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For my family.

Curiously enough, the only thing that went through the mind of the bowl of petunias as it
fell was Oh no, not again.

Many people have speculated that if we knew exactly why the bowl of petunias had thought
that we would know a lot more about the nature of the Universe than we do now.

— Douglas Adams





A B S T R A C T

Ce travail est consacré à la caractérisation d’un nouveau type de contacteur gaz-liquide-solide.
L’approche innovante consiste en l’utilisation d’un écoulement segmenté type “slurry Taylor”
pour le transport des particules catalytiques et la conduite des réactions triphasique gaz-
liquide-solide dans un tube de section circulaire. Les courants de circulation interne présents
dans les segments est utilisé pour maintenir le catalyseur en suspension. Ainsi, le catalyseur
sous sa forme pulvérulente conventionnelle peut être facilement changé de manière continue,
sans démontage du réacteur.

Dans un premier temps l’étude est focalisée sur la caractérisation de l’hydro dynamique et
donc le placement et le comportement des particules solides dans la phase liquide en fonc-
tion de différentes conditions opératoire telles que: l’orientation de l’écoulement (horizontal
où vertical descendant), la vitesse totale de l’écoule ment (2 cm s−1 à 42 cm s−1) et la charge
en solide (2.5 g l−1 à 50 g l−1). En écoulement horizontal une vitesse totale importante est es-
sentielles pour assurer une mise en suspension homogène sur la hauteur du canal. Pour des
vitesses lentes (2.3 cm s−1 à 5 cm s−1), les particules se trouvent essentiellement dans la partie
basse du segment de liquide et une vitesse minimale critique est nécessaire pour mettre les
particules en suspension de façon homogène dans le liquide. Le comportement observé est
différent pour l’écoulement vertical descendant: les particules peuplent le segment de liquide
de façon homogène dès les très faibles vitesses et même pour des taux de solide important
(50 g /L).

Dans un second temps, le transfert de matière liquide-solide (L-S) a été étudié par la
réaction de neutralisation d’une solution basique avec une résine échangeuse d’ions acide.
L’influence de la vitesse totale de l’écoulement (1 cm s−1 à 28 cm s−1), la longueur du segment
de liquide (1 mm è 3,5 mm), la nature de la phase liquide (densité et viscosité) et l’orientation
de l’écoulement (horizontale et verticale descendant) ont été étudiés. Le coefficient de trans-
fert de matière L-S et donc le nombre de Sherwood sont principalement impactés par la
vitesse totale de l’écoulement: en augmentant la vitesse (1 cm s−1 à 18 cm s−1) le nombre de
Sherwood augmente de 6 à 16. Pour des vitesses plus importantes le nombre de Sherwood
reste constant. Une influence de l’orientation de l’écoulement n’a pas été observée. Une pre-
mière corrélation pour le nombre de Sherwood est proposée et la déviation moyenne de 8 %
indique la bonne représentation des résultats.

Cet écoulement qui possède les propriétés de l’écoulement segmenté de Taylor (aire inter-
faciale élevée, bon transfert G-L, faible dispersion axiale, faible perte de charge), semble donc
prometteur pour de nouveaux réacteurs triphasiques avec catalyseur en suspension.
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For instance, on the planet Earth, man had always assumed that he was more intelligent than
dolphins because he had achieved so much - the wheel, New York, wars and so on whilst all the

dolphins had ever done was muck about in the water having a good time.
But conversely, the dolphins had always believed that they were far more intelligent than man - for

precisely the same reasons.
Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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I N T R O D U C T I O N





1
I N T R O D U C T I O N

1.1 suspension catalysts and reactors

Three phase gas-liquid-solid (g-l-s) reactions [24, 111, 126] play an important role in the chem-
ical industry. Heterogeneous catalysed hydrogenations, oxidations, hydrodenitrogenations
and hydrodesulfurizations for example are fundamental reaction classes commonly used in
petrochemistry or for the production of pharmaceuticals and fine chemistry [91]. Not to for-
get the broad applications in environmental chemistry for cleaning processes of effluents or
in biochemistry (fermentation). Three phase reactors [24, 103, 111, 126] are rather complex
dynamic systems were chemistry is strongly coupled with many physical phenomena such
as gas, liquid and solid phase contacting and mass and heat transfer. For the placement of the
solid phase the use of suspension catalysts is often the only option:

• a few catalysts exist only in form of a powder, for example Raney Nickel.

• for economic operation of fast deactivating catalysts, easy and on-line replacement and
regeneration and/or continuous introduction of fresh catalysts is required, avoiding
thus the shut down of the process unit.

• fine powders provide enhanced internal mass transfer and in contrast to eggshell cata-
lysts the whole particle volume is accessible which enables efficient use of solid volume.
Concentration gradients in the particle, promoting potential undesired side products,
are avoided.

• suspension catalysts ensure efficient heat removal. The build-up of hot spots in suspen-
sion phase reactors is effectively avoided which makes them the ideal choice for highly
exothermic reactions.

Three-phase g-l-s contactors with suspension catalysts typically employed in chemical in-
dustry are in general:

• bubble columns: the gas phase is introduced at the bottom of the vessel and suspends
the solid particles, the liquid flow rate is zero or very low and can be in co- or counter-
current flow to the gas phase.

• stirred tank reactors: particle suspension is assured by means of mechanic agitation.
The stirred tank can be operated in batch, semi-batch and also continuous mode.

• fluidized or ebullated beds: the liquid phase is injected at the bottom of the column and
assures effective suspension of the solid particles. The gas phase is in general operated
in co-current flow, but counter-current operation also exists and is a common technique
to avoid entrainment of low density particles.

When it comes to choice and design of the reactor technology, typical criteria are for exam-
ple mass (gas-liquid, liquid-liquid) and heat transfer, degree of mixing and ease of operation
and scale-up. Table 1.1 gives an overview of relevant properties for suspension reactors. Bub-
ble columns (BC), fluidized beds (FB) and stirred tanks (STR) appear to have rather similar
properties with only slight differences. They all offer:

3



4 introduction

Table 1.1: Typical properties of g-l-s three-phase suspension reactors.

bubble column fluidized bed stirred tank

d̄P [mm] 0.01-0.2 0.5-5 0.02-0.2

εS [m2
S/m3

R] 0.02-0.2 0.2-0.6 0.005-0.1

aS [m2
LS/m3

R] 500-150000 200-7000 100-15000

kS [m/s] 10−5- 5 · 10−4 10−5- 5 · 10−4 10−5- 5 · 10−4

kLa [s−1] 0.01-2 0.01-2 0.005-0.8

hint [kW/m2K] 1000-6000 1000-6000 500-5000

Backmixing

liquid phase complete complete complete

gas phase plug flow plug flow complete

solid phase complete, axial
profile more or

less uniform

complete, axial
profile more or

less uniform

complete

catalyst attrition + ++ +++

• good mass transfer and heat exchange capacities (STR more advantageous due to me-
chanical agitation [103]) with simple temperature control

• low power requirements due to overall low pressure drops (higher in STR because of
mechanical agitation)

• high flexibility.

Potential problems are linked to the

• risk of catalyst attrition depending on solid properties (more distinct in STR)

• difficult separation of catalytic particles (easier in fluidized beds due to higher particle
diameter commonly used)

• difficult scale-up, large variety of correlations available for stirred tanks [98], for bubble
columns and fluidized beds correlations often only exist for small column diameters
(15cm) and physical phenomena are not well understood.

All suspension reactor technologies in common is the high degree of mixing for the liquid
and solid phase (and gas phase for STR). For applications which require the use of suspension
catalysts (deactivation, need for high internal mass transfer, ..) and where the reaction kinetics
demand plug flow behaviour, up to now no technology is able to answer both demands
simultaneously.

1.2 gas-liquid-solid “slurry taylor” flow - an alternative?

Taylor flow or segmented flow is a popular flow pattern often encountered in micro reaction
technology due to its interesting properties [72] namely:

• high surface to volume ratio

• nearly ideal plug flow conditions (Peclet numbers up to 1000)
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• circulation pattern in the liquid slug promoting, in combination with the reduced scale,
excellent mass and heat transfer in the liquid segments.

Gas-liquid or liquid-liquid slug flows were studied quite extensively [62, 72] and are ac-
cepted more and more as useful tools in continuous chemistry.

Joining beneficial properties of slug flow conditions and slurry reactors can be an inter-
esting approach to transport the solid phase and answer the demand for suspension reactors
with low backmixing. The internal circulations occurring in the liquid slugs of G/L segmented
flow [63, 72] or in the continuous and discontinuous phases of L/L segmented flow [36, 57, 65]
can be used to keep catalyst particles in motion and transport them in a stable three-phase
flow. In this contact mode, catalysts can be easily removed from the reactor, simple and avail-
able commercial catalysts can be employed and good transfer performances can be expected
due to the large interfacial areas available for both heat and mass transfer.

The transportation and usage of micrometric particles is a subject which has been addressed
in multi-phase micro reaction technology only recently. Due to the fear of clogging or bridging
of freely flowing particles [49] the placement of the catalytic solid phase is, when necessary,
usually resolved by immobilization either in form of a wall coating film or as a micro packed
bed. Coating the catalyst on the reactor wall asks for special procedures, unique for each
catalyst type, and renders the reactor system less flexible as the removal due to deactivation
or change in active phase is nearly impossible without damaging the reactor wall. Milli or
micro fixed beds represent an alternative and hold interesting performances in mass transfer
[59, 82, 84] but concerns might be the high linear pressure drop and complex hydrodynamics
encountered (wall channelling, local dewetting, wettability problems, etc.) [84].

The approach to immobilize the solid phase is limited to catalytic systems and is not appli-
cable when the product or the reactant itself is a solid. On the other hand the occurrence of
solid particles other than catalysts should not be neglected. A study by Roberge et al. [106]
identified that out of 86 reactions carried out at Lonza, 31% could benefit from micro reaction
technology but involve a solid phase (catalyst, reactant or product) and are thus considered
to be difficult to perform in a micro reactor. Nanoparticles are handled quite frequently in
micro reaction technology but the application of freely flowing solid particles from 10 μm up
to 200 μm has so far only been studied rudimentarily as concerns regarding clogging due to
bridging and/ or deposition [49] prevailed.

Table 1.2 gives an overview of published articles before 2011 (the beginning of this study)
which focused on the utilization of micrometric particles in millimetric tubes. The concept
of segmented flow with slurry contact mode was first mentioned in the literature in 2005/
2007 [33–35]. These first studies were oriented mainly to the demonstration of this new con-
tactor’s applicability and interesting performance. Diverse catalytic hydrogenation reactions
were performed in single and parallel vertical channels and the performance of different cat-
alysts was evaluated. The achieved conversions and selectivities in “slurry Taylor” flow were
compared to results in conventional reactors. However the reported hydrodynamic data were
scarce and the flow pattern was either not investigated [33, 34] or hydrodynamic evaluations
concentrated only on g-l flow [35] ignoring possible effects of solid particles. Also the homo-
geneity of the L-S suspension was not investigated.

In 2009, the Corning advanced flow reactor was tested in slurry mode and found to perform
the multiphase hydrogenation of a pharmaceutical molecule with productivity and selectivity
comparable to the classical batch process [13]. In this report, no details were provided con-
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cerning hydrodynamics.

Ufer et al. [128] were the first who not only focused on investigating the performance of
this new contact mode by studying an exemplary reaction, but focused on more fundamen-
tal questions: They examined qualitatively the dependency of solid placement in the liquid
slug as a function of materials and solid charges and performed a qualitative mass transfer
study by fluorescence showing the importance of recirculation loops. However their research
focused on L-L-S flow in a horizontal oriented single capillary.

These first promising results drew the interest of other research groups towards “slurry Tay-
lor” flow. The articles published after 2011 are listed in Table 1.3. A few more investigations
were addressed to hydrodynamic studies and gave first quantitative results on the placement
of solid particles under varying operating conditions [73, 95, 109]. Also a first study on L-S
mass transfer in horizontal L-L-S “slurry Taylor” flow was published by Scheiff et al. [110].
Numerical studies on liquid-liquid and gas-liquid “slurry flow” [17, 29, 58] are also prove for
the interest in this new contactor type.

Up to now, most of the studies focus on the transport of a liquid-solid suspension in an in-
ert liquid continuous phase. The main argument for the preference to place the solid particles
in the dispersed phase is the hindered danger of clogging as the particles are not in direct
contact with the reactor wall [95, 101] due to the discontinuous phase. Nevertheless, for gas-
liquid-solid applications the liquid phase is necessarily the continuous one and as established
before (see Section 1.1) especially for G-L-S catalytic suspension reactions this new contact
mode possibly represents an interesting new feature.

Therefore this study is dedicated to the investigation of gas-liquid-solid “slurry Taylor”
flow in horizontal and vertical millimetric pipes with circular cross section. Due to the nature
of this contact mode the parameters which can be studied are easily expandable (4 phases
involved, parameters linked to geometry and operating conditions). The choice was therefore
made to concentrate on two phase velocity, solid loading, fluid media and flow direction.
Hydrodynamics, in particular the placement and motion of solid particles in the liquid slugs,
were investigated, relevant forces analysed and a flow pattern map established. For potential
scale-up it is also necessary to estimate external mass transfer properties more in detail and
we concentrate on liquid-solid mass transfer. For high qualitative results several technical
challenges had to be overcome first, which are:

• avoiding settling of the particles during flow through the reactor

• designing an adequate and efficient suspension delivery unit

• avoiding pressure fluctuations in the reactor in order to control the flow homogeneity,
the behaviour of the gas phase and the global residence time in the reactor.
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1.3 outline of the thesis

Every chapter (with the exception of chapter one and six) of this thesis is written in form of
an article. Therefore some repetitions could not be avoided but in this way every chapter can
be read independently from one another.

Chapter 1 introduces the concept of “slurry Taylor” flow and details the potential interest
of this new contact mode.

The concept of this new contact mode will be described more in detail in chapter 2. Stable
and repeatable L-S suspension supply is essential for further investigations. Therefore the
design of the L-S suspension supplier will be presented in this chapter and validated with
non-reactive and reactive experiments with silica and alumina based catalysts. To demonstrate
the performance of this new contact mode the catalytic hydrogenation reaction of 3-methyl-
1-pentyn-3-ol is used: results in “slurry Taylor” mode will be confronted with the results
obtained in a conventional batch reactor and the possibility of on-line non-intrusive reaction
monitoring in G-L-S media is evaluated.

In chapter 3 the hydrodynamics of this innovative contact mode are studied. The focus is
on particle dynamics in the liquid slugs and the influence of different parameters for two
configurations (horizontal and vertical downflow) is studied.

In chapter 4 and chapter 5 the L-S mass transfer properties are investigated. The neutral-
isation of dilute caustic solution by a strong ion exchanger is used to estimate the L-S mass
transfer coefficients. The performance of particles transported in the continuous phase of G-L
flow is compared to results obtained for particles transported in the discontinuous phase of
L-L flow 1. In chapter 5 the influence of gravity on the L-S mass transfer is evaluated. The
influence of two phase velocity, solid charge and fluid media is presented for horizontal flow
and vertical down flow. The results obtained in this study are used to propound a first corre-
lation for Sherwood numbers in G-L “slurry Taylor” flow.

In chapter 6 the results obtained in this study are summarized and challenges for future
research are briefly depicted.

1 This chapter is a collaboration work between the technical university Dortmund, Germany and the laboratory
for catalytic processes, LGPC-CPE, Lyon, France. The L-L “slurry Taylor” flow experiments were carried out at
the Laboratory for Chemical Reaction Engineering and belong to the doctoral research study of Frederik Scheiff.
Contact: Prof. David W. Agar� david.agar@bci.tu-dortmund.de.
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1.4 symbols and abbreviations

Symbols

aS m2
LS/m3

R l-s surface area per reactor volume

d̄P m mean particle diameter

dT m tubing diameter

εS m3
S/m3

R solid hold up

hint W/m2K heat transfer coefficient

kLa s−1 G/L mass transfer coefficient

T ◦C temperature

p bar pressure

wS g l−1 solid charge

Abbreviations

exp experiment

sim simulation

G gas phase

L liquid phase

p parallel channels

P particle

R reactor

s single channel

S solid phase
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This chapter has been published as A.-K. Liedtke, F. Bornette, R. Philippe, C. de Bellefon, Gas-liquid-
solid “slurry Taylor” flow: Experimental evaluation through the catalytic hydrogenation of 3-methyl-
1-pentyn-3-ol, Chem. Eng. J. 227 (2013) 174-181.

The aim of this chapter is to present the concept of the gas-liquid-solid “slurry Taylor”
reactor and to evaluate its performance performing the fast catalytic hydrogenation of 3-
methyl-1-pentyn-3-ol on a palladium catalyst supported on silica. Therefore the results of the
“slurry Taylor” flow are compared to a classical lab-scale semi-batch reactor. Also the system
to continuously feed the homogeneous liquid-solid suspension without flow fluctuation is
described and first results for the validation of a stable and controlled gas-liquid-solid “slurry
Taylor” flow delivery are given. Furthermore the suitability of this G-L-S contactor for data
acquisition tasks as an attractive and non-intrusive technique to monitor the reaction progress
by image analysis is highlighted.
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2.1 introduction

In multiphase micro-reaction technology, when an heterogeneous catalyst is needed, the most
common way to introduce it in the reactor is by a coating procedure on the reactor walls
[66, 87]. This is well suited for fast reactions and for good wall heat transfer but specific
coating procedures need to be developed for each catalyst type in order to provide a good
adherence whilst maintaining catalyst activity. Moreover, the obtained reactor system is not
flexible because the catalyst removal in case of deactivation or change in active phase appears
very difficult, even impossible without damage to the reactor walls. An alternative approach
being developed is the use of small packed beds. These micro-fixed beds are more flexible
concerning the catalyst replacement and present interesting performances in mass transfer
[82] but with a high linear pressure drop due to the small particles involved. Another concern
is the complex (and still not understood) hydrodynamics in the case of two-phase flow at
this scale (wettability problems, wall channelling, local dewetting, etc.) [84]. These constraints
seriously reduce the simplicity and the applicability of such contactors.
A new approach consists in joining beneficial properties of micro-or milli-channels under Tay-
lor flow conditions and slurry reactors. The internal circulations occurring in the liquid slugs
of a G/L segmented flow [63, 72] can be used to keep catalyst particles in motion and trans-
port them in a stable three-phase flow. In this contact mode, catalysts can be easily removed
from the reactor, simple and available commercial catalysts can be employed and good trans-
fer performances can be expected due to the large interfacial areas available for heat and mass
transfer. Additionally, the G-L mass transport may be enhanced by the vortices in the slugs
[63]. Several G-L-S microreactor concepts different from the wallcoated Taylor flow have been
already reported for screening and kinetics investigations [1, 25] but they all involve a coated
catalyst. This“new” G-L-S contact mode may be a very promising way to provide a flexible
and efficient tool for these purposes by allowing the use of simple and available catalysts.
As far as data acquisition is concerned, an additional benefit of this new contacting principle
is its usability for non-intrusive online data acquisition by visualization. Indeed, visualising
the reaction progress by monitoring the gas bubble shrinkage has been successfully applied
for gas-liquid-reactions or mass transfer studies [44, 74, 121] but not yet for gas-liquid-solid
reactions.
The concept of a three phase slurry micro-reactor was first mentioned in the literature in 2005
[33, 34]. Sedimentation of the solid and plugging problems were reported thus lowering the
robustness of the set-up. Also, no peculiar attention was given to the stability of the flow and
to the homogeneity of the L-S suspension which are key to the correct control of the set-up.
In 2007, a Chart Heat-Exchange reactor with a single vertical channel was reported for the
slurry hydrogenation of resorcinol with a variety of solid catalysts demonstrating increased
reaction rates and the applicability of the concept [35]. However, the reported hydrodynamics
data were scarce and mainly dealing with gas-liquid MRI visualization. Furthermore, only
cocurrent down flow mode was investigated.
In 2009, the Corning advance flow reactor was tested and found to perform the multiphase
hydrogenation of a pharmaceutical molecule in slurry mode with an improved productivity
and a selectivity comparable to the classical batch process [13]. In this report, no details were
provided concerning the hydrodynamics.
Recently, the use of liquid-liquid-solid flow for catalysis was reported [128]. The dependency
of solid placement in the liquid slug as a function of materials and solid charges was exam-
ined and a mass transfer study by fluorescence was undertaken showing the importance of
recirculation loops. These first promising and preliminary works on the subject draw our in-
terest to investigate this new contact mode and to develop it for the G-L-S media. Indeed, this
is a widely used media for example in hydrogenations and oxidations but still poorly inves-
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tigated and controlled under “slurry Taylor” flow conditions. Furthermore, several technical
challenges to be overcome are:

• avoiding settling of the particles during flow through the reactor,

• designing an adequate and efficient suspension delivery unit,

• avoiding pressure fluctuations in the reactor in order to control the flow homogeneity,
the behaviour of the gas phase and the global residence time in the reactor.

2.2 experimental set-up

2.2.1 “Slurry Taylor” flow set-up

Figure 2.1: Experimental set-up used for “slurry Taylor” experiments: (I) injection zone for gas and
liquid-solid suspension; (II) reaction and visualization zone; (III) backpressure regulation
and sample collection zone (sample volume appears in red).

Figure 2.1 gives a global view of the experimental set-up employed to perform “slurry Tay-
lor” flow experiments. It can be roughly divided into three main parts: A fluid and suspen-
sion supply section (I), a reaction and visualization section (II) and a back-pressure regulation,
sampling and waste collection section (III).
The liquid-solid supply unit consists of a glass vessel with a magnetic stirrer covered by a
stainless steel plate. The catalyst, the substrate and the solvent are introduced directly into
the vessel. The stainless steel cover is fitted with a polypropylene bag of our own construction
with a capacity of 200 mL. A syringe pump (Harvard apparatus PHD 4400) injects water into
the bag to expand it and push the L-S suspension into the T-junction at the precise flow-rate
set at the syringe pump and without any fluctuation. In the T-junction (Upchurch Scientific
PEEK tee for a 3.16 mm o.d. tubing), the suspension meets the gas phase fed by a mass-flow
controller (Bronkhorst “el flow” able to deliver up to 50 N mL/min of H2) forming the Taylor
flow. With this set-up, typical run durations of more than 1 h can be performed for a water
flow rate of 3 mL/min without any problem of fluctuation or clogging. The reactors used
in this study consist in a simple PFA capillary tubing (1.65 mm i.d. and 3.16 mm o.d.) with
a total length up to 14 m. A special reactor arrangement in a coiled channel has been cho-
sen and designed as a compromise between compactness and high curvature radii for the
bends. The coiled shape channel was milled into an aluminium plate (10 mm - 400 mm - 200
mm)allowing the insertion of different tube lengths into the channel (Figure 2.2).
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Figure 2.2: Detailed reactor arrangement in the aluminium plate. By choosing specific entries and exits,
the total coiled tube length for reaction can be changed.

