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Les travaux effectués dans le cadre de la présente thèse concernent l'analyse et les 

amélioration apportées à la transformée de Hough Standard (SHT), utilisée en traitement 

d'image comme simple outil de détection de segments de lignes droites.  

La transformée de Hough a reçu, depuis sa proposition en 1962, une attention particulière de 

la part de la communauté. La HT est considérée comme une méthode robuste, dont le principe 

repose sur la transformation du problème initial de détection de segments de lignes droites en 

un problème de selection des sommets dans l'espace des paramètres, appelé aussi espace HT 

ou espace de Hough. 

Les points candidats dans l'espace image sont mis en correspondance avec les points dans 

l'espace de Hough, en utilisant Le principe avancé par la  transformée de Hough est qu'il 

existe un nombre infini de lignes qui passent par un point, dont la seule différence est 

l'orientation (l'angle). La transformée de Hough permet de déterminer lesquelles de ces lignes 

passent au plus près du domaine d'intérêt.  

Les cellules dans l'espace de Hough échantillonné obtiennent des votes des points candidats. 

Les maxima locaux correspondant aux sommets sont construit lorsque les cellules considérées 

obtiennent plus de votes que les cellules voisines. Les sommets détectés alors dans l'espace 

des paramètres sont transformés dans l'espace image pour validation.  

Malheureusement, les opérations de transformation directe, de l'espace image vers l'espace 

des paramètres, et inverse engendrent des opérations d'approximation, sources de plusieurs 

problèmes de la transformée de Hough, qui affectent les aspects de robustesse, précision et 

résolution. On se propose de résoudre ces problèmes dans le cadre des travaux engagés dans 

le cadre de la thèse.  

Les contributions, détaillées ci-dessous, ont pu être proposées.  

A) Pour adresser le problème de limitation en termes de résolution de la SHT, les points 

concernent la sélection d'une bonne résolution, l'extension de la résolution de la SHT 

et l'utilisation des techniques de super-résolution pour la HT ont été couverts et de 

nouvelles propositions ont été faites et qui sont d'une utilité certaine pour les 

applications de traitement d'image.  

Ainsi, une relation entre la performance de la HT et la résolution est proposée, ce qui 

permet de garantir le bon choix. Par ailleurs, Une technique de super-résolution ets 

proposée en s'appuyant sur le principe de la HT. Finalement, une autosimilarité dans 

les échantillons HT a été découverte et a été utilisée pour obtenir une résolution 

supérieure de la HT avec un grande fidélité.  

B) Pour adresser le problème de la précision de la SHT, les erreurs de la HT ont été 

analysées, lorsque l'on fait subir des transformations géométriques à l'image source. 

Les erreurs ainsi détectées ont été utilisées pour compenser le manque de précision de 

la SHT, aboutissant ainsi à une HT plus précise.  

Afin de permettre l'évaluation de performance des approches proposées dan sel cadre de la 

thèse, une transformée de Hough idéale est proposée comme référence.     
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ABSTRACT

The thesis addresses the improvements of the Standard Hough Transform (SHT) for image

processing applications. As a common tool for straight line segment detection, the Hough

Transform (HT) has received extensive attention since its proposal in 1962. The HT is robust

since it converts the straight line detection problem to a peak seeking problem in the param-

eter space (also called HT space or Hough space). Feature points in the image space are

mapped to the parameter space, according to the normal formulation of the possible straight

lines crossing them. The cells in the digitalised parameter space obtain votes from the feature

points. The local maxima that is, peaks are built when these cells obtain more votes than the

ones around them. The peaks detected in the parameter space are then mapped back to the

image space for validation. Unfortunately, when mapping feature points in the image space

to the parameter space in conjunction with the voting process, rounding operations are em-

ployed, which leads to several problems for the HT. The robustness, accuracy and resolution

are all affected.

This thesis aims to solve these problems, and the following contributions were made towards

this goal:

A: Because of the resolution limitation of SHT, the topics of how to select a “good” reso-

lution, how to extend the resolutions of SHT and how to employ the super-resolution

technique in HT are covered. In the research of these topics, several outputs are ob-

tained, which are helpful to image processing applications. These include:

• The map of HT performance versus resolution is drawn, according to which

“good” choices of resolution can be found.

• The HT resolution are extended by geometrical analysis of the HT butterflies.

• Super resolution HT is proposed with consideration to the features of the HT.

• Self-similarity of the HT butterflies is discovered and employed to obtain high

resolution HT with high reliability.

B: For the accuracy defect of SHT, the error system of HT is studied when the image is

shifted in the image space. The detection errors are employed to compensate for the

defect, and an accurate HT is proposed.



In order to evaluate existing HT varieties, an ideal HT is proposed as a standard.

Keywords: Hough Transform (HT), HT butterfly, Straight line detection, Segment detection.
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Overview of the thesis

This thesis consists of three parts. Part I is an introduction to the Hough Transform (HT) and

covers the HT principle and research regarding its applications. Both positive and critical

reviews are investigated to show the advantages of the HT and its potential improvements.

Chapter1 introduces the progress of HT theoretical research. The applications and advan-

tages of HT are demonstrated from positive viewpoints. In Chapter2, critical reviews address

the deficiencies of HT through geometry analysis, utilising a graphical method. The potential

for solving these problems is the motivation for this research. Based on the ideas inspired by

the critical reviews, Chapter3 lists the contributions made towards higher performance HTs.

Although HT has the capacity to detect a variety of objects, this research focuses on the

detection of straight lines and segments.

Part II, entitled Enhancements of the HT, introduces our efforts on improving the resolution

and accuracy of HT.

Chapter 4 answered the question of “How to select good resolutions for HT”. The “good”

resolution is defined, followed by the study the relationship between the straight line detec-

tion errors and HT resolutions (ρ- andθ - directions). The area containing “good” resolution

settings is uncovered and modelled.

Chapter 5-6 improve the HT resolution by geometry analysis. In Chapter 5, the self-similarity

of HT butterflies is discovered and used to obtain a reliable high resolution HT butterfly.

Chapter 6 proposed a method to generate high resolution HT data from low resolution data,

where the geometry principles are employed to discover the relationship between high and

low resolution HT data.

Chapter 7 proposed super resolution method to improve HT resolution.

1
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In Chapter 8, the line positioning errors are concerned. The error series when the image

shifted are studied, and a error compensation method is proposed which greatly improved

the detection accuracy.

Chapter 9 discusses the evaluation of HT butterflies generated by various methods. A method

to generate the ideal HT butterfly is proposed.

Part III concludes the thesis.



Part I

HOUGH TRANSFORM: LOVE IT OR

LEAVE IT?

3



CHAPTER 1

PROGRESS OFHT THEORETICAL

RESEARCH ANDAPPLICATIONS

Nowadays, identifying objects from images is one of the important goals in image process-

ing, computer vision and image analysis. Some of the popular methods for object recognition

and detection are based on the edge features of the object. These methods initially extract

the edge of the object and then use different algorithms for its identification. Among the

algorithms commonly used, HT is an outstanding example. The HT is widely used to detect

regular shapes such as lines, circles, ellipses and other parametric curves, including arbitrary

shapes, in the image. Using HT to detect straight lines has received much attention due to its

robustness.

1.1 The History of HT

HT is one of the most widely used and proven effective techniques for positioning objects in

images. The HT was proposed by Hough [1] in 1962 and patented. This patent comprises

five pages, including figures and descriptions, in order to explain the HT algorithm. There are

no equations in the patent. The idea of this algorithm is “collinear points in the image plane

can be identified by mapping them into geometric constructions (for Standard HT, straight

lines) that intersect in the transform space”. However, it was not easy to use this geometry

algorithm as a computer vision detection method at that time.

4



Part I. Chapter 1. Progress of HT Theoretical Research and Applications 5

Hart [2] depicted the history of HT. Rosenfeld [3] gave the definition of HT in algebraic forms

in his book in 1969. The definition is presented in the following slope-intercept equation

y = yix+xi , (1.1)

wherexi ,yi are feature points in the image space, andx andy are the axes of the transform

plane. If these points(xi ,yi) are collinear, then it is easy to prove that the corresponding

lines in the transform plane will all pass through a single point. This is the first explicit

algebraic form for the transform. A simple digital implementation of the transform space

was defined as an array of counters. Initially, this idea was introduced to the computer

science and computer vision community as an obscure analogue circuit based patent.

However, the discrete HT uses the slope-intercept parameters and thus, the parameter space

is the two-dimensional slope-intercept plane. This method for the detection of straight lines

suffers from horizontal and vertical line detection problems because the slope and the inter-

cept are unbounded. To overcome this problem, it was suggested that each picture could be

scanned twice at right angles. However, this results in excessive calculations and memory

stores in computer processing.

Duda et al. [4] proposed to replace the slope-intercept parameters by angle-radius param-

eters. This method uses the polar (or normal) representation of straight lines as follows:

ρ = xcosθ +ysinθ , (1.2)

where(x,y) is a feature point in the image space,ρ is the distance from the origin to the

straight line, andθ is the angle between the normal and the positivex-axis. The HT maps

each point(x,y) in the image space to a sinusoidal curve in the parameter space. The HT

space is quantised into many cells along the sinusoidal curve. Each cell can be confined to

the region0≤ θ ≤ π, −R≤ ρ ≤ R, whereR is the size of the retina. The size of each cell

is ∆ρ and∆θ . Each feature point in the image space will correspond to a curve according to

Eq. (1.2), and the cell will obtain votes along the curve in the parameter space. If a number

of feature points lie on the same straight line, their corresponding curves will intersect at one

cell in the parameter space. This means that some cells will obtain most of the votes. The

HT then searches for the cell with the most votes, that is, the peaks. In this way, the problem

of detecting collinear points in image space is converted to the problem of finding peaks in

parameter space.
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This method overcomes the problem of horizontal lines and vertical lines. It also decreases

the computation and memory stores, and is commonly referred to the Standard HT (SHT).

In this thesis, if not specified, HT refers to this SHT.

1.2 Progress of HT Theoretical Research

1.2.1 Progress on Improving the Resolution and Accuracy

Due to the rounding operations in the voting process, the discretisation of image space and

parameter space shows several problems regarding the accuracy and resolution of HT. These

include peak splitting, flattening and resolution limitations. Many researchers have analysed

the drawbacks of HT and suggested several methods to improve the accuracy and resolution.

The quantisation errors in both the image space and parameter space obviously affect the

accuracy of straight line detection. Shapiro et al. [5] introduced graphical methods estimating

HT performance for straight line detection in the presence of noise. They also demonstrated

the effects of the quantisation errors on the accuracy of estimating the underlying set of

collinear points. Veen et al. [6] analysed the influence of quantisation to the parameter and

image spaces and the width of the line segments. It was reported that the accuracy of the

HT was a function of the size of the cell (∆ρ and∆θ ) and the width of the line segments.

A method was proposed using a gradient weighting function in the transform to reduce peak

scattering. Atiquzzaman et al. [7] stated that a spread of the peak will occur due to the

quantisation of the parameter space when decreasing resolutions∆ρ and∆θ . A non-iterative

algorithm was proposed to detect straight line segments based on the analysis of HT data.

This algorithm improves the efficiency of computing and obtains higher accuracy. Based on

this algorithm, they also proposed another robust HT method [8] for the determination of the

length and the endpoints of a line.

Other research focuses on the pre-treatment of HT data before the detection of the straight

lines. Niblack et al. [9] reported a method to improve HT accuracy which smoothes the HT

space prior to finding a peak location and interpolates this peak to find a final sun-bucket

peak. Morimoto et al. [10] reported a high resolution HT based on a variable filter, in which

the filter is designed and applied to the HT data before detecting the peak. Magli et al. [11]
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proposed an algorithm based on interpolation and multi-scale matched filtering,in order to

achieve high accuracy line detection from the HT.

The voting process is one of the hot topics that obtained intensive attention. Ji et al. [12]

proposed a statistically efficient HT based on an analytical propagation of input errors. This

method used a Bayesian probabilistic scheme to compute the contribution of each feature

point to the accumulator. Thus, it improved accuracy and robustness. Shapiro et al. [13]

summarised and proved the problem of discrete HT accuracy and adequacy to be the reason

for the vote spreading problem. A non-voting Hough-Green transform was proposed to im-

prove the accuracy of HT. Guo et al. [14] modified the HT voting scheme to suppress the

impact of noise edges on the accumulation of votes in HT. They used surround suppression

to assign the weights of votes for HT. This method improved the quality of detection results.

Leandro et al. [15] presented an improved voting scheme for the HT that allowed a soft-

ware implementation to achieve real-time performance, even with relatively large images. It

improved the performance of the voting scheme and the robustness of HT.

The stochastic property of image space also raised concerns. A straight line segment recog-

nising method was proposed using HT by Song et al. [16] This is reported as having the

ability to overcome weaknesses when handling large-size images and being unaware of line

thickness. Guo et al. [14] discussed the influence of the digital image space and proposed

a method to improve the probabilistic HT by defining a suitable tolerance parameter as a

function ofρ andθ .

The structure of the parameter space is also considered. Cha et al. [17] developed a extension

of the HT though a third parameter, the horizontal or vertical coordinate of the image space,

to provide incremental information regarding the length of the lineal feature being sought.

This method improved the accuracy of detection.

In this thesis, the nature and drawbacks of HT were analysed and summarised from a different

point of view through experiments. Several ideas were generated to improve the accuracy

and precision of HT, to achieve high resolution and to decrease the computation and memory

requirements.
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1.2.2 Progress on Decreasing the Computation Load and Storage Re-

quirements

As the applications of straight line recognition obtained intensive attention, the computa-

tional cost and storage requirements became a concern.

According Eq. (1.2), the HT first transforms the feature points in the image space into sine

curves in the parameter space. The parameter space is divided into an array of “accumula-

tors”, and the accumulator receiving the largest number of votes along these curves is con-

sidered the peak. The position of the peak, that is,θ andρ, is used to interpret the dominant

straight line in the image space. In this way, the HT requires large storage and computational

requirements, which limit the applications of HT.

Therefore, methods to improve the detection speed and decrease the storage requirements

in the HT process are being investigated. Avoiding unnecessary accumulators is the main

method towards this goal. Li et al. [18] developed Fast HT (FHT) through an hierarchical

approach. This approach divided the parameter space into hypercubes, from low to high

resolutions. It performs the subdivision and subsequent “vote counting” only on hypercubes

with votes exceeding a selected threshold. This greatly reduces both computation and stor-

age. This method can also extend to more complex object detection. Illingworth et al. [19]

introduced the Adaptive HT (AHT) for line and circle detection. This method used a small

accumulator array and the idea of a flexible iterative “coarse to fine” accumulation. It utilised

a search strategy to identify significant peaks in the Hough parameter spaces. The method

increased efficiency and saved storage. Atiquzzaman et al. [20] addressed a multi-resolution

implementation of the HT that reduced the computing time. Ben-Tzvi et al. [21] presented

an algorithm for computing the HT using information available in the distribution of the im-

age points, rather than depending solely on information extracted from the transform space.

Hence, the processing of HT was calculated more efficiently.

Mapping only partial image space feature points to the parameter space is also helpful. Xu

et al. [22] developed the Randomised HT (RHT) for detecting curves from a binary im-

age. This method scans the binary image and obtains all of the feature points. Feature

point pairs are then randomly selected from the image space and mapped to the parame-

ter space. The method replaces the 1-to-n mapping in SHT. Its performance was analysed,

[23, 24]and this demonstrated that the performance of the RHT was improved, and the speed
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and storage requirements were reduced. Heikki et al.[25] wrote an overview on the com-

parison between probabilistic and non-probabilistic HTs and analysed some variants of the

Randomised HT (RHT). They divided HT methods into two categories: probabilistic meth-

ods and non-probabilistic methods. An extension of the RHT method was proposed for high

detection speed with low memory cost. Kiryati at al. [26] suggested an alternative approach

to hasten HT computation. This method randomly selected a limited poll of feature points,

rather than using full scale voting in the incremental stage of the HT. The method saved

computation and improved accuracy. Gatos et al. [27] suggested a method to accelerate the

detection of prevalent linear formations in binary images. An image is decomposed using

rectangular blocks, and the contribution of each block to the HT space is evaluated, rather

than the contribution of all the feature points in the image. Zhang et al. [28] presented a

memory- and time-efficient HT algorithm for line segment detection. A set of small win-

dows was used to determine the pairs of edge pixels. For each edge pixel, a window was

defined, centring on this pixel. This method had two stages. Firstly, detecting line segments

in each window and secondly, combining collinear and overlapping line segments into one.

Transforms in the parameter space are also reported. Ho et al. [29] outlined a fast and ef-

ficient method for the computation of the HT using Fourier methods. The maximum points

generated in the Radon space, corresponding to the parameterisations of straight lines, can

be enhanced with a post-transform convolutional filter. This can be applied as a 1D filtering

operation on the re-sampled data in the Fourier space thus, further speeding up the computa-

tion. Additionally, any edge enhancement or smoothing operation on the input function can

be combined into the filter and applied as a net filter function. Chung et al. [30] presented an

affine transformation for line detection to improve memory utilisation and detection speed of

the Hough space. This was based on slope intercept parameters.

1.3 Applications of HT

HT has been successfully used in various applications. It has the capacity to detect a wide

spectrum of shapes such as straight lines, arcs, even arbitrary shapes, in computer vision and

image processing.

