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Résumé/Abstract

Résumé L’objet d’étude de ce mémoire est la géométrie des courbes holomorphes entiéres
a valeurs dans le complémentaire d’hypersurfaces génériques de I’espace projectif complexe. Les
conjectures célebres de Kobayashi et de Green-Griffiths énoncent que pour de telles hypersurfaces, de
grand degré, les images de ces courbes entiéres doivent satisfaire certaines contraintes algébriques.
En adaptant les techniques de jets développées notamment par Bloch, Green-Griffiths, Demailly,
Siu, Diverio-Merker-Rousseau, pour les courbes a valeurs dans une hypersurface projective (cas
dit compact), nous obtenons la dégénérescence algébrique des courbes entiéres f: C — P" \ Xy
(cas dit logarithmique), pour les hypersurfaces génériques X; de P" de degré d > (5n)* n". Comme
dans le cas compact, notre preuve repose essentiellement sur I’élimination algébrique de toutes les
dérivées dans des équations différentielles qui sont vérifiées par toute courbe entiére non constante.
L’existence de telles équations différentielles est obtenue grace aux inégalités de Morse holomorphes
et a une variante simplifiée d une formule de résidus originalement élaborée par Bérczi a partir de la
formule de localisation équivariante d’Atiyah-Bott. La borne effective d > (5n)> n" est obtenue par
réduction radicale d’un calcul de résidus itérés de trés grande ampleur. Ensuite, la déformation de
ces équations différentielles par dérivation le long de champs de vecteurs obliques, dont I’existence
est ici généralisée et clarifiée, nous permet d’engendrer suffisamment de nouvelles équations pour
réaliser I’élimination algébrique finale évoquée ci-dessus.

ON THE LOGARITHMIC GREEN-GRIFFITHS CONJECTURE

Abstract The topic of this memoir is the geometry of holomorphic entire curves with values in the
complement of generic hypersurfaces of the complex projective space. The well-known conjectures of
Kobayashi and of Green-Griffiths assert that for such hypersurfaces, having large degree, the images
of these curves shall fulfill algebraic constraints. By adapting the jet techniques developed notably by
Bloch, Green-Griffiths, Demailly, Siu, Diverio-Merker-Rousseau, in the case of curves with values in
projective hypersurfaces (so-called compact case), we obtain the algebraic degeneracy of entire curves
f: € — IP"\ Xy (so called logarithmic case), for generic hypersurfaces of degreed > (5n)*n". As in the
compact case, our proof essentially relies on the algebraic elimination of all derivatives in differential
equations that are satisfied by every nonconstant entire curve. The existence of such differential
equations is obtained thanks to the holomorphic Morse inequalities and a simplified variant of a
residue formula firstly developed by Bérczi from the Atiyah-Bott equivariant localization formula.
The effective lower bound d > (5n)* n" is obtained by radically simplifying a huge iterated residue
computation. Next, the deformation of these differential equations by derivation along slanted vector
fields, the existence of which is here generalized and clarified, allows us to generate sufficiently many
new differential equations in order to realize the final algebraic elimination mentioned above.

Mots-Clefs : hyperbolicité, positivité, conjecture de Green-Griffiths, hypersurface projective, jets logarithmiques,
inégalités de Morse holomorphes, classes de Segre, résidus itérés, hypersurface universelle, champs de vecteurs
obliques.

Keywords : hyperbolicity, positivity, Green-Griffiths conjecture, projective hypersurface, logarithmic jets, algebraic
Morse inequalities, Segre classes, iterated residues, universal hypersurface, slanted vector fields.
Mathematical Subject Classification : 32Q45, 58 A20, (14C17, 14Q10, 14Q20, 14J70, 15A03).
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CHAPITRE 1

Présentation des résultats

1. Motivations

Une variété complexe X est dite hyperbolique au sens de Brody lorsqu’il n’existe
pas d’application holomorphe entiére non constante f: C — X a valeurs dans X. Le
théoréme de Picard (1879) donne un exemple de telle variété :

Théoreme. Il n’existe pas d’application holomorphe entiére non constante :

f: € — P\ {0,1,c0}.

Le théoreme de Green ([21]), qui généralise le théoreme de Picard, fournit des
exemples en dimension supérieure :

Théoreme. Il n’existe pas d’application holomorphe entiére non constante :
f:€C—>P"\H{U---UH,,

a valeurs dans le complémentaire de la réunion de 2n + 1 hyperplans de P" en position générale.

La notion d’hyperbolicité peut étre assouplie pour obtenir une notion plus faible,
qui est la dégénérescence algébrique des courbes entiéres. Une courbe entiere C — X a
valeurs dans une variété algébrique complexe X est dite algébriquement dégénérée
sil existe une sous-variété algébrique propre Z ¢ X qui contient son image. Dans [21],
Green prouve en fait le résultat plus général :

Théoreme. L'image d'une courbe entiere f: C — IP" évitant n + k > n + 1 hyperplans en
position générale est contenue dans un sous-espace linéaire projectif de dimension au plus la
partie entiére de . Cette borne | 1] est optimale.

On obtient donc que les courbes a valeurs dans le complémentaire de n + 2
hyperplans en position générale dans IP" sont algébriquement dégénérées.

On peut aussi considérer des hypersurfaces plus générales que des réunions d’hy-
perplans. L'une des motivations est la conjecture suivante ([26]), que nous choisissons
de restreindre a I’hyperbolicité au sens de Brody, eu égard aux objectifs de ce mémoire :

Conjecture (Kobayashi). Il n'existe pas d’application holomorphe entiére non constante a
valeurs dans le complémentaire P" \ X; d'une hypersurface générique X; de degré d > 2n + 1.

Ici générique signifie que les coefficients de I’équation définissante de X; doivent
se trouver en dehors d’"une certaine sous-variété algébrique propre de l'espace projectif
S de tous les coefficients des polyndmes homogenes de degré d :

$ := P(T(P", Op:(d))),

lequel paramétrise les hypersurfaces algébriques de degré d dans IP". La borne 2n + 1
peut a la fois étre justifiée par le théoreme de Green ci-dessus et par les travaux de

1



2 Chapter I. Présentation des résultats

Zaidenberg ([51]), qui montrent que le complémentaire d'une hypersurface générique
de degré 2n dans IP" n’est pas hyperbolique.

En ce qui concerne la dégénérescence algébrique, la conjecture de Green et Griffiths
([22]) énonce, dans un cadre tres large, que toute variété algébrique lisse de type général
X possede une sous-variété algébrique propre Z C X, qui contient les images de toutes
les courbes holomorphes entiéres non constantes f: C — X. Dans le cas considéré ici
des hypersurfaces projectives, cette conjecture devient :

Conjecture (Green-Griffiths). L'image d'une courbe entiére f: C — Xy, a valeurs dans une
hypersurface X4 de P"*! de degré d > n + 3 n'est pas Zariski-dense dans X.

Conjecture (Green-Griffiths logarithmique). L'image d"une courbe entiere f: C — P"\ X;,
a valeurs dans le complémentaire dans P" d"une hypersurface X; de degré d > n + 2 n’est pas
Zariski-dense dans IP".

La version forte de ces conjectures exige que la sous-variété algébrique propre Z
de I’espace d’arrivée contenant I'image f(C) C Z ne dépende pas de la courbe entiere
non constante f.

Dans ce mémoire, une réponse positive est apportée a la conjecture de Green-
Griffiths logarithmique forte, pour des hypersurfaces génériques de degré d > (5n)* n".

2. L'approche des jets

A la suite de l'article de 1926 du mathématicien francais André Bloch [1] sur les
courbes entieres a valeurs dans des variétés abéliennes, I’approche qui a dominé
pour traiter les problemes d’hyperbolicité est d"utiliser un grand nombre d’équations
différentielles algébriques vérifiées par toute courbe entieére. On se ramene ainsi a un
probleme d’élimination algébrique, et il suffit de montrer que le nombre d’inconnues
est (beaucoup) plus grand que le nombre de contraintes.

Il est pratique de décrire ces équations différentielles en utilisant le formalisme des
jets. Pour une application holomorphe f: C — X, a valeurs dans une variété complexe
X et une trivialisation locale de X =~ C", le k-jet de f correspond a son développement
de Taylor tronqué a 1’ordre k. La notion locale de polyndme en les coefficients de Taylor
Lt fl.(k) de f, de poids homogene m pour le nombre de “primes” a un sens global,
comme le montrent les formules de changement de cartes de Faa di Bruno. On appelle
différentielle de jets de degré k et de poids m le recollement de tels polyndmes.

Dans son article, Bloch prouve le résultat d’hyperbolicité suivant :

Théoreme. Soit X un variété abélienne et soit Y C X une sous-variété de X. Si Y ne contient
le translaté d’aucune sous-variété abélienne de X, alors il n’existe pas de courbe entiére non
constante f: C — Y a valeurs dans Y.

Sa démonstration se déroule en trois étapes.
(D La production explicite de différentielles de jets holomorphes, c’est-a-dire

des polyndmes dans les variables de jets fi(j ) a coefficients holomorphes, qui
s’annulent sur un diviseur ample A C X.

(2) Le théoréme fondamental d’annulation suivant, qui fait le lien entre différen-
tielles de jets et hyperbolicité :

Théoréme (Lemme d’Ahlfors-Schwarz). Si w est une différentielle de jets holo-
morphe, s’annulant sur un diviseur ample A C X, et f: C — X une courbe entiere,
alors le pullback f*w = 0 s’annule identiquement sur C.



(3 La détermination du lieu de dégénérescence : le translaté d’une sous-variété
abélienne (qui doit étre vide pour obtenir I’hyperbolicité).

Un demi siécle plus tard, Philip Green et Mark Griffiths ([22]) modernisent les
concepts de Bloch et établissent plusieurs résultats fondamentaux sur la géométrie des
courbes entiéres. Dans leur article de 1979, ils obtiennent le résultat :

Théoreme. Soit X une variété algébrique complexe vérifiant g > dim X, oit g = dim H'(X, O)
pour n’importe quelle compactification X de X. Alors I'image de toute application holomorphe
entiere C — X est contenue dans une sous-variété algébrique propre de X.

Ce résultat avait déja été énoncé par Bloch, et prouvé dans certains cas particuliers.
Ochiai a également étudié certains cas particuliers. Comme Bloch et Ochiai, Green et
Griffiths utilisent les jets d’ordre supérieur. Ils définissent les pseudo-métriques de jets
et la notion de pseudo-métrique de jets a courbure sectionnelle holomorphe < —1. La
démonstration du lemme d’Ahlfors-Schwarz implique que si la variété considérée X
est munie d'une telle métrique sur ses k-jets, alors pour toute fonction holomorphe
f: C — X, I'image f(C) est contenue dans I'ensemble dégénéré de la métrique. Green
et Griffiths choisissent ensuite la pseudo-métrique de fagon a contrdler ’ensemble de
dégénérescence.

En 1995 et ultérieurement aussi, Demailly([7]) a développé une technique de jets
invariants prolongeant et améliorant 1’approche de Green et Griffiths. Il introduit
de nouveaux objets géométriques. Une variété complexe dirigée est par définition
un sous-fibré vectoriel holomorphe V' — X du fibré tangent Tx — X d’une variété
complexe X. Pour étudier I'hyperbolicité de (X, V) on utilise la méthode de la courbure
négative : par le lemme d’Ahlfors-Schwarz, '’existence d'une métrique hermitienne
a courbure négative sur le fibré en droites tautologique Op((—1) implique la non
existence de courbe entiere non constante f: C — X tangente a V. Le cas le plus
intéressant est celui ou le sous-fibré V = Tx est le fibré tangent en entier, car on obtient
alors I'hyperbolicité de X. Sous certaines hypotheses de positivité du fibré dual V*, il
est possible de construire une telle métrique. Par exemple :

Théoréme. Soit (X, V) une variété complexe dirigée. Si V* est ample, alors toute courbe
entiere f: C — X tangente a V est constante.

Pour généraliser la situation aux k-jets Demailly introduit une tour de fibrés
projectifs. Cette construction a été généralisée au cas logarithmique par Dethloff et Lu

(10). B
Soit X une variété complexe et D un diviseur simple a croisements normaux sur X,
c'est-a-dire D = ), D;, ol les composantes D; sont des diviseurs lisses irréductibles qui

s’intersectent transversalement. Une telle paire (X, D) est appelée une paire logarith-
mique. On note T¢(— log D) le fibré tangent logarithmique a X le long de D ([35]). Pour
tout sous-fibré V du fibré tangent logarithmique :
Vc T)_((_ log D) C T}—(,
on construit ([7, 10]), pour tout ordre fixé k € N, la tour de Demailly logarithmique
des fibrés de jets projectivisés :
(?_(k, Dy, Vk) - (}_(k—pDk—l, Vk—l) - (5(1,131, Vi) - (}_(OzDO/ Vo) = (5_(, D, V),

ayant pour propriété principale que toute trajectoire tangente a V non constante

f: Ar = X\ D se reléve uniquement en une trajectoire fii: Ag — X; \ Dy tangente a
Vk, qui ne dépend que du k-jet de f. Cette tour a pris une grande importance dans
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l'étude de la dégénérescence algébrique des courbes entieres sur X \ D (cf. les articles
de survol [14, 38]).

En effet, nous avons vu qu'une premiére étape dans la preuve de la dégénérescence
algébrique des courbes entieres est de montrer qu’il existe un polynéme P non nul
sur X, tel que toute courbe entiére non constante f: C — X \ D satisfasse 1’équation
différentielle algébrique :

P(f, £, f",-.., f¥) = 0.

Etant par définition un fibré vectoriel projectif, la variété X est naturellement
équipée d’un fibré en droites tautologique Oik(_l)' Soit my g la projection naturelle du

k-eme niveau de la tour vers la base X = X. Les images directes :
Em V™ = (M) £ Og, (m)

peuvent étre vues comme des fibrés vectoriels d’opérateurs différentiels d’ordre k et de
degré m agissant sur les courbes holomorphes dans X tangentes a V et invariantes par
reparamétrage. Alors, J.-P. Demailly a démontré un théoreme fondamental d’annulation
([7,10]), qui stipule que pour toute section globale :

P e H(X;, O (m) @ i AY) = H'(X, & V> @ AY),

a valeurs dans le dual AV d’un fibré en droites ample A — X, on a, pour tout courbe
entiere non constante f: C — X \ D tangentea V :

P(f, £ f",.... fO) = 0.

Ce théoreme d’annulation (étape (2) de la démonstration de Bloch) permet une
approche alternative a la production explicite de différentielles de jets holomorphes
(étape (1) de la démonstration de Bloch). On peut se ramener a 1’étude des sections
globales du faisceau O)—(k(m) qui s’annulent sur A. En contrepartie, le manque d’infor-

mation sur les différentielles de jets obtenues complique 1'étape (3) de la démonstration
de Bloch. Dans certains cas, Diverio et Rousseau ([16]) ont méme donné récemment des
exemples ol les équations qu’on obtient de cette facon ne suffisent pas pour obtenir
des informations sur la base Xj.

L’algébre des jets invariants étudiée par Rousseau ([41]), par Merker ([28]), ainsi
que par Bérczi et Kirwan ([5]) est compliquée.

3. La stratégie de Siu

En 1996 ([48]), en 2002 ([45]) et en 2004 ([46]), Siu a traité le cas des hypersurfaces
projectives de dimension 2 (en degré non optimal) et il a proposé des idées générales
adéquates, mais réputées difficiles a réaliser techniquement, afin de traiter la dimension
n quelconque. II utilise une stratégie en deux étapes :

(D - La construction explicite en coordonnées projectives de sections holo-
morphes globales du fibré des différentielles de jets, dans l'esprit des travaux de
Bloch.

(3 La déformation de ces sections pour obtenir suffisamment d’équations. Cette
deuxieme étape est inspirée des travaux de Ein-Clemens-Voisin ([6, 18, 50]) sur les
courbes rationnelles, dans lesquels il est établit que :

Théoréme. Il n’existe pas de courbe rationnelle f: P! — X; a valeurs dans une hypersurface
générique Xy de IP" de degré d > 2n — 1.



Pour déformer les équations différentielles, on travaille en famille, sur I’hypersurface
universelle de degré d :

H :={Z,P,: P(Z) =0} c P" xS,

Si w est une famille de différentielles de k-jets sur les fibres de la deuxiéme projection,
et si w; s’annule sur A C H;, pour tout champs de vecteurs méromorphe V tangent a
I'espace des k-jets verticaux de H, dont ’ordre des poles est plus petit que le degré
d’annulation de w, la dérivée de Lie (V - w); vérifie toujours les hypotheses du lemme
d’Ahlfors-Schwarz, et fournit donc une nouvelle équation différentielle.

Pour obtenir suffisamment d’équations indépendantes, on doit considérer les
champs de vecteurs obliques, c’est-a-dire qui ont une composante non nulle dans
la directions de l’espace des parametres S et montrer que 'espace tangent aux jets
verticaux possede un repere méromorphe avec des poles d’ordre peu élevé.

La méthode de déformation de Siu, bien décrite dans [13, 14, 38], a été rendue
effective par Paun ([37]) en dimension 2, et par Rousseau en dimension 3, a la fois
dans le cas compact ([43]) et dans le cas logarithmique ([42]). Dans le cas compact, la
technique a été généralisée en toute dimension par Merker ([29]), avec une amélioration
importante de la détermination du lieu ott I'énoncé d’engendrement global (3) est valide,
qui a mené a une preuve de la dégénérescence algébrique forte des courbes entieres a
valeurs dans une hypersurface projective générique de grand degré, avec Diverio et
Rousseau ([13]). Dans le contexte légerement différent des familles d’hypersurfaces
projectives, Mourougane ([33]) a mis la technique en ceuvre en toute dimension et pour
tout degré.

4. Existence de différentielles de jets

La construction explicite (1) de différentielles de jets globales étant difficile, on
utilise plutot les méthodes cohomologiques développées par Demailly et Diverio
([7, 10, 12, 19]) pour obtenir I'existence d’équations différentielles (malheureusement non
explicites). La stratégie adoptée pour obtenir des équations différentielles est de s’assurer
de 'existence de sections globales non nulles du fibré en droite O}—(k(m) ® n;’oAV, pour
m>1.

Une approche, avec les fibrés de Schur ([7]), consiste a controler les groupes de
cohomologie paire supérieurs H* afin d’utiliser le théoréme de Riemann-Roch. Dans
[40], en dimension 3, Rousseau est capable de borner la dimension de H? en utilisant
les inégalités de Morse holomorphes ([7, 49]). Ensuite dans [32], Merker traite le cas de
la dimension arbitraire pour des différentielles de jets avec un grand ordre.

Avec une approche différente, dans [8], Demailly traite le cas de la dimension
arbitraire en utilisant une version forte des inégalités de Morse holomorphes.

Une autre approche, développée dans des contextes variés ([11, 12, 13, 3, 33, 2]),
consiste a appliquer les inégalités de Morse holomorphes pour prouver I’existence de
sections d'un certain sous-faisceau plus simple du faisceau des différentielles de jets.
Ceci conduit a établir la positivité d'un certain nombre d’intersection au k-eme niveau
de la tour de Demailly :

—_ * *
I—j}_; p(nmul,...,nK,K_luk_Luk),
K

ou p est un polyndme, a coefficients dans I’anneau de cohomologie de la base, dans les
premieres classes de Chern :

uj = cl(()}—(i(l)).
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5. Dégénérescence algébrique effective

La premiere confirmation de la conjecture de Green-Griffiths en toute dimension
est un résultat récent de Diverio, Merker et Rousseau ([13]), qui établit ’énoncé avec
une borne effective en utilisant les fibrés de Demailly et une version algébrique des
inégalités de Morse holomorphes. Ils démontrent le théoréme suivant :

Théoréme. Soit X; C P! une hypersurface projective lisse générique de dimension
arbitraire n > 2. Si le degré de X, est plus grand que I'entier explicite 27, alors il existe une
sous-variété propre Z C Xy, telle que toute courbe holomorphe entiere f: C — X, prend en fait
ses valeurs dans Z > f(C).

Leur preuve est basée de fagon essentielle sur la stratégie de déformation développée
par Siu, combinée avec les techniques cohomologiques de Demailly. L'idée directrice
est de produire un grand nombre d’équations différentielles algébriques que toute
courbe entiéere doit satisfaire. Ensuite, 'énoncé de dégénérescence algébrique est obtenu
(moralement) par élimination algébrique de toutes les dérivées. Le procédé qui produit
de nombreuses équations différentielles se décline en deux étapes principales :

(1) - (@) Lexistence de différentielles de jets invariants s’annulant sur un diviseur
ample dans les hypersurfaces projectives de grand degré, par des méthodes
cohomologiques, en suivant les travaux de Demailly et de Diverio [7, 11, 12].

(3) La seconde étape du raisonnement de Siu. Iengendrement global (modulo
tensorisation) du fibré tangent a la variété des n-jets verticaux, en suivant les
travaux de Siu et de Paun-Rousseau-Merker.

En 2010, Gergely Bérczi [3] a importé des techniques de la géométrie équivariante
pour simplifier les calculs et améliorer la borne connue sur le degré. Il montre que le
résultat est toujours valide lorsque d > n®".

En 2012, en utilisant une technique innovante basée sur des estimées probabilistes,
Jean-Pierre Demailly ([9]) a amélioré la borne sur le degré des hypersurfaces projectives,
etil a obtenu:

i

d> g(n log(1log(24n))) .

6. Principaux résultats de ce mémoire

Le premier but de cette these est d’exporter et d’améliorer les techniques de [13]
pour étudier la dégénérescence algébrique des courbes entieres f: C — P" \ X; a
valeurs dans le complémentaire d"une hypersurface X; de I'espace projectif IP".

Formule de résidus pour la premiére étape. Pour calculer le produit d’intersec-
tion :

* *
I:f_ p(nk,lul"'"T(K,K—luk_l’uk)’
Xy

la stratégie standard consiste a intégrer le long des fibres des projections :
-1 Xi = X,

jusqu’a obtenir un produit d’intersection sur la base, Xy, ot1 'intersection des classes
de cohomologie devient plus simple.

Dans [13], Diverio-Merker-Rousseau procedent a une élimination pas a pas des
classes de Chern, et ils sont capables de dénouer l'interaction complexe entre les classes



de cohomologie horizontales et les classes de cohomologie verticales par un tour de
force technique. Ces calculs précis donnent un résultat effectif.

Dans [33] et dans [2], Mourougane et Brotbek utilisent intelligement les classes de
Segre pour éviter une grande partie des calculs.

Dans [3], Bérczi utilise la géométrie équivariante pour prouver une formule de résidus
en plusieurs variables, qui évite I"élimination pas a pas des classes de cohomologie
horizontales et qui donne un résultat effectif.

Dans le chapitre II, les idées inspirées de ces auteurs sont combinées, pour prouver
une formule de résidus en plusieurs variables similaire, qui est vraie dans de nombreux
contextes géométriques, puisqu’elle est démontrée dans toute les situations ot la tour
de Demailly apparait, cf. e.g. [33, 2].

La preuve emprunte la simplification technique de 1'usage des classes de Segre, elle
donne un résultat effectif, et elle utilise une formule dans l'esprit méme de la formule
de résidus de Bérczi.

On note s(V)) la classe de Segre totale du fibré vectoriel Vj :

si(Vo) = 1+ ts51(Vo) + P sa(Vo) + -+,

qui est I'inverse de la classe de Chern totale c;(V(). Un des points clefs, central dans le
chapitre II, consiste a introduire de nouveaux générateurs de la cohomologie verticale :

* * o/
0; = (7’(1-,11/[1 + -+ 7'(1-,1-_11/11'_1 + MZ') eH (Xi),

lesquels apparaissent naturellement quand on considere les suites exactes qui définissent
la tour des fibrés de jets projectivisés :

}_{kﬁ)_(k—l_)"'_))_(l_))_(o-

Notons alors 7 le rang du fibré projectivisé P(V). L'énoncé suivant, utile pour 1'étape
(1), est démontré dans le chapitre IT :

Théoreme principal (Il). Pour tout polynéme f € H '(}_(0)[151, ..., k], enkvariablesty,. .., t,
a coefficients dans I'anneau de cohomologie de la base Xy, la classe de cohomologie :

f(z_z) = f(o1,..., o) € H'(Xe),

peut étre intégrée le long des fibres du fibré projectif Xy — X en utilisant la formule :

f)_( flv) = C(;?f.f.i?itfnt(l(tl, DDty b)),

oit I(t) est le produit d’intersection sur la base :

I(tt, ..., te) == | f(t1,-.. t) 51 (Vo) -+ - s1/6.(Vo),
Xo

et ot Oy(t) est la fonction rationnelle universelle :

Op(ty, ..., ) = H

1<i<j<k T

ti—t ti—2t
tj—Zti+ti_1'

t.
b ooci<j<k
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Clarification et généralisation de la stratégie des champs de vecteurs obliques.
Ensuite, dans le chapitre III, les champs de vecteurs obliques de Siu-Merker sont
développés en toute dimension dans le cadre logarithmique afin d’appliquer la
méthode de déformation de Siu. L'énoncé suivant, central dans 1’étape (3), y est
démontré :

Théoreme principal (III). Si I"ordre des jets k est plus petit que le degré d, alors le “twist” du
fibré tangent aux k-jets verticaux de la variété logarithmique (]P” xS, H ) :

Ty 1og 7 ® (Om (K7 + 2Kk) © Os(1))

est engendré par ses sections holomorphes globales en tout point du sous-espace des k-jets
logarithmiques verticaux réguliers de courbes holomorphes évitant H.

De plus, certains détails laissés au lecteur dans les travaux antérieurs sont complétés
dans une approche simplifiée. La preuve fournit donc une clarification du lieu o1
I’énoncé d’engendrement global est valide, a la fois dans le cas compact, et dans le cas
logarithmique.

Conjecture de Green-Griffiths logarithmique. Dans le chapitre IV, la dégénéres-
cence algébrique effective des courbes entieres non constantes a valeurs dans le
complémentaire d'une hypersurface lisse générique de degré suffisamment grand est
établie en utilisant la stratégie O-@-0):

Théoréeme principal (IV). Si X; C IP" est une hypersurface projective lisse générique de
degré :

d > (5n)*n",
alors il existe une sous-variété propre Z C IP", de codimension au moins deux, telle que I'image
de toute courbe entiére non constante f: C — (IP” \ Xd) a valeurs dans le complémentaire de

X4, est en fait contenue dans (Z \ Xd).

En dimensions n = 2 [19, 44] et n = 3 [42], ce théoréeme est déja connu avec des
estimations meilleures sur le degré.

La borne effective de ce théoréme est également valable pour des courbes a valeurs
dans une hypersurface lisse générique. C’est donc une amélioration significative des
résultats de la littérature (cf. supra).

Les introductions des chapitres 1LII1, IV décrivent plus en détails ces résultats.



Overview of the main results of this memoir

Motivation

A complex manifold X is said hyperbolic in the sense of Brody when there is no
nonconstant entire map f: C — X. The theorem of Picard (1879) gives an example of
such a manifold:

Theorem. There is no nonconstant entire map f: C — P!\ {0,1, c0}.

The theorem of Green ([21]), generalizes the theorem of Picard and gives examples
in larger dimension:

Theorem. There is no nonconstant entire map f: C — P" \ Hy U - -- U Hy, 41 with values in
the complement of 2n + 1 hyperplanes of P" in general position.

The notion of hyperbolicity can be weaken to get a softer notion, that is the algebraic
degeneracy of entire curves. An entire curve C — X with values in a algebraic complex
manifold X is said algebraically degenerate if there exists a proper algebraic subvariety
Z ¢ X containing its image. In [21], Green actually proves the more general statement:

Theorem. The image of an entire curve f: C — P" avoiding n + k > n + 1 hyperplanes in
general position is contained in a linear projective subspace having dimension at most the entire
part in . This bound | ] is sharp.