If necessary, efficient heating via a silicon 270W regulated heating foil (Chromalox CISA
240) attached to the back of the plate is possible. The entire length of the tube is visible
and due to the compactness of this design a small area of the plate will give information
about the Taylor flow having the lowest, highest and several intermediate residence times.
A high speed camera (Optronis CR600x2), a macro-lens (Computar MLH-10X) and a 150W
cold illumination system (Dolan Jenner FiberLite PL800) are used to capture the Taylor flow
along several channels at the same time. This arrangement has been used for the preliminary
hydrodynamic visualizations and to determine the conversion from the bubble shrinkage. In
all the experiments described in this article, the plate was arranged vertically as shown in
Fig. 2. Downstream of the reaction zone, the G-L-S flow goes into the pressurized waste tank
where a classical back-pressure regulator system is used to maintain the pressure in the whole
reactor. Sample collection for analysis is ensured by the inversion of the three valves V1, V2,
V3 allowing the flow to go into the upper tube and to recover the sample volume (in red,
Figure 2.1).

2.2.2 Stirred tank reactor set-up

The stirred tank reactor is a 300 mLParr autoclave equipped with a gas inducing turbine,
baffles and operated in a semi batch mode. Hydrogen was constantly fed via a pressure
regulator and supplied by a calibrated reserve. The pressure and temperature monitoring in
this reserve provides the hydrogen consumption rate and thus the apparent and instantaneous
activity of the catalyst.

2.2.3 G-L-S model reaction

The hydrogenation of 3-methyl-1-pentyn-3-ol (reactive scheme shown in Figure 2.3) was cho-
sen as a G-L-S model reaction because of the high reaction rates reported in the literature and
the availability of an intrinsic kinetic model [92]. For both stirred tank and “slurry Taylor” ex-
periments the same reagents were used: A 5 wt.% palladium catalyst supported on a silicon
oxide powder support with a mean particle diameter of 40 μm (Strem Chemicals Inc.) was
chosen. Absolute ethanol (Carlo Erba), 3-methylpentyn-3-ol (Merck, >98%) and quinoleine
(Aldrich, >98%) were used respectively as solvent, substrate and reaction modifier in order to
avoid the second hydrogenation leading to the undesired 3-methyl-pentan-3-ol product. For
more details see the work of Nijhuis et al. [92].
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Figure 2.3: Reaction scheme for the hydrogenation of 3-methyl-1-pentyn-3-ol. The desired product is
the intermediate 3-methyl-1-penten-3-ol.

2.2.4 Validation of the slurry contact mode

Firstly, qualitative experiments of the set-up were carried out with a non-reactive flow of ni-
trogen/water/alumina in order to check for issues such as plugging, sedimentation, inhomo-
geneous suspension supply and unstable Taylor flow. Therefore rather challenging operating
conditions in terms of solid charge (6.0 g/L) and particle mean diameter (100 μm) were used.
For this suspension, the agitation speed inside the liquid solid supply system was 500 rpm
and the syringe pump liquid flow rate was varied from 1.0 to 5.0 mL/min. To check the good
homogeneity and the stability of the suspension over time, several quantitative measurements
were also made. The following protocol was followed: successive samples were collected at
the reactor exit over 20 min, the obtained suspensions were filtered and dried overnight at
120 ◦C to separate the solid fraction for weighing with a balance (Mettler AE200) in order
to determine the effective transported solid fraction. This quantitative study was performed
with the Pd/SiO2 catalyst (Strem chemicals, 5.0 wt.% Pd, mean diameter of 40 μm) at differ-
ent stirring speeds from 140 rpm to 700 rpm for a solid charge of 5.0 g/L in absolute ethanol
and for a constant flow rate of 2.0 mL/min.

2.2.5 Hydrogenation in Taylor flow reactor

In a typical experiment, the desired content of solvent, catalyst, quinoleine, n-pentanol (inter-
nal standard) and substrate are placed in the suspension feeding system before sealing and
connexion with the reactor. Magnetic stirring is started and a stabilization period of approx-
imately 5 min is allowed. Then the syringe pump is launched to feed the L-S suspension at
the desired flow-rate followed by the setting of the gas flow-rate. Finally the back-pressure
is set to obtain the desired pressure and residence time in the reactor. During the reaction,
video capture of the Taylor flow is recorded and samples are collected by switching the valves
V1, V2, V3 successively (see Figure 2.1). The reaction is quenched by exposure to air and the
liquid is sampled for GC analysis. The operating conditions tested in this reactor are listed in
Table 2.1.

2.2.6 Hydrogenation in stirred tank reactor

In a classical experiment, the appropriate charge of solvent, quinoleine, n-pentanol (internal
standard) and catalyst are introduced in the reactor before sealing. Then three purges with N2

are performed at 4 bar followed by three purges with H2 at the working pressure. After this
step, the reactor is connected to the calibrated and regulated H2 reserve and the stirring is
started. After 5 min of stabilization, the substrate is injected quickly through a septum in the
reactor by a syringe defining the reference time for the start of the reaction. Throughout the
reaction, pressure and temperature in the H2 reserve are monitored and liquid samples are
collected for GC analysis. The operating conditions used for the hydrogenation in the batch
reactor are listed in Table 2.2 and include the conditions for the comparison with the “slurry
Taylor” reactor. Temperature, substrate concentration and catalyst charge are varied in order



18 g-l-s “slurry taylor ” flow : concept and motivation

Table 2.1: Operating conditions in the “slurry Taylor” reactor.

Ltube (m) 8.8 and 14.4

dtube,int (mm) 1.65

Pin(bar) 1.3

T ◦C 20

Csubstrate (mol/L) 0.11

Cquinoleine (mol/L) 0.22

Feeding system stirring speed (rpm) 360

QL (mL/min) 3

QG (N mL/min) 14-30

utot,0 (cm/s) 8.4-17.9

FH2/Fsubstrate (mol/mol) 1.45-3.71

wcat (g/L) 3.5

Experimental specific pressure drop (kPa/m) 1.1-2.1

Table 2.2: Operating conditions in the stirred tank batch reactor.

VL (L) 0.18

Vbatch (L) 0.3

wcat (g/L) 0.76-3.5

Agitation (rpm) 1450

P (bar) 1.2 and 1.5

T ◦C 20-60

Csubstrate (mol/L) 0.11 and 0.3

Cquinoline (mol/L) 0.22

to check the working regime in the batch reactor: reaction or mass transfer limited rate (see
results and discussion section for more details).

2.2.7 Gas chromatography analysis

For GC measurements, a Gas Chromatograph (Agilent Technologies 6890N) with an auto-
matic injection system (injector 7683 series) with a HP5 column (15 m x 0.1 mm x 0.1μm)
was used. Mass balances are established with the internal standard method by using the
n-pentanol (Aldrich, >99%) as a reference.

2.2.8 Reaction course monitoring by image analysis

A specific MatlabT M program has been developed to analyze the video captures recorded
during the reactive experiments. Each image of the video capture is analyzed (segmentation,
thresholding, interface detection) in order to detect the gas bubble edges and to measure their
length and distance from each other. Knowing the acquisition rate of the video capture, bubble
velocities can be easily estimated by following each bubble and measuring its displacement.
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In order to obtain representative lengths and velocities for each position of the reactor plate,
a sufficient number of bubbles is necessary. Therefore, the analysis is made line by line of the
viewed area for the bubbles flowing through each of them. Mean, upper and lower lengths
and velocities can then be associated to the mean abscissa of the corresponding plate line.

2.3 results and discussion

2.3.1 Validation of the experimental set-up

Figure 2.4: Measured catalyst charge for different stirring speeds. Sampling time was 20 min (wcat =
5.0 g/L, QL = 2 mL/min, solvent: ethanol, solid: Pd/SiO2, d50 = 40 μm).

To validate the good delivery of the L-S suspension, the stirring speed in the glass vessel
has been changed from 140 to 700 rpm for an ethanol suspension containing 5.0 g/L of 40
μm Pd/SiO2 catalyst particles. The solid fraction has been collected and weighed in order to
quantify the good delivery of the solid-liquid suspension as explained in the experimental
section. The system is able to deliver the target charge of catalyst contained in the stirred
tank and to transport it along the reactor for a stirring speed superior to 360 rpm (Figure 2.4).
The lower speed tested (140 rpm) shows a repeatable over time and non-negligible difference
between the solid charge effectively transported and the target. These results demonstrate the
operability and the efficiency of the L-S supply system for the following reactive experiments.
Qualitatively, the three-phase Taylor flow is stable, homogeneous and of regular appearance.
No plugging of the tube or of any connector was detected. Figure 2.5 shows a typical capture
of the “slurry Taylor” flow realized with alumina particles of 100 μm.

This large particle diameter was used to test a challenging condition and to be able to
visualize the suspension with the rather low resolution optical set-up used. For low liquid
velocities some solid particles in the suspension feeding tube would sink down back into the
supply vessel instead of proceeding to the reacting tube. Therefore a minimal liquid velocity
of 1 mL/min was defined. Under this condition stable and uniform Taylor flow was attained
over the entire tube length. Visually the solid charge in each liquid slug was homogeneous
and mainly circulating in the lower part of the liquid slug. It would sediment for a short
period of time until the next gas bubble reaches it pushing the particles back into the vortices
that exist in the liquid slug. The placement of the solid in the liquid slug is consistent with
previous results which also report partial occupation of the slug height for lower solid charges
up to 8 g/L [128]. For more details on hydrodynamics, especially in particular the detection of
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Figure 2.5: Typical G/L/S “slurry Taylor” flow obtained for a N2/water system with 6.0 g/L of 100
μm Al2O3 particles in suspension (flow velocity of 3.6 cm/s).

different hydrodynamic regimes under broader experimental conditions the reader is referred
to chapter 3.

2.3.2 Hydrogenation in the stirred tank reactor

Figure 2.6: Evolution of the substrate conversion in the stirred tank reactor for different operating
temperatures (for all three experiments, catalyst charge = 0.75 g/L, stirring speed = 1450
rpm, P = 1.5 bar, Csubstrate = 0.3 mol/L and Cquinoleine = 0.22 mol/L).

Figure 2.6 and Figure 2.7 show the results obtained in the stirred tank reactor by varying
the temperature and the catalyst charge. The substrate conversions plotted here were cal-
culated according to the temperature and pressure evolution in the gas reserve and to the
experimental selectivity towards the desired 3-methyl-1-penten-3-ol. Because of the presence
of quinoleine, the selectivity is always very close to 1 and the H2 pressure variation in the re-
serve can be directly linked to the conversion of 3-methyl-1-pentyn-3-ol with a stoichiometry
of 1:1. By varying the temperature (Figure 2.6) an acceleration of the apparent initial reaction
rate was observed between 20 ◦C and 40 ◦C. No further initial reaction rate acceleration was
detected between 40 ◦C and 60 ◦C. This probably indicates the appearance of a significant
mass transfer limitation for the experiment at 60 ◦C. Assuming that the experiment carried
out at 40 ◦C is not mass-transfer controlled, an activation energy of 45 kJ/mol is determined.
This value is quite close to the 52 kJ/mol reported in the literature for this reaction [92] indicat-
ing that the experiments carried out in this work at 20 ◦C in the stirred tank reactor are not or
only slightly mass transfer limited. This conclusion is also supported by the experiments with
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Figure 2.7: Evolution of the substrate conversion for different solid catalyst charges in the stirred tank
reactor (Csubstrate = 0.11 mol/L, stirring speed = 1450 rpm,T = 20 ◦C , P = 1.5 bar and
Cquinoleine = 0.22 mol/L).

different catalyst charges (Figure 2.7). A constant initial reaction rate of 5x10−3mol/s/gPd can
be determined for the three catalyst charges tested at a substrate concentration of 0.11 mol/L
confirming that a reaction limited regime can be declared in this reactor at 20 ◦C for the range
of operating conditions tested.

2.3.3 Hydrogenation in the “slurry Taylor” flow reactor

Figure 2.8: Conversion obtained by GC analysis for two reactor lengths in the “slurry Taylor” reactor
(QL = 3 mL/min, QG,0 = 29.4 Nm L/min, wcat = 1.5 g/L, dint,tube = 1.65 mm, T = 20 ◦C, Pin
= 1.3 bar).

To validate the experimental set-up under reactive conditions, the test reaction was per-
formed under two different operating conditions by varying the tube length (8.8 m and 14.4
m). The final conversion was determined via GC analysis taking several samples over time
at the exit of the reactor (Figure 2.8). As for the cold experiments, good repeatability is also
found in the case of experiments with reaction. In fact, under the different reaction conditions
tested, a standard deviation around 1.4% is obtained. This repeatability indicates that the tar-
get catalyst charge in the liquid slugs and the residence time in the reactor remain unchanged
over time leading to a good control of the set-up under steady state. It is important to notice
that the conditions tested here were always performed with an excess of hydrogen in order
to keep a sufficient gas hold up and to maintain a Taylor flow. Some preliminary experiments
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with a stoichiometric or a default flow of hydrogen (not shown here) lead to a substantial
decrease in repeatability. This is due to the large bubble shrinkage that occurs, leading to co-
alescence of non-Taylor gas bubbles travelling at different velocities and in the worst case to
total consumption of them and thus to solid particle deposition at the bottom of the tube wall.
Under these conditions, even if a homogeneous suspension supply and a stable Taylor flow
formation are ensured at the inlet, the residence time and the solid hold-up along the reactor
become unsteady with time and uncontrolled. This is a limit of operability of this system.

2.3.4 Reaction course monitoring by visualization

(a) Photograph of the “slurry Taylor” flow profile
obtained under reactive conditions (see Table 3)

(b) corresponding experimental profiles of bubble
lengths, velocities and residence times

Figure 2.9: Results obtained for “slurry Taylor” flow

The reaction progress can be easily monitored over time by simple recording of images
of the gas bubbles in several regions of the reaction tube with a high speed camera. Bubble
lengths and velocities can be measured simultaneously at different locations due to the spe-
cific reactor arrangement. A typical example is given in Figure 2.9. The gas bubble length
decreases steadily from line T1 to line T9 (Figure 2.9a) and this evolution is directly linked to
the amount of hydrogen consumed over the reactor length. To calculate precisely and easily
the substrate conversion through the H2 consumption by using the local bubble length several
reasonable assumptions are made:

• The gas phase obeys the ideal gas law.

• The bubble shrinkage does not alter the bubble shape which is modelled as a cylindrical
body with two hemispherical caps having a diameter nearly equal to the tube diameter.

• The pressure drop profile is assumed to be linear along the reactor.

• The ethanol vapour pressure and the inlet hydrogen concentration are negligible for the
specific conditions tested here.

In order to precisely attribute a residence time to a location in the tube, the experimental
velocity profile needs to be integrated along the channel length. To determine an accurate
conversion level, the pressure drop, leading to a small expansion of the gas bubbles, has to be
taken into account along the whole reactor length. Based on the measured pressure drop over
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the total reactor length, a theoretical and reference bubble length profile without conversion
is determined. The difference between their actual length under reaction and their expected
length without reaction yields the consumption of hydrogen and, consequently, the hydrogen
conversion which enables the calculation of the substrate conversion. Bubble lengths, bubble
velocities and corresponding residence times determined by this method are plotted in Fig-
ure 2.9b as an example. The first exploitable gas bubbles from the line T1 correspond to a
short residence time (here 6 s). It implies that the initial bubble length and velocity are extrap-
olated according to the encountered profiles and the initial theoretical gas velocity. Figure 2.10
presents a validation of the visual reaction progress monitoring as the conversions obtained
by this method are close to the final GC analysis. Nonetheless, it is important to notice that
this method is only efficient in quite a restrained range of operating conditions. For example,
an excess of hydrogen is needed but a too large excess of hydrogen leads to indistinguishable
differences even for a large degree of substrate conversion.

2.3.5 Comparison of the “slurry Taylor” and batch reactors

Figure 2.10: Comparison between substrate conversion profiles obtained in the stirred tank reactor and
in the “slurry Taylor” contactor (by bubble shrinkage visualization and GC).

To compare the “slurry Taylor” reactor to the batch reactor, a similar experiment was per-
formed in these two different reactors. The experimental conditions tested can be found in
Table 3. This comparison is reliable because of the analogy between the residence time in an
ideal plug flow reactor and the reaction time in a well-stirred batch reactor. Figure 2.10 shows
the superposed experimental conversion profiles obtained in the batch reactor (consumption
of the H2 reserve) and in the “slurry Taylor” reactor (movie analysis and final GC measure-
ment). It can be seen that good agreement is obtained in these two different reactors. The
preliminary experiments done in the batch reactor had a mass transport coefficient, kLa, in
the range 1 − 2s−1 [88] and this allows us to say that this Taylor flow experiment is occurring
under a reaction limited regime and that a good overall mass transfer is reached in our slurry
set-up for this quite fast reaction. For more insights into liquid-solid mass transfer perfor-
mances of this contactor the reader is referred to chapter 4 were first results for the l-s mass
transfer constant are presented.
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Table 2.3: Operating conditions for the comparison between the batch and the “slurry Taylor” reactors.

Batch reactor “Taylor reactor”

VR (L) 0.30 VR (L) 0.031

VL (L) 0.18 QL (mL/min) 3

QG,0 (N mL/min) 13.9

Reactor agitation speed
(rpm)

1450 L-S suspension supplier
agitation speed (rpm)

360

P (bar) 1.2 P (bar) 1.2

T ◦C 20 T ◦C 20

wcat (g/L) 3.5 wcat (g/L) 3.5

Csubstrate (mol/L) 0.11 Csubstrate (mol/L) 0.11

Cquinoleine (mol/L) 0.22 Cquinoleine (mol/L) 0.22

FH2/Fsubstrate (-) Not applicable FH2/Fsubstrate (-) 1.72

Reaction duration (s) 400 Residence time (s) 150

2.4 conclusion

The G-L-S “slurry Taylor” contact mode was investigated in a simple capillary reactor. A L-S
suspension supplier has been designed and was successfully validated with “cold” and reac-
tive experiments with silica and alumina based catalysts in water or ethanol. Mean diameters
up to 100 μm and solid loadings up to 6 g/L have been used successfully. A stable G-L-S
slurry Taylor flow was generated with an homogeneous and targeted content of particles
fluidized in the lower recirculation streamlines existing in the liquid slugs. This contacting
mode was used under a pressurized flow of H2 for the catalytic hydrogenation reaction of
3-methyl-1-pentyn-3-ol. Results were in agreement and as good as those obtained in a conven-
tional batch reactor confirming the good mass transfer performances attainable in this contact
mode. Conversion levels for each experiment carried out in excess of hydrogen did not vary
for a duration of several hours indicating the efficiency and the regularity of the flow and par-
ticularly the stability of the L-S suspension feed throughout time. A method of monitoring
reaction progress via bubble shrinkage was also exemplified and validated for the first time
in a G-L-S media.

These first promising results encourage further studies considering the influence of particle,
wall and liquid properties on hydrodynamics. Also the range of operability and mass transfer
performances need to be investigated. Therefore the subsequent work is concentrated on two
parts:

• by varying solid charge, flow direction and gas and liquid velocities the occurrence of
different hydrodynamic regimes is investigated and the involved forces are character-
ized

• the solid-liquid mass transfer performance is evaluated by using ion exchange particles.
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2.5 symbols and subscripts

Symbols

C mol/L molar concentration

d m diameter

F mol/min molar flow rate

L m length

P bar pressure

Q ml/min or Nml/min volumetric flow rate

rpm - rotations per minute

T ◦C temperature

u cm/s velocity

w g/L mass concentration

Subscripts

0 initial or inlet conditions

batch batch reactor

cat catalyst

G gas phase

in inlet

int internal

L liquid phase

out outlet

R reactor

tot total

tube tube reactor
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The objective of this chapter is to evaluate the hydrodynamics of G-L-S “slurry Taylor” flow.
The study focuses mainly on the placement and behaviour of solid particles in the liquid
slugs. The influence of two phase velocity, solid charge and fluid media is investigated for
two configurations: horizontal and vertical flow. A simplified force analysis serves to explain
the observed phenomena and to establish a flow pattern map.

A publication based on this work will be submitted.
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3.1 introduction

The transportation and usage of freely moving micro-metric particles (10 μm < d̄P < 300 μm)
in milli-metric tubes (0.25 mm < dT < 3 mm) has been until recently a rather rare application
in multi-phase micro reaction technology [130]. The fear of clogging or bridging [50] and
difficult solid handling [49] prevailed and led often to approaches where the immobilization
of the solid phase is favoured [30, 55, 62, 66, 69, 82, 84] by using monolith reactors or micro
packed beds for example. Nonetheless the utilization of nanoparticles (dP < 10 μm) in micro
reaction technology or millimetric particles in macroscopic applications (dT > 3 cm) is mani-
fold.

Laminar, liquid-solid phase flow in small channels is used for biochemical or analytical
applications (analysis of cells, blood, DNA, proteins). Here microfluidics offer continuous op-
eration in contrast to conventional solutions (centrifugation, filtration, chromatography) and
are advantageous concerning speed and resolution [97]. Microfluidic technologies are used for
example for particle concentration or focusing [6, 19, 61, 131, 135] , ordering [19], separation
[97] and subsequent analysis (i.eg. counting). For particle focusing for example the particle
motion in the channel was studied and lift and drag forces were identified and characterized
as crucial for particle placement [18, 19, 89]. Therefore the geometry is often characterized by
high aspect ratios and the operating conditions are such that particle Reynolds numbers are
close to 1. Another large application is the synthesis of nanoparticles in Taylor flow contact
mode. The typical properties of Taylor flow (no axial dispersion) are advantageous for the
production of particles with controlled morphology and narrow size distribution. Though in
general the synthesis is performed in the liquid droplets of L-L Taylor flow [101, 113, 117, 132]
to avoid particle adhesion at the wall, a few examples for the synthesis in the liquid slugs of
G-L Taylor flow [104] exist. For the synthesis of nano particles the flow is often oriented
horizontally and hydrodynamic studies are conducted to estimate the effect of operating pa-
rameters on particle size and distribution [104]. Visualisation of particle motion for example
or quantification of involved forces is rare.

In macroscopic flow freely moving solid particles can be found for horizontal [118] or
vertical [38] oriented pipes in liquid-solid, gas-solid [102] and gas-liquid-solid [96] flow. Ap-
plications are for example the economic transport of slurrys. Here relevant phenomena for
entrainment of particles are often studied [100] with the focus on estimating the critical ve-
locity for particle entrainment, homogeneous suspension and establishing flow pattern maps
[3, 26, 27, 32]. In this context the entrainment of sediment (rivers, dunes) in geology [54]
should also be mentioned. Relevant physical phenomena in this macroscopic applications
were identified as lift forces and shear stress. Particle diameters range from a few micro me-
ters up to a few milli meters and turbulent flow is usually dominant.

