
HAL Id: tel-01140132
https://theses.hal.science/tel-01140132

Submitted on 7 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the use of a discriminant approach for handwritten
word recognition based on bi-character models

Sophea Prum

To cite this version:
Sophea Prum. On the use of a discriminant approach for handwritten word recognition based on bi-
character models. Document and Text Processing. Université de La Rochelle, 2013. English. �NNT :
2013LAROS418�. �tel-01140132�

https://theses.hal.science/tel-01140132
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE LA ROCHELLE

ÉCOLE DOCTORALE S2IM
LABORATOIRE : L3i (Informatique, Image et Interaction)

THÈSE présentée par :

Sophea PRUM

soutenue le : 8 novembre 2013
pour obtenir le grade de : Docteur de l’Université de La Rochelle

Discipline : Informatique et Applications

Vers une approche discriminante pour la reconnaissance
de mots manuscrits en-ligne utilisant des modèles

de bi-caractères

[On the Use of a Discriminant Approach for Handwritten Word
Recognition Based on Bi-character Models]

JURY :
Nicole VINCENT Professeur, Université Paris Descartes, Rapporteur
Jean-Philippe DOMENGER Professeur, Université Bordeaux 1, Rapporteur
Salvatore-Antoine TABBONE Professeur, Université de Lorraine, Examinateur
Jean-Yves RAMEL Professeur, Université François Rabelais de Tours, Président
Andreas FISCHER Docteur, Université Concordia, Examinateur

Jean-Marc OGIER Professeur, Université La Rochelle, Directeur de thèse
Muriel VISANI Maître de conférences, Université La Rochelle, Encadrant de

thèse

Remerciements

Ce travail de thèse s’est déroulé dans de bonnes conditions grâce à la contribution de nom-
breuses personnes.

Je tiens tout d’abord à exprimer ma profonde gratitude à mon directeur de thèse Jean-Marc
OGIER et mon encadrante scientifique Muriel VISANI pour m’avoir encadré et guidé tout au
long de ce travail de thèse avec leurs très grandes qualités scientifiques et humaines. Je les
remercie également pour leur disponibilité, leurs relectures minutieuses de ce manuscrit et des
articles, leur énergie, leurs encouragements et leur soutien.

Je remercie sincèrement le professeur Jean-Yves RAMEL pour avoir accepté de présider mon
jury de thèse. J’exprime également mes remerciements aux professeurs Nicole VINCENT et
Jean-Philippe DOMENGER pour avoir examiné et rapporté mon travail de thèse. Je remercie
aussi le professeur Salvatore-Antoine TABBONE pour avoir accepté d’être membre de mon
jury. Je remercie particulièrement Dr. Andreas FISCHER pour son aide à travers l’échange
d’idées scientifiques concernant ce travail thèse ainsi que d’avoir participé au jury.

Mes plus sincères remerciements s’adressent également à tous les membres de l’équipe du
projet RecoNomad, les collègues et les amies du L3i pour leur aide, les moments partagés
ensemble et qui m’ont été bénéfiques non seulement d’un côté scientifique, ainsi que du côté
technique et humain. Ceci m’a permis de réaliser ce travail de recherche dans une ambiance
très conviviale.

Un grand merci du fond du cœur à mes parents pour leur soutien et encouragements tout
au long de ma vie et plus particulièrement pour tous les efforts qu’ils ont fait pour que je puisse
réaliser mes études durant ces si longues années malgré toutes les difficultés. Sans eux ce jour
n’aurait jamais été.

J’adresse également mes remerciements à tous mes enseignants et plus particulièrement à
ceux du département GIC de l’Institut de Technologie du Cambodge qui m’ont transmis des
connaissances en informatique me permettant de surpasser les problèmes techniques durant
mon parcours de thèse. C’est grâce à eux que j’ai pu faire mon premier pas vers la France.

Contents

1 Handwriting recognition - general presentation 19
1.1 Off-line and on-line handwritten data . 20
1.2 The different categories of handwriting styles 22
1.3 Major difficulties for a handwriting recognition system 24

1.3.1 Variation of writings . 24
1.3.2 Quality of handwriting . 26
1.3.3 Similarity between characters . 26
1.3.4 Shared character part . 28

1.4 Context integration . 28
1.5 Objectives and scopes of this thesis . 30
1.6 Conclusion . 31

2 State-of-the-art of handwriting recognition systems 33
2.1 Global approaches vs analytical approaches 34

2.1.1 Global approaches . 34
2.1.2 Analytical approaches . 34
2.1.3 Discussion . 35

2.2 A focus on analytical approaches . 35
2.2.1 Pre-processing and normalization 35
2.2.2 Segmentation . 37

2.2.2.1 Explicit segmentation 38
2.2.2.2 Implicit segmentation 38
2.2.2.3 Discussion . 38

2.2.3 Feature extraction . 39
2.2.3.1 On-line features . 39
2.2.3.2 Off-line features . 39
2.2.3.3 Discussion . 39

2.2.4 Word recognition process . 40
2.2.5 Post-processing . 41

2.2.5.1 Lexicon-based post-processing 41
2.2.5.2 N-gram model at the character level 42
2.2.5.3 Statistical language models 42

2.2.6 Conclusion . 42
2.3 Existing handwriting recognition systems 43

2.3.1 Implicit segmentation based systems 43
2.3.1.1 Classical HMM-based systems 43

1

Contents

2.3.1.2 Hybrid HMM/NN based system 47
2.3.1.3 Conclusion . 54

2.3.2 Explicit segmentation based systems 55
2.3.2.1 Pure explicit segmentation methods 55
2.3.2.2 Explicit segmentation/recognition methods 57
2.3.2.3 Conclusion . 59

2.3.3 Discussion and performance comparison 60
2.4 Conclusion . 62

3 Handwritten words recognition system based on two levels analysis 67
3.1 Global view of the proposed system . 69
3.2 Normalization and pre-processing . 71

3.2.1 Normalization and pre-processing at the word level 71
3.2.1.1 Size normalizing . 71
3.2.1.2 Interpolating . 74
3.2.1.3 Smoothing . 76
3.2.1.4 Re-sampling . 76

3.2.2 Normalization and pre-processing at the character level 77
3.2.3 Conclusion . 78

3.3 Segmentation, lattice creation and delayed stroke management 79
3.3.1 Delayed stroke detection . 80
3.3.2 Segmentation . 81
3.3.3 Lattice creation . 83
3.3.4 Delayed stroke re-localizing . 84
3.3.5 Conclusion . 85

3.4 Feature extraction . 85
3.4.1 Off-line features . 86

3.4.1.1 Hu moments . 87
3.4.1.2 Projection . 88
3.4.1.3 Profile . 89
3.4.1.4 Intersection with straight lines 90
3.4.1.5 Local extrema . 90
3.4.1.6 End points and junctions 91
3.4.1.7 Zoning density . 92
3.4.1.8 Radon transform and R-signature 92
3.4.1.9 Zernike invariant . 93

3.4.2 On-line features . 94
3.4.2.1 Normalized length . 95
3.4.2.2 Downward strokes . 95
3.4.2.3 Start and end point information 96
3.4.2.4 Histogram of writing direction 96
3.4.2.5 Derivative and re-drawing points 97

3.4.3 Feature selection . 98
3.4.4 Conclusion . 100

2

Contents

3.5 Single character analysis . 100
3.5.1 Objective . 100
3.5.2 Single character recognition system 102
3.5.3 Single character recognition system with rejection 106

3.5.3.1 Garbage class in the SVM 107
3.5.3.2 Rejection system based on a cascade of Adaboost classifiers107

3.5.4 Conclusion . 110
3.6 Bi-character analysis . 110

3.6.1 Objective . 110
3.6.1.1 Character shared part problem 111
3.6.1.2 Similarity between different character classes 112
3.6.1.3 Unknown pattern . 113

3.6.2 Bi-character models . 113
3.6.3 Conclusion . 117

3.7 Word decoding process . 117
3.7.1 Lexicon TRIE model . 118
3.7.2 Directed graph search method . 119
3.7.3 Dynamic programming . 125

3.7.3.1 Description of the method 126
3.7.3.2 Adaptation to the character size 130

3.7.4 Conclusion . 132
3.8 Conclusion . 132

4 Experiments and Discussion 135
4.1 Databases . 136

4.1.1 IRONOFF . 136
4.1.2 UNIPEN . 137
4.1.3 Unipen-ICROW-03 . 138
4.1.4 Single character database . 138
4.1.5 Bi-character database . 140
4.1.6 Unknown pattern database . 143

4.2 Experiments and discussions . 144
4.2.1 Character recognition evaluation 144

4.2.1.1 Evaluation in the case of isolated characters 144
4.2.1.2 Evaluation in the case of single characters 146

4.2.2 Bi-character models evaluation 150
4.2.3 Handwritten word recognition system evaluation 151

4.2.3.1 Using the directed graph search strategy 153
4.2.3.2 Using dynamic Programming 157
4.2.3.3 Integration of bi-character models 160
4.2.3.4 Effect of the adaptation of the maximum number of graphemes

to the character size . 163
4.2.3.5 Observing the effectiveness of the delayed strokes man-

agement method . 164

3

Contents

4.2.3.6 Effect of the writing styles on the system performances . 165
4.2.3.7 Summary and conclusion 169

4.3 Comparison with a baseline HMM-based system 170
4.3.1 Presentation of the baseline HMM-based system 171
4.3.2 The proposed system vs. the baseline HMM-based system 173

4.4 Conclusion . 174

5 Conclusion and future work 177
5.1 Summary . 178
5.2 Limitations of the proposed system and possible improvements 180

5.2.1 Short term perspectives . 180
5.2.2 Long term perspectives . 182

Appendices 185

A Experimental results 186

B Baseline HMM-based system: training parameters 190

4

List of Figures

1.1 Digitization process of off-line documents. 20
1.2 On-line signal capturing process. 21
1.3 a) On-line signal recovered from off-line image, extracted from [11]. b)

off-line image generated from on-line signal. 22
1.4 Different categories of handwriting styles, extracted from [134]. 22
1.5 The variety of the characters ‘i‘ and ‘l‘ in the writings of the word

”million” (each word being written by a different writer), extracted from
IRONOFF database (see section 4.1.1). 24

1.6 Some special shapes of the character ‘q‘ in the writings of the word
”quatre”, extracted from IRONOFF database (see section 4.1.1). 24

1.7 Example of writings variation. Writings of the character ’a’ and ’s’ change
according to their surrounding characters. 25

1.8 Different writings of the character ’a’, given by different capturing devices
using different capturing resolutions. 26

1.9 Examples of low quality writings. 26
1.10 Example of similarity between writings of different character classes, ex-

tracted from [4]. 27
1.11 Ambiguity between lowercase and uppercase characters. 27
1.12 Examples of ambiguities between different character classes in handwrit-

ten words. 27
1.13 Problem of shared character part. 28
1.14 Example of contextual integration in a recognition system. At each step,

the candidates in red are abandoned. 29

2.1 General view of the systems relying on analytical approaches 36
2.2 The delayed strokes (dot of the character ’i’ and bar of the character ’t’)

in the writings of the word ’trip’ may be written in different ways. 37
2.3 Variation in the writing trajectories of the letter ’a’ depending on its

neighboring characters. 40
2.4 TRIE model of the lexicon which contains five words: who, whom, what,

when and where. 41
2.5 HMM linear and Bakis architecture for a 4 states model 44
2.6 An overview of the HMM training process. 45
2.7 General view of hybrid HMM/MLP by considering that the MLP has

three layers. 48
2.8 Example of hybrid HMM/TDNN (MS-TDNN) with three layers. 51

5

List of Figures

2.9 A 3 states HMM model of character ci. 52
2.10 The overview of the system presented in [43]. 54
2.11 The global overview of pure explicit segmentation based systems. 56
2.12 Overview of explicit segmentation/recognition based systems. 58

3.1 Global view of the proposed system. 70
3.2 Normalization and pre-processing at the word level. 71
3.3 An example of the writing positions of different characters. 72
3.4 An example of corpus-height estimation. 73
3.5 Normalization and pre-processing at the word level. 75
3.6 Sequential process for segmentation, lattice creation and delayed stroke

management. 79
3.7 An example of two delayed strokes. This word is composed of three

strokes: 1 main stroke and 2 delayed strokes (the bar of character ‘t‘
and the dot of character ‘i‘). 80

3.8 Example of segmentation points respectively: re-drawing point, angular
point and loop point, extracted from [4]. 81

3.9 Example of graphemes segmented using the segmentation method pre-
sented in [3]. Each grapheme is a set of consecutive points displayed in
one color. 81

3.10 a) An example of segmentation error (red grapheme) that occurs when
using the method presented in [3]. b) Error correction by applying our
post-processing method. 82

3.11 a) The normalized signal of word ’au’, b) the segmented graphemes, c)
the groups of graphemes at 4 levels (L = 4). 83

3.12 An example of the lattice created from the groups of graphemes illustrated
in Figure 3.11 . 84

3.13 Extraction of a set of features from each node and each pair of neighboring
nodes. 86

3.14 Combining off-line and on-line features. 87
3.15 Projection features presented in [53]. 89
3.16 a) Example of four profiles (left, right, top and bottom) presented in [53]

and b) their first order derivative results. 89
3.17 An example of intersections between the character shape and the straight

lines: 2 horizontal lines and 1 vertical line. This example is adapted from
[54]. 90

3.18 Examples of local extrema features, extracted from [54]. 91
3.19 An example of end points, X and Y-junctions (extracted from [54]). . . . 91
3.20 Definition of the Radon transform. 92
3.21 Shift on the R-signature when the input image is rotated by an angle θ0,

extracted from [133]. 93
3.22 An example of upward and downward strokes in an handwriting of the

word ’captain’. 95
3.23 Extraction features at the start and end point of the signal. 96

6

List of Figures

3.24 Writing direction divided into eight partitions. 97
3.25 An example of the derivative and re-drawing points. 97
3.26 An example of derivative and re-drawing point detection. 98
3.27 The tree of feature selection methods, extracted from [66]. 99
3.28 The application of the SCR in the proposed HWR. 101
3.29 The main idea of SVM. The black samples belong to the negative class

while the white samples belongs to the positive class. 103
3.30 An example of data distribution extracted from [19]. a) the classes are

linearly separable. b) the classes are non-linearly separable. c) the non-
linearly separable class in (b) are separable by a degree 3 polynomial
kernel. 104

3.31 An example of all-together strategies to classify 4 classes of data, extracted
from [150]. 105

3.32 Example of the DAGSVM for a 4− class classification problem. 106
3.33 The use of the rejection system to refine the recognition probabilities

provided by SVM. 107
3.34 Training process of a rejector rm. 108
3.35 A specific rejector rm based on a cascade of Adaboost classifiers {φ1

m, φ
2
m, . . . , φ

K
m}

for the character class cm. 109
3.36 Bi-character models allow solving the character shared part problem. . . 112
3.37 An example of the ambiguity between the characters ‘e‘ and ‘l‘. 113
3.38 Inputs of bi-character models (from the lattice). 114
3.39 TRIE model representing a lexicon that contains 6 words (”au”, ”en”,

”cinq”, ”ou”, ”une”, ”unis”) . 118
3.40 A lattice of T = 7 graphemes and L = 3 levels. 120
3.41 The nodes extracted from the lattice in Figure 3.40. a) Example of start-

ing nodes and their N = 3 potential character candidates. b) Nodes
following the node o(1,1) and their N = 3 potential character candidates. . 121

3.42 Nodes following the nodes o(2,2) and their candidate characters. 122
3.43 An example of the decoding process of word ”cinq” for the lattice given

in Figure 3.40 using our dynamic programming method. The solid lines
represent the optimal paths. 127

3.44 Example of the decoding process of word ”cinq” using dynamic program-
ming: adaptation to the size of character. The red-dashed lines represent
the fruitless paths. 131

4.1 Segmented characters extracted from the category ”3” in the UNIPEN
database. The sequences of black/red points represent the segmented
characters, while the sequences of green points represent the ligatures
removed by the second segmentation method. 139

4.2 Single character segmentation method using a semi-automatic process. . 140
4.3 Horizontal and vertical alignments to create the bi-character samples. . . 143
4.4 Bi-character samples artificially generated by our strategy. 144
4.5 Some unknown pattern samples. 144

7

List of Figures

4.6 The cumulative Top − N recognition rates given by the SCR without
garbage class (Exp.2). 147

4.7 Recall and precision of each character class given by the SCR without
garbage class (Exp.2). 147

4.8 Cumulative Top − N recognition rates given by the SCR with garbage
class (Exp.3). 148

4.9 Recall and precision of each class given by the SCR with garbage class
(Exp.3). 149

4.10 ROC curve given by the Exp.4. 150
4.11 Handwriting recognition rates by writer for all the writer of the Unipen-

ICROW-03 database (displayed on two rows for space reasons). 166
4.12 Handwriting samples provided by two different writers: NIC-Pc95-koen.dat

and NIC-Pc95-gertjan.dat, extracted from Unipen-ICROW-03 database. . 167
4.13 Number of writers for each range of recognition rates, depending on the

lexicon size. 167
4.14 Experimental results given by our system over all the different configura-

tions. 169

8

List of Tables

2.1 List of existing systems presented in the state-of-the-art. 60
2.2 Comparison of the advantages and drawbacks between implicit segmen-

tation and explicit segmentation/recognition-based systems. 63

3.1 Comparison between SVM and NN (MLP and TDNN) classifiers for on-
line character recognition, given in [1]. These recognizers rely on the local
on-line features extracted from each points of the on-line character signal
(210 features). 103

3.2 The cumulative histogram of graphemes of characters ‘a‘, ‘c‘ and ‘w‘. . . 132

4.1 Detailed information about the IRONOFF database. 137
4.2 Detailed information of Train r01 v07 set in the UNIPEN database, ex-

tracted from the official web site (http://unipen.nici.kun.nl/) of the UNIPEN
database. 138

4.3 Detailed information about our single character databases (our own database
and the database generated by Nantes university). 141

4.4 Comparison of the recognition rates of our ICR and the ICR presented
in [2], extracted from [138]. 145

4.5 Comparison of the computational time between our ICR and ICR pre-
sented in [2] in the case of Digit recognition (10 classes). This comparison
was published in [138]. 145

4.6 Different configurations used to perform the experiments of our HWR.
Note: (*) using a fixed maximum number of graphemes (7) for each char-
acter class. (**) using the maximum number of graphemes adapted to
each character class estimated on a single character database (see sec-
tion 3.7.3.2). (***) the delayed stroke management method (see sec-
tion 3.3) is not considered. 152

4.7 The experimental results (accuracy and computational times) of the pro-
posed HWR using configuration 1. The directed graph search strategy is
used with different values of the pruning parameter (E = {3, 5, 7, 9, 11}). 153

4.8 The experimental results of our HWR when using the directed graph
search strategy with different values of parameter N (N = {3, 5, 7, 9})
and by considering E = 7 (configuration 2). 154

4.9 Experimental results of the HWR using a SCR with and without garbage
class, and graph search word decoding strategy (configuration 3). 156

4.10 Experimental results of the HWR using a SCR with rejection systems,
and a graph search word decoding strategy. 156

9

List of Tables

4.11 Experimental results of the HWR with different value of the parameter
N and by using dynamic programming during word decoding process
(configuration 5). 158

4.12 Comparison of the recognition rates when the HWR uses the SCR with
garbage class (configuration 6) with those of the HWR using the SCR
without garbage class (configuration 5). 159

4.13 Comparison the recognition results given when the HWR uses directed
graph search strategy and when the HWR uses the dynamic programming.159

4.14 The recognition results when using the SCR without garbage class and
by integrating bi-character models. 161

4.15 Comparison of the recognition results when our system uses bi-character
models and SCR with garbage class simultaneously. 161

4.16 Recognition rates when using a maximum number of graphemes adapted
to each character class (configuration 9) or a fixed number L = 7 (config-
uration 8). 163

4.17 Comparison of the recognition rates given by our system when the delayed
stroke management method is not considered and when the delayed stroke
management method is considered. 164

4.18 Average recognition rates over all writers, depending on the size of the
lexicon. 168

4.19 Recognition rates on the validation database. 173
4.20 Experimental results of the proposed system and the HMM-based system:

accuracy (recognition rate) and Computational Times (in seconds). . . . 173

A.1 The confusion matrix provided by the SCR without garbage class (exp.2) 187
A.2 The confusion matrix provided by the SCR with garbage class (exp.3) . . 188
A.3 Maximum number of graphemes for each character class. 189

B.1 Maximum number of states for each character model. 191

10

Notations

• C: set of character classes, C = {c1, c2, . . . , cM}

• M : number of character classes

• cm: a character in the set C

• N : number of Top-N hypotheses in each node given by the single character recog-
nition system.

• NP : number of points in a given on-line handwritten word signal

• Pi: a point in a given signal

• L: maximum level of the lattice. It also refers to the (fixed) maximum number of
graphemes composing a character.

• L(cm): the maximum number of graphemes composing the character cm

• MP : list of local maximum points in a given signal

• mp: list of local minimum points in a given signal

• O: list of nodes in a lattice or list of observations (in the case of Markov Models)

• o(t,t�): a nodes in the lattice, where t and t
� indicate respectively the starting and

the ending graphemes in the node.

• (o(t,t�) ∪ o(t�+1,t”)): the sequence of points of a bi-character sample obtained by
concatenating the node o(t,t�) and o(t�+1,t”).

• T : the number of segmented graphemes for an input word

• b(cm|o(t−t�)): recognition probability given by the single character recognizer that
the node o(t−t�) is recognized as character cm. This node contains the points in the
grapheme t to the grapheme t”.

• a(cncm|o(t,t�) ∪ o(t�+1,t”)): probability that the pair of neighboring nodes o(t,t�) and
o(t�+1,t”) is recognized by the bi-character model Bcncm (see section 3.6) as the pair
of characters cncm.

• Δpoint: objective distance between two consecutive points

• Δword: objective corpus-height

11

Glossary

• ICR: Isolated Character Recognizer. The therms ”isolated character” refers to the
handwritten character written in pre-defined boxes.

• BLSTM: Bidirectional RNN with Long Short-Term Memory

• CNN: Convolutional Neural Network

• CTC: Connectionist Temporal Classification

• HMM: Hidden Markov Models

• HWR: Handwritten Word Recognition system.

• MS-TDNN: Multi-States Time Delay Neural Networks

• NLP: Natural Language Processing

• NN: Neural Networks

• PDFs: Probability Density Functions

• PSP : Potential Segmentation Points

• RNN: Recurrent Neural Network

• SCR: Single Character Recognizer. The terms ”single character” refers to the
handwritten characters segmented from handwritten words.

• SFFS: Sequential Floating Forward Selection

• SVM: Support Vector Machines

• TDNN: Time Delay Neural Networks

• TRIE: TRee Information rEtrieval model

12

Introduction

Writing is the way of expression for describing something by a set of signs, symbols
or alphabet which is known as ”writing system”. There are many writing systems all
around the world, for instance Latin, Arabic, Greek, Logo-graphic, etc. These writ-
ing systems have been changed from one period to another and have been adapted to
each country/language. The first traces of writing are the meaningful historical records
which were drawn on stones or on some other supports such as palm leaves or bamboo.
Writing soon became one of the most important ways for communication, expression,
information conservation etc. and is used in the daily life, as well as in administrative
tasks.

Initially, the first documents were produced manually with handwriting. These his-
torical documents written by well known scientists, artists, writers, etc., represent a
considerable value but remain very fragile. Direct physical access to these historical
documents may damage them, generating an irreversible destruction of our cultural her-
itage. Later, documents were produced using modern technology by printing text on
paper. However, access to these documents remains limited, as long as they are on
their original physical support. Thanks to modern technologies, these documents can
be digitized and world-wide distributed in digital version using web-based portals. The
original version on the physical support, especially the historical documents, can thus
be conserved and protected. Generally, digital documents are in the form of an image,
resulting from the scanning process. In other words, the digital documents are repre-
sented by a matrix of pixels. Unlike a text format document, the content in an image
document is not directly understandable by a computer-assisted application. Therefore,
many important operations cannot be directly performed on the digital documents. For
instance, searching a given keyword in the content of the digital documents, cannot be
directly realized as long as these digital documents are in image format. As a conse-
quence, finding a specific page or specific information among a large digital document
database becomes a hard task, or even impossible. To solve this problem, a very classical
solution can be used. Digital documents can be annotated with meta-data which allow
indexing the documents by some predefined and preregistered keywords. However, this
human operation is time consuming and costly. In addition, these meta-data cannot
represent all the content of the documents, unless they manually re-transcript the whole
content of document. This work can be considered as impossible due to the working
time and cost. A computer-assisted solution is, therefore, required. In 2004, Google
created the Google Book project to provide on-line books browsing services. Numerous
printed books were scanned and converted to text using Optical Character Recogni-
tion (OCR). Concerning the historical documents, many projects funded by France and

13

List of Tables

Europe were created: Navidomass1 (2007-2010), DIGIDOC project [99] (2011-present),
DocExplore2, Europeana3 and Valconum4 for instance. In all these projects, different
research problems can be identified, among which document structure analysis, graphic
indexing, word spotting and off-line handwriting recognition.

Nowadays, there is a considerable evolution of technology offering different ways to
produce documents. However, handwriting is still an irreplaceable method for different
reasons: 1) habit of the users, 2) in some application context, using handwriting/paper
is easier than using some high technology equipment, 3) handwriting can be used for
legal proof. Since the last decade, the explosion of various kinds of interactive mobile
devices such as Smartphone, Smartpen, electronic tablets, . . . , increases the produc-
tion of handwriting which are used for different purposes such as education5, medicine
and administration tasks, etc. These new electronic devices store the trajectory of
handwriting as a sequence of points, where each point is described by its coordinates
(x, y), and/or temporal information and/or pen pressure. This kind of information is
known as on-line signal. However, similarly to digital documents, the on-line signal also
cannot be directly interpreted by a computer-assisted application. Due to this consid-
erably increasing number of on-line handwriting devices, there is a high demand for
on-line handwriting recognition systems and on-line handwriting analysis, for different
kinds of applications. For instance, these on-line handwriting recognition systems can
be applied in the context of automatic administrative form reading, that allows auto-
matic transcription of the content filled in the form. This transcribed content can then
be analyzed by a computer-assisted application. The on-line handwriting recognition
system can also be used to recognize handwriting on a meeting whiteboard [91] or a
teaching whiteboard 6 which facilitates the indexing process. The research activity on
on-line handwriting recognition is strongly supported by the IAPR (International As-
sociation for Pattern Recognition) research community since more than 30 years. In
1994, the UNIPEN project was proposed as an initiative of the IAPR in order to create
a large on-line handwriting database (UNIPEN database). Two famous international
conferences (ICDAR7 and ICFHR 8) also focus their research subjects on handwriting
recognition. Nowadays, the research of on-line handwriting recognition becomes an in-
teresting activity not only in the research community, but also from a commercial point
of view. Different international companies such as Vision Object 9, Microsoft and BIC-
Education10 focus their activities on the on-line handwriting recognition problem.

1http://navidomass.univ-lr.fr/
2http://www.docexplore.eu/
3http://www.europeana.eu/
4http://valconum.fr/
5http://www.edb.utexas.edu/education/news/2013/ntrig/
6http://l3i.univ-larochelle.fr/ASPIC-e-education.html
7International Conference on Document Analysis and Recognition
8International Conference on Frontiers in Handwriting Recognition
9http://www.visionobjects.com/

10http://www.bic-education.com/

14

List of Tables

Our research work is a part of the RecoNomad11 Eureka project, funded by Oséo12 and
in cooperation with DocLedge13 company. This project aims at offering an automatic
administrative forms reading solution. The application of RecoNomad can be described
as follows: an administrative form is manually completed by a human handwriting using
an electronic tablet and its special pen. The tablet registers the writing trajectories for
each field of the form. Based on these writing trajectories, RecoNomad project firstly
aims at identifying the type of the completed form among the different types of forms,
earlier trained in the system. Secondly, the system consists in recognizing the writing
in each field, in order to automatically transcript all this information and send it to an
Information System. This project is therefore composed of two main parts: administra-
tive form identification and on-line handwriting recognition. My thesis focuses on the
second part i.e. on-line handwriting recognition.

The research activities on handwriting recognition started in the 1960’s and were
re-activated in the 1980’s, after a break in the 1970’s. Generally speaking, we can clas-
sify the handwriting recognition problem in two classes: isolated character recognition
(ICR) and handwritten word/text recognition. In the case of the ICR, the systems
generally provide satisfying results. Concerning the handwritten word/text recognition,
the problem is much more complex. Indeed, a handwritten word/text is composed by
handwritten characters, boundaries of which being generally unknown. Considering the
huge number of writers, the variation of handwriting is very large and the connection
between the characters in handwritten words is also very complex, especially, in the case
of unconstrained or cursive handwriting. In order to limit the complexity of the prob-
lem, some authors have limited their research scope by imposing writing constraints,
for instance, writers have to write in printed mode and they have to rise the pen be-
tween characters, helping the character segmentation. In this case, writers must strictly
respect the writing constraints. However, imposing writing constraints to the users is
not realistic from the RecoNomad application point of view since writers cannot write
using their own writing style. Therefore, nowadays, most of the authors are interested
in working in the unconstrained handwriting recognition context, which is considered as
a complex problem by the scientific community.

Two main approaches for unconstrained or cursive handwriting recognition were con-
sidered in the literature: global and analytical approaches. Using global approaches,
systems consider the handwritten word image (off-line signal) or the on-line signal as
a whole, and try to recognize it using for instance template matching methods. This
kind of systems relies on a huge training dataset containing all the words in the lexi-
con. When the lexicon needs to be changed, a retraining process is generally required.
This is the main disadvantage of this kind of approaches. Therefore, they seem to be

11http://l3i.univ-larochelle.fr/Reco-Nomad.html
12www.oseo.fr
13http://www.docledge.eu/

15

List of Tables

progressively abandoned. On the contrary, using analytical approaches, systems rely
on a preliminary step where the input signal (on-line and/or off-line) is segmented into
individual characters or sub-parts of character. Then, each segmented part is recognized
(in general, independently) and combined with the others to identify the whole word.
The analytical approach based systems rely on a training set containing all the possible
characters of each language. Therefore, one of their main advantages compared to global
approaches is that they can be adapted to different lexicons without any re-training (as
long as the alphabet remains the same). This is one of the main reasons of the great
interest for analytical approaches recently observed in the literature.

However, analytical approaches based systems require a segmentation method which
can be either explicit or implicit. The recognition strategy based on the combination
of implicit segmentation, Hidden Markov Models (HMM) and Viterbi algorithm is very
frequently applied to solve handwritten word recognition problems [60, 88, 10]. In this
kind of approach, input words are first segmented with a sliding window segmentation
method. The segments are then combined with characters and words during the recog-
nition stage with respect to the HMM. Attempts towards discriminative handwriting
recognition systems include neural network based recognition [33, 43, 65], often under
the form of hybrid systems based on a combination with HMM to address the segmen-
tation problem [33, 65]. However, as far as we know, Support Vector Machines (SVM)
were rarely used for handwriting word/text recognition despite its has been successfully
used for off-line ICR [54].

Motivated by the effectiveness of the SVM classifier, in this thesis we propose a dis-
criminative approach for on-line Handwritten Word Recognition system (HWR) that
combines discriminative classifiers with dynamic programming (Viterbi-like). Our sys-
tem can be described as follows: first, the input handwritten word is explicitly over-
segmented into graphemes which are further used to create a lattice of L levels. Each
node of the lattice is considered as a character to be recognized by a Single Character
Recognition (SCR) which relies on SVM classifier using both on-line and off-line features.
The recognition result is further refined with bi-character models which rely on Logistic
Regression. These models take into account the graphical context by jointly recognizing
the neighboring characters in order to cope with the problem of shared character parts,
which refers to the fact that one character class may have a visual appearance similar to
a part of other characters classes. This problem will be detailed in the manuscript. Af-
terwards, the recognition hypotheses are efficiently processed by dynamic programming
(similarly to the Viterbi algorithms) to find an optimal sequence of characters for the
input handwritten word.

The proposed system can be used together with a large and flexible lexicon; it is
adapted to omni writer applications, without any specific requirement concerning the
capturing devices. An experimental evaluation is performed on the Unipen-ICROW-
03 database. Using a kernel SVM for SCR and a Logistic Regression classifier for bi-
character recognition, we demonstrate that the proposed method outperforms a baseline

16

List of Tables

HMM-based system in terms of performance and computational time.

This thesis is organized as follows:

Chapter 1: Handwriting recognition - general presentation

This chapter presents an overview concerning the handwriting recognition
problem. We introduce the two main kinds of handwritten data (off-line and
on-line) as well as the different categories of handwriting styles, according to
the literature classification. This chapter mainly focuses on the major diffi-
culties when dealing with unconstrained handwriting. Different methods for
contextual integration in the literature are also introduced. The objectives
and scope of our research are given at the end of the chapter.

Chapter 2: State-of-the-art of handwriting recognition systems

This chapter concentrates on the existing systems in the state-of-the-art. It
starts with a short introduction and a discussion on the global and analyt-
ical approaches. Then, the presentation focuses on analytical approaches
along with a brief introduction of each step related to this kind of approach.
Afterwards, different frameworks are presented along with some example
systems. The chapter ends with a set of conclusions, based on a table of
advantages/drawbacks of each framework.

Chapter 3: Handwritten words recognition system based on two
levels analysis: character and bi-characters level

This chapter is dedicated to the presentation of the proposed system. The
global view of our method is introduced. Each section of this chapter presents
the method(s) by explaining in details the choices made at each step when
conceiving the system. The conclusion of this chapter summarizes the con-
tributions of this system compared to existing systems in the literature.

Chapter 4: Experiments and Discussion

This chapter aims at evaluating the effectiveness and efficiency of the pro-
posed system. It presents the experimental protocols/configurations and dis-
cusses the experimental results. First, we introduce the different databases
that were used in these experiments. Then, we present a series of experi-
ments which are performed with different configurations in order to evaluate

17

List of Tables

the different methods/strategies for each stage of the system. We also com-
pare the proposed system with a baseline HMM-based system and discuss
their recognition results.

Chapter 5: Conclusion and future work

This chapter gives a final conclusion of our research by discussing on the
strong and weak points of the proposed system. Finally, we present the
perspectives of this work which should allow improving the effectiveness of
the system.

18

Contents
1.1 Off-line and on-line handwrit-

ten data 20

1.2 The different categories of hand-
writing styles 22

1.3 Major difficulties for a handwrit-
ing recognition system 24

1.4 Context integration 28

1.5 Objectives and scopes of this the-
sis 30

1.6 Conclusion 31

This chapter presents an overview concerning the handwriting recog-
nition problem. We introduce the two main kinds of handwritten
data (off-line and on-line) as well as the different categories of hand-
writing styles, according to the literature classification. This chap-
ter mainly focuses on the major difficulties when dealing with uncon-
strained handwriting. Different methods for contextual integration in
the literature are also introduced. The objectives and scope of our
research are given at the end of the chapter.

1 Handwriting recognition - general
presentation

19

1 Handwriting recognition - general presentation

Our research focuses on unconstrained on-line handwritten word recognition which is
still known as difficult problem in the research community. The terms ”unconstrained”
refers to the handwriting that writers can write with their own writing style, without
any constraint of writing and without any constraint concerning the acquisition device.
In such cases, characters of handwritten words can be more or less connected by liga-
tures. The boundaries between characters are unknown, which makes the problem more
complex.

This chapter gives a general introduction concerning handwriting recognition. It is or-
ganized as follows: section 1.1 introduces the two main types of handwritten documents(
off-line and on-line) while section 1.2 introduces the different categories of handwriting
styles. Section 1.3 illustrates the difficulties when dealing with unconstrained handwrit-
ing. Section 1.4 gives a brief introduction of contextual integration that can be used for
post-processing. Finally, section 1.5 introduces the scope of our research.

1.1 Off-line and on-line handwritten data

In the domain of handwriting recognition, we generally refer to two categories of hand-
written data: off-line and on-line.

Off-line data refers to documents which are obtained by scanning or photographing
with a digital camera and which are generally represented in the form of an image. Doc-
uments concerned by this process are generally on a physical support (most of the time
paper) and can be historical documents, music score, administrative forms, journals and
magazines . . . The digitization of this kind of documents is illustrated in Figure 1.1(a).
The resulting images may be in color, grayscale or binary according to the capturing
device and the objective of digitization. Figure 1.1(b) is an illustration of an off-line
document of an historical document.

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

���������
�� ��������
�������
�������

������������������ ��������� �������

(a) Off-line document: digitization process (b) An example of off-line document

Figure 1.1: Digitization process of off-line documents.

On the other hand, on-line data refers to the data which is acquired through modern
devices such as smartphones or tablets, and for which the information is represented by a
sequence of points describing the trajectories of handwriting, as illustrated in Figure 1.2.

20

1 Handwriting recognition - general presentation

In the domain of handwriting recognition, the on-line data is generally known as on-line
signal. Each point in the on-line signal is characterized by its coordinates (x, y) which
describe its spatial position. Some capturing devices may also provide the acquisition
time and/or pen pressure and/or pen inclination. Figure 1.2(b) illustrates an example of
on-line signal of the word ”captain”. The green circles represent the pen-down (i.e pen
touches the capturing device) and the red arrows represent the pen-up (i.e pen leaves
the capturing device). We have to mention that, concerning the sampling resolution,
some capturing devices only rely on spatial sampling (DPI1). In this case, only the points
coordinates are provided and the distance between two consecutive points are homoge-
neous. Some capturing devices, on the other hand, rely on temporal sampling (DPIS2).
Each point is represented by its spatial coordinates and its temporal information. As a
consequence, distances between two consecutive points are heterogeneous. In this case,
the density of points during slow writing is more important than the density of points
during rapid writing.

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

���������
����������
�������

�������� �������

(a) On-line signal capturing process (b) An example of on-line signal

Figure 1.2: On-line signal capturing process.

These two types of data (off-line image and on-line signal) provide different kinds
of information. In the literature, the effectiveness of on-line handwriting recognition
systems is generally better than the one of off-line handwriting recognition systems,
thanks to the possibility to use dynamic information of on-ligne signal. Therefore,
many authors have focused on recovering on-line signal from off-line image, as illustrated
in Figure 1.3(a) [11, 85, 102]. The recovered on-line signal can be used to improve
the effectiveness of the off-line handwriting recognition. However, deducing the on-line
signal based on the off-line image is not straightforward because of the necessity to
guess/reconstruct some temporal information. On the other hand, creating an off-line
image from an on-line signal of handwriting is easier. An artificial image can be simply
created by connecting the sequence of points, as illustrated in Figure 1.3(b). Some
authors try to use both on-line signal and its recovered off-line image in order to take
profit of their complementarity.

1Dots Per Inch
2Dots Per Inch and Second

21

1 Handwriting recognition - general presentation

������� ������
��������

�������������� ����������������� ������

(a) On-line signal recovery

���������� �����
����������

������������� ������ ������������������
�����

(b) Off-line signal recovery

Figure 1.3: a) On-line signal recovered from off-line image, extracted from [11]. b) off-
line image generated from on-line signal.

Regarding handwriting recognition, these two categories of documents rely on very
similar recognition approaches and share some common difficulties. In both cases, iso-
lated character recognition can be considered as an almost solved problem. However, the
handwritten word/text recognition is still considered as a complicated problem. This
can be explained by the fact that, since a word is composed of multiple characters, the
variation in handwritten words may be more important than the variation in isolated
characters since shapes of character in handwritten words change according to their sur-
rounding characters. In the context of handwritten word/text recognition, it is hard to
detect the connection points between characters and to decompose the handwritten word
into characters, especially when dealing with certain categories of handwriting styles, as
explained in the next section.

1.2 The different categories of handwriting styles

C.C. Tappert et al. [134] classified handwriting styles of English language (and also some
other Western languages which rely on the Latin alphabet) into 5 categories, based on
their level of difficulty in the recognition process, as illustrated in Figure 1.4.

�

�

����������

Figure 1.4: Different categories of handwriting styles, extracted from [134].

22

1 Handwriting recognition - general presentation

These 5 categories of handwriting styles are:

1. Boxed discrete characters: they are also known as isolated characters since
the characters are written in pre-defined boxes. This category is the easiest one
compared to other categories since no segmentation process is required. The pixels
(for off-line image) or strokes (for on-line signal) contained in each box represent
one character. Hence, an ICR can be directly applied.

2. Spaced discrete characters: there is no pre-defined box in this case. However,
writers have to respect the writing constraint consisting in leaving a blank space
between characters. In this case, a simple character segmentation method based
on blank space detection or connected component extraction can be applied in
order to segment a handwritten word into a sequence of characters. Then, each
segmented shape can be directly submitted to an ICR.

3. Run-on discrete characters: similar to category 2, writers have to hold-up pen
after having written each character with or without leaving blank space between
characters. This category of writing provides advantage only for on-line handwrit-
ing recognition systems, since pen-up and pen-down information can be used for
character segmentation. In this case, no segmentation method is required, since
each stroke is supposed to belong to only one character. However, systems have to
combine different strokes to form a character, since one character may be composed
of multiple strokes.

4. Pure cursive script writing: each word has to be written cursively from the
beginning to the end of the word. This writing constraint facilitates the segmen-
tation of the input text-line into a sequence of words. Each blank space represents
a potential segmentation point between two words. In addition, in the case of
on-line signal, the distortion of the signal caused by the delayed strokes (accents,
bars on the ’t’ etc. . . , further explained in section 2.2.1) is reduced since the de-
layed strokes can be added only at the end of the word. However, segmenting an
input handwritten word into a sequence of characters is much more complicated
compared to the three previous categories since segmentation points are generally
unknown.

5. Mixed Cursive and Discrete: it is also known as unconstrained handwriting
and is obviously much more difficult than the other categories. Writers can use
their own writing style, without any writing constraint. The variations of possible
handwriting styles is huge and the complexity of connections between characters
is important.

Since the last two decades, researchers have focused their interest mainly on the un-
constrained handwriting recognition problem. However, this problem is still considered
as complex and challenging. The complexity of this kind of writings is caused by different
factors which are presented in the next section.

23

1 Handwriting recognition - general presentation

1.3 Major difficulties for a handwriting recognition
system

The complexity of handwriting depends on different factors such as the variation of
writings, quality of handwriting, confusion between characters, etc. In this section, we
try to point out the difficulties which generally degrade the effectiveness of handwriting
recognition systems.

1.3.1 Variation of writings

The large variations of handwriting is the main cause of recognition errors. In order to
deal with this problem, recognition systems must be able to handle the large variety of
possible handwriting styles. This large variety of handwriting may be due to 3 important
factors: writers, surrounding characters and digitization process.

Writers factor

Each writer has his/her own writing style which may change according to
his/her nationality, ability, gender, age, left-handed or right-handed writing,
health, . . . The writing style of each writer is unique. One writer may pro-
duce very different shapes for the same letter, even within the same word,
as illustrated with the two characters ’i’ and ’l’ in the words ”million” in
Figure 1.5. In addition, some writers provide very special shapes for some
character classes. Their visual appearances are very different from the stan-
dard shape and hard to be recognized even by a human being. For instance,
the writings of character ‘q‘ in red circles illustrated in Figure 1.6.

Figure 1.5: The variety of the characters ‘i‘ and ‘l‘ in the writings of the word ”million”
(each word being written by a different writer), extracted from IRONOFF
database (see section 4.1.1).

Figure 1.6: Some special shapes of the character ‘q‘ in the writings of the word ”quatre”,
extracted from IRONOFF database (see section 4.1.1).

24

1 Handwriting recognition - general presentation

Surrounding characters

Characters composing handwritten words in the English language and some
Western languages which are based on Latin alphabet are more or less con-
nected. In this case, the character shape may be deformed by the ligatures
joining neighboring characters. Writings of the same character may also
change according to the surrounding characters (i.e characters written on its
left and right). For instance, in Figure 1.7(a), the shape of the character ‘a‘
in the word ”habit”, ”about” and ”eat” are completely different even though
they are written by the same writer. Idem in the case of the character ‘s‘,
as illustrated in the Figure 1.7(b).

�
(a) writing variation of the character ’a’

�

(b) writing variation of the character ’s’

Figure 1.7: Example of writings variation. Writings of the character ’a’ and ’s’ change
according to their surrounding characters.

Digitization process

Capturing devices and digitization conditions play a very important role on
the quality of the document and on the quality of handwriting. In the case
of off-line documents, the digitization hardware and it parameterization have
a great effect on the appearance of the resulting image. Some systems are
specifically designed for some kinds of documents and some digitization con-
ditions.

For on-line signal, the capturing device has a strong effect on the resulting
signal. There is no standard definition for capturing resolution and capturing
method. For instance, Figure 1.8 shows an example of the writing of the
character ‘a‘ registered by two different devices which use DPIS capturing
methods but with different capturing resolutions. We have to mention that
some capturing devices only provide the sequence of points between the pen-
down and pen-up while some others also provide an extrapolation of the
sequence of points between pen-up and pen-down.

In order to cover all the variation problems, in 1994, the UNIPEN database [49] (see
section 4.1.2) have been created, under the initiative of IAPR3. This database contains

3http://www.iapr.org/

25

1 Handwriting recognition - general presentation

(a) (b)

Figure 1.8: Different writings of the character ’a’, given by different capturing devices
using different capturing resolutions.

a large set of on-line handwriting characters, words, text-lines written by different na-
tionalities which were collected by different universities and laboratories. The idea is to
include a large amount of variations in the training samples, so as to make the models as
robust as possible towards handwriting variations. However, we still cannot ensure that
the collected data is large enough to cover all the variations of handwriting and can, as
a consequence, be used to create a recognition system for any language that relies on
the Latin Alphabet. In the case of off-line data, on the other hand, creating a standard
benchmark is more complicated. Indeed, the variation of handwriting strongly depends
on the documents (for instance, its age, background, etc.), the digitization process, etc.

1.3.2 Quality of handwriting

Beside the variation problems mentioned above, some handwritings are of a very low
quality, i.e. the character shapes are very different from the usual shapes, and sometime
with spelling mistake(s). In such cases, even a human being may have difficulties to
recognize them (see Figure 1.9). This explains why the recognition rate of a given
system has a strong dependence to the writers [4, 127].

Figure 1.9: Examples of low quality writings.

1.3.3 Similarity between characters

Beside the problems mentioned above, we also notice that some shapes of different char-
acter classes may be very similar, as it can be seen in Figure 1.10, between the shape of
the characters ‘b‘ and ‘f ‘, ‘o‘ and ‘v‘, etc. The similarity problem can also concern some
specific classes for which lowercase and uppercase are very similar, e.g. the character

26

1 Handwriting recognition - general presentation

‘o‘. An example of this kind of ambiguity is illustrated in Figure 1.11.

Figure 1.10: Example of similarity between writings of different character classes, ex-
tracted from [4].

Figure 1.11: Ambiguity between lowercase and uppercase characters.

In the case of unconstrained handwritten words, confusions are more important since
the ligatures between character are strongly variable, which generates a high level of
potential ambiguities. In the writing of the word ”loting” illustrated in Figure 1.12(a),
the writing of the character ‘o‘ could be confused with the writing of the character ‘a‘
and the writing of the character ‘t‘ is similar to the writing of the character ‘d‘. In
the writing of the word ”jumped” of the Figure 1.12(b), the visual appearance of the
character ‘m‘ is very similar to the character ‘w‘ while the ligature stroke between the
characters ‘u‘ and ‘m‘ could generate an ambiguity with the character ‘u‘.