As a consequence the entire curves with values in the complement of n + 2
hyperplanes in general position in IP" are algebraically degenerate.

It is interesting to consider more general hypersurfaces than unions of hyperplanes.
One motivation is the following conjecture ([26]), that we deliberately restrain to the
case of Brody hyperbolicity, considering the goals of this memoir:

Conjecture (Kobayashi). There is no nonconstant entire map with values in the complement
IP" \ X of a generic hypersurface X; having degree d > 2n + 1.

Here, generic means that the coefficients of the defining equation of X; must
lie outside of a certain proper algebraic subvariety of the projective space S of all
coefficients of homogeneous polynomial of degree d:

$ = P(T(P", Op»(d))),

that parametrizes the algebraic hypersurface with degree 4 in IP". The bound 2n + 1 is
justified both by the theorem of Green and by the work of Zaidenberg ([51]), where
it is shown that the complement of a generic hypersurface of degree 2n in IP" is not
hyperbolic.

Regarding algebraic degeneracy, the Green-Griffiths conjecture ([22]) assert, in a
wide context, that any smooth algebraic variety X of general type contains a certain
proper algebraic subvariety Z ¢ X, inside which all nonconstant entire map f: C — X

9
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must necessarily lie. In the case of projective hypersurfaces, considered in this memoir,
this conjecture becomes:

Conjecture (Green-Griffiths). The image of an entire curve f: C — X; with values in a
hypersurface X, of P+ with degree d > n + 3 is not Zariski-dense in Xg.

Conjecture (logarithmic Green-Griffiths). The image of an entire curve f: C — P" \ X,
with values in the complement in P" of a hypersurface X; having degree d > n + 2 is not
Zariski-dense in IP".

The strong version of these conjectures asserts that the proper algebraic subvariety
Z of the goal space containing the image f(C) C Z does not depend on the nonconstant
entire curve f.

In this memoir, a positive answer is given to the strong logarithmic Green-Griffiths
conjecture, for generic hypersurfaces having degree d > (5n)* n".

Jet Techniques

Following the seminal paper of 1926 by Bloch [1] on entire curves with values in
abelian varieties, the main approach to treat hyperbolicity problems is the use of many
differential equations satisfied by every entire curve. The problem is then reduced
to an algebraic elimination, and it is sufficient to show that there are many more
unknowns than constraints, in order to get a non zero analytic equation satisfied by
any nonconstant entire curve.

The formalism of jets is a coordinate free description of these differential equations.
For a holomorphic map f: C — X, with values in a complex manifold X and a
coordinate system X =~ C", the k-jet of f corresponds to its truncated Taylor expansion

at order k. The local notion of polynomial in the Taylor coefficients f/, f, ..., fl.(k) of f,
having homogeneous weight m for the number of “primes” has a global meaning, as it
is shown by the Faa di Bruno formulae. The gluing of such polynomials is called a jet
differential of degree k and of weight m.

The following hyperbolicity statement is proven by Bloch:

Theorem. Let X be an abelian variety. If Y C X is a subvariety that contains no translate of
an abelian subvariety of X, then there is no nonconstant entire map f: C — Y with values in
Y.

The proof of Bloch consists in three steps.

(D The explicit construction of holomorphic jet differentials, that is polynomials

in the jet variables fi(j ) with holomorphic coefficients, vanishing on an ample
divisor A C X.

(2) The following fundamental vanishing theorem, that links jet differentials and
hyperbolicity:

Theorem (Ahlfors-Schwarz lemma). If w is a holomorphic jet differential vanishing
on an ample divisor A C X, and f: C — X is a nonconstant entire curve, then the
pullback f*w = 0 vanishes identically on C.

(3) The determining of the degeneracy locus: the translate of an abelian subvariety
(that shall be empty in order to obtain hyperbolicity).
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Fifty years later, Philip Green and Mark Griffiths ([22]) modernize the concepts of
Bloch and establish several fundamental results on the geometry of entire curves. In
1979, they prove the following statement:

Theorem. If X is an algebraic complex manifold such that ¢ > dimX, where q =
dim HY(X, ), for any compactification X of X, then the image of any entire map C — X is
contained in a proper algebraic subvariety of X.

This result had already been announced by Bloch, and proven in certain particular
cases. Ochiai had already studied certain particular cases. Like Bloch and Ochiai,
Green and Griffiths use jet techniques. They define jet pseudo metrics, and the notion
of jet pseudo metrics with holomorphic sectional curvature < —1. The proof of the
Ahlfors-Schwarz lemma implies that if X is equipped with such a metric on its k-jets,
then every entire curve f: C — X is algebraically degenerate in the degeneracy locus
of the metric (step (2)). Green and Griffiths choose carefully the pseudo metric in order
to control its degeneracy locus (step (3)).

In 1995 and also later, Demailly([7]) has developed a technique of invariant jets,
pushing further and improving the approach of Green and Griffiths. New geometric
objects are introduced. A directed complex manifold is by definition a holomorphic
subbundle V' — X of the holomorphic tangent bundle Tx — X to a complex manifold
X. The hyperbolicy of (X,V) is treated by the method of negative curvature: by
Ahlfors-Schwarz lemma, the existence of an hermitian metric with negative curvature
on the tautological line bundle Op(y)(-1) yields the non existence of a nonconstant
entire curve f: C — X tangent to V. The most interesting case is the case where the
subbundle V = Tx is the whole tangent bundle, because the hyperbolicity of X is
obtained.

Under suitable positivity assumption on the dual V*, it is possible to construct
such a metric, as an example the following statement holds:

Theorem. Let (X, V) be a directed complex manifold. If V* is ample then any entire curve
f: C — X tangent to V is constant.

In order to generalize the results to k-jets, Demailly introduces a tower of projective
bundles. This contruction and its properties have been generalized to the logarithmic
setting by Dethloff and Lu ([10]).

Let X be a complex manifold and let D be a simple normal crossings divisor on X,
thatis D =} D;, where the components D; are smooth irreducible divisors intersecting
transversally. Such a pair (X, D) is called a logarithmic pair. Denote by T3 (—1log D) the

logarithmic tangent bundle to X along D ([35]). For any subbundle V of the logarithmic
tangent bundle:
V cTx(-logD) c Tk,

and for any fixed order k € IN, the logarithmic Demailly tower of projectivized jet
bundles ([7, 10]):

()_(k/ Dk, Vk) - ()_(k—lle—ll Vk—l) — ... (}_(1, Dl, V1) - (}_fo, Do, V()) = ()_(, D, V),

is a construction with the main property that every nonconstant curve f: Ag — X \ D

tangent to V lifts as a curve fyq: ArR — X \ Dy tangent to Vi, depending only on the
k-jet of f. This tower is of great importance in the study of the algebraic degeneracy

of entire curves on X \ D (cf. the enlightening surveys [14, 38]). Indeed, the first step
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toward the proof of algebraic degeneracy of entire curves is to prove the existence of a

non zero polynomial P on X such that every nonconstant entire curve f: C — X \ D
satisfies the algebraic differential equation:

P(f, £, f"--., f¥) = 0.

Being by definition a projective vector bundle, the manifold X; comes naturally
equipped with a tautological line bundle, O)—(k(—l). Let ;. o denote the natural projection

from the k-th level of the Demailly tower to the basis. The direct images:
EinV* = ()4 O (m)

may be seen as vector bundles of differential operators of order k and weighted degree
m acting on germs of holomorphic curves in X tangent to V and invariant under
reparametrization of the source. Then, J.-P. Demailly has established a fundamental
vanishing theorem ([7, 10]), asserting that for any global holomorphic section:

P e H'(X;, Oz (my @} AY) = H'(X, &, V* @ AY),

with values in the dual AY of an ample line bundle on X, every nonconstant entire
curve f: C — X\ D tangent to V satisfies the differential equation:

P(f, £, f"--., f¥) = 0.

This vanishing theorem (step (2) in Bloch’s proof) allows an alternative approach to
the explicit construction of global holomorphic jet differentials (step (1) in Bloch’s proof).
The problem reduces to the study of global holomorphic sections of the sheaf O (m)
vanishing on A. However, the lack of information on the obtained jet differentials make
step (3) of Bloch’s proof harder. In certain situation, Diverio and Rousseau ([16]) have
even given examples where the obtained differential equations give no information on
the basis Xj.

The algebra of invariant jets has been studied by Rousseau ([41]), by Merker ([28]),
and by Bérczi and Kirwan ([5]) and is complicated.

Siu’s Strategy

In 1996 ([48]), in 2002 ([45]) and in 2004 ([46]), Siu has treated the case of projective
hypersurfaces of dimension 2 (for non optimal degrees) and has proposed adequate
general ideas in order to treat the case of arbitrary dimension n > 2. Siu uses a strategy
in two steps:

(D) - (2) The explicit construction in projective coordinates of global holomorphic
jet differentials vanishing on an ample divisor, in the spirit of Bloch.

(3) The deformation of the obtained sections, in order to get sufficiently many
differential equations. This second step is inspired by the works of Ein-Clemens-Voisin
([6, 18, 50]) on rational curves, in which it is established that:

Theorem. There is no nonconstant rational curve f: P — X, with values in a generic
hypersurface X of P"* having degree d > 2n — 1.

In order to deform the differential equations, the universal hypersurface of degree
d is considered:

H :={Z,P,: P(Z) =0} c P" xS,

When w is a family of k-jet differentials on the fibers of the second projection, such that
ws vanishes on an ample divisor A C H,, and V is a meromorphic vector field tangent to
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the space of vertical k-jets of H, with poles having order less than the vanishing order
of w, the Lie derivative (V - w); still satisfies the hypotheses of the Ahlfors-Schwarz
lemma, and thus corresponds to a differential equation.

Sufficiently many algebraically independent equations are obtained by considering
slanted vector fields, that is vector fields with a non zero component in the direction of
the space of parameters S, if the tangent space to vertical jets has a meromorphic frame
of low pole order.

The method of slanted vector fields introduced by Siu ([46]), nicely described in
[13, 14, 38], has been pushed further by Paun ([37]) in dimension 2, and by Rousseau in
dimension 3, both for the compact case ([43]) and for the logarithmic case ([42]). In the
compact case, the technique has been generalized in any dimension by Merker ([29]),
with a substantial improvement of the determination of the locus where the global
generation statement (3) holds, leading to a proof of the strong algebraic degeneracy of
entire curves with values in a generic projective hypersurface of large degree ([13]). In
the slightly different context of projective hypersurfaces in families, Mourougane ([33])
has implemented the technique in any dimension and for any order.

Existence of Global Jet Differentials

The explicit construction of global jet differentials (1) being a delicate problem, the
cohomological methods developed by Demailly and Diverio ([7, 10, 12, 19]) are a nice
alternative in order to obtain the existence of differential equations (unfortunately non
explicit ones). One has thus to ensure the existence of global sections of the line bundle
Ox, (m)® mx AY, possibly with m > 1.

One approach, with Schur bundles ([7]), consists in bounding positive even
cohomology groups H? in order to use the Riemann-Roch theorem. In [40], in
dimension 3, Rousseau is able to bound the dimension of H? by use of the famous
algebraic Morse inequalities ([7, 49]). Later in [32], Merker completes the case of
arbitrary dimension, for high order jet differentials.

With a different approach, in [8], Demailly treats the case of arbitrary dimension by
use of a stronger version of algebraic Morse inequalities.

Another approach, developed in various contexts ([11, 12, 13, 3, 33, 2]), consists
in applying the holomorphic Morse inequalities in order to prove the existence of
sections of a certain more tractable subsheaf of the sheaf of jet differentials. One is
led to establish the positivity of a certain intersection number on the k-th level of the
Demailly tower:

— * *
I—j;( p(nmul,...,nK’K_luk_l,uk),
k

where p is a polynomial with coefficients in the cohomology ring of the basis, in the
first Chern classes:

u; := Cl(O)_(i(l))-
Effective Algebraic Degeneracy

The first result confirming the Green-Griffiths conjecture in any dimension is a recent
result of Diverio, Merker et Rousseau ([13]), confirming the statement for projective
hypersurfaces of large degree with an effective sufficient lower bound on the degree.

Theorem. Let X; C IP"*! be a generic smooth hypersurface of dimension n > 2. If the degree

of Xy is larger than the explicit integer 2", then there exists a proper subvariety Z C Xy,
containing the image of every nonconstant entire curve f: C — Xg.
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Their proof is based in an essential way on the deformation method of Siu, combined
with techniques of Demailly and Diverio. The overall idea is to produce sufficiently
many differential algebraic equations, that all entire curves has to satisfy. Then, the
degeneracy statement is obtained by an algebraic elimination of all derivatives. The
process producing many differential equations is in two steps:

(1) - (2) The existence of invariant jet differentials vanishing on an ample divisor,
following works by Demailly and by Diverio [7, 11, 12].

(3) The second step in Siu’s strategy: the global generation (modulo twist) of
the tangent bundle to the vertical n-jet manifold, that allows to deform the
differential equations, following works by Siu and Paun-Rousseau-Merker.

In 2010, Gergely Bérczi ([3]) used equivariant geometry to simplify the computations
and to improve the sufficient lower bound. He shows that the result still holds for
d > nd".

In 2012, using an innovative technique based on probabilistic estimates Jean-
Pierre Demailly ([9]) improved the sufficient lower bound on the degree of projective
hypersurfaces to:

n4 n
d> —(n log(n log(24n))) .
3
The first goal of this memoir is to export and improve the techniques of [13] to

study the algebraic degeneracy of holomorphic entire curves f: C — P" \ X; with
values in the complement of an algebraic hypersurface X; of the projective space IP".

Residue Formula

We first provide a residue formula that simplify step (1). When computing the
intersection number:

— * *
I—j: p(nmul,...,nK,K_luk_l,uk),
Xy

the standard strategy is to integrate along the fibers of the projections 7t;;_1: X; — Xi_1,
until one obtains an intersection product on the basis Xo, where the intersection of
cohomology classes becomes simpler.

In [13], Diverio-Merker-Rousseau use step-by-step elimination of Chern classes,
and are able to disentangle the complex intrication between horizontal and vertical
cohomology classes by a technical tour de force. These precise computations yield
effectivity.

In [33] and in [2], Mourougane et Brotbek make a clever use of Segre classes in order
to avoid a large part of the computations.

In [3], Bérczi uses equivariant geometry in order to prove a residue formula in several
variables, that avoids step-by-step elimination and yields effectivity.

In Chapter 1I, we combine ideas coming from these authors, in order to prove
a similar residue formula in several variables, that is valid in a versatile geometric
context, since it holds in any situation where the Demailly tower appears, cf. e.g. [33, 2].

Our proof borrows the technical simplification of the use of Segre classes, it yields
computational effectivity, and it is in the very spirit of the residue formula of Bérczi.

Let s(V) denote the total Segre class of the vector bundle Vi C Tx,:

st(Vo) = 1+ ts1(Vo) + 2 so(Vo) + -+,
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that is the inverse of the total Chern class c;(Vp). One key point, central in chapter II, is
the introduction of new generators for the vertical cohomology:

* * Yavs
0; = (T(i/lul + -+ T(i,i_lul'_l + Lll') eH (Xi),

that appear naturally by considering the short exact sequences defining the tower of
projectivized bundles:

Ry Xy o e Xy o Ko,

Denote by 7 the rank of the projective bundle of lines P(V). The following statement,
useful for step @, is established in chapter II:

Main Theorem (II). For any polynomial f in k variables ti, ..., ty having coefficients in the
cohomology ring of the basis, the cohomology class:

f(g) = f(vl,...,vk) € H'()_(k),

can be integrated along the fibers of the projective bundle Xy — Xo using the formula:

f_ (o) = Cc;gfgigitgnt(I(tl, ) Dty )

X 1

where I(t) is the intersection product on the basis:

I(ty, ... te) = | f(t, ... t)s1,(Vo) - - - 517, (Vo),
Xo

and where Dk(t) is the universal rational function:

ti—t ti—2t

] ! ] !
Or(ty, ..., k) = || || —_—
k(t K) =2t ti—2ti+tig

=2t
1<i<j<k ' o2ci<j<k

Slanted Vector Fields

Next, the strategy of slanted vector fields used in step (3) is generalized and
clarified. In Chapter IlI, the Siu-Merker slanted vector fields are developed for any
dimension in the logarithmic setting so as to apply the deformation method of Siu.
The following statement, central in step @, is established there:

Main Theorem (II). Suppose that the order k of the jets is smaller than the degree d, then the
twisted holomorphic tangent bundle to the vertical k-jets of the log-manifold (IP” xS, H ):

Ty tog ) @ (Om (K + 2K) @ Os(1))

is generated by its global holomorphic sections at every point of the subspace of reqular vertical
logarithmic k-jets of holomorphic curves avoiding H.

Moreover, some details left to the reader in the preceding works are treated with a
simplified new approach. The proof provides thus a clarification of the locus where
the global generation statement holds, both in the compact case, and in the logarithmic
case.



16 Chapter I. Overview of the main results of this memoir

Logarithmic Green-Griffiths Conjecture
In Chapter IV, the effective algebraic degeneracy of nonconstant entire curves

with values in the complement of a generic smooth projective hypersurface having
sufficiently large degree is established using the strategy (1) - (2) -

Main Theorem (IV). If X;; C IP" is a generic smooth projective hypersurface having degree:
d > (5n)*n",
then there exists a proper subvariety Z C IP", of codimension at least two, such that the image

of every nonconstant entire curve f: C — (]P” \ Xd) having values in the complement of X,
actually lies in (Z \ Xy).

In dimensions n = 2 [19, 44] and n = 3 [42], this theorem is already known, with
lower estimates on the degree.

The effective lower bound in this theorem also holds for curves with values in a
generic projective hypersurface. Thus, this is a significant improvement of the results
in the literature (cf. supra).

These results are described in more detail in the introductions of chapters I, I1I, IV.
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1. Introduction

Let X be a complex manifold and let D be a divisor on X with normal crossings,
thatis D =}, D;, where the components D; are smooth irreducible divisors that meet

transversally. For such a pair (}_(, D), one denotes by T}—((— log D) the logarithmic
tangent bundle of X along D ([35]).
Given a subbundle:
Vc T)—((— log D) C T)_(

of the logarithmic tangent bundle, one constructs ([7, 10]), for any fixed order x € IN,
the logarithmic Demailly tower of projectivized bundles:

(XK/ DK/ VK) - (}_(K—ll DK—l/ VK—l) — ... (}_(l/ Dl/ Vl) - (}_(0/ DO/ VO) = ()_(/ D/ V)/
having the main property that every holomorphic map g: C — X \ D lifts as maps:
8- C—- }_(,‘ \ D, (i=0,1,...,x),
which depends only on the corresponding i-jet of g. Later on in section §2, we will
describe precisely this construction, central here.
For any two integers j,k €0,1,..., k, the composition of the projections m;: X; —

X;_1 yields a natural projection from the j-th level of the Demailly tower to the lower
k-th level:

Tk += Tl+1 © *+* O TTj )_(] - }_(k-
The Demailly tower is of great importance in the study of the algebraic degeneracy

of entire curves on X \ D (cf. the enlightening surveys [14, 38]). A first step towards the
proof of algebraic degeneracy of entire curves is to prove the existence of a non zero

polynomial P on X such that every non constant entire curve g: C — X \ D satisfies
the algebraic differential equation:

Pe(8' (), 8”(1),...,8%(1) =0, forallteC.

17
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Being by definition a projective vector bundle, the manifold X; comes naturally
equipped with a tautological line bundle, Oy (—1), the multiples of which are usually

denoted by Og (m) := (O)—Q(—l)v)@’”. The direct image:

O (Exm(Vo)*(log D)) := (11,,0) O, (m)

is the sheaf of sections of a holomorphic bundle E, ,,(V¢)*(log D), called the Demailly-
Semple bundle of jet differentials, and a fundamental vanishing theorem ([7, 10]) states
that for every global section:

P € H'(X,, O3 (m)® 5 AY) = H'(X, Exu(Vo)*(log Do) ® A),

with values in the dual A" of an ample line bundle A — X, one has as desired, for any
et (¢, ¢, .., 8") of non constant entire map ¢: C — X \ D:

Pe(8'(8),8"(1),...,8"(t)) =0, forallteC.

One has thus to ensure the existence of global sections of the line bundle O)—(K (m)®7z:/0AV,
possibly with m > 1.

One approach, with Schur bundles ([7]), consists in bounding positive even
cohomology groups H? in order to use the Riemann-Roch theorem. In [40], in
dimension 3, the author is able to bound the dimension of H? by use of the famous
algebraic Morse inequalities ([7, 49]). Later in [32], the case of arbitrary dimension is
completed, for high order jet differentials.

With a different approach, in [8] the case of arbitrary dimension is completed by
use of a stronger version of algebraic Morse inequalities.

Another approach, developed in various contexts ([3, 2, 11, 12, 13]), consists in
applying the holomorphic Morse inequalities in order to prove the existence of sections
of a certain more tractable subbundle of the bundle of jet differentials. One is led to
establish the positivity of a certain intersection number on the x-th level of the Demailly
tower:

I= f 6l 05 0) - el 05, M) exlo5,m))
where f is a polynomial of large degree:
deg(f) = n + « (tk P(V)) = dim(X,),
in the first Chern classes c1(n:,i0}—<i(1)).

When computing this intersection number, the standard strategy is to integrate
along the fibers of the projections ;1 : X; — X;_1, until one obtains an intersection
product on the basis Xy, where the intersection of cohomology classes becomes simpler.

In [13], the authors use step-by-step elimination of Chern classes, and are able
to disentangle the complex intrication between horizontal and vertical cohomology
classes by a technical tour de force. These precise computations yield effectivity.

In [2], the author makes a clever use of Segre classes in order to avoid a large part of
the computations, but on the other hand, effectivity cannot be reached.

In [3], the author uses equivariant geometry in order to prove a residue formula in
several variables, that avoids step-by-step elimination and yields effectivity.

In the present paper, we combine ideas coming from these authors, in order to
prove a similar residue formula in several variables, that is valid in a versatile geometric
context, since it holds in any situation where the Demailly tower appears, cf. e.g. [33, 2].
Our proof borrows from [2] the technical simplification of the use of Segre classes, it
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yields computational effectivity as in [13], and it is in the very spirit of the formula of
[3].

To enter into the details, by the Leray-Hirsch theorem ([24]), the cohomology ring
H° (}_(K) of X, is the free module generated by the first Chern classes cl(n:i())—(i(—l)) over

the cohomology ring H '()_(0) of the basis Xp, but the implementation of the computation

(cf. 3.2) suggests to naturally consider a different basis for the vertical cohomology by
introducing the line bundles:

L;:= O)—Q(—l) ® 7'(:1-_10)—( ](—1) ®: - 7'(:10)—(0 (-1 (i=1,...x).

We will use the notation v; for the first Chern class of the dual of this line bundle L;
(dropping the pullbacks):
0; = Cl(Lly) = Cl(O)_(i(l)) +-e+ Cl(())—(1 (1)) @i=1,...x).

Note that this formula looks like a plain change of variables having inverse:

€1 (O}—gi(l)) =V; — Vi1 (i=2,...,%),

thus, clearly, the polynomial f appearing in the intersection product I above has also
a polynomial expression in terms of vy, ..., v. We will shortly provide a formula in
order to integrate a polynomial under this new form, still denoted f.

Let K be a field. A multivariate formal series in « variables with coefficients in K is
a collection of coefficients in K, indexed by Z*:

V. 7" - K
The space of formal series is naturally a K-vector space.

In analogy with polynomials, it is usual to denote, without convergence considera-
tion:

Wit ... te) = Z Wiy, ..., i) -

hence, in order to avoid confusion, we will write:
[t )W, k) = W, ),

to extract the coefficient indexed by iy, ..., i, that is the coefficient of the monomial
t!--- £ in the expansion of W(ty,...,tc). The support of the formal series ¥ is the
subset of indices at which ¥ is non zero:

supp(¥) := {j eZ": [t‘i1 tig](llf) # OJ.
One defines the Cauchy product W1¥; of two formal power series:
(1.0.1) Wiy (i, ..., i) Z [t 1() [ £21(w),
Jtk=i
whenever the displayed sum is a finite sum for each x-tuple:
i:: il,...,iK.

For a fixed partial ordering on Z*, when considering only the series having well
ordered support, the Cauchy product of two such series is always meaningful, since
the computation of the coefficient of each monomial involves only finitely many terms.
Moreover, for each choice of partial ordering, the set of formal series having well
ordered support, equipped with the Cauchy product, forms a field ([36, Theorem
13.2.11]).
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We give two examples of such fields. A multivariate Laurent series is a multivariate
formal series, the support of which is well ordered for the standard product order on
Z*. An iterated Laurent series is a multivariate formal series, the support of which is
well ordered for the lexicographic order on Z*. The field of iterated Laurent series is
an extension of the field of multivariate Laurent series.

After several Laurent expansions at the origin, any rational function becomes an
iterated Laurent series (but not necessarily a multivariate Laurent series), as we will
explain in more details later in §3.

We come back to the subbundle V = Vj C T)—(O(— log DO). The total Segre class of
this bundle Vy — Xo:

5.(Vo) = 1 +51(Vo) +52(Vo) + -+ + 54,y (Vo)

is the inverse of the total Chern class of V in H*(Xy). This notion is strongly related
to integration along the fibers of a projective vector bundle ([20]). We will be more
explicit about this relation below in §3.

We are now in position to state the main result of this chapter. Recall fori=1,...,%
the notation v; := c1(L;), set:

ri=rk P(V)=rk V-1,
and introduce the (finite) generating series:
5u(Vo) = 1+ usy(Vo) + 12 5p(Vo) + -+ + ulimE0)s o (Vo).
Main Theorem. For any polynomial:
feH Xo, Vo)lh, .-, 1],

ink variablesty, ..., t, with coefficients in the cohomology ring H*bi gl(}_(o, Vo), the intersection
number:

I'= | f(v1,...,00)
Xy
is equal to the Cauchy product coefficient:
I= [t; . t,ﬁ]((DK(tl,...,tK)I(tl,...,tK))

[r=rk P(Vo)=--=rk P(V})],

where O, (t1, . .., ti) is the universal rational function:

D (ty, ..., t) = H tf—ti' H ti—2t

—I
1<i<jex 1T T a<i<js fj=2ti+tia

and where I(t1, ..., t,) is the multivariate Laurent polynomial involving only explicit data of
the base manifold:

I(tl,...,tK):\ﬁ f(tlr---/tk)sl/tl(VO)'"Sl/tK(VO)-
Xo

Concretely, the computation of this intersection number I, on the x-th level X, can
be brought down to the basis Xy as follows:
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0 Step 1a: Compute on the basis Xj the intersection number with parameters
t1, ceey tKZ

I(h,---,fx):j: f(t1, ..., te) siy, (Vo) -+ 516, (Vo),
Xo

and obtain a multivariate Laurent polynomial in t4, ..., t, over Q.

O StEeP 1B : Expand the universal rational function @(t4, ..., tc) successively with
respect to t1,tp,... up to t,. Obtain, not a multivariate Laurent series, but what has
been called an iterated Laurent series, similarly denoted by @,(ty, ..., t,) — notice the
slanted .

0 Step 2: Compute the Cauchy product:
I(tll sy tK) q)K(tl/ sy tK)

of the multivariate Laurent polynomial I(#1, ..., t,) and of the iterated Laurent series
Dy (ty, ..., t) in the field of iterated Laurent series over Q. Lastly, extract the coefficient
of the monomial t{ --- 1. in the obtained multivariate formal series, and receive the
sought element I € Q.