A variety of extensions of HT have been investigated and applied in different fields. The

HT has been widely used in medical imaging applications. Furen et al. [31] proposed a
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procedure to measure midline shift by using HT to recognise the septum pellucidum within

the given computed tomography (CT ) study. Mauro et al. [32] used HT to detect special

shapes in medical and astronomical images.

HT is also used in radar detection. Carlson et al. [33] proposed a method to track the target

in multi-dimensional data space of the search radar. Moqiseh et al.[34] introduced a 3-D HT

that detected linear trajectories in a 3-D data space of the radar.

HT is also helpful in agriculture to locate fruits. Eduardo et al. [35] detected the circular

shape of berries using HT and obtained the position and radii of each berry. This algorithm

serves as an automatic vision system that acquires images of wine grape clusters in the vine-

yard.

Several researchers used HT in other areas. Gao et al.[36] presented a method to detect dim

manoeuvering targets using the Randomised HT. Pacey et al. [37] used HT to detect linear

volcanic segments that constrained volcano distribution in the central Sunda Arc. Plob et al.

[38] presented an approach to detect wavefront orientation with ultrasound-based flow mea-

surement, using a modified HT. Davies [39] addressed an approach based on the Generalised

HT for corner detection. This approach can locate corners of shapely defined metal objects,

such as nuts and flanges, in industrial settings. Kang et al. [40] using HT, designed a method

to detect corners in images.



CHAPTER 2

CRITICAL REVIEW AND PROBLEM

DEFINITION

The HT suffers from a variety of problems stemming from its discretisation and voting pro-

cesses. These seriously affect the performance of HT, regarding the resolution, accuracy,

robustness, et cetera . It is commonly known that the discrete nature of the voting process

causes peak generation problems in the HT space. These problems might split a peak into

several peaks lying close to one another. It also possible for the peak to spread to sev-

eral cells around the “true” position, causing the peak to be indistinct and hence, limit the

accuracy of the HT. Different methods to improve the precision and resolution of the HT

[4, 5, 7, 8, 16, 17, 41, 42, 43, 44, 45, 46]were reported. Most efforts focus on modifying

the HT voting framework to increase the number of accumulators, in order to obtain higher

precision and resolution. Another serious problem is uncovered and analysed in depth in

this research, that is, the HT is sensitive to shifts of the input image. As a tool for object

detection, it should be invariant to small shifts of the input image. A small shift of the input

image should not lead to significant differences in HT data such as the height of the peak.

However, because of the discretisation and rounding operations in the voting process, the

output of the Standard HT (SHT) is very sensitive to minor input image shifts. For example,

the peak height is affected quite considerably in this instance.

In this chapter, analysis based on the geometry principle of HT is intensively used to uncover

the nature of HT problems and hence, inspire ideas for improvement. A critical review and

analysis are the main components of this chapter. The following points will be discussed

and demonstrated: (i) the robustness; (ii) the sources of the straight line detection errors; (iii)

11
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the unreliability of image rotation and shift; (iv) the problems of votes splitting and peak

flattening; (v) the difficulties for high resolution HTs. The problems of HTs will be critically

reviewed and hence, the motivation for this research is derived. Some ideas emerging from

the critical analysis are implemented in the later chapters of this thesis. These are the mean

contributions of the research.

2.1 Expectations of HT

In existing literature, there are very few discussions regarding a rigorously theoretical frame-

work for HT that consider performance, such as resolution, accuracy and robustness. This is

the main barrier preventing HTs to be used as an object measurement tool rather than as an

object detection tool. Shapiro [5] contributed to the relevant research by explicitly presenting

the accuracy requirements of HTs as follows:

• Offset-independence. Straight lines collinearly shifted without distortion should yield

equally high peaks in the parameter space.

• Isotropy. HT peak height should not depend on the straight line inclination.

• Discrete HT consistency as a measurement tool. Distance axioms should hold for

measured line lengths. Specifically, for connected straight lines, the length should

only depend on the distance between the endpoints and not on the line width.

Besides the requirements stated by Shapiro, [5] the following criteria are also critical for HT

to be considered a measurement tool of straight lines and segments:

• Consistency between resolution and accuracy− Accuracy should increase with the

increase in HT resolution.

• Appropriate high resolution− Sufficient resolution for a specific application should be

available.

• Reliability independent to the resolution− The appropriate high resolution should not

significantly affect the reliability of the geometric feature of the peak and its neigh-

bourhood.
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This thesis aims to uncover the gap between the expectations of HTs and the HTs themselves.

Efforts are made to reduce this gap.

2.2 HT Problems

The main objective of HT is to divide the parameter space(ρ, θ ) into cells, where the size of

each cell is (∆ρ,∆θ . ρ is the algebraic distance from the origin to a straight line andθ is the

angle between the normal andx axis. In this way, a feature point with coordinates (x, y) in

the image space is mapped to a sinusoidal curve in the HT space. The curves corresponding

to collinear points will intersect at a common cell, resulting in a peak on the accumulator

matrix. Usually, the highest peak represents the most prominent straight line.

However, the Standard HT (SHT) suffers from a variety of problems stemming from its dis-

cretisation and voting process. [4, 5, 7, 8, 16, 17, 41, 42, 43, 44, 45, 46] Different methods

were proposed to alleviate these problems. The HT voting framework was modified to in-

crease the number of accumulators for higher precision and resolution. In fact, the discrete

voting process is the main source of problems such as peak splitting (a peak is split into

several peaks lying close to one another). The voting process also might spread the peak

to several cells around the “true” position. These problems dim the peak and hence, affect

detection accuracy and reliability.

In this thesis, the following HT problems are addressed:

2.2.1 The Precision Problem of Low Resolution HT

Lowering the HT resolution can alleviate the problems mentioned in section2.2.2, but un-

fortunately with a loss of precision. For example, if the HT is applied to Fig.2.1(a)with

∆ρ = 1.5 and∆θ = 3 respectively, the HT data obtained is as shown in Fig.2.1(b). The

problem of unreliability is greatly alleviated, that is, the only peak is more distinct and higher

than the peaks shown in Fig.2.1(d)to Fig. 2.1(f). However the ’true’ straight lineρ =−10,

θ = −63◦ is detected asρ = −10.62, θ = −63◦, where theρ error is 0.62 pixel. This is

not acceptable for certain applications such as remote sensing, in which a pixel represents a

large area.
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2.2.2 High Resolution HT Problems

It was recently demonstrated that the HT data around a peak, that is, the HT butterfly, could

be used to derive a complete description of a line segment. [7, 46, 47, 52, 53, 54]. The

butterfly features (width, intensity, orientation, uniformity, et cetera) are used to discover the

parameters of a line segment. The resolution and reliability of the HT butterfly are hence,

very important for the accuracy and the robustness of these HT butterfly- based techniques.

However, the resolution of a traditional HT is limited by the vote spreading and peak splitting

problems, which lead to unreliability in high resolution HTs. [5]. Resolution limitation is

one of the main problems. If theρ or θ used is inappropriately high, the HT data suffers

from unreliability. On the other hand, a low resolution HT presents low precision.

In practical image applications, resolution is very important. Occasionally high requirements

of both resolution and precision are requested, which are mutually exclusive for the SHT.

Fig. 2.1(a)shows a single-pixel-width straight line in the image space. Applying the high

resolution SHT (∆ρ = 0.1 and∆θ = 0.1) to this image, Fig.2.1(c)shows a part of the HT

data around the peak. It is obvious that several peaks appear in the HT data. The highest

three peaks lie on (ρ = −11.5,θ = −63.6), (ρ = −11.4,θ = −63.3), and (ρ = −10.7,θ =

−63.3) respectively. The heights of these peaks are very close, which leads to difficulties to

determining the position of the “true” peak. The reason is that the fine quantisation of the

HT space and the rounding operations during the voting process lead to the feature points

simultaneously voting to several peak cells. This suppresses the height of the “true” peak

and hence, the peak is not very distinct. Applying the SHT to Fig.2.1(a)with different

resolutions, the corresponding HT data obtained is shown in Fig.2.1(d)to Fig. 2.1(f). It is

clear that higher resolutions result in degradation of performance. Because of the discrete

nature of the SHT, it is difficult to circumvent this problem.

Sharp distinct peaks are desired when mapping feature points from the image space to the

HT space. Eq. (1.2) shows that collinear feature points in the image space correspond to

a set of sinusoidal curves that intersect one another at a particular point in the HT space.

In the computation, the HT space is sampled and represented as a discrete data structure,

usually, as a 2-D array. If all the cells along these curves receive votes, then a peak exists in

the accumulator array. Besides generating a peak, a butterfly-shaped spread of votes is also

produced in the HT space. [47]. In fact, in the image space, a straight line is not usually

smooth but split into horizontal or vertical short line segments in one of the grid directions.
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(a) The straight line to be detected
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(b) Low resolutions get low precision
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(c) Local HT of ∆ρ=0.1,
∆θ=0.1
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(d) HT with ∆ρ=0.5,
∆θ=0.5
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(e) HT with ∆ρ=0.3,
∆θ=0.3
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(f) HT with ∆ρ=0.1,
∆θ=0.1

FIGURE 2.1: Unreliability of high resolution HT
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This is shown in Fig. 2.2 where each square indicates one pixel. Quantisation and rounding

operations in both the image and HT spaces result in HT voting and peak seeking errors.

The inappropriately high resolution enlarges these errors and hence, makes the performances

unacceptable.

FIGURE 2.2: A straight line in a digital image

2.2.2.1 Inappropriate High ρ-resolution ( ∆ρ ) Leads to Peak Splitting

When the straight line in an image is not±45◦, 0◦ or ±90◦, digital imaging technology

approximates the straight line by using its nearest pixels. The inappropriate fine quantisation

in theρ-direction of the HT space will make these pixels vote to different straight lines and

hence, two or more peaks will appear in the HT space, with each peak only receiving part

of the votes. The example in Fig.2.3 illustrates this problem. Fig2.3(a)depicts how the

straight line is represented by piece-wise horizontal short segments. Feature points of the

straight line are in fact, contained in a bar with a specific width (denoted asd in the figure;

d > 1).

In the HT space, a cell corresponds to an infinite-length bar-shaped window at a distanceρ
from the origin, of width∆ρ, and its normal making an angleθ with thex-axis. In the image

space, (Fig.2.3(a)) if ∆ρ is smaller than the line widthd, feature points are separated into

several bars (cells), resulting in several peaks in the HT space. For example, in Fig.2.3(a),

where∆ρ ≤ d
n with n is a positive integer andn≥ 2, then the feature points of the straight

line might generate at least two peaks, as shown in Fig.2.3(b). The peaks may not lay close

to one another, this causes difficulties in positioning the straight line, due to the position of

its peak(s).
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Another adverse effect of an inappropriately highρ-resolution is the reduction of the peak

height, since several other cells also share the votes from these feature points. The depressed

peaks cause the straight line to be indistinctly represented in the HT space. As shown in Fig.

2.3(b), the peaks received four votes, even though the straight line had 36 pixels.

�

(a) Geometric principle
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(b) Manifesting in HT data

FIGURE 2.3: Inappropriately highρ-resolution results in peak splitting

The peak-splitting problem severely affects the accuracy and reliability of the HT. However,

a coarse quantisation of the HT space alleviates the problem since∆ρ > d, then one bar

(corresponding to a cell in HT space) can contain all of the votes belonging to a line segment.

This, however, comes at a loss in precision (accuracy).

2.2.2.2 Inappropriate High θ -resolution ( ∆θ ) Leads to Peak Flattening

Even assuming that the straight line is continuous, that is, without any approximation errors

in the image space, the HT still exhibits problems if theθ -resolution is inappropriately high.

To demonstrate this problem, two neighbouring bars (θi ,ρk) and (θi+1,ρ j ) intersecting with

a straight line are shown in Fig.2.4(a). Their angles areϕ1 andϕ2 respectively, where

ϕ1 +ϕ2 = ∆θ . (2.1)

If ϕ1 = 0 or ϕ2 = 0, the straight line fully votes to the cell (θi ,ρk) or (θi+1,ρ j ). Otherwise it

does not belong exclusively to any particular cell. If∆θ is very small then the intersections
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of the straight line with these neighbouring cells are so similar that all these bars get the

same number of votes. This results in a plateau around the “true” peak, which makes the

high θ resolution HT valueless. Fig.2.4(b) shows that every cell in a quite wide area in

the θ -direction of the HT space could be considered a peak. This causes difficulties when

seeking the “true” peak to represent the straight line. This problem maybe not be so severe if

ϕ1 = 0 or ϕ2 = 0. However in the case ofϕ1 6= 0 andϕ2 6= 0, when the straight line is rather

long, the problem may be more distinct.
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(b) Manifesting in HT data

FIGURE 2.4: Inappropriate highθ -resolution results in peak flatten

2.2.2.3 Inappropriate High Resolutions Result in Infeasible Peaks

When bothρ- andθ -resolutions are inappropriately high, their adverse effects will combine

as shown in Fig.2.5. In fact the candidate line is considered as two dominant lines, because

two independent butterflies are generated from the single straight line. This makes it difficult

to determine which peak should represent the straight line. In this case even the method of

filtering [11] cannot combine these peaks into a correct one. The methods of butterfly/peak

enhancing [47, 48, 52, 53] are also ineffective in obtaining a distinct butterfly or peak, since

each butterfly will be enhanced instead of combined.

Moreover, high resolutions lead to unacceptable computational load and memory storage

requirements, as discussed in [5, 20].
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(b) Accumulator array

FIGURE 2.5: Inappropriate high resolutions results in unreliable peaks

2.3 Error Sources of HT

In HT, both the image space and the parameter space are discretised which introduces errors

in the HT data. The image space discretisation errors are mainly manifested in the position

biases of feature points (that is, the 1-pixels in the binary edging image), while the parameter

space discretisation errors mainly affect the biases between the peak position and the “true”

parameters of the segment. These errors are the main error sources of HT. Using a Bayesian

scheme, Ji et. al [49] discussed how the input error. propagated to the detection error using

Bayesian scheme. The following discussion will separate these errors and analyse how they

affect the detection errors.

2.3.1 Discretisation Error in the Image Space

When an image is captured in digital imaging, the scene is divided into many square areas.

Each of these square areas is stored as a pixel in the image. This process introduces discreti-

sation errors in the image. For most digital image processing applications, the discretisation

errors are unavoidable. In HT, these errors also seriously affect the quality of the generated

HT data.
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2.3.1.1 Pixel Position Errors

Generally, images are stored in the form of a pixel matrix. Pixels are usually considered

as small squares connecting with eight neighbours, with four pixel-pair possible directions

(0◦, 90◦, and±45◦). A straight line is composed of pixel-pairs with arbitrary angles that

are approximated with available angles (0◦, 90◦ and±45◦). This leads to biases in the pixel

position. That is, the pixels composing a straight line are not always collinear. As shown in

Fig. 2.6 the straight line segments are composed of various0◦ and±45◦ pixel pairs when

−45◦ < θ < 45◦ (Fig. 2.6(a)), and90◦ and±45◦ pixel pairs whenθ > 45◦ or θ < −45◦

(Fig. 2.6(b)). Position errors due to this problem are common in almost all digital image

algorithms and applications such as [42].

Pattern II

Pattern III

(a) Patterns for−45◦ < θ < 45◦

Pattern I

Pattern II

(b) Patterns forθ <−45◦ or θ > 45◦

FIGURE 2.6: 3 patterns for digital images

2.3.1.2 Pixel Numbers vs. Length of Straight Lines

It would be desirable for the number of pixels to represent the length of the straight line.

However, this is not always possible in digital images, since the pixels are considered small

squares, and straight lines are composed of piece-wise horizontal and/or vertical segments.

Only the length of the vertical and horizontal segments can be directly and accurately rep-

resented by their number of pixels. The number of pixels in all the other segments is ap-

proximately equal to the length of their projection in the horizontal direction (forθ > 45◦
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or θ <−45◦) or vertical direction (for−45◦ ≤ θ ≤ 45◦). Unfortunately, most HT methods,

such as SHT, do not address this problem. This is the main obstacle when considering HT as

a segment measurement tool.

2.3.2 Discretisation Error in the Parameter Space

In HT, the parameter space is quantified to a matrix of cells or a similar structure. In SHT, a

matrix of cells represents the parameter space; and the RHT parameter structure is a binary

linked list where each node (similar to a cell in SHT) represents a straight line. FHT uses a

k-tree to represent the parameter space and each node is similar to a cell in SHT. The size of

a cell or node is called the “resolution”. A series of angles (or slopes) is predefined, and for

each feature point in the image space, these angles (or slopes) are substituted to Eq. (1.2) or

its equivalent, in order to calculate the other parameters, such asρ or intercept, the calculated

values are rounded to a predefined grid point. Votes to the corresponding cells (or nodes) are

counted. During this process, the predefined angles or slopes are accurate, but the calculated

values are rounded to the nearest quantified cells or nodes. This rounding error is the main

source of parameter space error, especially when the resolution is high (the size of a cell

or node is very small). The image space position errors also negatively affect the parameter

space errors. For example, in Fig.2.7, the cell corresponding to the solid line bounded image

area will obtain votes from the feature points contained in the area. However, considerable

votes are missed because of the feature point position biases and rounding errors. This leads

to low peaks even for long segments.

