The mean bubble radius rB versus Ta is plotted in Arrhenius-type behavior (see figure 6.13). 

This plot gives an apparent activation energy of bubble growth Er = 0.38 ± 0.03 eV. The volume 
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density of the bubbles (DB) decreased from 1100 °C to 1400 °C but did not evolve much from 

Ta= 1400 °C to 1600 °C and remained almost constant in the order of ~1 x 1017 bubbles/cm3. 

Table 6.4a provides the precise values of density obtained at various annealing temperature. 

The containment spot separation method was used to measure the thickness of the FIB specimen 

at the same point on which the TEM micrographs were taken. The thickness value measured by 

this method contributes to ~10 % uncertainty in the volume density of the bubbles.   
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Figure 6.13. Arrhenius plot of bubble radius vs temperature to calculate the activation energy 
of bubble growth. 
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Table 6.4a. Volume density of bubbles at different annealing temperatures for TiN implanted 
with fluence F1. 

 

C. Determination of the pressure inside the bubbles at the implantation zone 

  The equilibrium pressure inside the bubbles can be calculated by the equation p = 2ϒ/r, where 

ϒ is the surface free energy. Please refer to chapter 4.2.4 for more details. The equilibrium 

pressure values have been calculated for various values of rB (bubble radius) and have been 

plotted in figure 6.14. The value of ϒ for TiN is 1.2 N/m.  

                              

 

Figure 6.14. Plot of the equilibrium pressure (P= 2ϒ/rB) vs rB  for TiN. 

0.05

0.5

5

0 5 10 15 20 25 30

Pr
es

su
re

 (G
Pa

)

Bubble Radius rB (nm)

Equilibrium pressure vs Bubble radius

Temperature                   
(°C) 

Bubble density      
(bubbles/cm3) 

1100 °C 2.90E+17 

1400 °C 1.20E+17 

1500 °C 1.00E+17 

1600 °C 1.15E+17 



160 
 

  In this paragraph, the pressure values inside the bubbles have been calculated and compared 

with their corresponding equilibrium pressure values. 

  To calculate the pressure value inside the bubbles. We have to recall from section 4.2.4 that 

‘our aim is to find the reduced particle density ρ = ࢒࢜/v’.    

where value of ݒ௟ (i.e. fluid volume upon freezing) can be calculated by the use of ‘equation 

4.6’.                                                                                                                                                

where value of v (i.e. volume per helium atom (in Å3)) is calculated from the ‘TEM  micro-  

graphs’. 

Calculation of v (i.e. volume per helium atom (in Å3)): 

To explain, we consider a TEM micrograph (one from figure 6.11) corresponding to TiN 

implanted with 3He and annealed at Ta. And we assume that ‘all the implanted helium is present 

in the form of helium-vacancy (He-V) clusters’. However, it is important to mention that out of 

all He-V clusters, sizes of some clusters are below the detection limit of electron microscope 

and hence are not visible under TEM. 

● Value of CHe (the number of helium atoms per nm3) corresponding to TEM micrograph shown 

in figure 6.11 can be derived from its corresponding helium depth profile obtained from NRA 

of sample annealed at Ta shown in fig. 6.10c.  

● Value of Cv (the number of vacancy per nm3) can be derived in the following manner: 

Considering that,                                                                                                                                       

vol. occupied by the bubble (VB) = vol. occupied by the vacancies in the bubble (vc)  

                                                         VB = vc = nv* Vat                                                                                        (6.3)                                                                                                  

where nv is the total number of vacancies in the bubble;                                                                         

and Vat is the volume occupied by one vacancy which is equal to the volume occupied by one 

atom; 

● Cv (the number of vacancy per nm3): 

Applying eq. (6.3) to all the bubbles available in the TEM micrograph corresponding to Ta 

shown in figure 6.11;    
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Vol. occupied by total no. (or n) of bubbles = Vol. occupied by the vacancies in ‘n’ bubbles 

(Vc)                                                 

࢜࡯                                                                                             = ࢉࢂ
࢚ࢇࢂ

                                                 (6.4)                                                                                                                        

 

 

 

● Then, CHe/Cv denotes the number of helium atoms per vacancy;                                                                  

On multiplying Vat (i.e. the volume of one vacancy) at the denominator  ஼ಹ೐
஼ೡ∗ ௏ೌ ೟

 , we derive 

helium atoms per unit volume. And its reciprocal gives ‘v’ (i.e. volume per helium atom (in 

Å3)).     

                                                                                                                                                          

● Finally, the value of ρ = ‘ ݒ௟/v’ is derived and from eq. 4.5 compressibility factor ‘z’ is 

derived.  

 

● And by putting the value of ‘z’ in real gas equation of state, pressure value inside the 

bubbles is derived. 

The value of CHe/Cv and the corresponding calculated pressure value are shown in Table 6.4b. 

Please refer to Annexe II for a more detailed example of pressure calculation.  

 

 

           

  

 

 

 

 

Table 6.4b. The pressure value inside the bubble at various Ta calculated by an equation of 
state corresponding to F1 fluence. 

  T 

 (°C 

CHe 

(atoms/nm3) 

Cv 

(Vacancy/nm3) 

CHe/Cv Pressure 

(GPa) 

1100 0.67 0.012 54.6 P >>240 GPa* 

1400 0.58 0.043 13.5 P >>240 GPa* 

1500 0.52 0.067 7.85 P = 255 GPa 

1600 0.52 0.58 0.90 P = 2.29 GPa 

Vc                                                           
(i.e. volume occupied by 

the total number of 
vacancies in n bubbles) 

DB                                                                  
(i.e. Density of the 

bubbles at Ta) 

VB                                                                                                                            

(i.e. Volume of one bubble at Ta, ஻ܸ = ସ 
ଷ
         ( ஻ଷݎߨ

where ݎ஻ is the bubble mean radius corresponding 
to Ta 

=  x 
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  The pressure values obtained at Ta= 1100 °C, 1400 °C and 1500 °C are very high and close to 

solid state pressure values and are physically impossible. It is because, the calculated value of 

Cv is underestimated due to the detection limit of TEM, where He-Vacancy clusters smaller 

than the size of 1 nm are not visible. Hence, it gives high uncertainty in bubble density values 

because here, Cv is derived from the bubbles which are visible under TEM. It can also be said 

that the density (DB) calculated by TEM micrographs is an apparent density but not the real 

density of He-V cluster.  

  At Ta = 1500 °C, the pressure inside the helium bubbles is close to shear modulus of TiN (i.e. 

240 GPa) or mechanical stability limit of the material. This high pressure value is due to large 

CHe/Cv values suggesting that even at Ta = 1500 °C some part of implanted helium is still present 

in the form of small He-V clusters which are invisible under TEM.  

  The pressure value at Ta = 1600 °C is close to the equilibrium pressure value of ~ 2 GPa. It 

indicates that most of the helium implanted into sample is present in the form of visible bubbles. 

At Ta= 1600 °C, the value CHe/Cv is sufficiently low due to the higher value of denominator 

(i.e. Cv) which corresponds to the increase in rB. And this low value of CHe/Cv leads to the low 

pressure value (which is closer to equilibrium pressure value). 

 

D. GROWTH MECHANISM OF BUBBLES AT THE IMPLANTATION ZONE 

  To predict the specific ‘bubble growth mechanism’ is extremely challenging in transition 

metal ceramics due to the presence of native vacancies. For TiN, its stoichiometric ratio has 

been verified which corresponds to 0.99 0.02 within the measurement errors. Therefore, the 

contribution of native vacancies in total number of vacancies in the material cannot be 

neglected. It is assumed that these vacancies are not very mobile at low temperature because 

migration energy of vacancy ‘EV’ is close to 3.8 eV for TiN [1]. During helium implantation, 

these vacancies are trapping helium atoms to form small He1-V1 clusters. 

  On annealing, when temperature increases, mobility of He1-V1 clusters increases and they 

agglomerate to form He2-V2 or stable Hen-Vm clusters (n, m denotes the number of helium atoms 

and vacancies, respectively) in the following manner: 

He1-V1 + He1-V1  He2-V2 
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He2-V2 + He2-V2  He4-V4 

He4-V4 + He4-V4  He8-V8  Formation of stable small Hen-Vm cluster (or bubble nuclei) 

  Nucleation of the bubbles, i.e., the formation of stable He-V clusters occur at small sizes in 

the first size range, r < 10Å. For Nickel, it is estimated that between 3 and 10 defects must be 

involved for the formation of stable HeV complexes (or HeVCs) [2]. To best of our knowledge, 

the no. of defects required to create stable HeVCs (in terms of n (helium atom) and m 

(vacancies)) in TiN is unknown. The radius of bubbles at Ta = 1100 °C is close to 0.75 nm and 

is in the size range of bubble nuclei estimated for nickel or other metals [2]. 

  After the nucleation stage, the growth of bubbles or stable He-V complexes occurs. It is 

assumed due to the presence of large number of native vacancies in TiN, along with the stable 

HeVCs, large number of helium atoms is present in the form of mono-vacancy clusters (He1-

V1) or di-vacancy (He2-V2) clusters.  

  From Ta = 1100 °C to 1400 °C, we have observed that the diameter of the bubbles have grown 

almost double in magnitude (see figure 6.12), however, the bubble density have almost reduced 

to half (see table 6.4). Due to the decrease in bubble density, the mechanism behind the bubble 

growth is not clear for us between Ta = 1100 °C to 1400 °C. 

  From Ta ≥ 1400 °C (where Ta is closed to 0.5 Tm), bubbles or stable He-V complexes grow by 

the absorption of mono (or di)-vacancy clusters. It is important to mention that due to high 

concentration of vacancies, their role on growth of bubbles cannot be neglected as well, 

particularly at higher temperature. This hypothesis is supported by the fact that; from Ta =1400 

°C to 1600 °C, there is no change in the bubble density within the measurement error, however, 

there is a significant change in bubble size. 

  Along with this, we have seen before, that ~25% of helium has been lost at Ta = 1600 °C. May 

be, this helium loss has also a strong role in decreasing the pressure value, but this point has to 

be explored further. The imaging of dislocation loops were not possible due to high damage 

caused during FIB preparation, otherwise information on dislocation loop density at the 

implantation zone could have further extended the explanation.  
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E. TEM OBSERVATION NEAR SURFACE  

  Annealing of specimen at Ta= 1100 °C to 1600 °C, results in formation of bubbles at the 

surface. The TEM micrographs are shown in figure 6.15 (a, b & c) and size distribution of 

bubbles are plotted in figure 6.16(a, b & c). The mean bubble radius rB versus Ta is plotted in 

the Arrhenius-type behavior (see figure 6.17). This plot gives an apparent activation energy of 

bubble growth Er= 1.69 ± 0.2 eV. The mean radius changed from ~ 0.7 nm (at 1100 °C) to ~ 45 

nm (at 1600 °C).  

  The transverse FIB specimen corresponding to Ta= 1100 °C to 1600 °C have been compared 

with transverse FIB specimen of as-implanted TiN, where neither the bubbles were present at 

the surface nor at the implantation zone. However, we observed that in as-implanted FIB 

specimen, the density of dislocation line at the surface was markedly high as compared to the 

density of dislocation lines in the matrix. This suggests that the surface of sample was damaged 

during the mechanical polishing and hence, the un-trapped helium, perhaps present in the form 

of small He-V clusters (which has high mobility) have escaped the implantation zone and 

further got trapped at the dislocation lines present at the surface. This hypothesis is also 

supported by fig. 6.16c where bubbles at the surface are aligned along the dislocation lines. 

      

 

10 nm

(a) Ta= 1100 °C 

10 nm 
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Figure 6.15 (a, b &c). Micrographs of the bubbles at the surface of samples implanted with 
fluence F1 and annealed at Ta = 1100 °C, 1400 °C, 1600 °C respectively are shown. The second 
micrograph (b) also shows ~500 nm denuded zone from the surface. And the third micrograph 
(c) shows the association of bubbles with dislocation lines. The white contrast represent helium 
bubbles in under focus conditions (Bright field, under focus = -1000 nm) 
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Figure 6.16 (a, b, c).  Size distribution of helium bubbles in the implanted zone of TiN 
annealed at (a) 1100 °C for 2h (b) 1400 °C for 2h (c) 1600 °C for 2h. 
 