Really computing I proves to be quite delicate in practice. The first effective result
in any dimension towards the Green-Griffiths conjecture was obtained in 2010 by
Diverio, Merker and Rousseau ([13]), using step-by-step algebraic elimination, for
entire curves C — X; C P! with values in generic hypersurfaces X; of degree d in
P! with an estimated sufficient lower bound:

A2,

Some time after, in [3], Gergely Bérczi made a substantial progress by replacing the
elimination step of [13] by an iterated residue formula, and he reached the lower
bound:

d>n®".

Using our result, the difficulty is that in general, Step 18 does not yield a single
iterated Laurent series, but produces an involved product of several iterated Laurent
series. Then, it is very difficult to determine even the sign of any individual coefficient
of O,(ty,..., 1), because this amounts to disentangle the large product:

H -2t H 1 i i1t — tia)P
LL =2t + 1t L 1 il
VASENIN VASENINN p=0 j

On the other hand, it is relatively easy to control the absolute value of these
coefficients, using a convergent majorant series with positive coefficients, whence
suppressing the problem of signs:

ti— 2t ti— 2t
|coeff]| H — 1 "' < coeff H e A

2<I<j<K b= 2ti+tia 2<iIj<K tf —2ti—tia
[ee]
tii1(2t; + ti-q)P
= coeff H 1+Z—l 125+ ti)
p+1
2<i<j<x p=0 £

—notice that +#;_; in the denominator becomes —t;_;. And this allows us to use (plainly)
the triangle inequality in chapter IV, to attain an effective lower bound on the degree 4
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of generic smooth hypersurfaces X; C IP" such that all entire curves C — IP" \ X, are
algebraically degenerate:
d > (5n)*n",

a lower bound which also holds for curves with values in a generic hypersurface
X; C P+l

2. Demailly Tower of (Logarithmic) Directed Manifolds

A directed manifold is defined to be a couple (X, V) where X is a complex manifold,
equipped with a (not necessary integrable) holomorphic subbundle V C Tx of its
holomorphic tangent bundle. There is a natural generalization of this definition in

the logarithmic setting. A log-directed manifold is by definition a triple (X, D, V)

where (X, D) is a log-manifold and the distribution V C Ty(—log D) is a (not necessary
integrable) subbundle of the logarithmic tangent bundle.

Given alog-directed manifold (X,D,V), following Dethloffand Lu [10], we construct

the Demailly tower of projectivized bundles (}_(i, D;, Vi)on X by induction oni > 0. This
construction is formally the same as the construction [7] of the Demailly tower in the
so-called compact case, i.e. where there is no divisor D. The only slight modification to
keep in mind in the genuine logarithmic setting is that V is a holomorphic subbundle

of the logarithmic tangent bundle T)—<(— log D).

Projectivization of alog directed manifold ([7,10]). Recall that for a vector bundle
E — X on a smooth manifold X with projective bundle of lines 7: P(E) — X, the
tautological line bundle:

Op(r)(—=1) — P(E)

is defined as the subbundle of the pullback bundle n*E — P(E) with trivial fiber. In
other words, the fiber of Op)(—1) at a point (x, v) is the complex line Cv C E, spanned
by v inside of the vector space Ey.

For a line bundle L. — P(E), we use the standard notation for twisted line bundles:

L(k) :== L® Opry(-1)** (ke 2).
Accordingly, in the particular case where L = Op), one has:
Op(e)(k) := Opgey(—1)® 7.

With this notation, the tautological line bundle satisfies the following Euler exact
sequence ([20, B.5.8][23, p. 408—-409]):

00— Op(E) — nn*E ®Op(E)(1) - T, >0,

where T, := ker(m,) stands for the relative tangent bundle of P(E) over X, that itself
fits into the following short exact sequence:

0 - Tr = Tp) —> 1* Ty — 0.

2.1. Projectivization of a log directed manifold. ([7, 10]) Take therefore a log
directed manifold (}_(, D, V) =: (}_(0, Dy, Vo). Reasoning by induction, we suppose that
a directed manifold (}_(i_l, D; 4, Vi_l) is given, and we construct the directed manifold
()_(i, D;, Vi) at the next stage.

We now recall the inductive step ()_(', V’, D') 5 ()_(, V, D) of the construction of the
Demailly tower. Keep in mind that V' is a subbundle of T¢(—1log D) and that V’ has to
be a subbundle of the logarithmic tangent bundle T, (—log D").
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The formal construction of Demailly involves therefore differentials
Ttx: Tx, (= log D') — m*Tx(=log D).

Consequently we have to define a divisor D’ c X’ at the upper level such that the

projection X’ — X becomes a log-morphism. There is a natural choice of this divisor
D’, for which we will still have:

V' C Ty, (=logD’).
For X’ we take the total space P(V) of the projective bundle of lines of V:
X :=P(V) 5 X.
One has thus:
dim X’ = dim X + rk P(V).
In order to make 7 a log-morphism it is natural to set:
D' :=n'(D)c X'.

Next, by definition of the relative tangent bundle T, := ker(rt) of the log-morphism
7t one has the following short exact sequence:

0 - Tr © Tx,(-logD’) = n*T5(~log D) — 0,

and since by assumption V C Tx(—1log D), the tautological line bundle of X' = P(V)is
a subbundle of the bundle in the right-hand slot:

Ox.(-1) c n*V c n*Tx(-log D),
whence one can define a subbundle V' C T, (- log D’) by taking:

V' = (1) 05, (-1).

Equivalently, V’ is defined by the following short exact sequence:

0> Trx > V' 55 Oz,(-1) - 0.

It is profitable to compare this short exact sequence with:
0> Tr > Ty, — *T — 0.

In the left, one keeps all the vertical directions whereas in the right, one keeps only the
single “tautological” direction among all horizontal directions.

The only thing to verify in order to get a tower of log directed manifold is that V" is
a holomorphic subbundle of Tg,(—log D’). Since (114)" has maximal rank everywhere,
as it is a bundle projection, this is the case ([10]).

2.2. Local picture of (}_(’,V’) — ()_(, V). We use local coordinates x,v,x’,v" on
Tpy = Tg, where x € X is the coordinate on the basis, v € P(V,) is the coordinate on
the fiber, x’ € n*TXx is the coordinate on the horizontal tangent bundle and v’ € T,
is the coordinate on the relative tangent bundle. The tautological line bundle of the
projective space P(V) is the subbundle of the pullback bundle n*V — P(V) locally
given by:

Ope)(-1) = {(x,0;x): ¥’ € v C 'V},
and thus, by definition:
V' ={(x,u;x",0): X’ € v Cn*Vy}
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In other words, the direction of the horizontal derivative x’ is assigned by v whereas
the vertical derivative v’ can have an arbitrary direction in the relative tangent bundle.

Here, the data x’ varies in a 1-dimensional complex subspace, the rank of V"’ is thus
the same as the rank of V, because:

rk(V') =rk(P(V)) +1 =rk(V) -1+ 1.
2.3. Logarithmic Demailly tower. Starting from a bundle V having rank:
rk Vo =ir+1,
by iterating the construction x times, we get a tower of projectivized bundles
(X, Vi, D) 25 -+ 2 (X4, V4, D1) =5 (Xo, Vo, Do)
with rk V; = 7+ 1 and n; := dim X; = dim(Xo) +i (tk P(Vy)) = n + ir.

2.4. Existence of global jet differentials. The fibers of the Demailly-Semple bun-
dle of jet differentials E, ,,(Vo)* (log Do) carries much complexity ([28, 30]). In order to
prove the existence of global jet differentials of order x = dim(X), one is led to consider
a much more tractable line bundle, constructed in [7, 6.13] as a linear combination with
non negative integer coefficients (a1, ..., a;):

Oz (a1,a2,...,a) := (1) * Og, (1) ® (m0)* O, (32) ® - - ® O (ax)-

If a; + ... + a, = m, the direct image (nK,O)*O)—(K (m1,...,a,) may be seen as a subbundle
of the Demailly-Semple bundle of jet differentials ([7, 10]).

For a suitable choice of the parameters ay, ... ., 4, the line bundle O}—(K (a1,...,a¢) has
some positivity properties, that can be used together with the following Demailly-
Trapani algebraic Morse inequalities ([49, 7]) in order to establish the existence of
global jet differentials.

(2.4.1) Theorem (Weak algebraic Morse inequalities). For any holomorphic line bundle L

on a N-dimensional compact manifold X, that can be written as the difference L = F® GV of
two nef line bundles F and G, one has:

()9

(X, L) > kN — o(kM).

For a choice of a4, ..., 4, € IN* such that:
(2.4.2) a1 >2a,>0 ; a;23a;41 (=1,...,x-2),
the line bundle O, (a1, ..., ax) is relatively ample along the fibers of X, over X (cf. [7]).

It hence suffices to multiply it by a sufficiently positive power nzoA@’l of a given ample

line bundle A — X, in order to get an ample (hence nef) line bundle (c¢f. [27]). On the
other hand 7'(7’;0A®1Jrl is nef for it is the pullback of a nef line bundle.

It gives an expression of the line bundle O;(K(al, e i) @ (T 0) AV as the difference
F® GY of two nef line bundles:

F:=0g (a1,...,a) ® (c0)* A% and G := (1,0)* A%

In order to prove the existence of global sections:

P € H(X,, Oz, (@1, ...,a:) ® (me0)*AY),
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it hence remains to show the positivity of the following intersection number:
I:= j: (o] (F)n"' — Ny Cl(F)n"'_lcl (G) (ne=dim X,).
We will give a formula for computing such an intersection product.

3. Fiber Integration on the Demailly Tower

It is convenient to bring down the computation to the basis and we will now provide
a formula for this purpose. Noteworthy, the proof of this formula involves iterated
Laurent series, in the same spirit as the residue formula of Bérczi [3, 4]. However, we
will not use equivariant geometry like this author, but only basic lemmas of intersection
theory, more precisely some of the properties of Segre classes exposed in the book of
Fulton [20, Chap. 3]. We now first briefly recall these properties.

3.1. Segre classes on the Demailly tower. To go down one level, from Xir1 = P(V))

to X;, we will use the very definition of the j-th Segre class of a vector bundle E — X
(having rank r + 1), namely the fiber integration formula:

(3.1.1) fsj(E)a:f w* p*a (j>0, acH*X),
X P(E)

where:
p: PE) > X and u:= c1(0p(5)(—1)v).

We want to apply this formula in order to eliminate the powers of the first Chern
classes vy, ..., v, of the vector bundles L; — )_(l-. We will proceed by induction.

It is well known that the total Segre class of a vector bundle is the same as the
inverse of its total Chern class. Thus, the total Segre class enjoys the Whitney formula.

Because we will obtain a result that is independent of the geometric context, we will
deliberately be ambiguous about it. The only property of the Demailly construction
that we use in what follows is the existence of the two short exact sequences:

0Ty —> V' —0x(-1) =0
and:

0— O

v = TVe05,(1) = Ty — 0,

where (X, V') 5 (X, V) is the inductive step of the Demailly construction.

Now, consider the following observation: the twist by a line bundle does not
change the projective bundle of lines of V’, but only the transition functions. Moreover,
one can twist short exact sequences by line bundles.

We can hence chose a line bundle L’ on X’ that makes the induction more easy. We
will twist both short exact sequences by the same line bundle, because we do not want
Ty to appear in the final formula below. Also, we do not want anymore the central
term of the second short exact sequence to be a product of line bundles with different
base spaces X and X’ but rather want it to be the pullback of a single bundle on the
lower level )_(, that is:

V805 ()®L =n*(VeL),

for a certain L — X (in practice given by the preceding induction steps). Consequently,
we have to take:

(3.1.2) L’ := Ox,(-1) ® 7*L = Opyer)(-1).
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Notice that accordingly the term Oy, (~1) can now be replaced by (L’ Qm* LV) in the
tirst exact sequence.
Once twisted by L’, the above two short exact sequences become:

{ 0> TxoL > VoL - (Len*LlY)eL — 0
0> L —>m(VeLl)>  TzeL -0
By the Whitney formula, the first line yields:
(V' ®L) = (T ® L) s((L)*? ® m*LY),
while the second line yields:
m*s(VeL)=s(T.®L)s(L’).
Thus, we can eliminate T, as it was our intention, in order to get the induction formula:
s((L')®2 ® n*LV)
(L)

Now, for a line bundle L — X, the total Segre class is the finite sum:

s(V' ®L’) = n*s(V®L).

s(L) = (1- Cl(Lv))_l =1+ LY)+ o (L) +- - + e (L) I

— we use the first Chern class of the dual in order to have positive signs.
Let:

V= cl(LV) and o := cl((L’)V).

We get the induction formula:

(3.1.3) s(V’ ® L’) = (p(v’, v) n*s(V ® L),
where:
o(ry)=1- Y @x- ).
k=0

is the truncated double Taylor expansion of the rational function:
-1
(1—x)(1—2x+y) .

Forx,y € Hl(}_(,-), i=0,1,...,x — 1, one has indeed:
1-x
PN =T oy
Considering (3.1.2), we construct the ad hoc sequence of line bundles L; — X; by
taking first the tautological line bundle L; := Og (-1) of Vj and then the tautological
line bundle of the twisted vector bundle V;_; ® L;_1:

L;:= 0)—({(—1) ® (ni)*Li—l = OP(V,-_1®L,-_1)(_1) (i=2,...,x).
We will denote by v; the first Chern class of the dual of this line bundle:
v; = Cl(Liv ) = Cl(OP(Vi_1®Li_1)(1))-

Then, by (3.1.3), on has the following inductive formulas, where, for simplicity, we
omit the pullbacks:

S(V1 ® L1) = (p(vi, 0) S(V()) and S(Vi ® Li) = (p(vi, Vi_1) S(VZ‘_1 ® Li_1), (i=2,...,K).
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Notice that we can reformulate the positivity property (2.4.2) by using the more
explicit expression of the line bundles L;:

Li=0z(-D®-® (ni,z)*O)—(z(—l) ® (ni,l)*O)—(l(—l) (i=1,...,1).
and the inversion of these formulas
0x.(1) = L ®Lis;
in analogy with O3 (a1,...,ax) = m O}—(](—l)v + e+ ay O;(K(—l)v consider, a linear
combination:
L(ay,...,a¢) ==a L] + - +a, L)
of the line bundles L;’, with non negative coefficients 4;, such that:
m+2a+--+xa,=meN,

then, the line bundle n: OL(al, ..., ) may be seen as a certain subbundle of E, V(’)* (log Do)
and if:

1> 21 5 a; 2241+ +ay)  (isc-2).

the line bundle L(ay, .. ., ay) is relatively ample along the fibers of X, — Xo.

(3.1.4) Proposition. For any polynomial in the first Chern classes v, ..., v;y1 having coeffi-
cients in (the pullback of) the cohomology of Xo:

fe H'()_(o)[vll e Ui, 0],

the following formula of integration along the fibers of Xiy1 — X; holds:

j}_‘( f(1,...,0;,0i1) = [t;l](ﬁ( f(o1,...,9;, ti+1)51/t,-+1(vi®Li))-
i+1 i

Proor. Firstly, by the Leray-Hirsch theorem:
H.(}_(O)[Ulz A H'(?_(m)

Thus, f has values in the cohomology ring of Xis1.
The polynomial f is of the form:

Ni+1

f(v1,...,0i,0i01) = Z(Um)j (mis1)™ fi(v1, ..., ).
=0

By linearity, the formula will hold for any such sum, if it holds for every monomial:
ol (mi)* fi(v1, ..., v)).
Recall that the line bundles L; are constructed by the inductive formula:
Liy1 = Opy (1) ® 15, Li = Op(v,er,)(—1).
Thus, it can be thought of as the tautological line bundle of the projective bundle:
P(V;® L;) = P(V;) =: Xis1.
Then the above fiber integration formula (3.1.1) yields at once:

(*) j: Z)L_l (7‘(1'4.1)*f]'(7)1, .o, U) = j: s]-_r(Vi ® Li) f]'(Z)l, cee, V).

Xis1 X
In particular, this integral is zero for indices j smaller than r.
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The problem is now to obtain the individual Segre classes from the total Segre class.
In that aim, we will use the formalism of generating functions. Recall that, in analogy
with Chern polynomial, for a vector bundle E — X over a N dimensional manifold X,
we have introduced the generating function s,(E) of the Segre classes of E, that is:

su(E) = so(E) + us1(E) + u* sp(E) + - - - + u" sy (E).
Then, by taking t = 1/u, we obtain a Laurent polynomial:

so(E) . s1(E) . s2(E) sn(E)
s1¢(E) == 0 + 1t1 + 2 +---+tT,

in which the ( j— r)-th Segre class involved in the fiber integration appears as the
coefficient:

5i-(E) = [1/87 [s10(E) = [¢'] (¢ s14(E) ).
Therefore, by replacing in the integration formula (+):

f; U{+1 (7'(1'+1)*f]‘(01, cen ,Ui) = f}—(l[t”lr](tl]';l Sl/ti+1(vi ® Lz)) fj(Ul, ey Ul').

i+1 i

= [ti+1”] (f}_; tzj+1 fj(vi; eee,U1) Sl/tM(Vi ®Li)) .

Notice that inside of the parenthesis there is the product of a monomial by a Laurent
polynomial. Thus, only a finite number of terms are involved and there is no objection
to switching the integral and the coefficient extraction.

The obtained formula is exactly the sought formula for the considered monomial:

U?_H (ni+1)*,fj(vll sy vi)r
and this ends the proof. o
3.2. Iteration of the integration formula. In order to iterate the fiber integration,

we introduce the following formalism: fori =0, 1, ..., x, we denote by vt, the x-tuple
obtained from:

v:=(v1,...,0%)
by replacing the last i components v,_;.1, ..., Ux by the corresponding parameters
tK—i+1I ey tK, i.e.:
Z)_ti = (01, .+, Uiy te—izly -+ - b)) (i=0,1,...,x).

With this notation the fiber integration formula (3.1.4) just above yields directly, that for
any polynomial in the first Chern classes vy, . . ., v;11 having coefficients in (the pullback
of) the cohomology of Xy, being a Laurent polynomial in the formal parameters
(27, P

f € H.(XO)['Ul, %7 Ui+]][ti+2, t;lzl sty tKI t;<1 ’

the following formula of integration along the fibers of }_(m - }_(i holds:
(32.1) fX flet—) =[] fx A0t in) s17(Virr © Lica)-
i i—1
Notice that in the above formula the form of the polynomial appearing in the
integrand:

f(v—tx—i+1) Sl/ti(Vi—l ® Li—l) € H'(}_(o)[vl, o, 0illtie, t;_l‘_l, ...t t;}],
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allows to iterate this formula in order to integrate along the fibers of Xi_1 — Xi_p. For
short, we denote the appearing polynomial rings by:

Alot, ] = H(Xo)low, ..., villtisn, £

17
b bl (=01,

One has thus:
Aloty] = H'(Xo)lel = H'(X,) and  Alot,] = H'(Xo)lt 7],

We have first to investigate the dependence with respect to v; of the appearing
power series sqt,,, (Vi ® Lz-). The induction formula (3.1.1) precisely provides us with

this information. Thanks to it, we can split the power series s; /t(Vi ® L,-) in two parts:

Vi Vi
Sl/t/(Vi ® Li) = (p(t—]l, Zt—]) sl/t].(VH ® Li_1),
—_———
eAfvt, ] SN

—K—1

or fori=1:

(%1
Sl/tj(Vl ® Ll) = (P(?, 0) Sl/t/-(VO ® Lo),
j
—_—
eAfvt,_,]  eH*(Xo)[Lt!]

the first of which depends on v; whereas the second does not.
Write for short:

e te_
@kl(tl/ ey tK) = (P(_k/ H) (k=2,..., k-1, k+1<l<1<),
' t’ 4
and:
f
Dy (t1, ... b)) =@ t—l,O (2<I<x),

in such way that, for any two positive integers k < I:

(3.2.2) Sl/tl(vk ® Lk) = (Dk,l(v_tk) Sl/tl(Vk—l ® Lk—l) (1<k<I<x).

Let @; be the product of the terms in the i last lines of the array:

T D D .
@2,3 ................... (I)z ©
"'(DK—l,K
g [ 1

that is the product of (i(i -1)/ 2) terms:

Oyttt = [ Pty k).
x—i+1<k<I<x
As an example, @q(ty, ..., t) = 1.
The following lemma will be used in order to isolate the variable v,_;, that is to
eliminate after the i-th step of the fiber integration.
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(3.2.3) Lemma (Isolation of v,_;). Forany i = 0,1,...,x — 1 one has the following relation
between @; and D;,q:
K K

(Di(v_ti) H Sl/t]-(vx—i ®L;<—i) = (Di+1(v_ti) H Sl/t]-(VK—(i+1) ®LK—(i+1))'

j=r—i+1 j=r—i+1
Proor. Recall the induction formula displayed above:
Sl/t/(vi ® L,‘)

Sl/t]-(vi—l ® Li—l)

= (Di,j(ﬂt K—i)'

Thus, one has:

KH}(:K—iH Sl/tj(VK—i ® LK—i) _ ﬁ (DK_Z.’].(@K_Z.)‘
I1 j=k—it+1 Sl/tj(VK—(i+1) ® LK—(i+1)) j=x—it1

Now, by definition of @; and @;,1:

O; ITicker< Pk, K
) - )= T onfa, )

I=k—i+1

Hence, we get the announced result. |

Notice that in the right hand side of the obtained formula, only the first factor
depends on v,._;.

This result is given by anticipation of the proof of main theorem (3.2.4). However
we can already notice that, e.g.:

K

(Dl(v_tl) H Sl/f]'(VK—i ®LK—i) = Sl/tK(VK—]. ®LK—1)1
j=r=1+1

is the term appearing in the first step of the fiber integration.
Main result.
(3.2.4) Theorem (Fiber Integration on the Demailly tower). Any polynomial:
feH Xo, Vo), ..., k],

inkvariablesty, ..., t,, with coefficients in the cohomology ring H* (}_(0, Vo), yields a cohomology
class:

f(g) = f(vl,...,vk) € H'(}_(K),

that can be integrated along the fibers of the projective bundle X,, — Xo according to the

formula:
j}:{ f(?) = [fi a trx](@x(t)ﬁ f(t) s1/6(Vo) - 'Sl/tk(VO))~

Xo

Proor. We will prove by induction that fori = 0,1, ..., «, one has:

Jo @) =[] [ sar)

with:

K

fz‘(U_ti) = f(v_ti) @i(v_fz-) H 51/t (Vie—i ® Lyc—i).

k=x—i+1
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Then, fori = «:
Jo @) =l5-] [ 20

K

fk(i) = f(t) (Dk(i) H s1/4,(Vo ® Lo).

k=1

with:

That is the desired formula because Ly = 0)—(0.
For i = 0, this is tautological. Now, assume that the formula holds for the index i,
that is to say:

(*) f)_(K f(Q) = [t:’—i+1 o t;ﬁ] f}_{

According to lemma (3.2.3), f; can also be written:

Sfet,),

K

K

fi(v_ti) = f(v_tz.) ‘Di+1(ﬂfi) H 81/t, (Vie—(i+1) ® Lic—(ix1))-

k=x—i+1

€A[ot;,]

Now applying lemma (3.2.1):

f: fz’(l’_ti) = [ti_i] f: ﬁ(v_ti+1)51/t,<_,-(v1<—(i+l)®LK—(1'+1))'
Xei Ky—i-1

—1

It remains to state that:

fi(v_t i+1)51 Jteei (Vie—(i+1) ® Li—(i+1)) =

K

f (v—ti+1) (Di+1(v_ti+1) H 1/t (Vie—(i+1) ® Li—(i+1))

k=x—i+1
81/t (Vie—(i+1) ® Li—(i+1))-
Here, we recognize the expression:

K

ﬁ+1(7)_ti+1) = f(v_tm) (Di+1(v_ti+1) H 81/t (Vie—(i+1) ® Li—(ix1))-

k=x—i

Thus, we can replace the integrand in order to get:

Jo )=l [ et

Kx—i—1

Using the induction hypothesis (*), one finally gets the desired formula, for the index

i+1:
Jo s =] [ slat) =[] f falet)

This complete the proof. O

K

3.3. Iterated Laurent series. Next, we introduce the formalism of Laurent series
expansion in several variables, in order to write @, more compactly.
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Univariate case. In the univariate case, let K be a field, let K[[f]] denote the ring of
formal power series in the indeterminate t over K and let K][[t, t1]] denote the space of
formal series in the indeterminate t over K.

An element W of K[[t, t!]] is a formal combination:

Y= Z vt
with coefficients ¥; € K. Recall the notation:

(L i) =

The support of a formal series V¥ is the subset of Z consisting of exponents i for which
the corresponding coefficient in the expansion of ¥ is not zero:

supp ¥ := [i: [#](¥) # 0} c Z.

The Cauchy product W; ¥, of two formal power series V1 and ¥, in K][[¢]] is the
series with coefficients:

(3.3.1) [F](¥1 W) = Z[t]] w1 [F](¥2).
jrk=i

It is well defined, because the computation of the coefficient of the monomial t involves
only finitely many terms. Equipped with this law, K[[t]] becomes a ring.

A formal power series ¥ in K[[t]] is invertible with respect to the Cauchy product if
and only if has a non zero constant term [t°](W). In particular, the following geometric
series formula is valid in K[[¢]]:

(3.3.2) 1-t'= Z H
i>0
It is not possible to extend the law (3.3.1) to the full space of formal series K[[t, £1]:

in general, the Cauchy product of two formal series ¥, ¥, € K][t, #1]] is not defined,
because some appearing formal coefficients

[E1(w W) = ) 101(w1) [£771(wh)
jez

could be infinite diverging series.
Classically, a Laurent series in the indeterminate ¢ is a formal series ¥ € K][[t, 1]
whose support is bounded from below by a certain constant N, possibly negative,

depending on ¥:
v = Z Wit

We will denote by K((t)) the space of Laurent series. One may check that Laurent series
in K(t) are nothing but polynomials in +! with coefficients in the ring K[[]]:

K(#) = KA
Hence the law of K[[t]] induces a law on K(t)), for which K(t)) becomes a ring.
More concretely, the problem of convergence that we mentioned just above
fortunately disappears for the formal product of two Laurent series, since each
obtained coefficient is a finite sum:
i-N,

(3.33) [E1(w ) = Y 1) [E (%),
J=N1

where Nj := min supp ¥;, N := min supp ¥,.
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Also, thanks to the formula (3.3.2), we can define the formal inverse (for the Cauchy
product) of any Laurent series of the form:

=N
with initial coefficient Wy # 0, as follows:
1 1JVN+]' A\
(3.3.4) Wl (_ t]) ,

because the computation of the coefficient of any power of ¢ in the later expression
involves only a finite number of appearing k-th powers. The result is indeed a Laurent
series, because its support is visibly bounded from below. To sum up, with these
natural product structure, K(t) becomes a field.

Some important spaces are naturally embedded in K(t)), namely the ring of Laurent
polynomials K[t, +'!] and notably, also the field of rational functions:

K(t) := FracK[t].

Indeed, the support of a polynomial Q € K[¢], considered as a formal series, is finite.
Consequently, it is naturally a Laurent series. Then, by formula (3.3.4) above, we
can construct a formal inverse of Q in the field of Laurent series. Now, any rational
function of the form:

0@ = POQ®,

with also P € R[t], can be expanded as a Laurent series: it suffices to use the
multiplication rule (3.3.3) in order to compute the product (in the field of Laurent series)
of the numerator P by the formal inverse "Q™" obtained after using the expansion rule
(3.3.4). Thus, any rational function enjoys a natural Laurent expansions.

When a Laurent series expansion is done by applying the rule (3.3.4), we will

mention that it is done "under the assumption t < 1". This yields an injective morphism
of fields:

w0 K(t) — K(¢),

that we call Laurent expansion of rational functions at the origin.