2.3.3 Sensitivity to Input Image Shifts

Another serious problem of SHT is addressed in this research, that is, the HT is sensitive to

small shifts of the input image. As a tool for object detection, it should be invariant to small

shifts of the input image. That is, a small shift of input images should not lead to a significant

difference in the HT data. However, because of the discretisation and rounding operations

in the voting process, the output of the Standard HT (SHT) is very sensitive to minor input

image shifts. For example, the peak height is affected quite considerably.
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FIGURE 2.7: The discretisation error in the parameter space

For an image containing a synthetic straight line, the peak heights detected by a SHT with

∆ρ = 1,∆θ = 1 are shown in Figs.2.8(a)and2.8(b), when the image is shifted pixel by

pixel. Theoretically, these differences should only shift the peak by 1 HT cell at most if the

image is shifted by one pixel, these differences should only shift the peak by one HT cell

at most, and the height of the peak (in most cases representing the number of pixels lying

on the straight line) should be similar. However, the peak heights shown in Figs.2.8(a)and

2.8(b)change quite distinctly with minor shifts of the input image. It is therefore, reasonable

to expect that the number of votes obtained by the cells around the peak is also considerably

by the shift of the image, because the voting process does not distinguish the peak from the

other cells. This means the global SHT output is sensitive to the shift of the input image.

This does not only occur with synthetic images. Fig.2.9 illustrates an example of a real

image, where the HT peak of the most dominant straight line is considered. Figs.2.9(c)and
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2.9(d)demonstrate similar features to the example of the synthetic image shown in Fig.2.8.

In the situation of two images containing the same scene but with minor shift, the outputs

of the SHT for each are quite different, and it is difficult to state that one output is more

correct than the other. Therefore, this sensitivity degrades the reliability of SHT because

the positions of the feature points are randomly located for a given image. That is, straight

lines can locate at any position in the image. The reason for the sensitivity is that shifting

the image leads to the rearrangement of the feature points in the rounding operations and the

voting process. That is, the votes of the feature points are re-split and re-rounded, according

to their new positions and hence, new sub-pixel information is generated.

Another interesting feature depicted in Figs.2.8(a), 2.8(b), 2.9(c) and 2.9(d) is pseudo-

periodicity, that is, similar peak heights can be expected to by shift the image by a fixed

number of pixels. This means it is not necessary to enumerate all possibilities of shifting an

image to obtain enough “new” information for high resolution HT data reconstruction. The

low resolution HT data frames (denoting the HT data obtained from a single shifted image

as a frame) within one “period” contain most of the “new” information generated by shifting

the input image. This is valuable for the super-resolution reconstruction of high resolution

HT data from low resolution HT data frames.

2.4 HT Butterflies are More Meaningful than the Peak

In the HT, each feature point (x,y) of a straight line is mapped to a sine curve via (1.2). By

discretising the parameter space by resolutions∆θ and∆ρ, an array of accumulators (cells)

is generated with each cell corresponding to a belt in the image space. During the voting

process, not only is the peak generated, but also a large area is also built, composed of curves

corresponding to all the feature points of the straight line. By considering the area around

the peak, a butterfly shape area (denoted by HT butterfly in this thesis) is obtained.

Due to errors arising in the digital imaging and voting process, [6], HT peaks are not robust.

For instance, the peak position, especially the height of the peak, has considerable biases

from the “true” values, which degrades the HT peak as a measure of the segment length [5].

Fortunately, the butterflies are more robust to noise and the aforementioned errors because the

segment parameters are manifested by a group of cells, instead of a single cell representing
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(a) Peak height changes with the image horizontally shift
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(b) Peak height changes with the image vertically shift

FIGURE 2.8: The case of a synthetic line

the peak. [41, 50]The results from a variety of applications demonstrated that HT butterflies

provide more detail of the segments, such as the length, the position of the endpoints, the

width and the smoothness (uniformity). These are not achievable if only the HT peaks are

used. Due to this fact, various HT butterfly based segment detection methods were proposed,

[7, 8, 41, 50, 51, 52, 53] with the aim of obtaining a robust and high resolution butterfly.

[41, 50, 51, 52, 53] However, it is known that SHT high resolutions might lead to problems

such as peak splitting, flattening [5] and high computation load. [45], Therefore, reliable

high resolution butterflies cannot be obtained by simply increasing the resolutions of SHT.

Acquiring reliable high resolution butterflies is still a problem, with little success reported.
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(a) Briefcase (b) Edges of briefcase
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(c) Peak height changes with the image horizontally shift
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(d) Peak height changes with the image vertically shift

FIGURE 2.9: The case of a real image



CHAPTER 3

CONTRIBUTIONS TOWARDS SOLVING

THE HT PROBLEMS

This thesis focuses on the HT butterflies rather than the global HT data. In this thesis various

ideas are proposed and implemented to improve the resolution, accuracy and computational

load.

3.1 Criteria of HT Resolution Selection

As discussed in Sections2.2and2.3, the detection error is closely related to the resolutions.

Desirable resolution selections are determined by the straight parameters, and this makes

it complex to select a suitable resolution when different objects are to be detected in im-

ages. The research problems of whether the best resolutions for a straight segment exist, and

which factors determine the best resolutions are discussed. Experiential criteria of resolution

selection are depicted in this thesis.

3.2 Self-similarity of the HT Butterfly

In the situation of zooming into the centre of an HT butterfly by applying the appropriate

higherρ− andθ−resolutions (keeping the ratio of∆ρ
∆θ ), similar butterflies are found if the

dimensions are ignored. That is, if an accumulator matrix is given without dimensions, then

the resolutions used to generate the data are unknown.

26
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This scale-free property of HT butterflies, initially discovered in this research, is called self-

similarity. This interesting self-similarity is demonstrated using geometrical analysis. Based

on this scale-free property, a simple method is proposed to obtain very high resolution and a

very reliable HT butterfly, without the adverse effects of vote spreading and peak splitting.

3.3 Super Resolution Method

Due to the sensitivity of the HT butterflies on the image shifting, as explained in Section

2.3.3, it became apparent that “new information” in the HT data is generated during this shift-

ing process and the consequent HT operations on the shifted images. To reconstruct a higher

resolution HT butterfly by making use of this “new information”, a super resolution recon-

struction method, based on iterated back-projection, is proposed. High resolution HT butter-

flies are obtained from low resolution HT data sequences. Details of the steps to implement

the proposed method are discussed, such as generating/observing multiple low resolution HT

frames, registering cells, converting between low and high resolution HT frames, et cetera. A

constrained function is employed in our iterative algorithm to guarantee non-negative votes.

The proposed method aims to conquer HT resolution and precision problems.

3.4 Extend Resolution in HT Butterflies through Geometry

Analysis

Geometry Principles of HT show the relationship between the low and high resolution HT

data. Based on this relationship, a method is proposed to obtain high resolution HT butter-

flies directly from a single low resolution HT butterfly. These high resolution HT butterflies

are obtained without the problems, such as peak splitting and flattening, caused by the in-

appropriate high resolution settings of Standard HT (SHT). Compare with the self-similarity

method, this idea frees the high resolution HT butterflies from the fixed ratio of resolutions (
∆ρ
∆θ ).
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3.5 Error Compensation for Straight Line Detection

Since the HT space is discretised with given resolutions, the positioning error is generated

when theρ value of a line is not equal ton∆ρ (n is a nonnegative integer). This is very

common if the straight line is not vertical (θ = 0◦) or horizontal (θ = ±90◦). This error is

omitted during the voting process and hence, it is unknown if the straight line is detected by

seeking the peak. In the example of a straight line that is not vertical or horizontal, if the

image is shifted by one pixel in thex- or y- axis then theρ value of the line will be changed

by an amount less than one pixel. The exact value of the change can be obtained by simple

geometric analysis. Theρ value of the shifted line is composed of three parts: (i) theρ
value of the original line detected by seeking the HT peak (ρHT

0 = n∆ρ, which is known);

(ii) the detection error of the original line (eρ0 which is unknown); (iii) the change in theρ
value due to the shift (δρ which is known). By employing HT on the shifted image, a new

discretisation error is generated for the shifted line if the third part is not equal to the integer

times of∆ρ. The new detection error is derived, and it is relevant to the one before shifting.

After shifting the image times, a chain of detection errors is obtained. Based on the analysis

of this error chain, the estimation ofeρ0 is derived. A high-precision line positioning method

is proposed by compensating for the estimated detection error.

3.6 Ideal HT: One Useful Tool to Evaluate the HT Butter-

flies

Because the HT butterflies contain important information regarding straight lines in the im-

age, the quality of HT butterflies is critical for detecting these objects. The resolution set-

tings, the various methods for HT butterfly generation and the straight line parameters have

considerable impact on the butterfly quality. However, very few criteria for butterfly qualifi-

cation evaluation are reported in existing literature. This research addresses the “ideal” HT

data calculation, which is independent of the HT methods, digital discretisation errors in the

image space and errors due to the voting and verifying processes. The generated HT data

is dependent only on the physical facts, that is, the endpoints of the segment. The ideal HT

data can be employed to evaluate the data generated by the HT varieties. Given a specific
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segment detection method, the ideal HT data may also be used to evaluate the performance

improvement potential.



Part II

EFFORTS FOR ENHANCING THE HT

30
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Part II focuses on improving the performance of HT. Due to the digitalisation error of images

and the discretisation error of HT, the resolution limitation is a considerable constraint for

SHT when employed in actual applications. Inappropriately highρ− or θ− resolution leads

to unreliability of the HT data. Conversely, a low resolution HT results in runs on low

precision.

This research on the improvement of the HT performance includes the following aspects:

• How to select “good” resolutions for HT;

The “good” resolution is defined, followed by the study the relationship between the

straight line detection errors and HT resolutions (ρ- andθ - directions). The inflexion

of the error-resolution curve is uncovered. To study the location of the inflexion com-

prehensively, the effects of several factors are considered, such as the positions (ρ and

θ ), the widths and lengths of straight segments, noise level and the ratio of resolutions.

An error surface, according toρ- andθ - resolutions, is obtained to guide the search

for the best resolutions. The area containing “good” resolution settings is uncovered

and modelled.

• Improvement of the resolution by geometry analysis

SHT is based on simple and clearly defined geometrical mapping, that is, the conver-

sion between the rectangular coordinate system and the polar coordinate system. The

HT data has well-defined geometric meanings in both the image space and the param-

eter space. This property makes it possible to improve the resolution using geometry

analysis on the HT data.

– Observations show that accumulator arrays (butterflies) in the parameter space

exhibit self-similar properties. This is theoretically proved through geometry

analysis. A very high resolution HT is proposed based on this property. This

method reliably overcomes the peak splitting and vote spreading problems asso-

ciated with traditional high resolution HTs.

– The relationship between the low and high resolution HT data is derived from the

geometric principles of SHT. Based on this relationship, a method is proposed

to obtain high resolution HT butterflies directly from low resolution HT data.

The high resolution HT butterflies are obtained without the problems caused by

infeasible high resolutions, such as peak splitting and flattening.
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• Super resolution method.

Super resolution (SR) techniques are successful for normal optical images, such as

surveillance videos and satellite images. However, the techniques have never been

considered for the improvement of the resolution of HT data. In fact, multiple HT

data frames can be easily obtained by shifting the original image. Super resolution HT

data might be constructed, based on these frames. In this research, the generation of

“new information” in multiple HT data frames, the difference between HT data frames

and normal optical images, the specific cell registration and the conversion between

high and low resolution frames are considered. A Super Resolution HT (SRHT) is

proposed.

• A high precision line positioning method based on HT detection error compensation

The accuracy of HT is been considered as a common concern [5, 6, 11, 12, 26, 43,

54, 55, 57, 58, 59] because of discretisation. Given the HT resolutions, the positioning

error is generated when theρ value of a line is not equal ton∆ρ (n is a nonnegative

integer). This is prevalent in straight line detection if the straight line is not vertical

(θ = 0◦) or horizontal (θ = ±90◦). This error is omitted during the voting process

and hence, it is unknown in detection of the straight line by seeking the peak. For a

straight line that is not vertical or horizontal, if the shift is one pixel in thex- or y-

axis, then the change in itsρ value will be smaller than one pixel (the exact value

of the change can be calculated through simple geometric principles). Theρ value

of the shifted straight line is composed of three parts: 1. theρ value of the original

line detected by seeking the HT peak (ρHT
0 = n∆ρ, which is known); 2. the detection

error of the original line (eρ0, which is unknown); 3. the change ofρ value due to

the shift (δρ , which is known). By employing HT, a new detection error is generated

for the shifted straight line, if point 3 is not equal to the integer times of∆ρ. This

means the detection error of the shifted straight line has some relationship with the

error of the original straight line. If the straight line is shifted many times, a chain of

detection errors results. These detection errors are unknown, but the detected values

provide a clue to estimate the errors. In this research, it was discovered that the chain of

detection errors is an increasing/decreasing arithmetical series. Furthermore, a method

to estimateeρ0 by studying the detectedρ value of shifted straight lines was derived,

and a high-precision line positioning method proposed.



CHAPTER 4

GOOD RESOLUTIONS FORHT

For straight line detection, the parameter space is represented by a matrix of cells with the

resolutions inθ - and ρ- directions, that is,∆θ and ∆ρ respectively. The setting of res-

olutions received intensive study recently with much research proposed on collinear seg-

ment detection[41, 50], high accuracy [9, 53], high precision[51], nonuniform quantisation

[43, 49, 57] et cetera. It is shown that this quantisation leads to compromised; finerρ quan-

tization, that is, higher precision with regards toρ is paid with the decreased robustness. [5]

Zhang [58] determined the resolution∆ρ in the ρ direction considering the digitisation of

the spatial domain, and then calculated the resolution∆θ based on the length of the straight

line l and∆ρ. The nonlinear relationship between∆ρ and∆θ was studied and a non-uniform

quantisation on theρ direction was proposed in [42], where∆ρ was determined according

to the value ofθ .

It is commonly accepted that the detection error is closely related to the resolution, and there-

fore, desirable resolutions are determined by the object parameters. This makes it complex

to select a suitable resolution with different objects in images. The research problems of this

chapter are “whether thebestresolutions exist for a straight segment” and “which factors

determine the best resolutions.”

This chapter demonstrates the relationship between straight line detection errors and reso-

lutions (ρ- andθ - directions) and then uncovers the inflexion of the error-resolution curve.

To study the location of the inflexion comprehensively, the effects of several factors are con-

sidered, such as the positions (ρ andθ ), the widths and lengths of straight segments, the

noise level, and the ratio of resolutions. An error surface according toρ- andθ - resolutions

33
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is obtained in this research, in order to guide the research the best resolutions. The area

containing “good” resolution settings is uncovered and modelled.

4.1 What are “Good” Resolutions of HT?

The principle of HT is to map the image space feature points to the parameter space and build

a peak for a certain pattern. Therefore, a distinguishable peak is a very important criterion

for whether the resolution setting is “good” or not.

Definition 1 (“Good” resolutions). A “good” resolution setting should build a peak for a

certain patten, satisfying the following criteria:

1. A distinguishable peak exists for a certain pattern only.

2. The cell corresponding to the peak should obtain the most possible votes from the feature

points of the certain patten.

3. The cells around the peak should obtain the least possible votes from the feature points of

the certain patten.

As shown in Fig. 4.1, there is a segment in the image space with lengthl and widthw,

centred on the straight line (θ0,ρ0). Assuming the cell(θi ,ρ j) is the peak, then the resolution

setting is “good” only if the image space belt corresponding to the peak(θi ,ρ j) contains the

most possible feature points of the segment, and the belts corresponding to the other cells

around the peak, such as(θi−1,ρ j) and(θi ,ρk), contain the least possible feature points of

the segment.

Definition 2 (The “best” resolutions setting).The “best” resolution setting is the “good”

resolution that has the smallest detection error.

Assume the resolutions of HT inθ - andρ-direction are∆θ and∆ρ respectively. LetVi,m

denote the maximum voting values in columni of the parameter space, that is the column

corresponding toθi = i∆θ +90. ni,m denotes the number of cells in columni obtaining the
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FIGURE 4.1: The best resolution setting of HT.

maximum voting valuesVi,m. Therefor,ni,m is the number of peaks if the columni contains

the global maximum voting cell(s). By geometry analysis, one finds that

Vi,m =





w∆ρ
sinϕi

, l sinϕi ≥ ∆ρ
lw, l sinϕi ≤ ∆ρ,ϕi < tan−1 w

l ,w < ∆ρ
l∆ρ, l sinϕi ≤ ∆ρ,ϕi < tan−1 w

l ,w≥ ∆ρ
lw, l sinϕi ≤ ∆ρ,ϕi ≥ tan−1 w

l

(4.1)

and

ni,m≤





b l sinϕi
∆ρ c, l sinϕi ≥ ∆ρ

1, l sinϕi ≤ ∆ρ,ϕi < tan−1 w
l ,w < ∆ρ

b w
∆ρ c, l sinϕi ≤ ∆ρ,ϕi < tan−1 w

l ,w≥ ∆ρ
1, l sinϕi ≤ ∆ρ,ϕi ≥ tan−1 w

l

(4.2)

whereϕi = θi−θ0.

Since theθ value of(θi ,ρ j) is possibly slightly different to the “true”θ value ofl , in order

to satisfy criterion 2 of “good” resolution, that is containing the most possible feature points

of the segment, the belt must have enough width (∆ρ). However, a big∆ρ results the belts

corresponding to the cells around the peak(θi ,ρ j) to also contain considerable feature points

of the segment which disobey criterion 3. This means theρ-resolution cannot be too high or

too low. It is similar when theθ -resolution is considered. when∆θ is high, the difference

betweenθi and the “true”θ value ofl can be substantial, and it is therefore, difficult to satisfy

criterion 2. However, a low∆θ leads to the difference ofθi+1 being slight which results the
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cells around the peak obtain high votes,thus, disobeying criterion 3. A low∆θ also might

disobey criterion 1, that is several peaks appearing around the peak in the direction ofθ .