167 
 

 

 
Figure 6.17. The Arrhenius plot of bubble radius vs temperature to calculate the activation 
energy of bubble growth at the surface of TiN. 
 

   The two foremost observations during bubble analysis at the surface were:                                    

● Firstly, the presence of small ~ 0.7 nm size bubble at 1100 °C, which suggests that helium 

is present in very small clusters and further at high Ta, these bubbles grow up to 45 nm.  

  This bubble growth can be explained in the following manner: Figure 6.10c shows that NRA 

profiles corresponding to as-implanted sample and at Ta= 1100 °C superimpose on each other 

within the measurement error. Therefore, the quantity of helium trapped at the surface is very 

less. This less quantity of helium is responsible for less density of He1-V1 clusters.  This low 

density of He1-V1 clusters leads to formation of less density of stable HeVCs or nucleation 

centers (also known as stable Hen-Vm cluster) which would later develop into big bubbles. 

  On high temperature annealing in such cases, the most low-cost energetically favorable 

process would be the absorption of He1-V1 clusters by existing nuclei rather than nucleating 

new stable nuclei. There is a large influx of the He1-V1 (or helium atoms that later develop into 

mono (or di) vacancy clusters) from the implantation zone. 

  In our case, as the number of stable He-V cluster (as suggested by small density of bubbles on 

surface at Ta= 1100 °C) is very less, therefore on high temperature annealing at Ta= 1500 °C, 

all the non-visible, small He1-V1 (or He2-V2) clusters are absorbed by few existing stable nuclei 
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(or small sized bubbles at Ta= 1100 °C) and have formed bigger bubbles. It is again important 

to mention that at high temperature, the effect of vacancy absorption on bubble growth cannot 

be neglected. Figure 6.15 (b & c) shows formation of facetted bubbles at the surface. 

● Secondly, ~ 500 nm from the surface was denuded zone or defect free zone (absence of 

bubbles) and from denuded zone to 1nm broad length, bubbles were present (see figure 6.15b 

as an example at Ta = 1400 °C) and after this distance, no bubbles were present up to 

implantation zone. The presence of 500 nm thick denuded zone could be due to recombination 

of defects at the zone close to the surface on high temperature annealing. The pressure inside 

the bubbles at the surface could not be calculated due to absence of data corresponding to ‘CHe’ 

at the surface. However, the facetted shape of the bubbles (or cavities) at Ta = 1400 °C to 1600 

°C suggest that the bubbles were not over-pressurized. 

 

F. TEM OBSERVATION AT GRAIN BOUNDARIES 

 

  After helium implantation at room-temperature, no defects were visible in grain boundaries 

(GB). At Ta = 1100 °C, spherical bubbles (larger than size of the bubbles at matrix) appeared 

at grain boundaries. But interlinked facetted bubbles only appeared from Ta = 1400 °C to 1600 

°C. It is well established that interlinking of grain boundary bubble creates pathways towards 

surface for helium to release [3]. With increasing temperature the bubbles at GB’s grew and 

their number density decreased.  

  A quantitative analysis of bubble evolution at GB’s was difficult due to the dependence of 

bubble growth on the orientation of the grain boundaries. We did not observe a regular pattern 

in the evolution of bubbles at grain boundaries at different annealing temperatures. Therefore, 

role of grain boundaries to discharge bubbles from the implantation zone to the surface was not 

very clear, as in most of the cases, on following the GB from implantation zone to the surface, 

bubbles were only present on the GB located at (or near) the implantation zone. Bubbles were 

occasionally visible at the GB present between the surface and implantation zone (see figure 

6.18b).  

  Bubbles in the grain boundary and in the grain interior were well separated by defect free 

zones (this difference was more prominent at higher annealing temperature). TEM also revealed 

that in the regions which are in the vicinity of grain boundaries the bubble radii are larger (see 
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figure 6.18c) and the bubble densities are smaller than the corresponding values for the bubbles 

in the grain interior. The quantitative analysis on these bubbles gave an activation energy for 

growth of bubble (present in the vicinity of GB) to be Er = (1.02 ± 0.1) eV by fitting the data 

with Arrhenius law (figure not displayed here).  

 

 

 

 

(a) (a) Ta= 1100 °C 

50 nm 
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Figure 6.18. Few micrographs representing typical behavior of the bubbles at the grain 
boundaries are shown (a) The grain boundary filled with bubbles with the size of the bubbles 
greater than the bubbles at the matrix at Ta = 1100 °C is shown (b) The interlinking helium 
bubbles at the grain boundary, present between implantation zone and surface at Ta = 1400 °C 
is shown (c) The bigger bubbles in the vicinity of grain boundary at Ta = 1600 °C is shown. The 
white contrast represents the bubbles. 
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6.2.2.2. COMPARISON STUDY BETWEEN SPECIMENS 

IMPLANTED WITH FLUENCE F1, F2 AND F3 (Part B) 

 

A. NUCLEAR REACTION ANALYSIS 

  Excitation curves have been plotted for samples implanted with fluence F2 and F3, and 

subsequently annealed at Ta = 1100 °C & 1500 °C. The excitation curves are shown in figure 

6.19a & 6.19b. The incident deuteron energy varied from 1 MeV to 1.8 MeV. Similar to F1 

fluence, the maximum of excitation curves was found at 1.3 MeV deuteron energy and helium 

depth profiles are extracted from the proton energy spectrum obtained at ED = 1.3 MeV. 

  The most remarkable result that we obtained from figure 6.19a & 6.19b are following: if we 

compare the excitation curves for fluence F2 and F3 and also with fluence F1 (fig. 6.10a). We 

find that at Ta = 1100 °C, the excitation curve for F1, F2 & F3 superimpose on their corresponding 

as-implanted excitation curves within the measurement errors. At Ta = 1500 °C, the excitation 

curves (or proton count) corresponding to F1 & F2 fluence have shifted downwards suggesting 

helium loss. However for lower value of fluence F3, the excitation curves at Ta = 1500 °C does 

not shift downwards and indicates zero loss of helium. 

            

Figure 6.19a. Excitation curves (proton yield versus incident deuteron energy) measured for 
as-implanted and annealed TiN samples corresponding to F2 fluence. 
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Figure 6.19b. Excitation curves (proton yield versus incident deuteron energy) measured for 
as-implanted and annealed TiN samples corresponding to F3 fluence. 
 

 

  To investigate further, the comparison of helium depth profiles obtained for fluence F1, F2 and 

F3 at Ta = 1100 °C & 1500°C with their corresponding as-implanted profile has been done. This 

comparison (in terms of height and FWHM) gives the information on helium loss and on range 

of migration of He-V clusters. 

  For high fluence values F1 and F2, at Ta = 1100 °C, the helium distribution obtained from 

NRA superimposed (with in the error bars) on their respective helium distributions from as-

implanted sample. At Ta = 1500 °C, the peak of the helium distribution decreases in magnit- 

ude (indicating helium release), with slight lateral spreading of the profile (as expected in Fick’s 

law). See figure 6.10c and 6.20a. 

  But for lower fluence value F3, at  Ta = 1100 °C & 1500 °C, very large lateral spreading of 

the profile (as expected in Fick’s law for diffusion) is observed. Nevertheless, the area under 

the curves is conserved (indicating no helium release) for both the temperatures correspon 

ding to low fluence value F3. See figure 6.20b. 
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Figure 6.20a. Helium depth profiles obtained from nuclear reaction analysis for samples 
implanted with fluence F2 and annealed at Ta= 1100 °C & 1500 °C. These profiles have been 
obtained by SIMNRA code corresponding to Ed =1.3 MeV and fitted into Gaussian function. 
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 Figure 6.20b. Helium depth profiles obtained from nuclear reaction analysis for samples 
implanted with fluence F3 and annealed at Ta= 1100 °C & 1500 °C. These profiles have been 
obtained by SIMNRA code corresponding to Ed =1.3 MeV and fitted into Gaussian function. 
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  Such long range diffusion in samples implanted with low fluence (F3) indicates that there is a 

large amount of helium which is not trapped in the bubbles and is present in the form of small 

He-V clusters which are mobile and diffuse to large distances. This interpretation has also been 

supported by TEM (to be further discussed in next section). 

 

B. TEM OBSERVATION ON GRAIN INTERIOR (AT THE IMPLANTATION ZONE) 

  Similar to F1 fluence, soon after helium implantation with F2 & F3 fluence at room temperature, 

no bubbles were observed in transverse FIB specimen of as-implanted samples.  

In transverse FIB specimen of samples implanted with helium fluence (F2 & F3) and annealed 

at Ta ≥ 1100 °C, bubbles were clearly seen under TEM. In the next paragraph, important 

findings are discussed and compared with fluence F1. 

 

 

Ta = 1100 °C:  

  At Ta = 1100 °C, for the three fluence values F1, F2 and F3, the average bubble size stayed 

unvaried between 1-2 nm.  For comparison of density between different fluences (see figure 

6.21 and 6.11a) and for size distribution (see figure 6.22 (a, b & c)).  
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Figure 6.21. Micrographs of the implantation zone of samples implanted with fluence F3 and 
annealed at Ta = 1100 °C.  
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Figure 6.22.  Size distribution of helium bubbles in the bulk of TiN annealed at (a) 1100 °C 
for F1 (b) 1100 °C for F2 (c) 1100 °C for F3. 
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  At Ta = 1100 °C, density of the bubbles was linearly proportional to the fluence (see red curve 

in figure 6.23). The similar bubble size but linear variation of bubble density with the 

implantation fluence supports our previous discussion (see section 6.2.2.1.F), where the 

quantity of bubble nuclei was supposed proportional to the quantity of helium. 

  It is well known that, the nucleation rate increases strongly with increasing concentration of 

helium atom until production rate (P) during implantation and absorption rate (A) of helium 

atom by existing nuclei balance each other approximately. The nucleation peak is reached for 

P=A, and for higher values of P, the nucleation decreases [2]. Thus, the constant size of the 

bubbles and the linear variation of the bubble density versus the implanted fluence indicate that 

up to certain fluence the newly implanted gas atom is more likely to nucleate then to reach an 

existing nucleus. May be, further higher fluence is required to reach the nucleation peak and to 

increase the size of bubbles.  
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Figure 6.23. Variation of bubble density versus fluence at 1100 °C (by red line) & at 1500 °C 
(by green line). The same curve can be used to see decrement in the bubble density with 
increasing Ta for F1, F2,  F3  by color (         ,        ,        ) respectively. 

 

 

F1 

F2 

F3 F1 
F2 

F3 

 



178 
 

At Ta = 1500 °C: 

  At Ta = 1500 °C, the bubble size varied from rB = 1.5 nm (for high F1 fluence) to rB = 8 nm (for 

low F3 fluence). However, bubble density is again linearly proportional to fluence (see green 

curve in figure 6.23).  

  Figure 6.24 shows an increase in bubble size from Ta = 1100 °C to 1500 °C for F2 & F3 fluence. 

It is important to note that at Ta = 1500 °C , the samples implanted with lower value of fluence 

(F3) displays big bubbles as compared to samples implanted with higher value of fluence (F1). 

This difference is more highlighted in figure 6.25. 
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Figure 6.24. Size distribution of helium bubbles in the bulk of TiN annealed at (a) 1100 °C 
for F2 (b) 1500 °C for F2 (c) 1100 °C for F3 (d) 1500 °C for F3. 
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   While trying to answer the question ‘why under same annealing conditions (at Ta = 1500 

°C), the samples implanted with lower concentration of helium have large sized bubbles?’ we 

related the explanation with previous results, where bubbles with very large sizes were observed 

on the surface of the sample implanted with F1 fluence (see section 6.2.2.1.F). It has already 

been mentioned that the numbers of bubble nuclei (or stable Hen-Vm clusters) formed are 

proportional to the quantity of implanted helium. And here, this hypothesis has also been 

supported by TEM observation (see red curve in figure 6.23).  

  For samples implanted with lower fluence (F3 fluence) and annealed at Ta = 1500 °C, it appears 

that due to less concentration of helium atoms, there are less nucleation centers (which have 

also been approved by very low density of small helium bubble at Ta = 1100 °C). At Ta = 1500 

°C, due to low density of nucleation centers, all the helium which is present in the form of  

invisible small mono-vacancy (He1-V1) or di-vacancy (He2-V2) which did not nucleate into 

stable nuclei would prefer to go to existing nuclei and therefore, increasing the size of bubbles. 

