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D Innovation vector

H Linear observation operator

K Kalman gain matrix

Ml Local transform matrix

Pa Analysis error covariance matrix

Pf Forecast error covariance matrix

q Model error term

R Observation error covariance matrix

Y Observation vector

Φ Linear dynamic discrete operator

U Eulerian velocity field

ϕt(x0) Flow map at time level t integrated from x0

X Ensemble state matrix gathering N samples

x State variable vector



xvi Nomenclature

X′ Ensemble anomaly state matrix

x Space index

X Fluid flow trajectory map and Lagrangian displacement field

Z Ensemble of control vector

z Control vector

m Dimension of observation space

n Dimension of state space

t Time index
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Context de Travaux

Le principe de l’assimilation de données décrit une méthode d’estimation de l’état vrai
initial xt(t0) de système x(t, x) ∈ Rn à partir d’un état initial a priori xb0, un modèle
dynamique M et des mesures associées au système Y ∈ Rm. L’état initial est souvent
appelé le nom de l’état d’ébauche ou de prévision en fonction du contexte. L’état initial
estimé est appelée l’analyse. Le système d’assimilation est donnée par les trois équations
suivantes,

∂tx(t, x) + M(x(t, x), u) = q(t, x), (1)

x0(x) = xb0(x) + η(x), (2)
Y(t, x) = H(x(t, x)) + ε(t, x). (3)

La première équation est le modèle dynamique. Il est tout simplement la forme numérique
des lois physiques à prescrire l’évolution du système. L’intégration de l’état initial entre
temps initial t0 et temps finale tf fournit une trajectoire de variables d’état. L’opérateur
dynamique M est dans le cas général d’un opérateur différentiel non linéaire, qui pourrait
également dépendre des paramètres inconnus u. Dans certains cas, les paramètres inconnus
peuvent être évaluées de la même manière que l’état initial. Le modèle dynamique est
appelée imparfaite, si l’on considère un terme d’erreur du modèle q.

La seconde équation est généralement nécessaire lorsqu’on a connaissance a priori de
l’état initial. On peut modéliser l’état initial (vrai) comme la somme de l’état initial a
priori et un bruit η ∈ Rn.

La dernière équation relie les observations, Y, et la variable d’état x par un opérateur
d’observation H ∈ Rm×n, plus un terme de bruit ε ∈ Rm. Le bruit d’observation ε est
une erreur additif aléatoire. Remarque que ε est souvent liée à l’erreur instrumentale et
en effet inconnu, cependant, on suppose que il est connu a priori.

L’idée de l’assimilation de données remonte à la mise en place d’algorithmes d’interpolation
au début de la prévision météorologique numérique.

La théorie du contrôle optimal suscite une autre approche, appelée la méthode vari-
ationnelle (Var), qui elle-même imposée comme probablement la méthode la plus utilisée
de nos jours. L’assimilation variationnelle peut être grossièrement classés en méthodes
variationnelle 3D (3DVar) et 4D (4DVar) selon qu’elle considère la fenêtre temporelle
et la dynamique du système ou non. Un autre groupe important de ces méthodes, qui
comprend le filtre de Kalman comme un élément représentatif, est désigné en tant que
méthodes séquentielles. Toutes ces approches ont pour but de corriger l’état d’ébauche, le
cas échéant, étant donné les observations.
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Ensemble Kalman filter

Le filter Kalman d’ensemble (EnKF) est une formulation de Monte-Carlo du filtre de
Kalman standard. Dans ce cadre, on définit la matrice Xt = (x

(1)
t , . . . ,x

(i)
t , . . . ,x

(N)
t ) ∈

Rn×N regroupant les échantillons d’ensemble de l’état. Le EnKF est un filtre en deux
phases: dans la phase de prévision, un nuage d’états possibles est généré à partir d’une
randomisation de la dynamique ou de ses paramètres. Cet ensemble d’échantillons permet
de calculer une approximation de rang fiable de la matrice d’erreur de covariance Pf .

Pf ≈ 1

N − 1
(Xf

t − 〈Xt〉)(Xf
t − 〈Xt〉)T . (4)

Deux types principaux ont été proposés pour la deuxième étape, l’étape d’analyse. La pre-
mière se repose sur une approche de Monte Carlo directe, qui introduit des échantillons de
observation avec bruit (Burgers et al., 1998; van Leeuwen and Evensen, 1996; Houtekamer
and Mitchell, 1998). Le second correspond à la technique du filtre racine carrée. (Ander-
son, 2003; Bishop et al., 2001; Ott et al., 2004; Tippett et al., 2003; Whitaker and Hamill,
2002). Ces derniers régimes évitent les problèmes d’échantillonnage associés à l’ensemble
de petite taille. Ce résultat est obtenu en limitant l’analyse dans l’espace engendré par
les perturbations d’ensemble de prévisions centrées. Une réalisation possible est l’filtre de
Kalman d’Ensemble Transforme(ETKF), proposé initialement par Bishop et al. (2001):

A′a = A′fT, (5)

où A′f = 1√
N−1

(Xf
t − 〈Xt〉)f représente la matrice de la racine carrée de la matrice Pf

and T ∈ RN×N .

Variational methods

Le problème de l’assimilation de données dans le cadre des méthodes variationnelles peut
être reformulé comme suit: On a l’intention d’estimer le vecteur d’état, x, à partir de la
Eq.(3) soumis à la contrainte dans la forme d’équation du modèle dynamique d’évolution
(1) et l’équation de modélisation de l’état initial (2). Lorsque les opérateurs concernés sont
non-linéaires, la procédure d’assimilation variationnelle consiste à effectuer une linéarisa-
tion de la dynamique autour d’une trajectoire actuelle et à manœuvrer l’optimisation par
rapport à une solution de l’incrémentation. La fonction coût en termes de l’incrémentation
δx0 est donc défini comme suit:

J(δx0) =
1

2
‖δx0‖2B +

1

2

∫ tf

t0

‖H(x(x, t))− Y(x, t)‖2Rdt. (6)

Habituellement, un système de deux boucles imbriquées est employé pour compte de
l’involution des termes d’ébauche par la dynamique non linéaire tout en gardant la simplic-
ité de trouver une incrémentation optimale déterminée par la dynamique linéaire tangent et
son adjoint. Une comparaison schématique d’assimilation variationnelle et d’assimilation
séquentielle est présentée dans la figure 1.

Méthode Proposée et Applications

Récemment, plusieurs schémas destinées à coupler les avantages des méthodes d’ensemble
et les stratégies d’assimilation variationnelle ont été proposés. Un groupe de ces méth-
odes hybrides conserve le formalisme des procédures d’un algorithme du gradient itératif
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Figure 1 – Scheme comparison between 4DVar and EnKF

de la fonction coût dérivée dans le cadre de méthodes variationnelles. Dans ce groupe,
l’algorithme est généralement construit par l’incorporation dans la fonction coût varia-
tionnelle d’un covariance d’ébauche d’ensemble(Hamill and Snyder, 2000; Lorenc, 2003;
Buehner, 2005; Liu et al., 2008, 2009; Zhang et al., 2009; Buehner et al., 2010a,b; Krysta
et al., 2011; Clayton et al., 2012; Fairbairn et al., 2013; Buehner et al., 2013; Desroziers
et al., 2014). L’autre groupe des méthodes hybrides conserve le formalisme du filtre de
Kalman d’ensemble, et vise en principe à l’assimilation des données asynchrones (Hunt
et al., 2004; Zupanski, 2005; Fertig et al., 2007; Hunt et al., 2007; Sakov et al., 2010). Un
autre attribut remarquable de ce groupe est que l’étape d’analyse explicite ou de mise à
jour en termes de filtre de Kalman tend à être remplacée par une procédure d’un algo-
rithme du gradient itératif de certains fonction coût (Zupanski, 2005; Solonen et al., 2012;
Sakov et al., 2012).

L’ossature de cette thèse se repose sur une méthode variationnelle basée sur l’ensemble.
Cette méthode tombe dans la catégorie de la méthode hybride dans lequel le but est de
bénéficier des avantages des techniques d’assimilation variationnelle (4DVar) et du filtre de
Kalman d’ensemble (EnKF) tout en contournant leurs faiblesses. Une description complète
de la stratégie proposée est listé dans le chapitre 5 suivie d’une validation sur le modèle
de Shallow Water dans le chapitre 6. Notre procédé consiste plusieurs améliorations par
rapport aux autres procédés existants. On a proposé un nouveau schéma de la boucle
imbriquée dans laquelle la matrice de covariance de erreur d’ébauche est mis à jour pour
chaque boucle externe. Notons ici k que l’indice de boucle externe. Au début de la k-
ième boucle externe, on a proposé d’intégrer les champs de l’état ensemble entières tout
au long de la fenêtre d’assimilation. Et la mise à jour de la matrice de covariance d’erreur
d’ébauche est calculée à partir de cet ensemble:

Xb,k+1
t = ϕt(X

b,k
0 ), (7)

A′k+1
b ≈ 1√

N − 1
((x

(1)b,k+1
0 − 〈xb,k+1

0 〉, . . . ,x(N)b,k+1
0 − 〈xb,k+1

0 〉). (8)

On a aussi combiné des schémas différents de la mise à jour d’ensemble avec deux
régimes de localisation: la covariance localisée et l’ensemble local. Le premier est couplé
avec la méthode d’observation perturbée, et la seconde est associé à la méthode de trans-
formation directe. En termes de l’approche de la mise à jour directe, on a exploité les liens
entre la matrice de covariance de erreur d’analyse et l’inverse de Hessian de la fonction
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coût en 4D, et on a introduit une procédure de minimisation quasi-Newton s’appuyant sur
une approximation de l’inverse de Hessian.

A′k+1
b = A′kb H

− 1
2

I . (9)

L’objectif principal de cette thèse également survient dans l’étude des techniques d’assimilation
efficaces pour les observations de données d’images. A cette fin, les méthodes d’ensemble
proposées ont été évalués sur des données synthétiques et réelles. Leurs performances ont
été comparées à une méthode de 4DVar standard et plusieurs méthodes d’ensemble pro-
posés dans la littérature. On a constaté que la méthode d’ensemble constitue une solution
efficace pour gérer les données incomplètes, ce qui constitue la situation standard associé
à des observations d’image. Avec les données observées partielles, les méthodes d’ensemble
surpassent la 4DVar standard en terms de reconstruction de composant non observée. On
a également observé que l’ensemble généré par une perturbation de paramètre fournit une
dispersion de l’ensemble plus pertinent et permet de mieux rapprocher les statistiques
d’erreur d’ébauche lorsque le paramètre d’intérêt est lié à des effets physiques. Le coût du
calcul (temps CPU et demandes de mémoire) de méthodes d’ensembles sont considérable-
ment inférieur que la méthode de 4DVar standard si une technique de calcul parallèle
approprié est déployée.

Les méthodes proposées ont été également évalué dans le cadre des données d’image ex-
périmentale bruyants d’un écoulement à surface libre fourni par un capteur Kinect (chapitre
7). Ces observations montrent grande région de données manquantes. Nos méthodes don-
nent de meilleurs résultats pour suivre la hauteur de la surface libre et présenter des avan-
tages dans le traitement des discontinuités. Un opérateur d’image nonlinéaire directe basé
sur l’erreur de reconstruction d’image a été évaluée pour ces techniques d’ensemble sur un
modèle quasi-géostrophique de surface d’écoulement océaniques. Les méthodes d’ensemble
proposées ont montré à constituer techniques intéressantes dans le contexte général d’un
opérateur d’observation d’image nonlinéaire.

Approche du Modèle Stochastique

Afin de traiter une forte différence d’échelle entre les données d’image et la résolution
de la grille du modèle dynamique, on a exploré la performance d’une représentation du
modèle de Shallow Water sous l’incertitude de location. Les équations de la dynamique des
écoulements stochastique sont construits sur l’hypothèse que la quantité d’intérêts (masse,
quantité de mouvement ou énergie) est transporté par la particule fluide stochastique. La
motivation principale est l’assimilation des images à haute résolution dans les modèles
dynamiques à grande échelle. Cela constitue une situation standard en géophysique. Ce
modèle introduit un modèle de sous-maille encodage des effets des processus physiques
observés sur l’observation à haute résolution. Ce modèle permet aussi un coût de calcul
moins cher par rapport à RANS ou DNS. On a montré comment estimer le paramètre
de modèle sous-maille à partir des données directement et à partir de notre méthode
variationnelle basée sur d’ensemble. Les évaluations ont été réalisées avec des données
d’images synthétique 1D, synthétique 2D et réelles 2D, respectivement. Les résultats sont
encourageants et montrent un grand potentiel pour traiter des données d’image en haute
résolution.



Introduction

Thesis topic:

In experimental fluid mechanics, extracting information from observations measured in
laboratories has always been a great tool to complement the knowledge from theoreti-
cal fluid dynamics, as the latter relies on studying and solving the governing equations
(Navier-Stokes equations) derived from the conservation laws. One fruitful result for such
information extraction process are numerous empirical formulas inducted from various ap-
plications. Those measurements can also be used to validate theories and to reveal the
flow phenomenon that the dynamic models fail to predict. With the development of com-
putational fluid dynamics (CFD), especially in the field of Numerical Weather Prediction
(NWP) applications, and in order to meet the demand of better predicting atmospheric
states at the lowest possible computational cost, an approach to integrate simultaneously
the observations into the prediction models has been gradually formulated through the
years. This approach bears the name of ‘data assimilation’ (DA).

Data assimilation (DA) can have various definitions from different perspectives. From
the perspective of meteorology or oceanography, Talagrand (1997) states that the assimila-
tion process is "using all the available information, determine as accurately as possible the
state of the atmospheric or oceanic flow", or more specifically, Blum et al. (2009) suggest
that "the ensemble of techniques which, starting from heterogeneous information, permit
to retrieve the initial state of the flow." Wikle and Berliner (2007) interprets this term
from a statistical view point as "an approach for fusing data with prior knowledge (e.g.,
mathematical representations of physical laws; model output) to obtain an estimate of the
distribution of the true state of a process."

Although the principle of DA can indeed be applied to many disciplines, it is not a
surprise that DA techniques originated from atmospheric science. The reason mainly hinges
on the fact that the atmospheric system is highly sensitive to initial conditions (Lorenz,
1963).

A typical DA system is composed of three aspects: the model, the observations, and
the assimilation method. The models can be very different depending on the applications
field. In the case of the regional ocean modeling system (ROMS), it is a primitive equation
model in the field of oceanography. The main variables include but are not limited to
velocity, pressure, temperature, salinity, etc. To govern the evolution of these variables,
there are the equations of mass balance, momentum balance, energy balance and advective-
diffusive. In addition to these equations, we also need the knowledge of air-sea interaction,
boundary conditions, horizontal and vertical mixing parameterization and other sources of
effects which eventually interfere with the course of flow. The model is rather complex,
even though it has been already subject to many simplifications and hypotheses. Within
this thesis, I focus on ‘toy’ models which process the similar characteristic as operational
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models used to describe the geophysical flows. Those toy models are computationally
cheaper, but remain quite general.

Another aspect of the DA system lay in the available observations. Historically, a large
portion of the data corresponds to in situ measurements. These observations are heteroge-
neous and are much scarcer than the number of corresponding model variables (especially
in oceanography). This type of data would result in a classical "ill-posed problem" if ob-
servations are directly used to estimate the actual state, and thus justifies the introduction
of a ‘background’ state into the DA system. Along with the development of the remote-
sensing technology since 1970s, more and more image data is captured by satellite sensors.
These image sequences have a much higher spatial and temporal density than other obser-
vations. One may think that the assimilation of high-resolution image data would lead to
a drastic improvement compared to sparse data. However, this is not the case since there
is another aspect to the story. Firstly, we need to face the balance problem between the
state variables, since the variables inferred from remote-sensing approaches generally do
not respect the equilibrium rules. Besides, more observations lead to a high conditional
number for the assimilation cost function, which will eventually devastate the data assimi-
lation process. Furthermore, the image data is only indirectly linked to the state variables,
and usually the luminance function can hardly reflect all the state variables present in the
dynamic model. These new problems posed by image data imply that the DA method is
to be re-examined in this context. Note that the image data assimilation has been a topic
drawing more and more attention since the last decades and several strategies have been
proposed to deal with these difficulties, (Papadakis and Mémin, 2008; Corpetti et al., 2009;
Souopgui, 2010; Titaud et al., 2010; Beyou et al., 2013b).

To sum up, the assimilation technique can be viewed as a learning process of a dynamic
model on the basis of the observations available by adjusting the model’s parameters (the
initial conditions can be viewed as model parameters in this sense).

This thesis focuses on the investigation of assimilation methods and their applications
related to data assimilation. A particular interest of this thesis is to explore the approaches
dedicated to assimilate image data. To achieve this goal, modifications to the method may
be made either to the model, to the extraction of observations, or to the assimilation
algorithm itself.

Thesis Outline

Part I Context

Chapter 1: Data assimilation In the first chapter, we introduce briefly the data assim-
ilation problem dedicated to NWP.

Chapter 2 & 3: Variational methods, Sequential methods The second and third
chapter contain the basic mathematical aspects of variational methods and sequential
methods, respectively. As the central method in this thesis is a hybrid method relying
on both variational and Kalman filter methods, it is crucial to give a basic outline of
both approaches. We leave a description of the state of the art of the hybrid method
to the second part.



Introduction 7

Part II Hybrid method

Chapter 4: Hybrid methods review This part starts with a review of the hybrid meth-
ods proposed and tested by other researchers so far. The motivation and needs for
hybrid methods are thoroughly presented. We also highlight the key differences be-
tween these methods provided in the existed literature.

Chapter 5: Ensemble-based 4DVar The algorithms of the ensemble-based 4DVar that
we have been working on are detailed in this section. We focus on the enhancements
made to the method and highlight the advantages in comparison to other methods.
There are three important aspects on which we concentrate:

• The first one concerns the extra outer loop, the background update and the
associated background error covariance matrix. In the literature, the extra outer
loop is usually considered unnecessary for an ensemble-based method because
of the relatively low conditional number of the cost function. However, as some
results of this thesis show it, the extra outer loops can significantly improve the
results.

• The second point is the update methods of ensemble associated with two con-
secutive outer loops or two assimilation windows, which can be either stochastic
(with perturbed observations) or deterministic. The method of Liu et al. (2008)
adopts the former. But the latter is also possible and is used in 4DEnKF pro-
posed by Hunt et al. (2007).

• The third aspect is the localization technique, which can either localize the
covariance or use local ensembles.

Part III Application

Chapter 6: Shallow water model verification This chapter is mainly based on the
article elaborated with my coworkers C. Robinson, D. Heitz and E. Mémin. Instead
of emphasizing on the comparative result with 4DVar, this chapter highlights the
properties of the ensemble-based 4DVar. Moreover, different approaches are numer-
ically compared and discussed. Two cases are mainly treated: the Gaussian error
case and the slope error case. The Gaussian error case is studied thoroughly with
a comparison between various configurations including different ensemble update or
localization techniques. The slope error case contains three scenarios: height obser-
vations, velocity observations, and complete observations.

Chapter 7: Application with image data This chapter begins as a continuity of the
previous chapter. Firstly, we introduce the experimental setup and the parameter
configuration. The method showing how the surface height is extracted from the
image sequence captured by Kinect sensor is presented. We focus here on the ob-
servation treatment, including bad points elimination, blind spot interpolation and
potential filtering of the observations. Real world results on experiments raw data
are then provided.

This second part of this chapter gives a succinct but complete presentation of the
SQG model and of its coupling with the image data. We also introduce the principles
of image motion estimation and image observation operators. Finally, the results are
provided both in the case of synthetic image data and real world SST image data.
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Part IV Stochastic model approach

Chapter 8: Shallow water model under location uncertainty The objective of this
chapter consists in assimilating high-resolution image data by processing an analysis
on a coarser grid through a dynamics defined from an uncertainty principle where
subgrid data are defined as a stochastic process. The model tested in this chapter
is introduced in the article of Mémin (2014). We present the complete formulation
of the conservative shallow water model under location uncertainty and explain the
associated terms, e.g, diffusion terms and stochastic terms.

Chapter 9: Ensemble-based parameter estimation: scheme and results This chap-
ter is devoted to the presentation of an ensemble estimation of uncertainty parameters
from the high-resolution image data. This method is then tested with the model de-
scribed in chapter 8. Both synthetic data and real image data captured from camera
Kinect have been assessed.

A general conclusion, in which some perspectives are given, closes this manuscript.



Part I

Context





Chapter 1

Data assimilation

1.1 Introduction

The idea of data assimilation can be traced back to the setup of interpolation algorithms
at the inception of numerical weather prediction. Those interpolation algorithms were
based on the simple ideas of obtaining the analysis by interpolating the observation to
the dynamic numerical grid points. Pioneering works by Bergthorsson and Döös (1955)
and Cressman (1959), later combined with a statistical interpretation by Gandin (1965)
together give birth to a methodology called optimal interpolation (OI). OI is able to deal
with more complex observations and is relatively easy to implement. The optimal control
theory shed light on another approach, referred to as the Variational method (Var) which
imposed itself as probably the most used method nowadays. Variational assimilation can
be roughly categorized into 3D variational (3DVar) and 4D variational (4DVar) methods
depending on whether or not a temporal window and the system dynamics are considered
in the DA system. It has long been known that the 3DVar approach is equivalent to
the OI approach (Lorenc, 1986). Details regarding this method will be elaborated in
section 1.4.2. Another prominent group of methods, which includes the Kalman filter as
a representative element, is referred to as sequential methods. We will discuss the related
topics in section 1.4.1. All these approaches aim to correct the background state, if any,
given the observations.

1.2 The assimilation process

This section aims at providing a general mathematic description of the data assimilation
problem. As recalled in the introduction, the data assimilation principle depicts a method
for estimating the true initial state xt(t0) (with superscript ‘t’ standing for ‘true’, to be
distinguished from the time index) of system x(t, x) ∈ Rn from an a priori initial state xb0
(the subscript ‘0’ stands for the time instant t0), a dynamic modelM and the measurements
Y ∈ Rm associated with the system. The a priori initial state is often called the background
state (xb0 with superscript ‘b’) or forecast state (xf0 with superscript ‘f ’) depending on the
context. The estimated initial state is called the analysis (xa0 with superscript ‘a’). The
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assimilation system is given by the following three equations,

∂tx(t, x) + M(x(t, x), u) = q(t, x), (1.1)

x0(x) = xb0(x) + η(x), (1.2)
Y(t, x) = H(x(t, x)) + ε(t, x). (1.3)

The first equation is the dynamic model. It is simply the numerical form of the physical
laws prescribing the system evolution. The integration of the initial state from time t0 to
time tf provides a trajectory of the state variables. The dynamic operator M is in the
general case a nonlinear differential operator that could also depend on some unknown
parameter u. In certain cases, the unknown parameters can be estimated in the same way
as the initial state. The dynamic model is called imperfect, if we consider a model error
term q.

The second equation is usually necessary when we have a priori knowledge of the initial
state xb0. It is usually referred to as the background state. We can model the initial state,
x(t0, x), as the sum of the a priori initial state and some noise η ∈ Rn.

The last equation links the observations, Y, and the state variable x through an ob-
servation operator H ∈ Rm×n, plus some noise term ε ∈ Rm. The observation noise ε is a
random, additive observation error. Note that ε is often related to the instrumental error
and indeed unknown, however, it can be assumed to be known a priori.

For the sake of simplicity we will restrict the discussion here to linear models, that is to
say, the observation operator H and the dynamic model operator M are bounded as linear
operators. The estimation for nonlinear systems is described in Chapter 2 and Chapter 3.

1.3 Linear optimal estimation

Here we consider a linear observation operator H instead of H, so Eq.(1.3) reads,

Y = Hx + ε. (1.4)

We aim to find an estimate x̂ of the true state x based on the knowledge of observation Y.
The error term ε is assumed to be unbiased and has the covariance matrix R written as

R = E(εεT ).

The operator E(εεT ) stands for the mathematical expectation of the tensor product of two
random error terms. This section is mainly based on Gelb (1974).

1.3.1 Linear least squares estimation

The problem described above corresponds to the classic linear least squares estimation. In
least square estimation, we choose x̂ so that its value minimizes the discrepancy between
the observation and the corresponding projection value of the model into the observation
space. In a least-square sense, we seek the argument that minimizes the scalar cost function
J :

J = (Y −Hx̂)T (Y −Hx̂). (1.5)

The minimization of J is obtained by canceling its gradient with respect to x̂:

∂J

∂x̂
= 0 = HTHx̂−HTY. (1.6)
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The optimal estimator x̂ is given as:

x̂ = (HTH)−1HTY, (1.7)

Taking account of the error covariance term R, we modify slightly the previous expressions
by "weighted least-square" estimation which minimizes the weighted square discrepancy:

J = (Y −Hx̂)TR−1(Y −Hx̂). (1.8)

The estimator in this case reads,

x̂ = (HTR−1H)−1HTR−1Y. (1.9)

Note this approach requires no specific knowledge of the error terms of the problem.

1.3.2 Maximum likelihood estimation

The principle of maximum likelihood estimation consists in estimating the argument that
maximizes the conditional probability of the observations given the true state p(Y|x). We
could easily observe from Eq.(1.4) that the conditional probability density function of Y
conditioned upon x actually equals the density function of error ε centered at Hx. If the
observation error ε is assumed to be Gaussian distributed with mean zero and covariance
matrix R, the conditional probability density function can be expressed as,

p(Y|x) =
1

(2π)m/2det(R)1/2
exp[−1

2
(Y −Hx)TR−1(Y −Hx)]. (1.10)

Maximizing this probability density function corresponds exactly to the minimization of
the cost function (1.8).

1.3.3 Bayesian minimum variance estimation

From a Bayesian inference point of view, the optimal estimation to problem (1.4) consists
of nothing but finding the a posteriori conditional density function, p(x|Y), of the state
vector given the observation. According to Bayes’ theorem,

p(x|Y) =
p(Y|x)p(x)

p(Y)
, (1.11)

where p(x) is the a priori probability density function with regard to the state vector x.
This distribution indicates the a priori knowledge of the state variable. Eq.(1.2) and (1.1)
give us a way of modeling the statistical model of x based on the background state xb0 and
the error term η. The observation marginal probability density function p(Y) is given by

p(Y) =

∫
p(Y|x)p(x)dx.

This marginal remains hard to define. It corresponds to a normalization constant and its
knowledge is in general not needed. p(Y|x) follows the same definition as in the maximum
likelihood estimation.

Like the observation error term, the error term η is also assumed to be Gaussian
distributed with mean zero and covariance matrix B,

B = E(ηηT ),
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so x given by
x = xb + η, (1.12)

follows also a Gaussian distribution N (xb,B) with mean xb and covariance matrix B.
Finally, the a posteriori conditional density function reads (up to a constant):

p(x|Y) ∝ exp[−1

2
(Y −Hx)TR−1(Y −Hx)− 1

2
(x− xb)TB−1(x− xb)]. (1.13)

Matrix R and B are called the observation error covariance matrix and the background
error covariance, respectively. We note that the distribution of x conditioned on Y is still
Gaussian.

With p(x|Y), we can easily build an estimator based on the minimum variance
estimation principle. The minimum variance (unbiased) estimator x̂ provides, as its
name indicates, the estimation of minimum variance. It can be proven that the minimum
variance estimator corresponds to the a posteriori conditional mean E(x|Y). By definition
of the variance, we have the following cost function,

J = tr[
∫

(x̂− x)(x̂− x)Tdx], (1.14)

This form is equivalent to minimizing the norm of the error terms, which can be written
as,

J =

∫
(x̂− x)T (x̂− x)p(x|Y)dx, (1.15)

The cost function is minimized for a null gradient.

∂J

∂x̂
=

∫
2(x̂− x)p(x|Y)dx = 0, (1.16)

x̂ =

∫
xp(x|Y)dx = E(x|Y). (1.17)

By introducing the Gaussian distributed statistical model of x and Y, we intend to find
the estimator which is a linear combination of Y and of the background state xb,

x̂ = K(Y −Hxb) + xb, (1.18)

so we can rewrite the cost function in terms of K,

J =

∫ (
K(Y −Hxb) + xb − x

)T(
K(Y −Hxb) + xb − x

)
p(x|Y)dx, (1.19)

∂J

∂K
=

∫ (
K(Y −Hxb) + xb − x

)
(Y −Hxb)Tp(x|Y)dx = 0, (1.20)

⇐⇒ E
((
K(Y −Hxb) + xb − x

)
(Y −Hxb)T

)
= 0, (1.21)

E
(
K(Y −Hxb)(Y −Hxb)T

)
= E

(
(x− xb)(Y −Hxb)T

)
, (1.22)

K = E
(
(x− xb)(Y −Hxb)T

)(
E
(
(Y −Hxb)(Y −Hxb)T

))−1
, (1.23)

K = E
(
η(ε+ Hη)T

)(
E
(
(ε+ Hη)(ε+ Hη)T

))−1
, (1.24)

K = E
(
ηηTH

)(
E
(
εεT + HηηTHT

))−1
, (1.25)
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To simplify the expression K, we account for the relationships in Eq.(1.4) and Eq.(1.12).
Besides, if η and ε are assumed to be uncorrelated, then expression K reads:

K = BHT (R + HBHT
)−1

. (1.26)

The estimator is thus given by

x̂ = xb + BHT (HBHT + R)−1(Y −Hxb), (1.27)

or alternatively through the Sherman-Morrison-Woodbury formula1 as

x̂ = xb + (HTR−1H + B−1)−1HTR−1(Y −Hxb) (1.28)

The second expression collapses to Eq.(1.9) when neither a piori knowledge of the state
nor the error is available.

From Eq.(1.27), the a posteriori error covariance matrix P̂ is obtained as:

P̂ = E((x̂− xt)(x̂− xt)T ), (1.29)

which reads with form (1.28),

P̂ = B−BHT (HBHT + R)−1HB, (1.30)

Note that an empirical (unbiased) expression of (1.29) as an average value calculated from
a finite set of samples x(i) is given by,

P̂ =
1

N − 1

N∑
i=1

(x̂− x(i))(x̂− x(i))T , x̂ =
1

N

N∑
i=1

x(i). (1.31)

1.4 Available methods

In section 1.3, optimal estimation (in a linear sense) has been written as a static problem
considering only Eq.(1.2) and Eq.(1.3) of the DA problem. Here we additionally take into
account the state variables dynamics (1.1).

1.4.1 Sequential methods

The sequential methods denote many different methods including the particle filter, the
Kalman filter, etc. This type of methods is mainly based on the principle of Bayesian
minimum variance estimation. The term "sequential" refers to the way in which the
observations are assimilated: the state is propagated by the dynamic model forward in
time; at a certain time when the observation is available, the state forecast xf is corrected,
yielding the analysis state xa.

1The Sherman-Morrison-Woodbury formula is (A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1,
where A,U,C and V are matrix (Higham, 2002).
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Kalman filter. The Kalman filter is derived from minimum variance estimation in a
Gaussian linear context. To comply with traditional Kalman filter notations, we rewrite
Eq.(1.1) in a discrete linear form,

xk+1 = Φkxk, (1.32)

where Φ is the linear dynamic discrete operator. Suppose we have some a priori information
about the state and its error covariance matrix at time instant tk, and the observation is
available at time instant tk+1. Then the propagation of error can be described by,

Pf
k+1 = ΦkP

a
kΦ

T
k + Qk, (1.33)

where Pf and Pa bear the name of background or analysis error covariance matrix, re-
spectively.

Pf = E((xf − xt)(xf − xt)T ), (1.34)

Pa = E((xa − xt)(xa − xt)T ), (1.35)

and Q ∈ Rn is the model error covariance matrix defined by E(qqT ). The full scheme of
the Kalman filter can be expressed as algorithm 1.

Algorithm 1 Kalman Filter Algorithm
1: procedure Analysis
2: From time instant k, compute the forecast state xfk+1 with the forward integration

of relation (1.32)
3: Compute the forecast error covariance matrix Pf

k+1 based on the error propagation
equation (1.33)

4: The analysis state xak+1 can be obtained directly from

xak+1 = xfk+1 + Kk+1(Yk+1 −Hxfk+1), (1.36)

where Kk+1 is the Kalman gain matrix. It reads from Eq.(1.27) by substituting B
with Pf :

Kk+1 = Pf
k+1H

T (HPf
k+1H

T + R)−1, (1.37)

or from Eq.(1.28)
Kk+1 = (HTR−1H + Pf

k+1

−1
)−1HTR−1. (1.38)

The Eq.(1.37) also corresponds to the Sherman-Morrison-Woodbury formula, this ex-
pression of the Kalman gain is computationally advantageous as the inversion involved
is performed in the observation space, which is usually of a lower dimension than the
state space.

5: The analysis error covariance matrix Pa
k+1 is updated by Eq.(1.30):

Pa
k+1 = Pf

k+1 −Pf
k+1H

T (HPf
k+1H

T + R)−1HPf
k+1. (1.39)

6: Propagate the analysis state xk+1 and associated error covariance matrix Pa
k+1 to

the next instant when the observations are available
7: end procedure

The detailed description of the Kalman filter and related techniques will be given in
chapter 3.
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Particle filter. The particle filter is directly related the Monte-Carlo methods in which
a set of particles are formulated to represent the model’s probability density function.
These particles are driven by the dynamic model in time and are weighted according to
an importance sampling ratio. Eventually one can have all the information needed from
the weighted ensemble (mean, variance, etc.). The procedure consists in approximating
the posterior probability density function as a weighted combination of the particles’ prior
probability density function:

p(x|Y) =

N∑
i=1

qiδ(xi), (1.40)

the weight qi for each particle is calculated by:

qi =
p(Y|xi)∑N
j=1 p(Y|xj)

. (1.41)

where the conditional probability density function p(Y|xj) usually assumes the Gaussian
form described in equation (1.10). In practice, this weight is attached to the corresponding
particle. This procedure is called importance sampling. It is interesting to point out that
each particle remains unchanged during this course.

Note also that the particle filter is still not yet developed for meteorological or oceano-
graphic applications.Van Leeuwen (2009) gives a comprehensive review of particle filtering
in geophysical systems.

1.4.2 Variational methods

The variational methods originated from the optimal control theory and variation calculus
(Lions, 1971). The principle of calculus of variation simply states that the extrema of
certain functional is obtained by setting the first variation of the functional to zero. Note
that this is only a necessary condition. Suppose we have a functional defined as

J =

∫ tf

t0

F (t, x, x′)dt, (1.42)

where x is a function of t and F is twice differentiable in all variables. The necessary
condition for J to be an extremum is

δJ = 0, (1.43)

where δ is the variation operator. This also relates to the Euler-Lagrange equation,

d

dt

∂F

∂x′
− ∂F

∂x
= 0. (1.44)

The variational methods have been first introduced into the DA problem by Sasaki
(1958) and later extended to the "four dimensional analysis" in Sasaki (1970). In this
approach, the cost function is defined as the sum of squares of the discrepancy between
observation and "objectively modified values". These "objectively modified values" are
denoted by Ys ≡ Hx(t) and correspond to the projection value of the model space in the
observation space. The cost function takes the form:

J ≡
∫ tf

t0

(
Ys(t)− Y(t)

)T
R−1

(
Ys(t)− Y(t)

)
dt. (1.45)



18 Chapter 1. Data assimilation

The first variation can be expressed as

δJ = δ

∫ tf

t0

(
Ys(t)− Y(t)

)T
R−1

(
Ys(t)− Y(t)

)
dt,

= 2

∫ tf

t0

{ ∂J
∂Ys

, δYs(t)}dt, (1.46)

where {•, •} denotes the associated inner product. From this definition, we can conclude
the form of the gradient of the cost function ∇J .

δJ = {∇xJ, δx}, (1.47)

Assuming the dynamic model is linear with xt = Φtx0, the cost function depending on
the initial condition x0 can be written as:

J(x0) =

∫ tf

t0

(
HΦtx0 − Y(t)

)T
R−1

(
HΦtx0 − Y(t)

)
dt, (1.48)

and the first variation reads,

δJ =

∫ tf

t0

(HΦtδx0)TR−1
(
HΦtx0 − Y(t)

)
dt

= 2

∫ tf

t0

{∇x0J, δx0}dt (1.49)

By setting the first variation of the cost function to zero, we have the solution x̂0 to
the variational problem.

x̂0 = (ΦT
t HTR−1HΦt)

−1ΦT
t HTR−1Y. (1.50)

We could easily verify that in a linear scenario, the optimizer of Eq.(1.50) is indeed
equivalent to the optimizer (1.9) as can be concluded from linear least square estimation
with a flow matrix Φt defined as the identity (no dynamics); it is also equivalent to the
optimizer (1.27) deduced from minimum variance estimation with an a priori Gaussian
distributed background error term. Under the same condition, the equivalence between
the variational methods and the Kalman filter can also be demonstrated (Li and Navon,
2001). The final analysis state at tf based on an integration of the initial analysis Eq.(1.50)
and the analysis state at tf based on equation (1.36) are equivalent. However, when applied
within the assimilation interval, the variational assimilation and the Kalman filter differ.
The former corresponds to a smoothing procedure as the whole set of measurements are
taken into account, whereas the latter relies only on the past data.