Multivariate case. We now want to generalize this setting to the multivariate case.
Some objects have natural generalizations, as e.g. the vector space of formal series in
the indeterminates t1, ..., f;:

Kllt1, 1. e, 511
the ring of Laurent polynomials:
Klt, £ ... b 1]
and the field of rational functions as well:
K(ty, ..., t).

However, in order to expand a rational function of ty,...,t under the form of a
generalized Laurent series, it is necessary to assign at first a total ordering to the
variables ;.

As an example, for the simplest case x = 2, consider a rational function Q € K(t1, t2).
Through the two isomorphisms:

K(ty, t2) = K(t1)(t2) = K(t2)(t1),
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the function Q € K(t1, t2) can be seen either as a rational function Q € K(t1)(t;) of the
variable t, with coefficients in the field K’ = K(t1), or as a rational function Q € K(t;)(t1)
of the variable t; with coefficients in the field K’ = K(t;). Thus, a direct application of
the procedure (3.3.4) of Laurent expansion at the origin provides two ways of expanding
Q at the origin: either we take Q € K(t1)(t2), then expand it with respect to ¢, in the
tield K(t1){t2) of Laurent series at the origin with coefficients in K(t;):

Qlti, ) = Y Wilt) b,
i>N

and lastly we expand all coefficients W;(t;) € K(t;) in the field of Laurent series with
coefficients in K, or we reverse the roles of t,,t; — i.e. we consider Q as an element of
K(t2)(t1) — and we perform the corresponding two successive Laurent expansions.

Observe that once we have written Q € K(t2)(t1) — explicitly: Q € K’(t;) with the
field of coefficients being K" = K(t;) — we have a unequivocal Laurent expansion of Q
at the origin, since here t; is the variable, while t, € K’ is a plain coefficient. It is only in
the second step, when we consider the coefficients W;(t,), that the symbol ¢, becomes
truly a variable. In summary, when we write Q € K(t2)(t;), we work step by step in the
univariate setting: firstly with the formal variable t;, secondly with the formal variable
ty.

The more precise example of:

Q: (t,t2) > (1 —t2)!

can be further analyzed as follows. We want to define two new fields K{t1, t2)) and
K{ty, t1)) — taking account of the order in which t; and f; appear — such that: when
working in K(t1)(t2), the result of the successive series expansions of Q at the origin:

1 2
—-(1 + 2 +(t—2) +) € K(t2, 1)),
1 f f

will be an element of K{t,, t1)) while, when working in K(t,)(t1), the result of the
successive series expansions of Q at the origin:

1 (1 + h + (t_1)2 + - ) € K{ty, t2),
ta th \f
will be an element of K{t1, t)).
Notice that this last expression is a Laurent series in t; but is not a Laurent series in
t2, because they are infinitely many negative exponents i, such that the monomial t,™

has a non-zero coefficient. As a consequence, it is 7ot an element of the usual space of
multivariate Laurent series:

K(t, 1) = K[[t, 1111, £5'1.

Nevertheless, for any (fixed) integer 71, the coefficient of t111 is a Laurent series in the
variable t;. This heuristic justifies that we set as a definition:

K{t1, t2) := K(t2)(t1)),

that is to say the field of Laurent series in the variable t; with coefficients that are
Laurent series in f,. It is indeed a field for the sum and the Cauchy product (with
the variable t1), since we have already seen that, when K’ is a field, K’(t) is a field.
We can thus inductively define a vector subspace of the space of formal power series

K[t 8, ..., trer, 51, 11 by:
K{t) == K(t1)),
K{t1, .o b)) = Kk, - - -, e D(E),
that is clearly a field in itself.
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One easily convinces oneself that the successive series expansions at zero (taking
account of the ordering of the variables) yield an injective morphism of fields:

1110: K(tK)(tK—l) et (tl) — K«tl/ tZ/ R4 tK»/

that we call Laurent expansion of rational functions at the origin, under the assumption
Hh < - <ty <ty < 1. The map 0 is indeed injective because its image
contains only summable series, therefore its left inverse is the successive summation
for tK, tK—l . ,tl.

Here, the notation t; < f; < -+ < t,, < 1 is an abbreviation for the x univariate
assumptions:

"< 1" (k=1..%),

formulated in the field of coefficients K = K(tx)...(t+1) — i.e. where 1 stands for
any rational expression involving fi,1, ..., t, — when making the (n — k + 1)-th step of
expansion of all coefficients.

The idea is that for two integers k < k’ the variable ¢ is infinitely smaller than any
(positive or negative) power of the variable f;,. The first hypothesis means that we first
expand Q at the origin as a rational function of t;, formally considering any rational
expression made of constants of K, and variables t, ..., t, as elements of the field of
coefficients. Then, when expanding the coefficients of the resulting series, we forget t;
and we have: t) < f3 < ...t < 1, what accordingly means t, < 1, where the field
of coefficients is K(ty) ... (t3). We iterate the procedure until we get t, < 1, that is the
one-dimensional case.

Thus, an element of K{t1, ..., t,) should be seen as a Laurent series in t; whose
coefficients are Laurent series in t, whose coefficients are Laurent series in t3 and so
on. .. Accordingly we call such an element an iterated Laurent series.

It is a bigger space than the space of multivariate Laurent series. A formal series
Y is an element of K{ty,...,t) if and only if its support is well ordered for the
lexicographic order. This condition is clearly weaker than to be bounded from below
for the standard product order on Z* (see the example of (t; — t2)! just above).

We can extend the coefficient extraction operator to the field of rational functions
K(ty,...,tc) by using the injection WO, For a rational function Q € K(ty,...,t), we
always imply the assumptiont; < --- < t,, < 1 and we define the coefficient extraction
operator:

[ ](Q) =1+ ](w°Q)
This convention in turn allows us to define the Cauchy product of a rational function
by an iterated Laurent series, by using the same formalism as in (3.3.1).
Integration formula. We are now in position to state a more tractable version of
formula (3.2.4):
(3.3.5) Theorem (Fiber Integration on the Demailly tower). For any polynomial:
f € H.()_(O/ VO)[t], ey tK]/

in « variables ty,...,t., with coefficients in the cohomology ring H*(Xo, Vo), having total
degree at most n,., the cohomology class:

f(g) = f(vl,...,vk) € H'(}_(K),

can be integrated along the fibers of the projective bundle X, — Xo according to the formula:

f_ flo) =14 tfc](q’x(f) f)‘(o F(t) 51 (Vo) -+ 'Sl/tK(Vo)),

X«
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where @, is the universal rational function:

ti—t; ti— 2t

J ! ] !
D (ty,..., L) = _
«(h ) H tj—Zfi H t]‘—zti+ti_1

1<i<j<x 2<i<j<K

Proor. The product @, can be reshaped as follows:

o t I = ST

wlbi o b = Ht]—ztl Ht]—ztﬁti_l‘
~———— = —_—
@q(t) @; (t)

Forl1<i<j<x-—1,let
R; (1) := WO(D; (1)) — Dij(b).

By coming back to the definitions, it is immediate to see that these remainders are:

(2t _( ) (2t; —tl )F
Rii)=[1-= d Rp=[1-= =t P ocicjsr-
1,i(®) = ( ) Z an i(® ; E (2<i<j<x-1).

k>ny_q k>n,q ]

Noteworthy, the supports of these remainders satisfy:

supp Ry € {(i1, ..., i): i < =mea O [ ){(ir, - i) i = 0).

k>j
One can write:
1 ‘®12+R1,2 ............. ®1K+R1K
ell;[ies 'A'A"“"'qu),"ﬁl”{ + R;\—L
T 1

We clean inductively this array of the remainder in the k-th column. Let array; be the
array deduced from the above array by dropping the remainders in the j last columns.
We will show that:

[t e ](] T aray; 1, - 1) = [+ ] (] [ arvay o Ity - 1))

where:
I(ty, ..., t) 1=ﬁ ft, ..., t)s1,(Vo) - - - 516, (Vo).
Xo

We generalize the notation I(ty, ..., t;) by setting:
k=1 k-1

It ) 2= [H, t;](l(;) I H‘Dﬁk(i)) (01,05,

k=i+1 j=1
Then we claim (find the proof below):
supp I(ty,..., tK_]') C {(il, ceey iK_]')Z Z'K_]' < Ny }
On the other hand, one is easily convinced that:

x—1 -
Harray] Harray]+1 +R; H HCbkz(t)

I=x—j+1 k=1
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where R; is a given series such that:
supp R]'(tl, ey tK_]') C {(il, ceey iK_]'): iK_]' < —TlK_l}.

It is now clear that the second part cannot contribute to the coefficient of t;_]. in:

[t i tQ](H arrayjl(g)),

because the degree of f,_; in the corresponding term:

x—1 -
g (it ] H PO I0) = Ryt ) 11, )
l xk—j+1 k=1
is strictly less than —n,_1 + n, =r.
Consequently:
[tf{_j e t;](H array; I(tl,...,tK)) = [ti_]. ‘e ti,] H array ;. I(f, . ..,tK)),
and by extraction of the coefficient of the monomial tr . tf{ j-1/ 38 announced:

[ﬂ'”tﬂ(rla”awlah-ufﬁﬂ):[ﬁ-Htﬂ([IaNaw41th.th)

An induction finishes the proof because:

V@, = H array, and @, = H array, . O

We have added a lot of non contributive terms, however in practice (cf. chap. IV),
the above reformulation of (3.2.4) is more efficient, because it takes account of the
convergence of the series at stake.

Finally, we prove our claim above in the proof, that:

supp I(ty, .. '/tK—j) C {(il, - ,iK_j): iK_]' < Ny }

Actually we will be more precise and show that for j =1,...,«:

supp(ty, ..., t)) € {(ir,...,ij): ij < ;.

Proor. In order to prove this statement, it is easier to work with genuine polyno-
mials, and not Laurent polynomials. An important remark is that for any two integers
k <1, the Laurent polynomi‘al t?“’l @y ((t) is in fact a genuine polynomial, having degree
nx—1. Thus, we rather consider:

—_

I—

t;?[(tll e, t]) = [t;’:ql . tmh 1 tn+r]((tn A I(t)) (t7171<—1 (Dk,l(t)))/
I=j+1 k=1

—_

kS

Il
-.

>~

Il

where
my=n+r+ (1 —1)(ne1).

The appearing polynomial in t]', t]'+1, ..., b has degree:
k=1 -
deg . ( (#7210 H H (£ @i i( f))) M+ 1+ Z (my —7) +n.
I=j+1 k I=j+1

Extracting the coefficient of [tj - £ ] decrease the degree by at least:
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Finally we get a polynomial in ¢ j having degree:

x—1

degtj(t]’?l(tl,...,tj)) <Sn+ne—r-— Z r=n+n;.
I=j+1

Thus, as announced:
deg, (It 1)) < nj. =

Notice that our theorem holds as well without the (natural) technical assumption
on the degree of f.
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1. Introduction

The formalism of jets is a coordinate-free description of the differential equations
that holomorphic curve may satisfy. For a map f: C — X, valued in a complex
projective manifold X, the k-jet map fjy: C — JiX valued in the k-jet bundle [;X
corresponds to the truncated Taylor expansion of f at order k in some local coordinates

system. In Ji X, each jet-coordinate fl.(j ) shall be considered as an independant coordinate,
as a consequence, each algebraic differential equation (with holomorphic coefficients)
of order k shall be thought of as a polynomial equation in J;X:

P(f, f",..., f9 =0

Similarly, if D C X is a normal crossings divisor, the submanifold [, X(—log D) C ;X
of logarithmic k-jets on X along D can be defined by considering the logarithmic
derivatives in the direction of D (see below).

Schwarz lemma. A (logarithmic) k-jet differential is locally a polynomial in the

(logarithmic) jet-coordinates fl.(]) having constant homogeneous weight, when the

weight of fl.(j ) is the number of “primes” j. The jet differentials enjoy the following
fundamental vanishing theorem:

If 0 is a holomorphic jet differential on X with logarithmic poles along D, vanishing on an
ample divisor, and f is a holomorphic map C — X \ D, then the pullback f*o = P(f’,..., f®)
vanishes identically on C.

When the canonical divisor Kx + D is big, an interesting question, motivated
by the longstanding Green-Griffiths conjecture ([22]), is the algebraic degeneracy of
such holomorphic maps C — X \ D. Starting with a lot of differential equations
as above, the overall idea is to decrease the degree of the differential equations by

39
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algebraic elimination until the obtainment of a differential equation of degree 0, that
is an analytic equation satisfied by every entire curve f: C — X\ D. We will briefly
recall the key points of this strategy, successfully implemented both in the compact
setting (X \ D = X; C IP", [13]) and in the logarithmic setting (X \ D = IP" \ X}, chapter
IV).For more details, the reader is referred to the comprehensive recent article [47] by
Yum-Tong Siu.

Siu’s strategy. The general idea is that the vector fields V € T} x applied to P
produce new differential equations. However, the obtained equation is not necessarily
satisfied. Indeed, if the pole order of a vector field V is bigger than the vanishing order
of o, then the hypothesis of the above vanishing theorem are not satisfied by V - ¢
anymore! It is thus important to control the pole order of the vector fields. On a regular
hypersurface of high degree, there cannot be sufficiently nonzero meromorphic vector
fields having low pole order, but one can use the positivity of the moduli space of
degree d hypersurfaces in IP" in order to get a lot of low pole order vector fields.

Let S = P("i)~1 be the moduli space of all degree d hypersurfaces in IP", that is the
projective space of homogeneous polynomials of degree 4 on IP":

S:= IP{ZAQZ“: A, ec}.

|o|=d

The universal family of degree d hypersurfaces in IP" is the subspace H c P" x S
defined by:

H = {[Z], [A]: Z A Z% = o}.

lal=d

The space of vertical logarithmic jets is the subspace ],‘{’ert(lP” x S)(—log H) C Ji(IP" x
S)(—log H), consisting of jets tangent to the fibers of the second projection IP” x S — S.
These jets are introduced in order to use the Schwarz lemma fiberwise.

We call slanted vector field a vector field on ]I‘(’e“(]P” X S)(—log H) that is not
tangential to the space of k-jets of the vertical fiber at a generic point of Jy"(IP" x
S)(—log H). When low pole order meromorphic slanted vector fields are used, we will
show that it is possible to produce sufficiently many differential equations in order to
eliminate the derivatives f/, ..., f® in the differential algebraic equations.

Background. The method of slanted vector fields has been introduced by Siu
([46]), and is motivated by the work of Clemens-Ein-Voisin ([6, 18, 50]) on rational
curves. It has been pushed further by Pdaun ([37]) in dimension 2, and by Rousseau in
dimension 3, both for the compact case ([43]) and for the logarithmic case ([42]). In
the compact case, the technique has been generalized in any dimension by Merker
([29]), with a substantial improvement of the determination of the locus where the
global generation statement fails, leading to a proof of the strong algebraic degeneracy
of entire curves with values in a generic projective hypersurface of large degree ([13]).
In the slightly different context of projective hypersurfaces in families, Mourougane
([33]) has implemented the technique in any dimension and for any order.

In the present work, these Siu-Merker slanted vector fields are developed in the
logarithmic setting. Moreover, some details left to the reader in the previous works are
completed in a new approach. The proof provides thus an important clarification of
the locus where the global generation statement fails, in both compact an logarithmic
cases.

Main result. Low pole order meromorphic frames of slanted vector fields are
constructed on the space of vertical logarithmic k-jets along the universal family H of
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degree d projective hypersurfaces in IP". Let n: f[, = f(0) denotes the evaluation of
the jets. The following statement is established:

Main Theorem. Suppose that the order k of the jets is smaller than the degree d, then the
twisted holomorphic tangent bundle to the vertical k-jets of the log-manifold (IP” xS, H ):

T]]Z{)ert(l[)nxs)(_ log H) ® 7]*(011311 (k2 + Zk) ® Os(l))

is generated by its holomorphic global sections at every point of the subspace of reqular vertical
logarithmic k-jets of holomorphic curves avoiding H.

Organization of the chapter. The chapter is organized as follows. Firstly, in §1, we
recall the formalism of jets. Next, in §2, in order to study the logarithmic vector fields,
we generalize the strategy implemented by Erwan Rousseau in [42] for complements
of hypersurfaces in IP?, by locally straightening out the universal hypersurface H.
Then we compare two natural systems of jet-coordinates, namely the standard jet-
coordinates and the logarithmic jet-coordinates. The first system of coordinates is
useful for defining vertical jets, but not adapted to describe logarithmic jets. The
second system of coordinates is well adapted to the formalism of logarithmic jets,
but the equations to satisfy for a tangent vector field to be vertical are slightly more
complicated. Lastly, in §3, we prove the main theorem on global generation of the
tangent bundle. In the directions tangent to the space of parameters S, the arguments
introduced by Merker for the compact case ([29]) directly apply, and the space of
vertical vector fields has the right codimension k + 1, provided one works outside
of the set {z;. # 0} where the derivative in the j-th direction does not vanish. In the

remaining directions, tangent to the space spanned by the jet coordinates, the matrix

approach presented in the work of Pdun ([37]), Rousseau ([43, 42]) and Merker ([29])

is generalized and reformulated with new arguments. Some new vector fields that

generate all the remaining tangent directions outside the set {z;. # 0} are introduced,

for which it is easy to find a slanted counterpart by solving a simple linear system.
Typographical conventions and notation.

— Throughout this text, lower case greek letters (like a, B, v, ...) will be used
to denote multi-indices in IN". The entries of such a multi-index a are written
ai, ..., ay. As aspecial case, &7 will denote the multi-index with entries 6; , where
0 is the usual Kronecker symbol. In other words:

n
a= Z a; O
i=1

— In order to shrink the notation, a! will denote the product of factorials:
al:=aq! - ay!,

and for z = (z1,...,z,) € C" the notation z* will be used for the monomial:

a Qp

a1
...Z .
n

z 1

=2z

— The relation < will stand for the standard product order on IN", namely:
ASAN e A<AL =1,

— The length of a multi-indice A € IN" is the sum:

|)\| 2=A1+/\2+---+/\k,
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and its weight is the weighted sum:
Al := A1 +2A + -+ - + kAp.

Clearly, for any multi-indice A € IN", |A| < [|A]|. The equality case corresponds to
the multi-indices of the form A = (14,0...,0).

Important Notation.

— We will rather use the notation /) for the univariate j-th Taylor coefficient than
for the univariate j-th derivative, i.e.:

() .=
f ] atf

A reason is that this choice simplifies the coefficients of the Faa di Bruno formulae.

Faa di Bruno formulae. Let f: C — X be a regular mapping of class ¢ and let
h: C — C be a parametrization of the source of class ¢*. Then for any integer
j=0,1,...,k the j-th Taylor coefficient of the composition f o h is given by:

) o
(1.0.6) (For)" =Y ) Zfoh,
i<j )
where % ; is the Bell’s polynomial:
v
(1.0.7) B j(h) == Z g AL A Gl
i=ima=j £

Let f: C" — X be a regular mapping of class ¢* and let h: C — C" be a parametrization
of the source of class €*. Then for any integer j = 0,1,...,k, the j-th Taylor coefficient
of the composition f o h is given by:

1 An

o
() n
(1.0.8) f h z ‘%A]h)/\'m_z foh,

I
s An!
where %, ; is the multivariate Bell’s polynomial:

(1.0.9) B, )= Y By () B, ().
|ul=j

2. Logarithmic Jet Bundles.

2.1. Jet manifold. Let X be a n-dimensional complex manifold and k € IN an
integer. At any point x € X, the set [ X, of k-jets of germs of parametrized curves at x is
by definition the quotient space of the set of local holomorphic curves f: (C,0) — (X, x)
defined on an open neighborhood () of the origin by the equivalence relation:

fAg e (F90) = g7(0) for j =01, k),

that is f is equivalent to g if and only if the Taylor coefficients of f and g at the origin
are equal up to order k for some local coordinate system, on an open neighborhood
Qg € Qf N Qg of the origin. This relation is independent of the choice of a system of
coordinates around x.

The example of polynomials shows that every k-jet may be represented by a local
holomorphic map. The space Ji X, therefore identifies, by Taylor formula, to the vector
space C"*.
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Moreover, we claim that the collection of these vector spaces gives rise to a
holomorphic fiber bundle:
X o= (x JiXy),

xeX

the projection on the basis X being the evaluation map 1 of germs at the origin. This
bundle is called the k-jet manifold of X.

An illustrative example is the bundle of 1-jets 1 X = T, that is isomorphic to the
holomorphic tangent bundle to X. However this picture is not very representative,
because for k > 1, it is well known that [ X is not a vector bundle.

Let Q) be an open subset of C and f: ) — X a local holomorphic mapping, then f
lifts canonically to a map:

f[k]: Q- ]kX/

called the k-jet of f, such that o fy; = f. When Q) and X are equipped with coordinates,
this map fy is determined by the truncation at order k of the Taylor expansion of f.

2.2. Local triviality in coordinates. To get a local trivialization of J;X around a
point x € X, the first naive idea is to consider the derivatives in some local coordinates
(z1,...,24) over an open subset U C X around x. A construction due to Noguchi [35]
allows more general “derivatives”, that are potentially more adapted to the geometric
situation that will be dealt with below. Here “derivative”means pullback of local
meromorphic 1-forms, as by the very definition of the pullback of a 1-form, for every
local holomorphic map f: O — U, one has:

frdzile = dfils = f (D dt,

where we equip the complex plane C with the standard coordinate ¢.

We will use more general local meromorphic 1-forms that only dz;, and we even do
not demand them to be locally exact. Let thus w € T} be a local meromorphic 1-form
over an open subset U C X and let f: (Q — X be a local holomorphic mapping over an
open subset () C C. This mapping f induces a meromorphic function A”: 2 — C by
the formula:

ol =: A'(t)dt.

By definition of the pullback of a differential form, A’(t) is the coefficient of the linear
map C — C:

f*wlt =0 a)|f(t)(dﬁ’0)

Thus, the obtained map A’ depends only on the 1-jet fj1] of f. More generally, the
derivatives:

8{A’ = %( ’) (j=1,...k-1)

up to order k — 1 of A” are well-defined and depend only on the lifting fj;j. One gets a
meromorphic mapping @: J; Xy — CF such that:

~ , aA, 8k—1A/
o) = (2, % o)

If w is taken holomorphic, then @ becomes also holomorphic. In the simplest
particular case where w = dz; is locally exact, if f; denotes the component of f in the
direction z;, one gets the definition of the derivative of f; at x. Note that any holomorphic
1-forms aren’t locally exact, as it is shown by the theorem of normalization of Darboux.
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In the basic particular case were locally w = %, we get the logarithmic derivative

of f;.
For a complex manifold X of dimension 1, we say that the n-tuple of holomorphic
1-forms (a)l, e ,a)”) is a holomorphic frame of T;g if ! A -+ A @" is a volume form.

Recall that 77 denotes the evaluation of germs at the origin.

(2.2.1) Given a holomorphic frame (a)l, ey a)”) for the holomorphic cotangent bundle T%, the
biholomorphic map:

nx(@,...,@"): JiXlu — Ux (",

is called the local trivialization of [, X associated to the holomorphic frame (@', ..., @").

2.3. Noguchi’s logarithmic jet bundles. Now we set the logarithmic setting. Let
again X be a manifold of dimension n. A reduced divisor on the manifold X is an
effective divisor with all multiplicities equal to 1. Ata pointx € X, areduced divisor D is
said to have only simple normal crossings if locally it looks like the union of coordinate
hyperplanes: there exists a coordinate neighborhood U at x with a local holomorphic
coordinate system (z1, ..., z;) such that U N D is the zero-locus {(zl ceeZp) = 0} for some
integer £ < n. Such a local coordinate system is said to be a logarithmic coordinate
system along D at x. A reduced divisor is a simple normal crossing divisor if it has
only simple normal crossing at every point. In this case such a pair (X, D) is called a
log-manifold. Notice that £ depends on the point, e.g. if x € X\ D, then £ = 0.

Let Ox denote the structure sheaf of X. Let D be a simple normal crossing divisor
on X and Ox(D) denote its Cartier sheaf. The Ox-module of logarithmic 1-forms of X
along D is defined in [25] as the Ox-submodule 7 (log D) C 7 ®p, Ox(D), such that:

— If £ = 0, that is x is a point of the open part of (X, D), the stalk at x is defined as:
T3 (logD), =Ty,
— If x € D is a point of the divisor, take a neighborhood U of x equipped with

a logarithmic coordinate system (z1,...,z,) along D at x such that: UND =
{zl s Zp = O}, then the stalk is defined as:

73 (ogD)_ : ZOX" dzjl + Z Oxx dz;.
i=(+1
Clearly 77 (log D) is locally free of rank n. The associated vector bundle, denoted by
T%(log D), is called the logarithmic cotangent bundle. Its dual Tx(~1log D) is called the
logarithmic tangent bundle to X along D.
Recall, after [35], that a holomorphic section s € HO(U, ]kX) on an open subset
U c X is said to be a logarithmic jet field along D of order k if the maps:

CT)OS|V:V—>Ck

are holomorphic, for all logarithmic 1-form w € HO(V, T;g(log D)), where V c U is an
arbitrary open subset of U.

The sets of logarithmic jet fields along D over open subsets of X form a complete
presheaf that defines a sheaf J;X(—logD) over X, called the sheaf of germs of
logarithmic jet fields along D over X. This sheaf is isomorphic to the sheaf of sections
of a holomorphic subbundle of [, X. This subbundle, that we denote by:

JiX(=log D) c [y X
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is called the logarithmic jet bundle of order k along D.

2.4. Local triviality in coordinate. Let U be an open chart on (X, D) with log-
arithmic coordinates z,...,z, along D such that the normal crossing divisor D is

the zero-set locus {z1z;---z¢ = 0} for some ¢ < n. Let ! := CL—?,...,(U{ = ‘1—7

W™l :=dzpq, ..., 0" = dz,. Recall we have a biholomorphic map:

and

N X (@1,...,@n): iX(=log D)y — U x C™.

Let s € HO(U ]kX( log D)) be a logarithmic section Then in this trivialization,

coordmates (zl, zn) on X around x by:

fz.(j) = (logos) 0<i<¢t
f =80 (+1<i<n

Recall the basic inclusion:

s € i X(— IOgD) C iX

the holomorphic frame dz;, ..., dz,, is also avallable
These two coordinates systems are related by the univariate Faa di Bruno formula
(1.0.6) applied on s; = exp olog(s;) and evaluated at 0 € C that states, fori =0,1,...,¢:

) f-(lu)
2.4.1) s/ =5 ) ﬁ

llull=j

In the remaining directionsi = £ +1,...,n, the jet coordinates s' s = f; v stay unchanged.

2.5. Regular jets. Ajetfield j € i X is termed singular if it is the lift of a stationary

curve, i.e. j = fig with f/ = 0. The subset of singular jets will be denoted by ]SlngX A
logarithmic jet field is said singular if it is in the Zariski closure:

Zar

J2"8X(~log D) = J; "X N JiX(~ log D)

A (logarithmic) jet field that is not singular is termed regular.

2.6. Log-morphism. Let (X, D) and (X’, D) be log-manifolds. A holomorphic map
7: X’ — X such that (D) c D’ is called a log-morphism X’ — X. Such a map enjoys
good functorial properties ([25]):

(2.6.1) Given a log-morphism 1t: (X’,D’) — (X, D), one can define a pullback morphism:

*: ! T%(log D) — T%.(log D’)
from the vector bundle of logarithmic 1-forms of X along D to the vector bundle of logarithmic
1-form of X’ along D’.

Recall that the logarithmic 1-forms play a fundamental role in the definition of
logarithmic jet fields. Consequently, the above proposition (2.6.1) allows to define
further morphisms ([10]):
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(2.6.2) A log-morphism m: (X’,D") — (X, D) induces vector bundle morphisms (for any
k>0):

i iX' (=logD’) — i X(~log D),
by the formula:

i (fim) = (0 -
In the important case k = 1 this morphism is called the differential of m:

1y = myyp: Tx(—logD’) — m' Tx(-log D).