At 1500 °C, the effect of vacancy absorption on bubble growth cannot be neglected, some native 

vacancies and vacancies created by irradiation may be absorbed by clusters, explaining the large 

sizes of helium bubbles. 

  However, for the samples which are implanted with higher fluence (F1 fluence), due to very 

high density of bubbles at Ta = 1100 °C, all the invisible small mono (or di) vacancy clusters  

are partitioned among large concentration of small bubbles at Ta = 1100 °C. This partitioning 

leads to the small bubble growth as compared to the samples implanted with lower 

concentration of helium.  

 We also revealed that in the samples which are implanted with lower concentration of helium, 

only very small fraction of implanted helium is visible in the form of bubbles and rest is present 

in the form of clusters which are too small in size to be visible under TEM. This has been 

observed by the superimposition of NRA profile on the TEM micrographs of samples implanted 

with F1, F2 & F3 fluence annealed at Ta = 1500 °C. We deduced that under same post-

implantation annealing conditions, smaller the implantation fluence, larger is the proportion of 

small He-V cluster (which are invisible under TEM).  

  We revealed that during TEM analysis of sample implanted with F3 fluence and annealed at 

1500 °C, the total length in which helium bubbles (at the implantation zone) were present was 

~200 nm (see Annexe 3 for direct comparison) whereas the total length shown in NRA 

distribution was 3 µm. This confirms that the total implanted helium is not present in the form 



181 
 

of bubbles, only helium present in 300 nm width (in the center of the Gaussian depth 

distribution) is present in the form of bubbles and rest is invisible under TEM. On precise 

calculation, only 30 % of the implanted helium is present in the form of bubbles and rest 70% 

is present in the sample but cannot be observed under TEM. This statement also supports the 

interpretation in previous section where the long-range helium diffusion was considered due to 

small He-V cluster invisible under TEM. 

  Further on comparing, the difference in total length in which helium is present according to 

TEM micrographs and their respective NRA curves, seems to decrease with the increase in 

implantation fluence (see Annexe III). For samples corresponding to F2 fluence and annealed 

at Ta = 1500 °C, we calculated that the more than half of the helium fraction is present in the 

form of small clusters which are invisible under TEM. However, for samples implanted with 

F1 fluence and annealed at 1500 °C, the bubbles were almost present in the whole length of its 

respective NRA curve. These results concluded that, under same post-implantation annealing 

conditions, the larger the implantation fluence, the smaller the portion of the small He-V 

clusters (invisible under TEM).  

 

C. DETERMINATION OF PRESSURE INSIDE THE BUBBLES AT THE 
IMPLANTATION ZONE 

The pressure inside the bubble was calculated using the same procedure followed for F1 fluence: 

Fluence 
 

T 
(°C) 

 
CHe 

(atoms/nm3) 

Cv 
(vacancy/nm3) 

 
CHe/Cv 

 
 

P 
(GPa) 

Corresponding 
eq. pressure 

(2γ/rB)  in (GPa) 

F2 1100 0.16 0.008 19.03 3335 5 

F2 1500 0.12 0.038 3.03 23.7 2.86 

F3 1100 0.06 0.003 18.5 3058 5 

F3 1500 0.003 0.11 0.025 0.03 1 

 

Table 6.5. The pressure value inside the bubbles at various Ta calculated by an equation of 
state corresponding to F2 and F3 fluence. 

 

The pressure values falls at higher temperature for both the fluence values due to bubble growth.  
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  At Ta = 1500 °C, for F3 fluence pressure inside the bubbles fall below the equilibrium pressure, 

this is also supported by the polygonal shape of bubbles seen under TEM (see figure 6.25c or 

3a figure in Annex 3).  We were not able to calculate activation energy of bubble growth (Er) 

by Arrhenius law due to only two annealing temperatures. 

 

D. TEM observation near grain boundaries and at surface 

  The general behavior of the bubbles at the surface and grain boundaries was similar to the 

samples implanted with fluence F1.  At 1100 °C, bubbles were present at the surface, for both 

F2 and F3 fluence with ~1nm. At 1500 °C, bubbles grew upto 23 µm and 15 µm for F2 fluence 

respectively.  

  At GB, bubbles with different shapes (rod and faceted) are present at both temperatures 

corresponding to F2 and F3 fluence. Also, bubbles in the vicinity of GB were bigger in all the 

cases. The apparent energy calculation and other plots were not possible due to only two 

annealing temperatures Ta. 

 

6.2.3. Conclusion 

  In this section important conclusions regarding the study of helium behavior under thermal 

environment in TiN have been presented. The major part of the study deals with calculation of 

effective helium diffusion coefficients and the microstructural evolution due to helium 

accumulation under the following experimental conditions: 3MeV, 3He with 5 x 1016 at. /cm2  

and samples annealed from 1000 °C-1600 °C for time period of 2 hrs (Part A).  And some part 

of the study is dedicated to understand the role of helium implantation fluence on helium 

mobility (Part B). Important conclusions from this study are: 

Part A  

● The value of activation energy of helium release (obtained by fitting helium lost fraction (f) 

versus Ta) is ΔH = (1.20  0.12) eV. 

● Helium depth profiles obtained for annealed specimens from Ta = 1000 °C to 1600 °C showed 

very little lateral spreading with respect to as-implanted helium depth profile and the value of 

calculated effective diffusion coefficient varies from (3.58E-19 to 5.92641E-18) m2s-1. This 
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small broadening (or slight lateral spreading) of helium depth profiles at higher temperature 

indicates that the helium atoms got trapped very strongly at (or near) its end-of-range location 

after helium implantation at room temperature. 

● The value of activation energy of helium diffusion (derived by applying Arrhenius law on 

helium diffusion coefficient values vs Ta) is ED= 1.05 ± 0.2 eV. 

  ● Transverse FIB specimen of as-implanted samples revealed no unambiguous evidence for 

visible helium bubbles. This means that the majority of bubbles (He-V clusters) formed after 

implantation at room temperature have sizes below detection limit of the microscope. The FIB 

specimen of samples annealed at Ta ≥ 1100 °C, showed the presence of bubbles under TEM 

and also revealed bubble growth from Ta = 1100 °C to Ta =1600 °C. The value of apparent 

activation energy (Er) of bubble growth was derived and is equal to Er = 0.38 ± 0.03 eV. 

● The pressure values inside the bubbles obtained at Ta= 1100 °C, 1400 °C and 1500 °C are 

very high due to apparent density (DB) of He-V cluster calculated by TEM micrographs. At Ta 

= 1500 °C, the pressure inside the helium bubbles is close to shear modulus of TiN (i.e. 240 

GPa) or mechanical stability limit of the material.  The pressure value at Ta = 1600 °C is close 

to the equilibrium pressure value of ~ 2 GPa.    

● From Ta ≥ 1400 °C (where Ta is closed to 0.5 Tm), bubbles or stable He-V complexes grow 

by the absorption of mono (or di) vacancy clusters and native vacancies.   

● Annealing of specimen from Ta= 1100 °C to 1600 °C, results in formation of bubbles at the 

surface. An apparent activation energy of bubble growth has been derived and is equal to Er= 

1.69 ± 0.2 eV. The mean radius of bubbles increased from ~ 0.7 nm (at 1100 °C) to ~ 45 nm (at 

1600 °C). 

Part B  

● At Ta = 1500 °C, helium loss have been observed corresponding to higher fluence (F1 & F2) 

values. However for lower value of fluence F3, no helium loss has been observed. 

● A long range helium diffusion in samples implanted with low fluence (F3) have been observed 

which indicated that large amount of helium which was not trapped in the bubbles and was 

present in the form of small He-V clusters was mobile and diffused to large distances. Whereas 

the helium present in samples implanted with higher fluence F1 & F2 diffused to very small 

distances. 
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● TEM investigations revealed that at Ta = 1100 °C, density of the bubbles is linearly 

proportional to the fluence, however their size remained same. Under same annealing 

conditions (at Ta = 1500 °C), the samples implanted with lower concentration of helium have 

very large sized bubbles. 

● The difference in total length in which helium is present according to TEM micrographs and 

their respective NRA curves, decreases with the increase in implantation fluence value.  We 

can also say that, under the same post-implantation annealing conditions, the larger the 

implantation fluence, the smaller the portion of the small He-V clusters (invisible under TEM).  
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Part 3 

6.3. Helium behavior under thermal environment in ZrC 

  Similar to previous sections, before presenting and discussing results for helium behavior 

under thermal environment in ZrC, we have given a quick reminder of the experimental 

approach. 

  The time spent in the result analysis for ZrC was the most fascinating period in the entire thesis 

due to very interesting microstructure properties of ZrC. The two questions which were most 

inquired during the thesis are: 

 ‘What is the role of presence of native vacancies on helium diffusion and retention’?                       

‘What is the role of grain boundaries on helium diffusion and retention’?  

  Due to very small grain size (~ 3to5 µm) and due to the presence of large concentration of 

native vacancies (due to sub-stoichiometric ratio = 0.92 ± 0.02) in ZrC. It was easy to study the 

role of native vacancies and grain boundaries and get significant information to answer the 

above mentioned questions.  

   

6.3.1. Reminder of the experimental approach 

         To understand the role of temperature 

                                                                                                                           

 

          

   

  To understand the role of implantation fluence 

 

 

 

              

           

 

He implantation in three large samples of 
TiN with three different fluences at RT:                                                        
F1 = 5 x 1016 at. /cm2            ; E = 3 MeV                                        
F2 = 0.73 x 1016 at. /cm2           ; E = 3 MeV                                                                                   
F3 = 0.23 x 1016 at. /cm2           ; E = 3 MeV                                        

  Thermal annealing                                      
(1100 °C, 1500 °C,                              

2h) 

NRA                                           
(done on as-
implanted 

and annealed 
bulk 

samples) 

He implantation                                         
in bulk ZrC at RT                                                

3 MeV, F1= 5 x 1016 at. /cm2, 
Rp= 6.16 µm) 

Thermal annealing                                      
(1000 °C, 1100 °C, 

1500 °C,                            
1600 °C, 2h) 

 NRA                                           
(done on as-
implanted 

and annealed 
bulk samples) 

A. 

Cross section TEM     
specimen made from bulk 
annealed and as-implanted 

samples                                    
(with the help of FIB) 

TEM Analysis               

   
B. 
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6.3.2. Results and Discussion 

  In the next paragraph, results from experimental approach A on the specimen implanted with 

fluence F1 and annealed at various temperatures (Ta) are presented and discussed (Part A). 

Following this, results from experimental approach B on the role of implantation fluence on 

helium mobility are discussed (Part B). 

 

6.3.2.1. Specimens implanted with fluence F1 and annealed at 
various Ta (Part A) 

 

A. Nuclear reaction analysis 

  The experiments to plot excitation curves were conducted by varying the deuteron energy (ED) 

from 0.8 MeV to 1.8 MeV on as-implanted and annealed ZrC specimens at temperature Ta = 

1000 °C, 1100 °C, 1500 °C and 1600 °C (see figure 6.26a). Similar to TiC & TiN, the helium 

lost fraction (f) versus Ta have been fitted by 1st order kinetic law and the activation energy of 

helium release was obtained, ΔH = (0.77  0.08) eV. This curve has been plotted in figure 

6.26b. 

 

 
 
 Figure 6.26a. Excitation curves (proton yield versus incident deuteron energy) plotted for as-
implanted and annealed ZrC samples. 

0

200

400

600

800

1000

1200

900 1100 1300 1500 1700 1900

Pr
ot

on
 y

ie
ld

Deuteron energy (keV)

As implanted
1000 °C
1100 °C
1500 °C



187 
 

T (K)
0 500 1000 1500 2000

H
e 

lo
st

 fr
ac

tio
n 

(a
.u

.)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 

Figure 6.26b. Evolution of the 3He lost fraction (f) versus annealing temperature for TiN. The 
equation of the fit obeys f = 1 – exp[- α . exp(-ΔH / kB . T)] with a = 41.76 and ΔH = (0.77  
0.08) eV. 

