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ABSTRACT

TISSUE ENGINEERING represents a promising approach for the production of bone sub-
stitutes. The use of perfusion bioreactors for the culture of bone-forming cells on a

three-dimensional porous scaffold material, resolves mass transport limitations and provides
physical stimuli, increasing the overall proliferation and differentiation of cells. Despite the
recent and important development of bioreactors for tissue engineering, the underlying mech-
anisms leading to the production of bone substitutes remain poorly understood.

The aim of this thesis is to gain insight on the influence of transport phenomena, on cell
and tissue growth within a perfusion bioreactor. To this purpose, a combined modeling and
experimental approach is followed.

To start with, a rigorous theoretical framework is developed in order to study the trans-
port properties of the bioreactor. Given the hierarchical nature of the system, the multiscale
aspect of the problem must be taken into account. Based on the volume averaging theory
with closure, mass and momentum transport processes are upscaled from the extracellular
matrix scale, to the bioreactor scale. The effective properties of the encountered structures
are evaluated, and the influence of the interscale dependencies are emphasized. The resulting
macroscopic model includes non-conventional terms, which contributions are evaluated in the
case of the bioreactor culture conditions.

Then, cell proliferation and tissue growth are studied both, from an experimental and mod-
eling point of view. First, fibroblast cells are cultured on glass beads in a bioreactor, perfused
with culture medium at 10mL/min, for up to three weeks. A protocol combining histolog-
ical techniques and image analysis allows the quantification of cell and tissue growth as a
function of space and time. Second, a theoretical tissue production kinetic is introduced in
the multiscale transport model previously developed. Finally, the resolution at the bioreac-
tor scale allows to discuss the theoretical and experimental results in regard to the transport
phenomena taking place in the perfusion bioreactor.

Key words : Tissue engineering, Perfusion bioreactor, Transports in porous media, Volume
averaging, Cell and tissue growth





RÉSUMÉ

L’INGÉNIERIE TISSULAIRE représente une solution prometteuse pour la production de
substituts osseux. L’utilisation de bioréacteurs à perfusion pour cultiver des cellules

ostéo-compétentes sur des matrices poreuses, permet de résoudre les limitations dues au
transfert de masse, et d’apporter des stimuli physiques améliorant la prolifération et la dif-
férenciation cellulaire. Malgré les récents et importants développements des bioréacteurs en
ingénierie tissulaire, les mécanismes menant à la production de substituts osseux en bioréac-
teurs restent mal compris.

Le but de cette thèse est d’améliorer la compréhension de l’influence des phénomènes de
transport, sur la croissance cellulaire et tissulaire dans un bioréacteur à perfusion. Dans cet
objectif, une approche combinant modélisation et expérimentation est proposée.

Dans un premier temps, un cadre théorique rigoureux est développé afin d’étudier les pro-
priétés de transport du bioréacteur. Etant donné la nature hiérarchique du système, l’aspect
multi-échelle du problème doit être pris en compte. En se basant sur la méthode de prise
de moyenne volumique avec fermeture, les processus de transport d’espèces et de quantité
de mouvement sont homogénéisés à partir de l’échelle de la matrice extracellulaire, jusqu’à
l’échelle du bioréacteur. Les propriétés effectives des différentes structures rencontrées sont
évaluées, et l’influence des dépendances inter-échelles sont mises en valeur. Le modèle
macroscopique obtenu inclut des termes non-conventionnels, dont les contributions sont éval-
uées pour les conditions de fonctionnement du bioréacteur.

Dans un second temps, la prolifération cellulaire et la production de tissu sont étudiées
d’un point de vue expérimental et théorique. Premièrement, des cellules de type fibroblaste,
sont cultivées jusqu’à trois semaines sur des billes de verre, dans un bioréacteur perfusé à
10mL/min. Un protocole combinant des techniques d’histologie et d’analyse d’image, permet
de quantifier la croissance de cellules et de tissu en fonction du temps et de l’espace. Deux-
ièmement, une cinétique de production de tissu est introduite dans le modèle de transport
multiéchelle développé plus tôt. Finalement, la résolution à l’échelle du bioréacteur permet
de discuter les résultats expérimentaux et théoriques au regard des phénomènes de transport
ayant lieu dans le bioréacteur à perfusion.

Mots clés : Ingénierie tissulaire, Bioréacteur à Perfusion, Transport en milieux poreux, Prise
de moyenne volumique, Croissance cellulaire et tissulaire
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INTRODUCTION

LARGE BONE DEFECTS can result from high energy traumatic events, ablation due to a
pathology (for instance bone tumor or infection), or non-healing fractures. In these cases,

the natural regeneration ability of bone is insufficient, and grafts are required to fill the defects.
Presently, more than 2 million bone grafting procedures are conducted annually in the United
States, representing an estimated market of $2.5 billion [McCoy & O’Brien, 2010]. The
current "gold standard" surgical procedure is autologous graft, where a volume of bone is
harvested from a healthy spot of the patient (typically the iliac crest in the hip), to be implanted
in the defect. Although healing rates with this procedure have been reported as high as 60-
100%, several drawbacks remain [Calori et al., 2011]. Indeed, the harvesting procedure is
a heavy surgical intervention implying risks of complications and additional cost. Moreover
the harvested volume is limited and may be inadequate for large defects or multiple sites
reconstruction. Other acellular treatments such as allografts or filling material, present lower
success rate and heterogeneous bone formation. This motivates the research of alternative
bone substitutes and treatments for large bone defects.

Tissue engineering aims to answer this need, by providing an interdisciplinary framework
to produce tissue and organs in vitro. In one of its primary approach, bone tissue engineering
combines three-dimensional porous materials with osteocompetent cell culture, in order to
produce bone substitutes. Whilst this methodology has shown very promising results [Petite
et al., 2000], very few clinical studies have been carried [Quarto et al., 2001]. This is mainly
due to long and expensive culture periods as well as low reproducibility and heterogeneous
substitute production. These limitations may be addressed by the use of more automated
culture devices called bioreactors.

Bioreactors for bone tissue engineering are designed to improve mass transport within the
forming bone substitute, and provide biophysical stimuli to enhance cell proliferation, differ-
entiation and extracellular matrix deposition. Despite an extensive literature on bioreactors for
bone tissue engineering, the translation of this technology to clinical applications still faces
important challenges. Most importantly, great difficulties remain in increasing the quantities
of produced bone substitutes to clinically relevant volumes. This can be partly explained by
the empiric development of bioreactors, which has led to gaps in the understanding of tissue
growth within these environment. Limitations to the design of relevant bioreactor for clinical
applications cannot be addressed without a deeper understanding of the biological, biochem-
ical and biophysical phenomena taking place in these systems.
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Modeling approaches have been shown to be promising tools to represent and predict
mechanisms that are difficult or impossible to observe experimentally. Theoretical and numer-
ical studies related to bioreactors, have mainly focused on the development of mass transport,
hydrodynamics, or cell growth models at a specific scale. Yet, in order to propose a relevant
model for the prediction of substitute production, it appears necessary to take into account the
coupling of the different physics, as well as the multiscale aspect of the problem. Addition-
ally, in the interest of facilitating the use of such model in bioengineering applications, strong
interactions between the modeling and experimental approaches should be maintained.

Objectives of the thesis

The aim of the project, is to gain insight in the driving mechanisms leading to cell prolifer-
ation and tissue production within a perfusion bioreactor. It has been experimentally observed
that mass transport, as well as flow induced mechanical stimuli, have a critical importance in
the development of in vitro bone substitutes. Yet the relative contribution of these phenomena
on tissue growth remains to be assessed. To this purpose, the following objectives have been
identified

• Establish a theoretical framework taking into account relevant biophysical parameters
at different scales in order to model mass and momentum transport phenomena within
a perfusion bioreactor.

• Investigate the effective transport properties for a wide range of culture conditions.

• Develop an experimental methodology able to quantify the time and space evolution of
biological tissues within a porous medium.

• Propose a model capable of predicting bone substitute production in a perfusion biore-
actor. This necessitates to identify and take into account the relevant phenomena influ-
encing tissue growth.

• Approach experimental and theoretical representations, in order to improve the under-
standing of the coupling between transport processes and tissue formation within the
bioreactor.

In an attempt to answer this challenges, the following approach is proposed. Given the hi-
erarchical nature of biological systems, and the dependency of cell proliferation on its culture
environment, a bioreactor experimental model is set up in order to isolate the main features of
the original process. Next, a multiscale theoretical model for mass and momentum transport,
is developed by multiple upscalings. This allows the computation of the effective transport
properties of the bioreactor at different scales. Based on a rigorous theoretical framework, a
cell/tissue growth model is then proposed, which parameters are shown to rely on experimen-
tally relevant quantities at the cellular scale. Finally, the coupled resolution of this models at
the macroscopic scale, allows the comparison with experimental results of cell growth in the
bioreactor.

The present manuscript is organized as follows. A literature review on bioreactors for bone
tissue engineering is presented in Part I. This covers the fundamentals of tissue engineering
for bone substitutes, as well as the working principles of the most popular bioreactor designs.
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After discussing the remaining challenges to translate bioreactor technologies to clinical ap-
plications, the main modeling approaches related to bioreactors are reviewed. Finally, it is
shown that a multiscale framework combining transport processes and tissue growth is miss-
ing. In Part II, the derivation of such a model for mass and momentum transport is presented.
Four scales are described (i) the bioreactor scale, (ii) the tissue scale, (iii) the cellular scale
and (iv) the interstitial scale. Three successive upscaling steps are operated from scale (iv)
to (i) using the volume averaging method. The closure problems at the interstitial and cel-
lular scales are solved for the determination of the associated effective transport properties
(permeability, diffusion/dispersion coefficient). The interscale interactions on these effective
properties are highlighted. Part III is dedicated to the bioreactor scale (i). First an experimen-
tal study of the bioreactor is presented, in order to quantify cell and tissue production kinetic
in space and time. Then the bioreactor scale transport properties are evaluated at scale (i),
and a cell/tissue growth model is derived based on the theory developed in the second part.
Finally a macroscopic resolution of the transport process, coupled with tissue growth is pro-
posed. This work is concluded by a discussion on the comparison between the experimental
and modeling results.
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PART I

THE PERFUSION BIOREACTOR : FROM TISSUE

ENGINEERING TO MULTISCALE MODELS





CHAPTER 1

BONE TISSUE ENGINEERING

AS DEFINED by Langer & Vacanti [1993], the discipline of "tissue engineering, applies

the principles of biology and engineering to the development of functional substitutes

for damaged tissue". More precisely, this field aims to repair, replace or regenerate specific
tissues or organs through the implementation of physical, chemical and biological sciences
into materials, devices, systems and clinical strategies. In one of its fundamental approaches,
tissue engineering associates cells with a porous scaffold which serves as the structure for
three-dimensional tissue development, and which degrades or is resorbed at a defined rate.
The cell-scaffold construct is cultured in vitro, in controlled conditions in order to support the
nutrition of cells, and possibly provide stimuli (e.g. biochemical, biophysical) to direct and/or
enhance cellular activity (e.g. proliferation, differentiation, production of biomolecules and
extracellular matrix).

The development of bioreactors for tissue engineering has been motivated by the need to
simplify, control and optimize culture conditions of the bioengineered constructs. The use
and design principles of bioreactors for bone tissue engineering will be discussed in Chap. 2,
but first it may be useful to recall the basic concepts of bone biology and tissue engineering.

1.1 Introduction to bone biology

Bones form a complex structure which serves as the mechanical support for the body,
protection for vital organs, and attachment sites for the tendons and muscles. In addition to
their mechanical role, bones are the place of production of a variety of indispensable cells
for the organism. Bone marrow is housed in the head of long bones and in flat bones, and
is responsible for the production of red blood cells (hematopoiesis) and lymphocytes. Stem
cells are found in bone marrow, mainly in the form of mesenchymal stem cells (MSC) or bone
marrow stromal cells (BMSC), and hematopoietic stem cells (HSC). Additionally, bone is the
mineral reservoir of the organism and is implied in the regulation of the blood calcium level
[Kneser et al., 2006].

Bone tissue is a special type of connective tissue. In its mature form, two types of bones
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Figure 1.1 – Illustration of cortical and trabelcular bone structure1

exist : the cortical bone (also named compact bone), and the trabecular bone (also called
cancellous or spongy bone). Although they differ greatly in their microstructure, functions
and location, both are made of the same basic mineral (hydroxyapatite crystals) and organic
(type I collagen, glycosaminoglycans, osteocalcin, osteonectin, bone sialoprotein) materials
[Buckwalter et al., 1995a].

Cortical bone is the strongest part of the bone, having a porosity of less than 0.1 it supports
most of the stress of the skeleton. It is located in the diaphysis (central part) of long bones and
on the exterior part of short and flat bones. Its characteristic structure is the Harvesian system
which is composed of concentric lamellae constituting osteons of around 200µm diameter
(Fig. 1.1). The canals present at the center of the osteons are about 40µm diameter and
allow blood vessels, nerves and lymphatic fluid to circulate within cortical bone. Lacunae
are cavities which host osteocyte cells between the lamellae, and which are linked through
a network of canals of 0.2µm diameter called canaliculi. The oriented structure of osteons
makes cortical bone an highly anisotropic material [Cowin, 2001]. In contrast trabecular bone
is isotropic, highly porous (up to 0.95), and has a "rod and plate" characteristic structure. The
volume of the cavities houses the main part of the body’s bone marrow where most of the
bone metabolic functions happen. Trabecular bone is found at the epiphysis (extremity parts)
of long bone and in the core of short bones.

8
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Figure 1.2 – Illustration of bone remodeling sequence supported by cellular activity1

Bone is a dynamic structure constantly developing, regenerating and remodeling. These
processes are complexly regulated by a multitude of different growth and transcription fac-
tors which coordinate the interactions of cells and matrix in response to external or internal
stimuli. Several types of cells can be found in bone tissue, but its functional integrity is
ensured by mainly three cell types which play a well defined role in the remodeling pro-
cess [Buckwalter et al., 1995b]. Osteoblast cells are responsible for bone matrix deposition,
they produce alkaline phosphatase (ALP) which plays a role in bone mineralization. Osteo-
clast cells are in charge of bone resorption by producing H+ ions and tartrate-resistant acid
phosphatase (TRAP) which degrade hydroxilapatite and organic matrix respectively. Finaly,
osteocytes are mechanosensible cells that regulate the remodeling process by interacting with
osteoblasts and osteoclasts via extracellular signaling. Osteocalsts are mature osteoblasts that
are embedded within the bone matrix in cavities called lacuanae. They communicate with
each other thanks to gap junctions, made possible by a network of long cytoplasmic exten-
sions going through the canaliculi. They also participate, although much less than osteoblasts,
in the production of bone extracellular matrix.

This three cell types are very functional cells but have a relatively limited proliferative
ability. In the scope of cell based therapies for bone reconstruction it may be useful to ex-
plore their origins, differentiation and maturation. Stem cells are responsible for the renewal
of all tissue in the body during repair and remodeling. Biochemical and biophysical signals

1Illustration built from the free PowerPoint image bank Servier Medical Art http://smart.servier.
fr/servier-medical-art
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control their activation, proliferation, migration, differentiation and survival. Stem cells give
rise to progenitor cells through asymmetric division, in which a mother stem cell divides into
one daughter stem cell and one daughter progenitor cell [Muschler et al., 2004]. That way
the overall population of stem cell is conserved while progenitor cells are destined to pro-
gressively differentiate into more functional cells. Mesenchymal stem cells (MSCs) have the
ability to differentiate into divers connective tissues cells such as osteoblasts (bone), chondro-
cytes (cartilage), adipocytes (adipose tissue), myocytes (muscles) and even neurons. In the
case of bone lineage, they first differentiate into pre-osteoblasts, which have good proliferative
capabilities, before to progress into osteoblasts. Osteoblasts are responsible for the deposition
of collagen extracellular matrix (ECM) during bone formation phase (Fig. 1.2). After about
40 days, osteoblasts have three possible fates : they may differentiate into ostocytes if they are
trapped in the forming bone, they may mature in lining cells on the surface of mature bone,
or they may die by apoptosis. Finally, osteocytes and lining cells may survive for more than
20 years in the cortical bone until a new remodeling cycle is initiated in the region they reside
[Buckwalter et al., 1995a; Muschler et al., 2004]. Osteoclasts does not originate from MSC
but from hematopoietic stem cells (HSC). This later cells are the origin of all blood cells and
are located in the bone marrow. They indirectly differentiate into monocytes which, when
in presence with osteoblasts and MSCs, can self-fusion to produce osteoclasts [Buckwalter
et al., 1995a].

1.2 Bone tissue repair

When damaged, bone has a unique ability to heal and remodel without leaving any scar.
The healing of a fracture is a natural physiological process that results in bone union. However
5 to 10% of fractures face difficulties to restore, resulting in delayed union or even non-union
[Calori et al., 2011]. In these cases, clinical treatments may be needed in order to restore
physiological functionality.

1.2.1 Natural healing and remodeling

The first reaction to bone fracture is an inflamatory response due to damaged blood ves-
sels, leading to the formation of an hematoma. Many signaling molecules released during
inflammation (e.g. FGFs, BMPs, PDGF) are also involved in new bone formation [Frohlich
et al., 2008]. In the three first days MSCs are recruited and start proliferating and differen-
tiating into pre-osteoblasts and osteoblasts. During the first week, surrounding soft tissues
stabilize the fracture by formation of a callus, which will be transformed in cartilaginous tis-
sue during chondrogenesis (Fig. 1.3). Additionally angiogenesis is initiated to provide blood
supply in the damaged zone. After the second week cell proliferation decreases, but intense
osteoblastic activity continues. The callus is mineralized then resorbed by chondroclast cells
while osteoblasts form new woven bone, a disorganized bone characteristic of initial bone
formation. Finally the mechanical continuity is restored by the remodeling process in which
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Figure 1.3 – Illustration of stages in bone healing after a fracture

osteocytes, ostoclasts and osteoblasts replace woven bone by lamellar bone [Dimitriou et al.,
2005].

1.2.2 Current clinical treatments

In general, the excellent healing ability of bone, combined with external restoration of
alignment and stable fixation, suffice for the reconstruction of most fracture [Frohlich et al.,
2008]. However in certain clinical situations such as high energy traumatic events, large re-
sections following a pathology (e.g. tumor, infection), or complex non-union defects, natural
bone repair may be too slow or inadequate. For instance, in the case of long bones, critical
defects are considered for a length of bone loss of 3cm in the forearm, 5cm in the femur and
tibia, and 6cm in the humerus [Calori et al., 2011]. In these challenging orthopedic cases,
some form of grafting is required.

The functions of a bone graft are to fill the space of the defect, provide support, and en-
hance biological repair. The biological properties of a bone graft are often discussed in terms
of osteoinductivity (ability to promote bone formation), osteoconductivity (ability to promote
vascularization and cell colonization within the graft), and osetogeniticity (ability to host
bone-forming cells within the bone graft) [Giannoudis et al., 2005].

Nowadays, the best graft material is autologous bone graft. The technique consists in
harvesting trabecular bone from a healthy site of the patient (usually the iliac crest in the
pelvic girdle), and implant it directly in the bone defect. This procedure is widely applied, and
the reported successful healing rate is 60 to 100% [Calori et al., 2011]. Autologous bone graft
is safe, cheap, available to every surgeon, and present the three desirable properties of a graft
material : osteoinductivity , osteoconductivity and osteogeniticity. Nevertheless autologous
grafting has significant disadvantages. First the harvesting operation is often associated with
complications such as bleeding, hematoma, infections and prolonged pain. Second, the donor
site morbidity increases with the amount of harvested bone, and in the case of large or multiple
reconstructions, the volume of bone material available is insufficient [Kneser et al., 2006].
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Finally, the cost of the additional intervention may be equivalent to the cost of commercially
available bone substitutes [Calori et al., 2011].

Allogenic (from a human donor) and xenogenic (from an animal donor) bone grafts are
the main alternatives to autologous graft. They present the advantage of avoiding the harvest-
ing of bone on the patient and all its possible complications, risks and costs. These grafts
have ideal osteoconductivity and biomechanical properties, and are relatively easy to obtain
through tissue banks [Kneser et al., 2006]. To avoid immune response, freezing and irra-
diation processes are applied to eliminate the cellular phase of the graft. Even though the
osteoconductivity is conserved, the process dramatically weaken the osteoinductive capabili-
ties of the graft. Moreover risks of viral and bacterial transmission remain [Giannoudis et al.,
2005]. Allografts and xenografts are donor and process dependent, yielding to variable clin-
ical results. The lack of osteogenesis delays osteointegration and vascularization, which in
large grafts may lead to remaining non-vital regions [Frohlich et al., 2008].

Several other types of material are used for the reconstruction of bone defects. The main
material families are biomaterial (e.g. demineralized bone matrix, collagen), ceramic (e.g.
calcium phosphate and apatite based cements), bioactive glasse (e.g. silicon-based cements),
and non-biologic (e.g. polymers, metals) substrates [Giannoudis et al., 2005; Calori et al.,
2011]. Nevertheless, most of these substitutes are only osteoconductive, there mechanical
support can be weak, and present mixed clinical results [Giannoudis et al., 2005]. While the
osteoconductivity of a biomaterial is directed by its composition, surface physicochemical
properties and internal structure, osteoinductivity can be provided with the aid of osteoin-
ducitve substances (e.g. transforming growth factor (TGF-β), insuline-like growth factor
(IGF I and II), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), vari-
ous bone morphogenic proteins (BMPs)) [Janicki & Schmidmaier, 2011]. The use of growth
factors in combination with the above filling materials has been tested clinically, but still few
studies have yet been reported, and the applications protocols are not yet standardized [Kneser
et al., 2006].

Further osteogenicity can be improved with the introduction of osteocompetent cells within
the filling material. This is the aim of bone tissue engineering, and the specificities of this field
are discussed in the next section.

1.3 Tissue engineering

Tissue engineering is an interdisciplinary field which aims to repair damaged tissues or
to restore a defect by combining in vitro biomaterials, cells and/or signaling molecules. If
cells are used, expansion and tissue specific cell differentiation may request an in vitro culture
period ranging from a couple of days to several months. The obtained constructs must be de-
veloped in parallel with well elaborated surgical concepts in order to lead to successful in vivo

applications [Kneser et al., 2006]. In this section, the main components for the development
of bone substitutes, in the frame of tissue engineering, are reviewed.
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1.3.1 Scaffold design

Three-dimensional porous scaffolds play an important role in tissue engineering strategies.
During in vitro culture, it serves as a support for cells attachment, migration, proliferation and
differentiation and may be a provider of osteoinductive substances. Upon transplantation
it is the vehicle for delivery of cells to the defect site. The porous structure lets void for
tissue ingrowth and vascularization while maintaining mechanical integrity [Muschler et al.,
2004]. The scaffold must be made from biocompatible material, and should biodegrade and
bioresorb at a controlled rate, following new tissue formation. The development of scaffolds
for tissue engineering is an intense and prolific research field, and several possibilities are
already available for clinical use. In this section, the variety of existing scaffolds is discussed
along the following main characteristics : the bulk material composition, the geometrical
architecture, the mechanical properties, the surface chemistry and the in vivo degradation
properties.

The bulk materials used in bone tissue engineering are inherited from orthopedic clinical
practices. It includes biological-derived material (e.g. processed allograft, coral), biological
polymers (e.g. collagen, chitin), ceramics or mineral-based material (e.g. tricalcium phos-
phate (TCP), hydroxyapatite (HA), calcium phosphate), metals (e.g. titanium, tantalum) and
synthetic biodegradable polymers (e.g. polyglycolide (PGA), polylactides (PLLA, PDLA),
polycaprolactone (PCL)) [Hutmacher, 2000; Muschler et al., 2004]. Composite scaffolds
made of two or more of the above cited material are also in use.

The three-dimensional porous architecture of the scaffold is critical since it influences me-
chanical properties, cellular fate, nutrient supply, vascularization and tissue ingrowth. The
pore size is usually in the range of 100 - 500µm. Even though the ideal size has been es-
timated around 350µm [Murphy et al., 2010], it is believed that larger pore sizes support
deeper cell proliferation and tissue penetration [Muschler et al., 2004]. Concerning the pore
structure, the geometry can be dictated by the fabrication process (for instance in the case of
biological based scaffold), or arbitrary chosen when the synthesis method allows it (Fig. 1.4).
Most of these scaffolds are homogeneous porous media with isotropic transport properties.
Considering the recent advances in fabrication techniques (e.g. 3D-printing, stereolithogra-
phy), it may be possible to produce controlled scaffolds with hierarchical microstructures and
oriented channels to guide the patterns of cell migration, fluid flow and diffusion through the
construct [Hutmacher, 2000; Khademhosseini et al., 2006; Sprio et al., 2011]. Finally the
nanostructural architecture of the scaffold should be considered since the substrate rigidity
and rugosity is known to influence cell adhesion, differentiation and migration [Engler et al.,
2006; Yoon et al., 2012].

The required mechanical properties of the scaffold depends on the graft site physiolog-
ical load and bone property. For instance, defects on load-bearing long bones require the
restoration of high mechanical stability, while the mechanical loads involved in craniofacial
reconstructions does not necessitate such mechanical performances [Kneser et al., 2006]. On
the other hand, the use of rigid non-degradable material such as metals, protects adjacent tis-
sue from mechanical loads, resulting in a change of the stress environment that may lead to a
loss of local tissue mechanical properties. Cortical bone has a Young’s modulus of 15-20GPa
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Figure 1.4 – Scanning electron microscope (SEM) images of various scaffold structures
used in bone tissue engineering. (A) Partial deproteinized bone [Wu et al., 2010]. (B)

Natural coral (porites) [David et al., 2014]. (C) Nonwoven PLLA fiber mesh [VanGordon
et al., 2010]. (D) Polymer fiber mesh (PCL) built by fused deposition modeling (FDM)

[Hutmacher, 2000]. (E) Hydroxyapatite scaffold obtained by foaming method [Sprio et al.,
2011]. (F) Wood-derived ceramic structure [Sprio et al., 2011]
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and a compressive strength of 100-200MPa, while trabecular bone has a Young’s modulus of
0.1-2GPa and a compressive strength of 2-20MPa [Cowin, 2001]. A summary of scaffolds
mechanical properties of different materials and architectures can be found in [Bose et al.,
2012]. The scaffold should present similar mechanical properties to the local bone, therefor
ceramic based scaffolds are appropriate to replace cortical bone, while polymers may be better
suited for trabecular bone. Another key factor related to mechanical properties of the scaffold
is the decrease in mechanical support during in vivo resorption. In order to avoid mechanical
failure of the implant (fracture), the degradation rate of the scaffold material must match the
regeneration rate of the the replacing bone [Hutmacher, 2000]. Finally, the mechanical stimuli
playing an important role in the differentiation of bone marrow stem cells, the scaffold should
transmit an appropriate stress environment within the graft site [Pioletti, 2013].

The surface chemistry of the scaffold directs its interactions with cells. Surface properties
are influenced by the bulk material, but are mainly dependent on the adsorbed proteins and
lipids. These biomolecules that come from coating solutions, culture medium, biological
fluids and/or cell metabolism, cover the surface of the scaffold and are the primary mediator of
cellular response to the material [Muschler et al., 2004]. This can be put to profit to direct cell
attachment, survival, proliferation and differentiation by precoating the scaffold with bioactive
proteins such as fibronectin or various growth factors [Bose et al., 2012].

Finally, the degradation properties of the scaffold must be considered with care. First
the resorption rate should be control to match tissue formation and mechanical load transfer
from the biodegrading scaffold to the tissue. Typical degradation times range from 3 to 12
month depending on the application [Bose et al., 2012]. Second, degradable materials release
degradation products within the implantation site. This products, when released too quickly,
may influence local pH and and reach toxic concentrations, leading to inflammatory reactions.
The control of the pH environment during scaffold resorption can be addressed by the use of
composite material. Indeed, synthetic polymer materials (PGA, PDLA, PLLA) release acidic
by-products, while ceramic materials (TCP, HA) produce basic resorption products. Therefore
a adequate combination of the two types of material could avoid the production of unfavorable
environment for the cells [Hutmacher, 2000].

1.3.2 Cell choice

Tissue engineering strategies combine three-dimensional scaffolds with cells, in order to
build a functional tissue and/or to recruit and attract other cell types toward the construct. The
ideal cells should be easily isolated and expended, have stable phenotype of interest and show
long term safety.

In the aim of producing bone substitutes, the cell type must present an osteogenic pheno-
type, which include mesenchymal stem cells (MSCs) (Fig. 1.5), bone marrow stromal cells
(BMSCs), periosteal cells and osteoblasts [Kneser et al., 2006]. MSCs are particularly promis-
ing since they have the ability to differentiate into osteoprogenitors and mature osteoblasts,
they are easily isolated, expanded, and show a stable phenotype up to 50 population doubling
[Frohlich et al., 2008]. Several autologous sources of MSCs are known (e.g. cartilage, fat), but
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bone marrow aspirates provide the higher density of stem cells, are relatively safe, and easy
to proceed [Muschler et al., 2004; Colnot, 2011]. Nevertheless the number of cells and the
quality of the aspirate are patient dependent, with an observed decrease in MSC concentration
with age, motivating in vitro cellular expansion before seeding or transplantation.

Figure 1.5 – Mesenchymal stem cells stained with fluorescent dyes2. Nucleus are in blue,
microtubules in green, and actin filaments in red.

During early stages of scaffold and device testing, the use of human or animal immortal-
ized cell lines are a reasonable choice (e.g. murine osteoblasts MC3T3-E1 [Cartmell et al.,
2003], murine mesenchymal cells C3H10T1/2 [David et al., 2011], human osteoblast-like
cells MG63 [Olivier et al., 2007]). These are populations of cells issued from a multicellular
organism, which have lost their natural senescence due to mutation or human intervention.
Therefore they can be grown in vitro for prolonged periods. From a practical research point
of view, they present the advantages of being easily available and easy to maintain in any
basic cell culture facilities. However, as soon as the proof of concept has been established for
a given process, more clinical oriented cells must be selected.

1.3.3 In vitro culture conditions

Once the scaffold and the cell type are selected, the appropriate culture conditions have to
be maintain to optimize cell proliferation, differentiation into the appropriate lineage, migra-
tion and matrix deposition.

The importance of the seeding method must not be underestimated if an homogeneous
initial distribution of cells is intended (Fig. 1.6). When the scaffold is introduced in cell
suspension and let to rest, sedimentation process drives the cells to the surface. This means
that regions with higher ratio of suspension volume to scaffold surface will have a high cell
density once attached on the wall. This occurs particularly for heterogeneous porous scaffolds

2Left : https://globalmedicaldiscovery.com/wp-content/uploads/2014/04/

Human-mesenchymal-stem-cell.jpg Right : http://news.softpedia.com/news/

New-Technique-for-Tracking-Stem-Cells-Developed-405076.shtml
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(including scaffolds made of multiple porous granules), and on the edge of the scaffolds,
close to the bulk cell suspension. It results in an initial heterogenous distribution of the cells
within the scaffold, with more cells on the surrounding of the scaffold than in its center. To
overcome this issue, multistep seeding [Grayson et al., 2008] or dynamic seeding methods
[Vunjak-Novakovic et al., 1998] have been proposed.

Figure 1.6 – Fluorescent microscope pictures of 20µm sections of coral scaffolds seeded
with Hoechst stained human MSC (adapted from [Mygind et al., 2007])

Once the cells seeded and attached to the scaffold, the construct is usually maintained
in vitro in a bath of culture medium within an incubator. It has been shown that the first
days/weeks after seeding, cellular adherence, growth and differentiation is dominated by sur-
face phenomena due to cell/material interactions [Kommareddy et al., 2010]. Then in a second
time, cells produce extracellular matrix (ECM) which allows them to grow three-dimensional.
From that point, the pore geometry of the scaffold becomes important since it is shared be-
tween forming tissue and culture medium.

When the culture medium is at rest, the culture is said to be in static conditions, as opposed
to dynamic culture conditions. The role of culture medium is to provide the necessary nutrient
and oxygen levels to support cellular activity. It can be supplemented with osteoinductive
substances to promote cell differentiation, division and matrix deposition. In static culture
conditions, diffusion is the only transport process, and the cell consumption may induce large
concentration gradients leading to regions with nutrient and/or oxygen depletion. This mass
transport limitation occurs especially at the core of large constructs, and at high cell density
where there is competition for resources [Malda et al., 2004]. Cells in these regions may
enter in a quiescent state or in necrosis due to lack of nutrients or hypoxic (lack of oxygen)
conditions. Nevertheless, it has been suggested that MSCs can survive for long periods (up
to 12 days) in sever hypoxia as long as glucose is available [Deschepper et al., 2011], and
that hypoxic conditions may be a stimulus for cell differentiation or migration toward a more
favorable environment [Muschler et al., 2004].

Mass transport limitations together with the need to produce more easily larger and cheaper
bone substitutes have motivated the development of bioreactors for bone tissue engineering.
The next chapter is dedicated to this subject, with a focus on bioreactors using hydrodynamic
environments.
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CHAPTER 2

BIOREACTORS FOR BONE TISSUE

ENGINEERING

AS DISCUSSED in the previous chapter, tissue engineering sets the ground principles of
cellular based therapy for the reconstruction of tissues and organs. Nevertheless most

of this processes are not yet ready to be used in practical applications because of insuffi-
cient substitute quality and reproducibility, high production time and cost, and difficulties to
implement in clinical applications [Salter et al., 2012]. By adopting an approach based on
process engineering, bioreactors systems are a promising tool to address this issues. In the
present chapter, the different principles of bioreactors for bone tissue engineering are exam-
ined, and the prerequisites for translation to clinical applications are reviewed. Finally the
double porosity bioreactor developed in [David et al., 2011] is detailed.

Bioreactors are generally used to facilitate, monitor and control biological, biochemical
and biophysical processes. The parameters influencing cell growth within a bioreactor include
temperature, pH, concentration in nutrient, growth factors and oxygen, and biophysical stim-
uli. These systems are usually constituted of biologically inert and non-corrosive material to
avoid cytotoxic responses. Furthermore the components must be able to support sterilization
techniques, and the bioreactor should be convenient to be manipulated in aseptic conditions.

Bioreactor systems must efficiently provide nutrients, oxygen and biophysical stimuli in
order to optimize cell proliferation, differentiation and matrix deposition. Possibilities to en-
hance mass transport are culture medium flow, integration of membranes or hollow fibers
within the scaffold, or pre-vascularization. In the case of bone forming cells, the relevant bio-
physical stimuli are mechanical solicitations (hydrodynamic shear stress, mechanical strain)
and electromagnetic fields. Each design of bioreactor for bone substitute presented bellow
applies one or more of this solutions to produce bone substitutes.
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2.1 Bioreactors using hydrodynamic stimuli

The principle behind the application of hydrodynamic culture conditions is to make use of
culture medium flow to address mass transport limitations and to apply mechanical stimuli to
the cells.

In vitro constructs are usually not vascularised, and in that case, culture medium is the only
source of oxygen and nutrients. Thus diffusion from the exterior of the construct to its core
is the main process responsible for species supply of the inner cells. Simple calculations can
show that cells at more than 500-1000 µm in the depth of the construct can be very quickly
in hypoxic conditions (lack of oxygen) [Muschler et al., 2004], which could lead to necrosis
at the center of the construct. Moreover static culture conditions lead to inhomogeneous con-
centrations fields due to local consumption of nutrients in zones of higher cell density. These
limitations can be partially solved by the use of hydrodynamic conditions where convective
effects enhance mass transport around and within the construct.

In addition to improve mass transport, hydrodynamic culture conditions are a means to
stimulate mechanically the cells. Particularly, bone cells have been shown to be more sen-
sitive to mechanical strain than other cell types [Meyer et al., 1999]. In everyday life, in

vivo mechanical stress stimulates osteocyte and osteoblast cells present in bones, and is thus
a key factor in the control of bone remodeling [Cowin, 2007]. Similarly, in a hydrodynamic
bioreactor, fluid flow induced mechanical stimuli influence cell differentiation and prolifer-
ation [Glowacki et al., 1998; Bancroft et al., 2002; Cartmell et al., 2003; Raimondi et al.,
2006; Grayson et al., 2010; McCoy & O’Brien, 2010]. In bone tissue engineering studies,
the mechanical parameter of interest is the fluid flow induced shear stress [Hung et al., 1995;
Goldstein et al., 2001; Sikavitsas et al., 2003; Raimondi et al., 2006; Leclerc et al., 2006; Ped-
ersen et al., 2007, 2010; Jungreuthmayer et al., 2009a; Park et al., 2010; McCoy & O’Brien,
2010; Grayson et al., 2011]. To be more precise, the main known effects of fluid flow influ-
encing cell fate, are the deformation of cytoskeleton [Horikawa et al., 2000; McGarry et al.,
2004; Kwon & Jacobs, 2007], the activation of stretch-sensitive ion channels in the membrane
[Jacobs et al., 2010], and the stimulation of primary cilia [Hoey et al., 2012; Delaine-Smith
et al., 2014]. These solicitations induce complex chains of biophysical and biochemical pro-
cesses, called mechanotransduction, that lead to cell response [Ingber, 2006]. Since all of
these solicitations are considered to be the effect of shear stress, which has the advantage to
be easily computed and quantified, the fluid flow mechanical stimuli are assumed to be limited
to this stress.

Parameters influencing spacial distribution and intensity of local shear stress within a three-
dimensional scaffold are, the bioreactor and scaffold geometries (which include the scaffold
porosity, isotropy, pore size and interconnectivity) as well as the fluid flow rate and physical
properties. The distribution of the shear stress on the scaffold walls are extremely hard to
determine experimentally, however different fluid mechanics models have been successfully
developed to address this question (see Sec. 3.1). Concerning the intensity of the shear stress,
the values found in the literature vary greatly from a study to another, depending on the
cell line, the support material or whether the cells are grown in two or three dimensions
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[Jungreuthmayer et al., 2009b; McCoy & O’Brien, 2010]. For three-dimensional cell cultures,
it is observed that a first range of shear stress values yields to an enhanced cell proliferation.
Then for increasing values of shear stress, cell division slows down while differentiation and
production of extracellular matrix are improved. Finally for very high values, shear stress
is damageable for the cell survival and attachment, and fluid flow may wash them off the
scaffold [Cartmell et al., 2003; Mygind et al., 2007].

Several bioreactor designs make use of hydrodynamic culture environments to improve cell
proliferation, differenciation and matrix deposition [Rauh et al., 2011]. The types of system
reviewed below are the spinner flask bioreactor [Vunjak-Novakovic et al., 1998], the rotating
wall bioreactor [Freed & Vunjak-Novakovic, 1995], and the perfusion bioreactor [Mueller
et al., 1999].

2.1.1 Spinner flask bioreactors

The simplest and cheapest way to provide hydrodynamic stimuli to a biohybrid, is to sus-
pend the seeded scaffold in a flask filled with culture medium, and to agitate the liquid using
a magnetic bar. The bioreactors based on that principle are called spinner flask bioreactors
(Fig. 2.1). The system is placed in an incubator which maintains adequate temperature, hu-
midity and CO2 content. Apertures with filters are present at the top of the flask to allow gas
exchange between the bioreactor and the incubator without risks of contamination. The level
of applied shear stress is dependent of the stirring speed, which has typical values of 30 to
50rpm for flasks of 120mL [Rauh et al., 2011].

Figure 2.1 – The spinner flask bioreactor. Left : Schematic representation [Rauh et al.,
2011]. Right : Wheaton Celstirr spinner flask

Cultures in spinner flask bioreactors lead to very good results in term of cell proliferation
and production of osteogenic markers, compared to static conditions [Sikavitsas et al., 2002;
Mygind et al., 2007]. Using coral scaffold of mean pore size of 200µm and 500µm, Mygind
et al. [2007] obtain a better proliferation, differenciation and homogeneity of human MSC in
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a spinner flask bioreactor than in static culture. Moreover the 200µm pore constructs showed
better osteogenic differentiation than the 500µm pore constructs, while this later had a higher
number of cell indicating a better proliferation. This results suggest that lower shear stress (in
larger pore size) enhance cell division, while higher shear stress (in smaller pores) stimulates
cell differentiation.

Despite its inexpensiveness and good results, the spinner flask bioreactors present several
disadvantages. The most important drawback is the complex hydrodynamics in the flask
making difficult the precise evaluation of applied levels of shear stress. Moreover the velocity
field is inhomogeneous within the bioreactor, leading to stimuli dependent on the location of
the construct, and bad repeatability between experiments [Goldstein et al., 2001].

2.1.2 Rotating wall bioreactors

Rotating wall bioreactors have been initially design by the National Aeronautics and Space
Administration (NASA) to study cellular growth in micro-gravity environment. It is com-
posed of a horizontal cylindrical vessel, put in rotation along its axis my an external motor.
The closed bioreactor contains culture medium and constructs in suspension. Rotation of the
vessel induces laminar flow by inertial effects (Fig. 2.2). Although mass transport limitations
are solved by the culture medium flow, it seems that the level of shear stress remains very low,
probably because the constructs follow the movement of the fluid. The results of cell culture
in rotating wall bioreactors in the frame of bone tissue engineering are controversial. While
some authors find improved cell proliferation and osteogenic markers productions [Botchwey
et al., 2001; Song et al., 2008], other observe a decrease in cell survival compared to static
conditions [Goldstein et al., 2001; Sikavitsas et al., 2002].

Figure 2.2 – The rotating wall bioreactor. Left : Schematic representation [Rauh et al.,
2011]. Right : One of the first rotating wall bioreactor prototype developed by the NASA1

The divergence in the results obtained with rotating wall bioreactors can partly be ex-
plained by the weaknesses of the system. To start with, the material density of the scaffold

1http://science.nasa.gov/science-news/science-at-nasa/1999/msad05oct99_

1/
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and its size play an important role in the way the construct will be moved by the fluid. If the
density of the scaffold is close to the density of the culture medium, the construct will stay in
suspension, limiting collisions with the walls or other constructs. But if the density is differ-
ent from the culture medium, the construct may have turbulent movements within the vessel,
increasing risks of damages by collisions. Some modifications to the bioreactor have been
proposed to address this issue, by fixing the construct to the walls of the vessel [Song et al.,
2008]. This has the advantage of keeping the biohybrid in the peripheric zone of the vessel,
where the main hydrodynamic effects take place. Yet, rotating wall bioreactors have limited
volume of production, and the heterogeneous levels of shear stress applied to the biohybrides
remain a clear restriction to its use in laboratory.

2.1.3 Perfusion bioreactors

The limitations of the previously presented bioreactors motivated the development of per-
fusion bioreactors [Yeatts & Fisher, 2011]. This design takes advantage of laminar flow to
enhance mass transport and distribute shear stress in the whole construct. The perfusion sys-
tems are usually constituted of a chamber in which one or more seeded scaffolds are placed,
and through which the culture medium is perfused with the help of pump and tubing sys-
tems. Two main categories of perfusion bioreactors are met, direct perfusion systems force
the culture medium through the construct, while indirect perfusion systems allow the culture
medium to flow around the construct (Fig. 2.3).

In indirect perfusion bioreactors, the culture medium can follow the path of less resistance
around the construct, inducing less flow in the core than on the surrounding of the scaffold
[Janssen et al., 2006; David et al., 2011]. Shear stress is thus mainly located at the periphery
of the biohybrid, and the benefits of the perfusion on mass transport may be limited at the
center. This may result in preferential cell proliferation at the surrounding of the scaffold, and
hypoxic and starving conditions at the core, leading to necrosis. In contrast, direct perfusion
bioreactors enhance mass transport and shear stress distribution within the construct [Bancroft
et al., 2002; Cartmell et al., 2003; Grayson et al., 2008, 2011]. Nevertheless it necessitates the
use of sufficiently permeable scaffolds in order to limit too high local stresses which could
harm the cells. Moreover at long culture times, cell proliferation decrease the porosity of the
construct, intensifying the level of shear stress which could lead to a maximal state of tissue
growth, or even detachment of cell aggregates.

The design of perfusion bioreactors varies widely from a team to another. The culture
medium can either flow in a closed loop or go from a reservoir to a waste flask. Perfusion
modes can be oscillatory, pulsed or continuous [Jaasma & O’Brien, 2008; Wu et al., 2010].
Additional equipments can be adapted to mechanically stimulate the construct [El Haj et al.,
1990], monitor the mineralization, or measure the concentration of species of interest (oxygen,
osteogenic markers...) [Janssen et al., 2006]. Typical continuous flow rates range from 1 to
600mL/h, and the volume of the produced constructs are usually of few milliliters. Yet the
transfer to clinic applications requires volumes up to 300mL of bone substitutes.

One proposed strategy to increase the produced volume is to use larger scaffolds [Olivier
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Figure 2.3 – The perfusion bioreactor. Left : Schematic representation of (A) indirect
perfusion, (B) direct perfusion [Rauh et al., 2011]. Right : Photography of a perfusion

bioreactor prototype used in our team.

et al., 2007], but this often leads to higher heterogeneities in cell proliferation. An alternative
strategy is to multiply the number of millimeter size scaffolds in the chamber [Janssen et al.,
2006; David et al., 2011]. The resulting construct shows a very good cellular proliferation and
differentiation, and the scaffolds are covered with interconnected and dense layer of extracel-
lular matrix. However the core of the individual scaffolds still present a lack of proliferative
cells, probably due to mass transport limitations. Although, these studies succeed in increas-
ing the volume of the final construct of a factor 10, another factor 10 is needed in order to face
all clinical needs.

2.2 Bioreactors based on other principles

Bioreactors using hydrodynamic stimuli are the most widely used systems in bone tissue
engineering, mainly because it deals with mechanical stimuli as well as mass transport limi-
tations. However other types of designs based on different physical and biological principles
have been proposed.