For a log-morphism n: (X’,D’) — (X, D) that is moreover a fiber bundle, the
vertical bundle T is defined as the kernel of the differential 7,. One has thus, by
definition, the following short exact sequence of vector bundles over X":

0 = Tr — Tx:/(~logD’) =% Tx(~log D) — 0.

In local coordinates (x,v) € }(U) over an open subset U C X the fiber of the bundle
T, is identified at a point (x, v) with the tangent space to the fiber 7!(x) at v.

3. Vertical Logarithmic Jets

In this section, we compute the algebraic equations of the tangent space to the vertical
logarithmic jets.

3.1. Straightening out the universal hypersurface. By its very definition, the
universal family H of hypersurfaces of degree 4 in IP" is given in the system of
coordinates ([Z], [A]) on IP" x S as the following zero set of the universal homogeneous
polynomial of degrees (d, 1):

H := {0 = ¥ Aa Z“} cP' x5 =P xPli),
lal=d

This zero locus can be straightened out in the following way. Introduce a new ho-
mogeneous "Z-coordinate" W € C associated with a new homogeneous "A-coordinate"

Ay € C, thought of as the coefficient of the monomial W¥. Accordingly consider the
new homogeneous polynomial equation of total degree d:

AgWT =Y A 77,
lal=d
and define X as the zero set:
X = {Ao Wi= Y A, Z“} c P! x P,
lal=d
There is a natural forgetful map:
: P x P\ ((VZ; = 0) U (YA, = 0) = P x P31,

that consists in erasing both W and Ay.
Notice that:

XN(YZ =0} U [VA, = 0)) € X N ({Ag = 0} U (YA, = 0))

Indeed, if Z = 0, the equation of X becomes: Ay W = 0. This implies that either Ay
or W must be zero. But W cannot be zero, because the homogeneous coordinates of
the point [W: 0 : ... : 0] in the projective space P"*! cannot be all simultaneously zero.
Thus Ap must be zero.
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Let X" be the restriction of X to the affine chart, pointed at the origin:
{Ag #0}\{[1:0:...: 0]} = C"™*"\ {0}.

Then, the projection m|x-: X* — IP" X S is well defined and moreover, it is a branched
cover of degree d that ramifies exactly over H. Since Aj # 0, the inverse image of the
universal family H under this projection identifies with the (straight) hyperplane

D := (nlx)(H) = (W = 0}.

The map m: (X*,D) — (IP" x S, H) is therefore a log-morphism, that induces a
canonical holomorphic map on the spaces of jets of logarithmic curves:

s JkX'(—log D) — m* Ji(P" x S)(—log H),

that is clearly dominant, as dry is of maximal rank. This projection 7 also send
vertical jets on vertical jets. We will thus study the vertical logarithmic jets upstairs,
where it is more easy to use logarithmic jet-coordinates.

3.2. Vertical jets in coordinates. Equip the affine chart:
{Zo # 0} c P!
with the standard inhomogeneous coordinates:
W:Zo:Zy:...: Zy] > (w,21,...,2n)
(where z; = Z;/Zy and w = W/Z)), and equip also the affine chart, pointed at the origin:
(Ao #0)\{[1:0:...: 00 c P(d)
with the standard inhomogeneous coordinates:
[Ao : Aal = (@0)aeNr: jal<d)s
where (notice that ap does not appear anymore in the indices of a,):

In these coordinates, the restriction X of X* to the chart:
{(Zo £0} x{Ag #0}\ {[1:0:...:0]}

Xo = {wd = Z Ay z"‘},

lal<d

is the zero-set:

and the restriction of D is the hyperplane:
Dy := {w = 0}.
One can use two meromorphic coframes to trivialize the jets. By using the
holomorphic coframe:
dw,dzy,...,dz,, da,,
one gets the standard jet-coordinates:

0

(w(j), Zgi)/ 20 g0 e i ().

)o< j<k

On the other hand, by choosing the adapted meromorphic coframe:
d(logw),dzy, ..., dz,, da,,

one gets the logarithmic jet-coordinates along Dy = {w = 0}:

] ] j i 1 d+n k+1
((log w)(]),zgf)’ . ,zg),gg))OSKk c C( +n+(" ))( 1)
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Whereas the z-jet-coordinates and the a-jet-coordinates stay unchanged, the Faa di
Bruno formula yields the following relations between the standard jet coordinates w/
and the logarithmic jet coordinates (log w)":

, 1
w = w Z ﬁ(logw)w
liAll=j

Throughout the end of this text, we will use the short notation d, = %, for the

d+n
vector fields on C(l+n+( )k in the above two trivializations. In this notation, the

formal differentiation of jets D is the following vector field, that mimic the action of
the derivation in standard coordinates:

=
—_

k-1
(] + 1)Z.Elj+1) 825{') + Z(] + 1)w(j+1) 8w(,‘).

k-1
(3.2.1) D:= Z(] + 1)2(1]+1) az(lj) R
j=0 =0

Il
o

j
Here, the coefficient j + 1 appears only because we use the Taylor coefficients.
d+n
Recall that a jet was termed vertical if it is tangent to the projection IP"*! x P —

lP(dgn). By definition, a formal differentiation in the (n + 1) variables zy, ..., z,, w of the
defining equation:

w = F(a,z) := Z a, z%,
lal<d
gives the (k + 1) defining equations of the submanifold of vertical jets J;**"*Xo:
t d d D? (4 d
ver — — — — — —
(322) X = {O—w ~F=D(0f - F)= — (0~ F) == —(w —F)}.
The submanifold of vertical logarithmic k-jets along Dy:

J7e" Xo(—log Do) = J;*"Xo N JxXo(—log D).

consists of logarithmic k-jets tangent to the fibers of the natural projection over the

parameter space.

(3.2.3) The submanifold of logarithmic vertical k-jets is defined by the (k + 1) equations:

w? Z A % (log w)M = Z n %(z“) (j=0,1,... ).

llAll=] |orl<d

Proor. Here, notice the following subtlety: the formal differentitation of jets D is
naturally defined in standard coordinates, whereas the logarithmic jets are naturally
defined in logarithmic coordinates. Hence, to get the local equations of the space
of logarithmic vertical k-jets, one shall substitute the log-variables (logw)" to the
standard variables w'/) in the (k + 1) equations of the space of (standard) vertical k-jets

J¥et(Yo):

D/

D/
?(wd) = T [Z g Z“J (j=0,1,...).

lal<d

In other words, one has to express the iterations D/ of the map D in terms of the
log-variables.
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Considering that w' = exp o(d log)w and using Faa di Bruno formula:
DI ) = M) = g w1 W,
7(w ) = Z ' (dlog ) Y 4 = (log )
llAll=7 llAll=j
one gets the (k + 1) explicit equations of J}*"Xj in logarithmic coordinates:
1 D/
w? Z dnl o (logw)™ = Z g 7(z"‘) (j=0,1,...K),
llAll=j |orl<d
where notably the w-coordinate and the w-log-derivatives are now separated. m|
3.3. Algebraic equations of the tangent space. Now that the equations of the

subspace of logarithmic vertical k-jets are expressed in log-jet-coordinates, it is straight-
forward to derive the algebraic equation of its tangent space.

d+n
Consider a vector field on the tangent space (C1+k)n><(C1+k)x(C1+k)( ) under the
general form:

V:i=V,+V,+V,,
where:

— thevector field V, is tangent to the space of z-jet-coordinates and has coefficients

j
Z Zvam,

0.
i
1<i<n 0<j<k

— the vector field V,, is a logarithmic vector field tangent to the space of w-log-
jet-coordinates and has coefficients v/,

VZU = Z ] &logu} (7

o<j<k

— the vector field V, is tangent to the space of a-jet-coordinates and has coeffi-

Va = Z Z vé&ag).

lal<d 0<j<k

cients v/,:

(3.3.1) The (k + 1) algebraic differential equations to be satisfied by the vector field:
V=V, +V,+V,
to be tangent to ]Z"”X o(—1log Do) are the following, for orders of derivation j =0,1,...,k:
r

T in Tt 0= 5 %o Yot o+ o B

j
lerl<d r=0 i=1 |al<d r=0 lor|<d

Proor. A vector field:

V=V,+V,+V,
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+n)

on (Ck+1)x(Ck+1) (Ck+1)( is tangent to ]Zert/\’o(— log Do) if it vanishes over the

equations (3.2.3):

\" ( Z AN — Y (logw)(ﬁ)] V. [Z g ?!] (z* )] (j=0,1,....k).

IAll=5 |or|<d

Some parts of V trivially vanish on one or the other side of this equations. It is more
judicious to expand V in the above equations:

1 a
V,, [wd Z A T (log w)(/\)] = Z ay Vs, ]—(z )+ Z Va(aq) —( “).

llAll=j lal<d lol<d

Here, the left hand side involves logarithmic jet-coordinates, whereas the right hand
side involves standard jet-coordinates. We will now compute the three appearing
terms separately.

1. Recall that:
Vo = Z UZU a(logw)(’)/
0<r<k

thus by substituting this full expression for the vector field V,, we get the following
expression for the first term:

1
"y d = (logw)® | =

llAll=j
1 1
odwt Y AV 77 (og ) + Y o, Y d 7 Ytoguyn ((ogw)™),
IAll=1 Isr<j lAll=)

where, in the indices of the sum, we take account that the appearing logarithmic
jet-coordinate have order r < j.
The partial derivatives appearing in the last summand can be replaced by:

a(log w)®) ((log w)(A)) = /\r(log w)(A—é")'

By the change of variable A <~ A — 0" in the last sum —notice that the terms with A, =0
vanish —, one obtains:

Z dl/\l aaogw) ” (logw (’\) Z d"\l (logw A=) = Z A+l (logw)m
[IAll=5 [IAll=7 [IAll=j—r
The first term is now written under the form:
d Al * (A) r IAI ()
duf |00 Zd ; (logw)™ + Z'vw Z d'l = (log w)
lAll=j I<rgj lMlI=j-r

Actually, it was rather artificial to separate the case r = 0.
It remains to replace the w-jet-coordinates with z-jet-coordinates by considering
the defining equations of ;" Xo(~log Dy):

1
w? Z AN T (logw)(A) = Z ay

IAll=j—r ) ll<d

D
(j=n)

z%).
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Hence, at a point of J*"'Xo(~log Do) the jet-coordinates satisfy:

o Y d“'—(logw)”]—d Y o Y '_,f),< ).

IAll=] 0<rgj lal<d

2. Recall that:
Vz = Z Z Z)g 82(_/)
I<inosr<k
thus by substituting this full expression for the vector field V., we get the following
expression for the second term:

Y o Vom (z“)—Zaa )R (a« )(z“)
ler|<d lor|<d 1<i<n 0<r<j

where, in the indices of the sum, we take account that the term D/(z%) involves only jet
coordinates of order at most ;.

The next step to get tractable equations is to eliminate the partial derivatives. In
that aim, use the following elementary fact, for r < ]

9 D @) = D/’
50 1T r)'az

z%).

In conclusion:

D/
Zga V27(Z“)= Zﬂa Z Z z(]_r)laz, z

lor|<d ’ lal<d 1<i<n 0<r<j

Va = Z Z Ul];{aag),

lal<d 0<j<k

3. Recall that:

thus by substituting this full expression for the vector field V,, we get the following
expression for the third term:

D/ D/
D Viaa) S = ) o ).

lal<d ’ lal<d

Notice that the a-derivatives with order r > 1 are not involved in the tangency of V,.
The vector field:

Uiﬁa(/)
lal<d 1<j<k '
is automaticaly tangent to the space of vertical jets.

Gathering the partial results 1, 2, 3, the equations for V to be tangent to the vertical

jets can be formulated as:
2 Z vy, daa (z%) = Z Z Z o aa (QZ,Z“)+ Zv —(z“)

lor|<d 0<r<j |erl<d 1<i<n 0<r<j lal<d

O

Remark that these “differential” equations are strictly speaking algebraic equations,
in the space of jets. Noticing that these equations form a linearly free system of rank
(k + 1), one infers:
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(3.3.2) The algebraic subspace of logarithmic vertical jets ];{’”tz\’ o(—1log Dy) is of pure codimen-

sion (k + 1) in the ambient space e+ (r1+().

4. Low Pole Order Slanted Vector Fields

We prove the following result:

(4.0.3) Suppose that the order of jets k is smaller than the degree d, then the (twisted)
holomorphic tangent bundle to vertical jets of the log-manifold (IP" x S, H):

T]IZ(’M(H’”XS)(— lOg(]‘{) ® T]* (O]Pn (k(k + 2)) ® 05(1))
is generated by its holomorphic global sections at every point of the subspace:

I (P x S)(~log H) \ 17 (H)

of reqular vertical logarithmic k-jets of holomorphic curves avoiding H.

In order to prove theorem (4.0.3) it hence suffices to prove the analog theorem for
(X, D), namely:

(4.0.4) Suppose that the order of jets k is smaller than d, then the (twisted) holomorphic tangent
bundle to vertical jets of the log-manifold (X, D):

T]Iz:ert{\f(_ log D) ® T]* (O]I)n+1 (k(k + 2)) ® O]P(dgn) (1))

is globally generated over the subspace ]Zert’reg X(-log D)\ 1Y(D) of reqular vertical logarithmic
jets of holomorphic curves avoiding D.

We distinguish two packages of vector fields. In a first package —see 4.1 —, we
put the vector fields tangent to the space of parameters. In a second package —see
4.2 —, we put the slanted vector fields that are the sum of a vector field tangent to the
vertical fiber and of a slanted part.

Any point of ]Zert’reg/\’g(— log Do) lies on a least one chart {zgl) # 0}. Recall that
5" € IN" is the multi-index (0,...,0,1,0,...,0) with a 1 at the i-th column and 0
elsewhere.

4.1. First package of vectors fields. We start by looking for vector fields tangent
to the space of parameters, i.e. under the specific form:

V = Z Oa 8“0('
lal<d

In this setting, the system (3.3.1) reduces to:

D/
0= Z Uy 7(2“) (j=0,...k).

lal<d

Lower lengths. Let o € IN" be a multi-index whose length verifies |a| < k < d and
with moreover a # 0,8, ..., ko' Following [29], we look for a vector field of the specific
form:

To := —=Ady, +000ay + Vi Oayy + -+ + Vysi a g

where all coefficients are assumed to be holomorphic functions of the variables
w,z1,...,Z2y ON Qo.
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(4.1.1) Suppose that the order of jets k is smaller than the degree d. For every multi-index
a € IN" with |a| < k, that is distinct from the k + 1 multi-indices 0, o, ... ko', there exist a
coefficient A and coefficients vg, v, . . ., Uysi, that are holomorphic functions of the variables
(w,z1,...,2n) on Qp , such that the vector field:

T = =Ad,, + 000 + Vs 8%1. + o 4 Ui 8%1

is tangent to the space of logarithmic vertical jets J7*"'(Xo)(—log D).

Proor. The system of k + 1 equations (3.3.1) has the matrix form:

1 Zi z;‘ Vo z®
0 D(z) ... DE)||oy D(z%)
. (- . . k'
0 2@) ... ZEh|low et

The first column contains only one non-zero coefficient, at the first position. Hence, the
first unknown is involved in only the first equation of this linear system. The system
made of the remaining k last lines :

D(zi) ... D(zif) s D(z%)
: : S =AL
%) o FEOlewl e
only involves the k unknowns v, ..., vs and classically, it can be (uniquely) solved

using Cramer’s rule provided its determinant is not zero. In this view, set A to be the
determinant of this linear system, the value of which was calculated by Merker [29]:

D(z) --- D -
A:=det| : : = (zf) 2.
D) - 2Eh

The crucial point is that it is non-zero because we made the very simple assumption
z; # 0. Hence by Cramer’s rule the system has a (unique) solution and more precisely
we have:

D) ... DE™) DE¥ DE') ... D
Vje; = det| : : ,
TG . FE) T TE @
where we changed the k-th column in the determinant. The last unknown is finally
determined by the remaining first equation:

v =Az" —vg5zi— - —vkéizé‘.

Higher lengths.

(4.1.2) Fix a multi-index p with length |B| = k +1 and consider the multi-indices a > f (having
length k + 1 < |a| < d). The vector field defined by

Tap: _Z( Dlyl B- y)l)/l ya“ow‘

y<p
is tangent to the space of vertical logarithmic jets J2''(Xo)(—log D).
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Proor [29]. Recall that the successive formal derivations of z* take the form:
/\n

Z%J@ )

N
Hence the system of equations (3.3.1) that a vector field tangent to the space of
parameters {a,} has to satisfy writes:

oM

0= Y 21 ¥ on S0 ),

2] larl<d

We observe that it hence suffices that the coefficients v, fulfill the following stronger
system of equations:

(+) 0= ) vads, -0z, (),

lal<d

forall j=0,1,...,kand all i3,...,i; = 1,...,n, because all the above coefficients of 2D
are clearly of this form.

Now, for any multi-index g with length |5| = k + 1 and any multi-index a > f, we
claim that the considered vector field:

aﬁ - Z(_ )|V| aaa,_},-
r<p

satisfies the stronger system (*) just above. Let us sketch the main idea of the proof.
On one hand, the desired cancelations write:

() 0= Z( 1)|y| 2/ d: - azl_j(za—y)‘
r<p

On the other hand, introducing an auxiliary complex variable y € C" and applying
multinomial expansion, one gets the general basic formula,:

(X B (y Z ﬁ = ( 1)|V| ﬁ ya ﬁyﬁ_y 7.
A,Zq B-=1h!

While j < || = k + 1 the derivative by d;, --- 821.]_ of the left hand side vanishes on the
diagonal y = z. This remark leads to the formal identity:

(3 % %) 0= Z( 1)|V| 9, ...azz_(zy)_
r<p ]

Comparing (*+) and (* * *), it looks like we have to transfer the derivatives from the
right monomial z” to the left monomial z*~”. This can be done by induction on j using
Leibniz’ rule. O

4.2. Second package of vector fields.
(4.2.1) Fori=1,...,n, the slanted vector field:

Tii=dy— Y (@+ D) agy da,

lal<d—1

is tangent to the space of vertical logarithmic jets J7*""(Xo)(—log D).
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Proor. For V; = d;, and V,, = 0 the k + 1 defining equations (3.3.1) become:

0= Z a; ay Dj(z“_‘si) + Z 20 D/(z%)

lal<d lal<d

= Df(z a;ja, 2970 + Z o z"‘)

lal<d lal<d
= Dj( Z (i +1)a,,s5 2% + Z o z“)
lal<d-1 lal<d
The choice v, = (a;j+1) a,,s for [a| < (d—1) and v, = 0 for |a| = d solves the problem. O
(4.2.2) The slanted vector field:
To = doguw + Y A0 da,
larl<d

is tangent to the space of vertical logarithmic jets J7*""(Xo)(—log D).

Proor. For V; = 0 and Vi = dipgw, the (k + 1) defining equations (3.3.1) become:

0= Z(va —day)DIz%  (j=01,..%).

lal<d

So it suffices to take v, = da, in order to cancel all the equations. O

Next, in the remaining directions, tangent to the space spanned by the jet derivatives,
we can improve the matrix approach presented in the work of Pdun, Rousseau and
Merker by introducing vector fields that generate all the remaining tangent directions
outside the set {zlfo # 0} where the derivative in the fixed ip-th direction vanishes.

Change of coordinates. Consider the non singular jets, for which at least one first
derivative z; is not zero. Without loss of generality, assume iy = 1.

Next, 1ntroduce the differential operator of total degree zero:
D
D(z1)

(4.2.3) The powers of the operators D and A satisfy the triangular system:

q
_:Z pq(Zl)_ (q=01,...,k),
p=0

that is invertible outside the set {z = 0} where the derivative in the direction z1 vanishes.

Proor. Starting with the univariate Faa di Bruno formula:
(g (11) Z e%)pq(h) g(lﬂ) oh,
p<q
one states the formal identity:

(q+1)
(gon) Z Bpqri() gV o h
p<q+1

_Z pq(h)g(p)0h+zp—% WP Do,
p<q p<q
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that yields:

D(Byq(h)) + p 1’ By1,4()

f%)p,tﬁl(h) = g+1

Applying this result to i = z1, it is now easy to prove the stated formula by induction.
Recall that by definition:

! |
Bpgty= Y ELEOp @Oy,
|.“|:P/||.U||=!1 ’

The system is clearly triangular, because there is no multi-integer with |u| > [|u]],
thusif p > q: %,, = 0. Moreover, the only multi-integer such that ||ul| = |u| = p is
u=(,0,...,0), whence:

%p,p(zl) = (Z/l)p~
The system has thus determinant:
det(%B,,,) = (z))" 1+, O
As a consequence, we can reformulate the defining equations, outside of the set
{z] =0k
o 2/ #0 )
0=D/ (w —f) (j=0,1,...) S 0=A (w —f) (j=0,1,...).

In the direction of z7, define:
. 1_. .
xif) = ﬁD] (zi) = zgj) (j=0,1,...),

and for all other directions z;,i > 2, define:

y o1
XEJ) = F N (z)) (j=0,1,...K),

lastly define:
xg) = ﬁA] (log w) (j=0,1,...%).

Euler type vector fields. In the new coordinates x:

’” (k)
Jd X d X d d d
A=|g-+Fa5+ = +E Yo b
ox1 X ox X 8x§_) ox; axl( -1)

’
1

Lw

Ay Ag

On C[z] = C[x], the iterates of A will never produce derivatives in the direction of x1,
because A(x1) = 1. Thus we can use the simpler expression of A:

. . 9 J
A = (AJ)|C[X] - (a—x1 + AQ) .

Another consequence of this fact is that for j > 1, the vector field d/ 8x§]) is
automatically vertical. This is a consequence of the homogeneity of the defining
equations. These vector fields are thus of Euler type. Their expressions in the old
coordinates are rather involved.
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Generators of the vector space. For fixed directions xq and x;, forintegersp =0, 1, ...,k,
let us consider the following vector fields:

k

d d [al! w 0
=Y B(x)— = Z —xt .
(p) Z PA @ 11 ()
ox q=0 e dz;"

The simpler examples of such vector fields are constructed in the case p = 0, where the
vector field has the plain expression:

d d

ox; 0z’

and in the case p = 1, where the vector field 8/8xl’. is the same as the vector field
implicitly used in the matrix approach presented in the work of Pdaun ([37]):

In the general case, d/ 8x§p ) is under the form:

IR PR of (N NI
o = o e )02

As |[jull > |ul, the terms for ¢ = 0,1,...,p — 1 are always 0. Moreover, the only
multi-integer such that |||l = [yl = pis u = (p,0,...,0). On thus obtains:

p d Zk: 0
W, =(z) —=+ By o(z1)—.
P 1 p) P4 @)
9z 4= 9z;
Now, take a linear combination with complex coefficients of Wy, W1, ..., Wi:
agWo+ a1 Wy + -+ o W [38+58+ +B
oWotar Wyt -+ W =pos—t+p1—5 t+pk—03-
7 P 5 720

Then, the coordinates § are obtained from the coefficients a by the matrix product:

1 * * * *
0 Zi * * *

[ 0(0 al a?_ 4444444 ak ] e (Zi)z * * = [ﬁo ﬁl ﬁz 444444444 ﬁk ]
[0 [ 0 (Zi)k

The appearing (k + 1) X (k + 1) matrix has coefficients:

lult
Ppqz1) = Z A
lul=pllull=q ©

0+1+2+-+k
and is thus upper triangular. Its determinant is the plain monomial (zi ,
whence it is very clear that the vector fields Wy, Wy, ..., Wj span the tangent vector
space in the i-th direction, at points where z] # 0.
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Computation of the slanted part. We will next investigate how to add a slanted part

=V, to these generators W), in order that the sum \TVP of the two vector fields is tangent
to the space of vertical jets. Accordingly we consider the slanted vector fields of the
form:

W, = W, -V,

where the slanted part V, depends on the coordinates a and only on the coordinate x;
in the vertical direction:

J
V, = Z va(a,xl)g.

lal<d a

The coefficients v, will be set a posteriori.

(4.2.4) The k + 1 equations to be satisfied by the slanted part for W; to be tangent to the vector
space of vertical jets are:

V,- 8;;] (f) = p!(r];) 8;”83(,.(1?) (j=0,1,...k).

Proor. This simplification of the equations to be satisfied relies on the basic identity:

Y P ioa
A = (8xl + AQ)J - Z (i)Aé—r dy = Z (i)agﬁ-r A,

r=0 r=0

The p first equations are:
(*) W, NF) =0 & 9 pANE) =VAEF)  (=01.p-1).

In the reformulation of each equation, the left hand side is obviously 0, because no p-th
derivative can appear after less than p derivations! For p = 0, one obtains V,F = 0. We
will show by induction that eventually:

V, '95;1 (F) =0 (j=0,1,...p-1).
Accordingly, assume that:
V, -8;1 (P) =0 (r=0,1,...,j-1).

The j-th equation in (*) yields:
ioga
0= Vo) =Va Y (i)AJQ_r 7, (F).
r=0

Now V, depends only on the coordinates a, and x1, thus it commutes with Ag:

i
) j-r r
0=)" (Y)AQ V%, (F).

r=0

Taking account of the induction hypothesis, the terms for r < j cancel and it remains
only:

0=V, F.

This concludes the proof for the first p equations.
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For the remaining equations, with j > p, we use the elementary fact (easily proven
by induction),that fori # 1 and r > p:

r—p.
90~ A }m-p(p) 2

e
AS a Consequence:

J

PN =) ( ')af A (P)

r=0

o ATP
Z(]—rw oy B 9ulE):

On the other hand:

i
V, AI(F) = Z(r)Ag’ V., (F)

r=0
Assuming by induction that:

va-ajq(F)zp!(;)a;j”(?x,.(F) (r=0,1,...j-1),

one computes:
j-1

Val(F) = Vod, (F) + ) (Y)A] "l (;)a;j’ax,.(F)

r=0

j—1 .
/! r -
= Va9, (P)+r;(j i p)'A] 3 70x(F).

Thus:
0= 0,0 A (F) = VA (F)

j .
EZ‘O—r)' %5 8o () = Vadhy F) - Z(]—r)l(r e 9 ox(F)

It remains to make the change of variables: r —p < j —r in the second sum, and to
simplify all terms appearing with both signs in order to obtain as announced:

0= 979, () ~ V3. (E).

G-pt ™
This concludes the proof. |
For the supplementary variable w, we can follow the same strategy.
(4.2.5) The equation to be satisfied by the vector field:
8x$) +V,

to be tangent to the space of vertical jets are:

V, -8{le =d p!(;)é’;p}i (j=0,1,...k).
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Proor. The proof is the same. For j =0,1,...,p—1:

" a{cl (F) =
For j > p:
A@?) = d (])AJ PE=d ( )(] ”)af PAL(F)
(p) p: p ;}P p r
j-p 4
QTP AT

S M e !

=0
On the other hand:

i
V, AI(F) = Z( )A’G_r V9% (F)

r=0
Assuming by induction that:
Vo0, F = p!(;)d 9. 'F. (=01,..j-D.

one computes:

VoA/(F) = Vool (F) +d i(r) ( ) (F)

=1
j-1

=V, 0. (F) +d Z( p)'(]_r)' Ay IP(F).

It remains to make the change of variables: r <> j — r in the sum, and to simplify all
terms appearing in both expressions in order to obtain as announced:

]—af P(F) = V2L, (P).

