N

N

Harnessing Uncertain Data Structure

Mouhamadou Lamine Ba

» To cite this version:

Mouhamadou Lamine Ba. Harnessing Uncertain Data Structure. Web. TELECOM ParisTech, 2015.
English. NNT: . tel-01140315v2

HAL Id: tel-01140315
https://theses.hal.science/tel-01140315v2
Submitted on 10 Apr 2015 (v2), last revised 16 Mar 2020 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01140315v2
https://hal.archives-ouvertes.fr

Parislech

INSTITUT DES SCIENCES ET TECHNOLOGIES TELECOM

PARIS INSTITUTE OF TECHNOLOGY Péll‘i\‘TeCh
(W

i

2015-ENST-0013

/

EDITE - ED 130

Doctorat ParisTech

THESE

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité “Informatique et Réseaux”

présentée et soutenue publiquement par

Mouhamadou Lamine Ba
le 30 Mars 2015

Exploitation de la structure
des données incertaines

Directeur de thése: Talel ABDESSALEM
Co-directeur de thése: Pierre SENELLART

Jury

M. Talel ABDESSALEM, Professeur, Télécom ParisTech Directeur de thése
Mme. Laure BERTI-EQUILLE, Chercheur senior, QCRI Rapporteur
M. Dario COLAZZO, Professeur, Université Paris Dauphine Examinateur
M. Stephane GANCARSKI, Maitre de Conférences HDR, Université Paris VI Examinateur
M. Pascal MOLLI, Professeur, Université de Nantes Rapporteur
M. Benjamin NGUYEN, Professeur, INSA Centre-Val de Loire Examinateur
M. Pierre SENELLART, Professeur, Télécom ParisTech Co-directeur de thése

TELECOM ParisTech
école de I'lnstitut Mines-Télécom - membre de ParisTech
46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

Abstract

We address in this thesis some fundamental problems inherent to the need of uncertainty
handling in multi-source Web applications with structured information, namely uncertain version
control in Web-scale collaborative editing platforms, integration of uncertain Web sources under
constraints, and truth finding over structured Web sources.

We begin with the problem of modeling and assessing uncertainty in version control. In
Web-scale collaborative editing platforms (e.g., Wikipedia), version control is essential for keeping
track of the evolution of the shared content and its provenance. At the same time, uncertainty is
ubiquitous due to the unreliability of the sources, the incompleteness of the contributions, the
possibility of malicious editing and vandalism acts, etc. To handle this uncertainty, we leverage the
tree-like structure of data and use a probabilistic XML model as a basic component of our version
control framework. Uncertainty is evaluated via the probabilistic model and the reliability measure
associated to each source, each contribution, or each editing event, resulting in an uncertainty
measure on each version and each part of the shared content. We show that standard version
control operations can be directly implemented as operations on our probabilistic XML model;
efficiency is proven on real-world datasets.

Then we consider uncertainty handling when integrating multiple Web sources under depen-
dencies or spatio-temporal constraints. Web sources are, in general, untrustworthy because
they usually rely on imprecise data collection methods, e.g., sensors. These sources can also
be related by copying relationships which introduce data dependencies among them. As this
kind of dependencies can be thought of as revealing how different versions of content are shared
and revised by several sources, the integration applies to an uncertain version control setting.
As a consequence, we propose initial steps towards a probabilistic XML integration system over
uncertain and dependent Web sources in the special case of tree-structured data. Constraints
can be of another nature, e.g., spatio-temporal when sources describe moving objects. In a sec-
ond stage, we show how structured data about moving objects can be extracted and integrated
from social media and general Websites. This information being marred with uncertainty, we
introduce techniques which quantify the precision of the geographical data and integrate pairs of
attribute/value data for further filtering tasks; we demonstrate through an application how these
features can be put all together in practice for ship monitoring.

Finally, we study the problem of truth finding over Web sources with data attributes structurally
correlated. The truthfulness of given attribute values of objects is tied to the reliability levels of
their sources. The reliability level of each source can vary depending on distinct subsets of data
attributes, which yields structural correlations among subsets of attributes. As preliminary results
of an ongoing work, we propose exploration algorithms that search for an optimal partitioning
of the attribute set during a truth discovering process over Web sources with variable accuracy
values over correlated data attributes; initial tests over synthetic data show that this can greatly
enhances the precision of existing truth discovery techniques.

Keywords: multi-source Web systems, structure, uncertainty handling, version control,
data integration, dependency, moving objects, probabilistic XML, truth finding, attribute
correlations.

Résumeé

Dans cette these, nous étudions certains problémes fondamentaux découlant d’'un besoin
accru de gestion des incertitudes dans plusieurs applications Web multi-sources avec de la
structure, a savoir le contr6le de versions incertaines dans les plates-formes Web a large échelle,
l'intégration de sources Web incertaines sous contraintes, et la découverte de la vérité a partir
de plusieurs sources Web structurées.

Nous abordons en premier lieu la question de la modélisation et de I'estimation de I'incertitude
dans le contrdle de versions. Dans les plates-formes Web a large échelle (p. ex., Wikipedia), le
contr6le de versions est crucial pour tracer I'évolution du contenu partagé et la provenance des
contributions. En méme temps, l'incertitude est omniprésente a cause de sources non fiables,
de contributions incompléetes, d’éditions malicieuses et actes de vandalismes possibles, etc.
Pour gérer cette incertitude, nous nous appuyons sur la structure arborescente des données et
utilisons un modéle XML probabiliste comme base de notre cadre de contréle de versions. Nous
montrons que les opérations classiques de contrdle de versions sont directement applicables sur
notre modele XML probabiliste ; son efficacité est prouvée sur des données réelles.

En second lieu, nous considérons la gestion des incertitudes lors de l'intégration de sources
Web avec dépendances ou contraintes spatio-temporelles. Les sources Web ne sont pas souvent
de confiance. En outre, elles se copient parfois les unes sur les autres ce qui résulte a des
dépendances en termes de données. Comme ce type de dépendances révele en quelque
sorte la fagcon dont les différentes versions d’un contenu sont partagées et révisées entre
sources, l'intégration s’applique a un cadre de contr6le de versions incertaines. Sur cette base,
nous proposons les étapes initiales vers un systeme d’intégration XML probabiliste de sources
Web incertaines et dépendantes dans le cas particulier de données arborescentes. Lorsque
les sources décrivent des objets mobiles, les contraintes sont aussi spatio-temporelles. Nous
montrons ensuite comment des données structurées peuvent étre extraites et intégrées a
partir de plates-formes sociales et de sites Web généralistes. Ces informations étant sujettes
a des incertitudes, nous introduisons des techniques qui mesurent la précision des données
géographiques et integrent des paires attributs/valeurs pour des taches de filtrage ultérieures;
nous démontrons via une application comment ces fonctionnalités pourraient étre utilisées pour
la surveillance de navires.

Enfin, nous étudions le probléme de la découverte de la vérité a partir de sources Web
avec des attributs de données structurellement corrélés. La véracité des valeurs d’attributs
d’objets est largement liée au niveau de fiabilité de leurs sources. Le niveau de fiabilité de
chaque source peut étre variable suivant des sous-ensembles distincts d’attributs menant & des
corrélations structurelles entre eux. Nous proposons des algorithmes d’exploration qui cherchent
un partitionnement optimal de I'ensemble des attributs durant le processus de recherche de
la vérité sur plusieurs sources Web ; les tests initiaux sur des données synthétiques montrent
que cela peut grandement améliorer la précision des techniques de découverte de la vérité
existantes.

Mots-clés : applications Web multi-sources, structure, gestion de l'incertitude, controle
de versions, intégration de données, dépendances, objets mobiles, XML probabiliste,
découverte de la vérité, attributs corrélés.

Contents

List of Figures

List of Tables
Acknowledgements

1 Introduction

1.1 Uncertain Multi-Version TreeData
1.2 Web Data Integration under Constraints
1.3 Truth Finding with Correlated Data Attributes

| Uncertain Multi-Version Tree Data

2 Uncertain XML Version Control Model

2.1 RelatedWork
2.1.1 Researchon VersionControl
2.1.2 Uncertain Tree-Structured Data Models
2.1.3 Quality in Collaborative Editing Systems

2.2 Preliminarieso

2.3 Probabilistic XML

2.4 Uncertain Multi-Version XML Setting
2.4.1 Multi-Version XML Documents
2.4.2 Uncertain Multi-Version XML Documents
2.4.3 Probabilistic XML Encoding Model

25 Conclusion

3 Updates in Uncertain XML Version Control

3.1 Updating Uncertain Multi-Version XML
3.1.1 Uncertain Update Operation

3.1.2 Uncertain Update over Probabilistic XML Encoding

3.2 Evaluation of the Uncertain XML Version Control Model
3.2.1 Performanceanalysis
3.2.2 Filtering Capabilities

3.3 Conclusion e

Contents

Vi

CONTENTS

4 Merging in Uncertain XML Version Control 43
41 RelatedWork e 43
4.2 ATypical Three-Way Merge Processo 46

421 EditDetection. e 47
422 CommonMergeCases 48
4.3 Merging uncertain Multi-Version XML o L 49
4.3.1 Uncertain Merge Operation 49
4.3.2 Uncertain Merging over Probabilistic XML Encoding 51
4.4 Conclusion e e 59

Il Structured Web Data Integration 60

5 Web Data Integration under Constraints 61
51 RelatedWork 62
5.2 Motivating Application 63

5.2.1 Multiple Web Sources 63

5.2.2 Uncertain Web DataSources 64
5.2.3 Copying Relationships between Sources 66

5.3 Web Data Integration under Dependent Sources 66
5.3.1 Main Prerequisites 68
5.3.2 Probabilistic Tree Data Integration System 69

5.4 Uncertain Web Information on Moving Objects 74
5.41 DataExtraction 75
5.4.2 Uncertainty Estimation 76
5.4.21 Precisionof LocationData 76

5.4.22 Computing User TrustScore 78

5.4.2.3 Integrating Uncertain Attribute Values 79

5.5 Maritime Traffic Application 79
551 UseCase e 80
5.5.2 System Implementation 80
5.5.3 Demonstrationscenario e 81

5.6 Conclusions e e 83

6 Truth Finding over Structured Web Sources 85
6.1 Related Work 86
6.2 Preliminaries and Problem Definition 87

6.2.1 Preliminary Definitionso 87
6.2.2 Accu Truth Finding Algorithm 90
6.2.3 Problem Definition 92
6.3 Partition-Aware Truth Finding Process 95
6.3.1 Weight Function for Partitions 96
6.3.2 Exact Exploration Algorithm L 97
6.3.3 Approximative Exploration oL 99
6.4 Experimental Evaluation oo 101
6.5 Conclusion 105

Vii

CONTENTS

7 Research Perspectives 106
7.1 Uncertain Multi-Version TreeData, 106
7.2 Web Data Integration under Constraints 107
7.3 Truth Finding with Correlated Data Attributes 107

A Other Collaborations 109

B Résumé en Francais 111
B.1 Préliminaires e e 115

B.1.1 Concepts de base du contr6le de versions : versions et espace des versions116
B.1.2 Modele de documents XML non ordonnés : définition et mise ajour .. 116

B.2 XMLprobabiliste 118
B.2.1 Les p-documents PrXML"® : syntaxe et sémantique 118
B.2.2 Provenancedesdonnées 120

B.3 Modeéle XML multi-version incertain 121
B.3.1 Documents XML multi-version 121
B.3.2 Document XML multi-version incertain : gestion des données incertaines 122
B.3.3 Encodage XML probabiliste L. 124

B.4 Mise a jour de XML multi-versionincertain 125
B.5 Fusion de XML multi-versionincertain 127
B.5.1 Stratégie de fusion : calcul de scripts d’édition et scénarios de fusion usuels128
B.5.2 Fusion de versions XML incertaines 129
B.5.3 Fusion sur 'encodage XML probabiliste 131

B.6 Expérimentation et évaluation oo L. 134
B.6.1 Analyse de performances : données tests, implantation et analyse de colts135
B.6.1.1 Jeux de données et implantationdestests 135

B.6.1.2 Analysedescolts 136

B.6.2 Evaluation de la gestion des incertitudes : capacités de filtrage des données138

B.7 Conclusion e 139
Self References 141
External References 143

viii

2.1
2.2
2.3

3.1
3.2
3.3

4.1

5.1
5.2
5.3
5.4
5.5
5.6

6.1

B.1
B.2
B.3
B.4
B.5
B.6

B.7

List of Figures

Example XML tree .7: Wikipedia article 23
(a) PrXML® p-document 2; (b) Three possible worlds d;, d, and ds 26
(a) Graph of Version Space; (b) Four versions and their corresponding truth-values 29
Measures of commit time over real-world datasets (logarithmic y-axis) 38
Commit time vs number of edit operations (for edit scripts of length >5) 40
Measures of checkout time over real-world datasets (linearaxes) 40
Merge approach: (a) uncertain versions and (b) mergeresult 50
Collection of Web sources in the maritime domain 65
Uncertain Web sources: discrepancies and incompleteness 67
Shipspotting depends on GrossTonnage 68
Probabilistic tree data integrationmodel 74
Geolocated picture from Flickr 80
Main interface of the maritime traffic application 81
Information about restaurants from three different sources 89
arbre XML 7 :article Wikipedia oo 117
(a) un p-document PrXML" ; (b) trois mondes possibles di, doetds 119
a) graphe d’espace de versions; (b) 4 versions et leurs valeurs de vérité 123
stratégie de fusion : (a) versions incertaines et (b) résultat de la fusion. 131

évaluation de la durée du commit (échelle logarithmique pour I'axe des ordonnées) 135
colt du commit en fonction du nombre d’opérations de mise a jour (scripts > 5 opéra-

HONS) . . 137
colt du checkout (restitutionde version) L 138

6.1
6.2
6.3
6.4

List of Tables

Summary of notation used throughout this study
Configurations for syntheticdatasets 103
Precisions of MajorityVoting, Accu, and GenAccuPartition
Precision of BottomUpAccuPartition on syntheticdatasets 104

Acknowledgements

This PhD would not be possible without the support of many people. Foremost, | would like
to thank my supervisors, Talel Abdessalem and Pierre Senellart, for giving me the possibility
to do this PhD research. They allowed me to follow my own research interests without lot of
restrictions. They have always trusted in me and in my work and pushed me to broaden my
research background through various collaborations and projects on which | have been involved.
Their continuous and valuable insights helped me to sharpen this thesis up.

| would also like to thank the member of my PhD committee for accepting to take on that
charge, and, particularly, Pascal Molli and Laure Berti-Equille, for reviewing this thesis.

Almost all of the time, | did really enjoy being member of Télécom ParisTech, especially of
the DbWeb research group of the department of Computer Science and Networks. Apart of the
excellent research conditions, the staff played a major role. | would like to thank Antoine Amarilli,
Oana Balalau, Jean-louis Dessalles, Luis Galarraga, Modou Gueye, Jean-Benoit Griesner,
Roxana Horincar, Ziad Ismail, Sébastien Montenez, Mauro Sozio, Danai Symeonidou, and
Fabian Suchaneck for their kindness and sociability. Some of my colleagues have contributed
to my thesis. Sébastien Montenez, a computer scientist, implemented a Web crawler for
information in the maritime domain and set up the maritime traffic application. Roxana Horincar, a
postdoctoral fellow, has been actively involved in the truth finding work, in particular by extensively
evaluating the precisions of the proposed algorithms against various types of datasets. It was
a pleasure and a honor to me to work with them. My office-mate Ziad Ismail allowed me for
discussing topics not necessarily related to the domain of computer science. He become a real
friend.

My acknowledgements also go to people with which I had the chance to collaborate in other
contexts. | have to thank Antoine Amarilli and Ruiming Tang for accepting to exchange and
explore some aspects of data management related to their PhD topics. A particular thank to
Huayu Wu which offered me the possibility to be enrolled in a postgraduate attachment program
within of the Institute for Infocomm Research Institute of Singapore (A*STAR) during three
month. He hosted me in his house and has been always present when needed during my stay
in Singapore. Many thanks also to Stephane Bressan for his kindness and helpful suggestions
during my two visits in Singapore.

At last, | have to be grateful with my family. My mother Seynabou has done its utmost to offer
me a good education, and continues to be of a great support for me. My aunt Marie has been
prominent throughout my life as a friend and a confidant.

Introduction

Providing high-quality content or facilitating a uniform access to content, through
effective tools, is undoubtedly one major contribution to the renown of the World Wide
Web, as evidenced by an increasing irrational trust in Web data sources for personal
and business purposes. The latest advances to the Web are notably represented by
the emergence of the multi-source paradigm, i.e., Web applications which, rather than
relying just on one particular data source, exploit information from various different
sources in order to construct valuable data or to ease access to them.

Multi-source Web applications cover nowadays a broad portion of the inestimable
amount of data on the Web. These applications can be of various nature with respect
to the inherent manner sources are involved for content production. Multi-source Web
systems may correspond to Web-scale collaborative systems (Wikipedia® or Google
Drive 2) where sources, i.e., contributors, are active actors for content creation, or to
domain-specific Web systems (Google Hotel Finder 3, Yahoo! Finance #, MarineTraffic °,
etc.) in which data that already reside on multiple heterogeneous sources are unified.
The success of both types of Web applications is greatly due to an integration of
views from multiple structured sources, the level with which their information — given its
structuring — corroborate each other being a qualitative clue about the relevance of the
result. As telling examples, the online-encyclopedia Wikipedia is built on a quite large
community 8 of active contributors, over structured articles, even though its size has
stopped to grow during the last years [Voss, 2005, Halfaker et al., 2013]. Domain-specific
Web applications such as travel booking Websites aggregate data from thousands
of sources with well-known templates, including hundred Web portals of hotels, flight
companies, etc. Relying on multiple sources, thereby a wider spectrum of different data

. http://www.wikipedia.org/
. https://www.google.com/drive/
. https://www.google.com/hotels/
. http://finance.yahoo.com/
. https://www.marinetraffic.com/en/
. The English version of Wikipedia, for instance, counts around 31, 000 active editors besides its vast
number of non-registered occasional contributors.

OO~ =

http://www.wikipedia.org/
https://www.google.com/drive/
https://www.google.com/hotels/
http://finance.yahoo.com/
https://www.marinetraffic.com/en/

CHAPTER 1. INTRODUCTION

quality level and a higher probability of conflicts, inevitably leads to some expectations
in terms of sources’ trustworthiness and data relevance levels. This requires efficient
uncertainty management and data quality estimation algorithms during data integration.
Uncertain data integration is indeed a building block for multi-source Web applications,
as few will continue to trust these systems if users cannot find the offered data without
uncertainties and relevant to their needs.

Despite considerable progress, various fundamental questions, driven by the need
for uncertainty management in multi-source Web applications, are not yet elucidated.
Collaborative editing systems in which content relevance and contributors’ reliability
level, gradually impacting the quality and the integrity of the process, are modeled
and assessed throughout the editing process are in their infancy, as existing systems
mostly resort to revision control or bots for repairing trivial edit problems [Geiger and
Halfaker, 2013] or to trust algorithms for off-line reputation evaluation [Adler and de
Alfaro, 2007, De La Calzada and Dekhtyar, 2010] and social link analysis [Maniu et al.,
2011a, Maniu et al., 2011b]. Web-scale collaborative systems using revision control
constrain the existence of data to follow some derivation rules given by the history of the
evolution of the editing process over the shared content. As a more general problem,
research on uncertain and heterogeneous Web data integration in real-world applications
which capture and evaluate the amount of uncertainty in data under complex constraints
— beyond for instance simple mutual exclusion [Van Keulen et al., 2005] — such as data
dependency between sources and spatio-temporal restrictions, is still limited. With
constraints and more structured information, uncertain data integration is expected to
have the ability to do more in modeling and quantifying uncertainties for multi-source
Web applications. In particular, it should be able to discover the truth between multiple
conflicting Web sources. Truth finding, accounting for structural correlations, in terms of
different source quality levels, among subsets of data attributes is not yet fully realized, as
existing algorithms estimate a global indicator of the level of accuracy of each source [Li
et al., 2012, Waguih and Berti-Equille, 2014].

It becomes apparent that in order to enhance the quality of data provided by multi-
source Web applications, uncertainty management is fundamental. There is, particularly,
a need for techniques with the ability to (i) efficiently and dynamically manage uncertainty
for shared content, with the support of data provenance and structure tracking, more
semantical information about the trustworthiness levels of sources and the relevance of
provided content for enhancing the quality of the collaborative process; (ii) integrate mul-
tiple uncertain Web sources under constraints, supporting a broader class of constraints
in a principled manner that properly models source corroborations and contradictions

2

for further uncertainty estimation with the representation of real data provenance for
provenance queries and efficient view maintenance; (iii) effectively quantify content
relevance and source reliability levels, for content filtering and recommendation, by
accounting for domain-specific knowledge, the nature of handled information, and the
structure of data.

In this thesis, we focus on the following important sub-problems: uncertainty man-
agement in content built in a collaborative manner, the integration of uncertain Web
sources in domains where copying is a real concern, and the effective estimation of
content relevance and source accuracy given constraints, with methods which, putting
it all together, also form building blocks towards a general integration framework for
uncertain and heterogeneous multiple data source management on the Web.

More precisely, we address the aspects below that are fundamental for uncertain
data management in multi-source Web applications.

1. We start by studying the problem of modeling and assessing uncertainty in version
control within collaborative editing systems. Version control in which modeling
and assessing uncertainty are considered as main parts of the process goes
further than only finding ways to directly plug confidence estimators [Maniu et al.,
2011a, De La Calzada and Dekhtyar, 2010] into the system or checking, with bots
or human [Geiger and Halfaker, 2013], the relevance of data versions. This requires
a more subtle method in the sense that the amount of uncertainty in each piece of
information depends not only on the trustworthiness level of the provider, but also
on its relevance and of the consensus around it, which is conditioned by the history
of editions over it: the semantics of an edit implicitly indicates the view or opinion
(agreement or disagreement) of the responsible contributor during a collaborative
editing. As a result, version control with uncertainty is not only checking whether
or not the content has been modified. As the implicit opinions of contributors,
expressed through version control operations, are crucial for evaluating the amount
of uncertainty in data, there is a requirement to properly and efficiently capture,
e.g., using the structure of data, the semantics of these operations.

The publications relevant for this study are [Ba et al., 2013a], [Ba et al., 2013b],
and [Ba et al., 2014c] respectively at the ACM International Symposium on Docu-
ment Engineering (DocEng), the DocEng Workshop on Document Changes, and
the French Revue “Ingénerie des Systémes d’Information”.

2. Then, we consider uncertain Web data integration, in its ability to model and assess
uncertainties given some constraints. As a natural connection with our first studied

3

CHAPTER 1. INTRODUCTION

problem, we initially consider uncertain Web data integration where sources are
related by copying relationships: a given source copies information from another
one, and possibly revises it in order to provide its own knowledge about the real
world. In such a scenario, reconciling uncertain Web sources requires techniques
stronger than actual data integration systems, e.g., [Van Keulen et al., 2005],
which mostly assume independent sources. Indeed, dependencies impact the real
provenance of data, data corroborations, and correlations. Therefore, uncertain
data integration with dependent Web sources must account for these aspects which
undoubtedly affect our belief about the amount of uncertainty in each piece of the
merged content; data provenance can be inferred given dependencies and the
structure of data. In a second stage, we study the case where constraints are spatio-
temporal, which occurs when Web sources provide information about moving
objects. This drives the needs for specific techniques, aware of geographical data,
that evaluate the precision of spatio-temporal data during the integration process.
This evaluation cannot be done as usual, e.g., similarly to textual information.

The publications relevant for this study are [Ba et al., 2014a] and the demonstra-
tion [Ba et al., 2014b] respectively at the DASFAA” Workshop on Uncertain and
Crowdsourced Data and the International Conference on Advances in Geographic
Information Systems.

3. As one of the main purposes of data integration with uncertainty management,
we conclude by the problem of truth finding over structured Web sources, in the
perspective of taking advantage of structural correlations among data attributes. It
requires techniques, without the independence assumption between the probabili-
ties of correctness of values of distinct data attributes made by actual algorithms [Li
et al., 2012, Waguih and Berti-Equille, 2014], which effectively and efficiently
discover the truth based on structural correlations among data attributes. The
accuracy level of a source for providing true values, instead of being the same
regardless the given subset of data attributes, may be variable — such an accuracy
is consistent when attributes are structurally correlated; for instance, when the
source is highly accurate on some subsets of data attributes while being worse on
other ones, when clustering the attributes in a certain manner. This observation
cannot be left aside when one wants to provide a truth finding process in which the
estimation of the probabilities of correctness of data attribute values is not biased
by the use of a global accuracy values for sources.

7. International Conference on Database Systems for Advanced Applications.

1.1. UNCERTAIN MULTI-VERSION TREE DATA

This is an ongoing study with preliminary results not yet submitted for publication.
A part of this work is the result of collaborating with the Data Analytics Group of
the Institute for Infocomm Research in Singapore (A*STAR) during a postgraduate
research attachment.

The next three sections present an overview of the motivations and our contributions
to these problems. We give a detailled description of them in the subsequent chapters
which are split into two separate parts.

1.1 Uncertain Multi-Version Tree Data

As highlighted earlier, Web-scale collaborative systems form a significant type of
multi-source Web applications with well-known examples such as the free encyclopedia
Wikipedia and the Google Drive collaboration tools. Content management, in many
collaborative editing systems, especially online platforms, is realized within a version
control setting. A typical user, willing to build knowledge around a given subject by
involving views from other persons, creates and shares an initial version of the content,
possibly consisting of only the title, for further revisions. The version control system then
tracks the subsequent versions of the shared content, as well as changes, in order to
enable fixing error made in the revision process, querying past versions, and integrating
content from different contributors. Much effort related to version control has been carried
out both in research and in applications; see surveys [Altmanninger et al., 2009, Koc and
Tansel, 2011]. The prime applications were collaborative document authoring process,
computer-aided design, and software development systems. Currently, powerful version
control tools, such as Subversion [Pilato, 2004] and Git [Chacon, 2009], efficiently
manage large source code repositories and shared file-systems.

Unfortunately, existing approaches leave no room for uncertainty handling, for in-
stance, uncertain data resulting from conflicts. Contradictions are usual during a collabo-
rative job — in particular when the setting is open — as appearing whenever concurrent
edits try changing the identical content leading to ambiguities in content management.
But sources of uncertainties in the version control process are not only due to conflicts.
In fact, Web-scale collaborative editing platforms are inherently uncertain: platforms
such as Wikipedia or Google Drive enable unbounded interactions between a large
number of contributors, without prior knowledge of their level of expertise and reliability.
Uncertainty, in such environments, is omnipresent due to the unreliability of the sources,
the incompleteness and imprecision of the contributions, the possibility of malicious
editing and vandalism acts, etc. This drives the need for an entirely new way to manage

5

CHAPTER 1. INTRODUCTION

the different versions of the shared content and to access them. In other terms, a version
control technique able to properly handle uncertain data may be very useful for this class
of applications, as we illustrate next with two applications scenarios.

Uncertainty in Wikipedia Versions Some Web-scale collaborative systems such
as Wikipedia have no write-access restrictions over documents. As a result, multi-
version documents include data from different users. Wikipedia is built on a quite
solid and large community of active contributors, ensuring a continuous increase of
the number of the articles and the editions over them8, even though the growth rate
of this community has slowed during these last years [Voss, 2005, Halfaker et al.,
2013, Simonite, 2013]. The open and free features lead to contributions with variable
reliability and consistency depending both on the contributors’ expertise (e.g., novice or
expert) and the scope of the debated subjects. At the same time, edit wars, malicious
contributions like spams, and vandalism acts can happen at any time during document
evolution. Therefore, the integrity and the quality of each article may be strongly
altered. Suggested solutions to these critical issues are reviewing access policies
for articles discussing hot topics, or quality-driven solutions based on the reputations
of authors, statistics on frequency of content change, or the trust a given reader has
on the information [Adler and de Alfaro, 2007, De La Calzada and Dekhtyar, 2010,
Maniu et al., 2011a]. But restricting editions on Wikipedia articles to a certain group of
privileged contributors — resulting in a reticence of an important part of the contributors,
e.g., newcomers, to get more involved [Halfaker et al., 2013] — does not suppress the
necessity of representing and assessing uncertainties. Indeed, edits may be incomplete,
imprecise or uncertain, showing partial views, misinformations or subjective opinions.
The reputation of contributors or the confidence level on sources are useful information
towards a quantitative evaluation of the quality of versions and even more of each atomic
contribution. However, a prior efficient representation of uncertainty across document
versions remains a prerequisite.

User Preference at Visualization Time Filtering and visualizing content are also
important features in collaborative environments. In Wikipedia, users are not only
contributors, but also consumers, interested in searching and reading information on
multi-version articles. Current systems constrain the users to visualize either the latest
revision of a given article, even though it may not be the most relevant, or the version at a

8. About half of the active editors in Wikipedia spend at least one hour a day editing, and a fifth spend
more than three hours [Simonite, 2013].

6

1.1. UNCERTAIN MULTI-VERSION TREE DATA

specific date. The seekers of information, especially in universal knowledge management
platforms like Wikipedia, may want to easily access more relevant versions or those of
authors whom they trust. Filtering unreliable content is one of the benefits of being able
to handle uncertain data. It can be achieved easily by hiding the contributions of the
offending source, for instance when a vandalism act is detected, or at query time to fit
user preferences and trust in the contributors. Alternatively, to deal with misinformation,
it seems useful to provide versions to users with information about their amount of
uncertainty and the uncertainty of each part of their content. Last but not least, users at
visualization time should be able to search for a document representing the outcome of
combining parts (e.g., some of them might be incomplete, imprecise, and even uncertain
taken apart) from different versions. We demonstrated in [Abdessalem et al., 2011] an
application of these new modes of interaction to Wikipedia revisions: an article is no
longer considered as the last valid revision, but as a merge of all possible (uncertain)
revisions.

Contribution Version control is primordial in uncertain Web-scale collaborative sys-
tems. Representing and evaluating uncertainties throughout data version management
becomes thus crucial for enhancing collaboration and for overcoming problems such as
conflict resolution and information reliability management.

In this work, we propose an uncertain XML version control model tailored to multi-
version tree-structured documents in open collaborative editing contexts. Data, that is,
office documents, HTML or XHTML documents, structured Wiki formats, etc., manipu-
lated within the given application scenarios are tree-like or can be easily translated into
this form; XML is a natural encoding for tree-structured data.

We propose an uncertain version control framework by starting — as we shall detail
in Chapter 2 — with an effective abstraction of uncertain multi-version tree-structured
documents. In our model, we handle uncertain data through a probabilistic XML model as
a basic component of our version control framework. Each version of a shared document
is represented by an XML tree. At the abstract level, we consider a multi-version XML
document with uncertain data based on random events, XML edit scripts attached to
them, and a directed acyclic graph of these events. For a concrete representation the
whole document, with its different versions, is modeled as a probabilistic XML document
representing an XML tree whose edges are annotated by propositional formulas over
random events. Each propositional formula models both the semantics of uncertain
editions (insertion and deletion) performed over a given part of the document and its
provenance in the version control process. Uncertainty is evaluated using the probabilistic

7

CHAPTER 1. INTRODUCTION

model and the reliability measure associated to each source, each contribution, or
each editing event, resulting in an uncertainty measure on each version and each
part of the document. The directed acyclic graph of random events maintains the
history of document evolution by keeping track of its different states and their derivation
relationships.

We then study the support of standard version control operations — update and
merge operations in particular — with a focus on efficiency and effectiveness of their
translation within our model. We formalize the semantics of the standard update op-
erations over an uncertain multi-version XML document, and show that they can be
implemented directly as an operation on the probabilistic XML encoding by devising the
corresponding algorithm. We demonstrate the efficiency of our update algorithm — and
of our version control model in general — with respect to deterministic version control
systems like Git and Subversion on real datasets. Chapter 3 revisits and describes, in a
deeper manner, updates over uncertain multi-version XML documents and realizes a
performance analysis of our model.

Merging is a fundamental operation in revision control systems that enables integrat-
ing different changes made to the same documents. This operation is particularly helpful
for software configuration management, where the configurations and their components
can be built based on a combination of different versions of different elementary parts
of the software (see [Estublier, 2000]). In Web-scale collaborative platforms, the merg-
ing operation as known in traditional version control systems is not yet supported. Its
use in this kind of environment (large-scale, open and collaborative) is of interest — as
soon as concurrent editing and alternative revisions are allowed — since it eases the
creation of personalized content that fit users’ preferences or to automate the tedious
and error-prone manual merge of Wikipedia’s articles which overlap (articles related
to the same topic or sharing a large common part). We propose a merge operation
— accounting for the uncertainty associated to merged data — which complements our
framework and enables the conciliation of uncertain versions. We devise an efficient
algorithm that implements the merge operation and prove its correction (see Chapter 4
for merging in uncertain multi-version XML).

1.2 Web Data Integration under Constraints

Integrating data from multiple heterogeneous sources is one of the most common
tasks in classical multi-source Web systems. For example, many platforms on the Web,
and in particular domain-specific applications like online hotel reservation services, use

8

1.2. WEB DATA INTEGRATION UNDER CONSTRAINTS

and integrate data from hundreds of different sources °. More importantly such platforms,
aside their own specific ways of gathering information, often try capitalizing on data
already on the Web — nowadays, there is a proliferation of Web systems, e.g., sharing
platforms, company Websites, or general Websites, which collect and keep up-to-date
as much as possible a vast amount of information about various real-life areas — for their
needs in order to meet users’ expectations. It is known that Web sources are mostly
untrustworthy and their data usually come with uncertainties; for instance, sources can
be unreliable, data can be obsolete or extracted using imprecise automatic methods. At
the same time, dependent sources — copying between sources is a reality on the Web
as described in [Dong et al., 2010] — or geographical information (in the case of moving
objects) may be involved in the data integration process, and these aspects should be
carefully taken into consideration. When integrating uncertain data, the relationships
between sources or the intrinsic nature of the information may indeed influence both the
modeling and the assessment of uncertainties.

We consider in this work the problem of uncertain data integration given some
constraints. We first study how to reconcile uncertain and dependent Web sources, and
then we tackle the problem in the presence of spatio-temporal information.

We present further two application scenarios — fairly self-explanatory — from monitor-
ing moving objects using uncertain Web data. The first shows, on the one hand, the fact
that dependencies constrain data provenance and how the data are corroborated and
contradicted between sources which are key ingredients for uncertainty handling. The
second scenario illustrates that the amount of uncertainty in geographical data cannot
be modeled and estimated as in a usual manner, e.g., as for static data like the name of
a given object. It drives the need for specific precision measures as their veracity is also
temporally and spatially restricted; e.g., relying only on the trustworthiness level of their
providers may not be sufficient.

Tracking real-world objects such as cars, trains, aircrafts, ships, persons (e.g., celebri-
ties), or, more broadly, populations or groups of humans, natural phenomena such as
cyclones, epidemics is a real need today. Such moving objects are characterized by
timestamped location data and other meta-information such as name, size, maximum
reachable speed, acceleration patterns, etc. The analysis and mining of spatio-temporal
information about moving objects is common in a variety of applications, e.g., for pattern
discovery [Li et al., 2010, Yuan et al., 2014, Dimond et al., 2013, Pianese et al., 2013]

9. Hotel-base.com (http://www.hotel-base.com/) claims to hold the largest online accommoda-
tion listing built upon tens of thousands of hotels, bed and breakfast, guest houses, hostels, apartments
and self-catering properties in over 200 countries.

http://www.hotel-base.com/

CHAPTER 1. INTRODUCTION

or prediction of trajectories and locations [Morris, 2007, De Vries and Van Someren,
2012]. The overall goal may be to better understand certain natural phenomena, to
improve city services, to regulate route traffic, etc. Currently used methods for tracking
moving objects are often complex, mostly rely on application-specific resources and
costly equipment (e.g., satellite or radar tracking of ships and aircrafts).

The Word Wide Web, on the other hand, is a huge source of public information about
various real-world moving objects. Timestamped geographical data about the position of
moving objects are disseminated on the Web, notably on location-based social networks
or media sharing platforms. Social networking sites like Twitter and Facebook have the
ability of recording the real-time location of the user posting a message, thanks to data
from the GPS system, or mobile or wireless networks. In addition, these messages may
also contain location information as free text. Thus, it is theoretically possible to obtain
information about the user herself, or any moving object that the user is referring to in her
message. Media on sharing platforms like Flickr and Instagram may be annotated with
automatically acquired spatio-temporal information, such as the timestamp and location
of a picture as added by modern digital cameras.

In addition, the Web also provides in a variety of online databases more general
information about moving objects. For instance, data such as the usual residence
of a given individual can often be found online, e.g., in Wikipedia or Yellow Pages
services. Characteristics of particular flights and ships are available on specialized Web
platforms. Data extracted from multiple Web sources can serve to infer the locations of
certain moving objects at given times, and to obtain general information about these.
This information is uncertain, however, and exhibits many inconsistencies. One of the
challenges to overcome is to estimate the inherent reliability of that information.

We claim Web information can be used in a variety of settings where one would like
to track moving objects. We illustrate with the applications of celebrity spotting and ship
monitoring — we propose and give a detailed description in Section 5.4 of an application
whose the sources, data, and scenario are focused on the application of ship monitoring.

Celebrity spotting Journalists, paparazzi, fans, detectives, intelligence services, are
routinely interested in gathering data and following the travels of given individuals, usually
celebrities. These individuals may be active in social networks such as Twitter and
Instagram, where they share geolocated data (or data tagged with location information);
they may also be spotted in real life by users of media sharing platforms, who will
upload geolocated pictures. Various Web sites, news articles, etc., provide additional
meta-information. Exploiting this mass of information would provide a cost-effective and

10

1.2. WEB DATA INTEGRATION UNDER CONSTRAINTS

legal manner to reconstruct a meaningful trajectory.

Ship monitoring Researchers in maritime traffic investigate the routes followed by
different kinds of ships to propose traffic optimization methods, to predict pollution
levels, or to prevent pirating actions. Though ships do broadcast information about
their position using the AIS (Automatic Identification System) [Taka et al., 2013], this
information is not made publicly available, and no historical log is kept. Information about
the timestamped location of cruise ships, military vessels, tankers, etc., is common
on Web sharing platforms such as Flickr and on other specialized Web sources (see
also Section 5.4). Integrating ship data from multiple Web sources also helps obtaining
more complete and certain information about their characteristics. This raises another
important sub-problem which is the handling of possible dependencies among uncertain
sources during their integration. As we shall show later, in Section 5.2, there may be
some copying relationships between a group of Web sources in the maritime domain;
copying relationships force, somehow, the way data will be integrated and uncertainties
handled as we describe next in Example 1.2.1:

Example 1.2.1. To exemplify an integration setting with dependent Web sources, con-
sider the example of three uncertain Web sources Sy, Sa, and Ss sharing a subset of
objects in the maritime domain. Let us focus on values they provide for the draft and the
actual port for a given ship named “Costa Serena”. The first source S independently
reports that the draft of this ship is 8.2 m and it is currently located at the port of “Ham-
burg". The second source S, which relies on S, revises the data it copies by updating
the draft and the current location to 8.8 m and “Marseille”, respectively. Finally, the third
source Ss3 independently sets the draft to 8.8 m while being not aware about the location,
in other words, Ss, taken apart, will provide incomplete information about the considered
ship. Now, assume that one issues a query Q) requesting the draft and the current port
of this ship based on the three sources. The system needs to consider the answer from
each source, and then to integrate them in order to provide the result of this query. In a
deterministic setting, such a process will either fail or return an arbitrary answer; sources
are conflicting about the correct values for the draft and the port name of this ship. In
such a scenario, a rather reasonable way to perform this integration should be to present
all possible results together with their level of uncertainties and those of their sources —
the user afterwards may filter and choose relevant answers with respect to her trusted
sources or values with highest probabilities of being correct. Capturing uncertainties in
data require to be able to model aspects such as data provenance, contradiction, corrob-

11

CHAPTER 1. INTRODUCTION

oration, relevance, efc. The provenance of the data or corroborations and contradictions
between sources are given by the dependency relationships between the sources —
they must be consistent with the dependencies as these precise how data are shared
and have evolved. Information about the tracked ship can be obtained independently
from S1 and S3 whereas requesting some piece of data from S, require to use S;. On
the other hand, the dependency relationships are telling us that S, disagrees with S,
while being corroborated by S5 for the draft; uncertainty handling is constrained by the
dependencies.

To effectively estimate the precision of the location Web data about a given moving
object, its characteristics, e.g., maximum speed, should be helpful- we illustrate this with
Example 1.2.2.

Example 1.2.2. Revisiting Example 1.2.1, consider now that an uncertain data integra-
tion decides, based on the reliability levels of the sources S, Sa, and S that the actual
location of the ship is “Marseille”. However, at the same time we also have information
that the maximal speed of this ship is around 50 km/h and its last reliably registered
position, twenty days ago, was at tens thousands kilometers of “Marseille”. As a conse-
quence, the maximum speed of the ship, as well as the spatio-temporal information of its
last known location, contradict the answer given by the system as the ship cannot be
actually in “Marseille” under given constraints.