From the above discussion, it is clear that resolution settings that are “better” than others

for a given pattern must exist. The following sections focus on demonstrating the existence

of “better” resolution settings and seeking the factors that determine the “good” resolution

settings.

4.2 Inflexion of Error-Resolution Curves

It is clear that low resolutions for the Standard HT (SHT) detects the straight segments with

low precision, and with an increase in the resolutions, the detection precision is improved.

However, inappropriately high resolutions lead to the problems of robustness reduction, vote

spread and peak splitting and hence, increases the detection error. Therefore, an inflexion

on the error-resolution curve should exist when the resolutions increase to infeasible values.

The inflexion indicates a “good” resolution value with a small detection error. This section

aims to study the existence of the inflexion and the factors that affect the inflexion when a

series of resolution settings are applied.

Various images containing straight segments with various parameters, such as the length, the

width and the (ρ, θ ) values are considered. Series experiments are implemented with dif-

ference resolution settings and the detection errors are recorded. Each error-resolution curve

has similar features as shown in Fig.4.2(the resolutions are∆θ = 0.1◦,∆ρ = 0.1,0.2, ...,2),

where the detection error initially decreases with the decrease of∆ρ, and then increases af-

ter a certain point. A global minimum and several local minimums exist on the curve. The

resolution corresponding to the global minimum is considered as the inflexion. Obviously, it

is valuable if the inflexion is known before HT is employed. The following section aims to

study the factors that affect the inflexion.

4.3 The Factors Affecting the Inflexion

Eqs. (4.1) and (4.2) demonstrate that the peak in an HT space is related to the parameters of

a segment, that is, theρ0, θ0, w andl . The inflexions on error-resolution curves, according
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FIGURE 4.2: The inflexion on error-resolution curves.

to the changes of these factors, are considered.

4.3.1 The Effect of the Straight Segment Position (θ0 and ρ0 ) on the

Inflexion

To study the effect ofρ0 on the inflexion, SHT is implemented to a series of images con-

taining a single segment having the sameθ0, w and l , but differentρ0. Various settings of

∆ρ ∈ [0.001 1]] and∆θ ∈ [0.001 1] are employed. The detection error corresponding to

every∆θ and∆ρ combination is recorded. Fig.4.3 shows the inflexions of the curves cor-

responding to the combinations of resolutions (∆θ = 0.1◦,∆ρ = 0.1,0.2, ...,2) crossing the

images containing segmentsρ0 ∈ [30 120]. Fig. 4.3shows that the change ofρ0 does not

affect the inflexion.

Fig. 4.4 demonstrate the inflexion on curves∆θ = [0.1◦, ...,1◦],∆ρ = [0.1,0.2, ...,5] while

θ0 changes from20◦ to 80◦.

Fig. 4.4shows that the inflexion is not affected by the change ofθ0.
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FIGURE 4.3: ρ value of straight segments does not effect on the selection of best resolution

Figs. 4.3 and4.4 demonstrate that the position of straight segments (ρ0 andθ0) does not

affect the selection of the “best” resolution setting. This means that estimating the “best”

resolutions, these parameters can be omitted. This reduces the complexity of determining

feasible resolutions.

4.3.2 The Effect of Straight Segment Length (l ) on the Inflexion

If θ0, ρ0 andw are fixedl is changed, a series of segments result. The employment of HT

with various∆θ and∆ρ combinations can obtain the “best” resolution settings for different

segment lengths.

Fig. 4.5 shows the inflexion changes with different segment lengths. It is clear that when

the segment is long the inflexion is not affected. However, when the segment is short, the

inflexion is significantly altered. This is because thetan−1w
l in Eqs. (4.1) and (4.2) becomes

considerable whenl is short, which makes theVi,m andni,m frequently switch between dif-

ferent cases.
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4.3.3 The Effect of Straight Segment Width (w ) on the Inflexion

A similar result is obtained in the case of fixedθ0, ρ0 andl values but changedw value. Fig.

4.6shows that the width of the segment affects the inflexion.

4.4 A Global View of “Good” Resolutions

In Section4.2, the inflexion of the error-resolution curves, that is, the resolution settings

having the least detection errors were studied, according to the segments with specified pa-

rameters. The inflexion is affected by certain parameters of the segments, but in fact, initially,

the parameters are unknown, and these uncertainties of the segment parameters exist in im-

ages as well. Therefore, detecting the “best” resolution setting according to the inflexion

is not always practical or reliable. Hence, the area of “good” resolutions is more valuable

than the single“best” point. This section aims to demonstrate the areas containing “good”

resolutions, that is, having acceptable detection errors.
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FIGURE 4.5: The length of segments affects on the selection of best resolution

As reported in [51], the ratio of resolutions,∆ρ
∆θ , is related to the detection error of HT. This

section considers the detection error as the function of∆θ , and this ratio is denoted asa. For

example, given a specific segment, the detection errors according to variousa and∆θ values,

are shown in Fig.4.7. When∆θ anda are both inappropriately high, the detection errors are

substantial. A decrease in∆θ anda causes a decrease in the detection error. However, as

discussed in Section4.2the detection error will increase after a certain point. Fig.4.7shows

the global view of the detection error. The inflexion order is allocated in a valley with its

considerable vicinity having very small detection errors. It is clear that if the area is obtained

before HT, one can select a “good” resolution for a certain scope of segments.

To study the “good” resolution area, isolines are drawn in Fig.4.8. The bounds of the valley

are effectively approximated by curves

∆θ =
b1

a+c1
+d1 (4.3)

and

∆θ =
b2

a+c2
+d2. (4.4)
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FIGURE 4.6: The width of segments affects on the selection of best resolution

After many experiments for various segment parameters, it was found thatc1 = c2 = 1 and

d1 = d2 = 0.03 are always fixed,b1 andb2 change, according to the parameters of the seg-

ments. This greatly alleviates the complexity of finding the “good” resolution area. It is

possible to obtain the relationship for a parameter with the bounds of the valley, and figs.

4.9-4.12demonstrate how these bounds are affected by segment parameters. If partial in-

formation regarding the segments to be detected is known, then it is possible to obtain the

nest of “good” resolutions before HT is employed. This is helpful in increasing the detection

accuracy without adding extra computation loads.
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CHAPTER 5

HIGH RESOLUTION HT BASED ON

BUTTERFLY SELF-SIMILARITY

5.1 Self-similarity

In the HT, each feature point (x,y) of a straight line is mapped to a sine curve via

ρ = xcosθ +ysinθ . (5.1)

By discretising the parameter space by resolutions∆θ and ∆ρ, an array of accumulators

(cells) is generated with each cell corresponding to a belt in the image space. The feature

point (x,y) votes to the cells located on the curve of Eq. (5.1). The position of the most

voted cell, or peak, is considered as the (ρ, θ ) values of the straight line. During the voting

process, not only is the peak generated, but also a large area is also built, composed of curves

corresponding to all the feature points of the straight line. By considering the area around

the peak, a butterfly is obtained.

The intensity of each cell in the butterfly is in proportion to the intersection length (∆l ) of

the straight line and the belt corresponding to the cell. Fig.5.1(a)demonstrates,

∆l =
∆ρ

sinϕ
(5.2)

46
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FIGURE 5.1: Geometric principle of HT

whereϕ is the angle between the segment and the belt. In HT space accumulators, the slope

of the segment is approximated byθp (theθ value of the peak). Therefore,

ϕ ≈ θp−θi = n∆θ (5.3)

that is,

∆l ≈ ∆ρ
sin(n∆θ)

. (5.4)

where n is a positive integer. Eq. (5.4) demonstrates that for the columnCn (as shown in Fig.

5.1(b)) where both∆ρ andn are small, the result is

∆l ≈ ∆ρ
(n∆θ)

=
1
n

∆ρ
∆θ

, (5.5)

This proves∆l is not determined by∆ρ or ∆θ but by their ratio. This means for high and low

resolution HT, if they have the same resolution ratio∆ρ
∆θ , then their ideal intensity of cells in

the column having the same distance (n) to the peak, is similar.

Fig. 5.1(a)considers the position of cells obtaining votes in columnCn.

ρ0 = xcosθ0 +ysinθ0 (5.6)

ρ = xcos(θ0−ϕ)+ysin(θ0−ϕ) (5.7)
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ρ−ρ0 = x(cos(θ0−ϕ)−cosθ0)+y(sin(θ0−ϕ)−sinθ0)

= 2sin(−n∆θ/2)(−xsin(θ0−n∆θ/2)+ycos(θ0−n∆θ/2))

≈ −n∆θ(−xsin(θ0−n∆θ/2)+ycos(θ0−n∆θ/2))

(5.8)

m = (ρ−ρ0)/∆ρ
≈ −n∆θ/∆ρ (−xsin(θ0−n∆θ/2)+ycos(θ0−n∆θ/2))

(5.9)

mh = (ρh−ρ0)/∆ρh

≈ −n∆θ h/∆ρh(−xsin(θ0−n∆θ h/2)+ycos(θ0−n∆θ h/2))
(5.10)

wherem andmh is theρ-distance from the cell to the peak in low and high resolution HT

space respectively. Since

α = ∆θ/∆ρ = ∆θ h/∆ρh (5.11)

m−mh ≈ −nα[−x(sin(θ0−n∆θ/2)−sin(θ0−n∆θ h/2))

+y(cos(θ0−n∆θ/2)−cos(θ0−n∆θ h/2))]

≈ 2nα sin(n(∆θ −∆θ h)/4)[−xcos(θ0−n(∆θ +∆θ h)/4)

+ysin(θ0−n(∆θ +∆θ h)/4)]

(5.12)

when the column is close to the peak, that is,n∆θ is small, hence

sin(n(∆θ −∆θ h)/4)≈ 0 (5.13)

results in,

m≈mh (5.14)

Eq. (5.14) demonstrates that in the columns close to the peak, the cells obtaining votes in the

high and low resolution HT space have a similar relative position to the peak.

From the above analysis, it is shown that in a given segment, the shape of the butterflies in

the high and low resolution HT spaces should be similar. When zooming into the centre

of a butterfly by applying appropriate higherρ− andθ−resolutions, then similar butterflies

can be expected if the dimensions are ignored. That is if an accumulator is given without

dimensions, the resolutions used to generate the butterfly are unknown. Fig.5.2demonstrates
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that the HT butterflies of a segment under different resolutions are similar, with the exception

of theρ− andθ−dimensions.

5.2 Method for High Resolution HT

The self-similarity in the HT butterfly discovered in Section5.1inspires a method to obtain a

very high resolution HT butterfly from a low resolution butterfly, without the effects of peak

splitting and vote spreading. Because of the similarity in the areas close to the peak in high

and low resolution HT spaces, high resolution data can be obtained by copying corresponding

cells from low resolution data. It should be noted that although the peak is in the centre

of the butterfly, its position is not accurate in low resolution data. Some methods aiming

to determine the position of the peak accurately from low resolution HT data (such as the

filtering method in [11]) should be employed in these instances to obtain an accurate peak

(θ h
p ≈ θ0, ρh

p ≈ ρ0) from the low resolution data. Self-similarity is then used to build the

small area around the obtained peak. Clearly for the columns that are not so close to the

peak, that isϕ = n∆θ wheren is relatively high, Eqs. (5.4), (5.8 to 5.10), (5.12to 5.20) will

not hold. In this case, for a given cell in high resolution HT space, its corresponding cell in

the low resolution data should be considered. Similar to Eq. (5.2),

∆lh = ∆ρh/sinϕh (5.15)

where

ϕh = θ h
p−θ h (5.16)

Obviously if ∆lh≥ ∆ρ, i.e.

ϕh≤ arcsin(∆ρh/∆ρ) (5.17)

Therefore, in the low resolution belt, there must exist a belt that has a similar intersection

with the segment, as shown in Fig.5.1(a).

Note: There is no belt in the a low resolution HT space corresponding to the high resolu-

tion belt whenϕh > arcsin(∆ρh/∆ρ). However, an HT butterfly in the scope defined by Eq.

(5.17) is wide enough for segment detection. For example(∆ρ = 1,∆θ = 1,) and(∆ρ =
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FIGURE 5.2: Self-similarity of HT butterfly
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0.1,∆θ = 0.1,) the scope determined by Eq. (5.17) is aboutarcsin(0.1) = 5.730,which

means the high resolution butterfly has about5.73/0.1×2≈115 columns.

From Eqs. (5.2) and (5.15), for a given high resolution cell (θ h,ρh)

ϕ = arcsin(sinϕh∆ρ/∆ρh) (5.18)

Similar to Eq. (5.7)

ρh = xcos(θ0−ϕh)+ysin(θ0−ϕh) (5.19)

By solving the system of equations given by Eqs. (5.6), (5.7), (5.18), (5.19), one finds theρ
value of the low resolution cell as follows:

ρ = (ρpsin(ϕ−ϕh)+ρhsin(−ϕ))/sin(−ϕh) (5.20)

It should be noted that when solving the system of equations,θ0 andρ0 are approximated by

θ h
p andρh

p , respectively.

5.3 Results

Fig. 5.3demonstrates the butterflies obtained by the traditional HT and the proposed method

under high resolutions. It is very clear that the proposed method outperforms the traditional

method regarding both the peak height and votes distribution.
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FIGURE 5.3: HT butterflies obtained by traditional method and proposed method under high
resolutions (∆ρ = 0.05pixel and∆θ = 0.050)



CHAPTER 6

GENERATING HIGH RESOLUTION HT

BUTTERFLIES

6.1 Generating High Resolution HT Butterflies

For HT-based line detection methods, the detection precision benefits from precise and dis-

tinct peaks in the HT space. However, the peak alone cannot provide fully accurate straight

line information, such as the length, width and midpoint. Fortunately, this information is

contained in the low resolution HT butterfly areas around the peaks. [7, 8, 20, 41, 50]

Nevertheless, the low resolution SHT cannot provide precise peaks or high resolution HT

butterflies. Also, the high resolution SHT is not feasible because of the problems mentioned

in previous chapters.

An interesting self-similarity method to generate high resolution HT data within a small

vicinity of the peak is presented. In this chapter, generating high resolution HT (HT) but-

terflies for straight line detection, based on low resolution HT data around the peak, is ad-

dressed. This method is considered free from the constraints of the range. Geometric prin-

ciples show the relationship between the low and high resolution HT data. According to the

normal equation of HT, shown in Eq.(1.2) ), the smoothness of the trigonometric functions

enables the increase of resolution in theθ -direction by the interpolation method to be carried

out with high accuracy. From the physical position of a cell in the parameter space, one

finds that in the column with the sameθ value, high resolution HT data can be generated by

splitting the cell of the low resolution HT data in theρ-direction.

53
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Based on this relationship, a method is proposed to obtain high resolution HT butterflies

directly from low resolution HT data. The high resolution HT butterflies are obtained without

the problems such as peak splitting and flattening, which are caused by the infeasible high

resolution settings of the Standard HT (SHT). Since only the desired butterfly-shape area

around the peak is needed, it is possible to reduce the computational cost and memory storage

by generating the desired area only.

Before discussing the relationship between low and high resolution HT data, the generation

of butterfly areas is initially demonstrated. Assume a straight line segmentS0 lies on straight

lineL0(ρ0,θ0) in the image space. As shown in Fig.6.1(a), a bar (θk, ρi) contains the segment

S0, that isθ0 ∈ [θk−∆θ/2,θk + ∆θ/2) andρ0 ∈ [ρi −∆ρ/2,ρi + ∆ρ/2), which means the

cell (θk, ρi) corresponding to this bar obtains all the votes from the segment feature points,

that is the cell is the peak. As shown in Fig.6.1(b), if the bar intersects with the straight

line segmentS0, and the angle between them isϕ, this implies that the bar contains part of

the feature points ofS0. The cell corresponding to the bar will only receive part of the votes

during the voting process. Whenϕ becomes larger (the cell moves far from the peak in the

θ -direction of the HT space), the number of bars intersecting withS0 increases (the butterfly

width in theρ-direction increases), and the feature points contained in each bar decreases(the

votes received by each cell decreases). A butterfly shaped voting area is therefore, generated

around the peak as shown in Fig.6.1(c). For clarity, HT(∆ρ,∆θ) denotes the HT data with

resolutions∆ρ and∆θ in ρ− andθ− directions respectively, and the ranges ofρ andθ are

[−
√

W2 +H2
√

W2 +H2) and [−90◦ 90◦) respectively, whereW andH are the width

and the height of an image.

6.1.1 Extending theθ -resolution of Butterflies: HT(∆ρ,∆θ)=⇒HT(∆ρ, ∆θ
n )

By using geometric analysis on the generation of the butterfly around the HT peak, the rela-

tionship between low and high resolution HT data is demonstrated, and hence, a high reso-

lution HT butterfly based on this relationship is obtained.

Firstly, theθ -resolution is extended while keeping∆ρ fixed, that is,

∆θ h =
∆θ
n

(6.1)
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∆ρh = ∆ρ (6.2)

where∆θ and∆ρ are the low HT resolutions,∆θ h and∆ρh are the improved resolution, and

n is a positive integer by which theθ -resolution is multiplied.

