de l'hydrogène dans des métaux de structures hétérogènes

Numerical approach of the scale transitions applied to the diffusion and the trapping of hydrogen in metals with heterogeneous structures 

Introduction

Nowadays, the energy consumption follows a continuous growth. This phenomenon requires an increase in the energy supply, but our current resources do not allow us to sustain such augmentation.

Currently, our energy supply remains strongly bound to the use of fossil-fuel sources. However, while on one hand these resources will inevitably be exhausted in a near future, they also lead on the other hand to concerns about the pollution of the environment, especially with the greenhouse-gas.

This problem brings out the need to find alternative energy sources. Among the possible candidates, hydrogen appears to be adequate. Indeed, hydrogen is a pollution-free energy source; the combination of dihydrogen molecules with dioxygen creates water, in other terms clean rejects. Moreover, being the smallest element on the periodic table, hydrogen possesses specific properties which are not shared by the other elements. While hydrogen is extremely abundant in the universe, its molecular form on our planet is very sparse; hydrogen remains bound with other atoms, mainly in water or hydrocarbons.

Unlike natural gas, hydrogen cannot be found as accumulated in geological subterranean areas.

The lack of free hydrogen leads to a need of hydrogen production. The production and stockage of hydrogen are part of the hydrogen economy [Andrews12]. In 2005, the production of hydrogen in the United States was around 55 million tons [Bennaceur05], mostly for industrial purposes in chemical and petrochemical applications. To be able to use hydrogen as a potent energy source, the production volume has to be considerably expanded.

Nevertheless, hydrogen also presents problems for the materials, while the durability of materials has become a major concern for the environment. With its small size, hydrogen may easily penetrate and segregate in any material, leading to early breakdown of the structure. This coupled phenomenon is known as Hydrogen Embrittlement (HE), depicted in Figure 1; any material placed in an aggressive medium (especially hydrogen in our context) and submitted to mechanical stresses is weakened and may lead to an early break of the structure. HE affects all industrial sectors linked to hydrogen, such as petrochemicals, aeronautics, or even energy distribution. Several models simulated that HE initiated from the process of hydrogen diffusion and segregation in the materials. In order to apprehend the early stages of HE, it is necessary to get a better understanding of the behavior of hydrogen within the materials. To do so, numerical and experimental studies may be performed at different scales, to obtain a complete view of the whole phenomenon. While hot debates on the influences of each microstructural defects still exist, other studies may also directly focus on the behavior of hydrogen atoms themselves within the crystal lattice. Nonetheless, each scale should not be considered as a separate analysis, since all phenomena are linked altogether.

The complexity of the analysis of HE especially comes from the influence of all scales, and thus the numerous mechanisms on the hydrogen diffusion. While the EP is used to quantify the diffusion of hydrogen at the scales of the structure, the membrane and the RVE, smaller scales however have an effect on the effective values extracted during permeation tests. Since only the effective behavior of the membrane is characterized, separating the effects of each property of the material is difficult. Thus, we chose to base this work on the numerical analysis by finite elements of the electrochemical permeation; as presented in Figure 3, by modeling hydrogen diffusion and proceeding with the same approach as the permeation technique, we may separately research the influence of each phenomenon on hydrogen diffusion. Also, a numerical analysis allows us to know beforehand the characteristics of the material we impose. Doing so, the experimental method used to extract the effective values may be questioned.

Figure 3 -Scheme of the differences between experimental and numerical analyses

To emphasize the separate effects of hydrogen trapping, surface layer or the microstructure, our work is divided in four chapters:

The first chapter consists in a review of the literature. First, the behavior of hydrogen is described, and the phenomena of hydrogen trapping are detailed. The different hydrogen trapping models taken from the literature are listed, with the improvements between each model. Then, the experimental techniques used to quantify hydrogen diffusion are enounced, since our work is based on the modeling of the electrochemical permeation technique. Associated with this technique arise the considerations of the surface state, with the long-term debate between the necessity of a palladium coating to prevent the formation of an oxide layer. Finally, we review the characteristics of the microstructure that may affect hydrogen diffusion, especially the grain boundaries classification and the corresponding models. We 

Separate effects analysis

Unknown properties Imposed properties also introduce homogenization methods that are commonly used to characterize effective quantities in heterogeneous materials.

The second chapter details the behavior of hydrogen within a homogeneous membrane in two dimensions, by taking into account hydrogen trapping and the surface states. To ensure a rigorous analysis, the phenomena are studied in a separate manner; first, we analyze the effects of hydrogen trapping only using hydrogen trapping model from the literature. Then, the influence of a surface layer (palladium coating or oxide layer) on the hydrogen diffusion is determined. Finally, we study both phenomena at the same time to identify the interactions between them. The analysis is bestowed upon the data extracted from electrochemical permeation tests such as the hydrogen flux, the effective diffusion coefficient and the effective subsurface hydrogen concentration. Our study is also extended to the hydrogen concentrations in the material. The last part of this chapter brings out a comparison between our model and experimental data taken from the literature.

Since our second chapter focuses on hydrogen charging, we also need to consider hydrogen desorption, in the third chapter. Using the same trapping model, we first analyze the approach of data extraction. However, using such model does not suffice to fully characterize hydrogen desorption; we need to consider diffusion equations with no hard hypotheses to rigorously observe interactions between the lattice and the trapped hydrogen concentrations. Doing so brings up questions about the jump frequencies of hydrogen atoms, discussed in the second part of the chapter. Finally, we also consider a distinction between reversible and irreversible hydrogen trapping, as it is experimentally achieved.

While the second and third chapter focused on the behavior of a homogeneous membrane, the fourth chapter considers the effects of the microstructure on hydrogen diffusion. Especially, we study the influence of grain boundaries acting as fast diffusivity paths. Scale effects due to the microstructure are discussed, as well as statistical analyses for random microstructures. Two microstructures are compared to check the possible effects of grain shapes. Finally, we extend our study to a three dimensional approach, to take into account the influence of triple junctions. In two dimensions, triple junctions are discrete elements with little influence on hydrogen diffusion, while their connectivity in three dimensions brings out new questions about scale effects.

Finally, we discuss the results described along the chapters, to conclude our study. The limitations of our current model are questioned, which allows us to list the different prospects of this work. By adding more elements to the model, such as the texture of grains or various behaviors for the grain boundaries, new analyses could be done to extend our understanding of the mechanisms of hydrogen diffusion.

I. Hydrogen-metal interactions 1. Hydrogen

Hydrogen is the smallest element of the periodical classification; it was discovered in England in 1766 by Sir Henry Cavendish. Its name comes from its ability to produce water: hydro (water) and gen (produce). Hydrogen is the most abundant element of the universe, representing 90% of the atoms.

However, it doesn't exist in a natural state and is always linked with other atoms or ions. With only one proton and one electron, its small size allows hydrogen to penetrate and diffuse very easily through metallic materials. Table I.1 presents several characteristic data on hydrogen, more specifically its diffusivity through metals. Its partial molar volume is high enough to lead to a notable deformation of the network. 

Hydrogen adsorption, absorption and recombination

The mechanisms of hydrogen evolution reaction (HER) have been extensively studied. Two different phases occur when hydrogen penetrates through a material [Więckowski99]. The first step for an atom of hydrogen to penetrate through a material is hydrogen adsorption. Indeed, dihydrogen molecules H 2 split themselves into two hydrogen atoms. These atoms establish a chemical link with the surface of the material. Depending on the environment, either gaseous or aqueous, different chemical reactions occur. Gazeous adsorption is divided in three steps; physisorption of dihydrogen molecules at the surface, splitting of these molecules and chemisorption of the hydrogen atoms. Equation (I. 1.1) describes the adsorption: After the adsorption step, the hydrogen atoms will either move toward the lattice sites, following equation (I. 1.4), or in aqueous media, the adsorbed hydrogen will recombine itself on the surface.

ads abs MH MH  (I. 1.4) In the case of recombination, two chemical reactions exist [Harrington87b]:

-The interaction between an adsorbed hydrogen atom and a proton creates a dihydrogen molecule, described by the Heyrovsky reaction (equation (I.1.5)). -Two hydrogen atoms may also interact, to create the dihydrogen molecule in equation (I. 1.6).

This phenomenon is referred to as the Tafel reaction. Once hydrogen has penetrated in the material, its behavior is affected by the properties of the material.

Hydrogen will diffuse or get trapped.

II. Hydrogen diffusion and trapping 1. Hydrogen diffusion

Hydrogen diffusion has been studied for a long time, and has been extensively reviewed in the book of Merher [Merher07]; the standard diffusion of species is governed by Fick's laws, and can be applied to hydrogen diffusion. The first law defines that the hydrogen flux J is proportional to the concentration gradient of hydrogen inside the material, following equation (I.2.1):

() J Dgrad C  (I.2.1)
where C is the hydrogen concentration, and D the diffusion coefficient. Equation (I.2.2) presents the second law, linking the variation of the hydrogen concentration as a function of time with the variation of the flux of hydrogen inside the material.

( ) C div D grad C t      (I.2.2)
However, in 1949, Darken and Smith [Darken49] determined that Fick's laws did not apply for the diffusion of hydrogen. The divergence between the theory and the experiments was attributed to the phenomenon known as hydrogen trapping.

Hydrogen trapping

Hydrogen tends to segregate around the microstructural heterogeneities (vacancies, dislocations, etc.) when the interaction energy of hydrogen with the defects is higher than that with the lattice. In that case, these defects are called hydrogen traps [Ly09]. Hydrogen transport is slowed down by the traps [Cao04] and the required activation energy for hydrogen diffusion increases. Pressouyre

[Pressouyre79] defined several trap categories:

-Attractive traps: traps with electronic, thermic or mechanic attraction forces.

-Physical traps: traps due to the deformation of the crystal lattice. These regions are energetically favorable for hydrogen trapping.

-Mixed traps: traps due to the crystal lattice discontinuities and attractive forces.

The physical traps of hydrogen can move (dislocation, vacancies) or stay still (grain boundaries, precipitates, inclusions) [START_REF] Garverick | Corrosion in the petrochemical industry[END_REF]. Apart from the three previous types of traps, another categorization can be done by distinguishing reversible traps from irreversible traps.

Reversible traps allow hydrogen atoms to escape without needing exterior energy supply. These traps act as a hydrogen source exchanging with its environment. On the contrary, an irreversible trap possesses an energy barrier high enough to prevent the trapped atoms to exit. This categorization is however insufficient, since hydrogen also possesses a probability to be trapped or untrapped, depending on the activation energy, and the external conditions such as the temperature. The irreversibility can then be questioned [Jérôme03].

If we consider traps at ambient room temperature, they can be considered as irreversible if their activation energy exceeds 0. To picture the activation energies, Figure I.1 presents the energy differences between the lattice sites and trap sites. Since trapping sites energies are higher than lattice sites energies, we note E LT the energy for an atom to jump from a lattice site (L) to a trap site (T). E TL is the opposite jump; from a trap site to a lattice site. With E TL > E LT , we set the trap binding energy ΔE T = E TL -E LT .

Hydrogen trapping is also affected by the density of traps inside the material. Table I. 3 Since hydrogen trapping affects hydrogen diffusion, standard Fick's laws cannot be applied.

Numerous models were created to take trapping into consideration in diffusion laws.

Hydrogen trapping models

Starting from 1949, several diffusion models have been established to take trapping into consideration.  

McNabb and Foster

1 T T L T T T C N kC C N pC t      (I.2.5)
In 1970, Oriani [Oriani70] considered cases where the trap occupancy is very low (θ T << 1). In that case the chemical equilibrium is quickly reached, making kC L approximately equal to pC T . From these hypotheses, he replaced the diffusion coefficient D L in equation (I.2.3) by an apparent diffusion coefficient D app in equation(I.2.6). The diffusion coefficient itself is modified by the equilibrium between the traps and the crystal lattice. The distinction between hydrogen under atomic or molecular form is associated with a distinction between saturable and non-saturable traps. Whereas saturable traps may only accommodate a finite number of atoms, for example dislocations or vacancies, non-saturable traps do not present this limit, in the case of microvoids.

In The factor m is an integer value, defining the order of trapping. Linear trapping exists for m=1, while the trapping as molecule in voids is defined by m=2. This model is however a generalization of equation (I.2.7), since higher orders may be defined. Using (I.2.8), the apparent diffusion coefficient is given by equation (I.2.9): T and the apparent diffusion coefficient are defined (equations (I.2.11) and (I.2.12)): The apparent diffusion coefficient then directly depended on the evolution of the trapped hydrogen concentration C T as a function of the lattice hydrogen concentration C L . The remaining problem required the determination of the TL CC  ratio in the equation. To do so, the evolution of the trapped hydrogen concentration could be divided by distinguishing the trapping and the untrapping. Equation (I.2.14) presents the two contributions. The index L→T marks the atoms going from a lattice site to a trapping site (hydrogen trapping), while T→L indicates hydrogen untrapping (trap to lattice):
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With this separation, the contribution of hydrogen trapping and hydrogen untrapping were clearly defined. Even though, solving this equation would remain difficult without some hypotheses. By making the assumptions that the lattice sites occupancy θ L = C L /N L << 1, and that N T << N L , equation (I.2.15) has been formulated, giving a direct link between C T and C L : where they took phenomenological couplings of concentration gradients into account, by moving the apparent diffusion coefficient of equation (I.2.13) inside the first derivative:

LT app L CC DC tt          (I.2.16)
Still, all these models consider that the diffusion is controlled by the lattice hydrogen concentration C L . However, Frappart [Frappart11a] demonstrated that the total hydrogen concentration C H = C T + C L could be used instead.

b. Reversible and irreversible traps

The initial formulation of McNabb and Foster [McNabb63] and the latter models were developed for reversible traps. However, irreversible traps have also to be taken into account. Some authors [Iino82, Leblond83a, Leblond83b, Turnbull89, Turnbull90] modified this formulation to consider irreversible traps as well in the calculations. To do so, several assumptions have been made. They consider that the metal only contains three types of sites; lattice, reversible traps and irreversible traps sites. The simplification of Leblond's model is described by equations (I.2.17) to (I. 2 In that model, there are six parameters that govern the diffusion, making practical applications too difficult. Some years later, Leblond [START_REF] Leblond | Experimental and numerical study of diffusion and trapping of hydrogen in plastically deformed A508.Cl.3 steel at room temperature[END_REF] proposed another model, by considering only two kinds of sites; irreversible trap sites, and an 'equivalent' site, considering the lattice and reversible traps as sites of the same behavior.

c. Statistical approach

Another approach for diffusion models was developed by Kirchheim For only one kind of trapping sites associated with the lattice sites (the two-level system in Figure I. All the models that have been detailed in this section are based on experimental measurements.

Several techniques have been developed to measure hydrogen diffusion coefficients on concentrations.

The next section presents some of these techniques.

III. Hydrogen measurement techniques

One of the main methods used for hydrogen characterization is the electrochemical permeation 

Electrochemical permeation principle

Our work is based on the electrochemical permeation technique. Even though the electrochemical permeation has been initially designed to study hydrogen diffusion in palladium, it may be used for different materials. The penetration of hydrogen inside the material may be facilitated by adding hydrogenation catalyzers.

The most common catalyzer is As 2 O 3 , and allows obtaining current densities five to ten times higher

[Frappart11a].
On the exit side an anodic polarization is applied to oxidize all the diffused hydrogen atoms. The most common solution is the sodium hydroxide NaOH. [Arantes93, Bruzzoni92, Cao04,

Nevertheless, polarizing the exit side is not enough to oxidize all the diffused hydrogen, and part of it may recombine itself into gaseous dihydrogen. Some authors [Manolatos95, Kumnick80, Luppo98]

chose to coat the exit side with palladium to prevent this recombination, since the exchange current density is higher on palladium [Sawyer95]. 

Characteristic measurements from permeation tests

 Diffusion coefficient

The diffusion coefficient of hydrogen in the material is calculated using the flux curve. However, this diffusion coefficient is called effective because it is affected by of all phenomena such as hydrogen trapping, surface states, the microstructure, etc. Moreover, the diffusion coefficient also evolves as a function of the temperature, following Arrhenius' law in equation (I. Where e is the thickness of the membrane, t c the characteristic time, and M a factor depending on the selected characteristic time. Figure I.5 presents the permeation flux with four characteristic times:

using the time required to reach a given percentage of the steady-state flux, we define t 63% , t 10% and t 1% .

The intersection between the tangent to the flux curve and the time axis gives the other time, t tg , called The second method uses the analytical solution of Fick's laws; assuming that the concentration of hydrogen at the subsurface is constant, the flux is calculated with equations (I.3.4) and (I.3.5)

[McBreen66, Boes76]. max 2 21 exp 0,3 4 eff Dt JJ e           with (I.3.4)   2 max 2 1 2exp( ) 0, 2 eff Dt JJ e         with (I.3.5)

 Hydrogen concentrations

If the membrane is considered as homogeneous, the concentration gradient is linear when the steadystate is reached. The subsurface hydrogen concentration is then calculated with equation (I. Ficks's laws are used to predict the evolution of the hydrogen concentration at any point and any time of the membrane during a permeation test. The solution of Fick's second law for a homogenous membrane for electrochemical permeation conditions is given by equation (I. 

Other techniques

The Thermal Desorption Spectroscopy (TDS) technique consists in heating the material by Joule effect. The detectors identify the hydrogen that escapes the traps due to the additional energy. Doing so, the total hydrogen concentration in the material is calculated, and the different trapping energies are identified [START_REF] Lee | crystals structures by the desorption thermal analysis technique[END_REF]Wang07]. Comparisons between TDS and EP results bring further analysis

[Oudriss12b].
However, neither the TDS nor the EP gives information about the localization of hydrogen inside materials. Other techniques give these information; the autoradiography consists in replacing hydrogen by its radioactive isotopes (deuterium or tritium) to locate them using electronic microscopy. For example, it is used to identify the hydrogen segregation sites along the grain boundaries [Katano01].

The SIMS (Secondary Ion Mass Spectroscopy) is also used to locate segregation areas [Park10].

The techniques listed in this section are not exhaustive; numerous other techniques could be presented here. A literature review on these methods has already been done during the A3TS conference

[Frappart10b].
The behavior of hydrogen in the material is determined with the previous techniques. However, the surface state plays an important role on this behavior and needs to be studied.

IV. Effects of surface layers on hydrogen diffusion

During electrochemical permeation tests, the material is placed in an aggressive media. The surface of metallic materials in contact with an aggressive medium is bound to form an oxide layer. This layer alters the diffusion process, since the system becomes multi-layered. However, this layer may have no effect on the diffusion, depending on the considered material. For example, the oxide layer has almost no influence on nickel [START_REF] Brass | Accelerated diffusion of hydrogen along grain boundaries in nickel[END_REF]. Nevertheless, to avoid the formation of an oxide layer, some authors [Kumnick80, Luppo98, Zakroczymski06] chose to coat the surface with palladium.

Other authors [Manolatos95, Bruzzoni92, Casanova96] preferred to study the influence of the oxide layer on hydrogen diffusion. In this part, we review the effects of surface layers on the membrane, whether it is a palladium coating or an oxide layer. The oxide layer at the exit side of the membrane may also lead to an incomplete oxidation of hydrogen [Casanova96], explaining the smaller hydrogen flux. However, a stable oxide film may be formed after a sufficient amount of time. Though, to avoid considering the formation of a stable oxide layer, numerous authors chose to coat the surface with palladium instead.

Oxide layers

Palladium

The electrochemical permeation technique has been initially designed to study hydrogen diffusion in palladium [Devanathan62]. Being a noble metal, the palladium does not risk to be dissolved by the aggressive media. From the early studies, the hypothesis to coat the surface with palladium appeared. Indeed, a palladium layer could ensure a complete oxidation of hydrogen while preventing passivation The diffusion models for electrochemical permeation only consider a homogeneous membrane with a surface layer. However, materials are heterogeneous, especially with their microstructure that differs depending on the elaboration of the material. The defects of the microstructure are possible hydrogen traps, but also present different properties.

V. Diffusion and microstructure

Among the possible defects in the material, we highlight the grain boundaries, triple junctions, and quadruple junctions. Being able to understand the different structures of these defects is necessary to identify their effects on hydrogen diffusion. This section summarizes the knowledge on these defects and presents their classification and effects.

Grain boundaries

In a polycrystalline material, the grain boundaries (GB) are interfaces between grains. The diffusion coefficient of hydrogen inside the grains differs from the coefficient inside the grain boundaries. The behavior of grain boundaries for hydrogen diffusion was rapidly questioned. Grain boundaries may act as fast diffusion paths, commonly called short-circuits for hydrogen [Brass96] and increase the diffusion rate inside the material. However, the notion of short-circuit only appears with a sufficient amount of grain boundaries [Heinze99 

b. Classification based on the rotation angle: low and high angle grain boundaries

If grain boundaries are considered from an atomic point of view, we may distinguish them in two groups, the low-angle (or small-angle) grain boundaries (LAGBs) and the high-angle (or large-angle) grain boundaries (HAGBs). The rotation angle θ allows distinguishing them; generally, if θ is inferior to 15°, the grain boundary is considered as low-angle, or else it is high-angle.

For low-angle grain boundaries, the misorientation is accommodated by an array of dislocations, either edge or screw dislocations. However, high-angle grain boundaries do not allow distinguishable dislocations. The rotation angle forces the dislocations to overlap with each other.

c. Classification based on the rotation axis: twist, tilt and mixed grain boundaries

Grain boundaries may be sorted in three families by considering the rotation axis. In case of mixed grain boundaries, it is possible to divide the rotation between one tilt rotation (perpendicular to the axis) and one twist rotation (parallel to the axis). In some cases, the tilt boundary represents a symmetry axis of the lattices of the grains. In that case, the boundary is called symmetrical. In other cases, we consider it as asymmetrical. In that way, we separate the tilt boundaries in two categories [Wolf89]. Table I.6 presents the four categories for this classification. The description of HAGBs is more complex than LAGBs. Numerous cases require an atomistic scale approach to fully describe the grain boundaries. Among the HAGBs, two categories are defined; grain boundaries with a periodic coincidence of lattice sites, and grain boundaries either with very high coincidence indexes or no coincidence. The former are qualified as Special or Coincidence Site Lattice (CSL) grain boundaries, whereas the latter are named Random grain boundaries.

k 1 l 1 } = {h 2 k 2 l 2 } φ = 0 Asymmetrical tilt {h 1 k 1 l 1 } ≠ {h 2 k 2 l 2 } φ = 0 Twist {h 1 k 1 l 1 } = {h 2 k 2 l 2 } φ ≠ 0 Mixed {h 1 k 1 l 1 } ≠ {h 2 k 2 l 2 } φ ≠
Coincidence between lattice sites means that two grains geometrically possess atoms that periodically match. The coincidence value Σ is defined by the ratio between the total number of lattice sites in the same cell and the number of coincidence sites in an elementary cell. (equation (I.5.2))

total lattice sites in an elementary cell coincidence lattice sites in an elementary cell  The classification (Random/CSL) is not considered as a subdivision of the HAGBs; The LAGBs may also fit in that classification: the distortion is entirely accommodated by dislocations, so the LAGBs may be considered as Σ1 grain boundaries.

Behavior of grain boundaries

At first, grain boundaries were considered as high diffusivity paths, accelerating the diffusivity of hydrogen inside the material [Brass96 determined that the high diffusivity paths were due to random HAGBs, while the special grain boundaries were preferential areas for hydrogen segregation. To be able to explain the behavior of hydrogen, several diffusion models were created to take grain boundaries into account. The next section presents some models. This kinetic regime happens for high temperature diffusion, or for materials with very small grains.

On a macroscopic scale, the system follows Fick's laws for a homogeneous case with an effective diffusion coefficient D eff . D eff corresponds to an equilibrium between the grain and grain boundaries diffusion coefficients, respectively D L and D gb .

For self-diffusion, Hart [Hart57] proposed equation (I.5.5), a relation linking D eff to D L and D gb :

(1 ) with

eff gb L q D gD g D g d      (I.5.5)
g is the atomic sites fraction in the grain boundaries, function of the grain boundary thickness, the distance between grain boundaries, and the factor q related to the shape of the grains. For parallel grains, q is equal to 1. With cubic grains, q would be equal to 3.

 B type

With the B type, diffusion is faster in grain boundaries, but also happens in grains. However, the diffusion in the grains is not as important as in A type, as shown in Figure I.16.

This regime appears for longer diffusion times, when the grain size is high enough. grain growth, but no information is given about diffusion inside those junctions.

c. Vacancies and precipitates

The last elements of the microstructure that may affect hydrogen diffusion are the vacancies and Now that we described the different geometrical entities able to affect diffusion, especially grain boundaries and triple junctions, we need to consider their connections. To do so, we use the percolation theory.

Percolation a. Theory

The percolation theory is a mathematical approach to determine the probability of several points in space to be linked. This concept has been applied to the microstructure of materials, either by considering percolation in composites [Gavarri99], or in metallic materials, especially at grain boundaries interfaces for corrosion [Wells89] or diffusion of atoms in the grain boundary network

[Chen06].
The percolation model has initially been created by Broadbent and Hammersley [Broadbent57] in 1957. Among the percolation models, the most used in material sciences is the Bernoulli percolation, also called "bond percolation" [Wells89]. The material is modeled as a structure of bonds, in our case the grain boundaries. Each bond may be active or inactive.

The size of the percolation clusters increase with the percentage of active bonds. When the percolation threshold p c is reached, each side of the material will be linked by at least an active path of bonds. 

b. Application to grain boundary diffusion

The theory of percolation may be specifically applied to the diffusion of hydrogen in grain boundary networks. Using the bond percolation, the active bonds would be fast-diffusion paths (random grain boundaries) while the inactive bonds would be the special grain boundaries The distribution of triple junctions is not the only element to be considered to predict percolation Since the triple junctions affect the percolation threshold, the quadruple junctions were also classified on the basis of their special boundary coordination [START_REF] Frary | Determination of three-dimensional grain boundary connectivity from twodimensional microstructures[END_REF].

Considering all the geometrical elements (grain boundaries, triple junctions, quadruple junctions) and their percolation makes analytical developments extremely complicated. However, the solutions may be approximated using the homogenization theories.

VI. Homogenization

In homogenization theories, a problem is approximated at a specific order, and the solution is bounded. [Torquato01, Bornert01]. In that way, we do not obtain an exact solution, but a range of possible solutions.

Homogenization theories are also part of scales transitions methods. While the exact solution of the heterogeneous problem exists at the microscopic scale, we extract a homogenized solution at the macroscopic scale, considering effective quantities for the mesoscopic scale of the Representative Volume Element (RVE).

The applicability of homogenization laws however depends on three characteristic sizes of the system. The structure may only be considered as a continuous medium is the condition l << L is respected. The other condition is l >> d, to be able to consider that the RVE possesses a homogeneous behavior.

Methodology for homogenization

Once the characteristics sizes L, l and d have been defined, the main goal of homogenization methods is to associate a homogeneous system with the same size and global behavior of the RVE. Figure I.25 presents the equivalence between the RVE and the homogeneous medium. The RVE contains n phases, with the properties λ i (i being the number of the phase). The equivalent homogeneous system only contains one phase, with an effective property λ eff . -"Representation" step: the RVE is defined, with its properties, his components.

-"Localization" step: the behavior of the RVE, with its boundary conditions.

-"Homogenization" step: the summary of the previous steps with the consideration on the selected average or mean or the results.

The relation between the heterogeneous properties λ i and the effective property λ eff is established by using a localization tensor A in equation (I.6.1). 

Property λ eff

Homogeneous system

The localization tensor A will determine the model of homogenization.

Homogenization models applied to diffusion

Even if the homogenization methods were initially designed to study the mechanical behavior of materials, they may be extended to any response of the material, especially for the diffusion. Equation 

 
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X XX eff C D C T C t       (I.6.2)
C X is the concentration of the species X, eff D the effective diffusion tensor, and T the temperature. To simplify the problem, we consider and isotropic medium with unidirectional diffusion along the xaxis. Equation (I.6.2) becomes equation (I.6.3):

( , )

XX eff X CC D C T t x x          (I.6.3)
Using the localization tensor A, equation (I.6.4) presents the relation between the effective diffusion coefficient and the diffusion coefficient of each phase D i :

eff i i D D A  (I.6.4)
Equation (I.6.4) may also be written as equation (I.6.5), with f i the volume fraction of phase i:

1 n eff i i i D D A    (I.6.5)
Depending on the localization tensor A, several homogenization models are defined, and correspond to analogies with micromechanics models. To simplify the equations, the models consider only two phases with diffusion coefficients D 1 and D 2 . Also, depending on the complexity of A, the homogenization models are qualified by different orders.

a. 1 st order models

The 1 st order bounds are the simplest way to consider heterogeneities. They suppose that the material is an assembly of layers, alternating between the two phases. The diffusion is either parallel or perpendicular to the layers.

Voigt model

The Voigt bound [Voigt87] considers that the diffusion is parallel to the direction of the layers, as represented in Figure I.26.

For this model, the localization tensor is defined by equation (I.6.6):

1 i A  (I.6.6)
Thus, the effective diffusion coefficient is given by equation (I.6.7):

eff i n DD  (I.6.7) i n
D is the arithmetic mean, which gives equation (I.6.8) once developed for two phases: In that case, the localization tensor is defined by equation (I.6.9): From (I.6.9) we obtain D eff in equation (I.6.10):

1 1 eff i n DD    (I.6.10) 1 1 i n D  
is the harmonic mean, leading to equation (I.6.11) for two phases: For this model, one of the phases should act as the matrix while the other phase acts as the inclusion.

In our case, the localization tensor is defined in two different ways, considering the phase 1 as matrix in equation (I.6.12) and the other phase in equation (I.6.13) [Panicaud12]:
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From these equations, if we consider that D 1 < D 2 , we obtain the Hashin-Shtrikman superior (HS+) and inferior bounds (HS-):
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c. Self-consistent method

The self-consistent method allows the estimation of the effective diffusivity by considering the minimum information [Auriault09], i.e. the properties and fractions of each phase. To do so the hypothesis of self-consistence must be respected. Every inclusion of the material acts as if it was surrounded by an equivalent homogenous medium (EHM) instead of the real heterogeneous structure. In that case, the diffusion coefficient inside the EHM is unknown, and the localization tensor is defined by equation (I.6.16) and the effective diffusion coefficient by equation (I.6.17) [Panicaud12]:
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Equivalent Homogeneous

From models to bounds

The previous homogenization models give diffusion coefficients for specific considerations.

Generally, the reality differs from these cases. Nevertheless, the homogenization models may be considered as bounds, delimiting extreme cases. 