 

  Figure 6.26c shows helium depth profiles obtained for as-implanted and annealed specimens 

at Ta = 1000 °C, 1100 °C, 1500 °C and 1600 °C. These helium depth profiles have been obtained 

by using SIMNRA software at Ed = 1.3 MeV. The helium depth profiles obtained for as-

implanted and annealed samples have strong tailing effect towards the surface. Figure 6.26c 

shows that until 1100 °C, there is no change in the positioning and total quantity of helium 

present in the sample. At Ta = 1500 °C, instead of broadening (or lateral spreading), there is a 

shrinkage in the helium depth profile and also total area under curve does not remain constant, 

therefore confirming helium release. We did not fit these profiles into Gaussian shape, because 

fitting is required to accurately determine the diffusion coefficient values in case of helium 

depth profile broadening at higher temperature.   

  From our previous experimental study on TiC and TiN, it appears that helium is strongly 

trapped inside the bubbles and due to extremely large number of native vacancies in ZrC 

(ZrCx, x = 0.92 ± 0.02), the role of vacancies cannot be neglected. These vacancies seem to 

be responsible for large He-V cluster sizes which may have very less mobility. However, this 

is just a hypothesis, which needs to be confirmed by TEM. 
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Figure 6.26c. Helium depth profiles obtained from nuclear reaction analysis for ZrC samples 
implanted with fluence F1 and annealed between 1000 °C -1600 °C. The dotted lines are to 
guide the eyes. These profiles have been obtained using SIMNRA code corresponding to Ed = 
1.3 MeV.  

 

B. Surface modification on post-annealing ZrC implanted with helium 

  ZrC samples implanted with He and annealed at Ta = 1000 °C, 1100 °C, 1500 °C & 1600 °C 

were observed under SEM. No surface changes were observed on as-implanted sample and 

sample annealed at Ta = 1000 °C & 1100 °C. However, samples annealed at Ta = 1500 °C 

showed large sized formation of blisters on the surface (see 6.26d & 6.26e). 
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Figure 6.26d. Blister formation at the surface of ZrC after thermal annealing at 1500 °C 
observed by scanning electron microscopy. Picture on the left corner shows the zoom on a 
blister. 
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Figure 6.26e. Chart representing number of blisters and their size at the surface of ZrC after 
thermal annealing at 1500 °C.  
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  The reason for blister formation was not very clear to us. However, to understand the reason 

behind blister formation, we did a survey on the available literature. In the next paragraph, we 

have quoted some important points: 

  Yadava and co-authors [1] clearly validates the existence of over pressurized bubbles and their 

coalescence to be an essential ingredient of a gas-driven blister formation mechanism. They 

explain that at temperatures lower than one third of the absolute melting temperature the 

bubbles have frequently aligned themselves in the form of superlattices having a structure 

identical and parallel to the host lattice. At higher temperatures (> 0.35 Tm) annealing, bubble 

superlattices no longer exist and randomization occurs leading to a growth of lattice bubbles 

resulting in surface blistering. Evans [2] talks about transition from a blistered to a pinhole 

surface between 0.4 and 0.5 of the absolute melting point. In our case, upto 1600°C (0.45 Tm) 

clear blisters are observed. Perhaps, blister formation at the surface of ZrC indicates the 

presence of highly pressurized He bubbles into the samples below 1500 °C, which releases 

helium atoms from the implantation zone towards surface in order to decrease the pressure. 

However, TEM investigations are important to support this hypothesis. 

  In figure 6.26c, helium depth profile obtained at 1600 °C is not shown, because after annealing 

sample at Ta = 1600 °C, surface had blisters along with the formation of oxidation layer on it. 

Due to this, corresponding helium depth profile obtained was shifted towards right and had 

distorted shape, therefore direct comparison with helium depth profiles at other temperature 

was not possible.  

  Figure 6.26f, shows the zoom over one of the blisters at Ta = 1600 °C, covered with the 

oxidation layer. The chart of blister distribution at Ta = 1600 °C has not been plotted because 

some blister sizes were very small and only slight bump was visible due to the presence of 

oxidation layer on top of it. 
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Figure 6.26f. Blister formation at the surface of ZrC after thermal annealing at 1600 °C 
observed by scanning electron microscopy. 

 

C. TEM OBSERVATION 
 

  Similar to TiN, transverse FIB specimen of as-implanted ZrC samples revealed no 

unambiguous evidence for visible helium bubbles. The FIB specimen of samples annealed at 

Ta ≥ 1100 °C, showed that helium precipitates in the form of bubbles also in ZrC. TEM 

micrographs showing bubbles at implantation zone at Ta = 1100 °C, 1500 °C are shown in figure 

6. 27(a, b). The TEM micrographs show the growth of bubbles from 1100 °C to 1500 °C. 

 

  The transverse FIB specimen also gave us the opportunity to take TEM micrographs on the 

transverse crossection (i.e. from the top to the bottom) of the blister. Figure 6.28a shows the 

interior of the blisters, there are interconnected structures (or cavities) which are present from 

the top to bottom of the blisters. It appears that these channels are gas-filled which are 

transfering helium from the implantation zone to the surface. We have also observed long tube 

like cavity at the interior of the grain boundary (see figure 6.28b). In most of the specimen, the 

tube like cavity in the grain boundary is directly linked to the channels in the blister.    

 

Blister 
covered with 
oxygen layer 
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Fig. 6.27 (a) TEM micrographs of the implantation zone of ZrC samples implanted with fluence  
F1 and annealed at (a) Ta = 1100 °C, (b) Ta = 1500 °C. The dark and white contrast in fig. a & 
b represent helium bubbles in over and under focus conditions, respectively.   
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Fig. 6.28 (a) TEM micrograph taken on interior of the blister of ZrC samples implanted with 
fluence F1 and annealed at Ta = 1500 °C. (b)  Enlongated tube shaped cavity present inside 
the grain boundary. 
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6.3.2.2. COMPARISON STUDY BETWEEN SPECIMENS 

IMPLANTED WITH FLUENCE F1, F2 AND F3 (Part B) 

    

A. NUCLEAR REACTION ANALYSIS 

  Excitation curves have been plotted for samples implanted with fluence F2 and F3, and 

subsequently annealed at Ta = 1100 °C & 1500 °C. The excitation curves are shown in figure 

6.29a & 6.29b, where the incident deuteron energy varies from 1 MeV to 1.8 MeV. Similar to 

F1 fluence, the maximum of excitation curves was found at 1.3 MeV deuteron energy and helium 

depth profiles are extracted from the proton energy spectrum obtained at ED = 1.3 MeV. 

  The most remarkable result that we obtained from figure 6.29a & 6.29b for ZrC are similar to 

the results obtained for TiN and are as follows: if we compare the excitation curves for fluence 

F2 and F3 and also with fluence F1 (fig. 6.26a). We found that at Ta = 1100 °C, the excitation 

curve for F1, F2 & F3 superimpose on their corresponding as-implanted excitation curves within 

the measurement errors. At Ta = 1500 °C, the excitation curves (or proton count) corresponding 

to F1 & F2 fluence have shifted downwards suggesting helium loss. However for lower value of 

fluence F3, the excitation curves at Ta = 1500 °C does not shift downwards and indicates zero 

loss of helium. 
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Figure 6.29a. Excitation curves (proton yield versus incident deuteron energy) measured for 
as-implanted and annealed ZrC samples corresponding to F2 fluence. 
 
 
 

 

Figure 6.29b. Excitation curves (proton yield versus incident deuteron energy) measured for 
as-implanted and annealed ZrC samples corresponding to F3 fluence. 
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  To investigate further, the comparison of helium depth profiles obtained for fluence F1, F2 and 

F3 at Ta = 1100 °C & 1500 °C with their corresponding as-implanted profile has been done. As 

it has been already mentioned, this comparison (in terms of height and FWHM) gives the 

information on helium loss and on range of migration of He-V clusters. 

At Ta = 1100 °C: 

 For all fluence values F1, F2 & F3, the helium distribution obtained from NRA (see fig. 6.30a), 

superimposed (with in the error bars) on their respective helium distributions from as-implanted 

sample.  

At Ta = 1500 °C:   

  For high fluence values F1 and F2, instead of broadening (or lateral spreading), there is a 

shrinkage in helium depth profile and also total area under curve does not remain constant, 

hence it confirms helium release (see fig. 6.30b). Surface blisters have been observed for 

sample implanted with F2 fluence as well.                                                                                                             

However, for low fluence value F3, no change in helium depth profile was observed and it 

completely superimposed on its corresponding as-implanted helium depth profile.  

  The two most important points corresponding to Ta= 1500 °C are:                                                                                                               

● Firstly, helium release occurs only for samples implanted with high fluence values F1 and 

F2. This release has been accompanied with the formation of blisters at the surface. This 

helium loss can be due to the formation of highly pressurized helium bubbles at Ta< 1500 °C.                                                                                                                   

For the samples implanted with low concentration of helium, neither the blisters are formed, 

nor has helium released.  

● Secondly, positioning of helium atoms at Ta = 1500 °C, has not changed in ZrC 

corresponding to all three helium fluence values. It appears that due to large number of native 

vacancies in ZrC, the size of bubbles (or He-V clusters) is large and has less mobility.    
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 Figure 6.30a. Helium depth profiles obtained from nuclear reaction analysis for samples 
implanted with fluence F2 and annealed at Ta= 1100 °C & 1500 °C. The dotted lines are to 
guide the eyes. These profiles have been obtained by SIMNRA code correspoing to Ed = 1.3 
MeV. 

 

                           

Figure 6.30b. Helium depth profiles obtained from nuclear reaction analysis for samples 
implanted with fluence F3 and annealed at Ta= 1100 °C & 1500 °C. The dotted lines are to 
guide the eyes. These profiles have been obtained by SIMNRA code correspoing to Ed = 1.3 
MeV. 
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6.3.3. Conclusion         

Part A 

                    

● The helium lost fraction (f) versus Ta have been fitted by 1st order kinetic law and the 

activation energy of helium release was obtained and is equal to ΔH = (0.77  0.08) eV. 

               

● At Ta = 1500 °C, instead of broadening (or lateral spreading), there is a shrinkage in the 

helium depth profile which is accompanied with helium release. It appears that helium is not 

mobile and is trapped in the form large He-V clusters. Large number of vacancies in ZrC (ZrCx, 

x = 0.92 ± 0.02) seems to be responsible for large clusters. However, this is just a hypothesis, 

which needs to be confirmed by TEM. 

● ZrC samples annealed at Ta = 1500 °C showed large sized formation of blisters on the surface. 

TEM micrographs shows the gas filled channels inside the blisters. 

 

Part B 

   

● The role of implantation fluence on helium mobility in ZrC is similar to TiN. We observed 

that the samples implanted with less quantity of helium (F3) did not show helium release. 

However, under same annealing conditions (at Ta = 1500 °C), the samples implanted with 

higher quantity of helium (F1 & F2) showed helium release.                

● For ZrC, we did not observe broadening of helium depth profile for the samples implanted 

with less quantity of helium (F3) as in TiN, when annealed at higher temperature equal to 1500 

°C. 
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 Chapter 7 

Helium behavior under radiation environment 

 

  In this chapter, important findings on ‘helium behavior in transition metal ceramics under 

radiation environment’ would be presented. As it has been previously mentioned, only 15% of 

time was devoted to conduct experiments and investigate important points on this part of the 

thesis. 

 

7.1. Reminder of experimental approach 

                                                                                                            

   

 

 

 

* All values of dpa have been calculated by SRIM using Full Damage Cascade option. 

 

7.2. Results and Discussion 

7.2.1. Results of sample characterization after damaging the samples by their self-ions 

A. Hardness measurements 

  Nanoindentation techniques were used to measure the hardness induced in the samples after 

implantation of 14 MeV Ti6+ ions into TiN & TiC and Zr6+ ions into ZrC respectively.                

Before damaging the samples, the hardness varied in the following manner: TiC >ZrC >TiN.   