θk = −90◦+k∆θ
= −90◦+kn∆θ h

= θ h
nk,

(6.3)

As a result, the centre of the cell (θk,ρ) in the low resolution HT corresponds to the centre of

the cell (θ h
nk,ρ) in the high resolution HT. Note that these two cells correspond to the same

bar in the image space. Hence, when only theθ -resolution is extended, the low resolution

data in theθk column and the high resolution data in theθ h
nk column are identical. That is,

the high resolution columnθ h
nk can be obtained by copying the low resolution columnθk for

k = 0,1, . . . ,Nθ −1, whereNθ = d180
∆θ + 1e is the number of columns in the low resolution

HT and “d e” is the ceiling function.

After θ h
nk (k = 0,1, . . . ,Nθ ), the columns of high resolution HT data are obtained and the

calculation of the columns between theθ h
nk andθ h

n(k+1) columns is discussed.

6.1.1.1 Determining the Cells receiving Votes when the Peak is included betweenθ h
nk

and θ h
n(k+1) Columns

From Eq. (6.1) one finds theθ value of thei-th column between theθ h
n(k−1) and θ h

nk-th

columns is
θ h

n(k−1)+i = θ h
n(k−1) + i∆θ h

= θ h
n(k−1) +

i
n∆θ ,

(6.4)

wherei = 1, . . . ,n−1. And for the j-th column betweenθ h
nk andθ h

n(k+1)-th columns is

θ h
nk+ j = θ h

nk+ j∆θ h

= θ h
nk+ j

n∆θ ,
(6.5)

where j = 1, . . . ,n−1.
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FIGURE 6.2: Extendθ resolution of HT butterfly (centre part)
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Fig. 6.2 shows the sine curves bounding the butterfly shape around the peak (that is, the

intersecting point of the curves). If the peak falls between two neighbouring columns in the

low resolution HT data, the peak column (that is,θk column in Fig.6.2(a)) might not include

the “true” peak, but it is generally quite close to the peak. In this situation, the votes are

usually distributed over very few cells, sometimes over only one cell. However, this peak

should not be considered the “true” peak in the high resolution HT space, and hence, the

position of this peak should be re-considered. In this case, three neighbouring columns, that

is, θk−1,θk andθk+1, from the low resolution HT data are taken, as shown in Fig.6.2(b).

Becauseρ1
k−1, ρ2

k−1, ρ1
k+1, ρ2

k+1, θk−1, andθk+1 are known from the low resolution HT data,

we can calculatêθ h
p andρ̂h

p, that is, the position of the peak in the high resolution HT space.

Since∆θ is very small,ACandBD can be considered straight lines intersecting atP(θ̂ h
p, ρ̂h

p).

BecauseABPandCDPare similar triangles, the following is obtained:

PI
PI′

=
AB
CD

, (6.6)

that is,
θ̂ h

p−θk−1

θk+1− θ̂ h
p

=
ρ1

k−1−ρ2
k−1

ρ1
k+1−ρ2

k+1

, (6.7)

resulting in

θ̂ h
p =

θk+1(ρ1
k−1−ρ2

k−1)+θk−1(ρ1
k+1−ρ2

k+1)
ρ1

k+1−ρ2
k+1 +ρ1

k−1−ρ2
k−1

, (6.8)

Therefore, the peak lies on the(
⌈

(θ̂h
p+90◦)n

∆θ

⌉
+1)-th column in the high resolution HT space.

Similarly, AIP andCI′P are similar triangles and considering Eq. (6.6), the following is

obtained:
AI
CI′

=
PI
PI′

=
AB
CD

, (6.9)

that is,
ρ̂h

p−ρ2
k−1

ρ1
k+1− ρ̂h

p
=

ρ1
k−1−ρ2

k−1

ρ1
k+1−ρ2

k+1

, (6.10)

resulting in

ρ̂h
p =

ρ2
k−1(ρ

1
k+1−ρ2

k+1)+ρ1
k+1(ρ

1
k−1−ρ2

k−1)
ρ1

k+1−ρ2
k+1 +ρ1

k−1−ρ2
k−1

(6.11)
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Consequently, the peak lies on the cell(
⌈

(θ̂h
p+90◦)n

∆θ

⌉
,

⌈
ρ̂h

p+
√

W2+H2

∆ρ

⌉
) in the high resolution

HT space.

After the position of the new peak is determined, the columns betweenθ̂ h
p andθ h

n(k+1) and

θ h
n(k−1) andθ̂ h

p can be obtained using the principle of similar triangles.

Since PEF and PAB are similar triangles, for the columnθ h
n(k−1)+i betweenθ h

n(k−1) andθ̂ h
p,

shown in Fig.6.2(b)),where EF represents the cells receiving votes, the following is obtained:

ρ̂h
p−ρh

n(k−1)+i
1

ρ̂h
p−ρ1

k−1

=
θ̂ h

p−θ h
n(k−1)+i

θ̂ h
p−θk−1

(6.12)

that is,

ρh
n(k−1)+i

1
= ρ̂h

p−
(ρ̂h

p−ρ1
k−1)(θ̂

h
p−θ h

n(k−1)+i)

θ̂ h
p−θk−1

, (6.13)

and
ρ̂h

p−ρh
n(k−1)+i

2

ρ̂h
p−ρ2

k−1

=
θ̂ h

p−θ h
n(k−1)+i

θ̂ h
p−θk−1

(6.14)

that is,

ρh
n(k−1)+i

2
= ρ̂h

p−
(ρ̂h

p−ρ2
k−1)(θ̂

h
p−θ h

n(k−1)+i)

θ̂ h
p−θk−1

, (6.15)

whereθk−1,ρ1
k−1,ρ

2
k−1 are known from the low resolution HT data,θ h

n(k−1)+i is obtained

from Eq.(6.4) andρ̂h
p andθ̂ h

p are obtained from Eqs. (6.11) and (6.8) respectively.

Similarly, as shown in Fig.6.2(b), one can obtain the columnθ h
nk+ j where GH represents the

cells receiving votes as:

ρh
nk+ j

1
= ρ̂h

p−
(ρ̂h

p−ρ1
k+1)(θ̂

h
p−θ h

nk+ j)

θ̂ h
p−θk+1

, (6.16)

and

ρh
nk+ j

2
= ρ̂h

p−
(ρ̂h

p−ρ2
k+1)(θ̂

h
p−θ h

nk+ j)

θ̂ h
p−θk+1

, (6.17)

Whereθk+1,ρ1
k+1,ρ

2
k+1 are known from the low resolution HT data,θ h

nk+ j is obtained from

Eq. (6.5) andρ̂h
p andθ̂ h

p are obtained from Eqs. (6.11) and (6.8) respectively.
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6.1.1.2 Determining the Cells Receiving Votes When the Peak is Not Included between

the θ h
nk and θ h

n(k+1) Columns

From Eq. (6.1) one finds that theθ value of thei-th column betweennk-th andn(k+1)-th

columns is
θ h

nk+i = θ h
nk+ i∆θ h

= θ h
nk+ i

n∆θ ,
(6.18)

wherei = 1, . . . ,n−1. If a rectangle is used to intersect the area of the wings between the

columnsθ h
nk andθ h

n(k+1), points A, B, C, and D can be obtained, as shown in Fig.6.3(a).

Since∆θ is small, AD and BC lying on the sine curves can be regarded as straight edges.

It is possible to zoom into this area as shown in Fig.6.3(b). The valuesρ1
k , ρ2

k , ρ1
k+1, ρ2

k+1

shown in Fig.6.3(b)are known in the low resolution HT data, butρh
nk+i

1
andρh

nk+i
2

in the

high resolution HT are unknown. From Fig.6.3(b),the following is observed:

BI
CI′

=
FI
FI ′

(6.19)

therefore
ρ1

k −ρh
nk+i

1

ρh
nk+i

1−ρ1
k+1

=
i∆θ h

(n− i)∆θ h (6.20)

From Eq. (6.20) the following is obtained

ρh
nk+i

1
=

(n− i)ρ1
k + iρ1

k+1

n
. (6.21)

Similarly, since
AJ
DJ′

=
EJ
EJ′

, (6.22)

the results in
ρ2

k −ρh
nk+i

2

ρh
nk+i

2−ρ2
k+1

=
i∆θ h

(n− i)∆θ h . (6.23)

From Eq. (6.23) the following is obtained

ρh
nk+i

2
=

(n− i)ρ2
k + iρ2

k+1

n
. (6.24)

From Eqs. (6.21) and (6.24)show that in theθ h
nk+i column of the high resolution HT, the cells

between(θ h
nk+i ,ρ

h
nk+i

1) and(θ h
nk+i ,ρ

h
nk+i

2) obtained votes. After the cells that received votes
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FIGURE 6.3: Extendθ resolution of HT butterfly (wings)
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are obtained, the number of votes obtained by each cell is discussed.

6.1.1.3 Determining the Number of Votes Received by Each Cell inHT(∆ρ, ∆θ
n )
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FIGURE 6.4: The length of intersection in the image space determines the density in the HT
space

In the low resolution HT,∆ρ is assumed to be sufficiently large (larger than the width of the

candidate straight lines). It is clear that if the bar corresponding to the low resolution HT

peak(θk,ρ) contains the straight line in the image space then the cell(θ h
nk,ρ) should also

contain the same straight line since the bars corresponding to them are identical. In this case,

the peak obtains votes from all the straight line feature points, and its neighboring cells in

the same column receive no votes from the straight line. Therefore the height of the low and

high resolution HT peaks are also the height of the “true” peak. If the bar(θk,ρ) does not

contain the complete straight line, that is it shares the votes with its parallel neighbouring
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bars(θk,ρ + p∆ρ), wherep =±1,±2, · · · . The height of the “true” peak should be the sum

of the votes received by the peak cell and its parallel neighbours, that is the cells in the same

column close to the peak. This “true” peak height is considered the height of the peak in the

high resolution HT space in the proposed method.

For the columns not containing the peak, as shown in Fig.6.4, the straight line segment

S0 lies on the straight lineL0(ρ0,θ0), and two bars belonging to columnsθ h
nk and θ h

nk+i

(0 < i < n−1) intersect withS0 respectively. The acute angles between them andL0 areϕ
andϕ ′ respectively. The length of their intersection withS0 are denoted as∆l and∆l ′. ∆l

and∆l ′ , and they determine the number of votes obtained by these two cells. It is clear that

∆l =
∆ρ

sinϕ
, (6.25)

∆l ′ =
∆ρ

sinϕ ′
, (6.26)

ϕ = θ h
nk−θ0, (6.27)

ϕ ′ = θ h
nk+i−θ0. (6.28)

By substituting Eq. (6.18) into Eq. (6.28), the following is obtained

ϕ ′ = θ h
nk+ i∆θ h−θ0

= θ h
nk−θ0 + i∆θ h

(6.29)

Considering both Eq. (6.27) and Eq. (6.29),

ϕ ′ = ϕ + i∆θ h (6.30)

From Eqs. (6.25), (6.26) and (6.30), the following is obtained

∆l
∆l ′ = sinϕ ′

sinϕ

= sin(ϕ+i∆θh)
sinϕ

= sinϕ cos(i∆θh)+cosϕ sin(i∆θh)
sinϕ

= cos(i∆θ h)+sin(i∆θ h)/ tanϕ.

(6.31)
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Sincei∆θ h < ∆θ is very small, we obtaincos(i∆θ h) ≈ 1 andsin(i∆θ h) ≈ i∆θ h. Therefore

from Eq. (6.31) the following is obtained

∆l
∆l ′

≈ 1+ i∆θ h/ tanϕ, (6.32)

where∆θ h is constant, andϕ is constant fori = 1, · · · ,n−1 (that is the columns betweenθ h
nk

andθ h
nk+n). From Eq. (6.32) it is seen that∆l

∆l ′ is a simple linear function ofi.

Considering the nature of digital images, all straight lines are represented by piece-wise

connected horizontal or vertical short segments. The number of pixels comprising a straight

line equals its projection on theX (when|θ0|> 45◦) orY (when|θ0| ≤ 45◦) axis. Therefore,

for the cells in theθ h
nk column whose corresponding bars intersect with the segment, the

following is seen:

V(ρ,θ h
nk) =

{
∆l cosθ0, |θ0|> 45◦

∆l sinθ0, |θ0| ≤ 45◦
, (6.33)

In this equation,V(ρ,θ h
nk) denotes the number of votes received by the cell(θ ,ρ), whereρ

is an appropriate value making the bar corresponding to this cell intersect with the segment.

In theory, the votes received by each cell in the same column are identical, with the exception

of the cells at the two ends, this depends on whether the cell can receive votes, since its bar

intersects with the segment by the same length, that is,∆l .

The following denotes the cells in theθ h
nk+i column that receive votes:

V(ρ,θ h
nk+i) =

{
∆l ′ cosθ0, |θ0|> 45◦

∆l ′ sinθ0, |θ0| ≤ 45◦,
(6.34)

resulting in
V(ρ,θh

nk)
V(ρ,θh

nk+i)
= ∆l

∆l ′

≈ 1+ i∆θ h/ tanϕ.
(6.35)

Since theθ h
nk column is copied from theθk column in the low resolution HT data,

V(ρ,θ h
nk) = V(ρ,θk) (6.36)

and therefore,

V(ρ,θ h
nk+i)≈

V(ρ,θk)
1+ i∆θ h/ tanϕ

(6.37)
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can be calculated. It should be noted that due to rounding errors, the cells in the column of

a butterfly do not usually receive exactly the same number of votes. Therefore, the value of

V(ρ,θk) in Eq. (6.37) is obtained by averaging the number of votes received by the cells in

the columnθk of the low resolution HT butterfly.

6.1.2 Extending theρ-resolution: HT(∆ρ, ∆θ
n ) =⇒ HT(∆ρ

m , ∆θ
n )

Section6.1.1, described the method to obtain a highθ -resolution HT. In this section, the

θ -resolution is kept constant at∆θ
n , and increase theρ-resolution is increased.
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FIGURE 6.5: Extending the HT resolution inρ direction

Assume theρ-resolution to be increasedm times the lowρ-resolution, wherem is a positive

integer. This means a cell in HT(∆ρ, ∆θ
n ) is split intom cells in theρ-direction, as shown in

Fig. 6.5.

∆θ h =
∆θ
n

, (6.38)
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∆ρh =
∆ρ
m

, (6.39)

and

ρl = −
√

M2 +N2 + l∆ρ
= −

√
M2 +N2 +ml∆ρh

= ρh
ml.

(6.40)

��

��

�θ�
ρ

�

�

�

ρ∆

� ρ∆

�
�

ρ∆

�

�
ρ

�

��
θ

{
��δ

�

�
ρ

FIGURE 6.6: Determine the votes in ends cases

In Fig. 6.5, the bar corresponding to the cell (θ h
nk,ρl ) in HT(∆ρ, ∆θ

n ) is split into m bars

corresponding tomcells in HT(∆ρ
m , ∆θ

n ). ∆l is the length of the intersection of the segment(S0)

and a bar of HT(∆ρ, ∆θ
n ), and∆l ′ is the length of the intersection of the segment and a bar of

HT(∆ρ
m , ∆θ

n ).

∆l ′ =
∆l
m

. (6.41)

Considering the simple, directly proportional relationship between the length of the intersec-

tion and the number of votes received by the cell as shown in Eq. (6.33), each high resolution

cell receives1
m votes of the low resolution cell, with the exception of the cells intersecting
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with the segment at one of its endpoints. That is,

V(ρh
ml+i ,θ

h
nk+i) =

1
m

V(ρl ,θ h
nk+i). (6.42)

Fig. 6.6 illustrates the first and the last bars. Using the first bar (θ h
nk,ρ

1
k ) as an example,

assume the length of the segment included in this bar isδ l .

V(ρ1
k ,θ h

nk)
V(ρ,θ h

nk)
=

δ l
∆l

=
m′∆ρh

m∆ρh , (6.43)

therefore,

m′ = m
V(ρ1

k ,θ h
nk)

V(ρ,θ h
nk)

(6.44)

whereρ is an appropriate value causing the corresponding bar to intersect with the segment

in the middle, in order for it to obtain an intersection of∆l length.

Therefore, the first cell in theθ h
nk column of HT(∆ρ

m , ∆θ
n ) receiving votes are obtained as

ρh
nk

1
= ρ1

k +m′∆ρh. (6.45)

Similarly, one can find the first cell in the column receiving votes as well. The number of

votes obtained by each of these cells is equal to the votes in the middle of the segment, as

shown in Eq. (6.42).

6.2 Summary and Discussion of the Proposed Method

6.2.1 Steps to Implement the Proposed Method:

1. Apply low resolution HT on the image to obtain HT(∆ρ,∆θ ).

2. Detect the peaks in HT(∆ρ,∆θ ) and for each peak:

(a) Take out the windowHw(∆ρ,∆θ) with the scopes:θp−w∆θ ≤ θ ≤ θp+w∆θ ,ρp−
h∆ρ ≤ ρ ≤ ρp +h∆ρ;
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(b) Extend theθ -resolution of the windowHw(∆ρ,∆θ) to getHw(∆ρ, ∆θ)
n using the

following steps:

i. Copy columns{p+ i} of Hw(∆ρ,∆θ) to the columns{p+ i×n} of Hw(∆ρ, ∆θ)
n

wherei = −w,−w+ 1, · · · ,0, · · · ,w−1,w and p indicates the column con-

taining the peak;

ii. For each column between the columnsp+ i×nandp+(i+1)×nof Hw(∆ρ, ∆θ)
n

wherei ≥ 1 or i <−1, do:

A. Determine the cells obtain votes in the column according to Eqs. (6.21)

and (6.24);

B. Determine the votes got by each of these cells according to Eq. (6.37).

iii. For each columns between the columnsp−n andp+n of Hw(∆ρ, ∆θ)
n ,

A. Determine the cells obtaining votes in the column according to Eqs.

(6.16) and (6.17);

B. Determine the votes received by each of these cells according to Eq.

(6.37).

iv. Build the peak ofHw(∆ρ, ∆θ)
n :

A. Calculate the position of the high resolution peak according to Eqs. (6.8)

and (6.11);

B. Assign the number of votes to the new peak by summing the votes re-

ceived by the “old” peak inHw(∆ρ,∆θ) and itsρ-direction neighboring

cells.