Enache et al. [33, 34] and Buisson et al. [13] were the first to employ micrometric particles
in millimetric tubes for gas-liquid-solid catalysed reactions. First studies on segmented flow
with slurry contact mode were oriented mainly to the demonstration of this new contactor’s
applicability and interesting performance (tube oriented horizontally [13, 80, 128] or vertically
[35]). Only few investigations were addressed to hydrodynamic studies and gave first quali-
tative results on the placement of solid particles under varying operating conditions [73, 95]
or estimated relevant forces for particle motion [109]. Numerical studies on liquid-liquid and
gas-liquid “slurry Taylor” flow [17, 29, 58] are also prove for the interest in this new contac-
tor type. So far more studies focus on the transport of a liquid-solid suspension in an inert
liquid continuous phase to avoid potential clogging. Nevertheless, for the performance of
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gas-liquid-solid reactions the liquid phase is necessarily the continuous one and studies on
particle hydrodynamics for G-L-S “slurry Taylor” flow important to estimate good operating
parameters for a certain application.

The aim of this chapter is therefore to study particle motion and flow patterns of G-L-S
“slurry Taylor” flow for horizontal and vertical oriented channels. Special attention is paid
to evaluate reproducibility and clogging behaviour for high solid loadings (up to 50 g L−1).
In consideration of the broad range of possible parameters (4 phases involved: gas, liquid,
solid particles, tubing material) the study was limited to one particle type and one channel
geometry and material. The influence of solid loading, two phase velocity, fluid media and
liquid slug length was investigated.

3.2 experimental set-up

The main focus is to gain quantitative and qualitative insights on the behaviour of micro-
metric particles in millimetric sized tubes. Therefore we considered image quality and robust
operating conditions crucial and identified the following criteria as essential for our experi-
mental set-up:

• precise image quality, maximum zoom and high frame rate, both constant for all oper-
ating conditions, identical lightning, so that the background grey-scale is as constant as
possible for all experimental runs

• exact adjusted horizontal and vertical tubing

• easily recognizable particles, as spheric and mono-disperse as possible

• automatic analysis of slug and bubble length, two phase velocity, objective assignment
of identified flow regimes to the corresponding operating conditions to avoid subjective
judgement.

Figure 3.1 gives a global view of the experimental set-up used for the visualisation experi-
ments. It can roughly be divided in three main parts: A fluid and suspension supply system
(I), the observation zone (II) and a section (III) for sampling and waste collection. The fluid
and suspension supply section is similar to the one described in an earlier work [80]. An in-
house built T connector (PMMA, inner diameter 1.6 mm) is used to generate the slug flow. An
additional inlet is used to purge the contactor in between different operating points with the
working solvent to increase repeatability. The contactor used in this study consists in a simple
1/8 " PFA capillary tubing with an internal diameter of 1.65 mm. The tubing was arranged
and straightened either horizontally or vertically and the observation of the particle pattern
was made 1 m downstream from the Taylor flow generation.

The liquids were supplied with syringe pumps (Harvard apparatus PHD 4400, equipped
with a 100 mL stainless steel syringe) and the gas phase was fed by mass flow controllers
(Brooks instruments 58505 for flow rates higher 10 N mL min−1 and Bronkhorst “el flow” for
flow rates lower 12 N mL min−1 for nitrogen). The different operating conditions can be found
in Table 3.1. The geometry of the T-junction is detailed in Figure 3.2. The suspension phase is
introduced perpendicularly to the flow direction. The same T-Junction was used for horizontal
and vertical flow. That’s why for vertical flow, the flow was horizontal for the first 10 cm and
was then conducted vertically (Figure 3.3).
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Figure 3.1: Experimental set-up used for G-L “slurry Taylor” flow visualisation experiments: (I) in-
jection zone for gas and liquid-solid suspension; (II) reaction and visualization zone; (III)
sample collection zone.

Figure 3.2: Geometry of T-junction used for hydrodynamic visualisation experiments.

3.2.1 Optical device and image analysis

For visualisation of the solid behaviour in the liquid slugs a high speed camera (Optronis
CR600x2), a microscopic zoom (Solini 7:1 modular zoom, 0.9x-6.34x) and an illumination sys-
tem consisting of a mercury lamp (Olympus ILP-2), a fibre optic cable and a focuser (Olym-
pus) are used to capture the particle motion. The light source is placed in the same axis as the
camera lens allowing to work with transmitted light. (see Fig. 3.4) A viewing cell, based on
the work of [124], was used to eliminate refraction on the tubing and to obtain clear images of
the particle flow. The viewing cell was fabricated in-house (acrylic glass) and has the form of
a frame with a center cut-out. The connections to the tubing are realized with two Swagelok
fittings, it is therefore possible to vary the outer tubing diameter from 1/16 to 1/4 inch. A

Figure 3.3: Arrangement of injection device for ( A ) horizontal and ( B ) vertical visualisation experi-
ments. The suspension phase is injected from above, perpendicular to the gas phase. A few
experiments in vertical flow were conducted with the arrangement depicted in ( C ).
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pyrex glass plate is glued on each site of the frame (Plastiform D.A.V.) which allows to easily
remove the plate in case the tubing has to be replaced. The viewing cell is filled with distilled
water to match the refractive index of the PFA tube. In order to ensure that all air bubbles will
leave the cell while filling it with distilled water, first ethanol is used to clean and provide
better wettability. After this cleaning process, distilled water is cautiously and slowly inserted
in the cell with a plastic syringe to allow bubbles to raise and leave the cell over the Swagelok
fitting. To better diffuse the light, tracing paper was fixed at the back of the cell.

A specific MatlabTM program has been developed to analyse the images captured during
hydrodynamic experiments. The aim was to extract information on slug and bubble length,
bubble velocity and particle flow behaviour. The automatic analysis was necessary due to
manifold reasons:

• large amount of data (over 400 films) to exploit

• objective recognition and determination of particle flow pattern

• estimate the deviation of overall flow pattern for succeeding slugs during the same run
as well as reproducibility for the same operating conditions

• generate significant and representative visualisation images for particle flow patterns.

Figure 3.4: Sketch of the in-house built viewing cell (acrylic glass) to adapt the refractive index. The
tubing can be fixed via Swagelok connectors and two PYREX glass plates are glued on
each side of the frame, covering the cut-out. The device is filled with a liquid matching the
refractive index of the tubing material and tracing paper was fixed on one side to ensure
better light distribution.

3.2.2 Chemicals

Ethanol (technical grade, 96vol.%, VWR), glycerol (Laurylab) and nitrogen were used as re-
ceived. We chose to work with silica as a typical catalytic support. Silica particles (dichrom
SiliCycle® SiliaSphere™ PC, 40-75 μm 70 Å spherical Silica Gel) were commercially available
in spherical form and a narrow size distribution (Figure 3.5). As the visualisation and easy
detection of these particles is crucial to identify and analyse solid flow patterns, the silica par-
ticles were treated with nickel nitrate (nickel nitrate (II) hexahydrate, 99%, acros) according
to [114]. The nickel oxide gives them a dark, greyish tint which enhances their visibility on
the films and results in better image quality.
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Table 3.1: Operating conditions applied for hydrodynamic gas-liquid-solid “slurry Taylor” flow exper-
iments.

Liquid phase EtOH EtOH/glycerol

QL [mL min−1] 1.5-8 1.5-8

wglycerol [wt.%] 0 34

ρL [g/cm3] 0.791 [41] 0.946[5]

μL [Pa s] 0.001153 [41] 0.009096 [5]

σ [N m−1] 0.02225 [41] 0.0235 [5]

Gas phase N2 N2

QG [mL min−1] 1.5-40 1-40

Solid phase SiO2 SiO2

ws [g L−1] 2.5-50 5

d̄P [μm] 56.5 56.5

ρP [g/cm3] 1 1.6 1.6

Tubing material PFA PFA

dT,int [mm] 1.65 1.65

Operating conditions

T [◦C] ambient ambient

p [bar] ambient ambient

3.2.3 Experimental procedure for hydrodynamic measurements for horizontal and vertical “slurry
Taylor” flow

For horizontal and vertical flow the experimental procedure was the same. In order to be
able to evaluate potential settling and accumulation of solid particles in the liquid film and
to analyse solid flow patterns consistently, particular measures for invariant operation condi-
tions were kept: a) before each experiment the tube was thoroughly cleaned for 30 minutes by
passing ethanol and b) in between each parameter change, ethanol flow was used to remove
potential settled particles. Attention was also paid to the constant and even illumination of
the flow. Therefore all videos were recorded under the same recording parameters (frame
rate 4000 frames/s, exposure time 1/10000s, 512x256 pixel) which allows the use of the same
illumination intensity for all tested parameters. For all experiments the focuser and with it
the lamp, was placed at the same distance to the viewing cell. ImageJ was used to verify that
the lighting is constant from one day to another and uniform vertically and horizontally on
one image. The L-S supply unit was filled with the solvent and the desired amount of silica
particles, sealed and connected with the T-junction. The respective flow rates were adjusted
and a stabilisation time of 10 minutes was permitted before the first video was taken. In or-
der to evaluate visually potential accumulation of solid particles in the liquid film, a second
video was taken after another 10 to 15 min. Videos were taken only from the side, no view
from above was realized. At the exit of the contactor two samples for each operating param-
eter were taken to determine the actual solid charge delivered by the suspension supply unit
under flow conditions. Therefore the sample time was recorded and the sample was weighed
after being dried in a cabinet drier at 60 ◦C for at least 24 h.
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(a) SEM photogaphy (b) Particle size distribution

Figure 3.5: SEM photography and particle size distribution of SiO2 particles used for hydrodynamic
visualisation experiments

3.3 results and discussion

3.3.1 Stable functioning of suspension supply device

Figure 3.6: Verification of steady functioning of suspension supply unit: the mean solid charge is in-
dicated by the dashed line and was obtained from all experiments for one target charge
without consideration of total flow rate or flow direction, the symbols indicate the solid
charge per liquid flow rate for both flow directions and without considering the gas flow
rate. The left figure indicates solid charge up to 10 g L−1 and the figure on the right solid
charge between 20 g L−1 to 50 g L−1.

In order to analyse the particle behaviour and detect and assign potential flow patterns
it is necessary that the suspension supply unit delivers a constant and reliable solid charge
throughout the experiment and from one operating day to another. Also the solid charge
has to be independent from flow conditions (liquid and gas flow rates). For each operating
parameter at least two samples were taken, and the mean solid charge was determined for
over 526 samples. Figure 3.6 shows the good agreement between target and measured solid
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charge. For higher solid loadings (wS > 10 g L−1) the mean deviation is increased (12.7%)
compared to lower loadings (4.7%).

3.3.2 Particle placement in liquid slugs

The influence of solid loading, two phase velocity and viscosity of the fluid media for horizon-
tal and vertical flow is illustrated in Figure 3.7 and Figure 3.8. The corresponding operating
conditions are detailed in Table 3.2 and Table 3.3. In the following the influence of the selected
parameters is briefly described before the identified flow regimes are summarized.

Figure 3.7: Examples of particle placement in horizontal flow. Operating parameters are summarized
in Table 3.2

Table 3.2: Operating conditions for horizontal flow for the exemplary pictures in Figure 3.7. Fluid
media 1: pure ethanol, fluid media 2: ethanol-glycerol.

# Fluid ws

[g L−1]
QL

[mL min−1]
QG

[mL min−1]
uTP

[cm s−1]
Lslug
[mm]

ReT

[-]
Ca[-]

A 1 2.5 1.5 1 2.3 3.14 26.1 0.0012

B 1 5 1.5 1 2.3 3.14 26.1 0.0012

C 1 10 1.5 1 2.3 3.14 26.1 0.0012

D 2 5 2 2 3.4 2.8 5.8 0.0132

E 1 2.5 8 10 15 2.2 169.9 0.0077

F 1 5 6.88 10 14.9 2.1 198.8 0.0076

G 1 10 8 10 15 2.2 169.9 0.0077

H 2 5 4 8 12 1.8 20.6 0.0464

I 1 5 3 20 22.9 1.4 259.4 0.0117

J 1 10 3 20 23.3 1.3 264 0.0119

K 2 5 4 16 21.3 1.3 36.6 0.0824



3.3 results and discussion 37

Figure 3.8: Examples of particle placement in vertical flow. Operating parameters are summarized in
Table 3.3

Table 3.3: Operating conditions for vertical flow for the exemplary pictures in Figure 3.8. Fluid media
1: pure ethanol, fluid media 2: ethanol/ glycerol.

# Fluid ws

[g L−1]
QL

[mL min−1]
QG

[mL min−1]
uTP

[cm s−1]
Lslug
[mm]

ReT

[-]
Ca[-]

A 1 5 1.5 1 2.3 3.7 26.1 0.0012

B 1 5 8 10 15.7 2.4 177.9 0.008

C 1 5 3 30 31.4 1 355.8 0.0161

D 1 10 1.5 1 2.3 3.7 26.1 0.0012

E 1 10 8 10 15.7 2.4 177.9 0.008

F 1 50 2 2 3.1 3.4 35.1 0.0016

G 1 50 3 30 14 1.5 158.6 0.0072

H 2 50 1.5 1 1.9 3.4 3.3 0.0074

I 2 5 6 30 17.9 1.9 30.7 0.0693

J 2 5 8 10 40.3 0.8 69.2 0.156

3.3.2.1 Influence of two phase velocity

Horizontal flow: for low two phase velocities (uTP ≈ 2 cm s−1), the particles are mainly sit-
uated in the lower part of the liquid slug, a non negligible amount is settled and forms a
stationary bed on the liquid tubing. Increasing the two phase velocity suspends the particles
more homogeneously over the entire slug height and less particles are settled. For very high
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two phase velocities (uTP > 20 cm s−1), particles can be observed over the entire slug height,
but not uniformly distributed. Particles are placed close to the upper channel tubing but seem
to be trapped not only in the lower liquid film but also, to a minor degree in the upper liquid
film (particles placed between gas bubble and channel wall).

Vertical flow: for low two phase velocities (uTP ≈ 2 cm s−1), particles are homogeneously
distributed over the entire slug volume, almost no particles are placed in the liquid film.
Increasing the velocity (uTP > 8 cm s−1) leads to a less homogeneous distribution where
the majority of the solid particles is placed in the tubing center leaving the inner vortex
depopulated. More particles are visible in the liquid film. For very high two phase velocities
the amount of particles in the liquid film is even more increased.

3.3.2.2 Influence of solid loading

Horizontal flow: it seems that higher solid loadings (wS > 10 g L−1) need higher two phase
velocities to be homogeneously suspended. For the same velocity (uTP = 15 cm s−1) particles
populate the entire slug for the lower solid loading (wS < 5 g L−1) whereas if the solid charge
is increased the particles are mostly situated in the lower part and a high amount seemed to
be settled.

Vertical flow: for higher solid charges (50 g L−1), more particles seem to be trapped in the
liquid film between gas bubble and channel wall.

3.3.2.3 Influence of viscosity of the fluid media

Horizontal flow: an influence of viscosity on particle placement can be observed for the
lower and upper region close to the channel tubing. It is difficult to evaluate the amount of
particles settled in the stationary bed layer but it appears that for low two phase velocities
(uTP ≈ 2 cm s−1) less particles are settled in the higher viscous media than in pure ethanol
flow. Regardless the two phase velocity, for ethanol/ glycerol a non negligible amount of par-
ticles is always observed in the liquid film in contrast to ethanol flow, where for high two
phase velocities (uTP > 8 cm s−1) only a a few isolated particles can be observed. The station-
ary particle bed in glycerol/ ethanol flow seems less dense than the one in ethanol flow. For
ethanol flow, for moderate velocities (uTP = 15 cm s−1) particles are situated over the entire
height but the region close to the upper channel tubing is rather empty. In ethanol/ glycerol
flow, (uTP = 12 cm s−1) more particles are visible in this area.

Vertical flow: it appears that no influence of liquid viscosity on particle placement in a
vertical oriented tube can be detected. One reason might be that it is rather difficult to distin-
guish between particles placed in the liquid film and particles circulating in the vortex of the
liquid slug.

3.3.3 Description of particle flow patterns and Matlab™ routine for automatic detection of flow pat-
terns

3.3.3.1 Horizontal flow

In horizontal flow, particle motion was in general introduced by the passage of the gas bubble.
Mainly the approaching bubble nose conducted to particle entrainment but also the rear end
of the bubble led to a minor degree to particle movement and loosening of the deposited par-
ticle bed. Five different flow regimes could be detected and will be described in detail in the
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following. Except otherwise mentioned the operating parameters given in the descriptions
are those for pure ethanol, the lower viscous media used for visualisation experiments.

Regime H-I: For very low two phase velocities (uTP =2 cm s−1 to 4 cm s−1), a large amount
of particles rests on the bottom of the tube and a bed is formed consisting of more than two
layers of particles (Figure 3.9 A1). The gas bubble slides over the rough particle bed and the
passage of the bubble nose entrains some particles. The path of particle movement is slightly
inclined, an observation for which two possible explanations can be given: a sign for particle
sedimentation or just a reflection of the streamline pattern of the liquid phase [55, 78]. In spite
of this downward movement, particles reach the other end of the slug before colliding with
the tubing bottom and descend with upwards directed streamlines. Despite the low velocity,
once the particles are in movement they do not deposit although they circumference settled
particles when they follow the outer streamlines close to the settled particles.

For these low velocities, irregularities in the solid loading between successive liquid slugs
are visible (Figure 3.9 A2). An accumulation of particles close to the bubble nose and a higher
particle loading than in the average slug could be detected approximately every 6 slugs. This
phenomena occurs only at low two phase velocities and is attributed to the creation of Taylor
flow and not part of the flow pattern. It seems that at these low two phase velocities the sus-
pension supply is not constant and the liquid slugs are not fed uniformly with the same solid
amount. The same liquid flow rates at higher two phase velocities do not have the same effect
(no irregularities were observed), this behaviour must also be linked to the low gas flow rate
and thus to the initial Taylor flow formation. The effect of Taylor flow formation is discussed
more in detail further on (see 3.3.4).

Regime H-II. Increasing the two phase velocity (uTP =5 cm s−1 to 8 cm s−1) leads to a homo-
geneous particle distribution in the lower recirculation (Figure 3.9 B1 and B2). Two different
patterns are visible: particles can follow mainly the velocity streamline with the highest veloc-
ity and the inner part of the vortice, where the local streamline velocity is lower, seems mostly
empty (Figure 3.9 B1). In Figure 3.9 B2 the particles are distributed over the entire lower part
of the liquid slug and a depopulation of the inner lower vortex is not visible. Even for these
higher velocities, a non negligible amount of particles is still deposited in the liquid film. As
the observation is made only from the side and a top view is missing, it is difficult to differen-
tiate the source of the different patterns. It is possible that the observed effect is mainly due
to the low solid charge (wS=2.5 g L−1 to 5 g L−1). We therefore consider both observations as
one flow regime.

Regime H-III: If the two phase velocity is increased further on (uTP >9 cm s−1), the particles
are distributed over the entire slug height (Figure 3.9 C). The particle concentration is higher
in the lower recirculation loop but a non negligible amount circulates also in the upper part
of the slugs. Only a few isolated particles are settled in the liquid film but keep continuously
moving due to the high frequency of bubble passage.

Regime H-IV: By further increasing the two phase velocity (uTP >12 cm s−1, ethanol/ glyc-
erol flow) particles are homogeneously distributed over the entire slug height (Figure 3.9 D).

The decision if particles are homogeneously distributed over the entire slug height (regime
H-IV) and the differentiation towards the transitional regime (regime H-III) is probably the
most difficult and questionable due to two reasons: the formulated threshold is possibly too
strict. Also the analysis is based only on one picture per slug and thus a stationary represen-
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tation of flow conditions neglecting the continuous aspect of particle motion. According to
the results of our Matlab analysis, we did not reach this regime for the operating conditions
studied. But, by further increasing the two phase velocity it should be possible to suspend
more particles in the upper recirculation loop.

Regime H-V: By further increasing the two phase velocity (uTP >20 cm s−1), particles are
still located over the entire slug height but a non negligible amount of particles is deposited
at the bottom of the tubing channel and a few are even trapped in the liquid film between the
gas bubble and the upper part of the channel tubing (Figure 3.9 E).
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Figure 3.9: (The picture was flipped by 90°.) For each flow pattern, a photograph, the representative
image indicating the probability of particle presence as a result of the Matlab program
and the symbol used in the following discussion for the flow pattern are given. For the
particle probability images, 0 signifies absence of solid particles and 1 means a probability
of 100% that solid particles are present. The fluid media is pure ethanol (A, B, C, E) and
ethanol/glycerol (D). (A1): Regime H-I, wS = 5 g L−1, uTP = 3.1 cm s−1, (A2): regime H-
I, illustrates the observed irregularities every 6 slugs, (B1): regime H-IIa, wS = 5 g L−1,
uTP = 6.4 cm s−1, (B2): regime H-IIb, wS = 10 g L−1, uTP = 4.7 cm s−1, ( C ) regime H-III,
wS = 2.5 g L−1, uTP = 14.9 cm s−1, ( D ) regime H-IV, wS = 5 g L−1, uTP = 12 cm s−1, ( E )

regime H-V, wS = 5 g L−1, uTP = 23.2 cm s−1
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3.3.3.2 Vertical flow

For vertical flow three different regimes were identified.

Regime V-I: At low two phase velocities ( uTP < 8 cm s−1) the solid particles are homoge-
neously suspended over the entire slug height (Figure 3.10 A). No accumulation neither in
the film nor on the preceding bubble rear end can be detected. It seems that the particles do
not populate the film region. Nevertheless as the camera focuses on the center of the tube this
might be misleading and only due to visual effects.

Regime V-II: If the two phase velocity is increased (uTP > 8 cm s−1), the solid particles are
pushed towards the outer recirculation loop where the fluid velocity is high. Solid particles
are observed mainly at the centre of the tube and along the wall region, both inner vortex
centres appear depopulated (Figure 3.10 B). Also more particles are situated in the liquid film
zone.

Regime V-III: For very high two phase velocities (uTP > 18 cm s−1), more particles are
pushed towards the outer recirculation loop and accumulate in the film region (Figure 3.10
C). The particles trapped in the liquid film are observed to move slowly downwards.
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Figure 3.10: For each flow pattern, a photograph, the representative image indicating the probability of
particle presence as a result of the Matlab program and the symbol used in the following
discussion for the flow pattern are given. For the particle probability images, 0 signifies
absence of solid particles and 1 means a probability of 100% that solid particles are present.
The fluid media is pure ethanol, wS = 5 g L−1 (A): Regime V-I, uTP = 4.6 cm s−1, (B):
regime V-II, uTP = 10.7 cm s−1, (C): regime V-III, uTP = 31.4 cm s−1
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3.3.3.3 Matlab routine for automatic detection of flow patterns

Figure 3.11: Typical image for automatic flow pattern analysis after increasing the contrast, binariza-
tion and reversing black and white

For each video one image per slug is extracted (thresholding, binarization) and analysed
with a MatlabTM routine. The algorithm was constructed according to the identified flow pat-
terns and characteristic observations served to establish threshold conditions for each pattern.
Each slug was divided into 4x10 zones. The height of the observation area is slightly smaller
than the tubing diameter: even tough reflections due to the curved tubing could be avoided,
a marginal shadow can be observed at the upper and lower channel wall. This shadow does
not deteriorate the image quality but could alter the results for the automatic flow pattern
assignment.
After increasing the contrast to account also for less visible particles (gray scale image, pixel
values pi,j between 0 and 255), binarization (particles are black: pi,j = 0, bubble and channel
wall white: pi,j = 1), and reversing black and white “colors” (particles are white: pi,j = 1,
bubble and channel wall black pi,j = 0) a characteristic image looks like the one depicted in
Figure 3.11.