���������� ������������� ���
�������� ���� ������� ���

��������� ���

���������� ������������� ���
����� �� ���� ������� ���

��������� ���

����������������������������������
��� ������� ����� �������������������� ���

���������� ��������� ��� �� ������� ��
��������� ���

��� ���

Figure 1.12: Examples of ambiguities between different character classes in handwritten
words.

27

1 Handwriting recognition - general presentation

1.3.4 Shared character part

In the context of unconstrained handwritten words, as mentioned above, the character
boundaries are not known a priori. Segmenting an input handwritten word into a
sequence of characters is therefore a hard task. Furthermore, systems may face the
”shared character part” problem. It refers to the fact that one character class may have
a visual appearance similar to a part of other characters classes. For instance, as one
can see in Figure 1.13(a), writing of the character ‘a‘ can be split into characters ‘c‘ and
‘i‘. In this case, we can say that the characters ‘c‘ and ‘i‘ share part in the character ‘a‘.
Similar problems can be seen in the 2 others examples of Figure 1.13. The characters ‘l‘
and ‘c‘ share part in the character ‘k‘ while the characters ‘o‘ and ‘l‘ share part in the
character ‘d‘.

(a) (b)

(c)

Figure 1.13: Problem of shared character part.

The variation of writings, the possible bad quality of the writing, the similarity be-
tween different characters, and the shared character part problem partly explain why
unconstrained handwritten word recognition is a difficult problem. Some handwritten
words are even difficult to recognize by a human being. The human recognition is some-
time possible only because the human brain integrates some contextual information
(graphical, lexical, semantic, . . .) into the recognition process. In any case, integrating
contextual information helps for the human recognition of unconstrained handwritten
words (in terms of effectiveness and efficiency), and of course a similar effect can be
observed when using computer-assisted recognition systems. Therefore, integrating ex-
ternal context into the handwriting recognition system seems unavoidable. It is the
scope of next section.

1.4 Context integration

Due to the large variation of handwriting explained in the previous sections, recognizing
handwritten words by a machine learning system is a complex task. In order to deal

28

1 Handwriting recognition - general presentation

with this problem, systems need some additional contextual information. Different lev-
els of contextual information may be used: graphical, lexical, syntactical and semantic
context, as illustrated in Figure 1.14.

��������� �������

������� ���� ����

�� � �� ����
����

������� �������
���
���
���
���

���
���
���
���

�����������
������� ���

���
���
���

���������
�������

���
���
���

������� � ����

���
���

���

Figure 1.14: Example of contextual integration in a recognition system. At each step,
the candidates in red are abandoned.

Taking the example in Figure 1.14, given a handwriting of the word ”bag” and by
considering that the segmentation is correct, some errors may occur while trying to
recognize each segmented character. For instance, system may recognize shape 1.1 as
characters ‘b‘, ‘f ‘ or ‘k‘, shape 1.2 as characters ‘a‘ or ‘u‘ and shape 1.3 as characters
‘y‘ or ‘g‘. By integrating different levels of context, errors can be reduced, as explained

29

1 Handwriting recognition - general presentation

below:

• Graphical context: if neighboring characters are taken into account, the character
candidate f on shape 1.1 may be abandoned, since the lower loop of the character
’f’ must normally be located in the lower zone (see Figure 3.3) of the handwritten
word. The input signal may be recognized as different words {”bay”, ”bag”, ”buy”,
”bug”, ”kay”, ”kag”, ”kuy”, ”kug”}.

• Lexical context: by integrating a lexicon, the search space can be limited. This
method is very frequently used in the literature. It allows to improve at the same
time the effectiveness and the efficiency of the system. The recognized words given
by the system must exist in the lexicon. Hence, the words {”kay”, ”kag”, ”kuy”,
”kug”} can be abandoned since they do not exist in the lexicon.

• Syntactic context: this method consists in taking into account the grammar of
a given language. In this example, let us consider that the input handwritten
word is written after the word ”my” which is a pronoun. If we suppose that the
probability that a verb follows after a pronoun is 0, then the word ”buy” which is
a verb can be removed from the list.

• Semantic context: this method takes into account the meaning of the words in its
sentence. In this example, in order to select the best word among the three re-
maining words ({”bay”, ”bag”, ”bug”}) provided by the previous step, the meaning
of each word in the phrase is taken into account. In this case, we can say that the
word ”bag” is the most likely one.

Using the graphical context, systems take into account basic information on the shape
of the input handwritten word and the shapes of the other characters composing the
word. Using the three other types of context information, systems take into account a
high level context and external knowledge. The syntactic and semantic contexts can be
applied only for text-line recognition problems.

Despite the efforts made by many researchers since haft-century, unconstrained hand-
writing recognition remains a difficult and challenging problem. Therefore, in this thesis,
we focus on certain specific objectives and scopes, as mentioned in the following section.

1.5 Objectives and scopes of this thesis

The objective of our research is to propose an unconstrained on-line handwritten word
recognition system which should be able to be applied in the context of omni writer,
with a large and flexible lexicon, without any limit concerning the capturing device.

• Omni writer: writers are not known a priori. Hence, the system should be trained
in general condition, without any specific features related to any writer.

30

1 Handwriting recognition - general presentation

• Not limited to a particular capturing devices: the system should be able to deal
with any capturing devices without any re-training process, whatever the charac-
teristic or parameterization of the capturing device.

• Large and flexible lexicon: the system should be able to deal with large lexicons,
containing around 20 000 words. No re-training process must be required if the
lexicon needs to be changed (flexible lexicon). Furthermore, the system should be
able to be applied to any language which is based on the Latin alphabet, without
any re-training (only changing the lexicon).

In this research, we limit our scope to lowercase and non-accented Latin words. It has
to noted that in most cases, in the presence of an accent, the lexicon and integration of
context information can help regrouping the good word (as long as the letter supporting
the accent has been correctly recognized).

1.6 Conclusion

This chapter gives a general presentation of the difficulties linked to handwriting recog-
nition. In the literature, we consider two types of documents: off-line and on-line.
The handwriting styles are classified into five categories based on their difficulty level
for recognition. We have also pointed out the major difficulties and problems that
researchers frequently encounter. Due to all these difficulties and problems, the un-
constrained handwriting is the most difficult and challenging problem in the research
domain.

In the next chapter, we introduce and discuss some state-of-the-art HWRs.

It is important to mention that, in this thesis, we classify the handwritten characters
into two groups: isolated characters on one hand and single characters on the other hand.
Isolated characters refer to the characters which are individually written in predefined
boxes, while single characters refer to the ones which are segmented from handwritten
words. In general, the shapes of the single characters are more heterogeneous than those
of the isolated characters.

31

Contents
2.1 Global approaches vs analytical

approaches 34

2.2 A focus on analytical approaches 35

2.3 Existing handwriting recognition
systems 43

2.4 Conclusion 62

This chapter concentrates on the existing systems in the state-of-the-
art. It starts with a short introduction and a discussion on the global
and analytical approaches. Then, the presentation focuses on analyt-
ical approaches along with a brief introduction of each step related
to this kind of approach. Afterwards, different frameworks are pre-
sented along with some example systems. The chapter ends with a
set of conclusion, based on a table of advantages/drawbacks of each
framework.

2 State-of-the-art of handwriting
recognition systems

33

2 State-of-the-art of handwriting recognition systems

Since the seminal work of P.Marmelstein and M.Eyden [100] in 1964, a large amount
of research has been dedicated to handwriting recognition problem for both on-line and
off-line data. The research activity related this problem was specifically active in the
1990’s. In the case of on-line handwriting recognition, many authors concentrate on the
HMM based approach. In this chapter, we study the existing systems in the literature
related to on-line and off-line handwritten recognition problems.

2.1 Global approaches vs analytical approaches

As mentioned in the introduction, in general, we can classify the recognition systems into
two main groups: systems relying on global approaches and those relying on analytical
approaches [118, 82, 107].

2.1.1 Global approaches

Systems relying on Global Approaches (also known as Holistic Approaches) consider
each word in a given lexicon as one class and try to recognize an input handwritten
word as a whole.

Features are computed from the whole shape of the input handwritten word. These
features are used to feed a supervised classifier such as Support Vector Machines (SVM),
Neural Network (NN) . . . or a generative model such as Hidden Markov Model (HMM),
where each class corresponds to a word in a given lexicon [42, 149, 93, 51, 36, 70].

This kind of systems needs a huge set of training data because each word in the lexicon
needs to be trained with a large number of samples in order to overcome the high vari-
ability of data. Thus, if the lexicon needs to be changed, the system has to be re-trained
with another updated huge training dataset. For these reasons, global approaches are
convenient only when the lexicon is fixed and small (not more than 30-40 words) [93, 82].
For instance, it may be efficiently used for bank checks recognition [62, 76]. In some
other cases, such as the recognition of numbers with a varying number of digits, these
approaches cannot be applied because of the infinite number of digit combinations.

Analytical approaches have therefore been widely presented in the literature. We
propose in the following a state-of-the-art of these approaches.

2.1.2 Analytical approaches

Unlike systems relying on global approaches, systems relying on analytical approaches
try to recognize the sequence of characters composing the input handwritten word.
Therefore, systems relying on these approaches require a preliminary segmentation step.

34

2 State-of-the-art of handwriting recognition systems

The input handwritten word is generally segmented into individual graphemes (i.e. char-
acters or sub-parts of characters) by an explicit or implicit segmentation method. Each
grapheme is then analyzed (in general independently) in order to find the character se-
quence which composes the input handwritten word.

Using these approaches, systems train all the possible graphemes/characters of a given
language as basic models. These basic models are then used to recognize any given word
in the lexicon. This kind of systems relies on a training dataset containing all the possible
graphemes/characters. Retraining process is not required if the lexicon is changed.
Therefore, these approaches appear to be more convenient than global approaches with
a large and flexible lexicon.

2.1.3 Discussion

Analytical approaches have many advantages compared to global approaches. First,
systems based on this kind of approaches can be used in flexible lexicon context without
any retraining process. Secondly, only analytical approaches can be used in lexicon-free
context, which remains a very difficult problem.

Nowadays, global approaches seem to be progressively abandoned, unless they are
combined with analytical approaches [93]. As a consequence, the following sections will
be only dedicated to analytical approaches.

2.2 A focus on analytical approaches

The general process of analytical approaches is illustrated in Figure 2.1. Each hand-
written word is first normalized (see section 2.2.1) and segmented into graphemes (see
section 2.2.2) (i.e. characters or sub-parts of character) by using an explicit or implicit
segmentation method. Depending on the system, pre-processing may be performed be-
fore or/and after segmentation. Then, a feature vector is extracted from each grapheme
or group of graphemes (see section 2.2.3) to feed a word recognition system. The word
recognition process (see section 2.2.4) is used to find the most likely words relying on
classifier(s)/model(s) [60, 65, 81, 71, 73]. Some post-processing methods may be used
in order to limit the searching space and improve the effectiveness and the efficiency of
the word recognizer (see section 2.2.5). In the following section, we give the overview
description of each of these stages.

2.2.1 Pre-processing and normalization

As mentioned in section 1.3, many factors influence the variation and the quality of
handwriting: writer personality, writing context, capturing devices (different resolution
and/or capturing method). . . Hence, a pre-processing step is often necessary to reduce

35

2 State-of-the-art of handwriting recognition systems

��������
����

��������������

������������

���������
����������

������������������

�������������

���
��������
�����

����������������

��� ���

��������

Figure 2.1: General view of the systems relying on analytical approaches

the variability, eventually filter the noise and if necessary, standardize signals from dif-
ferent capturing devices. Pre-processing methods can be divided into two groups: noise
removing (filtering, smoothing, . . .) and shape normalizing (slope correction, size nor-
malization . . .).

For off-line data, three pre-processing methods are usually applied:

• Slope (or skew) correction: consists in correcting text or word misalignment which
frequently occurs in handwritten documents.

• Slant correction: consists in correcting the inclination of writing.

• Size normalizing: consists in normalizing the input data in order to ensure that all
characters in each handwritten word have approximately the same size.

In the case of on-line data, the important techniques which are commonly used for
pre-processing are: interpolating, smoothing and re-sampling [45, 65, 128, 3].

• Interpolating: consists in adding missing points to the on-line signal. Missing
points may be due to different factors: capturing device, writing speed, . . .

• Smoothing: consists in correcting noisy points in the on-line signal. Such points
may be caused by capturing device, writer’s shaking hand, . . .

• Re-sampling: consists in standardizing the input signals with different resolutions
(see Figure 1.8), in order to build a new signal which contains N points where the
distance between two consecutive points is equal to a given objective distance Δ.

36

2 State-of-the-art of handwriting recognition systems

Beside these three specific pre-processing methods, slope correction and size normal-
ization may be also applied.

Let us also mention the problem related to what is generally called Delayed Strokes,
when considering on-line data. Indeed, delayed strokes generally correspond to strokes
representing dots of characters (’i’ or ’j’, for instance), crossings in characters such
as ’t’ or accents on special characters such as: ’é’, ’è’, ’ê’ in some specific languages.
Delayed strokes are written at different moments and in different orders as illustrated in
Figure 2.2, where the crossing of character ’t’ and dots of character ’i’ can be written in
many different orders.

• Figure 2.2(a): delayed strokes are added at the end of the word, respectively the
bar of the character ’t’ and then the dot of the character ’i’,

• Figure 2.2(b): delayed strokes are added at the end of the word by first adding the
dot of the character ’i’ and then the bar of the character ’t’

• Figure 2.2(c): the bar of the character ’t’ is added after ’tr’ and the dot of the
character ’i’ is added at the end of the writing.

(a) (b) (c)

Figure 2.2: The delayed strokes (dot of the character ’i’ and bar of the character ’t’) in
the writings of the word ’trip’ may be written in different ways.

The way the delayed strokes are analyzed has a great impact on the system. Some
systems such as [131, 60, 3] keep and analyze them, while some others such as [65] detect
and remove them during a pre-processing stage. The latter systems make the assumption
that the use of a lexicon will correct all the possible ambiguities (e.g. between ’l’ and
’t’), which is sometimes insufficient and requires a complex language model to correct
them (e.g. ”white” or ”while”). In addition, removing delayed strokes may lead to an
irreversible loss of information decreasing the effectiveness of the system, especially in
some languages such as French, Arabic . . . where the delayed strokes (diacritics in Arabic
language) are numerous and carry important information [147, 8].

2.2.2 Segmentation

Two main types of segmentation methods are generally used in the literature: explicit
and implicit segmentation. A system relying on explicit segmentation tries to find the

37

2 State-of-the-art of handwriting recognition systems

Potential Segmentation Points (PSP) to segment the input data into a sequence of
characters or graphemes. The system relying on implicit segmentation uses, in general,
a sliding window to segment the input data into a sequence of observations. These two
segmentation methods are briefly introduced in the next sections.

2.2.2.1 Explicit segmentation

There are two kinds of explicit segmentation methods: pure explicit methods and seg-
mentation/recognition methods.

Pure explicit segmentation methods directly decompose the input handwritten word
into individual characters. The result of a pure explicit segmentation method is gener-
ally a sequence of graphemes, each of which is considered as a potential character. Then,
a SCR is used to recognize each segmented character [38, 78, 104, 30].

Systems relying on pure explicit segmentation require a very effective segmentation
method. This stage is very important since segmentation inaccuracies may lead to word
recognition errors. However, considering the complexity of the problem, there is not any
real perfect segmentation algorithm.

In order to solve this problem, explicit segmentation/recognition methods have been
presented [82, 107]. Such methods aim at integrating a SCR during the segmentation
process in order to reduce errors due to segmentation methods limitation. Many segmen-
tation methods are available in the literature, such as contour analysis based methods
[24] (designed for off-line data) and trajectory based methods [4, 3] (designed for on-line
signal), etc. The explicit segmentation/recognition methods provide a set of graphemes
which is further used to create a lattice at L levels corresponding to the input handwrit-
ten word.

2.2.2.2 Implicit segmentation

Systems relying on implicit segmentation do not rely on any segmentation module. They
generally use a sliding window parsing the handwriting data. In this case, the obtained
result is a set of segmented windows. For each position of the window, a set of features
is extracted from the signal in order to feed a dynamic model such as HMM, HMM/NN,
etc. which in general has been previously trained for each word in the lexicon.

2.2.2.3 Discussion

Recognition systems relying on explicit segmentation/recognition and systems relying
on implicit segmentation methods present some advantages compared to those relying
on pure explicit segmentation because the latter may generate word recognition errors
due to the limitations of segmentation methods.

38

2 State-of-the-art of handwriting recognition systems

In the literature, we observe that systems relying on implicit segmentation methods
are more popular for handwriting recognition and generally provide better recognition
rates. Surprisingly, explicit segmentation/recognition methods are frequently used for
numeral recognition system [55, 129, 156, 153].

2.2.3 Feature extraction

In any classification problem, feature extraction is the fundamental step which conditions
the performance of the recognition systems. There are two types of input data: on-line
signal and off-line image. As mentioned earlier in section 1.1, on-line signal is acquired
through electronic devices such as tablets or smart-phones . . . , while off-line image is
obtained by scanning handwritten documents. Most of the time, features used for on-
line recognition are quite different from those used for off-line recognition. However, an
approximation of the off-line data may be computed by interpolating points from the
on-line data. This strategy enables to have two points of view on the data and to use
both on-line and off-line features in the on-line handwriting recognition system.

2.2.3.1 On-line features

On-line features are generally extracted locally from each point of the signal. The
commonly used features in the literature are: direction, curvature, normalized (x, y)
coordinates [5, 128]. Beside these local features, Seni et al. [44] introduced Zone features
by decoding each point of the signal into pre-defined zones (see Figure 3.3): middle,
lower, or upper zone. These features may be used to distinguish characters having
similar temporal representations such as ’e’ and ’l’, ’a’ and ’d’ etc. Some authors [4, 60]
also try to represent the input signal by a set of primitives (cusps, crossings, and loops)
in order to take profit of the high level information.

2.2.3.2 Off-line features

Off-line features can be locally extracted from some selected pixels (or segments) of the
input image, and generally carry information about spatial distribution and/or local
directions of the handwriting, enabling to describe the shape of the words. Some famous
features can be cited such as Freeman Chain Code [35, 94], zoning, . . . Beside these
features, the invariant moment-based descriptors such as Hu, Legendre, Zernike’s, . . . [54,
136] can also be used. This kind of features are extracted from the whole shape of the
input image. As far as we know, the invariant moment-base descriptors have never been
used for on-line handwriting recognition, while these features are widely used in pattern
recognition, especially off-line ICR [54]. SIFT descriptor has been also used in some
recent research for off-line digit recognition [141] and word spotting [120].

2.2.3.3 Discussion

The comparison between different families of features is still the object of many dis-
cussions. Each category of features (on-line/off-line) has its own set of advantages and

39

2 State-of-the-art of handwriting recognition systems

drawbacks. For instance, off-line features are more robust than on-line ones in the pres-
ence of variations in the writing trajectories (writing direction, number of strokes, order
of strokes, . . .), as illustrated in Figure 2.3. This figure shows that, depending on the
neighboring characters, there is a large variation in the writing trajectories of the letter
’a’. This has a great impact on the on-line features, while the off-line features remain
more stable, since off-line features characterize the shape. In addition, on-line features
also depend on the handwriting hand of the writer (e.g. left-handed or right-handed
writer). Indeed, the writing trajectories of left-handed writer are generally different
from those of right-handed writer.

Figure 2.3: Variation in the writing trajectories of the letter ’a’ depending on its neigh-
boring characters.

Some authors try to combine these two categories of features to take advantages of
their complementarity. Some experiments have shown a remarkable improvement in
terms of effectiveness [50, 103, 65, 40, 69, 91, 89, 90, 117].

2.2.4 Word recognition process

As presented in section 2.2.2, the general result of a pure explicit segmentation method
is generally a sequence of graphemes each of which is considered as a potential char-
acter. On the other side, explicit segmentation/recognition methods provide a lattice
of graphemes, combination of graphemes corresponding to the input word. In the case
of implicit segmentation methods, the obtained result is a set of segmented windows.
Whatever is the segmentation method used, we need a word recognizer, the role of
which is to find the ”true” sequence of characters, generally relying on character recog-
nizer(s)/model(s).

In the case of explicit segmentation (pure segmentation or segmentation/recognition),
an ICR or SCR based on classifiers such as Support Vector Machines (SVM) and/or
Neural Network (NN) is generally used [38, 78, 3] to recognize each segmented component
(grapheme or character). For implicit segmentation, Hidden Markov Models (HMM) are
frequently used [82, 107] to create character and/or word models. Alternatively, the use
of Time Delay Neural Networks (TDNN) or Multi-States Time Delay Neural Networks
(MS-TDNN) can be seen as a hybrid model of NNs and HMMs [65, 21]. In such cases,
Viterbi algorithm is generally used to find the most likely words.

40

2 State-of-the-art of handwriting recognition systems

2.2.5 Post-processing

As mentioned in section 1.3, the large variation of handwriting, the complexity of con-
nections between characters, the low quality of handwriting, etc. are major causes of
ambiguities and recognition errors. Therefore, context integration is often considered in
post-processing for improving the system performance, as explained in section 1.4.

In the context of handwriting recognition, external knowledge is usually used for this
post-processing stage [96, 106]. Some methods are commonly used in the literature for
representing this knowledge: lexicon-based, n-gram character based, and n-gram word
based approaches.

2.2.5.1 Lexicon-based post-processing

In the context of handwriting recognition, a lexicon is usually used for post-processing.
The lexicon allows to limit the recognition context and search space. In such a context,
recognized words must belong to the lexicon. Different approaches can be found in the
literature [4]:

• Verification or validation: every words considered as a possible output must belong
to the lexicon.

• Correction: the system computes an edit distance [101] between each recognized
word and those in the lexicon. Words having the best matching are considered as
the final result of the system.

• Prediction: lexicon is directly integrated during the recognition process. It is used
as a predictor, in order to predict possible characters (i.e. limit the search space)
during the decision.

In order to reduce the complexity of system, TRee Information rEtrieval model (TRIE)
may be used. This model is also known as a prefix tree in which words having the same
prefix share the same branch of the tree. Figure 2.4 illustrates a TRIE model of a given
lexicon which contains five words: who, whom, what, when and where.

� � � � ����

� �

� �

����

�����

�

���

� ����

Figure 2.4: TRIE model of the lexicon which contains five words: who, whom, what,
when and where.

41

2 State-of-the-art of handwriting recognition systems

2.2.5.2 N-gram model at the character level

N-gram model is used at the character level to describe the a priori probability of a
sequence of N characters. For example, in the case of a bi-gram (2 characters), the
character sequence ”qu” is more frequently used (i.e. more probable) than ”qo”. These
probabilities can be used as external knowledge to recognize a given signal.

A N-gram model can be applied for both lexicon-based and lexicon-free recognition
contexts. A. Brakensiek et al [15, 14] applied this kind of strategies for degraded doc-
uments and off-line HWR (4 writers only) in a lexicon-free context. The experimental
results show the significant improvements brought by the N-gram model. However, the
results remain inferior to lexicon-based recognition.

2.2.5.3 Statistical language models

Statistical language models have been largely and successfully used for different appli-
cations such as speech recognition, machine translation, spelling correction and hand-
writing text recognition. Many different methods exist to build language models. In
the case of handwriting text recognition, two methods are usually used in the literature:
N-gram and N-class model, applied in the context of text/line recognition.

• N-gram model at the word level: similar to the N-gram model at character level,
N-gram model at the word level aims at describing the a posteriori probability of
a sequence of N words

• N-class model: is also known as part of speech model. Each word is classified
into its part of speech class (noun, pronoun, etc.). Similar to N-gram model, the
N-class model aims at describing the a posteriori probability of a sequence of N
classes.

According to different experimental results in the literature [151, 143, 116, 109], the
use of statistical language model shows a clear improvement of the effectiveness of the
systems. However, the statistical language models can be applied only for text-line
recognition problems.

2.2.6 Conclusion

This section introduces an overview of analytical approaches based systems. Each step
of an analytical approach has been presented: pre-processing, segmentation, feature ex-
traction, word recognition and post-processing. A discussion and conclusion for each of
these steps were given in each sub-section.

Even if we can categorize the approaches according to the analytical/global criterion,
it is not sufficient to exhaustively describe the existing systems in the literature. As a
consequence, it is necessary to give an overview of some existing systems, in order to
understand their functionalities in details. This is the objective of the following section.

42

2 State-of-the-art of handwriting recognition systems

2.3 Existing handwriting recognition systems

In the previous section, we presented an overview of the handwriting recognition systems
based on analytical approaches. In this section, we present in details the existing recogni-
tion systems in the literature. We classify these systems according to their segmentation
method: implicit segmentation or explicit segmentation method.

2.3.1 Implicit segmentation based systems

Implicit segmentation is very commonly used for both off-line and on-line data. The
main differences are related to the way of applying the sliding window.

• Concerning off-line data, the sliding window is generally moved on the input image
along the writing direction. For example, in the case of English language, the
sliding window is moved from left-to-right while it is moved from right-to-left for
Arabic language.

• Concerning on-line data, the sliding window is generally moved along the writing
trajectory.

In both cases (on-line and off-line data), the parameters of the window (window size
and overlapping size) are generally a priori settled to a pre-fixed value. This value may
be fixed manually or by using a validation set. Features extracted from each window are
further used to feed a word recognizer, mostly based on HMM models or some kind of
hybrid HMM/NN. Since the features extracted from the sliding window are directly used
to feed the word recognizer without any explicit segmentation of the input signal into
graphemes or characters, these systems are considered as implicit segmentation based.

We propose to classify these systems into two groups: classical HMM-based systems
and hybrid HMM/NN-based systems. In this section, we only focus on the functionality
of the systems. The recognition results will be illustrated and discussed in section 2.3.3.

2.3.1.1 Classical HMM-based systems

A Hidden Markov Model (HMM) is a model that describes the transitions between a set
of states S = {s1, s2, . . . } for a given set of observations O = {o1, o2, . . . }. The terms
”hidden” refers to the fact that there is a set of states S for each observation ok. A
HMM is denoted as λ = {A,B, π} where:

• A: is a matrix of aij which indicates the transition probabilities from
the state si to sj

• B: is a matrix of bi(ok) which indicates the emission probability of an
observation ok ∈ O associated with a state si ∈ S

• π: is a vector containing the starting probabilities for each state si

43

2 State-of-the-art of handwriting recognition systems

In the handwritten word recognition problem, each input handwritten word contains
a set of observations, where each observation is composed of the features extracted from
a window in the sliding sequence. For every word wl in the lexicon, a HMM model λl is
created by a training process. The following paragraph introduces how the HMM model
λl for each word wl is trained. Then we will explain how an input handwritten word can
be recognized. Finally, two classical HMM-based systems are introduced.

a) Training:

Handwritten recognition systems (for both off-line and on-line data) are gen-
erally based on linear or Bakis architecture [109] (see Figure 2.5). For linear
architecture, each state is connected to itself and its immediate successor
state [60, 88, 8]. The Bakis architecture may be seen as an extension of the
linear architecture. The Bakis architecture allows skipping the immediate
successor state. Therefore, each state has three connections as illustrated
in Figure 2.5. Some existing systems can be cited [110, 10]. They will be
introduced after.

�
�

�
�

�
�

�
�

�������������������

�
�

�
�

�
�

�
�

������������������

Figure 2.5: HMM linear and Bakis architecture for a 4 states model

A general view of HMM training process is illustrated in Figure 2.6. An ini-
tial HMM model (λ0

l) for each word wl must be manually initialized before
the training process, where the number of states and the number of Gaus-
sians in the mixture of each model are generally fixed using heuristics.

Considering that we have a training dataset consisting in multiple samples of
the word wl where each handwritten word is represented by a sequence of ob-
servations O. The training process may take several iterations to update the

44

2 State-of-the-art of handwriting recognition systems

parameters in the model. The model λnl constructed at each iteration n must
increase the likelihood: P (O|λnl) ≥ P (O|λn−1

l). Based on the initial model
λ0
l , in the first iteration (n = 1), the training process aims at re-estimating
a new model λ1

l that must verify P (O|λ1
l) ≥ P (O|λ0), and so on. Dur-

ing the training stage, the model parameters are re-estimated, but neither
the model architecture nor the number of states are changed. As an output
of the training stage, we obtain one model λl for each word wl in the lexicon.

������� ������

������������ � �� �� ��� �

������� ����������

��
��
���

��
��
���

��
��
���

�
�
�
�

��� �
�

��������
�������

���

���

� ����������
��� �����
����������������

�������������

��� �����
�������������

Figure 2.6: An overview of the HMM training process.

Baum-Welch algorithm is usually used to estimate the model. The mixture
of Gaussians method is used to compute the emission probability (bi) of an
observation (ok ∈ O) associated with the state si ∈ S denoted by Equa-
tion (2.1).

bi(ok) = p(ok|si) =
G�

m=1

cimN(µim,Σim) (2.1)

where G and cim are respectively the number of mixture components (i.e.
Probability Density Functions (PDFs)) and the weight of themth component

45

2 State-of-the-art of handwriting recognition systems

for the state si. N(µim,Σim) is multivariate Gaussian where µim and Σim

respectively correspond to the mean vector and covariance matrix of the mth

component for the state si.

b) Recognition:

During the recognition process, the Viterbi algorithm is generally used to
select the most probable sequence of states, given the sequence of observa-
tions O. For a given lexicon, we compute the likelihood of each word wl as
LH(wl) = P (O|λl), where λl is the HMM model of the word wl. Maximum
likelihood strategy is used to select the most likely word for a sequence of
observations: w∗

l = argmaxλl
P (O|λl), except when linguistic information

is integrated in the process.

c) Existing systems:

Hu et al. [60] proposed an on-line HWR based on HMM. A vector of seven
features is extracted from each point of the signal (which can be considered
as a basic sliding window strategy) after normalization and pre-processing.
This feature vector contains four on-line local features (tangent slope angle,
normalized vertical coordinate, normalized curvature, and ratio of tangents)
and three on-line global features (cusps, crossings, and loops). This system
relies on a HMM linear architecture with three levels: stroke models, char-
acter models, and grammar network. Stroke models are used as the basic
models of the system. In a first stage, they are trained on isolated char-
acters; before being secondly trained on whole word samples (without any
knowledge about character boundaries), which are then further used to cre-
ate character models. These character models are then used to create word
models of each word in the lexicon.

In this system, each character class is represented by only one HMM character
model. One strong limit of such approach is that they do not integrate the
”context” of the handwriting, and more specifically the surrounding char-
acters (left and right). Indeed, shapes of one character class may change
according to their surrounding characters. Therefore, using only one HMM
character model to represent each character class may not be enough to han-
dle this context modeling question.

In order to solve this problem, A.L. Bianne et al. proposed a context-
dependent system for off-line handwriting recognition [9]. This system relies
on HMM models using Bakis architecture. As for every implicit segmen-
tation based system, a sliding window method is applied. For each win-

46

2 State-of-the-art of handwriting recognition systems

dow, a vector of features is extracted. This vector contains pixel densities,
background/foreground transition, stroke concavities, etc. Character models
are trained using a dataset containing whole words without any preliminary
character segmentation (i.e. word level training). The main difference be-
tween this system and other classical HMM-based systems is that, for a given
character class, they create a set of character models with different writing
contexts. This method is known as trigraph method and is inspired from
the earlier work presented by A. Kosmala et al. [83] for on-line handwriting
recognition systems.

Although the classical HMM model is widely used for HWR, it still has several draw-
backs. One of these drawbacks is related to the fact that each state is trained without
taking into account the other states. Each emission probability is computed by using a
Mixture of Gaussians. As a consequence, states are not discriminatively trained. An-
other well known drawback is related to the fact that the number of Gaussians must be
optimally fixed by using some heuristics or optimization strategies [48].

In order to create a HMM model with discriminative training, hybrid systems which
combine HMM and Neural Networks (HMM/NN) have been proposed. This hybrid
HMM/NN system generally allows replacing the Mixture of Gaussians by Neural Net-
work which is a famous classifier for its discriminative classifical power. We propose an
overview of these systems in the following sub-section.

2.3.1.2 Hybrid HMM/NN based system

In the case of hybrid HMM/NN model, the emission probability is computed by neural
networks, where all states are discriminated. So, the non-discriminant training problem
of the classical HMM model as well as the problem of choosing the optimal number of
Gaussians in the mixture can be circumvented.

In such hybrid methods, different types of Neural Networks (NN) are used in the
literature: Multi-Layer Perceptron (MLP), Time-Delay Neural Network (TDNN) and
Recurrent Neural Network (RNN). Due to the different architectures of NN, different
hybrid methods and systems can be found in the literature. In the following paragraphs,
we introduce these hybrid methods separately according to the type of NN: HMM/MLP,
HMM/TDNN and HMM/RNN.

Hybrid HMM/MLP:

Hybrid HMM/MLP methods have been used early in the literature. Their general
principle is illustrated in Figure 2.7. First, a sliding window is passed through the input
handwritten word. Features extracted from each window (ok) are then used to feed the
input layer of a MLP. The MLP returns a vector of the a posteriori probabilities p(si/ok)
which can be converted into emission probabilities p(ok/si) using Bayes’ theorem. The

47

2 State-of-the-art of handwriting recognition systems

vector of the emission probabilities is then directly integrated in a HMM representation.
Recognition process is performed generally by using the Viterbi algorithm as in the case
of classical HMM-based system.

�������������������

�

���

���

���

���

� � �

���
�
��

�
� ���

���
�
��

�
�

���

���
�����

����� �����

������ ����������� �����

������ �����

Figure 2.7: General view of hybrid HMM/MLP by considering that the MLP has three
layers.

Some other hybrid systems were presented in the-state-of-the-art [39, 97, 124, 33]. In
the next paragraphs, we present two different systems introduced by S.España-Boquera
et al. [33] and J.Schenk and G.Rigoll [124].

S.España-Boquera et al. [33] presented a hybrid off-line handwritten text
recognition system using hybrid HMM/MLP. The input text line is first nor-
malized by applying several normalization methods: (i) image cleaning, (ii)
slope removing, (iii) slant removing, and (iv) size normalizing. The sliding
window is used to parse the normalized text line. In each window, a set of
60 features is extracted. In order to use the context of the past and future
data, for each window, the authors take into account the features of the 4
preceding windows and 4 succeeding windows. Therefore, in total, a vector
of 60*9 features (ok) is obtained for each sliding window to feed a MLP. The
emission probability p(ok|si) is computed by applying the Bayes’ theorem.

48

2 State-of-the-art of handwriting recognition systems

This hybrid method is the most frequently used in the literature. Although it
significantly improves the recognition rates compared to the classical HMM-
based system, it still has some disadvantages. Indeed, as explained in [33],
the number of units in the output layer of the MLP equals the number of
states per character model multiplied by the number of character models.
In the case of context-dependent systems, the number of models is signifi-
cantly increased, which leads to a very high number of units in the output
layer. As a consequence, the number of parameters to be estimated by the
MLP dramatically increases. In order to train such a large MLP, a huge size
of training data is needed. In addition, the training complexity becomes a
problem [119].

In order to avoid this kind of problems, J.Schenk and G.Rigoll [124] in-
troduced a hybrid HMM/MLP handwriting recognition system using two
different hybrid strategies: ”Tied Posteriori” and ”Tandem”, applied to the
on-line handwriting recognition. These strategies were originally presented
in [119, 52] for speech recognition. For each point of the signal, they extract
5 on-line local features and 9 off-line local features from the recovered off-line
image. Similarly to the system presented in [33], for each point, they add
features extracted from preceding and following points to feed the input layer
of the MLP. The MLP returns a posteriori probabilities (p(qj|ok)), where the
qj are directly the symbol classes to recognize.

In the case of Tied Posteriori hybrid technique, the outputs of MLP (p(qj|ok))
are used to replace the mixture of Gaussians traditionally used in the classical
HMM. The emission probability of an observation ok associated to a state si
in the Equation (2.1) can be denoted by:

bi(ok) = p(ok|si) =
G�

j=1

cij.
p(qj|ok)
p(qj)

(2.2)

where G is the number of symbol classes defined by user. The parameter
G corresponds to the number of mixture component in the case of mixture
of Gaussians. The parameter cij is the weight of the j

th component for the
state si.

In the case of Tandem hybrid technique, NN is used as a part of features ex-
traction called Tandem features. The output of NN is converted by applying
logarithm:

49

2 State-of-the-art of handwriting recognition systems

li(ok) = log(p(qi|ok))−
1

G

G�

j=1

log(p(qj|ok)) (2.3)

The PCA is then applied on this new set of features before using these fea-
tures as an input of the classical HMM. Then, the classical HMM training
process is performed in order to create a HMM model for each word wl in
the lexicon (see section 2.3.1.1).

The experimental results of both systems ([124, 33]) show significant im-
provements compared to the classical HMM-based systems. According to
[124], the Tandem hybrid technique provides better recognition rates(+1.8%)
compared to Tied Posteriori technique. Unfortunately, there is no rele-
vant comparison between these hybrid techniques and the standard hybrid
HMM/MLP technique. However, in the literature, we can observe that the
classical hybrid technique seems to be more frequently used.

Hybrid HMM/TDNN

Hybrid HMM/TDNN was initially used for speech recognition systems [148, 56].
TDNN refers to Time Delay Neural Networks. In handwriting recognition, the term
TDNN is generally used for on-line (temporaly) data while the SDNN (Spatial Delayed
Neural Network) is used for off-line (spatial 2D) data. In this part, we focus only on
TDNN, since our problem concerns on-line handwriting recognition.

The hybrid HMM/TDNN technique is also known as Multi-State Time Delay Neural
Network (MS-TDNN). Similar to HMM/MLP hybrid technique, it aims at replacing
Mixture of Gaussians by TDNN.

Figure 2.8 illustrates a general view of the hybrid HMM/TDNN (MS-TDNN) model.
First, local features are extracted from each point in the input signal. These features
are directly used to feed the input layer of the TDNN. Then, a sliding window is used
to integrate a subset of the cells of the input layer to feed the hidden layer. Each subset
unit of a given layer is integrated to feed the next layer, and so on. Finally, the output
layer of the TDNN will be modeled by a HMM model.

The difference between MS-TDNN and HMM/MLP is principally linked to the differ-
ent topologies of TDNN and MLP networks. In MLP, each unit of a given layer is linked
to every unit of the next layer. Unlike MLP, the main feature of TDNN is time-shift
invariant architecture where a subset of units from a given layer is linked to one unit of

50

2 State-of-the-art of handwriting recognition systems

����

���
��������

����� �����

������ �����

�
�

�
�

�
�

���
�
�

������ �����

��� ��� ��� ���

� � � �

Figure 2.8: Example of hybrid HMM/TDNN (MS-TDNN) with three layers.

the next layer. This architecture allows continuous analysis of data, especially when the
inputs are given as a time series. This architecture is very helpful for real time applica-
tions such as speech and on-line handwriting recognition systems. It allows recognizing
a pattern independently of its position in time.

MS-TDNN based systems may differ from each other according to the way TDNN
and HMM are combined and according to the training procedure. In the following
paragraphs, we introduce three systems of the literature.

A hybrid HMM/TDNN system was presented by Schenke et al. [126] in
1993, initially for on-line hand-printed word recognition system. Then, this
approach was applied to on-line cursive word recognition system [125] in
1994. Given an input handwritten word, some pre-processing techniques
are applied in order to normalize the information: size normalization, base-
line detection, smoothing and resampling. For each point in the normalized
signal, a set of 9 on-line local features is extracted. Similar to other implicit
segmentation based system, a sliding window segmentation method is used.
The size of the sliding window is heuristically estimated on the basis of the
average size of a character. The features (ok) extracted from each sliding
window are used to feed a single character TDNN recognition module which
returns a posteriori probability (p(ci/ok)) for every character class (ci). In
this system, each state is a character class (ci = si). In order to overcome the
problem related to character size variation, a HMMmodel of a character class
(ci) is modeled by several states ci, called ”duration modeling”, as illustrated
in Figure 2.9.

51

2 State-of-the-art of handwriting recognition systems

�
�

�
�

�

�
�

�

�
��

Figure 2.9: A 3 states HMM model of character ci.

Another similar hybrid HMM/TDNN approach was more recently presented
by E.Caillault et al. [21] for on-line handwriting recognition. This system
can be regarded as a combination of TDNN, MLP and HMM. Unlike the
hybrid technique presented in [125], TDNN is not used as a character classi-
fier. In this system, the last hidden layer in the TDNN is used as the input
of the MLP. Indeed, TDNN is used as a feature extraction method which
projects the features extracted from each sliding window to another feature
set, which is considered as more significative (according to author) compared
to raw features extracted from each sliding window. The MLP provides esti-
mated probability associated to each character class. Similarly to the system
presented in [125], the output of MLP is used to create a HMM model of a
character. In this system, the size of the sliding window is heuristically fixed
based on the average size of a character.

S. Jaeger et al. [65] proposed a hybrid HMM/TDNN system for on-line
HWR. First, the input signal is normalized by some standard normalization
methods. Then, for each point of the normalized signal, a set of on-line lo-
cal features and off-line local features is computed to feed the TDNN. This
TDNN is composed of two hidden layers. The second hidden layer is consid-
ered as a state layer. The state layer is used to create HMM state models
each of which is composed of one or more units. Each character class is then
modeled by three state models each of which respectively represents first,
middle and last part of the character class. These character models are fur-
ther used to create word models by concatenating character models.

In the hybrid systems presented by Schenke et al. [125] and E.Caillault et
al. [21], the HMM model of a given character class (ci) is represented by a
sequence of states, where each state is associated to a character class ci. This
kind of methods has two main drawbacks. First, TDNN is simply used as
a character classifier and the average size of a character (i.e. size of slid-
ing window) must be optimally fixed, what is difficult. Second, every HMM
character model is represented with the same duration (i.e. the same number
of states), which is not representative of the reality. These parameters are
difficult and almost impossible to tune, since the character sizes differ a lot.
For instance, the size of the character ’i’ is much smaller than the one of the
character ’w’.

52

2 State-of-the-art of handwriting recognition systems

In [65], on the other hand, each state of HMM is associated with a sub-part
of the character (first, middle and last) instead of the whole character. As
mentioned earlier, each HMM character model is modeled by three HMM
state models. The length of each state model is optimally fixed during the
training process. Therefore, each character class is modeled with an adaptive
HMM length. It is an important advantage compared to the previously
presented classical HMM-based systems, hybrid HMM/NN based systems
and systems presented in [125, 21] for which the length of each character
model was preliminary fixed by using a heuristic estimation or validation
set.

Hybrid HMM/RNN

Recurrent Neural Network (RNN) is another type of neural networks. Similar to MLP,
each unit of the input layer is linked to every unit of the hidden layer. RNN contains
only one hidden layer, but allows self-connection on this layer. This self-connection is
the main difference with MLP. This mechanism allows the network to use contextual
information by integrating past data. In the context of handwriting recognition, the
past data is important since the shape of one character is changed according to its sur-
rounding characters (see section 1.3.1). This is a strong advantage compared the hybrid
HMM/MLP and the hybrid HMM/TDNN.

A.Graves et al. [43] presented a RNN based system which is specifically designed for
using the advantages of the RNN. Even though, the author did not present this system
as a hybrid of HMM/RNN, it can be seen in this way. A global view of the system
presented by A.Graves et al. [43] is illustrated in Figure 2.10. For each point, a set
of features is extracted. We will not explained in details the normalization and feature
extraction steps since they are very similar to the systems presented above. However,
we will provide some details concerning the hybrid part.

The extracted features (in time series t ∈ {1, 2, . . . , T}) are used to feed a Bidirectional
RNN with Long Short-Term Memory (BLSTM) architecture. In addition, Connectionist
Temporal Classification (CTC) is also used. The CTC aims at providing the additional
”blank” label (non-character class ε) between two characters on the output layer. At
each time t, the BLSTM returns the recognition probability of each character class in-
cluding the ”blank” label. As a result, we get a matrix of (M + 1) x T , where M is the
number of character classes, 1 corresponds to the additional blank label and T is the
length of time series. Finally, a Token Passing Algorithm is used for word recognition
process in order to compute the probability of each word in the given lexicon.

This system provides very promising results with a great improvement of the recogni-
tion rate (∼ 12% with a lexicon of 20 000 words) compared to classical HMM-based sys-

53

2 State-of-the-art of handwriting recognition systems

�
�

�
�

�
�

���
�
�

������� ����� �������� �����

����� ������

��������

������
�������������

��� ���� ����
����������
������

������ ������

����� ������� ��������

����������� ������

����� �������

Figure 2.10: The overview of the system presented in [43].

tem. Unfortunately, there is no objective comparison with HMM/MLP or HMM/TDNN
based systems. We can notice different interesting ideas in this system. First, the use
of Bidirectional RNN allows modeling context in both directions (on the left and the
right of the current character). It permits to integrate the variation of character shapes,
which strongly depends on left and right neighboring characters. Second, the modeling
of the non-character class is another important aspect, which is not considered by more
traditional system.

2.3.1.3 Conclusion

We have introduced different handwriting recognition systems that use implicit segmen-
tation strategy such as classical HMM and hybrid HMM/NN based systems. These
methods are very frequently used in the literature, and usually give very competitive
results. However, they require a huge size of training dataset, especially when using
hybrid models [124, 109]. Furthermore, many parameters need to be heuristically esti-
mated.

54

2 State-of-the-art of handwriting recognition systems

Another segmentation method called ”segmentation/recognition” aims at integrating
a recognizer into the segmentation process, in order to avoid segmentation errors. There-
fore, this kind of methods shares the same advantage with the implicit segmentation in
the sense that the input word is not explicitly segmented into a sequence of characters
directly. This kind of systems is presented in the next section.

2.3.2 Explicit segmentation based systems

We classify explicit segmentation based systems into two classes: pure explicit segmenta-
tion and segmentation/recognition based systems. Different segmentation methods are
presented in the literature: water reservoir concept [104], connected component analysis
[95], transformation-based learning (TBL) [17, 32], background and foreground analysis
[28] . . . A good survey on these segmentation methods are presented in [24, 118].

The explicit segmentation based systems generally suffer of two problems: under-
segmentation and over-segmentation.

• Under-segmentation: refers to the problem where some segments may not corre-
spond to a single character, because of connections with their neighboring charac-
ter(s) or some part(s) of their neighboring character(s).

• Over-segmentation: at the opposite of the under-segmentation problem, it refers
to the problem that one character shape may be broken into two or more segments.

For solving these two problems, heuristic rules and/or verification scheme(s) may be
applied, in order to remove noisy segments and/or to group the broken segments. Sys-
tems based on pure explicit segmentation specifically require very effective segmentation
methods, because errors occurring during segmentation step generally have a direct ef-
fect on the overall system. Concerning segmentation/recognition methods, these errors
may be fixed during the recognition step.

In this section, we only focus on the functionality of the systems. The recognition
results will be given and discussed in section 2.3.3.

2.3.2.1 Pure explicit segmentation methods

Pure explicit segmentation based systems aim at segmenting the input signal into se-
quences of single characters. Then, a SCR is used to recognize each of them. A global
overview of this kind of systems is illustrated in Figure 2.11.