Contribution We first formalize and study the problem of uncertain data integration
under dependent sources; see Section 5.3. We focus on dependencies introduced by
known copying relationships between sources — a copying relationship must be directed,
the direction known, and co-copying is disallowed in our case. Intuitively, the set of
dependency relationships give an indication about data provenance, its different versions,
and the history of their revisions; the copiers first collect data from other sources and
then may update (insertion of new content and correction or removal of existing content)
them in order to provide their own knowledge of the modeled real-world. The shared
data is somehow subject to a revision process whose the history is given by the copying
relationships and the versions correspond to the source data — however one main
difference with a classical version control setting is that here the data proper to each
source are not explicitly known and must be inferred. As a consequence, we approach
the integration of the multiple uncertain sources with dependency relationships, by
targeting a technique able to reconcile these sources and their amount of uncertainties
while being aware of uncertain version control. As a natural connection with our first

12

1.3. TRUTH FINDING WITH CORRELATED DATA ATTRIBUTES

studied problem in Section 1.1, we answer such an integration in the special case of
tree-structured data by reformulating it as the merge of several uncertain versions of
the same shared XML document. We present initial ideas towards a probabilistic tree
data integration framework supporting dependent sources by gaining intuitions from our
uncertain version control system presented in Chapter 2. We devise a probabilistic XML
encoding of the integration that captures data provenance and relevance, as well as
contradictions and corroborations, with respect to the dependency relationships between
input data sources (see Section 5.3 for details).

Then, we investigate and illustrate, in Section 5.4, how to track moving objects
— beyond objects in the maritime domain — by integrating uncertain information from
multiple Web sources, with a focus on an effective estimation of the precision of the
obtained location data. We first propose an extraction technique of data about moving
objects based on keyword search over a set of Web sources — its output is a collection
of well-structured objects with information in the form of attribute names and values. We
estimate the amount of uncertainty in each location for all kinds of moving object using
a process built on two main criteria: outliers and far-fetched trajectories. We introduce
another criterion, namely on-land locations, pertaining to the specific maritime traffic
scenario for which we present a demonstration application (see Section 5.5). Our system
considers and integrates, for each non-geographical information, multiple possible values
from different Web sources — for visualization purposes, we show all the possible values
of a given data item by highlighting the one with the highest number of providers. Finally,
we introduce a method for estimating the trustworthiness level of users sharing location
data in platforms such as Flickr based on the precision of their geo-tagged items.

1.3 Truth Finding with Correlated Data Attributes

One of the main purposes of uncertainty management in multi-source Web appli-
cations is to come with the ability to identify the most trustworthy sources and the
information better describing the real world at the end of the integration process. With
more structure — e.g., objects describe by a set of given attributes — and domain-specific
knowledge — e.g., every attribute of any object has only one valid value, truth finding
algorithms deterministically integrate multiple uncertain Web sources by quantifying the
likelihood with which each possible attribute value of an object models the real world;
for every object, the attribute values having highest probabilities are returned as the
truth. Excepting few approaches like majority voting, most of the existing truth finding
techniques [Li et al., 2012, Waguih and Berti-Equille, 2014] assume that involved sources

13

CHAPTER 1. INTRODUCTION

come with different levels of trustworthiness (or accuracy). Thereby, these techniques
measure and use the levels of accuracy of sources when quantifying the probabilities of
correctness of attribute values; this accuracy level of every source is often estimated
using the probabilities of correctness '° of its attribute values for the entire set of shared
objects.

In addition, harnessing correlations — in its various forms — during a truth finding
process has been proven to be very promising in order to improve the quality of the
overall process. Being aware of the high similarity between attribute values provided by
different sources for the same objects may increase our belief about the correctness of
these values [Yin et al., 2008]. Detecting that there are copying relationships between a
subset of involved sources may help to remain unbiased by false values spread out by
propagation [Dong et al., 2009a, Dong et al., 2009b]. Furthermore, correlations between
sources resulting from sharing the same extraction patterns or algorithms, or maintaining
complementary information may be indicative of the direction of the truth [Pochampally
et al., 2014].

We consider in this study the problem of truth finding over structured Web sources
with structurally correlated data attributes. We focus on a one-truth setting, i.e., each
attribute of every object has only one valid value.

To the best of our knowledge, there is no previous study on truth finding which
considers structural correlations between data attributes, as existing methods mostly
focus on correlations between sources. The level of accuracy of a given source in
providing the truth can be variable with respect to distinct subsets of the data attributes.
For instance, Web sources can rely on several sensors, extraction patterns or algorithms,
etc., which independently collect information about different attributes of the same real-
world objects. As a result, the quality of the source on each specific subset of attributes
corresponds, in reality, to the accuracy of the specific technique responsible of gathering
information about these attributes; we say that such a subset of attributes is structurally
correlated in terms of source data quality. Structural correlations between attributes can
prevent being biased when using a global indicator of source quality for quantifying the
probabilities of correctness of attribute values during a truth finding process. In general
these possible structural correlations among subsets of data attributes are unknown
since sources only provide an aggregated view of their information. This drives the need
for a way to also discover these structural correlations between data attributes during
the truth finding process.

10. Sometimes, the probability of correctness associated to a possible attribute value is just obtained as
a normalization of a vote count or a confidence measure.

14

1.3. TRUTH FINDING WITH CORRELATED DATA ATTRIBUTES

Contribution We formalize and study the problem of truth finding in the presence of
structurally correlated data attributes with respect to the levels of accuracy of involved
sources. We tackle this issue, in Chapter 6, by searching for an optimal partitioning
of the data attributes for any truth finding technique based on an estimation of the
level of accuracy of sources. As initial results, we propose two exploration algorithms
— an exact and an approximation algorithm — which discover such an optimal partition
given a truth finding algorithm. Preliminary experimentations over synthetic datasets
provide promising results in terms of precision regarding some existing algorithms; see
Section 6.4 for details.

15

16

Part |

Uncertain Multi-Version Tree Data

Uncertain XML Version Control Model

In this chapter, we detail our approach to the main aspect of the first problem
introduced in Chapter 1, the problem of modeling and assessing uncertainty in version
control. We focus on tree-structured data which describe well the data handled in
our application scenario, that is, Web-scale collaborative editing platforms. After an
overview of the related work in Section 2.1, we start by introducing, in Section 2.2,
some preliminary material and by reviewing the probabilistic XML model we use in
Section 2.3. After an abstraction of a multi-version XML document through a formal
definition of its graph of versions space and its set of versions, we detail, in Section 2.4,
our contribution for this work: a probabilistic XML version control model for multi-version
uncertain tree-structured documents. This model is built on version control events, a
p-document, and a directed acyclic graph of events. At the abstract level, we define an
uncertain multi-version XML document using a possible-world semantics (Section 2.4.2).
To achieve further effectiveness, we devise a compact representation of all the possible
versions, together with their probabilities, of an uncertain multi-version XML document
through a PrXMLfi® p-document encoding. We end by proving the correction of our
encoding.

2.1 Related Work

This section overviews the related work on version control, uncertain tree-structured
data models, and quality evaluation on collaborative editing systems.

2.1.1 Research on Version Control

Significant research on version control has been done both in research and industrial
communities [Cellary and Jomier, 1990, David, 1994, Conradi and Westfechtel, 1998, Al-
Khudair et al., 2001, Pilato, 2004, Kégel and Maximilian, 2008, Reichenberger and Kratky,
2009, Rénnau and Borghoff, 2009, Thao and Munson, 2011, Pandey and Munson, 2013,
Thao and Munson, 2014]. In general, first systems [Cellary and Jomier, 1990, David,

CHAPTER 2. UNCERTAIN XML VERSION CONTROL MODEL

1994, Conradi and Westfechtel, 1998, Al-Khudair et al., 2001, Kégel and Maximilian,
2008, Reichenberger and Kratky, 2009] are based on object-oriented models, whereas
recent research or industrial tools [Pilato, 2004, Chacon, 2009, Rénnau and Borghoff,
2009] are focused on file-oriented models. Abstracting out the differences between both
settings, the common problem is to manage changes in documents, e.g., large source
codes, flat or structured documents, etc., shared by large teams.

Object-oriented Multi-Version Databases Object-oriented models are used in soft-
ware engineering environments (i.e., CAD systems ' and CASE 2). In these environments,
features and behaviors of objects are regarded to be the same as those defined in clas-
sical object-oriented approaches in databases or in programming languages. Objects
are described as instances of classes with attributes and methods. In the same way,
concepts like inheritance and generalization are used to represent some structural
constraints between objects. Branching aspects are also taken into account enabling
modifications over objects happening in parallel along multiple branches, which is very
important in particular in distributed and cooperative development environments. Collab-
oration and distribution can increase the number of variants of the same object within
the system. For storage support, these object-oriented version control systems are
implemented on top of existing object-oriented database systems and versions of a same
object coexist simultaneously in the same place. As a consequence, most research
efforts, e.g., those in [Cellary and Jomier, 1990, Al-Khudair et al., 2001, Reichenberger
and Kratky, 2009], have been concentrated on consistency management of versions
and configurations, i.e., how to identify the versions that compose a consistent con-
figuration or, more generally, a consistent state of the modeled world: global version
stamps [Cellary and Jomier, 1990] or descriptors of consistency [Al-Khudair et al., 2001]
were among popular advocated solutions. In the case of large software engineering
environments, version control systems based on file-oriented models (also called source
code management tools) manage large source codes, documentation, and configuration
files.

General-purpose Version Control Tools Many systems intended for version control
of documents — covering multiple formats (e.g., text, binary and XML formats) — have
been proposed both in research [David, 1994, Rusu et al., 2005, Rénnau and Borghoff,
2009, Pandey and Munson, 2013, Thao and Munson, 2011] and in industry [Pilato, 2004,

1. Computer Aided Design Systems
2. Computer Aided Software Environments

18

2.1. RELATED WORK

Chacon, 2009]. A large majority among them, seen as general-purpose® version control
systems, by default only manipulate text or binary formats. Subversion, ClearCase,
Git, BitKeeper, and Bazaar form a non exhaustive list of them; see [Rénnau and
Borghoff, 2009, Koc and Tansel, 2011] for a more detailed survey about practical version
control tools. At their basis, general-purpose version control systems are either built
on top of line-based differencing algorithms like GNU diff [Myers, 1986], or simply use
cryptographic hashing techniques [Chacon, 2009] in order to detect new versions when
changes are committed. Both methods are not convenient for structured documents
like XML documents, because the semantics of edits cannot be described meaningfully,
leading to possible hiding of the collaborative editing aspects. As a consequence,
tree differencing algorithms [Cobéna et al., 2002, Lindholm et al., 2006, Cobéna and
Abdessalem, 2009, Rénnau and Borghoff, 2012, Thao and Munson, 2014] have been
used in order to properly capture structural changes between XML document versions
(we defer the discussion about the literature on XML change detection to Section 4.1).
Furthermore, version control tools support concurrent access to the same file, which
enables collaboration and data sharing over distributed systems. They implement locking
mechanisms (generally, shared locking) for concurrency management and include some
merging features. Under versioning, a complete history of versions of files is maintained
and each version is stored in a compressed form, e.g., using a delta representation.
Typically, the version space is represented sequentially or using a graph structure when
parallel versions occur. Advanced features such as directory handling under version
control are also available within systems like Git [Chacon, 2009]. Observe that the overall
functionalities of a file-based version control system can be implemented in general as a
virtual file system on top of the file system of an existing operating system as in [Pilato,
2004, Chacon, 2009]. As concurrent editions are frequent in practice, conflicts may
appear during the merging phase and their detection is usually application-dependent
or manual. Many file-oriented version control systems, being deterministic, require
human intervention to resolve conflicts before a final validation of the merge: such a
resolution often consists in keeping only one possibility even though it is not the most
relevant change. Computing the most relevant changes during a revision process has
been studied by [Borgolte et al., 2014] using clustering algorithms but in the context
of Web pages. In large-scale collaborative editing platforms — particularly within a
distributed setting — which are characterized by a high rate of concurrency, operational
transformation algorithms [Weiss et al., 2010, Mehdi et al., 2014] are often proposed for

3. The word general-purpose means that these systems are especially designed for versioning and they
offer guarantees for an optimized process in terms of efficiency for change propagation or version retrieval.

19

CHAPTER 2. UNCERTAIN XML VERSION CONTROL MODEL

ensuring consistency and intentionality; see [Kumawat et al., 2010] for a survey.

Version Control of XML Documents Research on version control of tree-structured
documents, in particular XML, has been largely devoted to change detection and merge
algorithms, e.g., [Robin, 2002, Cobéna et al., 2002, Lindholm et al., 2006, Rénnau and
Borghoff, 2012, Thao and Munson, 2014]; we provide more insights about these two
aspects in Section 4.1. However, some efforts have been made on version control models
specific to XML documents. The version control models in [Rusu et al., 2005, Thao and
Munson, 2011, Pandey and Munson, 2013] define and use special XML tags in order
to identify and track the different versions of an XML document. In both models, the
versions, as well as the history of their generation, are fully encoded into a unique XML
document yielding a version-aware XML document model — [Pandey and Munson, 2013]
targets LibreOffice documents. Two main disadvantages of these two approaches are
content redundancy and costly update operations, the latter being a logical consequence
of the former. Rdnnau and Borghoff investigate in [Rénnau and Borghoff, 2009] a
system for versioning office documents (e.g., OpenDocument and OpenXML documents)
shared in a collaborative manner, e.g., via e-mail, within a distributive environment by
providing a toolkit for versioning and merging XML documents which is device- and
media-independent. However, their model is more alike to an efficient XML change
detection and merging tool (see [Rénnau and Borghoff, 2012]) rather than a fully far-
fetched XML version control system.

2.1.2 Uncertain Tree-Structured Data Models

Uncertainty handling in tree-structured data was originally associated to the problem
of automatic Web data extraction and integration, as we shall show later in Section 5.1.
Several efforts have been made on uncertain tree-structured management and some
models — based mostly on a possible-world semantics with a compact representation
system — have been proposed, especially the work of Van Keulen et al. [Van Keulen
et al., 2005, van Keulen and de Keijzer, 2009]. Then a framework, namely probabilistic
XML, that generalizes all the existing models was proposed in [Abiteboul et al., 2009]
and [Kharlamov et al., 2010]; we refer to [Kimelfeld and Senellart, 2013] for a detailed
survey of the probabilistic XML literature. Probabilistic XML models can represent and
evaluate various semantics of uncertainties in data, for instance, conflicts, incomplete-
ness, missing or NULL information, and correlations: actual probabilistic XML models
can be categorized according to the semantics of uncertainties they capture, e.g., the

20

2.1. RELATED WORK

classification given in [Abiteboul et al., 2009]. The simple probabilistic tree model of Van
Keulen et al. [Van Keulen et al., 2005] captures uncertainties resulting from conflicts on
the tree structure or the data values by enumerating the set of possible XML documents
together with their probabilities of being the valid instance of the modeled world. The
authors introduce two special XML nodes, that is, possibility and probability nodes in
order to compactly encode the set of possible XML documents and their probabilities.
While the model in [Van Keulen et al., 2005] directly assigns probability values to un-
certain nodes — note that a reliable source of these values is not always available —
advanced probabilistic XML models such as those of [Abiteboul et al., 2009, Kharlamov
et al., 2010] use random Boolean variables for modeling and assessing the amount
of uncertainties in data which facilitates logical reasoning on information or tracking of
data provenance. These models have the ability to describe a larger class of semantics
about uncertainties on data such as long-distance dependencies* between uncertain
data items; we revisit and illustrate probabilistic XML models based on random Boolean
variables in Section 2.3.

2.1.3 Quality in Collaborative Editing Systems

Various ways of measuring and analyzing the quality of the content creation process
in Wikipedia have been approached [Adler and de Alfaro, 2007, De La Calzada and
Dekhtyar, 2010, Maniu et al., 2011a, Osman, 2013, Geiger and Halfaker, 2013]. [Adler
and de Alfaro, 2007] and [Maniu et al., 2011a] have respectively studied the inference of
users’ reputation scores and users’ social connections by performing off-line analysis of
the history of versions and edits for a large bunch of Wikipedia’s articles: the history of
editions made by contributors and the semantics of performed operations are exploited
in order to derive a reputation score for each involved user or to construct a signed
network between the contributors. Such a signed network should, in some extent, serve
as a basis for deriving trusted contributors as those having mostly positive incoming
and outgoing links with the others. The impact of conflicts on the quality of Wikipedia
articles, as well as how consensus are reached through manual coordinations implying
contributors, has been explored and conjectured in [Osman, 2013]. Finally, [Geiger and
Halfaker, 2013] studies the role of bots in Wikipedia’s quality control; they show that the
quality of Wikipedia articles does not decline without bots as their automatic correction
jobs will be done later by contributors during the revision process.

4. Long-distance dependencies translate the fact that the existence of some nodes, belonging to different
sub-trees, are correlated.

21

CHAPTER 2. UNCERTAIN XML VERSION CONTROL MODEL

Our own previous work in [Abdessalem et al., 2011, Ba et al., 2011] are initial
studies towards the design of an uncertain XML version control system: [Abdessalem
et al., 2011] is a demonstration system focusing on Wikipedia revisions and showing
the benefits of integrating an uncertain XML version control approach in web-scale
collaborative platforms; [Ba et al., 2011] gives some early ideas behind modeling XML
uncertain version control.

2.2 Preliminaries

In this section, we present some basic version control notions and the semi-structured
XML document model underlying our proposal. A multi-version document refers to a set
of versions of the same document handled within a version control process. Each version
of the document represents a given state (instance) of the evolution of this versioned
document. A typical version control model is built on the following common notions.

Document Version A version® is a conventional term that refers to a document copy
in document-oriented version control systems. The different versions of a document
are linked by derivation operations. A derivation consists of creating a new version by
first copying a previously existing one before performing modifications. Some versions,
representing variants, are in a derivation relationship with the same origin. The variants
(parallel versions) characterize a non-linear editing history with several distinct branches
of the same multi-version document. In this history, a branch is a linear sequence of
versions. Instead of storing the complete content of each version, most version control
approaches only maintains diffs between states, together with meta-information on
states. These states (or commits in Git world [Chacon, 2009]) model different sets of
changes that are explicitly validated at distinct stages of the version control process. A
state also comes with information about the context (e.g., author, date, comment) in
which these modifications are done. As a consequence, each version depends on the
complete history leading up to a given state. We will follow here the same approach for
modeling the different versions of a document within our framework.

Version Space Since the content of each version is not fully saved, there must be a
manner to retrieve it when needed. The version space © represents the editing history of

5. The term “revision” is also widely used for referring to a version of a document. As a result, we use
sometimes the word revision instead of version in the thesis.

6. Observe that the term “version space” is also used, but with a semantics different of ours, in the field
of concept learning [Mitchell, 1979].

22

2.2. PRELIMINARIES

[1] article
|
[2] title [3] para [4] sect
| | VRN
[10] article-name [11] texty [12] title [13] para

| |
[19] section-title [20] text,

Figure 2.1: Example XML tree .7: Wikipedia article

a versioned document (e.g., wiki version history as given in [Sabel, 2007]). It maintains
necessary information related to the versions and their derivations. As mentioned above,
a derivation relationship implies at least one input version (several incoming versions for
merge operations as we will see in Chapter 4) and an output version. Based on this, we
model similarly to [Chacon, 2009] a version space of any multi-version document as a
directed acyclic graph’.

Unordered XML Tree Documents Our motivating applications handle mostly tree-
structured data. As a result, we consider data as unordered XML trees. Note that the
proposed model can be extended to ordered trees (this may require restricting the set of
valid versions to those complying with a specific order, we leave the details for future
work); we choose unordered trees for convenience of exposition given that in many
cases order is unimportant. Let us assume a finite set . of strings (i.e., labels or text
data) and a finite set .# of identifiers such that . N .# = (). In addition, let ® and « be
respectively a labeling function and an identifying function. Formally, we define an XML
document as an unordered, labeled tree .7 over identifiers in .# with o and & mapping
each node z € .7 respectively to a unique identifier a(z) € .# and to a string ¢(x) € .Z.
The tree is unranked, i.e., the number of children of each node in .7 is not assumed to
be fixed. Given an XML tree .7, we define ®(.7) and «(.7) as respectively the set of its
node strings and the set of its node identifiers. For simplicity, we will assume all trees
have the same root node (same label, same identifier).

Example 2.2.1. Figure 2.1 depicts an XML tree . representing a typical Wikipedia
article. The node identifiers are inside square brackets besides node strings. The title of

7. A directed acyclic graph (or DAG) is a graph consisting of a set of nodes and directed edges, each
edge connecting one node to another, such that there is no way to start at some node v and follow a
sequence of edges that eventually loops back to v again.

23

CHAPTER 2. UNCERTAIN XML VERSION CONTROL MODEL

this article is given in node 10. The content of the document is structured in sections
(“sect") with their titles and paragraphs (‘para") containing the text data.

XML Edit Operations We rely on unique node identifiers and consider two basic edit
operations over the specified XML document model: node insertions and deletions.

Node Insertions We denote an insertion by ins (i, x) whose semantics over any
XML tree consists of inserting node x (we suppose z is not already in the tree) as a
child of a certain node y satisfying a(y) = 4. If such a node is not found in the tree, the
operation does nothing. Note that an insertion can concern a subtree, and in this case
we simply refer with x to the root of this subtree.

Node Deletions Similarly, we introduce a deletion as de1l (/) where i is the identi-
fier of the node to suppress. The delete operation removes the targeted node, if it exists,
together with its descendants, from the XML tree.

We conclude by defining an XML edit script, A =< uq,ue, ..., u; >, as a sequence
of a certain number of elementary edit operations w; (each u;, with 1 < j < 4, being
either an insertion or a deletion) to carry out one after the other on an XML document for
producing a new one. Given a tree .7, we denote the outcome of applying an edit script
A over .7 by [7]2. Even though in this work we are dependent on persistent identifiers
on tree nodes to define edit operations, the semantics of these operations could be
extended to updates expressed by queries, especially useful in distributed collaborative
editing environments where identifiers may not be straightforward to share.

2.3 Probabilistic XML

We briefly introduce in this section the probabilistic XML representation system we
use as a basis of our uncertain version control system. For more details, see [Abiteboul
et al., 2009] for the general framework and [Kharlamov et al., 2010] for the specific
PrXMLFe model we used. As outlined earlier, these representation systems are originally
intended for XML-based applications such as Web data integration and extraction. For
instance, when integrating various semi-structured Web catalogs containing personal
data, some problems such as overlapping or contradiction are frequent. Typically, one
can find for the same person name two distinct affiliations in different catalogs. A
probabilistic XML model can be used to automatically integrate such data sources by
enumerating all possibilities: (a) the system considers each incoming source according

24

2.3. PROBABILISTIC XML

to a certain ordering of sources; (b) it maps its data items with the existing items in the
probabilistic repository, initially empty, to find matches and; (c) giving that, it represents
the matches as a set of possibilities. The resolution of conflicts is thus postponed
to query time, where each query will return a set of possibilities together with their
probabilities. The main reason to do so is that resolving semantic issues before an
effective integration can be tricky in such situations; the resolution of semantic issues
is usually a tedious and error-prone resolution process, particularly, when there is no
external knowledge about the reliability of the sources and the level of relevance of data .

p-Documents A probabilistic XML representation system is a compact way of repre-
senting probability distributions over possible XML documents; in the case of interest
here, the probability distribution is finite. Formally, a probabilistic XML distribution space,
or px-space, . over a collection of uncertain XML documents is a couple (D, p) where
D is a nonempty finite set of documents and p : D — (0, 1] is a probability function that
maps each document d in D to a rational number p(d) € (0, 1] such that ¥;cpp(d) = 1.
A p-document, or probabilistic XML document, usually denoted 2, defines a compact
encoding of a px-space .7.

PrXMLfe: Syntax and Semantics We consider for our needs one specific class of
p-documents, PrXMLf€ [Kharlamov et al., 2010] (where fie stands for formula of indepen-
dent events); restricting to this particular class allows us to give a simplified presentation,
see [Abiteboul et al., 2009, Kharlamov et al., 2010] for a more general setting. Assume a
set of independent random Boolean variables, or event variables in short, by, bo, ..., by,
and their respective probabilities P,(b1), P (b2) ..., P,(by) of existence. A PrXML® p-
document is an unordered, unranked, and labeled tree where every node (except for the
root) x may be annotated with an arbitrary propositional formula fie(x) over the event
variables b, bo, ..., b,,. Different formulas can share common events, i.e., there may be
some correlation between formulas and the number of event variables in the formulas
may vary from one node to another.

A valuation v of the event variables b; . .. b, induces over & one particular XML
documents u(ﬁ): the document where only nodes annotated with formulas valuated to
true by v are kept (nodes whose formulas are valuated to false by v are deleted from the
tree, along with their descendants). Given a p-document 2, the possible worlds of 2,
denoted as pwd(ﬁ) is the set of all such XML documents. The probability of a given
possible world d of Z is defined as the sum of the probability of the valuations that yield

d. The set of possible worlds, together with their probabilities, defines the semantics of

25

CHAPTER 2. UNCERTAIN XML VERSION CONTROL MODEL

2, the px-space [] associated to 2.

r r r r
S S S S
NN
P1 P2 P1 P2 p1 P2
ty to ty ta t1 to
(a) (b)

Figure 2.2: (a) PrXMLf p-document Z; (b) Three possible worlds di, d» and ds

Example 2.3.1. Figure 2.2 sketches on the left side a concrete PrXML® p-document
2 and on the right side three possible worlds di, d, and ds. Formulas annotating
nodes are shown just above them: b, V by and —b; are bound to nodes p; and ps
respectively. The three possible worlds d;, d» and ds are obtained by setting the following
valuations of by and by: (a) false and true; (b) true and true (or true and false); (c) false
and false. At each execution of the random process, the distributional node chooses
exactly the nodes whose formulas are evaluated at true given the valuation specified
over event variables. Assuming a probability distribution over events, for instance
P.(b1) = 0.4 and P,(b2) = 0.5, we derive the probability of the possible world d, as
Pr(di) = (1 — Pr(b1)) X Pe(b2) = (1 —0.4) x 0.5 = 0.3. We can compute similarly the
probabilities of all other possible worlds.

With respect to other probabilistic XML representation systems [Abiteboul et al.,
2009], PrxMLfe is very succinct (since arbitrary propositional formulas can be used,
involving arbitrary correlations among events), i.e., exponentially more succinct than the
models of [Nierman and Jagadish, 2002, Van Keulen et al., 2005], and offers tractable
insertions and deletions [Kharlamov et al., 2010], one key requirement for our uncertain
version control model. However, a non-negligible downside is that all non-trivial (tree-
pattern) queries over this model are #P-hard to evaluate [Kimelfeld et al., 2009]. This is
not necessarily an issue, here, since we favor in our application efficient updates and
retrieval of given possible worlds, over arbitrary queries.

26

2.4. UNCERTAIN MULTI-VERSION XML SETTING

Data Provenance Uncertain XML management based on the PrXMLf€ model also
takes advantage of the various possible semantics of event variables in terms of infor-
mation description. Indeed, besides uncertainty management, the model also provides
support for keeping information about data provenance (or lineage) based on the event
variables. Data provenance is information of traceability such as change semantics,
responsible party, timestamp, etc., related to uncertain data. To do so, we only need to
use the semantics of event variables as representing information about data provenance.
As such, it is sometimes useful to use probabilistic XML representation systems even in
the absence of reliable probability sources for individual events, in the sense that one can
manipulate them as incomplete data models (i.e., we only care about possible worlds,
not about their probabilities). Moreover, tracking information about data provenance
within a version control process can be helpful for provenance queries; see [Zhang and
Jagadish, 2013] for a concrete example of the use of provenance data within a revision
process.

2.4 Uncertain Multi-Version XML Setting

In this section, we elaborate on our uncertain XML version control model for tree-
structured documents edited in a collaborative manner. We build our model on three
main concepts: version control events, p-document, and directed acyclic graph of events.
We start by formalizing a multi-version XML document through a formal definition of its
graph of version space and its set of versions. Then we formally introduce the proposed
model.

2.4.1 Multi-Version XML Documents

Consider the infinite set Z of all XML documents with a given root label and identifier.
Let ¥ be a set of version control events ey, ..., e,. These events represent the different
states of a tree. We associate to events contextual information about revisions (author-
ship, timestamp, etc.). To each event ¢; is further associated an edit script A;. Based on
this, we formalize the graph of version space and the set of versions of any versioned
XML document as follows.

Graph of version space The version space is a rooted directed acyclic graph (DAG)
G = (¥ U{ey}, &) where: (i) the initial version control event ¢y ¢ ¥/, a special event
representing the first state of any versioned XML tree, is the root of ¢; (ii) & C (¥ U{eo})?,
defining the edges of ¥, consists of a set of ordered couples of version control events.

27

CHAPTER 2. UNCERTAIN XML VERSION CONTROL MODEL

Each edge implicitly describes a directed derivation relationship between two versions.
A branch of ¢ is a directed path that implies a start node e; and an end node e;. The
latter must be reachable from the former by traversing a set of ordered edges in &. We
refer to this branch by B{ . A rooted branch is a branch that starts at the root of the graph.

XML versions An XML version is the document in & corresponding to a set of version
control events, the set of events that made this version happen. In a deterministic version
control system, this set always corresponds to a rooted branch in the version space
graph. In our uncertain version control system, this set may be arbitrary. Let us consider
the set 27 comprising all sub-parts of #. The set of versions of a multi-version XML
document is given by a mapping Q : 27 — 2: to each set of events corresponds a given
tree (these trees are typically not all distinct). The function €2 can be computed from edit
scripts associated with events as follows:

— Q(0) maps to the root-only XML tree of 2.

— Forall 4, for all . C 2”\ei} Q({e;} U.Z) = [Q(F)]2.
A multi-version XML document, .7,,,,, is now defined as a pair (¢,2) where ¢ is a DAG
of version control events, whereas () is a mapping function specifying the set of versions
of the document. In the following we propose a more efficient way to compute the version
corresponding to a set of events, using a p-document for storage.

2.4.2 Uncertain Multi-Version XML Documents

A multi-version document will be uncertain if the version control events, staged in
a version control process, come with uncertainty as in open collaborative contexts. By
version control events with uncertainty, we mean random events leading to uncertain
versions and content. As a consequence, we will rely on a probability distribution over
2”7, that will, together with the © mapping, imply a probability distribution over 2.

Uncertainty modeling We model uncertainty in events by further defining a version
control event ¢; in ¥ as a conjunction of semantically unrelated random Boolean variables
b1, ..., by with the following assumptions: (i) a Boolean variable models a given source
of uncertainty (e.g., the contributor) in the version control environment; (ii) all Boolean
variables in each e; are independent; (iii) a Boolean variable b; reused across events
correlates different version control events; (iv) one particular Boolean revision variable
(), representing more specifically the uncertainty in the contribution, is not shared
across other version control events and appears positively in e;.

28

2.4. UNCERTAIN MULTI-VERSION XML SETTING

Probability Computation We assume given a probability distribution over the Boolean
random variables b;’s (this typically comes from a trust estimation in a contributor, or in a
contribution), which induces a probability distribution over propositional formulas over
the b;’s in the usual manner [Kharlamov et al., 2010]. We now obtain the probability of
each (uncertain) version d of as follows:

FCY

Q(F)=d

with the formula ¢(.#) associated to .# defined as by:

o(F)= N\ ¢n N\ e (2.1)
e EF e EV\F

€o r r r r

e1 S1 S1 S2 S1 S2 Sy S1 S4
es ey p1 P2 P1 p1 p3 p4 p1 P2 p4
e3 tt b t t t3 ts th b 1

F1={e} Fy = {e1, e} F3 ={e1, e, €3} F4={e1, es}
(a) Graph ¢ (b) Possible Versions %, %, 7 et T4

Figure 2.3: (a) Graph of Version Space; (b) Four versions and their corresponding
truth-values

Example 2.4.1. Figure 2.3 sketches an uncertain multi-version XML document 7, with
four staged version control events. On the left side, we have the version space 4. The
right side shows an example of four possible (uncertain) versions and their associated
event set. We suppose that ,,, is initially a root-only document. The first three versions
correspond to versions covered by deterministic version control systems, whereas the
last one is generated by considering that the changes performed at an intermediate
version control event, here ey, as incorrect. One feature of our model is to provide

29

CHAPTER 2. UNCERTAIN XML VERSION CONTROL MODEL

the possibility for viewing and modifying these kinds of uncertain versions representing
virtual versions. Only edits performed at the specified version control events are taken
into account in the process of producing a version: in 7, the node r and the subtrees
rooted at s,, s3 respectively introduced at ey, e; and es are present, while the subtree
p3 added at es does not appear because its parent node s, cannot be found. Finally,
given probabilities of version control events, we are able to measure the reliability of
each uncertain version 7;, for each 1 < i < 4, based on its corresponding event set .%;
(and all other event sets that map to the same tree).

We straightforwardly observe, for instance with the simple example in Figure 2.3, that
the amount of possible (uncertain) versions of any uncertain multi-version document may
grow rapidly (indeed, exponentially in the number of events). As a result, the enumeration
and the handling of all the possibilities with the function 2 may become tedious at a
certain point. To address this issue, we propose an efficient method for encoding in
a compact manner the possible versions together with their truth values. Intuitively, a
PrXMLfe p-document compactly models the set of possible versions of an uncertain
multi-version XML document. As stressed in Section 2.3, a probabilistic tree based on
propositional formulas provides interesting features for our setting. First, it describes
well a distribution of truth values over a set of uncertain XML trees while providing a
meaningful process to find back a given version and its probability. Second, it provides
an update-efficient representation system, which is crucial in dynamic environments
such as version-control-based applications.

2.4.3 Probabilistic XML Encoding Model

We introduce a general uncertain XML version control representation framework,
denoted by T, @S @ couple (¢, @) where (a) ¢ is as before a DAG of events, rep-
resenting the version space; (b) Z is a PrxMLfe p-document with random Boolean
variables b; . .. by, representing efficiently all possible (uncertain) XML tree versions and
their corresponding truth-values.

We now define the semantics of such an encoding as the uncertain multi-version
document (¢,) where ¥ is the same and (2 is defined as follows. For all .# C 7, let
B™ be the set of all random variables occurring in one of the events of .# and B~ be the
set of all revision variables (Vs for ¢; not in .%. Let v be the valuation of b; ... b,, that
sets variables of B to true, variables of B~ to false, and other variables to an arbitrary
value. We set Q(.7) := v(2).

30

2.5. CONCLUSION

The following shows that this semantics is compatible with the px-space semantics
of p-documents on the one hand, and the probability distribution defined by uncertain
multi-version documents on the other hand.

—

Proposition 2.4.1. Let (¥, &?) be an uncertain version control representation framework
and (¢,9) its semantics as just defined. We further assume that all formulas occurring
in & can be expressed as formulas over the events of ¥ (i.e., we do not make use of
the b;’s independently of version control events). Then the px-space [[ﬁ]] defines the
same probability distribution over & as).

The proof is straightforward and relies on Equation (2.1).

2.5 Conclusion

We considered in the chapter the problem of modeling and assessing uncertainty
in version control, proposing an uncertain XML version control approach that have the
ability to effectively capture uncertainties in tree-structured data collaboratively edited by
a large community of users with different levels of reliability and providing contributions
whose degree of relevance is also variable. To the best of our knowledge, our solution,
targeting Web-scale collaborative editing applications, is the first that accounts for
uncertain data within a version control process. We formalized a multi-version XML
document through its graph of version space and its set of versions. After that, we
formally introduced an uncertain multi-version XML document as a set of possible
versions with their probabilities of being valid (based on random Boolean variables which
model and assess uncertain data) and a graph of version space. For more effectiveness,
we devised and proposed a general probabilistic XML version control model which
properly encodes in a compact manner the set of all possible versions of an uncertain
multi-version XML document.

We continue in the two next chapters by detailing the support of the standards
version control operations, in particular update and merge operations, and by studying
the performance of our model.

31

Updates in Uncertain XML Version Control

In this chapter, we consider the following problems: the formalization of the semantics
of standard update operations within our uncertain XML version control framework, and
the evaluation of their overall performance.

Updates are crucial in version control because they constitute the principal means
for generating new versions based on old ones. In our application scenarios, an update
operation consists of uncertain elementary edit operations leading to several possible
versions. We initially translate and formalize the semantics of an uncertain update
operation over a given uncertain multi-version XML document through the possible-
world intepretation of its set of possible versions and the corresponding truth values
(Section 3.1.1). In Section 3.1.2, we show that such uncertain update can be directly
performed as an operation over the probabilistic XML encoding of the uncertain multi-
version XML document by devising the corresponding update algorithm. We empirically
demonstrate the correction of our update algorithm, the observation that our proposed
semantics for update is compatible with the classical update operation of version control
systems, and finally the full scalability of our algorithm in terms of running time and the
growth of the size of the output probabilistic tree.

For performance analysis purposes, we demonstrate, in Section 3.2, the efficiency
of our model with respect to deterministic version control systems through measures
on real-world datasets. Then, we revisit in Section 3.2.2 some of the content filtering
capabilities of our approach. In brief, in comparison with robust version control tools like
Git and Subversion, our experiments show that our system achieves update propagation
and version retrieval in comparable, or even better in some cases, running times.

3.1 Updating Uncertain Multi-Version XML

We implement the semantics of standard update operations on top of our probabilistic
XML representation system introduced in the previous chapter. Our system considers
and supports edit scripts consisting of two basic elementary edit operations, namely node

3.1. UPDATING UNCERTAIN MULTI-VERSION XML

insertions and deletions, over unordered XML documents (cf. Section 2.2). Recall that
the definition of these edit operations rely on unique node identifiers, and we consider
the introduction of update operations under these assumptions.

3.1.1 Uncertain Update Operation

An update over an uncertain multi-version document .7,,, = (¢,) corresponds to
the evaluation of some uncertain edits on a given (uncertain) version. With the help of
a triple (A, e, ¢'), we refer to an update operation as updopr, . . Where A is an edit
script, e is an existing version control event pointing to the edited version and ¢’ is an
incoming version control event evaluating the amount of uncertainty in this update. We
formalize updopP, . . Over 7, as follows.

updOP 4, ¢, o (Tm) = (U ({e'}, {(e, €)}),).

An update operation thus results in the insertion of a new node and a new edge in ¢,
and an extension of Q with Q' that we define now. For any subset .7 C ¥’ (¥ is the set
of nodes in ¢ after the update), we have:

—ifed g 7:(F) =QF);

— otherwise: Q' (.7) = [QU.F\{})]~.

Example 3.1.1. Revisiting Figure 2.1 with the tree 7 being the version generated from
the initial root-only version of a shared document. Let us now consider that an uncertain
update, whose edit script A = {ins (1, sect), del (11), ins (3, texts) } inserts a new
section to the article, deletes text, and replaces it by texts, is issued on . This update,
according to the semantics of updates over uncertain multi-version XML documents,
will result in two new possible versions: one version corresponding exactly to the result
of A over when all the context is reliable and another version consisting of applying
A on the initial root-only version when the update that has produced 7 is unreliable.
Concerning the graph of version space, it will be updated with the new event e; and the
edge (e1,e2) where ey represents the event associated to the update having lead to .7 .

What precedes gives a semantics to updates on uncertain multi-version documents;
however, the semantics is not practical as it requires considering every subset .# C ¥,
3.1.2 Uncertain Update over Probabilistic XML Encoding

For a more usable solution, we perform updates directly on the p-document rep-

—

resentation (¢, Z?) of the uncertain multi-version document (¢,). Algorithm 3.1

33

CHAPTER 3. UPDATES IN UNCERTAIN XML VERSION CONTROL

Algorithm 3.1: updPrXML <(¥,(2), updOP A ¢ >

Input: (¢4, &), updOPA ¢ ¢

Output: result of applying updoPx . .- Over (¥, ﬁ)
¢ =40 ({e} {(e.¢)});

foreach (v in A) do

if u = ins(i, x) then

y = findNodeById (2, i) ;

if matchIsFound (.7, z) then

fie,(x) := getFieOfNode () ;
setFieOfNode (z, fie,(z) V €);

else

© 00 N O O &~ WO N =

updContent (,@, ins (i, X)) ;
setFieOfNode (z, €');

end

end

else if u =del(i) then

x = findNodeById (ﬁ i) ;
fie,(x) = getFieOfNode () ;
setFieOfNode (z, fie,(z) A =€) ;
end

end

return (¢, &2);

-
o

- ok ek
W N =

[Gy
(S, B

[Ty
N o

[Oy
©o© o

(updPrXML ()) describes how such an update operation updoPx . .- is performed on
top of an uncertain representation (¢, 3/5). First, the graph is updated as given above.
Then, for each operation w in A, the algorithm retrieves the targeted node in 2 using
findNodeById () (thisis a constant-time operation). According to the type of operation,

there are two possibilities.