The algorithm is based on the decision if a zone or a certain region (group of zones) is more
or less populated than another one. Therefore in a first step, it was determined if a zone is
populated with particles or not. For each zone the particle concentration cP was determined
as the ratio of white pixels to the total amount of pixels in one zone.

cP =

∑
i,j

p (i, j)

i · j
(3.1)

Then, the mean particle concentration c̄P was calculated and a zone was considered to be
populated by solid particles if the particle concentration in this respective zone is superior to
a certain percentage of the mean concentration:

cP ≥ 0.65 · c̄P (3.2)

Now that every zone is either “populated” or “not populated” by particles, different groups
of zones are compared according to the algorithm depicted in Figure 3.12. For each group (A,
B or C) the ratio of populated to total number of zones is calculated and compared to a de-
fined threshold (as indicated in Figure 3.12).
One flow pattern is thus attributed to each slug present in the recorded video. The maximum
count of one regime for all slugs of one video will determine the flow pattern for the specific
experiment.
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(a) Detection for horizontal flow pattern

(b) Detection for vertical flow pattern

Figure 3.12: MatlabTM routine to automatically detect a flow pattern

Unfortunately for the ethanol/ glycerol experiments it was not possible to use this proce-
dure as the background was not uniform enough and the lighting led to shadowy regions.
Also high solid loadings (ws > 20g/L) led to quite uniform appearance of slug and bubble
regions which made it not possible to use the Matlab program for operating conditions with
high solid loadings. For these video films a flow pattern was assigned manually, adding a
possible source of uncertainty and subjectivity. The Matlab program analyses one picture for
each slug passing in front of the camera. This adds another uncertainty as only the instan-
taneous placement of particles is taken into consideration. To get high quality pictures and
a good representation of the circulating particles, the zoom was chosen in such a way that
the inner tubing diameter fills almost the entire height of the picture. By doing so it is not
possible to follow one slug over a longer period of time. Therefore the assignment of a certain
flow pattern to one operating condition has to be handled with caution.
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3.3.4 Discussion of relevant mechanisms related to particle entrainment and re-suspension

The placement of particles in the liquid slug and the particle movement is influenced by three
main mechanisms:

• the initial formation of the Taylor flow

• the availability of flow conditions to keep particles in motion

• the capability of flow profile to entrain settled particles by bubble passage

Figure 3.13: Impact of injection configuration on placement of solid particles in the liquid slug, for
a)-d): QL = 3 ml min−1, QL = 2.5 ml min−1, for a-c) ws = 2.5 g L−1, d) ws = 5 g L−1, for
a), b) and d) same injection method, c) spiral arrangement between T-junction and vertical
tubing to better distribute the particles

For both configurations the suspension phase is introduced perpendicular to the gas phase
and is directed downwards to the tubing bottom (Figure 3.3, see Section 3.2). One example
for the influence of injection method on particle placement is illustrated in Figure 3.13 where
(A) and (B) illustrate particle behaviour for identical operating parameters in horizontal (A)
and vertical (B) flow. Particles initially located in the lower recirculation loop of horizontal
flow do not populate the entire slug height/ width by simply passing in vertical flow mode
but keep circulating preferentially on the left side which coincides with the former lower part
of the liquid slug. By adding a coil formed passage (Figure 3.3 C) it seems possible to better
distribute the particles (Figure 3.13 C). For higher concentrated suspensions (ws = 5 g L−1 in
comparison to ws = 2.5 g L−1) the modification of the injection procedure is not necessary and
particles redistribute homogeneously over the entire liquid volume without the additional coil
(Figure 3.13 D).

Apart from the solid loading, one might assume that the frequency of gas bubble passage is
a crucial parameters and determines if the particles have the time to sediment to the bottom
of the tube or are entrained with the upper recirculation loop (Figure 3.14).

For horizontal flow, the injection and formation process of “slurry Taylor” flow is impor-
tant insofar as it seems rather impossible that a particle passes from the lower to the upper
recirculation loop: in the centre region the streamlines are facing towards each other so that
even for high upwards directed velocities close to the lower front side of the bubble, the same
high velocity will be directed towards the bottom in the upper region. Therefore the only
possibility for particles to be able to populate the upper part of the liquid slug is during the
formation of the Taylor flow (Figure 3.14 C). We assume that whereas there can be an ex-
change of particles from the upper to the lower part of the slug due to sedimentation, there is
no movement directed from the lower to the upper part. The influence and effect of the initial
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Figure 3.14: Possible influence of injection method on placement of particles. While the gas bubble
passes the liquid feed, the particles are trapped above the gas bubble (A). If the gas flow
rate is small, the particles are entrained with the liquid flow which is directed downward
to the tubing bottom and can thus settle (B). If the gas flow rate and with it the frequency
of gas bubbles passing in front of the liquid phase inlet is high, the particles are entrained
together with the liquid phase horizontally and do not settle on the tubing bottom. Parti-
cles can thus populate the upper part of the liquid slug (C).

formation of “slurry Taylor” flow was however not further investigated nor quantified. We fo-
cused on the two other criteria for good particle distribution: does the flow profile allow that
solid particles are kept in motion? If particles sediment to the bottom, can they be entrained
by the passing gas bubble and the deformed flow profile? Relevant parameters are therefore
liquid and particle properties and the velocity profile.

In the following a short overview of the forces relevant to the motion of particles in fluids
is given and subsequently we will estimate the effect of these forces on maintaining particle
transport and the possibility of particle entrainment.

3.3.4.1 Forces on particles

The motion of particles is in general described by the so called Basset-Boussinesq-Oseen-
equation [68, 116, 120]. Relevant forces are the drag force

#»

F D, inertia due to fluid acceleration
and the local pressure gradient

#»

F P, the added mass force
#»

F AddM, the history force
#»

F H, the
buoyancy

#»

F B and the gravitational force
#»

F G. Additional the lift force
#»

F L and the centrifugal
force

#»

F Z as a special form of inertia might be relevant in our case.
The gravitational force and the buoyancy force are both body forces and depend only on

fluid and solid properties and the gravitational or centrifugal field the particle is exposed to.

#»

F G = mP
#»g = ρP

π

6
d3

P
#»g (3.3)

#»

F B = mF
#»g = ρF

π

6
d3

P
#»g (3.4)

The drag force acts in the direction of the relative velocity between particle and surrounding
fluid.

#»

F D = 0.5CDρF (
#»u F − #»u P)

2 AP (3.5)

The drag force depends on the projected area of the particle towards the flow AP, fluid
density ρF and a drag coefficient CD. The coefficient is a lumped parameter which accounts
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for the various sources for drag like friction and correlations are usually given as a function
of particle Reynolds number ReP (Equation 3.6).

ReP =
ρFdP (

#»u F − #»u P)

μF
(3.6)

The drag coefficient is influenced by the flow conditions of the surrounding fluid, the sur-
face roughness and shape of the particle [116]. Also the proximity of a wall and the particle
concentration can effect the magnitude of the drag coefficient.

In the Stokes regime, meaning for small particle Reynolds numbers (ReP → 0) an analytical
solution for the drag coefficient for spherical particles is possible (Equation 3.7).

CD,Stokes =
24

ReP
(3.7)

Particle motion in proximity of a rigid wall increases the drag coefficient [133] and for
particles (radius rP) in normal (Equation 3.8, [12, 23]) or parallel (Equation 3.9, [40]) movement
towards a wall, the drag coefficient is increased and depends on the distance a between
particle and wall.

CD

CD,Stokes
= 1 +

9
8

rP

a
+

(
9
8

rP

a

)2

(3.8)

CD

CD,Stokes
=

[
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16
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a
+

1
8

( rP
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)3 − 45
256
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16
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a

)5
]−1

(3.9)

The pressure force represents the fluid acceleration in absence of the particle and results
from the local pressure gradient. It describes the inertia of the liquid phase (Equation 3.10).

#»

F P = mP
ρF

ρP

d #»u F

dt
(3.10)

The acceleration of a certain fraction of the fluid surrounding the particle is accounted for by
the added mass force (Equation 3.11). The Basset or history force (Equation 3.12) describes
the delayed response of the boundary layer surrounding the particle to a change in relative
velocity. For both forces an analytical solution is only possible for low particle Reynolds
numbers.

#»

F AddM = 0.5CAddMρF
mP

ρP

d
dt

( #»u F − #»u P) (3.11)

#  »

FH = 9
√

ρFμF

π

mP

ρPdP
CH

[∫ t

0

d
dt (

#»u F − #»u P)

(t − τ)0.5 dτ +
( #»u F − #»u P)0√

t

]
(3.12)

The parameters CAddM and CH are a function of slip velocity.
When particles are exposed to unsymmetrical flow profiles and thus a non symmetric pres-

sure gradient surrounding it, they are exerted to a lift force. This lift force is directed per-
pendicular to the flow direction. A general expression of this lift force is defined analogous
to the drag force in function of particle cross section, relative velocity and a lift coefficient CL

(Equation 3.13)

#»

F L = 0.5CL APρF (
#»u F − #»u P)

2 (3.13)

The source of this unsymmetrical flow profile can have several reasons (Figure 3.15). Un-
symmetrical particle shapes, rotating particles after particle-wall collisions or unsymmetric
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Figure 3.15: Schematic illustration of different sources for lift effect: (A) rotating particle, (B) particle
exposed to unsymmetrical flow field due to particle shape, (C-D) asymmetric flow profile,
illustrations based on [15, 26, 85, 133].

flow profiles in vicinity to the reactor wall are a few examples. Due to the laminar flow pro-
file in slug flow, especially the latter reason seems relevant for the description of particle
movement in “slurry Taylor” flow and its relevance was already discussed for L-L “slurry
Taylor” flow [109]. A popular expression for lift resulting from two dimensional shear flow
and nonuniform relative velocity profile was described by Saffman [107] and is valid for low
Reynolds numbers.

The shear rate γ̇ is defined as

γ̇ =
duF

dy
(3.14)

The Saffman lift force characterizes the lift experienced by a particle in two-dimensional
shear flow :

FL,sa f f = 1.615ρF (uF − uP) d2
P

√
μ

ρF
· γ̇sgn (γ̇) (3.15)

A special expression for the Saffman lift force was developed for a particle touching a solid
plane ([77], Equation 3.16). In this case the force points always away from the wall.

FL,resting = 0.576ρLd4
Pγ̇2 (3.16)

Particles in a centrifugal field experience a special form of inertia. The centrifugal force
#»

F C is effective on objects moving along a circular path and acts perpendicular to the angular
velocity ω away from the rotation center [120].

#»

F c = mP
#»r ω2 (3.17)

After this summary of all the main forces that can act on a particle in motion, we will
analyse more in detail how they influence the particle transport in “slurry Taylor” flow.

3.3.4.2 Maintaining particle transport

To estimate if the flow conditions meet the requirements to maintain the transport of sus-
pended settling-particles a few assumptions were made:

• The analysis is limited to drag, gravity, buoyancy and lift forces only. For vertical flow
centrifugal forces are additionally considered. Forces depending on the change of fluid
velocity or relative velocity ( #»u F − #»u P) with respect to time are neglected in this simple
approach. This simplification is necessary as otherwise knowledge of the fluid profile is
needed which can only be provided by proper numerical fluid modelling and evaluation
if the particles present in the flow alter the typical velocity profile of Taylor flow.
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• The analysis is made for an isolated particle and possible effects of solid concentra-
tion are not accounted for. Single settling particles entrain a certain fluid volume. For
continuity reasons this has to result in an upward fluid flow. In concentrated suspen-
sions this upward movement is important enough to hinder the sedimentation and the
settling velocity of concentrated suspensions uT,S is thus decreased compared to sin-
gle particles [105, 120]. The effect of volume concentration VS on the settling velocity
is generally described by the Richardson and Zaki equation (Equation 3.18) where the
exponent α is a function of particle Reynolds number α = f {ReP,0 (ut)}. In the Stokes
regime α equals 4.65. For a volume concentration of 5%, corresponding to the highest
solid charge applied in this study, the settling velocity is decreased by 22% compared to
a single particle. However, the concentration is not uniform over the entire slug height
and actual concentrations may lead to even lower settling velocities. Nevertheless the
study concentrated only on a single particle, accounting for the maximum settling ve-
locity in order to over-predict conditions necessary to keep particles in motion rather
than underestimate sedimentation.

uT,S

uT
= (1 − VS)

α (3.18)

In liquid-solid fluidisation, particles are kept in motion when the upward flow of liquid
equals the settling velocity [105] in a stationary fluid. This context is used in hydraulic clas-
sification [120] or for fluidized beds [111, 126] to define equilibrium conditions. The settling
velocity uT in a stationary fluid can be obtained by considering the force balance of drag,
gravity and buoyancy forces (Equation 3.19, 3.20 and 3.21, [120]).

#»

F G − #»

F B =
#»

F D (3.19)

ρP
Π
6

d3
Pg − ρF

Π
6

d3
Pg =

ρF

2
Π
4

d2
Pu2

TCD〈ReP,t〉 (3.20)

In the Stokes regime (ReP,t < 0.25) an analytical solution for the drag coefficient can be given
and in order to be able to judge the influence of the wall on the settling velocity we set
a = CD

CD,stokes
(see Equation 3.8 and 3.8). The settling velocity can be estimated as:

uT =
1
a
(ρP − ρF) d2

Pg
18μ

(3.21)

Figure 3.16: Horizontal flow: chosen points for simplified force analysis

First, the experiments for horizontal flow are commented. To estimate the influence of the
particular forces or mechanisms four exemplary operating conditions are chosen to illustrate
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the different regimes. Four characteristic positions in the recirculating pattern were identified
(Figure 3.16). As a simplification two assumptions are made:

• At positions 2 and 3 the influence of the approaching gas bubble is negligible, Poiseuille
flow is predominant (Figure 3.17 B) and therefore there is only a horizontal component
for the fluid velocity #»u F.

#»u F =

(
0

uF,lam(r)

)
(3.22)

where uF,lam(r) is defined as

uF,lam(r) = 2 · uTP

[
1 −

( r
R

)]
(3.23)

• At points 1 and 4, the influence of the gas bubble on the flow profile is dominant, the
fluid velocity has only a vertical component (see Equation 3.24).

#»u F =

(
uF,rel(r)

0

)
(3.24)

To simplify the analysis the absolute value of the fluid velocity is assumed to be constant
along the same circulation loop as illustrated in Figure 3.17 (A). The relative velocity
uF,rel(r) is therefore defined as indicated in Equation 3.25.

uF,rel(r) = 2 · uTP

[
1 −

( r
R

)]
− uB (3.25)

Figure 3.17: Illustration of simplified flow profile for selected points in horizontal flow. (A) indicates
conditions where the gas bubble influences the flow profile, (B) influence of the gas bubble
was neglected.

Particles are considered to follow the streamlines of the liquid flow in horizontal direction
(denoted y on Figure 3.16, [120]), therefore uP(y) = uF(y). For the vertical direction (denoted
x) the particle settling velocity has to be accounted for.
For horizontal flow the velocity in the liquid film is assumed to be zero [70]. Therefore the
possibility of particles trapped in the liquid film is evaluated using the correlation of Aussil-
lous and Quére [11] to estimate the film thickness (Equation 3.26). The correlation actually
describes the film thickness between the gas bubble and the channel wall. For Capillary num-
bers smaller than 0.05 the film thickness between the circulating liquid in the liquid slug and
the channel wall is comparable in size. Exceeds the Capillary number 0.05 the liquid film in
the slug is increased compared to the one between gas bubble and channel wall, limiting thus
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the recirculation zone in the slug [70]. In this study the Capillary number exceeds only this
threshold for high velocities in ethanol/glycerol flow (Ca=0.07) and operating conditions are
always far away from complete bypass flow for Ca>0.5 [122].

δ f ilm

dT
=

0.67Ca2/3

1 + 3.35Ca2/3 (3.26)

Due to the rather large inner channel diameter (1.65 mm) compared to tubing generally
employed when dealing with horizontal segmented flow experiments, an impact of gravity
on the flow profile is easily detectable : the liquid film (see Figure 3.18) is enlarged under the
gas bubble. The bubble itself is also slightly deformed. A typical bullet type profile can be
observed for vertical and horizontal flow and the front is not symmetrical for horizontal flow.

Figure 3.18: Illustration of influence on gravity on bubble shape and liquid film thickness: exemplary
image for (A) horizontal flow and (B) vertical flow.

The influence of gravity on the liquid film thickness for millimetric sized channels has been
studied [45, 78] and indeed an enlarged film thickness and thus an effect of gravity on the
liquid film was reported. Unfortunately there exists no correlation yet to estimate the actual
value in conditions where gravity is not negligible. Therefore the film thickness is calculated
according to Equation 3.26 and the fact that its actual size is larger is kept in mind.

The approaching gas bubble induces the particular flow pattern which is characteristic for
Taylor flow and is responsible for the recirculating movement. Therefore particle motion is
maintained if two requirements are fulfilled:

• during the time the gas bubble travels the distance of one slug length tB→Ls , the particle
does not settle (valid for position 2 and 3 on Figure 3.17).

• the vertical fluid component at position 1 (Figure 3.17) is larger than the settling velocity
of the solid particle.

The discussion is based on representative operating conditions and ethanol-nitrogen flow
is mainly taken into consideration as the settling velocity in higher viscous media is lower: if
a relevant distinction can be made for pure ethanol flow, it is interesting to consider a higher
viscous flow. If this is not the case, the effect will be even less remarkable for ethanol/glycerol
flow. Unless otherwise indicated, all values given for this analysis were obtained for ethanol-
nitrogen “slurry Taylor” flow.

For positions 2 and 3 (Figure 3.17), we compare the distance a particle can settle while the
gas bubble travels one slug length uT · tB→Ls with the distance between the particle and the
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tubing bottom (R − r∗ for particles located in the lower part of the slug, Figure 3.17). The
threshold for maintaining particles in suspension is therefore:

Figure 3.19: Effect of two phase velocity on the distance the solid particle can settle while the gas
bubble travels one slug length. Results are given for ethanol (�) and ethanol/ glycerol
(�) flow. Pictures in Table 3.5 and 3.6 indicate the flow pattern for selected operating
parameters.

uT · tB→Ls < R − r∗ (3.27)

for particles in the lower part and

uT · tB→Ls < R + r∗ (3.28)

in the upper part of the recirculation loop for a particle located at r = r∗. In the operat-
ing range studied, for the lowest two phase velocity employed, the gas bubble needs 0.14 s
to travel one slug length. The settling velocity in ethanol yielded uT = 0.12 cm s−1 and in
ethanol/glycerol uT = 0.013 cm s−1. The particle is thus able to settle 16.7 μm in ethanol
and 1.04 μm in the higher viscous media for the lowest two phase velocity (see Figure 3.19).
Compared to the channel diameter (dT = 1.65 mm) the settling of particles would effect only
particles located close to the tubing bottom. However, when the particle approaches the chan-
nel wall, the drag coefficient increases according to Equation 3.8 and 3.8, meaning that the
settling is slowed down and the settled distance even smaller. This influence is illustrated in
Figure 3.20.

Indeed, visually even for very low two phase velocities it was never observed, that a particle
would settle on the bottom of the channel, even particles in motion very close to the channel
bottom do not deposit but appear to be circumventing settled particles in the liquid film.

For position 1 (Figure 3.17) the fluid velocity component in vertical direction has to be
higher than the settling velocity of the particle in order to prevent sedimentation and to en-
train the particle. The typical flow profile for Taylor flow is considered (see Equation 3.25) and
the absolute velocity along one recirculation loop is assumed to be constant. The threshold
for maintaining particles in suspension is accordingly (Equation 3.29):

uF,rel (r∗)
uT

> 1 (3.29)

In Figure 3.21 this ratio is plotted against a non-dimensionless tube radius. It can be seen,
that over a large range the ratio is superior to 1, for the lowest two phase velocity only for
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Figure 3.20: Influence of channel wall on settling velocity for horizontal and vertical flow, dashed
vertical line indicates center of particle touching the channel wall

Figure 3.21: Relative fluid velocity compared to particle settling velocity for different two phase veloc-
ities. The ratio was plotted against a non-dimensional tube radius r

R−δ to account for the

different liquid film sizes. The dashed line indicates the threshold uF,rel(r∗)
uT

> 1

5% of the area the velocity ratio falls below the defined threshold meaning that the fluid
velocity is lower than the settling velocity. It seems that even though for a small area the fluid
velocity is indeed not sufficient enough to lift the solid particles, the majority of the fluid field
exceeds the settling velocity. Also, visually, particles were never observed to not be able to
follow the streamlines at position 1. This criteria cannot be the reason for the large amount
of particles settled on the tubing bottom for certain experiments. In general, even for low two
phase velocities it was not observed that circulating particles would settle at any point.
Point 4 can be decisive imagining that the particle is accelerated towards the wall and due to
its high inertia is not capable to follow the streamlines towards point 3 but settles. To judge
this scenario, more details on the flow profile are necessary. However, as mentioned before,
settling was generally not observed.

For vertical flow the procedure is similar. Representative operating points for the detected
flow patterns were chosen. The selected positions for the detailed analysis are illustrated in
Figure 3.22. As the settling velocity was found to be negligible compared to the overall fluid
velocity, only the “turning points” 1 and 2 are interesting. The focus is especially to investigate
the difference between homogeneously suspended particles and conditions were the particles
populate mainly the center of the slug. Therefore the centrifugal force as a special form of
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Figure 3.22: Chosen characteristic points for simplified force analysis for “slurry Taylor” flow in verti-
cal oriented tubing.

inertial force is taken into consideration here.

Figure 3.23: Illustration of simplified flow profile for selected positions in vertical flow.

