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The history of mankind is also a history of human energy usage. Both progressed from human 

muscle power and firewood in the prehistoric times, and later, thanks to agricultural surpluses, 

also from animal power. Humanity was slowly crawling out from the stage of barbarism, 

harnessing the power of wind and water, which allowed our history to advance more rapidly, 

up to the pre-industrial era. At some point in our history we fully harnessed the power from 

the fossil fuels: coal, gas and oil, thanks to the invention of steam engine; those are the times 

of Industrial Revolution. Over that period, roughly from 1750 until 1850, world's population 

increased sixfold, resulting in even more dramatic energy demand. Before that period, 70% of 

total work was delivered by human muscles, most of the rest by domestic animals, but in the 

times of Industrial Revolution, fossil fuels were the only present energy source that could 

fulfill the constantly increasing demand. Coal fueled the industrial revolution in the 18th and 

19th century. With the advent of the automobile, airplanes and the spreading use of electricity, 

oil became the dominant fuel during the twentieth century. The growth of oil as the largest 

fossil fuel was further enabled by steadily dropping prices from 1920 until 1973. 

Figure 1. Worldwide possible coal production. Predicted production peak will occur in late 

2020s. 

Today, in the post-industrial era, our consumption of fossil fuels and electricity is enormous. 

On one hand fossil fuels are abundant, effective and easy to transport and those features 
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allowed us to reach such an incredible level, but on the other hand humanity used more 

energy in the 20th century only than is used in all of the rest of human history. From that 

perspective an obvious conclusion makes itself apparent; fossil fuels cannot and will not last 

forever, therefore a new energy source must be implemented in their place, if we humans 

want to maintain the same life-style and civilization level. There have been several initiatives 

taken and several candidates are present, notably the atomic power, which is by far the most 

Figure 2. World Gross Domestic Product (GDP) and energy consumption for the whole 

recorded history. The explosion in 19
th

 century is linked with industrial revolution. 

efficient way of producing electricity, but is also the one that causes the most trouble. Even 

now, when we do not rely fully on it, one relatively small malfunction of the atomic reactor in 

a power plant, such as the one that happened in Chernobyl on 26 April 1986, or the one at 

Fukushima in 2011, could have catastrophic effects. The renewable energy sources offer the 

unique possibility of electric power production without any major drawback and renewable 

energy sources are abundant enough to live up to the constantly increasing world's energy 

demand. 
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Figure 3. World energy consumption. Only 16% is supplied from renewable sources and only 

1.5% from solar energy. 

Today world's energy consumption is somewhere above 19 TW, while the potential of 

renewable sources is: 32 TW geothermal, 870 TW wind power and 86 000 TW solar power. It 

is easy to note that any of those energy sources is capable of fulfilling the world's need now 

and in the near future, with solar power being the most abundant and most accessible.  

Figure 4. Potential global availability of renewable energy sources and global annual energy 

consumption. Sun power offers more than 5600 times energy than global needs of today. 

The Sun is an average star. It has been burning for more than 4-bilion years and will burn at 

least that long before turning into red giant, engulfing the Earth in the process. The Sun is 

responsible for nearly all the energy available on Earth. The exceptions are attributable to 
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moontides, radioactive material and the Earth's residual internal heat. Everything else is 

converted form of a Sun's energy: Hydropower is made possible by evaporation-transpiration 

due to solar radiant heat; the winds are caused by Sun's uneven heating of Earth's atmosphere; 

fossil fuels are remnants of organic life previously nourished by the Sun; and photovoltaic 

electricity is produced directly from sunlight by converting the energy in sunlight into free 

charged particles within certain kinds of materials

Figure 5. Global photovoltaic market. A rapid growth in production is observed for the past 

few years. 

In theory, with today’s knowledge, humanity has all the necessary tools in hand to rely 

completely on renewable energy sources while maintaining the highly developed civilization 

and current growth rate. It can be argued that, even if the fossil fuels triggered the events that 

allowed for such a dramatic changes that occurred in 19
th

 and 20
th

 century, regarding 

technological advancement, transformation of the society and rapid increase in human 

population, those fossil sources are not capable to upkeep this tendency and if no other energy 

source is found, human civilization will collapse and reverse a couple of hundreds of years in 

development. Therefore there are two fundamental reasons to study intensively the potential 

of renewable energy sources and solar power in general. The first is to maintain the current 

state of civilization and development while the second reason is related directly to our current 

status on the Kardashev scale. The Kardashev scale is a method of measuring a civilization's 

level of technological advancement, based on the amount of energy a civilization is able to 

utilize. The scale has three designated categories called Type I, II, and III. A Type I 

civilization uses all available resources impinging on its home planet, Type II harnesses all 
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the energy of its star, and Type III of its galaxy. At the present state, the humanity is a type 0 

civilization, but according to some scientist, like Prof. Michio Kaku and Prof. Steven 

Hawking, we will experience the transfer to a planetary, type I civilization in the next 50 

years. If this is to happen and if we are to ensure our further growth in technological 

advancement, there is no other long term choice than to embrace, accept and utilize the 

immense amount of energy the Sun is giving us every day. 
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The Sun is the star at the center of our planetary system. It is almost perfectly spherical and 

consists of a hot plasma interwoven with magnetic fields. It has a diameter of about 

1 392 000 km, about 109 times that of the Earth, and its mass (about 2×10
30

 kilograms, 

330 000 times that of the Earth) accounts for about 99.86% of the total mass of the Solar 

System. Chemically, about three quarters of the Sun's mass consists of hydrogen, while the 

rest is mostly helium. The remaining (1.69%, which nonetheless equals 5 628 times the mass 

of Earth) consists of heavier elements, including oxygen, carbon, neon and iron, among 

others. The mean distance of the Earth from the Sun in about 149.6 million kilometers, which 

is equal to 1 AU. At the average distance, light travels from the Sun to the Earth in about 8 

minutes 19 seconds. In the stellar classification, the Sun is a G2V class star, meaning that the 

major part of its radiation is in the yellow-green portion of the spectrum, has surface 

temperature about 5778 K and is a main-sequence star, generating its energy through nuclear 

fusion of hydrogen into helium. The total power emitted by sun equals 3.846×10
26

 W, which 

corresponds to a mean intensity of 2.009×10
7
 W·m

−2
·sr

−1 
[1]. 

The Sun releases 95% of its output as light, while the remaining 5% consists of highly 

energetic X-rays and radio signals. Since the peak of radiation is in the green portion of the 

visible spectrum, most plants and the human eye function best in green light through 

adaptation to the nature of the sunlight reaching them.  

���������������������

The spectrum of the Sun's solar radiation is close to that of a black body with a temperature of 

about 5778 K. The Sun emits EM radiation across most of the electromagnetic spectrum. 

Although the Sun produces Gamma rays as a result of the nuclear fusion process, these very 

high energy photons are converted to lower energy photons before they reach the Sun's 

surface. Therefore the Sun emits electromagnetic radiation in the X-ray, UV, visible, infrared 

range and also radio waves. Most of the high energy photons are absorbed by the Earth's 

atmosphere before they reach the Earth’s surface, such as the most UV light. 

The spectrum of electromagnetic radiation striking the Earth's atmosphere spans a range of 

100 nm to about 1 mm. It can be divided into five regions in increasing order of wavelengths:  
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- Ultraviolet or UV, divided into three parts: C: 100 to 280 nm, B: 280 to 315 nm and A: 315 

to 400 nm. UVC and UVB radiation is greatly absorbed by the atmosphere and is responsible 

for the photochemical reaction leading to the production of the ozone layer. The least 

dangerous part of the UV light is the UVA, which is often used for tanning and treatment of 

various skin diseases. 

- Visible range commonly referred to as light spans 380 to 780 nm. It is the only part of the 

spectrum that is visible to the naked human eye. 

- Infrared or IR, divided also into three parts: A: 700 nm to 1400 nm, B: 1400 nm to 3000 nm 

and C: 3000 nm to 10
6
 nm. It is responsible for an important part of the electromagnetic 

radiation reaching the Earth.  

Figure I.1. Solar spectrum at the top of the atmosphere, at the sea level and the radiation of a 

black body with temperature T = 5778 K [2]. 

The Total Sun Irradiation (TSI) upon the Earth, measured by the Solar Radiation and Climate 

Experiment (SORCE) satellite is estimated to be around 1361 W/m² [3]. 
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To understand the origin of sunlight one can consider the Sun as a black body with a 

temperature Ts = 5778 K [4], since this is the temperature of the Sun's surface. The number of 

photons emitted by a unit of volume of such a black body can be expressed by the Planck's 

law: 

�������� 	 
��� �� 
 ��� 	 ������������ 
 ����� ������ � � 
 ��� (I.1.1)

where u(ω,T) is the spectral density, � is the reduced Planck constant, c is the speed of light 

and k is the Boltzmann constant. Energy of photons emitted by a unit of volume is described 

by: 

�������� 	 �� 
 ���� 
 ��� 	 ������������ 
 ����� ������ � � 
 ��� (I.1.2)

So the total energy emitted by a given volume is expressed by: 

��� 	 � ������������ 
 ������ ������ � �
�
� 
 � ��� 

� (I.1.3)

��� 	 �����!���� �� (I.1.4)

The total number of photons emitted is then given by: 

��� 	 "#�$��� �������� �� (I.1.5)

and their mean energy is equal to: 

%��& 	 ������ 	 "#'$��� (I.1.6)

For the Sun, at the temperature Ts = 5778 K we obtain: 

%��&()* 	 �#+��",�- (I.1.7)

If ephΩ is the energy density for a unit of a solid angle, then the energy flux emitted by a 

surface element dA of a solid angle comprising a source would be: 



��������	�

I.10 | P a g e

�./ 	 ����� 0 � 0 �1 0 �� (I.1.8)

Surface elements of the energy emitter (Sun) dAS and the energy receiver dAE are presented 

on figure I.2. 

Figure I.2. Surface elements dAS and dAE of the source (Sun) and receiver (Earth) of energy, 

respectively. 

If the distance between the Sun and the Earth is RSE, the solid angle is defined by: 

�2(�/ 	 �1(�/3(/� (I.1.9)

Assuming all the energy emitted by the Sun reaches the Earth, the energy density per solid 

angle emitted by the Sun is equal the energy density per solid angle received by the Earth: 

���(4 	 ���/4 (I.1.10)

564 	 � 0 ���4 (I.1.11)

and energy density is equal to: 

56 	 564 0 �� (I.1.12)

If we approximate the Sun as a perfect sphere, the total energy flux emitted by the Sun in the 

solid angle dΩ is equal: 
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.6( 	 564 0 �� 0 � 0 78� (I.1.13)

where RS is the radius of the Sun. Following the Stefan-Boltzmann law, the total power 

emitted per unit area of the surface of a black body is directly proportional to the fourth power 

of its absolute temperature: 

59 	 :�� (I.1.14)

so the total power emitted by the Sun in given by: 

;( 	 ��78�:�(� (I.1.15)

Since the Sun emits that power evenly in all directions, the fraction of power that strikes the 

Earth is then given by the following expression: 

;(/ 	 ;( �7<���78<� (I.1.16)

where RE is the radius of the Earth. Every real planet reflects part of the incident radiation. 

The amount of power reflected by the planet is described by its albedo α. In other words, 

Earth absorbs a fraction 1 - α of the Sun's light and reflects the rest. The power absorbed is 

given by: 

;=>? 	 �� � @�;(/ (I.1.17)

even if the planet absorbs only a circular area, it emits equally as a sphere. When a planet, 

considered as a black body, is thermal equilibrium with its surroundings, it emits exactly the 

same amount of energy it receives from the Sun. The planet emits mainly in the IR part of the 

spectrum, since its temperature is much lower than that of the Sun. In this frequency range it 

emits AB of the radiation that a black body would emit, where AB is the average emissivity in the 

IR range. The power emitted by the planet is then given: 

;6CD 	 AB��7E�:�F� (I.1.18)

Substituting the expressions for solar and planet power in equations I.1.14-I.1.18 and 

simplifying yields, the estimated temperature of the planet, ignoring the greenhouse effect is 

given by: 
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�F 	 �(G3(H� � @AB"3(/ (I.1.19)

Assuming α = 0.306 [5], RS = 6.98�10
8
 m, RSE = 1.496�10

11
 m [6], simplifying AB to 1 and 

ignoring the greenhouse effect, the average temperature of the Earth is: 

�F 	 "!�#+!IJ 	 ��KLM (I.1.20)

The difference between the real and estimated temperature is mainly due to the greenhouse 

effect.  

For several applications, solar power concentrated with the help of lenses and mirrors might 

be used. Fulfilling the assumptions of the energy balance, we have: 

��78�5( 	 ��7<� 5/ (I.1.21)

which comes from the second law of the thermodynamics, stating that the radiative 

temperature of the concentrated light cannot exceed the radiative temperature of the Sun. The 

above expression with the concentration becomes: 

N5/ 	 :�O� P :�(� 	 5( (I.1.22)

Therefore the maximum concentration becomes: 

NC=Q 	 5(5/ 	 R3(3/S� 	 �I�I� (I.1.23)

��������� �����

The amount of light that reaches the ground is influenced by both the elliptical orbit and the 

Earth's atmosphere. The extraterrestrial solar illuminance Eext, corrected for the elliptical orbit 

by using the day number of the year is given by the following expression [7]: 

T6QD 	 T?U V� W X 0 �YZ R"� �[\ � ++I! S] (I.1.24)

and 



��������	�

I.13 | P a g e

X 	 ^3��3=� 	 $#$++��" (I.1.25)

being the ratio between Earth's perihelion and aphelion squared. The day-3 term in equation 

(I.1.24) comes from the fact that in modern times Earth's perihelion occurs around January 

3rd each year. The solar illuminance constant Esc = 128�10
3
 lx, the direct normal illuminance 

Edn, corrected for the attenuating effects of the atmosphere is given by: 

T_* 	 T6QD�`UC (I.1.26)

where c is the atmospheric extinction coefficient and m is the relative optical air mass. The 

term air mass normally indicates relative air mass, the path length relative to that at the zenith 

at the sea level, so by definition, at the sea level air mass is equal to 1. With increasing angle 

between the source and the zenith, the air mass increases also, reaching the value of 

approximately 38 at the horizon. Air mass can be less than one at the elevation greater than 

the sea level, but most of the closed form expressions do not include that effect. In some 

disciplines the air mass is indicated by an acronym AM; additionally the value is given by 

appending the value to the acronym, AM1 indicates an air mass of 1 and so on. The region 

above the Earth's atmosphere, where there is no atmospheric attenuation is considered to have 

air mass 0 (AM0). 

�������������������������������

Silicon (latin: silicium) is the chemical element that has the symbol Si and atomic number 14 

(column 4). A tetravalent metalloid, silicon is less reactive than its chemical analog carbon. 

Silicon is the eighth most abundant element in universe by mass. It occasionally occurs in 

nature as the free element, but is more widely distributed in dusts, planetoids and planets as 

various forms of silicon dioxide and silicates. Silicon is the second most common element of 

the Earth’s crust, making up 25.7% of its mass. 

Silicon has found many applications in industry, especially in electronics. The use of silicon 

in semiconductor devices demands a much greater purity than afforded by metallurgical grade 

silicon. Very pure silicon (>99.9%) can be extracted directly from solid silica or other silicon 

compounds by molten salt electrolysis. Though this method was known as early as in 1854, 

the rapid expansion of silicon technology and especially silicon solar technology has been 
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made available thanks to Czochralski method in 1916. To this day this method is the one most 

widely used in industrial scale silicon production and is the cheapest one available. Elemental 

silicon is the principal component of most semiconductor devices such as photodiodes, 

integrated circuits or microchips. Silicon is also the most frequently used semiconductor, 

because unlike many other semiconductors it maintains its properties over a wide temperature 

range. Another reason for using this semiconductor is that its native grown dioxide can be 

easily obtained in a furnace and creates a very good semiconductor-dielectric interface and 

electronic passivation surface. 

In the form of silica (silicon dioxide) it forms various glasses, ceramics and cements, which 

are used in many branches of the industry. It can also be used for the creation of synthetic 

glass-like compounds, containing silicon, carbon, oxygen and hydrogen, named silicones. 

Silicon is also an essential element in the living world. While it is mainly required by plants, 

only small traces of it appear to be needed by animals.  

Silicon is an elemental semiconductor. There is no simple definition of semiconductors, but 

one can apply the name to materials whose electrical conductivity σ lies between  

10
-9 

to 10
2 Ω-1

cm
-1

. Different from metals, where the conductivity decreases with temperature, 

the conductivity of semiconductors for some temperatures increases exponentially. This is 

caused by the exponential increase of carrier concentration with temperature (thermal 

generation), as predicted by equations (I.2.22) and (I.2.23). Apart from that, the conductivity 

of semiconductors depends strongly on additional effects like doping or illumination. 

Considering band structure, it is assumed that the band gap for semiconductors lies between 0 

and 3 eV. Materials for which the band gap is greater than 3 eV (while conductivity is lower 

than 10
-9 Ω-1

cm
-1

) are called insulators. This is a limited definition, because for different 

reasons one can call diamond-structured carbon a semiconductor, which has band gap of 6eV, 

or semi-insulator GaAs. The reason these materials are considered semiconductors is due to 

the type of conductivity. Metals have only electrons, semiconductors have electrons and 

holes, but lack ionic conductivity, visible in dielectrics. In semiconductors the most important 

role is always played by electron-hole conductivity, before the ionic one. On the other hand, 

semiconductors with 0 eV effective bang gap are called semimetals.  
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At T = 298 K (room temperature) silicon exists in the solid state. It can exist in other phases 

such as crystalline, amorphous and polycrystalline. The melting point for silicon is at 

T = 1687 K and its boiling point is at T = 3173 K. 

Figure I.3. Crystalline silicon forms in a diamond structure, space group Fd-3m. 

The cell parameters for Si are 543.09 pm (picometre). The electronic configuration of silicon 

is [Ne].3s
2
.3p

2
 where [Ne] stands for structure of neon [8]. 

To understand the origin of properties of crystalline silicon one must consider a silicon crystal 

extended to infinity in all three dimensions. Properties of such a crystal can then be analyzed 

by the Bloch's theorem [9], which states that the eigenstates ψ of the one-electron 

Hamiltonian: 

a 	 ��� b�"c W d�e� (I.2.1)

where U(r+R) = U(r) for all R in a Bravais lattice, can be chosen to have the form of the 

plane waves times a function with the periodicity of the Bravais lattice: 

f*g�e� 	 �hg0i
*g�e� (I.2.2)

where unk(r+R) = unk(r) for all R in the Bravais lattice. the equations (I.2.1) and (I.2.2) imply 

that: 
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f*g�e W 3� 	 �hg0jf*g�3� (I.2.3)

By imposing appropriate boundary conditions, such as Born-von Karman conditions [9], we 

can demonstrate that the k vector must be real and arrive at a condition restricting the values 

of k. If we are working with the case where the primitive cell is no longer cubic, we can 

generalize the boundary conditions as follows: 

f�e W kh[h� 	 f�e�� l 	 ��"�+ (I.2.4)

where the ai are three primitive vectors and the Ni are all integers of order N
1/3

, where 

N = N1N2N3 is the total number of primitive cells in the crystal. Applying Bloch's theorem 

(I.2.3) to the boundary condition (I.2.4) we find that: 

f*g�e W kh[h� 	 �hmng0=nf*g�e� (I.2.5)

which requires that: 

�hmng0=n 	 �� l 	 ��"�+ (I.2.6)

When k has the form: 

� 	 �opo W ��p� W ��p�  where  pq 0 [q 	 "�rhq (I.2.7)

and aj, bj are the normal and reciprocal lattice vectors, respectively, equation (I.2.6) requires 

the following: 

�� hmnQn 	 � (I.2.8)

and consequently we must have: 

�h 	 chkh (I.2.9)

mi integral. Therefore the general form for allowed Bloch wave vectors is: 

� 	schkh
�
hto ph (I.2.10)

The volume of a reciprocal lattice primitive cell is (2π3
)/v, where v = V/N is the volume of a 

direct lattice primitive cell, so the volume ∆k of k-space allowed value of k can be expressed 

as follows: 
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u� 	 "��- (I.2.11)

The ground state on N Bloch electrons is constructed by occupying all Bloch levels labeled by 

the quantum numbers n and k, but, unlike the free electron case, εn(k) does not have a simple 

explicit free-electron form and k must be confined to a single primitive cell of a reciprocal 

lattice if each level is to be counted only once. When the lowest of these levels are filled by a 

specified number of electrons, two quite distinct types of configuration can result: 

- A certain number of bands may be completely filled, all others remain empty. The difference 

in energy between the highest occupied level and the lowest unoccupied level is known as the 

band gap. We shall find that solids with a band gap greatly in excess of kBT (T near the room 

temperature) are insulators. If the band gap is comparable to kBT, the solid is known as an 

intrinsic semiconductor. Because the number of levels in a band is equal to the number of 

primitive cells in the crystal and because each level can accommodate two electrons (one of 

each spin), a configuration with a band gap can arise only if the number of electrons per 

primitive cell is even. 

- A number of bands may be partially filled. When this occurs, the energy of the highest 

occupied level, the Fermi energy εF, lies within the energy range of one or more bands. For 

each partially filled band there will be a surface in k-space that separates occupied from the 

unoccupied levels. The set of all such surfaces is known as the Fermi surface and is the 

generalization to Bloch electrons of the free electron Fermi sphere. The parts of the Fermi 

surface arising from individual partially filled bands are known as branches of the Fermi 

surface. A solid has metallic properties provided that a Fermi surface exists. 

 One must very often calculate quantities that are weighted sums over the electronic 

levels of various on-electron properties. Such quantities are of the form: 

v 	 "sv*���*�g (I.2.12)

where for each n the sum is over all allowed k giving physically distinct levels.  

In the limit of a large crystal the allowed values of k get very close together, and the sum may 

be replaced by an integral. Since the volume of k-space per allowed k has the same value as in 

the free electron case, the prescription for the free-electron model case remains valid and we 

find that: 
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w 	 xyz{|�v- 	 "s� ���"���v*���* (I.2.13)

where the integral is over the primitive cell. If v*��� depends on n and k only through the 

energy εn(k), then in further analogy to the free electron case one can define a density of states 

per unit volume g(ε) so that q has the form: 

w 	 ��}~�}�v�}� (I.2.14)

Comparing equations (I.2.13) and (I.2.14) we find that: 

k�}� 	sk*�}�* (I.2.15)

where Nn(ε), the density of states in the n
th

 band is given by: 

k*�}� 	 � ����� r�} � }*���� (I.2.16)

where the integral is over any primitive cell. 

In an intrinsic semiconductor, the number of occupied conduction band levels is given by 

[10]: 

� 	 � k�}���}��}����
�� (I.2.17)

where εC is the energy at the bottom of the conduction band and εtop is the energy at the top. 

The density of states N(ε) can be approximated by the density near the bottom of the 

conduction band for low-enough carrier densities and temperatures (the so called parabolic 

band approximation): 

k�}� 	 �U �"�� �� � �O�
o��� �c_6���� (I.2.18)

where MC is the number of equivalent minima in the conduction band and mde is the density of 

state effective mass for electrons: c_6 	 �co9c�9c�9�o�� (I.2.19)

where co9, c�9  and c�9 ,are the effective masses along the principal axes of the ellipsoidal 

energy surface. The Fermi-Dirac distribution function F(ε) is given by: 
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��}� 	 �� W ��� �� � ����� � (I.2.20)

where kB is the Boltzmann constant, T absolute temperature and εF the Fermi energy. The 

integral in the equation (I.2.17) can be evaluated to be: 

� 	 kO "�� �o�� R�� � �O��� S (I.2.21)

where NC is the effective density of states in the conduction band and is given by: 

kO 	 "R"�c_6����� S����O (I.2.22)

and F1/2(ηf) is the Fermi-Dirac integral. For the Boltzmann statistics case, that is for the Fermi 

level several kBT below EC in non-degenerate semiconductors, the integral approaches  ������" and equation (I.2.21) becomes: 

� 	 kO��� R��O � ����� S (I.2.23)

Similarly, we can obtain the hole density near the top of the valence band: 

� 	 k{ "�� �o�� R�{ � ����� S (I.2.24)

where Nv is the effective density of states of the valence band and is given by: 

k{ 	 "R"�c_������ S��� (I.2.25)

where mdh is the density of state effective mass of the valence band: 

c_� 	 �c��9�� Wc��9�� ���� (I.2.26)

where subscripts refer to light and heavy holes, respectively. Under non-degenerate 

conditions we obtain: 

� 	 k{��� R�{ � ����� S (I.2.27)

As can be seen from the above equations, knowledge about the density of states is vital for 

calculating the real number of free-carriers in given conditions.  
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Equations (I.2.22) and (I.2.25) provide good approximation for the points in the band maxima 

and minima and their surroundings, but often more detailed description is needed. Such 

description can be provided by the Density Functional Theory methods or the Local Density 

Approximation [11,12].  

Having determined the Density of States one can try to estimate the position of Fermi level in 

intrinsic semiconductors. In such materials, at finite temperatures continuous thermal 

agitation exists, which results in excitations of electrons from the valence band to the 

conduction bands and leaves an equal number of holes in the valence band, that is, n = p = ni, 

where ni is the intrinsic carrier density. This process is balanced by recombination of the 

electrons in the conduction band with holes in the valence band. 

Figure I.4. The Electronic Density of States of crystalline silicon calculated by ab initio 

method within the frames of Local Density Approximation. Characteristic van Hove 

singularities can be seen. 

The Fermi level for an intrinsic semiconductor is then obtained by equating (I.2.23) and 

(I.2.27): 
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}� 	 }h 	 �O � �{" W ���" �� Rk{kOS 	 �O � �{" W +���� �� � c_�c_6�U���� (I.2.28)

Hence the Fermi level for an intrinsic semiconductor (for T close to 293 K) generally lies very 

close to the middle of the band gap. 

Figure I.5. Intrinsic carrier density in silicon vs T, calculated using the density of states 

presented in figure I.4. 

One can gain a substantial insight into the structure imposed on the electronic levels by a 

periodic potential, if that potential is rather weak. There are two main reasons behind that: the 

electron-ion interaction is the strongest at small separations, but the conduction electrons are 

forbidden from entering the immediate neighborhood of the ions by the Pauli principle, since 

this region is already occupied. Second reason is that in the area where the conduction 

electrons are allowed, their mobility further diminishes the net potential any single electron 

experiences, for they can screen the fields of positively charged ions. 

When the periodic potential U = 0, the solution to the Schrodinger's equation are plane waves. 

The wave function of a Bloch level with crystal momentum k can be written as follows: 
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fg�e� 	s�g`��h�g`��0ig (I.2.29)

where the coefficients ck-K and the energy levels ε are determined by the set of equations: 

� ��"c �� � J�� � }� �g`� Wsd��`��g`�� 	 $�� (I.2.30)

The sum in (I.2.29) is over all reciprocal lattice vectors K, and for any fixed k there is an 

equation of the form (I.2.30) for each reciprocal lattice vector K. The infinitely many 

solutions of equation (I.2.30) are labeled with band index n. 

When periodic potential U is zero and we are dealing with free electron case, the solution 

divides naturally into two possibilities: the non-degenerate case, where there is only one K 

vector for which the equation (I.2.30) is satisfied:

} 	 }g`�� � fg � �h�g`��
i (I.2.31)

and the degenerate case, if there is a group of reciprocal lattice vectors K1,...,Km satisfying: 

}g`��� 	 � 	 }g`���
(I.2.32)

Situation becomes more complex when U is no longer 0, but very small. There are two 

possible scenarios: 

Scenario 1. We fix k and consider such reciprocal lattice vector K1 that: 

�}g`��� � }g`�� � � d,     for fixed k and all K�K1 (I.2.33)

and we wish to investigate the effect of U on free-electron level given by: 

} 	 }g`��� � �g`� 	 $,     K � K1 (I.2.34)

Setting K = K1 we have: 

�} � }g`��� ��g`�� 	sdg`���g`�� (I.2.35)

Because we chose the additive constant in the potential energy so that UK = 0 when K = 0, 

only terms with K � K1 appear on the right-hand side of equation (I.2.35). We consider a case 

where ck-K vanishes when K � K1 in the limit of vanishing U, so writing equation (I.2.30) for 

K � K1 we obtain: 
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�g`� 	 d��`��g`��} � }g`�� W s d��`��g`��} � }g`������, (I.2.36)

Therefore, provided that there is no near degeneracy (which could cause some of the 

denominators in (I.2.36) to be of order of U and resulting in additional terms in the sum to be

comparable to the term K = K1) we can write: 

�g`� 	 d��`��g`��} � }g`�� W ��d�� (I.2.37)

Combining this with (I.2.35) we find: 

�} � }g`��� ��g`�� 	sd��`�d�`��} � }g`���, �g`�� W ��d�� (I.2.38)

Thus, as expected the perturbed energy level ε differs from the free-electron value }g`���  only 

by the order of U
2
. To solve equation (I.2.38) for ε, it suffices to replace the appearing ε in the 

denominator on the right-hand side by }g`���  leading to the following expression, correct to 

second order in U: 

} 	 }g`��� Ws �d�`����}g`��� � }g`���, W ��d�� (I.2.39)

Equation (I.2.39) asserts that weakly perturbed, non-degenerate bands repel each other, for 

every energy level }g`��  that lies below }g`���  contributes a term that raises the value of ε, 

while every energy level that lies above }g`���  contributes a term that lowers the value of ε. 

Also, in the case of no near degeneracy, the shift in energy from the case of the free-electron 

value is second order of U. 

Scenario 2. We suppose that the value of k is such that there are reciprocal lattice vectors 

K1,..., Km and corresponding energy states }g`��� ,..., }g`���   all within order U of each other, 

but far apart from other energy states }g`��  on the scale of U: 

�}g`�� � }g`�n� � � d,     i = 1, ... , m,     K�K1, ... , Km (I.2.40)

In this scenario we must treat separately all m equations of type (I.2.30) for any given K equal 

to K = K1,..., Km. In these m equations we separate from the sum all the terms containing 
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coefficients ck-Kj, j = 1... m, which need to be small in the limit of vanishing interaction, from 

the remaining ck-K that will be at most of the order of U. We obtain: 

�} � }g`�n� ��g`�n 	sd� `�n�g`�  WC
qto s dg`�n�g`������¡��� (I.2.41)

for i = 1, ..., m. If we assume the same separation in the sum, we obtain: 

�g`� 	 �} � }g`�� ¢sd� `��g`� C
qto W s d�£`���`�������¡��� ¤ (I.2.42)

for K � K1,..., Km, which corresponds to the equation (I.2.36) in the non-degenerated case. 

Knowing that ck-K will be at most of the order of U for any K � K1,..., Km, equation (I.2.42) 

becomes: 

�g`� 	 �} � }g`�� sd� `��g`� C
qto W ��d�� (I.2.43)

substituting equation (I.2.43) into (I.2.41) we find that: 

�} � }g`�n� ��g`�n
	sd� `��g`� C

qto Ws¢ s d��`�d�`��} � }g`�������¡���, ¤C
qto �g`�  W ��d�� (I.2.44)

We found that the shift in m nearly degenerate levels reduces to the solution of m coupled 

equations for ck-Kj. Since coefficients in the second term on the right-hand side are of the 

higher order than those in the first, one can find the leading corrections in U are: 

�} � }g`�n� ��g`�n 	sd� `��g`� C
qto (I.2.45)

for i = 1, ..., m, which are just set of equations for a system of m quantum levels. 

The quantum structure of real solids is usually so complex that the nearly free-electron model 

is rarely valid [9]. One obvious observation that arises is the complete disregard of bands 

arising from ion-core levels. Several methods exist that allow rigorous analysis of core levels 

and resulting bands, the most-widely used one being the Tight-Band method. Nevertheless, 

cases where the interest is directed towards either deep core or highly excited, near free-
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electron states are rather rare. Therefore several combined methods have been introduced that 

allow accurate representation of band structure for both areas of interest. Methods that gained 

most attention are: Independent Electron Approximation, Cellular Method, Muffin-Tin 

Potential, Augmented Plane Wave Method, Green's Function Method, Orthogonalized Plane 

Wave Method and Pseudopotential Method [13]. It is not the aim of this work to review all 

these methods, therefore we will focus briefly only on the Pseudopotential [14,15] method. 

The interested reader is referred to the information present in the literature [9,13]. 

Let us now describe the exact wave function for a valence band as a linear combination of 

Orthogonalized Plane Waves: 

fg 	s�g¥g¦�� (I.2.46)

and let φk
v
 be the plane-wave part of this expansion: 

¥g§�e� 	s���h�g¦��
i� (I.2.47)

we also keep in mind that for core levels: 

¥g 	 �hg
i WspUU fgU�e� (I.2.48)

where pU 	 �¨�efgU9�e� �hg
i, then we can rewrite the expansions (I.2.48) and (I.2.46) as: 

fg§�e� 	 ¥g§�e� �sR��e©fgU9�e©�fg§�e©�SU fgU�e� (I.2.49)

Since ψk
v
 is an exact valence wave function, it satisfies Schrodinger's equation with 

eigenvalue εk
v
: 

afg§ 	 }g§fg§ (I.2.50)

Substitution of (I.2.50) into (I.2.49) gives: 

a¥g§ �sR��e©fgU9¥g§SU afgU 	 }g§ V¥g§ �sR��e©fgU9¥g§SfgUU ] (I.2.51)

If we note that afgU 	 }gUfgU  for the exact core levels, then we can rewrite (I.2.51) as: 

�a W -j�¥g§ 	 }g§¥g§ (I.2.52)

where most of the cumbersome terms are confined within the operator V
R
, defined by: 
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-jf 	s�}g§ � }U�U R��e©fgU9fSfgU (I.2.53)

The pseudopotential is defined to be the sum of the actual periodic potential U and V
R
: 

a W -j 	 � ��"cb� W -�?6)_ª (I.2.54)

We assume that the pseudopotential is sufficiently small to justify the nearly free-electron 

calculation of the valence levels. One can see a hint that this might be so from the fact that 

actual periodic potential is attractive near the ion cores and thus �f� df� 	 ¨�ef9�e�d�e�f�e� is negative, the corresponding matrix element of the 

potential V
R
 is, according to (I.2.53): 

�f� -jf� 	s�}g§ � }gU� «��efgU9f«�O (I.2.55)

Since valence energies are above core energies, this is always positive. Thus adding V
R
 to U

provides at least partial cancellation, and one might hope for it to lead to a potential weak 

enough to do nearly free electron calculations for φk
v
, treating the pseudopotential as weak 

perturbation. 