After damaging the samples at 9 dpa, the hardness varied in the same manner with TiC being 

NRA Measurement 

Sample characterization 
after radiation damage             

He implantation      
(2 MeV,                

2.83E16 at. /cm2)                                   
ZrC; Rp = 3.61 µm            
TiC; Rp = 3.88 µm                                                     
TiN; Rp = 3.98 µm 

   Thermal annealing   
(Only done at 1600 °C, 2h,           

if required) 

Damaging the material by self-ion implantation 

ZrC by 14 MeV Zr6+ ions upto 9 dpa*              ; Rp = 2.53 µm            
TiC by 14 MeV Ti6+ ions upto 9 dpa & 27 dpa ; Rp = 2.83 µm                                              
TiN by 14 MeV Ti6+ ions upto 9 dpa & 27 dpa ; Rp = 2.66 µm 
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the hardest, followed by ZrC and TiN i.e. TiC > ZrC >TiN. The hardness have been measured 

in the first micrometer of the sample from the surface.  

  At 27 dpa, the hardness measurement followed the same trend with TiC > TiN, however we 

could not predict the behavior of ZrC due to large experimental time required to damage ZrC 

at 27 dpa. Figure 7.1 shows the penetration depth versus loading for TiN, ZrC and TiC damaged 

at 9 dpa. 

 

 

Figure 7.1. The plot of hardness measurement (penetration depth versus loading) for TiN, 

ZrC and TiC damaged at 9 dpa. 

  

  It is important to recall that during hardness measurement, the more the needle penetrates, 

lesser is the hardness measured. Figure 7.1 shows the cyclic loading for different materials and 

we can clearly observe that during loading needle penetrates most in TiN and least in TiC. This 

means TiC is hardest among all the investigated materials and does not allow deep penetration 

into its matrix as compared to other two materials. 

  We also revealed that the hardness of the transition metal ceramics TiC, ZrC and TiN does not 

increase linearly with fluence. The hardness ‘increases and then decreases’ with the increase 
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of fluence (see figure 7.2). For example in case of TiC, TiC damaged at 9 dpa exhibit more 

hardness than TiC damaged at 27 dpa. Similar behavior has been observed for TiN. Additional 

fluence values must be investigated in order to localize the position of the maxima in the 

hardness curve. Due to only single point available for ZrC at 9 dpa, the hardness versus damage 

curve for ZrC has not been presented here. 

 

 

Figure 7.2. The plot of hardness versus dpa for TiC & TiN (this work) in comparison with 

other materials from literature. The full and dotted lines are guide to the eyes. 

 

B. X-Ray diffraction investigations 
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at grazing incidences (2 and then 1°) on virgin and damaged TiC, ZrC at 9 & 27 dpa. The 

diffraction diagrams were recorded at an ambient temperature with step size of 0.1° from 20° 

to 100° in 2θ angle.  

  Figure 7.3 shows the comparison of the X-ray diffractograms obtained for a virgin and 

damaged TiC samples. 

  
 
Figure 7.3. Comparison of the X-ray diffractograms obtained for a virgin and damaged TiC 
sample at 9 and 27 dpa. 
     

  Figure 7.4 shows the zoom on two peaks [110] and [200] of the diffractogram shown in figure 

7.3 The peak position of the sample damaged at 9 dpa and 27 dpa is little shifted towards left 

(towards decreasing 2  values). To satisfy the condition of Bragg’s law for constructive 

interference, normally if the value of θ decreases, the value of d increases (nλ= 2d sin θ). 

Therefore, the shift in the peak position of damaged sample towards θ indicates lattice 

expansion. However, precise information on lattice expansion can be calculated by using a 

mathematical formula which has been previously mentioned in chapter 4. 
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Figure 7.4. Zoom on both [110] and [200] peaks of the diffractogram. Comparison of the X-

ray diffractograms obtained for a virgin and damaged TiC sample at 9 and 27 dpa. 

 

  The difference between TiC samples damaged with 9 dpa & 27 dpa is not significant in terms 

of change in θ. Therefore, the difference in swelling between TiC sample damaged at 9 and 27 

dpa could not be calculated. However, with the increase in dpa, the intensity of the damaged 

peak seems to decrease. It is possible that on further increasing the damage value (or dpa), these 

peaks completely disappear. 

  Similar curves were obtained for ZrC. Table 7.1 presents the lattice parameter obtained for 

TiC and ZrC. The lattice parameter expansion after radiation damage in terms of percentage 

has also been expressed in table 7.1. 
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 TiC                   ZrC                

Lattice Parameter (Å) at 0 dpa a= 4.3300 a= 4.6938 

Lattice Parameter (Å) at 9 dpa a= 4.3447 a= 4.7064 

Change in lattice parameter Δa= 0.0146 Δa= 0.0126 

Lattice expansion at 9 dpa 0.34% 0.27% 

      

Table 7.1. The calculation of lattice expansion for TiC and ZrC after radiation damage. 

 

7.2.2. Results of NRA measurement 

  After damaging the samples by self-ions, helium atoms were implanted at the distance of ~1 

µm (towards the sample depth) from the damage zone to observe ‘how damage (or vacancies) 

created by self-ions affect the mobility of helium’. We have also annealed the pre-damaged 

helium implanted samples at 1600 °C for 2h to investigate the combine effect of thermal and 

radiation damage. To observe this, nuclear reaction analysis was carried out to know the 

position and quantity of helium atoms into pre-damaged samples. 

  The classical approach was followed during NRA experiments. The excitation curve were 

plotted for non-damaged samples implanted with helium in order to compare with pre-damaged 

samples implanted with helium atoms. It is important to mention, due to large experimental 

time required to obtain complete excitation curves, sometimes only single deuteron energy 

method (SDEM) was applied to obtain helium loss. 

A. Results of NRA measurement: TiN 

  The excitation curves have been plotted for TiN implanted with 2 MeV helium, TiN (pre-

damaged with self-ions and implanted with helium), TiN (pre-damaged with self-ions, 

implanted with helium and annealed at 1600 °C). The energy of deuteron (Ed) was varied 

between 0.7 MeV to 1.4 MeV. 

  If we carefully notice figure 7.5, the excitation curve for TiN implanted with 2 MeV helium 

and TiN (pre-damaged with self-ions and implanted with helium) superimposed on each other 

with in the measurement errors. It suggests that proton count received from damaged and non-
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damaged sample implanted with helium do not change. Hence, radiation damage up to 9 dpa 

does not induce any change in helium retention behavior of the material. However, when these 

pre-damaged helium implanted TiN samples were annealed at 1600 °C, there was 21 % loss of 

helium. It is important to mention that we cannot compare this 21 % loss with the study mention 

in previous chapter due to the difference in the value of helium implantation fluence and range. 

The experiments on the samples damaged at 27 dpa are planned in near future.  

   

       

Figure 7.5. Excitation curves for TiN implanted with 2 MeV helium, TiN (pre-damaged with 
self-ions and implanted with helium), TiN (pre-damaged with self-ions, implanted with helium 
and annealed at 1600 °C). 
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B. Results of NRA measurement: ZrC 

  Due to large experimental time required to do analysis by excitation curve method approach, 

only single deuteron energy method (SDEM) was applied for NRA measurements for ZrC. 

Figure 7.6 shows proton spectra obtained for deuteron energy Ed = 1 MeV for ZrC implanted 

with 2 MeV helium, ZrC (pre-damaged with self-ions and implanted with 2 MeV helium), ZrC 

(pre-damaged with self-ions, implanted with helium and annealed at 1600 °C). 

 

             
Figure 7.6. Proton spectra obtained for deuteron energy Ed= 1 MeV for ZrC implanted with 2 
MeV helium, ZrC (pre-damaged with self-ions and implanted with helium), ZrC (pre-damaged 
with self-ions, implanted with helium and annealed at 1600 °C). 

   

  From the spectras plotted in figure 7.6, helium loss was calculated. It is evident from figure 

7.6 that pre-damaging samples at 9 dpa does not induce any loss of helium atoms, however after 

annealing pre-damaged samples to 1600 °C, about 33 % of helium has been lost from the 

sample. 
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C. Results of NRA measurement: TiC 

  Single deuteron energy method was also applied for measurements for TiC. Similar to TiN & 

ZrC, the quantity of helium retained in the pre-damaged sample and non-damaged sample was 

equal within the error bars. However after annealing at 1600 °C, there was 38 % of helium loss 

from the sample. The spectras corresponding to these observations are shown in figure 7.7. 

 

Figure 7.7. Proton spectras obtained for deuteron energy Ed= 1 MeV for TiC implanted with 2 
MeV helium, TiC (pre-damaged with self-ions and implanted with helium), TiC (pre-damaged 
with self-ions, implanted with helium and annealed at 1600 °C). 

 

7.3. Conclusion 

(i) It is rather common to observe that the hardness of materials increases after radiation 

damage. It is typical to believe that gliding of dislocation in the matrix of the material is 

responsible for its ductile nature. After radiation damage, defects are formed for eg. vacancies, 

interstitial and their clusters etc. These defects acts as hindrance or resist the motion of 

dislocation and increases the hardness of the material. But the reason behind non-linear 

variation of hardness with fluence is still not clear. 

(ii) It is also common to observe an increase in lattice parameter after radiation damage. 

However, it is remarkable to notice the presence of pointed peaks in the diffractograms obtained 
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from the samples damaged at high doses corresponding to 9 & 27 dpa. These pointed peaks 

corresponds to the crystalline nature of the samples and indicates that TiC and ZrC report no 

signs of amorphisation at damage level corresponding to 27 dpa. This observation helps in 

concluding that transition metal ceramics have high radiation tolerance. This statement is also 

supported by very low magnitude (≤ 0.5%) of lattice swelling measured at 27 dpa. 

(iii) The results obtained on helium mobility under radiation damage do not surprise us, because 

of the presence of large number of native vacancies in transition metal ceramics. We speculate 

from these experiments that the number of vacancies created by self-ion irradiation is not 

sufficient in comparison with already present large number of native vacancies to be able to 

induce any detectable effect on helium mobility. However, damaging the samples 

corresponding to higher dpa can bring modification in the mobility of helium. 
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Chapter 8                                                                                                                    

General Discussion  

 

  In this chapter, we have compared and discussed important results on TiN, TiC and ZrC. At 

the end of this chapter, most important points are concluded. Some results shown in this chapter 

have already been published. This paper can be obtained from the citation given below:  

  Helium mobility in advanced nuclear ceramics, S. Agarwal, P. Trocellier, Y. Serruys,                                                                                       

S. Vaubaillon, S. Miro, Nuclear Instruments & Methods in Physics Research Section B, 327 

(2014) 117–120. 

 

A. Helium release in TiC, TiN and ZrC 

  Large pieces of polycrystalline TiC, TiN and ZrC were implanted with 3 MeV helium ions at 

the same time with fluence (F1 = 5 x 1016 at./cm2). These large samples were cut into small 

pieces and subsequently, sealed in quartz tube. Five sets containing three quartz tube (each 

containing one different type of sample) were heated at five different temperatures between 

1000 °C-1600 °C for 2 hours. NRA was done on as-implanted and annealed samples to quantify 

and determine the position of helium atoms. He lost fraction versus annealing temperature for 

TiC, TiN and ZrC have been plotted and fitted together in figure 8.1. These three curves are 

taken from figure 6.2, 6.10b and 6.26b. 
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Figure 8.1. Helium lost fraction as a function of temperature fitted according to first order 
kinetics law in order to calculate activation energy for He release. 
 
 
  The values of activation energies derived from figure 8.1 are compiled in table 8.1. 

 
                                               
 
 
 
 
 
 
Table 8.1. Comparison of activation energy for He release obtained for TiC, TiN and ZrC.  
 

  The three microstructural parameters that appear to be responsible for different helium release 
in these samples are: 

● Difference in grain boundary densities in three samples due to their different grain sizes.                                                                  
● Difference in the concentration of native vacancies due to their different stoichiometric 
ratios.                                                                                                                                              
● Difference in the type and concentration of porosities. 

We have plotted the stoichiometric ratio of each sample versus their helium loss in figure 8.2. 
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Figure 8.2. Linear variation of the activation energy of He release versus stoichiometric ratio 
of investigated materials. 
 
 

 
 
Figure 8.3. Linear variation of the activation energy of He release versus average grain size 
of investigated materials. 
 

