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Résumé

La demande croissante pour alléger les moteurs d'avions et diminuer les émissions polluantes de la propulsion aéronautique réclame à rendre plus compact le système de compression des moteurs, qui représente environ 40%-50% de la masse totale. Or, à taux de compression global égal, la réduction du nombre d'étage exige d'un point de vue aérodynamique une augmentation de la charge des aubes de compresseur par étage. La charge d'aube est aujourd'hui limitée car elle induit différents mécanismes de pertes tridimensionnelles très pénalisant. L'un des plus importants est le décollement de coin qui se forme à la jonction entre l'extrados de l'aube et le moyeu ou le carter.

Bien que des travaux existent sur les mécanismes et paramètres intervenant dans le décollement de coin, il est encore difficile de proposer une méthode de contrôle efficace. Cela est principalement dû à deux raisons : (i) le manque de compréhension fine des mécanismes physiques, (ii) l'utilisation pour la conception de modèles de turbulence classiques de type RANS 1 qui ne sont pas capables de prédire précisément le décollement de coin, car ils ne peuvent pas décrire correctement les mécanismes de transport turbulent.

Des simulations de type RANS1 et LES2 sont présentées dans cette thèse sur une configuration de grille d'aubes de compresseur, et comparées avec les données expérimentales obtenues au LMFA (issues de travaux séparés). L'approche RANS surestime globalement le décollement de coin. Une amélioration significative est obtenue par la méthode LES, en particulier pour le coefficient de pression statique sur l'aube et les pertes de pression totale. Ces résultats montrent que la zone de décollement de coin, qui est la source principale des pertes, génère des tourbillons de grande échelle associés à de forts niveaux d'énergie. Les histogrammes bimodaux de la vitesse tangentielle qui ont été observés expérimentalement semblent confirmés par les résultats LES. En ce qui concerne les amplitudes des fluctuations de vitesse tangentielle, les résultats expérimentaux et ceux de la LES mettent en évidence deux pics sur certains profils perpendiculaires aux parois. Enfin, grâce à l'approche LES, les bilans de l'énergie cinétique turbulente sont calculés et analysés. Ils décrivent l'équilibre entre les termes de production, de dissipation ix et de transport. Une des perspectives de cette analyse est d'aider à améliorer la modélisation de la turbulence en approche RANS. C pt [-] Total pressure loss coefficient, C pt = (P t,∞ -P t )/( 

τ t ij = -ρu ′′ i u ′′ j θ [ • ] Flow turning angle ϕ [ • ]
Camber angle Superscripts q ′′ Fluctuating quantity after Favre average: q ′′ = q -[q], [q ′′ ] = 0, q ′′ = 0 q Filtered quantity q ′ Fluctuating quantity after time average: q ′ = q -q , q ′ = 0 q + Quantity in wall unit -→ q Vectorial quantity q Favre-filtered quantity: q = ρq/ρ 

Introduction Background

Engineers continuously strive to reduce the costs of aircraft propulsion. This trend is enforced in the recent years for two main reasons. One is the impact of the economic crisis, the other is the reduction of the nonrenewable fossil fuels.

There are two possible ways to achieve this purpose. A first solution is to increase the efficiency of aircraft engines, particularly in increasing the overall pressure ratio of compressors [START_REF] Wang | Experimental and numerical research of highly loaded axial-flow compressor stages[END_REF]. As shown in Fig. 1, since the 1960s, the overall pressure ratio of aircraft engines is constantly increasing from 13 to 42. A second solution is to decrease the weight of aircraft engines, especially in reducing the number of compressor stages. Actually, compressor represents about 40-50% of engine weight [Steffens & Schäffler, 2000]. The trend of increasing the overall pressure ratio and reducing the stage number can be observed in the motorization evolution of Boeing 777 [START_REF] Godard | Étude numérique et expérimentale d'un compresseur aspiré[END_REF]. , the overall pressure ratio increased, the stage number of compressor and turbine decreased and the thrust specific fuel consumption decreased. This means that, the loading of each stage (blade loading) increased.

However, the blade loading is limited by many three-dimensional flow losses in compressors. These high-loss regions are located and summarized by [START_REF] Wisler | Loss reduction in axial-flow compressors through low-speed model testing[END_REF] and Lakshminarayana [1996], shown in Fig. 2 and Fig. 3 respectively. These high-loss regions originates from the three dimensional end-wall boundary layers, flow separations, leakages, secondary flows and shocks.

During the last decades, the impact of hub-corner separation in reducing the blade loading has been emphasized by many researchers. Among these are [START_REF] Dong | Three-dimensional flows and loss reduction in axial compressors[END_REF], [START_REF] Schulz | Three-dimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction: Part 1-Quasi-Steady flow field and comparison with steady-state data[END_REF], Yocum & O'Brien [1993], [START_REF] Zierke | Flow visualization and the three-dimensional flow in an axial-flow pump[END_REF], [START_REF] Hah | Development of hub corner stall and its influence on the performance of axial compressor blade rows[END_REF], [START_REF] Gbadebo | Three-dimensional separations in axial compressors[END_REF], [START_REF] Lei | A simple criterion for three-dimensional flow separation in axial compressors[END_REF], [START_REF] Choi | Role of hub-corner-separation on rotating stall in an axial compressor[END_REF], [START_REF] Lewin | Experimental and numerical analysis of hub-corner stall in compressor cascades[END_REF], Ma et al. [2013a]. The main causes of hub-corner separation are: (1) strong adverse pressure gradients; (2) 
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Figure 1: Gas-turbine engine pressure ratio trends. (data partially from [START_REF] Gunston | Jane's Aero-engines[END_REF]) Figure 2: High-loss regions in a multistage compressor [START_REF] Wisler | Loss reduction in axial-flow compressors through low-speed model testing[END_REF].

Figure 3: Nature of the flow in an axial flow compressor rotor passage [Lakshminarayana, 1996, p. 11].

horseshoe vortex (when the blade leading edge is thick) [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF]. As hub-corner separation can reduce the compressor efficiency, and lead to negative consequences, it is requested to control or reduce the occurrence of hub-corner separation.

the parameters controlling the onset and the size of separation [START_REF] Gbadebo | Three-dimensional separations in axial compressors[END_REF][START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF].

2. In parallel with the development of the computer resources, the computational fluid dynamics (CFD) codes based on Reynolds-averaged Navier-Stokes (RANS) equations have integrated the turbomachinery design process. But the existing RANS turbulent models are very limited in predicting compressor hub-corner separation. Therefore, the control strategies which are developed from these turbulent models are not always reliable [START_REF] Ning | Application of one-equation spalart-allmaras turbulence model in the numerical simulation of internal flows[END_REF] [ Wang, 2009a[START_REF] Liu | Modification of spalart-allmaras model with consideration of turbulence energy backscatter using velocity helicity[END_REF].

Fortunately, with the rapid development of computer technology, it becomes possible to use large-eddy simulation (LES) for investigating the flow mechanisms in complex geometries [START_REF] Boudet | Numerical studies towards practical large-eddy simulation[END_REF][START_REF] Ye | Large-eddy simulation of blade boundary layer spatio-temporal evolution under unsteady disturbances[END_REF] [START_REF] Gand | Dynamique des écoulements de jonction en régime turbulent[END_REF]. Large-eddy simulation has proved to be capable to predict the turbomachinery flows [START_REF] Cahuzac | Aspects Cinétiques et acoustiques en simulation numérique des grandes échelles, application á l'étude du contrôle de l'écoulement de jeu en turbomachines[END_REF].

Thesis outline

Chapter 1 reviews previous works on corner separation in axial turbomachines, with particular attention to criteria, parameters and topologies of the corner separation.

In Chapter 2, the experimental configuration, the blade geometry and the experimental approaches used in the thesis of [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF] are recalled. Then the numerical methods employed in this thesis are introduced, including the (U)RANS and LES approaches, the turbulence/subgridscale modelings, the budget analysis, etc.

Chapter 3 concerns the mean aerodynamics of corner separation. The RANS and timeaveraged LES results are analyzed in comparison with the experiment results.

The parameters controlling the onset and the size of the corner separation are studied in Chapter 4 using the RANS results.

The turbulent characteristics of the corner separation are analyzed in Chapter 5 using the LES results. The budget of turbulent kinetic energy (TKE) and Reynolds stresses are investigated, which lightens a new avenue for turbulence model improvement oriented towards corner separation.

Finally, the conclusions and perspectives are drawn in Chapter 6.

Chapter 1 Corner separation in axial turbomachines

Corner separation is a common feature in axial turbomachines. It is a major source of losses, at the junction between the hub (end-wall) and the blade suction surface. Corner separation, interacting with the tip leakage flow and the main flow, is one of the precursors of the rotating stall [START_REF] Choi | Role of hub-corner-separation on rotating stall in an axial compressor[END_REF]. Many research works have been conducted to investigate axial compressor corner separation. In this chapter, firstly, previous works on corner separation of rotor, stator, and linear compressor cascade will be reviewed. Secondly, criteria for corner separation will be introduced. Thirdly, the main parameters known to influence corner separation will be summarized. And finally, some works about the turbulent modeling in corner separation will be summed up.

In compressors/annular cascades Rotors

In some investigations, corner separation was observed in rotors of compressors, even in axial flow water pumps. [START_REF] Dring | An investigation of axial compressor rotor aerodynamics[END_REF] investigated an isolated compressor rotor facility with high blade loading and low blade aspect ratio, to investigate the three-dimensional flows in compressors. Near the hub, a high-loss region associated with corner separation was clearly observed. When increasing the blade loading, the corner separation at the junction between the hub and the blade suction surface extended to full blade height separation (shown in Fig. 1.1). [START_REF] Wisler | Loss reduction in axial-flow compressors through low-speed model testing[END_REF] constructed a multi-stage, low-speed, large-scale research compressor rig. A large region of corner separated flow was found on the Rotor I blade suction surface near the hub, at peak efficiency operating point. As sketched in Fig. 2, corner separation was considered to be a main source of losses in the axial compressor.

Corner separation occurs not only in compressors, but also in water pumps. [START_REF] Zierke | Flow visualization and the three-dimensional flow in an axial-flow pump[END_REF] investigated experimentally the three-dimensional flow in an axial flow water pump by oil visualization. A three-dimensional corner separation including a spiral node was observed on the rotor suction surface near the hub, while a two-dimensional-like separation extended over most of the span. [START_REF] Zierke | Flow visualization and the three-dimensional flow in an axial-flow pump[END_REF].

Stators

Evidences of corner separation in stators are shown in some publications.

The rotating rig of [START_REF] Dring | An investigation of axial compressor rotor aerodynamics[END_REF] was upgraded by [START_REF] Joslyn | Axial compressor stator aerodynamics[END_REF] to a twostage compressor test model. The second stage stator aerodynamics was carefully studied at three operating points: a high flow coefficient operating point (φ = 0.55), the design operating point (φ = 0.51) and a near-stall operating point (φ = 0.45). As shown in Fig. 1.3, corner separations were observed on the blade suction side near the hub at all these three flow coefficients. At the high flow coefficient operating point (φ = 0.55), the stator blade corner separation occurred at about 60% of the axial chord, and extended up to 36% of the span at the trailing edge. Decreasing the flow coefficient to φ = 0.45, the corner separation grew significantly, the separating point went upwards to 26% of the axial chord, and extended up to 75% of the span at the trailing edge. It was suggested that the corner separation was the major feature in the stator flow, and the main source of losses and blockage. It was also found that, at near-stall operating point, the rotor corner separation resulted in an important increase of the incidence angle of the stator, thus causing a significant growth of the stator corner separation. [START_REF] Joslyn | Axial compressor stator aerodynamics[END_REF].

In the investigation of [START_REF] Wisler | Loss reduction in axial-flow compressors through low-speed model testing[END_REF], the hub of Rotor A was designed to avoid the corner separation observed in Rotor I. However, the corner separation was then found on the stator. [START_REF] Dong | Three-dimensional flows and loss reduction in axial compressors[END_REF] studied the three-dimensional flow in a single-stage, low-speed, highreaction axial compressor. Corner separations were found at both hub and shroud and of the stator, with a larger extent near the hub, as shown in Fig. 1.4. However, no evidence of corner separation was observed on the rotor hub. [START_REF] Schulz | Experimental investigation of the three-dimensional flow in an annular compressor cascade[END_REF], [START_REF] Schulz | Three-dimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction: Part 1-Quasi-Steady flow field and comparison with steady-state data[END_REF] carried out an experimental investigation of the three-dimensional flow in a compressor rig. The experiments were performed at five different stator incidence angles. The oil flow visualization revealed that corner separation occurred at all these five incidence angles, with or without the upstream rotor. The corner separation was also evidenced, by the blade surface static pressure coefficient, with the presence of a constant pressure region on the suction side near the blade trailing edge. A region of total pressure losses was also observed downstream the corner region. [START_REF] Dong | Three-dimensional flows and loss reduction in axial compressors[END_REF].

Shroud Hub

On the same configuration as [START_REF] Schulz | Experimental investigation of the three-dimensional flow in an annular compressor cascade[END_REF], [START_REF] Hah | Development of hub corner stall and its influence on the performance of axial compressor blade rows[END_REF] performed some numerical investigations to study the evolution of the corner separation. They found that, a single vortex with two legs was formed at the corner separation region, its legs jointed on the hub with two counter-rotating vortices (see Fig. 1.11(b)). They suggested that, the formation of this three-dimensional single vortex was the major mechanism of the corner separation. [START_REF] Li | Experimental investigation of the three-dimensional flow in an annular compressor cascade at large incidence[END_REF] investigated experimentally an annular compressor cascade, at low Reynolds number and low Mach number. The flow was considered at four incidence angles. Corner separation was located by oil visualization, passage velocity measurements and downstream total pressure losses. The author observed that the separated flow is highly turbulent. They also claimed that the severe corner separation may result in much higher losses than wake and secondary flows. The highest momentum losses of the separated flow are found in axial direction.

In the study of [START_REF] Barankiewicz | Impact of variable-geometry stator hub leakage in a low speed axial compressor[END_REF], the General Electric's Energy Efficient Engine blade was modeled and installed on the NASA Lewis research center's low-speed axial compressor, to investigate the impact of the stator hub leakage. Three flow coefficients were chosen for the investigation. According to the downstream total pressure coefficient contours shown in Fig. 1.5, corner separation was identified at all the three flow coefficients (design point, peak pressure, near stall). [START_REF] Friedrichs | Effect of stator design on stator boundary layer flow in a highly loaded single-stage axial-flow low-speed compressor[END_REF] did experimental investigations with two different stators in a singlestage, high loading, low-speed axial compressor. A significant corner separation was found on baseline Stator A at both design operating point and part load operating point, as shown in Fig. 1.6. [START_REF] Friedrichs | Effect of stator design on stator boundary layer flow in a highly loaded single-stage axial-flow low-speed compressor[END_REF].

In linear cascades

During the last two decades, in order to investigate the fundamental mechanisms of corner separation, some people used linear compressor cascades, which eliminates the difficulties linked to the rotation and some of the technological effects, such as leakage, non uniform inflow, etc. This can also allow experiments with higher dimension and improve significantly the spatial resolution of the measurements. Compared to annular cascades, the geometry of linear cascades are simpler, and instrumentations and its displacements are often easier. Without changing the solidity, linear cascades permit to use blade with large span height so as to uncorrelate the physics at mid-span from the one close to the end-walls. However the periodicity of the flow is more difficult to obtain with linear cascade. Yocum & O'Brien [1993] used a low-speed linear compressor cascade with 18 blades of simple geometry and a solidity of unity. The aspect ratio was set to be 4.7 to preclude the interaction between the corner separations from both the two end-walls. The measurements were carried out for three stagger angles and a large range of attack angles. Corner separation was captured by surface and smoke visualizations, mean velocity measurements and blade static pressure distributions. Blade stagger angle was shown to be a key element in determining the characteristics of corner separation.

A series of more detailed investigations was carried out by [START_REF] Gbadebo | Three-dimensional separations in compressors[END_REF], [START_REF] Gbadebo | Three-dimensional separations in axial compressors[END_REF]), based on the previous work of Bolger [1999]. Two cascades were experimentally and numerically studied. Cascade 1 consisted of five NACA65 blades, while cascade 2 consisted of five modern PVD (prescribed velocity distribution) blades. The results were presented at incidence angle 0 • for cascade 1, and at incidence angles -7 • and 0 • for cascade 2. As shown in Fig. 1.7, both the tuft visualization on cascade 1 and oil visualization on cascade 2 indicated a corner separation on these two cascades. It appears that corner separation is highly three-dimensional, and that the formation of corner separation is closely related with the leading-edge horseshoe vortex and the associated end-wall dividing streamlines that emanate from the leading-edge saddle point. [START_REF] Lewin | Experimental and numerical analysis of hub-corner stall in compressor cascades[END_REF] performed some numerical investigations on a large-scale low-speed linear compressor cascade, following the experimental work of [START_REF] Sellschopp | Experimentelle und theoretische Untersuchung der Sekundärströmungen in zwei Rotor-Nabenschnitt-Gittern für axiale Kreiselpumpen[END_REF]. The cascade of NACA65 blade profiles was studied with two different stagger angles, and increasing loadings. Corner separation was identified by oil visualization and downstream total pressure loss coefficient. Three vortices are observed in a developed corner separation. The end-wall focus (F2), which can be seen in Fig. 1.8, was thought to dominate the characteristics of a developed corner stall. The fluid leaves off the end-wall from this point.

A high-loading linear compressor cascade with low-aspect ratio controlling diffusion airfoil (CDA) blading was experimentally investigated by [START_REF] Zander | Active control of corner vortices on a highly loaded compressor cascade[END_REF]. And later, Steger et al. [2010] studied numerically this cascade by using delayed detached-eddy simulation (DDES) proposed by [START_REF] Spalart | A new version of detached-eddy simulation, resistant to ambiguous grid densities[END_REF]. Suction surface laminar-turbulent transition bubble, corner separation and mid-span 2D separation were observed, both experimentally and numerically.

The DDES method was found to be superior to the RANS method in predicting the flow in this cascade. However, some discrepancies on the blade surface static pressure coefficient could be observed between DDES and experiment near the end-wall, demonstrating the insufficiency of DDES in the corner separation region.

Recently, an experimental investigation of intermittent corner separation in a linear compressor cascade was carried out by Ma et al. [2013a], at Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA), Ecole Centrale de Lyon. A very detailed characterization of corner separation at different incidence angles was achieved, using different measurement methods, including oil and tuft flow visualization, hot-wire measurements, stationary wall pressure measurements, five-hole probe measurements, 2D-PIV and 2D-LDA. Particularly, a bimodal phenomenon was found in the corner separation region, which is not yet clearly understood. [START_REF] Wang | Unsteady mechanisms of compressor corner separation over a range of incidences based on hybrid LES/RANS[END_REF] simulated the configuration of Ma et al. [2013a] using a scaleadaptive simulation method (SAS) proposed by [START_REF] Menter | The scale-adaptive simulation method for unsteady turbulent flow predictions. part 1: Theory and model description[END_REF]. A good description of the blade static pressure coefficient was achieved, although some discrepancies appear on the downstream total pressure loss coefficient. They suggested that the unsteadiness of the corner separation is dominated by the "backbone" and the "precursor" vortices, as well as the "induced" vortex that is generated by the interaction between these two vortices.

Topology

Topological analysis is a useful tool for studying the flow properties on the surface of a body. It can help to obtain a direct understanding of the separation.

The critical point theory and the corner separation topology will be reviewed in this section.

Critical point theory

Defining a wall friction vector -→ τ = τ x -→ i + τ y -→ j , the critical points are the points where the wall friction are zero, i.e. both τ x and τ y equal to zero.

The critical point theory on three dimensional separation was reviewed in detail by [START_REF] Gbadebo | Three-dimensional separations in compressors[END_REF] and [START_REF] Sachdeva | Study and control of three dimensional flow separation in a high pressure compressor stator blade row by boundary layer aspiration[END_REF]. Basically, the critical point is classified by the trace (p) and the determinant (q) of the 2 × 2 Jacobian matrix in Eq. (1.1).

J =     ∂u ∂x ∂u ∂y ∂v ∂x ∂v ∂y     (1.1)
The trace (p) and the determinant (q) are given in Eq. (1.2) and Eq. ( 1.3), respectively,

p = ∂u ∂x + ∂v ∂y (1.2) q = ∂u ∂x ∂v ∂y - ∂u ∂y ∂v ∂x (1.
3)

The classification of critical points suggested by [START_REF] Dallmann | Topological structures of three-dimensional flow separation[END_REF], is drawn in Fig. 1.9. Tobak & Peake [1982] and [START_REF] Perry | A description of eddying motions and flow patterns using critical-point concepts[END_REF] proved the critical point is topologically unstable when occurs on the parabola or on the axes of Fig. 1.9. A topology with streamlines that connect two saddle points is proven to be topological unsteady, unless it occurs at a sharp corner between two surfaces. The stable critical points are summarized in Tab. 1.1. Figure 1.9: Classification of critical points [START_REF] Dallmann | Topological structures of three-dimensional flow separation[END_REF]. 

Critical point

Relation between p and q Saddle point q < 0 Regular point q > 0, p 2 < 4q Spiral node/focus q > 0, p 2 > 4q

The most popular rule for critical points is the "index rule" of [START_REF] Flegg | From Geometry to Topology[END_REF]. In Fig. 1.9, each of regular nodes, foci, node-foci, star-nodes and centers is noted as a node with an index of 1, and a saddle point is assigned an index of -1, deriving

indices = N - S (1.4)
where N is the number of nodes, and S the number of saddles.

It was shown by [START_REF] Gbadebo | Three-dimensional separations in compressors[END_REF] that the index rule follows Eq. ( 1.5) for a single passage without blade tip clearance, while a passage with blade tip clearance satisfies Eq. (1.6).

N -S = 0 (without tip clearance) (1.5)

N - S = 2 (with tip clearance) (1.6)

Topology of corner separation

As suggested by Délery [2001], the phenomenon of 3-D separation, which is different from that of 2-D separation, is nearly independent of Reynolds number.

The first topology of compressor blade corner separation is proposed by [START_REF] Schulz | Experimental investigation of the three-dimensional flow in an annular compressor cascade[END_REF] and [START_REF] Schulz | Three-dimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction: Part 1-Quasi-Steady flow field and comparison with steady-state data[END_REF], as shown in Fig. 1.10. This topology was obtained from a compressor cascade at a stator inlet angle of 49.2 • . In Fig. 1.10(a), big areas of corner flow separation are clearly seen on both the hub and the blade suction surface. The onset of the corner separation occurs at the junction between these two surfaces, close to the blade leading edge. Near the separation point, a vortex (c) is formed, since the main flow is suddenly obstructed, and the backflow inside the corner separation region migrates upstream and coils up with another vortex (d). A vortex on the hub (marked as a) and a vortex on the blade suction surface (marked as b) can be observed with the help of surface limiting streamlines. The fluid flows along the limiting streamlines starting at the separation point, and rolls away from the hub and blade suction surface. Points (a) and (b) seem like foci ("saddle" points, according to [START_REF] Schulz | Experimental investigation of the three-dimensional flow in an annular compressor cascade[END_REF] and [START_REF] Schulz | Three-dimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction: Part 1-Quasi-Steady flow field and comparison with steady-state data[END_REF]). The corner separation is closed off by the limiting streamlines on the hub and the blade suction surface, and a ring vortex is supposed to join the two vortices (a) and (b) somewhere near the trailing edge. This topology of corner separation is sketched in Fig. 1.10(b).

By numerical investigation of the compressor cascade of [START_REF] Schulz | Experimental investigation of the three-dimensional flow in an annular compressor cascade[END_REF], with RANS method, [START_REF] Hah | Development of hub corner stall and its influence on the performance of axial compressor blade rows[END_REF] proposed another type of corner separation topology (see Fig. 1.11). Two distinct vortices on the hub are suggested to be the dominant features of the corner separation. One vortex lies near the blade suction side at about 80% axial chord, and the other is located close to the blade trailing edge. These two counter-rotating vortices roll outward the hub, and finally connect outside the hub boundary layer. Therefore, as sketched in Fig. 1.11(b), the two hub vortices are two legs of one single vortex. Due to the strong fluid motion around this vortex, a reverse flow region and a limiting streamline are formed on the blade suction surface. In the same paper, [START_REF] Hah | Development of hub corner stall and its influence on the performance of axial compressor blade rows[END_REF] also investigated numerically the corner flow in Rotor 37 ("blind test case" in 1994, [START_REF] Strazisar | CFD code assessment in turbomachinery-a progress report[END_REF], [START_REF] Suder | Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor[END_REF], [START_REF] Denton | Lessons from rotor 37[END_REF]). A weak vortex structure is identified, the vortex tube forms on the hub and finally diffuses in the main flow. Figure 1.10: Topology of corner separation [START_REF] Schulz | Three-dimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction: Part 1-Quasi-Steady flow field and comparison with steady-state data[END_REF]. [START_REF] Hah | Development of hub corner stall and its influence on the performance of axial compressor blade rows[END_REF].

Recently, [START_REF] Lewin | Experimental and numerical analysis of hub-corner stall in compressor cascades[END_REF] provided a more detailed topology for corner separated flows (see Fig. 1.8 and Fig. 1.12). In Fig. 1.12(b), three foci and their associated vortices were identified (see the ribbons), interacting with each others. One is on the suction surface near the trailing edge, the others are located on the hub. According to the authors, the cores of the hub vortices do not connect together as described by [START_REF] Hah | Development of hub corner stall and its influence on the performance of axial compressor blade rows[END_REF]. Furthermore, they indicate that the focus F2 (shown in Fig. 1.12(b)) is the dominant characteristic of a developed corner separation. This focus, missing in undeveloped corner separation cases, increases with increasing loading. At inlet angle of 50 • , the characteristic line I (see Fig. 1.8(a)) is downstream of line II. Only a small fraction of the inlet boundary layer flow lifts off the end-wall at focus 

Extent of three-dimensional corner separation

The region of three-dimensional corner separation is bounded on the end-wall and blade suction side by the skin-friction lines which emanate from the node-saddle point on the juncture between the blade suction side and the end-wall (e.g. the NS point in Fig. 1.8), so it is relatively easy to quantify the extent of the corner separation on the blade suction surface and on the end-wall. The issue is then to determine the boundary layer thickness on the suction surface. [START_REF] Gbadebo | Three-dimensional separations in compressors[END_REF] suggested a relative displacement thickness to determine the effect of three-dimensional separation on blockage near the blade trailing edge. Its definition is the displacement thickness at any radius minus the displacement thickness at midspan. Since the suction surface boundary layer at midspan usually does not separate, this relative displacement thickness could evaluate the relative contribution from the corner separated boundary layer.

When the blade is uniform spanwise, this relative displacement thickness can be calculated for each chordwise position. The displacement thickness at curvilinear abscissa (s) and radius (r) is defined as:

δ 1 (s, r) = δ 0 1 - ρu s (s, r, n) ρ ∞ u s,∞ (s) dn (1.7)
where ρ is density, u s denotes the tangential velocity relative to the blade suction surface, n

indicates the perpendicular distance to the suction surface, and the subscript ∞ means the reference quantity. [START_REF] Gbadebo | Three-dimensional separations in axial compressors[END_REF] used the local mid-pitch quantity as the reference value, while in this thesis the reference quantities are taken on the last point of the measuring-lines (the length of the measuring-lines are identical).

Therefore, the relative displacement thickness δ 1,r (s, r) normalized by the blade chord c is defined as:

δ 1,r (s, r) = δ 1 (s, r) -δ 1 (s, r m ) c (1.8)
where the r m is the mid-span radius.

Exit blockage coefficient

The blockage coefficient defined by [START_REF] Cumpsty | Compressor aerodynamics[END_REF] is expressed as

B = 1 - A e A (1.9)
where A e is effective flow area, and A is geometric flow area. The definition of the effective flow area will be introduced later in the same section.

Inspired by the approach of [START_REF] Khalid | Endwall blockage in axial compressors[END_REF], [START_REF] Gbadebo | Three-dimensional separations in compressors[END_REF] proposed an estimation of the exit blockage coefficient to measure the effect of corner separation.

Supposing a one-dimensional compression process where the total pressure is conservative, from the Bernoulli's equation, the inlet and outlet dynamics pressure are given by: 1.11) where the subscripts 1 and 2 designate inlet and outlet respectively.

1 2 ρU 2 1 = P t -P s,1 (1.10) 1 2 ρU 2 2 = P t -P s,2 ( 
By subtracting Eq. (1.11) from Eq. (1.10), the static pressure rise coefficient is given by:

C p = P s,2 -P s,1 1 
2 ρU 2 1 = 1 - U 2 U 1 2
(1.12)

Under the mass flow conservative principle, the effective outflow area is the area on which the inlet mass flow goes across with the outlet flow velocity, as expressed below:

A 2,e = A 1 U 1 U 2 (1.13)
where A 1 , and A 2,e is the inlet and effective outlet flow areas respectively.