1. If w is an insertion of a node z, the algorithm checks if x does not already oc-
cur in 2, for instance by looking for a node with the same label (the function
matchIsFound () searches a matching for = in the subtree .7, rooted at y). If
such a matching exists, getFieOfNode () returns its current formula fie,(x) and
the algorithm updates it to fie,(z) := fie,(z) V €, specifying that = appears when
this update is valid. Otherwise, updContent () and setFieOfNode () respec-
tively inserts the node = in 2 and sets its associated formula as fie,,(z) = €.

2. If u is a deletion of a node z, the algorithm gets its current formula fie,(z) and

34

3.1. UPDATING UNCERTAIN MULTI-VERSION XML

sets it to fie, (x) := fie, () A €/, specifying that must be removed from possible
worlds where this update is valid.

Example 3.1.2. Continuing with Example 3.1.1, the content of the p-document — consist-
ing of nodes in 7 having each the formula e, — after its update according Algorithm 3.1
and by considering the script A = {ins (1, sect), del (11), ins (3, text;) } and the
new event e; will contain the new nodes sect and text; with associated formulas es.
The node text; is still in the p-document but its formula will be updated to e; N\ —ey tO
represent its removal (in other terms, its no relevance) when e, is true.

The rest of this section shows the correctness and the efficiency of our approach:
First, we establish that Algorithm 3.1 respects the semantics of updates. Second, we
show that the behavior of deterministic version control systems can be simulated by
considering only a specific kind of event set. Third, we characterize the complexity of
the algorithm.

Proposition 3.1.1. Algorithm 1, when ran on a probabilistic XML encoding f,w =
(9, ﬁ) of a multi-version document ,,, = (¢4,), together with an update operation
updOP p ., COMpULES a representation updOP p ¢ ¢ (?mv) of the multi-version document

UdePA,e’e/ (ymv) .

UpdOP A .ot (Tms) =(9', P)
UpdOPA ¢ o (Tmo) =(9',)

It is clear that the version space DAG is the same in both cases. We need to show
that Q' corresponds to the semantics of ' that is, if we denote the semantics of (9, 3/5’)
as (¢',Q"), we need to show that ' = Q”. By definition, for & C ¥/, Q/(%) = Q(%) if
e ¢ .F,and Q' (F) = [Q(F\{e'})]* otherwise. Let us distinguish these two cases.

In the first scenario implying subsets .% which do not contain ¢/, we have /(%) =
Q(.%). Since 7, is the semantics of %v, we know that Q(.%#) = v(.%) for a valuation v
that sets the special revision variable b’ corresponding to ¢’ to false. Now, let us look at
the document u(@). By construction the update algorithm does not delete any node
from 2 but just inserts new nodes and modifies some formulas. Suppose that there
exists a node = € u(ﬁ) such that x ¢ u(@). Since = € u(ﬁ), x cannot be a new
node in 2. Thereby, its new formula fie, (x) after the update is either fie,(z) V ¢ or
fie,(x) A —€'. In both cases, fie, () satisfies v, because fie,(z) satisfies v and v sets ¥/
(and therefore ¢’) to false. This leads to a contradiction and we can conclude that for all

node z € v(Z), we have z € v(Z'). Similarly, if a node z is in .7 ('), because v sets
¢ o false, z will also be in v(27). Combining the two, Q/(.F) = v(P') = v(P) = Q(.F).

Proof. Let:{

35

CHAPTER 3. UPDATES IN UNCERTAIN XML VERSION CONTROL

The second scenario concerns subsets .#’ in which ¢’ appears. We obtain a version
' (F") by updating Q(#'\{¢'}) with A. Letus set .# = .7'\{¢'}. There exists a valuation
v such that v(2) = Q (and thus, Q' (F) = [v(2)]2) with v setting all variables of events
in .Z to true, and making sure that all other events are set to false. Let v’ be the extension
of v where all variables of ¢’ are set to true. It suffices to prove that [v(2)]2 = v/(2).
First, it is clear that the nodes in u(gfz\) which are not modified by A are also in u’(ﬁ’).
Indeed, their associated formulas do not change in 2, and hence the fact these satisfy
v are sufficient for selecting them in 27 with the valuation /. Suppose now an operation
w in A involving a node z: u either adds z as a child of a certain node y or deletes z. In
the former case, if y exists in u(ﬁ), then its formula satisfies v and « is added in the
document when it does not already exist. With Algorithm 3.1, u is interpreted in 7z
by the existence of = under y with an attached formula being either fie,,(z) = ¢ (newly
added) or fie,,(x) = fie,(x) V ¢ (reverted node). As a consequence, u’(é\”) selects z as
in both possible expressions of fie, (x). Let us analyze the case where u is a deletion
of . If z is not present in u(ﬁ), i.e., u changes nothing in this document. Through
Algorithm 3.1, u results in a new associated formula set to fie,,(z) = fie,(z) A —e for the
node z in 7', Obviously, we can see that 2 will not be in z/’(,é?\”) because the satisfiability
of fie, (z) requires the falseness of ¢/ whose condition does not hold in .%. Now, if

—~

is found in v(£?), u deletes the node, as well as its children, from the document. As a
result, the outcome does not contain z, which is conform to the fact that « ¢ /(7). We
have proved that for all node x in [u(ﬁ)]A, x is also in u’(@). By similar arguments,

we can show that the converse is verified, i.e., for all node z in v/(£'), « belongs to
(). 0

The semantics of update is therefore the same, whether stated on uncertain multi-
version documents, or implemented as in Algorithm 3.1. We now show that this semantics
is compatible with the classical update operation of version control systems.

Proposition 3.1.2. The formal definition of updating in uncertain multi-version doc-
uments implements the semantics of the standard update operation in deterministic
version control systems when sets of events are restricted to rooted branches.

Proof. (Sketch) The update in our model changes the version space ¢ similarly to a
deterministic version control setting. As for its evaluation over the set of versions, we
only need to show that the operation also produces a new version by updating the
version mapping B (with e the ith version control event in) with A as in a deterministic
formalism. For building the resulting version set, the operation as given above is defined

36

3.2. EVALUATION OF THE UNCERTAIN XML VERSION CONTROL MODEL

such that for all subset .7 C ¥ with e € .%, we carry out A on Q(.#) for producing a new
version Q' (. U {¢'}). Amongst all the subsets satisfying this condition, obviously there
is at least one which maps to B. O

We conclude by showing that our algorithm is fully scalable:

Proposition 3.1.3. Algorithm 3.1 performs the update process over the representation
of any uncertain multi-version XML document with a constant time complexity with
respect to the size of the input document. The size of the output probabilistic tree grows
linearly in the size of the update script.

Proof. The first part of the algorithm consists in updating ¢. This is clearly a constant-
time operation, which results in a single new node and a single new edge in ¢ for every
edit script. As for the second part of the algorithm, i.e., the evaluation of the update script
over the probabilistic tree, let |3/Z\ | and |A| be respectively the size of the input probabilistic
document & and the length of A. By implementing 2 as an amortized hash table,
we execute a lookup of nodes in Z based on findNodeById () Ofr matchIsFound ()
in constant time. (matchIsFound () requires storing hashes of all subtrees of the
tree, but this data structure can be maintained efficiently — we omit the details here.)
The upper bound of Algorithm 3.1 occurs when A consists only of insertions. Since
the functions getFieOfNode (), updContent () and setFieOfNode () also have
constant execution costs, we can state that the overall running time of Algorithm 3.1 is
only a function of the number of operations in A. As a result, we can conclude that the
update algorithm performs in O(1) with respect to the number of nodes in Zand 9.

At each execution, Algorithm 3.1 will increase the input probabilistic tree by a size
bounded by a constant for each update operation, together with the size of all inserts. To
sum up, the size increase is linear in the size of the original edit script. O

3.2 Evaluation of the Uncertain XML Version Control Model

This section describes the experimental evaluation of the complexity of the update
operations — and the performance of our uncertain XML version control model in general
— based on real-world applications. We present a comparative study of our model with
two popular version control systems Git and Subversion, in order to prove its efficiency.

All times shown are CPU time, obtained by running in-memory tests, avoiding disk
I/O costs by putting all accessed file systems in a RAM disk. Measures have been
carried out using the same settings for all three systems.

37

CHAPTER 3. UPDATES IN UNCERTAIN XML VERSION CONTROL

T T T] T T
i Subversion | 10% Subversion |4
10t — Git f g — Gt
- i — PrXML - i — PrXML
1S r] S 3 |l
= : = 10° 4
[0} 103? e 0} H
£ § E
E 02| 1 E 102
e 07} g 10
o r B o
o i | © i
10! F ' 1
; 10" |
L ! ! ! ! ! ! i ! ! !
0 50 100 150 200 250 30 0 200 400 600
Commit (Linux kernel) Commit (Cassandra project)

Figure 3.1: Measures of commit time over real-world datasets (logarithmic y-axis)

3.2.1 Performance analysis

We measured the time needed for the execution of two main operations: the commit
and checkout of a version. The tests were conducted on Git, Subversion, and the
implementation of our model (PrXML). The goal is to show the feasibility of our model
rather than to prove that it is more efficient than the mentioned version control systems.
We stress that, though for comparison purposes our system was tested in a deterministic
setting, its main interest relies in the fact that it is able to represent uncertain multi-version
documents, as we illustrate further in Section 3.2.2.

Datasets and Implementation For datasets, we used the history of the master
branches of the Linux kernel development' and the Apache Cassandra project? for
the tests. These data represent two large file systems and constitute two examples of
tree-structured data shared in an open and collaborative environment. The Linux kernel
development natively uses Git. We obtained a local copy of its history by cloning the
master development branch. We maintained up-to-date our local copy by pulling every
day the latest changes from the original source. We followed a similar process with the
Cassandra dataset (a Subversion repository).

In total, each local branch has more than ten thousand commits (or revisions). Each
commit materializes a set of changes, to the content of files or to their hierarchy (the
file system tree). In our experiments, we focused on the commits applied to the file
system tree and ignored content change. We determined the commits and the derivation

1. https://www.kernel.org/
2. http://cassandra.apache.org/

38

https://www.kernel.org/
http://cassandra.apache.org/

3.2. EVALUATION OF THE UNCERTAIN XML VERSION CONTROL MODEL

relationships from Git and Subversion logs. We represented the file system in an XML
document and we transposed the atomic changes to the file system into edit operations
on the XML tree. To each insertion, respectively deletion, of a file or a directory in the
file system corresponds an insertion, respectively a deletion, of a node in the XML tree.

We implemented our version control model (PrXML) in Java. We used the Java
APIs SVNKit?3 and JGit* to set up the standard operations of Subversion and Git. The
purpose was to perform all the evaluations in the same conditions. Subversion uses a
set of log files to track the changes applied to the file system at the different commits.
Each log file contains a set of paths and the change operations associated to each path.
As for Git, it handles several versions of a file system as a set of related Git tree objects
represented by the hashes of their content. A Git tree object represents a snapshot of
the file system at a given commit.

Cost Analysis Figures 3.1 and 3.3 compare the cost of the commit and the checkout
operations in Subversion, Git, and PrXML.

Commit Time The commit time indicates the time needed by the system to create
a version (commit), whereas the checkout time corresponds to the time necessary to
compute and retrieve the sought version. The obtained results show clearly that PrXML
have good performance with respect to Git and Subversion systems. The experiments
were done using the datasets obtained from the Linux Kernel and Cassandra projects,
as indicated above. For both datasets, we observe in Figure 3.1 that our model has in
general a low commit cost® (note that the y-axes are logarithmic on Figure 4).

An in-depth analysis of the results show that the commit costs depend in our model
on the number of edit operations associated to the commits (see Figure 3.2), as implied
by Proposition 3.1.3. However, PrXML remains efficient compared to the other systems,
except for some few commits characterized by a large number of edits (at least one
hundred edit operations). This can be explained by the fact that our model performs the
edit operations over XML trees, whereas Git stores the hashes of the files indexed by the
directory names, and Subversion logs the changes together with the targeted paths in
flat files. An insertion of a subtree (a hierarchy of files and directories) in the file system
can be treated as a simple operation in Git and Subversion, whereas it requires a series
of node insertions in our model.

3. http://svnkit.com/
4, http://www.eclipse.org/jgit/
5. Our measures of the commit time in PrXML include the computation cost of the edit scripts A.

39

http://svnkit.com/
http://www.eclipse.org/jgit/

CHAPTER 3. UPDATES IN UNCERTAIN XML VERSION CONTROL

oSubversion ||
1l < Git |®
- 107} o PIXML |
S]
[}
E 0 . o
b 3L .
é 10 6 ﬂz} & g O L4 B
E Egé o o 0 ¢
§ oo e
I ° e°
1074 -‘. E
x5
.\H\. Ll Ll
10! 10? 103

Number of edit operations

Figure 3.2: Commit time vs number of edit operations (for edit scripts of length > 5)

Checkout time (ms)

400

300

200

100

Subversion [
Git
PrXML

0

1 L 1
100 150 200 250 300
Revision (Linux kernel)

50

Checkout time (ms)

400

300

200

100

T T

Subversion ||
Git

PrXML

| | |
0 200 400 600
Revision (Cassandra project)

Figure 3.3: Measures of checkout time over real-world datasets (linear axes)

Checkout Time Our model is able to generate linear versions (corresponding to
event sets that are rooted branches) as well as arbitrary ones. However, traditional
version control systems are only able to produce linear versions. As a consequence, in
this paper we focused our experiments on retrieving linear versions for comparison pur-
poses. Figure 3.3 shows the measures obtained for the checkout of successive versions
in PrXML, Git and Subversion. The x-axis represents version numbers. Retrieving a

version number n requires the reconstruction of all previous versions (1 to n — 1). The
results obtained show that our model is significantly more efficient than Subversion for
both datasets (Linux Kernel and Cassandra projects). Compared to Git, PrXML has a
lower checkout cost for initial versions, while it becomes less efficient in retrieving recent

versions for the Cassandra dataset. Note that, traditional version control models mostly

40

3.2. EVALUATION OF THE UNCERTAIN XML VERSION CONTROL MODEL

use reversible diffs [Rusu et al., 2005] in order to speed up the process of reconstructing
the recent versions in a linear history.

3.2.2 Filtering Capabilities

Efficient evaluation of the uncertainty and automatic filtering of unreliable contents
are two key issues for large scale collaborative editing systems. Evaluation of uncertainty
is needed because a shared document can result from contributions of different persons,
who may have different levels of reliability. This reliability can be estimated in various
ways, such as an indicator of the overall reputation of an author (possibly automatically
derived from the content of contributions, cf. [Adler and de Alfaro, 2007]) or the subjective
trust a given reader has in the contributor. For popular collaborative platforms, like
Wikipedia, an automatic management of conflicts is also necessary because the number
of contributors is often very large. This is especially true for documents related to
hot topics, where the number of conflicts and vandalism acts can evolve rapidly and
compromise document integrity.

In our model, filtering unreliable contents can be done easily by setting to false the
Boolean variables modeling the corresponding sources. This can be done automatically,
for instance when a vandalism act is detected, or at query time to fit user preferences
and opinion about the contributors. A shared document can also be regarded as the
merge of all possible worlds modeled by the generated revisions. We demonstrated
in [Abdessalem et al., 2011] an application of these new filtering and interaction ca-
pabilities to Wikipedia revisions: an article is no longer considered as the last valid
revision, but as a merge of all possible (uncertain) revisions. The overall uncertainty on
a given part of the article is derived from the uncertainty of the revisions having affected
it. Moreover, the user can view the state of a document at a given revision, removing the
effect of a given revision or a given contributor, or focusing only on the effect of some
chosen revisions or some reliable contributors.

We also tested the possibility for the users to handle more advanced operations over
critical versions of articles such as vandalized versions. We chose the most vandalized
Wikipedia articles 8, and we used our model to study the impact of considering as reliable
some versions affected by vandalism. We succeeded in reconstructing the chosen
articles as if the vandalism had never been removed; obtaining this special version of the
article is very efficient, since it consists in applying a given valuation to the probabilistic
document, which is a checkout operation whose timing is comparable to what is shown

6. http://en.wikipedia.org/wiki/Wikipedia:Most_vandalized_pages

41

http://en.wikipedia.org/wiki/Wikipedia:Most_vandalized_pages

CHAPTER 3. UPDATES IN UNCERTAIN XML VERSION CONTROL

in Figure 3.3. Note that, in the current version of Wikipedia, the content of vandalized
versions is systematically removed from the presented version of an article, even if some
users may want to visualize them for various reasons. Our experiments have shown that
we can detect the vandalism as well as Wikipedia robots do (see [Geiger and Halfaker,
2013]), and automatically manage it in PrXML, keeping all uncertain versions available
for checkout.

3.3 Conclusion

We considered in this chapter the interrelated problems of the support of the standard
update operations within our uncertain XML version control model, its performance
evaluation, and some of its filtering capabilities. We translated and formalized the
semantics of the standard XML update as corresponding to an uncertain operation
which yields a set of possible versions when performing over any uncertain multi-version
XML document. We empirically investigated and proved the well-definedness of the
corresponding update algorithm over our probabilistic XML encoding model. We also
showed that such an update algorithm has a constant time complexity with respect
to the size of the input document. The size of the resulting probabilistic tree grows
linearly according to the size of the update script. The comparison of our model with
the most popular version control systems, done on real-world data, shows its efficiency.
Moreover, our model offers new filtering and interaction capabilities which are crucial
in open collaborative environments, where the data sources, the contributors and the
shared content are inherently uncertain.

42

Merging in Uncertain XML Version Control

Merging is a fundamental operation in revision control systems that enables inte-
grating different changes made to the same documents. In open platforms, such as
Wikipedia, uncertainty is ubiquitous, essentially due to a lack of knowledge about the
reliability of contributors and the relevance of contributions. In the perspective of model-
ing and assessing uncertain data in Web-scale editing collaborative platforms, we have
studied and proposed, in Chapter 2, an effective and efficient version control framework
designed for uncertain multi-version tree-structured documents, based on a probabilistic
XML model, which already supports the standard update operation (Chapter 3). In this
chapter, we investigate and define a merge operation that complements our framework
and enables the conciliation of uncertain versions, answering the last point of the first
problem introduced in Chapter 1. Such a merge is uncertain as it involves uncertain
versions which have been produced with uncertain edits (Section 4.3.1). A general
sub-problem that usually arises when merging documents is conflict management. At
the abstract level, we detect conflicts based on a three-way differencing procedure.
Their resolution, within our system, is transparent since conflicts correspond to a kind of
uncertainties that our model naturally captures. We devise an efficient algorithm that
implements the merge operation and prove its correction in Section 4.3.2; we show how
conflicts can be effectively approached and managed in the case of the probabilistic XML
encoding of an uncertain multi-version XML document by leveraging the provenance
formulas associated to its uncertain nodes. We start our study with an overview of the
related work about merging XML documents.

4.1 Related Work

The increasing use of XML-based systems, in particular those with a built-in version
control engine, has lead to the adoption of new XML merge techniques, e.g., [Robin,
2002, Suzuki, 2002, Lindholm et al., 2006, Ma et al., 2010, Rénnau and Borghoff,
2012, Thao and Munson, 2014]. These algorithms, aware of the tree-like structure of

CHAPTER 4. MERGING IN UNCERTAIN XML VERSION CONTROL

XML documents, have arisen as a reliable alternative to classical methods within XML
settings. Indeed, traditional methods for merging text or binary files, offered by default
in general-purpose version control tools (see Section 2.1), cannot detect meaningfully
the semantics of changes over trees. Most current XML merge algorithms share as a
baseline the diff step (edit detection) always preceding the generation of the merged
document . Some main differences can be stated as follows: (i) two-way versus three-
way approaches, that is, the use or not of the common base document from which
merged ones are derived; (ii) the set of handled edit operations; (iii) the compliance to
ordered XML elements or unordered ones; and (iv) the conflict management strategy. In
the following, we briefly survey a few of these algorithms for merging XML documents.
We refer to [Peters, 2005, Cobéna and Abdessalem, 2009, Thao and Munson, 2014] for
a more exhaustive overview of XML merge and edit detection techniques.

Deterministic Merge Merging in [Suzuki, 2002] and [Lindholm et al., 2006] has tackled
ordered XML trees, more suitable in some human-edited contexts such as structured
reports, rich text formats, etc. In [Suzuki, 2002], the motivation was the synchronization
of versions of documents edited by different users. The author has explored a structural
two-way merge via a polynomial-time algorithm which directly computes two isomorphic
trees representing the merge output from the two input XML documents. The trees are
progressively built in a bottom-up fashion with nodes (having unique identifiers) from the
two documents, while ensuring their isomorphism during this construction by applying a
series of node insertion, deletion and update when a difference is detected. As a result,
the process of generating isomorphic trees, thereby the merge result, slightly involves a
detection of the differences between merged XML documents. Therefore, there is an
implicit processing of edit changes. However, no details are given by the author about the
processing of conflicts. As for [Lindholm et al., 2006], the focus was on the reintegration 2
of changes to a document in cases when multiple independently modified copies of the
document have been made. The paper has proposed a three-way XML merging algorithm
with clear merge rules (e.g., node sameness, node context) and a categorization of
conflicts based on real-world use cases. In contrast to [Suzuki, 2002], the algorithm of
Lindholm [Lindholm et al., 2006] uses a tree matching process detecting move operations

1. A state-based merge relies often on external tools able to compare and merge versions whereas an
operation-based merge assumes that the set of edits to be fused are already recorded within the editing
systems, which can drive the need for application-depending merge algorithm as the encoding of edits can
be specific to each individual application.

2. Merging changes that led to two distinct documents and applying the merge result into a third
document.

44

4.1. RELATED WORK

in addition to insertions, deletions, and updates of nodes. In its merge step, core and
optional conflicts are defined: a core conflict (e.g., update/update of a node) will cause a
failure of the merge, whereas an optional conflict (e.g., delete/update of a sub-tree) may
be tolerated. The system does not claim to resolve all conflicts, but it always reports
unresolved scenarios. [Robin, 2002] has focused on the best XML matching strategy
regarding node insertions and deletions. An intermediate (optimal) XML diff file encoding
the matches is used to ease the merge process with the help of an XML transformation
language such as XSLT 3. This algorithm was designed to run both in a two-way setting
and a three-way one regardless of the considered XML document model. [Rénnau and
Borghoff, 2012] have explored and presented a merging toolkit, built on top of a context-
oriented delta model, that allows for comparing and merging XML documents. The diff
model uses the context fingerprints accounting for surrounding nodes in order to reliably
identify the correct position of edit operations — this technique tries to overcome the non-
persistence of node identifiers, particularly in distributed settings, which makes harder
the matching of nodes. The authors claim that by doing so they can achieve an efficient
merging with detection of possible conflicts. More recently, [Thao and Munson, 2014]
have introduced a three-way tree merge algorithm using a specialized tree data structure
that supports node identity. Their goal is to enhance the performances of existing three-
way approaches by the use of the robust GNU diff3 method, at the level of node children,
in its diff detection procedure. They provide a prototype of their algorithm with a tool
enabling to visualize and manually resolve conflicts. Note that the aforementioned XML
merge algorithms are all deterministic, i.e., they assume trustworthy editors and edits
without uncertainty.

Merge with uncertainty [Ma et al., 2010] and ourselves [Abdessalem et al., 2011]
have proposed two-way merging algorithms that are intended for uncertain XML docu-
ments. The process followed consists of the same steps as in deterministic settings. The
main distinction with [Ma et al., 2010] is that its merge outcome is an XML document
where nodes come with some elements modeling their amount of uncertainty (the syn-
chronizer [Ma et al., 2010] is based on Dempster—Shafer theory* to deal with uncertainty,
in the form of probability values, degrees of beliefs, or necessity measures, associated
to data) that does not retain enough information for retrieving individual merged versions.
Our previous work, in [Abdessalem et al., 2011], is the closest study in spirit to this

3. eXtensible Stylesheet Language Transformations

4. According to Wikipedia, the Dempster—Shafer theory is a well defined setting for reasoning with
uncertainty, with understood connections to other frameworks such as probability, possibility, and imprecise
probability theories.

45

CHAPTER 4. MERGING IN UNCERTAIN XML VERSION CONTROL

current study since both rely on the same general framework for managing uncertain
XML in a typical versioning process; merging is not formally considered in [Abdessalem
et al., 2011].

4.2 A Typical Three-Way Merge Process

A merge operation considers a set of versions and integrates their content in a single
new one. In our proposition, detailed in the next section, we view this outcome as
obtained via a three-way merge, that is, an integration of the changes from the inputs
with respect to their common base version. We focus throughout our study on merging
two versions which is the most common case in real applications. However, an extension
to n > 2 versions is straightforward. In addition, we also assume that all merged versions
only originate from updates over the base versions, i.e., we do not consider merging
of versions with a different merge history — this is again for the sake of clarity of the
exposition.

The merge process usually implies two steps:

1. an extraction of the different sets of edit scripts that have led to the input versions;
and

2. a generation of the merge result by evaluating a unified set of the extracted edit
scripts over the initial data. This last step must deal with possible conflicting edits
(for the definition of conflicts, see next) due to concurrent changes (i.e., when two
editors independently changes the same piece of data). The resolution of conflicts
may yield several different content items for the merge. As a result, each possible
merge outcome is obtained by making a choice between several possible edits.
This naturally fits, as we will show in our translation, in the system with uncertainty
handling because in such a setting there is no longer an only one truth but several
different possibilities, each with a certain probability of validity.

We present, in this section, a typical three-way merge procedure by detailing the
process of computing the edit scripts to use for the merge, as well as common merge
scenarios. Assume an unordered XML document under version control. Let us give two
arbitrary versions .1 and %, along with their common lowest ancestor .7, of this.

5. A three-way merge enables a better matching of nodes and detection of conflicts as the structural
matching of nodes is more accurate.

46

4.2. ATYPICAL THREE-WAY MERGE PROCESS

4.2.1 Edit Detection

We do not assume here given any explicit edit script, i.e., we concentrate on a
state-based merge setting for the sake of more generality. As a consequence, we
include edit detection as an integral part of the merge process. We define the edit
script specifying the merge of versions .77 and % through the three-way diff algorithm
diff3 (5, 2, J,) on unordered trees with unique identifiers for nodes. The algorithm
will return a script with only node inserts and deletes as allowed edit operations, an
assumption which is reasonable and consistent with our general setting in Section 2.2.
Similarly to [Khanna et al., 2007], we set up our diff3 based on the two-way diffs
diff2(Z,, 71) and diff2(7,, J2) as subroutines. These two-way functions separately
compute two intermediate edit scripts using the same process.

— diff2(T, 1) initially matches the nodes in trees .7, and .7 in order to find out the
shared, deleted, and inserted nodes. Then, the algorithm encodes the matches in
terms of a set of node insertions and deletions which evaluated on .7, give 7.
A node = € .7, with no match in .7 is deleted, whereas a node y € %3 with no
match in .7, is added. Let us denote this edit script by A;.

— diff2(7,, %) follows the same process and provides the script A, leading to 7
from .7,.

A more global edit script, referred as Az, models the final value of the diff$; Az is

obtained by mixing A; and As. We describe this combination with three types of edits
as follows.

Equivalent Edits An equivalence occurs between all edits in A; and A, with
the same semantics and the same arguments (same identifiers and same labels).
Specifically, two insertions uy € A; and uy € Ag are equivalent if they specify the same
node identifier and the same subtree to be added. As for deletions in A; and A,, there
is an equivalence between two if these target the same node. Given two equivalent edits,
only one of the two operations is kept in As.

Conflicting Edits Any two given operations us € A1, uy € Ay are conflicting edits
when they come with different semantics, i.e, if us is an insertion, then u, is a deletion
(and conversely), and the insertion has added some new nodes as descendants of the
node that is removed with the delete operation. We introduce conflicted edits in As to
be those satisfying the properties given above. Given that, we refer to the set of all
conflicting edits in Az with A?. We say that a node handled by conflicted edits is a

47

CHAPTER 4. MERGING IN UNCERTAIN XML VERSION CONTROL

conflicted node.

Independent Edits The edits in A; and A, that do not belong to the first two
classes are independent edits. The set of equivalent and independent edits form the
non-conflicted edits of a given diff algorithm. A node impacted by a non-conflicted
edit is a non-conflicted node for a given merge operation. (Note that conflicted and
non-conflicted nodes together form the set of all nodes impacted by edit scripts in As).

Now, let us briefly present the merging scenarios (cf. usual merge options, especially
mine-conflict and theirs-conflict, in tools like SubVersion [Pilato, 2004]) using diffs and
input versions.

4.2.2 Common Merge Cases

A large majority of current versioning models provide three common merge scenarios
that consider the resolution of possible conflicts. Recall that in most cases, this resolution
is manual, that is, it requires user involvement. Let .7, be the outcome of the merge of
71 and %. We formalize the three common merge scenarios as follows.

1. First, one would like to perform the merge based on .77 and by updating this with
the non-conflicted edits from As.

ym _ [%]AQ—A%

2. The second scenario is symmetric to the first one: it considers as a base version
5 and fetches the non-conflicted edits from A;.

T = [T8

3. Finally, the last case maps to the update of the common version .7, with the non-
conflicted edits in As, that is, one would like to reject all the conflicting edits in the
merge outcome.

T = [Ta] 77

Straightforwardly, we can show that when A% = {), then we obtain the same content
for the three merge scenarios. This observation is inherent to the computation of the edit
scripts and the definition of the merge outcome in each scenario. Observe that we do
not deal with the (intuitive and naive) merge case where the user corrects the conflicting
parts with new inputs. However, this case can be simply treated by first choosing one
the three outcome above and then by performing updates over this.

48

4.3. MERGING UNCERTAIN MULTI-VERSION XML

4.3 Merging uncertain Multi-Version XML

We detail in this section the translation of the usual three-way XML merge operation
within our uncertain versioning model. Surely, an uncertain context induces an inherent
uncertain merge; involved versions and diffs come with uncertainties. We rely on the
definition of our model in Chapter 2 and consider .7, = (¢,2) to be an uncertain
multi-version XML document having n staged version control events. We also assume
its probabilistic XML encoding Z;,, = (9, 55). Remember again that each version of
Ty 1S identified bys a particular event in ¢, the one representing the tail of the branch
of ¢ leading to this version. We reason on events instead of full versions since these are
here uncertain and can be defined in an arbitrary manner using events.

We first abstract the uncertain merge operation under the possible-world interpre-
tation of the set of possible versions of an uncertain multi-version XML and then we
present an efficient merge algorithm over its probabilistic XML encoding.

4.3.1 Uncertain Merge Operation

We now introduce our abstraction of an uncertain merge operation (covering at least
the set up of the three common merge scenarios given in Section 4.2.2) within the
uncertain multi-version XML document model.

With the help of the triple (e1, e, €'), we refer in our setting with uncertainty to a
merge operation as mergeOP,, ., » Where e; and e; point to the two versions to be
merged and ¢’ is a new event assessing the amount of uncertainty in the merge operation.
We evaluate the semantics of such a merge operation over .7,,, with uncertainty as
follows.

mergeOPg,), o (Tmw) = (G U ({6/},{(61, 6/), (€2, 6/)}), Q/)

On the one hand, this evaluation inserts a new event and two edges in the version
space ¢. On the other hand, it generates a new distribution £’ which represents an
extension of © with new possible versions and event sets. Let <7, and ., be the set of
all strict ancestor events in 4 of e; and e, respectively. We denote the common set by
oy = o, N, Forall subset.Z ¢ 271}, formally we set:

— ife' ¢ 7 ’(f) = Q(F);

— i {er, 2, €'} C T QY(F) = QT \ {));

— it {er,¢'} C.F and e ¢ F: Y (F) = [Q(F \{e}) \ (e, \))]22727;
if {e2,¢'} C F and e ¢ F: V(F) := [U(F\{D)\ (e, \)2 727;

49

CHAPTER 4. MERGING IN UNCERTAIN XML VERSION CONTROL

r / N\
Sq So
| I I
S Pip:1 P2
1 1 1
/\ r th th o
r &% PLoph
o° | W2 {e1,e3,€'}
o | o> ;
AN tot s, &
. El 2 1
S1 B 1 1 s
| \%\’6 event e/ | select us I2
% {e1,es} .2’ __eveme o % P2
P %. %, /S8 P2
e N

| -

S, g /Z%C‘
3
T ¥ ty é% {e1,e2,€e4,€'}
S r
{e1} 2

/ N\
|

{€'} S1 So

p2 | |

| P1 P2

to ty to
{e1,e2,e4} {e1,€'}

(a) base version 7,, variants .7, and %; (b) Merge generation: first, validate u4 then resolve
scripts (uz2,u4) and (us) conflits between u2 and us

Figure 4.1: Merge approach: (a) uncertain versions and (b) merge result

— if{e,ea} N F =0and ¢ € Z: Q(F) := [QUF \{}) \ (e, \ Fs) U (A, \
)R
The aforementioned edit scripts are all deemed to be obtained using the diffs
process that is described in Section 4.2.1. In every required case, the diff3 works on the
folowoing inputs:
— uncertain arbitrary versions 7 = Q((ZF \ {¢/} N o.,) U{e1}) and T = Q((.F \
{}yNna,,) U{e}) and;
— its common lowest ancestor uncertain version .7, = Q(.% \ {¢'} N <) where .Z is
the subset of valid events in ¥ U {¢'}.

Example 4.3.1. Figure 4.1 describes the process of merging two possible versions,
denoted by 7 and %, from Figure 2.3 given their common base .7,. In our proposal,
this operation is simply encompassed with the merge specified over events es and ey
which point to the two input versions. On the left-hand side of the example, we provide
the versions 71, 7 and 9, together with edit scripts {us,us} and {us} that led to them

50

4.3. MERGING UNCERTAIN MULTI-VERSION XML

from the base .,. Typically, we view these scripts as given by diff functions outlined
in Section 4.2.1 based on full versions. The right-hand side in Figure 4.1 explains the
process of merging 71 and 7 (with the merge event ¢’ evaluating the uncertainty in the
merge) as follows: (i) First, all the edits in the scripts above coming with no conflicts, i.e.,
here only u4 are validated for building the part of the merge (seen as an intermediate
outcome) that is certain with the existence of ¢'; (ii) Then, generating the set of possible
merge items by enumerating the different possibilities with the conflicting edits us and
us. The two initial possible results are obtained by propagating respectively u, and us
given the infermediate outcome. Such a propagation will give in the first case a merged
version that only contains the sub-tree s,, and in the second case a merged version with
the sub-tree s, (including nodes p, and p)) in addition. Concretely, our merge approach
will compute the same merged documents by first considering the input versions 77 and
T, and then by updating these with the edits without conflicts respectively from {us}
and {us,us}. Finally, the last possible content for the merge is obtained by discarding
all conflicting edits and by combining the concurrent nodes in the base version with the
intermediate result.

The uncertain merging operation as formalized above remains however intractable
since it requires to evaluate every possible version for computing the overall merge result.
Below, we propose a more convenient way to do this merge.

4.3.2 Uncertain Merging over Probabilistic XML Encoding

—

We properly present the semantics of an uncertain merge operation over (¢, &) as
Algorithm 4.1. This devised algorithm is both effective and efficient as we shall show
shortly. Prior to a deeper description of the proposed algorithm, we start by introducing
the notion of conflicted nodes in the PrxXMLF® probabilistic encoding given an uncertain
merge with input events e; and e,.

The history of edits over any specific node in Z is encoded with its attached formula.
We rely on this for detecting the conflicted nodes. Let us set the following valuations
of events in ¢: (i) v, setting the events in 7 to true and the revision variables of all
other events to false; (ii) 4 assigning a true value to the events in <7, U {e;} and a false
value to the revision variables of the other events and finally; (iii) v, setting the events in
., U {es} to true and all the revision variables in the remaining events to false.

We first introduce the lineage (or provenance) of an uncertain node in the PrxmLfe
p-document.

51

CHAPTER 4. MERGING IN UNCERTAIN XML VERSION CONTROL

Definition 4.3.1. (Node lineage) The lineage formula of a given node x € 2, denoted
by fie' (x), is the propositional formula resulting from the conjunction of the formula of
this node = with the formulas attached to all its ancestor nodes in 2.

Instead of its formula ®, the lineage of a given node in the p-document encodes the
entire history of edits, starting from the initial event, over the path leading to this node.
Given that, we can approach the conflicted nodes in the p-document using their lineage
formulas as follows.

Definition 4.3.2. (Conflicted node) Under the general syntax Trre, WE say that a given x
in 2 is a conflicted node with respect to the merge implying the events e; and es when
its lineage satisfies the following conditions:

1. fiel () |= vs;
2. fiel (z) ¥ vy (or fiel (x) W vp); and

3.3y € P, desc(x,y): fie'(y) ¥ v, and fie' (y) £ vy (or fie'(y) = 11) where
desc (X, y) means thaty is a descendant of the node x.

Proposition 4.3.1. Definition 4.3.2 is consistent with the definition of conflicted nodes
given in Section 4.2.1.

Proof. (Sketch) Let 2 in 27 be a conflicted node such that 1) fie' (z) |= vs; 2) fie' (x) B vi;

3) fiel (y) [~ vs and fiel (y) |= vo with desc (x, y) true. The relation 1) ylelds z € vs(P)
which is a document corresponding to the common lowest ancestor of the versions
1(2) and 15(2). The relations 2) means that « ¢ v1(2), i.e., in the history of edits
that gave ul(ﬁ) from us(ﬁ) there was at least a deletion uy over the node z. This is
implied by the way updPrxML () proceeds. Besides that, 3) enables us to write on the
one hand z € ug(ﬁ) since y € ug(gz) and on the other hand y & v4(&%) As aresult, in
the history of edits that led to yg(ﬁ) from VS(L@) there was an insertion u4 which added
y as a child of x. In other words, u, and u4 define two conflicted edits performed on the
same node z.]

A conflicted node in & results in conflicting descendants. We refer to the conflicted
set of nodes in & according to the merge of events e; and e, as the restriction %g{
Under this, we infer below the non-conflicted set of nodes.

1, e}’

6. The formula just describes the semantics of edits from the event where the node was inserted for the
fist time.

52

4.3. MERGING UNCERTAIN MULTI-VERSION XML

Definition 4.3.3. (Non-conflicted node) For the merge of events e; and e, we define a
non-conflicted node z as a node in 7 \ 3/7}5{% o) having a formula fie(x) satisfying one
of the following conditions.

1. fie(a) b= v, fie(x) ¥ 11 and fie(x) i vy
2. fie(w) I v, fie(x) = 11 and fie(x) = vy
3. fie(w) | v, fie(a) = v1 and fie(x) - vy
4. fie(x) = v, fie(a) Y- v1 and fie() = vy
5. fie(w) £ v, fie(a) = v1 and fie() - vy
6. fie(x) I vs, fie(x) - v1 and fie(x) = vy

Proposition 4.3.2. Definition 4.3.3 is consistent with the definition of non-conflicted
nodes given in Section 4.2.1.

The proof is straightforward.
To be exhaustive about non-conflicted nodes, we infer the following lemma.

Lemma 4.3.1. Let us assume the merge over events e; and e;. Given the sets %, C o,
F1 C (o, U{ea}) \ o and Fy C (o, U{ea}) \ o, the expression of fie(x) for any

non-conflicted node x € &\ P, .,y I8 consistent with one of the following formulas.

(Nes. @)) A= (Ageziom (&)

-~

2. (N, (@))V (Aes ()
8 ((Mes. ())V (Aces, (e))) A= (Avess (o))
4. ((Mes. ()) A= (A, (€)) V (Aues, (o))
5 (Mues (@)
6. (Acies, (o))
Proof. The proof relies on Definition 4.3.3. O

We continue this section by first describing Algorithm 4.1, then by demonstrating its
correctness with respect to the abstraction of the merge operation in Section 4.3.1.

53

CHAPTER 4. MERGING IN UNCERTAIN XML VERSION CONTROL

Algorithm 4.1: mergePrXML <(¥, ﬁ), mergeOP ¢, ¢ >

—~

Input: (¢, 22), mergeOP,, ¢,

Output: result of applying mergeOP,, ., . over (¥, ;777)
19:=9U ({6,}, {(617 6/)7 (627 6,)});
2 foreach non-conflicted node x in 7 \ ﬁl%{el, ., do
3 replace (fie(x), e1, (e1 V €));
4 replace (fie(z), e, (e2V €'));
5 end
6 return (¢, ﬁ)

Description of our Merge Algorithm Algorithm 4.1 considers as inputs the prob-
abilistic encoding (¢, 3/5) of an uncertain multi-version XML document .7, and an
uncertain merge operation mergeOP,, ., .; €vents e; and ey already existing in ¢,
and the fresh version control event ¢/ modeling both the merge content items and the
amount of uncertainty in these. Given that, Algorithm 4.1 first updates ¢ as specified in
Section 4.3.1. Then, the merge in Z will result in a slight change in formulas attached to
certain non-conflicting nodes in ﬁ\ @ch{el? e The function replace () modifies such
formulas by substituting all occurrences of e; and e; by (e; VvV €') and (ex V €) respectively.
The idea is that each possible merge outcome, which occurs when ¢’ is valuated to true
regardless of the valuation of the other events, must come with at least the non-conflicted
nodes from 2 seen as valid with e1 and eo. The remaining non-conflicted nodes, whose
existence are independent of e¢; and e;, will depend uniquely on the valuation of their
ancestor events in each given valid event set including ¢'. At least, the validity of a
conflicting node in a merge result relies on the probability of e; and ez when the event is
¢’ certain. If ¢/, together with e, are only valuated to true, we say that e, is more probable
than e, for the merge; in this case, only conflicted nodes valid with <7, U{e; } are chosen.
The converse works in the same manner. Any conflicted node will be rejected with a
valuation setting ¢’ to true and the revision variables in both e; and e; to false.

Assume an uncertain multi-version XML document 7,,, = (¢4,Q) and the corre-
sponding probabilistic XML encoding 7., = (¢, 2). In addition, let us define [.] as the
semantics operator which, applied on 7,,,, yields its correct semantics [Z7,.,] = (¢, [Z])
such that ¢ is the same as in %, and [[ﬁ]] defines the same probability distribution
over a subset of documents in Z than Q. Given a merge operation mergeOP oy WE
now show the main result of this paper:

€1,€2,

54

4.3. MERGING UNCERTAIN MULTI-VERSION XML

Proposition 4.3.3. The definition of Algorithm 4.1 is correct with respect to the semantics
of the merge operation over the uncertain multi-version XML document. In other words,
the following diagram commutes:

_ [] _
<7mv [[gmvﬂ
mergePrXML
(61 o e’) J lmergeOPeL es, ¢
Ton 5 (7]

o _ / /!
Proof. Assume: Hfrgeopel’eie’([[ym”ﬂl_ (4", &)
T = (4", 7') and [7,,] = (¢', Q")
Seeing that we reach the same version space using the procedure mergePrXML ()
is trivial. Now, we have to show that to €’ will correspond [27']; that is, ' = . Given

each set .7 C ¥/, five scenarios must be checked for this equality.

1. For each subset .# such that ¢ ¢ %, we have (%) = Q(%). By definition,
Q(7) = v(P) where v is a valuation setting the special revision variable in ¢’ to
false and the other events to an arbitrary value. Abstracting out the formulas, we
can claim that 2 ~ &' regarding the procedure mergePrXML (). Since ¢ [~ v,
the result of the evaluation of v over (e; V ¢’) and (ez V ¢’) (or their negation) only
depends on the truth values of e; and e respectively. Thus by replacing in formulas
of # all occurrences of (e1 Ve)and (ex VvV €') by e; and e, respectively, we are
sure to build a p-document 2" with v(2") = v(Z"). But by the definition of the
procedure mergePrXML () 2" is exactly 2. As a result, we obtain u(ﬁ) = u(ﬁ’).
Knowing beforehand that Q/(.Z) = v(2'), we can state that /(%) = Q"(.F) for
any . C 7'\ {¢}.

2. For each subset .7 such that {e;, ez, €'} N.F # 0, we have Q' (F) = Q(Z \ {¢'}).
Let v be a valuation setting all the events in .7 \ {¢’} to true, the revision variable
in ¢’ to an arbitrary value and the revision variables in the remaining events to false.
Since ¢’ does not occur in formulas in 27, we can write (.7 \ {¢'}) = v(2?) for sure.
At this step, we resort to the logical consequences (e; = v) = ((e1 V ¢') Ev) and
(e2 Ev) = ((e2V €') = v) regardless of the truth-value of the event ¢’. In the same
way, (—ey £ v) = (—(er vV e) Ev)and (mes [~ v) = (—(e2 V €) [~ v). Therefore,
by substituting in formulas of 7 all occurrences of (e; V ¢/) and (e; V €¢) by e
and e, respectively, we obtain the old p-document & with (%) = v(2) given

55

CHAPTER 4. MERGING IN UNCERTAIN XML VERSION CONTROL

—

the semantics of mergePrxXML (). Moreover, Q' (.7) = v(Z?) because Q' (.7) =

—~

Q7 \{€}) and Q(F \ {¢}) = v(Z). So by inference, we can demonstrate

—

that '(F) = Q'(F) using the relations V' (F) = v(2), v(P) = v(P') and
V() ="(F)7.

. For each subset .# such that {e;, '} N.% # () and e; ¢ %, we have /(%) =

QT NP\ (e \))]22727 Let F1F = (F\ {}) \ (o, \ 4)) be the set
of valid events excepting the valid ancestor events of e; in .% N (7, \). For
the valuation v setting all the events in .%;" to true and the revision variables in
the remaining events to false, Scenarios 1 and 2 enable us to write v/(7) = QF)
and v(2) = v(2'). Now, we just need to show that [v(27)|22~2% = /(Z2') (/
being the valuation that sets all the events in .# to true and the revision variables
in all others to false) to obtain the expected proof, that is, ' (.7) = Q"(F#). Let us
set A = A, — A%, We distinguish the two following cases.

o~ —

(a) For the class of nodes z in v(£?') unmodified by A. That is, z € v(£’) and
xz € [v(2"))A. For each node z in this class, fie' () in 7 requires the trueness
of events in .Z;" since z € u(@). Moreover, by the definition of A, = may
be either a conflicted node or its existence is independent of the values of
events in (% N (4., \ %)) U{e}). If z is a conflicted node, it is intuitive to
see that fie' (z) in 7' is satisfied if events in ;" are all set to true and not if
only those in (# N <) are set to true (cf. Definition 4.3.1 and updPrXML).
In the another case, fie'(z) is only function of the values of events in .7;"
for the set .% (typically when fie'(x) is Expression 5 in Lemma 4.3.1 with
F1 = F 0 (o, \ &) U{er})). In both cases, we can state that fie' () |= v/
since v/ similarly to v sets all the events in .#;" to true. As a result, we have

—

z € V' (2') when z belongs to this class.

() For the class of nodes = € v(#') handled with A. Let 2 ¢ [v(#)]4, that is,
there is an operation w in A that removes z from u(éz\’). By the construction of
A, itis easy to show that fie(x) in 2 maps to Expression 3 in Lemma 4.3.1 with
Fs = F{ Ny, F1 = F N ((Aey \) U{er1}) and Fy = (F N (A, \) U{ e}
In 2, this formula fie(z) is just updated across Algorithm 4.1 by replacing
the events e; (the disjunction) in the first member and e, in the second one
respectively by (e; v €') and (ey V €'). Since v/ sets all the events in .% to true,
therefore the first member of fie(x) will be valuated to true while the second

member will be valuated to false. As a consequence, clearly we can state that

56

7. The last relation is due to the fact that the events e; and ez are both valuated to true.

4.3. MERGING UNCERTAIN MULTI-VERSION XML

—

fie(z) =V, ie., x ¢ V(2). In summary, we proven that for each node z in

— —~

v(2') deleted with A, z is also not chosen by v/ in v/(#’). Note that the case
where z does not occur in () is trivial and it corresponds to a scenario
in which fie(z) maps to Expression 1 in Lemma 4.3.1 with ., = .Z;" N &,
F1 = F 0 (e \ Fs) U {er}) and Fo = (F N (e, \ o)) U{ea}. Now, let
x ¢ v(P) and z € [v(F))2. Thatis, there is an insertion « in A that adds the
node z as a child of a node y in v('). Let Fs = (F\{}N A.,) be the set
of all valid ancestor events of e, in .%. By the definition of A, we can state that
the formula fie(x) of z in 2 maps to Expression 4 or 6 in Lemma 4.3.1 with
Ty = I\ Ny, F1 = T 0((Hey \) U{e1}) and Ty = (FN(Ae, \ %)) U {2}
If fie(x) is Expression 4, this formula in 7' is updated by Algorithm 4.1 which
replaces e; in the first member (the conjunction) and e, in the second member
by (e1 V ¢) and (ex Vv €') respectively. Since v/ sets all the events in .% to
true, the first member of fie(x) will be valuated to false. As for the second
member, it will be valuated to true under v/ because all the events in .%; are
setto true and (e; V ¢') = /. As a result, v/ will select z in /(7") since fie(x)
is such that fie(z) = /. Otherwise, if fie(x) is Expression 6, it is updated
in ' by mergePrXML () which substitutes e, by (e; V ¢/). Given that it is
straightforward to prove that fie(z) = v/ since all the events in .%; are set to

true and (ex vV €') = V.

Scenarios (a) and (b) demonstrate that when z € [1(2)]?, then z € V(7).
Similarly, the converse can be reached. We conclude [u(@%]A = /(") which
joint with v(27') = Q(Z;") and V/(Z') = Q' (F) yield [Q(F)]A = Q'(F). At last,
the result Q'(F) = Q(Z) relies on Q(F) = [Q(F]H)]A.

. For each subset .7 such that {es, ¢’} N.% # () and e; ¢ %, we have /(%) =
[Q(F\{}) N (A, U{e}))]21 2. This scenario is entirely symmetric to Sce-
nario 3.

. For each subset .# such that {e;,e2} N.7 =0 and ¢ € .#, we have Q' (.F) =
[QUF\AED\ (e \) U (e \)))]2727 . Letset F7 = (F\{'D)\ (e, \
os) U (o, \ <7)). Given a valuation v setting all the events in .%’ to true and
the revision variables in all other events to false, we can write Q(%’) = 1/(?;5)
and u(ﬁ) = u(ﬁ’) according to Scenarios 1 and 2. Similarly to Scenario 3, we
have now to demonstrate that [v(2)]2:=2 = /(") (where /' is the valuation
setting all the events in .# to true and the revision variables of all the remaining

events to false) to obtain that [Q2(.#/)]23—2“ = 1/(2"). This result will be sufficient

57

CHAPTER 4. MERGING IN UNCERTAIN XML VERSION CONTROL

for stating that Q/(.#) = Q"(.F) since by definition Q/(#) = [Q(F")]*2 and
V(P') = Q' (F). Let us consider A = Az — A% For the proof, the intuition here is
to see that by implementation A can be rewritten as (A; — A%)U(Ay — A%) on one
side. So, if we arrive to show that for all the nodes z, y such that z € [v(2)]A1—2°
and y € [v(2"))22~27 'then z € v/(#') and y € +/(2'), we can trivially deduct
that for each node = € [u(éﬁ)]ﬁ, then z € u’(ﬁ’). These relations can be proven
in the same spirit as in Scenario 3 by just noting that:

(a) For the set of unmodified nodes x in u(@) with A, fie(x) in 2 is compatible to
Expression 1in Lemma 4.3.1 with %, = #' N, 51 = (F N (A, \ s))U{e1},
and .#, = (Z N (e, \ Fs)) U{ea}.

(b) For the set of nodes x in u(@) handled with A. If the operation comes from
(A1 — A%), fie(x) is compatible to Expression 3 or 5 in case of insertions
and this formula maps to Expression 4 for deletions. Concerning operations
in (Ag — AY), fie(x) is compatible to Expression 4 or 6 for insertions and to

Expression 3 for deletions.

Furthermore, the inclusion in the opposite direction, that is for each node = €
u’(@), then x € [u(ﬁ’)]A, is obvious for nodes unchanged by A. For the other
nodes, we only need to verify that they are correctly handled by A in y(ﬁ’)
depending whether it corresponds to an addition or a deletion in this document.
Following that, we can state that Q'(.%) = Q"(.%) holds for each subset .7 of

events in ¥ that contains ¢’ but not e; and e».

We conclude by showing the efficiency of Algorithm 4.1.

Proposition 4.3.4. Algorithm 4.1 performs the merge over the encoding of any uncertain
multi-version XML document in time proportional to the size of the formulas of nodes
impacted by the updates in merged branches.

Proof. (Sketch) The intuition behind the time complexity is that Algorithm 4.1 results in a
constant-time update of DAG ¢, firstly. Secondly, by viewing Z as an amortized hash
table, the algorithm retrieves any node impacted by a (non-conflicting) update in constant
time. Finally, the replace () method only depends on the lengths of formulas. O

58

4.4. CONCLUSION

4.4 Conclusion

We have presented in this chapter our translation of the semantics of the standard
merge algorithm within our uncertain XML version control model, by considering a
state-based approach (which offers more generality) and a three-way procedure (which
enables more reliability in the detection of edit operations and thereby conflicts). We
have proposed a formalism for such a merge, which is deemed as uncertain in our case,
on the abstract definition of an uncertain multi-version XML document and then we have
devised a well-defined corresponding algorithm over the probabilistic XML encoding
model. We have shown that conflicts can be effectively and transparently handled at
both levels. We have translated and defined the notion of conflicting and non-conflicting
edits on the probabilistic XML encoding of an uncertain multi-version XML document by
relying on the provenance formulas of the uncertain nodes. Regarding efficiency, we
have demonstrated that our merge algorithm has a time complexity which only depends
on the size of the formulas of the nodes impacted by the updates in merged branches.

59

60

Part Il

Structured Web Data Integration

Web Data Integration under Constraints

We present in this chapter our study of the problem of uncertain Web data integra-
tion under constraints — namely, dependent sources and spatio-temporal restrictions —
targeting application scenarios such as the monitoring of moving objects in the maritime
domain based on multiple Web sources which require accounting for both kinds of
aforementioned constraints.

As we shall show shortly, in Section 5.2, Web sources in the maritime domain are
various, uncertain, and dependent. The main reasons of these uncertainties come from
imprecise information extractors or imperfect knowledge from human beings. Depen-
dency relationships, on the other hand, result from the recurrent copying relationships
among sources. Combining data from these uncertain sources — for instance, in order to
reply to users’ queries — drives the need to take into consideration the dependency rela-
tionships — leaving aside the common independence assumption — as they can constrain
the provenance of data and their amount of uncertainties, as discussed in Example 1.2.1.
We first approach and formalize in Section 5.3 the challenge of integrating several Web
data sources under uncertainty and directed dependency relationships. We tackle this
integration by rephrasing it as the fusion of several uncertain versions — represented by
data from sources — of the same shared content. In the special case of tree-structured
data, we put forward a probabilistic tree data integration model inspired from the first
contribution of this thesis, that is, our uncertain XML version control model, detailed in
Chapter 2; we give main prerequisites and detail how the outcome of the integration can
be materialized while properly managing uncertainties with respect to the dependency
relationships.

More generally, a number of applications — besides the maritime domain scenario
— deal with monitoring moving objects: cars, aircrafts, persons (e.g., celebrities), or,
more broadly, populations or groups of humans, natural phenomena such as cyclones,
epidemics. Traditionally, this requires capturing data from sensor networks, image
or video analysis, or using other application-specific resources. We further show in
Section 5.4 how structured Web content can be exploited instead to gather information

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

(trajectories, metadata) about moving objects. As this content is marred with uncertainty
and inconsistency, we develop a methodology for estimating uncertainty and filtering the
resulting data; we mainly focus on uncertain location data management — constrained
spatially and temporally — and devise some precision criteria for this goal.

Finally, we present in Section 5.5 as an application a demonstration of a system that
constructs trajectories of ships from social networking data, presenting to a user inferred
trajectories, meta-information, as well as uncertainty levels on extracted information and
trustworthiness of data providers.

5.1 Related Work

Uncertain Data Integration Data integration with uncertainty is a recent and highly
active research area — [Magnani and Montesi, 2010, Ayat et al., 2012] provide, together,
a detailed insight over the literature — with mostly the use of a probabilistic approach to
take into consideration uncertainties during the process. Probabilistic schema mappings,
in [Dong et al., 2007, Das Sarma et al., 2008], capture uncertainty at both the level
of schema mappings, data in sources, and user queries within a relational setting in
which tuples and semantic mappings have associated probability values. The resulting
probabilistic schema mappings describes a probability distribution over a set of possible
schema mappings between a source schema and a target mediated schema: two
semantics for inferring a reasonable single mapping, with respect to an entire table or
subsets of specific tuples, are presented for query answering '. Query views in [Agrawal
et al., 2010] through containment constraints are used to define the mappings between
a set of uncertain sources and a probabilistic mediated database having a fixed schema
in a local-as-view perspective [Abiteboul et al., 2012]. [Ayat et al., 2012] revisits a
probabilistic mediated schema and constrain its definition with correlations between
attributes implied by functional dependency rules; an occurrence of a set of correlated
attributes which cannot be consistently described using an only one mediated schema
yields to several possible mediated schema.

On the other hand, much effort has been made on uncertain tree data integra-
tion systems, exacerbated by the advent of the Web. Particularly, [Van Keulen et al.,
2005, de Keijzer and van Keulen, 2008, van Keulen and de Keijzer, 2009] introduce a
probabilistic XML framework for data integration that reconciles multiples uncertain XML

1. Observe that one of the main purposes of the setting up of data integration systems is query
answering over multiple sources using a unique entry point. We defer the problem of query answering in
data integration systems for future work (see Chapter 7)

62

5.2. MOTIVATING APPLICATION

documents by enumerating the set of all possible deterministic trees resulting mainly
from conflicts on data values or tree structure. They present a probabilistic XML tree, that
is, an ordinary XML tree equipped with possibility and probability nodes, that compactly
represents this set of possible deterministic trees with probability values attached to un-
certain nodes in order to describe their closeness with the reality. In light of these studies,
many theoretical probabilistic XML approaches — targeting also tree data integration with
uncertainty — have been further investigated with models supporting a wider semantics
of probability distribution over possible XML documents. The concept of probabilistic
documents (abbr. p-documents) [Abiteboul et al., 2009, Kharlamov et al., 2010] — already
addressed in Sections 2.1.2 and 2.3 — generalizes all previously proposed uncertain
XML models.

Moving Objects and the Web [Pianese et al., 2013] discovers and predicts user
routines, i.e., regularly-occurring user activities, by integrating and filtering users’ content
having geographical data extracted from Twitter and Foursquare 2. [Liu et al., 2014]
demonstrates a system which extracts representative messages from Twitter posted
when anomalies such as traffic jam occur in order to detect traffic events. Similar visited
places by different persons have been studied and inferred by [Kanza et al., 2014] based
on a clustering of identical location data — from Twitter and Instagram 3 — about the
mobility of these people.

5.2 Motivating Application

In this section, we detail Web sources in the maritime domain by showing their various
nature, uncertainties, and dependency relationships. We claim that in such a scenario a
model able to effectively integrate multiple sources with uncertainty and dependencies
should be useful. As we illustrate later with our demonstration system in Section 5.5,
users or experts in the maritime domain may gain more correct insights about objects
like ships when they have the ability to query and navigate through all these sources
with information about real data provenance and their amount of uncertainties.

5.2.1 Multiple Web Sources

We start our study of the maritime domain by some statistics about the number of
Web sources covering objects such as ships. Our first observation is that such Web

2. https://fr.foursquare.com/
3. http://instagram.com/

63

https://fr.foursquare.com/
http://instagram.com/

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

sources, having different nature, are numerous. Figure 5.1 shows a sample list of those
sources including some popular Web platforms. The sources in Figure 5.1(a) correspond
to the social networking sites Flickr and Twitter, and the Web-scale collaborative platform
Wikipedia. In Flickr and Twitter, users share items like photos about ships with associated
meta-information such as their names and their current locations inserted inside a tweet 4,
a description, a list of tags, ect. In Wikipedia, editors collaboratively build information
about the general description of some classes of ships, e.g., cruise ships. In contrast, the
sources in Figure 5.1(b) —i.e., MarineTraffic °, GrossTonnage 8, and ShippingExplorer 7 —
are specifically dedicated to the real-time monitoring of objects in the maritime domain
by relying, for instance, on data sent by AIS systems?® on ships. Observe that while
being heterogeneous at schema and value levels, the example sources mostly use the
same unique identifiers, that is, IMO®, for objects like ships, which makes easier the
mapping of objects from distinct sources.

5.2.2 Uncertain Web Data Sources

We continue with an analysis of the reliability of the Web sources, as well as their
data, based on the precision of the data acquisition process and the level of consistency
of information among sources.

In the maritime domain, Web sources are mostly uncertain due to imprecise and
imperfect data extraction technique used: these uncertainties should not be ignored. The
AIS systems are inherently imprecise (e.g., incomplete information or noises can be sent
by sensors) whereas items shared by human may be irrelevant. Besides incompleteness,
another important indication of untrustworthiness of sources are contradictions between
information provided about the same objects. Consider Figures 5.2(a) and 5.2(b) which
respectively depict the dimensions (length, width, and draft) and the company (owner
and manager) the same ship from ShippingExplorer, Wikipedia, and ShipSpotting.
Obviously, we can observe that ShippingExplorer and Wikipedia agree on the owner
of this ship — Wikipedia seems to be more accurate — whereas ShipSpotting indicates
a different owner. In contrast, all three sources agree on the manager for which the
information from ShipSpotting is more complete. As for the dimensions of the ship, some

4. Atweet denotes a short 140-character message.

5. http://www.marinetraffic.com/fr/ais/home/

6. http://grosstonnage.com/

7. http://www.shippingexplorer.net/en

8. The Automatic Identification Systems (AIS) is an automatic tracking system used on ships and vessel
traffic services for identifying and locating vessels by electronically exchanging data with other nearby ships,
AIS base stations, and sattelites.

9. International Maritime Organization numbers

64

http://www.marinetraffic.com/fr/ais/home/
http://grosstonnage.com/
http://www.shippingexplorer.net/en

[T

Flickr

5.2. MOTIVATING APPLICATION

Career
Mame: Costa Serena
Owner: Carnival Corporation & plc
Operator: Costa Crociere

Port of registry
Ordered:

B B taly, Genoa
1 October 2004

Yard number. 6130

Laid down: 1 February 2005
Launched: 4 August 2006
Completed: 9 March 2007

In senvice: 2007
Identification Call sign: ICAZ

IMO number: 9343132
MMS! number; 24718760

9343132

Status: In senvice
Notes: 2l
Mauro SO]d_at' X . . . General characteristics
CrazyCruises Siamo rientrati in Italia esattamente come siamo)
partiti: meteo avverso e la Costa Serena ritarda |'attracco a Class &fype: Concomis-dlass cruise ship
Civitavecchia Tonnage: 114,147 GT
h _—) et 87,196 NT
4+ Reply 13 Ret t % Favourite ee= More 10,000 DWT
David Cenciotti Length 289.59 m (950.1 /)
Costa Serena sister of Costa Concordia off Isola del Giglio Beam: 35.5m (116 f)
L. on the same route of the ill-fated ship (AIS tracking) bit.ly/ Draught 830 m(27.2)
+ Reply t3 Rety * Favourite Depth: 14.18 m (46.51)
Twitter

Wikipedia

(a) Social Networks & Collaborative Platforms

MMSE 247187600 CAZ

MO: Call Sign: Flag: ltaly Gross Tonnage: 114147
. . . Type: Passengers Ship DeadWeight: 8900
Country: 1 italy Type: Size: 29042 m IMO- 9343132 Length x Breadth: NIA
Destination: Savona MMSI: 247187600 Year Built 2007
Call Sign: ICAZ Status: Active
ETA: 6Jan, B
HNav. Status: Mo
Status: Mone Country. = Last Position Received In Range
Port of Registry:
speed: 0.1 kr .
. InfoR od: & min ago k‘ k‘;‘é::‘]’ Mdrea) g,
Draft:) 0 (Kar
Gwrar: Area Tyrrhenian Sea Andravida
se: Year
Course Manager I Latitude / Longitude: 37.64579 | 21,31984 (A¥bogBita)
) § 5 Builder: Fincantieri Zakinthos
Heading: 236 SpeediCourse: 0.00kn | (Zakuyiog) 4Amaliada
ast Update: a (Apauada)
o “ ype -Elscuic Propulsion Currently in Port: KATAKOLO S Pigos
Pasition: 931 Prop. Number: 2 AIS Source {opyas)
E Al
Itineraries History
Deadweight
Latest Positions
Gross Tonnage: 114,60
Compensated GT. - Map s BI01Y Gaogie:
m Net Tonnage 7 < Wind: 17 knots
Baaring: N (343%)
ShiEE i!ﬂExE'OFGI" Temperature: 16°C
MarineTraff
™Mo SHIP NAME SHIP TYPE
" COSTA SERENA

GrossTonnage

(b) Sources Monitoring in Real-Time Maritime Activities

Figure 5.1: Collection of Web sources in the maritime domain

65

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

contradictions also appear between the values given by the sources. As an example,
ShippingExplorer and ShipSpotting provide 42 m for the width while Wikipedia indicates
35.5 m. On the other hand, Wikipedia and ShipSpotting track 8.3 m for the draft whereas
ShippingExplorer provides 8.2 m. One may consider that the difference between given
distinct values for the draft attribute is not very significant, and just choose one among
the two possible values. However, deciding about the correct values for both the owner
and the width is less evident. We sketch in the next section a solution that keeps all
conflicting values with their amount of uncertainties, enabling various forms of reasoning
about the correctness of the data.

5.2.3 Copying Relationships between Sources

We finish the description of the application case by answering the following question:
Are Web sources in the maritime domain independent?

Straightforwardly, we conclude with the example in Figure 5.3 that Web sources in
the maritime domain are not all independent. The main reason is that some sources
collect information from other ones by copying them. In some situations, these copying
relationships are explicitly mentioned by the sources, e.g., Shipspotting obtains some
data from GrossTonnage as shown by Figure 5.3. In practice, however, dependent
sources do not always cite their reference sources, which drives the need for algorithms
to discover the dependency relationships among a set of sources in the same domain.
The detection of copying relationships is beyond the scope of this work; see [Dong et al.,
2009a, Dong et al., 2010] for details about detecting copying relationships on the Web.
More importantly, the copiers may revise their collected data in order to provide their
own knowledge about shared real-word objects. As a consequence, knowing the set of
dependency relationships is crucial for finding the real provenance of each data item
and for detecting in an effective way contradictions and corroborations during uncertainty
management.

5.3 Web Data Integration under Dependent Sources

We approach and formalize, in this section, the integration of uncertain Web sources
with dependency relationships, targeting an effective technique able to represent and
assess the amount of uncertainty in data with respect to the dependencies. We first
present some challenges towards such an integration technique. In the particular case
of tree-structured data, we extend ourselves and show that our uncertain XML version

66

5.3. WEB DATA INTEGRATION UNDER DEPENDENT SOURCES

L. Length: 290 m
ShippingExplorer Width: 42m

Draft: 8.2m hl S ottln
}N 290 m
Beam: 42 m
Draught: 83m
Length: 289.59 m (9501 ft)
Wikipedia ggan, 35.5 m (116)
Draught: # 8.30 m (27.2 ft)

PR Owner: Carnival Corp hl Spottin
ShippingExplorer
I'.'Ianager EESSota" #
———— DA a\

Owner: Costa Crociere - Genova, ltaly
Manager: Costa Crociere - Genova, Italy

Owner: # Carnival Corporation & plc

. . ' !
WIkIEedla Operator: Qsia Crociere

Figure 5.2: Uncertain Web sources: discrepancies and incompleteness

(o)

system — introduced in Chapter 2 — can be used as a basis of a probabilistic tree data
integration for uncertain Web sources under dependencies. We then put forward a model
and explain how it can be used for materializing this integration in the scenario where
the dependencies between sources are deterministic.

67

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

Vessel Identification Technical Data AlS Information
Vessel type: Passengers Ship Last known position:
-I Gross tonnage: 114,147 tons 37°36'36.72° N, 20°5012.48" E
Summer DWT: 8,900 tons Status: Underway
Name: Costa Serena Length: 290 m Speed, course (heading):
IFH;K): |93:13132 geam:h ;23m 18.3kts, 89° (89°)
ag: taly raught: m s
MMSI: 247187600 Destination:
Callsi ICAZ Location: Katakolon
allsign:
. Additional Information Arrival: 8th Jan 2014

11:00:06 UTC

Last update:
2 hours 25 minutes ago

Home port: Genova
Class society: Registro ltaliano Navale
Build year: 2007

Builder l*}f Fincantieri Sestri Source: AIS (AirNav ShipTrax)
Genova, ltaly

Owner: Costa Crociere - Genova, Italy

Manager: Costa Crociere - Genova, Italy

:> Ship information by AirNav ShipTrax and GrossTonnage com. Report error in ship details.

Figure 5.3: Shipspotting depends on GrossTonnage

As a general setting, we consider a set . of Web sources 54, ..., S, —that share
a set of real-world objects in the same domain — under uncertainty and dependencies.
Every object is uniquely tagged with an identifier shared by all sources. Each particular
source maintains and provides information about a subset of objects which have been
possibly obtained from another source before being revised (in Section 5.3.2 we will
suppose that these objects, as well as their description, are encoded in a sole XML tree
describing content provided by the source) . On the other hand, we assume that, first, a
dependency relationship involving two sources, if it occurs, is directed and there is no
cycle; second, each dependency relationship is deterministic, that is, it is known with
certainty and; third, a given source cannot be implied in more than one dependency
relationship, that is, the dependency on multiple sources is disregarded.

5.3.1 Main Prerequisites

We highlight and claim that a data integration system intended to uncertain Web data
sources with dependency relationships must account for the three following requirements.

1. First, the presence of untrustworthy sources and uncertain data drives the needs
for representing and evaluating these uncertainties during the integration: this is a
a common requirement in uncertain data integration systems, e.g., [Dong et al.,
2007, Agrawal et al., 2010]. The dependency relationships, in addition, introduce
the problem of the real provenance of data items, an issue not disconnected to the

68

5.3. WEB DATA INTEGRATION UNDER DEPENDENT SOURCES

management of uncertainties. Hence, a trustworthy source has tends to provide
correct information and conversely for an untrustworthy source. An effective
integration system should have the ability to (i) correlate the amount of uncertainty
in sources and their content; (ii) capture the provenance of each data item: for
instance, a given source may be trusted but its data are not relevant, requiring a
model that allows explanation and understanding of possible integration results
and their levels of relevance.

2. Second, a formal abstraction of the dependency relationships between the sources
is needed. An effective and efficient algorithm — when the dependencies are not
given all —in order to discover the dependency relationships between the sources
is necessary.

3. Third, the integration approach — which formalizes the result of the integration
and its semantics mapping with the data sources — should be defined by focusing
especially on the uncertain nature of our setting and the dependency relationships:
a given uncertain source may first copy others, and then revise this information
with its knowledge of the modeled world. As a consequence, the intended system
should have the capability to capture provenance, contradictions, and corrobora-
tions in the integration outcome with respect to the dependency relationships.

5.3.2 Probabilistic Tree Data Integration System

We detail here first steps towards a probabilistic tree data integration approach
for uncertain Web sources with dependency relationships. We go further on each
requirement given above by using our XML version control model with uncertainty,
presented in 2, as a basis of our data integration setting. We start by formalizing the
problem.

We focus on tree-structured data by considering that the content provided by every
Web source is in this form. As in Chapter 2, we also adopt the class of unordered XML
documents in order to describe and represent those tree-structured data.

Problem Formulation Independently of the integration problem, a setting involving
a set of uncertain Web sources 51, ..., S, related by dependency relationships corre-
sponds, somehow, to an uncertain version control setting (¢, 2) where Q is a mapping
over {S1,..., Sy} giving a view over the possible unordered XML trees of their integration
with respect to the dependency graph ¢ under some considerations that we will clarify
shortly. From such an intuition, we can reformulate the problem of integrating uncertain

69

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

Web sources with dependency relationships as the reconciliation of all the possible
unordered trees defined by 2. In other terms, this drives the need for a clear definition
of the mapping between {51, ..., S,} and each possible unordered tree together with
its probability through 2; Lenzerini in [Lenzerini, 2002] states that the mapping is one
of the key components of a data integration system. Then, a reconciliation process
for the overall integration result must be clarified. As we shall see next, to reconcile
this integration we use a PrxXMLf® p-document ﬁalong with the dependency graph 4.
According to the given formulation of the problem, we approach our probabilistic tree
data integration model as follows.

Modeling Uncertainties To be consistent with our uncertain XML version control
framework, in Chapter 2, we rely on random event variables in order to deal with
uncertainties in a similar manner. We repeat and show how this uncertainty management
is transposed to the integration context.

Consider again B as a set of independent random Boolean variables b; . .. b,, and
their probability values P,(b;) ... P.(b,,) of being true as well. We restrict B to consist of
two types of disjoint sets of variables which we denote B, and B,. We use variables in
B, to manage the uncertainty in the content really provided by each source: the data not
copied from the other sources, whose content, as we show shortly, is not explicitly known
and should be inferred. Variables in B, are used to model and to assess the reliability
level of the sources. Given a source S;, we refer to the uncertainty on its content and its
reliability level with b, ; and bs ; respectively. We consider now the set of events ey, ..., e,
and manage the overall amount of uncertainty in each source S; from . with an event
ei = by i A bs i (Where b, ; € B, and bs ; € B;) associated to it. Intuitively, e; is true when it
produces a correct content on a reliable source.

Modeling Dependencies We consider and describe the dependency relationships
between the sources with a directed acyclic graph (DAG) ¢: a DAG structure is also
adopted in [Dong et al., 2009a, Dong et al., 2010] for identical needs. Consistently with
the uncertain XML version control, we consider that the DAG consists of events (repre-
senting implicitly sources and their data) as nodes. Given the set of events ey, ... e,
associated to the sources S, ..., S,, ¢ is built over the set {ey} U {ey,...,e,} of nodes
and their edges translating the dependency relationships between the corresponding
sources. The event ey, corresponding to the root of the graph, is introduced for technical
purposes as the parent event for those events associated to independent sources.

70

5.3. WEB DATA INTEGRATION UNDER DEPENDENT SOURCES

Probabilistic XML Tree Data Integration We propose a probabilistic XML tree data in-
tegration system which reconciles uncertain tree-structured Web data sources 51, ..., 5,
with dependency graph ¢. Through a probabilistic model the semantics of integrating
several uncertain tree-structured sources — as shown in [Van Keulen et al., 2005] —is a
set of possible integration results.

We first introduce the notion of a probabilistic XML global view (PrGView) M that
abstracts the set of possible integration trees mq, ..., ms, together with their proba-
bilities P,(m1),...,Pr(my) of being valid, over {S1,...,S,}. Given the infinite set of
all unordered XML trees 2, an integration tree is an unordered XML document in &
resulting from the integration of versions of the shared content from subsets of sources
in S1,...,S,. Such an integration tree may not be unique, especially in the presence of
uncertainty, but several integration trees may be possible to describe, first, distinct views
about the trust one may have on involved sources and their own information; second,
the different ways to deal with contradictions and incompleteness of the data. We show
later that PrGView is exactly introduced in order to capture all such possible results of
this integration.

Definition 5.3.1. Given a set S1,..., S, of uncertain sources with a dependency graph
¢, a probabilistic XML global view M over their integration is a set {(m;, P.(m;)) | 1 <
i < k} of possible integration trees where (i) every m; is constructed with respect to the
dependency graph & and; (i) 0 < P,(m;) < 1 with Y%, P,(m;) = 1.

We now detail how we obtain M based on the set of input sources and the mapping
Q. We will focus more on the representation of the set of possible worlds than on
their probabilities. We start by defining the contribution of a given source, i.e., its real
knowledge about the real-world, within our integration setting.

Definition 5.3.2. Let Sy,..., S, be a set of uncertain sources with a dependency graph
¢ . The contribution of any given source S; with respect to & corresponds to the real
content provided by this source. We describe the contribution of the source S; as a
sequence of edit operations é; over an initial content.

For every source S;, 1 < i < n, let¥_,.. be the event of the source S; on which
S; directly depends according to the graph of dependencies ¢; foreach 1 <[< n
with i # [, e, = %_,., when the relation (e, e;) holds in 4. Otherwise, 9_,., = e in
which case S; has been generated from the root-only tree Sy. Algorithm 5.1, namely
contribute (), computes the contribution of S; giving its dependent data source S; °.

10. We also refer with .S; to the content provided by the source S;.

71

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

The procedure diff () is a differencing function (see Section 4.1) that computes the
difference between two unordered XML tree versions. Its output is a sequence of edit
operations (node insertions and node deletions) over XML nodes.

Algorithm 5.1: contribute <Sj, S;>
Input: S;, S;
Output: J;

1 0; :=dif£(5;, S:);

2 return (6;);

The events e; ...e, associated to the sources 5;,...5, also track and manage
contributions 41, ..., d,, as well as their amount of uncertainty, of these sources. As a
consequence, the events are enough to fully describe the sources because they contain
necessary information about both their amount of uncertainty and their contributions.
We now use 2 and define the mapping between possible integration trees in M and
the sources Sy, ..., S, by following a construction similar in our uncertain XML version
control system in Chapter 2.

Fix 2 C 9 such that 2’ consists exactly to the trees {my, ..., my} plus the root-only
tree document Sy in 2. The mapping Q : 2{¢1-en} 5 9’ maps every possible view over
{S1,...,S,} to a possible integration tree in M as follows: for each .# C 2{e1-ent\{ei})
QF U{e;}) = [Q(F))%, that is, integration of content from sources whose associated
events are in .# U {e;} with Q({}) corresponding to the root-only tree in &’. Let us
assume that my, = Q(.%) for a fixed 1 < k < m. The probability of my is estimated as
follows.

Pr(myg) = Z H Pr(e;) x H (1 —Pe(ei)). (5.1)
FC{et,....en} 1<i<n 1<i<n
Q(F)=my), €E€F ei¢F

The ©2 mapping, as it is given, provides a way to construct the possible integration
trees in M with respect to the dependency graph ¢ while taking into consideration data
provenance and the amount of uncertainty in data; Q2 is a valid mapping between data in
sources and trees in M. The set of integration trees specified by (2, regarding the depen-
dency graph ¢, can be reconciled with a PrXMLf® p-document ﬁby following the same
encoding ! of node formulas and construction of the p-document as in updPrxML ()
algorithm (see Chapter 3) according to the probabilistic XML encoding of our uncertain
XML version model in Chapter 2. The edit scripts, i.e., contributions, coming with each

11. One difference between the version control setting and the integration one is that in the latter the
graph of dependencies is fully complete while in the former this graph is populated when uncertain updates
are issued.

72

5.3. WEB DATA INTEGRATION UNDER DEPENDENT SOURCES

source event are previously determined with the procedure contribute (). Concretely
speaking giving the set of uncertain sources 51, ..., S, along with its dependency graph
¢, we traverse ¢, in a top-down manner, from the root to the leaves and perform the
following operations: initially, at the root of ¢, we set Z as a root only document and
then; at each other node e; in ¢, we consider the corresponding sources S; and its direct
reference source S; with the event ¢; such that (¢, e;) occurs in ¢ and respectively we
compute ¢; =contribute (5, S;) and use updPrxML () (Lines 2 to 17) for updating
Z with §;, e;, and e;. We repeat the stage 2 until we finish to process all the events in 4.

Definition 5.3.3. Given a set of uncertain sources S, . . ., S, with the dependency graph
¢, we introduce a probabilistic tree data model which reconciles, with respect to the
graph ¢, these sources as a p-document Z by following a similar encoding of node
formulas and construction of the p-document as in updPrxML () — Lines 2 to 17 of
the algorithm in Chapter 3 — and by using the procedure contribute () in order to
compute the contribution of each source.

We conclude this section by first summarizing our probabilistic tree data integration
model, and then by showing an example output.

A probabilistic tree data integration model over a set of sources S, ..., S, under
uncertainty and dependencies is defined with the help of a triple (¢, M, Q) where (i) ¥
is a DAG of events {ey} U {e1,...,e,} Where ¢;, for every 1 < i < n, is associated to a
source S; in order to manage its overall amount of uncertainty and its contribution; (ii) M
is an abstraction of the set of possible integration trees over {51, ..., S,} and; (iii)) 2 a
mapping of every possible integration tree in M to data sources Si, ..., .S, according to
the valuation of their associated events eq, ..., e,. This probabilistic tree data integration
model reconciles these sources as a PrXML"® p-document 2.

Example 5.3.1. Revisiting Example 1.2.1 in Chapter 1, Figure 5.4(a) shows trees
representing information provided by the three sources S, Sa, and Ss. The dependency
relationships are given by Figure 5.4(b) showing that Si and Ss are independent sources
while Sy depends on S1. These dependencies enable to conclude without ambiguity
that S, and S, are conflicting on the values of the draft and the port of the ship while Ss
independently corroborate S- for the former. Figure 5.4(c) is an example of two possible
integration trees over {S1, S, Ss}: the first tree is obtained by considering that S, is not
reliable whereas S; and S3 do; the second tree assumes that all the sources, as well as
their knowledge, are reliable. The p-document that reconciles all the three source trees
while caring about uncertainties is given by Figure 5.4(d). This tree is constructed based
on the procedure sketched earlier.

73

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

Ship Ship Ship
name dim location name dim location name dim
| | | | | | | |
“C. Serena” Draft port “C. Serena” draft port “C. Serena” draft
| I | | |
8.2 “Hamburg” 8.8 “Marseille” 8.8
S1 Sa S3

(a) Trees representing Data from S1, S2, and S3

Ship Ship
name dim location name dim location
S1 Ss = | | I | | [
¥ “C. Serena” draft port “C. Serena” draft port
S2 /\ | | |
(b) Dependencies 82 88 “Hamburg” 8.8 “Marseille”
(c) Two Possible Integration Trees
Ship
e1 Ves €]
e1 Ves
name dim location
“C. Serena” draft port

AE AN
8.2 8.8 “Hamburg” “Marseille”

(d) PrXMLe p-document reconciliation of trees Sy, So, and S3

Figure 5.4: Probabilistic tree data integration model

5.4 Uncertain Web Information on Moving Objects

In this section, we go further about studying the needs, in terms of quality data, driven
by application scenarios handling moving objects with the Web perspective. We show
how more structured Web content can be gathered and exploited in order to infer useful
knowledge (trajectories, metadata) about moving objects. We present in Section 5.4.1
our Web extraction approach. Section 5.4.2 describes a method for evaluating the
precision of obtained locations, trustworthiness of users and for integrating uncertain

74

5.4. UNCERTAIN WEB INFORMATION ON MOVING OBJECTS
attribute values.

5.4.1 Data Extraction

We distinguish two types of Web information about a moving object: location data and
general information. We extract object information from Web sources through keyword
search. That is, we suppose given the name of the moving object (a key phrase) and
crawl data we obtain from a set of Web sources (see Section 5.5 for the specific sources
used for our maritime application). We focus on location-based platforms and social
networks, providing geolocated data items, for object locations.

Gathering General Information We collect general information about moving objects
based on a supervised extraction over a fixed set of Web sources. The main intuition
is that for many moving objects, e.g., ships, general information provided by a number
of Web sources is structured into Web templates. This is particularly true for domain-
specific resources. Inside this template, each particular characteristic has a meaningful
label, with a value associated to it. We implement, based on such observation, an
extraction process over these Web sources by using source-specific functionality for
keyword search, and then crawling and parsing obtained HTML pages. Through hand-
written schema mapping rules, we return data items in a global schema as a collection
of attributes and corresponding values. There may be some conflicting attribute values
from different sources as shown in Section 5.2 for the maritime domain.

Location Extraction We extract locations of moving objects by searching Web data
items such as pictures, posts, and tweets that have geographical information attached to
them (either directly as semantic geolocation information, or as can be extracted by a
gazetteer '2 on tags and free text). This type of Web data can be found on the majority
of popular location-based networks and social Web platforms like Flickr, Instagram,
Facebook, etc. A geolocated Web data item comes with geographical data (latitude and
longitude), a date, and additional meta-information such as title, description, set of tags,
user name, etc. As an example, picture geolocation is sometimes available as Exif tags,
automatically recorded by a digital camera at the time the picture was captured. The
extraction proceeds as follows. Given a key phrase and a set of social Web sources, we
first look for relevant geolocated data items regarding the input keyword. Then, for each
data item we extract geographical data, dates, and meta-information as sketched above.

12. A gazetteer is a geographical dictionary or directory used in conjunction with a map or atlas.

75

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

5.4.2 Uncertainty Estimation

We evaluate in this section the amount of uncertainty — beyond just a simple modeling
— in moving object data extracted from the Web. We first estimate the precision of spatio-
temporal data according to three criteria and compute from that a trust score for each
item provider. Then we sketch our integration of general information from different
sources.

5.4.2.1 Precision of Location Data

As already mentioned, we harness geolocated Web data items for computing the
different locations, thereby hypothetical trajectories, of moving objects. Geographical
information associated to their geolocated data items come with imprecisions, however.
First, for various reasons a keyword extraction approach is imprecise. As a result, the
search may return wrong or irrelevant results regarding the moving object of interest.
For instance, when searching geolocated Web data items about a moving object O, one
can get from a given Web source results related to another type of real-world objet, e.g.,
a street with a similar name. Second, even if the results obtained really describe the
object O, either the timestamp or the spatial information may be wrong (because of
poorly configured software, purposedly introduced errors, ambiguous location names for
gazetteers, etc.). We need an automated manner to detect these potential errors, and
estimate the uncertainty of the data.

As a general framework, we estimate the precision of locations related to any O
against two criteria. First, we detect outliers, that is, isolated locations, which represent
locations with high probabilities to be impossible compared to other ones, that form a
more consistent set. Second, we evaluate the amount of imprecision in geographical
data by analyzing whether two successive locations in a chronological sense form a
realizable trajectory of O with respect to its maximum speed. For the purpose of our
demonstration application (see Section 5.5), dealing with ships, we also consider a third
criterion which determines whether a location is in (or near) a water area. We next
explain how we measure precision in each case.

Let I;,...,; be a chronological sequence of distinct geolocated Web data items
about the specific moving object O. We use the simple point-location model of [Wolfson,
2002] and represent formally a specific location I; of the moving object O as a couple
(g9d(I;), dat(I;)) where gd(1;) is geographical coordinates (latitude and longitude) and
dat(I;) is a date. Fix two locations (gd(1;), dat(1;)) and (gd(I;), dat(1;)). Necessarily,
i < jifandonly if dat(1;) < dat(1;). Given the roundness of the Earth, the distance d;;

76

5.4. UNCERTAIN WEB INFORMATION ON MOVING OBJECTS
between these two locations of O is computed via the Haversine formula [Sinnott, 1984].

Detecting Possible Outliers An outlier is a location far away from a set of other
locations, that are all within a given time interval and a maximum distance. Fix a given
time window (say, one week for the maritime traffic application). We say that a point is
an outlier if it falls in the middle of an interval where it is at distance Kd of the centroid of
all other points of the interval, where d is the maximum distance between these points
and K > 1 is an application-specific constant, e.g., K = 5.

Far-fetched Trajectories w.r.t. Maximum Speed A possible itinerary of the moving
object O is a connected set of chronologically ordered locations. A trajectory may be
far-fetched, i.e., unreasonable, if reaching one location from a previous one is impossible
when we consider the reference speed of O. Let V be the reference maximum speed
of O induced from gathered general information. Given two consecutive locations
(9d(I;), dat(1;)) and (gd(1;), dat(1;)) with j = i + 1, we verify whether the following
inequality holds:
dij <V x (dat(I;) — dat(I;)).

If not, we are in the presence of an impossible trajectory. At least one of these two
locations is wrong. As we do not know in advance which one, both are marked as
potentially uncertain.

On-land Locations This measure pertains to our maritime traffic application (see
Section 5.5) in which we are mostly interested in locations falling in water areas. Other
applications have similar application-specific ways of detecting impossible points.

A location on land is defined as a point that is out of water areas. All the water regions
on Earth can be found on the Web platform Natural Earth '3 in the form of multi-polygons
for lakes, seas and oceans, and polylines for rivers. Based on these shapes and the
ray-casting algorithm, we check whether a given location (gd(I;), dat(1;)) of the moving
object O (here typically a ship) falls within one of the considered polygons or polylines.
We estimate all on-land locations for O in this manner. Observe that some of these
locations on land could be relevant for our application. In particular, locations on land,
e.g., ports, that are close to water areas. To account for those kinds of interesting
locations on land, we introduce a tolerance factor by considering the disc with radius of
x and centered on a location. In the demonstration application, in Section 5.5, we set

13. http://www.naturalearthdata.com/

77

http://www.naturalearthdata.com/

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

x 1o 0.1 degree of latitude/longitude. Given that, we find on-land locations whose disc,
w.r.t. the tolerance factor, intersects one of the polygons or polylines of a water area.
The overall set of on-land locations are finally those that do not satisfy this condition.

5.4.2.2 Computing User Trust Score

Uncertainty about moving objects in social Web can be inherent to the users instead
of used imperfect sensors or an error-prone extraction process. In fact, some users
can be out-of scope while others may intentionally spread false information in order to
pollute social platforms. Consequently, one would want to have an indication about the
trustworthiness of users sharing items: a trustworthy provider is more likely to share
relevant items than an untrusted one. Given a snapshot of Web items about a particular
moving object, we estimate hereafter the trustworthiness of their associated users based
on the precision level of those items.

Consider again the set I, ..., I; of distinct geo-located items about O. We also
suppose known the users which shared these items. Each user can provide more than
one item about the same moving object. Suppose a particular user U posting a subset
of items O(U) of 0. We put items in O(U) into two groups w.r.t. the precision level of
their locations, as previously determined: less precise items (outliers, participating in a
far-fetched trajectory, on-land location in our application) and more precise items (items
whose locations do not exhibit anomalies w.r.t. precision measures).

Even tough the more precise items seem to be good candidate to reliably describe
the mobility of the considered object, we cannot be certain of their correctness. Instead,
we assign more precise items with a probability value of a. In the same spirit, less
precise items may still be correct. Their level of imprecision varies, however, in function
of their specific types and can be application-driven. For instance, it seems reasonable
to give less chance of being correct to on-land items than outliers on water areas for our
maritime application. We define our belief about the level of relevancy of on-land items,
outlier items, and those implied in far-fetched trajectories as g, -, and 6 respectively. We
constrain 3 to be lower than v and 6. In addition, the probability of relevance of any less
precise item cannot be greater than that of any more precise item.

Let us fix the set of more precise items MP(I) and the set of less precise items LP(I)
in O(U) with MP(I) N LP(I) = (). Consider the set of on-land items Land(I), outliers
Out(I), and far-fetched items Far(I) in LP(I) with pair-wise intersections not necessary
empty. We define the level of trustworthiness Trust(U) of user U as the average of the

78

5.5. MARITIME TRAFFIC APPLICATION

probabilities of relevance of its provided items. That is, we set:

ax |MP(I)|+ B x |Land(I)| + v x |Out(I)| + 6 x |Far([)|

Trust(U) = |MP(I)| + | Land(I)| + | Out(I)| + |Far(I)]

(5.2)
The trust score of each user can be recomputed when external feedbacks or knowledge
are available. This can help lower or increase the probability of relevance of some items.

5.4.2.3 Integrating Uncertain Attribute Values

We do not only extract from the Web geographical information. We also collect
general information about the moving object O in the form of attributes and corresponding
values. Attributes are distinguished by meaningful labels specific to the individual sources.
In general, Web sources have different level of completeness in terms of the data they
provide. In addition, some of them can provide conflicting information, i.e., there can be
multiple possible values for a given attribute, coming from different Web sources.

As general information comes from multiple sources, we need to integrate them
in order to provide to the user a unique global view. In this integration process, we
have to deal with the uncertainty that is inherent to the Web, but also that results from
contradictions. The probabilistic tree data presented in Section 5.3 can be used in
order to integrate these uncertain sources. However since general information is well-
structured and for the purposes of our demonstration system we simplify the task —
even with a possible loss of precision — by adopting the following process. We integrate
general information about O from multiple Web sources by first matching values of
the same attribute provided by distinct sources, using a manually constructed schema
mapping across sources, and then by merging identical values. When a conflict occurs,
we consider the value provided by the majority of sources as the most reliable one,
but we keep all different values, as will be clear in the demonstration. This process
for choosing the most probable values among conflicting ones corresponds to a voting
approach. We study in details the problem of finding the correct attribute values of
objects based on more elaborate voting strategies, such as those given in [Dong et al.,
2009a], in the next chapter.

5.5 Maritime Traffic Application

Putting all results presented so far together yields our final contribution of this chapter:
a demonstration of a system monitoring ships in the maritime domain as detailed in this
section.

79

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

5.5.1 Use Case

The use case of our demonstration is the monitoring of ships. We rely on Flickr for
collecting a large amount of geographical information about the different locations of
a given ship. Flickr provides an easy-to-use API 4, with a set of predefined functions,
e.g., flickr.photos.search, for extracting all pictures (each with a unique identifier),
together with necessary meta-data including geographical coordinates and dates, whose
title, description, or tags contains a certain keyword given in input; Figure 5.5 is an
example of the encoding of a geolocated picture from Flickr. The extraction process
on top of the Flickr platform is automated using API Blender [Gouriten and Senellart,
2012], an open-source library facilitating interactions with the Flickr API. As for the
general information on ships, in particular details about their specifications, we integrated
information from GrossTonnage, Marinetraffic, ShippingExplorer, ShipSpotting '°, and
Wikipedia. These sources contain general information about various types of ships.
The purpose of the first three is to gather data about objects in the maritime domain,
especially vessels. However, excepting Marinetraffic that provides partial information
under an API, these Web sources do not provide a way to extract specific information
from their platforms, and need to be crawled.

s[["8442802776", {"username": "Michael Bentley", "userID": "354
56872@N00"}, "2013-01-28 19:53:50", [18, {"source": "http://
farm9.staticflickr.com/8231/8442802776_6bebdfo9ffl.jpg"}1, "
tagged”, [25.865209, -80.031677] 1...]

o\

Figure 5.5: Geolocated picture from Flickr

5.5.2 System Implementation

Our system is a Web application with a map displaying ship locations. We imple-
mented the full system using HTML, CSS, and JavaScript on the client-side, and Python
on the server-side. The projection of raw geographical data onto a map uses the popular
Google Maps JavaScript API 8. Finally, features such as filtering options are performed
using the jQuery JavaScript library 1”.

14. https://www.flickr.com/services/api/

15. http://shipspotting.com/

16. https://developers.google.com/maps/documentation/javascript/
17. http://jquery.com/

80

https://www.flickr.com/services/api/
http://shipspotting.com/
https://developers.google.com/maps/documentation/javascript/
jQuery: write less, do more
http://jquery.com/

5.5. MARITIME TRAFFIC APPLICATION

o Predefined list: | Liberty Of The Seas 2 Online search:

0172872073 ot P s g 0370772014

General Information
Tennessee Honi e

Visualisation options
Hide
@ More precise locations 35/36

Atanta Sout TED 309436000

patane e 9330032
e Bermuda. Flag: Bahamas
Build 2007
Length: ~ 339m
- Draught: 89m/9m/85m
--" Beam: 38m
-=" GT: 154407
- Owner: Royal Caribbean Cruises / Royal Caribbean International / Royal Caribbean Cruises Ltd

culfof 7 ner: Matttaperssr Type: Passengers Ship

o L

Nesko | st 0% X e _
N i =

o

N ~
A
Fry Ny et »
\ A ks and o
~ Cuba S o Caicds (glands -

@ Less precise locations 1/36

Figure 5.6: Main interface of the maritime traffic application

5.5.3 Demonstration scenario

A video accompanying this demonstration scenario is available at http://
dbweb.enst . fr/ships.mpg.

Interface To interact with the system, a given user can either choose a ship name in a
predefined list with locally saved data, or trigger an on-line search over the considered
Web sources by providing a keyword (see Region 1 in Figure 5.6). For live Web search,
the user can restrict the proposed set of sources for the extraction of the general
information about the requested ship. The system will integrate obtained information
when multiple sources are involved. Once information is obtained in local or from the
Web, the different locations are displayed on the map and the general information is
shown (Regions 2 and 3).

Ship positions are divided by default into two categories with different colors. Blue
points on the map correspond to more precise locations, red points to less precise. As
for the general information, we only show the most probable value for each attribute.
The user has, however, the possibility to see details about possible other values by
hovering the mouse over each attribute label. The user can restrict the visualization to
ship positions in a given time interval with the slider at the top of the interface. Over

81

http://dbweb.enst.fr/ships.mpg
http://dbweb.enst.fr/ships.mpg

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

this slider, we have the total number of mapping locations. More advanced visualization
options are available, as shown in Regions 4 and 5 in Figure 5.6: The user can filter
locations with high or low precision. For low precision locations, she can focus either on
those on the land, outliers, or locations leading to impossible trajectories. Finally, the
user can visualize hypothetical itineraries, filter users according to given trust scores, or
restrict to specific users.

User Experience An expert in the maritime domain would like to acquire new ships
with specific characteristics and history for business purposes. A company sells vessels
which may correspond to her needs. Two particular passenger ships “Liberty of the
seas”and “Costa Serena’are of interest. Thus, she decides to verify from various Web
sources whether the details given by the seller are correct before making a definitive
choice. To do so, she uses our maritime traffic application which already holds information
about “Liberty of the seas”and “Costa Serena”in local. The user selects the first one and
obtains the map view of locations. She primarily overviews the general information about
the ship, and observes conflicting values for its draught and its owner. The user thus
checks the values of these two attributes, as given by her most trusted Web sources.
These values seem to be consistent with the seller's data after verification. The user
remembers that she is very interested in positions of “Liberty of the seas”at some
periods of the year (January to March and August to November). She filters positions
corresponding to these date intervals with the slider. Surprisingly, the user remarks that
the ship was near the Caribbean Sea and the Mediterranean Sea in these times. This
information contradicts the seller who had stated that the ship has never left Europe.
To obtain more insight about the journeys, the user triggers the view of hypothetical
trajectories. She examines the choice list of less precise locations to understand why
some points are incorrect. She concludes that all among them are on-land and indeed
invalid. Finally, she removes these kinds of locations from the map, which confirms that
ship routes mostly cover two main regions.

The user pursues explorations by considering “Costa Serena’now. She only focuses
on its positions and past destinations. She notes that less precise locations make the
visualization cumbersome with no clear overview on routes. Therefore, the user filters
one by one each type of less precise locations for explanations. For instance, she picks
on-land locations and notices that all of them are located on Corsica, an island which
contains a region named “Costa Serena’— she learns this information by clicking on an
on-land location and reading the corresponding Flickr page. Observing that providers of
less precise locations have trust scores below 100%, the user sets the minimum trust to

82

5.6. CONCLUSIONS

80%. Finally, she refines remaining locations w.r.t. given intervals of dates, comparing
with data from the selling company, and can therefore make an informed purchase
decision.

5.6 Conclusions

We have considered in this chapter the problem of uncertain Web data integration
with additional constraints implied by source dependencies, on the one hand, and spatio-
temporal restrictions on the other hand. We have motivated the problem by giving
concrete application scenarios, e.g., monitoring objects in the maritime domain, in which
the dependency relationships between uncertain sources or uncertain location data
cannot be ignored for a rigorous and high quality integration process.

We first approached the general issue of uncertain data integration under dependent
sources. We have given its main prerequisites and then we have provided initial steps
towards a probabilistic tree data integration model that represents and evaluates the
amount of uncertainties in data and sources according to the dependencies in the
particular case of tree-structured data. We have formalized the integration of uncertain
tree-structured data sources under dependencies as the merge of several possible
versions of a shared tree. Based on our uncertain XML version control model, presented
in Chapter 2, we have shown how the mapping between the set of possible integration
results and data sources can be abstracted. Finally, we have presented an algorithm that
reconciles, consistently with the dependency relationships, this set of possible integration
results and their probabilities using a PrXMLfi¢ p-document.

In a second phase, we investigated how structured Web content could be used in
order to extract and exhibit useful knowledge about moving objects. For such a purpose,
we have presented a Web extraction method that collects well-structured general and
location data about a given moving object from Web platforms like social networking
sites and general Websites. To evaluate the amount of uncertainties in the extracted
information — in particular location data — we introduced precision measures based on
some intuitive criteria for these location data, integrated attribute values from different
sources for general information, and estimated the reliability level of users sharing
geolocated items on the Web; for attribute values, we followed a straighforward truth
discovery process, i.e., majority voting, by choosing the value having the highest number
of providers as the truth whenever conflicts occur.

Finally, we have implemented and proposed an application for monitoring ships in
the maritime domain by leveraging the results presented above. Our proposed system

83

CHAPTER 5. WEB DATA INTEGRATION UNDER CONSTRAINTS

has the ability to provide past itineraries, as well as general information, about a given
ship with their level of precision.

The majority voting approach belongs to a particular class of data integration al-
gorithms that deterministically tell the truth given the fusion of multiple Web sources
in the same domain. However one of the main drawbacks of majority voting is that it
assumes equally reliable sources and no data correlations, two facts that do not hold in
practice on the Web. We continue in the next chapter with this problem of truth finding
over structured Web sources — considering algorithms more sophisticated than simple
majority voting — in a setting where data attributes are structurally correlated according
to different levels of quality of data sources.

84

Truth Finding over Structured Web
Sources

We present in this chapter our ongoing study on telling the truth when integrating
multiple heterogeneous and structured sources, focusing on effectiveness in the precision
of the truth finding output by leveraging on positive and negative structural correlations
between data attributes with respect to the quality of fused sources.

With more structure and domain-specific knowledge, intuitions from multiple source
data and their quality level are exploited in order to devise the truthfulness of information.
In some practical application cases, however, the quality level — also known as the
accuracy level —with which a particular source provides true information is not necessarily
uniform on the entire set of data attributes, but variable with respect to distinct subsets
leading to unknown local accuracies rather than a global one. One possible research
avenue to account for this aspect in the truth discovery process — that we will refer to
as the AccuPartition problem — is to investigate a given partition of the attribute set that
maximizes the precision of its result.

After discussing the related work in Section 6.1, the initial part of this chapter, in
Section 6.2, revisits main concepts related to the general problem of truth finding and
introduces the AccuPartition challenge. We start by presenting our general setting —
common to many truth finding algorithms — and by showing how a typical advanced
technique tells, based on an iterative estimation of source accuracy and value confidence
scores, the truth through the description of the core source accuracy aware model
in [Dong et al., 2009a] that we use as a baseline throughout this study. We then
formulate and introduce the AccuPartition problem.

Using a weight function that evaluates the optimality of a given partition based on the
accuracy of the sources over its blocks, we solve the AccuPartition problem by providing
exploration algorithms in Section 6.3. Our algorithms search for an optimal partitioning of
the attributes with higher quality with respect to the truth finding output. As a reference,
we start with an exact exploration method that considers the overall search space and
returns the best partition based on the weight function. Such an exact exploration
technique is intractable in practice because it presents a double exponential exploration

CHAPTER 6. TRUTH FINDING OVER STRUCTURED WEB SOURCES

time complexity with respect to the number of attributes. To mitigate this problem, we
investigate and devise an approximate exploration algorithm, based on some heuristics,
which finds a near optimal partition while reducing the exploration space.

Finally, we present preliminary results about the effectiveness of our approaches via
experiments over synthetic datasets in Section 6.4.

6.1 Related Work

There has been significant research on finding the truth about the instances of a set
of objects shared by multiple conflicting sources under various distinct names such as
truth discovery [Yin et al., 2008, Dong et al., 2009b, Zhao et al., 2012, Zhao et al., 2014],
fact finding, data fusion [Bleiholder et al., 2007, Dong and Naumann, 2009, Pochampally
et al., 2014, Li et al., 2014], etc.; see [Dong and Naumann, 2009, Li et al., 2012] for
early surveys of the state-of-the-art and [Waguih and Berti-Equille, 2014] for a more
recent deeper comparative evaluation. The simplest truth finding approach is majority
voting which trusts the data instances provided by the majority — or at least a certain
percentage — of equally reliable sources. This naive technique, however, become rapidly
ineffective since sources, in particular on the Web, come with different reliability level in
terms of data quality. As a consequence, the majority of truth finding techniques have
largely accepted a weighted voting process with the source quality, as it is unknown
in general, estimated based on the level of truthfulness of the object instances. Some
domain-specific characteristics, especially those leading to correlations between sources
or object instances, have driven the need to implement the weighted voting model
differently by each existing algorithm for further precision.

[Yin et al., 2008] accounts for the similarity between data values from different
sources in its weighted voting model by leveraging the intuition that the level of truthful-
ness of two similar values should influence each other in a certain sense. [Dong et al.,
2009a, Dong et al., 2009b] explores and detects, based on a Bayesian analysis [Dong
et al., 2010], positive correlations between sources caused by copying relationships.
They devise a truth finding approach that does not significantly increase our belief about
the level of correctness of information impacted by copying relationships as false data
can be spread out by copy. Instead of that, it gives more credits to data from independent
providers. [Pochampally et al., 2014] proposes the support of a more broader class
of correlations between sources including positive correlations (e.g., similar extraction
patterns, implementing similar algorithms) beyond source copying and negative corre-
lations (e.g., the fact that two sources cover complementary information). The authors

86

6.2. PRELIMINARIES AND PROBLEM DEFINITION

model those correlations between sources using conditional probability theory in order
to use them for the computation of the truthfulness scores of data instances through a
Bayesian analysis within a multi-truth setting; in their technique, positive correlations
are translated similarity as in [Dong et al., 2009a] while negative correlations between
sources, in contrast, are handled in such a way that they do not significantly decrease
our belief about the correctness level of information.

Other important aspects, besides correlations, related to the truth finding challenge
have been also investigated. [Galland et al., 2010] presents probabilistic approaches
which take into consideration the level of hardness of telling the truth about some
particular objects. A truth discovery framework which models sources with multiple
heterogeneous data types is introduced in [Li et al., 2014]. The long-tail phenomenon
in truth finding, i.e., that most sources only cover a few objects and only a few sources
provide lot of object instances, is approached by [Li et al., 2015]. The authors propose a
truth finding algorithm that uses a confidence interval for source accuracy value in order
to decrease the impact of sources having low data coverage. As earlier in [Dong et al.,
2009b] where the temporal dimension of data source evolution is captured, [Zhao et al.,
2014] study the scenarios where dynamic data sources, in particular stream data, are
involved in the truth finding process.

6.2 Preliminaries and Problem Definition

This section first introduces some concepts pertaining to the general problem of truth
finding and then formally states the particular problem studied in this chapter, namely
the AccuPartition problem.

6.2.1 Preliminary Definitions

We revisit here the definitions of some basic concepts related to the truth finding
problem.

As a common usage, we consider that information in presence is provided by sources
in the forms of a set of objects (describing data in the same domain), each of them being
characterized by a unique identifier and a set of shared attributes. Let . be a countable
set of labels and 7" a countable set of values. Formally:

Definition 6.2.1. An object, representing a real-word entity, is a pair (.o, %/0) where
Lo € £ is a unique identifier for this object, and </p C £ is a set of attribute names. A
set of objects U never has two distinct objects with the same identifier.

87

CHAPTER 6. TRUTH FINDING OVER STRUCTURED WEB SOURCES

When a set of objects & is given and the attribute set .7 is the same for all objects
O € ¢ we simply denote, instead of <, &7 to refer to the attributes of any object O in
0. Given a set of objects in a certain domain, an instance of every object is a partial
mapping of its attributes to some domain of values (say, *). Usually, object instances
are provided by data sources for a given domain of interest. Given that, we introduce a
source as follows.

Definition 6.2.2. Given a set of objects ¢, we formally define a source S over ¢ as a
pair (vs,.75) where 1s € Z identifies the source and .7, is a set of instances of a subset
of 0. That is, every element of .4 is a pair (1o,v) where 1o is the identifier of some
object in ¢ and v is a partial mapping from <7 to ¥. We require no two instances to
share the same .¢.

For simplicity, we will use in the remaining the word objects to also denote object
instances when the context is clear. One very important observation on source data is
that it does not necessary contain instances for every object in &. In the same way, a
source can only focus on a subset of attributes in <7, for any object in O € &' the source
instantiates. Determining the proportion of the set of objects or attributes covered by
a particular source comes down to estimating its data coverage, a notion that can be
formally defined as follows.

Definition 6.2.3. Consider a particular source S in . over the set of objects & sharing
the set of attributes <7 . The object coverage of S, denoted Cou(S, &"), on any subset 0’
of 0 can be defined as the proportion of objects in ¢" for which S provides instances.
Similarly, the attribute coverage of S, denoted by Cou(S, </'), on any subset </’ of o/ can
be defined as the proportion of attributes in </’ such that there is some object instance
in S that map the attribute to a value.

Observe that distinct sources can present different profiles in terms of data coverage
given the same sets of objects and attributes as one can see with Figure 6.1.

Example 6.2.1. Figure 6.1 shows an example of three sources (hungrygowhere, yelp,
and openrice) providing information about a set of restaurants. The first and second
column of each row in the table in Figure 6.1 correspond to the source and the identifier of
the restaurant (its name here). The remaining columns represent the different attributes
(Address, CuisineType, PlaceType, and Branch) of a restaurant object. To derive the
truth about each restaurant, we perform a manual check from trustworthy sources; the
true information for each attribute of every restaurant is rounded by a rectangular shape.

88

6.2. PRELIMINARIES AND PROBLEM DEFINITION

Address CuisineType PlaceType Branch
hungrygowhere | KFC (Hougang Mall) ‘90 Hougang Avenue 10‘ ‘ Halal, Western‘ Fast Food City Mall
hungrygowhere | Kee Tin Kopi Roti ‘ 111 Killinery Road‘ ‘Asian, Local‘ Food Stall Kopi Roti branch
hungrygowhere | Kopitiam Square ‘ 10 Sengkang Square ‘ ‘Asian, Local‘ Restaurant Kopitiam
yelp KFC (Hougang Mall) ‘90 Hougang Avenue 10‘ Universal Food Fast Food Hougang Mall
yelp Kee Tin Kopi Roti 11 Killinery Avenue Japanese Food
yelp Kopitiam Square 10 Sengkang [Asian, Local| | [Food Stall & Kiosques] | [City Square|
openrice KFC (Hougang Mall) ‘90 Hougang Avenue 10‘ — — Mustafi Center
openrice Kee Tin Kopi Roti Marsiling Road — —

Figure 6.1: Information about restaurants from three different sources

We now fix a finite set of sources . (such that no two sources have the same source
identifier) and a finite set of objects ¢. We assume all objects share the same set of
attributes o7

Note that we require object identifiers and attribute labels to act as real identifiers of
the corresponding objects and attributes: two attributes with distinct labels are considered
to refer to different real-world attributes, and two objects with distinct identifiers are
considered to be distinct. This means neither entity resolution nor schema mappings is
a concern in our study.

On the other hand, although heterogeneity at object and attribute levels cannot hap-
pen between any two sources, these can disagree about attribute values for any object
as we point out throughout this thesis and in particular in this chapter. Reconsidering
our example sources in Figure 6.1, one can easily observe that hungrygowhere states
that the CuisineType for the restaurant “Kee Tin Kopi Roti” is “Asian, Local” while yelp
claims “Japanese Food”. Given any shared attribute a; of a common object O in &, we
say that S and S’ agree on v(a;) if their provided values coincide. If they give different
values, that means the sources disagree about this attribute value.

Deriving the truth about a set of objects based on instances from multiple conflicting
sources can rapidly become an arduous task. A typical truth finding process is an
automated integration process which tells the truth knowing a set of sources in the same
domain with some possible conflicting views about the actual values of some attributes
for some objects. Existing algorithms, reviewed in Section 6.1, can be distinguished
based on some specific assumptions, e.g., as to the domain of correct attribute values
for objects and the trustworthiness of involved sources. We restrict ourselves in this work

89

CHAPTER 6. TRUTH FINDING OVER STRUCTURED WEB SOURCES

to the most common framework where any attribute of every object has only one correct
value and many wrong values, and integrated sources have different unknown level of
trustworthiness. Specifically, we consider a truth finding process in which the probability
of correctness of an attribute value is computed based on source accuracy values, and
conversely the accuracy of a given source is estimated using the probabilities of its
provided attribute values. Such a truth finding method aims at giving higher vote counts
to attribute values coming from trustworthy sources. Without any loss of generality we
consider as a baseline the Accu model (without dependency detection, value popularity
computation, and value similarity consideration) proposed by Luna et al. in [Dong et al.,
2009a] which shares common characteristics with most of the advanced truth finding
algorithms. We briefly revisit Accu in the next and defer to [Dong et al., 2009a, Dong
et al., 2010] for details.

6.2.2 Accu Truth Finding Algorithm

Assume a set of sources ., each providing subsets of objects in the object set &
where every object is described by the set of attributes «7. When integrating sources in
-, Accu determines the correct value for each attribute of every object by computing
a confidence score for each distinct value provided for this attribute: the correct value
is the one with the highest confidence value. These confidence values are computed
based on the accuracy scores of sources which in turn are derived via source accuracy
valuesfootnoteAccu always starts with a priori accuracy value e for all the sources.. We
revisit below the definitions of these basic notions underlying Accu; see [Dong et al.,
2009a, Dong et al., 2010] for details.

Definition 6.2.4. The confidence score of an attribute value, representing its vote
count, amounts to its likelihood to be the actual information for this attribute. Let 7,
be the domain of possible values of an attribute a; of a given object O from ¢. For
every possible value v(a;) in ¥,, provided by a subset of sources in ., we denote the
confidence score of v(a;) being the true value of the attribute a; for the particular object
O by C(O,a;,v(a;)).

Correct attribute values are more likely to come from trustworthy sources than

untrusted ones. In the same spirit, trustworthy sources have a trend to maintain attribute
values with high confidence scores.

90

6.2. PRELIMINARIES AND PROBLEM DEFINITION

Definition 6.2.5. The accuracy value of a given source gives a global indication about
the correctness of attribute values provided by this source. We denote the accuracy of
any source S in . over o by £(S, </).

Observe that (S, «7) is initially sets to a fixed value in Accu, and will be updated
in an iterative manner. Given the number n of false values for each given attribute for
every object, the accuracy score' of a particular source S from . is computed from its
accuracy with the following formula.

(6.1)

a(S, o) =In (n x e %)))

1—¢(S,o)

The confidence score (or vote count) of any attribute value is estimated by summing
up the confidence scores of the subset of sources which exactly provide this value.
Given the subset .7,y of sources in . that agree on the value v/(a;) of the attribute a;
of a certain object O in &, we pose:

C(O,ai,v(a;)) = Z S, o). (6.2)
S€Luai)

The accuracy value of a particular source S over 7 and given its subset of covered
O is evaluated as being:

<. 1 eC(O,ai,V(ai)) 6.3
6(’) o W [E;ﬁs Eu(ai)e"//ai eC(0,ai,v(a;))” (’)
v(a;)€l

Observe that this accuracy value is globally inferred by considering the entire collec-
tion of attributes. At the end of the process ?, Accu chooses, for every object O in &, for
each attribute a; in <7, the correct value as having the highest confidence score.

TrueValue(O, a;) = Argmax C(O, a;,v(a;)) (6.4)
v(a;)€Ya,

Let F refers to the Accu algorithm — and in general to any truth finding technique.
We denote by F(.7, «7) the result of F over sources in . giving the set <7 of attributes
characterizing objects in &. The precision of a truth finding algorithm is given by the per-
centage of correctly returned attribute values with respect to the actual reality. We refer

1. The accuracy score (or confidence score) of a source corresponds to the ratio between its accuracy
value and its error rate.

2. The Accu process converges in a certain sense when the estimated accuracy values for sources do
not change from one iteration to another one.

91

CHAPTER 6. TRUTH FINDING OVER STRUCTURED WEB SOURCES

to this precision by ¢(F(.#, <)) for an algorithm F, a set of sources ., and an overall
set of attributes «7. In practice, computing the exact precision of an algorithm is hard
because we have no access to the ground truth, which leads to approximation analysis
or manually constructed gold standard; [Dong et al., 2012] present an approximation of
such a precision through a probabilistic analysis.

Example 6.2.2. Reconsider the example sources in Figure 6.1 and apply Accu by
starting with a priori accuracy value e = 0.8 and the number of false values for every
attribute of all object as being n = 100. The algorithm converges after two iterations by
returning 0.97, 0.29, and 0.53 as accuracy values of hungrygowhere, yelp, and openrice
respectively. Concerning true instances of the restaurants, Accu concludes that the true
instance of, e.g., “KFC (Hougang Mall)”, is { “90 Hougang Avenue 10", “Halal, Western”,
“Fast Food”, “City Mall”}. The algorithm derives this truth by computing the confidence
score of each possible value for every attribute; the confidence scores of the two possible
values “City Hall” and “Hougang Mall” about the Branch attribute of the restaurant “KFC
(Hougang Mall)” are respectively 7.6 and 3.6 yielding the choice of the first value as the
correct one.

6.2.3 Problem Definition

Algorithms similar to Accu consider global source accuracy values when computing
the confidence scores of attribute values. By doing so, however, the confidence scores
of certain specific attribute values could be biased, which, in turn, should drastically
impact the precision of the truth finding process. According to Example 6.2.2 hungry-
gowhere has an accuracy of 0.97 on the overall attribute set and thereby the Accu
algorithm makes mistakes by selecting values from this source. Indeed, we know from
Example 6.1 that hungrygowhere is only very accurate on {Address, CuisineType} while
being inaccurate on {PlaceType, Branch}. More importantly, we have that whenever
hungrygowhere provides a correct value for Address, it does for CuisineType. Meanwhile
whenever hungrygowhere gives a wrong value for Address, it mostly does for Cuisine-
Type. As a consequence, these two groups of attributes are structurally correlated, in a
positive sense, by the accuracy of this source while being negatively correlated between
them; considering two independent local accuracy values for this source seems to be
reasonnable.

We just show below that in some cases the correctness of possible values of a given
attribute is only tied to that of some other attributes. This is particularly true when there

92

6.2. PRELIMINARIES AND PROBLEM DEFINITION

Table 6.1: Summary of notation used throughout this study

Notations Meaning

o Collection of attributes
a; The i-th attribute in &
v(a;) Value of the attribute a;

Ya, Domain of possible value of the attribute a;
C(0,a;,v(a;)) Confidence score of a value of a; in O

7 Collection of objects

(0] Specific object in the set ¢

Lo Identifier of the object O

A Set of attributes of the object 0

57 Collection of sources providing objects

S A specific data source in .

54 A set of instances for some objects in &

Cou(S,0") Object coverage of S on ¢’
Cov(S,<’) Attribute coverage of S on &7’

e(S, ") Accuracy of a given source S on &7’
a(S, ") Confidence score of a given source on &7’
F A given truth finding algorithm

F(7, o) Result of applying F on . and <&’
e(F(<,4") Accuracy of the algorithm F on . and &7’

exist structural relationships such as positive correlations between some attributes in
terms of source accuracy. These correlations can reveal different independent behaviors
of a given source in terms of data quality on distinct subsets of attributes. For instance
a source can be very accurate on a particular group of attributes while being fair on
another one. We consider such a type of structural relationships between attributes. In
this direction, we revisit the definition of the accuracy of a source by introducing this
concept of locality in accuracy.

Definition 6.2.6. (Local and global source accuracy) For any source S from .7, we say
that the accuracy of S is global when it is estimated by considering the entire attribute
set «/. In contrast, when the computation is only performed over a subset of attributes in
</ we say the obtained accuracy value is local to that subset.

Analogously to the source accuracy, we also redefine the confidence score of a
source, the result of a truth finding process, and its precision on a given subset of
attributes. Given a subset &/’ C ./, we will write accordingly to these definitions

93

CHAPTER 6. TRUTH FINDING OVER STRUCTURED WEB SOURCES

e(S, "), a(S, "), F(S, o), and e(F(, <7")). As we shall show shortly, rather than
using a principle way, e.g., a probability analysis, to translate the fact that any two pairs of
attributes are structurally correlated we express this relationship by discovering partitions
with consistent blocks.

We claim that data source quality — with structural relationships — is better modeled by
an estimation of the local accuracy values as we discussed in Example 6.2.3. Moreover,
the computation of the probability of correctness of a given possible value of any attribute
should be only affected by local source accuracy values corresponding to the correlated
subset to which this attribute belongs. We believe that in such a context any truth finding
algorithm using source accuracy should take benefit of the use of local accuracy values
of sources instead of global accuracy values for improving the precision of its outcome.
The idea is to perform the process on each subset, containing correlated attributes, and
then to aggregate the results obtained from each subset of the input attribute set.

Example 6.2.3. Let us consider again our running example in Figure 6.1. Clearly, we
observe that hungrygowhere is very accurate in providing information about the address
and the CuisineType of each restaurant while being worse for Place Type and Branch. At
the same time, yelp is accurate for PlaceType and Branch while being bad for Address
and CuisineType. A truth finding process that can independently capture these two
distinct behaviors should obtain a better precision; typically knowing that by splitting the
attribute set into two subsets { Address, CuisineType} and { PlaceType, Branc} we can
mainly choose correct information from hungrygowhere for the first class of attributes
and yelp for the other class.

Structural correlations between attributes ensure that local accuracy values of
sources are computed on the right subsets (these nonempty subsets typically form
a partition of the input attribute set). These structural relationships between attributes
are not given beforehand in general, driving the need for an algorithm to discover these
correlations for the truth finding process. In this study, we will consider the discovering of
structural relationship among attributes as an integral part of the truth finding process.
We refer to the process of performing truth finding for attribute values with exploration of
subsets of correlated attributes as the AccuPartition problem which we introduce in the
next.

Definition 6.2.7. A partition of the set <7, denoted by P, is a set of nonempty subsets
(or blocks) such that every element a; in <7 is in exactly one of these subsets. In other
words, we have:

94

6.3. PARTITION-AWARE TRUTH FINDING PROCESS

— Uyrepwr &' = o and:
— oy N ot =0 for all «7; € P and <, € P with j # k.

We explore correlation relationships between attributes in <7 which yield a partition of
/. There may be many such partitions of .«#. We are specially interested ins partitions
whose subsets of correlated attributes mostly exhibit very high accuracy values for F
over .. Given a truth finding algorithm F, AccuPartition consists of finding a particular
partition of <7, called optimal partition, for which F achieves highest precision on the
majority of found subsets of correlated attributes. In other words, such an optimal
partition should maximize the precision of F on the entire input attribute set.

Problem 6.2.1. (AccuPartition problem) Assume a truth finding process F on sources in
< providing subsets of objects in €, each described by the set of attributes in <. The
AccuPartition problem aims at finding an optimal partition P of <7 which maximizes the
precision of F on the overall set < .

Intuitively, accuracy values of sources estimated by a given truth finding algorithm
indicate in some extent the direction of its resulting true attribute values. Given that, we
propose a truth finding process with partitions where an optimal partition is discovered
by accumulating evidence from local source accuracy values on partition blocks.

Again, this study assumes independence among involved sources and identical false
value distribution for all the attributes for every object. In addition, it assumes that the
attributes are distinguishable in terms of source accuracy.

6.3 Partition-Aware Truth Finding Process

This sections details our proposed model for performing truth finding with an optimal
partitioning of the input attribute set. We start by defining the weight of a given partition,
a notion that represents the building block of our proposed model. Then as a reference
we introduce a general (non-efficient) algorithm for the AccuPartition problem. Finally,
we derive and propose an approximation algorithm which reduces the search space for
discovering an optimal partition for any truth finding process.

Consider .7, ¢, and <7 a set of independent sources, a set of objects, and a set of
attribute respectively. Let F be a truth finding algorithm over ..

95

CHAPTER 6. TRUTH FINDING OVER STRUCTURED WEB SOURCES

6.3.1 Weight Function for Partitions

We propose a weight function w over partitions of <7 in order to evaluate the optimality
or not of a given partition when performing F over .# given the entire attribute set. The
weight function @ estimates a partition’s weight by accumulating evidence from local
source accuracy values on the different subsets of attributes (or blocks) in this partition.
We use local source accuracy values computed by F in order to derive a score, in
terms of quality, of each block. Let P“ and ./’ be a partition of .« and a block in P,
respectively. Accordingly, we introduce the following definitions.

Definition 6.3.1. (block score) We define the score of the block <7’ in the partition P,
denoted by T(</"), as a function of local source accuracy values returned by ¥ when
performed over sources in . by only considering attributes in </’

Since local source accuracy values involved are estimated (in general we have no
external knowledge about the real accuracy values, especially in real applications),
selecting a prior correct score function for partition blocks is not trivial. To overcome
this problem, in our evaluation in Section 6.4 we will compare results obtained by using
different aggregate functions, as well as an oracle®, as score functions. Given the scores
of its blocks, we define the weight of a given partition as follows.

Definition 6.3.2. (partition weight) We define the weight of any partition P of <,
denoted by w(P), as the average of the scores of its different blocks when F performs
on sources in . given the entire input attribute set.

w(PY) = |P; < S () (6.5)
o' eP

where | P | represents the size of the partition P< .
We can now introduce formally an optimal partition for F.

Definition 6.3.3. (optimal partition) When performing ¥ over sources . providing sub-
sets of objects in ¢ sharing the set of attributes in <7, an optimal partition w(P<) is
defined as being a partition with the highest weight value.

The AccuPartition problem (see Problem 6.2.1) is thus resolved by performing the
truth finding against an optimal partition as given in Definition 6.3.3. As a consequence
we devise the following proposition.

3. We refer to an oracle any comparison function that has the ability to compare with the real data, i.e.,
the truth.

96

6.3. PARTITION-AWARE TRUTH FINDING PROCESS

Proposition 6.3.1. An optimal partition of </ is a solution of the AccuPartition problem
for any given truth finding process F over .. Such a solution always exists.

Proof. Consider that we have access to a score function for partition blocks that esti-
mates the score of a given block similarity to an oracle that has the ability to compare
with the real data. As a result, an optimal partition of <7, whose weight is maximal, will
clearly maximize the accuracy of F over the entire set of attributes. O

The next proposition is a direct definition of the AccuPartition problem.

Proposition 6.3.2. When the entire input set of attributes is the only optimal set, Accu-
Partition comes down to performing the classical truth finding technique ¥ with a global
source accuracy measure.

In the following, as a reference we present a general exponential algorithm for the
AccuPartition problem which relies on an exploration complete of the partition space.
Then, we devise an approximation algorithm for the AccuPartition problem.

6.3.2 Exact Exploration Algorithm

An exact exploration algorithm for the AccuPartitiom problem corresponds to an
exploration of the entire set of all possible partitions of the input attribute set. The
algorithm will compute the weight of each possible partition, and derive an optimal
partition as one having the highest weight. This section details such an algorithm for
AccuPartition, namely GenAccuPartition, as the reference for computing an exact
optimal partition.

GenAccuPartition (see Algorithm 6.1) considers as input a set .# of independent
sources, a set of objects ¢, and a set of attributes .«7. The algorithm finds an optimal
partition P/, of 7 for F(., &) by proceeding as follows.

Generation of the set of partitions GenaAccuPartition () first generates the set
of all possible partitions of the input attribute set .7, namely # (P“/). Each generated
partition is a potential optimal one for the truth finding process.

Computation of partition weight GenAccuPartition () computes the weight of
every partition P< in the set of partitions # (P<). Given P, it first estimates the score
of each of its block .«7; based on local source accuracy values obtained by running
F(.7,). Then it determines the weight of the partition P as given by Expression 6.5.

97

CHAPTER 6. TRUTH FINDING OVER STRUCTURED WEB SOURCES

Algorithm 6.1: GenAccuPartition <%, 0, &, F>

Input: . set of independent sources;
0. set of objects;
</ . set of attributes;
F': truth finding algorithm
Output: An optimal partition P, of <7 for F over .#

opt

1 # (P“) < generate the set of possible partitions of .<7;
2 P&« 0;
) < 0;

3 w(Pg{)t
4 foreach partition P in (P do

5 | w(PY) <« 0;

6 | forl<;j<|P’|do

7 Get block «7; of the partition P;

8 Execute truth finding process F(.7, &');
9 Compute 7(<7;) of <7; using local source accuracy values;
10 end

1 | o(PY) <« ﬁ X Yo epa T());

12 | if @(PY)>w(Py,) then

13 Py« w(PY);

14 w(PZ,) + w(PY);

15 end

16 end

17 return (P2));

Deriving an optimal partition GenAccuPartition() then discovers an optimal
partition by comparing partition weights. Starting from an empty optimal partition with
a weight equals to 0, the algorithm process each partition by first computing its weight
and compares it to that of the current elected optimal partition. Two cases can occurs. If
the weight of the newly processed partition is greater than the weight of the currently
chosen optimal partition, the former is elected as the optimal partition and its weight is
set now as the highest current one. Otherwise, the currently chosen optimal partition
does not change. At the end of this process, the selected partition is returned by
GenAccuPartition ()s as the optimal one.

GenAccuPartition () ensures computing a correct optimal partition, but the algo-
rithm does not scale. Indeed, the number of partitions grows exponentially when the
size of the set increases. Fortunately, the number of attributes characterizing objects
in many real applications is not very large. This observation leads in some extent to a

98

6.3. PARTITION-AWARE TRUTH FINDING PROCESS

hope for an applicability of the general exploration algorithm in many real word scenarios
where integrating sources with data quality is critical.

Proposition 6.3.3. GenAccuPartition () has a search time complexity exponential
in the size of the input attribute set.

Proof. The proof follows by asymptotic approximations of Bell numbers [Graham et al.,
1994]. O

In the following we investigate an approximation algorithm enabling to reduce the
search spaces while returning a near optimal partition in practice.

6.3.3 Approximative Exploration

We propose BottomUpAccuPartition () which is an approximation procedure
that minimizes the number of considered candidate partitions during the process of find-
ing an optimal partition. We leverage the next two intuitions for defining Bot t omUpAccuPartition ():
(i) first, there is a high probability that when same sources are high accurate on some
individual attributes, they are on their union and; (ii) second, individual attributes sharing
the same fop-one list of more accurate sources are likely to be structurally and positively
correlated.

Let us now describe how Bot tomUpAccuPartition (Algorithm 6.2) proceeds. The
algorithm start with the trivial partition with blocks consisting each of a singleton attribute
and further clusters the attributes according to their top-one lists of more accurate
sources. Then separately BottomUpAccuPartition () explores the set of partitions
of each derived cluster in order to determine the corresponding optimal sub-partition.
Finally, the procedure merges the set of discovered optimal sub-partitions in order to
return a global optimal partition. We detail below each step of the process.

Clustering of attributes BottomUpAccuPartition () starts by running the truth
finding process over each block of the trivial partition ngng of the input attribute set <7
The goal is to determine the top-one list of most accurate sources for each individual
attribute in 7. Given that, the algorithm clusters, in the same set, individual attributes
sharing the same list of sources. The result of this phase is a set of disjoint clusters of
attributes.

Local optimal partitions In this step, BottomUpAccuPartition () considers each
cluster discovered in the previous phase. For a given cluster, it generates its set of

99

CHAPTER 6. TRUTH FINDING OVER STRUCTURED WEB SOURCES

Algorithm 6.2: BottomUpAccuPartition <., 0, &, F>

Input: . set of independent sources;
0. set of objects;
</ . set of attributes;
F': truth finding algorithm
Output: An optimal partition P, of <7 for F over .#

opt

1 P70

2 CL + 0;

3 Pgng%{{al}’CZIEd}!

4 for j-th singleton subset <7 in P, .1 <j <|PZ | do

5 Execute truth finding process F(.7, <7);

6 Set ., + set of sources whose local accuracy values are maximal;

7 end

8 For all the singleton subsets «7;’s such that the subsets .7,,;’s are same, add the

set formed by J a;, a; € 7}, in CL;
9 foreach candidate list cl in CL do
10 ‘ Set P, « GenAccuPartition (&, 0,cl,F);
11 end
12 P2, « |J«/' such that @’ € P¢,, for every P ;
13 return (P2,);

all possible partitions and then determines the optimal one by comparing the partition
weights after running the truth finding process on each partition. The computation of
the local optimal partition for a given cluster is independent to that of any other cluster.
At the end of this step, BottomUpAccuPartition () will return a set of optimal sub-
partitions.

Generation of a global optimal partition BottomUpAccuPartition () ends with
the generation of a global optimal partition which will represents the approximated
optimal partition for the truth finding process over «7. The global optimal partition is
generated by merging optimal sub-partitions computed at the previous phase. The
merge simply consists of putting together the blocks of all the optimal sub-partition in the
same set P& .

BottomUpAccuPartition () can be bounded in terms of search space. Its lower
bound occurs when its first phase return several clusters with only one attribute for
each of them without the same top-one list of most accurate sources. Its upper bound
corresponds to the case where the first step returns only one cluster which will contain

all the attributes. In this latter case, Bot tomUpAccuPartition () will have the same

100

6.4. EXPERIMENTAL EVALUATION

search space than GenAccuPartition (). We provide experimental insights about
the precision of the result of BottomUpAccuPartition (), as well its time complexity,
in the next section.

6.4 Experimental Evaluation

We report in this section initial results obtained with tests conducted on synthetic data.
We studied the precisions of our algorithms against Accu algorithm and MajorityVoting
when sources exhibit distinct accuracies on different subsets of data attributes. We
implemented all these algorithms 4 in Java by considering the Accu model as the basic
truth finding procedure for GenAccuPartition and BottomUpAccuPartition. We
started by comparing the precisions of GenAccuPartition, Accu,andMajorityVoting
by considering an oracle and two aggregate functions (maxAccu and avgAccu) for esti-
mating the score of blocks for partitions. The oracle computes the score of a block as
the exact precision — knowing the real data — of a given truth finding output over this
block. The aggregate functions maxAccu and avgAccu correspond respectively to the
choice of the maximum local accuracy value and the average local accuracy value as
the score of a block. We then focused on a comparison of the precisions, as well as
running times, of BottomUpAccuPartition and GenAccuPartition.

Initially, we present our synthetic data generation and the different configurations set
up for experimentations.

Synthetic Data Generation The purpose of our experimentation with synthetic datasets
is to have the ability to compare the outputs of the tested algorithms against a ground
truth in various configurations. Observe that one main challenging problem for evaluation
within the settings of real datasets is to find the corresponding gold standard.

We implemented a tool in Java for generating synthetic data for our needs. The
generation process requires five parameters: the expected number of attributes (na), the
number of objects (no), the number of sources (ns), and two uniform distributions U1 and
U2. The uniform distributions are used in order to randomly choose high source accuracy
values and low source accuracy values for given subsets of attributes, respectively. Our
generator proceeds with this input as follows. First, it generates the empty sets &7, 0,
and . of respectively expected number of attributes, objects (each object having na
attributes), and sources where each source instantiates all the objects (we assume here

4. The code source of the implementation of Accu not being provided by the authors, we did our best to
properly implement the algorithm. In contrast, the implementation of MajorityVoting is trivial.

101

CHAPTER 6. TRUTH FINDING OVER STRUCTURED WEB SOURCES

that every source presents a full coverage for both attributes and objects). After this
stage, the generator produces the collection of all partitions of the entire attribute set and
randomly selects one partition P/. For every block in P, it randomly picks a source
from . which is deemed to be highly accurate on this block (when it is possible, we
search for a random partition so that to a source can be associated only one block). Fix
the subset . of chosen sources for blocks in P< and the subset .” of no selected
sources. The generation of attribute values for every object for each source is now
performed as follows. For every block <7’ in P together with the associated source S in
', we set:

(i) e(S, ") with a high local accuracy value using U1; and

(i) e(S,.27") with a low accuracy value using U2 for every «/” in P such that
A"+ o
In addition, we consider no selected sources in .#” and randomly select some of them,
say 'yT”' which also provide correct information on attributes in .7’ for at least a certain
percentage of objects depending on the accuracy value of S on .&/’: we reduce this
proportion whenever needed in order to obtain the desired configuration. We subtly
choose these sources such that the same ones are not selected for several different
blocks for avoiding the fact to obtain at the end of the process sources globally accurate
on the entire set of attributes. Since any two distinct attributes can have different weights
in the accuracy value of a source given its object instances, we compute a finer source
accuracy value at the level of an attribute when knowing its local accuracy on a block
and its covered number of objects. This computation is done so that the average of
the accuracy values of a source on a subset of attributes is exactly equal to its local
accuracy on this subset; this accuracy value at each attribute gives an indication about
the proportion of objects on which the source really provides a correct value for each
particular attribute. Finally, the generator — based on these accuracy values on attributes
— defines the attributes of each object in which a source tells or not the truth. In particular,
for every object, mostly correct and wrong values® are respectively set for attributes
in &’ and in each .&7” for the source S leading, accordingly, to the construction of the
object instances for this source. The object instances of the other sources are set in
the same manner. The domain of false values of each attribute for every object is set
so that the probability that sources in .’ and .&” provide the identical wrong values is
very low; this allows to prevent many corroborations between sources in ./ and .”” on
subsets of attributes in which they badly say the truth. Observe that the object instances

5. Recall again that there is only one correct value and several possible false values for each attribute of
each object. The choice of the false value to affect to an attribute is done randomly by the generator.

102

6.4. EXPERIMENTAL EVALUATION

of the sources in .””" are defined in such that these sources have neither significant
local accuracy values nor significant global accuracy values. Last, our generator also
produces the corresponding ground truth of the synthetic dataset.

Experimental Setup We generated four synthetic datasets by using different config-
urations. We considered, however, the same following number of sources, objects,
and attributes for all these datasets: na = 6, no = 100, and ns = 10. Each dataset is
thus composed of 600 attribute values per source, i.e., a total of 6000 attribute values.
Recall that the focus of our initial tests were made on the evaluation of the precision of
the algorithms and we defer the study of their scalability for further work. Concerning
the parametrization, i.e., e and n, of the Accu algorithm we have experimented with
e = 0.8 and n = 20. The configurations, in Table 6.2, consider different settings of Ul
and U2 which define the average high and low accuracy values of sources. The first
configuration, for instance, considers 1.0 and 0 as means for Ul and U2 respectively.
In other terms, the corresponding dataset contains sources from .’ having high local
accuracy values mostly equal to 1.0 (i.e., they are fully accurate on some subsets of
attributes) and low local accuracy values equal to 0.0 (i.e., they are fully inaccurate on
some other subsets of attributes). While the two first configurations are extreme cases,
the last two relax the mean value of U2.

Mean Ul Mean U2

configuration 1 1.0 0
configuration 2 0.8 0
configuration 3 0.8 0.2
configuration 4 0.6 0.4

Table 6.2: Configurations for synthetic datasets

Analysis of the Results Table 6.3 reports the precisions of MajorityVoting, Accu
algorithm, and GenAccuPartition over the four synthetic datasets. For each con-
figuration, the highest precision value is given in bold. The first results show that
GenAccuPartition mostly presents a better precision compared to Ma jorityvVoting
and Accu. In the first two extreme configurations with GenAccuPartition the preci-
sion of the truth finding process is improved of at least 10% regarding the precisions
of Accu and MajorityVoting and independently of the considered score function
for the blocks of the partitions. In the third configuration, even if the improvement is
less significant, it is of at least 6% when considering the oracle or the maxAccu for

103

CHAPTER 6. TRUTH FINDING OVER STRUCTURED WEB SOURCES

the score function. In addition, one can also observe that Accu is on average better
than MajorityVoting in the third initial dataset. As a consequence, first we can
conclude that when sources are highly accurate on distinct subsets of data attributes
Accu improves the precision over Ma jorityVoting; accounting for the accuracy of
sources during the process is thus crucial. On the other hand, exploring an optimal
partition, i.e., using GenAccuPartition, is even better. This last result strengthens
our observation that in such a scenario performing truth finding should take advantage
of local source accuracy values rather than a global accuracy value as in Accu since
GenAccuPartition largely outperforms Accu. In the last configuration Accu and
GenAccuPartition— both slightly worse than Ma jorityVvoting— are comparable in
terms of precision. One plausible cause could be the fact that the local accuracy values
of sources are not very significant regarding the global accuracy values of sources in
this configuration.

In the second stage we focus on the maxAccu score function whose results are more
consistent with the ones returned by the oracle regarding Table 6.3. Table 6.4 presents
the precisions of BottomUpAccuPartition over the four synthetic datasets. As a
general observation, BottomUpAccuPartition does not decrease a lot the precision
of the truth finding process with partitions compared to GenAccuPartition in the
considered synthetic datasets. At the same time, we compare the average time needed
by GenAccuPartition and BottomUpAccuPartition to complete their process
over the entire set of synthetic datasets. We observe that Bot tomUpAccuPartition
is four times faster than GenAccuPartition.

MajorityVoting Accu GenAccuPartition GenAccuPartition GenAccuPartition

(oracle) (maxAccu) (avgAccu)
configuration 1 0.795 0.85 0.999 0.991 0.991
configuration 2 0.705 0.701 0.806 0.805 0.803
configuration 3 0.743 0.763 0.826 0.825 0.775
configuration 4 0.668 0.605 0.615 0.603 0.615

Table 6.3: Precisions of MajorityVoting, Accu, and GenAccuPartition

BottomUpAccuPartition (maxAccu)

configuration 1 0.991
configuration 2 0.800
configuration 3 0.780
configuration 4 0.591

Table 6.4: Precision of BottomUpAccuPartition on synthetic datasets

104

6.5. CONCLUSION

6.5 Conclusion

We have presented in this chapter our approach to discover the truth about instances
of a set of objects shared by multiple conflicting sources, accounting for the possible
independent local accuracy values of sources given by positive and negative correlations
between data attributes. We have observed that, in some scenarios, sources can
present different (unknown) profiles, in terms of data quality, over distinct subsets of data
attributes — concretely a source may be very accurate on a subset while being worse on
another one. This is a plausible characteristic of source qualities that the majority of truth
finding methods, which estimate the accuracy level of sources in order to evaluate the
truthfulness of data values, should model to avoid being biased by the use of a global
indicator of the quality of sources.

To solve this problem one possible research avenue is to search for an optimal
partitioning of the set of data attributes for the truth finding process. In this spirit, we
have introduced the AccuPartitiom problem for which we have presented two exploration
algorithms: an exact exploration algorithm and an approximation algorithm. These
algorithms are built on the definition of a weight function that estimates the optimality
of a given partition based on the accuracy values of sources on its blocks of attributes.
Furthermore, we have shown that the exact exploration algorithm, while being unreason-
able in practice, finds an optimal partition. In the contrast, the approximation algorithm
may drastically reduce the search space but produces a near optimal partition.

Finally, we have considered first steps towards the experimental validation of the
effectiveness of our approach against existing algorithms, drawing that it reaches —
through both two exploration algorithms — better precisions with tests conducted on
several synthetic datasets with different configurations and independently of the way the
weight function is implemented. We also established that the approximation algorithm
is four times faster than the exact exploration algorithm while ensuring comparable
precision results.

105

Research Perspectives

In this chapter, we discuss the most promising research directions raised by the
study carried out during this thesis for the following three main challenges: uncertain
multi-version tree data, integration of Web sources under constraints, truth finding over
structured Web sources with correlated data attributes.

7.1 Uncertain Multi-Version Tree Data

In addition to the investigation of other potential application scenarios for uncertain
version control, a deeper evaluation of the qualitative aspects of our model, and its
interplay with reputation or trust algorithms, we consider the following relevant problems
for further developments.

Supporting More Complex Editions One of the main next steps is the support of
more complex edit operations like moves and copy of intermediate tree nodes, or
updates of node content. Our current model systematically handles any type of edit
using a sequence of insertions and deletions, hiding some informative aspects of the
collaborative editing. The probabilistic model used is, fortunately, enough flexible to
easily incorporate any other type of edit operations. Complex edit operations have their
own semantics (see [Lindholm et al., 2006, Thao and Munson, 2014]), which, taken into
consideration, may enable to retain more semantical information about the collaborative
work and thereby improve modeling and assessing of uncertainty during the process.

Querying Uncertain Multi-Version Tree Data Another interesting problem is a query
language for multi-version tree data. Retrieving a given version of any uncertain multi-
version tree data must account for uncertainties, thereby possibility and probability. One
possible direction for dealing with this problem is to harness current research on querying
probabilistic XML [Liu et al., 2013, Kimelfeld and Senellart, 2013] in order to enrich usual

7.2. WEB DATA INTEGRATION UNDER CONSTRAINTS

version retrieval functions with additional predicates aware of the sources of uncertainties
by enabling to reason on their levels of reliability.

7.2 Web Data Integration under Constraints

Besides a study of the effect of uncertain dependencies in the representation of the
set of possible worlds and a more detailed comparison of our probabilistic tree data
approach against the literature (especially, the model in [Van Keulen et al., 2005]), a
further study could tackle the following problems.

Integration via Query Views It could be also of interest to investigate the definition of
the probabilistic tree integration in terms of query views, that is, defining the integration
result with respect to a specific class of queries over data. Such an approach is more
suitable in the case of virtual data integration where data reside in distributed sources.

Accounting for New Knowledge Knowledge rules and user feedback can help to
resolve some uncertainties in the integration by refining the set of possible worlds
(cf. [van Keulen and de Keijzer, 2009]). Relying on domain experts, e.g., opinions from
maritime experts regarding our ship monitoring application in the maritime domain, is a
reliable way to obtain such types of knowledge.

7.3 Truth Finding with Correlated Data Attributes

Scoring Functions for Blocks in Partitions The scoring function, which aims at
measuring the precision of a given truth finding process in every given subset of attributes
in each partition, is fundamental when searching for an optimal partition in the presence
of structurally correlated data attributes. Until now, we rely on aggregate functions such
as maximum and average — with no guarantees of their correctness — over local accuracy
values on subsets of attributes for estimating these scores. As a consequence, we are
interested in devising a better scoring function for the blocks of each partition in order to
improve the process of discovering an optimal partition within our setting. One possible
direction could be an adaptation of the precision algorithm in [Dong et al., 2012] which
approximatively measures the quality of the truth finding outcome given a set of data
attributes and a subset of sources. This accuracy function uses a Bayesian analysis and
achieves an estimation near to an oracle.

107

CHAPTER 7. RESEARCH PERSPECTIVES

Approximation Search Algorithms for Optimal Partitions We are also exploring
more efficient approximation search algorithms for discovering an optimal partition
when performing truth finding over Web structured data with correlated data attributes.
As mentioned earlier, an exact exploration become unreasonable when the number
of attributes is significant. One possible solution, that we are actually studying, is a
sampling technique which can drastically reduce the exploration space while ensuring a
near-optimal partition for any existing partition-aware truth finding algorithm based on an
estimation of the levels of accuracy of involved sources.

108

Other Collaborations

Uncertainties and Ordered Domains [Amarilli et al., 2013, Amarilli et al., 2014] In
some applications, uncertainty stems from order-incomplete information, driving the
need for a framework that can represent uncertainty about the possible orderings. For
example, when combining data from multiple sources correspnding to lists of properties
(such as hotels and restaurants) ranked by an unknown function reflecting relevance
or customer ratings, and when merging different contributions to documents edited
concurrently with uncertainty on the order of contributions. First, we investigate data
transformations —in a relational setting — which involve order-incomplete data by studying
their complexity and the possibility to support meta-data tracking with a semiring-based
provenance framework. In a second study, we extend the positive relational algebra to
ordered and order-incomplete data by introducing a set of axioms to guide the design
of a bag semantics for the language. We introduce two simple such semantics, one of
which is shown to be the most general for our set of axioms. We next design a strong
representation system for them, based on partial orders interpreted through a possible
worlds semantics. We study the expressiveness of our query language, introduce a
top-k operator, and investigate the complexity of query evaluation in terms of certain
and possible answers. We last introduce a duplicate elimination operator to return to set
semantics.

This work has been done in the context of the Ph.D. of Antoine Amarrili at Télé-
com ParisTech with the collaboration of Daniel Deutch, Assistant Professor at Tel Aviv
University, and Pierre Senellart, Professor at Télécom ParisTech.

Conditioning Probabilistic Databases [Tang et al., 2014a, Tang et al., 2014b] A
probabilistic database represents uncertain data as describing a set of possible worlds,
each of which has a probability. Direct observations and general knowledge, in the form
of constraints, help refining the probabilities of the possible worlds, possibly ruling out
some of them by conditioning the probabilistic database. The conditioning consists to
find a new probabilistic database that denotes the valid possible worlds with their new

APPENDIX A. OTHER COLLABORATIONS

probabilities. We consider the conditioning problem for probabilistic XML with a language
of formulae of independent events to express the probabilistic dependencies among the
nodes of the XML tree. For reference, we present an exponential algorithm. We then
focus on the specific case of independent events and mutually exclusive constraints.
This case goes beyond local mutually exclusive constraints as considered so far in the
literature. We devise and present polynomial-time algorithms for conditioning probabilistic
XML data in tractable cases. We also explore the conditioning problem for probabilistic
relational databases with referential constraints.

This work has been done in the context of the Ph.D. of Ruiming Tang at National
University of Singapore with the collaboration of Dongxu Shao, Scientist at A*STAR,
Stephane Bressan, Associate Professor at National University of Singapore, Pierre
Senellart, Professor at Télécom ParisTech, and Wu Huayu, Research Scientist at
A*STAR.

110

Résumeé en Francais

Dans cette thése, nous étudions certains problemes fondamentaux découlant d’'un
besoin accru de gestion des incertitudes dans plusieurs applications Web multi-sources
avec de la structure, a savoir le contréle de versions incertaines dans les plates-formes
Web a large échelle, I'intégration de sources Web incertaines sous contraintes, et la
découverte de la vérité a partir de plusieurs sources Web structurées. Nous nous
basons sur la théorie existante sur la gestion de données incertaines, et proposons des
méthodes effectives et efficaces qui modélisent et évaluent les incertitudes dans les
plates-formes d’édition collaborative a large échelle ou dans un cadre d’intégration de
sources Web incertaines. En particulier, 'une des contributions majeures de ce travail
est une thése : la gestion des documents multi-versions partagés dans les plates-formes
d’édition collaborative a large échelle devrait grandement bénéficier d’un systéeme de
contréle de versions incertaines. Nous résumons ci-aprés notre proposition d’un tel
cadre pour les applications telles que Wikipedia ou les données manipulées ont une
structure arborescente qui favorise une prise en charge plus intelligente des incertitudes.

Dans de nombreuses plates-formes d’édition collaborative, au sein desquelles les
contributions peuvent émaner de différents utilisateurs, la gestion du contenu est basée
sur le contréle de versions. Un systéme de contrble de versions trace les versions aussi
bien du contenu que des modifications. Un tel systeme facilite la résolution d’erreurs
survenues durant le processus de révision, I'interrogation de versions antérieures, et la
fusion de contenu provenant de contributeurs différents. Tels que résumés dans [Koc and
Tansel, 2011, Altmanninger et al., 2009], des efforts considérables liés a la gestion de
versions des données ont été entrepris a la fois dans la recherche et dans les applications.
Les premiéres applications furent le processus collaboratif de rédaction de documents,
la conception assistée par ordinateurs et les systemes de développement logiciels.
Présentement, des outils de contrble de versions puissants tels que Subversion [Pilato,
2004] et Git [Chacon, 2009] gérent efficacement de tres grands dépbts de code source
et des systemes de fichiers partagés.

Toutefois, les approches actuelles ne supportent pas la gestion de lincertitude

ANNEXE B. RESUME EN FRANCAIS

dans les données. C’est le cas de l'incertitude qui résulte de conflits. Les conflits sont
fréquents dans les processus d’édition collaborative, en particulier lorsque le cadre est
ouvert. lls apparaissent dés lors que des éditions concurrentes tentent de modifier le
méme contenu. Les conflits conduisent, donc, a de 'ambiguité dans la gestion des
mises a jour sur les données. Les sources d’incertitudes dans un processus de contréle
de versions ne se limitent pas uniquement aux conflits. En effet, il existe des applications
utilisant le contrdle de versions qui sont a la base incertaines. Parmi elles, on peut citer
les plates-formes collaboratives Web & large échelle telles que Wikipedia ' ou Google
Drive 2 qui permettent des interactions sans restrictions entre un trés grand nombre de
contributeurs. Celles-ci se font sans une connaissance préalable du niveau d’expertise
et de fiabilité des participants. Dans ces systémes, le contrble de versions est utilisé pour
tracer I'évolution de contenus partagés et la provenance de chaque contribution. Au sein
de tels environnements, l'incertitude est omniprésente a cause des sources non fiables,
des contributions incomplétes et imprécises, des éditions malveillantes et des actes
de vandalisme possible, etc. Par conséquent, une technique de contrdle de versions
capable de manipuler efficacement I'incertitude dans les données pourrait étre d’une
grande aide pour ce type d’applications. Nous détaillons ci-aprés les cas d’utilisation
possibles.

Les systemes d’édition collaborative Web a large échelle comme Wikipedia ne
définissent aucune restriction pour I'acces en écriture aux données. Il en résulte que
les documents multi-versions contiennent des informations qui proviennent de différents
utilisateurs. Comme esquissé dans [Voss, 2005], Wikipedia a connu un accroissement
exponentiel du nombre de contributeurs et d’éditions par articles. Les caractéres libre et
ouvert conduisent a des contributions avec différents niveaux de fiabilité et de cohérence
en fonction a la fois de I'expertise du contributeur (p. ex., novice ou expert) et de la portée
du sujet traité. En méme temps, les guerres d’édition, les contributions malveillantes
telles que les spams et les actes de vandalisme peuvent survenir a tout instant au
cours de I'évolution d’'un document partagé. Par conséquent, I'intégrité et la qualité
de chaque article peuvent étre fortement altérées. Les solutions préconisées contre
ces problémes critiques sont la révision des politiques d’accés pour les articles portant
sur des sujets trés sensibles, ou des solutions évaluant la qualité des contributions
sur la base de la réputation des auteurs, de statistiques sur la fréquence de mise a
jour des contenus, ou la confiance qu’un lecteur donné a sur l'information [Maniu et al.,
2011a, De La Calzada and Dekhtyar, 2010, Adler and de Alfaro, 2007]. Cependant,

1. http ://www.wikipedia.org/
2. https://drive.google.com/

112

https://drive.google.com/

restreindre les éditions sur les articles Wikipedia a un groupe de contributeurs privilégiés
ne résout pas le besoin de représenter et d’évaluer les incertitudes. En effet, ces
articles peuvent demeurer incomplets, imprécis ou incertains, faire référence a des
vues partielles, des informations fausses ou des opinions subjectives. La réputation des
contributeurs ou le niveau de confiance sur les sources constituent des informations
utiles pour une estimation quantitative de la qualité des versions, voire de chaque
contribution. Cependant, une représentation efficace et préalable des incertitudes dans
les versions de documents reste un pré-requis.

Par ailleurs, le filtrage et la visualisation de données constituent également des défis
trés importants dans les environnements collaboratifs. Les utilisateurs de Wikipedia,
par exemple, ne sont pas uniquement des contributeurs, mais également des inter-
nautes intéressés par la recherche et la lecture d’articles sous contréle de versions.
Les systemes actuels forcent les utilisateurs a visualiser soit la derniére version d’'un
article donné, méme si cette derniére pourrait ne pas étre la plus pertinente, soit une
version a une date bien précise. Les utilisateurs, particulierement dans les plates-formes
de gestion de connaissance universelle comme Wikipedia, voudront sans doute ac-
céder aisément aux versions les plus pertinentes ou celles des auteurs de confiance.
Le filtrage de contenu est un des avantages de notre approche. Il peut étre effectué
de fagon commode en cachant les contributions de sources non fiables, par exemple
lorsqu’un acte de vandalisme est détecté, ou au moment de I'interrogation en vue de
prendre en compte les préférences des utilisateurs et leurs degrés de confiance sur
les contributeurs. Alternativement, pour lutter contre la désinformation, il semble utile
de présenter aux utilisateurs les versions accompagnées d’informations sur leurs ni-
veaux d’incertitude et celui de chaque partie de leurs contenus. Enfin, les utilisateurs
devraient étre capables, au moment de la visualisation, de demander un document
qui correspond a la fusion de parties prises de différentes versions (p. ex., certaines
d’entre elles peuvent étre incomplétes, imprécises, et méme incertaines prises a part).
Nous proposons dans [Abdessalem et al., 2011] une application mettant en évidence de
nouvelles possibilités d’interaction et de sélection sur le contenu des pages Wikipedia.
En particulier, le contenu d’une page n’est plus réduit a la derniére révision valide, mais
correspond a la fusion de plusieurs révisions incertaines.

Vu que le contréle de versions est incontournable dans les systemes d’édition colla-
borative Web incertains a large échelle, la représentation et I'estimation des incertitudes
au travers de la gestion de versions de données deviennent cruciales. Ceci dans I'op-
tique d’améliorer la collaboration et de surmonter les probléemes comme la résolution
des conflits et la gestion de la fiabilité de I'information. Dans cet thése, nous proposons

113

ANNEXE B. RESUME EN FRANCAIS

un modele de contréle de versions XML incertaines pour les documents arborescents
multi-versions dans les contextes d’édition collaborative ouverte. Les données que
sont les documents bureautiques, les documents HTML ou XHTML, les formats wiki
structurés, etc., manipulés au sein des scénarios d’application cités ont une structure
arborescente ou peuvent étre transcrits sous ce format ; XML est un encodage naturel
pour les données arborescentes.

Les travaux liés a la gestion de versions de documents XML ont surtout porté sur la
détection de changements [Rénnau and Borghoff, 2012, Lindholm et al., 2006, Wang
et al., 2003, Khan et al., 2002, Cobéna et al., 2002]. Seul certains, par exemple [Thao
and Munson, 2011, Rénnau and Borghoff, 2009, Rusu et al., 2005], ont proposé un
modéle de données semi-structurées complet qui supporte le contrble de versions. La
gestion de l'incertitude a recu une grande attention au sein de la communauté des
bases de données probabilistes [Kimelfeld and Senellart, 2013, Suciu et al., 2011],
spécialement pour XML a des fins d’'intégration de données. En effet, un ensemble de
modeles de données XML probabilistes [Van Keulen et al., 2005, Nierman and Jagadish,
2002, Abiteboul et al., 2009, Kharlamov et al., 2010] élaborés avec des sémantiques
variées de distribution de probabilité sur les éléments de données, a été proposé. Ces
modeles couvrent des techniques simplistes, par exemple [Van Keulen et al., 2005], ne
modélisant que des contraintes de dépendances locales (p. ex., I'exclusion mutuelle)
entre nceuds et d’autres plus complexes qui prennent en compte une plage plus étendue
de contraintes ainsi que des corrélations globales possibles. Un cadre général XML
probabiliste, qui généralise tous les modéles XML incertains proposés dans la littérature,
est défini par [Abiteboul et al., 2009] et [Kharlamov et al., 2010]. Ce cadre introduit la
notion de documents probabilistes (ou, plus court, p-documents).

Nous prenons en compte, dans notre cadre, I'incertitude dans les données au travers
d’'un modele XML probabiliste comme élément de base de notre systéme de contréle de
versions. Chaque version d’un document partagé est représentée par un arbre XML. A
un niveau abstrait, nous décrivons un document XML multi-version avec des données
incertaines en utilisant des événements aléatoires, des scripts d’édition XML qui leur sont
associés et un graphe acyclique orienté de ces événements. Pour une représentation
concrete, le document tout entier, y compris ses différentes versions, est modélisé
comme un document XML probabiliste correspondant a un arbre XML dont les branches
sont annotées par des formules propositionnelles sur les événements aléatoires. Chaque
formule propositionnelle décrit a la fois la sémantique des éditions incertaines (insertion
et suppression) effectuées sur une partie donnée du document et sa provenance dans
le processus de contrdle de versions. Lincertitude est évaluée a l'aide du modéle

114

B.1. PRELIMINAIRES

probabiliste et de la valeur de fiabilité associée a chaque source, chaque contributeur,
ou chaque événement d’édition. Ceci résulte en une mesure d’incertitude sur chaque
version et chaque partie du document. Le graphe acyclique orienté d’événements
aléatoires maintient I'historique de I'’évolution du document en tragant ses différents
états et leurs liens de dérivation. Comme derniere contribution majeure, nous montrons
que les opérations standard de contr6le de versions, en particulier les opérations de
mise a jour et de fusion, peuvent étre implantées directement comme opérations sur le
modele XML probabiliste ; en comparaison aux systemes déterministes de contréle de
versions tels que Git et Subversion est démontrée sur des données réelles.

Aprés quelques préliminaires dans la section B.1, nous revisitons le modele XML
probabiliste que nous utilisons dans la section B.2. Nous détaillons le modéle de contrble
de versions XML probabiliste proposé et les principales propriétés sous-jacentes dans la
section B.3. Les sections B.4 et B.5 présentent la traduction des opérations de contréle
de versions usuelles, a savoir la mise a jour et la fusion respectivement, dans notre
modele. Dans la section B.6, nous prouvons I'efficacité de notre modéle en le comparant
a des systéemes de contr6le de versions déterministes au travers d’expériences sur
données réelles. Nous esquissons par la suite (voir section B.6.2) quelques-unes des
capacités de filtrage de contenu inhérentes a I'approche probabiliste adoptée.

Les idées initiales qui ont conduit a ce travail ont été présentées comme un article
de séminaire de doctorants dans [Ba et al., 2011]; le présent chapitre est une extension
(et traduction) de [Ba et al., 2013a, Ba et al., 2013b] auquel le lecteur peut se reporter
pour les preuves de certains des résultats énoncés dans cet article.

B.1 Préliminaires

Nous présentons dans cette section les notions de base du contréle de versions et
la classe de documents XML semi-structurés qui sous-tendent notre proposition.

Un document multi-version fait référence a un ensemble de versions d’'un méme
document dans un processus de contrble de versions. Chaque version du document
représente un état (instance) donné de I'évolution du document versionné. Un modeéle
de contréle de versions classique est construit sur les notions fondamentales suivantes.

115

ANNEXE B. RESUME EN FRANCAIS

B.1.1 Concepts de base du controle de versions : versions et espace
des versions

Par convention, une version désigne une copie d’'un document sous contrdle de
versions. Des opérations de dérivation lient les différentes versions d’'un document. Une
dérivation consiste a créer une nouvelle version en copiant d’abord une version existante
avant de la modifier. Certaines versions, représentant des variantes, dérivent de la
méme origine. Les variantes (versions paralléles) caractérisent un historique d’édition
non-linéaire avec plusieurs branches distinctes. Dans cet historique, une branche est
une séquence linéaire de versions. Au lieu de stocker le contenu complet de chaque
version, la plupart des techniques de contréle de versions maintiennent uniguement
les diffs entre les états, avec des méta-informations. Ces états (ou commits dans le
monde Git [Chacon, 2009]) modélisent les différents scripts de mises a jour qui ont été
explicitement validés a des instants distincts du processus de contrble de versions. Un
état vient aussi avec des informations sur le contexte (p. ex., auteur, date, commentaire)
dans lequel ces modifications ont été faites. Il en résulte que chaque version est fonction
de I'historique complet menant a un état donné. Nous adopterons ici la méme approche
pour modeéliser les différentes versions d’'un document.

Puisque le contenu de chaque version n’est pas complétement stocké, il doit y
avoir un moyen de le retrouver en cas de besoin. Lespace des versions 3 représente
I'histoire des éditions sur le document versionné (p. ex., I'historique des versions wiki
comme décrit dans [Sabel, 2007]). Il contient toutes les information nécessaires liées
aux versions et leurs dérivations. Comme indiqué ci-dessus, une dérivation implique au
moins une version en entrée (plusieurs versions en cas de fusion) et une version en
sortie. Nous décrivons sur cette base, et similairement a [Chacon, 2009], I'espace des
versions de tout document multi-version comme un graphe acyclique orienté.

B.1.2 Modele de documents XML non ordonnés : définition et mise a
jour

Les applications qui motivent ce travail manipulent des données arborescentes.
Nous considérons les données en présence comme des arbres XML non ordonnés, en
conséquence. Lextension du modéle proposé aux arbres ordonnés est possible. Cela
pourrait par exemple consister a restreindre 'ensemble des versions valides a celles se
conformant a un ordre spécifique. Ce probléme est hors du champ de cet article et nous

3. Noter que la notion d’espace des versions utilisée ici a une sémantique differente de celle du méme
nom définie dans le domaine de I'apprentissage des concepts [Mitchell, 1979].

116

B.1. PRELIMINAIRES

nous focalisons ici sur le cas des arbres non ordonnés. Considérons un ensembile fini .#
de chaines de caractéres (c’est-a-dire, étiquettes ou données textes) et un ensemble fini
d'identifiants tels que . N .# = (). De plus, soient ® et o respectivement une fonction
d’étiquetage et une fonction d’identification. D’'une maniére formelle, nous définissons
un document XML comme étant un arbre .7 non ordonné et étiqueté : les fonctions «
et ® associent chaque x € 7 respectivement a un identifiant unique a(z) € .# et a
une chaine de caractéres ®(z) € .. Larbre est non-borné, c’est-a-dire, le nombre de
fils de chaque nceud dans .7 n’est pas fixé a I'avance. Par soucis de simplicité, nous
supposerons que tous les arbres ont la méme racine (méme étiquette, méme identifiant).

[1] article
[2] titre [3] para [4] sect
[10] nom-article [11] texte; [12] titre [13] para

[19] titre-section [20] textes

FIGURE B.1 —arbre XML .7 : article Wikipedia

Example B.1.1. La figure B.1 montre un arbre XML .7 qui représente un article Wiki-
pedia classique. Les identifiants de noeuds sont a l'intérieur des crochets précédant
les chaines de caractéres de ses derniers. Le titre de cet article est donné par le
nceud 10. Le contenu du document est structuré en sections (« sect ») avec leurs titres
et paragraphes (« para ») renfermant les données textes.

A raide des identifiants uniques, nous considérons deux types d’opérations d’édition
sur le modele de documents XML spécifié : insertions et suppressions de nceuds. Nous
désignons une insertion par ins (/, x) dont la sémantique sur tout arbre XML consiste
a ajouter le nceud x (nous supposons que x n’est pas déja dans I'arbre) comme fils
d’un certain nceud y tel que a(y) = i. Si un tel noceud n’est pas trouvé dans I'arbre,
I'opération ne fait rien. Observer qu’une insertion peut concerner un sous-arbre, et dans
ce cas nous nous référons simplement par x a la racine de ce sous-arbre. De facon
analogue, nous introduisons une suppression comme étant del (/) ou 7 est I'identifiant
du nceud a supprimer. Lopération de suppression élimine le nceud cible, s'il existe, ainsi

117

ANNEXE B. RESUME EN FRANCAIS

que ses descendants, de I'arbre XML. Nous concluons en définissant un script d’édition
XML, A = (ug,u,...,u;), comme une séquence d’opérations d’édition élémentaires u;
(chaque u;, avec 1 < j < 4, étant soit une insertion soit une suppression) a évaluer 'une
apres l'autre sur un document XML pour en créer un nouveau. Pour un arbre .77, nous
notons le résultat de I'évaluation d’un script d’édition A sur .7 par [.7]*. Méme si dans
ce travail nous nous basons sur des identifiants persistants de noceuds pour définir nos
opérations d’édition, la sémantique de ces opérations pourrait étre étendue aux mises a
jour exprimées par des requétes, particulierement utile dans les environnements d’édition
collaborative distribués ou les identifiants peuvent ne pas étre facilement partageables.

B.2 XML probabiliste

Nous présentons brievement dans cette section le systéme de représentation XML
probabiliste que nous utilisons comme élément de base de notre systéme de contrdle de
versions incertaines. Pour plus de détails, voir [Abiteboul et al., 2009] pour le cadre géné-
ral et [Kharlamov et al., 2010] pour le modeéle spécifique PrXMLf€ que nous employons.
Ces modéles de représentation d’incertitude sont congus a l'origine pour la gestion
de données dans les domaines de l'intégration de données du Web et de I'extraction
d’'informations.

B.2.1 Les p-documents PrXML" : syntaxe et sémantique

Un systéme de représentation XML probabiliste est une maniére compacte d’en-
coder des distributions de probabilité sur des documents XML ; dans le cas d’intérét
ici, la distribution de probabilité est finie. Formellement, un espace de distribution XML
probabiliste, ou px-espace, . sur une collection de documents XML est un couple (D, p)
ou D est un ensemble fini non vide de documents et p : D —]0,1] une mesure de
probabilités qui affecte a chaque document d de D un nombre rationnel p(d) € 0, 1] tel
que X epp(d) = 1. Un p-document, ou document XML probabiliste, habituellement noté
2, définit un encodage compact d’un px-espace ..

Nous considérons dans cet article une classe spécifique de p-documents, PrXML i
[Kharlamov et al., 2010] (ou fie est I'abréviation de formula of independent events ou
formule d’événements indépendants) ; se restreindre a cette classe en particulier nous
permet de donner une présentation simplifiée, se référer a [Abiteboul et al., 2009, Kharla-
mov et al., 2010] pour un cadre plus général. Supposons donné un ensemble de variables
aléatoires booléennes indépendantes, ou variables d’événements, by, bo, ..., by, et leurs

118

B.2. XML PROBABILISTE

probabilités d’existence respectives P, (b;), P.(bs), ..., P:(by). Un document PrXMLFe
est un arbre non ordonné, sans limite sur le nombre de fils par nceud, et étiqueté, ou
chaque noeud (a I'exception de la racine) x peut étre annoté avec une formule propo-
sitionnelle arbitraire fie(x) sur les variables d’événements by, b, ..., b,,. Des formules
différentes peuvent partager des événements communs, ce qui veut dire qu’il peut y avoir
des corrélations entre formules, et le nombre de variable d’événements peut changer
d’un nceud a l'autre.

Une affectation de valeurs de vérités v des variables d’événements b; . .. b, induit sur
2 un document XML particulier »/(27) : le document ol seuls les nceuds annotés avec
des formules qui s’évaluent a true par v sont conservés (les nceuds dont les formules
s’évaluent a false par v sont supprimés de I'arbre, avec leurs descendants). Etant donné
un p-document 2, les mondes possibles de &, notés pwd(ﬁ), sont 'ensemble des
tels documents XML. La probabilité d’'un monde possible donné d de 7 est définie
comme la somme des probabilités des affectations de valeurs de vérité qui donnent d.
Lensemble des mondes possibles, avec leurs probabilités, définit la sémantique de 2,
le px-espace [[ﬁ]] associé a 2.

r r

r r

| | |
bivby S b S s S
N |

P1 P2 P1 P2 P1 P2
| | | | | |

t1 t2 tl t2 tl t2
(a) (o)

FIGURE B.2 — (a) un p-document PrXMLf; (b) trois mondes possibles d;, d» et ds

Example B.2.1. La figure B.2 montre (a gauche) un p-document PrXML® concret 7
et (a droite) trois mondes possibles di, ds et ds. Les formules annotant les nceuds sont
indiquées au-dessus d’eux : by V by et —by sont liés aux nceuds p; et ps, respectivement.
Les trois mondes possibles dy, ds et ds sont obtenus en choisissant les valeurs de
vérités de by et by suivantes : (i) false et true ; (ii) true et true (ou true et false) ; (iii) false et
false. Pour chaque affectation de valeurs de vérités, on garde exactement les nceuds
dont les formules s’évaluent a true. Si on fixe une distribution de probabilités sur les
événements (grace par exemple a un algorithme évaluant la réputation de la source de

119

ANNEXE B. RESUME EN FRANCAIS

chaque événement), par exemple P,(b;) = 0.4 et P,(b2) = 0.5, on dérive la probabilité
du monde possible d; comme P,(d;) = (1 — P,(b1)) x Py(b2) = 0.6 x 0.5 = 0.3. Il est
possible de calculer la probabilité des autres mondes possibles de maniére similaire.

Par rapport aux autres systémes de représentation XML probabiliste [Abiteboul
et al., 2009], PrXMLfi® est trés succinct (car des formules propositionnelles arbitraires
peuvent étre utilisées, avec des corrélations arbitraires entre événements), c’est-a-dire,
exponentiellement plus succinct que les modéles de [Van Keulen et al., 2005, Nierman
and Jagadish, 2002]; il offre par ailleurs des insertions et suppressions en temps
polynomial [Kharlamov et al., 2010], un besoin clef pour notre modele de contrdle
de versions incertain. Cependant, un inconvénient non négligeable est que toutes les
requétes (a motif d’arbre) non triviales sur ce modele sont #P-difficile a évaluer [Kimelfeld
et al., 2009]. Ce n’est pas nécessairement un probléme ici, puisque nous privilégions
dans notre cas des mises a jour efficaces et le fait de pouvoir extraire des mondes
possibles, plutét que I'exécution de requétes arbitraires.

B.2.2 Provenance des données

La gestion de données XML incertaines basée sur le modéle PrXMLf® bénéficie
également des sémantiques multiples des variables d’événements en termes de des-
cription de l'information. En effet, en plus de la gestion de I'incertitude, ce modele
peut également supporter la conservation de I'information sur la provenance des don-
nées (ou lignée)* a l'aide des variables d’événements. La provenance des données
consiste en des informations de tracabilité telles que la sémantique des changements,
le responsable de ces changements, un estampillage temporel, etc., pour des données
incertaines. Pour ce faire, il suffit d’utiliser la sémantique des variables d’événements
comme représentant de I'information sur la provenance des données. Il est ainsi parfois
utile d’utiliser des systémes de représentation XML probabiliste méme en I'absence
de sources de probabilités fiables pour les événements individuels, au sens ou ces
événements peuvent étre manipulés comme faisant partie d’'un modéle de données
incomplet (c’est-a-dire, on ne prend en compte que les mondes possibles et non leurs
probabilités).

4. Comme étudié dans [Zhang and Jagadish, 2013], garder des informations de provenance dans
un processus de contrble de versions pourrait étre utile dans le cas de requétes sur la provenance des
données.

120

B.3. MODELE XML MULTI-VERSION INCERTAIN

B.3 Modele XML multi-version incertain

Dans cette partie, nous développons notre modele de contréle de versions XML
incertain pour des documents arborescents édités de maniére collaborative. Nous
basons notre modeéle sur trois concepts principaux : les événements de controle de
versions, un p-document et un graphe orienté acyclique d’événements. Nous débutons
par une formalisation des documents XML multi-version a travers une définition formelle
de leur graphe d’espace de versions et de leur ensemble de versions. Le modéle proposé
est ensuite introduit.

B.3.1 Documents XML multi-version

Considérons I'ensemble infini & de tous les documents XML ayant une racine
avec étiquette et identifiant fixés. Soit ¥ 'ensemble des événements de contréle de
versions e; ... e,. Ces événements représentent les différents états d’'un arbre. Nous
associons aux événements des informations contextuelles a propos des révisions
(auteur, estampille temporelle, etc.). A chaque événement e; est également associé un
script d’édition A;. En partant de ces bases, nous formalisons le graphe de I'espace de
versions et 'ensemble des versions d’un document XML versionné comme suit.

Lespace des versions est un graphe orienté acyclique (directed acyclic graph ou
DAG) ¢4 = (¥ U {ey},&) ou : (i) 'événement de contrble de versions initial ey ¢ 7,
un événement spécial représentant le premier état de chaque arbre XML versionné,
est la racine de ¢ ; (i) & C (7 U {eo})?, définissant les arétes de ¢, consiste en un
ensemble de couples ordonnés d’événements de contrdle de versions. Chaque aréte
décrit implicitement une relation de dérivation orientée entre deux versions. Une branche
de ¢ est un chemin orienté impliquant un nceud initial e; et un noeud final ¢;. Ce dernier
doit étre atteignable depuis ¢; en traversant un ensemble d’arétes orientées de &. Nous
notons cette branche B/. Une branche enracinée est une branche qui démarre a la
racine du graphe.

Une version XML est le document de & qui correspond a un ensemble d’événements
de contrble de versions, 'ensemble des événements qui a donné lieu a cette version.
Dans un systéme de contr6le de versions déterministe, cet ensemble correspond toujours
a une branche enracinée du graphe de I'espace de versions. Dans notre systéme de
contréle de versions incertain, cet ensemble peut étre arbitraire. Considérons I'ensemble
27 formé de toutes les sous-parties de 7. Cet ensemble de versions d’'un document XML
multi-version est donné par une fonction Q2 : 2 — 2 : & chaque ensemble d’événements

121

ANNEXE B. RESUME EN FRANCAIS

correspond un arbre donné (ces arbres ne sont en général pas tous distincts). La fonction
Q) peut étre calculée a partir des scripts d’édition associés aux événements de la maniére
suivante :

— Q(0) est I'arbre XML, formé d’une racine seule, de 2.

— Pour tout i, pour tout .# C 27\t Q({e;} U.F) = [Q(F)].
On définit maintenant un document XML multi-version, .7,,,, comme une paire (¢,(2) ou
¢ est un DAG d’événements de contr6le de versions et 2 est une fonction définissant
I'ensemble des versions du document. Dans ce qui suit nous proposons une maniéere
plus efficace de calculer la version correspondant a un ensemble d’événements, en
utilisant un p-document comme modeéle.

B.3.2 Document XML multi-version incertain : gestion des données
incertaines

Un document multi-version est dit incertain si les événements de contréle de ver-
sions, utilisés dans un processus de contrOle de versions, sont munis d’incertitude,
comme dans des contextes collaboratifs ouverts. Quand nous parlons d’incertitude des
événements de contrdle de versions, nous voulons dire que ce sont des événements
aléatoires conduisant a des versions, et du contenu, incertains. Par conséquent, nous
nous appuierons sur une distribution de probabilité sur 2”" qui induira, en conjonction
avec la fonction 2, une distribution de probabilités sur 2.

Nous modélisons l'incertitude des événements en définissant maintenant un événe-
ment de contrble de versions ¢; de ¥ comme une conjonction de variables booléennes
aléatoires indépendantes b, ... b,, avec les hypothéses suivantes : (i) une variable
booléenne modélise une source donnée d’incertitude (p. ex., le contributeur) dans I'envi-
ronnement de contrble de versions; (ii) les variables booléennes de chaque ¢; sont deux
a deux indépendantes;; (iii) une variable booléenne b; réutilisée d’'un événement a l'autre
correle des événements de contr6le de version différents ; (iv) une variable booléenne
particuliere b(), dite de révision, représentant plus spécifiquement l'incertitude dans la
contribution, n’est pas partagée avec les autres événements de contr6le de versions et
apparait uniquement dans e;.

Supposons donnée une distribution de probabilité sur les variables booléennes aléa-
toires b; (cela vient typiquement d’une estimation de la confiance en un contributeur, ou
en une contribution), qui induit une distribution de probabilité sur les formules propo-
sitionnelles sur les b; de la maniére usuelle [Kharlamov et al., 2010]. Nous obtenons

122

B.3. MODELE XML MULTI-VERSION INCERTAIN

maintenant la probabilité de chaque version (incertaine) d ainsi :

P(d)=P,| \/ o(F)
FC

Q(F)=d

avec la formula ¢(.#) définie par :

o(F) = /\ (TRA /\ —ek. (B.1)

€j€97 er€EV\F

€o r r r r

| | /\ /1IN /\

e1 S1 S1 S2 S1 S2 S4 S1 Sy
/ \ /\ | [AN
ey ey P1 P2 P1 p1 p3 p4 P1 P2 p4
| T N N
es ST O ty t ts U thto 1y
F1={e} Fo={e1, e} Fz={el, e, 3} Fs = {e1, es}
(a) Graphe ¢ (b) Versions possibles 71, 7, 7 et Ti

FIGURE B.3 — a) graphe d’espace de versions; (b) 4 versions et leurs valeurs de vérité

Example B.3.1. La figure B.3 montre un document XML multi-version 7,,, sujet a quatre
événements de contréle de versions. A gauche, nous avons 'espace des versions 4.
La partie droite montre un exemple de quatre versions (incertaines) et leurs ensembles
d’événements associés. On suppose que 9,,, est initialement un document formé
uniquement de la racine. Les trois premieres versions correspondent aux versions
couvertes par les systémes déterministes de contréle de versions, tandis que la derniére
est engendrée en considérant que les changements accomplis par un événement de
contréle de versions intermédiaire, ici e;, ne sont pas corrects. Lune des particularités
de notre modéle est de fournir la possibilité de voir et de modifier ces types de versions
incertaines qui représentent des versions virtuelles. Seules les éditions faites par les
événements de contréle de versions indiqués sont prises en compte dans le processus
de production d’une version : dans 7, le nceud r et les sous-arbres enracinés en s,
S3 Iintroduits respectivement par ey, e, et e3 sont présents, tandis que le sous-arbre
p3 ajouté par es n‘apparait pas parce que son nceud pére s, n’existe pas. Enfin, étant

123

ANNEXE B. RESUME EN FRANCAIS

données des probabilités pour les événements de contréle de versions, il est possible
de mesurer la fiabilité de chaque version incertaine .7;, pour 1 < i < 4, en fonction
de son ensemble d’événements correspondant .%; (et de tous les autres ensembles
d’événements qui conduisent au méme arbre).

On observe directement, en particulier dans I'exemple de la figure B.3, que le
nombre de versions (incertaines) possibles d’'un document multi-version incertain croit
rapidement (en fait, exponentiellement en le nombre d’événements). Le résultat en est
que I'’énumération et la gestion de toutes les possibilités avec la fonction 2 peut devenir
difficile a partir d’'un certain point. Pour résoudre ce probleme, nous proposons une
méthode efficace d’encodage de maniere compacte des versions possibles, avec leurs
valeurs de vérité. Intuitivement, un p-document PrXMLf® modéle de maniére compacte
'ensemble des versions possibles d’'un document XML multi-version. Comme nous
en avons discuté dans la section B.2, un arbre probabiliste basé sur des formules
propositionnelles fournit des caractéristiques utiles a notre contexte. Premiérement, il
décrit de maniére appropriée une distribution de valeurs de vérité sur un ensemble
d’arbres XML incertains tout en fournissant un processus sensé pour retrouver une
version donnée et sa probabilité. Deuxiemement, il fournit un systéme de représentation
efficace pour les mises a jour, ce qui est crucial dans les environnements dynamiques
tels que les applications basées sur le contr6le de versions.

B.3.3 Encodage XML probabiliste

Nous définissons un formalisme général de représentation de contrble de versions
XML incertain, habituellement noté ﬁw, comme un couple (¥, 9/5) ou (a) ¥ est, comme
auparavant, un DAG d’événements, représentant 'espace de versions ; (b) Z est un
p-document PrXM Lfie avec des variables aléatoires booléennes b, . . . b,, représentant
efficacement 'ensemble des versions XML (incertaines) possibles et leurs valeurs de
vérités correspondantes.

Nous définissons maintenant la sémantique d’un tel encodage comme un document
multi-version incertain (¢, (2) ou ¢ est le méme et 2 est défini comme suit. Pour .% C
¥, soit BT I'ensemble de toutes les variables aléatoires apparaissant dans I'un des
événements de .Z et B~ I'ensemble de toutes les variables de révision b pour e;
non membre de .% . Soit v I'affectation de valeur de vérité de b, ... b, qQui associe aux
variables de BT la valeur true, aux variables de B~ la valeur false et aux autres variables
une valeur arbitraire. Nous posons : (%) := v(2).

124

B.4. MISE A JOUR DE XML MULTI-VERSION INCERTAIN

Le résultat suivant montre que cette sémantique est compatible avec la sémantique
de px-espace des p-documents d’'une part, et avec la distribution de probabilité définie
par les documents multi-version incertains d’autre part.

—~

Theorem B.3.1. Soit (¢, 27) un systéme de représentation de contrble de versions
incertain et (¢,Q)) sa sémantique. Nous supposons que toutes les formules de 2
peuvent s’exprimer comme des formules sur les événements de ¥ (nous n’utilisons
donc pas les b; indépendamment des événements de contrble de versions). Alors le
px-espace [[ﬁ]] définit la méme distribution de probabilité sur 2 que 2.

La preuve est directe et s’appuie sur I'équation (B.1).

B.4 Mise a jour de XML multi-version incertain

Nous implantons la sémantique des opérations standards de mise a jour au-dessus
de notre systéme de représentation XML probabiliste. Une mise a jour sur un document
multi-version incertain correspond a I'évaluation d’éditions incertaines sur une version
(incertaine) donnée. Etant donné un triplet (A, e, e'), nous parlons de I'opération de
mise a jour updOPA ., OU A est un script d’édition, e est un événement de controle
de versions existant pointant vers la version éditée et ¢’ est un nouvel événement de
contrdle de versions évaluant l'incertitude dans cette mise a jour. Nous formalisons
UpdOP A ¢, ¢ SUr Ty, aINSI -

updOPA | ¢, e’(gﬂw) = (g U ({6/}7 {(67 el)})v Q,)

Une opération de mise a jour résulte donc en l'insertion d’'un nouveau nceud et d’une
nouvelle aréte dans ¢ et en I'extension de © en un Q' que nous définissons maintenant.
Pour chaque sous-ensemble .7 C ¥ (¥ est 'ensemble des nceuds de ¢ aprés la mise
a jour), on pose :

—sied g7 V(F)=QF);

— sinon : Q'(F) = [Q(F\{e})]>.

Ce qui précéde donne une sémantique aux mises a jours sur des documents multi-
version incertains ; cependant, la sémantique n’est pas utilisable en pratique car elle
demande de considérer chaque sous-ensemble .% C ¥”. Pour une solution plus com-
mode, nous appliquons directement les mises a jour sur la représentation compact
p-document du document multi-version. Lalgorithme B.1 décrit comment une telle opé-
ration de mise a jour updoP, . . st réalisée sur une représentation incertaine (¢, ﬁ).
Tout d’abord, le graphe est mis a jour comme auparavant. Ensuite, pour chaque opération

125

ANNEXE B. RESUME EN FRANCAIS

Algorithme B.1: Algorithme de mise a jour (updP rxML)

Entrées: (¥,), updOPA ¢ ¢

Sorties: mise a jour de (¥4, 3/5) par updOPa ¢, ¢
G =90 ({e} {(e€)});

pour chaque (opération d’édition u dans A) faire
si u est une insertion ins (i, x) alors

y ;= findNodeById (ﬁ i) ;

si matchIsFound(.J,, =) alors

fie,(x) := getFieOfNode () ;
setFieOfNode (z, fie,(z) V €');
sinon

updContent (3/5, ins (I, X)) ;
setFieOfNode (z, €);

© 00 N O g s~ WON =

[y
(=]

fin

-
-

fin

sinon si u est une suppression de1 (i) alors
x = findNodeById (ﬁ i) ;
fie,(z) == getFieOfNode (z) ;
setFieOfNode (z, fie,(z) A =€) ;

fin

i G Y Gy
N o o0 B WON

-
©

fin
retourner (¥, ﬁ) ;

Y
©

u dans A, I'algorithme récupére le nceud cible de 7 avec findNodeById (typiguement
une opération en temps constant). Selon le type d’opération, il y a deux possibilités :

1. Siwu est une insertion d’'un nceud z, 'algorithme vérifie si x n’est pas déja dans 2,
par exemple en cherchant un nceud avec la méme étiquette (la fonction matchIsFound
recherche une correspondance pour = dans le sous-arbre .7, enraciné en y). Si une
telle correspondance existe, getFieOfNode retourne sa formule courante fie (z) et
I'algorithme la met & jour en fie, () := fie,(x) V €, spécifiant que = apparait quand la
mise a jour est valide. Sinon, updContent et setFieOfNode respectivement insére le
nceud = dans 7 et met sa formule associée a fie,, (z) = ¢'.

2. Siu est une suppression d’'un nceud z, I'algorithme obtient sa formule courante
fie,(x) et la change en fie, (z) := fie,(z) A =€, indiquant que x doit étre supprimé des
mondes possibles quand cette mise a jour est valide.

Le reste de cette partie montre la correction et I'efficacité de notre approche. Tout
d’abord, nous établissons que I'algorithme B.1 respecte la sémantique des mises a jour.
Ensuite, nous montrons que le comportement des systémes de contrble de versions

126

B.5. FUSION DE XML MULTI-VERSION INCERTAIN

déterministes peut étre simulé en considérant uniquement un type spécifique d’ensemble
d’événements. Finalement, nous caractérisons la complexité de I'algorithme.

Theorem B.4.1. Lalgorithme B.1, quand lancé sur un encodage XML probabiliste Ty =
(¢, 2) d'un document multi-version F,,, = (¢,9), avec une opération de mise a jour
updOPa . ./, Calcule une représentation updOPa . ./(ﬁm,) du document multi-version

UPdOPA ¢ ¢/ (Tmw)-

La preuve de ce théoréme est détaillée dans [Ba et al., 2013a].

La sémantique des mises a jour est donc la méme, qu’elle soit énoncée sur les
documents multi-version ou implantée par I'algorithme B.1. Nous montrons maintenant
que cette sémantique est compatible avec les opérations classiques de mise a jour des
systémes de contrdle de versions déterministes.

Theorem B.4.2. La définition formelle de mise a jour dans les documents multi-version
incertains implante la sémantique des opérations standards de mise a jour dans les
systémes de contréle de versions déterministes quand les ensembles d’événements
sont restreints a des branches enracinéees.

Nous terminons cette partie en énongant le passage a I'’échelle de notre algorithme :

Theorem B.4.3. Lalgorithme B.1 accomplit le processus de mise a jour sur la repré-
sentation d’un document XML multi-version en temps constant en la taille du document
d’entrée. La taille de I'arbre probabiliste de sortie croit linéairement en la taille du script
d’édition.

B.5 Fusion de XML multi-version incertain

Nous détaillons dans cette section la transposition de I'opération de fusion XML
usuelle dans notre modele de contréle de versions incertain. Nous présentons en
premier lieu le processus de calcul des scripts d’édition a utiliser pour la fusion, et les
scénarios de fusion les plus fréquents. Ensuite nous introduisons la sémantique de la
fusion sur des versions incertaines d'un méme document XML, ainsi qu’un algorithme
efficace sur 'encodage XML probabiliste.

127

ANNEXE B. RESUME EN FRANCAIS

B.5.1 Stratégie de fusion : calcul de scripts d’édition et scénarios de
fusion usuels

Une opération de fusion prend un ensemble de versions et fusionne leurs contenus
dans une seule et nouvelle version. Nous nous concentrons ici sur la fusion de deux
versions (le cas le plus usité dans les applications de tous les jours) a I'aide d’'une
approche tripartite (ou three-way), a savoir, une intégration de mises a jour provenant
des entrées suivant leur version de base commune. Lintérét principale de la fusion
tripartite par rapport a celle bipartite (ou two-way) vient du fait qu’elle assure une
meilleure correspondance de nceuds et détection de conflits. Nous supposons aussi
que toutes les versions a fusionner sont uniquement générées a partir de mises a
jour sur les versions de bases — cela, une fois de plus, a des fins de clarté dans la
présentation. Le processus de fusion se divise en général en deux étapes : (i) une
extraction des différents scripts d’édition qui ont mené aux versions en entrée et; (i) une
génération du résultat de la fusion, en évaluant d’abord I'ensemble unifié des scripts
extraits sur des données initiales, puis en résolvant les conflits éventuels. Supposons
donné un document XML non ordonné sous contr6le de versions. Soient .7 et % deux
versions arbitraires de ce document, ainsi que leur plus proche ancétre commun .7,.
Nous détaillons ci-apres les deux étapes du processus de fusion sur les versions .7; et
D.

Tout d’abord, nous déterminons le script d’édition spécifiant la fusion des versions
7 et 7 al'aide de la fonction diff3(71, %, 7,). Cette fonction s’exécute sur des arbres
non ordonnés dans lesquels les nceuds ont des identifiants uniques. Elle retournera un
script avec seulement des insertions et des suppressions de nceuds comme opérations
autorisées. De maniere similaire a [Khanna et al., 2007], notre diff3 se base sur les
fonctions diff2(7,, 1) et diff2(., F2), appelées algorithmes de diff bipartite (two-way).
Les algorithmes bipartites ainsi définis apparient tout d’abord les nceuds de leurs entrées,
et ensuite expriment les correspondances sous la forme de scripts d’édition A; et Ao,
respectivement. Le résultat du diff3, que nous notons Ags, est égal a A; U As. Cette
union peut résulter en trois types d’édition : éditions équivalentes, conflictuelles et
indépendantes. Deux opérations u; € Ay et us € Ay sont équivalentes si elles ont la
méme sémantique et les mémes arguments. Seule une des deux est retenue dans
As. A linverse, u; et uy sont conflictuelles lorsque u; est une insertion et us est une
suppression (ou inversement), et u; a ajouté des nceuds comme descendants de nceuds
supprimés par us. Nous référons a 'ensemble de toutes les éditions conflictuelles dans
As par A Nous disons qu’un noeud modifié par des éditions conflictuelles est un nceud

128

B.5. FUSION DE XML MULTI-VERSION INCERTAIN

conflictuel. Enfin, les éditions indépendantes sont celles de A; et Ay qui n"appartiennent
pas aux deux premiéres classes. Lensemble des éditions équivalentes et indépendantes
représentent les éditions non conflictuelles d’un algorithme de diff donné. Un noeud
impacté par une édition non conflictuelle est un nceud non conflictuel pour une fusion.
La plupart des modeles de gestion de versions actuels propose trois scénarios de
fusion qui prennent en compte la résolution de conflits éventuels (voir options de fusion,
en particulier mine-conflict et theirs-conflict, dans Subversion [Pilato, 2004]). Rappelons
que dans la grande majorité des cas, cette résolution est manuelle. Soit .77 la version
résultante de la fusion de .73 et .%5. Nous abstrayons ces cas de fusion possibles a l'aide
des scripts et des versions en entrée comme suit :
1. 95 = [%]AZ*A%, c’est-a-dire, une fusion en considérant .77 et les éditions non
conflictuelles provenant de A ;
2. J; = [%)2~A7 (ce cas est symétrique au précédent) ;
3. I = [F,]23=A% | c'est-a-dire, une fusion sur la base de la version .7, et des
editions non conflictuelles provenant de As.
On peut noter (a) qu'il est facile de montrer que lorsque A% = (), on obtient le méme
résultat pour les trois cas et ; (b) que la cas intuitif et naif de fusion ou l'utilisateur corrige
les conflits peut étre traité en choisissant en prime abord I'un des trois résultats ci-dessus
avant d’effectuer ensuite les modifications souhaitées.

B.5.2 Fusion de versions XML incertaines

Nous considérons a présent notre abstraction de la fusion (couvrant au moins
les scénarios abstraits ci-dessus) sur tout document XML multi-version incertain et
I'algorithme correspondant sur son encodage XML probabiliste. Un contexte incertain
induit une fusion a la base incertaine ; les versions en entrée et les scripts sont fournis
avec de lincertitude. Considérons un document XML multi-version incertain .7,,, =
(¢,9Q) sujet a n événements de contrble de versions et Ty = (9, ﬁ) son encodage
XML probabiliste.

Etant donné un triplet (e1, e2, €'), nous parlons de I'opération de fusion avec de
Iincertitude mergeOP,, ., OU e; €t ez pointent vers les deux versions a étre fusionné
et ¢/ est un nouvel événement évaluant I'incertitude dans cette fusion. Nous formalisons
la sémantique de mergeOP,, ., s SUr 7, cOmme suit :

mergeOP,, o, o(Tmv) = (G U ({e'},{(e1, €), (e2, €)}),).

D’une part, cette évaluation ajoute un nouvel événement et deux arétes dans I'espace
des versions ¢. D’autre part, elle génére une nouvelle distribution Q' laquelle étend

129

ANNEXE B. RESUME EN FRANCAIS

) avec de nouvelles versions possibles et ensembles d’événements. Soit <7, et o,
'ensemble de toutes les ancétres strictes dans ¥ de e; et ey respectivement. Nous
notons l'intersection par <7, = 7,, N . Pour tout .Z# e 2”Y{¢'} formellement nous
établissons :

— Sie g F:Q(F):=QF);

— Si {61,62,6/} C.Z: Q/(gi) = Q(ﬁ \ {e’}),

= Sifen,e} CFeter d F () = (AT V(D \ (e \)]0

= Si{en, e} CFeter ¢ F Q) = [AF P\ (o \ AN 2T
|

— Si{en,eo} N F =0ete € F:9(F) = [QUF \{})\ (e, \) U (e, \
7))
Les scripts ci-dessus sont tous calculés a I'aide de la fonction tripartite décrite dans la
section B.5.1. Cette fonction prend en entrée dans chacun des cas requis les versions
arbitraires 74 = Q((F \ {'} N,) U{er}), o = Q(F \{'} Nna,) U{e}), et T, =
Q(F \ {€'} N ;) ou F est un sous-ensemble d’événements dans ¥ U {¢'} considérés
comme valides.

Example B.5.1. La figure B.4 décrit le processus de fusion de deux versions possibles
T and 9, de 'exemple de la figure B.3 connaissant leur version de base .7,. Dans notre
modele, cette opération est simplement prise en compte avec la fusion des événements
es et ey lesquels pointent sur les versions en entrée. A gauche de la figure, nous avons les
versions 71, 7, et 7, ainsi que les scripts (uz,uy) €t (ug) qui ont conduit aux variantes.
Ces scripts sont extraits avec les fonctions diff de la section B.5.1. A droite, nous
explicitons le processus de fusion (avec I'événement de fusion ¢’ estimant l'incertitude
dans I'opération) comme suit : (i) Avant tout, toutes les éditions non conflictuelles dans
les scripts, c’est-a-dire, ici uniquement uy, sont validées pour obtenir la partie de la
fusion (ou résultat intermédiaire) qui est certaine avec la validité de ¢’ ; (ii) Ensuite,
I'ensemble des fusions possibles est engendré en énumérant les différentes possibilités
de traitement des éditions conflictuelles uy et us. Les deux premiéres versions possibles
sont obtenues en propageant respectivement uy et ug sur le résultat intermédiaire.
Concrétement, notre stratégie de fusion retournera les mémes documents fusionnés en
prenant 7, et 7, et en les mettant a jour avec les éditions non conflictuelles provenant
respectivement de (us) et (ua,us). Enfin, la derniére version possible est produite en
annulant toutes les éditions conflictuelles, a savoir, en ajoutant les nceuds conflictuels
de la version de base dans le résultat intermédiaire.

Lopération de fusion incertaine ainsi formalisée ci-dessus ne passe cependant pas a
I'échelle puisqu’elle exige d’évaluer toute version possible pour calculer le résultat global

130

B.5. FUSION DE XML MULTI-VERSION INCERTAIN

r / N\
S1 S2
| S
S1 P1p1 P2
1 [1
/\ r t th o
r o P1opa X
| P;\oo’@ | | é\é\e {e1, er37 '}
%f;\V t, t,l So o |
S &
1 % | s2
| “ {e1,e3} \.Oo événement e’ us choisi o
B Q ’ K
pl “%) f/D,o,. /o}o p2 .. t2
el % %
tl) | t \S‘Oé {61,62,64,6’}
S2 2 % r
{er} /7 N\
| {e'} Sq S
P2 1 1
| pPr P2
1 1
b bt
{e1,e2,e4} {e1,¢'}

(a) version de base .7,, variantes .71 et (b) génération de la fusion : d’abord, validation de u4
T ; scripts (u2, u4) et (us) puis résolution du conflit entre us et us

FIGURE B.4 — stratégie de fusion : (a) versions incertaines et (b) résultat de la fusion

de la fusion. Dans ce qui suit, nous proposons une maniere plus efficace de réaliser
cette fusion.

B.5.3 Fusion sur I'encodage XML probabiliste

Nous introduisons Algorithme B.2 (mergePrXML) comme étant une méthode plus
efficiente sur I'encodage XML probabiliste .7, = (¢,) de réaliser la fusion de XML
multi-version incertain. La définition de cette algorithme requiert toutefois la connais-
sance des nceuds conflictuels et non conflictuels pour la fusion. Ainsi nous définissons
d’abord la notion de nceuds conflictuels étant donné une fusion mergeOP,, ., . Sur
T puis nous détaillons I'algorithme proprement dit. Nous nous appuierons sur les
formules associées aux nceuds pour détecter ceux qui sont conflictuels.

Considérons les affectations de valeurs de vérité suivantes sur les événements
dans ¢ : (i) vs initialisant les événements dans <7 a true et les variables de révision

de toutes les autres événements a false; (ii) ;1 affectant true a toutes les événements

131

ANNEXE B. RESUME EN FRANCAIS

dans 7., U{e;1} et false aux variables de révision des autres événements ; et enfin (iii) o
initialisant les événements dans 7., U {e2} a true et les variables de révision des autres
événements a false. Nous introduisons en premier lieu la lignée (ou provenance) d’un
nceud incertain dans le p-document 2.

Definition B.5.1. (Lignée d’un nceud) La lignée d’un nceud donné x € 2, notée fiel (x),
est la formule propositionnelle résultante de la conjonction de la formule de ce nceud x
avec celles associées a tous ses noeuds ancétres dans 2.

Au contraire de sa formule®, la lignée d’'un nceud dans le p-document encode
I'histoire toute entiere des éditions, a partir de I'’événement initial, sur le chemin menant
a ce nceud. En conséquence, nous pouvons définir les nceuds conflictuels dans le
p-document en utilisant leurs lignées comme suit.

Definition B.5.2. (Noeud conflictuel) Sous 'encodage XML probabiliste T, NOUS
disons qu’un x donné dans Z est un nceud conflictuel au regard de la fusion des
événements e, et ey lorsque sa lignée satisfait les conditions suivantes. a) fiel (z) = vs ;
b) fie' (x) I~ v1 (ou fiel (z) = vy) et; c) Fy € P, desc (X, ¥) Sfiel (y) W vs et fiel (y) b= vo
(ou fie' (y) = v1) ol desc (x, y) veut dire que y est un descendant de z.

Theorem B.5.1. La définition B.5.2 est cohérente avec celle des nceuds conflictuels
donnée dans la section B.5.1.

La preuve du théoréme B.5.1 est une conséquence directe de la fagon dont updP rxML
procéde. Un noeud conflictuel dans ﬁproduit des descendants conflictuels. Nous nous
référons aux nceuds conflictuels dans & suivant la fusion des événements e; et e, avec
la restriction ﬁ‘cg{% e C’est sur cette base que nous déduisons ci-aprés I'ensemble
des noceuds non conflictuels.

Definition B.5.3. (Naeud non conflictuel) Pour la fusion des événements e, et es, nous
définissons un noeud non conflictuel = comme un nceud dans & \ ﬁrﬁ{eh o) dont la
formule fie(x) satisfait & une des conditions suivantes :

— fie(x) = vs, fie(z) ¥ vy et fie(x) FEva;

~ fie(x) £ v, fie(x) | vy et fie(x) |= v ;

— fie(x) = vs, fie(z) = vy et fie(x) FEva;

~ fie(x) | v, fie(x) i vy et fie(x) |= v ;

— fie(x) ¥ vs, fie(z) = vy et fie(x) FEva;

5. La formule d’un noeud décrit juste la sémantique des éditions a partir de 'événement ou il a été
inséré pour la premiére fois.

132

B.5. FUSION DE XML MULTI-VERSION INCERTAIN

Algorithme B.2: Algorithme de fusion (mergePrxML)

Entrées: (¢, &), ey, eq, e’/\
Sorties: fusion dans (¥, &7) aveCc mergeOP,, .,
19 :=9U({e}{(e1,€),(e2,€)});
pour chaque nceud non conflictuel x dans 2 \ @'}g{eb o) faire

2
3 replace (fie(z), e1, (e1 V€));
4 replace (fie(z), e2, (ea V €));
5 fin
6 retourner (¢, ﬁ)

— fie(a) - v, fie(x) - 11 et fielx) = vo.

Theorem B.5.2. La définition B.5.3 est cohérente avec celle des noeuds non conflictuels
donnée dans la section B.5.1.

La preuve du théoréme B.5.2 est triviale.

Nous poursuivons cette section en détaillant d’abord I'algorithme de fusion, puis en
énoncant sa correction.