55

2 State-of-the-art of handwriting recognition systems

������������

������� ����������
� ��� �� �������� �������������

���� ���������������
���������

����������
������������������������

����������

���� �����������
�������

�������

����������

������ �����������

��������������
��� �������������

������� ��������� ������������
���������������������������

Figure 2.11: The global overview of pure explicit segmentation based systems.

The system presented by S. Ouchtati et al [121] focuses on handwritten
numeric string recognition. In this system, they do not take into account
the problem concerning touching and overlapping digits. A simple segmen-
tation method based on vertical projection is used. The segmented digits
are directly submitted to a digit recognition system that relies on MLP.
If digits in the string are touching or overlapping, the system faces the
under-segmentation problem because touching and overlapping digits can-
not be separated by the segmentation method relying on vertical projec-
tion. In order to overcome these problems, many methods dedicated to the
segmentation of touching and overlapping digits/characters are presented
[17, 24, 32, 28, 118]. However, these approaches generally rely on heuristics
and it is quite difficult to fix threshold value(s) and heuristic rule(s) to get
perfect segments.

To overcome this problem, Dan Ciresan [30] presented an off-line numeral
string recognition system by combining single and two-digit recognition sys-

56

2 State-of-the-art of handwriting recognition systems

tems. The input signal is segmented by using connected component analysis.
Then, some rules are applied to remove noisy components. For example,
components that contain less than four pixels are deleted if their closest com-
ponent size is more than five pixels. The remaining connected components
are recognized by single and two-digits recognition systems. Both systems
use Convolutional Neural Network (CNN) as classifiers. For each compo-
nent, in order to select the best recognition label given by these two systems,
author experiments the system with 3 different methods:

• Method 1: they compare score1 and score2 which respectively corre-
spond to the recognition probabilities on Top-1 given by the single and
the two-digits recognition systems. If score1 ≥ score2, then Top-1 given
by the first system is selected, Top-1 given by second system otherwise.

• Method 2: for each system (single and two-digits), the difference be-
tween the recognition score of Top-1 and Top-2 is computed. They
obtain dif1 for the first system (single character) and dif2 for the sec-
ond system (two-digits). If dif1 ≥ dif2, then Top-1 given by the first
system is selected, Top-1 given by the second system otherwise.

• Method 3: they combine rules presented in methods 1 and 2. If score1+
dif1 ≥ score2+dif2, then Top-1 given by the first system will be selected
and Top-1 given by the second system otherwise.

Experimental results show a great improvement by combining single and
two-digit recognition systems with Method 3. However, this system still
faces three main problems: 1) if the connected components contain more
than two digits, 2) if the connected components contain some part(s) of
their neighboring digit(s), 3) if the connected components contain only a
part of the digit.

The use of pure-explicit segmentation methods does not require the use of any recog-
nition system during the segmentation step. Therefore, most of the time, errors caused
by the segmentation method cannot be corrected. On the other hand, explicit seg-
mentation/recognition based systems allow to integrate simultaneous segmentation and
recognition stages in order to avoid segmentation errors. These systems are presented
in the next section.

2.3.2.2 Explicit segmentation/recognition methods

The segmentation/recognition-based systems aims at over-segmenting the input signal
into graphemes and use a supervised classifier to discover the best groups of graphemes
as character candidates.

A global overview of this kind of systems is illustrated in Fig 2.12. First, the input
signal is normalized and segmented into a set of graphemes. These graphemes are
further used to create a lattice of L levels. Then, from each node of this lattice, a

57

2 State-of-the-art of handwriting recognition systems

set of features is extracted in order to feed a discriminative classifier. This classifier
returns an a posteriori probability for each character class. Finally, during the word
recognition process, dynamic programming may be used to compute the probability of
every word in the lexicon.Different systems were presented in the literature. In the
following paragraphs, we present three different systems.

������������

������� ��������

������� ����������
� ��� �� �������� �������������
���� ������������ �����������

��������������
����������

���������������������� ����
�������� �����������������������
���������� �� ��� ���������

�������

���� �����������
�������

�������

� �����
����������������

��������������
��� �������������

Figure 2.12: Overview of explicit segmentation/recognition based systems.

E. Kavallieratou et al. [71] presents an unconstrained off-line handwritten
text recognition system in the context of lexicon-free applications. Several
normalization and segmentation methods (pre-processing, printed-handwritten
text separation, line segmentation, slant correction, and word segmentation)
are sequentially applied to segment the input handwritten text into isolated
words. The segmented words are submitted to an isolated word recogni-
tion system. This system relies on an explicit segmentation/recognition.

58

2 State-of-the-art of handwriting recognition systems

Each isolated word is segmented into graphemes using Transformation-Based
Learning (TBL) [32, 17]. Then, every grapheme and every pair of graphemes
(i.e two-level lattice) are considered as a potential character. For each poten-
tial character, a set of features (x) is extracted. This set contains features
such as: histogram, profile, radial histogram and radial profile. Then, an
Euclidean distance is used to compute the distance between the extracted
features x and the prototype(s) features xc of each class. The character class
with the shortest distance is considered as the recognized class. Two draw-
backs can be identified for this system. The first drawback is related to the
segmentation module which is based on the TBL method. This method re-
lies on the machine learning theory in order to learn the segmentation points
between characters. However, it may face two problems: 1) TBL requires
annotating training data, which is a time-consuming task and 2) because of
the limitations of the algorithm or/and the lack of training data, this system
may face with segmentation problems. The problem of under segmentation
has not been envisaged to be solved. The second drawback concerns the
character recognition module which relies on a simple Euclidean distance.
This method may not be effective enough to handle the variation problem in
SCR. Moreover, it is time consuming recognition strategy. In this context,
discriminative classifiers such as SVM or NN are more adapted and more
frequently used in the literature.

On the opposite, a system presented by G. Koch et al. [80] uses a simple
segmentation method which relies on local extreme points of word contours.
A discriminant classifier MLP is used to create a SCR.

Similarly to this method, in a system presented by Ahmad et al. [3] for
on-line handwritten word recognition problem, the segmentation method is
based on local extreme points. A grapheme is a group of points located
between a local minimum and a local maximum points (on the y axis). A
SVM classifier is used as a character recognition module. The outputs of the
SVM are then used to feed a HMM model. Finally, the Viterbi algorithm is
used to find the best alignment of all words in the lexicon.

2.3.2.3 Conclusion

In this part, we presented the explicit segmentation-based systems. Two main types of
methods are presented: pure explicit segmentation and explicit segmentation/recognition
based systems.

Systems using pure explicit segmentation require a very powerful and stable segmen-
tation method, since segmentation errors have a direct effect on the overall system. The

59

2 State-of-the-art of handwriting recognition systems

main advantage of such methods is the computation time, since the segments given by
the segmentation step are directly considered as segmented characters.

On the other hand, for explicit segmentation/recognition system, only a simple over-
segmentation method is required. The hybridization of the character recognition system
and the segmentation method allows to overcome the segmentation errors. The main
drawback of this method is the computation complexity, since a lattice of segmented
graphemes has to be created and every node of the lattice has to be recognized by a
SCR. Finally, a word decoding method is required in order to explore the lattice to find
the most probable sequences of characters.

2.3.3 Discussion and performance comparison

This section presents different types of handwriting recognition system along with their
advantages and drawbacks. Table 2.1 shows a list of different systems to summarize this
section.

Table 2.1: List of existing systems presented in the state-of-the-art.

Approaches Author Nature of
data

Method Dataset Lexicon
R.rate
(%)

Implicit -
HMM-based

Hu et al. [60] words HMM
Linear ar-
chitecture

Unipen,
On-line

20 000 76.3

A.L. Bianne et
al. [9]

words HMM
Bakis.

Rime,
off-line

10 500 67.5 ,
74.1

Implicit -
HMM/NN-
based

J.S and G.R
[124]

words HMM/NN German
database,
on-line

2000 84.2 to
95.9

S.España-
Boquera et al.
[33]

text line HMM/NN IAM,
off-line

20 000 83.20

S. Jaeger et al.
[65]

words MS-TDNN UKA,
CMU,
MIT,
on-line

20 000 91 to
97.5

É. Caillault et
al. [21]

words HMM/
TDNN/
MLP

ironoff
on-line

197 92

A.Graves et al.
[43]

text line BLSTM,
CTC

IAM,
on-line

20 000 81.5

Continued on next page

60

2 State-of-the-art of handwriting recognition systems

Table 2.1 – continued from previous page

Approaches Author Nature of
data

Method Dataset Lexicon
R.rate
(%)

Pure explicit
segmenta-
tion

S.Ouchtati et
al. [121]

Numeral
string

NN - - -1

D.Ciresan [30] Numeral
string

CNN NIST
SD19
(off-line)

free 93.49

Explicit seg-
mentation/
recognition

A.R. Ahmad et
al. [3]

words HMM/
SVM

ironoff
on-line

197 64.53

E. Kavalliera-
tou [71]

text line Euclidean NTIS,
IAM,
GRUHD,
off-line

free 65.6 to
82.792

G.Koch at
al. [80]

words MLP off-line3 1000 67.80

According to the recognition results shown in Table 2.1, we can observe that:

• For off-line handwritten word/text, the recognition rates vary from 65% to 83%.
The system presented in [33] (relying on hybrid HMM/NN) provides better results
for a lexicon of 20000 words. The systems presented in [80] and [9] provide lower
recognition rates compared to the system in [33], even if the lexicons are smaller.
On the other hand, the system presented in [71] deals with text recognition in
the lexicon-free condition. However, the evaluation of the system relies on the
character accuracy, not on the words or text line recognition accuracy.

• For on-line data handwritten word/text, the recognition rates vary from 64% to
97%. The system presented in [65] (relying on MS-TDNN) provides better result
for a lexicon of 20000 words. The experiments in [21] and [3] were performed with
a smaller lexicon (197 words), but taking into account the accented characters.

However, comparing the systems on the basis of their recognition rates is not fair, since
authors performed their experiments in different conditions with different lexicons and
test databases. Nonetheless, some fair comparison can be extracted from the literature:

• Based on the experiment results in [9], the HMM context-dependent system pro-
vides better recognition results (+6.6%) than the classical HMM system.

1does not mentioned the recognition result
2Evaluation based on character accuracy
3Personal database

61

2 State-of-the-art of handwriting recognition systems

• J.S and G.R [124] have shown that the hybrid HMM/NN system using ”Tied
Posteriori” and ”Tandem” improves respectively 2.8% and 4.6% of the recognition
rate compared to the HMM baseline system.

• A.Graves et al. [43] have shown that by combining Bidirectional RNN and CTC
methods allows an improvement up to 12.7% compared to the baseline HMM
system [88].

According to these comparisons, we can conclude that systems relying on the hybrid
HMM/NN provide better results compared to the systems relying on the baseline HMM.
Unfortunately, in the literature, as far as we know, there is no a fair comparison between
the different types of Neural Networks in the hybrid scheme(HMM/MLP, HMM/TDNN
and HMM/RNN).

Based on the publications in the literature, implicit segmentation methods are fre-
quently used for HWR, while explicit segmentation/recognition methods are widely used
for numeral string recognition. There is no explanation about this observation, but we
can notice two different factors which may influence the analysis: lexicon and number
of classes used in each context.

• For handwritten word/text recognition, a lexicon can be predefined and used as
recognition context. In the case of numeral string recognition, it is impossible to
pre-define any lexicon because the number of possible concatenations of digits is
unlimited, except in some special cases such as date or time recognition.

• The number of classes used for numeral string recognition is limited to 10 classes
(Arabic numeral string for instance). In the case of word/text recognition, the
number of character classes is much higher. In Latin language, the number of
classes can vary between 26 (lowercase only) to 72 classes (lowercase + uppercase
+ some special characters).

2.4 Conclusion

There are two main approaches used for handwriting recognition systems: global ap-
proaches and analytical approaches. When using global approaches, the segmentation
step is not required. This kind of systems can be implemented easily. However, this
kind of systems can be applied only for fixed and small lexicons. Furthermore, these
approaches cannot be applied for numeral string recognition because of the fact that
concatenation of digits is unlimited. Except in some cases, for instance the date-time
recognition problem, since the digit strings to be recognized can be pre-defined. On the
other hand, systems using analytical approaches are convenient for large and flexible
lexicon. Therefore, these approaches are very commonly used. A segmentation method
is however required. In the literature, we classify them into two categories: implicit
segmentation and explicit segmentation. The combination of the implicit segmentation

62

2 State-of-the-art of handwriting recognition systems

method and HMM model is very frequently used, partly due to its success in speech
recognition systems.

Explicit segmentation methods are classified into two sub-categories: pure-explicit
segmentation and segmentation/recognition method. By using the pure explicit seg-
mentation method, if there is any error occurring during the segmentation step, in most
cases, the systems are not able to recognize the input data correctly. On the contrary,
when using segmentation/recognition methods, the error(s) occurring during segmenta-
tion may be solved by the recognition system.

Comparison between implicit segmentation and explicit segmentation/recognition based
systems is a major question in the research domain. Fair comparison based on exper-
imental results is almost impossible. Due to the different architectures of these two
methods, features and/or training data used may also be different.

Table 2.2 shows a comparison of the advantages and drawbacks of implicit segmenta-
tion and explicit segmentation/recognition-based systems. We notice that each system
has its own architecture and may have its own advantages and drawbacks. This table
describes the comparison on a global view of these approaches. Discussions on each
specify system can be found in section 2.3.

Table 2.2: Comparing of advantages and drawbacks between implicit segmentation and
explicit segmentation/recognition-based systems.

System Advantages and Drawbacks
HMM-based
systems
(implicit)

Advantages:
• Do not require complex segmentation method. The sliding
windows method is generally used.

• HMM is a very powerful model for modeling temporal infor-
mation.

Continued on next page

63

2 State-of-the-art of handwriting recognition systems

Table 2.2 – continued from previous page
System Advantages and Drawbacks

Drawbacks:

• Parameters of sliding window have to be pre-defined manu-
ally, heuristically or by using a validation set.

• (*) The number of Gaussians in the mixture has to be fixed
with a validation set.

• These systems strongly depend on normalization methods,
especially, in the case of on-line data where delayed strokes
generate additional problems as, explained in section 2.2.1.

• (**) HMM is a generative model that is less effective com-
pared to discriminative models [43]

• Features are extracted from each sliding window. Therefore,
only local features can be used. These systems cannot take
the advantages of global features at the character level.

• Handwritten words of a lexicon (Ltraining) are used to train
character models, in general, without annotation of character
boundaries. Hence, it is a blind-training strategy in the sense
that the exact shapes of the characters are not known. In
addition, these character models may be over-fitted to the
words that belong to the lexicon Ltraining. In order to get
a standard character model which can be used to recognize
any given handwritten words, a very large training database
is required.

HMM/NN-
based systems
(implicit)

Advantages:

• Has the same advantage as HMM-based system.

• Allows using a discriminative classifier at state and/or char-
acter level. Therefore, the system is discriminately trained.

Continued on next page

64

2 State-of-the-art of handwriting recognition systems

Table 2.2 – continued from previous page
System Advantages and Drawbacks

Drawbacks:

• Shares the same drawbacks as classical the HMM-based sys-
tems, except points (*) and (**).

• The parameters of Neural Networks have to be fixed. In gen-
eral, they require a large training dataset to obtain an effective
system.

Explicit
segmentation/
recognition-
based
systems

Advantages:

• A simple segmentation method can be used to over-segment
the input data into graphemes. Then, a recognition system is
used to recognize the sequence of characters and at the same
time to solve the over-segmentation issues.

• Does not require a huge training dataset. Only a dataset
of single characters extracted from handwritten words is re-
quired.

• Any discriminative classifier can be used to create a SCR.

Drawbacks:

• The SCR must be able to reject invalid graphemes as un-
known.

• The system complexity can be high, as in the worst case all
paths of lattice have to be explored.

65

Contents
3.1 Global view of the proposed sys-

tem 69

3.2 Normalization and pre-processing 71

3.3 Segmentation, lattice creation
and delayed stroke management 79

3.4 Feature extraction 85

3.5 Single character analysis 100

3.6 Bi-character analysis 110

3.7 Word decoding process 117

3.8 Conclusion 132

This chapter is dedicated to the presentation of the proposed system.
The global view of our system is introduced. Each section of this
chapter presents the method(s) by explaining in details the choices
made at each step when conceiving the system. The conclusion of
this chapter summarizes the contributions of this system compared to
existing systems in the literature.

3 Handwritten words recognition
system based on two levels analysis:
character and bi-characters level

67

3 Handwritten words recognition system based on two levels analysis

Considering our research objectives mentioned in section 1.5, our work consists in cre-
ating an on-line HWR. This HWR must be applied in a context respecting the following
features:

• Omni writer

• Large and flexible lexicon

• Capturing devices independence

According to the overview of the existing systems in the literature (see section 2.3),
we can observe that implicit segmentation based on Hidden Markov models (HMM) and
Viterbi recognition are very frequently used for HWR [60, 88, 10]. For these approaches,
input handwritten word is first oversegmented with a sliding window. The segments
are then combined to characters and words during the recognition stage with respect to
the HMM. Attempts towards discriminative on-line HWR often include neural networks
based recognition under the hybrid systems in combination with HMM [33, 43, 65]. As
clearly expressed in Table 2.2, using these kinds of methods (HMM or HMM/NN based)
lead to important difficulties, especially for setting the parameters of NN and/or HMM.

HMM or hybrid HMM/NN were originally used for speech recognition problems and
became popular for handwriting recognition problem. On the contrary, SVM classi-
fier was rarely used for HWR problem, although, it has been widely and successfully
used for a large number of applications such as face detection/verification/recognition
[64], handwritten character recognition, . . . [20]. The experimental results given by some
studies [60, 22, 137] have shown the effectiveness of SVM compared to other classifiers
(including HMM and TDNN models) for handwritten character recognition.

Our strategy is to implement an on-line HWR based on discriminative classifiers.
Our system relies on an explicit segmentation/recognition using SCR and bi-character
models. Some main specifications of our system can be drawn.

• Let us mention that, in the literature, the on-line HWRs generally rely on on-line
local features (extracted from each point of the input signal) and off-line local
features (extracted from each sliding window). The structural/statistical based
features and/or invariant moments based features which are successfully used for
form recognition are not yet used for on-line HWR. Our system relies on the
combination of off-line and on-line features which have been successfully used for
form recognition and off-line ICR [54]. Using these two kinds of features (off-line
and on-line) allows not only to take profit of their complementarity but also to
deal with the problems related to the variation in the writing trajectories (see
section 2.2.3.3).

• In the existing systems in the literature, they generally segment the input signal
into a sequence of observations using a sliding window segmentation method. Each

68

3 Handwritten words recognition system based on two levels analysis

observation is analyzed by using Mixture of Gaussians (in the case of HMM) or
NN (in the case of hybrid HMM/NN) and directly submits the results to a word
decoding process. In our system, we proposed to use two levels of analysis: char-
acter and bi-character levels. The analysis at the character level allows finding the
possible character candidates, while the analysis at the bi-character level allows
taking into account the graphical context of the neighboring characters to put into
questions the results given by the character level analysis.

• In the literature, NN is usually used to create HWRs, usually in form of hybrid
system with HMM. In our system, motivated by the performance of the SVM,
we proposed to use this classifier to create the SCR to be used at the character
analysis level.

• In the case of on-line signal, systems need to face the problem related to delayed
strokes (see section 2.2.1). In the literature, some authors try to detect the delayed
strokes in the input signal and remove them during the pre-processing stage. As
a consequence, some important information is lost. In order to deal with the
problems related to delayed strokes, we propose a delayed stroke management
method which integrates the delayed strokes in the recognition process, what allows
the system to consider all the information of handwriting.

The overall presentation of the proposed sysem is given in the following sections.

3.1 Global view of the proposed system

Our research focuses on on-line handwritten word recognition. We consider that the
input of the system is the on-line signal of an isolated handwritten word. Therefore,
the segmentation of text-line into isolated words is not required. The global view of the
proposed system is given in Figure 3.1. First, the input handwritten word is normal-
ized and segmented into a set of graphemes. These segmented graphemes are used to
create a lattice of L levels (see section 3.3), where each node (defined as a grapheme or
a concatenation of graphemes) is considered as a potential character, and each pair of
neighboring nodes is considered as a potential bi-character to be analyzed respectively
at the single character and bi-characters levels.

At the character level, a SCR (see section 3.5) is used to emit a list of recognition
hypotheses for each node of the lattice (see section 3.3) using a feature vector resulting
from the combination of on-line features and artificially generated off-line image based
features (from the on-line signal) (see section 3.4). Each node may correspond to any
character in the alphabet, or to an unknown pattern (i.e. an intermediate information
that does not correspond to a character). To deal with this problem, rejection methods
are also used (see section 3.5.3).

69

3 Handwritten words recognition system based on two levels analysis

������������������

���������������������
��������������������

������������������ ����������������������

���� �����������

�������������������

�����������������
��������������

Figure 3.1: Global view of the proposed system.

At the bi-character level, we use bi-characters models so as to validate or invalidate
the hypotheses emitted at the single character level, by taking into account two neigh-
boring potential characters (see section 3.6). These bi-character models allow taking
into account the graphical context of their surrounding characters, which is very impor-
tant especially for unconstrained handwriting. Our bi-character models are able to solve
different problems:

• Shared character part problem: this kind of problems (see section 1.3.4) occurs
when a given character has a visual appearance very similar to parts of other
characters. For instance, a character ‘o‘ may look like the loop in the character
‘d‘.

• Unknown pattern: this problem refers to the fact that some nodes of the lattice
do not corresponds to any character class considered in the system.

• Similarity between characters: in some cases, the visual appearance of some char-
acter classes may be very similar to the visual appearance of some other character
classes, especially, when they are recognized individually without taking into ac-
count the graphical context of their surrounding characters (see section 1.3.3).

70

3 Handwritten words recognition system based on two levels analysis

In the last stage of our system, all these sources of information (i.e. the results given
by the SCR and the bi-characters models) are used in the word decoding process, in
order to find the most likely words (see section. 3.7).

3.2 Normalization and pre-processing

On-line signal variations and noise may be due to different factors, such as the character-
istic of the capturing device, writing speed, writing context . . . These variations have a
great impact on the performance of the system, as explained in section 2.2.1. Therefore,
pre-processing and normalization methods are required, in order to remove the noise
and standardize the input signal. Normalization and pre-processing are carried out at
two levels: word and character levels.

3.2.1 Normalization and pre-processing at the word level

Four standard types of pre-processing methods are applied, as illustrated in Figure 3.2:
size normalizing, interpolating missing points, smoothing and re-sampling. Moreover, a
delayed stroke management method is also proposed, in order to handle the problems
caused by this kind of strokes (see section 2.2.1). Since the delayed stroke management
method is considered during grapheme segmentation and lattice construction, it will be
presented in sections 3.3.1 and 3.3.4.

���� �����������

��������������

�����������

���������

�����������������

����������
���� ������

Figure 3.2: Normalization and pre-processing at the word level.

3.2.1.1 Size normalizing

Even with a single writer, one same word may be written in different contexts. The sizes
of the handwritten words resulting of these different writing contexts could be different.
Furthermore, if they are written using different capturing devices that have different

71

3 Handwritten words recognition system based on two levels analysis

capturing resolutions, the size of the handwritten words could also vary. Hence, the
input signal has to be scaled to a standard size, to ensure that the writings of the same
word and character class have approximately the same size.

Before applying any scaling method, the original size of the input word has to be
estimated. We have to mention that, in the Latin alphabet, lowercase characters can be
classified into four groups according to their position in the writing zone, as illustrated
in Figure 3.3. The first group corresponds to the smallest characters (’a’, ’c’, ’e’, ’i’, ’m’,
’n’, ’o’, ’r’, ’s’, ’u’, ’v’, ’w’, ’x’) which are written only in the middle zone. The second
group contains the characters (’b’, ’d’, ’h’, ’k’, ’l’, ’t’) which are written in the middle
and upper zones. The third group contains the characters (’g’, ’j’, ’p’, ’q’, ’y’) which are
written in the middle and lower zones. Finally, the character ’f’ is written in the three
zones and is classified into the fourth group. The character ’z’ is a special one, it can be
classified into the first group or the third group depending on the handwriting style.

aceibdhgjpq�����������

����� ����

����������

���������

�����������

����������

����������

Figure 3.3: An example of the writing positions of different characters.

A word may be composed of characters belonging to one or multiple groups. There-
fore, estimating and applying size normalizing based on the global word-height (distance
between upper-line and lower-line) may provide non-uniform results between words. For
instance, if the writing of the words ”apple” and ”access” are normalized to the same
size based on their global word-heights, the size of the character ‘a‘ in the word ”apple”
will be smaller (∼ 3 times) than the size of the character ‘a‘ in the word ”access”. As
a consequence, the variation of these two characters could be very important. For this
reason, size normalizing generally relies on the corpus-height of the word which provides
the height of the dense zone (i.e. middle zone). As illustrated in Figure 3.4, the corpus-
height is the distance between the base-line (b) and the corpus-line (c) of the signal.

In some case, these lines (base-line and corpus-line) have to be precisely detected since
they will be used as reference for geometrical feature extraction. If these lines are incor-
rectly detected, unstable features may be generated. In such a context, a method that
provides a precise detection such as the Expectation-Maximization algorithm introduced
in [7] could be used for instance.

In our case, we only want to estimate the approximate corpus-height of the input
handwritten word in order to standardize the size of word signals. Complex method
such as Expectation-Maximization algorithm is not necessary because: 1) complexity
of the algorithm could be high, 2) it is difficult to set its parameters and 3) this algo-

72

3 Handwritten words recognition system based on two levels analysis

���������

�����������

������������� ����������� ����

������� ������ ���

������� ������ ���

����������������������

����������� ����

����������

����������

Figure 3.4: An example of corpus-height estimation.

rithm provides the curves of the base-line and the corpus-line that cannot be used to
estimated corpus-height directly. To estimate the approximate corpus-height, only the
straight lines representing the base-line and the corpus-line are required. For all these
reasons, in our system, we propose a simple base-line and corpus-line detection which
relies on the average of a set of |MP | local maximum points and the average of a set of
|mp| local minimum points on the y axis, as explained hereafter.

Base-line and corpus-line detection: this method is carried out in three steps.
During the first step, the word height and middle line are roughly estimated using local
maximum points (MP) and local minimum points (mp) on the y axis. At this level, we
only need a coarse estimation of these two values (word height and middle line), as it
is exhaustively used for removing aberrant local maximum points and local minimum
points (outlier points) in a second step. During the third step, in our approach, the
baseline and corpus-line are estimated more precisely using only non outlier points.
These 3 steps are detailed below:

Step 1: Roughly estimating word-height (WH) and middle-line (ML)

• WH = max
|MP |
i=1 MPi(y) − min

|mp|
j=1 mpj(y)

• ML = Lmax + Lmin

2
,

where Lmax = 1
|MP |

�|MP |
i=1 MPi(y) and Lmin = 1

|mp|
�|mp|

j=1 mpj(y)

Step 2: Detecting and removing outlier points

Some points among the local maximum points (MPi) and the local minimum
points (mpj) could be outlier points, which could introduce some bias when
estimating the corpus-line and the base-line. Hence, they have to be detected
and removed using the conditions below:

73

3 Handwritten words recognition system based on two levels analysis

A given point Pi ∈ {MP ∪mp} is considered as an outlier point if
one of these three conditions is validated:

• If the distance between Pi and the middle line ML on the y
axis is higher than WH

3

• If Pi is a local maximum point located under the middle-line
ML

• If Pi is a local minimum point located above the middle-line
ML

Step 3: Detecting the base-line (b) and corpus-line (c)

The remaining (non-outlier) local maximum points (MP ∗
i) and local mini-

mum points (mp∗j) are used to compute the coordinates on the y axis of the
corpus-line c and the base-line b. These y−coordinates are denoted as:
• c = 1

|MP ∗|
�|MP ∗|

i=1 MP ∗
i (y)

• b = 1
|mp∗|

�|mp∗|
j=1 mp∗j(y)

Estimating the scale factor: once the base-line and the corpus-line are detected,
the corpus-height (hcorpus) can be estimated as: hcorpus = c − b. Then, a scale factor
(δword) is used to scale the input signal to the objective corpus-height Δword. It is
computed as follows:

δword =
Δword

hcorpus

3.2.1.2 Interpolating

In the input signal, some points may be missing for different reasons: failure of the
capturing device when capturing the sequence of points, writing speed. . . For instance,
in the context of time sampled signal such as Figure 3.5(a), the character ‘t‘ has been
written with a higher speed than the other characters (such as ’a’ for instance). In that
case, the density of points stored by the capturing device is lower and some points may
be missing.

Our interpolating step consists in adding new points (one or more points depend-
ing on the resampling objective and the initial resolution) between two consecutive
points Pi and Pi+1 of the input handwritten word. The new point(s) P �(x, y) to be
added after a current point Pi(x, y) is computed by using the Cubic Bezier curve
method [65]. This method relies on the current point Pi(x, y) and its three follow-
ing points P(i+1)(x, y), P(i+2)(x, y), P(i+3)(x, y) in the signal sequence. P �(x, y) can be
defined as:

74

3 Handwritten words recognition system based on two levels analysis

P �(x) = (1− t)3Pi(x) + 3(1− t)2tPi+1(x) + 3(1− t)t2Pi+2(x) + t3Pi+3(x)

P �(y) = (1− t)3Pi(y) + 3(1− t)2tPi+1(y) + 3(1− t)t2Pi+2(y) + t3Pi+3(y)

Where t ∈ [0, 1]. If the capturing resolution is low, several points should be added
between two consecutive points in the input word. In this case, different value of t can
be chosen. In [65], this step has a minor impact on the recognition rate. It can be
explained by the fact that the capturing device used in that system is good enough to
store almost all the points of the writing trajectory. Furthermore, another explanation
can be linked to the fact only one type of capturing device is used for creating training
and test datasets.

In our research context, the interpolation step is somewhat important. Indeed, dif-
ferent databases (see section 4.1) are used in our work. Writings in these databases
have been captured by using different capturing devices, the resolution of which could
be very different. In addition, this research work is a part of the RecoNomad1 project.
Therefore, this HWR can be used with different capturing devices. Their capturing
resolutions and capturing methods can be different from the capturing resolutions and
methods of those used for creating the training databases.

An example of the results obtained by applying this interpolating method is illustrated
in Figure 3.5(b).

(a) Original signal (b) Interpolated signal

(c) Smoothed signal (d) Re-sampled signal

Figure 3.5: Normalization and pre-processing at the word level.

1http://l3i.univ-larochelle.fr/Reco-Nomad.html

75

3 Handwritten words recognition system based on two levels analysis

3.2.1.3 Smoothing

Smoothing consists in correcting outlier points of the on-line signal. Such points may
be caused by imprecision due to the capturing device, writer’s shaking hand, . . . These
points can be visually spotted in the interpolated signal, as illustrated in Figure 3.5(b).

In order to remove the outlier points, we correct every point Pi in the signal. The
corrected version P �

i of the point Pi is the average of its k previous and k following
points (Pi−k, . . . , Pi+k) taking into account the angle α [65] which is composed by the

three points Pi−k, Pi, Pi+k (α = �Pi−kPiPi+k). The more the angle α is small, the more
the point Pi is likely to be an outlier point. Therefore, if the angle α is small, the mod-
ification of the point Pi has to be important. Otherwise, the modification of the point
Pi is minor. The two coordinates P

�
i (x) and P

�
i (y) are computed as:

P �
i (x) =

Pi−k(x)+...+αPi(x)+...+Pi+k(x)

2∗k+α

P �
i (y) =

Pi−k(y)+...+αPi(y)+...+Pi+k(y)

2∗k+α

Where k is an integer value to be fixed. In many systems in the literature, k is as-
signed to 2 (k = 2). In our system, we use the same value (k = 2).

An example of a result obtained by applying this smoothing method is illustrated in
Figure 3.5(c).

3.2.1.4 Re-sampling

As explained in the previous sections, the densities of points in the writings are not ho-
mogeneous because of different factors: writer, capturing resolution, capturing method,
etc. Using the size normalizing, interpolating and smoothing methods allow respectively
to standardize the size of the input signal, adding missing points and correcting outlier
points. However, in general, the distances between two consecutive points are differ-
ent after computing these steps. In some application such as writer identification, this
variation can be a positive additional information to characterize the writing style of
each writer. But, for handwritten word recognition problem, this variation may have a
negative impact on the system because writings of one character class or word can be
very different, especially when they are provided by different writers. Therefore, in this
context, a spatial re-sampling method is required.

The spatial re-sampling consists in standardizing the input signal to a new signal where
the distance between every two consecutive points is equal to a given objective distance
Δpoint. The number Np of points in the new signal can be estimated by Np = (LS

Δpoint
),

76

3 Handwritten words recognition system based on two levels analysis

where LS is the length of the input signal. The re-sampling algorithm is presented in
Algorithm 1.

Algorithm 1 Re-sampling method

• input: Interpolated and smoothed signal S (i.e. sequence of points Pi), Objective
distance Δpoint, Number of points in the new signal Np

• output: New signal S
�
(i.e. sequence of points P

�
n) with equal distance Δpoint

between two consecutive points

• Initialization: p1← P1, p2← P2, i← 2, n← 1, dtmp ← 0

• add p1 to S �
: P

�
1 ← p1

• while n <= Np do

– Calculate the distance d between p1 and p2

∗ if (dtmp < Δpoint) do
· dtmp ← dtmp + d
· move the points p1 and p2: p1← p2, p2← Pi+1, i← i+ 1

∗ else if (dtmp + d = Δpoint) do
· add p2 to S �: P

�
(n+1) ← p2

· n← n+ 1
· dtmp ← 0
· p1← p2, p2← Pi+1, i← i+ 1

∗ else
· compute coordinates (x, y) of a new point P �

(n+1)

P
�
(n+1)(x)← p1(x) + (p2(x)− p1(x))

Δpoint−dtmp

d
,

P
�
(n+1)(y)← p1(y) + (p2(y)− p1(y))

Δpoint−dtmp

d

· p1← P
�
(n+1)

· n← n+ 1, dtmp ← 0

3.2.2 Normalization and pre-processing at the character level

As mentioned earlier in section 3.1, our system relies on a SCR. This module is super-
visedly trained using a training database of single characters. Hence, normalization and
pre-processing at the character level are also required in order to normalize the single
characters in the training database. The normalization and pre-processing methods at
the character level have to ensure that the characters in the training database and the
characters which will be segmented from handwritten words to be recognized are nor-
malized in the same way.

The normalization and pre-processing method used at the character level is very sim-

77

3 Handwritten words recognition system based on two levels analysis

ilar to the one used at the word level (presented in the previous section). The main
difference is the size normalizing. Indeed, each word is composed by the concatena-
tion of different characters. As explained in the previous section, the size of each word
has to be normalized based to the corpus-height to make sure that the same character
class written in different words has approximately the same size. In the case of isolated
characters in the training database, on the other hand, the ground-truth is known in
advance. Therefore, the size of each character class can be explicitly settled, as explained
hereafter.

Let us remind here that the size of the input word is normalized on the basis on the
corpus-height (see section 3.2.1.1 and Figure 3.4). As a consequence, the size of the
characters that belong to the group 1 (a, c, e, . . .) approximately equals the size of the
corpus-height (Δword). The size of the characters that belong to the groups 2 and 3
(b, d, . . . , p, q, . . .) approximately equals 2 ∗ Δword and the group 4 (f) approximately
equals 3 ∗Δword.

Before applying any normalization and pre-processing on each character in the training
database, its size has to be normalized by a scale factor δchar according to their group.
This scale factor is denoted as:

• δchar(group 1) =
Δword

hchar

• δchar(group 2) = δchar(group 3) =
2∗Δword

hchar

• δchar(group 4) =
3∗Δword

hchar

where hchar is the height of the character (distance between the global maximum and
minimum points on the y axis).

Once the size of the characters is normalized, other pre-processing methods (interpo-
lation, smoothing and re-sampling) can be applied in the same way as at the word level
(see section 3.2.1).

During word recognition, each node in the lattice does not require any normalization
or pre-processing since the word normalization and pre-processing at word level (see
section 3.2.1) make sure that the character in the handwritten words to be recognized
are normalized roughly in the same way as the characters in the training database.
Anyway, we need to use a SCR which is relatively robust towards scale variations.

3.2.3 Conclusion

This section introduces the normalization and pre-processing methods at the word and
character levels.

78

3 Handwritten words recognition system based on two levels analysis

Pre-processings at the word level are applied to the input words to recognize. They re-
move noise and standardize the input signal. After this normalization and pre-processing,
different writings of the same word have approximately the same size, with regular dis-
tance between two consecutive points. Hence, the variation in the input signal is reduced
and the performance of the system can be ameliorated. Normalization and pre-processing
at the character level, on the other hand, allow normalizing characters in the training
database of the SCR.

During the recognition stage, the handwritten word signal is submitted to the word
normalization and pre-processing steps. Once the input signal is normalized, it will be
then submitted to the segmentation and lattice creation step which are introduced in
the next section.

3.3 Segmentation, lattice creation and delayed stroke
management

This section introduces a segmentation method, lattice creation and delayed stroke man-
agement. These three methods are applied as illustrated in Figure 3.6. Given a normal-
ized word signal (after pre-processing, see section 3.2), delayed strokes are first detected
(see section 3.3.1). An indicator is assigned to each stroke, to indicate its type: ’main
stroke’ or ’delayed stroke’. This handwritten word is then over-segmented into a set
of graphemes using the explicit segmentation method presented in section 3.3.2. The
graphemes that belong to delayed strokes (i.e. delayed graphemes) are temporarily re-
moved. The remaining graphemes (i.e. belonging to main strokes) are used to create a
lattice of L levels (see section 3.3.3). Delayed strokes are then integrated in the lattice
using the delayed strokes re-localization method presented in section 3.3.4.

������������
���������������

���������

��������
��������

���������������
�����������

��������������
����������

Figure 3.6: Sequential process for segmentation, lattice creation and delayed stroke man-
agement.

79

3 Handwritten words recognition system based on two levels analysis

3.3.1 Delayed stroke detection

The term ”Delayed stroke” refers to the strokes that are added after a certain delay. For
instance, the dot of the characters ‘i‘ and ‘j‘ and the bar of the character ‘t‘ correspond
to some delayed strokes. In some languages, accents can be added to some characters
(for instance, in French, the accents {´, `, ˆ, ¨, . . . }). Those accents constitute delayed
strokes as well.

Figure 3.7 shows an example of delayed strokes. This handwritten word contains three
strokes: one main stroke and two delayed strokes, which are respectively the dot of the
character ‘i‘ and the bar of the character ‘t‘. The impact of this kind of strokes the
system was presented earlier (in section 2.2.1).

Figure 3.7: An example of two delayed strokes. This word is composed of three strokes:
1 main stroke and 2 delayed strokes (the bar of character ‘t‘ and the dot of
character ‘i‘).

We define a method for detecting the delayed strokes relying on their acquisition time
and their spatial positions on the x axis. Let us consider that the input signal contains
T strokes (S = {S1, S2, . . . , ST}). The stroke St ∈ S is considered as a delayed stroke
if it is overlapping on the x axis with any stroke Si or located on the left of any stroke
Si, where i ∈ {1, 2 . . . , (t− 1)} (when the direction of the language writing is from left
to right). Our delayed stroke detection method is presented in Algorithm 2.

Algorithm 2 Delayed stroke detection method.

• input: vectors of minimum values min x and maximum values Max x (on the x
axis), for every stroke in the stork set S

• output: Indicator of the stroke St: indicator (St)

• for t← 2 to T

– indicator (St) ← ’main stroke’

– for i← 1 to (t− 1)
– if min xt < Max xi then

∗ indicator(St) ← ’delayed stroke’

80

3 Handwritten words recognition system based on two levels analysis

3.3.2 Segmentation

This step aims at segmenting the input signal into a set of graphemes. Most on-line hand-
writing recognition systems rely on implicit segmentation methods. Therefore, very few
explicit segmentation methods were presented in the literature.

In the case of off-line data, segmentation methods generally rely on local extrema
points of word contours [79]. These points are considered as Potential Segmentation
Points (PSP), where the connected component between two consecutive PSPs is consid-
ered as a grapheme to be segmented. The advantages of this method are its simplicity
and stability.

E. Anquetil [4] introduced a segmentation method to segment on-line handwriting
into a set of graphemes. In this method, the authors consider re-drawing points, angular
points and loop points (see Figure 3.8), as potential segmentation points.

(a) (b) (c)

Figure 3.8: Example of segmentation points respectively: re-drawing point, angular
point and loop point, extracted from [4].

Ahmad et al. [3] presented an explicit segmentation method using a basic assumption.
The main idea of this method is very similar to the local extreme points of word contours
used for off-line data, introduced above. In this method, the potential segmentation
points are local extreme points on the y axis, as illustrated in Figure 3.9.

Figure 3.9: Example of graphemes segmented using the segmentation method presented
in [3]. Each grapheme is a set of consecutive points displayed in one color.

81

3 Handwritten words recognition system based on two levels analysis

In both methods (introduced by E. Anquetil [4] and Ahmad et al. [3]), the sequence
of points located between two consecutive PSPs is considered as one grapheme. In the
method introduced by E. Anquetil [4], the PSPs are precisely detected. Each point
has to be assigned to its group (re-drawing point, angular point, etc.) since it plays a
very important role in character recognition, which relies on fuzzy logic. Some of these
potential segmentation points are not necessary in our system. For instance, the loop
point is, generally, used to detect the loop primitive in writing and it does not represent
a potential segmentation point between characters. In addition, the re-drawing points
and angular points can be considered as a local extremum points on the y axis defined
by Ahmad et al. [3]. For these reasons and for its simplicity and effectiveness, we used
the method presented by Ahmad et al. [3] in our system.

Although the method presented by Ahmad et al. [3] is adapted to on-line data, it still
has some difficulties handling the characters {‘b‘, ‘d‘, ‘f ‘, ‘g‘, ‘h‘, ‘j‘, ‘k‘, ‘l‘, ‘p‘, ‘q‘, ‘t‘, ‘y‘, ‘z‘}.
Indeed, these characters are located in at least two writing zones: upper-middle, middle-
lower, and/or upper-middle-lower zone. Using this method, another problem occurs
when some graphemes contain parts of two neighboring characters, as illustrated in Fig-
ure 3.10(a) where the red grapheme contains a part of the character ‘g‘ and a part of
the character ‘u‘.

To handle this problem, we introduce a post-processing method to split the very high
graphemes. First, the height hg of each grapheme is computed by calculating the differ-
ence between its local extrema on the y axis. If hg ≥ α ∗ hcorpus, then this grapheme
is split into two equal parts, as illustrated in Figure 3.10(b), where α ∈ [1, 2] is a
fixed value. Of course, this method can over-segment the graphemes of high characters
(for instance {b, d, p, q, . . . }) in the word, but it is not a problem since combinations of
graphemes will be considered in the lattice (see section 3.3.3).

(a) Segmentation error (b) Correction

Figure 3.10: a) An example of segmentation error (red grapheme) that occurs when
using the method presented in [3]. b) Error correction by applying our
post-processing method.

Graphemes that belong to the delayed strokes (see section 3.3.1), are temporarily
removed. We will call them delayed graphemes. The remaining graphemes, belonging to

82

3 Handwritten words recognition system based on two levels analysis

the main strokes (i.e. main graphemes), are further used to create a lattice of L levels,
as introduced in the following section.

3.3.3 Lattice creation

The main graphemes are grouped in L levels, where L is the maximum number of
graphemes used to compose one character, as illustrated in Figure 3.11(c). Because the
lattice is created only for the handwritten word to recognize, we obviously do not have
any ground-truth, so we consider a fixed value for the maximum number of graphemes
L. This parameter is estimated by using the single character training database (see
section 4.1.4).

(a) Normalized signal

� � � � � � �

(b) Segmented graphemes

� � � � � � �

�� �� �� �� �� ��

��� ��� ��� ��� ���

���� ����
���� ����

����� �

����� �

����� �

����� �

(c) Groups of graphemes

Figure 3.11: a) The normalized signal of word ’au’, b) the segmented graphemes, c) the
groups of graphemes at 4 levels (L = 4).

These groups of graphemes are organized into a lattice of L levels. This lattice il-
lustrates all the possible connections between the different groups of graphemes and
is further used in the word decoding process (see section 3.7). This lattice is con-
structed as follows. Suppose that the input signal contains T segmented graphemes
(G = {g1, g2, . . . , gT}). At level 1, each node contains only one grapheme. Hence, we
obtain a list of all segmented graphemes (G1 = G = {g1, g2, . . . , gT}). At level 2, each
group of graphemes contains two neighboring graphemes (G2 = {g12, g23, . . . , g(T−1)T}),

83

3 Handwritten words recognition system based on two levels analysis

and so on.

Figure. 3.12(a) illustrates an example of the lattice constructed from the groups of
graphemes presented in Figure 3.11. The complete lattice cannot be drawn here since it
is large and complex to be observed visually. The numbers in each node correspond to the
indexes of the starting and ending graphemes. For instance, the node o(1,3) corresponds
to the group 123 (i.e. g123) at level 3. From this lattice, the connections can be clearly
seen. For instance, nodes {o(1,1), o(1,2), o(1,3)} (see Figure 3.12(b)) are connected to the
starting node of the lattice. Node o(1,1) connects to nodes {o(2,2), o(2,3), o(2,4)}, and so on.

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

� �

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

���
�

�����

���

(a) Extract of the lattice of segmented graphemes

�

������

������

������

(b) forward connections of the
starting node

������

������

������

������

(c) forward connections of the
node o(1,1)

������

������

������

������

(d) forward connections of the
node o(1,2)

Figure 3.12: An example of the lattice created from the groups of graphemes illustrated
in Figure 3.11

3.3.4 Delayed stroke re-localizing

As mentioned earlier in section 3.3.2, graphemes that belong to delayed strokes (i.e. de-
layed graphemes) are temporarily removed. Delayed stroke re-localizing aims at adding
these delayed graphemes to their corresponding nodes in the lattice and is performed
straight after the lattice creation.

84

3 Handwritten words recognition system based on two levels analysis

Supposing that the input signal containsD delayed graphemes (Gd = {gd1, gd1, . . . , gdD})
and P groups of graphemes (i.e. nodes), GG = {gg1, gg2, . . . , ggP}). The delayed
grapheme gdd ∈ Gd belongs to a group of graphemes ggp ∈ GG if gdd and ggp are
overlapping on the x axis. If this condition is valid then, delayed stroke re-localizing
consists in adding gdd to ggp (ggp = ggp ∪ gdd).

3.3.5 Conclusion

This section introduces a segmentation method that over-segments the normalized in-
put signal into a sequence of graphemes. Then, a lattice of L levels of these segmented
graphemes is created. Furthermore, in order to solve the problems caused by the delayed
strokes (see section 2.2.1), a delayed stroke management method is also presented. This
method detects the delayed strokes and assigns them to the corresponding node in the
lattice.

Each node in the lattice is further considered as a candidate character in the next
process which will be presented in the following sections of this chapter. A set of features
is therefore extracted from each node (see section 3.4) to feed a SCR (see section 3.5).
Then, each pair of neighboring nodes in the lattice is submitted to the bi-character
models (see section 3.6) in order to validate or invalidate the output of the SCR, taking
into account the context of neighboring potential characters.