VII. The study's modus operandi

In this chapter we presented a review of the literature on the behavior of hydrogen inside materials.

We separated these phenomena at different scales, starting from the behavior at the scale of the membrane, to the behavior at the scale of grain boundaries.

The high complexity means that a deep understanding can only be achieved by separating every influence of the material on these phenomena. Among the experimental techniques to study hydrogen In the first chapter we reviewed the contents of the literature about the behavior of hydrogen in materials. From this review, we determined that a deep understanding of diffusion could only be achieved by separating the various phenomena occurring in the material. To do so, we chose to numerically analyze these phenomena, step by step.

As we presented in the first chapter, the electrochemical permeation tests are one of the main methods to quantify the diffusion of hydrogen in materials. We decided to model electrochemical permeation tests for our analysis of hydrogen diffusion. Doing so, we use the same methods as the electrochemical permeation technique to extract data from the tests. Proceeding this way allows us to test the limits of the experimental methods used to characterize the behavior of the materials in regard to hydrogen diffusion. In this chapter, we study the behavior at the scale of the membrane by only considering a homogeneous membrane. However, even this simple model requires specific considerations. We propose to study this system in four steps, to ensure a significant analysis.

 First, we only consider hydrogen diffusion associated with trapping phenomena. The reduction of hydrogen diffusivity is related to trap densities and trap energies. The effects of such

parameters have yet to be completely defined. While experimental analyses are used to determine the parameters of the material, such as diffusion coefficients or subsurface concentrations, the influence of trapping on these results must be considered.

 The second step considers a membrane with no trapping, but covered with a layer on the surface. Since the debate between the necessity of a palladium coating or an oxide layer during permeation tests is still active, it is important to analyze the influence of both kinds of layers.

 Once the effects of trapping and a surface layer have been considered, we analyze their combined effects on hydrogen diffusion. This is the only way to give rigorous and correct interpretations of these phenomena.

 Finally, once the model has been defined, it must be applied to experimental results to test its limitations. The model allows the determination of the characteristics of the material, such as oxide layer diffusion coefficients, trap densities, and so on.

Before describing each set of study, we define the numerical approach that applies to the three first Due to the aggressive media of permeation tests, the exit side of the membrane can be covered by an oxide layer. To prevent the formation of this oxide layer, the surface can be coated with palladium. To consider both cases, we added to our model a layer with a thickness e ox . Since we do not consider hydrogen trapping inside this layer, we only input a constant diffusivity for the layer, noted D ox . In the layer, the diffusion is governed by the second law of Fick, defined by equation (II.1.5):
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Equations (II.1.1) to (II.1.5) are implemented in every node of the mesh of the model. Since the membrane is homogeneous, the mesh is defined by quadratic elements, displayed in Figure II.1b. The thickness of the mesh elements decreases towards the exit side of the membrane, to ensure a continuity with the surface layer. The surface layer presented in Figure II.1a is deliberately thick enough to be pictured. But, during the calculations, the ratio between the size of the membrane and the size of the layer e m /e ox ranges between 10 3 and 10 6 . Thus, very small elements at the exit side of the membrane are required to match the size of the mesh elements of the layer, as shown in Figure II.1b.

Using Comsol Multiphysics, we solve the transient analyses of the problem to determine the hydrogen concentrations at any point of the material for any time of the permeation process. In this chapter, we only study hydrogen charging. To solve the problem, we use the Parallel Sparse Direct And Multi-Recursive Iterative Linear Solvers package (PARDISO : http://www.pardiso-project.org/) initially delivered within Comsol Multiphysics. Once the model is established, we extract several data, following the process used for the electrochemical permeation technique, detailed in the next section.

Extraction of data

While our model allows us to input different characteristics of the material, such as the density of traps, the lattice and oxide diffusion coefficients, etc., the electrochemical permeation technique does not directly give access to this information. Indeed, the first data extracted from hydrogen permeation tests is the hydrogen flux J on the exit side of the membrane as a function of time. This curve gives particularly access to the steady-state flux J max , but also to the characteristic times presented in the section III.2.a. of the first chapter. The characteristic times allow one to determine the effective diffusion coefficient of the material D eff , depending on the different characteristics of the phases of the material. Then, using J max and D eff , the effective subsurface concentration C 0eff can be calculated. The numerical model also grants us the access to the hydrogen concentrations in the membrane, the lattice hydrogen concentration C L and the trapped hydrogen concentration C T . By extracting these concentrations at the steady-state, we can get the average concentrations in the membrane, <C L > and <C T >. Also, the hydrogen concentration at the membrane-layer interface C 1 may be evaluated.

Figure II.4 summarizes the methods used with the numerical model. From the equations at the scale of the membrane, using all input parameters, we simulate the electrochemical permeation tests at the scale of the RVE. Then, we extract the flux as function of time J(t) and the steady-state flux J max .

Then, we get the effective diffusion coefficient D eff and the effective subsurface concentration C 0eff .

Finally, we also get the concentrations of hydrogen inside the material. Now that we defined our numerical model and the steps of the study, we start the first analysis of our approach; the effects of hydrogen trapping on hydrogen diffusion.
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II. Effects of hydrogen trapping

All experimental data about hydrogen diffusion in steels demonstrate that the flux curve J(t) can easily be described by Fick's laws. Instinctively, the effective diffusion coefficient D eff and the effective subsurface hydrogen concentration C 0eff are bound to differ from "simple" diffusion cases when hydrogen trapping is considered. Both values probably depend on the concentration gradients in the membrane, where scale effect can occur. Also, the concentrations inside the membrane, respectively <C T > and <C L > are likely to be modified. From the measured values D eff and C 0eff , we can wonder about the method to extract the parameters of the material for no trapping (in that case the lattice diffusion coefficient D L and the entry side concentration C 0 ). To answer this question, a numerical analysis is led.

Numerical model

To study the effects of trapping only, we modified the geometry of our model by removing the surface layer. Doing so, the layer does not interfere with the effects of trapping. We chose to base our numerical analysis on martensitic steels for further comparison with experimental works. Table II 

b. Steady-state flux

Depending on the thickness of the membrane, the time for the hydrogen to diffuse through the membrane will be modified. The behavior of the flux can be characterized using the standard laws of Fick. However, this method only applies if no hydrogen trapping is considered. In our case, we need to analyze the effects of the thickness of the membrane combined with hydrogen trapping. Following the standard laws of Fick, the steady-state flux J max is proportional to the inverse of the thickness of the membrane, in equation (II.2.1):

max 0 1 fick L m J C D e  (II.2.1)
The previous section showed that trapping reduces the steady-state flux. To identify the effects of trapping on the dependence of J max with the thickness, Figure II.7 depicts the evolution of J max as a function of the inverse of the thickness, for several trap densities and a high trap binding energy ΔE T = -0.3 eV. J max remains proportional to 1/e m for any trap density. However, the slope decreases when the trap density rises. Equation (II.2.1) can then be altered by adding a trapping parameter η to modify the slope, giving equation (II.2.2). The tilde is used to dissociate the values calculated with an equation from the results determined using the finite elements method. For low trap binding energies or trap densities, the trapping parameter η is equal to 1. In that case, the evolution of the steady-state flux can be described by the solution of Fick's laws of equation (II.2.1).

The value of η increases with the strength of trapping. In very high trapping conditions From the flux curve, instead of considering the value of the steady-state flux, we can study the time required for the flux to reach 10% of the steady-state. Doing so, we get access to the effective diffusion coefficient. Since trapping affects the flux, the effective diffusion coefficient should also be modified.

 E T = -0 . 2 e V  E T = - 0 . 3 e V J max (mol.m -2 .s -1 ) 

Changes of diffusivities due to hydrogen trapping

To study the effects of trapping on the effective diffusion coefficient, we chose to follow the approach used for the steady-state flux; first, we study the effects of the trap density and the trap binding energy, then thickness effects are considered.

a. Effects of NT and ΔET

The evolution of the ratio between the effective diffusion coefficient D eff and the lattice diffusion This non-dependence on the thickness for D eff may appear questionable. Indeed, D eff is calculated using the square of the thickness. However, the characteristical time t 10% is also used in the equation. We plotted in Figure II.12 the evolution of t 10% as a function of the square of the membrane for several N T and for ΔE T = -0.3 eV. It clearly appears that t 10% is directly proportional to the square of the thickness, for any trap density. This is the reason why D eff does not depend on the thickness of the membrane. The initial subsurface hydrogen concentration C 0 is also able to alter the effective diffusion coefficient.

To check its effects on D eff , we plotted D eff as a function of C 0 for several trap densities, with a high trap binding energy. When the trap density is very low, D eff does not evolve with C 0 . However, when the trap density rises, D eff slightly increases with C 0 . Nevertheless, the small increase in D eff can be considered as negligible compared to the reduction of D eff due to the trap density. Since C 0 and e m do not affect D eff , we now need to find the trapping bias µ. To do so, we use the apparent diffusion coefficient from the equations of the model. 1 By replacing C T in equation (II.1.3) with equation (II.2.6), we get:
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Now, using the hypothesis that N L >> K T C L , we simplify equation (II.2.7) to obtain equation (II.2.8):
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The hypothesis used to transform equation (II. From equation (II.2.8) we can determine the trapping bias µ from equation (II.2.4), given by equation (II.2.9):
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The trapping bias is equal to 1 when trapping is weak. µ decreases when the trap density rises, thus biasing the effective diffusivity. Now that we can calculate the effective diffusion coefficient D eff from N T and ΔE T , we present in Figure II.17 a map of D eff /D L as a function of these two parameters. The effective diffusion coefficient behaves like the steady-state flux; it decreases when both the trap density and the trap binding energies are high, in the red area. Otherwise, it remains equal to the lattice diffusion coefficient D L in the blue area, where µ = 1. Once the steady-state flux J max and the effective diffusion coefficient D eff are known, we can calculate the effective hydrogen subsurface concentration C 0eff .

Hydrogen subsurface concentration

Since the effective subsurface concentration C 0eff is calculated from equation (II.1.7), knowing the equations describing the evolutions of J max and D eff , we can define the evolution of C 0eff in equation (II.2.10) using equations (II.2.2) and (II.2.4): The effective subsurface hydrogen concentration is used during permeation tests to give an estimation of the hydrogen concentrations inside the material. In the next section, we calculate the hydrogen concentrations at the steady-state. Since a high trap binding energy is required for the trap density to affect the diffusion, we chose to only use ΔE T = -0.3 eV for the next calculations. We may instinctively think that the presence of traps inside the membrane alters the concentration profiles. To check this hypothesis, we analyzed the concentration profiles for several trap densities. The concentration profiles of the hydrogen concentrations deviate from Fick's laws. In that case, the average concentrations of hydrogen inside the membrane are affected, and need to be analyzed.
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Hydrogen concentrations

b. Average concentrations

The total hydrogen concentration C H is equal to the sum between the lattice hydrogen concentration C L and the trapped hydrogen concentration C T . Assuming that we can use a scale invariance, we can transpose this relation to the average concentrations, thus giving equation (II.2.11): In this section we studied the effects of trapping on hydrogen diffusion. While traps reduce the steadystate flux and the effective diffusion coefficient, they also increase the value of the effective subsurface concentrations, as well as the total hydrogen concentration in the membrane. However, hydrogen trapping is not the only phenomenon affecting the diffusion during electrochemical permeation test; the presence of a surface layer also impedes on the diffusion. Thus, we now need to specifically study the effects of a surface layer, without considering trapping.

H L T C C C  (II.

III. Effects of a surface layer 1. Numerical model

In this section, we consider the surface layer at the exit side of the membrane. To avoid any interference of trapping, we only consider the system as two phases; the membrane lattice has a Table II.2 lists the parameters of the model. The lattice diffusion coefficient is kept equal to 1.2×10 -9 m 2 /s to represent martensitic steels. We kept the same boundary conditions used in section II;

C 0 and C s are respectively equal to 1 mol/m 3 and 0 mol/m 3 . While oxide layers are usually 5 nm-thick

[Bruzzoni92], we increased this value up to 100 nm to deal with palladium coatings. According to Devanathan and Stachurski [Devanathan62], the diffusion coefficient of hydrogen in palladium is equal to 10 -11 m 2 /s. For the oxide layers, the diffusion coefficient ranges between 10 -14 m 2 /s

[Schomberg96] and 10 -21 m 2 /s [Bruzzoni92]. To take into account the palladium and the oxide layers, our surface layer diffusion coefficient will take values between 10 -10 and 10 -21 m 2 /s. First of all, we need to check the effects of the surface layer on the primary data extracted from permeation tests, the hydrogen flux. To do so, we analyze the influence of the diffusion coefficient and the layer thickness.

Effects on the hydrogen flux a. Effects of the surface layer thickness and diffusion coefficient

The evolution of the hydrogen flux as a function of time is exhibited in 

b. Behavior of the steady-state flux

The steady-state flux J max is affected by both the diffusion coefficient and thickness of the surface layer. In section II, we demonstrated that J max was proportional to the inverse of the thickness of the membrane, even with trapping. We present in Figure II.26 the evolution of J max as a function of the inverse of the total thickness of the membrane e = e m + e ox for several surface layer diffusion coefficients. For D ox = 10 -10 m 2 /s, J max evolves linearly with the inverse of the thickness. However, when the diffusion coefficient of the layer decreases, J max is reduced and loses its linearity, getting a two-stage profile. First, J max increases with 1/e, and then its value stabilizes. Since the evolution of J max as a function of the inverse of the thickness is not linear, we can alter the equation describing the evolution of J max (equation (II.2.1)) to take into account the effects of the surface layer. We obtain equation (II.3.1). The parameter β represents the effects of the surface layer. 

Effective diffusion coefficient

The modification of the steady-state flux was described by the parameter β which is not only a function of the surface layer thickness and diffusion coefficient, but also of the thickness of the membrane. Consequently, the effective diffusion coefficient D eff may be modified by D ox , e ox and e m . Since the composite model cannot be applied, the behavior of D eff as a function of the D ox can be characterized by an empiric law, using the parameter β to take into account D ox , e ox and e m . The equation is empirically determined using a double logistic law. Doing so, we obtain equation (II.3.4).
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To check is equation (II. 

Hydrogen concentrations

In section II, we determined that the hydrogen concentration profiles in the membrane are linear in absence of trapping. However, the presence of the surface layer affects these profiles, since the system is composed by two phases. The membrane-layer interface concentration at the steady-state is now known; we may identify the average hydrogen concentration, and compare its value with the effective subsurface concentration C 0eff .

a. Concentration profiles

c. Average concentration

The average hydrogen concentration at steady-state <C L > is often related to the hydrogen concentration C 0 in the literature. In the case of palladium, D ox = 10 -10 m 2 /s. In that case, β << 1, and In this section, we studied the effects of a surface layer on hydrogen diffusion without considering trapping. The surface layer reduces the effective diffusion coefficient and the effective subsurface concentration C 0eff . The two-phases system also alters the concentration profiles, depending on the strength of the barrier effect of the layer. Now that we defined the separate effects of trapping in section II and the surface layer in section III, we need to consider both conditions at the same time.

C 1max is close to zero. We obtain <C L > = C 0 /2.
Indeed, hydrogen trapping and the surface layer present opposites effects on the effective subsurface concentration; the former increases C 0eff while the latter diminishes its value. The study of both effects should help the determination of predominant effects, and the conditions of predominance.

IV. Combined effects of hydrogen trapping and a surface layer 1. Numerical model

In the previous sections, we separately studied the effects of trapping and the surface layer. To consider both at the same time, we input the parameters used in section II and III, listed in Table II.3.

Only two parameters from section II and III are different in this study. First, we demonstrated in section I that the trap binding energy ΔE T had to be high enough for trapping to affect the diffusivity.

From this analysis, we only select a constant trap binding energy in this model, ΔE T = -0. 

Flux

Two different sets of analysis were performed to determine the effects of trapping and the oxide layer on the hydrogen flux. We defined the evolution of J max in sections II and III using equations (II.2.2) and (II. trapping and the surface layer reduce J max . Nevertheless, for diffusion coefficients below 10 -16 m 2 /s in the layer, the trap density does not affect J max anymore. We can then assert that the layer becomes predominant over trapping. Additionally, in a range where D ox is greater than 10 -13 m 2 /s and I below 1 mol/m 3 , the stationary flux J max stays independent from the trapping and surface layer effects. 

Effective diffusion coefficient

The modification of the behavior of the effective diffusion coefficient has been determined with equation (II.2.4) in section II. Also, the impact of the surface layer gave equation (II.3.4) in section III.

Since hydrogen trapping only biased the lattice diffusion coefficient with the trapping parameter µ (equation (II.2.9)), we can suppose that trapping will infer in the same way for the evolution with an oxide layer. To do so, we replaced in equation (II.3.4) all lattice diffusion coefficients D L by its biased value, D L µ. Since D L also appears in β, the barrier effect parameter will also be biased and replaced by βµ. Doing so, we obtain equation (II.4.2). induce a drop of D eff . Because of these effects, the effective diffusion coefficient measured for martensitic steels (shown in the white square) is lower than D L by several orders of magnitude, but seems to be independent from the oxide layer. Knowing J max and D eff , we can now calculate the effective subsurface hydrogen concentration C 0eff .

Unlike J max and D eff , we demonstrated in section II and III that the effects of trapping and the surface layer are opposed.

Effective subsurface hydrogen concentration

Using equation (II.1.7), the evolution of C 0eff can be described by replacing J max and D eff by their specific equations (II. value is below C 0 in the red area (domain {D2}), and the green area corresponds to the region where C 0eff is higher than C 0 (domain {D3}). The shaded blue domain coincides with the equality between C 0 and C 0eff (domain {D1}), where no correction is required. When D L /D ox = 10 6 , the influence of hydrogen trapping is inhibited. For martensitic steels (the white square), the diffusion coefficient of hydrogen in the oxide is close to 10 -15 m 2 /s, while the trap density evolves between 9.8 mol/m 3 and 100 mol/m 3 . Under those specific conditions, C 0eff is close to C 0 (domain {D4}), and the experimental approach is correct, in opposition to our results concerning only the trapping effects. 

C 0eff = C 0 {D1} Martensitic steels (a) (b) C 0eff > C 0 C 0eff > C 0 C 0eff < C 0 C 0eff < C 0
The behavior of hydrogen concentrations has been described in the previous sections. Here, the combined effects of trapping and the surface layer on these concentrations also require a dedicated study.

Hydrogen concentrations

While hydrogen trapping alters the linearity of the lattice diffusion coefficient C L , and increases the trapped hydrogen concentration C T , the surface layer also impacts the concentration profiles, due to the two-phase system. First, we analyze the modifications of the profiles due to the interactions between trapping and the surface layer.

a. Concentration profiles

The lattice concentration of hydrogen C L at the steady-state is plotted in Knowing the behavior of the membrane-layer interface concentration, we can compare the effective subsurface hydrogen concentration C 0eff to the total hydrogen concentration.

c. Comparison with the effective subsurface hydrogen concentration

For palladium-coated steel membranes, the total average hydrogen concentration <C> should be equal to C 0eff / 2. But, with membranes covered by an oxide layer with a diffusion coefficient lower than in the membrane, <C> and C 0eff should be equal. From Our model is now fully established; we are able to determine the evolution of the effective quantities calculated from permeation tests. Nevertheless, these calculations require several parameters, and thus numerous experiments. We can however apply this model to experimental data. Knowing some of the characteristics of the material, we can give an estimation of the unknown characteristics of the material. Also, we can check some of the assumptions based on the electrochemical permeation technique.

V. Comparison between experimental and numerical analysis 1. Approach of study

To apply our model to several experimental studies, we consider hydrogen trapping and the presence of an oxide layer or a palladium layer at the exit side of the membrane. Our approach is depicted in 

α-iron a. Parameters of the model

To consider α-iron, our parameters take values as indicated in Table II. 4. The thickness of the membrane ranges between 0.01 and 2 mm. α-iron presents few strong traps [Kumnick80], and can be covered either by a palladium layer or an oxide layer. The diffusion coefficient of hydrogen in iron is well known [Bruzzoni99, Jiang04] and equal to 10 -8 m 2 /s. The entry side hydrogen concentration, the surface layer diffusion coefficient and the trap densities will be modified along the different cases presented in this section. The thickness of the surface layer is taken equal to 10 nm [Bruzzoni92]. In the case of an oxide layer, the surface state alters the initial C 0 [Casanova96, Voloshchuk12] and holds back the diffusivity. Since we demonstrated in section II that the diffusivity is slowed down by trapping, the high trapping density layer due to the mechanical polishing acts like an oxide layer (reduction of D eff ). We can suppose that the initial C 0 will also be affected by this layer. Likewise, to match the experimental data with our model, we need to take into account the modifications of trap density N T and the initial hydrogen concentration C 0 with the thickness of the membrane. Since we had to modify N T , we also need to change the value of C 0 . We started from C 0 = 0.3 mol/m 3 for thick membranes and increased it with the reduction of the membrane thickness, up to 1 mol/m 3 .

The evolution of the C 0 as a function of the thickness is presented in section V.2.d. and discussed in terms of the effects of the surface preparation.

Some authors [Brass98, Addach09] studied the effect of the oxide layer instead of adding a palladium layer. Figure II.56b displays their results, with the comparison with our numerical study. Unlike the case with palladium, the steady-state does not evolve linearly as a function of the inverse of the membrane thickness. To be able to match the experimental data, we had to determine the diffusion coefficient of hydrogen inside the oxide layer and the initial subsurface hydrogen concentration C 0 .

Assuming that the oxide layer on α-iron is the same in both studies, we selected a diffusion coefficient Now that we accorded the experimental data and our numerical analysis with the steady-state flux, we focus our analysis on the effective diffusion coefficient calculated from the flux curves. GND ranges between 2 ×10 12 and 2.8×10 14 m -2 . The surface state here considerably alters the dislocation density. In the case of the oxide layer, we obtain dislocation densities between 5.5 ×10 14 and 2.7×10 15 m -2 . From these results, we can say that the surface state has less influence than in the case of palladium, since the iron was not annealed in the studies of Brass and Addach. 

D

c. Effective diffusion coefficient and dislocation density

d. Evolution of the hydrogen concentrations

The effective subsurface concentration is calculated from equation (II.1.7). To conclude, the difference observed between the data presented here, with a palladium coating or an oxide layer, cannot only be interpreted in terms of the oxide layer, but also require the consideration of the heat treatments (annealed materials or not).

Martensitic steels a. Parameters of the model

In this section we consider a model for martensitic steels with the parameters indicated in Table II.5.

The thickness of the membranes ranges between 0.1 and 2 mm. Unlike α-iron, martensitic steels present numerous traps, such as precipitates, inclusions, etc. The values of N T are thus higher than for the case of α-iron. Using the studies of Frappart [Frappart11a], we take the diffusion coefficient of hydrogen in martensitic steels equal to 1.2×10 -9 m 2 /s. We only consider cases with the surface layer covered by an oxide layer. The entry side hydrogen concentration, the oxide layer diffusion coefficient and the trap densities will be modified for the two cases studied here. The thickness of the surface layer is kept equal to 10 nm. Surface layer diffusion coefficient 10 -14 or 10 -15 m 2 /s (oxide) T Temperature 300 K

b. Evolution of the steady-state flux

As we demonstrated in section V.2, the mechanical polishing of the materials affects the trap density by creating a thin deformed layer at the surface. Depending on the surface preparation, the deformed layer can however be discarded in our calculation. This is specifically the case for the work of Using the correlation between the experimental data and our numerical analysis on the flux curves, we now can verify the effective diffusion coefficient and the effective subsurface hydrogen concentration, in the same way we performed for α-iron. 

c. Evolution of Deff and C0eff
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studies of α-iron, we used a geometric model based on dislocation cores to associate the trap density with the dislocation density. In the case of martensitic steels, the different defects do not allow the determination of the dislocation density with our simple model. For thinner membranes, C 0eff diminishes with the thickness. This means that the effects of the oxide layer counter-balance the effects of traps and reduce the C 0eff . However, due to the very high trap density, the value of C 0eff is higher than C 0 . We managed in both figures to match the experimental data with our numerical model. However, the case of the AF1410 steel led to very high subsurface hydrogen concentrations. The model was initially designed by taking into account concentrations between 0.1 and 5 mol/m 3 . In the case of the AF1410 steel, we exceed this range by a fair amount. It is important to be cautious about the results obtained using the model. In our case, the values seem relevant, but we had to input a very high trap density. Further investigations on the limits of the model should be done to ensure a rigorous analysis. 

VI. Summary

In this chapter, we presented a numerical approach based on the electrochemical permeation of hydrogen through a homogeneous membrane. Our study was divided in three parts to be able to correctly identify the separate phenomena affecting hydrogen diffusion. For each case, we followed the approach of study used with the electrochemical permeation; by first extracting the hydrogen flux at the exit side of the membrane, we obtained the steady-state flux, and calculated the effective diffusion coefficient and the effective subsurface hydrogen concentration. We also took into consideration the concentration profiles and their average values. Then, we established equations to describe the behavior of J max , D eff and C 0eff as a function of the properties of the materials.

All the equations are displayed in Table II.6. 
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Once the equations were established, we applied our model to experimental results taken from the literature, especially on α-iron and martensitic steel. Using our model, we determined the trap densities in relation with the deformation state due to mechanical polishing, as well as the subsurface hydrogen concentrations. We corroborated the experimental results for both materials, though by being cautious on the validity of our model for very high hydrogen concentrations.

Since this chapter focused on the charging step of the permeation process, the next chapter deals with the desorption step. In chapter III, the effects of hydrogen trapping on hydrogen desorption are discussed, by using several trapping models.

Chapter III

Hydrogen trapping effects on hydrogen desorption

The second chapter led us to a numerical analysis of the diffusion of hydrogen through a homogeneous membrane. Using electrochemical permeation tests as reference, we were able to determine the separated effects of trapping and the presence of a surface layer on the exit side of the membrane. The evolution of the hydrogen concentration in the membrane was also determined. However, we only considered the charging step of the electrochemical permeation process. We also need to consider the last part of the technique, which is the desorption step. Experimentally, the desorption enables us to evaluate the concentration of hydrogen inside the membrane, and the diffusion coefficient free of the trapping effects. Thus, we need to modify our numerical model to analyze the desorption test. Nevertheless, some questions arise; our model took into account some hypotheses to simplify the diffusion equations whereas during the desorption step, those hypotheses first need to be validated. The present chapter is divided into three parts:

 First, we use our model presented in chapter 2, to study the hydrogen desorption step. Doing so allows the verification of the hypothesis and their validity. The effects of trapping on hydrogen desorption are presented.

 Then, we modify our model to ignore the initial hypothesis, to be able to take into account the separate behaviors of the lattice and trapped hydrogen. To do so, we use the implicit form of the diffusion equation, where the concentrations are linked by their derivative and not their direct value. Some questions about the behavior of hydrogen need to be answered to characterize the diffusion with such a model.

 Finally, the model is improved by taking into account two kinds of trapping sites; reversible and irreversible traps. Doing so should give us access to the understanding of the mechanisms altering hydrogen desorption.

Before describing each set of study, we define the numerical approach that applies to the three first steps of the study; the characteristics of the model and the used methods. The modifications of the numerical model for each specific section are defined in the corresponding parts. Here, we only present the general model and the extraction of data.

I. Numerical approach 1. Numerical model

Following the approach described in the second chapter, we simulate electrochemical permeation tests with the FEA software Comsol Multiphysics, associated with the numerical computing environment MATLAB. We consider the diffusion in a metallic membrane presented in Figure III.1a. The dimensions of the membrane are the thickness e m and the height h m , with a diffusion occurring along the x-axis. An initial entry side hydrogen concentration C 0 is imposed on the left boundary while a zero concentration C s is set on the right side boundary. We assume that C 0 does not evolve during the permeation process. The initial hydrogen concentration inside the membrane is taken equal to zero, and symmetry conditions are imposed on the boundaries parallel to the diffusion. The problem is solved until the hydrogen flux reaches the steady-state. At that point, we reduce the entry side hydrogen concentration C 0 to zero, to interrupt hydrogen charging. Doing so allows us to begin the calculation to measure hydrogen desorption.

The lattice diffusion coefficient of hydrogen and the lattice sites density inside the material are respectively noted D L and N L . Hydrogen trapping is taken into account in the membrane. However, the equations that define hydrogen trapping are modified along the three parts of this chapter, including changes of the parameters. Thus, the equations and parameters are detailed in the corresponding sections of this chapter. Unlike the second chapter, we do not consider the influence of a surface layer on hydrogen diffusion; we focus on the effects of hydrogen trapping only. 

Extraction of data

In the second chapter, we demonstrated that simulating the charging step of electrochemical permeation tests allows us to extract the evolution of the hydrogen flux J as a function of time on the exit side of the membrane. From the flux, we extracted the steady-state flux J max , the effective diffusion coefficient D eff and the effective subsurface hydrogen concentration C 0eff . Also, we obtained the evolution of the hydrogen concentration inside the membrane. The methods used to extract data for the charging step remain the same.

For the desorption step, we first extract the evolution of the flux as a function of time. However, since hydrogen charging is interrupted, we need to consider the two faces of the material, since hydrogen may desorb by the exit side, but also by the entry side. The diffusion still occurs along the x-axis, so we extract the hydrogen fluxes on one single point at the exit side of the membrane, and a single point at the entry side. Doing so, we obtain the value of the steady-state fluxes, J max, entry and J max,exit .

Experimentally, the exit side desorption curve is used to determine the effective diffusion coefficient.

To distinguish the diffusion coefficients calculated from the charging and desorption step, they are respectively noted D eff,c and D eff,d . Using the approach based on the work of Zakroczymski Meanwhile, the area under the desorption curve corresponds to the concentration of hydrogen that exited the membrane, including lattice hydrogen, but also reversibly trapped hydrogen C Tr . The difference between the areas of both curves corresponds to the reversibly trapped hydrogen.

However, the desorption curve at the exit side does not suffice to determine the total hydrogen concentrations. Indeed, Zakroczymski calculated that only one third of the hydrogen leaves the 3
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Using the numerical analysis, we are however able to calculate the desorption flux at the entry side too, as well as the total average hydrogen concentration. Doing so avoids the use of the factor 3 to get the total concentrations. For further comparisons between the concentrations extracted from the desorption curves and the concentrations calculated with the charging step, a subscript is added to the variable names, whether c or d for the charging and desorption methods.