In three dimensions the structure of energy bands is often presented by plotting ε vs. k along 

straight lines connecting particular high-symmetry points in the Brillouin zone. Such curves 

are generally shown in a reduced zone-scheme, because for general directions in k-space they 

are not periodic. An example of accurately calculated band structure for crystalline silicon is 

shown in figure I.6. The calculation was performed within the Density Functional Theory 

(DFT) [16,17], the Local Density Approximation (LDA) [11] [18] and Pseudopotential 

models. The electronic band gap for bulk crystalline Si (c-Si) is Eg = 1.12 eV. The optical 

band gap for bulk silicon is Eg = 1.17 eV [13]. 
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Figure I.6. Electronic band structure of crystalline silicon calculated by ab initio method 

within LDA and DFT frames. High symmetry points are indicated on the first Brillouin zone, 

while the Γ point (k = 0) lies in the middle. 

�����	��������������
������������

By a crystalline defect one generally means any region where the microscopic arrangement of 

ions differs drastically from that of a perfect crystal. Defects are called point, line or surface, 

depending on whether the imperfect region is bounded on the atomic scale to one, two or 

three dimensions. Particular kinds of defects that found a broad application in semiconductors 

are dopants (doping impurities). When a dopant is introduced in a semiconductor, electronic 

density and potential often introduced by that defect is often quite different than that of the 

surrounding ions (figure I.7). The periodic potential of a crystal is locally disturbed, resulting 

in additional states that appear somewhere in the energy spectrum. Depending on the nature 

of the defects, some of those extra states can be beneficial. Another effect that appears is that 

the neighboring atoms usually are no longer in their local energy minima, and the crystalline 

network relaxes around the defect (figure I.8). The force resulting from the introduction of a 

phosphorous atom and subsequent relaxation imposes a strain on the neighboring atoms. As 
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within the frames of DFT-LDA approximation by ab initio method, this pressure is equal 

p = 1.34904 GPa for a cell consisting of a total of eight atoms [19]. 

Figure I.7. Changes in the potential ∆V around a phosphorous atom substituted in Si, in 

regard to the potential of undoped silicon. The potential is plotted in a plane passing through 

the P atom and after the relaxation of crystalline network. 

When a semiconductor is doped with donor and/or acceptors, impurity energy levels are 

introduced. A donor level is defined as being neutral when occupied, and positive when 

empty. Likewise, an acceptor level is defined as negative when occupied and neutral when 

empty. The simplest calculation of impurity energy levels is based on the hydrogen-atom 

model. The ionization energy for the hydrogen atom is: 

}¬ 	 c�w�+"��}���� 	 �+#I�- (I.2.56)

where ε0 is the free-space permittivity.  
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Figure I.8. Changes in the potential ∆V around a phosphorous atom occupying an interstitial 

position in Si, after relaxation of the crystalline network. The potential is plotted in a plane 

passing through the P atom. 

The ionization energy for the donor εd can be obtained by replacing mo by the 

conductivity effective mass of electrons: 

cUU 	 +� �co9 W �c�9 W �c�9�
`o (I.2.57)

and by replacing by the permittivity of the semiconductor εs in (I.2.56): 

�_ 	 R}�}?S� RcU?c� S }¬ (I.2.58)

The ionization energy for donors calculated from (I.2.58) is 0.006 eV for Ge, 0.025 eV for Si, 

and 0.007 eV for GaAs [10]. The hydrogen-atom calculation for the ionization level for the 

acceptors is similar to that for the donors. We consider the unfilled valence band as a filled 

band plus an imaginary hole in the central force field of a negatively charged acceptor. The 

calculated acceptor ionization energy (measured from the valence-band edge) is 0.015 eV for 
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Ge, 0.05 eV for Si, and about 0.05 eV for GaAs. The simple hydrogen-atom model given 

above certainly cannot account for the details of ionization energy, particularly the deep levels 

in semiconductors. However, the calculated values do predict the correct order of magnitude 

of the true ionization energies for shallow impurities. It is possible for a single atom to have 

many levels; for example gold in Ge has three acceptor levels and one donor level in the 

forbidden energy gap.  

The Fermi level for the intrinsic semiconductor (I.2.28) lies very close to the middle of the 

band gap. Figure I.9 depicts this situation, showing schematically from left to right the 

simplified band diagram, the density of states N(ε), the Fermi-Dirac distribution function F(ε), 

and the carrier concentrations. The shaded area in the conduction band and the valence band 

are the same; indicating that e = p = n; for the intrinsic case. When impurity atoms are 

introduced, the Fermi level must adjust itself to preserve charge neutrality (figure I.9 b and c). 

Consider the case shown in figure I.9 b, where donor impurities with a concentration  

ND (cm
-3

) are added to the crystal. To preserve electrical neutrality the total negative charges 

(electrons and ionized acceptors) must equal the total positive charges (holes and ionized 

donors), or for the present case: 

� 	 k­¦ W � (I.2.59)

where n is the electron density in the conduction band, p is the hole density in the valence 

band, and ND
+
 is the number of ionized donors, given by: 

k­¦ 	 k­ ®� � �� W �̄ 
 ��� ��­ � ����� �° (I.2.60)
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Figure I.9. Schematic band diagrams, density of states, the Fermi-Dirac distribution, and the 

carrier concentration for: a) intrinsic, b) n-type and c) p type semiconductor at thermal 

equilibrium. 
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where g is the ground-state degeneracy of the donor impurity level and equals 2 because of 

the fact that a donor level can accept one electron with either spin or can have no electron. 

When acceptor impurities of concentration NA are added to a semiconductor crystal, a similar 

expression can be written for the charge neutrality condition and the expression for ionized 

acceptors is: 

k±̀ 	 k±� W ¯ 
 ��� ��± � ����� � (I.2.61)

where the ground-state degeneracy factor g is 4 for acceptor levels. The value is 4 because in 

Ge, Si. and GaAs each acceptor impurity level can accept one hole of either spin and the 

impurity level, is doubly degenerate as a result of the two degenerate valence bands at k = 0. 

Rewriting the neutrality condition (I.2.59), we obtain: 

� k�}���}��}����
��

	 k­ ®� � �� W �̄ 
 ��� ��­ � ����� �° W � k�}��� � ��}���}�²
�³�����

(I.2.62a)

or simply: 

kO��� R��O � ����� S 	 k­ ®� � �� W �̄ 
 ��� ��­ � ����� �° W k{��� R�{ � ����� S (I.2.62b)

For a set of given NC, NV, ND, EC, EV, ED, and T, the Fermi level EF can be uniquely 

determined from (I.2.62). In the case shown in figure I.9 b (with ND = 10
16

 cm
-3

, T = 300 K) 

the Fermi level is close to the conduction band edge and adjusts itself so that almost all 

donors are ionized. As the temperature is lowered sufficiently, the Fermi level rises toward 

the donor level (for n-type semiconductors) and the donor level is partially filled with 

electrons. The approximate expression for the electron density is then: 

� 	 Rk­ �k±"k± Sk­��� R� T_���S (I.2.63)

for a partially compensated semiconductor and for: 
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k± � �"kO��� R� T_���S
where Ed = EC-ED, or: 

� 	 ��" �k­kO�o����� R� T_���S (I.2.64)

Figure I.10 shows a typical example, where n is plotted as a function of reciprocal 

temperature. At high temperatures we have the intrinsic range since n = p > ND. At very low 

temperatures most impurities are not ionized and the slope is given by (I.2.63) or (I.2.64), 

depending on the compensation conditions. The electron density, however, remains 

essentially constant over a wide range of temperatures (T ~ 200 to 500 K in figure I.10).  

Figure I.10. Carrier density vs T in P-doped silicon for a doping concentration  

Nd = 10
18

 cm
-3

, calculated using the density of states presented in figure I.4. 

When doping impurity atoms are added, the up product is still given by: 
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�� 	 kOk{��� R� T~���S (I.2.65)

which is called the mass-action law, and the product is independent of the added impurities. 

At relatively elevated temperatures, most donors and acceptors are ionized, so the neutrality 

condition can be approximated by: 

� W k± 	 � Wk­ (I.2.66)

This analysis gives the basic insight for the charge neutrality principle and calculation of the 

Fermi level in semiconductors, as well as an estimation of the number of free carriers for 

intrinsic and doped semiconductors and their evolution with temperature. 
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The thermodynamic efficiency of the energy conversion of radiation into other forms of 

energy is of wide interest and has been much discussed [20,21]. The efficiency of a solar cell 

is defined as the ratio between incident power PS and output power of a photovoltaic device 

PD. The upper limit can be determined either by analyzing the thermodynamic limits of the 

two interacting bodies or by a detailed analysis of all the generation and recombination 

mechanisms, without taking into account the exact structure of the device.  

�����
����������������������
��������������������������

Here we shall consider a system consisting of two large reservoirs called pump (P) and sink 

(S) together with a converter (C). The last interacts with the pump by an interchange of 

isotropic radiation and with the sink by isotropic radiation and possibly by other means so as 

to exchange work and heat. If the converter takes in black-body radiation at temperature TP

from the pump and rejects black-body radiation at a temperature marginally above the sink 

temperature TS, then an upper limit to the conversion efficiency is [22,23]:  

�´ 	 � � �+ �(�F W �+ R�(�FS� (I.3.1)

We assume that that the converter (C) of the temperature TC is encircled by two reservoirs: the 

Sun, which acts as a pump (P) of the temperature TP and the environment which acts as a sink 

(S) of the temperature TS [24]. We consider the exchange of energy and entropy C � S and C 

� P, and we mark je,XY and js,XY as energy and entropy fluxes from point X to Y, where 

X,Y = P, S, C. The schematic representation of the system considered here is shown in figure 

I.11. 
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Figure I.11. System Pump - Converter - Environment (PCE) with different energy and 

entropy fluxes and the direction of their flow. The heat conduction is not considered here, but 

is shown for complete description. 

The transfer of the heat vµ , which is done and temperature TQ (TS < TQ < TP) from the 

converter to the environment is associated to the transfer of entropy. W is the collectible work 

provided by the converter and ¶µ is the generation of entropy by the unit of surface inside the 

converter. The balance between energy and entropy fluxes is then: 

56�*6D 	 56�FO � 56�OF W 56�(O � 56�O( � vµ �·µ
5?�*6D 	 5?�FO � 5?�OF W 5?�(O � 5?�O( � ¶µ~6* � vµ�̧ (I.3.2)

The efficiency of the conversion is described as follows: 

¹ 	 ·µ56�FO 	 �56�FO � �̧ 5?�FO� � �56�O( � �̧ 5?�O(� W �56�(O � �̧ 56�(O�56�FO
W��56�OF � �̧ 5?�OF� � �56�*6D � �̧ 5?�*6D� � �̧ ¶µ~6*56�FO

(I.3.3)
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The terms je,net and js,net are often neglected. Since the Sun is visible from the Earth under a 

solid angle Ω, a following assumption is justified: 

56�º» 	¼J½º 
 ¾¿À Áº» 
 ��� 
 ��º»
5?�º» 	¼Â½º 
 ¾¿À Áº» 
 ��� 
 ��º» (I.3.4)

with [21]: 

J½º 	 �º 
 �����K������ 
 �½º
Â½º 	 �º 
 � 
 �����K������ 
 Ã�� W �½º� 
 xÄ�� W �½º� � �½º 
 xÄ �½ºÅ (I.3.5)

where nωX is the number of photons at frequency v = 2πω emitted by X. ΘXY is the angle that 

emits incident radiation normal to the surface of Y, where X, Y = S, C, P. The parameters 

lX = 1 for polarized light and lX = 2 for non-polarized light. If KωX and LωX are angle-

independent, we can write: 

56�º» 	 Æº»� J½º 
 ����
�

5?�º» 	 Æº»� Â½º 
 ����
�

(I.3.6)

where: 

Æº» 	 � ¾¿À Áº» 
 ��º»4ÇÈ (I.3.7)

In the case of the PCE system, Btot = BCP+BCS represents the whole solid angle accessible to 

the system. We therefore obtain the following relations: 

Æº» 	 Æ»º (I.3.8)

ÆFOÆDªD 	 NNC=Q (I.3.9)
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Assuming that nωX(�ω) depends on parameter É 	 �½gÊË, and that X is a black body of 

temperature TX, we can obtain: 

56�º» 	 �!:"�Ì Æº» 
 �º 
 �º� 
 .��º�
5?�º» 	 �!:"�Ì Æº» 
 �º 
 �º� 
 Í��º�

(I.3.10)

where σ=5,670⋅10−8 [W⋅m-2⋅K-4] is the Stefan constant, and nX = nωX(z). Additionally: 

.��º� 	 � É� 
 �º 
 �É�
�

Í��º� 	 � É� 
 ÎxÄ�� W �º� W �º 
 xÄ R� W ��ºSÏ 
 �É
�
�

(I.3.11)

If the Pump (Sun) and the Sink (environment) are considered black bodies at temperatures TP

and TS respectively, and upon assuming the same polarization factor lX for all components we 

obtain: 

�º 	 ���� � �����º� � � 	
�����É� � � (I.3.12)

we can also introduce an integral G(u,v) defined as a Debye function [25]: 

Ð*�
� Ñ� 	 � É*����É � Ñ� � � 
 �É
�
) (I.3.13)

now, we find that I(nX) and J(nX) can be expressed as: 

.��º� 	 Ð��$�$� 	 ���!
Í��º� 	 �+Ð��$�$� 	 ����!

(I.3.14)

The conversion efficiency η becomes finally: 
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¹ 	 �� � �+ 
 �̧�F � R�(�FS� W �+ 
 �̧�F R�(�FS��
� RNC=QN S �R�O�FS� � �+ 
 �̧�F R�O�FS� � R�(�FS� W �+ 
 �̧�F R�(�FS��
� "�Ì 
 �( 
 ¶µ~6*�!: 
 ÆFO 
 �F 
 �F� 
 .��F�

(I.3.15)

In the case when TQ = TS we obtain: 

¹ 	 �� � �+ 
 �(�F W �+ 
 R�(�FS�� � RNC=QN S �R�O�FS� � �+ 
 �/�F R�O�FS� W �+ 
 R�(�FS��
� "�Ì 
 �( 
 ¶µ~6*�!: 
 ÆFO 
 �F 
 �F� 
 .��F�

(I.3.16)

The maximum conversion efficiency ηL corresponds to the efficiency obtained by Landsberg 

and co-workers [21]. It is obtained under following conditions: 

− the converter is totally encircled by the Sun 

− the converter is in equilibrium with the surrounding environment 

− there is no generation of entropy inside the cell 

Therefore: 

¹ Ò ¹´ 	 � � �+ 
 �(�F W �+ 
 R�(�FS� (I.3.17)

as in (I.3.1). It is worth noting that this efficiency is somewhat below the Carnot efficiency 

¹O=i*ªD 	 � � �(�F (I.3.18)

Other authors [26] proved that this difference comes from the generation of entropy when the 

light traverses the space between the Sun and the Earth. 

Another model that represents a more realistic approach to the Pump - Converter - Sink 

system is shown in figure I.12. This endoreversible converter takes into account irreversibility 

of heat transfer between different points of the system. Because of that, the maximal 

efficiency in that approach is always below the one obtained by Landsberg approach. The 

Carnot engine (CENG), coupled with a radiator (R) of the temperature TC is encircled with by 
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the Sun, which again acts as a  pump (P) at the temperature TP, and by the environment, 

which acts as the sink (S) of the temperature TS.  

Figure I.12. System Pump - Converter - Environment (PCE) and a Carnot engine 

representing the endoreversible converter system. 

In this case the conversion efficiency is expressed as: 

¹ 	 ·µ56�FO 	 R� � �(�FS 
 56�FO � 56�OF W 56�(O � 56�O(56�FO (I.3.19)

by using the same notations as in previous model, we obtain: 

¹ 	 R� � �(�OS �� � R�(�FS� W RNC=QN S 
 �R�(�FS� � R�O�FS��� (I.3.20)

For thermal equilibrium TC = TE = TP the efficiency is self-cancelling, for TC = TE and 

TC = TC0. TC0 corresponds to the situation where the work extracted from the converter is 

W = 0. Therefore we can write: 

�O� 	 �F^R�(�FS� W �� � R�(�FS�� 
 R NNC=QSÓ
(I.3.21)

also, we have: 
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¹ 	 R� � �(�OS 
 NC=QN 
 ��O�� � �O��F� � (I.3.22)

The maximal efficiency is obtained for the temperature T, satisfying the following relation: 

Ô¹Ô�O �� 	 �OC� 	 $ Õ ��OCÌ�O�� W +�OC� 	 �(�F (I.3.23)

for the maximal concentration Cmax we obtain: 

¹ 	 R� � �(�OS 
 �� � �O��F�� (I.3.24)

the maximal efficiency η as a function of the ratio TC/TP  for different values of concentration 

C is shown in figure I.13. 

Figure I.13. Conversion efficiency calculated from equation (I.3.20) for different 

concentration ratios and different converter temperature TC. TP = 5800 K and TS = 300 K. 

������

�������������������"������������������

The maximum efficiency for C = 1 for an endoreversible converter is around 12%, which is 

much the below obtained efficiency for real solar cells. This is due to the fact that 
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semiconductor solar cells are using only a part of the spectrum, but at elevated efficiency. To 

determine the efficiency in the case of a quantum converter with defined band gap, such as a 

semiconductor, we must take into account the quantum nature of light-matter interactions in 

such a system. In such case, the absorbed flux of photons is given by the Kirchoff's law of 

thermal radiation [27]: 

�56�=>?���� 	 ������������ 
 [��������� � ������ � � 
 ����� (I.3.25)

a(��) is the absorption degree. For a sufficiently thick cell, we assume that a = 0 for any �� < Eg and a = 1 for all other wavelengths. Photons with energy inferior to the band gap are 

not absorbed by the converter. Photons emitted by the Sun and environment have a chemical 

potential equal to zero, while photons emitted by the converter have a chemical potential 

equal to qV. Therefore we obtain: 

56�º» 	 �!:"�Ì Æº» 
 �º 
 �º� 
 .��º�
5?�º» 	 �!:"�Ì Æº» 
 �º 
 �º� 
 Í��º�

(I.3.26)

with: 

�F 	 ���� � �����F� � � (I.3.27)

and: 

�( 	 ���� R �����(S � � (I.3.28)

as well as: 

�O 	 ���� R �����OS � � (I.3.29)

upon assuming that 
 	 /ÖgÊ×, Ñ 	 Ø{gÊÙ and recalculating equations (I.3.11) and neglecting ¶µ~6*
we find the maximum output efficiency: 
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¹C=Q 	 ·µ;h*
	 �56�FO � �̧ 5?�FO� W �56�(O � �̧ 56�(O� � �56�OF � �̧ 5?�OF� � �56�O( � �̧ 5?�O(�;h*

(I.3.30)

or incorporating the function G (equation I.3.13) we get: 

¹C=Q 	 �!�� ÚR� � �+ 
 wS 
 Ð��
� $� � w 
 
�+ 
 xÄ�� � �`)�
W R� � NC=QN S �(�F [� ÎR� � �+ w[SÐ� �
[ � $� � w+[ �
[�� xÄ �� � �`)=�Ï
� NC=QN �O�F p� ÎR� � �+ wpSÐ� �
p � Ñp� � w+p �
p�� xÄ �� � �`§`)> �
W wÑp� Ð� �
p � Ñp�ÏÛ

(I.3.31)

Even more accurate description that includes the degree of polarization and reflectivity for 

any photon absorbed or emitted by the converter is given by Badescu and Landsberg [28].  

We have shown that, quite surprisingly, efficiency of an endoreversible photovoltaic 

converter under normal, natural irradiation (C = 1) is only 11.7%. It has been shown that real 

solar cells have largely exceeded this value [29]. The difference comes from different mode of 

conversion employed. In the endoreversible thermodynamical converter the whole spectrum 

is absorbed and used, while in the photovoltaic converter absorption is selective and only 

photons with energy E � Eg are absorbed and converted, but with different efficiency. 

In 1961, Shockley and Queisser first introduced the idea of detailed balance limit analysis for 

a solar cell [30], by assuming several hypotheses: 

− Solar cell is transparent for any photon with energy below the band gap Eg, 

− All photons with energy higher or equal to Eg are always absorbed and always create 

one electron-hole pair, 

− Carrier mobility is infinite, 

− There are two possible types of recombination: radiative and non-radiative. The 

parameter ρ is defined as: 

Ü 	 e[�l[ÝlÑ�,e��Ycpl�[ÝlY�,e[Ý�ÝYÝ[�,e��Ycpl�[ÝlY�,e[Ý� (I.3.32)
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In such case, the total current density J flowing through a photovoltaic cell is given by the 

difference between carriers generated by external illumination and recombination inside the 

cell. The detailed balance equation is then gives as: Í� 	 5*�FO W 5*�(O � 3O (I.3.33)

where jn,PC is the number of photons emitted by the pump (Sun) and absorbed by the cell, jn,SC

is the number of photons emitted by the sink (Environment) and absorbed by the cell, RC is 

the total recombination rate and e is elemental charge. In our case we assume the both pump 

and sink can be considered as black bodies, therefore we obtain: 

5*�FO 	 NNC=Q 
 "����� ����F� 
 Ð� R T~���F � $S
5*�(O 	 R� � NNC=QS 
 "����� ����O� 
 Ð� R T~���O � $S

(I.3.34)

Contrary to the endoreversible converter case, the integration is done over T Þß T~� à á. 

Total recombination rate is given by: 

3O 	 �Ü 
 5*�O (I.3.35)

after generalized Planck's law we obtain: 

5*�O 	 "����� ����O� 
 Ð� R T~���O � w-���OS (I.3.36)

conversion efficiency is then expressed as follows:

¹ 	 . 
 -âh* (I.3.37)

where Πin is expressed as: 

âh* 	 NNC=Q 
 "����� ����F� 
 Ð��$�$� (I.3.38)

by substituting X 	 Ü OO�ãË, we can express the Shockley-Queisser efficiency (SQ) for the case 

in which the pump and the sink are considered black bodies: 
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¹(¸ 	 �!�� 
 �-���F äÐ� R w-���F � $S � R�O�FS� Ð� R T~���O � $S
� �X R�O�FS� VÐ� R T~���O � �-���OS � Ð� R T~���O � $S]å

(I.3.39)

Figure I.14. The photovoltaic efficiency surface η (Eg,V). Pump (Sun) at TP = 5800 K, 

concentration factor Cmax = 46000, radiative efficiency ρ = 1, cell temperature TC = 300 K.  

The above integrals converge only when Eg > eV, which is also consistent with the 

assumption that ρ = 1. For Eg-eV � kBTC, equation (I.3.39) can yield Voc higher than Eg/e, 

which is obviously incorrect for Boltzmann statistics since the electronic populations are 

degenerate. Key assumptions are no longer valid; stimulated emission can take place in real 

material. Estimation of the Shockley-Queisser efficiency limit as a function of band gap 

energy Eg and applied voltage V is shown in figure I.14. 
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#���������������������������������

The photovoltaic effect, the direct generation of electric power by light in a solid material, 

was discovered by British scientists: W. G. Adams and his student R. E. Day in the 1870s 

using selenium. An important breakthrough was made in the 1950s by G. Pearson, D. Chapin, 

and C. Fuller at Bell Labs. Using silicon, they demonstrated a solar cell of efficiency 5.7%, 

ten times greater than that of the selenium solar cell. Solar cells first found applications in 

space. The efficiency of silicon cells has been improved to about 24% in the early 2000s, very 

close to the theoretical limit of 28%. To date, semiconductor solar cells account for roughly 

90% of the market share. Silicon solar cells account for more than 85% of the solar cell 

market. Thin film solar cells, especially those based on CIGS (copper indium gallium

selenide) and CdTe-CdS, are second to silicon solar cells in market share. 

#����!�����������
����$��%���������

When a p-type semiconductor and an n-type semiconductor are brought together, a built-in 

potential is established. Because the Fermi level of a p-type semiconductor is close to the top 

of the valence band and the Fermi-level of an n-type semiconductor is close to the bottom of 

the conduction band, there is a difference between the Fermi levels of the two sides. When the 

two pieces are combined to form a single system, the Fermi levels must be aligned. As a 

result, the energy levels of the two sides must undergo a shift with a potential V0. Letting Ecp

be the energy level of the bottom of the conduction band for the p-type semiconductor versus 

the Fermi level and Ecn that for the n-type semiconductor, the built-in potential is: 

w-� 	 TU� � TU* (I.4.1)

Because concentration of holes is low in the n-region, the holes diffuse from the p-region to 

the n-region (so called Fermi pressure). After a number of holes move to the n-region, an 

electrical field is formed to drive the holes back to the p-region. At equilibrium, the net 

current Jp(x) must be zero: 

Í���� 	 w �æ�����TQ��� � ç� ������� � 	 $ (I.4.2)
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Figure I.15. Formation of a p-n junction. When two pieces of semiconductor are brought 

together, the Fermi level must align. To achieve this, the holes in the p-side move to the n-

side, and electrons on n-side move to the p-side thus forming a double charged layer, until a 

dynamic equilibrium is established. 

where µp is the mobility of the holes, p(x) is the concentration of holes as a function of x, 

Ex(x) is the x-component of electric field intensity as a function of x, and Dp is the diffusion 

coefficient of the holes. Using Einstein's relation:ç�æ� 	 ���w (I.4.3)

and the relation between the potential V (x) and electric field intensity, Ex(x) = −dV(x)/dx, Eq. 

(I.4.2) becomes: 

� w��� �-����� 	 ����� ������� (I.4.4)

Integrating Eq. (I.4.4) over the entire transition region yields: 

� w��� �-* � -�� 	 xÄ �*�� (I.4.5)

Since Vn-Vp = V0, therefore we obtain: 

�* 	 ����� R� w-����S (I.4.6)

and a similar expression for electrons: 
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�� 	 �*��� R� w-����S (I.4.7)

A very effective and fairly accurate model is based on the depletion approximation. Under 

such an approximation, in the -region near the junction boundary there is a layer of thickness 

xp where all the holes are removed and the charge density ρp is determined by the density of 

the acceptors NA which are negatively charged: 

Ü� 	 �wk± (I.4.8)

The electrostatic potential Φ in this region is given by the Poisson's equation: 

��¥��� 	 �}� wk± 	 ��TQ�� (I.4.9)

Similarly, there is a slab of thickness xn where all the free electrons are removed, and the 

charge density ρn is determined by the density of the donors, ND, which are positively 

charged: 

Ü* 	 wk­ (I.4.10)

gives: 

��¥�É� 	 � �}� wk­ 	 ��TQ�� (I.4.11)

The boundary conditions for the p-n junction are as follows; the charge neutrality of the entire 

transition region requires that: 

k­�* 	 k±�� (I.4.12)

Second, outside the transition region, the electric field should be zero: 

TQ 	 $,èYe,� Ò ���,[��,� P �* (I.4.13)

Third, the electrostatic potential should match the values at the boundaries of the transition 

region: 

¥ 	 $� [Ý,� 	 ���¥ 	 -�� [Ý,� 	 �* (I.4.14)

The solution to equations (I.4.9), (I.4.11) with boundary conditions (I.4.14) is as follows: 
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TQ 	 �wk±}� �� W ���� èYe � �� Ò � ß $
TQ 	 wk±}� �� � �*�� èYe,$ ß � Ò �* (I.4.15)

Using the above boundary conditions and the definition of the width of the transition region 

W = xn+xp the following relation is obtained: 

-� 	 w"}� k±k­k± W k­·� (I.4.16)

and from it the transition region W as a function of V0 can be estimated: 

· 	 ^"}�-�w R �k± W �k­S (I.4.17)

and the junction capacitance: N 	 }�· (I.4.18)

The properties and carrier concentration of a p-n junction change when a bias voltage V is 

applied. By applying a forward bias, the potential difference across a p-n junction becomes 

V0-V. The electron concentration in the p-region, np, changes: 

�� | �*��� ��w�-� � -���� � (I.4.19)

Comparing with equation (I.4.6), one finds an excess free-electron concentration at the border 

of the neutral p-region: 

r���� 	 $� 	 �� Î��� R w-���S � �Ï (I.4.20)

Similarly, the external forward bias voltage V generates an excess hole concentration at the 

border of the neutral n-region: 

r�*�� 	 $� 	 �* Î��� R w-���S � �Ï (I.4.21)

The excess carrier concentrations generate an excess diffusion current, which is the main part 

of the forward-bias current of a diode. 
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Diffusion of excess minority carriers is the origin of junction current. However, there is a 

competing process which limits the junction current. The excess minority carriers are 

surrounded by a sea of majority carriers which are constantly courting for recombination. 

Because the concentration of majority carriers, pp or nn, is several orders of magnitude greater 

than the concentration of excess minority carriers, even with recombination, pp or nn is 

virtually a constant. The rate of decay of excess minority carriers is thus proportional to its 

concentration, which can be characterized by a lifetime. The combined effect of diffusion and 

lifetime of the excess minority carriers can be summarized in the following equations. For 

free electrons: 

Ôr����� Ý�ÔÝ 	 �r����� Ý�é* W ç* Ô�r����� Ý�Ô�� (I.4.22)

where Dn is the diffusion coefficient, and τn is the lifetime of free electrons. For holes: 

Ôr�*��� Ý�ÔÝ 	 �r�*��� Ý�é� W ç� Ô�r�*��� Ý�Ô�� (I.4.23)

where Dp is the diffusion coefficient and τp is the lifetime of holes. At equilibrium, the 

concentration of carriers is independent of time. For example equation (I.4.22) becomes: 

ç* ��r�������� 	 r�����é* (I.4.24)

and the calculated diffusion current of electrons is: 

.* 	 wç* �r������� 	 w^ç*é* r����� (I.4.25)

At x = 0 the junction current of electrons is: 

.*��� 	 $� 	 �w^ç*é* �� Î��� R w-���S � �Ï (I.4.26)

and for holes: 

.���* 	 $� 	 w^ç�é� �* Î��� R w-���S � �Ï (I.4.27)

The total junction current is then: 
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. 	 w ¢^ç*é* �� W^ç�é� �*¤ Î��� R w-���S � �Ï (I.4.28)

Furthermore, using the approximate relations: 

�* 	 �h�k­ � �� 	 �h�k± (I.4.29)

Equation (I.4.28) can be also expressed as follows:

. 	 w�h� ¢ �k±^ç*é* W �k­^ç�é�¤ Î��� R w-���S � �Ï (I.4.30)

Denoting a constant: 

.� 	 w�h� ¢ �k±^ç*é* W �k­^ç�é�¤ (I.4.31)

equation (I.4.30) is simplified to the well-known form of the diode equation, also known as 

the Shockley equation: 

. 	 .� R��� R w-���S � �S (I.4.32)

It is also worth noting that the minimum value of dark current I0 is given by: 

.� 	 w�� �!:�� ��� ���Q � ���
�
) � 
 	 T~��� (I.4.32)

#����!�����������
������������

A solar cell is an electronic device which converts sunlight directly into electricity. Light 

shining on the solar cell produces both a current and a voltage to generate electric power. This 

process requires a material in which the absorption of light raises an electron to a higher 

energy state and allows the movement of this higher energy electron from the solar cell into 

an external circuit. Typical silicon solar cells are constructed as follows: the base is a piece of 

p type silicon, a fraction of a millimeter thick, lightly doped with boron. The emitter is 
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formed by doping the surface area of the cell (about 1 µm thick) with phosphorous and 

creating n-type region by compensation. At the border of two regions, a p-n junction is 

formed, which acts as a membrane separating the electrons and holes [31,32].  

Figure I.16. Separation of holes and electrons in a solar cell. (a) an incident photon is 

absorbed and generates an electron-hole pair. (b) If the terminals are not connected, the 

electrons migrate to the n type region. At equilibrium, an open-circuit voltage is established. 

According to the theory of quantum transitions a stream of photons (or radiation) interacts 

with a semiconductor through absorption or spontaneous emission. A photon with energy 

greater than the gap energy of the semiconductor material can be absorbed and create an 

electron hole pair. An electron hole pair can recombine and emit a photon of energy roughly 

equal to the energy gap of the semiconductor. According to the principle of detailed balance 

the probabilities of the two processes should be equal. This fact has a significant consequence 

to the efficiency of solar cells.  

A typical solar cell can be represented as source of current connected in parallel to a diode. 

The current source in this case is the photocurrent generated by incident sunlight, and the 

diode equation (I.4.32) is changed to: 
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. 	 .� R��� Rw-��S � �S � .(O (I.4.33)

which is a fundamental equation for solar cells in a format consistent with the Shockley 

equation. The open circuit voltage is when the current is zero, is defined by the condition: 

.� R��� Rw-��S � �S 	 .(O (I.4.34)

Voc is then expressed by following: 

-ªU 	 ��w xÄ R.(O.� � �S (I.4.35)

because Isc/I0>>1, (I.4.35) can be simplified to: 

-ªU 	 ��w xÄ R.(O.� S (I.4.36)

The output power of a solar cell is determined by the product of the voltage and current 

P = I⋅V. The maximum power peak Pmax occurs for some Imax and Vmax different from ISC and 

VOC. In general, the condition for maximum power is: 

�; 	 .�- W -�. 	 $ (I.4.37)

According to the solar cell equation (I.4.33), the output power as a function of the output 

voltage V is: 

; 	 .- 	 Î.(O � .� R��� Rw-��S � �SÏ (I.4.38)

From figure I.17 we observe that Vmax is only slightly smaller than VOC. By introducing a 

voltage offset v = VOC-Vmax, we can simplify equation (I.4.38) to: 

; ê .(O�-ëO � Ñ��� � ��� R�w-��S� (I.4.39)
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Figure I.17. An example of a current-voltage characteristic described by the Shockley 

equation. The rectangle determines the maximum power point. Green curve represents power 

output from the cell. 