3.4 Feature extraction

This section introduces the features we use for our SCR and for our bi-character models.
These features are extracted from the group of graphemes in each node, and from each
pair of neighboring nodes of the lattice (see section 3.3.3), as illustrated in Figure 3.13.
The features extracted from each node will be used to feed the SCR (see section 3.5)
and the features extracted from each pair of neighboring nodes will be used to feed the
bi-character models (see section 3.6).

As mentioned in [140], in the field of pattern recognition, choosing a feature extrac-
tion method is a very important step. Each feature is designed to represent a specific
information. Comparing, choosing, selecting the most relevant features is still an open
problem. Usually, experimental evaluations are needed in order to compare their perfor-
mance for each specific objective. Nonetheless, in the context of handwriting recognition,
researchers agree on the idea that a single feature extraction method is insufficient to
represent all the possible variations in the handwriting [54]. According to the experi-
mental results in [23, 139], combining different feature extraction methods improves the
effectiveness of handwriting recognition systems. In addition, in the case of on-line data,
both on-line and off-line features can be extracted (see section 2.2.3). Each category of
features (on-line/off-line) has its own advantages and drawbacks. Therefore, in our sys-
tem, we propose to use both categories of features (on-line and off-line) in order to take

85

3 Handwritten words recognition system based on two levels analysis

������ ������ ������ ������ ������ ������ ������� �

������

������

������

������

���

������

������

���������

�
�
��

�
���

�

������������������

������ �� �����

������������������

�����������������������
�������� �����������������

������������������������
������� �� ������

�������������������������
���������������

�
�
��

�
���

�

Figure 3.13: Extraction of a set of features from each node and each pair of neighboring
nodes.

advantage of their complementarity. In each of these 2 categories, different extraction
methods are used. The obtained feature vectors are concatenated to obtain a single fea-
ture vector (see Figure 3.14). These features will be detailed in sections 3.4.1 and 3.4.2.

In order to reduce the computational complexity, a feature selection process (see sec-
tion 3.4.3) will be performed in order to select a sub-set of the features to be used as an
input of our SCR and bi-character models.

We have to mention here that feature extraction is not among the contributions of
this thesis. We only studied different features in the literature and selected the ones
that we thought being the most adapted to our context.

3.4.1 Off-line features

In our system, off-line features are computed from the reconstructed binary image, which
is obtained by connecting the consecutive points of the on-line signal and applying di-
latation on the resulting skeleton (see section 1.1).

The features set presented in [54] provides high recognition rates in the context of
off-line ICR. Therefore, these features will be used in our system. They consist in 3 fam-

86

3 Handwritten words recognition system based on two levels analysis

���������� �����
����������

������� ������
������ �������

�������� ������
����������� ������

�������� �������
����������

������� �������
����������

�
�

�
�

���
�

��

�
����

�
����

���
�

�

Figure 3.14: Combining off-line and on-line features.

ilies of global features (Hu invariant moments, projection, profile) and 4 families of local
features (intersection with straight lines, local extrema, points/junctions and holes and
concave arc). These features will be introduced from the sub-sections 3.4.1.1 to 3.4.1.6.
In addition to these features, we add the zoning density features which allow computing
the distribution of black pixels in the shape (see sub-section 3.4.1.7).

In the context of handwriting, characters are more or less rotated due to the variation
problem. Features which are invariant to rotation are therefore generally required, in
addition to non rotation invariant features. Indeed, if we used rotation invariant features,
the SCR could make confusions between ‘p‘ and ‘q‘ for instance. However, this problem
might be solved at the bi-character level. Many invariant descriptor have been proposed
in the literature, in order to tackle this rotation invariant question. In [54], only Hu
invariant moments is used. However, in the literature, Zernike and Radon moments are
often considered as very good descriptors to represent precisely the input image. Some
experimental results presented in [72] for sign language recognition system, show a slight
superiority of Zernike moments compared to Hu moments. In our context, we decided
to use several set of such invariant moments: Hu moment, Zernike moment and Radon
moments, considering that feature selection will keep only most useful for our problem.

3.4.1.1 Hu moments

The Hu invariant moments were presented by M.K Hu in [61]. These features are
computed from the global shape of the input image to describe the pixel distribution
around its center of gravity. A vector of Hu moment invariant generally contains a set
of seven moments {φ(1), φ(2), . . . , φ(7)} (of maximum order 3) which are invariant to
translation, scale and also rotation. They are computed as:

• φ(1) = µ20 + µ02

• φ(2) = (µ20 − µ02)
2 + 4µ2

11

87

3 Handwritten words recognition system based on two levels analysis

• φ(3) = (µ30 − 3µ12)
2 + (3µ21 − µ03)

2

• φ(4) = (µ30 + µ12)
2 + (µ21 + µ03)

2

• φ(5) = (µ30 − 3µ12)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ12 + µ03)

2] +
(3µ21 − 3µ03)(µ21 + µ03)[3(µ30 + µ12)

2 − (µ21 + µ03)
2]

• φ(6) = (µ20 − µ02)[(µ30 + µ12)
2 − (µ21 + µ03)2] +

4µ11(µ30 + µ12)(µ21 + µ03)

• φ(7) = (3µ21 − µ03)(µ30 + µ12)[(µ30 + µ12)
2 − 3(µ21 + µ03)

2] −
(µ30 − 3µ12)(µ12 + µ03)[3(µ30 + µ12)

2 − (µ12 + µ03)
2]

where

• xi and yi are respectively the x and y coordinates of the black pixel Pi in the
binary image.

• µpq =
1

[
PI

i=1(xi − x)2 +
PI

i=1(yi − y)2]
(p+q)

2 +1

�I
i=1(x − xi)

p(y − yi)
q

• x = 1
I

�I
i=1 xi, y = 1

I

�I
i=1 yi

• I is the total number of black pixels in the image

3.4.1.2 Projection

Projection features [53] permit to locate the dense regions (i.e. larger strokes) in the
horizontal and vertical directions of a given image based on cumulative histograms (hor-
izontal and vertical).

The cumulative histogram of the vertical projection counts the number of black pixels
in each column of the image cumulatively. For instance, let us call h(1), h(2) and
h(3) the number of black pixels in the first, second and third columns of the input
image. The cumulative histogram can be computed as: c(1) = h(1), c(2) = c(1) + h(2)
and c(3) = c(2) + h(3). The cumulative histogram of the horizontal projection can
be computed in a similar way, but counting the number of black pixels in each row
cumulatively.
For each cumulative histogram, the y axis is divided into equal interval by 10 values

{y1, y2, . . . , y10}. The projection features are the abscisses corresponding these values
in the cumulative histogram ({x1, x2, . . . , x10}) (see Figure 3.15). Close values of xi’s
indicate dense regions in the direction of the projection (horizontal or vertical).

88

3 Handwritten words recognition system based on two levels analysis

Figure 3.15: Projection features presented in [53].

3.4.1.3 Profile

These features describe the smoothness of a character on the left, right, top and bottom
of the image based on its 4 profiles: left, right, top and bottom profiles [53].

A profile of an image refers to the set of first black pixels found while scanning the
image in any direction. For example, the left profile is obtained by scanning the image
from left to right, and row by row. For each row, only the position of the first pixel
encountered when scanning the binary image is kept in the left profile. The top profile
is obtained by scanning the image from top to bottom, and column by column, keeping
only the position of the first black pixel met, for each column. An example is given in
Fig 3.16(a).

(a) Example of profiles (b) Example of first order
derivative of each profile

Figure 3.16: a) Example of four profiles (left, right, top and bottom) presented in [53]
and b) their first order derivative results.

89

3 Handwritten words recognition system based on two levels analysis

For each profile, the first order derivative is computed (see Figure 3.16(b)) in order
to extract the maximum amplitude of each profile. The obtained maximum amplitudes
of the left and right (and respectively top and bottom) profiles are normalized by the
width (and height) of the input image. We obtain 4 features each of which describes the
smoothness of the character on that corresponding side (left, right, top or bottom).

3.4.1.4 Intersection with straight lines

This feature extraction method [54] counts the number and the position of intersections
between character shapes and some selected straight lines. According to their discussions
and experiments, two horizontal straight lines and only one vertical straight line are
sufficient (see Figure 3.17). These two horizontal straight lines are located at 1

3
and 2

3

of the character height. The vertical straight line passes through the center of gravity
of the shape.

(a) Horizontal
line, located at 1

3
of the height

(b) Horizontal
line, located at 2

3
of the height

(c) Vertical line

Figure 3.17: An example of intersections between the character shape and the straight
lines: 2 horizontal lines and 1 vertical line. This example is adapted from
[54].

In the case of the horizontal straight lines, we divide the image into 3 equal columns.
The features are the number of intersections of black pixels with each line, in each
column. We obtain 6 features. In the case of the vertical straight line, we divide the
image into 3 equal rows. And the features are the number of intersections with the
vertical line in each row. We obtain 3 features.

3.4.1.5 Local extrema

This feature extraction method was introduced in [54]. It aims at extracting a set of
features concerning the extremum points at the top, bottom, left and right of a given
image, as illustrated in Figure 3.18. An extremum point at the top (i.e. top extremum)
refers to the black pixel which has no connection with other upper or the same level
black pixel among its 8 neighboring pixels. They can be extracted by reading the image
from top to bottom and by retraining the corresponding black pixels. The bottom, left
and right extrema points can be detected in the same way.

90

3 Handwritten words recognition system based on two levels analysis

To extract the retained features, we divide the input image into 9 = 3 ∗ 3 zones.
For each zone, we count the number of top, bottom, left and right extrema, detected
separately. We obtain in total a vector of 36 features (9 features for each type of
extremum point).

(a) Top (b) Bottom (c) Left (d) Right

Figure 3.18: Examples of local extrema features, extracted from [54].

3.4.1.6 End points and junctions

This feature extraction method [54] aims at extracting the number and the position of
end points, Y-junctions and X-junctions from the skeletonized binary image, as illus-
trated in Figure 3.19.

An end point refers to a black pixel that connects to only one black pixel (in the
skeleton) among its 8 neighbor pixels. Y-junctions are detected by applying a set of
twelve 3 x 3 templates on each black pixel of the skeleton image (representing each Y-
junction possible configuration). In the case of X-junctions, they can be detected using
two different methods. The first method uses a set of two templates (representing each
X-junction possible configuration), applied in the same way as for Y-junction detection.
The second method aims at merging a pair of nearest Y-junctions into a X-junction (see
Figure 3.19(f)).

(a) input image (b) end points (c) Y-junctions

(d) input image (e) end points (f) X-junctions

Figure 3.19: An example of end points, X and Y-junctions (extracted from [54]).

91

3 Handwritten words recognition system based on two levels analysis

3.4.1.7 Zoning density

Zoning density features is a set of ten basic features which contains one global feature
and nine local features. The global feature (F0) is the percentage of black pixels in the
whole image. F0 is denoted by:

F0 =
BP

W ∗H (3.1)

where BP is the number of black pixels of the image, W and H are respectively the
width and the height of the input image.

The input image is then divided into 3 ∗ 3 equal zones. For each zone, the percent-
age of black pixels is also computed. We obtain in total a set of nine local features
{F1, F2, . . . F9}. These features are computed by:

Fi =
BPi
w ∗ h (3.2)

where i ∈ {1, 2, . . . , 9} corresponds to each zone of the image, BPi is the number of
black pixels in the zone i, w and h are respectively the width and height of the zones.

3.4.1.8 Radon transform and R-signature

The Radon transform consists in projecting a given image f(x, y) onto the lines L(t, θ)
taken at different angles θ = θ1, θ2, . . . and −∞ < t <∞, as illustrated in Figure 3.20.

�������

�

�

�

������

Figure 3.20: Definition of the Radon transform.

The Radon transform matrix RA(t, θ) of the input image f(x, y) can be directly used
as a feature set to represent the image f(x, y). However, the Radon transform is not

92

3 Handwritten words recognition system based on two levels analysis

invariant to rotation, translation and scale. In this case, we have to apply some normal-
ization process to make the features to be invariant such as Affine transformation, as
introduced in [123].

Instead of using the Radon transform RA(t, θ) (which can be huge and invariant to
rotation, translation and scale) as raw features, we can also extract different families
of features from this Radon transform such as Histogram of Radon Transform [132] or
the R-signature [130, 133]. In our context, we decided to extract the R-signature family
since this feature family is originally designed for binary image shape recognition.

The R-signature R(θ) can be extracted by summing up the squared of each column
of the Radon transform matrix RA(t, θ), as denoted in the Equation (3.3). Finally, this
R-signature R(θ) can be normalized by its total value.

R(θ) =

� ∞

−∞
RA2(t, θ)dt (3.3)

As explained in [133], the R-signature is invariant to translation and scale. However,
a rotation by an angle θ0 of the input image provides a shift of θ0 on the R-signature, as
illustrated in Figure 3.21. In order to make the R-signature invariant to rotation, some
additional method should be used. For instance, in [133], Fourier transform is applied
to R(θ). In our case, we decided to use only the raw R-signature. We are aware that
using R-signature invariant to rotation may improve the effectiveness of the system.

(a) Original image (b) Rotated image

Figure 3.21: Shift on the R-signature when the input image is rotated by an angle θ0,
extracted from [133].

3.4.1.9 Zernike invariant

Zernike moments were originally introduced by Michael Reed Teague [135] and have
been largely used in many pattern recognition problems [74, 75, 115], including charac-
ter recognition [27]. They represent one of the most cited set of invariant features when

93

3 Handwritten words recognition system based on two levels analysis

considering pattern recognition problems.

This approach aims at projecting an input image onto a set of complex Zernike poly-
nomials which are orthogonal to each other on the unit circle x2 + y2 ≤ 1. The Zernike
function is defined in the polar coordinates (r, θ) by:

Vnm(x, y) = Vnm(r sin θ, r cos θ) = Rnm(r)e
imθ (3.4)

where

Rnm(r) =

(n−|m|)
2�

s=0

(−1)s(n− s)!

s!((n+|m|)
2

− s)!((n−|m|)
2

− s)!
rn−2s (3.5)

and

• n is a non-negative integer

• m is an integer

• n− |m| is even

• |m| ≤ n

• r =
�
x2 + y2

• θ is the angle composed by the vector r and the x axis in counterclockwise direction.

The Zernike feature of order n with repetition of m for an image f(x, y) can be
computed by projecting this image onto the corresponding Zernike polynomial V ∗

nm, as
follows:

Znm =
n+ 1

π

�

x

�

y

f(x, y)V ∗
nm(x, y)ΔxΔy (3.6)

Where V ∗
nm(x, y) = Vn,−m(x, y)

The above original Zernike features are only invariant to rotation. In order to make
them invariant to scale and translation, some normalization techniques are generally
used [75]. We use this invariant version of Zernike feature in our work [75].

3.4.2 On-line features

These features are extracted from the on-line signal, mainly inspired from [4]. Five sets
of features are extracted: normalized length, downward stroke information, start and
end point information, histogram of writing direction and derivative, and re-drawing
point. Each set of features is detailed in the following sub-sections.

94

3 Handwritten words recognition system based on two levels analysis

3.4.2.1 Normalized length

Some character classes in the Latin alphabet have the same length and/or width and/or
height. For instance, the character classes ‘a‘ and ‘b‘ have the same width but different
length and height. The character classes ‘g‘ and ‘w‘ have approximately the same length
but different width and height. Given an input on-line singal of a character, three
important values can be computed:

1. Length: the length of the input signal is obtained by computing the sum of the
distance between two consecutive points.

2. Width: the width of the character shape is obtained by computing the distance
between the minimum and the maximum points on the x axis.

3. Height: the height of the character shape is obtained by computing the distance
between the minimum and the maximum points on the y axis.

This feature extraction method consists in computing the normalized length of the
input on-line signal by using its width and height (length

width
, length

height
).

Taking the example above, given two on-line signals of the characters ‘a‘ and ‘b‘, we
obtain: length(‘a‘)

width(‘a‘)
< length(‘b‘)

width(‘b‘)
since length(‘a‘) < length(‘b‘) and width(‘a‘) � width(‘b‘).

As a consequence, writings of characters ‘a‘ and ‘b‘ could be discriminated using this
feature.

3.4.2.2 Downward strokes

A downward stroke is the writing trajectory from a local maximum point to the following
local minimum point. These strokes are more important than upward strokes, which
are generally known as connecting strokes [4]. Indeed, as illustrated in Fig 3.22(c),
the downward strokes are generally sufficient to almost correctly represent the input
handwritten word.

(a) Original signal (b) Downward (black)
and upward (yellow)
strokes

(c) Signal with only
downward strokes

Figure 3.22: An example of upward and downward strokes in an handwriting of the word
’captain’.

The downward strokes contain the number of downward strokes, the length of the
longest downward stroke, and the coordinates x, y of the highest point in the downward
strokes.

95

3 Handwritten words recognition system based on two levels analysis

3.4.2.3 Start and end point information

This feature extraction method computes the information on the starting and ending
points (P0, Pt) of the signal. This information contains: x, y coordinates and sine and
cosine of writing direction at the starting and ending points, as illustrated in Figure 3.23.

�����

�
�
��

�
�

�
�

�
�

�
�

�
���

�
�

�
�

Figure 3.23: Extraction features at the start and end point of the signal.

The coordinates of each point have to be normalized with its height or width of the
signal. In the case of starting point (P0), we obtain two features xs = P0(x)

width
and

ys = P0(y)
height

. The x, y coordinates of the ending point (Pt) can be computed in the
same way.

The writing angle at the starting point (αs) is the angle between the vector
−−→
P0Pi and

the x axis. The point Pi is the closest following point of P0, where |P0Pi| is greater than
an objective distance δ. Writing direction at the ending point (αe) is computed in a

similar way. It is the angle between the vector
−−−−→
Pt−jPt and the x axis. The point Pt−j is

the closest previous point, where |Pt−jPt| is greater the an objective distance δ. In our
system, δ = length

10
, where length is the total length of the signal.

3.4.2.4 Histogram of writing direction

This method computes the histogram of writing directions. First, for each two consec-
utive Pi−1 and Pi, a writing direction angle αi is computed. Then, we associate the
angle αi to one of the eight equal gaps, as illustrated in Figure 3.24. For instance, if
αi ∈]π8 , 3π8], its corresponding writing direction is 1. In each direction, the total length
of the pairs of points which belongs to this direction is computed. Let us denote the total
length in each direction by ld, where d ∈ {1, 2 . . . 8}. ld is computed by Equation (3.7).

ld =
NP�

i=2

|Pi−1Pi|, such that αi ∈ d. (3.7)

96

3 Handwritten words recognition system based on two levels analysis

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�
�

�

��
�

�

��
�

�

��
�

�

��

�

Figure 3.24: Writing direction divided into eight partitions.

Where NP is the total number of points of the input signal.

In total, we obtain eight values l1, l2, . . . l7, l8 where each value corresponds to each
direction. These values are normalized by the total length of the input signal and con-
sidered as the retained global features.

In order to obtain more detailed information, we segment the input signal into three
segments of equal length. These segments represent beginning, middle and ending parts
of the character. For each segment, a set of eight histogram features is also extracted.
We obtain another 24 local features.

3.4.2.5 Derivative and re-drawing points

The derivative point refers to the point where the writer immediately changes the di-
rection of the writing trajectory. The re-drawing point refers to the derivative point
for which the new writing trajectory overlaps on the previous trajectory. Figure 3.25
illustrates an example of the derivative points (indicated by rectangles) and re-drawing
points (indicated by circles).

���������� �����

���������� �����

Figure 3.25: An example of the derivative and re-drawing points.

This feature extraction method consists in counting the number of derivative and

97

3 Handwritten words recognition system based on two levels analysis

re-drawing points. Derivative and re-drawing point detection can be described as below:

• For each point Pi in the input signal, compute the angle α1 composed

by the vector
−−−−→
Pi−1Pi and the x axis and the angle α2 composed by the

vector
−−−−→
PiPi+1 and the x axis (see Figure 3.26(a)).

• Compute the difference δangle between the angles α1 and α2. δangle
describes the changing of writing direction (see Figure 3.26(b)).

– An important value of δangle indicates the certitude of derivation.
We consider that, if δangle >

π
2
, then Pi is a derivative point, where

π
2
is a threshold value.

– In the case where Pi is a derivative point and δangle gets close to
π, then the point Pi will be considered as a re-drawing point. In
our system, if δangle ∈ [π − π

4
, π + π

4
], then we consider that Pi is a

re-drawing point.

����

��

����

��

��

������

��

��

��� ���

Figure 3.26: An example of derivative and re-drawing point detection.

Taking the example given in Figure 3.26, the point Pi is considered as a
derivative point and a re-drawing point at the same time.

3.4.3 Feature selection

The combination of all off-line and on-line features we extract (ses previous section)
provides a large set of 254 features. This large set of features may contain some insignif-
icant features, as well as some redundant features. This kind of features may increase the
computational time, and sometime degrade the effectiveness of the classification system.
Hence, a feature selection method is applied in order to select a subset of significant
features.

In the literature, a large amount of research have been dedicated to feature selection
problem, which aims at selecting a subset of F ∗ significant features out of a set of F
features (i.e. original features set). This new subset of features F ∗ must not degrade
(and if possible improve) the effectiveness of the system.

98

3 Handwritten words recognition system based on two levels analysis

A.Jain and D.Zongker [66] have classified the feature selection methods as presented
in Figure 3.27. At the highest level, all these methods are classified into two categories:
Statistical Pattern Recognition based (SPR) and Artificial Neural Network based (ANN).
In the ANN-based category, the Node Pruning method is usually used. It consists in
pruning the least significant nodes (and therefore removing the corresponding input
features) to reduce the complexity of the network. In the SPR-based category, methods
are classified into different categories. We can finally identify 5 categories different: an
optimal category and 4 sub-optimal categories (deterministic single-solution, stochastic
single-solution, deterministic many-solution, stochastic many-solution).

������� ���������

�������������������
�����������������

�����������������
������� �����

�������������

����������� �������
������������������
�����������������

��������������� ��������������

�������������
��������������
�����������������

�����
��������

����������
�������������������������

�������������
������������

����������
�������� ����������

Figure 3.27: The tree of feature selection methods, extracted from [66].

According to the experimental results presented in [34, 66], the Sequential Floating
Forward Selection (SFFS) belongs to the deterministic single-solution category, intro-
duced by Pudil et al. [114] outperforms all other methods. Hence, we decided to use
the SFFS method in our system by using the SVM classifier (see section 3.5.2) as an
objective function. The SFFS procedure can be briefly described as below:

Given a set of features F , the SFFS procedure can be presented into 3 steps:

• Initialization: k = 0 and F ∗
k = ∅

• Step1 (Inclusion): finds the most significant feature f+ ∈ F that
maximizes the objective function J(F ∗

k + f+). Then, add the feature
f+ into the set F ∗

k . Hence, F
∗
k+1 = F ∗

k + f+, k = k + 1

• Step2 (Condition exclusion): finds the least significant feature f− in F ∗
k ,

where f− = argmaxf∈F ∗
k
J(F ∗

k − f) and J(F ∗
k − f−) > J(F ∗

k−1)

99

3 Handwritten words recognition system based on two levels analysis

– if f− is the feature just added, keep it and go to step 1.
– otherwise, remove f− from F ∗

k . Hence, F
∗
k−1 = F ∗

k − f−, k = k− 1.
Then, go to step 3.

• Step3 (Continuation of conditional exclusion): continues remov-
ing the least significant features in set F ∗

k as in Step2. If k = 2, go to
step 1. Otherwise, repeat step3.

We will see in the following parts that in the SCR (see section 3.5) and bi-character
models (see section 3.6), only a set of selected features (i.e. significant features F ∗)
obtained by applying this technique is used. However, this set of features has been
selected only for classification of single character. We are aware that considering a dif-
ferent set of features for bi-character models (or adapted to each bi-character model)
might improve the recognition rates, however, it would also increase the computational
complexity, since we could not re-use the same features for each node and combination
of nodes in the lattice (see section 3.6.2).

Let us precise here that we do not consider that this feature selection stage is a
contribution of our research.

3.4.4 Conclusion

This section introduces the feature extraction methods we use in our system. They are
classified into two groups: off-line and on-line features.

The set of off-line features contains nine families of features (local and global). These
features are widely used in the context of pattern recognition as well as for off-line ICR.
The set of on-line global features allows using the information in the on-line signal, such
as the information about the downward stroke and the writing direction. The com-
bination of these two sets of features allows taking profit of their complementarities.
However, considering the fact that some of these features may contain some noise and
be redundant, the SFFS feature selection method is used to select the relevant ones. It
allows selecting only the useful feature set F ∗ to be used in the system.

These selected feature set F ∗ will be used in the SCR (see section 3.5) and the bi-
characters models (see section 3.6).

3.5 Single character analysis

3.5.1 Objective

As mentioned earlier in section 3.1, our system relies on an explicit segmentation/recognition
method. Therefore, the Single Character Recognition (SCR) system is obviously a
crucial step since it is used to define character candidates by recognizing groups of

100

3 Handwritten words recognition system based on two levels analysis

graphemes for each node of the lattice (see section 3.3), as illustrated in Figure 3.28.
This SCR relies on a set of selected features given by the feature selection step (see
section 3.27).

��
�

��
�

��

������� ����������

�
�����

�
�����

�
�����

�

�
�����

�
�����

�
�����

�
�����

���

���

�����������������������
�� �������� �

�����

������ ���������
����������� ������

�����

���
�
��
�����
�

���
�
��
�����
�

���
���

�
��
�����
�

�����������������������
�������� �

�����

������� �� ��� ����� ������

Figure 3.28: The application of the SCR in the proposed HWR.

In the example of Figure 3.28, this set of features is extracted from the node o(1,3) to
feed a SCR. This system returns the probability estimate b(cm|o(1,3)) of each character
class cm for the node o(1.3). In the scope of our research (see section 1.5), we focus on low-
ercase and non-accented words. Hence, the character class set corresponds to the Latin
alphabet (cm ∈ C,C = {a, b, . . . , z}), which contains 26 classes (M = 26). Of course,
we plan to extend the number of classes by considering uppercase letters in future work.

The SCR has to be able to:

1. Recognize the characters segmented from handwritten words, by integrating the
fact that the shapes of one character class can vary depending on its surrounding
characters (see section 1.3.1). Indeed, the variation of the segmented characters
may be more important than those of isolated characters (which are written in pre-
defined boxes). Therefore, a system trained with an isolated character database
could not cover all the possible variations in segmented characters. Hence, it has
to be trained with characters segmented from handwritten words. This training
database will be presented in section 4.1.4.

2. Reject unknown patterns, since some nodes of the lattice contain the concatenation
of multiple neighboring graphemes (see section 3.3) which do not systematically
correspond to characters. This kind of node has to be classified as an unknown
pattern, i.e. to be rejected. In order to deal with this problem, a recognition
system with rejection has to be applied (see section 3.5.3).

101

3 Handwritten words recognition system based on two levels analysis

3.5.2 Single character recognition system

According to A.K. Jain et al. [67], recognition approaches are classified into four cat-
egories: template matching, structural matching, statistical classification and neural
networks.

1. Template matching: This type of approaches consists in matching the input data
against predefined template(s) (i.e. prototype(s)) of every predefined class. This
approach has been successfully used for various applications [31, 68, 63]. However,
in the problem of SCR, the intra-class variation can be very important (see sec-
tion 1.3.1). Hence, it is very difficult to define the template(s) for each class. This
method is therefore not adapted to this context.

2. Structural and syntactical matching: Using this type of approaches, each class is
represented in terms of the inter-relationships between a set of predefined primi-
tives (i.e. sub-classes) based on a pre-defined grammar or graphs. Few handwriting
recognition systems based on structural matching have been presented in the liter-
ature [4, 25]. Indeed, defining the primitives and a grammar which allow covering
all the variations in handwriting is a hard task. Despite the fact that this type
of approach seems to be very promising, it is still rarely used for handwriting
recognition in the literature.

3. Neural networks: A neural network is an interconnection of a large number of
artificial neurons. It can be seen as a weighted directed graph, in which nodes
correspond to neurons and edges corresponds to weights. This interconnected
architecture allows connecting the neurons from an input layer to the neurons
of an output layer like in MultiLayer Perception (MLP) for instance. The input
layer is fed by a vector of d features which represents the objects to recognize
and the output layer usually corresponds to the classes to be recognized. This
approach is able to learn non-linear classification problems. Hence, it is able to
deal with the variations in handwriting. However, it still has some drawbacks.
The main drawback of this approach is the difficulty to adjust its parameters. For
instance, in MLPs and TDNNs which are the most frequently used for handwriting
recognition, the number of layers and the number of neurons per layer have to be
fixed, without any standard method to adjust these parameters. Most authors
select the best values of those parameters heuristically, using their own training
database.

4. Statistical classification: In this type of approach, each sample is represented by
d features. The samples in the training database can be viewed as a distribution
of points in a d−dimensional space. Statistical approaches aim at finding the
boundaries to separate samples belonging to different classes and to group samples
belonging to the same class. Support Vector Machines (SVM) is a statistical
classifier that is very frequently used in the literature. SVM has provided successful
results for isolated character/digit recognition systems [20, 6, 122, 87, 22, 12, 137].

102

3 Handwritten words recognition system based on two levels analysis

In addition, the experimental results given in [1] have shown that SVM provides
better results, compared to neural networks on different handwriting databases
(see Table 3.1). Because of the effectiveness of SVM and because it is easier to
tune its parameters (compared to NN), we decided to use this classifier in our
system. In the following paragraphs, we give a brief introduction of SVM.

Table 3.1: Comparison between SVM and NN (MLP and TDNN) classifiers for on-line
character recognition, given in [1]. These recognizers rely on the local on-
line features extracted from each points of the on-line character signal (210
features).

Type of data
IRONOFF UNIPEN IRONOFF-UNIPEN

MLP TDNN SVM MLP TDNN SVM MLP TDNN SVM
Digit 98.2 98.4 98.83 97.5 97.9 98.33 97.9 98.4 98.68
Lowercase 90.2 90.7 92.47 92.0 92.8 94.03 91.3 92.7 93.76
Uppercase 93.6 94.2 95.46 92.8 93.5 94.81 93.0 94.5 95.13

SVM has been presented by Vapnik et al. [13, 19], originally to solve a bi-class clas-
sification problem. The main idea of the original (bi-class and linear) SVM is to find a
decision hyperplane in the feature space, which is able to separate the samples belonging
to the positive class from the samples belonging to the negative class. This hyperplane
has to ensure the smallest error, by maximizing the margin between these two classes,
as illustrated in Figure 3.29.

������

����������

Figure 3.29: The main idea of SVM. The black samples belong to the negative class
while the white samples belongs to the positive class.

There are actually two types of SVMs: linear and non-linear.

• Linear SVM seeks for a hyperplane to separate the classes. This method can be ap-
plied only to linearly separable data (see Figure 3.30(a)). In real applications, most
of the time, the classes are not linearly separable, as illustrated in Figure 3.30(b).

103

3 Handwritten words recognition system based on two levels analysis

In this example, we can see that a black point (in cross sign) belonging to the
black class is located in the white class side. In order to deal with this problem,
a slack variable is used to accept some errors (as few as possible) during training.
The linear SVM is not frequently used in the literature. However, there are some
recent works focusing on the linear SVM, due to its efficiency in the context of
very large-scale data [57].

• Non-linear SVM is an extension of the linear SVM. This method uses a non-linear
kernel, by mapping the features of the input data onto a higher dimensional feature
space (possibly of infinite dimensions). As illustrated in Figure 3.30(c), the non-
linear separable data in Figure 3.30(b) are separable by a degree 3 polynomial ker-
nel function. Different kernel functions have been presented in the literature [19]:
linear, polynomial, radial basis function, Sigmoid, etc.

(a) Linearly separable
data

(b) Non-linearly separa-
ble data

(c) Degree 3 polynomial
kernel

Figure 3.30: An example of data distribution extracted from [19]. a) the classes are
linearly separable. b) the classes are non-linearly separable. c) the non-
linearly separable class in (b) are separable by a degree 3 polynomial kernel.

Non-linear SVM is the most frequently used in the literature, compared to linear SVM.
Choosing a kernel function adapted to the recognition problem is a hard task. However,
in the literature, SVM relying on the Radial Basis Function (RBF) kernel [58] is the
most frequently used for different recognition problems. In general, it provides good
recognition results. Therefore, we decided to use an RBF SVM in our system.

We have to mention that, SVM classifier is originally designed to solve bi-class classifi-
cation problems. In order to deal with a multi-class classification problems (for instance
M − class classification problem for our SCR), different methods have been proposed in
the literature [150, 16, 84, 98, 77, 108]. Chih-Wei Hsu and Chih-Jen Lin [59] proposed
a comparison of 4 different strategies: all-together, one-against-all, pairwise, DAGSVM.
A brief description of these 4 methods is given below:

• All-together [150]: considers all the M classes together and tries to find M opti-
mal hyperplanes to separate all these classes by using only one decision function.
Figure 3.31 illustrates an example (presented [150]) for a 4 classes classification
problem by applying this strategy.

104

3 Handwritten words recognition system based on two levels analysis

Figure 3.31: An example of all-together strategies to classify 4 classes of data, extracted
from [150].

• One-against-all [16]: relies on a similar idea as the all-together method. Unlike the
all-together strategy, this strategy tries to findM optimal hyperplanes to separate
the M classes, but by solving M problems (i.e. training M binary SVM models)
separately. The mth SVM is trained by considering the samples belonging to class
cm as a positive class and the samples belonging to all other classes as a negative
class.

• Pairwise [84]: is also known as one-against-one method. It aims at creating M(M−1)
2

bi − class SVM models where each SVM model is trained using the samples be-
longing to the corresponding two classes. Considering a 4 − class problems, 6
bi − class SVM models are created: c1 vs. c2, c1 vs. c3, c1 vs. c4, c2 vs. c3, c2
vs. c4 and c3 vs. c4. During the recognition step, the input sample is submitted
to all the SVM models. For the final decision, different strategies can be used, as
for instance, voting strategy, where the input sample belongs to the class that gets
the maximum number of votes.

• Directed Acyclic Graph SVM (DAGSVM) [108]: relies on the same training step as

the one-against-one method. M(M−1)
2

bi− class SVM models are created. During

the recognition step, these M(M−1)
2

SVM models are organized as a binary directed

acyclic graph of M(M−1)
2

nodes and M leaves where each leaf corresponds to each
class label, as illustrated in Figure 3.32. The input sample is submitted to the
root node. It is then submitted to the SVM model in the following upper or
lower node, depending on the output provided by the SVM at the root node.
This process continues until it reaches a leaf of the graph, which indicates its
predicted label class. The main advantage of the DAGSVM method compared to
the Pairwise method is related to the computational time during the recognition
step. Indeed, the input sample is not submitted to all the bi−class SVM since the
use of DAG allows pruning the ”unnecessary” nodes (bi-class SVM models) in the
graph. However, the main drawback of this method is related to the fact that the
effectiveness of the system may depend on the structure of the Graph, considering

105

3 Handwritten words recognition system based on two levels analysis

the classification error of the bi − class SVM model in each node. Error in any
node of the Graph directly generates classification error in the overall classifier.

�
�
��� �

�

�
�
��

�
��

�
��

�

�
�
��� �

�

�
�
��� �

�

�
�
��� �

�

�
�
��� �

�

�
�
��� �

�

�
�

�
�

�
�

�
�

��� �
�

��� �
�

�
�
��

�
��

�

�
�
��

�
��

�

��� �
�

�
�
��

�

��� �
�

�
�
��

�

��� �
�

��� �
�

�
�
��

�

Figure 3.32: Example of the DAGSVM for a 4− class classification problem.

According to the experimental results in [59], the one-against-one method provides
better results, compared to other methods for different recognition problems. For this
reason, the one-against-one method is used in our system. In a near future, we will
investigate different kernel types and multi-class strategies.

In addition, SVM was originally designed to predict only the class label of the input
data. The decision value given by SVM does not allow to describe or directly predict
posterior probability. But, in real applications, the posterior probability is often required
for post-processing or to feed the next step of the system. For instance, in our system,
SVM classifier is used to recognize each node in the lattice. The posterior probabilities
given by the SVM have to be estimated, since they are used to feed the word decoding
process (see section 3.7). In the literature, a large amount of research has been dedicated
to probability estimation for bi-class and multi-class SVM. In our system, we use the
probability estimation method presented by T.F. Wu et al. [154].

3.5.3 Single character recognition system with rejection

As mentioned earlier in this section, a group of graphemes contained in a given lattice
node can correspond to an unknown pattern. In many cases, unknown patterns are
associated with the lowest SVM output values. However, the range of the SVM output
values depends on data distribution inside the classes and, even after estimating class
probabilities from the SVM outputs [26, 154], it is difficult to settle a threshold for pre-
cisely detecting unknown patterns. In order to deal with this problem, we experimented
two methods. The first method consists in adding a garbage class to the SVM, and
the second method consists in using a rejection system based on a cascade of Adaboost
classifiers to refine the outputs given by the SVM.

106

3 Handwritten words recognition system based on two levels analysis

3.5.3.1 Garbage class in the SVM

Let us consider that we have a classification problem with M classes. This method con-
sists in adding an additional class (i.e. garbage class) to represent unknown patterns.
Hence, the SVM classifier will deal withM+1 classes instead ofM classes. The training
data of the garbage class has to be chosen carefully because it has to be representative
of all the possible unknown shapes. Therefore, the garbage class has to contain very nu-
merous samples. As detailed in section 4.1.6, we use diverse unknown shapes segmented
from handwritten words for the training data of this class.

3.5.3.2 Rejection system based on a cascade of Adaboost classifiers

Given a classification problem of M classes (C = {c1, c2, . . . , cM}), this method aims at
creating a set of M rejectors R = {r1, r2, . . . , rM}, inspired from the method introduced
by Viola and Jones which was originally used for face detection [144]. Each rejector
rm ∈ R is a specific rejector for the class cm ∈ C and is used to refine the outputs of the
SVM, as illustrated in Figure 3.33.

���������������������
�������� �

�����

���

���
�
��

�����
�

���
�
��

�����
�

���
���

�
��

�����
�

���������������������������
������������ �

�����

� � ��
�
� �

�
����� �

�
�

�����������������������������
��� ��� ���� �

�����

���
�
��

�����
�

���
�
��

�����
�

���
���

�
��

�����
�

�������
����������

�
�

�

�
�

�

���

�
�

�

�
�

�

���

Figure 3.33: The use of the rejection system to refine the recognition probabilities pro-
vided by SVM.

Each rejector rm relies on a cascade of Adaboost classifiers. At the opposite of many
existing algorithms [29, 37, 155, 46], this method does not rely on a posteriori probabili-
ties (i.e. the outputs of the classifier). Alternatively, it aims at sequentially rejecting the
negative samples by analyzing the input data, independently of the a posteriori proba-
bilities provided by the classifier.

A rejector rm for the character class cm is a cascade of specific Adaboost classifiers
{φ1

m, φ
2
m, . . ., φ

K
m}, where K is the number of Adaboost classifiers in the cascade. The

107

3 Handwritten words recognition system based on two levels analysis

training process and application of a rejector rm are presented in the following para-
graphs.

a) Training process

Each Adaboost classifier φkm as well as the rejector rm are trained by con-
sidering the samples belonging to the class cm as the positive samples (i.e.
positive class) and the samples belonging to all other classes and the unknown
class as the negative samples (i.e. negative class). Let us denote

• PS the set of training samples of the positive class

• NS the set of training samples of the negative class

The training process of a rejector rm can be described as follows (see Fig-
ure 3.34): the first Adaboost φ1

m is trained by using all the training samples
(PS ∪NS). The second Adaboost of the cascade φ2

m is trained using all the
positive samples and the non rejected negative samples (PS ∪ {NS − ns1})
from the Adaboost φ1

m, and so on, where ns
1 represents the set of negative

samples correctly rejected by the Adaboost classifier φ1
m and so on. Each

Adaboost φkm is a weak classifier which relies on few features selected from
the feature set provided by the feature selection stage (see section 3.4.3).
New rejectors φkm are sequentially added until the rejection rate reaches an
objective false positive rate γ or no additive negative sample can be rejected.

�����������
����

�
�

�
�

�

�
�

��
�

�
��

�

� �

�
�

��
�

�
��

�

� �
��

� �

��� �� ��������
�������

�������� �
������� �� ��� ���������� ��� ������

�
�����

�
�

��
�

�
��

�

� �
��

� �
���

�
��

�
�� �

Figure 3.34: Training process of a rejector rm.

b) Application

The rejector rm is used as follows during the recognition stage (see Fig-
ure 3.35):

108

3 Handwritten words recognition system based on two levels analysis

Given a new node o(t,t�), its feature set is submitted to the rejector rm of
the character cm; it is sequentially presented to all the Adaboost classifiers
φk=1...K
m in the cascade until one of them classifies it as negative class (i.e.
rejected). If none of these Adaboost rejects o(t,t�), then o(t,t�) belongs to the
class cm. Otherwise, o(t,t�) does not belong to the class cm.

• If o(t,t�) does not belong to the class cm, then the output probability
b(cm|o(t,t�)) given by the classifier (here SVM) is decreased as follows:

b(cm|o(t,t�)) =
b(cm|o(t,t�))

ePrm where Prm is the rejection score given by the
rejector rm.

• If o(t,t�) is not rejected from the class cm (belonging to the class cm),
then the output probability b(cm|o(t,t�)) is not modified.

���
������������

��
������

���������� ��� �������
�
�

�������� � �
������

�������� ���������� ��� �������
�

�������� �� ������

�� ��� ���� �
������

�������
����������

�
�

�

�
�

�

���

Figure 3.35: A specific rejector rm based on a cascade of Adaboost classifiers
{φ1

m, φ
2
m, . . . , φ

K
m} for the character class cm.

It is important to mention that the effectiveness of each rejector rm depends on 3
important parameters given by the user:

• The objective false positive rate fk: the value of fk indicates the percentage of
negative samples accepted by the kth Adaboost classifier φkm in the cascade of the
rejector rm. For instance, in the case where fk = 20%, the Adaboost classifier φ

k
m

accepts up to 20% of negative samples classified as positive class. In other word,
φkm has to be able to reject at least 80% of the negative samples.

• The objective true positive rate dk: the value of dk indicates the percentage of
positive samples that has to be correctly recognized as positive class. There is of
course a strong dependence between the parameters fk and dk.

• The objective false positive rate γ of the overall rejection system: the value of γ
indicates the percentage of negative samples accepted by each rejector rm. For
instance, if γ = 1%, it means that the rejector rm is able to reject at least 99% of
the negative samples.

109

3 Handwritten words recognition system based on two levels analysis

An experimental comparison of these two strategies for rejection (SVM with garbage
class and rejection system based on cascade of Adaboost classifiers) is given in sec-
tion 4.2.3.1.

3.5.4 Conclusion

This section introduces a SCR relying on a RBF-based SVM classifier and the features
selected from 14 families of both on-line and off-line features. This system is used to
generate character hypotheses for each node in the lattice, and feed the word decoding
process presented section 3.7.

In order to deal with lattice nodes corresponding to unknown patterns, we imple-
mented a SCR with rejection. Two methods are presented. The first method consists
in creating a RBF-based SVM classifier with rejection by adding a garbage class. The
second method uses specific rejectors to refine the outputs given by the SVM classifier.
Some experiments presented in section 4.2.1.2 compare the effectiveness of these two
methods.

This SCR relies on a SVM which is known as a discriminative classifier. In order
to reduce the computational time of the system, only the N candidates with highest
probabilities given by the SCR are considered in the next step. The lowest recognition
probabilities are considered as fruitless candidates. The value ofN will be experimentally
fixed according to the experimental results of the SCR (see section 4.2.1.2) to ensure
that the effectiveness of the system is not degraded.

3.6 Bi-character analysis

3.6.1 Objective

Characters composing unconstrained handwritten words are naturally more or less con-
nected. These connections have a great impact on the shapes of the characters. If these
characters are analyzed independently, the system may face some confusing problems.
Indeed, the shape of one character can change depending on the characters written on
its left and right, as earlier explained in section 1.3.1. In addition, some characters
may share parts with some other characters (see section 1.3.4). To solve this prob-
lem, we propose the idea of the bi-character analysis, which aims at taking into account
the graphical context by jointly analyzing each pair of neighboring nodes in the lattice.

In the literature, we can notice some similar ideas. For instance, A.L. Bianne et al.
[9] have introduced a context-dependent recognition system relying on HMM models.
Each character class of the alphabet is modeled by different HMM character models,
according to its surrounding characters (i.e. characters written on its left and right, see
section 2.3). This system is able to deal with variations in the character shape. However,

110

3 Handwritten words recognition system based on two levels analysis

this method does not allow to take into account the graphical context (see section 1.4)
of the neighboring characters. Hence, it may not be able to overcome the problem of
”shared character part” (see section 1.3.4).

Dan Ciresan [30] introduced an off-line numeral string recognition system based on sin-
gle and two-digit classifiers. This method relies on a pure explicit segmentation method.
Each segmented component is considered as one digit and two-digit candidates which
are submitted respectively to a single digit classifier and a two-digit classifier. Then, the
system compares the outputs given by both systems and selects the best one according
to some rules. The overall system was earlier explained in section 2.3.2.1. The two-
digit classifier introduced in [30] allows to overcome the under-segmentation problem
(i.e. when some segmented components contain more than one character/digit) which
is usually happening when using pure explicit segmentation methods. Since this system
relies on a pure explicit segmentation method, it still faces the problems due to over or
under segmentation. For instance, 1) if the segmented components contain only a part
of digit, 2) if the segmented components contain one digit plus a part of another digit,
3) if the segmented components contain more than two digits, etc.

In our system, we introduce bi-character models for on-line HWR. Unlike [30], our
system relies on an explicit segmentation/recognition method. As a consequence, the
bi-character models are designed to deal with the problems happening when the input
word signal/image is over-segmented (i.e. one character may be segmented into many
graphemes), which occurs particularly in the context of the character shared path prob-
lem. In addition, the number of bi-character classes (676 classes = 26∗26) is much more
important than the number of two-digit classes (100 classes) presented in [30]. Hence,
the bi-character models used in our system has to be able to deal with a classification
problem with a large number of classes.

In our system, the bi-character models allow recognizing pairs of neighboring char-
acters by jointly considering every pair of neighboring nodes in the lattice in order to
validate/invalidate the hypotheses given by the SCR (see section 3.5), during the word
recognition process (see section 3.7). We have to mention here that two additional
problems may be also handled by using bi-character models: the problem of similarity
between characters (see section 1.3.3) and the problem of unknown patterns (in some
nodes of the lattice). The following sub-sections explain how these three problems can
be handled by the bi-character models. Then, we explain how the bi-character models
can be integrated in the handwriting word recognition system. Finally, we introduce the
method used to build the bi-character models.

3.6.1.1 Character shared part problem

Let us reconsider the example presented earlier in section 1.3.4. Given a handwritten
signal of the word ”de”, the word decoding process provides different recognition paths
where each path corresponds to a word in the lexicon. Suppose that there are only two

111

3 Handwritten words recognition system based on two levels analysis

best paths, as illustrated in Figure 3.36.

Figure 3.36: Bi-character models allow solving the character shared part problem.