The centrifugal force is effective on objects moving along a circular path and acts perpendic-
ular to the angular velocity away from the rotation center ( Figure 3.23, [120]). Following the
same approach as for horizontal flow, the absolute velocity is assumed to be constant along
one recirculation loop. The centrifugal force being proportional to the distance between the
object and the rotation center, the maximum impact of the centrifugal force would be close to
the tubing wall, for solid particles following the outer streamline. The distance between the
center of the loop and this outer streamline is approximated by half of the channel radius. The
centrifugal force is compared to the submerged weight (

#»

F G − #»

F B) of the particle. The assump-
tion is, that if the centrifugal force is more important than the submerged weight, particles
are pushed towards the channel wall, leaving thus the center depopulated. The threshold is
hence

#»

F G − #»

F B
#»

F C
< 1 (3.30)
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Table 3.4: Effect of two phase velocity on the capability of fluid field to keep particle in motion. Impor-
tance of centrifugal force compared to submerged weight (FG − FB)/FC for selected operat-
ing points. Pure ethanol flow, wS = 5 g L−1.

Lslug [mm] 3.7 1.9 2.3 2.3 1

uTP [cm s−1] 2.33 5.24 7.4 15.64 31.4

(FG − FB)/FC [-] 3.78 0.74 0.37 0.08 0.02

The results are illustrated in Table 3.4. While for the lowest two phase velocities employed
(2.3 cm s−1) the ratio is in fact higher than 1 ( FG−FB

FC
= 3.8) it shifts to values lower than 1

for higher velocities (for 15.6 cm s−1 FG−FB
FC

= 0.08). Nevertheless even for operating condi-
tions which yield a particle placement detected as homogeneously suspended, the ratio is
already below the threshold (for 5.2 cm s−1 FG−FB

FC
= 0.74). A possible explanation can lie in

the simplifications and assumptions taken for the calculation of the centrifugal force.

3.3.4.3 Initiation of particle entrainment from the tubing bottom

While a possible interpretation for the occurrence of the detected flow regimes could be given
for vertical flow, the simplified analysis of relevant forces could not explain the observed
flow patterns in horizontal flow as the settling velocity compared to the mean fluid velocity
seems generally negligible. Therefore it is necessary to investigate in a subsequent step if the
velocity profile is eligible to initiate the entrainment of particles. The prevailing questions are
consequently:

• Can the fluid flow entrain particles settled on the bottom of the tubing? By which mech-
anism?

• Can the amount of particles trapped in the liquid film in ethanol and ethanol/ glycerol
flow be directly explained by the increase of liquid film thickness due to increasing two
phase velocity?

The initiation of particle transport plays an important role in several different fields such
as sedimentation technology (rivers, propagation of sand dunes), cleaning of heat exchangers,
pneumatic and hydraulic conveying [118]. Different mechanisms are defined for the initiation
of movement as illustrated in Figure 3.24.

• horizontal movement

– sliding of particles, reported especially for non-spherical particles [115]

– rolling of particles, reported for spherical particles [15, 115]

• vertical movement:

– hydraulic lift [51, 115]

– lift as a result of a torque balance around a pivot point [4, 56, 115]
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Figure 3.24: Different mechanisms for particle entrainment and the corresponding relevant forces: (A)
lift, (B) sliding, (C) rolling and lift, illustrations based on [4, 26, 90, 115, 119].

Figure 3.25: The solid particle can be completely settled in the liquid film (A), partially (B) or freely
exposed to the liquid flow (C).

Particles are reported to start first rolling or sliding [15, 115] before vertical movement
begins. In the literature empirical or mechanistic models [115], usually for turbulent flow, are
used to derive a correlation for the critical fluid velocity relative to the initiation of particle
motion. According to the particular point of interest, a particle can be defined to be in motion
if it starts moving horizontally or vertically.

Also the placement of the particle relative to the liquid film can play a crucial role, as the
velocity in the film is considered to be zero. As illustrated in Figure 3.25 the particle can be
situated completely in the liquid film, partially or not at all. First we consider that the particle
is fully exposed to the flow, secondly the film thickness is estimated for different two phase
velocities and compared to the mean particle size.

To estimate the effect of flow conditions on initiation of particle motion, vertical motion is
considered to be crucial. The same flow conditions as previously (see 3.3.4.2) are chosen as
en example and the analysis focuses on the lift force. The adhesive force is considered to be
negligible. Saffman lift force and lift for a particle resting on a plane surface (Equation 3.16
and 3.15) are used to estimate, if the flow conditions allow the initiation of particle motion.
The threshold condition is :

#»

F G − #»

F B
#»

F L
< 1 (3.31)

As gravity, buoyancy and lift have all only a component in the vertical direction (Fig-
ure 3.24), in the following the notation of the forces is simplified to F. The lift force is
proportional to the shear rate γ̇ ∼ uF

x (Figure 3.25). For the lowest two phase velocity

(uTP = 2.3 cm s−1) the ratio FG−FB
FL,Sa f f

and FG−FB
FL,resting

is higher than 1 (see Table 3.5 and 3.5), indicat-
ing that particle entrainment due to lift is not possible. For higher velocities, the ratio quickly
decreases (uTP = 14.7 cm s−1: FG−FB

FL,Sa f f
= 0.74 and FG−FB

FL,resting
= 1.27). For these high velocities the
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Figure 3.26: Effect of two phase velocity on the capability of fluid field to initiate particle movement.
Importance of lift force compared to submerged weight. Results are given for ethanol (�)
and ethanol/ glycerol (�) flow. Pictures in Table 3.5 and 3.6 indicate the flow pattern for
selected operating parameters.

Figure 3.27: Effect of two phase velocity on the liquid film thickness for selected experimental points
for ethanol and ethanol/ glycerol flow. Results are given for ethanol (�) and ethanol/
glycerol (�) flow. Pictures in Table 3.5 and 3.6 indicate typical flow patterns for the selected
parameters.

lift force is comparable to the submerged weight of the particle (FG − FB) (see Figure 3.26).

Lastly the influence of the film thickness is evaluated (see Figure 3.27) and its size com-
pared to the mean particle diameter. For low two phase velocities and ethanol flow, the film
thickness is rather low (12 μm for uTP = 2.3 cm s−1) that even an increase of 100% to account
for the influence of gravity, particles are not entirely trapped in the liquid film. For increasing
two phase velocities, the film thickness augments, and reaches for very high velocities the
size of the particle diameter (50 μm for uTP = 24.4 cm s−1). This could explain the increased
amount of particles settled on the bottom of the tubing for high velocities. For glycerol, the
film thickness is already for low velocities comparable to the particle diameter, so that par-
ticles can possibly get trapped in it. This higher liquid film thickness for ethanol/glycerol
compared to pure ethanol flow can be the reason for the non negligible amount of particles
settled on the channel tubing for all operating conditions for glycerol flow.
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Table 3.5: Effect of two phase velocity on the capability of fluid field to initiate particle movement. Im-
portance of lift force compared to submerged weight FG−FB

FL
and liquid film size for selected

operating points. Pure ethanol flow, wS = 5 g L−1.

Lslug [mm] 3.1 3.2 2.0 1.3

uTP [cm s−1] 2.29 9.5 14.73 24.4
FG−FB
FL,Sa f f

[-] 12.99 1.54 0.80 0.37
FG−FB
FL,resting

[-] 52.11 3.04 1.27 0.46

δ f ilm [μm] 12 29 38 50

Table 3.6: Effect of two phase velocity on the capability of fluid field to initiate particle movement. Im-
portance of lift force compared to submerged weight FG−FB

FL
and liquid film size for selected

operating points. Ethanol/ glycerol flow, wS = 5 g L−1.

Lslug [mm] 2.82 1.9 1.81 1.26

uTP [cm s−1] 3.4 5.56 11.96 21.27
FG−FB
FL,Sa f f

[-] 1.89 0.91 0.29 0.12
FG−FB
FL,resting

[-] 16 6 1.3 0.4

δ f ilm [μm] 51.9 67.2 99.5 128
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To sum up the analysis of relevant mechanisms, it seems that maintaining particles in
motion does not represent an obstacle as liquid flow velocity in general is always larger than
the settling velocity. In spite of this simplified analysis, it appears reasonable to say, that
particles once suspended do not settle which can be confirmed by visual observations. The
difficulty seems to lie in the initiation of motion. For low velocities, the submerged weight
outweighs the induced vertical motion by the fluid. By increasing the two phase velocity, the
shear rate increases and thus the lift force. It is difficult to define an exact threshold as a) the
lift force is difficult to measure therefore a lot of different expressions exist and have been
employed for the same purpose and b) the entrainment is a combination of lift due to shear
stress and vertical fluid motion due to the approaching bubble. Nevertheless the analysis
shows that wall shear rate may weigh more than settling of particles, at least for the particle
and fluid properties considered in this study.

3.3.5 Flow pattern map

After analysing the relevant mechanisms effecting the placement of particles in the liquid
slug, the results are used to establish a flow pattern map for horizontal and vertical flow.

3.3.5.1 Flow pattern map for horizontal flow

Figure 3.28: Flow pattern map for horizontal flow based on the work of Olivon and Sarrazin [95]. The
dimensionless factor N (Equation 3.32) is used to discriminate between the different flow
patterns.

In the literature two flow pattern maps for horizontal L-L “slurry Taylor” flow with par-
ticles transported in the discontinuous phase exist. Olivon et al. [95] used a dimensionless
factor N which compares the time a solid particle needs to sediment over the entire slug
height tS with the time needed by the liquid droplet to travel one droplet length tF.

N =
tS

tF
=

dT

Lslug

uTP

uS
(3.32)

The flow pattern map obtained using this approach is illustrated in Figure 3.28. Olivon et
al. [95] operate at very low two phase velocities (up to 1.46 cm s−1) and expected a threshold
of 1 for the transition between a regime where sedimentation and segregation prevails and a
homogeneous pattern. Instead they found values higher than 1 (N=5-100) for the operating
conditions studied, even though particles were reported to rest only close to the rear end of
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the droplet. They explain the deviation with a recirculation efficiency affecting the time a par-
ticle needs to follow one total loop in the droplet. In agreement with them we found values
for N higher than 1 and detect only a minor influence of the the solid concentration on the
transition between the different regimes. For the transition between particles circulating in
the lower part of the liquid slug and over the entire slug height, we found values around 80
for G-L flow compared to 32 for L-L flow reported by Olivon et al. [95]. The same analysis for
the higher viscous experiments with the ethanol/ glycerol mixture led to very high values for
N (150-2000) and the transition between semi-homogeneous and a homogeneous distribution
was found at around 300.

However, comparing the settling velocity with the two phase velocity, or the correspond-
ing characteristic times does not seem adequate if we consider that settling is negligible (see
Section 3.3.4.2) and seems not to be the reason for the occurrence of the different observed
regimes.

Another approach is the one from Kurup and Basu [73] who chose to work with the Shields
parameter Θ which is often used in sedimentation technology to estimate the entrainment
of sediment in fluid flow and the necessary critical velocity [26, 27, 56, 86, 115]. The Shields
parameter (Equation 3.33) compares destabilizing forces (shear stress τ) with stabilizing forces
(gravity and buoyancy) [81]:

Θ =
τ

gdP (ρP − ρF)
(3.33)

Shields presented his results not in form of a correlation but traced the dimensionless
Shields parameter Θ as a function of boundary Reynolds number (Equation 3.34, [27, 115])
which takes the shear velocity u∗ into consideration.

Re∗ =
u∗dPρF

μF
(3.34)

u∗ =
√

τ0

ρF
(3.35)

The shear stress τ is directly proportional to the velocity gradient of the fluid:

τ = μF
∂u
∂r

(3.36)

For laminar flow (see Equation 3.23) the shear stress at the pipe wall is thus τ0 = 8μFuTP/ (dT)
which defines the Shields parameter as:

Θ = μF
8uTP

dT

1
gdP (ρP − ρF)

(3.37)

To be able to represent the results for ethanol and ethanol/glycerol in one graph the prod-
uct of Shields parameter and boundary Reynolds number Θ · Re∗ is used. As can be seen
from Figure 3.29, the different regimes are well distinguished and the operating points for
ethanol and ethanol/glycerol are situated in the same area. The fact that certain regimes over-
lap, may be caused by the difficult assignment to a certain regime as described earlier and
the very progressive transitions. If only the Shields parameter is chosen, the same difficulty is
detected as with the dimensionless number N: for two different fluids, the regimes are well
represented but the values of the Shields parameter differ so much between low and higher
viscous media that it is not possible to present both experimental sets on one graph nor to
establish threshold conditions valuable for both media. Thorpe et al. [123] pointed out, that
the critical velocity to suspend particles in stirred tanks as well as pipelines, is not a function
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Figure 3.29: Flow pattern map for horizontal flow, the product of Shields parameter and shear
Reynolds number is used to differentiate between the different detected flow patterns.

of viscosity. This might be the reason, why the attempt to represent the flow map using only
N or Θ for both fluid media failed as both parameters are directly proportional to the liquid
viscosity (N ∝ μF as well as Θ ∝ μF).

3.3.5.2 Flow pattern map for vertical flow

Figure 3.30: Flow pattern map for vertical flow, Θ · Re∗ is used to differentiate between the different
flow patterns.

The flow map obtained in vertical flow using Θ · Re∗ is illustrated in Figure 3.30. The
representation is not as good as for horizontal flow, but as mentioned earlier, the manual
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detection of the flow regimes may have led to erroneous assignments especially for the higher
viscous flow. As the initiation of motion was not an issue in vertical flow, and sedimentation
is in the same axis as the flow direction, the different flow regimes are represented using the
two phase velocity only. From Figure 3.31 it can be seen, that for the operating conditions
tested here, the two phase velocity is sufficient to discriminate the different identified flow
regimes.

Figure 3.31: Flow pattern map for vertical flow, the solid charge is depicted in function of the two
phase velocity.

3.4 conclusion and perspectives

The hydrodynamics of G-L-S “slurry Taylor” flow were investigated for two distinct fluid cou-
ples: ethanol-nitrogen and ethanol/glycerol-nitrogen flow and the influence of solid charge
and two phase velocity on particle placement was investigated for a horizontal and vertical
oriented capillary. It was shown that even for high solid loadings up to 50 g L−1 a stable and
repeatable solid supply is possible. For the operating conditions examined in this study, clog-
ging of the contactor or the tubing fittings did not occur. For horizontal flow five different
flow patterns were observed: for low two phase velocities particles circulate in the lower part
of the liquid slug, a non negligible amount is settled on the channel bottom in a stationary
bed. By increasing the velocity, particles start to populate also the upper part of the liquid
slug, less particles are settled on the bottom and particle dispersion becomes more homoge-
neous. In vertical flow, even for very low velocities (uTP = 2 cm s−1) particles were observed
to be homogeneously distributed over the entire slug volume. For the operating conditions
studied, no accumulation on the rear end of the gas bubble, nor sticking to the subsequent
bubble nose was observed at any point, even for high solid loadings. Increasing the two phase
velocity pushes the particles in the outer recirculation loop, depopulating the inner center of
the vortex. For horizontal as well as vertical flow, at very high velocities (uTP > 15 cm s−1) the
amount of particles trapped in the stationary liquid film increases again. This indicates that
there exists an upper border concerning two phase velocity for good operation conditions. A
simplified analysis of the relevant mechanisms affecting particle placement showed that for
the operating conditions studied, sedimentation appears to be only secondary. The injection
of suspension phase as well as entrainment of settled particles is more influential. It was
shown that a good representation of the detected regimes is possible by using a coefficient of
Shields parameter and boundary Reynolds number Θ · Re∗ for horizontal flow. For vertical
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flow, the two phase velocity seems to impact mostly the placement of particles. In agreement
with the literature only a marginal influence of viscosity and solid charge was found.

In order to confirm the findings it is essential to broaden the study by investigating the
influence of other operating parameters:

• Tubing diameter: To investigate the influence of shear rate and the impact of scale-up
the diameter of the tube is an essential parameter. If initiation of particle motion and
with it lift force really is discriminating for efficient particle suspension, by decreasing
the channel diameter, shear rate increases and particles should be homogeneously sus-
pended at lower two phase velocities. This is especially crucial for horizontal flow as
bigger channel diameters might require higher two phase velocities for a homogeneous
particle distribution.

• Slug length: The injector used for this study did not allow to create different slug length
for the same velocity. By changing the ratio of gas and liquid flow rate, for low velocities
only rather long slug length could be obtained (for uTP = 4.4 cm s−1 slug length were
between 3 and 6 mm) and for higher velocities only rather short slugs were observed
(for uTP = 7.6 cm s−1 slug length were between 1.6 and 2.3 mm). This is not sufficient to
detect any influence of slug length on the behaviour of solid particles in the liquid slug.
It might be interesting to observe particle motion in short slugs for low velocities and
in long slugs for higher velocities.

• Material properties: Studying the influence of material properties on the placement of
particles and the required conditions to achieve homogeneous suspension is necessary
to predict if a certain reaction can be easily carried out in this new contact mode. Par-
ticles having a higher or lower density as the fluid media, hydrophilic particles in hy-
drophobic fluid media and the influence of gas phase (CO2 vs. N2) are parameters worth
investigating.
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3.5 symbols

Roman Symbols

a m distance between particle and wall

a - ratio of drag coefficient for particle settling
close to a wall and drag coefficient for an
freely settling particle in Stokes regime

AP m2 particle cross section

cP - “particle concentration”: ratio of white pixels
to the total amount of pixels in one zone

c̄P - mean “particle concentration”

CAddM - added mass coefficient

CD - drag coefficient

CD,Stokes - drag coefficient in Stokes regime

Ca - capillary number

d̄P m mean particle diameter

dT m internal tubing diameter

FAddM N added mass force

FB N buoyancy

FC N centrifugal force

FD N drag force

FG N gravity

FH N history force

FL N lift force

FL,resting N lift force for particles resting on a plane

FL,Sa f f N Saffman lift force

FP N pressure force

g m/s2 gravitational constant, g = 9.81m/s2

h m distance between wall and particle center

Lslug m slug length

mP kg particle mass

N - dimensionless number, compares convection
time with sedimentation time

p bar pressure

pi,j - value of pixel at position i,j

QG ml/min gas flow rate

QL ml/min liquid flow rate

r m distance between particle position and centre-
line of channel

rP m particle radius

R m tubing radius

Re∗ - boundary Reynolds number
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ReP - particle Reynolds number

ReP,0 - particle Reynolds number for settling velocity

t s time

tB→Ls s time a bubble needs to travel one slug length

T ◦C temperature

u∗ m s−1 shear velocity

uB m s−1 bubble velocity

uF m s−1 fluid velocity

uF,lam m s−1 fluid velocity (laminar flow)

uF,rel m s−1 relative velocity between fluid and gas bubble

uP m s−1 particle velocity

ut m s−1 settling velocity

ut,S m s−1 settling velocity for particles in high concen-
trated suspensions

uTP m/s two phase velocity (sum of discontinuous and
continuous superficial velocity

VS mS
3/mL

3 solid volume concentration

wS g/L solid loading

wglycerol - mass fraction of glycerol

y m distance, perpendicular to flow direction

Greek symbols

α - exponent in Richardson-Zaki equation for
swarm settling velocity, in Stokes regime
α = 4.65

γ̇ 1/s shear rate

δ m liquid film thickness

μL Pa.s dynamic viscosity of liquid phase

ρL kg/m3 liquid phase density

ρP kg/m3 particle density

σ Nm superficial tension

τ s time

τ Pa shear stress

Θ - Shields parameter

Abbreviations

G gas phase

L liquid phase

P particle

R reactor

S solid phase
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PA RT I C L E S T R A N S P O RT E D I N C O N T I N U O U S A N D D I S C O N T I N U O U S
P H A S E O F “ S L U R RY TAY L O R ” F L O W : I M PA C T O N L I Q U I D - S O L I D
M A S S T R A N S F E R

This chapter has been submitted for publication as A.-K. Liedtke, F. Scheiff, F. Bornette, R. Philippe, D.
Agar and C. de Bellefon, Liquid-solid mass transfer for microchannel suspension catalysis in gas-liquid
and liquid-liquid segmented flow. submitted to Industrial & Engineering Chemistry Research.

In the previous chapter different flow patterns for horizontal and vertical downward flow
were presented and it was established that the distribution of solid particles is fundamentally
different according to the flow direction: whereas for horizontal flow a minimum velocity
is necessary to achieve a homogeneous distribution over the entire slug volume, for vertical
flow this is not the case and particles are always equally distributed in the liquid slug. In
a subsequent step the influence of particle placement and flow direction on mass transfer
properties will be examined. Here we concentrate on the external liquid-solid mass transfer.
The recirculation pattern in the continuous and the discontinuous phase of Taylor flow is
essentially different and the localisation of particles (in the cont. or disc. phase) is thus an
interesting parameter for L-S mass transfer studies. As for G-L Taylor flow the liquid phase
is necessarily the continuous phase, the localisation of particles in the discontinuous phase
can only by studied using L-L-S Taylor flow. For this reason we focus on liquid-solid mass
transfer in gas-liquid and liquid-liquid “slurry Taylor” flow and propose to confront the
mass transfer properties of solid particles circulating either in the dispersed phase in liquid-
liquid or in the continuous phase of gas-liquid Taylor flow. In this chapter the influence of
particle placement, recirculation pattern, two phase velocity and particle size on the liquid-
solid mass transfer coefficient will be described for horizontal “slurry Taylor” flow. The L-L
“slurry Taylor” flow experiments were carried out at the technical university Dortmund and
belong to the doctoral research study of Frederik Scheiff 1. If the flow direction and with it
gravity (horizontal vs. vertical downflow) has an impact on the L-S mass transfer properties
is examined in a subsequent chapter (see Section 5.1).

1 This chapter is a collaboration work between the technical university Dortmund, Germany and the laboratory
for catalytic processes, LGPC-CPE, Lyon, France. The L-L “slurry Taylor” flow experiments were carried out at
the Laboratory for Chemical Reaction Engineering and belong to the doctoral research study of Frederik Scheiff.
Contact: Prof. David W. Agar� david.agar@bci.tu-dortmund.de
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4.1 introduction

Figure 4.1: Examples for solid handling in micro or milli metric structures. (A) Micro fixed bed, (B)
catalyst impregnation, “slurry Taylor” with particles transported in the continuous phase
(C) and (D) discontinuous phase of Taylor flow.

The transportation and usage of micrometric particles is a subject which has been addressed
in multi-phase micro reaction technology only recently [130]. Gas-liquid or liquid-liquid slug
flows were studied quite extensively [10, 42, 55, 62, 72] and are accepted more and more as
useful tools in continuous chemistry [43, 67]. Due to the fear of clogging or bridging of freely
flowing particles [49, 50] the placement of the catalytic solid phase is, when necessary, usually
resolved by immobilization either in form of a wall coating film or as a micro packed bed (see
Figure 4.1 (A) and (B)). Coating the catalyst on the reactor wall asks for special procedures,
unique for each catalyst type, and renders the reactor system less flexible as the removal due
to deactivation or change in active phase is nearly impossible without damaging the reactor
wall. Milli or micro fixed beds represent an alternative and hold interesting performances in
mass transfer [59, 82, 84] but concerns might be the high linear pressure drop and complex hy-
drodynamics encountered (wall channelling, local dewetting, wettability problems, etc.) [84].