Taking the derivative of P with respect to v, we obtain: 

��� Rw-��S 	 � W w-ëO�� (I.4.40)

with help of equation (I.4.36) we can simplify equation (I.4.39) to: 

��� Rw-��S 	 � W xÄ R.(O.� S (I.4.41)

Because ISC >> I0, we find: 

Ñ 	 ���w xÄ xÄ R.(O.� S (I.4.42)

Therefore the voltage at the maximum power is: 
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-C=Q 	 -ëO � Ñ 	 -ëO ì� � xÄ xÄ �.(O.� �xÄ �.(O.� � í (I.4.43)

and the current at maximum power: 

.C=Q 	 .(O �� � ��� R�w-��S� 	 .(O ì� � �xÄ �.(O.� �í (I.4.44)

It is easy to see that the maximum power Pmax is roughly equal to: 

;C=Q 	 -C=Q.C=Q 	 -ëO.(O ì� � xÄ xÄ �.(O.� �xÄ �.(O.� � í (I.4.45)

The fill factor nFF, is defined as follows: 

��� 	 -C=Q.C=Q-ëO.(O (I.4.46)

Typically, for crystalline Si solar cells the fill factor nFF is 0.8-0.85. In a real device, the ideal 

characteristic described by equation (I.4.33) is modified to include the series resistance Rs

from ohmic loss in the front surface and the shunt resistance Rsh from leakage currents. The 

IV curve for a real device, including both effects is then given by: 

xÄ R. W .́.� � - � .3?.�3?� W �S 	 w���� �- � .3?� (I.4.47)

where n is the diode ideality factor, usually ranging from 1 to 2, for Si solar cells. 

#����
������������

���������������������������������

Introduced in §3.2, the detailed balance limit, first presented by Shockley and Queisser in 

1961 [30], allows for a correct treatment of semiconductor solar cells.  

The efficiency is defined as the ratio of power delivered to a matching load versus the 

incident radiation power on the solar cell. Three parameters are involved: the temperature of 

the pump (Sun), TP the temperature of the cell, TC and the energy gap of the semiconductor, 

Eg. Actually, efficiency only depends on two dimensionless ratios: 
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�F 	 T~��F (I.4.47a)

and: 

�O 	 T~��O (I.4.47b)

The assumptions introduced in this approach listed in §3.2 are satisfied by the great majority 

of conventional solar cells and the limit is well verified by experiments, unless one of the 

assumptions is explicitly broken, such as in the case of concentrated sunlight or a tandem cell. 

First we will consider the effect of band gap. Assuming that solar radiation is proportional to 

black body radiation of temperature TP the power spectrum on the surface of the Sun is: 


�}� �F��} 	 "�w����� }���� � }��F� � ��} (I.4.48)

At the surface of the Earth, the spectral power density is diluted by a factor f defined as: 

è 	 Re(1(S� 	 "#�! 
 �$`Ì (I.4.49)

We assume that all photons with energy above the Eg are absorbed with 100% probability and 

all photons with energy below Eg are not absorbed at all. This allows us to evaluate the 

radiative recombination rate ρ introduced earlier. Also, any excess energy above Eg is quickly 

lost due to thermalization. The power of thus generated electron-hole pairs is expressed by: 

;6� 	 "�w�T~è���� � }��}��� � }��F� � �
�
/Ö 	 "�w�è����F������ �F� �����Q � ��

Q× (I.4.50)

on the other hand, the incident radiation power is:

;F 	 "�w�è���� � }���� � }��F� � �
�
� �} 	 "�w�è����F������ ���! (I.4.51)

Therefore the efficiency as a function of xP is defined as follows: 

¹)��F� 	 ;6�;F 	 �!�� �F� �����Q � ��
Q× (I.4.52)
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Figure I.18 shows the ultimate efficiency as a function of band gap energy Eg. A qualitative 

explanation of the result is as follows. If the band gap is small, the range of photon absorption 

is large. For a large band gap, the range of spectral absorption is reduced. 

The ultimate efficiency determines the maximum open-circuit current of a solar cell. If the 

solar radiation power received by a solar cell is PS, the power of the electron hole pairs 

generated by the solar radiation is ηuPS. It corresponds to the maximum short-circuit current 

of the solar cell: 

.(O 	 wT~ ¹);F (I.4.53)

Figure I.18. Ultimate efficiency of solar cells as derived by Shockley and Queisser. The 

absolute maximum is ηu = 44% for the band gap energy Eg = 1.1 eV. For comparison, for 

crystalline silicon Eg = 1.12 eV. 

The open-circuit voltage at the terminals of the solar cell is determined by the diode equation 

(I.4.35). Combining (I.4.35) with equation (I.4.53), we have the nominal power, defined as 

the product of the short-circuit current and the open-circuit voltage: 
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;*ª 	 .(O-ëO 	 ¹)��F��F xÄ R.(O.� � �S;F (I.4.54)

Clearly, the reverse saturation current of a p-n junction, I0 is the limiting factor, determined 

by equation (I.4.31): 

.� 	 w�h� ¢ �k±^ç*é* W �k­^ç�é�¤ (I.4.55)

The reverse saturation current I0 can be estimated using actual real semiconductors data. An 

obvious observation arises from analysis of equation (I.4.55). If the recombination time 

increases the reverse saturation current I0 increases, limiting the open-circuit voltage Voc. The 

role of recombination time was found to be the main limiting factor for a detailed balance 

treatment. The number of electron hole pairs generated per unit area per unit time on a 

surface perpendicular to the sunlight is expressed by the power of the electron hole pair: 

�F 	 ;6�T~ 	 "�w�è���� � }��}��� � }��F� � �
�
/Ö (I.4.56)

Many factors that contribute to recombination, such as those related to defects or surfaces, can 

be reduced or avoided. The radiative recombination FC, however, is a process which sets a 

fundamental limit on the efficiency of solar cells. The principle of detailed balance requires 

that the generation rate must equal the recombination rate, which satisfies the Kirchoff's Law. 

The rate of radiative electron hole recombination can be calculated using an integral similar 

to equation (I.4.56) but at the environment temperature TC: 

�U� 	 "�w����� � }��}��� R }��OS � �
�
/Ö (I.4.57)

With sunlight, excess carriers are generated, but the change in population is usually 

significant for minority carriers. For bulk type semiconductor under illumination, the 

equilibrium electron concentration is changed to: 

�� 	 ������ R w-��OS (I.4.58)
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Thus the radiative recombination rate is changed to:

�O�-� 	 �U���� R w-��OS (I.4.59)

In a steady state, the rate of electron hole pair generation must equal the rate of radiative 

recombination plus the rate of electron consumption due to the current I drawn by the external 

circuit: 

�F 	 �O�-� W .w (I.4.60)

By shorting the terminals together, the voltage V is zero, and short-circuit current Isc is: 

.(O 	 w��F � �U�� (I.4.61)

Using equation (I.4.59) the current on the external load I, is given as: 

. 	 .(O W w�U� V� � ��� R w-��OS] (I.4.62)

Defining the reverse saturation current I0 as 

.� 	 w�U� (I.4.63)

equation (I.4.62) becomes: 

. 	 .(O W .� V� � ��� R w-��OS] (I.4.64)

The open-circuit voltage can be obtained by setting I = 0: 

-ëO 	 ��Ow xÄ R.(O.� � �S (I.4.65)

Because FP>>Fc0, above equation can be simplified to: 

-ëO 	 ��Ow xÄ R�F�U� � �S (I.4.66)

Shockley and Queisser defined the nominal efficiency as: 

¹* 	 -ëO.(O;F (I.4.67)
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nominal efficiency ηn can be expressed as a function of ultimate efficiency ηu and detailed 

balance efficiency ηd: ¹* 	 ¹)¹_ (I.4.68)

where the ηd is defined as: 

¹_ 	 w-ëOT~ 	 ��O xÄ R�F�U� � �S (I.4.69)

Using equation (I.4.56) and (I.4.57), we obtain: 

�O 	 T~��O î#�! (I.4.70)

Figure I.19. Shockley-Queisser efficiencies ηu ηd and ηn as a function of band gap energy for 

AM1.5 spectrum [33]. Several real semiconductors and their band gap energies are marked 

also.  
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The detailed balance limit is the ultimate upper limit of the ratio of the open-circuit voltage 

and the band gap of the semiconductor. It also depends on the temperature of the cell. If T�0, 

xC�� and we obtain: 

¹_ | ��O xÄ�N�Q�� | �O W xÄ N�O | � (I.4.71)

With a load of matched impedance, the output power of a solar cell can be maximized. As 

was shown before, the maximum power is related to the nominal power by a fill factor nFF: 

¹(¸ 	 ¹)¹_��� (I.4.72)

The Shockley-Queisser limit is based solely on the thermodynamics of radiative 

recombination of electron hole pairs. There are several other recombination mechanisms and 

factors that could limit solar-cell efficiency. Some of the factors are intrinsic and others can 

be mitigated or avoided by a better cell design and manufacturing. The most serious limiting 

factor to solar cell efficiency is the recombination rate of electrons and holes that affects the 

opening voltage in the following manner: 

-ëO 	 �Y�ZÝ W ��"w xÄ é (I.4.73)

If there are several recombination processes, the rate is additive, and thus the inverse of the 

recombination time is additive, leading to even greater decrease in VOC. Some most common 

recombination processes include: 

− Auger recombination - after the creation of an e-h pair, its energy Eg is transferred into 

either a free electron near the conduction band edge EC, or a free hole near the valance 

band edge EV. Then the excited electron quickly loses its excess energy to the lattice as 

phonons 

− trap-state recombination - the impurities in a semiconductor create states in the energy 

gap. The gap states are effective intermediate media for a two-step recombination 

process, therefore the higher the concentration of impurities, the more the gap states, 

and thus the shorter the electron hole pair lifetime 

− surface recombination - the ultimate defect from the point of view of the crystal 

periodicity is its surface. It is then justified to expect high density of surface-trap 

associated states that facilitate recombination of electron-hole pairs. 
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The other factors limiting the efficiency of a solar cell are for example the metal contacts that 

further reduce the VOC as well as introduce potential barriers and contact resistance if their 

work function is not matched exactly with the work function of each side of the cell.  

Shockley and Queisser estimated that the maximum efficiency for single-junction solar cells 

is around η = 29.7%. 

#�#��&����������������
������$��$������������������������

Surpassing the Shockley-Queisser limit was, and still is, a main goal for many solar cell 

physicists. There are several approaches up to date that all fall into one category of 3
rd

generations solar cells. Another reason for such high interest in this area is driven by the need 

of reduction so called efficiency/material ratio. Most solar cells presently on the market are 

based on silicon wafers, the so-called “first generation” technology. As this technology has 

matured, costs have become increasingly dominated by material costs, mostly those of the 

silicon wafer, the strengthened low-iron glass cover sheet, and those of other encapsulants. 

Recently, the price of silicon wafer has decreased tenfold thanks to increased interest in this 

particular branch of industry exhibited by Chinese companies. Studies show that if the Si-

based photovoltaic market reached 500 MW/year mass production, volume costs would 

account for over 70% of the total manufacturing costs [34]. This opens up new path for more 

efficient approaches or material-limiting approaches, such as 2
nd

 generation solar cells. 

Regardless of semiconductor, thin-films offer prospects for a major reduction in material 

costs by eliminating the silicon wafer. Thin-films also offer other advantages, particularly the 

increase in the unit of manufacturing from a silicon wafer (ï100 cm
2
) to a glass sheet (ï1m

2
), 

about 100 times larger. In terms of energy conversion efficiency, thin-film technology so far 

has not reached the first generation achievements (15%, whereas the announced record for 

first generation Si solar cell is 25.47% [35]). Nevertheless there have been some spectacular 

advancements in the field of thin-film manufacturing itself, such as the recent Twin-Creeks 

Hyperion line dedicated for manufacturing ultra-thin Si films [36]. To progress further, 

conversion efficiency needs to be increased substantially. The Carnot limit on the conversion 

of sunlight to electricity is 95% as opposed to the theoretical upper limit of 33% for a 

standard solar cell, as shown in §4.3. This suggests the performance of solar cells could be 

improved 2–3 times if different concepts are to be used to produce the ‘next generation’ of 

high-performance, low-cost photovoltaic product. 
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Before we address the problem in detail, we shall analyze different limiting factors and their 

quantitative influence on the total device performance. Figure I.20 shows efficiency losses in 

standard solar cell. A key loss is process 1, whereby the photoexcited pair quickly loses 

energy in excess of the band gap. In this case, a low-energy red photon is just as effective as a 

much higher energy blue photon. Balancing this loss with the loss of low-energy photons 

passing straight through the device alone limits conversion efficiency of a cell ηu to about 

~44%. Another important loss is recombination of the photoexcited electron–hole pairs 

(process 4). This can be kept to a minimum by using material with high lifetimes for the 

photogenerated carriers, ensured by good control of the defects. The lifetime is then 

determined by radiative recombination in the cell, the inverse to photoexcitation. As shown 

by Shockley and Queisser in 1961, this symmetry between light absorption and light emission 

can be used to derive quite fundamental limits on achievable solar cell performance. This 

approach revisits “black body radiation”, the topic that stimulated the birth of quantum 

mechanics. By relating the light emitted by an ideal cell to that emitted by a blackbody, 

Shockley and Queisser showed that the performance of a standard cell was limited to 

ηd~29.7% efficiency for an optimal cell with a band gap Eg = 1.3 eV. This is less than the 

44% efficiency previously mentioned since the output voltage of the cell is less than the band 

gap potential, with the difference made up by voltage drops at the contact and junction (figure 

I.20). 

These drops can be reduced if sunlight is focused to increase the photon density striking the 

cell. Under the maximum possible sunlight concentration Cmax, the limiting efficiency 

increases to 40.8%. However, only direct (non-diffused) sunlight can be efficiently focused in 

this way. As the efficiency under maximal concentration gives the highest numerical value 

and also applies to the conversion of direct light even when non-concentrated, this efficiency 

is a useful figure for comparing the ultimate potential of any given approach. This efficiency 

is also more directly comparable with results from classical thermodynamics. 
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Figure I.20. Loss processes in a standard solar cell: (1) thermalization; (2) and (3) junction 

and contact voltage; (4) recombination. 

The key loss process of recombination (4) can be largely eliminated if the energy of the 

absorbed photon is just a little higher than the cell band gap. This leads to the tandem cell 

concept, where multiple cells are used each with a different band gaps and each converting a 

narrow range of photon energies close to its band gap. Fortunately, just stacking the cells with 

the highest band gap cell uppermost as in figure I.21, automatically achieves the desired 

filtering. Under maximum concentration Cmax, each cell has its proper contribution Vi to total 

V and Wi to total work W: 

·h 	 "����� �-h ® � �������� �����F� � �
/Önð�
/Ön ��� W �" � �������� ��� � w-h`o��F � � �

�
/Önñ� ���

W �" � �������� ��� � w-h¦o��F � � �
�

/Ön ���
� � �������� ��� � w-h��F � � �

�
/Ön ���°

(I.4.74)
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Second and third term in above equation result from emission of radiation from cells indexed 

by i-1 and i+1. In the ideal case, the difference between band gaps approaches 0, and we 

obtain: 

�· 	 "����� �-�T~� ® T~���� R T~��FS � � �
T~���� RT~ � w-��F S � �° (I.4.75)

Figure I.21. Stack of different converters forming a tandem cell, where each cell in the stack 

has lower band gap energy than the previous cell. 

Total work is then given by: 

· 	 � �·�
� 	 "����� �� -�T~� ® T~���� R T~��FS � � �

T~���� RT~ � w-��F S � �°
�
� �T~ (I.4.76)
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Performance increases as the number of cells in the stack increases, with a direct sunlight 

conversion efficiency η = 86.8% [37] calculated for an infinite stack of independently 

operated cells [38]. 

The independent operation of each cell proves to be technically challenging, therefore in 

tandem cells the current output from each cell is designed to match with other cells, so the 

whole stack can be connected in series. This constraint reduces performance and renders the 

tandem cell extremely sensitive to the spectral content of the sunlight. Tandem cells are now 

in commercial production with a record efficiency reported to be η = 43.5% for a three-

junction solar cell under concentrated light C = 418 [39]. 

A somewhat similar approach is the multiband cell approach, where an additional band is 

introduced to increase efficiency. The work of Luque et al. has shown advantages if a third 

band, nominally an impurity band, is included in the analysis [40]. This theory has been 

extended to an n-band cell and additional implementation approaches discussed. These 

include using excitations between minibands in superlattices, if phonon relaxation processes 

can be controlled, the use of semiconductors with multiple narrow bands, such as those 

reported for I–VII and I3–VI compounds or the use of high concentrations of impurities such 

as rare earths to form multiple impurity bands in wide band gap semiconductors. The limiting 

efficiency for an n-band cell is identical to the 86.8% figure for a large stack of tandem cells, 

but it may be more tolerant to spectral variations of sunlight. A realization of an n-band 

structure can be done with the exploit of multiple-quantum well based solar cells as shown 

schematically on figure I.22. The excess energy of a high-energy electron–hole pair could be 

used to create additional carriers as allowed by energy conservation. If the excess energy can 

be transformed into additional non-equilibrium carriers, instead of being given up as heat, a 

higher efficiency would be possible. Evidence for the creation of more than one collectable e-

h pair by high-energy photons is documented [41], has been attributed to impact ionization by 

the photoexcited carriers. 
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Figure I.22. Concept of multiple quantum well solar cells meeting the constraints of n-band 

theory. 

The group of Brendel [42] calculated the thermodynamic efficiency limit for such cell using 

the detailed balance treatment. Assuming infinite mobility, perfect absorption and ideal 

collection, for a device where the multiplication is allowed between VB�CB in the whole 

volume we have: 

NT���� 	 c�T~� cC=Q� ���
	 Úc,,,lè,,,cT~ Ò �� Ò �c W ��T~,,,�c 	 ��¡ �cC=Q � ��cC=Q,,,lè,,,,cC=QT~ Ò �� (I.4.77)

Where mmax is the maximal multiplication. The relation between electron generation and 

photon absorption is the following: 

X Õ c�T~� cC=Q� ����� (I.4.78)

The inverse reaction of multiple recombination would result in photon emission. The energy 

of such a photon is given by: 

æò 	 c�T~� cC=Q� ���æ6� 	 c�T~� cC=Q� ���w- (I.4.79)

In this case the total current extracted under maximum concentration Cmax is given by: 
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.� 	 "����� óôô
ôõ � c�T~� cC=Q � ��� ����������� �����F� � �
�
/Ö

� � c�T~� cC=Q� ��� ��������
��� ��� �c�T~� cC=Q� ���w-��F � � �

�
/Ö ö÷÷

÷ø (I.4.80)

For maximum concentration and maximum multiplication mmax > 200 and band gap 

Eg = 0.048 eV the maximal efficiency is η = 85.4%. For non-concentrated light and band gap 

Eg = 0.758 eV the maximal efficiency becomes η = 43.6%. 

In principle, if collisions with lattice can be avoided during the time it takes a photogenerated 

carrier to traverse the cell; the energy loss associated with process (1), of figure I.20 can be 

avoided. The various time constants can be appreciated by imagining a direct band gap cell 

illuminated by a short pulse of monochromatic light ie. laser light. Such a pulse would create 

electrons in the conduction band and holes in the valence band of distinct energy and 

momentum. Collisions of these carriers occur in less than a picosecond, tending to smear this 

distribution. The peaked distributions will become broader and tend towards a Boltzmann 

type of distribution. Elastic collisions do not change the energy of a population. The 

temperature distribution of the hot carriers will be determined by the total number of carriers 

created by the laser pulse and the total energy given to each carrier type. Different 

temperatures are possible for electrons and holes unless they are efficient in sharing their 

energy. In the next phase, collisions with lattice atoms become important. These result in 

energy loss (phonon emission). During this phase, the number of electrons and the number of 

holes remain constant, but the average energy and carrier temperature decrease due to this 

loss. The temperature of electrons and holes equalize and both reduce towards that of the host 

lattice. Finally, recombination in the semiconductor becomes important. The distribution of 

electrons and holes retain the same general shape, determined by the ambient temperature, but 

the number of carriers at each energy reduces until finally reaching the levels prior to the laser 

pulse. A standard cell is designed to collect the carriers before they get too far into the latter 

recombination stage of this decay sequence. A converter based on hot carrier effects has to 

catch them before the carrier cooling stage. Carriers either have to traverse the cell very 

quickly or cooling rates have to be slowed significantly. Special contacts to prevent the 
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carriers from cooling may also be required. The limiting efficiency of this approach is 86.8% 

as for an infinite tandem cell stack; however, to reach this limiting efficiency, carrier cooling 

has to be reduced sufficiently or radiative recombination rates sufficiently have to be 

accelerated in such a way that the latter was faster than the former. Particular band structure 

and cell architecture also is required. 



��������	�

I.70 | P a g e

'�
�������(�

                                                 
[1] D. R. Williams, Sun Fact Sheet, NASA (2004). Retrieved 2010-09-27. 

[2] American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic 

Performance Evaluation. 

[3] G. Kopp; J. Lean, A new, lower value of total solar irradiance: Evidence and climate significance,

Geophys. Res. Lett. L, 2011, L01706. 

[4] G. B Rybicki, A. P Lightma, Radiative Processes in Astrophysics, John Wiley & Sons 1979. 

[5] G. Cole, M. Woolfson, Planetary Science: The Science of Planets Around Stars, Institute of Physics 

Publishing, 380–382, 2002, 36–37. 

[6] http://solarsystem.nasa.gov/planets. 

[7] C. Kandilli and K. Ulgen, Solar Illumination and Estimating Daylight Availability of Global Solar 

Irradiance, Energy Sources 30, 2008, 1127-1140. 

[8] http://webelements.com, University of Sheffield. 

[9] N. W. Ashcroft, N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976. 

[10] S. M. Sze, Physics of semiconductor devices, John Wiley & Sons 1981. 

[11] R. M. Martin, Electronic Structure. Basic Theory and Practical Methods, Cambridge University Press

2004. 

[12] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative minimization 

techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. 

Mod. Phys. 64, 1992, 1045-1097. 

[13] C. Kittel, Introduction to Solid State Physics, 7
th

 edition, John Wiley & Sons 1995. 

[14] E. Antoncik, Approximate formulation of the orthogonalized plane-wave method, J. Phys. Chem Solids 

10, 1959, 314-320. 

[15] J. C. Phillips, L. K. Kleinman, Crystal Potential and Energy Bands of Semiconductors. I. Self-

Consistent Calculations for Diamond, Phys. Rev. 116, 1959, 880-884. 

[16] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, 1964, 864-871. 

[17] W. Kohn, L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 

A 140, 1965, 1133. 

[18] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative minimization 

techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. 

Mod. Phys. 64, 1992, 1045-1097. 

[19] M. Servidori Z. Soulek, S. Solmi, Some aspects of damage annealing in ionùimplanted silicon: 

Discussion in terms of dopant anomalous diffusion, J. Appl. Phys. 62, 1987, 1723. 

[20] A. de Vos, H. Pauwels, On thermodynamic limit of photovoltaic energy conversion, Appl. Phys. A Mat. 

Sci. Eng. 25, 1981, 119-125. 

[21] P. T. Landsberg, G. Tonge, Thermodynamic energy conversion efficiencies, J. Appl. Phys. 51, 1980, 

R1-R20. 



��������	�

I.71 | P a g e

                                                                                                                                                         
[22] P. T. Landsberg ,J. R. Mallinson, Thermodynamic constraints, effective temperatures and solar cells, 

Coll. Int. sur I’Electricitie Solaire (Toulouse: CNES) 1976, 27-35. 

[23] P. T. Landsberg, A note on the thermodynamics of energy conversion in plants, Photochem. Photobiol. 

26, 1977, 313-314. 

[24] P. T. Landsberg and P. Baruch, The thermodynamics of the conversion of radiation energy for 

photovoltaics, J. Phys. A: Math. Gen. 22, 1989, 1911-1926. 

[25] M. Abramovitz, I. Stegun, Handbook of mathematical functions, Dover Publishing 1964. 

[26] A. de Vos, P. T. Landsberg, P. Baruch, J. E. Parott, Entropy fluxes, endoreversibility and solar 

conversion, J. Appl. Phys., 74, 1993, 3631-3627. 

[27] Kirchhoff, G., On the relation between the radiating and absorbing powers of different bodies for light 

and heat, Philosophical Magazine, 4, 1860, 1-21. 

[28] V. Badescu, P.T. Landsberg, Statistical thermodymamics foundation for photovoltaic and photothermal 

conversion. II. Application to photovoltaic conversion, J. Appl. Phys., 78, 1995, 2793-2802. 

[29] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency tables (version 

39), Prog. Phot. Res. Appl. 20, 2012, 12-20. 

[30] W. Shockiey, H.J. Queisser , Detailed balance limit of efficiency of p-n junction solar cells, J.App1 

Phys. 32, 1961, 510-519. 

[31] Z. T. Kuznicki, L-H interface improvement for ultra-high-efficiency Si solar cells, J.App1 Phys. 74, 

1993, 2058. 

[32] Z. T. Kuznicki, Low-high homojunction in the stationary state, J.App1 Phys. 69, 1991, 6526. 

[33] L. M. Peter, Towards sustainable photovoltaics: the search for new materials, Phil. Trans. R. Soc. A  

369, 2011, 1840-1856. 

[34] T. M. Bruton, G. Luthardt, K-D. Rasch, K. Roy, I. A. Dorrity, B. Garrard, L. Teale, J. Alonso, U.

Ugalde, K. Declerq, J. Nigs, J. Szlufcik, A. Rauber, W. Wettling, A. Vallera, A study of the manufacture 

at 500 MWp p.a. of crystalline silicon photovoltaic modules, Conference Record, 14
th

 EU PVSEC, 

Barcelona, June, 1997, 11–16. 

[35] Silicon Solar Cell Efficiency World Record Set in Analytical Test by Solar3D, January 3
rd

, 2012, 

CleanTechnica. 

[36] Twin-Creeks introduces Hyperion, March 13
th

, 2012. San Jose, California. 

[37] A. de Vos, Detailed balance limit of the efficiency of tandem solar cells, J. Phys. D: Appl. Phys., 13, 

1980, 839-846. 

[38] A. Marti and G. L. Araujo, Limiting efficiencies for photovoltaic energy conversion in multigap systems, 

Sol. Energy Mater. Sol. Cells 43, 1996, 203–222. 

[39] NREL confirms world-record 43.5% efficiency on Solar Junction’s CPV cell, PV Tech, 14 April 2011. 

[40] A. Luque, A. Marti, Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at 

Intermediate Levels,Phys. Rev. Lett. 78, 1997, 5014. 

[41] O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, M. C. Beard, Peak external 

photocurrent quantum efficiency exceeding 100% via MEG in a Quantum Dot Solar Cell, Science 334, 

2011, 1530-1533. 



��������	�

I.72 | P a g e

                                                                                                                                                         
[42] R. Brendel, J. H. Werner, H. J. Queisser, Thermodynamic efficiency limits for semiconductor solar cells 

with carrier multiplication, Sol. En Mater. Sol. Cells, 41/42, 1996, 419-425. 



��������	�

I.73 | P a g e

                                                                                                                                                         



��������		�

�
������

��	��������������



��������		�

II.75 | P a g e

�
�������

1. Basic principles and device architecture. 77 

1.1. Theoretical conversion limit. 78 

1.2. Conversion limit for realistic device architecture. 86 

2. Realization of test devices.  91 

2.1. Fabrication stages. 92 

2.2. Process key points. 95 

3. Conclusions.  96 



��������		�

II.76 | P a g e

���������

A theoretical approach to alternative mechanisms for increasing efficiency is described. The 

concepts of Luque for a cell incorporating intermediate band with a modification for non-

radiative inverse Auger recombination are discussed. The fabrication of test structures is 

briefly mentioned, with key points highlighted. Finally, the working concept of a structure 

exhibiting non-classical effect is presented. 
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An original idea of combining sub-band gap absorption and carrier multiplication was 

proposed by Kuznicki in the beginning of 1990s. [1, 2]. An increase of photocurrent due to 

electron multiplication with characteristic energy smaller than the band gap was discussed [3]. 

We consider a semiconducting material with band gap Eg in which an additional band or 

levels Et exist closely below the conduction band (CB). We introduce the value Eδ = EC-Et. As 

opposed to the multi-band cell introduced by Luque [4] supposing a semiconductor with a 

large band gap, we assume that the transitions between different bands are not always 

radiative and that the generation of Auger type is possible between an intermediate band and 

the conduction band. Figure II.1 shows schematically the principle of such process. 

Figure II.1. Principle of operation of the MIND (Multi-interface Novel Device) cell based on 

carrier multiplication. 

Like in the concept of Luque, the transitions between the valence band, the conduction band 

and impurities can be induced by photon absorption; in our approach we assume that part of 

those transitions can have a mixed, phonon-photon origin. For each of these radiative 

generation processes G
R
 there exist an inverse process of radiative recombination R

R
. 

In the concept we are presenting here, we suppose that the transitions between the 

intermediate impurity band and the conduction band can also occur by impact ionization. We 

introduce a fraction θ of radiative generation between the intermediate impurity band and the 

conduction band. The value of θ is smaller as the impurity band is farther from CB, due to 
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lesser photons with correct energy in solar spectrum. We assume that all the excess photon 

energy above the band gap energy is transferred to an electron. Eδ is the minimum additional 

energy a carrier must have to trigger the multiplication process. We also assume that there is 

no multiplication for holes, because their optical mass is much greater (which is the case for 

Si) and that the entire excess energy is usually transferred to the electron only. 

��������
���������
������
��������

As in the case of other third generation solar cells, we will try to calculate the maximal 

theoretical efficiency allowed by the laws of thermodynamics. However we will not optimize 

the band gap of the material, but it will be set to the Si band gap energy Eg = 1.12 eV.  

We also associate a respective Fermi level with each of the three bands, which describes their 

free carrier populations. EfC, EfV, and EfI are the Fermi energies for CB, VB and impurity band 

(IB). Metallic contacts were optimized only for extraction of holes from VB and electrons 

from CB. The chemical potential of e-h pairs is then given by: 

�� � ��� � ��� � 	�� (II.1.1)

Figure II.2. Radiative and non-radiative transitions in the three band model. 

There are two stages to second generation that occur after absorption of a high energy photon: 

− primary generation of a hot electron by a photon 

− secondary generation by electron multiplication due to the presence of IB 

Absorption of a photon with energy E � Eg+Eδ allows for generation of one secondary 

electron, E � Eg+2Eδ allows two secondary electrons and so on. The energy Eδ is the 

characteristic energy of the multiplication process. 
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We can derive formulas that govern the processes occurring between three different bands, 

and establish continuity equations for the population of electrons, holes and electrons in the 

impurity band [4]: 
�
� 
�� � ���� 
�� � ����� 
�� � 
� � ������ 
�� � ���� 
�� � ����� 
�� �

� � ������ 
�� � �� ���
�� � � (II.1.2)


�
� 
�� � ���� 
�� � ���� 
�� � ���� 
�� � ���� 
�� � �� ���
�� � � (II.1.3)
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� 
�� � ����� 
�� � 
� � ������ 
�� � ���� 
�� � ����� 
�� � 
� � ������ 
�� �
���� 
�� � �� (II.1.4)

jn(x) and jp(x) are current densities for electrons and holes respectively. R is the index 

designating the radiative processes and A is the index designating the Auger process (impact

ionization of IB or Auger recombination), n is the electron density in CB and p is hole density 

in VB. nI is the number of occupied states in the IB. All these phenomena are shown in Figure 

II.2. 

By introducing the parameter θ one can generalize the models introduced by Luque (θ = 1) 

and Brendel [5] (θ = 0, equating Eδ = Eg). If NI is the total number of states in the IB, the 

number of the secondary generation centers is given by: 

�
�� � � �
�� � �
�� � !� � ��
��" � �� (II.1.5)

for donors, and: 

�
�� � � �
�� � �
�� � ��
��" � �� (II.1.6)

for acceptors. The quasi-Fermi energy levels allow us to write the following relations [6]: 

�� � �#�#$%& '	��()�*� (II.1.7)

� � �#$%& '	��()�*� (II.1.8)

� � �#$%& '	��()�*� (II.1.9)

where n0, nI0 and p0 are the populations in the dark when all three quasi-Fermi levels meet and 

are equal to the EF. 

The ratio of primary generation is proportional to the number of absorbed photons that excite 

electrons from VB to CB: 
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where ν is the angle corresponding to the concentration 0.266°< ν < 90° and CE is the 

Collection Efficiency, which defines the probability with which a pair of  generated carriers in 

a given point in space will be collected in an external circuit. Radiative recombination 

between CB and VB can be derived with the generalized Planck’s law: 

���� 
�� � C���� � +,-./0 6 7
89: ��;�
�� 
89�.$%& '89 � D�()� * � �
?

@A B89� (II.1.11)

rCV is the coefficient of radiative recombination that can be deduced by analyzing detailed 

balance for a solar cell in the dark, when there is no current extracted from the cell, and under 

illumination for TC = TE. In the latter case, we have a unique Fermi level εF: 

���#� 
�� � +,-./0 6 7
89: ��;�
�� 
89�.$%& '89()�* � �
?

@A B89� (II.1.12)

C�� � ���#��E. � (II.1.13)

���� 
�� F ���#� ���E. � ���#� $%&�' D�()�*� (II.1.14)

Equation (II.1.14) represents an approximation to the exact formula (equation II.1.12). In the 

same manner, we describe radiative transitions between VB and IB and between CB and IB: 

���� 
�� � +,-./0 123. 4 6 7
89: ��;�
�� 
89�.$%& <89()=> � �
@G

@AH@I B89� (II.1.15)

���� 
�� � +,-./0 123. 46 7
89: ��;�
�� 
89�.$%& <89()=> � �
@J

@I B89� (II.1.16)

We assume that an energetic photon will induce the highest radiative transition possible. 

Therefore we can distinguish two cases: 

�K L �M+ N��O � �M�����P3Q�������R � �M � �K � (II.1.17)

�K S �M+ N��O � �K �����P3Q�������R � �M� (II.1.18)

The term describing radiative recombination between IB and VB is expressed by: 
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The yield of secondary generation is proportional to the number of absorbed photons having 

excess energy �ω  � Eg +Eδ and is given as an integral over secondary generation terms: 

���� 
�� � +,-./0 123. 46 B
89: ��7
89: ��;�
�� 
89�.$%& <89()=> � �
?