In the path (1), which is the most likely according to the SCR, the input signal could
be recognized as the sequence of characters ”ole” or ”oll” or ”oil” and so on. Indeed,
the shapes 1.1 and 1.2 are parts of the character ‘d‘. If they were observed individu-
ally, the visual appearance of the shape 1.1 is very close to character ‘o‘ or ‘O‘. Hence,
it may be recognized by the SCR as character ‘o‘ or ‘O‘ with a high probability. Idem
for the shape 1.2, which may be recognized as character ‘i‘ or ‘l‘ with a high probability.

We can consider that this problem can be handled by using a lexicon. But in that
case, the effectiveness of the system would strongly depend on the lexicon. In addition,
the lexicon cannot cover all the problems, as for instance between the words ”while”
and ”white”. A complex language model(s) is therefore required to solve this kind of
problems, but could not anyway solve all the possible ambiguities.

By using bi-character models, we concatenate the shapes 1.1 and 1.2, and obtain a
new shape 1.12. This new shape is submitted to the bi-character models of ”ol”, ”oi”,
”Ol” and Oi”. It should be rejected by these models, since its visual appearance is very
different from the visual appearance of ”ol”,”oi”, ”Ol” and ”Oi”. As a consequence, the
path (2) will become more likely, since the concatenation of shapes 2.1 and 2.2 (shape
2.12) is very close to the visual appearance of ”de”. Finally, the input signal will be
recognized correctly as ”de”.

3.6.1.2 Similarity between different character classes

As explained earlier in section 1.3.3, in the Latin alphabet, some characters are very
similar when we try to recognize them individually, e.g. characters ‘e‘ and ‘l‘. They are
very similar in visual appearance and writing trajectory. Sometimes, they are hard to
be distinguished even by a human being. Furthermore, in some cases, the writings in
lowercase and uppercase are very similar, as e.g. the character ‘o‘.

112

3 Handwritten words recognition system based on two levels analysis

Taking the example illustrated in Figure 3.37, the visual appearance of the shape 1
(respectively shape 2) is very similar to the character ‘e‘ or ‘l‘. Hence, the SCR would
give high output values for the shape 1 as character ‘l‘, and for the shape 2 as character
‘e‘. Indeed, the shape 1 corresponds to the character ‘e‘ and the shape 2 corresponds to
the character ‘l‘.

Figure 3.37: An example of the ambiguity between the char-
acters ‘e‘ and ‘l‘.

By concatenating these two shapes, we obtain a new shape 12. Its visual appearance
is very different from the visual appearances of the pairs of characters ”ee”, ”ll” and
”le”. Hence, there is a high probability that they will be rejected by these bi-character
models. As a consequence, our system based on bi-character models may recognize the
shape 12 as ”el”.

3.6.1.3 Unknown pattern

Beside the two problems explained in the previous sections, the bi-character models also
permit to solve the problem concerning unknown patterns. As mentioned in section 3.5.3,
every node in the lattice contains a combination of graphemes which are segmented from
the input handwritten word. As a consequence, some nodes may correspond to unknown
patterns since they do not belong to any character class in the alphabet. To deal with
this kind of problems, we have proposed to use a SCR with rejection option at the
character analysis level. However, by individually considering each node of the lattice,
some unknown patterns may not be handled at the character analysis level. Therefore,
using the bi-character models is another opportunity to handle the unknown pattern
problem, since the models will jointly analyze each pair of neighboring nodes.

3.6.2 Bi-character models

As earlier mentioned in section 3.3, each node o(t,t�) in the lattice is considered as a
potential character and submitted separately to a SCR. This system provides a list of N
potential character candidates, each of which is described by the estimated a posteriori
probability of recognition as a class cm (b(cm|o(t,t�))). In order to validate/invalidate
these results, the graphemes in the pair of neighboring nodes are combined into only

113

3 Handwritten words recognition system based on two levels analysis

one signal to be submitted to the corresponding bi-character models. To illustrate this
description, an example is given hereafter.

Example: let us take the example of the neighboring nodes o(1,2) and o(3,4) in
the lattice created in section 3.3.3 (see Figure 3.38). Considering that the 2
potential character candidates (N = 2) given by our SCR for node o(1,2) are:
b(cm = ‘o‘|o(1,2)), b(cm = ‘a‘|o(1,2)) and for node o(3,4) are: b(cm = ‘u‘|o(3,4)),
b(cm = ‘v‘|o(3,4)). At the level of bi-character analysis, these two nodes are
concatenated. We obtain a new group of graphemes (o(1,2) ∪ o(3,4)). This one
is submitted to the bi-character models (B(”ou”), B(”ov”), B(”au”), B(”av”)) that
return recognition probabilities/scores that the group of graphemes (o(1,2) ∪
o(3,4)) is recognized as the pairs of characters ”ou”, ”ov”, ”au” and ”av”.

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

� �

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

��
���

��� �������� �� ���������
��� ���� �

�����
� �� �������� ���������

�������������� � ���
�
������

�����
� ��� ���

�
������

�����
�� ��� �������� �� ���������

��� ���� �
�����

� �� �������� ���������

���������� ��� � ���
�
������

�����
����� ���

�
������

�����
��

��� �������� �� ��������� � ������������ ������
�������� �� ������������� ��� ������

�
������

��� �
�����

��
�����

��
�����

��

���

���
���

�
�

�
�

Figure 3.38: Inputs of bi-character models (from the lattice).

We have to mention two important points:

1. To have an ideal model, we should use an adapted set of features by applying a
feature selection algorithm for each bi-character model using the feature selection
method explained in section 3.4.3. However, technically, a bi-character sample
may be obtained by concatenating different pairs of neighboring nodes. For in-
stance, in Figure 3.38, the group of graphemes gg1,4 represents the concatenations
(o(1,2) ∪ o(3,4)), (o(1,1) ∪ o(2,4)) and (o(1,3) ∪ o(4,4)). The group of graphemes

114

3 Handwritten words recognition system based on two levels analysis

gg1,4 will be used to validate or invalidate the pair of nodes: (o(1,2) and o(3,4)),
(o(1,1) and o(2,4)) or (o(1,3) and o(4,4)). The bi-character models used to verify each
pair of nodes are selected according to the N potential character candidates (hy-
potheses given by SCR) in each node, as explained in the example above.

In order to avoid re-computing the set of features for each bi-character model, we
decided to use the same set of features for all the models. Therefore, the feature
set computed from the group of graphemes gg1,4 can be used to validate/invalidate
all the hypotheses for the neighboring nodes: (o(1,2) ∪ o(3,4)), (o(1,1) ∪ o(2,4)) and
(o(1,3) ∪ o(4,4)).

2. Furthermore, if the node contains more than two graphemes, its group of graphemes
is also considered as a bi-character shape. This shape will be used to validate or
invalidate a pair of neighboring nodes at a lower level. For instance, the group
of graphemes gg1,3 in the node o(1,3) is considered as a bi-character shape to val-
idate or invalidate the pairs of nodes (o(1,1) and o(2,3)) and (o(1,2) and o(3,3)). We
decided to create the bi-character models using the same features set as the SCR
(see sections 3.4 and 3.4.3) as so, the features computed and used in the SCR can
be directly reused in the bi-character models which saves computational time.

In the context of bi-character models, the number of classes to be recognized is very
important compared to the SCR, since there are 26∗26 = 676 bi-character classes in the
case of Latin alphabet (lowercase and without accent character classes). As explained
above, the bi-character models are used for verification (i.e. authentication) to validate
or invalidate the outputs of the SCR. For these reason, only the one-against-all strategy
is needed. The models Bcicj of a bi-character class cicj is created by considering that
samples belonging to the class cicj are the positive samples (i.e. positive class, y = 1)
and the samples belonging to all other classes are the negative samples (i.e. negative
class, y = 0), where ci, cj ∈ {a, b, c, . . . , z}2. This problem becomes a binary classification
problem. Therefore, only bi-class classifier is needed to build these bi-character models.

As mentioned earlier in section 3.5.2, SVM is among the best statistical classifiers
and was originally designed for bi-class classification problem. In general, there are
two types of SVMs (see section 3.5.2). Non-linear SVM using a kernel function usu-
ally provides very promising results in various classification problems including isolated
character/digit recognition problems [20]. However, this method is not adapted for our
bi-character models since the storage of one model using kernel SVM require 15Mo stor-
ing space. Therefore, in order to store all the 676 models, up to 10Go of storing space
would be required. Furthermore, for loading such a huge amount of data, the system
requires a big size of Random-Access Memory. Due to this resource requirement, such
a system cannot be used on an ordinary computer nowadays (and therefore cannot be
easily embedded in a tablet). To circumvent this problem, logistic regression is used to
create these bi-character models since the logistic regression is specifically designed to
solve a bi-class classification problem in the case of large-scale data. In addition, the

115

3 Handwritten words recognition system based on two levels analysis

logistic regression has been successfully used in different fields such as medical, banking.

We give a brief introduction of Logistic Regression in the following paragraph. Then,
we explain how to use the Logistic Regression to build the bi-character models.

Logistic Regression Given an input data X to be recognized, the prob-
ability can be estimated by a logistic function, as in Equation (3.8).

P (y = ±1|X,β) =
1

1 + exp−y(βT X+b)
(3.8)

where y is the class label and b is the bias, which is often solved by adding
an additional dimension to the data: X ← [X, 1] and β ← [β, b]. The
Equation (3.8) can be denoted as:

P (y = ±1|X,β) =
1

1 + exp−y(β
T X)

(3.9)

where β is the vector of regression coefficients which is obtained by a training
process. This training process can be briefly explained as below:

The logistic regression assumes the training data as a binomial distribution.
Given a training database of K samples: (X1, y1), (X2, y2), . . . , (XK , yK),
where Xk = {x1

k, x
2
k, . . . , x

d
k}, which consists in a set of d features that rep-

resents the sample k and yk = {1, 0} represents the label of the sample k (1:
positive class, 0 negative class). The training process aims at estimating the
optimal vector of the regression coefficients β by minimizing the negative
log-likelihood, as denoted in Equation (3.10) [86].

argmin
β∗

�
−�K

k=1 log
1

1+exp(−ykβT Xk)

�
(3.10)

= argmin
β∗

�
−�K

k=1[log(1)− log(1 + exp(−ykβT Xk))]
�

= argmin
β∗

��K
k=1 log(1 + exp

(−ykβT Xk))
�

(3.11)

To get a smooth training, the regularization variable 1
2
βTβ can be added.

Equation (3.11) can be denoted as:

argmin
β∗

�
1
2
βTβ + C

�K
k=1 log(1 + exp

(−ykβT Xk))
�

(3.12)

116

3 Handwritten words recognition system based on two levels analysis

where C > 0 is a parameter given by the user to balance the two parts of
the Equation (3.12).

Bi-character models using Logistic Regression

In our context, the model of each bi-character class cicj (Bcicj) is trained
using the optimization function presented in equation 3.12. We obtain the
corresponding regression coefficient vector βcicj

. The verification stage works
as below:

Let us consider the example in Figure 3.38, where X is the concatenation of
the neighboring nodes o(1,2) and o(3,4) (X = (o(1,2) ∪ o(3,4))). The label to be
verified is ”au”. Hence, the recognition score a(”au”|o(1,2) ∪ o(3,4)), denoted
as:

a(”au”|o(1,2) ∪ o(3,4)) = P (”au”|X,β”au”) =
1

1 + expδ”au”(X)(βT
”au”X)

(3.13)

where δ”au”(X) = 1 ifX belongs to the class ”au”, and 0 otherwise. Here, the
ground-truth is known as we use the bi-character models to validate/invalidate
the recognition results given by the SCR.

3.6.3 Conclusion

This section introduces the original idea of bi-character models. These models allow
recognizing pairs of characters by jointly considering every pair of neighboring nodes
in the lattice. The objective is to solve three problems: shared character part, simi-
larity between different character classes, and unknown patterns. In our system, the
bi-character models are built using logistic regression.

In order to find the most probable words associated with an input signal, we must
combine the SCR and the bi-character models during the word decoding process detailed
in the next section.

3.7 Word decoding process

As mentioned earlier in section 3.1, each node in the lattice (see section 3.3.3) is analyzed
by a SCR (see section 3.5). The results at the character level are further verified by the
bi-character models (see section 3.6), by taking into account pairs of neighboring nodes.

117

3 Handwritten words recognition system based on two levels analysis

In the word decoding step, a word decoding method is applied to the lattice, to find
the most probable words in a given lexicon for each lattice. In our work, two word
decoding strategies are used. The first strategy relies on a directed graph search method
(see section 3.7.2), while the second strategy relies on dynamic programming (see sec-
tion 3.7.3).

As with other systems in the literature, external knowledge is required in order to
improve the effectiveness and the efficiency of the system (see section 2.2.5). In this
experiment, we use a lexicon which is classical for HWR problem. Before introducing
our two decoding methods, the lexicon structure is introduced in the following section.

3.7.1 Lexicon TRIE model

A lexicon is generally used for HWR, in order to enhance their effectiveness and ef-
ficiency, by integrating knowledge about the language in the recognition process. To
integrate a lexicon in the system, different methods can be used (see section 2.2.5).

In our context, we use a prediction method to guide the decisions during propaga-
tion in the lattice. The lexicon is represented by a TRIE model (also known as prefix
tree). Each node at step l points to the list of all possible characters at step l + 1. Fig-
ure 3.39 illustrates an example of a TRIE that represents a lexicon containing 6 words
(”au”, ”en”, ”cinq”, ”ou”, ”une”, ”unis”).

�

�

�

�

�

�

�

�

�

�

�

�� �

�

� �

���� �� � � � �

Figure 3.39: TRIE model representing a lexicon that contains 6 words (”au”, ”en”,
”cinq”, ”ou”, ”une”, ”unis”)

Let us denote:

• D: lexicon tree

• Dl: set of candidate characters at step l

• dl: a candidate character at step l, (dl ∈ Dl)

The prediction is performed as follows:

118

3 Handwritten words recognition system based on two levels analysis

• All the possible characters at step 1 (l = 1) is: D1(∅) = {‘a‘, ‘c‘, ‘e‘, ‘o‘, ‘u‘}
• All the possible characters at step 2 (l = 2) where d1 = ‘u‘ is:
D2(‘u‘) = {‘n‘}

• All the possible characters at step 3 (l = 3) where d1 = ‘u‘, d2 = ‘n‘ is:
D3(”un”) = {‘e‘, ‘i‘}.

During the word decoding process, at step l, the search space at step l + 1 will be
restricted to the character candidates given by the lexicon at step l + 1 (D(l+1)).

Due to a lack of time, the TRIE model will be integrated only with our first method,
directed graph search (see section 3.7.2). In our second method (see section 3.7.3), we
use a flat search strategy where the decoding process is applied word by word for every
word in the lexicon. In both methods, only the paths corresponding to words in the
lexicon are decoded, and therefore, our system is lexicon dependent whatever the word
decoding method used.

3.7.2 Directed graph search method

This method aims at searching the most probable paths in the lattice (based on the out-
puts of the SCR, as well as the bi-character models) associated to each word wi in the
lexicon. This search method relies on a graph search similar to Beam-Search algorithm
where only E best candidates are considered at each stage of propagation in the graph.
Graph corresponds to the lattice in our system. The terms ”directed” refers to the fact
that the propagation in the graph is performed in only one direction (from left-to-right
for the left-to-right handwriting). A TRIE model D of the lexicon (see section 3.7.1) is
used to predict a list of possible candidate characters during the search process. Each
path from the start node to the end node corresponds to a word in the lexicon.

Let us denote the lattice as below:

• T : number of graphemes

• L: maximum level of the lattice. It also refers to the maximum number
of graphemes composing a character.

• o(t,t�): a node in the lattice, where t and t� indicate respectively the
starting and the ending indexes of the graphemes in the node and t ≤ t�

and 1 ≤ t, t� ≤ T .

• o(1,t): is the starting nodes of the lattice (starting grapheme = 1),
where t = 1 to L.

• Nodes following the node o(t,t�) are o(t�+1,t�+l), where l = 1 to L and
t� + l ≤ T ;

• b(cm|o(t,t�)): estimated probability that the node o(t,t�) is recognized as
character class cm. This estimated probability is given by the SCR (see
section 3.5).

119

3 Handwritten words recognition system based on two levels analysis

• N : number of Top-N hypotheses in each node, given by the SCR.

• a(cmcn|o(t,t�) ∪ o(t�+1,t”)): estimated probability that the pair of neigh-
boring nodes o(t,t�) and o(t�+1,t”) is recognized by the bi-character model
Bcmcn (see section 3.6) as the pair of character cmcn.

The word search process is in two steps. To illustrate this searching strategy, let us
start with an introduction example. A more formal description will be provided after.

Example:

Let us consider that we have an input signal containing 7 segmented graphemes
(T = 7). The corresponding 3 levels (L = 3) lattice is illustrated in Figure 3.40.
At each node of the lattice, let us select only 3 potential character candidates (N = 3),
as illustrated in Figure 3.41(a). The starting nodes in this lattice are {o(1,1), o(1,2), o(1,3)}.

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

� �

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

���
�

�����

���

Figure 3.40: A lattice of T = 7 graphemes and L = 3 levels.

Suppose that we have a TRIE model of a lexicon as illustrated in Figure 3.39, the
results of the search process are below:

Step 1: Let us take the starting node o(1,1) (t = 1) as an example. Nodes
following the node o(1,1) are {o(2,2), o(2,3), o(2,4)}. We suppose the N = 3 po-
tential character candidates in each node as given in Figure 3.41(b). Some
pairs of characters will not be considered since they do not satisfy the TRIE
model (see condition 1 hereafter). For instance, this is the case of the pair
of characters cmcn = ”ai”, since there is no character cn = ‘i‘ following the
character cm = ‘a‘ in the lexicon (cn = ‘i‘ �∈ D2(cm = ‘a‘) = {‘u‘}). The list
WL1, PL1, NL1 containing respectively the pairs of characters, their scores
and the last visited nodes (supposing that they are ordered by score PL1)
are:

120

3 Handwritten words recognition system based on two levels analysis

� �
�����

�
�����

�
�����

�
�
� ���������

�
�
� ���������

�
�
� ���������

(a) Starting nodes

�
�����

�
�����

�
�����

�
�����

�
�
� ���������

�
�
� ���������

�
�
� ���������

�
�
� ���������

(b) Nodes following the node o(1,1)

Figure 3.41: The nodes extracted from the lattice in Figure 3.40. a) Example of starting
nodes and their N = 3 potential character candidates. b) Nodes following
the node o(1,1) and their N = 3 potential character candidates.

WL1: list of sub-
words PL1 : list of scores

NL1: list of the
last nodes vis-
ited

cmcn = ”au” b(cm = ‘a‘|o(1,1)) ∗ b(cn = ‘u‘|o(2,3)) ∗ a(cmcn = ”au”|o(1,1) ∪ o(2,3)) o(2,3)

cmcn = ”au” b(cm = ‘a‘|o(1,1)) ∗ b(cn = ‘u‘|o(2,4)) ∗ a(cmcn = ”au”|o(1,1) ∪ o(2,4)) o(2,4)

cmcn = ”ci” b(cm = ‘c‘|o(1,1)) ∗ b(cn = ‘i‘|o(2,2)) ∗ a(cmcn = ”ci”|o(1,1) ∪ o(2,2)) o(2,2)

cmcn = ”ou” b(cm = ‘o‘|o(1,1)) ∗ b(cn = ‘u‘|o(2,3)) ∗ a(cmcn = ”ou”|o(1,1) ∪ o(2,3)) o(2,3)

cmcn = ”ou” b(cm = ‘o‘|o(1,1)) ∗ b(cn = ‘u‘|o(2,4)) ∗ a(cmcn = ”ou”|o(1,1) ∪ o(2,4)) o(2,4)

Now, cmcn = ”au” and cmcn = ”ou” are full words in the lexicon. How-
ever, these found words (”au” and ”ou”) contain respectively only 3 and 4
graphemes out of the 7 graphemes in the input handwritten word. Therefore,
they will be not added into the final list WL,PL,NL of possible words.

The list of E = 3 highest candidates with highest scores (WL∗
1, PL

∗
1, NL∗

1)
(considering that they are ordered by score) are:

121

3 Handwritten words recognition system based on two levels analysis

WL∗
1: list of sub-

words PL∗
1: list of scores

NL∗
1: list of the

last nodes vis-
ited

cmcn = ”au” b(cm = ‘a‘|o(1,1)) ∗ b(cn = ‘u‘|o(2,3)) ∗ a(cmcn = ”au”|o(1,1) ∪ o(2,3)) o(2,3)

cmcn = ”au” b(cm = ‘a‘|o(1,1)) ∗ b(cn = ‘u‘|o(2,4)) ∗ a(cmcn = ”au”|o(1,1) ∪ o(2,4)) o(2,4)

cmcn = ”ci” b(cm = ‘c‘|o(1,1)) ∗ b(cn = ‘i‘|o(2,2)) ∗ a(cmcn = ”ci”|o(1,1) ∪ o(2,2)) o(2,2)

For each sub-word cmcn ∈WL∗
1, we continue to step 2. In the case of cmcn =

”au”, the continuation is impossible since in the lexicon, there is not any char-
acter following after the sequence of characters ”au” (D3(cmcn = ”au”) = ∅,
see condition 2, hereafter). Let us consider the case that cmcn = ”ci”.

Step 2: By considering the case that cmcn = ”ci”, we obtain its recognition
score P (”ci”), its last character cn = ‘i‘ and its last node visited o(2,2) given
by the step 1. The nodes following the node o(2,2) are: o(3,3), o(3,4) and o(3,5).
We consider their character candidates given in Figure 3.42.

�
�����

�
�����

�
�����

�
�����

�
�
� ���������

�
�
� ���������

�
�
� ���������

�
�
� ���������

Figure 3.42: Nodes following the nodes o(2,2) and their candidate characters.

By taking into account the TRIE model condition (see condition 3 hereafter),
there is only one character (‘n‘) following the sequence of character ”ci”
(D3(cmcn = ”ci”) = {‘n‘}). Therefore, the possible sub-words given by this
stage (WL2, PL2 and NL2) are:

WL2: list of sub-
words PL2: list of scores

NL2: list of the
last nodes vis-
ited

”cin” P (cmcn) ∗ b(ck = ‘n‘|o(3,5)) ∗ a(cnck = ”in”|o(2,2) ∪ o(3,5)) o(3,5)

By taking the E = 3 best candidates with highest scores, we obtain WL∗
2 =

WL2, PL
∗
2 = PL2 and NL∗

2 = NL2. For each candidate inWL∗
2, we continue

with step 2 recursively until the end of the graph (lattice).

122

3 Handwritten words recognition system based on two levels analysis

Description of directed graph search method

Step 1: This step searches for a list of first pairs of characters WL1 (and
list PL1 of their computed scores) from the starting nodes of the lattice. A
list NL1 is used to store the last visited nodes which allows indicating the
positions of the propagation in the graph. This searching process is detailed
hereafter. The results provided in this searching step will be further submit-
ted to Step 2.

For each starting node o(1,t) (t = 1 to L) and their following nodes {o(t+1,t+l)}
(where l = 1 to L and t+ l < T), we search a list WL1 of pairs of characters
cmcn, where cm and cn are respectively the recognized characters at nodes
o(1,t) and o(t+1,t+l). The pair of characters cmcn have to exist in the TRIE
model D of the lexicon. We verify the below condition:

condition 1:

• cm ∈ D1(∅): to verify if there is any word in the lexicon starting with
the character cm

• cn ∈ D2(cm): to verify if there is any word in the lexicon starting with
the pair of characters cmcn

If the pair of characters cmcn does not verify the condition 1, it will not be
considered during the next propagation step. If cmcn is a full word in the
lexicon, and contains all the graphemes in the lattice, it will be added to
the final list of words WL, and its recognition score is added to the list PL.
Otherwise, if the cmcn is a full word in the lexicon, but does not contain all
the graphemes in the lattice (too short compared to the input handwritten
word signal), it will not be added in the final list of word.

The recognition score P (cmcn) can be computed from the SCR and the bi-
character models outputs using Equation (3.14) and can be added to the
scores list PL1. The last visited nodes o(t+1,t+l) are stored in the list NL1.

P (cmcn) = b(cm|o(1,t)) ∗
b(cn|o(t+1,t+l)) ∗

a(cmcn|o(1,t) ∪ o(t+1,t+l))

(3.14)

To reduce the computational complexity, only the E−best (giving the highest
recognition scores) pairs of characters in the list WL1 (and their correspond-
ing elements in the list PL1 and NL1) are selected for the next step. We

123

3 Handwritten words recognition system based on two levels analysis

obtain a new list WL∗
1, PL

∗
1 and NL∗

1 of E elements. The value of the pa-
rameter E is experimentally settled.

For each pair of characters cmcn ∈ WL∗
1, we continue to step 2, if this pair

of characters cmcn verify the condition 2, as explained below.

condition 2: this condition is to verify is there any possible character(s) fol-
lowing the pair of characters cmcn in the given lexicon. This condition is
denoted as: D3(cmcn)! = ∅.

Step 2 : from each element cmcn ∈WL∗
1, we search the most probable paths

(where each path is associated to one word in the lexicon) and their recogni-
tion scores. Each pair of characters cmcn ∈WL∗

1 has a score P (cmcn) ∈ PL∗
1

and a last visited node o(t�,t”) ∈ NL∗
1 (where t

� = t+ 1 and t” = t+ l).

For all nodes o(t”+1,t”+l) (where l = 1 to L) following the node o(t�,t”) and all
characters ck in the candidate characters of the node o(t”+1,t”+l), we search
a list of another E consecutive nodes and characters giving highest scores
taking into account the lexicon (condition 3), as explained hereafter. From
this new list of selected nodes and characters, we repeat step 2 recursively
by taking into account the lexicon (condition 4), until the ending node of the
lattice is reached.

condition 3: this condition aims at verifying if in the lexicon, there is at least
a word where the character ck follows the sequence of characters cmcn. This
condition can be denoted as ck ∈ D3(cmcn).

condition 4: similar to the condition 2, it aims at verifying if there is any
possible character(s) following the sequence of characters cmcnck in the lexi-
con. This condition is denoted as: D4(cmcnck)! = ∅.

For each ck in the candidate characters of the node o(t”+1,t”+l) and verifying
the conditions 3 and 4, we compute the score P (cmcnck) as follows:

P (cmcnck) = P (cmcn) ∗
b(ck|o(t”+1,t”+l)) ∗

a(cnck|o(t�,t”) ∪ o(t”+1,t”+l))

(3.15)

where b(ck|o(t”+1,t”+l)) and a(cnck|o(t�,t”) ∪ o(t”+1,t”+l)) are respectively the outputs of
the SCR and bi-character models. The multiplication result of these values can be a

124

3 Handwritten words recognition system based on two levels analysis

very small value that computer cannot store in the memory (”arithmetic underflow”).
Therefore, in practice, sum of logarithms is used instead of multiplication. Hence, the
Equations (3.14) and (3.15) can be respectively replaced by:

log(P (cmcn)) = log(b(cm|o(1,t)))+

log(b(cn|o(t+1,t+l)))+

log(a(cmcn|o(1,t) ∪ o(t+1,t+l)))

(3.16)

log(P (cmcnck)) = log(P (cmcn))+

log(b(ck|o(t”+1,t”+l)))+

log(a(cnck|o(t�,t”) ∪ o(t”+1,t”+l)))

(3.17)

After the step 2, the system provides a listWL of words wi and their associated recog-
nition scores in PL. A word wi in the lexicon may be found in different paths in the
lattice, with different scores. Finally, for each word wi, only the path giving the highest
score and reach the ending node of the lattice is selected as the final result. The recog-
nition scores of each word wi is then normalized by its length (number of characters).
The W − best words with highest scores are considered as the outputs of the system.

Conclusion

Our research work is a part of a commercial project in collaboration with a private
company. Although this searching strategy provides very encouraging results [112, 111]
and allowed us to provide the first result to the company, it has some drawbacks. In-
deed, it relies on the best-first search algorithm. Firstly, the recognition paths are not
optimally chosen and it can provide a local optimum solution. Secondly, this method
is very dependent on the pruning parameter E, which is difficult to settle. If E is too
small, then the system risks to miss the correct path. On the other hand, if E is high,
the computational time may be very high.

In order circumvent these drawbacks, we proposed another word decoding method. It
relies on dynamic programming, similar to Viterbi algorithm [146].

3.7.3 Dynamic programming

Given a lattice G of graphemes corresponding to a word to recognize, this method
consists in searching an optimal path for each word wi in a given lexicon, and calculating
its recognition score. This method relies on dynamic programming, introduced hereafter.
We have to mention that, in our preliminary experiments, a flat search strategy (i.e.
word by word search) is used. A speedup could be achieved with a TRIE representation

125

3 Handwritten words recognition system based on two levels analysis

of the lexicon instead of decoding separately each word in the lexicon.

3.7.3.1 Description of the method

Let us consider the input handwritten word as a sequence of nodes o(t,t�) in the corre-
sponding lattice, where each node is indexed by its starting grapheme t and its ending
grapheme t�. Let us call T the total number of graphemes in the word, and L the
maximum level of the lattice (i.e. the maximum number of graphemes in a character).
Given a lattice G, the recognition score Pwi

(G) of the word wi = {c1, c2, . . . , cK} is com-
puted recursively using Equation (3.18) and Pwi

(G) = P (T, cK |{c1, . . . cK−1}). At each
grapheme t and each character ck in the word wi, only the best path (optimal path) is
kept. An example of this decoding method is given in Figure 3.43.

P (t, ck|{c1, . . . ck−1}) = max
l=1..L

[P (t− l, ck−1|{c1, . . . ck−2})
b(ck|o(t−l+1,t))

a(ck−1ck|s(t− l, ck−1) ∪ o(t−l+1,t))]

(3.18)

In practice, the sum of logarithms is used instead of multiplication (because of arith-
metic underflow). The Equation (3.18) can be denoted as:

log(P (t, ck|{c1, . . . ck−1})) = max
l=1..L

[log(P (t− l, ck−1|{c1, . . . ck−2}))+
log(b(ck|o(t−l+1,t)))+

log(a(ck−1ck|s(t− l, ck−1) ∪ o(t−l+1,t)))]

(3.19)

Where

• t ∈ {1, 2, . . . , T}
• s(t− l, ck−1) is the node selected for the character ck−1 at earlier steps.

• b(ck|o(t−l+1,t)) is the estimated probability that node o(t−l+1,t) is recog-
nized as the character ck. This estimated probability is given by the
SCR (see section 3.5).

• a(ck−1ck|s(t− l, ck−1) ∪ o(t−l+1,t)) is the output probability provided by
the bi-character model Bck−l,ck for the pair of neighboring nodes s(t −
l, ck−1) and o(t−l+1,t) (see section 3.6).

Initialization:

• if k = 1 and t ≤ L then, P (t, c1) = b(c1|o(1,t)) and s(t,c1) = o(1,t)

• if k = 1 and t > L then P (t, c1) = null, since o(1,t) cannot be a node (as
it would be at a higher level than the maximum level L of the lattice).

126

3 Handwritten words recognition system based on two levels analysis

An example of such a case is given in Figure 3.43 (the cross for character
’c’ at t = 4)

• if t < k then P (t, ck|{c1, c2, . . . ck−1}) = null, as computation is impos-
sible as one grapheme cannot stand for more than one character (see
Figure 3.43, the cross for letter ’i’ at t = 1). This hypothesis is realistic
because our segmentation method tends to over-segment the characters,
not to under-segment them.

The recognition score of each word wi is then normalized by its length (number of
characters). Words with the highest scores are considered as the outputs of the system.
An example is given hereafter to illustrate this method.

Example:

Considering the lattice given in Figure3.40, page 120 of 7 graphemes concatenated at
3 levels (T = 7, L = 3), the decoding process of the word wi = ”cinq” (c1 = ‘c‘, c2 = ‘i‘,
c3 = ‘n‘ and c4 = ‘q‘) is illustrated in Figure 3.43.

� � � �

���

���

�
����������������

�������������

�

� � � �

�

���

���

�

� � �

�

� � �

�������
����� �

���

������� ����

����������� ����

�������
����� �

�������
������

������
���

���

��� ���

�������
����� �

�������
����� �

�������
������

Figure 3.43: An example of the decoding process of word ”cinq” for the lattice given
in Figure 3.40 using our dynamic programming method. The solid lines
represent the optimal paths.

127

3 Handwritten words recognition system based on two levels analysis

The decoding results can be described as follows:

t=1

k=1: ck = ‘c‘

P (1, ‘c‘) = b(‘c‘|o(1,1))

s(1, ‘c‘) = o(1,1)

k={2,3,4}

P (1, ‘i‘|{‘c‘}) = P (1, ‘n‘|{‘c‘, ‘i‘}) = P (1, ‘q‘|{‘c‘, ‘i‘, ‘n‘}) = null

t=2

k=1: ck = ‘c‘

P (2, ‘c‘) = b(‘c‘|o(1,2))

s(2, ‘c‘) = o(1,2)

k=2: ck = ‘i‘, ck−1 = ‘c‘

P (2, ‘i‘|{‘c‘}) = max[P (1, ‘c‘) ∗ b(‘i‘|o(2,2)) ∗ a(”ci”|s(1, ‘c‘) ∪ o(2,2))]

s(2, ‘i‘) = o(2,2)

k={3,4}

P (2, ‘n‘|{‘c‘, ‘i‘}) = P (2, ‘q‘|{‘c‘, ‘i‘, ‘n‘}) = null

t=3

k=1: ck = ‘c‘

P (3, ‘c‘) = b(‘c‘|o(1,3))

s(3, ‘c‘) = o(1,3)

k=2: ck = ‘i‘, ck−1 = ‘c‘

P (3, ‘i‘|{‘c‘}) = max[P (1, ‘c‘) ∗ b(‘i‘|o(2,3)) ∗ a(”ci”|s(1, ‘c‘) ∪ o(2,3)),

P (2, ‘c‘) ∗ b(‘i‘|o(3,3)) ∗ a(”ci”|s(2, ‘c‘) ∪ o(3,3))]

128

3 Handwritten words recognition system based on two levels analysis

suppose that P (2, ‘c‘) ∗ b(‘i‘|o(3,3)) ∗ a(”ci”|s(2, ‘c‘)∪ o(3,3)) is maxi-
mum, then the retained node is s(3, ‘i‘) = o(3,3), otherwise s(3, ‘i‘) =
o(2,3)

k=3: ck = ‘n‘, ck−1 = ‘i‘

P (3, ‘n‘|{‘c‘, ‘i‘}) = max[P (2, ‘i‘|{‘c‘}) ∗ b(‘n‘|o(3,3)) ∗ a(”in”|s(2, ‘i‘) ∪ o(3,3))]

s(3, ‘n‘) = o(3,3)

k=4

P (4, ‘q‘|{‘c‘, ‘i‘, ‘n‘}) = null

t=4

k=1

P (4, ‘c‘) = null

k=2

P (4, ‘i‘|{‘c‘}) = max[P (1, ‘c‘) ∗ b(‘i‘|o(2,4)) ∗ a(”ci”|s(1, ‘c‘) ∪ o(2,4)),

P (2, ‘c‘) ∗ b(‘i‘|o(3,4)) ∗ a(”ci”|s(2, ‘c‘) ∪ o(3,4)),

P (3, ‘c‘) ∗ b(‘i‘|o(4,4)) ∗ a(”ci”|s(3, ‘c‘) ∪ o(4,4))]

suppose that P (2, ‘c‘) ∗ b(‘i‘|o(3,4)) ∗ a(”ci”|s(2, ‘c‘) ∪ o(3,4)) is the
maximum score, then the retained node is s(4, ‘i‘) = o(3,4), oth-
erwise, it would be o(2,4) or o(4,4) (depending on which therm is
maximum)

k=3

P (4, ‘n‘|{‘c‘, ‘i‘}) = max[P (2, ‘i‘|{‘c‘}) ∗ b(‘n‘|o(3,4)) ∗ a(”in”|s(2, ‘i‘) ∪ o(2,4)),

P (3, ‘i‘|{‘c‘}) ∗ b(‘n‘|o(4,4)) ∗ a(”in”|s(2, ‘i‘) ∪ o(4,4))]

suppose that P (3, ‘i‘|{‘c‘}) ∗ b(‘n‘|o(4,4)) ∗ a(”in”|s(2, ‘i‘) ∪ o(4,4)))
is the maximum score, then the retained node is s(4, ‘n‘) = o(4,4),
otherwise it is o(2,4)

129

3 Handwritten words recognition system based on two levels analysis

k=4

P (4, ‘q‘|{‘c‘, ‘i‘, ‘n‘}) = max[P (3, ‘n‘|{‘c‘, ‘i‘}) ∗ b(‘q‘|o(4,4)) ∗ a(”nq”|s(3, ‘n‘) ∪ o(2,4)))]

s(4, ‘q‘) = o(4,4)

In the case of t = {5, 6, 7}, the decoding process can be described in the
same way.

In this example (see Figure 3.43), we obtain 4 optimum paths of the word ”cinq”:

1. {o(1,1), o(2,2), o(3,3), o(4,4)} with recognition score P (4, ‘q‘|{‘c‘, ‘i‘, ‘n‘})
2. {o(1,1), o(2,2), o(3,3), o(4,5)} with recognition score P (5, ‘q‘|{‘c‘, ‘i‘, ‘n‘})
3. {o(1,2), o(3,3), o(4,5), o(5,6)} with recognition score P (6, ‘q‘|{‘c‘, ‘i‘, ‘n‘})
4. {o(1,2), o(3,3), o(4,5), o(5,7)} with recognition score P (7, ‘q‘|{‘c‘, ‘i‘, ‘n‘})

The first 3 paths are not retrained since the word ”cinq” is found before the
ending node is reached. Hence, the recognition score of word cinq for the
lattice G is P”cinq”(G) = P (7, ‘q‘|{‘c‘, ‘i‘, ‘n‘}) in the 4th path.

3.7.3.2 Adaptation to the character size

The method presented above assumes that every character class has the same maximum
number of graphemes (i.e size of character), despite their differences. It is however ob-
vious that the number of graphemes in the character ‘c‘ is lower than the number of
graphemes in the characters {‘n‘, ‘m‘, . . . }. Let us suppose that the maximum number
of graphemes of the character ‘c‘ (respectively ‘i‘, ‘n‘, ‘q‘) is equal to 2 (and 3). In such
a case, it is useless to decode the character ck = ‘c‘ at t = 3 and its following paths
({o(1,3), o(4,4), o(5,7)}, {o(1,3), o(4,5), o(6,7)}, . . .), as illustrated in Figure 3.44.

Our objective is to take into account the maximum number of graphemes adapted
to each character class during the word decoding process. Using this trick, the com-
putational time can be reduced, since useless paths can be avoided. Furthermore, the
ambiguities with unknown pattern can be also reduced. Equation (3.18) can be replaced
by Equation (3.20).

P (t, ck|{c1, . . . ck−1}) = max
m=1..L(ck)

[P (t−m, ck−1|{c1, . . . ck−2})∗

b(ck|o(t−m+1,t))∗
a(ck−1ck|s(t−m, ck−1) ∪ o(t−m+1,t)]

(3.20)

Where L(ck) is the maximum number of graphemes for the character ck.

Under the following conditions:

130

3 Handwritten words recognition system based on two levels analysis

� � � �

���

���

�
����������������

�������������

�

� � � �

�

���

���

�

� � �

�

� � �

�������
����� �

���

������� ����

����������� ����

�������
����� �

�������
������

������
���

���

��� ���

�������
����� �

�������
����� �

�������
������

����

������������

Figure 3.44: Example of the decoding process of word ”cinq” using dynamic program-
ming: adaptation to the size of character. The red-dashed lines represent
the fruitless paths.

• if k = 1 and t ≤ L(ck), then P (t, c1) = b(c1|o(1,t)) and s(t,c1) = o(1,t)

• if k = 1 and t > L(ck), then P (t, 1) = null, since it is considered as a
fruitless path (for instance in Figure 3.44, character ‘c‘ and t = 3), or
cannot be a node.

In order to estimate the number of graphemes per character class, a single character
database (see section 4.1.4) is used. The samples of each character class ck are seg-
mented into graphemes using the same segmentation method as in handwritten word
segmentation (see section 3.3). A accumulative histogram of the number of graphemes
for each character ck is created by counting the number of character samples that contain
different number of graphemes i = {1, 2, 3, . . . , 10}, denoted as HGck(i). We consider
that the maximum number of graphemes L(ck) for each character class ck that will be
retained must be able to represent at least 99% of the total samples in the class ck. It can

be described as:
�L(ck)

i=1

HGck
(i)

NC(ck)
> 99%, where NC(ck) is the total number of character

samples of the class ck.

Table 3.2 gives an example of the cumulative graphemes histogram for three different
characters, ck = {‘a‘, ‘c‘, ‘w‘}, and the number of graphemes varied from 1 to 10. Ac-
cording to this histogram, the number of maximum graphemes for the character classes

131

3 Handwritten words recognition system based on two levels analysis

‘a‘, ‘c‘ and ‘w‘ are respectively: L(‘a‘) = 5, L(‘c‘) = 3 and L(‘w‘) = 6.

Table 3.2: The cumulative histogram of graphemes of characters ‘a‘, ‘c‘ and ‘w‘.
character class ck = ‘a‘ character class ck = ‘c‘ character class ck = ‘w‘

i HG‘a‘(i)
�10

i=1
HG‘a‘(i)
NC(‘a‘)

i HG‘c‘(i)
�10

i=1
HG‘c‘(i)
NC(‘c‘)

i HG‘w‘(i)
�10

i=1
HG‘w‘(i)
NC(‘w‘)

1 9 0.60% 1 356 23.73% 1 0 0.00%
2 82 6.07% 2 751 73.80% 2 56 3.73%
3 837 61.87% 3 381 99.20% 3 154 14.00%
4 515 96.20% 4 12 100.00% 4 1200 94.00%
5 49 99.47% 5 0 100.00% 5 71 98.73%
6 7 99.93% 6 0 100.00% 6 19 100.00%
7 1 100.00% 7 0 100.00% 7 0 100.00%
8 0 100.00% 8 0 100.00% 8 0 100.00%
9 0 100.00% 9 0 100.00% 9 0 100.00%
10 0 100.00% 10 0 100.00% 10 0 100.00%

3.7.4 Conclusion

This section introduces two word decoding methods which are applied to the lattice of
graphemes (see section 3.3) in order to find the best path associated with each word
wi in a given lexicon. These methods rely on the information provided by a SCR (see
section 3.5) and the bi-character models (see section 3.6). The words with the highest
recognition scores are considered as the recognized words of the input writing.

The first method is a directed graph search method based on a pruning strategy. This
search method is similar to Beam-Search algorithm. At each step, only the E-best can-
didates are considered. The fruitless candidates (i.e. candidates with lowest probability)
are abandoned. The parameter E has to be optimally fixed, otherwise, the correct path
may be lost.

To handle this difficulty, a second method is proposed. This method finds an optimal
path for each word wi in the lattice. It relies on dynamic programming, similarly to
Viterbi algorithm, and takes into account the size of each character.

3.8 Conclusion

This chapter introduces a new discriminative approach to create an on-line handwritten
word recognition system. This proposed system relies on three mains aspects: explicit
grapheme segmentation/recognition, SCR and bi-character models. In this system:

• Both on-line and off-line (local and global, statistical and structural) features are
used in order to take profit of their complementarity, and avoid some problems
linked to the instability of the on-line features (see section 2.2.3.3 and Fig. 2.3).

132

3 Handwritten words recognition system based on two levels analysis

• A delayed stroke management method is proposed (see section 2.2.1).

• A SCR with rejection is used. Two solutions have been proposed for rejecting
unknown patterns. The first method consists in adding a garbage class in the
SVM classifier, while the second method relies on a cascade of Adaboost classi-
fiers to refine the outputs given by the SVM classifier. Both solutions satisfy the
requirement of the explicit segmentation/recognition method (see table. 2.2).

• At each node of the lattice, only the N potential characters returned by the SCR
(with highest scores) are used (see section 3.5.4). Using such method, computa-
tional time is reduced without degrading the effectiveness of the system. Different
experimental results are given in section 4.2.

• Contextual information is integrated in the recognition process by jointly recogniz-
ing pairs of neighboring characters using bi-character models. These bi-character
models allow verifying recognition results returned by the SCR, in order to avoid
some ambiguities that may appear during word decoding. The bi-character models
are built using logistic regression.

• Two word decoding methods are introduced: directed graph search and dynamic
programming.

In the next chapter, a series of experiments are presented, in order to evaluate our
system and different solutions introduced at the: single character, bi-character and word
decoding levels. A comparison between the proposed system and a baseline HMM-based
system is given and discussed.

133

Contents
4.1 Databases 136

4.2 Experiments and discussions . . 144

4.3 Comparison with a baseline HMM-
based system 170

4.4 Conclusion 174

This chapter aims at evaluating the effectiveness and efficiency of the
proposed system. It presents the experimental protocols/configurations
and discusses the experimental results. First, we introduce the differ-
ent databases that were used in these experiments. Then, we present a
series of experiments which are performed with different configurations
in order to evaluate the different methods/strategies for each stage of
the system. We also compare the proposed system with a baseline
HMM-based system and discuss their recognition results.

4 Experiments and Discussion

135

4 Experiments and Discussion

Our proposed on-line HWR relies on an explicit segmentation/recognition approach
using a two levels analysis: character (see section 3.5) and bi-character (see section 3.6)
levels. The three main stages in this proposed system are:

• At the character level, a SCR is used (see section 3.5). It relies on a SVM classifier
using a combination of on-line and off-line features. In order to deal with the prob-
lem concerning the unknown patterns in some nodes in the lattice, two different
rejection strategies are proposed, respectively based on SVM with garbage class
and rejection systems (relying on a cascade of Adaboost classifiers).

• At the bi-character level, the bi-character models are used to refine the outputs
provided by the SCR. These bi-character models are created using Logistic Re-
gression (see section 3.6).

• Two strategies are presented for the word decoding process. The first one relies
on directed graph search, while the second relies on dynamic programming similar
to Viterbi algorithm (see section 3.7).

This chapter provides experimental results and discussions on the effectiveness and
efficiency of our system. The experiments introduced in section 4.2 aim at evaluating
the different methods/strategies which are used in these three main stages. Before
introducing these experiments, in section 4.1, we introduce the different databases which
are used for our evaluation process. Section 4.3 is dedicated to a comparison between
our system and a baseline HMM-based system. Finally, a conclusion is provided as a
summary of all the obtained results.

4.1 Databases

Three standard databases of the literature are used in our experiments: IRONOFF,
UNIPEN and Unipen-ICROW-03. In addition to these three databases, a single charac-
ter database and a bi-character database are created and are used to respectively train
the SCR and the bi-character models.

Let us remind that the isolated characters refer to the characters which are individually
written in predefined boxes, while single characters refer to the ones which are segmented
from handwritten words.

4.1.1 IRONOFF

The IRONOFF database has been collected by Nantes University [142]. It contains
writings of isolated characters and isolated words in both types of data: on-line and
off-line. The off-line data corresponds to real scanned image. The isolated characters
are classified into three groups (digit, uppercase and lowercase). The isolated words are
classified into three other groups (bank cheque, accented and English words), as shown
in Table 4.1.