(c) Extend theρ-resolution ofHw(∆ρ, ∆θ)
n ) to obtainHw(∆ρ

m , ∆θ)
n ):

i. For the columnp of Hw(∆ρ
m , ∆θ)

n ), keep the peak(θ̂ h
p, ρ̂h

p) but insert 0’s to the

remaining cells of the column;

ii. For the columnp+ i of Hw(∆ρ, ∆θ)
n ) wherei = p−nw, p−nw+1, · · · , p−

1, p+1, p+nw,

A. Split each cell(θ h
i ,ρk) in the column ofHw(∆ρ, ∆θ)

n ) except the first and

the last non-zero voted cells intomcells ofHw(∆ρ
m , ∆θ)

n ) with the number

of votes equal to the1mV(ρk,θ h
i );

B. For the first and the last none-zero voted cells in this column, split the

cell into m cells ofHw(∆ρ
m , ∆θ)

n ) and determine the cells receiving votes,

according to Eq. (6.44) Assign the votes to these cells as per the middle

cells.
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6.2.2 Running Time and Memory Storage

To compare the computational complexity of the proposed method and the Standard HT, the

following symbol definitions are used:

H: the height of image;

W: the width of image;

R:
√

H2 +W2;

h: the height of butterfly area considered;

w: the width of butterfly area considered;

C: the number of feature points;

D: the number of straight lines;

n: the extension factor inθ direction;

m: the extension factor inρ direction;

∆θ0: low resolution inθ direction;

∆θ : high resolution inθ direction (∆θ0 = n∆θ );

∆ρ0: low resolution inρ direction;

∆ρ: high resolution inρ direction (∆ρ0 = m∆ρ);

N0: d180◦
∆θ0

e;
N: d180◦

∆θ e;
M0: d 2R

∆ρ0
e;

M: d 2R
∆ρ e.

Therefore,

N = nN0, (6.46)

and

M = mM0. (6.47)

The operations intensively used in the SHT and the proposed Resolution Extended HT

(REHT) are listed in Table6.1. Table6.2 lists the number of operations requested by the

proposed REHT and the SHT.

When the resolutions are increased, the running time and memory requirements are related to

the resolution extension factors,n,m. To demonstrate this comparison, an example is given

with the following parameters:
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TABLE 6.1: The operations intensively used in the SHT and the proposed Resolution Ex-
tended HT (REHT)

Op SHT REHT
Additions(A) Used in Eq. (1.2) and updating the

number of votes obtained by a cell
in HT

Used in Eqs. (6.10, 6.13,
6.15, 6.17, 6.18, 6.19,
6.23, 6.26, 6.39)

Products(P) Used in Eq. (1.2) Used in Eqs. (6.10, 6.13,
6.15, 6.17, 6.18, 6.19,
6.23, 6.26, 6.39)

Look Up Table
access(L)

Used in Eq. (6.1) to access the val-
ues of sinθk and cosθk stored in
look up tables

Used in Eqs. (6.1, 6.39) to
access the values ofsinθk,
cosθk and tanϕ stored in
look up tables

The HT space
memory
access(PA)

Used during updating the number of
votes obtained by a cell in HT

Used during updating the
number of votes obtained
by a cell in HT

Divisions(D) n/a Used in Eqs. (6.10, 6.13,
6.15, 6.17, 6.18, 6.19,
6.23, 6.26, 6.39)

TABLE 6.2: The number of operations requested by the SHT and the proposed Resolution
Extended HT (REHT)

Op SHT REHT
A CN CN

n +D(4n(4+w)−w−7)
P 2CN 2CN

n +D(nw(h+4)−hw−4n−2)
L 2CN 2CN

n +Dw
PA CN CN

n +D(mnhw)
D 0 D((2w−2)n−2− hw

2 +mnhw)

TABLE 6.3: Memory storage requested by the SHT and the proposed method
Storage/Methods SHT REHT

Integer MN (MN
mn +Dhw)

Single 2N 2N
n +Dw
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H = 100 pixels;W = 100 pixels;R = 141 pixels;h = 10 cells;w = 10 cells;C = 1000;D =

10; ∆θ0 = 1◦; ∆ρ0 = 1 pixel;M0 = 180;N0 = 283.

The running time (clock cycles) and memory storage (32bit units) are shown in Fig.6.7(a)

and Fig. 6.7(b). It is clear that the proposed REHT runs faster and needs less memory

than the SHT. The running time and memory requirements of the proposed method increase

with the increase ofn andm. However, the requirements related to SHT escalate greatly,

especially memory storage, which increases exponentially.

It should be noted that the running time of the SHT is only related to theθ resolution, that

is, the number of columns of HT data that should be built. Theρ resolution does not affect

the running time, as demonstrated with Eq. (1.2). This denotes that for each feature point in

the image space, only one cell in each column of the HT space obtains the vote. The position

of the voted cell depends on theρ value obtained from Eq. (1.2), and the vote is assigned to

the nearest cell. Consequently the number of cells in a column does not affect the running

time at all. Therefore, the running time is directly proportional to theθ resolution, but the

memory storage is proportional to the cell number in the HT space.

6.3 Experiments

6.3.1 The Peak Becomes More Distinct

This experiment demonstrates the distinct peak generated by the proposed method. The

same resolutions, that is,∆θ = 0.4◦ and∆ρ = 0.4 pixel, are applied in both the SHT and

the REHT methods. Fig.6.8(a)shows a line in an image used as input to the SHT and the

proposed REHT. Fig.6.8(b)is the butterfly generated by the SHT and Fig.6.8(c)is butterfly

generated by the REHT. It is very clear that the peak generated by the proposed method is

far more distinct than the peak of the SHT. Fig.6.8(d)and Fig.6.8(e)display the HT space

array around the peaks, which enhances the comparison.



Part II. Chapter 6. Generating High Resolution HT Butterflies 72

2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 107

m,n

C
lo

ck
 c

irc
le

s

 

 

SHT
REHT

(a) Running time

2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 106

m,n

M
em

or
y 

st
or

ag
e 

(x
32

bi
t)

 

 

SHT
REHT

(b) Memory

FIGURE 6.7: Computing complexity trends corresponding to the increase of resolution
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(a) The segment
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(b) SHT butterfly(∆ρ=0.4
∆θ=0.4 )
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(c) REHT butterfly(∆ρ=0.4
∆θ=0.4 )
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(d) SHT peak(∆ρ=0.4
∆θ=0.4 )
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FIGURE 6.8: The peak is improved by the proposed method

6.3.2 Comparison of the “Ideal” HT Butterfly

To evaluate the HT butterfly generated by the proposed method, a theoretical HT butterfly is

calculated. To calculate the theoretical HT butterfly, the endpoints (denoted as(x1,y1) and

(x2,y2)) of a segment are assumed known. The exact normal parameters (that is,θp andρp)

are obtained, and the height of the peak is assigned to the length of the segment.

For each cell in the parameter space, the density is the length of the intersection between the

segment and the image space bar corresponding to the cell.
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It is clear that a butterfly is superior if it is close to the theoretical butterfly. Therefore,

the correlation with the theoretical butterfly is used as the criterion to evaluate a butterfly.

The correlation of butterflies under different resolutions are depicted in Fig.6.9, where the

butterflies generated by the proposed method have very high correlation coefficients with

the theoretical butterfly. This demonstrates that the proposed method generates high quality

butterflies. It should be noted that the quality of SHT butterflies decreases quickly with the

increase in resolution.
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FIGURE 6.9: Comparison of the correlation with the theoretical butterfly

6.3.3 Straight Line Positioning Accuracy (the Accuracy of the Gener-

ated Peak)

6.3.3.1 Example of Synthetic Images

In this experiment, many straight lines are randomly generated (with randomρ andθ ) to

verify the detection accuracy of the proposed method. Fig.6.10(a)shows the random lines.
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(a) Randomly generated lines
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FIGURE 6.10:Detection accuracy comparison



Part II. Chapter 6. Generating High Resolution HT Butterflies 76

2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

m = n

D
et

ec
tio

n 
er

ro
r o

f θ

 

 

SHT
REHT

(a) The detection error ofθ

2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

m = n

D
et

ec
tio

n 
er

ro
r o

f ρ

 

 
SHT
REHT

(b) The detection error ofρ

FIGURE 6.11:The effect of resolutions on SHT and REHT detection accuracy
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The SHT (∆θ = 1◦ and ∆ρ = 1 pixel), the SHT with higher resolutions (∆θ = 0.1◦ and

∆ρ = 0.1 pixel), the method proposed in [11], the Randomised HT [22], and the proposed

REHT are employed to compare the performances. The detection accuracy comparison is

demonstrated in Fig.6.10(b)and Fig. 6.10(c)where it is shown that the proposed method

has a higher detection accuracy than all other compared methods. It should be noted that the

straight lines are sorted by theirθ values in Fig.6.10(b)and Fig.6.10(c).

To study the effects of resolutions (∆θ and∆ρ) on detection accuracy, the trend of detection

errors according to the increase ofmandn, is demonstrated in Fig.6.11(a)and Fig.6.11(b).

The detection errors in Fig.6.11(a)and Fig.6.11(b)are the average values of the detection

errors of all the randomly generated straight lines, as shown in Fig.6.10(a). Clearly, there is

a decrease in detection errors in the proposed method. However, for the SHT, the detection

errors might increase with an increase in resolutions, due to the problems of peak splitting

and flattening.

6.3.3.2 Example of Real Images

In this experiment, several real images Fig.6.12are employed using different straight line

detection methods. The SHT of feasible resolutions (denoted as LSHT) and infeasible high

resolutions (denoted as HSHT), the multi-scale filtering method [11] ( denoted as Magli),

Randomised HT [22] (denoted as RHT), and the proposed method (denoted as REHT) are

employed to compare detection performance. All the images in Fig.6.12and their edges

shown in Fig. 6.13 come from the World Wide Web (http://marathon.csee.usf.edu/edge/

edgedetection.html). These edge images are reported as being the best when employing

Rothwell’s edge detecting method [60]. Because the “true”θ andρ values are unknown for

real images, the feature points belonging to a straight line are manually identified to estimate

theθ andρ values by the least square (LS) fitting method. These estimations are considered

as the “true” values. The detection errors of the strongest straight lines in these images are

demonstrated in Table6.4, where the smallest errors are shown in bold font. Table6.4,

demonstrates that, in most cases (5 of 8) the proposed REHT achieves the best detection

accuracy among all the methods. In the cases that indicate the REHT is not better than other

methods(3 out of 8), the detection accuracy of the proposed method is still acceptable.
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(a) Briefcase (b) Stairs

(c) Banana (d) Brush

FIGURE 6.12: Images contain straight line edge objects

TABLE 6.4: Comparison of detection errors
Methods LSHT HSHT Magli RHT REHT

Briefcase
eθ 0.15 0.25 0.15 0.083 0.007
eρ 1.81 2.18 2.63 1.37 0.83

Stairs
eθ 0.03 0.93 0.03 0.05 0.17
eρ 0.69 6.1 0.94 0.24 0.18

Banana
eθ 0.08 0.08 0.08 0.02 0.04
eρ 0.09 0.02 1.37 1.5 0.5

Brush
eθ 0.3 0.1 0.3 0.2 0.04
eρ 2.25 0.83 2.96 2.13 0.75
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(a) Briefcase (b) Stairs

(c) Banana (d) Brush

FIGURE 6.13:Edge images of Fig.6.12



CHAPTER 7

SUPERRESOLUTION HT

7.1 Super Resolution HT (SRHT)

Super resolution (SR) image reconstruction algorithms for improving resolution, using mul-

tiple low resolution (LR) images, have received much attention recently. The major merit of

these resolution enhancement methods is that they save on expensive hardware costs by ex-

tracting SR from a collection of low resolution images. Pixel registration and high resolution

image reconstruction are common in SR technology. Many SR techniques were reported,

such as the nonuniform interpolation approach, [61], the frequency domain approach [62],

projection onto convex sets [63] and iterative back-projection [64] etc.

Most SR algorithms are designed for digital optical images. Using SR techniques to improve

the resolution of the HT is valuable because of the difficulties in obtaining very high resolu-

tion HT solutions. However, it is also challenging because the HT data is not just an optical

image. In fact, there are differences existing in almost all the steps of SR reconstruction. The

generation of multiple low resolution frames, cell (pixel) registration, and the conversion

between high and low resolution frames should be re-considered.

In this research, a framework is proposed for applying super resolution techniques to im-

prove the resolution of HT. According to the differences between normal images and HT

data frames, the research covers all aspects of reconstructing a super resolution HT frame.

Some important theoretical questions are addressed, such as how the images shifts affect the

80
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HT peaks, how many shifts (the number of low resolution frames) are needed for high reso-

lution reconstruction, the differences between shifting synthetic images and real images and,

computation complexity.

It is shown that new information can be generated when applying the SHT to shifted images.

The cell registration method is based on the theoretical analysis of the relationship between

the HT data of the original and the shifted input images. A conversion between high and low

resolution frames is proposed, based on the geometric relationship between these frames.

A super resolution reconstruction method is proposed, based on iterated back-projection, to

obtain a high resolution HT from low resolution HT data sequences, in order to overcome

HT resolution and precision problems.

This is a novel idea. The method for the production of high resolution (HR) HT data from

a sequence of low resolution (LR) HT data by applying super resolution techniques is un-

precedented. The proposal in this research is the first of its kind.

7.1.1 Availability of Low Resolution Containing New Information

SR is based on the assumption that new information exists in LR frames. Because of the

information lost due to the rounding operation in optical imaging sensors, sub-pixel biasing

results in different pixel values for the same scene in different frames. The frames are ob-

served by several cameras or by one camera in different positions. Thus, new information is

generated.

For this work, only one image is employed. Therefore, the method to generate multiple HT

frames from this single image is presented. Section2.3.3shows that if the input image is

shifted, then it’s HT data might generate new information that cannot be obtained from the

original HT data. This enables the traditional low resolution HTs to generate“new” infor-

mation for super resolution reconstruction. A vertical shift is taken as an example. The

following demonstrates what occurs in the HT space after the image is shifted.

For feature point(x,y):

ρ = xcosθ +ysinθ . (7.1)
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After shifting vertically by∆y (without loss of generality assume a positive∆y means shifting

upper):

ρ ′ = x′ cosθ ′+y′ sinθ ′ (7.2)

where

x′ = x

y′ = y−∆y

θ ′ = θ
(7.3)

that is,

ρ ′ = xcosθ +(y−∆y)sinθ
= xcosθ +ysinθ −∆ysinθ
= ρ−∆ysinθ .

(7.4)

This means, that shifting the input image, theρ value in the column corresponding toθ in

the HT space will change by∆ysinθ . Since each column in the HT space has a different

θ value, the shifts in the HT space are column-wise. If∆ysinθ is not exactly equal ton∆ρ
(n is an integer) then new splitting ratios for the vote of point(x,y) around cell(θ ,ρ) are

generated. That is, a new vote distribution around cell(θ ,ρ) is generated after the votes of

all the feature points are considered. Similar results can be obtained by shifting the given

image horizontally, or both vertically and horizontally. Obviously, it is impossible for the

∆ysinθ to be exactly equal ton∆ρ for all the columns. This implies that the HT data of a

shifted input image always includes new information. Multiple HT data frames containing

new information can therefore be obtained by applying low resolution HT to the shifted input

image.

7.1.2 The Number of Frames Needed for SR Reconstruction

In Section2.3.3, Figs. 2.8and2.9depicted a very interesting feature of the HT peak height

when the images are shifted horizontally and vertically. A pseudo-period pattern appears

in the peak height curves. The peak heights repeat the similar sequence in each period,

therefore, the HT frames in one period are logically considered to represent approximately

the “complete” information set to be used in the high resolution HT data reconstruction.
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The reason for this period feature is discussed. The height of the peak directly relates to the
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FIGURE 7.1: Horizontally move a straight line

votes distribution of the feature points lying on the straight line (L). As depicted in Fig.7.1,

the belt (denoted byLn and middle lineL0) corresponding to the peak contains most of these

feature points. The bias between theρ value of the straight line and theρHT representing

the peak cell, that is, the relative position of the straight line in the belt, determines the vote

contribution of these feature points.

After shifting the image horizontally by∆x, the position of these feature points will realise

the same change. Therefore, theθ of the straight line does not change, but theρ value

displays the following increment (or decrement, depending on the position of the straight

line in the image)

δρ = ∆xcosθ . (7.5)

If

δρ 6= τ∆ρ (7.6)

whereτ is an integer, then the bias betweenρ andρHT will change with the shift. This leads

to the rearrangement of the votes of these feature points. Therefore, the votes obtained in a

cell change when the image is shifted.
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After each shift, the change of this bias is

ε = δρ− τ∆ρ. (7.7)

Therefore, the period is

K =
[

∆ρ
|ε|

]
, (7.8)

which is also the number of frames needed in the reconstruction.