Time (s)

Experimental Model

In the next part, we implement the same equations as in the second chapter to consider hydrogen desorption, and study the evolution of the hydrogen diffusion coefficient and the hydrogen concentrations. III.1 lists the parameters of the model. The thickness of the membrane e m ranges between 0.1 and 1 mm. The lattice diffusion coefficient D L and the lattice sites density N L are adjusted to consider martensitic steels, giving respectively D L = 1.2×10 -9 m 2 /s and N L = 2.108×10 5 mol/m 3 . The trap binding energy ΔE T ranges between -0.1 and -0.3 eV while the trap density is taken between 10 -4 and depicts the evolution of the ratio between both fluxes as a function of the trap density N T , for two trap binding energies. For ΔE T = -0.1 eV, i.e. for weak trapping, the ratio remains the same. However, for ΔE T = -0.3 eV, the ratio begins at the same value and then decreases when N T is greater than 0.03 mol/m 3 . It is only with a strong influence of hydrogen trapping that the ratio is affected. Since the flux fluctuates between the entry and exit side during the hydrogen desorption step, we now study the charging and desorption diffusion coefficients. By comparing the desorption curve with the solution of Fick's laws, we can calculate the hydrogen concentrations inside the membrane.

II. Hydrogen desorption using the explicit model 1. Numerical model

Behavior of the permeation flux

Effective diffusion coefficients

Hydrogen concentrations a. Ratio between the entry and exit side desorption

According to the calculations of Zakroczymski [Zakroczymski06], one third of the hydrogen escapes the membrane by the exit side while the remaining hydrogen leaves from the entry side. To confirm these calculations, we first consider the membrane with no hydrogen trapping (ΔE T = -0.1 eV and N T = 10 -4 mol/m 3 ). Doing so, the area under the desorption curves directly gives access to the total hydrogen concentration. By solving Fick's laws for a model with no trapping, the hydrogen concentration is known once the charging is completed, and it is equal to C 0 / 2. Now that we checked the ratio between the entry and exit side of the membrane, we consider the evolution of the hydrogen concentrations as a function of the trap density.

b. Lattice and trapped hydrogen concentrations

In this subsection we compare the behavior of the hydrogen concentrations, directly calculated at the steady-state by our FEA software, and the concentrations calculated from the desorption flux curve. Since the charging and desorption lattice hydrogen concentrations were different, we also need to characterize the evolutions of the trapped hydrogen concentrations. To do so, we also consider trapped hydrogen concentrations at the charging and the desorption steps. Since we did not distinguish irreversible from reversible trapping in this model, the desorption method only allows the calculation of the reversibly trapped hydrogen concentration. Assuming that the trap binding energy also includes both kinds of trapping, and that <C T,d > corresponds to the reversibly trapped hydrogen concentration <C Tr >, we may calculate the irreversible hydrogen concentration <C Tir > by using equation (III.2.9), where <C Tir > is the difference between the trapped hydrogen concentrations from the charging and desorption steps. binding energy ΔE T = -0.3 eV, the irreversibly trapped hydrogen concentration evolves linearly with the trap density when N T is greater than 0.1 mol/m3 . In that case, hydrogen trapping becomes too strong, and the irreversibly trapped hydrogen concentration is directly depending on the trap density. To get a better understanding of the behavior of hydrogen inside the membrane during the desorption, we now study the evolution of the hydrogen concentrations as a function of time. 

c. Concentrations as a function of time

III. Hydrogen desorption using the implicit equation 1. Numerical model a. Equations

To consider the diffusion and the trapping of hydrogen with no prior simplification, we first need to consider the diffusion of the total hydrogen concentration C H . We consider the second Fick's law, and we write the total hydrogen concentration as the sum of the lattice and the trapped hydrogen 
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The probability that hydrogen atoms leave the lattice or trap sites depends on the binding energies of the corresponding sites. Figure III.16 pictures the binding energies for a lattice and a trap site. The energy barrier for lattice sites is noted E L while the energy for trap sites is called E T . The trap binding energy is higher than the lattice binding energy.

Hydrogen atoms may escape the lattice or the trap sites if they overcome the energy barrier. Using the energies E L and E T , we define Γ i in equation (III.3.7) the jump rate of an hydrogen atom from an i-site.

To consider the lattice and the trap sites, we replace the i with the corresponding subscript (L or T).

exp i i B E kT       (III.3.7)
ν is the jump frequency, k B the Boltzmann constant, and T the temperature. However, the jump rate does not suffice to characterize the variation of hydrogen concentrations. Indeed, the probability P j of free neighboring sites j, defined by equation (III.3.8), also needs to be taken into account: 
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With N j the corresponding sites density, and θ j the sites occupancy, equal to the ratio between the concentrations of hydrogen into the site and the site density (C j / N j ). Finally, the variations of concentrations depend on the concentration of hydrogen into the sites that are escaped from. Using equations (III.3.7) and (III.3.8), we get equations (III.3.9) and (III.3.10):

(1 ) exp

(1 ) ( 1) III.2 lists the parameters of the model. We keep working on martensitic steels (D L = 1.2×10 -9 m 2 /s and N L = 2.108×10 5 mol/m 3 ), for membrane thicknesses between 0.1 and 1 mm. The main difference with the previous model lays in the sites binding energies. Instead of imposing the difference ΔE T between the energies, we clearly define both values. The lattice site binding energy E L is taken equal to 0.2 eV while the trap site binding energy E T ranges between 0.3 eV and 0.6 eV to take into account weak and strong trapping. Unlike the previous model, the binding energies are positive values; since no simplification was required in this model, we did not need to invert the contents of the exponentials.
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Since we want to mainly focus on the energy barriers, we only consider a fixed value of trap densities; N T = 21 mol/m 3 . This value coincides with the trap density in martensitic steels, and ensures a sufficiently high enough density for the traps to affect the hydrogen diffusion. used a resulting jump frequency of 0.1 THz in their calculations. Since the data from literature presents some discrepancies [You13], it is hard to obtain a proper value for the jump frequency of hydrogen. Thus, we chose to take a value in the same order of magnitude of these data; we took ν equal to 10 THz.
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Effects of trapping energies on hydrogen concentrations

In this section, the hydrogen concentrations are directly calculated by integrating the concentration profiles as a function of time in the membrane, as presented in equation (III.3.16): completely desorb. In the case of the average trapped hydrogen concentration <C T > displayed in Figure III.18b, the phenomenon is accentuated. For example, while <C T > starts to decrease for t = 0.1 with a low trap binding energy, the diminution only starts after 100 seconds for a high energy barrier.

Nevertheless both concentrations deplete in the same order of magnitude of time. be completed for <C L > and <C T > as a function of the trap binding energy E T . For this picture, the desorption time corresponds to the time required for the concentration to fall under 1% of its steadystate value. For E T between 0.3 and 0.4 eV for both concentrations, the desorption time is the same.

However, for higher trap binding energies, the desorption of <C T > is longer. While the lattice hydrogen concentration desorption time seems to stabilize for E T ≥ 0.55 eV, the trapped hydrogen concentration desorption time continues its increase. Even if we now have separate behaviors for the lattice and trapped hydrogen concentrations, we still do not have correct results for high trap binding energies. Indeed, trap with energies over 0.5 eV are supposed to be irreversible, but in all cases the trapped hydrogen concentration is completely drained in a short time. Even if it is longer for C T than for C L , the time is far too short to consider irreversible hydrogen trapping in the membrane. To correct this problem, we now need to take into account the jump frequencies of hydrogen atoms. Until now, we kept the same jump frequency ν in the equations (III.3.9) and (III.3.10), but the frequency may change depending on the sites. We need to characterize the effects of a variation of the jump frequency on the behavior of the hydrogen concentrations.

Impact of the jump frequency in trap sites

To more specifically consider the effects of the trapping frequency, we modify equation (III.3.11) into equation (III.3.17):
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With ν L and ν T the jump frequencies of hydrogen atoms from a lattice and a trap site, respectively.

We already selected the value of the jump frequency in a lattice site in section III.2; ν L = 10 THz. To study the effects of the jump frequency in trap sites, we more specifically focus on the ratio between ν T and ν L . Since the trapped hydrogen concentration is modified by the untrapping jump frequency ν T , the behavior of the lattice hydrogen concentration should be questioned. Indeed, the steady-state average lattice hydrogen concentration does not evolve, but the untrapping jump frequency may affect the behavior of <C L > during the desorption. To answer this question, Figure III.21a pictures the evolution of the normalized lattice hydrogen concentration as a function of time during hydrogen desorption, with a medium trap binding energy E T = 0.45 eV, for several untrapping frequencies. The evolution of <C L > may not be easily explained; while the desorption takes more time when the ratio ν T / ν L is equal to 0.01, further diminutions of this ratio reduce the time required for the desorption. Meanwhile, the evolution of the normalized trapped hydrogen concentration is depicted in Figure III.21b. Unlike <C L >, the trapped hydrogen concentration requires more time to be depleted when ν T decreases. For example, in the case of the ratio ν T / ν L equal to 10 -6 , <C L > clears out in about 1000 seconds, while it takes 10 9 seconds for <C T >. While the behavior of <C T > follows the evolution of the ratio ν T / ν L , we also need to understand the evolution of the average lattice hydrogen concentration <C L >. To do so, Figure III.22 depicts the evolution of the time required for <C L > to reach 1% of its steady-state value, for three trap binding energies, as a function of the ratio between the jump frequencies. The three curves follow the same trend with a peak shift; for E T = 0.3 eV, the desorption time is reached for ν T / ν L = 10 -6 . In the case of E T = 0.45 eV, the maximum is at ν T / ν L = 10 -3 . For a strong trap binding energy, the maximum value is reached at ν T / ν L = 10 -1 . An increase in the trap binding energy shifts the curve towards the higher trap jump frequencies. This phenomenon can be explained by considering the behavior of hydrogen atoms.

In the case of low trap binding energies, hydrogen atoms can easily escape trap sites if the untrapping frequency ν T is high. In that case, hydrogen trapping does not impede the lattice hydrogen diffusion. If however the untrapping frequency diminishes or the trap binding energy rises, hydrogen trapping also affects the lattice diffusion, thus increasing the desorption time. But, for a strong trap binding energy and a low untrapping frequency, hydrogen atoms cannot escape traps, so they do not affect lattice diffusion anymore, since they are strongly bound. Because of this, the lattice hydrogen is quickly desorbed. Meanwhile, the trapped hydrogen can also exit the membrane at a slower pace, as seen in 

IV. Hydrogen desorption by distinguishing the reversible from the irreversible trapping

Until now, we considered hydrogen diffusion by distinguishing only trapped hydrogen from lattice hydrogen. Each time, we attributed an energy barrier E i and a total trap density N T to characterize the global trapping phenomenon in the membrane. However, each kind of trap displays a specific energy barrier, and several trap densities must be defined. Hence, hydrogen diffusion needs to be characterized by taking into account n trap sites. First of all, we need to redefine the equations for hydrogen trapping.

Diffusion equations a. General approach for hydrogen diffusion with n sites

Assuming the equilibrium between the lattice and the trapped hydrogen concentrations, the evolution of the trapped hydrogen concentration C T as a function of time can be defined as a function of the temporal derivative of the hydrogen concentrations moving from lattice sites to trap sites, and vice versa. However, considering several types of trap sites, the evolution of C T is described as the sum of the evolutions of all concentrations in sites with the same energy barrier E, excluding lattice sites (L).

In the following equations, the subscripts i, j, k represent all possible sites, allowing us to give a general model. We can write:
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where C i is the hydrogen concentration in a i site of energy E i . The evolution of the concentration C i as a function of time depends on all sites that act as a source or sink of hydrogen. This means that we may divide the evolution in two contributions, in equation (III.4.2):
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The number of atoms moving from one site to another is proportional to the hydrogen concentration in the source site C i , the jump rate of a hydrogen atom in the site i: Γ i , and the probability of getting a free neighbor sink site j: P j . Obviously, lattice sites also act as sources or sinks and need to be considered as well as sites.

The jump rate from a site i to a site j is expressed using a jump frequency ν i in relation with the vibrational states of hydrogen atoms in the site. The energy barrier E i required to exit the site also intervenes. Thus, we get equation (III.4.3):
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The probability of having a free neighbor site j is calculated from the number on non-occupied sites j divided by the total occupancy of all sites k in the material, thus giving equation (III.4.4):
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with N k the density of sites k and θ k the occupancy of the k sites, equal to the ratio between the concentration of hydrogen in k sites and their density. Thus, we write the evolution of the hydrogen concentration in an i site with equation (III.4.5):
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Finally, by combining equations (III.4.1), (III.4.2) and (III.4.5), we get the evolution of the total trapped hydrogen concentration for n sites: Based on this experimental analysis, we may consider only three types of sites for our calculations: lattice sites, reversible traps and irreversible traps. Doing so, we consider sites as depicted in Three jump frequencies now need to be taken into account. First, the jump frequency from a lattice site ν L is still kept at 10 THz. Recent works [START_REF] Metsue | Formation et diffusion des lacunes dans le nickel: etude par calculs ab initio[END_REF] showed that elastic fields around vacancies do not modify the phonons spectrum, so we may assume that the jump frequency of a reversible trap site is in the same order of magnitude as ν L . Thus, we also take ν Tr equal to 10 THz. We demonstrated in section III that a decrease in the jump frequency of a trap site emphasized the effects of trapping. So, we also modify the jump frequency of an irreversible trap site ν Tir to check its effects. Jump frequency from an irreversible trap site 0.01 to 10 THz
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Numerical model

Effects of the irreversible trap jump frequency

First of all, we check the effects of the irreversible trap jump frequency ν Tir on the hydrogen concentrations. The average concentrations are calculated from equation (III.4.12), where i is replaced by the corresponding subscript L, Tr or Tir. With the model using only two kinds of sites in section III, we demonstrated that for a strong trap binding energy, a low jump frequency suppressed the interactions between the lattice and the trapped hydrogen. Thus, reducing the jump frequency accelerates the desorption of the lattice hydrogen concentration, while slowing down the desorption of the trapped hydrogen. Here, we seem to obtain a similar effect; the lattice hydrogen desorption is sped up by the reduction of ν Tir . Oddly, the reversible The behavior of <C Tr > follows exactly <C L >, while only its steady-state value is different. For two kinds of sites, hydrogen trapping was preponderant over the lattice diffusion. Here, we have irreversible trapping dominating lattice diffusion but also reversible trapping. In that way, reversible trapping is not able to influence hydrogen lattice diffusion. When hydrogen is unable to escape irreversible traps due to the jump frequency, <C L > and <C Tr > behave in the same way, and their desorption is accelerated. Thus, we may consider a "diffusible" hydrogen concentration <C D > that would be the sum of the lattice and the reversibly trapped hydrogen concentration <C L > + <C Tr >.

This behavior had already been considered in the literature; from electrochemical permeation tests, the desorption flux curve is associated with the "diffusible" hydrogen concentration

C D . [Frappart11b].
It appears that the irreversible hydrogen trapping only appears when both the trap binding energy and the jump frequencies are low. However, when decreasing the jump frequency, we fill up all the traps, which should not happen. Indeed, the experimental results of Oudriss et al. [Oudriss13] showed an increase in the irreversibly trapped hydrogen concentration. This augmentation is only possible if there are irreversible trap sites that are not filled with hydrogen atoms. Thus, we need to consider cases with <C Tir > lower than N Tir . One of the parameters that may affect the filling of the traps is the subsurface hydrogen concentration C 0 . We analyze its influence in the next subsection. Nonetheless, even if all traps are not filled, <C Tir > still diminishes during the desorption, and we do not observe a true irreversibility in hydrogen trapping, and we need to question the behavior of irreversible hydrogen trapping.

Effects of the subsurface hydrogen concentration

Behavior of irreversibly trapped hydrogen

Since only the irreversible hydrogen trapping affects the "diffusible" hydrogen, we plotted in , 00 To consider a similar case, we modify our model for the hydrogen charging process. Instead of imposing a zero concentration at the exit side of the membrane, we forbid hydrogen to leave the membrane by that side. To be able to observe an increase in the irreversibly trapped hydrogen concentration, we need to set-up a case where hydrogen charging does not totally fill all irreversible hydrogen traps. To do so, we take ν Tir equal to ν L , and a subsurface concentration C 0 equal to 0.1. Experimentally, the reversibly trapped hydrogen concentration starts from a very low value and increase thereafter, which we do not get with this model either. Heterogeneities within the microstructure would lead to variations in the trap density along the diffusion front, for example clusters of traps, which could affect the hydrogen concentrations during hydrogen desorption.

Under those conditions, we observed in

V. Summary

In this chapter, we presented a numerical approach based on the effects of hydrogen trapping on the desorption curves, by modelling the electrochemical permeation. Our study was divided in three steps. To get rid of those hypotheses, we used the former diffusion equation, with no simplification, by imposing the behavior of the temporal derivative of the concentration instead of its direct value. Doing so, the lattice and the trapped hydrogen showed distinct behaviors. However, even with very strong energy barriers, the hydrogen desorption was too fast to be representative of experimental results. The jump frequencies of hydrogen atoms in trap sites had to be considered and modified; a decrease of the jump frequency slows down the desorption of the trapped hydrogen concentrations. For very low jump frequencies, the trapped hydrogen does not influence the lattice hydrogen anymore.

Even if we observed distinct behaviors of the lattice and the trapped hydrogen, we also had to consider two kinds of traps at the same time; reversible and irreversible traps. Doing so, the irreversibly trapped hydrogen becomes dominant over the reversibly trapped hydrogen, thus enabling to consider a "diffusible" concentration C D equal to the sum between the lattice and reversibly trapped hydrogen concentrations.

However, our approach is not sufficient enough to observe the experimental behavior of the hydrogen concentrations in the membrane. Experimentally, the irreversibly trapped hydrogen concentration increases during the desorption, but we do not obtain such behavior with our model on a homogeneous membrane. Instead of working with a homogeneous membrane, we need to consider the effects of the microstructure on the diffusion of hydrogen. The fourth chapter deals with the influence of the microstructure on the charging step during the permeation process. More specifically, we focus on the effects of the grain boundaries within a polycrystalline membrane.

Chapter IV

Hydrogen diffusion within polycrystalline aggregates

Chapter IV -Table of The second and third chapters led us to a numerical analysis of the diffusion of hydrogen through a homogeneous membrane. The effects of hydrogen trapping and the presence of a surface layer on the exit side of the membrane were analyzed and discussed. However, as explained in the first chapter, the microstructure of the material needs to be taken into account. To do so, we need to emphasize the effects of the grain boundaries. diffusion in nickel, it was determined that the high diffusivity paths were due to random grain boundaries, while the special grain boundaries were preferential areas for hydrogen segregation. We chose to base our work in polycrystalline materials on nickel. Doing so, we need to consider both kinds of grain boundaries. However, the main goal of our study is to separate the effects of each phenomenon on hydrogen diffusion. In that way, we first need to consider only one kind of grain boundary.

In section V.1 of the first chapter, we described the different classifications of grain boundaries. To decide upon the selected grain boundary kind, we questioned in Figure IV. the probability of percolation of random and special grain boundaries in nickel, from the work of Oudriss et al.

[Oudriss12c].

Based on the calculations of Schuh and Kumar [Schuh03b], the probability of connectivity of random grain boundaries is associated to the probability of connectivity of random triple junctions (J 0 + J 1 ). In the same way, the sum J 2 + J 3 corresponds to the probability of connectivity of special grain boundaries. Figure IV.1 depicts the evolution of both probabilities as a function of the grain size in the case of polycrystalline nickel. For any grain size, the connectivity probability of random grain boundaries is 80%. From these results, we decided to consider only random grain boundaries in a first model. Grain size (µm)

J 0 + J 1
This chapter is divided in two parts. First, we consider random grain boundaries with a simple model based on hexagonal grains with the same grain size. Then, we compare our results to a computergenerated microstructure based on Voronoi tessellations.

Before describing each set of study, we define the numerical approach that applies to the steps of the study; the characteristics of the model and the methods used. The modifications of the numerical model for each specific section are defined in the corresponding parts. Here, we only present the general model and the methods of extraction of data.

I. Grain boundaries accelerative behavior 1. Numerical approach a. Definition of the model

Using the approach from the second and third chapters, electrochemical permeation tests are simulated with the FEA software Comsol Multiphysics, associated with the numerical computing environment MATLAB. However, we do not consider a homogeneous membrane anymore. Two kinds of polycrystalline microstructures are investigated; either uniform periodic hexagonal grains, as shown in during the permeation process. On the right side of the membrane, a zero concentration C s is imposed to reproduce the full oxidation of hydrogen atoms at the exit side of the metallic membrane during permeation. Unlike chapters I and II, the membrane is not homogenous anymore, so the diffusion cannot be considered along the x-axis only. We also need to consider the evolution of the concentrations along the y-axis. Nonetheless, since permeation membranes are thin, we can impose symmetry conditions on the boundaries parallel to the diffusion. Since the geometry of the grains is not regular, for each grain, the grain size is estimated to be the radius of a circle with the same area as the grain. Using the Poisson plot process to create the seeds of the Voronoi tessellation, the resulting grain size distribution is Gaussian, centered on the average grain size. Since hydrogen trapping is not implemented in this chapter, Fick's laws are considered at each node of the calculation, implemented using equation (IV.1.1). The hydrogen concentration depends on the x and y directions, and the isotropic hydrogen diffusion coefficient is a function of the different phases.
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with D i the diffusion coefficient of hydrogen in the corresponding node of the model. Since the membrane is heterogeneous, the mesh is defined by triangular elements in grains and triple junctions, while quadratic elements are set in the grain boundaries, as presented in 

b. Extraction of data

In the second chapter, we described the process of extraction of data from a simulated permeation test on a homogeneous membrane. Here, the same approach is kept; we first extract the hydrogen flux J at the exit side of the membrane as a function of time, getting access to the steady-state flux J max . From the flux, using the characteristical time t 10% , we calculate the effective diffusion coefficient D eff .

Knowing J max and D eff we determine the effective subsurface hydrogen concentration C 0eff . However, due to the heterogeneity of our membrane, slight variations are deemed to be taken into account.

While the exit side flux was the same at any point of the exist side of the homogeneous membrane, this is not the case for a heterogeneous membrane. During electrochemical permeation tests, the extracted hydrogen flux is the global response of the metallic membrane. To also take into account the whole exit side, we integrate the hydrogen flux calculated at any point of this side, with equation
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Since the flux becomes an average value on the exit side, the effective diffusion coefficient and the effective subsurface hydrogen concentration can be considered as average values too, given by the equations (IV.1.3) and (IV.1.4). In addition to the grain size and the grain boundary thickness, we also consider the fractions of grain boundaries in the membrane. Doing so, we can express the evolution of the effective quantities as a function of a single parameter instead of two. Even though the model is in two dimensions, we refer to the grain boundaries fractions as volume fractions within the membrane. In two dimensions, the grain boundary volume fraction f gb is calculated by dividing the area of grain boundaries by the total area of the membrane, in equation (IV.1.5):
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Another point of interest is the exit side of the membrane. Since the flux is calculated by integrating on the exit side, the surface fraction of the grain boundaries on the exit is likely to affect the flux.

Thus, we define a grain boundary surface fraction f s,gb calculated in equation (IV.1.6) by dividing the length of grain boundaries by the height of the membrane. An example case is presented in After extracting the effective quantities and the grain boundary fractions, we also focus on hydrogen concentrations within the membrane. Especially, in the case of the random Voronoi microstructure, we need to consider the statistical distributions of hydrogen inside the membrane.

Diffusion within a hexagonal microstructure a. Numerical model

In this section, we only consider hydrogen diffusion within a hexagonal microstructure, with random grain boundaries. For further comparisons with experimental works, the numerical analysis is based on nickel. Table IV.1 lists the parameters of the model. The membrane thickness e m and height h m are taken between 1 µm and 1 mm. We consider polycrystalline and nanocrystalline nickel, thus grain sizes between 100 nm and 10 µm. The grain boundary thicknesses are taken between 0.5 and 5 nm.

Permeation tests are simulated by imposing the initial entry concentration C 0 at 1 mol/m 3 and the exit side concentration C s at 0 mol/m 3 . According to the work of Abdelali Oudriss [Oudriss12c], the lattice hydrogen diffusion coefficient of hydrogen in nickel is around 9.10 -14 m 2 /s, while random grain boundaries have a diffusion coefficient close to 4.10 -10 m 2 /s. Hydrogen trapping is not considered in this model, so we can assume that the hydrogen diffusion coefficient in grains is equal to the lattice hydrogen diffusion coefficient. However in our model we do not consider a single value for the grain boundary diffusion coefficient. We modify D gb to analyze the effects of the grain boundaries on hydrogen diffusion. Since we study more specifically the effects in terms of the ratio D L / D gb , we rounded the values of the diffusion coefficients, thus taking D L equal to 10 -13 m 2 /s and D gb between 10 -13 and 10 -10 m 2 /s, giving a ratio D L / D gb between 1 and 10 3 . In the literature, triple junctions are referred as higher diffusivity paths than grain boundaries [Palumbo91], but we applied the diffusion coefficient of the grain boundaries in the triple junctions to abolish their effects in this section. Thus, the value of D tj also ranges between 10 -13 and 10 -10 m 2 /s. In section II, the effects of triple junctions are however discussed. 

D gb / D L is likely to affect J max . To validate this hypothesis, we ran several calculations on a membrane by decreasing its thickness while ensuring a constant grain boundary volume fraction in all calculations.

In that way, only the grain boundary surface fraction is altered, and we can specifically verify its influence. However, due to the specific hexagonal microstructure, only given surface fractions can be obtained while keeping a constant volume fraction. Another important parameter is the size of the membrane with respect to the grain size. Indeed, The behavior of the effective subsurface concentration C 0eff in domain III also needs to be quantified.

To do so, the evolution of C 0eff as a function of the grain boundary volume fraction f gb in domain III is depicted in Figure IV.15. C 0eff appears to be constant for any grain boundary volume fraction. In the first part of this work, we only considered a simple model with hexagonal microstructures.

However, real microstructures are not so periodic and regular. Thus, we also need to study random microstructures, closer to reality. In the next section, we propose to compare both microstructures.

Comparison between hexagon and random Voronoi tessellation microstructures a. Numerical model

To be able to compare the hexagonal microstructures with random Voronoi microstructures, we need to keep the same diffusion coefficients in the microstructure, still based on nickel. Table IV.2 lists the parameters of the model; the membrane thickness e m and height h m are taken between 1 µm and 1 mm.

We still consider polycrystalline and nanocrystalline nickel with average grain sizes between 100 nm and 10 µm and grain boundary thicknesses between 0.5 and 5 nm. The entry and exit hydrogen concentrations C 0 and C s are respectively maintained at 1 and 0 mol/m 3 . The hydrogen diffusion coefficient in grains is D L = 10 -13 m 2 /s. and between 10 -13 and 10 -10 m 2 /s for grain boundaries. The diffusion coefficient in triple junctions also ranges between 10 -13 and 10 -10 m 2 /s. 

b. Results

The flux of hydrogen measured on the exit side of the membranes is plotted as a function of time in for the hexagonal model and the Voronoi model. However, it remains important to be cautious of the grain boundary surface fraction on the exit side of the membrane. is depicted a function of time. To ensure a significant variation of hydrogen concentrations with grains and grain boundaries, we considered the ratio D gb / D L equal to 1000. We plotted in each picture the hydrogen presence in the membrane; the orange color represents the presence of hydrogen, meaning a concentration exceeding 1% of C 0 . There is no variation of color to distinguish the scales of concentration. In that way, we can only see the hydrogen diffusion in the membrane by its presence or absence. We retrieve here the diffusion kinetics described by Harrison for the case of the high grain boundary volume fraction. In other words, the microstructure affects the concentration profiles, and the effects increase with the grain boundary volume fraction. The variance associated with the concentration rapidly converges towards the constant value 0.004.

This value coincides with the variance of the geometric distribution of the microstructure, hence the distance between the grains. For concentrations over 0.6 C 0 , the hydrogen concentration variability is imposed by the geometric variability of the microstructure. The fractal behavior of the variability can be questioned. In other words, a given property (here the diffusion front: the hydrogen concentration along a x coordinate) depends of an invariance scale characteristic size if the distribution function P(u) matches a power-law (equation (IV.3.3))

[Dubrulle97] :
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The power law defines the absence of a characteristic size; any event (here the concentration C(y)) has the same proportion for any considered size (here the average hydrogen concentration along a given

x). In the present work, we count the number of cases N along the diffusion front x with the hydrogen concentration C(x,y) exceeding a given value C i (x). the membrane, where boundary conditions have the smallest influence. Thus, the fractal character of the concentration distribution can be considered as available for this space range. Following the principle of the first section of this chapter, we consider three phases within the membranes; grains, grain boundaries and triple junctions. However, unlike the cases in two Since a very high ratio between the grain size and grain boundary thickness would require an extremely high number of mesh elements, and thus excessive amount of computer memory, we chose to consider only nanocrystalline structures. Thus, we work on grain size λ between 50 and 100 nm, as presented in Table IV.3. The grain boundary thickness e gb is taken between 1 and 5 nm. We study membrane with thicknesses between 20 nm and 10 µm and we keep the boundary conditions used in section I; C 0 = 1 mol/m 3 and C s = 0 mol/m 3 . We still work on nickel, so the hydrogen diffusion coefficient in grains is D L = 10 -13 m 2 /s while we consider grain boundary as fast diffusivity paths, with D gb = 10 -10 m 2 /s. To consider the accelerative behavior of triple junctions [Palumbo91, Doyle95], we take the hydrogen diffusion coefficient in triple junctions between 10 -10 and 10 -7 m 2 /s. The process of data extraction remains the same. The main difference however comes from the calculation of the flux at the exit side of the membrane. While in two dimensions the flux was integrated on the exit side boundary, we need to consider in three dimensions the integration of the flux at the whole surface at the exit side. Thus, the exit hydrogen flux is calculated at a function of times using equation (IV.3.5): The effective diffusion coefficient D eff and the effective subsurface concentration C 0eff are then calculated using equations (IV.1.3) and (IV.1.4) from the first section. Nevertheless, in the case of D tj / D gb = 1000, the effective diffusion coefficient far exceeds the Hashin-Shtrikman bound. This is due to the difference in diffusion coefficients between the grain boundaries and triple junctions. To be able to determine a bound for this case, we consider the microstructure as a In section I, we determined that scale effects also affected the effective subsurface concentration.

Influence of the triple junctions

Since scale effects change because of the triple junctions, we also need to consider their effects on 

III. Summary

In this chapter, we presented a numerical approach of the electrochemical permeation through a polycrystalline membrane. Depending on the material, real microstructures can be very complex, so we base our approach on the polycrystalline from micro to nano sized nickel. Doing so, using the work of Oudriss [Oudriss12c], we focused on the most connective grain boundaries, acting as diffusion short-circuits: random grain boundaries. The effects of random grain boundaries on the characteristic values extracted from permeation tests are presented.