136

4 Experiments and Discussion

Table 4.1: Detailed information about the IRONOFF database.

Group of data Number of classes/lexicon size Number of samples
Digit 10 4086

Character Lowercase 26 10685
Uppercase 26 10679
Cheque word 30 11934

Word Accented word 171 28657
English word 26 2689

Note:

• The group of ”Cheque words” contains the writings of 30 French words
which are used in the French Cheque system. Each word is composed
of only lowercase and non accented characters.

• The group of ”Accented words” contains the writings of 171 French
words. Each word can be composed of lowercase, uppercase and/or
accented characters.

• The group of ”English words” contains the writings of 26 English words.
Each word can be composed of lowercase and/or uppercase characters.

4.1.2 UNIPEN

The UNIPEN database contains on-line handwriting of isolated characters, single char-
acters extracted from handwritten words, isolated words and text-lines of various lan-
guages (including Latin and Chinese)[49]. The writings in this database were collected
by different companies and universities at the initiative of the International Association
of Pattern Recognition1 (Technical Committee 11). In the case of isolated words and
text-lines, they contain different styles of writing: hand-printed style, cursive style and
mixed styles.

The UNIPEN database contains two sets of data: Train r01 v07 and DevTest R01 v02.
The first set (Train r01 v07) is publicly available while the second set (DevTest R01 v02)
is not publicly available. The Train r01 v07 set contains 9 categories of data, as illus-
trated in Table 4.2.

1http://www.iapr.org

137

4 Experiments and Discussion

Table 4.2: Detailed information of Train r01 v07 set in the UNIPEN database, ex-
tracted from the official web site (http://unipen.nici.kun.nl/) of the UNIPEN
database.

Category

Number of char-
acters/ words/
lines

Number of
files Description

1a 15953 634 isolated digits

1b 28069 1423 isolated uppercase characters
1c 61351 2145 isolated lowercase character
1d 17286 1222 isolated symbols (punctuation etc.)
2 122628 2735 isolated characters, full character set

(lowercase characters, uppercase char-
acters, digit and symbols)

3 67352 1949 single characters in the context of
words or texts

6 75529 3298 cursive and unconstrained words (with-
out digits and symbols)

7 85213 3393 words, any style, full character set
8 14544 4563 text: (minimally two words of) free

text, full character set (mixed case and
digit)

4.1.3 Unipen-ICROW-03

This database has been used for the ”On-line handwritten word recognition competi-
tion” organized during ICDAR-20032. This database is particularly adapted for evalu-
ating the unconstrained on-line HWR, since it contains a set of freestyle handwritten
words (handprinted, unconstrained and cursive) written by 72 writers of different na-
tionalities (Dutch, Irish, Italian, + mixed). Different kinds of capturing devices were
used to produced this data. In this database, the writings are classified by writer, and
the number of handwritten words per writer varies from 46 to 300, with a total of 13119
handwritten words and a lexicon of 879 words.

Since our research scope focuses on handwritten words containing lowercase characters,
only 12440 handwritten words (out of 13119 handwritten words) of 67 writers (out of
72 writers) are considered in our experiments, with a lexicon size of 818 words.

4.1.4 Single character database

As mentioned in section 3.5, in order to recognize segmented characters from handwrit-
ten words (i.e. each node of the lattice), the SCR has to be trained with a database
containing characters segmented from handwritten words.

2http://www.ai.rug.nl/∼lambert/unipen/icdar-03-competition/ README

138

4 Experiments and Discussion

Unfortunately, segmentation points between characters in the IRONOFF and Unipen-
ICROW-03 databases are not given. The UNIPEN database provides a set of data (in
category 3) which contains single characters extracted from handwritten words. We do
not have any detailed explanation about the collection process on this category. We
do not know whether these characters are segmented from handwritten words/texts, or
individually written. Based on our observations of the data, we noticed that some char-
acters in this category are individually written (isolated characters) while, some other
characters are segmented from handwritten words/texts (single characters). Since the
data in the UNIPEN database are collected by different organizations, character segmen-
tation methods are also different. We can notice that there are two different methods.
In the first method, they consider ligatures as a part of the characters, as illustrated
in Figure 4.1(a). In the second method, they do not consider ligatures as a part of
the characters (see Figure 4.1(b)). In this case, the information concerning ligatures
(sequences of green points in Figure 4.1(b)) is lost. Therefore, the segmented charac-
ters provided by this second method cannot be used in our system, since we consider
ligatures as a part of the characters. Finally, there are a lot of incorrectly segmented
characters that may be caused by segmentation errors. For all these reasons, the isolated
character in the category ”3” of the UNIPEN database cannot be used to train our SCR.

(a) (b)

Figure 4.1: Segmented characters extracted from the category ”3” in the UNIPEN
database. The sequences of black/red points represent the segmented char-
acters, while the sequences of green points represent the ligatures removed
by the second segmentation method.

Creating our own single character database was an unavoidable task. However, manu-
ally doing such a task requires huge of time and effort, since the segmentation of training
characters must be as precise as possible. In order to avoid such manual work, we pro-
posed a semi-automatic segmentation method to create training data, as illustrated in
Figure 4.2. Each handwritten word of the training database is submitted to a basic
version of our HWR3. Indeed, this system aims at finding the best segmentation points

3Using ICR (see section 4.2.1.1) which is trained with the isolated characters selected from the
IRONOFF and UNIPEN databases. The bi-character models are not yet integrated, and the word
decoding process is based on graph search.

139

4 Experiments and Discussion

between characters which compose the input handwritten word (the ground-truth is
known, as we are working with the training data). The sequence of points between two
consecutive segmentation points is considered as a segmented character. Each segmented
character is then submitted to a ICR (see section 4.2.1.1). If the estimated recognition
probability is higher than a given threshold, the segmented character is sent to the
manual verification stage to remove the incorrect samples. Otherwise, the segmented
character is automatically removed.

�����������
�����

����� ���

���
�����

��������������������

������
���������
�������

������
������������

Figure 4.2: Single character segmentation method using a semi-automatic process.

In this single character database version, only the writings of cheque words in the
IRONOFF database are segmented. The number of segmented characters for each char-
acter class is reported in Table. 4.3, column set 1. We additionally use another single
character database generated by Nantes University [3]. The samples in this database are
segmented from all the handwritten words in the IRONOFF database using a commer-
cial HWR. The number of these segmented characters is reported in Table. 4.3, column
set 2.

4.1.5 Bi-character database

As far as we know, since the idea of using bi-character models for on-line HWR was new
at the beginning of our study, there was no bi-character database providing samples of
on-line bi-characters. Therefore, a bi-character database had to be created in order to
train the bi-character models.

In our context, creating real training data for all bi-character classes is a difficult
task, since these bi-character samples have to be segmented from handwritten words. A
method similar to the single character segmentation introduced earlier in section 4.1.4
could have been used. However, trying to apply such approach would have raised many
problems. First of all, there is a very large set of 26*26 classes to be manually verified, in
order to check the consistency of the data. Secondly, considering the very large number
of classes to be used to train the models and considering the distribution of co-occurrence
of characters in the handwritten words database, training samples of some bi-character

140

4 Experiments and Discussion

Table 4.3: Detailed information about our single character databases (our own database
and the database generated by Nantes university).

Character
class

set 1 set 2 set 1 +
set 2

Character
class

set 1 set 2 set 1 +
set 2

a 1688 3955 5643 n 1673 5969 7642
b 0 921 921 o 1744 4286 6030
c 1630 2386 4016 p 366 1295 1661
d 1163 1485 2648 q 1863 1838 3701
e 1596 9564 11160 r 1451 4828 6279
f 1080 1318 2398 s 1719 4096 5815
g 389 1219 1608 t 1352 6211 7563
h 402 982 1384 u 1654 4578 6232
i 760 6430 7190 v 315 860 1175
j 0 147 147 w 0 152 152
k 0 216 216 x 1497 1328 2825
l 1017 2226 3243 y 0 1002 1002
m 1116 1401 2517 z 1877 2296 4173

classes may be missing or may not contain enough samples to be representative.

In order to circumvent these problems, we artificially generated a bi-characters database
by concatenating single characters segmented from handwritten words. Considering the
large variation of writings produced by different writers, generating bi-character sam-
ples with a pair of single characters provided by different writers may produce unlikely
bi-character shapes. Therefore, we decided that bi-character samples had to be concate-
nated by using pairs of single characters issuing from the same writer.

Our constraint for this bi-character generation method was to provide samples as sim-
ilar as possible to real bi-character samples. As mentioned above, artificial bi-character
samples were artificially generated by using the single character database introduced
in section 4.1.4. The management of the character size and alignment is an impor-
tant question, since it conditions the realistic representation of artificially constructed
bi-characters. In particular, when generating a bi-character sample, the height of the
characters composing this bi-character sample has to be coherent and as similar as pos-
sible to the real data. For instance, in the samples of bi-character ”ab”, the height of
the character ‘a‘ must be almost two times smaller than the height of the character
‘b‘. For this reason, the single characters are first normalized by using the character
normalization method introduced in section 3.2.2. This method ensures that character
signals belonging to the same character class have approximately the same size. Then,
the bi-character generation method explained hereafter is applied. This artificial bi-
character generation method aims at creating a bi-character sample by concatenating
two character signals.

141

4 Experiments and Discussion

Artificial bi-character generation method:

Let us suppose that P 1 and P 2 respectively correspond to the on-line signals
of characters 1 and 2. In order to generate a bi-character sample composed
by these two characters, first, we have to extract their alignment lines which
indicate their alignment positions on the y axis. Considering our strategy for
generating bi-character samples from two single characters, these single char-
acters can be issued from different words written at different spatial positions
on the capturing device. The concatenation of these two characters is not
straight forward. Indeed, we need to re-locate the character 2 according to
the position of the character 1 by applying horizontal and vertical alignment
based on their alignment lines, as presented in the following paragraphs.

Detecting the alignment line (AL)

For each character signal, its alignment line is detected based on its
original writing position in the handwritten word. The alignment
line of P 1 (AL(P 1)) can be estimated as:

• If P 1 belongs to groups 1 ({‘a‘, ‘c‘, . . . }) or 2 {‘b‘, ‘d‘, . . . } (see
section 3.2.2), its alignment line is located at the minimum
point on the y axis of the character signal.

AL(P 1) = min
|P 1|
i=1 (P

1
i (y))

• Otherwise, if P 1
i belongs to Groups 3 ({‘g‘, ‘j‘, . . . }) or 4 ({‘f ‘}),

the alignment line is located at the middle of the character sig-
nal.

AL(P 1) = min
|P 1|
i=1 (P

1
i (y))+[max

|P 1|
i=1 (P

1
i (y))−min|P

1|
i=1 (P

1
i (y))]/2

The alignment line of P 2 (AL(P 2)) can be estimated by the same
way.

Horizontal and vertical alignment

This step aims at concatenating the character signals P 1 and P 2

to create a bi-character sample by applying horizontal and vertical
alignment, as illustrated in Figure 4.3. Each point P 2

j of the signal
P 2 is modified as below:

P 2
j (x) = P 2

j (x) + dx

P 2
j (y) = P 2

j (y) + dy
(4.1)

where:

142

4 Experiments and Discussion

dx = max
|P 1|
i=1 (P

1
i (x))−min|P

2|
j=1(P

2
j (x)) and dy = AL(P 1)−AL(P 2)

���������� ���������

�������� ���������

��������� ��

��������� ��

������

��

�
�

������

�

�

Figure 4.3: Horizontal and vertical alignments to create the bi-character samples.

The character ‘z‘ is a special case since the writings of this character may belong
to the Group 1 or 3. In our system, we classified the character ‘z‘ into Group 3 and
we assume that some incorrect bi-characters would be generated. We are aware that
the generated bi-character samples may contain some noise. However, this noise is not
necessarily a problem as long as the number of generated samples is high enough, as it
provides more variability in the training stage. This noise can be removed if we consider
post-processing stage of manual verification as for single characters. In this experiment,
we consider all the generated bi-characters. Figure 4.4 illustrates some examples of
bi-character samples generated by our method.

4.1.6 Unknown pattern database

Unknown pattern samples refer to the samples that do not belong to any character class,
nor any bi-character class in the system. Let us remind here that, in our system, some
nodes in the lattice may contain such patterns, because the nodes are obtained by con-
catenating different segmented graphemes.

Unknown patterns samples are required when creating a rejection option in the SCR,
as explained in section 3.5.3. In our context, the samples of unknown patterns are
generated as follows: given a training handwritten word, the corresponding lattice is
created (see section 3.3). The concatenations of graphemes in the nodes of the lattice
which does not belong to any character class (based on our manual verification) are
retained as samples of unknown patterns. In our system, we have generated 5800 samples
of unknown patterns. Figure 4.5 illustrates some examples of unknown pattern samples.

143

4 Experiments and Discussion

Figure 4.4: Bi-character samples artificially generated by our strategy.

Figure 4.5: Some unknown pattern samples.

4.2 Experiments and discussions

In order to evaluate the effectiveness and efficiency of each method/strategy used at
each stage of our system, we perform different series of experiments for respectively
evaluating the ICR, the SCR, the bi-character models and the HWR. They are presented
and discussed in the following sub-sections.

4.2.1 Character recognition evaluation

4.2.1.1 Evaluation in the case of isolated characters

This experiment (Exp.1) evaluates the character recognizer introduced in section 3.5 by
testing this recognizer with isolated characters. The recognition results given by this

144

4 Experiments and Discussion

recognizer are then compared with those of the state-of-the-art systems. In this experi-
ment, 26 lowercase character classes in the Latin alphabet are considered.

The experiments were performed using isolated characters randomly selected from
two isolated character databases: IRONOFF and UNIPEN databases (see sections 4.1.1
and 4.1.2). The training set contains 1600 characters per class, the test set contains
400 characters per class, while the validation set contains 400 characters per class. This
system relies on the combination of the off-line and the on-line features presented in
sections 3.4.1 and 3.4.2 respectively. The 45 features (31 off-line features and 14 on-line
features) given by the feature selection step (see section 3.27) are used.

Table. 4.4 shows a comparison of the recognition rates of our ICR and the ICR pre-
sented in [2] which relies on local on-line features4 and SVM classifier. This comparison
was published in [138] by the RecoNomad research team. Our ICR provides very com-
petitive results in terms of recognition rates. In addition, our ICR performs much faster
in terms of computational time for both training and testing processes. According to
Table .4.5, the computational time of our ICR is 5 times faster than the ICR presented
in [2], using the same database size. This speedup can be explained by the fact that, in
our ICR, only 45 features are used while the ICR presented in [2] uses up to 210 features.

Table 4.4: Comparison of the recognition rates of our ICR and the ICR presented in [2],
extracted from [138].

Number of samples per class Recognition rate (%)
Nature of data Training Test Exp.1 System in [2]

Digit 1600 400 98.7 98.6
Uppercase 1600 400 95.6 95.1
Lowercase 1600 400 93.3 93.7

Table 4.5: Comparison of the computational time between our ICR and ICR presented
in [2] in the case of Digit recognition (10 classes). This comparison was
published in [138].

Our system System in [2] Speedup
Training (1600/class) 64105 ms 358156 ms 5.6 times
Test (400/class) 13656 ms 74063 ms 5.4 times

As for the HWR, this recognizer has to deal with the characters segmented from
handwritten words. In order to observe its effectiveness when dealing with the segmented
characters, the next experiments are performed on the database of single characters
segmented from handwritten words.

4features are extracted from each point in the on-line signal.

145

4 Experiments and Discussion

4.2.1.2 Evaluation in the case of single characters

These experiments evaluate the effectiveness of the SCR (see section 3.5) when dealing
with single characters segmented from handwritten words. In our system, as said ear-
lier, 26 lowercase character classes are considered. In this context, we performed three
kinds of experiments: SCR without garbage class, SCR with garbage class, and specific
rejection systems. Let us remind that, in our HWR, the delayed strokes are consid-
ered. Therefore, when creating the SCR which will be used for HWR, it is important to
consider the dot of character ’i’ and ’j’ and the bar of the character ’t’.

SCR without garbage class (Exp.2): For this experiment, the SVM clas-
sifier is trained without any garbage class. Each class in the training, test and
validation sets respectively contains 1600, 400 and 400 samples. Therefore,
each character class requires 2400 samples selected from the single character
database, as introduced earlier in section 4.1.4. However, since some charac-
ter classes do not have enough samples (see Table 4.3), isolated characters of
IRONOFF and UNIPEN databases were used to complete the training/test
and validation set. In this experiment, 71 features (43 off-line features and
28 on-line features) are retained after the feature selection stage (see sec-
tion 3.27). This number of features is more important than the number of
features selected for ICR (see Exp.1). This can be explained by the fact
that the shapes of characters segmented from handwritten words are more
heterogeneous than those of isolated characters, therefore requiring more in-
formation to describe them.

Figure 4.6 illustrates the cumulative Top−N recognition rates given by the
system in Exp.2 (without garbage class). We notice that, when consider-
ing Top − N = 1, the recognition rate is 88.23%, which is lower than the
recognition rate obtained in Exp.1 (93.3%) on isolated characters. This can
be explained by the higher variability in the single character shapes. In the
case of Top−N = 7, recognition rate raises up to 99.02%. When considering
Top−N ≥ 8, the recognition rates remain stable.

We also observe that the average recall and precision values over all the
character classes are 88.23% and 88.50% respectively. However, for some
character classes, the values of recall and/or precision are relatively weak,
as illustrated in Figure 4.7. For instance, the recall value for character ‘i‘
is 70.8%. As a result, 29.2% of its samples are incorrectly classified. In
addition, the precision value of the character class ‘i‘ is 67.82%. This means
32.18% of the samples which are classified as the character ‘i‘ do not belong
to the class ‘i‘. Similar observations can be made for some other character
classes, for instance {‘l‘, ‘n‘, ‘r‘, ‘t‘, ‘u‘}. When studying more in details, the
confusion matrix given in Table A.1, Appendix A, we can state that this
is due to the high similarity between those character classes. For instance,

146

4 Experiments and Discussion

� � �� �� �� �� ��

������

������

������

������

������

������

������

������

������

�������

�������

������

������

������

�����

�
�
�
�
�
�
��
��

�
��

��

Figure 4.6: The cumulative Top−N recognition rates given by the SCR without garbage
class (Exp.2).

the shape of the character class ‘i‘ is similar to the shapes of the character
classes {‘l‘, ‘t‘, ‘r‘, ‘v‘}. However, this is not really an issue when using this
recognizer in our HWR. Indeed, in our system, for each node of the lattice,
the N potential character candidates are considered, allowing to take into
account other potential character candidates. In addition, the bi-character
models are used to refine the outputs provided by SCR.

� �

������

������

������

������

������

������

������

�������

�������

������

���������

Figure 4.7: Recall and precision of each character class given by the SCR without garbage
class (Exp.2).

SCR with garbage class (Exp.3): this experiment evaluates the effec-
tiveness of the SCR when adding a garbage class in the SVM classifier, as
introduced earlier in 3.5.3.1. We use the same training, test and validation
sets as for Exp.2. The 3000 samples used in the garbage class correspond

147

4 Experiments and Discussion

to various unknown samples segmented from the handwritten words, as ex-
plained earlier in section 4.1.6.

The cumulative Top−N recognition rates are shown in Figure 4.8. Similar
observations as in Exp.2 can be made. For the cases Top − N = 1 and
Top − N = 7, the recognition rates are 87.69% and 98.94% respectively.
This recognition rate is slightly lower than the recognition rates in the Exp.2.
This difference can be explained by two reasons: 1) the SVM classifier deals
with a problem of 27 classes instead of 26 only in the Exp.2 and 2) the
heterogeneity of the garbage class makes the classification more difficult for
the SVM.

� � �� �� �� �� ��

������

������

������

������

�������

�������

������

������

������

�����

�
�
�
�
�
�
��
��

�
��

��

Figure 4.8: Cumulative Top−N recognition rates given by the SCR with garbage class
(Exp.3).

The average values of the recall and precision over all the character classes
are 87.55% and 88.07% respectively. Similar to the Exp.2, the values of the
recall and/or precision for some character classes are low, as illustrated in
Figure 4.9. In this experiment, we focus on the garbage class only. The
values of the recall and precision in the case of garbage class are 91.3% and
82.9% respectively. The high value of the recall for the garbage class shows
the effectiveness of the rejection option. In other words, 91.3% of garbage
class samples are correctly classified in the garbage class. However, the lower
value of the precision indicates a relatively high rejection error rate. In other
words, 17.1% of the samples belonging to the alphabet classes (‘a‘, ‘b‘, . . . ‘z‘)
are classified in the garbage class. In our case, these values do not represent
a main issue when using this recognizer in our HWR. Indeed, we do not
explicitly reject the candidates that are classified into the garbage class,
since SVM provides all the class labels in the outputs and each class label is

148

4 Experiments and Discussion

characterized by an estimated recognition probability. Therefore, in the case
of rejection error, the correct label of the input sample is still provided by
the SVM, but in this case, with lower estimated recognition probability.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
������� �����

������

������

������

������

������

������

������

�������

�������

������

���������

Figure 4.9: Recall and precision of each class given by the SCR with garbage class
(Exp.3).

Rejection system (Exp.4): This experiment aims at evaluating the rejec-
tion systems which rely on the cascade of Adaboost classifiers, as introduced
in section 3.5.3.2. In this experiment, we do not consider the SVM classifier.
The effectiveness of the rejection systems when using together with SVM
classifier can be observed only when they are used for HWR, as presented
after in paragraph-B section 4.2.3.1.

This experiment is based on the same training, test and validation set as
in Exp.3. A set of specific rejection systems for every character classes is
created (R = {r‘a‘, r‘b‘, . . . , r‘z‘}) where each specific rejection system rck of
a character class ck is trained by supposing that the samples belonging to
the character class ck are the positive samples and the samples belonging to
all other classes (including the samples of unknown patterns) are negative
samples. The test and validation sets are considered in the same way.

During the test step, we perform the experiments for each rejector indepen-
dently. As mentioned in section 3.5.3.2, the effectiveness of each rejector rck
depends on 3 parameters: 1) the objective false positive rate fk of the Ad-
aboost classifiers in the cascade, 2) the objective true positive rate dk of the
Adaboost classifiers in the cascade and 3) the objective false positive rate
γ of the overall rejection system (rck). After performing the experiments,
we observe that in many cases, the rejection system cannot reach the ob-
jective false positive rates fk and γ as no additional negative samples can
be rejected. Hence, a stopping condition has been added, in order to avoid
useless computational costs.

149

4 Experiments and Discussion

Based on the observations of the experimental results, the value of fk can
be roughly fixed to 30%. This means that each Adaboost in the cascade
accepts 30% of false positive. In other words, each Adaboost in the cascade
has to be able to reject at least 70% of negative samples, unless the stopping
condition is valid. The value of γ is fixed to 0.1%. This means that, the
overall rejection system has to be able to reject up to 99.9% of the negative
samples, unless the stop condition is valid.

In this experiment, we mainly focus on the value of the objective true posi-
tive rate parameter (dk). By varying the values of dk from 90% to 99% with
a gap of 1%, we obtain a ROC curve (Receiver Operating Characteristic)
illustrated in Figure 4.10.

� ���� ��� ���� ��� ���� ��� ���� ���

�

���

���

���

���

���

���

���

���

���

�

����� �������� ���� ���

�
��

�
�
�
�
��
��
�

��
��

��
�

Figure 4.10: ROC curve given by the Exp.4.

This ROC curve shows that when using a high value of dk, we obtain a
rejection system with a high true positive rate (i.e. the rejection error rate is
low) but providing a high false positive rate (i.e. the acceptation error rate is
high). Otherwise, using a low value of dk, we obtain a rejection system with
a low true positive rate (i.e. the rejection error rate is high) but providing a
low false positive rate (i.e. acceptation error rate is low). When using these
rejection systems in our handwritten words recognition system, the value of
dk has to be optimally settled, which is not an easy task in our context.
Moreover, adding these Adaboost rejectors in the overall system makes the
training complexity higher (while the increase in rejection rate is very low).

4.2.2 Bi-character models evaluation

This section presents the evaluation of the bi-character models (Exp.5) which are built
using logistic regression (see section 3.6). For each class, we consider 3000 samples for

150

4 Experiments and Discussion

training and 1000 samples for testing, randomly selected from the bi-character database
(see section 4.1.5). As explained earlier in section 3.6.2, in order to optimize the com-
putational time, the proposed bi-character models use the same 72 features as the SCR.
The recognition rates of these models vary from ∼91% to ∼99%.

Since there is no bi-character models in the literature, the experimental results given
by our bi-character models cannot be directly compared or discussed unless they are
integrated in our HWR which is presented in the next section.

4.2.3 Handwritten word recognition system evaluation

This section presents the experiments conducted on the overall on-line HWR. In order to
assess the performance of this system and to measure its robustness towards an increas-
ing size of lexicon, we perform a series of experiments for which the size of the lexicon
(containing no accented words) is progressively increased as follows: 818, 5000, 10000
and up to 20000 words. The lexicon of 818 words contains only the lowercase words
of the Unipen-ICROW-03 database (see section 4.1.3). To obtain larger lexicons (5000,
10000 and 20000 words), we add English words, which are randomly selected from an
English dictionary.

The experiments are performed with 11 different configurations using a computer with
3GHz of CPU, as illustrated in Table 4.6. The column ”config.” indicates the configu-
ration number while the column ”SCR” indicates the different SCRs (with and without
rejection) used in the experiments. The column ”Bi-char models (Log. Reg.)” indicates
the use of the bi-character models in the experiments. The column ”Word decoding”
indicates the use of the two word decoding strategies in the experiments. The column
”parameters” indicates the two important parameters of our system: N (the number
of best potential characters considered in each node of the lattice), E (the pruning pa-
rameter used when the directed graph search strategy is used). For each configuration,
the accuracy (acc) and the average computational time per word to recognize (CT in
second) are reported and discussed.

The first 8 configurations evaluate different methods and strategies which are used in
each stage of the system: character analysis (see section 3.5), bi-character models (see
section 3.6) and word decoding process (see section 3.7). The number of levels in the
lattice (i.e. size of character) is fixed to 7 (L = 7). This value is roughly estimated on
the single character database (see section 4.1.4).

The configuration 9 aims at evaluating the system when using the maximum number
of graphemes adapted to each character class. We keep on using L = 7. However, we
additionally use the maximum number of graphemes adapted to each character class
during the word decoding process (see section 3.7.3.2).

In the first 9 configurations, the delayed stroke management method (see section 3.3)

151

4 Experiments and Discussion

Table 4.6: Different configurations used to perform the experiments of our HWR. Note:
(*) using a fixed maximum number of graphemes (7) for each character class.
(**) using the maximum number of graphemes adapted to each character
class estimated on a single character database (see section 3.7.3.2). (***) the
delayed stroke management method (see section 3.3) is not considered.

Config. SCR

Bi-
char
models
(Log.
Reg.) Word decoding Parameters

Test data
Note

SVM

SVM
+
gar.cls.

SVM
+ Rej.
Sys.

Graph
search

Dyn.
prog N E

Config.1 x x 7 3,5,7,9,11 1000

*
Config.2 x x 3, 5, 7,9 7 1000
Config.3 x x 5 7 1000
Config.4 x x x 5 7 1000
Config.5 x x 5,7,9,11,

all
no 1000

Config.6 x x 7 no 1000
Config.7 x x x 7 no 1000
Config.8 x x x 7 no 1000
Config.9 x x x 7 no 1000 **
Config.10 x x x 7 no 1000 ***
Config.11 x x x 7 no 12440 *

is used. In configuration 10, we aim at observing the effectiveness of this delayed stroke
management method. Therefore, in this configuration, we perform experiments without
taking into account the delayed stroke management method, what allows comparing the
recognition results.

In the first 10 configurations, only 1000 handwritten words which are randomly se-
lected from the Unipen-ICROW-03 database are used. In the configuration 11, all the
handwritten words in the Unipen-ICROW-03 database are used. Experiments using this
last configuration allow observing the effectiveness of the system by writers.

It is important to mention that in some configurations (1 to 6), the bi-character models
are not yet integrated. In this case, the estimated probability that the pair of neighbor-
ing nodes o(t,t�) and o(t�+1,t”) is recognized by the bi-character model Bcmcn is initialized
to 1 (a(cmcn|o(t,t�) ∪ o(t�+1,t”)) = 1).

We present all these experiments in the following 6 sub-sections. A summary of the
experimental results are given in the conclusion at the end of this section.

152

4 Experiments and Discussion

4.2.3.1 Using the directed graph search strategy

The objective of these experiments (configurations 1 to 4) is to observe the effectiveness
and efficiency of the directed graph search strategy (see section 3.7.2) which is used
during the word decoding process. In these experiments, only the SCR is used. The
experiments are performed using 4 different configurations, classified into two parts. In
the first part (configurations 1 and 2), we observe the impact of the different parameters,
while in the second part (configurations 3 and 4) we compare the effectiveness of our
system when using the SCR with and without rejection option.

A) Effect of the parameters E and N

In this paragraph, we want to observe the impact of the number of paths to be
considered during the propagation in the graph (pruning parameter E) and the number
of potential character candidates to be considered in each node of the lattice (N). The
experiments are performed with two different configurations, as explained hereafter.

Configuration 1: in this configuration, the SCR without rejection option
(see Exp.2) is used. During the word decoding process, the directed graph
search strategy is applied. The pruning parameter E has a great impact on
the effectiveness and efficiency of the system. To optimally select the value
of this parameter, we perform different experiments with 5 different values
of E (E = {3, 5, 7, 9, 11}).

According to the experimental results of the SCR (see Table 4.6 in Exp.2),
when Top−N = 7, the cumulative recognition rate rises up to 99% while the
cumulative recognition rates when Top−N ≥ 8 remains stable. Therefore, in
each node of the lattice, only the 7 potential character candidates provided
by the SCR are considered (N = 7).

Table 4.7: The experimental results (accuracy and computational times) of the proposed
HWR using configuration 1. The directed graph search strategy is used with
different values of the pruning parameter (E = {3, 5, 7, 9, 11}).

Lexicon E=3 E=5 E=7 E=9 E=11
acc(%) CT(s) acc(%) CT(s) acc(%) CT(s) acc(%) CT(s) acc(%) CT(s)

818 66.6 3 69.9 4 71.9 7 72.2 10 72.2 14
5000 51.3 11 56.5 17 58.3 30 59 50 59 81
10000 45.9 23 51.3 26 52.6 54 53.9 98 54.5 169
20000 40.3 32 47.2 63 48.6 87 49.6 161 50.4 292

Based on the experimental results provided in Table 4.7, the following ob-
servations can be made:

• Increasing the value of the parameter E improves the recognition rates
of the system, but it also increases the computational times. More
specifically:

153

4 Experiments and Discussion

– Considering a small lexicon of 818 words, when the value of E is
increased, the recognition rate and the computational time are also
linearly increased.

– In the case of a large lexicon size (20 000 words), when E > 7, the
recognition rate is slightly improved. However, the computational
time is dramatically increased.

Conclusion: according to these experimental results, we noticed that when
E > 7, there is a minor impact on the recognition rates. However, increas-
ing the value of this parameter can dramatically increase the computational
time, especially when using a large lexicon. As a compromise between the
recognition rate and the computational time, we recommend using E = 7.
Nonetheless, in the context of small lexicon, a higher value of E can be used.
In the following experiments, E = 7 is considered.

Configuration 2: This configuration is used to observe the impact of the
parameter N (the number of potential character candidates to be considered
in each node, see section 3.5.4) of the system. In this configuration, we per-
form the experiments with different values of N (N = {3, 5, 7, 9}) and using
E = 7, based on the experimental results given in the configuration 1. The
experimental results are shown in Table 4.8.

Table 4.8: The experimental results of our HWR when using the directed graph search
strategy with different values of parameter N (N = {3, 5, 7, 9}) and by con-
sidering E = 7 (configuration 2).

Lexicon N=3 N=5 N=7 N=9
acc(%) CT (s) acc(%) CT (s) acc(%) CT (s) acc(%) CT (s)

818 60.30 2 70.4 3 71.9 7 71.8 33
5000 52.70 6 58.5 10 58.3 30 57.3 189
10000 48.50 11 53.2 16 52.6 54 52 318
20000 44.30 18 48.4 28 48.6 87 47.9 463

Based on the experimental results illustrated in Table 4.8, we can observe
that:

• Normally, increasing the value of the parameter N improves the recog-
nition rate. Surprisingly, the recognition rates slightly decrease when
N = 9. It can be explained by the fact that when the number of poten-
tial character candidates in each node is increased, the number of pos-
sible candidates to be taken into account during the pruning process is
also increased. As a consequence, the number of incorrect candidates is
increased which raises the confusions/errors due to the pruning process
(which can select a local optimum path, as explained in section 3.7.2).

154

4 Experiments and Discussion

• The system provides the highest recognition rates when N = 5 or 7,
depending on the lexicon.

Conclusion: considering a lexicon of 818 (and 20000) words, the system pro-
vides the highest recognition rates when N = 7. However, there is a very
small improvement compared to the case where N = 5. But, when consider-
ing N = 7, the computational time increases twice which makes the system
two times slower. Therefore, in the following experiments, we decided to use
N = 5 for directed graph search strategy.

The recognition results in configurations 1 and 2 allow us to observe the im-
pact of the parameters E and N on our HWR. In the following experiments,
we take into account the SCR with rejection option. This allows us to ob-
serve the effectiveness of our HWR when using the SCR with and without
rejection option.

B) Comparison of the two rejection methods for the SCR.

As explained earlier in section 3.5, in order to deal with the problems related to the
unknown patterns in some nodes of the lattice, we propose two different strategies to
build a SCR with rejection option. The first strategy adds a garbage class in the SVM
classifier, while the second strategy relies on rejection systems based on cascades of Ad-
aboost classifiers.

The objective of these experiments is to evaluate the effectiveness of these two strate-
gies when they are used in our HWR. We perform the experiments with the two different
configurations presented hereafter.

Configuration 3: in this configuration, the SCR based on SVM with a
garbage class (see Exp 3) is used. The values of E and N are initialized to
7 and 5 respectively, based on the previous experimental results.

The experimental results are given in the column ”Configuration 3” of the
Table 4.9. The column ”Configuration 2” illustrates the recognition results
when using the SCR without garbage class (see experiments in the configu-
ration 2, using the same value of E and N). According to these recognition
results, we observe that:

• Compared to the configuration 2, the system which relies on a SCR
with a garbage class provides an improvement of 3.9% to 6.8% on the
recognition rates, depending on the size of the lexicon.

• In the case for which the size of the lexicon is increased, the number
of possible ambiguities caused by unknown patterns in the lattice is
also increased. Using the SCR with garbage class allows handling these

155

4 Experiments and Discussion

ambiguities. Therefore, the larger the lexicon size is, the more the
improvement on the recognition rate is important.

Table 4.9: Experimental results of the HWR using a SCR with and without garbage
class, and graph search word decoding strategy (configuration 3).

Lexicon Configuration 3 (with garbage class) Configuration 2 (without garbage class)
acc(%) CT (s) acc(%) CT (s)

818 74.30 3 70.4 3
5000 64.20 10 58.5 10
10000 59.10 17 53.2 16
20000 55.20 30 48.4 28

Configuration 4: this configuration is similar to the configuration 3. How-
ever, the rejection systems strategy (see section 3.5.3.2) is used to refine the
outputs provided by the SVM without garbage class.

The experimental results are illustrated in the column ”Configuration 4” of
Table 4.10. The column ”Configuration 2” illustrates the recognition results
where the SCR is built without rejection option. The column ”Configu-
ration 3” shows the recognition results when using the SCR with garbage
class.

Table 4.10: Experimental results of the HWR using a SCR with rejection systems, and
a graph search word decoding strategy.

Lexicon
Configuration 4 (with
rejection systems)

Configuration 2 (with-
out rejection option)

Configuration 3 (with
garbage class)

acc(%) CT (s) acc(%) CT (s) acc(%) CT (s)
818 71.1 5 70.4 3 74.30 3
5000 59.2 19 58.5 10 64.20 10
10000 54 24 53.2 16 59.10 17
20000 49 41 48.4 28 55.20 30

Based on these experimental results, we observe that:

• Using the rejection systems to create a rejection option in the SCR
slightly improves the recognition rates. However, this strategy increases
the computational time compared to the case where SVM with garbage
class is used like in configuration 3.

• The recognition rates are also much lower than the system using the
configuration 3 (using the SCR with garbage class).

Conclusion: from configurations 1 to 4, the directed graph search strategy is considered
during the word decoding process. This search strategy provides encouraging results in

156

4 Experiments and Discussion

terms of recognition rates [112, 111]. However, the computational time considerably
increases if the value of the pruning parameter (E) is increased. Concerning the param-
eter N , the same problem concerning computational time can be identified. We choose
to use E = 7 and N = 5 as default values, since they provide a good trade-off result
between the recognition rate and the computational time.

According to these experimental results, using the SCR with a rejection option (for
both strategies) improves the recognition rates of the system. However, the garbage
class strategy outperforms the rejection systems strategy in terms of recognition rate
and computational time. Therefore, in the following experiments, only the garbage class
strategy is considered at the single character level. In addition, dynamic programming
is considered instead of the directed graph search strategy, what allows us to compare
the effectiveness and efficiency of these two strategies.

4.2.3.2 Using dynamic Programming

In these experiments, we use dynamic programming (see section 3.7.3) in the word
decoding process. The impact of the parameter N and the SCR with garbage class were
already studied when using a directed graph search strategy in the sub-section 4.2.3.1.
In this sub-section, we aim at observing their impacts on the system when the dynamic
programming is used. Then, we compare the effectiveness of the system when using the
SCR with and without rejection option. According to the previous experimental results,
in the case of the SCR with rejection option, the garbage class strategy outperforms
the rejection systems strategy. Therefore, in these experiments, we consider only the
garbage class strategy. Finally, we compared these recognition results with those of the
directed graph search strategy. The experiments and discussions are divided into the
three following paragraphs.

A) Observing the impact of the parameter N

To observe the impact of the parameterN on the system, in this configuration
(Configuration 5), the experiments are performed with 5 different values
of N (N = {5, 7, 9, 11, all}). N = all means that all the character candidates
provided by the SCR are considered, for each node of the lattice. The SCR
without rejection option (see Exp2) is used. The recognition results are given
in Table 4.11.

Based on these experimental results, we observe that:

• The recognition rates are improved when increasing the value of the
parameter N . However, when N ≥ 7, the improvement remains very
slight.

• Concerning the complexity of the system, increasing the value of the
parameter N increases the computational time. In the case of N = all,
its computational time can be tripled compared to the case with N = 7.

157

4 Experiments and Discussion

Table 4.11: Experimental results of the HWR with different value of the parameter N
and by using dynamic programming during word decoding process (config-
uration 5).

Lexicon N=5 N=7 N=9 N=11 N=all
acc(%) CT (s) acc(%) CT (s) acc(%) CT (s) acc(%) CT (s) acc(%) CT(s)

818 49.7 1 72.8 1 72.9 2 73.1 2 73.3 3
5000 42.6 1 63.7 1 64 2 64 2 64.3 4
10000 39.6 1 58.7 1 58.8 2 58.9 2 59 5
20000 35.7 2 53.2 2 53.4 2 53.8 3 53.9 6

• By comparing the cases where N = 7 and N = 9, we observe that the
differences of recognition rates are small (0.1% to 0.3% only), while the
computational time can be doubled with small lexicon.

Based on the observations mentioned above, we decided to use N = 7 as a
default value in the following experiments. Although, N = all provides bet-
ter recognition rates, the computational time when considering bi-character
models will be much higher than considering N = 7. In the case N = all,
26∗26 bi-character candidates have to be verified instead of 7∗7 when using
N = 7. In addition, the SCR with garbage class is taken into account.

B) Observing the effect of rejection in the SCR

The experimental results presented in sub-section 4.2.3.1 have shown that
using garbage class strategy to build a SCR with rejection option allows to
obtain significant improvements of the recognition rate when graph strategy
is used for word decoding. In this paragraph, we also aim at observing the
effectiveness of the system when using the garbage class strategy, but this
time, by applying dynamic programming for word decoding. The experi-
ments are performed using the configuration described below:

Configuration 6: in this configuration, the SCR with a garbage class (see
Exp.3) is used. We consider N = 7, based on the previous experimental re-
sults. The experimental results of this configuration are shown in the column
”Configuration 6”, Table 4.12.

By comparing the recognition results in the columns ”Configuration 6” and
”Configuration 5” (without garbage class in the SCR), we observe that using
a garbage class in the SCR improves the recognition rate of 3.5% to 4.4%,
depending on the lexicon. In the following paragraph, we compare the effec-
tiveness and efficiency of the directed graph search strategy and the dynamic
programming for word decoding.

158

4 Experiments and Discussion

Table 4.12: Comparison of the recognition rates when the HWR uses the SCR with
garbage class (configuration 6) with those of the HWR using the SCR with-
out garbage class (configuration 5).

Lexicon Configuration 6 (SCR with garbage class) Configuration 5 (SCR without garbage class)
acc (%) CT (s) acc (%) CT (s)

818 76,3 1 72,8 1
5000 68,1 1 63,7 1
10000 62,5 1 58,7 1
20000 56,9 2 53,2 2

C) Directed graph search strategy vs. dynamic programming

This paragraph compares the effectiveness and efficiency of the directed
graph search strategy on the one hand and dynamic programming strat-
egy on the other hand. Both strategies can be used in the word decoding
process. The recognition results are given in Table 4.13. The columns ”Con-
figuration 2” and ”Configuration 3” illustrate the recognition results when
the HWR uses the directed graph search strategy, while the columns ”Con-
figuration 5” and ”Configuration 6” illustrate the recognition results when
the HWR uses the dynamic programming strategy.

Table 4.13: Comparison the recognition results given when the HWR uses directed graph
search strategy and when the HWR uses the dynamic programming.

SCR without garbage class SCR with garbage class
Lexicon Configuration 5 Configuration 2 Configuration 6 Configuration 3

acc(%) CT (s) acc(%) CT (s) acc(%) CT (s) acc(%) CT (s)
818 72.8 1 70.4 3 76.3 1 74.30 3
5000 63.7 1 58.5 10 68.1 1 64.20 10
10000 58.7 1 53.2 16 62.5 1 59.10 17
20000 53.2 2 48.4 28 56.9 2 55.20 30

Based on this comparison, we observe that:

• The dynamic programming strategy outperforms the directed graph
search strategy in terms of recognition rate, and computational time.
This can be explained by the fact that dynamic programming provides
an optimal path associated to each word in the lexicon while the directed
graph search strategy may provide only local optimum; and therefore,
the correct path may be lost due to pruning process.

• In the case for which the garbage class is not considered in the SCR,
the HWR using dynamic programming provides 5% better recognition
rates than when the HWR uses the directed graph search strategy. If
the garbage class is considered, the difference is 4%.

159

4 Experiments and Discussion

Conclusion: After performing a series of experiments using 6 different configurations
(from configuration 1 to 6), two important observations can be made:

• Using a SCR with rejection can improve the recognition rate of the system. We
notice that the garbage class strategy provides better recognition results (both
in terms of recognition rate and computational time) compared to the rejection
systems (based on cascades of Adaboost classifiers) strategy.

• Dynamic programming clearly outperforms the directed graph search strategy in
terms of recognition rates and computational time even though TRIE model strat-
egy (which would speed-up the process) is not considered when using the dynamic
programming (due to limitation of time at the end of this thesis).

In the following experiments, the bi-character models will be integrated in our system.
Based on the experimental results given in this section, only dynamic programming is
considered for word decoding.

4.2.3.3 Integration of bi-character models

In this sub-section, the experiments are performed by taking into account the bi-character
models. These models are created by using logistic regression (see Exp.5). First, we
evaluate the effectiveness of the bi-character models by using the SCR without rejection
option. Then, we perform another experiments by taking into account the SCR with
garbage class to observe the performance of the system when simultaneously using the
garbage class and the bi-character models. In both cases, we consider only 7 poten-
tial character candidates in each node in the lattice (N = 7), based on the previous
experimental results and by using dynamic programming for word decoding.

A) Using SCR without garbage class

In this configuration (configuration 7:), we use SCR without garbage class
(Exp.2) and by integrating the bi-character models. The experimental results
are provided in the column ”Configuration 7” of Table 4.14.

By comparing with the recognition results without integrating the bi-character
models (see column ”Configuration 5”, Table 4.14), we observe that:

• The bi-character models allow improving the recognition rates of 2.6%
to 3.5%, depending to the lexicon size.

• However, using the bi-character models increases the computational
time.

In order to select the optimal configuration, we decide to perform the exper-
iments by using the SCR with garbage class and by considering bi-character
models, as introduced in the following paragraph.

160

4 Experiments and Discussion

Table 4.14: The recognition results when using the SCR without garbage class and by
integrating bi-character models.

Lexicon
Configuration 7 (Lo-
gistic Regression)

Configuration 5 (with-
out bi-character mod-
els)

acc (%) CT (s) acc (%) CT (s)
818 75.4 6 72.8 1
5000 66.4 7 63.7 1
10000 62.3 8 58.7 1
20000 56.7 9 53.2 2

B) Including a garbage class in the SCR

Based on the experimental results presented in paragraph-B of section 4.2.3.1
and paragraph-B of section 4.2.3.2, we observed that using the SCR with a
garbage class significantly improves the recognition rates. Furthermore, ac-
cording to the experimental results in paragraph A of section 4.2.3.3, we
observe that the bi-character models also improve the effectiveness of the
proposed system. In this configuration (configuration 8), we evaluate the
effectiveness of the garbage class strategy (using SCR in Exp.3) and of the bi-
character models (Exp.5) when both of them are simultaneously considered
in our HWR. The experimental results are provided in the column ”Config-
uration 8” of Table 4.15.

Table 4.15: Comparison of the recognition results when our system uses bi-character
models and SCR with garbage class simultaneously.
With bi-character models
(Logistic Regression) Without bi-character models

Lexicon
Configuration 8 (with
garbage class)

Configuration 7 (with-
out garbage class)

Configuration 6 (with
garbage class)

Configuration 5 (with-
out garbage clas)

acc (%) CT (s) acc (%) CT (s) acc (%) CT (s) acc (%) CT (s)
818 77.6 6 75.4 6 76.3 1 72.8 1
5000 69.4 7 66.4 7 68.1 1 63.7 1
10000 65.7 8 62.3 8 62.5 1 58.7 1
20000 59.4 9 56.7 9 56.9 2 53.2 2

The column ”Configuration 7” illustrates the recognition results when the
HWR takes into account the bi-character models, but without garbage class
in the SCR. The column ”Configuration 6”, on the other hand, illustrates the
recognition rate when the HWR does not integrate the bi-character models,
but when the SCR with garbage class is considered. The column ”Configura-
tion 5” presents the recognition results of our basic HWR, when the garbage

161

4 Experiments and Discussion

class and the bi-character models are not considered.

Based on these recognition results, we observe that:

• When the bi-character models are considered, the garbage class allows
an improvement of 2.2% to 3.4% of the recognition rates, depending on
the lexicon (configuration 7 vs. configuration 8). However, let us notice
that the improvement is smaller compared to the one obtained when
the system does not take into account any bi-character models (3.5%
to 4.4%), as explained earlier in paragraph B, sub-section 4.2.3.2.