@AT@I B89� (II.1.21)

d(�ω,x) represents the average number of secondary electrons generated by a hot electron 

created by a photon with the energy �ω between x and x+dx. We introduce the probability σk

of generation of a k
th

 secondary electron by a hot electron that has already generated k-1 

secondary electrons. We then have for m = 1,2,…: 

B
89: �� � UV � UVU. �W� UV 5 X 5 UYOZ�[\��M �]�K ^ 89 ^ �M � 
] � ���K � (II.1.22)

In general, we have σ1 � σ2 � σ3 �… 

If the probability of secondary generation is independent of stage (i.e., whether it is the 

second, third, fourth etc.) the probability is constant and equal to σ. Therefore we obtain: 

B
89: �� � _UEY
E`V �[\��M �]�K ^ 89 ^ �M � 
] � ���K � (II.1.23)
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which could be also presented as follows: 

���� 
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E`V � (II.1.25)

We have the following relation: d(�ω,x) = β(�ω)��Y(x), where β is the coefficient of 

secondary generation proportional to �KHYe.
 [7]. In the ideal case (σ = 1), we have: 

d(�ω,x) = m, if Eg+mEδ � �ω � Eg+(m+1)Eδ. However, for hot carriers generated in the zone 

without multiplication, we have d(�ω,x) = 0. 
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The inverse mechanism is the sum of non-radiative recombination mechanisms of Auger type 

between the valence band and the impurity band. For reversibility reasons in the energy 

interval <Eg+mEδ; Eg+(m+1)Eδ>, we assume that the number of electrons from the CB 

participating in the process is n
m
 and that (NI-nI)

m
 empty states are in the IB. We can therefore 

write: 

���� 
�� � _ 6 C��
89��YTV
!� � ���Y@AT
YTV�@I

@ATY@I
?

Y`V B89� (II.1.26)

As for the radiative terms, the calculation of rCI(�ω) is done for the relation ���� � ����  in the 

dark for an initial photon energy given by Eg+mEδ � �ω � Eg+(m+1)Eδ.: 

C��
89��#YTV
!� � ��#�Y � B89 +,-./0 7
89: ��;�
�� 
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C��
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Keeping in mind that: ��#Y
!� � ��#�Y � g$%& 'hi � �j()� *kY �P3Q���#Y � g!� $%& 'hi � ��()� *kY� (II.1.30)

As a consequence: 

C��
89�l$%& ' �K()�*� (II.1.31)

Therefore: ���� 
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Supposing that the density of states in the intermediate band is large enough that its quasi-

Fermi density does not change under illumination, we have: 


!� � ��#� � 
!� � ���� (II.1.33)

We obtain: 
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The current density traversing the cell is given by detailed balance: 

m � �6<���� 
�� � ����� 
�� � 
� � ������ 
�� � ���� 
�� � ����� 
�� �n
# 
� � ������ 
��>B�� (II.1.35)

Therefore, the current is given as a difference between the generation and recombination 

currents going through the cell in opposite directions: 

m � mo@p � m�@� � (II.1.36)

with: 
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89� 
89�.$%& <89()=> � �B89?
@A

�
� +,-./0 6 mq���
89� 
89�.$%& <89()=> � �B89@A

@I
�


� � �� +,-./0 6 mq���� 
89� 
89�.$%& <89()=> � �B89?
@AT@I

�
(II.1.37)

m�@�� �
+,-./0 6 mq���
89� 
89�.$%& '89 � D�()� * � �B89?

@A
��

� +,-./0 6 mq���
89� 
89�.$%& '89 � 	��()� * � �B89@A

@I
�


� � �� +,-./0 6 mq���� 
89� $%&r
B
89: �� � ��	��()� s 
89�.$%& '89()�* � �B89?
@AT@I

�

(II.1.38)

We have therefore defined the Internal Quantum Efficiency (IQE): 
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In the ideal case the following conditions are realized; 

− collection of photogenerated carriers is perfect: CE(x) = 1 

− the thickness of the cell is large enough to allow total absorption of the incident light, t 7
89: ��n# B� � �
− light concentration is maximal Cmax = π/2 

− multiplication is possible in the whole cell with the maximal probability, σ = 1. 

B
89: �� � ]��[\��M �]�K ^ 89 ^ �M � 
] � ���K � (II.1.42)

Indeed, for the ideal case we have: 

mq���
89� � �� (II.1.43)

mq���
89� � �� (II.1.44)

mq���� 
89� � ]�������[\��������M �]�K ^ 89 ^ �M � 
] � ���K � (II.1.45)

We can estimate the energy converted by the multiplication: 

�uv�w � xxYOZ�M!�yEY � �z{u� (II.1.46)

where Nprim is the number of primary electrons corresponding to the number of absorbed 

photons. In the above conditions we have: 

!�yEY � +,-./0 6 mq���
89� 
89�.$%& <89()=> � �B89?
@A
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Esec is the energy used for the secondary generation, which would normally be lost to heat: 

�z{u � �K +,-./0 6 mq���� 
89� 
89�.$%& <89()=> � �B89?
@A

� (II.1.48)
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Esec is non-linearly dependent on the energy Eδ. The open circuit voltage is taken as a 

parameter varying between 0 and Eg. We have the following relation between the fill factor 

and the open and circuit voltage [8]: 

xx F D�|�()� � }3 '� � D�|�()� *
� � D�|�()� �~�B��xxYOZ F D�M()� � }3 '� � D�M()�*� � D�M()� � ���� (II.1.49)

In such a case, the convertible energy is given by:

�z{u � �K +,-./0 6 mq���� 
89� 
89�.$%& <89()=> � �B89?
@A

� (II.1.50)

Obviously this approximation represents only a very generic efficiency limit. To obtain more 

accurate representation of the secondary generation problem, one must turn to the detailed 

balance method, taking into account all the recombination and generation currents in the cell 

and the energy of absorbed photons. The generation current was discussed by Kuznicki and 

others in 1988 [9], for threshold energies greater than the band gap. A detailed study on this 

problem was conducted by Marc Ley and is presented in his thesis [10]. 

A final formula describing the maximum efficiency is then: 
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It is however not possible to create a silicon wafer that would allow low-energy multiplication 

everywhere in its volume. The necessary conditions for this process occur only in specific 

areas that are deeply transformed from silicon’s initial, monocrystalline properties. 

Multiplication in the whole active region is also not necessary from the point of view of a 

working device, as the high energy photons are absorbed closer to the surface. In a realistic 
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device operating with multiplication properties, the area capable of multiplication should be 

located only close to the surface. 

In this realistic but nonetheless approximate model developed here, we assume that the 

multiplication is localized only in an area called the active sub-structure, and it is positioned 

close to the crystal structure, as can be seen in Figure II.3. We can also safely assume that the 

active area will have slightly different optical and electrical properties than the 

monocrystalline Si, due to the introduction of planar nanostructures and combination of their 

properties with the initial Si properties. 

Figure II.3. A MIND test device with an active sub-structure, allowing carrier multiplication. 

In an ideal device IQE and CE are independent of position. However, for understanding of a 

multilayered structure, it is imperative to know the exact flux penetrating inside each layer. In 

our case, we assume that the classical zones will have the same optical properties as 

monocrystalline Si, while the active sub-structure will have an enhanced absorption 

coefficient, similar to the absorption coefficient of amorphous Si. Distribution of the field and 

power inside the multi-layered structures will be discussed in detail in the following chapters 

of this work. 

The cell presented above consists of three layers: 

− a classical area, dominated by crystalline Si (cSi), where multiplication does not 

occur, abbreviated WC

− zone with multiplication, that has optical properties of amorphous Si (aSi), 

abbreviated WA

− PN junction is located 1µm below the surface of the sample. 
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We assume that CE is equal to unity in each classical area (defined before) of the device, 

which means that every carrier generated in this area can be collected in the external circuit 

with 100% efficiency. On the other hand, in the area where multiplication is possible, CE is a 

function of the incident wavelength λ. Therefore the complete expression for CE is given by: 

;�
89: �� � �;�u�OzzEuO� � �������[\�������� � ��]
89����������[\������ � �� � (II.1.52)

where m is the multiplication order (number of extra electrons), as was defined earlier.  

Figure II.4. Increase in IQE for different multiplication probabilities σ in a structure where 

the 12 nm thick active area is localized 165 nm below the surface of Si, in comparison with 

the ideal case. Characteristic energy Eδ = 0.274 eV. 

The exact number of additional electrons given by multiplication and the resulting increase in 

IQE depends on the position of the active sub-structure. We would like to consider the most 

probable case, where the active area is confined to the amorphous layer and does not extend to 

the whole emitter. As a model structure we consider one with a 12 nm thick active area 

located 165 nm below the surface of silicon. Figure II.4 shows the changes in the IQE induced 

by the introduction of the active area in this region in comparison with the ideal case. 

Since we assume that multiplication occurs in a layer where optical properties differ from the 

classical area, we can no longer assume that the generation function G follows a simple 

exponential resulting from absorption in crystalline material. Because each layer has a 

different refractive index and extinction coefficient, a change in optical impedance occurs 

when light traverses the interface, which in turn causes multiple internal reflections. Due to 
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that reason, the distribution of energy and the number of photons changes depending whether 

the interferences are constructive or destructive. Therefore to achieve any reasonable level of 

precision, we must turn to the energy distribution, expressed by |S|, and the energy density u, 

which can provide the information about the exact number of photons at any point in space. 

Keeping to the assumption that only radiative transitions are possible and that every absorbed 

photon creates an exciton, we can try to estimate the increase in efficiency of a quantum 

converter incorporating the active sub structure. For the sake of simplicity, we will also 

assume that the reflectivity is null and there is no transmission for all wavelengths, due to the 

back mirror. We will consider a multiplication probability σ = 1 for each case. 

The formalism behind the calculation of S and u will be presented in Chapter III. We assume 

that the active sub-structure is localized in the emitter for obvious reasons, and may vary in 

thickness. We will consider three cases: 

1. The sub-structure covers the whole emitter. 

2. Only two areas can be distinguished in the emitter, with the classical one closer to the 

surface. 

3. The sub-structure is located somewhere in the middle, with classical areas bordering it 

on both sides. 

The quantities we will look at are the increase in current density jSC and estimated conversion 

efficiency η calculated using the diode equation and assuming that the I0 takes the minimum 

value possible (see Chapter I for the appropriate equations). 

Case 1 

We start with a classical silicon device, which incorporates an amorphous layer located 

100 nm from the surface and the cell thickness is limited to 1 mm. In the classical case, there 

is no multiplication and we assume CE = 1 everywhere in the cell. For a Si solar cell, with 

band gap equal to Eg = 1.17 eV, the maximum efficiency should be close to the Shockley-

Queisser limit. This is indeed the case, and we obtain the efficiency η = 33.71% and short-

circuit current density jSC = 41.1434 mA/cm
2
.  

If we now turn the whole emitter (that is everything between the surface and the PN junction) 

into an area capable of multiplication and set the characteristic energy Eδ = 0.274 eV and 

multiplication probability σ = 1, we find an efficiency η = 89.59% and short-circuit current 

density jSC = 106.3767 mA/cm
2
. Note: this is an overestimation since it does not take into 
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account the mechanism necessary for recharging of the multiplication centers, which plays 

crucial role in energy conservation and effectively lowers the probability of multiplication.  

Case 2 

One cannot expect that the whole area of the emitter can be turned into a cSi zone with 

enabled low-energy multiplication. To maintain such sub-structure properties, it is necessary 

to sandwich it between two layers of crystalline Si. Let us define a ratio WA = total 

amorphous layer thickness/W, where W = 1 µm is the total emitter length. To maintain a 

certain level of physical accuracy, we will consider that only half of the upper emitter might 

be converted into an area where multiplication can actively and efficiently participate in the 

generation process.  

Figure II.5. Changes in ISC and η for different thicknesses of amorphous layer described by 

parameter WA as in case 2.  

Therefore our ratio WA will change only between 0.1 and 0.5. The amorphous layer will 

always begin at the PN junction and extends towards the surface. A result of this study is 

shown in Figure II.5. 

Case 3 

We will intentionally put the middle of the amorphous layer precisely 165 nm below the 

surface of the sample and analyze changes in η and ISC as the amorphous layer expands in 

both directions. We will also redefine WA to express only the thickness of amorphous layer, 

not the ratio. 
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Figure II.6. Changes in ISC and η for different thickness of amorphous layer described by 

parameter WA as described in case 3. WA here is the thickness of amorphous layer in nm, 

where its middle point is 165 nm below the surface.

As expected: the efficiency and short-circuit current increases much faster now than it did in 

the case 2, where amorphous layer was buried deeper inside the emitter. The absolute changes 

in their values are also higher for smaller thicknesses of active area. Both of these effects can 

be associated only with the penetration depth of high energy photons, which is very short in 

silicon. This result is probably more realistic than in the case 2, since the absolute thicknesses 

of active areas are smaller and the aSi layer is sandwiched between cSi layers. Those features 

arguably could provide just the right conditions for efficient multiplication to occur. 

�������� ���
��
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We have shown that for a material with an optical band gap similar to the one of crystalline 

silicon, a significant improvement can be obtained if such material possesses also a region 

where low-energy multiplication is possible. Such a feature requires modification of the 

material on the nanometric scale and introduction of extrinsic multiplication centers. 

In the previous paragraph, we assumed the existence of two phases of silicon in the cell, one 

having properties of amorphous Si (especially optical) and other being the crystalline Si. One 

possibility of realization of such structure is offered by combining ion implantation followed 

by thermal annealing [11]. The concept of modification of silicon solar cells on the 
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nanometric scale and introduction of the multiplication centers results in so-called MIND 

(Multi-interface Novel Devices) [1]. 

In this paragraph we will study several experimental results of nanometric modifications in 

the model cells. Although fabrication of these cells was not the purpose of this work and was 

conducted and extensively described elsewhere [10], we will focus on the most important 

features and results for the purpose of clarity. 

These cells were not intended to be complete devices, optimized for maximum conversion 

efficiency, but rather aimed at demonstrating the evidence of potential new effects. 

�����!��������
�����"���

Choice of base material 

High-efficiency solar cells require good quality base materials with lowest possible number of 

impurities [12]. The material of choice for MIND cells was boron doped float-zone Si wafers, 

supplied by TOPSIL. Parameters of the wafers are shown in Table 1.1. 

Diameter 4” 

Thickness 525 ± 35 µm 

Orientation 100 

Type P 

Doping Boron 

Resistivity 4.0-10.0 Ωcm 

Base doping density 5�10
5
 cm

-3

Front face Polished 

Rear face Polished 

Table 2.1. Initial characteristics of the substrate used for fabrication of test devices. 

Ion implantation 

Ion implantation is a method that allows changing of physical, chemical and mechanical 

properties of the material. It relies on introduction of different atomic species and controlled 

energy deposition, in the surface region of a treated solid substrate. This is done by 

bombardment with ions having energy of the order between keV and MeV. In 

microelectronics, this method is used to obtain reproducible and precise doping profiles. 
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Mean ion penetration depth depends on the implantation energy, while the density of the 

introduced ions depends on the implantation current and duration of the bombardment. When 

an amorphization appears its volume depends on the energy deposited. 

In the case of MIND structures, ion implantation served two distinctive purposes and was 

divided into two steps. Step 1 consisted of bombarding with P ions at an energy of 180 keV 

and a dose of 6-10�10
14

 cm
-2

. This created partial buried amorphization of sub-surface zone in 

implanted structures. Step 2 consisted of bombarding with P ions of 25 keV at a dose of 

5�10
14

 cm
-2

 that created an inhomogeneous doping profile in the emitter. 

Some of the samples were implanted only once after they were exposed to initial doping by 

diffusion. In these cases the main purpose of the P implantation was to create a buried 

amorphous region in the emitter. 

Formation of the emitter 

The thermal treatment partially recrystallized the amorphous zones of Si and helped creating 

sharp interfaces between the crystalline and amorphous part of the emitter. Annealing 

temperature of the process was set at 500˚C. The thermal treatment also allowed moving 

interstitial P atoms into electrically active sites. This stage is responsible for formation of the 

PN junction, which secures proper functionality of the device. The details concerning exact 

process parameters are confidential and cannot be discussed here. Interested reader is directed 

to the following work [10, chapter III, 1]. After annealing, Secondary Ion Mass Spectroscopy 

(SIMS) analysis was performed in order to extract information about the distribution of P ions 

inside the emitter for both types of samples, which is shown in figure II.7. Estimated positions 

of PN junctions for both sample types, extracted from Spreading Resistance Profiling are at 

500 nm for double–implanted samples and at 1 µm for diffused–implanted samples. 
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Figure II.7. P profile as obtained by SIMS measurement. It is clearly seen that the diffused – 

implanted samples have a one order higher doping concentration than double implanted, 

reaching solubility limit in Si [13].  

Passivation layer 

Surface recombination can have a major impact both on the short-circuit current and on the 

open-circuit voltage. High recombination rates at the top surface have a particularly 

detrimental impact on the short-circuit current since the top surface also corresponds to the 

highest generation region of carriers in the solar cell. Lowering the high top surface 

recombination is usually accomplished by reducing the number of dangling silicon bonds at 

the top surface through depositing a passivation layer of SiO2 on the top surface, which also 

plays the role of a simple anti-reflection coating. To obtain a good quality interface between 

SiO2 and Si, a 100 nm thick thermal oxide layer was first grown on both sides of the wafer. 

On the back side of the sample, low-energy boron implantation created a back surface field 

(BSF) [14] was done through that layer. On the front face, the thermally grown SiO2 layer 

was etched by hydrofluoric acid solution to a thickness of 5 nm for the samples that were 

double-implanted. For the diffused-implanted samples, the 100 nm thick oxide layer 

composed of P2O5 was removed chemically. In both cases, the resulting thickness of the 
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passivation layer after etching was 5 nm. Most of the samples were then covered by SiO2

deposited by LPCVD (Low Pressure Chemical Vapor Deposition), after deposition of metal 

electrodes. 

Back surface field 

To reduce recombination of the minority carriers on the back surface of the sample and 

therefore to increase their diffusion length, a back surface field was introduced. It was 

obtained by introducing acceptor dopants (in this case boron) close to the p contact of the cell. 

The implantation process was done through the 100 nm thick thermal oxide layer, and was 

therefore calibrated to produce the maximum concentration at the oxide/semiconductor 

interface. The energy of the ion beam was 20 keV and the dose was 10
15

 cm
-2

. 

Metal electrodes 

Metal contacts were evaporated on the surface of Si after etching of the thermally grown 

oxide layer. The electrode thickness is 1 µm with a width of 100 µm. On the front face, a 

bilayer contact made of Ti/Au or Ti/Ag was deposited, on the back face an Al contact was 

deposited. On both sides of the sample the contacts were deposited in a form of grid with 

0.9 mm spacing. The rear grid was then covered by an Al layer, which acts also as a back 

mirror. 

�����#�
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The fabrication process of the test MIND structures consisted of several steps that are listed in 

the Table 2.2 below. The main goal, which was to create an amorphized layer of Si buried 

below the surface of the emitter, was achieved with good accuracy. We will discuss the 

properties of this layer in the following chapters. The resulting structure architecture is shown 

in Figure II.8. 
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Stage 1 Thermal oxidation 

Stage 2 Realization of the back surface field 

Stage 3 Realization of the emitter (either double-

implanted or diffused-implanted 

Stage 4 Thermal annealing 

Stage 5 Rear contacts 

Stage 6 Front contacts 

Stage 7 Surface passivation by LPCVD 

Table 2.2. Summary of the fabrication stages in chronological order. 

Figure II.8. Architecture of test devices (left) and Backscattered Electron Microscopy image 

(right) of the buried sub–structure. Picture shows fully completed sample after all the 

fabrication steps. 

Note: It is important to stress that the process parameters were not optimized for maximum 

efficiency of the final device. The goal was rather the laboratory-scale test structures. 

&���
������
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As a summary of this chapter, we highlight the most important points. First, a new kind of 

silicon-based structures was created, with the objective of showing that the principle of low 

energy multiplication can be experimentally confirmed. This multiplication mechanism 

involves, unlike other similar concepts, also non-radiative transitions, namely photon-electron 

and electron-electron. The approach to this concept was resolved technically by introducing a 

buried active sub-structure in the emitter of a test device. The purpose of the test structures 

was to obtain confirmation of the new effect and to gain deeper insight into the phenomenon. 
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A theoretical analysis of MIND structures, their optical, electrical and photovoltaic properties 

is laid out in this chapter. We begin with analyzing silicon as a host material from a 

microscopic point of view. With ab initio calculations, we extract information about the 

silicon crystal lattice disturbed with P dopants, its density of states, potential and strain. 

Further in the chapter we focus on various models of dielectric functions, analyzing their 

strengths and weaknesses. When an appropriate approximation is chosen, that will accurately 

describe the material properties in respect with the problem determined beforehand (small 

changes in the properties in the emitter, inhomogeneous doping distribution), we will present 

the optical model chosen to represent planar MIND structures, namely the Transition Matrix 

Approximation (TMA). 

Another approximation, the Effective Medium Theory (EMT) used to describe the interface 

between crystalline and amorphized phase of the material, is then presented. The MATLAB 

code that summarizes earlier theoretical introduction is shown. As a last point in this chapter, 

we present some of the possible results obtainable through our modeling. 
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To gain further insight into properties of crystalline Si, we performed some basic ab initio

simulations of both crystalline and doped silicon using ABINIT software [1,2].  

Quantum mechanics and electromagnetism are widely perceived as leading to a “first-

principles" approach to materials and nanosystems: if the needed software applications and 

corresponding hardware were available, these properties could be obtained without any 

adjustable parameter (nuclei characteristics being given). However, such first-principles 

equations (e.g. the N-body Schrodinger equation) are too complex to be handled directly. 

Indeed, fundamental quantities, like the wavefunctions for N particles, cannot be represented 

faithfully on the hardware available nowadays, for N over about a dozen. Different 

methodologies to address this problem have been proposed. The approach we used, 

implemented in the ABINIT package, focuses on the Density Functional Theory (DFT), 

proposed in 1964-65 by Hohenberg and Kohn [3] and Kohn and Sham [4] (KS), and the 

Many-Body Perturbation Theory, in particular the so-called GW approximation (GWA) of 

L. Hedin [5]. Both significantly reduce the complexity of the first-principles approach at the 

expense of some approximations. On the basis of such methodologies in the 1980s, it became 

clear that numerous properties of materials, like total energies, electronic structure, and 

dynamical, dielectric, mechanical, magnetic, vibrational properties, can be obtained with an 

accuracy that can be considered as truly predictive (e.g. a few percent uncertainty on bond 

lengths, a fraction of an eV for electronic energies...). Many research groups implemented the 

DFT methodology, using different representations (planewaves, augmented waves, muffin-tin 

orbitals). The interested reader is encouraged to read the comprehensive book by 

R. M. Martin [6]). However, it is hardly possible for one research group to gather the 

expertise to address such a wide range of properties. As for drawbacks, the DFT in the usual 

LDA or GGA approximations does not describe correctly the interaction between electrons, 

and contains moreover a spurious self-interaction. As a consequence, it is not able to describe 

strongly correlated systems which contain partially filled d or f shells. 

We concentrated mainly on calculating the density of states, the band structure and the strain 

introduced by a P atom substituting for a Si atom in the crystal network, as well as the usual 

ground state output information (electronic density and Kohn-Sham potential).  

Part of the results concerning crystalline silicon was already presented in Chapter I, §2 of this 

work. Here we will focus on the rest of the results for crystalline Si and heavily doped Si:P.  
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Figure III.1. Convergence tests for primitive Si cell. Plane wave cut-off energy Ecut is 

presented on the upper graph and the number of k points in the Brillouin zone on the lower. 

1 Ha  = 27.21138386 eV. 

A typical ground state ab initio calculation requires at first the determination of atom 

positioning inside the cell as well as a proper choice of pseudopotential functions, Local 

Density Approximation (LDA) or Generalized Gradient Approximation (GGA). In our 

calculation we used the pseudopotential functions provided by the ABINIT package [7] that 

are based on Troullier-Martins pseudopotentials for both Si and P atoms [8]. Then, the 

convergence tests were conducted, which are presented in figure III.1. We obtained stable 

results for cut-off energy for plane waves Ecut = 30 Ha and number of k points in Brillouin 

zone kprim = 50. The cell length was found to be a = 539.6509 pm which is in good agreement 

with crystallographic data acrys = 543.09 pm [9]. 

Ab initio calculations provide the variety of results, ranging from total energy and its 

derivatives, electronic density and the density of states. It is worth noting that even if some of 

those physical quantities are flawed by the approximations used and by the model itself, their 

quality is still good enough to allow predictions of real materials. There are several quantities 

such as the total energy and the electronic density that are exact analogs of the real quantities 

in our physical world. They do not suffer from approximations. Changes in Kohn-Sham 
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potential however, even if often very similar to changes in the real potential, differ 

significantly and cannot be used to accurately estimate the response of real systems.  

Figure III.2. Comparison of Total Density of States per atom calculated by ABINIT software 

for a primitive cell (solid line) and for a diamond cell (dashed line) of crystalline silicon.

We began by investigating the influence of cell determination (primitive or diamond), after all 

convergence test were conducted, on the Total Density of States (TDOS) for crystalline 

silicon. The result of TDOS / atom for both cells is presented in figure III.2. Both curves were 

corrected for the band gap energy that normally is underestimated in this approach due to lack 

of electron screening. It is easy to note that there are some significant differences that appear 

especially for the high energy range. These differences arise from limitations of our 

computing machine that was not able to handle the calculations for the diamond cell 

(consisting of 8 atoms) for converged number of k points. Nevertheless, in the energy range 

covered by the solar spectrum, the simulation of TDOS for both cells provided similar and 

comparable results. 
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Figure III.3. Comparison of Total Density of States per atom calculated by ABINIT software 

for crystalline (solid line) and the diamond cell Si with one atom substituted by P (dashed 

line). The inset shows the changes in TDOS after cell relaxation following atomic 

substitution.

Simulation for the diamond cell was necessary to study TDOS changes when a Si atom is 

substituted by a P atom. Phosphorous doping, besides being the most common method of 

introducing donors in crystalline Si, plays also a crucial role in the concept of MIND 

structures. The strain imposed by the substituting atom is one of key factors that allow 

formation and persistence of the PV metamaterial. To be able to study the changes that P 

substitution introduces in cSi network, we replaced one Si atom in a diamond cell. Since 

phosphorous has different atomic radius than silicon, we allowed the cell and neighboring 

atoms to find their global minima again. The stress tensor resulting from substitution of Si 

atom by P was found to be: 

� � ������	�	�
 	 		 �����	�	�
 		 	 �����	�	�
� �
�� (III.1.1)

Although there were no significant changes in TDOS before and after relaxation, the situation 

changes dramatically when we compare TDOS for crystalline Si and P-doped Si. Both results 
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are shown in figure III.3. This result should be understood as follows: when a Si atom is 

substituted by P in the crystal network, it introduces additional states in the electronic 

structure. In an ab initio calculation we performed, due to the periodic boundary conditions, it 

is difficult to determine the exact number of states introduced by a P – dopant, because the 

site wavefunction extends well over the host and neighboring cell. In such a case, we can only 

compare the number of states introduced by a dopant per atom in its nearest neighborhood, 

which can be later used to estimate the real difference in TDOS for any given amount of 

doping. From figure III.3 it can be easily seen that the most significant changes in the density 

of states occur in the conduction band for energies around 3-4 eV above the band minimum. 

Nevertheless, it can be extrapolated from figure III.3 that for low doping densities (Nd ~ 10
14

-

10
16

 [1/cm
3
]), the changes in TDOS are very small and in most cases for basic calculations 

(such as estimation of carrier density of the Fermi level) it is justified and more convenient to 

use the TDOS for undoped Si. 

Another interesting quantity we obtained from ground state calculations is the electronic 

density. It corresponds to the probability of finding an electron in the real space inside the 

crystal, and can be used either to visualize atomic bonds and orbitals or to estimate the 

changes in such bonds and orbitals due to perturbation of the system, by pressure, phase 

transition or atom displacement. 

We calculated the electronic density for crystalline Si and for the relaxed Si:P diamond cell. 

Results for crystalline Si are shown in figure III.4. The isosurface of constant electronic 

density PN = 0.07 was chosen to visualize the well-known tetrahedral bonds between Si 

atoms. 
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Figure III.4. Electronic density distribution in real space in a silicon cell. The isosurface is 

drawn along PN = 0.07.

Figure III.5. Electronic density distribution in real space in a Si cell (left) and in a Si:P cell 

(right). The electronic density is drawn along the 111 crystallographic plane passing through 

the site of the P atom.
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From the data presented in figure III.4, one can find the characteristic positions of the Si 

atoms in a diamond cell by imagining a Si inside each hollow spot to where the cylindrical-

shaped density isosurfaces point. This result shows the well-known property of a Si atom 

inside a crystal cell, forming four convalescent π − bonds with its neighbors. The situation is 

different when one Si atom is substituted by P atom. Phosphorous has the valence of five, 

therefore it forms four covalent bonds with neighboring Si atoms, but one unbound electron in 

the ground state is delocalized around the P atom, as can be seen in figure III.6 as a 

tetrahedron – shaped density cloud for PN = 0.07. 

Figure III.6. Electronic density distribution in real space in Si:P diamond cell. The isosurface 

is drawn along PN = 0.07. Phosphorous atom is placed in the center.

The changes in density introduced by P doping are also presented in figure III.5, where the 

electron density is represented on a plane parallel to the 111 crystallographic plane, with the P 

atom placed in the center. In the left panel of the figure, the lower part of the tetrahedron 

formed around the Si atom is clearly visible and the density is evenly distributed, whereas the 

density increase coming from the P atom is centered on its site. 
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Other results obtained in our study, including potential changes and band structure, were 

presented in Chapter I of this work. 

������
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Optical phenomena are usually the interactions between the electromagnetic wave and matter. 

The energy range usually associated with optical part of the spectrum is from  

E = 10
-3

 eV (infrared) to E =10
2 

eV (ultraviolet). Optical phenomena form the base for many 

applications of semiconductors, such as photovoltaic cells, light-emitting diodes, 

semiconductor lasers and photodetectors. 

Basic processes associated with the light-matter interaction are wave reflection and 

absorption. Additionally, wave dispersion and luminescence can be observed. When the 

penetrating light is absorbed and then reemitted with a different frequency, or transformed 

into heat and reemitted, we deal with photoluminescence. Dispersion is mainly associated 

with inhomogeneous areas in the medium. If dispersion is associated with acoustic phonons, 

we have the Brillouin dispersion, and if it is associated with optical photons, it is the Raman 

dispersion. In the general approach, the strength of such effects (reflection, dispersion, 

luminescence, etc.) depends on the level of interactions involved. Therefore, the reflection 

and absorption are usually the strongest, since they depend only on the lowest-level 

interaction, dispersion and luminescence both depend on two such interactions, and 

consequently are weaker. Higher level effects, needing even more basic interactions to occur 

simultaneously, are usually the weakest (such as non-linear interactions). 

To understand the interaction between light and matter, we will begin by analyzing the 

Maxwell equations [10]: 

� � �� � ������ (III.2.1)

� � �� � ������ � ��� (III.2.2)

� � �� � 	� (III.2.3)

� � �� � �� (III.2.4)

material equations: 

�� �   !�� � "� � #$��� (III.2.5)
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and Ohm’s law: 

�� � &��� (III.2.7)

We assume a non-magnetic media (µ = 1), at least for optical frequencies, and no static 

charge, ρ = 0. In the general case, the dielectric permittivity is a function of frequency, 

ε = ε(ω), therefore we shall call it the dielectric function. The static dielectric constant is then 

equal to εs = ε(0) and ε� = ε(�) is the high frequency limit of dielectric permittivity.  

It is easy to see from equations (III.2.1) to (III.2.4) and (III.2.7) that the wave equation can be 

expressed as follows: 

'()�� �  �(����( � & ! ����� � (III.2.8)

Assuming the plane wave propagating in the 0X direction, we are looking for the solution of a 

kind: 

��"�* +$ � ��",* -$./"01234$� (III.2.9)

where ω is the wave frequency and q = 2π/λ is the wave number. Upon combining equations 

(III.2.8) and (III.2.9) we obtain: 

�'(-(�� � � 5 ",$,( � 6 &, ! 7� (III.2.10)

and the dispersion relation: 

-( �  ",$,('( � 6 &, !'(� (III.2.11)

In the special case of a non-conductive medium we obtain: 

-( �  ",$,('( � (III.2.12)

In a conductive medium, equation (III.2.11) can be written in the following manner: 

-( � 5 ",$ � 6 & !,7,('( � (III.2.13)

where the expression in brackets has the meaning of complex dielectric function:  8",$ �  ",$ � 6 & !, �  9",$ � 6 (",$� (III.2.14)

The real and imaginary parts of the complex dielectric function are linked to the Kramers-

Kronig relations: 
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 9",$ � � � :;<�= ,> (",>$,>( � ,(
?
! @,>A� (III.2.15a)

 (",$ � �:; B�=  9",>$ � �,>( � ,(?
! @,>C� (III.2.15b)

and the relation: 

= , (",$@,?
! � ;: ,D(� (III.2.16)

where ,D � EFGHIJK is the electronic plasma frequency, n is the electron density and e, m are 

electron charge and mass. For frequencies ω >> ω’, from equations (III.2.15a) and (III.2.16) 

we obtain: 

 9",$ � � � ,D(,(� (III.2.17)

The above equation is known as the Drude relation, which describes the modification of ε due 

to free carriers for metals and non-polar semiconductors. 

Introducing the complex refractive index defined as ñ = n+iκ that obeys the following: 

LMN",$O( �  8",$� (III.2.18)

we obtain the following expressions for the real and imaginary parts of the dielectric function: 

M( � P( �  9� (III.2.19)

:MP � & !, �  (� (III.2.20)

Combining equations (III.2.18) and (III.2.13) and inserting the product to equation (III.2.9) 

gives: 

��"�* +$ � ��!./QRN31S 234T � ��!./QR31S 234T.2/QU31S T� (III.2.21)

The electric field intensity decreases along 0X axis according into the following rule: 

VW X��!.2/QU31S TY( W.2/Q(U31S TW.2Z1� (III.2.22)

where α is the absorption coefficient defined as: 

[ � :,P' � , ('M � &' !M� (III.2.23)

It can be seen that ε2 is responsible for absorption of the wave, while the connection between 

ε2 and real σ indicates that the energy is transferred from the wave to free carriers in the 
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material. At the border of two materials electromagnetic wave can be reflected or transmitted. 