Several other possibilities than hydrodynamic culture exist to provide mechanical stim-
uli. An intuitive and more biomimetic approach is to strain the scaffold so that the stress
is transmitted to the attached cells. Machines originally fabricated for material testing have
been adapted to apply compression [El Haj et al., 1990; Wartella & Wayne, 2009; Baas et al.,
2010] or bending [Mauney et al., 2004] strain to the construct. These result in an increase
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of ostegenic markers and matrix deposition compared to unloaded samples. Alternatively,
cell stretching systems have been developed to study the effect of tensile strain on bone cells.
Cells are embedded in a collagen matrix, which is fixed on a silicon dish. This silicon support
is cyclically stretched uniaxially or biaxially using piloted motors [Neidlinger-Wilke et al.,
1994; Ignatius et al., 2005]. Stretching stimulus seems to mainly increase bone cell prolifer-
ation. Interestingly cells where found to be oriented along the axis of the applied mechanical
stress. Nevertheless, severe drawbacks exist for these direct mechanical stress systems. In-
deed, any force producing mechanism that invades the bioreactor (piston, silicon sheet...) are
a possible cause of infection. Additionally the scaffold material must transmit the force to the
cells, and this implies that they must be strong enough in compression or bending systems,
and soft enough in silicon stretching systems. This constraints may lead to incompatibilities
with the prerequisites for biodegradation times of the scaffolds [El Haj & Cartmell, 2010].
Finally mass transport limitations are present in this types of bioreactors, and they may have
to be coupled with perfusion systems [Bölgen et al., 2008].

Electromagnetic fields have been used in clinical studies to treat various bone patholo-
gies [Aaron et al., 2006]. The underlying idea is that in vivo mechanical deformations in
bones cause piezoelectricity, generating electric potentials. Vibration and movement of hu-
man muscles induce mechanical strains and currents of specific frequencies to which bone
cells are sensitive. Bioreactor systems based on this principle use magnetic coils to gener-
ate pulsed electromagnetic fields of controlled intensity to stimulate growing constructs [Bo-
damyali et al., 1998]. The results show enhanced osteogenesis [Schwartz et al., 2008; Sun
et al., 2010] and in certain cases better proliferation [Tsai et al., 2007] compared to control
samples. Although electromagnetic fields systems are non-invasive, which is an advantage to
reduce contamination risks, the high cost of the equipment is a clear limitation.

Instead of trying to reproduce in vitro the ideal biochemical and biophysical conditions of
bone growth, in vivo bioreactors tend to make use of a host organism to supply the adequate
nutrients, growth factor, and physiological environment to the construct. This method consists
of implanting a cell-loaded scaffold material within a living organism, in order to initiate
vascularization and the creation of more mature bone structures. Different animal models
have been developed [Petite et al., 2000; Stevens et al., 2005; Holt et al., 2005] resulting in
vascularized neo-bone formation. A recent exploratory study has been carried on a man as an
in vivo bioreactor to replace a large part of his mandible [Warnke et al., 2004]. A titanium
cage filled with bone mineral scaffold, autologous bone marrow and growth factor (BMP-
7), has been implanted in one of the patient’s dorsal muscle (right latissimus dorsi muscle).
After 7 weeks the construct was transplanted to repair the mandibular defect (Fig. 2.4). The
formation of new bone leaded in an improvement of the patient quality of life [Warnke et al.,
2006], until his death from heart failure 15 month after the mandible replacement. Although
the application of in vivo bioreactor concept has shown success in some individual cases, they
currently imply very heavy, risky and expansive surgical operations.
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Figure 2.4 – Left : Dorsal view of mandibular replacement 3 weeks after implantation.
Arrows point to the implantation site. Right : 3D computed tomography scan after

transplantation of the in vivo cultured mandibular substitute. Figures adapted from [Warnke
et al., 2004]

2.3 The double porosity bioreactor [David et al., 2011]

In the frame of the present thesis, the double porosity bioreactor developed by David et al.
[2011] is studied. We seek to analyze the effects of culture medium perfusion on mass trans-
port as well as on cell proliferation and tissue development. In this section the bioreactor’s
principal characteristics and results are presented.

The primary goal of the development of the double porosity bioreactor is to produce clin-
ically relevant volumes of bone substitute in a limited time. This necessitates to enhance
the proliferation and differentiation of osteo-competent cells within a bioresorbable three-
dimensional scaffold. The design is partly inspired from fluidized bed reactors [Legallais
et al., 2000; David et al., 2004] to tackle mass transport limitations and to provide optimal
mechanical stimuli to the growing construct.

The bioreactor system is composed of a vertical cylindrical tube (inside diameter 3.3cm,
height 21cm) containing the construct, and connected in a closed loop to a culture medium
flask. Perfusion is ensured by a peristaltic pump and silicon tubing (Fig. 2.5). Except for the
pump, the whole system is placed in an incubator and maintained at 37◦C during culture. The
silicon tubing are permeable to gas exchange between the culture medium and the incubator
environment, providing oxygen and CO2 during the whole duration of the experiment. Cul-
ture medium flow rate has been tested for values ranging between 1 to 100mL/min, and best
results in terms of proliferation has been found for 10mL/min. The flask of culture medium
is changed every three days in aseptic conditions.

The scaffold is constituted of a stack of cube shaped decellularized coral (approximately
140 microporous granules of 3×3×3mm3). This material has been widely used as bone sub-
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Figure 2.5 – Experimental set-up of the double perfusion bioreactor. (A) Schema of the
set-up. (B) Several bioreactors perfused in parallel inside an incubator. (C) A stack of coral

scaffold cubes

stitute for the past 10 years in orthopedic and maxilofacial surgery. It has the advantage of
being biocompatible, osteoconductor, and bioresorbable. Two types of corals with different
geometrical properties have been used : Porites which has a porosity of roughly 50% and
mean pore size of approximately 80µm, and Acropora which presents a porosity of 12% for a
mean pore size of 500µm. The scaffold cubes are staked randomly in the bioreactor, allowing
the culture medium to flow in the space between the cubes, and assuring a relative isotropy.
The double porosity composed of the inner coral porosity, and the staking of the cubes, gives
its name to the bioreactor.

In the original article, the cell line used for the experiments are pluripotent stem cells
derived from mouse embryos (C3H10T1/2) and transfected with green fluorescent protein
(GFP). Coral cubes are precoated with culture medium before to be seeded with 106cell/mL
cell suspension. Cells are kept at rest 24 hours in an incubator to allow proper attachment,
and are then transfered in the bioreactor. At a flow rate of 10ml/min, the wall shear stress in
the scaffold is roughly estimated between 0.01 and 10mPa. Cell number per cube is evaluated
after 3, 6, 9, 12, 15, 18 and 21 days of culture by a destructive method. Basically each con-
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Figure 2.6 – Effect of culture medium fluid flow on cell proliferation. (A) Cell proliferation
under static conditions (blue triangles), and under 10mL/min perfusion (pink squares). (B)
Histological slices (Stevenel blue) of biohybrid cultured under 10mL/min perfusion for 3

weeks (top line) and in static conditions (lower line). Middle pictures show the periphery of
the construct while right pictures show the center.
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struct is crushed in a lysis buffer, and cell number is deduced by correlation with fluorescence
intensity.

Results show a limited cell proliferation in static conditions with an observed plateau from
the 6th day, whereas cell population in dynamic conditions is still increasing at 21 days of
culture (Fig. 2.6A). After three weeks of culture, perfused constructs contain more than four
times more cells than static cultured constructs. It is also important to note that the number
of cells within a coral cube is independent of its location in the chamber, indicating an ho-
mogeneous cell proliferation along the bioreactor. Histological observations of the construct
cultured for 21 days at 10mL/min flow rate show a thick (600µm) layer of cells at the periph-
ery of the coral cubes, but only few isolated cell at the core of the scaffold (Fig. 2.6B). Cells
at the center of the scaffold present morphological signs of necrosis. In contrast, constructs
cultured in static conditions exhibit smaller external cell layer and almost no cell at the core
of the scaffold.

Lastly, the bioreactor is tested with sheep MSCs, and the resulting construct is implanted
subcutaneously for 8 weeks in sheep. Newly formed bone are observed on the surface of the
explanted constructs, with the presence of osteocytes inside and a layer of osteoblasts around.

In this study, the double porosity bioreactor proves to be able to produce up to 30mL
of bone substitutes. Although cell proliferation is homogeneous within the bioreactor, the
cores of individual cubes remain poorly populated. This is due to the layer of cells forming
a impermeable barrier at the periphery of the granules, and limiting nutrient transport to the
core. In order to solve this issue and to meet the requirements to clinical applications, further
developments are needed as well as a better understanding of mechanisms leading to the
formation of bone substitute.

2.4 Requirements for a translational bioreactor

Despite the promising results obtained in the last 20 years with the use of bioreactors for
bone tissue engineering, these systems have only been used anecdotally in clinical context
[Warnke et al., 2004]. Here the requirements for the translation of bioreactors technologies to
clinical applications are reviewed.

In order to be routinely used in clinical procedures, bone substitutes produced with biore-
actors must represent a viable and competitive alternative over current cell based technologies.
This condition may be satisfied identifying and addressing key challenges inherent to current
bioreactors for tissue engineering.

• Reproducibility of the produced construct. Although the variety of protocols used by
different research teams makes difficult the systematic reproduction of the results, the
main source of variability is the behavior of human cells. Indeed they are extremely
dependent on the donor batch (e.g. age, sex, health, antecedents), and may present
different sensitivity to perturbations in the culture environment.
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• Minimization of operator dependency which leads to inconsistency and lack of quality
control between produced construct.

• Scaling-up the production of substitutes. Proof of the concept of bioreactor made sub-
stitute has been made. However the volume produced are still too low to face all clinical
needs, and no large-scale production systems are yet proposed.

• Cost effectiveness. For bioreactor based treatments to be clinically introduced, the price
of the overall process, from the provenance of the cells to the grafting of the construct
into patient, should be competitive compared to other clinical procedures.

• Compliance with regulatory specifications. With the introduction of bioreactor sys-
tems in clinical treatments, complex regulatory frameworks are likely to be developed.
A global reflection on safety regulation, risk assessment and validation of production
processes is essential [Martin et al., 2009]. Currently the quality assurance system for
medicinal products is insured by the Good Manufacturing Practice2 (GMP) guidelines.

The three first challenges above can be partially solved through the development of au-
tomated sensor-based bioreactor systems [Martin et al., 2004, 2009]. By monitoring and
controlling in real time the biochemical and biophysical parameters, the produced constructs
can be standardized, making the process more robust and stable. This implies the develop-
ment of on-line, non-invasive sensing techniques for culture parameters, together with a better
understanding of the fundamental cellular and molecular processes leading to bone substitute
production. Ideally the automation of the bioreactor system should lead to a user interface
restricted to non-technical considerations. This would facilitate the manipulation by tradi-
tional hospital staff and decrease operator dependency [Salter et al., 2012]. It has also been
suggested that the monitored parameters could be integrated in real time to a computational
model of the bioreactor in order to predict the development of the tissue with time, helping
scheduling of maintenance operations and surgery planning [Martin et al., 2004].

The cost effectiveness challenge may be the most critical in translating bioreactor pro-
cesses to clinical applications. The evaluation of the price of such a treatment must take
into account the cost of the bioreactor design and building, the scaffold, the cells, the culture
media, the control essays (biochemical analysis and imaging), the labor, and the occasional
failures in the process. Including these parameters in their estimation, Salter et al. [2012]
determined that the cost of a bone graft made with a bioreactor would range from $10,000 to
15,000. They conclude that bioengineered bone substitutes are more expensive than allografts
(free bone graft), but are a cost equivalent alternative to other current cell based therapies.

It is worth mentioning here that, even though there are yet no commercial offers of bone
engineered substitutes, several private companies propose ready to use bioreactors to facilitate
the production and the monitoring of cell growth and mineralized bone constructs. For exam-
ple, spinner flask bioreactors are available from Bellco Biotechnology, Wheaton, or Corningr

Lifesciences. Bioreactors based on the design of the rotating wall bioreactor can be purchased
from Synthecon, Inc., Zellwerk GmbH or B. Braun Biotech International GmbH. A variety
of perfusion bioreactors are offered by MINUCELLS and MINUTISSUE GmbH, while ten-

2http://ec.europa.eu/health/documents/eudralex/vol-4/index_en.htm
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sion and compression systems are proposed by Flexcell International Corporation. A lot of
these products are autoclavable and/or disposable systems. Moreover a variety of additional
features are offered by some companies, such as online monitoring of oxygen, pH and glu-
cose levels (Synthecon, Inc.), modules and softwares to control pulsatile hydrostatic pressure
(Tissue Growth Technologies), or microscope stages allowing the observation of real time cell
signaling response to mechanical stimuli (Flexcell International Corporation).
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CHAPTER 3

MODELING PERFUSION BIOREACTORS

A LARGE VARIETY of bioreactors for bone tissue engineering has been developed by inde-
pendent research teams. Most of them show good results in terms of cell proliferation,

differentiation and extracellular matrix deposition. Among the prerequisites for translation
of biorector technology to clinical application, one key challenge is the improvement of the
fundamental knowledge about phenomena influencing cell fate within such system. Nonethe-
less the development of bioreactors has been largely based on an experimental trial and error
spirit, and a deep understanding of the underlying mechanisms determining the efficiency of
the different methods is still missing.

A quantitative assessment and prediction of relevant culture parameters (e.g. glucose con-
centration, fluid velocity, cell division rate) is required where current experimental approaches
fail to this task. In this context, modeling methods are promising tools to study and predict
biochemical and biophysical phenomena at the cell or tissue scale.

Cell fate within a bioreactor depends on an almost infinite number of parameters. Since
no one is yet ready to capture the whole complexity of life within a model, the large majority
of bioreactor modeling studies are focused on the medium culture flow, mass transport, and
their respective influence on cell proliferation and differentiation. In the present chapter, the
scientific literature is discussed in regard to these three aspects.

3.1 Modeling transport phenomena

The importance of hydrodynamics in bioreactors for bone tissue engineering has been
assessed in Sec. 2.1. The flow of culture medium has a double role, enhancing mass transport
through the construct via convective effects, and stimulating mechanically cell proliferation,
differentiation and extracellular matrix (ECM) deposition. Despite its importance in many
bioreactor systems, the fluid flow induced shear stress is often roughly estimated [Goldstein
et al., 2001; David et al., 2011]. And yet, the values of the fluid velocity, and thus of the shear
stress, may vary on a large range due to the complicated porous geometry of the scaffold.
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This means that the shear stress experienced by cells at different locations may vary of several
orders of magnitude.

A crucial aspect concerning transport of momentum (fluid flow) ans mass (species) in a
bioreactor, is the coupling between cell/tissue growth and transport processes. Cell prolif-
eration, migration and ECM deposition are dictated by velocity fields inducing mechanical
stimuli, and concentration profiles. In return, culture medium flow and mass transport are
modified by the developing tissue, resulting in a time evolving coupled process. Luckily the
time scale separation between tissue growth and transport phenomena is usually large enough
to consider the tissue geometry to be quasi-static in regard to the other processes.

3.1.1 Modeling momentum transport

Biophysical stimuli influencing osteocompetent cells proliferation, differentiation, migra-
tion and ECM deposition, include pressure and shear stress. The large quantity of experimen-
tal studies has assessed the decisive effect of shear on tissue development. In this section,
several models aiming to evaluate the shear stress intensity and distribution within tissue en-
gineering scaffolds are presented.

Studies focusing on the modeling of momentum transport in tissue engineering aim to
evaluate the wall shear stress induced by the culture medium flow. Since the shear is a pore
scale parameter, all the simulations presented below characterize the pore scale. Some an-
alytic models evaluate the mean shear stress, however homogenized models of momentum
transport are of interest mainly for the computation of convection in mass transport, and these
will be presented in Sec. 3.1.2.

Analytical models

In practical conditions met in bioreactors (incompressible fluid and wall fluid velocity
null), the mean shear stress is a function of the entrance fluid velocity, the fluid properties,
and the scaffold geometrical characteristics. If the two first are easily available for a given
experiment, the detailed scaffold architecture may be more difficult to obtain. Nevertheless,
mean pore size, porosity and permeability of a scaffold can be measured providing relatively
inexpensive experimental setups. For instance, porosity can be evaluated by imbibition meth-
ods or by mercure intrusion, while permeability can be estimated with a permeation test by
correlation with Darcy’s law [Dias et al., 2012]. Thus it is appealing for experimentalists to
find simple models relating shear stress to scaffold porosity and permeability.

As a first approach, fluid velocity and shear stress within the pores of a porous scaffold can
be estimated analytically providing simplifications on the geometry. Supposing the porous
medium composed of identical parallel cylinders oriented along the flow, and an incompress-
ible fluid satisfying Stokes equation, a quick analyze in cylindrical coordinates leads to a mean
wall shear stress τm in the form [Goldstein et al., 2001]

τm = µfUm
8

εd
(3.1)
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where Um is the mean seepage velocity (superficial average), µf the dynamic viscosity of
the fluid, ε is the scaffold porosity, and d the pores diameter. Um can be easily computed
knowing the entrance flow rate and the geometry of the bioreactor chamber. Because of its
extreme simplicity, this model is widely used in experimental studies to evaluate the order of
magnitude of the imposed shear stress in a specific set-up [Goldstein et al., 2001; Vance et al.,
2005; Grayson et al., 2011]. However the geometry of the scaffold is highly idealized, leading
to overestimation of the average shear stress [Jungreuthmayer et al., 2009a].

In order to avoid simplification hypothesis on the scaffold architecture, it is appealing to
take into account the geometry through the permeability. To this purpose, several authors
[Wang & Tarbell, 2000; Boschetti et al., 2006; Cioffi et al., 2006; Voronov et al., 2010a,b;
Pham et al., 2012] use the model proposed by Wang & Tarbell [1995]

τm = µfUm
1√
K

(3.2)

where K is interpreted as the scaffold permeability. Yet, this model has been originally devel-
oped for the evaluation of wall shear stress around smooth muscle cells embedded in a porous
ECM, with K being the permeability of the ECM, not of the porous media constituted by the
cells [Wang & Tarbell, 1995]. In a subsequent study [Wang & Tarbell, 2000] and without
any justification, the same author (J.M. Tarbell, the two Wang are different) incorporates the
overall permeability (ECM + cells) within K. This has contributed to the misinterpretation of
the permeability in the above cited works.

In a more recent letter, Warren & Stepanek [2008] approximate the mean wall shear stress
by the mean wall stress (τm = ε(∇p)m/S), and express it as function of the permeability and
mean fluid velocity using Darcy’s law

τm = µfUm
ε

KS
(3.3)

where S is the specific surface area of the porous medium, and (∇p)m is the mean pressure
gradient at the wall. They examine the validity of Eq. (3.3) in the case of a random sphere
packing (S = 6(1 − ε)/l with l the characteristic sphere size), by comparing with direct
computations (lattice-Boltzmann method). They conclude that a factor α ≃ 0.6− 0.8 must be
included in Eq. (3.3) in order to approximate properly the mean wall shear stress.

The above models are dependent of strong simplifications, and give only an average shear
stress. However cells are subject to local shear, and the distribution of the mechanical loads in
the scaffold may be useful. This motivates the use of numerical tools to evaluate the detailed
fluid velocity profile within the porous scaffold.

Computational models

Computational fluid dynamics (CFD) represents a powerful tool to compute fluid flow, and
thus shear, within a given structure. However the main difficulties related to porous scaffold
architectures remain : (i) obtaining the detailed realistic geometry, (ii) generating a discrete
domain representing such complicated porous architectures, and (iii) solving the conservation
equations on this domain at a reasonable computational cost.
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Figure 3.1 – Regular scaffold used in [Boschetti et al., 2006]. A : SEM image of a PDLLA
scaffold made by particulate leaching. B : Idealized representation of the scaffold

Concerning the definition of the geometry, some artificially made scaffolds have regular
and homogeneous characteristics [Hutmacher, 2000; Singh et al., 2005], allowing to use basic
CAD tools to build idealized 3D computational structures, as shown in Fig. 3.1 [Boschetti
et al., 2006]. Nevertheless, even when the scaffold is designed to be regular, current fabrica-
tion techniques still induce variation from the theoretical geometry, leading to unpredictable
deviations of the transport properties [Hendrikson et al., 2014]. In order to take into ac-
count the specific architecture of a scaffold, three-dimensional imaging techniques must be
applied. Micro X-ray computed tomography (µCT) is, from far, the most widely used 3D
imaging technique to virtually reconstruct scaffolds architecture [Voronov et al., 2010b]. This
technique is popular due to its relatively low cost, high resolution (up to 4µm [Cioffi et al.,
2006]), and rapidity. The obtained scan can be easily reconstructed and analyzed to give ac-
cess to structural data such as porosity, pore size distribution and isotropy (Fig. 3.2). Note that
the obtained µCT images are in grayscales, and a threshold must be applied to discriminate
solid from void space. This choice in the threshold may highly influence the values of the
structural data and subsequent computations.

The order of magnitude of scanned volumes is of the order of 10mm3, however com-
putational costs limit the volume used for CFD simulations to few millimeters cube [Maes
et al., 2009]. Indeed, most CFD methods (e.g. finite volume, finite element, finite differ-
ence) require to approximate the fluid volume by a discrete domain or mesh. And since the
geometries of the scanned scaffolds are complicated and irregular, the meshed domains get
very quickly heavy with increasing volumes. Scaffolds with high porosity (>70%) and larger
pore size tend to have a simpler geometry and to be more easily meshable. Discretization can
be conducted with pre-processing softwares such as AMIRA (TGS, San Diego, CA, USA)
[Cioffi et al., 2006], Ansys (Ansys Software, Canonsburg, PA, USA) [Acosta Santamaría
et al., 2013], Gambit (Fluent Inc., Lebanon, NH, USA) [Boschetti et al., 2006] or Mimics
(Materialise, Leuven, Belgium) combined with Patran (MSC Software, Newport Beach, CA,
USA) [Sandino et al., 2008]. Conditions imposed at the boundaries are usually no-slip at the
fluid/solid interface, constant velocity at the entrance (ranging from 1 to 300µm/s) and null
pressure at the exit. Finally the culture medium is modeled as an incompressible newtonian
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Figure 3.2 – µCT scan of a collagen-glycosaminoglycan scaffold, and three randomly
chosen sub-volumes of 640µm×640µm×480µm (adapted from [Jungreuthmayer et al.,

2009a])

fluid, and laminar Stokes flow is solved either by finite volume method with softwares such as
FLUENT (Fluent Inc., Lebanon, USA) [Raimondi et al., 2006; Boschetti et al., 2006; Cioffi
et al., 2006, 2008; Pham et al., 2012], OpenFOAM (OpenCFD Ltd., Bracknell, UK) [Jun-
greuthmayer et al., 2009a,b] or Ansys CFX (Ansys Software, Canonsburg, PA, USA) [Stops
et al., 2010; Acosta Santamaría et al., 2013; Zermatten et al., 2014], or finite element method
with for instance Marc-Mentat (MSC Software, Newport Beach, CA, USA) [Sandino et al.,
2008].

Alternatively, the lattice Boltzmann method (LBM) [d’Humieres, 1992; Lallemand & Luo,
2000] is a CFD method that does not require a meshed geometry, and thus skips the delicate
preprocessing steps. The geometry obtained by µCT being a grayscale 3D matrix, only a
threshold has to be applied to determine the solid from the fluid sites, and the binary ma-
trice is directly used as an input to generate the regular lattice. In brief, the LBM consists in
assigning at each fluid node a population of fluid particles with a velocity distribution func-
tion. Then at each time step, the particles propagate to neighboring nodes according to their
velocity function, which is then updated through collision rules. After a sufficient number
of iterations, the macroscopic system converges to an incompressible Stokes flow. To our
knowledge, Porter et al. [2005] are the first to take advantage of µCT to reconstruct the 3D
geometry of trabecular bone, and to solve the flow within this porous structure with the LBM
(µCT resolution 34µm, LBM element size 68µm, lattice of 2.5 million elements including 1.2
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million fluid elements). The shear stress is evaluated by multiplying the symmetrical part of
the gradient of the velocity tensor by the dynamic viscosity. Subsequent studies using LBM
in tissue engineering scaffolds include [Galbusera et al., 2007; Zhao et al., 2007; VanGordon
et al., 2010; Voronov et al., 2010a,b; Gao et al., 2012], with the smallest LBM element size
being 6µm [Gao et al., 2012].

Evaluation of the wall shear stress

CFD simulations are operated in order to quantify the flow field, which determines wall
shear stress and influence mass transport. While the field of wall shear stress is accessible
from simulations, it is of little practical interest since it can be used only for the specific
computed structure. The mean shear stress computed on a realistic scaffold architecture, with
experimentally relevant flow rates, has first been evaluated by Porter et al. [2005] using the
LBM. Cioffi et al. [2006, 2008] confirm this result with the finite volume method, and are
the first to compute the wall shear stress distribution within a scaffold. Interestingly, using a
regular CAD scaffold made of spherical pores, Boschetti et al. [2006] compute the fluid flow
and shear stress distribution for varying porosity (59 to 89%) and pore size (sphere diameter
of 50 to 150µm), and conclude that while both porosity and pore size influence the shear stress
distribution, its intensity is mainly dependent on the pore size. This observations are further
confirmed by a LBM study on various µCT based scaffolds, showing that for a given flow
rate, the shear stress distribution is more influenced by the architecture than by the porosity
[Voronov et al., 2010a]. In a subsequent study, Voronov et al. [2010b] compute the probability
distribution function of the wall shear stress for 36 µCT based scaffold geometries. Adding
to their database results from the literature [Cioffi et al., 2006; Jungreuthmayer et al., 2009a],
they show that the probability density function of the wall shear stress in a porous scaffold can
be well fitted with a three-parameters gamma distribution (Fig. 3.3). This distribution is valid
for a variety of regular and irregular architectures, and for porosities as low as 50% [Pham
et al., 2012].

Figure 3.3 – Comparison between probability distribution functions of wall shear stress
from various studies, and three-parameters gamma distribution [Voronov et al., 2010b]
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3.1.2 Modeling mass transport

In addition to provide a mechanical stimuli supporting cell proliferation, differentiation and
ECM deposition, the flow of culture medium enhances mass transport by convective effects.
Indeed, due to diffusion limitations, regions in the scaffold located few millimeters away
from the bulk nutritive medium, may present depletion in oxygen, nutrient or osteoinductive
substances. It has been observed experimentally that dynamic culture conditions reduce this
issue (see Sec. 2.1), however the effect of culture medium flow on mass transport and cell
proliferation remains to be quantified.

Since mass transport occurs both in the culture medium, and in the cell/tissue region, a lot
of models on species diffusion, convection and reaction within a bioreactor also focus on cell
proliferation. In this section, only mass transport is discussed, modeling of cell growth will
be the subject of Sec. 3.2.

At the pore scale, mass transport in the culture medium within a scaffold can be computed
for a given pore geometry by a classical diffusion-convection transport equation [Pierre &
Oddou, 2007; Galbusera et al., 2007, 2008; Cioffi et al., 2008]. The input velocity in the
convective term is the solution of the momentum transport problem obtained by methods
presented in Sec. 3.1.1. However, since in most cases the characteristic length on which the
concentration varies, is larger than the pore size, the detailed knowledge of the concentration
field at the scaffold may not be essential. Instead, homogenized models can be employed to
describe macroscopic mass transport, saving considerable computational costs [Cioffi et al.,
2008].

Although several studies solve homogenized mass transport models for tissue engineer-
ing applications [Botchwey et al., 2003; Pathi et al., 2005; Sengers et al., 2005; Zhao et al.,
2005, 2007; Cioffi et al., 2008; Chung et al., 2010; Nikolaev et al., 2010; Yu, 2012], these are
often based on heuristic considerations, and very few establish the theoretical basis of such
macroscopic models [Galban & Locke, 1999a,b; Lasseux et al., 2004]. The structure of the
mass transport equation is conserved through up-scaling, facilitating its use in simulations.
However special care has to be taken with the definition of the effective diffusion-dispersion
tensor. Depending on the complexity of the model, the effective diffusion coefficient is taken
equal to the bulk fluid diffusion coefficient [Botchwey et al., 2003; Sengers et al., 2005; Cioffi
et al., 2008], the Maxwell formulation [Sacco et al., 2010; Yu, 2012], or an analytic formu-
lation derived in Ochoa [1988] [Pathi et al., 2005]. Note that none of this study takes into
account dispersive effects arising from momentum transport. The velocity field must also
be the solution of an homogenized momentum transport problem such as Darcy [Botchwey
et al., 2003; Cioffi et al., 2008], Brinkman [Zhao et al., 2007; Sacco et al., 2010], or even
Forchheimer [Yu, 2012] equations.

The only way to capture concentration depletion in the core of the scaffold is to incorporate
cell consumption. This is generally done by adding a reaction term which acts as a sink,
within the mass transport equation. Whatever the transported species (e.g. oxygen, glucose),
the consumption kinetic is modeled through a Michaelis-Menten kinetic of the form [Cioffi
et al., 2008; Galbusera et al., 2008, 2007; Nikolaev et al., 2010; Sengers et al., 2005; Zhao
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et al., 2005]

R =
RcC

Kc + C
εcell (3.4)

where C is the average species concentration, Rc and Kc are the maximal consumption rate
and half saturation constant respectively, and εcell is the volume fraction of cells in the repre-
sentative volume.

Considering the large variety of modeled bioreactor and cell parameters, general conclu-
sions on mass transport alone are difficult to draw. Nevertheless coupling mass transport with
the cellular activity is the key point to understand tissue growth kinetic and heterogeneous for-
mation. The next section reviews the existing strategies to model cell proliferation in response
to biochemical and biophysical stimuli encountered in tissue engineering processes.

3.2 Modeling cell proliferation

The construct, constituted of the scaffold, cells and secreted ECM, is a constantly evolving
material. In a bioreactor, tissue growth modifies momentum and mass transport during the
whole culture time. In return, cell proliferation, survival and activity highly depend on the
biochemical and biophysical environment induced by these transport processes. In order to
understand the mechanisms influencing the evolution of the construct, the strong coupling
between cell proliferation, culture medium flow and species transport must be studied. This
motivates the development of dynamic cell models in tissue engineering applications.

Early cell growth mathematical models were developed to predict bacterial colony forma-
tion [Contois, 1959]. Thereafter, modeling of cell proliferation has been widely supported
by medical motivations such has the study of tumor growth, embryogenesis, and biological
tissue behavior [Araujo & McElwain, 2004; Jones & Chapman, 2012]. Two main categories
of cell growth models can be drawn (Fig. 3.4). On one hand, individual cell based models

(IBMs) have been developed to simulate small-scale phenomena in which the properties of
the cells vary over distances comparable to the size of the cell. On the other hand, continuum

models, based on heuristic diffusion-reaction structures or mechanical considerations, have
been built to represent large scale phenomena where the properties of the cell/tissue vary over
distances of several cell diameters [Byrne & Drasdo, 2008]. Although IBMs capture cellular
scale physics that can be directly linked to experimentally measured parameters, its compu-
tational cost is prohibitive when the number of individuals become large. Moreover, at the
tissue scale, the detailed cell informations (e.g. individual cell track, state of mitotic cycle)
may not be pertinent, and the averaged parameters may be sufficient to represent relevant phe-
nomena. This allows to use continuum models, saving considerable computational resources.
Ideally, large scale models should be rigorously up-scaled from cellular scale experimental
data or IBMs, although this is rarely the case [Codling et al., 2008]. In the present section,
IBMs and continuum models are discussed in the scope of bioreactors for tissue engineering.
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3.2. Modeling cell proliferation

Figure 3.4 – Length scales associated with cell proliferation modeling approaches

3.2.1 Individual based models

Individual based models (IBMs) can be divided in two subgroups : lattice-free and lattice-
based models [Plank & Simpson, 2012]. In the first case, a single cell is represented by several
elements of the lattice, allowing the implementation of realistic biophysical and biochemical
parameters. In the second case, each node of the lattice represents one or more cells, and
the complicated and computationally expensive physical laws directing cell behavior are ap-
proached by a series of simple rules that are easily computed. Cellular automata (CA) are
the most popular class of lattice-based models, where time, space and state are discrete1. Al-
though there is a substantial lost in information between lattice-free and lattice-based models,
the gain in computational time is of the order of 103 [Byrne & Drasdo, 2008].

Lattice-free models usually model cells by elastic spheres or ellipses, interacting with each
other and with the support through attraction and repulsion forces [Galbusera et al., 2008;
Jungreuthmayer et al., 2009b]. Division time can be defined as a function of the internal cell
cycle and external conditions (range of nutrient concentration, mechanical stimuli) [Byrne
& Drasdo, 2008]. Cell motility may be modeled following a random walk pattern, with or
without preferential direction depending on chemotaxis. Remarkable degrees of complexity
can be reached with this kind of model. For instance, Hoffmann et al. [2011] add a system of
pods to spherical cells. The number of pods is dependent of the number of neighboring cells,
and allows migration by attachment to the support and traction of the spherical cell body. This

1Actually any computer simulation is discrete in time, space, and state, but numerical algorithms are usually
built such as to overcome artifacts due to discretization.
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model is able to capture cell orientation at high cellular density, and is highly mechanically
realistic. Nevertheless this degree of fidelity is of few interest at the tissue scale, and its
complexity as well as its computational cost direct the use of lattice-based model for tissue
engineering applications.

Early lattice-based models of cell proliferation have been developed to reproduce two-
dimensional growth of cell colony in Petri dishes [Zygourakis et al., 1991a,b; Lee et al.,
1995]. Briefly, a cellular automaton (CA) is built of a two-dimensional regular square lat-
tice, where each node is an automaton defined by a finite number of state. A node can be
either a cell or a void. At every time step, each automaton occupied by a cell follows a set
of rules determining division and migration as a function of the neighborhood. At high cell
density, the limited space naturally imposes contact inhibition for division and migration. Ad-
justable parameters include the number of time steps between two divisions, the number of
time steps before changing the migration direction (the static state is a direction), the proba-
bility transition between one migration direction to another, and the migration velocity. This
parameters include stochastic aspects in order to represent biological variability, and are ad-
justed with statistical treatments of experimental data [Lee, 1994; Garijo et al., 2012]. This
model has been further extended to three-dimensional growth to represent tissue formation
[Cheng et al., 2006], assessing the importance of homogeneous seeding and cell migration for
uniform proliferation.

In order to understand the influence of cell population dynamic on the oxygen concen-
tration field, Galbusera et al. [2007] introduce a coupling between the previously developed
CA and a diffusion-convection-reaction equation. A regular scaffold geometry is modeled,
and cells evolve in the fluid region. The velocity field is obtained with the lattice-Boltzmann
method (LBM), while mass transport is solved by the finite difference method. Cell oxygen
uptake is modeled by Michaelis-Menten kinetics. In this model, the CA is totally indepen-
dent of the external stimuli. The oxygen concentration field is computed as a function of cell
proliferation stage. Although this study proves the feasibility of coupling different numerical
methods to model a dynamic multiphysics system, it provides limited conclusions due to the
small computational domain imposed by the explicit representation of the scaffold geometry.

More recent models include the influence of the concentration field on cell fate [Cheng
et al., 2009; Chung et al., 2010]. In this works, a homogenized construct maintained in a
static culture medium bath is considered. A diffusion-reaction equation is solved by the fi-
nite difference method, and cell proliferation is based on the previously described CA [Cheng
et al., 2006]. Cell division time is set according to a distribution from which the mean value is
a Monod kinetic function of the local nutrient concentration. Then during cell migration, this
division time can be increased or decreased as a function of the local concentration experi-
enced on the way. These models are able to capture the dynamic formation of heterogeneous
fields of concentration and cell density (Fig. 3.5).

Despite the above cited successful applications in tissue engineering, numerous limita-
tions are associated with the use of CA. To begin with, data obtained with CA models are
often difficult to extrapolate in relevant and quantitative macroscopic information. Moreover,
when a large number of automaton is modeled, the computational costs often necessitate to
have recourse to parallel computing, canceling one of the main advantage of CA : its simple
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3.2. Modeling cell proliferation

Figure 3.5 – Time evolution of the cell distribution (A) and nutrient contours (B) of the top
right corner of the construct [Chung et al., 2010]

conceptual representation and implementation. Finally, the multiphysics aspect of the prob-
lem, often require to couple different solving methods (for instance coupling a CA for cell
proliferation, with the finite difference method for diffusion, and/or the finite element method
for fluid flow). In the literature, this types of representations are termed "hybrid models".
The transport processes in these models are very often homogenized, and their length scale
compatibility with CA may be questionable. In the next section, models where the cellular
properties are averaged in order to represent tissue behavior in the form of continuum models
are discussed.

3.2.2 Continuum models

Pioneer continuum models of cell proliferation in tissue engineering process are based
on the volume averaging method [Galban & Locke, 1997, 1999a,b]. In this studies, culture
medium is represented by one phase, while the scaffold, cells and ECM are all considered to
form a unique homogeneous biomass region. An average diffusion-consumption equation is
obtained on the hypothesis of local mass equilibrium, and both effective diffusion coefficient
and reaction rate are derived as a function of the biomass volume fraction. An average mass
balance equation for the biomass is defined as a function of different growth rates. Three
types of growth kinetics dependent on nutrient concentration are solved and compared with
experimental results of cartilage growth Freed et al. [1994]. The best fit is obtained for a
Contois kinetic [Contois, 1959] modified to take into account cell contact inhibition (thanks
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to ρcǫc in the denominator)

rc(ǫc, C) =
kgC

ksρcǫc + C
− rd (3.5)

where C is the nutrient concentration, ǫc the biomass volume fraction, kg and ks the maximal
specific growth rate and the half saturation constant respectively, ρc the biomass density, and
rd the cell death rate due to apoptosis. Interestingly, the effective diffusion coefficient is
shown to vary of an order of magnitude between low and high density regions.

Continuum models are by definition homogenized models. Even though the derivation of
the governing equations should be based on rigorous up-scaling of microscopic processes,
they are often "guessed" and applied without verification of their domain of validity. For
instance, the form of the cell proliferation rate as a function of the concentration and cell
number can be linear [Lewis et al., 2005], exponential [Zhao et al., 2005], logistic [Dunn et al.,
2006], or modified Contois type [Coletti et al., 2006]. Most recent models include "diffusive
like" terms to biomass conservation equations in order to represent tissue expansion [Chung
et al., 2007, 2008; Jeong et al., 2011].

In all the above cited works, cell proliferation kinetic is dependent on concentration, and
cell density. Mechanical stimuli is introduced by Sacco et al. [2010] who propose to modify
the modified Contois kinetic (Eq. (3.5)) in order to introduce a dependency of the maximal
growth rate on the shear stress

r(ǫc, C, τm, ξ) =
kg(τ, ξ)C

ksρcǫc + C
− rd (3.6)

where τm is the mean shear stress, and ξ a parameter specific to the cell type, that has to
be experimentally calibrated [Raimondi et al., 2006]. As a first hypothesis, a linear relation
between kg and τm is chosen. The mean shear stress is obtained through Eq. (3.2), where
the permeability is computed by the Carman-Kozeny equation. The model is solved in a
two-domensional domain, and the results show an increase of biomass volume fraction with
increasing perfusion flow rates.

An alternative approach based on the multiphase porous flow mixture theory has been pro-
posed by Lemon et al. [2006]. They present a general model with an arbitrary number of
phase, and apply it to tissue growth within a scaffold. Each tissue component is modeled by
mass and force balance equations, and can deform through constitutive relations. The dy-
namics of the cellular phases is studied as a function of initial conditions, and cell-cell and
cell-scaffold affinity. This model is further developed to take into account nutrient transport
limitations on tissue growth [Lemon & King, 2007]. A three-phase system in considered com-
posed of motile cells, culture medium (called "water" in the article), and scaffold, and growth
process is investigated for two initial seeding conditions. O’Dea et al. [2008, 2010] extend
the model to represent perfusion of the culture medium. The three parameters influencing
tissue formation are cell density, pressure and fluid shear stress. Depending on their intensity,
the growth rate in response to these parameters is either in a quiescence stage, proliferation
and ECM deposition stage, or apoptosis stage (Fig. 3.6). This model is solved analytically
in one-dimension, and numerically in two-dimensions [Osborne et al., 2010], revealing the
importance of including geometrical effects to capture relevant tissue growth behavior.
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3.2. Modeling cell proliferation

Figure 3.6 – Figures adapted from O’Dea et al. [2010]. (A) Representation of tissue growth
kinetic in response to flow induced shear stress. (B) Time evolution of the cell volume

fraction as a function of the position in the bioreactor.

Some authors choose to model tissue growth by a moving boundary formulation [Gal-
ban & Locke, 1997]. In this kind of model, the growth mechanism happens exclusively at
the boundary between the tissue and the culture medium, and the velocity of the interface is
dependent on interfacial parameters only. Lappa [2003] uses the level set method to repre-
sent two-dimensional cartilage growth as a function of the interfacial concentration and shear
stress. More recently, Nava et al. [2013] predict three-dimensional tissue growth with an ar-
bitrary Lagrangian-Eulerian technique which allows to re-mesh the geometry at each tissue
proliferation step. Although these models permit the visualization of all the stages of tissue
growth, there is no experimental clue that tissue expansion is an interfacial process. Addi-
tionally, the tissue being a homogenized region, the boundary with the culture medium is not
clearly defined, and the understanding of the transport processes taking place at such interface
are not established yet [Goyeau et al., 2003; Valdés-Parada et al., 2006].
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CHAPTER 4

DISCUSSION AND CHALLENGES

T HE DEVELOPMENT of bioreactors for bone tissue engineering is a very active research
field. A plethora of experimental studies using hydrodynamic culture environment has

been proposed, enhancing mass transport and mechanical stimuli, and leading to improved
cell proliferation, differentiation and extracellular matrix deposition. Yet, the translation of
this biotechnology to routine clinical applications is still restrained by a lack of knowledge of
the underlying phenomena leading to the production of relevant volumes of bone substitutes.

In an attempt to overcome this limitation, mathematical models have been developed to an-
alyze the parameters inaccessible to experimental measurement, and to predict substitute for-
mation. As depicted in Fig. 4.1, these studies have investigated momentum transport (includ-
ing the evaluation of fluid flow induced mechanical forces), nutrient transport, and cell/tissue
growth. Thanks to X-ray micro-tomography (µCT) technology, a lot of work has been car-
ried on the evaluation of wall shear stress induced by the flow of culture medium in porous
scaffolds. On the other hand, several studies analyze biomass growth in regard to nutrient
transport. The multiphysics aspect of the problem is still a challenge to model all transport
phenomena and its influences on cell dynamics. Moreover very few models include the influ-
ence of fluid flow induced mechanical stimuli on cell proliferation. Among them, those based
on the mixture theory [O’Dea et al., 2008, 2010; Osborne et al., 2010] have the advantage of
being the result of a rigorous mathematical development, able to represent force interactions
between the cells, the culture medium and the scaffold. However the structure at the pore/cell
scale is not included in this theory, and effective transport parameters (e.g. tissue permeability,
diffusion tensor) are not defined. Models based on a moving boundary formulation [Lappa,
2003; Nava et al., 2013] are purely tissue scale models, and fail in relating cell scale physics
to tissue production. Finally, Sacco et al. [2010] propose a comprehensive model coupling
momentum and mass transport to tissue growth kinetic. Although they claim to base their
analysis on the volume averaging method, the effective transport parameters are not obtained
from a closure problem, but from external phenomenological laws, disconnecting their model
from the pore/cell structure.

It is crucial to highlight the multiscale nature of bioreactor systems for tissue engineering.
The production of macroscopic subtitutes is the result of an infinite number of biological,
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Figure 4.1 – Synthesis of the main modeling studies on bioreactors. (DB) : Darcy or
Darcy-Brinkman flow, (CM) : Continuum model, (IBM) : Individual based model.

References in bold include the effect of shear stress on cell dynamics.

biochemical and biophysical mechanisms occurring at the cell scale and below. Thus math-
ematical models aiming to describe tissue growth in a bioreactor must represent either cell
scale phenomena, leading to high computational costs, either tissue scale processes, loosing
information about the microscopic physics. All the challenge of homogenization methods,
lies in managing the information lost through the up-scaling process.

Considering the scale at which the tissue grows, continuum models are the most suitable
approach to describe substitute formation at the bioreactor level. However the validity of this
type of representation should be discussed in terms of the following problematics :

• How to correctly predict tissue growth when its origin phenomena are at the cell scale?

Continuum models are homogenized models, and their relevance at the tissue scale can
only be assessed by a rigorous up-scaling of the phenomena occurring at the cellular
scale. Although several homogenization methods exist, the quality of a continuum
model is conditioned by the understanding of the cell scale physics. This necessitate
experimental characterizations of cellular response to specific stimuli.

• How to quantify cell response to specific stimuli? The difficulty to control a distinct
stimulus, and monitor its effects on a population of cells within a bioreactor moti-
vates the use of specific experimental setups. To this purpose miniaturized bioreactors
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have been designed [Laganà & Raimondi, 2012], however microfluidic systems offer
a higher degree of control on the cell culture environment [Kreke & Goldstein, 2004;
Leclerc et al., 2006; Korin et al., 2007; Scaglione et al., 2008; Park et al., 2010; Alt-
mann et al., 2011; Chabanon et al., 2012]. In order to apprehend biological variability,
advanced statistical analysis may be used to deduce representative cell behaviors and
laws. This laws may be the basis for upscaling methods, or implemented in individual
based models (IBMs).

• How does tissue growth models can be validated? Once solved, the tissue growth model
must be confronted to reference solutions. In the case of homogenized models, direct
numerical simulations (DNS) can be used as reference, but this mainly (in)validate the
up-scaling procedure, not the fundamental physical assumptions. Ideally, the model
solution should be confronted to experimental results. This implies good interactions
between the mathematical and experimental models in order to define and compare
relevant quantitative parameters that are accessible from both approaches.

The aim of this thesis is to investigate, through a combined modeling and experimental
approach, tissue formation within a perfusion bioreactor based on David et al. [2011] (for a
summary of the study, see Sec. 2.3).