(j—p)

This concludes the proof. |

It remains to solve these linear systems. In both cases, the right hand side is a
polynomial of total degree less than 4 in x and linear in 4, not depending on v, and the

left hand side is V,, - BilF . Assume that v,(a, x1) is written under the form:

k
v, = ) 0@,
5=0

Then the left hand side becomeS'

o= TN ) v

lorl<d s=0

For |B| < d, the coefficient of xB=1" is thus:
k

Z(ail 1 ) =1 Uz_sél(a)'

s=0
Notably the system {v,a + 56! = B} can be solved independently, because these

variables appear only in the k + 1 equations corresponding to the coefficient of xF=i%" in
the j-th equation.
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One needs the following lemma:

(4.2.6) For any fixed integer 1, the following square matrix is invertible:
1. p-
Lg, = || =a] « s) .
h [(]! T ezt i=0,k
s=0,1,....k

Proor. If not, then the system made of its columns is linearly dependent. A column
of the matrix Lg, contains all the Taylor coefficients of xfl_s atx; = luptoorderk. Asa
result, we get a non zero linear combination:

k
u(xy) == Z Us xfl_s.
s=0
all the Taylor coefficients of which up to order k are zero at x; = 1. The same property
then visibly holds for the polynomial:
k
x‘fl u(l/x1) = Z Us x7.
s=0
Thus, all the coefficients 1 are zero, in contradiction with the preceding assumption
that u 2 0. O

As a consequence, it is possible to solve the systems (4.2.4) and (4.2.5) by taking;:

k
v, = ) 0@,
5=0

where, by Cramer’s rule, one may assume that v3, is linear in 4.
Pole order of meromorphic prolongations. By considering the successive derivations of

zi = Zi[Zy, it is easy to see that the pole order of the meromorphic prolongation of zl(.] )
is j + 1. By additivity, the pole order of T, is k(k + 2) in the vertical direction and 0 in
the horizontal direction, the pole order of T, g is k + 2 in the vertical direction and 0 in
the horizontal direction, the pole order of T; and T, is 0 in the vertical direction and 1
in the horizontal direction, lastly the pole order of W, is p < k in the vertical direction,
and 1 in the horizontal direction. More details are available in [29].

These observations yield the constants k? + 2k and 1 in the main theorem.
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1. Introduction

According to a longstanding conjecture of Shoshichi Kobayashi [26], there should
exist no nonconstant entire curves with values in the complements of generic projective
hypersurfaces of sufficiently large degree in IP". Regarding algebraic degeneracy
of these curves, the Green-Griffiths conjecture [22] asserts, in a wide context, that a
nonconstant entire curve with values in a smooth algebraic variety of general type
is never Zariski-dense. The strong version of this conjecture asserts moreover that
the proper algebraic subvariety Z of the target space containing the image f(C) C Z
does not depend on the nonconstant entire curve f. In the case of complements
of projective hypersurfaces, considered in this work, this conjecture becomes the
following. If H C IP" is a hypersurface having degree d > n + 2, then there should exist
a proper subvariety Z C IP", such that the image of every nonconstant entire curve

f:C— (IP” \ H), actually lies in (Z \ H).
In this chapter, a positive answer is given to the strong logarithmic Green-Griffiths

conjecture, for generic hypersurfaces having degree d > (51)? n". Precisely, we prove
the following.

Main Theorem. If H C IP" is a generic hypersurface having degree

d > (5n)*n",

then there exists a proper subvariety Z C IP", of codimension at least two, such that the image
of every nonconstant entire curve f: C — (IP" \ H), having values in the complement of H,
actually lies in (Z \ H).

63
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In dimensions n = 2 [19, 44] and n = 3 [42], this theorem is already known with
more precise lower bounds on the degree. In [44, 39], Erwan Rousseau also treated the
case of hypersurfaces with several smooth components, in dimension 2.

In order to prove the main theorem, we use the general strategy described in [13,
15, 38], already implemented in [37, 42, 43, 13, 3], that combines the extrinsic approach
of Siu [6, 18, 50, 46, 29, 31] with the intrinsic approach of Demailly [7, 10, 12, 19].

The chapter is organized as follows.

§2. In the first section, the main result on degeneracy of entire curves on com-
plements of generic smooth projective hypersurfaces is proved. The main idea is to
produce many algebraic differential equations satisfied by every nonconstant entire
curve. Admitting for the moment the existence of one such differential equation, and
working in the universal family of complements of projective hypersurfaces of degree
d, lots of algebraically independent differential equations are produced by using low
pole order slanted vector fields ([46, 29]). These vector fields have been studied in our
context in the chapter III, which generalizes the dimension 2 and dimension 3 cases
due to Erwan Rousseau ([42, 44]).

§3. The second section is devoted to proving the existence of one differential
equation (result admitted in the first section). The intrinsic strategy outlined in [12] is
followed. It relies on the construction of invariant jet differentials of Demailly ([7]),
generalized to the logarithmic setting by Dethloff and Lu ([10]). The use of weak
algebraic Morse inequalities ([49, 7]) provides a control of the cohomology, sufficient for
our goal. It reduces the problem to the positivity of a certain intersection product on the
k-th level of the Demailly tower of projectivized jet bundles. This intersection product
is a polynomial I(d) in the degree d of the hypersurface depending on parameters
a and 6, that can be adjusted later. A variant of the multivariate residue formula
of Bérczi ([3]), presented in chapter II, allows us to integrate along the fibers of the
Demailly tower. Then, it remains to estimate one coefficient in the complicated Cauchy
product of many (convergent) multivariate formal series.

§4. In the third section, the computation of this coefficient is implemented. The
above-mentioned multivariate residue formula of chapter Il shows that the intersection
number I(d) on the projectivized x-jet bundle can be computed as a coefficient of
the Cauchy product of a universal rational term by a simpler term involving only
explicit data of the base manifold. To evaluate I(d), it is necessary to tame the intricate
combinatorics of this universal term. The overall approach, already adopted by Bérczi
in [3], is to identify some central terms among the numerous combinations contributing

to the coefficient of each power d”. This identification leads to a modified version I(d) of
the polynomial I(d) having much simpler coefficients. It is easy to compute its largest

root A. Then, under suitable numerical hypotheses on the parameters 2 and 6 —that
yield the effective degree bound d > (51)*n" of the main theorem —, the estimation of
the largest root of the polynomial I(d) is reduced to the much easier computation of the

largest root A of the simplified polynomial I(d). Many technical results are postponed
to appendices 5 and 6.

§5,6. The last two sections: appendices 5 and 6, form the technical core of this
chapter. In the first appendix, the leading coefficient of the intersection product I(d) is
studied, and its positivity for a suitable (explicit) choice of the parameters a and 6 is
stated. In the second appendix, the remaining coefficients of I(d) are studied and an
upper bound A for the largest root of this polynomial is derived.

Although most of the reasonings are valid for general jet-orders n < x < d, we
will soon restrict ourselves to the case k¥ = 1, in order to avoid going into additional
technical details, specially to lighten the appendices.
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2. Effective Algebraic Degeneracy of Entire Curves

The formalism of jets, that will now be recalled, allows a coordinate-free description
of differential equations and as a result more compact statements, although coordinates
stay an essential tool in the machinery of proofs.

2.1. Logarithmic jet bundles. In what follows, A denotes a complex disk of any
radius, that can vary.

Jet manifold. Let X be a complex manifold. Classically, the x-jet manifold of X
is a coordinate-free construction with the same information as the x-th-order Taylor

polynomial of germs of holomorphic maps A — X. For a germ of holomorphic map
f: A — X, the k-jet of f is the equivalence class of germs g: A — X that osculate with
f to order « at the origin of A. Then, for a target point x € X, denote by J, X, the space
of all xjets fi, of germs f: (A,0) — (X, x). The collection [, X 2 X of these spaces is a
fiber bundle, called the x-jet manifold of X. The map 1 is the evaluation of the jets at
the origin.

For a meromorphic differential 1-form w € FlOC(T)_’; ) and a germ of holomorphic map

f:A— X the pullback f*w is necessarily of the form f*w = A(t)dt for a meromorphic
function A: C — C. Thus, each such 1-form @ induces a meromorphic map

@: fig o (AW,A'®), ..., A%D(E)  paxoe.

On an open set U C X, the trivialization Fu(]K}_() - U X (CK)n associated to a
meromorphic local coframe w; A -+ A w, #01is

g (Moo;w00,...,w,00).

The components AEJ ) of w;oo are called jet coordinates and correspond to the derivatives
of the germs 0, : t = 0(t) with respect to the complex variable t € A. Note that all of
these objects are holomorphic if w is.

Logarithmic jet manifold along a normal crossing divisor. A divisor D € X has only
normal crossings if at each point x € X, there is an integer £ = {(x) and a centered
coordinate system zy, ...,z¢,Z¢41, ..., 2 ON X around x such that D ~ div(zy---z¢) c C™.
For such a normal crossing divisor D, one defines

dz
Z—: +Oxdzeyr + -+ + Oz dzy.
It is a locally free Ogz-module of rank 7 that is the sheaf of sections of a vector bundle

T)_’; (log D), called the logarithmic cotangent bundle of X along D ([25]).

le
T)—:(logD)x = O)—(Z +-"+O}—(

A local section ¢ € T'y(J,.X) over an open set U € X is termed logarithmic if for any
logarithmic cotangent vector field w € FV(T}_’; (log D)), defined on a smaller open set
V c U, the meromorphic function @ o0 is actually holomorphic, or, in other words,
if 0 has holomorphic jet coordinates in the adapted logarithmic coframe generating
T }_’(‘ (log D). These sections define a subsheaf of sections of [, X and this subsheaf is itself

the sheaf of sections of a holomorphic affine bundle JeX(~ log D), called the logarithmic
Kk-jet manifold of X along D ([35]).

Invertible jets. A jet field j € J, X is termed singular at a point x € X if it is the
lift of a stationary curve, i.e. j = f, with f(0) = x and f/(0) = --- = £;(0) = 0. The
subset of singular jets will be denoted by ]iing X. Note that for a logarithmic pair (X, D),
the logarithmic jet bundle Je X(— log D)|x\p and the holomorphic jet bundle J; (X \ D)
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coincide on the open part X \ D. This observation allows to define singular logarithmic
jet fields, as follows. A logarithmic jet field is said singular if it is in the topological
closure of the subset [, ¢ (X \ D) in J X(- log D). A (logarithmic) jet field that is not
singular is termed invertible (or regular).

Jet differentials. Recall the concept of jet differentials, after [22, 7, 10]. “It is a
coordinate-free description of the holomorphic differential equations that a germ of

curve may satisfy”.

One has a C*-action on ], X(~ log D) by rescaling of the source. Indeed if I, is the
homothety with ratio A € C*, and f is a logarithmic jet along D = div(z; - - - z¢), the jet
coordinates change as follows:

(log ofio h/\)(]) =\l (log Ofi)(]) ohy [i=1,....]
(ﬁ o hA)(]) =\ fi(j) ohy [i=+1,...1].

The Faa di Bruno formulas (at the end of the introduction to chapter III) show that
the concept of polynomial on the fibers of [, X(—log D) makes sense. One can thus
consider the Green-Griffiths jet bundle SK,mT)_"; (log D) — X of differential operators
of order x and weighted degree m, the fiber of which consists of the complex valued

polynomials Q(f’,..., f(K)) on the fibers of [, X(— log D) of weighted degree m with
respect to the C*-action by rescaling of the source, that is:

Q((f o h)pw) = A" Q(fim).

2.2. Fundamental vanishing theorem. The link between algebraic degeneracy
and jet bundles is nowadays classical. One has indeed the following fundamental
vanishing theorem ([7, 10]), here stated for (X,D) = (P",H), where H is a smooth
hypersurface in IP".

(2.2.1) Let P be a non zero global jet differential of order x and weighted degree m, vanishing
with order € > 0 on Opn(1):

P € H'(P", & T4, (log H) ® Opr(c)*) \ {0}.

Then every nonconstant entire holomorphic curve f: C — (IP" \ H) must satisfy the corre-
sponding algebraic differential equation of degree «:

Pro(fO®),..., fO®)=0  forallteC.

A strategy [46, 37, 43, 42, 13, 15] for proving the algebraic degeneracy of entire
curves f: C — IP" \ H, i.e. for obtaining an algebraic differential equation of degree 0
that every entire curve has to satisfy, is then to generate many global jet differentials.
Using the above fundamental vanishing theorem, this gives algebraic differential
equations that every entire curve must satisfy. Next, one can (morally) get rid of the
differentials f, ..., f() by algebraic elimination.

In sections 3 and 4, using algebraic Morse inequalities, the existence of one such
differential equation of order x = n is proved:

(2.2.2) Let H C IP" be a smooth hypersurface of degree d and let 6 be a positive rational number
such that:

d> (52n")and (35n")6 < 1.
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Then, for jet order k = n and weighted degrees m > d large enough, the vector space of
logarithmic global jet differentials along H vanishing on the ample line bundle Kps(H)*™ has
positive dimension:

dim HO(P", &,,u T} (log H) ® (Kin(H)*)*") > 1.

The next step is to use the variational method of Voisin-Siu [50, 46], namely
to deform the differential equations just obtained, by considering the projective
hypersurfaces in family, in order to get sufficiently many algebraically independent
differential equations.

2.3. Universal family of complements of projective hypersurfaces. Let S be the
space of parameters of degree d hypersurfaces of P":

S = [Op:(d)| = PH(P", Opr(d)).
Consider the universal family of degree d hypersurfaces in IP"
H :={(x,P) e P" x S: P(x) =0},
and the complement X of this universal family:
X:=(P"xS)\'H.

Denote the two natural projections to the factors of IP" X S by

P" S

If s € Sis a point of the parameter space of H, then X := (przlx)'1 (s) = (IP” \HS) x{s},
where Hy C IP" is the projective hypersurface of degree d parametrized by s:
H := pry((prals) ().

Moreover, for a generic s € S, the hypersurface H; is smooth.
Slanted vector fields. The universal family H is a normal crossing divisor of degree
(d,1) in IP" x S. The space of the logarithmic x-jets along H of the log-manifold

(IP” xS, 7—{) will be denoted hereafter by:
T« = J(P" x S)(—log H),
and we will denote by V. the submanifold of vertical logarithmic jet fields of order k:
V= ]I‘(’e”(IP” x S)(—log H) C T,

consisting of x-jets tangent to the fibers of the second projection pry: IP" XS — S. Lastly
we will denote by V}. the submanifold of invertible regular jets.

Let n denote the evaluation of the jets 7, — IP" X S. In the chapter III, we prove
the following statement:

(2.3.1) For degrees d > «, the twisted holomorphic tangent sheaf to vertical jets of the log
manifold (P" x S, H)

T(VK &® 1’[* (O]pn (K(K + 2)) &® 05(1))

is generated by its global holomorphic sections over the subspace Vi \ n1~'H of logarithmic
K-jets of non stationary holomorphic curves C — X tangent to the fibers of P" X S — S.
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2.4. Proof of the main theorem. In this proof, since we use numerical estimates
of sections 3 and 4, we will take k = n.

Let f: C — X be a nonconstant entire curve having values in the complement
X C IP" x S of the universal family H of projective hypersurfaces of degree d. Assume
f is tangent to the logarithmic relative tangent bundle of pr,:

V= ker(prz*).

This assumption means that pr, o f = sg is constant. In other words, f maps C to the
slice:

Xy = (]P” \Hso) X {So} cX.

Recall that Hy, is smooth for a generic sp € S, which we assume.
By the very definition of the relative tangent bundle, one has:

Vilx, = Tx,(-log Hs) = (pry)* Tpr(—log Hs).

By the above statement 2.2.2, for a suitable choice of 0 < 6 < 1 independently of s,
noticing as Mourougane in [33] that the semicontinuity theorem ([34, I1.§5 p.50]) yields
that there is a suitable choice of m > d > 1 valid for general hypersurfaces, that we fix,
there exists a non zero jet differential having positive vanishing order:

05, € H(IP" X {so}, En Vi ® *Opn(26m(d —n = 1))"],, ),
50

with zero locus: Z;, := {x € P": 04,(x) = 0} € P" X {sp}.
Because the vanishing order of the section oy, is positive, one can apply the
fundamental vanishing theorem and obtain an algebraic equation satisfied by the n-jet

of fin X,:
Osp (f(l), e ,f(n)) = Gprzof (f(l), . ,f(n)) =0.

In order to obtain information on the image of f itself, one obvious problem is

that the projection to the base X of the algebraic subset cut off by this equation in X,,
might be onto ; but in fact, we will shortly establish that the image of f lies in the much

smaller common zero set Zs, € X of all coefficients of this polynomial,i.e.:
Opryof = 0.

By the semicontinuity theorem, there exists a Zariski closed subset X C S such that
if 59 lies in S \ X, then o, can be extended to a Zariski dense open set containing sy as a
holomorphic family of non zero jet differentials:

0 := {05 € H(P" X {s), & Thn(l0g Hy) ® Opn(25m(d — n — 1))")}.

Make the two generic assumptions that sy ¢ X and that Hy, C IP" is smooth and, in
order to get rid of the term n*Os(1) in (2.3.1), remove a supplementary hyperplane of
S, if necessary.

The sections of &, T, (log H) ® * Kpr (H) 2™ can be interpreted as invariant maps

J.P" (= log H) — n*Kpa(H)~2™,
Recall that:
Kpn(H) = Opn(d —n —1).
Working locally on a neighbourhood U of one such sy, consider the section:

0: Valpeay = n*O]pn(—Z(Sm(d -n- 1))|pr'21U’



2. Effective Algebraic Degeneracy of Entire Curves 69

and p slanted vector fields provided by (2.3.1):

Vi,..., Vp: pr'zlll — Ty, ® *Opn(n(n + 2))|pr-21u-

These slanted vector fields are useful in order to generate lots of new vector fields
by Lie derivative of the given section 0. Indeed, by induction, the Lie derivative

(vp SRR a)s is a non zero section of the vector space:
0

HO(IP" X {50}, & Tps(log Hy,) ® Opr(~2md(d — n = 1) + pn(n + 2))).
Each derivative decreases the vanishing order by at most n(n + 2).
While the vanishing order of (vp eV a)s is still positive, i.e. while:
0
20md-n—-1)>pnn+2),

the above argument remains valid, and one infers that:

(---vi-0), () =0

In this way, lots of algebraic differential equations can be obtained, as soon as the vanishing
order of the initial section o is large enough.

Sufficient lower bound on the degree. 1If f(C) ¢ Zs,, the element of contradiction is the
following. Pick ty € C such that f(ty) ¢ Zs,. Up to moving a bit ty, one may assume

that f’(to) # 0, because f},)(C) ¢ (V,ang . Now, the result of global generation yields:
(2.4.1) ([13, pp.176-178, (ii)]) If f(to) ¢ Zs and f'(to) # O, then there exist q < m vector fields
Vi,..., Vg pry U = Ty, ® 0*Opn(n(n + 2lpes -
such that:
(Vq SR O)so(f[n](to)) # 0.

SkercH oF PROOF. The idea of the proof is that locally around sy the section o
can be viewed as a polynomial in zi, s Zh e, zgn), L, z,(qn) of degree at most g, with
coefficients depending holomorphically on s (but not on the jet coordinates). This
polynomial is not zero only if it has at least one non zero coefficient, but, by Taylor

formula, these coefficients are all of the form:

(L...L.G)s,

for g < m. It suffices to chose vector fields such that

d
Vilso,fiu (o) = P (k=1,....7),
iy
which is always possible, by the result of global generation. O

Thus, if for any p < m and any vector fields vy, ..., V,, one has the vanishing:

0= (vp PRVE O)SO(f[n]),

then the sought contradiction is obtained. In particular, by the fundamental vanishing
theorem, it is the case if the vanishing order is positive for all p < m. In other words, if
the degree d satisfies:

26m(d —n —1) > mn(n + 2),
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then, the entire curves with values in the complement of a generic hypersurface of
degree d are algebraically degenerate. After dividing by m, the condition on the degree
becomes:

n(n + 2)
26
Now, recall that by assumption 351" 6 < 1. After fixing: 351" 6 = 1, in order to
minimize the lower bound, one finally obtains the stronger condition (for n > 5):
n+1 35(n+2)
w2 o '

d>mn+1)+

d> (5n)’>n" > n”+2(

Here, to obtain a better looking lower bound, we assume n > 6, but one can drop
the hypothesis since for n < 5, this lower bound on the degree also holds, by explicit
computation (see Table 1 below, page 77).

Notice that this bound (51)?n" > 52n" is sufficiently large in order to prove the
existence of one global jet differential.

Codimension of the degeneracy locus. In [17], the authors show that the degeneracy
locus of entire curves has no divisorial components. As a result, its codimension is at
least two.

3. Existence of Global Logarithmic Jet Differentials

In this section, the intrinsic strategy outlined in [12] is followed in order to prove
the existence theorem 2.2.2, viz.:

(3.0.1) For any smooth hypersurface H C IP" of degree d and any positive rational number O
such that:

d> (52n")and 35n")0 < 1,

the vector space of logarithmic global jet differentials along H of order k = n and weighted
degree m > n" vanishing on Kpr(H)*™ has positive dimension:

dim H(IP", &, T, (log H) ® Kpr (H) ") > 1.

We incorporate a new key ingredient to this strategy, namely a multivariate residue
formula, in order to obtain the above effective result in any dimension. In what follows,
we explain how all the arguments link together and, strictly speaking, the proof of the
existence theorem itself will be achieved in the next section §3.

A general intrinsic method for obtaining global jet differentials relies on the
construction of Demailly ([7]), generalized to the logarithmic setting by Dethloff and
Lu ([10]), that we will now recall.

3.1. Demailly tower of logarithmic directed manifolds. A log-directed manifold
is a triple ()_(, D, V), where ()_(, D) is a log manifold and V is a holomorphic subbundle
of the logarithmic tangent bundle T3(—1log D). Given such a log-directed manifold

(}_(g, Dy, Vp), one constructs on X, the Demailly tower of log directed manifolds:
()_(K/ DK/ VK) l) ()_(K—ll DK—lr VK—]) M s ﬂ) O_(O/ DO/ VO)/

by induction on x > 0. This construction has the same formal properties as in the so-
called compact case, i.e. where there is no divisor Dy. Here, in the genuine logarithmic
setting, Vj is a holomorphic subbundle of the logarithmic tangent bundle T, (=log Dy).
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Recall quickly the inductive step ()_(’, D/, V’) 5 ()_(, D, V) of the construction of the

log Demailly tower ([10]). The space X’ is the total space P(V) of the projective bundle
of lines of V:

X :=P(V) 5X,
and in order to make 7t a log-morphism it is natural to set:
D :=n(D)cX.
The relative tangent bundle T of the log-morphism 7: (X,D) — (X’,D’) is defined
as the kernel of the differential 77, :
(3.1.1) 0 — Tr = Tx,(~logD’) =5 n*Tx(~log D) — 0.

Keep in mind that V' is a subbundle of the logarithmic tangent bundle T5(—log D),
displayed in the right of this short exact sequence, and that V’ has to be a subbundle of
the logarithmic tangent bundle T, (—log D’), displayed in the center of this short exact
sequence.

The tautological line bundle of X’ = P(V) is a subbundle of 1* T3 (—log D) because:
Ox.(-1) c n*V c n*Tg(-log D).

One can thus define a subbundle V' C Tx/(—logD’), locally isomorphic to n*V, by
taking;:

V' = (1,) 105, (-1).
Equivalently, V’ is defined by the following short exact sequence:
(3.1.2) 0— Tp = V' 55 05,(-1) > 0.

Comparing the two short exact sequences (3.1.1) and (3.1.2), notice that in the left,
one keeps all the vertical directions whereas in the right, one keeps only the single
“tautological” direction among all horizontal directions.

3.2. The direct image formula. For any integeri =1,...,x — 1, the composition
of the projections 7;: X; — X;_1 yields a projection:

Tl '= Tip1 © -+ 0 Tyt Xye = X

One can pullback the tautological line bundle of X; to the k-th level, thereby obtaining
« line bundles:

(nK,l)*O}—(1 (=1, (nK,z)*O)—(z(—l), ey, (nK,K_l)*OXH (1), O}?K(_l)'
The linear combinations of these line bundles with integer coefficients (a1, ..., a,) € IN*:
O}—(K (a1,...,a,) = O;(K(LZK) ® (ﬂK,K_1)*O}—<K7] @-1)® - ® (ﬂK,l)*O)—(] (a1).
enjoy positivity properties ([7, 12]):

(3.2.1) ([12, proposition §3.2]) Ifay > 3ay, ..., a2 > 3a,_1, and a1 > 2a, > 0, then the
line bundle

F = O}—(K (@1,...,0¢) ® T(;’OO)—((Z)

is nef provided that € > 2 (a1 + - - - + ay).
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Recall [27, 1.4.1] that a line bundle £ — X over X is numerically effective (nef) if
for every irreducible curve C C X, one has fC c1(L) = 0.
Here the first factor OXK (a1,...,a,) of F is positive on curves lying in the fibers, and

the second factor Oy(f) compensate the negativity than could occur in the horizontal
directions.

In chapter II, we show that it is natural to work with the « line bundles:
Li=0g(-1,...,-1) - X (=19,

that can be viewed as the tautological line bundles of certain twists of the distribution
Vi. For integers coefficients (a3, . .., a,) € IN¥, in analogy with the notation

Oz (a1,...,a) = (1,1)* (05, (-1)")" ® -+ ® (M) * (O, (1)),
let us use the notation:
Llay, ..., a¢) = (1) (L))" ® - ® (M) * (L™
By additivity, the translation formula is:
(3.2.2) L(ay,ay,...,4c) = O)—(K(al +ay+ A,y gy, ().

Considering this formula (3.2.2) —that can be thought of as a plain change of
variables —, one can easily transpose existing results on the line bundles O)—(K (a) ([7,10])
into results on the line bundles £(a). One has the following direct image formula:

(3.2.3) For any x-tuple (ay, ..., a,) € Z* with:
ai+---+a, =20 [i=1,...,x],

the direct image (1t 0)«L(a1, . . ., ax) may be seen as a subsheaf of the Green-Griffiths bundle
Sy V(’)* (log Do), where:

p=pu@:=1la;+2ay---+xa, €N
And using again (3.2.2) one has also the analog of Proposition 3.2.1:

(3.2.4) In the logarithmic absolute case, if a1, .. .,a, are x positive integers having weighted
sum u(a) = lay + - - + x ay, and satisfying the inequalities:

ai23ai.1 >0 [i=1,...,x-1],

then the line bundle F := L(al, ... ,aK) ® (14,0)*Opr (Zy(g)) — X, is nef.

Proor. The plain translation of Proposition (3.2.1) yields the result for integers
ai,...,a, satisfying:
(@ +-+a)=23@x+ - +ay),..., a2+ +ac) =31 +ay),
and (@1 +a) =2a, >0,
but we make a stronger assumption. Indeed, if a; > 34,1, then:
@+ +ae1+ay) =3@1 + - +ay,) + ag. O
In order to prove the existence of sections of the Green-Griffiths logarithmic jet
bundle, it is sufficient to prove the existence of sections of L(ay, ..., a;) for a certain

suitable choice of the parameters ay, ..., a,. More generally, for any ample line bundle
A:

dim H°(Xo, &, V3 (log Do) ® A*) > dim H(X,., L(2) ® 1}, A").
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3.3. Morse inequalities. Starting with a hypersurface H C IP" of degree d, fix

the log pair (Xo, Do) := (IP", H), and also fix the distribution V by taking the whole
logarithmic tangent space Vj := Tpr(—log H). Now, let as above denote the Demailly

tower constructed on the log directed manifold (]P”, H, Tp:(—log H)) by:
()_(K, DK) - (}_(K—llDK—l) - ... (Xl,Dl) - (}_(O,DO).