We can constitute the amplitude reflection and transmission coefficients for s polarization (TE 

polarization, E vector in the y-z plane): 

\] � M9 ^_` a/ � M( ^_` a4M9 ^_` a/ � M( ^_` a4 � (III.2.24a)

�] � :M9 'bc a/M9 'bc a/ � M( 'bc a4 � (III.2.24b)

and for p polarization (TM polarization, H vector in the y-z plane): 

\D � M( ^_` a/ � M9 ^_` a4M9 'bc a4 � M( 'bc a/ � (III.2.25a)

�D � :M9 'bc a/M9 'bc a4 � M( 'bc a/ � (III.2.25b)

The power reflection coefficient is linked to the amplitude coefficients in the following way: 

d � e\(e� (III.2.26)

And since the light travels at a different speed in both media the power transmission 

coefficient T is equal to: 

f � M( 'bc a4M9 'bc a/ e�e� (III.2.27)

where θi and θt are the incident and refracted angle in both media, respectively. The above 

formulas are known as the Fresnel equations [11]. 

�����������
�����
�������������
���
����

The Harmonic Oscillator approximation (HMO) or Lorentz model is a classical model which 

assumes that EM wave travels through a medium composed of oscillating dipoles. All forces 

are isotropic and the damping strength is proportional to the oscillator amplitude. If an 

oscillator with mass m, charge e and resonant frequency ωg is under the influence of an 

electric field E = E0e
iωt

 imposing oscillations in a medium with a damping coefficient Γ, the 

motion equation of such an oscillator takes the following form: 

g+h � gi+j � g,k(+ � .�!./34� (III.2.28)

By solving the above equation for x we obtain: 

+ � .�!g .2/34,k( � ,( � 6,l� (III.2.29)
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The current density resulting from the oscillator’s motion is then equal to: 

m � .n+j � (III.2.30)

where N is the number of oscillators in a unit of density. The complex conductivity is then 

expressed as: 

&N � m� � n.(g 6,,k( � ,( � 6,l� (III.2.31)

if separated into real conductivity and electric susceptibility it becomes: 

& � n.(g ,(io,k( � ,(p( � ",l$(� (III.2.32)

# � n.( !g ,k( � ,(o,k( � ,(p( � ",l$(� (III.2.33)

and consequently the complex dielectric function is: 

 � � � n.( !g �,k( � ,( � 6,l� (III.2.34)

If the medium is composed of many oscillators with different resonant frequencies ωg, it is 

necessary to incorporate the addition of each oscillator to the dielectric function: 

 � � � n.( !gq rs,s( � ,( � 6,lss � (III.2.35)

where N is the number of oscillators and fl is the strength associated with an oscillator l. The 

sum of all oscillator strengths must be equal to 1:

qrss � �� (III.2.36)

In such a case it is often more convenient to express the equation (III.2.35) as follows: 

 � � �q t!s(,ks( � ,( � 6,lss � (III.2.35)

where C0l is the amplitude of the l
th

 oscillator. The typical behavior of the function ε around 

its critical energy Eg (or resonant frequency ωg) is shown in figure III.7. 

In the case of Si, there are three possible critical energies between E = 1.0 eV to E = 5.2 eV. 

The critical energies are associated with following transitions: Eg1 = 3.34 eV is the direct band 

gap in Si at the Γ point, Eg2 = 3.62 eV is the energy needed to directly create an electron – 

hole pair in silicon (including all the average energy losses) [12,13] and Eg3 = 4.43 eV that 

corresponds to the second direct transition at the Γ point [14]. 
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Figure III.7. Real and imaginary parts of a complex dielectric ε function near its critical 

energy Eg.

The classical Lorentz oscillator, while having the ability to predict qualitative information 

about the material over the whole energy range, including the fundamental absorption edge, 

static conductivity and high frequency limit, often does not provide an accurate representation 

of real semiconductors in a specified energy range. For the case of Si, assuming only three 

possible critical energies the theoretical representation of experimental data is rather poor. As 

can be seen in figure III.8, the steep increase of the imaginary part of ε, typical for crystalline 

Si is not well reproduced. Also the region between E = 3.5 and 4.4 eV around second critical 

energy Eg2 = 3.62 eV is described with low accuracy. Although one may argue that from 

quantum point of view there are more than three distinct transition energies in the area, 

resulting from Heisenberg rule and electronic band structure of the crystalline body, the main 

influence to the experimental dielectric function comes from those three direct transitions. 

Also, the broadening parameter Γ partially compensates for the additional transitions; 

therefore use of more than three oscillator energies between 1.5 eV and 5.2 eV has no 

physical justification. 
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Figure III.8. Classical Lorentz model for silicon in energy range E = 1.5 to 5.2 eV, with three 

oscillator energies. The classical model offers a good qualitative representation and long-

range predictability, but lacks accuracy.

Nevertheless, in most real cases an accurate representation of experimental data is preferred 

over long-range predictability; therefore we conducted a test where we assumed several more 

critical frequencies for oscillator transitions. With eight possible transitions at non-physical 

characteristic energies, the HMO approximation becomes much more accurate, but no longer 

has its predictive ability in the studied energy range, since some of the parameters C0, Γ and 

ωg no longer can be associated with physical quantities. The critical energies used in the fit 

shown in the figure III.9 are Eg1 = 3.369, Eg2 = 3.47, Eg3 = 3.605, Eg4 = 3.779, Eg5 = 3.988, 

Eg6 = 4.238, Eg7 = 4.452 and Eg8 = 5.049 eV. As can be seen in figure III.9, even doubling the 

number of critical energies in the energy range E = 1.5 to 5.2 eV, does not yield the accuracy 

necessary for precise predictions of device performance. Especially the areas around the first 

direct band gap are still not represented well enough with plenty of artefacts. Also, the 

absorption (resulting from ε2) below E = 3.34 eV is somewhat overestimated, sometimes even 

doubled. 
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Figure III.9. Eight-oscillator fit of the crystalline Si dielectric function. Even when the 

number of resonant frequencies is doubled by introducing unphysical transitions, the accuracy 

of the fit is still poor. 

���������� !�����"�������
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�
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The MIND structures present a highly P-doped upper emitter, as was shown in Chapter II, 

with a doping density often reaching the phosphorous solubility level in silicon. In such a 

case, we make the following three observations: 

− free-carrier effects coming from the P-doping cannot be underestimated, and such are 

not taken into account in classical HMO model 

− for a rigorous treatment of the electromagnetic field propagation in such a structure, 

where the doping level changes by two orders of magnitude over a sub-wavelength 

range (~200 nm), a predictive model is necessary 

− to obtain such level of precision and maintain the predictive capabilities, the classical 

HMO model is not sufficient. 
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Free-carrier effects in non-polar semiconductors and metals are usually well approximated by 

renowned Drude model. In this approximation carriers are treated as non-interacting gas of 

uncharged particles that can collide only with relatively immobile ions. 

In this approximation we are looking for a solution of equation (III.2.28) far away from any 

transitions, and thus we find: 

+ � .�!gu .2/34,( � 6,l� (III.2.36)

The polarization is expressed as: 

� � �n.+ � �n.(gu �!.2/34,( � 6,l� (III.2.37)

where N is the free-electron density. Since P = (ε-1)ε0E, we can write: 

 8 � � � n.(gu ! �,( � 6,l� (III.2.38)

After some rearrangements we find a more convenient formula incorporating the Drude 

parameters: 

 8 � � � n.( !gvD4gG,( �� � 6 �wx,� (III.2.39)

where τD is the Drude damping time, describing the mean time at which electrons collide with 

immobile ions, mopt is electron optical mass and me is the rest mass of the electron [15]. 

Because in material bodies and at higher densities electron-electron interactions can no longer 

be neglected, τD does not have any physical meaning and is not linked to a real scattering 

time. 

To enhance the accuracy of classical HMO, we followed the approach proposed by the group 

of Aspnes [16]. First, we will show that equation (III.2.35) can be expressed in the following 

manner without loss of generality: 

 � � �q t!s(o,ks �, � 6,lsp � o,ks � , � 6,lsps � (III.2.40)

Given that HMO expressions are known to give reasonable representations of the dielectric 

response of semiconductors above the fundamental absorption edge [17,18], the main 

problem to be addressed is the suppression of non-physical optical absorption in the region of 

transparency or near-transparency. We begin by noting that equation (III.2.40) can be 

generalized to include the effects of k-space integration on both lineshape and broadening
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parameters by changing the orders of the poles and including phase factors. For a single 

critical point the result is: 

 �  ? � t!o./yo,ks � , � 6,lpz � .2/yo,k � , � 6,lpzp� (III.2.41)

where C0 is the single critical point amplitude, β is the phase of the pole and µ is the pole 

order. The rest of the parameters retain their usual meaning. The contribution of higher – 

lying poles is represented by ε�. Equation (III.2.41) satisfies causality (all poles lie in the 

lower half plane), reality ε(ω)=ε(−ω), and is Kramers – Kronig consistent (converges as 

ω�� as long as µ�0). However, the plasma sum rule is not satisfied since the expression 

does not approach �,{:,: when ω��. The latter is not a limitation for a representation 

intended to be used only over a limited energy range, such as in our case. 

After expanding equation (III.2.41) to first order around ωg we obtain: 

 �  ? � t! 5:d.|./yo,ks � , � 6,lpz} � :6%,Vg X.2/yo,k � , � 6,lpz29Y7� (III.2.42)

To reduce the effect of Γ for low energies we subtract the second term from equation 

(III.2.41). After this operation, the resulting equation is no longer Kramers – Kronig 

consistent as it diverges for ω��. If we also subtract the zero-frequency limit of equation 

(III.2.41) from equation (III.2.42), all contributions are suppressed to second order in ω. This 

allows the expression to be divided by ω2
, recovering Kramers – Kronig consistency for µ < 0

while retaining suppression of ε2 in the region of transparency. The complete expression is: 

 �  � �qt!~,( X./y�o,k~ � , � 6l�pz� � .2/y�o,k~ �, � 6l�pz�
~ � :d.o.2/y�o,k~ � 6l�pz�p �� :6%~,Vg Q.2/y�o,k~ � 6l�$pz�29TY�

(III.2.43)

Equation (III.2.43) has the capability to accurately model optical properties of semiconductors 

in a limited energy range, with a precision excelling the classical HMO model by several 

orders of magnitude. The results for crystalline Si are shown in figure III.10. 
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Figure III.10. Modified Lorentz (equation III.2.43) fit for cSi. The goodness for this 

particular fit was R = 0.9998. Experimental data taken from [19]. 

To properly address the problem of the inhomogeneous doping distribution in MIND 

structures, each of the model parameters C0, Γ, β, m and ωg must become a function of dopant 

density Nd and free-carrier effects must be incorporated. In such a case, the complete 

expression for the dielectric function for any P-doping density between intrinsic and 

maximum doping level (determined by solubility [19]) becomes: 

 ",*n�$ �  � �qt!~"n�$,( X./y�"F�$o,k~"n�$ � , � 6l~"n�$pz�"F�$
~� .2/y�"F�$o,k~"n�$ � , � 6l~"n�$pz�"F�$

� :d. Q.2/y�"F�$o,k~"n�$ � 6l~"n�$pz�"F�$T �
� :6%~"n�$,Vg Q.2/y�"F�$o,k~"n�$ � 6l~"n�$pz�"F�$29TY
� nG2�.( !gvD4gG,( �� � 6 �wx,�

(III.2.44)
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However, determining the functional dependency of model parameters from solid state theory 

is quite challenging and because of introduced modifications, can only be done to some 

extent. Therefore we determined the tendency for each parameter, resulting from the changes 

in physical quantities they represent or are associated with.  

Parameters   
Doping concentration Nd [1/cm3] 

1*1014 2.30*1019 7.70*1019 2.30*1020 7.70*1020 2.30*1021

C1 69.56 68.1 65.53 62.1 57 50.62 

C2 239.3 316.5 343 335.7 325.3 311.9 

C3 92 89 86 83 77 66.88 

Γ1 0.09775 0.12 0.1353 0.1582 0.2045 0.3098 

Γ2 0.361 0.345 0.3408 0.3396 0.346 0.381 

Γ3 0.2316 0.2801 0.3042 0.3264 0.3668 0.4594 

β1 0.3582 0.5648 0.63 0.6465 0.596 0.5 

β2 0.307 0.089 0.03906 0.03642 0.06536 0.1675 

β3 0.004174 0.1891 0.3238 0.4878 0.6708 1.001 

|µ1| 0.6976 0.7328 0.7501 0.7685 0.8193 0.9533 

|µ2| 0.4398 0.3149 0.2966 0.3108 0.3331 0.3743 

|µ3| 1.141 1.244 1.319 1.376 1.447 1.552 

Eg1 3.368 3.356 3.351 3.35 3.35 3.35 

Eg2 3.654 3.621 3.604 3.592 3.606 3.636 

Eg3 4.287 4.285 4.28 4.263 4.239 4.2 

R-square 0.9998 0.9999 0.9999 0.9999 0.9999 0.9997 

SSE 1.0909 2.2556 1.4831 0.9643 0.8062 0.6568 

Table 1. Parameters used in the three-oscillator model for five doping concentrations Nd. 

Goodness of fit (R) and Sum of Squared Errors (SSE) are presented for each doping density. 

The more detailed description of this study can be found in one of our recent papers [20] and 

will be only briefly mentioned here.  
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Figure III.11. Evolutions of oscillator amplitude C0, broadening parameter Γ and critical 

point energy Eg versus doping density are presented on graphs (a), (b) and (c), respectively. 

The lower two panels show the changes of the pole order |µ| (d) and the pole phase factor β
(e) versus doping concentration are presented. Tendency lines were obtained by calculating a 

piece-wise polynomial for each pair of points. 

In the most general case, the oscillator amplitude C0 decreases with increasing doping 

concentration because of the additional defects and lattice disturbances caused by the 

introduction of an alien atom, while the broadening parameter Γ tends to increase for the same 

reasons. The critical point energy Eg (or frequency ωg) shows a slight shift towards lower 

energies due to the renormalization of the band structure caused by an additional free-carrier 

population originating from doping and state-and-band filling. It has been stated before that 

the condition µ < 1 is necessary to satisfy Kramers – Kronig relations and we expect the pole 
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order µ to decrease as the doping density increases. This is because the associated oscillator 

strength becomes relatively weaker, while the phase factor |β| should increase with doping 

concentration due to the increased fraction of Brillouin Zone over which band transitions take 

place. As can be seen in figure III.11, the parameter |µ| varies similarly as the corresponding 

broadening coefficient Γ.  

Parameters corresponding to an oscillator with critical energy Eg � 3.62 eV have a slightly 

different behaviour than predicted. This might be due to additional mechanisms at this 

transition that are not present for transitions at Eg = 3.38 and 4.29 eV. Parameters of the three-

oscillator model (for five different doping densities) are listed in Table 1. 

Figure III.12. Simulated (solid line) and experimental (points) data for different P-doping 

concentrations. 

The model reproduces the experimental results from reference [19] very accurately for the 

whole energy range from E = 1.0 to 5.5 eV and for the whole doping density range Nd = 10
14

to 2.3�10
21

 cm
-3

, where the first value corresponds to intrinsic, float-zone Si and the last value 

is the over-solubility level of P in Si at 300 K, obtained by a special implantation technique 

presented in the work of Jellison. Comparisons of experimental data with the functions 

predicted by our model are shown in figure III.12. Determination of parameters evolution and 

their functional dependence for Nd allows prediction of dielectric function for any given 

doping concentration, not only those measured experimentally. Results of such predictions are 

shown in figure III.13. 
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Figure III.13. Imaginary part Im(ε) of complex dielectric function of Si for the whole doping 

range Nd = 10
14

 to 2.3�10
21

 cm
-3

. Free-carrier effects become visible at low energies and for 

very high doping densities. 

The model presented here is able to determine changes in the dielectric function 

independently of the lattice disturbance, i.e., in the case of injection or excitation of the dense 

free-carrier gas. As can be seen in figure III.14 (a), the influence of free-carriers on the 

dielectric function appears mainly at low energies, being negligible in the range around the 

direct transition peak at E = 3.4 eV and above, where the most important role is played by 

lattice disturbances and effects introduced by doping. In figure III.14 (a), one can clearly see 

that the free-carrier related Drude part of the dielectric function that is present for energies 

E = 1-3 eV for the densities studied, is mainly responsible for the changes of reflectivity. 

However, it has little or no significance around the main transition peaks. For the highest 

presented density N = 4�10
21

 cm
-3

, one can observe the appearance of the so-called plasma 

minimum around E = 1.1 eV. This minimum in reflectivity depends on carrier density N, 

carrier optical mass mopt and carrier damping time τ and tends to move towards higher 

energies when N increases and/or τ and mopt decrease. For higher free-carrier densities, 
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ultimately near-metallic values, the reflectivity reaches values close to unity. One has to keep 

in mind that the existence and measurement of such high carrier densities in Si is possible 

only on a femtosecond-time scale [21, 22]. 

Figure III.14. Simulated reflectivity R (a) for different P-doping concentrations (solid curves) 

and corresponding density of excited free-carriers (dot-dashed curves). Simulated response of 

Im(ε) for free-carrier densities covering the range from intrinsic to near-metallic (b). 

Reflectivity changes due to appearance of an additional free–carrier population are described 

in detail in the following chapters of this work. 
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There are many optical models that allow rigorous treatment of electromagnetic wave 

propagation through different types of media. The most widely used approaches are the Finite 

Difference Time Domain (FDTD) method [23,24], the Beam Propagation Method (BPM) 

[25], the Rigorous Coupled Wave Analysis (RCWA) [26] and the Transition Matrix 

Approximation (TMA) [27,28]. In most cases, those models are designed to accurately 

address the problem of field distribution and wave propagation in dielectrics and weakly 

absorbing media, but with some modifications they are also capable of treating complex 

problems in highly conductive media [29].  

While most of those approaches are capable of analyzing EM propagation in one, two and 

three dimensions, transitions to higher dimensions do not often come in pair with optimization 

for dedicated purposes. Since we are mainly concerned with layered structures with no 

obvious distinctive features inside each layer, our problem can be reduced to electromagnetic 
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wave propagation through a 1D structure. MINDs, apart some scattering effects that occur on 

the surface and at interfaces, are plain layered structures and can be accurately modeled with 

such 1D approach. 

As a numerical tool we have chosen the TMA, and we will follow the introduction presented 

in highly renowned work of P. Yeh [27], with some slight modifications suitable for our case. 

Let us start by introducing the expression for a wave propagating inside a thin, homogeneous 

layer: 

�"+* �$ � �"+$./y�� (III.3.1)

The electric field distribution in each homogeneous layer (see figure III.15) can be expressed 

as the sum of the incident and reflected plane waves. As a result, the amplitudes of the field 

inside the n
th

 layer can be represented as a column vector: 

5�R�R7� (III.3.2)

We designate the amplitudes at the beginning of the layer with prime, while non-primed 

amplitudes mark the field at the end of a layer. As a result, the field distribution in the same 

layer can be written as: 

�"+* �$ � o�R� ./��*�1 � �R�.2/��*�1p./y�� (III.3.3)

Figure III.15. Schematic representation of a stationary electromagnetic field propagating in a 

1D medium composed of n arbitrary layers. 

with: 

�1*R � �XQ,' TMNRY( � �(�9�(� (III.3.4)

and the following relation between vectors A’, B’ and A, B due to propagation in one layer is: 
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�R � �R � �R� ./��*��� � �R�.2/��*��� � (III.3.5)

The column vectors are not independent of each other, but are related through the continuity 

equations at the interfaces. In fact, only one vector can be chosen arbitrarily. In the case of TE 

waves (s polarization, E vector in y-z plane), imposing continuity of E and �E/�x at the 

interface leads to: �R � �R � �R�9� � �R�9�6�1*R"�R � �R$ � 6�1*R�9"�R�9� � �R�9� $� (III.3.6)

By eliminating the primed vectors A` and B`, a matrix equation: 

��R�9�R�9� � �R ��R�R� � Q� �' @T ��R�R�� (III.3.7)

is obtained. The M matrix elements are as follows: 

� � ./��*�����:./��*������� � �1*R./��*�����:�1*R�9./��*������� � (III.3.8a)

� � .2/��*�����:./��*������� � �1*R.2/��*�����:�1*R�9./��*������� � (III.3.8b)

' � ./��*�����:.2/��*������� � �1*R./��*�����:�1*R�9.2/��*�������� (III.3.8c)

@ � .2/��*�����:.2/��*������� � �1*R.2/��*�����:�1*R�9.2/��*�������� (III.3.8d)

The link between amplitudes in the first and last layer, represented by their column vectors is 

given by a matrix TM: 

��R�R� � �9�( ��R ��9�9� � f� ��9�9�� (III.3.9)

In most cases, it is more convenient to declare only the amplitude of the incident wave in the 

first layer A1, and to set the amplitude of the reflected wave in the last layer to zero Bn = 0, 

which equals semi-infinity. In such case, the relations between the new column vectors are as 

follows: 

��R�9� � Qc9 c(c� c�T � �� ��9�R�� (III.3.10)

where the matrix SM is related to the matrix TM by:

�� � �� � � � '@ �@� '@ �@�� (III.3.11)
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At this point total reflectivity and transmittance of a given structure can be calculated by 

relating the amplitudes of waves propagating in the first and last layer to reflection and 

transmission coefficients. Then, the field reflection and transmission coefficients are equal to: 

\ � ��9�9�� (III.3.12a)

� � ��R�9�� (III.3.12b)

and associated power reflection and transmission coefficients are: 

d � \(� (III.3.13a)

f � MNRMN9 �(� (III.3.13b)

Column vectors representing amplitudes of the field in each layer of the structure can be 

calculated by going back to the step described by equation (III.3.9). 

In the case of TM waves, elements of the MTM matrix are significantly different from those in 

the TE case: 

��� � ./��*�����:./��*������� �  R�9�1*R./��*�����: R�1*R�9./��*������� � (III.3.14a)

��� � .2/��*�����:./��*������� �  R�9�1*R.2/��*�����: R�1*R�9./��*������� � (III.3.14b)

'�� � ./��*�����:.2/��*������� �  R�9�1*R./��*�����: R�1*R�9.2/��*������� � (III.3.14c)

@�� � .2/��*�����:.2/��*������� �  R�9�1*R.2/��*�����: R�1*R�9.2/��*�������� (III.3.14d)

By definition, the Poynting vector is given by: 

  � ¡ �¢� (III.3.15)

and its time-averaged value is given by the following: 

£ ¤ � �:d.o¡¥ � ¢¥ up� (III.3.16)

The energy density in non-magnetic materials is given by: 

¦ � �: "¡ � § � ¢ � ¨$� (III.3.17)
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The above formalism was implemented in the Matlab code which allows throughout analysis 

of 1D dielectric-semiconductor structures composed of an arbitrary number of layers. The 

core of the code, responsible for the TMA formalism, is presented below: 

% ------------------------------------- %
% NUMBER OF LAYERS - modify also parameter d
m=4;
% ------------------------------------- %
% Setting layer thickness
d=[100 100 100 100];
% Wavelength
l=300;
eps(1)=1;
eps(2)=2.25+0.1i;
eps(3)=4.5+2.2i;
eps(4)=1;
mi=1.0; 

for j=1:m
% Refraction index
n(j)=sqrt((real(eps(j))+sqrt((real(eps(j)))^2+(imag(eps(j)))^2))/2)+1i*sqrt
((-real(eps(j))+sqrt((real(eps(j)))^2+(imag(eps(j)))^2))/2);
% Speed of Light in each layer
c(j)=3.0e8/real(n(j));
% Angular frequency    
w(j)=2*pi*c(1)/l;
end

% Resolution
res=100;
% Amplitude of waves in each layer, known only A(1,1)&A(2,m) = incident
% wave & outgoing wave
for j=1:m
A(1,j)=0.0;
A(2,j)=0.0;
tetha(j)=0.0;
end
% Amplitude of the incident wave
A(1,1)=1.0;
% Incident angle (in degrees)
tetha(1)=15*pi/180.0;

% Mode selection
reply=input('Choose mode TE=1, TM=2 ');
disp(' ')
if reply==1
    mode=1;
else
    mode=2;
end

% Wavevector calculation
for j=1:m
k0(j)=2*pi*n(j)/l;
end
kx(1)=k0(1)*cos(tetha(1));
kz(1)=k0(1)*sin(tetha(1));
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% Determining if there is total internal reflection and further calculation
% of wavevector components
for j=1:m-1
         k0(j+1)=2*pi*n(j+1)/l;
         kz(j+1)=kz(j);
         if ((n(j)*sin(tetha(j))/n(j+1))>1)
            kx(j+1)=sqrt(k0(j+1)^2-kz(j+1)^2);
            disp('TIR')
         else
            tetha(j+1)=asin(kz(j+1)/k0(j+1));
            kx(j+1)=k0(j+1)*cos(tetha(j+1));
            disp('NOR')
         end
end
% Boundary points for layers
xb(1)=0.0;
      for j=1:m
        xb(j+1)=xb(j)+d(j);
      end
% Matrix element calculation for each layer transition
for j=1:m-1
    if mode==1
%     A
TM(1,1,j)=exp(i*kx(j)*xb(j+1))/(2*exp(i*kx(j+1)*xb(j+1)))+kx(j)*exp(i*kx(j)
*xb(j+1))/(2*kx(j+1)*exp(i*kx(j+1)*xb(j+1)));
%     B
      TM(1,2,j)=exp(-i*kx(j)*xb(j+1))/(2*exp(i*kx(j+1)*xb(j+1)))-
kx(j)*exp(-i*kx(j)*xb(j+1))/(2*kx(j+1)*exp(i*kx(j+1)*xb(j+1)));
%     C
      TM(2,1,j)=exp(i*kx(j)*xb(j+1))/(2*exp(-i*kx(j+1)*xb(j+1)))-
kx(j)*exp(i*kx(j)*xb(j+1))/(2*kx(j+1)*exp(-i*kx(j+1)*xb(j+1)));
%     D
      TM(2,2,j)=exp(-i*kx(j)*xb(j+1))/(2*exp(-
i*kx(j+1)*xb(j+1)))+kx(j)*exp(-i*kx(j)*xb(j+1))/(2*kx(j+1)*exp(-
i*kx(j+1)*xb(j+1)));
    else
%     A
TM(1,1,j)=exp(i*kx(j)*xb(j+1))/(2*exp(i*kx(j+1)*xb(j+1)))+eps(j+1)*kx(j)*ex
p(i*kx(j)*xb(j+1))/(2*eps(j)*kx(j+1)*exp(i*kx(j+1)*xb(j+1)));
%     B
      TM(1,2,j)=exp(-i*kx(j)*xb(j+1))/(2*exp(i*kx(j+1)*xb(j+1)))-
eps(j+1)*kx(j)*exp(-
i*kx(j)*xb(j+1))/(2*eps(j)*kx(j+1)*exp(i*kx(j+1)*xb(j+1)));
%     C
      TM(2,1,j)=exp(i*kx(j)*xb(j+1))/(2*exp(-i*kx(j+1)*xb(j+1)))-
eps(j+1)*kx(j)*exp(i*kx(j)*xb(j+1))/(2*eps(j)*kx(j+1)*exp(-
i*kx(j+1)*xb(j+1)));
%     D
      TM(2,2,j)=exp(-i*kx(j)*xb(j+1))/(2*exp(-
i*kx(j+1)*xb(j+1)))+eps(j+1)*kx(j)*exp(-
i*kx(j)*xb(j+1))/(2*eps(j)*kx(j+1)*exp(-i*kx(j+1)*xb(j+1)));
    end
end
% System matrix, calculating total field after all interfaces
B=[1 0;0 1];
for ii=1:m-1
    M=TM(:,:,ii)*B;
    B=M;
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end
TM(:,:,m)=M;

T1=TM(1,1,m);
T2=TM(1,2,m);
T3=TM(2,1,m);
T4=TM(2,2,m);
SM=[T1-T2*T3/T4 T2/T4; -T3/T4 1/T4];

% Amplitude after all interfaces
% Auxiliary vectors
A1m=[A(1,1);A(2,m)];
Am3=SM*A1m;
% Amplitudes after computation
A(2,1)=Am3(2);

for ii=1:m-1
    A(:,ii+1)=TM(:,:,ii)*A(:,ii);
end 
Ap=A;
for j=2:m
   A(1,j)=A(1,j)*exp(real(1i*kx(j)*xb(j)));
end
r=(abs(A(2,1)/A(1,1)));
R=abs(r)^2
t=(abs(A(1,m)/A(1,1)));
T=abs(n(m))/abs(n(1))*abs(t)^2
% Call field visualization subroutine
field
% End of code

Results of a typical simulation of any layered structure, and MIND structure in particular, can 

be performed for both monochromatic and/or for a given spectral range of incident 

wavelengths.  

Simulation for a monochromatic incident illumination yields E field distribution as a result, 

power and field reflectivity and transmission, R, r, T, t respectively and Pointing vector 

distribution in space as well as energy density distribution in space. 

Simulation for any given spectral ranges yields, in addition to data provided by 

monochromatic simulation, also spectral reflection and transmission coefficients. 

Results of both types of simulations for test structure shown in figure III.16, are presented 

below. Test structure is composed of six layers that are made of, looking from the direction of 

incidence: air, amorphous SiO2, crystalline Si, P-doped Nd = 10
20

 cm
-3

, amorphous Si, P-

doped Nd = 10
18

 cm
-3

 and two layers of crystalline Si, P-doped Nd = 10
16

 cm
-3

. The last 10 nm 

thick layer represents the base. Thicknesses of the layers are shown in figure III.16. 

Monochromatic simulations were performed for λ = 500 nm, while spectral simulations were 

performed for a wavelength range λ = 250 to 1250 nm. Results for both types of simulation 

for the test structure are shown in figures III.17, III.18 and III.19. 
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Figure III.16. An example of a simple MIND structure used for the test simulation. Layer 

thicknesses are shown for each of the layer, except for the layer of air (not shown), which has 

a thickness of zero. Light blue represents amorphous SiO2, and shades of violet and rose 

represent crystalline and amorphous Si, respectively. The bottom layer of 10 nm thickness is 

in fact treated as semi-infinite and represents the substrate. 

Figure III.17. Reflectivity R of the MIND test structure in the wavelength range λ = 250 to 

1250 nm for normal incidence. Thanks to the passivation of Si, the reflectivity is reduced in 

regards to non-passivated Si. The peak at λ = 370 nm corresponds to the first direct band gap.
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Figure III.18. Distribution of electric and magnetic fields Ey, Hz and Hx in test MIND 

structure shown in figure III.16 for λ = 500 nm. The energy density is shown in the lower

right. 

Figure III.19. Spatial distribution of the total time-averaged and normalized Poynting vector 

in MIND test structure for λ = 500 nm. Since the simulation is for the stationary case, the 

value of S decreases only in absorbing layers. 
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Crystalline, optical and electrical properties of crystalline silicon (cSi) have been extensively 

reported in the literature for almost 40 years and were summarized in previous chapters of this 

work. Crystalline silicon forms regular crystals of diamond structure that have an indirect 

band gap of 1.12 eV, which changes as the Fermi level moves up with doping, reaching 

1.17 eV for the heavily doped case, as was shown in Chapter I. Direct band gap in crystalline 

Si is equal to 3.4 eV, therefore every electron transition, such as resulting from photon 

absorption, between 1.12 and 3.4 eV has to be phonon-assisted.  

Optical properties of cSi and their changes as a function of doping concentrations have been 

presented earlier in this chapter, as well as the electronic structure of both pure and heavily P 

doped cSi. Amorphous silicon (aSi) however, exhibits completely different optical, electrical 

and structural properties that transform it into a brand new semiconducting material. The 

interface between crystalline and amorphous silicon produces some properties that are linked 

with the specific features of both materials.  

Even if amorphous silicon does not show a defined crystalline order, the placement of the 

atoms is not completely random. If we take crystalline Si as a starting material, there are 

many sites available for atoms in local energy minima, such as interstitial positions. These 

positions are usually unoccupied in good quality crystalline material, but when the crystal 

network is disturbed by doping or implantation, the foreign atoms cause some of the Si atoms 

to move to other positions, effectively distorting long range order and changing the phase of 

the material.  

Amorphous silicon has an effective band gap ranging between 1.54 to 2.08 eV [30], which 

produces a mismatch in both the CB and VB for both materials. The interface between aSi 

and cSi has been extensively studied in the literature [31,32], but its exact properties depend 

strongly on the origin and features of the amorphous phase itself [33,34] and the doping in 

both the cSi and aSi [35,36]. In the case of MINDs, both crystalline and amorphous silicon 

are n type, which determines Fermi level in both materials. Resulting approximate band 

structure of the interface is shown in figure III.20. 
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Figure III.20. Band structure of the aSi/cSi interface, after [37]. 

As can be seen on figure III.20, there is an effective barrier for holes caused by the aSi/cSi 

interface. The barrier height of Ebh � 0.4 eV is large enough to block transport of the minority 

carriers in the upper emitter in the junction direction. On the other hand, electrons experience 

a barrier of about Ebe � 0.15 eV, which combined with the extremely high degeneracy of the 

emitter, giving raise to the Fermi level to a point above CB around 0.1 eV. In these conditions 

the low barrier for electrons can be crossed, thanks to the thermal energy at room temperature. 

Amorphous silicon has also a different dielectric function than crystalline Si, and therefore a 

different absorption coefficient. This property makes an amorphous/crystalline interface an 

optically active area, due to the change in the optical impedance. A comparison of dielectric 

functions for both amorphous and crystalline silicon is shown in figure III.21. 
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Figure III.21. Dielectric function of amorphous and crystalline silicon. 

Amorphous silicon is created in MIND structures in a particular way, which results in a 

material somewhat different from the typical hydrogen-stabilized aSi:H. First of all, right after 

the amorphizing implantation there is no well-defined interface between the crystalline and 

amorphous phases; such an interface is created later by solid state epitaxy. Thermal 

processing sharpens the interface so that the transition between the crystalline phase and the 

amorphized phase becomes more distinct, however it is important to note that the positioning 

of the atoms in the aSi layer differs from those in stabilized aSi:H, and as a consequence one 

can assume that some electronic properties may be more sensitive due to abundance of the 

unsaturated and broken bonds (which would normally be saturated by hydrogen). 