Similarly, if the image is shifted vertically by∆y:

δρ = ∆ysinθ . (7.9)

It should be noted that during the shifting process the∆x is selected to be an integral number

of pixels. This will retain the shape of the straight line in the image space, that is, no extra

rounding errors occur.

7.1.3 Cell Registration

Cell registration, that is, aligning low resolution frames to the reference frame, is an impor-

tant step in super resolution techniques. From Section2.3.3and Section7.1, the application

of the HT to a shifted input image can generate “new” information. Therefore, the original

input image can be shifted to obtain a sequence of input images, followed by applying the

HT to generate multiple HT frames from these images. Each cell in these HT frames will be

registered to the reference frame (the HT data of the original image). The reference frame

and registered frames are the LR HT frames used to reconstruct the HR HT frame.

In the digital optical images of the same scene, most pixels form groups and retain strong

neighbour relationships ( a stable relative position in a group) among frames, and hence,

the difference between frames are block based. Many macro blocks find their correspond-

ing blocks in other frames, and therefore, motion estimation based methods, such as block

matching, are effective for pixel registration.

However, in the HT space the difference between frames are column-wise, as shown in Eq.

(7.4), which means conjoint pixels (cells in HT) in neighbouring columns will no longer be
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conjoint in the HT frame of a shifted image, that is, neighbouring relations are lost. The

bias depends on both image shift and the position of the cell in the HT space and therefore,

techniques such as block matching cannot be employed in this situation.

The method to register cells of multiple HT data frames to the reference frame, that is, cal-

culate the bias of each cell corresponding to the reference frame, is discussed. As shown in

Eq. (7.4), the HT frame is biased column-wise after vertically shifting the given image. For

the column corresponding toθ , the bias is−∆ysinθ . Therefore, for a cell(θ ′,ρ ′) in the ver-

tically shifted HT frame, its corresponding cell in the reference frame is(θ ′,ρ ′+∆ysinθ ′).

Similarly, as shown in Eq. (7.4), after horizontally shifting the given image by∆x (without

loss of generality assume a positive∆x means shifting left):

ρ ′ = x′ cosθ ′+y′ sinθ ′ (7.10)

where

x′ = x−∆x

y′ = y

θ ′ = θ
(7.11)

that is,

ρ ′ = (x−∆x)cosθ +ysinθ
= xcosθ +ysinθ −∆xcosθ
= ρ−∆xcosθ .

(7.12)

Consequently, for a cell(θ ′,ρ ′) in the HT data of horizontally shifted HT frame, its corre-

sponding cell in the reference frame is(θ ′,ρ ′+∆xcosθ ′).

If ∆ysinθ and∆xcosθ are not exactly equal ton∆ρ, it follows that the shifts imply new

information.

The peak position in the LR frame was generated by low resolution HT and hence, is not

accurate. To increase the accuracy, the average of the low resolution peak coordinate of

the shifted images are considered the peak position in the HR frame after registration in the

reference frames.
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7.1.4 Conversions between HR and LR HT Frames

When constructing super resolution HT data frames, the conversions between high and low

resolution frames also need to be considered. For digital optical images, isotropic operators

are used to preserve the intensity of pixels, such as up-sampling and down-sampling factors

and “blur” and “sharpen” filters.

In HT, the intensity is the votes obtained by a cell, when theρ−resolution is increased the

intensity decreases. In fact the integral of each column is presumed to be a constant, that is,

N

∑
j=1

H(i, j) = C (7.13)

whereN is the height of the HT space andC is the number of total feature points in the

image space. Each column is interpolated and up-sampled to obtain a higherρ−resolution

than scaled, in order to preserve the integral. To increase theθ−resolution, columns are

inserted between two low resolution columns with the intensity generated by interpolation.

To decrease the resolution the reverse operations are used, that is, interpolating and down-

sampling the HR frame, but preserving the integral of each column.

7.1.5 HR Reconstruction Based on Iterated Back-Projection

After registration, a back-projection algorithm [64] is employed to reconstruct high-resolution

HT data by using the following steps:

1. Shift the original image inx or y directions, then employ SHT on the images to obtain the

observed low LR HT frames{gk,k = 2, ...,K}.
2. Register the LR HT frames according to Eq. (7.12) or Eq. (7.4).

3. The HR HT frame converted from the LR HT data of the original image is considered an

initial guessf (0) of the high resolution HT frame.

4. By interpolation and down-sampling, a low resolution HT frameg(n)
1 is generated from

the current high resolution HT framef (n).

5. Apply the shifting process shown in Eq. (7.4) and Eq. (7.12) to g(n)
1 to generate a set of

low resolution HT frames{g(n)
k ,k = 2, ...,K} corresponding to the shifts made on the given

image.
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6. If f (n) is correct then{g(n)
k ,k= 1, ...,K} should be identical to the observed LR HT frames

{gk,k= 1, ...,K}. The error matrix{(gk−g(n)
k ),k= 1, ...,K} is used to improvef (n) by using

the “back-project” operation, that is extend the low resolution HT error matrix to the size of

f (n) by interpolation followed by the application of image sharpening to the extended error

matrix. Weighted error matrix are then added tof (n) to obtain f (n+1).

7. Repeat from Step 4 until reaching a predefined error or a given number of iterations.

The error function is

e(n) =
| f (n)− f (n−1)|

| f (n)| (7.14)

The formulation for the iterative back-projection is

f (n+1) = f (n) +λExt

(
ΣK

k=1(gk−g(n)
k )

)
, (7.15)

where

f (n): the high-resolution solution ofn-th iteration.

λ : the step size.

gk: thek-th observed low-resolution HT data.

g(n)
k : the low-resolution HT frames obtained fromf (n) by simulating the optical imaging and

HT shifting processes.

K: the number of observed low-resolution frames.

Ext{}: the process of extending the size ofΣK
k=1(gk−g(n)

k ) to the size off (n) by interpolation

and then up-sampling but preserve the integral of each column.

Using this method cannot ensure the solution only contains non-negative cells, However, that

the number of votes received by any cell in the HT space should be non-negative. Therefore

Eq. (7.15) is modified as

f (n+1) = P+( f (n) +λExt(ΣK
k=1(gk−g(n)

k ))), (7.16)
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where

P+[ f (x)] =

{
0, if f (x) < 0

f (x), if f (x) >= 0
. (7.17)

This non-negative constraint ensures the solution of each iteration only contains non-negative

cells.

7.2 Discussion

7.2.1 A Way to Reduce Computation Load

In the straight line detection algorithms using Hough butterflies, only the central part of the

butterfly is used. Therefore, when the proposed method is used in these algorithms, only

the central part needs to be rebuilt. The HT for shifted images can be limited within the

requested scope in the parameter space.

To determine the requested scope in the parameter space, one needs to determine the centre

of the scope, that is, the position of the new peak. In fact, the position of the peak of the

shifted straight line is predictable, according to Eq.(7.5).

This predefined scope and predictable peak position greatly reduce the computation load of

performing HT in shifted images.

7.2.2 Horizonal and Vertical Lines

When the straight line is horizonal or vertical and∆ρ is an integral number of pixels, the

inequality in Eq. (7.6) does not hold. Theε in Eq. (7.7) will be 0. Therefore, in the

frames needed for SR reconstruction, (that is, theK in Eq. (7.8)) is infinity, which means the

proposed method cannot rebuild the super resolution HT data. In fact, under this situation,

no new information is included in the shifted images.
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7.3 Experiments and Results

To validate the iterative back-projection reconstruction algorithm for improving HT resolu-

tion, experiments using synthetic images and real images are carried out. In the experiments,

both HT data and straight line detection errors are considered.

7.3.1 HT Data Generated by the Proposed Method

The first experiment aims to demonstrate the HT data obtained by the proposed method. A

synthetic straight line is generated in this experiment.

(a) A synthetic straight line
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(b) Ideal high resolution HT data
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(c) HT data obtained by standard HT with high resolution
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(d) High resolution HT data obtained by the proposed method

FIGURE 7.2: Performance comparison for a synthetic straight line

A randomly generated straight line is shown in Fig.7.2(a). The image is horizontally shifted

by ∆x = 1pixel each time. The HT resolutions are∆ρ = 1 and∆θ = 1◦ respectively. The
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expected resolutions are∆ρ = 0.1 and∆θ = 0.1◦ respectively. Fig.7.2 demonstrates the

performance comparison of the Standard HT and the proposed method. As the template for

the comparison, Fig.7.2(b)shows the “ideal” HT data generated using the known end points

[65]. Fig. 7.2(c) demonstrates the HT data obtained by Standard HT with the expected

high resolutions, and Fig.7.2(d) shows the HT data from the proposed method with the

same resolutions. Fig.7.2(b)and Fig.7.2(d)indicate that the proposed method obtained the

HT data very similar to the ideal one. However, the one from Standard HT (Fig.7.2(c))

experience many problems, as discussed in Section2.2.2.

7.3.2 Straight Line Detection Errors

In this experiment, a series of synthetic straight lines are randomly generated (bothθ andρ
are known), and the detection errors are compared between low resolution SHT and high res-

olution SHT. Some other methods (variable filter HT, VFHT [66], Magli [11], Randomised

HT and RHT [22]) are considered for comparison.

Fig. 7.3depicts the detection errors ofθ andρ. In most cases,The proposed method outper-

forms other methods.

7.3.3 Comparison for a Real Image

As a real image, an arrow mark on the road is used. Its edges are numbered, as shown in Fig.

7.4. To estimate the detection errors, the endpoints are manually measured to calculate the

“true” values ofθ andρ. To remove the background disturbances, the windowing method

proposed in [50] is employed before detecting the straight lines.

Table 7.1 demonstrates the detection errors of the different methods. For each edge, the

minimum detection errors are highlighted in bold font. It is shown that the proposed method

detected the straight lines with the minimum of errors in most cases.
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FIGURE 7.3: Detection error comparison for randomly generated straight lines
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Edge 2
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Edge 3

Edge4
Edge 5

FIGURE 7.4: The edges of the arrow mark to be detected

TABLE 7.1: Comparison of detection error
Methods LSHT HSHT VFHT Magli RHT SRHT

Edge 1
|eθ | 0.13 0.82 0.92 0.083 0.15 0.26
|eρ | 0.43 0.23 0.23 1.31 0.077 0.057

Edge 2
|eθ | 0.29 0.99 0.11 0.012 0.076 0.006
|eρ | 0.31 1.22 0.4 1.02 0.34 0.25

Edge 3
|eθ | 0.13 0.57 0.47 0.034 0.22 0.0045
|eρ | 0.68 2.19 1.89 0.43 0.94 0.1

Edge 4
|eθ | 0.23 0.56 0.46 0.04 0.53 0.038
|eρ | 0.54 1.66 0.96 1.59 1.35 0.0076

Edge 5
|eθ | 0.82 0.35 0.15 0.65 0.27 0.0084
|eρ | 2.29 1.09 0.48 2.62 0.8 0.39



CHAPTER 8

L INE POSITIONING BASED ON HT ERROR

COMPENSATION

8.1 Theρ Value Detection Error of HT

As shown in Fig. 8.1, the segmentS0 belongs to the straight lineL0(ρ0,θ0) in the image

space. HT attempts to involve the feature points ofS0 in a belt (surrounded byln andln+1 as

shown Fig.8.1). This is corresponds to the cell (n∆ρ,θ0) in the HT space. All straight line

segments lying in this belt are considered to have the sameρ value.

The logic ofρ value discretisation in HT is as below. If

n∆ρ−0.5∆ρ ≤ ρ0 < n∆ρ +0.5∆ρ, (8.1)

then the detected value is

ρHT
0 = n∆ρ, (8.2)

that is, theρ value of the centre line of the belt.

Obviously, for a straight line lying in the belt, theρ value is not equal ton∆ρ. For example,

regardingS0 in Fig. 8.1, a detection error is generated: that is,

eρ0 = ρ0−n∆ρ. (8.3)

93
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FIGURE 8.1: The generation ofρ value detection error in HT

Because this error is omitted during the voting process, it is unknown if theρ value ofS0 can

be detected by seeking the peak position in the HT space. Only the detectedρ value, that is,

ρHT
0 can be obtained.

8.2 Shifting the Image Can Generate New Detection Errors

As shown in Fig.8.1, segmentS0 is shifted horizontally by∆x, that is moved toS1. Assuming

the shifted segment, that is,S1, lies in the beltn+k (k is an integer, for examplek = 1 in the

case of Fig.8.1), it is evident

ρ1 = ρ0 +∆xcosθ0, (8.4)



Part II. Chapter 8. Line Positioning Based on HT Error Compensation 95

and

eρ1 = ρ1− (n+k)∆ρ, (8.5)

where

k =
⌊

∆xcosθ0

∆ρ

⌋
, (8.6)

“b c” is the floor function.

Substitute Eq. (8.4) into Eq. (8.5),

eρ1 = ρ0 +∆xcosθ0− (n+k)∆ρ
= ρ0−n∆ρ +∆xcosθ0−k∆ρ

(8.7)

Substitute Eq. (8.3) into Eq. (8.7), one gets

eρ1 = eρ0 +∆xcosθ0−k∆ρ. (8.8)

Obviously, if

∆xcosθ0 6= k∆ρ, (8.9)

then

eρ1 6= eρ0 (8.10)

that is, a new detection error is generated.

It should be noted that the shifted segment lies in the beltn+k which means

|∆xcosθ0−k∆ρ|< ∆ρ. (8.11)

8.3 Measuring the Detection Error via the Sequence of De-

tectedρ Values of the Shifted Images

The analysis in Section8.2demonstrates that the detection error of the shifted line is related

to the detection error of the original line. If the original line is shifted in the same direction

several times, for example, horizontal shifts of 1, 2, 3· · · , pixels, that is,∆x = 1,2,3, · · · , a

sequence of detection errors will be generated. Denote the sequence byeρ0,eρ1,eρ2,eρ3, · · · .



Part II. Chapter 8. Line Positioning Based on HT Error Compensation 96

Similar to Eq. (8.8):

eρ1 = eρ0 +cosθ0−k∆ρ
eρ2 = eρ1 +cosθ0−k∆ρ

= eρ0 +2(cosθ0−k∆ρ)

eρ3 = eρ2 +cosθ0−k∆ρ
= eρ0 +3(cosθ0−k∆ρ)

· · ·

(8.12)

Obviously, if

∆xcosθ0−k∆ρ > 0, (8.13)

then the sequence is an increasing arithmetical series, which means there exists ani making

eρi < 0.5∆ρ (8.14)

and

eρi+1 ≥ 0.5∆ρ, (8.15)

that is,

eρ0 + i(cosθ0−k∆ρ) < 0.5∆ρ (8.16)

and

eρ0 +(i +1)(cosθ0−k∆ρ)≥ 0.5∆ρ. (8.17)

From Eq. (8.16) and Eq. (8.17), the following is obtained,

0.5∆ρ− (i +1)(cosθ0−k∆ρ)≤ eρ0 < 0.5∆ρ− i(cosθ0−k∆ρ). (8.18)

It is clear that the middle value of this interval,

êρ0 = 0.5∆ρ− (i +0.5)(cosθ0−k∆ρ), (8.19)

can be used as the estimation ofeρ0 with the estimation precision(cosθ0−k∆ρ).

Similar results are obtained if

∆xcosθ0−k∆ρ < 0, (8.20)

but the sequence is a decreasing arithmetical series.
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Similarly, if the image is shifted vertically the following is obtained,

êρ0 = 0.5∆ρ− (i +0.5)(sinθ0−k∆ρ), (8.21)

Eq. (8.14) and Eq. (8.15) demonstrate thateρi+1 is the first item in the error series that crosses

the bound of a belt. Thereforei can be denoted as acritical crossing point.

8.4 High Precisionρ Value Detection based on Error Com-

pensation

From the analysis in the above sections, it is seen that the value detection error of a line can

be measured if the critical crossing point is known.

In the case of horizontal shifting of the original segment by∆x, the shifted segment lies in

beltn+k, Therefore, the detectedρ1 value is

ρHT
1 = (n+k)∆ρ, (8.22)

and

eρ1 < 0.5∆ρ, (8.23)

Similarly,

ρHT
2 = (n+2k)∆ρ.

ρHT
3 = (n+3k)∆ρ.

· · ·
ρHT

i = (n+ ik)∆ρ,

(8.24)

and

eρ2,eρ3, · · · ,eρi < 0.5∆ρ. (8.25)

From Eq. (8.15) the following is derived:

ρHT
(i+1) = (n+(i +1)k+1)∆ρ. (8.26)
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In seeking the HT peak position of the original and shifted images the following sequence is

obtained:

H = {n,n+k, · · · ,n+ ik,n+(i +1)k+1,n+(i +2)k+1, · · ·} (8.27)

That is, the sub-series from item 0 to itemi is an arithmetical series. Another arithmetical

series is seen from itemi +1. The difference series of Eq. (8.27) is

DH = {H( j +1)−H( j), j = 1,2, · · ·}
= {k, · · · ,k︸ ︷︷ ︸

i

,k+1,k, · · ·}. (8.28)

Therefore, the critical crossing pointi can be obtained by detecting the mutation in the dif-

ference seriesDH of the peak position series shown in Eq. (8.27). Consequently, the com-

pensated error measurement ofρ0 is

ρ̂0 = ρHT
0 + êρ0

= n∆ρ +0.5∆ρ− (i +0.5)(sinθ0−k∆ρ),
(8.29)

wheren is the position of the HT peak in theρ direction which can be obtained by seeking

the peak in the HT space.∆ρ is theρ-resolution of the HT,θ0 is obtained by seeking the

HT peak,i is the critical crossing point obtained by detecting the mutation in the difference

seriesDH as shown in Eq. (8.28), andk is obtained by Eq. (8.6).