  From figure 8.2 and 8.3, it appears that helium release is directly proportional to the grain 
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stoichiometric ratio. It seemed quite clear that samples with small grain size have large density 

of grain boundaries which provide large density of pathways for helium to release easily. But 

the role of stoichiometric ratio to release helium is not so clear. However, Askern in 1967 has 

reported the similar effect, the samples with low C/Zr ratio released more gas as compared to 

the samples having C/Zr ratio close to 1. See p63 for more details. 

  From µ-NRA experiments, we found that the helium was not homogeneously distributed 

inside the grains in as-implanted TiC & TiN (result not displayed in this thesis). This 

heterogeneous distribution could be due to the excessive trapping of helium at (or near the 

intragranular porosities). But this is just a hypothesis, as the position of pores and the places 

where the helium is present in excess quantity cannot be compared. 

  Good quality transition metal ceramics are difficult to fabricate. We tried extremely hard to 

obtain the samples in which only one microstructural parameter varies, so that we can directly 

compare the results on these samples and conclude which sample has better helium retention 

and diffusion properties. Not only this, it was even difficult to obtain one type of sample (for 

e.g., ZrC or TiC or TiN) in which the role of one parameter could be studied. For e.g. we wanted 

to study the role of native vacancies in ZrC, we already had ZrC0.92, we were successful in 

obtaining ZrC0.95 and ZrC0.80 but surprisingly all the native vacancies were filled with O atoms. 

Therefore, it was not possible to study separately the role of one microstructur- al parameter on 

helium release. 

 But good news is that during this dissertation, we were able to conclude some common points 

regarding helium retention and diffusion in TiN, TiC and ZrC which were not directly 

dependent on microstructural parameters (if varied in close interval). They include: 

● ‘No helium release takes place at the room temperature’ as the helium implantation fluen-

ce was found equivalent to the total helium concentration present in as-implanted samples 

measured by NRA experiments conducted approximately two weeks after He implantation. 

● ‘Excitation curves at Ta= 1000 °C & Ta= 1100 °C superimposes on each other and then 

curves at Ta= 1500 °C & Ta= 1600 °C superimposes on each other with in the error bars in 

TiN, TiC and ZrC’. This indicates that in these type of materials, significant quantity of helium 

start releasing at Ta= 1100 °C. However, once helium has started releasing, it is not directly 

proportional to the increase in temperature. It is important to note that here, we are comparing 

different annealing temperatures when time of annealing is kept same. 
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● ‘The helium retention behavior is almost same for all the three samples’ as activation 

energy of helium release varies in the small interval between (0.77  0.08) - (1.2  0.12) eV.  

● The direct comparison of results obtained on helium retention behavior in TiC, TiN and ZrC 

with the results on SiC in literature cannot be done due to different helium introduction 

conditions. For 3 MeV energy of helium implantation in SiC, some results are shown in table 

8.2. corresponding to different grain sizes and different fluence values. 

 

 
Table 8.2. Summary of some work on helium retention in SiC. 

 
 

From table 8.2, the work mentioned in 1st and 2nd row are done by our group and could be 

directly compare with the results on TiN, TiC and ZrC. We can clearly see from this table that 

the samples with small grain sizes (1 µm- 100 nm) releases large amount of helium at 1100 °C, 

however sample implanted with large grain size (3 µm) do not release helium at 1100 °C.   

 

B. Helium diffusion in TiC, TiN and ZrC 

B.1. Position of helium in as-implanted samples 

  He depth profiles for as-implanted TiC, TiN and ZrC have been taken from fig. 6.6a, 6.10c, 

6.26c and have been plotted together in figure 8.4.  

Grain Size    

(SiC type) 

Energy & Fluence                           

of He ions 

Annealing                           

Temperature  ( °C) 

Helium                          

release (%) 

                                                   
References 

1 µm- 100 nm                    

(3C-SiC) 
3 MeV, 5 x10 16 at./cm2 1100 °C 40 % See Annex 4 

3µm                                 

(3C-SiC) 
3 MeV, 5 x10 16 at./cm2 1100 °C No helium release See Annex 4 

Single crystal                        

(4H-SiC, 6H-SiC) 
3 MeV, 1 x10 16 at./cm2 1150 °C More than 40 % [1] 
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  From figure 8.4, it appears that the tailing effect in helium depth profiles increases from TiN 

to TiC, followed by ZrC. In the same order, both stoichiometric ratio and grain size varies 

among these samples. 

 

Figure 8.4. Comparison of helium depth profile obtained corresponding to as-implanted 

samples. 

  From previous discussion in their respective chapters, we speculate that the tails corresponds 

to the small stable He-V clusters. For TiN, even these clusters which are present in tails were 

too small to be visible under TEM and only the big He-V clusters present in the main peak were 

visible as bubbles. It is perhaps possible that the combination of large GB density and native 

vacancies is responsible for large tailing effect (or double population) in studied samples 

especially in ZrC. Due to large number of native vacancies in ZrC, there are large number of 

small mono-vacancy (or di-vacancy) cluster, which are either captured at GBs (or drifted by 

GBs) towards sample surface.  

 

B.2. Helium diffusion in annealed samples 

  Our group is not the first one to say that “helium is present in the form of double peaks”. 

This has been previously observed experimentally in 1976 at Sandia National laboratory by 
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R.S. Blewer and L.A. Langley [2] and was verified by using simulations. Following this, it has 

been observed by many groups in CEA [1,3].  

  However, the most interesting is the similar type of diffusion behavior observed by Blewer 

and Langley. They verified that peak (or the tail) that is present closed to the surface retained 

the helium during which the main peak has started releasing it. We have observed the same 

behavior in TiC and ZrC, the first helium release starts from peak close to the end-of-range 

(EOR). For ZrC, up to 1600 °C, there was no helium release from the tail during which the 

large amount of helium released from the main peak. For TiC, until 1500 °C, there was no loss 

of helium from the tail present close to the surface. However, to simplify our study, we 

neglected the tail in TiN. Blewer and Langley speculated that the helium present in tails (or the 

peak closer to the surface) have smaller He-V clusters, however, the main peak present at the 

end-of the range have large He-Vclusters. Our study is also built on the similar hypothesis. 

  It is important to note “that the values of diffusion coefficient derived from the application 

of fick’s law are not the true diffusion coefficient values of 3He in the material”. These are 

the effective (or apparent) diffusion coefficient values where the mobility of 3He is affected by 

material’s microstructure (such as native vacancies, grain boundaries, porosities, dislocation 

lines etc.) and also by implantation induced defects. For TiN and TiC, due to the broadening of 

helium depth profiles at higher temperature, we were successful in calculating effective helium 

diffusion coefficient values; conversely, due to the shrinkage of helium depth profile at higher 

temperature for ZrC, it was not possible to calculate effective helium diffusion coefficient 

values.  

  Overall, this study gave an important interval in which effective helium diffusion coefficient 

varies for TiN and TiC.  

For TiN: DHe = 3.58E-19 m2s-1 to 5.296E-18 m2s-1 (from Ta = 1100 °C to 1600 °C).                         

For TiC: DHe = 4.20E-18 m2s-1 to 2.59E-17 m2s-1 (from Ta = 1100 °C to 1600 °C). 

 

B.3. He interaction with defects 

  Upon introduction into the bulk material, helium atom undergoes three distinct processes: 

diffusion (or transport), bubble nucleation and bubble growth. The diffusion is the result of 
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random jumps from one stable or meta-stable lattice site to another and is the key ingredient for 

bubble nucleation and growth. 

  From literature on TiC [4] and TEM experiments on TiN, for helium implantation fluence 

high annealing temperature equal to 5 x 1016 at./cm2 and 1100 °C, respectively, major quantity 

of helium trapped in the form of bubbles (or stable He-V clusters) with the size from 0.75 nm 

to 1 nm have been observed. Therefore, it can be concluded that in the studied material most of 

the helium atom undergoes dissociation mechanism where a He atom in a vacancy (or He-V 

clusters) is dissociated from its position and diffuses interstitially until re-trapped by another 

vacancy (or clusters). Our preliminary TEM observation on ZrC, also revealed the formation 

of bubbles but detailed results and discussion on ZrC can be done, once all the TEM 

experiments our completed. 

  Regarding helium bubble nucleation and growth, we can discusss in detail with respect to 

observations only on TiN. The presence of native vacancies in TiN have complexed our 

explanation on helium bubble growth. Our hypothesis after many discussions and experiments 

is following: Like in other nuclear materials, helium upon introduction interacts with vacancies 

(they could be either native vacancies plus the vacancies created during helium implantation). 

In TiN, due to presence of large number of native vacancies, the net concentration of vacancies 

is high, due to which all the implanted helium interacts with single vacancies to helium mono 

(or di-vacancy clusters) which are small and very stable. On annealing, these small clusters start 

to agglomerate (or join together) and grow to a size which is bigger and stable and can be called 

as bubble nuclei. It is assumed that the number of bubble nuclei is proportional to the 

concentration of initially formed (mono or di) He-V clusters. These bubble nuclei are very 

stable and generally can be seen under TEM and have the size between (0.5-1) nm. We believe 

that the very small bubble seen at 1100 °C in TiN corresponds to the bubble nuclei. Following 

this, these bubble nuclei have grown to bigger bubbles. The growth of bubble nuclei in TiN 

seems to be a temperature dependent phenomenon which is sometimes accompanied by 

decrease in bubble density (at Ta = 1100 °C to 1400 °C) and sometimes the density has remained 

constant (from Ta = 1400 °C to 1600 °C).  

  It is also important to consider that even at temperatures where the bubbles can be observed 

under TEM, there is significant concentration of helium which is present in the form of small 

clusters having size below the detection limit of the microscope. And, at high annealing 
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temperature, they get absorb and therefore, leading to growth of bubbles. However, there is a 

role of vacancy absorption during bubble growth, which cannot be neglected. 

  Regarding the pressure calculation inside the bubbles, applying Trinkaus equation of state is 

an effective procedure, but few points are important to keep in mind:                                                                                    

● Firstly, the concentration of helium should be known (or measured) corresponding to the 

position from where the TEM micrographs of bubbles are taken for pressure calculation.                                       

● Secondly, the approach is more accurate at higher annealing temperatures, because in this 

case, most of the helium is present in the clusters having sizes which are enough to be detect- 

ed under TEM. 

 

C. He fluence effect 

  Helium diffusion mechanisms and interaction of helium with the material defects depends 

on the quantity of helium introduced in the material.  

  For both TiN and ZrC, we observed that the helium retention properties of the material are 

altered when the quantity of implanted helium is modified. In both samples, 100% helium has 

been retained into the material when the quantity of helium is less. However, under the same 

annealing conditions, helium release has been observed for samples implanted with higher 

concentration of helium.  

  From TEM and NRA experiments, we concluded that when the quantity of introduced helium 

is less, upon post-implantation annealing large portion of this quantity remains in the form of 

small clusters, which are too small to be visible under TEM and perhaps due to their small size, 

they diffuse slowly through substitutional mechanism (where helium atoms jumps from one 

substitutional position to another) and hence their release from the material is delayed. 

  However, when the quantity of introduced helium is large, upon post-implantation annealing, 

most of the helium is present in the form of bubbles, these bubbles can be highly pressurized 

(or can be made up of large unstable He-V clusters) which releases helium atom either to reduce 

pressure or become stable. These helium atoms either can get re-trapped by another bubbles or 

He-V clusters or could be released out of the sample through interstitial spaces.  
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D. Helium behavior under radiation damage 

   Transition metal carbides and nitrides are stable on wide range of stoichiometric ratios. 

Therefore, it is reasonable to expect a large stability of these materials under ion irradiation due 

to conservation of their structure with large number of vacancies. The results obtained on 

helium mobility under radiation damage do not surprise us, because of the presence of large 

number of native vacancies in transition metal ceramics. We speculate from the experiments  

conducted to study helium behavior under radiation damage that the number of vacancies 

created by self-ion irradiation is not sufficient in comparison with already present large number 

of native vacancies to be able to induce any detectable effect on helium mobility. However, 

damaging the samples higher than 9 dpa can bring modification in the mobility of helium. 