From a modeling point of view, this bioreactor presents several challenging features re-
lated to transport in porous media. First, the double porosity architecture, which characteristic
length scales are clearly separated, constitutes a heterogeneous porous media. The determi-
nation of the transport properties of this type of bi-structured system has several applications
in industrial processes or in soil engineering [Soulaine et al., 2013]. Moreover the boundary
between the porous granules and the culture medium around the cubes, forms a porous/fluid
interface, which is a lively research problematic in momementum and mass transport [Goyeau
et al., 2003; Valdés-Parada et al., 2013]. Second, the biological material is also a multiscale
system with heterogeneous characteristics. Additionally, it is a reactive media (due to nutri-
ent consumption and protein synthesis) with time evolving structure and parameters. Finally,
there exists a strong interdependence between the three main phenomena : momentum trans-
port, mass transport, and tissue growth (cell proliferation and ECM production).

From the experimental point of view, a number of challenges are related to the study of
cell/tissue growth under perfusion within the bioreactor. Few reproducible methodologies
allows the quantification in time and space of the biomass production, and most of them are
destructive, necessitating time consuming experimental campaigns. Moreover, the question
of what quantity should be measured is not trivial. Ideally, indicators representative of cell
proliferation and tissue production should be defined. This indicators should be evaluated
through a reproducible methodology, and facilitate the comparison and discussion with the
modeling approach.

In the light of this discussion, the present thesis is developed on the following approach.
First, a simplified bioreactor is defined, facilitating the study of the relevant phenomena re-
lated to cell/tissue growth under perfusion. Second, based on multiple upscaling procedures,
a bioreactor scale theoretical model is built for momentum and mass transport. This macro-
scopic representation is shown to depend on relevant cell scale informations. Moreover, its
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development allows the computation of the bioreactor effective properties through the res-
olution of a series of closure problems. Then an experimental methodology is proposed to
quantify cell and tissue growth within the perfusion bioreactor. After introducing a biomass
growth kinetic in the theoretical model, the comparison between the computed and experi-
mental results is discussed.
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PART II

MODELING MOMENTUM AND MASS

TRANSPORT IN A PERFUSION BIOREACTOR





CHAPTER 5

INTRODUCTION ON THE MODELING

APPROACH

DYNAMIC CULTURE SYSTEMS for the production of bone substitutes [El Haj et al., 1990;
Janssen et al., 2006; Grayson et al., 2008, 2011; David et al., 2011] or cartilaginous sub-

stitutes [Freed et al., 1994; Cartmell et al., 2003; Raimondi et al., 2006], make use of culture
medium perfusion through the biohybride in order to enhance the formation of homogeneous
tissue. The circulation of culture medium promotes convection, improving transport of nu-
tritive species in zones of the bio-material where diffusion is limited and optimal cell growth
conditions are not met. Moreover fluid flow induces mechanical constraints on the tissue and
stimulates cell proliferation and matrix deposition [Meyer et al., 1999; Korin et al., 2007; Park
et al., 2010; McCoy & O’Brien, 2010]. Nevertheless, experimental results show that manag-
ing homogeneous nutritive supply and adequate mechanical stimuli within the bioreactor, is
still the main challenge in order to improve the production of substitutes [David et al., 2011;
Hansmann et al., 2013].

In this part of the thesis, a theoretical framework is developed, in order to characterize
the influence of transport phenomena on the production of bone substitute in a perfusion
bioreactor. The whole analysis is based on the double porosity bioreactor [David et al., 2011]
described in Sec. 2.3. This system is a complex hierarchical structure, where the scaffold is
made of a stack of microporous coral cubes, and where the biological phase evolves within
and around the scaffold. Given the multitude of length scales at which transport phenomena
influence growth mechanisms in the bioreactor, it appears necessary to take into account the
multiscale aspect of the system. Yet, the existing studies on transport in bioreactors, either
focus on the tissue/pore scale [Botchwey et al., 2003; Lasseux et al., 2004; Boschetti et al.,
2006; Cioffi et al., 2008; Jungreuthmayer et al., 2009a; Chung et al., 2010; Yu, 2012] or
the cellular scale [Fleury et al., 2006; Pedersen et al., 2007, 2010; Tarbell & Shi, 2013].
The challenge consists in providing a "macroscopic" model (i.e. at the bioreactor scale),
which includes both the geometrical characteristics and the physical phenomena arising from
the different lower scales. In order to deal with this objective, several upscaling procedures
have been developed in the past [Cushman et al., 2002]. Among them, the volume averaging
method has been extensively used in the last twenty years, to study mass transport phenomena
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Figure 5.1 – Hyerarchy of the scales involved in a perfusion bioreactor

at biological interfaces. Although the literature on this method is quite furnished considering
studies on biofilms [Ochoa et al., 1986; Wood & Whitaker, 1998, 1999, 2000; Wood et al.,
2002, 2007, 2011; Golfier et al., 2009; Orgogozo et al., 2009, 2010; Davit et al., 2010], much
less attention has been drawn to engineered tissues [Galban & Locke, 1999a,b; Lasseux et al.,
2004; Pathi et al., 2005; Chung et al., 2007; Sacco et al., 2010].

As a first step toward the understanding of the complex transport and growth phenomena
in the double porosity bioreactor, a slightly modified bioreactor model is proposed as the
basis of this study. A detailed description and justification of the setup is presented along
with the experimental study in Chap. 9. The main simplification has been to suppress the
micro-porosity of the coral cube by using impermeable glass beads of 2mm diameter instead.
Random sphere packing is a well characterized structure, and this geometry will facilitate the
evaluation of the transport and cell growth mechanism in the porous media. Note that this
configuration is conceptually the same than for a direct perfusion bioreactor.

As depicted in Fig. 5.1, this study is based on the definition of four scales, in order to
represent the relevant transport phenomena influencing cell proliferation in the bioreactor.
The bioreactor scale (level I), is the scale where the substitute is seen as a continuous material.
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At the tissue scale (level II), three distinct regions are present, the growing biological tissue,
the solid glass beads, and the culture medium. Yet the tissue is itself a complicated porous
medium, constituted, at the cellular scale (level III), of cells and extracellular matrix (ECM).
The study is pushed down to the ECM scale (level IV), where the influence of the fibrous
structure of ECM on the transport properties are determined.

In the present part, the volume averaging method is extensively applied, in order to up-scale
the momentum and mass transport from the ECM scale (level IV) up to the bioreactor scale
(level I). The effective transport properties are evaluated at each scale, through the resolution
of the corresponding closure problems.
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CHAPTER 6

THE EXTRACELLULAR MATRIX SCALE

LET US START the modeling study of momentum and mass transport in the bioreactor, at
the extracellular matrix scale. The tissue is composed of cells embedded in the extracel-

lular matrix (ECM) (Fig. 5.1). Cells produce and interact with ECM trough binding protein
complexes and membrane receptors. The porous aspect of ECM allows diffusion and con-
vection of chemical species, as well as interstitial flow induced stimulation of the cells. The
ECM serves as a physical support for the cells to evolve in space, and plays a role in the trans-
mission of extracellular signals through binding proteins. Its composition can vary strongly
from a type of tissue to another, but the main constituents are collagen fibers (2/3 of ECM
proteins), proteoglycan, laminin and fibrin [Swartz & Fleury, 2007]. These proteins are ar-
ranged in a fibrous network filed with interstitial fluid, which can be plasma for in vivo soft
tissues, or culture medium for in vitro engineered tissues. In both cases, the fluid is likely
to be in movement due to physiological phenomena (e.g. pressure gradient between blood
and lymphatic capillaries in soft tissues, dynamic compression in cartilage and bone) or ex-
perimental conditions (e.g. perfusion of culture medium in a bioreactor). A summary of the
orders of magnitude related to mass and momentum transport in biological tissues is reported
in Tab. 6.1.

The question of keeping convection into account when modeling mass transport in ECM
is of great importance. Depending on the type of tissue and on the application, the order of
magnitude of the Péclet number in the tissue can vary from 10−3 to 10−1 [Swartz & Fleury,
2007; Ng & Swartz, 2003, 2006]. Even though this relatively low values indicate that diffusion
is the predominant process influencing mass transport, recent studies tend to point out the
importance of convection induced by interstitial flow on cellular activity. Interstitial flow can
influence cell fate by modifying its mechanical and its biochemical environment. Numerous
articles showed the significant effects of shear stress stimulation on cell proliferation, even
at very low values [Tardy et al., 1997; Leclerc et al., 2006; Garanich et al., 2007; Park et al.,
2010; Luo et al., 2011]. The interactions between cells and the ECM are highly complex and
play a critical role on the understanding of cells fate [Swartz & Fleury, 2007]. For example,
it has been shown that under interstitial flow, cells rearrange the orientation od ECM collagen
fibers in order to regulate the level of constraint they are experiencing [Ng & Swartz, 2006;
Pedersen et al., 2010]. Fleury et al. [2006] showed that even at low Péclet number, interstitial
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6.1. Derivation of the ECM transport properties

flow can induce subtle chemokine and morphogene gradients that can be sensed by cells and
influence their migration. Intersitial flow is a significant phenomenon for the transport of
macromolecules for which the diffusivity is limited, and for smaller molecules in the case
of higher permeability matrices such that hydrogels. Moreover in the case of inflammatory
environment and in some pathological tissues where permeability can be larger, the increase in
lymphatic activity amplifies interstitial flow leading to higher Péclet numbers [Rutkowski &
Swartz, 2007]. Under these considerations, in order to represent a wide range of experimental
conditions, the convective effects of interstitial flow is included in our model of mass transport
in the ECM.

6.1 Derivation of the ECM transport properties

In the present work, scale IV is considered in order to characterize the transport properties
of ECM. Therefore the ECM fibrous structure is represented by a non-deformable, homoge-
neous and inert matrix (the η-phase). The interstitial medium, in our case culture medium,
is modeled as an incompressible fluid constituting the α-phase (Fig. 6.1). For the seek of
simplicity, a unique transported species A representing a nutritive element (e.g. glucose) is
considered in this work, although the derivation of a multiple species model could be easily
done following the same methodology (see for example [Wood & Whitaker, 1999, 2000]).

Figure 6.1 – Definition of the phases and length scales associated with the ECM averaging
volume

The problem at the ECM scale (level IV) is formulated as a transient diffusion-convection
problem coupled with a transient incompressible laminar flow
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Chapter 6. The Extracellular Matrix Scale

Level IV local problem :

∇.vα = 0 in the α-phase (6.1)

ρα
∂vα
∂t

= −∇pα + µα∇2vα + ραg in the α-phase (6.2)

∂cAα
∂t

+∇. (vαcAα) = ∇.(DAα∇cAα) in the α-phase (6.3)

BC1 : vα = 0 at Aαη (6.4)

BC2 : nαη.(DAα∇cAα) = 0 at Aαη (6.5)

where vα and pα are the interstitial velocity and pressure respectively, and cAα is the con-
centration of species A. ρα, µα and DAα are respectively the density, dynamic viscosity and
diffusivity coefficient of species A in the α-phase. g is the gravitational acceleration, Aαη is
the interfacial area and nαη is the normal vector oriented from the α-phase toward the η-phase.

The problem described by Eqs. (6.2) to (6.5) has to be homogenized in order to obtain
the transport equations and properties of the ECM equivalent region at level III. Following
the volume averaging method [Whitaker, 1999], for a given quantity ψα associated with the
α-phase, the superficial average is defined as

〈ψα〉 =
1

VIV

∫

Vα

ψαdV (6.6)

where VIV is the averaging volume associated with the ECM scale (Fig. 6.1). Because it is
often more convenient to deal with an average defined only in one phase (and because this is
the actual measured quantity), the intrinsic average is defined by

〈ψα〉α =
1

Vα

∫

Vα

ψαdV (6.7)

where Vα is the volume of the α-phase within VIV . The superficial and intrinsic averages are
related by the α-phase volume fraction εα = Vα/VIV such as

〈ψα〉 = εα 〈ψα〉α (6.8)

Once the averaging operators applied to the conservation equations, the general transport and
the spacial averaging theorems [Howes & Whitaker, 1985] need to be used

〈
∂ψα
∂t

〉

=
∂〈ψα〉
∂t

− 1

VIV

∫

Aαη

nαη.wαηψαdA (6.9)

〈∇ψα〉 = ∇〈ψα〉+
1

VIV

∫

Aαη

nαηψαdA (6.10)

〈∇.ψα〉 = ∇. 〈ψα〉+
1

VIV

∫

Aαη

nαη.ψαdA (6.11)

where ψα is a tensor quantity associated with the α-phase, wαη is the velocity of the interface
Aαη. The main prerequisite for all upscaling method is the separations between the character-
istic length scales. Here we have

lα ≪ r0 ≪ lβ (6.12)
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6.1. Derivation of the ECM transport properties

where lα, r0 and lβ are the length scales of the α-phase, the averaging volume and the ECM
length scale at level III (Fig. 6.1) respectively.

On this basis, averaging the system described by Eqs. (6.2) to (6.5) is a classic problem
[Whitaker, 1986a; Quintard & Whitaker, 1994c,b; Whitaker, 1999] and only the results are
reported here (see App. A for more details on the derivation). Considering ρα, µα and DAα

constant within the averaging volume VIV , the closed averaged equations for momentum and
mass transport are

∇.〈vα〉α = 0 (6.13)

ραε
−1

α

∂ (εα〈vα〉α)
∂t

= −∇〈pα〉α −
µα
KIII
β

εα〈vα〉α + µα∇2 〈vα〉α + ραg (6.14)

∂ (εα 〈cAα〉α)
∂t

+ εα 〈vα〉α .∇〈cAα〉α = ∇.
(
DIII
Aβ.∇〈cAα〉α

)
(6.15)

The capital exponent in the effective parameters KIII
β and DIII

Aβ reminds the level at which the
parameters are valid, while the subscripts define the phase from which they are evaluated. One
can recognize here the non-stationary form of Darcy-Brinkman equation [Brinkman, 1947]
and a diffusion-dispersion transport equation. This set of equations is valid in the β-region
at the cellular scale (level III) (Fig. 6.1), where the transport phenomena are influenced by
the ECM scale (level IV) through the permeability KIII

β and diffusion/dispersion tensor DIII
Aβ

defined as

εαK
III−1

β = − 1

Vα

∫

Aασ

nαη. (−Ibα +∇Bα) dA (6.16)

DIII
Aβ = DAα

(

εαI+
1

VIV

∫

Aαη

nαηdαdA

)

− 〈ṽαdα〉 (6.17)

In Eqs. (6.16) and (6.17), bα, Bα, and dα are the closure variables that have to fulfill the ECM
scale (level IV) closure problems:

Closure problem for momentum transport (scale IV)

∇.Bα = 0 (6.18)

0 = −∇bα +∇2Bα + εαK
III−1

β (6.19)

Bα = −I at Aαη (6.20)

Bα(x) = Bα(x+ li) i = 1, 2, 3 (6.21)

bα(x) = bα(x+ li) i = 1, 2, 3 (6.22)

〈Bα〉α = 0 (6.23)

Closure problem for mass transport (scale IV)

ṽα + vα.∇dα = DAα∇2dα (6.24)

−nαη.∇dα = nαη at Aαη (6.25)

dα(x) = dα(x+ li) i = 1, 2, 3 (6.26)

〈dα〉α = 0 (6.27)
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Chapter 6. The Extracellular Matrix Scale

These closure problems are considered here to be quasi-static by assuming the spacial and
time scales to be well separated [Goyeau et al., 1999]. To replace the unknown boundary
conditions of the averaging volume, the closure variables are solved in a spatially periodic unit
cell of dimension li (Eqs. (6.21), (6.22) and (6.26)). Assuming the unit cells to be spatially
periodic does not imply the ECM to be periodic, however it has to be homogeneous. Finally,
the averages of the closure variables are shown to be null, and this constraints are required for
solvability.

The solution of these two closure problems on a representative unit cell allow us to com-
pute the ECM permeability KIII

β and diffusion/dispersion tensor DIII
Aβ . The following section

present the numerical resolution procedures and results.

6.2 Computation of the ECM transport properties

In this section the effective transport parameters of the ECM are computed. The ECM
permeability and the diffusion/dispersion tensor are obtained by solving the closure problem
for momentum (Eqs. (6.18) to (6.23)) and mass transport (Eqs. (6.24) to (6.27)) respectively.

6.2.1 ECM permeability

The closure problem for momentum transport given by Eqs. (6.18) to (6.23) is an integro-
differential problem which is delicate to solve numerically. In order to write it in a more
computationally convenient form, a variable change is proceeded [Whitaker, 1999, Chap. 4]

B′
α = ε−1

α (Bα + I) .KIII
β (6.28)

b′
α = ε−1

α bα.K
III
β (6.29)

so the closure problem can be written in the form of an incompressible static stokes flow
problem

0 = −∇b′
α +∇2B′

α + I in the α-phase (6.30)

∇.B′
α = 0 in the α-phase (6.31)

B′
α = 0 at Aαη (6.32)

B′
α(x) = B′

α(x+ li) i = 1, 2, 3 (6.33)

b′
α(x) = b′

α(x+ li) i = 1, 2, 3 (6.34)

〈B′
α〉α = ε−1

α KIII
β (6.35)

The boundary value problem given by Eqs. (6.30) to (6.34) can be solved in a given geometry
with any standard routine capable of dealing with a Stokes flow. Moreover permeability can
directly be obtained with Eq. (6.35).

The ECM is a fibrous structure, and we aim to solve the closure problem on a representative
fibrous geometry. The main difficulty of numerical computation on complicated geometries
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6.2. Computation of the ECM transport properties

such as fibrous mediums, is the mesh generation at the interfaces between the fluid and the
solid. To facilitate this, we adopt a penalty method where Eqs. (6.30) and (6.32) are substituted
by a "Brinkman like" transport equation valid in the whole domain (α and η phases)

0 = −∇b′ +∇2B′ + I+
B′

Knum
(6.36)

where B′ and b′ are variables both defined in the α and η phases, and which tend to B′
α

and b′
α respectively in the α-phase. Knum is an artificial variable that is used to numerically

penalize the B′-field in the solid η-phase. When Knum tends to infinity (in the α-phase), Eq.
(6.36) reduces to the Stokes flow equation (Eq. (6.30)), and when Knum tends to zero (in the
η-phase), the last term in Eq. (6.36) tends to plus infinity implying the B′-field to be null in
order to fulfill the equality. Thus we define Knum as an heavy-side function such as

Knum =

{

1020 in the α-phase

10−20 in the η-phase
(6.37)

and solve the one domain problem

0 = −∇b′ +∇2B′ + I+B′K−1

num (6.38)

∇.B′ = 0 (6.39)

B′(x) = B′(x+ li) i = 1, 2, 3 (6.40)

b′(x) = b′(x+ li) i = 1, 2, 3 (6.41)

〈B′〉α = ε−1

α KIII
β (6.42)

Note here that in the one domain approach, the boundary condition Eq. (6.32) is automatically
satisfied.

Eqs. (6.38) to (6.42) are solved using the finite element method software Comsol Multi-
physics 4.3b with iterative solver GMRES and left preconditioning. In order to validate the
quality of our numerical solution, a comparison is first performed with the analytic solution of
the drag coefficient around a sphere in a cubic domain [Zick & Homsy, 1982]. A mesh con-
vergence study is carried out for different radius of the sphere (thus different εα), leading to
relative errors on the velocity field under 0.5%. Fig. 6.2 shows the comparison of our results
with those of Zick & Homsy [1982]. The drag coefficient C is related to the permeability
through

C =
2

9

r2

1− εα

1

K III
β

(6.43)

where r = [3/4π(1− εα)]
1/3 is the radius of the sphere. Fig. 6.2 shows a perfect agreement

with the analytic solution.

We now wish to study the influence of the fibrous structure on the ECM permeability. To
that purpose, five different random fibrous media are constituted by constructing various sets
of cylinders. A Matlab script is used to generate a list of random coordinates for N points and
vectors comprised in a unit cube of size lα. The list is then imported in Comsol Multiphysics
4.3b, and set as parameters for the cylinders positions. The heights are fixed (H = lα) and
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Chapter 6. The Extracellular Matrix Scale

Figure 6.2 – Solution of the one domain closure problem. Validation of the resolution
scheme (The drag coefficient is related to the permeability through Eq. (6.43))

all the cylinders have the same radius (R). Since the closure problem is solved on a periodic
unit cell, the fibrous media has to be periodic. This is done by generating an array of unit
periodicity with all the cylinders, and subtracting this array to a unit cube (see Fig. 6.3). The
geometry modeling in Comsol is done with the "CAD import module kernel". The interstitial
fluid volume fraction εα is modified either by taking N = 10 cylinders and varying their
radius R between 0.02lα and 0.14lα, or by increasing the number of cylinder N for a constant
radius R = 0.04lα. In order to avoid very small elements in the meshing process, some
cylinders have to be manually rotated along their axes to facilitate the intersections of the
surfaces. Total meshes are composed of 100 000 to 700 000 tetrahedral elements.

The one domain closure problem (Eqs. (6.38) to (6.42)) is solved for each geometry, and
all the components of KIII

β are obtained. For all the configurations, the diagonal components
of the permeability tensor lay in the same order of magnitude. This confirms the isotropy of
the randomly generated fibrous mediums. Fig. 6.4 shows the longitudinal component of the
permeability (K III

αxx) for the different porous fibrous mediums. For comparison, the perme-
abilities of porous mediums composed of spheres in Cubic Simple (CS) or Cubic Centered
(CC) arrangements are displayed. All the fibrous mediums permeabilities are in the same
range and shows a similar dependence to the fluid volume fraction. However the permeability
of the CS porous medium is two times higher than for the CC porous medium, which is five
to ten times higher than the permeabilities of the fibrous porous mediums. Moreover, the per-
meability of the fibrous porous mediums increases slower with εα than the spherical porous
mediums. These differences can be interpreted in term of tortuosity (which is actually the
integral of nαηbα in the definition of the permeability in Eq. (6.16)). Indeed fibrous medi-
ums are, for a given porosity, more tortuous than the spherical porous mediums, thus they
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6.2. Computation of the ECM transport properties

Figure 6.3 – The five different configurations of random fibrous medium unit cells used for
the computations of KIII

β
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Chapter 6. The Extracellular Matrix Scale

Figure 6.4 – Normalized permeability of random fibrous medium (KIII
β ) as a function of the

interstitial medium volume fraction (εα). The grey zone represent the range of permeability
of the fibrous mediums

are less permeable. Similarly, the CC porous mediums are more tortuous than the CS porous
mediums, giving rise to lower permeabilities.

6.2.2 ECM diffusion-dispersion tensor

Next, the diffusion-dispersion tensor DIII
Aβ is computed by solving the closure problem for

mass transport (Eqs. (7.61) to (7.67)). To that purpose, the problem is written in its dimen-
sionless form

Peα (ṽ
′

α + v′

α.∇d′

α) = ∇2d′

α (6.44)

−nαη.∇d′

α = nαη at Aαη (6.45)

d′

α(x) = d′

α(x+ li) i = 1, 2, 3 (6.46)

〈d′

α〉α = 0 (6.47)

where the dimensionless variables are defined as

d′

α =
dα

lα
ṽ′

α =
ṽα

‖vα‖
v′

α =
vα

‖vα‖
(6.48)

and
‖vα‖ = (〈vα〉α.〈vα〉α)1/2 (6.49)
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6.2. Computation of the ECM transport properties

The Péclet number at the ECM scale (level IV), represents the relative contributions of mass
transport due to convective and diffusive effects in the α-phase. It is defined as

Peα =
‖vα‖lα
DAα

(6.50)

This formulation of the closure problem allows to compute the diffusion-dispersion tensor
for different Péclet numbers, without having to solve the velocity field each time. For a
known vα-field, and supposing a stationary Stokes flow, the solution of Eqs. (6.44) to (6.47)
is obtained and the dimensionless diffusion-dispersion tensor is computed as

DIII
Aβ

DAα

=

(

εαI+
1

VIV

∫

Aαη

nαηd
′

αdA

)

− Peα〈ṽ′

αd
′

α〉 (6.51)

Once again the method of penalty is adopted to facilitate the resolution in complicated
geometries. A diffusion coefficient of 10−20DAα is imposed in the κ-phase canceling the
diffusion in the solid. The accuracy of the solution is first tested on a two-dimensional square
unit cell with a square solid inclusion (Fig. 6.5). An excellent agreement with the results of
Amaral Souto & Moyne [1997] is observed.

Returning to the fibrous geometries, Eqs. (6.44) to (6.47) are solved in the random fibrous
medium A for a Péclet number varying from 0.1 to 1000. Fig. 6.6 shows the diagonal com-
ponents of the diffusion-dispersion tensor for a flow along the x-direction. As expected, two
distinct regimes are observed. For a Péclet number under 1, diffusion is the dominant process
and DIII

Aβ is a constant determined only by the molecular diffusion coefficient. For higher Pé-
clet, dispersion occurs and DIII

Aβ increases up to two orders of magnitude in the longitudinal
direction. The transverse components of DIII

Aβ are slightly higher in the dispersive regime than
in the diffusive regime. A small difference between the y and z components of the transverse
dispersion can be observed, due to the anisotropy of the fibrous geometry. Yet, this variation
is negligible compared to the longitudinal dispersion, and it is reasonable to conclude that the
fibrous medium is isotropic in regard to dispersive effects.

In practical cases, the interstitial flow in the ECM gives rise to Péclet of the order of 10−3

to 10−1 [Swartz & Fleury, 2007; Ng & Swartz, 2003, 2006]. This indicates, in regard to the
results presented in Fig. 6.6, that dispersion does not occur in the ECM. Thus this process
will not be investigated further at scale IV, and for the rest of the study, DIII

Aβ is supposed
independent of the fluid flow intensity.
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Figure 6.5 – Solution of the one domain closure problem for mass transport.
Diffusion-dispersion around in-line square cylinders, validation of the closure resolution

scheme (εα = 0.64)

Figure 6.6 – Diagonal components of the diffusion-dispersion tensor in the random fibrous
medium A (10 fibers, R = 0.2lα, εα = 0.9503)
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CHAPTER 7

THE CELLULAR SCALE

NOW THAT the ECM transport properties have been evaluated, we are ready to describe
the cellular scale (level III) in terms of momentum and mass transport. Then a second

upscaling is carried to determine the tissue effective transport properties (level II). After solv-
ing the closure problems related to these properties, the dependencies between level IV and
level III effective parameters are shown.

One of the main difference with the previous section, is that the cell is likely to evolve due
to division, migration or death. This implies that the volume fractions at the cellular scale are
not constant anymore, and that special care as to be taken about the velocity of the interface
between the cells and the ECM.

7.1 Local description of the cellular scale

The cellular scale (level III) is composed of cells embedded in ECM (Fig. 7.1). Two
regions are represented : the ECM region (β) where species are transported via diffusion and
convection, and the cellular region (σ) where species are transported by diffusion, and where
reactions occurs (consumption or production of species).

Although the extracellular region (β) is a complex fibrous medium at level IV, at the cellu-
lar scale (level III) it is considered as a continuous and homogeneous equivalent region. The
conservation equations for momentum and mass transport as well as the effective parameters
in the β-region have been determined in Chap. 6.

But before using Eqs. (6.13) to (6.15) as local equations describing mass and momentum
transport in the β-region, attention should be paid to the continuity equation Eq. (6.13).
Indeed, at the cellular scale, cell growth is present and the interfacial velocity between the
cells (σ-phase) and the ECM (β-region) is not null in general. For this reason a more general
form of Eq. (6.13) should be taken at the cellular scale. To that purpose, let us go back to the
ECM scale (level IV), and write down the general form of the mass conservation equations
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Figure 7.1 – Definition of the phases and length scales associated with the cellular
averaging volume

for the α and η-phases.

∂ρα
∂t

+∇.(ραvα) = 0 in the α-phase (7.1)

∂ρη
∂t

= Qη in the η-phase (7.2)

where ρη is the density of the solid η-phase, and Qη is the production rate of collagen fibers.
The ECM is produced by cells, and we expect Qη to be dependent on the cell density, and
on the concentration of species A in the cellular region. While in the present part Qη is
kept general, it will be explicitly defined in Chap. 10, where the tissue growth kinetic will
be introduced. Note that, since the collagen fibers are considered as solids, the velocity in
the η-phase is null. In order to obtain the cellular scale mass conservation equation in the β-
region, Eqs. (7.1) and (7.2) are averaged. Using the general transport and the spacial averaging
theorems, we obtain

∂(εα〈ρα〉α)
∂t

+∇.(εα〈ραvα〉α) = − 1

VIV

∫

Aαη

nαη. (vα −wαη) ραdA (7.3)

∂(εη〈ρη〉η)
∂t

= 〈Qη〉+
1

VIV

∫

Aηα

nηα.wαηρηdA (7.4)

Where wαη is the velocity of interface between the α and η phases. It is very reasonable to
assume that, within the averaging volume VIV, the density of each phase is constant within its
phase

ρα = 〈ρα〉α ρη = 〈ρη〉η (7.5)
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This allows, after adding up the two averaged equations, to write the mass conservation equa-
tion in the β-region in the form

∂(εαρα + εηρη)

∂t
+∇.(εαρα〈vα〉α) = 〈Qη〉 −

1

VIV

∫

Aαη

nαη. [(vα −wαη) ρα +wαηρη] dA

(7.6)
Here, the surface integral represents the mass transfer at the interface between the α and η
phases. Since the mass is conserved at Aαη, that is to say

nαη. (vα −wαη) ρα = −nαη.wαηρη at Aαη (7.7)

The last term in Eq. (7.6) is null, allowing to write the averaged mass conservation equation
in the ECM as

∂(εαρα + εηρη)

∂t
+∇.(ρα〈vα〉) = 〈Qη〉 (7.8)

The first term on the left hand side represents the conservation of the β-region density, and this
equation will be used at the cellular scale as the mass conservation equation in the β-region.

For sake of simplicity in the subscripts, we will use the following notation correspondences
to link the ECM and cellular scales

vβ ≡ 〈vα〉 in the β-region (7.9)

pβ ≡ 〈pα〉α in the β-region (7.10)

cAβ ≡ 〈cAα〉 in the β-region (7.11)

ρβ ≡ εαρα + εηρη in the β-region (7.12)

Qβ ≡ 〈Qη〉 in the β-region (7.13)

One has to keep in mind that vβ and cAβ are superficial averages of vα and cAα respectively,
while pβ is an intrinsic average of pα.

Using these notations, the closed averaged conservation Eqs. (6.14), (6.15) and (7.8), can
be written in the form of local conservation equations in the β-region

∂ρβ
∂t

+∇. (ραvβ) = Qβ in the β-region (7.14)

ραε
−1

α

∂vβ
∂t

= −∇pβ −
µα
KIII
β

vβ + µαε
−1

α ∇2vβ + ραg in the β-region (7.15)

εα
∂cAβ
∂t

+∇. (vβcAβ) = ∇.(DIII
Aβ.∇cAβ) in the β-region (7.16)

Momentum transport in the β-region is modeled via a Darcy-Brinkman equation [Brinkman,
1947] taking into account the fibrous structure of the ECM. The effective parameters KIII

β and
DIII
Aβ defined in Eqs. (6.16) and (6.17) are dependent on the structure of the ECM at level

IV through the closure problem (Eqs. (6.18) to (6.22)). In Eq. (7.17), cell metabolism is
represented by the consumption of the species through a Michaelis-Menten reaction kinetic
[Chung et al., 2007; Ma et al., 2006; Nikolaev et al., 2010; Sacco et al., 2010; Zhao et al.,
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2005; Wood & Whitaker, 1998, 1999, 2000; Wood et al., 2002, 2007; Golfier et al., 2009;
Orgogozo et al., 2009, 2010].

Transport equations must now be defined in the σ-phase. The cellular region is actually
a structured medium compartmentalized into organelles with specific functions and proper-
ties. This organelles are themselves enveloped by simple (peroxisomes, endoplasmic reticu-
lum, golgi apparatus, lysosomes) or double (nucleus, mitochondrion) membranes which act
as barriers for solutes. Some of this organelles such as the endoplasmic reticulum and the
golgi apparatus present a folded like porous structure. The disposition and geometry of the
organelles, their membrane properties end the cytoskeleton structure are parameters that in-
fluence mass transport inside the cells [Kühn et al., 2011; Höfling & Franosch, 2013]. The
representation of the heterogenity and the complexity of these transport processes is out of
the scope of this study, and only simple diffusion and reaction of the species A is considered
in this work. Here the intracellular σ-region is supposed to be a continuous and homogeneous
phase where only diffusion and reaction take place. This is represented by the following mass
conservation equations

∂cAσ
∂t

= ∇.(DAσ∇cAσ)− kA
cAσ

cAσ +KA

in the σ-phase (7.17)

∂ρσ
∂t

= Qσ in the σ-phase (7.18)

where cAσ is the species point concentration in the σ-phase. DAσ is the diffusion coefficient,
kA and KA are respectively the specific degradation rate of species A and half saturation
constant of the reaction kinetic. ρσ and Qσ are the mass density and the cell production
rate in the σ-phase respectively. It should be emphasized that, since we do not know the
specific transport mechanism inside the cells, the velocity within the σ-phase is supposed
null. The cell production rate Qσ is the source of cell growth, and should be a function of the
σ-phase concentration, as well as the velocity in the β-region inducing shear stress at Aβσ.
The primary goal of this chapter, is the assessment of the transport properties of the tissue, and
the definition of Qσ in regard to cell/tissue production will be further discussed in Chap. 10.

The system remains to be completed with appropriate boundary conditions at the interface
between the β-region and the σ-phase. Animal cells membranes are composed of phospho-
lipids arranged in bilayer. Because of the hydrophobic nature of the inner part of this layer, the
membrane is a barrier to the movement of many solutes such as hydrophilic ions and sugar.
In order to control the transport of this molecules across the membrane, channel and carrier
proteins are present in the bilayer. This transporter proteins have specific mechanisms, gates
and kinetics [Ashcroft, 1999]. At the contrary, small uncharged molecules such as oxygen,
carbon dioxide and some hormones can dissolve through the membrane and pass across it
by simple diffusion. In the case of glucose, facilitated diffusion from the extracellular region
to the cytoplasm is mediated by fourteen known membrane transporters called Glut proteins
[Thorens & Mueckler, 2010]. Not all of their mechanisms and functions are yet fully known,
but each has a specific role in the control of glucose intracellular concentration. This level of
complexity is out of the scope of this study, and a single carrier model representing facilitated
transport of the species A through cell membrane is adopted [Wood & Whitaker, 1998, 1999,
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7.2. Upscaling momentum transport to the tissue scale

2000; Wood et al., 2002]

BC1 : − nβσ.
(
DIII
Aβ.∇cAβ +wβσcAβ

)
=

E0 (cAβ − α0cAσ)

α1 + α2cAβ + α3cAσ + α4cAβcAσ
at Aβσ

(7.19)
where wβσ is the interface velocity, nβσ is the unit normal vector directed from the β-region
toward the σ-phase, Aβσ is the interfacial area between the two phases. E0 is the surface con-
centration of transporter proteins, α0 is an equilibrium coefficient and α2,3,4,5 are membrane
transport parameters. This boundary condition is well suited for molecules that need simple
membrane carrier such as glucose [Ashcroft, 1999; Thorens & Mueckler, 2010]. Additionally,
the following boundary conditions are necessary

BC2 : − nβσ.
(
DIII
Aβ.∇cAβ + (wβσ − vβ) cAβ

)
=

− nβσ. (DAσI.∇cAσ +wβσcAσ) at Aβσ (7.20)

BC3 : nβσ. (vβ −wβσ) ρα = −nβσ.wβσρσ at Aβσ (7.21)

Eq. (7.21) is an interfacial mass conservation condition where the velocity of the σ-phase is
neglected. Note that the transport quantity in the left hand side is in ρα, and this is consistent
with Eqs. (7.14) and (7.15). Eq. (7.21) can be written in the form

BC3 : nβσ.vβ = nβσ.

(

1− ρσ
ρα

)

wβσ at Aβσ (7.22)

where one can identify the term between brackets as the volume change parameter [Bousquet-
Melou et al., 2002]. It is assumed here that the densities in the σ and the α phases are equiv-
alent, thus the right hand side of Eq. (7.22) is discarded. Since the no slip condition implies
that the projection of vβ on the tangent plane to Aβσ is null, a classical no-slip boundary
condition is obtained from Eq. (7.22)

BC3 : vβ = 0 at Aβσ (7.23)

Finally, the local problem at the cellular scale (level III) is constituted by Eqs. (7.14)
to (7.17), (7.19), (7.20) and (7.23). In the following sections, the momentum and mass
transport problems are up-scaled using the volume averaging method, and the tissue effec-
tive properties are evaluated through the resolution of the corresponding closure problems.

7.2 Upscaling momentum transport to the tissue scale

In the present section, momentum transport is up-scaled from the cellular scale (level III) to
the tissue scale (level II), based on the volume averaging theory. This development leads to the
definition of an effective tissue permeability, which explicitly include the ECM permeability.
The inter-scale dependency between this two permeabilities is finally investigated through a
numerical resolution of the associated closure problem.
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7.2.1 Theoretical development

The process of averaging the momentum transport problem at the cellular scale (Eqs. (7.14),
(7.15) and (7.23)), is very similar to the derivation described at the ECM scale (Chap. 6,
App. A). Considering the effective density ραε−1

α and viscosity µαε−1
α of the culture medium,

and the effective permeability tensor KIII
β to be constant in space within the averaging volume

VIII, the superficial average of Eq. (7.15) is

ραε
−1

α

〈
∂vβ
∂t

〉

= −〈∇pβ〉 −
µα
KIII
β

〈vβ〉+ µαε
−1

α

〈
∇2vβ

〉
+ 〈ραg〉 (7.24)

Only the Darcy term differs from the average of a Stokes equation, but given its linearity, it
is straight forward to derive the non-closed averaged equation for momentum transport in the
β-region

ραε
−1

α

∂
(
εβ〈vβ〉β

)

∂t
= −εβ∇〈pβ〉β −

µα
KIII
β

εβ 〈vβ〉β

+ µαε
−1

α εβ∇2 〈vβ〉β + εβραg +
1

VIII

∫

Aβσ

nβσ.
(
−Ip̃β + µαε

−1

α ∇ṽβ
)
dA (7.25)

where VIII is the averaging volume at the cell scale (see Fig. 7.1). Here Gray decomposition
[Gray, 1975] has been introduced for the velocity and pressure in the β-region

vβ = 〈vβ〉β + ṽβ (7.26)

pβ = 〈pβ〉β + p̃β (7.27)

Note that the averaged Eq. (7.25) is valid under the classical length scale constraints

lβ ≪ r0 r20 ≪ LεLp1 r20 ≪ LεLv1 r20 ≪ LεLv2 (7.28)

where lβ , r0, Lε, Lp1, Lv1 and Lv2 are the characteristic length scales of the β-region, the aver-
aging volume VIII, the volume fraction variation, the pressure gradient variation, the velocity
gradient variation and the velocity laplacian variation respectively.

Now turning our attention to the mass conservation equations (Eqs. (7.14) and (7.18)), the
general transport and spacial averaging theorems are applied to get

∂(εβ〈ρβ〉β)
∂t

+∇.(εβ〈ραvβ〉β) = 〈Qβ〉+
1

VIII

∫

Aβσ

nβσ. (ρβwβσ − ραvβ) dA (7.29)

∂(εσ〈ρσ〉σ)
∂t

= 〈Qσ〉+
1

VIII

∫

Aσβ

nσβ.ρσwβσdA (7.30)

Adding up these two averaged equations we have

∂(εβ〈ρβ〉β + εσ〈ρσ〉σ)
∂t

+∇.(εβ〈ραvβ〉β) = 〈Qβ +Qσ〉

+
1

VIII

∫

Aβσ

nβσ. [(ρβ − ρσ)wβσ − ραvβ] dA (7.31)
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7.2. Upscaling momentum transport to the tissue scale

Here we need to make the hypothesis that the density in the β-region is close to the density
in the α-phase. In practice this is not a strong assumption, and when used together with the
previous hypothesis that the density of a phase is constant within its phase, we obtain the
simplification

ρα = 〈ρα〉α ≃ ρβ = 〈ρβ〉β ≃ ρσ = 〈ρσ〉σ (7.32)

Under this conditions, the mass conservation boundary condition Eq. (7.21) allows to neglect
the right hand side of Eq. (7.31). The averaged mass conservation equation can finally be
written in the form

∂(εβρβ + εσρσ)

∂t
+∇.(εβρα〈vβ〉β) = 〈Qβ +Qσ〉 (7.33)

At this point we have the averaged equations for momentum transport and mass conser-
vation (Eqs. (7.25) and (7.33)). Eq. (7.25) still includes local quantities represented by the
deviation terms. In order to close this equation we need to build a problem for the deviations,
and this is done by subtracting Eqs. (7.25) to (7.15) and using the spacial decompositions
(Eqs. (7.26) and (7.27)) we have

ραε
−1

α

∂ṽβ
∂t

− ραε
−1

α 〈vβ〉β
∂εβ
∂t

= −∇p̃β −
µα
KIII
β

ṽβ + µαε
−1

α ∇2ṽβ

− 1

Vβ

∫

Aβσ

nβσ.
(
−Ip̃β + µαε

−1

α ∇ṽβ
)
dA in the β-region (7.34)

Some simplifications can be done when evaluating the orders of magnitude of the terms

ραε
−1

α

∂ṽβ
∂t

= O

(

ραε
−1

α

〈vβ〉β
tv

)

(7.35)

ραε
−1

α 〈vβ〉β
∂εβ
∂t

= O

(

ραε
−1

α

〈vβ〉β
tε

)

(7.36)

µαε
−1

α ∇2ṽβ = O

(

µαε
−1

α

〈vβ〉β
l2β

)

(7.37)

where tv and tε are the characteristic time for change in the velocity and volume fraction
respectively. In this study, the evolution of the cellular structure is supposed to be much
slower than the variation in fluid velocity in the ECM. This means that tv ≪ tε so the second
term on the left hand side can be neglected. In addition, the first term on the left hand side
can be neglected over the viscous diffusion term when

µαε
−1
α

ραε−1
α

tv
l2β

≫ 1 (7.38)

This simplifications lead to a static deviation problem for momentum transport in the β-region
of the form

∇.ṽβ = 0 in the β-region (7.39)

75



Chapter 7. The Cellular Scale

0 = −∇p̃β −
µα
KIII
β

ṽβ + µαε
−1

α ∇2ṽβ −
1

Vβ

∫

Aβσ

nβσ.
(
−Ip̃β + µαε

−1

α ∇ṽβ
)
dA

in the β-region (7.40)

ṽβ = −〈vβ〉β at Aβσ (7.41)

Here, Eq. (7.39) has been obtained from Eq. (7.33), under the same length scale constraints
and assumptions than the ones needed to derive Eq. (7.40). Additionally, it has been assumed
that the time scale associated with the average production rates, is much larger than the time
scale associated with momentum transport. In other words, cell growth is so slow that is does
not influence the deviation problem for momentum transport.

The only source term in the momentum deviation problem (Eqs. (7.39) to (7.41)) is given
by the boundary condition Eq. (7.41). In order to link the deviation problem to the non-closed
averaged problem, a relation between the deviations and the averages is proposed in the form

ṽβ = Bβ.〈vβ〉β (7.42)

p̃β = µαε
−1

α bβ.〈vβ〉β (7.43)

where Bβ and bβ are the colosure variables for momentum transport in the β-region. Substi-
tuting these definitions in the averaged momentum transport equation Eq. (7.25) we obtain

ραε
−1

α ε−1

β

∂
(
εβ〈vβ〉β

)

∂t
= −∇〈pβ〉β + µαε

−1

α ∇2 〈vβ〉β + ραg

− µαε
−1

α

[

εα
KIII
β

− 1

Vβ

∫

Aβσ

nβσ. (−Ibβ +∇Bβ) dA

]

〈vβ〉β (7.44)

One can identify a classical form of the permeability tensor depending on the closure variables
in the β-region

εβK
⋆−1

β = − 1

Vβ

∫

Aβσ

nβσ. (−Ibβ +∇Bβ) dA (7.45)

This definition allows to represent the tissue effective permeability as a function of two per-
meabilities

εαεβK
II−1

ω = εαK
III−1

β + εβK
⋆−1

β (7.46)

and the closed macroscopic momentum transport equation in the β-region takes the form

ραε
−1

α ε−1

β

∂
(
εβ〈vβ〉β

)

∂t
= −∇〈pβ〉β −

µα
KII
ω

εβ 〈vβ〉β + µαε
−1

α ∇2 〈vβ〉β + ραg (7.47)

Note that Eq. (7.47) is a Darcy-Brinkman equation, whose effective permeability tensor KII
ω

is a function of the ECM permeability KIII
β , and of the permeability arising from the cellular

structure K⋆
β .

Eq. (7.47) appears different from the one developed in the context of large scale averaging
[Quintard & Whitaker, 1996a, 1998a] for two reasons : (i) in the work of Quintard & Whitaker
[1996a, 1998a] the fluid is slightly compressible, allowing to express the boundary value
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7.2. Upscaling momentum transport to the tissue scale

problem in terms of the pressure only. This gives rise to higher order governing equations
and thus higher order closure variables. (ii) the momentum transport equation is treated in the
form of Darcy’s law [Darcy, 1856] and the Brinkman corrections are neglected. In this form
the authors chose to distribute KIII

β into two effective coefficients defined in Eqs. (125g) and
(135) of [Quintard & Whitaker, 1996a].

Although Eq. (7.45) does not depend explicitly on KIII
β , it is influenced by the ECM

permeability through the solution of the closure problem

∇.Bβ = 0 (7.48)

0 = −∇bβ − εαK
III−1

β Bβ +∇2Bβ + εβK
⋆−1

β (7.49)

Bβ = −I at Aβσ (7.50)

Bβ(x+ li) = Bβ(x) i = 1, 2, 3 (7.51)

bβ(x+ li) = bβ(x) i = 1, 2, 3 (7.52)

Note that the interstitial fluid volume fraction εα plays a role in the microscopic closure prob-
lem. The resolution of this closure problem for momentum transport allows to compute the
effective tissue permeability KII

ω, and this is done in the following section.

7.2.2 Computation of the tissue effective permeability

The closure problem for momentum transport at the cellular scale (level III) is given by
Eqs. (7.48) to (7.66). Because of K⋆

β in the conservation equation, we are facing an integro-
differential problem. Similarly to what have been done in Sec. 6.2.1, a series of variable
changes is proposed to develop a problem more convenient to solve numerically.