Since the microstructure of nickel may present different shapes, we divided our approach in three steps. First of all, we considered a simplified microstructure based on hexagonal-shaped grains. Then, we studied a microstructure created with random grains, using Voronoi diagrams. Finally, we extended our approach to a three-dimensional study to characterize the effects of triple junctions.

Diffusion short-circuits increase the effective diffusivity of the membrane. However, such shortcircuits also creates scale effects when the membrane thickness is lower than three times the grain size. This phenomenon is even stronger when the grain boundary volume fraction increases. So, in nanocrystalline materials, scale effects appear when the membrane thickness is lower than twelve times the grain size. Scale effects induce an overestimation of the effective diffusion coefficient, preventing the application of homogenization bounds such as Hashin-Shtrikman. Moreover, scale effects also lead to an underestimation of the effective subsurface concentration C 0eff .

While in two dimensions there is no connectivity between the triple junctions, their effects appear in three dimensions, and increase the diffusivity, as it is experimentally observed. Since triple junctions act as faster diffusivity paths, scale effects are amplified by triple junctions. In nanocrystalline materials, scale effects are inhibited for membrane thicknesses exceeding 100 times the grain size.

For random microstructures, we also presented a statistical analysis of the influence of the microstructure on the hydrogen concentrations in the material. When hydrogen is far from the exit and the entry side, a scale invariance appears; the microstructure does not affect the concentration profile.

Conclusion and prospects

In this work, our main goal was to separate the different effects impeding hydrogen diffusion through a thin membrane. To do so, we numerically simulated electrochemical permeation tests using finite elements methods. Doing so allowed us to characterize the influence of hydrogen trapping, the presence of a surface layer or coating, and the effects of the microstructure.

We first studied the influence of hydrogen trapping on hydrogen diffusion during the charging step of the electrochemical permeation technique. Using trapping equations taken from the literature, we distinguished the lattice hydrogen from the trapped hydrogen. Doing so, we determined that the diffusion was impeded by hydrogen trapping only when the trap density and the trap binding energy were high enough. If one of them was low, there were no noticeable effects of trapping. However, with strong trapping, we noticed a slowdown of hydrogen diffusion which led to an underestimation of the hydrogen diffusion coefficient and an overestimation of the effective subsurface concentration.

Nevertheless, hydrogen trapping was not the only phenomenon affecting hydrogen diffusion during permeation tests. The formation of an oxide layer at the exit side of the membrane also intervened.

Consequently, we then focused on the effects of an oxide layer or a palladium coating. This analysis emphasized a major reduction of the diffusion speed, and an underestimation of the effective subsurface hydrogen concentration. While the results obtained by studying trapping only were quite alarming for the experimental measurements found in the literature, the consideration of the oxide layer showed that both phenomena needed to be considered at the same time to be able to correctly interpret experimental results. Indeed we observed a competition between both phenomena. We then determined a specific balance between hydrogen trapping and the oxide layer diffusion coefficients, confirming that experimental measurements matched the properties of the materials. By applying our model to experimental data from the literature, we were able to determine diffusion coefficients and trap densities from experimental measurements on α-iron and martensitic steels.

After considering the influence of hydrogen trapping on hydrogen charging, we needed to analyze the effects on the second step of the permeation process, the desorption of hydrogen. To do so, we first kept the same trapping equations. In that way, we observed the decrease in the diffusivity due to hydrogen trapping, as well as an increase of the hydrogen concentrations in the material. However, the behavior of the lattice and trapped hydrogen concentrations were not distinguishable, since the trapping equations did not dissociate one from the other. To correct this issue, we modified our trapping model by linking the temporal derivative of the trapped hydrogen concentration to the lattice and the trapped hydrogen concentrations only. Doing so, we could observe a distinct behavior between both concentrations. However, the desorption durations was still too short to reproduce the experimental diffusion length, even with strong energy barriers. This error was due to the jump frequencies of hydrogen atoms in our model. While initially we considered that the trapping and untrapping frequencies were equal, a reduction of the untrapping frequency lengthened the desorption process.

Our study of the desorption process still did not totally apply to experimental studies. Indeed, experimentally, the trapped hydrogen concentrations are separated into two contributions; reversibly and irreversibly trapped hydrogen concentrations. So, we modified our model to take into account both trapped hydrogen concentrations. We determined separate behaviors of the reversibly and the irreversibly trapped hydrogen concentrations, but hydrogen was depleted for both during the desorption process, while experimental results demonstrated that the irreversibly trapped hydrogen concentration increased during that step.

To understand the divergence with the experimental results, we led our analysis toward the microstructure of the membrane. Microstructural defects are known to affect hydrogen diffusion. Until that point we only considered homogeneous membranes. Consequently we added the microstructure of the membrane in our model, especially to consider the influence of the grain boundaries. Since the behavior of the grain boundaries is heavily discussed in the literature, we based our model on the work of Abdelali Oudriss on nickel [Oudriss12c]. He determined that 80% of the connected grain boundaries were random grain boundaries, acting as fast diffusivity paths for hydrogen diffusion. We studied the effects of grain boundaries for two kinds of microstructure; regular hexagonal grains and random Voronoi grains. In both cases, the accelerative behavior of the grain boundaries was observed.

Also, we determined scale effects, depending on the ratio between the membrane thickness and the grain size. For membranes with a thickness lower than three times the grain size in microcrystalline materials, scale effects lead to an overestimation of the effective diffusion coefficient and an underestimation of the effective subsurface hydrogen concentration. In the case of nanocrystalline materials, scale effects are emphasized and appear for membrane thicknesses lower than twelve times the grain size. In parallel to the scale effects, scale invariances were determined in the case of the random Voronoi microstructures; when hydrogen is sufficiently distant from the surfaces of the membrane, the microstructure does not affect the concentration profiles in the membrane.

While grain boundaries present an influence on hydrogen diffusion, the triple junctions at the intersection between three grain boundaries are also likely to alter the behavior of hydrogen. In two dimensions, triple junctions are not connected to each other, and do not present any noticeable effect on the diffusion. In the literature, triples junctions are however associated as faster diffusivity paths.

To consider that effect, we created a model in three dimensions, with grains shaped as truncated octahedrons. Doing so allowed us to create a network of triple junctions and observe their diffusion short-circuit behavior. Scale effects are amplified by the triple junctions influence. Getting rid of such effects would require for example a membrane thickness equal to 100 times the grain size in nanocrystalline materials.

Since our main goal was to separate the different properties able to affect hydrogen diffusion, this study is only the first step towards a global understanding of hydrogen diffusion. Each part of our study could be improved with new elements to add some complexity to the models, step by step.

First of all, concerning the homogeneous membrane, we only imposed constant jump frequencies during the desorption step. Ab initio calculations could be achieved to characterize the behavior of lattice and trap sites with a change of equilibrium in the surrounding lattice. Doing so, the experimental rise of the irreversibly trapped hydrogen concentration could be reproduced. Also, we only characterized the desorption for homogeneous membrane, and we should apply the same approach to polycrystalline materials.

Concerning the effects of the microstructure, we worked with grains with the same diffusion coefficient, and a single phase of random grain boundaries, acting as diffusion short-circuits. Using the same classification, special grain boundaries also need to be studied, especially with several ratios between the random and the special grain boundary fractions. Such consideration will be done in the Instead of considering special grain boundaries with a constant diffusivity, adding hydrogen trapping would allow the determination of the trapped hydrogen concentrations and thus the modeling of hydrogen segregation at grain boundaries. Also, the calculation presented in Figure 1 distinguished random grain boundaries from special grain boundaries, but special grain boundaries should be further dissociated using the coincidence sites indexes, for example Σ3, Σ9 or Σ27. In the literature, Schuh et The grain size distribution should also be taken into account. In our work, we used normal grain size distributions for the random Voronoi model, but clusters of small grains would also affect the diffusion. An example of grain clustering is depicted in Figure 2. Depending on the material such grain configurations may exist, so analyzing their effects is also necessary. Finally, the evolution of hydrogen concentrations under mechanical stresses should be considered.

Experimentally, Simon Frappart [Frappart11a] and Abdelali Oudriss [Oudriss12c] studied the influence of mechanical stresses on hydrogen permeation. The deformation of the membrane during the permeation process increases the trap density in the material, while hydrogen weakens the material. By implementing this phenomenon into a numerical model, the interactions between hydrogen diffusion and the mechanical behavior of the material could be analyzed.

The list of prospects presented here is not exhaustive. All mechanisms playing a role on hydrogen diffusion and embrittlement act altogether. Therefore, numerical models should not try to reproduce all of them at the same time. A step-by-step study leading to a progressive understanding of all phenomena is preferable to eventually gain a full coverage of all the mechanisms and their interactions. 
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Après avoir défini le modèle, nous l'avons appliqué à certains résultats expérimentaux issus de la littérature, en particulier sur le fer-α et l'acier martensitique. Le modèle nous a permis de déterminer les densités de pièges associées à l'écrouissage des matériaux dû au polissage mécanique, ainsi que les concentrations d'hydrogène en subsurface. Notre modèle nous a permis de corroborer les résultats expérimentaux sur les deux matériaux, avec toutefois une réserve sur la validité du modèle pour de fortes concentrations en hydrogène.

Ce chapitre ayant porté sur la modélisation de l'étape de chargement de la méthode de perméation électrochimique, nous nous intéressons dans le chapitre suivant à la désorption. Le chapitre III présente les effets du piégeage de l'hydrogène sur la désorption, à partir de plusieurs modèles de piégeage.

Chapitre III -Effets du piégeage de l'hydrogène sur la désorption de l'hydrogène

Nous avons présenté au sein de ce chapitre une approche numérique portée sur les effets du piégeage de l'hydrogène sur les courbes de désorption modélisant la perméation électrochimique de l'hydrogène. Cette approche a été divisée en trois parties distinctes. Tout d'abord, la première partie s'est basée sur le modèle numérique employé dans le second chapitre, en utilisant la forme simplifiée des équations de piégeage issues de la littérature [McNabb63, Oriani70, Krom00]. Les phénomènes de piégeage entraînent un ralentissement de la désorption de l'hydrogène, et une augmentation des concentrations en hydrogène piégés dans le matériau. Cependant, les concentrations calculées à partir de la courbe de désorption ne correspondent pas toujours aux concentrations réelles dans le matériau, en particulier pour la concentration en hydrogène piégé. De plus, l'hydrogène piégé désorbe à la même vitesse que l'hydrogène interstitiel, dû aux hypothèses simplificatrices considérées lors de l'établissement du modèle. Afin de s'affranchir de ces hypothèses, l'équation initiale de diffusion de l'hydrogène a été considérée dans un deuxième temps, en imposant cette fois-ci le comportement de la dérivée de la concentration piégée par rapport au temps, et non sa valeur directe. De cette manière, les comportements de l'hydrogène interstitiel et piégé ont pu être dissociés. En revanche, même une barrière d'énergie importante ne suffisait pas pour ralentir la désorption de manière à correspondre aux résultats expérimentaux. Les fréquences de saut des atomes d'hydrogène dans les pièges à hydrogène devaient également être considérées et altérées. En effet, une diminution de la fréquence de saut entraîne alors un ralentissement des phénomènes de désorption de l'hydrogène piégé. A très basse fréquence de saut, l'hydrogène interstitiel n'est alors plus affecté par l'hydrogène piégé irréversiblement.

Bien que les comportements de l'hydrogène interstitiel et piégé soient distincts, il était également nécessaire de prendre en compte deux catégories de pièges simultanément ; les pièges réversibles et irréversibles. De cette manière, l'hydrogène piégé irréversiblement devient prépondérant en regard de l'hydrogène piégé réversiblement, permettant de considérer une concentration « diffusible » C D égale à la somme entre les concentrations en hydrogène interstitiel et réversiblement piégé.

Toutefois, cette démarche ne suffit pas pour pouvoir retrouver le comportement expérimental des concentrations en hydrogène dans le matériau. Expérimentalement, une augmentation de la concentration en hydrogène piégé irréversiblement apparaît lors de la désorption, qui n'est pas visible à partir de cette étude sur une membrane homogène. Il est donc nécessaire de s'intéresser plus spécifiquement aux effets de la microstructure du matériau sur la diffusion de l'hydrogène. En premier lieu, le chapitre IV présente les effets de la microstructure sur l'étape de chargement de l'hydrogène lors d'essais de perméation électrochimique. Plus spécifiquement, nous nous intéresserons à l'effet des joints de grains dans une membrane polycristalline.

Conclusion et perspectives

Le but principal de ce travail était de séparer les différents effets affectant la diffusion de l'hydrogène au travers d'une fine membrane. Pour cela, nous avons simulé numériquement des essais de perméation en utilisant la méthode des éléments finis. Ceci nous a permis de caractériser l'influence du piégeage de l'hydrogène, de la présence d'une couche ou revêtement de surface, et les effets de la microstructure.

Nous avons tout d'abord étudié l'influence du piégeage de l'hydrogène sur la diffusion de l'hydrogène pendant l'étape de chargement de la perméation. En utilisant des équations de piégeage issues de la littérature, nous avons distingué l'hydrogène interstitiel de l'hydrogène piégé. De cette manière, nous avons déterminé que la diffusion était uniquement ralentie par le piégeage de l'hydrogène lorsqu'à la fois la densité de pièges et l'énergie de piégeage étaient élevées. Si l'une des deux était faible, il n'y avait aucun effet distinguable du piégeage. En revanche, un fort piégeage entraînait un ralentissement de la diffusion, conduisant à une surestimation de la concentration effective en subsurface.

Néanmoins, le piégeage de l'hydrogène n'était pas le seul phénomène affectant la diffusion de l'hydrogène lors d'essais de perméation. La formation d'une couche à la surface du matériau jouait également un rôle. En conséquence, nous nous sommes concentrés sur les effets d'une couche d'oxyde ou d'un revêtement de palladium. Cette analyse a montré une réduction importante de la vitesse de diffusion, et une sous-estimation de la concentration effective en subsurface. Alors que les premiers résultats, en ne considérant que le piégeage, semblaient alarmants pour les résultats expérimentaux issus de la littérature, la considération de la couche d'oxyde a montré que les deux phénomènes devaient être pris en compte simultanément pour pouvoir correctement interpréter les résultats expérimentaux. En effet, nous avons observé une compétition entre les deux phénomènes. Nous avons alors déterminé un équilibre spécifique entre le piégeage et le coefficient de diffusion de la couche d'oxyde, confirmant que les mesures expérimentales correspondaient aux propriétés du matériau. En appliquant notre modèle aux résultats de la littérature, nous avons pu déterminer les coefficients de diffusion et densités de piège à partir de résultats expérimentaux sur le fer-α et les aciers martensitiques.

Après avoir considéré l'influence du piégeage de l'hydrogène sur le chargement en hydrogène, nous devions analyser les effets de la deuxième étape du processus de perméation, la désorption de l'hydrogène. Pour cela, nous avons tout d'abord conservé les mêmes équations de piégeage. De cette manière, nous avons observé une diminution de la diffusivité due au piégeage de l'hydrogène, ainsi qu'une augmentation des concentrations en hydrogène dans le matériau. Cependant, le comportement de l'hydrogène interstitiel n'était pas dissociable de l'hydrogène piégé, puisque les équations de piégeage ne les dissociaient pas l'une de l'autre. Pour corriger le problème, nous avons modifié notre modèle de piégeage en reliant cette fois la dérivée temporelle de la concentration en hydrogène piégé aux deux concentrations. De cette manière, nous avons pu observer un comportement distinct des deux concentrations. Cependant, la durée de désorption était toujours trop courte pour pouvoir s'appliquer aux études expérimentales, même avec de fortes énergies de piégeage. Cette erreur provenait des fréquences de saut des atomes d'hydrogène de notre modèle. Alors qu'initialement nous avions considéré que les fréquences de piégeage et dépiégeage étaient équivalentes, une réduction de la fréquence de dépiégeage allongeait le processus de désorption.

Notre étude du processus de désorption ne s'appliquait toujours pas totalement aux études expérimentales. En effet, expérimentalement, les concentrations en hydrogène piégé sont séparées en deux contributions ; les concentrations en hydrogène piégé réversiblement et irréversiblement. Ainsi, nous avons modifié notre modèle pour prendre en compte ces deux concentrations. Des comportements distincts entre l'hydrogène piégé réversiblement et irréversiblement ont été observés, mais l'intégralité de l'hydrogène quittait le matériau, alors que des résultats expérimentaux ont montré que l'hydrogène piégé irréversiblement augmente pendant la désorption. Afin de comprendre l'écart avec les résultats expérimentaux, nous avons mené notre étude sur la microstructure de la membrane. Il est connu que les défauts microstructuraux affectent la diffusion de l'hydrogène. Jusqu'à présent nous avions uniquement considéré des membranes homogènes. Ainsi nous avons ajouté la microstructure de la membrane à notre modèle, pour particulièrement prendre en compte l'influence des joints de grains. Puisque le comportement des joints de grains est fortement discuté dans la littérature, nous avons basé notre modèle sur les travaux d'Abdelali Oudriss sur le nickel [Oudriss12c]. Il a déterminé que 80% des joints de grains connectés étaient de type « généraux », et se comportent comme des courts-circuits de diffusion pour l'hydrogène. Nous avons étudié les effets de ces joints de grains sur deux types de microstructure ; des grains hexagonaux périodiques et des grains aléatoires basés sur le modèle de Voronoi. Dans les deux cas, le comportement accélératif des joints de grains a été observé. Egalement, nous avons déterminé des effets d'échelle, qui dépendent du ratio entre l'épaisseur de la membrane et la taille de grain. Pour des membranes dont l'épaisseur est inférieure à trois fois la taille de grain dans les matériaux microcristallins, les effets d'échelle entraînent une surestimation du coefficient de diffusion effectif et une sous-estimation de la concentration effective en subsurface. Dans le cas des matériaux nanocristallins, les effets d'échelle sont amplifiés et apparaissent pour des membranes dont l'épaisseur est inférieure à douze fois la taille de grain. En parallèle avec les effets d'échelle, des invariances d'échelle ont été déterminées dans le cas des structures aléatoires ; quand l'hydrogène est suffisamment éloigné de la surface de la membrane, la microstructure ne présente pas d'influence sur le profil de concentration dans la membrane.

Tandis que les joints de grains présentent une influence sur la diffusion de l'hydrogène, les triples joints à l'intersection entre trois joints de grains sont également susceptibles d'altérer le comportement Au lieu de considérer les joints de grains spéciaux avec une diffusivité constante, ajouter le piégeage de l'hydrogène permettrait de déterminer des concentrations en hydrogène piégé, et ainsi de modéliser la ségrégation de l'hydrogène au sein des joints de grains. De plus, les calculs présentés sur la Figure 1 distinguaient les joints de grains généraux des joints de grains spéciaux, mais ces derniers doivent être The number of hydrogen atoms moving from a L site to a T site is proportional to the lattice hydrogen concentration C L , the jump rate from a L site Γ L , and the probability that a neighboring T site is free P T . We obtain:

( , ) ( , ) ( , ) By also assuming that the jump frequencies ν T and ν L are equal, equation (A.12) becomes:
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In the case of small variations of the trapped hydrogen concentrations, ∂C T / ∂t = 0, so equation ( 

B. Calculation of the M factor for t10%

The effective diffusion coefficient D eff is calculated from the permeation flux curve using equation (B.1), with e the membrane thickness, t c a characteristic time, and M the corresponding factor. For a unidirectional diffusion, at the steady-state, the second Fick law is given by: 

Membrane with a surface layer

We now consider a membrane covered with a surface layer, as depicted in The other part of the problem is the hydrogen concentration in the oxide layer. The same approach is followed to determine the concentration profile. We start with Fick's second law for 

b. Approximation of the average concentration

To get an approximation of the average concentration, we may assume that the oxide layer thickness is negligible compared to the membrane thickness; e ox << e m . Doing so, the concentration profile should only be considered in the membrane. Following this hypothesis, the concentration profile in the membrane remains calculated from equation (C.12). The average concentration <C> is calculated by integrating C(x) over the membrane: 

Concentration profile

For a unidirectional diffusion, at any time, the second Fick law is given by: Since both members of the equation are equal, we assume that they are equal to a constant, -λ 2 . Thus, we obtain two differential equations to solve. First, The second differential equation is given by: 

Average concentration

The average concentration <C(t)> is calculated by integrating the concentration profile over the membrane, thus giving: 

Flux

The flux is calculated using Fick's first law. We have: After development, equation (E.12) may also be written as: Nos travaux se focalisent sur l'impact des hétérogénéités structurales sur la diffusion de l'hydrogène dans les métaux. Dans ce cadre, des essais de perméation sont simulés par la méthode des éléments finis, afin de comprendre l'impact des caractéristiques métallurgiques sur les données extraites lors de ce type d'analyse. Afin de pouvoir séparer les différents mécanismes intervenant lors de la diffusion, l'étude est conduite en plusieurs étapes. A l'échelle de la membrane, les effets du piégeage et de la présence d'une couche d'oxyde à la surface du matériau sont considérés. Tandis que le piégeage et la couche d'oxyde diminuent tous deux la diffusivité effective, leurs effets sont opposés sur les concentrations en hydrogène en subsurface mesurées. D'autre part, les effets du piégeage lors de la désorption de l'hydrogène sont plus particulièrement étudiés. Il s'avère nécessaire de prendre en considération les fréquences de saut des atomes d'hydrogène afin de se rapprocher des données expérimentales. Ces premières études s'étant portées sur des membranes homogènes, nous nous sommes consacrés dans une dernière partie aux effets de la microstructure sur la diffusion. Pour cela, nous considérons l'influence des joints de grains dits « généraux », qui se comportent comme des courts-circuits de diffusion pour l'hydrogène. La microstructure entraîne l'apparition d'effets d'échelle lorsque l'épaisseur de la membrane se rapproche de la taille de grains. Qui plus est, en considérant un modèle à trois dimensions, les triples joints amplifient ces effets d'échelle, notamment dans le cas de matériaux nanocrystallins.

Mots-clés : hydrogène, diffusion, éléments finis, transitions d'échelle, joints de grains, triple joints, piégeage

Numerical approach of the scale transitions applied to the diffusion and the trapping of hydrogen in metals with heterogeneous structures

Abstract:

Our work focuses on the impact of structural heterogeneities on the diffusion of hydrogen in metals. In this context, permeation tests are simulated using the finite element methods, to understand the effects of the metallurgical properties on the data extracted with such analysis. To separate the different mechanisms occurring during diffusion, the study is led by several steps. At the scale of the membrane, the effects of trapping and the presence of an oxide layer at the surface of the material are considered. While the trapping and the surface layer both slow down the effective diffusivity, their effects are opposed on the measured hydrogen subsurface concentrations. On the other hand, the effects of trapping during the desorption are more specifically studied. It appears that taking into account the jump frequencies of the hydrogen atoms is required to get closer to the experimental data. Since the first studies dealt with homogeneous membranes, we focus in a last part on the effects of the microstructure on hydrogen diffusion. To do so, we consider the influence of "random" grain boundaries, acting as hydrogen diffusion short-circuits. Scale effects appear due to the microstructure when the membrane thickness approaches the grain size. Moreover, by using a three-dimensional model, triple junctions emphasize the scale effects, especially for nanocrystalline materials. 

Figure 1 -

 1 Figure 1 -Hydrogen embrittlement due to three combined factors

  Figure 2 displays the possible multiscale work flow. By starting from the actual structure weakened by HE, the behavior of the material may be analyzed at the scale of the membrane and its Representative Volume Element (RVE). It has also been proven that the microstructure plays a preponderant role on the behavior of hydrogen [Garverick94, Cao04]. The microstructural defects such as the grain boundaries, precipitates, dislocations or vacancies have to be considered [Palumbo91, Fukai95, Brass96].

Figure 2 -

 2 Figure 2 -Experimental and numerical characterization methods at different scales [Frappart10b]

  environment, hydrogen exists as an ion in acid media or forms water molecules in basic media (NaOH solutions). For acid media, the reaction is defined by equation (I.1.2) [Harrington87a, Gao04], whereas it follows equation (I.1.3) for basic media [Lasia90, Chun02].

  5 eV [Addach06], [Dadfarnia11], [Oudriss12a]. Some traps are listed in Table I.2, with their activation energy E TL . Chapter I -Literature Review 14

Figure I. 1 -

 1 Figure I.1 -Representation of activation energies between lattice sites and trap sites

3 ) 4 )

 34 McNabb63] altered the 2 nd Fick's law by distinguishing the hydrogen concentrations in lattice sites and trapping sites, respectively noted C L and C T . Equation (I.2.3) presents the modified law: At this point, the diffusion was controlled by the lattice diffusion coefficient D L . The trapped hydrogen concentration C T was related to the trapping sites occupancy θ T and the trapping sites density N T by equation (I.2.4): Using equation (I.2.4), the trapped hydrogen equation could be calculated with equation (I.2.5), where k and p are reaction constants.

  and non-saturable traps McNabb and Oriani only analyzed the behavior of hydrogen by considering that the trapped atoms stay in equilibrium with the lattice sites. Another approach was presented by Chew [Chew71] and used by Allen-Booth et al. [Allen-Booth74] and Kass [Kass74]; they considered that the hydrogen stayed trapped in molecular form in voids. With that model, the trapped hydrogen concentration was proportional to the square of the lattice hydrogen concentration. Equation (I.2.7) presents the total hydrogen concentration in that model:

  1979, Johnson et. al [Johnson79] presented a diffusion model by distinguishing the two kinds of traps. For non-saturable traps, the trapped hydrogen concentration is defined by equation (I.2.8):

  et al. considered that saturable traps could only accommodate one atom. They linked the lattice and trapped hydrogen concentrations with an equilibrium constant K T , in equation (I.2.10): lattice sites occupancy, equal to C L /N L with N L the density of lattice sites. ΔE T represents the trap binding energy, R the ideal gas constant and T the temperature. From equation (I.2.10), the trapped hydrogen concentration C

  2.12) If the trap occupancy θ T is very low, equation (I.2.11) takes the form of equation (I.2.8) for m=1 and α=N T K T /N L . This means that almost no traps are occupied, so the behavior is similar to non-saturable linear trapping. In 2000, Krom [Krom00] developed the models of McNabb and Oriani, by reformulating the diffusion law (equation (I.2.6)) with equation (I.2.13):

  Krom's model was presented by Svoboda and Fischer [Svoboda12, Fischer13],

  τ L , τ Tr and τ Tir are the average times of transfer from any site to the site indicated by the subscript. s Tr C and s Tir C are the saturation concentrations of hydrogen atoms on reversible and irreversible trap sites.

  [Kirchheim82] using the framework of Fermi-Dirac statistics. By considering N trapping sites distinguished by their energy level E, the distribution of hydrogen atoms N H in these sites is given by equation (I.2.20): n(E) is the distribution function of site energies and f(E) the probability of occupancy of the sites. For a system at the equilibrium, the function f(E) is calculated from equation (I.2.21), with µ H the chemical potential of hydrogen: of site energies n(E) are defined, depending on the kinds of traps [Kirchheim88], presented in Figure I.2. Four different systems are shown, starting from a basic system with a single distribution of energy to systems with several levels. While n(E) remains constant in single crystals, different distributions appear for edge dislocations or amorphous matrices.

Figure I. 2 -

 2 Figure I.2 -Schematic presentation of potential/position curves and corresponding distributions of site energies for hydrogen in a single crystal (one-level system), in a single crystal with monoenergetic traps (two-level system), in a deformed metal with edge dislocations and in an amorphous matrix [Kirchheim88]

  technique. It has been developed in 1962 by Devanathan and Stachurski [Devanathan62] to determine the diffusion behavior of hydrogen in palladium.

Figure I. 3

 3 presents the scheme of a permeation test [Ly09, Frappart11a].

Figure I. 3 -

 3 Figure I.3 -Electrochemical permeation set-up

Figure I. 4

 4 Figure I.4 presents a typical flux curve after the completion of a permeation experiment. The flux curve depends on the material properties and the experimental conditions. First, the hydrogen atoms fill the lattice sites and diffuse toward the exit side of the membrane. The flux remains equal to zero since no hydrogen atom has reached the exit side yet. Then, the flux starts to increase when the first hydrogen atoms reached the exit side. The flux rises until the steady-state is attained. Then, the

Figure I. 4 -

 4 Figure I.4 -Typical flux curve after charging and desorption steps during permeation experiment

ΔH

  Activation energy for diffusion (J.mol -1 )D 0Pre-exponential factor (frequency factor) (m 2 .s -1 )k B Boltzmann's constant (1.3806504 ×10 -23 J.K -1 ) T Temperature (K)To calculate the effective diffusion coefficient, two different methods are used. The first one consists in determining a characteristic time t c on the flux curve to calculate D eff with equation (I.3.

Figure I. 6 -

 6 Figure I.6 -Evolution of the concentration profiles of hydrogen as a function of time

  Figure I.7 presents the desorption curve associated with the theoretical flux curve for no trapping, with the time t 1% . The divergence between the no-trapping theoretical curve and the real curve rapidly increases with time. Using the areas under the curves, we determine the hydrogen concentrations in the material.

Figure I. 7 -

 7 Figure I.7 -Desorption curve and theoretical desorption curve with no trapping

  Oxides are crystalline solids, and act as hydrogen diffusion barriers. The hydrogen diffusion coefficient in oxides is very low compared to the diffusivity in the membrane (at least by five orders of magnitude in steels [Frappart11a, Schomberg96]). Several authors determined diffusion coefficients Chapter I -Literature Review 29 of hydrogen inside different oxides. For steels, depending on the oxides, the diffusion coefficients range between 1×10 -14 m 2 /s [Schomberg96] for wüstite and 1×10 -21 m 2 /s [Bruzzoni92] for hematite. The low diffusion coefficients reduce the permeation flux [Bruzzoni92, Ishikawa96], but this decrease depends on the thickness of the oxide layer [Ishikawa96]. The oxide layer thicknesses usually range between 1.5 nm and 3 nm [Bruzzoni92]. Our numerical studies have however been extended up to 100 nm [Bouhattate09]. The oxide layers are stable, since the oxidation happens at the metal-oxide interface [Casanova96].

  Figure I.8 pictures the fall of the current density during the formation of an oxide layer [Casanova96]. During his experiments, a steady-state was reached after 0.6 hours.