With A 2 being the geometric outlet flow area, the blockage coefficient can be derived by combining Eqs. (1.12) and (1.13) with Eq. (1.9):

B = 1 - A 2,e A 2 = 1 - A 1 A 2 (1 -C p ) -0.5 = 1 - cos β 1 cos β 2 (1 -C p ) -0.5 (1.14)
where β 1 and β 2 are the actual inlet and outlet flow angles (mid-span value for a real compressor).

1.6 The parameters of corner separation

Loading

Increasing compressor loading generally increases the spread and the intensity of corner separation, as revealed by many researchers. In the experiment of [START_REF] Dring | An investigation of axial compressor rotor aerodynamics[END_REF] and [START_REF] Joslyn | Axial compressor stator aerodynamics[END_REF], while increasing the blade loading, a corner separation developed into a full-span separation on the rotor. In the second-stage stator, increasing the blade loading resulted in a dramatic growth of the stator corner separation, and the blockage due to the corner separation reached nearly 40% with an extension of nearly 70% of the span. The same trends were observed in the investigations of [START_REF] Schulz | Three-dimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction: Part 1-Quasi-Steady flow field and comparison with steady-state data[END_REF], [START_REF] Li | Experimental investigation of the three-dimensional flow in an annular compressor cascade at large incidence[END_REF], [START_REF] Barankiewicz | Impact of variable-geometry stator hub leakage in a low speed axial compressor[END_REF] and [START_REF] Gbadebo | Three-dimensional separations in axial compressors[END_REF]. [START_REF] Gbadebo | Three-dimensional separations in compressors[END_REF] examined experimentally and numerically the effect of the inlet boundary layer thickness. Imposing a thickened boundary layer (of 2.6 times as the reference thickness), increased corner separation and losses were identified. Consistently, through the numerical investigations, [START_REF] Lei | A simple criterion for three-dimensional flow separation in axial compressors[END_REF] suggested that the size of the corner separation increases with the thickness of the incoming boundary layer. [START_REF] Gbadebo | Three-dimensional separations in compressors[END_REF] conducted a RANS simulation with the mixing length model to further investigate the the influence of the turbulence level within the thickened inflow boundary layer.

Inflow boundary layer

To do this, they increased the turbulence level within the thickened inflow boundary layer by modifying the mixing length of the mixing length turbulence model. Based on these numerical results, they presumed that the high turbulence level within the thickened inlet boundary layer brought high momentum fluid from the free-stream into the boundary layer, thus suppresses the further growth of separation, and the extra losses that were observed were generated by the turbulent mixing within the boundary layer. [START_REF] Demargne | The aerodynamic interaction of stator shroud leakage and mainstream flows in compressors[END_REF] used a hub cavity leakage to model the incoming boundary layer skewness. They observed that the size of the high-loss region associated with the corner separation is related to the change in tangential momentum thickness of the end-wall boundary layer. The size of the corner separation decreases when increasing the ratio of leakage velocity to the free stream tangential velocity (associated with the boundary layer skewness.)

Free-stream turbulence intensity

When studying the rotor-stator interaction, [START_REF] Schulz | Three-dimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction: Part 1-Quasi-Steady flow field and comparison with steady-state data[END_REF] pointed out that, the upstream rotor wakes (where the turbulence intensity was 13%) yielded a mean upstream turbulence intensity of 7% (much higher than in the case without upstream rotor where T u = 1.2%). This high turbulence intensity suppressed the laminar-turbulent transition bubble on the blade suction side. They concluded that the massive corner separation and the losses near the hub was significantly decreased, mostly owing to the wakes-induced transition at the blade leading edge which suppressed the transition bubble. The same observation was achieved by [START_REF] Ottavy | The effects of wake-passing unsteadiness over a highly-loaded compressor-like flat plate[END_REF] through the investigation over a highly-loaded compressor-like flat plate.

As reported by [START_REF] Schreiber | Effects of reynolds number and free-stream turbulence on boundary layer transition in a compressor cascade[END_REF], at Re c ≈ 2 × 10 6 , increasing turbulence intensity from 0.7% to 4-5%, the laminar-turbulent transition bubble was removed, and the bypass transition became dominant, at the same time the transition location moved upstream from 30%c to 10%c. [START_REF] Schreiber | Effects of reynolds number and free-stream turbulence on boundary layer transition in a compressor cascade[END_REF] did not mention the corner separation nor the losses, but it can be observed in the figures that the corner separation is suppressed when the transition moves forward. So the author of the present thesis considers that the forward movement of the laminarturbulent transition can reduce the corner separation and the losses.

Clearance flow

In the study of [START_REF] Dong | Three-dimensional flows and loss reduction in axial compressors[END_REF], the stator corner separation was significantly reduced by a hub clearance (the hub is not rotating), because the high momentum leakage flow through the gap from the pressure side to the suction side re-energized the low-momentum flow on the suction side and thus decreased corner separation. [START_REF] Barankiewicz | Impact of variable-geometry stator hub leakage in a low speed axial compressor[END_REF] claimed that a stator hub clearance provides great impact on the corner separation, and the losses. It helps increase the flow turning and decrease the diffusion factor near the hub, therefore leads to a reduction of the corner separation. [START_REF] Gbadebo | Interaction of tip clearance flow and three-dimensional separations in axial compressors[END_REF] numerically and experimentally investigated the interaction of a tip clearance flow and the three-dimensional separation in an axial compressor cascade. They found that with a small clearance of about 0.2% of chord length, the losses were predicted to be highest, which could be also associated to the increase of the critical points. When increasing the clearance to about 0.58%, which is comparable to the displacement thickness of the inlet boundary layer, the losses are significantly reduced, and the critical points as well as the horseshoe vortex are found to disappear. As the clearance is increased well beyond 0.58%, a strong tip-leakage vortex is formed that prevents the end-wall low momentum fluid from interacting with the blade suction surface and thereby inhibits the corner separation.

Reynolds number

Yocum & O'Brien [1993] mentioned that, within a range of Reynolds number from 50 000 to 200 000, there is no significant effect of Reynolds number on the cascade performance for fully separated configurations. Above a critical Reynolds number in the neighborhood of 200 000, the losses and the flow deflection (i.e. the cascade performance) are constant for a cascade that is not separated.

By investigating experimentally the effects of the Reynolds number and surface roughness in a compressor cascade, [START_REF] Back | Effects of reynolds number and surface roughness magnitude and location on compressor cascade performance[END_REF] found that the losses are insensitive to the Reynolds number for the smoothing blades, while for the rough blades, the losses increase when augmenting the Reynolds number.

1.6.6 Mach number [START_REF] Bailie | Initial characterization of threedimensional flow separation in a compressor stator[END_REF] studied numerically a stator row of a high loading core compressor with a subsonic design inlet Mach number distribution around 0.72. A corner separation was formed close to the leading edge at high attack angle due to the shock that follows the leading edge local acceleration zone. When reducing the inlet Mach number, the exit losses were reduced, and the leading edge corner separation was eliminated as well.

By investigating experimentally and numerically the 3-D transonic flow in a compressor cascade at an inlet Mach number of 1.09 and a Reynolds number of 1.9 × 10 6 , Weber et al.

[2002] identified a violent corner separation induced by a strong 3-D shock system.

1.6.7 Rotation effect [START_REF] Dring | An investigation of axial compressor rotor aerodynamics[END_REF] found that, at low rotating speed condition, low total pressure fluid accumulates at blade-hub corner due to the passage vortex, which leads to a big corner separation. However, at high rotating speed condition , a large spanwise redistribution of fluid occurs, low energy fluid is centrifuged radially outward, which results in a smaller corner separation.

1.6.8 Surface roughness [START_REF] Gbadebo | Influence of surface roughness on three-dimensional separation in axial compressors[END_REF] performed an experimental study on the Deverson compressor1 , to assess the sensitivity of corner separation to surface roughness. The results revealed that the stage performance is quite sensitive to surface roughness around the blade leading edge and the peak-suction area, especially around and below the design flow coefficient. The blade roughness induces an earlier laminar-turbulent transition, as well as a considerable frictional drag into the flow, which leads to the premature thickened boundary layer on the blade suction side. This thickened boundary layer encounters the passage adverse pressure gradient, and finally leads to the in crease of the corner separation and the losses. [START_REF] Back | Effects of reynolds number and surface roughness magnitude and location on compressor cascade performance[END_REF] conducted an experimental investigation to study the impact of surface roughness on the compressor cascade performance, depending on its magnitude and location.

They claimed that the decrease of the compressor cascade performance depends mostly on the blade suction surface roughness. For Reynolds number above 500 000, increasing the blade roughness will further increase losses and blockage.

Real blade geometry

In the investigation of [START_REF] Friedrichs | Effect of stator design on stator boundary layer flow in a highly loaded single-stage axial-flow low-speed compressor[END_REF], a stator was designed with advanced conception rules, i.e. an aft-swept leading edge with increasing sweep angle near hub and shroud. It was observed that this modern design tends to reduce cross-passage pressure gradient, and therefore reduces the corner separation and losses by an induced new secondary flow. The mechanism of this new secondary flow has been described by [START_REF] Place | Discussion: "Comparison of sweep and dihedral effects on compressor cascade performance[END_REF] in a discussion on the investigation of [START_REF] Sasaki | Comparison of sweep and dihedral effects on compressor cascade performance[END_REF]: "Over the forward part of the blades, the backward sweep induces flow near the suction surface toward the endwall, and induces flow near the pressure surface away from the endwall. These changes to the spanwise flow oppose the classical secondary flow created by turning the increasing endwall boundary layer within the blade passage, and therefore reduce the cross-passage flow of endwall fluid toward the suction surface." [START_REF] Goodhand | The impact of real geometries on threedimensional separations in compressors[END_REF] investigated the impact of small variations in leading edge geometry, leading edge roughness, leading edge fillet, and blade fillet geometry on the threedimensional separations in compressor blade rows. They claimed that corner separation and its corresponding losses are very sensitive to the turbulent transition process between 5% and 30% span near the leading edge. Changes which cause suction surface transition to move toward the leading edge in this region will result in a large growth of the corner separation, and its impact on losses.

Criteria

Three criteria on blade separation are collected in Tab. 1.2 with their dimensionalities (2D or 3D), formulas and thresholds. 

De Haller number

The first criterion is the De Haller number [START_REF] De Haller | Das verhalten von tragflügelgittern in axialverdichtern und im windkanal[END_REF], De Haller proposed this 2-D criterion after some investigations of a compressor cascade. The De Haller number is:

DH = U 2 U 1 (1.15)
where U 1 and U 2 are the averaged velocity magnitudes upstream and downstream of the cascade, respectively. A diffusion limit DH ≥ 0.72 was suggested to avoid high losses. This is a 2D criteria. So this can be applied for a 2D profile. The consequences on the corner separation are less obvious, because this criteria is mostly applied at mid-span.

Lieblein diffusion factor

Based on DH number, and considering of the circumferential velocity change and the solidity, [START_REF] Lieblein | Loss and stall analysis of compressor cascades[END_REF] gave a second criterion on blade separation. Lieblein diffusion factor (DF ) is:

DF = 1 - U 2 U 1 + ∆U θ 2σU 1 (1.16)
where ∆U θ and σ are the change in circumferential velocity and the solidity, respectively. For incompressible flows with unique axial velocity upstream and downstream of the cascade, DF could also be expressed as

DF = 1 - cos β 1 cos β 2 + cos β 1 2σ (tan β 1 -tan β 2 ) (1.17)
where β 1 and β 2 are the upstream and downstream flow angles. It is suggested that DF should be less than 0.6 to avoid 2-D blade separation. However this criterion is only valid near the design operating condition.

Lei's criterion

Recently, [START_REF] Lei | A criterion for axial compressor hub-corner stall[END_REF] constructed a new criterion to estimate the onset of 3-D corner stall1 in axial compressor rotors and shrouded stators. They argue that the formation of corner separation is mainly caused by: 1) the adverse pressure gradient in the blade passage,

2) the cross-flow from pressure side to suction side due to the overturning of the fluid close to the end-wall inside the blade passage, which transfers low energy fluid to the corner region,

3) the condition and skew of the incoming end-wall boundary layer, which impacts the strength of the cross-flow and the resistance to reversal.

Based on these three points, this new criterion consists of (i) an a posteriori massive-cornerseparation indicator (S), which indicates whether massive corner separation occurs, and (ii) an a priori diffusion parameter (D), which evaluates if the flow diffusion limit associated with the onset of massive corner separation has been exceeded.

The stall indicator S is defined by

S = ca 0 P s,ps (x) -P s,ss (x) P t,∞ -P s,∞ dx c a z/c=0.5AR - ca 0 P s,ps (x) -P s,ss (x) P t,∞ -P s,∞ dx c a z/c=0.1 (1.18)
where c a is the blade axial chord length, P s,ps and P s,ss are the static pressures on the pressure side and suction side, respectively. P t,∞ denotes the upstream total pressure, while P s,∞ is the upstream static pressure, and AR is the blade aspect ratio. The stall indicator is found to have little or no appreciable sensitivity to Reynolds number, Mach number, inlet boundary layer thickness, and blade aspect ratio.

The diffusion parameter D is expressed as

D = s c 1 - cos(i + γ + ϕ/2) cos(γ -ϕ/2) 2 (i + ϕ -∆η) (1.19)
where s is the pitch length of the compressor cascade, i is the incidence angle, γ is the stagger angle, ϕ is the camber angle, and ∆η is an additional turning angle for skewed incoming endwall boundary layers.

From a large number of numerical simulations, the massive-corner-separation indicator S is plotted against the diffusion parameter D in Fig. 1.13. Two distinct branches can be observed.

The corner stall whose stall indicator S is revealed to be always greater than 0.12, is generally accomplished with a D crit ≥ 0.4 ± 0.05. 

Turbulence modeling for corner separation

During the last decades, CFD tools based on RANS methods have been widely used in turbomachinery design. But some linear RANS turbulence models are very limited in predicting three-dimensional vortical flows such as compressor corner separation. Some non-linear Reynolds stress models (RSM) may give fair prediction of corner separations such as Gand et al.

[2010], while [START_REF] Murthy | Assessment of standard , RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs[END_REF] and [START_REF] Singh | An assessment of different turbulence models for predicting flow in a baffled tank stirred with a rushton turbine[END_REF] claimed that some RSM models can fairly reproduce the mean flow but failed to predict the turbulent kinetic energy. This kind of turbulence models is more expensive for the industry. A series of work was conducted to improve linear RANS turbulence modelings in the context of compressor corner separation.

Supposing non-equilibrium turbulence, [START_REF] Wang | Improvement on s-a model for predicting corner separation based on turbulence transport nature[END_REF] improved the S-A turbulence model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF] by globally varying the production term coefficient c b1 with consideration of the mass flow rate. [START_REF] Ma | Investigation on improving the capability of predicting separation of spalart-allamars turbulence model[END_REF] extended this method into a zonal model, i.e. the original S-A turbulence model is used outside the separation region, while the improved S-A turbulence model is employed inside the separation region. [START_REF] Liu | Modification of spalart-allmaras model with consideration of turbulence energy backscatter using velocity helicity[END_REF] thought that normalized helicity, as a scalar quantity, can locally describe the size and the intensity of the corner separation, and it may also reflect the highly non-equilibrium turbulence transport nature in the corner separation region. Therefore, the S-A turbulence model was improved by modifying the production term coefficient c b1 with local normalized helicity. The modified S-A model was tested in predicting the corner separation in the PVD compressor cascade1 .

Conclusions

Some previous observations of corner separation in compressor/annular cascades and linear cascades, as well as the main parameters, topology, criteria and some turbulence modeling works were reviewed in this chapter. These provide some guidelines for the current investigation:

1. Corner separation is mainly caused by (i) the adverse pressure gradient in the blade passage, (ii) secondary flow within the blade passage, (iii) mixing process between the endwall and the suction surface boundary layers, and (iv) the possible leading edge horseshoe vortex.

2. Three kinds of corner-separation topologies are reported by different authors: the first one is a vortex ring that connects to both the end-wall and the blade suction surface; the second one is a vortex ring, and its two ends stand on the end-wall; the last one shows three vortices which do not connect to each other. The relative boundary layer displacement thickness and the exit blockage coefficient are available for evaluating the extent of the corner separation. 4. Three criteria are available for determining the occurrence of corner separation, which are De Haller number, Lieblein diffusion factor and Lei's diffusion parameter. Among them, the first two are 2-D criteria which are often used on the mid-span, while Lei's diffusion parameter is a 3-D criterion for the 3-D corner separation.

5. The classical linear RANS models are not considered to describe correctly the transport nature of the turbulent kinetic energy in non-equilibrium turbulence. Some efforts are devoted to improve linear RANS turbulence modeling in order to better predict corner separation.

6. Till now, most of the analyses of corner separation are grounded on a steady point of view. Some recent work using SAS [START_REF] Wang | Unsteady mechanisms of compressor corner separation over a range of incidences based on hybrid LES/RANS[END_REF] and DDES [START_REF] Steger | Detached-eddy simulation of a highly loaded compressor cascade with laminar separation bubble[END_REF] bring some understandings on unsteady effects, but some phenomena (such as bimodel phenomenon), are still not clearly understood.

Chapter 2 Experimental and numerical methods

In this chapter, the wind tunnel, cascade blade geometry will be introduced. Next, the experimental methods that were employed in the work of [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF] will be recalled. Finally, the numerical methods used in this thesis will be stated.

Configuration of the linear compressor cascade 2.1.1 Wind tunnel

In this investigation, the experimental work is implemented in a low speed wind tunnel powered by a centrifugal blower of 60 kW. The test section is a rectangular duct with a cross section of 900 mm long by 370 mm wide. The sketches of the wind tunnel and the test section are depicted in Figs. 2.1 and 2.2.

Blade geometry

The original thickness distribution of the blade used in the current investigation is from the NACA 65-009 blade. According to the naming convention of NACA 6-series blade1 , the present blade is describes as below:

1. the first digit "6" denotes the series, 2. the second digit "5" describes the location of the minimum pressure in tenths of chord, i.e. 50%c from the leading edge, 3. the first digit behind the dash indicates the design lift coefficient in tenths, in this symmetrical airfoil, the lift coefficient is "0", 4. the last two digits specify the maximum thickness in percentage of chord, which are "09" for the present blade.

The leading and trailing edges of the present blade are rounded by two circles with radii of 0.6183%c and 0.3333%c, respectively. The blade of the original thickness distribution is plotted in Fig. 2.3(a), and the original thickness distribution data can be found in Tab 3.1 in the thesis of [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF]. A mean camber line of a circular arc with a camber angle ϕ of 23.22 • is used to modify the blade profile, as shown in Fig. 2.3(b). Finally, Fig. 2.3(c) depicts the modified blade profile based on the mean camber line.

Cascade set-up

The present linear compressor cascade consists of 13 modified NACA 65 blades described before. These blades are periodically installed with a stagger angle γ of 42.7 • and a pitch s of 0.89c, and the blade span is 2.47c. Thus, the solidity of the present cascade are σ = 1.12, and aspect ratio is AR = 2.47. The design inlet and outlet angles are β ′ 1 = 54.31 • and β ′ 2 = 31.09 • , respectively. Note that, the optimum incidence angle i * , which is used for determining the incidence angle of 0 • , is not considered in the design inlet angle β ′ 1 , i.e. the actual inlet angle is calculated by β 1 = β ′ 1 + i + i * (see the page 89 of [START_REF] Lakshminarayana | Fluid Dynamics and Heat Transfer of Turbomachinery[END_REF]). More detailed parameters of the cascade can be found in Fig. 2.4 and Tab. 2.1.

Tripping bands for transition

Blade suction side transition appeared in many experimental investigations, e.g. the annular cascades of [START_REF] Schulz | Experimental investigation of the three-dimensional flow in an annular compressor cascade[END_REF] and the linear cascades of [START_REF] Schreiber | Effects of reynolds number and free-stream turbulence on boundary layer transition in a compressor cascade[END_REF]. In the following study of [START_REF] Schulz | Three-dimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction: Part 1-Quasi-Steady flow field and comparison with steady-state data[END_REF], it was found that, the blade suction surface transition was eliminated when adding an upstream rotor, because the upstream rotor created high turbulence level as encountered in real turbomachines. In addition, the laminar-turbulent transition process raises some difficulties for numerical simulations, especially for the conventional RANS method [START_REF] Steger | Detached-eddy simulation of a highly loaded compressor cascade with laminar separation bubble[END_REF]. Transition tripping bands are suggested by [START_REF] Evans | Effects of free-stream turbulence on blade performance in a compressor cascade[END_REF] to be implemented on the blade in the experiments, as it can represent the real turbulent boundary layer of high turbulence level usually encountered in turbomachines. The tripping bands were used in some previous work of cascade, e.g. Muthanna & Devenport [2004], [START_REF] Wang | Wake of a compressor cascade with tip gap, part 2: effects of endwall motion[END_REF] and [START_REF] Devenport | Wake of a compressor cascade with tip gap, part 3: Two point statistics[END_REF]. Therefore, in order to investigate the real hub-corner separation encountered in compressors without the impact of the laminar-turbulent transition process, and Two strips of sandpaper are stuck on both the blade suction surface and pressure surface at an arc position of 6.0mm from leading edge, as depicted in Fig. 2.5. The size of the sandpapers 
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is of 3.0mm wide by 0.3mm thick. The grain size of the sandpapers is indicated by the standard of ISO P600 (the average partial diameter is about 25.8µm). The influence of the tripping bands on the boundary layers that develop on the profile pressure and suction sides can be seen with oil visualization and static pressure coefficient distribution around the blade surface (measurements presented in the Appendix C of [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF]).
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Experimental database and methods (recall)

During the previous work by [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF], an accurate and detailed database of intermittent hub-corner separation in the NACA 65 linear compressor cascade has been built up, aiming at (i) better understanding the phenomenon in the hub-corner separation region, (ii) calibrating the CFD tools including RANS and LES. Here, we recall the available experimental results, their measurement methods and the corresponding uncertainties. They are shown in Fig. 2.6 and Tab. 2.2.

Surface flow pattern

The flow visualization is usually used to qualitatively show the flow pattern very close to the wall. In the present investigation, the surface flow patterns are acquired by employing the oil visualization and the tuft visualization. A specially prepared paint consisting of suitable oil 

U angle = 0.2 • U Cpt = 2% ∼ 4% U U = 4% ∼ 10% x x x x x x x x x
In passage between blades 6 and 7 and finely powdered pigment is painted on both the blade surface and the end-wall surface. This will be compared with the numerical results in this thesis.

PIV -→ U (x, y) U U = 0.75% ∼ 1% x LDA -→ U (x, y) U us > 1.2% U un > 1.8% x BL,

Inlet boundary layer

The inlet boundary layers normal to the end-wall are measured by hot-wire anemometry, at two different locations upstream of the blade leading edge. As shown in Fig. 2.6, the first station lies at 8.71c a upstream of the leading edge of blade 6 along the flow direction, while the related locations for the second measurement station is 4.13c a . Outside the boundary layer, the uncertainty of the hot-wire anemometry is 2% in the mean flow. The relative uncertainty in Reynolds stress u ′2 increases gradually from 4% to higher values, from outside the boundary layer to inside the boundary layer.

Blade and end-wall surface static pressure

The surface static pressure is measured by embedding pressure taps in the blade and the end-wall.

An instrumented blade, which can slide in the spanwise direction through two slots on each side of the end-wall, is used to measure the steady static pressure on blade 6 (in Fig. 2.6). The span of this instrumented blade is 1.58h, where h is the blade span of the cascade.

Forty pressure taps are planted around the instrumented blade at 34.2% span, i.e. 25 taps on the blade suction side, and 15 taps on the blade pressure side. Static pressure can be measured at any arbitrary spanwise location by sliding the instrumented blade. For the end-wall, in the passage between the blades 6 and 7, 35 pressure taps are equably embedded in the end-wall to measure the steady static pressure.

The the static pressure on the blade surface and the end-wall surface are expressed through the static pressure coefficient. The flow field at incidence angle of 4 • is taken as reference. The uncertainty is around 0.02 and a bit higher close to the zone with strong gradient (i.e. leading edge). These can be seen in the figures on the pages 42 and 43 in the reference [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF].

Outlet total pressure loss and velocity vector

Experimentally, the total pressure losses and velocity vector are measured at three outlet sections downstream of the middle section blades, i.e. downstream the passages between the blades 6 and 8. These three outlet sections are axially located downstream of the blade trailing edge at 0.363c a , 0.635c a and 0.907c a , respectively (see Fig. 2.6). The outlet total pressure losses and velocity vector are measured by a five-hole pressure probe. The absolute uncertainty in angle at each of the three coordinate planes is 0.2 • . Taking the results on the outlet section 1 at incidence angle of 4 • as example, the absolute uncertainty in total pressure losses coefficient C pt is about 2% at high loss region, and increases to about 4% at the rest region. While the absolute uncertainty of normalized velocity magnitude is about 10% at the core of the high loss region, and decrease suddenly to about 4% for the rest region. (see Fig. 3.18 in [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF])

Passage velocity

In the experiment, the two components of the passage velocity vector are surveyed by two different measurement methods: particle image velocimetry (PIV) and laser Doppler anemometry (LDA). Both of these are optical measurement methods, which do not disturb the flow field during the measurement. However, since tracer particles are needed for the measurement, the accuracy depends of the number of particles used to calculate the statistical moments. The uncertainty is then much higher close to the wall, where the number of particles of the measurements are lower (in order to conserve acceptable acquisition time for LDA), or where difficulties due to reflections occur.

Particle image velocimetry

Particle image velocimetry could measure the whole velocity field on a plane by means of tracer particles and laser illuminations. The two components of velocity vector on the plane of a light sheet is computed by two illuminations within a short time delay. In the experiment, the image acquisition frequency is 4Hz, the time delay between two illuminations is 10µm. In order to obtain enough flow field information, and to guarantee the measurement resolution, fourteen planes perpendicular to spanwise direction are measured in the passage between blades 6 and 7, and each plane is divided to 6 zones (see Fig. 2.7). The relative uncertainty of the mean velocity magnitude to the free-stream velocity is about 1% in the hub-corner separation region, and about 0.75% for the other region (see Fig. 3.30 in [Ma, 2012]).

Laser Doppler Anemometry

Laser Doppler anemometry, also known as laser Doppler velocimetry (LDV), different from PIV, measures only the velocity at a single point in the space. In the experiment, a set of points on 54 measuring-lines perpendicular to the blade suction surface are measure by LDA. Fig. 2.8 depicts the starting points of the measurement stations on the blade suction surface. In the region far from the wall, the number of samples is more than 500 000, while the average sampling rate reaches about 10kHz, and the associated relative uncertainties are 1.2% for suction surface tangential velocity u s and 1.8% for the velocity component normal to the suction surface u n . The relative uncertainties for the Reynolds stresses 

u ′ s u ′ s , u ′ n u ′ n and u ′ s u ′ n are 3.0%, 4.0%

Traverse system

Three traverse systems are employed in the experiment: MM4405, RHOCM and ITL09, which move in the pitchwise, spanwise and vertical directions. Their corresponding resolutions are 0.05mm, 0.07mm and 0.01mm, respectively.

Numerical methods

The work in this thesis concentrates mostly on the numerical simulation of the hub-corner separation in the same configuration as the experiment just recalled. The numerical methods including the governing equations, turbulence modeling, discretization, etc., will be introduced in this section. 

Governing equations

The flows of Newtonian fluids are considered to be governed by the compressible Navier-Stokes equations that are expressed by the laws of conservation of mass, momentum and total energy [START_REF] Garnier | Large eddy simulation for compressible flows[END_REF][START_REF] Boudet | Approches numériques pour la simulation du bruit à large bande en vue de l'application aux turbomachines[END_REF][START_REF] Cahuzac | Aspects Cinétiques et acoustiques en simulation numérique des grandes échelles, application á l'étude du contrôle de l'écoulement de jeu en turbomachines[END_REF]:

∂ρ ∂t + ∂ρu j ∂x j = 0 (2.1)
∂ρu i ∂t + ∂ρu i u j ∂x j = - ∂p ∂x i + ∂τ ij ∂x j (2.2) ∂ρe t ∂t + ∂(ρe t + p)u j ∂x j = ∂τ ij u i ∂x j - ∂q j ∂x j (2.3)
Under the hypothesis of Stokes, which supposes that the bulk viscosity can be neglected, the viscous stress tensor τ ij for a Newtonian fluid is considered to only depend on the rate-of-strain tensor S ij ,

τ ij = 2µS ij - 2 3 µδ ij ∂u k ∂x k (2.4) S ij = 1 2 ∂u i ∂x j + ∂u j ∂x i (2.5)
where µ is dynamic molecular viscosity, and δ ij is Kronecker's delta, written as

δ ij =    1, i = j 0, i = j (2.6)
Neglecting the energy transport by the molecular diffusion and the radiant transfer, the heat flux q j is then derived according to the law of Fourier,

q j = -κ ∂T ∂x j (2.7)
where κ is the thermal conductivity.