Although the variational methods show a great potential, their applications are limited
for high dimensional spaces. The problem is still more intractable for nonlinear operators.
Many important works have been done in the 1980s that are designed to deal with this
difficulties. Le Dimet and Talagrand (1986), as one of the pioneers in this field, intro-
duced the adjoint minimization technique that transforms the constrained problem into a
sequence of unconstrained problem. Since then, the efficient implementation of variational
assimilation techniques have been made possible.

To sum up, the data assimilation problem in the framework of variational methods can
be rephrased as: we intend to estimate the state vector, x, from the Eq.(1.3) subject to
the constraint in the form of the dynamic evolution model equation (1.1) and the initial
state modeling equation (1.2). The further development of variational methods is shown
in Chapter 2.
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1.4.3 Other methods

Several other data assimilation methods have been proposed in the literature. Some are
designed as a combination of several aforementioned methods. For example, the Weighted
Ensemble Kalman Filter (WEnKF) (Papadakis et al., 2010; Beyou et al., 2013b) is a
combination of the particle filter and the ensemble Kalman filter. It has proved to be
promising in dealing with high uncertainty image data. Some are based on simplification
of the previous frameworks. For instance, the optimal nudging method is realized by
adding an extra forcing relaxation term into the dynamic model. Such forcing term is
usually of diffusive-type constructed by the product of a tunable nudging coefficient and
the discrepancy between the observation and the corresponding projection of the model
space in the observation space (Lorenc et al., 1991; Zou et al., 1992).

1.5 Summary

Starting from a general mathematical description of the system of equations involved in
the DA, this chapter described in detail the basic principles of optimal estimation. A brief
preview of the popular methods used in data assimilation has been as well presented.
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Chapter 2

Variational Methods

In this chapter, we aim at providing a more complete presentation of variational assim-
ilation methods. In particular, the potential nonlinearity of the observation and of the
dynamics will be taken into consideration.

2.1 The problem of variational data assimilation

We recall the cost function (1.8),

J ≡
∫ tf

t0

(
Ys(t)− Y(t)

)T
R−1

(
Ys(t)− Y(t)

)
dt,

where now the observation equations

Ys(t) = H(xt)

involved a nonlinear operator. And the state variable, xt, is driven by the nonlinear
evolution equation dynamics.

xt = ϕt(x0) = x0 +

∫ t

0
M(x(s))ds, (2.1)

The flow map (viewed here as a function of a random initial condition) is denoted ϕt(x0).
We can also define ∂xϕt(x) as the tangent linear operator of flow map ϕt,

δxt = ∂xϕt(x)δx0, (2.2)

The tangent linear model of the differential expression of dynamics (1.1) is defined as,

∂tδx(t, x) + ∂xM(x(t, x), u)δx(t, x) = 0, (2.3)

where ∂xM(x) denotes the tangent linear operator of M. It is defined as

lim
β→0

M(x + βdx)−M(x)

β
= ∂xM(x)dx. (2.4)

Therefore the tangent flow map corresponds to the integration of the tangent linear model,

δxt = ∂xϕt(x)δx0 = δx0 +

∫ t

0
∂xM(x(s))δx(s)ds. (2.5)
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2.1.1 Adjoint equation technique

Recall the first variation equation (1.49),

δJ(Ys(t)) = 2

∫ tf

t0

{ ∂J
∂Ys

, δYs(t)}dt,

= 2

∫ tf

t0

{R−1
(
Ys(t)− Y(t)

)
, δYs(t)}dt. (2.6)

Lagrange multipliers

The general principle of dealing with constrained optimization problem aims at incorpo-
rating the constrain in the cost function. One way to do this consists in modifying the cost
function with an additional term weighted by Lagrange multipliers. The new cost function
reads,

L(x,Λ) =

∫ tf

t0

(
Ys(t)− Y(t)

)T
R−1

(
Ys(t)− Y(t)

)
dt+

∫ tf

t0

{Λ, ∂tx(t, x) + M(x(t, x)))}dt.
(2.7)

The minimization problem of cost function (1.8) subject to dynamic constrain (1.1) is
now transformed in an unconstrained minimization problem of Lagrange function L, The
minimization of L is obtained by canceling its derivative:

∂L
∂x

=

∫ tf

t0

2∂xH∗R−1
(
H(xt)− Y(t)

)
dt

+
∂

∂x
(Λtfxtf − Λ0x0 −

∫ tf

t0

∂Λ

∂t
xdt) +

∫ tf

t0

{Λ, ∂xM}dt,

=

∫ tf

t0

(
2∂xH∗R−1

(
H(xt)− Y(t)

)
− ∂Λ

∂t
+ ∂xM∗Λ

)
dt = 0, (2.8)

∂L
∂Λ

= Eq.(1.1). (2.9)

In equation (2.8), as defined in Eq.(2.5), the operator ∂xH is the tangent observation
operator defined by,

lim
β→0

H(xt + βdxt)−H(xt)

β
= ∂xH(xt)dxt, (2.10)

and the operators ∂xH∗ and ∂xM∗ are adjoint operator associated with the tangent linear
operators ∂xH and ∂xM respectively: {Hg, f} = {g,H∗f}. Eq.(2.8) yields indeed the
adjoint equation associated with Lagrange multipliers vector. And we can show that the
gradient of cost function with respect the initial condition x0 is:

∇x0J = −Λ(t0),

Note that we used the rule of derivative of an inner product given any vectors u and
v,

∂

∂x
{u,v} = {∂u

∂x
,v}+ {u, ∂v

∂x
},

and the definition of adjoint,
{Hu,v} = {u,H∗v}.
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The arguments of tangent linear operator and its adjoint operator indicate, when clarity
is needed, the point at which this derivative is computed. It is straightforward to check
that the linear tangent of a linear operator is the operator itself.

Reducing the constraint

Another method named originally "reducing the constraint" from Le Dimet and Talagrand
(1986); Talagrand (1997) consists to express the constraint by transforming the cost func-
tion to one which only depends on the initial condition. In order to evaluate the term
δYs(t), we must consider that the tangent linear observation operator ∂xH with δxt is
defined through Eq.(2.5), so we have,

δYs(t) = ∂xH(xt)∂xϕt(x)δx0, (2.11)

then the first variation equals to,

δJ = 2

∫ tf

t0

{R−1
(
Ys(t)− Y(t)

)
, ∂xH(xt)∂xϕt(x)δx0}dt (2.12)

An elegant solution to this problem consists in relying on an adjoint formulation Li-
ons (1971). Within this formalism, considering the adjoint operator ∂xH∗, ∂xϕ∗t of linear
operators ∂xH, ∂xϕt respectively allows us writing the relationship,

{R−1
(
Ys(t)− Y(t)

)
, ∂xH(xt)∂xϕt(x)δx0} = {∂xϕ∗t∂xH∗R−1

(
Ys(t)− Y(t)

)
, δx0}. (2.13)

Note that ∂xϕ∗t is associated with the tangent linear flow map operator and is related to
the adjoint model operator ∂xM∗. According to the definition of the gradient (1.47), the
gradient is given by,

∇x0J = 2

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1

(
Ys(t)− Y(t)

)
dt. (2.14)

In order to evaluate the gradient, we define the adjoint variable δ∗x driven by the adjoint
model operator ∂xM∗,{

−∂tδ∗xt + ∂xM∗δ∗xt = −2∂xH∗R−1(H(xt)− Yt),
δ∗x(tf ) = 0.

(2.15)

Because the adjoint model operator ∂xM∗ is also linear, the solution to the above equation
can be put as a linear combination of the δ∗x(tf ), and such a linear operator is indeed the
adjoint operator aforementioned ∂xϕ∗t .

δ∗xt = ∂xϕ
∗
t δ
∗xtf . (2.16)

The gradient functional is thus obtained by a backward integration of equation (2.15)
corresponding to the adjoint variable, δ∗x, with its final value sets to zero. The solution of
the backward integration supplies the initial value of adjoint variable δ∗x0, which provides
directly the gradient as:

∇x0J = −δ∗x0.

The backward integration of Eq.(2.15) requires the knowledge of the innovation term
H(xt) − Yt, therefore a forward integration of the nonlinear dynamical system must be
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done prior to the adjoint calculation. The model trajectory calculated from the nonlinear
dynamic system is used to construct the tangent linear model operators.

It is clear that the Lagrange multipliers vector mentioned in the previous method and
the adjoint variable are indeed equivalent. For the sake of simplicity, we will multiply the
cost function (1.8) with 1

2 so that the factor of the RHS of adjoint equation (2.15) reduces
to one. No matter which approach we use, by canceling the gradient with respect to the
initial condition,

∇x0J(x̂0) = 0,

we can deduce in theory the minimizer,

x̂0 = −H−1∂xJ(t0), (2.17)

where H is the Hessian matrix gathering the cost function second derivatives:

H =

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1∂xH∂xϕtdt. (2.18)

2.1.2 Parameter estimation with variational data assimilation

In this section, we will describe the model parameter estimation with variational assimila-
tion technique. Recall that (1.1), takes the parameter u into consideration. Thus the flow
map operator reads,

ϕt(x0, u) = xt = x0 +

∫ t

0
M(x(s), u)ds, (2.19)

The modified cost function of Eq. (1.8) reads,

J(x0, u) ≡
∫ tf

t0

(
Ys(t))− Y(t)

)T
R−1

(
Ys(t)− Y(t)

)
dt,

where

Ys(t) = H(xt)(ϕt(x0, u)). (2.20)

We intend to find the first variation of J in the form,

δJ(x0, u) = 2

∫ tf

t0

({ ∂J
∂x0

, δx0}+ {∂J
∂u

, δu})dt. (2.21)

The partial derivative ∂J
∂x0

is obtained through Eq.(2.14), we still need to determine the
partial derivative of the cost function with respect to the parameter u. The tangent linear
model corresponding to Eq.(1.1) is defined as,

∂tδx(t, x) + ∂xM(x(t, x), u)δx(t, x) + ∂uM(x(t, x), u)δu = 0, (2.22)

where ∂uM(x, u) denotes the tangent linear operator of M, defined as

lim
β→0

M(x, u+ βdu)−M(x, u)

β
= ∂uM(x, u)du. (2.23)
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The linearity of ∂xM(x) and ∂uM(x) allow us to express the solution of Eq.(2.22), δxt as a
linear combination of δx0 and δu with the tangent linear operator of ϕt(x, u) with respect
to u:

δxt = ∂xϕt(x, u)δx0 + ∂uϕt(x, u)δu

= δx0 +

∫ t

0
∂xM(x(s), u)δx(s)ds+

∫ t

0
∂uM(x(s), u)δuds, (2.24)

so the variation of Ys reads,

δYs = ∂xH(xt)∂xϕt(x, u)δx0 + ∂xH(xt)∂uϕt(x, u)δu, (2.25)

and the first variation of J is given by,

δJ = 2

∫ tf

t0

{R−1
(
Ys(t)− Y(t)

)
, ∂xH(xt)∂xϕt(x, u)δx0}dt+

2

∫ tf

t0

{R−1
(
Ys(t)− Y(t)

)
, ∂xH(xt)∂uϕt(x, u)δu}dt. (2.26)

By introducing the adjoint linear model ∂uϕ∗t (x, u) of the tangent linear model ∂uϕt(x, u)
to the second term in the RHS of (2.26), considering Eq.(2.13) we obtain the following
relationship:

δJ = 2

∫ tf

t0

{∂xϕ∗t∂xH∗R−1
(
Ys(t)− Y(t)

)
, δx0}+

2

∫ tf

t0

{∂uϕ∗t∂xH∗R−1
(
Ys(t)− Y(t)

)
, δu}. (2.27)

Hence the partial derivative of the cost function with respect to u reads,

∂J

∂u
= 2

∫ tf

t0

∂uϕ
∗
t∂xH∗R−1

(
Ys(t)− Y(t)

)
dt. (2.28)

This equation is obtained here by the approach "reduce the constraint" aforementioned.
This partial derivative can also be derived from the Lagrange Multiplier technique. In
Eq.(2.7), M(x(t, x)) is replaced by M(x(t, x), u). This modification does not change the
expression of ∂L∂x , and leads to an extra partial derivative with respect to parameter u,

∂L
∂u

=
∂

∂u

∫ tf

t0

{Λ, ∂x

∂t
}dt+

∂

∂u

∫ tf

t0

{Λ,M(xt, u)}dt

=
∂

∂u
(Λtfxtf − Λ0x0 −

∫ tf

t0

∂Λ

∂t
xdt) +

∫ tf

t0

{Λ, ∂uM}dt,

=

∫ tf

t0

∂uM∗Λdt = 0, (2.29)

and
∂L
∂u

=
∂J

∂u
,

at stationary point. It is easy to see that Eqs.(2.28) and (2.29) are indeed equivalent
with Λ, the Lagrange multiplier vector or the adjoint variable associated with x, driven by
backward integration of adjoint equation (2.15). The partial derivative is calculated based
on an integration over time of the product of adjoint model ∂uM∗ and Λt.
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2.2 Four dimensional variational data assimilation

In practice, we usually have some a priori knowledge on the unknown initial condition
besides the observation discrepancy defined in Eq.(1.8). The initial condition and the a
priori background state is linked by Eq. (1.2). The background state guaranties the well
posedness of the state vector inference from the observation, since the observation is usually
of low resolution compared to the state vector; moreover, it provides a balanced relation-
ship amid the state vectors, for instance it enables enforcing the geostrophic relationship
between the pressure gradient and the velocity.

A standard four dimensional variational data assimilation problem is formulated as the
minimization of the following objective function from Lorenc (1986):

J(x0) =
1

2
‖x(t0, x)− xb0(x)‖2B +

1

2

∫ tf

t0

‖H(x(t, x))− Y(t, x)‖2Rdt. (2.30)

This objective function involves the L2 norm with respect to the inverse covariance tensor
‖f‖2A =

∫
Ω f(x)A−1(x, y)f(y)dxdy. The associated minimization problem is referred to in

the literature as the strong constraint variational assimilation formulation. This constitutes
an optimal control problem where one seeks the value of the initial condition, x0, that yields
the lowest error between the measurements and the state variable trajectory. Note that
such an energy function can be interpreted as the log likelihood function associated to
the a posteriori distribution of the state given the past history of measurements and the
background.

2.2.1 Probability point of view of 4DVar

Assuming the flow map is a diffeomorphism (e.g. a differentiable map whose inverse exists
and which is differentiable as well), we get

p(xt|Ytf , . . . , Yt0 ,xbt0) ∝p(Ytf , . . . , Yt0 |ϕt(x0),xb0)p(ϕt(x0)|xb0),

∝
tf∏
ti=0

p(Yti |ϕti(x0))p(ϕt(x0)|xb0),

∝
tf∏
ti=0

p(Yti |ϕti(x0))p(ϕ−1
t (xt)|xb0)|det∂xϕ

−1
t (xt)|,

∝
tf∏
ti=0

p(Yti |ϕti(x0))p(x0|xb0)|det∂xϕ
−1
t (xt)|. (2.31)

We assumed here that the observations at a given time depend only on the state at the
same time, and that they are conditionally independent with respect to the state variables.
Now, replacing the probability distribution by their expressions Eqs (1.3) and (1.2), we
get the objective function Eq.(2.30) up to a time dependent factor. If the flow map is
volume preserving and invertible, we have |det∂xϕ

−1
t (xt)| = |det∂xϕt(xt0)| = 1 and we

get exactly the sought energy function. In that case, the maximum a posteriori estimate
hence corresponds to the objective function minima. In the Gaussian case, the maximum
a posteriori estimate and the conditional mean with respect to the whole measurements1

1It is a well-known fact that this estimate constitutes the minimum variance estimate, Anderson and
Moore (1979).
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trajectory are identical. Let us note, nevertheless, that the a posteriori pdf is Gaussian
only if the dynamical model and the observation operator are both linear (as in that
case Eϕt(x0) = ϕ(E(x0))). We also point out that the tangent linear expression of the
dynamical models, as defined in geophysical applications, are even not invertible in general.
For a time and space discrete approximation of the tangent linear dynamical operator
(i.e. a matrix), a pseudo inverse may be defined from a Singular Value Decomposition
(SVD). Noting ∂xϕt(x0) this matrix operator, which depends on time and on a given
initial condition, we can write

∂xϕt(x0) = U(t,x0)Σ(t,x0)V T (t,x0), (2.32)

where Σ(t,x(0)) = diag(σ1, · · · , σp, 0 · · · , 0) is a real diagonal matrix gathering the square-
root of the eigenvalues of the matrix ∂xϕTt ∂xϕt, and both U and V are orthonormal ma-
trices, corresponding respectively to eigenvectors of matrix ∂xϕ∂xϕT and ∂xϕT∂xϕ respec-
tively. The three matrices are n×n and may depend on time and on the initial condition.
The pseudo inverse is

∂xϕ
−1
t (x0) = V (t,x0)Σ−1(t,x0)UT (t,x0), (2.33)

where Σ−1(t,x′0) = diag(1/σ1, · · · , 1/σp, 0 · · · , 0) and for divergence free volume preserv-

ing dynamics we get |detϕ−1
t (xt)| = |

p∏
i=1

σ−1
i | = 1 and the logarithm of the posterior

corresponds to objective function Eq.(2.30).

2.2.2 Byproducts of 4DVar data assimilation

We recall in this subsection some well-known properties of the standard variational func-
tional that will be useful in the following (see Li and Navon (2001); Lorenc (1986); Ra-
bier and Courtier (1992)). A (local) minimizer of functional Eq.(2.30) is provided for
∂x0J(x0) = 0. The gradient with respect to the initial condition is given by Eq.(2.14):

∂x0J(x0) = B−1(x0 − xb0) +

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1(H(xt)− Yt))dt, (2.34)

and the minimizer reads
x̂0 = −H−1∂xJ(0), (2.35)

where H is the Hessian matrix gathering the cost function second derivatives:

H = B−1 +

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1∂xH∂xϕtdt. (2.36)

We have shown through Eq.(1.50) that when the measurement and the dynamics op-
erators are both linear, the objective function is convex. The estimate, if it is accurately
computed, corresponds thus to the unique global minimum. Denoting the true state xt0,
we have ∇J(x̂0 − xt0 + xt0) = 0⇔

(B−1 +

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1∂xH∂xϕtdt)(xt0 − x̂0) ≈

B−1(xt0 − xb0) +

∫ tf

t0

∂xϕ
∗
t (x0)∂xH∗R−1(H(ϕt(x

t
0))− Y(t))dt, (2.37)
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where a linearization around the true state, xt, of the cost function gradient at the minimum
point has been performed. Note that a strict equality only applies for linear operator.
Multiplying the left hand and right hand terms by their transpose expression, taking the
expectation and assuming the background errors xb0−xt0 and the innovation Y(t)−H(xt(t))
are uncorrelated, we get, the classical result:

P0 ≈
(

B−1 +

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1∂xH∂xϕtdt

)−1

= H−1, (2.38)

which states that the initial error covariance matrix P0 = E((xb0 − xt0)(xb0 − xt0)T ) is given
by the inverse Hessian matrix of the functional. This matrix is usually called the analysis
covariance matrix, and is specifically denoted by a superscript "a". From distribution
Eq.(2.31), for a volume preserving transformation, we observe immediately that an optimal
initial value supplies an optimal trajectory that maximizes the posterior distribution. Thus,
at a given time, the analysis error covariance reads (assuming without loss of generality a
zero mean):

Pa
t =

∫
(ϕt(x

b
0 − xt0)ϕTt (xb0 − xt0))p(xt|Ytf , . . . ,Yt0 ,xbt0)dxt. (2.39)

If the dynamical model is linear, ϕt(x0) = Φtx0, we then get:

Pa
t = ΦtP

a
0ΦT

t , (2.40)

which describes the way the errors are propagated along time in variationnal data assimi-
lation. This formula also unveils a recursion, involving a forecast state x̄ft = Φtx̂t−dt and a
forecast covariance matrix Pf

t = ΦtP
a
t−dtΦ

T
t . In the linear case, with an additive stationary

noise, the update expression can be written as Eq.(1.36), (1.37) and (1.39) respectively.
They indeed correspond to the recursive Kalman filter formulation (associated to a noise
free dynamics) given in algorithm 1.

2.2.3 Functional minimization

Due to the dimension of the state space, the minimization of the function (2.30) requires
implementing an iterative optimization strategy. The most efficient optimization procedure
needs to evaluate the functional gradient at several points. This adjoint backward dynamics
in Eq.(2.15) provides the gradient functional at the initial time:

∂x0J(x0) = −Λ(t0) + B−1(x0 − xb0). (2.41)

Many iterative optimization schemes can be used to serve this purpose. This includes as a
non limitative list: conjugate gradient methods and quasi-Newton methods (Nocedal and
Wright, 2004). We will present here a simple quasi-Newton optimization procedure where
the estimate at iteration xk+1

0 is updated as:

xk+1
0 = xk0 − αnH̃−1

xk0
∂x0J(xk0), (2.42)

where H̃−1
xn0

denotes an approximation of the Hessian inverse computed from the functional
gradient with respect to xk0 ; the constant αk is chosen so that the Wolfe conditions
are respected. This constitutes the standard 4DVar data assimilation procedure. An
algorithmic synopsis of the 4DVar is described in algorithm 2.

Note that the construction of the background error covariance matrix B and the obser-
vation error covariance matrix R is not a trivial task. The detailed illustration of related
techniques are presented in chapter 5.
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Algorithm 2 Variational data assimilation algorithm
1: procedure Analysis
2: Set an initial condition: x0

0 = xb0, given convergence toleration ε.
3: Compute xt with the forward integration of relation (1.1)
4: Solve for the initial condition x0 which minimize the problem (2.30) with xb0,Y,B,R

known.
5: for k = 1 : kmax do
6: Compute the gradient by Eq.(2.41) based on the prior evaluation of adjoint

variables driven by Eq.(2.15),
7: Iteratively searching for optimizer based on (2.42),
8: Check convergence condition: ‖xk+1

0 − xk0‖ < ε,
9: end for

10: end procedure

2.3 Incremental 4D variational data assimilation

2.3.1 The problem

When the operators involved are nonlinear, the variational assimilation procedure can be
improved by introducing a nonlinear least squares procedure in the same spirit as a Gauss-
Newton incremental strategy Courtier et al. (1994). This optimization strategy consists
in performing a linearization of the dynamics around the current trajectory and operating
the optimization with respect to an incremental solution. Instead of correcting directly
the initial state x(t0) as in the previous subsection, the incremental approach consists in
correcting an increment, δx0, that evolves according to the tangent dynamics equation
computed around a given state x:{

∂tδx(x, t) + ∂xM(x)δx(x, t) = 0,
δx(x, 0) = xb0 − x0 + η.

(2.43)

The cost function in terms of the increment δx0 is consequently defined as:

J(δx0) =
1

2
‖δx0‖2B +

1

2

∫ tf

t0

‖H(x(x, t))− Y(x, t)‖2Rdt, (2.44)

where
xt = ϕt(xb) + ∂xϕt(xb)δx0, and δx0 = δx(x, 0)− (xb0 − x0),

or alternatively,

J(δx0) =
1

2
‖δx0‖2B +

1

2

∫ tf

t0

‖∂xH δx(x, t)−D(x, t)‖2Rdt, (2.45)

where
δxt = ∂xϕt(xb)δx0, and δx0 = δx(x, 0)− (xb0 − x0),

and where the innovation vector D(x, t) is defined as:

D(x, t) = Y(x, t)−H(ϕt(xb)). (2.46)



30 Chapter 2. Variational Methods

2.3.2 Adjoint equation

The adjoint system associated to this functional is directly inferred from the previous one
and reads:{

−∂tΛ(t) + (∂xM)∗ Λ(t) = (∂xH)∗R−1(∂xH ∂xϕt(x0)δx0 −D(x, t))
Λ(tf ) = 0,

(2.47)

with the gradient functional at the initial time given by,

∂δx0J(δx0) = −Λ(t0) + B−1δx0. (2.48)

2.3.3 Outer loop and inner loop

We note that the incremental functionals (2.44) and (2.45) correspond to a linearization
around a given background solution of the innovation term. It is now quadratic and thus,
has a unique minimum. This tangent linear dynamic model and the linear tangent obser-
vation operator have some advantages. For example, the product between the operator
∂xM and the increment is simply a matrix multiplication. However, the linear tangent
model is only an approximation of the non-linear model, we must always be cautious on
the validity conditions of the linear tangent model. It is obvious that if the xt that we
are looking for differs greatly from the background xb, the linear hypothesis may not hold
anymore. Thus Courtier et al. (1994) proposed to use two interleaved loops to incorporate
the evolution of the background solution through the nonlinear dynamics, while keeping
the simplicity of the internal loop to recover an optimal increment driven by the tangent
linear dynamics. The idea simply states: in each outer loop, we redefine the initial condi-
tion, and the innovation vector is computed based on the new trajectory integrated from
the modified initial condition with the complete non-linear model; in the inner loop, the
tangent dynamic model is linearized around the new model trajectory. The computed
initial increment allows us to update the current background initial solution. Let us note
that in practice, due to the high computational cost associated with the dynamical models
in geophysical applications, only a low number of external iteration are performed.

This procedure considers a correction term xk−1
0 − xb0 to the energy function’s back-

ground error term. This correction term constrains the whole initial condition and makes
the background discrepancy term consistent with the background error term denoted by
η. (see algorithm 3).

Different variants of the incremental technique can be defined depending on how the
increment within each outer loop is defined. In the previous case, δxk0 is defined as the
difference of the initial condition between two consecutive outer loops. Another possibility
to define the increment δxk0 consists in keeping the difference between the initial condition
and the background state. This way of proceeding requires to add a correction term to the
innovation term, as shown in Weaver et al. (2003) (algorithm 4). It can be easily shown
that these two choices are indeed equivalent.

In our case, we advocate for a slightly different approach. As a matter of fact, in this
thesis we aim at focusing on cases for which only a background of bad quality is available,
along with a badly known background error covariance matrix. Such case typically occurs
in image based assimilation problems in which the background state is often given by a
noisy image with possibly large areas of missing data. Hence, here the background error
covariance matrix B is supposed to be a function of the outer loop index k:

Bk = (xk−1
0 − xref )(xk−1

0 − xref )T ,
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Algorithm 3 Incremental 4DVar: Courtier et al. (1994) Nested Loops Algorithm
1: procedure Analysis
2: Prescribe the initial condition x0

0 = xb0, given convergence toleration ξ and ε.
3: Outer loop:
4: for k = 1 : kmax do
5: Compute the innovation vector, Dk

t = Yt −H(ϕt(x
k−1
0 )),

6: Inner loop: Solve for the initial condition increment δx0 which minimizes the
problem

J(δxk0) =
1

2
‖δxk0 + xk−1

0 − xb0‖2B +
1

2

∫ tf

t0

‖∂xH δxkt −Dk
t ‖2Rdt,

δxkt = ∂xϕt(x
k−1
0 )δxk0,

7: while ‖∂
δxk,n0

J(δxk,n0 )‖ > ε do
8: an Iterative gradient descent based on (2.42) or other descent method

(LBFGS, algorithm 5), where the gradient is computed by

∂
δxk,n0

J(δxk,n0 ) = −Λ(t0) + (xk−1,n
0 − xb0)TB−1δx0, (2.49)

and from the prior evaluation of the adjoint variables driven by Eq.(2.47),
9: end while

10: xk0 = xk−1
0 + δxk0,

11: Check convergence condition ‖δxk0 − δxk−1
0 ‖ > ξ,

12: end for
13: end procedure
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where the operator f(t) takes the mean value of f(t) and for the first outer loop x0
0 = xb0.

This approach will be elaborated in the next section combined with the preconditioning
technique.

Algorithm 4 Incremental 4DVar: Weaver et al. (2003) Nested Loops Algorithm
1: procedure Analysis
2: Prescribe the initial condition x0

0 = xb0, given convergence toleration ξ and ε.
3: Outer loop:
4: for k = 1 : kmax do
5: Dk

t = Yt −H(ϕt(x
k−1
0 )) + ∂xH δxk−1

t ,
6: Inner loop: Solve for the initial condition increment δx0 which minimize the prob-

lem

J(δxk0) =
1

2
‖δxk0‖2B +

1

2

∫ tf

t0

‖∂xH δxkt −Dk
t ‖2Rdt,

δxkt = ∂xϕt(x
k−1
0 )δx0,

7: while ‖∂
δxk,n0

J(δxk,n0 )‖ > ε do
8: an Iterative gradient descent based on (2.42) or other descent method

(LBFGS, algorithm 5), where the gradient is computed by

∂
δxk,n0

J(δxk,n0 ) = −Λ(t0) + B−1δx0. (2.50)

and from the prior evaluation of the adjoint variables driven by Eq.(2.47),
9: end while

10: xk0 = xb0 + δxk0,
11: Check convergence condition ‖δxk0 − δxk−1

0 ‖ > ξ,
12: end for
13: end procedure

2.3.4 Functional minimization

We briefly describe in this section the minimization procedure on which we rely in the inner
loop of algorithm 3, 4 and 6. The LBFGS (Limited memory BFGS) method (Nocedal and
Wright, 2004) is a limited-memory quasi-Newton method based on the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method. Unlike its parent method, BFGS, which needs to update
the full inverse Hessian matrix at each iteration based on the current cost function curva-
ture and the inverse Hessian matrix constructed from the previous iteration, the LBFGS
method only stores few vectors of the size of the full Hessian to approximate the Hessian
matrix. Therefore LBFGS is an ideal optimization strategy to deal with high dimensional
problem. Another advantage of LBFGS method is related to the ensemble-based method
in which the approximated inverse Hessian matrix can be used to update the analysis error
covariance matrix. We will discuss more thoroughly this point in chapter 5. A schematic
representation of the LBFGS method is described in algorithm 5. A more detailed presen-
tation is given in chapter 9 of Nocedal and Wright (2004).
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Algorithm 5 Limited Memory BFGS Algorithm
1: procedure LBFGS
2: Prescribe initial increment δx0

0 and convergence tolerance ε
3: Prescribe initial inverse Hessian approximation H−1

x0
0
, usually diagonal.

4: while ‖∂δxn0 J(δxn0 )‖ > ε do
5: Searching for new point based on the step αn and the direction
−αnHn∂δxn0 J(δxn0 )

δxn+1 = δxn − αnHn∂δxn0 J(δxn0 ), (2.51)

6: Update the inverse Hessian matrix,

H−1
δxn0

= (V n)TH−1
δxn0

V n + ρnsn(sn)T , (2.52)

where

ρn =
1

ynT sn
,

V n = I − ρnyn(sn)T ,

sn = δxn+1 − δxn,
yn = ∂δxn+1

0
J(δxn+1

0 )− ∂δxn0 J(δxn0 )

7: end while
8: end procedure

2.3.5 Preconditioning and conditioning of the incremental assimilation
system

In this section we will show the condition number of the Hessian of the cost function (2.45)
plays an important role in formulating the increment solution.

The minimization of the cost function (2.45) comes to solve a linear system

Hδx0 = b. (2.53)

Such an expression is obtained by canceling the gradient of (3.31) with respect to the
initial increment x0,

∂δx0J(δx0) = B−1δx0 +

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1(∂xH∂xϕtδx0 −D(t))dt = 0, (2.54)

⇐⇒ (B−1 +

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1∂xH∂xϕtdt)δx0 =

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1D(t)dt

(2.55)

and letting

H = B−1 +

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1∂xH∂xϕtdt, (2.56)

b =

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1D(t)dt. (2.57)
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The possibly ill-conditioned nature of such a system depends on the condition number of
the Hessian matrix. The condition number is given by the ratio of the largest eigenvalue
over the minimum eigenvalue. The larger the condition number is, the more sensitive the
system is to errors both in the b vector and in the estimate. In practice, the system 2.53
is never solved directly. An iterative method is always used. However, large condition
number also slows down the inner loop convergence rate (Haben et al., 2011a).

A known solution to improve a badly-conditioned system, consists in solving an equiv-
alent system with a lower condition number. Preconditioning constitutes a practical pro-
cedure to reach that goal. A common procedure relied on applying a change of variable
consists in setting:

δxt = Uδzt, (2.58)

such that the new Hessian matrix, H̃ = U
1
2
THU

1
2 , possesses a lower condition number.

Note that the original Hessian is here symmetric positive definite,

H = H 1
2
TH 1

2 , H 1
2 = B−

1
2 +

∫ tf

t0

R−
1
2∂XH∂xϕtdt. (2.59)

We see immediately that if U is set to the inverse of square root of the Hessian matrix, then
the original linear system is solved in a single step. This approach, which leads to the lowest
unity condition number, is obviously unpractical since it requires solving the system. In
variational assimilation, a common procedure consists to operate a preconditioning through
the background correlation matrix. This is called the control variable transform(CVT):

δxt = B
1
2 δzt. (2.60)

Note that the Hessian has a first component that is the background information matrix.
This background covariance matrix can be thus considered as a rough approximation of the
Hessian inverse. To highlight its role on the Hessian conditioning, the condition number
of the Hessian matrix can be computed in a simple case. Let us assume in the following
that the measurements noise are independent and spatially identically distributed with a
constant covariance R = σI (and σ constant). We assume also that the measurements and
the state variable live in the same space (H = I). The Hessian condition number can be
bounded in the matrix 2-norm by:

‖H‖2 ≤ λmax(B−1) + σ−1

∫ tf

t0

‖Ct‖2, (2.61)

≤ λmax(B−1) + σ−1 max
t∈[t0tf ]

(λmax(Ct))(tf − t0), (2.62)

where λmax(A) is the largest real eigenvalue of a symmetric matrix A and Ct = ∂xϕ
T
t ∂xϕt.

As matrix Ct is in general rank deficient, its lower eigenvalue is zero and we obtain imme-
diately a lower bound of the Hessian 2-norm:

‖H‖2 ≥ λmin(B−1). (2.63)

These two bounds provide a bound on the Hessian condition number:

κ(H) ≤ λmax(B−1)

λmin(B−1)
(1 +

maxt∈[t0tf ](λmax(Ct))(tf − t0)

σλmax(B−1)
),

κ(H) ≤ κ(B)(1 + σ−1λmin(B) max
t∈[t0tf ]

(λmax(Ct))(tf − t0)). (2.64)
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We observe that this bound depends directly on the background matrix. An ill-conditioned
background matrix is likely to lead to an ill-conditioned Hessian. The Hessian conditioning
bound depends also on the larger eigenvalue of matrix Ct, which can be related to the max-
imum finite time Lyapunov exponent on the flow domain and over the assimilation interval.
Dynamics exhibiting high stretching integrated on large temporal window leads potentially
to an ill-conditioned Hessian. Non noisy perfect measurements are also a potential source
of bad conditioning. This counter intuitive situation can be well understood through the
conditional pdf given in Eq.(2.31). As a matter of fact, considering a perfect measurement
with a variance tending to zero, gives a likelihood that tends to a Dirac function. The log
posterior pdf (2.31) is: ∫ tf

t0

δ(Yt − ϕt(xt0))P (ϕt(xt0)|xbt0)dt. (2.65)

This pdf is maximal for the optimal solution and zero otherwise. If the measurements
corresponds exactly to the model dynamics – which is never the case in practice – the
optimal trajectory is given by ϕt(Yt0). However, a tiny perturbation of the initial condition
cancels the pdf and makes the estimation highly unstable.

Considering now a preconditioning with the background covariance, we get a modified
Hessian:

H̃ = I +

∫ tf

t0

B
1
2
T∂Xϕ

∗
t∂XH∗R−1∂XH∂xϕtB

1
2dt. (2.66)

With exactly the same assumption as previously, we obtain a tighter bound for the modified
Hessian:

κ(H̃) ≤ (1 + σ−1λmax(B) max
t∈[t0tf ]

(λmax(Ct))(tf − t0)). (2.67)

The background conditioning forms a potentially good candidate for the system precon-
ditioning. We used here simplified assumptions for the observation operator and for the
measurement noise. However, similar bounds can be established for a more general model
assuming the observation space is of lower dimension than the state space (Haben et al.,
2011b). As shown in this section, the background covariance matrix plays a central role.
In the chapter 5, we describe a technique in which this covariance matrix is empirically
determined based on preconditioning form of cost function.