First a new tensor is defined
B
♯
β = Bβ + I (7.53)

allowing to write the closure problem in the form

∇.B♯
β = 0 (7.54)

0 = −∇bβ − εαK
III−1

β B
♯
β +∇2B

♯
β + εαK

III−1

β + εβK
⋆−1

β (7.55)

B
♯
β = 0 at Aβσ (7.56)

B
♯
β(x+ li) = B

♯
β(x) i = 1, 2, 3 (7.57)

bβ(x+ li) = bβ(x) i = 1, 2, 3 (7.58)

We see here the effective tissue permeability (Eq. (7.46)) appearing in the right hand side of
Eq. (7.54). This suggests to define new vector and tensor fields according to

b′

β = ε−1

α ε−1

β bβ.K
II
ω (7.59)

B′

β = ε−1

α ε−1

β B
♯
β.K

II
ω (7.60)
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And the closure problem can be set to the form of an incompressible Darcy-Brinkman flow
problem

∇.B′

β = 0 (7.61)

0 = −∇b′

β − εαK
III−1

β B′

β +∇2B′

β + I (7.62)

B′

β = 0 at Aβσ (7.63)

B′

β(x+ li) = B′

β(x) i = 1, 2, 3 (7.64)

b′

β(x+ li) = b′

β(x) i = 1, 2, 3 (7.65)

And the tissue effective permeability can be obtained using the fact that the superficial average
of deviation of the velocity is null (average of Eq. (7.26)). This implies that

〈Bβ〉β = 0 (7.66)

and when the variable change is applied, we obtain

〈B′

β〉β = ε−1

α ε−1

β KII
ω (7.67)

The form of the above problem is similar to the usual closure problem for momentum trans-
port [Whitaker, 1999], except for the Darcy term where the interstitial fluid volume fraction
is present. The inputs needed to solve the closure problem at the cellular scale are, the ECM
volume fraction εβ , the interstital fluid volume fraction εα, and its resulting ECM effective
permeability KIII

β .

In order to investigate the influence of the above parameters on the tissue effective perme-
ability KII

ω, an intuitive two step approach would be : first, evaluate KIII
β by solving the ECM

scale closure problem (Eqs. (6.30) to (6.35)) on a given geometry ; second, solve the cellular
scale closure problem (Eqs. (7.61) to (7.67)). Yet, this has the disadvantage of explicitly cou-
pling the values of KIII

β to εα. Thus, in order to have access to a larger range of values, the
couple (εα,K

III
β ) is arbitrarily set, allowing to isolate more easily the inter-scale dependency.

This supposes that for any finite value of (εα,KIII
β ), a geometry of the unit cell exists.

Figure 7.2 – Unit cell used to investigate the inter-scale dependency between the ECM
(KIII

β ) and the tissue (KII
ω) permeabilities.
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7.2. Upscaling momentum transport to the tissue scale

Figure 7.3 – Tissue effective permeability as a function of the ECM permeability (εα = 0.6)

The cell scale closure problem for momentum transport (Eqs. (7.61) to (7.67)), is solved on
the two-dimensional unit cell represented in Fig. 7.2. Numerical results illustrating the inter-
scale dependency are show in Fig. 7.3. The tissue effective permeability, KII

ω (solid lines) and
the permeability arising from the cellular scale structure, K⋆

β (dashed lines) are plotted for
different permeability values of the ECM scale (scale IV), and for two ratio of the character-
istic cell sizes. The interstitial fluid volume fraction, εα, is kept equal to 0.6. First, it can be
seen that the ECM permeability KIII

β strongly influences the tissue permeability coefficient.
For large values of the ECM volume fraction εβ , and thus cell structure permeability K⋆

β , the
inequality KIII

β ε
−1
α ≪ K⋆

βε
−1

β is satisfied, and, from Eq. (7.46), KII
ω tends to εβKIII

β (microp-
orous behavior). On the other hand, we verify that KII

ω logically tends toward K⋆
β for small εβ

values, and obviously, for large KII
ω (fluid behavior). Note that these observations are verified

whatever the ratio lβ/lα.

In order to validate the effective permeability obtained by double volume averaging, semi-
direct numerical computations (sDNS) are carried for the explicitly defined hierarchical struc-
ture shown in Fig. 7.4. The term "semi-direct" is used because only a unit cell of the tissue
is considered (instead of a whole region) with the geometry a the cell and ECM scale explic-
itly represented. At both level, a two-dimensional structure composed of in-line cylinders are
considered. The closure problem at the ECM scale (Eqs. (6.30) to (6.35)) is solved for various
values of the interstitial fluid volume fraction εα, and the corresponding ECM permeabilities
KIII
β are obtained. These values are then used in the cellular scale closure problem (Eqs. (7.61)

to (7.67)) to determine the tissue effective permeability KII
ω for different values of the ECM

volume fraction εβ . The results are presented in Fig. 7.5, and compared with sDNS in the
case lβ/lα = 20. sDNS and double volume averaged solutions are in excellent agreement,
validating the use of the double averaging for the evaluation of the tissue permeability. Yet,
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for very low values of the ECM volume fraction εβ , the sDNS permeability slightly deviates
from the double averaging permeability. This suggests that in the sDNS, the elementary rep-
resentative volume of the ECM is not well represented between the cellular obstacles, leading
to inaccuracies. This results allow to conclude that, for the geometries considered, the dis-
tance between two cellular obstacles must be at least equal to 5lα in order for the length scale
separations to be valid (which is consistent with [Goyeau et al., 1997]).

In the above results, a large range of parameters values have been investigated, in order to
study the momentum transport characteristics related to a hierarchical porous media. Yet, in
practice, this parameters are unlikely to vary that much in a tissue grown within a perfusion
bioreactor. The evaluation of a more realistic tissue effective permeability will be carried in
Chap. 10. But first, let us treat the mass transport problem.

7.3 Upscaling mass transport to the tissue scale

Here, mass transport at the cellular scale (level III) is up-scaled in order to obtain the
mass transport properties at the tissue scale (level II). By supposing local mass equilibrium
between the ECM and the intracellular region, a one-equation model for mass transport is
derived. Then the tissue effective diffusion-dispersion coefficient will be investigated in re-
gard to membrane transport, fluid intensity, and ECM permeability, by solving the associated
closure problem.

7.3.1 Theoretical development

Let us recall the local equations describing mass transport at the cellular scale (see Sec. 7.1
for the discussion on their choice)

εα
∂cAβ
∂t

+∇. (vβcAβ) = ∇.(DIII
Aβ.∇cAβ) in the β-region (7.68)

∂cAσ
∂t

= ∇.(DAσ∇cAσ)− kA
cAσ

cAσ +KA

in the σ-phase (7.69)

BC1 : − nβσ.
(
DIII
Aβ.∇cAβ + (wβσ − vβ) cAβ

)
=

E0 (cAβ − α0cAσ)

α1 + α2cAβ + α3cAσ + α4cAβcAσ
at Aβσ (7.70)

BC2 : − nβσ.
(
DIII
Aβ.∇cAβ + (wβσ − vβ) cAβ

)
=

− nβσ. (DAσI.∇cAσ +wβσcAσ) at Aβσ (7.71)

It is important to keep in mind that DIII
Aβ is a diffusion-dispersion tensor whose value de-

pends on the Péclet number at level IV, and thus to the vβ-field (see Eqs. (6.50) and (7.9)).
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Figure 7.4 – Unit cells with explicitly defined hierarchical structure, used for comparision
with the semi-direct numerical simulations.

Figure 7.5 – Comparison of the results of the tissue effective permeability, from double
volume averaging (colored figures) and semi-direct numerical simulations (black circles).
Hierarchical structure composed of in-line cylinders at the two levels, for lβ/lα = 20. The
bottom-right figure shows the intensity of the longitudinal fluid velocity for a sDNS where

εα = 0.6 and εβ = 0.6.
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Since in the general case, vβ can vary within VIII, DIII
Aβ is subject to spacial variations at the

cellular scale. Moreover its values can range over several orders of magnitude between the
diffusive and dispersive regime, depending on Peα-field in VIII. The theory of large-scale
volume averaging deals with this kind of heterogeneous dispersion by introducing the spatial
deviation of the dispersion tensor [Quintard & Whitaker, 1998b; Ahmadi et al., 1998; Quin-
tard et al., 2001; Cherblanc et al., 2003]. However since the applications are usually large
fields in geosciences, the flow is modeled with Darcy equation, neglecting the variability in
the velocity profile. In our case, momentum transport is modeled with a Darcy-Brinkman
equation, and heterogeneous dispersion is susceptible to occur. A detailed study of the disper-
sive effects in hierarchical bi-porous media is presented in App. B. Nonetheless experimental
evidences [Swartz & Fleury, 2007; Ng & Swartz, 2003, 2006] point out that in biological
tissues Peα is of the order of 10−3 to 10−1. In regard to the results presented in Sec. 6.2.2, it is
very reasonable to assume that DIII

Aβ lays in the diffusive regime and that its variations within
VIII are negligible.

The form of the membrane transport described by Eq. (7.70) has been first derived by
Wood & Whitaker [1998] on the basis of [Ochoa et al., 1986]. It represents transport through
a lipid bi-layer, where the mechanism is driven by the concentration difference between the
β and σ-regions. Specific kinetics characteristic of the membrane lipid layers are taken into
account in the denominator. The non-linear nature of this equation presents difficulties in the
upscaling, and simplifications will be needed to deal with it in the closure problem.

For generality, the two boundary conditions Eqs. (7.70) and (7.71) include the fluid veloc-
ity in the β-region. Since we have a no slip boundary condition at the cell membrane (Eq.
(7.23)), vβ is discarded at Aβσ in the rest of the development.

Following the volume averaging method described in Chap. 6 and App. A, the non-closed

volume averaged equations for mass transport in the β and σ phases are obtained

εα
∂
(

εβ 〈cAβ〉β
)

∂t
+ εβ 〈vβ〉β .∇〈cAβ〉β = ∇.

[

DIII
Aβ.

(

εβ∇〈cAβ〉β +
1

VIII

∫

Aβσ

nβσ c̃AβdA

)]

+
1

VIII

∫

Aβσ

nβσ.
(
DIII
Aβ.∇cAβ +wβσcAβ

)
dA−∇. 〈ṽβ c̃Aβ〉 in the β-region (7.72)

∂ (εσ 〈cAσ〉σ)
∂t

= ∇.
[

DAσ

(

εσ∇〈cAσ〉σ +
1

VIII

∫

Aσβ

nσβ c̃AσdA

)]

+
1

VIII

∫

Aσβ

nσβ. (DAσ∇cAσ +wβσcAσ) dA− εσ

〈

kA
cAσ

cAσ +KA

〉σ

in the σ-phase

(7.73)

where the spacial deviations for the concentrations have been introduced.

cAβ = 〈cAβ〉β + c̃Aβ cAσ = 〈cAσ〉σ + c̃Aσ (7.74)

In order to take into account cell growth and thus variation of εσ during time, the development
of Eqs. (7.72) and (7.73) does not require εβ and εσ to be constant in time or in space (only
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Figure 7.6 – Representation of the concentration profile close to the interface Aβσ in the
general case and at local mass equilibrium

εα is a constant). Compared to Eq. (A.35) where the porous structure is inert, Eqs. (7.72)
and (7.73) present additional interfacial terms involving the cell membrane velocity wβσ.

We remind that Eqs. (7.72) and (7.73) are valid under the following length scale constraints

lβ << r0 r20 << LεLcβ1 lσ << r0 r20 << LεLcσ1
(7.75)

where lσ, Lcβ1 and Lcσ1
are the characteristic length scales of the σ-phase and of the concen-

tration gradient variation in the β and σ phases respectively.

To this point, one averaged mass transport equation has been developed for each of the
σ-phase and β-region. The dependent variables for these averaged equations are linked to
two different concentrations, one for each phase. In the general case, a two equation model is
best suited to describe the averaged mass transport process, although a one equation non-
equilibrium model as been recently proposed [Davit et al., 2010]. However, in the case
where the time-scales associated with transport phenomena in the two phases are close enough
[Wood & Whitaker, 1998], the gradient of the average concentration vary sufficiently slowly
for the system to be supposed at local mass equilibrium (Fig. 7.6). This hypothesis is sup-
ported by the fact that the diffusion coefficients measured in the ECM and in the cell are of the
same order of magnitude, and that convective transport in the ECM is usually small [Mastro
et al., 1984; Swartz & Fleury, 2007]. This allows to develop a one-equation mass equilibrium
model which simplifies further development [Ochoa et al., 1986; Galban & Locke, 1999b;
Wood & Whitaker, 2000; Lasseux et al., 2004; Golfier et al., 2009]. In that case, Eq. (7.19)
indicates that averaged concentrations are related by

〈cAβ〉β = α0 〈cAσ〉σ at local mass equilibrium (7.76)

Adding up the two non-closed averaged transport Eqs. (7.72) and (7.73), making use of
the boundary condition Eq. (7.20), and noticing that nσβ = −nβσ and Aσβ = Aβσ we get

∂
(

εσ 〈cAσ〉σ + εαεβ 〈cAβ〉β
)

∂t
+ εβ 〈vβ〉β .∇〈cAβ〉β =

∇.
[

εσDAσI.∇〈cAσ〉σ + εβD
III
Aβ.∇〈cAβ〉β

]

+∇. (fσ + fβ) + εσ 〈Rσ〉σ (7.77)

83



Chapter 7. The Cellular Scale

where 〈Rσ〉σ is the intrinsic average of the reaction term, and fσ and fβ are non-closed vectors
representing the dispersive flux

〈Rσ〉σ = −
〈

kA
cAσ

cAσ +KA

〉σ

(7.78)

fσ = DAσI.

(

1

VIII

∫

Aσβ

nσβ c̃AσdA

)

(7.79)

fβ = DIII
Aβ.

(

1

VIII

∫

Aβσ

nβσ c̃AβdA

)

− 〈ṽβ c̃Aβ〉 (7.80)

The reaction rate has a non-linear form, and the treatment of such a term in upscaling methods
is still an active research field. Following Wood & Whitaker [2000], it is possible to prove that
under the length scale constraints encountered in the present study, Eq. (7.78) can be written
in the form

〈Rσ〉σ = −kA
〈cAσ〉σ

〈cAσ〉σ +KA

(7.81)

In order to build a one equation mass equilibrium model, an equilibrium weighted average
concentration is proposed [Ochoa et al., 1986; Wood & Whitaker, 1998; Golfier et al., 2009]

{cA} = εβ 〈cAβ〉β + α0εσ 〈cAσ〉σ (7.82)

When the local mass equilibrium is met, Eq. (7.76) is valid in the whole averaging volume
VIII, and we get

{cA} = α0 〈cAσ〉σ = 〈cAβ〉β (7.83)

It is then possible to write Eq. (7.77) as a function of the weighted concentration only to
obtain the non-closed average equation at local mass equilibrium

∂
[(
α−1

0 εσ + εαεβ
)
{cA}

]

∂t
+ εβ 〈vβ〉β .∇{cA} =

∇.
[(
εσα

−1

0 DAσI+ εβD
III
Aβ

)
.∇{cA}

]
+∇ · (fσ + fβ) + εσ 〈Rσ〉σ (7.84)

At local mass equilibrium, the weighted average concentration is equivalent to the intrinsic
average concentration in the β-region (Eq. (7.83)), and Eq. (7.84) can also be formulated in
terms of 〈cAβ〉β only.

Eq. (7.84) still includes deviation terms in fβ and fσ, and to close this equation we need to
build a problem for c̃β and c̃σ. But first the interface convective term in Eqs. (7.72) and (7.73)
need to be simplified on the basis that the diffusive transport is much more important than the
transport of species A due the velocity of the cell wall wβσ

nβσ. (wβσcAβ) ≪ nβσ.
(
DIII
Aβ.∇cAβ

)
nσβ. (wβσcAσ) ≪ nσβ. (DAσ∇cAσ) (7.85)

Then making use of the spacial decompositions (Eq. (7.74)), the general deviation problem
is derived. The averaged mass transport equations (Eqs. (7.72) and (7.73)) are divided by
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7.3. Upscaling mass transport to the tissue scale

εβ and εσ respectively, and subtracted to the point mass conservation equations (Eqs. (7.68)
and (7.69) respectively).

∂c̃Aβ
∂t

− 〈cAβ〉β ε−1

β

∂εβ
∂t

+ ṽβ.∇〈cAβ〉β + vβ.∇c̃Aβ = ∇.
(
DIII
Aβ.∇c̃Aβ

)

− ε−1

β ∇.
(

DIII
Aβ.

1

VIII

∫

Aβσ

nβσ c̃AβdA

)

− 1

Vβ

∫

Aβσ

nβσ.
(
DIII
Aβ.∇c̃Aβ

)
dA

+ ε−1

β ∇. 〈ṽβ c̃Aβ〉 in the β-phase (7.86)

∂c̃Aσ
∂t

− 〈cAσ〉σ ε−1

σ

∂εσ
∂t

= ∇. (DAσ∇c̃Aσ)− ε−1

σ ∇.
(

DAσI.
1

VIII

∫

Aσβ

nσβ c̃AσdA

)

− 1

Vσ

∫

Aσβ

nσβ. (DAσ∇c̃Aσ) dA+Rσ − 〈Rσ〉σ in the σ-phase (7.87)

Some simplifications can be done to Eqs. (7.86) and (7.87). First, under the constraints Eq.
(7.75), the non-local diffusion (second term on the RHS) is much smaller than the diffusive
term [Whitaker, 1999]. Second, Wood & Whitaker [1998] showed that in most biofilms (and
by extension most tissues), the diffusive term is larger than the accumulation and the consol-
idation terms (first and second terms on the LHS respectively). Moreover the reaction term
is also shown to be much smaller than the diffusion term. The constraints related to these
simplifications can be found in [Wood & Whitaker, 1998, Appendix A & B]. The deviation
problem can now be simplified to a static integro-differential problem

ṽβ.∇{cA}+vβ.∇c̃Aβ = ∇.
(
DIII
Aβ.∇c̃Aβ

)
− 1

Vβ

∫

Aβσ

nβσ.
(
DIII
Aβ.∇c̃Aβ

)
dA in the β-region

(7.88)

0 = ∇. (DAσ∇c̃Aσ)−
1

Vσ

∫

Aσβ

nσβ. (DAσ∇c̃Aσ) dA in the σ-phase (7.89)

BC1 : − nβσ.
(
DIII
Aβ.∇c̃Aβ −DIII

Aβ.∇{cA}
)
=
E0

Γ
(c̃Aβ − α0c̃Aσ) at Aβσ (7.90)

BC2 : nβσ.
(
DIII
Aβ.∇c̃Aβ −DAσI.∇c̃Aσ

)
= −nβσ.

[(
DIII
Aβ − α−1

0 DAσI
)
.∇{cA}

]
at Aβσ

(7.91)
with

Γ = α1 + α2〈cAβ〉β + α3〈cAσ〉σ + α4〈cAβ〉β〈cAσ〉σ (7.92)

The derivation of the mass transfer boundary condition Eq. (7.90) is described in detail in
Wood & Whitaker [1998, 2000].

Only a source term of the first order is present in Eqs. (7.88), (7.90) and (7.91). In order to
solve the deviation problem, one need to relate the deviation quantities to the average values.
Considering the form of these source terms, we propose

c̃Aβ = dβ.∇〈cAβ〉β = dβ.∇{cA} (7.93)

c̃Aσ = dσ.∇〈cAσ〉σ = α−1

0 dσ.∇{cA} (7.94)
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where dβ and dσ are the closure variables. Substituting the representations Eqs. (7.93)
and (7.94) in the averaged equation Eq. (7.84), the closed macroscopic mass transport equa-

tion is deduced

∂
[(
α−1

0 εσ + εαεβ
)
{cA}

]

∂t
+ εβ 〈vβ〉β .∇{cA} = ∇.

(
DII
Aω.∇{cA}

)
− εσkA

{cA}
{cA}+ α0KA

(7.95)
where the effective tissue diffusion-dispersion tensor is defined by

DII
Aω =

(
εσα

−1

0 DAσI+ εβD
III
Aβ

)

+ α−1

0 DAσI.
1

VIII

∫

Aσβ

nσβdσdA+DIII
Aβ.

1

VIII

∫

Aβσ

nβσdβdA− 〈ṽβdβ〉 (7.96)

Whilst the three first terms of DII
Aω represent the influence of the cellular scale structure on

the tissue effective transport properties, the last term of Eq. (7.96) shows the contribution of
the fluid velocity to dispersion.

The only cellular scale variables present in Eq. (7.95), are the dβ and dσ included in the
effective diffusion tensors DII

Aω. In order to be evaluated, a problem for the closure variables
must be built, and this is done by introducing Eqs. (7.93) and (7.94) into the deviation problem
(Eqs. (7.88) to (7.91))

ṽβ + vβ.∇dβ = DIII
Aβ.∇2dβ −

1

Vβ

∫

Aβσ

nβσ.
(
DIII
Aβ∇dβ

)
dA in the β-region (7.97)

0 = DAσ∇2dσ −
1

Vσ

∫

Aσβ

nσβ. (DAσ∇dσ) dA in the σ-phase (7.98)

BC1 : dβ − dσ = −nβσ.
Γ

E0

DIII
Aβ. (I+∇dβ) at Aβσ (7.99)

BC2 : nβσ.
(
DIII
Aβ.∇dβ − α−1

0 DAσI.∇dσ
)
= −nβσ.

(
DIII
Aβ − α−1

0 DAσI
)

at Aβσ
(7.100)

dβ(x+ li) = dβ(x) i = 1, 2, 3 (7.101)

dσ(x+ li) = dσ(x) i = 1, 2, 3 (7.102)

〈dβ〉β = 0 (7.103)

〈dσ〉σ = 0 (7.104)

Once again, periodicity has been supposed to replace the unknown boundary condition at the
limit of the averaging volume. This does not suppose the tissue to be periodic, only that the
distribution of the cells within the tissue, varies on long distances compared to the size of the
averaging volume (homogeneous tissue).
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7.3. Upscaling mass transport to the tissue scale

7.3.2 Computation of the tissue diffusion-dispersion tensor

Here we wish to investigate mass transport in the tissue, in regard to (i) the relative diffu-
sivity between the β-region and σ-phase, (ii) the active membrane transport parameter, (iii)
the permeability in the β-region.

The closure problem for mass transport at the cellular scale is defined by Eqs. (7.97)
to (7.104). Following the same approach than in Sec. 6.2.2, its dimensionless form is

Peβ
(
ṽ′

β + v′

β.∇d′

β

)
= ∇2d′

β −
1

Vβ

∫

Aβσ

nβσ.d
′

βdA in the β-region (7.105)

0 = Dσβ∇2d′

σ −
1

Vσ

∫

Aσβ

nσβ. (Dσβ∇d′

σ) dA in the σ-phase (7.106)

BC1 : d′

β − d′

σ = −nβσ.
[
γβ
(
I+∇d′

β

)]
at Aβσ (7.107)

BC2 : nβσ.
(
∇d′

β −DσβI.∇d′

σ

)
= −nβσ. (I−DσβI) at Aβσ (7.108)

d′

β(x+ li) = d′

β(x) i = 1, 2, 3 (7.109)

d′

σ(x+ li) = d′

σ(x) i = 1, 2, 3 (7.110)

〈d′

β〉β = 0 (7.111)

〈d′

σ〉σ = 0 (7.112)

where the dimensionless variables are defined as

d′

β =
dβ

lβ
; d′

σ =
dσ

lβ
; ṽ′

β =
ṽβ

‖vβ‖
; v′

β =
vβ

‖vβ‖
(7.113)

with
‖vβ‖ =

(
〈vβ〉β.〈vβ〉β

)1/2
(7.114)

One can see three dimensionless parameters arising from this problem : the cellular scale
Péclet number (Peβ) which represents the relative contributions between the fluid flow and
the diffusion of the species A in the β-region ; the relative diffusivity (Dσβ) between the β-
region and the σ-phase ; and the relative membrane transport parameter (γβ) which represents
the relative contribution between the membrane transport and the diffusion in the β-region.
These dimensionless parameters are defined as

Peβ =
‖vβ‖lβ
DIII
Aβ

; Dσβ =
α−1

0 DAσ

DIII
Aβ

; γβ =
Γ

E0

DIII
Aβ

lβ
(7.115)

Here we suppose to remain in the diffusive regime at the ECM scale (Fig. 6.6), so the
diffusion-dispersion tensor in the β-region can be written DIII

Aβ = DIII
AβI. With these defi-

nitions, the diffusion-dispersion tensor at the tissue scale (Eq. (7.96)) can be written in its
dimensionless form

DII
Aω

DIII
Aβ

= (εσDσβ + εβ) I+
Dσβ

VIII

∫

Aσβ

nσβd
′

σdA+
1

VIII

∫

Aβσ

nβσd
′

βdA− Peβ〈ṽ′

βd
′

β〉 (7.116)
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Chapter 7. The Cellular Scale

Figure 7.7 – Influence of the relative diffusivity Dσβ and the membrane transport parameter
γβ on the longitudinal (left) and transverse (right) dispersion. Stokes flow around in-line

diffusive cylinders (εβ = 0.6)
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7.3. Upscaling mass transport to the tissue scale

One can argue that usingDAα instead ofDIII
Aβ in the definition of the dimensionless parameters

is more appropriate. However this would introduce one more diffusivity in the representation
of the closure problem, and complexify the definition of Dσβ . In the present case, this is not
an issue since DIII

Aβ lays in the diffusive regime, and is thus proportional to DAα. The reader
is directed to App. B for an example where this simplification is not valid.

The closure problem for mass transport at the cellular scale (Eqs. (7.105) to (7.112)) is
valid for known fluid velocity field vβ . In order to study mass transport independently of the
effects of the permeability, we first suppose an incompressible Stokes flow in the β-region.
This corresponds to the limit case where KIII

β tends to plus infinity. The diffusion closure prob-
lem is solved using the finite element software Comsol Multiphysics, on a two-dimensional
unit cell representing an in-line array of cylinders, with the β-region being fluid and εβ fixed to
0.6. Fig. 7.7 shows the results of the longitudinal and transverse effective diffusion-dispersion
tensor DII

Aω, for various values of the dimensionless parameters Peβ , Dσβ , and γβ . For all the
longitudinal diffusion-dispersion coefficients, a classical two regimes behavior is observed :
at values of Péclet number lower than 10, mass transport is directed by diffusive effects, while
for larger values of the Péclet number, mass transport is dominated by the convective effects,
leading to dispersion. One can note that the transverse component of the diffusion-dispersion
tensor DII

ωyy is almost independent of the Péclet number.

Turning our attention to the membrane transport parameter γβ , the results show that it influ-
ences the effective diffusion-dispersion coefficient, DII

Aω, essentially in the diffusive regime.
For very large values of γβ , the membrane transport is negligible compared to the diffusion
process, and the boundary condition Eq. (7.107) reduces to a no-flux condition at Aβσ. This
has for consequence that the tissue effective diffusion DII

Aω, behaves as if the σ-phase is inert.
On the other hand, when γβ tends to zero, Eq. (7.107) reduces to an interfacial continuity
equation, enhancing the effective tissue diffusion. Finally, it has to be noted that for very low
values of the relative diffusivity Dσβ , the diffusion in the σ-phase is very small compared to
mass transport in the β-region. This has for consequence that the cellular region is inert in re-
gard to mass transport, making negligible the influence of the interfacial transport parameter,
γβ , on the diffusion-dispersion tensor DII

Aω.

We now wish to study the influence of the ECM permeability KIII
β , on the tissue effective

diffusion-dispersion coefficient DII
Aω. To this purpose, the velocity field in the β-region is

now described by an incompressible Darcy-Brinkman flow. The values of the ECM perme-
ability KIII

β are determined from the solution of the closure problem for momentum transport
(Eqs. (6.30) to (6.35)), on a two-dimensional unit cell representing an array of in-line cylinder.
Considering the numerous parameters implied in the system, only intermediate values of the
transport parameters are investigated (Dσβ = 0.5, γβ = 1). As shown in Fig. 7.8, the ECM
permeability KIII

β influences the longitudinal diffusion-dispersion tensor DII
Aω only in the dis-

persive regime, where the flow of the fluid is important compared to the diffusive transport.
For a given Péclet number, lower values of the permeability in the β-region, result in a lower
dispersion, until a minimum is reach.

One has to keep in mind that, in the present section, no dispersive effects have been con-
sidered within the β-region. Under this hypothesis, the conclusions of this numerical study
are that the tissue effective diffusion dispersion coefficient DII

Aω, is influenced by the mem-
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Chapter 7. The Cellular Scale

Figure 7.8 – Influence of the β-region permeability K
III
β on the longitudinal tissue

diffusion-dispersion coefficient DII
Aω. (εβ = 0.6, Dσβ = 0.5, γβ = 1)

brane transport properties γβ , essentially at low Péclet values, while dependent on the ECM
effective permeability KIII

β only at high Péclet. Nevertheless, at high Peβ , cell scale dispersion
is likely to appear. This is not a problem in the case of mass transport in biological tissues,
where the velocity in the ECM is very low. Yet, in the general case, the effects of disper-
sion at level III must be taken into account when computing the effective diffusion-dispersion
coefficient at level II, and this is done in App. B.

In this chapter, momentum and mass transport at the cellular scale have been upscaled,
leading to a system of equations describing transport at the tissue scale. These equations in-
clude effective properties, which have been numerically computed for a large range of cell
scale parameters. The next step toward the development of a macroscopic model, is the up-
scaling of transport phenomena from the tissue to the bioreactor scale, and this is the subject
of the next chapter.
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CHAPTER 8

THE TISSUE SCALE

IN THE PREVIOUS chapters, the transport properties of the biological tissue have been eval-
uated through two successive upscalings. The inter-scale dependencies have been shown,

and realistic tissue effective permeability and diffusion-dispersion coefficients have been com-
puted. In the present chapter, the final upscaling from the tissue scale (level II) to the bioreac-
tor scale (level I) is developed. As depicted in Fig. 8.1, the tissue scale system is composed of
three regions, the κ-region defining the glass beads, the ω-region representing the tissue, and
the γ-region characterizing the liquid culture medium. In practice, the velocity of the culture
medium in the bioreactor (γ-region) is much larger than the velocity of the fluid within the
tissue (ω-region). This motivates the derivation of non-equilibrium transport models for both,
momentum and mass transport.

Figure 8.1 – Definition of the phases and length scales associated with the tissue averaging
volume



Chapter 8. The Tissue Scale

8.1 Local description of the tissue scale

We are now facing a three-phase system where the κ-region is a rigid and inert phase, and
the γ-region is a fluid phase where momentum and mass transport take place. Even though
we have shown in the previous developments of this study that the ω-region is a complex
hierarchical structure at the lower scales, it is considered at the tissue scale as a continuous
and homogeneous region. The transport properties of the tissue (ω-region) have been derived
through two successive homogenization steps (Chaps. 6 and 7) resulting in a set of conser-
vation equations for momentum (Eqs. (7.33) and (7.47)) and mass (Eq. (7.95)) transport.
Following Chap. 7, we use notation equivalences to link the tissue averaged quantities to
lower scales point variables

vω ≡ 〈vβ〉ω = 〈〈vα〉β〉ω (8.1)

pω ≡ 〈pβ〉βω =
〈
〈pα〉αβ

〉β

ω
(8.2)

cAω ≡ {cA}ω = 〈〈cAα〉β〉ω + α0〈cAσ〉ω (8.3)

ρω ≡ ρβεβ + ρσεσ = (ραεα + ρηεη)εβ + ρσεσ (8.4)

εIII ≡ α−1

0 εσ + εαεβ (8.5)

Rω = −εσkA
{cA}ω

{cA}ω + α0KA

(8.6)

Qω ≡ 〈Qβ +Qσ〉ω = 〈〈Qη〉β +Qσ〉ω (8.7)

Here subscripts have been added to recall in which region the quantities are averaged. Beside
saving considerable space, this definitions show clearly the underlying hierarchical property
of the tissue and the relation between the different scales. It is now possible to write the
conservation equations for momentum and mass transport (Eqs. (7.33), (7.47) and (7.95)) in
the ω-region, in the local form

∂ρω
∂t

+∇.(ραvω) = Qω in the ω-region (8.8)

ραε
−1

α ε−1

β

∂vω
∂t

= −∇pω −
µα
KII
ω

vω + µαε
−1

α ε−1

β ∇2vω + ραg in the ω-region (8.9)

∂

∂t
(εIIIcAω) +∇. (vωcAω) = ∇.(DII

Aω.∇cAω) +Rω in the ω-region (8.10)

We recall that the tissue permeability KII
ω and diffusion-dispersion tensor DII

Aω are defined
in Eqs. (7.46) and (7.96), and have been computed through the solution of their respective
closure problem.

The fluid constituting the γ-phase is the same culture medium than in the α-phase (level
IV), however we keep the subscripts γ when referring to the fluid velocity vγ , pressure pγ
and species A concentration cAγ in this region. This is consistent with the use of notation
equivalences (Eqs. (7.9) to (7.11) and Eqs. (8.1) to (8.7)) in the sense that these are variables
of the α-phase in the γ-region. An estimation of the bioreactor set-up parameters (‖vγ‖ ∼
10−3m/s, lγ ∼ 10−3m, ρα ∼ 103kg/m3 and µα ∼ 10−2Pa.s), leads to a Reynolds number
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related to the flow in the γ-phase of the order of 1 to 10. This range is usually associated to
the transition zone toward a flow regime where inertia effects are dominant [Nield & Bejan,
2006]. The consequences of including inertia in the γ-region would lead to a Forchheimer
term at the bioreactor scale, whose contribution is laborious to evaluate theoretically and
computationally [Lasseux et al., 2011]. Inertial effects are not the focus of this study, and
considering the range of the Reynolds number, it is a reasonable assumption to neglect it.
Therefore momentum transport in the γ-phase is modeled by an incompressible Stokes flow,
while mass transport is represented by a diffusion-convection equation

∂ρα
∂t

+∇.(ραvγ) = 0 in the γ-phase (8.11)

ρα
∂vγ
∂t

= −∇pγ + µα∇2vγ + ραg in the γ-phase (8.12)

∂cAγ
∂t

+∇. (vγcAγ) = ∇.(DAα∇cAγ) in the γ-phase (8.13)

Here the bulk culture medium density ρα, viscosity µα and diffusivity DAα are supposed to
be equal to the ones in the α-phase (level IV). In practice this may not be exact since the
ECM interstitial medium may contain higher concentrations of biomolecules and fragments
produced by cellular activity, which could modify the interstitial fluid properties from the
clear culture medium [Swartz & Fleury, 2007]. However in this study we will assume that the
variations of ρα, µα and DAα are negligible between the γ and α-phases.

This system needs to be completed with boundary conditions at the three interfaces Aγκ,
Aωκ and Aγω. Since the κ-phase is an inert solid, the two first interfaces are easy to describe
with boundary conditions similar to the ones used in the previous chapters

BC1 : vγ = 0 at Aγκ (8.14)

BC2 : vω = 0 at Aωκ (8.15)

BC3 : − nγκ. (DAα∇cAγ) = 0 at Aγκ (8.16)

BC4 : − nωκ.
(
DII
Aω.∇cAω

)
= 0 at Aωκ (8.17)

Where nγκ (respectively nωκ) is the unit normal vector pointing from the γ-phase (respec-
tively ω-region) toward the κ-phase. These equations represent no-slip and no-flux boundary
conditions at the interfaces with the solid κ-phase.

The remaining interface is between the fluid γ-phase and the porous ω-region. Transport
phenomena at a fluid-porous interface is still a vibrant research area and a general descrip-
tion of the physics in such a system is still missing. Concerning momentum transport in a
fluid/porous channel, pioneer work from Beavers & Joseph [1967] proposes a semi-empirical
jump condition to link a Stokes flow in the fluid phase, to a Darcy flow in the porous region.
This condition has been later adapted for a Brinkman flow in the porous region, allowing the
continuity on both the velocity field and the viscous stress [Neale & Nader, 1974]. In order
to get rid of the semi-empirical coefficient in the previous jump conditions, Ochoa-Tapia &
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Whitaker [1995] take advantage of the volume averaging technique to develop a jump condi-
tion on the stress, which can be determined through the resolution of a closure problem. How-
ever in this later model the continuity on the velocity field is still assumed, and the difficulty
of the resolution of the closure problem prohibitive. Alternatively, a fluid-porous system can
be modeled via the one-domain approach, where the spacial variations of the interface prop-
erties are taken into account within space dependent parameters of a generalized transport
equation, valid in the two regions [Goyeau et al., 2003; Chandesris & Jamet, 2006]. Intro-
ducing the macroscopic velocity deviations of the two-domain with respect to the one-domain
approach, Valdés-Parada et al. [2013] develop a velocity and a stress jump boundary condi-
tion whose coefficients are determined by the solution of a macroscopic closure problem. In
all this models, the underlying questions are on the position of the dividing surface and the
spacial evolution of the properties in the inter-region. Although the above cited studies give
material to deal with these issues in the case of uni-dimensional flow, we are still far from a
definitive answer in the general case.

In the present problem, the exact location and properties of the interface between the tissue
(ω-region) and the culture medium (γ-phase) are unknown, and time dependent. Therefore the
continuity of the fluid velocity and the viscous stress is assumed at the fluid-porous interface

BC5 : vγ = vω at Aγω (8.18)

BC6 : nγω.
[
−pγI+ µα

(
∇vγ +∇vTγ

)]
=

nγω.
[
−pωI+ µαε

−1

α ε−1

β

(
∇vω +∇vTω

)]
at Aγω (8.19)

Note that for consistence with the averaged tissue transport equations, the effective viscosity
in the ω-region is µαε−1

α ε−1

β . The stress continuity boundary condition Eq. (8.19) is actually
similar to the jump condition proposed by Ochoa-Tapia & Whitaker [1995] with zero jump
coefficients. This form has also been used in studies of multiphase fluid flow [Whitaker,
1986b; Lasseux et al., 1996], with an additional surface tension term. Assuming Eqs. (8.18)
and (8.19) is consistent with recent models on momentum transport at biological interfaces
[Yu, 2012; Kapellos et al., 2012].

Only the mass transport boundary conditions at Aγω remain to be defined

BC7 : − nγω. [(wγω − vγ) cAγ +DAα∇cAγ] =
− nγω.

[
(wγω − vω) cAω +DII

Aω.∇cAω
]

at Aγω (8.20)

BC8 : cAγ = cAω at Aγω (8.21)

While Eq. (8.20) represents the flux conservation at the interface Aγω, Eq. (8.21) assumes the
continuity of the concentration fields between the γ and ω-regions [Davit et al., 2010; Wood
et al., 2011].

The local problem at the tissue scale (level II) is now fully defined by Eqs. (8.8) to (8.21).
As discussed in Sec. 7.3.1, for a system where transport is present in two distinct regions, the
general averaging model yields to two macroscopic equations, with coupling tensors, and mul-
tiple closure problems. Despite the large range of conditions for which these two-equations
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8.2. Upscaling momentum transport to the bioreactor scale

models are valid, the complexity of their development and resolution remain fastidious. In
some specific cases, it is possible to link the physics in the two regions by an equilibrium
constant. This allows to define a special average variable (velocity, pressure or concentration)
and to develop a one-equation equilibrium model. For instance, mechanical equilibrium in
momentum transport between two porous media has been studied in [Quintard & Whitaker,
1998a], while mass equilibrium is widely assumed in tissue engineering [Lasseux et al., 2004]
and biofilm models [Golfier et al., 2009; Wood et al., 2011]. Although this types of model
are easier to develop and to solve, their domain of validity is restricted to the cases where the
characteristic time and length scales related to the transport phenomena in the two regions are
sufficiently close [Wood & Whitaker, 1998; Golfier et al., 2009].

In the next sections, it will be shown that, at the tissue scale (level II), equilibrium con-
ditions between the γ and ω-regions are neither met for momentum nor mass transport. A
one-equation model in non equilibrium condition has been recently proposed for time asymp-
totic mass transport [Davit et al., 2010]. In the case of a perfusion bioreactor, this approach is
an interesting alternative to two-equation models, since the time scale associated with trans-
port phenomena are very long. Following this idea, a one-equation non-equilibrium model
for momentum transport has been developed, and is presented in App. C. Unfortunately, this
approach gives access to a weighted average only, and if one aims to couple the model for
mass and momentum transport, to a tissue growth model, a solution for the tissue average
is requested. For this reason, in the following sections, two-equation models for momentum
and mass transport are developed, and the effective properties (main and coupling tensors) are
evaluated by solving a series of closure problems.

8.2 Upscaling momentum transport to the bioreactor

scale

In this section the momentum transport problem described at the tissue scale (level II) by
Eqs. (8.8), (8.9), (8.11), (8.12), (8.14), (8.15), (8.18) and (8.19) is averaged, leading to a two-
equation macroscopic model. A set of permeability tensors are defined, and corresponding
closure systems are developed in order to allow their evaluation.

8.2.1 Theoretical development

The bioreactor is perfused with culture medium at 10mL/min. Given the geometry of
the bioreactor, and that the porosity of a random sphere packing is about 40-50%, the order
of magnitude of culture medium velocity in the γ-region is ‖vγ‖ ∼ 10−3m/s. Considering
the low permeability of the tissue (K II

ω ∼ 10−14m2 [Levick, 1987; Swartz & Fleury, 2007;
Fournier, 2011; Tarbell & Shi, 2013]), it is reasonable to suppose that the order of magnitude
of the fluid velocity in the ω-region is much lower than in the γ-region.

‖vω‖ ≪ ‖vγ‖ (8.22)
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This indicates that the development of a mechanical equilibrium model is not suitable for
the present problem [Quintard & Whitaker, 1998a]. Non-equilibrium models for momentum
transport have been developed in the case of multiphase flow in porous medium [Whitaker,
1986b; Lasseux et al., 1996], for dual porosity systems [Quintard & Whitaker, 1996a,b] and
fluid/porous systems [Soulaine et al., 2013]. They result in a two-equation macroscopic model
with several permeability tensors (at least four), and multiple closure problems. These models,
although representing well the physics of the problem for a wide range of conditions, are
rarely used in practice due to their prohibitive complexity. In an attempt to overcome this
limitation, a one-equation non-equilibrium model for momentum transport has been derived
based on weighted averages. The derivation of such a model is presented in App. C. Yet,
this model does not give access to the average velocity in the tissue region. Therefore, in the
present section, a two-equation non-equilibrium model is developed to facilitate the coupling
with a tissue growth model.

Mass conservation equations

Let us begin the averaging procedure with the mass conservation equations. Applying the
averaging theorems on Eqs. (8.8) and (8.11) leads to

∂

∂t
(εγρα) +∇. (ραεγ〈vγ〉γ) = ṁγ (8.23)

∂

∂t
(εω〈ρω〉ω) +∇. (ραεω〈vω〉ω) = ṁω + εω〈Qω〉ω (8.24)

where ṁγ and ṁω are the interfacial mass exchange rates defined as

ṁγ = −
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (vγ −wγi) ραdA (8.25)

ṁω = −
∑

i=γ,κ

1

VII

∫

Aωi

nωi. (vωρα −wωiρω) dA (8.26)

Note that both ρα and ρω are present in the definition of ṁω. This is due to the fact that,
Eq. (8.8) represents the total mass conservation in the tissue, and not only the mass of the
transported α-phase. Consequently, the presence of ρω indicates that the mass of the α, η, and
σ phases are conserved in the tissue (see Eq. (8.4)).

The mass exchange rates still include local velocities, so the spacial deviations

vγ = 〈vγ〉γ + ṽγ vω = 〈vω〉ω + ṽω (8.27)

are introduced. Then expanding the average velocities in Taylor series, and applying the
geometrical theorems, we get

ṁγ = ∇εγρα〈vγ〉γ −
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (ṽγ −wγi) ραdA (8.28)

ṁω = ∇εωρα〈vω〉ω −
∑

i=γ,κ

1

VII

∫

Aωi

nωi. (ṽωρα −wωiρω) dA (8.29)
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If the macroscopic properties of the bioreactor evolve over a length scale L, much larger than
the length scale of the deviation of the velocity (L ≫ lγ and L ≫ lω), the gradients of the
volume fractions become negligible compared to the other terms, and we obtain

ṁγ = −
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (ṽγ −wγi) ραdA (8.30)

ṁω = −
∑

i=γ,κ

1

VII

∫

Aωi

nωi. (ṽωρα −wωiρω) dA (8.31)

Finally, introducing back the mass exchange rates into Eqs. (8.23) and (8.24), the non-closed
average mass conservation equations are deduced. Let us now turn our attention to the aver-
aging of the momentum transport equations.

Momentum transport equations

The momentum problem at the tissue scale (level II) is described by Eqs. (8.8), (8.9),
(8.11), (8.12), (8.14), (8.15), (8.18) and (8.19) Following the main steps of the volume aver-
aging method presented in Sec. 7.2.1, the momentum equation in the γ-phase is written

ρα
∂(εγ〈vγ〉γ)

∂t
−
∑

i=ω,κ

ρα
1

VII

∫

Aγi

nγi. (wγivγ) dA = −εγ∇〈pγ〉γ + ραεγg + µαεγ∇2〈vγ〉γ

+
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (−p̃γ + µα∇ṽγ) dA (8.32)

where the spacial decompositions of the γ-phase velocity and pressure have been introduced.
In Eq. (8.32), the only differences with the previous chapters are the multiple surface integrals
due to the three-phase system, and the convective term at Aγω which cannot be discarded due
to the velocity continuity. In order to treat this term, the surface integrals on the left hand side
of Eq. (8.32) are developed using Gray’s spacial decomposition for the fluid velocity

∑

i=ω,κ

1

VII

∫

Aγi

nγi. (wγivγ) dA =
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (wγi〈vγ〉γ) dA

+
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (wγiṽγ) dA (8.33)

The intrinsic averages are expanded in Taylor series, and using the usual length scale con-
straints and the general transport theorem, the interfacial convective terms are written

∑

i=ω,κ

1

VII

∫

Aγi

nγi. (wγivγ) dA =
∂εγ
∂t

〈vγ〉γ +
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (wγiṽγ) dA (8.34)
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When this form of the interfacial convection is introduced back in Eq. (8.32), the unclosed
average equation for momentum transport in the γ-phase is obtained

ρα
∂(εγ〈vγ〉γ)

∂t
− ρα

∂εγ
∂t

〈vγ〉γ − ρα
1

VII

∫

Aγω

nγω. (wγω.ṽγ) dA =

− εγ∇〈pγ〉γ + ραεγg + µαεγ∇2〈vγ〉γ +
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (−p̃γ + µα∇ṽγ) dA (8.35)

The second term on the left hand side, represents the consolidation of the tissue, and it can be
discarded when the first term on the left hand side is developed. Nevertheless, it will not be
done here because the superficial form of the average equation is sought.