The Prandtl number that links κ with the dynamic molecular viscosity µ and the heat capacity at constant pressure c p is given by,

P r = µc p κ (2.8)
In order to close the Navier-Stokes equations, we supplement the equation of the state of an ideal gas, p = ρRT (2.9)

where R is the specific gas constant, its value is 287J • kg -1 • K -1 for air.

The internal energy is:

e = c v T = 1 γ -1 p ρ (2.10)
The total energy is written as:

e t = e + 1 2 u i u i (2.11)
The relationship between the heat capacity at constant pressure c p , the heat capacity at constant volume c v and the specific gas constant can be expressed as follow,

R = c p -c v , γ = c p c v (2.12)
with γ = 1.4 the ratio of specific heat.

All the cases in this thesis are at low Mach number, and at a normal temperature and pressure condition. Thereby, µ, P r, c p , c v , R and γ are considered to be constant in the work of this thesis.

Till now, the Navier-Stokes equations are closed by a system of five equations with five unknown quantities, ρ, ρu i (i = 1, 2, 3) and ρe t .

Numerical methods for turbulence modeling

Since there exists no analytical solution of the Navier-Stokes equations, except some specific flow cases such as Poiseuille flow, Couette flow [START_REF] Chen | Fundamentals of viscous fluid dynamics[END_REF], etc., people devote to numerically solving the Navier-Stokes equations with the help of computers. Therefore, the problem appears to be how to model the turbulence with energy cascade, Kolmogorov hypothesis, backscatter, etc. According to the conventional classification manner, there exists three approaches to deal with the turbulence in a flow field. They are introduced below:

Direct numerical simulation

The first approach is direct numerical simulation (DNS). The conception of this approach is very simple, since the Navier-Stokes equations are solved directly without any hypothesis nor turbulence model. All the scales of motion must be resolved by the DNS approach, therefore it requires the smallest grid size to be comparable with the Kolmogorov scale [START_REF] Bailly | Turbulence[END_REF]. However the cost of the DNS approach is extremely high, it increases very rapidly with the Reynolds number. The number of grid points for a three-dimensional case is proportional to Re 9/4 , so the applicability of the DNS approach is limited to flows of low or moderate Reynolds numbers [START_REF] Pope | Turbulent flows[END_REF]. Therefore, it is necessary to limit the CPU cost of the calculation for flows of higher Reynolds numbers.

Reynolds-Averaged Navier-Stokes

One alternative is the Reynolds-Averaged Navier-Stokes (RANS) approach. [START_REF] Reynolds | On the dynamical theory of incompressible viscous fluids and the determination of the criterion[END_REF] proposed to decompose the turbulent flow field into mean quantities and fluctuating quantities. When averaging the Navier-Stokes equations, a Reynolds stress term that reflects the turbulent feature appears, and this term should be modeled. The RANS approach can describe the mean motion of the flows, and allows to numerically investigate the flow fields of high Reynolds numbers in the complex industrial applications.

Large-eddy simulation

It can be seen that, both the DNS approach and the RANS approach are not perfect. The DNS approach can resolve the turbulent motion until the dissipative scale, but its cost is extremely high; the RANS approach reduces the cost for computation, but the turbulent characteristics are disregarded by the equations. Large-eddy simulation (LES), an alternative between DNS and RANS, permits to reduce the cost compared to DNS but still to investigate the turbulent flow motion. Just as the name implies, the large scale turbulence is directly solved, while the small scale turbulence is modeled with the subgrid-scale model.

In the present thesis, both the RANS and LES approaches are used to simulate the flow field in the axial compressor cascade.

RANS method 2.3.3.1 Averaged equations

The Navier-Stokes equations are averaged using the Favre decomposition for compressible flows. We introduce the ensemble average operator • and the Favre decomposition operator [•] [START_REF] Favre | Problems of hydrodynamics and continuum mechanics[END_REF]. We have [q] = ρq / ρ , q ′ = q -q , q ′′ = q -[q], q ′ = 0, [q ′′ ] = 0 and q ′′ = 0. Therefore, the Reynolds averaged Navier-Stokes equations are given by:

∂ ρ ∂t + ∂ ρ [u j ] ∂x j = 0 (2.13) ∂ ρ [u i ] ∂t + ∂ ρ [u i ][u j ] ∂x j = - ∂ p ∂x i + ∂ τ ij ∂x j - ∂ ρu ′′ i u ′′ j ∂x j (2.14) ∂ ρ [e t ] ∂t + ∂( ρ [e t ] + p )[u j ] ∂x j = - ∂ (ρe t + p)u ′′ j ∂x j + ∂ τ ij u i ∂x j - ∂ q j ∂x j (2.15)
with the expressions of τ ij , p and q j :

τ ij = µ ∂[u i ] ∂x j + ∂[u j ] ∂x i - 2 3 δ ij ∂[u k ] ∂x k (2.16) p = ρ (γ -1) [e t ] - 1 2 [u i ][u i ] - 1 2 [u ′′ i u ′′ i ]
(2.17) 2.18) In order to solve these equations, we should model the unknown terms, i.e. the turbulence terms.

q j = - γ µ P r ∂[e] ∂x j ( 
The first term to be modeled is the Reynolds stress τ t ij = -ρu ′′ i u ′′ j . This term is modeled using the Boussinesq hypothesis of eddy viscosity that relates the Reynolds stress to the mean flow. In the code Turb'Flow, it is chosen to use two turbulent variable to model the Reynolds stress. The first turbulent variable is the turbulent kinetic energy: k = 1 2 u ′′ i u ′′ i , while the second turbulent variable is the specific turbulent dissipation rate: ω.

The term (ρe t + p)u ′′ j is modeled as below:

(ρe t + p)u ′′ j = ρ γc v [T u ′′ j ] + ρu ′′ i u ′′ j [u i ] + ρ [ku ′′ j ] (2.19)
since the temperature-velocity correlations [T u ′′ j ] are conventionally expressed in terms of the mean temperature gradient and the turbulent Prandtl number, with employing the similar approach for the triple correlations , 1997], the above equation can be written as:

[ku ′′ j ] [Smati
(ρe t + p)u ′′ j = - γc v µ t P r t ∂[T ] ∂x j -τ t ij [u i ] - µ t σ k ∂[k] ∂x j (2.20)
where µ t is the turbulent dynamic viscosity, P r t = µtcp κ is the turbulent Prandtl number (fixed to 0.9 in the present work), and σ k represents a constant of the k -ω turbulence model.

According to [START_REF] Smati | Contribution au developpement d'une methode numerique d'analyse des ecoulements instationnaires[END_REF] and [START_REF] Boudet | Approches numériques pour la simulation du bruit à large bande en vue de l'application aux turbomachines[END_REF], the term τ ij u i is modeled as:

τ ij u i = τ ij [u i ] + µ ∂[k] ∂x j (2.21)
Hereupon, the complete equations are:

∂ ρ ∂t + ∂ ρ [u j ] ∂x j = 0 (2.22) ∂ ρ [u i ] ∂t + ∂ ρ [u i ][u j ] ∂x j = - ∂ p ∂x i + ∂ τ ij + τ t ij ∂x j (2.23) ∂ ρ [e t ] ∂t + ∂( ρ [e t ] + p )[u j ] ∂x j = ∂ ∂x j γ( µ P r + µ t P r t ) ∂[e] ∂x j + ∂ ∂x j ( µ + µ t σ k ) ∂[k] ∂x j + ∂ ∂x j ( τ ij + τ t ij )[u i ] (2.24)
with

[e t ] = c v [T ] + 1 2 [u k ][u k ] + [k] (2.25) τ ij = µ ∂[u i ] ∂x j + ∂[u j ] ∂x i - 2 3 δ ij ∂[u k ] ∂x k (2.26) p = ρ (γ -1) [e t ] - 1 2 ([u i ][u i ] + [k]) (2.27)

Turbulence model

In Eqs. (2.23) and (2.24), the Reynolds stress τ t ij = -ρu ′′ i u ′′ j is unknown, and need to be modeled by a turbulence model. The k -ω turbulence model [START_REF] Wilcox | Turbulence modeling for CFD[END_REF] uses the two turbulent quantity transport equations (Eqs. (2.28) and(2.29)) to model this term.

∂ ρ [k] ∂t + ∂ ρ [k][u j ] ∂x j = [P k ] -c k ρ [ω][k] + ∂ ∂x j ( µ + µ t σ k ) ∂[k] ∂x j (2.28) ∂ ρ [ω] ∂t + ∂ ρ [ω][u j ] ∂x j = c ω1 [ω] [k] [P k ] -c ω2 ρ [ω] 2 + ∂ ∂x j ( µ + µ t σ ω ) ∂[ω] ∂x j (2.29)
For the turbulent kinetic energy transport equation (Eq. 2.28), the first and second terms on the left-hand side are respectively the unsteady term and the advection. On the right-hand side, the first term

[P k ] = τ tij ∂[u i ]
∂x j refers to production of turbulent kinetic energy, the second term is the dissipation, and finally the last term represents the molecular diffusion, turbulent transport and pressure diffusion [START_REF] Wilcox | Turbulence modeling for CFD[END_REF]. While for the specific turbulent dissipation rate transport equation (Eq. 2.29), the left-hand terms are the unsteady term and the convection term, and the right-hand terms are respectively the production term, the dissipation term and the other modeled terms.

In the present thesis, two RANS turbulence models are used. These are the standard k -ω model developed by [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF], and the modified k -ω model of [START_REF] Kok | Resolving the dependence on freestream values for the k-turbulence model[END_REF]. These two models have represented the state-of-the-art in the industry.

In the standard k -ω turbulence model [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF], the eddy viscosity is defined as:

µ t = c µ ρ [k] [ω] (2.30)
and the viscous stress tensor is then calculated as:

τ t ij = µ t ∂[u i ] ∂x j + ∂[u j ] ∂x i - 2 3 δ ij ∂[u k ] ∂x k - 2 3 ρ [k]δ ij (2.31)
where the coefficients are given by:

c µ = 1, σ k = 2.0, σ ω = 2.0, c k = 0.09, c ω1 = 5 9 , c ω2 = 3 40 (2.32)
The standard k -ω turbulence model is considered to be strongly dependent on the free stream turbulence variables (in particular the specific turbulent dissipation rate ω) [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF], so [START_REF] Kok | Resolving the dependence on freestream values for the k-turbulence model[END_REF] proposed the following method to resolve this issue.

Compared to the standard k -ω model, a cross-diffusion term C D is added to the right-hand side of the Eq. 2.29, 2.33) and the coefficients are changed to,

C D = 1 2 ρ [ω] max ∂[k] ∂x j ∂[ω] ∂x j , 0 ( 
c µ = 1, σ k = 1.5, σ ω = 2.0, c k = 0.09, c ω1 = 0.553, c ω2 = 0.075 (2.34)
Note that the standard k -ω model is commonly used for internal flows, while Kok's k -ω model is more suitable for external flows.

LES method 2.3.4.1 Filtered equations

The basic equations for large-eddy simulation are obtained by spatially filtering the Navier-Stokes equations. The filtered variables that represent the large-scale fluid characteristics are computed directly by the filtered Navier-Stokes equations, while the small-scale dynamics is modeled by the sub-grid scale model.

Theoretically, three classical filters exist for LES, that are the box filter, the Gaussian filter and the spectral cutoff filter, respectively [START_REF] Garnier | Large eddy simulation for compressible flows[END_REF]. They are summarized in Tab. 2.3.

The filters presented above are one-dimensional, and they are not difficult to be extended to three-dimensional for handling the three-dimensional problems. Actually, in the present work, filtering is managed by the grid, and the influences of the filter characteristics are neglected.

As the fluid is considered to be compressible, the Favre decomposition is also used here to decompose the primitive variables from the density, as suggested by [START_REF] Erlebacher | Toward the large-eddy simulation of compressible turbulent flows[END_REF]. So here we introduce the general filter operator q, and the associated Favre decomposition operator 

G(x -ξ) = 1 ∆ if|x -ξ| ≤ ∆ 2 0 otherwise G(k) = sin(k∆/2) k∆/2 Gaussian filter G(x -ξ) = ( ζ π∆ 2 ) 1/2 exp( -ζ(x-ξ) 2 ∆ 2 ) G(k) = e -(∆ 2 k 2 )/4ζ Spectral cutoff filter G(x -ξ) = sin(kc(x-ξ)) kc(x-ξ) with k c = π ∆ G(k) = 1 if|k| < k c 0 otherwise
∆ is the grid spacing, computed as the cube root of the grid cell volume.

q. Then we get the following relationships:

1. the high frequency part decomposed by the general filter: q ′ = q -q, 2. Favre decomposition: q = ρq/ρ, 3. the high frequency part decomposed by the Frave decomposition: q ′′ = q -q,

Then we can obtain the filtered conservative mass and movement equations from Eqs. (2.1) and (2.2) (the energy equation will be given later):

∂ρ ∂t + ∂ρ u j ∂x j = 0 (2.35) ∂ρ u i ∂t + ∂ρ u i u j ∂x j = - ∂p ∂x i + ∂τ ij ∂x j + ∂Π ij ∂x j (2.36)
where Π ij is the subgrid-scale (SGS) tensor, defined as:

Π ij = ρ u i u j -ρu i u j = -ρ( u i u j -u i u j ) (2.37)
Many different filtered LES equations can be obtained by using different filters on the conservative equation of energy. Some researchers apply the filter directly on the conservative equation of total energy, such as [START_REF] Ye | Large-eddy simulation of blade boundary layer spatio-temporal evolution under unsteady disturbances[END_REF] and [START_REF] Gand | Dynamique des écoulements de jonction en régime turbulent[END_REF], while there exists some other expressions of the filtered conservative energy equation based on enthalpy, temperature, pressure or entropy [START_REF] Garnier | Large eddy simulation for compressible flows[END_REF].

In the code Turb'Flow, we filter directly the equation of the total energy.

∂ρe t ∂t + ∂ρu j e t ∂x j = - ∂u j p ∂x j + ∂u i τ ij ∂x j - ∂q j ∂x j (2.38)
In the present work, the low Mach number (Ma < 0.3) and the moderate variations of the temperature permit supposing that the molecular viscosity µ and the thermal conductivity κ are constant. This allows the following approximations:

∂τ ij ∂x j = ∂µσ ij ∂x j ≈ µ ∂ σ ij ∂x j (2.39) q j = -κ ∂T ∂x j ≈ -κ ∂ T ∂x j (2.40)
Similarly to [START_REF] Gamet | Développement de NTMIX-LES: maillages non uniformes, formulation des grandes échelles -premières applications[END_REF] and [START_REF] Moin | A dynamic subgrid-scale model for compressible turbulence and scalar transport[END_REF], the non-linear terms of pressure-velocity and viscous dissipation are simplified:

τ ij u i ≈ τ ij u i (2.41) u j p ≈ u j p (2.42)
In order to treat the term ρe t u j , we decompose it by appearing the internal energy e:

ρe t u j = ρeu j + ρu j u 2 i (2.43)
The term including the internal energy is expressed:

ρeu j = ρ e u j + Q j (2.44)
where Q j is the subgrid-scale heat flux:

Q j = ρeu j -ρ e u j = ρc v T u j -T u j (2.45)
The term ρu j u 2 i is treated by following [START_REF] Nybelen | Étude numérique d'écoulements tourbillonnaires de sillage d[END_REF]:

ρu j u 2 i = ρ u j u i 2 -Π ij u j (2.46)
The filtered ideal gas equation is:

p = ρR T (2.47)
Hereupon, we need to model the unknown terms: the SGS tensor Π ij and the SGS heat flux Q j .

The first term to be modeled is the SGS tensor Π ij . We decompose it into a deviator (Π

(D) ij )
and an isotropic part (Π

(I) ij ): Π ij = Π (D) ij Π ij -1 3 Π kk δ ij + Π (I) ij 1 3 Π kk δ ij (2.48)
The deviator

Π (D)
ij is modeled by analogy with the viscous tensor,

Π (D) ij = µ sgs ∂ u i ∂x j + ∂ u j ∂x i - 2 3 ∂ u k ∂x k δ ij (2.49)
where µ sgs is the SGS viscosity, to be provided by the SGS model.

The isotropic part Π (I)

ij can be modeled by the method suggested by [START_REF] Yoshizawa | Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling[END_REF]. However, [START_REF] Erlebacher | Toward the large-eddy simulation of compressible turbulent flows[END_REF] revealed that this term could be neglected when dealing with a low SGS Mach number, therefore, this term is neglected in deriving the equations by [START_REF] Boudet | Approches numériques pour la simulation du bruit à large bande en vue de l'application aux turbomachines[END_REF].

The SGS heat flux is modeled by:

Q j = -κ sgs ∂ T ∂x j = - ρν sgs c p P r sgs ∂ T ∂x j (2.50)
where P r sgs is the SGS Prandtl number, and it is fixed to 0.9 according to [START_REF] Cahuzac | Aspects Cinétiques et acoustiques en simulation numérique des grandes échelles, application á l'étude du contrôle de l'écoulement de jeu en turbomachines[END_REF].

The complete filtered equations are:

∂ρ ∂t + ρ u j ∂x j = 0 (2.51) ∂ρ u i ∂t + ∂ρ u i u j ∂x j = - ∂p ∂x i + ∂(µ + µ sgs ) σ ij ∂x j (2.52
)

∂ρ e t ∂t + ∂(ρ e t + p) u j ∂x j = (µ + µ sgs ) σ ij u i ∂x j + ∂ ∂x j κ + µ sgs c p P r sgs ∂ T ∂x j (2.53)

SGS model

The shear-improved Smagorinsky (SISM) model by Lévêque et al. [2007] is used in the work of this thesis to model the SGS eddy viscosity. This model is physically sound and consistent with the scale-by-scale energy budget of locally homogeneous shear turbulence, its CPU cost is very low, and its capability to provide good solutions for complex non-homogeneous engineering flows has been demonstrated by [START_REF] Cahuzac | Large-eddy simulation of a rotor tipclearance flow[END_REF].

About the conception of the SISM SGS model, the original Smagorinsky SGS model is modified by subtracting the mean shear | S | from the magnitude of the resolved instantaneous strain rate tensor | S|, as shown in Eq. 2.54.

µ sgs = ρ(C s ∆) 2 (| S| -| S |) (2.54)
with C s = 0.18 denoting the standard Smagorinsky constant and ∆ representing the grid spacing (computed as the cube root of the grid cell volume). The magnitude of the resolved strain rate | S| is computed as

(2 S ij S ij ) 1/2 .
The angle brackets a priori denote an ensemble average, which corresponds to a time average in the present work (the averaging approach will be introduced in Section 2. 3.4.3).

Under this conception, the SISM SGS stress tensor could encompass two kinds of interactions [START_REF] Boudet | Towards practical large-eddy simulations of complex turbulent flows[END_REF]: (i) between the mean velocity gradient and the resolved fluctuating velocities (the rapid part of the SGS dissipation [START_REF] Shao | On the relationship between the mean flow and subgrid stresses in large eddy simulation of turbulent shear flows[END_REF]) and (ii) among the resolved fluctuating velocities themselves (the slow part of the SGS dissipation). Where the rapid part is associated with the large-scale eddy distortion, and the slow part corresponds to Kolmogorov energy cascade.

Mean-flow extraction

In the framework of this thesis, the exponentially weighted moving average approach [START_REF] Cahuzac | Smoothing algorithms for mean-flow extraction in large-eddy simulation of complex turbulent flows[END_REF] is employed to extract the mean flow for the SISM model. The key point of this approach is to update at every time step the previous mean estimation by considering the new data. Equation (2.55) gives the expression of this smoothing approach.

[q]

(n+1) = (1 -c exp )[q] (n) + c exp q (n+1) (2.55)
where [q] (n) denotes the estimation of the mean value of the quantity q at the time step n, with c exp the smoothing factor (0 < c exp < 1). The initial value of [q] (0) is given by [q] (0) = q (0) . This method can be considered as a low-pass filtering on the quantity q with a fixed cutoff frequency f c . The smoothing factor is then expressed as:

c exp ≃ 2πf c ∆t √ 3 ≈ 3.628f c ∆t (2.56)
with ∆t the time step.

This method acts as a fixed width window that moves with the current iteration on the time axis, and the samples used for calculating the average are essentially located within the window. The cutoff frequency that is introduced above is used to determine the width of this window. It can be expressed as f c = u c /l c , with u c and l c indicating the characteristic velocity and characteristic length respectively.

Reynolds stress budget

Reynolds stress budget, degrading to turbulent kinetic energy budget when applying the Einstein summation convention1 , describes the turbulent transport nature for turbulent flows. People use the budget to explain the transport nature in channel flows [START_REF] Kim | Turbulence statistics in fully developed channel flow at low reynolds number[END_REF][START_REF] Moser | Direct numerical simulation of turbulent channel flow up to re τ = 590[END_REF][START_REF] Lu | A theoretical model for reynolds-stress and dissipation-rate budgets in near-wall region[END_REF]], boundary layer flows [START_REF] Spalart | Direct simulation of a turbulent boundary layer up to re θ = 1410[END_REF]] [Jiménez et al., 2010[START_REF] Schlatter | Simulations of spatially evolving turbulent boundary layers up to[END_REF] and jet flows [START_REF] Bogey | Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation[END_REF]. [START_REF] Chen | Numerical investigation of the compressible flow past an aerofoil[END_REF], with following the budget equations derived by [START_REF] Shyy | Compressibility effects in modeling complex turbulent flows[END_REF], numerically (with DES method) investigated the turbulent kinetic energy budget of the compressible flow past an airfoil.

In this thesis, we use the Reynolds stress budget equation of [START_REF] Bogey | Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation[END_REF]. To clearly present the post-process, we introduce here some symbols: q denotes the general filtered quantity, q = ρq/ρ denotes the Favre filtered quantity, while q means the ensemble averaged quantity2 and [q] = ρq / ρ is the Favre averaged quantity. Subsequently, we get the following relations: q ′ = q -q , q ′′ = q -[ q], q ′′ = 0, ρq ′′ = 0 and [ q] = [ q]. The Reynolds stress budget equation and the turbulent kinetic energy equation are given in Eqs. (2.57) and (2.58), respectively. Their detailed derivation can be seen in Appendix A. (2.58) where k = 

∂ ρu

′′ i u ′′ j ∂t = 0 = - ∂ ∂x k ( ρu ′′ i u ′′ j [ u k ]) mean flow convection -ρu ′′ j u ′′ k ∂[ u i ] ∂x k -ρu ′′ i u ′′ k ∂[ u j ] ∂x k prodution - ∂ ∂x k ρu ′′ i u ′′ j u ′′ k turbulent diffusion - ∂ ∂x i u ′′ j p ′ - ∂ ∂x j u ′′ i p ′ pressure diffusion + p ′ ∂u ′′ j ∂x i + p ′ ∂u ′′ i ∂x j pressure-dilatation -u ′′ i ∂ p ∂x j -u ′′ j ∂ p ∂x i mass flux variation -τ ik ∂u ′′ j ∂x k -τ jk ∂u ′′ i ∂x k dissipation + ∂ ∂x k u ′′ j τ ik + ∂ ∂x k u ′′ i τ jk viscous diffusion -Π (D) ik ∂u ′′ j ∂x k -Π (D) jk ∂u ′′ i ∂x k SGS dissipation + ∂ ∂x k u ′′ j Π (D) ik + ∂ ∂x k u ′′ i Π (D) jk SGS diffusion (2.57) ∂ ρk ∂t = 0 = - ∂ ∂x j ( ρk [ u j ]) mean flow convection -ρu ′′ i u ′′ j ∂[ u i ] ∂x j production - ∂ ∂x j ρu ′′ j k turbulent diffusion - ∂ ∂x i u i ′′ p ′ pressure diffusion + p ′ ∂u ′′ i ∂x i pressure-dilatation -u ′′ i ∂ p ∂x i mass flow variation -τ ij ∂u ′′ i ∂x j dissipation + ∂ ∂x j u ′′ i τ ij viscous diffusion -Π (D) ij ∂u ′′ i ∂x j SGS dissipation + ∂ ∂x j u ′′ i Π (D) ij SGS diffusion

Triggering turbulence

The inflow condition generation is always an issue for large-eddy simulations, and there exists lots of methods for generating the inflow conditions. As reviewed by [START_REF] Tabor | Inlet conditions for large eddy simulation: A review[END_REF], these methods can be classified into two main types: (i) "precursor simulation" method and (ii) "synthesis" method. In this thesis, the author chose a naive and simple "precursor simulation" method inspired by [START_REF] Cousteix | Aérodynamique : Turbulence et couche limite[END_REF] and presented here after, in order to trigger the turbulence. There are two main reasons: (i) to be coherent with the transition process triggered by the tripping bands near the blade leading edge, and (ii) to circumvent the problem due to the lack of access to some specific parts of the codes for the author.

The conception of Cousteix's method is to use a tripping band with specific height for triggering the turbulent transition. Taking a boundary layer flow as example, we usually impose a tripping band at a streamwise position of Re x = ρU ∞ x/µ = 3 × 10 5 , where the displacement thickness based Reynolds number Re δ 1 can be derived according to the Blasius equation of laminar flow (see Eqs. (2.59) and(2.60)). Then, one can choose a value of the ratio (h t /δ 1 ) between the height of the tripping band h t and the displacement thickness δ 1 , according to the known Re δ 1 in Fig. 2.9. As a consequence, the height of the tripping band can easily be defined. The width of the tripping band is then often taken as twice to three times the height of the tripping band.

δ 1 = 1.720xRe -1/2 x (2.59) Re δ 1 = ρU ∞ δ 1 µ (2.60)
Figure 2.9: Effect of tripping band on turbulent transition. Extracted from [START_REF] Cousteix | Aérodynamique : Turbulence et couche limite[END_REF].

A test case of turbulent boundary layer is carried out in Appendix B to validate this method.

Implementation of the simulations

The work involved in this thesis focuses mainly on simulating the hub-corner separation in the NACA 65 linear compressor cascade by using the RANS, URANS and LES approaches.

The solver employed in the numerical work, Turb'Flow, is developed in LMFA (Ecole Centrale de Lyon). In this section, the configuration of the simulations, including the mesh and boundary conditions, etc., will be introduced step by step according to the different simulation approaches.

RANS/URANS simulation 2.4.1.1 Mesh

One blade passage and one half of the blade span is simulated by RANS approach in this thesis. The HOH mesh is generated by the commercial software package AutoGrid5 TM . Figure 2.10 shows the computational domain in the cascade, while Fig. 2.11 depicts the 2D bladeto-blade mesh for RANS. The inlet plane is positioned 1.59c (in x direction) upstream of the leading edge, where the inflow velocity profile was measured by hot-wire anemometry (Hotwire station 2 in Fig. 2.6). Stretching mesh extends over one chord, in x direction, downstream of the experiment outlet, aiming at damping the outgoing perturbations and avoiding spurious reflections.

In order to reproduce precisely the experiment, two tripping bands of 3.0mm wide by 0.3mm thick are considered in the mesh by removing some grid points, reproducing the experimental sand-paper bands. In the experiment, these two pieces of sand-paper were used to trigger turbulence, in order to avoid the effects of the laminar-turbulent transition bubble and focus on the mechanism of hub-corner separation. Though the flow field is supposed to be fully turbulent by the RANS method, the tripping bands can nevertheless influence the boundary layer development on the blade surface. Meanwhile, a similar mesh without the tripping band is nevertheless constructed to investigate the impact of the tripping bands.

The cell height at the wall is a priori set to about ∆y = 1 × 10 -5 m, yielding ∆y + < 2 both for the blade and the end-wall. The grid expansion ratio is less than 1.2 in wall normal direction. The 2-D mesh shown in Fig. 2.11 is duplicated into 77 planes in the spanwise direction. Therefore, the mesh consists of about 2.8 × 10 6 grid points 1 .

Finally, to accelerate the simulation, the mesh is parallelized into 48 blocks by the code 1 Denton [2010] suggests that the grid point number of an H mesh should be greater than 400 000 per blade passage for keeping the numerical losses within the acceptable limits. Moreover, the RANS results will be used to interpolate the initial flow field for the LES mesh. A higher number of cells will help to accelerate the convergence process for the LES. Turb'Split developed during this thesis (see Appendix C). The parallelized multi-block mesh is shown in Fig. 2.12. The a posteriori y + (non-dimensional wall cell height) after running the calculation is found to be inferior to 2 (see Fig. 2.13).

Figure 2.12: View of parallelization.
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Boundary conditions

Inflow condition

It can be difficult to impose the inlet condition, since the experimentally obtained boundary layer profile is sometimes not perfect. Moreover, the resulting flow field may be sensitive to the RANS turbulent variables imposed on the boundary [START_REF] Kok | Resolving the dependence on freestream values for the k-turbulence model[END_REF]. Thereby, the author carries out a 2-D boundary layer flow simulation from the end of the wind tunnel's convergence to downstream of the hot-wire measurement position. The boundary layer profiles of velocity as well as the turbulent variables are extracted at the location where the simulated displacement thickness δ 1 of the boundary layer meets that of the experiment1 . Subsequently, the extracted boundary layer profiles are imposed on the inlet plane with the inlet flow angle as the inflow condition. This method has been also used by [START_REF] Lewin | Experimental and numerical analysis of hub-corner stall in compressor cascades[END_REF].

Particularly for the URANS simulation, a variation of inflow angle of 0.92 • corresponding to twice of the inflow free stream turbulent intensity, is imposed on the inlet plane to study the influence of the inflow angle variation.

Outlet condition

A uniform atmospheric static pressure, and a mixed pressure outlet condition, which mixes the pressure outlet condition and the non-reflection outlet condition, are employed on the outlet plane. The mixed outlet condition permits a part of the pressure waves to get out through the outlet plane. The non-reflection weight factor is determined by the following formula [START_REF] Caro | Description des codes de conditions aux limites dans Turb'Flow[END_REF]:

W NonRefl = 0.5 -0.5Mach MAX (2.61)
where Mach MAX denotes the maximum Mach number.

Other boundary conditions

Both the blade surface and the end-wall are set as non-slip adiabatic walls. A symmetry condition is used at mid-span as only one half of the blade span is simulated. Periodic condition is employed on the pitchwise boundaries of the mesh.

More details about the boundary conditions could be found in Caro [2012].

Spatial and temporal discretization scheme

The Jameson four-point centered spatial scheme [START_REF] Jameson | Numerical solutions of the euler equations by finite volume methods using runge-kutta time-stepping schemes[END_REF] is used for interpolating the inviscid flux, while a two-point centered scheme is employed for the viscous flux discretization. A fourth-ordered viscosity coefficient of 0.02 is used for ensuring the computational stability due to the use of the centered spatial scheme. Meanwhile, four upwind spatial schemes are used to test the influence of the spatial scheme on the hub-corner separation, those are the schemes of Roe [START_REF] Roe | Approximate riemann solvers, parameter vectors, and difference schemes[END_REF], AUSM [START_REF] Edwards | Low-diffusion flux-splitting methods for real fluid flows at all speeds[END_REF], AUSM+-up [START_REF] Liou | A sequel to AUSM, part II: AUSM+-up for all speeds[END_REF] and simple low-dissipation AUSM (SLAU) [START_REF] Shima | On new simple low-dissipation scheme of AUSM-Family for all speeds[END_REF].

For the steady RANS simulation, a five-step Runge-Kutta temporal scheme is used with a local variable time stepping mode. The target CFL number is set close to 0.7, in consideration of speed and stability of the simulation. While for the URANS simulation, a three-step Runge-Kutta method is used for time marching, with a global constant time step of 3.0 × 10 -8 s (CFL number close to 1 for the minimum grid cell).

LES simulation 2.4.2.1 Mesh

According to the computational speed and available CPU time, only one channel and one half of the blade span is simulated using the LES method. A basic 2-D mesh of HOH type is generated with the commercial mesh maker AutoGrid5 TM , and then locally improved with PointWise V17. The inlet and outlet positions are the same as the RANS mesh. As well, the two tripping bands are planted in the mesh near the blade leading edge, since they will serve for triggering the laminar-turbulent transition that is very important for large-eddy simulations.

The 2D grid is then duplicated along the spanwise direction into 481 planes. The cell nondimensional size is a priori set to be y + ≈ 1, x + ≈ 60 and z + ≈ 30 in the wall-normal, streamwise and cross-stream directions respectively, with respect to both the blade surface and the end-wall. Therefore, the final grid number is about 200 × 10 6 points. 

End-wall
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Pressure side Figure 2.14: y + on the blade and end-wall in LES.

Boundary conditions

Inflow condition

In order to provide inflow turbulent information on the inlet plane of the cascade mesh, a 3-D boundary layer simulation on a flat plate is performed in parallel with the blade passage simulation. From the position where the time-averaged displacement thickness δ 1 meets the experimental one1 , the fluctuating information is transferred to the compressor cascade inlet at each iteration.

For the large-eddy simulation, only the incidence angle of 4 • is simulated. The computational domain of the boundary layer simulation is set to adapt the cascade incidence angle of 4 • that is converted to an inflow angle of 58.31 •2 . The length of the computational domain of the inlet boundary layer is set to about 2.54m long, while the width in cross-flow direction and the height in the direction perpendicular to the flat plate wall are set to be greater than δ 993 and 2δ 99 , respectively.

The boundary layer simulation is triggered to transition at the streamwise position of Re x = 3 × 10 5 with a tripping band of 4.8 × 10 -3 m long by 6.73 × 10 -4 m thick, according to the transition triggering method presented in Section 2.3.6. Here, the thickness of the tripping band is set to twice the empirical value in order to achieve the displacement thickness target, since the accumulation of the numerical errors may delay the thickening of the boundary layer.

Four quantities including density and three components of the velocity are transferred from the selected section in the simulation of the boundary layer that develops on a flat plate to the inlet plane of the cascade, which is depicted in Fig. 2.15. In the boundary layer region, these four quantities on the selected source plane are periodically sent to the cascade inlet plane, while out of the boundary layer, the free-stream mean values on the selected source plane are imposed on the other region of the cascade inlet plane. This approach is implemented for each iteration.

Outlet condition

As used in the RANS simulation, the uniform atmospheric static pressure as well as the stretched mesh and mixed non-reflection pressure outlet condition are employed. Moreover, since numerical acoustic reflections are often encountered in an unsteady simulation with a 

η(i) = i -i begin + 1 i end -i begin + 1 , (i begin ≤ i ≤ i end ) (2.62) σ(η) = α • η β (2.63)
where the magnitude of the filtering is characterized by the amplitude α (0 ≤ α ≤ 0.45) and the exponent β (1 ≤ β ≤ 2).

q i,j,k = q i,j,k -σ[q i,j,k -(q i-1,j,k + q i+1,j,k + q i,j-1,k + q i,j+1,k + q i,j,k-1 + q i,j,k+1 )/6] = (1 -α)q i,j,k + α 6 (q i-1,j,k + q i+1,j,k + q i,j-1,k + q i,j+1,k + q i,j,k-1 + q i,j,k+1 ) (2.64)
In this thesis, α and β are chosen as 0.05 and 2.0, according to [START_REF] Ye | Large-eddy simulation of blade boundary layer spatio-temporal evolution under unsteady disturbances[END_REF].

Other boundary conditions

Since only a half of the blade span by one channel is simulated owing to the computational resources, the mid-span is set as symmetric and the pitchwise boundaries are connected by the periodic condition. Both the blade surface and the end-wall are set as non-slip adiabatic walls.

Particularly, the explicit filter introduced above is employed on five grid planes near the blade leading edge and trailing edge to ensure the computational stability.

Initial condition

As the unsteady computation depends on the initial condition, a well chosen initial condition will help to accelerate the convergence of the computation. Therefore, the LES flow field is initialed by interpolating the RANS results to the LES mesh.

Spatial and temporal discretization

The 4-point Jameson centered spatial scheme, which is found to be less dissipative, is used for the inviscid fluxes discretization, while the viscous fluxes are interpolated by a 2-point scheme. Due to the use of a centered spatial scheme, a fourth-ordered artificial viscosity with a viscosity coefficient of 0.002 (see Appendix B for the choice of the artificial viscosity) is used to avoid any spurious grid-to-grid oscillation and stabilize the computation.

A three-step Runge-Kutta scheme with a global constant time step of 2.5 × 10 -8 s is employed for temporal discretization. In consideration of the minimum grid size of 1 × 10 -5 m , the reference velocity of about 40m/s and the sound speed of about 340m/s, it yields a CFL number close to 0.95.

The cutoff frequency involved in the SISM SGS model is then computed by f c = 2U ∞ /c = 533Hz, according to the suggestion of [START_REF] Cahuzac | Large-eddy simulation of a rotor tipclearance flow[END_REF].

List of the calculations

Herein, we summarize all the computations concerning the NACA 65 cascade. The list of the computations is shown in Tab. 2.4. The RANS and URANS computations can serve to investigate the influence of some physical parameters, e.g. the presence of the tripping band, the impact of the incidence angle, the influence of the inflow boundary layer thickness, the inflow turbulence level and the inflow angle variation. In addition, the numerical sensitivity can also be studied by the RANS results, such as the sensitivity to the spatial scheme, artificial viscosity, turbulence model and outlet boundary condition. Finally, the large-eddy simulation, which is expected to well capture the hub-corner separation, will help to interpret the mechanism of hub-corner separation with a particular attention to turbulence. Chapter 3

Mean aerodynamics of the compressor cascade

In this chapter, the inflow conditions (i.e. the end-wall boundary layers) will be firstly presented in the experiment and the RANS and LES simulations. Secondly, the statistical convergence of the computation will be evaluated. Finally, the RANS results and the time-averaged LES results will be validated in comparison with the experiment.

Inflow conditions

Experimentally, the inflow conditions are measured by hot-wire anemometry at two stations located 8.71c a and 4.13c a upstream from the leading edge of blade 6, on the configuration of incidence angle 4 • . Numerically, a flat plate boundary layer is simulated from the end of the wind tunnel convergence part, on a 2D grid for RANS and a 3D grid for LES. Subsequently, the cascade inflow conditions of both simulations are extracted at the location where the displacement boundary layer thickness meets the experimental one at hot-wire station 2 (see Fig. 2.6).

In the RANS simulations, the extracted boundary layer profiles of streamwise velocity (u), flow angle, turbulent kinetic energy (k) and specific turbulent dissipation rate (ω) are directly imposed on the cascade inflow plane. It is assumed that the inflow conditions do not change significantly for other incidence angles, so they are kept constants. Besides, URANS simulations are carried out with prescribed variations of the inflow velocity angle, in order to analyze the response of the separation.

For the LES simulation, the flat plate boundary layer and the compressor cascade are simulated together. At each iteration, four variables (ρ, u, v and w) are extracted from the boundary layer on the proper plane and sent to the cascade inflow, where the pattern is repeated in the pitchwise direction to cover the cascade pitch. This allows us to feed the cascade simulation with appropriate turbulent fluctuations. Some parameters about the inflow boundary layer at the two upstream locations are listed in Tab. 3.1. Table 3.1: Parameters of inflow boundary layer at two inflow locations.

No.

Method δ 99 (mm) δ 1 (mm) δ 2 (mm) 

H 12 = δ 1 /δ 2 u τ (m/s) Re δ2 = U ∞ δ 2 /ν

Inflow boundary layer evolution

The evolutions of the displacement thickness δ 1 and momentum thickness δ 2 of the boundary layer are plotted in Fig. 3.1, in comparison with the analytical results derived from Blasius equation [START_REF] Schlichting | Boundary-layer theory[END_REF]] and the empirical relations of Michel [START_REF] Cousteix | Aérodynamique : Turbulence et couche limite[END_REF] 1 . Obviously, the flow is simulated as turbulent by the RANS method from the beginning of the flat plate, while in the LES results the laminar-turbulent transition is triggered by the tripping band at about x = 0.1m. The RANS boundary layer develops in parallel with the empirical points for both δ 1 and δ 2 , since the RANS model is calibrated for the boundary layer flow. The evolution of δ 1 and δ 2 is under-estimated by LES, this may be due to the fact that the mesh resolution is not enough or the SGS model is not constructed for only the flat plate boundary layer flow. The objective displacement thickness (corresponding to the second hot-wire measurement station δ 1 = 3.7mm) is included in the flat plate computation domain for both RANS and LES. The evolutions of the shape factor and the friction coefficient are shown in Figs. 3.2(a) and 3.2(b), respectively. The RANS shape factor decreases progressively to about 1.3 from a uniform inflow distribution. For the LES simulation, on the front part of the plate, the flow is laminar with a shape factor of about 2.6. Then the transition is triggered by the trip at the streamwise position Re x = 3 × 10 5 , and the shape factor decreases to about 1.3 in the turbulent boundary layer. The transition process is also seen on the friction coefficient with a jump from a lower value to a higher value. In Fig. 3.2(b), it is observed that the friction coefficient is slightly over-predicted by RANS, while a slight under-estimation is found in the LES results. 

Mean velocity profile

Since some discrepancies appear on the evolution of the boundary layer thickening process, attention is focused on the mean velocity profile at the extraction point (where: Re δ 2 = 7400).

The ECL experimental results and the DNS results of [START_REF] Sillero | One-point statistics for turbulent wallbounded flows at reynolds numbers up to δ + ≈ 2000[END_REF] (Re δ 2 = 6500, without pressure gradient) are used as reference here, because they are found to be coherent, as shown in Fig. 3.3(a). This figure plots the normalized mean velocity profiles. The mean velocity profiles are normalized with the experimental friction velocity, since some discrepancies are found on the friction velocity u τ between the experimental, LES and RANS results (ref.

Tab. 3.1). LES appears to under-estimate the friction velocity by 7.6%, which is found to be admissible compared to the LES results of other author [START_REF] Sagaut | Filtered subgrid-scale models[END_REF]. The RANS approach over-estimates u τ by 7.6%. The most inner point of the experiment is located in the buffer layer. The best prediction of the velocity-defect law is achieved by the LES. This can be clearly observed in Fig. 3.3(b): the experimental results, the DNS results and the LES results are consistent with the law of Coles, but not the RANS result. 

Turbulent fluctuations

A further comparison is carried out on the fluctuating velocity u ′ rms and the turbulent kinetic energy, as plotted in Fig. 3.4. The experimental inner peak of u ′+ rms is located at y + ≈ 21 with a peak value of about 2.6, as shown in Fig. 3.4(a). With a lower Reynolds number, the DNS inner peak of u ′+ rms lies at y + = 15, and its peak value is about 2.9. In comparison, the LES results show a higher inner peak, located a little farther from the wall than the experimental results and the DNS results. This may be due to the under-prediction of the wall friction. The outer plateau of u ′+ rms is clearly observed for experimental, DNS and LES results. In the experiment, the peak and the plateau have very close levels. A plateau is also observed in the LES results but with a very low level. For the experiment, there is a converging section which can be seen in Fig. 2.2. Beginning upstream of the converging part, the boundary layer develops and is compressed. This process makes the boundary layer thickness nearly zero. But the profile of the fluctuating velocity u ′+ rms always exists during this process, i.e. at the end of the converging section, the boundary layer thickness is close to zero, but with a developed u ′+ rms profile. However, the converging section is not considered neither in the DNS simulation of [START_REF] Sillero | One-point statistics for turbulent wallbounded flows at reynolds numbers up to δ + ≈ 2000[END_REF] nor in the LES simulation in this thesis. This may be responsible for the outer plateau observed in the ECL experimental results. In addition, the free-stream turbulence intensity is about 0.8% in the experiment, while the value is nearly zero for the DNS and LES simulations. This may also be a reason for the appearance of the outer plateau of u ′+ rms in the experiment.

Because only u ′+ rms was measured experimentally among the velocity components, the DNS results are used again as reference to analyze the turbulent kinetic energy, which is available from both RANS and LES. As plotted in Fig. 3.4(b), the inner peak of LES is higher and farther than the DNS one which is coherent with the distribution of u ′+ rms . In comparison, the RANS results are very poor: only one large peak appears at y + = 100, with a low peak value of 3.

In order to interpret the differences on the turbulent kinetic energy among the DNS, LES and RANS results, the production and dissipation terms of the TKE budget are plotted in Fig. 3.5. The TKE budget equations for the LES and the RANS (standard Wilcox k -ω model) approaches can be found in Appendix A. The normalized production and dissipation terms are expressed as: Since [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF] constructed his standard Wilcox k -ω turbulence model based on Laufer's experimental data [START_REF] Laufer | The structure of turbulence in fully developed pipe flow[END_REF], Laufer's TKE budget is also plotted in Fig. 3.5. By inspecting the production term of the TKE, we can see that both the RANS and DNS results agree well with Laufer's, while a small discrepancy exists for the LES results 1 . Considering the dissipation term, we observe a good consistency between the RANS results and Laufer's as expected. Approaching the wall, the dissipation reaches a peak value of about -0.2 at y + = 10, and then vanishes on the wall. But for the DNS results, the agreement with Laufer's results is only for y + > 30. For the region where y + < 30, close to the wall, the DNS results decrease slightly through a small flat region and drops suddenly to about -0.27 at the wall. This may reflect that the dissipation mechanism is different between the DNS results and Laufer's. Actually, Wilcox states that Laufer's dissipation data are incorrect for the near wall region [Wilcox, 2006, p. 178]. A better agreement is found between the DNS and LES results despite some little discrepancies. This indicates that the LES better predicts the dissipation mechanism in the near-wall region than the standard Wilcox k -ω model.

P + k = P k ν u 4 τ (3.1) D + k = D k ν u 4 τ ( 3 

Spectrum

The normalized velocity-spectra are compared between the experimental results and the LES ones at y + = 85, following normalization approach introduced by Metzger & Klewicki [2001] and [START_REF] Perry | Scaling laws for pipe-flow turbulence[END_REF].

Since we consider one-point spectra, Taylor's hypothesis [START_REF] Pope | Turbulent flows[END_REF] and the power spectral density function are applied on the fluctuating stream velocity u ′ for obtaining the velocityspectrum φ uu (f ):

+∞ 0 φ uu (f )df = u ′ u ′ (3.3)
The following relationship is used to normalize the spectrum:

+∞ 0 Φ uu (ω + )dω + = u ′ u ′ u 2 τ (3.4)
where ω + is given by:

ω + = 2πνf u 2 τ (3.5)
while the normalized energy-spectrum is expressed by:

Φ uu (ω + ) = φ uu (f ) 2πν (3.6)
The spectrum of the ECL experimental results is compared with the LES results in Fig. 3.6. For the LES, Re δ 2 and y + are 7400 and 82.6, respectively. For the ECL experimental results, these two quantities are 7200 and 85.9. A good agreement is observed for the low-frequency region. The slope rate of -5/3 is seen in the LES results. The LES velocity-spectrum drops earlier than the ECL experimental results, indicating the cutoff frequency of the LES method.

However we check that that LES has entered the inertial sub-range. For the hot-wire result, a sudden drop is observed at about ω + = 0.8, which is surely due to the cutoff frequency imposed by the hot-wire. 

Statistical convergence

1.2×10 6 CPU hours have been used in LES for the convergence of the computation and the samples, which is much more expensive compared to RANS (8 × 10 3 CPU hours). The costs of LES are 150 times of those of RANS, which implies that the hybrid methods could be an alternative to guarantee the computational precision and to reduce the cost, such as the works of [START_REF] Deck | Zonal-detached-eddy simulation of the flow around a high-lift configuration[END_REF] and [START_REF] Spalart | A new version of detached-eddy simulation, resistant to ambiguous grid densities[END_REF].

In order to evaluate the quality of the results, the statistical convergences are checked at three positions: (i) at mid-span close to the trailing edge, (ii) within the corner separation center and (iii) in the high loss center downstream of the compressor cascade. About Six periods that the flow passes through the blade passage (c/U ∞ ) has been achieved. The sketches and the statistical convergences of these points are shown in Figs. 3.7, 3.8 and 3.9. In the figures, the black lines denote the instantaneous velocity signals, the red, green and blue lines represent respectively the cumulative 1st-order, 2nd-order and 3rd-order moment convergences. At midspan, where the flow state is nearly two dimensional, satisfactory statistical convergences are achieved for the three moments. Within the separation center and the high loss center, where the flow state is very unsteady, low-frequency oscillations are observed. Satisfactory statistical convergences are obtained for the low-order moments, while more samples are need to improve the high-order moments convergences. 

Flow within the cascade passage: reference configuration

The comparisons in this section will be performed at the incidence angle 4 • , considered as reference configuration, where the database is the most plentiful.

Classification of the corner separation

In this section, the three criteria for 2-D and 3-D separation are computed for the reference cases (the experiment, the LES and the RANS simulation) so as to classify the separation.

Since De Haller number and Lieblein diffusion factor are designed for 2-D separation, they are calculated on the mid-span. The 3-D diffusion parameter of Lei is computed by the blade geometric parameters. These three parameters as well as their massive-separation thresholds are listed in Tab. 3.2. According to the De Haller number and the Lieblein diffusion number (DF), there are no massive 2-D separation on the mid-span for the experiment, the LES and RANS simulations. Lei's D parameter implies that the massive corner separation does not occurs for the three results. However, when plotting the S indicator with the D parameter (as shown in Fig. 3.10), it is found that the massive corner separation does occur for all the experiment and the simulations. It means that the massive corner separation can appear even with a D parameter less than 0.4 ± 0.05, despite [START_REF] Lei | A criterion for axial compressor hub-corner stall[END_REF] suggests that the massive corner separation could not occur under this condition. However, although Lei's criterion seems to be failure in this case, it provides a good conception for verifying the preliminary design flow variables and geometry, and this criterion needs to be further calibrated in considering other impact parameters. 

Global performance

The performance of the compressor cascade can be reflected by some global parameters, e.g. the blade lift coefficient, the global static pressure coefficient, the exit blockage coefficient, and the mass-averaged total pressure loss coefficient.

In this part, these four parameters will be calculated from the experimental and numerical results, to show the global performance of the compressor cascade.

The blade lift coefficient is expressed by:

C L = h/2 0 ca 0 C p (x, z) -→ n • -→ y dxdz h/2 0 ca 0 dxdz (3.7)
where -→ n is the wall normal direction unit vector, -→ y is the pitchwise direction unit vector, and h denotes the blade height. This formula is applied on the blade surface.

The global static pressure coefficient is given by:

C p,global = h/2 0 s 0 C p (y, z)dydz h/2 0 s 0 dydz (3.8)
with s denoting the cascade pitch. C p,global is calculated on the downstream section 1 shown in The exit blockage coefficient B introduced in Eq. (1.14) is recalled here:

B = 1 - cos β 1 cos β 2 (1 -C p ) -0.5 (3.9)
where β 1 and β 2 are the actual inflow and outflow angle on the mid-span. This parameter is also computed in the downstream section 1.

The following formula gives the mass-averaged total pressure loss coefficient:

C pt,global = h/2 0 s 0 C pt (y, z)u(y, z)dydz h/2 0 s 0 u(y, z)dydz (3.10)
The total pressure loss coefficient C pt is: 3.11) In this section, C pt,global and C pt are calculate on the section 1 downstream the blade trailing edge.

C pt = P t,∞ -P t P t,∞ -P s,∞ ( 
The comparison of these four global parameters between the ECL experiment, LES and RANS results is listed in Tab. 3.3. It appears that the blade lift coefficient and the massaveraged total pressure loss coefficient are better reproduced by the LES approach than the RANS approach. The effect of the corner separation, which degrades the compressor performance (reduction of lift, and increase of losses), is over predicted by RANS. For C p,global , the difference of the LES and RANS results are equal, while the LES C p,global is higher for the LES than the ECL experiment. The RANS results are lower than the ECL experiment's.

The ECL experimental parameters C p,global , B and C pt,global are calculated from the measurement results of a five-hole probe. For this kind of probe, the precision of total pressure is higher than the static pressure precision, and the precision is consequently better for C pt,global than C p,global , B. This may be the reason for the high discrepancies of C p,global and B between the ECL experiment and the LES. 

Topology

The topology study gives a macroscopic view about the compressor corner separation. The experimental oil visualization is shown in Fig. 3.11. The corner separation is obviously illustrated by this oil visualization technique, both separation cores on the end-wall and the suction surface are seen through the accumulation of the oil. The numerical skin friction lines of RANS and LES are drawn in Fig. 3.12, with the walls being colored by the static pressure coefficient.

The RANS skin friction lines are shown in Fig. 3.12(a). The critical points are located by the yellow points. A saddle-point S1 and a node N1 are found near the blade leading edge. A node-saddle point N-S occurs at the onset of the hub-corner separation, and a saddle-point S2 is seen on the end-wall just downstream of the N-S point. Two foci, F2 and F3, are observed at the core of the hub-corner separation on the end-wall and the blade suction surface. Also a saddle-point S3 lies on the blade suction surface between F3 and the blade trailing edge on the end-wall. Downstream the blade trailing edge, four critical points are distributed one by one: node N4, saddle S4, focus F5 and saddle S5. The saddle point S5 is usually considered to be the reattachment point of the corner separation on the end-wall. As the N-S point is considered to be a node and a saddle point, the RANS results is checked to obey the index rule:

indices = N - S = 6 -6 = 0 (3.12)
The mean skin-friction lines of LES are presented in Fig. 3.12(b). The leading-edge saddlepoint S1 and node N1 are again observed. The node-saddle point NS appears to be more downstream than in the RANS results. A structure, formed by the saddle-points S2 and S3, and the nodes N2 and N3, is found downstream the blade trailing edge on the end-wall. Particularly, through the inspection of the corner separation region on the end-wall and the blade suction surface, several small structures with nodes and saddles are observed (This may be caused by the fact that the averaging time is not long enough). Though the skin streamlines are not very clear in the separation region, with the help of the RANS results, it could be speculated that there are a focus and a saddle point in the separation region on the end-wall, and there are also a pair of saddle point and focus on the blade suction side near the separation center. With these speculations, the index rule would be verified by the LES results:

indices = N - S = 6 -6 = 0 (3.13)
Through the comparison between Fig. 3.11 and Fig. 3.12, it is found that LES predicts better the onset of the hub-corner separation. The corner flow separates much earlier in RANS.

Moreover, the center of the hub-corner separation on the end-wall appears to be predicted much farther from the blade suction side by RANS. 

Suction side

Endwall

Streamlines

The mean streamlines of the RANS and LES flow fields are depicted in Fig. 3.13. The skin friction lines, colored by the static pressure coefficient within the range from -0.25 to 0.25, are drawn on the walls. The streamlines are colored with the helicity. The red streamlines denote the flow that swirls around the node close to the trailing edge (F5 for RANS and N3 for LES, see Fig. 3.12), while the black streamlines indicate the flow that goes downstream from this same point.

The steady RANS result is shown in Fig. 3.13(a). Almost all the near-wall inflow streamlines roll together to a compact vortex tube on the end-wall at the corner separation center. This vortex tube forms on the end-wall, and finally ends to the blade suction surface around the suction side separation center. Since the flow goes from the end-wall to the suction surface, the vorticity seems to have an opposite direction to the flow direction according to the right-hand rule, which results in a negative helicity. Other streamlines join together at the blade trailing streamlines swirl up at the separation center and form a vortex tube (that touches the separation center on the blade suction surface), and finally flow downstream. Some streamlines at the inflow join together at node N3, and finally go downstream after swirling with the vortex tube.

Comparing the RANS and LES streamlines, a very similar flow structure is observed, which means that RANS probably predicts a reliable flow structure of the compressor corner separation, despite the over-prediction of the size of the corner separation.

Blade surface static pressure coefficient

The blade surface static pressure coefficient is a very important parameter in this investigation, since the operating condition of the compressor cascade can be easily monitored by the static pressure. The static pressure coefficient on the blade suction surface and the pressure surface are shown in Figs. indicate the location of the pressure taps.

On the blade suction side shown in Fig. 3.14, the ECL experimental results and the averaged LES results are very similar, and differ from the RANS ones. A good agreement is achieved on the shape of the C p iso-contour map, between the ECL experiment and the LES, though the C p levels are slightly over-predicted by the LES. In comparison with the C p of the ECL experiment and the LES, the RANS ones are more concentrated towards the leading edge in the end-wall region, indicating a more earlier corner separation onset and a more intense effect of the separation.

By considering the static pressure coefficient on the blade pressure surface in Fig. 3.15, the level of C p is somewhat over-estimated by the LES, while it is globally under-estimated by RANS. The pressure distributions of the experiment and the LES are nearly constant in the spanwise direction, while the RANS pressure is considerably reduced in the end-wall region, because of the blockage effect of the large corner separation.

More detailed comparisons of the static pressure coefficient around the blade are plotted in Fig. 3 from the mid-span to the end-wall are extracted. At the mid-span (see Fig. 3.16(a)), a very good consistency is observed among the experimental, the LES and the RANS results. On the suction side, C p decreases rapidly and then increases regularly until the trailing edge. This corresponds to the evolution of the velocity outside the boundary layer: the fluid at first accelerates and then decelerates until the trailing edge. Comparing the LES and the RANS results at the mid-span on both sides, it is seen that the LES lines are above the RANS lines. The difference of C p between LES and RANS represents about 50Pa, which is enough small compared to the pressure variation. This difference is still being investigated and may be due to the small dissymmetry of the compressor cascade. Towards the end-wall, the RANS lines leave gradually the experimental points, whereas the LES lines follow the experimental points. At the spanwise position z/h = 21.6%, a flat region appears in the aft part (from x/c a = 0.6) of the suction side in the RANS results, suggesting the entrance in the corner separation. But this phenomenon is neither observed in the experiment nor in the LES. In Fig. 3.16(d), at z/h = 13.5% a constant C p region appears also for the experiment and the LES. However, this region is already much wider in the RANS results. Meanwhile, in the first half of the suction side, the RANS line raises away from the EXP points, while the LES line fits closely the experimental results. Close to the end-wall, at z/h = 5.4% and z/h = 1.4%, on the suction side, the constant C p region associated with the separation is more developed. In the RANS results, the onset of the separation is located more upstream than in the experimental and the LES results. On the pressure side, the LES gives also a fairly good prediction in comparison with the experiment, but RANS globally under-estimates the C p owing to the over-prediction of the hub-corner separation. These observations agree with Figs. 3.14 and 3.15. In addition, a sudden fall of the static pressure can be observed at the trailing edge in the numerical results. This region is not described by the experimental results, because technically, it is impossible to install the static pressure tubes at the trailing edge of the present blade. Denton [2010] considers that steady simulations cannot handle the trailing edge losses without some particular treatment. And a fine mesh around the trailing edge will emphasize this problem, since with a fine mesh, the flow usually does not separate early enough at the joint between the trailing edge and the rear part of blade pressure side. The flow remains attached around the trailing edge farther than reality, then the resulting high streamline curvature induces a low pressure region on the end of the pressure side, which often leads to a negative blade loading near the trailing edge. This numerical phenomenon may result in an under-turning of the flow and may generate more losses downstream. [START_REF] Denton | Some limitations of turbomachinery CFD[END_REF] suggests to carefully use a relative coarse mesh with a cusp at the trailing edge in steady calculations to avoid this sudden change of static pressure and the corresponding change of flow direction.

End-wall static pressure coefficient

The static pressure coefficient on the end-wall is presented in Fig. 3.17 for the experiment, the LES and the RANS simulation. The dots in Fig. 3.17(a) represent the positions of the static pressure taps in the experiment. By inspecting the shape of the C p contours on the end-wall, a good agreement is observed between the experiment and the LES, though the LES slightly overpredicts the level of the C p value. This agrees with the comparison of the global static pressure coefficient in Tab. 3.3. RANS gives a different form of the C p contours. The very large constant pressure region around the aft part of the suction side, between C p = 0.00 and C p = 0.10, corresponding to a much larger corner separation. Near the leading edge, the pressure gradient between the experiment and the LES is nearly the same, but RANS simulates a much higher pressure gradient that is considered to be induced by the over-predicted corner separation. 

Total pressure losses

Total pressure losses are key indicators to evaluate the performance of a compressor. The expression of the total pressure loss coefficient is given in Eq. (3.11). It is plotted at outlet section 1, 0.363c a downstream the trailing edge, in Fig. 3.18. The dots again denote the measurement points in Fig. 3.18(a) for the experimental results. The wake and hub-corner separated flow regions are clearly observed, through the higher value of C pt .

According to the contours, the wake is well simulated by the LES and RANS simulations. Nevertheless, the wake loss intensity is slightly over-estimated by RANS. In the end-wall region, a fairly good agreement is observed between the experiment and the LES. The upper boundary of the loss region is straight in the LES, while it is concave toward the high loss center in the experiment. RANS appears to over-predict significantly the loss level and extent, which is coherent with the previous observations. Finally, a singular phenomenon is observed: the blade wake is skewed in the corner flow region (see bottom-left corner in Fig. 3.18). This phenomenon may be explained by the analysis of the streamlines: some fluid goes backwards around the trailing edge from the pressure side to the suction side, pushes the mixing sheet outward the suction side. This effect is more pronounced in the RANS results, and the gradient is much higher, due to the intense corner separation.

The pitchwise-mass-averaged total pressure loss coefficient at outlet section 1 is plotted in Fig. 3.19, and its expression is given in Eq. (3.14). where ρ(y, z) is considered to be constant, as the case in this thesis is incompressible.

Obviously, the LES results match well with the experimental ones. The trailing edge wake is well simulated by the LES. The corner separation extends to about z/h = 0.17 according to the experiment and the LES. The RANS corner separation reaches z/h = 0.23, and the losses are much higher than the experiment, due to the over-predicted corner separation. It has to be noted that the LES predicts very well the losses generated by the corner separation.

This demonstrates the capability of the LES to simulate correctly the losses induced by the separation itself, but also by the mixing process that occurs at the boundary and downstream of the separation.

Downstream flow evolution

The downstream flow evolution is investigated by comparing the losses at three outlet sections illustrated in Fig. 2.6. In Fig. 3.20, the total pressure loss coefficient is drawn with the secondary flow vectors, from outlet section 1 to outlet section 3. Going downstream, the corner flow diffuses: the loss extent becomes larger, while the maximum loss value decreases. This evolution is observed for all the results. The secondary flow vortices are clearly observed through the secondary flow vectors: the passage vortex is clockwise, while the vortex in the corner flow is anti-clockwise. When going downstream, the secondary vortices drag the left margin of the high loss region toward the positive pitchwise direction, which increases the skewness at the junction between the wake and the corner flow. This effect is more pronounced in RANS. The evolution of the pitchwise-averaged values of C pt and outflow angle θ xy are shown in Fig. 3.21. In Fig. 3.21(a), the evolution of the wake and the corner flow region can be clearly identified. A remarkable point is found in the figure, around z/h = 0.07: above this spanwise position up to the junction between the corner flow region and the wake, the losses value increases from outlet section 1 to outlet section 3. Conversely, below this position, the losses value decreases when going downstream. This phenomenon is observed in the 3 cases, experiment, LES and RANS. This can be associated with the diffusion previously observed in Fig. 3.20: going downstream, the loss region extends, while the maximum loss intensity reduces.

For the outflow angle in Fig. 3.21(b), a fairly good consistency is found between the experiment and the LES, especially concerning the prediction of the two peaks near the end-wall. These two peaks are also captured by RANS despite the over-estimate of the flow angle. From mid-span to end-wall, the outflow angle increases due to the corner separation, which alters the deviation of the flow. Then the flow angle reaches two extreme values, associated with the secondary flows. In the outer boundary of the corner flow region, the vortex pushes the flow towards the suction side, which decreases the flow angle. Then, close to the end-wall, the opposite effect occurs, while the axial velocity is reduced close to the wall, which results in the increase of the outflow angle. This effect decreases from section 1 to section 3, suggesting a reduction of the secondary flow intensity. Figure 3.22 depicts the evolution of the pitchwise-and-spanwise mass-averaged total-pressure loss coefficient. Evidently, RANS over-predicts the global losses, while LES gives a good es- timate. From section 1 to section 3, C pt,global augments gradually due to the mixing process. Some discrepancies occur between the experimental results and the LES results, i.e. from the section 2 to the section 3, the LES C pt,global increases and exceeds the experimental one. This may result from the fact that the pitchwise-and-spanwise mass-averaged total-pressure loss coefficient is an integral quantity and it accumulates the uncertainties of every points. No. of section 

Extent of the corner separation

As mentioned in Chapter 1, the extent of the corner separation can be evaluated with the help of the relative displacement thickness on the blade suction surface, so this method is used to quantify the extent of the corner separation not only near the trailing edge as done by [START_REF] Gbadebo | Three-dimensional separations in compressors[END_REF] but also in the compressor cascade passage. One difficulty for using this method is how to determine the free stream velocity, Gbadebo considers the mid-pitch velocity as the freestream velocity to simplify the procedure. In this thesis, the author uses the maximum value of the tangential velocity on each station as the free-stream velocity. The stations on two spanwise cross-sections are illustrated in Fig. 3.23 as examples. The relative displacement thickness δ 1,r (s * , z/h) of the blade suction surface boundary layer that is drawn in Fig. 3.24 illustrates the size of the boundary layer. The relative displacement thicknesses are computed for both the LES and RANS results. Its value gives the sense of the size of the corner separation in pitchwise direction. Coherently with the previous observation, a larger corner separation is predicted by RANS compared to LES. At the spanwise position where z/h = 1.4%, the boundary layer begins to thickens at s * = 0.6 and the thick boundary layer extends up to z/h = 12% close to the trailing edge, the maximum δ 1,r (s * , z/h) reaches about 0.2 at the corner. While for the RANS results, the thickening of the boundary layer begins at s * ≈ 0.3, its spanwise extent reaches about 18% span near the blade trailing edge, and the maximum value is found to be higher than 0.25 at the corner between suction side and the end-wall close to the trailing edge.

Conclusion

In this chapter, firstly, we have very carefully validated the inflow conditions of the RANS and LES simulations with the experiment. Secondly, the statistical convergence of the computation has been evaluated. Finally, the reference CFD results from LES and RANS have been compared with the experimental ones in the cascade passage. Analyses have been carried out during the comparisons. The main conclusions of this chapter are drawn bellow:

1. The displacement thickness of the boundary layer is chosen to be the criterion for selecting the inflow conditions for the compressor cascade. Many parameters have been checked with experimental and available DNS databases, and good agreements have been achieved, which guarantee the reliability of the computations in the compressor cascade.

2. Satisfactory statistical convergence has been achieved for the low-order moments, while more samples are need for a better statistical convergence of skewness and higher order moments.

3. At mid-span, both the LES and RANS have very well simulated the flow (see the blade static-pressure coefficient and the total-pressure losses).

4. In the corner flow region, the separation simulated by LES is in good agreement with the measurements, while RANS has over predicted the separation.

5. Since the LES calculation is much more expensive than the RANS ones, it is impossible to carry out parameter studies with LES. However, although the RANS approach over-predicts the hub-corner separation, it gives a reasonable description of the corner separation topology, regarding the wall-friction, streamlines, pressure distribution, etc., which allows us to do some parameter studies with RANS.

6. Concerning the downstream evolution of C pt,global , it is very well reproduced by the LES, except that the last experimental point jumps above the last LES point. The mixing process in the experiment is thought to be accelerated by the short outlet zone.

7. The LES computational costs are 150 times of those of RANS in this investigation. A hybrid RANS/LES approach could be a compromise for turbomachinery flows.

Chapter 4

Corner separation parameter study

The LES can accurately predict the corner separation, but it is too expensive to carry out a parameter study. The RANS approach over-predicts the corner separation but gives a reasonable description of the corner separated flow, and may be an alternative to do this parameter study.

In this chapter, the RANS approach is used to investigate the influence of parameters on the corner separation. The parameters are divided into two categories: the numerical parameters and the physical parameters.

Numerical parameters

In this section, the influence of the spatial interpolation scheme, the artificial viscosity, the outlet boundary condition and the turbulence model are investigated.

Spatial interpolation scheme

It is interesting to study if the spatial scheme influences the prediction of the corner separation. Therefore, four different upwind spatial schemes are studied in comparison with the four-point centered scheme of [START_REF] Jameson | Numerical solutions of the euler equations by finite volume methods using runge-kutta time-stepping schemes[END_REF] chosen as standard in this work. These four upwind schemes are: Roe scheme [START_REF] Roe | Approximate riemann solvers, parameter vectors, and difference schemes[END_REF], AUSM scheme [START_REF] Edwards | Low-diffusion flux-splitting methods for real fluid flows at all speeds[END_REF], AUSM+-up scheme [START_REF] Liou | A sequel to AUSM, part II: AUSM+-up for all speeds[END_REF] and simple low-dissipation AUSM scheme (SLAU) [START_REF] Shima | On new simple low-dissipation scheme of AUSM-Family for all speeds[END_REF].

The outlet section 1 is chosen to study the influence of the different spatial schemes, because the flow state is considered to be quite sensitive at this location. The comparison of the C pt contours is drawn in Fig. 4.1. The wake region and the corner flow region are clearly observed, through the high value of C pt . No significant difference is seen between different schemes. For a more detailed inspection, the velocity profiles u/U ∞ and v/U ∞ on the white lines sketched in Fig. 4.1 (at z/h = 0.11) are plotted in Fig. 4.2. A discrepancy can be clearly observed between the experimental and numerical results, due to the over-prediction of the corner separation by the RANS approach. But, the numerical results with different spatial schemes are in very good agreement. The corner separation is not sensitive to the spatial scheme. Moreover, it is believed that the spatial scheme is not the cause of the over-prediction of the corner separation. 

Artificial viscosity of the centered spatial scheme

When using a centered spatial scheme to simulate a flow, it is necessary to employ an artificial viscosity to stabilize the calculation. The definition of the numerical dissipative flux F i d can be found in [START_REF] Soulat | Définition, analyse et optimisation d'un nouveau concept de traitement de carter au moyen d'outils numériques[END_REF]:

F i d (ξ i - 1 2 ) = √ g(V i + c|| -→ a i ||) ξ i -1 2 1 2 ε 2 (q ξ i -q ξ i -1 ) + 1 8 ε 4 (q ξ i +1 -3q ξ i + 3q ξ i -1 -q ξ i -2 ) (4.1)
where ε 2 and ε 4 are the second-order and fourth-order artificial viscosity coefficient.

Smati [1997] suggests to set ε 4 between 0.01 and 0.15 for a RANS simulation. However it is interesting to know how does the artificial viscosity influence the simulation of the corner separation. Two simulations, with ε 4 = 0.02 (used as standard) and 0.01, are carried out to investigate the impact of the artificial viscosity on the description of the corner separation. 

Outlet boundary condition

The outlet plane needs to be carefully treated in the numerical simulations, because the outlet boundary condition controls the confinement of the waves. If the outlet section is not long enough, it may also impact the mixing process. In the present study, the computational domain extends to 2c downstream of the blade trailing edge, and the mesh is stretched near the outlet plane. Two outlet boundary conditions are tested here: one is "FLibre", a pressure outlet condition, the other is "FLibreMix", a pressure outlet condition mixed with a non-reflection outlet condition, which allows a partial evacuation of the waves out of the computational domain. The velocity profiles at the outlet section 1, z/h = 0.11, as presented in Fig. 4.4. No discrepancy is observed between the two results, which means that there is no spurious confinement effect in the simulations, since it would be influenced by the change of the outlet condition. 

Turbulence model

The turbulence models are considered to be the main causes for the bad prediction of the corner separation by RANS. Because most of the RANS turbulence models are tuned on the channel or flat plate flow databases in assuming equilibrium turbulence feature, they generally fail when applied on real complex-geometry flows with large flow separations. Previously, some turbulence-modeling work has been done by the present author, by considering the turbulent transport nature using helicity [START_REF] Liu | Modification of spalart-allmaras model with consideration of turbulence energy backscatter using velocity helicity[END_REF], which has improved the capability of a RANS model in capturing the corner separation in the PVD compressor cascade1 .

However, in the code Turb'Flow, only two k -ω turbulence models are available: one is the standard Wilcox k -ω model [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF], the other one is the Kok k -ω model [START_REF] Kok | Resolving the dependence on freestream values for the k-turbulence model[END_REF].

Kok's model removes the dependence on the free stream values which occurs in the standard Wilcox k -ω model. Therefore, the investigation is carried out between these two available turbulence models. Figure 4.6 shows the static pressure coefficient on the blade suction side. The region of C p between 0 and 0.1 is larger in the results using Kok's model. The enlargement of this constant pressure region is in both the streamwise direction and the spanwise direction. This suggests that Kok's model may predict a larger corner separation than Wilcox's. In Fig. 4.7, on the blade pressure side, comparing the results by Kok's model with the results by Wilcox's, it is found that the area of the low pressure region increases, and the high pressure region shrinks. This is associated with the observation on the suction side, the corresponding larger corner separation influences the static pressure distribution on the pressure side, as shown in Section 4.2.1. The static pressure coefficient on the end-wall is compared in Fig. 4.9. It seems that Kok's model gives the same results as Wilcox's around the blade leading edge, but not downstream.

The low pressure region with C p between 0.0 and 0.1 extends farther in the results by Kok's model, and the high pressure region where C p is higher than 0.3 disappears. Again, this denotes the over-prediction of the corner separation by Kok's model. 4.10(c), more losses are produced in the wake region compared to Fig. 4.10(b). In the corner flow, the extent of the high loss region is enlarged compared to the results by Wilcox's model. In addition, the C pt gradient from the high loss region to the free-stream is much higher by Kok's model, which may suggest a worse prediction of the mixing process by Kok's model. The axial development of the global total pressure loss coefficient is presented in Fig. 4.11. The two turbulence models give the same trends of the loss evolution, but Kok's model predicts slightly more losses than Wilcox's model. Finally, the boundary layer evolutions are compared between the experimental, the Wilcox k -ω and the Kok k -ω results. The measurement lines are the same as Fig. 4.29. The symbols with the vertical bars are the experimental results, the solid lines represent the RANS results using Wilcox's model, and the dashed lines denote the results predicted by Kok's model. Interestingly, the best prediction of the boundary layer evolution is given by Kok's model, especially in the velocity defect layer. The possible reason is that the correction by Kok to remove the dependence on the free-stream value improves the prediction in the velocity defect layer. Moreover, close to the mid-span, the flow is more like a 2-D boundary layer flow, and Kok's model is more suitable for this flow condition. But when going down into the corner separation region, the influence of the end-wall leads to more three-dimensional characteristics. In this region, Wilcox's model gives better predictions than Kok's. This is in agreement with the observation of [START_REF] Boudet | Approches numériques pour la simulation du bruit à large bande en vue de l'application aux turbomachines[END_REF] that Wilcox's model is more suitable for internal flows, while Kok's model works better in external flows.

Physical impact parameters

The physical parameters investigated here are (i) the incidence angle, (ii) the inlet boundary layer development, and (iii) the presence of tripping bands on the blade. 

Incidence angle

The incidence angle is an important parameter of corner separation. The numerical results

for five incidence angles are investigated here, in comparison with the experiment results at the same incidence angles. The static pressure coefficient on the blade suction side is shown in increase of the blade loading. Also, a region with a constant static pressure coefficient appears at the corner between the suction side and the end-wall, near the trailing edge, and it becomes larger and larger with the incidence angle, indicating the existence and growth of the corner separation. The variations of the static pressure coefficient against the incidence angle are quite well reproduced by RANS at the mid-span, but they are over-predicted in the corner flow region. Particularly, at the incidence angle -2 • , where the corner separation is not significant, the static pressure coefficient is well reproduced by RANS on the suction side.

In Fig. 4.14, the blade pressure side is colored by the static pressure coefficient. Increasing the incidence angle increases the pressure side static pressure coefficient, in coherence with the suction side. This results from the higher deviation of the flow by the cascade. Again, the static pressure coefficient is quite well simulated by RANS at the mid-span. The influence of the corner separation can be better observed in Fig. 4.15, which draws the static pressure coefficient on the end-wall. The high pressure region on the suction side near the trailing edge always links to the region near the leading edge on the pressure side, which can be seen through the C p iso-lines. From the incidence angle i = -2 • to i = 4 • , the region of high pressure increases when increasing the incidence angle in both the experiment and the RANS simulations. But increasing the incidence angle from i = 4 • to i = 6 • , the constant C p region between C p = 0.1 and 0.2 increases, and thereby reduces the high pressure region. This means that the growing corner separation limits the increase of the diffusion capability of the compressor cascade. Encouragingly, this process seems to be well captured by RANS, but it is over-estimated. The static pressure coefficient around the blade, at the mid-span and near the end-wall, are plotted in Fig. 4.16 for detailed investigation. The static pressure coefficient at the mid-span is very well predicted by RANS. Moreover, as proposed by [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF], a characteristic point is identified on the blade suction side near the leading edge, denoted by B in Fig. 4.16(a) at x/c a = 0.2. C p on this point never varies whatever the incidence angle changes. Upstream of the point B, C p decreases with the incidence angle, while C p increases with the incidence angle downstream of this point. The location of B is fairly well identified by RANS. These good results at mid-span suggest that the incidence angle in the experiment, which is rather difficult to precisely evaluate, is indeed the same as in the simulations. The distribution of C p near the end-wall is presented in Fig. 4.16(b). When increasing the incidence angle, the beginning of the constant C p region on the blade suction side, which indicates the separation point, moves upstream, suggesting a earlier onset of the corner separation. The extent of the separation region is also increased by augmenting the incidence angle. The characteristic point B is again identified on the blade suction side, however discrepancies appear between the experimental and RANS results. The RANS characteristic point B rans is located at about x/c a = 0.06, upstream of the experimental characteristic point B exp at x/c a = 0.14. A good agreement is achieved in the end-wall region between RANS and the experiment, at i = 2 • . Increasing the incidence angle, RANS over-predicts the corner separation, which seems to push B rans upstream.

Finally, the blade lift coefficient C L is presented against the incidence angle i, in Fig. 4.17. It is clearly observed that C L increases with the incidence angle from i = -2 EXP From i = 4 • to i = 6 • , C L decreases due to the large corner separation. This is coherent with the previous observation on the end-wall static pressure coefficient, and this phenomenon seems to be well captured by RANS. This study about the influence of the incidence angle has been carried out from both the experimental and RANS results. It appears that RANS over-estimates the growth of the corner separation, but reproduces the right trends. This gives confidence to use RANS for further parameter studies, for which experimental results are not available. 
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Inlet boundary layer

Three parameters of the inlet boundary layer are studied here: the boundary layer thickness, the TKE level and the angle fluctuation.

Inflow boundary layer thickness

Herein, the influence of the boundary layer displacement thickness is investigated with four different values: 0δ 1,∞ , 0.5δ 1,∞ , 1.0δ 1,∞ and 1.5δ 1,∞ , where δ 1,∞ is the experimental value. The different displacement thicknesses of the inflow boundary layer and the corresponding velocity profiles used in this study are depicted in Fig. 4.18. They are obtained by adjusting the axial length of the boundary layer simulation. As shown in Fig. 4.18(b), the free stream velocities are not the same for these four cases, because a constant mass flow is imposed on the inlet plane for these four cases. The comparison of the C p on the blade suction side between these four cases is shown in Fig. 4.19. The area of the high pressure region decreases, while the low pressure region develops. Especially,in Fig. 4.19(a), close to the end-wall, the high pressure region where C p is between 0.1 and 0.2, extends to x/c a ≈ 0.3. But when thickening the inflow boundary layer, this region is replaced by a lower pressure region where C p is between 0.0 and 0.1. This suggests that thickening the inflow boundary layer could strengthen the corner separation. A more detailed comparison can be seen in Fig. 4.20. At mid-span, C p decreases a bit with increasing δ 1 , due to the fact that the stronger corner separation pushes the flow to the mid-span, which increase the fluid velocity outside the boundary layers and reduces the static pressure, according to Bernoulli's principle. Close to the end-wall, thickening the inflow δ 1 again decreases the static pressure on the blade pressure side. On the suction side, the thickened inflow δ 1 pushes the onset of the corner separation upstream. Fig. 4.21 draws the total pressure loss contours at the outlet section 1. In the case whose inflow δ 1 is null, the high loss region near the end-wall is very concentrated. Beside the corner flow region, the end-wall boundary layer is very thin. When increasing the inflow δ 1 , the loss region grows significantly. The thickened inflow δ 1 not only spreads the loss region, but also raises the loss value at the center. 
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Inflow TKE level

In the present work, the inflow boundary layer profile is extracted from a flat plate simulation, and the inlet condition of the flat plate is a uniform velocity profile with the same free-stream turbulent kinetic energy as in the experiment. Therefore, the extracted velocity profile is coherent with the turbulent kinetic energy profile. In this part, the TKE profile is set to be twice its initial value to investigate the influence of the inflow TKE profile. The TKE profiles are depicted in Fig. 4.23.

The comparisons of the lift coefficient C L and the global total pressure loss coefficient are drawn in Fig. 4.24. It is observed that the difference is small with the different inflow TKE levels. Increasing the inflow TKE level by a factor 2, C L decreases by 0.5%, and C pt,global increases by 3.1%, which means that increasing the inflow TKE level can slightly strengthen the corner separation. 

Inflow angle fluctuation

The purpose of this study is to check if a temporal fluctuation (=perturbation) of the inflow angle could lead to a non-linear impact on the corner separation. The influence of the inflow angle fluctuation is studied with the unsteady RANS approach. The fluctuation is imposed in the x-y plane. The amplitude of the fluctuation and its frequency are prescribed as:

∆i = arctan(2T u ∞ ) = 0.92 • (4.2) f = U ∞ /h = 108Hz (4.3) 
The global parameters C L and C pt,global are calculated from the time-averaged URANS results over 6 periods of the inflow variation, and they are shown on Fig. 4.25 in comparison with the reference (steady) RANS results. No significant difference is seen between the RANS and URANS results. No notable unsteadiness (either natural or forced) is observed in the present corner separation.

Tripping bands on the blade

In the experiment, two pieces of sandpapers are pasted on both the blade suction side and the blade pressure side, close to the leading edge, to trigger the laminar-turbulent transition on the blade. This allows controlling the complex mechanisms of transition in both the experiment and the LES. Also, there is no need for a transition model in RANS, which can be set as fully turbulent. The majority of the measurements on the present experimental rig were carried out with the sandpapers, and very few results can be used to investigate the influence of the tripping bands. Experimental results are extracted from [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF]. Figure 4.27 shows an oil visualization: it is clearly observed that without sandpaper, the transition bubbles appear on both the blade pressure side and the suction side. On the pressure side, the separation bubble do not reach the end-walls, because of the high turbulent intensity in the end-wall boundary layers. The same phenomenon is seen on the suction side. Moreover, the corner separation is observed through the accumulation of the oil in the spanwise extremities of the blade suction side. After pasting the sandpapers near the leading edge, both the separation bubbles on the pressure side and the suction side disappear, which means that the laminar-turbulent transition is triggered by the sandpapers.

A detailed comparison of C p around the blade, close to the mid-span, at the incidence angle i = 0 • , is plotted in Fig. 4.28. A flat region is observed on the suction side between

x/c a = 0.5 and x/c a = 0.6 in the case without sandpaper, indicating the laminar-turbulent transition bubble. The static pressure coefficient C p reaches the branch with sandpapers just behind the separation bubble, but, the discrepancy can be observed up to x/c a = 0.15 upstream. Since the RANS approach assumes all the fluid to be fully turbulent, the transition bubble is not expected to appear in the RANS simulation without tripping band. However, the steps associated with the tripping bands can influence the evolution of the boundary layer. Figure 4.29 shows a sketch of the velocity profiles close to the mid-span measured with LDA. The boundary layer thickens from the leading edge to the trailing edge and the velocity gradient decreases (i.e. the shape factor increases). The normalized profiles of the tangential component of velocity u s /U ∞ (perpendicular to the measurement lines), close to the mid-span, are plotted in Fig. 4.30.

The x-axis indicates u s /U ∞ , while the y-axis denotes the distance to the blade suction side in millimeters. Each subplot represents a measurement line, the symbols with vertical bars show the experimental results with their corresponding uncertainty of position, the solid lines are the RANS results with tripping bands, while the RANS results without tripping bands are represented by the dashed lines. In the figure, the u s /U ∞ profiles close to the mid-span show a thickening of the boundary layer towards the trailing edge, and a decrease of the gradient near the wall, which indicates that the boundary layer tends to separate near the trailing edge. A good agreement is observed between the experiment and the simulations. It should be noticed that the best prediction of the boundary layer profile is achieved when the tripping bands are implemented in the simulation. This means that the tripping bands indeed have an effect on the evolution of the mean velocity profiles, even using the RANS approach, and they should not be discarded. The slight differences on the measurement lines s * = 0.21 and 0.31 for the simulation with tripping bands may be caused by the numerical errors generated by the tripping band implementation (sharp edges). 

Conclusions

In this chapter, a series of parametric investigations has been carried out. The impacts of some numerical and physical parameters on corner separation have been studied by the (U)RANS approach. Some conclusions are drawn: 1. The RANS simulation of the corner separation seems to be insensitive to the spatial interpolation scheme of the finite-volume solver. The choice of the artificial viscosity coefficient in this study appears to be reasonable according to the sensitivity study. The outlet boundary condition and the stretching grid appear to sufficiently damp the reflections.

2. Two k -ω turbulence models have been tested. Kok's model is found to be more suitable for external flows, and Wilcox's model works a little better for internal flows. The turbulence models are considered to be the main cause of mis-prediction of the corner separation.

Increasing the incidence angle increases the corner separation. A characteristic point

denoted by B is identified on the suction side close to the leading edge, where C p does not change whatever the incidence angle varies. Upstream of point B, C p decreases when the incidence angle increases, and the trend is inverted downstream of this point. The point B moves upstream when approaching the end-wall. This phenomenon can be used to validate the experimental incidence angle with the help of RANS. The lift coefficient C L increases with the incidence angle from i = -2 • to i = 4 • , and it decreases from i = 4 • to i = 6 • . This process is well captured by RANS.

4. Increasing the inflow boundary layer thickness increases the corner separation. Also, the losses increase slightly with a higher value of the inflow turbulent kinetic energy. Finally no notable unsteadiness of the corner separation has been observed with URANS, even in forced conditions. 5. Tripping bands (i.e. sandpapers in the experiment) can trigger the laminar-turbulent transition and thereby suppress the transition bubble. They also reduce the difficulties for the RANS simulations, since the fluid can be supposed fully turbulent. Moreover, the tripping bands also modify the boundary layer evolution, and they should not be discarded in the simulations if they are employed in the experiment.

Chapter 5

Turbulent characteristics of the corner separation

In this chapter, the turbulent characteristics of the corner separation will be discussed using the LES results. Firstly, the subgrid-activity and the subgrid-scale viscosity ratio in the calculation domain is presented. Secondly, the unsteadiness of the corner separation is analyzed. Finally, a study of the turbulent boundary layers is carried out on the suction side and the end-wall.

Subgrid activity

In large-eddy simulations, subgrid-scale tensors are gained after filtering the Navier-Stokes equations, and they are modeled by the SGS model. The main idea is to add some extra viscosity to simulate the diffusion and dissipation processes. Geurts & Fröhlich [2002] proposed a subgrid-activity parameter to characterize the activity of the SGS model, which is expressed below:

s = ε sgs ε sgs + ε µ (5.1)
where ε sgs is the SGS dissipation, and ε µ is the viscous turbulence dissipation. According to the definition, 0 ≤ s < 1 with s = 0 corresponding to DNS and s=1 to LES at infinite Reynolds number.

The subgrid-activity parameter is computed with the LES results for both the regions at mid-span and close to the end-wall, as plotted in Fig. 5.1. The values of the subgrid-activity parameter are always greater than 0, implying that the subgrid-scale model is active in this large- 

Subgrid-scale viscosity ratio

In large-eddy simulations, subgrid-scale tensors are derived after filtering the Navier-Stokes equations, and they are modeled by the SGS model. In RANS simulations, Reynolds stresses terms obtained by averaging the Navier-Stokes equations need to be modeled by the RANS turbulence model. The modeling conceptions are similar between LES and RANS. The SGS viscosity is applied on very small filtered quantities in LES, and the eddy viscosity is used to model all the turbulent fluctuations in RANS.

The comparison of SGS viscosity and eddy viscosity is drawn in Fig. 5.2 (Attention: the color scales are different between LES and RANS). They are normalized by the molecular viscosity, in this way the modeled part of the viscous effects can be clearly inspected. For LES, the normalized subgrid viscosity gives a similar impression as the subgrid-activity, since the flow case is incompressible, the ratio between the SGS dissipation and the viscous turbulence dissipation equals to that between the laminar viscosity and the SGS viscosity. For RANS, as shown in Figs. 5.2(b) and 5.2(d), it is observed that the eddy viscosity of RANS is much higher than the SGS viscosity of LES (about 700 times higher). This indicates that compared to the RANS, the LES is obviously active for solving the largest turbulent structures and it uses a subgrid-scale model that drives most of the dissipation mechanisms. In Fig. 5.4, the probes 1, 2, 3, 4, 5, 6, 7 and 8 must draw the attention for some reasons: (i) point 1 and 2 are upstream the corner separation, (ii) point 3 lies on the separation line, (iii) the other points go across the corner separation and the point 5 is quite close to the separation core, and (iv) these points are roughly located at the same distance from the blade suction surface.

The velocity signals obtained at these points are decomposed into three velocity components: the blade surface tangential velocity component (u s ), the blade surface normal velocity component (u n ) and the spanwise velocity component (u z ). The non-dimensional one-point velocity spectra (the definition refers to Section 3.1.4) of these three velocity components are plotted in Fig. 5.5 in the three directions (Taylor's hypothesis is applied), and the lines from bottom to top indicate the probes P1 to P8, respectively. There are some oscillations existing in the spectra, which indicates that the sampling time is too short for a proper convergence of the spectrum. However, two decades of ω + bring some possibilities for the analysis. Inspecting the tangential velocity spectra of the first two probes P1 and P2, upstream of the corner separation region, one can notice that the -5/3 slope range is larger for the points located outside the separation region. It may imply that the small turbulent structures concentrate outside the corner separation region. In the separation region, the spectra (of the probes P3 to P8) drop earlier than the those of the probes P1 and P2, suggesting that the large scale energy-containing eddies dominates the corner separation region. The turbulent flow gains energy in the separation region. The same observations can be done for the wall normal velocity spectra and the spanwise velocity spectra. The probes farther from the wall are also analyzed by computing the velocity spectra, as shown in Fig. 5.6. For the probes located within the separation, the spectra drop slower than those drawn in Fig. 5.5, suggesting that more small eddies appear in this external region of the separation.

Energy integral length scale

The energy integral length scale l is defined by the following equation [START_REF] Pope | Turbulent flows[END_REF]: where ω + and Φ 11 are respectively the non-dimensional frequency and the non-dimensional velocity spectrum. Their definitions refer to Section 3.1.4.

l = Φ 11 (ω + ) ω + dω + Φ 11 (ω + )dω + (5.2)
For grid turbulence, the ratios between the longitudinal integral scales and the transverse scale is 2 : 1. However, in the present study, the flow condition is not as simple as grid turbulence. Therefore, the energy integral length scales are computed in three directions with respect to the blade suction surface, i.e. tangential, wall-normal and spanwise directions (Taylor's hypothesis is employed). Based on the spectra discussed in the previous section (Figs. 5.5 and 5.6), the energy integral length scales are plotted in Fig. 5.7. In Fig. 5.7(a), the probes go across the corner separation center. Upstream of the corner separation, the energy integral scales are quite different between the three directions, and the values are relatively small. At the probe P3, which lies on the separation line, the energy integral scales increase significantly for all of the three directions. The values get closer for the three directions. Downstream, in the corner separation, the energy integral length scales grow very slowly, with very close values between the three directions. According to these two figures, the energy-integral-length-scales are relatively lower upstream of the corner separation, and they increase significantly on the corner separation border. This is coherent with the observations in Figs. 5.5 and 5.6. Large scale eddies produce turbulent kinetic energy are located within the separation region. [START_REF] Laval | On the relation between kinetic energy production in adverse-pressure gradient wall turbulence and streak instability[END_REF] observed in this region that the near-wall longitudinal streaks of the boundary layer separate and contribute to the increase in the turbulent intensity at large scales. This is consistent with our observation.

Visualization of the turbulent coherent structures

The vortex identification criterion Q corresponding to the second invariant of the velocity gradient tensor (see [START_REF] Hunt | Eddies, streams, and convergence zones in turbulent flows[END_REF], then cited by [START_REF] Jeong | On the identification of a vortex[END_REF] and [START_REF] Dubief | On coherent-vortex identification in turbulence[END_REF]) is used in the present work to identify the turbulent coherent structures in terms of their sizes. The Q-criterion is expressed by the following equation:

Q = 1 2 (Ω ij Ω ij -S ij S ij ) (5.3)
where Ω ij and S ij are respectively the anti-symmetric and symmetric components of the velocity gradient tensor (i.e. rate-of-rotation tensor and rate-of-strain tensor), their expressions are given below:

Ω ij = 1 2 ( ∂u i ∂x j - ∂u j ∂x i ) (5.4) S ij = 1 2 ( ∂u i ∂x j + ∂u j ∂x i ) (5.5)
The Q criterion could represent the local equilibrium between the rotation rate and the strain rate. The positive value of Q indicates the region where the rotation exceeds the strain [START_REF] Chen | Numerical investigation of the compressible flow past an aerofoil[END_REF].

A 3-D view (from the mid-span to the end-wall) of the flow field in the compressor cascade is shown in Fig. 5.8. The turbulent coherent structures are observed through iso-surfaces of Q criterion, colored by the velocity magnitude. A typical value of Q = 10U 2 ∞ /c 2 , suggested by [START_REF] Gand | Flow dynamics past a simplified wing body junction[END_REF], is set for displaying the turbulent coherent structures in Fig. 5.8(a). The vortices can be seen everywhere and even upstream the blade leading edge, which indicates that the upstream fluid is well transitioned to be turbulent flow on the end-wall. Increasing the value of Q, less vortices can be observed. High values of Q imply that the rotation effect of the vortex is stronger than the strain effect of the vortex. When the value of Q raises up to about 120U 2 ∞ /c 2 , as shown in Fig. 5.8(d), most of the upstream turbulent structures are filtered, and some vortices can be still observed near the blade trailing edge. In Fig. 5.8(d), the high-velocity structures in green correspond to the wake far from the end-wall. The low-velocity structures in blue are associated with the corner separation. Some vortices (with high value of Q) are located in the wake and the corner separation regions. These two regions are often related with the high total pressure losses in compressors.

Another view to scrutinize the turbulent coherent structures is given in Fig. 5.9, accompanied by a sketch of the view which locates the blade and end-wall positions in Fig. 5.9(a). Under the typical value of Q = 10U 2 ∞ /c 2 in Fig. 5.9(b), turbulent coherent structures are observed in the wall region. In addition, the laminar-turbulent transition is clearly triggered by the tripping bands on the blade suction surface. This is also proven by the static pressure coefficient C p at mid-span in Fig. 3.16(a), since there is no separation bubble (i.e. the flat region of C p ) on the suction side. When increasing Q to 120U 2 ∞ /c 2 , as shown in Fig. 5.9(d), the inflow endwall turbulent coherent structures are nearly almost filtered. Some turbulent coherent structures characterized by high values of Q are still observed downstream of the separation region, (i.e. downstream of the corner separation and the trailing edge where the wake is generated) and in the laminar-turbulent transition region close to the leading edge. This is in agreement with the observation of [START_REF] Marquillie | Direct numerical simulation of a separated channel flow with a smooth profile[END_REF], in a DNS of a smooth converging-diverging channel flow.

(a) Q = 10U 2 ∞ /c 2 = 700000 (b) Q = 30U 2 ∞ /c 2 = 2100000 (c) Q = 60U 2 ∞ /c 2 = 4200000 (d) Q = 120U 2 ∞ /c 2 = 8400000
With the previous analyses of spectra, the value of Q-criterion can be related to the size of the turbulent coherent structures: small Q may indicate large scale turbulent structures, while large Q could represent the small scale turbulent structures. 

) Q = 10U 2 ∞ /c 2 = 700000 (c) Q = 60U 2 ∞ /c 2 = 4200000 (d) Q = 120U 2 ∞ /c 2 = 8400000
Figure 5.9: View of the turbulent coherent structures in the passage: iso-surfaces of Q criterion, colored by the velocity magnitude.

Bimodal histogram

In the present study, the two peaks in the velocity histograms reported by [START_REF] Devenport | Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction[END_REF], [START_REF] Gand | Flow dynamics past a simplified wing body junction[END_REF] and Ma et al. [2013a] seems also to appear in the LES results. This two peaks denotes a bimodal behavior of the flow.

The inflow velocity probability density function (PDF) is plotted in Fig. 5.10, for both the streamwise velocity component and the cross-stream velocity component (at hot-wire measurement station 2 in Fig. 2.6, y + = 85). The histograms are not perfectly smooth, probably because the sampling is not long enough. However, Gaussian distributions can be observed, with only one peak. It proves that the inflow condition is proper and does not provide any bimodal source.

A bimodal histogram is observed at the probe P3 in Fig. 5.11. This point lies on the separation line at the spanwise location z/h = 1.4%. According to Ma et al. [2013a], the bimodal histogram could be well decomposed into two Gaussian distributions following the formula below:

G(u s ) = G1(u s ; α 1 , U s1 , σ u s1 ) + G2(u s ; α 2 , U s2 , σ u s2 ) (5.6)
where G1 and G2 satisfy the following equations:

G1(u s ; α 1 , U s1 , σ u s1 ) = α 1 √ 2πσ u s1 exp - (u s -U s1 ) 2 2σ 2 u s1
(5.7)

G2(u s ; α 2 , U s2 , σ u s2 ) = α 2 √ 2πσ u s2 exp - (u s -U s2 ) 2 2σ 2 u s2
(5.8)

with the requirements

               α 1 , U s1 , σ u s1 , α 2 , U s2 , σ u s2 ∈ R, 0 < α 1 , α 2 < 1.0, α 1 + α 2 = 1.0, u s min < U s1 < U s2 < u s max , σ s1 , σ s2 > 0
(5.9)

Where α 1 and α 2 are the probabilities of the two modes. U s1 and U s2 are the averaged velocities of the first and second Gaussian distributions. The standard deviations for these two modes are denoted by σ u s1 and σ u s2 .

At the probe P3, located in the zone of the mean separation line, two peaks can be observed in the PDF of the tangential velocity. This behavior may not exist for the wall-normal velocity, has found by Ma et al. [2013a]. In Fig. 5.11, a fitting of the PDF of the tangential velocity is achieved with two-Gaussian distributions. Due to the limited number of sample, the fits are not perfect but the trends are clearly visible. The parameters for the decomposition of the tangential velocity u s into two Gaussian distributions are listed in Tab. 5.1. It is obvious that the tangential velocity component is decomposed into two Gaussian distribution. The mode 1 is a reverse flow mode, with averaged velocity U s /U ∞ = -0.16, standard deviation σ us = 0.06, and probability α = 0.37. For the mode 2, the averaged velocity, the standard deviation and the probability are respectively 0.09, 0.12 and 0.63. It comes that on the separation line the flow field has two preferred modes, one is a reverse flow mode that occupies about 1/3 of the time, with a relatively small deviation, the other is a forward flow mode that dominates nearly 2/3 of the time with a deviation of 0.12. 

Turbulent boundary layers

The objective of this section is to investigate the evolutions of the turbulent boundary layers on the blade suction side and on the end-wall. On the blade suction side, the turbulent boundary layer development is studied on two spanwise cross-sections: one is close to the mid-span, the other one stands close to the end-wall. On the end-wall, the boundary layer is inspected along the compressor cascade passage. This investigation is carried out through the study of the mean flow, the second-order statistics, the turbulent anisotropy and the budget of the turbulent kinetic energy.

Boundary layer on the suction surface close to the mid-span

In the present investigation of the corner separation, the flow at mid-span will be first presented. Although the quasi 2-D flow in this region appears to be less complex than in the 3-D-unsteady corner separation region, it encounters the high adverse pressure gradient and the curved geometry effects. Indeed, the evolution of the turbulent boundary layers at mid-span seems to be more classical than the one close to the end-wall where two kinds of boundary layers interact (the blade suction side boundary layer and the end-wall boundary layer). Nine measurement-lines perpendicular to the blade suction surface, which correspond to the LDA measurements, are chosen to analyze the boundary layer development close to the mid-span. A sketch illustrating these measurement-lines is shown in Fig. 5.12(a). The mean velocity vectors for these nine measurement-lines are plotted in Fig. 5.12(b). s * = s/L denotes the position of the measurement-line on the blade suction side, where s is the chordwise arc length on the suction surface from the leading edge to the measurement-line, and s = L at the trailing edge. 

Mean flow

First of all, the mean flow close to the mid-span (z/h = 48.6%) is considered. In Fig. 5.12(b), the mean flow development is clearly observed. The boundary layer thickens along the blade suction side. The acceleration of the fluid near the blade leading edge can be seen through the bump of the mean velocity vectors close to the blade suction surface. On the first measurementline (s * = 0.21), all the mean velocity vectors seem to be parallel to the blade suction surface. When getting to the last station (s * = 0.99), the free-stream mean velocity vector appears to be no longer parallel to the blade suction surface, which corresponds to a positive angle between the free-stream flow direction and the blade suction surface. This indicates the existence of the so-called "deviation angle" between the true outflow direction and the the direction imposed by the blade surface at the trailing edge.

A more detailed inspection of the boundary layer development is done in comparison with the experimental data. Two kinds of experimental results, obtained with LDA and PIV, are accessible at this spanwise position. In order to study the blade suction surface boundary layer evolution, the mean velocity vector is decomposed into a tangential velocity component u s and a wall normal velocity component u n . This decomposition of the velocity vector is sketched in Fig. 5.13. The tangential velocity component of the mean velocity vectors close to the mid-span is presented in Fig. 5.14, with linear scale (Fig. 5.14(a)) and semi-log scale (Fig. 5.14(b)). Note that not only the uncertainty in the velocity measurement but also the uncertainty in the location of measurement point, that is around 0.1mm, can have significant impacts on the plots of the LDA results. The PIV results are only available for the last four measurement-lines. They are cut off in the region where the wall distance is less than 4mm, since the measurement precision reduces significantly when approaching the wall.

In Fig. 5.14(a), an excellent agreement is observed between LES, LDA and PIV for the tangential velocity components. From the leading edge to the trailing edge, the boundary layer thickens gradually. In the same time, the free-stream velocity decreases. Near the leading edge, the near-wall peak of the tangential velocity on the first measurement-lines corresponds to the near-wall flow acceleration. This peak reduces when flowing towards the trailing edge, indicating the deceleration of the near-wall fluid. Close to the trailing edge, the near-wall tangential velocity gradient in the wall normal direction decreases significantly, and so does the wall shear stress implying that the boundary layer is close to separate. Figure 5.14(b) plots the tangential velocity component in semi-log scale, which allows a close-up view in the near wall region.

The full height of the measurement-line is accessible. The agreement between LES, LDA and PIV results is very satisfactory over most of the height of the measurement-lines, but some discrepancies are seen very close to the wall. These differences between the simulation and the experiments may be caused by two reasons: (i) the turbulent transition process is difficult to simulate by LES [START_REF] Spalart | Reflections on RANS modeling[END_REF]; (ii) close to the wall (d wall ≤ 1mm), the precisions of both the LDA and PIV measurements are not as high as in the free-stream due to the low density of tracer particles.

Figure 5.15 draws the wall-normal velocity component u n along the measurement-lines at mid-span. As for the tangential velocity component, the comparison is carried out between the LES, LDA and PIV results. Again, the LDA results are plotted with the position uncertainties, and the PIV results are only available for the last four measurement-lines. In Fig. 5. 15(a), the wall-normal velocity component u n is plotted, in linear scale in the region where the wall distance is less than 20mm. The consistency between the LES, LDA and PIV results is fairly good. The full height of the measurement-lines is depicted in semi-log scale in Fig. 5. 15(b). The LES results agree well with the experimental results, not only in the free-stream, but also in the near-wall region. It is found that the wall normal velocity component increases progressively in the free-stream. This highlights the already mentioned existence of a deviation angle of the flow in the region of the blade trailing edge. Finally, a sudden decrease of the wall-normal velocity component in the free-stream is observed at the station s * = 0.60, because at the last points of this station, the influence of the pressure surface of the adjacent blade can be felt. The second-order statistics, refers to as the Reynolds stresses, will be scrutinized in this part. The Reynolds stresses are gained by averaging the momentum equation of the Navier-Stokes equations. They play a crucial role in the closure problem. The Reynolds stresses are the components of a symmetric second-order tensor (i.e. the Reynolds-stress tensor). The diag-onal components ( u ′2 i ) are referred to as normal stresses, while the off-diagonal components ( u ′ i u ′ j ) are the shear stresses [START_REF] Pope | Turbulent flows[END_REF].

Consistently with the mean flow analysis, the Reynolds stresses are analyzed in the blade coordinate system shown in Fig. 5.13. The RMS of the streamwise normal stress u ′ s,rms /U ∞ on the cross-section close to the mid-span (z/h = 48.6%) is plotted in Fig. 5.16, along the blade suction surface. In Fig. 5. 16(a), the results are plotted in linear scale in the region where d wall ≤ 20mm. A good agreement is observed in the free-stream between the LES, LDA and PIV results, and the comparison close to the wall is satisfactory. The near-wall peaks of u ′ s,rms /U ∞ can be clearly seen in both the LES and LDA results. The PIV results are unavailable when approaching the wall, nevertheless, the tendency to form the near-wall peaks is observed through the increase of u ′ s,rms /U ∞ . In Fig. 5. 16(b), the results are drawn in semi-log scale, and the near-wall region is significantly enlarged. It can be observed that u ′ s,rms /U ∞ is qualitatively well reproduced by the LES. On the first four measurement-lines, a good agreement can be seen even in the peak region of u ′ s,rms /U ∞ . Some discrepancies appear for the last five measurementlines. As mentioned previously, the LDA results may be quite inaccurate close to the wall for the uncertainty in velocity measurement and the uncertainty in the location of the measurement point. Furthermore, as discussed about the wall-normal velocity component, the fluid does not flow strictly along the blade suction surface (i.e. there exists a deviation angle between the actual outflow angle and the design outflow angle). Consequently, tracer particles may be transported apart from the blade wall, which may further decrease the measurement accuracy.

From the first measurement-line s * = 0.21 to the last measurement-line s * = 0.99, the peak value of u ′ s,rms /U ∞ increases gradually and the peak position moves progressively away from the wall. On the measurement-line s * = 0.70, a flat region appears around the peak of the streamwise normal stress. With the development of the boundary layer towards the trailing edge, u ′ s,rms /U ∞ profile shows up two peaks. On the last measurement-line s * = 0.99, the outer peak grows to be stronger than the inner peak, and finally dominates u ′ s,rms /U ∞ . This agrees with the observations of other authors who evidenced this second peak for boundary layer flows with adverse pressure gradients [START_REF] Webster | Turbulence characteristics of a boundary layer over a two-dimensional bump[END_REF][START_REF] Aubertine | Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient[END_REF][START_REF] Laval | On the relation between kinetic energy production in adverse-pressure gradient wall turbulence and streak instability[END_REF]] [Ma et al., 2013b].

The RMS of the wall-normal fluctuating velocity u ′ n,rms /U ∞ is plotted in linear scale in Fig. 5.17(a), and semi-log scale in Fig. 5.17(b). The experimental and LES results show the same tendencies, since the developing peak of the u ′ n,rms /U ∞ seems to be well captured by LES. As shown in Fig. 5.17(b), the position of the peak seems to be below 1mm for the first five measurement-lines, and large discrepancies of the peak value can be observed. This may be due to the fact that it is very difficult to uniformly distribute the tracer particles very close to the wall (d wall < 1mm), if the turbulence is very intense. The measurements may be significantly impacted by the non-uniformity of the tracer particles. In addition, the way the transition starts at the leading edge is different between LES and experiment, which may also bring some dif- ferences. On the last four measurement-lines, the peak of u ′ n,rms /U ∞ is found to be positioned above 1mm from the wall. A good agreement is observed between the LES and experimental results. From the leading edge to the trailing edge, the peak value of u ′ s,rms /U ∞ raises, and the peak location moves apart from the wall. Differently from the RMS of the fluctuating velocity u ′ s,rms /U ∞ , only one peak is observed throughout the development of u ′ n,rms /U ∞ .

Figure 5.18 depicts the evolution of the Reynolds shear stress

-u ′ s u ′ n /U 2 ∞ .
Similarly to the development of RMS of the wall-normal Reynolds stress u ′ n,rms /U ∞ , the Reynolds shear stress exhibits a near-wall peak, and the peak position is very well captured by the LES in comparison with the LDA results. The agreement on the peak value is only satisfactory between the LES and LDA results. From the first measurement-line s * = 0.21 to the last measurementline s * = 0.99 along the blade suction surface, the peak value increases and the peak location moves gradually away from the wall. Moreover, the peak position of -u ′ s u ′ n /U 2 ∞ is roughly comparable to the peak of u ′ n,rms /U ∞ in Fig. 5.17.

As a conclusion, the LES simulates rather well the three Reynolds stresses along the blade suction side. A very good agreement is achieved far from the blade. Close to the blade, the tendencies of the Reynolds stresses are well captured by the LES, but there are some differences on the values.

Turbulent anisotropy

After investigating the Reynolds stresses, the author proposes in this section the study of the turbulent anisotropic characteristics. In order to carry out this study, one can use the analytical model of [START_REF] Lumley | The return to isotropy of homogeneous turbulence[END_REF] named "Lumley Triangle", which has also been used by [START_REF] Gand | Flow dynamics past a simplified wing body junction[END_REF] in a case of wing body junction flow.

According to [START_REF] Lumley | The return to isotropy of homogeneous turbulence[END_REF], an anisotropy tensor and two invariants are expressed as follow: The anisotropic invariants are computed from the LES results in the global Cartesian coordinate. The analysis is carried out on the measurement lines depicted in Fig. 5.12. The distance to the blade suction side is represented in Fig. 5.20 by different colors, which are used in the anisotropic invariant map.

The evolution of the turbulent-anisotropic characteristics along the blade suction surface, on the cross-section close to the mid-span, is drawn in Fig. 5.21. On the first measurementline, as shown in Fig. 5. 21(a), the colors of the points correspond to the wall distance that can be clearly identified in Fig. 5.20. When moving outwards the blade wall, the turbulent anisotropy point moves along the two-component turbulence line from left to right, indicating the increase of one component of turbulence, which may be associated with the near-wall peak of the streamwise Reynolds normal stress. Then the third component of turbulence grows so that the turbulent-anisotropy point gets on the right curve which represents axisymmetric turbulence. Staying on this curve, the point moves toward the isotropic vertex, then heads back toward the one-component turbulence state. Finally, it reaches the left curve, close to the isotropic two-component turbulence vertex. The turbulent state does not return to be isotropic. This may be caused by the symmetry boundary condition that is employed on the mid-span to reduce the computational domain. As a consequence, the turbulent fluctuations across the mid-span are strictly limited to be zero. Although the measurement-lines are extracted on the plane z/h = 48.6% (it is not exactly the mid-span), the symmetry boundary condition seems to suppress the spanwise turbulent component at this position. In comparison, the RANS turbulent anisotropy invariant map is plotted in the same figure. It is observed that the near-wall turbulence is markedly isotropic, because of the Boussinesq hypothesis. Farther from the wall, the RANS anisotropy invariant gets out off the Lumley triangle, implying that the standard k -ω model under the Boussinesq hypothesis may be not suitable for the turbulent anisotropy invariant analysis.

From the measurement-line s * = 0.21 to the measurement-line s * = 0.50, the near-wall one-component turbulent state gets more and more dominant. From the measurement-line s * = 0.60 to s * = 0.90, the near-wall turbulence develops toward isotropic two-component. This could be related to the rapid increase of the Reynolds normal stress in Fig. 5.17(b), reaching nearly the same level as that of the streamwise Reynolds normal stress.

In order to check the influence of the symmetry boundary condition on the turbulent anisotropic characteristics close to the mid-span, the turbulent-anisotropy map on the first measurementline s * = 0.21 is plotted on three other cross-sections that are below the plane z/h = 48.6%, the production term, the dissipation term (which includes the viscous dissipation and the SGS dissipation) and the transport term (all the other terms besides the production and the dissipation are merged as transport term, see Appendix A). The residual of the LES TKE budget is also plotted in the same figure by the dotted line. For the RANS TKE budget (with the standard Wilcox k -ω turbulence model), similarly to the LES one, the production, dissipation and transport terms as well as the residual are presented in Fig. 5. 23(b). For both the TKE budgets of the LES and the RANS, the non-dimensional budget terms normalized with their inflow boundary-layer friction velocities u τ (hot-wire measurement station 2, shown in Fig. 2.6) are plotted against the wall distance.

As shown in Fig. 5. 23(a), the residual (dotted line) is not negligible compared to the other terms at s * = 0.21, which may be influenced by the transition near the blade leading edge.

Going downstream, the residual decreases and appears to be smaller than the other terms from s * = 0.41. However, the residual does not reach zero at the measurement stations downstream.

This may be due to the numerical errors induced by the finite volume method and the artificial viscosity (more detailed explanations can be found in Appendix B). Also, this could be caused by the fact that the sampling is not long enough. [START_REF] Giauque | Flame transfer function and disturbance energies in gaseous reacting flows[END_REF] suggests that if the numerical errors induced by the numerical scheme and the artificial viscosity are considered in the budget terms, the TKE budget must be closed.

In Fig. 5.23(a), on the measurement-line s * = 0.41, turbulent kinetic energy is generated by the production term. Both the transport effect and the dissipation effect are active to balance the production. The turbulent kinetic energy is transported toward the wall by the transport effect, where it is dissipated. Moving downstream, the peak of the production term moves apart from the wall, as observed by [START_REF] Marquillie | Direct numerical simulation of a separated channel flow with a smooth profile[END_REF] in their DNS of a bump channel flow. The peak of the transport term appears also to move outward the blade suction surface when going toward the blade trailing edge. The production term exhibits two peaks on the last two measurement-lines. This is also observed by [START_REF] Marquillie | Direct numerical simulation of a separated channel flow with a smooth profile[END_REF]. The two peaks of the production term may be related to the two peaks of the streamwise Reynolds normal stress u s,rms /U ∞ in Fig. 5. 16(b).

Although the standard Wilcox k -ω model was constructed using a database in which some errors exists (as mentioned by Wilcox himself in [Wilcox, 2006, p. 178]), it is still of practical interest to see how this model predicts the turbulent kinetic energy balance in RANS simulations. The RANS TKE budget is plotted in Fig. 5. 23(b). The residual is very small compared to the other terms. It is worth noting that close to the mid-span, both the LES and the RANS give fairly good predictions in terms of the static pressure coefficient and the boundary layer profile. However, the TKE budgets are very different. In RANS, the production term is always balanced directly by the dissipation term, which is not consistent with the LES TKE budget. More generally, the levels and the evolution toward the trailing edge are very different from the LES. The transport mechanisms are probably mis-predicted by RANS.

Boundary layer on the suction surface close to the end-wall

Differently from the turbulent boundary layers close to the mid-span, the near-corner turbulent boundary layers suffer not only from the effect of the high adverse pressure gradient and the curved geometry but also from the boundary layers on the end-wall. Therefore, the corner separated flow seems to be quite complex, because of the combination of two boundary layers and the high adverse pressure gradients in two different directions (streamwise and pitchwise) and the secondary flows induced by the curvature of the blade.

It is desired and challenging to explore the evolution of the turbulent boundary layer in this area. A sketch of the measurement-lines along the blade suction surface, close to the end-wall (z/h = 1.4%), is illustrated in Fig. 5. 24(a). The top view of the measurement-lines with the mean velocity vectors of the LES results is shown in Fig. 5.24(b). In Fig. 5.24(b), the magnitude of the velocity vectors is plotted with the same scale as in Fig. 5.12(b), which shows the velocity vectors close to the mid-span. Comparing the first measurement-line s * = 0.21 with that close to the mid-span, the magnitude of the free-stream velocity is much smaller on the cross-section close to the end-wall. This indicates that the measurement-lines shown in Fig. 5.24 are indeed in the region influenced by two boundary layers, i.e. the blade suction surface boundary layer and the end-wall boundary layer. Also in Fig. 5. 24(b), the corner separation is obvious through the velocity vectors. Reverse flow can be seen on the last four measurement-lines, from s * = 0.7 to 0.99, in the region close to the blade suction surface. On the first measurement-lines, the acceleration of the fluid near the blade leading edge is confirmed by the near-wall velocity peak. On the last measurementline, s * = 0.99, the free-stream velocity vector seems to be perpendicular to the measurementline. This is different from the velocity vector close to the mid-span, where a deviation angle exists between the actual outflow angle and the design outflow angle. This is due to the corner separation vortex which draws the flow toward the suction side.

Mean flow

A more detailed analysis of the boundary layer evolution will be discussed in this part. The development of the tangential velocity component u s /U ∞ on the cross-section close to the end-wall is drawn in Fig. 5.25. The solid lines denote the LES results, while the symbols represent the PIV results (only available for the last four measurement-lines). As already mentioned, the accuracy of the PIV measurements is quite limited close to the blade wall, so PIV results are presented only for the regions where the wall distance is superior to 4mm. Note that the LDA results are not available close to the end-wall. 

Second-order statistics

The second-order statistics close to the end-wall will be investigated in this part, considering the RMS of the fluctuating velocities u ′ s,rms /U ∞ , u ′ n,rms /U ∞ and the Reynolds stress

-u ′ s u ′ n /U 2 ∞ .
The evolution of the RMS of the tangential fluctuating velocity u ′ s,rms /U ∞ is plotted in Fig. 5.28 for the LES in comparison with the PIV results. It should be remarked that a good agreement can be seen between the LES results and the PIV results in the corner separated flow region. According to Fig. 5.28(a) in linear scale, only one peak of u ′ s,rms /U ∞ can be observed on the first three profiles. When flowing along the blade suction surface, the flow state becomes more and more complex. On the first measurement-line s * = 0.21, u ′ s,rms /U ∞ increases with the wall distance to the blade, from 0 to the maximum value, then decreases to a constant value at d wall ≈ 3mm. Farther from the blade wall, u ′ s,rms /U ∞ does not change whatever d wall increases. This suggests that u ′ s,rms /U ∞ is dominated by the blade wall boundary layer when the wall distance is less than 3mm, and above this distance it is mainly influenced by the end-wall boundary layer. A similar phenomenon can be observed for some downstream measurement-lines. A more detailed view, focusing on the near-wall region, is shown in Fig. 5.28(b) in semilog scale. Some oscillations are seen when the wall distance is greater than 10mm. As already mentioned, the sampling time is not long enough to converge the second-order statistics in those regions. From the measurement-line s * = 0.21 to s * = 0.41, the single-peak of u ′ s,rms /U ∞ is observed, and both the value and the wall distance of the peak grow. On the measurement-line s * = 0.50 a flat region seems to appear around d wall = 1mm. This flat region forms much earlier than close to the mid-span, where it appears at s * = 0.70 (see Fig. 5.16(b)). At s * = 0.50, the flow tends to separate: two peaks of u ′ s,rms /U ∞ appear. Downstream, the outer peak grows significantly and dominates the inner one. Entering the separation region (at s * = 0.70), the magnitude and the wall distance of both the inner and outer peaks increase. On the last three measurement-lines, both the PIV measurements and the LES simulation seem to identify the outer peak of u ′ s,rms /U ∞ . It should be noticed that the outer peaks from the measurement-line s * = 0.60 to 0.99 are positioned much closer to the end-wall than the blade suction surface, which means that the end-wall boundary layer may have more impacts on these outer peaks.

The RMS of the wall-normal direction fluctuating velocity is drawn in Fig. 5.29. As depicted in linear scale in Fig. 5.29(a), u ′ n,rms /U ∞ increases with the distance to the wall and reaches a plateau on the first four measurement-lines. This is different from the mid-span flow, because all the measurement-lines are located inside the end-wall boundary layer. On the measurement-line s * = 0.60, where the flow tends to separate, u ′ n,rms /U ∞ increase significantly. This trend is coherent with that of u ′ s,rms /U ∞ on the same measurement-line in Fig. 5.28(a). When entering the corner separation region from the measurement-line s * = 0.70, an outer peak seems to be formed. The same observation is also found by the PIV measurements but with a much smaller peak value. 

Turbulent anisotropy

Herein, the turbulent-anisotropy characteristics on the cross section close to the end-wall is discussed. The measurement-lines are sketched in Fig. 5.24. The wall distance is denoted by the color map as illustrated in Fig. 5.20. The evolution of the turbulent anisotropy on the measurement-lines along the blade suction surface is drawn in Fig. 5.31. turbulence direction can be found. In contrast, the state drops rapidly towards the isotropic vertex. Downstream from this measurement-line, the near-wall anisotropy tendency towards one-component turbulence appears again. The turbulent-anisotropy maps on the measurementlines s * = 0.80 and s * = 0.90 look quite different from the other measurement-lines. The turbulent state moves from the two-component line to the right axisymmetric-turbulence curve very rapidly, and finally lies as nearly isotropic within the bottom region of the triangle. On the last measurement-line s * = 0.99, from the end-wall to the free-stream, the turbulent anisotropy state moves towards one-component turbulence. Then it comes back in the opposite direction, and finally drops within the bottom of the triangle as nearly isotropic turbulence.

Turbulent kinetic energy budget

Since most of the classical RANS turbulence models are constructed in the framework of channel or boundary layer flows, the effect of two joint walls may be mispredicted in these turbulence models. So it can be expected that these models are not capable to correctly predict the corner separated flow in compressor cascades. Indeed, it is proved in the present thesis and also by many other researchers [START_REF] Ning | Application of one-equation spalart-allmaras turbulence model in the numerical simulation of internal flows[END_REF]] [Wang, 2009a[START_REF] Liu | Modification of spalart-allmaras model with consideration of turbulence energy backscatter using velocity helicity[END_REF] that the classical RANS models over-predict corner separations. It is particularly interesting to investigate how the turbulent energy budget actually develops in such regions and this can be achieved with LES.

The LES TKE budget evolution on the cross-section close to the end-wall (z/h = 1.4%) is presented in Fig. 5.32(a) in semi-log scale. On the first two measurement-lines, the residual of the TKE budget is not negligible, which may be caused by the numerical errors induced by the tripping bands implementation near the blade leading edge. The amplitude of the residual decreases from the measurement station s * = 0.41, which is consistent with the observation at mid-span in Fig. 5. 23(a). The TKE budget terms plotted here are the production, dissipation and transport terms, where the transport term is a combination of all the terms besides the production and dissipation. At the measurement-line s * = 0.41, the production and the dissipation are mainly balanced by the transport effect, which transfers the turbulent kinetic energy from the production peak towards the wall. The production peak moves outwards the wall when passing along the blade suction surface. At s * = 0.60, where the suction surface boundary layer separates, significant evolutions are observed: far from the suction surface, the production term is increased significantly, which results in the considerable growth of the transport term at the same position. This thereby leads to a great increase of the transport and dissipation terms close to the suction surface. Going downstream, the production term moves apart from the suction side. Moreover, the equilibrium turbulence point, where the transport term approaches zero, moves away from the suction surface. A singular phenomenon is observed on the measurement-lines s * = 0.60, s * = 0.70 and s * = 0.99: the production appears to be negative. Such a negative production of turbulent kinetic energy has been reported by [START_REF] Beguier | Negative production in turbulent shear flows[END_REF], [START_REF] Hussain | Coherent structures and turbulence[END_REF], Abe et al. [2012a] and Abe et al. [2012b]. Among them, [START_REF] Beguier | Negative production in turbulent shear flows[END_REF] and [START_REF] Hussain | Coherent structures and turbulence[END_REF] explain that the negative production is caused by a zone of displacement between the zeros of the Reynolds stress u i u j and the zeros of the mean gradient of the velocity ∂ u /∂y, for flows having asymmetric mean profiles. They state that this phenomenon does not violate any basic principle. Abe et al. [2012a] and Abe et al. [2012b] consider the most convex region of the stream curvature to be an important ingredient for the negative production. These explications seem to be appropriate for the corner separated flow involved in this thesis, since it is asymmetric and presents a significant stream curvature.

The RANS TKE budget at the same measurement stations is shown in Fig. 5.32(b). A good closure of the budget can be observed through the small value of the residual. On the first measurement-line s * = 0.21, the production exhibits two peaks, and it is mainly balanced by the dissipation term, which has also two peaks. Moving downstream, the production moves away from the blade suction surface, accompanied by the dissipation peak. This is not physical, the dissipation process should occur close to the wall, as observed in the LES. Another noteworthy point is that the production peak seems to move too fast outwards the wall compared to the LES TKE budget. This is associated with the fact that the corner separation is much earlier in RANS than in the LES and the experiment. Finally, the negative production does not appear, because the standard Wilcox k -ω model is based on the Boussinesq hypothesis and always gives a positive production term. The proof is given as below:

The production of turbulent kinetic energy of the Wilcox k -ω model is τ t ij ∂[u i ] ∂x j (see Appendix A), where τ t ij is expressed in Eq. (2.31): can be neglected. Therefore, the production term is given by:

τ t ij = µ t ∂[u i ] ∂x j + ∂[u j ] ∂x i - 2 3 δ ij ∂[u k ] ∂x k - 2 3 ρ [k]δ ij (5.
τ t ij ∂[u i ] ∂x j = µ t [S ij ][S ij ] (5.16)
where S ij is the rate of strain tensor.

Note that the eddy viscosity µ t is never negative, and [S ij ][S ij ] cannot be negative. Therefore, it is proven that the production term of the turbulent kinetic energy in this RANS model cannot be negative.

End-wall boundary layer within the passage

The evolution of the blade suction side boundary layers at two different cross-sections has been just discussed above. The next interest concerns the end-wall boundary layer development through the compressor cascade. In the same angle of view as above, the positions of the measurement-lines to extract the boundary layer profiles are sketched in Fig. 5.33(a). The distance from the measurement-lines to the blade suction surface is 13.3%c. 

Mean flow

The mean flow velocity is decomposed into three components: the tangential and wallnormal velocities to the blade suction surface ( u s /U ∞ and u n /U ∞ ), and the spanwise velocity ( u z /U ∞ ). No experimental data is available on these measurement-lines. However, as satisfactory consistencies are obtained for the majority of the comparisons, it is thought that the LES results could give some reliable descriptions of the flow development mechanism along the compressor cascade passage.

The development of these three velocity components is plotted in Fig. 5.34. According to Fig. 5.34(a), drawn in linear scale, the boundary layer associated with the tangential velocity u s /U ∞ profile thickens when passing through the compressor cascade passage. The tangential velocity is always positive on these measurement-lines. It tends to have a zero wall friction (velocity gradient) on the last measurement-line s * = 0.99. The wall-normal velocity component u n /U ∞ increases gradually from the measurement-line s * = 0.21 to s * = 0.70, which means that the flow gets a positive angle to the tangential direction of the blade suction side. Downstream the measurement-line s * = 0.70, u n /U ∞ decreases, and gets a very similar magnitude as the tangential velocity u s /U ∞ . The shift flow angle is reduced and the flow is pushed towards the blade suction side. This can be explained by the high pressure gradient from the adjacent blade pressure side to blade suction side in the same passage (secondary vortex). Finally,

Second-order statistics

The evolution of the root mean square (RMS) of the diagonal components of the Reynolds stresses u s,rms /U ∞ , u n,rms /U ∞ and u z,rms /U ∞ is plotted in Fig. 5.35. In Fig. 5.35(a), the nearwall peak of u s,rms /U ∞ dominates the boundary layer on the first measurement-line s * = 0.21.

The component u n,rms /U ∞ is smaller than u s,rms /U ∞ . They become comparable in the freestream at about d wall = 2.5mm. The spanwise component u z,rms /U ∞ remains always lower than the others. The evolution of these three Reynolds stresses is more clear in Fig. 5.35(b), since the wall distance axis is plotted in log scale and the full range of the wall distance can be observed. The high-value region of u s,rms /U ∞ extends towards mid-span when going downstream. The two-peak phenomenon seems to appear again. On the measurement-line s * = 0.80, the outer peak of u s,rms /U ∞ dominates the inner peak, while the inner peak dominates again on the last measurement-line. Both u n,rms /U ∞ and u z,rms /U ∞ develop through the cascade channel. The value of u n,rms /U ∞ is found to be always greater than that of u z,rms /U ∞ . Interestingly, the twopeak phenomenon seems also to occur for the RMS of the fluctuating velocity u n,rms /U ∞ on the last four measurement-lines. Finally, far from the end-wall, these three components decrease to a similar magnitude. The turbulent-anisotropy maps on the measurement-lines along the compressor cascade passage are drawn in Fig. 5.36. On the first two measurement-lines, where s * = 0.21 and 0.31, the turbulent flow states are quite simple. This is because these two locations lies upstream the compressor cascade channel and are mainly influenced by the upstream boundary layer. Close to the end-wall, the flow state is two-component turbulence. When going apart from the end-wall, the turbulent-anisotropy points move towards the one-component turbulence vertex along the two-component turbulence line. This corresponds to the inner peak of the Reynolds normal stress u s,rms /U ∞ . Then, the third turbulent component grows, leading to an anisotropic turbulent state. And finally, the flow state becomes isotropic close to the mid-span. On the measurement-line s * = 0.41, the flow state appears to be influenced by the compressor cascade channel. It reaches the right axisymmetry-turbulence curve close to the mid-span, instead of being isotropic. Going downstream, the turbulent flow behaves more as two-component isotropic turbulence. At intermediate distance, it returns back to isotropy. Finally it stops on the right axisymmetric-turbulence curve, where one turbulent component is greater than the other two.

On the last measurement-line, starting from two-component anisotropic turbulence on the endwall, the flow state reaches the right axisymmetric-turbulence curve very quickly. Afterwards it becomes isotropic, but finally terminates as axisymmetric turbulence with one dominant component. On the same measurement-lines, the TKE budget evolution is plotted in Fig. 5.37. On the first four lines, the residual of the LES TKE budget seems to be too high compared with the other terms. In comparison, a better closure is obtained for the RANS budget. Similar phenomena are observed as in the previous analyses of the TKE budget. Close to the wall, the LES TKE (shown in Fig. 5.37(a)) is generated by the production term. Subsequently, it diffuses towards the wall where it is dissipated. In the end, it dissipates very close to the wall. Going downstream, the production peak leaves apart from the wall, while the dissipation occurs always close to the wall. In comparison, the balance of the TKE budget in the standard Wilcox k -ω model (RANS) is very different. The production term is directly balanced by the dissipation term. The transport term is not so active to transport the energy between the production and the dissipation as observed in the LES. At s * = 0.50 both the production and dissipation terms exhibit two peaks. When going downstream, the inner peak decreases and the outer peak increases. Both outer peaks of the LES and RANS TKE budgets seem to be associated with the boundary of the corner separation region, according to the size of the corner separation shown in Fig. 3.24.

In addition, on the last five stations, the outer peak is very concentrated in the RANS results.

However, the LES results appear to be quite different. This is because the RANS budget is calculated using the mean velocity gradient under the Boussinesq hypothesis, and the mean velocity gradient is very concentrated on the border of the corner separation.

Conclusion

Large-eddy simulation can provide a detailed description of large-scale turbulence, which is unavailable from the classical RANS simulations. Carefully analyzing the turbulent characteristics of the corner separation in this chapter, the following conclusions can be drawn:

1. According to the subgrid-activity parameter, the SGS model is active in this large-eddy simulation. The subgrid-activity parameter also shows a satisfactory mesh resolution.

2. Large-scale energy-containing eddies appear to be generated within the corner separation region, according to the spectral analysis. These eddies can be shown by the Q-criterion.

3. Bimodal histograms are found in the LES results on the separation line. These histograms seem to be well decomposed into two modes using the method in [Ma et al., 2013a], suggesting two preferred topologies of the separation.

4. The two-peak phenomenon of u ′ s,rms /U ∞ , in the cross-stream profiles, is reproduced by the LES. This phenomenon is amplified in the corner separation region.

5. According to the turbulent-anisotropy analysis, the flow state is found to be nearly isotropic within the corner separation region.

6. Satisfactory closures of the TKE budget are achieved for both the LES and RANS simulations.

-For the LES, TKE is generated far from the wall, and is dissipated close to the wall.

The transport term (i.e. all the terms besides production and dissipation) plays an important role in transporting the turbulent energy toward the wall. Interestingly, negative production values are observed due to the strong streamline curvature.

-In the RANS simulation (using the Wilcox k -ω model), the turbulent transport mechanisms seem to be mispredicted: the production is directly balanced by the dissipation. Even the production peak occurs far from the wall. The production term is found to be always non-negative, which is a limitation of the Boussinesq hypothesis. Moreover, production appears concentrated on the border of the separation, which differs from the LES results.

Chapter 6

Conclusions and Perspectives

Conclusions

The work of this thesis is based on the previous experimental work done by [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF]. During this thesis, a series of numerical simulations on the linear compressor cascade of [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF] has been carried out, using both the (U)RANS and LES approaches. The numerical results have been validated and analyzed in comparison with the experimental results (by [START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF] and Zambonini). The parameters controlling the corner separation have been investigated with the (U)RANS results. More detailed analyses concerning the turbulent characteristics of the corner separation have been done using the LES results at the incidence angle 4 • , where the corner separation is well observed experimentally.

1. Treating carefully the inflow conditions, the reference LES and RANS simulations have been validated with the experiment. The LES results are very close to the experimental ones (cf. C p on the blade and C pt at the outlet section 1). RANS has over-estimated the corner separation, but has given correct trends.

2. With the (U)RANS results, the parameters controlling the corner separation have been investigated. The corner separation is found to be insensitive to the spatial interpolation scheme and the artificial viscosity (within a reasonable range). The RANS turbulence modeling is considered as the main responsible for the misprediction of the corner separation. The corner separation increases with the incidence angle and the inflow boundary layer thickness. The inflow turbulent kinetic energy level, and the tripping bands near the leading edge can slightly influence the corner separation. The forced periodical inflow fluctuations do not change the mean flow in the URANS simulations.

3. The corner separation region, which is considered as the main source of the total pressure losses, generates large-scale energy-containing eddies. However, within this region, the Chapter 6. Conclusions and Perspectives turbulent flow state is nearly isotropic.

4. According to the LES, the turbulent kinetic energy is produced far from the wall. The transport term (all the turbulent kinetic energy budget terms except production and dissipation) transfers the turbulent energy toward the wall. This part of the energy is finally dissipated near the wall, through the dissipation mechanisms driven by the viscous effect and the SGS model. The non-equilibrium turbulence region is extended outward the wall by the corner separation.

5. In RANS (with the Wilcox k -ω model), the turbulent transport mechanisms are mispredicted: the production is balanced directly by the dissipation, even far from the wall. However, the RANS approach captures the mean trends (with an over-estimation of the corner separation) at a very moderate computational cost, which makes it a competitive solution in industrial context.

6. The pre-processing tool Turb'Split and the post-processing tool AeroTools (collaboration with Dr. Mickaël PHILIT), developed during this thesis, have reinforced the usability of the in-house code Turb'Flow for the LES in large-scale complex-geometry computations (such as turbomachines).

Perspectives

The perspectives after this thesis are:

1. A low-cost and easy-to-use turbulent inflow generation approach is expected, since the method used in this thesis is very expensive.

2. More detailed analyses may be possible with a better convergence of the statistics of the present LES calculation, especially for high order statistics and spectral analysis.

3. More detailed measurements in the compressor cascade are expected, such as SPIV measurements. It could help to compute experimentally the turbulent kinetic energy budget.

4. Turbulent kinetic energy budget is the key element for RANS turbulence modeling. The results obtained by the present study could help developing improved RANS models, dedicated to turbomachine applications.

5. Supposing the RANS results could be improved by turbulence modeling adaptations, it could be used to investigate how to control the corner separation. For term A:

A = ρu ′′ j ∂([ u i ] + u ′′ i ) ∂t + ρu ′′ i ∂([ u j ] + u ′′ j ) ∂t = ρu ′′ j ∂[ u i ] ∂t + ρu ′′ i ∂[ u j ] ∂t + ∂ρu ′′ i u ′′ j ∂t -u ′′ i u ′′ j ∂ρ ∂t (A.6)
with consideration of formula presented at the beginning of this appendix ( [q] = [q] and ρq ′′ = 0), the time average of term A gives:

A = ∂ ρu ′′ i u ′′ j ∂t -u ′′ i u ′′ j ∂ρ ∂t (A.7)
For term B:

B =ρu ′′ j ([ u k ] + u ′′ k ) ∂([ u i ] + u ′′ i ) ∂x k + ρu ′′ i ([ u k ] + u ′′ k ) ∂([ u j ] + u ′′ j ) ∂x k =ρu ′′ j [ u k ] ∂[u i ] ∂x k + ρu ′′ i [ u k ] ∂[u j ] ∂x k + ρu ′′ j u ′′ k ∂[ u i ] ∂x k + ρu ′′ i u ′′ k ∂[ u j ] ∂x k + ∂ ∂x k (ρu ′′ i u ′′ j [ u k ]) + ∂ ∂x k (ρu ′′ i u ′′ j u ′′ k ) -u ′′ i u ′′ j ∂ρ u k ∂x k (A.8)
in the same manner with A , the average of the term B is derived by: 

B = ρu ′′ j u ′′ k ∂[ u i ] ∂x k + ρu ′′ i u ′′ k ∂[ u j ] ∂x k + ∂ ∂x k ( ρu ′′ i u ′′ j [ u k ]) + ∂ ∂x k ρu ′′ i u ′′ j u ′′ k -u ′′ i u ′′ j ∂ρ u k ∂x k (A.
D = ∂ τ ik u ′′ j ∂x k + ∂ τ jk u ′′ i ∂x k -τ ik ∂u ′′ j ∂x k -τ jk ∂u ′′ i ∂x k (A.13)
The term E: 

E = ∂Π

Budget Equation for Reynolds stress

The Budget equation for Reynolds stress is obtained by taking the summation of A , B , C , D and E : (A.16) where the filtered viscous stress tensor is:

∂ ρu ′′ i u ′′ j ∂t = 0 = - ∂ ∂x k ( ρu ′′ i u ′′ j [ u k ]) mean flow convection -ρu ′′ j u ′′ k ∂[ u i ] ∂x k -ρu ′′ i u ′′ k ∂[ u j ] ∂x k prodution - ∂
τ ij = µ ∂ u i ∂x j + ∂ u j ∂x i - 2 3 δ ij ∂ u k ∂x k
and the SGS stress tensor is given by:

Π (D) ij = µ sgs ∂ u i ∂x j + ∂ u j ∂x i - 2 3 δ ij ∂ u k ∂x k

Budget equation for turbulent kinetic energy

Let the subscript i equals to j in Eq. (A.16), and denote the turbulent kinetic energy by k = 1 2 u ′′ i u ′′ i , we can derive the budget equation for turbulent kinetic equation: 

∂ ρk ∂t = 0 = - ∂ ∂x j ( ρk [ u j ])
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  secondary flows in the passage; (3) the end-wall and the blade suction surface boundary layer mixing,(4
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 1112 Figure 1.1: Blade suction surface flow visualization[START_REF] Dring | An investigation of axial compressor rotor aerodynamics[END_REF].
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 13 Figure 1.3: Second stage stator vane flow visualization on suction side[START_REF] Joslyn | Axial compressor stator aerodynamics[END_REF].
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 14 Figure 1.4: Stator flow visualization[START_REF] Dong | Three-dimensional flows and loss reduction in axial compressors[END_REF].
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 1 Figure 1.5: Total pressure coefficient contours, downstream of the test stator[START_REF] Barankiewicz | Impact of variable-geometry stator hub leakage in a low speed axial compressor[END_REF]].
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 17 Figure 1.7: Blade surface flow visualization: top, Experiment; bottom, CFD.[START_REF] Gbadebo | Three-dimensional separations in axial compressors[END_REF] 

  Figure 1.8: Corner separated flow topology by CFD [Lewin et al., 2010].
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 1 Figure 1.11: Topology of corner separation[START_REF] Hah | Development of hub corner stall and its influence on the performance of axial compressor blade rows[END_REF].
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 1 Figure1.12: Topology of corner separation[START_REF] Lewin | Experimental and numerical analysis of hub-corner stall in compressor cascades[END_REF].
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 1 Figure 1.13: Lei's criterion for massive corner separation[START_REF] Lei | A criterion for axial compressor hub-corner stall[END_REF].
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 21 Figure 2.1: General view of the wind tunnel in LMFA of Ecole Centrale de Lyon.
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 22 Figure 2.2: Sketch of the wind tunnel: side and vertical views.
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 23 Figure 2.3: Sketch of the blade: (a) blade in original thickness distribution; (b) mean camber line; (c) blade based on the mean camber line.
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 24 Figure 2.4: Notation of the cascade.
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 25 Figure 2.5: Sketch of the tripping bands.
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 26 Figure 2.6: Available experimental results.
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 27 Figure 2.7: PIV measurement zones on a plane.
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 28 Figure 2.8: LDA measurement stations, squares indicate the beginning points of the measurement stations.
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 22 Figure 2.10: View of the computational domain.

  The mesh is evenly parallelized into 642 blocks with Turb'Split. The load balancing is shown in Fig.C.3. As shown in Fig.2.14, the a posteriori y + is observed to be inferior to 2, except in the blade leading edge region.
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 2 Figure 2.15: Sketch of inflow condition.
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 23132 Figure 3.1: Evolution of the boundary layer thicknesses.
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 33 Figure 3.3: Mean velocity profiles.
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 3 Figure 3.4: Reynolds stress and TKE.
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 36 Figure 3.6: Inflow boundary layer velocity spectrum around y + = 85.
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 37339 Figure 3.7: Statistical convergence at mid-span. Black line: instantaneous velocity signal. Red line: cumulative first-order moment convergence. Green line: cumulative second-order moment convergence. Blue line: cumulative third-order moment convergence.

Figure 3 .