The approach to immobilize the solid phase is limited to catalytic systems and is not appli-
cable when the product or the reactant itself is a solid. On the other hand the occurrence of
solid particles other than catalysts should not be neglected [49]. A study by Roberge et al.[106]
identified that out of 86 reactions carried out at Lonza, 31% could benefit from micro reaction
technology but involve a solid phase (catalyst, reactant or product) and are thus considered
to be difficult to perform in a micro reactor. Nanoparticles [67, 101, 104, 113, 117, 132] are
handled quite frequently in micro reaction technology but the application of freely flowing
solid particles from 10 up to 200 μm has so far only been studied rudimentarily as concerns
regarding clogging due to bridging and/ or deposition [49, 50] prevailed. Taylor flow or seg-
mented flow is a typical flow pattern often encountered in micro reaction technology due to
its interesting properties [62, 72] namly:

• high surface to volume ratio

• nearly ideal plug flow conditions (Peclet numbers up to 1000 [125])

• circulation pattern in the liquid slug, intensive convective mixing

Joining beneficial properties of slug flow conditions and slurry reactors can be an interest-
ing approach to transport the solid phase. The internal circulations occurring in the liquid
slugs of G/L segmented flow [63, 72] or in the continuous and discontinuous phases of L/L
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segmented flow [36, 57, 65] can be used to keep catalyst particles in motion and transport
them in a stable three-phase flow. In this contact mode, catalysts can be easily removed from
the reactor, simple and available commercial catalysts can be employed and good transfer
performances can be expected due to the large interfacial areas available for both heat and
mass transfer.

Segmented flow with slurry contact mode has been first mentioned in the literature in 2005
[33–35] and first studies were oriented mainly to the demonstration of this new contactor’s ap-
plicability and interesting performance [13, 35, 80, 128]. Few investigations were addressed to
hydrodynamic studies and gave first qualitative results on the placement of solid particles un-
der varying operating conditions [73, 95]. Numerical studies on liquid-liquid and gas-liquid
“slurry Taylor” flow [17, 29, 58] are also prove for the interest in this new contactor type. So
fare more studies focus on the transport of a liquid-solid suspension in an inert liquid contin-
uous phase. The main argument for the preference to place the solid particles in the dispersed
phase is the hindered danger of clogging as the particles are not in direct contact with the re-
actor wall [50, 95, 101, 109] due to the discontinuous phase. Nevertheless, for gas-liquid-solid
applications the liquid phase is necessarily the continuous one.

So far the performance of this new contactor type was basically evaluated by comparing
the conversion of a fast G-L-S or L-L-S reaction obtained in “slurry Taylor” flow with the
conversion obtained in a classic stirred tank reactor. Nevertheless it is crucial to investigate
mass transfer properties. Cai et al. [16] investigated the influence of solid charge and nature
of solid phase on G-L mass transfer for G-L-S “slurry Taylor” flow. Very fine particles were
chosen for this study (dP = 2 μm to 12 μm) and the mass transfer of CO2 into pure water
was investigated. They observed that the G-L mass transfer was enhanced especially for hy-
drophobic activated carbon particles which would stick to the G-L interface and contribute
to mass transfer due to the shuttle mechanism. We concentrate on liquid-solid mass transfer
in gas-liquid and liquid-liquid slurry-Taylor flow and propose to confront the mass transfer
properties of solid particles circulating either in the dispersed phase in liquid-liquid or in the
continuous phase of gas-liquid Taylor flow (see Figure 4.1 (C) and (D)). Hence, either the con-
tinuous liquid or the gas phase is treated as chemically inert and only applied for inducing
recirculation vortices in the suspension to mimic the real 3-phase reactive flow.

Common methods to characterize liquid-solid mass transfer of mobile particles are

• the dissolution of calibrated solid particles of β-naphtol or benzoic acid [60]

• acidic ion exchange particles and neutralisation reaction of caustic sodium hydroxide
solutions [48, 98]

• fast, mass transfer limited three-phase reactions (hydrogenation of α-methyl styrene [88],
oxidation of glucose [127]), knowing the transfer coefficient for the G-L or L-L transfer
and the intrinsic kinetics

The production of calibrated particles between 60 μm to 200 μm and their detection and
size analysis seems not suitable and sufficiently precise. We chose to work with ion exchange
particles as this method is quite simple to implement and allows for a direct determination
of the external L-S mass transfer coefficient. Ion exchange particles were recently used to
investigate L-S mass transfer in L-L “slurry Taylor” flow by Scheiff et al. [110].

In G-L and L-L Taylor-flow the principle is the same: two non miscible phases (two liquids
or a gas and a liquid) encounter each other and form a segmented flow pattern where the
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disperse phase (gas bubble or liquid droplet) occupies with its height nearly the whole tub-
ing diameter. Only a thin liquid film connects the two liquid slugs in front and behind the
disperse phase. Depending on tubing and liquid properties regarding hydrophobicity and
interfacial tension in L-L Taylor flow an aqueous phase can be either continuous or discontin-
uous. In G-L Taylor flow, the gas phase is the discontinuous phase and the liquid forms the
continuous phase. In some conditions (water-air Taylor flow in Teflon tubing for example) the
liquid film dries out so that both, gas and liquid form a dispersed phase [20, 75, 76, 112].
The objectives of this article are to present liquid-solid mass transfer coefficients and Sher-
wood numbers in gas-liquid and liquid-liquid “slurry Taylor” flow and to confront mass
transfer properties for solid particles transported in either the disperse or the continuous
phase. Dealing with particles in the continuous phase of G-L and the discontinuous phase of
L-L Taylor-flow two phenomena have to be accounted for :

• G-L Taylor flow can be operated at higher two phase velocities than L-L Taylor flow

• the flow pattern in the continuous phase and the discontinuous phase are not necessarily
comparable.

The recirculation patterns encountered in both, G-L and L-L Taylor flow are depicted in
Figure 4.2. Due to the thin liquid film, the gas bubble moves with a velocity higher than
the mean liquid flow. The maximum velocity of the liquid phase though is higher than the
bubble velocity. As the liquid is confined between two bubbles, two counter rotating vortexes
are formed [122, 124]. The vortexes fill the entire space between two subsequent bubbles and
with increasing Capillary number the film thickness increases and the center of the rotation
is moved towards the centreline of the tubing until at Ca>0.47 the vortex vanishes [125]. In
the droplets in L-L Taylor flow, the recirculation pattern depends strongly on the liquid prop-
erties (viscosity, superficial tension): two counter rotating vortexes were observed but also
subvortexes in the rear end and close to the nose of the droplet [28, 31, 36, 39, 65]. In the
continuous phase of either L-L or G-L flow only one vortex is present.

In literature flow regime transitions for G-L or L-L flow in micro or milli metric tubes are
often given in form of Weber numbers. The dimensionless Weber number is defined as ρu2dT

σ .
G-L and L-L Taylor flow are both located at similar Weber numbers for gas and liquid phases
(around 1) [2, 21, 134]. While the surface tension is in the same order of magnitude, due to
the high density difference of the gas and liquid phase this leads to operating velocities far
lower for L-L flow than G-L Taylor flow where higher gas flow rates can be employed.

4.2 experimental

4.2.1 Principle

To determine the liquid-solid mass transfer coefficient we work with the hydrogen form of
a strong cationic ion resin and a simple neutralisation reaction (the overbar denotes the ion
present in the solid ion exchange particle):

H+ + Na+ −→ Na+ + H+ (4.1)

H+ + OH− −→ H2O (4.2)

The reaction has been widely used to determine L-S mass transfer coefficients for mobilized
particles [7, 48, 98, 108, 110] and the ion exchange process is well known [52].
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(a) Scheme of typical flow pattern encountered in liquid slugs in G-L Taylor flow

(b) Scheme of typical flow patterns encountered in liquid droplets in L-L Taylor flow

Figure 4.2: Typical flow patterns encountered in liquid slugs in G-L Taylor-flow and in liquid droplets
in L-L Taylor-flow

Four processes control the ion exchange:

1. the mixture of the suspension phase with the sodium hydroxide solution

2. external diffusion through the liquid film around the ion exchange particle

3. internal diffusion in the ion exchange particle

4. the “reaction” or the exchange of both ions in the ion exchange particle.

The suspension phase and the sodium hydroxide solution are brought in contact the same
time the Taylor flow is formed, therefore the mixing of both phases has to be fast enough
compared to the external L-S mass transfer and the overall residence time. In G-L Taylor flow
the optimum operating parameters (inlet flow rates for suspension and sodium hydroxide
solution) were verified by visual experiments with a pH-colour indicator. The mixing in L-L
Taylor flow was verified experimentally and numerically [110]). Both were found to be fast
enough.

For ion exchange processes, the exchange of the two ions itself has been proven to be
quasi instantaneous [46, 52]. In dilute sodium hydroxide conditions and at low conversion
of the ion exchanger the Na+ concentration at the L-S interface is negligible compared to
the bulk concentration [52]. In this conditions migration of Na+ ions and internal transfer
limitations can be neglected. The process can be considered to be controlled mainly by the
diffusion across the external film. A simple, one dimensional model for stationary conditions
was established (Figure 4.3).

For a differential volume element of the aqueous liquid slug/ droplet the material balance
for the Na+ ion is given by:

FNa+,z = NNa+ · SLS + FNa+,z+ΔZ (4.3)
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Figure 4.3: Illustration of the model used to estimate the external L-S mass transfer coefficient in G-L
and L-L “slurry Taylor” flow (A). A volume element (B) is used to establish the material
balance for the Na+ ion between z and z + Δz. (LP: liquid phase, SP: solid phase, IP: inert
phase)

The normalised molar flux NA is transferred via the L-S exchange interface SLS which can
be defined by the solid hold-up εS, the specific surface area as and the liquid control volume
ΔVR.

SLS = aS · εS · ΔVR (4.4)

NNa+ = kS · (CA,ex − CA,su) (4.5)

The molar flow can be defined as FNa+ = QL · CNa+ , as the flow rates are assumed constant.
The surface concentration of the sodium hydroxide ion is negligible compared to the bulk
concentration and the material balance results in:

QL
dCNa

dz
= −ks · CNa,ex · as · εS · ST (4.6)

The length is linked to the residence time by the fluid velocity: z = uTP · τ so that the
conversion profile as a function of time can be given as:

XNaOH(τ) = 1 − exp
(
− 3εS

1 − εS
ks · τ

)
(4.7)

4.2.2 Set-up

Figure 4.4 gives a global view of the experimental set-up used for L-S mass transfer measure-
ments and can roughly be divided in three main parts: A fluid and suspension supply system
(I), the reactional section for L-S mass transfer measurements and a section (III) for sampling
and waste collection. The fluid and suspension supply section is similar to the ones described
in earlier works [80, 109, 110]. In-house built 4-port connectors (Figure 4.5) are used to mix
the aqueous suspension of ion exchange particles with the sodium hydroxide solution and
to generate the slug flow. The ratio QNaOH

QH2O+QNaOH
was kept constant for all mass-transfer expe-

riences (0.5 for L-L and 0.4 for G-L flow). The reactor used in this study consists in a simple
horizontal PFA (G-L) or FEP (L-L) capillary tubing with an internal diameter of 1.65 mm for
G-L and 1.6 mm for L-L flow. For G-L flow, 4 conductivity cells (in-house built, see Figure 4.6a)
were installed in series over a total length of 1.5 m (15, 50, 100 and 150 cm downstream from
the injector) . For L-L flow, one sensor (C4D-sensor, Figure 4.6b [110]) was used and to obtain
a concentration-time profile the capillary length was adjusted between 0.05 m to 0.5 m.
In G-L flow a visualization cell, filled with distilled water, is used to adapt the refractive index
of the PFA tube in order to obtain high quality movies and pictures with a high speed camera
(Optronis CR600x2, Solini 7:1 modular zoom, 0.9x-6.34x). In L-L flow snapshots of disperse
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slugs and particle placement were taken with a CCD camera (Canon PowerShot A640, Canon
GmbH) approximately 20 cm downstream from the point of slug generation. Stationary parti-
cle placement was attained instantaneously at the applied operating conditions.

The liquids were supplied with syringe pumps (Harvard apparatus PHD 4400 for G-L
and LDP-5, BD Labortron and NE1010, New Era Pump Systems Inc. for L-L flow) and the
gas phase was fed by mass flow controllers (Brooks instruments 58505 for flow rates higher
10 mL min−1 and Bronkhorst “el flow” for flow rates lower 12 mL min−1 for nitrogen). The
operating conditions can be found in Table 4.1.

(a) Experimental set-up used for G-L “slurry Taylor” flow experiments

(b) Experimental set-up used for L-L “slurry Taylor” flow experiments

Figure 4.4: Experimental set-up used for G-L and L-L “slurry Taylor” flow experiments: (I) injection
zone for gas/liquid and liquid-solid suspension; (II) reaction and visualization zone; (III)
sample collection zone.

4.2.3 Chemicals

Cation exchange beads (Dowex 50Wx8, Sigma-Aldrich, 200-400 Mesh and 100-200 Mesh )
were used in their original particle size as well as sieved to size fractions. The ion exchange
particles were thoroughly pretreated by repetitive washings with 1N solution of NaOH and
HCl as well as EtOH [53]. The particles were then stored in their H+ form either in deionized
water (G-L) or dried for 12 h at 70 ◦C and stored dry (L-L). The ion exchange particles were
regarded as spheres.
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(a) Connector used for G-L “slurry Taylor” flow (b) Connector used for L-L “slurry
Taylor” flow

Figure 4.5: In-house fabricated 4-port connectors for suspension mixing and slug flow generation, flu-
ids were injected as indicated on the picture, a) T-junction used in G-L flow, PMMA, internal
diameter 1.6 mm, b) Y-junction used for L-L flow, Teflon, internal diameter 1.6 mm.

For G-L flow the inert medium was nitrogen and for L-L flow two different organic sol-
vents were used to obtain different recirculation patterns: toluene (VWR International) and
n-hexanol (Merck KGaA) were used as received. For the suspension phase, sodium hydrox-
ide solutions (G-L: 0.01N standard solution, Alfa Aesar, L-L: 1N, Merck KGaA) and deionised
water were used (L-L) as well as a mixture of deionised water and absolute ethanol (G-L,
VWR chemicals). For G-L flow, due to the hydrophobic nature of the Teflon tubing, un-
steady flow occurs when pure water is used. The liquid phase forms rather plugs than slugs
[20, 75, 76, 112] and the liquid film dries out for high gas flow rates or after a certain time
on stream (here after approximately 20 min). This translates in an oscillating flow (possibly
linked to the alternating harsh pressure oscillations between liquid and gas phase) which is
not suitable for estimating mass transfer coefficients. To improve the wettability of the liquid
phase in G-L flow 0.255 wt% of liquid leak detector (Snoop, Swagelook, < 5% surfactant, na-
ture not detailed by the supplier) was added to the ethanol/water mixture as adding a small
quantity of ethanol alone did not suffice. Due to the small amount of surfactant, density and
viscosity was considered to be unchanged and equal to the water/ ethanol mixture.

The liquid properties are listed in table 4.2.

4.2.4 Intrusive and non-intrusive electrical impedance based measurement devices

4.2.4.1 Intrusive measurement for G-L “slurry Taylor” flow

In gas-liquid flow the concentration of the sodium ions was measured using an in-house
fabricated conductivity cell roughly based on the description in the literature [14, 37, 99]. A
PEEK cross (Upchurch 0.5 mm inner diameter) was used to connect the electrodes with the re-
action tube. Therefore one axis was drilled to 1.6 mm to match the inner diameter of the tube
(Figure 4.6). Two platinum wires (technical wire, 0.5 mm diameter, Acros Organics) served as
electrodes and were flush-mounted and connected to the cross with Upchurch fittings and a
PFE tubing sleeve. The wires were connected to a function generator (TTi TG330) and over
a 1 kΩ resistance to a data acquisition system (Graphtec midiLogger GL900). To avoid unde-
sirable electrochemical processes like total polarization inducing measurement perturbation,
an alternating current with a frequency of 1.36 kHz and a voltage of 20 V was applied. The
voltage measured across the resistance as well as the exciting signal is recorded with a data
logger which allowed for each measurement a total of 106 data points and a sampling every
10 μs. As a consequence, around 100 slugs could be covered by one measurement. Four con-
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Table 4.1: Operating conditions applied in G-L and L-L “slurry Taylor” flow experiments for L-S mass
transfer measurements.

G-L flow L-L flow

Inert phase N2 toluene, n-hexanol

Qinert [mL min−1] 1 - 12 0.5-3.25

Suspension phase 20 wt% EtOH in H2O H2O

Qsusp [mL min−1] 1.5 - 7 1-2.6

QNaOH/Qsusp [-] 0.4 0.5

Qsusp/Qinert [-] 0.35 - 1.67 1

CNaOH,0 [mol L−1] 0.004 0.005

Solid phase Dowex50Wx8 Dowex50Wx8

dP,swollen[μm] 40-200, 90-125 63-80, 80-90, 90-
125, 125-160

wcat [g L−1] 6-9 5

nIE,0/nNaOH,0 [-] 5.5 - 10 2.5-3.8

XIE [%] 10 27-40

Tubing PFA FEP

dT [mm] 1.65 1.6

Pressure ambient ambient

Temperature ambient ambient

Table 4.2: Properties of the liquids and mixtures used for L-S mass transfer measurements in G-L and
L-L “slurry Taylor” flow.

H2O EtOH/H2O

xH2O [-] 1 0.911

wsur f actant [-] - 0.00013

ρL [g cm−3] 0.9971 0.9659 [64]

μ [Pa s] 0.00089 0.0018 [64]

Sc 698 2298

DNa+ [m2 s−1] 1.28 · 10−9 [83] 0.803 · 10−9[83]
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ductivity cells were placed in series to obtain a concentration-time profile with a single run.
The signals were then treated numerically to detect the mean voltage for each slug.

(a) Conductivity cell, G-L “slurry Taylor” flow measure-
ments

(b) C4D sensor, L-L “slurry
Taylor” flow measure-
ments

Figure 4.6: Devices for conductimetric measurements applied in L-S mass transfer experiments, a) in-
house fabricated conductivity cell used in G-L “slurry Taylor” flow, b) C4D sensor (eDAQ
Pty. Ltd.) and flow constriction used in L-L flow

4.2.4.2 Non intrusive measurement for L-L “slurry-Taylor” flow

In liquid-liquid flow, the neutralization of sodium hydroxide is monitored by C4D-based
(Figure 4.6b, contactless, capacitively coupled) concentration measurements. A noninvasive,
commercial C4D-sensor (excitation with 2 MHz, 5V and sampling frequencies of 3 kHz) in
1/16 OD plastic capillaries has been utilized, together with a data recorder and ChartTM
software package (ET125 general purpose headstage, e-corder®ER125 C4D detector, eDAQ
Pty. Ltd.). The sensor principle is reviewed in [22]. The sensor is only applicable to 1/16 OD
capillaries. Hence, the reactional capillary (1/8 OD) was attached to the sensor tube and the
sensor was placed 2 cm downstream from the reduction (1.65 to 0.75 mm ID). The distance
between the restriction and the sensor is very short and the sensor is placed at the exit of the
reactor. Therefore the effects due to the restriction on the L-S mass transfer can be neglected.

4.2.5 Mass transfer measurements in “slurry Taylor” flow

In G-L flow, before each run the ion exchange particles were placed in a filter funnel and con-
verted to the H+-form (batch equilibria with 3x50ml 1N HCl) and subsequently washed with
deionized water until the effluent solution had reached a neutral pH. The remaining water
was removed as complete as possible by filtration under vacuum. In G-L flow experiments the
ion exchange particles were used in their humid state whereas in L-L flow dry particles were
employed. The desired solid weight was placed together with the solvent in the suspension
feeding system which was than sealed and connected to the reactor.

Before each experimental run a calibration of the conductivity cells/ sensor with particle
free alkaline solutions was carried out. A stabilisation time of 10 minutes was allowed before
the syringe pump connected to the suspension feeding system was launched at the desired
flow-rate. The inert fluid rates (gas or organic phase) were set first, than the sodium hydroxide
flow was started and a time corresponding to approximately 5 residence times was consid-
ered as sufficient to reach a steady state. The conductivity measurements were launched, a
video/ picture of the Taylor flow was captured and a sample collected at the reactor exit for
further analysis. The operating conditions tested are listed in Table 4.1. The collected samples
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were used to determine the actual solid charge within the slugs either by drying (G-L) or
by reverse titration with a 0.01 N NaOH solution knowing the total exchange capacity (L-L).
For both configurations uncertainties for the estimation of the L-S mass transfer coefficient
have two sources: firstly fluctuating solid charge during the experimental run and its correct
determination. For G-L flow experiments, this uncertainty was estimated to effect the mass
transfer coefficient by 5%. Also the determination of the sodium hydroxide concentration has
to be accounted for. For G-L flow for example the measured voltage deviates slightly from
slug to slug. The impact on the L-S mass transfer coefficient due to this deviation is around
5%. The standard deviation for the mass transfer coefficient for G-L flow is thus 10% and
for L-L flow the standard deviation was estimated to be around 38% for water-toluene and
around 52% for water- n-hexanol flow.

4.3 results and discussion

4.3.1 Gas-liquid “slurry Taylor” flow

4.3.1.1 Effect of two phase velocity

Figure 4.7 illustrates the influence of two phase velocity uTP on the mass transfer coefficient.
Pictures are added to give an example for the dispersion of solid particles in the liquid slug.

Figure 4.7: External L-S mass transfer coefficients estimated for gas-liquid “slurry Taylor” flow, pic-
tures illustrate particle behaviour for two velocities, the two phase velocity was defined as
uTP = uslug + uB.

For the lowest two phase velocities (2.2 cm s−1 to 3.6 cm s−1) used in this study, the resin
particles are only placed in the lower part of the liquid slug and a slight accumulation in
the rear part can be detected. An increase of velocity leads first to a better distribution of
the particles in the lower part of the slug and successively to the appearance of particles
in the upper part of the liquid slug. The increase of two phase velocity from 2.2 cm s−1 to
8.2 cm s−1 does not only affect the distribution of particles in the liquid slug but leads also to
a steady increase of the mass transfer coefficient (from 0.0053 cm s−1 to 0.0089 cm s−1). At two
phase velocities higher than 15 cm s−1 homogeneously distributed particles over the entire
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slug height could be observed. However the mass transfer coefficient for these high velocities
(15 cm s−1 to 19 cm s−1) appears to stay constant at 0.0118 cm s−1 (±1.6%). It seems as if once
sufficient energy input for homogeneous distribution is reached, an increase of the fluids flow
rate beyond this limit, does not lead to further increase the mass transfer coefficient.