  We have observed the hardness and increase in lattice parameter of materials increases after 

radiation damage. Hardness is believed to occur due to resistance in the gliding of dislocation 

in the material matrix. Defects formed after radiation damage for eg., vacancies, interstitial and 

their clusters etc. acts as hindrance or resist the motion of dislocation and increases the hardness 

of the material. But the reason behind non-linear variation of hardness with fluence is still not 

clear. 

  We have also observed the presence of pointed peaks in the diffractograms obtained from the 

samples damaged at high doses corresponding to 9 & 27 dpa for TiC and ZrC. This confirms 

no signs of amorphisation at 27 dpa. This observation helps in concluding that transition metal 

ceramics have high radiation tolerance. This statement is also supported by very low magnitude 

(≤ 0.5%) of lattice swelling measured at 27 dpa. 
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Conclusions and Perspectives 

 

Important Conclusions 

  This dissertation is focused on the study of helium behavior in advanced nuclear ceramics 

which are candidates for fuel coatings in GFR and have been considered as potential cladding 

materials for SFR. The most promising candidates for ceramic coatings are ZrN, ZrC, TiN, TiC 

& SiC due to a combination of neutronic performance, thermal properties, chemical behavior, 

crystal structure, and physical properties. 

   This study can also be extended to fusion energy systems due to the presence of helium in 

fusion reactors and the use of TiC & TiN as coatings on materials used for permeation barrier 

against tritium. 

  The main objectives of this PhD work includes: i) to calculate diffusion and migration energies 

of helium under different experimental conditions by applying theoretical models on 

experimental data. ii) to investigate the microstructural evolution due to helium accumulation 

and conversely, identifying the role of microstructure such as grain boundaries, native vacancies 

and porosities on helium release. iii) to know the role of helium introduction conditions on 

helium diffusion. iv) to establish and validate an approach to calculate pressure built by helium 

gas inside the bubbles and to verify if the pressure approaches the mechanical stability limit.  

  To accomplish the objectives which are mentioned above, 3 MeV 3He+ ions were implanted 

with fluence of 5x1016 at./cm2 (corresponding to ~ 1.7-2 at.%) into polycrystalline samples of 

TiC, TiN and ZrC. Subsequently, thermal annealing at various temperatures between 1000 °C 

and 1600 °C for the time period of 2 hours was carried out. He depth profiling experiments 

were conducted on as-implanted and annealed samples using the 3He(d,p0)4He nuclear reaction 

and mathematical models like AGEING and SIMNRA were used to calculate various helium 

migration parameters. TEM experiments were conducted to observe the microstructural 

evolution, for eg., formation of helium bubbles in the implantation zone and grain boundaries, 

etc. The samples were also implanted with various values of helium fluence to study the role of 

helium introduction condition on diffusion and retention of helium.  
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  We concluded that the helium retention behavior is almost same for all the three samples. The 

activation energy of helium release varies in the small interval between (0.77  0.08) eV- (1.2 

 0.12) eV. This small variation in the activation energy is directly related to their 

microstructural parameters such as grain boundary densities and stoichiometric ratios. 

However, exclusively, blister formations due to helium release have been only observed at the 

surface of ZrC. 

  We have obtained doubly peak helium depth profile for as-implanted and annealed samples. 

The first peak is present at the end-of-range region and holds major portion of the implanted 

helium, whereas the second peak is the tail which is present towards the surface and holds very 

less quantity of helium. We speculated that the tails corresponds to the small stable He-V 

clusters and up to certain temperature, it retained the helium during which the main peak start 

releasing it. The helium release from main peak is attributed to the dissociation mechanism 

which is confirmed by the presence of bubbles under TEM; however the helium release in the 

tail has been delayed and perhaps corresponds to the substitutional vacncy type diffusion 

mechanism. 

 The following values of effective helium diffusion coefficient have been derived using Fick’s 

law: 

For TiN: DHe = 3.58E-19 m2s-1 to 5.296E-18 m2s-1 (from Ta = 1100 °C to 1600 °C).                         

For TiC: DHe = 4.20E-18 m2s-1 to 2.59E-17 m2s-1 (from Ta = 1100 °C to 1600 °C). 

The values of activation energy of helium diffusion derived by fitting above values from 

Arrhenius law are 2.50 ± 0.25 eV and 1.05 ± 0.2 eV for TiC and TiN, respectively. 

  We also revealed the presence of bubbles and their growth under TEM on TiN samples 

annealed at Ta ≥ 1100 °C. The value of apparent activation energy (Er) of bubble growth was 

derived and is equal to Er = 0.38 ± 0.03 eV. This value is in agreement with the apparent 

activation energy of helium bubble growth in other nuclear materials. The pressure values inside 

the helium bubbles formed in TiN annealed at Ta ≥ 1100 °C were calculated by applying 

Trinkaus equation of state. The pressure value at Ta = 1600 °C is close to the equilibrium 

pressure value of ~ 2 GPa. However, the pressure values calculated at Ta ≤ 1500 °C, had lot of 

uncertainity because large fraction of the bubbles at these temperatures have sizes below the 

resolution of TEM which has contributed to large errors in the density calculation of bubbles.   
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  While investigating the role of helium introduction condition on diffusion in TiN, TEM 

investigations revealed that the samples implanted with lower concentration of helium diffuses 

to longer distances as compared to the samples implanted with higher concentration of helium. 

TEM investigations also revealed that the density of the bubbles is linearly proportional to the 

fluence, however their size did not evolve with fluence and remained closed to the size of bubble 

nuclei. These observations were made at Ta = 1100 °C. At higher temperature (Ta = 1500 °C), 

because of bubble growth, the density of the bubbles is not proportional to the fluence and their 

sizes were also different. The role of implantation fluence on helium mobility in ZrC is similar 

to TiN.  

  We did not observe any detectable change in helium mobility under radiation damage. It could 

be because the vacancies created during helium implantation and radiation damage are very less 

as compared to already present large number of native vacancies in transition metal ceramics.  

 Finally, we can conclude that TiN, TiC and ZrC have excellent and similar helum retention 

property. The only remarkable difference was observed in terms of different surface changes 

on these samples. Like in other nuclear materials, helium precipitates in the form of bubbles in 

the implantation zone and phenomenas such as grain boundary cavitation have also been 

observed in these samples. The pressure inside the bubbles at higher temperature is closed to 

equilibrium pressure value. We also concluded that helium retention and diffusion properties 

depends on helium introduction conditions for e.g., samples implanted with lower concentration 

showed better helium retention properties.  
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Perspectives 

 

  We believe that more experiments can be conducted in the future to explore more scientific 

information related to this topic. Some of which are: 

● To implant helium very close to the surface and to study helium release (or de-trapping) from 

He-V clusters through THDS (Thermal desorption Spectrometry). By this technique, we can 

separate the activation energies corresponding to each type of He-V clusters. ERDA (Elastic 

recoil detection analysis) experiments which are known for better depth resolution can also be 

done on samples implanted with helium very close to the surface to obtain helium depth 

profiles. 

● Insitu annealing during helium implantation can be done to obtain more information on the 

role of temperature on bubble nucleation during helium supply. These experiments can also 

give information on role of implantation temperature on helium release, because implantation 

at higher temperature can lead to recombination of defects and hence reducing the number of 

vacancies for helium to interact.   

● Samples can be annealed to temperatures higher than 1600 °C to know the role of helium 

release on bubble growth and blister formation. However, the facility to heat samples more that 

1600 °C is rarely available. 

● Insitu annealing can also be done during TEM experiments on as-implanted FIB foils, this 

kind of experiments will help in reducing errors while calculating activation energies of bubble 

growth, because same set of bubbles are followed during their growth from low temperature to 

high temperature. 

● Raman spectroscopy can be done on FIB specimens of as-implanted and annealed samples to 

obtain the entire depth distribution of defects. 

● The similar kind of experiments can be used to study similar material like ZrN, HfC and HfN 

and can also be extended to study carbonitrides and borides. 

● One can also compare helium depth profiles obtained (by dual beam experiments in which 

the simultaneous implantation of 3He takes place with heavy ions for example, self ions or gold 

ions) with the profiles obtained on helium implanted pre-damaged samples.  
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● The similar set of experiments could be planned to study the thermal/radiation behavior of 

hydrogen in the same type of ceramics. The study of hydrogen migration is crucial in these type 

of materials due to their candidature as coating materials in fusion reactors. 

● Due to the fact that both hydrogen and helium are produced in large quantites in the core of 

fusion reactors, simultaneous dual implantation study of He and H can also be done.  
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ANNEX 1 

COMPRESSIBILITY FACTOR 

 

Let us recall what is the compressibility factor?  

The compressibility factor is a measure of how much the thermodynamic properties of a real 

gas deviate from those expected of an ideal gas.  

It may be thought of as the ratio of the actual volume of a real gas to the volume predicted by 

the ideal gas at the same temperature and pressure as the actual volume. 

The ideal gas law is defined as: PVm =RT                                                                                               

And the ideal gas corrected for non-ideality is defined as: PVm = ZRT                                                         

where P is the pressure, Vm is the molar volume, Z is the compressibility factor, R is the 

universal gas constant, T is the temperature.  

The compressibility factor, as mentioned earlier, may also be expressed as:   

                                                   Z = ݈ܽݑݐܸܿܽ
݈ܽ݁ݎܸ

 

It is important to note that:       

1. the value of Z tends toward 1 as the gas pressure approaches 0, where all gases tend 

toward ideal behavior.                                                                                                                                              

2. the value of Z is less than 1 at intermediate pressures because the intermolecular forces of 

attraction causes the actual volumes to be less than the ideal values.                                                                   

3. the value of Z is greater than 1 and ultimately tends toward infinity at high pressure 

because the intermolecular repulsive forces cause the actual volumes to be greater than the 

ideal values.                                                                   
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ANNEX 2 

       

In this annex, an example which details ‘the calculation of pressure inside the bubbles’ has 

been provided. To illustrate this point , we have calculated the pressure inside the bubbles 

formed in TiN implanted with 5 x 1016 helium atoms/cm2 and annealed at Ta= 1600 °C. 

STEP 1: To calculate CHe i.e. the number of helium atoms per nm3.      

To complete this step, the maximum of helium depth profile obtained for TiN at Ta= 1600 °C 

has been taken: 

                   

Figure AII.1. Helium depth profile obtained from nuclear reaction analysis for samples 

implanted with fluence F1 and annealed at 1600 °C. 

 

The maxima of this curve denotes the maximum helium atomic fraction present in TiN after 

annealing at Ta= 1600 °C. This quantity can be easily converted into helium atoms/nm3 by 

dividing it with total number of TiN atoms present per nm3. 

From the above curve and density of atoms in TiN (10.48E22 atoms/cm3). We get:                                     

CHe i.e. the number of helium atoms per nm3 = 0.524 atoms/nm3. 
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STEP 2: To calculate CV i.e. the number of vacancy per nm3. 

To complete this step, we take the TEM micrograph taken at the distance of 6.29 µm 

(corresponds to the center of the helium depth profile shown in fig. 1) from the surface of the 

sample (or transverse FIB specimen). 

                                        

 

Figure AII.2. TEM micrograph showing bubbles at the center of implantation zone of TiN 
(implanted with fluence F1 and annealed at Ta = 1600 °C). The white contrast represt the 
bubbles  

 

From this TEM picture, we calculated the bubble density and mean size. The bubble density 

and the mean diameter came out to be 1.15E-04 bubbles/nm3 and 2.75 nm. 

 

 

By multiplying VB ( ஻ܸ  = ସ 
ଷ
 ஻ݎߨ

ଷ ) with density. 

We get, Vc = 0.0011283 

 

20 nm

Vol. occupied by the total number of vacancy (Vc) = Density of the bubble x VB (vol. of the bubble)  (II.1) 
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To improve the accuracy of the above measurement, complete integration of the size 

distribution (corresponding to TEM micrograph at Ta = 1600 °C) can be done. We can also 

multiply, the density of the bubble in each bar of the histogram with the corresponding volume 

of the bubble and finally it could be added to find the total volume occupied by the vacancy. 
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Figure AII.3. Size distribution of helium bubbles in the implanted zone of TiN annealed at 
1600 °C for 2h. 