Figure I. 8 -

 8 Figure I.8 -Evolution of the current density of a function of time during the formation of an oxide layer [Casanova96]

[ Bruzzoni92 ,

 Bruzzoni92 Devanathan64, Manolatos95, Parvathavarthini99, Tsay02, Serna05]. Since this question has been debated, several studies were led to determine if the palladium layer was needed or not [Kumnick80, Luppo98].When the membrane is coated by palladium, the hydrogen flux is higher Some authors determined that palladium was necessary [Jérôme03, Manolatos95], while others prefer to avoid it, since a uniform palladium layer is hard to obtain [Casanova96]. The interface between the metal and the Pd layer could become a high density trapping area in case of non-uniformity [Brass94]. The debate between the palladium or oxide layer is still active, since the literature lack of data about the microstructure of the palladium layers. Depending on their composition, they may also trap hydrogen [Frappart11a].

Figure I. 9 -

 9 Figure I.9 -Variables that define a grain boundary

Figure

  Figure I.10 -Classifications of grain boundaries

Twist

  Figure I.11 -Representations of tilt and twist grain boundaries

  based on the lattice: special and random grain boundaries

  Figure I.12 illustrates the difference between the random and CSL grain boundaries. In Figure I.12a, a HAGB random grain boundary is shown; there is no clear coincidence between the atoms. A CSL with coincidence value of Σ11 is displayed in Figure I.12b. The coincidence is clearly visible.

Figure I. 12

 12 Figure I.12 -(a). Illustration of a Random HAGB in a colloidal polycristal [Nagamanasaa11]. (b) HRTEM illustration of a Σ11 symmetrical grain boundary in gold

  Figure I.13 presents the evolution of the effective diffusivities D eff , c and D eff,d as a function of the grain size [Doyle95, Arantes93, [Oudriss12c]. D eff,c was measured during the charging step of electrochemical permeation, and is affected by trapping phenomena. D eff,d is measured at the beginning of the desorption step to avoid the trapping effects. For grains between 100 nm and 168 µm (domains I to III), D eff,d increases when the grain size diminishes, showing the short-circuits effects. For D eff,c , the rise happens in domain I. For smaller grains, D eff,c falls due to trapping phenomena. However in domains III and IV, D eff,c rises again with the decrease of the grain size, because of the predominance of the accelerative behavior, amplified by the triple junctions.

Figure I. 13 - 3 .

 133 Figure I.13 -Evolution of the effective diffusivity as a function of the grain size, by considering hydrogen charging and desorption [Oudriss12c]

Figure 4 )

 4 Figure I.14 -Fisher's model for grain boundary diffusionIn that model, we write the diffusion equations:

Figure

  Figure I.15 -Harrikson's kinetics type A

Figure I. 17 -

 17 Figure I.17 -Harrikson's kinetics type C

Figure I. 18 -

 18 Figure I.18 -Model of Yao. (a) Grains honeycomb structure. (b) Simplification for the calculations

Figure I. 19

 19 Figure I.19 displays the four kinds of triple junctions. If a triple junction is surrounded by two or moreSpecial (CSL) grain boundaries (ΣΣΣ, ΣΣR), the triple junction will be qualified as Special. In the other cases (ΣRR, RRR), the triple junction is considered as Random.

Figure

  Figure I.19 -Classification of triple junctions

Figure I. 20 -

 20 Figure I. 20 -Example of four grain with the associated topological elements

  precipitates. The concentration of vacancies in material depends on the elaboration process, the deformation state, the irradiation, etc. Experimental works demonstrated the influence of grain boundaries, and hydrogen on the vacancy concentration [Carr04, Sakaki06, Ungár07]. Fukai calculated the energy required for the vacancies, and compared cases with and without hydrogen [Fukai95]. The presence of hydrogen seems to stabilize and helps the formation of vacancies. For α-iron, vacancies are formed around -1.6 eV without hydrogen, and around -1.4 eV with hydrogen. Several works proved an increase in the vacancy concentration in iron, nickel and copper [Fukai01, Fukai03a, Carr04, Carr06]. These observations led to the concept of superabundant vacancies, established since the early 90s [Fukai95, Zang99, Fukai00, Fukai01, Fukai03a, Fukai03b, Mao03, Carr04, Fukai05, Carr06]. Concerning the precipitates, the numerous elements located in alloys (for example in Fe-C-Cr or Fe-C-Mo steels) play a role on the microstructure and modify the mechanical properties, and act as hydrogen traps [Uhlemann98, Wei06, Frappart11a, Haq13]. Precipitates may be coherent, semicoherent or incoherent with the lattice, and a loss in coherency creates an elastic distortion close to the interface of the precipitate [Miyata03, Wei06, Douin10]. The elastic distortion is accommodated by dislocations at the interface matrix/precipitate [Wei06]. According to the works of Wei et al. [Wei06] and Miyata et. Al [Miyata03], a diminution of the coherency increases the trap binding energy of the precipitate.

Figure I. 21

 21 Figure I.21 presents an example of percolation clusters, for bonds probabilities of 0.5, 0.6, 0.65 and 0.7.

Figure I. 21 -

 21 Figure I.21 -Percolation clusters with active bonds probabilities equal, from left to right, to 0.5, 0.6, 0.65 and 0.7 [Wells89]

  Figure I.22 presents the analytical solution, compared with their experimental data [Schuh03a] and the data from Randle and Davies [Randle99], Kumar [Kumar00] and Oudriss [Oudriss12b]. The experimental data follow the same trend, but a difference between the results clearly appears. To correct the analytical equation, Schuh et al. introduced a parameter 'A' equal to the ratio between the fraction of Σ3 grain boundaries f Σ3 and the total fraction of Σ grain boundaries: f Σ = f Σ3 /A. In Figure I.22, the corrections for several values of A have also been plotted, providing a better correlation with the experimental values.

Figure I. 22 -

 22 Figure I.22 -Probability J of presence of each triple junction type as a function of the special grain boundary fraction.[Schuh03b],[START_REF] Oudriss | Grain size and grain-boundary effects on diffusion and trapping on hydrogen in pure nickel[END_REF] 

Figure I. 23 -

 23 Figure I.23 -Percolation thresholds for special (open symbols) and random (filled symbols) grain boundaries by considering three models [Schuh06]

Figure I. 24 Figure I. 24 -

 2424 Figure I.24 presents a system of study. First, we need to consider the size d of the heterogeneities of the study, for example grains inside a polycrystalline material. While the size of the material itself is L, we consider a RVE with the size l.

Figure I. 25 -

 25 Figure I.25 -Equivalence RVE / Homogeneous medium Three steps are required to correctly define and calculate the homogenized behavior of the system [Bornert01]:

(I.6. 2 )

 2 presents the general form of hydrogen diffusion [

  On the opposite, the Reuss bound [Reuss29] considers the diffusion perpendicular to the layers, presented in Figure I.27.

  Figure I.26 -Voigt model for two phases

  order model: Hashin-Shtrikman The Reuss and Voigt models are very simple limits of the problems. However, higher order model are defined to get better approximations of the result. In 1963, Hashin and Shtrikman [Hashin63] developed bounds to approximate the solution for elasticity problems, by considering spheres embedded in the matrix. Every sphere is surrounded by a shell belonging to the same phase of the matrix, as shown in Figure I.28:

Figure I. 28 -

 28 Figure I.28 -Hashin-Shtrikman model

Figure I. 29

 29 Figure I.29 presents the scheme of the phases inside the EHM.

Figure I. 29 -

 29 Figure I.29 -Self-consistent approach for two phases

  Figure I.31 -Approach of study with the different steps

  steps of the study; the characteristics of the model and the methodology. The modifications of the numerical model for each specific section are defined in the corresponding parts. Here, we only present the general model and the methods of extraction of data. Electrochemical permeation tests are simulated using the Finite Element Analysis (FEA) software Comsol Multiphysics © associated with the numerical computing environment MATLAB. We consider the diffusion of hydrogen inside a metallic membrane, presented in Figure II.1a. The dimensions of the membrane are the thickness e m and the height h m . The diffusion occurs along the xaxis. On the left side of the membrane is imposed an initial entry side hydrogen concentration C 0 . We assume in this model that C 0 does not evolve during the permeation process. To reproduce the full oxidation of hydrogen atoms at the exit side of the metallic membrane, we impose a zero concentration C S on the right side boundary. The initial hydrogen concentration inside the membrane is zero. Since we only consider diffusion along the x-axis for a thin membrane, symmetry conditions are imposed on the boundaries parallel to the diffusion, to avoid unnecessary edge effects. The lattice diffusion coefficient of hydrogen inside the material is noted D L .

Figure II. 1 -

 1 Figure II.1 -(a). Scheme of the model with the boundary conditions and the parameters of the model, with an exaggerated surface layer thickness. (b). Quadratic meshing of the membrane and the surface layer, with a correct surface layer thickness.

Figure II. 2

 2 Figure II.2 displays a schematic representation of the equivalence between the numerical model and permeation tests; while we input all the characteristics of the material in our model, we only extract effective values at the scale of the representative volume element (RVE). We obtain the effective diffusivity D eff and the effective subsurface hydrogen concentration C 0eff instead of D L , N T , N L , ΔE T , T and C 0 . The concentrations of hydrogen C L and C T , that can be numerically calculated at any point and any time in the membrane, become average concentrations at the scale of the RVE.

Figure II. 2 -

 2 Figure II.2 -Schematic representation of the equivalence between the numerical model and the data extracted from electrochemical permeation tests.

  first extract the hydrogen flux as a function of time J(t) at the exit side of the membrane, to get the same initial data as electrochemical permeation tests. Since the diffusion only occurs along the x-axis in our model, we extract the hydrogen flux on a single point at the exit side of the membrane. The exit side corresponds to the utmost right boundary of the model, more specifically the exit side of the surface layer. Extracting the flux with respect to time allows us to determine the steady-state flux J max

Figure II. 4 -

 4 Figure II.4 -Summary of the numerical model associated with the steps of study.

  Figure II.5 presents an experimental result obtained by S. Frappart [Frappart11a], associated with the solution of Fick's law. The analytical result coincides with the experimental data.

Figure II. 5 -

 5 Figure II.5 -Experimental flux curve with the analytical fit from Fick's laws for a martensitic steel (N T = 18,5 mol/m 3 , N L = 2,41.10 5 mol/m 3 , ΔE T = -0,32 eV), with charging conditions j = 20 mA, charging medium H 2 SO 4 1M, detection medium NaOH 1M. [Frappart11a].

2 .

 2 Figure II.6a presents the flux curves for a low trap binding energy ΔE T = -0.1 eV, while Figure II.6b pictures flux curves with a high ΔE T = -0.3 eV. In Figure II.6a, the flux follows the same behavior for all trap densities. However, in Figure II.6b, the flux requires more time to reach the steady-state when the trap density increases. Also, the steady-state flux J max is reduced by the augmentation of the trap density. From these curves, we can qualify trapping as weak when the flux is not altered. On the opposite hand, strong trapping alters the flux curve. The trap binding energy coincides with this distinction; low trap energies gives weak trapping, while high trapping energies produces strong trapping if the density of traps is high enough.

Figure II. 6 -Figure

 6 Figure II.6 -Evolution of the flux J as a function of time for several trap densities N T . (a) Trap binding energy ΔE T = -0.1 eV. (b). ΔE T = -0.3 eV

Figure

  Figure II.7 -Evolution of the steady-state flux J max as a function of the inverse of the thickness e m for several trap densities and a high trap binding energy ΔE T = -0.3 eV.
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 3 To determine the parameter η, the effects of the trap density N T on the steady-state flux J max are presented in Figure II.8 for three trap binding energies. For low energies, J max does not evolve with N T .If ΔE T increases, high trap densities diminish J max . For ΔE T = -0.2 eV, J max falls when N T exceeds 1 mol/m 3 . For ΔE T = -0.3 eV, N T = 0.1 mol/m 3 is enough to impede the flux. Using these curves, we can empirically determine the parameter η from the parameters of the model. We obtain equation (II.2.We also plotted in Figure II.8 equation (II.2.2) using equation (II.2.3). The empiric law correctly fits the evolution of J max as a function of N T , for all trap binding energies.

Figure II. 8 -

 8 Figure II.8 -Evolution of the steady-state flux J max as a function of the trap density N T for three trap binding energies ΔE T (points) and comparison with equation (II.2.2) (lines).

(

  N T = 100 mol/m 3 and ΔE T = -0.3 eV), η is equal to 35. To get a better representation of the effects of trapping on the steady-state flux, Figure II.9 presents a map of J max as a function of the trap binding energy ΔE T and the trap density N T . J max is only reduced in the red area for |ΔE T | > 0.15 eV and N T > 0.6 mol/m 3 . We demonstrate here that a high trapping density and a high trap binding energy are both required to affect the steady-state flux. Else, in the blue area, η is equal to 1, and J max follows equation (II.2.1).

N T (mol/m 3 )

 3 Figure II.9 -Map of the steady state flux J max as a function of the trap density N T and the trap binding energy ΔE T .

1 Figure 4 )

 14 Figure II.10 -Evolution of the effective diffusion coefficient D eff as a function of the trap density N T . (a) Weak trap binding energy ΔE T = -0.1 eV. (b). Strong trap binding energy ΔE T = -0.3 eV.

Figure

  Figure II.11 -Evolution of the effective diffusion coefficient D eff as a function of the thickness of the membrane e m for several trap densities N T and a high trapping energy ΔE T = -0.3 eV.

Figure II. 12 -

 12 Figure II.12 -Evolution of the characteristical time t 10% as a function of the square of the thickness of the membrane e m for several trap densities N T and a high trap binding energy ΔE T = -0.3 eV.

Figure II. 13 -

 13 Figure II.13 -Evolution of the effective diffusion coefficient D eff as a function of the initial entry side concentration C 0 for several trap densities and a high trap binding energy ΔE T = -0.3 eV.
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 5 Figure II.14 where we present the evolution of <D app > as a function of D eff , for several trap densities N T and a high trap binding energy ΔE T . The values of N T in mol/m 3 are displayed. For weak trap densities, both diffusion coefficients are equal. However, their value diverges when the trap density rises.

Figure II. 14 -

 14 Figure II.14 -Evolution of the average apparent diffusion coefficient <D app > as a function of the effective diffusion coefficient D eff for several trap densities, for a trap binding energy ΔE T = -0.3 eV Instead of considering the average concentrations, we use the equations of the model to modify the evolution of D app from equation (II.1.3). Starting from equation (II.1.4), we now write the following equation (II.2.6):

  2.7) into equation (II.2.8) only applies in a given domain of trap binding energies. This domain is presented in Figure II.15 where the trapping constant K T is plotted as a function of the trap binding energy ΔE T for C L = 1 mol/m 3 . The colored rectangle corresponds to the domain of validity of these hypotheses. In the case of martensitic steels, N L evolves between 10 4 and 10 6 mol/m 3 . To respect the hypothesis N L >> K T C L , K T must remain lower than 10 3 , i.e. for |ΔE T | lower than 0.175.

Figure II. 15 -

 15 Figure II.15 -Evolution of the trap constant K T as a function of the trap binding energy ΔE T .

Figure

  Figure II.16 -Evolution of the effective diffusion coefficient D eff (points) as a function of the trap density N T for two trap binding energies ΔE T and comparison with D ~eff (lines)

Figure

  Figure II.17 -Map of the ration between the effective diffusion coefficient D eff and the lattice diffusion coefficient D L as a function of the trap density N T and the trap binding energy ΔE T .

  2.10) From equation (II.2.10), C 0eff does not depend on the thickness of the membrane, but is affected by the two trapping biases, η and µ. To confirm these results, Figure II.18a presents the evolution of C 0eff as a function of the thickness for several trap densities for a high trap binding energy ΔE T . It clearly appears that C 0eff does not evolve with the thickness of the membrane. Its value however increases when the trap density rises. In Figure II.18b is displayed the evolution of C 0eff as a function of the trap density N T for two trap binding energies. We also drew equation (II.2.10) in Figure II.18b to compare the equation with the results. While equation (II.2.10) correctly fits the points, C 0eff remains equal to C 0 for weak trapping densities and low trap binding energies. When ΔE T is equal to -0.3 eV and the trap density exceeds 0.01 mol/m 3 , C 0eff increases, until it reaches 1.5 mol/m 3 for high trap densities. The maximum value of C 0eff however stabilizes around N T = 100 mol/m 3 .

Figure II. 18 -

 18 Figure II.18 -Evolution of the effective subsurface hydrogen concentration C 0eff as a function of (a) the thickness of the membrane for several trap densities N T and ΔE T = -0.3 eV. (b) the trap density N T for two trap binding energies and comparison with C ~0eff (dashed lines) To get a better view of the effects of the trap binding energy and the trap density on C 0eff , we drew in Figure II.19 a map of the effective subsurface hydrogen concentration as a function of ΔE T and N T .The blue area coincides to C 0eff = C 0 while the green area corresponds to effective subsurface

Figure

  Figure II.19 -Map of the ratio between C 0eff and C 0 as a function of the trap density N T and the trap binding energy ΔE T .

  Fick's laws brings the evolution of the hydrogen concentration inside the membrane at any point and any time. Once the steady-state is reached, the concentration profile becomes linear, as presented in Figure II.20. The average concentration at the steady-state is <C> = C 0 / 2.

Figure II. 20 -

 20 Figure II.20 -Linear concentration profile within the membrane for simple Fick's law solution at steady-state

  Figure II.21 -Profiles at steady-state of (a) the lattice hydrogen concentration C L , (b) the trapped hydrogen concentration C T for several trap densities N T and ΔE T = -0.3 eV.

  2.11)The evolutions of the average hydrogen concentrations <C L > and <C T > are plotted as a function of the trap density N T in Figure II.22. When the trap density is low, <C L > is equal to C 0 /2, and rises over /m 3 . <C T > is negligible in front of <C L >, then increases when N T exceeds 0.1 mol/m3. <C T > becomes greater than C L for N T over 2 mol/m3.

Figure

  Figure II.22 -Evolution of the average lattice hydrogen concentration <C L > and the average trapped hydrogen concentration <C T > as a function of the density of traps N T with ΔE T = -0.3 eV. The trap density affects the average hydrogen concentrations, but the effects of the thickness of the membrane combined with trapping can be questioned. We plotted in Figure II.23 the evolution of the average concentrations as a function of the thickness of the membrane for several trap densities. Whether it is <C L > in Figure II.23a or <C T > in Figure II.23b, the thickness of the membrane presents no effect on the average concentrations. Obviously, we observe in both figures an increase in the concentrations due to the trap density N T .

Figure II. 23 -

 23 Figure II.23 -Evolution of (a) the average lattice hydrogen concentration <C L > as a function of the thickness of the membrane, (b) the average trapped hydrogen concentration <C T > as a function of the thickness of the membrane, for several trap densities N T and a trap binding energy ΔE T = -0.3 eV In the case of Fick's law, the average hydrogen concentration is equal to half of the subsurface hydrogen concentration C 0 . Since both the hydrogen concentrations and C 0eff increase with trapping, the effective subsurface concentration C 0eff / 2 may be compared to the total average hydrogen concentrations <C H >. We depict in Figure II.24 <C H > as a function of C 0eff / 2 for several trap densities. When the trap density is low, we obtain the expected curve with a slope of 1. But, when the

Figure

  Figure II.24 -Evolution of the total average hydrogen concentration as a function of the effective subsurface concentration for several trap densities. The divergence of the average concentrations are emphasized.

  diffusion coefficient D L and the surface layer's is noted D ox . No trapping phenomenon is included in the model. During electrochemical permeation tests, the surface layer can either be an oxide layer due to the aggressive medium, or a palladium layer coated to avoid the formation of the oxide layer [Bruzzoni92, Devanathan64, Manolatos95, Parvathavarthini99, Tsay02, Serna05]. In our model, the difference between the two kinds of layers is only expressed with the diffusion coefficient D ox .

  Figure II.25a for several surface layer diffusion coefficients D ox and for a thickness of 5 nm. The steady-state flux decreases with the surface layer diffusion coefficient. Also, the time required to reach the steady-state rises when D ox falls. Figure II.25b presents the evolution of the hydrogen flux as a function of time for several surface layer thicknesses e ox and a surface layer diffusion coefficient D ox equal to 1.10 -16 m 2 /s. J max decreases for thicker layers, and the time to reach the steady-state rises.

Figure

  Figure II.25 -Evolution of the flux J as a function of time for (a) several surface layer diffusion coefficients D ox and a surface layer thickness e ox = 5 nm. (b) several e ox with D ox = 10 -16 m 2 /s

Figure II. 26 -

 26 Figure II.26 -Evolution of the steady-state flux J max as a function of the inverse of the total thickness, for several surface layer diffusion coefficients D ox and a surface layer thickness e ox = 5 nm.

1 ) 2 )Figure

 12 Figure II.27 -Evolution of the steady-state flux J max as a function of the surface layer diffusion coefficients D ox for three surface layer thicknesses e ox . Comparison with equation (II.3.1) The combined effects of the diffusion coefficient and thickness of the surface layer are presented in the map of J max in Figure II.28. The steady-state flux decreases with D ox , towards the red area of the map. Thicker layers accelerate the fall of J max with D ox , but only by one order of magnitude.

Figure II. 28 -

 28 Figure II.28 -Map of the steady-state flux J max as a function of the surface layer diffusion coefficient D ox and thickness e ox From the evolution of the flux as a function of time, we can now determine the effects of the surface layer on the effective diffusion coefficient.

FigureD

  Figure II.29a displays the evolution of the effective diffusion coefficient D eff as a function of the thickness of the membrane, for several D ox while keeping the surface layer equal to 5 nm. For D ox equal to 10 -10 m 2 /s, the effective diffusion coefficient does not evolve with the thickness of the membrane. However, when D ox is equal to 10 -13 m 2 /s, D eff rises. This phenomenon also occurs for

Figure II. 29 -

 29 Figure II.29 -Evolution of the effective diffusion coefficient D eff as a function of (a) e m for several D ox , (b) e ox for several D ox Since the diffusion coefficient of the surface layer also affects the effective diffusion coefficient, we plotted in Figure II.30 the evolution of D eff as a function of D ox for several oxide layer thicknesses. The behavior of D eff as a function of D ox can be described in four steps. For e ox = 5nm, starting from the higher D ox , D eff remains equal to D L until D ox becomes lower than 10 -12 m 2 /s. Then, D eff falls and reaches D L /2. Then, for surface layer diffusion coefficients between 10 -15 and 10 -18 m 2 /s, D eff remains steady. Finally, for D ox < 10 -18 m 2 /s, D eff falls again. The same behavior happens for thicker surface layers. However, the curve of D eff is shifted toward the right; D eff begins its decrease for higher D ox .

Figure

  Figure II.30 -Evolution of the effective diffusion coefficient D eff as a function of the surface layer diffusion coefficient D ox for several oxide layer thicknesses e ox

Figure II. 31 -

 31 Figure II.31 -Evolution of the effective diffusion coefficient D eff , compared with D hom , for a surface layer thickness e ox = 5nm.
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 34 Figure II.32 -Evolution of the effective diffusion coefficient as a function of (a) the surface layer diffusion coefficient for several surface layer thicknesses e ox . Comparison with equation (II.3.4) (dashed lines)

Figure II. 33 - 4 . 5 )

 3345 Figure II.33 -Map of the effective diffusion coefficient D eff as a function of the surface layer diffusion coefficient D ox and its thickness e ox .Knowing D eff and J max , we now calculate the effective subsurface hydrogen concentration C 0eff .

FigureFigure

  Figure II.34 -Evolution of the effective subsurface hydrogen concentration C 0eff as a function of the surface layer diffusion coefficient D ox , for two e ox ..Comparison with equation (II.3.5)

Figure

  Figure II.36a exhibits the hydrogen concentration C L at steady-state as a function of the membrane thickness for several surface layer diffusion coefficients. The concentration profile remains linear for all D ox . However, the hydrogen concentration C 1 reached at the interface between the membrane and the layer increases when D ox diminishes. For low D ox , C 1 is equal to C 0 . In that case, the surface layer plays the role of a barrier; the diffusion in the layer being very slow, hydrogen builds up in the membrane, to reach a constant value throughout the membrane. Figure II.36b presents the evolution of C L in the surface layer. While the boundary condition of the model imposes a zero concentration at the exit side, the profiles are linear, and we also observe the changes in the interface concentration C 1 .

Figure

  Figure II.36 -Concentration profiles inside (a) the membrane, (b) the surface layer for several surface layer diffusion coefficients D ox

Figure

  Figure II.37 -Schematic representation of the concentration profiles inside the membrane and the oxide layer for different strengths of barrier effects It appears that the concentration C 1 at the membrane-layer interface is affected by the surface layer diffusion coefficient. Consequently, we propose to characterize its value.

FigureFigure

  Figure II.38 -Evolution of the membrane-layer interface concentration as a function of time for several D ox

Figure

  Figure II.39 -Evolution of the membrane-layer interface concentration C 1 as a function of D ox and comparison with equation (II.3.6)

  3 eV. The second parameter that we now keep constant is the thickness of the surface layer. Even though the thickness had an influence on the diffusivity, its effects were weak in front of the effects of the surface layer diffusion coefficient D ox . In this study, we keep the surface layer at the size of oxide layers, e ox = 5 nm. [Bruzzoni92]. The effects of trapping are studied by modifying the trap density between 100 mol/m 3 , while the surface layer diffusion coefficient takes values between 10 -21 and 10 -10 m 2 /s.

  Figure II.42a and Figure II.42b for weak trapping (N T = 10 -4 mol/m 3 ), J max is smaller in Figure II.42b when D ox is lower. This means that trapping, but also the oxide layer, decrease the flux and slow down the diffusion.

Figure

  Figure II.42 -Evolution of hydrogen flux J as a function of time for different trap densities N T . (a) -D ox = 10 -10 m 2 /s. (b) -D ox = 10 -16 m 2 /s In section II, we determined that the steady-state flux remained proportional to the inverse of the thickness of the membrane, even with trapping. The oxide layer in section III however altered this linearity. We plotted in Figure II.43 the evolution of J max as a function of the inverse of the total thickness, 1/e. In Figure II.43a, J max is displayed for D ox = 10 -10 m 2 /s, for several trap densities. J max

Figure

  Figure II.43 -Evolution of the steady-state flux J max as a function of the inverse of the thickness for two trap densities N T. (a) -D ox = 10 -10 m 2 /s. (b) -D ox = 10 -16 m 2 /s

1 )Figure

 1 Figure II.44 -Evolution of steady-state flux J max and calculated steady-state flux J ~max as a function of D ox and N T . (a) : J max vs D ox for two N T . (b) : J max vs N T for two D ox

Figure II. 45 -

 45 Figure II.45 -Map of J max as a function of N T and D oxFrom the flux curve, the effective diffusion coefficient D eff can be calculated. In sections II and III, we determined that both trapping and the surface layer decreased its value. We now check the interactions between both effects.

  To check if our hypothesis is viable, Figure II.46a displays the evolution of D eff as a function of N T for two surface layer diffusion coefficients D ox , whereas D eff is exhibited in Figure II.46b with respect to D ox , for two N T . In Figure II.46a, D eff falls when the trap density exceeds 0.1 mol/m 3 . A lower surface layer diffusion coefficient also reduces D eff . In Figure II.46b, D eff decreases when D ox is lower than 10 -13 m 2 /s. Then, the value of D eff stabilizes, until D ox becomes lower than 10 -18 m 2 /s. For lower D ox , D eff decreases again. The evolution of D eff as a function of D ox remains similar with more traps, but the value of D eff becomes significantly lower. We also plotted in Figure II.46 equation (II.4.2). For all the cases exposed here, the equation correctly matches the data, thus confirming our hypothesis.

Figure

  Figure II.46 -Evolution of the effective diffusion coefficient D eff and the calculated effective diffusion coefficient D ~eff as a function of N T and D ox . (a) : Evolution as a function of N T for two D ox . (b) : Evolution as a function of D ox for two N T .

Figure

  Figure II.47 -Map of the effective diffusion coefficient D eff as a function of N T and D ox .

FigureFigure

  Figure II.48a depicts the evolution of C 0eff as a function of the trap density N T for two values of D ox , in the case of palladium (D ox = 10 -10 m 2 /s) or an oxide layer (D ox = 10 -16 m 2 /s). In the case of the palladium layer, C 0eff is equal to C 0 for low trap densities. Then, C 0eff increases when N T > 0.1 mol/m 3 . With the oxide layer, C 0eff remains inferior to C 0 for any trap density, even if it also rises when N T > 0.1 mol/m 3 . To check the effects of the surface layer diffusion coefficient, we depicted in Figure II.48b the evolution of C 0eff with respect to D ox for two trap densities. In both cases, C 0eff slightly increases over C 0 when D ox decreases from 10 -10 to 10 -14 m 2 /s. Then, C 0eff decreases if D ox is further reduced. In the case of a high trapping density, C 0eff exceeds C 0 for D ox between 10 -10 to 10 -15 m 2 /s. Then, C 0eff falls under C 0 . We also plotted in Figure II.48 the evolution of equation (II.4.3). Once again, the equation correctly fits the behavior of C 0eff .

Figure

  Figure II.49 -Map of the effective initial hydrogen concentration C 0eff as a function of N T and D ox . {D1} -No influence of trapping and the oxide layer. {D2} -Diminution of C 0eff because of the oxide layer. {D3} -Increase of C 0eff due to trapping effects. {D4} -Balance between the effects of trapping and the presence of the oxide layer

  Figure II.50. Figure II.50a considers the membrane without the surface layer. It can be seen that the trapping slightly increases the concentration inside the membrane, as demonstrated in section II. To determine the effects of the surface layer on these profiles, Figure II.50b depicts C L for D ox equal to 10 -15 m 2 /s. Diffusion inside the oxide layers is extremely slow, so this layer acts as a barrier and slows down the diffusion of hydrogen. C L becomes almost constant because hydrogen accumulates inside the membrane. However,trapping has an opposite effect; since hydrogen diffusion is also slowed down by trapping, less hydrogen can be built up, and C L is not constant anymore. Nevertheless, the effects of trapping are very weak compared to the effects of the oxide layer.

FigureFigure 4 )Figure

 4 Figure II.50 -Concentration profiles of hydrogen inside the membrane. (a). D ox = 10 -10 m 2 /s ; (b) D ox = 10 -15 m 2 /s The effects of trapping and the oxide layer on the trapped concentration C T are compared in Figure II.51. C T increases rapidly with the trap density (Figure II.51a), however, the concentration profile is not linear anymore. With an oxide layer (Figure II.51b), hydrogen is accumulated inside the membrane and as expected, C T gets higher with strong trapping.

  Figure II.50 and Figure II.51 we concluded that trapping and the presence of the oxide layer have opposite effects on the lattice and trapped hydrogen concentrations C L and C T . It is consequently obvious that they should have opposite effects on the total average concentration <C>.