4.3.1.2 Effect of slug length

Figure 4.8: Influence of slug length on the Sherwood number for different two phase velocities in G-L
“slurry Taylor” flow

For certain velocities the ratio of gas and liquid flow rate was varied to produce different
slug length with the same cross mixer in order to investigate the influence of slug length on
L-S mas transfer. By varying the ratio of gas and liquid flow rate the length of the liquid
slug but also of the gas bubble is affected. However, the bubble length does not influence
the ion exchange nor the placement of solid particles. Therefore this is an adequate method
to investigate the influence of slug length on the external L-S mass transfer. For three bub-
ble velocities (2.6 cm s−1 to 5.4 cm s−1) different slug length between 1.7 mm to 4 mm were
obtained. In Figure 4.8 the influence of slug length on the Sherwood number is illustrated.
Within the accuracy of our measurements no influence on the Sherwood number could be
detected. Also no real difference in hydrodynamics between small and longer slugs at these
operating conditions was observed.

4.3.2 Liquid-liquid “slurry Taylor” flow

4.3.2.1 Effect of two phase velocity

The influence of two phase velocity on the mass transfer coefficient is illustrated for n-hexanol-
aqueous flow in Figure 4.9 a). Representative snapshots of the flow conditions are added to
illustrate typical particle behaviour. In n-hexanol-aqueous L-L “slurry Taylor” flow, the resin
particles are circulating in the lower part of the liquid droplet for the velocity range (1 cm s−1

to 2.5 cm s−1) studied and it could be observed that particles accumulate slightly in the rear
end of the droplet. Increasing the velocity from 1 cm s−1 to 2.5 cm s−1 leads to an increase of
the mass transfer coefficient from 0.005 cm s−1 to 0.01 cm s−1. For n-hexanol water the upper
limit for stable slug flow conditions is situated quite low at 4.5 cm s−1. Therefore it was not
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(a) aqueous- n-hexanol flow

(b) aqueous - toluene flow

Figure 4.9: Effect of two phase velocity on external L-S mass transfer coefficient in L-L “slurry Taylor”
flow, pictures indicate localisation of particles, a) aqueous- n-hexanol flow, b) aqueous -
toluene flow.

possible to work with more homogeneously suspended solid particles and to investigate, if by
further increasing the two phase velocity the L-S mass transfer coefficient increases. Irregular
slug lengths impede mass transfer measurements beyond that threshold.

4.3.2.2 Effect of particle size

In the literature the L-S mass transfer coefficient was reported to be independent from particle
diameter for large particles in two phase and three phase fluidized beds [8], liquid-solid
horizontal pipe flow [48] and stirred tank reactors (for dP > 200 μm) [47, 98]. For bubble
columns a negative impact of particle size (200 ≤ dP ≤ 900 μm) was found [108]. In stirred
tank reactors a negative influence for fine particles (< 100 μm) was likewise detected. It was
shown that very fine particles approach the theoretical limit of Sh = 2 [7, 9, 47]. The different
behaviour for small and larger particles is explained by a change of governing mechanism.
Asai et al. [9] showed that for particles >> 200 μm the mass transfer coefficient is proportional
to D2/3

m (ks ∝ D2/3
m ) indicating boundary layer theory and for particles < 27 μm the Sherwood
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Figure 4.10: Influence of particle size on L-S mass transfer coefficient, black, square symbols represent
results for aqueous - n-hexanol flow: the two phase velocity was kept constant at uTP =
2.5cm/s, red circle symbol correspond to experiments with zeolith particles, experimental
conditions are detailed in [110], uTP = 6.5cm/s. The dashed line indicates the theoretical
limit Sh = kS ·dP

D = 2.

number approaches its limiting theoretical value Sh = 2 which indicates that mass transfer
occurs due to molecular diffusion and not turbulent diffusion.

The influence of particle size on the L-S mass transfer coefficient in “slurry Taylor” flow con-
ditions was investigated for water - n-hexanol flow. The two phase velocity was kept constant
and resin particles sieved into different size fractions (wet sieving) from 63 μm to 160 μm were
used. The results are illustrated in Figure 4.10. Given the high errorbars, the obtained results
have to be handled with care but it appears that our results reflect the tendency described in
the literature: judging from the overall trend it appears that an increase of particle size leads
to slightly increased Sherwood numbers. A possible explanation for this behaviour might be
that smaller particles are more easily entrained by flow lines which leads to a reduction of
relative velocity between particle and surrounding liquid. Similar to Asai et al. [9] we find
that for small particles (dP < 70¯m) the Sherwood number approaches 2.

4.3.2.3 Effect of inert fluid

Figure 4.9 b) displays the mass transfer coefficient kS estimated for aqueous-toluene slug
flow and gives pictures for typical particle behaviour. Contrary to aqueous-hexanol flow the
transition of regular to irregular slug flow is at higher velocities (uTP = 10.5 cm s−1). At small
velocities of 1 cm s−1, particles are entirely segregated in the lower rear cap. The resulting mass
transfer is very low (0.0013 cm s−1). Not only film transfer, but also convective transport of
sodium hydroxide by slow internal circulation within the slug can be attributed to this finding
[110]. However, kS inclines significantly at 2.5 cm s−1. Still, particles segregate in the rear cap,
but are mobile in the co-rotating subvortex. It is also observed that kS remains constant for
transport velocities higher than 2.5 cm s−1. The snapshots indicate that the internal circulation
is not accelerated sufficiently to provide any substantial change in particle behaviour.

The Sherwood number was calculated and found to be below 2 for water-toluene “slurry
Taylor” flow (Sh = 0.3to1). These unsatisfying low results can possibly be attributed to the
agglomeration of particles: the intense agglomeration hinders the diffusion of Na+ ions to
reach particles in the inner heart of the agglomerates [110]. To correctly determine the mass
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transfer coefficient, the particle diameter of the non-agglomerated particles might be not suf-
ficient and could be the cause for the very low mass transfer coefficients detected. Instead,
a representative diameter for the agglomerates appears more appropriate, which is however
unknown.

Comparison between water-toluene and water n-hexanol slug flow demonstrates that inten-
sive circulation and high particle mobility promotes liquid-solid mass transfer. Changing the
inert phase from toluene to n-hexanol increases the mass transfer coefficient by a factor of 10.

4.3.3 Comparison between G-L and L-L “slurry Taylor” flow

Figure 4.11: Comparison of Shwerwood numbers obtained for G-L and L-L “slurry Taylor” flow, re-
sults obtained for aqueous - n-hexanol (L-L) and water/ ethanol-nitrogen flow (G-L), par-
ticle diameters as indicated in the graph.

The Sherwood numbers obtained in G-L and L-L “slurry Taylor” flow are depicted in
Figure 4.11. To compare the L-S mass transfer properties of G-L and L-L “slurry Taylor” flow
we concentrate first on the results obtained for aqueous - n-hexanol flow for L-L “slurry
Taylor” flow. The main difference between G-L and L-L “slurry Taylor” flow is the higher
operating range and thus the higher possible velocities which lead to better distribution and
more effective recirculation of particles. Generally a more homogeneous particle recirculation
pattern could be observed in G-L Taylor flow. Nevertheless, Sherwood numbers estimated
for G-L and L-L “slurry Taylor” flow are in the same range for low velocities. This might
indicate that once particles do not agglomerate but circulate freely in the liquid phase, it
is not important if particles are distributed homogeneously in the entire slug/ droplet or
if there is an accumulation in the lower part. Whereas for L-L flow the velocity can hardly
be further increased (limit uTP = 6.5 cm s−1) this velocity limit is only in the lower range
for G-L flow. Here the total velocity could be increased from 2.8 cm s−1 to 19 cm s−1 and the
Sherwood number doubled. Additionally the maximal velocity applied in these experiences
does not correspond to the limit for Taylor flow conditions and it is possible to further increase
the velocity. In both L-L and G-L flow an increase of velocity did not necessarily led to an
increase of the L-S mass transfer coefficient. In G-L flow the Sherwood number appears to be
constant (Sh = 14.4 ± 1.6%) for two phase velocities higher than 15 cm s−1. Also for velocities
higher than 15 cm s−1 particles are distributed homogeneously over the entire slug height. A
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similar behaviour can be found for conventional reactors with mobilized particles: in stirred
tanks kS increases first rapidly for increasing velocities but beyond just suspended conditions
augmenting the stirrer speed still increases ks but its influence is reduced [98]. Ohashi et al
[94] investigated the mass transfer for transported particles in horizontal L-S pipeflow and
found that for low flow rates particles were mainly situated in the lower part of the tube and
an increase of velocity did not lead to increase kS. Only once a certain velocity was reached,
kS started to increase. Sänger and Deckwer [108] investigated the mass transfer in bubble
columns and found that beyond a certain value of gas flow rate the mass transfer coefficient
could not be further increased, this values roughly coincided with a change in flow pattern
from homogeneous to heterogeneous churn-turbulent flow.

In G-L “slurry Taylor” flow the first increase of velocity leads to more and more homoge-
neously distributed particles but once the particles are well distributed over the entire slug
height further increase of velocity does not influence the mass transfer coefficient any longer.
A possible explanation is that the particles follow the liquid streamlines and even if the veloc-
ity is increased this does not influence the relative velocity between surrounding liquid and
particle flow.

4.3.4 Conclusion and perspectives

The L-S external mass transfer was investigated for particles transported in the continuous
phase of G-L and the discontinuous phase of L-L “slurry Taylor” flow. Mass transfer coeffi-
cients and Sherwood numbers were estimated using the transfer of sodium ion from aqueous
solution to ion exchange particles. Overall, the Sherwood numbers obtained for “slurry Tay-
lor” flow are comparable to those obtained in more conventional reactors with slurry catalyst.
In bubble columns for example, for the same fluid and particle properties, Sherwood number
from 14 to 20 can be calculated [108]). It was found that for aqueous-toluene L-L flow, particle
agglomeration in the rear end of the liquid droplet leads to very low mass transfer coefficients
(ks = 0.0012 cm s−1). An increase of two phase velocity did not enhance particle circulation or
de-agglomeration and had thus no influence on mass transfer coefficients. Once particles do
not agglomerate but circulate freely in the aqueous phase, the Sherwood number increases
with increasing two phase velocity. For aqueous - n-hexanol flow, the Sherwood numbers es-
timated for particles transported in the disperse phase are in the same range (Sh = 4 to 8.4,
uTP = 1 cm s−1 to 2.5 cm s−1) as for particles suspended in the continuous phase of g-l “slurry
Taylor” flow (Sh = 6 to 9, uTP = 2.2 cm s−1 to 3.6 cm s−1). Stable flow conditions for L-L
“slurry Taylor” flow could be only achieved for velocities up to uTP = 4.5 cm s−1. Increasing
the two phase velocity in G-L “slurry Taylor” flow led to more and more suspended particles
in the liquid slug and to an increase of the Sherwood number. However, once the particles
are homogeneously suspended over the entire slug height (uTP > 8 cm s−1) an increase of two
phase velocity has no impact on the Sherwood number (Sh = 14.4). In conclusion, it seams
that for freely circulating particles and no agglomeration phenomena, the recirculation effi-
ciency and the occupied space of circulating particles has no effect on the L-S external mass
transfer. At the low Reynolds numbers in Taylor flow, laminar conditions predominate and
one could assume that therefore the primary source of slip velocity (between particle and sur-
rounding liquid), and thus driving force for external L-S mass transfer, is the settling velocity
of the solid particle.

To clarify these assumptions it is necessary to further investigate the l-s mass transfer coeffi-
cient in G-L and L-L “slurry Taylor” flow and the effect of recirculation pattern and efficiency.
Employing other aqueous-organic phase couples might help to enlarge the operating range
for L-L Taylor flow and to allow operating at conditions were the particles are homogeneously
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suspended in the entire droplet. Also it might be interesting to study the influence of particle
density to gain further insight on the influence of settling velocity on the L-S mass transfer
coefficient.

4.4 symbols

Roman Symbols

as m−1 specific surface area

Ca - capillary number Ca = μuB/σ

CNa mol L−1 sodium hydroxide concentration

CNa,ex mol L−1 sodium hydroxide concentration at the L-S
interface

C∗
Na mol L−1 equilibrium sodium hydroxide concentration

CNaOH,0 mol L−1 initial sodium hydroxide concentration at the
reactor entrance

dP m particle diameter

dT m internal tubing diameter

DNa+ m2 s−1 diffusion coefficient of sodium hydroxide ions

FNa mol s−1 molar flux of Na+-ions

kS m s−1 L-S external mass transfer coefficient

nIE,0 mol initial molar amount of ion exchange site

nNaOH,0 mol initial molar amount of sodium hydroxide
ions

NNa mol s−1 m−2 normalised molar flux of Na+-ions

Qaqu mL min−1 aqueous flow rate at the exit of the suspension
supply unit before formation of Taylor flow

Qinert mL min−1 flow rate of inert phase

QNaOH mL min−1 flow rate of sodium hydroxide solution at en-
trance of 4-port junction

QL mL min−1 flow rate of active liquid phase

Qsusp mL min−1 suspension flow rate Qsusp = QNaOH + Qsusp

SLS m2 liquid-solid interface

ST m2 channel cross section

Sc - Schmidt number Sc = μ/ (ρD)

Sh - Sherwood number Sh = ksdP/D

uB m s−1 bubble or droplet velocity

uTP m s−1 two phase velocity (sum of discontinuous and
continuous superficial velocity)

VR m3 reactor volume

wcat g L−1 catalyst loading

wsur f actant = - mass fraction of surfactant

xH2O - molar fraction of water

XNaOH - sodium hydroxide conversion
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z = m length

Greek symbols

εS - solid volume per liquid slug (G-L) or liquid
droplet (L-L)

μ Pa s dynamic viscosity

ρL kg m−3 liquid phase density

τ s residence time in reactor

Abbreviations

B bubble

G gas phase

L liquid phase

P particle

R reactor

suso suspension

S solid phase

TP two phase
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In Chapter 3 the influence of flow direction and thus gravity on particle placement was
investigated and a fundamental difference between horizontal and vertical downwards flow
was found: whereas for horizontal flow a minimum two phase velocity is necessary to ensure
homogeneously distributed particles over the entire slug volume, for vertical flow even for
very low velocities (uTP = 2 cm s−1) particle distribution is homogeneous. For high velocities
an interesting phenomena could be observed for vertical flow: solid particles follow mainly
the outer streamlines where the velocity is the highest. A centrifugal force appears to be pre-
dominant and particles seem to be pushed towards the outer recirculation loop. To continue
the investigation of external L-S mass transfer in “slurry Taylor” flow, the study is now ex-
pended towards G-L vertical flow. This chapter is therefore dedicated to study the influence
of flow direction, two phase velocity, solid loading and nature of the liquid phase for particles
transported in the discontinuous phase of horizontal and vertical G-L “slurry Taylor” flow.
The obtained results serve to propose a first correlation for the Sherwood number in “slurry
Taylor” flow.
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5.1 introduction

Three phase gas-liquid-solid (G-L-S) reactions [24, 111, 126] play an important role in the
chemical industry. For several reasons the use of suspension catalysts is often the best op-
tion for the handling of the solid phase. Suspension catalysts ensure efficient heat removal
and prevent the build-up of hot-spots, fine powders provide good external surface area and
enhanced internal mass transfer. By enabling to introduce fresh catalysts in a continuous
way, they ensure an easy and on-line replacement or regeneration of fast deactivating cat-
alysts. Three phase G-L-S contactors with suspension catalysts often employed in chemical
industry are in general bubble columns, stirred tank reactors and fluidized or ebullated beds
[24, 103, 111, 126]. Suspension reactors are generally characterized by good mass and heat
transfer capacities, low power requirements due to overall low pressure drops and their high
flexibility. However they also promote a high degree of back-mixing for the liquid and solid
phases and gas phase for stirred tanks which can be a drawback for reactions with selectiv-
ity issues and/ or when very high conversions are required. For applications which require
the use of suspension catalysts (e. g. deactivation, need for high internal mass transfer) and
where the reaction kinetics demand plug flow behaviour, up to now no industrial technology
is able to answer both demands simultaneously.

A typical flow pattern often encountered in micro reaction technology due to its interesting
properties [62, 72] is the so-called Taylor flow or segmented flow. Taylor flow is character-
ized by a high surface to volume ratio, nearly ideal plug flow conditions (Peclet numbers up
to 1000 [125]) and a circulation pattern in the liquid slug ensuring intensive convective mixing.

One possible solution to provide a G-L-S reactor system which combines suspension cat-
alysts, plug flow behaviour and excellent heat and mass transfer capacities is the “slurry
Taylor” flow were solid particle are transported in form of a suspension in the liquid slugs of
G-L Taylor flow. The internal circulations present in the liquid slugs [63, 72] can be used to
keep catalyst particles in motion and transport them in a stable three-phase flow. The concept
of freely circulating micro-metric particles in milli-metric tubes is still quite recent as con-
cerns regarding clogging due to bridging and/ or deposition [49, 50] generally prevail. Often
studies centred on the demonstration of the interesting performances of this contact mode
[13, 33–35, 80, 128] or focused on hydrodynamic investigations [73, 95]. So far only very few
studies addressed mass transfer properties. Cai et al [16] investigated the influence of very
fine particles (dP = 2 μm to 12 μm) on the G-L mass transfer. First results for the L-S mass
transfer in “slurry Taylor” flow appeared just recently for horizontal flow [79, 110].

Previous hydrodynamic studies of particle dynamics in G-L “slurry Taylor” flow in hori-
zontal and vertical oriented capillaries showed a fundamental difference regarding particle
behaviour: for a given solid in horizontal flow a minimal fluid velocity is necessary to homo-
geneously suspend the solid in the liquid phase whereas in vertical flow, particles are equally
distributed in the slug even for low velocities. The objective of this article is therefore to in-
vestigate if this difference in hydrodynamics translates to the L-S mass transfer properties.
The external L-S mass transfer coefficient is thus investigated for horizontal and vertical flow.
Furthermore, the influence of fluid velocity, solid charge, fluid media and particle diameter is
investigated and a first correlation is proposed.
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5.2 experimental

5.2.1 Principle

The experimental method to determine the L-S mass transfer has been described in Sec-
tion 4.2.1. The hydrogen form of a strong cationic ion resin and a simple neutralisation re-
action with sodium hydroxide aqueous solution (the overbar denotes the ion present in the
solid ion exchange particle) are used:

H+ + Na+ −→ Na+ + H+ (5.1)

H+ + OH− −→ H2O (5.2)

Figure 5.1: Illustration of the model used to estimate the external L-S mass transfer coefficient in G-L
“slurry Taylor” flow (A). A volume element (B) is used to establish the material balance for
the Na+ ion between z and z + Δz. (LP: liquid phase, SP: solid phase, IP: inert phase)

Ion exchange and the neutralisation reaction of dilute caustic sodium hydroxide solutions
have been widely used to determine L-S mass transfer coefficients for mobilized particles
[7, 48, 98, 108, 110] and the ion exchange process is well known [52]. The exchange of the two
ions is considered to be quasi instantaneous [46, 52] and the Na+ concentration at the L-S in-
terface is negligible low compared to the bulk concentration [52] for dilute sodium hydroxide
conditions and at low conversion of the ion exchanger. It is therefore possible to neglect the
migration of Na+ ions and internal transfer limitations and consider the process to be mainly
controlled by the diffusion across the external film. The one dimensional model for stationary
conditions has been derived in Section 4.2.1 and is illustrated in Figure 5.1. The conversion
profile allows to calculate the L-S mass transfer coefficient according to Equation 5.3.

XNaOH(τ) = 1 − exp
(
− 3εS

1 − εS
ks · τ

)
(5.3)

5.2.2 Set-up

The experimntal set-up is illustrated in Figure 5.2 and has been described in Section 4.2.2. The
aqueous suspension of ion exchange particles is mixed with the sodium hydroxide solution
in an in-house built 4-port connector which generates the slug flow. The reactor consists
in a simple PFA capillary tubing with an internal diameter of 1.65 mm. Four (horizontal)
respectively five (vertical) conductivity cells (in-house built, Section 4.2.4.1) were installed in
series over a total length of 1.5 m to 1.8 m. The tubing was straightened and placed with the
help of a water-level as horizontal/ vertical as possible. In order to obtain high quality films
and pictures a visualization cell, filled with distilled water is used to adapt the refractive
index of the PFA tube. The liquids were supplied with syringe pumps (Harvard apparatus
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PHD 4400) and the gas phase was fed by mass flow controllers (Brooks instruments 58505 for
flow rates higher 10 N mL min−1 and Bronkhorst “el flow” for flow rates lower 12 N mL min−1

for nitrogen). The operating conditions can be found in Table 5.1.

Figure 5.2: Experimental set-up used to determine L-S mass transfer coefficients of “slurry Taylor”
flow: (I) fluid supply, 4-port junction for generation of segmented flow; (II) reaction and
visualization zone; (III) sample collection zone.

5.2.3 Chemicals

Cation exchange beads (Dowex 50Wx8, Sigma-Aldrich, 200-400Mesh, 100-200 Mesh) were
used in their original particle size as well as sieved to size fractions. The ion exchange particles
were thoroughly pretreated by repetitive washings with 1N solution of NaOH and HCl as
well as EtOH [53]. The particles were then stored in their H+ form in deionized water. The
inert medium was nitrogen. For the suspension phase, sodium hydroxide solutions (0.01N
standard solution, Alfa Aesar) and mixtures of deionised water and absolute ethanol (VWR
chemicals) or acetonitrile (Sigma Aldrich) were used. In order to ensure steady and invariable
flow conditions 0.255 wt% of liquid leak detector (Snoop, Swagelook, < 5% surfactant, nature
not detailed by the supplier) was added to the ethanol/water mixture. Due to the small
amount of surfactant, density and viscosity was considered to be unchanged and equal to
the water/ ethanol mixture. The liquid properties are listed in Table 5.2. The diffusion in the
acetonitrile/ water mixture was estimated to be close to the diffusivity in pure water as the
viscosity is approximately the same.

5.2.4 Mass transfer measurements in “slurry Taylor” flow

The employed protocol for the mass transfer measurements is similar to the one described
in Section 4.2.5. The desired solid weight of the pretreated ion exchange particles (washed,
converted to the H+-form, filtrated under vacuum) was placed together with the solvent in the
suspension feeding system. A calibration of the conductivity cells with particle free alkaline
solutions was carried out before each experimental run. The gas and liquid flow rates were
set and a time corresponding to approximately 5 residence times was considered sufficient to
reach steady state. The conductivity measurements were launched and for each run a video
of the Taylor flow was captured and one to three samples were collected at the reactor exit for
further analysis. The operating conditions tested are listed in Table 5.1. The standard deviation
for the mass transfer coefficient was considered to be around 10% accounting for the difficult
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Table 5.1: Operating conditions applied in G-L “slurry Taylor” flow experiments for L-S mass trans-
fer measurements. Experiments were conducted in two different fluid media: an aqueous-
ethanol (EtOH/H2O) and an aqueous-acetonitrile (ACN/H2O) mixture.