Combination of above effects creates an extended aSi/cSi interface that does not exhibit the 

same properties over the same distance (for example strain or band structure) it is difficult to 

differentiate one material from the other. In such case, a material close to the interface does 

not have properties neither of crystalline nor amorphous silicon, but behaves as a medium that 

combines properties of both materials. The behavior of such materials can be approximated 

by the so-called Effective Medium Theory [38]. As the medium is composed of two different 

materials, one is treated as a host (described by a dielectric function εm) and other as an 
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inclusion phase (εi). In the literature, several mixing models can be found for the effective 

dielectric permittivity of such mixtures. Here we present only the ones that have gained the 

most attention. 

For the case of circular or spherical inclusions, prediction of the effective permittivity of a 

mixture εeff according to the Maxwell-Garnett mixing rule is given by [39]: 

 G©© �  K � :r K  / �  K / �  K � r" / �  K$� (III.3.18)

where f is the volume fraction occupied by the inclusion, that are randomly scattered in the 

matrix of the host material. The quasistatic nature of the mixture means that the wavelength is 

much larger that the inclusion diameter. 

Another famous mixing approach was presented by Bruggeman [40], given by the following 

formula: 

"� � r$  K �  G©© K �  G©© � r  / �  G©© / �  G©© � 	� (III.3.19)

It is possible to gather both of the above formulas into one equation, by introducing a 

dimensionless parameter v [41]. The general formula is presented below:  G©© �  K G©© �  K � ªo G©© �  Kp � r  / �  K / �  K � ªo G©© �  Kp� (III.3.20)

where for v = 0 we find Maxwell-Garnett formula, v = 1 gives the Bruggemann formula and 

v = 2 gives the Coherent potential approximation [42]. 

In modeling analysis power-law models are used quite often. These give the effective 

permittivity of a mixture as: 

 G©©y � r /y � "� � r$ Ky � (III.3.21)

where β is a dimensionless parameter [43]. Different mixing models predict different effective 

permittivity values for a given mixture, and each has different range of validity. Therefore 

bounds for maximal and minimal values for effective ε exist, where the loosest are the so-

called Weiner bounds [44]: 

 G©©*K«1 � r / � "� � r$ K� (III.3.22a)

and 

 G©©*K/R �  K /r K � "� � r$ /� (III.3.22b)
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For a statistically homogenous and isotropic mixture, other bounds have been generally 

accepted in the literature [45], based on a variational treatment of the energy functional for the 

mixture with the inclusions is distributed in three dimensions: 

 G©©*K/R �  K � r� / �  K � � � r� K �
(III.3.23a)

and 

 G©©*K«1 �  / � � � r� K �  / � r� /� (III.3.23b)

In the case of amorphous Si or the amorphous/crystalline interface, there might exist small 

areas where microcrystals of silicon are suspended in the amorphous matrix, giving validity to 

this kind of approximation [46]. 
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MIND structures, as introduced in Chapter II of this work, all share a similar conceptual 

design that influences their architecture. In the most general description, a stack of layers with 

thicknesses in the range of nanometers is introduced on the top of a crystalline Si wafer. 

These layers are in most cases ordered as follows: a passivation layer, made of SiO2, Si3N4 or 

Indium Tin Oxide (ITO), a heavily P-doped crystalline Si layer (cSi:P), a heavily P-doped 

amorphous Si layer (aSi:P) and a transition zone of P-doped crystalline Si.  

When analyzing optical and electrical properties of such structures several factors have to be 

taken into account. It is convenient to begin with the optical properties when one intends to 

perform rigorous analysis/optimization of the solar converters, since the interaction of light 

and active areas occur first in the photovoltaic process, followed by subsequent carrier 

generation. In any solar cell, the ultimate goal for structure optimization is the following – if 

the total flux Φ = R + T + A can be decomposed into reflectivity, transmission and absorption 

components, an optimized, theoretical solar cell should minimize R and T while maximizing 

A, and all of A should be limited to the active area(s). In the case of MIND structures, the 

whole Si substrate is also an active area, and its total thickness is dtot =1 mm exceeds the 

penetration depth for band gap energy photons several times. With the transmission T = 0, the 

remaining components R and A of the total flux can be estimated. It is easy to see that 

minimizing R will directly impact A and therefore the overall power conversion efficiency of 

the cell.  
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Figure III.22. Reflectivity of a typical MIND structure for different passivation thicknesses. 

The passivation layer is made of amorphous SiO2. 

Total reflectivity of a MIND structure can be dependent on two major factors: the geometry 

of the layers and the fraction of surface covered by the top electrodes. Electrodes cause an 

effect called shading, which reduces cell performance by creating inactive areas in the cell, 

directly below them. Apart from shading, the reflectivity of the electrodes affects the 

experimental value of total R, which is also strongly dependent on sample positioning and 

spot size. This effect can lead to serious systematic errors in the further analysis.  

The part of the reflectivity related to the structure geometry can be then influenced by the 

passivation layer, the emitter thickness and amorphous layer thickness. We performed various 

simulations involving varying thicknesses and composition in each of those layers. If it is not 

stated otherwise, the thicknesses are as follows: passivation – 119 nm, upper emitter – 

163 nm, aSi – 10 nm and substrate which in simulation is assumed to be semi-infinite. We 

have found that the passivation layer reduces the value of R in comparison with non-

passivated Si, but does not shift the interference fringes. Results for both amorphous SiO2 and 

Si3N4, for thicknesses d = 5-300 nm, are shown in figure III.22 and III.23.
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Figure III.23. Reflectivity of a typical MIND structure for different passivation thicknesses. 

The passivation layer is made of amorphous Si3N4. 

The optimal passivation thickness is dependent on the material used, and for aSiO2 it was 

found to be between 95 and 115 nm. In the case of Si3N4, the optimal passivation thickness 

was thinner, between 80 and 100 nm. 

The influence of emitter thickness and amorphous layer was found to be completely different. 

As the emitter thickness increases, the interference fringes do not change their intensity but 

are shifted towards longer wavelengths. It is difficult to estimate the optimal thickness for an 

emitter, because of the complex requirements that need to be met in order to create the 

photovoltaic metamaterial, as introduced in chapter II. The emitter induces the strain field 

necessary for the PV metamaterial to form, the entire emitter area is inactive due to the barrier 

for holes that comes along the aSi layer. Nevertheless, putting all those complex connexions 

aside, from optical point of view the lowest reflectivity is obtained for thicknesses between 

150-170 nm, for the visible spectral range.  

The amorphous layer, which is the key component in PV metamaterial formation, has the 

strongest influence on the interference fringes and is in fact the reason behind their 

appearance. If an aSi layer is absent, R has exactly the same value as regular, heavily doped 

Si.  
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Figure III.24. Reflectivity of a typical MIND structure for different emitter thicknesses. An 

optimal thickness lies between 150 and 170 nm, if reflectivity only is taken into account. 

Figure III.25. Reflectivity of a typical MIND structure for different amorphous layer 

thicknesses. Interferences amplitudes increase very rapidly as the aSi thickness increases. 
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Changes in total R that depend on aSi thickness are the most complex of all layers. As the 

layer becomes thicker and better defined, the interferences increase in amplitude and are 

slightly shifted towards longer wavelengths. Interestingly, they oscillate around the mean 

value that is equal to the reflectivity of regular Si:P with equal doping. There is no easy 

answer regarding the optimal thickness of the amorphous layer, since the disadvantage 

resulting from increased reflectivity for some wavelengths can be compensated by more 

efficient secondary generation. This effect will be studied in more detail in the following 

chapters of this work. 
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The top electrode fingers are necessary for efficient charge collection in a solar cell, but from 

the optical point of view their presence is a drawback to the device overall performance. The 

average thickness of a silver electrode is around 500 nm, making it completely opaque for the 

UV-VIS-NIR photons (see figure III.26). The whole area of the cell that lies below is then 

inactive. There are ideas to either redirect the light so that it does not strike the electrode, or to

completely replace the metal by a conductive glass. Both concepts have proven useful in 

certain cases, but the first one only copes well for the normal incidence and also increases the 

uneven energy concentration in the active layer, therefore leading to even greater dependency 

on the intensity of the incident light. Replacing metal electrodes by conductive a glass copes 

well with the problem of dispersed light, but conductive oxides such as ITO are much more 

expensive that typical, non-conducting passivation layers and also involve a lot of dangerous 

chemicals during manufacture. Another problem is their worse electron transport properties in 

comparison to metals that lead inevitably to resistance losses and the presence of absorption 

in such layers. In order to reduce absorption losses, conductive glasses used as a passivation 

layers must be kept thin, which in turn increases their sheet resistance. Another problem is the 

work function mismatch, which is often less well aligned with the conduction band in Si as in 

the case of well fabricated silver contacts. 

On most of our MIND structures silver electrode fingers were used as top contacts, and for 

some test structures the SiO2 passivation layer was replaced by ITO conductive glass. For 

couple of structures, gold fingers were fabricated.  

We have shown earlier that the reflectivity of the structure can be accurately modeled, and the 

knowledge of the optical properties allows us to analyze the energy distribution inside the 
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structure. From this information more data can be derived, such as the Quantum Efficiency 

and short-circuit current. However, the simulation must take into account all parts of the 

device and be also comparable with the experiment. Therefore the influence of the electrodes 

on the measured reflectivity cannot be underestimated.  

Figure III.26. Reflectivity R and transmission T for a silver electrode deposited on Si. Red 

curves show the case when the electrode is non-passivated, orange curves show the case 

where the electrode was passivated with 119 nm SiO2. The thickness of the electrodes is 

500 nm. 

As can be seen in figure III.26, silver electrodes are completely opaque but their reflectivity is 

not always close to 100%, so the resulting measured reflectivity of the sample is dependent on 

two values of R, the structure and the electrodes, weighted by their surface ratio and light 

intensity distribution. In the simplest case, if the whole sample is uniformly illuminated, the 

weight ratio depends only on the ratio of the surface covered by the electrodes to the surface 

of the sample. For all MIND structures, the electrodes are always 100µm wide and 900µm 

apart. In more complex case, where the spot is smaller but the light intensity is still constant 

over entire illuminated area, the surface ratio changes. In figure III.27 (a) and (b), two white 

spots are shown that were used to measure the reflectivity of the samples with the help of 

integrating sphere. It is clear that the spot shown in figure III.27 (a) will yield a different R 

than that in (b), because the area covered by the electrodes is greater for the first one. Figure 

III.27 shows the difference in reflectivity obtained for different positioning of the spots. From 
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figures III.26 and III.27, it can be clearly seen that the electrodes increase the overall 

reflectivity for wavelengths longer than λ = 350 nm, but decrease the value of R by about 

10% for UV (λ > 350 nm). 

Figure III.27. Different spot sizes and their influence on the measured reflectivity. The same 

spot can produce different response, depending on the orientation (a and b) and also on the 

distribution of the intensity in the spot (c) which is particularly important for laser spots. 

Figure III.28. Simulated reflectivity of a MIND structure for normal light incidence and for 

different fractions of surface covered by electrodes. The sample passivated with 119 nm SiO2

(a) and non-passivated (b) is shown. 

Let us now consider the situation when the sample is illuminated by a light beam with an 

inhomogeneous intensity distribution, such as a laser beam. In such case, the influence of the 

electrodes on the measured reflectivity will be more complex, because the light intensity at 

any given point in space will add to the surface ratio to produce highly intensity-dependent 

and very position-sensitive result. In our simulation we assumed that the laser beam has 

Gaussian distribution of the intensity, described by the following equation: 
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where I0 is the amplitude, c is the position of the beam on the cell and b is the beam width at 

half maximum. We simulated reflectivity maps for monochromatic illumination in which the 

reflectivity of the electrodes was 100% and the structure reflected only 30% of the incident 

light. In the simulation, electrodes are 100 µm wide and are set 500 µm apart. 

Figure III.29. Simulated reflectivity maps for monochromatic illumination for different width 

of a Gaussian intensity distribution in a beam. It can be clearly seen that even quite focused 

beams (with b > 0.1) are not able to correctly determine the reflectivity of the structure itself 

and get parasitic increase from electrodes. 

For very large spots, obtained averaged reflectivity is constant, indicating that it can be 

approximated by a simple weight ratio dependent only on the relative surface covered by 

electrodes. For smaller spots however, the situation is more complex. Medium size spots 

show very strong sensitivity on the position on the sample, by are not able to properly probe 

neither the reflectivity of the structure nor the electrodes themselves, therefore analysis of 

experimental results obtained by such spots can prove to be challenging. Very focused spots 

can provide the information about the reflectivity of the structure and therefore information 

on the energy distribution inside the structure can be precisely modeled, which is of utmost 

importance for the Collection Efficiency (CE) calculation. 
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Having determined the overall structure reflectivity and transmission, we modeled the exact 

field distribution inside the structure as was mentioned in point 3 of this chapter. This allows 

us to estimate the Poynting vector, given by equation (III.3.16), which in turn contains 

information about the rate at which photons are absorbed in the structure. In the case of 

layered structures, this is not the simple coefficient of absorption of each layer, because 

internal reflectivities from the interfaces also add to the effect. The Poynting vector also 

provides information about absorption in each layer, which can be then used to estimate the 

amount of carriers generated in a given region of the device. In figure III.30, a distribution of 

the Poynting vector (S) and energy density U is shown for the test structure used in previous 

examples. It can be clearly seen that S in the first layer (SiO2) reproduces the reflectivity 

curve show in figure III.26. Also, the drop along y – axis (depth) occurs only in absorbing 

layers. It is important to stress that the absorption is more complex in such structure that it 

would have been in the absence of amorphous layer. 

Figure III.30. Normalized Poynting vector S (upper) and energy density U (lower) in the 

simulation area of the test MIND structure. U is zoomed to the emitter region. 

The energy density distribution U gives even clearer insight into the influence of the internal 

reflectivities on the absorption, but it shows also in which layers the energy is concentrated. 
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From figure III.30 it is easy to see that the highest energy concentration occurs in the SiO2

layer for λ = 750 nm. 

The information that can be extracted from the S vector distribution in space is the absorption 

A for any given area of the structure. The absorption for the first active layer, the amorphous 

layer and the upper emitter are shown in figure III.31 

Figure III.31. Reflectivity R and absorption A for various regions of the test MIND structure. 

Note that absorption curves are not normalized but are diminished by the value of R, so that 

1 = R+T+A. 

The same curves normalized to show only the light that penetrates inside the structure are 

shown in figure III.32. As can be seen for very short wavelengths (λ < 460 nm), all the light is 

absorbed in the emitter. However the maximum absorption occurs for 450 and 530 nm. Most, 

if not all, of the electron-hole pairs generated in the upper emitter (area above the aSi layer) 

do not contribute to the total photocurrent generated by the cell due to the potential barrier 

across the cSi/aSi interface. As can be seen in figures III.31 and III.32, this loss constitutes an 

important fraction of overall absorption. On the other hand, the amorphous layer absorbs only 

around 10% of the whole light, which corresponds to a maximum of 18% of the light that 
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penetrates inside the structure (for λ = 470 nm). As will be shown later, this area is capable of 

creating of additional e-h pairs that constitute second generation. 

Figure III.32. Reflectivity R and absorption A for various regions of the test MIND structure. 

All curves are normalized to show only the light that penetrated inside the structure. 

The information about the light absorption and its distribution in space provided by the S 

vector is usually not sufficient to estimate the spectral response of the solar cell, or the 

Quantum Efficiency (QE). Another parameter that comes into play is the so-called Collection 

Efficiency (CE). In a classical, monocrystalline solar cell, in which the absorption coefficient 

is constant and there are no buried interfaces, QE is linked to CE by the following relation: 

¬­®"¯$ � �[= °±²�"�[+$t�"+$o� � d"¯$p³�
! @+� (III.4.1)

where Xd is the cell thickness [47]. This equation holds for any cell thickness, as long as 

above conditions are kept. In this approximation no internal reflections are allowed. In the 

case where the absorption coefficient is a function of spatial coordinate α(x), or internal 

reflections become non-negligible, relation (III.4.1) has to be expressed in more explicit way. 

By introducing the generation rate G, which in the most general approach is linked to the S 

vector by the following relation: 


"¯* +$ � �� � �"¯* +$� (III.4.2)
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the equation for η can be rewritten as: 

¬­®"¯$ � -= 
"¯* +$t�"+$³�
! @+� (III.4.3)

if G is normalized for each wavelength, the result is the Internal Quantum Efficiency (IQE). 

The External Quantum Efficiency (EQE) can be then obtained by applying the following 

relation: 

¬®­®"¯$ � ¬´­®"¯$ � o� � d"¯$p� (III.4.4)

It can be clearly seen from equations (III.4.1-4) that the accurate estimation of CE is the key 

parameter in the process of analyzing Quantum Efficiency. There are several analytical 

formulas allowing recreation of CE for single junction, monocrystalline cells [47], but in case 

described by equation (III.4.3) none of them is directly applicable.  

Figure III.33. CE for a typical single PN junction solar cell. CE = 1 only for the depletion 

region, in this example located 1000 nm from the surface. 

However, to deploy even a numerical solution, certain assumptions have to be made. These 

assumption usually fall into determining three main regions of the cell: the depletion region, 

at which CE = 1, the emitter and the base. In both the emitter and the base, one can expect 

that there will be at least two key parameters determining the CE curve, namely diffusion 
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length Ld and surface recombination velocity V. A more detailed study has been done by some 

authors [48], which allows determination of the CE curve accurately by solving the diffusion 

equation and using the reciprocity theorem. A typical CE curve for a PN junction solar cell is 

shown in figure III.33. 

The determination of CE is the key point in finding the quantum efficiency. CE can also be 

reproduced from experimental data if quantum efficiency and photogenerated charge 

distribution is known. In any case, the determination of CE can prove to be quite challenging 

for more complex systems. Usually, for good quality monocrystalline solar cells, the diffusion 

length in the base LB is several hundreds of micrometers while LE for the emitter is usually 

less than 10 micrometers. Surface recombination velocities V can range from several hundred 

for the base to 10
6
 of cm/s for the emitter. A reconstructed QE curve for the MIND structure 

used in our example is shown in figure III.34. The diffusion lengths were set to LE = 300 nm 

and LB = 300 µm and the surface recombination velocities V were set to 0 on both sides.  

Figure III.34. Reconstructed Internal Quantum Efficiency and External Quantum Efficiency 

for a typical MIND sample with passivated surface. 

Determination of Quantum Efficiency or spectral response allows further analysis, leading to 

predicting current density under given illumination, for example AM1.5.  

We have shown that using combined efforts of several different approximations such as 

Drude-Lorentz, used to determine the dielectric function for each layer, Transition Matrix 
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Approximation, used to assemble all the layers into a structure of desired shape, and 

reciprocity theorem used to determine Collection Efficiency, we are able to calculate the 

Quantum Efficiency and from it, the first point on I-V curve, namely the short-circuit current. 

The IV curve can be then modeled using equation (I.4.33) and (I.4.47) introduced in 

Chapter I. 
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The experimental analysis of MIND structures presented in this chapter has been divided into 

four major parts i.e. structural, optical, quantum efficiency and electrical. The whole set of 

analyses is based on the chosen, representative samples. Structural measurements have 

confirmed the formation of a buried substructure and estimated the influence of etching on 

surface properties. Optical measurements were conducted in order to understand the dielectric 

functions of the samples and the propagation of the electromagnetic (EM) wave. Quantum 

Efficiency measurements were performed in order to compare the effects occurring in two 

different types of structures and to estimate the generation rate of e-h pairs. At last, the 

electrical measurements were employed in order to understand the physical parameters that 

shape the device performance and to identify possible channels for improvements. 

Taken together, our measurements and analyses have created a complete picture of 

mechanisms behind light to electricity conversion in MIND structures. 
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Structural and morphological characterizations are usually the first step to understand 

properties of a given physical system. For solar cells, the knowledge of morphology of the 

device and the surface is of utmost importance, because it is a limiting factor for the device 

performance. For MIND structures, this type of measurement is particularly important 

because it provides necessary information to estimate material properties in the active zone. 

To fully access this information we have employed several different experimental techniques, 

such as Scanning Electron Microscopy (SEM) and Backscattered Electron Microscopy (BSE), 

Atomic Force Microscopy (AFM) and Optical Surface Profiler. 

�������� ��������!�����������
�������"��

We focused on two complementary methods: Backscattered Electron (BSE) and Scanning 

Electron Microscopy (SEM) that allowed us to fully characterize morphology and architecture 

of the buried internal structure without reducing the internal strain (as in case of Transmission 

Electron Microscopy (TEM)) and to analyze the surface of the samples via SEM. SEM is a 

method that produces images of a sample by scanning it with a focused beam of electrons. 

Electrons interact with a sample, producing various types of signals, in our case secondary 

electrons for SEM and backscattered electrons for BSE [1]. Both passivated and etched 

samples were characterized. We studied mainly the samples of N7 and LP families. Measured 

samples were taken from the edges of the wafer therefore we expect some thickness variations 

of the layers throughout the wafer, especially for the passivation layer, which is deposited by 

LPCVD. This type of measurement requires breaking off a small piece of wafer and taking a 

snapshot of the edge. Potential results concerning internal multi-layered structure may be, and 

often are, influenced by the topography of the cleavage itself, because the intensity of the 

back-scattered electros, which corresponds to the density of the material, depends on their 

trajectory in the sample. 

1. LP01 sample 

This sample was exposed to two different implantation processes, amorphizing at 180 keV 

and complementary at 20 keV, and passivated by SiO2. The amorphous layer was designed to 

be buried at ~170 nm below the surface of silicon. 
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a) b) 

c)  d) 

Figure IV.1. Electron microscopy images of the LP01 sample. SEM image of the sample 

edge (a) shows very uneven passivation thickness and clear SiO2/cSi interface. BSE images of 

the same spot (b, c and d) show two different regions of silicon, with thicknesses 167 and 159 

nm respectively. 

The LP01 sample shows one distinct interface between two different regions of silicon, buried 

167 nm below the surface. This interface lies very close to the intended 170 nm, but no other 

interface is visible. Because of this it is difficult to estimate the potential thickness of the 

amorphized region. This effect might be explained by the fact that the measurement was made 

on the edge of the wafer (where recrystallization induced by thermal annealing was faster and 

the implantation dose could have been smaller) on that the topography of the cleavage 

influenced BSE image, effectively scattering the electrons carrying information about the sub-

structure. 
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2. LP02 sample 

Double implanted structure, passivated by SiO2 shows good quality interfaces between 

SiO2/cSi and cSi/aSi, buried about 170 nm below the surface of the silicon. A distinctive 

region of damaged Si just below SiO2 layer is also visible. 

a)� b)�

c)  d)�

Figure IV.2. Electron microscopy images of the LP02 sample. SEM image of the sample 

edge (a) shows features on the surface, indicating cracks and crevices on the side. BSE 

images (b, c and d) show several different regions of silicon, with the deepest located 172 nm 

below the surface of Si.  

The LP02 sample shows several buried interfaces in its structure. A very thin amorphous 

region is visible on the 3D BSE image (Figure IV.2 c), around 170 nm below the SiO2/cSi 

interface, with a thickness between 8 and 10 nm. 

3. LP03 sample 

Double implanted structure, passivated by SiO2 shows good quality interface between 

SiO2/cSi and very well defined amorphous region, buried 132 nm below the surface of silicon. 
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a)� b)�

c)  d)�

Figure IV.3. Electron microscopy images of the LP03 sample. SEM image of the sample 

edge (a) shows several different layers, which is confirmed by BSE images (b, c and d). An 

amorphous region is also clearly visible. 

This sample shows very clearly defined amorphous region, and two aSi/cSi interfaces. 

Amorphous region is approximately 30 nm thick, however it is localized around 132 nm 

below the surface of Si, which is much closer to the surface than in other samples of LP 

family. The interface between SiO2 and cSi is also quite sharp, indicating good quality 

electronic passivation, which is also much thicker than in other samples of this family. 

4. LP04 sample 

The LP04 is a double implanted structure, passivated by SiO2 which shows good quality 

interface between SiO2 and cSi. Passivation layer is uniform and around 94 nm thick. There 

are two distinctive regions just below the surface of silicon, indicating high concentration of P 

atoms and/or rather high disorder after the implantation. No other region can be distinguished 

and there is no evidence of any buried sub structure in the studied piece. 
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a) b) 

c)  d)�

Figure IV.4. Electron microscopy images if the LP04 sample. SEM image of the sample edge 

(a) and BSE images of the internal geometry (b, c and d). 

5. LP05 sample 

The LP05 sample is a double-implanted structure passivated by SiO2. Passivation thickness is 

rather low, reaching around 77 nm at most in the taken images of the analyzed wafer piece. 

There are also two distinct regions in the upper emitter, one about 89 nm thick, and the other 

96 nm thick. This is in agreement with doping distribution measured by SIMS, where also 

two regions were distinguished. The amorphized region, and the cSi/aSi interface is localized 

somewhere at 185 nm below the surface of silicon, and the transition region is around 20 nm 

thick, which is a good approximation of a thickness of the amorphous layer. 
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a)� b)�

c)  d)�

Figure IV.5. Electron microscopy images of the LP05 sample. SEM image of the sample 

edge (a) and BSE images of the internal structure (b, c and d). Several different density 

regions are visible, a heavily damaged silicon on the surface (blue), heavily P-doped Si (red) 

and amorphous region (above red).  

6. LP07 sample 

The LP07 sample is a diffused-implanted structure passivated by SiO2. Passivation thickness 

is close to intended 100 nm and in the analyzed wafer piece reached values close to 90 nm. 

There are three distinctive crystalline regions in the upper emitter and one amorphous region. 

Total upper emitter thickness is estimated to be ~200 nm. First crystalline region is close to 

the surface of Si, damaged by implantation crystalline Si, around 47-50 nm thick. Region just 

below it is a better quality crystalline Si, with high concentration of phosphorous. Below lies 

another cSi region, with lower P concentration, bordered by amorphous region. Amorphous Si 
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is sandwiched by two transition layers of strained cSi/aSi extended interface of total module 

thickness reaching 50 nm. 

a)� b)�

c)  d)�

Figure IV.6. Electron microscopy images of the LP07 sample. SEM image of the sample 

edge (a) and BSE images of the internal structure (b, c and d). Several different density 

regions are visible, with an amorphous region and transition zones clearly visible. 

7. N2 sample 

The N2 is a first sample of the second generation diffused-implanted structures. Those 

structures were developed after LP family, and featured clearer aSi/cSi interface thanks to 

improved annealing process. This sample was measured at the moment where it was 

passivated by 260 nm thick SiO2, however the final structures were also passivated with the 

indium tin oxide conductive glass. This structure featured much thicker passivation than 

previous LP samples. Details of the architecture can be seen on the Figure IV.7.  
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a)� b)�

c)  d)�

Figure IV.7. Electron microscopy images of the N2 sample. SEM image of the sample edge 

(a) and BSE images of the internal structure (b, c and d). Amorphous layer along with 

neighboring interface is clearly visible and well-defined. 

The N2 sample has a unique quality of the aSi layer and aSi/cSi interface, which is very clear 

and well defined. The strained transition zones can be clearly visible on the both sides of aSi 

layer. Upper emitter area is about 165 nm thick, rather homogeneous and does not show any 

regions of different density, except the edge surface region. 

8. N3 sample 

The N3 is another representative sample of the second generation diffused-implanted 

structures (Figure IV.8). It features thinner passivation of about 65 nm, relatively thicker 

emitter reaching 189 nm and well defined, thin amorphous layer. Thickness of the 

amorphized region is close to 16 nm, including the transition zones. Upper emitter area is also 

very homogeneous and uniform. 
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a)� b)�

c)  d)�

Figure IV.8. Electron microscopy images of the N3 sample. SEM image of the sample edge 

(a) and BSE images of the internal structure (b, c and d). A 16nm thick amorphous region and 

transition zone (red) is visible, buried 180nm below the surface of silicon. 

9. N4 sample 

The N4 sample features thin passivation of about 75 nm and rather thick upper emitter, 

reaching 180 nm. The emitter is inhomogeneous in density, with several different, distinctive 

regions visible. Surface region of about 22 nm is clearly damaged by the 

implantation/diffusion process. The area below is about 80 nm thick, crystalline heavily P-

doped Si. The transition zone between lightly defined amorphized region and crystalline zone 

is about 85 nm thick. The fact that the aSi/cSi interfaces are not sharp in this particular 

structure might be due to the extensive annealing process that might have formed 

microcrystalline regions in aSi layer, therefore changing its properties to semi-amorphous. An 

estimated thickness of aSi layer in this structure is 20 nm, but the crystallinity factor is much 
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higher than in the N2 sample, indicating rather hypocrystalline layer instead of fully 

amorphous one. 

a)� b)�

c)  d)�

Figure IV.9. Electron microscopy images of the N4 sample. SEM image of the sample edge 

(a) and BSE images of the internal structure (b, c and d). Very wide transition zone and 

amorphized area is visible, indicating high fraction of microcrystals in the aSi region 

(yellow). 

10. N7 sample 

The N7 sample features very good quality passivation made of SiO2, which is around 108 nm 

thick. It has thin emitter, where purely crystalline region extends to about 155 nm below the 

surface of Si. Below lies an amorphized region along with the transition zone, which is about 

38 nm thick.  
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a)� b)�

c) d)�

Figure IV.10. Electron microscopy images of the N7 sample. SEM image of the sample edge 

(a) and BSE images of the internal sample structure (b, c and d). Three different zones are 

clearly visible, with amorphized region lying in the middle, and about 40 nm thick (marked in 

red). 

However, those values are valid only for the measured piece. The measurement was 

performed on an edge of the wafer; therefore thicknesses of the layers in the samples cut from 

the middle of the wafer might have slightly different values (usually thicker). This is 

especially true for the emitter. 
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11. N8 sample 

Sample N8 is passivated by rather thin layer of SiO2, reaching 90 nm at maximum in the 

measured piece. It exhibits very well-defined upper emitter with extremely sharp aSi/cSi 

interfaces. Total upper emitter thickness varies around 175 nm, below lies a sinusoidal 

amorphous layer, which along with the strained transition zones, is 18 nm thick.  

a)� b)�

c)  d)�

Figure IV.11. Electron microscopy images of the N8 sample. SEM image of the sample edge 

(a) and BSE images of the sample internal architecture (b, c and d). Extremely well-defined 

aSi later (marked in blue) is also visible on the figure d. 

All Electron Microscopy measurements were performed at Institute of Physics, Polish 

Academy of Sciences in Warsaw, in the group of Professor Marek Godlewski. The author 

would also like to acknowledge the help of Bartłomiej Witkowski, who participated in SEM 

measurements. 
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To analyze morphology of the top surface as well as the influence of the passivation of the 

surface smoothness, we employed several experimental techniques. One such is Atomic Force 

Microscopy (AFM), which relies on sensing the interaction between a sharp tip and the 

surface of a sample. Various types of interactions might be sensed via AFM, such as 

mechanical, electrostatic, magnetic, chemical bonding, but in our case we measured van der 

Waals forces. Another technique used to analyze the surface of chosen samples was 3D 

optical surface profiling, which uses fringe projection to estimate the shape of the surface. 

We studied two samples, N79 and N72, which were parts of the same wafer N7. Both of the 

samples show very good optical response from the buried nanostructure and differ only by the 

quality of the passivation, which was etched off the N72 sample. This feature greatly 

influences both electrical and optical properties of our structures.  

To assign a numerical value to the properties of a measured surface and to quantitatively 

express the surface roughness we introduce the roughness factor Ra, defined as: 

�� � �����	 
 ����
�
	
�

(IV.1.1)

where Si is the height of a given point on the surface, Sav is the arithmetic mean of all the 

points and n is the number of points on the surface.  

Sample N79 is a passivated sample with a very smooth surface. We characterized it with the 

optical surface profiler, based on white light interferometry. Results showing two views of the 

surface are presented in Figures IV.12 and IV.13. Measuring on a different spot of sample 

N79 revealed also a smooth surface, but with a higher roughness factor Ra = 1.0467 nm, 

which is about 45% higher than the one measured at the other spot. 
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Figure IV.12. Surface of the N79 sample measured by the 3D optical surface profiler. The 
roughness factor was calculated to be Ra  = 0.7214 nm. 

Figure IV.13. Surface of another spot of N79 sample measured by the 3D optical surface 
profiler. The roughness factor was calculated to be Ra = 1.0467 nm. 
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The overall conclusion of this measurement is that the sample is well passivated with SiO2

and 90% of the points are confined between ± 5 nm around the mean value. 

Sample N72, unlike its sister structure, was not passivated by SiO2 for the second time, 

therefore it should retain its original, very rough surface with potentially very thin thermal 

coating about a few nanometers thick. We have employed two methods to analyze this 

structure i.e. 3D optical surface profiling and AFM.  

The N72 shows much higher roughness factor, ranging between Ra = 4.24 to 6.4 nm, and 90% 

of the points is confined in between ± 10nm around the mean value. Optical profiling shows 

very uneven surface with plenty of craters and mountains that exceed Ra by an order of 

magnitude. These features are probable remnants of the reactive ion etching process that 

removed the SiO2 layer. The area scanned by optical profiling was the same for both samples 

and was a rectangular spot by 360 x 275 µm. 

Figure IV.14. Surface of the etched N72 sample measured by the 3D optical surface profiler. 

The roughness factor was Ra = 4.2406 nm for this particular spot. 
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Figure IV.15. Another spot of the etched N72 sample measured by the 3D optical surface 

profiler. Roughness factor was Ra = 6.4080 nm for this particular spot. 

a) b) 

Figure IV.16. Surface of the etched N72 sample measured by AFM. Two scans were taken, 
along y-axis (a) and x-axis (b).  

For the AFM measurements two scans of the same spot were taken, with much greater spatial 

resolution than with the optical profiler. Measured surface was a square of a side equal to 

14 µm. Since it was not performed in vacuum, the measurement was sensitive to the 

movement of the air in the chamber, as well as it proven to be very sensitive to the vibration 

of the floor. Artefacts can seriously degrade the quality of measurements thus to limit their 



��������	
�

IV.173 | P a g e

incidence during the experiment, we performed two scans along perpendicular axes (figure 

IV.16). Due to the fact that we were not able to fully remove artefacts produced by the scan 

only height of the features lying on the respective line should be considered, i.e. along y-axis 

for results shown in Figure IV.16b and along x-axis for Figure IV.16a. 