This context will be called the logarithmic absolute case. Now, we consider the line
bundle:

Ly, ..., a0 @ (o) AY = L(ay,...,a0) ® (o)  Kipn (H) 72+

It is the difference of two nef line bundles ¥, G because one has the trivial identity
(where the pullbacks are now omitted):
\Y%

L@,...,a) @ A = (Liay, ..., a00) ® Opr(241)) ® (Ops (241 + 2p5(d — 1 — 1))

=F =G

Indeed, it has precisely be said just above that F is nef, and G is also nef because it is
the pullback of a nef line bundle.
Together with the following Demailly-Trapani Morse inequalities this fact provides

with a (rough) control the cohomology of the line bundle L(a, ...,a,) @ AY — X,

(3.3.1) ([49, 7]) For any holomorphic line bundle L on a N-dimensional compact manifold X,
that can be written as the difference L = F ® G of two nef line bundles ¥ and G, one has:

()57 -9

dim HO(X, £%) > kY — o(kM).

Recall that by definition [27], the intersection number (L1 S Lk) of k line bundles
on a k dimensional variety X denotes:

(Ll“‘Lk) :j;(Cl(Ll)“‘Cl(Lk)-

These algebraic Morse inequalities (3.3.1) can now be applied to the constructed
line bundle L(a) ® AY — X,. By induction the dimension 7, := dim(Xy) is simple to
compute:

n = dim(Xo) + x (rk P(V)) = 1 + 1 (1 - 1).

(3.3.2) If the integers ay, . .., a, satisfy the inequalities:
a;i 23ai41 >0 [i=1,...,x-1],

and if 6 € Q is a fixed positive rational number, it is sufficient to establish the positivity of the
intersection number:

L= [ a@y - meata),
where:
e1(F) = 2u@h +ay ea(LY) + -+ ager(L)
(@) = (1+6(d —n-1)2u@h,
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in order to guarantee the existence of non zero global sections in the vector space:

2(37!1)

4

HY(Xy, & Tpn(log H) ® (10)* (Kipn ()" )

for asymptotic weighted degree m > 1.

Proor. Assume that one can find a = (a4, ...,ay), such that I > 0 for d > A(a). By
the above algebraic Morse inequality, one has, for large integers k:

dim HY(X.. (£(0) @ K (1) 2#@)™) 5 e L — ok™),

K

Now, both £(a) and u(a) are linear in a. Thus:

(£@ & Ko (H)24@)™ = L(ka) & K (H) 200,

Since ka still satisfies the inequalities ka; > 3ka;1 > 0, fori =1,...,x — 1, the sheaf
L(ka) is a subsheaf of the Green-Griffiths logarithmic jet bundle &, T, (log H) for the
weighted degree

m = p(ka) = kp(a).
By taking k large enough, one has:

—_

K

: 0y —20u(ka) -
dim H(X,, L(ka) ® Kpr (H)24¢0) > > K

> 0.

Thus, for m > 1 large enough, not effective:
dim H(X., Ex T (log H) ® Kpr (H) ") > 1. O
Denote the first Chern classes of the vertical line bundles .L; by:
v; = cl(Ll.V) li=1,....].
then the integrand of the above intersection product:

f@1,...,00 = a(F)* = neci(F)Y (@)

can be written in this notation as:
Ny
f(o1,...,0x) = (th +mur+ -+ aKvK) -

ne—1
(1 +06(d—n- 1)) Ny th(th +a101 + -+ quK) .
We will next give a formula for integrating f under this form.

3.4. Formal computation on the Demailly tower. It is convenient to bring down
the computation to the base Xo = X. In chapter II, we provide a formula in that
aim. This formula expresses intersection products on X, as coefficients of an iterated
Laurent series, in the very spirit of the predating residue formula of Bérczi ([3]).

Iterated Laurent series. An iterated Laurent series is a multivariate formal series
having well ordered support with respect to the lexicographic order on Z". The main
advantage of using the subspace of iterated Laurent series over using the whole space
of multivariate formal series is that the Cauchy product is well defined. There is an
injection of the field of rational functions in the field of iterated Laurent series, called
the iterated Laurent series expansion at the origin. The reader is referred to the section
I1.3.3 for a precise description of this process. By convention, in the product of an
iterated Laurent series and a rational function, the rational function will always be
replaced by its expansion. Accordingly, such a product is in fact the Cauchy product
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of two iterated Laurent series. Lastly, the expression [M]® will denote the coefficient
of a monomial M in the multivariate formal series @.

Integration formula. We can now recall the integration formula (I1.3.3.5) of chapter
II. In analogy with Chern polynomial, for a vector bundle E — X over a N dimensional
manifold X, define s,(E) to be the generating function of the Segre classes of E, that is:

su(E) = so(E) + us1(E) + u* sp(E) + - - - + u" sN(E).

(3.4.1) Forany polynomial f € H® (}_(0, Vo)lti, - .., tc], in k variables ty, . . . , t,., with coefficients
in the cohomology ring of the base, the intersection number:

I:= fo(vl,...,vk)

is equal to the Cauchy product coefficient:

K

t’f‘l---tﬁ‘l]( . f(tr, .. ) stj(Tfm(lOgD))

j=1
H (tj—ti) H ( ti—2t )
t]' —2t; t]' -2t +tiq ’

1<i<j<x 2<i<j<K

This formula allows to eliminate simultaneously all the vertical first Chern classes
0;.

(3.4.2) In the “logarithmic absolute case”, for any homogeneous polynomial:

feClhllty, ..., tl =Clhty,..., L]

having total degree n,. = dim )_(K (with respect to the variables h, t1, ..., t,), the corresponding
cohomology class f(v1,...,vx) € H*(Xy) can be integrated on X, using the formula:

 for,.. 00 = [ B (A - B Bt - ) Clty, - 1)),
Xy
where A is the polynomial with coefficients in C[h] obtained from f by:

Alti, ... t) = (dh+ 1) @h+t) ft, ... t),

where B is the Laurent polynomial with coefficients in C[h]:

B(t1,..., t) = Z (n:l]l)(n-;]K) M/

jl jK
tl tK

and where C is the (unequivocal) iterated Laurent series expansion of the universal rational
function:

ti—t ti—2t

i~ b |~
H, oo be) = || =2t +tq)
C(t1 x) (tj—Zti) 1_[ (tj—Zfi+ti—1)

1<i<j<xk 2<i<j<K

with respect to the order t] < -+ < t, < 1.
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Proor. One has:

f_ f(or,...,v0) = [t*;-l . tg-l]( f Ft1,. .. te) H s1/t,(Tp (log D))
X P =1

ti— ti ti— 2t
I (7] J1 ()

1<i<j<k

In the second line, we recognize the universal series C:

(*)
f)_;x f(1,...,06) = [t’f—l...tﬁ—l](‘fpl ft, ... te) gsl/tj(T]l";ﬂ(logD)) C(tl,...,tK)).

By a classic computation, the total Segre class of the base is:

dh
5.(Vo) = s.(Tpr(~ log H)) = %

Thus the appearing Laurent polynomials s; /tj(Tﬂtn (log D)) have the expression:

ti+dh & (n+ i\ =k
sun(Vo) = Z( ]"])(Tj'
1 1 1

Ji=0

and the product of these expressions fori=1,...,«x is:

- to+dh to+dh
[ 5:(73.00g D)) = = T Bl ).
i=1 K

Then (*) becomes:

j: f(1,...,06) =
Xy

[t?—l...tﬁ—l]( 1 N ft, ... k) H(dh +1) B(t, ..., te) C(tl,...,tK)),
i=1

B ooty

where A(ty, ..., t) = [1j_;(dh + t;) f(t1,...,t) now appears in the integrand. So we
obtain:

L:(Kf(vl,...,UK) = [1”11_1 ...tz—l](tl .%-tK fn A(tl,...,tK) B(fl,...,tK) C(fl,...,fK))

- [tltk](jﬂ: Altr, ..., t) Blt, ... k) C(tl,...,tK)).

Now, it remains to integrate polynomials in the hyperplane class & on IP". For
degree reason, the integrand is a multiple of /i"*. The coefficient of this monomial is the
sought intersection product, because it is known that: f]Pn h" =1.

Finally, our computation becomes the very concrete combinatorial problem:

fX fr,... 00 = [W] - t';](A(tl,...,tK) B(t, ..., t) C(t, . ..,t,{)). O

Moreover, this formula stays true without assumption on the degree of f, because
the only power of / that does not vanish by integration on the base is the n-th power.
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4. Implementation of the Computation

In this section and until the end of the chapter, we will restrict ourselves to the case
x = n. In particular,
e =n+nn—1) =n

We also assume n > 6 when necessary, because for n < 5 the value of the largest
root of I(d) obtained by explicit computation with a computer algebra system — for
a=(23"72,...,6,2,1)—is much less than (5n)? n" (see Table 1 below).

[A] T (ms)

c=0 c=m+1)7? (5n)’*n"
n=2 15 231 400 12
n=3 75 2075 6075 60
n=4 306 13229 102400 1156
n=5 1154 71420 1953125 107 366

TasLe 1. Small dimensions: Largest roots for I(d) and indicative time of
computation t

We will now establish thatifn > 6, m > d > 52n" and if 0 < 351" 6 < 1 then
dim H(P", &, T3, (log H) ® Kipr (H) ") > 1.

For this, according to the previous section, it is sufficient to prove —under the same
hypotheses — the positivity of the intersection product:

I=[nt; - £1](A® BO CO)),
for a fixed choice of weights a1, a, ...,a,, where t stands for the n-tuple t1, ..., t,.

4.1. Preliminary expansion of A. The first appearing term is the polynomial:
At,...,ty) =@dh+t)---(dh+t,) f(t,..., tn).

It is the only term involving d.
Recall that in our situation, the polynomial f to be integrated on the Demailly
tower is:

nZ
f(t,... ty) = (2yh+a1t1 + .- +antn) -

n? ((5(1 +(1-6n- (‘j)) th(th +aty +-- + llntn)n2_1,

where p is the weighted sum of the coefficients a;:
pu=u@=1ay +---+nay,

and let us introduce the short notation:
2y
fi(t1,...,tn) :

_ n!
C (n2-i)!

for the terms (not depending on d) that appear in the expansion of f with respect to

the hyperplane class h:

2—i

1 n
(2H)l(a1t1 Tt antn) [i=0,1,...n]

flt ot = Y W (= By filh, - ),
i=0
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where the rational coefficients a; and f3; have the respective expressions:

1-1-6n-0) ]
;= ( - n =) and f;:= % [i=0,1,...n].

1!
In particular:

ap=1, a1 =06(n+1), fo=0, p1 =P2=0.

Also one has, by using the notation ¢; for the j-th elementary symmetric function
of n variables:

n

@dh+t) - (dh+1t) = Z(dh)"_jej(h, )
j=0

Thus A is the following product of polynomials in the variables d, i, t1, ..., t;:

n n

Aty t) = () @0 e0) () h (@i = dBi) fith))-
j=0 i=0

Recall that By = 0, thus A has degree at most n with respect to d, because in its expression

d appears only as a factor of the product dh, and #"**! = 0.

(4.1.1) Forp=0,1,...,n, the coefficient A, of "7 in A is:

P
Ap() = [P A® = 1P Y (g ep(®) fi(®) = Bysa epa () fraa ().

7=0

Proor. Recall:

n n

At )= Y (@i = dp) i £i(®) ) (@ 1" ej(d)).

i=0 j=0

There are two ways to obtain 4"7F; indeed the first polynomial is linear in d. Selecting
the constant coefficient (with respect to d) in the first polynomial and the coefficient of
d"7? in the second polynomial, one obtains the first contribution:

|4
%) Y. il fi®) -1 (),
i=0

and alternatively, selecting the slope (with respect to d) in the first polynomial and the
coefficient of "7~ in the second polynomial, one obtains the second contribution:

p+1
() Y il fi) - H D e ).
i=0

Here the sums stop at index p and p + 1, because 1! = 0.

For any integer ¢ = 0,1,...,p, the coefficient of /"7P*1 in the first contribution
(*) is: ay fy(t) ep(t), and the coefficient of h"7*7 in the second contribution (x*) is:
—Bg+1 fg+1(t) ep11(t). One can easily deduce the expansion of Ay:

p

Ap =1 Y 1 (agep(®) fi8) = Byt epa(®) fraa (D)

q=0

That is the announced result. O
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4.2. Examination of the terms B and C. The term B appearing in Proposition 3.4.2
is the Laurent polynomial:

n+j n+ jie\ (=Rt
B(t, ..., t) = Z ( n]l),..( n]K) (h)—]
J1,er k20 tl ety

For multi-indices j € Z", define the coefficients B; := (—1)/1*"*/x (") -+ ("r) in such

way that:
A
o= Yufi) ()

jeIN"
The coefficients B; are simple. On the contrary, it is highly challenging to understand
the Laurent series expansion of the rational expression:

ti—t; t‘—Zti
Clty,..., t,) = ] o roernnd £
(t1 n) H (t]' _2ti) 2<1:]['<n(tj_2ti +tiq

1<i<j<n

Nevertheless, the shape of C allows to extract some more information on the
support of its iterated Laurent series expansion. Let us use the notation

Cr = [t |Cttr, .. 1),

for the (complicated) coefficient of the monomial t'f e t’;l” in the iterated Laurent series

expansion of C.

(4.2.1) The coefficient Cy, is zero unless ky + -+ k, = 0and ki + --- +k, < 0, for each
i=2,...,1

Proor. At each step of the iterated Laurent series expansion of C, one manipulates
only products of the homogeneous monomials #;/¢; for indices 1 <i < j < n. O

We will still use the notation C for the Laurent series expansion:
k ky
Clty, ... ty) = Z Crtr - .
k1+-+k,=0

Notice that one can use the rational expression of C whenever ¢ is in the domain of
convergence of C. We will also use the transparent notation:

k n
Cl= Y. ICdy -t
ky+-++k,=0

4.3. Guide to the computation. For the moment, we will assume that —to a first
approximation — both terms B and C can be replaced by 1 and also assume 6 = 0.
Later, we will come back in more details to this point. We introduce the auxiliary
(positive) constants:

(4.3.1) L=[te](ep(tn o t) foltr, oo t)) (=01,

Compare this with the actual coefficients of d"77 in I:

p
I := [hpt’l1 e tﬁ] Z hf (qu ep(t) fa(t) = Bg+1 eps1(t) fq+1(£)) B(®) C(t) [p=0,1,...n].
q=0

Although this seems to be a radical simplification, It will be proved later that for
allp =0,1,...,n, the coefficient I, has nearly the same size as the simplified coefficient
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E, provided the parameters ay, ..., a, are suitably adjusted (HH;) and that 6 < 1 is taken
small enough (Hy).

Here is the guide to our computation:

(1) Firstly, we will compute a sufficient lower bound X(g) on the degree d, such
that the approximated polynomial:

1(d) ::Tod"—(fld”‘1+---+fn)

has positive values for degrees d > X(g).

The goal of all the technicalities that will follow is to bring the computation back to this much
easier computation.

(2) Secondly, we will study the leading coefficient, and prove that under ad hoc
hypotheses (H;) and (H5>), it has a positive value, that is at least two thirds of Iy:

Io = [t £2](Ao®loo) + [t} -+ 2] (Ao (®Blo=o (C(8) — 1)) + oI
———
=Ip negligible for a; > --- > a, (H;) negligible for 6 < 1 (H)

(3) Thirdly, we will study the remaining coefficients and derive a sufficient lower

bound A(a) on the degree d — similar to X(g) — from the relative sizes of the coefficients.
Again, we will see that:

1, = 18] £2](Ap®ls=o B®) + [} - 2] (Ap(Blo=0 B (C(t) - 1)) + oI,
—_——
~multiple Opr negligible for ay > --- > a, (H) negligible for 6 < 1 (H)

4.4. Quick justification of the approximations. Recall that I, is the Cauchy prod-

uct coefficient:
Iy = [ ](A, (£) B(¢) © (1))

where A, is the polynomial:

p
Ap =1 Y (g ep(®) fi(B) = Bost pa () fraa (),
q=0

and where B and C are the iterated Laurent series:
_ h! hY' 3 ko ok
B_;Bj(aj---(aj and C—IMZ:Bthl---tn.

As a consequence, I, can be written as:

|4
=Y, Y a6 (ep® f0) B Cum

i=j—k q=0

P
Z Z ﬁq+1 [t;ﬁril T tZJrin](epH (D fq+1 (t)) Bj Ck-

i=j-k q=0
Notice that since both polynomials e, f; and e,11 f;+1 have homogeneous degree
n? + p — g, the summands are zero unless:

H+-+ip=j1++jp=p—4q.
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The only freedom that we have in order to make the estimation of this term easier
is the choice of the parameters a; > --- > a, > 0 that appear in:

2 .

n=—i
filt, .. ) = ( e (Zy(a)) (altl oo agty)
This latitude will become clearer after we explain how to simplify the coefficients

[ (et ) fotr, )

in order to deal with more tractable plain a-monomials.
Recall the auxiliary constant introduced in (4.3.1):

I, = [t’f e tz](ep(tl,...,tn)fp(tl,...,tn)).

It stands for the absolute value of the coefficients of 4”77 in the simplified polynomial?,
appearing in the preceding guide. Each coefficient appearing in the computation of

the coefficient I, of "7 in I can be compared with the unique coefficient I, appearing
in the computation of the coefficient of 4”77 in I:

(4.4.1) For any integer p =0,1,...,n, one has:

2y
EZ'))H (a1 .. .an)n (21,1“)10 ep(%, . uln)l

an for any integer q < p and any multi-index (11, .., z'n) €Z", suchthatiy +---+i,=p—q,
one has:

I, =

Iy

[t;H—ll tZ+Zn:|(ep(tl, coortn) folte, .. ,tn)) < glll . gln (znp)r? -

Before we prove this key lemma, let us explain in a few words how to use this
latitude. We will set a; > --- > g, in order to make the annoying contributions

negligible with respect to the “central” term >~ Ip, obtained for i = (0,...,0) € Z".
Indeed, since iy + -+ - + i, = p — g, using the telescoping products:

) (i) (i)
2nu(a) aj-1 a1/ \2nu(a)

the formula stated just above can be written:

Yoo i) <G ag) (G

Moreover, since i = j — k, all mult1—1nd1ces i involved in the computation have entries
such that:

fj++ip 20 (=1-.1),

because the entries of j have to be non negative and we have seen that Cy is not zero
only for

ki+-+k; <0 (i=1,...n).

Thus, whereas the coefficient of i = (0,...,0) will always be 1, for other indices, taking
parameters a; > a;,1 > 0 —that clearly fulfil the condition (3.2.4) —, these coefficients
can be made as small as wanted.

It follows that the technical simplification a; > --- > a, yields the desired

approximation I, = %’;E, at least asymptotically. However, if one is interested in
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effective computation, the parameters ay, ..., a, have to be chosen with care. Indeed,
a very quickly decreasing sequence a will guarantee a very large positive leading
coefficient, but will also increase the size of the largest positive root of the polynomial

I(d).

PROOF OF THE LEMMA. By definition:
()
~ (n? - q)!

We will expand this (n? — g)-power. In this view, recall that for any integer k, £ € IN the
standard binomial formula yield by induction on k the following multinomial formula:

(xl +...+xk)€ = Z ]1'5' ]k' x{l ~--X£k-

j1+'-'+jk:€

Vlz—q

folti, - ) @u) (ar by + -+ ayty)

Thus f; becomes:

2l (n*-q) L .
filt ) =Y (nz_q)!h!___jn!af--.a;t;«..t;.
q

]'1+...+]'n:n2_

On the other hand, by definition, the p-th elementary symmetric function of n
variables x1, ..., x is the following homogeneous sum of monomials:

& &
() ep(x1,...,Xp) = E X,
(e1,--,€2)€{0,1}"
E1teteEy=p

the total degree of which is p and in which the exponent of each variable xy, ..., x, is at
most 1.
The product of the two polynomials e,(t) and f;(f) is thus:
21 . . .
n-. n ntén
ep(f)fq(t) = (u)? z —— a{l ---a,]1 t{1+51 t1]1 +e )
. =, 1 e
jitetjn=nt=q
e1teteEy=p

where as above (ji, ..., j») € N" and (¢, ..., &,) € {0, 1}

Computation ofFI;. Now, in the case wherep = gand iy = --- =1, =0, for j; + &1 =
n,...,Jjn + &y = n,all jr are non negative and the appearing multinomial coefficient has
always the same value:

n! B n?! B n?! _ (n?)!
jilegul (m—e)l--(n—gy)t @)P m-1D® T (n)n’
because p of the ¢;’s are 1 and the n — p remaining ¢;s are 0.
As a consequence:

2
[t 2)(es® £0) = @y Y % 4,

e1teteEy=p

Next, one can factorize the multinomial coefficient and a’f ---al and use the above
definition (+) of the elementary symmetric function from the right to the left, in order
to obtain:

[t111 ... tZ](ep(t) fp(t)) = (Zn‘u)P EZ'Z))H' g'f ceean Z (%)81 . (%)Sn
(

) (1 1)‘

a oo ..
(ntyr 1 a "ay

= (2nu)f
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Proof of the estimations. We come back to the general formula

( !’l) n-. j in J1+ inten
e =" Y e
5] ; - Ji-c Jn
jrtetjn=n*—q
e1teteEy=p

Of course, one has:
tn+11 . tn+zn e (t t — : : al’l+11 &, -llnH” én.
[ 1 " ]( p® fq(‘)) q! 61+Z+€ - n+ip—e)--(mn+ip—ey)! 1 "

Vk: n+ip—er20
By distinguishing the case (i < 0) and the case (i > 0) it is easy to show that in both
cases: (nnT'z)' < n~. Thus, by summing the powers of n:
1 nP=p—a) ni
b))t S ) )

In the right hand side, the dependence on ¢y, .. ., ¢, disappears. Then, as above, one can
factorize the expression and use the above definition (*) of the elementary symmetric
function from the right to the left, in order to obtain:

7 Y0 50) < oy e )

It remains only to compare with the expression of the auxiliary constanti;, in order to
conclude. In intermediary computation, its explicit value was computed to be:

(n 2)' no (1 1
P_( H)p( l)n "'ﬂn ep(a—l,...,a),

whence:

[t;;—ﬂ ---tZ_i"](ep(i) fq(t)) < ”? ...af;“ —E(Znif)P‘q

4.5. Simplified computation. Now, we achieve our program. As a first step, let
us simplify the problem and let us consider the polynomial inequality:

Tod">Ld" '+ +T1d + 1,

Because Iy > 0, this inequality is checked as soon as d is larger than the (largest) positive
root of the polynomial:

Id)=Tod" =hd"" - =T, qd T,
Dividing the polynomial Tby the appearing (huge) positive constant %, already
computed to be:
~ (!
Ty

( : ..an)nl

does not change the values for which Tis positive. In order to bound from above the
absolute values of the roots of a polynomial, it suffices to estimate the relative size of
its coefficients, according to the following lemma:

(4.5.1) All complex roots of a nonconstant complex algebraic equation of degree n:

cox =X T+ X + 0
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have an absolute value less than or equal to the Fujiwara’s bound:
1/p

Following this strategy of boundingi,/%, we will now compute the relative sizes

of the coefficients of I and after that compare each non-leading coefficient with the
leading coefficient:

(4.5.2) The Fujiwara’s bound for the polynomialply.'

- I[P

AMar, ..., a;) =2 max |=
1<p<n ]0

has the value

Z(E_l) = 4n p(a) (1/a1 +o 4 1/an).

Proor. Forp =0,1,...,n, we have computed:
(n 2)' ( 1 1 )
= (2nu)’ -an — e, —
P =( nfo (n 0” il Cp ﬂll ’an ’
in particular the leading term of I 1(d) is:

T = )

n
(s 17

Thus, first dividing byAI;) and then taking account of the homogeneous degree of e;:

1, 1 1 2n 2n
gz(Zny)p ep(—,...,—)—ep( y, .., ‘u),
Iy ai an ai an

whence the sought Fujiwara bound is:

. 2 2npy)P
A =2 max (ep(ﬂ,... ﬂ))

1<psn a ’ ay

Now, the classical Maclaurin’s inequality precisely states that for n € IN and for a
set of positive reals x1, ..., x,:

e1(x) > (@) > - > en ()"

One can directly deduce from this that:

- 2 2nu\\7 2 2
A=2 max(ep(ﬂ,..., ny)) :Zel(ﬂ,..., n“):élny (al+~-+l),
1

1<psn ai an ai ayn

which ends the proof. m]

Anticipating hypothesis (1) by a couple of pages, we will immediately estimate
the final value of A.
@.53) Ifn>6anda = (n”, n . m, 1) , the approximated Fujiwara’s bound X(ul, cen,ly)

satisfies:

n'" <X(a1,...,an) <7n".
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Proor. Recall that:
@ = 4np@ (o +or )
1

After computing the partial sum

iixi‘l B i(x”” - 1) nxX™l -+ )" +1
— Cdx\ x-1 ) (x = 1)2 ’
one can express explicitely the weighted sum

~ n 1 i-1 nn+1 —Tl2
pa) =n" ! Zl(;) = W,
i=1

and of course:

= 1 N T |
;a_i_ — o (n—1nt
Thus:
,/_{(a) _ 713 (nn—l _ 1) (nn+1 _ 1) n;
= (n —1)3 n=1 pn+l
for n > 6, we see that F/{(g) < 7n", which is the stated bounds on A O

Using the above Fujiwara’s bound, and taking account that the leading coefficient

is positive, we obtain that, under hypothesis (#1), the approximated polynomial Tis
positive for degrees:

d=>7n"

Next we will explain how to follow the same strategy with the (more complicated)
actual computation.

4.6. Estimation of the leading coefficient. Actually, the leading coefficient Iy of
the polynomial:

Id)=ld"+Ld" 7+ +1,_1d+1,

is the Cauchy product coefficient:

I = [H"ey -] (Aot -+ £a) Bltr, -+, 1) Cltr, -+ ),

and we want to prove that it is positive and to justify that it is comparable to the simpler
coefficient:

To= [t tr|(fattr, - ta)-

There are indeed some similarities between the computations of these two coeffi-

cients (cf. supra for the earlier computation of AII)).
Recall that Ay is the coefficient of d" in A and it has the expression:

Ao(tl, ey tn) = hn(fo(t) — (561(£)f1(£)),
Thus [A"]Ao(t1, ..., t,) and fo(ty, ..., t,) coincide for 6 = 0.
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Moreover, since in the multivariate polynomial A, the exponent of / is already
the same as the exponent of & in the sought-after monomial #"t] - - - £}, the other term
depending on /1, namely

j i ] ] i1 +tiy
B(tl, ceey tn) = Z‘ (_1)11+...+zn(n + ll) o (1’1 + ln) hh

n no ). e’
1 n

can be replaced by its truncation B(t) = 1 + O(h) —here O(h) denotes a polynomial
multiple of hin C[h, t1, ..., t,] —, and the resulting simplified computation is:

Io=[n"t] - £2|(Rolh, by, -+ t) Clty, -+, 1)),
that is the sum:
o= Y [rE (Ao, e ) )[BT B](Clt ).
k1+-+k,=0

That can be written as the difference of two sums:

0m T et 1ol
=5 ) [ w(@A@) A dr]e()

k1+-+k,=0

Of course, by taking 6 < 1 small enough, the second of these sums becomes negligible.

It remains to study the first sum above. Here, there is a delicate pairing between
the numerous coefficients of the polynomial fy and the corresponding coefficients of C.
The combinatorics of the first family of coefficients is well understood, whereas the
combinatorics of the second family of coefficients is very intricate.

Notice that the coefficient Iy corresponds to the single term of this sum indexed by
i=(0,...,0). Thus, comparing Iy and Iy amounts to replace C by its constant term 1
(and also take 6 = 0).