 
In the above size distribution, there are 7 vertical bars. But the major contribution of the bubbles 

come from 2nd, 3rd and 4th vertical bar. In the table below, we have calculated the contribution 

of Vc from each bar separately. 
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nthbar Diameter    

(nm) 

 

Volume of the 
bubble 

= ࡮ࢂ  ૝ 
૜
࣊ ૜࢔ࡰ

ૡ
 

No  of  
bubbles 

Fraction of 
bubbles                     

No. of bubble 
(correspondin
g to nth bar)/ 
total no. of 

bubble) 

Density fraction 
(Fraction of bubbles 

x total density)                      
Total density =       

1.15E-04 
bubbles/nm3 

Volume fraction 
occupied   by 

bubble  in nth bar 

(dB X VB) 

2nd D2=2.25 5.964112266 34 0.4047619 d2=4.65476E-05 Vol.2= 0.000277615 

3rd D3=2.75 10.88920909 38 0.45238095 d3=5.20238E-05 Vol.3= 0.000566498 
 

4th D4=3.25 17.97414904 12 0.14285714 d4=1.64286E-05 Vol.4= 0.00029529 

   Vol. occupied by the vacancy in total number of bubbles (Vc)   = ∑ Vol.2+ Vol.3+Vol.4  = 0.0011394 

   

          Table AII.1 Calculation of Vc by the integration of the histogram shown in figure AII.3. 

 

If we consider that the volume occupied by each vacancy is equal to the volume occupied by each atom. 

Considering the fact that, TiN has fcc crystal structure:                                                                                      

The volume occupied by one atom in TiN (Vat) = a3/4                                                                                                

where a is the unit cell edge length (or lattice parameter).                                                                                          

For TiN, a = 4.2407E-4 Å therefore, vol. occupied by one atom in TiN (Vat) = 19.0656958 Å3  

Now, if we divide, the total volume occupied by the vacancies by the volume occupied by one 

vacancy i.e. (VC/Vat), we obtain the concentration of vacancy i.e. Cv. 

Finally, we get Cv = 
ࢉࢂ

࢚ࢇࢂ
  = 0. 58132804 Vacancy/nm3. 

 

STEP 3: Calculation of v (i.e. volume per helium atom (in Å3)) 
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By dividing CHe/Cv , it will denote the number of helium atoms per vacancy;                                                         

On multiplying Vat at the denominator  ஼ಹ೐
஼ೡ∗ ௏ೌ ೟

 , we derive helium atoms per unit volume.                             

And reciprocal of this gives v (i.e. volume per helium atom (in Å3)). 

For TiN annealed at 1600 °C, we get CHe/Cv= 0.90138446                                                                                      

And finally we obtained, v (i.e. volume per helium atom (in Å3))                                                                    

v (Å3) = 21.15157024 

 

STEP 4: Calculation of the reduced particle density ρ = ࢒࢜/v                                                                                                

We already found the value of v (i.e. volume per helium atom (in Å3)) 

The value of ݒ௟ could be derived by the following equation: 

௟ݒ  the fluid volume upon freezing; ݒ௟ = 56 ௠ܶ
ିଵ/ସexp (−0.145 ௠ܶ

ାଵ/ସ) (݅݊ Åଷ)          (AII.2) 

here Tm corresponds to the melting point of TiN, Tm =  3203 K 

For TiN annealed at 1600 °C, we obtained ρ = 0.118226423 

 

 

STEP 5: Calculation of the compressibility factor Z.  

●  The compressibility factor from Trinkaus equation of state of helium can be expanded into: 

ݖ    = (1 − 1)(ߩ + ߩ − (ଶߩ2 + (1− ߩଶ(ߩ ஻
௩೗

+ (3 − ௟ݖଶߩ(ߩ2 + (1 −  ௟              (AII.3)ݒ௟ᇱݖଶߩ(ߩ

To solve this equation we already calculated the value of ‘ρ’. 

● B(T) the constant is defined as; 

(ܶ)ܤ = 170 ܶିଵ/ଷ − ଵ଻ହ଴
்

 ൫݅݊ Åଷ൯          (AII.4) 

Here T is the annealing temperature, here T= 1600 °C (or 1973 K).   

On solving we get, B(T)= 13.2076903 

 



231 
 

௟ݖ  ●   is the compressibility factor on freezing; 

௟ݖ  = ௟ݒ 0.1225 ௠ܶ
଴.ହହହ                                                                                                        (AII.5) 

Here Tm is the melting point of TiN and ݒ௟ has been already defined in eq. AII.2 

On solving we get,  ݖ௟ = 27.02572504 

௟ݒ௟ᇱݖ ● = ቀడ௭
డ
ቁݒ݈݊ ݈ ≈  −50 ; the quasi-harmonic approximation on freezing appears to be 

rather constant along the melting curve between 100 K and 1000 K.         

Finally, by putting all the value in equation (AII.3), we get; z =1.874568589 

 

STEP 6: Calculation of pressure inside the bubble 

In the previous annexe, we have already defined that, the ideal gas corrected for non-ideality is 

defined as: 

                                                       PV = zKT                                                        (AII.6) 

where P is the pressure,                                                                                                                                  

V is the volume,                                                                                                                                 

z is the compressibility factor (see Annexe I),                                                                                                                   

K is the Boltzmann constant,                                                                                                                    

and T is the temperature, 

For TiN implanted with 5 x 1016 helium atoms/cm2 and annealed at Ta= 1600 °C:                            

we calculated,                                                                                                                                                     

z (the compressibility factor) = 1.874568589                                                                                                                             

v (i.e. volume per helium atom) = 21.15157024 (in Å3)) =2.11516E-29 m3                                                                                  

and we know the values of:                                                                                                                                         

T = 1873 K                                                                                                                                                

K = 1.38065E-23 J/K                                                                 

Therefore, by putting all the values in eq. AII.6, we get:  

P= 2.29 E+09 Pa 
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ANNEX 3 

 

  In this annexe, the comparison of the helium depth profiles obtained under same annealing 

condition for different fluence values with their corresponding TEM micrographs has been 

done. 

 

 

Figure AIII.1 (a) The helium depth profile obtained for TiN implanted at F1 fluence  and 
annealed at Ta= 1500 °C (b) TEM picture taken at ~ 6.1 µm from the surface. The red point in 
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both figures indicates the common point which is approximately 6.1 µm deep into the sample 
from the surface. The white contrast represent the bubbles. 

                        

 

                                         

                            

                                    

Figure AIII.2 (a) The helium depth profile obtained for TiN implanted at F2 fluence  and 
annealed at Ta= 1500 °C (b) TEM picture taken at ~ 6.1 µm from the surface. The red point in 
both figures indicates the common point which is approximately  6.1 µm deep into the sample 
from the surface. The white contrast represent the bubbles. 
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AIII.3 (a) The helium depth profile obtained for TiN implanted at F3 fluence and annealed at 
Ta= 1500 °C (b) TEM picture taken at ~ 6.1 µm from the surface. The green point in both 
figures indicates the common point which is approximately  6.1 µm deep into the sample from 
the surface. The white contrast represent the bubbles. 
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   After adjusting the scale of NRA profile and TEM micrograph shown in figure 1 and after 

superimposing NRA curve on TEM micrograph (AIII.4). We deduced that only the helium 

which is present in the central part of the NRA profile is present in the form of bubbles. The 

central part of the NRA profile which is visible under TEM is highlighted by yellow color in 

figure AIII.4. No bubbles were seen in the area corresponding to the tails of NRA profile. For 

samples implanted with F1 fluence and annealed at 1500 °C, the entire width of the region where 

helium is present by NRA is 2.8 µm, however only the central 1.6 µm of total 2.8 µm of the 

helium depth profile is seen in the form of bubbles under TEM. 

 

 

 

Figure AIII.4. The superimposition of NRA curve obtained for sample implanted with F1 
fluence and annealed at Ta = 1500 °C on its corresponding TEM micrograph. In the TEM 
micrograph, black dots (obtained in over focus conditions) represent the bubbles. 
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  For samples implanted with F2 fluence and annealed at 1600 °C, the entire width of the region 

where helium is present by NRA is 2.6 µm, however only the central 500 nm of total 2.6 µm of 

the helium depth profile is seen in the form of bubbles under TEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure AIII.5 The superimposition of NRA curve obtained for sample implanted with F2 fluence 
and annealed at Ta = 1500 °C on its corresponding TEM micrograph. In the TEM micrograph, 
white dots (obtained in under focus conditions) represent the bubbles. 
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  For samples implanted with F3 fluence and annealed at 1600 °C, the entire width of the region 

where helium is present by NRA is 3 µm, however only the central 200 nm of total 3 µm of the 

helium depth profile is seen in the form of bubbles under TEM. 

  From figures A.III.4, A.III.5, A.III.6, we concluded that concentration of helium is an 

important parameter for bubble nucleation. We can easily observe in all the three figures, that 

in the region where the helium is present in small quantity, the helium vacancy clusters have 

not grown into the size which is visible under TEM.  

  And comparing the total quantity of helium visible under TEM, we observed that for higher 

fluence value almost 90 % of the helium is present into the form of bubbles, however, under 

the same annealing conditions, for low fluence value, only 30 % of helium is present in the 

form of visible bubbles and all the rest of helium is present in the form of invisible small 

clusters. And this also seems to be the reason, why helium implanted with low fluence show 

long range diffusion (as expected in Fick’s law). Therefore, lower the quantity of helium, the 

probability of the bubbles to nucleate into stable bubbles reduces. However, one should not 

confuse this with size of the bubbles. As already explained in section 6.2, when there are few 

nucleation centers, there are high chances for them to grow into relatively big sizes. 
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Figure AIII.6 The superimposition of NRA curve obtained for sample implanted with F3 fluence 
and annealed at Ta = 1500 °C on its corresponding TEM micrograph. In the TEM micrograph, 
white dots (obtained in under focus conditions) represent the bubbles. 

 

All the results are summarized in Table A.III.1: 

 

 

 

 

 

 

 

 

 

 

Samples Total length in 
which He is 

present 
calculated                     
by NRA 

Total length in which 
He seems to be present 

calculated by TEM 

TiN  implanted with F1 fluence 
and annealed at Ta = 1500 °C 

2.8 µm 1.6 µm 

TiN  implanted with F2 fluence 
and annealed at Ta = 1500 °C 

2.6 µm 500 nm 

TiN  implanted with F3 fluence 
and annealed at Ta = 1500 °C 

3 µm 200 nm 
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  ANNEX 4 

 

  Two type of polycrystalline 3C-SiC (E68 & F90*), one having  grain size between (100 nm -

1 µm) and other having grain size around 3 µm, respectively were implanted with 3 MeV helium 

ions at the same time with fluence (F1 = 5 x 1016 at./cm2). These large samples were cut into 

small pieces and subsequently, sealed in quartz tube. Two sets containing two quartz tube (each 

containing one different type of sample) were heated at two different temperatures (1000 °C  & 

1100 °C) for 2 h. NRA was done on as-implanted and annealed samples to quantify and 

determine the position of helium atoms. Excitation curves are plotted in figure A.IV1 and A.IV2 

for samples with code F90 & E68 respectively. From these excitation curves, we can clearly 

see that the samples with large grain size (F90) have better helium retention properties as the 

excitation curves corresponding to 1000 °C & 1100 °C, superimpose with in the measurement 

errors on the excitation curve obtained for as-implanted samples. However, samples with small 

grain size have lost more than 40 % of helium at 1100 °C (see figure A.IV2). These results 

confirm the role of grainboundaries on helium release. 

     

Figure A.IV1. Excitation curves (proton yield versus incident deuteron energy) measured for 

as-implanted and annealed 3C-SiC (F90) samples. 

* These samples are fabricated in Department of Nuclear Materials, CEA Saclay and have been given these codes. 
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Figure AIV2. Excitation curves (proton yield versus incident deuteron energy) measured for 
as-implanted and annealed 3C-SiC (E68) samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

0.8 1 1.2 1.4 1.6 1.8

Pr
ot

on
 Y

ie
ld

 (a
.u

.)

Deuteron Energy (MeV)

SiC - 1000° - E68
SiC - 1100° - E68
SiC - as-impl.



241 
 

 

   

 

 

 

                    

 

 

   

 

 

 

 

                                                 

   

 

 

 

 

 

 

 



242 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



243 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



244 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



245 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



246 
 

   

 

    

 