#��%��
������������������

Optical properties are one of the most important factors that determine the overall 

performance of any optoelectronic device, and solar cells in particular. Light-matter 

interaction is the first stage of the complex process of light to electricity conversion, and 

therefore proper estimation and control of optical properties is crucial for understanding, 

determination and estimation of all the other processes that take part in the whole process. It 

is not only important because of the potential losses related to reflectivity of the cell, but it 

also allows more detailed control of where the light is absorbed and where the power is 

generated in the structure. Such knowledge is particularly important for any structured cells 

that are not simple one junction cells, especially tandem cells. In the case of MIND structures, 

we can study the exact amount of photons that could have been used to generate hot electrons 

in the active sub-structure. We will analyze this process in detail in Chapter IV. 

We have employed two different optical methods i.e. reflectivity measurement in the 

integrating sphere and ultrafast spectroscopy. 

#����&������
'
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Reflectivity is one of the most important parameters describing a solar cell. It represents the 

first possible interaction between the light and the device and is also the first limiting factor 

for the efficiency. Combined with structural measurements and SIMS profiles, one can extract 

the spatial dielectric function, which in turn allows determination of the exact distribution of 

the Poynting vector and energy density in the structure. We have performed our 

measurements using an integrating sphere to ensure that the entire reflected flux will be 

directed towards the detector. Transmission measurements were not possible because of the 

back surface mirror made of Al. 

Several families of MIND samples were measured, that are based on two possible SIMS 

profiles (implanted or diffused) but differ when it comes to thickness of the emitter and/or 

amorphized region, and also were passivated with different materials, such as silicon dioxide 
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(SiO2), silicon nitride (Si3N4) and indium tin oxide (ITO). We have analyzed samples from 

both LP and N generations. 

������������	
�����

Samples N79 and N72B are the most extensively analyzed by several different experimental 

techniques, due to their unique features that will be discussed later. Both samples are squares 

of approximately 2 x 2 cm, and differ only by the state of passivation and the surface 

roughness, as was shown earlier in this chapter. This unique difference allows us to extract 

vital information about the overall performance of the structure as well as analyze and study 

several interesting effects. Apart from reducing the optical impedance of the structure, the 

SiO2 passivation layer also acts as an electronic passivation, reducing the density of surface 

states through which Auger recombination takes place, a process that usually negatively 

influences electronic properties of any semiconductor device. 

Sample N79. 

We expect to observe interferences in the optical response of N79 sample, due to the 

existence of the buried amorphous layer and rather low surface roughness factor. (figure 2.1). 

As was shown by the BSE measurements, the internal structure of N79 sample is well-

defined, but the exact values of the thickness for the upper emitter and amorphous layer are 

not well known (see Figure IV.10). We will therefore assume in the first approximation that 

the structure can be modeled by the simplest architecture possible, consisting only of five 

layers: passivation, upper cSi emitter, thin amorphized region and the substrate. 
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Figure IV.17. Reflectivity of the N79 sample. Interference maxima are visible for 420, 500 
and 650 nm, respectively. For wavelengths longer than 1050 nm R raises dramatically due to 
the back surface aluminum mirror. Characteristic peaks at 275 and 360 nm are also visible. 

For the moment we neglect the influence of the inhomogeneous doping and assume that the 

structure has the intended geometry, where layer thicknesses are as follows: 

− passivation 119 nm 

− upper emitter, thickness 163 nm, P concentration NP = 1020 cm-3

− amorphous layer, thickness 8 nm, P concentration NP = 1018 cm-3

− substrate, P concentration NP = 1016 cm-3

The modeled structure is shown in Figure IV.18a. This simple structure reproduces all the 

interferences and matches rather accurately their height, which is quite remarkable 

considering used approximation (Figure IV.18b).  

The real strength of the model presented in chapter III of this work lies not only in the ability 

to simulate macroscopic optical properties such as reflectivity, transmission and absorption of 

the sample and compare them with experimental measurements, but in the possibility to 

extract the quantities that are not available through non-destructive measurements, such as 

absorption of each layer and the energy distribution. 
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a) b) 

Figure IV.18. Schematic representation of the simple model multilayer structure (a) and the 
both simulated and experimental reflectivities for N79 sample (b). Interference maxima and 
minima are reproduced quite accurately. 

a) b) 

Figure IV.19. Normalized absorption curves for each layer in the emitter and the sample 
reflectivity (a) and Poynting vector |S| distribution as well as energy density U (b) inside the 
upper emitter. 

As can be seen in Figure IV.19, only a fraction of total incident flux is absorbed in the upper 

emitter, and only relatively small amount is absorbed in the aSi layer. Photons up to 600 nm 

are quite efficiently absorbed in the emitter, with only about 50% penetrating deeper into the 

structure, however lower energy photons, for wavelengths 700 nm and greater, are weakly 

absorbed in the emitter, with more than 80% penetrating to the base. The amorphous layer, in 

this particular model cell, absorbs only small fraction of the total incident flux, peaking 10% 

for 450 nm. We can therefore expect that the low-energy multiplication phenomenon, even if 

it was very efficient, would not have huge impact on the overall cell performance. 
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However such a simplistic approach cannot be expected to truthfully reproduce effects 

observed in a real cell. On one hand, the architecture of N7 wafer was measured by BSE 

microscopy, clearly indicating that the amorphized region is much thicker, between 25 and 

40 nm thick, while the upper emitter thickness oscillates around 155 nm. On the other hand, 

we have to take into account the inhomogeneous P doping distribution that can vary by two 

orders of magnitude over a distance of 200 nm for implanted-diffused samples. Another thing 

we took into consideration is the percentage of the activated dopants. P doped silicon up to 

concentrations of Nd = 1018cm-3 are considered fully activated in room temperature [2], and 

this is the usual value of P concentration in the emitter of good quality cSi cells.  

However, for higher doping concentration, often only a fraction of the introduced P atoms are 

activated. We calculated an approximate number of active dopants from the density of states 

obtained through DFT and a subsequent calculation of the Fermi energy (see chapter I and III 

for details). The results indicate that for the highest P concentration, reaching Nd  ~ 1021cm-3

only a small fraction of phosphorous is active (about 6%), and the number of active dopants 

increase as the overall P density decreases, deeper into the structure. This fact has a direct 

implication when dielectric function is considered, because for very high doping densities 

changes in dielectric function become important, both due to carrier and lattice contribution 

terms. Those two effects can greatly influence optical properties of the structure in several 

ways, changing reflectivity only slightly, but significantly rearranging power distribution in 

each layer. 

a) b) 

Figure IV.20. Reflectivity curves for accurate model structure (a) and comparison of active 
dopant versus total P concentration in the emitter. The structure is shown in Figure IV.21. 
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We have performed a much more accurate simulation, where the model structure incorporated 

all the above components. We have also included the possibility that the amorphized region 

can be in fact an amorphous matrix in which micro- and nanocrystallites might have formed.  

Figure IV.21. Imaginary part of the dielectric function vs sample depth for accurate structure 
model (upper) and the active P distribution in each layer (lower). Thicknesses for each region 
in this model were: SiO2 – 117 nm, upper cSi – 158 nm, amorphized Si – 40 nm, lower cSi – 
400 nm (for precise doping simulation). 

This effect is often observed in hydrogen-stabilized amorphous Si, and it can be expected that 

due to the fabrication process employed for MIND structures it was even more emphasized 

[3]. In Figure IV.20 we present results of this simulation. It can be seen that the interference 
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fringes are much more accurately reproduced both in terms of position and value. Also, the 

energy density is distributed in a different way in comparison with the simple model, 

especially in the upper emitter (first cSi region), forming several peaks for wavelengths 

around 750 nm. Figure IV.21 shows schematic representation of all the features of the 

accurate model structure as well as the doping distribution in the crystalline and amorphized 

regions. It is clearly visible that the dielectric function changes dramatically due to doping 

and that the amorphized region has different optical impedance, and is therefore responsible 

for the interferences. 

Two main conclusions become apparent from the more accurate simulation. First, the 

absorptive properties of the structure changed dramatically, even if the reflectivity remained 

more or less the same and preserved the same characteristic interferences. Second, we were 

able to extract the dielectric function of the amorphized region with the help of Effective 

Medium Approximation (EMA), and can roughly estimate the fraction occupied by crystalline 

inclusions in amorphous matrix. Comparison of the dielectric function of the amorphized 

region with that of the  hydrogen – stabilized aSi is shown in Figure IV.22 (c). The striking 

increase in the absorption of the aSi layer in this approximation, which is almost threefold, 

would allow for more efficient energy manipulation during multiplication process, therefore 

making the whole phenomenon more plausible.  

We were able to uncover all the parameters describing optical properties of the measured N79 

sample with satisfying accuracy. Experimental and simulated reflectivity show very good 

agreement, lying in the range of systematic measurement error. Thanks to good coherence 

between structural and reflectivity measurements, we managed to extract the properties of 

amorphized region as well as estimate the total power absorbed there, which in turn can be 

used to calculate the potential strength of low energy multiplication process.  
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a)  b) 

c)

Figure IV.22. Normalized absorption curves for each zone in the accurate model structure (a) 
and Poynting vector |S| and energy density U (b) inside the upper emitter. Figure (c) 
compares the dielectric function of hydrogen stabilized amorphous silicon aSi:H with the one 
present in N79 sample. Influence of crystalline inclusions is clearly visible, for which the 
volume fraction was estimated to be fc = 0.2–0.5. 

Sample N72B. 

N72B and N79 are parts of the same wafer, therefore they should have exactly the same 

internal structure. However the state of its surface is vastly different because of the surface 

damages induced by the Reactive Ion Etching (RIE) (see Figure IV.14). The thermal oxide 

was etched and the sample was never again passivated, unlike in the case of other samples. 

Comparison between experimental R for N79, N72 before and N72B after RIE is shown in 

Figure IV.23.  
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Figure IV.23. Experimental reflectivity of N79, N72 (before) and N72B (after RIE).  

As was already presented in the subsection dedicated to the morphology, the roughness factor 

is about 4-9 times higher than the one for N79. We therefore expect that the optical properties 

of this sample should show different features: interferences are unlikely to be seen because of 

high surface scattering and the overall amount of reflected light should be higher, due to the 

lack of an optical passivation layer/antireflection coating. This is indeed the case, and the 

reflectivity of N72B is very close to the one of moderately doped Si, (see Figure IV.24). 

Interferences in N72B are not visible because of high surface scattering, however it can be 

clearly seen that for simulated N72B sample, interferences are localized around mean value 

measured experimentally.  
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Figure IV.24. Reflectivity of N72 with SiO2 passivation and N72B compared with the 
simulation. There is good agreement between experimental and simulated R for the passivated 
sample, however the fringes predicted by simulation for etched one are absent in experiment, 
due to surface scattering. 

The passivated N72 sample has similar optical response as N79, with slightly thinner effective 

thickness of passivation layer and slightly different properties and thickness of the aSi region. 

The region thicknesses were estimated to be as follows: SiO2 112 nm (for passivated), first 

cSi layer 157 nm and amorphized region 42 nm. Properties of the amorphous layer are also 

slightly different than in N79 sample, as is shown in Figure IV.25. Absorptive properties are 

similar and thanks to the estimation of energy density and Poynting vector, we can determine 

the number of electrons generated in the active sub-structure and in the whole upper emitter, 

which will be discussed in the following paragraphs. 
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a)  b) 

c)

Figure IV.25. The normalized absorption curves for each zone in the accurate model structure 
(a) and Poynting vector |S| and energy density U (b) inside the upper emitter. Figure (c) 
compares the dielectric function of hydrogen stabilized amorphous silicon aSi:H with the one 
present in the N72 sample. The influence of crystalline inclusions is clearly visible, for which 
the volume fraction was estimated to be fc = 0.2–0.45. 

Estimated properties of the N72 sample indicate that it a has slightly higher absorptivity, 

especially in the active region. The amorphized region seems to have fewer crystalline 

inclusions, and it has an extended thickness in comparison with N79. However the overall 

properties match well the properties of N79, which gives evidence that the fabrication process 

was reliable and produced homogeneous structures along the wafer. 
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Figure IV.26. Photo of a N7 wafer. Square parts numbered 1, 2, 3… 9 were named after 
cutting N71, N72, N73… N79 respectively. 

������������	
�����

Second generation N2 samples are another type of diffused-implanted MIND structures. As 

can be seen in Figure IV.7, they feature a well-defined amorphized region, clearly visible in 

the SEM measurements. N2 structures feature a rather thick passivation, ranging from 210 to 

250 nm of SiO2, which was intended as a better electronic passivation for the surface, 

however due to its thickness it deteriorated the optical properties by increasing the 

reflectivity, and does not fulfill well its role as an anti-reflective coating. Reflectivity of a N24 

sample, which is a representative specimen of the whole family, is shown in Figure IV.27 

along the structure used in the modeling. We based the thicknesses of each region in the 

model on direct BSE measurement shown in Figure IV.7, with the possible deviation of the 

actual optical path length from geometric layer thickness below 2%. The model reproduces 

optical properties of N24 with satisfying accuracy, correctly predicting the position and value 

of every interference fringe.  
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a) b) 

Figure IV.27. Schematic representation of the model structure (a) and comparison between 
experimental and simulated R for N24 sample. Slight offset at 370 nm is due to the surface 
scattering and increased number of defects in the passivation layer. 

Since the doping procedure for the N2 wafer was the same as for the N7 wafer, we assumed 

that N24 would have the same P profile as N7 samples, and therefore we simulated the spatial 

dielectric function distribution according to the SIMS data we used for N79 and N72. The P 

concentration in both types of structures would be the same in the range of the systematic 

fabrication error. 

Results indicate that the N24 features relatively few crystalline inclusions in the amorphized 

region in comparison to N7 samples, reaching only fc = 0.2. It shows also a slightly smaller 

absorbance in the active sub-structure in comparison to N7 samples, peaking at 38% for 

460 nm. We were able to extract the effective dielectric function of the amorphized region, 

which is shown in Figure IV.28.  

We can see clearly that the energy density in the structure is comparatively much smaller than 

in N7 samples, which is a direct result of the thicker passivation layer. Amorphized region 

shows fewer crystalline inclusions, which decreases the absorption coefficient of the aSi layer 

and the active sub-structure as a whole. However the shape of ε implies that µc-Si inclusions 

are much better defined and with sharper interfaces than it was in the case of N7 samples, 

which can be seen thanks to the remaining characteristic peaks close to the critical energies in 

Si (3.34 and 4.3 eV). 
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a)  b) 

c)

Figure IV.28. Normalized absorption curves for each zone in the accurate model structure (a) 
and Poynting vector |S| and energy density U (b) inside the upper emitter. Figure (c) 
compares the dielectric function of hydrogen stabilized amorphous silicon aSi:H with the one 
present in the N24 sample. Percentage of crystalline inclusions is smaller than in N7 samples, 
and reaches fc = 0.2 at maximum. 

#�#��(��������������������"������������	���������������

Free-carrier dynamics is one of the most important parameter of a solar cell and it has a direct 

impact on the overall cell performance. One way to access that information is to study the 

changes in optical properties in a material after excitation by a fast perturbation like a pulsed 

electric field or an optical excitation. In that context, femtosecond laser spectroscopy is a 

powerful technique for investigating the fundamental mechanisms responsible for the 
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modification of the dielectric response function in silicon nanostructures. Here we present 

some of the results of a pump-probe experiment that summarize the data to be published in 

our article [4]. Femtosecond carrier dynamics in silicon have been investigated using pump-

probe techniques over the past two decades [5,6]. Although several researchers have worked 

on bulk silicon, the continuous improvements in semiconductor nanotechnology have 

emphasized the importance of understanding the carrier dynamics on an increasingly shorter 

timescale and over a large spectral range in nanostructured and layered material.  

In our case we have investigated two representative samples, N72B and N79. Time-resolved 

measurements of the carrier dynamics were carried out using a femtosecond pump-probe 

technique, in which a short pump pulse excites carriers and a time-delayed probe pulse 

measures the resulting change in reflectivity as a function of the pump-probe delay time. The 

optical pulses were generated using an amplified Titanium:Sapphire laser system operating at 

a repetition rate of 5 kHz. The pump beam, 150 fs in duration, has a central frequency 

doubled at 397 nm (about 3.12 eV) using a beta barium borate (BBO) nonlinear crystal. The 

probe pulses with broad band spectrum were produced by femtosecond white light continuum 

generation on a thin sapphire plate. The probe beam reflected from the sample, was dispersed 

by a grating in a monochromator and detected by a CCD camera. A band pass filter was 

placed in front of the detector in order to suppress all the side contributions from the pump 

and the fundamental beams. Because the supercontinuum pulse is chirped, the recorded 

reflectivity data have been time-corrected by performing a conformal mapping in the time 

frequency plane. To determine the chirp in the continuum pulse we performed two-photon 

absorption on ZnSe using the same pump and probe pulses. The optical pumping remained 

below the melting threshold. A precise control of the spot size of the pump beam (diameter 

100 �m) on the sample during the measurements allowed for an accurate determination of the 

absorbed fluence. The maximum power of the beam was 2.2 mW  

We recorded reflectivity spectra every picosecond up to t = 20 ps after the excitation, and for 

longer times for t = 100, 200 and 400 ps. As a quantity of analysis we determined the 

differential reflectivity defined by the following formula: 

�� � ���� 
 ���������� (IV.2.1)

where Rexc denotes reflectivity of the sample at a given time after the excitation and Rbase

denotes the reflectivity in the static case and under weak illumination. N72B has a typical 
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response of bulk silicon under weak excitation, reflectivity first decreases slightly and 

recovers over time as the photogenerated population of carriers recombines [7]. 

Figure IV.29. Experimental differential reflectivity of N79 for t = 0, 8 and 15 ps after 
excitation. 

As can be seen in Figure IV.29, N79 exhibits interesting response where two minima and one 

maximum are visible, which decay over time for short times. After 15 ps the reflectivity 

reaches almost the value for static case. For long times we observe an inverse of this behavior, 

where the central peak at 550 nm becomes a minimum, neighbored by two maxima at 510 and 

690 nm. The decay process is much slower in this case, and after 400 ps the change in dR is 

still quite strong, as can be seen in Figure IV.30.  
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Figure IV.30. Experimental differential reflectivity of N79 for t = 100, 200 and 400 ps after 
excitation. 

In bulk non-polar semiconducting materials, the dependence of reflectivity on carrier 

concentration is predicted quite accurately by the Drude’s equation, introduced in chapter III: 
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, (IV.2.2)
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As can be seen from above equations, for low extrinsic carrier concentrations the reflectivity 

decreases in comparison to the unexcited material and for very dense e-h plasma, increases 

rapidly. The break point for this increase is commonly attributed to the plasma frequency, 

which is related to the density in the following way: �& � . /012�345678960. The change in absolute 

and differential reflectivity is shown in Figure IV.31.  
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a) b) 

Figure IV.31. Simulated absolute (a) and differential (b) reflectivity for bulk Si under 
excitation for λ = 490 to 710 nm. For the highest free-carrier concentration the minimum in R 
corresponds to ωp. 

Unlike in bulk materials, we expect that the changes in dR in the N79 sample are due to two 

overlapping effects: nonlinear change in optical properties of the surface region of the 

structure and interferences caused by the buried aSi region. 

To analyze the quality of changes introduced by the pump, we first estimated the initial 

photon distribution in the sample delivered by the pump beam, which is analogous to the |S| 

for 397 nm. We assume that for times comparable with the pulse duration after excitation 

(t > 150 fs), the carrier distribution follows the exact shape of photon distribution, because 

diffusion processes have not yet started. As can be seen in Figure IV.32, more than 90% of 

the initial photons are absorbed in the first Si layer. Estimating that the total number of 

photons in a single exciting pump beam was N ~ 1020 cm-3, we performed simulations of the 

N79 sample, based on the model established in previous paragraph, where carrier distribution 

follows the exact shape of |S|. Simulation reproduces correctly the general behavior of the 

differential reflectivity, predicting right changes in the maxima and minima attributed to 

interferences visible in the stationary case. However, the concave shape of dR predicted by 

the simulation for λ = 510-670 nm is not observed in the experiment. This might be explained 

either by the laser chirp or insufficient correction of the optical path for the probe beam for 

longer wavelengths in the experiment, or by some additional effects not taken into account in 

the simulation, such as carrier diffusion. 
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a) b) 

Figure IV.32. Simulated (dashed line) and experimental (points) changes in reflectivity for 
short times in N79 (a) and estimated |S| for the pump beam in the sample (b). 

a) b) 

Figure IV.33. Simulated (a) and experimental (b) changes in reflectivity for short times in 
N79 for t = 1 to 21 ps.  

For longer times i.e. t > 15 ps,  diffusion effects are no longer negligible and significantly 

alter the experimental response in comparison to the simulated dR. In spite of this fact, we 

were able to estimate the lifetimes of excited carriers by reproducing dR for times up to 15 ps 

and extrapolating the exponential decay, which resulted in lifetime τ = 130 fs (see figure 

IV.34). This lifetime is comparative but smaller than the usual value obtained in bulk Si, 

which may be attributed to the amount of defects and the quality of the materials [7]. 
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Figure IV.34. Carrier concentration in the N79 sample after excitation by the pump beam for 
short times. An exponential decay can be clearly seen, with lifetime τ = 130 fs. 

The carrier dynamics in N79 for short times produce an interesting response, which in 

combination with buried nanostructure produce changes in dR not observed in the bulk 

materials. Those changes however, when the phase response of the material is taken into 

account, are nevertheless quantitatively similar to those obtained by other authors [6]. 

Changes observed for longer times (t > 100 ps) are not so easily explained (Figure IV.30). In 

bulk material, we would expect that all the electrons have already thermalized and the sample 

has reverted to its original state, therefore dR should remain at 0. However, since the pump 

beam carries a lot of energy, we might also consider that the sample heats up locally, 

therefore changing its properties. This process is much slower than the carrier dynamics and 

could be potentially responsible for the inverse behavior of dR in the N79 sample. The 

absolute upper limit for the increased temperature has been estimated to be T = 300 K. [4] 

The real temperature increase is probably much smaller, because we do not take into account 

electron diffusion and electron-electron scattering, however this assumption allows us to 

estimate the level and type of changes induced by the temperature increase. Changes in the 

dielectric response of Si were analyzed experimentally by other authors [8] and for a 

temperature range applicable in our case are known to be centered on critical points (see 

Figure IV.35a).  
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Figure IV.35. Simulated response of the N79 sample with T increased to 510 K in the first 
layer. Inset shows changes in Im (ε) for different temperatures. After [8]. 

The simulation of the optical properties of N79 for increased temperature have yielded an 

effect exactly opposite to the one observed in our experiment. This can be explained, on one 

hand, by the fact that the changes in ε were reported for good quality monocrystalline Si,

which is not our case. On the other hand, the obvious shape of the Im(ε) for increased 

temperatures indicate that the majority of the changes come from the band structure 

renormalization due to an increased perturbation of the periodicity of the crystal, caused by 

increased vibrations of the ions in the lattice. The effect is mainly visible for the critical 

points, and negligible for longer wavelengths (λ > 620 nm), since the free-carrier population 

increase for T = 510 K is still small (see chapter I) and has no effect on optical properties. 

However, qualitative the same effect is observed for highly doped Si, as it is in our case (see 

chapter III). One can therefore make the two following assumptions:  

- temperature-related changes in critical point are negligible for heavily doped/defected 

Si, since the perturbation of the periodic potential induced by temperature is smaller 

than the one induced by doping. 

- scattering cross-section for the ions will be increased due to vibrations and might 

affect high intrinsic free-carrier population resulting from the doping. 
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In the case of the N79 sample, the intrinsic carrier population in the emitter is close to 

N = 1020 cm-3, which already has an impact on the optical properties of the structure. With 

increased T, one can expect changes in optical mass mopt, which in this case might be regarded 

as the parameter describing the effective ease at which carriers are allowed to propagate in the 

material. Increase in T will result in higher scattering, effectively increasing mopt. 

Figure IV.36. Simulated (line) and experimental (points) changes in reflectivity for long 
times in N79. The estimated evolution of the optical mass mopt with time was quasi-linear in 
the studied time domain and varied between mopt = 0.9 for t = 100 ps to mopt = 0.65 for 
t = 400 ps. 

We have performed simulations in which we allowed mopt to change in a monotonic way with 

time for 100 < t < 400 ps (Figure IV.36). As can be seen, the changes in mopt can provide 

quantitative and qualitative changes in dR as observed in experiment, and can be linked to 

physical processes that might be taking place in the device after excitation.  



��������	
�

IV.195 | P a g e

)��*����������
�
���"���������������

One of the parameters that characterize any solar cell and describe its capability to effectively 

convert light into electricity is Quantum Efficiency (QE). It connects the amount of photons 

that are striking the surface of the converter with the amount of electrons collected in an 

external circuit. If both numbers of particles are equal, then the QE is unity. One can 

distinguish two types of quantum efficiencies, i.e. an External Quantum Efficiency (EQE) is 

described when all of the incident light particles are taken into account and an Internal 

Quantum Efficiency (IQE) when only the photons that were absorbed inside the cell are taken 

into account. Both types of QE describe slightly different thing i.e. EQE provides information 

about how efficient a converter is in converting incident photons to electrons, while the IQE 

focuses more on the transport properties of the converter.  

Figure IV.37. Quantum Efficiency of an ideal cell and the basic mechanisms responsible for 
reduction in real devices. Note that QE > 0 only for E > Eg, which does not necessarily 
correspond to zero absorption. 

While the QE ideally has the square shape (see Figure IV.37), the quantum efficiency for 

most solar cells is reduced due to the recombination effects. The same mechanisms which 

affect the collection probability also affect the quantum efficiency. For example, front surface 

passivation affects carriers generated near the surface, and since blue light is absorbed very 

close to the surface, high front surface recombination will affect the "blue" portion of the 

quantum efficiency. Similarly, green light is absorbed in the bulk of a solar cell and a low 
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diffusion length will affect the collection probability from the solar cell bulk and reduce the 

quantum efficiency in the green portion of the spectrum. The quantum efficiency can be 

viewed as the collection probability due to the generation profile for a single wavelength, 

integrated over the device thickness and normalized to the number of incident photons. 

The EQE of a silicon solar cell includes the effect of optical losses such as transmission and 

reflection. However, it is often useful to look at the quantum efficiency of the light left after 

the reflected and transmitted light has been lost. The IQE refers to the efficiency with which 

photons that are not reflected or transmitted out of the cell can generate collectable carriers. 

By measuring the reflection and transmission of a device, the external quantum efficiency 

curve can be corrected to obtain the internal quantum efficiency curve. 

The Collection Efficiency (CE) describes the probability that a light-generated carrier in a 

certain region of the device will be collected by the p-n junction and therefore contributes to 

the light-generated current. CE depends on the distance that a light-generated carrier must 

travel compared to the diffusion length. Collection efficiency also depends on the surface 

properties of the device. The collection efficiency of carriers generated in the depletion region 

is unity as the electron-hole pairs are quickly swept apart by the electric field and are 

collected. Away from the junction, CE drops and if the carrier is generated more than a 

diffusion length away from the junction, then the collection efficiency of this carrier is quite 

low. Similarly, if the carrier is generated closer to a region such as a surface with higher 

recombination than the junction, then the carrier will recombine. The impact of surface 

passivation and diffusion length on collection efficiency in a single junction cell can be 

approximated by the following equation: 
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where VFR and VBR are recombination velocities of front and back surface respectively, b is the 

emitter thickness, W is the depletion zone length, Le and Lb are diffusion lengths of carriers in 

emitter and base. 

At this point we will analyze two representative MIND structures, N79 and N72B. They 

represent two parts of the same wafer, and differ only by the state of the surface. N79 is 

covered with 117 nm of LPCVD deposited SiO2, while in N72B the passivation layer was 
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etched and the surface was damaged by the process, as shown in the previous paragraphs. We 

therefore expect from the classical point of view, that N72B should have its QE in the blue 

region strongly reduced by the state of the surface, resulted in an increased recombination 

velocity VFR. On the other hand, we have shown before that the existence of the amorphized 

region creates a barrier for holes, which will also cause CE in the emitter area to decrease, 

leading to decrease in QE for the blue region. Experimental measurements of both IQE and 

EQE for N79 and N72B are presented in Figure IV.38.

Figure IV.38. Measured Quantum Efficiencies for N7 samples. N79 (red) shows a strong 
decrease in the blue region due to surface effects/potential barrier at the cSi/aSi interface. 
N72B (orange) shows overall increase in both EQE and IQE for blue region in comparison to 
N79, however its EQE does not exceed 55% due to high reflectivity. 

In a classical approach, we would expect both samples to have a similar collection efficiency 

in the base area, while in the emitter area N72B should have CE reduced due to a higher 

recombination velocity. The Quantum Efficiency of the N79 passivated sample fits well to the 

prediction based on the aSi/cSi barrier hypothesis, however N72B features an increase in both 

external and internal quantum efficiency in the blue region. This effect is exactly the opposite 

to the expected influence of removing passivation [9]. In the red region, EQE is decreased due 

to increased reflectivity of the sample, which is expected. Before we try to analyze the origin 

of this unexpected increase in EQE for short wavelengths, we will estimate the CE for N79 

sample, assuming that it features only classical effects, includes potential barrier for holes at 

the cSi/aSi interface and has good surface passivation, resulting in a low recombination 
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velocity. The emitter was also divided into three different mobility regions, analogous to the 

areas specified in the optical simulation. These assumptions allowed for correct prediction of 

the CE and QE curves for N79 (Figure IV.39). Reconstructed collection efficiency features 

rather low mobility in the whole emitter area: specifically in the first layer Le = 1.8�10-1 [µm], 

the amorphized zone Lamo = 2.5�10-1 [µm] and the second crystalline region Le = 3.7�10-1 [µm], 

while the surface recombination velocity VFR = 10-2 [cm/s] was kept low to reproduce good 

quality of passivation. Any significant decrease in CE caused by the potential barrier at the 

aSi/cSi interface is invisible due to the already low collection efficiency in the neighbouring 

area. 

a) b) 

Figure IV.39. Simulated quantum efficiencies for the N79 sample (a) and reconstructed 
collection efficiency (b). 

The base of the cell shows a high diffusion length, i.e. Lb = 5�103 [µm], which is expected 

from a high quality substrate. The back surface recombination velocity was estimated to be 

VBR = 2.8�10-2 [cm/s]. The simulated QE for N79 reproduces rather accurately the general 

shape and values of the experimental data; however differences at 480 and 600 nm indicate 

that either collection probability results from more complex transport properties, different 

physical effects take place or can be attributed to the systematic incertitude of the 

measurement. Slight overshoot of IQE at 900 nm is probably due to the mismatch of the 

absorption coefficient in the base. 

The interesting increase in blue region for N72B for both EQE and IQE, shown in Figure 

IV.38 poses a complex problem that so far has no straightforward answer. From the 

completely classical point of view, assuming that the etching has not damaged the active area 

of the cell, one should see almost no change in IQE in comparison to N79, which already has 

a small CE in the front surface region. However, if we assume that the passivation layer was 
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non-absorptive and the active area remains the same, an increase in IQE or EQE in any area is 

unlikely. An analysis of the collection efficiency needed to reproduce the experimental QE of 

N72B, while keeping all the structural parameters the same as they were estimated before 

etching is shown in Figure IV.40. Thus, to explain the increase in IQE and EQE for the blue 

region classically, the diffusion length in the whole emitter has to be increased; moreover the 

front surface recombination velocity could be decreased only slightly, down to the value 

VFR = 10-1 [cm/s]. 

a) b) 

Figure IV.40. Simulated quantum efficiencies for N72B sample (a) and reconstructed 
collection efficiency (b). 

It might be argued that the potential barrier for holes, which impact on collection efficiency is 

clearly visible in the case of N72B, can act as a protective barrier from the surface effects on 

the deeper laying regions of the sample. This would explain the high value of CE in the 

second crystalline zone of the structure, lying below amorphous layer at 200 nm and below. 

However the necessary increase in the mobility in the emitter area up to the value Le = 6 [µm] 

is difficult to explain. Another interesting result is that the effective CE at the surface is 

higher than the one for N79, which also works against the effect of removing the passivation. 

The state of the surfaces of N72B and N79 samples was shown in figures 1.12-1.15 of this 

chapter, and the effect that would explain an increase in both CE and QE has not yet been 

observed for solar cells [10]. It is also important to stress that the increase in EQE after 

removal of passivation layer could be explained by the means of classical collection 

efficiency. It would be even more unexpected and uncommon observation than electron 

multiplication. 

One of the possible classical explanations behind the increase in IQE for the N72B sample 

after removal of the SiO2 passivation layer is that the deposited amorphous silicon dioxide 
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possessed mild absorptive properties that were accidently tuned just to cut off the blue part of 

the incident flux. In this scenario, the collection efficiency of N79 would remain either the 

same or better than the N72B, and the resulting difference in QE would have to be attributed 

to parasitic absorption in the first, inactive layer. By analyzing the differences between the 

experimental IQE for the blue region, shown in Figure IV.41, one can try to estimate the 

fraction of the flux that would have to be absorbed in the passivation layer. 

Figure IV.41. Difference in experimental IQE between N72b and N79 samples. The strongest 
increase of about 43% is located at 480 nm. 

The slope between 500 and 700 nm gives good indication of the potential shape of the 

necessary absorption coefficient of the SiO2 passivation layer, essential to reduce the flux 

penetrating into the cell sufficiently to achieve changes in QE observed in the experiment. For 

a moment we neglect the impact the extinction coefficient would have on the reflectivity of 

the structure and take into consideration only changes in the energy distribution and the 

resulting changes in the generation function G. We retain the same structure and distribution 

of the layers as was estimated by both SEM measurements and optical analysis in paragraphs 

1 and 2 of this chapter. For the purpose of this estimation, we assume that the real part of the 

refraction index does not change significantly, and we only add extinction coefficient high 

enough to precisely cut off the amount of the flux responsible of the increase in the IQE for 

N72B. The resulting dielectric function does not fulfill Kramers-Kronig relations, but in the 

first attempt we will neglect that also. The collection efficiency was also kept exactly the 

same as was shown in Figure IV.40b. The results of this simulation are shown in Figure 
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IV.42. An introduction of rather high extinction coefficient can cause a decrease in EQE 

which fits well the experimental data (Figure IV.42a); however it is impossible to reproduce 

both EQE and IQE due to differences in reflectivity of the sample (Figure IV.43b). 

a) b) 

Figure IV.42. Simulated quantum efficiencies for N79 sample passivated with an absorbing 
SiO2 layer (a) and normalized absorption in each area of the emitter (b). 

a) b) 

Figure IV.43. Dielectric function of the hypothetical absorbing SiO2 layer deposited on the 
N7 samples (a) and reflectivity of the whole structure covered with 117 nm of such material, 
compared with the experimental result (b). 