According to Lemma 4.4.1, it would suffice to take a sequence 4y, ...,a, that
decreases quickly enough, in order to make all terms appearing in the sum:

Y, [En ) [ ar]e ()

ky+-+k,=0
i#(0,...,0)

negligible with respect to:

B- [l |2 - £160)

Actually, below in appendix 5 we show the following.

(4.6.1) In the logarithmic absolute case, where V = Tpn(—log H), for n > 6, fix the parameter
a by taking:

(H) a= (n",n”'l,...,n,l),
and a posteriori take 6 = 6(a) small enough:
(Ha) 56(a) Ada) < 1.

Then the leading coefficient Iy of the polynomial 1(d) is positive and it is at least two thirds of
the coefficient Iy:

Ip>2=1y>0.

3
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4.7. Computation of the Fujiwara’s bound. Next, in order to compute the Fuji-
wara’s bound of the polynomial I(d), we estimate the other coefficients. Considering
the exponent 1/p in the definition of the Fujiwara’s bound, one is easily convinced that
it is more important to have a good estimate on the coefficient I; of the monomial d"~!.
Thus we treat it separately. Below in appendix 6.1 we show that for any a1, ...,a, € N,
the absolute value of the coefficient I; of d"~! in the polynomial I is bounded from
above by:

1+36A4 1+06A 1 1\~
) < | =204 2O S 1) |C|(—,...,—)11.
2 2n M ay

In particular, under hypotheses (H;) and (H>), we show that:
4.7.1) Il <5 1.

For the remaining coefficients, we do not expand the term B, thus we get a slightly
larger upper bound. Below in appendix 6.2 we show that for any ay,...,a, € N, for
p =0,1,...,n, the absolute value of the coefficient I, of d"7? in the polynomial [ is
bounded from above by:

2406A ( 2n 1 1\~
<|=—= S §
Iyl [ 2 (Zn—lj ]lCl(al an)lp

In particular, for n > 6, under hypotheses (H;) and (H5):

(4.7.2) Il < 121,

One can now compare the actual Fujiwara’s bound A with the approximated
Fujiwara’s bound A. Recall that, by definition, A is the Fujiwara’s bound of the
simplified polynomial I

/p
— Ip
A(@) = 2 max [:] .
- Ispsn| [y
In (4.6.1) above, we have proved that, under hypotheses () and (), one has:

2~
Io = =1
3 0

and in (4.7.1) just above that, under the same hypotheses:
Il < 5T1.
Thus, by combining these two inequalities, we obtain:

Il 151
|10| 27,
Similarly for p = 2,...,n, the inequality corresponding to (4.7.2) is:

1/p ~\1/p
(@) <181 (f—f’] <3V2 [I”]
| Lol Io Io
Thus, under hypotheses (H;) and (H>), the Fujiwara’s bound of the polynomial

I(d) satisfies:

1p _
< = Aa) < % 7n".

I

Aa) :==2 max
n|lo

p=1,..
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Then, we simplify the bounds on d and 6 by using that for n > 6:

54 () nr <520

n—1

A<
5>35n”>54(/—1)3n":>551<1

1/
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Appendix of chapter IV

5. Positivity of the Leading Coefficient
In this appendix, we establish how the technical hypotheses (Hy) and (H,) yield the
positivity of the leading coefficient Iy of 1(d).

5.1. Proof of proposition (4.6.1). The leading coefficient of I(d) has the expression:

@ o= Tt ol el
o Xt e ) o)

k1 +-+k,=0

We introduce some notation for the positive and negative contributions to the first

sum, as follows:
e X [ ) [ o)

k1 +-+k,=0
[t*1C(H)>0

D M A O] G

k1+-+k,=0
[£]1C(H<0

and also for the slope of I with respect to o:
Ge= Y, [ a(Aweao)s - grc()
ky+--+k,=0

Then the above equation (¥) becomes: Ip = I — I; — 6 Ij). It is proved below in sections
(5.2), (5.3), (5.4), that under the hypothesis (), one has the following estimates.

— Firstly, the sum of positive contributions is bounded from below by:
I3 > 21
— Secondly, the sum of negative contributions is bounded from above by:
Iy <(5/6)Io.
— Thirdly, the slope with respect to 0 is bounded from above by:
15l < (5A@)/2) To.

Putting these three estimates together, finishes the proof of (4.6.1). Indeed, one obtains:
5 561)_~(7-1564
6 2]>b( 6 )'

m>g-g-m@>%&-

It suffices to take, as in (H>):

56(a)A(a) <1,
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in order to obtain as announced:

2~
In>=1,>0.
0= 310

5.2. Partial expansion of C and positive contributions. In (4.2.1), we have seen
that the coefficient Cy, is zero unless for eachi =1, ..., n:

ki+---+k,<0.

Taking account that the coefficient Ck is zero unless:
ki+--+k,=0.

It can be reformulated in saying that the coefficient Cy is zero unless foreachi=1,...,n:
ki+---+k>0.

This suggests to make a change of variables in order to deal with formal series.
In this chapter, we will not do this change of variables, but it is useful to introduce
the length:

n
U ks, Jen) = (k) + Gy + k) oo Gy + ko 4ok de) = ) (n =)k,
i=1

that would correspond to the sum of the exponents in the new variables.
We will also use the notation:

oyt =k, k),

for the weighted degree of a monomial, and for I € IN, we will also write O(/) for
a series that involves only monomials with weighted degree at least I. Using this
notation, observe that:

(tift) = j—i.

This basic observation will allow us to easily expand up to terms of degree 3 the
factors appearing in the product:

ti—t; b — 21
C = ! _
® H ti — 2t H ti— 2t + tiq

1<i<j<n 1 T 2<i<jsn

(5.2.1) For every integers i, jsuchthat1 <i<j<n:

ti—t : \2
T :1+E+2(:—Z) + O(3).

ti—2t; ti i
and for every integers i, j such that 2 < i < j < n:
ti— 2t ti
— 1 = 1 400).
ti—2ti+ti ti

Proor. For every two integers i, j such that 1 < i < j < n, the series expansion:

ti—t Eoo1 b £\
14 H t.=1+_12(2_1)
ti—2t ti1-24 ti

yields:

j
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Next, for every two integers i, j such that 2 < i < j < n, the series expansion:

k
=26 ot 1 ha (mrw4)
— . . - . 2ti—t;_ - . .
ti— 2t +tig REE A
yields:
o2k L o((—i+ 1)+ (- 1) o
t]-—2ti+ti_1 B t]' J J '

These elementary observations yield the following.

(5.2.2) The expansion of C with respect to the order:

h<sbhb<g <t xl1
up to terms of weighted length € at least 3 is the following sum of terms having positive
coefficients:

n—1 n—1 t2 n-2 n-1

t
f +2 -+ ——— +0(3).

tiv t t
i=1 i1 L1 o1 jom L b

C(tl,...,tn)=1+

Proor. Recall that C(ty, ..., t,) is by definition (the expansion of) the product:

t—t: ti— 2t

i~ b U
by tn) = || ti—2ti+tiq)
C(t1, ..., tn) n(t],_th.) Hn(t]-—Zl‘i-i'fi—l)

1<i<j< 2<i<j<

By the lemma just above, the second product has the partial expansion:
ti—2t )
—L )= [] (1-72)+o6
2<:il:][<n( tj—2ti+tia 1<g—2 fiv2 ( )
because for j > i + 2 the length j —i + 1 > 3. Thus:
ti—2t ) ”Zt

2<z‘<j<n( bj— 2t + tina

=1

One has also:

T (=)= 10 1+ v2(2) ]+ 00
L 1 t]'—2tl' a » t]' t]' )
1<i<j<n 1<i<j<n

H (1+'t—i+2(t'i)2)1 H (l+ﬁi)+0(3).

1<i<n—1 i+l 17 ) 1 Gi<n—2 1+2
= 1+n—1 fi +2 nz—i tiz +n_2 ¥ it +"—2 L + O(3)
= fin i1l i j:i+1t LS e

We will consider separately j = 2, j = 3 and j > 4 and show that in all cases:
j-1

ti—t ti—t tiq tii1\?
! 11_[ L :1+]—+2(]—1) + O(3).
t]'—2t1 ot t]‘—zti+tl’_1 £ ti
For the first case j = 2, there is only one term, and by the lemma just above:

h—h :l+t—1+2( ) + O(3).
th — 2h to tr

Hence, we are done with this case.
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For the second case j = 3, note that 5((151 / t3)2) =4, thus:

t3 — 11 5]
——— =1+ —=+0(3).
t3 — 24 t3 3
There is only one supplementary term in the product, namely:
ts —t 2
3=h _,,Rk_h (tz)
t3 =2t + 1 t3 13
By doing the product of these two terms, the coefficient of ~ cancels and all cross
products of fractions are of weighted degree at least 3, hence

t3 —t t3 —t t t
1872 +2+2(2) 0(@3).
tz3—2t1t3 =2t + 11 t3 t3

For the remaining case j > 4, note that {(t;/t;) > 3 thus:

]
=1+
o =1+00).
In the same spirit, if j —i > 3:
PTh 1h00
— =1+ :
t]' — 2t +tiq ( )
The remaining factors of the product are obtained fori =j—1
ti—ti tia ot tio\*
__L_LL__:1+L1_JE+2(L% +00),
tj =2t +tji2 ti ti ti
and fori=j—2:
ti—tjo

tio
7 1+ 22400,
t]' - th_z + t]'_3 t]'

In the exact same way as above for j = 3, we obtain:

3 )
ti—H ti—tiq ti—tio ! ti—t; ti_q ti_q
J J / J J | | J : :1+—] +2(—] ) +O(3)
t]'—2t1 t]-—th_l +tjo t]'—2t]'_2 +tj3 5 tj—2ti+ti_1 ti ti

It remains to state that the product of the obtained expressions for j = 2,3,...,nis:

n tiq tiq 2 tiq tz._l tiqtiq
|K1+ S B +oeﬁ=1+ ) (L—+2i—)+ =t FYOTC))
tj tj ~ \ 1] £ — it
] 2<j1<jpsn

=2 2<j<n 2

S—— S——
(=1 (=2
This is because in the second parenthesis, that contains the cross products of fractions,
the only terms that have degree least than 3 are the product of fractions of degree 1. By
shifting all indices by —1 one obtains the truncated expansion:

n-1 t -1 n-2 n-1
Clty, oo ) =1+ ) =+ -7— 2: 2: ——-;—-+cx3)
i=1 i=1 1+ i=1 j=i+1 fivy j+1
as announced. O

Notice that in the new variables, this iterated Laurent series expansion of C coincide
with the usual multivariate Taylor expansion of the expression obtained from C.

We state that all terms of order less than 3 are non negative in such way that this
“Taylor” series expansion of C allows to give a lower bound for the sum of positive
contributions I
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(5.2.3) Under hypotheses (H1) and (H>), the leading term of the polyomial Tenjoys

I; > 21

Proor. Recall that by definition, Ij is the following sum of positive contributions
to the leading coefficient of I:

=) (5 ae)N-are)

k1 44k, =0
[ 1C(H)>0

Thanks to the multinomial formual, it is easy to compute that the appearing coefficients
of fy are:

n—ki n—ky, _ (ay---a)" (nZ)!
[ (Aot b)) = e TR R

The CoefficientTo is the same coefficient for k = (0, ..., 0):
(n?)!
(nh)n

[tgl a tZ](fO(tl, b)) = (@)

Thus:

I () (n)!
[t1 ¢ oty ¢ ](fO(tl"“’t”) ) - P ..O.ak” (n —ky)! (n —kn)!"
1 n

On the other hand, the above “Taylor” expansion of C provide us with some points
in the set

{k1+---+kn:0: [gk]C(g)>o}.

Here is the list of the corresponding coefficients:

F |t/ | B8, | tiltuo | titj/tiatia
T najy n(n—l)ﬂ’zﬂ naj ”2 Ai+14j+1
coeff/Iy ‘ L atya )@ | e | el am;
In conclusion:
-1 -1 2 -2 -3 n-1
> To(l N \ nais_ "Z: n(n—1)a;,, 4 \ naiy nz X leﬂi+12aj+1 )
p (n+1)a; = (n+1)n+2)a; 4= n+1)a; = & (n+1)2aa;

Fora = (n”, ..., N, 1), one gets the sum:

£> 1+(n—1)7_1+ (n —1)? 2n  (n=2)n  (n=3)(n-2) 2
Iy - m+n m+)n+2)n2  m+1)n? m+12 2n2)
and we see that, for n > 5, this quantity is more than 2. O

5.3. Evaluation of |C| and negative contributions. Next, we control the negative
contributions that could appear by multiplying A by C:

T M (R (20 (e )}

ky+--+k,=0
[ 1C(t)<0

We will use the transparent notation:

Chy,oy 1= [ 57 |Clt1, - 1),
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By the triangle inequality, taking account of lemma (4.4.1) (for p = g = 0), we get:

K K,
_ ai apn T
Iy < Z (2”#(0_1)) . (2”#(2)) Io |Ck,,.. |-

k1 +--+k,=0
Chy, fen <0

Now, k1 + - -+ + k, = 0 thus:

_ 1 k] 1 kn
- < _ oo — .
(531) IO 0y Z |Ck1 """ knl (al ) (ﬂn)
k1 +--+k,=0
Ck1 _____ kn <0

Recall that |C|(t) denotes the (convergent) iterated Laurent series generated by the
absolute value of the coefficients of the series C:

Ity t) 1= Y Iy, i E o i

i7"
We will use the basic result:

1o 1y 1 1 1 1
sG] ) =l ) -l

Now, we fix a4, ..., a,, in order to establish the estimates:

(5.3.2) Let (a;)i=1,.n be the decreasing geometric sequence

ai = )" (=L.m),

then for n > 6, the following inequalities hold:

1 1 1 1 1
210 ) <O <0 ) <5
3 al a}’l a] ﬂn a]_ al’l

Coming back to (5.3.1), we get at once:
1 1\= 5~
Iy <hh=[(1-%)IC ( ) Ip< =1
05 ( )l | o e s gl
Proor oF THE INEQUALITIES. Observe that the coefficient of C are very complicated.
In order to bypass this difficulty, we will use a majorant series C for C, in the sense that

the Taylor series expansion of C has only non negative coefficients, that are furthermore
upper bounds for the absolute value of the corresponding Taylor coefficients of C:

ICii<C; (ieNM.

Moreover, we will work in the domain of convergence of the series, in order to use
their rational expressions.
For each factor of

t—t b -2t
Clty, ... ty) = ! 7t
(it =[] ti—2t H b= 2t + iy

t
1<i<j<n -/ ' 2<i<jsn

it is easy to obtain such a majorant series, by replacing the series coefficients by their
absolute values. The first kind of fractions has only positive coefficients. Indeed:

tk+1
= k(2] .
22 ()

k=0
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The second kind of fractions has coefficients which sign is determined by the exponent

of t;_1, indeed:
ti—2t (—t1) k
] ! i-1 I nk-1
I — -1) 2
ti— 2t +tiq * t: Z( ) (l
] I k220

k—1 4k
zltzt

whereas, by changing the sign of ¢;_:

ti—2t; ti_ k

J o 1 kI k—1
Fooh—t,Th Zz (Z) fiaf] i
j i -1 ] >0

The majorant series is then obtained by taking the product of these pieces, that is:

— t:—t; ti—2t;
Clt1,..., tn) = ! _
(h n) H t]‘—zti H tj—Zti—ti_l

1<i<j<n 2<i<j<n

The detail of this fact is elementary and left to the reader.
Then:

=(1 1 aifa;—1 aifaj—2 ni=i -1 )
N N JAceay y QL N
M a, H i/a]-—Z H a-/aj—(2+ai/ai_1) H n~t-2 H wt—2+1/n)

- a - i -
1<i<j<n 2<i<j<n 1<i<j<n 2<i<j<n

n-1 nk _1 n—-k n-1 n-1-k (le _ 1)n—k
=g(nk_2) i (nk (2+1/n ) - kzl[(nk_2)(nk_(2+1/n))n—1—k]

and similarly;

—L

ot )= [l oy )

Ul -y

e |

This two products have many common terms and their difference is:

6(l, ., %) n-1 (nk 24 1/n)n_1_k n-1 5 n—(k+1)
ull—al):H(nk n-1-k :H(1+nk+1—2n—1))

C(E!/E k=1 —2—1/7’1) k=1
That is, after a shift of k by 1:

c(L,.... 1) =zt n-m-l

In order to prove that for n > 6, this quantity is less than 2 5, consider the two first
cases n = 6,7 with a computer algebra system, and then use a rough estimation for
large enough cases, e.g.:

~ n n
C< k2(n—k) <2 (n—2)k< 2
C =k —2n -1 = (n-2) (n-3)

6(%,...,%) n (1+ 2 )n—k

that yields the upper bound by exponentiation, for n > 8.

We estimate C in the same way. We consider the cases 7 < n < 11 with a computer
algebra system and then one has:

1 (nk— 1)n—k -1 n—k
C(al ﬂn) ( — 2)(nk—(2+1/1’l))n 1-k H(nk 2+1/Tl))

=1

:l
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That is:
n-1 —k n n+1-k
— 1 n 1
GIESRRRA DY y (TPRNIES N Rl | {FPTES B
(251 an 1 netl —2n -1 i nk—-2n-1
We infer that:
n k 2
-~ nm+1-kn+1) ’ ( 1 ) n
In(C) < <n < .
n©) kZ; P ; n-2) S -2)m-3)

For n > 12, by exponentiation:

—~(1 1 n2
il —)< — | <5.
C(al'“"an)<eXp(<n—2><n—3>) ’ ;

5.4. Estimation of the slope. Lastly, we study the slope of I with respect to 6:

=Y [5a (A et i) [ ] (e ).

k1+--+k,=0
By the triangle inequality, taking account of lemma (4.4.1) (for p = 1 and q = 0), we get:

I <L Z M —kl._. a, —kn IC |—T |C|(l l)
o 4 2nu(a) 2nu(a) Ky, enl = 11 o)

k1 +-+k,=0

On the other hand, in (4.5.2), we have established that A= 271 /}6, hence:

@ 1 1\~ 5Ma)~
< — —, ..., =] I < —=I.
ol < = |C|(a1 an)lo 7 10

6. Estimation of the Non-leading Coefficients

In this appendix, we estimate the other coefficients. We also show that the term B is always
negligible.

6.1. Estimation of the coefficient of 4"~ in I. Next, we consider the coefficient of
d"!in I, that is the Cauchy product coefficient:

I = W8] 62 (Aa(ts, - ) Blty, . ta) Clt, - )-
(6.1.1) For any integer n € IN, and for any choice of the parameters (a1, . ..,a,) € IN":

1 1\~
L] < |C|(—,...,—) L.
a a

n

Proor. The term C(ty,...,t,;) does not involve the variable h, thus:

I= [t tﬁ]([h”](Al(tl, < tn) Bt ..., 12))Clt1, .- .,tn)).

The expansion formula (4.1.1) above, page 78, shows that the first factor of this
product:

it tn) = [d" Ak, . ta)
is the following polynomial multiple of /"'
ity ... tn) = 1'(6 (n + Des () i) = Sea(®) o) + 1" er(® fo®) = Sex(®) (D),
with the notation of (4.1.1), taking account of
ag =1, 0(126(1’l+1), and ﬁ1 2‘3225.
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Hence, in the computation of the coefficient

[](Asttr, .. 1) Blt, ... 1) = [h](w B(ty,..., tn)),

one can replace the iterated Laurent series:
nk (e ) (S
B(ty,... ,th) = cee —_—,
(reeerto) Z‘ ( n ) ( n ) ARER
1 n

by its truncation up to polynomial multiples of h?:
n
h
B(ty,... ty) =1— Zl"(n +p + o).

The coefficient of " becomes:

[1](Aatr, - t) Bk, - 1)) =
6 (n+1)er(t) fi(t) — dea(t) f2(8)

n

1
~(+ Da® o) ~dea® A1) Y, 7
i=1 "
Recall the convention:
Chy,ooy = |13t |(Cltr, - 1),
Then:
1
I:tlil . t’,‘{‘] (t—iC(tl, . fn)) = oy, iy i1 ki1
Hence:
h=6 Y. [6 7]+ Der® Ai() - ea® /) Cry,.
ki +-+k,=0
—m+1) Y [ET A (e ® fod) - Sea® AD) (Chyap, + -+ Chyr)-
ky+-+ky=—1
By the triangle inequality, and applying four times lemma (4.4.1):
- - 1 \k 1\
ni<o(m+nhen) Y, (o) (=) s,
k1+--+k,=0
— — 1 1\k 1 \Kn
+(n+1)(I1 +01y) Z 211”@([1—1) (a) (IChys1,.t, + -+ + [Cli . is1)-
ky+-+k,=—1

Now the sum in the second line expands as follows in # sums:

1 ki 1 kn
Z (E) e (E) (|C|k1+l,._,,kn + -+ |C|k1,...,kn+l) =

k4 +ky=—

1 )(k1+1)—1 ( 1
31

ky,
'a_) IClk,+1,... k,,]"‘

n

(k1 +1)+--+k, =0 [(

1 k1 1 (ky+1)-1
+ |:(a_) e (ﬂ_) |C|k1,...,kn+1 ’
k1 +-+(k,+1)=0 1 "
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and it suffices to make the appropriate shift of indices in each of these sums in order to
obtain:

D R N e B
a1|C|(%,...,%)+---+an|0|(1 . l).

61_1, ey a,
The later sum is smaller than ‘u(g)ICI(%, e, al:) because by definition:
p@i, ..., ax) =lag+---+nay,.

One can now obtain, as desired, a constant multiple of I bounding the coefficient
|I1] from above:

l- ~ 1 1
(0 +0B)) G, )
ai a

n

n+
2n

< (6 (4 DT+ D)+
~ ~ n+1 - 1 1
< Lo 1+A)+ ——@1+6A — e, —
1( (nr1+d)+ 2n L+ )) Cl (a1 an)
Notice that this estimate are true without assumption (H;) and (H>). Now, taking

account of 561 < 1land n > 6, one has:

1+35X+1+5K
2 2n

(6(n+1+1)+712—41;1(1+61)):( L n+1)<1,

8
< =+ —
+6(n+1)] (10+10+ =

because A > 2 (n + 1). One has finally (without using hypothesis (H1)):

|11|<|C|(l,...,l)11. O
am an

6.2. Estimation of the other coefficients. We consider the coefficients of the re-
maining monomials d"F = d"72,...,d',d". As we have already seen twice above, the
coefficient of 4”77 in A is a polynomial multiple of /"77. Because we seek the coefficient
of h", this allowed us to simplify the computation by replacing the iterated Laurent

series:
n+j n+ j,\ (k) tin
B(t1,..., ta) = 2 ( nh)...( n])L

i1 J
J1rerjn=0 t] T tnn

by its truncations B~ 1+ O(h) forp =0and B~1-Y." ,(n + 1)% +O(h?) forp = 1. Of
course in general this allows to replace the iterated Laurent series B by its truncation
up to polynomial multiples of iP*1. As p goes from 0 to 1, this strategy reaches soon
its limits, since the number of terms remaining in the above-mentioned truncated
expansion of B increases dramatically. Consequently, the precise estimation of the
coefficient:

I = [@ Pty £](Att, . t) By, 1) Clta, o 1))

is technically more and more involved.
This consideration quickly justify that for p > 2 we will not use anymore the
expanded expression:

Blty, o )= ) (ﬂ;n)(ﬂ;;)m

jl jn
1o ju 0 Bt
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as in the preceding estimations of Iy and I, but that we will use a simpler expression
instead. Namely, in order to use the triangle inequality, we will forget about the signs
of the coefficients of B and use the corresponding series with non negative coefficients:

Bl t) = Y. (n+jl)m(n+jn)w

n n jl jn
J1seees jn=0 tl T tn

and we will even manage to use the sum of this series:

n

1
Bitt, . t) = [ [ ——=
= (1-4)
the estimation of which is easier. Actually, we will no longer need to know anything
about the coefficients of B.
This level of precision will be sufficient in view of the application of Fujiwara’s
bound:

I|»
d > 2 max|—|,
1<p<n | Lo
because we see that for p > 2, the obtained ratio will be decreased by an exponent
;<3

(6.2.1) Forp=0,1,...,nand any choice of the parameters ay, .. ., a,, the absolute value of the
coefficient of A"~ in the polynomial I is bounded from above by:

~ 2nuh 2nuh 1 1
) < (I, + o) 1B R )|C|(a,.. )

7
n an

Proor. Recall that I(d) is the Cauchy product coefficient:

I=[n"t) - £3](Ats, . t) Blty, . ta) Clta, - ))-
Recall that:
I’l 1 I’l n
Bty,...,t))= Y Bi—| --[=
(t1, . ) Z ](tlj (tj
jeEIN
and:

Ct, ..., ty) = Z Crthr .

ki +-+k,=0
Recall lastly that A, = [d""?P]A. The coefficient I, = [d" "]l is thus:

I = Z [hn—lfllﬂldﬂl ... tZ”n](Ap) [hlilthl ...t;j’i](B) [t’Il ... tlﬁ”](C)

i—j+k=0
= Y [witgrh g (A,) B Cr.
j—j+k=0

Next, we extract the coefficient of /"1l by using the expansion formula (4.1.1), and
we get:

Iy = Z p—ji [tllml “‘fZJri"](ep(D fp—|j|(£)) B; Ck
i—j k=0

+ Z Bp—ji+1 [t;Hil"'tz+in](€p+l(£)fp—|j|+1(£))BjCk~

i—j+k=0
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Recall that |ay—4| < 1 and [By—4+1] < 6. By the triangle inequality and using (4.4.1):

il gt ... gin il g .. J"

—( 1 a3 a; — 1 a; -

< .

) IP(Zn[J) S BC+ T ) 6(2,1#) akl__ |B||ck|
i—j+k=0 1 n i—j+k=0 1

We factorizef;g + 67;,“ and separate j and k and obtain:
1< (T, +5T, 1q‘1 -a)/1B; —c
|p|\(-;+ F’“) , Z 2nu o5l Z b Ok
jit+jn=q ky+-+k,=0 a] an

The announced result is obtained by identifying the two appearing sums:

2nuh 2nuh 1
IL,| < (;+51p+1)|8|( i‘ P‘)|c|( —) O

a an

We have already estimated |C| (al

1/ 7 a
mains to estimate IBI(an o, ZZilh ) We will now see that —without using hypotheses

(H1) and (Hy) — this term is bounded from above by the term of a converging (thus
bounded) sequence.

) In order to apply Fujiwara’s bound, it re-

(6.2.2) For any integer n € IN, for any choice of the parameters (ay, ..., a,) € IN" and for
u=Qay+---+nay):

m 7 ay 2n—1

n+1
|B|(2”“ " 2”“h)<( ) cen),

Proor. Recall that:

n+j n+ ju\ Rt tin
Bl )= ) ( n”)---( n])ﬁ
) >0 t1"'tn

Znh 2nuh n+j n+ i\ (a1 V' a, \”
s ) )
ap ay W= n n 2nu 2nu

Now 2nu > a; fori=1,...,n, hence the left hand side expression is:

2nuh 2nuh - a; 1\
B 5 =TT -%5
©l ( ap " a ) (1 IS 2”) '

n i=1
ln(l - ——) .

Next, use the concavity of the logarithm function and the fact that:

Thus:

and by taking the logarithm:

dnuh 2nuh
1|B|(”“ Z”) n+1)z

m n

O0<a;<p@=1la;+---+nay, (i=1,...n)

1 a; 2n .
— |In (1 - ﬁ)‘ = p ll'l(zn — 1) [i=1,...n],

in order to obtain:
u 2n

Su
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and sum these inequalities in order to get the upper bound:

ok 2muh
) (222 @t +”")(n+1)1n( 2n )
u(a) 2n-1

2n
< 11( )
n+1)In P

Finally, the increasingness of the exponential function yields the announced result. O
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