The same development can be drawn for momentum transport in the ω-region, and the
unclosed average equation takes the form

ραε
−1

α ε−1

β

∂(εω〈vω〉ω)
∂t

− ραε
−1

α ε−1

β

∂εω
∂t

〈vω〉ω − ραε
−1

α ε−1

β

1

VII

∫

Aωγ

nωγ. (wωγ.ṽω) dA =

− εω∇〈pω〉ω −
µα
KII
ω

εω〈vω〉ω + ραεωg + µαε
−1

α ε−1

β εω∇2〈vω〉ω

+
∑

i=γ,κ

1

VII

∫

Aωi

nωi.
(
−p̃ω + µαε

−1

α ε−1

β ∇ṽω
)
dA (8.36)

At this point we have two average equations for momentum transport at the bioreactor scale
(level I). If the transport properties concerning the flow in the two regions are close enough,
it would be possible to hypothesis mechanical equilibrium [Quintard & Whitaker, 1998a]
the same way mass equilibrium has been supposed for mass transport at the cellular scale
(Sec. 7.3.1). However in our case the transport equations in the two regions are different
(Stokes in the γ-region, Darcy-Brinkman in the ω-region), and the fluid velocity is much
higher in the culture medium region than in the tissue. Thus it is not possible to assume
mechanical equilibrium here, and the two averaged equations for momentum transport have
to be kept.

Eqs. (8.35) and (8.36) still include local terms due to the presence of the velocity and
pressure deviations. The next step is to build a problem for the four deviations ṽγ , p̃γ , ṽω and
p̃ω, and this is done by subtracting the unclosed averaged equations Eqs. (8.35) and (8.36) to
the local equations Eqs. (8.8) and (8.9). Starting with the γ-phase we obtain

ρα
∂ṽγ
∂t

+ ρα
1

Vγ

∫

Aγω

nγω. (wγω.ṽγ) dA = −∇p̃γ + µα∇2ṽγ

−
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̃γ + µα∇ṽγ) dA in the γ-phase (8.37)

The order of magnitude of the two terms on the left hand side are compared with the viscous
diffusion term

ρα
∂ṽγ
∂t

= O

(

ρα
〈vγ〉γ
tv

)

(8.38)
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ρα
1

Vγ

∫

Aγω

nγω.wγω.ṽγdA = O

(

ρα
1

lγ

lγ
t
w

〈vγ〉γ
)

(8.39)

µα∇2ṽγ = O

(
µα〈vγ〉γ

l2γ

)

(8.40)

One sees that if the time scale associated with the velocity of the tissue interface (tω), is much
larger than the time scale associated with the deviation of the velocity in the γ-phase (t

w
≫

tv), the second term of the left hand side of Eq. (8.37) can be discarded. Moreover the closure
problem can be supposed stationary when the length scale constraint (ραl2γ)/(µαtv) ≪ 1 is
satisfied. These two hypothesis have been made in the previous developments of Chaps. 6
and 7, and when they are also respected for the γ region, the deviation problem for momentum

transport at the tissue scale takes the form

ρα∇.ṽγ = −ε−1

γ ṁγ in the γ-phase (8.41)

0 = −∇p̃γ + µα∇2ṽγ −
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̃γ + µα∇ṽγ) dA in the γ-phase (8.42)

ρα∇.ṽω = −ε−1

ω ṁω in the ω-region (8.43)

0 = −∇p̃ω + µαε
−1

α ε−1

β ∇2ṽω −
µα
KII
ω

ṽω −
∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−p̃ω + µαε

−1

α ε−1

β ∇ṽω
)
dA

in the ω-region (8.44)

ṽγ = −〈vγ〉γ at Aγκ (8.45)

ṽω = −〈vω〉ω at Aωκ (8.46)

ṽγ = ṽω − (〈vγ〉γ − 〈vω〉ω) at Aγω (8.47)

nγω.
[
−p̃γ + µγ(∇ṽγ +∇ṽTγ )

]
= nγω.

[
−p̃ω + µαε

−1

α ε−1

β (∇ṽω +∇ṽTω )
]

+ nγω. (〈pγ〉γ − 〈pω〉ω) at Aγω (8.48)

The mass conservation Eqs. (8.41) and (8.43) have been derived by subtracting Eqs. (8.23)
and (8.24) to Eqs. (8.8) and (8.11), then supposing that the production rate of tissue is much
slower than the variation of the velocity deviations, and under the same time and length scale
constraints than for the development of the transport equations, the above relations are ob-
tained. Finally, for the development of boundary condition Eq. (8.48), the length scale sepa-
ration (lγ, lω) ≪ L has been used to neglect the gradient of the velocity deviations in regards
to the gradient of the velocity averages.

The deviation problem defined by Eqs. (8.41) to (8.48) involves source terms in 〈vγ〉γ
(Eqs. (8.45) and (8.47)) , 〈vω〉ω (Eqs. (8.46) and (8.47)) and 〈pγ〉γ − 〈pω〉ω (Eq. (8.48)). This
motivates the following relations between the deviations and the averages

ṽγ = Bγγ.〈vγ〉γ +Bγω.〈vω〉ω + µ−1

α Bγ (〈pγ〉γ − 〈pω〉ω) (8.49)
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ṽω = Bωγ.〈vγ〉γ +Bωω.〈vω〉ω + µ−1

α εαεβBω (〈pγ〉γ − 〈pω〉ω) (8.50)

µ−1

α p̃γ = bγγ.〈vγ〉γ + bγω.〈vω〉ω + µ−1

α bγ (〈pγ〉γ − 〈pω〉ω) (8.51)

µ−1

α εαεβ p̃ω = bωγ.〈vγ〉γ + bωω.〈vω〉ω + µ−1

α εαεβbω (〈pγ〉γ − 〈pω〉ω) (8.52)

where the closure variables Bij are 2nd order tensors, Bi and bij are 1st order tensors, and
bi (i, j = γ, ω) are scalar variables. These can be seen as mapping tensors in which the
first subscript recalls the region in which they are defined, and the second subscript, when it
exists, indicates which velocity is being mapped onto the spatial deviation. When substituting
Eqs. (8.49) to (8.52) into the unclosed macroscopic equations, it is possible to define six
bioreactor effective permeabilities

εγK
I−1

γ = − 1

Vγ

∫

Aγω

nγω. (−Ibγγ +∇Bγγ) dA−
1

Vγ

∫

Aγκ

nγκ. (−Ibγγ +∇Bγγ) dA (8.53)

εωK
I−1

γω =
1

Vγ

∫

Aγω

nγω. (−Ibγω +∇Bγω) dA+
1

Vγ

∫

Aγκ

nγκ. (−Ibγω +∇Bγω) dA (8.54)

ΠI
γ =

1

Vγ

∫

Aγω

nγω. (−Ibγ +∇Bγ) dA+
1

Vγ

∫

Aγκ

nγκ. (−Ibγ +∇Bγ) dA (8.55)

εαεβεωK
I−1

ω = εαεβK
II−1

ω

− 1

Vω

∫

Aωγ

nωγ. (−Ibωω +∇Bωω) dA− 1

Vω

∫

Aωκ

nωκ. (−Ibωω +∇Bωω) dA (8.56)

εαεβεγK
I−1

ωγ =
1

Vω

∫

Aωγ

nωγ. (−Ibωγ +∇Bωγ) dA+
1

Vω

∫

Aωκ

nωκ. (−Ibωγ +∇Bωγ) dA

(8.57)

ΠI
ω =

1

Vω

∫

Aω

nωγ. (−Ibω +∇Bω) dA+
1

Vω

∫

Aωκ

nωκ. (−Ibω +∇Bω) dA (8.58)

and when at the bioreactor scale, the culture medium flow is considered to be much faster
than the tissue growth process, the closed averaged equations for momentum transport in the
bioreactor are finally expressed as

ραε
−1

γ

∂(εγ〈vγ〉γ)
∂t

= −∇〈pγ〉γ + ραg + µα∇2〈vγ〉γ

− µα
KI
γ

εγ〈vγ〉γ +
µα
KI
γω

εω〈vω〉ω +ΠI
γ (〈pγ〉γ − 〈pω〉ω) (8.59)

ραε
−1

α ε−1

β ε−1

ω

∂(εω〈vω〉ω)
∂t

= −∇〈pω〉ω + ραg + µαε
−1

α ε−1

β ∇2〈vω〉ω

− µα
KI
ω

εω〈vω〉ω +
µα
KI
ωγ

εγ〈vγ〉γ +ΠI
ω (〈pγ〉γ − 〈pω〉ω) (8.60)
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Note here that the permeabilities of the lower scales are present through KI
ω, and for conve-

nience we will use the additional notation

εωK
I⋆−1

ω = − 1

Vω

∫

Aωγ

nωγ. (−Ibωω +∇Bωω) dA− 1

Vω

∫

Aωκ

nωκ. (−Ibωω +∇Bωω) dA

(8.61)
so that Eq. (8.56) can be written in a similar form to Eq. (7.46)

εαεβεωK
I−1

ω = εαεβK
II−1

ω + εωK
I⋆−1

ω (8.62)

The definitions of KI
γ and KI

ω are similar to the definitions of the permeability tensors at the
lower scales, however there is now a coupling between the two phases through KI

γω, KI
ωγ ,

ΠI
γ and ΠI

ω. The definitions of these coupling tensors (Eqs. (8.54), (8.55), (8.57) and (8.58))
are slightly different from those usually met in the literature [Whitaker, 1986b; Lasseux et al.,
1996; Soulaine et al., 2013] only because these authors seek the Darcy form of the momen-
tum transport equation. Here we keep into account the non-stationarity of the macroscopic
equations as well as the Brinkman correction. The tensors ΠI

γ and ΠI
ω are related to the mass

transfer between the γ-phase and the ω-region, due to the macroscopic pressure difference.
Macroscopic models often neglect the coupling tensors over the main permeability tensors
(KI

ij,Π
I
i ≪ KI

i). As emphasized by Soulaine et al. [2013], this may be a reasonable as-
sumption for configurations where the interface between the two regions is small, and parallel
to the main flow. Yet, in the general case, the coupling tensors may play a critical role on
momentum transport. Consequently they will be retained in the rest of this study.

The effective bioreactor permeabilities (Eqs. (8.53) to (8.58)) are defined by the closure
variables (Eqs. (8.49) to (8.52)), and their respective closure problem remain to be built.
Introducing the closure variables into the deviation problem (Eqs. (8.41) to (8.48)) results
in the definition of three closure problems, one for each source term of the deviation problem

Problem I (in 〈vγ〉γ) :

∇.Bγγ = ε−1

γ χγγ in the γ-phase (8.63)

0 = −∇bγγ +∇2Bγγ + εγK
I−1

γ in the γ-phase (8.64)

∇.Bωγ = ε−1

ω χωγ in the ω-region (8.65)

0 = −∇bωγ +∇2Bωγ − εαεβK
II−1

ω Bωγ − εαεβεγK
I−1

ωγ in the ω-region (8.66)

Bγγ = Bωγ − I at Aγω (8.67)

µαnγω.
[
−bγγ + (∇Bγγ +∇BT

γγ)
]
= µαε

−1

α ε−1

β nγω.
[
−bωγ + (∇Bωγ +∇BT

ωγ)
]

at Aγω
(8.68)

Bγγ = −I at Aγκ (8.69)

Bωγ = 0 at Aωκ (8.70)

Bγγ(x+ li) = Bγγ(x) Bωγ(x+ li) = Bωγ(x) i = 1, 2, 3 (8.71)

bγγ(x+ li) = bγγ(x) bωγ(x+ li) = bωγ(x) i = 1, 2, 3 (8.72)

〈Bγγ〉γ = 0 〈Bωγ〉ω = 0 (8.73)
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Problem II (in 〈vω〉ω) :

∇.Bγω = ε−1

γ χγω in the γ-phase (8.74)

0 = −∇bγω +∇2Bγω − εωK
I−1

γω in the γ-phase (8.75)

∇.Bωω = ε−1

ω χωω in the ω-region (8.76)

0 = −∇bωω +∇2Bωω − εαεβK
II−1

ω Bωω + εωK
I⋆−1

ω in the ω-region (8.77)

Bγω = Bωω + I at Aγω (8.78)

µαnγω.
[
−bγω + (∇Bγω +∇BT

γω)
]
=

µαε
−1

α ε−1

β nγω.
[
−bωω + (∇Bωω +∇BT

ωω)
]

at Aγω (8.79)

Bγω = 0 at Aγκ (8.80)

Bωω = −I at Aωκ (8.81)

Bγω(x+ li) = Bγω(x) Bωω(x+ li) = Bωω(x) i = 1, 2, 3 (8.82)

bγω(x+ li) = bγω(x) bωω(x+ li) = bωω(x) i = 1, 2, 3 (8.83)

〈Bγω〉γ = 0 〈Bωω〉ω = 0 (8.84)

Problem III (in 〈pγ〉γ − 〈pω〉ω) :

∇.Bγ = ε−1

γ hγ in the γ-phase (8.85)

0 = −∇bγ +∇2Bγ −ΠI
γ in the γ-phase (8.86)

∇.Bω = ε−1

ω hω in the ω-region (8.87)

0 = −∇bω +∇2Bω − εαεβK
II−1

ω Bω −ΠI
ω in the ω-region (8.88)

Bγ = Bω at Aγω (8.89)

nγω.
[
−Ibγ + (∇Bγ +∇BT

γ )
]
= nγω.

[
−Ibω + (∇Bω +∇BT

ω)
]
− nγω.I at Aγω (8.90)

Bγ = 0 at Aγκ (8.91)

Bω = 0 at Aωκ (8.92)

Bγ(x+ li) = Bγ(x) Bω(x+ li) = Bω(x) i = 1, 2, 3 (8.93)

bγ(x+ li) = bγ(x) bω(x+ li) = bω(x) i = 1, 2, 3 (8.94)

〈Bγ〉γ = 0 〈Bω〉ω = 0 (8.95)

Here the following notations have been used in the continuity equations [Soulaine et al., 2013]

χγγ =
∑

i=ω,κ

1

VII

∫

Aγi

nγi.BγγdA χωγ =
∑

i=γ,κ

1

VII

∫

Aωi

nωi.BωγdA (8.96)

χωγ =
∑

i=ω,κ

1

VII

∫

Aγi

nγi.BωγdA χωω =
∑

i=γ,κ

1

VII

∫

Aωi

nωi.BωωdA (8.97)
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and

hγ =
∑

i=ω,κ

1

VII

∫

Aγi

nγi.BγdA hω =
∑

i=γ,κ

1

VII

∫

Aωi

nωi.BωdA (8.98)

Due to the quasi-stationary nature of the closure problem, the velocities of the interfaces have
been neglected in the continuity equations. Moreover, making use of the boundary conditions,
and of the averaging theorem, one can show that

χγγ = −χωγ χωω = −χγω (8.99)

and
hγ = −hω (8.100)

The hi may be seen as mass exchange coefficient, while the χij have the dimension of a
velocity. Note that in the above closure problems, additional constraints on the bij and bi are
required to guarantee the uniqueness of the solutions. Thus we choose to impose

〈bγγ〉γ = 0 〈bωγ〉ω = 0 (8.101)

〈bγω〉γ = 0 〈bωω〉ω = 0 (8.102)

〈bγ〉γ = 0 〈bω〉ω = 0 (8.103)

Solving this three closure problems, allows to evaluate the six macroscopic parameters in-
fluencing momentum transport at the bioreactor scale. Yet, in the current state, these closure
problems are challenging to solve numerically. In the next section, some simplifications con-
cerning the mass exchange rate will be done, allowing, after some manipulations, to write the
closure problems in simpler forms.

8.2.2 Computation of the effective parameters

The three closure problems above are integro-differential problems, and their resolution
in the current state is highly discouraging. Fortunately, with the help of adequate variable
changes, some algebra, and a little bit of patience, it is possible to transform this problems
into Stokes and Brinkman flow problems.

Simplification of the closure problems

First, let us write the mass exchange rates in their closed form. Substituting Eqs. (8.49)
and (8.50) into Eqs. (8.30) and (8.31) yields to

ṁγ

ρα
= −χγγ〈vγ〉γ − χγω〈vω〉ω −

hγ
µα

(〈pγ〉γ − 〈pω〉ω) +
1

VII

∫

Aγω

nγω.wγωdA (8.104)

ṁω

ρα
= −χωγ〈vγ〉γ − χωω〈vω〉ω −

hω

µαε−1
α ε−1

β

(〈pγ〉γ − 〈pω〉ω) +
1

VII

∫

Aωγ

nωγ.wγωρ
−1

α ρωdA

(8.105)
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These equations can be simplified by comparing the relative contribution of the different terms
to the mass exchange rates. To start with, considering the small values of the interface velocity
wγω, in regard to the other quantities, it is easy to neglect the influence of the last term on
the mass exchange rate. Furthermore, the macroscopic velocities in the bioreactor, like in
most fluid flow in porous media, are driven by the gradient of the macroscopic pressure.
This means that the two first terms on the right hand side, are of the second order in regard
to the macroscopic pressures. Thus, following Soulaine et al. [2013], we assume that the
mass exchange rate between the γ and ω regions, is dominated by the macroscopic pressure
difference. This allows to neglect the χij over the hi, and Eqs. (8.104) and (8.105) can be
approximated as

ṁγ

ρα
= −hγ

µα
(〈pγ〉γ − 〈pω〉ω) (8.106)

ṁω

ρα
= − hω

µαε−1
α ε−1

β

(〈pγ〉γ − 〈pω〉ω) (8.107)

Introducing this forms of the mass exchange rates into the conservation equations (Eqs. (8.23)
and (8.24)), their closed forms read

∂

∂t
(εγρα) +∇. (ραεγ〈vγ〉γ) = −ρα

hγ
µα

(〈pγ〉γ − 〈pω〉ω) (8.108)

∂

∂t
(εω〈ρω〉ω) +∇. (ραεω〈vω〉ω) = −ρα

hω

µαε−1
α ε−1

β

(〈pγ〉γ − 〈pω〉ω) + εω〈Qω〉ω (8.109)

When the interfacial mass transfer is significant at the bioreactor scale, hγ and hω have to be
evaluated through the closure problem III.

Returning to problems I and II, we first note that, the simplification leading to Eq. (8.106)
implies that the χij are also neglected in the closure problems, such that the Bij recover
solenoidal properties. Then, the following variable change is proposed [Whitaker, 1994;
Lasseux et al., 1996]

Bγγ = −I− εγ
(
B0

γγK
I−1

γ −B0

γωK
I−1

ωγ

)
(8.110)

Bωγ = −εαεβεγ
(
B0

ωγK
I−1

γ −B0

ωωK
I−1

ωγ

)
(8.111)

bγγ = −εγ
(
b0

γγK
I−1

γ − b0

γωK
I−1

ωγ

)
(8.112)

bωγ = −εαεβεγ
(
b0

ωγK
I−1

γ − b0

ωωK
I−1

ωγ

)
(8.113)

Bγω = −εω
(
B0

γωK
I−1

ω −B0

γγK
I−1

γω

)
(8.114)

Bωω = −I− εαεβεω
(
B0

ωωK
I−1

ω −B0

ωγK
I−1

γω

)
(8.115)

bγω = −εω
(
b0

γωK
I−1

ω − b0

γγK
I−1

γω

)
(8.116)

bωω = −εαεβεω
(
b0

ωωK
I−1

ω − b0

ωγK
I−1

γω

)
(8.117)

The introduction of these transformations into problems I and II leads to simpler closure
problems of the form
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Problem I’ :

0 = −∇b0

γγ +∇2B0

γγ − I in the γ-phase (8.118)

∇.B0

γγ = 0 in the γ-phase (8.119)

0 = −∇b0

ωγ +∇2B0

ωγ − εαεβK
II−1

ω B0

ωγ in the ω-region (8.120)

∇.B0

ωγ = 0 in the ω-region (8.121)

B0

γγ = B0

ωγ at Aγω (8.122)

nγω.
[

−b0

γγ + (∇B0

γγ +∇B0

γγ
T
)
]

= nγω.
[

−b0

ωγ + (∇B0

ωγ +∇B0

ωγ
T
)
]

at Aγω (8.123)

B0

γγ = 0 at Aγκ (8.124)

B0

ωγ = 0 at Aωκ (8.125)

B0

γγ(x+ li) = B0

γγ(x) B0

ωγ(x+ li) = B0

ωγ(x) i = 1, 2, 3 (8.126)

b0

γγ(x+ li) = b0

γγ(x) b0

ωγ(x+ li) = b0

ωγ(x) i = 1, 2, 3 (8.127)

〈B0

γγ〉γ = −ε−1

γ K∗

γγ 〈B0

ωγ〉ω = −ε−1

α ε−1

β ε−1

ω K∗

ωγ (8.128)

Problem II’ :

0 = −∇b0

γω +∇2B0

γω in the γ-phase (8.129)

∇.B0

γω = 0 in the γ-phase (8.130)

0 = −∇b0

ωω +∇2B0

ωω − εαεβK
II−1

ω B0

ωω − I in the ω-region (8.131)

∇.B0

ωω = 0 in the ω-region (8.132)

B0

γω = B0

ωω at Aγω (8.133)

nγω.
[

−b0

γω + (∇B0

γω +∇B0

γω
T
)
]

= nγω.
[

−b0

ωω + (∇B0

ωω +∇B0

ωω
T
)
]

at Aγω
(8.134)

B0

γω = 0 at Aγκ (8.135)

B0

ωω = 0 at Aωκ (8.136)

B0

γω(x+ li) = B0

γω(x) B0

ωω(x+ li) = B0

ωω(x) i = 1, 2, 3 (8.137)

b0

γω(x+ li) = b0

γω(x) b0

ωω(x+ li) = b0

ωω(x) i = 1, 2, 3 (8.138)

〈B0

γω〉γ = −ε−1

γ K∗

γω 〈B0

ωω〉ω = −ε−1

α ε−1

β ε−1

ω K∗

ωω (8.139)

Where the following notations have been introduced

K∗

γγ =
(
KI−1

γ −KI−1

γω KI
ωK

I−1

ωγ

)−1
(8.140)

K∗

ωγ =
(
KI−1

γ KI
ωγK

I−1

ω −KI−1

γω

)−1
(8.141)

K∗

γω =
(
KI−1

ω KI
γωK

I−1

γ −KI−1

ωγ

)−1
(8.142)

K∗

ωω =
(
KI−1

ω −KI−1

ωγ K
I
γK

I−1

γω

)−1
(8.143)
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These two closure problems are of the form of a flow in a fluid/porous system, with a vol-
ume force in the fluid phase for problem I’, and in the porous phase for problem II’. Their
solution is relatively easy to obtain numerically for a given structure. Once the height closure
variables solved, the four permeabilites can be evaluated by solving the system composed of
Eqs. (8.128) and (8.139). Note that the permeability tensors K∗

ij , as they are defined above,
are in a convenient form to be used in a pressure-driven Darcy equation [Lasseux et al., 1996].
Once again, in the present study, the form of the coupling permeability tensors, KI

γω and KI
ωγ ,

is unusual due to the fact that we wish to retain the Brinkman correction in the macroscopic
equations. Yet, by changing the notations such as KI

ij = KiK
−1

ij , it is straight forward to
verify that Eqs. (8.140) to (8.143) are equivalent to Eqs. (2.7) of [Lasseux et al., 1996].

Only closure problem III remains to be treated, along with the evaluation of the hi and Πi.
This problem is similar to the one derived in Soulaine et al. [2013], except for the Brinkman
correction in the ω-region, and the continuity of the normal stress at Aγω. Thus following
these authors, we propose a change of variables in the form

Bγ = B0

γhγ +B1

γ.Π
I
γ +B2

γ.Π
I
ω (8.144)

Bω = −B0

ωhω +B1

ω.Π
I
γ +B2

ω.Π
I
ω (8.145)

bγ = 1 + b0γhγ + b1

γ.Π
I
γ + b2

γ.Π
I
ω (8.146)

bω = −b0ωhω + b1

ω.Π
I
γ + b2

ω.Π
I
ω (8.147)

Here the mass transfer between the two regions is represented by the (b0i ,B
0
i ). Remarkably,

the closure variables (b1
i ,B

1
i ) and (b2

i ,B
2
i ) are solutions of closure problems I’ and II’. Thus,

only a problem for (b0i ,B
0
i ) has to be built

Problem III’ :

∇.B0

γ = ε−1

γ in the γ-phase (8.148)

0 = −∇b0γ +∇2B0

γ in the γ-phase (8.149)

∇.B0

ω = −ε−1

ω in the ω-region (8.150)

0 = −∇b0ω +∇2B0

ω − εαεβK
II−1

ω B0

ω in the ω-region (8.151)

B0

γ = B0

ω at Aγω (8.152)

nγω.
[

−Ib0γ + (∇B0

γ +∇B0

γ
T
)
]

= nγω.
[

−Ib0ω + (∇B0

ω +∇B0

ω
T
)
]

at Aγω (8.153)

B0

γ = 0 at Aγκ (8.154)

B0

ω = 0 at Aωκ (8.155)

B0

γ(x+ li) = B0

γ(x) B0

ω(x+ li) = B0

ω(x) i = 1, 2, 3 (8.156)

b0γ(x+ li) = b0γ(x) b0ω(x+ li) = b0ω(x) i = 1, 2, 3 (8.157)

Where Eq. (8.100) is used to eliminate the hi. This problem is similar to a flow in a
fluid/porous system, where source terms are present in the continuity equations. Again, some
constraint has to be applied to the pressure-like variable in order to insure uniqueness of the
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solution. But first, let us write the average of Eqs. (8.146) and (8.147), and making use of Eq.
(8.103) we have

0 = 1 + 〈b0γ〉γhγ + 〈b1

γ〉γ.ΠI
γ + 〈b2

γ〉γ.ΠI
ω (8.158)

0 = −〈b0ω〉ωhω + 〈b1

ω〉ω.ΠI
γ + 〈b2

ω〉ω.ΠI
ω (8.159)

In order to guarantee uniqueness of the solution, it is enough to constrain the pressure-like
variables in only one region of the system. Therefore, we choose to apply

〈b0ω〉ω = 0 〈b1

γ〉γ = 0 〈b2

γ〉γ = 0 (8.160)

which gives the relation for the mass exchange coefficient

〈b0γ〉γ = −h−1

γ = h−1

ω (8.161)

At this point, only Πγ and Πω remain to be evaluated. Averaging Eqs. (8.144) and (8.145),
and making use of Eq. (8.95), we get

0 = 〈B0

γ〉γhγ + 〈B1

γ〉γ.ΠI
γ + 〈B2

γ〉γ.ΠI
ω (8.162)

0 = −〈B0

ω〉ωhω + 〈B1

ω〉ω.ΠI
γ + 〈B2

ω〉ω.ΠI
ω (8.163)

Since, as remarked above, (B1
γ,B

1
ω) and (B2

γ,B
2
ω) are solution of closure problems I’ and II’

respectively, Eqs. (8.128) and (8.139) imply

〈B1

γ〉γ = −ε−1

γ K∗

γγ 〈B1

ω〉ω = −ε−1

α ε−1

β ε−1

ω K∗

ωγ (8.164)

〈B2

γ〉γ = −ε−1

γ K∗

γω 〈B2

ω〉ω = −ε−1

α ε−1

β ε−1

ω K∗

ωω (8.165)

And substituting this relations into Eqs. (8.162) and (8.163), we finally get

〈B0

γ〉γhγ = ε−1

γ K∗

γγ.Π
I
γ + ε−1

γ K∗

γω.Π
I
ω (8.166)

−〈B0

ω〉ωhω = ε−1

α ε−1

β ε−1

ω K∗

ωγ.Π
I
γ + ε−1

α ε−1

β ε−1

ω K∗

ωω.Π
I
ω (8.167)

To sum up, the closed momentum transport (Eqs. (8.59) and (8.60)) and mass conservation
(Eqs. (8.108) and (8.109)) equations at the bioreactor scale, make appear height effective
parameters : two main permeability tensors (KI

γ , KI
ω), four coupling tensors (KI

γω, KI
ωγ , ΠI

γ ,
ΠI
ω), and two mass exchange coefficients (hγ , hω). For a given periodic cell, the solution

of closure problem I’ and II’ allows the evaluation of the KI
i and KI

ij , through Eqs. (8.128)
and (8.139) and with the definitions Eqs. (8.140) and (8.143). Then, the resolution of problem
III’ directly gives the values of hγ and hω. Finally, coupling the solutions of the three closure
problems I’, II’, and III", ΠI

γ and ΠI
ω can be computed through Eqs. (8.166) and (8.167).

Numerical results

We aim to study the evolution of the effective parameters as a function of (i) the tissue vol-
ume fraction, (ii) the tissue effective permeability. To this purpose, the three closure problems
described above are solved on two-dimensional periodic unit cells such as the one depicted in
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Figure 8.2 – Representation of a unit cell used to compute the effective transport properties
of the bioreactor

figure Fig. 8.2. The volume fraction of the glass beads is kept constant at εκ = 0.30, while
computations are done for the tissue volume fraction ranging from εω = 0.01 to 0.45. Four
tissue permeabilities are examined KII

ω/l
2
γ = 10−2, 10−4, 10−6, and 10−8 (corresponding to

dimensional permeabilities of about KII
ω = 10−8m2, 10−10m2, 10−12m2, and 10−14m2 respec-

tively). In all the computations, the ECM porosity εα and volume fraction εβ are kept equal
to 0.9 and 0.6 respectively.

The main macroscopic permeabilities KI
γ and KI

ω, and the coupling macroscopic perme-
abilities KI

γω and KI
ωγ , are plotted in Figs. 8.3 and 8.4 respectively, as a function of the tissue

volume fraction εω, for different values of the tissue effective permeability KII
ω. In all cases,

the macroscopic permeabilities are sensitive to the tissue scale permeability KII
ω. As expected,

the main effective permeability values are lower for a low tissue permeability KII
ω. Moreover,

as the tissue volume fraction εω tends to zero, the main permeability related to the γ-phase
KI
γ tends to the same value, independently of KII

ω.

Concerning the coupling tensors, it has first to be noted that KI
γω and KI

ωγ have a similar
behavior, and are of the same order of magnitude for a given tissue volume fraction εω. Inter-
estingly, the coupling coefficients are not monotonic, showing a maximal value for a critical
tissue volume faction εω. In order to understand this behavior, one has to keep in mind that
the coupling coefficients KI

ij represent the interactions between the regions γ and ω, in terms
of momentum transport. Consequently, in order to obtain high values of the KI

ij , two condi-
tions must be fulfilled : (i) that both fluid and porous regions exist (i.e. none of εω nor εγ is
negligible compared to the other), and (ii) that there is enough momentum in the system to be
exchanged. This implies that, at very low tissue volume fractions, increasing the volume of
tissue, enhances the ability of the system to exchange momentum. However, after a critical
value of the tissue volume fraction, the porous region is large enough to weaken momentum
in the overall system, decreasing the interactions between the two regions. As a result, the
critical value of the tissue volume fraction is smaller when the tissue permeability KII

ω is lower.

A similar mechanism is observed for the mass exchange coefficient in Fig. 8.5. However,
the critical tissue volume fraction is more sensitive to the tissue permeability, and it seems that,
for the lowest values of KII

ω, the critical volume fraction tends to zero, producing a monotone
decrease of the mass exchange coefficient hω.
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Figure 8.3 – Dimensionless main permeabilities as a function of the tissue volume fraction.
(εκ = 0.30, εβ = 0.60, εα = 0.90)

Figure 8.4 – Dimensionless coulping permeabilities as a function of the tissue volume
fraction. (εκ = 0.30, εβ = 0.60, εα = 0.90)
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Figure 8.5 – Mass exchange coefficient as a function of the tissue volume fraction.
(εκ = 0.30, εβ = 0.60, εα = 0.90)

The obtained values of the pressure driven exchange coefficients ΠI
γ and ΠI

ω (not shown
here), are of the order ±10−9lγ , independently of εω. Yet, a strong dependence on the mesh
size is noted, especially for extreme values of the tissue volume fraction, where numerical
artifacts are the most likely to appear due to small geometrical elements.

The results presented above indicate that, in the macroscopic transport equations (Eqs. (8.59)
and (8.60)), the coupling velocity terms may play a non-negligible role, depending on the
geometry of the averaging volume. Yet, the evaluation of the order of magnitude of the effec-
tive properties in not enough to conclude on the relative importance of coupling terms in the
macroscopic equation. Indeed, the effective properties are in factor of macroscopic quantities.
Therefore, before to discard any term, the macroscopic field should be solved at level I, and
the order of magnitude of the whole terms must be compared to each others. For instance, at
low tissue permeability, 〈vω〉ω is likely to be very small compared to 〈vγ〉γ , even though the
coupling tensors are of the same order of magnitude, KI

ωγ may play a more important role
than KI

γω.

8.3 Upscaling mass transport to the bioreactor scale

The mass transport problem at the tissue scale is composed of Eqs. (8.10), (8.13), (8.16),
(8.17), (8.20) and (8.21). In this section, the tissue scale mass transport equations are homog-
enized, in order to derive the bioreactor scale mass conservation equations in non-equilibrium
conditions. Finally the closure problem for the determination of the bioreactor effective pa-
rameters is developed.
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8.3.1 Theoretical development

Similar systems as the one described here at the tissue scale have been studied in the
literature [Lasseux et al., 2004; Golfier et al., 2009; Orgogozo et al., 2009, 2010]. In all
these models, three phases are defined, a fluid-phase where diffusion and convection occur,
a biomass region where diffusion and reaction are present, and a solid inert phase. Since
mass transport occurs in two regions, the most general representation at the bioreactor scale
should be composed of two mass transport equations per considered species [Wood, 2009;
Davit et al., 2012]. For purpose of applicability, different set of approximations has led to
the derivation of time non-local [Wood & Valdés-Parada, 2013] and local [Ahmadi et al.,
1998; Cherblanc et al., 2003, 2007] two-equation models. The differential equations of these
models include several effective parameters that can be computed through series of closure
problems. Although two equation models are the most suitable to represent a wide range of
conditions, the complexity of their development, resolution and interpretation has motivated
the development of more accessible one-equation models.

Different assumptions can be made to reduce the macroscopic model into a one-equation
model, and the most popular is the hypothesis of local mass equilibrium (see Sec. 7.3.1). The
restrictions joined with this hypothesis have been derived in terms of length scale constraints
[Quintard & Whitaker, 1998b; Wood & Whitaker, 1998; Wood et al., 2011], and in the partic-
ular case of a similar system to the one presented here, Golfier et al. [2009] verified its domain
of validity by comparison with direct numerical simulations. The authors conclude that the
one-equation local-mass-equilibrium model is valid for values of the Péclet (relative contri-
bution of the convective transport over the diffusion) and Damköhler (relative contribution of
the species consumption over the diffusion in the tissue) numbers under one.

In some specific cases, mass equilibrium may not be required to derive a one-equation
model. Assuming either a reaction rate limited problem (RRLC), or a mass transfer limited
consumption system (MTLC), Orgogozo et al. [2009, 2010] derive two different one-equation
non-equilibrium models. In both cases, the results are compared with direct numerical simu-
lations to asses the domain of validity. The RRLC model represents the case where the con-
sumption of species is much faster than the diffusion, implying a homogeneous concentration
field in the γ-phase. These conditions are generally met for values of the Péclet and Damköh-
ler numbers over 1000. Alternatively, the MTLC model represents the case where the process
is limited by mass transport between the two regions. This implies a null concentration in the
ω-region, which may be obtained for Péclet numbers under 10, and Damköler numbers higher
than 100. However it is important to note that for the two non-equilibrium models (RRLC and
MTLC), the direct numerical simulations have been computed on a two-dimensional strati-
fied system, far from the geometry of the current study. In both cases a macroscopic non-
equilibrium one-equation model can be derived and the corresponding closure problem can
be developed and solved in order to evaluate the effective diffusion-dispersion tensor.

Finally, based on a weighted concentration [Quintard et al., 2001] and a special decompo-
sition Davit et al. [2010], a one-equation non-equilibrium model has been derived for time-
asymptotic mass transport process in heterogeneous porous media. Direct numerical simu-
lations show that the domain of validity of this model for a given configuration is relatively
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insensitive to the Péclet and Damköhler numbers. However the main limitation is on the time
dependency of the system. Indeed, this model fails to represent small time phenomena, re-
stricting its validity to processes where the characteristic time of evolution of the transport
process, is larger than the timescale associated with exchange between the two regions.

Returning to our system, the Péclet and Damköhler and Reynolds numbers can be evalu-
ated in the case of the perfusion bioreactor

‖vγ‖ = 4× 10−3m/s

lγ = 1× 10−3m

DAα = 3× 10−9m2/s

µα = 10−2Pa.s







Peγ ≃ 103

Reγ ≃ 101

kA = 8× 10−6g/(cm3s)

εσ = 0.1− 0.9

lω = 10−5 − 10−3m

α0 = 0.1− 1

KA = 6× 10−5g/cm3

DAω = 10−10m2/s







Daω ≃ 10−2 − 104

The value of the Péclet number in the bioreactor indicates that neither the local mass equi-
librium nor the MTLC models are suitable for the representation of mass transport in the
γ-phase. The Damköhler number varies a lot depending on the possible values of the param-
eters. However lω is the main influencing parameter, and this suggests that Daω increases of
several orders of magnitude during tissue growth. Under this circumstances the RRLC model
may not be suitable neither. Nevertheless, since the bioreactor is perfused continuously with
a culture medium whose concentrations vary very slowly in regard to cell consumption and
growth, the problem falls into the time asymptotic regime, and the methodology presented
in [Davit et al., 2010] may be applicable.Yet, this approach is based on the definiton of a
weighted average, where the intrinsic average of the tissue concentration remain unknown.
Since the tissue growth kinetic will be dependent on this variable, we choose, in the following
section, to develop a non-equilibrium model of the type local two-equation.

Let us start the averaging process of the tissue scale mass transport Eqs. (8.10) and (8.13).
Following similar steps than for the cellular scale (level III), one obtains

∂ (εγ〈cAγ〉γ)
∂t

+∇. (εγ〈vγ〉γ〈cAγ〉γ) = ∇.
[

DAαI.
(

εγ∇〈cAγ〉γ +
∑

i=ω,κ

1

VII

∫

Aγi

nγic̃AγdA
)]

+
∑

i=ω,κ

1

VII

∫

Aγi

nγi. [(wγi − vγ) cAγ +DAα∇cAγ] dA−∇.〈ṽγ c̃Aγ〉 (8.168)

∂ (εIIIεω〈cAω〉ω)
∂t

+∇. (εω〈vω〉ω〈cAω〉ω) =

∇.
[

DII
Aω.
(

εω∇〈cAω〉ω +
∑

i=γ,κ

1

VII

∫

Aωi

nωic̃AωdA
)]

+
∑

i=γ,κ

1

VII

∫

Aωi

nωi.
[
(εIIIwωi − vω) cAω +DII

Aω.∇cAω
]
dA−∇.〈ṽω c̃Aω〉+ εω〈Rω〉ω

(8.169)
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Where Gray’s spacial decomposition for the concentration has been introduced

cAγ = 〈cAγ〉γ + c̃Aγ cAω = 〈cAω〉ω + c̃Aω (8.170)

The second terms on the right hand sides of Eqs. (8.168) and (8.169) are interfacial flux,
where convective and diffusive transport are included. The interfacial diffusive terms are
further developed to obtain

∑

i=ω,κ

1

VII

∫

Aγi

nγi. (DAα∇cAγ) dA =

−∇εγ. (DAα∇〈cAγ〉γ) +
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (DAα∇c̃Aγ) dA (8.171)

∑

i=γ,κ

1

VII

∫

Aωi

nωi.
(
DII
Aω.∇cAω

)
dA =

−∇εω.
(
DII
Aω.∇〈cAω〉ω

)
+
∑

i=γ,κ

1

VII

∫

Aωi

nωi.
(
DII
Aω.∇c̃Aω

)
dA (8.172)

Once again, the macroscopic properties of the bioreactor are supposed to evolve on a length
scale much large than the length scale of the concentration deviations (L ≫ lγ and L ≫ lω).
This allows to neglect the gradient of the volume fractions, and Eqs. (8.168) and (8.169) takes
the form

∂ (εγ〈cAγ〉γ)
∂t

+∇. (εγ〈vγ〉γ〈cAγ〉γ) = ∇.
[

DAαI.
(

εγ∇〈cAγ〉γ +
∑

i=ω,κ

1

VII

∫

Aγi

nγic̃AγdA
)]

+
∑

i=ω,κ

1

VII

∫

Aγi

nγi. [(wγi − vγ) c̃Aγ +DAα∇c̃Aγ] dA

+
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (wγi − vγ) dA〈cAγ〉γ −∇.〈ṽγ c̃Aγ〉 (8.173)

∂ (εIIIεω〈cAω〉ω)
∂t

+∇. (εω〈vω〉ω〈cAω〉ω) =

∇.
[

DII
Aω.
(

εω∇〈cAω〉ω +
∑

i=γ,κ

1

VII

∫

Aωi

nωic̃AωdA
)]

+
∑

i=γ,κ

1

VII

∫

Aωi

nωi.
[
(εIIIwωi − vω) c̃Aω +DII

Aω.∇c̃Aω
]
dA

+
∑

i=γ,κ

1

VII

∫

Aωi

nωi. (εIIIwωi − vω) dA〈cAω〉ω −∇.〈ṽω c̃Aω〉+ εω〈Rω〉ω (8.174)
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These are the non-closed macroscopic equations for mass transport at the bioreactor scale.
A more compact form of the macroscopic equations can be obtain by applying the spacial
averaging theorem to the average of the deviation gradient

〈∇c̃Aγ〉 = ∇〈c̃Aγ〉+
∑

i=ω,κ

1

VII

∫

Aγi

nγic̃AγdA (8.175)

It can be shown, by taking the average of Eq. (8.170), that the average of the concentration
deviation is null. Thus the first term of the right hand side can be discarded, and the non-closed

macroscopic equations read

∂ (εγ〈cAγ〉γ)
∂t

+∇. (εγ〈vγ〉γ〈cAγ〉γ) = ∇. [εγDAαI. (∇〈cAγ〉γ + 〈∇c̃Aγ〉γ)]

+
∑

i=ω,κ

1

VII

∫

Aγi

nγi. [(wγi − vγ) c̃Aγ +DAα∇c̃Aγ] dA

+
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (wγi − vγ) dA〈cAγ〉γ −∇.〈ṽγ c̃Aγ〉 (8.176)

∂ (εIIIεω〈cAω〉ω)
∂t

+∇. (εω〈vω〉ω〈cAω〉ω) = ∇.
[

εωD
II
Aω.
(

∇〈cAω〉ω + 〈∇c̃Aω〉ω
)]

+
∑

i=γ,κ

1

VII

∫

Aωi

nωi.
[
(εIIIwωi − vω) c̃Aω +DII

Aω.∇c̃Aω
]
dA

+
∑

i=γ,κ

1

VII

∫

Aωi

nωi. (εIIIwωi − vω) dA〈cAω〉ω −∇.〈ṽω c̃Aω〉+ εω〈Rω〉ω (8.177)

According to Eqs. (8.3) and (8.6), the reaction rate can be expressed in term of the tissue
concentration as

Rω = −εσkA
cAω

cAω + α0KA

(8.178)

The treatment of such non-linear kinetic in homogenization methods, is still an active research
area. There are two common ways to deal with such a term. Either the reaction rate is suppose
to not influence the closure problem, or conditions leading to the linearisation of Eq. (8.178)
are hypothesized. The first approach has been followed at the cellular scale (Sec. 7.3.1). In
the present section, we choose to maintain the reaction kinetic in the closure problem, and we
suppose that the half saturation constant α0KA is much higher than the local concentration
cAω. This leads to a linear reaction kinetic of the form

Rω = −εσ
kA

α0KA

cAω (8.179)

which superficial average is

〈Rω〉ω = −εσ
kA

α0KA

〈cAω〉ω (8.180)
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The macroscopic equations (Eqs. (8.176) and (8.177)) are dependent on average and devi-
ation concentrations only. In order to close these equations, we need to build a problem for
the deviations. But let us first expand the left hand side such as

∂ (εγ〈cAγ〉γ)
∂t

+∇. (εγ〈vγ〉γ〈cAγ〉γ) = εγ
∂〈cAγ〉γ
∂t

+ εγ∇. (〈vγ〉γ〈cAγ〉γ)

+ 〈cAγ〉γ
∂εγ
∂t

+ 〈vγ〉γ〈cAγ〉γ∇εγ (8.181)

The two last terms on the right hand side can be treated using the averaging theorems, leading
to

∂ (εγ〈cAγ〉γ)
∂t

+∇. (εγ〈vγ〉γ〈cAγ〉γ) = εγ
∂〈cAγ〉γ
∂t

+ εγ∇. (〈vγ〉γ〈cAγ〉γ)

+
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (wγi − 〈vγ〉γ) dA〈cAγ〉γ (8.182)

Now introducing this relation into Eq. (8.176), dividing by εγ , and subtracting to the local
transport equation Eq. (8.13), we get

∂c̃Aγ
∂t

+ vγ.∇c̃Aγ + ṽγ.∇〈cAγ〉γ = ∇. (DAα∇c̃Aγ)−DAα〈∇c̃Aγ〉γ

+
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (wγi − 〈vγ〉γ) dA〈cAγ〉γ −
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (wγi − vγ) dA〈cAγ〉γ

−
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. [(wγi − vγ) c̃Aγ +DAα∇c̃Aγ] dA+ ε−1

γ ∇.〈ṽγ c̃Aγ〉 (8.183)

And similarly, for the ω-region we have

∂εIIIc̃Aω
∂t

+ vω.∇c̃Aω + ṽω.∇〈cAω〉ω = ∇.
(
DII
Aω.∇c̃Aω

)
−DII

Aω.〈∇c̃Aω〉ω

+
∑

i=γ,κ

1

Vω

∫

Aωi

nωi. (εIIIwωi − 〈vω〉ω) dA〈cAω〉ω−
∑

i=γ,κ

1

Vω

∫

Aωi

nωi. (εIIIwωi − vω) dA〈cAω〉ω

−
∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
[
(εIIIwωi − vω) c̃Aω +DII

Aω.∇c̃Aω
]
dA+∇.〈ṽω c̃Aω〉+Rω − 〈Rω〉ω

(8.184)

Also these equations may appear complex at first sight, they can be simplified on the basis of
a comparison of the order of magnitude of the different terms. But before to do that, let us
rearrange the interfacial macroscopic convective terms such as

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (wγi − 〈vγ〉γ) dA〈cAγ〉γ −
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (wγi − vγ) dA〈cAγ〉γ =

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi.ṽγdA〈cAγ〉γ (8.185)
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The divergence theorem is then applied leading to

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (wγi − 〈vγ〉γ) dA〈cAγ〉γ −
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (wγi − vγ) dA〈cAγ〉γ =

1

Vγ

∫

VII

∇.ṽγdV 〈cAγ〉γ (8.186)

In the case where the deviation of the velocity is divergence free, this term is null. However,
in the present study this condition is not satisfied due to the production tissue in the averaging
volume. Nevertheless, the deviation problem for the momentum problem has been developed
in the previous section, and introducing Eq. (8.41) in the above equation yields

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (wγi − 〈vγ〉γ) dA〈cAγ〉γ −
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (wγi − vγ) dA〈cAγ〉γ =

− ṁγ

ε2γρα
〈cAγ〉γ (8.187)

Where the mass exchange rate, being a macroscopic quantity, has been removed from the
volume integral. The same procedure can be followed for the ω-region equation.

Returning to Eqs. (8.183) and (8.184), based on the length scale constraints L ≫ (lγ, lω),
and supposing the deviation problem to be quasi-static, the simplified deviation problem takes
the form

vγ.∇c̃Aγ + ṽγ.∇〈cAγ〉γ = ∇. (DAα∇c̃Aγ)−
ṁγ

ε2γρα
〈cAγ〉γ

−
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. [(wγi − vγ) c̃Aγ +DAα∇c̃Aγ] dA in the γ-phase (8.188)

vω.∇c̃Aω + ṽω.∇〈cAω〉ω = ∇.
(
DII
Aω.∇c̃Aω

)
− ṁω

ε2ωρα
〈cAω〉ω

−
∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
[
(εIIIwωi − vω) c̃Aω +DII

Aω.∇c̃Aω
]
dA−εσ

kA
α0KA

c̃Aω in the ω-region

(8.189)

− nγκ. (DAα∇c̃Aγ) = nγκ. (DAα∇〈cAγ〉γ) at Aγκ (8.190)

− nωκ.
(
DII
Aω.∇c̃Aω

)
= nωκ.

(
DII
Aω.∇〈cAω〉ω

)
at Aωκ (8.191)

c̃Aγ = c̃Aω − (〈cAγ〉γ − 〈cAω〉ω) at Aγω (8.192)

− nγω. (DAα∇c̃Aγ +DAα∇〈cAγ〉γ) = −nγω.
(
DII
Aω.∇c̃Aω +DII

Aω.∇〈cAω〉ω
)

at Aγω
(8.193)

Note that the convective terms in Eq. (8.193) are discarded due to the continuity of the con-
centration and velocity at Aγω.
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In the system described above, the mass exchange rates ṁγ and ṁω appear in the deviation
problem. They represent, through Eqs. (8.23) and (8.24), the contribution of tissue production
to the deviation of the concentrations. However, retaining this terms would necessitate to
solve the closure problem in its transient form. This is a difficulty that has not been settled
yet, and that is out of the scope of this study. Therefore, it will be assumed that the mass
exchange rates do not influence the deviation problem. Note that this does not mean that the
macroscopic problem will be independent of the mass exchange rates, as it will be seen lower.

Three source terms are present in the deviation problem Eqs. (8.188) to (8.193), indicating
that the deviations can be link to the averages quantities as

c̃Aγ = dγγ.∇〈cAγ〉γ + dγω.∇〈cAω〉ω + sγ (〈cAγ〉γ − 〈cAω〉ω) (8.194)

c̃Aω = dωγ.∇〈cAγ〉γ + dωω.∇〈cAω〉ω + sω (〈cAγ〉γ − 〈cAω〉ω) (8.195)

where the closure variables dij are mapping vectors from the region j to the region i, and si are
scalars (i, j = γ, ω). Introducing this representations of the deviations into the macroscopic
equations, the closed mass transport equations at the bioreactor scale is obtained.

∂ (εγ〈cAγ〉γ)
∂t

+∇. (εγ〈vγ〉γ〈cAγ〉γ) =
∇.
(
DI
γγ.∇〈cAγ〉γ

)
+∇.

(
DI
γω.∇〈cAω〉ω

)
+∇.

(
dI
γ (〈cAγ〉γ − 〈cAω〉ω)

)

+ uI
γγ.∇〈cAγ〉γ + uI

γω.∇〈cAω〉ω + αI
γ (〈cAγ〉γ − 〈cAω〉ω) +

ṁγ

ρα
〈cAγ〉γ (8.196)

∂ (εIIIεω〈cAω〉ω)
∂t

+∇. (εω〈vω〉ω〈cAω〉ω) =
∇.
(
DI
ωγ.∇〈cAγ〉γ

)
+∇.

(
DI
ωω.∇〈cAω〉ω

)
+∇.

(
dI
ω (〈cAγ〉γ − 〈cAω〉ω)

)

+uI
ωγ.∇〈cAγ〉γ +uI

ωω.∇〈cAω〉ω+αI
ω (〈cAγ〉γ − 〈cAω〉ω)+

ṁω

ρα
〈cAω〉ω− εωεσ

kA
α0KA

〈cAω〉ω

(8.197)

Where all the tissue scale variables are included within the effective parameters, defined as

DI
γγ = εγ [DAα (I+ 〈∇dγγ〉γ)− 〈ṽγdγγ〉γ] (8.198)

DI
γω = εγ [DAα〈∇dγω〉γ − 〈ṽγdγω〉γ] (8.199)

dI
γ = εγ [DAα〈∇sγ〉γ − 〈ṽγsγ〉γ] (8.200)

uI
γγ =

∑

i=ω,κ

1

VII

∫

Aγi

nγi. [(wγi − vγ)dγγ +DAα∇dγγ] dA (8.201)

uI
γω =

1

VII

∫

Aγω

nγω. [(wγω − vγ)dγω +DAα∇dγω] dA (8.202)

αI
γ =

1

VII

∫

Aγω

nγω. [(wγω − vγ) sγ +DAα∇sγ] dA (8.203)
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and
DI
ωγ = εω

[
DII
Aω.〈∇dωγ〉ω − 〈ṽωdωγ〉ω

]
(8.204)

DI
ωω = εω

[
DII
Aω. (I+ 〈∇dωω〉ω)− 〈ṽωdωω〉ω

]
(8.205)

dI
ω = εω

[
DII
Aω.〈∇sω〉ω − 〈ṽωsω〉ω

]
(8.206)

uI
ωγ =

1

VII

∫

Aωγ

nωγ.
[
(εIIIwωγ − vω)dωγ +DII

Aω.∇dωγ
]
dA (8.207)

uI
ωω =

∑

i=γ,κ

1

VII

∫

Aωi

nωi.
[
(εIIIwωi − vω)dωω +DII

Aω.∇dωω
]
dA (8.208)

αI
ω =

1

VII

∫

Aωγ

nωγ.
[
(εIIIwωγ − vω) sω +DII

Aω.∇sω
]
dA (8.209)

In the closed macroscopic equations, the mass exchange rates have been introduced by making
use of Eqs. (8.25) and (8.26). Moreover, in Eq. (8.197), it has been supposed that ρω is
equivalent to εIIIρα. This hypothesis is not a strong assumption (see Eqs. (8.4) and (8.5)), and
is consistent with the development in Sec. 7.1.

Compared to the averaged equation developed under the hypothesis of local mass equi-
librium Eq. (7.95), the above macroscopic equations present several additional terms and
effective properties. First, coupling diffusion-dispersion tensors DI

ij represent the influence
of the diffusive flux in the j-region, on the transport in the i-region. Secondly, terms involving
velocity like vectors dI

i and uI
ij , act as non-conventional convection in the macroscopic equa-

tions. Also these terms are usually neglected at high Péclet numbers [Quintard & Whitaker,
1994a], their importance in the macroscopic mass transport for a given geometry remain to be
evaluated. Thirdly, interfacial mass transfer is taken into account through the terms involving
the αI

i. Finally, terms involving the mass exchange rates ṁi represent the influence of tissue
growth on the mass transport process. The values of ṁγ and ṁω are provided by Eqs. (8.106)
and (8.107) respectively, through the solution of the momentum transport closure problems.

The presence of all these additional effective parameters, is supposed to improve the rep-
resentation of mass transport at the bioreactor scale, compared to more classical models en-
countered in the bio-engineering literature. The counterpart is that all the effective parameters
should be computed for a given geometry, and for a given velocity field. This can be done by
solving the closure problems related to the six closure variables.

Problem I (in ∇〈cAγ〉γ) :

vγ.∇dγγ + ṽγ = ∇. (DAα∇dγγ)− ε−1

γ uI
γγ in the γ-phase (8.210)

vω.∇dωγ = ∇.
(
DII
Aω.∇dωγ

)
− ε−1

ω uI
ωγ − εσ

kA
α0KA

dωγ in the ω-region (8.211)

− nγκ. (DAα∇dγγ) = nγκ. (DAαI) at Aγκ (8.212)

− nωκ.
(
DII
Aω.∇dωγ

)
= 0 at Aωκ (8.213)

dγγ = dωγ at Aγω (8.214)
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− nγω. (DAα∇dγγ)− nγω. (DAαI) = −nγω.
(
DII
Aω.∇dωγ

)
at Aγω (8.215)

dγγ(x+ li) = dγγ(x) dωγ(x+ li) = dωγ(x) i = 1, 2, 3 (8.216)

〈dγγ〉γ = 0 〈dωγ〉ω = 0 (8.217)

Problem II (in ∇〈cAγ〉γ) :

vγ.∇dγω = ∇. (DAα∇dγω)− ε−1

γ uI
γω in the γ-phase (8.218)

vω.∇dωω + ṽω = ∇.
(
DII
Aω.∇dωω

)
− ε−1

ω uI
ωω − εσ

kA
α0KA

dωω in the ω-region (8.219)

− nγκ. (DAα∇dγω) = 0 at Aγκ (8.220)

− nωκ.
(
DII
Aω.∇dωω

)
= nωκ.D

II
Aω at Aωκ (8.221)

dγω = dωω at Aγω (8.222)

− nγω. (DAα∇dγω) = −nγω.
(
DII
Aω.∇dωω

)
− nγω.D

II
Aω at Aγω (8.223)

dγω(x+ li) = dγω(x) dωω(x+ li) = dωω(x) i = 1, 2, 3 (8.224)

〈dγω〉γ = 0 〈dωω〉ω = 0 (8.225)

Problem III (in 〈cAγ〉γ − 〈cAω〉ω) :

vγ.∇sγ = ∇. (DAα∇sγ)− ε−1

γ αI
γ in the γ-phase (8.226)

vω.∇sω = ∇.
(
DII
Aω.∇sω

)
− ε−1

ω αI
ω − εσ

kA
α0KA

sω in the ω-region (8.227)

− nγκ. (DAα∇sγ) = 0 at Aγκ (8.228)

− nωκ.
(
DII
Aω.∇sω

)
= 0 at Aωκ (8.229)

sγ = sω − 1 at Aγω (8.230)

− nγω. (DAα∇sγ) = −nγω.
(
DII
Aω.∇sω

)
(8.231)

sγ(x+ li) = sγ(x) sω(x+ li) = sω(x) i = 1, 2, 3 (8.232)

〈sγ〉γ = 0 〈sω〉ω = 0 (8.233)

Keeping in mind that the fluid velocity satisfies a continuity condition at Aγω, and a no slip
condition at the interfaces with the solid, the following relations are obtained

uI
γγ = −uI

ωγ (8.234)

uI
γω = −uI

ωω (8.235)

αI
γ = −αI

ω (8.236)

It should be noted that, in the development of the above closure problems, the coupling be-
tween the closure variables associated with different orders of derivative has been neglected.
Although this is an usual simplification in the context of the volume averaging method [Ah-
madi et al., 1998; Cherblanc et al., 2003], its consequences regarding mass transport should
be examined more closely in further work [Davit et al., 2010].

The solution of the three closure problems, allows the evaluation of the 12 effective pa-
rameters. The resolution of this problem, and the resulting effective parameters are presented
below.
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8.3.2 Computation of the effective parameters

A change of variable has been proposed by Cherblanc et al. [2003] to transform the three
integro-differential problem, into five differential problems. Yet, given the macroscopic nature
of the source terms, we choose to solve the closure problem in the current form. In this section,
we wish to study the influence of the flow intensity and of the tissue volume fraction on the
12 effective parameters. In the following results, the volume fraction of the solid, the tissue
permeability and the ratio between the diffusive coefficient have constant values of εκ = 0.30,
K II
ω/l

2
ω = 10−4, DII

Aω/DAα = 0.5. Moreover, as a first hypothesis, the reaction is supposed to
not influence the closure problem, so the Damhköker number (Daω = kAεσl

2
ω/(α0KADAω)) is

null. Note that this last assumption is not a limitation of the model, and further computational
study should include the effects of the reaction.

Figure 8.6 – Main longitudinal diffusion-dispersion coefficients (εκ = 0.30,
KII
ω/l

2
ω = 10

−4, DII
Aω/DAα = 0.5, Da = 0)

The main bioreactor diffusion-dispersion tensors are plotted in Fig. 8.6 as a function of the
Péclet number (Peγ = ‖vγ‖lγ/DAα), for different values of the tissue volume fraction. For
both coefficients, a classical diffusive regime is observed at low values of the Péclet number,
while dispersion occurs at larger values. Only the dispersive part of the ω-region coefficient
is significantly influenced by the tissue volume fraction.

The coupling effective diffusion-dispersion coefficients are shown in Fig. 8.7. We numer-
ically find that the two coupling tensors are equal in the studied range of parameters. For
values of the Péclet number lower than 50, DI

γω and DI
ωγ are null, while for higher values,

dispersion effects influences the coupling coefficient. The interfacial mass transfer coeffi-
cients αI

i depicted in Fig. 8.7, are shown to have values of the order of 101, slightly increasing
as the values of the Péclet number gets larger. A higher sensitivity to the Péclet number is
found for a large tissue volume fraction εω.
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Figure 8.7 – Coupling longitudinal diffusion-dispersion coefficients (εκ = 0.30,
KII
ω/l

2
ω = 10

−4, DII
Aω/DAα = 0.5, Da = 0)

The velocity-like effective coefficients dI
i, u

I
ij have been computed in the same condi-

tions, and have shown to follow a monotonic behavior in regard to the tissue volume fraction
(Figs. 8.8 and 8.9). Moreover, they are of the same order of magnitude as the coupling tensors.
It should be noted that the coefficients related to the ω-region concentrations are extremely
sensitive to the tissue permeability K II

ω . Further numerical investigations are currently in
progress, in order to evaluate the respective influence of the effective terms. However, this
necessitates to also solve the macroscopic model Eqs. (8.196) and (8.197), such as the whole
terms including the various effective parameters can be compared. Additional numerical in-
vestigation is needed to compute the influence of the reactive term on the effective variables
and on the macroscopic model.

Momentum and mass transport have been upscaled all along Part II, from the ECM (level
IV) to the bioreactor scale (level I). It has been shown that the transport properties at the
lower scales, can influence greatly the higher scales effective parameters. The result of the
successive upscalings is a non-equilibrium multiple equation model for momentum and mass
transport at the bioreactor scale (four macroscopic equations for momentum transport, and
two for mass transport). Several effective parameters have been identified, and can be com-
puted through the resolution of a series of closure problems. In the remaining part of the
thesis, a macroscopic resolution of the model is proposed, where a tissue production kinetic is
introduced. But before to do that, cell and tissue growth are studied in the perfusion bioreactor
from an experimental point of view.
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Chapter 8. The Tissue Scale

Figure 8.8 – Velocity-like coefficients (εκ = 0.30, KII
ω/l

2
ω = 10

−4, DII
Aω/DAα = 0.5,

Da = 0)

Figure 8.9 – Velocity-like coupling coefficients (εκ = 0.30, KII
ω/l

2
ω = 10

−4,
DII
Aω/DAα = 0.5, Da = 0)
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CHAPTER 9

EXPERIMENTAL MODEL OF THE

PERFUSION BIOREACTOR

A VARIETY OF BIOREACTORS and their working principles has been presented in Chap. 2.
Most of them have been developed in an attempt to prove the capacity of a specific

design to enhance cell proliferation, differentiation and production of extracellular matrix.
Yet, very few studies are devoted to quantify the spacialisation of cell proliferation within the
bioreactor.

Based on the system developed in David et al. [2011], we propose in the present chapter, an
experimental approach to quantify in space and time, the influence of culture medium flow rate
on cell proliferation within a porous media. To that purpose, cells are cultured into a perfusion
bioreactor, on a scaffold constituted of a stack of impermeable glass beads. After various
time of culture, the formed constructs are fixed and embedded. Thanks to a combination
of histological techniques and image analysis, the quantification of biomass production as a
function of time is assessed.

9.1 Presentation of the experimental model

The double porosity bioreactor [David et al., 2011] has been designed in order to overcome
limitations related to bone tissue engineering. Its principal aim is to produce osteoconductive
substitutes in clinically relevant volumes. The main characteristics and results related to this
system are summarized in Sec. 2.3. Briefly, a perfusion bioreactor has been designed, where
micro-porous coral scaffolds (3mm size) are stacked in a perfusion chamber. Mouse embryos
cells (C3H10T1/2-GFP) are cultured in the bioreactor up to 21 days. Cell proliferation is first
quantified for different time of culture, then histological analysis are performed to asses the
presence of cells in different regions of the bioreactor.

One of the main obstacle of evaluating the influence of perfusion on cell proliferation
in such a bioreactor, is the complicated geometry in which the cells evolve. Even though
experimental quantification of cell proliferation around and inside the coral cubes can be
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Figure 9.1 – The different components of the bioreactor

performed (but to what cost!), the complexity of the physical processes in such environment
limits the relevance of the possible interpretations. Moreover, if one wishes to discuss the
results in regard to a mathematical model, simplification assumption are needed on both,
experimental and modeling approaches.

As a first step in the study of the bioreactor presented in [David et al., 2011], we choose
to simplify the double porosity (the microscopic coral cube porosity, and the macroscopic
porosity made by the stack of cubes) to a simple porosity. This is done by substituting the
3mm size coral cubes by 2mm diameter glass beads. The advantages of using a stack of
glass beads as the scaffold are multiple. First, porous mediums composed of spheres are well
characterized in the literature in terms of architecture and transport properties [Brinkman,
1947; Zick & Homsy, 1982; Warren & Stepanek, 2008]. Second, glass in known for its
excellent biocompatibility, and adherent mammalian cells attach and spread very well on
glass supports. Finally, it facilitates the comparison with experimental and modeling studies
on biological porous media, based on similar geomoetry [Orgogozo et al., 2009; Golfier et al.,
2009; Davit et al., 2010, 2011; Wood et al., 2011]. Here, mouse fibroblast cells (NIH/3T3,
ATCC) are used. This choice is motivated by their known mechanosensibility [Korin et al.,
2007], rapid division time, and simple cultivation procedure. Moreover, this cell type is often
used in microfluidic systems [Steward Jr. et al., 2010; Zhang et al., 2011; Topman et al.,
2012], facilitating comparisons with current experiments in such conditions [Chabanon et al.,
2012].

Before presenting the experimental protocols, let us describe the experimental setup. Ex-
cept when stated otherwise, all the material is purchased from Dominic Dutscher. The dif-
ferent components of the bioreactor are represented in Fig. 9.1. They include the bioreactor
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Figure 9.2 – Schematic representation (A), and photography (B) of the bioreactor
experimental set up

chamber made of Polycarbonate (PC, Abaqueplast), divided by a circular plastic grid between
the entry chamber (33mm length, 26mm inside diameter) and the perfusion chamber (50mm
length, 14.2mm inside diameter) . This grid, also made of PC and pierced with multiple
holes (1mm diameter), maintains the construct in the perfusion chamber, and helps assess a
laminar flow of culture medium within the perfusion chamber. Two inserts made of Polyte-
trafluoroethylene (PTFE, Abaqueplast) close the chamber at the bottom and top. The different
pieces are assembled tightly together thanks to silicon o-rings (Sefat, 22.1×1.6mm). In or-
der to be able to remove the construct from the bioreactor without damaging it, a glass tube
(Preciverre, 50mm length, 14mm outside diameter, 12mm inside diameter) is placed inside
the perfusion chamber. The external diameter of the tube fits the internal diameter of the
chamber, so all the perfusion takes place in the tube.
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As shown in Fig. 9.2, culture medium flows through a closed loop from a reservoir to a
persistaltic pump (Cole-Parmer, Masterflex L/S), to the bioreactor and back to the reservoir.
The loop is constituted of silicon tubing (Pharm-Med, L/S16 for the main loop and L/S25 for
the pump) connected to the bioreactor with screwed plastic connectors (Cole-Parmer). The
culture medium is contained in a 250mL steril glass reservoir with a customized cap. The
reservoir cap is pierced of four holes (5.3mm diameter), two for the culture medium silicon
tubing, two for the gas tubing (Saint-Gobain, Tygon R3606). A constant supply of 5%CO2 gas
flows into the reservoir to maintain the culture medium pH. In order to keep sterile conditions,
disposable air filters (30mm diameter, 0.45µm pores) are fixed with plastic luer lock (Cole-
Parmer M 4.8mm) at the gas entrance and exit.

9.2 Material and methods

The experimental procedure follows three main steps. First, cells are cultured in perfusion
and static conditions. Second, the samples are prepared for histological analysis, sliced and
stained. Finally, an image analysis procedure allows the quantification of two indicators, the
cell growth indicator (CGI), and the tissue growth indicator (TGI). In the present section, the
corresponding experimental protocols are detailed.

9.2.1 Cell culture in the bioreactor

All experiments are carried in sterile conditions under a laminar flow hood. All material
in contact with culture medium and cells, has been previously sterilized as follows. Except
for the bioreactor chamber and grid, the whole perfusion loop is assembled, and sterilized in
an autoclave (Advantage Lab AL02-01, 18min, 105◦C, 220kPa). Due to the poor resistance
of PC in thermal fatigue, the bioreactor chambre as well as the grid and its o-ring cannot
follow standard autoclave sterilization cycles. Instead, this components are sterilized with a
bleach bath of 1 hour. They are then rinsed abundantly through three successive bath in sterile
distilled water. The glass tubes and glass beads are sterilized in an autoclave.

The cells used in all the experiments are fibroblasts NIH/3T3 (ATCC), routinely cultured
in DMEM Glutamax (Gibco, Life Technologies) supplemented with 10% Fetal Calf Serum
(Pan-Biotech) and 1% Penicillin Streptomycin (Pan-Biotech), at pH 7.4 and under standard
cell culture conditions (37◦C, 5% CO2). NIH/3T3 cells are passaged three times a week at
70% confluence, following standardized accepted protocols.

For each experiment, three samples are prepared, one cultured under perfusion within
the bioreactor, one cultured in static conditions (static control), and one to asses the initial
seeding conditions (T0 control). Three sterile plastic tubes (Falcon 15mL) are filled with
4.5mL of sterile glass beads (2mm diameter) each. Then 2.5mL of fibronectin solution is
added (10µg/ml), and let 1 hour at 37◦C. Then the solution is aspirated with a pipette, and
2mL of cell suspension (106 cell/ml) is added. The tubes are gently agitated in order to
homogenized the mixture of glass beads and cells. The tubes are then let overnight in a CO2
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incubator (Termo Scientific, Series 8000DH) to allow the cells to sediment and attach to the
beads.

Perfused Tube After sterilization, the bioreactor chamber is fixed to a clamp on a stand, and
the grid is carefully inserted in the entry chamber, before to be abundantly rinsed with 70◦

ethanol. A sterile glass tube is inserted in the perfusion chamber before to be filled with the
seeded glass beads prepared the day before. Then the chamber is closed by introducing the
bottom and top insert, each being already connected to the reservoir cap through the tubing.
The cap is mounted to a reservoir filled with 250mL culture medium (DMEM Glutamax +
10% Fetal Calf Serum +1% Penicillin Streptomycin), and the air filters are finally fixed to the
air tubes. At this point, the bioreactor loop is closed and can be removed from the laminar
flow hood without risks of contamination. The whole loop (seeded bioreactor, reservoir and
tubing) are disposed in an incubator (Thermo Scientific, Heratherm). A hole in the side of the
incubator allows a part of the tubing to be connected to the peristaltic pump located outside.
This incubator does not provide a controlled CO2 atmosphere, thus the reservoir is connected
with a gas tube where a continuum flow of gas mixture at 5%CO2 is perfused at 15mL/min.
Once the set up is in place, the peristaltic pump is activated at 10mL/min, and the bioreactor
is filled slowly with culture medium from bottom to top. Some delicate vibrations of the
bioreactor may be needed to remove possible air bubbles trapped in the construct. Culture
under perfusion are carried for 1, 2 or 3 weeks. The culture medium is changed twice a week
by stopping the pump, clamping the loop so the bioreactor stays filled with culture medium,
moving the entire loop under a laminar flow hood, and replacing reservoir with a new one
filled with 200mL fresh culture medium. The system is then put back into the incubator, and
the pump is reactivated, the whole procedure taking a couple of minute.

Static Tube For static culture, a sterile PTFE support is used to maintain vertical, a sterile
glass tube in a 40mL straight container (Gosselin, TP30). The seeded glass beads are poured
in the tube, and 35mL of fresh culture medium is added in the container. The container is
closed, and put in a CO2 incubator for 1, 2 or 3 weeks. The cap of the container is kept
slightly open in order to allow gas exchange with the incubator atmosphere. Culture medium
is changed twice a week by aspirating the old culture medium, and poring fresh one.

Tube T0 The seeded glass beads are directly poured in a glass tube. The construct is main-
tained in the glass tube by a pierced aluminum sheet at the bottom extremity of the tube.
Then the tube is placed in a bath of formaldehyde to fix and conserve the biomass during the
cultivation period of the perfused and static tubes.

At the end of the cultures, the perfused and static tubes are removed from the bioreactor
and container respectively, and together with the T0 tube, they follow a series of bath in
order to fix and to embed the biomass. This procedure is delicate since any movement of
the beads may damage the structure of the construct. In order to facilitate the manipulations,
the bottom of the tubes are covered by aluminum sheet, which are maintained with Parafilm.
Small holes are produced in the aluminum sheet with a needle point, allowing the liquid of the
different bath to flow through the construct. The tubes are then disposed inside 10mL syringes
(Terumo) whose piston has been removed (and used as caps to close the syringes). This way,
without having to manipulate the tubes, liquid can be poured by above, and the syringe can
be emptied by opening the bottom exit of the syringe.
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9.2.2 Histological protocol

Fixation Quickly after ending the cultures, the samples are placed into the syringes, and let
in a bath of formalin (4% formaldehyde (Sigma-Aldrich) in phosphate buffered saline (Pan-
Biotech)) at room temperature overnight. Formalin is a chemical fixative which allows to
preserve the cells and tissue from degradation, and maintains the structure of the construct.

Dehydration The aim of histology is to solidify the studied biological sample, in order to be
able to cut thin slices, and to observe the structure of the sample. This necessitates that the
water contained in the biological tissue is replaced by the solidifying product. Therefore, the
samples are dehydrated following a series of ethanol bath of increasing concentration :

• 1×15min in 70◦ ethanol

• 1×15min in 80◦ ethanol

• 1×15min in 90◦ ethanol

• 1×15min in 96◦ ethanol

• 3×15min in absolute ethanol

Embedding Once the samples are dehydrated, the embedding process can start. The Osteo-
Bed Embedding kit (Sigma-Aldrich) is used here. This product has been originally developed
for undecalcified bone specimens, and is also suitable for the study of soft tissue structures
and immunohistochemistry. The formulation is based on methyl methacrylate (MMA), and
is delivered in the form of a solution of Osteo-Bed Resin, and a catalyst powder. Two solu-
tions are prepared from this components : the Osteo-Bed infiltration solution (1.4g of catalyst
for 100mL of Osteo-Bed resin), and the Osteo-Bed embedding solution (3.5g of catalyst for
100mL of Osteo-Bed resin). The embedding procedure consists in a series of bath of this
different solutions, where the time of impregnation must be adapted to the samples. Here is
the protocol followed for the bioreactor constructs :

• 3 bathes of Osteo-Bed Resin solution, of 12 to 24 hours each, at room temperature

• 1 bath of Osteo-Bed infiltration solution, of 8 hours at room temperature

• 1 bath of Osteo-Bed embedding solution, of 1 week at 32◦C

The Osteo-Bed solutions are photosensitive products, and all the manipulations are carried
by limiting as much as possible direct light exposure. Due to the exothermic nature of the
polymerization process, the last bath must be kept in a thermostatic bath at 32◦C (Julabo
F34-ED) to avoid the formation of bubbles.

Slicing Once the polymerization process is over, the glass tube surrounding the construct can
be removed by breaking it in pieces. At this point, the construct is a polymerized cylinder of
approximately 40mm length and 12mm diameter. Three marks are made at 5, 15 and 25mm
from the bottom of the construct, respectively. This helps identify the bottom, middle and
upper part of the bioreactor in order to relate proliferation to the position from its entrance.
Using a precision sectioning saw (Buehler, IsoMet Low Speed Saw), three transverse slices
are obtained at each mark, leading to a total of nine slices per construct. Between two cuts,
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Figure 9.3 – Photography of syringes containing tubes of constructs in Osteo-Bed solution
(left), and of a construct sample being sliced (right).

the edge of the sample is glued (Loctite, SuperGlue 3 Precision) to a clean microscope slide.
Thanks to a micrometer gauge, the thickness of the cut slices are set to 300µm. The rotation
speed is adjusted to graduation 7, and the time required to cut one slice is of the order of
five minutes, depending on the wear of the blade (Buehler, IsoMet Diamond Wafering blade
5×0.014in). Once the slices are cut, the surface needs to be polished with grinding paper
P4000 (Buehler, Microcut Silicon Carbide) on a rotating polisher for about 2min. At this
stage, microscopic observations allows to clearly distinct the glass beads from the embedding
polymer. However a staining procedure is required in order to observe the cells.

Staining A large variety of staining methods exists to study the structure of all kind of
biological tissues [Bancroft & Gamble, 2008]. Here we need a reliable, rapid and simple
method which is capable of staining the cells embedded in MMA polymer. Stevenel Blue has
been shown to answer this prerequisites [Maniatopoulos et al., 1985], and can be prepared
from solutions of methylene blue (Sigma-Aldrich, 1g/75mL) and potassium permanganate
(Sigma-Aldrich, 1.5g/75mL). A glass container filled with Stevenel’s blue is preheated and
maintained at 60◦C in a water bath. The construct slices are then immersed in the colorant
solution at 60◦C for 10min, then rinsed with tap water. The slices are then passed under
compressed air to remove the excess of water, and let to dry at room temperature for a couple
of hours, allowing the stabilization of the coloration.

9.2.3 Image analysis

The colored slices are observed with an upright optical microscope (Optika B350), equip-
ped with a numerical camera (Optikam PRO5) and an acquisition software (Optika vision
pro). In order to reconstruct numerically an entire slice of the construct, approximately twenty
photos are taken for each slide (microscope parameters : objective ×4, frosted glass filter,
maximum luminosity ; software parameters : exposure 0.1325, gain 1, gamma 0.32, satura-
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tion 1, contrast 1, RGB 2.75 2 3). After reducing their size by 40% with the software ImageJ
[Schneider et al., 2012], the photographs are numerically merged using the image processing
software Adobe Photoshop CS4.

At this point, the presence of cellularized regions can be qualitatively observed for different
culture time and location within the bioreactor (Fig. 9.5). Cells appear in blue, while the
glass beads are recognizable by their shape and texture. Yet some quantification procedure
must be established in order for the experimental approach to be useful. Therefore we will
define two indicators related to cell and tissue growth. First, the number of blue pixels are
supposed representative of the surface of the slide occupied by cells. Thus we define the
cell growth indicator (CGI) as the ratio of the surface occupied by blue pixels to the surface
of the slice. Second, it can be noted that even though all the cells are not in contact, they
still form a continuous region. Although we do not have experimental proof of the presence
of extracellular matrix (ECM) between the cells, we suppose the surface occupied by this
continuous regions to be representative of the tissue. Based on this idea, we define a second
indicator, termed as tissue growth indicator (TGI). In order to evaluate the CGI and TGI, we
need to measure the total surface of the construct (Stot), the surface occupied by the blue pixels
(Spix), and the surface occupied by the continuous blue regions (Sreg). With this notations, the
two indicators are defined as

{

Cell Growth Indicator : CGI = Spix/Stot

Tissue Growth Indicator : TGI = Sreg/Stot
(9.1)

Additionally, the surface occupied by the glass beads (Sbeads) will also be measured.

The photograph of each slice is processed using ImageJ software. First the surface of the
total slice Stot is measured, and the outside is deleted. Secondly, the glass beads are manually
colored in green (RGB 0 250 0) using the circle tool. Then the color image is split in three
gray scale images, one for each RGB channel. The values of the gray scales range between
1 (black) to 255 (white). Most of the background artifacts are contained in the Blue channel,
while the cells appear only in the Red and Green channels. On the Blue channel, the glass
beads have now a value of 255, and applying a threshold at 254 allows to isolate the surface
occupied by the beads, and to measure Sbeads. Thirdly, adding up the Red and Green channels,
most of the cells appear on a white background. Some remaining artifacts may be removed by
adjusting the threshold (between 200 and 220) to fit the comparison with the original colored
photograph. Remaining artifacts may be removed by hands with geometrical tools, and the
surface occupied by the blue pixels Spix can be measured. Only the surface occupied by the
continuous cell regions remains to be measured. The two images of the isolated cells, and the
isolated beads are added. At this point we have a binary image where the cells and the beads
are in black. Before to select the continuous blue regions, a set of criteria must be defined
in order to insure reproductibility. Here we chose regions with relatively homogeneous cell
distribution, and where the distance between cells is inferior to 10 cell diameters. These
regions are filled in black using the geometrical tools combined with "erosion", "dilatation"
and "fill holes" tools for binary images. Finally, subtracting the beads, Sreg can be evaluated.
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Figure 9.4 – Scheme of the image processing steps leading to the different surface
measurement
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9.3 Observations of cell proliferation

For each duration of culture (1, 2 and 3 weeks), three independent experiments have been
carried, each experiment producing three constructs (a perfused, a static and a T0). Each
of the 27 resulting constructs have been prepared following the above histology protocols,
yielding to more than 200 slides to analyze.

9.3.1 Results

Representative reconstructed slices at different times of cultivation are showed in Fig. 9.5.
The glass beads are recognizable by the clear circles. Their different diameters are due to the
different plan of cut of the spheres. The slice taken from a T0 construct (24 hours post seeding)
shows only the glass beads, with some very thin lines of blue on their surface. The thickness
of this blue lines are too small to distinct attached cells from residual stain infiltrated between
the glass and MMA polymer. After three weeks of culture in static conditions, no visible cell
proliferation is observed compared to T0. In contrast, slices obtained from constructs perfused
for 1 week, show some thicker blue lines around the beads. In some slides, small regions are
uniformly colored in blue, revealing the presence of multilayered cell structures. At two and
three weeks of perfusion, large continuous blue regions indicate the formation of complex
three-dimensional cell structures. In perfusion culture conditions, the apparent continuity of
this cell populated regions, indicates that they constitute a tissue. Although there is here a
lack of experimental evidence that cells in this regions are surrounded by extracellular matrix
(ECM), the term "tissue" will be used to refer to this continuous regions. When the tissue
regions reach a certain thickness, a decrease in cell density is observed at their center, while
denser cell layers remain close to the boundary with culture medium. At three weeks of
perfusion, large strips of dense tissue appear disconnected from the beads.

In an attempt to quantify cell proliferation in perfused culture conditions, the above ob-
servations suggest that indicators based on surface measurements may be relevant. Therefore
two surface fraction indicators have been defined (see Eq. (9.1)), the cell growth indicator
(CGI), and the tissue growth indicator (TGI). The evolution of the CGI and TGI as a function
of time is shown in Fig. 9.6. Consistently with direct observations (Fig. 9.5), constructs cul-
tured in static conditions do not show any evolution in cell nor tissue growth indicators. On
the other hand, after three weeks of perfusion, an increase of a factor 20 to 30 is observed for
the two indicators, compared to initial and static constructs. The dependency in time of the
CGI and TGI follows a similar non-linear behavior.

Interestingly, the two indicators appear to be sensitive to the position in the bioreactor. In
order to underline this phenomena, in Fig. 9.7, the CGI and TGI are plotted as a function
of the distance to the perfusion chamber entrance. At short culture times, the cell and tissue
growth indicators show a slight decrease with the distance to the chamber entrance. This
effect is accentuated after 2 weeks of cultivation, where the CGI and TGI are higher at 5mm
than at 15 and 25mm from the entrance of the chamber. No significant difference is observed
between 15 and 25mm at 2 weeks of perfusion. It has to be noted that at 3 weeks of perfusion,
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Figure 9.5 – Representative photographs of stained slices at different culture time. Cells are
colored with Stevenel’s Blue. All slices are taken at 15mm from the chamber entrance.

(Diameter of a slice = 12mm)
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Figure 9.6 – Mean CGI (left) and TGI (right) as a function of time. Bar length represents
standard deviations.

the CGI and TGI behave differently. While the TGI decreases continuously with distance to
the entrance, the CGI is lower at 5mm than 15mm.

The CGI and TGI are measures related to the surface fractions of cells and tissues within a
slice. Their values must be analyzed in regard to the space available for cell and tissue growth,
thus the surface fraction of glass beads has to be studied. Fig. 9.8 displays the mean surface
fraction of the glass beads (Sbeads/Stot) as a function of the position in the perfusion chamber.
No significant variation of the beads surface fraction is observed between the different zones
of study. The overall mean and standard deviations of the beads surface fraction are 0.55 and
0.03 respectively. This results indicate that, at 5mm and more from the bottom of the tube,
the glass bead stack is homogeneous. In other words, the lower boundary does not effect
significantly the arrangement of beads after 5mm.

9.3.2 Discussion

The two indicators (CGI and TGI) defined by Eq. (9.1) are surface fractions related to
cell and tissue growth. Although they do not allow a quantification of the cell number nor
precise tissue surface (at least not without a calibration experimental campaign), they can be
used to evaluate the evolution of these parameters with time and space. The determination
procedures of the CGI and TGI have specific weak points. The CGI is more sensible to
variations of luminosity due to small differences in the thickness of the slices (imprecision
of the saw, amount of glue). On the other side, the continuous region is not always well
defined, and the determination of the TGI is more operator dependent. Yet, we expect the
uncertainties related to both of this measures, to be smaller than the variability between the
different samples.
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Figure 9.7 – Mean CGI (left) and TGI (right) as a function of the distance to the perfusion
chamber entrance. Bar length represents standard deviations. Only perfused and T0

samples are represented here.

As indicated in Fig. 9.7, at two weeks of cultivation, both CGI and TGI are higher in the
closest region to the perfusion chamber entrance. This behavior is strongly confirmed for the
tissue at three weeks, where there is almost a factor 2 between the TGI at 25mm and 5mm
from the entrance. Two explanations are possible, either the seeding procedure induces an
initial gradient of cell density along the bioreactor, either the transport conditions in the lower
part of the bioreactor are more favorable to cell and tissue growth. Although the results at
T0 and 1 week tend to show an homogeneous initial distribution of cells, the determination
of the CGI and TGI may not be sensitive enough to reveal variations for such small values.
The influence of the seeding procedure could be tested by modifying the seeding protocol,
yet for a question of time, this is let for future work. However the influence of the transport
properties on cell proliferation and tissue formation, can be studied through the model built
in Part II. This approach is developed bellow in Chap. 10.

In Fig. 9.7, the disconnection between the behavior of the two indicators at 3 weeks of per-
fusion, implies a change in cell density within the tissue. This is consistent with the observed
zones of lower cell density in Fig. 9.5. It is possible to hypothesize that, when the tissue is
growing thicker, cells migrate to the outer part in order to have access to higher concentration
of nutrient and oxygen. This would explain the presence of the high density layer of cells
surrounding the tissue, leading to the formation of the zones of tissue far from the beads after
3 weeks of perfusion. This hypothesis could be tested by assessing the presence or absence
of ECM in poorly cell populated regions. To that purpose staining experiments with different
collagen dyes (Eosin, Picro-fuchsin, Methyl blue) have been carried. Since MMA polymer is
poorly permeable to most stains, this coloration tests have been combined to various deplasti-
cizing protocols (acetone, Osteobed Embedding solvent). Unfortunately, at the current time,
none of this tests has led to conclusive results.
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Figure 9.8 – Mean surface fraction of the glass beads as a function of distance to the
chamber entrance. Bar length represents standard deviations.

At 3 weeks of perfusion, the lower part of the bioreactor is occupied at more than 20% by
tissue. Since the surface fraction of the glass beads is about 55%, the surface by which the
culture medium flows has been reduced from 45 to 25% of the tube’s surface. As the tissue
grows, the volume by which the culture medium flows is reduced, increasing its velocity.
This leads to a competition between the tissue expansion, and the forces exerted by the culture
medium on the tissue. The reduction in cell proliferation indicated by Fig. 9.6 at 5mm, as well
as the irregular shapes of tissue at 3 weeks of perfusion in Fig. 9.5, suggest that the balance
point between tissue growth and hydrodynamic forces has been reached.

In this study, the observations and measurements of the indicators are made from pla-
nar cuts of the constructs, and the three-dimensional structure of the construct can only be
guessed. 3D imaging would be of valuable help to understand the formation of the observed
complicated structure of tissue, and to asses the relevance of CGI and TGI. This could be
done by preparing several adjacent slices in the histological process, and reconstructing the
3D structure after a digitization and segmentation of the slices. However, the thickness of
the saw blade (about 700µm) reduces the resolution of this approach to about 1mm, and the
time required to prepare and reconstruct a relevant volume of sample is highly discourag-
ing. Another possibility would be the use of X-ray microtomography [Porter et al., 2007;
Davit et al., 2011; Voronov et al., 2013]. But even though this technology is getting more
easily available, it still necessitates heavy procedures as well as highly qualified manpower.
Moreover biological phases and water (or culture medium) have similar X-ray attenuation,
and contrasting agents are often required, complicating the experimental procedure. Lastly
X-rays are damageable for cells, and this technique is considered as destructive (yet probably
less than histology).

The above results give information about cell and tissue growth kinetics, as well as the
dependency on their position in the chamber. Yet, a full interpretation of this results, based
only on the experimental observation, remain limited. The use of modeling and computa-
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tional tools may be of valuable help in this task. In the remaining of this document, the
multiscale model previously developed is solved at the bioreactor scale, and the comparison
of the experimental and modeling results is discussed.
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CHAPTER 10

MACROSCOPIC MODEL OF THE

PERFUSION BIOREACTOR

THE EXPERIMENTAL STUDY presented in the previous chapter, gives insight on cell and
tissue growth kinetic within a perfusion bioreactor. Yet, the underlying mechanisms

driving the production of biomass, are difficult to analyze based on experimental observations
only. Here, we aim to take advantage of the model developed in Part II, in order to improve the
understanding of the transport phenomena leading to the production of tissue in the bioreactor.

In Chaps. 6 to 8, a theoretical framework has been derived, where mass and momen-
tum transport have been successively upscaled from the ECM, up to the bioreactor scale.
The obtained macroscopic model, composed of Eqs. (8.59), (8.60), (8.108), (8.109), (8.196)
and (8.197), must be solved at the bioreactor scale, in order to obtain the time and space evo-
lution of the intrinsic averages of (i) the culture medium velocities, (ii) the concentration of
a limiting nutritive species, such as glucose, and (iii) the tissue volume fraction. But before
to be able to solve this system, two tasks remain to be dealt with. First, a kinetic for the pro-
duction of biological tissue must be incorporated in the model. Second, the multiple effective
parameters appearing in the macroscopic transport equations must be computed for realistic
parameters and geometries, representing bioreactor culture conditions comparable to those in
Chap. 9. These two points are the subject of Secs. 10.1 and 10.2 respectively. Finally, the
resolution the macroscopic model will be presented in Sec. 10.3.

10.1 Tissue growth model

In this section, a tissue growth model, based on cell and ECM production kinetics, is pro-
posed. The equation describing the evolution of the tissue density Eq. (8.24), has actually
already been derived through successive upscalings presented in Part II. Here, the tissue pro-
duction kinetic is introduced, which has the advantage of naturally including the biomass
production, within the theoretical framework developed for transport at the bioreactor scale.
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Let us recall the mass conservation equation at the bioreactor scale Eq. (8.24)

∂

∂t
(εω〈ρω〉ω)

︸ ︷︷ ︸

tissue density
accumulation

+ ∇. (ραεω〈vω〉ω)
︸ ︷︷ ︸

culture medium
mass convective flux

= ṁω
︸︷︷︸

interfacial mass
exchange rate

+ εω〈Qω〉ω
︸ ︷︷ ︸

tissue
production rate

(10.1)

This equation has to be solved along with the rest of the macroscopic model for momentum
transport. Here, the interfacitial mass exchange rate can be expressed by Eq. (8.107), and only
the tissue production rate remain to be defined. To start with, using the definition Eq. (8.7),
the tissue production rate can be expressed as the sum of the cell and ECM tissue production
rate

εω〈Qω〉ω = εω〈εβ〈Qβ〉β + εσ〈Qσ〉σ〉ω (10.2)

Several models have been proposed in the literature to relate the cell growth rate to the
biochemical [Chung et al., 2007] or biohysical [Sacco et al., 2010] environment. However
there has been much fewer attempts to describe the production of ECM [Nikolaev et al.,
2010].

Here Qβ and Qσ have been formulated as point reaction at the cellular scale. Although
this is mathematically correct, there is no real physical meaning behind this. For instance,
the production of cell mass does not come from one point in the cytoplasm, but from the
interaction of multiple and complex mechanisms, distributed in the whole cell. Moreover the
production of ECM is insured by the cells, and should be dependent on quantities related to
cells, instead of variables in the β-region. Following this idea, here, Qβ and Qσ will not be
defined at the cellular scale, but in their average form 〈Qβ〉β and 〈Qσ〉σ. This allows to use
parameters that are representative of a population of cells, without having to introduce, for
example, stochastic parameters that would represent cell cycle or biological variability.

We start by the cell growth rate, and propose to use a modified Contois kinetic [Galban &
Locke, 1999a; Chung et al., 2007; Sacco et al., 2010]

〈Qσ〉σ =

(
km(τ)〈cAσ〉σ

〈cAσ〉σ + εσρσksα
−1

0

− kd

)

(εβρβ + εσρσ) (10.3)

where km(τ) is the maximum growth rate, that here depends on the average shear stress
τ . ks is the saturation constant, and kd is the cell death rate coefficient. This kinetic is
actually very similar to a Michaelis-Menten reaction rate, and its average form can be easily
derived from the point equation. This equation depends on nutrient average concentration
in the σ-region, and cell density in order to represent cell inhibition. Since the local mass
equilibrium is supposed at the cellular scale, we have {cA} = α0〈cAσ〉σ. And using the
notation correspondence cAω = {cA}, the cell growth rate can be written

〈Qσ〉σ =

(
km(τ)cAω

cAω + εσρσks
− kd

)

ρω (10.4)

Let us now focus on the ECM production rate. Several hypothesis can be made concerning
the form of 〈Qβ〉β . For instance, it could be supposed that the production of ECM is only
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10.1. Tissue growth model

dependent on the cell number, or that it follows a simple Contois kinetic without cell density
inhibition. In the present study, for seek of simplicity, the production of ECM is supposed to
be proportional to the production rate of cell material. Hence we have

〈Qβ〉β = ξ〈Qσ〉σ (10.5)

where ξ is a proportional constant, larger or equal to one. If ξ is larger than one, the tissue
expands by producing more ECM than cells, which is a characteristic of certain types of
connective tissues. The total tissue production rate takes the form

εω〈Qω〉ω = εω

〈

(εβξ + εσ)

(
km(τ)cAω

cAω + εσρσks
− kd

)

ρω

〉ω

(10.6)

and when introduced back into Eq. (10.1), the general expression of the tissue mass conser-
vation equation is obtain

∂

∂t
(εω〈ρω〉ω) +∇. (ραεω〈vω〉ω) = ṁω + εω

〈

(εβξ + εσ)

(
km(τ)cAω

cAω + εσρσks
− kd

)

ρω

〉ω

(10.7)
At this point, the bioreactor scale quantities are explicitly linked to cellular scale growth
parameters.

The use of the tissue mass conservation Eq. (10.7) in its current form, is quite complicated,
and some assumptions have to be made in order to make its resolution possible. As a first
hypothesis, ξ is supposed very close to one. This means that the time variations of εβ and εσ
can be neglected, and thus, by definition (Eq. (8.4)), that the time variations of 〈ρω〉ω are null.
Additionally, when the cell distribution in the tissue is supposed homogeneous, we obtain
〈ρω〉ω = ρω constant in space. If one is willing to accept this simplifications, the tissue mass
conservation equation takes the form

ρω
∂εω
∂t

+∇. (ραεω〈vω〉ω) = ṁω + εωρω (εβξ + εσ)

〈
km(τ)cAω

cAω + εσρσks
− kd

〉ω

(10.8)

Finally, one can notice that the production term under the superficial average is similar to a
Michaelis-Menten reaction kinetic. Following Wood & Whitaker [2000], it can be shown that,
under the length scale constraints of this study, and for ks and kd constant within the tissue,
the tissue production rate is expressed as

ρω
∂εω
∂t

+∇. (ραεω〈vω〉ω) = ṁω + εωρω (εβξ + εσ)

( 〈km(τ)〉ω〈cAω〉ω
〈cAω〉ω + εσρσks

− kd

)

(10.9)

The mass exchange term can be further expressed using Eq. (8.107) and the solution of the
closure problem for momentum transport at the bioreactor scale. Eq. (10.9) involves only
macroscopic variables, and can be solved in complement with the rest of the macroscopic
system describing mass transport at the bioreactor scale. The resolution of the macroscopic
problem is discussed in Sec. 10.3.
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10.2 Realistic effective transport parameters

The bioreactor scale transport equations derived in Chap. 8 necessitate the knowledge of
the effective parameters values. Fortunately, the computations of this parameters is possible
by solving the corresponding closure problems on representative unit cells. In this section,
we discuss a methodology to compute realistic bioreactor effective parameters. Nevertheless,
the macroscopic properties depends on the lower scales effective transport properties, and we
start by computing the tissue effective transport parameters.

10.2.1 Tissue effective parameters

Secs. 7.2.2 and 7.3.2 revealed the importance of the ECM transport parameters on the
effective tissue permeability KII

ω and diffusion-dispersion tensor DII
Aω. However these com-

putations have been carried for bi-dimensional in-line arrays of cylinders. In this section,
more realistic tridimensional geometries are modeled to represent the cellular scale (level
III). Using parameters from the literature we estimate KII

ω and DII
Aω and compare them with

experimental measurements from bibliography.

Figure 10.1 – Three-dimensional periodic unit cells for the cellular scale (level III). Simple
Cubic (left) and Centered Cubic (right) arrangement of cells.

The cells are modeled by spheres embedded in a porous matrix. The arrangement of the
spheres is either simple cubic (SC) or centered cubic (CC) (Fig. 10.1). The values of the
parameters used in the model are taken either from the sources reported in Tab. 6.1, or from
the resolution at the ECM scale (Secs. 6.2.1 and 6.2.2), and are summarized in Tab. 10.1.

The tissue permeability is computed by solving Eqs. (7.61) to (7.67) on the tridimensional
unit cells (Fig. 10.1). The cell diameter is taken constant (dcell = 10 × 10−6m) and the
ECM volume fraction εβ is varied between 0.5 and 0.95. Following the results presented in
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10.2. Realistic effective transport parameters

Description Parameter Value used in the model

ECM fibers diameter dfib 10−7m

Cell diameter dcell 10−5m

Scale IV unit cell length lα 10× dfib = 10−6

ECM permeability K III
β 10−2 × l2α

= 10−4 × d2cell

= 10−14m2

ECM fluid volume fraction εα 0.90

Culture medium dynamic viscosity µα 10−4Pa.s

Glucose diffusion coefficient in culture medium DAα 6× 10−10m2/s

Table 10.1 – Values used for the computation of the tissue effective transport parameters

Sec. 6.2.1, for a fiber diameter of dfiber = 100 × 10−9m and a ratio between the ECM unit
cell and the fiber diameter of lα/dfiber = 10, the ECM permeability K III

β is of the order of
10−2 × l2α with a corresponding ECM porosity of 0.90. The results are presented in Fig. 10.2
in term of dimensionless and dimensional permeability. Contrary to the previous results on
permeability, in Fig. 10.2 the tissue permeability is adimensionalized by the square of the cell
diameter (instead of the square of the unit cell length). This has two practical advantages.
First, it can be assumed that the cellular volume fraction in the tissue depends mostly on
the number of cells, and not on the diameter of the cells. Thus varying lβ and keeping dcell

constant seems more appropriate. Second, the dimensionless ECM permeability related to the
cell diameterK III

β /d
2
cell should be a constant, and this also motivates to take dcell as the relevant

length scale.

The computed tissue permeability K II
ω is of 3 to 9 × 10−15m2. These values are in good

agreement with the reported permeabilities found in the literature [Levick, 1987; Swartz &
Fleury, 2007; Fournier, 2011; Tarbell & Shi, 2013]. One can observe that the tissue per-
meability is mainly controlled by the ECM permeability, and this explains the very weak
influence of the disposition of the cells on the tissue permeability. As reported in Sec. 6.2.1,
when the ECM volume fraction becomes close to one (little number of cells in the tissue), K II

ω

tends to the ECM permeability.

10.2.2 Bioreactor effective parameters

Bioreactor effective parameters are computed on representative unit cells at the tissue scale.
One of the main difficulty of this study, is the evolving nature of the tissue architecture,
leading to different bioreactor effective parameters depending on the state of culture. The
tissue volume fraction has been experimentally measured in Chap. 9, and its value ranges
between zero and 0.25 depending on the cultivation time. Additionally, the glass bead volume
fraction has been shown to be approximately 0.55.
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Chapter 10. Macroscopic Model of the Perfusion Bioreactor

Figure 10.2 – Tissue permeability for CS ans CC arrangement of cells.

Under this considerations, a three-dimensional unit cell for the computation of realistic
bioreactor properties is proposed (see Fig. 10.3). The glass beads are represented by a simple
cubic array of spheres, which volume fraction set to εκ = 0.5. The tissue region is described
by a layer of constant thickness, covering the totality of the spheres. The value of the tissue
volume fraction can vary by adjusting the thickness of the tissue layer.

Unfortunately, for computational cost reasons, the resolution of the closure problems on
the unit cell described above has not been proceeded yet. This will be the subject of future
work.

10.3 Resolution at the bioreactor scale

Although at the present time, the macroscopic model has not been solved yet, the main
features of its resolution process are discussed in this section.

Let us recall the results of the bioreactor scale transport model developed in Part II. Starting
with the momentum problem, the macroscopic transport equations in the superficial form are

ραε
−1

γ

∂〈vγ〉
∂t

= −∇〈pγ〉γ + ραg + µαε
−1

γ ∇2〈vγ〉

− µα
KI
γ

〈vγ〉+
µα
KI
γω

〈vω〉+ΠI
γ (〈pγ〉γ − 〈pω〉ω) (10.10)
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Figure 10.3 – Example of three-dimensional unit cell used to compute realistic bioreactor
effective properties. Blue and pink regions represent the glass beads and the tissue

respectively.

ραε
−1

α ε−1

β ε−1

ω

∂〈vω〉
∂t

= −∇〈pω〉ω + ραg + µαε
−1

α ε−1

β ε−1

ω ∇2〈vω〉

− µα
KI
ω

〈vω〉+
µα
KI
ωγ

〈vγ〉+ΠI
ω (〈pγ〉γ − 〈pω〉ω) (10.11)

Here the variables are 〈vγ〉, 〈vω〉, 〈pγ〉γ , 〈pω〉ω, and εω. These equations have to be completed
with the mass conservation equations

∂

∂t
(εαρα) +∇. (ρα〈vγ〉) = −ρα

hγ
µα

(〈pγ〉γ − 〈pω〉ω) (10.12)

∂

∂t
(εωρω) +∇. (ρα〈vω〉) = −ρα

hω

µαε−1
α ε−1

β

(〈pγ〉γ − 〈pω〉ω)

+ εωρω (εβξ + εσ)

( 〈km(τ)〉ω〈cAω〉ω
〈cAω〉ω + εσρσks

− kd

)

(10.13)

Where the tissue production rate has been introduced. One can see in Eq. (10.13), a cou-
pling of the momentum problem with the problem for mass transport. And the macroscopic
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concentration fields of 〈cAγ〉γ and 〈cAω〉ω are obtained from

∂ (εγ〈cAγ〉γ)
∂t

+∇. (εγ〈vγ〉γ〈cAγ〉γ) =
∇.
(
DI
γγ.∇〈cAγ〉γ

)
+∇.

(
DI
γω.∇〈cAω〉ω

)
+∇.

(
dI
γ (〈cAγ〉γ − 〈cAω〉ω)

)

+ uI
γγ.∇〈cAγ〉γ + uI

γω.∇〈cAω〉ω + αI
γ (〈cAγ〉γ − 〈cAω〉ω)

− hγ
µα

(〈pγ〉γ − 〈pω〉ω) 〈cAγ〉γ (10.14)

∂ (εIIIεω〈cAω〉ω)
∂t

+∇. (εω〈vω〉ω〈cAω〉ω) =
∇.
(
DI
ωγ.∇〈cAγ〉γ

)
+∇.

(
DI
ωω.∇〈cAω〉ω

)
+∇.

(
dI
ω (〈cAγ〉γ − 〈cAω〉ω)

)

+ uI
ωγ.∇〈cAγ〉γ + uI

ωω.∇〈cAω〉ω + αI
ω (〈cAγ〉γ − 〈cAω〉ω)

− hω

µαε−1
α ε−1

β

(〈pγ〉γ − 〈pω〉ω) 〈cAω〉ω − εωεσ
kA

α0KA

〈cAω〉ω (10.15)

Compared to more usual transport problems, the numerous additional terms may appear
discouraging. However preliminary macroscopic computations can be proceeded (for instance
in static conditions for a given distribution of tissue), so that the order of magnitude of the
different terms are evaluated. This may allow to simplify the problem by neglecting very
small terms (most likely the terms involving ΠI

i, hi, d
I
i, u

I
ij and αI

i).

Then, the simplified system should be solved in transient conditions. At the macroscopic
scale, the bioreactor is a one dimensional domain representing the position in the length of
the perfusion chamber. Various culture conditions can be modeled, in particular, the effect of
initial seeding (initial conditions for εω) on the final distribution of tissue should be studied,
in order to help the interpretation of the experimental results of Chap. 9.
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GENERAL CONCLUSIONS

The main goal of this thesis, is to gain insight on the relations between transport phenom-
ena and tissue production, within a perfusion bioreactor for bone tissue engineering [David
et al., 2011]. To this purpose, a combined modeling and experimental approach has been
followed.

A theoretical framework based on the volume averaging method with closure has been
developed, in order to investigate transport phenomena occurring in the perfusion bioreactor.
Three successive upscalings have been operated, from the extracellular matrix (ECM) scale,
up to the bioreactor scale. At each scale, the effective transport properties have been evaluated
by solving the corresponding closure problem. The interscale dependencies arising from the
encountered hierarchical structures have been studied. Finally, a bioreactor scale model for
mass and momentum transport has been obtained, where the relevant informations contained
at the lower scale were retained. The construction of this model allowed the incorporation of
a tissue growth rate, which parameters were related to the cell and ECM production.

In complement, an experimental model of the bioreactor has been proposed, where cells
were grown on spherical and impermeable glass beads, under culture medium perfusion. A
methodology based on histology and image analysis has been developed, in order to quantify,
through the definition of two indicators, the evolution of cell and tissue in space and time.

Although the resolution of the macroscopic model could not be done in the time of this the-
sis, a methodology has been proposed to compute the evolution of the tissue volume fraction,
and its influence on mass and momentum transport. The results of such simulations should
help the interpretation of the experimental results, and provide informations on the production
of tissue in a perfusion bioreactor.

Perspectives

Concerning the experimental approach, the validity and precision of the two growth indi-
cators defined in Chap. 9 should be examined. This necessitate the comparison with results
of the cell/tissue volume fractions obtained with other methods, such as X-ray microtomog-
raphy, multiphoton microscopy, or bioliminescence imaging. Additionally, the influence of
more culture parameters should be investigated. For instance, as shown along this study,
the transport properties of the bioreactor are non-linearly dependent on the Péclet Number.
Therefore the intensity of the culture medium flow is expected to play a critical role in the
production of biomass. An experimental parametric study of the bioreactor input flow rate
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should be carried experimentally, so that the results on tissue growth, can be related to the
computed bioreactor transport properties. It would also be interesting to modify the cultured
cell line, to observer different cell growth and ECM production kinetics. Another important
aspect yet to be studied, is the importance of the mechanical stimuli induced by the culture
medium flow. In the current experimental setup, the contribution of such biophysical stimuli
on cellular activity cannot be assessed. The quantification of the influence shear stress on
cell proliferation is a challenging experimental task. The use of microfluidic systems seems a
promising approach, and current investigations are carried in that direction [Chabanon et al.,
2012; David et al., 2014].

Regarding the model built from successive upscaling in Part II, several improvements can
be proposed. Indeed, in this thesis, the mass transport model is very general, facilitating the
coherence of the whole theory. However, more specific transport mechanisms should be taken
into account in order improve the representation of the biophysical and biochemical processes.
In particular, the description at the cellular scale can be greatly refined. To start with, the
choice of local mass equilibrium between the ECM and the cellular region can be questioned.
Unfortunately, few experimental clues on the validity of such assumption are available, and
this hypothesis should be checked for each transported species considered. Then, the variety
of existing membrane transport mechanism would necessitate a specific modeling work for
each considered transported species. Additionally, interactions between biomolecules should
be treated, implying to take into account multispecies transport. Moreover, transport within
the cell region has not been described here. There are interesting work perspectives in the rep-
resentation of the structure and transport mechanisms in the intracellular space [Kühn et al.,
2011]. Finally, the dispersive effects within the ECM have not been included in the present
analysis. Although these phenomena are not likely to occur in low permeability ECM, a
number of experimental study make use of high permeability collagen gel, where dispersive
effects at the cellular scale could influence cell activity.

In the present thesis, two-equation non-equilibrium models have been developed for the
description of transport phenomena at the tissue scale. This choice has been motivated by the
necessity to have access to the tissue intrinsic averages, which are required in the tissue pro-
duction rate. On one hand, this type of model allows to capture more details of the transport
phenomena taking place within the bioreactor. In particular, although a deeper investiga-
tion of the coupling effective tensor is required, their non monotonic behavior may play an
important role in the regulation of tissue growth. On the other hand, the improved represen-
tations related to these models, comes with an increased level of complexity, which hinder
their applicability. A possible simplification may be obtained by the use of one-equation non-
equilibrium models such as those presented in App. C and [Davit et al., 2010]. In that cases,
the tissue production rate should be dependent on the weighted averages of the concentration
and velocity. The validity of this "simpler" one-equation bioreactor model, would have to be
assessed by comparison of the macroscopic solution, with the two-equation model.
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NOMENCLATURE

General notations

Aij interfacial area between the i and j phase(s)/region(s)
CGI Cell growth indicator
εi volume fraction of the i-phase/region
g gravitational acceleration
I unit tensor
li length scale associated with the i-phase/region
Lψ length scale associated with average of ψ
nij normal vector oriented from the i toward the j phase/region
〈ψi〉 superficial average of ψi
〈ψi〉β intrinsic average of ψi
ψi a local quantity associated with the i-phase/region
Pei Péclet number in the i phase/region
ψ̃i spacial deviation of ψi
r0 length scale associated with the averaging volume
t time variable
tψ time scale associated with variation of ψ
TGI Tissue growth indicator
Vi volume of the i-phase/region within the averaging volume
wij velocity of the interface between the i and j phase(s)/region(s)

Notations defined at scale IV

α phase indicator of the interstitial fluid phase defined at scale IV
Bα closure variable associated with the velocity in α-phase
bα closure variable associated with the pressure in α-phase
cAα local concentration of the substrate A in the α-phase
dα closure variable associated with the concentration in α-phase
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DAα diffusion coefficient of the substrate A in the α-phase

η phase indicator of the ECM fibrous structure phase defined at scale IV

pβ local pressure in the α-phase

Qη production rate of collagen fibers

µα dynamic viscosity of the α-phase

ρα density of the α-phase

vα local fluid velocity in the α-phase

VIV averaging volume associated with scale IV

Notations defined at scale III

α0 equilibrium coefficient

α1,2,3,4 membrane transport parameters

β phase indicator of the ECM region defined at scale III

Bβ closure variable associated with the velocity in β-region

bβ closure variable associated with the pressure in β-region

cAβ (= 〈cAα〉) local concentration of the substrate A in the β-region

cAσ local concentration of the substrate A in the σ-phase

dβ closure variable associated with the concentration in β-region

dσ closure variable associated with the concentration in σ-phase

DIII
Aβ dispersion tensor of substrate A in the β-region

Dσβ relative diffusivity between the σ-phase and the β-region

DAσ diffusion coefficient of the substrate A in the σ-phase

E0 surface concentration of transporter proteins

Γ see Eq. (7.92)

γβ relative membrane transport parameter

KIII
β permeability tensor of the β-region

ξ proportional constant betwen ECM and tissue growth rates

KA half saturation constant of intracellular reaction

kA specific degradation rate of substrate A

kd cell death rate

km(τ) maximum cell growth rate (depending on the average shear stress τ )

ks saturation constant related to cell growth rate

pβ (= 〈pα〉α) local pressure in the β-region

Qβ (= 〈Qη〉) average production rate of ECM (β-region)

Qσ production rate of the σ-phase

ρβ (= εαρα + εβρβ) total density of the β-region

ρσ density of the σ-phase

Rσ consumption of species A in the σ-phase
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σ phase indicator of the intracellular phase defined at scale III
vβ (= 〈vα〉) local fluid velocity in the β-region
VIII averaging volume associated with scale III

Notations defined at scale II

Bij velocity-like closure variable (2nd order tensor)
bij pressure-like closure variable (1st order tensor)
Bi velocity-like closure variable (1st order tensor)
bi pressure-like closure variable (scalar)
{cA} local mass equilibrium average of the cell scale concentrations
cAγ local concentration of substrate A in the γ-phase
cAω (= {cA}) local concentration of the substrate A in the ω-region
DII
Aω effective dispersion tensor of substrate A in the ω-region

dij concentration-like closure variable (1st order tensor)
si concentration-like closure variable (scalar)
γ phase indicator of the culture medium phase defined at scale II
κ phase indicator of the glass bead phase defined at scale II
K⋆
β intermediate permeability tensor related to the structure of the β-region

KII
ω effective permeability tensor of the ω-region

ṁi interfacial mass exchange rates between the i-phase/region and the other
pγ local pressure in the γ-phase
pω (= 〈pβ〉β) local pressure in the ω-region
Qω (= 〈Qβ +Qσ〉) average production rate of tissue (ω-region)
ρω (= εβρβ + εσρσ) total density of the ω-region
εIII (= α−1

0 εσ + εαεβ)
Rω (average consumption of substrate A in the ω-region
vγ local fluid velocity in the γ-phase
vω (= 〈vAβ〉) local fluid velocity in the ω-region
VII averaging volume associated with scale II
ω phase indicator of the tissue region defined at scale II

Notations defined at scale I

αI
i interfacial mas transfer effective coefficient

DI
ii main effective diffusion-dispersion tensor related to the i-phase/region

DI
ij coupling effective diffusion-dispersion tensor

dI
i velocity like effective coefficient
hi mass exchange coefficients
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KI⋆
ω intermediate effective permeability arising from the structure of the ω-region

KI
i main effective permeability tensor related to the i-phase/region

KI
ij coupling effective permeability tensor

ΠI
i pressure related effective tensor

uI
ij velocity like effective coefficient

χij interface exchange velocity-like coefficients
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APPENDIX A

VOLUME AVERAGING FROM LEVEL IV
TO III

A.1 Averaging momentum transport in the α-phase

Local conservation equations valid in the α-phase are described by Eqs. (6.2) to (6.5). The
volume averaging method is first applied on momentum transport by averaging the conser-
vation Eq. (6.2). Considering ρα and µα constant, the superficial average of the momentum
transport in the α-phase is

ρα

〈
∂vα
∂t

〉

= −〈∇pα〉+ µα
〈
∇2vα

〉
(A.1)

In order to interchange spatial integration and time differentiation in the left hand side of Eq.
(A.1) , the general transport theorem [Howes & Whitaker, 1985; Whitaker, 1999] is applied
along with the no-slip condition Eq. (6.4)

〈
∂vα
∂t

〉

=
∂〈vα〉
∂t

(A.2)

The pressure term of Eq. (A.1) can be treated so to interchange spatial differentiation and
integration using the spatial averaging theorem [Howes & Whitaker, 1985; Whitaker, 1999]

〈∇pα〉 = εα∇〈pα〉α + 〈pα〉α∇εα +
1

VIV

∫

Aαη

nαηpαdA (A.3)

In order to treat the local pressure in the area integral, Gray’s spacial decomposition [Gray,
1975] of the pressure is used

pα = 〈pα〉α + p̃α (A.4)

leading to

〈∇pα〉 = εα∇〈pα〉α + 〈pα〉α∇εα +
1

VIV

∫

Aαη

nαη 〈pα〉α dA+
1

VIV

∫

Aαη

nαηp̃αdA (A.5)
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Using Taylor’s expansion around the centroid of VIV and the geometrical theorems [Quintard
& Whitaker, 1994b], we get rid of the non-local term

〈∇pα〉 = εα∇〈pα〉α +
1

VIV

∫

Aαη

nαηp̃αdA (A.6)

with the length scale constraints
lα << r0 (A.7)

r20 << LεαLp1 (A.8)

where Lp1 is the characteristic length scale on which the pressure gradient vary in the α-phase.

We now focus on the viscosity term in Eq. (A.1). Applying twice the spacial averaging
theorem and making use of the no-slip condition Eq. (6.4) we get

〈
∇2vα

〉
= ∇2 〈vα〉+

1

VIV

∫

Aαη

nαη.∇vαdA (A.9)

The spacial decomposition of the velocity

vα = 〈vα〉α + ṽα (A.10)

allows to write Eq. (A.9) in the form

〈
∇2vα

〉
= εα∇2 〈vα〉α + 〈vα〉α .∇2εα + 2∇εα.∇〈vα〉α

+
1

VIV

∫

Aαη

nαη.∇〈vα〉α dA+
1

VIV

∫

Aαη

nαη.∇ṽαdA (A.11)

Once again we can eliminate the non local term represented by the fourth term of the right
hand side of Eq. (A.11) using Taylor’s expansion around the centroid of VIV and the geomet-
rical theorems [Quintard & Whitaker, 1994b]

〈
∇2vα

〉
= εα∇2 〈vα〉α + 〈vα〉α .∇2εα +∇εα.∇〈vα〉α +

1

VIV

∫

Aαη

nαη.∇ṽαdA (A.12)

with the length scale restrictions
lα << r0 (A.13)

r20 << LεLv2 (A.14)

where Lv2 is the characteristic length scale on which the laplacian of vα vary.

We now study the order of magnitude of the three first terms of the right hand side of Eq.
(A.12)

εα∇2 〈vα〉α = O

(

εα
〈vα〉α
Lv1

)

(A.15)

〈vα〉α .∇2εα = O

(

εα
〈vα〉α
Lε1

)

(A.16)

∇εα.∇〈vα〉α = O

(

εα
〈vα〉α
LεLv

)

(A.17)
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and conclude that the following simplifications

∇εα.∇〈vα〉α << εα∇2 〈vα〉α (A.18)

〈vα〉α .∇2εα << εα∇2 〈vα〉α (A.19)

are valid if the next length scale constraints are met

Lv1 << LεLv (A.20)

Lv1 << Lε1 (A.21)

The viscosity term can then be simplified to the form

〈
∇2vα

〉
= εα∇2 〈vα〉α +

1

VIV

∫

Aαη

nαη.∇ṽαdA (A.22)

Thus, combining Eqs. (A.2), (A.6) and (A.22) into Eq. (A.1), and keeping the length
scale constraints Eqs. (A.7), (A.8), (A.13) and (A.14) valid, we obtain the unclosed averaged

equation for momentum transport in the α-phase

ραε
−1

α

∂ (εα〈vα〉α)
∂t

= −∇〈pα〉α+µα∇2 〈vα〉α+
1

Vα

∫

Aαη

nαη. (−Ip̃α + µα∇ṽα) dA (A.23)

We now average the continuity Eq. (6.1)

〈∇.vα〉 = 0 (A.24)

Applying the spacial averaging theorem, and using the no-slip boundary condition Eq. (6.4),
Eq. (A.24) simplifies to

∇. 〈vα〉α = 0 (A.25)

A.2 Averaging mass transport in the α-phase

The mass conservation equation in the α-phase (Eq. (6.3)) is averaged
〈
∂cAα
∂t

〉

+ 〈∇. (vαcAα)〉 = 〈∇.(DAα∇cAα)〉 (A.26)

The intersitial medium diffusion coefficient DAα is assumed to be constant in space, and by
applying twice the spatial averaging theorem, and once the general transport theorem, Eq.
(A.26) can be written

∂ (εα 〈cAα〉α)
∂t

+ 〈∇. (vαcAα)〉 =

∇.
[

DAα

(

εα∇〈cAα〉α + 〈cAα〉α∇εα +
1

VIV

∫

Aαη

nαηcAαdA

)]

(A.27)
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where the integral of the interfacial flux is eliminated due to the boundary condition Eq. (6.5).
In order to eliminate cAα from the surface integrals, Gray’s spatial decomposition [Gray,
1975] is used

cAα = 〈cAα〉α + c̃Aα (A.28)

where c̃Aα is the spatial deviation of species concentration in the α-phase. It follows that the
interfacial integral term in Eq. (A.27) can be written as

1

VIV

∫

Aαη

nαηcAαdA =
1

VIV

∫

Aαη

nαη 〈cAα〉α dA+
1

VIV

∫

Aαη

nαη c̃AαdA (A.29)

The intrinsic average is removed from the area integral using Taylor series about the centroid
of the averaging volume V , and applying the geometrical theorems [Quintard & Whitaker,
1994b] we get

∂ (εα 〈cAα〉α)
∂t

+ 〈∇. (vαcAα)〉 = ∇.
[

DAα

(

εα∇〈cAα〉α +
1

VIV

∫

Aαη

nαη c̃AαdA

)]

(A.30)

with the length scale constraints

lα << r0 (A.31)

r20 << LεαLcα1
(A.32)

The convective term remains to be treated. Applying the spacial averaging theorem and
using Gray decomposition for the velocity and the species concentration, the convective term
can be developed as

〈∇. (vαcAα)〉 = ∇.
〈

εα 〈vα〉α 〈cAα〉α + 〈vα〉α c̃Aα + ṽα 〈cAα〉α + ṽαc̃Aα

〉

(A.33)

We suppose that the variations of the averaged quantities can be ignored within the averaging
volume. It follows that the averages can be removed from the volume integrals, and the
averages of the deviations can be neglected (see [Whitaker, 1999, chap. 3.2] for more details).
Eq. (A.33) is simplified as

〈∇. (vαcAα)〉 = ∇. (εα 〈vα〉α 〈cAα〉α + 〈ṽαc̃Aα〉) (A.34)

Applying this result in Eq. (A.30), we obtain the the unclosed averaged equation for mass

transport in the α-phase:

∂ (εα 〈cAα〉α)
∂t

+ εα 〈vα〉α .∇〈cAα〉α =

∇.
[

DAα

(

εα∇〈cAα〉α +
1

VIV

∫

Aαη

nαη c̃AαdA

)]

−∇. 〈ṽαc̃α〉 (A.35)
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A.3 Closure

The deviation problem for momentum conservation is deduced by subtracting Eq. (A.23)
to Eq. (6.2), and after some algebra

0 = −∇p̃α + µα∇2ṽα −
1

Vα

∫

Aαη

nαη. (−Ip̃α + µα∇ṽα) dA (A.36)

Here the closure problem is considered to be quasi-steady by imposing the constraint

µα
ρα

tv
l2α
>> 1 (A.37)

where tv is the characteristic time for changes in the α-phase velocity. Note that assuming the
closure problem to be quasi-steady does not mean the averaged problem to be quasi-steady.

The deviation problem for the continuity equation is obtained by subtracting Eq. (A.25) to
Eq. (6.1)

∇.ṽα = 0 (A.38)

The deviation problem for the no-slip condition given by Eq. (6.4) is directly obtain from the
spatial decomposition

ṽα = −〈vα〉α at Aαη (A.39)

This equality plays a important role for the closure since it is the only source term in the
momentum transport problem. Given the form of the source, a linear relation between the
deviation and the average is proposed

ṽα = Bα.〈vα〉α (A.40)

p̃α = µαbα.〈vα〉α (A.41)

where Bα and bα are the closure variables. Substituting these forms of the deviations in Eq.
(A.23) we obtain the closed averaged equation for momentum transport in the α-phase:

ραε
−1

α

∂ (εα〈vα〉α)
∂t

= −∇〈pα〉α + µα∇2 〈vα〉α −
µα
KIII
α

εα〈vα〉α (A.42)

where KIII
α is the permeability tensor defined as

εαK
III−1

α =
1

Vα

∫

Aαη

nαη.(−Ibα +∇Bα)dA (A.43)

The permeability can be evaluated when solving the closure variable defined through the
deviation problem

0 = −∇bα +∇2Bα + εαK
III−1

α (A.44)

∇.Bα = 0 (A.45)

Bα = −I at Aαη (A.46)

〈Bα〉α = 0 (A.47)

Bα(x+ li) = Bα(x) i = 1, 2, 3 (A.48)
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Following the same methodology, the deviation problem for mass transport in the α-phase
is derived

ṽα.∇〈cAα〉α + vα.∇c̃Aα = ∇. (DAα∇c̃Aα)

− 1

Vα

∫

Aαη

nαη. (DAα∇c̃Aα) dA+ ε−1

α ∇.〈ṽαc̃Aα〉 (A.49)

Comparing the orders of magnitude

vα.∇c̃Aα = O

(

〈vα〉
c̃Aα
lα

)

(A.50)

ε−1

α ∇.〈ṽαc̃Aα〉 = O

(

〈vα〉
c̃Aα
L

)

(A.51)

the last term of Eq. (A.49) can be neglected on the basis of length scale separation.

The simplified deviation problem for mass transport in the α-phase can then be written,
using the weighted average concentration

ṽα.∇〈cAα〉α + vα.∇c̃Aα = ∇. (DAα∇c̃Aα)−
1

Vα

∫

Aαη

nαη. (DAα∇c̃Aα) dA (A.52)

Using the spacial decomposition in the boundary condition Eq. (6.5) we obtain

− nαη.DAα∇c̃Aα = nαη.DAα∇〈cAα〉α (A.53)

Considering the form of the source terms in the mass transport deviation problem, the closure
variable is defined trough the relation between the deviation and the gradient of the averaged
concentration

c̃Aα = dα.∇〈cAα〉α (A.54)

and the closed averaged equation for mass transport in the α-phase can then be written in the
form

∂ (εα 〈cAα〉α)
∂t

+ εα 〈vα〉α .∇〈cAα〉α = ∇.
(
DIII
Aα.∇〈cAα〉α

)
(A.55)

where the diffusion/dispersion tensor is defined as

DIII
Aα = DAα

(

εαI+
1

V

∫

Aαη

nαηdαdA

)

+ 〈ṽαdα〉 (A.56)

and the closure variable dα is the solution of the closure problem

ṽα + vα.∇dα = DAα∇2dα −
DAα

Vα

∫

Aαη

nαη.∇dαdA (A.57)

−nαη.∇dα = nαη (A.58)

〈dα〉 = 0 (A.59)

dα(x+ li) = dα(x) i = 1, 2, 3 (A.60)
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APPENDIX B

DISPERSION IN BI-DISPERSE

HIERARCHICAL POROUS MEDIA

Transport phenomena in porous systems often involve "multi-porous" configurations where,
for instance, the solid matrix can also be porous, the pores at the different scales (micro- and
macro-pores) being saturated by the same fluid. Another example concerns porous struc-
tures where the impermeable solid macro-structure is embedded in a finer saturated porous
medium, itself eventually embedded in another finer porous structure and so on (see figure
B.1). In other words, the pores at a given scale are filled by a finer porous medium whose
structure is not necessarily the same than the structure at the upper scale.

This type of hierarchical porous media has been characterized using several terminologies
depending on the number of scales and on the associated porous morphologies. For example,
two-scale porous structures composed of spherical solid particules are described as "binary
mixture" [Mota et al., 2001], "multisized" porous media [MacDonald et al., 1991; Dias et al.,
2008; Morad & Khalili, 2009], "bimodal" distribution of particles [Guyon et al., 1987; Va-
hedi Tafreshi et al., 2009] or "bidisperse" [Moutsopoulos & Koch, 1999; Moutsopoulos et al.,
2009]. This latter terminology has been widely used to describe transfer phenomena in cata-
lyst pellets where the porous architecture is represented by micro- and macro-pore network,
the terminology "bidisperse" being in that case, the dispersion of the pore size instead of the
grain size [Burghardt et al., 1988; Petropoulos et al., 1991; Silva & Rodrigues, 1996].

Although these multiscale porous structures are present in a large variety of applications
(packed-bed reactors, sandy soils,...), few attempts have been performed in order to propose
averaged models taking into account the hierarchical dependence on the geometry and the
physics at the different scales of the system. Part of the studies have been devoted to the de-
termination of the permeability. Modified expression of the Kozeny-Carman relationship have
been obtained for porous structures composed by multi-sized spherical particles [MacDonald
et al., 1991; Mota et al., 2001; Dias et al., 2008; Moutsopoulos et al., 2009] or for bimodal
fibrous porous media [Vahedi Tafreshi et al., 2009; Markicevic & Djilali, 2006]. A bidiperse
porous medium composed by two types of spheres has been considered using ensemble aver-
age Moutsopoulos & Koch [1999]. It was found that the small grains have higher influence
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on the permeability, while large grains have stronger effect on dispersion. The contribution
from the mass transfer boundary layer to the effective dispersion at the larger scale was em-
phasized. In this study, the theory for moderate and highly permeable media were developed
separately.

On the contrary, the objective of the present study is to derive a general macroscopic model
for momentum and solute dispersion in a three-scale hierarchical porous structure (many
intermediate scales could have been incorporated in the analysis). Two upscaling are suc-
cessively performed using the volume averaging method Whitaker [1999] and the effective
transport properties (permeability, diffusion-dispersion coefficient) at the different scales are
determined by numerically solving the associated closure problems. Note that similar anal-
ysis have been performed in the context of large-scale averaging of heterogeneous porous
media for momentum [Quintard & Whitaker, 1996b,a, 1998a] and solute transport [Quintard
& Whitaker, 1998b; Ahmadi et al., 1998; Quintard et al., 2001; Cherblanc et al., 2003]. How-
ever, as previously said, hierarchical porous structures considered in the present study differ
from the heterogeneous one in the cited references since they are characterized by imperme-
able solid matrix embedded in finer porous regions. Therefore, momentum is governed by
Darcy-Brinkman equation within the pores of the finer porous region where no slip condi-
tion is adopted at the solid/porous interface. Nevertheless, the analysis for solute dispersion
presents similarities which are detailed in appendix. Numerical results show the influence
of the micro- and meso-scale phenomena on permeability and dispersion coefficients at the
macroscale.

B.1 Upscaling analysis

B.1.1 Mesoscopic Model

The hierarchical multiscale porous structure under consideration is represented Figure B.1.
At the microscopic scale (level III) the porous structure is composed by a rigid and inert solid
matrix (κ-phase) saturated by a newtonian fluid (α-phase). The porous medium is assummed
to be homogeneous and physical properties of both the fluid and solid phases are constant.
In addition, the flow is supposed to be laminar and incompressible. Therefore, conservation
equations for momentum and species transport at scale III take the classical form

∇.vα = 0 (B.1)

ρα
∂vα
∂t

= −∇pα + ραg + µα∇2vα (B.2)

vα = 0 at Aακ (B.3)

∂cAα
∂t

+ vα.∇cAα = ∇. (DA∇cAα) (B.4)

−nακ. (DAα∇cAα) = 0 at Aακ (B.5)

where vα, pα and cAα are the velocity, pressure and concentration in the α-phase, respectively.
ρα, µα and DAα are the density, the dynamic viscosity and the molecular diffusivity coefficient
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Figure B.1 – Representation of the hierarchical porous medium

of the α-phase while g is the gravity. Equations (B.3) and (B.5) represent the no-slip and no-
species flux boundary conditions at the fluid-solid interface Aακ, respectively where nακ is
the unit normal vector oriented from the α-phase toward the κ-phase.

Averaging this above problem using the volume averaging method Whitaker [1999] has
been extensively detailed in the litterature Whitaker [1986a]; Quintard & Whitaker [1994a];
Whitaker [1999]; Bousquet-Melou et al. [2002]; Neculae et al. [2002] and for conciseness,
only the resulting mesoscopic model at scale II is presented below

∇.〈vα〉β = 0 (B.6)

ραε
−1

α

∂〈vα〉β
∂t

= −∇〈pα〉αβ −
µα
K∗
α

〈vα〉β + µαε
−1

α ∇2 〈vα〉β + ραg (B.7)

∂
(

εα 〈cAα〉αβ
)

∂t
+ 〈vα〉β .∇〈cAα〉αβ = ∇.

(

D∗

Aα.∇〈cAα〉αβ
)

(B.8)

where 〈vα〉β is the superficial averaged velocity defined by

〈vα〉β =
1

VIII

∫

Vα

vα dV (B.9)
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while 〈pα〉αβ and 〈cAα〉αβ are the intrinsic averaged pressure and concentration given by

〈pα〉αβ =
1

Vα

∫

Vα

pα dV (B.10)

〈cAα〉αβ =
1

Vα

∫

Vα

cα dV (B.11)

Note that the subscript β is used to remember that the different variables are defined in the
β-region. K∗

α and D∗

Aα are the permeability and the diffusion-dispersion tensors of the region
β at scale II, respectively. They are defined by

εαK
∗−1

α = − 1

Vα

∫

Aακ

nακ. (−bα +∇Bα) dA (B.12)

D∗−1

Aα = DAα

(

εαI+
1

VIII

∫

Aακ

nακdαdA

)

− 〈ṽαdα〉 (B.13)

where Bα, bα and dα are the associated closure variables solution of the two following quasi-
steady closure problems

0 = −∇bα +∇2Bα + εαK
−1

α,β (B.14)

∇.Bα = 0 (B.15)

Bα = −I at Aακ (B.16)

Bα(x) = Bα(x+ li) i = 1, 2, 3 (B.17)

bα(x) = bα(x+ li) i = 1, 2, 3 (B.18)

〈Bα〉α = 0 (B.19)

ṽα + vα.∇dα = DAα∇2dα (B.20)

−nακ.∇dα = nακ at Aακ (B.21)

dα(x) = dα(x+ li) i = 1, 2, 3 (B.22)

〈dα〉α = 0 (B.23)

It si worth recalling that these problems have been derived on the framework of spacial and
time scale separations [Goyeau et al., 1999]. In order to determine the effective transport prop-
erties at scale II, these closure problems are solved numerically using Comsol Multiphysics
Software. The numerical validation of the determination of the permeability, not reported
here, has been performed by comparing the numerical results with the analytical solution
provided by Zick and Homsy Zick & Homsy [1982] for cubic periodic array of spheres.

In the following, the analysis is performed using two bi-dimensional periodic inline and
staggered cylinder unit cells ( Fig. B.2). First, at the mesoscopic scale, the permeability given
by Eq. (B.12) is computed for different porosity values and the dimensionless longitudinal
component of K∗

α is plotted in Fig. B.3. Then, the diffusion-dispersion tensor defined by
Eq. (B.13) is computed for different solutal Péclet numbers and for three porosity values
(εα = 0.55, 0.75 and 0.95). The longitudinal diffusion-dispersion coefficient plotted in Fig.
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Figure B.2 – Geometries of the periodic unit cell at scale III

Figure B.3 – Longitudinal dimensionless permeability for in-line and staggered cylinders.

B.4 shows mainly two classical regions where the diffusion dominates for small or moder-
ate Péclet numbers while dispersion process strongly dominates at high Péclet numbers. Note
that the transition between the two regimes depends on the arrangement of the microstructure.
Indeed, this transition takes place at a larger range of Péclet for the staggered configuration
and the longitudinal coefficient is found to be of one order of magnitude smaller than for the
in-line structure. This is mainly due to the fact that, in this latter case, dispersion mainly oc-
curs in the direction of the flow while transverse dispersion is found to be important for the
more tortuous staggered structure Neculae et al. [2002].
Although classical, this preliminary upscaling is very important since it gives us the local in-
formation in the β-region at scale II. In order to simplify the notations, the following nomen-
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Figure B.4 – Longitudinal diffusion-dispersion for in-line cylinders (left), staggered
cylinders (right)
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clature is adopted before performing the second upscaling

vβ = 〈vα〉β (B.24)

pβ = 〈pα〉αβ (B.25)

cAβ = 〈cAα〉β (B.26)

Therefore, transport equations (B.6) to (B.8) become:

∇.vβ = 0 in the β-region (B.27)

ραε
−1

α

∂vβ
∂t

= −∇pβ −
µα
K∗
α

vβ + µαε
−1

α ∇2vβ + ραg in the β-region (B.28)

εα
∂cAβ
∂t

+ vβ.∇cAβ = ∇. (D∗

Aα.∇cAβ) in the β-region (B.29)

It is worth recalling that the effective dispersion tensor D∗

Aα depends on the cell Péclet number
defined by

Peα =
‖ vα ‖ lα

Dα

(B.30)

with
‖ vα ‖= (〈vα〉α.〈vα〉α)1/2 (B.31)

and using the new nomenclature gives

‖ vα ‖= (vβ.vβ)
1/2 (B.32)

This clearly indicates that D∗

Aα, is dependent on the local mesoscopic velocity field. Conse-
quences on the derivation of the macroscopic solute transport at the are detailled in section
B.1.2 Before, let us define the boundary conditions at the porous/solid interface Aβσ. Strictly
speaking, boundary conditions at the interface between a porous layer and an homogeneous
plain region (fluid or solid) should result from upscaling the local transport phenomena in this
interfacial region. This has been the object of intense research activity for transport modeling
at a fluid-porous interface through the so-called Beavers and Joseph’s problem [Beavers &
Joseph, 1967; Ochoa et al., 1986; Goyeau et al., 2003; Valdés-Parada et al., 2013] but the
equivalent for transport phenomena between a fluid and a solid is still missing. In the present
analysis, since momentum transport is governed by the Darcy-Brinkman equation and due to
the fact that the larger solid spheres are impermeable, a no-slip condition and a null diffusive
flux are considered at Aβσ

vβ = 0 at Aβσ (B.33)

nβσ. (D
∗

Aα.∇cAβ) = 0 at Aβσ (B.34)

Eqs. (B.27) to (B.34) represent the local system at the mesoscopic scale (scale II). In order to
derive macroscopic transport equations (scale I), the volume averaging method is applied once
more. Note that the form of the system at scale II is similar than the one at scale III. The main
differences are due to the presence of the Darcy term in Eq. (B.28) and to the non-constant
diffusion-dispersion tensor in Eq. (B.29).
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B.1.2 Macroscopic model

Momentum transport

Applying the averaging procedure to Eq. (B.28) leads to the following non-closed macro-
scopic equation

ραε
−1

α

∂
(
εβ〈vβ〉β

)

∂t
= −εβ∇〈pβ〉β −

µα
K∗
α

εβ 〈vβ〉β

+ µαε
−1

α εβ∇2 〈vβ〉β + εβραg +
1

VII

∫

Aβσ

nβσ.
(
−Ip̃β + µαε

−1

α ∇ṽβ
)
dA (B.35)

where ṽβ and p̃β are the spacial deviations of the velocity and the pressure [Gray, 1975],
respectively. It is worth mentioning that Eq. (B.35) is valid under the following length scale
constraints [Whitaker, 1999]

lβ << r0 (B.36)

r20 << LεLp1 (B.37)

r20 << LεLv1 (B.38)

r20 << LεLv2 (B.39)

where lβ is the mesoscopic pore length scale, r0 being the size of the averaging volume VII.
Lp1, Lv1 and Lv2 represent the characteristic length scales for the macroscopic pressure gra-
dient, velocity gradient and velocity laplacian, respectively. In order to close equation (B.35),
deviations fields ṽβ and p̃β are determined through associated deviation problem which is ob-
tained by subtracting the non-closed macroscopic equations to the local ones where the spatial
decomposition has been previously introduced. This leads to the following deviation problem

∇.ṽβ = 0 in the β-region (B.40)

0 = −∇p̃β −
µα
K∗
α

ṽβ + µαε
−1

α ∇2ṽβ −
1

Vβ

∫

Aβσ

nβσ.
(
−Ip̃β + µαε

−1

α ∇ṽβ
)
dA

in the β-region (B.41)

ṽβ = −〈vβ〉β at Aβσ (B.42)

The only source term in this deviation problem is given by the boundary condition (B.42)
whose form suggests us to writte the deviations under the form

ṽβ = Bβ.〈vβ〉β (B.43)

p̃β = µαε
−1

α bβ.〈vβ〉β (B.44)

where bβ and Bβ represent the closure variables. Substituting the above expressions in the
non-closed averaged momentum equation (B.35) gives

ραε
−1

α ε−1

β

∂
(
εβ〈vβ〉β

)

∂t
= −∇〈pβ〉β + µαε

−1

α ∇2 〈vβ〉β + ραg

− µαε
−1

α

[

εα
K∗
α

− 1

Vβ

∫

Aβσ

nβσ. (−Ibβ +∇Bβ) dA

]

〈vβ〉β (B.45)
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In addition, if we define

εαεβK
∗−1

β = − 1

Vβ

∫

Aβσ

nβσ. (−Ibβ +∇Bβ) dA (B.46)

the term in braces in Eq.(B.45) can be written such as

εβK
∗−1

eff = εαK
∗−1

α + εβK
∗−1

β (B.47)

where Keff represents the permeability tensor at the macroscopic scale (level I). It explicitly
involves two contributions : the permeability arising from the microscale (K∗

α) and the drag
at the mesoscale (K∗

β). Using expression (B.47) in equation (B.45) leads to the averaged
momentum equation under the following "Darcy-Brinkman" form [Brinkman, 1947]

ραε
−1

α ε−1

β

∂
(
εβ〈vβ〉β

)

∂t
= −∇〈pβ〉β −

µα
Keff

εβ 〈vβ〉β + µαε
−1

α ∇2 〈vβ〉β + ραg (B.48)

The determination of the macroscopic permeability must be performed in two steps: first K∗

α

is obtained solving the classical closure problem (Eqs. 6.18-6.27) on a representative periodic
unit cell, while in a second step K∗

β is determined by solving the following new closure
problem

0 = −∇bβ − εαK
∗−1

α Bβ +∇2Bβ + εβK
∗−1

β (B.49)

∇.Bβ = 0 (B.50)

Bβ = −I at Aβσ (B.51)

Bβ(x) = Bβ(x+ li) i = 1, 2, 3 (B.52)

bβ(x) = bβ(x+ li) i = 1, 2, 3 (B.53)

〈Bβ〉β = 0 (B.54)

Note that this mesoscopic closure problem explicity involves the microscopic drag contribu-
tion through K∗

α.

Numerical results illustrating this hierarchical contribution are presented in figures B.5.
The effective permeability at scale I, Keff (solid lines) and the permeability at scale II, Kβ

(dashed lines) are plotted for different permeabilty values at the microscale III and for three
ratio of the characteristic cell sizes. First, it can be seen that the permeability at the lowest
scale Kα, strongly influence the macroscopic permeability coefficient, especially for large
porosity values εβ where Keff tends to Kα. On the other hand, we verify that Keff logically
tends toward Kβ for small εβ values and obviously for εα close to one (fluid behavior). Note
that these observations are verified whatever the ratio lβ/lα.

Mass transport

Let us now focus our attention on the derivation of the macroscopic mass transport model
and the determination of the associated effectif multiscale dispersion coefficient. The lo-
cal mass transport at scale II is governed by equations Eqs. (B.29) and (B.33). Eq. (B.29)
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B.1. Upscaling analysis

looks familiar and therefore the derivation of a macroscopic form at scale I using the vol-
ume averaging method seems to be easy. However, the difficulty here lies in diffusive term
whose effective diffusion-dispersion coefficient D∗

Aα depends on the local velocity field vβ .
This difficulty has been treated in the context of heterogeous porous media by Quintard &
Whitaker [1998b] considering the spatial decomposition of the diffusion-dispersion effective
coefficient. Following this idea, we propose the following spatial decomposition

D∗

Aα = 〈D∗

Aα〉β + D̃∗

Aα (B.55)

For conciseness, only the main steps of the derivation are reported in this section, all the details
being provided in Appendix B.3.1. Using also the spatial decomposition for concentration and
velocity fields leads to the non-closed macroscopic mass transport equation

εα
∂
(

εβ 〈cAβ〉β
)

∂t
+ εβ 〈vβ〉β .∇〈cAβ〉β =

∇.
[

〈D∗

Aα〉β.
(

εβ∇〈cAβ〉β +
1

VII

∫

Aβσ

nβσ c̃AβdA

)

− 〈ṽβ c̃Aβ〉
]

+∇.
〈

D̃∗

Aα.∇c̃Aβ
〉

(B.56)

where the right hand side corresponds to the multi-scale contributions to the diffusion-dispersion
phenomena.The first term involving the tensor 〈D∗

Aα〉β represents the averaged diffusion-
dispersion at scale II while the second one is an additional dispersion contribution due to the
dependence of D∗

Aα with the velocity field. The deviation problem is obtained by subtracting
Eq. (B.56) from Eq. (B.29) where spatial decompositions have been previously introduced.
Considering that scale separation and quasi stationarity are satisfied, the associated deviation
problem takes the form

ṽβ.∇〈cAβ〉β + vβ.∇c̃Aβ = ∇. (D∗

Aα.∇c̃Aβ) +∇.
(

D̃∗

Aα.∇〈cAβ〉β
)

(B.57)

−nβσ. (D
∗

Aα.∇c̃Aβ) = nβσ.
(
D∗

Aα.∇〈cAβ〉β
)

at Aβσ (B.58)

The originality of this deviation problem lies in the presence of the averaged dispersion tensor
(instead of the molecular diffusivity in a classical case) and in the last term of the right hand
side of Eq. (B.57). In addition, from the boundary condition Eq. (B.58), it clearly appears
that the two diffusive terms in Eq. (B.57) are of the same order of magnitude. Under these
circumstances, the form of the macroscopic source terms in Eqs. (B.57) and (B.58) suggests
that the deviation concentration c̃Aβ migh be related to the averaged values as

c̃Aβ = dβ.∇〈cAβ〉β + φβ∇2〈cAβ〉β (B.59)

where φβ and dβ are the closure variables. The introduction of expression (B.59) in Eqs. (B.57)
and (B.58) would lead to two closure problems, one coresponding to the first order derivative
of 〈cAβ〉β (for dβ), the second one being of the third order derivative. By experience, it is
known that expansion at the first order is sufficient to obtain an accurate determination of the
effective transport properties Under these considerations, expression (B.59) reduces to

c̃Aβ = dβ.∇〈cAβ〉β (B.60)
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giving rise to the closure problem

ṽβ + vβ.∇dβ = ∇. (D∗

Aα.∇dβ) +∇.D̃∗

Aα (B.61)

−nβσ. (D
∗

Aα.∇dβ) = nβσ.D
∗

Aα at Aβσ (B.62)

dβ(x) = dβ(x+ li) li = 1, 2, 3 (B.63)

〈dβ〉β = 0 (B.64)

Note that a similar form including the aditionnal dispersion term has been obtained for solute
transport in heterogeneous porous media [Quintard & Whitaker, 1998b; Ahmadi et al., 1998]
but in their case, the source term involving D̃∗

Aα has been neglected since the velocity field
was obtained from Darcy’s law. In the present analysis, momentum transport is governed by
the Darcy-Brinkman equation (Eq. (B.28)) giving rise to a non-constant diffusion-dispersion
coefficient whose deviations can be significant. Finally, substituting Eq. (B.60) in Eq. (B.56)
gives the closed form of the macroscopic conservation equation for mass transport

εα
∂
(

εβ 〈cAβ〉β
)

∂t
+ εβ 〈vβ〉β .∇〈cAβ〉β = ∇.

(
Deff.∇〈cAβ〉β

)
(B.65)

where the macroscopic diffusion-dispersion tensor is given by

Deff = 〈D∗

Aα〉β.
(

εβI+
1

VII

∫

Aβσ

nβσdβdA

)

− 〈ṽβdβ〉+
〈

D̃∗

Aα.∇dβ

〉

(B.66)

In this expression, let us recall that the D∗

Aα is an effective tensor resulting from the micro-
mesoscopic upscaling. The first three terms in expression (B.66) represent the mesoscopic
contribution to the macroscopic effective diffusion-dispersion coefficient while the last term
is a diffusive contribution due to the deviation of the mesoscopic diffusion-dispersion tensor.

Numerical solutions of the closure problem given by equations (B.61)-(B.62) are obtained
for the same hierarchical bidisperse porous structures previously used for the permeability.
First, the longitudinal component of the effective diffusion-dispersion coefficient for in-line
bidisperse structure is represented in figure B.6. It is observed that whatever the ratio lβ/lα,
the decrease of the average properties (εα and Kα) at scale III increases the tortuosity effect
in the diffusive regime (small Péclet numbers) but also gives rise to a more intense dispersion
regime (Pe ≥ 10). We can observe in figure B.7 that the transition between the diffusive
and the dispersive regimes takes place at larger Péclet numbers (Pe ∼ 10) for staggered
structure than for In-line structures where Pe ∼ 1. Figure B.8 compares the different terms
of the effective diffusion-dispersion coefficient given by Eq. (B.66) for lβ/lα = 10. As
expected, it is shown that both the dimensionless mesoscopic contribution < ṽβdβ > and
macroscopic dispersion term< D̃∗

Aα.∇dβ > strongly depend on the Péclet number. Indeed, a
diffusive regime is found for small or moderate Péclat numbers while a dispersive behavior is
illustrated for high Péclet numbers. In addition, the ratio between these two terms shows that
the mesoscopic contribution is about one order of magnitude smaller than the macroscopic
dispersion for small Péclet number but this difference becomes smaller at large Péclet number
especially with the increase of porosity and permeability at the mesoscopic scale. Note that
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Figure B.6 – Longitudinal diffusion-dispersion coefficient for a bidisperse in-line cylinders
configuration
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Figure B.7 – Longitudinal diffusion-dispersion coefficient for a bidisperse staggered
cylinders configuration
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this behaviour is in agreement with Moutsopoulos & Koch [1999] but our analysis provides
a more general and explicit formulation able to quantify the influence of the finest porous
structure in a such a bidisperse configuration.

Figure B.8 – Comparison of the different terms of the effective diffusion-dispersion
coefficient given by (B.66) for lβ/lα = 10.
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For lβ/lα = 100, the macroscopic dispersion term (last term in (B.66)) strongly dominates
the others contributions whatever the mesocopic porosity and permeabilty values (Figure B.9).
This behaviour is in agreement with Moutsopoulos & Koch [1999] but our analysis provides

Figure B.9 – Comparison of the different terms of the effective diffusion-dispersion
coefficient given by (B.66) for lβ/lα = 100.

a more general and explicit formulations in order to quantify the influence of the finest porous
structures on the effective diffusion-dispersion coefficient.

B.2 Conclusion

A general macroscopic model for momentum and solute dispersion in a hierarchical bidis-
perse porous structures has been developed using the volume averaging methyyod. The clo-
sure problems associated to the macroscopic effective transport properties have been derived
and solved numerically. The results illustrate the influence of the mesoscopic scale on the
macroscopic ones. Momentum is governed by Darcy-Brinkman equation within the pores
of the finer porous region where no slip condition is adopted at the solid/porous interface.
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Nevertheless, the analysis for solute dispersion presents similarities which are detailed in ap-
pendix B3. Numerical results show the influence of the micro- and meso-scale phenomena on
permeability and dispersion coefficients at the macroscale.

B.3 Appendix

B.3.1 Derivation of the macroscopic solute transport equation

The macroscopic solute transport equation is derived by averaging the mesoscopic equa-
tion (Eq. B.29) with the associated boundary condition (Eq. (B.34)). The difficulty here lies
in the fact that the diffusion-dispersion tensor D∗

Aα depends on the velocity field. Let us fo-
cus our attention on the averaging the right hand side of Eq. B.29. Applying the averaging
theorems gives

〈∇. (D∗

Aα.∇cAβ)〉 = ∇.〈D∗

Aα.∇cAβ〉+
1

VII

∫

Aβσ

nβσ. (D
∗

Aα.∇cAβ) dA (B.67)

where the area integral is discarded due to the boundary condition (Eq. (B.34)). Following
Quintard & Whitaker [1998b], the tensor D∗

Aα can be decomposed under the form

D∗

Aα = 〈D∗

Aα〉β + D̃∗

Aα (B.68)

and also using the spacial decomposition for the concentration cAβ gives

〈D∗

Aα.∇cAβ〉 =
〈

〈D∗

Aα〉β.∇〈cAβ〉β + 〈D∗

Aα〉β.∇c̃Aβ + D̃∗

Aα.∇〈cAβ〉β + D̃∗

Aα.∇c̃Aβ
〉

(B.69)
Here, due to scale separation, it can be shown that averaged quantities used in the spacial
decomposition are close to averaged quantities defined at the centroid of the averaging volume
. Under these circumstances, variation of the averaged quantities can be neglected and the
above expression takes the form

〈D∗

Aα.∇cAβ〉 = 〈D∗

Aα〉β.
〈
∇〈cAβ〉β

〉
+ 〈D∗

Aα〉β. 〈∇c̃Aβ〉+
〈

D̃∗

Aα.∇〈cAβ〉β
〉

+
〈

D̃∗

Aα.∇c̃Aβ
〉

(B.70)
Let us first consider the third term of Eq. (B.70). Using the spacial averaging theorem in the
form

∇〈cAβ〉β = 〈∇cAβ〉β −
1

Vβ

∫

βσ

nβσcAβdA (B.71)

allows us to write

〈

D̃∗

Aα.∇〈cAβ〉β
〉

=

〈

D̃∗

Aα.〈∇cAβ〉β − D̃∗

Aα.
1

Vβ

∫

Aβσ

nβσcAβdA

〉

(B.72)

which can also be written under the form
〈

D̃∗

Aα.∇〈cAβ〉β
〉

= 〈D̃∗

Aα〉.〈∇cAβ〉β − 〈D̃∗

Aα〉.
1

Vβ

∫

Aβσ

nβσcAβdA (B.73)
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However, since
〈D̃∗

Aα〉 = 0 (B.74)

Eq. (B.70) simplifies under the form

〈D∗

Aα.∇cAβ〉 = 〈D∗

Aα〉β.
〈
∇〈cAβ〉β

〉
+ 〈D∗

Aα〉β. 〈∇c̃Aβ〉+
〈

D̃∗

Aα.∇c̃Aβ
〉

(B.75)

Let us consider now the first term of the right hand side of Eq. (B.75). Using the spacial
averaging theorem gives

〈D∗

Aα〉β.
〈
∇〈cAβ〉β

〉
= 〈D∗

Aα〉β.
[

∇
(
εβ〈cAβ〉β

)
+

1

VII

∫

Aβσ

nβσ〈cAβ〉βdA
]

(B.76)

Again, due to scale separation, the above expression tbecomes

〈D∗

Aα〉β.
〈
∇〈cAβ〉β

〉
= εβ〈D∗

Aα〉β.∇〈cAβ〉β (B.77)

The second term of Eq. (B.75)

〈D∗

Aα〉β. 〈∇c̃Aβ〉 = 〈D∗

Aα〉β.
[

∇〈c̃Aβ〉+
1

VII

∫

Aβσ

nβσ c̃AβdA

]

(B.78)

and discarding the average of the deviation, Eq. (B.75) finaly reduces to

〈D∗

Aα.∇cAβ〉 = 〈D∗

Aα〉β.
(

εβ∇〈cAβ〉β +
1

VII

∫

Aβσ

nβσ c̃AβdA

)

+
〈

D̃∗

Aα.∇c̃Aβ
〉

(B.79)

Finallly, the unclosed averaged equation for solute transport takes the form

εα
∂
(

εβ 〈cAβ〉β
)

∂t
+ εβ 〈vβ〉β .∇〈cAβ〉β =

∇.
[

〈D∗

Aα〉β.
(

εβ∇〈cAβ〉β +
1

VII

∫

Aβσ

nβσ c̃AβdA

)]

+∇.
〈

D̃∗

Aα.∇c̃Aβ
〉

−∇. 〈ṽβ c̃Aβ〉

(B.80)

B.3.2 Deviation problem

The deviation equation is obtained by subtracting the non-closed Eq. (B.80) from the local
one (Eq. B.4) where the spatial decompositions have been previously introduced. After few
simplifications, the concentration deviation equation takes the form

ṽβ.∇〈cAβ〉β + vβ.∇c̃Aβ = ∇. (D∗

Aα.∇c̃Aβ) +∇.
(

D̃∗

Aα.∇〈cAβ〉β
)

−∇.
(

〈D∗

Aα〉β.
1

Vβ

∫

Aβσ

nβσ c̃AβdA

)

− ε−1

β ∇.〈D̃∗

Aα.∇c̃Aβ〉 (B.81)
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An estimate of the order of magnitude of the different terms of the above deviation equation
is preformed in order to simplify the problem. Using the boundary condition (B.34) gives

− nβσ.
(
〈D∗

Aα〉β.∇cAβ
)
= nβσ.

(

D̃∗

Aα.∇cAβ
)

at Aβσ (B.82)

where we can deduce that 〈D∗

Aα〉β and D̃∗

Aα are of the same order of magnitude. Moreover,
on the basis of these estimates estimate

∇. (D∗

Aα.∇c̃Aβ) = O
(

〈D∗

Aα〉β c̃Aβ
l2β

)

(B.83)

∇.
(

〈D∗

Aα〉β.
1

Vβ

∫

Aβσ

nβσ c̃AβdA

)

= O
(

ε−1

β 〈D∗

Aα〉β c̃Aβ
lβLII

)

(B.84)

ε−1

β ∇.〈D̃∗

Aα.∇c̃Aβ〉 = O
(〈D∗

Aα〉β c̃Aβ
lβLII

)

(B.85)

the two last terms of Eq. (B.81) can be discarded and therefore the deviation problem for mass
transport takes the form

ṽβ.∇〈cAβ〉β + vβ.∇c̃Aβ = ∇. (D∗

Aα.∇c̃Aβ) +∇.
(

D̃∗

Aα.∇〈cAβ〉β
)

(B.86)

−nβσ. (D
∗

Aα.∇c̃Aβ) = nβσ.
(
D∗

Aα.∇〈cAβ〉β
)

at Aβσ (B.87)
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APPENDIX C

ONE EQUATION MODEL OF MOMENTUM

TRANSPORT IN THE BIOREACTOR

In the following development, we propose the derivation of a one-equation non-equilibrium
model based on weighted averages. This model is the first to our knowledge to result in
a simple one-equation momentum transport in mechanical non-equilibrium conditions. The
simplicity of its form, and the unique closure problem needed to evaluate the effective perme-
ability, makes easier its use in, for instance, biotechnological application.

The fundamental idea of the one-equation non-equilibrium model, is that even though the
velocity and pressure are very different in the two regions, it is still possible to describe the
overall momentum transport in terms of special averages defined as

(εγ + εω) 〈v〉γω = εγ〈vγ〉γ + εωε
−1

α ε−1

β 〈vω〉ω (C.1)

(εγ + εω) 〈p〉γω = εγ〈pγ〉γ + εω〈pω〉ω (C.2)

In itself, this kind of average is not new since it has already been used in three-phase mass
equilibrium [Lasseux et al., 2004; Golfier et al., 2009] and non-equilibrium systems [Davit
et al., 2010]. However it has never been exploited in momentum transport, and some discus-
sions about its physical meaning may be useful.

The sum of the γ and ω-regions may be seen as a composite γω-region where momentum
(and mass) transport occurs. In this spirit, 〈v〉γω and 〈p〉γω should be regarded as special
"intrinsic averages" within the γω-region. This is the reason why in Eqs. (C.1) and (C.2), the
term εγ + εω is kept on the left hand side to remind that (εγ + εω) 〈v〉γω and (εγ + εω) 〈p〉γω
are equivalent to "superficial" averages. Moreover, one has to recall that, as defined in Eq.
(8.1), vω is a superficial average of the velocity at the cellular scale. Since for the definition
of the weighted average, we seek the intrinsic average in the ω-region , we need to divide vω
by εαεβ . Note that this is not necessary for the pressure because pω is already an intrinsic
pressure.

Along with these definitions, and following Davit et al. [2010] a special decomposition is
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proposed of the form

vγ = 〈v〉γω + v̂γ ; vω = εαεβ〈v〉γω + v̂ω (C.3)

pγ = 〈p〉γω + p̂γ ; pω = 〈p〉γω + p̂ω (C.4)

where v̂γ , v̂ω, p̂γ and p̂ω are special deviations to the weighted average. Note the presence of
εαεβ in vω. When Gray’s spacial decomposition is also introduced in the γ and ω-regions

vγ = 〈vγ〉γ + ṽγ ; vω = 〈vω〉ω + ṽω (C.5)

pγ = 〈pγ〉γ + p̃γ ; pω = 〈pω〉ω + p̃ω (C.6)

It is easy to show that the special deviations are linked to the classic spacial deviations through

v̂γ = 〈v̂γ〉γ + ṽγ ; v̂ω = 〈v̂ω〉ω + ṽω (C.7)

p̂γ = 〈p̂γ〉γ + p̃γ ; p̂ω = 〈p̂ω〉ω + p̃ω (C.8)

Now that the weighted average and its special deviations are defined, we are ready to start
the up-scaling of momentum transport from the tissue to the bioreactor scale. Following the
main steps of the volume averaging method presented in Sec. 7.2.1, the non-closed momentum
equation in the γ and ω-regions are written

ρα
∂(εγ〈vγ〉γ)

∂t
− ρα

1

VII

∫

Aγω

nγω. (wγωvγ) dA =

− εγ∇〈pγ〉γ + ραεγg + µαεγ∇2〈vγ〉γ

+
1

VII

∫

Aγω

nγω. (−p̃γ + µα∇ṽγ) dA+
1

VII

∫

Aγκ

nγκ. (−p̃γ + µα∇ṽγ) dA (C.9)

ραε
−1

α ε−1

β

∂(εω〈vω〉ω)
∂t

− ραε
−1

α ε−1

β

1

VII

∫

Aωγ

nωγ. (wγωvω) dA

− εω∇〈pω〉ω + µαε
−1

α ε−1

β εω∇2〈vω〉ω −
µα
KIII
ω

εω〈vω〉ω

+
1

VII

∫

Aωγ

nωγ.
(
−p̃ωI+ µαε

−1

α ε−1

β ∇ṽω
)
dA

+
1

VII

∫

Aωκ

nωκ.
(
−p̃ωI+ µαε

−1

α ε−1

β ∇ṽω
)
dA (C.10)

where wγω is the velocity of the interface between the γ and ω regions, nij is the unit normal
vector pointing from the i to the j-region, Aij is the surface between the i and j regions,
and VII is the averaging volume at the tissue scale (level II). In Eqs. (C.9) and (C.10), the
only differences with the previous chapters are the multiple surface integrals due to the three-
phase system, and the convective term at Aγω which cannot be discarded due to the velocity
continuity. In order to treat these terms, the surface integral on the left hand side of Eq. (C.9)
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is developed using the special decompositions for the fluid velocity

1

VII

∫

Aγω

nγω.wγω.vγdA+
1

VII

∫

Aγκ

nγκ.wγκ.vγdA =

1

VII

∫

Aγω

nγω.wγω.〈v〉γωdA+
1

VII

∫

Aγκ

nγκ.wγκ.〈v〉γωdA

+
1

VII

∫

Aγω

nγω.wγω.v̂γdA+
1

VII

∫

Aγκ

nγκ.wγκ.v̂γdA (C.11)

The weighted averages can be removed from the integrals, and using the general transport
theorem, the interfacial convective terms are written

1

VII

∫

Aγω

nγω.wγω.vγdA+
1

VII

∫

Aγκ

nγκ.wγκ.vγdA =

∂εγ
∂t

〈v〉γω + 1

VII

∫

Aγω

nγω.wγω.v̂γdA+
1

VII

∫

Aγκ

nγκ.wγκ.v̂γdA (C.12)

The same development is done with the ω-region, and the non-closed region average equations
reads

ρα
∂(εγ〈vγ〉γ)

∂t
− ρα

∂εγ
∂t

〈v〉γω − ρα
1

VII

∫

Aγω

nγω.wγω.v̂γdA =

− εγ∇〈pγ〉γ + ραεγg + µαεγ∇2〈vγ〉γ

+
1

VII

∫

Aγω

nγω. (−p̃γ + µα∇ṽγ) dA+
1

VII

∫

Aγκ

nγκ. (−p̃γ + µα∇ṽγ) dA (C.13)

ραε
−1

α ε−1

β

∂(εω〈vω〉ω)
∂t

− ρα
∂εω
∂t

〈v〉γω − ραε
−1

α ε−1

β

1

VII

∫

Aωγ

nωγ.wωγ.v̂ωdA =

− εω∇〈pω〉ω −
µα
KII
ω

εω〈vω〉ω + ραεωg + µαε
−1

α ε−1

β εω∇2〈vω〉ω

+
1

VII

∫

Aωγ

nωγ.
(
−p̃ω + µαε

−1

α ε−1

β ∇ṽω
)
dA+

1

VII

∫

Aωκ

nωκ.
(
−p̃ω + µαε

−1

α ε−1

β ∇ṽω
)
dA

(C.14)

At this point we have two average equations for momentum transport at the bioreactor
scale (level I). If the transport properties concerning the flow in the two regions are close
enough, it would be possible to hypothesis mechanical equilibrium [Quintard & Whitaker,
1998a] the same way mass equilibrium has been supposed for mass transport at the cellular
scale (Sec. 7.3.1). However in our case the transport equations in the two regions are differ-
ent (Stokes in the γ-region, Darcy-Brinkman in the ω-region), and the fluid velocity is much
higher in the culture medium region than in the tissue. Therefore it is not possible to assume
mechanical equilibrium here, and if one wish to develop a two-equation non-equilibrium
model, Eqs. (C.13) and (C.14) should be used as the basis for the macroscopic equations
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(where Gray’s decomposition are used in the convective terms instead of the special decom-
position). However in the present work, a one equation non-equilibrium model is desired,
and adding up Eqs. (C.9) and (C.10) the weighted averages appear in a unique macroscopic
equation

ρα
∂

∂t
[(εγ + εω) 〈v〉γω]− ρα

∂

∂t
(εγ + εω) 〈v〉γω =

− (εγ + εω)∇〈p〉γω + (εγ + εω)µα∇2〈v〉γω − µα
KIII
ω

εω〈vω〉ω + ρα (εγ + εω)g

+
∑

i=ω,κ

1

VII

∫

Aγi

nγi. (−p̃γI+ µα∇ṽγ) dA+
∑

i=γ,κ

1

VII

∫

Aωi

nωi.
(
−p̃ωI+ µαε

−1

α ε−1

ω ∇ṽω
)
dA

+ ρα
1

VII

∫

Aγω

nγω.wγω

(
v̂γ − ε−1

α ε−1

β v̂ω
)
dA (C.15)

The porous medium constituted by the solid glass beads is rigid and has time invariant prop-
erties, implying that the quantity εγ+εω = 1−εκ is constant in time (space independence can
also be easily accepted, at least in the longitudinal direction of the bioreactor). The second
term on the left hand size can thus be discarded, and dividing by εγ + εω we have

ρα
εγ + εω

∂

∂t
[(εγ + εω)〈v〉γω] = −∇〈p〉γω + µα∇2〈v〉γω − εω

εγ + εω

µα
KIII
ω

〈vω〉ω

+
εγ

εγ + εω

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̃γI+ µα∇ṽγ) dA

+
εω

εγ + εω

∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−p̃ωI+ µαε

−1

α ε−1

ω ∇ṽω
)
dA

+
ρα

εγ + εω

1

VII

∫

Aγω

nγω.wγω

(
v̂γ − ε−1

α ε−1

β v̂ω
)
dA (C.16)

Note that spacial decomposition are still present in this equation. In order to eliminate
these terms, the relations between the two kind of deviations Eq. (C.7) are introduced in the
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integral terms and we have

εγ
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̃γI+ µα∇ṽγ) dA

+ εω
∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−p̃ωI+ µαε

−1

α ε−1

ω ∇ṽω
)
dA =

+ εγ
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̂γI+ µα∇v̂γ) dA

+ εω
∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−p̂ωI+ µαε

−1

α ε−1

ω ∇v̂ω
)
dA

− εγ
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−〈p̂γ〉γI+ µα∇〈v̂γ〉γ) dA

− εω
∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−〈p̂ω〉ωI+ µαε

−1

α ε−1

ω ∇〈v̂ω〉ω
)
dA (C.17)

Once again, under the classical length scale constraints, the averages can be removed from
the integral, ans using the geometrical theorem we have

εγ
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̃γI+ µα∇ṽγ) dA

+ εω
∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−p̃ωI+ µαε

−1

α ε−1

ω ∇ṽω
)
dA =

+ εγ
∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̂γI+ µα∇v̂γ) dA

+ εω
∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−p̂ωI+ µαε

−1

α ε−1

ω ∇v̂ω
)
dA

+ εγ∇εγ. (−〈p̂γ〉γI+ µα∇〈v̂γ〉γ) + εω∇εω.
(
−〈p̂ω〉ωI+ µαε

−1

α ε−1

ω ∇〈v̂ω〉ω
)

(C.18)

If the porous medium constituted by the glass beads and the tissue is homogeneous, the gra-
dient of the volume fractions can be neglected, and the weighted average equation can be
expressed as

ρα
εγ + εω

∂

∂t
[(εγ + εω)〈v〉γω] = −∇〈p〉γω + µα∇2〈v〉γω − εω

εγ + εω

µα
KIII
ω

〈vω〉ω + ραg

+
εγ

εγ + εω

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̂γI+ µα∇v̂γ) dA

+
εω

εγ + εω

∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−p̂ωI+ µαε

−1

α ε−1

ω ∇v̂ω
)
dA

+
ρα

εγ + εω

1

VII

∫

Aγω

nγω.wγω

(
v̂γ − ε−1

α ε−1

β v̂ω
)
dA (C.19)
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Appendix C. One equation model of momentum transport in the bioreactor

This is the non-closed averaged equation for momentum transport at the bioreactor scale, and
this form is consistent with Eq. (7.25) developed for a flow in a single porous region. Here,
the ε−1

α ε−1

β are included within the definition of 〈v〉γω, and we have an additional term on the
right hand side which represents mass exchange at Aγω.

Eq. (C.19) still includes tissue scale variables, and we now need to develop a problem for
the special deviations in order to close the problem. This is done by subtracting Eq. (C.19) to
Eqs. (8.9) and (8.12)

ρα
∂v̂γ
∂t

= −∇p̂γ + µα∇2v̂γ + µα
εω

εγ + εω

1

KII
ω

(〈v̂ω〉ω + εαεβ〈v〉γω)

− εγ
εγ + εω

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̂γI+ µα∇v̂γ) dA

− εω
εγ + εω

∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−p̂ωI+ µαε

−1

α ε−1

β ∇v̂ω
)
dA

− 1

εγ + εω
ρα

1

VII

∫

Aγω

nγω.wγω

(
v̂γ − ε−1

α ε−1

β v̂ω
)
dA in the γ-region (C.20)

ραε
−1

α ε−1

β

∂v̂ω
∂t

= −∇p̂ω + µαε
−1

α ε−1

β ∇2v̂ω −
µα
KII
ω

(v̂ω + 〈v〉γω)

+ µα
εω

εγ + εω

1

KII
ω

(〈v̂ω〉ω + εαεβ〈v〉γω)

− εγ
εγ + εω

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̂γI+ µα∇v̂γ) dA

− εω
εγ + εω

∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−p̂ωI+ µαε

−1

α ε−1

β ∇v̂ω
)
dA

− 1

εγ + εω
ρα

1

VII

∫

Aγω

nγω.wγω

(
v̂γ − ε−1

α ε−1

β v̂ω
)
dA in the ω-region (C.21)

To this point, these equations appear quite complex, however an examination of the order of
magnitude of the different terms leads to a simplified form of the deviation problem. Before
to do that, one needs to evaluate the order of magnitude of the special velocity deviations, and
this is done by applying the special decompositions to the boundary conditions Eqs. (8.14)
and (8.15), resulting in

v̂γ = O (〈v〉γω) ; v̂ω = O (εαεβ〈v〉γω) (C.22)

Now the orders of magnitude of the accumulation, viscous diffusion, and mass exchange
terms of Eqs. (C.20) and (C.21) can be evaluated as follows

ρα
∂v̂γ
∂t

= O

(

ρα
〈v〉γω
tvγ

)

; ραε
−1

α ε−1

β

∂v̂ω
∂t

= O

(〈v〉γω
tvω

)

(C.23)
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µα∇2v̂γ = O

(
µα〈v〉γω

l2γ

)

; µαε
−1

α ε−1

β ∇2v̂ω = O

(
µα〈v〉γω

l2ω

)

(C.24)

1

εγ + εω
ρα

1

VII

∫

Aγω

nγω.wγω

(
v̂γ − ε−1

α ε−1

β v̂ω
)
dA =

O

(

ρα
1

lγ

lγ
t
w

〈v〉γω , ρα
1

lω

lω
t
w

〈v〉γω
)

(C.25)

One sees that if the time scale associated with the velocity of the tissue interface is much
larger than the time scale associated with the deviations of the velocities in the γ and ω-
regions respectively (t

w
≫ (tvγ, tvω)), the mass exchange terms in Eqs. (C.20) and (C.21) can

be discarded. Moreover the deviation problem can be supposed stationary when the length
scale constraints ρα/tvγ ≪ µα/l

2
γ and ρα/tvω ≪ µα/l

2
ω are satisfied. These hypothesis have

been made in the previous developments of Chaps. 6 and 7, and if they are also accepted here,
the deviation problem for momentum transport at the tissue scale takes the form

∇.v̂γ = 0 in the γ-region (C.26)

0 = −∇p̂γ + µα∇2v̂γ + µα
εω

εγ + εω

1

KII
ω

(〈v̂ω〉ω + εαεβ〈v〉γω)

− εγ
εγ + εω

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̂γI+ µα∇v̂γ) dA

− εω
εγ + εω

∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−p̂ωI+ µαε

−1

α ε−1

β ∇v̂ω
)
dA in the γ-region (C.27)

∇.v̂ω = 0 in the ω-region (C.28)

0 = −∇p̂ω + µαε
−1

α ε−1

β ∇2v̂ω −
µα
KII
ω

(v̂ω + 〈v〉γω)

+ µα
εω

εγ + εω

1

KII
ω

(〈v̂ω〉ω + εαεβ〈v〉γω)

− εγ
εγ + εω

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−p̂γI+ µα∇v̂γ) dA

− εω
εγ + εω

∑

i=γ,κ

1

Vω

∫

Aωi

nωi.
(
−p̂ωI+ µαε

−1

α ε−1

β ∇v̂ω
)
dA in the ω-region (C.29)

v̂γ = −〈v〉γω at Aγκ (C.30)

v̂ω = −εαεβ〈v〉γω at Aωκ (C.31)

v̂γ − v̂ω = − (1− εαεβ) 〈v〉γω at Aγω (C.32)

nγω.
[
−p̂γI+ µα

(
∇v̂γ +∇v̂Tγ

)]
=

nγω.
[
−p̂ωI+ µαε

−1

α ε−1

β

(
∇v̂ω +∇v̂Tω

)]
at Aγω (C.33)
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εγ〈v̂γ〉γ + εωε
−1

α ε−1

β 〈v̂ω〉ω = 0 (C.34)

In the development of boundary condition Eq. (C.33), the length scale separation lγ ≪ Lγ
has been used to neglect the gradient of the velocity deviations in regard to the gradient of the
velocity averages. Note that due to the definition of the special deviation Eq. (C.3), the usual
condition on the average of the deviations is different here. Instead, we have Eq. (C.34).

The deviation problem defined by Eqs. (C.26) to (C.34) involves only source terms in
〈v〉γω This motivates the following relations between the special deviations and the weighted
average

{

v̂γ = Bγ.〈v〉γω

p̂γ = µαbγ.〈v〉γω
;

{

v̂ω = εαεβBω.〈v〉γω

p̂ω = µαbω.〈v〉γω
(C.35)

When comparing with the definition of the closure variables Eqs. (7.42) and (7.43) proposed
in Sec. 7.2.1, one could expect to have ε−1

α ε−1

β in the definition of p̂ω instead of having εαεβ in
v̂ω. In fact, as highlighted before, ε−1

α ε−1

β is already contained in the definition of the weighted
average Eq. (C.1). And this is also why v̂ω needs to be compensated with εαεβ .

Introducing the closure variables in Eq. (C.19), the macroscopic equation for momentum
transport is closed and takes the form

ρα
εγ + εω

∂

∂t
[(εγ + εω)〈v〉γω] = −∇〈p〉γω + µα∇2〈v〉γω + ραg

− µα

[

εω
εγ + εω

εαεβ
KII
ω

(〈Bω〉ω + I)− εγ
εγ + εω

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−bγI+∇Bγ) dA

− εω
εγ + εω

∑

i=γ,κ

1

Vω

∫

Aωi

nωi. (−bωI+∇Bω) dA

]

〈v〉γω (C.36)

By analogy with Sec. 7.2.1, it is possible to define three permeability tensors

εαεβK
⋆−1

γω =
εω

εγ + εω

εαεβ
KII
ω

(〈Bω〉ω + I) (C.37)

εγK
⋆−1

γ = − εγ
εγ + εω

∑

i=ω,κ

1

Vγ

∫

Aγi

nγi. (−bγI+∇Bγ) dA (C.38)

and

εωK
⋆−1

ω = − εω
εγ + εω

∑

i=γ,κ

1

Vω

∫

Aωi

nωi. (−bωI+∇Bω) dA (C.39)

The two permeabilities K⋆
γ and K⋆

ω have a relatively classic form, and respectively represent
the contribution of the γ and ω-region geometry to the bioreactor effective permeability. Yet,
by showing a dependence in 〈Bω〉ω, the first tensor K⋆

γω appears slightly different from the
result obtained in Sec. 7.2.1. Note that when the spacial (instead of the special) deviations are
used, 〈Bω〉ω = 0, and a more usual participation of the ω-region permeability is recovered.
Anyway, K⋆

γω represents the contribution of the ω-region permeability to the overall effective
permeability.
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The bioreactor effective permeability tensor is a combination of the above tensors, and can
be written

(εγ + εω)K
I−1

eff = εαεβK
⋆−1

γω + εγK
⋆−1

γ + εωK
⋆−1

ω (C.40)

so that the closed macroscopic equation for momentum transport in the bioreactor is

ρα(εγ + εω)
−1
∂

∂t
[(εγ + εω)〈v〉γω] =

−∇〈p〉γω − µα
KI

eff

(εγ + εω) 〈v〉γω + µα∇2〈v〉γω + ραg (C.41)

This equation is a Darcy-Brinkman equation for the weighted velocity and pressure. Once
again, it is important to keep in mind that the porosity of the tissue is included in 〈v〉γω. The
superficial form of the bioreactor momentum transport equation can be obtained by defining
a superficial weighted velocity

〈v〉 = (εγ + εω)〈v〉γω (C.42)

so that we have

ρα(εγ + εω)
−1
∂

∂t
〈v〉 = −∇〈p〉γω − µα

KI
eff

〈v〉+ µα(εγ + εω)
−1∇2〈v〉+ ραg (C.43)

Here the effective viscosity is µα (εγ + εω)
−1.

The effective permeability tensor remains to be evaluated, and this is done by introducing
the closure variables in the deviation problem. This leads to a closure problem for the fluid-
porous-solid system of the form

∇.Bγ = 0 in the γ-region (C.44)

0 = −∇bγ +∇2Bγ + (εγ + εω)K
I−1

eff in the γ-region (C.45)

∇.Bω = 0 in the ω-region (C.46)

0 = −∇bω +∇2Bω − εαεβK
II−1

ω (Bω + I) + (εγ + εω)K
I−1

eff in the ω-region (C.47)

Bγ = −I at Aγκ (C.48)

Bω = −I at Aωκ (C.49)

Bγ − εαεβBω = − (1− εαεβ) I at Aγω (C.50)

nγω.
[
−bγI+

(
∇Bγ +∇BT

γ

)]
= nγω.

[
−bωI+

(
∇Bω +∇BT

ω

)]
at Aγω (C.51)

Bγ(x+ li) = Bγ(x) ; bγ(x+ li) = bγ(x) i = 1, 2, 3 (C.52)

Bω(x+ li) = Bω(x) ; bω(x+ li) = bω(x) i = 1, 2, 3 (C.53)

εγ〈Bγ〉γ + εω〈Bω〉ω = 0 (C.54)

This closure problem has to be solved in a representative volume, and for homogeneous
porous media, a periodic unit cell is suitable. Thus periodic conditions have been added
to the closure problem (Eqs. (C.52) and (C.53)).
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Appendix C. One equation model of momentum transport in the bioreactor

Although this problem is an integro-differentional problem, it can be written in the form of
an incompressible Brinkman flow. In order to simplify its numerical resolution, a first variable
change is proposed

{

B♯
γ = Bγ + I

B♯
ω = Bω + I

(C.55)

so the closure problem reads

∇.B♯
γ = 0 in the γ-region (C.56)

0 = −∇bγ +∇2B♯
γ + (εγ + εω)K

I−1

eff in the γ-region (C.57)

∇.B♯
ω = 0 in the ω-region (C.58)

0 = −∇bω +∇2B♯
ω −KII−1

ω B♯
ω + (εγ + εω)K

I−1

eff in the ω-region (C.59)

B♯
γ = 0 at Aγκ (C.60)

B♯
ω = 0 at Aωκ (C.61)

B♯
γ − εαεβB

♯
ω = 0 at Aγω (C.62)

nγω.
[
−bγI+

(
∇B♯

γ +∇B♯T
γ

)]
= nγω.

[
−bωI+

(
∇B♯

ω +∇B♯T
ω

)]
at Aγω (C.63)

B♯
γ(x+ li) = B♯

γ(x) ; bγ(x+ li) = bγ(x) i = 1, 2, 3 (C.64)

B♯
ω(x+ li) = B♯

ω(x) ; bω(x+ li) = bω(x) i = 1, 2, 3 (C.65)

εγ〈B♯
γ〉γ + εω〈B♯

ω〉ω = (εγ + εω) I (C.66)

And finally with a last variable change






B′

γ = (εγ + εω)
−1

B♯
γKeff

B′

ω = (εγ + εω)
−1

B♯
ωKeff

;







b′

γ = (εγ + εω)
−1

bγKeff

b′

ω = (εγ + εω)
−1

bωKeff

(C.67)

the closure problem can be set in the form of an incompressible Brinkman’s flow

∇.B′

γ = 0 in the γ-region (C.68)

0 = −∇b′

γ +∇2B′

γ + I in the γ-region (C.69)

∇.B′

ω = 0 in the ω-region (C.70)

0 = −∇b′

ω +∇2B′

ω −KII−1

ω B′

ω + I in the ω-region (C.71)

B′

γ = 0 at Aγκ (C.72)

B′

ω = 0 at Aωκ (C.73)

B′

γ − εαεβB
′

ω = 0 at Aγω (C.74)

nγω.
[
−b′

γI+
(
∇B′

γ +∇B′T
γ

)]
= nγω.

[
−b′

ωI+
(
∇B′

ω +∇B′T
ω

)]
at Aγω (C.75)

B′

γ(x+ li) = B′

γ(x) ; b′

γ(x+ li) = b′

γ(x) i = 1, 2, 3 (C.76)

B′

ω(x+ li) = B′

ω(x) ; b′

ω(x+ li) = b′

ω(x) i = 1, 2, 3 (C.77)

εγ〈B′

γ〉γ + εω〈B′

ω〉ω = Keff (C.78)
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