FigureFigure

  Figure II.53a depicts the evolution of <C> as a function of C 0eff without trapping. With no oxide layer, <C> is equal to C 0eff / 2, as expected. This corresponds to the domain {D1} of Figure II.49,where C 0eff is equal to the real subsurface concentration C 0 . However, with an oxide layer, <C> is not equal to C 0eff . This situation occurs inside the domain {D2} where C 0eff is smaller than C 0 for oxidecovered membranes. In Figure II.53b, we now consider trapping, inside the domain {D3} where C 0eff is greater than C 0 . The total concentration <C> becomes higher than C 0eff because of the trapped hydrogen. As expected, we do get opposite effects of trapping and the oxide layer on <C>.

Figure

  Figure II.54. First of all, we check the conditions of the experimental data; the nature of the material allows us to input the lattice diffusion coefficient D L and the lattice sites density N L . The nature of the surface layer gives information about its thickness e ox a nd the possible range of D ox . The heat treatments associated with the microstructure give access to an estimation of the trap density N T . Then, we modify the trap density N T , the surface layer diffusion coefficient D ox and the initial entry side concentration C 0 to match the experimental data on the evolution of the steady-state flux as a function of the thickness of the membrane. Knowing N T , D ox and C 0 , we apply the parameters on the effective diffusion coefficient D eff . If our model and the experimental data on D eff do not match, we need to consider the evolution of N T and C 0 as a function of the thickness of the membrane. Doing so, we first match the evolution of D eff by modifying the value of N T . Changing the trap density modifies the steady-state flux J max , thus we need to alter the C 0 to correlate the model on the steady-state flux. Modifying the C 0 does not change D eff , then our numerical model and the experimental data are

  of the steady-state flux The authors of all experimental works used in this paper [Devanathan64, Radhakrishnan67, Jérôme03, Addach09, Brass98] polished the iron membranes for electrochemical permeation tests. It is important to note that the mechanical polishing creates a deformed layer at the surface of the membrane, with a high trap density (especially dislocations) [Lee90]. The thickness of this layer ranges from 15 µm to 40 µm, depending on the polishing method. Figure II.55 displays a schematic representation of the deformed layer. Assuming that the thickness of the layer is constant, the average trap density rises when the thickness of the membrane decreases, and exceeds the trap density for membranes with a fine polishing.

Figure

  Figure II.55 -Schematic representation of the effects of mechanical polishing on a membrane

Figure

  Figure II.56a presents the comparison of experimental results [Radhakrishnan67, Jerome03] with the numerical analysis for palladium, where the numerical models correctly fits the experimental data.Experimentally, the materials were annealed to ensure a low trap density. As such, we may not alter the initial N T if we do not consider the mechanical polishing in a first step [Kumnick80]:N T = 10 -3 mol/m 3 . We then increased N T with the inverse of the thickness, to take into account the mechanical polishing, with a maximum N T equal to 16 mol/m 3 in the thinnest membrane of the experimental data. If there was no variation of N T , the subsurface concentration C 0 could be determined using the slope of the linear curve in Figure II.56a. Doing so would give C 0 = 0.3 mol/m 3 .

  ox equal to 1×10 -14 m 2 /s, matching the literature for oxides layers on iron [Schomberg96]. The initial concentrations C 0 were modified to take into account the surface state, and moved up from 0.14 to 0.24 mol/m 3 for Brass and from 0.19 to 0.3 mol/m 3 for Addach. The behavior of iron at low temperature presents a wide discrepancy [Kiuchi83, Addach05, Oudriss12], since different microstructures for α-iron can exist, especially with various trap densities. The materials used by Brass and Addach were not annealed, so the trap density was considerably higher than in annealed iron. The experimental data were matched by considering a high trap density, equal to 30 mol/m 3 . We then increased the trap density up to 150 mol/m 3 to take into account the mechanical polishing. Using these parameters, the numerical analysis correctly fits the experimental data.

Figure II. 56 -

 56 Figure II.56 -Evolution of the steady-state flux J max as a function of the inverse of the thickness. Comparison between experimental results and the numerical model in case of (a) annealed α-iron with palladium or (b) non-annealed α-iron with an oxide layer.

FigureFigure

  Figure II.57 presents the comparison between our model and the experimental results for membranes coated with palladium in Figure II.57a and membranes covered with an oxide layer in Figure II.57b. For membranes coated with palladium, the experimental effective diffusion coefficient is close to the lattice diffusion D L . Its value however lessens for thin membranes (< 0.6 mm). Two cases are depicted in Figure II.57a; if we keep the trap density constant, we overestimate the value of the effective diffusion coefficient. If we however input the variation of N T that ensured the fit of J max , we correlate the experimental results.

Figure

  Figure II.58 -Evolution of the dislocation density as a function of the thickness of the membrane for the cases of the membranes covered by a palladium layer or an oxide layer Knowing the steady-state flux and the effective diffusion coefficient, we can now calculate the effective subsurface hydrogen concentration.

Figure

  Figure II.59 -Evolution of the effective subsurface hydrogen concentration C 0eff and the initial hydrogen concentration C 0 as a function of the thickness of the membrane. Comparison between experimental results and the numerical analysis in case of (a) annealed α-iron with palladium or (b) non-annealed α-iron with an oxide layer. To get a better understanding of the behavior of C 0eff , we calculated the average lattice and trapped hydrogen concentrations inside the membrane, respectively <C L > and <C T >. The evolution of the average concentrations as a function of the initial hydrogen concentration C 0 is plotted in Figure II.60a for membranes covered by a palladium layer. Due to the increase of traps by the mechanical polishing, <C T > rises with C 0 , from 0.01 to 1.4 mol/m 3 and exceeds <C L > over C 0 = 0.6 mol/m 3 . This augmentation of the trapped hydrogen concentration leads to the increase of C 0eff in thin membranes.For the case of membranes covered with an oxide layer, pictured in Figure II.60b, the material presents a high trapping density since it is not annealed. So, the trapped hydrogen concentration <C T > is higher than <C L >. The dislocation density was only slightly affected by the mechanical polishing, and we observe the same phenomenon for <C T >, rising from 11.2 to 12.4 mol/m 3 .

Figure II. 60 -

 60 Figure II.60 -Evolution of the average lattice and trapped hydrogen concentrations as a function of the entry side concentration C 0 for membranes covered with (a) annealed α-iron with palladium or (b) non-annealed α-iron with an oxide layer., using the conditions from [Radhakrishnan67] and [Brass98] respectively.

Frappart [ Frappart11a ]

 Frappart11a , in which the polishing of the 0.45 wt% carbon and 1.5 wt% molybdenum martensitic samples at grit 4000 ensured the removal of the deformed layer. Figure II.61a depicts the comparison between our model and the work of Frappart on a model steel. To match the experimental data, we considered a constant trap density N T equal to 55 mol/m 3 , in the same order of magnitude than the calculated N T in Frappart's work. We also selected an oxide layer diffusion coefficient equal to 10 -14 m 2 /s [Schomberg96]. The initial entry hydrogen concentration was taken equal to 1.8 mol/m 3 for thin membranes, and decreased towards 1.2 mol/m 3 for thick membranes. In the case of Charca et al.[Charca07] displayed in Figure II.61b, only several grades of mechanical polishing up to 1200 were used to reduce the thickness of their membranes. Doing so, they left a thin deformed layer due to the coarse polishing. Consequently, we need to alter the trap density as a function of the thickness. Also, an arsenic-based compound was added to enhance hydrogen adsorption, that can be noticed by the difference between the steady-state flux for both cases; in the work of Charca et al., the flux is two orders of magnitude higher than in the work of Frappart. To consider the increase of hydrogen adsorption in our calculation, we need to considerably increase the initial hydrogen concentration C 0 , giving values between 75 and 179 mol/m 3 . Also, the microstructure of the AF1410 steel used by Charca et al. contains a very high density of traps, far superior than the carbon/molybdenum steel studied by Frappart. Taking into account the very high density as traps and the increase in N T due to the mechanical polishing, the trap density ranges between 297 and 395 mol/m 3 . The oxide layer diffusion coefficient is taken equal to 10 -15 m 2 /s to match the experimental data, instead of 10 -14 m 2 /s for the model steel. We can assume that the differences of experimental conditions led to the formation of a different oxide layer.

Figure II. 61 -

 61 Figure II.61 -Evolution of the steady-state flux J max as a function of the inverse of the thickness of the membrane. Comparison between experimental results and the numerical model for (a) [Frappart11a], (b) [Charca07].

Figure

  Figure II.62a pictures the evolution of the effective diffusion coefficient as a function of the thickness of the membrane for the study of Frappart. The presence of traps fairly decreases the value of D eff , equal to 4 ×10 -11 m 2 /s. Since the trap density does not evolve for the different thicknesses, D eff only slightly falls. In Figure II.62b we depict the effective diffusion coefficient for Charca et al. D eff decreases with the thickness of the membrane. This phenomenon is caused by the increase of trap density for thin membranes, due to the mechanical polishing. Also, since the trap density in AF1410 steel is six times higher than in the model steel, D eff is lower in the study of Charca et al. For the

Figure

  Figure II.62 -Evolution of the effective diffusion coefficient D eff and the trap density N T as a function of the thickness of the membrane. Comparison between experimental results and the numerical model for (a) Model steel [Frappart11a], (b) AF1410 steel [Charca07].We now check the difference between the effective subsurface concentration C 0eff and the real entry side hydrogen concentration C 0 . Figure II.63a depicts the evolution of C 0eff and C 0 as a function of the thickness of the membrane for the model steel. For membranes between 0.8 and 2 mm, C 0 remains constant. Its value decreases for thinner membranes. We assume that the oxide layer influence the concentration for thin membranes. The calculated C 0eff follows the same trend, but is higher than the real C 0 . The overestimation of the subsurface hydrogen concentration is due to the high trap density (55 mol/m 3 ); the oxide layer cannot totally counter-balance the effects of trapping, thus giving a higher C 0eff . Nonetheless, C 0eff and C 0 remain in the same order of magnitude. In Figure II.63b we compare C 0eff and C 0 as a function of the thickness of the membrane for the AF1410 steel. While C 0 increases when the thickness of the membrane is reduced, the effective subsurface concentration C 0eff rises when the thickness of the membrane decreases from 0.4 to 0.1 mm, due to the increase in the traps density.

Figure

  Figure II.63 -Evolution of the effective subsurface hydrogen concentration C 0eff and the initial hydrogen concentration C 0 as a function of the thickness of the membrane. Comparison between experimental results and the numerical model for (a) Model steel [Frappart11a], (b) AF1410 steel [Charca07].

  First, we only took into account trapping phenomena, using trapping equations developed from the literature [McNabb63, Oriani70, Krom00]. Then, we studied the effects of the surface state, especially the influence of a palladium coating or an oxide layer at the exit side of our material. The last step focused on the interactions and combined effects of trapping and the surface layer/coating.

  6 -Summary of the equations describing J max , D eff and C 0eff for the three models

Figure

  Figure III.1b depicts the quadratic meshing of the homogeneous membrane. During electrochemical permeation tests, the hydrogen flux is measured at the exit side of the membrane. To ensure a sufficient precision, the thickness of the mesh elements decreases towards the exit side of the membrane.

Figure III. 1 -

 1 Figure III.1 -(a). Scheme of the model with the boundary conditions and the parameters of the model, (b) Quadratic meshing of the membrane

[ Zakroczymski06 ] 1 ) 2 )

 Zakroczymski0612 , the effective desorption diffusion coefficient is calculated by applying the standard solution of Fick's laws on the desorption curve, given by equation (III.1.The diffusion coefficient D in the equation is modified until equation (III.1.1) fits the desorption curve. However, since this solution does not consider the phenomenon of hydrogen trapping, surface states nor the microstructure, only the first part of the curve can be correctly matched. In other words, while the desorption flux is higher than 99% of the steady-state flux, equation (III.1.1) can be applied to determine the diffusion coefficient. Using this result, we can determine the D eff,d by considering the time required for the flux to decrease by 1%. Doing so, the effective diffusion coefficient is calculated using equation (III.1.2), at the characteristical time t 99% .Following the work of Zakroczymski, we present in Figure III.2 an example of desorption curve at the exit side, compared with equation (III.1.1). Since the solution of Fick's laws does not take trapping into account, the area under the curve gives access to the lattice hydrogen concentration C L .

  membrane by the exit side, while the remaining hydrogen escapes by the entry side. Experimentally, it is necessary to multiply by three the calculated concentrations. Assuming that the concentration profile is linear in the membrane, the average total hydrogen concentration is <C> = C 0 / 2. By calculating the area under the desorption curve at the entry side, we obtain the total hydrogen concentrations <C L > and <C Tr > as depicted in Figure III.2.

Figure III. 2 -

 2 Figure III.2 -Example of desorption curve at the exit side compared with the solution of Fick's laws Since the desorption curve at the exit side gives only access to one third of the lattice and of the reversibly trapped hydrogen concentrations, the irreversibly trapped hydrogen concentration can be calculated using equation (III.1.3):

Figure

  Figure III.3a depicts the evolution of the hydrogen flux at the exit side of the membrane for several trap densities. For short times, the flux remains constant, equal to the steady-state flux reached during hydrogen charging. Then, the flux decreases down to zero. If the trap density increases, the steadystate value becomes significantly lower, as demonstrated in the second chapter. On the desorption curves observed in Figure III.3b for normalized fluxes, the time required for the flux to reach zero is increased.

Figure III. 3 -

 3 Figure III.3 -Evolution of (a) the exit side hydrogen flux (b), the normalized exit side hydrogen flux as a function of time for several trap densities

Figure III. 4 -

 4 Figure III.4 -Evolution of (a) the entry side hydrogen flux as a function of time for several trap densities, (b) the normalized entry side hydrogen flux as a function of time for several trap densities The behavior of the steady-state flux due to hydrogen trapping has been characterized in the second chapter, with equation (II.2.2). However, this equation only applies to the exit side hydrogen steadystate flux. Figure III.5a depicts the evolution of the entry and of the exit side steady-state fluxes as a function of the inverse of the thickness of the membrane, for weak hydrogen trapping. For both sides, the result is proportional. While the entry side flux is higher than the exit side flux, both are reduced due to hydrogen trapping. To get a better view of the difference between both fluxes, Figure III.5b

Figure III. 5 -

 5 Figure III.5 -(a). Evolution of the entry and exit side steady-state fluxes as a function of the inverse of the thickness of the membrane for N T = 10 -4 mol/m 3 and N T = 10 mol/m 3 . (b). Evolution of the ratio between the steady-state fluxes as a function of the trap density for two trap binding energies

Figure III. 6

 6 Figure III.6 pictures the evolution of the effective diffusion coefficients D eff,c and D eff,d as a function of the trap density N T . In Figure III.6a, for weak trapping (ΔE T = -0.1 eV), D eff,d is equal to D L , while the diffusion coefficient for hydrogen charging is slightly lower. In Figure III.6b, the charging diffusion coefficient decreases with the trap density, as demonstrated in the second chapter. The desorption diffusion coefficient follows the same behavior, and only remains slightly higher than D eff,c .

Figure III. 6 -Figure III. 7 -

 67 Figure III.6 -Evolution of the effective charging and desorption diffusion coefficients as a function of the trap density for (a). ΔE T = -0.1 eV, ΔE T = -0.3 eV

  Figure III.8 depicts the evolution of the desorption flux as a function of time, for the entry side and the exit side. The flux is significantly higher than for the entry side. In both curves, the flux is depleted at the same time, even if the fall starts at an earlier time for the entry side flux. We picture in Figure III.8b the value of the total hydrogen concentration calculated from the completion of the charging state, compared to the values of concentrations calculated with the areas of the curves in Figure III.8a. The sum of both contributions is equal to C 0 /2, and we obtain the ratio calculated by Zakroczymski: 1/3 for the exit side and 2/3 for entry side.

Figure

  Figure III.8 -(a) Hydrogen desorption at the entry side of the membrane and the exit side of the membrane for no trapping. (b). Comparison between the concentrations calculated from Fick's laws and from the areas under the desorption flux curves.

FigureFigureFigure

  Figure III.9 depicts a schematic representation of the calculations of both concentrations. <C L,c > is calculated by integrating the concentration profile at the steady-state with equation (III.2.5), while <C L,d > is calculated from the areas of Fickian desorption flux curves at the entry and exit side in equation (III.2.6). Doing so allows to compare the results of the experimental methodology with the concentrations inside the membrane.

Figure III. 10 -

 10 Figure III.10 -Evolution of the lattice hydrogen concentration <C L > calculated with the charging and desorption step as a function of the trap density N T . (a). ΔE T = -0.1 eV. (b). ΔE T = -0.3 eV.

Figure

  Figure III.11 -Schematic representation of the calculations of the charging and desorption lattice hydrogen concentrations

Figure III. 12 -

 12 Figure III.12 -Evolution of the trapped hydrogen concentration <C T > calculated with the charging and desorption step as a function of the trap density N T . (a). ΔE T = -0.1 eV. (b). ΔE T = -0.3 eV.

Figure

  FigureIII.13 depicts the evolution of <C Tir > as a function of the trap density N T for two trap binding energies. <C Tir > slightly evolves for high trap densities when ΔE T is low. However, for a strong trap

Figure III. 13 -

 13 Figure III.13 -Evolution of the irreversibly trapped hydrogen concentration as a function of the trap density for two trap binding energies.

FigureFigure

  Figure III.14a displays the evolution of the normalized lattice hydrogen concentration as a function of time for several trap densities. C L decreases with time down to zero. When the trap density rises, C L remains steady, but it is eventually depleted. In Figure III.14b is shown the evolution of the trapped hydrogen concentration C T in the membrane as a function of time, for several trap densities. The trapped hydrogen concentration is emptied at the same time as C L for both low and high trap densities. From the results of section II.4.b, C T should have remained higher since we were able to determine irreversible hydrogen trapping. This means that the difference that we observed between <C T,c > and <C T,d > are not due to irreversible hydrogen trapping. The problem seems to lie in the model, as it was observed earlier with the difference in diffusion coefficients in Figure III.7. The diffusion coefficients were too close to correctly correspond to experimental data. Indeed, the experimental results of Frappart [Frappart11a] showed desorption diffusion coefficients D eff,d at least one order of magnitude higher than D eff,c , which does not appear with our model. The difference in the trapped hydrogen concentrations probably comes from the same problem in the model.

Figure

  Figure III.15 -(a). Evolution of the derivative of the lattice hydrogen concentrations as a function of time for several trap densities. (b). Evolution of the derivative of the trapped hydrogen concentration as a function of time.

1 ) 3 ) 5 )

 135 concentrations, C H = C L + C T . If we consider that the diffusion is controlled by the lattice diffusion coefficient and the lattice hydrogen concentration, we get equation (III.3.By reorganizing the temporal derivative of C T we can now write: factorizing with the temporal derivative of C L , we get equation (III.3.From equation (III.3.3), we can define an apparent diffusion coefficient D app to get a new equation in the form of Fick's second law: With D L the lattice diffusion coefficient, C T the trapped hydrogen concentration and C L the lattice hydrogen concentration. To determine the variation of C T as a function of C L , we go back to the equations describing the variation of the trapped hydrogen concentration as a function of time. The evolution of C T is divided in two contributions in equation (III.3.6): the hydrogen atoms getting trapped (Lattice to Trap), and the atoms escaping the traps (Trap to Lattice).

Figure

  Figure III.16 -Binding energies of lattice and trap sites

  3.10)The minus sign in equation (III.3.10) defines the diminution of the trapped hydrogen concentration C T when hydrogen atoms escape trap sites. By placing equations (III.3.9) and (III.3.10) into equation (III.3.6), we finally obtain the variation of the trapped hydrogen concentration as a function of time:

  13) Early works by A. Einstein [Einstein05] and M. von Smoluchowski [Smoluchowski06] gave the relation between the diffusion coefficient and the distance of jump of a particle during a given time. Using these works, the jump rate is defined in equation (III.3.14) the frequencies of stable states, for example tetrahedral or octahedral sites, and f j ' the frequencies of transition states. By identifying equations (III.3.13) and (III.3.14), the jump frequency is calculated with equation (III.3.15):

  entropy S i is determined using the difference in energies between the ground and the transition states. If we consider diffusion in nickel from the work of Wimmer et al., the ground frequencies are 24.3 THz and 38.7 THz for octahedral and tetrahedral sites, respectively. The transition state frequency between both sites is 47.1 THz. If we refer to the work of Jiang and Carter [Jiang04] on bcc Fe, the vibrational frequencies takes values between 29 THz and 58 THz. Yang et al. [Yang90]

  where i is replaced by L for the lattice concentration or T for the trapped hydrogen concentration. First, to determine the changes due to the consideration of the full equation, FigureIII.17 depicts the evolution of the average lattice and trapped hydrogen concentrations <C L > and <C T > in the membrane once the charging step is completed, at the steady-state. Unlike in the section II, (figure III.10), <C L > does not evolve with the trap binding energy. However, <C T > rises considerably with E T , and it becomes close to the trap density for very high E T . Since the jump rate of hydrogen from a trap site is low due to the trap binding energy, hydrogen gets trapped without being able to escape. From the literature, traps with an activation energy exceeding 0.5 eV are considered irreversible [Addach06, Dadfarnia11, Oudriss12a]. That is why almost all traps can get filled during the hydrogen charging.

Figure III. 17 -

 17 Figure III.17 -Evolution of the average lattice and trapped hydrogen concentrations at the steady-state after hydrogen charging, as a function of the trap site binding energy. Since we characterized the values of the average concentrations at the steady-state, the evolution of the average concentrations during the desorption process is now studied. In Figure III.18a is depicted the evolution of the normalized average lattice hydrogen concentration <C L > as a function of time for several trap binding energies. When the trap binding energy increases, <C L > takes more time to
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 18 Figure III.18 -Evolution of (a) the normalized average lattice hydrogen desorption, (b) the normalized average trapped hydrogen concentration as a function of time for several trap binding energies during the desorption step

Figure

  Figure III.19 -(a) Evolution of the normalized average lattice and trapped hydrogen concentrations as a function of time for trap binding energies equal to 0.3 or 0.6 eV. (b). Evolution of the time required to desorb lattice and trapped hydrogen as a function of the trap binding energy.

  Figure III.20a depicts the evolution of the steady-state average lattice hydrogen concentration <C L > as a function of the ratio between the lattice and the trap jump frequencies, for three trap binding energies E T . For any E T , the lattice hydrogen concentration is not affected by a change in the untrapping frequency, and stays equal to C 0 /2. Concerning the steady-state average concentration, <C T > is displayed in Figure III.20b as a function of ν T / ν L for three trap binding energies.In the case of a high trap binding energy, the average trapped hydrogen concentration is equal to the trap density N T for any ν T /ν L below 0.1. A small diminution of the untrapping frequency is fill the trap sites. In the case of E T = -0.3 eV, <C T > only reaches N T for a low ν T, while it tends toward zero for higher trap jump frequencies. For the intermediate case (E T = 0.45 eV), <C T > is equal to N T below ν T / ν L = 10 -3 . When the trap binding energy E T diminishes, the total fill-up of the trap sites only happens for lower untrapping frequencies.

Figure

  Figure III.20 -Evolution of (a) the average lattice and (b) the trapped hydrogen concentrations at the steady-state after hydrogen charging, as a function of the ratio between the jump frequencies. Trap binding energies E T = 0.3, 0.45 and 0.6 eV.

Figure

  Figure III.21 -Evolution of (a) the normalized average lattice hydrogen concentration, (b) the normalized average trapped hydrogen concentration as a function of time for several jump frequencies from trap sites for a medium trap binding energy E T = 0.45 eV

FigureFigure

  Figure III.21b, allowing us to qualify hydrogen as being irreversibly trapped.

Figure III. 23 -

 23 Figure III.23 -Comparison between the desorption flux and the solution of Fick's laws for a high trap binding energy and strong trapping (a). Model from section II; ΔE T = -0.3 eV, N T = 21 mol/m 3 . (b). Current model; E T = 0.6 eV, N T = 21 mol/m 3 , ν T /ν L = 1

  .4.6) describes the evolution of the trapped hydrogen concentration for n sites, without any hypothesis on the possibility of hydrogen to escape a site i. Depending on the case, some simplifications may be applied.b. Application to three sitesExperimentally, the diffusion of hydrogen can be characterized by the Thermal Desorption Spectroscopy (TDS). This method allows to get a hydrogen desorption profile as a function of the temperature, as pictured in Figure III.24 from the studies of Frappart et al.[START_REF] Frappart | Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy[END_REF]. Even though numerous trap sites free their hydrogen when the temperature increases, the desorption profile can be simulated using only four Gaussian distributions; the two first distributions (solid blue) correspond to lattice hydrogen desorption, the third (dashed green) represents reversibly trapped hydrogen and the last (dotted purple) corresponds to irreversibly trapped hydrogen, since high temperatures are required to free hydrogen.

Figure

  Figure III.24 -Hydrogen desorption profile as a function of the heating rate for quenched and tempered martensite [Frappart11b].

Figure III. 25 .

 25 Figure III.25. Each site possesses its own energy barrier; E L for lattice sites, E Tr for reversible traps and E Tir for irreversible traps.

Figure III. 25 -

 25 Figure III.25 -Representation of the energy barrier of three sites

(D L = 1 .

 1 2×10 -9 m 2 /s and N L = 2.108×10 5 mol/m 3 ), for thicknesses between 0.1 and 1 mm. Based on the results of the previous section and the classification of Pressouyre [Pressouyre79], we consider reversible trapping with a low trap binding energy E Tr equal to 0.3 eV, while the irreversible trap binding energy E Tir is equal to 0.6 eV. In martensitic steels, due to the heterogeneous microstructure, we assume that the reversible trap density N Tr is consequently higher than the irreversible trap density N Tir . Using the electrochemical permeation technique, the irreversible trap density is calculated [Frappart11a], thus we take N Tir = 21 mol/m 3 . Concerning the reversible trap density, we chose N Tr = 2000 mol/m 3 to remain in a case where N L >> N Tr >> N Tir .

Figure

  Figure III.26 depicts the evolution of the average concentrations at the steady-state after hydrogen charging as a function of the irreversible trap jump frequency. For any ν Tir , the lattice hydrogen concentration remains equal to C 0 /2, following the behavior from section III for two sites. The reversibly trapped hydrogen concentration <C Tr > also remains constant. The reversible trap density N Tr is high, but the low reversible trap binding energy E Tr considerably reduces its effects. Moreover, for a low trap binding energy, we showed in Figure III.20b that a very low jump frequency was required to affect the hydrogen concentration. Here, we do not reduce ν Tir / ν L below 10 -3 , so <C Tr > remains unaffected. Meanwhile, the irreversibly trapped hydrogen concentration is affected by the jump frequency. As demonstrated in section III, the steady-state trapped hydrogen concentration is increased by a reduction of the jump frequency, until it reaches the trap density. We obtain the same case here, <C Tir > becomes equal to N Tir when ν Tir / ν L is below 0.01.

Figure III. 26 -

 26 Figure III.26 -Evolution of the steady-states hydrogen concentrations <C L >, <C Tr > and <C Tir > after charging as a function of the ratio between the irreversible trap jump frequency ν Tir and the lattice jump frequency ν L While the modification of the jump frequency does not affect the steady-state hydrogen concentrations <C L > and <C Tr >, we noticed in section III that the evolution of the hydrogen concentrations during the desorption process was altered. Thus, Figure III.27a depicts the evolution of the normalized lattice hydrogen concentration as a function of time during the desorption step. When ν Tir diminishes, the time required for <C L > to be depleted is reduced. If we compare with the evolution of the normalized reversible hydrogen concentration <C Tr > as a function of time, for the same ν Tir , we obtain an identical behavior; the time for <C Tr > to clear out also decreases with the jump frequency.

Figure III. 27 -

 27 Figure III.27 -Evolution of (a) the normalized lattice hydrogen concentration, (b) the normalized reversibly trapped hydrogen concentration as a function of time for several irreversible trap jump frequencies.

 Tir /  L = 1  1  Tir /  L = 1  1 

 1111 Tir /  L = 0.Tir /  L = 0.01  Tir /  L = 0Tir /  L = 0.Tir /  L = 0.01  Tir /  L = 0.001 (a) (b) trapped hydrogen concentration follows the same behavior, while we could have expected the same evolution as the trapped hydrogen concentration for a low trap binding energy. To question the influence on <C Tir >, Figure III.28a depicts the evolution of the normalized irreversibly trapped hydrogen concentration as a function of time for several ν Tir . Here, <C Tir > follows the behavior of the trapped hydrogen concentration in section III; a reduction of the jump frequency slows down the desorption of <C Tir >. To compare the desorption speed, Figure III.28b pictures the evolution of the desorption time of <C L >, <C Tr > and <C Tir > as a function of the irreversible trap jump frequency. As observed in Figure III.27, the desorption time for <C L > and <C Tr > are equal, while <C Tir > desorbs more slowly.

Figure

  Figure III.28 -(a). Evolution of the normalized irreversibly trapped hydrogen concentration as a function of time for several irreversible trap jump frequencies. (b). Evolution of the desorption time of <C L >, <C Tr > and <C Tir > as a function of ν Tir /ν L

 1  1 

 11 Tir /  L = Tir /  L = 0.Tir

Figure

  Figure III.29a depicts the evolution of the steady-state average concentrations <C L >, <C Tr > and <C Tir > as a function of the subsurface hydrogen concentration C 0 , for two ν Tir /ν L = 1. The lattice and the reversibly trapped hydrogen concentration evolve linearly with C 0 . The irreversibly trapped hydrogen concentration also rises with C 0 , but not linearly. Indeed, <C Tir > cannot exceed the irreversible trap density N Tir . For a ν Tir / ν L = 10 -3 , displayed in Figure III.29b, the irreversibly trapped hydrogen concentration does not evolve with C 0 , and stays equal to N Tir . Concerning <C L > and <C Tir >, they rise linearly with C 0 , and their value is not altered by the jump frequency.

Figure III. 29 -Figure

 29 Figure III.29 -Evolution of the steady-state hydrogen concentrations <C L >, <C Tr > and <C Tir > as a function of the subsurface hydrogen concentration C 0 . (a) ν Tir /ν L = 1, (b) ν Tir / ν L = 10 -3

Figure

  Figure III.31 the comparison between a desorption flux curve and the associated Fickian solution.

Figure

  Figure III.31a depicts an example for the previous model, with only one kind of trap sites, while an example of the current model is pictured in Figure III.31b. While the effects of trapping are clearly illustrated, both models produce the same results for equivalent trapping. The reversibly trapped hydrogen does not affect the flux curve, and the irreversible hydrogen trapping in our current model only acts as the strong trapping of the previous model.