• By comparing the recognition results of the column ”Configuration 8”
and those of the column ”Configuration 6”, we can observe that when
considering the SCR with garbage class, the bi-character models allow
an improvement of 1.3% to 3.2% of recognition rates, depending on
the lexicon size. This improvement is however smaller than the one
obtained in the case where the system does not take into account the
garbage class in the SCR (2.6% to 3.6%), as explained in paragraph-A
of this section.

• By comparing configuration 8 with our basic HWR (column ”Configu-
ration 5”), we can notice that using simultaneously the garbage class in
the SCR and the bi-character models allows an improvement of 4.8%
to 7% of the recognition rates, depending on the lexicon size.

Conclusion: This section evaluates the effectiveness of our HWR when integrating
the bi-character models. Based these experimental results, we can conclude that using
the bi-character models significantly improves the recognition rates of our HWR. The
level of improvement varies according to the configurations and lexicons. In the case
that the garbage class strategy is not considered, the bi-character models provide an
improvement of 2.6% to 3.6% of the recognition rates. However, in the case where the
garbage class strategy is used, the bi-character models provide an improvement of 1.3%
to 3.2% of the recognition rates. The improvement is smaller, probably because the
garbage class and the bi-character models may solve some common ambiguities/errors.
Nonetheless, simultaneously considering the garbage class and the bi-character models
allows an improvement of 4.8% to 7% of the recognition rates. The ”Configuration 8”
(where the SCR based on SVM with garbage class, bi-character models, and the dynamic
programing word decoding procedure are used) is considered as the best configuration
of our system. However, it is important to mention that using the bi-character models
increases the computational time. We identified several possibilities for improving the
global complexity and the speed of the system. These opportunities will be discussed in
the conclusion and perspectives chapter of this thesis.

In all the experiments presented above, we considered that all the characters had the
same maximum number of graphemes (L = 7) despite their differences. In the following

162

4 Experiments and Discussion

experiments, we take into account the maximum number of graphemes adapted to each
character class (see section 3.7.3.2).

4.2.3.4 Effect of the adaptation of the maximum number of graphemes to the
character size

As explained earlier in section 3.7.3.2, each character class may have a different maxi-
mum number of graphemes. In this section, we evaluate the effectiveness of the system
when using the maximum number of graphemes adapted to each character class (see
Table A.3 in Appendix A).

Indeed, some nodes in the lattice may contain a set of concatenated graphemes such
that the number of graphemes in the node is higher than the number of graphemes
constituting the character to recognize. These nodes are potentially related to unknown
patterns. Anyway, they do not correspond to the character to recognize. When using
the maximum number of graphemes adapted to each character class, these nodes will
not be considered during the word decoding process. Therefore, the problems related
to unknown patterns may be reduced. In other words, this strategy also helps handling
unknown patterns problem.

In this experiment (configuration 9), we decided to keep on using SCR with garbage
class, bi-character models and dynamic programming in the word decoding process,
since this configuration (see configuration 8) outperforms all others configurations. The
recognition results of this system without and with adaptation to the character size are
provided in the columns ”Configuration 8” and ”Configuration 9” of Table 4.16 respec-
tively.

Table 4.16: Recognition rates when using a maximum number of graphemes adapted to
each character class (configuration 9) or a fixed number L = 7 (configura-
tion 8).

Lexicon

Configuration 9
(adaptation to char-
acter size)

Configuration 8 (with-
out adaption to char-
acter size)

acc(%) CT (s) acc(%) CT (s)
818 76.7 6 77.6 6
5000 69.6 7 69.4 7
10000 65.9 8 65.7 8
20000 60 9 59.4 9

Based on the comparison of the recognition results given in Table 4.16, using the max-
imum number of graphemes adapted to character class slightly improves the recognition
rates only when using a lexicon of large size. This can be explained by the fact that
almost of the unknown patterns in some nodes of the lattice are already handled by

163

4 Experiments and Discussion

the garbage class strategy (in the SCR) and bi-character models. Concerning the com-
putational time, we do not see any difference. In order to observe the improvement in
terms of computational time, we need to record the computational time in millisecond.
Therefore, in our system, we will not consider this strategy.

As mentioned in section 2.2.1, the delayed strokes can cause the additional variation in
on-line handwriting. In order to deal with the problem caused by the delayed strokes, we
have presented a delayed stroke management method, as explained earlier in section 3.3.
This method consists in detecting and re-localizing the delayed strokes in the lattice
based on its spatial position on the x axis. The experiment on this method is performed
in the following section.

4.2.3.5 Observing the effectiveness of the delayed strokes management method

In this section, we aim at observing the effectiveness of the delayed strokes management
method (see section 3.3) by performing the experiments on our system with another con-
figuration. This configuration (Configuration 10) is the same as the configuration 8
where the SCR with garbage class and bi-character models (based on logistic regression)
are used. However, in configuration 10, we do not consider the delayed stroke manage-
ment method.

The recognition results are illustrated in the column ”Configuration 10” of Table 4.17.
By comparing with those in the column ”Configuration 8” where the delayed stroke
management method is considered, we can notice a average degradation of 3% of the
recognition rate. In other words, using our delayed stroke management method signifi-
cantly increases the effectiveness of the system. We can also conclude that the delayed
strokes play a very important role for on-line HWR. Therefore, these kind of strokes
must not be ignored during the recognition process.

Table 4.17: Comparison of the recognition rates given by our system when the delayed
stroke management method is not considered and when the delayed stroke
management method is considered.

Lexicon
Configuration 10 (without delayed
stroke management method)

Configuration 8 (with delayed stroke
management method)

acc (%) CT (s) acc (%) CT (s)
818 74.3 6 77.6 6
5000 65.9 7 69.4 7
10000 62.5 8 65.7 8
20000 57.2 9 59.4 9

It is important to observe the recognition rate for each writer, since different writ-
ers may have different writing styles. Their writings are more or less complex to be
read/recognized, even by a human being. An automatic handwritten words recognition
system can meet the same problem. The following experiments aim at reporting the
recognition rate of different writers.

164

4 Experiments and Discussion

4.2.3.6 Effect of the writing styles on the system performances

In the previous experiments (from experiment 1 to 10), we evaluated the effectiveness
of the different methods proposing for each stage of our system: pre-processing, charac-
ter analysis, bi-character analysis and word decoding process. In all these experiments,
we tested our system with only 1000 handwritten words, randomly selected from the
Unipen-ICROW-03 (see section 4.1.3). In this section, we aim at observing the recog-
nition rates of different writers. Therefore, we performed the experiments with all the
handwritten words in the Unipen-ICROW-03. Let us remind here that our research fo-
cuses on the handwritten words composed of lowercase alphabet. Therefore, only 12440
handwritten words (out of 13119 handwritten words) of 67 writers (out of 72 writers)
are selected and considered in this experiment. The selection process is automatically
performed based on the ground-truth of each handwriting sample. In this configuration
(Configuration 11), the SCR with garbage class and the bi-character models are con-
sidered, since this configuration provides better recognition results. The observations on
the experimental results are presented in two following paragraphs.

A) Recognition rate as a function of the writer

In this paragraph, we focus our observation on the recognition rates of each writer.
Figure 4.11 illustrates the recognition rate by writer when using lexicons of 818 words
and 20000 words. Based on these recognition results, we observe that:

• Considering a small lexicon of 818 words, the recognition rates vary from
9.09% (for the writer ”NIC-Pc95-koen.dat”) to 98.33% (for the writer
”NIC-Oli92-pietro.dat”), highlighting the dependence to the writer.

• In the case of a large lexicon of 20000 words, the recognition rates vary
from 5.74% (for the writer ”NIC-Pc95-koen.dat”) to 95.92% (for the
writer ”NIC-Lo93b-stephani.dat”).

The low values of recognition rates provided for some writers can be explained
by two different reasons:

• The database (Unipen-ICROW-03) contains some errors, especially in
the ground-truth. For instance, the writer ”NIC-Pc95-koen.dat” wrote
some words which were composed of uppercase characters, as illustrated
in Figure 4.12(a). However, in the ground-truth, the corresponding la-
bels are in lowercase characters. As mentioned above, our HWR focuses
only on handwritten words which are composed of lowercase characters.
In these experiments, we selected the test samples based on the ground-
truth. Therefore, the writings provided by ”NIC-Pc95-koen.dat” were
also selected while they were erroneous. This kind of error may also
happen for some other writers. We did not manually remove this kind
of errors because we wanted to experiment our system with the raw
data, so that, other authors can use these experimental results as a

165

4 Experiments and Discussion

�
��
��
�
�
�
�
��

�
��
��
�
�

�
��
��
�
�
�
�
��

�
���

�
�
��
�
�

�
��
��
�
�
�
�
��

�
�
�
�
��
�
�

�
��
��
�
�
�
�
��
�
�
�
��
��
�
�

�
��
��
�
�
�
�
��
��
�
�
�
�
���

�
�

�
��
��
��
�
�
��
��
�
�
��
�
�

�
��
��
��
�
�
��
�
�
��
�
�

�
��
��
��
�
�
���

�
��
�
��
�
�

�
��
��
��
�
�
��

�
��
��
�
�

�
��
��
��
�
�
��
�
� ��

�
�

�
��
��

���
�
��

��
�
�
�
�
�
��
�
�

�
��
��

���
�
��
�
� ��

��
�
�

�
��
��

���
�
��
��
�
�
�
�
�
��
�
�

�
��
��

���
�
��
��
� ��

��
�
�

�
��
��

���
�
����

�
�
�
�
�
��
�
�

�
��
��
�
�
��
�
�
� �
��
�
�

�
��
��
�
�
��
�
�
�
��
�
�

�
��
��
�
�
���

�
��
�
�

�
��
��
�
�
���

�
�
� �
��
�
�

�
��
��
�
�
��

�
�
��
�
�
��
�
�

�
��
��
�
�
��
��
�
� �
��
�
�

�
��
��
�
�
��
��
�
� �
�
��
�
�

�
��
��
�
�
���

�
��
�
�
��
�
�

�
��
��
�
�
���

��
�
��
�
�

�
��
��
�
�
�
��
�
�
�
���
�
��
�
�

�
��
��
�
�
�
��
�
�
�
�
��
�
��
�
�

�
��
��
�
�
�
��
�
� �
�
��
�
�

�
��
��
�
�
�
��
�
�
�����

��
�
�

�
��
��
�
�
�
��
�
� ���

��
�
�

�
��
��
�
�
�
��
�
�
�
�
��
�
�

�
��
��
�
�
�
��
�
��
�
��
�
�

�
��
��
�
�
�
����

�� �
��
�
�

�
��
��
�
�
�
��
�
� �����

�
�

�����

������

������

������

������

������

������

������

������

������

�������

��� �����

����� ����������� �����

�
�
�
�
�
�
���
�
�
��
��

�
��
��
�
�
�
��
�
� ���

�
��
�
�

�
��
��
�
�
�
��
�
�
�
��
�
�

�
��
��
�
�
�
��
�
�
�
��
��
�
�

�
��
��
�
�
�
��
�
��
�
�
��
�
�

�
��
��
�
�
�
���

�
�
�
��
�
�

�
��
��
�
�
�
���

�
�
�
�
�
��
�
�

�
��
��
�
�
�
���

�
�
�
��
�
�

�
��
��
�
�
�
���

�
�
���

�
�

�
��
��
�
�
�
���

���
�
�
��
�
�

�
��
��
�
�
�
��
�
� ���

�
��
�
�

�
��
��
�
�
�
��
�
�
�
��
�
�

�
��
��
�
�
�
��
��
�
����

��
�
�

�
��
��
�
�
�
��
��
�
�
��
�
�

�
��
��
�
�
�
��
��
�
��
�
��
�
�

�
��
��
�
�
�
��
�
�
�
��
�
�

�
��
��
�
�
�
��
�
�
�
��
�
�

�
��
��
�
�
�
���

�
�
��
��
�
�

�
��
��
�
�
�
��

�
���

�
�
��
�
�

�
��
��
�
�
�
��

�
��
��
�
�

�
��
��
�
�
�
��

�
�����

��
�
�

�
��
��
�
�
�
��

��
�
��
�
�

�
��
��
�
�
�
��

�
�
��
�
��
�
�

�
��
��
�
�
�
��
�
�
����

��
�
�

�
��
��
�
�
�
��
�
�
�
��
�
�

�
��
��
�
�
�
��
�
�
��
�
��
�
�

�
��
��
�
�
�
��
��
� ��

�
�

�
��
��
�
�
�
���

�
�
�
��
�
�

�
��
��
�
�
�
����

� ��
��
�
�

�
��
��
�
�
�
����

�
�
��
�
�

�
��
��
�
�
�
���

�
�
��
�
�

�
��
��
�
�
�
��
�
�
�
��
��
�
�

�
��
��
�
�
�
���

�
�
��
�
�

�
��
��
�
�
�
����

�
�
�
��
�
�

�
��
��
�
�
�
��
��� �

�
��
�
�

�����

������

������

������

������

������

������

������

������

������

�������

��� �����

����� �����
������ �����

�
�
�
�
�
�
���
�
�
��
��

Figure 4.11: Handwriting recognition rates by writer for all the writer of the Unipen-
ICROW-03 database (displayed on two rows for space reasons).

reference for comparison with their own system. Doing like this, the
comparison is somewhat fair in terms of test data.

• The other reason for this low recognition rates is related to very bad
quality of the handwriting. For instance, in the writings provided by the
writer ”NIC-Pc95-gertjan.dat”, some characters are incorrectly written
(see the red circles, Figure 4.12(b)). Sometimes, it is almost impossi-
ble to recognize, even by a human being. The associated errors can
therefore be considered as acceptable.

We can also observe the number of writers in the different ranges of recogni-
tion rates (see Figure 4.13). We notice that:

• Considering a lexicon of 818 words, the proposed HWR provides recog-
nition rate higher than 75% for 48 writers (out of 67 writers). For
12 writers, the system provides recognition rates between 50% to 75%.

166

4 Experiments and Discussion

(a) writer ”NIC-Pc95-koen.dat” (b) writer ”NIC-Pc95-gertjan.dat”

Figure 4.12: Handwriting samples provided by two different writers: NIC-Pc95-koen.dat
and NIC-Pc95-gertjan.dat, extracted from Unipen-ICROW-03 database.

And for the remaining 7 writers, our system provides recognition rates
below 50%.

• Considering a lexicon of 20000 words, only 19 writers obtain a recogni-
tion rate higher than 75% while the 30 other writers obtain a recognition
rate between 50% and 75%. 18 writers obtain a recognition rate below
50%.

�� � ��� ��� � ��� ��� � ��� ��� � ����

�

��

��

��

��

��

��

�
�

��

��

�

��

��

��

��� �����

����� �����

����� �� ����������� ����

�
�
�

�
�
�
�
�
�
��
��

��

Figure 4.13: Number of writers for each range of recognition rates, depending on the
lexicon size.

B) Effect of the writer on the recognition rates, depending on the
lexicon size

Figure 4.11 shows the recognition rates as a function of the writer with two
different lexicons (818 words, and 20000 words). In this paragraph, we aim
at observing the recognition rates of each writer when the size of lexicon is
increased.

167

4 Experiments and Discussion

First, let us observe the average recognition rates (acc) and Computational
Time (CT) over all the writers when the size of lexicon is increased from 818
to 20000 words, as illustrated in Table 4.18. We can see an average decrease
of 16.5% of the recognition rates while the computational time is more than
doubled. This is somewhat normal for an automatic handwriting recognition
system in such a context.

Table 4.18: Average recognition rates over all writers, depending on the size of the lexi-
con.

Lexicon Configuration 11
acc (%) CT (s)

818 77,72 4
20000 61,23 9

If we observe more in details the recognition rates by writer for different
lexicon sizes (818 words and 20000 words), as illustrated in Figure 4.11, we
can see that:

• For some writers, the recognition rates are slightly decreased, when
the lexicon size is increased from 818 words 20000 words (∼ 24 times
larger). For instance, the recognition rates of the writers ”NIC-Lo93b-
stephani.dat” and ”NIC-Oli92-pietro.dat” are respectively decreased
from 97.96% to 95.92% (∼ 2%) and from 98.33% to 92.31% (∼ 6%).

• For some other writers, on the other hand, the recognition rates are
dramatically decreased. For instance, in the case of writer ”NIC-Pc95-
rintje.dat”, the recognition rate is decreased from 80% to 48.89% (∼
31%). This phenomenon might be explained by the writer’s handwrit-
ing style (which may be different from the other writers’ styles in the
database) and the increase of the possible number of ambiguities when
increasing the lexicon size.

Conclusion

The recognition rates of the proposed HWR vary a lot according to the writer. For
some writers, our system provides recognition rates higher than 75%, which can be
considered as a good performance in terms of effectiveness. For some writers, the recog-
nition rates can even be higher than 90%. At the opposite, our system may provide
some recognition rates below 50% for some writers. This important heterogeneity in the
results can be explained by the high variation of handwriting styles. As a consequence,
some handwritten words provided by some writers are more complex and difficult to be
analyzed by our system, especially when the lexicon size is increased.

In order to improve the recognition rates for this group of writers, a HWR adapted
to each writer may be required, as explained in the perspective of this thesis.

168

4 Experiments and Discussion

In the following section, we summarize all the experimental results provided by the
series of experiments conducted on our HWR and draw some general conclusion.

4.2.3.7 Summary and conclusion

In the previous sections, we presented a series of experiments concerning our system,
performed with 11 different configurations. The experimental results when using the
configuration 1 to 10 are illustrated in Figure 4.14.

�
�
�
���

�
��

���
�

�

�
�
�
���

�
��

���
�

�

�
�
�
���

�
��

���
�

�

�
�
�
���

�
��

���
�

�

�
�
�
���

�
��

���
�

�

�
�
�
���

�
��

���
�

�

�
�
�
���

�
��

���
�

�

�
�
�
���

�
��

���
�

�

�
�
�
���

�
��

���
�

�

�
�
�
���

�
��

���
�

�
�

��

��

��

��

��

����
����

����

����
����

���� ����
���� ����

����

���� ����

����

��

����

���� ����

���� ��

����

��� �����

����� �����

�
�
�
�
�
�
��
��

�
��

��
��

�

Figure 4.14: Experimental results given by our system over all the different configura-
tions.

From configuration 1 to configuration 4, the directed graph search strategy is used
during the word decoding process. Only the SCR is considered. The bi-character models
are not integrated yet. Configurations 1 and 2 allow observing the impact of the pruning
parameter E and the parameter N (number of potential characters considered in each
node of the lattice) respectively. In the configurations 3 and 4, we evaluate the effective-
ness and efficiency of the garbage class strategy and the rejection systems strategy, which
are used to create rejection option in the SCR. Based on all these experimental results,
we observe that using the garbage class strategy significantly improves the recognition
rate.

In the remaining configurations, we use dynamic programming for word decoding.
The configurations 5 and 6 allow comparing the effectiveness of our system when us-
ing the SCR without garbage class and the SCR with garbage class. The garbage class
strategy improves the recognition rates. In addition, dynamic programming outperforms
the directed graph search strategy both in terms of recognition rates and computational

169

4 Experiments and Discussion

times.

In configurations 7 and 8, we integrate the bi-character models (based on logistic
regression) in our systems. In the configuration 7, we use the SCR without garbage
class while in the configuration 8, we use the SCR with garbage class. Based on the
recognition results, we can conclude that using together the SCR with garbage class and
the bi-character models (configuration 8) allows significant improving of the recognition
rates. When integrating the bi-character models in HWR, the computational times in-
creases. However, we can speedup the process if the TRIE model is used to represent
the lexicon, as explained in section 5.2.1 (the future work related to this thesis).

In configuration 9, we use dynamic programming adapted to character size. Instead
of considering that all the character classes have the same size, we adapt the character
size (number of maximum graphemes composing a character) to each character class.
This strategy allows slightly to improve the recognition rates (≤ 0.6%) when using a
large lexicon size. This can be explained by the fact that the ambiguities related to the
unknown pattern are solved by the garbage class strategy in the SCR and bi-character
models. Therefore, in the following, we use a fixed number of graphemes per character
in the word decoding process.

In the configuration 10, we remove the delayed stroke management method from our
system to prove its efficiency. When the delayed stroke management method is not used,
the effectiveness of the system is degraded of an average of 3%, what shows the effec-
tiveness of our delayed stroke management method. We can also conclude that delayed
strokes contain important information about the words and that this information has to
be considered in the handwriting recognition systems.

Finally, we observe the recognition rates of different writers (configuration 11). We
notice large differences between the performances, depending on the writer. The low
recognition rates for some writers can be explained by two main reasons: 1) labeling
errors in the ground-truth and 2) the high complexity in their writings.

In the next section, in order to be as exhaustive as possible, we propose to compare
the effectiveness and efficiency of our system with a baseline HMM-based system.

4.3 Comparison with a baseline HMM-based system

Based on our survey on handwritten word recognition systems (see chapter 2), we can
see that Hidden Markov Model (HMM) is very frequently used to build handwritten
word/text recognition systems, especially in the case of on-line signal. As a conse-
quence, HMM-based systems are frequently used as a reference system in the litera-
ture [124, 43, 9]. Therefore, we decided to use a baseline HMM-based system as a
reference system for performance comparison.

170

4 Experiments and Discussion

This section aims at comparing the effectiveness and efficiency of our system with a
baseline HMM-based system. A paper related to this work is presented in [113]. First,
we briefly introduce this HMM-based system. Then, we introduce the experimental
protocol and analyze the experimental results.

4.3.1 Presentation of the baseline HMM-based system

A brief introduction to HMM is presented earlier in section 2.3.1.1. Let us remind
here that a HMM is a model that describes the transitions between a set of states
S = {s1, s2, . . . } for a given set of observations O = {o1, o2, . . . }. A HMM is denoted
by a model λ = {A,B, π}. In this part, we present the architecture and parameters
of the HMM-based system that we use as a baseline here. Then, we introduce the
training process of this system, which allows us to optimize the values of some important
parameters, such as the number of Gaussians in the mixture and the number of states
for each character model. The settings and training method we use here are inspired
from the system presented in [47].

Architecture and definitions of HMM-based system

• The baseline HMM-based system relies on a linear architecture, which
allows self-transition and transition to its immediate successor state (see
Figure 2.5 in section 2.3.1.1).

• The input signal is normalized using the same word normalization and
pre-processing method as in our system (see section 3.2.1).

• Three families of local on-line features which are usually used in the
literature [65] for HMM-based systems, are extracted from each point of
the normalized signal. These features are: normalized x, y coordinates,
sine and cosine of the curvature angle as well as sine and cosine of the
direction angle.

• The size of the sliding window is settled to 4 points and the overlapping
width is settled to 2 points.

• The average length (i.e. average number of sliding window) of each
character model (Ns(ck)) is estimated from the training database (see
Appendix B). Table B.1, in Appendix B gives the resulting average
length of each character class. These values are then used to estimate
the number of states for each character model during the training pro-
cess.

• The number of Gaussians in the mixture and the number of states for
each character model is optimally settled using a validation database,
as explained in the description of the training process presented in the
following paragraph.

Training process

171

4 Experiments and Discussion

The reference system is trained using 72028 writings (in lowercase charac-
ters) selected from the UNIPEN database [49]. The number of Gaussians
in the mixture and the numbers of states for each character model are opti-
mally fixed by using a validation set which contains 800 writings, randomly
selected from the Unipen-ICROW-03 database. The training and validation
process are described below:

Based on the estimated average length of each character class (Ns(ck)),
we want to find the optimal number of states of the HMM model for the
character ck. Indeed, this HMM-based system relies on linear architecture
which allows self-transition. In other words, it allows repeating several tran-
sitions in the same state. As a consequence, the number of states for the
HMM model corresponding to the character ck is generally lower than its
average length Ns(ck). In this reference system, we define the number of
states Nstate(ck) = η ∗ Ns(ck), where η is the coefficient value ranging in
{0.1, 0.2, . . . , 1}. For each coefficient η, a complete training process is per-
formed. The training process consists in three stages:

• Stage 1: for each character class ck, an initial HMMmodel λ0
ck
is created.

The number of states is fixed to Nstate(ck) = η∗Ns(ck) while the number
of Gaussians in the Mixture is fixed to 1.

• Stage 2: the system is trained in 4 iterations using the handwritten
words in the training database. After these 4 iterations of training, we
perform an experiment on the validation dataset. The recognition rate
value is recorded. Then, we increase the number of Gaussians in the
mixture by 1.

• Stage 3: We re-perform the stage 2 recursively, until the the recognition
rate on the validation database remains stable.

Table 4.19 illustrates the recognition rate on the validation set when increasing the
number of Gaussians in the mixture, and with different values for the coefficient η. Based
on these results, we observe that when the number of Gaussians in the mixture equals
10 and the coefficient η equals 0.5, the HMM-based system provides the best recognition
rate. When using the coefficient η = 0.5, the number of states per character varies from
9 to 14, depending on the character class. These values are considered during the test
stage, which is introduced in the following section.

172

4 Experiments and Discussion

Table 4.19: Recognition rates on the validation database.
Coefficient of number of states (η)

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

N
u
m
b
er
of
G
au
ss
ia
n
s
in
th
e
m
ix
tu
re 1 0.25 3 10.5 18.75 24.5 25.62 17.5 10.02 7.38 3.5

2 0 6.88 27.25 41.12 44.38 40.88 31 21.15 13.64 6.76
3 0.25 9.5 34 47.75 50.62 47.25 36.75 25.66 15.64 8.64
4 0.5 15.38 43.12 53 57.62 50.25 38.75 26.66 16.77 9.14
5 0.62 15.55 46.12 58.88 60.62 52.38 40.5 28.54 19.02 9.64
6 0.75 20.12 49.75 61.12 64 53.12 41.75 30.04 19.02 9.76
7 1 23.62 51.62 62.75 65.38 55.5 44.5 30.41 19.77 10.14
8 1.25 27 52.62 65.12 68.12 57 44.75 31.54 20.18 10.14
9 1.25 27.62 52.5 65.62 68.5 58.12 45.25 32.79 20.78 10.14
10 2.25 27.88 52.75 66.25 69.12 58.12 45.75 32.54 21.03 10.26
11 2.25 27.25 53.25 66.75 69 57.88 45.5 32.42 21.03 10.76
12 2 28 53.5 66.5 69 57.75 46 32.92 21.4 10.64
13 2.38 28.12 54.75 66.25 68.62 57.38 46.12 33.04 21.53 10.76
14 2.75 28.38 55.25 66.38 68.25 57.62 46.5 33.42 2053 10.76

4.3.2 The proposed system vs. the baseline HMM-based system

In order to compare the effectiveness and efficiency of our system with the baseline HMM-
based system, we perform the experiments on both systems using the same test database
and lexicons. This test database contains 3614 writings (in lowercase characters) selected
from the Unipen-ICROW-03 database. Concerning our system, we use the configuration
where the SCR with garbage class and the bi-character models are considered. The
recognition results are provided in Table 4.20.

Table 4.20: Experimental results of the proposed system and the HMM-based system:
accuracy (recognition rate) and Computational Times (in seconds).

Lexicon Our proposed system HMM-based system

acc(%) CT (s) acc(%) CT (s)
5000 70,84 6 65,15 9
10000 67,02 7 60,19 22
20000 62,59 9 54,51 40

Based on these recognition results, we can observe that using the lexicon of 5000,
10000 and 20000 words, the recognition rates of our proposed system are respectively
5.69%, 6.83% and 8.08% higher than the recognition rates of the HMM-based system.
We can notice that the improvement becomes larger when increasing the lexicon size.
This can be explained by different reasons:

• Features: our system relies on the combination of off-line and on-line features,
which allows taking profit of their complementarity. Unlike our system, the base-
line HMM-based system relies only on a set of local features.

173

4 Experiments and Discussion

• Segmentation: our system relies on explicit segmentation/recognition, whereas the
baseline HMM system relies on implicit segmentation. Therefore, more information
is given to our system during the training stage (we use a database of segmented
characters) compared to the HMM, the training of which is ”blind” since the
character boundaries are unknown.

• Single character recognizer: the SCR used in our system relies on SVM, which is
famous for its effectiveness for discriminant classification. In general, it is more
effective for classification than HMM, which is a generative model.

• Bi-character models: the bi-character models used in our system allow integrating
the graphical context by taking into account the neighboring characters which is
not the case for the baseline HMM.

Concerning computational times, our system performs 4 times faster than the baseline
HMM-based system when considering a lexicon of 20000 words. This is due to the fact
that, in our system, for each node of the lattice, only 7 potential character candidates
(N = 7) are considered. This strategy renders the word decoding process much faster,
since some paths are pre-filtered. This strategy is not used in the baseline HMM-based
system. As far as we know, this strategy was not used in any existing HMM-based
system.

4.4 Conclusion

In this chapter, we present and analyze many experiments respectively for: i) Isolated
Character Recognizer (ICR), ii) Single Character Recognizer (SCR), iii) bi-character
models and iv) Handwritten Word Recognition (HWR). Detailed analysis and discus-
sions were presented in the corresponding sections and sub-sections. In this conclusion,
we point out some main conclusions.

Our ICR was trained for isolated character recognition using isolated characters ran-
domly selected from the IRONOFF and UNIPEN databases. It uses SVM and 45 fea-
tures resulted from feature selection (see section 3.4.3). These features consist in both
on-line and off-line features. Based on the experimental results, our ICR provides very
competitive recognition results in terms of recognition rate as well as computational
times compared to a state-of-the-art recognizer. This first experiment allows assessing
the effectiveness and efficiency of our recognizer compared to the state-of-the-art. We
can therefore apply it to single characters (extracted from handwritten words).

The SCR applied to single characters was trained mainly with the single character
samples segmented from handwritten words. This recognizer relies on 72 features result-
ing from feature selection. In general, the recognition rates obtained on single characters
is lower than the recognition rates obtained on isolated characters. This is because the
shapes of the characters segmented from handwritten words are more heterogeneous and

174

4 Experiments and Discussion

more complex than those of the characters written in isolated boxes. The inclusion of
the garbage class in the SCR does no have a great impact at the recognition rates at
the character level.

Concerning our HWR, we performed a series of experiments using 11 different config-
urations, in order to evaluate the effectiveness and efficiency of the methods/strategies
used at each stage of the system and to observe the recognition rates for each writer.
Based on the experimental results, we can notice that simultaneously using the SCR
with garbage class and the bi-character models based on logistic regression provides
an improvement of 4.8% to 7% of the recognition rates, depending on the lexicon size.
However, the effectiveness of the system strongly depends on the writers. In this case,
a HWR adapted to each writer may be required [18, 145].

We have also compared the effectiveness and efficiency of our system with a baseline
HMM-based system by testing both systems with the same handwritten words and
lexicons. Our system provides better results in terms of recognition rates, especially
in the context of large lexicons (up to 8% improvement for a lexicon of 20000 words)
and computational time (∼ 4 times faster for a lexicon of 20000 words). However, the
HMM-based system used for this comparison is a baseline system. The effectiveness and
efficiency of this HMM-based system could certainly be improved. Nonetheless, we have
shown that an explicit segmentation/recognition based system using a discriminative
classifier can provide a very competitive results, compared to an implicit segmentation-
based system relying on generative models.

175

Contents
5.1 Summary 178

5.2 Limitations of the proposed sys-
tem and possible improvements 180

This chapter gives a final conclusion of our research by discussing on
the strong and weak points of the proposed system. Finally, we present
the perspectives of this work which will allow improving the effective-
ness of the system.

5 Conclusion and future work

177

5 Conclusion and future work

Handwriting is an irreplaceable way for communication. The explosion of interactive
mobile devices such as smartphones, smartpens, electronic tablets, etc., offers alterna-
tive ways to produce handwriting. These devices store the trajectory of handwriting
as sequences of points, generally called on-line handwriting. Nowadays, these kinds of
devices are used for different purposes, for instance education, medical and administra-
tive tasks, which increases the amount of on-line handwriting produced every day. The
research activities related to on-line handwriting recognition raised a great interest not
only in the research community, but also from a commercial point of view.

The intrinsic difficulties in handwriting recognition problems are mainly due to the
large variability of writing styles all over the world. In Latin script, a handwritten word
is composed of a sequence of characters which are more or less connected, depending
on handwriting style. The character boundaries are difficult to identify, especially in
the context of unconstrained handwriting. Therefore, unconstrained handwritten word
recognition is still considered as a difficult problem in the research community, despite
the efforts brought by many researchers since half a century.

In this research work, we propose an on-line HWR relying on explicit segmenta-
tion/recognition and discriminative classifiers at the single character level and also at
the bi-character level so as to integrate context information about the neighborhood of
single character. The proposed system can be applied to a large and flexible lexicon
without any specific requirement concerning to the capturing device. In this chapter, we
summarize our main contributions during this PhD thesis. We also try to objectively
discuss on the limitations of the proposed system and try to suggest future work both
at a short term and a long term perspectives.

5.1 Summary

Motivated by the effectiveness of the SVM classifier on many pattern recognition prob-
lem, our first approach was to develop a first version of on-line HWR relying on an
explicit segmentation/recognition method and a SCR using SVM with RBF kernel. The
input handwritten word is normalized in order to standardize the signal and to remove
noise. Then, this normalized signal is segmented into a sequence of graphemes to be
further used to create a L level lattice. Each node of the lattice is considered as a
character to be submitted to a SCR. The feature set used for this SCR was established
on the basis of the combination of on-line and off-line features, to take profit of their
complementarity. The off-line features were extracted from the image artificially gen-
erated from the original (on-line) signal. Finally, for the word decoding stage, we have
implemented a directed graph search strategy, searching in the lattice to find the best
path for each word in the lexicon.

This first system provides encouraging results, but its performances remain below the
baseline HMM-based system results. After studying in details the framework of this first

178

5 Conclusion and future work

system, we identified five problems related to: 1) the unknown patterns, since the signal
in each node of the lattice is obtained by concatenating different segmented graphemes
2) the problem related to the delayed strokes, 3) the similarity between different charac-
ter classes, for instance between the characters ’e’ and ’l’, 4) the shared character parts
problem, where the shape of a part of some character classes may be similar to the shape
of other character classes, 5) the fact that the directed graph search strategy can find a
local optimum and therefore fail to provide an optimal path associated to each word in
the lexicon. In addition, the pruning parameter E has to be optimally fixed to obtain a
trade-off between computational times and recognition rates.

In order to deal with the problems related to unknown patterns, we have proposed
to use two different strategies to build a SCR with rejection option, as explained in
section 3.5.3. The first strategy aims at adding a garbage class in the SVM classifier
while the second strategy aims at using a set of specific rejection systems (cascade of
Adaboost classifiers) to post-process the outputs given by the SVM classifier (without
garbage class in that case). We observed that the garbage class strategy outperforms the
specific rejection systems strategy in terms of recognition rates and computational times
(see part B, section 4.2.3.1). The garbage class strategy provides an improvement of
3.9% to 6.8% of the recognition rate compared to using a SCR without rejection option,
depending on the lexicon size. The improvements brought by the garbage class strategy
makes our system more competitive than the baseline HMM-based system, at least in
terms of recognition rates.

In the particular case of on-line handwriting, delayed strokes may cause additional
variations, or distortions in the writing. In order to deal with this problem, we have
introduced a delayed strokes management method (see section 3.3). This method aims
at detecting the delayed strokes and re-localizing them based on their spatial position
on the x axis. This method allows to improve the recognition rate up to 3%, depending
on the lexicon size (see section 4.2.3.5).

In order to tackle the local optimum and computational time problems, we have pro-
posed another word decoding strategy relying on Dynamic Programming to find the
optimal path associated to each word in the lexicon. In the case of large lexicon (20000
words), using dynamic programming in the word decoding process allows to improve
the recognition rate up to 4% compared to the recognition rate provided by the graph
search strategy (see part C, section 4.2.3.2). In terms of computational time, dynamic
programming performs 15 times faster than the graph search strategy, even thought in
this new word decoding method, the TRIE model strategy is not yet used to represent
the lexicon which would speed-up the process.

In order to solve the problems related to the similarity between different character
classes and the problems related to the shared character part, we have proposed the
idea of bi-character models (see section 3.6). These bi-character models allow taking
into account the graphical context each of single character candidate by jointly recog-

179

5 Conclusion and future work

nizing two neighboring characters in the lattice. In addition, the bi-character models
(based on logistic regression) can also solve the problem related to the unknown patterns
which have not been handled by the garbage class in the SCR. Using bi-character models
provides an improvement up to 3.6% in the case of large lexicons (20000 words). In the
case that the garbage class strategy and the bi-character models are jointly used, the
recognition rate is improved up to 7% compared to our baseline system (without garbage
class nor bi-character models), as detailed in section 4.2.3.3. Our system provides a bet-
ter recognition rate up to 8% and is 4 times faster than a baseline HMM-based system
(see section 4.3).

In summery, we have proposed a discriminative approach to create an on-line HWR
that combines explicit segmentation/recognition with discriminative classifiers (SVM
and logistic regression) and dynamic programming. Our system analyzes the input
handwritten word at two levels (character and bi-character levels), what allows this
system to outperform a baseline HMM-based system in terms of recognition rates and
computational times. Our research work open some new directions for on-line handwrit-
ing recognition problems.

Although our system provides some satisfying result compared to a baseline HMM-
based system, it still has some limitations and weak-points that may be improved in the
future.

5.2 Limitations of the proposed system and possible
improvements

We classify these limitations and future work into two categories: short term and long
term perspectives.

5.2.1 Short term perspectives

In the short term perspective, four main points can be improved:

Improving the training databases

As mentioned in section 4.2.1.2, some character classes do not have enough segmented
characters. Therefore, the training database may not contain enough data to cover all
the variation of characters composing handwritten word. In order to train the SCR,
we therefore need to add more samples of these classes in the single character training
database. In this case, the single character segmentation method presented in sec-
tion 4.1.4 can be used to extract segmented character from handwritten words in some
large database such as UNIPEN.

180

5 Conclusion and future work

Additionally, the bi-character database contains only the samples which are artificially
generated from single characters (see section 4.1.5), which may produce some incorrect
samples in the training stage. This bi-character database can be improved by two meth-
ods: 1) cleaning the database by semi-automatically removing the incorrect samples and
2) add real bi-character samples segmented from handwritten words in the bi-character
database. For this second method, a semi-automatic bi-character segmentation method
similar to the single character segmentation method presented in section 4.1.4 can be
used. We consider that using the current version of our HWR to segment bi-character
samples from training handwritten words could be a good strategy. Indeed, the seg-
mentation method can provide correct samples without requiring strong effort to do the
manual verification.

Using TRIE model to speedup word decoding process

During the word decoding process, in the case where dynamic programming is used,
we find the optimal path for each word in the lexicon by exploring the lattice word by
word (i.e. flat search strategy). In order to reduce the computational time, we could
easily use the TRIE model to represent the lexicon. In this case, words that share the
same prefix share also the same branch in the TRIE model. The optimal path of this
prefix is searched only one time and can be used for different words that share this prefix.
Let us take an example of the words ”when” and ”where”. These two words share the
same prefix ”whe”. The optimal path of this prefix can be used to find the optimal path
of the word ”when” and ”where”. The recognition results remain of course unchanged
when the TRIE model is used, as in any case, only the words in the lexicon are used.

Recognizing words containing uppercase characters

In order to recognize the handwritten words which contain mixed-case characters
(lowercase and uppercase), the SCR has to be able to recognize at the same time the
lowercase and uppercase characters and the bi-character models have to be able to deal
with a pair of character composed of lowercase and/or uppercase characters.

In the case of SCR, adding the uppercase character classes in the SVM classifier would
increase the number of classes in the SVM, which would certainly decrease the perfor-
mances of the whole HWR. In this case, this SCR could be improved by experimenting
different solutions. For instance, it could be possible to study further features, as well
as to combine different classifiers at different levels [152] or even to use multiple-kernel
SVM [41] to improve the performances of the recognizer.

In the case of bi-character models, directly adding uppercase character classes would
significantly increase the number of bi-character classes up to 2704 classes (52*52 classes).
As a consequence, 2704 bi-character models would have to be created. The performances
of the proposed system would certainly dramatically decrease, mainly due to the high
number of classes. However, in real applications, there is only few characters written

181

5 Conclusion and future work

in uppercase, since the uppercase characters are written only at the beginning of sen-
tences and only in some nouns and acronyms. For instance, in the Unipen-ICROW-03
database (see section 4.1.3), only 5% of words contain uppercase characters. In addi-
tion, the number of uppercase characters is less than 1% of the total characters in the
database. Therefore, we can continue using only the bi-character models of lowercase bi-
characters (676 bi-character classes), by applying these models only in the case where the
two neighboring candidate characters are written in lowercase. In the case where at least
one of the two character candidates given by the SCR is an upperase character, we would
consider that the bi-character model returns the value 1 (a(cmcn|o(t,t�) ∪ o(t�+1,t”)) = 1).
This means that no verification is applied after SCR in such infrequent cases.

Recognizing words containing accented characters

In order to recognize a handwritten word containing accented characters, the SCR
and bi-character models have to be able to deal with accented characters and accented
bi-characters. Similar to the problem mentioned above, considering accented characters
would increase the number of character classes and bi-character classes, which would
certainly decrease the effectiveness of the system.

In order to deal with this problem, a method was proposed by our team [138]. Given
an input signal, this method tries, in the first step, to detect the accent and the main
character parts. Then, the accented part and the main character are respectively sub-
mitted to an accented recognizer and a SCR. Finally, the recognition results given by
these two recognizers are combined to obtain the final recognition result. In the case of
bi-character models, a similar method can be used.

5.2.2 Long term perspectives

For the long term perspectives, three main possible directions could be considered in the
continuity of our work:

Handwritten line/text recognition

It is possible to use our proposed HWR to recognize handwritten line/text. Indeed,
a handwritten line is composed of handwritten words. In order to apply our system in
this context, two possible solutions can be used. 1) estimating the segmentation points
between handwritten words. Then, submitting each segmented word to the HWR. 2)
Adapting the dynamic programming method that we used for word decoding to line
decoding, based on a language model.

This handwritten line recognition system could be then used to recognize handwrit-
ten text. First, the handwritten text has to be segmented into a set of handwritten
lines. Then, the handwritten line recognition system could be applied. As far as we
know, there is no line segmentation method for on-line signal in the literature. However,

182

5 Conclusion and future work

many methods have been introduced for line segmentation in the context of off-line doc-
uments [92, 105], which may provide some initial directions for line segmentation in the
context of on-line signal or could be used directly on the reconstructed off-line signal, as
a first attempt.

Using Natural Language Processing (NLP)

Once our HWR would be applied for handwritten line/text recognition, high level
context (syntactic and semantic context) can be used as external knowledge (see sec-
tion 1.4), in order to improve the performances of the system.

In the case of handwritten line/text recognition, authors usually use language models
in the form of N-gram models as external knowledge to improve the performance of
the system. However, NLP has been widely and successfully used in different research
problems such as speech recognition, machine translation, text-to-speech, etc. while it
is not yet largely applied and discussed in the context of handwritten line/text recog-
nition research problem. Therefore, NLP is another direction that could be considered.
In addition, using NLP would also handle the problems related to accented characters
explained above.

Adaptation to each writer

Based on the recognition results illustrated in section 4.2.3.6, the recognition rate of
our system varies according to the writer. This is due to the large variation of writ-
ing produced by different writers. In order to improve the recognition rate, we could
create a recognition system adapted to each writer. In this adaptation context, if the
writer is not known in advance, two sub-problems have to be solved: writer identification
and handwritten word recognition adapted to each writer. Two solutions for these two
sub-problems have been proposed and implemented by two Master 2 internship students,
realized under our direction. These solutions are presented in the following paragraphs.

Concerning writer identification, our strategy [18, 145] relies on the information at the
grapheme or character levels. This strategy ensures a writer identification rate up to 90%
when applied in the context of 70 writers on the IRONOFF database (see section 4.1.1).

In order to make our HWR adapted to each writer, we have to create a SCR and
bi-character models adapted to each writer. We have already proposed a solution to
these problems. This solution is to create training databases personalized to each writer
by taking into account not only the samples given by each writer, but also the samples
provided by other writers. The idea is to avoid the problems linked to an insufficient
number of samples provided by each writer. We experimented this strategy in the con-
text of ICR by using the isolated characters in the UNIPEN and IRONOFF databases
(as a standard database) and our own database written by 10 writers. More specifically,
the personalized isolated character database for the writer wri contains all the training

183

5 Conclusion and future work

samples in the standard database (in our case UNIPEN and IRONOFF) and his/her
character samples. Then, during the training process, we simply increase the weight of
his/her samples and the samples that have the same writing style as his/her writing style.
When considering that the writer is correctly identified, this adaptation strategy pro-
vides an improvement from 3% to 19% of the recognition rate, depending on the writer.

Due to limitation of time at the end of this thesis, we did not use these two solutions
together (writer identification, and ICR adaptation to writer) to create a HWR adapted
to each writer. We hope that these two solutions will improve the performance of the
HWR.