Such a highly absorptive passivation layer also completely reorganizes the power distribution 

in the emitter, allowing only small amount of the incident flux to penetrate into the active 

layer, (Figure IV.42b). The dielectric function of the passivation layer is shown in Figure 

IV.43a together with a comparison of the resulting reflectivity in the broad spectral region 

with the experimental data (Figure IV.43b). There is absolutely no coherence between the 

experimental reflectivity of N79 and the simulated R with the absorbing passivation layer, 

which is caused mainly by the changes of refraction index and resulting optical impedance. 
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The overall value of R for wavelength up to 700 nm is far below the experimental data and 

none of interferences are visible. In fact, the appearance of the interferences for the 

wavelengths just below the first critical energy is a good indication that the passivation layer 

(which was confirmed to be about 110 nm thick by SEM measurements) is non-absorptive, 

because in the opposite scenario the incident flux would be completely absorbed in the 

passivation layer, and would not penetrate deeper into the structure and produce the 

interferences. This effect is confirmed by the simulations presented in figures 2.4a and 3.7b. 

The resulting conclusion is that even if the shape of the EQE curve could be theoretically 

explained by the absorption in the passivation layer, none of the remaining optical properties 

of the structure support this theory. 

Being unable to explain the sudden increase in both EQE and IQE for N7 samples not covered 

with the passivation layer, in spite of the inherent increase in the surface recombination 

velocity and no particular reason that would explain necessary increase in the diffusion 

length, as was needed in the classical approach (figures 3.3b and 3.4b), we will now try to 

implement the effect of electron multiplication in the structure.  

As was indicated earlier, the existence of suspended nano- and microcrystallites in the 

amorphous matrix may produce an effect similar to the already observed Multiple Exciton 

Generation (MEG) or electron multiplication [11,12]. Before we try to validate this theory 

quantitatively, for this hypothesis to be correct we would have to explain why the 

hypothetical multiplication effect is only observed or is significantly stronger in samples with 

removed passivation. We will take into consideration two multiplication mechanisms: MEG 

and Low Energy Electron Multiplication (LEEM) as proposed by Kuznicki et al. [13]. In the 

MEG case, one of the possible scenarios is that the initial multiplication process is equally 

efficient in both structures, since it depends only on the properties of the amorphized region, 

which is the same in both samples, even if the relative collection efficiency for secondary 

generation carriers is not the same. A multiplication could be attributed to the reduced density 

of free-electrons in the etched sample, which in conjunction with the potential barrier 

introduced by cSi/aSi/cSi interfaces could help the MEG generated e-h pairs to dissociate. In 

the opposite case, passivated samples have reduced density of surface states that must 

significantly increase the lifetime of the light-generated e-h pairs. Holes generated in the first 

cSi region would accumulate at the barrier and induce changes in the potential, reducing the 

dissociation rate and collection probability of the extra e-h pairs generated in the active sub-
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structure. This effect would lead to overall decrease in the CE for second generation carriers 

in passivated samples. 

In the case of LEEM, the energy conservation principle would require the generation states to 

be constantly recharged by the electrons coming from any source but the light generation for 

the process to be efficient, and to generate also an extra hole in the valence band somewhere. 

In the first moments after the sample is exposed to the external flux of photons, at room 

temperature all the second generation centers are charged (located 0.274 eV below the CB), 

but once the extra electrons are created the positively charged states are left. If these are not 

recharged rapidly with a thermal excitation of an electron from the valence band, the 

secondary charge will eventually recombine and occupy its origin state, producing no increase 

in short-circuit current. Passivated samples have much lower recombination rate which results 

in slower dynamics of the thermal generation/recombination processes. This might cause the 

secondary generation centers to regenerate at a much slower rate than it would happen in a 

sample with an increased density of surface recombination states, as in the case of etched 

structures.  

We tried to validate both theories by performing a simulation of the quantum efficiency in the 

assumption that the first generation collection efficiency is exactly the same as estimated for 

the N79 sample, in which the secondary generation effect is either non-existent or has no 

significant impact on the experimental value of QE curves. Collection Efficiency for 

secondary (and higher tiers) carriers is then localized only in the proximity of the active sub-

structure and is energy dependent, as was introduced in the chapter II of this work.  

There are many challenges behind an approach to validate the existence and strength of a 

multiplication process. If in the present experiment, neither EQE nor IQE overshot 100% 

efficiency, there always some sort of classical explanation to be found. On the other hand, the 

step-like increase predicted by the general multiplication theory has not yet been observed in 

the experiment, even if the existence of extra exciton or even free electrons was confirmed 

experimentally [11,14], as can be seen in Figure IV.44. 
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Figure IV.44. Multiplication in quantum dots from reference [11]. This work is one of the 
first in which the existence of extra e-h pairs was measures in the external circuit; 
nevertheless the step-like shape of EQE is not visible. 

Those two facts make the task of detecting an electron multiplication significantly harder, and 

as such it can only be addressed by a very rigorous comparative analysis. We have 

experimentally observed an increase in EQE, which equals an increase in total, unmodified 

number of carriers generated by the same spectrum, despite an increase in the reflectivity. 

Having run out of classical explanations, which based either on the improvement of 

Collection Efficiency or the absorbance in the passivation layer, we turn our attention to the 

multiplication process. We are aware that simple implementation of multiplication 

mechanisms in our analysis will neglect any effects related to energy smearing, shifting of the 

energy states where multiplication occurs and fraction of active multiplication centers, which 

have an important effect on the macroscopic result, as can be seen in ref [11]. 
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a) b) 

Figure IV.45. Differences in experimental IQE for N72B and N79 samples (a) and simulation 
of both IQE and EQE for the structure where multiplication is active (b). 

As can be seen in Figure IV.45, a simple simulation in which low-energy carrier 

multiplication is allowed can reproduce the experimental value of IQE quite accurately. In 

this particular case, the fit parameters i.e. multiplication probability p = 0.8, and the active 

area where multiplication could occur was assumed to be only the interface between the 

amorphized and crystalline layers, lying close to the PN junction. However, we also allow 

some of the hot carriers to move in the emitter before their energy is homogenized with the 

electron cloud and assumed that they would follow a similar mechanism as in the case of e-h 

pairs, that is an exponential decay in probability with a specific diffusion length, Lm = 15 nm. 

It was also assumed that multiplication can generate no more than three extra carriers due to 

the physical limiting factors, such as energy conservation principle and state filling. The 

simulation reproduced well the general shape and the tendency of the IQE increase; however 

as mentioned before, we do not observe the step-like shape in the experiment. This might be 

the caused by the energy smearing, surface scattering or other effects. We have tried to 

implement an approximation of this effect in the simulation by introducing Gaussian smearing 

of the energy states responsible for multiplication. This resulted in much smoother shape of 

the IQE curve, that resembles the experimental result. For the case in which energy smearing 

is allowed the Quantum Efficiency assumes a much smoother shape and the simulation 

approaches the experimental result. For the low-energy multiplication case, we assumed that 

the multiplication energy is Em = 0.274 eV and the probability was p = 0.56, which seems 

reasonable.  
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a) b) 

Figure IV.46. Comparison between experimental (orange) and simulated (red) increase in 
IQE for N7 samples (a). Simulation of both IQE and EQE for the structure where 
multiplication is active (b) and energy smearing is allowed. 

Figure IV.47. Collection Efficiency of the structure where low-energy multiplication is 
allowed and energy smearing of Es = 0.08 eV was assumed. Both IQE and EQE for this 
structure are shown in Figure IV.46 (b). 

In the case of MEG, we assumed that the multiplication is localized in the amorphized region 

and can perhaps extend a little bit into the crystalline region. The maximum increase in the 

experimental ∆IQE is localized around 2.5 eV, as can be seen in Figure IV.45. This fact fits 

well into the hypothesis that the multiplication might occur in cSi nanocrystals embedded in 

the amorphized matrix, since the expected multiplication energy in such case would be close 

to Em = 1.2 eV above the band gap, which would yield the energy E > 2.3 eV. This predicts 

almost precisely the maximum increase in IQE, however, as in the case of other works, the 
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step-like shape of the IQE curve, predicted by theory, is not observed in the experiment. Our 

simulation is not able to reproduce such a linear increase, even with the assumption that the 

multiplication states are not very well defined in the band structure.  

a) b) 

Figure IV.48. Simulated IQE for N72B sample with MEG enabled (a) and comparison of the 
experimental (orange) and simulated (red) increase in IQE for MEG case (b).  

As can be seen in Figure IV.48, the MEG implementation in our simulation cannot well 

reproduce experimental QE results. An increase for short wavelengths, up to 550 nm is 

predicted by the simulation, but the region between 550 and 700 nm is not well reproduced. 

However the comparison of the difference in the IQE of both N79 and N72B as measured and 

predicted by the simulation shows good agreement for high energies, notably after the first 

multiplication step. This effect, while not completely ruling of the MEG hypothesis, shows 

clearly that our model cannot grasp all the physical phenomena behind this process. 
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A current–voltage characteristic or I–V curve is a relationship, typically represented as a chart 

or graph, between the electric current through a device or material and the corresponding 

voltage across it. Solar cells and solar converters are electronic devices that use P-N junctions 

to directly convert sunlight into electrical power. As was shown in Chapter I, the P-N junction 

has a complex relationship between voltage and current. As both voltage and current are 

functions of the light falling on the cell, the relationship between insolation (sunlight) and 

output power is complex. The current-voltage relation of the ideal quality junction is given by 

the equation I.4.28 of Chapter I, while the current-voltage characteristic of a real solar 

converter based on a single junction is usually well described by the Shockley equation, 
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introduced in Chapter I, equation I.4.47 (shown below). Some parameters such as the fill 

factor ηFF, series and shunt resistance Rs and Rsh, respectively, and ideality factor n, that 

describe the solar converter were introduced in chapter I. An additional parameter that is used 

to describe the quality of the device are characteristic resistance Rch = Vmax/Imax, which is the 

output resistance of the solar cell at its maximum power point. If the resistance of the load is 

equal to the characteristic resistance of the solar cell, then the maximum power is transferred 

to the load and the solar cell operates at its maximum power point. 
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We have performed several measurements of I–V characteristics of N7 samples and estimated 

all the parameters in the Shockley equation: 

VW IX ( XYX# 
 A 
 X��X#�� ( �K � Z�-R[ �A 
 X��� (IV.4.1)

In all our fitting we used a single diode model. Estimated resistances Rs and Rsh were then 

used to calculate the efficiency of the cells under an AM1.5G spectrum. Results of the 

measurements performed under AAA class solar simulator are shown in the Table 1 and in 

the Figure IV.49. The intensity of the radiation was not always equal to that of the AM1.5G 

spectrum during the measurement; therefore we applied a correction coefficient Ccorr to 

properly estimate the parameters of the cells. We have also performed dark measurements to 

estimate the resistances and the dark saturation current I0 for every sample. It is worth noting 

that the theoretical light current IL calculated using the AM1.5G spectrum and simulated EQE 

was always equal to the measured Isc. This implies that our solar simulator was indeed a very 

good class and that our simulation can accurately reproduce the experimental results.  

η % Voc [V] Isc [mA] I0 [A] n ηFF Rs [Ω] Rsh [Ω] Rch [Ω] Ccorr

N72B 5.6508 0.4699 75.2 4�10-7 1.5 0.5841 1.08 210 5.0252 0.91 

N79 6.5690 0.4494 74.4 2.37�10-7 1.38 0.6892 0.1 100 5.518 0.875 

Table 1. Parameters used in the fit of I-V characteristics measured under the solar simulator. 
Correction coefficients were applied to match the intensity of the illumination with the 
AM1.5G spectrum. Cell area was 4 cm2. 

Interestingly, N72B shows higher open circuit voltage than N79 as well as a higher shunt 

resistance, which could probably be explained by the non-uniformity of the doping 

distribution throughout the wafer and reproducibility of the process. However, an order of 
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magnitude higher series resistance for the N72B sample is an expected result of increased 

sheet resistance of the emitter, caused by the missing passivation layer. 

a) b) 

Figure IV.49. I-V curves for both N72B (a) and N79 (b) samples measured under solar 
simulator.  

Both cells unfortunately feature low efficiency η caused on the one hand by a non-optimized 

external quantum efficiency and rather low fill factor, ranging from ηFF = 0.58 to 0.68. 

Another decreasing parameter is a surprisingly low shunt resistance, which does not exceed 

Rsh = 250 Ω. These results could be expected since all the optimization procedures were 

omitted and the emphasis was on detecting the possible multiplication effect. We will 

nevertheless try to estimate the efficiencies of those structures under optimized parameters 

later in this chapter. 

Using parameters extracted from the I-V measurements under the solar simulator and the 

External Quantum Efficiency, we calculated the I-V characteristics of both N72B and N79 

samples under an exact AM1.5G spectrum, as well as their theoretical, “improved” 

counterparts, free of resistance losses and with optimized ideality factors, however yielding 

the same Isc and Voc. The results of these simulations are shown in Figure IV.50. It is evident 

that assuming the same EQE, the main losses come from resistive effects and low fill factors 

of N7 cells. 
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a) b) 

Figure IV.50. Simulated I-V curves for both N72B (a) and N79 (b) samples for AM1.5G 
spectrum (red curves) and theoretical improved counterparts without resistive effects and the 
same ideality factor (blue curves) and for an ideal solar cell (green curves).  

As could be expected, the high series resistance of N72B resulted in a slight decrease of both 

efficiency to η = 5.6055 % and fill factor to ηFF = 0.5748 under AM1.5G spectrum. However, 

in the case of the N72B sample there is room for significant improvement in both efficiency 

and fill factor, if the resistive effects had been diminished. The cell without any resistances, 

but the same ideality factor ηFF = 1.5 yielded η = 7.1826 % and fill factor ηFF = 0.7365, while 

the ideal cell showed even higher efficiency of η = 7.8082 % and fill factor of ηFF = 0.8007. 

In the case of the N79 cell, the resistive effects were weaker. Under AM1.5G spectrum the 

cell has estimated efficiency η = 6.6812 % and fill factor ηFF = 0.6932. The idealized cells, 

the one without any resistive effects but the same ideality factor n = 1.38 shows some 

improvement in both efficiency η = 7.1574 % and fill factor ηFF = 0.7426, while the ideal cell 

showed even higher efficiency η = 7.612 % and fill factor ηFF = 0.7891. Surprisingly lower 

efficiency and fill factor for the ideal N79 (thus, having the same Isc and Voc as real cell) in 

comparison with the N72B cell is an effect of lower open circuit voltage. Any further 

improvements in efficiency of these structures would have to be linked to higher external 

quantum efficiency. 
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Notre travail s’est principalement porté sur la compréhension de l'origine et l'analyse des 

effets de la multiplication de faible énergie. Ce phénomène de multiplication de porteurs 

intervient dans des métamatériaux spécialement conçus et essentiellement constitués de 

silicium, au sein de cellules solaires multi-interfaces (cellule MIND). En plus de dominer le 

marché actuel des circuits intégrés et des semi-conducteurs en général, la technologie silicium 

joue également le premier rôle dans le photovoltaïque (PV), couvrant environ 90% du marché 

mondial. La limite de Shockley-Queisser, qui fixe l’efficacité théorique maximale, est 

d’environ 33% pour une cellule monojonction en silicium sous un spectre solaire AM 1.5, 

tandis que les 67% restants ne sont pas convertis en énergie électrique mais sont perdus par 

recombinaison, par thermalisation et par d'autres mécanismes. Bien que beaucoup d'efforts 

aient été consacrés à la réduction des coûts de production et au développement des couches 

minces, voire ultra-minces, ces technologies réduisent encore les rendements. Il faut noter que 

même si il existe des solutions pour obtenir des conversions lumière-électricité de plus de 

40%, aucune d'entre elles n’est adaptée à la production à grande échelle, en raison de la 

nécessité d'utiliser des matériaux exotiques et souvent extrêmement rare. Ainsi, il a n’y a pour 

le moment pas de candidats pour remplacer le silicium (Si) à grande échelle dans le marché 

PV. La multiplication de porteur est une stratégie prometteuse pour les cellules solaires de 

troisième génération. L'énergie des photons très énergétiques, principalement perdue sous 

forme de chaleur dans les conceptions classiques, est ici utilisée pour générer des porteurs 

supplémentaires. Une fois collectés, ces porteurs supplémentaires produisent un surplus 

d'énergie électrique, ce qui peut conduire à la réalisation de cellules solaires dont les 

rendements dépassent les limites théoriques classiques de Shockley-Queisser. 

Plusieurs mécanismes de multiplication ont déjà été observés expérimentalement comme 

l'ionisation par impact ou encore la multi-génération d'excitons (MEG) dans les nanocristaux. 

L’ionisation par impact dans le silicium massif apparaît dans la pratique pour des photons de 

longueurs d'onde inférieures à 320 nm, ce qui correspond à environ 3,5 fois la largeur de 

bande interdite (Eg). Par conséquent, une partie seulement du spectre solaire est concernée et 

le gain de conversion de puissance est assez faible. L’utilisation de nanocristaux peut réduire 

cette énergie  minimale requise des photons pour démarrer le processus. Il a notamment déjà 

été observé un seuil d’énergie des photons dans les nanocristaux de silicium de 2,4 eV pour 

une largeur de bande interdite Eg = 1,20 eV efficace. Mais la dissociation des excitons et leur 
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collection sont difficiles et constituent encore un domaine de recherche actif. Une autre 

approche du problème consiste à modifier la structure du matériau à l'échelle nanométrique 

par d'intenses transformations locales en jouant sur les niveaux de dopage ou sur les 

contraintes mécaniques internes, jusqu’à un point où les matériaux commencent à exposer des 

propriétés qui n'étaient pas présentes auparavant. Cette approche peut être exploitée dans la 

création d'états par ingénierie de bande, ce qui pourrait éventuellement permettre la 

multiplication de porteur pour des énergies de photon beaucoup plus faibles que l’énergie de 

bande interdite. 

Nous présentons un nouveau processus de multiplication à faible énergie où l'énergie du 

photon seuil peut être inférieure à 2 Eg. Dans nos travaux précédents, nous avons présenté 

une méthode de fabrication du dispositif ainsi que les applications potentielles et les effets 

observés. Dans notre approche, des états électroniques sont introduits à une énergie 0.274 eV 

en dessous de la partie inférieure de la bande de conduction d'un émetteur hautement 

dégénéré. Grâce à la grande densité de population de porteurs intrinsèques permettent une 

meilleure conversion des photons très énergétiques grâce à l'ionisation par impact. Comme les 

centres de multiplication ne sont pas aussi localisé que les nanocristaux par exemple, nous 

définissons le segton comme la plus petite partie du matériau qui permet la multiplication des 

électrons et qui possède la capacité de se recharger une fois le processus terminé. Les 

propriétés des segtons dérivent des contraintes mécaniques au niveau des interfaces entre le 

silicium cristallin et silicium amorphe, et le fort dopage au phosphore. De plus, étant donné 

que les segtons sont noyés dans des matériaux conducteurs, les porteurs de deuxième 

génération sont généralement collectables, si aucun autre obstacle n’est présent. Ici, nous 

démontrons une augmentation jusqu’à 40% de l’efficacité quantique interne (IQE)  pour un 

pic centré autour de 450 nm. C’est la première fois qu’un phénomène de multiplication 

d’électrons est observé sur une nanostructure 1D de silicium. Une représentation typique de la 

structure MIND est donnée à la figure 1. 
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Figure 1: Mesures MEB montrant l'architecture de deux échantillons. La couche de 
passivation de l’échantillon de gauche a été réduite à environ 5-10 nm par gravure. La 
géométrie finale des deux échantillons est la suivante: couche de passivation (~ 10 nm pour la 
cellule gravée, ~ 120 nm pour cellule passivée), 170 nm silicium cristallin (cSI), ~ 10 nm 
amorphe de Si (aSi) et une jonction pn à la profondeur de 1,0 µm. 

Les propriétés optoélectroniques spécifiques de semi-conducteurs fortement dopés ou très 

excités, qui diffèrent de diverses manières des cas parfaitement connus des matériaux non 

dégénéré, conduisent à de nouvelles applications souvent imprévues. Les propriétés de ces 

matériaux sont appréciées dans des circuits électroniques spécifiques et vont probablement 

apparaître dans les futures applications optiques et photoniques tout silicium. Plusieurs effets 

ont été découverts dans les matériaux pour produire des propriétés souvent imprévus ou 

l'amélioration des propriétés connues. Malgré des études approfondies au cours des vingt 

dernières années, il y a plusieurs questions non-élucidées sur les fonctionnalités optiques.  
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Figure. 2. Simulées (ligne continue) et expérimentales (points) de données pour différentes 
concentrations de dopage phosphore. (a) Re (ε), (b) Im (ε), (c) tracé des valeurs résiduelles 
pour la partie imaginaire de la fonction diélectrique (ε ∆) et (d) Im (ε) de Si pour toutes les 
densités de dopage phosphore possibles. 

Nous proposons une méthode de prédiction des fonctions diélectriques de Si fortement dopé 

(Si:P) et de Si fortement dopé sous excitation élevée (par exemple par la lumière incidente) 

qui conduisent toutes deux à une grande densité de population de porteurs libres extrinsèques. 

Le modèle d’oscillateur harmonique (HMO) a été largement étudié au cours des années et 

certains problèmes classiques et les désaccords entre les données expérimentales et la théorie 

de Si ont été identifiés comme une représentation inexacte de la limite d'absorption associée à 

la bande interdite directe. De simples extensions au modèle classique pourraient résoudre le 

problème, mais elles conduisent à la perte de généralité du modèle lui-même. Pour l'analyse 

des fonctions diélectriques des matériaux qui varient peu, on a besoin d'un outil qui est adapté 

à une application particulière et à une gamme spectrale, plutôt qu’un modèle plus générique 

mais moins exacte. Ces extensions ont été développées pour le silicium intrinsèque et les 

matériaux dérivés du silicium dans le passé. Ils fonctionnent bien lorsque le paramétrage 
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d'une fonction diélectrique donnée est effectué, mais ils ne sont pas capables de prédire les 

propriétés optiques lorsque des changements structurels se produisent. Des changements 

structurels, une équation de modèle introduit par Aspnes groupe a été élargie par l'ajout d'une 

dépendance fonctionnelle possible de ses paramètres au sujet de changer la densité de dopage, 

et ensuite combiné avec une prolongation de Drude qui mène à l'ensemble d'équations 

suivant: 
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où C0 et ωg sont, respectivement, l'amplitude et la fréquence de l'oscillateur Lorenz, Γ est un 

coefficient d'élargissement, N est la densité des porteurs, τD est le temps d'amortissement de 

Drude, mopt la masse optique des porteurs, µ est l'ordre de pôle et β est le facteur de phase de 

pole. Le reste des paramètres ont leurs significations habituelles. La précision de l'ajustement 

pour les différentes concentrations de dopage est donnée dans la figure 2. La représentation de 

la fonction diélectrique pour chaque couche est ensuite combinée par approximation de la 

matrice de transition (TMA), ce qui nous permet d'extraire des informations complètes sur la 

propagation du champ électromagnétique à l'intérieur de la structure. 

La présence d'interface enterrées amorphe/cristallin induit un obstacle pour les porteurs 

minoritaires dans l'émetteur supérieur dopé n. Donc nous supposons qu’une diminution 

significative de l'efficacité quantique externe et interne (EQE et IQE) doit être présente pour 

courtes longueurs d'onde. En tenant compte de cela et en supposant de plus que l'efficacité de 

collecte (CE) est égal à 1 seulement à proximité de la jonction, nous avons pu reconstruire CE 

pour l'échantillon B. La figure 2 montre l'ensemble du spectre EQE (courbe bleue) et de 

réflexion (courbe vert) ainsi que la réflectivité simulée (noir) pour deux échantillons étudiés 

(gravé en haut et passivé en bas). Aux plus hautes énergies de photons, EQE pour 

l'échantillon avec la surface endommagée dépasse les valeurs d'EQE pour les échantillons 

passivés malgré un plus grand taux de recombinaison de surface et l'absence de tout 

revêtement antireflet. La surface de l'échantillon est suffisamment endommagée pour que, en 
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raison de la diffraction de lumière, les pics d'interférence ne soient plus observés dans les 

spectres de réflexion. Ces pics sont clairement visibles pour l'échantillon passivés et nous 

permettent d’attester de l'existence et de la qualité des sous-structures enterrées qui en sont 

l’origine (à comparer avec le modèle). L'augmentation du QE est encore plus visible sur la 

figure 3, montrant des spectres IQE. IQE a été calculé en utilisant l'équation suivante: 

IQE=EQE/(1-R)          

                 (2) 

Nous prenons en compte toute la lumière qui pénètre à l'intérieur de la structure. Les résultats 

sont paradoxaux parce que malgré le fait que la surface soient endommagée et l’absence de 

revêtement anti-reflet, l'EQE de l’échantillon A est plus élevée que l’EQE de l’échantillon B 

pour des énergies de photons élevées (figure 2). L’IQE est même supérieur pour la cellule A 

pour presque la totalité de la gamme spectrale (figure 3). Les efficacités de collecte pour les 

échantillons A et B devraient être presque les mêmes étant données les architectures internes 

identiques des deux échantillons, les différences résultant uniquement de la surface 

endommagée dans le cas A. Parce que nous avons déjà supposé que presque toutes les paires 

électron-trou générées dans l'émetteur supérieur sont perdus à cause de la barrière à l'interface 

ASI/CSI, ces efficacités de collecte ne devraient pas présenter de différences majeures. La 

différence de réflectivité due à l'absence de la couche antireflet dans le cas A, ne peut pas 

expliquer la différence dans l'efficacité quantique parce que la cellule la plus efficace est aussi 

celle présentant la plus grande réflectivité. Nous avons exclu toutes les explications classiques 

pouvant mener à ce comportement et, par conséquent, nous supposons que le métamatériaux 

introduit doit être responsables des changements observés.  

Pour résoudre le problème de façon plus détaillée, nous avons décidé de comparer les 

résultats d’IQE avec la simulation. Nous avons considéré deux cas possibles: l'une 

entièrement classiques pour les deux échantillons A et B, et l'autre où nous avons supposé que 

le métamatériau a réussi à créer des électrons supplémentaires disponibles autorisant le 

phénomène de multiplication. Dans le premier cas, l’efficacité de collecte pour l'échantillon 

gravé devait être bien meilleure que pour l’échantillon passivé pour réaliser une bonne 

compatibilité entre l’IQE expérimental et celui simulé. Il était également nécessaire de 

négliger partiellement la barrière introduite par la couche d'aSi pour l'échantillon gravé. Étant 

donné que ce type de comportement n'a jamais été observée et les cellules solaires sont bien 

connus pour être très sensibles à la qualité de la passivation, nous considérons que cette 

approche ne rend pas bien compte de la réalité. Dans le second cas, nous avons supposé que 
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pour l'échantillon passivé, l’effet de multiplication n’a pas lieu à cause du confinement des 

porteurs dans l'émetteur supérieur qui augmente leurs durées de vie et bloque le processus de 

rechargement des centres. 

�

Figure 3: EQE expérimental (bleu) pour l’échantillon gravé (gauche) et l’échantillon passivé 
(droit). Nous estimons l'incertitude de ces courbes à être inférieure à 1,5%. Une comparaison 
de la réflectivité mesurée (cercles verts) et modélisées (ligne noire) est également présentée.

Par conséquent, nous supposons que l'échantillon B peut être très précisément modélisé en 

supposant que les caractéristiques prédominantes sont celles d'une cellule solaire classique Si 

passivée avec une  barrière de potentiel enterrée pour les porteurs minoritaires. Notre analyse 

semble confirmer l'affirmation selon laquelle l'ionisation par impact à faible énergie des 

électrons supplémentaires est possible dans les milieux semi-conducteurs spécialement 

préparés. Dans notre cas, nous avons effectué une analyse de deux échantillons contenant une 

sous-structure enterrée de métamatériaux. Dans cette étude, un échantillon avec une meilleure 

structure de passivation montre de moins bonnes propriétés électriques globales, tandis que 

l'échantillon sans passivation présente une nette amélioration de ses propriétés électriques et 

en particulier de son efficacité quantique. La structure des deux échantillons a été étudiée par 

microscopie électronique à balayage et par des mesures de réflectivité. Les propriétés optiques 

des deux échantillons sont expliquées par des moyens classiques et sont facilement 

associables à la géométrie des échantillons. Les propriétés électriques des deux échantillons 

montrent exactement la tendance inverse, de façon prévisible, le comportement classique peut 

être observé que pour l'échantillon passivé. Pour l'échantillon gravé, la seule explication serait 

l'hypothèse que l'augmentation actuelle de recombinaison de surface annule la barrière 

enterrée pour des porteurs minoritaires. Un tel effet n'a jamais été observé et ne trouve aucune 

explication physique. 
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Figure 4: (à gauche) IQE pour l’échantillon passivé (en vert) et l’échantillon grave (en 
rouge). Les cercles correspondent aux mesures expérimentales et les courbes en trait plein au 
simulations. (à droite) Augmentation de l’IQE due à une multiplication de porteurs aux 
interfaces de la couche amorphe. Les cercles verts correspondent au mesures et le trait plein à 
la simulation pour une probabilité de multiplication p=0.7 et une énergie d’activation 
Et=0.274 eV. 

L’hypothèse plus acceptable est que l'augmentation du nombre d'états de recombinaison de 

surface réduit la durée de vie des porteurs majoritaires dans l'émetteur supérieure et augmente 

le taux de recharge de centres de multiplication, ce qui les rend plus efficaces. Cela s'intègre 

bien dans l'effet désiré et explique les résultats expérimentaux de façon très précise. Ici, nous 

avons constaté que la probabilité de multiplication est p = 0,7 pour l'énergie E = 0.274eV. 

Plusieurs problèmes et des questions restent ouverts et d'autres recherches sont nécessaires 

pour comprendre comment: (1) accroître la CE primaire dans l'émetteur supérieure, se 

débarrasser de la partie électroniquement inactive, (2) induire une transition de PV en 

métamatériaux Si massif et sous quelles conditions exactes le métamatériau peut être réparti 

uniformément sur l'ensemble de la zone active, (3) résoudre le problème actuel où la 

formation métamatériau est liée à l'introduction d’une barrière pour les porteurs minoritaires 

qui limite l’efficacité de l'ensemble du dispositif et (4) augmenter la mobilité des porteurs et 

de réduire le nombre de défauts nécessaires pour que le métamatériau puisse se former. Si ces 

questions peuvent être résolues, l'introduction de ce type de métamatériaux dans les cellules 

solaires de silicium peut conduire à surmonter la limite de Shockley-Queisser et à accroître 

considérablement le rendement énergétique des cellules solaires de silicium. 



Low Energy Photovoltaic Conversion in MIND structures 

Photovoltaic devices of today convert solar energy into electricity in a clean, renewable and 
inexhaustible way and represent a possible replacement for the fossil fuels. However, in order 
to compete with classical energy sources a significant increase in the conversion efficiency is 
inevitable. In this work, we concentrate on the aspects able to raise the conversion efficiency 
above the limitations of present cells. The first part of the study is devoted to new theoretical 
ideas considered as 3rd generation photovoltaics, while the most interest is kept at studying the 
possible benefits of electron multiplication at low-energies. In the second part of the study, we 
develop a model that allows a precise treatment of optical and transport properties of silicon 
structures with buried interfaces. Extensive theoretical and experimental analyses of existing 
MIND structures are then conducted. By studying the exact flux and power distribution inside 
several structures in conjunction with their geometry, we estimate the possible quantum 
efficiencies and compare them with experimental results. Through the means of numerical 
simulations coupled with experimental characterization, we extract the carrier collection 
efficiency of studied cells. New effects are being observed, such a possible increase in 
collection efficiency above unity. A deeper analysis of the experimental results coupled with 
the numerical study analyzes several classical and non-classical explanations of the increase 
in collection efficiency or the resulting increase in the quantum efficiency. With most of the 
classical explanations ruled out, we conclude that the most probable, but not definitive 
explanation of this effect can be interpreted as the result of a low-energy carrier 
multiplication. 

Conversion photovoltaïque en basse énergie dans les structures MIND 

Dispositifs photovoltaïques d'aujourd'hui convertissent l'énergie solaire en électricité de 
manière propre, renouvelable et inépuisable et représentent un remplacement possible pour les 
combustibles fossiles. Toutefois, afin de rivaliser avec les sources d'énergie classiques une 
augmentation significative de l'efficacité de conversion est inévitable. Dans ce travail, nous 
nous concentrons sur des aspects pouvant propulser le rendement de conversion au-dessus des 
limites de cellules présentes. La première partie de l'étude est consacrée à de nouvelles idées 
théoriques considérés comme le photovoltaïque de 3ème génération, alors que le plus d'intérêt 
est maintenu à étudier les avantages possibles de la multiplication d'électrons faible seuil. 
Dans la deuxième partie de l'étude, nous développons un modèle qui permet un traitement 
précis des propriétés optiques et de transport des structures de silicium avec des interfaces 
enterrées. Les analyses théoriques et expérimentales approfondies des structures existantes 
MIND sont ensuite effectuées. En étudiant le flux exacte et la distribution d'énergie à 
l'intérieur de plusieurs structures dans le cadre de leur géométrie, nous estimons les 
rendements quantiques possibles et les comparer avec les résultats expérimentaux. Grâce aux 
moyens de simulations numériques couplées avec caractérisation expérimentale, nous 
extrayons l'efficacité de la collecte de porteur de cellules étudiées. De nouveaux effets sont 
observés, une telle augmentation possible de l'efficacité de la collecte au-dessus de l'unité. 
Une analyse plus approfondie des résultats expérimentaux couplés avec l'étude numérique suit 
quelques explications classiques et non classiques de l'augmentation de l'efficacité de la 
collecte ou l'augmentation résultante de l'efficacité quantique. Avec la plupart des explications 
classiques exclu, nous concluons que l'explication la plus probable, mais non définitive de cet 
effet peut être interprété comme le résultat d'une multiplication des porteurs faible seuil. 
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