8.5 Experiments

Fig. 8.2 illustrates a segment and its detected position. It is clear that the proposed method

detects the line position much closer to the true position than the SHT.

If the image in Fig. 8.2 is shifted, a series of shifted images are obtained, and each one

contains a segment with a different position. Fig.8.3 illustrates the detected position of

the segment in each image. The detection accuracy of the proposed method is substantially

superior than the SHT. Fig.8.4shows the positioning error of these segments where the error

of the proposed method is considerably smaller than that of SHT.
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CHAPTER 9

AN ASSESSMENTTOOL FORHTS –

“I DEAL” HT

The HT does not directly detect segments. It maps them to the parameter space and generates

HT data. The peaks in HT data represent the normal parameters of the straight lines contain-

ing the segments. The HT is robust when used for straight line detection, that is, only for

the detection of and, because it converts the straight line detecting problem to a peak seek-

ing problem. However, when it is employed to detect the complete parameters of segments,

such as (θ ,ρ), width, length, end points and even collinearity and continuity, the robust-

ness is seriously affected. To detect the complete segment parameters, a variety of HT-based

methods are presented [8, 47, 50, 51, 53, 67]. Among them, the butterfly-based methods

have received much attention. [47, 51, 53]Butterfly-based segment detection is based on the

fact that HT is closely related to Radon Transform [68]. Therefore, detailed information

about image structure, including comprehensive information about line segments, exists in

the Hough space. However, these details are represented not only by the peak but also by

other HT cells around the peak, that is, the butterfly. Thus, the quality of the HT butterfly

directly affects the performance of segment detection. Unfortunately, the approach for as-

sessing HT butterfly quality is an ongoing problem. Furthermore, besides the Standard HT

(SHT), many HT varieties are proposed such as, Probabilistic HT (PHT), [26], Randomised

HT (RHT) [22] and Fast HT(FHT) [18]. The butterflies generated by these HT varieties are

different from one another, which leads to the dependency of effective evaluations based on

the butterfly. This however, also yields further difficulties.

101
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SHT cannot be used either as a segment measuring tool or as a standard to evaluate other

HT methods. The comparison of the HTs’ performance via the number/accuracy of detected

objects is not satisfactory because of the lack of comparison between the intermediate data

used (usually the HT data). Therefore, the procedure for assessing the performance of various

HT methods is an ongoing problem. This section addresses the calculation of the “ideal”

HT data as the standard to assess the HT data used in the various HT methods, in order to

obtain a better comparison. Since the image space (x,y) and the HT space (ρ,θ ) are discrete,

quantisation and rounding errors affect the accuracy and performance of the HT.

This chapter addresses the “ideal” HT data calculation, which is independent of the HT meth-

ods, digital discretisation errors in the image space, and parameter errors due to the voting

and verifying processes. The generated HT data is dependent only on the basic physical

facts, that is, the endpoints of the segment. The “ideal” HT data is employed to evaluate the

data generated by the HT varieties. Given a specific segment detection method, the “ideal”

HT data may also be used to evaluate the performance improvement potential by assessing

the HT data used.

9.1 Expectations of the “Ideal” HT Data

The “ideal” HT data should have the following features:

• HT data free from image space errors;

• HT data free from parameter space errors;

• The peak represents the length of the segment;

• HT data free from the effects of resolution settings;

• HT data measures the complete parameters of segments.

Considering these expectations and the fact that the “ideal” HT data is available, when the

parameters of the segment are known, the calculation should depend only on the physical

fact, that is, the endpoints(x1,y1) and(x2,y2). Therefore, the peak can be determined as:

θp = arctan
y2−y1

x2−x1
, (9.1)



Part II. Chapter 9. An Assessment Tool for HTs – “Ideal” HT 103

ρp = x1cosθp +y1sinθp, (9.2)

and the height of the peak should be equal to the length of the segment, that is,

Hp =
√

(y2−y1)2 +(x2−x1)2. (9.3)

9.2 Calculation of the “Ideal” HT Data

To avoid rounding and quantification errors, the density of each cell is considered as the

length of the intersection of its corresponding bar and segment. The principle of calculating

ideal HT data is shown in Fig.9.1, whereθ0 = θp.
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FIGURE 9.1: The principle of ideal HT data

A cell, (θ1,ρ1) corresponding to the bar(θ1,ρ1) in the image space, is used as an example.

The width of the bar is theρ resolution (∆ρ), and the angle between the bar and the segment

is φ . Therefore, the length of their intersection when they fully intersect is:

∆l =
∆ρ

sinφ
, (9.4)

where

φ = |θ0−θ1|. (9.5)
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All bars that are parallel with bar(θ1,ρ1) and fully intersect with the segment obtain the

same length intersection, that is,∆l . The bars that partially intersect with the segment at its

ends, denoted as(θ1,ρe1) and(θ1,ρe2) obtain shorter intersections:

∆le1 =
ρ1

θ1
−ρe1

sinφ
(9.6)

∆le2 =
ρe2−ρ2

θ1

sinφ
(9.7)

where

ρ1
θ1

= x1cosθ1 +y1sinθ1 (9.8)

ρ2
θ1

= x2cosθ1 +y2sinθ1 (9.9)

are the theoretical distances from the origin to the straight lines containing the endpoints and

having the angle equal toθ1.

The following steps summarise the calculation of the “ideal” HT data.

• Input the segment endpoints (x1,y1) and (x2,y2), and the ranges inθ andρ directions

of the parameter space where the HT data is to be calculated;

• Determine the peak in “ideal” HT data:

– According to Eqs. (9.1) and (9.2) calculateθp andρp, that is, the peak position;

– Calculate the length of the segment using Eq. (9.3), that is, the height of the peak.

• Refine the given range according to the peak position;

In SHT, the parameter space is scattered with a set of cells ranging over{-90◦,
−90◦+∆θ , . . . , +90◦; −ρmax, −ρmax+∆ρ, . . . , +ρmax}, whereρmax is the maximum

distance from the origin to a feature point in the image space. It is not reasonable to

assume the existence of a cell in the parameter space that exactly represent the ideal

peak. Therefore, that the nearest cell to the ideal peak is moved,in order to represent

the ideal peak exactly and all the other cells are moved accordingly.

• Usingθ1 in Fig. 9.1as an example, for each column around the peak, that is, for each

θ value in the refined range,
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– Calculate the first and the last cells in the parameter space whose bar partially

intersects with the segment, according to Eqs. (9.8) and (9.9);

– Calculate the density of the first and the last cells according to Eqs. (9.6) and

(9.7);

– Calculate the density of the middle cells whose bar in the image space fully in-

tersects with the segment, according to Eq. (9.4).

9.3 Evaluate the HT Data Generated by Specific Algorithm

FIGURE 9.2: The segment used to evaluate SHT

In this section, an image containing a segment of 80 pixel lengths Fig.9.2 is used, and the

coordinates of the endpoints are known. As an example the performance of SHT is evaluated

using the “ideal” HT data generated by the proposed method. The butterflies generated by

SHT and the proposed method are shown in Figs.9.3(a)and9.3(b) respectively. It is not

difficult to detect out the differences between these two butterflies. Firstly, the peak height of

the SHT (about 60) is much smaller than in the “ideal” HT data (about 80). Secondly, the HT

data in each column (the HT data inρ direction whenθ value is specified) is undulating, but

the “ideal” HT data is very smooth. More quantitative comparisons are demonstrated below.
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9.3.1 The Peak Height vs. the Segment Length

It would be ideal if the peak height in the HT data could represent the length of the segment.

However, in practice, as with other performances, the peak height usually relates to the HT

resolution. This will affect the detection errors, as discussed by Tu et al [69].

To demonstrate the peak height vs. the segment length, proceed as follows:

firstly fix the θ resolution (∆θ = 1◦) but change theρ-resolution from 2 to 0.1 by 0.1 pixel

each time (∆ρ = 2,1.9, ...,0.1 pixels). The peak heights detected by both SHT and the pro-

posed method are depicted in Fig.9.4(a). A strong decreasing trend is shown in the curve of

the SHT. This is because under highρ-resolution (very small∆ρ) the width of the bar corre-

sponding to each cell is very small. Consequently, many votes are missed due to the feature

point position biases and the rounding errors during the voting process. The peak heights in

the “ideal” HT data keep the same value because they are exactly equal to the length of the

segment, which is not affected by the HT resolutions.

Secondly, fix theρ resolution (∆ρ = 1) but change theθ resolution from 2 to 0.1 by 0.1

each time (∆θ = 2◦,1.9◦, ...,0.1◦). The peak height generated by the SHT shows a trend

of approximating a maximum value (that is, the number of pixels composing the segment).

However, the peak heights is never equal to the length of the segment unless the segment is

vertical or horizonal.

9.3.2 The Quality of the Generated Butterfly

For the butterfly-based methods, the performance is strongly dependent on the quality of the

HT butterfly. This experiment focuses on the quality of the butterflies generated by SHT. The

correlation coefficient (defined as Eq. (9.10)) between the ideal HT data and the data of SHT

is used to measure the quality.

The correlation coefficient betweenA andB, whereA andB are matrices or vectors of the

same size, is defined as follows:

r(A,B) = ∑m∑n(Amn− Ā)× (Bmn− B̄)√(
∑m∑n(Amn− Ā)2

)× (∑m∑n(Bmn− B̄)2)
, (9.10)
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whereĀ andB̄ are the average value of matrixA andB respectively.

Fig. 9.5depicts the correlation coefficients when the resolutions change. Clearly, increasing

theρ resolution (decrease∆ρ) might lead to a poor quality of HT data. However, increasing

theθ resolution (decrease∆θ ) shows a trend of increasing the quality.

9.3.3 Effect of Segment Parameters

This section addresses the effect of segment parameters (that is,θ , ρ and length) on the

performance demonstrated in Sections9.3.1and9.3.2.

9.3.3.1 Effect of the Segment Angle (θ )

To show the effect ofθ , the segment depicted in Fig.9.2 is rotated around the origin. The

θ value is changed, but theρ value and the length are held. The experiments designed in

Sections9.3.1and9.3.2were repeated to obtain the results depicted in Fig.9.6.

From the results in Fig.9.6, it can be seen that theθ value does not have a considerable

effect on the peak height of the butterfly and its quality.

9.3.3.2 Effect of the Distance from the Origin to the Segment (ρ)

To check the effect ofρ, the segment depicted in Fig.9.2 is moved horizontally so theρ
value was changed but theθ value and the length were held. The results are shown in Fig.

9.7.

From the results in Fig.9.7, it can be seen also noticed that the value ofρ does not have a

considerable effect on the peak height of the butterfly and its quality.

9.3.3.3 Effect of Segment Length

To demonstrate this, hold bothθ and ρ but change the segment length, that is, hold one

endpoint but move the other along the segment. The result is shown in Fig.9.8. Figs.9.8(b)

and9.8(a)do not show a considerable effect. However, Figs.9.8(c)and9.8(d)demonstrate
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that the peak height for the shorter segment is closer to the ideal value. This is because it

is easier for the bar corresponding to the peak cell to contain a larger percentage of pixels

composing the segment. On the contrary, a longer segment has more chance of having a part

lying outside the narrow bar corresponding to the peak cell.

Naturally, the shorter segments have more chance of being affected by noise and other ob-

jects.

9.3.4 Evaluation of the SHT

From Sections9.3.1and9.3.2the following conclusions regarding the SHT are depicted:

• The HT data generated by the SHT is greatly affected by the resolution.

• The HT data generated by the SHT under the best resolution is still far from the “ideal”

HT data.

• Higher ρ resolution (i.e smaller∆ρ) tends to affect the HT data quality negatively.

However, higherθ resolution (smaller∆θ ) tends to give positive effects.

9.4 Weakness of the Proposed “Ideal” HT

The proposed “ideal” HT was designed to evaluate complete HT butterflies, that is, all feature

points are considered when generating the HT data. However, such complete butterflies are

not available for generating HT data for HT varieties that consider a subset of feature points

only, such as the Randomised HT, [22] where feature point pairs are randomly selected. In

this case, the generated butterfly is incomplete.

9.5 Conclusion

This chapter proposed a method for calculating the “ideal” HT data of segments. This HT

data is not affected by the errors from the image space position biases or the parameter space

rounding errors. It only depends on the basic physical factors (the endpoints of the segment).
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The “ideal” HT data can be used to evaluate the performance of various HTs. The SHT is

evaluated as an example.

If an appropriate range in the parameter space is given, the generated butterfly has the po-

tential to be used to detect segments because it can be considered a model of a segment.

Furthermore, the proposed method is hopefully used to optimise the resolutions of specific

HT varieties to obtain the ”best” performance. This will be the focus of future work.
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FIGURE 9.3: Comparison of butterflies under the same resolutions (∆θ = 1◦,∆ρ = 1pixel)
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FIGURE 9.4: Peak height as the measurement of segment length
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FIGURE 9.5: The quality of butterflies
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FIGURE 9.6: The effect of segmentθ value
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FIGURE 9.7: The effect of segmentρ value
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CHAPTER 10

CONCLUSION

This thesis addressed the efforts for improving the performance of HT. Due to the fact that

HT is based on simple and clearly defined geometric principles, it is possible to improve its

performance by making use of this property. Various methods were proposed, from different

aspects.

Firstly, the question of what is a “good” resolution setting for HT was discussed. Relevant

definitions were produced, which are valuable to evaluate existing HTs. The relationship be-

tween the detection errors and resolution settings of the SHT when it is employed in straight

line detection was addressed. The “best” resolution of SHT was defined. To demonstrate

the existence of the “best” resolution, the error-resolution curves were studied and the inflex-

ions existing on the curves were uncovered. It is shown that the inflexions are related to the

parameters of the straight lines to be detected. An interesting area on the resolution plane

that contains “good” resolution settings was uncovered. This can be considered a guide for

choosing the resolutions for SHT.

The self-similarity in HT butterflies was discovered, and based on this property, a simple

method was proposed to obtain a very high resolution HT without the limitations associated

with peak splitting and vote spreading. The distinct butterfly is preserved when the resolution

increases.

A mathematical method for constructing high resolution HT butterflies from low resolution

HT data was proposed by analysing the relationship between the HT data of different resolu-

tions. Compared to the existing HT related methods, the proposed method has at least three

advantages: (i) a high resolution HT is obtained mathematically from a low resolution HT
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data, which significantly decreases computational cost; (ii) only the essential parts (butterfly

areas) around the peaks are rebuilt, hence, the storage requirement is greatly reduced; (iii)

arbitrary resolution settings of the HT are achievable, that is, the proposed method can find

any high resolution HT while circumventing the limitations associated with a range of HTs.

The∆ρ and∆θ can be sufficiently small without seriously affecting the performance of the

HT. This means the proposed method can find solutions approximating the Continuous HT

(CHT).

A super resolution reconstruction approach, based on an iterative back-projection algorithm,

was proposed to enhance HT resolutions. Based on the differences between optical im-

ages and HT data, a method of generating multiple low resolution HT frames was proposed.

The standard low resolution HT was applied on vertically and horizontally shifted images

to obtain multiple low resolution HT frames. A theoretical analysis showed that these low

resolution frames contain new information, which ensures the possibility of reconstructing

high resolution HT data via the super resolution (SR) method. The pseudo-periodic prop-

erty when shifting the image was discovered. The period was calculated to determine the

number of low resolution frames needed to reconstruct the super resolution HT data. The

cell registration method was also derived, according to the column-wise biasing nature of

the HT data of the shifted images. According to the difference between normal images and

HT frames, specific conversions between high and low resolution HT frames were discussed.

The experiments demonstrated the effectiveness of the proposed approach.

The research formulated a high precision line positioning method based on HT detection er-

ror compensation. The HT discretisation error was analysed. By vertically or horizontally

shifting the given image by a known distance, a detection error series composed of the detec-

tion error s of each shifted image was obtained. Theoretical analysis showed that a critical

crossing point exists in this series, and this was used to compensate for the HT detection

error s. Experiments showed the proposed method has high positioning precision.



CHAPTER 11

FUTURE WORK

The research presented in this thesis shows the importance and the possibility of making use

of the geometric principles of HT when improving the HT performance. In future, efforts

will be aimed at uncovering more useful properties of HT data, which can be applied to the

requirements of higher performance HT and its specific applications. The research demon-

strates that simple geometric transform in the image space could lead to significant changes

in the parameter space. This discovery reveals significant potential for improving HT perfor-

mance and solving HT problems by introducing the geometric transforms to the image space

before the HTs are employed. In-depth studies on further geometric transforms in the image

space and their effects on the parameter space comprise future work.

The value of the HT butterfly in straight line detection is demonstrated in literatures. Proce-

dures for highlighting the butterflies in HT data is another important aspect of the work to be

done. Transforms applied on HT data for this purpose will receive more emphasis.

The methods proposed in this thesis are based on determined 2D signals (images), where

a pixel exclusively belongs to objects or the background without considering the random

nature of the signal. With this nature, a pixel belongs to objects or the background with

probabilities. So the votes that a feature point contributed to a HT cell could be a probability

instead of the constant “1”, which should be considered in the future work.

Another important point was not concerned in HTs is the orientation of object edges. A

feature point should bear this orientation when votes HT cells, which means the cells repre-

senting the orientation could get more weights than others. This point to be considered.

Industry application of the proposed method is another important content for future work.
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