184

Appendices

185

A Experimental results

186

A Experimental results

T
ab
le
A
.1
:
T
h
e
co
n
fu
si
on
m
at
ri
x
p
ro
v
id
ed
b
y
th
e
S
C
R
w
it
h
ou
t
ga
rb
ag
e
cl
as
s
(e
x
p.
2)

P
re
d
ic
te
d
cl
a
ss

Actualclass

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

a
44
3

0
11

5
4

0
0

0
1

0
0

0
0

1
13

0
2

0
6

0
5

0
3

5
0

1
b

2
43
3

0
2

1
3

0
0

1
3

2
7

0
0

7
3

0
2

15
15

0
0

0
0

3
1

c
6

0
46
2

1
14

0
0

0
6

0
0

4
0

1
2

1
0

0
0

1
0

0
0

1
1

0
d

2
0

0
49
3

0
0

0
0

1
0

0
3

0
0

1
0

0
0

0
0

0
0

0
0

0
0

e
3

2
29

0
40
7

1
0

0
11

0
2

26
0

0
11

0
0

1
3

0
0

0
0

4
0

0
f

0
2

3
0

1
44
2

2
0

0
7

0
7

0
0

1
9

2
6

4
11

0
0

0
1

0
2

g
1

0
0

0
1

8
41
0

0
0

5
0

0
0

0
1

0
12

0
9

3
0

0
0

3
31

16
h

0
4

0
1

0
0

0
44
4

0
0

35
1

0
9

0
0

0
0

0
2

1
0

0
2

1
0

i
0

0
10

0
5

0
0

0
35
4

0
0

35
0

4
0

0
0

41
0

22
8

18
1

1
1

0
j

0
0

0
0

0
0

0
0

0
49
6

0
3

0
0

0
0

0
0

0
1

0
0

0
0

0
0

k
0

2
0

1
0

1
0

15
0

1
46
0

1
0

0
0

3
1

0
0

7
1

0
2

5
0

0
l

0
1

1
0

11
0

0
0

26
0

2
41
9

0
0

0
0

0
2

0
37

0
0

0
0

1
0

m
1

0
0

0
0

0
0

2
0

0
0

0
46
9

9
0

0
0

0
0

0
14

0
3

1
1

0
n

1
0

1
0

0
0

0
6

3
0

3
0

8
38
5

0
0

0
34

1
0

45
8

4
0

1
0

o
8

1
13

2
5

0
0

0
6

0
0

0
0

0
44
2

1
0

0
8

1
3

8
1

0
0

1
p

0
1

0
1

0
8

2
0

1
0

1
1

0
2

0
44
7

1
5

3
13

0
0

0
1

13
0

q
10

0
1

1
0

6
9

1
0

0
0

3
0

1
2

2
45
6

0
3

0
0

0
0

0
4

1
r

0
0

2
1

1
0

0
0

39
1

0
6

0
7

1
0

0
42
3

2
3

0
10

0
0

0
4

s
1

2
1

0
0

2
2

0
2

3
0

0
0

0
1

0
0

4
47
0

4
0

0
0

1
0

7
t

0
0

2
0

0
0

1
2

27
6

1
39

0
1

0
1

0
5

3
41
1

0
0

0
0

0
1

u
2

0
0

0
0

0
0

1
22

0
0

0
2

25
0

0
0

3
0

0
39
4

43
5

2
1

0
v

0
0

0
0

0
0

0
0

17
0

1
0

1
0

4
1

0
4

0
1

3
46
1

1
1

5
0

w
1

0
0

0
0

0
0

0
3

0
0

0
3

2
0

2
0

0
0

0
2

12
47
5

0
0

0
x

1
0

2
0

5
0

0
0

1
0

2
1

1
5

0
0

0
1

0
0

0
0

0
47
7

2
2

y
0

1
0

0
0

0
14

1
0

4
3

1
0

0
0

0
7

4
1

0
0

1
0

6
45
1

6
z

2
2

0
1

1
1

11
0

1
3

0
1

0
0

3
0

0
3

3
7

0
0

0
4

11
44
6

187

A Experimental results

T
ab
le
A
.2
:
T
h
e
co
n
fu
si
on
m
at
ri
x
p
ro
v
id
ed
b
y
th
e
S
C
R
w
it
h
ga
rb
ag
e
cl
as
s
(e
x
p.
3)

P
re
d
ic
te
d
cl
a
ss

Actualclass

a
b

c
d

e
f

g
h

i
j

k
l

m
n

o
p

q
r

s
t

u
v

w
x

y
z

ga
rb
ag
e
cl
as
s

a
44
3

0
11

5
4

0
0

0
1

0
0

0
0

0
13

0
2

1
6

0
5

0
3

5
0

1
0

b
2

43
2

0
2

1
3

0
0

1
2

1
4

0
0

7
3

0
0

15
14

0
0

0
0

3
1

9
c

6
0

46
3

1
13

0
0

0
5

0
0

3
0

1
2

1
0

0
0

1
0

0
0

0
1

0
3

d
2

0
0

49
3

0
0

0
0

1
0

0
2

0
0

1
0

0
0

0
0

0
0

0
0

0
0

1
e

4
1

29
0

40
6

1
0

0
11

0
1

28
0

0
9

0
0

2
3

0
0

0
0

3
0

0
2

f
0

3
3

0
1

44
1

2
0

0
6

0
6

0
0

1
10

2
6

3
12

0
0

0
1

0
3

0
g

1
0

0
0

1
8

40
9

0
0

5
0

0
0

0
1

0
12

0
9

3
0

0
0

2
31

15
3

h
0

4
0

1
0

1
0

44
4

0
0

32
1

0
9

0
0

0
0

0
3

1
0

0
2

1
0

1
i

0
0

10
0

6
0

0
0

34
1

0
0

24
1

3
0

0
0

37
0

19
8

18
1

1
1

0
30

j
0

0
0

0
0

0
0

0
0

49
3

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

5
k

0
2

0
1

0
1

0
14

0
1

46
0

1
0

0
0

3
1

0
0

4
1

0
2

4
0

0
5

l
0

1
1

0
11

0
0

0
19

0
0

38
5

0
0

0
0

0
2

0
34

0
0

0
0

1
0

46
m

1
0

0
0

0
0

0
2

0
0

0
0

46
7

10
0

0
0

0
0

0
15

0
3

1
1

0
0

n
1

0
1

0
0

0
0

6
4

0
3

0
8

37
9

0
0

0
33

1
0

46
8

5
0

1
0

4
o

9
1

13
2

4
0

0
0

6
0

0
0

0
0

44
1

1
0

1
7

1
3

8
1

0
0

1
1

p
0

1
0

1
0

7
2

0
0

0
1

1
0

2
0

44
9

1
5

3
13

0
0

0
0

12
0

2
q

11
0

1
1

0
7

10
1

0
0

0
2

0
0

2
1

45
5

0
3

0
0

0
0

0
4

1
1

r
0

0
1

1
1

0
0

0
38

1
0

4
0

5
1

0
0

41
8

2
4

0
10

0
0

0
4

10
s

1
2

1
0

0
2

3
0

1
4

0
0

0
0

1
0

0
5

46
9

3
0

0
0

0
0

5
3

t
0

0
2

0
0

0
1

2
19

6
1

36
0

1
0

2
0

4
3

40
7

0
0

0
0

0
1

15
u

2
0

0
0

0
0

0
1

20
0

0
0

2
26

0
0

0
3

0
0

39
0

46
5

2
1

0
2

v
0

0
0

0
0

0
0

0
16

0
1

0
2

0
3

0
0

4
0

1
3

46
0

1
1

4
0

4
w

1
0

0
0

0
0

0
0

3
0

0
0

3
1

0
2

0
0

0
0

2
11

47
6

0
0

0
1

x
1

0
2

0
5

0
0

0
0

0
2

1
1

5
0

0
0

1
0

0
0

0
0

47
7

2
2

1
y

0
1

0
0

0
0

13
1

0
4

2
0

0
0

0
0

7
0

1
0

0
1

0
4

42
1

6
39

z
2

2
0

0
1

1
11

0
1

2
0

1
0

0
3

0
0

4
4

8
0

0
0

3
13

44
4

0
ga
rb
ag
e
cl
as
s
0

2
1

0
0

1
0

0
10

13
9

22
0

1
1

0
0

10
4

3
0

0
1

0
8

1
91
3

188

A Experimental results

Table A.3: Maximum number of graphemes for each character class.

Char.label Nb.states Char.label Nb.states Char.label Nb.states
a 5 j 5 s 4
b 6 k 6 t 6
c 3 l 6 u 5
d 6 m 6 v 4
e 4 n 5 w 6
f 7 o 4 x 5
g 7 p 6 y 6
h 6 q 6 z 4
i 4 r 4

189

B Baseline HMM-based system:
training parameters

As mentioned earlier in section 4.3, the average length (i.e number of sliding windows) of
each character class (Ns(ck)) have to be estimated. In our baseline HMM-based system,
this parameter Ns(ck) is estimated using the following Equation:

Ns(ck) =
1

|ck|
�

w∈wordck

L(w)|wck |
|w| (B.1)

where

• wordck : is the set of words in the training database containing the character ck

• Ns(ck): average length (i.e number of sliding windows) of the character ck

• L(w): word length (number of sliding windows)

• |w|: Word length (number of characters)

• |wck |: Number of characters ck in word w

• |ck| : Total number of characters ck in the dataset training.

Table B.1 illustrates the average length of all the character classes given by our esti-
mated method. The number of states for each character model can be then optimally
fixed during the training process basing on the value of Ns(ck), as explained in sec-
tion 4.3.

190

B Baseline HMM-based system: training parameters

Table B.1: Maximum number of states for each character model.

Char.label Nb.states Char.label Nb.states Char.label Nb.states
a 25 j 19 s 22
b 25 k 25 t 21
c 22 l 22 u 23
d 24 m 26 v 21
e 22 n 23 w 24
f 20 o 23 x 23
g 24 p 22 y 24
h 24 q 22 z 24
i 20 r 22

191

Bibliography

[1] A.R Ahmad, M. Khalid, and C. Viard-Gaudin. Comparison of Support Vector
Machine and Neural Network in Character Level Discriminant Training for Online
Word Recognition. In Proceedings of the Uniten Students Conference on Research
and Development, Malaysia, 2004.

[2] A.R. Ahmad, M.Khalia, C. Viard-Gaudin, and E.Poisson. On-line Handwriting
Recognition System using Support Vector Machine. In Proceedings of the TEN-
CON, IEEE Region 10 International Conference, pages 311–314, Chiangmai, Thai-
land, 2004.

[3] A.R. Ahmad, C. Viard-Gaudin, and M. Khalid. Lexicon-Based Word Recognition
Using Support Vector Machine and Hidden Markov Model. In Proceedings of the
10th International Conference on Document Analysis and Recognition, pages 161–
165, Washington DC, USA, 2009.

[4] E. Anquetil. Modélisation et Reconnaissance par la Logique Floue : Application
à la Lecture Automatique En-ligne de l’Ecriture Manuscrite Omni-scripteur. PhD
thesis, Université de Rennes I, France, 1997.

[5] C. Bahlmann. Directional Features in Online Handwriting Recognition. Pattern
Recognition, 39(1):115–125, 2006.

[6] C. Bahlmann, B. Haasdonk, and H. Burkhardt. On-Line Handwriting Recognition
with Support Vector Machines : A Kernel Approach. In Proceedings of the 8th
International Workshop on Frontiers in Handwriting Recognition, pages 49–54,
Washington, DC, USA, 2002.

[7] Y. Bengio and Y.L. Cun. Word Normalization for On-Line Handwritten Word
Recognition. In Proceedings of the International Conference on Pattern Recogni-
tion, pages 409–413, Copenhagen, Denmark, 1994.

[8] F. Biadsy, J. El-sana, and N. Habash. Online Arabic Handwriting Recognition
using Hidden Markov Models. In Proceedings of the 10th International Workshop
on Frontiers in Handwriting Recognition, pages 85–90, La Baule, France, 2006.

[9] A.L. Bianne-Bernard, C. Kermorvant, and L. Likforman-Sulem. Context-
dependent HMM Modeling using Tree-based Clustering for the Recognition of
Handwritten Words. In Document Recognition and Retrieval, California, USA,
2010.

192

Bibliography

[10] A.L. Bianne-Bernard, F. Menasri, R.A.H.Mohamad, C.Mokbel, C.Kermorvant,
and L. Likforman-Sulem. Dynamic and Contextual Information in HMMModeling
for Handwritten Word Recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(10):2066 –2080, 2011.

[11] G. Boccignone, A. Chianese, L.P. Cordella, and A. Marcelli. Recovering Dynamic
Information from Static Handwriting. Pattern Recognition, 26(3):409 – 418, 1993.

[12] F. Bortolozzi, A.S. Brito, L.S. Oliveira, and M. Morita. Recent Advances in Hand-
written Recognition. U. Pal, S.K. Parui, B.B. Chaudhuri (Eds.) Document Anal-
ysis, pages 1–30, 2008.

[13] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A Training Algorithm for Optimal
Margin Classifiers. In Proceedings of the 5th Annual ACM Workshop on Compu-
tational Learning Theory, pages 144–152, Pittsburgh, PA, USA, 1992.

[14] A. Brakensiek and G. Rigoll. A Comparison of Character N-Grams and Dictionar-
ies Used for Script Recognition. In Proceedings of the 6th International Conference
on Document Analysis and Recognition, pages 241–245, Seattle, USA, 2001.

[15] A. Brakensiek, J. Rottland, A. Kosmala, and G. Rigoll. Off-line Handwriting
Recognition using Various Hybrid Modeling Techniques and Character N-grams.
In Proceedings of the 7th International Workshop on Frontiers in Handwriting
Recognition, pages 343–352, Amsterdam, Netherlands, 2000.

[16] E.J. Bredensteiner and K.P. Bennett. Multicategory Classification by Support
Vector Machines. Computational Optimizations and Applications, 12:53–79, 1999.

[17] E. Brill. Transformation-Based Error-Driven Learning and Natural Language Pro-
cessing: A Case Study in Part-of-Speech Tagging. Computational Linguistics,
21:543–565, 1995.

[18] Q.A. Bui, M. Visani, S. Prum, and J.M. Ogier. Writer Identification Using TF-IDF
for Cursive Handwritten Word Recognition. In Proceedings of the 11th Interna-
tional Conference on Document Analysis and Recognition, pages 844–848, Beijing,
China, 2011.

[19] C.J.C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery, 2:121–167, 1998.

[20] H. Byun and S.W. Lee. Applications of Support Vector Machines for Pattern
Recognition: A Survey. In Lee Seong-Whan and Verri Alessandro, editors, Pattern
Recognition with Support Vector Machines, Lecture Notes in Computer Science,
pages 571–591. Springer Berlin / Heidelberg, 2002.

[21] E. Caillault, C. Viard-gaudin, and A.R. Ahmad. MS-TDNN with Global Discrim-
inant Trainings. In Proceedings of the 8th International Conference on Document
Analysis and Recognition, pages 856–861, Seoul, South Korea, 2005.

193

Bibliography

[22] E. Caillaut. Architecture et Apprentissage d’un Système Hybride Neuro-Markovien
pour la Reconnaissance de l’Ecriture Manuscrite En-Ligne. PhD thesis, Université
de Nantes, France, 2005.

[23] J. Cao, M. Ahmadi, and M. Shridhar. Recognition of Handwritten Numerals with
Multiple Feature and Multistage Classifier. Pattern Recognition, 28:153–160, 1995.

[24] R.G. Casey and E. Lecolinet. A Survey of Methods and Strategies in Character
Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(7):690–706, 1996.

[25] K.F. Chan and D.Y. Yeung. Recognizing On-line Handwritten Alphanu-
meric Characters Through Flexible Structural Matching. Pattern Recognition,
32(7):1099–1114, 1999.

[26] C.C Chang and C.J Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3):1–27, 2011.

[27] K. Chao and D.S. Mandyam. Invariant Character Recognition with Zernike and
Orthogonal Fourier-Mellin Moments. Pattern Recognition, 35(1):143–154, 2002.

[28] Y.K. Chen and J.F. Wang. Segmentation of Single- or Multiple-Touching Hand-
written Numeral String Using Background and Foreground Analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(11):1304–1317, 2000.

[29] C. Chow. On Optimum Recognition Error and Reject Trade-Off. IEEE Transac-
tions on Information Theory, 16(1):41–46, 1970.

[30] D. Ciresan. Avoiding Segmentation in Multi-Digit Numeral String Recognition
by Combining Single and Two-Digit Classifiers Trained without Negative Exam-
ples. In Proceedings of 10th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pages 225–230, Timisoara, Romania, 2008.

[31] L. Cole, D. Austin, and L. Cole. Visual Object Recognition using Template Match-
ing. In Proceedings of Australian Conference on Robotics and Automation, Can-
berra, Australia, 2004.

[32] S. Efstathios, N. Fakotakis, and G. Kokkinakis. Automatic Extraction of Rules for
Sentence Boundary Disambiguation. In Proceedings of the Workshop on Machine
Learning in Human Language Technology, pages 82–88, Chania, Greece, 1999.

[33] S. España-Boquera, M.J. Castro-Bleda, J. Gorbe-Moya, and F.Zamora-Martinez.
Improving Offline Handwritten Text Recognition with Hybrid HMM/ANNModels.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4):767–779,
2011.

194

Bibliography

[34] F.J. Ferri, P. Pudil, M. Hatef, and J. Kittler. Comparative Study of Techniques for
Large-Scale Feature Selection. E.S. Gelsema, L.N. Kanal (Eds.), Pattern Recog-
nition in Practice IV, Elsevier Science, pages 403–413, 1994.

[35] H. Freeman. On the Encoding of Arbitrary Geometric Configurations. IRE Trans-
actions on Electronic Computers, EC-10(2):260–268, 1961.

[36] Cinthia O.A. Freitas. Handwritten Isolated Word Recognition: An Approach
Based on Mutual Information for Feature Set Validation. In Proceedings of the 6th
International Conference on Document Analysis and Recognition, pages 665–669,
Seattle, USA, 2001.

[37] G. Fumera and F. Roli. Analysis of Error-Reject Trade-Off in Linearly Combined
Multiple Classifiers. Pattern Recognition, 37(6):1245–1265, 2004.

[38] P.D. Gader, M.A. Mohamed, and J.H. Chiang. Handwritten Word Recognition
With Character and Inter-character Neural Networks. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 27(1):158–164, 1997.

[39] S. Garcia-Salicetti, B. Doizzi, P. Gallinari, A. Mellouk, and D. Fanchon. A Hidden
Markov Model Extension of a Neural Predictive System for On-line Character
Recognition. In Proceedings of the 3rd International Conference on Document
Analysis and Recognition, pages 50–53, Washington, DC, USA, 1995.

[40] N. Gauthier, T. Artières, P. Gallinari, and B. Dorizzi. Strategies for Combining
On-line and Off-line Information in an On-line Handwriting Recognition System.
In Proceedings of the 6th International Conference on Document Analysis and
Recognition, pages 412–416, Seattle, WA, USA, 2001.

[41] M. Gönen and E. Alpayd. Multiple Kernel Learning Algorithms. Journal of
Machine Learning Research, 12:2211–2268, 2011.

[42] V. Govindaraju and R.K. Krishnamurthy. Holistic Handwritten Word Recogni-
tion using Temporal Features Derived from Off-line Images. Pattern Recognition
Letters, 17(5):537–540, 1996.

[43] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber.
A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31:855–868, 2009.

[44] G.Seni, N. Nasrabadi, and S. Rohini. An On-line Cursive Word Recognition Sys-
tem. In Proceedings of the Computer Vision and Pattern Recognition, pages 404–
410, Seattle, USA, 1994.

[45] W. Guerfali and R. Plamondon. Normalizing and Restoring On-line Handwriting.
Pattern Recognition, 26(3):419 – 431, 1993.

195

Bibliography

[46] L. Guichard, A.H. Toselli, and B. Coüasnon. Handwriting Word Verification by
SVM-based Hypotheses Re-scoring and Multiple Threshold Rejection. In Proceed-
ings of the 12th International Conference on Frontiers in Handwriting Recognition,
pages 57–62, Kolkata, India, 2010.

[47] S. Gunter and H. Bunke. Optimizing the Number of States, Training Iterations
and Gaussians in an HMM-based Handwritten Word Recognizer. In Proceedings
of the 7th International Conference on Document Analysis and Recognition, pages
472–476, Scotland, UK, 2003.

[48] S. Günter and H. Bunke. HMM-based Handwritten Word Recognition: on the Op-
timization of the Number of States, Training Iterations and Gaussian Components.
Pattern Recognition, 37(10):2069–2079, 2004.

[49] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and S. Janet. UNIPEN
project of on-line data exchange and recognizer benchmarks. In Proceedings of the
12th International Conference on Pattern Recognition, pages 29–33 vol.2, 1994.

[50] M. Hamanaka, K. Yamada, and J. Tsukumo. On-line Japanese Character Recog-
nition Experiments by an Off-line Method Based on Normalization-Cooperated
Feature Extraction. In Proceedings of the 2nd International Conference on Docu-
ment Analysis and Recognition, pages 204–207, Tsukuba, Japan, 1993.

[51] A. Hennig and N. Sherkat. Cursive Script Recognition using Wildcards and Mul-
tiple Experts. Pattern Analysis and Applications, 4(1):51–60, 2001.

[52] H. Hermansky, D.P. Ellis, and S. Sharma. Tandem Connectionist Feature Extrac-
tion for Conventional HMM Systems. In Proceedings of the International Confer-
ence on Acoustics, Speech, and Signal Processing, pages 1635–1638, 2000.

[53] L. Heutte. Reconnaissance de Caractères Manuscrits : Application à la Lecture
Automatique des Chèques et des Enveloppes Postales. PhD thesis, Université de
Rouen, France, 1994.

[54] L. Heutte, T. Paquet, J.V. Moreau, Y. Lecourtier, and C. Olivier. A Struc-
tural/Statistical Feature Based Vector for Handwritten Character Recognition.
Pattern Recognition Letters, 19(7):629–641, 1998.

[55] L. Heutte, P. Pereira, O. Bougeois, J.V. Moreau, B. Plessis, P. Courtellemont,
and Y. Lecourtier. Multi-Bank Check Recognition System: Consideration on the
Numeral Amount Recognition Module. Pattern Recognition and Artificial Intelli-
gence, 11:595–618, 1997.

[56] H. Hild and A. Waibel. Speaker-Independent Connected Letter Recognition With
A Multi-State Time Delay Neural Network. In Proceedings of the 3rd European
Conference on Speech, Communication and Technology, pages 1481–1484, 1993.

196

Bibliography

[57] C.J. Hsieh, K.W. Chang, C.J. Lin, S.S. Keerthi, and S. Sundararajan. A Dual
Coordinate Descent Method for Large-Scale Linear SVM. In Proceedings of the
25th International Conference on Machine Learning, pages 408–415, New York,
USA, 2008.

[58] C.W. Hsu, C.C. Chang, and C.J. Lin. A Practical Guide to Support Vector Clas-
sification . Technical report, Department of Computer Science, National Taiwan
University, 2010.

[59] C.W. Hsu and C.J. Lin. A Comparison of Methods for Multiclass Support Vector
Machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

[60] J. Hu, S.G. Lim, and M.K. Brown. Writer Independent On-line Handwriting
Recognition using an HMM Approach. Pattern Recognition, 33(1):133–147, 2000.

[61] M.K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on
Information Theory, 8(2):179–187, 1962.

[62] S. Impedovo, G. Pirloa, and A. Salzo. Automatic Bank Check Processing: A new
engineered system. Pattern Recognition and Artificial Intelligence, 11(4):5–42,
1997.

[63] M. Iwamura, T. Tsuji, and K. Kise. Memory-based Recognition of Camera-
Captured Characters. In Proceedings of the 9th International Workshop on Docu-
ment Analysis Systems, pages 89–96, Boston, MA, USA, 2010.

[64] K.N. Plataniotis J. Lu and A.N. Ventesanopoulos. Face Recognition using Feature
Optimization and V-Support Vector Machine. IEEE Neural Networks for Signal
Processing XI, 2:373–382, 2001.

[65] S. Jaeger, S. Manke, J. Reichert, and A. Waibel. Online handwriting recogni-
tion: the NPen++ recognizer. International Journal on Document Analysis and
Recognition, 3(3):169–180, 2001.

[66] A. Jain and D. Zongker. Feature Selection: Evaluation, Application, and Small
Sample Performance. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 19(2):153 –158, 1997.

[67] Anil K. Jain, Robert P. W. Duin, and J. Mao. Statistical Pattern Recognition: A
review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–
37, 2000.

[68] Z. Jin, Z. Lou, J. Yang, and Q. Sun. Face Detection using Template Matching and
Skin-color Information. Neurocomputing, 70(4-6):794–800, 2007.

[69] K.Alahari, S.L Putrevu, and C.V. Jawahar. Learning Mixtures of Offline and On-
line features for Handwritten Stroke Recognition. In Proceedings of the 18th Inter-
national Conference on Pattern Recognition, pages 379–382, Hong Kong, China,
2006.

197

Bibliography

[70] M.N. Kapp, C.O.D.A. Freitas, and R. Sabourin. Handwritten Brazilian Month
Recognition: An Analysis of Two NN Architectures and a Rejection Mechanism.
In Proceedings of the 9th International Workshop on Frontiers in Handwriting
Recognition, pages 209–214, Tokyo, Japan, 2004.

[71] E. Kavallieratou, N. Fakotakis, and G. Kokkinakis. An Unconstrained Hand-
writing Recognition System. International Journal on Document Analysis and
Recognition, 4:226–242, 2002.

[72] D. Menotti K.C. Otiniano-Rodŕıguez, G. Cámara-Chávez. Hu and Zernike Mo-
ments for Sign Language Recognition. In Proceedings of the International Confer-
ence on Image Processing, Computer Vision, and Pattern Recognition, 2012.

[73] M. Kherallah, L. Haddad, and A.M. Alimi. A new Approach for Online Arabic
Handwriting Recognition. In Proceedings of the 2nd International Conference on
Arabic Language Resources and Tools, Cairo, Egypt, 2009.

[74] A. Khotanzad and Y.H. Hong. Invariant Image Recognition by Zernike Moments.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5):489–497,
1990.

[75] A. Khotanzad and J.H. Lu. Classification of Invariant Image Representations using
a Neural Network. IEEE Transactions on Acoustics, Speech and Signal Processing,
38(6):1028–1038, 1990.

[76] J.H. Kim, K.K Kim, and C.Y. Suen. Hybrid schemes of homogeneous and het-
erogeneous classifiers for cursive word recognition. In Proceedings of the 7th In-
ternational Workshop on Frontiers in Handwriting Recognition, pages 433–442,
Amsterdam, Netherlands, 2000.

[77] J. Kindermann, E. Leopold, and G. Paass. Multi-class Classification with Error
Correcting Codes. Technical report, GMD German National Research Center for
Information Technology, 2000.

[78] S. Knerr, V. Asimov, O. Baret, N. Gorsky, and J.C. Simon. The A2iA Intercheque
System: Courtesy Amount and Legal Amount Recognition for French Checks.
International Journal of Pattern Recognition and Artificial Intelligence, 11:505–
548, 1997.

[79] G. Koch. Catégorisation Automatique de Documents Manuscrits : Application aux
Courriers Entrants. PhD thesis, Université de Rouen, France, 2006.

[80] G. Koch, T. Paquet, and L. Heutte. Combination of Contextual Information for
Handwritten Word Recognition. In Proceedings of the 9th International Workshop
on Frontiers in Handwriting Recognition, pages 468 – 473, Tokyo, Japan, 2004.

198

Bibliography

[81] A.L. Koerich, Y. Leydier, R. Sabourin, and C.Y. Suen. A Hybrid Large Vocabu-
lary Handwritten Word Recognition System using Neural Networks with Hidden
Markov Models. In Proceedings of the 8th International Workshop on Frontiers in
Handwriting Recognition, pages 99–104, Ontario, Canada, 2002.

[82] A.L. Koerich, R. Sabourin, and C.Y. Suen. Large Vocabulary Off-line Handwriting
Recognition: A Survey. Pattern Analysis and Applications, 6(2):97–121, 2003.

[83] A. Kosmala, J. Rottland, and G. Rigoll. Improved On-Line Handwriting Recogni-
tion Using Context Dependent Hidden Markov Models. In Proceedings of the 4nd
International Conference on Document Analysis and Recognition, pages 641–644,
Ulm, Germany, 1997.

[84] U.H.G. KreBel. Advances in kernel methods. chapter Pairwise Classification and
Support Vector Machines, pages 255–268. MIT Press, Cambridge, MA, USA, 1999.

[85] P.M. Lallican, C. Viard-gaudin, and S. Knerr. From Off-Line To On-Line Hand-
writing Recognition. In In Proceedings of the 7th International Workshop on Fron-
tiers in Handwriting Recognition, pages 303–312, Amsterdam, 2000.

[86] C.J. Lin, R.C. Weng, and S.S. Keerthi. Trust Region Newton Methods for Large-
scale Logistic Regression. In Proceedings of the 24th International Conference on
Machine Learning, pages 561–568, Oregon, USA, 2007.

[87] C.L Liu, H. Sako, and H. Fujisawa. Effects of Classifier Structures and Train-
ing Regimes on Integrated Segmentation and Recognition of Handwritten Nu-
meral Strings. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(11):1395–1407, 2004.

[88] M. Liwicki and H. Bunke. HMM-Based On-Line Recognition of Handwritten
Whiteboard Notes. In Proceedings of the 10th International Workshop Frontiers
in Handwriting Recognition, pages 595–599, La Baule, France, 2006.

[89] M. Liwicki and H. Bunke. Combining On-Line and Off-Line Systems for Handwrit-
ing Recognition. In Proceedings of the 9th International Conference on Document
Analysis and Recognition, pages 372–376, Curitiba, Paraná, Brazil, 2007.

[90] M. Liwicki, H. Bunke, and Neubrckstrasse. Writer-Dependent Recognition of
Handwritten Whiteboard Notes in Smart meeting Room Enviroments. In Pro-
ceedings of the 8th International Workshop on Document Analysis Systems, Nara,
Japan, 2008.

[91] M. Liwicki, A. Graves, H. Bunke, and J. Schmidhuber. A novel approach to on-line
handwriting recognition based on bidirectional long short-term memory networks.
In Proceedings of the 9th International Conference on Document Analysis and
Recognition, pages 367–371, 2007.

199

Bibliography

[92] G. Louloudis, B. Gatos, I. Pratikakis, and C. Halatsis. Text Line and Word
Segmentation of Handwritten Documents. Pattern Recognition, 42(12):3169–3183,
2009.

[93] S. Madhvanath and V. Govindaraju. The Role of Holistic Paradigms in Hand-
written Word Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(2):149–164, 2001.

[94] S. Madhvanath, G. Kim, and V. Govindaraju. Chaincode Contour Processing
for Handwritten Word Recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(9):928–932, 1999.

[95] U.V. Marti and H. Bunke. Text Line Segmentation and Word Recognition in a
System for General Writer Independent Handwriting Recognition. Proceedings of
the International Conference on Document Analysis and Recognition, 0:159–163,
2001.

[96] U.V. Marti and H. Bunke. Hidden Markov Models. chapter Using a Statistical
Language Model to Improve the Performance of an HMM-based Cursive Hand-
writing Recognition Systems, pages 65–90. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 2002.

[97] S. Marukatat, T. Artieres, R. Gallinari, and B. Dorizzi. Sentence Recognition
Through Hybrid Neuro-Markovian Modeling. In Proceedings of the 6th Interna-
tional Conference on Document Analysis and Recognition, pages 731 –735, 2001.

[98] E. Mayoraz and E. Alpaydin. Support Vector Machine for Multiclass Classification.
In Proceedings of International Workshop on Artificial Neural Networks, Alicante,
Spain, 1999.

[99] M. Mehri, P. Gomez-Krämer, P. Héroux, and R. Mullot. Old Document Image
Segmentation using the Autocorrelation Function and Multiresolution Analysis.
In Proceedings of the 20th Document Recognition and Retrieval, 2013.

[100] P. Mermelstein and M. Eyden. A System for Automatic Recognition of Handwrit-
ten Words. In Proceedings of the Fall Joint Computer Conference, Part I, pages
333–342, New York, USA, 1964.

[101] R.A Wagner M.J and Fischer. The String-to-String Correction Problem. Journal
of ACM, 21(1):168–173, 1974.

[102] V. Nguyen and M. Blumenstein. Techniques for Static Handwriting Trajectory Re-
covery: A Survey. In Proceedings of the 9th International Workshop on Document
Analysis Systems, pages 463–470, Boston, MA, USA, 2010.

[103] H. Nishida. An Approach to Integration of Off-line and On-line Recognition of
Handwriting. Pattern Recognition Letters, 16(11):1213–1219, 1995.

200

Bibliography

[104] U. Pal, A. Beläıd, and C. Choisy. Touching Numeral Segmentation using Water
Reservoir Concept. Pattern Recognition Letters, 24(1-3):261–272, 2003.

[105] V. Papavassiliou, T. Stafylakis, V. Katsouros, and G. Carayannis. Handwritten
Document Image Segmentation into text Lines and Words. Pattern Recognition,
43(1):369–377, 2010.

[106] F. Perraud, C. Viard-Gaudin, E. Morin, and P.M. Lallican. N-gram and N-class
models for on line handwriting recognition. In Proceedings of the 7th International
Conference on Document Analysis and Recognition, pages 1053–1057, Scottland,
UK, 2003.

[107] R. Plamondon and S.N. Srihari. On-Line and Off-Line Handwriting Recognition:
A Comprehensive Survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(1):63–84, 2000.

[108] J.C. Platt, N. Cristianini, and J. Shawe-taylor. Advances in Neural Information
Processing Systems. chapter Large Margin DAGs for Multiclass Classification,
pages 547–553. MIT Press, 2000.

[109] T. Plötz and G.A. Fink. Markov Models for Offline Handwriting Recognition: A
Survey. International Journal on Document Analysis and Recognition, 12(4):269–
298, 2009.

[110] T. Plötz, C. Thurau, and G.A. Fink. Camera-based Whiteboard Reading: New
Approaches to a Challenging Task. In Proceedings of the 11th International Con-
ference on Frontiers in Handwriting Recognition, pages 385–390, Montreal Canada,
2008.

[111] S. Prum, M. Visani, and J.M. Ogier. Cursive On-line Handwriting Word Recogni-
tion Using a Bi-character Model for Large Lexicon Applications. In Proceedings of
the 12th International Conference on Frontiers in Handwriting Recognition, pages
194–199, Kolkata, India, 2010.

[112] S. Prum, M. Visani, and J.M. Ogier. On-Line Handwriting Word Recognition
Using a Bi-character Model. In Proceedings of the 20th International Conference
on Pattern Recognition, pages 2700–2703, Istanbul, Turkey, 2010.

[113] S. Prum, M. Visani, and J.M. Ogier. A Discriminative Approach to On-Line
Handwriting Recognition Using Bi-Character models. In Proceedings of the 12th
International Conference on Document Analysis and Recognition, pages 364–368,
Washington, DC, USA, 2013.

[114] P. Pudil, J. NovoviAovA, and J. Kittler. Floating search methods in feature
selection. Pattern Recognition Letters, 15(11):1119–1125, 1994.

201

Bibliography

[115] H.A. Qader, A.R. Ramli, and S. Al-Haddad. Fingerprint Recognition Us-
ing Zernike Moments. International Arab Journal of Information Technology,
4(4):372–376, 2007.

[116] S. Quiniou, E. Anquetil, and S. Carbonnel. Statistical Language Models for On-
line Handwritten Sentence Recognition. In Proceedings of the 8th International
Conference on Document Analysis and Recognition, pages 516–520, Seoul, South
Korea, 2005.

[117] M.I Razzak, S.A. Hussain, M. Sher, and Z. S.Khan. Combining Off-line and
Online Preprocessing for Online Urdu Character Recognition. In Proceedings of
the International MultiConference of Engineers and Computer Scientists, Hong
Kong, 2009.

[118] A. Rehman and T. Saba. Off-line Cursive Script Recognition: Current Advances,
Comparisons and Remaining problems. Artificial Intelligence Review, 37(4):261–
288, 2012.

[119] J. Rottland and G. Rigoll. Tied posteriors: an Approach for Effective Introduction
of Context Dependency in Hybrid NN/HMM. In Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing, volume 3, pages 1241–
1244 vol.3, 2000.

[120] M. Rusinol, D. Aldavert, R. Toledo, and J. Llados. Browsing Heterogeneous Doc-
ument Collections by a Segmentation-Free Word Spotting Method. In Proceedings
of the 11th International Conference on Document Analysis and Recognition, pages
63–67, Beijing, China, 2011.

[121] B. Mouldi S. Ouchtati and A. Lachouri. Segmentation and Recognition of Hand-
written Numeric Chains. Journal of Computer Science, 4(3):242–248, 2007.

[122] J. Sadri, C.Y. Suen, and T.D. Bui. Application of Support Vector Machines for
Recognition of Handwritten Arabic/Persian Digits. In Proceedings of the 2nd
Conference on Machine Vision and Image Processing, pages 300–307, 2003.

[123] K. C. Santosh, Bart Lamiroy, and Laurent Wendling. DTW for Matching Radon
Features: a Pattern Recognition and Retrieval Method. In Proceedings of the
13th international conference on Advanced concepts for intelligent vision systems,
ACIVS’11, pages 249–260, Berlin, Heidelberg, 2011. Springer-Verlag.

[124] J. Schenk and G. Rigoll. Novel Hybrid NN/HMMModelling Techniques for On-line
Handwriting Recognition. In Guy Lorette, editor, Proceedings of the 10th Interna-
tional Workshop on Frontiers in Handwriting Recognition, La Baule, France, 2006.
Université de Rennes 1.

[125] M. Schenkel, I. Guyon, and D. Henderson. On-line cursive script recognition using
time delay neural networks and Hidden Markov Models. In Proceedings of the

202

Bibliography

International Conference on Acoustics, Speech, and Signal Processing, volume 2,
pages 637–640, 1994.

[126] M. Schenkel, H. Weissman, I. Guyon, C. Nohl, and D. Henderson. Recognition-
based Segmentation of On-line Hand-printed Words. In Proceedings of the Ad-
vances in Neural Information Processing Systems, pages 723–730, 1993.

[127] L. Schomaker. From Handwriting Analysis to Pen-Computer Applications. IEE
Electronics Communication Engineering Journal, 10:93–102, 1998.

[128] A. Sharma. Online Handwritten Gurmukhi Character Recognition. PhD thesis,
Mathematics and Computer Applications Thapar University, India, 2009.

[129] Z. Shi, S.N. Srihari, Y.C. Shiu, and V. Ramanaprasad. A System for Segmen-
tation and Recognition of Totally Unconstrained Handwritten Numeral Strings.
In Proceedings of the 4nd International Conference on Document Analysis and
Recognition, pages 455–458, Ulm, Germany, 1997.

[130] S.Tabbone and L. Wendling. Technical symbols recognition using the two-
dimensional radon transform. In Proceedings of the 16th International Conference
on Pattern Recognition, pages 200–203 vol.3, 2002.

[131] T. Starner, J. Makhoul, R. Schwartz, and G. Chou. On-line Cursive Handwrit-
ing Recognition using Speech Recognition Methods. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing, volume v,
pages 125–128, 1994.

[132] S. Tabbone, O.R. Terrades, and S. Barrat. Histogram of radon transform. A
useful Descriptor For Shape Retrieval. In Proceedings of the 19th International
Conference on Pattern Recognition, pages 1–4, Tampa, FL, USA, 2008.

[133] S. Tabbone, L. Wendling, and J.P. Salmon. A New Shape Descriptor Defined on
the Radon Transform. Computer Vision and Image Understanding, 102(1):42–51,
2006.

[134] C.C. Tappert, C.Y. Suen, and T. Wakahara. State of the Art in On-Line Hand-
writing Recognition. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 12(8):787–808, 1990.

[135] M.R. Teague. Image Analysis via the General Theory of Moments. Journal of the
Optical Society of America, 70(8):920–930, 1980.

[136] O.R. Terrades, S. Tabbone, and E. Valveny. A Review of Shape Descriptors for
Document Analysis. In Proceedings of the 9th International Conference on Docu-
ment Analysis and Recognition, pages 227–231, Curitiba, Brazil, 2007.

203

Bibliography

[137] N.C. Tewari and A.M. Namboodiri. Learning and Adaptation for Improving Hand-
written Character Recognizers. In Proceedings of the 10th International Conference
on Document Analysis and Recognition, pages 86–90, Barcelona, Spain, 2009.

[138] D.C. Tran, P. Franco, and J.M. Ogier. Accented Handwritten Character Recogni-
tion Using SVM - Application to French. In Proceedings of the 12th International
Conference on Frontiers in Handwriting Recognition, pages 65–71, Kolkata, India,
2010.

[139] D. Trier, A.K. Jain, and T. Taxt. Feature Extraction Methods for Character
Recognition - A Survey. Pattern Recognition, 29(4):641–662, 1996.

[140] O.D. Trier, A.K. Jain, and T. Taxt. Feature extraction methods for character
recognition : A Survey. Pattern Recognition, 29(4):641–662, 1996.

[141] S. Uchida and M. Liwicki. Analysis of Local Features for Handwritten Charac-
ter Recognition. In Proceedings of the 20th International Conference on Pattern
Recognition, pages 1945–1948, Istanbul, Turkey, 2010.

[142] C. Viard-Gaudin, P.M Lallican, P. Binter, and S. Knerr. The IRESTE On/Off
(IRONOFF) Dual Handwriting Database. In Proceedings of the 5th International
Conference on Document Analysis and Recognition, pages 455–458, Washington
DC, USA, 1999.

[143] A. Vinciarelli, S. Bengio, and H. Bunke. Offline Recognition of Unconstrained
Handwritten Texts Using HMMs and Statistical Language Models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(6):709–720, 2004.

[144] P. Viola and M. Jones. Robust Real-time Object Detection. Technical report,
Cambridge Research Laboratory, 2001.

[145] M. Visani, Q.A. Bui, and S. Prum. On-line Cursive Handwriting Characterization
using TF-IDF Scores of Graphemes. In 10th International Workshop on Document
Analysis Systems, Queensland, Australia, 2012.

[146] A.J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Opti-
mum Decoding Algorithm. IEEE Transactions on Information Theory, 13(2):260–
269, 1967.

[147] E. Vural, H. Erdogan, K. Oflazer, and B. Yanikoglu. An Online Handwriting
Recognition System for Turkish. In Proceedings of the IEEE 12th Signal Processing
and Communications Applications Conference, pages 607 – 610, 2004.

[148] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J. Lang. Phoneme recogni-
tion using Time-Delay Neural Networks. IEEE Transactions on Acoustics, Speech
and Signal Processing, 37(3):328–339, 1989.

204

Bibliography

[149] X. Wang, V. Govindaraju, and S. Srihari. Holistic Recognition of Handwritten
Character Pairs. Pattern Recognition, 33(12):1967 – 1973, 2000.

[150] J. WESTON and C. Watkins. Multi-class Support Vector Machines. Technical re-
port, CSD-TR-98-04, Department of Computer Science, Egham, Surrey, England,
1998.

[151] M. Wienecke, G.A. Fink, and G. Sagerer. Experiments in Unconstrained Off-line
Handwritten Text Recognition. In Proceedings of the 8th International Workshop
on Frontiers in Handwriting Recognition, Ontario, Canada, 2002.

[152] M. Woźniak, M. Graña, and E. Corchado. A Survey of Multiple Classifier Systems
as Hybrid Systems. to appear in Information Fusion, 2013.

[153] D. Wu, C.Y. Suen, and A. Krzyzak. A New Courtesy Amount Recognition Module
of a Check Reading System. In Proceedings of the 19th International Conference
on Pattern Recognition, pages 1–4, USA, 2008.

[154] T.F. Wu, C.J. Lin, and R.C. Weng. Probability Estimates for Multi-class Classifi-
cation by Pairwise Coupling. Journal of Machine Learning Research, 5:975–1005,
2004.

[155] X.C. Yin, H.W. Hao, Y.F Tang, J. Sun, and S. Naoi. Rejection Strategies with
Multiple Classifiers for Handwritten Character Recognition. In Proceedings of
the 10th International Conference on Document Analysis and Recognition, pages
1126–1130, Barcelona, Spain, 2009.

[156] L. Yun, CS. Liu, X.Q. Ding, and F. Qiang. A Recognition Based System for
Segmentation of Touching Handwritten Numeral Strings. In Proceedings of the
9th International Workshop on Frontiers in Handwriting Recognition, pages 294 –
299, 2004.

205

List of Publications

International Conference Papers

[1] S. Prum, M. Visani, A. Fischer ,and J.M. Ogier. A Discriminative Approach
to On-Line Handwriting Recognition Using Bi-Character models. In Proceedings of the
12th International Conference on Document Analysis and Recognition, pages 364-368,
Washington, DC, USA, 2013.

[2] Q.A. Bui, M. Visani, S. Prum, and J.M. Ogier. Writer Identification Using TF-
IDF for Cursive Handwritten Word Recognition. In Proceedings of the 11th International
Conference on Document Analysis and Recognition, pages 844-848, Beijing, China, 2011.

[3] S. Prum, M. Visani, and J.M. Ogier. Cursive On-line Handwriting Word Recog-
nition Using a Bi-character Model for Large Lexicon Applications. In Proceedings of the
12th International Conference on Frontiers in Handwriting Recognition, pages 194-199,
Kolkata, India, 2010.

[4] S. Prum, M. Visani, and J.M. Ogier. On-Line Handwriting Word Recognition
Using a Bi-character Model. In Proceedings of the 20th International Conference on
Pattern Recognition, pages 2700-2703, Istanbul, Turkey, 2010.

International Workshop Paper

[1] M. Visani, Q.A. Bui, and S. Prum. On-line Cursive Handwriting Characterization
using TF-IDF Scores of Graphemes. In Proceedings of the 10th International Workshop
on Document Analysis Systems, Queensland, Australia, 2012.

207

Abstract : With the advent of mobile devices such as tablets and smartphones
over the last decades, on-line handwriting recognition has become a very highly demanded
service for daily life activities and professional applications. This thesis presents a new
approach for on-line handwriting recognition. This approach is based on explicit segmenta-
tion/recognition integrated in a two level analysis system: character and bi-character. More
specifically, our system segments a handwritten word in a sequence of graphemes to be then
used to create a L-levels lattice of graphemes. Each node of the lattice is considered as a
character to be submitted to a SVM based Isolated Character Recognizer (ICR). The ICR
returns a list of potential character candidates, each of which is associated with an esti-
mated recognition probability. However, each node of the lattice is a combination of various
segmented graphemes. As a consequence, a node may contain some ambiguous information
that cannot be handled by the ICR at character level analysis. We propose to solve this
problem using "bi-character" models based on Logistic Regression, in order to verify the
consistency of the information at a higher level of analysis. Finally, the recognition results
provided by the ICR and the bi-character models are used in the word decoding stage, whose
role is to find the optimal path in the lattice associated to each word in the lexicon. Two
methods are presented for word decoding (heuristic search and dynamic programming), and
dynamic programming is found to be the most effective.

Keywords : On-line Handwriting Recognition; Bi-Character models; Dynamic Pro-
gramming; Support Vector Machine; Combining On-line and Off-line Features

Résumé : Avec l’avènement des dispositifs nomades tels que les smartphones et les
tablettes, la reconnaissance automatique de l’écriture manuscrite cursive à partir d’un signal
en ligne est devenue durant les dernières décennies un besoin réel de la vie quotidienne à l’ère
numérique. Dans le cadre de cette thèse, nous proposons de nouvelles stratégies pour un
système de reconnaissance de mots manuscrits en-ligne. Ce système se base sur une méth-
ode collaborative segmentation/reconnaissance et en utilisant des analyses à deux niveaux:
caractère et bi-caractères. Plus précisément, notre système repose sur une segmentation de
mots manuscrits en graphèmes afin de créer un treillis à L niveaux. Chaque nœud de ce
treillis est considéré comme un caractère potentiel envoyé à un moteur de Reconnaissance
de Caractères Isolés (RCI) basé sur un SVM. Pour chaque nœud, ce dernier renvoie une
liste de caractères associés à une liste d’estimations de probabilités de reconnaissance. Du
fait de la grande diversité des informations résultant de la segmentation en graphèmes en
particulier à cause de la présence de morceaux de caractères et de ligatures, l’injection de
chacun des nœuds du treillis dans le RCI engendre de potentielles ambiguïtés au niveau du
caractère. Nous proposons de lever ces ambiguïtés en utilisant des modèles de bi-caractères,
basés sur une régression logistique et dont l’objectif est de vérifier la cohérence des infor-
mations à un niveau de reconnaissance plus élevé. Finalement, les résultats renvoyés par le
RCI et l’analyse des modèles de bi-caractères sont utilisés dans la phase de décodage pour
parcourir le treillis dans le but de trouver le chemin optimal associé à chaque mot dans le lex-
ique. Deux méthodes de décodage sont proposées (recherche heuristique et programmation
dynamique), la plus efficace étant basée sur de la programmation dynamique.

Mots clés : reconnaissance de mots manuscrits en-ligne; modèle de bi-caractères; pro-
grammation dynamique; Séparateurs à Vaste Marge; combinaison de caractéristiques en-
ligne et hors-ligne;

THÈSE présentée par Sophea PRUM
Titre : Vers une approche discriminante pour la reconnaissance de mots manuscrits

en-ligne utilisant des modèles de bi-caractères