Lalgorithme B.2 prend en entrée I'encodage XML probabiliste (¢, ﬁ) de T, les
événements e; et e5 dans ¢, et le nouvel événement ¢ modélisant a la fois les éléments
de la fusion et leur degré d’incertitude. Lalgorithme met d’abord a jour 4 comme indiqué
dans la section B.2. Ensuite, la fusion dans 2 résulte en une modification mineure des
formules associées aux nceuds non conflictuels dans ﬁ\ @'}g{eb .,y au travers la fonction
replace. Cette fonction substitue a ces formules toutes les occurrences de e; et e, par
(e1 vV €) et (ex V) respectivement. Lintuition est que chaque fusion possible, laquelle
est valide avec I'existence de ¢’ indépendamment de celle des autres événements, doit
contenir au moins les noeuds non conflictuels dans ﬁsupposés certains avec e; et es.
Les nceuds non conflictuels dont I'existence est indépendante de e; et e;, dépendront
uniquement des valeurs de vérité de leurs événements ancétres au sein de chaque
sous-ensemble d’événements incluant 'événement de fusion. Enfin, I'existence des
noeuds conflictuels dans le résultat de la fusion repose sur une idée subjective de priorité
implicite accordée a e; ou e; lorsque ¢’ est true. Dans le scénario ou ¢’ et e; sont vrais
et e est false, nous supposons que e; est plus probable que e, pour la fusion ; dans ce
cas seuls les nceuds conflictuels valides avec <., U {e;1} sont sélectionnés. La situation
inverse fonctionne de la méme maniére. Par contre tout nceud conflictuel sera supprimé
lorsqu’aucune priorité n’est définie, c’est-a-dire, pour une affectation mettant ¢’ a true et
les variables de révision de e; et es a false.

133

ANNEXE B. RESUME EN FRANCAIS

Soient F,, = (4,9) et F,, = (¥, P) respectivement un document XML multi-
version incertain et son encodage XML probabiliste. Nous supposons, en plus, définie la
fonction sémantique [.] telle que [Z,] = (¢, [2]) avec [Z] renvoyant la méme distri-
bution de probabilité que Q. Etant donné une fusion mergeOP,, ., ., NOUS énongons a
présent que mergeP rxXML respecte la sémantique de 'opération de fusion définie dans
la section B.5.2.

Theorem B.5.3. La définition de I'algorithme B.2 est correcte au regard de la sémantique
de l'opération de fusion sur un document XML multi-version incertain. En d’autres mots,
le diagramme suivant commute :

_ [

T [Tna]
mergePrXML J

(ela €2, 6/)

lmergeOPq’@’d

ZA

77
C?.'VVL'U

Nous concluons cette section en énongant le passage a I'échelle de mergeP rxXML.

Theorem B.5.4. Lalgorithme B.2 exécute la fusion sur I'encodage XML probabiliste
de tout document XML multi-version incertain en temps proportionnel a la taille des
formules des nceuds impactés par les mises a jour dans les branches fusionnées.

Pour la preuve des théoremes B.5.3 et B.5.4, nous référons a [Ba et al., 2013b].

B.6 Expérimentation et évaluation

Nous présentons, dans cette section, une évaluation expérimentale de notre modeéle.
Nous nous intéressons en premier aux opérations de création et de lecture de versions,
et comparons l'efficacité de notre modeéle sur ces deux opérations par rapport a celle de
deux systémes de gestion de versions de référence que sont Git et Subversion. Ensuite,
nous présentons les avancées en termes de possibilité de filirage de contenus qu’offre
notre modele. Toutes les mesures de temps montrées dans cette section correspondent a
des temps de calcul en mémoire centrale (temps CPU). Les données sont préalablement
chargées en mémoire centrale pour éviter le surcolt des accés disque. Les tests ont été
réalisés dans les mémes conditions matérielles pour les trois systemes comparés.

134

B.6. EXPERIMENTATION ET EVALUATION

T T T] T T
i Subversion | 10% & Subversion |
— 10*F — Git | = g — Git 1
(%] F B (2] il
13 i — PrXML 13 — PriXML]
= [) = 3 1
E 103} 1 E 107
IS = J IS
o L i o
(&) [o
B 102) 18 e
[%2] = B [72]
Q F 1 [o%
5| 5
= L [
10! 10! £
L ! ! ! ! ! i
0

| | | |
0 50 100 150 200 250 30 200 400 600
Commit (Noyau Linux) Commit (Projet Cassandra)

FIGURE B.5 — évaluation de la durée du commit (échelle logarithmique pour I'axe des or-
données)

B.6.1 Analyse de performances : données tests, implantation et analyse
de colts

Nous avons mesuré le temps d’exécution des opération de création (ou commit)
et de restitution (ou checkout) de versions, sur Git, Subversion et I'implantation de
notre modéle (PrXML). Lobjectif est de montrer la faisabilité de notre proposition. Vu
que nos systémes de référence sont tous déterministes, nous précisons que les tests
pour I'analyse de performances ont été réalisés sur des données déterministes. Le
principal intérét de notre modéle demeurant sa capacité a gérer des versions de données
incertaines, nous abordons et évaluons cet aspect dans la section B.6.2.

B.6.1.1 Jeux de données et implantation des tests

Les jeux de données utilisés pour les tests ont été constitués a partir des branches
principales des projets de développement du noyau Linux®, et de Apache Cassandra”’.
Les données représentent I'organisation hiérarchique de deux systémes de fichiers
assez larges, et constituent deux exemples de données arborescentes partagées dans
un environnement collaboratif. Le projet de développement du noyau Linux utilise Git
comme systéme de gestion de versions. Nous avons obtenu une copie de I'historique
du systeme de fichiers en clonant la branche principale de développement du projet, et
nous I'avons maintenue a jour en propageant régulierement sur notre copie locale les
derniéres mises a jour effectuées sur la branche originale. Nous avons suivi la méme

6. https://www.kernel.org/
7. http://cassandra.apache.org/

135

https://www.kernel.org/
http://cassandra.apache.org/

ANNEXE B. RESUME EN FRANCAIS

démarche pour les données du projet Cassandra, qui utilise Subversion comme systéme
de gestion de versions. Au total, nous avons dans chaque branche locale plus de dix
mille versions (ou commits), chacune matérialisant un ensemble de mises a jour. Dans
nos expérimentations, nous nous sommes focalisé sur I'évolution de I'arborescence
des systemes de fichiers des projets considérés, en ignorant les changements réalisés
sur le contenu plat des fichiers. Nous avons tracé les commits et les opérations de
dérivation de versions a partir des logs de Git et de Subversion. Nous avons représenté
la hiérarchie de chacun des deux systémes de fichiers sous forme d’arbre XML sur
lequel nous avons appliqué les changements successifs observés. A chaque insertion,
respectivement suppression, d’un fichier ou d’'un répertoire dans le systeme de fichiers
est appliquée une insertion, respectivement suppression, d’'un nceud dans I'arbre XML
correspondant.

Limplantation de notre modéle de gestion de versions (PrXML) a été réalisée en
Java. Nous nous sommes aussi basés sur les interfaces de programmation SVNKit®
et JGit® de Java pour mettre en place les opérations standards de manipulation de
versions dans Subversion et Git respectivement. Le but poursuivi est de réaliser toutes
nos expérimentations dans les mémes conditions. Le systeme Subversion mémorise
dans ses fichiers de traces (logs) les changements effectués sur I'arborescence du
systéme de fichiers a chaque commit. Chaque fichier log contient une liste d’expressions
de chemins (paths), des identifiants de fichiers ou de répertoires dans le systéme de
fichiers, et les mises a jours qui leurs sont associées. Dans le cas de Git, I'évolution du
systéme de fichiers est représentée sous forme d’objets Git représentant les différents
états de I'arborescence du systéme. Chaque objet correspond a un état du systéme de
fichiers obtenu a la suite d’'un commit.

B.6.1.2 Analyse des colts

Les figures B.5 et B.7 comparent le colt, en termes de temps d’exécution, des
opérations de commit et de checkout de versions dans Git, Subversion et notre systéme
PrXML. Les résultats montrent que le temps d’exécution de ces opérations est souvent
plus rapide sur notre systéme et, au pire des cas, comparable a celui obtenu sur Git ou
Subversion. En particulier, la figure B.5 montre clairement que I'opération de commit
est plus rapide sur notre systeme. Les mesures effectuées sur PrXML tiennent, bien
évidemment, compte du temps de calcul additionnel des scripts de mises a jour (deltas)
dans Git et Subversion.

8. http://svnkit.com/
9. http://www.eclipse.org/jgit/

136

http://svnkit.com/
http://www.eclipse.org/jgit/

B.6. EXPERIMENTATION ET EVALUATION

| oSubversion ||
—_ < Git '
4 | [y
g 0% o PIXML ||
i i 1
103F, @ . E
3 g - 1
Q. S ° |
CIE) °)
= 102 o q & |
o' E
[I Ll | il

10! 102 103

Nombre d’opérations d’édition

FIGURE B.6 — colt du commit en fonction du nombre d’opérations de mise a jour
(scripts > 5 opérations)

Une analyse en profondeur des résultats montre que le temps de commit est fonction
de la taille du script d’édition associé a chaque version (voir figure B.6), ce qui confirme la
proposition B.4.3. Cependant, PrXML reste efficace, a I'exception de quelques commits
qui correspondent a des versions obtenues a la suite d’'un grand nombre de mises a
jour (plus d’'une centaine d’opérations de mise a jour). Dans notre modele, la création
de versions se traduit par la mise a jour de I'arbre XML probabiliste représentant
le document multi-version. Le script d’édition associé a chaque nouvelle version est
transposé sur I'arbre XML probabiliste, ce qui rend le colt du commit dépendant du
nombre d’opérations de mises a jour associées a chaque version. En revanche, Git
hache les fichiers et stocke la valeur de hachage (SHA-1) obtenue, indexée par le nom
du répertoire ou du fichier. Le systéeme Subversion trace dans un fichier log les mises
a jour associées aux chemins concernés dans I'arborescence du systeme de fichiers.
Ainsi, I'insertion d’'un sous-arbre (ensemble de fichiers organisés en répertoires et sous-
répertoires) dans le systeme de fichiers peut se traduire par une simple opération dans
Git et Subversion, alors qu’elle peut nécessiter une série d’'insertions de nceuds dans
notre modeéle.

La figure B.7 montre les résultats obtenus pour la mesure du temps d’exécution de
I'opération de checkout de versions sur Git, Subversion et PrXML. Nous nous intéressons
en particulier aux versions dérivées de fagon séquentielle les unes des autres. Dans
ce cas, le calcul de la version numéro n se traduit souvent par une cascade de calculs
intermédiaires sur les versions précédentes, ce qui peut alourdir le temps d’exécution du
checkout. Dans la figure B.7, le numéro de version est précisé sur I'axe des abscisses

137

ANNEXE B. RESUME EN FRANCAIS

T T T T T
400 |- Subversion || | Subversion ||
A 400 .
™ — Git @ — Git
E — PrxXML £ — PrXML
5 300 N 5 L |
3 3 300
[&) [&]
(0] [0
S S
o 2001 R o 200 i
© ©
2] 2]
£ £
L N 100 .
@ 100 i
| | | | | | | |
0 50 100 150 200 250 30 0 200 400 600
Révision (Noyau Linux) Révision (Projet Cassandra)

FIGURE B.7 — co(t du checkout (restitution de version)

et le coOt (en ms) du checkout sur I'axe des ordonnées. Les résultats montrent que le
checkout est plus rapide sur notre systeme que sur Subversion, pour les deux jeux de
données considérés (noyau Linux et Cassandra). Par rapport a Git, notre systéme a de
meilleures performances pour les premiéres versions créées (celles précédées par un
faible nombre de versions dans la hiérarchie de dérivation), alors qu’il devient moins
performant sur les dernieres versions qui découlent d’'une série importante de versions
successives. Ceci vaut pour les tests effectués sur les deux jeux de données. Il faut
préciser que certains systémes de gestion de versions utilisent des diffs réversibles [Rusu
et al., 2005] pour accélérer le calcul des versions, lorsque celles-ci sont obtenues a la
suite d’'une longe série de dérivations linéaires.

B.6.2 Evaluation de la gestion des incertitudes : capacités de filtrage
des données

L'évaluation de I'incertitude et le filirage automatique des données non fiables sont
deux défis importants pour les systemes d’édition collaborative a large échelle. Léva-
luation de l'incertitude est utile car les documents partagés sont produits par différents
contributeurs, avec différents niveaux d’expertises et de fiabilité. Cette fiabilité peut
étre estimée de différentes maniéres, en s’appuyant par exemple sur les indicateurs de
confiance ou la réputation de chaque contributeur (voir [Adler and de Alfaro, 2007, Maniu
et al., 2011b, Maniu et al., 2011a]).

Dans le cas de plates-formes comme Wikipedia, notre approche peut permettre
une gestion automatique des conflits entre contributeurs. Etant donné le nombre élevé
de ces contributeurs et la fréquence des conflits, sur certains sujets sensibles, une

138

B.7. CONCLUSION

gestion automatique des conflits est trés utile. Notre approche permet de filtrer de fagon
transparente, et sans blocage des pages conflictuelles, les spams et les contributions
d’utilisateurs peu fiables ou malveillants. Dans PrXML, des variables booléennes sont
associées aux sources des données (les contributeurs dans le cas d’'une plate-forme
comme Wikipédia). Le fait d’affecter la valeur false & une variable permet de filtrer les
données produites par la source correspondante. Ceci peut étre fait de fagon automa-
tique, lorsqu’un acte de vandalisme est détecté, ou lors de I'accés aux données par
un utilisateur. Dans ce derniers cas, le systeme peut adapter le contenu en fonction
des préférences de l'utilisateur et de son opinion (ou confiance) vis a vis des différents
contributeurs. Nous avons montré dans [Abdessalem et al., 2011] une application de ces
possibilités d’interaction et de filtrage sur des contenus de la plate-forme Wikipedia. Une
page Wikipedia est vue comme une fusion d’'un ensemble de contributions incertaines
et n’est plus limitée a la derniére version valide. Le degré d’incertitude associé a chaque
partie d’'une page (une section par exemple) est déduit de 'incertitude associée a cha-
cune des révisions qui ont affecté cette partie. Lutilisateur peut ainsi isoler le contenu
correspondant & une révision donnée, éliminer les parties introduites par une révision
ou un contributeur, ou limiter le contenu de la page aux seules parties introduites par
quelques révisions ou quelques contributeurs de confiance.

Nous avons aussi testé la capacité de notre approche a gérer les actes de vandalisme,
en prenant comme exemple les pages les plus vandalisées dans Wikipedia (voir most
vandalized Wikipedia pages '°). Nous avons réussi a reconstituer le contenu des pages
dans I'état ou il aurait du se trouver si les actes de vandalisme n’avaient pas été enlevés.
Nous avons vu qu'il est facile avec notre modeéle d’avoir la vision souhaitée (avec ou
sans vandalisme) d’'une page, en jouant sur les valeurs de vérité attribuées aux variables
booléennes. Notons que Wikipedia élimine systématiquement les versions vandalisées
de ses pages, alors qu'il serait utile, pour différentes raisons, de les laisser accessibles
aux utilisateurs qui le souhaitent. Nous avons pu détecter les actes de vandalisme sur les
pages choisies aussi bien que peuvent le faire les robots de Wikipedia, sans élimination
des versions vandalisées et en laissant le choix aux utilisateurs de tenir en compte ou
pas ces versions.

B.7 Conclusion

Nous avons présenté dans ce résumé l'une des principales contribution de cette
these, a savoir, un modele de gestion de versions de documents XML spécialement

10. http://en.wikipedia.org/wiki/Wikipedia:Most_vandalized_pages

139

http://en.wikipedia.org/wiki/Wikipedia:Most_vandalized_pages

ANNEXE B. RESUME EN FRANCAIS

adapté aux environnements d’édition collaborative a large échelle. Ce travail fait par-
tie des premieres applications concrétes des travaux théoriques sur le XML probabi-
liste [Nierman and Jagadish, 2002, Van Keulen et al., 2005, Abiteboul et al., 2009, Ki-
melfeld et al., 2009, Kimelfeld and Sagiv, 2008, Kharlamov et al., 2010, Kimelfeld and
Senellart, 2013]. Notre modéle a été implanté et évalué sur des jeux de données réels.
Nous présentons dans ce résumé les résultats obtenus qui montrent I'efficacité de notre
approche. Nous avons également rappelé les avantages de notre modéle et les possibili-
tés inédites de filtrage sur les données incertaines qu’il permet de réaliser. Toutefois, une
utilisation de notre modéle dans un environnement réel, combiné avec un algorithme
évaluant la réputation des participants et la possibilité de connaitre les préférences des
lecteurs, devrait permettre d’avoir un apercu plus détaillé des avantages introduits pour
les aspects probabilistes de notre systeme.

140

Self References

[Abdessalem et al., 2011] Talel Abdessalem, M. Lamine Ba, and Pierre Senellart. Prob-
abilistic XML Merging Tool. In Proc. EDBT, 2011. (Demonstration).

[Ba et al., 2011] M. Lamine Ba, Talel Abdessalem, and Pierre Senellart. Towards a
Version Control Model with Uncertain Data. In Proc. PIKM, 2011.

[Ba et al., 2013a] M. Lamine Ba, Talel Abdessalem, and Pierre Senellart. Uncertain
Version Control in Open Collaborative Editing of Tree-Structured Documents. In Proc.
DocEng, 2013. Similar version presented at BDA 2013.

[Ba et al., 2013b] M. Lamine Ba, Talel Abdessalem, and Pierre Senellart. Merging
Uncertain Multi-Version XML Documents. In Proc. DChanges, 2013.

[Ba et al., 2014a] M. Lamine Ba, Sebastien Montenez, Ruiming Tang, and Talel Ab-
dessalem. Integration of Web sources under uncertainty and dependencies using
probabilistic XML. In Proc. Uncrowd, 2014.

[Ba et al., 2014b] M. Lamine Ba, Sebastien Montenez, Talel Abdessalem, and Pierre
Senellart. Monitoring moving objects using uncertain Web data. In Proc. SIGSPATIAL,
2014. Preliminary version presented at BDA 2014.

[Ba et al., 2014c] M. Lamine Ba, Talel Abdessalem, and Pierre Senellart. Gestion de
versions de documents XML incertains. Ingénerie des Systémes d’Information, vol.
19, n°4, 2014.

[Amarilli et al., 2013] Antoine Amarilli, M. Lamine Ba, Daniel Deutch, Pierre Senellart.
Provenance for Nondeterministic Order-Aware Queries. Preliminary Version, 2013.

[Amarilli et al., 2014] Antoine Amarilli, M. Lamine Ba, Daniel Deutch, Pierre Senellart.
Querying Order-Incomplete Data. Submitted for publication to ACM PODS, 2014.

[Tang et al., 2014a] Ruiming Tang, Dongxu Shao, M. Lamine Ba, Huayu Wu. Condi-
tioning Probabilistic Relational Data with Referential Constraints. /n Proc. Uncrowad,
2014.

SELF REFERENCES

[Tang et al., 2014b] Ruiming Tang, Dongxu Shao, M. Lamine Ba, Pierre Senellart,
Stéphane Bressan. A Framework for Conditioning Probabilistic XML Data. Submitted
for publication to ACM TOIT, 2014.

142

External References

[Abiteboul et al., 2009] Abiteboul, S., Kimelfeld, B., Sagiv, Y., and Senellart, P. (2009).
On the expressiveness of probabilistic XML models. VLDB Journal.

[Abiteboul et al., 2012] Abiteboul, S., Manolescu, |., Rousset, M.-C., Rigaux, P., and
Senellart, P. (2012). Web Data Management. Cambridge University Press.

[Adler and de Alfaro, 2007] Adler, B. T. and de Alfaro, L. (2007). A content-driven
reputation system for the Wikipedia. In Proc. WWW/, Banff, Alberta, Canada.

[Agrawal et al., 2010] Agrawal, P., Sarma, A. D., Ullman, J., and Widom, J. (2010).
Foundations of uncertain-data integration. VLDB Endow.

[Al-Khudair et al., 2001] Al-Khudair, A., Gray, W. A., and Miles, J. C. (2001). Dynamic
evolution and consistency of collaborative configurations in object-oriented databases.
In Proc. TOOLS, Santa Barbara, CA, USA.

[Altmanninger et al., 2009] Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A
survey on model versioning approaches. IJWIS.

[Ayat et al., 2012] Ayat, N., Afsarmanesh, H., Akbarinia, R., and Valduriez, P. (2012).
An uncertain data integration system. In On the Move to Meaningful Internet Systems.
Springer Berlin Heidelberg.

[Bleiholder et al., 2007] Bleiholder, J., Draba, K., and Naumann, F. (2007). FuSem:
exploring different semantics of data fusion. In Proc. VLDB, Vienna, Austria.

[Borgolte et al., 2014] Borgolte, K., Kruegel, C., and Vigna, G. (2014). Relevant change
detection: A framework for the precise extraction of modified and novel web-based
content as a filtering technique for analysis engines. In Proc. WWW/, Seoul, Korea.

[Cellary and Jomier, 1990] Cellary, W. and Jomier, G. (1990). Consistency of versions
in object-oriented databases. In Proc. VLDB, Brisbane, Queensland, Australia.

[Chacon, 2009] Chacon, S. (2009). Pro Git. Apress.

EXTERNAL REFERENCES

[Cobéna and Abdessalem, 2009] Cobéna, G. and Abdessalem, T. (2009). A compara-
tive study of XML change detection algorithms. In Services and Business Computing
Solutions with XML: Applications for Quality Management and Best Processes. I1Gl
Global.

[Cobéna et al., 2002] Cobéna, G., Abiteboul, S., and Marian, A. (2002). Detecting
Changes in XML Documents. In Proc. ICDE, San Jose, California, USA.

[Conradi and Westfechtel, 1998] Conradi, R. and Westfechtel, B. (1998). Version mod-
els for software configuration management. ACM Comput. Surv.

[Das Sarma et al., 2008] Das Sarma, A., Dong, X., and Halevy, A. (2008). Bootstrapping
pay-as-you-go data integration systems. In Proc. SIGMOD, Vancouver, BC, Canada.

[David, 1994] David, G. D. (1994). Palimpsest: A data model for revision control. In
Proc. Collaborative Hypermedia Systems.

[de Keijzer and van Keulen, 2008] de Keijzer, A. and van Keulen, M. (2008). IMPrECISE:
Good-is-good-enough data integration. In Proc. ICDE, Cancun, México.

[De La Calzada and Dekhtyar, 2010] De La Calzada, G. and Dekhtyar, A. (2010). On
measuring the quality of Wikipedia articles. In Proc. WICOW, Raleigh, North Carolina,
USA.

[De Vries and Van Someren, 2012] De Vries, G. K. D. and Van Someren, M. (2012).
Machine Learning for Vessel Trajectories Using Compression, Alignments and Domain
Knowledge. Expert Syst. Appl.

[Dimond et al., 2013] Dimond, M., Smith, G., and Goulding, J. (2013). Improving route
prediction through user journey detection. In Proc. SIGSPATIAL, Orlando, Florida,
USA.

[Dong et al., 2007] Dong, X., Halevy, A. Y., and Yu, C. (2007). Data Integration with
Uncertainty. In Proc. VLDB, Vienna, Austria.

[Dong et al., 2010] Dong, X. L., Berti-Equille, L., Hu, Y., and Srivastava, D. (2010).
Global detection of complex copying relationships between sources. VLDB Endow.

[Dong et al., 2009a] Dong, X. L., Berti-Equille, L., and Srivastava, D. (2009a). Integrating
conflicting data: the role of source dependence. VLDB Endow.

[Dong et al., 2009b] Dong, X. L., Berti-Equille, L., and Srivastava, D. (2009b). Truth
discovery and copying detection in a dynamic world. VLDB Endow.

144

EXTERNAL REFERENCES

[Dong and Naumann, 2009] Dong, X. L. and Naumann, F. (2009). Data Fusion: Resolv-
ing Data Conflicts for Integration. VLDB Endow.

[Dong et al., 2012] Dong, X. L., Saha, B., and Srivastava, D. (2012). Less is more:
Selecting sources wisely for integration. VLDB Endow.

[Estublier, 2000] Estublier, J. (2000). Software configuration management: A Roadmap.
In Proc. ICSE, Limerick, Ireland.

[Galland et al., 2010] Galland, A., Abiteboul, S., Marian, A., and Senellart, P. (2010).
Corroborating information from disagreeing views. In Proc. WSDM, New York, USA.

[Geiger and Halfaker, 2013] Geiger, R. S. and Halfaker, A. (2013). When the Levee
Breaks: Without Bots, What Happens to Wikipedia’s Quality Control Processes? In
Proc. WikiSym, Hong Kong, China.

[Gouriten and Senellart, 2012] Gouriten, G. and Senellart, P. (2012). API Blender: A
uniform interface to social platform APIs. In Proc. WWW, Lyon, France.

[Graham et al., 1994] Graham, R. L., Knuth, D. E., and Patashnik, O. (1994). Con-
crete Mathematics: A Foundation for Computer Science. Addison-Wesley Longman
Publishing Co., Inc.

[Halfaker et al., 2013] Halfaker, A., Geiger, R. S., Morgan, J., and Ried|, J. T. (2013).
The rise and decline of an open collaboration system: How Wikipedia’s reaction to
sudden popularity is causing its decline. American Behavioral Scientist.

[Kanza et al., 2014] Kanza, Y., Kravi, E., and Motchan, U. (2014). City Nexus: Discover-
ing Pairs of Jointly-Visited Locations Based on Geo-Tagged Posts in Social Networks.
In Proc. SIGSPATIAL, Dallas, USA.

[Khan et al., 2002] Khan, L., Wang, L., and Rao, Y. (2002). Change detection of XML
documents using signatures. In Real World RDF and Semantic Web Applications,
Honolulu, Hawai.

[Khanna et al., 2007] Khanna, S., Kunal, K., and Pierce, B. C. (2007). A formal investi-
gation of Diff3. In Proc. FSTTCS, New Delhi, India.

[Kharlamov et al., 2010] Kharlamov, E., Nutt, W., and Senellart, P. (2010). Updating
Probabilistic XML. In Proc. Updates in XML, Lausanne, Switzerland.

[Kimelfeld et al., 2009] Kimelfeld, B., Kosharovsky, Y., and Sagiv, Y. (2009). Query
evaluation over probabilistic XML. VLDB Journal.

145

EXTERNAL REFERENCES

[Kimelfeld and Sagiv, 2008] Kimelfeld, B. and Sagiv, Y. (2008). Modeling and querying
probabilistic XML data. SIGMOD Rec.

[Kimelfeld and Senellart, 2013] Kimelfeld, B. and Senellart, P. (2013). Probabilistic
XML: Models and complexity. In Advances in Probabilistic Databases for Uncertain
Information Management, Studies in Fuzziness and Soft Computing. Springer-Verlag.

[Koc and Tansel, 2011] Koc, A. and Tansel, A. U. (2011). A survey of version control
systems. In Proc. ICEME, Orlando, Florida USA.

[Kdgel and Maximilian, 2008] Kégel and Maximilian (2008). Towards software configura-
tion management for unified models. In Proc. Comparison and versioning of software
models, Leipzig, Germany.

[Kumawat et al., 2010] Kumawat, S., Scholar, M. T., and Khunteta, A. (2010). A Survey
on Operational Transformation Algorithms: Challenges, Issues and Achievements.
Computer Applications.

[Lenzerini, 2002] Lenzerini, M. (2002). Data integration: a theoretical perspective. In
Proc. SIGMOD, Madison, Wisconsin.

[Lietal., 2015] Li, Q. Li, Y., Gao, J., Su, L., Zhao, B., Demirbas, M., Fan, W., and Han,
J. (2015). A Confidence-Aware Approach for Truth Discovery on Long-Tail Data. In
Proc. VLDB, Kohala Coast, HI.

[Li et al., 2014] Li, Q., Li, Y., Gao, J., Zhao, B., Fan, W., and Han, J. (2014). Resolving
Conflicts in Heterogeneous Data by Truth Discovery and Source Reliability Estimation.
In Proc. SIGMOD, Snowbird, Utah, USA.

[Lietal., 2012] Li, X., Dong, X. L., Lyons, K., Meng, W., and Srivastava, D. (2012). Truth
Finding on the Deep Web: Is the Problem Solved? VLDB Endow.

[Li et al., 2010] Li, Z., Ding, B., Han, J., Kays, R., and Nye, P. (2010). Mining Periodic
Behaviors for Moving Objects. In Proc. KDD, Washington, DC, USA.

[Lindholm et al., 2006] Lindholm, T., Kangasharju, J., and Tarkoma, S. (2006). Fast and
simple XML tree differencing by sequence alignment. In Proc. DocEng, Amsterdam,
The Netherlands.

[Liu et al., 2013] Liu, J., Ma, Z., and Yan, L. (2013). Querying and ranking incomplete
twigs in probabilistic XML. World Wide Web.

146

EXTERNAL REFERENCES

[Liu et al., 2014] Liu, M., Fu, K., Lu, C.-T., Chen, G., and Wang, H. (2014). A Search
and Summary Application for Traffic Events Detection Based on Twitter Data. In Proc.
SIGSPATIAL, Dallas, USA.

[Ma et al., 2010] Ma, J., Liu, W., Hunter, A., and Zhang, W. (2010). An XML based
framework for merging incomplete and inconsistent statistical information from clinical
trials. In Software Computing in XML Data Management. Springer-Verlag.

[Magnani and Montesi, 2010] Magnani, M. and Montesi, D. (2010). A survey on uncer-
tainty management in data integration. J. Data and Information Quality.

[Maniu et al., 2011a] Maniu, S., Cautis, B., and Abdessalem, T. (2011a). Building a
signed network from interactions in Wikipedia. In Proc. DBSocial, Athens, Greece.

[Maniu et al., 2011b] Maniu, S., Cautis, B., and Abdessalem, T. (2011b). Casting a web
of trust over Wikipedia: an interaction-based approach. In Proc. WWW (Companion
Volume), Hyderabad, India.

[Mehdi et al., 2014] Mehdi, A.-N., Urso, P., Balegas, V., and Perguica, N. (2014). Merg-
ing OT and CRDT Algorithms. In Proc. PaPEC, Amsterdam, The Netherlands.

[Mitchell, 1979] Mitchell, T. M. (1979). Version Spaces: An Approach to Concept Learn-
ing. PhD thesis, Stanford, CA, USA.

[Morris, 2007] Morris, J. C. (2007). DistriWiki: A Distributed peer-to-peer wiki network.
In Proc. WikiSym, Montréal, Québec, Canada.

[Myers, 1986] Myers, E. W. (1986). An O(ND) difference algorithm and its variations.
Algorithmica.

[Nierman and Jagadish, 2002] Nierman, A. and Jagadish, H. V. (2002). ProTDB: proba-
bilistic data in XML. In Proc. VLDB, Hong Kong, China.

[Osman, 2013] Osman, K. (2013). The Role of Conflict in Determining Consensus on
Quality in Wikipedia Articles. In Proc. WikiSym, Hong Kong, China.

[Pandey and Munson, 2013] Pandey, M. and Munson, E. V. (2013). Version aware
libreoffice documents. In Proc. DocEng, Florence, Italy.

[Peters, 2005] Peters, L. (2005). Change detection in XML trees: a survey. In Proc.
TSIT.

[Pianese et al., 2013] Pianese, F,, An, X., Kawsar, F., and Ishizuka, H. (2013). Discover-
ing and predicting user routines by differential analysis of social network traces. In
Proc. WoWMoM, Madrid, Spain.

147

EXTERNAL REFERENCES

[Pilato, 2004] Pilato, M. (2004). Version Control With Subversion. O’Reilly & Associates,
Inc.

[Pochampally et al., 2014] Pochampally, R., Das Sarma, A., Dong, X. L., Meliou, A.,
and Srivastava, D. (2014). Fusing data with correlations. In Proc. SIGMOD, Snowbird,
Utah, USA.

[Reichenberger and Kratky, 2009] Reichenberger, C. and Kratky, S. (2009). Object-
oriented version control: Use inheritance instead of branches.

[Robin, 2002] Robin, L. F. (2002). Merging XML files: A new approach providing intelli-
gent merge of XML data sets. In Proc. XML Europe, Barcelona, Spain.

[Rénnau and Borghoff, 2009] Rénnau, S. and Borghoff, U. (2009). Versioning XML-
based office documents. Multimedia Tools and Applications.

[Rénnau and Borghoff, 2012] Rdnnau, S. and Borghoff, U. (2012). XCC: change control
of XML documents. Computer Science - Research and Development.

[Rusu et al., 2005] Rusu, L. I., Rahayu, W., and Taniar, D. (2005). Maintaining versions
of dynamic XML documents. In Proc. WISE, New York, USA.

[Sabel, 2007] Sabel, M. (2007). Structuring wiki revision history. In Proc. WikiSym,
Montréal, Québec, Canada.

[Simonite, 2013] Simonite, T. (2013). The decline of Wikipedia. MIT Technology Review
Magazine.

[Sinnott, 1984] Sinnott, R. W. (1984). Virtues of the Haversine. Sky and Telescope.

[Suciu et al., 2011] Suciu, D., Olteanu, D., Ré, C., and Koch, C. (2011). Probabilistic
Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers.

[Suzuki, 2002] Suzuki, N. (2002). A Structural Merging Algorithm for XML Documents.
In Proc. ICWI, Lisbon, Portugal.

[Taka et al., 2013] Taka, H., Shibata, D., Wada, M., Matsumoto, H., and Hatanaka, K.
(2013). Construction of a marine traffic monitoring system around the world. In Proc.
OCEANS, San Diego, USA.

[Thao and Munson, 2014] Thao, C. and Munson, E. (2014). Using versioned trees,
change detection and node identity for three-way XML merging. Computer Science -
Research and Development.

148

EXTERNAL REFERENCES

[Thao and Munson, 2011] Thao, C. and Munson, E. V. (2011). Version-aware XML
documents. In Proc. DocEng, Mountain View, California, USA.

[van Keulen and de Keijzer, 2009] van Keulen, M. and de Keijzer, A. (2009). Qualitative
effects of knowledge rules and user feedback in probabilistic data integration. VLDB
Journal.

[Van Keulen et al., 2005] Van Keulen, M., de Keijzer, A., and Alink, W. (2005). A Proba-
bilistic XML Approach to Data Integration. In Proc. ICDE, Tokyo, Japan.

[Voss, 2005] Voss, J. (2005). Measuring Wikipedia. In Proc. ISSI, Stockholm, Sweden.

[Waguih and Berti-Equille, 2014] Waguih, D. A. and Berti-Equille, L. (2014). Truth Dis-
covery Algorithms: An Experimental Evaluation. CoRR.

[Wang et al., 2003] Wang, Y., DeWitt, D. J., and Cai, J.-Y. (2003). X-Diff: An Effective
Change Detection Algorithm for XML Documents. In Proc. ICDE, Bangalore, India.

[Weiss et al., 2010] Weiss, S., Urso, P., and Molli, P. (2010). Logoot-Undo: Distributed
Collaborative Editing System on P2P Networks. IEEE Transactions on Parallel &
Distributed Systems.

[Wolfson, 2002] Wolfson, O. (2002). Moving Objects Information Management: The
Database Challenge. In Proc. NGITS, Caesarea, Israel.

[Yin et al., 2008] Yin, X., Han, J., and Yu, P. S. (2008). Truth discovery with multiple
conflicting information providers on the web. IEEE Trans. on Knowl. and Data Eng.

[Yuan et al., 2014] Yuan, H., Qian, Y., Yang, R., and Ren, M. (2014). Human mobility
discovering and movement intention detection with GPS trajectories. Decision Support
Systems.

[Zhang and Jagadish, 2013] Zhang, J. and Jagadish, H. V. (2013). Revision provenance
in text documents of asynchronous collaboration. In Proc. ICDE, Brisbane, Australia.

[Zhao et al., 2012] Zhao, B., Rubinstein, B. I. P., Gemmell, J., and Han, J. (2012). A
bayesian approach to discovering truth from conflicting sources for data integration.
VLDB Endow.

[Zhao et al., 2014] Zhao, Z., Cheng, J., and Ng, W. (2014). Truth Discovery in Data
Streams: A Single-Pass Probabilistic Approach. In Proc. CIKM, Shangai, China.

149

Exploitation de la structure
des données incertaines

Mouhamadou Lamine Ba

RESUME : Cette thése s'intéresse a certains problémes fondamentaux découlant d’'un
besoin accru de gestion des incertitudes dans les applications Web multi-sources ayant de
la structure, a savoir le contr6le de versions incertaines dans les plates-formes Web a large
échelle, I'intégration de sources Web incertaines sous contraintes, et la découverte de la vérité
a partir de plusieurs sources Web structurées. Ses contributions majeures sont : la gestion
de lincertitude dans le contr6le de versions de données arborescentes en s’appuyant sur un
modéle XML probabiliste ; les étapes initiales vers un systeme d’intégration XML probabiliste
de sources Web incertaines et dépendantes ; I'introduction de mesures de précision pour les
données géographiques et ; la conception d’algorithmes d’exploration pour un partitionnement
optimal de I'ensemble des attributs dans un processus de recherche de la vérité sur des sources
Web conflictuelles.

MOTS-CLEFS : applications Web multi-sources, structure, gestion de I'incertitude, contréle
de versions, intégration de données, dépendances, objets mobiles, XML probabiliste, découverte
de la vérité, attributs corrélés.

ABSTRACT: This thesis addresses some fundamental problems inherent to the need
of uncertainty handling in multi-source Web applications with structured information, namely
uncertain version control in Web-scale collaborative editing platforms, integration of uncertain
Web sources under constraints, and truth finding over structured Web sources. Its major
contributions are: uncertainty management in version control of tree-structured data using a
probabilistic XML model; initial steps towards a probabilistic XML data integration system for
uncertain and dependent Web sources; precision measures for location data and; exploration
algorithms for an optimal partitioning of the input attribute set during a truth finding process over
conflicting Web sources.

KEY-WORDS: multi-source Web systems, structure, uncertainty handling, version control,
data integration, dependency, moving objects, probabilistic XML, truth finding, attribute correla-
tions.

TELECOM

ParisTech

- L

— r 1 \
. INSTITUT DES SCIENCES ET TECHNOLOGIE.
PARIS INSTITUTE OF TECHNOLOG

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Uncertain Multi-Version Tree Data
	Web Data Integration under Constraints
	Truth Finding with Correlated Data Attributes

	Uncertain Multi-Version Tree Data
	Uncertain XML Version Control Model
	Related Work
	Research on Version Control
	Uncertain Tree-Structured Data Models
	Quality in Collaborative Editing Systems

	Preliminaries
	Probabilistic XML
	Uncertain Multi-Version XML Setting
	Multi-Version XML Documents
	Uncertain Multi-Version XML Documents
	Probabilistic XML Encoding Model

	Conclusion

	Updates in Uncertain XML Version Control
	Updating Uncertain Multi-Version XML
	 Uncertain Update Operation
	Uncertain Update over Probabilistic XML Encoding

	Evaluation of the Uncertain XML Version Control Model
	Performance analysis
	Filtering Capabilities

	Conclusion

	Merging in Uncertain XML Version Control
	Related Work
	A Typical Three-Way Merge Process
	Edit Detection
	Common Merge Cases

	Merging uncertain Multi-Version XML
	Uncertain Merge Operation
	Uncertain Merging over Probabilistic XML Encoding

	Conclusion

	Structured Web Data Integration
	Web Data Integration under Constraints
	Related Work
	Motivating Application
	Multiple Web Sources
	Uncertain Web Data Sources
	Copying Relationships between Sources

	Web Data Integration under Dependent Sources
	Main Prerequisites
	Probabilistic Tree Data Integration System

	Uncertain Web Information on Moving Objects
	Data Extraction
	Uncertainty Estimation
	Precision of Location Data
	Computing User Trust Score
	Integrating Uncertain Attribute Values

	Maritime Traffic Application
	Use Case
	System Implementation
	Demonstration scenario

	Conclusions

	Truth Finding over Structured Web Sources
	Related Work
	Preliminaries and Problem Definition
	Preliminary Definitions
	Truth Finding Algorithm
	Problem Definition

	Partition-Aware Truth Finding Process
	Weight Function for Partitions
	Exact Exploration Algorithm
	Approximative Exploration

	Experimental Evaluation
	Conclusion

	Research Perspectives
	Uncertain Multi-Version Tree Data
	Web Data Integration under Constraints
	Truth Finding with Correlated Data Attributes

	Other Collaborations
	Résumé en Français
	Préliminaires
	Concepts de base du contrôle de versions: versions et espace des versions
	Modèle de documents XML non ordonnés: définition et mise à jour

	XML probabiliste
	Les p-documents PrXMLfie: syntaxe et sémantique
	Provenance des données

	Modèle XML multi-version incertain
	Documents XML multi-version
	Document XML multi-version incertain: gestion des données incertaines
	Encodage XML probabiliste

	Mise à jour de XML multi-version incertain
	Fusion de XML multi-version incertain
	Stratégie de fusion: calcul de scripts d'édition et scénarios de fusion usuels
	Fusion de versions XML incertaines
	Fusion sur l'encodage XML probabiliste

	Expérimentation et évaluation
	Analyse de performances: données tests, implantation et analyse de coûts
	Jeux de données et implantation des tests
	Analyse des coûts

	Évaluation de la gestion des incertitudes: capacités de filtrage des données

	Conclusion

	Self References
	External References