2.4 Preconditioned incremental form of cost function

In section 2.3.5 we discussed the general idea of Hessian conditioning. The preconditioning
of variational system is generally performed through a change of variable with the matrix
square-root of the background error covariance matrix B, which leads to a new Hessian
matrix, H̃ = B

1
2
THB

1
2 with a lower condition number. Applying the CVT (2.60) to the

function (2.45), we get a modified objective function,

J(δz0) =
1

2
‖δz0‖2 +

1

2

∫ tf

t0

‖∂xH ∂xϕ t(x0)B
1
2 δz0 −D(t, x)‖2Rdt. (2.68)

This modified cost function removes B−1 from the background term. Hence no cross-
variable correlation is anymore involved in the control vector δz0. Note this change of
variable can also be viewed as a whitening filtering of the background error. Although
better conditioned, the resulting system remains in general difficult to solve and requires
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the use of the adjoint minimization setups. The associated adjoint equation is similar to
Eq.(2.47),{

−∂tΛ(t) + (∂xM)∗ Λ(t) = (∂xH)∗R−1(∂xH ∂xϕt(x0)B
1
2 δz0 −D(t, x))

Λ(tf ) = 0,
(2.69)

and the gradient of the cost function Eq.(2.68) with respect to δz0 is,

∂δz0J(δz0) = −B
1
2
TΛ(t0) + δz0, (2.70)

We have mentioned in previous section that we advocate for an update the background
error covariance matrix along with the outer loops. Generally this update of the background
error covariance between consecutive outer loops in terms of standard 4DVar method is
not performed due to the high computational cost associated to such updating. However,
as in this thesis, we will focus on an empirical, ensemble, low rank approximation of
the background error covariance, an efficient technique for such a reactualization will be
plausible. Especially since we are dealing with the preconditioned form of cost function,
the update of the background error covariance term B actually constitutes a change of
the preconditioning matrix B

1
2 revealed by Eq.(2.60). Similar to the original algorithm

proposed in Courtier et al. (1994), the convergence of the increment sequence δxk0 is not
guaranteed.

A schematic representation of the proposed strategy is shown in algorithm 6. We will
see in the next section how the update is done by using the traditional ‘NMC’ method. A
more relevant update scheme associated with the ensemble approach will be introduced in
chapter 5.

We will come back on the necessities of updating the background error covariance
matrix in chapter 6.

2.5 The background error covariance B

The background error covariance B plays a central role in formulating the analysis. In
this section we present several tracks to model this covariance matrix. In order to make
the following chapters self-explanatory, we hereby concentrate on three aspects of the B
matrix: first of all, the interpretation of the role of the B matrix in DA process; secondly,
the evaluation of the B matrix in typical operational environment; finally, the implicit
evolvement of B. This section is mainly based on the presentation provided in Bannister
(2008a,b).

2.5.1 Definition of the B matrix

The concept of the background error matrix B has been introduced in section 1.3.3. The
definition of B is given by,

B = (xb − xt)(xb − xt)T , (2.71)

where xb is the background state, xt is the true state and overbar operator suggests the
mathematical expectation. Ideally this matrix should be equivalent to the forecast error
covariance matrix defined in the method of Kalman filter, and the propagation of error
covariance matrix should be given Eq. (1.33) for linear models as,

B = MPaMT + Q, (2.72)
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Algorithm 6 Preconditioned incremental 4DVar: Precondition Updating Nested Loops
Algorithm
1: procedure Analysis
2: Prescribe the initial condition x0

0 = xb0, given convergence toleration ξ and ε.
3: Outer loop:
4: for k = 1 : kmax do
5: Dk

t = Yt −H(ϕt(x
k−1
0 )),

6: Update the square root of the background error covariance matrix B
1
2
,k.

7: Initialize the increment vector δxk0 and do an inverse control variable transfor-
mation δzk0 = (B

1
2
,k)−1δxk0.

8: Inner loop: Solve for the initial condition increment δz0 which minimize the prob-
lem

J(δzk0) =
1

2
‖δzk0‖2 +

1

2

∫ tf

t0

‖∂xH ∂xϕt(x
k−1
0 )B

1
2
,kδz0 −Dk

t ‖2Rdt,

9: while ‖∂
δzk,n0

J(δzk,n0 )‖ > ε do
10: an Iterative gradient descent based on (2.42) or other descent method

(LBFGS, algorithm 5).
11: end while
12: xk0 = xk−1

0 + B
1
2
,kδzk0,

13: Check convergence condition ‖δxk0 − δxk−1
0 ‖ > ξ,

14: end for
15: end procedure
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where Pa is the analysis error covariance matrix and Q is the model error covariance
matrix. Note that in Kalman filter, the matrix B is associated to Gaussian distributed
background errors, whereas in variational methods, a much more broader type of error
statistical distribution law could be applied. However, in most cases, we tend to have a
Gaussian distributed random error fields due to its simplicity. Besides, having the same
structure of error covariance as in the Kalman filtering offers us the possibility to compare
performance of both methods.

2.5.2 Interpretation of the role of the B matrix

The relation between the analysis and the B matrix can be revealed by Eq.(1.27):

xa = xb + BHT (HBHT + R)−1(Y −Hxb), (1.27)

This expression is valid for a static case (dynamic operator fixed to identity). By assuming
a case with a single observation with an identity observation operator as well, a simplified
version can be formulated as Bannister (2008a):

xal = xbl +Blk
xobs − xbk
Bkk + σ2

obs

, (2.73)

where the observation is available as xobs positioned at the kth element of the state vector
with error σobs. The coefficient Bkk is the variance of the kth element while Blk contains the
value of the covariance between the kth and the lth elements. A special case of Eq.(2.73)
when l = k reads:

xak = xbk +Bkk
xobs − xbk
Bkk + σ2

obs

, (2.74)

Both equations 2.73 and 2.74 show how the observation information pass to the analysis
through the B matrix. In the latter case, we can directly infer that: if Bkk � σ2

obs, then
xak ≈ xbk; if Bkk � σ2

obs, then xak ≈ xobs. This conclusion can be interpreted in an intuitive
way: when Bkk � σ2

obs, we have a much smaller background error than the observation
error which suggests we should have more confidence in the background state and vice
versa. In the former case when l 6= k, the equation (2.73) shows how the innovation
vector at the kth element propagates itself to the lth element. This ‘non-local’ effect of
B is usually used to justify the importance of the off-diagonal terms of B. In the ‘NMC’
method listed below, the off-diagonal terms are represented by a spatial correlation matrix.

2.5.3 Evaluation of the B matrix: ‘NMC’ method

To calculate precisely the covariance matrix, one needs to know the true state xt and
the a priori probability density function of xb. However, both of these terms are usually
unknown, so the B matrix must be approximated in some way. Bannister (2008a) pointed
out that in operational implementation, the B matrix is a rough approximation of the
Pf , and it is quite immediate to think that any improvement in the approximation of
matrix B should lead to a better analysis performance. A traditional way of measuring
the background error covariance is the ‘NMC’ method initially proposed by Parrish and
Derber (1992) and later polished by several articles (Derber and Bouttier, 1999).

In this method, the structure function of the B matrix is defined in a generic way as,

B = KD
1
2FF TD

1
2KT , (2.75)
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where K is the linear balance operator, which defines the multivariate covariance based on
a diagonal covariance matrix; D gathering the variance of the background error. Matrix
FF T is a spatial correlation operator. The square root of the background error covariance
matrix B

1
2 is directly given by:

B
1
2 = KD

1
2F, (2.76)

B
1
2 can be employed efficiently in the method of CVT introduced in section 2.3.5. By

doing so, the full rank B matrix no longer needs to be stored. Instead, we only need to
store the B

1
2 that can be constructed in a compact way as we shall see it.

The employment of the balance operator matrix K is based on the assumption that
the state variables can be splited into two parts: one balanced part with respect to a given
equilibrium relation and one imbalanced part. Such balance are essential in geophysics. For
example, considering for example a simple 1D shallow water case in which the geostrophic
relationship holds between the free surface height and the velocity,{

h = h,
v = vb + vu = Kvhh+ vu,

(2.77)

where we take h as the reference, and split u into two parts: the balanced part vb could be
recovered by the height field with the geostrophic relationship, plus an unbalanced part vu
that needs to be evaluated. In this case, Kvh = − g

f .
We can define the error covariance matrix of the unbalanced parts as Bu. It is a block

diagonal matrix which has no cross-covariance between off diagonal blocks variables.

Bu =

(
Bhh 0

0 Bvv

)
, (2.78)

Matrix K reads,

K =

(
I 0
Kuh I

)
, (2.79)

and Bii can be expressed as,
Bii = D

1/2
ii FF TD

1/2
ii . (2.80)

This matrix contains only the univariate variance and covariance, note that the covariance
here are only spatially-related and do not depend on other variables. So here the question
remains to find the auto covariance matrix Bxx composed of the variance matrix D and
the correlation matrix C = FF T .

The variance matrix D of background error is calculated from the mean of differences
of several samples. Each sample is provided by different forecast states at the same time
but integrated from a more or less distant past (usually 24/48 hrs forecasts).

The correlation matrix C concentrates all the information on spatial correlation asso-
ciated with a single variable. In operational applications, the horizontal correlation and
the vertical correlation are usually separated. The vertical correlation is usually easier to
treat compared to the horizontal correlation as there are much fewer vertical levels than
the horizontal nodes. Here we center on the formulation of the horizontal correlation.

In principle such spatial correlation matrix rely on the construction of compactly sup-
ported correlation functions C(x,y) (x,y ∈ R3). These functions are called compactly
supported since their values reach zero if the distance between x and y exceeds the cutoff
distance. Gaspari and Cohn (1999) proposed an efficient way of evaluating such functions.
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The whole idea consists in looking for a homogeneous and isotropic function C as a self-
convolution of compactly supported, radially symmetric functions B on R3. This is proved
by theorems 3.a.1 and 3.a.3 in Gaspari and Cohn (1999). The construction of the radially
symmetric functions B(x−y) is trivial task. In fact, B can be traced back to a even func-
tion B0(‖x− y‖) where ‖ • ‖ denotes the Euclidean distance and obviously ‖x− y‖ ∈ R.
A popular choice of B0 as a continuous, piecewise linear function can produce a 5-th order
function taking the form of equation (4.10) in Gaspari and Cohn (1999). The same corre-
lation function is widely employed in the localization technique for ensemble Kalman filter
method. See section 5.1.4 for its application in the ensemble-based variational method.

Apart from the method proposed by Gaspari and Cohn (1999), an alternative consists
to rely on the diffusion equation to preclude the calculation associated with the convo-
lution process. Weaver and Courtier (2001) use an explicit form to solve the diffusion
equation, Mirouze and Weaver (2010) finds a bridge between the implicit form of the diffu-
sion equation and the convolution of an auto regression function, while the integration of
the implicit-solved diffusion equation is simpler than the convolution method in evaluating
the correlation matrix. The diffusion equation has the capacity to adjust the length scale
as well. The idea behind the implicit (or explicit Weaver and Courtier (2001)) resolution of
the diffusion equation is that by doing a time discretization of the diffusion equation. The
spatial correlation is provided through a pseudo-time interval. The physical meaning of the
time quantity of the diffusion equation therefore mimics the length scale of the correlation
function. The spatial derivation part of the diffusion equation is retained.

Now that we have all the components of the B
1
2 matrix in Eq.(2.76), the analysis

process can be adapted from the principles of algorithm 6 to include the preconditioned
form Eq.(2.68). The proposed algorithm is listed in algorithm 7.

2.5.4 The implicit evolution of the B matrix in preconditioned incre-
mental 4DVar

We take advantage of the nested loops scheme in the incremental 4DVar method to update
the square root of the background error covariance matrix B

1
2
,k for each outer loop shown

in step 5 of algorithm 7. One motivation for such an proposition is that the variational
methods is incapable of producing the so-called a posteriori error covariance matrix, unlike
Kalman filter methods. But this do not mean that the background error covariance matrix
remains static, on the contrary, after having fixed the B matrix at the beginning of one data
assimilation window, the background error covariance indeed evolves implicitly according
to the tangent linear and adjoint models within the inner loop process. This is also outlined
in Buehner et al. (2010a).

2.6 Summary

In this chapter we tried to present a thorough overview of variational methods. The adjoint
equation technique which constitutes the keystone of variational systems and the estimation
of parameter within a variational context have been first presented. The 4DVar, followed by
the incremental 4DVar, have been also described. Two important facets of those techniques
have been thoroughly described: the preconditioning technique and the background error
covariance matrix.
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Algorithm 7 Preconditioned incremental 4DVar data assimilation algorithm
1: procedure Analysis
2: Prescribe the initial condition x0

0 = xb0, given convergence toleration ξ and ε
3: Outer loop:
4: for k = 1 : kmax do
5: Update the square root of the background error covariance matrix:

B
1
2
,k = K(D

1
2 )kF,

where
(D

1
2 )k =

√
diag((xk−1

0 − xref )(xk−1
0 − xref )T )

6: Dk
t = Yt −H(ϕt(x

k−1
0 )),

7: Do an inverse control variable transformation δz0 = B−
1
2
,kδx0,

8: Inner loop: Solve for the initial condition increment δz0 which minimizes the
problem 2.68

9: while ‖∂
δzk,n0

J(δzk,n0 )‖ > ε do
10: an Iterative gradient descent based on (2.42) or other descent method

(LBFGS, algorithm 5), where the gradient is calculated by Eq.(2.69) in which the
adjoint variable Λ is driven by Eq.(2.70).

11: end while
12: Update control initial space zk0,

zk0 = zk−1
0 + δzk0,

13: Do a control variable transformation

δxk0 = B
1
2
,kδzk0

14: Update the initial condition xb,k0 ,

xk0 = xk−1
0 + δxk0,

15: Check convergence condition:
16: if ‖δxk0 − δxk−1

0 ‖ < ξ, then
17:

xa0 = xk0,

18: Break
19: end if
20: end for
21: Evolve the analysis state xa0 to the beginning of the next cycle through the nonlinear

dynamics (1.1). The forecast state is used to initialize the next assimilation cycle.
22: end procedure
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Chapter 3

Sequential Methods: The Ensemble
Kalman Filter

The Kalman filter constitutes a powerful tool for tracking and data assimilation. However,
this technique is only well defined for linear dynamic and observation operators. In order
to incorporate a nonlinear operator defined in high dimensional spaces, Kalman filtering
must be significantly adjusted.

3.1 Extended Kalman filter

With a nonlinear discrete model operator corresponding to Eq.(1.1),

xk+1 = ϕk(xk), (3.1)

and a nonlinear observation operator equation (1.3), the first idea has been to rely on a
Taylor series expansion of nonlinear models. This constitutes the well-known extended
version of the Kalman filter (EKF). This technique works well only for slightly nonlinear
models. Its general expression is given in algorithm 8.

3.2 Ensemble Kalman filter

In nonlinear, high dimensional applications, the EKF cannot be implemented due to the
high cost associated with the construction of the evolved covariance matrix. Besides, the
implementation of the EKF relies on the local linear tangent and adjoint models, which
leads to neglect the nonlinear effects. Efficient ensemble techniques have been devised
specifically for that purpose following the work initiated by Evensen (1994). They are
mainly defined through replacing the forecast mean and covariance matrix by an empirical
expression of the ensemble mean and covariance matrix. This low-rank approximation
is accompanied by an intensive use of the incomplete SVD representation to implement
efficient matrix vector multiplications or to define a pseudo-inverse.

The Ensemble Kalman filter (EnKF) is a two-phase filter: in the forecast phase, the
ensemble is propagated by the nonlinear dynamics. A cloud of possible states is generated
from a randomization of the dynamics or of its parameters. This ensemble of samples
allows computing a low-rank approximation of the error covariance matrix. Two main
kinds of methods have been proposed for the second step, the analysis stage. The first
one relies on a direct Monte Carlo approach, which introduces measurement noise samples
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Algorithm 8 Extended Kalman Filter Algorithm
1: procedure Analysis
2: From time instant k, compute the forecast state xfk+1 with the forward integration

of relation (3.1)
3: Compute the forecast error covariance matrix Pf

k+1 based on the error propagation
equation driven by the tangent linear dynamic model

Pf
k+1 = ∂xϕkP

a
k∂xϕ

∗
k + Qk. (3.2)

4: The analysis state xak+1 can be obtained directly from

xak+1 = xfk+1 + Kk+1(Yk+1 −H(xfk+1)), (3.3)

where Kk+1 is the Kalman gain matrix. It reads

Kk+1 = Pf
k+1∂xH

∗(∂xHPf
k+1∂xH

∗ + R)−1. (3.4)

5: The analysis error covariance matrix Pa
k+1 is updated by:

Pa
k+1 = Pf

k+1 −Kk+1∂xHPf
k+1. (3.5)

6: Propagate the analysis state xak+1 and associated error covariance matrix Pa
k+1 to

the next instant when observation is available
7: end procedure

(Burgers et al., 1998; van Leeuwen and Evensen, 1996; Houtekamer and Mitchell, 1998).
The second one, corresponds to the square-root filter technique (Anderson, 2003; Bishop
et al., 2001; Ott et al., 2004; Tippett et al., 2003; Whitaker and Hamill, 2002). Those
latter schemes avoid sampling issues associated with small-size ensembles by confining the
analysis in the space spanned by the forecast ensemble centered perturbations.

3.2.1 Ensemble forecast

The term ensemble in this thesis refers to a set of samples of a system. It usually indicates
the state ensemble in the context of data assimilation. Each realization constitutes a
member of the ensemble. The more ensemble members are employed, the more accurate
are the approximations. The concept of ensemble is widely used in the Monte Carlo method
in which the evolution of the model statistics is represented by the propagation of ensemble
states at different time levels.

The ensemble can be generated by different initial conditions or parameters driven by
system (1.1). This scheme is created by perturbing the initial condition. However, more
and more ensemble systems are generated by perturbing the model parameters. Such a
procedure seems to be able to generate an ensemble with a more accurate ensemble spread.
The parameter perturbation has been used in ensemble forecast (Wei et al., 2013) and in
EnKF (Wu et al., 2008).

The ensemble generation works as follows. In the initialization stage, a multiple per-
turbation vector is added to the background field in order to generate the initial ensemble,

x
f,(i)
0 = xf0 + δ

(i)
0 , i = 1, . . . , N. (3.6)
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Each member of the ensemble is independently integrated through the nonlinear model
operator, (3.1),

x
f,(i)
t = ϕt(x

f,(i)
0 ), i = 1, . . . , N. (3.7)

Thereafter we can define matrix Xf
t = (x

f,(1)
t , . . . ,x

f,(i)
t , . . . ,x

f,(N)
t ) ∈ Rn×N gathering

the ensemble state samples, and 〈Xt〉 as the ensemble mean. The operator 〈f(t)〉 =
N−1

∑N
1 f (i)(t) takes an empirical ensemble mean of a quantity f(t) through N samples.

The ensemble covariance matrix Pe can be used to approximate the forecast error covari-
ance matrix defined in Eq.(1.34)

Pf ≈ Pe =
1

N − 1
(Xf

t − 〈Xt〉)(Xf
t − 〈Xt〉)T , (3.8)

or, alternatively,

Pf ≈ Pe =
1

N − 1
(X′ft )(X′ft )T , (3.9)

where X′ft = Xf
t − 〈Xt〉 denotes the anomaly ensemble matrix.

Remark 1: The initial ensemble field has to be integrated with the dynamic model for
some time to ensure the dynamic balance of the ensemble (Evensen, 2003).
Remark 2: The noise term δ0 added to the background field should represent the same
statistic as the background error η.
Remark 3: We assume here there is no model error. If the model is imperfect, the
integration scheme needs to be adjusted to account for the stochastic noise (Evensen,
2003).

3.2.2 Ensemble analysis scheme

The perturbed observation approach

In the pioneering work on the EnKF by Evensen (1994), the analysis scheme includes the
error statistics given by the ensemble forecast fields, but does not employ the perturbed
observation data. Burgers et al. (1998) point out that the latter must be corrected in order
to maintain a consistent error covariance of the analysis ensemble. This idea is realized by
introducing an ensemble observation.

Y(i)
t = Yt + ε

(i)
t , i = 1, . . . , N, (3.10)

then each member of the ensemble must be updated using the same formalism as the
Kalman filter update equation.

x
a,(i)
t = x

f,(i)
t + Kt(Y(i)

t −H(x
f,(i)
t )), i = 1, . . . , N (3.11)

The Kalman gain matrix, K, takes the form:

Kt = PfHT (HPfHT + R)−1, (3.12)

Note that the nonlinear observation operator is used in Eq.(3.12). In practice, the same
empirical approximation is used to calculate the terms PfHT and HPfHT :

PfHT =
1

N − 1
(Xf

t − 〈Xf
t 〉)(H(Xf

t )− 〈H(Xf
t )〉)T , (3.13)

HPfHT =
1

N − 1
(H(Xf

t )− 〈H(Xf
t )〉)(H(Xf

t )− 〈H(Xf
t )〉)T , (3.14)



46 Chapter 3. Sequential Methods: The Ensemble Kalman Filter

The analysis covariance matrix is updated empirically from the ensemble through

Pa ≈ 1

N − 1
(Xa

t − 〈Xa
t 〉)(Xa

t − 〈Xa
t 〉)T , (3.15)

instead of a direct transformation from the forecast error covariance matrix Pf . At the
end of each analysis step, the analysis ensemble is then integrated through the dynamical
model until the next observation. This provides a new forecast ensemble together with a
new forecast error covariance matrix. In practice, Pf and Pa are never explicitly calculated
nor stored as they do not appear explicitly in the analysis scheme.

The direct transformation approach

Tippett et al. (2003) argued that the use of perturbed observations can result in sam-
pling issues with small number ensembles. To overcome this potential drawback, a proper
matrix transformation must be realized to directly link the forecast ensemble error charac-
teristic to the analysis ensemble error characteristic. This transformation is made through
the introduction of the square-root of the analysis error covariance matrix. As the error
covariance matrix is a symmetric positive-definite matrix, it can be expressed as,

Pf = A′fA′f
T
, (3.16)

Pa = A′aA′a
T
, (3.17)

where the matrix A′f denotes the square root matrix of Pf . In the case of an ensemble
approximation of the error covariance, A′f is given by,

A′f =
1√
N − 1

X′ft . (3.18)

Several methods following this path have been proposed (Anderson, 2001; Whitaker
and Hamill, 2002; Bishop et al., 2001). Here we detail the example the Ensemble Trans-
form Kalman Filter (ETKF), proposed initially by Bishop et al. (2001), which consists
in assuming that A′a equals to the product of A′f right-multiplied by a transformation
matrix T:

A′a = A′fT, (3.19)

Let us note that if T is left-multiplied by A′f , we obtain a different method referred to as
the EAKF (Ensemble Adjustment Kalman Filter) proposed in Anderson (2001).

Now let us start from the updating equation of the analysis covariance matrix in the
Kalman filter:

Pa = Pf −PfHT (HPfHT + R)−1HPf . (1.39)

Considering the square root matrix, we have,

A′a = A′f [I−A′f
T
HT (HPfHT + R)−1HA′f ]

1
2 . (3.20)

This equation can be transformed through the Sherman-Morrison-Woodbury identity as,

A′a = A′f [I + A′f
T
HTR−1HA′f ]−

1
2 . (3.21)
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For sake of simplicity, we will assume a linear operator H for the observation operator.
In ETKF, the a posterior, estimate lives in the subspace generated by N samples:

〈Xa
t 〉 = 〈Xf

t 〉+X′ft w, the vector, w corresponds to the coordinates in the subspace spanned
by the sampled ensemble members. The weight, w, is fixed in order to respect the Kalman
equations.

Finally, we have:

Tt =[IN + (HA′ft )TR−1HA′ft ]−
1
2 , (3.22)

A′at =A′ft Tt, (3.23)

〈Xa
t 〉 =〈Xf

t 〉+ A′ft (HA′ft )T (HPfHT + R)−1(Yt −H(〈Xf
t 〉)), (3.24)

Xa
t =〈Xa

t 〉+
√
N − 1A′at . (3.25)

Note that from an implementation point of view, a singular value decomposition of
matrix [IN + (HA′ft )TR−1HA′ft ] is usually performed. We have thus:

T = C(Γ + IN )−1/2, (3.26)

where the matrix C and the diagonal matrix Γ contain the orthonormal eigenvalues and
the eigenvector of (HA′ft )TR−1HA′ft , respectively, and IN is the N ×N identity matrix.

The equation (3.24) can also be approximated in the same way since the residual
covariance matrix (HPfHT + R) ∈ Rm×m remains hard to invert.

〈Xa
t 〉 = 〈Xf

t 〉+ A′ft (IN −C(Γ + IN )−1CT )(HA′ft )−1(Yt −H(X̄f
t )). (3.27)

To obtain this expression, we define an expression as IN − [IN + A′f
T
HTR−1HA′f ]−1 and

apply the Sherman-Morrison-Woodbury identity to this expression:

IN − [IN + A′f
T
HTR−1HA′f ]−1 ⇐⇒ A′f

T
HT (HPfHT + R)−1HA′f . (3.28)

The above equation is left-multiplied by A′ft and right-multiplied by (HA′ft )−1 in order to
respect the form in (3.24),

A′ft

(
IN − [IN + A′f

T
HTR−1HA′f ]−1

)
(HA′ft )−1 ⇐⇒ A′ft (HA′ft )T (HPfHT + R)−1.

(3.29)

The inverse of the term [IN + A′f
T
HTR−1HA′f ] is already solved, thus we have:

A′ft (IN −C(Γ + IN )−1CT )(HA′ft )−1 ≈ A′ft (HA′ft )T (HPfHT + R)−1, (3.30)

and the term (HA′ft )−1 can be evaluated as a pseudo-inverse through SVD as well.
In addition, the square root matrix A′ is not unique and can be defined up to an

orthogonal matrix U. Judicious choices allow preserving in the analysis matrix the zero
mean of the forecast anomaly matrix (i.e. X′at U = 0⇒ X′ft TtU = 0) (Wang et al., 2004;
Sakov and Oke, 2007).

Let us note that other ensemble filters, defined from the particle filtering concept (Gor-
don et al., 1993), use also these recursive equations to build efficient filtering procedures
(Beyou et al., 2013a,b; Papadakis et al., 2010; van Leeuwen, 2010).
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3.2.3 Relationship with 4DVar

The corresponding function (2.45) can be rewritten in a simpler form as:

J(δx0) =
1

2
{δx0,Hδx0} −

∫ tf

t0

{δx0, b}+ C, (3.31)

where the Hessian, the linear term are defined in (2.56) and (2.57) respectively. The
constant term C gathers all the rest terms,

C =

∫ tf

t0

DT (t)∂xϕ
∗
t∂xH∗R−1∂xH∂xϕtD(t)dt. (3.32)

We highlight that for a linear dynamics and linear observation operator, fixing the back-
ground covariance matrix to an empirical matrix XtX

T
t /(N − 1) with Xt = φt(X0), the

tangent linear model is the linear dynamical model itself: ∂xϕ t(x0) = Φt. Consequently
we recover the Kalman filter equivalence at the end of the assimilation window. Defining
furthermore the Hessian (or the inverse of the error covariance) from the square root of
Eq.(2.56) we get exactly the ETKF solution. This equivalence holds only for a fixed single
time assimilation window (the 3DVar technique) or at the end of the assimilation window
for a linear dynamics. The ETKF technique may be useful to provide an approximate cost
function’s Hessian.

3.3 Summary

In this chapter we briefly reviewed the ensemble Kalman filter methods. The recursive
filter procedure consists of two steps: the ensemble forecast and the ensemble analysis.
The ensemble analysis scheme contains two distinctive variants: the perturbed observa-
tion approach and the direct transformation approach. Both variants have been briefly
presented.
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Hybrid Methods





Chapter 4

Hybrid Methods Review

In the previous part we firstly introduced the data assimilation problem from a optimal
estimation point of view, then the variational method has been presented from the per-
spective of optimal control of partial differentiation equations. At last, we focused on the
ensemble Kalman filter that relies on a Monte Carlo implementation of Kalman filter.

Recently, several schemes aiming at coupling the advantages of ensemble methods and
variational assimilation strategies have been proposed. Generally speaking, they differ
mainly on the framework on which they are based. One group of hybrid methods retains
the formalism of an iterative gradient descent procedures of the cost function derived in
the context of variational methods. In this group, the scheme is usually built through
the incorporation within the variational cost function of an ensemble-based background
covariance, thus it has more rigorous basis as they rely on exact descent procedures. In the
continuity of the ideas proposed for fixed time data assimilation cost function (Hessian-
incr3DVar) in Hamill and Snyder (2000) and extended later to temporal variational data
assimilation in Lorenc (2003), several authors have proposed methods that express ex-
plicitly either the background error covariance as a linear combination of the ensemble
covariance and the static covariance or the solution as a linear combination of the square
root of the ensemble-based covariance (Buehner, 2005; Zhang et al., 2009; Buehner et al.,
2010a,b; Clayton et al., 2012; Fairbairn et al., 2013; Buehner et al., 2013; Desroziers et al.,
2014). The optimization is often coupled with an adjoint scheme (Zhang et al., 2009;
Buehner et al., 2010a,b; Krysta et al., 2011; Clayton et al., 2012).

The other group of hybrid methods retains the formalism of ensemble Kalman filter,
and in principle aims at assimilating asynchronous data Hunt et al. (2004); Zupanski
(2005); Fertig et al. (2007); Hunt et al. (2007); Sakov et al. (2010). Note that the ability to
assimilate asynchronous data is indeed a topic covered by the Kalman smoother initially
proposed in van Leeuwen and Evensen (1996), then revisited as ensemble Kalman smoother
(EnKS) in Evensen and van Leeuwen (2000). (Nevertheless, the EnKS method is, by
definition, differs from the EnKF, and therefore outside of the scope of our interest in
terms of ‘hybridization’. ) Another notable attribute of this group is that when facing
high dimension problems, the explicit analysis or update step in terms of the Kalman filter
tends to be replaced by an iterative gradient descent procedures of a cost function. The
minimization procedure is similar to the variational methods, but the form of the cost
function is arbitrary. A popular choice consists in keeping the form of variational methods
(Zupanski, 2005; Solonen et al., 2012; Sakov et al., 2012; Bocquet and Sakov, 2013a). It
is important to mention at this point that although the iterative ensemble Kalman filter
(IEnKS) method, proposed in Bocquet and Sakov (2013a), is not a hybrid method by its
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definition, it actually addresses the same problem as standard 4DVar. So this method will
be introduced as well.

We will present above approaches in the following sections.

4.1 Incorporate the ensemble-based error covariance into vari-
ational system

In the inception of hybrid method, the idea has been applied to static variational assimi-
lation context referred usually to as 3DVar.

4.1.1 EnKF-3DVar

In this way, Hamill and Snyder (2000) proposed a hybrid method combining a 3DVar cost
function and the EnKF update process. Their technique consists basically to implement
in parallel several 3DVar data assimilation processes. In each process, the corresponding
ensemble forecast is used as the background condition and the background error covariance
is fixed as a weighted combination of the ensemble based covariance Pf with a static
covariance matrix Bc formulated by ‘NMC’ method.

B = α1P
e + α2B

c. (4.1)

The analysis error covariance matrix is calculated from the analysis ensemble fields.

4.1.2 EnKF-3DVar with CVT

Lorenc (2003) rephrased the idea of using ensemble covariance in variational methods in
defining the unknown increment as a linear combination of the sum of weighted ensemble
perturbations plus the traditional control variable transformation.

δx = β1P
e 1
2 δz + β2B

c 1
2 δv. (4.2)

He also argues the possibility of extending this technique to the standard 4D-Var method
by considering a flow-dependent covariance modeled by EnKF at the beginning of the
assimilation window. This covariance matrix then implicitly evolves within the assimilation
window through the tangent and adjoint models.

Localization: inverse weighting matrix

Lorenc especially highlights the crucial importance of a variance localization procedure
for the covariance produced by a limited number ensemble. He proposed a localization
procedure by using a spatial correlation function C as the weighting matrix exerted to the
background part of the cost function Jb:

Jb =
1

2

N∑
i=1

‖δαi‖2C−1 +
1

2
‖δv‖2. (4.3)

It can be shown that this formulation implies the following control variable transformation,

δx = β1

N∑
i=1

(A′e)i � δαi + β2B
c 1
2 δv. (4.4)

Note the Schur product between the ensemble perturbation and the associated control
vector.
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Localization: transform ensemble perturbation matrix

Buehner (2005) examined the different strategies of constituting the background error
covariance (perturbed 3D-Var, EnKF and the hybrid), and argued that these ensemble-
based covariance constitute good alternatives to arbitrary covariance used in the context
of operational data assimilation. He also proposed a localization scheme which differs from
the one previously proposed. In this scheme, the weighting correlation function is not
introduced into the cost function but operates a localization directly on the perturbation
matrix A′e. This new perturbation matrix P′e is defined as,

P′e = (diag(A′(1)
e )C 1

2 , . . . , diag(A′(N)
e )C 1

2 ) ≈ Pe 1
2 , (4.5)

The control variable transformation (4.2) is then applied on this localized ensemble per-
turbation matrix.

In Wang et al. (2007), both the hybrid schemes proposed by Hamill and Snyder (2000)
and Lorenc (2003); Buehner (2005) are proved to be equivalent. The two localization
schemes proposed by Lorenc (2003) and Buehner (2005) are shown to be indeed equivalent
as well.

4.1.3 ETKF-3DVar

A hybrid method relying on the Ensemble Transform Kalman Filter (ETKF) has been also
proposed in Wang et al. (2008a) to generate the analysis ensemble perturbation. Compared
to the previous hybrid EnKF-3DVar, the observation perturbation is not needed for ETKF-
3DVar. The hybrid cost function takes the form of Eq.(4.3). The ensemble perturbations
are updated following the ETKF deterministic update (refer to section 3.2.2 for more
details),

A′ae = A′fe C(Γ + IN )−1/2CT , (4.6)

This scheme has been tested with simulated observation system and real observations
experiments in Wang et al. (2008a,b). The authors found that the hybrid method could
recover unobserved moisture fields from other state variables due to the cross-variable
covariance derived directly from ensemble. Note that the ETKF scheme used to update
the ensemble perturbation does not include any localization procedures.

4.1.4 En4DVar

Previous methods could be extended to 4DVar with little effort if the evolution of error
covariance is implemented through the use of a standard adjoint minimization technique.
We will call this extended method En4DVar.

An example of En4DVar denoted by Buehner et al. (2010a,b) as 4DVar-Benkf is im-
plemented in a quasi-operational model and compared with other variational methods. In
4DVar-Benkf, the error covariance matrix employed at the beginning of the 4DVar system
is inherited from an EnKF system’s ensemble. Note that in this scheme, the EnKF system
run is independently realized prior to the 4DVar system run. It is suggested by the authors
that the integration of the 3D ensemble-based error covariance led to better analysis espe-
cially in those regions where the observation is only indirectly linked to the state variable
or where the observation are scarcer.

An operational implementation of En4DVar is studied in Clayton et al. (2012). The
authors used the ensemble-based covariance from an ensemble prediction system (EPS)
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based on ETKF. The results are encouraging. They also propose an interesting way to
preserve the variable balance of ensemble errors due to localization. The procedure can be
expressed as the following equation in accordance with the notations used in section 2.5.

δx = K{β1

N∑
i=1

[K−1(A′e)i]� δz + β2D
1
2Fδv}, (4.7)

where the operator K,D,F are the balance operator matrix, the diagonal variance matrix
and the square root of a spatial correlation operator respectively.

A similar coupling strategy of EnKF and 4DVar is proposed in Zhang et al. (2009)
to benefits from the advantages of each method. Particularly, the adjoint operator is
considered as beneficial in the assimilation and therefore it is retained. In addition to
the use of background error covariance matrix derived from EnKF, the analysis ensemble
mean of EnKF is replaced by the 4DVar analysis. This so-called E4DVar method has been
applied to a limited-area weather prediction model in Zhang and Zhang (2012), and the
authors found that the coupled scheme yield better results than the 4DVar or the EnKF
systems. Note that in E4DVar, the 4DVar system not only absorbs the flow-dependent
error structures from the EnKF system, but also provides its analysis as the analysis
ensemble mean used in EnKF. But in 4DVar-Benkf, only a one way information exchange
is conducted.