EtOH/H2O ACN/H2O

Inert phase N2 N2

Qinert [mL min−1] 1-8 2-12

Suspension phase 20 wt% EtOH in H2O 15.5wt % ACN in
H2O

Qsusp = QNaOH + Qaqu [mL min−1] 2 4-7

QNaOH/Qsusp [-] 0.4 0.4

Qsusp/Qinert [-] 0.25-2 0.5-2

CNaOH,0 [mol l−1] 0.004 0.004

Solid phase Dowex50Wx8 Dowex50Wx8

dP,swollen [μm] 100 100, 160

wcat [g L−1] 6-20 6

Tubing PFA PFA

dT [mm] 1.65 1.65

Pressure ambient ambient

Temperature ambient ambient

Table 5.2: Properties of the liquids used for L-S mass transfer measurements in G-L “slurry Tay-
lor” flow. The properties are given for ethanol/ water (EtOH/H2O), acetonitrile/ water
(ACN/H2O) mixtures and for the sake of comparison also for pure water.

H2O EtOH/H2O ACN/H2O

xH2O [-] 1 0.911 0.926

wsur f actant [-] - 0.00013 -

ρL [g cm−3] 0.9971 0.9659 [64] 0.9705

μ [Pa s] 0.000891 0.001781 [64] 0.00098 [129]

Sc 698 2298 789

DNa+ [m2/s] 1.28 · 10−9 [83] 0.803 · 10−9 [83] 1.28 · 10−9
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measurement of the correct solid charge as well as the determination of the sodium hydroxide
concentration as the measured voltage deviates slightly from slug to slug.

5.3 results and discussion

5.3.1 Influence of two phase velocity and flow direction on the liquid-solid mass transfer

Figure 5.3: Influence of two phase velocity on Sherwood numbers for horizontal (� , �) and vertical
(�, �) “slurry Taylor” flow, filled symbols represent experiments conducted with ethanol/
water and empty symbols with acetonitrile/ water mixtures. The pictures illustrate typical
flow patterns for the indicated operating conditions.

In Figure 5.3 the resulting Sherwood numbers for horizontal and vertical flow are illustrated
for increasing two phase velocity. Whereas the flow pattern differs for horizontal and vertical
flow, no influence of flow direction on the L-S mass transfer coefficient could be observed.
For vertical flow, over the whole operating range particles were always observed as uniformly
distributed of the entire slug. In horizontal flow, however, for low velocities, the particles were
placed preferentially in the lower part of the liquid slug and a certain minimal velocity was
needed to homogeneously suspend the solid particles over the entire tubing section.

For horizontal and vertical flow, the Sherwood number increases with increasing two phase
velocity (Sh = 6.5 to 15.3 for uTP = 2.2 cm s−1 to 16 cm s−1). In horizontal as well as vertical
flow, once a certain velocity is reached (uTP = 16 cm s−1), a further increase seems to not or
only slightly influence the Sherwood number and a plateau like behaviour is observed. This
velocity appears to coincide with the minimal velocity necessary for homogeneous distribu-
tion in horizontal flow.

Ohashi et al. studied L-S mass transfer in horizontal [94] and vertical [93] small tubes (dT =

2 cm to 5.5 cm) for two phase liquid-solid flow. In spite of the differences (dT = 2 cm to 5.5 cm
vs 1.65 mm, liquid-solid flow vs. “slurry Taylor” flow, uTP > 50 cm s−1 vs. uTP < 30 cm s−1)
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their results report on solid particles circulating in cylindrical tubes and therefore a compara-
ble physical systems.
Ohashi et al. could apply the same mass transfer correlation for horizontal as well as verti-
cal flow, even tough the flow profiles in both configurations differ: particles were uniformly
distributed in vertical flow and largely located close to the bottom for horizontal flow re-
spectively. The particle distribution does not seem to affect the L-S mass transfer and cannot
explain the decreasing influence of two phase velocity on the mass transfer coefficient for
higher two phase velocities (uTP > 16 cm s−1) in “slurry Taylor” flow. More detailed studies
such as μ-PIV appear necessary to further investigate this finding.

5.3.2 Influence of solid loading and particle diameter

In Figure 5.4a the profile of the L-S mass transfer coefficient for increasing two phase velocity
is depicted for two different solid loadings. Pictures demonstrate the placement of solid par-
ticles for the corresponding operating conditions. The increase of solid charge from 5.4 g L−1

to 17.5 g L−1 does not seem to affect the L-S mass transfer. For both solid loadings the par-
ticles circulate undisturbed in the liquid slugs. The settling velocity in higher concentrated
suspensions is hindered [105, 120] which could possibly change the relative velocity between
solid particles and surrounding fluids for different suspension concentrations. However, for
the solid loading used in this study, the settling velocity is only reduced by 15%. This appears
to be not enough to observe any influence on the L-S mass transfer.

To investigate the influence of particle diameter on L-S mass transfer properties we used
two different particle classes (dP,S = 100 and 160 μm). This increase of particle diameter trans-
lates in an increase of settling velocity from 0.7 to 1.9 mm s−1. At the low Reynolds numbers
present in Taylor flow, and the low particle densities, it is adequate to assume that the parti-
cles follow closely the liquid streamlines and the only source of slip velocity comes from the
gravity influence. As we did not detect an impact of flow direction we confront the experi-
ments for both particle diameters in vertical flow with the results obtained in horizontal flow.
Figure 5.4b illustrates that a similar behaviour could be observed for both particle classes
studied.
In conventional contactors which also apply freely circulating solid particles, the impact of
particle diameter has been the subject of several studies. In stirred tanks it was found that the
L-S mass transfer coefficient is almost independent from particle diameter for particles larger
than 200 μm, for fine particles (dP < 100 μm) a steep increase of mass transfer with decreasing
particle size approaching the theoretical limit of Sh = 2 could be observed [7, 9, 98]. In bubble
columns a negative impact of particle diameter (200 ≤ dP ≤ 900 μm) on the L-S mass transfer
was observed [108].
In contrast to the studies in conventional reactors, the average velocities in “slurry Taylor”
flow are rather low and laminar flow is characteristic. Therefore a more pronounced impact
of settling velocity (and thus particle diameter and density difference) appears possible for
very low two phase velocities. In this study the fluid velocity was always high compared to the
settling velocity and sedimentation of particles was not visually detected, which is one reason,
why no impact of particle diameter on L-S mass transfer was detected. To better understand
a possible influence of particle diameter, solid charge and particle density, experiments with
two phase velocities close to the limit of particle settling velocity could be interesting, and
might reveal an effect of gravity and therefore flow direction.
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(a) Influence of solid charge, experiments were conducted with H2O/ACN mixtures in ver-
tical flow, wS = 5.4 g l−1 (�) and 17.5 g l−1 (�).

(b) Influence of particle diameter, experiments were conducted with H2O/EtOH mixtures,
in vertical flow (dP = 100 μm, �and dP = 160 μm, �) and horizontal flow (dP = 100 μm,
�).

Figure 5.4: Effect of solid charge and particle diameter on L-S mass transfer in “slurry Taylor” flow.
The dashed lines indicate the theoretical results calculated with the proposed correlation in
Equation 5.8.
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5.3.3 Correlation for L-S mass transfer coefficients in horizontal and vertical “slurry Taylor” flow

(a) Sh = 2 + α
(

ε1/3
F d4/3

P ρFμ−1
F

)β
Sc1/3 (b) Sh = 2 + α

(
ε1/3

F d4/3
P ρFμ−1

F

)0.75
Sc1/3

Figure 5.5: Parity diagram illustrating experimental and theoretical L-S mass transfer coefficients calcu-
lated with two correlations for the Sherwood number: Sh = 2 + α (Reε)

β Sc1/3. The dotted
lines indicate an uncertainty of 15%. The mean standard deviation is with 8.2% and 9.7%
equally good. Fixing β at 0.75, illustrated in (b) to account for the negligible influence of
particle diameter on the mass transfer coefficient kS appears to allow a better fitting for the
high range of two phase velocities.

L-S mass transfer experiments were performed for two different fluid media over the same
two phase velocity range allowing to establish a first correlation for the Sherwood number.
Typically Sherwood number correlations are expressed in function of Reynolds and Schmidt
number as Sh = 2 + αReβScγ. For stirred tanks and bubble columns the Reynolds number
is often based on the energy dissipation rate Equation 5.4 either taking into account the
stirring speed or the energy introduced by the gas phase. Ohashi et al. [94] proposed a new
approach for particles transported in tubular two phase L-S flow. They introduced the energy
dissipation rate for particles circulating in conducts as the sum two effects (i) εF accounts
for pressure drop due to friction and wall shear rate (Equation 5.5) and (ii) εP describes the
impact of relative velocity and thus gravity (Equation 5.6).

ε = εF + εP (5.4)

εF = 2 · f · u3
TP/dT (5.5)

εP = 0.5 · CD · u3
T/dP (5.6)

Even though the flow pattern differs in L-S flow, solid particles are exposed to the same
effects in “slurry Taylor” flow. Assuming that the presence of solid particles does not alter
the pressure drop; the correlation for the friction factor f for G-L Taylor flow by Kreutzer et
al. [71] (Equation 5.7) was used to calculate εF.

f =
16
Re

[
1 + 0.17

dT

Lslug

(
Re
Ca

)0.33
]

(5.7)
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The impact of εP and thus settling velocity on the overall energy dissipation rate ε is negligi-
ble (<5%) for the operating range studied here. However, it dominates the energy dissipation
rate for denser (Δρ > 800 kg m−3, for dP = 100 μm) and/ or bigger particles (dP > 200 μm, for
Δρ = 600 kg m−3) at slow two phase velocities (uTP < 10 cm s−1). For the correlation proposed
here, only εF was taken into account and further studies are necessary to investigate and con-
firm the effect of settling velocity on the L-S mass transfer. The exponent of the Schmidt
number was fixed as γ = 1/3. In agreement with correlations for stirred tank reactors and
bubble columns, were the mass transfer coefficient does not directly depend on the particle
diameter the exponent of the Reynolds number can be set at 3/4. Figure 5.5 illustrates the
agreement of theoretical and experimental L-S mass transfer coefficients. An other approach
would be to fit the data for both parameters (αReβ). The standard mean deviation is similar for
both approaches (9.7% vs. 8.2%) but fixing β = 3/4 appears to be a better fit for mass transfer
coefficients at higher two phase velocities. The dashed lines in Figure 5.4a and 5.4b were ob-
tained using Equation 5.8 and also confirm the good agreement of the proposed correlation
with our data.

Sh = 2 + 0.34Re3/4Sc1/3 (5.8)

Re = ε1/3
F d4/3

P ρFμ−1
F (5.9)

As discussed above, this correlation is valid for operating conditions were the settling ve-
locity and thus gravity influence can be safely ignored (εP/ε < 0.1). The influence of fluid
properties was only investigated for two different fluids, having rather similar properties and
the impact of tubing diameter and particle density on the L-S mass transfer coefficient was
not addressed in this study. Therefore the proposed correlation (Equation 5.8) represents only
a first indication and further studies are necessary to confirm our findings.

5.3.4 Conclusion and perspectives

The L-S mass transfer coefficient was investigated for solid particles transported in horizontal
and vertical “slurry Taylor” flow using strong cationic ion exchange beads and the neutral-
isation of a diluted sodium hydroxide solution. It was found that solid charge (5 g L−1 to
18 g L−1) and flow direction do not affect the mass transfer coefficient. For increasing two
phase velocity (uTP = 2.2 cm s−1 to 17.4 cm s−1) the mass transfer coefficient increases (Sh =

6.5 to 16). Over the whole velocity range the solid particles were always in motion, in vertical
flow they always covered the whole slug, in horizontal flow for low velocities the particles
were mainly situated in the lower part and started to populate the upper part of the liquid
slug for higher velocities. However, as long as the particles are in motion, their placement
does not seem to affect the L-S mass transfer coefficient as the results for both flow orien-
tations are comparable. For horizontal and vertical flow, once a certain two phase velocity
(uTP > 16 cm s−1) was reached, the mass transfer coefficient appears to stay constant. The
reason behind this behaviour still needs to be investigated and μ − PIV seems to be a good
method to better evaluate the slip velocity between solid particles and surrounding liquid
phase. Particle diameter and density have both an impact on settling velocity and affect there-
fore the slip velocity. The impact of bigger and denser particles as well as smaller and less
dense particles seems interesting to investigate. Due to the external constraints (clogging and
settling should be avoided) the settling velocity cannot be increased by all means especially
at low fluid velocities. In particular for scale-up the influence of tubing size can be an issue
and therefore any influence of tubing diameter and thus flow profile is worth investigating.
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These future experiments should also aim to verify and confirm the first correlation that was
proposed for the L-S mass transfer in G-L-S “slurry Taylor” flow.

5.4 symbols

Roman Symbols

as m−1 specific surface area

Ca - capillary number Ca = μuB/σ

CNa mol L−1 sodium hydroxide concentration

CNa,ex mol L−1 sodium hydroxide concentration at the L-S
interface

C∗
Na mol L−1 equilibrium sodium hydroxide concentration

CNaOH,0 mol L−1 initial sodium hydroxide concentration at the
reactor entrance

CD - drag coefficient for a single particle at uT

dP m particle diameter

dP,S m Sauter particle mean diameter

dT m internal tubing diameter

DNa+ m2 s−1 diffusion coefficient of sodium hydroxide ions

f - friction factor

FNa mol s−1 molar flux of Na+-ions

g m s−3 gravitational acceleration

kS m s−1 L-S external mass transfer coefficient

nIE,0 mol initial molar amount of ion exchange site

nNaOH,0 mol initial molar amount of sodium hydroxide
ions

NNa mol s−1 m−2 normalised molar flux of Na+-ions

Qaqu mL min−1 aqueous flow rate at the exit of the suspension
supply unit before formation of Taylor flow

Qinert mL min−1 flow rate of inert phase

QNaOH mL min−1 flow rate of sodium hydroxide solution at en-
trance of 4-port junction

QL mL min−1 flow rate of active liquid phase

Qsusp mL min−1 suspension flow rate Qsusp = QNaOH + Qsusp

Sc - Schmidt number Sc = μ/ (ρD)

Sh - Sherwood number Sh = ksdP/D

uB m s−1 bubble or droplet velocity

uT m s−1 terminal settling velocity for a single particle
in a still liquid

uTP m s−1 two phase velocity (sum of discontinuous and
continuous superficial velocity)

wS g L−1 solid loading

wsur f actant - mass fraction of surfactant
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xH2O - molar fraction of water

XNaOH - sodium hydroxide conversion

z m length

Greek symbols

ε m3 s−3 energy dissipation rate per unit mass of liquid

εF m3 s−3 energy dissipation rate per unit mass of liquid
representing the influence of the liquid veloc-
ity

εS - solid volume per liquid slug (G-L)

εP m3 s−3 energy dissipation rate per unit mass of liquid
representing the gravity influence

μ Pa s dynamic viscosity

ρL kg m−3 liquid phase density

τ s residence time in reactor

Abbreviations

B bubble

exp experimental

G gas phase

L liquid phase

susp suspension

S solid phase

theo theoretical

TP two phase
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6.0.1 Conclusion

The G-L-S “slurry Taylor” contact mode was investigated in a single capillary reactor in hori-
zontal and vertical flow configuration. A L-S suspension supplier has been designed and was
successfully validated with non-reactive and reactive experiments with silica and alumina
based catalysts and ion exchange beads in water, ethanol and ethanol/ glycerine. Mean di-
ameters up to 200 μm and solid loadings up to 50 g L−1 have been used successfully. A stable
G-L-S “slurry Taylor” flow was generated with a homogeneous and targeted content of parti-
cles fluidized in the vortex existing in the liquid slugs.
This contacting mode was used under a pressurized flow of H2 for the catalytic hydrogena-
tion reaction of 3-methyl-1-pentyn-3-ol. Results were in agreement with those obtained in a
conventional batch reactor confirming the good mass transfer performances attainable with
this contact mode. Conversion levels for all experiments did not vary over several hours on
stream indicating the efficiency and the regularity of the flow and particularly the stability
of the L-S suspension feed throughout time. A method of monitoring reaction progress via
bubble shrinkage was also exemplified and validated for the first time in a G-L-S media.
The hydrodynamics of G-L-S “slurry Taylor” flow were investigated for two distinct fluid
couples: ethanol-nitrogen-SiO2 and ethanol/glycerol-nitrogen-SiO2 flow and the influence of
flow direction, solid charge and two phase velocity on solid particle placement was investi-
gated. For solid loadings up to 50 g L−1 a stable and repeatable solid supply is possible, which
encourages the utilisation of even higher loadings. For the operating conditions examined in
this study no clogging of the contactor nor the tubing fittings was observed.
For horizontal flow five different flow patterns were observed: at low fluid velocities parti-
cles circulate in the lower part of the liquid slug and some amount of the solid is settled
on the channel bottom as a stationary bed. By increasing the velocity, particles start to pop-
ulate also the upper part of the liquid slug. Thus, less particles are settled on the bottom
and particle dispersion becomes more homogeneous. In vertical flow, particles were observed
to be homogeneously distributed over the entire slug volume even for very low velocities
(uTP > 2 cm s−1). For the operating conditions studied, no accumulation on the rear end of
the gas bubble, nor sticking to subsequent bubble nose was observed at any point, even for
high solid loadings. Increasing the fluid velocity pushes the particles in the outer recircula-
tion loop depopulating the inner center of the vortex. For horizontal as well as vertical flow, at
high velocities (uTP > 15 cm s−1) the amount of particles trapped in the stationary liquid film
at the channel wall increases again. This indicates that there exists an upper limit concerning
two phase velocity for good operating conditions. A simplified analysis of the relevant mecha-
nisms affecting the solid dynamics showed that for the operating conditions studied here, the
injection of suspension phase as well as entrainment of settled particles is mostly influential.
Sedimentation appears to be only secondary.
The mapping of the flow was achieved by using a coefficient of Shields parameter and bound-
ary Reynolds number ΘRe∗ for horizontal flow. For vertical flow, as gravity and flow direction
are aligned, the two phase velocity seems to impact mostly the placement of particles.

The L-S external mass transfer was investigated for particles transported in the continu-
ous phase of G-L and the discontinuous phase of L-L “slurry Taylor” flow. Mass transfer
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coefficients were estimated using the transfer of sodium ion from aqueous solutions to ion
exchange particles.
For aqueous-toluene L-L flow it was found that particle agglomeration in the rear end of the
liquid droplet leads to very low mass transfer coefficients (ks = 0.0012 cm s−1). An increase of
two phase velocity did not enhance particle circulation or de-agglomeration and had thus no
influence on mass transfer coefficients.
Once particles do not agglomerate but circulate freely in the aqueous phase, the Sherwood
number increases with increasing two phase velocity. For aqueous - n-hexanol flow, the Sher-
wood numbers estimated for particles transported in the disperse phase are in the same
range (Sh = 4 to 8.4, uTP =1 cm s−1 to 2.5 cm s−1) as for particles suspended in the continu-
ous phase of G-L “slurry Taylor” flow (Sh = 6 to 9, uTP =2.2 cm s−1 to 3.6 cm s−1). However,
stable flow conditions for L-L “slurry Taylor” flow could be only achieved for velocities up to
uTP = 4.5 cm s−1.

In G-L “slurry Taylor” flow, increasing the two phase velocity led to more and more homo-
geneously suspended particles in the liquid slug and to an increase of the Sherwood number.
However, once the particles are equally distributed over the entire slug height (uTP > 8 cm s−1)
an increase of two phase velocity has no impact on the Sherwood number (Sh = 14.4).
The L-S mass transfer coefficient in horizontal and vertical G-L-S “slurry Taylor” flow was
also compared. In spite of a quite different hydrodynamic behaviour, it was found that the
flow direction does not effect the mass transfer coefficient.
In conclusion, it seams that for freely circulating particles and no agglomeration phenomena,
the recirculation efficiency and the occupied space of circulating particles has no effect on the
L-S external mass transfer. At the low Reynolds numbers in Taylor flow, laminar conditions
are dominating therefore the primary source of slip velocity (between particle and surround-
ing liquid) is the settling velocity of the solid particles.
A first correlation for the L-S mass transfer in G-L-S “slurry Taylor” flow was established and
the mean relative deviation was found to be around 9.7%.

6.0.2 Perspectives

This work pictured the interesting performances of G-L-S “slurry Taylor” flow and gave a
first inside into hydrodynamics and external liquid-solid mass transfer properties. This new
contact mode is very promising and appears to be a good alternative to conventional G-L-S
slurry reactors. So far the understanding of this contactor is still in the beginning and further
studies are needed. Future challenges for further research can be grouped into two aspects:

• Broadening the operating parameters:

– Tubing diameter: it was shown that lift force plays an essential role for particle
entrainment. Also the L-S mass transfer experiments indicate a possible influence
of shear rate and tubing diameter on the mass transfer coefficient. Therefore it is
interesting to investigate this parameter and evaluate its relevance. The tubing di-
ameter is additionally a crucial parameter for scale-up. For horizontal flow bigger
channel diameters might require higher two phase velocities for homogeneous par-
ticle distribution. Smaller tubing diameters might lead to increased mass transfer
coefficients but also a higher risk of clogging.

– It was found that the initial formation of Taylor flow plays an important role on the
particle behaviour and the flow pattern. To better understand this impact and to
predict the affect of the injector, it seems interesting to study the initial formation
more in detail and to experiment with different injector types.
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– Material properties: Studying the influence of material properties on the placement
of particles and the required conditions to achieve homogeneous suspension is
necessary to predict if a certain reaction can be carried out in this new contact
mode. Particles having a higher or lower density as the fluid media, hydrophilic
particles in hydrophobic fluid media and the influence of gas phase (CO2 vs. N2)
are parameters worth investigating.

• Using more sophisticated experimental methods to better understand the physics of this
new contact mode and to better describe its properties:

– One characteristic property of Taylor flow are the nearly ideal plug flow conditions.
In horizontal “slurry Taylor” flow, particles settled on the tubing bottom possibly
enlarge the liquid film leading to a modified residence time distribution compared
to simple G-L Taylor flow. Therefore it is necessary to investigate in how far the
particles present in the film alter the plug flow behaviour.

– The residence time distribution of the solid particle has to be further investigated.
Solid particles present in the film have not the same residence time in the reactor as
the ones circulating in the liquid slug. Further analysis could show, if the amount
of particles trapped in the film is negligible or not and how these particles affect
future applications as catalytic reactions or synthesis of nanoparticles for example.
In this particular contact mode, investigating the residence time of the micrometric
particles is challenging due to the small and rather light particles employed and
the susceptible operation of “slurry Taylor” flow. One method could be the use of
caged fluorescent particles which are activated by laser impulse.

– To better understand the different flow patterns detected as well as the results for
the L-S mass transfer with its stagnant behaviour for high two phase velocities,
¯-PIV appears to be a good method to evaluate the slip velocity between the solid
particles and the surrounding fluid.
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