Figure

  Figure III.31 -Comparison between the desorption flux at the exit side and the solution of Fick's laws for a high trap binding energy and strong trapping (a). Model from section III; ; E T = 0.6 eV, N T = 21 mol/m 3 , ν T /ν L = 1. (b). Current model; E Tir = 0.6 eV, N Tir = 21 mol/m 3 , ν Tir /ν L = 1

(

  III.4.15) We compare in Figure III.32a the evolution of <C Tr > and <C Tr,d > as a function of the irreversible trap density N Tir , for a jump frequency ratio ν Tir /ν L = 1. While <C Tr > is not affected by a change in N Tir , the concentration calculated from the desorption curve increases. For low N Tir , <C Tr,d > is lower than <C Tr >. Over N Tir = 0.2 mol/m 3 , <C Tr,d > exceeds <C Tr > and tends toward N T . Figure III.32b depicts the trapped hydrogen concentration calculated at the steady-state <C Tir > and <C Tir,d > as a function of N Tir .In fact, over N Tir = 0.02 mol/m 3 <C Tr,d > behaves similarly to <C Tir >. Consequently, <C Tir,d > is lower than its real value for high trap densities.

Figure III. 32 -

 32 Figure III.32 -Comparison of (a) <C Tr > and <C Tr,d >, (b) <C Tir > and <C Tir,d > as a function of the irreversible trap density N Tir for a jump frequency ratio ν Tir /ν L = 1.

Figure III. 33 -

 33 Figure III.33 -Evolution of hydrogen concentrations C L , C Tr and C Tir as a function of the desorption time in quenched and tempered martensitic steel AISI 5135 [Oudriss13]

  Figure III.29a that <C Tir > was lower than N Tir . We still consider strong trapping with N Tir = 21 mol/m 3 and E T = 0.6 eV. Figure III.34 depicts the evolution of the concentration profile in the membrane as a function of time during hydrogen charging. Since hydrogen cannot escape by the exit side, we observe an increase in the concentration until the profile becomes constant at the steady-state.

Figure III. 34 -

 34 Figure III.34 -Evolution of the total concentration profile for several times until the steady-state

Figure III. 35 -

 35 Figure III.35 -Evolution of the hydrogen concentrations as a function of time during hydrogen desorption, starting from a constant concentration profile at the charging steady-state. C L and C Tr have been magnified by 100 to be visible. Our model does not allow us to obtain the experimental behavior of the irreversibly trapped hydrogen.Even if our equations considered the possibility of exchange of the hydrogen atoms toward the

First, we kept

  the numerical model used in the second chapter, using the simplified form of the trapping equations from the literature [McNabb63, Oriani70, Krom00]. Hydrogen trapping slows down hydrogen desorption, and increases the trapped hydrogen concentrations. However, the concentrations calculated from the desorption curve did not always coincide with the real concentrations, especially in the case of the trapped hydrogen. Moreover, the desorption speed of the trapped and the lattice hydrogen were equal, because of the simplification hypotheses used in our model.
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  Grain boundaries act as high diffusivity paths [Brass96, Yao91a] but are also known for segregating hydrogen [Vlasov02, Yao91b]. From the recent works of Oudriss et al. [Oudriss12c] on hydrogen

Figure IV. 1 -

 1 Figure IV.1 -Probability of connectivity of random grain boundaries (J 0 + J 1 ) and special grain boundaries (J 2 + J 3 ) as a function of the grain size in polycrystalline nickel [Oudriss12c].

Figure

  Figure IV.2a, or random grains created by Voronoi tessellations based on Poisson plot process in Figure IV.2b. The dimensions of the membrane are the thickness e m and the height h m . On the left side of the membrane is imposed an initial entry side hydrogen concentration C 0 which does not evolve

Figure IV. 2 -

 2 Figure IV.2 -Polycrystalline microstructures considered. (a). Hexagonal grains. (b). Random Voronoi grains. Depending on the microstructure, two distributions of grain sizes are considered. Figure IV.3a presents the grain size distribution for the hexagonal microstructure. The grain size λ is unique, and corresponds to the radius of the hexagons. In Figure IV.3b is depicted the grain size distribution for the random microstructure. Unlike the hexagonal microstructure, the grains possess different sizes.

Figure IV. 3 -

 3 Figure IV.3 -Example of grain sizes distributions for the (a) hexagonal microstructure, (b random Voronoi microstructure.

Figure IV. 4 -

 4 Figure IV.4 -Magnification of a random nanocrystalline microstructure with the three domains of the model and their diffusion coefficients; grains (grey); grain boundaries (blue), triple junctions (green).

Figure IV. 5 -

 5 Figure IV.5 -Mesh for a hexagonal nanocrystalline microstructure

4 )

 4 To lighten the notations, the average bars are removed from all the following equations or figures, but the values remain average values.

FigureFigure

  Figure IV.6 with three grain boundaries reaching the exit side to get a better understanding.

  Figure IV.7 depicts the evolution of the flux as a function of time for several grain boundary diffusion coefficients. The accelerative behavior of the grain boundaries clearly appears when D gb rises; the steady-state flux increases with D gb , and the steady-state is reached faster.

Figure IV. 7 -

 7 Figure IV.7 -Evolution of the flux as a function of time for several grain boundary diffusion coefficients. Membrane thickness e m = 20 µm. Grain size λ = 1 µm. Grain boundary thickness e gb = 5 nm. We now consider more specifically the steady-state flux as a function of the grain boundary diffusion coefficient, depicted in Figure IV.8 for several grain sizes. As determined from Figure IV.7, J max increases with the grain boundary diffusion coefficient D gb . Also, when the grain size decreases, the steady-state flux is higher. The grain size is in relation with the grain boundary volume fraction f gb ; for constant membrane thicknesses, an increase in λ decreases the grain boundary volume fraction.

Figure IV. 8 -

 8 Figure IV.8 -Evolution of the steady-state flux J max as a function of the grain boundary diffusion coefficient D gb for several grain sizes. Membrane thickness e m = 20 µm. Grain boundary thickness e gb = 5 nm.The steady-state flux depends on the grain boundary volume fraction, but is calculated at the exit side of the membrane. It is then reasonable to think that the surface volume fraction of grain boundaries f s,gb

  Figure IV.9 depicts the evolution of the steadystate flux, normalized with the thickness of the membrane as a function of the grain boundary surface fraction f s,gb . Depending on f s,gb , the steady-state flux clearly changes.

Figure IV. 9 -

 9 Figure IV.9 -Evolution of the steady-state flux normalized with the thickness of the membrane as a function of the grain boundary surface fraction for a constant grain boundary volume fraction f gb = 0.01. Membrane thickness e m = 10 to 15 µm.

Figure

  Figure IV.10 -Evolution of the effective diffusion coefficient as a function of the grain boundary surface fraction for a constant grain boundary volume fraction f gb = 0.01. Membrane thickness e m = 10 to 15 µm.

Figure

  Figure IV.11 -(a). Evolution of the effective diffusion coefficient D eff as a function of the grain boundary diffusion coefficient D gb . (b). Evolution of the effective subsurface hydrogen concentration C 0eff as a function of D gb . Membrane thickness e m = 20 µm. Grain boundary thickness e gb = 5 nm.

Figure

  Figure IV.8 and Figure IV.11 were plotted with a constant membrane thickness and a change in the grain size.For f gb = 0.1%, there were only two grains in the thickness. This may be prone to affect the diffusion, so the next subsection focuses on scale effects in the membrane.

Figure

  Figure IV.12 -(a) -Evolution of the effective diffusion coefficient D eff as a function of the ratio between the membrane thickness e m and the grain size λ for two grain boundary volume fractions. (b) -Evolution of the flux as a function of time for the three domains and two grain boundary volume fractions. Thickness of the membrane: between 1 and 1000 µm. Grain size: 10 µm. Grain boundary diffusion coefficient: D gb = 10 -10 m 2 /s

Figure IV. 13 -Figure

 13 Figure IV.13 -Evolution of the effective subsurface hydrogen concentration C 0eff as a function of the ratio between the membrane thickness e m and the grain size λ for two grain boundary volume fractions. Thickness of the membrane: between 1 and 1000 µm. Grain size: 10 µm. Grain boundary diffusion coefficient: D gb = 10 -10 m 2 /s To confirm the absence of scale effects in domain III, the evolution of the effective diffusion coefficient D eff as a function of the grain boundary volume fraction in domain III is depicted in Figure IV.14. It appears that the effective diffusion coefficient increases with the grain boundary volume fraction. In this Figure we also plotted Voigt, Reuss and Hashin-Shtrikman bounds. As suggested in Figure IV.12 for the third domain, D eff is slightly lower than the Hashin-Shtrikman superior bound (HS+). It seems that 2D HS+ is the closest bound, confirming the work of Chen and Schuh [Chen07], who used the Hashin-Shtrikman superior bound to calculate the effective diffusion coefficient for isotropic polycrystals. In two dimensions, the Hashin-Shtrikman bound is defined by equation (IV.2.1):

Figure IV. 15 -Figure

 15 Figure IV.15 -Evolution of the effective subsurface concentration C 0eff as a function of the grain boundary volume fraction f gb in domain III. Thickness of the membrane: 1mm. Grain size: 10 µm. Grain boundary diffusion coefficient: D gb = 10 -10 m 2 /s. Scale effects become negligible when the ratio e m /λ becomes high enough, in domain III. The separation between the domains II and III corresponds to the intersection between the Hashin-Shtrikman superior bound and the curve of D eff plotted as a function of e m / λ. The critical ratio separating domains II and III is noted (e m / λ) c2,3 . From Figure IV.12, it appears clearly that this ratio is a function of the grain boundary volume fraction. As such, Figure IV.16 depicts the evolution of (e m / λ) c2,3 as a function of the grain boundary volume fraction f gb , for the Random Voronoi model.

Figure

  Figure IV.17a, for the hexagonal and random microstructures. The steady-state flux of the hexagonal microstructure is higher than the steady-state flux of the Voronoi microstructure. However, for the normalized flux plotted as a function of time in Figure IV.17b, the two curves are superimposed. The difference observed in Figure IV.17a can be explained by the grain boundary surface fraction on the exit side; the surface fraction for the hexagonal model is slightly higher than the surface fraction for the Voronoi model (0.0414 for the hexagonal model, and 0.0406 for the Voronoi model). Since the flux is measured on the exit side, J max is slightly higher for the hexagonal model. But, with the two curves superimposed in Figure IV.17b, the time required to reach the steady-state is the same for both models, and the global diffusion is not affected by the difference in microstructures. Only C 0eff will differ because of the difference in J max . To compare two different microstructures with the same grain boundary volume fraction, it is necessary to check that the grain boundary surface fractions are equal on the exit side.

Figure IV. 17 -

 17 Figure IV.17 -Evolution of the flux as a function of time for two microstructures. (a). J as a function of time. (b). J/J max as a function of time. Thickness of the membrane: 100 µm. Grain size: 10,79 µm. Grain boundary diffusion coefficient: D gb = 10 -10 m 2 /s Knowing the flux, we now calculate the evolution of the effective diffusion coefficient D eff as a function of the ratio e m / λ. Figure IV.18a depicts D eff for a hexagonal and a Voronoi microstructure, both with the same grain boundary volume and surface fractions. D eff increases when the ratio e m / λ decreases. Although the two microstructures are different, D eff is the same in both cases. Nevertheless, it is harder to precisely control the grain boundary volume and surface fractions for the random Voronoi model, which contributes to the slight differences. While the results on D eff are similar for both microstructures, we also need to compare the effective subsurface concentration C 0eff . As such, Figure IV.18b illustrates the evolution of C 0eff as a function of the ratio e m / λ, for a hexagonal and a Voronoi microstructure, with the same grain boundary volume fraction. C 0eff increases with the ratio e m / λ, until it reaches C 0 when there are no scale effects anymore. Also, for any ratio, C 0eff is the same

Figure

  Figure IV.18 -Comparison between random and hexagonal microstructures. (a) -Evolution of the effective diffusion coefficient D eff as a function of the ratio between the membrane thickness e m and the grain size λ. (b) -Evolution of the effective subsurface hydrogen concentration C 0eff as a function of the ratio between the membrane thickness e m and the grain size λ. Thickness of the membrane: between 0.9 and 1000 µm. Grain boundary diffusion coefficient: D gb = 10 -10 m 2 /s

Figure IV. 19 -

 19 Figure IV.19 -Evolution of the effective diffusion coefficient D eff as a function of the grain boundary volume fraction f gb for the hexagonal and random Voronoi microstructures in domain III. Thickness of the membrane: 300 µm. Grain size: 10 µm. Grain boundary diffusion coefficient: D gb = 10 -10 m 2 /s While studying the third domain for both microstructures, we can also present the effective subsurface hydrogen concentration C 0eff plotted as a function of the grain boundary volume fraction in domain III

Figure

  Figure IV.20 -Evolution of the effective subsurface hydrogen concentration C 0eff as a function of the grain boundary volume fraction f gb for the hexagonal and random Voronoi microstructures in domain III. Thickness of the membrane: 300 µm. Grain size: 10 µm. Grain boundary diffusion coefficient: D gb = 10 -6 m 2 /s Even though the two microstructures are significantly different, the obtained results for the same volume fractions and average grain sizes are in the same range. If the microstructure is isotropic and homogeneous, a random Voronoi model based on Poisson point process acts in the same way as the regular hexagonal distribution. However, this may not be the case with other random distributions. Nonetheless, using the grain boundary volume fraction and the ratio e m / λ may prove sufficient to determine analytical equations and predict the effective values D eff and C 0eff from the parameters of the model for isotropic homogeneous media. The characteristics of the exit side of the membrane should however be taken with precaution, especially the grain boundary surface fraction that may lead to divergences in the steady-state flux and the effective subsurface hydrogen concentration.
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 1 Figure IV.22 the average hydrogen concentration profiles ( ) ( , ) y

Figure

  Figure IV.22 -Profiles of average hydrogen concentrations in steady-state for three grain boundary volume fractions in domain III. Thickness of the membrane: 300 µm. Grain size : 13 µm. Grain boundary diffusion coefficient: D gb = 10 -10 m 2 /s

FigureA

  Figure IV.23 -Ratio between the hydrogen concentration and C fick at steady-state, along x/y-axis within the membrane. Thickness of the membrane: 300 µm. Grain size: 13 µm. Entry side concentration: C 0 =1mol/m 3 . Grain boundary volume fraction: f gb =0.13

Figure

  Figure IV.24 -(a) -Evolution of the normalized distributions of hydrogen concentrations for several abscissas in the membrane. (b) -Evolution of the variance of the distribution of concentrations inside the membrane as a function of the abscissa. Thickness of the membrane: 300 µm. Grain size: 13 µm. Grain boundary diffusion coefficient: D gb = 10 -10 m 2 /s. Grain boundary volume fraction: f gb =0.13

4 )

 4 Figure IV.25a is the plot of the quantity N as a function of the ratio between C i (x) and the average concentration () Cxwith logarithmic axis. We notice the linear part, corresponding to the power law, defined by equation (IV.3.In equation (IV.3.4), α and β are the parameters of the power law. The first parameter, α, depends of the number of calculations computed, and do not provide sufficient data for discussions. However, the second parameter, β, is plotted in Figure IV.25b as a function of the average concentration <C>. β is high when hydrogen concentrations are close to 0 or C 0 , respectively for the entry and the exit side of the membrane, where concentrations are imposed in the model. These cases are determinist and present less variability. However, β falls rapidly towards a quite constant value of 15 in the middle of

Figure

  Figure IV.25 -(a) -Evolution of the cumulative curves of hydrogen concentrations as a function of the hydrogen concentration C i . (b) -Evolution of the β parameter of the power-law as a function of the average concentration C ~(x). Thickness of the membrane: 300 µm. Grain size: 13 µm. Grain boundary diffusion coefficient: D gb = 10 -10 m 2 /s. Grain boundary volume fraction: f gb =0.13

Figure

  Figure IV.26 -(a). Example of truncated octahedron. (b). RVE of the membrane composed by 13 truncated octahedrons

Figure

  Figure IV.27 -Polycrystalline microstructure in 3D, with 2×2×2 patterns.

Figure

  Figure IV.28 -(a) Grain boundary network in the model. (b) Triple junction network.

Figure

  Figure IV.29 -Example of mesh for the model for a nanocrystalline RVE.

Figure

  Figure IV.30 depicts the evolution of the steady-state flux as a function of the triple junction diffusion coefficient D tj , for several membrane thicknesses. It appears clearly that the triple junctions present aninfluence on the flux; J max increases with D tj for all membranes thicknesses. We also note that the steady-state flux diminishes for thicker membranes, which is expected, since J max is proportional to the inverse of the thickness of the membrane.

Figure IV. 30 -

 30 Figure IV.30 -Evolution of the steady-state flux as a function of the triple junction diffusion coefficient for several membrane thicknesses. Grain boundary volume fraction f gb = 0.35. Triple junction volume fraction f tj = 0.076.

Figure

  Figure IV.31 -Evolution of (a) the effective diffusion coefficient D eff , (b) the effective subsurface concentration C 0eff as a function of the triple junction diffusion coefficient for several membrane thicknesses. f gb = 0.1.

(

  regions with the grains being inclusion, thus giving the following Hashindiffusion coefficient of the intergranular region and f in the intergranular volume fraction, given by f in = f gb + f tj . To determine the homogenized diffusion coefficient D in , the intergranular region is now considered as a matrix composed by the grain boundaries, and the triple junctions are now the inclusions, thus allowing us to use the Hashin-Shtrikman bound in equation this bound, pictured in Figure IV.32, we now observe that the effective diffusion coefficient reaches its value for e m / λ equal to 100. The membranes should be thicker to inhibit scale effects when triple junctions act as fast diffusivity paths. Obviously, we need to study thicker membranes to confirm this hypothesis.

Figure IV. 32 -

 32 Figure IV.32 -Evolution of the effective diffusion coefficient D eff as a function of the ratio between the membrane thickness and the grain size for two triple junction diffusion coefficients. f gb = 0.1.

FigureFigure

  Figure IV.33 -(a) Evolution of the double Hashin-Shtrikman bound as a function of the grain size, for a grain boundary thickness e gb equal to 5 nm, for several triple junction diffusion coefficients. (b) Evolution of the volume fractions as a function of the grain size

C 0eff .

 0eff To do so, we display in Figure IV.35 the evolution of C 0eff as a function of the ratio e m / λ for two triple junction diffusion coefficients. When D tj / D gb is equal to 1, we observe the phenomenon detailed in section I; C 0eff decreases when the membrane thickness is reduced, thus leading to an underestimation of its value. The same phenomenon happens when D tj / D gb = 1000, only C 0eff decreases even more. Also, even with e m / λ = 100, we do not obtain the initial value of C 0 . More points would again be required to confirm that C 0eff reaches C 0 even for fast triple junctions diffusivities.

Figure

  Figure IV.35 -Evolution of the effective subsurface hydrogen concentration C 0eff as a function of the ratio between the membrane thickness and the grain size for two triple junction diffusion coefficients. f gb = 0.1.

  thesis of Bachir Osman Hoch [OsmanHoch15]. Figure 1 depicts the evolution of the effective diffusion coefficient D eff as a function of the volume fraction of random grain boundaries f gb,R , for several ratios of the diffusivities of random and special grain boundaries, respectively D gb,R and D gb,Σ .Following the work of Abdelali Oudriss [Oudriss12c], random grain boundaries act as fast diffusivity paths while special grain boundaries slow down hydrogen diffusion. The effective diffusion coefficient rises with the random grain boundaries volume fraction. When the ratio between the grain boundaries diffusivity is increased, percolation effects appear for high random grain boundaries volume fractions, thus increasing even more the effective diffusivity.

Figure 1 -

 1 Figure 1 -Evolution of the effective diffusion coefficient as a function of the random grain boundary volume fraction for several ratios between the random and special grain boundary diffusivities. Grain boundary thickness e gb = 10 nm, grain size λ = 10 µm, membrane thicknesses e m = 500 µm. [OsmanHoch15]

  al. developed a Monte-Carlo model to take into consideration crystallographic constraints at triple junctions [Schuh03b]. Doing so would allow the consideration of the percolation theory to explain the effective behavior of the membrane.

Figure 2 -

 2 Figure 2 -Example of two microstructures with 50 grains and the same average grain size but different distributions.

Figure 1 -

 1 Figure1-Evolution du coefficient de diffusion effectif en function de la fraction volumique de joints de grain généraux pour plusieurs rations entre les diffusivités des deux types de joints de grains. Epaisseur des joints de grains e gb = 10 nm, taille de grain λ = 10 µm, épaisseur de membrane e m = 500 µm. [OsmanHoch15]

  divisés en se servant de leurs indices de coïncidence, par exemple Σ3, Σ9 ou Σ27. Dans la littérature, Schuh et al. ont développé un modèle Monte-Carlo afin de prendre en considération les contraintes cristallographiques aux triples joints [Schuh03b]. Procéder ainsi permettrait d'employer la théorie de percolation afin d'expliquer le comportement effectif de la membrane.Les distributions de taille de grain doivent également être considérées. Au sein de notre travail nous avons utilisés des distributions basées sur des lois normales pour les microstructures aléatoires, mais des amas de petits grains affecteraient également la diffusion. Un exemple d'amas de grains est présenté sur la Figure2. Selon le matériau, de telles microstructures peuvent exister, donc l'analyse de leurs effets est également nécessaire.

Figure 2 -

 2 Figure 2 -Exemple de deux microstructures avec 50 grains et la même taille de grains, mais différentes distributions.

1 )

 1 In our work we consider the characteristic time t 10%, attained when the hydrogen flux reaches 10% of the steady-state flux. While in the literature the value of M is taken equal to 15.3 for t 10% [Frappart11, Oudriss12b], its value may be calculated more precisely. To do so, we use the analytical solution of Fick's laws [McBreen66, Boes76]. For short diffusion times, the hydrogen flux J is given by: the steady-state flux. The time constant τ is a function of the effective diffusion coefficient D eff , the time and the membrane thickness, as defined by equation (B.3).

3 ) 4 ) 5 )

 345 By using equation (B.1) to replace D eff in equation (B.3), the time constant may be written as: At a time t = t 10% , the hydrogen flux is equal to 10% of J max , thus J( t 10% ) = 0.1 × J max . In that case the M factor becomes the inverse of the time constant at t = t 10% ; M = 1/ τ(t). Using equation (B.2By dividing both sides by J max and using the natural logarithm to get rid of the exponential, we get: approximation of the solution of equation (B.7), we plot each term of the equation on a graph as a function of M. The intersection between each plot gives the value of the factor. Figure B.1 depicts the corresponding plot, where we obtain a M factor close to 15.12.

Figure B. 1 -

 1 Figure B.1 -Plots of equation (B.7) to determine the value of the M factor

1 ) 2 ) 3 ) 5 )Figure C. 1 -

 12351 Figure C.1 -Description of the single membrane

Figure C. 2 -

 2 Figure C.2 -Description of the single membrane and the surface layer

  form of the solution from equation (C.9), we use the boundary conditions at the exit side and the membrane/oxide interface to get two equations to determine the coefficients a and b: solving equation, (C.14), we get the coefficients and the concentration profile in the oxide layer: the intermediate concentration C1 is accomplished by using the Fick's first law; by assuming the continuity of the hydrogen flux at the membrane/oxide interface, we write: implementing the derivation of equations (C.12) and (C.15) in equation (C.16), we obtain: the right term of equation (C.17), the steady-state flux J max is given by: extracting e m from the denominator, and by using the β parameter from equation (C.18), we finally get:

  -steady-state solution of Fick's laws Let's consider a single membrane set up as in the electrochemical permeation technique, as presented in Figure D.1. The thickness of the membrane is e m , the diffusion coefficient in the membrane is D L . The diffusion occurs along the x-axis. The boundary conditions are C(0,t) = C 0 and C(e m ,t) = 0. The initial condition is C(x,0) = 0.

1 ) 4 )

 14 Figure D.1 -Description of the single membrane

  general solution of equation (D.7) is:

  implementing equations (D.8) and (D.10) in equation (D.5), we get the general form of the solution of equation (D.3): equation (D.3) is the sum of the general forms from equation (D.11), thus we get: constant B n is determined using the boundary conditions at x = 0: 13) The other boundary condition, at x = e m is used to determine eigenvalues λ:

  equation (D.21) may be moved within the equation since we only integrate along x,



  (D.28) By considering the flux at the exit side of the membrane (x = e m ) and by using the steady-state solution of the flux from equation (C.7), J max = C 0 D L / e m , we get the evolution of the flux at the exit side of the membrane as a function of time: in equation (D.29) is either equal to -1 or 1. Equation (D.29) becomes: The pattern of the 2D honeycomb model is depicted in Figure F.1. The grain size λ is the length of the sides of the hexagons, and the grains are separated by the grain boundaries with a thickness e gb .

Figure F. 1 - 2 )

 12 Figure F.1 -Elementary pattern for the 2D model

Figure F. 2 - 2 .

 22 Figure F.2 -Evolution of the grains, the grain boundaries and the triple junctions volume fractions as a function of the grain size. Grain boundary thickness e gb = 5 nm.

Figure F. 3 -

 3 Figure F.3 -Elementary pattern for the 3D model

)

  The volume fractions are depicted in Figure F.4. The behavior is similar to the volume fractions for the 2D pattern. However the grain boundary volume fraction now reaches a maximum of 45% instead of 50% when λ = e gb . The triple junction volume fraction is also higher for the 3D pattern, reaching 70% for the lowest grain size, instead of 50% in the case of the 2D pattern.

Figure F. 4 -

 4 Figure F.4 -Evolution of the grains, the grain boundaries and the triple junctions volume fractions as a function of the grain size. Grain boundary thickness e gb = 5 nm.
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Table I .

 I 1 -Some of the characteristics of hydrogen

	Atomic radius		53 pm
	Molar mass		1,00794 g.mol -1
	Partial molar volume		2 cm 3 .mol -1
		Fe-α	9×10 -9 m 2 .s -1 (20°C) [Brass99]
	Diffusivity	Martensitic steel Austenitic steel	1.2×10 -9 m 2 .s -1 (20°C) [Frappart11a] 1.5×10 -16 m
		Nickel	

2 .s -1 (20°C) [Brass99] 8.98×10 -14 m 2 .s -1 (25°C) [Kuhn91]

Table I .

 I 2 -List of several hydrogen traps

	Reversibility	Site	Material	E TL (eV)	Reference
	Totally reversible	Lattice	Fe-α	0.2 0.25	[Hirth80] [Hirth80]
		Dislocation (Elastic fields)	Fe Fe-Ti Al	0.27 0.25 0.28	[Choo82] [Pressouyre79] [YoungJr98]
	Reversible	Grain boundaries	Ni Fe	0.12-0.21 0.17	[Brass96] [Choo82]
			Pd	0.17-0.48	[Mütschele87]
		Coherent precipitates	Fe (TiC) Fe 3 C	0.3-0.4 0.27	[Wei06] [Frappart11a]
			Ni	0.62	[Kumnick80]
		Dislocation core	Ni	0.5	[Chandler08]
			Fe	0.47-0.6	[Thomas02]
			Al	0.71	[YoungJr98]
	Irreversible	Vacancies	Fe Fe	0.47-0.56 0.57-0.6	[Brass00] [Counts10]
			Fe	0.63	[Fukai05]
		Non-coherent precipitates	Fe (TiC) Fe (TiC)	0.91-0.98 0.68-1.4	[Uhlemann98] [Wei06]
		Grain boundaries	Fe-Ti	0.55-0.61	[Pressouyre79]
		Triple junctions		0.8	[Addach06]

  , in equation (I.2.26). Equation (I.2.26) is equivalent to equation (I.2.15), linking the kinetic and statistical

	N	H		N	LH		TH N		E 1 exp LT LT TL BB NN EE k T k T        1 exp      	  	(I.2.23)
	One-level										LH NN TH
	system LH and N N TH are respectively the total number of atoms in lattice and trapping sites. From equation E 0 n(E) (I.2.23), we write equations (I.2.24) and (I.2.25).
											E
	Two-level system						E 1 E 0 k T LT B    NE 1 1 exp L LH L N      	(I.2.24)
							1 1 exp T NE T TL TH B N k T         	n(E)	(I.2.25)
	Using θ L =C L /N L , θ T =C T /N							
	Edge										E
	dislocation approaches.										
											E 0
								T C		1 11 T L TL N N KC    	n(E)
											E
	Amorphous										
	matrix										E 0
												n(E)
												2),
	n(E) is described by equation (I.2.22):				
			( ) ( n E 	T N N 	) (  ) LT T E E N    	(	TL E E 	)	(I.2.22)

where N T and N L respectively represent the total number of trapping and lattice sites. By placing equations (I.2.21) and (I.2.22) in equation (I.2.20), we obtain equation (I.2.23): System Potential vs. distance Energy distribution n(E) T , and ΔE T = E TL -E LT , we express C T as a function of C L (I.2.26)

Boes76, Pyun89, Arantes93, Doyle95, Voloshchuk12]

  

	Method	Characteristic time	Factor M	References
	10%	t 10%	15.3	[Frappart11a, Oudriss12b]
	63%	t 63%	6	[Devanathan64, Boes76]
	1%	t 1%	25	[Frappart10a]
	Tangent	t tg	2π² 15.3	[Boes76, Luppo98] [Arantes93, Doyle95]

"breakthrough-time" [. However, we chose to note this time as t tg since in the literature the t 10% is sometimes referred as breakthrough-time [Frappart10a, Oudriss12b]. The time for 63% is called "time-lag" [Devanathan62, Boes76], [Yao91b, Luppo98], based on a mathematical model developed by Daynes [Daynes20]. To avoid unnecessary confusions, we decided to only refer the times with the percentage value or "tg" for tangent. Table I.4 lists the characteristic times with the value of the M factor in equation (I.3.3).

Figure I.5 -Permeation curve associated with the characteristic times Table I.4 -Characteristic times and factor M to calculate the effective diffusion coefficient from the flux curve

, Arantes93].

  TableI.5 lists the degrees of freedom and their parameters. Figure I.9 shows the variables that define the grain boundary. x A , y A , z A and x B ,y B , z B are the axes of the coordinates parallel to the directions in grains A

	Diffusion in grain boundaries follows an Arrhenius law:	
	0 exp gb DD gb   gb B H kT   	(I.5.1)
	ΔH gb is the activation energy, and D 0 gb the pre-exponential factor for grain boundary diffusion.	
	Several models [Kirchheim88, Yao91a, Chen06, Chen07] have been developed to study hydrogen

diffusion in grain boundaries. These models consider the hydrogen concentration in grain boundaries and assume a local equilibrium of those concentrations.

a. Crystallographic description of grain boundaries

Grain boundaries are characterized by five macroscopic degrees of freedom [Lejcek10]. and B. The rotation axis is noted o, with a misorientation angle θ, and n is the normal to the grain boundary plane.