 3 Figure 3.10: Classification of the corner separation.
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 3 Figure 3.11: Oil visualization of the ECL experiment
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 3 Figure 3.12: Topology of hub-corner separation
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 3 Figure 3.13(b) shows the streamlines of the time-averaged LES flow field. The end-wall
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 313 Figure 3.13: Streamlines around the corner separation: the walls are colored by static pressure coefficient from -0.25 to 0.25, the streamlines are colored by helicity.
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 3315 Figure 3.14: Mean static pressure coefficient on the blade suction surface.
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 316317 Figure 3.16: Static pressure coefficient around the blade, at various spanwise positions.
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 3 Figure 3.18: Mean total pressure loss coefficient at outlet section 1.
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 3 Figure 3.19: C * pt at outlet section 1.
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 3 Figure 3.20: Downstream flow evolution.
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 321 Figure 3.21: Pitchwise-averaged quantities evolution.
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 322 Figure 3.22: C pt,global evolution.
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 323 Figure 3.23: Sketch of the boundary layer stations.
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 324 Figure 3.24: Relative displacement thickness δ 1,r (s * , z/h).
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 41 Figure 4.1: Influence of the numerical spatial scheme: C pt contours at the outlet section 1.
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 42 Figure 4.2: Influence of the numerical spatial scheme: velocity profiles at the outlet section 1, z/h = 0.11.
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 4 Figure 4.3 shows a comparison of the global parameters C L and C pt,global , and no difference can be seen. A more detailed inspection is done at the outlet section 1, along the lines at z/h = 0.11 (see the white lines in Fig. 4.1). The two results, for ε 4 = 0.02 and 0.01, shown in Fig. 4.4, are consistent for both u/U ∞ and v/U ∞ . Consequently, a fourth-order artificial viscosity coefficient of 0.02 is also acceptable for the RANS simulation, which could give more help on the stabilization of the calculation.
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 43 Figure 4.3: Impact of the artificial viscosity: C L and C pt,global .
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 44 Figure 4.4: Impact of the artificial viscosity: velocity profiles at the outlet section 1, z/h = 0.11.
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 45 Figure 4.5: Impact of the outlet boundary condition: velocity profiles at outlet section 1, z/h = 0.11.
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 46 Figure 4.6: Impact of the turbulence model: static pressure coefficient on the blade suction surface.
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 4 Figure 4.7: Impact of the turbulence model: static pressure coefficient on the blade pressure surface.
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 48 Figure 4.8: Impact of the turbulence model: static pressure coefficient around the blade.

  , i =4 • , Kok k-ω (c) RANS Kok k -ω
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 4 Figure 4.9: Impact of the turbulence model: static pressure coefficient on the end-wall.
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 4 Fig. 4.10 draws the total pressure loss coefficient at the outlet section 1. Concerning the C pt contours predicted by Kok's model in Fig. 4.10(c), more losses are produced in the wake region compared to Fig. 4.10(b). In the corner flow, the extent of the high loss region is enlarged
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 4 Figure 4.10: Impact of the turbulence model: total pressure loss coefficient at the outlet section 1.
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 4 Figure 4.11: Impact of the turbulence model: C pt,global axial evolution.
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 4413 Figure 4.12: Impact of the turbulence model: evolution of the tangential velocity u s /U ∞ close to the mid-span.
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 4 Fig. 4.13. The experimental results are shown on the first row, and the second row presents the RANS results. Close to mid-span, when increasing the incidence angle, a high C p region appears near the trailing edge, while the low C p region is pushed toward leading edge due to the
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 4 Figure 4.14: C p distributions on the blade pressure side. Top: experiment; bottom: RANS.
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 415 Figure 4.15: C p distributions on the end-wall: top, experiment; bottom, RANS.
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 416 Figure 4.16: Static pressure coefficient around the blade.
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 417 Figure 4.17: C L of the blade.
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 4 Figure 4.18: Investigated inflow δ 1,∞ and the corresponding velocity profiles.
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 419 Figure 4.19: C p distributions on the blade suction side, with different inflow δ 1 .
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 4 Figure 4.20: Static pressure coefficient around the blade.

Finally

  , the lift coefficient C L and the global total pressure loss coefficient C pt,global are plotted in Fig. 4.22. It is seen that increasing the inflow δ 1 decreases C L and increases C pt,global , C L reduces by 5.5% and C pt,global increases by 47.1%. This corresponds again to the development of the corner separation.
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 421 Figure 4.21: C pt contours at the outlet section 1, for different inflow δ 1 .
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 422 Figure 4.22: Global performances, for different inflow δ 1 .
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 4424 Figure 4.23: Inflow TKE profiles.
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 4 Figure 4.25: Impact of the inflow angle fluctuation: C L and C pt,global .
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 4 Figure 4.26: Sketches of the blade with and without tripping bands.
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 427 Figure 4.27: Influence of the tripping bands on the laminar-turbulent transition at i = 4 • , oil visualization extracted from [Ma, 2012].
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 4 Figure 4.28: Influence of the tripping bands on the C p distribution around the blade close to the mid-span at i = 0 • , extracted from[START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF].
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 4 Figure 4.29: LDA measurement lines and the corresponding velocity vector profiles close to the mid-span.
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 430 Figure 4.30: Evolution of the tangential velocity u s /U ∞ at the mid-span.

  Figure 5.1: Subgrid-activity parameter.

  Figure 5.2: Subgrid-scale viscosity and RANS eddy viscosity. (a) and (b): z/h = 180/370 = 48.6%; (c) and (d): z/h = 5/370 = 1.4%.
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 53 Figure 5.3: Numerical probe locations with instantaneous streamlines, close to the end-wall (z/h = 1.4%).
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 54 Figure 5.4: Numerical probe locations with time-averaged streamlines, close to the end-wall (z/h = 1.4%).
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 5 Figure 5.5: One-dimensional velocity spectra. From bottom to top: P1 to P8.

Figure 5

 5 Figure 5.7(b) illustrates the development of the energy integral length scales along the probes P9 to P16, shown in Fig. 5.4. The largest increase occurs for the probes upstream of the corner separation, in the normal and spanwise directions. The tangential direction energy integral length scale does not change much along these probes. The levels reached within the separation are very similar to those observed in Fig. 5.7(a), close to the suction surface.
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 5 Figure 5.8: 3-D view (from the mid-span to the end-wall) of the turbulent coherent structures: iso-surfaces of Q criterion, colored by the velocity magnitude.
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 5 Figure 5.10: Inflow velocity PDF (at hot-wire measurement station 2 in Fig. 2.6, y + = 85).

  Figure 5.11: Velocity histograms on the bimodal point P3.

  Figure 5.12: Sketch of the boundary layer stations at the mid-span.
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 513 Figure 5.13: Velocity decomposition in the blade coordinate system.

  Figure 5.14: Tangential velocity u s /U ∞ close to the mid-span: Comparison between LES, LDA and PIV results. (vertical bars indicate the positional uncertainties of the LDA measurement points)
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 515 Figure 5.15: Wall normal velocity u n /U ∞ close to the mid-span: Comparison between LES, LDA and PIV results. (vertical bars indicate the positional uncertainties of the LDA measurement points)
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 516 Figure 5.16: The RMS of the streamwise fluctuating velocity u ′ s,rms /U ∞ close to the end-wall: Comparison between LES, LDA and PIV results. (vertical bars indicate the positional uncertainties of the LDA measurement points)
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 517 Figure 5.17: The RMS of the wall-normal fluctuating velocity u ′ n,rms /U ∞ close to the endwall: Comparison between LES, LDA and PIV results. (vertical bars indicate the positional uncertainties of the LDA measurement points)
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 519 Figure 5.19: Sketch of the anisotropy-invariant map, from Lumley & Newman [1977].

  Figure 5.20: Color scheme used to denote distance in anisotropy-invariant map.
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 522 Figure 5.22: Turbulent anisotropy map at the first station s * = 0.21, for three different spanwise positions
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 523 Figure 5.23: TKE budget close to the mid-span.

  Figure 5.24: Sketch of the boundary layer stations, on the suction side close to the end-wall.
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 5 Figure 5.25: Tangential velocity u s /U ∞ on the suction surface close to the end-wall: (a) linear scale; (b) log scale.
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 5527 Fig. 5.4 around the probe P2.
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 5 Figure 5.28: Streamwise Reynolds normal stress u ′ s,rms /U ∞ : (a) linear scale; (b) log scale.

Figure 5 .Figure 5

 55 Figure 5.30 shows the Reynolds shear stress -u ′ s u ′ n /U 2 ∞ . The near-wall peak can be clearly seen in Fig. 5.30(a), from the measurement-line s * = 0.21 to s * = 0.60. The maximum value and its position to the wall increase gradually toward the trailing edge. On these measurement-lines, the positions of the negative values are found farther than those of the positive values. It suggests that the end-wall boundary layer may be responsible for these negative values. In the corner separation region (from s * = 0.70 to 0.99), as shown in Fig. 5.30(b), the Reynolds shear stress -u ′ s u ′ n /U 2 ∞ profiles are quite different on different measurementlines, emphasizing again the complexity of the flow state in the corner separation region. Particularly, on the measurement-line s * = 0.80, a positive peak of -u ′ s u ′ n /U 2 ∞ appears at d wall = 10mm. This wall distance corresponds to the separation center line where the tangential velocity u s /U ∞ is nearly 0.
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 5530 Figure 5.31(a) shows the turbulent-anisotropy map on the first measurement-line s * = 0.21. The turbulent state moves a little along the two-component turbulence line towards the onecomponent turbulence vertex. Subsequently, the third component of turbulence increases and the turbulent state gets on the right curve line, which indicates axisymmetric turbulence. Finally it reaches closely the isotropy turbulent state. On the measurement-line s * = 0.31, the near wall turbulent state has a more pronounced one-component feature than on the first measurementline. Then the one-component feature decreases on the measurement-lines s * = 0.41 and s * = 0.50. A singular phenomenon is observed at station s * = 0.60, where the boundary layer tends to separate. No tendency that the turbulent state moves towards the one-component

Figure 5

 5 Figure 5.31: Development of the turbulent-anisotropy map along the blade suction side close to the end-wall.

15 )

 15 Figure 5.32: TKE budget close to the end-wall.

  Figure 5.33: Sketch of the boundary layer stations.

Figure 5

 5 Figure 5.35: The RMS of the fluctuating velocities along the cascade passage: (a) linear scale; (b) semi-log scale.

Figure 5

 5 Figure 5.36: Development of the turbulent-anisotropy map along the compressor cascade passage.

  Figure 5.37: TKE budget along the compressor cascade passage: (a) LES; (b) RANS.

  by exchanging i and j, Eq. (A.3) becomes: derive Eq. (A.5) term-by-term from A to E:

Figure B. 1 :

 1 Figure B.1: Turbulent boundary layer evolution.

  

  

  

Table 1 :

 1 Motorization evolution of Boeing 777.

	PW 4084	GE 90-115B
		PW 4084	GE 90-115B
	Overall pressure ratio	40	42
	Stage number of compressor	18 1F + 6LPC + 11HPC 1F + 4LPC + 9HPC 14
	Stage number of turbine	9 2HPT + 7LPT	8 2HPT + 6LPT
	Thrust specific fuel consumption	0.55	0.52
	First certification	April 1994 (FAA)	July 2003 (FAA)
	Application	Boeing 777-200ER Boeing 777-300ER

Table 1 . 1 :

 11 Stable critical points.

Table 1 .

 1 2: Criteria on blade separation.

	Criterion	?-D Formula	Separation thresholds
	De Haller number Lieblein diffusion factor 2-D Eqs. (1.16) and (1.17) 2-D Eq. (1.15) Lei's criterion 3-D S indicator: Eq. (1.18) D parameter: Eq. (1.19) D ≥ 0.4 ± 0.05 DH ≤ 0.72 DF ≥ 0.6 S ≥ 0.12

Table 2 .1: Geometrical parameters of the cascade.

 2 

	Symbol Name	Magnitude Formula
	c	Chord	150.0mm	
	ϕ γ	Camber angle Stagger angle	23.22 • 42.7 •	ϕ = β ′ 1 -β ′ 2
	s	Pitch	134.0mm	
	σ	Solidity	1.12	σ = c/s
	h	Blade span	370.0mm	
	AR	Aspect ratio	2.47	

Sandpaper (ISO P600, average particle diameter is about 25.8µm). width=3.0mm, thickness=0.3mm, arc distance from leading edge=6.0mm

  

	10			Tripping bands
	8				
	6				
	4	s u c t io n s id e			
	0 2		p r e s s u r e s i d e	
		Leading edge		
		0	2	4	6	8

Table 2 .

 2 2: List of experimental results.

	Location Inlet BL	Parameter Uncertainty measured Hot-wire u(t) Method Free stream: 2% Inside BL: 2.5%	Incidence -2 • 0 • 2 • 4 • 6 • x
	Blade surface	Pressure taps	P s	U Cp = 1% ∼ 2%	x	x x x x
	End-wall surface	Pressure taps	P s	U Cp = 1% ∼ 4%	x	x x x x
	Outlet 1 Outlet 2 Outlet 3	Five-hole pressure probe	P t , P s , -→ U (x, y, z)			

Table 2 .

 2 3: Filters for large-eddy simulation Filter Kernel in physical space G Kernel in spectral space G

	Box filter

Table 2 .

 2 4: Cascade simulation list.

	Notation Tripping band	Attack angle	Spatial scheme	4th-order viscosity	Temporal scheme	Turbulence model	Inflow	Outlet	Version
					RANS simulations			
	RA REF RA NOT RA AM2 RA AZE RA AP2 RA AP6 RA L99 RA L06 RA ROE RA SLA RA V01 RA KOK RA MIX RA D00 RA D05 RA D15 RA 2TK	×	+4 • +4 • -2 • 0 • +2 • +6 • +4 • +4 • +4 • +4 • +4 • +4 • +4 • +4 • +4 • +4 • +4 •	4-pt Jameson center 4-pt Jameson center 4-pt Jameson center 4-pt Jameson center 4-pt Jameson center 4-pt Jameson center Liou 1999 Liou 2006 Roe Slau 4-pt Jameson center 4-pt Jameson center 4-pt Jameson center 4-pt Jameson center 4-pt Jameson center 4-pt Jameson center 4-pt Jameson center	0.02 0.02 0.02 0.02 0.02 0.02 ----0.01 0.02 0.02 0.02 0.02 0.02 0.02 Unsteady RANS simulations 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) δ 1(EXP) 5-step Runge-Kutta Kok k -ω 5-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP) 5-step Runge-Kutta Standard Wilcox k -ω 0 5-step Runge-Kutta Standard Wilcox k -ω 0.5δ 1(EXP) SortieSub SortieSub 1 1.10.2 SortieSub 1.10.5 SortieSub 1.10.5 SortieSub 1.10.5 SortieSub 1.10.5 SortieSub 1.10.5 SortieSub 1.10.2 SortieSub 1.10.2 SortieSub 1.10.2 SortieSub 1.10.2 SortieSub 1.10.2 SortieSub 1.10.2 FLibreMix 2 1.10.2 SortieSub 1.10.5 1.10.5 1.10.5 5-step Runge-Kutta Standard Wilcox k -ω 1.5δ 1(EXP) SortieSub SortieSub 1.10.5 5-step Runge-Kutta Standard Wilcox k -ω 2.0k (EXP)
	UR A10		+4 • (±1.0) 4-pt Jameson center	0.02 Large-eddy simulation 3-step Runge-Kutta Standard Wilcox k -ω δ 1(EXP)	FLibreMix	1.9.1
	LE REF		+4 •	4-pt Jameson center	0.002	3-step Runge-Kutta SISM 3	δ 1(EXP)	FLibreMix	1.10.5
	1 Subsonic outlet condition							
	2 Mixed outlet condition							
	3 Shear-improved Smagorinsky model						

Table 3 . 2 :

 32 Classification of the corner-separation. De Haller number DF Lei's D parameter Case / Thresholds DH ≤ 0.72 DF ≥ 0.6 D ≥ 0.4 ± 0.05

	Experiment	0.98	0.53	0.26
	LES	0.98	0.52	0.26
	RANS	0.98	0.52	0.26
	Experiment		
	LES			
	RANS		

Table 3 .

 3 3: Global performance. L is computed using the results of[START_REF] Ma | Experimental investigation of corner stall in a linear compressor cascade[END_REF], C p,global , B and C pt,global are calculated using the results of Zambonini.

	Case	C L C p,global B	C pt,global
	Experiment 0.53 0.38	0.15 0.060
	LES	0.54 0.43	0.11 0.058
	RANS	0.48 0.33	0.18 0.080

C

Table 5 .

 5 1: Bimodal histogram decomposition parameters of the tangential velocity component u s , at point P3.

	Modes α	U s /U ∞ σ us
	Mode 1 0.37 -0.16	0.06
	Mode 2 0.63 0.09	0.12

  TKE budget equation in Wilcox k -ω modelThe turbulent kinetic energy budget equation in Wilcox k -ω model is expressed in Eq.(2.28). The physical meanings are introduced as follow:

								7	1e-3							
								5 6		Turbulence visc.=0.002, ∆y + =2 visc.=0.001, ∆y + =2 visc.=0.005, ∆y + =2 visc.=0.002, ∆y + =1				
							δ 99 [m]	3 4								
								2				-ρu ′′ i u ′′ j	∂[ u i ] ∂x j	-	∂ ∂x j	ρu ′′ j k
								1								
								mean flow convection	production		turbulent diffusion
							-pressure diffusion ∂ ∂x i u i ′′ p ′ 0.00 0.05 0.10 0 (a) Nominal thickness δ 99 + p ′ ∂u ′′ i ∂x i pressure-dilatation -u ′′ i mass flow variation ∂ p ∂x i 0.15 0.20 0.25 0.30 0.35 x[m]	dissipation ∂u ′′ i -τ ij ∂x j	(A.17)
	δ 1 [m]	1.0 0.4 0.6 0.8	1e-3	Laminar Turbulence visc.=0.002, ∆y + =2 visc.=0.001, ∆y + =2 visc.=0.005, ∆y + =2 visc.=0.002, ∆y + =1	+ viscous diffusion ∂ ∂x j u ′′ i τ ij	-Π (D) ij SGS dissipation ∂u ′′ i ∂x j 1e-4 7 3 δ 2 [m] 4 5 6	+ Laminar ∂ ∂x j SGS diffusion u ′′ i Π (D) ij Turbulence visc.=0.002, ∆y + =2 visc.=0.001, ∆y + =2 visc.=0.005, ∆y + =2 visc.=0.002, ∆y + =1
														2		
		0.2														
														1		
		0.00 0.0	0.05	0.10	0.15	0.20		0.25	0.30		0.35		0.00 0		0.05	0.10	0.15	0.20	0.25	0.30	0.35
						x[m]											x[m]
				∂ ρ [k] ∂t (b) Displacement thickness δ 1 = 0 = -∂ ∂x j	( ρ [k][u j ])	+τ t ij	∂[u i ] ∂x j (c) Momentum thickness δ 2 + ∂ ∂x j ∂[x j ] µ ∂[k]
										mean flow convection + ∂ ∂x j µ t σ k	production ∂x j ∂[k]	molecular diffusion -c k ρ [ω][k]	(A.18)
																	dissipation
									turbulent transport and pressure diffusion
		0.00	0.05	0.10	0.15	0.20		0.25	0.30		0.35				
						x[m]										

RANS: Reynolds-averaged Navier-Stokes

LES: large-eddy simulation = simulation des grandes échelles

A single-stage large-scale low-speed compressor test rig in the Whittle laboratory of the University of Cambridge.

The present author prefers the words "corner separation" rather than "corner stall", since we consider that "stall" may imply large unsteadiness which might not appear in the linear compressor cascade. While[START_REF] Lei | A criterion for axial compressor hub-corner stall[END_REF] use "corner stall" to describe the massive corner separation.

The Whittle lab, Cambridge University[Gbadebo et al., 

2005]

http://en.wikipedia.org/wiki/NACA airfoil#6-series

http://en.wikipedia.org/wiki/Einstein notation

Evaluated in the simulations by time averaging.

The same shape factor H 12 is found between the experiment and LES, therefore the momentum thickness δ

is automatically matched between them

The same shape factor H 12 is found between the experiment and LES, therefore the momentum thickness δ

is automatically matched between them2 Here exists a difference with the experiment where the inflow angle is 58.49 • . However the influence of an angle of 0.18 • is thought to be negligible according to the study of the incidence angle impact in Chapter 4

δ 99 is the distance across a boundary layer from the wall to a point where the flow velocity reaches 99% of the free stream velocity.

In order to ensure the continuity of δ

with the law in laminar zone, a shift constant is imposed in the function of x for δ 2 . This constant is 0.0712m in this study. More details can be found in[START_REF] Schlichting | Boundary-layer theory[END_REF]].

The DNS results of[START_REF] Sillero | One-point statistics for turbulent wallbounded flows at reynolds numbers up to δ + ≈ 2000[END_REF] are accomplished by the finite difference method[Simens et al., 

2009], while the present LES simulation uses the finite finite volume method. The gradients involved in the budget are computed using finite difference method, which may accumulate the errors. Moreover, the artificial viscosity which is used to stabilize the simulation in LES may also bring some numerical errors. More detailed explanations could be found in Appendix B

in the Whittle lab, Cambridge University[Gbadebo et al., 

2005]
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and presented in Fig. 5.22. For these three cross-sections, the same near-wall behavior can be observed, and it is found that on the plane z/h = 45.9%, the last point drops nearly on the isotropic-turbulence vertex. When getting down to the cross-sections z/h = 42.2% and z/h = 40.5%, the turbulence returns to isotropic in the free-stream. This confirms the influence of the symmetry condition and shows it tends to be negligible below z/h = 45.9%.

Turbulent kinetic energy budget

The turbulent kinetic energy (TKE) budget reflects the TKE transport mechanisms and their balance in turbulent flows. It is also a key element for the classical RANS turbulence models under the Boussinesq hypothesis. The evolution of the turbulent kinetic energy budget along the blade suction surface on the cross-section close to the mid-span is discussed below.

negative wall-normal velocities u n /U ∞ appear on the measurement-line s * = 0.99, close to the end-wall. This is because the cross-flow pressure gradient is greater than the centrifugal force. When passing through the cascade passage, the spanwise velocity increases a little. This indicates that the flow tends to leave up from the end-wall and prepares for crossing over the blockage region. In Fig. 5.34(b), where these three velocity components are plotted in semi-log scale, the near-wall region is focused. This also allows full height analyses of the flow state far from the end-wall. Near the end-wall, the same observations are obtained as just discussed in Fig. 5.34(a).

Far from the end-wall, along the passage, the tangential velocity component u s /U ∞ decreases, whereas the wall-normal velocity increases. Finally the wall-normal velocity exceeds the tangential velocity. This indicates a shift angle between the flow and the blade suction surface, which is induced by the geometry of the inter-blade channel. Inspecting the spanwise velocity component u z /U ∞ , a maximum value could be seen at d wall ≈ 40mm, associated with a flow towards the mid-span. From the measurement-line s * = 0.21 to s * = 0.99, the region of positive u z /U ∞ moves outwards from the end-wall, due to the fact that the effect of blockage induced by the corner separation increases when going downstream.

Appendix A

Reynolds stress budget equation

In this appendix, the budget equation of Reynolds stress for compressible solver is derived by following the derivation of [START_REF] Bogey | Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation[END_REF]. To be clear, we introduce here some symbols: q denotes the general filtered quantity, q = ρq/ρ denotes the Favre filtered quantity, while q means the ensemble averaged 1 quantity and [q] = ρq / ρ is the Favre averaged quantity. Subsequently, we get the following relations: q ′ = q -q , q ′′ = q -[ q], q ′′ = 0, ρq ′′ = 0 and

The filtered conservative momentum equation (Eq. (2.52)) can be written as:

taking into account the filtered conservative mass equation (Eq. (2.51)), Eq. (A.1) can be then expressed as:

and multiplied by u ′′ j :

1 Evaluated in the simulations by time averaging.

Appendix B

Test case: Turbulent boundary layer at moderate Reynolds number

In order to check the methods used for the large-eddy simulation in the framework of this thesis, a large-eddy simulation of turbulent boundary layer simulation on a flat plate is carried out, in the same configuration with that of Jiménez et al. [2010].

The simulation is initially conducted by [START_REF] Caro | cas-test LES : couche limite sur plaque plane[END_REF]. The aim is to simulate a boundary layer until Re x = 1.3 × 10 6 in forcing the transition at Re x = 3 × 10 5 . According to the method introduced in Section 2.3.6, the height of the trip is designed to be h t = 1.6×10 -4 m.

The dimension of the computational domain is L x = 0.3m in streamwise, L y = 2δ = 0.0117m in wall normal direction and L z = δ = 0.00586m in spanwise. Concerning the mesh, the uniform girds are arranged in streamwise and spanwise. In the wall normal direction, the grid points are distributed with an aspect ratio of 1.15 for 0 ≤ y ≤ y rect . Above y rect , the geometric distribution is modified by introducing an upper boundary angle of -0.5 • to the horizontal direction (only the outlet plane keeps the original geometric distribution). On the outlet plane, y rect = 0.00234m corresponds to 3δ 1 at the outlet plane. Consequently, the nondimensional length of the gird cell in streamwise, wall normal direction and spanwise are set to be ∆x + = 80, ∆y + = 2 and ∆z + = 30, respectively.

The aims of this test case study are:

1. validating the implementation of the trip for triggering laminar-turbulent transition, 2. choosing a reasonable artificial viscosity due to the use of the Jameson centered spatial interpolation scheme, 3. validating the code "statistics.F" for the post-processing, 4. validating the code "santorin.F" for the Reynolds stress budget analysis developed during this thesis.

Four test cases are investigated in this appendix, only one parameter is changed at each time, these four cases are:

1. Artificial viscosity of 0.002 with near wall cell length ∆y + = 2, 2. Artificial viscosity of 0.001 with near wall cell length ∆y + = 2, 3. Artificial viscosity of 0.005 with near wall cell length ∆y + = 2, 4. Artificial viscosity of 0.002 with near wall cell length ∆y + = 1.

Turbulent boundary layer evolution

The evolution of the boundary layer thickness δ 99 , δ 1 , δ 2 , the shape factor H 12 = δ 1 /δ 2 and the friction coefficient 1(d). H 12 is usually considered to be about 2.59 for laminar boundary layers, and 1.3 -1.4 for turbulent boundary layers [START_REF] Schlichting | Boundary-layer theory[END_REF]. The transition process occurs earlier from the red line to the green line. But the green case with the artificial viscosity of 0.001 is transitioned before the trip. This could bring some spurious acoustic waves, so the artificial viscosity of 0.001 is thought to be insufficient. Finally, the friction coefficients C f are compared in Fig. B.1(e) between these four test cases. Non of them gives a good prediction of C f , i.e. the friction velocity u w is under-predicted by the SISM SGS model. It is seen that decreasing the near-wall cell height could improved the prediction of the friction coefficient C f . ∆y + = 1 agrees with the DNS results of Jiménez. In addition, it is found that ∆y + = 2 brings some problems on the near-wall v + rms when using a low artificial viscosity. pressure are combined as one term. A satisfactory agreement is achieved between the DNS and LES results. While small discrepancies appear, due to the numerical errors (will be discussed later). This tool is considered to be capable to help exploring the turbulent energy transport mechanisms. The discrepancies appeared between the above figures may be due to the following reasons:

1. Jiménez used DNS approach, which differs from the LES approach used in the code Turb'Flow. Some terms have to be modeled, since filter is applied on the N-S equations, such as the pressure-velocity correlation (Eq. (2.42)).

2. Jiménez used finite difference method to discretize the computational domain, while in the code Turb'Flow we use finite volume method to accomplish the spatial interpolation, the precision is reduced in the latter method. Moreover, the present author derives the budget equation in the conception of finite difference approach, the numerical errors are accumulated.

3. Artificial viscosity is used due to the employment of the centered spatial interpolation scheme, this may also bring some numerical errors.

Giauque [2007] suggests that if the numerical errors induced by the numerical scheme and the artificial viscosity are considered in the budget terms, the TKE budget must be closed.

Appendix C Turb'Split

The approach of the parallelization is quite important for the parallel computation efficiency. Two methods for parallelizing the computational domain are possible for a solver using structured mesh:

(1) Process-based parallelization: Several small blocks are regrouped to one process, a big block is sent to one another process. The principal is to get the same load to each process. The advantage of this method is that, not much attention needs to be paid for splitting the mesh. The lack is that, the block number should be more than the process number, and the parallel efficiency may depend on chance, as the grid point number will not be always perfect for the balance. This method is drawn in Since the goal of this thesis is to carry out a large-eddy simulation on the linear compressor cascade, the mesh should be divided and distributed to a lot of CPUs, the block-based parallelization method is preferred. 

Load balancing for the LES of the cascade