This method is promising, however, as the computation of the tangent-linear and ad-
joint model operators in 4DVar can be quite involved, some methods have been designed
to avoid the conduction of such procedures.

4.1.5 4DEnVar

Liu et al. (2008) proposed a hybrid method in which the evolution of error covariance
matrix is computed explicitly form the 4D ensemble driven by the non-linear model. The
idea of this method is to expand the increment solely on the basis of ensemble perturbation,
which comes setting β1 = 1, β2 = 0 in Eq.(4.2),

δx = Pe 1
2 δz, (4.8)

By doing so, the gradient of the cost function can be computed explicitly from the error
covariance derived from a 4D ensemble, therefore avoiding the usage of the tangent linear
or adjoint forecast models. The advantage of this method lies in its simplicity and compu-
tational efficiency, however, the low dimension subspace spanned by the ensemble members
may suffer from the same degeneracy problems as EnKF in terms of errors sampling.

A corresponding covariance localization form of 4DEnVar is proposed in Liu et al.
(2009) where the authors adopt the idea of Buehner (2005) to the temporal evolution of
the ensemble perturbation matrix. Another possible covariance localization approach based
on Lorenc (2003) is implemented in Desroziers et al. (2014) along with other localization
schemes. Desroziers et al. (2014) also highlights the importance of the dimension of the
control vector which is directly related to the cost of the minimization algorithm.

A similar approach is also tested in Buehner et al. (2010a,b), followed by Buehner
et al. (2013). A key difference should be noted: The 4DEnVar implemented by Buehner
used the ensemble fields generated by an EnKF system, whereas in Liu et al. (2009), no
EnKF is explicitly required, instead, the error covariance is generated by an ensemble of
variational systems. Each member of the ensemble is subject to the optimization process
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with perturbed observations. This could be interpreted as a Monte-Carlo formulation of
a variational system. This important attribute is pointed out by Fairbairn et al. (2013)
where the authors proposed the EDA method as an ensemble of 4DEnVars. Two ways of
updating the error covariance have been introduced in Fairbairn et al. (2013). The first
one, called EDA-S, updates the ensemble perturbation using perturbed observation. It is
indeed identical to the method of Liu et al. (2009). The other method, named EDA-D,
used the deterministic Ensemble Kalman filter proposed by Sakov and Oke (2008) to avoid
the use of perturbed observations.

Despite in 4DEnVar, an ensemble of states needs to be processed under the variational
system, this method is still potentially computationally advantageous due to the extremely
low cost of the minimization procedure (O(102) against O(106)). Covariance localization
acts as a double-edged sword in terms of quality improvement and efficiency increase of
4DEnVar. Increasing the distance beyond which two points decorrelate (the decorrelation
length), enlarges reduced subspaces spanned by modified ensemble perturbation; but it also
leads to an enormous increasing number of control vector. More details of this approach
will be discussed in chapter 5.

4.1.6 Explicit 4DVar

A variant method called ensemble-based explicit 4DVar is proposed by several articles
Qiu and Chou (2005); Tian et al. (2008). Unlike previous ensemble-based 4DVar methods
where the ensemble information is injected into the error covariance terms, the authors in-
troduced the ensemble information into the analysis increment through either SVD or POD
technique. In this method, N members of 4D snapshots of state variables are constructed
by perturbing randomly the initial condition. The 4D analysis state xat is then expressed
as a linear combination of the base vector extracted from the N members of 4D snapshots.
By inserting the new expression into the cost function, it is possible to exhibit explicit form
of the gradient with respect to the weighting vector. As a consequence, the evaluation of
the tangent linear operator or its adjoint are not required. The SVD and POD techniques
differ slightly in terms of the base vectors extracted from the 4D snapshots.

4.2 Assimilating asynchronous data with EnKF

The standard EnKF is a method allowing assimilating sequentially the observation when-
ever they are available (Evensen, 2003). Thus the observation only affects the current and
future analysis state. The variational method, on the other hand, finds the best fit of the
model states to all the observations, both past and future. One motivation of this modified
EnKF method consists in remaining within the EnKF system while trying to assimilate
the data at different times spontaneously as the 4DVar method.

4.2.1 4DEnKF

The four-dimensional EnKF (Hunt et al., 2004) makes the EnKF method capable of assim-
ilating asynchronous data. The essence of this method is to find an observation operator
which could link the state vector at this moment to future or past observations, once this
goal is achieved, the extension to four dimension of EnKF is straightforward. In 4DEnKF,
if we are at time tk and we want to assimilate the observation Y0 at time t0, the asyn-
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chronous observation operator reads (Eq.(8) in Hunt et al. (2004)),

H0x0 = h0(X0(XT
kXk)

−1XT
kxk), (4.9)

where Xk is the ensemble fields at time tk. The operator h0 links directly the set of states
to the observation Y0. If we want to assimilate multiple observations distributed along
assimilation window (t0, tf ), the observation operator is defined as (Eq.(9) in Hunt et al.
(2004)),

H =


h0X0

h1X1
...

hfXf

 (XT
fXf )−1XT

f , (4.10)

in order to relate observations Yk to the whole state variables’ trajectory. This operator
can be applied to the analysis scheme discussed in section 3.2.2. Either the perturbed
observation approach or the direct transform approach are applicable.

4.2.2 4D-LETKF

The 4D-LETKF, the successor of 4DEnKF, introduced by Hunt et al. (2007); Fertig et al.
(2007) (4D local ensemble transform Kalman filter) adopts the same idea as 4DEnKF in the
context of a variational optimization system. The idea takes its roots on the equivalence
between 4DVar and Kalman filter (KF) (Li and Navon, 2001) and is elaborated by Hunt
et al. (2007). The authors rely on the fact that the optimal state estimation in KF is
indeed identical to minimize a cost function of the form,

Jk = ‖xk − xbk‖2Pfk + ‖H(xk)− Yk‖2Rk
, (4.11)

where xk is the optimal estimation provided by the KF at time step tk. A simple way
to deduce this cost function is to develop Eq.(1.19) under the assumption of absence of
correlation between the background errors and the observation errors. Note that although
Eq.(4.11) has an identical form as a 3DVar cost function by replacing Pf

k with B, their
implications are completely different. The cost function form (4.11) ensues from Gaussian
hypothesis on the distribution of the background and the observation errors; the cost
function defined in variational system, on the other hand, do not rely specifically on such
hypothesis and can be more freely defined. The minimization of the cost function of the
form Eq.(4.11) corresponds to an estimator of the a posteriori conditional mean.

The 4D-LETKF is formulated on the basis of ensemble similar to EnKF where the
forecast error covariance matrix Pf

k is approximated by the ensemble covariance as in
Eq.(3.8). If we assume that the analysis increment belongs to the space spanned by X′f ,
the analysis is necessarily of the form xk = xbk+X′fw. By inserting this form into Eq.(4.11)
and dropping subscript k, we deduce the following modified cost function:

J(w) = (N − 1)‖w‖2 + ‖H(xb + X′fw)− Y‖2R, (4.12)

The minimization and cycling of such a system rely on ETKF principles described through
Eqs. (3.22) to (3.25). The expansion to assimilate 4D observations of such transformation
in the analysis step hinges on the idea of considering the analysis trajectories as linear
combination of the ensemble background trajectories. This idea is used in the explicit
4DVar framework as well. Considering a state variable trajectory from t0 to tf , with a set
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of observations distributed on the same interval and denoting X the 4D ensemble fields
concatenation,

X f = (X0, . . . ,Xtf ), (4.13)

the analysis state can be expressed as,

(xa0, . . . ,x
a
tf

) = (xb0, . . . ,x
b
tf

) + X ′fw, (4.14)

where the X ′f = X f − 〈X f 〉 is the 4D trajectories’ anomaly ensemble matrix. By such a
transformation, any asynchronous data can be assimilated and the gradient of cost function
Eq.(4.12) with respect to weighting vector w can be easily calculated. From this point of
view, the cost functions involved in 4D-LETKF and in the aforementioned 4DEnVar are
indeed equivalent. The algorithm has been further improved by considering localization
(Hunt et al., 2007). The covariance localization is done following the local ensemble ap-
proach introduce by Ott et al. (2004). We will present this formalism in section 5. The only
thing that we need to mention now is that with a local support, the explicit calculation
of the analysis state and the error covariance through Kalman filter equations is actually
feasible. Those correspond exactly to the analysis steps done in Hunt et al. (2007).

The 4D-LETKF has been studied in Harlim and Hunt (2007) with a primitive equation
dynamics model. It showed good consistency when dealing with asynchronous observations.
Yang et al. (2009) compared the 4D-LETKF with 3DVar, 4DVar and an ensemble-based
3DVar schemes and found that the 4D-LETKF could be a competitive choice against 4DVar
especially with shorter assimilation windows.

4.2.3 AEnKF

The asynchronous EnKF (AEnKF) proposed by Sakov et al. (2010) aims at finding the
explicit form of temporal evolution of the increment δx defined by the difference of analysis
and forecast ensemble mean,

δx = 〈Xa〉 − 〈Xf 〉 = A′fGs,

and the increment of ensemble perturbation defined by,

δA′ = A′a −A′f = A′fT′.

The form of G, s and T′ can be directly inferred from the analysis forms of ETKF Eqs.(3.22)
to (3.24); a less obvious form can be inferred from the analysis equations of the EnKF
with the perturbed observations. See Sakov et al. (2010) for more details. In both cases,
following the same scenario as 4DEnKF, with the observation available at t0, the increments
at t1 can be computed by the linear tangent operator Φ,

δx1 = Φ0δx0 = Φ0A
′f
0 G0s0, (4.15)

δA′1 = Φ0δA
′
0 = Φ0A

′f
0 T′0, (4.16)

These equations show the propagation of the information from the observation time to the
analysis time. The idea can be extended to multiple observations very easily. It is argued
in Sakov et al. (2010) that the AEnKF and the 4D-LETKF are indeed equivalent.
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4.3 Incorporate an iterative procedures into EnKF system

The explicit form of the update equations in EnKF (or EKF) are difficult to calculate when
dealing with high dimensional problem. On the other hand, in 4DVar, extensive studies
have been done on the methods to minimize efficiently the large dimension associated to
the quadratic cost function. Besides, if strong non-linear effects are associated with the
dynamical model or the observation operator, it is in general beneficial to resort to an
incremental 4DVar framework (section 2.3.3) and its unavoidable outer loop associated to
successive linearization.

4.3.1 MLEF

One method that can be classified under this category is the maximum likelihood ensemble
data assimilation (MLEF) proposed by Zupanski (2005). The forecast step is similar to
EnKF, but the analysis step, unlike EnKF, minimizes a quadratic form cost function like
Eq.(4.11) and adopts an iterative minimization algorithm (conjugate-gradient) to solve the
unconstrained minimization problem. This method essentially relies on the precondition-
ing technique by CVT that is similar to Eq.(4.8) in the 4DEnVar method, and replaces the
ensemble perturbation matrix Pe by the square root of the cost function inverse Hessian
of the cost function. Since the inverse Hessian belongs to the subspace spanned by the
ensemble members, it remains easy to evaluate. The author highlights also an interesting
method for evaluating the analysis error covariance matrix: when a quasi-Newton mini-
mization procedure is applied to solve the cost function, the inverse Hessian approximation
obtained at the minimum provides a good approximation of the analysis ensemble pertur-
bation matrix. Note that the same relationship also exists in variational system but the
calculation of the Hessian is hindered by its dimension. The exact equivalence between
the two matrix (analysis error covariance matrix and the inverse Hessian) only holds in a
linear case.

4.3.2 IEnKF&IEnKS

Another approach introduced by Sakov et al. (2012) combines the idea of MLEF with fur-
ther propagation of ensemble fields. The iterative update of analysis state can be explicitly
described by a Newton approach in the case of minimizing 〈X0〉 for future observations Yt,

〈Xk+1
0 〉 = 〈Xk

0〉+ Kk
t (Yt −H(〈Xk

t 〉)) + Pf,k
0 (Pf,0

0 )−1(〈X0
0〉 − 〈Xk

0〉), (4.17)

It is clear that in order to evaluate the analysis 〈Xk+1
0 〉 at the (k+ 1)th iteration, the Pf,k

0

and Kk
t must be derived from the updated ensemble fields generated around the analysis

state 〈Xk
0〉 with the updated ensemble perturbation matrix A′k0 at the kth iteration. But

in MLEF, only one iteration is realized. In a later modification made by Bocquet and
Sakov (2012), the same assumption that the analysis increment lives in the ensemble space
is made as in the 4D-LETKF method. Besides, an inflation free scheme is employed.

Its extension, named IEnKS, is proposed in Bocquet and Sakov (2013a). This method
relies on an Gauss-Newton iterative minimization of a cost function built on ensemble
space. Such a cost function takes a similar form as Eq.(4.12):

J(w) = (N − 1)‖w‖2 + ‖HtMt←0(x
(0)
0 + X′fw)− Y‖2Rt

, (4.18)

It is claimed by the authors that the IEnKS can outperform the EnKF and the EnKS
methods regarding both to the smoothing performance and the filtering performance.
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4.3.3 VEnKF

A slightly different approach, relied on the low-storage approximation of the large dimen-
sion matrices associated with the KF update equations by quasi-Newton minimization
methods, is proposed by Solonen et al. (2012). This method shares the same cost function
Eq.(4.11) related to Kalman filter as MLEF and IEnKF. Instead of solving it iteratively or
by CVT technique, the VEnKF consists in finding the minimum of an auxiliary problem
using LBFGS algorithm,

arg min
u

uT (A′A′
T

+ Q)u, (4.19)

The inverse forecast error covariance matrix Pf−1 can be inferred as a byproduct of LBFGS
procedure applied to such problem. Once Pf−1 is known, the minimization of problem
Eq.(4.11) is straightforward. The LBFGS algorithm is applied as well because the inverse
Hessian matrix formulated at the minimum constitutes a good approximation of the inverse
analysis error covariance matrix Pa−1. A resampling procedure is required to generate new
ensemble subject to Gaussian distribution.

4.4 Summary

In the next chapter we will describe an ensemble-based variational method closely related
to the strategy proposed by Buehner (2005) and Liu et al. (2008). It will be referred to as
4DEnVar in the following. This technique introduces in its objective function an empirical
ensemble-based background-error covariance which avoids the use of tangent linear and
adjoint model. The associated optimization is conducted as a gradient descent procedure
and does not rely on iterative ensemble filtering updates exploiting linear equivalences
between Kalman smoothers and the a posteriori energy minimization. Although the stan-
dard Kalman filter or the extended Kalman filter employ explicit formulation to calculate
the a posteriori error covariance matrix, in practice, as we discussed it in section 3.2, the
evaluation through Eqs.(1.39) or (3.5) is not possible. An efficient Monte Carlo method is
used in ensemble Kalman filter to approximate the a posteriori error covariance matrix. In
the next section, we will show how the forecast error covariance Pf and the analysis error
covariance matrix Pa can be formulated when integrated into a preconditioned incremental
4DVar DA algorithm 7.

Beyond this practical implementation aspect, it is nevertheless difficult to state precisely
the limitations of such a technique and to assess its comparative performances with respect
to the standard 4DVar implementation. As a mater of fact, instead of considering the
whole state space, ensemble 4D-Var methods provide, on the one hand, solutions defined
on a subspace spanned by the ensemble members, and, on the other hand, they introduce a
flow dependent time varying covariance instead of a static full-rank background covariance.
As the background error covariance matrix plays a key role in the variational process, our
study particularly focuses on the generation of the analysis ensemble state with localization
techniques. An experimental evaluation between an incremental 4DVar and an ensemble
based 4DVar will be carried out in this study. This evaluation is performed using a Shallow
Water model.
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Chapter 5

Ensemble-based 4DVar

5.1 Ensemble-based 4DVar scheme

In this section we will describe in detail an enhanced ensemble-based 4D variational method
dedicated to image data assimilation. This hybrid method is designed in such a way that it
combines the advantage of two distinctive approaches while eliminating their weakness in
each side. Comparative summary of the characteristic between 4DVar and EnKF (Lorenc,
2003; Kalnay et al., 2007; Buehner et al., 2010a) is shown in table 5.1. For example, the
flexibility of the covariance specification without restrict to particular statistical model is
considered as an advantage of 4DVar against EnKF that generally needs the prior pdf
of error covariance; being capable of updating the forecast(background) error covariance
in EnKF combined with the explicit flow dependent error covariance structures constitute
clear advantages; although the tangent linear and adjoint models provide accurate gradient
values for the minimization process, the constitution of such adjoint model can often be
tedious and cumbersome in practice; in terms of analysis methods, simultaneously assimi-
lating all observations within the assimilation window obviously outperforms its sequential
counterpart. By doing so, not only we obtain the optimal initial condition, but also the
system trajectory that best fit each observation; we are in favor of iteratively minimiz-
ing quadratic function for the estimation of the optimal state, as there are many mature
iterative minimizing algorithm dedicated to large dimension problem. Explicit sequential
solver as the EnKF, on the other hand, have difficulties to handle large dimension problem.
Finally, lost of balance with respect to the state variables is a weakness of the localization
techniques used in EnKF. Some adjustment may be made to alleviate this problem.

Our ensemble-based 4DVar scheme is composed of three phases: first the ensemble
generation and forecast; then the minimization of the cost function expressed on the basis
of a low rank approximation of the B matrix; finally, the background error covariance
update.
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Table 5.1 – Summary of characteristic between incremental 4DVar and EnKF

Incremental 4DVar EnKF
Covariance Statistical Not needed, Prior pdf of background error
Model Non-Gaussian errors allowed and observation error needed

usually Gaussian
Background Errors Fix at the beginning, Derived from ensemble,

Implicit evolution Flow dependent,
can be quite noisy

Ability to Update the No Yes, the posterior
Background background error covariance
Error Covariance can be estimated directly
Localization Not needed Needed
Tangent Linear Needed Not needed
Adjoint Models
Analysis Methods Simultaneously assimilate Sequentially assimilate

all observations batches of observations
Estimation Methods Iteratively minimizing a Explicitly calculate

quadratic cost function: the analysis by
quasi-Newton methods Kalman gain matrix

Balance Constraints Yes Slightly lost in localization

5.1.1 The ensemble generation and forecast

We have already discussed in section 3.2.1 certain aspects of ensemble generation used in
EnKF method. Identical approaches can be applied to our ensemble-based 4DVar system
without any modification. Due to the way the ensemble forecast is explicitly used in
the minimization process of the cost function (5.5), it is imperative to have an initial
ensemble that approximate well the initial background error statistics. Besides, the error
growth according to the forecast model must also be consistent with the real errors. The
ensemble generation is related to the sampling strategies (Evensen, 2004) and relies on ad
hoc evaluation of the dynamic system. In this section we focus on the error growth with
respect to the two ensemble update schemes associalted either to perturbed observations
(Burgers et al., 1998), or to direct transformation of the background ensemble (Bishop
et al., 2001).

The initial error statistics can be classified roughly in terms of their Gaussianity or
non-Gaussianity. A Gaussian error model is widely used in data assimilation approaches
and is justified under linear or weakly nonlinear models: if the initial error is Gaussian, it
will remain Gaussian in such a case. On the other hand, a non-Gaussian error model is
usually related to the non-linear dynamic models. Lawson and Hansen (2004) has compared
the performance of both filters with respect to the error growth under various contexts.
They argued that the perturbed observation filter deals better with nonlinearities than
the direct transformation filter, and the perturbed observation filter has a tendency to
transform initial non Gaussian error to a Gaussian distribution.

In this thesis, both Gaussian and non-Gaussian errors will be studied.
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5.1.2 Low rank approximation of the background error covariance ma-
trix

The ensemble-based 4DVar scheme is defined within the framework of preconditioned in-
cremental variation system (2.68) while handling an empirical approximation of the back-
ground error covariance matrix (Liu et al., 2008; Buehner, 2005). This low rank approxi-
mation of the background covariance matrix is directly inspired from the Ensemble Kalman
filter where the covariance terms are estimated from the spread of an ensemble of samples.
The central idea of ensemble method is to use the sample mean to represent the real un-
known state. By approximating 〈xb〉 ≈ xt, we have a direct ensemble formulation of the
background error covariance matrix B:

B ≈ 1

N − 1
(xb − 〈xb〉)(xb − 〈xb〉)T . (5.1)

Nevertheless, the huge dimension of matrix B ∈ Rn×n prohibits this calculation explicitly.
Practically, the error covariance B can only be built and stored implicitly from a low
dimensional descriptor. Fortunately, as the ensemble-based 4D variational assimilation
scheme relies directly on a preconditioned incremental form of the cost function, we only
need to manipulate the square root of B. By handling an empirical approximation of the
background covariance matrix (Lorenc, 2003; Buehner, 2005; Liu et al., 2008), we define
the square root of the background error covariance matrix as:

B
1
2 ≈ A′b :=

1√
N − 1

(x
(1)b
0 − 〈xb0〉, . . . ,x(N)b

0 − 〈xb0〉), (5.2)

and A′b ∈ Rn×N . In almost all cases, N � n, thus A′b remains easy to manipulate. A′b
is also called the ensemble perturbation matrix. It gathers the N zero mean centered
background ensemble members as a low-dimensional approximation of the background
matrix:

B ≈ A′bA
′
b
T
.

By introducing such a background covariance approximation in the preconditioned cost
function (2.68), we get

J(δz0) =
1

2
‖δz0‖2 +

1

2

∫ tf

t0

‖∂xH ∂xϕt(x0)A′bδz0 −D(t, x)‖2Rdt. (5.3)

Note that here we do not employ the hybrid CVT form of Eq.(4.2) as done in Desroziers
et al. (2014) since one major motivation for our proposed scheme is to preclude the employ-
ment of the linear tangent and adjoint operators. Introducing an auxiliary control vector
based on the transformation of a full rank static matrix will unfortunately neutralize this
purpose. The control vector, which depends solely on the transformation through the
ensemble-based error covariance, can also be interpreted as the analysis increments that
belong to the subspace spanned by the ensemble perturbations members. This is actually
consistent with the assumption made in different methods of E4DVar, 4D-LETKF, etc.

The cost function (5.3) inherits the advantage of preconditioned system such as sup-
pressing the presence of B in the background term, which can also be depicted as the
uncorrelation of the background error w.r.t new variable δz0. The whole term ∂xϕt(x0)A′b
handles the propagation of ensemble perturbation matrix A′b, which also corresponds to a
forecast by the dynamical model of the centered square-root background covariance ma-
trix. As we rely here on an empirical description of this matrix from a set of samples, we
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can observe that integrating these samples in time provides us immediately an empirical
expression of a low-rank approximation of the background covariance trajectory and of its
square root. This avoids thus the employment of the adjoint operator. We set hence:

B̃
1
2
t = ∂xϕ t(x0)A′b. (5.4)

The calculation of the propagation of ensemble perturbation matrix projected into
observation space corresponds to the way the forecast error is approximated in extended
Kalman filter,

∂xH ∂xϕ t(x0)A′b ≈
1√
N − 1

(H(ϕt(x
(1)b
0 ))−H(ϕt(〈xb0〉)), . . . ,H(ϕt(x

(N)b
0 ))−H(ϕt(〈xb0〉))),

(5.5)
or alternatively,

∂xH ∂xϕ t(x0)A′b ≈ H{ϕt(X0)(IN −
11T

N
)}, (5.6)

with 1 = (1, . . . , 1)T ∈ RN . By doing so, we can well retain the non-linearity of H and M.
The iterative minimization of cost function (5.3) requires the expression of the gradient:

∂δz0J = δz0 +

∫ tf

t0

B̃
1
2
T

t (∂xH)∗ R−1(∂xH B̃
1
2
t δz0 −D(t, x))dt. (5.7)

and its Hessian reads:

H̃ = I +

∫ tf

t0

B̃
1
2
T

t (∂xH)∗ R−1∂xH B̃
1
2
t dt. (5.8)

Once estimated the minimizer δ̂z0, the analysis reads:

xa0 = xb0 + Ã′bδ̂z0. (5.9)

Let us emphasize that, as the covariance matrix B̃ is at most of rank N − 1, the control
variable has at most N − 1 non null components in the eigenspace. Compared to the full
4DVar approach, the control variable’s degrees of freedom are thus considerably lowered
and the minimization computational complexity is significantly decreased. Indeed, this
ensemble version has a lower computation cost if the ensemble forecasting step is distributed
on a grid computing.

5.1.3 Background error covariance matrix update

As mentioned earlier, in this study we focus on situations where the background state is
only poorly known. It is hence essential to allow in the estimation process a substantial
deviation from the background state. So unlike typical incremental ensemble-based vari-
ational methods which keep fixed background covariance and apply a single outer loop of
the Gauss-Newton minimization, we propose to update the background covariance between
two consecutive outer loops. In the context of using an incremental approach and the pre-
conditioning technique, this update actually corresponds to the change of preconditioning
matrix. This proposition is consistent with the principle of the iterative ensemble Kalman
filter used in (Sakov et al., 2012) where the authors argues the necessity of repropagation
of the ensemble fields between two consecutive iterations in strong non-linear systems. The
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update of the background error covariance can be either derived from the ensemble anal-
ysis defined from perturbed observations or by a direct transformation of the background
ensemble perturbations.

Note that we obtain the analysis error covariance matrix exactly in the same way as
for the background error covariance. The only difference being that, the analysis error
covariance matrix is available only at the end of final outer loop process.

In terms of the ensemble updates, the methods used in EnKF must be however re-
arranged and justified before any applications. The main reason is that the EnKF is a
sequential method which assimilate the observation data whenever they are available dur-
ing the forward integration of the ensemble, while the 4DEnVar method is a variational
technique which assimilate all the observation data throughout the entire assimilation win-
dow simultaneously.

The perturbed observation method

The perturbed observation method is used in the 4DEnVar by Liu et al. (2009) and in
the EDA-S by Fairbairn et al. (2013) to calculate the analysis error covariance matrix
at the end of one assimilation cycle. In its application, their approach based on the
EnKF algorithm proposed by Houtekamer and Mitchell (1998, 2005), involves generating
a perturbed observation fields to get the ensemble analysis. Before the update procedure,
we must be in possession of an initial ensemble X generated according to the initial error
statistics and the ensemble perturbation matrix A′b. Perturbing the observations with
error observation samples constitutes de facto an ensemble of observations with consistent
statistics,

Y i,j = Y i + εi,j , i = 0, . . . , T, j = 1, . . . , N. (5.10)

In practice ε is usually assumed to be distributed from a multivariate normal distribution:

εt ∼ N(0,Rt). (5.11)

The innovation vector of the jth member of initial ensemble x
(j),k
0 at outer loop iteration

k is defined as,

D(j),k(t, x) = Yj(t, x)−H(ϕt(x
(j),k
0 )), j = 1, . . . , N, (5.12)

and a parallel realizations of minimization with regard to each member of the initial en-
semble can be conducted,

δz
(j),k
0 = (A′kb )−1δx

(j),k
0 , j = 1, . . . , N

J(δz
(j),k
0 ) =

1

2
‖δz(j),k

0 ‖2 +
1

2

∫ tf

t0

‖∂xH ∂xϕt(x0)A′kb δz
(j),k
0 −D(j),k(t, x)‖2Rdt. (5.13)

Parallel descent processes provide a matrix ˆδZ0 representative of the analysis incremental
ensembles. The updated initial ensemble field and its perturbation matrix finally read:

x
(j),k+1
0 = x

(j),k
0 + A′kb δ̂z0

(j),k
, j = 1, . . . , N

A′k+1
b =

1√
N − 1

(x
(1),k+1
0 − 〈xk+1

0 〉, . . . ,x(N),k+1
0 − 〈xk+1

0 〉). (5.14)

The initial ensemble can then be updated and integrated for a new assimilation cycle.
At convergence, this ensemble forecast is finally used as the initial ensemble for the next
assimilation process.
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The direct transformation method

The deterministic approach formulates the analysis error covariance as a linear combination
of the background error (xb−xt). This approach can take many forms as the transformation
matrix is not unique, here we opt for a mean preserving transformation as used in Ensemble
Transform Kalman filter (section 3.2.2). However, the standard ensemble transformation
matrix used in ETKF is only a 3D1 matrix. In variational system, the posterior error
covariance matrix must be obtained in a way that benefits from all the observation available
throughout the assimilation window. In the case of the perturbed observation strategy,
the posterior error covariance matrix is calculated from the posterior ensemble.

In this approach, in order to obtain such a transformation matrix, we must consider
this problem from a different perspective. We have already shown in section 2.2 that the
equivalence between the analysis error covariance matrix and the inverse Hessian matrix
of the cost function with regard to 4DVar system holds rigorously in a linear sense. Indeed
we rely on such equivalence to deduce the transformation matrix. However, in a nonlinear
scenario, Zupanski (2005) suggests this relationship is still valid with non-linear observa-
tion operators; whereas for nonlinear dynamic model, this relationship constitutes only an
approximation (Li and Navon, 2001).

The inverse analysis error covariance matrix approximating the Hessian corresponds to
the incremental 4DVar form (2.45):

(Pa)−1 ≈ HB = B−1 +

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1∂xH∂xϕtdt. (5.15)

If we insert the ensemble representation of background error covariance matrix (5.3), we
then get:

(Pa)−1 ≈ HB = (A′bA
′
b
T
)−1 +

∫ tf

t0

∂xϕ
∗
t∂xH∗R−1∂xH∂xϕtdt. (5.16)

Note that the ensemble perturbation matrix A′b is not invertible since it is a singular
matrix of reduced rank. Pseudo inverse must be employed here. Pre-multiplying and
post-multiplying each side of the above equation with A′b

T and A′b respectively cancels the
inverse background error term:

A′b
T
(Pa)−1A′b ≈ A′b

THBA′b = I +

∫ tf

t0

(∂xϕt(x0)A′b)
T (∂xH)∗R−1∂xH ∂xϕt(x0)A′bdt.

(5.17)

The RHS of the Eq.(5.17) is actually the Hessian matrix of the preconditioned cost function
(5.3). Let us denote this Hessian matrix as HI:

A′b
T
(Pa)−1A′b ≈ HI, (5.18)

(Pa)−1 ≈ (A′b
T
)−1HI(A

′
b)
−1, (5.19)

Pa ≈ A′bH−1
I A′b

T
. (5.20)

The analysis error covariance matrix can be written as a product of the analysis ensemble
perturbation A′a,

A′aA
′
a
T ≈ A′bH−1

I A′b
T
, (5.21)

1Here the term 3D is used in analogy to 3DVar against 4D.
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Denoting by H
1
2
I the square root of HI,

HI = H
1
2
T

I H
1
2
I , (5.22)

then the analysis ensemble perturbation reads,

A′a ≈ A′bH
− 1

2
I . (5.23)

This equation takes the same form as (3.23) used in ETKF. However, the implications of
ensemble transform matrix are quite different. The updated initial ensemble perturbations
can be expressed as the Hessian square-root computed from previous perturbation matrix
at outer loop iteration k,

A′k+1
b = A′kb {

1

α
I +

∫ tf

t0

B̃
1
2
T

t (∂xH)∗ R−1∂xH B̃
1
2
t dt}−

1
2
,kV. (5.24)

Note that the parameter α corresponds to an inflation coefficient commonly used in ensem-
ble filter and the arbitrary orthogonal matrix V is used to center the posterior ensemble
on the updated background/analysis.

As the minimization algorithm LBFGS relies on an approximation of the inverse Hessian
matrix H−1, we can use this byproduct to evaluate equation (5.24).

Note that a relationship similar to (5.24) can be found in the IEnKS method introduced
in Bocquet and Sakov (2013b). Their approach is obtained in the context of ensemble
square root Kalman smoother; a relatively different form can be found in 4D-LETKF
method of Hunt et al. (2007).

At the initial time, the background matrix is fixed from the initial random conditions
chosen. Note that in the direct transformation approach, a single minimization process
is conducted with respect to the background state opposite to the previous cases where
the minimization has to be done with respect to each member of the ensemble plus the
background state. Finally the updated initial ensemble fields are,

x
(j),k+1
0 = x̂k0 +

√
N − 1A

′(j)k+1
b , j = 1, . . . , N (5.25)

where x̂k0 corresponds to the updated initial state after the kth iteration of outer loop,

x̂k0 = xk0 + A′kb δ̂z0
k

(5.26)

Both variants of the update will be assessed in the experimental section. A schematic
representation of this method in shown in algorithm 9. Note that in algorithm 9, we present
the perturbed observation update scheme, whereas the direct transformation scheme is
shown in algorithm 11 along with the localization technique to avoid repetition.

5.1.4 Localization issues

The previous ensemble method relies on a low rank approximation of the background
matrix. Such an empirical approximation built from only very few samples, when compared
to the state space dimension, leads in practice to spurious correlations between distant
points. For ensemble Kalman techniques, it is customary to remove these long distance
correlations through localization procedures. There are generally two methods to filter
such pseudo-correlations.
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Covariance localization

The first approach introduces a Schur element-wise product between the background cor-
relation matrix and a local isotropic correlation function, thus the sample error problem
can be alleviated:

Pb = C �Pe, (5.27)

The spatial correlation function can be simply defined as a matrix C(‖x−y‖/L) in which we
set Cxy = 0 when the distance between x and y exceeds the cutoff distance L. Polynomial
approximations of a Gaussian function with compact support and a hard cutoff are often
employed Gaspari and Cohn (1999) to that end. They lead to sparse correlation matrices,
which is computationally advantageous. One popular choice for C is in the form of Eq.(4.10)
in Gaspari and Cohn (1999).

C0(z, 1/2, c) =


f1(z/c) 0 ≤ |z| ≤ c
f2(z/c) c ≤ |z| ≤ 2c
0 2c ≤ |z|

where 2c equals the cutoff distance and f1, f2 are even functions given by

f1(z) = −z
5

4
+
z4

2
+

5z3

8
− 5z2

3
+ 1, 0 ≤ z ≤ 1,

f2(z) =
z5

12
− z4

2
+

5z3

8
+

5z2

3
− 5z + 4− 2

3z
, 1 ≤ z ≤ 2.

In order to incorporate the localized background error matrix into our system, we
approximate the square root of Pb by a spectral decomposition of the isotropic correlation
function:

C = EλET , (5.28)

where E corresponds to Fourier modes. This allows us to filter the remaining high frequency
components that may lead to erroneous propagation of spurious high frequency gravity
waves generated only by noise. Keeping only the r first leading Fourier modes, we define
the approximated correlation square root as:

C′ = En×rλ
1/2
r×r. (5.29)

The modified perturbation matrix is then provided by

P′b = (diag(A
′(1)
b )C′, . . . , diag(A

′(N)
b )C′). (5.30)

Here the diag operator sets the kth vector of A
′(k)
b as the diagonal of a matrix. This local-

ized perturbation matrix will serve us to precondition the assimilation system associated
with (5.3) and (5.7).

J(δr0) =
1

2
‖δr0‖2 +

1

2

∫ tf

t0

‖∂xH ∂xϕ t(x0)P′bδr0 −D(t, x)‖2Rdt, (5.31)

∂δr0J = δr0 +

∫ tf

t0

B̃
1
2
T

t (∂xH)∗ R−1(∂xH ∂xϕ t(x0)P′bδr0 −D(t, x))dt. (5.32)

where the forecast background perturbation B̃
1
2
t reads according to (5.4),

B̃
1
2
t = ∂xϕ t(x0)P′b. (5.33)
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Note that here the analysis increment belongs to the subspace spanned by the localized
ensemble perturbation matrix P′b with dimension: n × N × r. The increased subspace is
another advantage against the non-localized version in which the subspace is spanned by
the ensemble. Nevertheless the increased dimension of control vector (N × r against N)
could require more computational cost in terms of minimization process.

The calculation of the propagation of localized ensemble perturbation matrix projected
into observation space follows the same principle as (5.5),

∂xH ∂xϕ t(x0)P′b ≈ ∂xH ∂xϕ t(x0)(diag(A′b,1)C′, . . . , diag(A′b,N )C′) (5.34)

Each ensemble term in the RHS of equation (5.34), ∂xH ∂xϕ t(x0)diag(A′b,j)C′ can be
expanded as,

∂xH ∂xϕ t(x0)(diag(A′b,j)C′) = ∂xH ∂xϕ t(x0)((A′b,j , . . . ,A
′
b,j)r � C′), (5.35)

where we recall that the truncated matrix C′ = En×rλ
1/2
r×r is the square root of the spatial

correlation matrix, and the effect of Schur product is to modify each item of the matrix
(A′b,j , . . . ,A

′
b,j)r by a coefficient. Assuming this later expression can be transformed as:

∂xH ∂xϕ t(x0)(diag(A′b,j)C′) ≈ ∂xH ((∂xϕ t(x0)(A′b,j , . . . ,A
′
b,j)r)� C′), (5.36)

Here we changed the computation priority compare to Eq.(5.35): in Eq.(5.35), the back-
ground ensemble perturbation is localized first, prior to the propagation step; in Eq.(5.36),
the process of multiplying the correlation matrix is done after the propagation of unlocal-
ized ensemble perturbation fields. The latter strategy is preferred because the evolution
of the localized perturbation may severely deteriorate the ensemble spread. However,
Eq.(5.36) is only an approximation of Eq.(5.35).

Evaluation of Eq.(5.36) is analogy to the approximation of the term ∂xH ∂xϕ t(x0)A′b,j
by Eq.(5.5), however, some attention must be paid to the observation operator H ∈ Rm×n.
If the dimension of the observation spacem is not equal to the dimension of the state vector
n, a direct application of Eq.(5.5) is not possible since our correlation matrix is an n × r
matrix. In other words, our localized scheme is applied to the model space rather than to
the observation space. So the Schur product must be done to the ensemble perturbation
matrix at different observation times before it is transformed into the observation space.

(∂xϕ t(x0)(A′b,j , . . . ,A
′
b,j)r)� C′ ≈

1√
N − 1

{
(
ϕt(x

(j),b
0 )− ϕt(〈xb0〉), . . . , ϕt(x(j),b

0 )− ϕt(〈xb0〉)
)
r
� C′}. (5.37)

We can also use the diag operator,

(∂xϕ t(x0)(A′b,j , . . . ,A
′
b,j)r)� C′ ≈

1√
N − 1

{diag
(
ϕt(x

(j),b
0 )− ϕt(〈xb0〉)

)
C′}. (5.38)

Then the observation operator is applied to the jth localized ensemble forecast,

∂xH (∂xϕ t(x0)(A′b,j , . . . ,A
′
b,j)r)� C′ ≈

1√
N − 1

(
H(ϕt(x

(j),b
0 )� C′1)−H(ϕt(〈xb0〉)� C′1), . . . ,H(ϕt(x

(j),b
0 )� C′r)−H(ϕt(〈xb0〉)� C′r)

)
,

(5.39)
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where the C′i corresponds the the ith column of matrix C′. Finally we have the full expres-
sion

∂xH ∂xϕ t(x0)P′b ≈ (5.40)
1√
N − 1

{
(
H(ϕt(x

(j),b
0 )� C′1)−H(ϕt(〈xb0〉)� C′1), . . . ,H(ϕt(x

(j),b
0 )� C′r)−H(ϕt(〈xb0〉)� C′r)

)
. . . ,

(
H(ϕt(x

(j),b
0 )� C′1)−H(ϕt(〈xb0〉)� C′1), . . . ,H(ϕt(x

(j),b
0 )� C′r)−H(ϕt(〈xb0〉)� C′r)

)
}.

In the applications with an observation space fitting exactly the model space (m = n), we
could have a simpler expression of ∂xH ∂xϕ t(x0)P′b as the effects of localizing the model
space and the observation space are the same. This kind of situation is actually very
common in image data assimilation where the resolution of image data is at least equal to
the resolution of model space.

∂xH ∂xϕ t(x0)P′b ≈ (5.41)
1√
N − 1

{
(
H(ϕt(x

(j),b
0 ))−H(ϕt(〈xb0〉)), . . . ,H(ϕt(x

(j),b
0 ))−H(ϕt(〈xb0〉))� C′

)
. . . ,

(
H(ϕt(x

(j),b
0 ))−H(ϕt(〈xb0〉)), . . . ,H(ϕt(x

(j),b
0 ))−H(ϕt(〈xb0〉))

)
� C′},

Note that for our middle-size data system (n ∼ O(105)), this evaluation scheme is computa-
tionally realizable, however, for operational applications, a more effective way of evaluating
the localized ensemble covariance must be adopted (Bishop et al., 2011).

Finally the analysis reads:
xa0 = xb0 + P̃′bδ̂r0. (5.42)

Let us remark that this approach is incompatible with the direct transformation method
for the background error covariance matrix updating. This is due to the inconsistency
of matrix dimensions when updating the initial ensemble based on Eq.(5.25). As the
dimension of P′b is n× r×N instead of n×N , its jth component from the ensemble index
is of size n× r, therefore the ensemble perturbation can not be recovered from its localized
counterpart.

Local ensemble

Another localization technique proposed by Ott et al. (2004) leads the analysis step through
an EnKF procedure in a local region. This approach involves a transformation Ml,s ∈ Rl×n
from the state space Rn to a smaller local space Rl. The local vector is defined as:

xl = Ml,sxn. (5.43)

In the very same spirit, we can also define a transformation Ml,o ∈ Rl×m from the obser-
vation space Rn to local space Rl,

Yl = Ml,oYm. (5.44)

Then the minimization and the update of error covariance steps are done in local space
Rl around each grid point only incorporating the model points and observations within a
certain range. This range, denoted as l , and which corresponds to the concept of cut-off
distance aforementioned, determines the size of the local space.
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Note that the ensemble forecast step must be done globally with the full non-linear
dynamic model.

The way of evaluating the local space error covariance is done by calculating the
ensemble-based error covariance from the local space ensemble:

A′b,l =
1√
N − 1

(x
(1)b
0,l − 〈xb0,l〉, . . . ,x

(N)b
0,l − 〈xb0,l〉),

∂xH ∂xϕ t(x0)A′b,l =
1√
N − 1

(H(ϕt(x
(1)b
0,l ))−H(ϕt(〈xb0,l〉)), . . . ,H(ϕt(x

(N)b
0,l ))−H(ϕt(〈xb0,l〉))).

(5.45)

As a matter of fact, by posing certain conditions, we can show that the localized error
covariance matrix yielded by the two localization techniques are indeed equivalent. These
conditions include:

Employing a simple hard cutoff correlation matrix The covariance localization
correlation matrix corresponds for instance to a polynomial approximations of a Gaussian
function with compact support. Within the covariance support region, the correlation of
one point takes the value of 1 for its variance and reduces along the distance following a
Gaussian shaped function. If we instead use a simple hard cutoff correlation matrix that
takes value 1 within the support region and 0 outside, we have in principle the same form
of background error covariance as the local ensemble approach that takes no weight at all
for those points outside the local space.

Introducing local correlation matrix Cl to local ensemble approach In a reverse
way, we could introduce a similar Gaussian-like mask to filter the local ensemble error
covariance matrix, then employ a SVD to obtain the gaussian-filtered local perturbation
matrix.

Although the two approaches may in theory use the same kind of structure of the er-
ror covariance, the analysis resulted from the two localization methods are very different.
This is probably due to the way of solving the analysis increment from the minimization
process. The localized covariance approach, on the one hand, performs the optimization
on subspace spanned by the localized perturbation ensemble matrix with N × r columns
against the n dimensional analysis increment; the local ensemble approach, on the other
hand, relies on the CVT associated with the local ensemble perturbation matrix,

δxa0,l = A′b,lδz0. (5.46)

The analysis increment lives therefore in the subspace spanned by A′b,l, since the variation
of δxa0,l is limited in local space, such an approximation makes more sense compared to the
global space approach where the full space analysis uncertainties are represented by very
few ensemble members.

It will be hard to tell which localization technique is better at this point, however,
an intuitive indication would be that the global analysis obtained directly from the mini-
mization process may better preserve the continuity and the multi-variables balance; while
the global analysis reconstructed from different and independent local analysis may have
difficulties in dealing with discontinuity and tends to lose multi-variables balance.
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Both update strategies of background error covariance matrix described in section 5.1.3
can be combined with local ensemble approach without any difficulties. Nevertheless,
this localization strategy is ideally compatible with the method of direct transformation
approach associated with the update phase. A great advantage of this combination is the
low computational cost if properly parallelizing minimization together with a small local
space.

5.2 Summary

All these elements associated (i.e. CVT, localization and background error covariance
matrix update) with a LBFGS minimization strategy constitute the proposed ensemble
method. The algorithm descriptions of the overall methods are presented in algorithms 9,
10 and 11. We point out that our assimilation system with the following characteristic:
perturbed observations, only one outer loop and localizing by modifying the covariance
matrix is equivalent to the 4DEnVar method proposed by Liu et al. (2008, 2009); if a
direct ensemble transformation update is used, it is hence close to the 4D-LETKF method
(Hunt et al., 2007; Fertig et al., 2007) and to the IEnKS method (Bocquet and Sakov,
2013a) but with a minimization performed on a variational basis.
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Algorithm 9 Ensemble-based variational data assimilation algorithm: : No Localization,
Perturbed Observation
1: procedure Analysis
2: Prescribe the initial condition x0

0 = xb0, and the initial ensemble Xb
0 as an arbitrary

choice (for the 1st cycle) or as the forecast state and the ensemble forecast derived
from the previous assimilation cycle respectively

3: Given convergence toleration ξ and ε
4: Generate ensemble observations (5.10)
5: Define matrix X 1

0 = [x0,X0].
6: Outer loop:
7: for k = 1 : kmax do
8: Compute in parallel X k(t) with the forward integration of the nonlinear dynam-

ics (1.1)
9: Calculate ensemble innovations (5.12)

10: Update the background perturbation matrix A′kb from (5.14) and the term
∂xH ∂xϕ t(x0)A′kb from (5.5)

11: Initialize the ensemble increment matrix: δX k0 : [δx0, δx
(1)
0 , . . . , δx

(N)
0 ]

12: Do an inverse control variable transformation δZk0 = (A′kb )−1δX k0
13: Inner loop:
14: while ‖∂

δzk,n,j0
J(δzk,n,j0 )‖ > ε do

15: Optimize in parallel δZj
0 in the inner loop, the cost function and the gradient

are calculated based on the (5.13)
16: Iteratively searching for optimizer based on (2.42) or other method (LBFGS,

algorithm 5)
17: end while
18: Do an control variable transformation

δX k0 = (A′kb )δZk0.

19: Update the matrix X k0 containing the initial condition xb,k0 and ensemble Xb,k
0 ,

X k+1
0 = X k0 + δX k0 .

20: Check convergence condition:
21: if ‖δxk0 − δxk−1

0 ‖ < ξ, then
22:

[xa0,X
a
0] = X k+1

0 .

23: end if
24: end for
25: Evolve the analysis state xa0 and the analysis ensemble Xa

0 to the beginning of
the next cycle through the nonlinear dynamics (1.1). The forecast state and forecast
ensemble are used to initialize the next assimilation cycle.

26: end procedure



74 Chapter 5. Ensemble-based 4DVar

Algorithm 10 Ensemble-based variational data assimilation algorithm: : Localized co-
variance approach
1: procedure Analysis
2: Prescribe the initial condition x0

0 = xb0, and the initial ensemble Xb
0 as an arbitrary

choice (for the 1st cycle) or as the forecast state and the ensemble forecast derived
from the previous assimilation cycle respectively

3: Given convergence toleration ξ and ε
4: Generate ensemble observations (5.10)
5: Define matrix X 1

0 = [x0
0,X

b
0]

6: Outer loop:
7: for k = 1 : kmax do
8: Compute in parallel X k(t) with the forward integration of the nonlinear dynam-

ics (1.1)
9: Calculate ensemble innovations (5.12)

10: Update the background perturbation matrix A′kb from (5.14)
11: Update the localized perturbation matrix P′kb from (5.30) and its propagation

∂xH ∂xϕ t(x0)P′b from (5.45)
12: Initialize the ensemble increment matrix: δX0: [δx0, δx

(1)
0 , . . . , δx

(N)
0 ]

13: Do an inverse control variable transformation δRk
0 = (P′kb )−1δX k0

14: Inner loop:
15: while ‖∂

δrk,n,j0
J(δrk,n,j0 )‖ > ε do

16: Optimize in parallel δRj
0 in the inner loop, the cost function and the gradient

are calculated based on the (5.13)
17: Iteratively searching for optimizer based on (2.42) or other method (LBFGS,

algorithm 5)
18: end while
19: Do an control variable transformation

δX0 = (P′kb )δZk0.

20: Update the matrix X k0 containing the initial condition xb,k0 and ensemble Xb,k
0 ,

X k+1
0 = X k0 + δX k0 .

21: Check convergence condition:
22: if ‖δxk0 − δxk−1

0 ‖ < ξ, then
23:

[xa0,X
a
0] = X k+1

0 .

24: end if
25: end for
26: Evolve the analysis state xa0 and the analysis ensemble Xa

0 to the beginning of
the next cycle through the nonlinear dynamics (1.1). The forecast state and forecast
ensemble are used to initialize the next assimilation cycle.

27: end procedure
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Algorithm 11 Ensemble-based variational data assimilation algorithm: Local ensemble
approach
1: procedure Analysis
2: Prescribe the initial condition x0

0 = xb0, and the initial ensemble Xb
0 as an arbitrary

choice (for the 1st cycle) or as the forecast state and the ensemble forecast derived
from the previous assimilation cycle respectively

3: Given convergence toleration ξ and ε
4: Define local space Rl and the transformation matrix Ml

5: Define matrix X 1
0 = [x0

0,X
b
0]

6: Outer loop:
7: for k = 1 : kmax do
8: Compute in parallel X k(t) with the forward integration of the nonlinear dynam-

ics (1.1)
9: Calculate innovation vector Dk

t

10: Initialize the increment vector δx0

11: Parallelizing minimization computation in the local space Rl around each grid
point p:

12: Transform the ensemble background fields, innovation vector and the initial
increment to local space

Xk
t,l = Ml,sX

k
t , (5.47)

Dk
t,l = Ml,oD

k
t , (5.48)

δx0,l = Ml,sδx0, (5.49)

13: Calculate the local background error perturbation matrix and the propagation
of local observation ensemble perturbation matrix according to Eqs.(5.45)

14: Do an inverse control variable transformation δz0,l = (A′kb,l)
−1δx0,l

15: Inner loop: Solve for the initial increment δz0,l which minimize the problem

J(δzk0,l) =
1

2
‖δzk0,l‖2 +

1

2

∫ tf

t0

‖∂xH ∂xϕt(x0)A′kb,lδz
k
0,l −Dk

t,l‖2Rdt (5.50)

16: while ‖∂
δzk,n0,l

J(δzk,n0,l )‖ > ε do

17: Iteratively searching for optimizer based on (2.42) or other method (LBFGS,
algorithm 5)

18: end while
19: Update the local ensemble perturbation matrix (5.24) and the local initial en-

semble(5.25)
20: Reconstruct the analysis and the ensemble form local space to state space
21: end for
22: Evolve the analysis state xa0 and the analysis ensemble Xa

0 to the beginning of
the next cycle through the nonlinear dynamics (1.1). The forecast state and forecast
ensemble are used to initialize the next assimilation cycle.

23: end procedure
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Part III

Applications





Chapter 6

Validation of Ensemble-based 4DVar
With Shallow Water Model

In this chapter, a preliminary test will be done with a nonlinear shallow water model.
The nonlinear shallow water model is obtained by a depth-integration of the 3D Reynolds-
averaged Navier-Stokes equation. The derivation process is done based on the following
hypothesis:

• The height of the fluid surface can be neglected compared to its width and length.
This implies that we will neglect the vertical shear and vertical acceleration, and only
work with the horizontal velocity component u 4

= uH = (u, v)T .

• The pressure is hydrostatically distributed along the vertical, that is, p = p0+ρ0g(h−
z)

• The fluid is incompressible.

6.1 2D nonlinear shallow water model

A thorough derivation of the shallow water will be provided in Chapter 8 in the context
of a stochastic representation.The 2D nonlinear shallow water model with which we will
work is described by the following system:


∂tη + ∂x(hu) + ∂y(hv) = 0,
∂tu+ u∂xu+ v∂yv − fv = −g∂xη,
∂tv + u∂xv + v∂yv + fu = −g∂yη.

(6.1)

where η denotes the free surface of the evolving fluid, h is the water column height, η = h+b
where b is known and corresponds to the bottom height with respect to a reference height
and u, v are the depth-averaged lengthwise and transverse velocity respectively. Here the
state vector corresponds to the concatenation of these three variables: x = (η, u, v)T . The
schematic diagram of these notations are shown in figure 6.1 (extracted from Cushman-
Roisin and Beckers (2011)).
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7.3. NON-GEOSTROPHIC FLOWS 193

Reference surface

h(x, y, t)

k

z = 0

η

u

!b(x, y)

!

"

H
Figure 7-5 Schematic diagram of un-
steady flow of a homogeneous fluid
over an irregular bottom and the attend-
ing notation.

where b is the bottom elevation above a reference level and h is the local and instantaneous
fluid layer thickness (Figure 7-5). Because fluid particles on the surface cannot leave the sur-
face and particles on the bottom cannot penetrate through the bottom, the vertical velocities
at these levels are given by (4.28) and (4.31)

w(z = b + h) =
∂

∂t
(b + h) + u

∂

∂x
(b + h) + v

∂

∂y
(b + h) (7.12)

=
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y

w(z = b) = u
∂b

∂x
+ v

∂b

∂y
. (7.13)

Equation (7.11) then becomes, using the surface elevation η = b + h − H :

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0, (7.14)

which supersedes (7.2d) and eliminates the vertical velocity from the formalism.
Finally, since the fluid is homogeneous, the dynamic pressure, p, is independent of depth.

In the absence of a pressure variation above the fluid surface (e.g., uniform atmospheric
pressure over the ocean), this dynamic pressure is

p = ρ0gη, (7.15)

where g is the gravitational acceleration according to (4.33). With p replaced by the preceding
expression, equations (7.10) and (7.14) form a 3-by-3 system for the variables u, v and η. The
vertical variable no longer appears, and the independent variables are x, y and t. This system
is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − g

∂η

∂x
(7.16a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − g

∂η

∂y
(7.16b)

∂η

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (7.16c)

Figure 6.1 – Schematic diagram of unsteady flow over an irregular bottom (Cushman-Roisin
and Beckers, 2011).

The conserved form of 2D SWEs is,

∂η

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= 0, (6.2a)

∂(hu)

∂t
+
∂(hu2)

∂x
+
∂(huv)

∂y
= −gh∂xη − ghSbx+ hfv + ν

(∂(hux)

∂x
+
∂(huy)

∂y

)
, (6.2b)

∂(hv)

∂t
+
∂(huv)

∂x
+
∂(hv2)

∂y
= −gh∂yη − ghSby − hfu+ ν

(∂(hvx)

∂x
+
∂(hvy)

∂y

)
. (6.2c)

We deal with an initial value evolution problem constrained with given boundary con-
ditions. This problem can be compactly written in the form of a symbolic conservation
law: 

∂tU + ∇(G,H) = S + ∇(Gd,Hd),
U(x, 0) = U0(x)
U(0, t) = Ul(t), U(L, t) = Ur(t),

(6.3)

where

U = (η, hu, hv)T , (6.4a)

G = (hu, hu2, huv)T , (6.4b)

H = (hv, huv, hv2)T , (6.4c)

S = (0,−gh∂xη − ghSbx + hfv,−gh∂yη − ghSbyη − hfu)T (6.4d)

Gd = (0, ν∂hux, ν∂huy)
T , (6.4e)

Hd = (0, ν∂hvx, ν∂hvy)
T , (6.4f)

Here U is the conserved quantities, G and H are the convective flux, Gd and Hd are
diffusive flux, Sbx and Sby are the bed friction terms, f is the Coriolis force parameter. It
is customary to split the term gh∂iη, i = x, y between flux gradient and source terms,

gh∂iη = ∂i
1

2
gh2 + gh∂ib, (6.5)

where ∂ib is the bottom gradient. Vectors G, H and S are thus modified as,

G = (hu, hu2 +
1

2
gh2, huv)T , (6.6a)

H = (hv, huv, hv2 +
1

2
gh2)T , (6.6b)

S = (0,−gh∂xb− ghSfx + hfv,−gh∂yb− ghSbyη − hfu)T (6.6c)
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The first equation corresponds to our 2D shallow water equation defined by (6.2) which
defines how the state vector x(t) evolves in time. The second and third equations define
the initial and boundary conditions of the dynamical system.

The numerical integration of this system, that we will refer in the assimilation tech-
niques as the direct model, determines a trajectory from a given initial state. It corresponds
to a traditional simulation of the fluid dynamics from an initial condition. It does not take
into account any observations of the state variables. In this section, we will describe first
the discrete implementation on which we relied for such a numerical simulation. This
model allows providing background trajectories of the system. We will see in the following
sections how these trajectories will be corrected by the observations in each assimilation
techniques presented in this document.

The literature provides many methods (Vreugdenhil, 1994; Toro, 2009) to solve CFD
problems. The most classical methods are the finite difference, finite element and the finite
volume methods. The first method is the most natural way to approximate PDE, however
it may encounter some difficulties near discontinuities. The finite elements are more suited
for solid mechanics and are ideal to approximate complicated domain geometry. At last,
the finite volume methods is generally applied to integral form of conservation laws and
handles discontinuities in solutions. Among all the proposed methods, we choose to use
the finite volume methods which are usually used in CFD. In order to better illustrate
the idea of finite volume methods, we will start by introducing a 1D case applied to 1D
nonlinear shallow water model. Then the full 2D nonlinear shallow water formulation will
be presented.

6.2 1D nonlinear shallow water model

In this section, a one-dimensional nonlinear shallow water model is presented and tested
with ensemble-based 4DVar methods. The 1D shallow water model is based on the addi-
tional hypothesis:

• There is no flux in the transverse direction.

• To simplify the calculation, we neglect all external forces but the Coriolis force.

Therefore the 1D shallow water model reads,
∂tη + ∂x(hu) = 0,
∂tu+ u∂xu = fv − g∂xη,
∂tv + u∂xv = −fu.

(6.7)

where as previously η is the free surface, h is the water column height, η = h + b with
b the bottom height with respect to a reference height and u, v are the depth-averaged
lengthwise and transverse velocity respectively. Note that although we used the term
"1D",the transverse velocity v still appears in the equation.

6.2.1 1D finite volume method

We use finite volume method to numerically simulate the flow. Here we will briefly describe
the fundamental aspects of finite volume method. The conserved form of 1D shallow water
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equation is a prerequisite to implement the finite volume approach. The 1D system reads,

∂η

∂t
+
∂(hu)

∂x
= 0, (6.8a)

∂(hu)

∂t
+
∂(hu2 + 1

2gh
2)

∂x
= −gh ∂b

∂x
+ hfv, (6.8b)

∂(hv)

∂t
+
∂(huv)

∂x
= −hfu. (6.8c)

Here we used the relationship

gh
∂η

∂x
=
∂(1

2gh
2)

∂x
+ gh

∂b

∂x
.

The finite volume method is based on the control volume formulation. The space
discretization is illustrated in figure 6.2. Note that here we use a cell centered scheme.

Vi

xi+1/2xixi�1/2

1

Figure 6.2 – Spatial discretization of 1D FVM scheme. Vi is the control volume with xi at
the center and xi±1/2 at the two interfaces.

The system Eqs.(6.8) can be expressed in the form of a symbolic conservation law:

∂U

∂t
+
∂F(U)

∂x
= S, (6.9)

where the vector U contains the movement quantities (η, hu, hv)T , the vector F contains
the convective flux, and the vector S is the source term containing the Coriolis force and
the topographic variation.

Before we go any further, we define the spatial average integrated value of Ū on Vi at
time level tn equals to,

Ūn
i ≈

1

∆x

∫
Vi

U(tn, x)dx (6.10)

Then we deduce a corresponding spatial integral form of the conservation law by inte-
grating Eq.(6.9) over control volume Vi:

∂

∂t

∫
Vi

U(t, x)dx = −
∫
Vi

∂F(U)

∂x
dx+

∫
Vi

Sdx, (6.11)

The integration of flux gradient over control volume can be interprets as the difference
of flux between two interfaces of the control volume,

∂

∂t

∫
Vi

U(t, x)dx = −
(
F(U(tn, xi+1/2))− F(U(tn, xi−1/2))

)
+

∫
Vi

S(tn, xi)dx, (6.12)
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Integrating above equation again from time level tn to tn+1, we have,∫
Vi

U(tn+1, xi)dx =

∫
Vi

U(tn, xi)dx (6.13)

−
( ∫ tn+1

tn
F(U(tn, xi+1/2))dt−

∫ tn+1

tn
F(U(tn, xi−1/2))dt

)
+

∫ tn+1

tn

∫
Vi

S(tn, xi)dxdt,

We also define the temporal average integrated value over tn to tn+1,

F̄(Un
i+1/2) ≈ 1

∆t

∫ tn+1

tn
F(U(tn, xi+1/2))dt, (6.14)

Using the spatial average (6.10) and time average (6.14), we deduce the form of the
following discrete equation:

Ūn+1
i = Ūn

i −
∆t

∆x

(
F̄(Un

i+1/2)− F̄(Un
i−1/2)

)
+ ∆tS̄ni (6.15)

Note that the movement quantities U do not exist at interfaces i− 1/2 or i + 1/2, so
it is necessary to assume that the flux Fn

i+1/2 can be calculated based on the values at cell
center of Un

i and Un
i+1. So the problem remains to compute the convective flux F.

One intuitive method is to define the flux at interface as to the average of two adjacent
cells.

Fn
i+1/2 =

1

2

(
F(Un

i ) + F(Un
i+1)

)
However, this form is proved to be very unstable and incapable of dealing with disconti-
nuities at interface.

A better solution consists to rely on a Godunov-type schemes which consists in recon-
structing a piecewise-polynomial interpolation. This flux interpolation is then advanced in
time according to the model equation and finally projected on its cell borders. Generally,
one can divid the Godunov-type schemes into two subclasses: the upwind methods and
central methods. In the upwind scheme, a polynomial reconstruction is defined in every
cell. This polynomial interpolation is then used to compute a new cell average at the same
location for the next time step. The evolution procedure requires the determination of
the self-similar exact solution Ui+1/2(0). Indeed here the convective flux is calculated by
solving following intercell Riemann problem for each interface xi+1/2:

∂tU + ∂xF = 0,

U(0, x) =

{
UL if x < xi+1/2

UR if x > xi+1/2

(6.16)

UL and UR are respectively the left and right states of the Riemann problem. Their values
are guessed from the average values of the neighboring cells. The method can be used if
the grid is built such is there are no discontinuity within each cells. Both analytic and
approximate Riemann solver can be employed. The analytic solution of such Riemann
problem is detailed in the appendices. The approximate solver include the Roe solver, the
HLLE solver and the HLLC solver etc. Here we adopt the Roe solver to find the expression
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of the flux Fi+1/2 (Roe, 1981; Ambrosi, 1995) to find the convective flux between interface.
The Roe’s Riemann solver finds the exact solution of the approximated Riemann problem,

∂tU + Ã∂xU = 0,

where Ã is the jacobian matrix of flux

Ã =
∂F

∂U
,

The numerical flux is defied as,

Fn
i+1/2 =

1

2

(
F(Un

i ) + F(Un
i+1)− R̂|Λ̂|L̂(Un

i −Un
i+1)

)
(6.17)

where the matrix R̂, Λ̂ and L̂ correspond to the right eigenvectors, the absolute eigenvalues
and the left eigenvectors of Ã respectively.

Considering system (6.8), Ã takes the form,

Ã =

 0 1 0
−u2 + gh 2u 0
−uv v u

 , (6.18)

Noting c the phase speed of wave,
c =

√
gh,

the eigenvalues of Ã are

λ1 = u− c,
λ2 = u,

λ3 = u+ c, (6.19)

and the matrix |Λ̂|, R̂ and L̂ read respectively,

|Λ̂| =

|û− ĉ| 0 0
0 |û| 0
0 0 |û+ ĉ|

 , (6.20)

R̂ =

 1 0 1
û− ĉ 0 û+ ĉ
v̂ 1 v̂

 , (6.21)

L̂ =

1
2 + û

2ĉ − 1
2ĉ 0

0 0 −1
1
2 − û

2ĉ
1
2ĉ 0

 , (6.22)

where the hat indicates Roe average of the following quantities,

ĥ =
√
hLhR,

û =

√
hLuL +

√
hRuR√

hL +
√
hR

,

ĉ =

√
gh

2
(hL + hR). (6.23)
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6.3 2D finite volume method

The derivation of a 2D finite volume scheme is similar to the 1D case, except that in a
two-dimensional scenario, the domain is divided into a mesh of 2D control volumes. For
sake of simplicity we used a regular cartesian mesh with a fixed step ∆x for the x-axis and
fixed step ∆y for the y-axis, however the method can be extended to irregular grids with
little efforts. The computational domain is shown in figure 6.3. The integration over each

Fj,k�1/2

Uj�1,k Uj,k Uj+1,k

Uj,k+1

Uj,k�1

Fj+1/2,k

⌦i

Fj,k+1/2

Fj�1/2,k

1

Figure 6.3 – Cartesian 2D FVM grid. Ωi is the control volume with the quantity function
Uj,k at the center and the flux function Fj±1/2,k±1/2 at the interfaces.

control volume Ω of system (6.2) combined Green’s theorem yields,

∂

∂t

∫∫
Ω

UdΩ +

∮
∂Ω

F · nds =

∫∫
Ω

SdΩ +

∮
∂Ω

Fd · nds

where F · n = Gnx +Hny, Fd · n = Gdnx +Hdny.
We also need to define the approximation of the spatial average integral value of move-

ment quantities vector U on cell Ωj,k at time tn:

Ūn
j,k ≈

1

∆x∆y

∫∫
Ωi

U(tn,x)dΩ (6.24)

and the temporal average integrated value over tn to tn+1,

F̄(Un
j+1/2,k) ≈

1

∆t

∫ tn+1

tn
F(U(tn,xj+1/2,k))dt, (6.25)

The time discretization of the temporal derivative term then yields,

∂

∂t

∫∫
Ωi

UdΩ ≈
∫∫

Ωi
Un+1dΩ−

∫∫
Ωi

UndΩ

∆t

≈ ∆x∆y

∆t
(Ūn+1

j,k − Ūn
j,k) (6.26)
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From here on, we will drop the bars from U,F without risk of ambiguity. The convective
flux term integration becomes a sum of integrals along each cell edge i,∮

∂Ω
F · nds =

∑
i=m(j,k)

Fi,j,k · n∆li

= (F⊥∆y)j+1/2,k − (F⊥∆y)j−1/2,k + (F⊥∆x)j,k+1/2 − (F⊥∆x)j,k−1/2. (6.27)

where m(j, k) consists in the neighboring cells of cell (j, k), ∆li stands for the length of
the boundary between adjacent cells.

The F⊥ is evaluated by aforementioned Roe’s flux, for example, with respect to interface
x(j + 1/2, k), the flux reads,

F⊥,j+1/2,k =
1

2
[F⊥,j,k + F⊥,j+1,k −−R̂|Λ̂|L̂(Un

j,k −Un
j+1,k)]

The Roe solver is a very efficient upwind method which deals as well with discontinuities
and smooth areas. For the 2D SWE, the analysis has been given by Priestley (1987). For
this paper we used Priestley’s auxiliary vector for Roe decomposition implementation.

The discretization of the diffusive flux term Fd is done likewise.∮
∂Ω

Fd · nds =
∑

i=m(j,k)

Fi,j,k · n∆li

= (Fd
⊥∆y)j+1/2,k − (Fd

⊥∆y)j−1/2,k + (Fd
⊥∆x)j,k+1/2 − (Fd

⊥∆x)j,k−1/2

(6.28)

with Fd
⊥,j,k determined by a simple centered scheme. The gradient at each cell boundary

is needed to calculate this term. One may use Gauss’s theorem to evaluate the gradient
of cell i and calculate the gradient over boundary by a distance-weighted average of two
adjacent cell center gradient values.

The treatment of the source term S can be done either explicitly or implicitly. An
explicit discretization is simply,

Un+1 = Un + ∆tS(Un).

Such a scheme requires a small value of ∆t to maintain the numerical stability (CFL
condition). Implicit scheme are more flexible with respect to the time step value. Such a
scheme is described below.

Time integration scheme

In this section, we focus on the time integration discretization corresponding to the LHS
of the following equation:

d

dt
U = −∇F(U).

As the RHS of the latter equation was dealt in the previous subsection, we come to solve
an ODE. We decide to use the Runge Kutta method whose general formulation is recalled
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below:

Un+1 = Un + ∆t

r∑
i=1

biki,

Ti = tn + ci∆t,

Ui = Un + ∆t

r∑
j=1

aijkj ,

ki = M(Ti,Xi).

(6.29)

Despite that the 4th order method is the most commonly used, we decided to hold the 3rd
order Runge Kutta method, given in the appendices, as it provides a good compromise
between the order accuracy and the computation time. A previous test have been lead
using each method and it turned out that both methods yields very similar results. As we
aim to carry out data assimilation techniques which computational load depends on the
direct model cost, we preferred holding the 3rd order method.

Boundary conditions

In our study, we study a fluid contained in a tank modeled as a closed rectangular shaped
domain with nonporous walls. Within this context, we decide to impose reflective boundary
conditions on the walls of the domain. In practice, we consider ghost cells around the
domain that will share the same height value that its neighbors, and the same velocity
value with a negative sign. This will constrain the force the fluid to go backwards, i.e
inside the domain.

6.4 Twin synthetic experiments

We set up a twin experiment from two reference trajectories obtained by running the nu-
merical model from two different initial conditions characterized by different error statistics.
The background initial height field was fixed as a smooth slope tilted along the x-axis by
20%. The background initial velocity field was fixed as zero.

In the following, we refer to the first synthetic experiment as case A. In this case, we
define the reference initial condition as a 20% tilted initial flat surface) perturbed with an
homogenous Gaussian noise defined by an exponential covariance of de-correlation length
(about 20% of the lengthy scale Lx) and standard deviation (5 mm for height, 1 mm/s for
velocity). The noise is an isotropic Gaussian field sampled in the Fourier domain (Beyou,
2013). This 20% tilted initial waves plus the noise constitutes the prior configuration
that we have on the initial condition 6.4. This first experiment is thus characterized by
a trajectory whose initial state is similar to this a priori experimental condition up to a
Gaussian random field.

In the second case, referred as case B hereafter, we assumed that the wave is generated
by height difference. Here the initial reference height was a smooth slope tilted along the
x-axis and y-axis by respectively 21% and 10%. The initial reference velocity field was
fixed as a Gaussian field with a standard deviation of 1 mm/s.

The calculation domain for case A is discretized on nx×ny = 26× 11 rectangular grid,
and we refine the grid in case B to nx × ny = 101× 41. In both cases the dynamic model
time step is set to 1e−3s.

The synthetic observations were generated by adding i.i.d. Gaussian noise perturba-
tions to the reference free surface’s height and velocity fields at each grid points per 50
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frames of dynamic states. The synthetic observation errors in terms of height and velocity
are specified as 0.25 mm and 1 mm/s respectively. Here we adopted a single assimilation
window containing 5 observations uniformly distributed in the DA window.

Note that in both cases we defined the difference of maximum and minimum surface
height of initial background state as characteristic height ∆h, we also define the charac-
teristic velocity U as an approximation of wave phase velocity and the final characteristic
time of the assimilation window equals to tfU/Lx. For case A, ∆h = 20%Lx = 50 mm,
U =

√
g∆h = 0.9007 mm/s, and tf

Lx/U
= 0.9006; for case B, ∆h = 20%Lx = 50 mm,

U =
√
g∆hLx/

√
L2
x + ∆h2 = 0.8950 mm/s and tf

Lx/U
= 0.8951. All the characteristic

values are used to adimensionalize our results.
The figure 6.4 summarizes the different initial condition configurations considered for

the twin experiment:

L

W

x

y

H0 + ∆H0

H1

H0 H0

H1 + ∆H0 + ∆H1

H1 + ∆H1

Figure 6.4 – A priori initial experimental configuration (on the left) and the true synthetic
initial conditions with a Gaussian noise–Case A–(in the middle) and with a 10% slope
along the y-axis–Case B– (on the right).

In order to construct the background error covariance matrix, we use different strategies
with respect to the incremental 4DVar and the 4DEnVar techniques. For the incremental
4DVar, we adopt a static diagonal matrix B = σ2

b I, where σb was optimally tuned as the
standard deviation between the true solution and the a priori experimental initial state;
for the 4DEnVar, as the background error covariance is derived from the ensemble fields,
it is crucial that the initial ensemble represents correctly the background errors. In case
A, we generated an initial ensemble perturbing the a priori initial state with the same
homogenous Gaussian perturbations of covariance σ2

b as the reference. It is important to
underline that within this case, although the initial error is indeed Gaussian noise, the
evolution of such Gaussian noise driven by non-linear shallow water model can result in
non-Gaussian random noise.

In case B, we set up two kind of perturbation of the initial condition. The first one
corresponds to the Gaussian perturbation of the prior configuration as previously. However,
a Gaussian error with zero mean leads to a typical biased assimilation system given our
experimental setup. Dee (2005) proposed several bias detection strategies to deal with
such problems. We adopt a simply idea of modeling the initial error as:

η = b + η̃ with 〈η̃ = 0〉, (6.30)

where the bias vector b is fixed in time and is estimated through the DA system as the
initial condition. The algorithm described in chapter 5 remains essentially the same. The
second case implements a parameter perturbation strategy, consisting in defining the ini-
tial members from a random drawing of different slopes. On the different figures, this
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approach is indicated by the "PP" suffix whereas the absence of suffix denotes a Gaussian
perturbation.

Let us note that the structure of the B matrix with regard to standard 4DVar will be
restricted in a diagonal form in order to reduce the rather high computational cost.

We also highlighted the method of Liu et al. (2008) (indicated by "Liu-et-al" suffix
on figures) using the perturbed observation, a single outer loop and localized covariance.
The strategies with several outer loops, perturbed observation or direct transformation are
indicated by suffix "OL", "OP" and "DT" respectively. Covariance localization and local
ensemble are indicated by suffix "LC", "LE" accordingly. Since the covariance localization
is always associated with the perturbed observation approach, ‘OP’ is omitted for the sake
of simplicity. The same applies to ‘LE’. We point out that the initial state (perturbed
surface height and null velocity field), was integrated for a few time steps before we started
the assimilation process. This provided us the guaranty of balanced velocity perturbations
that complied well with the nonlinear dynamic model.

6.4.1 Comparison tools

RMSE analysis The Root Mean Square Error(RMSE) is a way of measuring of the
differences between values predicted by a model or an estimator and the values actually
observed. The RMS between a predicted state xf and the observed state xobs is defined
by:

RMSE =
1

n

√√√√ n∑
i=1

(xf − xobs)2, (6.31)

When we deal with the synthetic data, we will base our analysis on the comparison of the
background, observation and assimilated states’ RMSE with respect to the true solution.
Furthermore, the observations time step is many times bigger than the numerical time
step, thus we will be able to assess the results on a very small amount of observations. We
will also consider the RMSE comparison on a semilogarithmic graph.

For case A, we will study the assimilation considering only velocity observations. For
case B, which is harder, we will study the assimilation considering only height observations,
velocity observations and finally both height and velocity observations.

6.4.2 Results on case A ( 20% slope on x-axis with additive Gaussian
perturbation on the initial surface height)

In this case, we compared the 4DVar and 4DEnVar on the basis of a partially observed
system in which only the velocity measurements are available. As explained above, the
initial background matrices were constructed on a similar basis. They both correspond to
a Gaussian distribution of covariance σ2

b I, σb, corresponding to the true deviation between
the initial solution of the reference and the given a priori background. The background
error is however biased as its mean is unknown.

The tests were carried out for a coarse resolution to assess certain parameter sensi-
tivities used in 4DEnVar. The Gaussian random noise fields (Beyou et al., 2013b) used
to construct the reference and initial ensemble hinges on the standard deviation and the
de-correlation length. Therefore we designed two slightly different tests. One test uses
the ensemble initialized by the same standard deviation and de-correlation length as the
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reference; the other used the ensemble initialized by slightly different standard deviation
and de-correlation length. The former is called ‘perfect background ensemble’ while the
latter is called ‘imperfect background ensemble’.

Under the circumstance of perfect background ensemble, figure 6.5a pictures for both
assimilation techniques the root mean square error (RMSE) curves of the reconstructed
free surface curves and its associated velocity component. Note that no localization is
used here. We observe that the RMSE curve of 4DEnVar methods are generally flatter
than the 4DVar curves. Similar results (even better on the unobserved height surface) are
achieved when then sampling number is big enough (N = 32 in this case). The accuracy
of the analysis is directly dependent on the ensemble size, the relationship is roughly that
doubling the ensemble size reduces half the error. At this coarse scale, an ensemble of only
few samples allows a good representation of the background error statistics without any
localization.

Here we focus on comparing the ensemble update scheme (denoted by suffix combi-
nation of ‘OP-OL’ and ‘DT-OL’ respectively). Note that the update scheme only makes
sense when extra outer loop is employed (usually 2). The results clearly are slightly in
favor of a direct transformation strategy. The gap between two ensemble update scheme
is even larger when the ensemble dimension is larger.

Another important issue is that increasing ensemble size has its limit, in this case,
employing more than 32 members will not bring great improvements to the analysis con-
sidering the associated computational cost. This is shown by the 64 members ensemble
case in table 6.1. In this table, I listed both the final RMSE and the temporal mean RMSE.
The two types of RMSE roughly corresponds to two distinctive objects of data assimilation.
Generally speaking, a lower final RMSE indicates better performance in terms of forecast
ability; while a lower temporal mean RMSE indicated better performance in terms of the
reconstruction ability. A flatter curve can also be revealed by the relative ratio between
the two RMSE.



6.4. Twin synthetic experiments 91

Type N OL Iter IL Iter RMSE(tf )e−4 RMSE(t̄)

Observation - - - - (9.758, 9.804)

Background - - - (275.5, 92.32) (362.5, 115.2)

4DVar - 3 100 (1.450, 0.8495) (6.645, 5.693)

4DEnVar-OP 8 1 20 (5.815, 12.47) (12.85, 20.63)

4DEnVar-OP 16 1 40 (2.859, 2.424) (6.091, 7.342)

4DEnVar-OP 16 2 40,20 (2.637, 2.222) (5.574, 7.184)

4DEnVar-OP 32 1 100 (1.830, 0.7037) (3.952, 1.496)

4DEnVar-OP 32 2 100,20 (0.9707, 0.5378) (2.404, 1.076)

4DEnVar-OP 64 1 100 (2.325, 0.6573) (4.320, 1.635)

4DEnVar-OP 64 2 100,20 (0.7480, 0.1951) (1.759, 0.7443)

4DEnVar-DT 8 1 20 (5.815, 12.35) (12.32, 20.38)

4DEnVar-DT 16 1 40 (2.805, 2.449) (6.091, 7.247)

4DEnVar-DT 16 2 40,30 (2.138, 1.821) (5.173, 5.965)

4DEnVar-DT 32 1 100 (1.888, 0.435) (4.018, 1.157)

4DEnVar-DT 32 2 100,50 (0.9531, 0.4809) (1.757, 1.068)

Table 6.1 – RMSE comparison table. Type: Group of methods with perfect background
ensemble and no localization (OP, observation perturbation; DT: direct transformation); N:
ensemble members; OL Iter: Outer loop iteration; IL Iter: Inner loop iterations; RMSE(tf ):
final RMSE; RMSE(t̄): mean RMSE.

The aspects of localization is summarized in figure 6.5b and table 6.2. We notice
that the localization is not so effective here: the curves denoting the localization covari-
ance approach (‘N8-LC’ with black line and ‘N16-LC’ with magenta line in figure 6.5b)
is obviously higher than the curves denoting no localization (‘N8-OP’ with black line and
‘N16-OP’ with magenta line in figure 6.5a). Since the background error statistic can be
perfectly represented by the initial ensemble, the localization therefore is unnecessary and
even detrimental to the error covariance as actual long range correlation are discarded.
Despite its negative effect, we see that the analysis obtained by localized approach with
extra outer loop can still be comparable to 4DVar (Note the curves of ‘N16-OL-LC’ with
magenta dashed line and ‘N16-OL-LE’ with dash-dot magenta line in figure 6.5b and the
reduced value of RMSE when extra outer loop is used in table 6.2). This could be explained
by another effect introduced by the localization techniques: enhanced analysis increment
subspace. This goal is achieved differently for the two types of localization techniques
(ie. Schur product, or local ensemble approach): the localized covariance approach intro-
duces an enhanced control vector; the local ensemble approach, on the other hand, keeps
a control vector of the same size as the ensemble members but reduces the analysis vector
dimension.

Another interesting conclusion could be drawn here is that the localized covariance
approach actually benefit more from the extra outer loop. In table 6.2, we see that the
RMSE in function of the column ‘OL Iter’: after a single outer loop of the approach of
local ensemble suffixed by ‘DT-LE’ is much lower than the approach of localized covariance
suffixed by ‘OP-LC’, however after an extra outer loop, the two approach yield comparable
results. We also note that the increased sampling number can tolerate bigger length of
cut-off distance. This can be implied from the RMSE versus the column ‘COD/Lx’. The
RMSE values of 40%Lx cut-off distance is significantly better that the values of 20%Lx
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Type N COD/Lx OL Iter IL Iter RMSE(tf )e−4 RMSE(t̄)

Observation - - - - - (9.758, 9.804)

Background - - - - (275.5, 92.32) (362.5, 115.2)

4DVar - - 3 100 (1.450, 0.8495) (6.645, 5.693)

4DEnVar-OP-LC 8 20% 1 100 (32.51, 7.485) (31.78, 14.59)

4DEnVar-OP-LC 8 20% 2 100,100 (7.762, 3.774) (12.08, 8.374)

4DEnVar-OP-LC 16 20% 1 100 (31.49, 6.480) (29.93, 12.21)

4DEnVar-OP-LC 16 20% 2 100,100 (9.097, 2.147) (7.475, 3.605)

4DEnVar-OP-LC 16 40% 1 100 (18.34, 2.783) (16.39, 5.265)

4DEnVar-OP-LC 16 40% 2 100,100 (4.554, 0.896) (3.581, 2.141)

4DEnVar-OP-LC 32 60% 1 100 (10.34, 0.981) (8.967, 3.143)

4DEnVar-OP-LC 32 60% 2 100,100 (2.109, 0.442) (1.987, 0.890)

4DEnVar-DT-LE 8 20% 1 20 (18.39, 4.715) (19.43, 10.34)

4DEnVar-DT-LE 16 20% 1 50 (2.655, 1.656) (4.156, 2.981)

4DEnVar-DT-LE 16 20% 2 50,50 (1.437, 1.071) (3.734, 2.685)

4DEnVar-DT-LE 32 40% 1 100 (2.675, 0.3248) (4.8118, 0.9550)

4DEnVar-DT-LE 32 40% 2 100 (1.525, 0.5949) (2.057, 1.371)

Table 6.2 – RMSE comparison table. Type: Group of methods with perfect background
ensemble and localization (OP, observation perturbation; DT: direct transformation; LC,
Localized covariance; LE, Local ensemble); N: ensemble members; COD/Lx: ratio of cut-
off distance divided by characteristic length; OL Iter: Outer loop iteration; IL Iter: Inner
loop iterations; RMSE(tf ): final RMSE; RMSE(t̄): mean RMSE.

cut-off distance with the 16 ensemble members suffixed by ‘OP-LC’. A similar conclusion
made to the EnKF system can be found in Houtekamer and Mitchell (2001, 2005).
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Figure 6.5 – RMSE comparison between various variational methods: (a) group of methods
with perfect background ensemble and no localization (OP, observation perturbation; DT:
direct transformation; OL, extra outer loop), (b) group of methods with perfect background
ensemble and localization (LC, Localized covariance; LE, Local ensemble)
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The sensitivity of analysis subject to the initial ensemble error statistics is tested with
imperfect background ensemble. Here I construct the initial members with a 30% length
scale Lx as the de-correlation length (with same σb). The results with regard to the unlo-
calized strategies and the localized strategies are shown in tables 6.3 and 6.4 respectively.
The RMSE curves are omitted since they look similar to the previous tests.

We could conclude from the table 6.3 that if no localization is considered, the ensemble-
based variational methods with or without the ensemble update are incapable of yielding
comparable result to 4DVar. Indeed without the use of a localization filter, the 4DVar
with a static background provides clearly better results. However, if localization is well
implemented, both assimilation techniques yield similar quality results in terms of the
surface height or velocity components’ RMSE (table 6.4). This is because unlike the
previous perfect initial background ensemble test, the background ensemble is initialized
by a longer de-correlation length which makes the spurious correlation accountable. Those
spurious correlation needs to be eliminated by localization process. Compared to the
unlocalized approach, the localization improves clearly the ensemble performances for a
small ensemble size as already stated in several studies (Houtekamer and Mitchell, 2001;
Fairbairn et al., 2013).

Comparing the two localization techniques, the localized covariance strategy (RMSE
values with suffix ‘LC’ in table 6.4) outperforms the local ensemble strategy (RMSE val-
ues with suffix ‘LE’ in table 6.4) in this context. This could be explained from various
perspectives. Although the error covariance can be well corrected in both approaches,
the two techniques still differ in the way of formulating the analysis: the global analysis
obtained by ‘LC’ approach can retain a more balanced multivariable relationship than the
local analysis obtained by the ‘LE’ approach. Besides, the ‘LC’ approach can be conducted
with larger cut-off distance, so the magnitude of the error covariance reduces less than the
‘LE’ approach in which increasing the local space size can bring out identical problems
encountered by the limited number of ensemble members.

The effectiveness of introducing several outer loops in 4DEnVar again is proved in ta-
bles 6.3 and 6.4. We can witness that the RMSE values associated with 2 outer loops are
much lower than those of only one outer loop. In fact, the analysis associate with only one
outer loop diverges completely from the analysis obtained by the 4DVar method. However,
it is hard to tell how much the analysis can benefit from the ensemble field update scheme
proposed in the previous chapter. Figure 6.6 compares the performance of two nested loops
algorithms: the algorithm 6 employing ensemble update and the algorithm 3 indicated by
suffix ‘Courtier’ used in Courtier et al. (1994); Haben (2011). We observe that both algo-
rithms can reduce well the RMSE in terms of the observed velocity components since the
iterative analysis is estimated primarily based on the gap between the previous analysis
trajectory and the observation. Our proposed algorithm 6 yield slightly better result re-
garding to lengthwise velocity and leads to great improvement regarding to the unobserved
height component. This could be attributed to the background ensemble repropagation
introduced in our algorithm. It can be concluded that the ensemble repropagation can
indeed help the iterative analysis in redefining the subspace to which the iterative analy-
sis increment belongs. In addition to that, the repropagation of ensemble re-ensures that
the analysis increment of different variables are in balanced state, therefore alleviate the
problem of balance loss introduced by the localization technique.
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Type N OL Iter IL Iter RMSE(tf )e−4 RMSE(t̄)

Observation - - - - (9.758, 9.804)

Background - - - (275.5, 92.32) (362.5, 115.2)

4DVar - 3 100 (1.450, 0.8495) (6.645, 5.693)

4DEnVar-OP 8 1 100 (38.10, 6.307) (56.15, 10.07)

4DEnVar-DT 8 2 60,20 (26.09, 5.844) (37.45, 12.83)

4DEnVar-OP 16 1 100 (37.67, 6.841) (56.09, 11.52)

4DEnVar-OP 16 2 100,20 (12.65, 4.724) (22.63, 12.23)

4DEnVar-DT 16 2 100,20 (16.92, 5.781) (23.11, 12.10)

4DEnVar-OP 32 1 100,20 (37.20, 7.165) (54.97, 12.88)

4DEnVar-OP 32 2 100,20 (12.10, 4.054) (19.34, 9.599)

4DEnVar-DT 32 2 100,20 (12.58, 3.642) (20.73, 9.026)

Table 6.3 – RMSE comparison table. Type: group of methods with imperfect background
ensemble and no localization (OP, observation perturbation; DT: direct transformation); N:
ensemble members; OL Iter: Outer loop iteration; IL Iter: Inner loop iterations; RMSE(tf ):
final RMSE; RMSE(t̄): mean RMSE.

Type N COD/Lx OL Iter IL Iter RMSE(tf )e−4 RMSE(t̄)

Observation - - - - - (9.758, 9.804)

Background - - - - (275.5, 92.32) (362.5, 115.2)

4DVar - - 3 100 (1.450, 0.8495) (6.645, 5.693)

4DEnVar-OP-LC 8 20% 1 100 (17.94, 4.878) (27.73, 9.995)

4DEnVar-OP-LC 8 20% 2 100,40 (6.472, 2.556) (13.56, 7.343)

4DEnVar-OP-LC 16 40% 1 100 (13.19, 4.767) (20.64, 9.074)

4DEnVar-OP-LC 16 40% 2 100,50 (4.523, 1.549) (8.334, 4.953)

4DEnVar-OP-LC 32 60% 1 100 (10.78, 4.231) (15.32, 7.855)

4DEnVar-OP-LC 32 60% 2 100,100 (2.768, 0.634) (5.779, 3.992)

4DEnVar-DT-LE 8 20% 1 50 (22.13, 4.242) (34.29, 8.982)

4DEnVar-DT-LE 8 20% 2 50,50 (9.581, 3.879) (20.42, 8.895)

4DEnVar-DT-LE 16 30% 1 100 (21.02, 3.091) (30.45, 7.610)

4DEnVar-DT-LE 16 30% 2 100,100 (7.003, 3.307) (14.69, 6.528)

4DEnVar-DT-LE 32 30% 1 100 (18.90, 2.182) (27.69, 5.623)

4DEnVar-DT-LE 32 30% 2 100,100 (4.268, 1.664) (12.84, 4.268)

Table 6.4 – RMSE comparison table. Type: Group of methods with imperfect background
ensemble and no localization (OP, observation perturbation; DT: direct transformation;
LC, Localized covariance; LE, Local ensemble); N: ensemble members; COD/Lx: ratio of
cut-off distance divided by characteristic length; OL Iter: Outer loop iteration; IL Iter:
Inner loop iterations; RMSE(tf ): final RMSE; RMSE(t̄): mean RMSE.
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Figure 6.6 – RMSE comparison between outer loop schemes: No outer loop (black line),
Algorithm 6 (black dashed line), Algorithm 3 (black dotted line).

6.4.3 Results on Case B: (21% slope on x-axis and 10% slope on y-axis)

For the case B, the assimilation techniques were evaluated with partially observed systems
where only the free surface height or the velocity components are observable, and also a
fully observed case in which measurements for the whole system are available. The results
corresponding to each case are reported in the subsequent sections.

Height observations

Let us recall that in this case, the initial condition of the reference is far apart from the
known a priori configuration fixed as the background – without slope in the y coordinate.
As explained previously we tested two different initial background covariance setups. An
ensemble of 8 members is sufficient to yield comparable results with 4DVar.

The RMSE curves corresponding to this case are gathered in figure 6.7. We observe
that the 4DEnVar assimilation technique globally leads to better results than the standard
4DVar assimilation technique. The initial free surface is strongly corrected in both meth-
ods, however the unobserved velocity components are well corrected only for the ensemble
technique.

Note that the mechanisms that come into play for the reconstruction of unobserved
components are different in both cases. For standard 4DVar, the adjoint operator of the
dynamic model (tangent and adjoint operators for incremental case) propagates a balanced
increment from the height to the velocities; for 4DEnVar, the correlation terms in the
background error covariance, derived from the initial ensemble, play an important role in
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Figure 6.7 – RMSE comparison between an incremental 4DVar and 4DEnVar assimilation
approaches: partial observed through noisy free surface height

reconstructing the analysis velocity fields.
The ensemble technique was the most efficient when the initial noise complied with the

physics of the observed phenomenon (i.e. random slopes drawing versus Gaussian noise).
For non-physical initial noise, the localization is mandatory and the cutoff distance was set
as the optimal cutoff distance minimizing the average RMSE (the same value was used to
define the size of local space). This distance increases as the ensemble member increases.
Both results are consistent with Houtekamer and Mitchell (2001); Fairbairn et al. (2013).

We can also observe from the RMSE curves that several outer loops clearly improves
the results (OL-LC against Liu-et-al, OL-LE against LE), which highlights the pertinence
of the background covariance update. The method with local ensemble yielded slightly
better results than the method with localized covariance.

Few general remarks can be done here. The 4DVar method used here relies on a simple
diagonal covariance matrix. Its results could be improved with a better description of the
background error covariance matrix. However, extra computational cost in order to handle
this full matrix can not be overlooked.

Velocity observations

The results corresponding to this case are shown in figure 6.8. In this case, we retrieved
almost the same behavior as in the previous case. When associated to an unphysical back-
ground covariance built from a Gaussian perturbation, the 4DEnVar techniques require to
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rise the size of the ensemble in order to obtain results of comparable quality to the standard
4DVar. A localization filter is needed in that case, and a too low number of members leads
to weaker results. Compared to ensemble techniques, the incremental 4DVar technique
shows some difficulty to correct efficiently the unobserved surface height component. The
4DEnVar, with an initial ensemble built from random slope parameters, leads to better re-
sults with a moderate number of members (N = 16 in this case). A lower number (N = 8)
yields good results for the observed variables but not for the unobserved surface height.
An increase of the ensemble size (N = 32) slightly improves the quality of the results.

This good behavior can be observed even for a small number of members. This result
highlights the gain of performance that can be achieved by fixing an adequate physical
perturbation in the ensemble assimilation. For a physically adapted perturbation, the
performance is improved for all the components, whether they are observed or not; the
ensemble size can also be significantly reduced and no localization appears to be necessary
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Figure 6.8 – RMSE comparison between an incremental 4DVar and 4DEnVar assimilation
approaches: partial observed through noisy velocity field.

Height and velocity observations

Finally, we compared the assimilation techniques assuming a fully observable system where
measurements of both height and velocity fields are provided. Similarly to the previous
tests, the ensemble technique with the background covariance obtained from a Gaussian
perturbation requires the augmentation of the ensemble size to obtain comparable results
to those obtained with the standard 4DVar. A smaller ensemble leads to worse results and
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Type CPU Time Memory demands
4DVar 3200s Small
4DEnVar-PP(No Localization, N=8) 120s Small
4DEnVar-LC(N=32) 2400s Huge
4DEnVar-LE(N=32) 600s Small

Table 6.5 – Comparison of the CPU time (seconds) (2 × 2.66 GHz Quad-Core Intel Xeon)
and memory demands (16 GB in total) with 105 level of state size between different meth-
ods.

the use of a localization filter is necessary. The results obtained for the physical background
covariance are slightly better than the results obtained for 4DVar.

Nevertheless, the advantage of ensemble methods are less enhanced than in the pre-
vious cases. This is probably due to the fact that under this circumstance, each variable
component is mainly corrected by the corresponding observations rather than indirectly
inferred from other observed components. However, in real world applications, assimila-
tion problem are rarely fully observable, hence the capacity of ensemble methods to correct
efficiently the unobserved system’s components appear to be very attractive.

In terms of the two localization schemes, with a low number of samples, ‘LE’ approach
gave better results than ‘LC’ approach. When increasing the sample numbers, the differ-
ence between the two localization approaches decreases. This is because the local space
used in ‘LE’ method was already rather small compare to the full state space, so the bad
effects induced by a small ensemble number was less severe in this case.

The computational time of the different methods is indicated in table 6.5. The param-
eter perturbation approach performs the best in terms of the CPU time and the memory
demanding, this is quite natural as no localization is applied. But to devise a parameter
perturbation that fit to the initial error statistics is not a trivial task regarding to real ob-
servations. Between the two localization techniques, the LE approach only used one fourth
of the computational time of LC approach but its limitations are also obvious: we must
restrict the local space rather small as increasing the local space leads both to increase
in quadratic way the computation cost and to a bad localization. The LC approach, on
the other hand, maintains a nearly constant computational cost in function of the cut-off
distance. It is nevertheless associated with rather high CPU time and enormous memory
demand.

On the contrary, if we double the ensemble members, the LC method takes 4 times
more computation time to respond while using moderate localization; in LE method, the
computational time only doubles. The different consequences of the de-correlation distance
and the ensemble member resulted in the computational time may be an important factor
on how to choose the optimal value regarding to different approach.

6.5 Summary

We have conducted here a complete assessment of the several assimilation schemes proposed
in chapter 5. Various strategies related to the ensemble-based DA method are discussed
in the texts: the observation perturbation versus the direct transformation, the localized
covariance versus the local ensemble, the parameter sampling versus the Gaussian sampling,
the effect of introducing extra outer loop, etc. It is nevertheless difficult to give the best
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Figure 6.9 – RMSE comparison between an incremental 4DVar and 4DEnVar assimilation
approaches, fully observed system (i.e. free surface height and velocity fields).

approach unless we have a profound knowledge of both the dynamical model and the
observation connected to the DA. We will apply this method to real image data in next
chapter.



Chapter 7

Application With Image Data

7.1 Image data from depth camera Kinect

We carried out another evaluation on a real world experiment in which the free surface of
a fluid contained in a rectangular flat bottom tank of size Lx × Ly = 250 mm × 100 mm
was observed. Following the pioneering work of Combes et al. (2011, 2015) we used the
Kinect sensor to observe the evolution of a unidirectional wave generated by an initial free
surface height difference ∆h = 1 cm on a grid of 222 × 88 pixels. The flow surface was
located between 680 and 780 mm from the device. When the attenuation coefficient of the
liquid is larger than 113 m−1, the Kinect sensor displays a mean measurement error of 0.5
mm with standard deviations of about 0.5 mm for both flat and sinus-like surfaces. The
sensor captures successfully sinus-like varying elevations with spatial periods smaller than
20 mm and amplitudes smaller than 2 mm. In the following the characteristic velocity U
is considered as an approximation of wave phase velocity

√
g∆h.

Figure 7.1 – Experimental set with the Kinect sensor.

7.1.1 Data processing

These observations are characterized by a high level of noise and exhibit large regions of
missing data along the boarders due to light reflections on the tank’s wall (see figure 7.2a).
We cope with these incomplete observations through the following these steps:

• The singular points are considered as bad points and are eliminated.



102 Chapter 7. Application With Image Data

• The missing boundary areas located besides the long borders are filled with observa-
tions averaged by all the pixels’ values in the same section.

• The missing boundary areas located besides the short borders are filled with obser-
vations extrapolated from the height profile.

• The missing inner hole areas are filled with pseudo-values which are computed as the
mean of all the adjacent pixels’ observation values.

Finally we obtain a sequence of height data on a 248 × 98 grid. However, owning to the
computational limitations, we are inclined to run our model on a 124 × 49 grid. The
observations are therefore interpolated to the coarse grid. Such interpolation is identical
to consider a mask observation operator.

In terms of the observation errors: for a point in the unobserved region, we set the
observation error as a function of the distance from the closest observed point. Thus,
the longer the distance, the larger the error. The observation error is however bounded
by a maximal value 60% of the height difference ∆h. Within the observed region, we
set the observation error homogeneously to the instrument error σo = 5%∆h. Note that
∆h is a characteristic height defined as the mean wave amplitude over time. The other
characteristic quantities are calculated in the same way as in the synthetic cases. Likewise
we define the characteristic velocity U as an approximation of the wave phase velocity and
the final characteristic time of the assimilation window equals to tfU/Lx. In this case,
∆h = 12 mm, U =

√
g∆h = 0.5425 mm/s, and tf

Lx/U
= 0.4608. All the characteristic

values are used to adimensionalize our results.

7.1.2 Dynamical model

The flow featured by this experimental configuration can be approximately described by a
2D shallow water model as well.

7.1.3 Assimilation scheme configuration

In this case, the initial background was completely unknown hence, it was set to a filtered
observation with interpolated values on the missing data regions at the initial time on a
248 × 98 grid. This high resolution is interpolated to a 124 × 49 grid. Figure 7.2b shows
the background state reconstructed from the first observation.

We noticed that the observed free surface behaved roughly as an unidirectional wave
along the x-axis. Thus, we set the initial velocity field as a smooth linear slope where the
velocity at the top of the wave was set as 23% of the wave velocity and the velocity at the
bottom of the wave was set to 0 (see figure 7.2c).

The observation time interval needs to be carefully tuned to ensure the synchronization
of the observation sequence and the evolution of the background state. We set ∆tobs =
30∆tdyn.

Similarly to the synthetic case, the assimilation started at the second image in order
to construct balanced ensemble through the integration. The initial ensemble is defined
by adding isotropic Gaussian perturbation fields with standard deviation σb = 3.6%∆h to
the background state. The cutoff distance and the size of local space are fixed as 15% of
the length Lx.

The assimilation scheme was adapted to sliding assimilation windows to avoid long
range temporal correlations. Each window contains 5 observations. We adopted 5 windows
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(a)

(b)

(c)

Figure 7.2 – (a) The height field observed from the kinect camera, (b) The corresponding
height background state and (c) primary velocity magnitude at t = 0.

over 9 observation times, each window consists in 5 observations and each window starts
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at the 1st, 2nd, ... , 5th observation respectively.

7.1.4 Results and discussion

When we deal with real observations, the ground truth will not be available. We can only
compare the background and the assimilated states’ RMSE with respect to the observa-
tions. The true solution is assumed to lie within an interval around the observation. But
no precise comparison can be found. Thus instead of a RMSE study, we focus here on the
direct comparison of the height field.

The results obtained by both assimilation techniques are displayed in figure 7.3 in terms
of the average surface height of the wave crest as a function of time. This is quite intuitive as
we were dealing here with a single wave simulation. We thus particularly focused on in the
wave crest’s region rather than on the other flat regions. We observe from these results that
the 4DVar and the En4DVar can both follow the observation trajectory tendency. While
the 4DVar tends to underestimate the surface height at the beginning of the assimilation
window, the group of En4DVar yielded very similar results between the 1st and 4th image.
After the fifth image, the result of En4DVar by Liu et al. diverges from the observation
trajectory.
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Figure 7.3 – Mean surface height of the wave crest region as a function of time - comparison
of different variational data assimilation approaches results
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We also compared the global free surface height distribution in figure 7.4. According
to these free surfaces, we can see that the 4DVar solution showed some difficulties to
handle the discontinuities at the boundaries of the regions in which the data have been
extrapolated. Discontinuities in the 4DVar solution between the observed regions and the
very noisy region appeared clearly. The En4DVar provided much more satisfying results
on the boarders. They were smoother and corresponded clearly to a better compromise
between the observation and the model.
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Figure 7.4 – Height field comparison, left column at t · U/Lx ≈ 0.0652, right column at
t ·U/Lx ≈ 0.5859, from top to bottom: Background, En4DVar-Liu-et-al, En4DVar-OL-LC,
En4DVar-OL-LE, 4DVar, Observation

7.2 Sea surface temperature image data from satellite sensors

We are now interested in another kind of dynamics which depicts the geophysical flow in a
larger space and time scale than the shallow water model. At these large scales, the Coriolis
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force is thus dominant in these scenario compared to the inertial force (characterized by
low Rossby number). And geophysical flows normally respect the geostrophic state. So we
focus in this chapter on the surface quasi-geostrophic model, which is a 2D simplification of
3D quasi-geostrophic equations. Those quasi-geostrophic equations are usually encountered
in the modeling of a stratified fluid undergoing strong rotation effects. A general quasi-
geostrophic equation for nonlinear motions is given as (Cushman-Roisin and Beckers, 2011),

∂q

∂t
+ J(ψ, q) = 0, (7.1)

where q is the potential vorticity,

q = ∇2ψ +
∂

∂z
(
f2

0

N2

∂ψ

∂z
), (7.2)

Here, ψ, is the stream function, J denotes the Jacobian operator: J(a, b) = (∂a/∂x)(∂b/∂y)−
(∂a/∂y)(∂b/∂x) and N2 stands for the stratification frequency. The second term of the
RHS of (7.2) cancels when we do not consider the stratification effects.

7.2.1 Dynamical model configuration

The evolution of the surface buoyancy or of the temperature field, θ, are governed by
similar relationship (Held et al., 1995):

∂θ

∂t
+ J(ψ, θ) = 0, at z = 0. (7.3)

This corresponds to the inviscid SQG equation. The dissipative SQG equation is given by
Constantin and Wu (1999):

∂tθ + u ·∇θ + κ(−∆)αθ = 0, (7.4)

where 0 < α ≤ 1, κ denotes the viscosity coefficient and κ ≥ 0. Function u denotes the
velocity filed that can be deduced from the scalar field θ by Riesz transforms:

u = (−∂y, ∂x)ψ = (−∂y(−∆)−
1
2 θ, ∂x(−∆)−

1
2 θ), (7.5a)

(−∆)
1
2ψ = θ. (7.5b)

The operator (−∆)
1
2 is the fractional Laplacian operator. Such an operator can be under-

stood by means of Fourier spectral method. In fact, if the Laplacian operator satisfies,

(−∆)ϕj = λjϕj ,

we thus can define ϕj as the orthonormal eigenfunctions and λj as the associated eigen-
values. consequently, it can be shown that if θ can be expressed as Fourier series on the
basis of ϕj ,

θ =
∞∑
j=0

θ̂jϕj , (7.6)

where (•̂) denotes the Fourier coefficient. Then the fractional Laplacian holds for,

(−∆)αθ =

∞∑
j=0

θ̂jλ
α
j ϕj . (7.7)
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Note that the basis ϕ and λ have different expressions for different boundary conditions.
For periodic boundary x ∈ [a, b], L = b − a, these two function read: λj = (2πj

L )2 and
ϕj = ei

2πj
L

(x−a) (Bueno-Orovio et al., 2012). The equation above allow us to solve efficiently
the SQG equation in the spectral space.

7.2.2 Numerical scheme

Space discretization

We rely on a 2D square domain [0, L]2 to study the numerical scheme of the Fourier spectral
methods. The Fourier series of the 2D function θ can be written as,

θ(x, y) =
+∞∑

k1=−∞

+∞∑
k2=−∞

θ̂(k1, k2)ei2πk1/Lei2πk2/L, (7.8)

Numerically, a truncated series expansion is calculated in which the dimension of Fourier
discrete vector is set to the number of spatial discretization points N2 (N is the spatial
grid points in one direction) (Chehab et al., 2012).

θ(x, y) ≈
N
2∑

k1=−N
2

+1

N
2∑

k2=−N
2

+1

θ̂(k1, k2)ei2πk1/Lei2πk2/L, (7.9)

and the Fourier coefficient θ̂ is calculated likewise. The dissipative term reads,

(−∆)αθ =

N
2∑

k1=−N
2

+1

N
2∑

k2=−N
2

+1

‖k‖αθ̂(k1, k2)ei2πk1/Lei2πk2/L. (7.10)

In practice, the Fourier coefficient θ̂ and the inverse construction of θ can be computed
efficiently by fast Fourier transform (FFT) algorithm.

Time discretization

A simple forward Euler discretization scheme can be used to split the time derivative.
Suppose that at time step [tn, tn+1], θn is known and the advection term is approximated
using a fixed point algorithm, we seek then the value of θn+1,m according to:

θn+1,m − θn
∆t

+ un+1,m−1 ·∇θn+1,m−1 + κ(−∆)αθn+1,m = 0, (7.11)

where ∆t = tn+1 − tn, un+1 = (−∂y(−∆)−
1
2 θn+1, ∂x(−∆)−

1
2 θn+1) and m = 1, 2, . . . ,M .

The Fourier transformation of (7.11) is possible when considering (7.9) and (7.10). For the
(k1, k2)-th Fourier mode, the time discretization reads,

θ̂n+1,m
k1,k2

=
1

1 + κ|k1, k2|α∆t
[θ̂nk1,k2 + ∆tf̂k1,k2(un+1,m−1, θn+1,m−1)], (7.12)

where the f denotes the advection term u ·∇θ.
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7.2.3 Image data processing

The aim here is to assimilation the sea surface temperature (SST) image data. Here SST
image data are assumed to be a passive scalar tracers transported by the flow. There are
in principle two ways of assimilating the image data into the dynamic model. The first
approach relies on a motion estimator of the image sequences. The velocity fields supplied
by those motion estimation techniques are then considered as pseudo-observations. In
this case image data are thus used indirectly in the assimilation process. Therefore, the
performance of this approach largely depend on the efficiency of the motion estimator.

In this study we seek to use directly the image data through the constitution of an
observation model linking the model state variables and the image data. The passive
scalar hypothesis leads us naturally to consider a transport equation on the luminance
function I. This relation also called the optical-flow constraint reads:

dI(x, t)

dt
=
∂I(x, t)

∂t
+ ∇I(x, t) · up(x, t) = 0, (7.13)

In this equation up denotes the vector fields transporting I at the pixel scale. This equation
simply states that the material derivative of luminance function is zero. In reality, image
data are usually denser in space and scarcer in time. The validity of the above equation
is then likely to be not valid in large regions of the image plane. For this reason, we opt
instead for the displaced frame difference operator.

Displaced frame difference

This displaced frame difference equation is given by,

DFD(dt(x)) = I(x + ∆x, t+ ∆t)− I(x, t). (7.14)

dt denotes the displacement field. We can easily see that the DFD equation can be viewed
as an integrated version of the optical flow constraint equation (7.13).

I(x + ∆x, t+ ∆t)− I(x, t) = 0. (7.15)

Based on this relation, we can construct a nonlinear observation model,

I(x, k) = I(xk+1, k + 1) + γk. (7.16)

Here the nonlinear observation operator H is implicitly embraced in the displaced image
function I(xk+1, k+ 1) where xk+1 = x + d(x) and d(x) =

∫ k+1
k updt. The velocity field up

is derived from the physical flow velocity u by,

up = u
∆tobs
∆x

, (7.17)

where ∆x is the grid spacing and ∆tobs denotes the time interval of two image sequence.
γk is an additional Gaussian random noise with covariance R. It is worth recalling that
although the tangent linear observation operator ∂xH appears explicitly in the gradient
expression (5.7), its approximation relying on propagation of ensemble perturbation matrix
projected into observation space (Eqs. (5.5) and (5.6)) only needs the intervention of the
full nonlinear observation operatorH. This is considered as an advantage of ensemble-based
method.
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The observation error covariance matrix related to the image data is assumed to be a
diagonal matrix: R(x, x′) = σ2

k(x)δ(x − x′) at image time level k. Its variance terms can
be estimated from the ensemble,

σ2
k(x) =

1

N − 1

N∑
i=1

(I(x + di(x), k + 1)− Īd(x, k + 1))2 + ε, (7.18)

where ε is a minimum variance to avoid singular values when calculating the inverse obser-
vation error covariance matrix, di is the i-th ensemble member’s displacement associated
with the velocity and Īd is the ensemble mean of the displaced image.

7.2.4 Assimilation scheme configurations

Another great advantage of ensemble-based assimilation method compared to variational
methods is that their implementations are to a large extent model independent. In stan-
dard 4DVar approach, different dynamical models require the construction of corresponding
linear tangent and adjoint models. Design and maintenance of such adjoint model consti-
tutes a substantial portion of the complete work of 4DVar. In ensemble-based method, on
the contrary, as long as the dynamic model is ready, the ensemble-based data assimilation
scheme can be directly applied. Consequently, the extra works of ensemble-based method
is to find a better ensemble representing of the background error statistics and better up-
date schemes able to maintain the ensemble spread. To achieve this goal, a systematic
study of the error statistics must be carried out and there are certain cases where one can
only resort to a ’try and error’ strategy.

Here we will use the same strategies proposed in chapter 5. The problem remains to
find several terms related to the DA process.

We began with a synthetic case in which the image data sequences are converted from
the sequences of state variable matrix. The observations were generated by adding i.i.d.
Gaussian noise 0.1 to the reference state per 25 frames of dynamic states. We choose a
single assimilation window with 9 observations. The background initial state is obtained
by adding an homogeneous Gaussian noise with variance 1. The Gaussian random fields
with the same variance is used to generate the ensemble with the background state as the
mean.

7.2.5 Results and discussions

The buoyancy (or surface temperature) fields are shown is figure 7.5. These scalar maps are
taken as the observations of our assimilation problem. The figures 7.5b and 7.5c illustrate
the surface buoyancy fields before and after the assimilation process. The ground truth
of buoyancy field is shown in 7.5d for evaluation purpose. We can see immediately that
the initial analysis state is closer to the ground truth state. The analysis state can better
reconstruct the small scale variations and discontinuities, which have been overlooked in
the background field.

The RMSE comparison and the vorticity maps are shown in figure 7.6. The RMSE
values are calculated in such a way as a function of the discrepancy of the target trajectory
and the observation in the image space that we can observe well their performance at the
image level. The background state and the analysis state must be transformed into image
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Figure 7.5 – The synthetic flow: (a) Image observation, (b) The background buoyancy
state, (c) The analysis buoyancy state, (d) The ground truth buoyancy state at the initial
analysis time t = 0.25s.

space. The RMSE equation reads:

RMSE =
1

n

√√√√ n∑
i=1

(Ĩf,a(x)− Iobs(x))2. (7.19)

The figures 7.6b, 7.6c and 7.6d demonstrate the surface vorticity fields of the back-
ground, the analysis and the ground truth respectively. The performance of our ensemble-
based algorithm is again verified.

7.3 Summary

In this chapter, we have shown two applications with image data assimilation. The former
case couples Kinect-captured surface height image data with a shallow water model; the
latter case concentrates on typical image data processing and studies the assimilation of
image data into a SQG model.
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Figure 7.6 – (a) The RMSE comparison in observation space, (b) The background vorticity
state, (c) The analysis vorticity state, (d) The ground truth vorticity state at the initial
analysis time t = 0.25s.



Part IV

Stochastic Model Approach





Chapter 8

Stochastic Shallow Water Equations

In this chapter we will discuss the ensemble-based data assimilation techniques in the
framework of stochastic dynamic models. The stochastic Navier-Stokes equations discussed
in this chapter are based on the recent work of Mémin (2014) and Kadri Harouna and
Mémin (2014).

8.1 Why stochastic modeling?

In Computational Fluid Dynamics (CFD), the flow simulated on different grid resolutions
may appear to be quite different. This inconsistency is caused by both physical or nu-
merical processes which can hardly be properly modeled by abruptly coarse-graining the
simulation. From a numerical point of view, the discretization error naturally decreases
as the resolution is refined. This can be assured by a Grid Convergence Study to de-
termine the tolerable resolution on the condition that all relevant physical processes are
considered. The Direct Numerical Simulations (DNS) has provided very promising results
in recent years with the increase of the available computational power. However, regard-
ing to the usual geophysical or engineering applications, this paradigm, which consists
in simulating the smallest scales of the flow, is hardly applicable due to the dimension
of the problem to handle. A common approach is therefore to simulate the statistically
averaged flow on a coarse grid and modeling the small scale using technique called the
subgrid-scale parameterization. These subgrid-scale process is usually related to the tur-
bulent fluctuations. Two approaches have been successfully implemented for large scale
simulation: the Large-Eddies Simulations (LES) and the Reynolds Average Numerical Sim-
ulations (RANS). The LES approach (Deardorff, 1970; Moeng, 1984) defines the governing
equations of the resolved-scale variables as a convolution of the real equations with a low-
pass filter, and leaves the subgrid-scale fluctuations to be determined elsewhere; on the
other hand, the RANS approach is built on the idea of Reynolds decomposition.

For geophysical models, a bunch of processes can explain the unresolved components.
Those processes are related to the mesoscale and microscale geophysical systems. When one
faces a simulation at different resolutions, it is important to understand the actions of those
unresolved components on the resolved one and to take them into account in the dynamics.
Stochastic modeling has been already applied to formulate such subgrid effects (Frederiksen
et al., 2013). In our approach, instead of considering additional random forcing terms, we
try to incorporate the subgrid effects from an uncertainty principle included from the start
in the dynamics physical derivation.
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The basic idea of the stochastic flow dynamics is built on the assumption that the La-
grangian fluid particle displacement can be separated in two parts: a smooth differentiable
part and a non-differentiable stochastic part:

X(x, t) = w(X(x, t), t)dt+ σ(X(x, t), t)dBt, (8.1)

where X is the flow map, w is the deterministic velocity and dBt is a vector of d-
dimensional Wiener increment (d=2,3). The term σ(x, t)dBt represents the stochastic
component whereas w, denotes the smooth drift component. The flow fields are defined
on the flow domain Ω. From Eq. 8.1, we can have the Eulerian velocity fields,

U(x, t) = w(x, t) + σ(x, t)dBt. (8.2)

We remark here that Constantin and Iyer (2008) and Mikulevicius and Rozovskii (2004)
also proposed a closely related representation of Navier-Stokes equations on stochastic
Lagrangian paths.

The Reynolds transport theorem plays an essential role in formulating the Navier-
Stokes equations. It allows expressing conservation laws (mass, momentum and energy).
Similarly our derivation process relies on a stochastic extension of the Reynolds transport
theorem. We review here some important aspects related to this theorem. A comprehensive
derivation process of this theorem (Mémin, 2014) is presented in appendix A.

The stochastic differential equation 8.1 holds for X if it satisfies the stochastic integral
defined through,

X(x, t)−X(x, t0) =

∫ t

t0

w(X(x, t), t)dt+

∫ t

t0

σ(X(x, t), t)dBt for t0 ≤ t ≤ tf , (8.3)

Ito’s formula states (Allen, 2007) that a scalar function φ(X, t) in terms of stochastic
process X also satisfies a stochastic differential equation.

Here we consider a 1D case to illustrate Ito’s rule. Imagine that φ is any quantity
transported by the flow, if φ(x, t) is twice continuous differentiable, then the Taylor series
expansion of φ reads,

dφ =
∂φ

∂t
dt+

∂φ

∂x
dX +

1

2

∂2φ

∂x2
(dX)2. (8.4)

Inserting Eq.(8.2), we get,

dφ =
∂φ

∂t
dt+

∂φ

∂x
(wdt+ σdBt) +

1

2

∂2φ

∂x2
(wdt+ σdBt)

2, (8.5)

According to Ito’s rule, the term associated with (dBt)
2 is in the order of ‘dt’ and has to

be retained, (which is often informally written as dBt ∝
√
dt). The other higher order

terms (dt)2 and dtdBt can be discarded. This leaves us with:

dφ = (
∂φ

∂t
+
∂φ

∂x
w +

1

2
σ2∂

2φ

∂x2
)dt+

∂φ

∂x
σdBt. (8.6)

which constitutes the simpler scalar Ito differential role. A more general form can be
written, when σdBt is not anymore a scalar but rather a vector:

dφ(X, t) = (
∂φ

∂t
+ ∇φ ·w +

1

2

∑
i,j

d〈Xi, Xj〉
∂2φ

∂xi∂xj
)dt+ ∇φ · σdBt. (8.7)
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The term d〈Xi, Xj〉 is the quadratic co-variation defined as

〈X,Y 〉t = lim
max |ti+1−ti|→0

∑
(X(ti+1)−X(ti))(Y (ti+1)− Y (ti))

T , (8.8)

where the convergence has to be interpreted as a convergence in probability. In our case
the quadratic variation of the uncertainty component reads,

〈
∫ t

0
(σdBt)i,

∫ t

0
(σdBt)j〉 =

∫ t

0

∑
k

σikσkjds,

,
∫ t

0
aijds. (8.9)

The term aij denotes the uncertainty variance tensor. It corresponds to the time deriva-
tive of the quadratic variation process and gathers the diagonal element of the covari-
ance matrix tensor: Qij =

∫
Ω

∑
k σik(x, z)σjk(z, y)dz. It has the same unit as kinematic

viscosity(m2s−1), likewise the diffusion tensor σij has the unity of (ms−
1
2 ).

A function, φ, which satisfies the Ito formula (8.7) can only be a deterministic function.
In our case, φ(x, t) is necessarily a random function (otherwise a conservation property
would cancel the stochastic part), and its stochastic differential must be evaluated by the
so called Ito-Wentzell formula:

dφ(X, t) = dtφ+ ∇φ · dX +
1

2

∑
i,j

d〈Xi, Xj〉
∂2φ

∂xi∂xj
dt+

∑
i

d〈 ∂φ
∂xi

,

∫ t

0
(σBt)

i〉dt. (8.10)

Compared to the Ito’s formula (8.7), ∂φ∂t is replaced by dtφ since φ is a random function of
X and a covariation term appears as well.

The term dtφ denotes the differential of φ at a fixed grid point. It necessarily satisfies
a stochastic differential equation. Such an stochastic differential equation allow us to
formulate the stochastic Reynolds transport theorem (appendix A).

Denoting q as a scalar function bounded in a material fluid volume V transported by
(8.1), the rate of change of q is given by:

d

∫
V
qdx =

∫
V

[dtq+∇·(qw)dt−1

2

∑
ij

∂2

∂xi∂xj
(aijq)|∇·σ=0dt+

1

2
‖∇·σ ‖2 qdt+∇·(qσdBt)]dx,

(8.11)
where the third term must be computed for a divergence free diffusion tensor σ. A di-
vergence free stochastic component provides a simpler version of the stochastic Reynolds
transport theorem. In that case, the differential of q within the material volume reads,

d

∫
V
qdx =

∫
V

[dtq + ∇ · (qw)dt− 1

2

∑
ij

∂2

∂xi∂xj
(aijq)dt+ ∇q · σdBt)]dx. (8.12)

Through the stochastic Reynolds transport theorem, the mass conservation and the mo-
mentum conservation equation can be (almost) directly derived. In the following sections
we will briefly present how this principle can be applied to derive a stochastic expression
of the shallow water equations.
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8.2 The stochastic 2D nonlinear shallow water model

We are particularly interested in the stochastic version of shallow water equations. The 2D
shallow water equation with uncertainty is given through equations (42) in Mémin (2014),

(∂wh

∂t
+ w∇Twh − 1

2

∑
i,j

∂xi∂xj (aijw
h)
)
ρ = −gρ∇h, (8.13a)

dth+
(
∇ · (hwh)− 1

2

∑
i,j

∂xi∂xj (aijh)
)
dt+∇h(σdBt) = 0, (8.13b)

∇dp̂ = −ρ(wh∇)(σdBt). (8.13c)

Note that wh stands for the horizontal velocities u and v. The 3D Eulerian displacement
fields as: U(x, y, t)

V (x, y, t)
W (x, y, t)

 =

udt+ (σdBt)x
vdt+ (σdBt)y
wdt+ (σdBt)z

 . (8.14)

Besides the dynamic model, the uncertainty component must satisfy a divergence free
constraint condition,

∇ · σh = 0, (8.15a)

∇ · (∇ · ah) = 0, (8.15b)

The 2D shallow water equation with uncertainty is derived through depth average
integration of the Navier-Stokes equations under uncertainty. The assumption allowing
this derivation is still the hydrostatic equilibrium relation.

8.2.1 Continuity equation

The typical flow to which the shallow water equation can be applied is usually non-viscous
and incompressible. Therefore we have

∇ · (wdt+ σdBt) = 0. (8.16)

Now we integrate above equation along the depth from the bottom hb to the surface hs
using Leibnitz integration rules take into consideration of the BC at the bottom and the
free surface. First we rephrase the Leibnitz integration rule:

∂

∂x

∫ hs

hb

udz =

∫ hs

hb

∂u

∂x
dz + u|hs

∂hs
∂x
− u|hb

∂hb
∂x

.

The integration give us:∫ hs

hb

(
(
∂u

∂x
+
∂v

∂y
+
∂w

∂z
)dt+

∂(σdBt)x
∂x

+
∂(σdBt)y

∂y
+
∂(σdBt)z

∂z

)
dz =

∂

∂x

∫ hs

hb

udzdt+
∂

∂y

∫ hs

hb

vdzdt− u|hs

∂hs
∂x

dt+ u|hb

∂hb
∂x

dt− v|hs

∂hs
∂y

dt+ v|hb

∂hb
∂y

dt

+ w|hs
dt− w|hb

dt+
∂

∂x

∫ hs

hb

(σdBt)xdz +
∂

∂x

∫ hs

hb

(σdBt)ydz

− (σdBt)x|hs

∂hs
∂x

+ (σdBt)x|hb

∂hb
∂x
− (σdBt)y|hs

∂hs
∂y

+ (σdBt)y|hb

∂hb
∂y

+ (σdBt)z|hs − (σdBt)z|hb
= 0. (8.17)
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In order to simplify the equation above, we must consider the kinematic boundary
conditions at the surface and the bottom from the stochastic transport principle,

W |hs = dths + (∇ · (hswh)− 1

2

∑
∂xi∂xj (aijhs))dt+ ∇ · (hsσdBt) (8.18a)

W |hb = (∇ · (hbwh)− 1

2

∑
∂xi∂xj (aijhb))dt+ ∇ · (hbσdBt) (8.18b)

By introducing the kinematic boundary conditions (8.18) into system (8.17), most of
the terms associated with the boundaries cancel themselves in addition to the fact that
the bottom is fixed. Besides we define the depth-averaged field flow as,∫ hs

hb

udz = hū. (8.19)

Then the Eq.(8.17) can be finally written as

dth+
(∂(hū)

∂x
+
∂(hv̄)

∂y
− 1

2

∑
∂xi∂xj (aijh)

)
dt+

∂(hσdBt)x
∂x

+
∂(hσdBt)y

∂y
= 0 (8.20)

Note that h = hs − hb and dths equals dth when the bottom is fixed.

8.2.2 Momentum conservation equation

To deduce the momentum conservation equation, we start from the transportation of mo-
mentum,∫

Ω

[
dt(ρwi) + ∇ · (ρwiw)dt− 1

2

∑
ij

∂2

∂xi∂xj
(aijρwi)|∇·σ=0dt+

1

2
‖∇ · σ ‖2 ρwidt

+∇ · (ρwiσdBt)
]
dx =

∫
Ω
ρgdtdx+

∫
∂Ω

Tndtdl. (8.21)

Transform the RHS of above formula by Gauss’s Theorem,∫
Ω

(ρg + ∇ · T )dtdx,

where T is the Cauchy stress tensor which equals

T = −pI + τ ,

where
p = −tr(T )/3,

and
τij = σij −

σkk
3
δij .

τ is the deviatoric tensor which can be formulated by a constitutive relation,

τij = λSkkδij + 2µSij ,

where Sij = 1
2( ∂ui∂xj

+
∂uj
∂xi

) is the strain rate tensor. So the divergence of the stress tensor
can be put as,

∇ · T = −∇p+ µ∇2U + (λ+ µ)∇(∇ ·U).
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By Stokes hypothesis 3λ+ 2µ = 0, which leads to:

τij = 2µ(Sij −
1

3
Skkδij),

finally we have,

∇ · T = −∇p+ µ
(
∇2U +

1

3
∇(∇ ·U)

)
.

Balancing the Brownian motion term,∫
Ω

[∂(ρwi)

∂t
+ ∇ · (ρwiw)− 1

2

∑
ij

∂2

∂xi∂xj
(aijρwi)|∇·σ=0 +

1

2
|∇ · σ|2ρwi

]
dx =∫

Ω

(
ρg −∇p+ µ

(
∇2w +

1

3
∇(∇ ·w)

))
dx, (8.22)

Recall the fluid studied here is homogenous, incompressible and inviscid, thus the above
equations can be greatly simplified to (∇ · σ = 0 and ∇ ·w = 0),

∂w

∂t
+ ∇ · (ww)− 1

2

∑
ij

∂2

∂xi∂xj
(aijw) = g − 1

ρ
∇p, (8.23)

To build the shallow water equations, we restart from the momentum transportation
Eq.(8.21), plus the force tensor analysis we have done so far, we have a local version of the
momentum conservation equation.

dt(ρwi) + ∇ · (ρwiw)dt− 1

2

∑
ij

∂2

∂xi∂xj
(aijρwi)dt+ ∇ · (ρwiσdBt) = ρg −∇p.

We intends to use the same procedure as the one applied to the continuity equation, take
the x-directional momentum equation for example,

dtu+
(∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
− 1

2

∑
ij

∂2

∂xi∂xj
(aijw)

)
dt+ ∇ · (uσdBt) = −1

ρ

∂p

∂x
dt. (8.24)

We hence integrate the above equation along the depth from the bottom hb to the surface
hs, we express below the procedure term by term for sake of clarity (from now on the bar
notation associated with the depth average velocity is dropped).

• The temporal derivative term:∫ hs

hb

dtudz = dt(hu)− u|hsdhs. (8.25)

• The convection terms:∫ hs

hb

(
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
)dzdt =

∂

∂x

∫ hs

hb

u2dzdt+
∂

∂y

∫ hs

hb

uvdzdt

− u2|hs
∂hs
∂x

dt+ u2|hb
∂hb
∂x

dt− uv|hs
∂hs
∂y

dt+ uv|hb
∂hb
∂y

dt+ uw|hsdt− uw|hbdt.
(8.26)
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• The diffusion term (recalling ∇ ·∇ · a = 0):

1

2

∫ hs

hb

∑
∂i∂j(aiju)dz =

1

2

∫ hs

hb

(axx
∂2u

∂x2
+ ayy

∂2u

∂y2
+ azz

∂2u

∂z2
+ 2∂xaxx

∂u

∂x
+ 2∂yayy

∂u

∂y
+ 2∂zazz

∂u

∂z
)dz =

1

2

(
axx
( ∂
∂x

∫ hs

hb

∂xudz − ∂xu|hs
∂hs
∂x

+ ∂xu|hb
∂hb
∂x

)
+ ayy

( ∂
∂y

∫ hs

hb

∂yudz − ∂yu|hs
∂hs
∂y

+ ∂yu|hb
∂hb
∂y

)
+ azz

(
∂zu|hs − ∂zu|hb) + 2∂xaxx

( ∂
∂x

∫ hs

hb

udz − u|hs
∂hs
∂x

+ u|hb
∂hb
∂x

)

+ 2∂yayy
( ∂
∂y

∫ hs

hb

udz − u|hs
∂hs
∂y

+ u|hb
∂hb
∂y

) + 2∂zazz(u|hs − u|hb). (8.27)

• The noise term:∫ hs

hb

(∂(uσdBt)x
∂x

+
∂(uσdBt)y

∂y
+
∂(uσdBt)z

∂z

)
dz =

∂

∂x

∫ hs

hb

(uσdBt)xdz +
∂

∂y

∫ hs

hb

(uσdBt)ydz

− (uσdBt)x|hs
∂hs
∂x

+ (uσdBt)x|hb
∂hb
∂x
− (uσdBt)y|hs

∂hs
∂y

+ (uσdBt)y|hb
∂hb
∂y

+ (uσdBt)z|hs − (uσdBt)z|hb , (8.28)

• The pressure term: the total pressure term p can be decomposed as the summation of
a deterministic pressure part and a zero mean random pressure as well. In this way,
the fast variation forcing part involved in Eq.(8.24) is to be cancelled by the random
pressure part. This is a logical inference since the random pressure is generated due
to the fluctuation of random velocity. Here we intend to keep the random forcing
term in conservational momentum equation, instead we consider the total pressure
term p alone. We know well that, under hydrostatic condition, the pressure, p, is
only a function of depth from the reduced z-directional momentum equation:

ρg = −∂p
∂z
,

with an additional dynamic boundary condition at the free surface:

p|hs = p|atm,

where p|atm is the atmosphere pressure at the interface of water-air. A depth inte-
gration of the equation (8.2.2) gives,

p|hs = p|hb − ρg(hs − hb). (8.29)

Now that p|hs should equal the atmosphere pressure p|atm, the pressure at any depth
level z reads,

p|z = ρg(hs − z) + p|atm, (8.30)
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and its gradient,

∂p|z
∂x

= ρg
∂hs
∂x

. (8.31)

By assuming p|atm is homogeneous acrossing the interface, the depth integration of
the pressure gradient term yields,

−
∫ hs

hb

1

ρ

∂p

∂x
dz = −gh∂hs

∂x
. (8.32)

Note that h = hs− hb and ∂xhs only equals ∂xh when the bottom is flat. To comply
with previous notations, we will use η.

Let us focus on the terms associated with the boundary. Note that the vertical velocity
component satisfies w|hsdt+ (σdBt)z|hs = W |hs and w|hbdt+ (σdBt)z|hb = W |hb . By re-
grouping the terms associated with the velocity at the surface and the bottom respectively,
we have:

u|hs
(
− dhs − u|hs

∂hs
∂x

dt− v|hs
∂hs
∂y

dt+ w|hsdt−
1

2

(
− 2∂xaxx

∂hs
∂x
− 2∂yayy

∂hs
∂y

+ 2∂zazz
)
dt

− (σdBt)x|hs
∂hs
∂x
− (σdBt)y|hs

∂hs
∂y

+ (σdBt)z|hs
)

= −1

2
u|hs(axx

∂2hs
∂x2

+ ayy
∂2hs
∂y2

),

(8.33)

and

u|hb
(
u|hb

∂hb
∂x

dt+ v|hb
∂hb
∂y

dt− w|hbdt−
1

2

(
2∂xaxx

∂hb
∂x

+ 2∂yayy
∂hb
∂y
− 2∂zazz

)
dt

+ (σdBt)x|hb
∂hb
∂x

+ (σdBt)y|hb
∂hb
∂y

+ (σdBt)z|hb
)

=
1

2
u|hb(axx

∂2hb
∂x2

+ ayy
∂2hb
∂y2

). (8.34)

Then we all the terms associated with the gradient of velocity at the surface and the
bottom,

−1

2
u|hs(axx

∂2hs
∂x2

+ ayy
∂2hs
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2
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∂x
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)
, (8.35)
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. (8.36)

Taking account of the assumption we made for the shallow-water system (no vertical vari-
ation for the horizontal velocities), u|hs = u|hb , then (8.35) and (8.36) sum to:

−1

2

(
axx

∂(u∂xh)

∂x
+ ayy

∂(u∂yh)

∂y

)
. (8.37)
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Other terms associated with the gradient of velocity along the bottom and the surface can
be interpreted as the lateral stress. So finally we have,

dt(hu) +
(∂(hu2)

∂x
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∂(huv)

∂y

− 1

2
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∂(h∂xu)

∂x
+ ayy

∂(h∂yu)

∂y
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(
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)
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∂
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)
= −gh

∂η

∂x
dt. (8.38)

Note that the diffusion terms is equivalent to the compact form
∑

i,j
1
2∂i∂j(aijhu) −

aij∂jh∂iu. The momentum equation regarding another velocity component takes a sim-
ilar form,

dt(hv) +
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∂(hv2)
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)
+

∂
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)
= −gh

∂η
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dt, (8.39)

If we are only interested in the mean ensemble average depth evolution (or imposing
that σdBt∇h = 0), The above equations can be greatly simplified due to the canceling of
the Brownian random terms. Thus, we have,
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8.3 1D stochastic shallow water equation

Some tests shown in the next chapter are carried out with a 1D stochastic shallow water
equation since it is less time-consuming and can reveal the essence attributes associated
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with the problem. The 1D stochastic shallow water equation simply reads,

dth+
(∂(hu)

∂x
− 1

2
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(8.41a)
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(∂(hu2 + 1

2gh
2)

∂x
− 1

2

(
axx

∂(hux)

∂x
+ 2∂xaxx

∂(hu)

∂x
+ axx

∂(uhx)

∂x

))
dt+ u

∂h

∂x
(σdBt)x = 0,

(8.41b)
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and the mean depth and its associated horizontal fields satisfy,
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8.4 Summary

In this chapter, we started by the motivation of a stochastic modeling, and we briefly
reviewed the extended stochastic version of the Reynolds transport theorem proposed in
Mémin (2014). A complete derivation of the shallow water equation under uncertainty has
been presented as well.



Chapter 9

Ensemble-based Parameter
Estimation Scheme

In the previous chapter, we demonstrated how the stochastic 2D shallow water equation can
be formulated on the basis of a decomposition of the unknown fluid particles displacement
fields. The decomposition process is built in terms of a resolved part and an unresolved
part modeled as a stochastic process. Such a formalism allows us to obtain the 2D shallow
water equation in the forms of (8.13) and (8.41). We can observe that the dissipative terms
emerged both in the continuity equation and the momentum conservation equation. It is
similar in spirit to the eddy viscosity model used in LES and RANS. Nevertheless, the eddy
viscosity model is built on several assumptions that will be discussed in the next section
whereas our subgrid model, originated from the stochastic representation of the uncertainty
or errors associated to the model itself. No extra assumption is needed. However, their
similarities indeed bring us another perspective for the interpretation of the subgrid scale
effect.

9.1 Eddy viscosity and Smagorinsky subgrid model

One simple method for the modeling of the subgrid process is the eddy viscosity model
approach. This approach formulates the subgrid scale motion in the same way as the
molecular diffusion,

τ ′ij = 2µt(Sij −
1

3
Skkδij)

1,

where µt denotes the eddy dynamic viscosity coefficient, which yield the eddy kinematic
viscosity coefficient νt when divided by ρ. Note that τ ′ is different from τ , the deviatoric
tensor aforementioned. In terms of incompressible flow, Skk = 0, and Sij is the rate of the
strain tensor. In a 3D case,

Sij =


∂u
∂x

1
2(∂u∂y + ∂v

∂x) 1
2(∂u∂z + ∂w

∂x )
1
2( ∂v∂x + ∂u

∂y ) ∂v
∂y

1
2(∂v∂z + ∂w

∂y )
1
2(∂w∂x + ∂u

∂z ) 1
2(∂w∂y + ∂v

∂z ) ∂w
∂z

 .
Note that in terms of geophysical flows, the horizontal and vertical subgrid effects are
quite different. Usually the horizontal eddy viscosity coefficient is set much larger than

1Einstein double indice summarize convention
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the vertical eddy viscosity in order to respect the physics. Consequently we focus on the
modeling of horizontal eddy coefficient νh. It is based on Boussinesq assumption proposed
by Smagorinsky (1963),

νh = C∆x∆y

√(∂u
∂x

)2
+
(∂v
∂y

)2
+

1

2

(∂u
∂y

+
∂v

∂x

)2
, (9.1)

where C is a constant, ∆x and ∆y are the space grid size, the square root term corresponds
to the Frobenius norm of the rate of strain tensor Sij . Considering the continuity equation,
we have the standard trace free Smagorinsky subgrid stress τ ′ = ρνtSij . The divergence of
this stress corresponds to the following diffusive terms,

∇ · τ ′ = ρ


∂
∂x(νh

∂u
∂x) + ∂

∂y (νh
∂u
∂y )

∂
∂x(νh

∂v
∂x) + ∂

∂y (νh
∂v
∂y )

∂
∂x(νh

∂w
∂x ) + ∂

∂y (νh
∂w
∂y )

 .
Note that here we ignored the vertical subgrid-scale terms.

If we compare the x-direction momentum conservation equation of (8.40) to the deter-
ministic 2D nonlinear shallow water considering this eddy viscosity model, we can see the
relationship between the quadratic variation tensor aij and the eddy kinematic viscosity
coefficient νh. Indeed, if we prescribe the quadratic variation tensor equals to the eddy
viscosity coefficient:

aij = νhI. (9.2)

The uncertainty stress tensor in a 2D case can be expand as,∑
ij

∂2

∂xi∂xj
(νhu) = νh∆u+ ∇2νhu+ 2∂xνh∂xu+ 2∂yνh∂yu.

Compared to the eddy viscosity model, we have extra terms as ∇2νhu+∂xνh∂xu+∂yνh∂yu.
A standard trace free Smagorinsky subgrid tensor ∇ · τ = ∇ · (C‖Sij‖Sij), contains
however a term 2

∑
j ∂xj‖Sij‖∂xkwj in which j = 1, 2, 3 and k = 1. Consequently, the

relationship between our uncertainty tensor and Smagorinsky subgrid tensor is far more
complex. Nevertheless, if the rate of the strain tensor norm is rather flat, those two models
can have the same forms.

As stated before, one main incentive of our approach is to find a better way of exploring
the fine resolution image data. An interesting idea is to estimating the quadratic variation
tensor a or the diffusion tensor σ from the statistical variations of small scale velocity
component embedded in the data. The relation between σ and a can be found through

aij = σikσjk. (9.3)

Let us note that a is a block diagonal tensor.
In the following chapters, we will restrain our interests in the horizontal mean flow

fields described in (8.40) and (9.27). But considering the stochastic driven term in models
into DA system is also applicable (Miller et al., 1999).

9.2 Estimation of the quadratic variation tensor from data

In the following we explore several strategies to estimate the quadratic variation tensor on
the basis of the realized measurement variance.
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9.2.1 Estimator as a diagonal projection operator

Let us first make the assumption that the uncertainty term lies on the isoheight surface.
This assumption is based on the fact that in the applications of oceanography the fluid is
stratified and the effect of uncertainty mainly lies in the horizontal scale thus the tangent
height plane rather than the height gradient direction. The diffusion tensor is defined:

σij = α(δij −
∂xih(x)∂xjh(y)

‖ ∇h ‖22
)δ(x− y),

where α can be arbitrary fixed to maintain the consistency of unit. For sake of simplicity, we
can fix α invariant over space and time, and set α =

√
dxdy/dt. An interesting implication

of this assumption is the cancellation of Brownian motion terms, in other words, it provides
the same system as the one associated to the mean depth fields.

9.2.2 Estimator from realized temporal/spatial variance

A basic method is to consider the realized temporal variance. Suppose we have a sequence
of small-scale velocity data ranging form 0 to T at the uniformly distributed times where
T = (M + 1)∆t,

w0, w1, . . . , wM ,

which are observed value of U . A discrete-time approximation process of Eq.8.2 reads,

U i = wi + σηi/
√

∆t, (9.4)

where ηi follows normal distribution. The second moment of random variable U can be
approximated by its observed values,

T∑
i=0

a = ∆t
T∑
i=0

w(ti)w(ti)
T . (9.5)

Note here a is fixed along time interval [0, T ]. This realized variance needs to be multiplied
by a model constant (Kadri Harouna and Mémin, 2014),

a = C
(∆t)2

T −∆t

T∑
i=0

w(ti)w(ti)
T , (9.6)

where C is a scaling factor given by,

C =
(L
l

)5/3
, (9.7)

where L is the scale of large-scale models and l is the smallest scale considered in the
Kolmogorov-Ridcharson scaling.

If we intend to benefit from the high-resolution observation given that the model is
running on a much coarser grid. We can consider the local spatial variance of a small
domain C on observation space localized around the corresponding grid point on model
space. Denoting k as the model grid index, l as a set of observation grid index belonging
to C and n the sum of observation within C,

a(ti, xk) = C
δt

n2 − 1

∑
l∈C

[
(w(ti, xl)− w̄(ti, xC))(w(ti, xl)− w̄(ti, xC))

T
]
, (9.8)
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where w̄ is local mean velocity,

w̄(ti, xC) =
1

n

∑
l∈C

w(ti, xl), (9.9)

and δt is the characteristic time step used to regularize the unit of a (m2s−1). The spatial
local quadratic variation calculated here is a function both in time and space. Therefore, it
needs to be evaluated at each observation time level. Note that either spatial or temporal
empirical variance approaches can be used.

9.2.3 Estimator from realized ensemble variance

The ensemble forecast approach not only gives the deterministic mean state, but also allows
the quantitive evaluation of the error variance associated to the forecast state. Based on
this idea, we can estimate the quadratic variation tensor from the ensemble space as the
background error covariance evaluation is estimated in chapter 5. Imagine we have an
ensemble of N members,

a = C
(∆ti)

2

T

T∑
i=0

1

N − 1

N∑
j=1

[wj(ti)− w̄(ti)][w
j(ti)− w̄(ti)]

T (9.10)

Here, w̄ stands for the ensemble mean velocity fields.

9.3 Estimation of the quadratic variation tensor from DA
process

The previous estimation methods are easy to implement, but these estimations constitute
only rough approximations as they are estimated either from the resolved component or
from high observations. A more accurate way of estimating the parameters is through
DA process. As almost all parameterization are due to the imperfectness of the dynamic
model. This imperfectness is often interpreted as model errors. The approach of weak
constrain formalism in the variational framework can surely serve this purpose and would
worth exploring.

Another way consists to consider the unknown parameter as a control parameter in the
variational data assimilation system as proposed by Navon (1998). The basic idea is to
consider the quadratic variation tensor aij as a parameter of the model and to employ an
augmented control vector containing both the state variables and parameters. Finally, the
object of the DA system is to find the optimal initial condition and the associated optimal
parameters for which a system trajectory fits at best to the observations.

In our approach, the cost function can be modified as

J(δx0, δa) =
1

2
‖δx0(x)‖2Bx

+
1

2
‖δa‖2Ba +

1

2

∫ tf

t0

‖∂xH δx(t, x,a)−D(t, x,a)‖2Rdt, (9.11)

where the innovation vector D(t, x,a) is defined as:

D(t, x,a) = Y(t, x)−H(ϕt(x0(x),a)), (9.12)

and the evolution of increment δx(t, x,a) is,

δx(t, x,a) = ∂xϕt(x0)δx0.
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In this formalism, the second term of the RHS of Eq.(9.11) representing the discrepancy
with respect to the background parameters. It acts as a constraint on the parameters. It is
often absent when initializing the assimilation procedure, which means that no background
parameter is prescribed and the inferred parameters will comply to the observation. In
most cases, the model parameters are not observed, so only the observation of the state
variables (complete or partial) guarantees the generation of the full analysis increments
which minimize Eq.(9.11).

To solve such a problem, a direct application of parameter estimation scheme based
on section 2.1.2 is straightforward. Several literatures have been already addressed this
issue and its applications in various contexts (Navon, 1998; Zhu and Navon, 1999; Pulido
and Thuburn, 2005; Kazantsev, 2012). Nevertheless, the gradient evaluation of the cost
function versus parameters depends on the model sensitivity to the parameters, but also
on the adjoint variable Λ and the adjoint model ∂aM∗ (Eq.2.28). Thus the gradient still
needs to be calculated built on the adjoint models. This drives us back to a calculation,
which we wanted to avoid with our ensemble technique. This is the reason why we shift to
an ensemble-based framework to estimate the parameters.

9.3.1 Ensemble-based parameter estimation

Estimating parameter through ensemble-based methods has its advantages and limits. For
one thing, the adjoint or the tangent linear model is not needed. In this method, the
parameters can be estimated either simultaneously through the same ensemble along with
the initial condition or independently. A compete review on this topic can be found in
Ruiz et al. (2013a).

The former approach is a direct extension of standard ensemble methods. Most studies
have followed this path (Zupanski and Zupanski, 2006; Tong and Xue, 2008; Yang and
Delsole, 2009; Kang et al., 2011; Ruiz et al., 2013a). Tong and Xue (2008) used the
ensemble square root Kalman filter (EnSRF) to estimate the microphysical parameters.
Yang and Delsole (2009) showed the possibility of estimating multiplicative parameters
with ensemble Kalman filter. LETKF is also used in Kang et al. (2011) to estimate the
carbon flux. Bocquet and Sakov (2013b) devised an iterative ensemble Kalman smoother
(IEnKS) which relies on an iterative minimization of a cost function built on ensemble
space. Both LETKF and IEnKS allow us to perform the assimilation over a relatively long
period containing asynchronous observations.

Koyama and Watanabe (2010) proposed to separate the assimilation process for initial
state and parameters estimations. This separation is done through two ensembles: one
initialized by both an initial condition and some parameters perturbations, the other en-
semble accounting for a temporal averaged state over a relatively long period of time and
initialized only by a parameters’ perturbation. Such a separation, according to the authors,
overcomes the disadvantage of a reduced accuracy of the analysis using simultaneous esti-
mations. Ruiz et al. (2013b) argued as well that using separate ensembles induced either
by initial condition or parameter perturbations can better represent the error covariance.

In our approach, we choose to work with the simultaneous approach. The reason is
that in our setup we focus on coarse resolution simulation with high resolution data, and
the coarse initial state grids occupy exactly those locations of high-resolution observation.
Consequently, the error associated with the initial condition is a bit difficult to determine.

This approach is also related to the estimation of bias (Dee, 2005; Baek et al., 2006) from
DA approach. Model bias is a specific form of model error. The bias estimation process
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treats the bias as an augmented variable. In fact our ensemble-based parameter estimation
approach is closer to the bias estimation rather than typical parameter estimation algorithm
owing to the similar size of our quadratic variation tensor a and the bias compared to the
state variables.

Parameter structures

It is essential to realize that the parameters involved in geophysical models can be global
or local in time and/or space. The parameters are generally time-dependent and they are
subject to change on the basis of the new observation. However, when the parameters
are inferred by the data assimilation process, the temporal density of the parameters is at
most equal to those of the observations. This suggests that the parameters being estimated
should only show slow temporal variation.

In terms of the spatial structure, both global and local parameters are very common.
Due to its spatial structure, it may be necessary to introduce the localization to both the
auto-covariance matrix of the parameters and the cross-covariance matrix of the parameters
and the state variables.

In our case, the quadratic variation tensor a is a function of both time and space.
However, in variational approaches, it is custom to assume a constant value of a during
the assimilation window. So in order to illustrate the temporal evolution of a , it is necessary
to introduce cycling procedure. At the end of the jth assimilation window, the analysis
state is evolved to the beginning of the j + 1th cycle with the optimum parameter aaj :

xfj+1 = ϕ(xaj ,a
a
j ), (9.13)

Parameter evolution model

Besides the state evolution model, we also need to propagate the estimated parameter to
the next cycle in someway. This can be generally classified as parameter model in Wikle
and Berliner (2007). A persistent (or stationary) model is often used (Baek et al., 2006).
This can be simply put as

afj+1 = aaj . (9.14)

However, the persistent model can be a source of instability to the model integration
with limited ensemble numbers in some cases. Gottwald and Majda (2013) explains this
instability by the contribution of the unrealistic large covariance terms. The premise for
such a conclusion is made upon sparse observations’ distributions and small observations’
noise.

A similar phenomenon called model blow-up is discussed in Yang and Delsole (2009),
the authors proposed a relaxation parameter evolution model to damp the rapid temporal
change of model parameter. Here we adopt the same idea,

afj+1 = afj + βδ̂aj , (9.15)

where β is a damping coefficient. Note that Yang and Delsole (2009) employed 1 − β in
equation (19). The value of β is optimally tuned to fall into the interval (0.2, 0.5). Note
that in our ensemble-based 4DVar approach listed in chapter 5, the parameter evolution is
not only related to the forecast-analysis cycling process, but also can affect the ensemble
fields generated between two consecutive outer loops.
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Core algorithm

First we need to define s0 as the augmented state vector [x0,a0] that has dimension n+ p
instead of n where p is the degree of freedom of a . Note that we leave the initial values of
a0 as zero. Then the state initial ensemble can be defined as S0 in which the jth augmented
state ensemble reads Sj0 = [xj0,a

j ]. Both the initial state and parameter are perturbed
according to their uncertainties. As it is already cumbersome to determine the uncertainty
of the background state above, the addition of the parameter uncertainty obviously worse.
In our application, we assume the initial parameter error follows a Gaussian distribution
whose variance has to be tuned. Remark that the second type ensemble is only a function
of the parameters. That is to say the only source that contributes to this ensemble spread
is the parameter perturbation.

Such perturbations yield an ensemble perturbation matrix,

A′s :=
1√
N − 1

(S1
0 − 〈S0〉, . . . ,SN0 − 〈S0〉). (9.16)

Note that A′s ∈ R(n+p)×N .
If we consider a new minimization problem in terms of the augmented state increment

vector δs0, the cost function reads:

J(δs0) =
1

2
‖δs0‖2Bfs +

1

2

∫ tf

t0

‖∂̃xH ∂xϕ
′
t(s0)δs0 −D(t, x,a)‖2Rdt, (9.17)

with

Bf
s = A′sA

′
s
T

=

(
Bxx BT

ax

Bax Baa

)
. (9.18)

Bxx corresponds to the covariance matrix of state vector x, Baa is the covariance matrix
of parameter vector a , and Bax contains the cross covariance between the state vector and
the parameter vector.

We must clarify two points in terms of the cost function (9.17). Firstly, the tangent
linear model operator ϕ′t(6= ϕt) is composed of the parameter evolution model as well as
the tangent linear dynamic model operator ϕt. Secondly, in a direct observation case, the
tangent observation operator should equal to the identity matrix, but if a is not observed,
the tangent observation operator ∂̃xH is,

∂̃xH =

(
Im×n
0m×p

)
,

where m is the size of observation vector. In our case, we can use the direct estimation
of a from data as its observed value. Hence the tangent observation operator remains an
identity matrix. Those observed parameters are proved to be a good approximation and
prevent the system from blowing up.

Preconditioning the above cost function by δs0 = A′sδz0 yields,

J(δz0) =
1

2
‖δz0‖2 +

1

2

∫ tf

t0

‖∂̃xH ∂xϕ
′
t(s0)A′sδz0 −D(t, x,a)‖2Rdt. (9.19)

The gradient reads,

∂δz0J = δz0 +

∫ tf

t0

B̃
1
2
T

t

(
∂̃xH

)∗
R−1(∂̃xH B̃

1
2
t δz0 −D(t, x))dt. (9.20)
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and B̃
1
2
t is defined through,

B̃
1
2
t = ∂xϕ

′
t(s0)A′s. (9.21)

As discussed in chapter 5, the empirical description of B̃
1
2
t from a set of samples is based

on an empirical expression of the ensemble members integrated in time. The integration of
these samples along the assimilation window thus yield a ’cloud’ of particles, from which
we can estimate the low-rank approximation of the background covariance trajectory and
of its square root. The process can be put as,

∂xϕ
′
t(s0)A′s ≈ ϕt(S0)(IN −

11T

N
), (9.22)

where 1 = (1, . . . , 1)T ∈ RN .
Once we have the optimizer δ̂z0, the analysis increment can be written as,

δ̂s0 =

[
δ̂x0

δ̂a0

]
= A′sδ̂z0. (9.23)

Parameter estimation effect

It should be emphasized that although the estimation of the initial condition and the
parameter is done simultaneously. The estimation process of the initial condition is nev-
ertheless not directly related to the auxiliary covariance terms (Baa,Bax) associated with
the parameter a . The parameter a , however, interferes in the quality of the analysis tra-
jectory in two ways: firstly, it explicitly manifests itself on the model integration in the
form of the estimated parameter â ; secondly, it implicitly affects the analysis state through
the ensemble spread from which the propagation of the ensemble perturbation matrix is
calculated. Koyama and Watanabe (2010) suggests the second factor is more effective than
the former.

Localization technique

The parameters that we are trying to optimize is indeed a function of space. It is important
to note that the space parameter needs to be localized as well. As a matter of fact, we find
in our applications that adequate localization can alleviate the model blow-up problem
observed with too small ensemble size. We recall that in chapter 6, the localization can
result in more pertinent ensemble-based covariance since it is less subject to sampling
errors. The same effects can also be found from the strategy of increasing ensemble size.

The localization technique applied here is derived from the ones discussed in section
5.1.4. Two possible approaches, localized covariance and local ensemble, can be pursued
here with few modifications.

The localized covariance approach has to be extended to the spatial parameter covari-
ance and the cross-covariance between the state variable and the parameter. That is to
say, we use

Pf
s = Cs �Bf

s =

(
Cxx CTax
Cax Caa

)
�
(

Bxx BT
ax

Bax Baa

)
, (9.24)

to filter out the long range spatial correlations. The spatial correlation matrix Cxx versus
state variable is identical to C used in Eq. (5.27). Such a spatial correlation matrix can set
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all correlations to zeros when the distance between two points exceeds the cut-off distance.
It is, however, not necessary to introduce the same cut-off distance for the state variables
and the parameters, although in our application, the same optimal tuned value of cut-off
distance is used.

As for the path of local ensemble, no adjustment is needed.

9.3.2 Parameter identifiability

Before we carry out the experiments, it is important for us to assess the parameter iden-
tifiability. This is especially pertinent for the case where the quadratic variation tensor a
is non-observable. This concept, following the definition in Navon (1998), can be viewed
as a criteria to decide whether or not the parameter of interest can be inferred from data.
The evaluation of this attribute is related to an output response function reflecting the
sensitivity of the model to the parameters. Such an response function usually assumes the
form (Tong and Xue, 2008):

Jy(a) =

∫ T

0
‖Y(t, x)−H(ϕt(x0(x),a))‖2dt. (9.25)

This function shares the same form as the observation term of the non-incremental 4DVar
cost function. Such a function must be convex and continuous to ensure the uniqueness of
the identifiability of the parameters. This condition is implicitly satisfied in our system.

With an ensemble-based method, an alternative way of examining the parameter iden-
tifiability is to calculate the correlation coefficient (Tong and Xue, 2008).

cor(x,a) =
cov(x,a)√
var(x)var(a)

. (9.26)

A strong correlation suggests that any changes in the parameter space will heavily affect
the state space through the cross-covariance part of the error covariance matrix. The
principle is actually similar to the case where we estimate the unobserved components of
the state variables.

9.4 Model and experimental settings

To evaluate the methods proposed, we have first carried out experiments on a one-dimensional
shallow water model. This model is described in the following section.

9.4.1 Model numerical scheme

To apply the finite volume methods used in chapter 6, the deterministic 1D shallow water
equation under uncertainty in terms of movement quantities (h, hu, hv) can be readily
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written as follows:

∂h

∂t
+
∂(hu)

∂x
− 1

2

∂2(axxh)

∂x2
= 0,

(9.27a)

∂(hu)

∂t
+
∂(hu2 + 1

2gh
2)

∂x
− 1

2

(
axx

∂(hux)

∂x
+ 2∂xaxx

∂(hu)

∂x
+ axx

∂(uhx)

∂x

)
= −ghSbx + hfv,

(9.27b)
∂(hv)

∂t
+
∂(huv)

∂x
− 1

2

(
axx

∂(hvx)

∂x
+ 2∂xaxx

∂(hv)

∂x
+ axx

∂(vhx)

∂x

)
= −ghSby − hfu.

(9.27c)

This system corresponds to the large scale evolution of an average depth. Remark that
the subgrid model associated with the quadratic tensor a emerges both in the continuity
equation and the momentum conservation equation. The finite volume method discussed
in section (6.2.1) is directly applicable to this equations. As a matter of fact, the numerical
flux formulation of the new subgrid terms is analog to the viscous terms defined in (6.28).

9.4.2 Experimental settings

Several experiments have been conducted to evaluate the performance of the stochastic
model. We first test the 1D stochastic shallow water equation. The 1D domain is of length
L = 6000 km with the initial surface height h(x, 0).

h(x, 0) = H0 −
fU0x

g
+Aξ, (9.28)

where H0 = 5000m, f = 1.03×10−4s−1 is the Coriolis parameter, U0 = 40m/s and g is the
gravity acceleration. An additional noise is considered. A = 10 is its amplitude. And ξ is a
random Gaussian covariance field (with de-correlation length equals to 20%L). The initial
velocity field is inferred from the geostrophic relation. The true state used to construct
the fine observation is obtained by integrating the standard shallow water equation with
the initial condition (9.28) on 401 grid points. The large-scale state with the same initial
condition is simulated with the stochastic model on only 101 gird points. The time step ∆t
is set to 37.5s for the true state model run and to 150s for the simulated state model run
in order to satisfy different CFL condition. The synthetic observation is extracted from
the true state every 600s and the assimilation window is set to contain 3 observations. In
order to maintain the balance of state variables for ensemble fields, the analysis started at
6000s.

For the 2D case, a very similar setup is implemented. Several differences are needed
though. The initial height surface is a 2D field with the extra error term as a 2D random
Gaussian field. The simulated state resolution is 21× 51 and the observation resolution is
81× 401.

For both cases, we tested the cycling windows strategies in order to adapt the temporal
variation of parameters. Here the parameters values change at the beginning of every as-
similation window. The parameter evolution model is therefore introduced. We introduced
3 windows concerning the 1D case and 5 windows regarding the 2D case.

Note that in these synthetic cases, the coarse gird nodes of the background state used
in the DA process belong to the fine grid of synthetic observations.
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Finally, we applied this stochastic model to the Kinect-captured image data which are
already explored in chapter 7.

We employ different strategies to construct the ensemble in the synthetic case and in
the real case. For the former, as there is no initial error associated with the background,
the ensemble is initialized as a function of parameters. For the latter, parameters are
perturbed in addition to the initial state perturbations to initialize the ensemble. The
parameters variances are not easy to determine. In our study, the errors associated with
the components of the parameter a are assumed to be zero-mean Gaussian fields, whose
variances have to be tuned. Too large variance will lead to model blow-up inevitably
while too small variance can hardly make any difference compare to the non-stochastic
shallow water model. However, we found experimentally that the variance of the optimum
estimated value of a yielded by the DA system is actually not very sensitive of the initial
error.

We decide to take the values of the quadratic variation tensor a estimated through the
methods described in section (9.2) as the ‘observed’ values and such values are inserted into
the cost function (9.19). This choice is made upon the fact that if a is non-observable and
consequently inferred completely from the ensemble-based estimation scheme, the model
driven by such diffusive terms exhibits a high instability. The reason for this kind of
instability seems to stem from the irregularities of the initial parameter perturbations. It
is again related to the filter divergence problem discussed in Gottwald and Majda (2013).
As in our case, an empty parameter observation space will lead to unrealistic parameter
innovations implied from the ensemble-based error covariance.

For the synthetic data case, we deduce the observation as a combination of spatial and
temporal averaged velocity variation according to equation (9.8). For the real data case,
since no velocity observation is available, we calculate the observations from the ensemble
based on (9.10). If such an observation of parameter is adopted, the error statistics must
be imposed. In our applications, the magnitude of the observation is manually prescribed
in order to control the variation tendency of the parameter. For example, the estimated
parameter is closer to the its observation values when the error is small. On the contrary,
it is subject to greater variations if the observation is considered as being less accurate.

9.5 Results and discussions

9.5.1 1D Synthetic Results

In this 1D experiment, before presenting the results, we show the correlation coefficient
in figure (9.1) calculated from equation (9.26). The spatial mean of such correlations
are cor(h, axx) = 0.1649 and cor(u, axx) = 0.1804. Such an order of magnitude of the
correlation coefficient ensures the identifiability of a through the state variables. The
variance and the covariance correspond to the diagonal terms of the full ensemble-based
covariance matrix Bs.

The comparison criterion used to evaluate the performance of DA method is still the
RMSE equation (7.19). In order to evaluate the effect of a exerted on the model, we
set a relatively large observation error to allow significant variation in a , ignoring the re-
quirements of stability to some extent. The RMSE results are shown in figures (9.2) and
(9.4). In terms of the performance with the model under uncertainty (shown by black lines
with suffix ‘subgrid-model’ ), the analysis trajectories shows that too small ensemble mem-
bers lead to model blow-up while increasing ensemble size allows achieving a considerable



136 Chapter 9. Ensemble-based Parameter Estimation Scheme

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Grid index

C
or

re
la

tio
n 

co
ef

fic
ie

nt

 

 

cor(h,x)
cor(u,x)

Figure 9.1 – The spatial distribution of the correlation coefficients between the state vari-
able h, u and a: cor(h, a) (blue line) and cor(u, a) (red line).

improvement in the analysis quality in terms of both the initial condition and the parame-
ters. We also find that the localization technique enables improving the result for ensemble
of small dimension. We also tested the ‘standard-model’, which indicates no parameter
estimation and the ensemble is generated by perturbing the initial condition state with
arbitrary error variance. The results are clearly in favor of our proposed uncertainty model
when a sufficient amount of ensemble members or localization technique is employed. We
conjecture that such difference actually is related to the ensemble spread. The ensemble
spread for both technique is shown in figure 9.3. We observe that the ensemble spread for
subgrid model is significantly larger than the spread associated to the standard model. It
can be also observed that the ensemble spread is maintained at the same level across the
sliding windows.

We have also conducted a study on the different terms composing the subgrid model.
It is illustrated in figure (9.4) that the stochastic shallow water model works best with the
complete terms presented (denoted as ‘a combo 1’). This is also the default case for all
the other tests conducted here. We also compared an eddy viscosity model to this subgrid
model in which the constant C in equation (9.1) is to be sought from the DA process. Its
RMSE curve (denoted by magenta line) in figure 9.4 shows the divergence of the analysis.

In addition to the two configurations, we set two extra cases. Case ‘a combo 2’ (denoted
by red line) does not consider the term associated with the gradient of aij in the momentum
equation. Case ‘a combo 3’ (denoted by blue line) does not take account of the terms
associated with the gradient of aij in both mass and momentum conservation equations.
The different RMSE curves of the two case suggest that the subgrid model term regarding
the gradient of aij in the continuity equation is important. This suggests that the subgrid
modeling term presented in the continuity equation is crucial to keep a well estimated
model errors and balanced ensemble spread.

9.5.2 2D Synthetic Results

Some results shown in figure (9.5) indicate that this 2D case is obviously much more
difficult to handle than the 1D case. Localization is mandatory here. And we tested two
localization approaches: LC for localized covariance and LE for local ensemble. We can see
that the LE approach needs a large ensemble members to work while the LC approach can
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Figure 9.2 – RMSE comparison in terms of free surface height (a) and velocity (b) be-
tween various configurations of 4DEnVar. Large scale simulation (green line); fine scale
observation (blue points); NoLocal-State: 4DEnVar without localization and with ensem-
ble generated by initial condition perturbation N = 32 (red line); LC-State: 4DEnVar
with localized covariance and with ensemble generated by initial condition perturbation
N = 32 (red dashed line); NoLocal-Para: 4DEnVar without localization and with ensemble
generated by initial condition perturbation N = 32 (black line); LC-Para: 4DEnVar with
localized covariance and with ensemble generated by initial condition perturbation N = 32
(black dashed line); NoLocal-Para: 4DEnVar without localization and with ensemble gen-
erated by parameters perturbation N = 512 (black dotted line).

yield comparable result even with a relatively small ensemble. However, the computational
cost associated with LC approach of 32 members ensemble is already much more than the
cost of LE approach of 512 members. We also notice that the relaxation parameter model
is essential to the first cycle. This is because the parameters estimated in the first cycle
is not constrained (note that we have a large parameter observation error). Therefore its
variation can be dominated by the random error perturbations, which can be very large.
However, from the second cycle this effect diminished since a is constrained by its observed
values.
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Figure 9.3 – Ensemble spread in terms of free surface height (a) and velocity (b): standard
model (circle) with ensemble in function of initial states; subgrid model (square) with
ensemble in function of initial parameters.
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various subgrid model configurations of stochastic shallow water model (9.27): Large scale
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a combo 3 only considering terms associated with axx (blue line), Eddy viscosity model
(magenta line).
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Figure 9.5 – RMSE comparison in terms of free surface height (a) and lengthwise velocity
(b) between various configurations of 4DEnVar: Large scale simulation (green line), fine
scale observation (blue points), 4DEnVar-LE (local ensemble) with ensemble members
N = 128 and β = 1 (black line), 4DEnVar-LE with ensemble members N = 128 and
β = 0.5 (black dashed line), 4DEnVar-LE with ensemble members N = 256 and β = 0.5
(red line), 4DEnVar-LE with ensemble members N = 512 and β = 0.5 (magenta line),
4DEnVar-LC (localized covariance) with ensemble members N = 32 and β = 0.25 (cyan
line).

9.5.3 Results related to real Kinect-captured data

In terms of the real image data depicting the free surface height of a laboratory tank, we
tested the influences of observation errors connected to the parameters. The parameter
observations are estimated from ensemble fields generated along an assimilation window.
We found that the model runs are very sensitive to the parameters. They need to be set
to a relatively small values. Figure 9.6 shows the evolution of the mean surface height of
the wave crest region using different methods. Note that all lines except the black ones
are identical to the ones of Figure 7.3. We have conducted three cases of local ensemble
strategy in terms of different observation error magnitude. The suffix ‘case1’ (identified by
dashed black line) symbolizes the case with small parameters observation errors. The suffix
‘cases’ (identified by dash-dot black line) is linked to the case with medium observation
errors. At last, the suffix ‘case3’ (identified by dotted black line) represents the case with
large observation errors. We can conclude that the quality of the initial analysis state
is remotely related to the magnitude of observation errors. Nevertheless, the quadratic
variation tensor, a , estimated in the different cases generates quite distinctive trajectories.
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The trajectory with small observation errors is closer to the background since the parameter
estimated here is not very different from the one deduced from its ensemble estimation.
The trajectory with large observation errors tends to over correct the surface height. This
is realized by a stronger dissipative energy terms. An optimal value can be found by
applying a medium value which allows the parameter space to be subject to extra degrees
of freedom but in the meantime does not deviate from the observed value too much. We
have also plotted the ensemble spread versus time in Figures 9.7. Like the synthetic
case, the ensemble spread associated with subgrid model is relatively larger than those of
the standard model in the first assimilation window. However, the ensemble spread still
attenuates significantly during cycling procedure.
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Figure 9.6 – Mean surface height of the wave crest region as a function of time - com-
parison of various configurations of 4DVar: Large scale simulation (green line), fine scale
observation (blue points), 4DEnVar-Liu-et-al (cyan line), 4DEnVar-OL-LC (cyan dashed
line), 4DEnVar-OL-LE (cyan dash-dot line), 4DEnVar-OL-LC-Para: shallow water under
uncertainty with localized covariance (black line), 4DEnVar-OL-LE-Para-case1: shallow
water under uncertainty with local ensemble and low noise on the parameter observa-
tion (black dashed line), 4DEnVar-OL-LE-Para-case2: shallow water under uncertainty
with local ensemble and medium noise on the parameter observation (black dash-dot line),
4DEnVar-OL-LE-Para-case3: shallow water under uncertainty with local ensemble and
high noise on the parameter observation (black dotted line).

9.6 Summary

In this chapter, we have presented the principles of the ensemble-based data assimilation
scheme allowing a joint estimation of a parameter and of the initial condition. Results
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Figure 9.7 – Ensemble Spread in terms of free surface height (a) and lengthwise velocity
(b): standard model (circle) with ensemble in function of initial states; subgrid model
(square) with ensemble in function of initial parameters.

on both synthetic and real image data have been presented. Our stochastic shallow water
model indeed shows some potential in the quantification of the unknown small scale physical
processes or numerical artifacts. This is still an on-going research and we are planning to
employ complex data sets and construct a similar parameter estimation scheme based on
adjoint models. Such adjoint models will allow us to grasp clearer understanding of the
interaction between the resolved state variables and the unresolved uncertainty terms.
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Chapter 10

Conclusion and Perspectives

Conclusion

In the course of this thesis, we have explored several data assimilation strategies for fluid
flow analysis. We recalled in the beginning of this thesis that a typical DA system consists
of three aspects: the model, the observations and the assimilation method. Our work
aimed at exploring these three topics in terms of particular ensemble technique.

The backbone of this thesis relies on an ensemble-based variational method. This
method falls into the category of hybrid method in which the goal is to benefit from
the advantages of variational assimilation techniques (4DVar) and ensemble Kalman filter
(EnKF) while bypassing their weaknesses. A comprehensive description of the proposed
strategy is listed in the chapter 5 followed by a validation in the chapter 6 on the shallow
water model. Our method includes several enhancements compared to the other existing
methods. We proposed a new nested loop scheme in which the background error covari-
ance matrix is updated for each outer loop. We also devised different ensemble update
schemes together with two localization schemes. In terms of the direct update approach,
we exploited the links between the analysis error covariance matrix and the inverse Hessian
of our 4D cost function to propose a quasi-Newton minimization procedure relying on an
approximation of the inverse Hessian.

The primal objective of this thesis also takes place within the study of efficient as-
similation techniques for image data observations. To that end, the proposed ensemble
methods have been assessed on synthetic and real world data. Their performances have
been compared to a standard 4DVar method and to several ensemble methods proposed
in the literature. We found that the ensemble-based method constitutes an effective solu-
tion to handle incomplete data, which constitutes the standard situation associated with
image observations. With partial observed data, the ensemble-based methods outperform
the standard 4DVar in terms of unobserved component reconstruction. We also observed
that the ensemble generated by a parameter perturbation provides a more pertinent en-
semble spread and allows to better approximate the background error statistics when the
parameter of interest is related to physical effects. The computational cost (CPU time and
memory demands) of ensemble-based methods are significantly lower than standard 4DVar
if a proper parallel calculation technique is deployed.

The method proposed have been also evaluated in the context of noisy experimental
image data of a free surface flow supplied by a Kinect sensor (chapter 7). These observations
exhibits large region of missing data. Our methods yield better result to track the surface
height and show advantages in dealing with discontinuities.
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A direct nonlinear image operator based on the image reconstruction error has been
assessed for such ensemble techniques on a Surface Quasi Geostrophic model of oceanic
flows. The ensemble methods proposed in this thesis have shown to constitute interesting
techniques in the general context of a nonlinear image observation operator.

In order to deal with a strong scale discrepancy between the image data and the dy-
namical model’s resolution grid we explored the performance of a representation of the
shallow water model under uncertainty. The principal motivation comes here from the
assimilation of high resolution images into large scale dynamical models. This constitutes
a standard situation in geophysics. This model introduces a subgrid model encoding the
effects of physical processes observed on the high resolution observation grid. Such model
allows a cheaper computational cost as well. We have shown how to estimate the subgrid
model parameter from the data directly and from our ensemble-based variational method.
The evaluations have been carried out with 1D synthetic, 2D synthetic and 2D real image
data, respectively. The results are encouraging and are showing a great potential to deal
with high-resolution image data.

Perspective and future work

The future work can be composed of following subjects:

SST image application For the time being, we use the SQG model to simulate the ocean
surface temperature fields. It would be worth assessing the direct image assimilation
operator with the SQG model on real-world satellite images. However, the evaluation
becomes a difficult issue in such a case.

Complex model application It is straightforward to consider a more complex model.
Even though our simple models’ results have shown great advantages of the proposed
ensemble-based method. It is still unclear if this method still works with a more
realistic model setup. Since the ensemble-based method are deprived of adjoint
calculation, the performance of an ensemble related strategy hinges on the qualities
of ensemble states. Unfortunately, there is no common laws prescribing the way of
generating these ensemble. We can only rely on ad hoc studies performed on different
case.

Uncertainty subgrid estimation We have estimated the uncertainty subgrid param-
eters from a point through state vector augmentation. This strategy is easy to
manipulate but suffers from a severe drawback: the parameter, if unobserved, varies
too freely according to the cross-covariance between the parameter and the state
variables. Other methods are possible, as discussed in this thesis. It is possible to
calculate the sensitivity of the model with respect to the parameter out of the adjoint
operator. This is expensive but it offers an accurate way of evaluating the effect of
the parameter exerted to the model trajectory. Another perspective would consists
in estimating the uncertainty subgrid term, which represents actually a model error
in this context, through the weak constraint variational approach as well.
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Stochastic Reynolds transport
theorem

This section cites the derivation process of the stochastic Reynolds transport theorem in
Mémin (2014). We start from the Ito-Wentzell formula (8.10).

dφ(X, t) = dtφ+ ∇φ · dX +
1

2

∑
i,j

d〈Xi, Xj〉
∂2φ

∂xi∂xj
dt+

∑
i

d〈 ∂φ
∂xi

, (σBt)
i〉dt. (A.1)

in which φ is a sufficiently spatially regular enough scalar function of compact support,
transported by the flow within control volume V(t) and on ∂V(t). And φ is a random
function of the stochastic flow. For a fixed point x, φ should satisfy a stochastic differential
equation:

dtφ = v(x, t)dt+ f(x, t) · dBt, (A.2)

With the Ito-Wenzell formula, we can regroup the expressions for v and f ,

v(x, t) = −∇φ ·w +
∑
i,j

1

2
aij

∂2φ

∂x2
+ ∇φ · ∂σ•j

∂xi
σij , (A.3a)

f(x, t) = −∇φ(x, t)Tσ(x, t). (A.3b)

Finally we have,

dtφ = Lφdt−∇φ · σdBt, (A.4a)

Lφ = −∇φ ·w +
∑
i,j

1

2
aij

∂2φ

∂x2
+ ∇φ · ∂σ•j

∂xi
σij . (A.4b)

Such differential at a fixed point x actually corresponds to the material derivative of a
function transported by the flow in the deterministic case. Suppose that q a scalar function
transported by the stochastic flow as well, we can write the differential of the integral over
a material volume of the product qφ:

d

∫
V(t)

qφ(Xt, t)dx = d

∫
Ω
qφdx

=

∫
Ω

(dtqφ+ qdtφdt〈q, φ〉)dx, (A.5)
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From (A.4b), this differential can be written as,∫
Ω

(dtqφ+ qLφ+ ∇φ · a∇q)dtdx−
∫

Ω
q∇φ · σdBt. (A.6)

Owing to the adjoint operator L∗ with Dirichlet boundary conditions:∫
Ω

((
dtq + L∗q + ∇ · (a∇q)

)
dt+ ∇ · (qφσdBt)

)
φdx. (A.7)

By inserting a complete expression L∗, we have:∫
V

[dtq +
(
∇ · (qw)dt−

∑
ij

∇ · (qσij ∂σ
j•

∂xi
) +

1

2

∑
ij

∂2

∂xi∂xj
(aijq)

−
∑
ij

∂xia
ij∂xjq −

∑
ij

aij∂2
xjq
)
dt+ ∇ · (qσdBt)]dx, (A.8)

The term −1
2

∑
ij

∂2

∂xi∂xj
(aijq)|∇·σ=0dt+ 1

2 ‖∇ · σ ‖2 qdt can be written as, omitting dt:

− 1

2

∑
ij

∂2

∂xi∂xj
(aijq)|∇·σ=0 +

1

2
‖∇ · σ ‖2 q =

− 1

2

∑
ij

(
aij

∂2q

∂xi∂xj
+
∂aij
∂xi

∂q

∂xj
+
∂aij
∂xj

∂q

∂xi

)
+

1

2

(∑
ijk

∂xiσ
ik∂xjσ

jkq
)

=

− 1

2

∑
ijk

(
σikσkj

∂2q

∂xi∂xj
+
∂aij
∂xi

∂q

∂xj
+
∂aij
∂xj

∂q

∂xi
− ∂xiσik∂xjσjkq

)
, (A.9)

which can be simplified to,∫
V

[dtq + ∇ · (qw)dt− 1

2

∑
ijk

(σikσkj
∂2q

∂xi∂xj
+ ∂xjσ

ik∂xiσ
kjq

+2σik∂xiσ
kj∂xjq − ∂xiσik∂xjσkjq) + ∇ · (qσdBt)]dx. (A.10)

Above equation can be compactly written as

d

∫
V
qdx =

∫
V

[dtq+∇·(qw)dt−1

2

∑
ij

∂2

∂xi∂xj
(aijq)|∇·σ=0dt+

1

2
‖∇·σ ‖2 qdt+∇·(qσdBt)]dx.

(A.11)
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Abstract: The hybrid methods combing the 4D variational method and the ensemble
Kalman filter provide a flexible framework. In such framework the potential advantages
with respect to each method can be retained. These advantages include, for example,
the flow-dependent background error covariance, the ability to explicitly get the analy-
sis error covariance matrix, the iterative minimization procedure and the simultaneously
assimilation of all observations with in a time span etc.

In this thesis, an enhanced ensemble-based 4DVar scheme is proposed and has been
analyzed in detail in the case of the 2D shallow water model. Several variations related
to this method are introduced and tested. We proposed a new nested loop scheme in
which the background error covariance matrix is updated for each outer loop. We also
devised different ensemble update schemes together with two localization schemes. And
we exploited the links between the analysis error covariance matrix and the inverse Hessian
of our 4D cost function. All these variants have been tested with the real Kinect-captured
image data and synthetic image data associated with a SQG (Surface Quasi-Geostrophic)
model, respectively.

Our proposed ensemble-based variational method is then used to devise a parameter
estimation scheme. Such formulation allows the estimation of an uncertainty subgrid stress
tensor in the context of ensemble estimation. And this uncertainty subgrid stress tensor
is derived from a perspective of flow phenomenon driven by a stochastic process. Finally,
a first effort is made to assimilation high-resolution image data with the dynamical model
running on a much coarser grid.
Keywords: data assimilation, variational methods, Kalman filter, fluid dynamics, subgrid
stress modeling
Résumé: Les méthodes hybrides combinant les méthodes de 4D variationnelles et le filtre
de Kalman d’ensemble fournissent un cadre flexible. Dans ce cadre, les avantages poten-
tiels par rapport à chaque méthode peuvent être conservé. Ces avantages comprennent,
par exemple, la matrice de covariance d’erreur d’ébauche dépendant d’écoulement, la ca-
pacité d’obtenir explicitement la matrice de covariances d’erreur d’analyse, la procédure
de minimisation itérative et l’assimilation simultanée de toutes les observations dans un
intervalle de temps etc.

Dans cette thèse, un système d’ensemblist-4DVar renforcé a été proposé et a été analysé
en détail dans le cas du modèle de 2D shallow-water. Nous avons proposé un nouveau
schéma de boucle imbriquée dans laquelle la matrice de covariance d’erreur d’ébauche est
mis à jour pour chaque boucle externe. Nous avons aussi élaboré différents schémas de
mise à jour d’ensemble avec deux stratégies de localisation différentes. Dans l’approche
de transformation directe, nous avons exploité les liens entre la matrice de covariances
d’erreur d’analyse et la matrice hessienne de la fonction coût. Toutes ces variantes ont été
testées avec les données réelles de l’image capturées par Kinect et de l’image associées à
un modèle de Surface quasi-géostrophique, respectivement.

Notre méthodes variationnelles d’ensemble proposées sont ensuite utilisées pour la con-
cevoir un système d’estimation des paramètres. Cette formulation nous permet d’estimer
des paramètres du stress tenseur de l’incertitude. Ce stress tenseur est dérivé d’un point
de vue de phénomène d’écoulement modélisé par un processus stochastique. Enfin, un
premier effort est fait pour l’assimilation des données d’image à haute résolution avec le
modèle dynamique sur une grille plus grossière.
Mots-clés: assimilation de donnée, méthodes variationnelle, filtrage de Kalman, dy-
namique des fluides, modélisation de stress à échelle grille-fine
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