Table I

 I 

		.5 -Degree of freedoms for grain boundary description	
	Type	Variable	Degrees of freedom
	Misorientation between grains	Rotation axis o	2

Rotation angle θ 1

Orientation of the grain boundary Normal n to the GB plane 2

Table I .

 I 6 -Types of grain boundary of the rotation axis classification

	Grain boundary	Crystal lattice indices	Twist angle φ
	Symmetrical tilt	{h 1	

0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 D eff /D 2 f 2 Voigt HS+ HS- Reuss

  

				To get a better idea of the representation of the
	homogenization bounds, Figure I.30 presents these bounds as a function of the volume fraction f 2 . The
	ratio between D 2 and D 1 is equal to 10; we define an order between the bounds. If D eff is the real
	effective diffusion coefficient, we have:				
	Reuss eff D		HS eff D	SC eff D  HS eff eff D D   		Voigt eff D	(I.6.18)
	The self-consistent method is the closest to the effective diffusion coefficient. However, it may be
	totally wrong is the self-consistence hypothesis is not respected [Zaoui97]. Typically, Hashin-
	Shtrikman bounds may also be wrong if the hard spheres model of Hashin is not respected.	
	Figure I.30 -Homogenization bounds for diffusion with a ratio D 2 /D 1 =10.	
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		Table II.1 -Parameters of the model	
	Parameter	Description	Value(s)
	e m	Thickness of the membrane	0.1 to 1 mm
	C 0	Initial entry side concentration	1 mol/m 3
	C s	Exit side concentration	0 mol/m 3
	D L	Lattice diffusion coefficient	1.2×10 -9 m 2 /s
	N L	Lattice sites density	2.108×10 5 mol/m 3
	N T	Trap sites density	10 -4 to 100 mol/m 3
	ΔE T	Trap binding energy	-0.1 to -0.3 eV
	T	Temperature	300 K
			.1
	lists the parameters of the model. The lattice diffusion coefficient of hydrogen D L in martensitic steels
	is equal to 1.2×10 -9 m 2 /s, and its lattice sites density N L is 2.108×10 5 mol/m 3 [Frappart11a]. The trap
	binding energy ΔE T is taken between -0.1 and -0.3 eV to study weak and strong trapping
	[Frappart11a]. According to Krom [Krom00], the trap densities N T in steel range between
	10 -4 mol/m 3 and 100 mol/m 3 . The initial entry concentration C 0 is taken equal to 1 mol/m 3 while the
	exit side concentration C s is maintained at 0 mol/m 3 . The thickness of the membrane e m is modified
	between 0.1 to 1 mm. Finally, the study is achieved at ambient temperature, T = 300 K.

Table II

 II 

		.2 -Parameters of the model	
	Parameter	Description	Value(s)
	e m	Thickness of the membrane	0.1 to 1 mm
	e ox	Thickness of the surface layer	5 to 100 nm
	C 0	Initial entry side concentration	1 mol/m 3
	C s	Exit side concentration	0 mol/m 3
	D L	Lattice diffusion coefficient	1.2×10 -9 m 2 /s
	D ox	Surface layer diffusion coefficient	10 -10 to 10 -21 m 2 /s

  The other extreme case is the presence of an oxide layer. For β >> 1, C 1max is equal to C 0 , the hydrogen concentration inside the membrane is constant, and we get <C L > = C 0 . Using equation (II.3.6), we describe the evolution of <C L > as a function of the barrier effect parameter β, in equation (II.3.7). The development of the equation is presented in appendix C.2.Figure II.41 -Evolution of the average lattice hydrogen concentration <C L > as a function of the surface layer diffusion coefficient D ox and comparison with equation (II.3.8). Surface layer thickness e ox = 5 nm.

				C	L	0 2 C   1 1 1 1     	(II.3.7)
	However, in the literature, <C L > is more specifically compared to C 0eff , since the permeation technique
	assumes the determination of C 0 from C 0eff . In section III. 4, we determined that C 0eff was reduced by
	the presence of the surface layer, thus giving a lower value than the real C 0 . To check if equation
	(II.3.7) is viable with C 0eff , we plotted in Figure II.40 the evolution of <C L > as a function of D ox ,
	compared with equation (II.3.7) where C 0 has been replaced by C 0eff . For D ox greater than 10 -14 m 2 /s,
	equation (II.3.7) matches the <C L >. However, for lower D ox , our equation does not match <C L >
	anymore; while <C L > increases when D ox decreases, our equation decrease with D ox .
	C 0 =	1.0 1.0				
		0.8 0.8				
	0.0 0.2 0.4 0.6 1 C max 3 ) (mol/m 0.2 <C L > 0.4 0.6 (mol/m 3 )	<C L > 2	1+	1+ 1	-1
		1E-20	1E-18		1E-16	1E-14	1E-12	1E-10
		0.0					D ox (m 2 /s)
		1E-21	1E-19		1E-17	1E-15	1E-13	1E-11
							D ox (m 2 /s)
			C	L		0 2 C	   00 1 eff C C   	(II.3.8)
	The evolution of <C L > and equation (II.3.8) are plotted as a function of D ox in Figure II.41. For strong
	or low barrier effects, both curves are perfectly matched. However, for intermediary barrier effects, a
	small divergence between both curves appears, due to the increase of C 0eff over C 0 for D ox comprised
	between 10 -12 and 10 -14 m 2 /s.				

Figure II.40 -Evolution of the average lattice hydrogen concentration <C L > as a function of the surface layer diffusion coefficient D ox and comparison with equation (II.3.7) with C 0eff instead of C 0 . Surface layer thickness e ox = 5 nm.

The discrepancy between <C L > and the equation with C 0eff can however be corrected. To do so, we rewrite the evolution of <C L >, as a function of C 0 and C 0eff , giving equation (II.3.8).

C eff ( )

Table II

 II 

		.3 -Parameters of the model	
	Parameter	Description	Value(s)
	e m	Thickness of the membrane	0.1 to 1 mm
	e ox	Thickness of the surface layer	5 nm
	C 0	Initial entry side concentration	1 mol/m 3
	C s	Exit side concentration	0 mol/m 3
	D L	Lattice diffusion coefficient	1.2×10 -9 m 2 /s
	D ox	Surface layer diffusion coefficient	10 -21 to 10 -10 m 2 /s
	N L	Lattice sites density	2.108×10 5 mol/m 3
	N T	Trap sites density	10 -4 to 100 mol/m 3
	ΔE T	Trap binding energy	-0.3 eV
	T	Temperature	300 K

Table II .

 II 4 -Parameters of the model for α-iron

	Parameter	Description	Value(s)
	e m	Thickness of the membrane	0.01 to 2 mm
	D L	Lattice diffusion coefficient	10 -8 m 2 /s
	C 0	Entry side hydrogen concentration	0.3 to 1 mol/m 3 (palladium) 0.14 to 0.24 mol/m 3 (oxide)
	N L	Lattice sites density	2.10 5 mol/m 3
	N T	Trap sites density	10 -3 to 16 mol/m 3 (palladium) 30 to 150 mol/m 3 (oxide)
	ΔE T	Trap binding energy	-0.3 eV
	e ox	Surface layer thickness	10 nm
	D ox	Surface layer diffusion coefficient	10 -10 m 2 /s (palladium) 10 -14

Table II .

 II 5 -Parameters of the model for the study of martensitic steel cases

	Parameter	Description	Value(s)
	e m	Thickness of the membrane	0.1 to 2 mm
	D L	Lattice diffusion coefficient	1.2×10 -9 m 2 /s
	C 0	Entry side hydrogen concentration	0.14 to 0.24 mol/m 3 (oxide)
	N L	Lattice sites density	2.10 5 mol/m 3
	N T	Trap sites density	30 to 150 mol/m 3 (oxide)
	ΔE T	Trap binding energy	-0.3 eV
	e ox	Surface layer thickness	10 nm
	D ox		

Table

  

	To consider the hydrogen desorption, we use the equations of McNabb and Foster [McNabb63], later
	derived by Oriani [Oriani70] and developed by Krom [Krom00]. We also take the phenomenological
	couplings of Svoboda and Fischer into account [Svoboda12, Fischer13]. We obtain equations (III.2.1)
	to (III.2.4). The hydrogen concentration is separated into two contributions, the lattice hydrogen
	concentration C H C	L C C T 	(III.2.1)
	LL app CC D t x x         	0	(III.2.2)
	app D		11 L TT LT D CC CN    	(III.2.3)
	with TT exp TT 1 L B TL NE CK N kT KC      	(III.2.4)

L and the trapped hydrogen concentration C T . Hydrogen trapping is modified by the trapping sites density N T , and the trap binding energy ΔE T . k B is the Boltzmann constant (1.381×10 -23 J/K) . Using theses equations, no distinction is made between reversible and irreversible trapping, since no strictly irreversible trapping is implemented.

Table III .

 III 

		1 -Parameters of the model	
	Parameter	Description	Value(s)
	e m	Thickness of the membrane	0.1 to 1 mm
	C 0	Initial entry side concentration	1 mol/m 3
	C s	Exit side concentration	0 mol/m 3
	D L	Lattice diffusion coefficient	1.2×10 -9 m 2 /s
	N L	Lattice sites density	2.108×10 5 mol/m 3
	N T	Trap sites density	10 -4 to 100 mol/m 3
	ΔE T	Trap binding energy	-0.1 to -0.3 eV
	T	Temperature	300 K

Table III .

 III To determine the jump frequency ν, we need to reconsider the energy barrier E i for an atom to jump. E i is the Gibbs free energy, and can be separated into a contribution of enthalpy H i and entropy S i , using equation (III.3.12):

		2 -Parameters of the model	
	Parameter	Description	Value(s)
	e m	Thickness of the membrane	1 mm
	C 0	Initial entry side concentration	1 mol/m 3
	C s	Exit side concentration	0 mol/m 3
	D L	Lattice diffusion coefficient	1.2×10 -9 m 2 /s
	N L	Lattice sites density	2.108×10 5 mol/m 3
	N T	Trap sites density	20 mol/m 3
	E L	Lattice site binding energy	0.2 eV
	E T	Trap site binding energy	0.3 to 0.6 eV
	T	Temperature	300 K
		i E H TS i i 	(III.3.12)

Combining equations (III.3.12) and (III.3.7), the jump rate Γ is written as: exp exp exp

Table III .

 III 3 lists the parameters of the new model. We keep working on martensitic steels

Table III

 III 

		.3 -Parameters of the model	
	Parameter	Description	Value(s)
	e m	Thickness of the membrane	1 mm
	C 0	Initial entry side concentration	1 mol/m 3
	C s	Exit side concentration	0 mol/m 3
	D L	Lattice diffusion coefficient	1.2×10 -9 m 2 /s
	N L	Lattice sites density	2.108×10 5 mol/m 3
	N Tr	Reversible trap sites density	2000 mol/m 3
	N Tir	Irreversible trap sites density	21 mol/ m 3
	E L	Lattice site binding energy	0.2 eV
	E Tr	Reversible trap site binding energy	0.3 eV
	E Tir	Irreversible trap binding energy	0.6 eV
	T	Temperature	300 K
	ν L	Jump frequency from a lattice site	10 THz
	ν Tr	Jump frequency from a reversible trap site	10 THz
	ν Tir		

Table IV .

 IV 

		1 -Parameters of the model	
	Parameter	Description	Value(s)
	e m	Thickness of the membrane	1 to 1000 µm
	h m	Height of the membrane	1 to 1000 µm
	e gb	Grain boundary thickness	0.5 to 5 nm
	λ	Grain size	100 nm to 10 µm
	C 0	Initial entry side concentration	1 mol/m 3

Table IV

 IV 

			15
			12
		(e m / ) c2,3	6 9
			3
			0
			1E-3	0,01	0,1
				f gb
			.2 -Parameters of the model
	Parameter		Description	Value(s)
	e m	Thickness of the membrane	1 to 1000 µm
	h m	Height of the membrane	1 to 1000 µm
	e gb	Grain boundary thickness	1 to 10 nm
	λ	Grain size		100 nm to 10 µm
	C 0	Initial entry side concentration	1 mol/m 3
	C s	Exit side concentration	0 mol/m 3
	D L	Grains diffusion coefficient	10 -13 m 2 /s
	D gb	Grain boundaries diffusion coefficient	10 -13 to 10 -10 m 2 /s
	D tj	Triple junctions diffusion coefficient	10 -13 to 10 -10 m 2 /s
	T	Temperature		300 K

Table IV

 IV 

		.3 -Parameters of the model	
	Parameter	Description	Value(s)
	e m	Thickness of the membrane	20 nm to 10 µm
	d m	Depth of the membrane	2 µm
	h m	Height of the membrane	1 µm
	e gb	Grain boundary thickness	1 to 5 nm
	λ	Grain size	50 nm to 100 nm
	C 0	Initial entry side concentration	1 mol/m 3
	C s	Exit side concentration	0 mol/m 3
	D L	Grains diffusion coefficient	10 -13 m 2 /s
	D gb	Grain boundaries diffusion coefficient	10 -10 m 2 /s
	D tj	Triple junctions diffusion coefficient	10 -10 to 10 -7 m 2 /s
	T	Temperature	300 K

Palumbo91, Fukai95, Brass96].

  Journal of the Mechanics and Physics of Solids 11 (1963), pp. 127-140. N.M. Vlasov, I.I. Fedik. "Hydrogen segregation in the area of threefold junctions of grain boundaries", International Journal of Hydrogen Energy 27 (2002), pp. 921-926. Cette méthode permet de caractériser la diffusion de l'hydrogène au travers d'une fine membrane du matériau considéré. Différentes études au 'Laboratoire des Sciences de l'Ingénieur pour l'Environnement' (LaSIE) ont été réalisées en utilisant cette technique, sur les aciers martensitiques [Frappart11a] ou sur le nickel [Oudriss12c]. Tandis que la perméation est utilisée pour quantifier la diffusion de l'hydrogène aux échelles de la structure, de la membrane et du VER, les échelles plus petites ont cependant un effet sur les grandeurs effectives mesurées durant les essais de perméation. Puisque seul le comportement effectif de la membrane est caractérisé, séparer les effets de chaque propriété du matériau est difficile. De ce fait, nous avons décidé de baser ce travail sur l'étude numérique par les méthodes des éléments finis de la perméation électrochimique ; comme nous l'avons présenté sur la Figure3, en modélisant la diffusion de l'hydrogène et en utilisant la même démarche que la perméation, nous pouvons rechercher séparément les effets de chaque phénomène sur la diffusion de l'hydrogène. Egalement, une étude numérique nous permet de connaître au préalable les caractéristiques du matériau que nous imposons. De cette manière, la méthode expérimentale utilisée pour extraire les grandeurs effectives peut être questionnée. puisque notre travail est basé sur la modélisation de la perméation électrochimique.Cette technique amène des considérations sur l'état de surface, avec le débat toujours actif sur la nécessité de recouvrir la surface de palladium pour empêcher la formation d'une couche d'oxyde.Le deuxième chapitre décrit le comportement de l'hydrogène au sein d'une membrane homogène en deux dimensions, en prenant en compte les phénomènes de piégeage et les états de surface. Afin d'assurer une analyse rigoureuse, les phénomènes sont étudiés de manière séparée ; tout d'abord nous analysons les effets du piégeage de l'hydrogène uniquement, en utilisant les modèles de piégeage issus de la littérature. Puis, l'influence d'une couche de surface (revêtement de palladium ou couche d'oxyde) sur la diffusion de l'hydrogène est déterminée. Enfin, nous étudions les deux phénomènes en même temps pour déterminer leurs interactions. L'analyse porte sur les données extraites lors d'essais de perméation, tels que le flux d'hydrogène, le coefficient de diffusion effectif et la concentration effective en subsurface en hydrogène du matériau. La dernière partie du chapitre consiste en une comparaison entre notre modèle et les données expérimentales provenant de la littérature. hydrogène, alors que leur connectivité en trois dimensions amène de nouvelles questions sur les effets d'échelle.Finalement, nous discutons les résultats présentés au travers des chapitres, afin de conclure notre étude. Les limitations de notre modèle actuel sont questionnées, nous permettant d'énoncer les différentes perspectives de ce travail. En ajoutant plus d'éléments à notre modèle, tels que la texture des grains ou divers comportement des joints de grains, de nouvelles analyses pourraient être réalisées pour étendre notre compréhension des mécanismes de diffusion de l'hydrogène.
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Figure 1 -Fragilisation par l'hydrogène provoquée par trois facteurs De nombreux modèles ont démontré que la FPH était due aux mécanismes de diffusion et de ségrégation de l'hydrogène dans les matériaux. Afin d'appréhender les premières étapes de la FPH, il est nécessaire d'obtenir une meilleure compréhension du comportement de l'hydrogène au sein des matériaux. Pour cela, des études numériques et expérimentales peuvent être menées à différentes échelles, afin d'obtenir une vue complète du phénomène entier. La Figure 2 représente les possibles échelles d'étude. En commençant par la structure complète fragilisée par la FPH, le comportement du matériau peut être examiné à l'échelle de la membrane et de son Volume Elémentaire Représentatif (VER). Mais, il a également été prouvé que la microstructure joue un rôle primordial sur le comportement de l'hydrogène [Garverick94, Cao04]. Les défauts microstructuraux tels que les joints de grains, les précipités, les dislocations ou les lacunes doivent être considérés [Figure 2 -Méthodes de caractérisation expérimentales et numériques à différentes échelles [Frappart10b] de l'hydrogène est décrit, et les phénomènes de piégeage de l'hydrogène sont détaillés. Les différents modèles de piégeage de l'hydrogène issus de la littérature sont listés, avec les améliorations entre chaque modèle. Puis, les méthodes expérimentales de quantification de la diffusion de l'hydrogène Puisque notre second chapitre porte sur le chargement en hydrogène, nous devons également prendre en compte la désorption, dans le troisième chapitre. En utilisant le même modèle de piégeage, nous analysons tout d'abord la méthode d'extraction de données. Cependant, utiliser ce type de modèle ne suffit pas pour caractériser complètement la désorption de l'hydrogène ; nous devons également considérer les équations de diffusion sans imposer d'hypothèses fortes, afin de pouvoir rigoureusement observer les interactions entre les concentrations en hydrogène interstitiel et piégé. sont comparés pour vérifier l'effet éventuel de la forme des grains. Finalement, nous étendons notre étude à une approche tridimensionnelle, pour prendre en compte l'effet des triples joints. En deux dimensions, les triples joints représentent des éléments discrets ayant peu d'influence sur la diffusion 208 de l'

Comportement de l'hydrogène au sein d'une membrane homogène

  Nous avons ensuite établi des équations permettant de décrire les comportements de J max , D eff , C 0eff en fonction des caractéristiques du matériau. Ces équations sont résumées dans le Tableau 1.Tableau 1 -Résumé des équations d'évolution de J max , D eff , C 0eff et C 1 pour les trois modèles considérés

	Piégeage	Couche de surface	Piégeage + Couche de surface

Nous avons présenté au sein de ce chapitre une approche numérique portée sur l'étude de la perméation électrochimique au travers d'une membrane homogène. Afin de pouvoir correctement identifier les différents phénomènes affectant la diffusion de l'hydrogène au sein d'une telle membrane, nous avons séparé notre étude en trois parties. Tout d'abord, nous avons considéré uniquement les effets du piégeage de l'hydrogène en nous basant sur des équations de piégeage développées en suivant les modèles de la littérature [McNabb63, Oriani70, Krom00]. Ensuite furent considérés les effets de l'état de surface, plus particulièrement la présence d'une couche de palladium ou d'oxyde à la surface du matériau. Après avoir mené ces deux études, les interactions et effets conjoints du piégeage et de la présence d'une couche ont été présentés. Dans chacun des cas, nous avons respecté la démarche d'étude de la perméation électrochimique ; nous avons tout d'abord extrait le flux d'hydrogène sur la surface de sortie de la membrane, nous permettant d'obtenir le flux en régime stationnaire et de calculer le coefficient de diffusion effectif et la concentration effective en subsurface. Nous avons également considéré les profils de concentrations en hydrogène, ainsi que les concentrations moyennes.

  In the same way, the number of atoms moving from a T site to a L site may be written as: the probability that a neighboring L site is free and C T the trapped hydrogen concentration. The jump rate of a i site depends on the jump frequency ν i and the energy barrier E i to overcome, with i being replaced by either L or T depending on the site: the Boltzmann constant and T the temperature. The probability P i to get a free neighbor site i depends on the site occupancy θ i and the site density N i , associated to the sum of sites occupancies:The sites occupancies are the ratio between the hydrogen concentration in the site and the density of By replacing the temporal derivatives in equation (A.7) by their expressions from equations (A.8) and (A.9), we get: Equation (A.12) may be simplified by applying some hypotheses. First, by assuming that the lattice sites occupancy θ Secondly, by considering that the trap density N T is always very low compared to the lattice sites density N L , P L is further simplified and is approximately equal to 1. The probability P T may also be simplified as equation(A.14):

		( , ) P x t L		1	 1 1  T L N N	T 	( , ) xt		(A.13)
					( , ) P x t		(1 TT N  	)	(A.14)
						T	
									N
									L
	T C x t t L = C From equation (A.14), using θ L / N L , the product P L T LT P x t C x t L  T C L may be written as:     T L T T L  ( , ) ( , ) 1 ( , ) ( , ) P x t C x t x t N x t  	(A.8) (A.15)
	( , ) C x t T t  	TL 	( , ) ( , ) T P x t C x t T L 	(A.9)
	With Γ							
						ii  	exp	i E B kT    	(A.10)
	With k							
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	the site; θ L = C L / N L and θ L = C							
	( , ) C x t T t  	 	( , ) ( , ) L P x t C x t L T	( , ) ( , ) T P x t C x t T L  	(A.12)

T the jump rate of a T site, P L B T / N T . L is very small (C L << N L ), the probability P L becomes equation (A.13):

  However, such consideration is insufficient to take into account the phenomenological couplings of concentration gradients inside the material. According to the work of Svoboda and Fischer [Svoboda12, Fischer13], the apparent diffusion coefficient in equation(A.5) should be inserted inside the first derivative of the equation, thus we obtain:

	Thus, finally, it gives:					
	( , ) C x t T		1		( , ) L TL T N K C x t N	(A.21)
	If we go back to the apparent diffusion coefficient D app ¸the derivative of C T as a function of C L may
	now be calculated. Thus, equation (A.6) becomes:
	app D		( , ) 11 ( , ) L TT LT ( , ) D C x t C x t C x t N    	(A.22)
	( , ) C x t L t  	  	( , ) x t C x t ( , ) 0 L  app D   	(A.23)
							A.16)
	becomes:					
	( , ) exp C x t T   (1 LT B EE kT   	( , )) x t N T L  T	( , ) x t	(A.17)
	By rewriting equation (A.17) and defining ΔE T = E L -E T , we get:
	( , ) TT ( , ) exp 1 T T B T E C x t C x t N k T N            	( , ) L C x t L N	(A.18)
	To simplify the notation, we define a trap binding constant K T in equation (A.19):
				T K		exp	T E B kT    	(A.19)
	The reorganization of equation (A.18) leads to:
	( , ) LL T L T T L K C x t N K C x t ( , ) NN  ( , ) 1 C x t T   	(A.20)

  , is determined using the initial condition. We use a scalar product of the initial condition with each term of the equation, thus giving for the first term: Thus, by coming back to our initial variable C(x,t), the solution of equation (D.1) is:

	'( , ) m C e t		1   n 	n A	sin(	n m e 	) exp			2 n L D t 			0		n 		m n e 	(D.14)
	Using equations (D.13) and (D.14), equation (D.12) becomes:
			'( , ) C x t	22 2 m D t L e    sin exp n m n nx A e      1 n         	(D.15)
	The last constant, A																	
	00 0 1 ,sin m e m m x m x C C e e  1 sin m m x m x e e                           	  	dx	(D.16)
	By developing equation (D.16), we get:						
		0 C	cos( ) n 	0 C  	0 C n 		n 	cos( ) sin( ) n n   		0 C  	(D.17)
	The second scalar product gives:											
		n A		sin	  	,sin mm n x m x ee       	  	if  2 nm Ae m n	(D.18)
	By implementing equations (D.17) and (D.18) into equation (D.15), we get the solution of equation
	(D.3):																	
		'( , ) C x t		1  n  	22 2 m D t L e    0 2 sin exp m C n nx ne             	(D.19)
	0 C x t C ( , ) 	22 2 m D t L e    1 sin exp mm 0 1 2 n C n x n x e n e              1           	(D.20)

n

  Equation (E.13) is equal to the sum of the volumes of the three phases (V g for grains, V gb for grain boundaries and V tj for triple junctions):

						3 2 x z 2 s s s x  32 32 8 4   2  22 2 s s s s z x x z    g gb tj V V V            	(E.14)
										λ
	Thus, the volume fractions are given by:	e gb
						f	g			  3 ss 2 4 2 zx 32 2 2 2   		2	(E.15)
						f	gb			  2 4 ss 2 ss zx  2 32 2 2 2  xz    		2	(E.16)
						f	tj		 8 4 2 2 2 s s    22 2 4 2 s s s  2 ss zx  x z x x z    	(E.17
	V	p		32 	3	2 32  	2	2 s x  2 8 4 2 s s s s x z x z       2 s s x z   	(E.13)

) N T (mol/m 3 ) E T = -0.1 eV E T = -0.3 eV

Toutefois, la présence de ces courts-circuits induit également des effets d'échelle non négligeables lorsque l'épaisseur de la membrane n'excède pas trois fois la taille de grain. Ce phénomène est d'autant plus marqué que la fraction de joints de grains augmente. De ce fait, les matériaux nanocristallins requièrent des membranes ayant une épaisseur jusqu'à douze fois celle de la taille de grain pour s'affranchir de ces effets. Ceux-ci provoquent plus spécifiquement une surestimation du coefficient de diffusion effectif, ne permettant plus d'appliquer des bornes d'homogénéisation telles que Hashin-Shtrikman. De plus, ces mêmes effets entraînent également une sous-estimation de la concentration effective en subsurface C 0eff .Alors qu'en deux dimensions il n'y a aucune connexion entre les joints triples, leur effet apparaît en trois dimensions ; la diffusivité augmente, comme cela est observé expérimentalement. Les joints triples se comportant comme des chemins de diffusivité élevée, leur connectivité amplifie les effets d'échelle, pouvant amener à des membranes avec une épaisseur excédant 100 fois la taille de grain pour s'en affranchir.En présence de microstructures aléatoires, une étude statistique a également été menée pour étudier l'influence de la microstructure sur les concentrations en hydrogène au sein du matériau. Une invariance d'échelle apparaît au sein du matériau lorsque l'hydrogène est suffisamment éloigné des frontières de la membrane.

de l'hydrogène. En deux dimensions, les triples joints ne sont pas connectés les uns aux autres, et ne présentent pas d'effet sur la diffusion. En revanche, les triples joints sont associés dans la littérature à des chemins de diffusivité préférentielle. Afin de prendre en compte cet effet, nous avons créé un modèle en trois dimensions, avec des grains de forme octaèdres tronqués. De cette manière, nous avons pu créer un réseau de triples joints et observer leur comportement de courts-circuits. Les effets d'échelle sont amplifiés par les triples joints. S'affranchir de ces effets nécessiterait par exemple des épaisseurs de membrane supérieures à cent fois la taille de grain dans les matériaux nanocristallins.Puisque notre objectif principal était de séparer les différentes propriétés susceptibles d'affecter la diffusion de l'hydrogène, cette étude est uniquement la première étape vers une compréhension globale de la diffusion de l'hydrogène. Chaque partie de notre étude pourrait être améliorée en ajoutant de nouveaux éléments, afin de complexifier le modèle, pas à pas. Tout d'abord, en ce qui concerne les membranes homogènes, nous avons uniquement imposé des fréquences de saut constantes pendant la désorption de l'hydrogène. Des calculs ab initio pourraient être utilisés pour caractériser le comportement des sites interstitiels et de piégeage lors d'un changement d'équilibre du réseau cristallin voisin. De cette manière, l'augmentation expérimentale de la concentration en hydrogène piégé irréversiblement pourrait être reproduite. De plus, nous avons uniquement considéré la désorption pour une membrane homogène. La même approche devrait être appliquée aux matériaux polycristallins.En ce qui concerne les effets de la microstructure, nous avons considéré des grains ayant tous le même coefficient de diffusion, et une seule phase de joints de grains généraux se comportant comme des courts-circuits de diffusion. En utilisant la même classification, les joints de grains spéciaux doivent également être étudiés, plus précisément en considérant plusieurs ratios entre les fractions de joints de grains généraux et spéciaux. Ces considérations seront détaillées dans la thèse de Bachir Osman Hoch [OsmanHoch15]. La Figure 1 présente l'évolution du coefficient de diffusion effectif D eff en fonction de la fraction volumiques des joints de grains généraux f gb,R , pour différents ratios entre les diffusivités des joints de grains généraux et spéciaux, respectivement D gb,R et D gb,Σ . En accord avec les travaux d'Abdelali Oudriss [Oudriss12c], les joints de grains généraux se comportent comme des chemins de diffusivité élevée tandis que les joints de grains spéciaux ralentissent la diffusion de l'hydrogène. Le coefficient de diffusion effectif augmente avec la fraction volume des joints de grains généraux.Quand le ratio entre les diffusivités est augmenté, des effets de percolation apparaissent pour les fractions volumiques de joints de grains généraux élevées, augmentant davantage la diffusivité.
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Appendices

A. Development of the trapping model equations

Fick's laws are used to describe the diffusion of species for simple systems. Applied to the diffusion of hydrogen, the second law is written as:

With C(x,t) the total hydrogen concentration in the membrane, and D L the diffusion coefficient. To consider hydrogen trapping, the total hydrogen concentration is separated into two contributions. C is equal to the sum between the lattice hydrogen concentration C L and the trapped hydrogen concentration C T . Also, since the diffusion coefficient corresponds to the lattice diffusion coefficient, we assume that the diffusion remains controlled by the lattice hydrogen. Doing so, equation (A.1) becomes:

By reorganizing the temporal derivative of C T , we get:

By factorizing the temporal derivative of C L , we obtain:

From equation (A.4), we define the apparent diffusion coefficient D app to get an equation with the form of the second law of Fick: