
HAL Id: tel-01140654
https://theses.hal.science/tel-01140654

Submitted on 9 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Opportunistic multi-content dissemination : Passive
monitoring and adaptation to network conditions

Matteo Sammarco

To cite this version:
Matteo Sammarco. Opportunistic multi-content dissemination : Passive monitoring and adaptation
to network conditions. Networking and Internet Architecture [cs.NI]. Université Pierre et Marie Curie
- Paris VI, 2014. English. �NNT : 2014PA066573�. �tel-01140654�

https://theses.hal.science/tel-01140654
https://hal.archives-ouvertes.fr

Thèse de doctorat

UNIVERSITÉ PIERRE ET MARIE CURIE

UPMC SORBONNE UNIVERSITÉS

École doctorale

EDITE DE PARIS

INFORMATIQUE, TÉLÉCOMMUNICATIONS ET ÉLECTRONIQUE

présentée par

Matteo Sammarco

pour obtenir le grade de

Docteur de l’Université Pierre et Marie Curie

Dissémination multi-contenus opportuniste :

Monitorage passif et adaptation aux

conditions du réseau

soutenue le 28/05/2014 devant le jury composé de :

Andrzej Duda Rapporteur Professeur Grenoble INP-Ensimag

Thierry Delot Rapporteur Professeur Université de Valenciennes

Olivier Marcé Examinateur Ingénieur de Recherche Alcatel-Lucent Bell Labs

Luigi Iannone Examinateur Maître de Conférence Télécom ParisTech

Giovanni Pau Examinateur Professeur UPMC Sorbonne Universités

Marcelo Dias de Amorim Directeur Directeur de Recherche CNRS

Numéro bibliothèque :

PhD Thesis

UNIVERSITY PIERRE AND MARIE CURIE

UPMC SORBONNE UNIVERSITÉS

Doctoral school

EDITE DE PARIS

COMPUTER SCIENCE, TELECOMMUNICATIONS, AND

ELECTRONICS

presented by

Matteo Sammarco

submitted in partial fulfillment of the requirements for the degree of

Doctor of Science of the University Pierre and Marie Curie

Opportunistic multi-content dissemination:

Passive monitoring and adaptation to

network conditions

Commitee in charge:

Andrzej Duda Reviewer Professor Grenoble INP-Ensimag

Thierry Delot Reviewer Professor Université de Valenciennes

Olivier Marcé Examiner Research Engineer Alcatel-Lucent Bell Labs

Luigi Iannone Examiner Assistant Professor Télécom ParisTech

Giovanni Pau Examiner Professor UPMC Sorbonne Universités

Marcelo Dias de Amorim Advisor CNRS Research Director

Acknowledgements

I want to express my complete gratitude to Marcelo Dias de Amorim, deus ex machina

of my thesis. I hope to have learnt several things from him, in the research area and in

everyday life. Nevertheless, I still think that Maradona has been a stronger player than Zico.

I wish to thank also the reviewers of my first manuscript version and the other members

of the jury, since they posed me many constructive remarks.

I spent in LIP6 wonderful years. I must thank for this my colleagues: Nadjet (Nad: jet,

jet), Tiphaine (the tea master girl), Adisorn (the asian kind koala), Raul (he’s the guy who

made me laugh for a whole day, continuously), Mubashir, Alex, Filippo, Yesid, and more

recently Salah (puré!), Ahlem, Fadwa, and The ThreeMusketeers Alex (moquette hair), Ben-

jamin (the pourquoi guy), Quentin (the one who eats many of cakes).

In many interesting moments spent in the lab, Miguel was there. I really appreciate

his ideas and all the discussions we had. I wish him the best, as long as to Renata and to

Gabriel. Remaining in the South America area, I want also to thank Luis, for his adding

value remarks.

The LIP6 could not be the samewithout Prom. We all feel his presencewhen he’s around,

and we miss him when he’s not. I spent amazing days in Hong Kong with him. Equally for

Marguerite.

I must also thank the friends I met during these years in France: Silvio (I still remember

that ragù he cooked at Easter), Paolo (he introduced me Emacs), Gege (he introduced me

to the Mix), Giuseppe (I remember thoughts we shared in Agnano before going to France),

Marianna (the friend who everyone wish to have), Max (Gallo, but not the novelist), Jessica

(famous for her board games collection), Marzia (she’s always so dynamic), Mattia, Stefano,

Davide, Sharon, and Claudione.

Finally I must thank all my family and, in particular, Pina who fills all my days with love

and happiness.

I’m really grateful to all these people. If I forgot some, I will offer them a pizza one day.

I

II

Résumé

La pénétration du marché des appareils mobiles, leurs fonctions, ainsi que la multipli-

cité des applications disponibles ont connu une croissance impressionnante ces dernières

années. Par conséquent, les smartphones, les tablettes et les ordinateurs portables sont de-

venus à la fois producteurs et consommateurs de contenus générés par les utilisateurs. Ces

appareils mobiles motivent également de nouveaux paradigmes de communication tels que

la possibilité d’établir, de manière opportuniste, des liens directs de dispositif à dispositif

lorsque deux nœuds mobiles entrent dans la portée sans fil de l’autre.

Les communications opportunistes permettent une couverture étendue dans les endroits

où il n’existe aucune infrastructure réseau disponible et des stratégies de délestage de don-

nées pour aider les opérateurs à soulager la charge de leurs infrastructures.

Dans cette thèse, nous considérons le cas de la diffusion opportuniste de plusieurs grands

contenus d’un point de vue expérimental. Cela implique de revisiter, entre autres, l’hypo-

thèse selon laquelle les contacts entre nœuds mobiles ont une capacité suffisante pour trans-

férer n’importe quelle quantité de données.

Dans la première partie de cette thèse, nous commençons par implémenter EPICS dans

des terminaux Android. EPICS est un protocole réseau spécialement conçu pour l’échange

opportuniste de grands contenus. Nous procédons à une évaluation de ses performances

dans de nombreux scénarios. Bien que les résultats aient révélé de bonnes performances

pour quelques contenus, le système montre des limitations lors du passage à l’échelle. Mal-

heureusement, les logs de la couche applicative, enregistrés lors de l’expériences, ne sont pas

suffisants pour comprendre ces résultats inattendus. Nous proposons alors de s’appuyer sur

la surveillance passive du trafic et sur l’analyse des traces sans fil pour déterminer les limites

et les possibilités d’amélioration. Cetteméthodologie nous suggère demieux exploiter la dy-

namique de la topologie du réseau par DAD, un nouveau protocole réseau pour la diffusion

de contenus, qui envoie une rafale de paquets de données de façon adaptative au lieu de

la stratégie d’EPICS de transmission par fragments. Nous comparons les deux protocoles

expérimentalement et, à l’aide des traces de contacts, soit réelles, soit synthétiques, nous

obtenons des gains importants avec cette nouvelle approche.

La surveillance passive est une partie essentielle de notre travail et nous avons décidé

d’approfondir la question du passage à l’échelle d’un tel système. La deuxième partie de

cette thèse traite donc de la façon d’aborder le problème du passage à l’échelle des systèmes

III

de surveillance de réseau local sans fil existants. Cela nous permet de procéder à unemesure

expérimentale plus étendue. Nous proposons deux approches originales. Avec la première,

basée sur la similarité des traces et des algorithmes de détection de communautés, nous

sommes en mesure de déterminer le nombre de moniteurs nécessaires dans une zone géo-

graphique cible et leur placement. D’autre part, compte tenu d’une flotte de moniteurs, le

même procédé peut être utilisé pour étendre la zone sous surveillance. La deuxième ap-

proche est basée sur des mesures collaboratives. Dans ce cas, nous considérons le risque de

mesures biaisées en raison d’attaques d’utilisateurs malveillants qui peuvent générer des

traces fallacieuses. Nous proposons ensuite une méthode pour détecter ces comportements

malveillants en utilisant l’analyse de graphes basée sur les traces recueillies.

Mots-clefs

Réseaux opportunistes, réseauxmobiles à connectivité intermittente, caractérisation des contacts,

dynamique des réseaux, analyse basée sur les graphes, dissémination de contenus multimé-

dia, pair-à-pair, monitorage du trafic IEEE 802.11.

IV

Abstract

The market penetration of mobile devices, their hardware capacities, as well as the mul-

tiplicity of available applications have experienced an impressive growth in the latest years.

As a consequence, smartphones, tablets, and laptops have become both producers and con-

sumers of user-generated contents. They also motivate novel communication paradigms

such as the possibility to establish, in an opportunistic fashion, direct device-to-device links

whenever two mobile nodes enter within the wireless range of each other.

Value-adds of opportunistic communications range from extended coverage where there

is no network infrastructure available to the realization of offloading strategies to help op-

erators relieve the load in their infrastructures. In this thesis, we consider the case of op-

portunistic dissemination of multiple large contents from an experimental point of view.

This implies revisiting, among others, the common assumption that contacts have enough

capacity to transfer any amount of data.

In the first part of this thesis, we start from an Android implementation of EPICS, a net-

work protocol especially designed for exchanging large contents in opportunistic networks,

on off-the-shelf devices. We conduct an experimental campaign evaluating its performance

in many scenarios. Although the results revealed good performance for a few contents, the

system shows severe limitations when scalability comes at play. Unfortunately, application-

level logs stored during the experimentation are not enough to understand unexpected re-

sults. We propose then to rely on passive traffic monitoring and wireless traces analysis to

find out limitations and uncovered improving possibilities. This methodology suggests us

to better exploit the dynamics of the network topology through DAD, a new content dis-

semination protocol that adaptively sends bursts of data instead of the per-fragment trans-

mission strategy of EPICS. We compare both protocols experimentally and using synthetic

contact traces and show significant gains of the proposed approach.

Passive monitoring is an essential part of our work and we decided to investigate fur-

ther some issues that remained open when we performed our experiments. The second part

of this thesis deals with how to tackle the scalability problem of legacy WLAN monitor-

ing systems in order to conduct a wide area experimental measurement. We propose two

original approaches. With the first one, based on trace similarity and community detection

algorithms, we are able to identify how many monitor we need in a target area and where

to place them. On the other hand, given a fleet of monitors, the same method can be used

V

to stretch the area under observation. The second approach in based on collaborative mea-

surements. In this case we face the risk of biased measures due attacks of malicious users

generating adulterated traces. We then propose amethod to detect suchmalicious behaviors

by using graph-based analysis of collected traces.

Keywords

Opportunistic networks, intermittently-connected mobile networks, contact characteriza-

tion, network dynamics, graph-based analysis, multimedia content dissemination, peer-to-

peer, IEEE 802.11 traffic monitoring.

VI

Contents

Résumé III

Abstract V

Contents VII

1. Introduction 1
1.1. Context and problem definition . 1
1.2. Storyline and contributions . 4
1.3. Workflow . 5
1.4. Outline of the manuscript . 6

I Refining opportunistic content dissemination: Strategies, measurements,
and experimental evaluation 9

2. Background on opportunistic multi-content dissemination 11
2.1. Background . 11
2.2. Problem statement . 13
2.3. PACS: Intra-content selection strategy . 15
2.4. EPICS: Inter-content selection strategy . 16
2.5. Summary . 18

3. PePiT: An Android-based substrate for multi-content dissemination 19
3.1. Requirements . 19
3.2. Architecture . 20
3.3. Internal data structures . 22
3.4. PePiT settings menu . 23
3.5. Deployment on Android mobile devices . 23
3.6. An illustrative scenario . 24
3.7. Experimental setup . 25

3.7.1. Experimental parameters . 25
3.7.2. Discussion . 26
3.7.3. Benchmarking . 26

3.8. Experimental results . 26
3.8.1. EPICS in an emulated mobile scenario 29
3.8.2. EPICS in a mobile scenario . 30

3.9. Summary . 31

VII

VIII Contents

4. DAD: Bringing dynamics to EPICS 33
4.1. Rationale . 33
4.2. EPICS breakdown . 34

4.2.1. Impact of the piece size . 35
4.2.2. Impact of the transport layer protocol 36
4.2.3. Impact of the burst size . 37

4.3. DAD: Dynamically Adaptive Dissemination 39
4.3.1. Room for improvement . 39
4.3.2. DAD: Bringing dynamics to EPICS . 43

4.4. Summary . 44

II WLANmonitoring: Basics, deployment, and collaborative behavior 45

5. IEEE 802.11 traffic monitoring: Background and problem statement 47
5.1. Legacy monitoring methods . 47

5.1.1. Large deployments . 48
5.1.2. Trace inference . 49

5.2. IEEE 802.11 background . 49
5.3. Detailed problem statement . 52

5.3.1. Merging module computational complexity 53
5.3.2. Biased measures due to corrupted traces 54

5.4. Summary . 54

6. Scalable wireless traffic capture 57
6.1. Improving Trace Selection . 59
6.2. Experimental Setup . 61

6.2.1. Scenarios . 61
6.2.2. Merging tool . 63
6.2.3. Trace Similarity . 64

6.3. Community detection . 68
6.3.1. Algorithms . 70
6.3.2. Results for community detection . 70

6.4. Trace ranking . 71
6.5. Evaluation . 73

6.5.1. Proposed strategy vs. trace size . 73
6.5.2. Proposed strategy vs. node degree . 74

6.6. Summary . 76

7. Sensitivity to input traces 79
7.1. Detecting vulnerabilities . 80

7.1.1. Accuracy . 83
7.1.2. Detection system . 84

7.2. Experimental Setup . 85
7.3. Accuracy Measurements . 86

7.3.1. Individual and merged traces . 86
7.3.2. Number of traces . 87
7.3.3. Position of sensing nodes . 88

7.4. Impact of Attacks . 90
7.5. Detecting Potential Attackers . 91
7.6. Summary . 95

Contents IX

8. Conclusion and perspectives 97
8.1. Conclusion . 97
8.2. Perspectives . 98

Appendices 101

A. Résumé de la thèse en français 103
A.1. Introduction . 103
A.2. Définition du problème . 104
A.3. Contribution 1 : PePiT, un substrat basé sur Android pour la diffusion multi-

contenu . 106
A.3.1. Évaluation . 106

A.4. Contribution 2 : DAD, EPICS dynamique . 108
A.4.1. Évaluation . 109

A.5. Contribution 3 : Passage à l’échelle de systèmes de surveillance passive . . . 110
A.5.1. Évaluation . 110

A.6. Contribution 4 : Sensibilité aux traces d’entrée 112
A.6.1. Système de détection . 112
A.6.2. Évaluation . 113

A.7. Conclusions et perspectives . 113
A.8. Perspectives . 115

B. PePiT: code snippet and UML class diagram 119

C. List of publications 123
C.1. Published . 123
C.2. Under review . 123
C.3. Other publications . 124

Bibliography 125

List of Figures 135

List of Tables 139

X Contents

Chapter 1

Introduction

The growth of traffic from wireless and mobile devices has more than optimistic fore-

casts [4]. In this direction, together with innovative mobile development frameworks, new

opportunistic content sharing applications are catching on [7;16;70;72;75;110]. Such applications

fulfill to the current societal demand to produce and consume larger and larger user-generated

contents (UGCs) [23] according to the triple-A paradigm (Anywhere, Anytime, Any device).

The compatibility of mobile wireless devices to the triple-A paradigm justifies the ef-

fort lavished by the research community about opportunistic networks in the latest years.

Opportunistic networks are created by sporadic and direct contacts among mobile users.

This peculiarity makes them suitable to exchange contents in many contexts and environ-

ments such as: local and temporary events, disaster recovery and crowded places, vehicular

and sensor networks, satellite and pocket-switched networks [20;39;43;44;51;76;121]. This kind

of network is also sometimes identified as Delay/Disruption Tolerant Networks (DTNs) or

Intermittently Connected Mobile Networks (ICMNs).

Understanding the dynamics at the application level and underlying wireless standard

mechanisms becomes fundamental to design an efficient content exchange mechanism, es-

pecially in crowded environments or in situations where short contact windows are the rule.

In this thesis, we address such problems by linking the performance of opportunistic

content sharing applications with the surrounding wireless traffic. Not diminishing the im-

portance of simulations, only in conditions very close to reality we can face representative

issues. For this reason, we have deliberately adopted an experimental approach to base our

analysis on real applications deployed on off-the-shelf devices.

1.1. Context and problem definition

Users usually retrieve contents from the Internet or ask for services through the tradi-

tional client-server model. Since the Internet has been designed following the end-to-end

principle, a content is identified by a Unified Resource Locator (URL) associated with a host

1

2 1.1. Context and problem definition

Figure 1.1: Problems occurring in wireless communications.

or web servers. This model works smoothly until some contents become so popular that

links connecting to the server and its computational power become a bottleneck.

Solutions such as peer-to-peer and content-distribution networks are efficient responses

to this problem, but they depend on the availability of network infrastructure. In absence

of the latter, other approaches propose to rely on direct message exchanges between nodes

through wireless ad hoc networking. Ad hoc networks are, by definition, decentralized

networks where nodes participate in routing and data forwarding in according to the dy-

namically changing network connectivity. Since no central unit is present, accessing the

medium is not anymore regulated by a controller. If we further consider the intermittent

and opportunistic connectivity with the possibility of long transmission delays, sparse and

heterogeneous nodes, we deal then with Delay-Tolerant Networks (DTNs) [22].

To illustrate such a scenario, let us suppose that Bobwants to transmit a message to Peter

using opportunistic communications as shown in Figure 1.1. They are too far from each

other to directly communicate. Bob could then send the message to Alice who is passing by.

Various wireless communication problems may occur: attenuation by an obstacle, multi-

path, transmission errors, and message losses, to cite a few. If Alice manages to get the

message, she stores and carries it until she jumps into the Peter’s transmission range. Such

a store-carry-and-forward mechanism is the general approach to route messages in DTNs.

Broadly speaking, routing protocols in DTNs must negotiate the tradeoff between pro-

tocol overhead and delivery performance. On one hand, flooding all messages tends to

minimize the delivery delay at the cost of increased storage and transmission overhead. On

the other hand, sending the message directly to the end recipient tears down the overhead

along with the probability to receive the message within a short delay. This trade off is

studied in many routing schemes that take into account mobility and node contact proba-

bility [11;19;45;63;65;104;109;119;120;122].

Chapter 1. Introduction 3

The DTN architecture is inherently node-centric with unicast message delivery that is

independent from the underlying transport protocols [22]. Messages may be fragmented and

fragments may be bundled together anywhere in the network. Chopping large contents

into smaller pieces for a more effective dissemination in opportunistic sharing applications

is in fact a natural approach to adopt in DTNs. Nevertheless, several problems (surprisingly

under-considered in the literature) arise:

Which content to transmit when a contact happens?

Once the content selected, which piece (fragment) should be prioritized?

How big should be a piece?

Is it worth using a reliable transport protocol?

Is it worth transmitting bursts of pieces before recomputing a new prioritization rank-

ing?

We investigate all these aspects in the first part of this work. Other aspects such as

localization privacy and security are out of the scope of this manuscript.

Opportunistic networks in practice. Despite the number of content distribution strategies

elaborated for opportunistic networks [49;69], only few of them have been implemented on

mobile devices. Haggle is a push-based framework that decouples the specific application

business logic from the communication technology providing mechanism for late-binding

interfaces [106]. In this way, upper-layer applications can agnostically use different communi-

cation modes (infrastructure, infrastructure-less, Bluetooth, ad hoc Wi-Fi). MobiClique [77],

Opportunistic-Twitter [90], and Haggle-ETT [68] are examples of applications built on top of

the Haggle framework. They provide, respectively, a mobile social networkingmiddleware,

an ad hoc twitting application, and an electronic triage tag system.

Similar to Haggle in purpose, but different in design, WiFi-Opp exploits the mobile Wi-

Fi AP feature (tethering) to create opportunistic networking [110]. PodNet allows sharing

podcasts and any files during opportunistic contacts [2]. Users must preliminarily subscribe

to receive contents, which are organized into feed channels. 7DS introduces a new platform

to develop mobile applications for disruption-tolerant mobile networks [71]. It provides a

modular platform with transport- and application-layer functionalities for mobile nodes to

exchange information in store-carry-and-forward mode. Proximiter allows sharing various

types of content on portable devices through direct and multi-hop communications [115].

4 1.2. Storyline and contributions

Figure 1.2: Wireless traffic capturing during opportunistic content exchange

1.2. Storyline and contributions

This thesis work started with the goal of filling the lack of implementation of opportunis-

tic content dissemination protocols. In the context of the ANR Crowd project1, we proposed,

designed, and implemented an Android application called PePiT (Chapter 3). PePiT imple-

ments EPICS, an opportunistic multi-content dissemination protocol also proposed in the

context of the ANR Crowd project.2

In a few words, EPICS executes two main actions. First, it chops contents into smaller

chunks (or pieces) to achieve a more effective dissemination. Second, as an inter-content

selection strategy, it selects, at each contact, which content and which piece of that content

to exchange in order to have a fast dissemination. With this regard, our first contribution in

the area of opportunistic content dissemination is then the following:

Contribution 1. We develop PePiT, an Android opportunistic con-

tent dissemination application based on EPICS. Its modular archi-

tecture makes it suitable to be extended with minimum effort. It also

successfullyworks on virtual Android-x86 systems [1] running on any

host machine. Having a working application, we conduct an experi-

mental campaign to evaluate the performance of EPICS.

Although our experiments with PePiT showed the fairness of EPICS, we noticed, out of

the experimental results, a significant room for improvement. In fact, we observed that the

limitations were due to wireless phenomena that we could not understand by examining

only application-level logs. In order to have a more complete view and then find out all

the obstacles for fast content dissemination, we decided to deploy a passive measurement

system to capture the wireless traffic during the experiments, as shown in Figure 1.2.

This experimental campaign drove us to propose the following:

1http://anr-crowd.lip6.fr
2Although being part of a joint work, EPICS was reported in the Ph.D. thesis of Nadjet Belblidia, the main

contributor in the design of the protocol [13]. Here, we focus on the implementation aspects, as well as the eval-

uation, of this proposal. For sake of completeness and clarity, however, we briefly describe EPICS in Chapter 2.

Chapter 1. Introduction 5

Contribution 2. Taking advantage of wireless traffic traces, we could

then deeper analyze opportunistic content dissemination mecha-

nisms in vivo. We exploited wireless captured traces as a support to

analyze results. The results led us to proposeDAD, standing for Dy-

namically Adaptive Dissemination which further improves the con-

tent diffusion latency. We have inspected the profit margin on real

movement traces and on simulated traces generated by SIMPS simu-

lator, a social-based mobility simulator that we developed, based on

the SIMPS model [18].

At this point, we faced some limitations of the passive measurement system and de-

cided to investigate this module further. In fact, we noticed that when the number of nodes

involved in the experiment grows and they are mobile, the monitoring system quickly be-

comes insufficient with regard to spatial coverage and to accuracy of the captured traces.

We propose solutions to solve these issues in two aspects. First, we consider the problem of

monitoring coverage:

Contribution 3. We propose a new approach to monitor WLAN traf-

fic based on trace similarity and community detection algorithms.

The advantage of this approach is twofold. Given a target area, it

gives the minimum number of monitors required to cover this area.

The idea is extend the covered area without having to acquire ex-

tra monitors and increase maintenance/management overhead. In

other words, given a monitor fleet, our proposal points out the moni-

tor that has to move to extend the target area (preserving the capture

quality).

Second, we tackle the problem of sensitivity of the measurement system to corrupted traces:

Contribution 4. We propose a second approach based on collabora-

tive measures. In this case, users take part in the capture process in

exchange of something (e.g., connectivity). If this method presents a

clear advantage in terms of scalability, it is also open to biased mea-

sures generated by corrupted traces or malicious users. We formal-

ize the problem as a security issue and present two possible attacks

based on trace adulteration together with countermeasures to detect

them.

1.3. Workflow

Finding the right configuration among several parameters in distributed and oppor-

tunistic content dissemination protocols is not an easy task. Both protocol-specific and

6 1.4. Outline of the manuscript

Monitor setting

Wireless traffic

measure

Application level

measure

Improvement

found

Protocol setting

Experiment

Figure 1.3: Experimental workflow.

communication-technology mechanisms must be taken into account to have a right view.

We present in Figure 1.3 our complete experimental workflow. Once the experimental stage

is chosen, we proceed with the monitor and the protocol settings. The monitor setting con-

cerns finding the quantity of monitors needed to have sufficiently good capture and their

position. The protocol setting involves tuning parameters for the specific protocol under

test. In this way, we get both application- and data-link level measures. If the analysis of

suchmeasurements highlights possible improvements, protocol parameters are adjusted ac-

cordingly and we can start a new series of experiments. In Chapter 4 we use this kind of

pipeline to conduct our experimental campaign.

1.4. Outline of the manuscript

This thesis is structured in two parts. For the sake of coherence, each part has its own

context and background section. The first part is dedicated to the design, implementation,

and evaluation of an opportunistic multi-content dissemination protocol. In Chapter 2,

we provide the necessary background and describe our baseline dissemination protocol,

namely EPICS [15]. In Chapter 3, we detail PePiT, an Android-based communication sub-

strate over which we implement EPICS. We capitalize the experimental results finding out

limitations of EPICS and designing amore efficient opportunistic content dissemination pro-

tocol that we call DAD (Dynamically Adaptive Dissemination). We present and evaluate the

performance of DAD in Chapter 4.

To better understand some unexpected results during the experiments, we passively

monitored thewireless traffic. While running themonitoring system,we observed a number

of limitations that could prevent one to efficiently employ a fleet of passive monitors, where

Chapter 1. Introduction 7

to place them, and scale up themonitoring system. In the second part of this manuscript, we

tackle these issues. Firstly, in Chapter 5, we recall some notions of the IEEE 802.11 standard

that will be helpful thereinafter and then introduce the state-of-the-art techniques about

capturing WLAN traffic. In Chapters 6 and 7, we present our solutions to solve the afore-

mentioned problems. For the collaborative solution, we also present our approach to detect

biased measures generated by malicious users.

8 1.4. Outline of the manuscript

Part I

Refining opportunistic content

dissemination: Strategies,

measurements, and experimental

evaluation

9

Chapter 2

Background on opportunistic

multi-content dissemination

Concert halls, stadium, bus waiting shelters, are just few examples of places where col-

location creates common interests between people. In such locations, it could be useful to

locally exchange photos, audio files, travel information or headline news, using what we al-

ways have with us: our smartphones. In the latest few years, these devices have witnessed

a very quick evolution and a high wide-spreading market penetration. It is expected that

traffic from wireless and mobile devices will surpass traffic from wired devices by 2016 [4].

The reason of this success must be ascribed also to both the increasing computational power

and the wide range of connectivity interfaces embedded, making them suitable to use in

ad hoc and opportunistic networks. All the evident advantages of opportunistic networks

(fault tolerance, locality, scalability, infrastructure offloading) can lead to a new widespread

content-centric, web 2.0 or media-sharing mobile applications such as proximity chat, local

social networks, video and photo sharing, folksonomy, or microblogs.

In this chapter, after the background and the problem statement sections, we present

EPICS. EPICS it the opportunistic multi-content dissemination protocol that we implement

and evaluate in the following of this work. It is based on the grey relational analysis for the

inter-content selection strategy.

2.1. Background

In opportunistic networks, contacts may have insufficient capacity to transmit the re-

quired amount of data. Some pioneer works take into account bandwidth constraints [11;57].

They propose both message scheduling and dropping policies in order to optimize different

performance metrics. Nevertheless, in these solutions, authors assume unicast transmis-

sions using replication-based routing schemes. Their main objective is then to optimize the

replication in order to achieve best per message performance.

11

12 2.1. Background

Data broadcasting in opportunistic and ad hoc networks has been the subject of sev-

eral works. Williams et al. classify approaches into four main categories: simple flooding,

probability based, area based, and neighbor knowledge [114]. In addition, a new data dis-

semination category based on network coding emerged recently [9;33]. The main objective of

all these solutions is to achieve an efficient dissemination while minimizing the number of

transmissions in the network. This is done by selecting the best relay nodes among all the

neighbors an infected node has. Nevertheless, all these approaches assume that any contact

is long enough to transfer the data under consideration. Indeed, these solutions answer to

the question of how to select relay nodes instead of answer the question of how to select

which content and which piece(s) of that content to transfer once the relay node is selected.

Pitkänen et al. studied the impact of data fragmentation in one-to-one opportunistic

network communications [78]. They considered two fragmentation strategies: reactive frag-

mentation and proactive fragmentation. In reactive fragmentation, the sender starts trans-

mitting the data until it is interrupted by the link failure caused by the end of the contact. In

proactive fragmentation, the source node divides the data into pieces of standard size (based

on the expected average contact capacity). They concluded that the reactive fragmentation

with predefined fragment boundaries allows significant improvements in one-to-one com-

munications.

Fragmentation is also inspired by BitTorrent sharing mechanism [34;58;83;97]. Most of these

adaptations, however, aim at constructing and maintaining an overlay network that enables

multi-hop message routing. In other terms, nodes do not need to be direct neighbors to

become peers.

Nadan et al. proposed SPAWN, a cooperative strategy for content downloading in ve-

hicular networks [73]. The piece selection scheme is based on a proximity-driven strategy

called rarest-closest. Such a strategy selects the rarest pieces and then ranks them based on

the distance to the closest peer which has that piece. SPAWN constructs an application-layer

overlay that does not limit the peer selection to the one-hop neighborhood. Hence, it needs

an underlay routing protocol that maintains multi-hop routes between peers.

Other solutions implemented file swarming by only considering one-hop communica-

tions and uniformly-distributed random piece selection [36;62]. Nevertheless, they use net-

work coding in order to mitigate the coupon collection problem by increasing piece het-

erogeneity. Finally, some papers presented different architectures to enable mobile peer-to-

peer distribution of large contents [40;50]. In both architectures, contents are exchanged op-

portunistically when nodes are within communication range. However, the piece selection

strategy differs. Jung and al. used the random selection strategy [50] whereas Helgason et al.

presented an implementation of a sequential strategy using a pull-based architecture [40].

Data dissemination in opportunistic networks has been the subject of several studies in

the latest years [46;53;124]. A promising application for data dissemination in opportunistic

networks is enabling content sharing among users on the move. Several content sharing

Chapter 2. Background on opportunistic multi-content dissemination 13

systems have been proposed [34;54;73;83;97;103;118]. As previously mentioned, most of these so-

lutions aim at constructing and maintaining an overlay network to support multi-hop mes-

sage forwarding. In our work, we rather consider immediate communication capabilities of

the users to disseminate data.

Other solutions implement file-sharing by only considering one-hop communications.

Some of them rely on the publish/subscribe paradigm [52;64] while others are based on flat

peer-to-peer systems [36;40;50;60–62]. Similarly to ours, all these solutions aim at making the

content available to all users in the network. Nevertheless, the main difference is that these

solutions are generally pull-based. In other words, users make the decision of the content

to receive by proactively querying other peers about subscribed feed contents. In such a

scenario, inter-content selection comes from the client request. Conversely, we consider a

push-based system where contents to be disseminated are weighted to fulfill the defined

dissemination policy objectives.

Problems addressed in caching, replication, and content placing schemes are also ad-

dressed in some works [11;17;48;57;87]. Indeed, contents to be stored at mobile nodes are gener-

ally dictated by a global policy. Because user resources are limited, a kind of content priority

(or utility) is introduced to enable decision making among contents to be stored. Neverthe-

less, the objectives differ. In such schemes, content selection is done to save user memory

resources whereas the aim of our work is to apply a global dissemination policy. Ioannidis

et al. investigate the optimality and scalability of dynamic content distribution over mobile

social networks [47]. In this work, mobile users subscribe to a dynamic-content distribution

service and share any content updates they receive. The target scheme is push-based – when

two users are in range, the user having the freshest version pushes it to the second one.

2.2. Problem statement

Whereas communication opportunities have limited duration and capacity due to short

duration contacts and power saving technologies, users, conversely, generate, consume,

and share contents that are becoming increasingly larger. In such a situation, opportunistic

content-sharing solutions must be reformulated to support efficient dissemination of large

contents. In particular, data must be sliced so that smaller pieces are transmitted separately;

this leads to a better use of short-lived contacts and promotes progressive content dissemina-

tion. The first challenge is then to choose which piece of the content to send upon a contact.

The problem becomes even more challenging when multiple contents flow in the network

at the same time. In a nutshell, the goal is to design an efficient strategy for deciding at each

contact:

1. Which piece to transmit,

2. from which content.

14 2.2. Problem statement

Table 2.1: Summary of variables in opportunistic content dissemination context.

Variable Definition

N Set of nodes in the network

N Number of nodes in N

C Set of contents to be disseminated

C Number of contents in C

Kj Number of pieces that compose content cj
ani ,j Availability bitmap associated with content cj at node ni

pni ,j
Prevalence vector associated with content cj at node ni

To address the problem described above, we have chosen EPICS, a distributed protocol

to help nodes decide which is the best piece to transmit during a contact in order to achieve a

predefined dissemination policy. EPICS chops contents into small pieces and shuffles them

to speed up the dissemination. To decide which piece from which content should be sent,

EPICS relies on the grey relational analysis with the goal to prioritize contents having some

expected features (most popular, most recent, or most urgent content). EPICS follows a

“prevalence” principle used in a companion protocol, namely PACS [14;15]. While PACS con-

sidered only the intra-content piece selection, EPICS addresses the general problem when

multiple contents co-exist.

We describe how EPICS works in the following sections as long as the network model.

Assumptions. Let N = {n0, n1, . . . , nN−1} be the set of N nodes in the network. Nodes are

mobile, but we do not assume any a priori knowledge of mobility patterns. We assume in-

stead that all nodes in the network are interested in a set of contents C = {c0, c2, . . . , cC−1}.

Each content cj is initially only available at a single data source. We do not make any as-

sumption on the creation time of contents.

For each content cj, the source chops the content into Kj pieces of equal size (the piece size

can be determined to optimize communication opportunities [15]). Pieces are sequentially

identified as cj = {d0, d1, . . . , dKj−1}. Nodes use their contact opportunities to get pieces, i.e.,

we assume that there is no infrastructure to help the dissemination process. Nodes can get

pieces from the data source and from any other node in the network having it.

Each node ni locally stores an availability bitmap vector ani ,j = {a0, . . . , aKj−1} and a preva-

lence vector pni ,j = {p0, . . . , pKj−1} both associated with every known content cj. The avail-

ability bitmap vector ani ,j keeps track of cj content pieces that the node ni holds. It contains

binary values associated to each piece, where am = 1 if the node ni has piece dm, and am = 0

otherwise. The goal of the prevalence vector is to give a local view of the prevalent pieces in

the network. Initially, each node associates an empty prevalence vector to each content.

All the variables are summarized in Table 2.1.

Chapter 2. Background on opportunistic multi-content dissemination 15

Algorithm 1 ni PACS strategy

1: while contact_with(nj) do

2: receive_ f rom(nj , anj ,0);

3: pni ,0
← pni ,0

+ anj ,0;

4: if (ani ,0 ∧ (¬anj,0) 6= ∅) and (initiate_connection_with(nj)) then

5: dsi→j
← prevalence_selection_ f rom((ani ,0 ∧ (¬anj,0)), pni ,0

);

6: send_to(nj, dsi→j
);

7: end if

8: if (anj,0 ∧ (¬ani ,0) 6= ∅) and (connection_initiated_by(nj)) then

9: receive_ f rom(nj, ds j→i
);

10: id j→i
← {i0 , . . . , iK0−1}; ik = 0, ∀k < K0 (k 6= sj→i), is j→i

= 1

11: ani ,0 ← ani ,0 ∨ id j→i
;

12: end if

13: end while

2.3. PACS: Intra-content selection strategy

We briefly present PACS, an intra-content piece selection strategy relying on the preva-

lence principle [14;15]. The goal of PACS is to achieve fast content dissemination while keep-

ing the overhead low. To this end, nodes passively keep track of the dissemination progress

of each piece of contents, so that they can appropriately prioritize their transmissions with-

out inducing additional communication overhead.

Since this part only addresses the intra-content selection problem, let us assume, for the

sake of simplicity, that only a single content c0 is available in the network. We consider the

multi-content case in Section 2.4.

Initially, all nodes in N, except the one where c0 was produced, have neither prevalence

nor availability vectors associated to content c0 because they are not aware of the presence

of c0 in the network. Nodes create these vectors as soon as they receive the availability

vector, ani ,0, relative to the new content c0 from a node ni. When nodes ni and nj meet, they

exchange their availability vectors ani ,0 and anj ,0. Node ni (resp. nj) computes ani ,0 ∧ (¬anj,0)

(resp. anj ,0 ∧ (¬ani ,0)), which gives the candidate pieces to be transferred. They also update

their prevalence vectors respectively as: pni ,0
← pni ,0

+ anj,0, and pnj ,0
← pnj ,0

+ ani ,0. Among

the candidate pieces to be transferred, nodes select the onewith the lowest prevalence. In the

case of a tie, a piece is chosen in a uniformly distributed random way. Let dsi→j
be the piece

sent by ni to nj and ds j→i
be the piece sent by nj to ni. After one round of exchanges, nodes

update their availability vectors as: ani ,0 ← ani ,0 ∨ idsj→i
, and anj,0 ← anj,0 ∨ idsi→j

, where idsi→j

and idsj→i
are K0 element vectors with all positions set to 0 except the position relative to the

piece just received, which is set to 1. Note that prevalence vectors have a limited influence

at the beginning, but they gain importance as nodes move and exchange pieces. The steps

achieved by node ni are stated in Algorithm 1.

16 2.4. EPICS: Inter-content selection strategy

2.4. EPICS: Inter-content selection strategy

EPICS bases the selection of the availability vector to transmit at each encounter on the

grey relational analysis (GRA), which is a method in grey system theory for analyzing dis-

crete data series [31;32]. This method allows measuring the degree of approximation of given

data series xu according to the reference data series x0.

In the following, we summarize the steps needed to apply relational analysis processing:

(a) Set up the reference data series x0

x0 = {x0(1), x0(2), . . . , x0(M)},

whereM is the number of considered data (or metrics) in the analysis. x0(v) represents

the most favored value of the vth data (1 ≤ v ≤ M).

(b) Define the comparison data series xu

xu = {xu(1), xu(2), . . . , xu(M)},

where 1 ≤ u ≤ S and S is the number of compared data series in the analysis.

(c) Compute the difference data series ∆u

∆u = {∆u(1), ∆u(2), . . . , ∆u(M)},

where ∆u(v) = |x0(v)− xu(v)|.

(d) Get the global maximum value ∆max and the global minimum value ∆min from all data

series

∆max = max
u

(max
v

∆u(v)),

∆min = min
u

(min
v

∆u(v)).

(e) Obtain, for each data v in each data series u, the grey relational coefficient γu(v)

γu(v) =
∆min+ς∆max
∆u(v)+ς∆max

,

where ς is a coefficient value between 0 and 1. ς is used to compensate the effect of

∆max. Generally, ς is set to 0.5.

(f) Compute the grey relational grade for each data series u

Γu =
M

∑
v=1

(γu(v)× w(v)),

Chapter 2. Background on opportunistic multi-content dissemination 17

where w(v) is the weight of the vth data in each series (with,
M

∑
v=1

w(v) = 1). If all data

in series have the same weight, Γu becomes:

Γu = 1
M

M

∑
v=1

γu(v).

As mentioned above, the grey relational grade value Γ represents the degree of ap-

proximation to the reference data series x0. A high Γu indicates that the values in the

data series xi are, in general, close to the most favored values.

(g) Sort the k values of Γ into descending order.

We set EPICS to ensure a fairer dissemination delay for all contents regardless their cre-

ation times and their sizes. To reach this objective, weights should take into account both

freshness and content size. Therefore, we consider these two metrics in the grey relational

analysis (M = 2). Because we set the piece size to a fixed value for all contents, content size

is defined as the number of pieces. Freshness is defined as the creation time, i.e., the time at

which the data source generates a given content.

In the following, we detail how EPICS operates. To get the same scale for both metrics,

every node first normalizes the evaluated values. To this end, each node gets the current val-

ues of both metrics associated with all known contents, takes the maximum and minimum

values, and rescales the values in the range [0, 1]. Next, every node defines the reference

data series. Since contents that are fresher and/or larger take more time to be disseminated,

they should get higher weights. Hence, x0 is set to {1, 1}. Then, each node computes Γ

values of contents. The same weight is assigned to both metrics (w(1) = w(2) = 1
2) and set

ς to 0.5. Based on Γ values, weights are assigned to each content. The weights are then used

to define the probability of selection of the corresponding availability vector. Algorithm. 2

details the content selection strategy applied at each node. Note that, since xu values are

normalized, ∆max is always equal to 1 and ∆min is always equal to 0.

An illustrative example. At t = t0, n1 knows three contents {c1, c2, c3} and n2 knows four

contents {c1, c2, c3, c4}. Suppose that contents c1, c2, c3, c4 were created at times 10, 30,

50, and 60 and have a size of 3, 2, 4, and 1 piece(s), respectively. Before sending one of its

availability vectors, n2 performs the following steps. First, it sets up xu data series associated

with every content cu. To this end, n2 gets normalized values for both freshness and size

metrics. As previously mentioned, freshness is defined as the time of content creation. Thus,

freshness values are {10, 30, 50, 60}. After normalization, they become {0, 0.4, 0.8, 1}. Size

is defined as the number of pieces. Hence, sizes are {3, 2, 4, 1}. After normalization, sizes

equals {0.66, 0.33, 1, 0}. Hence, the data series are: x1 = {0, 0.66}, x2 = {0.4, 0.33}, x3 =

{0.8, 1}, and x4 = {1, 0}, with data series xu associatedwith content cu. Second, n2 computes

18 2.5. Summary

Algorithm 2 ni EPICS
1: x0 = {1, 1}

2: ∆max = 1;

3: ∆min = 0;

4: while contact_with(nj) do

5: if not sending() and not receiving() then

6: for u in range(known_contents()) do

7: xu ← get_normalized_ f reshness_and_size(cu);

8: ∆u ← compute_di f f erence_data_series(x0, xu);

9: Γu ← compute_grey_grade(∆u , ∆max, ∆min);

10: end for

11: prob ← { Γ1
∑u Γu

, . . . , Γk

∑u Γu
},

k = range(known_contents())

12: s← weighted_random_selection_o f _content(prob)

13: send_to(nj, ani ,s);

14: end if

15: end while

the difference data series ∆u according to the reference series x0 = {1, 1}: ∆1 = {1, 0.33},

∆2 = {0.6, 0.66}, ∆3 = {0.2, 0}, and ∆4 = {0, 1}. Third, n2 sets ∆max = 1 and ∆min =

0 and obtains the grey relational coefficients: γ1 = {0.33, 0.6}, γ2 = {0.45, 0.43}, γ3 =

{0.71, 1}, and γ4 = {1, 0.33}. Fourth, n2 determines the grey relational grades: Γ1 = 0.46,

Γ2 = 0.44, Γ3 = 0.85, and Γ4 = 0.66. Finally, n2 assigns content selection probabilities:

prob = {0.19, 0.18, 0.35, 0.27}. Then, one content is selected based on these probabilities.

Suppose that content c3 is chosen. Accordingly, n2 sends c3’s availability vector an2 ,3 to n1.

At time t = t1, among c3 candidate pieces to be transferred, n1 selects the one with the

lowest prevalence using an intra-content selection strategy (e.g., PACS) and sends it to n2.

2.5. Summary

In this chapter, we reviewed some opportunistic content dissemination background and

problem statement. We then presented EPICS, a generic and extensible distributed strat-

egy based on the grey relational analysis for inter-content piece selection when two nodes

observe a contact opportunity. The use of the grey relational analysis makes EPICS quite

extensible: properly setting the reference data series x0, we may give priority to contents

having specific features like small/big size, early/late creation time, content type/thematic,

etc. EPICS is designed to fairly and quickly exchange multiple and large contents in oppor-

tunistic networks.

Chapter 3

PePiT: An Android-based substrate for

multi-content dissemination

Despite the number of opportunistic dissemination protocols and strategies based on

users’ mobility and social behavior, there are not as much real implementations. To fill the

gap, we have developed an Android mobile application called PePiT [95] implementing the

EPICS protocol (presented in Chapter 2). In the following, we present all the steps needed

to bring EPICS from theory to practice as well as its evaluation in many scenarios.

3.1. Requirements

At high level, PePiT should be capable of:

Detect other devices running the same application in the Wi-Fi range.

Exchange with them a photo picked from the gallery or shot with the camera through

Wi-Fi ad hoc.

Receive and store photos sent by other devices.

Notify the user when a new device joins the ad hoc network or when a device leaves

it.

Notify the user about the downloading progress.

If the requirements about the application itself are quite specific to the purpose of ex-

changing photos, we design the communication module in order to be as much general as

possible and decoupled from the higher levels in order to be reused and called by other ap-

plications. Its features include: (i) start or join an ad hoc network, (ii) stop or leave an ad hoc

network, (iii) broadcast messages, (iv) sendmessages to a specific neighbor, (v) operate with

UDP and TCP sockets, (vi) operate with IPv6 addresses, and (vii) manage and pass received

messages to any upper level applications.

19

20 3.2. Architecture

UDP TCP

Message handler

Shell Interface

Crowd connectivity

Operating System

AIDL

Chopper
data structures

AIDL

GUI

PACS EPICS

serviceExchange

database

Android

Media

Store

Crowd

service

Neighborhood

manager

Figure 3.1: Modules of the PePiT architecture.

3.2. Architecture

Tomeet the requirements, we divided the system in threemodules as depicted in Fig. 3.1.

Graphical User Interface. The application user interface provides the possibility to ex-

change a content (e.g., a picture) either by picking it out from the Android Media Store

or by directly shooting it with the phone camera. It displays the received pictures, the

downloading progress and all the network configurations. Users have also a view of the

neighborhood, and they can monitor the wireless interface settings. The GUI is composed

of two main activities (in Android jargon, an activity is what actually users see as window)

and one abstract activity. Figure B.3 shows the UML class diagram related to these activities.

EPICS Component. Just below the GUI, this is the software module implementing the

EPICS protocol. It is implemented as an Android remote service. This design approach

gives two advantages. It allows EPICS to run on a different instance of the Dalvik Virtual

Machine (the virtual machine where the Android code is executed) without interfering with

the application itself that could require a large amount of heap memory. Secondly, any ex-

ternal application can bind this service and call the functionalities described in its Android

Interface Definition Language (AIDL). In particular, the AIDL exhibits the following func-

tions:

epicsPublish(String content_uri, int chunkSize): A function that enables application to

publish a content using EPICS protocol.

Chapter 3. PePiT: An Android-based substrate for multi-content dissemination 21

epicsNotifyReceived(String content_uri): A callback function that is called whenever con-

tent is fully received using EPICS protocol.

The chopper sub-module cuts the content into K pieces filling the availability vector and

creating the prevalence vector in the PACS data structure submodule. The EPICS service in-

stantiates the EPICS protocol and runs in the background. It selects and sends content pieces

using the CROWD service. Also, it tracks every received piece into an internal exchange

database. For each received piece, it records a tuple containing: the unique content iden-

tifier, the sender’s Android system identifier, the path where the content is locally stored,

the piece number, the piece offset in bytes, and the piece size in bytes. When all the pieces

belonging to the same picture are received, EPICS service rebuilds the picture and stores it

in the Android MediaStore.

CROWD Component.1 Even for the CROWD module we opted for a remote service de-

sign. It is composed of three sub-modules. The Crowd connectivity sub-module creates (or

connects to) an ad hoc network. To do so, it relies on the ShellInterface utility class. This is

an Android Operative System shell wrapper able to send system commands and return the

output. Crowd Service also offers a message handler module which manages and tags along

received and sending messages through TCP or UDP connections, in unicast or broadcast.

The neighborhood manager broadcasts UDP beacons every T seconds in order to announce its

presence to the neighbors. Beacons contain the IP address, the phone IMEI (International

Mobile Equipment Identity), and the Android system identifier. The neighborhood manager

also keeps state of neighboring devices: every time a beacon is received from an unknown

device, it dynamically adds the new peer to the neighborhood list and shows up an Android

notification to the user. The neighborhood list is internally scrolled every Tc seconds to check

if some peers left the network. We denote Bx,n the time of the latest beacon received from

peer x, m the number of tolerated missed beacons and t the current checking time (multiple

of Tc). If t− Bx,n > T×m, the neighborhoodmanager considers that peer x left the network

and shows a leaving notification to the user. Finally, the message handler sub-module creates

and serializes outgoing CROWD messages and parses incoming ones.

Crowd service is accessible through an interface with the following methods:

received_msg(CrowdMessage msg, AssociateData ass). Called when a full Crowd message

is received. The message is internally dissected in order to decode all the fields inside

and to be consequently processed.

associate_join(AssociateData ass). Called to add a new neighbor.

associate_leave(AssociateData ass). If during the checking loop, a neighbor does not sat-

isfy anymore the condition above, this API is called to remove it from the neighbor-

hood.
1CROWD is the name of the ANR project supporting part of this work (http://anr-crowd.lip6.fr).

22 3.3. Internal data structures

+---------+----------+-----------+-----------+----------+

| Version | Appl. ID | Msg. Type | Msg. Size | TLVs |

| 1 byte | 1 byte | 1 byte | 4 bytes | n bytes |

+---------+----------+-----------+-----------+----------+

Figure 3.2: Crowd message format.

connected_to(AssociateData ass). A new TCP connection from a peer is received.

disconnected_from(AssociateData ass). Called when a TCP connection is lost.

broadcastMessage(CrowdMessage msg). Broadcast a CrowdMessage.

sendUnicast(CrowdMessage msg, AssociateData ass). Send aCrowdMessage to a neighbor

through UDP.

sendReliableUnicast(CrowdMessage msg, AssociateData ass). Send a CrowdMessage to a

neighbor through TCP.

connect_to(AssociateData ass). Establish a TCP connection.

disconnect_from(AssociateData ass). Close a TCP connection.

getAllAssociates(). Get all the neighbors.

The UML class diagram of this module, instead, is showed in Figure B.1 of Appendix B.

3.3. Internal data structures

EPICS component maintains at each node and for each content two data structures,

namely availability and prevalence vectors. CROWD component manages the neighbor-

hood, so it has a dedicated data structure to describe neighbors.

Messages are extensible and have the format presented in Fig. 3.2. The “Version” field

indicates the version of the message encoding. As many applications can use component

features, an “Appl. ID” field of one byte is reserved to encode the application identifier. The

“Msg. Size” field contains the whole message size. The “Msg. Type” field is an application-

dependent type of message. According to the “Msg. Type”, an arbitrary number of TLVs

(Type-Length-Value) fields may be included. Two types of messages are handled by PePiT:

availability vector message and data message.

Availability vector message. A broadcast message. It contains four TLVs: the sender’s

Android identifier number, the unique content identifier, the associated availability vector,

and the creation time.

Data message. A unicast message. It contains five TLVs: the sender’s Android identifier

number, the source’s Android identifier number, the unique content identifier, the transmit-

ted piece number, and the data. Each data message contains only one piece of content.

Chapter 3. PePiT: An Android-based substrate for multi-content dissemination 23

(a) PePiT. From left to right: exchanges in progress, history of content pieces

received from different peers, preview of the received picture.

(b) PePiT settings menu.

Figure 3.3: PePiT user interface.

3.4. PePiT settings menu

PePiT has its own settings menu (Fig. 3.3(b)), where the user can easily change most of

the parameters. If the batch mode is disabled, users can interactively take pictures from the

gallery or using the camera and exchange them. If the batch mode option is enabled, the

user selects a batch file stored on the SDCARD. The bench file plays the role of orchestrator.

It contains, for each content, the creator’s Android identifier number and the creation time.

All the devices hold a copy of a common benchmark and generated contents based on it.

PePiT settings menu also contains other important customization settings which will be

exploited in the next chapter; among others, we have the beaconing frequency, the chunk

size, and the burst size.

3.5. Deployment on Android mobile devices

At implementation time, neither Wi-Fi Direct nor Bluetooth 4.0 APIs were available. We

based our implementation on standard Wi-Fi capabilities then. This implementation choice

however does not affect EPICS mechanisms. As the Android system does not provide an

API to manage IEEE 802.11 ad hoc communications, it is foremost imperative to follow a

procedure, called rooting, in order to gain administrative access rights on the phones. Thanks

to this procedure, it is possible to run system-level commands just like in a Linux environ-

ment. Taking advantage of the Android NDK (Native Development Kit) facilities, Linux

wireless tools for the ARM processor were compiled and wrapped into PePiT. These tools

enable to create and connect phones to an ad hoc network. Listing B.1 shows a snippet of

code to start an ad hoc network on Samsung Galaxy S II smartphones. Similar commands

are provided for many other models.

24 3.6. An illustrative scenario

n1

n2

n3

t = t0

n1

n2

n3

1 2 43

an1 1 1 1 1

p
n1 0 0 0 0

t = t1

(a) Creating content and initializing vectors.

n2

n3

1 4

an2 1 1

p
n2 0

0

t = t2

???

5 13 2

p
n3

an3

1 10

0 0 0 0

1

3

1

(b) Case 1: user n3 was not

aware about the existence of

content i.

n2

n3

1 4

an2 1 1

p
n2 0

0

t = t2

5 13 2

p
n3

an3 0 0

1

8 1 10 5

11

2 3

2

n2

n3

1 4

an2 1 1

p
n2 05 13 2

p
n3

an3 0 0

1

10

11

2 3

2 3

1

9 2 6

t = t3

(c) Case 2: user n3 already got some piece of content i.

Figure 3.4: An illustrative scenario of the working of EPICS.

PePiT has been developed to run onmobile phones equippedwith Android systemwith

a minimum API level equal to 8 (Android Froyo, version 2.2.x). Fig. 3.3(a) shows some

screenshots of the PePiT application. It has been successfully installed on a virtual machine

(VM) running android-x86 [1], a port of the Android system to x86 platforms. In this case,

the host machine wireless interface is connected to the ad hoc network and bridged to the

VM.

3.6. An illustrative scenario

To illustrate the operation of PePiT in a real deployment, we present an illustrative sce-

nario with three users (Fig. 3.4). At time t0, no content is available. Hence, no user maintains

any availability or prevalence vectors. At time t1, user n1 creates a content. Then, epicsPub-

lish function is called. Based on the user ID of n1 and on a local identifier, the function

assigns a unique global identifier i to the content. epicsPublish function also chops the con-

tent and initializes associated vectors (for the sake of illustration, suppose that the content

is chopped into four pieces). An availability vector an1,i is created with all bits set to 1. Also,

an empty prevalence vector pn1,i is generated (Fig. 3.4(a)). Periodically, each user selects an

availability vector and broadcasts it. The selection of the availability vector is done based

on GRA as depicted in Section 2.4. Let us assume that the availability vector an2 ,i associated

to content i is selected and transmitted from user n2 to user n3 at time t2. This could only

happen if user n3 is neither transmitting nor receiving data. Two cases are possible:

Chapter 3. PePiT: An Android-based substrate for multi-content dissemination 25

Case 1: user n3 was not aware about the existence of content i (user n3 has no vectors asso-

ciated to the content i). Then user n3 creates an availability vector an3 ,i with all bits set to 0

and a prevalence vector pn3 ,i with all values set to 0 except the one associated to the pieces

that user n2 holds that are set to 1 (Fig. 3.4(b)).

Case 2: user n3 already got some pieces of content i (user n3 has vectors associated to the

content i). In this case, user n3 updates its prevalence vector based on the availability vector

of node n2. If user n3 holds some pieces of content that user n2 does not, user n3 selects

the less prevalent one and sends it to user n2 (Fig. 3.4(c)). At time t3, user n2 receives a

piece of content from user n3. User n2 stores the piece in its local memory and updates the

availability vector an2,i associated to the content i. It sets to 1 the bit associated to the piece

just received. If user n2 gets all the content pieces, epicsNotifyReceived function is called to

notify the user that content has been fully downloaded.

3.7. Experimental setup

Table 3.1: Parameters for the first experi-

ments with PACS and EPICS.

Parameters Values

Transport protocol UDP

Number of nodes 10

Number of contents 40

Piece size 64kB

Size of contents 16kB, 3.5MB

Tc 1 second

T 2 seconds

m 6

In this section, we summarize our experimental

setup.

3.7.1. Experimental parameters

Transport protocol. Data pieces are sent using UDP

datagrams.

Number of nodes. We placed 10 Android phones

(4 HTC Desire and 6 Samsung Galaxy-S-II equipped

with Android 2.3.3) on fixed locations in a 30m2 of-

fice. Althoughwe tested and validated the working of

EPICS protocol in a mobile environment, we deliber-

ately performed the experiment in a static configura-

tion to be able to compare the results obtained using

different strategies.

Number of contents. We consider the dissemination of 40 contents. Each device has four

original contents stored on their SDCARD. Again, we used a batch mode in order to get

exactly the same initial configuration (Section 3.4).

Piece size. Since pieces are sent throughUDP, we set the piece size to fill the maximumUDP

packet size (64kB). This way, each piece is transmitted in an unique UDP packet.

Size of contents. Even if a content may be smaller than the piece size defined above, still a

CROWD data message must be created and sent through an UDP packet. Thus, we consider

that content sizes vary from 1 piece (16kB) to 56 pieces (3.5MB).

26 3.8. Experimental results

Content creation times. Contents are created at different times of the experiment after a

warmup period of 120 seconds to be sure that all nodes have initialized the internal struc-

tures. For complete automation and to make all the applications start at the same time, we

developed an NTP client application to synchronize the smartphone internal clock to an

NTP server and we used TaskBomb [108], an application which acts as Unix’s Cron utility for

Android.

Beaconing parameters. As described in Section 3.2, the neighborhood list is periodically

scrolled. For the neighborhood management, we set Tc = 1 s, T = 2 s, and m = 6.

Availability vector message parameters. Wemade broadcast an availability vector message

at the same frequency of beacon messages.

Experiment parameters are summarized in Table 3.1.

3.7.2. Discussion

Beaconing parameters set above mean that, unless moved, a node is seen as discon-

nected and deleted from the other nodes’ neighborhood list, only if six of its beacons are

missed. Tuning these parameters we can emulate nodes contacts and inter-contacts. Many

other combinations are possible: if wewant to emulate mobile nodeswith large inter-contact

times, and we want to save open TCP connection, we can increase the tolerance factor m.

On the other hand, if we want to make appear and disappear a node from the others’ neigh-

borhood list, then we increase its beaconing period T, keeping low Tc and m values for the

others. Although we tested and validated the working of EPICS protocol in a mobile envi-

ronment, we first performed the experiment in a static configuration to be able to compare

the results obtained using different strategies.

3.7.3. Benchmarking

We compare EPICS to the uniform strategy. We call the uniform strategy, a strategy that

use PACS for intra-content selection and that selects the content to transmit in a random

uniform way. The experimentation details are roughly the same. There are two main differ-

ences though: (i) In order to investigate the impact of the creation time, contents are created

at longer time ranges. Creation times vary between 0 seconds and 1,030 seconds after the

warmup period. (ii) The experiments last as long as required for both EPICS and uniform

strategies to achieve full dissemination of all contents.

3.8. Experimental results

We compare EPICS to the uniform strategy. We call the uniform strategy, a strategy

that, as EPICS, uses PACS for intra-content selection, but selects the content to transmit in

Chapter 3. PePiT: An Android-based substrate for multi-content dissemination 27

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50 60

C
om

p
le
ti
on

ti
m
e
d
is
tr
ib
u
ti
on

Time (minutes)

EPICS
Uniform

(a) VS-VT

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60

C
om

p
le
ti
on

ti
m
e
d
is
tr
ib
u
ti
on

Time (minutes)

EPICS
Uniform

(b) VS-FT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60

C
om

p
le
ti
on

ti
m
e
d
is
tr
ib
u
ti
on

Time (minutes)

EPICS
Uniform

(c) FS-VT

Figure 3.5: Distribution of completion times for experiments.

a random uniform way. Experiments last as long as required for both EPICS and uniform

strategy to achieve full dissemination of all contents.

We test three scenarios:

Variable size and variable creation time (VS-VT). Forty contents (ten per node) with

sizes from 16 (1 piece) to 3.5 MB (56 pieces) are created at different moments.

Variable size and fixed creation time (VS-FT). The same contents are created simulta-

neously after a warmup period of 2 minutes.

Fized size and variable creation time (FS-VT). Forty contents of 140 kB (3 pieces), ten

per node, are created at different instants.

We repeat each scenario ten times and we get the average complete diffusion µ time and

standard deviation σ. With µ and σ we build the normal distributions shown in Figures 3.5.

Not only EPICS is faster than the uniform, but it also has a narrower variance meaning that it

tries to complete a fair dissemination among all contents regarding the size and the creation

time. In particular we have these values (in minutes):

VS-VT. Uniform [µ = 37.5, σ = 5.3], EPICS [µ = 32.3, σ = 3.06].

VS-FT. Uniform [µ = 31.9, σ = 2.16], EPICS [µ = 28.5, σ = 1.65].

28 3.8. Experimental results

FS-VT. Uniform [µ = 31.3, σ = 2.06], EPICS [µ = 27.4, σ = 1.17].

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 500 1000 1500 2000

P
D
F

Time (seconds)

EPICS
Uniform

0
0.1
0.2
0.3
0.4

0 250

500

750

1000
1250
1500
1750
2000

Time (seconds)

P
er
ce
n
ta
ge

of
d
is
se
m
in
at
ed

co
n
te
n
ts

0
0.1
0.2
0.3
0.4

0 250

500

750

1000
1250
1500
1750
2000

Time (seconds)P
er
ce
n
ta
ge

of
d
is
se
m
in
at
ed

co
n
te
n
ts EPICS

Uniform

(a) VS-VT

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 200
400

600
800

1000
1200

1400
1600

1800
2000

P
D
F

Time (seconds)

EPICS
Uniform

0
0.1
0.2
0.3

0 250

500

750

1000

1250

1500

1750

Time (seconds)

P
er
ce
n
ta
ge

of
d
is
se
m
in
at
ed

co
n
te
n
ts

0
0.1
0.2
0.3

0 250

500

750

1000

1250

1500

1750

Time (seconds)P
er
ce
n
ta
ge

of
d
is
se
m
in
at
ed

co
n
te
n
ts EPICS

Uniform

(b) VS-FT

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 100
200

300
400

500
600

700
800

900
1000

P
D
F

Time (seconds)

EPICS
Uniform

0
0.1
0.2
0.3
0.4

0 100
200
300
400
500
600
700
800
900

Time (seconds)

P
er
ce
n
ta
ge

of
d
is
se
m
in
at
ed

co
n
te
n
ts

0
0.1
0.2
0.3
0.4

0 100
200
300
400
500
600
700
800
900

Time (seconds)P
er
ce
n
ta
ge

of
d
is
se
m
in
at
ed

co
n
te
n
ts EPICS

Uniform

(c) FS-VT

Figure 3.6: Content dissemination delays.

Dissemination delay distribution. We now want to figure out if the faster dissemination

evolution obtained with EPICS is induced by more homogeneous content dissemination

delays. We investigate the distribution of content dissemination delays when either content

size or creation time is fixed (Fig. 3.6(b) and 3.6(c), respectively) and when both size and

creation time vary (Fig. 3.6(a)). In the scenarios VS-VT and VS-FT, even if the Uniform

presents more contents disseminated in the first 600 and 400 seconds respectively, the latest

contents spend much more time to be fully disseminated. Conversely, EPICS obtains fairer

Chapter 3. PePiT: An Android-based substrate for multi-content dissemination 29

0 105 2015 25 30 35 40

0 105 2015 25 30 35 40

0 105 2015 25 30 35 40

α → γ

α → β

α → α

β → γ

β → β

β → α

γ → γ

γ → β

γ → α

α nodes

β nodes

γ nodes

Inter-contactContactBeacon

time

(sec.)

time

(sec.)

time

(sec.)

Figure 3.7: Contacts and inter-contacts in the emulated mobile scenario. All nodes start at the same time.

Table 3.2: Parameters for nodes of group α, β and γ.

Group T (sec.) Tc (sec.) m

α 2 1 2

β 7 1 1

γ 15 1 1

dissemination delays by mitigating the skewness and reducing outliers. In the case FS-VT,

with EPICS, dissemination delays are concentrated in the first 600 seconds, while with the

uniform strategy they reach 1,000 seconds.

3.8.1. EPICS in an emulated mobile scenario

We test EPICS performance versus the Uniform strategy in an emulated mobile scenario.

For this kind of evaluation, we actually care about contacts and inter-contacts among nodes

and not the mobility itself. This is the reason why we emulate the mobility. The scenario

is created dividing nodes in three groups (α, β, γ) and tuning the beaconing parameters as

explained in Section 3.7.2. Table 3.2 summarizes these parameters for each group, while

Figure 3.7 shows the evolution of contacts and inter-contacts among groups. Three nodes

30 3.8. Experimental results

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

C
D
F

Time (seconds)

EPICS
Uniform

(a) Cumulative distribution function of dissemi-

nation times.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

C
D
F

Time (seconds)

EPICS
Uniform

(b) Cumulative distribution function of time

gaps between consecutive disseminations.

Figure 3.8: EPICS versus Uniform in an emulated mobile scenario. Contents have variable size and variable

creation times.

constitute the γ group. In this scenario, they are always in contact with all the others, since

the first beacon they receive, as they consider a node out of their neighborhood only if they

do not receive a beacon from it within 16 seconds. On the other hand they send beacons with

a low frequency: every 15 seconds. For this reason, α and β nodes are often in inter-contact

with γ nodes. We have set other three nodes in according to the β group parameters. These

nodes are always in contact with α and β nodes, but they spend almost the same time for

contact and inter-contact with γ nodes. α nodes are always in the neighborhood of the other

nodes as they send a beacon every 2 seconds. On the other hand they have a low tolerance

to missed or delayed beacons from other nodes. Most of the time they are disconnected to

γ nodes and they present inter-contact gaps also for β nodes. γ nodes can be thought as

devices having a wider contact range, α node at the contrary.

In this scenario we disseminate the same 40 contents having variable size and variable

creation time of Section 3.8. Figure 3.8(a) shows the content dissemination evolution during

time. Similarly to the stationary case, also in this case the Uniform strategy is slightly faster

disseminating the first 75% of the contents (many of these are one piece content, while EPICS

tries to start with larger contents first), then it slows down. At the end EPICS completes the

dissemination exactly seven minutes faster.

In Figure 3.8 we compare the distribution of temporal gaps between consecutive diffu-

sion delays. For both strategies, 75% of disseminations are spaced in time of one minute

maximum. Nevertheless the maximum gap is 150 seconds for EPICS and almost the double

for the Uniform.

3.8.2. EPICS in a mobile scenario

In Section 3.8.1 we have shown how to test EPICS in an emulated mobile scenario taking

advantage of PePiT features. In this section we compare EPICS versus the Uniform strat-

egy in a real mobile scenario. We use six smartphones, four of them move along the path

Chapter 3. PePiT: An Android-based substrate for multi-content dissemination 31

Figure 3.9: Mobile scenario plan. Path is highlighted in red. All nodes start at the same time.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

C
D
F

Time (seconds)

EPICS
Uniform

(a) Cumulative distribution function of dissemi-

nation times.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 10001200140016001800

C
D
F

Time (seconds)

EPICS
Uniform

(b) Cumulative distribution function of time

gaps between consecutive disseminations.

Figure 3.10: EPICS versus Uniform in amobile scenario. Contents have variable size and variable creation times.

highlighted in Figure 3.9 at the first floor of the LIP6-UPMC laboratory in Paris, while last

two have a fixed location along the path. Each smartphone generates four contents having

variable sizes at different instants.

Results shown in Figure 3.10 confirm the dissemination evolution presented in the other

scenarios. The Uniform strategy performs well at the beginning disseminating one piece

contents, but, on the long period, EPICS is almost double quicker (Figure 3.10(a)). The

time gap between two consecutive dissemination delays can achieve 20 minutes with the

Uniform, while a maximum of 5 with EPICS (Figure 3.10(b)).

3.9. Summary

Opportunistic content sharing among mobile users is expected to be a widespread ap-

plication in a near future, as collocated people are likely to share mutual interests. In this

Chapter we introduced PePiT an Android application with the goal to fill the lack of real

opportunistic content dissemination protocol implementations. We retrace the developing

process from the requirements to the complete implementation.

With PePiT we can evaluate the performance of EPICS in many scenarios. Our testbed

is composed by 10 Android smartphones nodes. In according to the experimental scenario,

nodes are placed in fixed positions always in contact or they emulate contacts or they are

32 3.9. Summary

mobile. We compare EPICS against a uniform strategy. EPICS ensures fairer dissemination

delays for all the contents regardless of their creation times and sizes.

PePiT reveals itself to be very extensible. Keeping the lower opportunistic communica-

tion module, it can be used for any upper layer protocol. As a side aspect, in order to make

PePiT available to the general public, practical questions should be addressed, as the reset

time of the prevalence vector. As a future work we wish to make PePiT runnable also on

non-rooted stock smartphones.

Chapter 4

DAD: Bringing dynamics to EPICS

In Chapter 2 we described EPICS, an inter-content selection strategy to exchange large

contents in an opportunistic way. The implementation of EPICS on PePiT gave us the possi-

bility to prove and evaluate its performance versus other solutions with real world devices.

In this chapter we answer to the question: is there a way to further improve EPICS? To

this end, we experimentally observe the impact of some protocol parameters tunings and

we finally propose DAD (Dynamically Adaptive Dissemination), our solution to reduce the

generated overhead adapting to the dynamic neighborhood.

The chapter is organized as follows. In Section 4.1, we describe the rationale behind our

solution and, in Section 4.2, we present our experimentation campaign. The experimental

results are reported in Section 4.3 – they show that there is indeed room for improvement.

We propose then DAD, a solution that extends EPICS and makes it react to varying network

conditions to better exploit contact opportunities.

4.1. Rationale

When nodes get in contact and want to share some contents using EPICS, firstly they

exchange one of their availability vectors (of one of the contents) and update their respec-

tive prevalence vector. This preliminary stage has the goal of maximizing the utility of the

contact by choosing the right piece to transmit. Nevertheless, this expedient does not fully

avoid duplicated pieces since the decision about which piece to send is independently taken

by each of the neighbors that happen to be in contact with the node at the same time. Also,

such a strategy can result in non negligible overhead, as the transmission of each piece is pre-

ceded by the transmission of an availability vector. One question seems appropriate here:

would it be interesting to send a burst of pieces, among the less prevalent ones, at each exchange of an

availability vector? To this end, would it be worth opening a reliable connection to exchange

several pieces at once instead of using UDP connections, and modulate the piece size to fit

the burst into a contact window?

33

34 4.2. EPICS breakdown

(a) Piece size option. (b) Transport level protocol op-

tion.

(c) Burst size option.

Figure 4.1: Screenshot of PePiT option settings.

To address these questions, we proceed ad explorandum: we tweak several parameters to

find out which one has the most significant impact on the performance of EPICS in terms of

dissemination latency. Like a pipeline, at each stage we set up a befitting experiment to find

the best values for the parameters we consider; this configuration serves as the input for the

subsequent experimental stage. We explore the influence of the piece size, the choice of the

network transport protocol, and the impact of the size of the burst (see Figure 4.1).

During each experiment, we capture the wireless traffic using a passive monitoring sys-

tem. Wireless traces will support us to better understand the application behavior and some

unexpected results.1

4.2. EPICS breakdown

We conduct a campaign of experiments to check the best values for parameters as piece

size, transport level network protocol, and burst size. To be as fair as possible, for the

measurements reported in this chapter, we used smartphones with exactly the same hard-

ware: eight Samsung Galaxy S II with a Dual-core 1.2 GHz Cortex-A9 CPU and 1 Gbyte

RAM.Wireless capabilities (Bluetooth andWLAN) are managed by the Broadcom BCM4330

chipset. WLAN features include IEEE 802.11b/g/n standards, possibility to operate in the

range of frequency [2.4–2.497] and [4.9–5.85] GHz, and severalmodulation techniques (OFDM,

CCK, DQPSK, and DBPSK).

1As stated previously,wirelessmeasurement can be so useful that we decided to focus on this aspect in Part II

of this thesis.

Chapter 4. DAD: Bringing dynamics to EPICS 35

Smartphones are laid down in the middle of a desk, with two monitors passively cap-

turing traffic. No mobility is adopted to limit external interferences during this kind of

experiments. At the beginning of each experiment, the clocks of the devices are synchro-

nized. Every two seconds, nodes broadcast one of their availability vectors and stay tuned

for pieces. At the beginning, only one node, the source, has contents to share. All the other

nodes must wait to receive some chunks in order to act as a source too. In our experiments,

contents are photos of exactly 3 Mbytes. We repeat the same experiment at least three times

in different hours and days.

4.2.1. Impact of the piece size

The baseline protocols we consider (EPICS and PACS), as described in Section 2.3, get

inspiration from BitTorrent to chop contents into smaller pieces; for this reason, as a first

step, we consider for the piece sizes the same values as considered in BitTorrent-related

applications [38;59;67].

The overall number of pieces to be shared (over all contents) has significant impact on

the dissemination time. Neglecting low level transmission times, the smaller the number of

pieces to be transmitted, the faster the dissemination. In other words, for a given content

size, the dissemination is quicker if the piece size is bigger. Then, starting from a piece size

of 64 Kbytes (to fulfill a UDP packet), we gradually scale down the piece size approaching

the MTU (1,472 bytes in our case).

Figure 4.2 shows the average dissemination time and related standard deviation needed

to share one, three, five, and ten contents among seven nodes (plus one source). We choose

the piece size in the set {64, 50, 40, 30, 25, 20, 15, 10, 5} Kbytes. In all cases, the diffusion

time curve follows a parabolic-like shape: for very small or very large piece sizes the dis-

semination takes longer, while it decreases for medium values in the range of 15-40 Kbytes.

In the case of very small values, the overhead (because of the transmission of availability

vectors) plays a hefty role. In the case of very large pieces, instead, data transmission times

and fragmentation take the lead.

Figure 4.3(a) shows the cumulative distribution function of times required by the trans-

mitters and stored in the duration field of RTS frames. This time is composed of RTS +

SIFS + CTS + SIFS + DATA + SIFS + ACK. A fortiori ratione, these times become larger

and larger as the DATA itself is larger and therefore must be split in more fragments spaced

out by as many SIFS+ ACK as necessary. All the devices hearing a RTS followed by a CTS

must delay their requests to access the medium at least for the whole duration. In the case a

piece has the maximum size, 70% of RTS have a duration greater or equal to 1,512 µseconds.

The values are 40% and 20% for piece sizes of 25 Kbytes and 15 Kbytes, respectively. If the

piece is of 5 Kbytes, all the durations required are less than 1 millisecond. A latere, a bigger

36 4.2. EPICS breakdown

50
100
150
200
250
300
350
400
450
500
550
600

5 10 15 20 25 30 40 50 64

T
im

e
[s
]

Piece size [Kbyte]

Average and SD

(a) One content.

0

200

400

600

800

1000

1200

1400

1600

1800

5 10 15 20 25 30 40 50 64

T
im

e
[s
]

Piece size [Kbyte]

Average and SD

(b) Three contents.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5 10 15 20 25 30 40 50 64

T
im

e
[s
]

Piece size [Kbyte]

Average and SD

(c) Five contents.

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20 25 30 40 50 64

T
im

e
[s
ec
]

Piece size [Kbyte]

Average and SD

(d) Ten contents.

Figure 4.2: Dissemination time by tuning the piece size and using UDP sockets.

piece size also means more fragmentation and higher probability to lose a fragment (and

forced to send it again).

Figure 4.3(b) shows the delivery efficiency calculated as the ratio of the amount of pieces

put in the transmission queue over the number of pieces that must be received to complete

the dissemination. For any number of contents to share, curves have the same shape: for

small pieces (5, 10, 15, or 20 Kbytes), the efficiency is around 70%, while for bigger pieces

(50 or 64 Kbytes) the efficiency is very low, around 10%. A significant slope starts after

25 Kbytes. This means that, for bigger pieces, we are forced to send, in proportion, more

pieces than the one we effectively need to complete the diffusion.

It happens that there is a tradeoff between sending a few large packets or several small

packets (generating more overhead); the right choice is in the middle, with a piece size of

about 25 Kbytes.

4.2.2. Impact of the transport layer protocol

UDP is considered as the best choice to share contents in opportunistic networks since

it does not need to create a stateful connection. We evaluate this assumption proposing the

same experiment setup as before, but, this time, every time a node discovers a neighbor, it

Chapter 4. DAD: Bringing dynamics to EPICS 37

0

0.2

0.4

0.6

0.8

1

0 500
1000

1500
2000

2500
3000

3500
4000

4500
5000

C
D
F

Duration [microseconds]

piece size = 5 Kb
piece size = 15 Kb
piece size = 25 Kb
piece size = 64 Kb

(a) CDF of duration times specified in RTS

frames for 10 contents.

0

20

40

60

80

100

5 10 15 20 25 30 40 50 64

E
ffi
ci
en
cy

Piece size [kbyte]

1 Content
3 Contents
5 Contents
10 Contents

(b) Delivery efficiency.

Figure 4.3: Data-link and application level measurements tuning the piece size and using UDP sockets.

opens a TCP connection with it. Thus, pieces are reliably sent while beacons and availability

vectors are still sent through UDP. With these experiments, the goal is to consolidate what

we figured out about the piece size in the previous section.

Figure 4.4 presents the average diffusion time to share one, three, five, or ten contents

with seven nodes (plus one source) changing the piece size in the set {64, 50, 40, 30, 25, 20, 15,

10, 5} Kbytes. In this case too, for any amount of content to share, we detect a parabolic-like

shape: for larger or smaller pieces, we experience longer dissemination times, and shorter

times for middle range piece sizes. Starting from a piece size of 30 Kbytes up, the standard

deviation becomes larger for at least five experiments. It witnesses the effort to send back

again big packets after a loss.

Figure 4.5 shows the average diffusion time difference between the usage of UDP and

TCP. In the case of one or three contents to share (Figures 4.5(a) and 4.5(b)), UDP seems to

perform slightly worse than TCP, especially when the piece size is bigger than 40 Kbytes.

Anyway, for five to ten contents (Figures 4.5(c) and 4.5(d)), results suggest the opposite

behavior. But when TCP performs worse, it takes much longer than UDP. We conclude

that UDP is the best choice and, also in this case, the best piece size in terms of efficiency

is around 25-30 Kbytes. Finally, as shown in Figure 4.6, the smallest negative slope is at

25 Kbytes; thus, we consider in the following this piece size, unless specified.

4.2.3. Impact of the burst size

Once the piece size tuned and the transport protocol established, we need now to inves-

tigate if it is worth sendingmore than one piece at each exchange of availability vector. With

the same experimental setting of previous sections, we exchange five contents, modulating

the burst size in the set of {2,3,5,10} pieces and comparing the dissemination performance

with no burst at all (only one piece exchanged per each exchange of availability vector).

Performance, in terms of dissemination time, becomes worse and worse as the burst size

increases. Figure 4.7(a) shows, for each burst size, the elapsed time to achieve a complete

38 4.2. EPICS breakdown

0

100

200

300

400

500

600

5 10 15 20 25 30 40 50 64

T
im

e
[s
]

Piece size [Kbyte]

Average and SD

(a) One content.

0

200

400

600

800

1000

1200

1400

1600

1800

5 10 15 20 25 30 40 50 64

T
im

e
[s
]

Piece size [Kbyte]

Average and SD

(b) Three contents.

0

500

1000

1500

2000

2500

3000

5 10 15 20 25 30 40 50 64

T
im

e
[s
]

Piece size [Kbyte]

Average and SD

(c) Five contents.

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20 25 30 40 50 64

T
im

e
[s
]

Piece size [Kbyte]

Average and SD

(d) Ten contents.

Figure 4.4: Dissemination time tuning the piece size and using TCP sockets.

dissemination of the five contents on one node, two nodes, until all the seven nodes requir-

ing the contents. In many cases, with a burstsize = n the dissemination on the seven nodes

is faster than the dissemination on only one node in the case of burstsize = n + x. These

results are completely independent from the external wireless traffic listened (Figure 4.7(b)).

Even if in the case of burstsize = 3 we recorded less external traffic than in the case we do

not use any burst, it takes exactly three times more to disseminate the contents.

Let us suppose a burstsize = 10 as shown in Figure 4.7. At each contact with another

node, at most ten packets are placed in the transmission queue. The queue grows ten times

faster than the basic solution without burst. These ten packets correspond to ten pieces the

other node does not have, and chosen among the less prevalent ones. They are chosen based

on a local and contemporary view. For each packet, a node must gain access to the medium

waiting to be idle or reserving a slot with the RTS − CTS mechanism. In this way, when

packets in the tail of the queue (e.g., pieces to node 3 in the figure) eventually reach the

head, they are likely to be obsolete, wasting transmission slots (i.e., other neighbors may

have already sent it to the node, as shown in Figure 4.7).

We investigate if this phenomenon occurs varying the quantity of nodes involved in the

content exchange. We share one content of 3 Mbytes with only one source and one node

requiring the content (two nodes in total), one source and two other nodes (three nodes),

Chapter 4. DAD: Bringing dynamics to EPICS 39

-200

0

200

400

600

800

1000

5 10 15 20 25 30 40 50 64A
ve
ra
ge

d
iff
u
si
on

ti
m
e
d
iff
er
en
ce

[s
]

Piece size [Kbyte]

Better UDP
Better TCP
TCP - UDP

(a) One content.

-200

0

200

400

600

800

1000

5 10 15 20 25 30 40 50 64A
ve
ra
ge

d
iff
u
si
on

ti
m
e
d
iff
er
en
ce

[s
]

Piece size [Kbyte]

Better UDP
Better TCP
TCP - UDP

(b) Three contents.

-200

0

200

400

600

800

1000

5 10 15 20 25 30 40 50 64A
ve
ra
ge

d
iff
u
si
on

ti
m
e
d
iff
er
en
ce

[s
]

Piece size [Kbyte]

Better UDP
Better TCP
TCP - UDP

(c) Five contents.

-200

0

200

400

600

800

1000

5 10 15 20 25 30 40 50 64A
ve
ra
ge

d
iff
u
si
on

ti
m
e
d
iff
er
en
ce

[s
]

Piece size [Kbyte]

Better UDP
Better TCP
TCP - UDP

(d) Ten contents.

Figure 4.5: Average dissemination difference using TCP and UDP sockets.

until eight nodes in total, and tuning the burst size from one to ten. Figure 4.9 shows that

dissemination is faster using a larger burst when there are only few nodes, while, with six

or more nodes in contact, dissemination is faster disabling the burst (or, the same, using a

burstsize = 1). In particular, in the case of two nodes (including the source), is to be avoided

a burst in the range 1− 2, while, increasing the burst in the range 4− 10, the dissemination

time is divided by five, with a minimum at burstsize = 10. In the case of three nodes, the

minimum values of dissemination time are expected with medium values of burst. In the

case of four nodes, the curve starts to rotate: the best values are around a burstsize = 3.

From six nodes, values of burst greater than one lead to a slower dissemination.

4.3. DAD: Dynamically Adaptive Dissemination

4.3.1. Room for improvement

We showed in Section 4.2.3 how tuning the burst size can either improve or worsen the

dissemination performance based on the number of nodes in contact with the source. We

collapse Figures 4.9(a)–4.9(g) into Figure 4.10, where the red line connects the burst size

values in order to have the minimum dissemination time based on the number of nodes in

40 4.3. DAD: Dynamically Adaptive Dissemination

0

20

40

60

80

100

5 10 15 20 25 30 40 50 64
E
ffi
ci
en
cy

Chunk size [kbyte]

1 Content
3 Contents
5 Contents
10 Contents

Figure 4.6: Dissemination efficiency tuning the piece size and using TCP sockets.

0
1
2
3
4
5
6
7
8

200
400

600
800

1000
1200

1400
1600

1800
2000

2200

N
o
d
es

Time [s]

No Burst
Burst = 2
Burst = 3
Burst = 5
Burst = 10

(a) Completion time per node.

0
1000
2000
3000
4000
5000
6000

200
400

600
800

1000
1200

1400
1600

1800
2000

2200

P
ac
ke
ts

Time [s]

No Burst
Burst = 2
Burst = 3
Burst = 5
Burst = 10

(b) External traffic during experiments.

Figure 4.7: Dissemination time and external traffic with burst mode activated.

Physical

layer

Burst of pieces

for node 1

Burst of pieces

for node 3
Burst of pieces

for node 2

Figure 4.8: View of the transmission queue. With a burst size = 10, pieces experience a long queue delay and

they result useless once transmitted.

contact with the source node. The gray area includes values of burst for a diffusion time at

most 30 seconds after the minimum. Note that this area becomes narrower and narrower as

the number of nodes in contact grows. In this plot, EPICS moves on the bottom, meaning

that it can be improved up to a node degree of four. From a node degree of five up, it is

worth sharing only one piece per exchange of availability vector.

To check how important this profit margin is, we analyze in the following some real and

synthetic mobility traces. In particular, we examine the cumulative distribution function of

node degree at every beaconing instant. We exclude from the distribution isolated nodes, as

they are cannot exchange content with anyone.

We consider the following mobility traces:

Shopping MAll [35]. This is a dataset of real-world Bluetooth contact data collected from a

Chapter 4. DAD: Bringing dynamics to EPICS 41

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

T
im

e
[s
]

Burst size

Average and standard deviation

(a) Two nodes.

40

60

80

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8 9 10

T
im

e
[s
]

Burst size

Average and standard deviation

(b) Three nodes.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10

T
im

e
[s
]

Burst size

Average and standard deviation

(c) Four nodes.

0
100
200
300
400
500
600
700
800
900
1000
1100

1 2 3 4 5 6 7 8 9 10

T
im

e
[s
]

Burst size

Average and standard deviation

(d) Five contents.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

T
im

e
[s
]

Burst size

Average and standard deviation

(e) Six nodes.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

T
im

e
[s
]

Burst size

Average and standard deviation

(f) Seven nodes.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

T
im

e
[s
]

Burst size

Average and standard deviation

(g) Eight nodes.

Figure 4.9: Dissemination time of one content, tuning the burst size and changing the number of nodes involved.

mall in Nottingham (UK). For six days (following shops opening time), 25 devices captured

Bluetooth contacts.

KAIST [89]. Another real-world dataset, consisting of 92 daily GPS track logs collected from

the KAIST university campus in Daejeon, South Korea. Traces have been overlapped in time

to produce one single trace. We assume a contact range of 10 meters as long as the Bluetooth

trace.

SIMPS synthetic traces. We developed a mobility simulator, shown in Figure 4.12, based on

a mobility model of human crowds with pedestrian motion called SIMPS [18]. We simulated

a relatively dense toroidal space of 100 x 200 meters with 100 people moving for one hour.

This model is based, among other parameters, on a “social radius”. Nodes take decisions

about their movements in according to the nodes they detect in that radius. In crowded

environments, the social radius tends to shrink. Since we simulated a crowd model, we

used a social radius of one, two, and three meters, varying the contact range accordingly as

well.

42 4.3. DAD: Dynamically Adaptive Dissemination

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7
B
u
rs
t
si
ze

Source node’s degree

Minimum diffusion time

Figure 4.10: Operation area: Burst size for minimum diffusion time with a tolerance of 30 seconds.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23

C
D
F

Nodes’ degree

(a) Shopping Mall.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

C
D
F

Nodes’ degree

(b) KAIST.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21

C
D
F

Nodes’ degree

Social Radius = 3 meters
Social Radius = 2 meters
Social Radius = 1 meter

(c) SIMPS Simulator.

Figure 4.11: Cumulative distribution function of the number of nodes that every node perceives in his neigh-

borhood, including itself. (a) Shopping Mall trace, (b) KAIST trace, (c) SIMPS trace.

Figure 4.11 shows the distribution of node degree for the traces we consider. The proba-

bility to find, at most, less than five nodes in contact considerably varies from trace to trace.

The Shopping Mall in Nottingham has a surface area of 10,880 square meters (without con-

sidering the parking area). Being a mall, we can image it very crowded, especially during

rush hours. Anyway, not everyone has a device with Bluetooth enabled. In these conditions,

we can detect nodes in contact with, at most, other 4 nodes, with a 20% probability.

The KAIST campus is 1,432,882 square-meter wide. This huge size makes it possible to

exhibit a very high probability (more than 95%) of, at most, less than five nodes in contact.

For the sake of fairness, being a GPS trace, indoor places that should be themost crowded are

not taken into account. In this case, using a large burstwill largely improve the opportunistic

exchange of content.

We also simulated a very dense scenario, with 100 people in a 100 x 200 meters plane.

The improving margin considerably changes for slightly changes of social radius. In the case

of three meters, there is only a 0.03% of improving margin. One more node helps achieve

0.1%. For a social radius of two and three meters, we get nodes with a degree of at most four

with a probability of 55% and 85%, respectively.

We chose these traces because they are different in many aspects: nature (real and sim-

ulated), position (mall, university campus, simulated toroidal plane), log collection (Blue-

Chapter 4. DAD: Bringing dynamics to EPICS 43

Figure 4.12: SIMPS simulator.

Table 4.1: Burst size in function of the node degree.

node degree 1 2 3 4 5+

burst size 10 4 3 2 1

tooth device, GPS, 2D position), plane size (medium, huge, small), density (medium, low,

high). In any case, there is still a non negligible margin to improve opportunistic content

exchange when nodes in contact are few.

4.3.2. DAD: Bringing dynamics to EPICS

We advocate including some flexibility in the the choice of the burst size. Based on the

observations reported in the previous sections, we propose DAD (Dynamically Adaptive

Dissemination), a solution that modulates the burst size according to the number of neigh-

bors, always following the minimum diffusion time line of Figure 4.10.

DAD is a simple, yet highly efficient improvement of EPICS. At the time a node exchange

an availability vector with a neighbor, this latter decides the number of pieces to include in

the burst based on the degree of the node, as shown in the abacus depicted in Table 4.1.

We compare DAD versus the baseline EPICS version (i.e., with a burstsize = 1) and with

an extreme case where EPICS sends bursts of ten pieces. To check the impact of the burst

size, both DAD and EPICS have the same piece size (25 Kbytes). We start this experiment

with only two nodes: one source that has ten contents of 3Mbytes to share and another node.

Then, every three minutes we add a new node requiring all the contents up to seven nodes.

We gather relative completion times for each content from every node and we present the

cumulative distribution function in Figure 4.13. Even if DAD and EPICS take the same time

to diffuse all the contents to all the nodes, they present a considerable difference until the

44 4.4. Summary

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500
C
D
F

Time [s]

DEPICS
EPICS

EPICS, burst = 10

Figure 4.13: DAD vs. EPICS and vs. EPICS with a burst of ten pieces. CDF of dissemination times per content

and per node.

97th percentile. It means that the dynamic adaptation not only facilitates the diffusion when

there are only a few nodes, but, since the content is almost fully received in many nodes,

these nodes can better support the dissemination even when we insert more nodes in the

network. On the other hand, using EPICS with the maximum burst, the dissemination is

very fast for the first few contents (i.e., when there are only few nodes), and then it slows

down taking five times longer.

4.4. Summary

In this chapter, we deeply investigated the performance of EPICS implemented on top of

PePiT.We tuned some parameters such as the piece size, the choice of the transport protocol,

and the possibility to exchange a burst of pieces at each exchange of availability vectors.

During our experiments, we captured the external wireless traffic and the one produced by

our devices. Wireless traces allowed us to better understand some phenomena and results.

We conducted an experimental campaign consisting ofmore than 500 experiments, around

four thousand application level logs and 60 Gbytes of wireless captured traces. From our

experiments, we found out that the best configuration expects the exchange of 25 Kbytes

chunks through UDP sockets. The burst plays a twofold role. A large burst size can support

opportunistic content diffusion when the data exchange involves a few nodes (less than six

in our experiments). With more nodes, it penalizes the exchange in terms of dissemination

time. In this case, it is better to exchange only one chunk per contact, choosing it from a

more updated set. As a general rule, then, it is worth to send less, but send right!

We developed a version of EPICS with a dynamic modulation of the burst size and we

called it DAD. We showed that DAD can improve the content diffusion if it adopts correctly

the observations we made previously.

Part II

WLANmonitoring: Basics,

deployment, and collaborative

behavior

45

Chapter 5

IEEE 802.11 traffic monitoring:

Background and problem statement

Statistics from the second quarter of 2013 forecast that wireless LAN equipments and

Wi-Fi phones market will exceed 7 billions dollar by 2017 [3]. One of the direct consequences

of such a success is the competition for wireless resources in order to provide the clients the

best possible quality of service.

Both industry and academia have put a huge effort on how to improve wireless net-

working. New proposals for local and access networks are the main focus of several studies

and, as a consequence, experimental as well as theoretical contributions are continuously

arising. At the lower layers, for instance, new modulations and communication techniques

have been developed to increase transmission rates and communication reliability [88]. All

these efforts are pushed by the industry, which has identified the outstanding potential for

business.

One of the approaches to achieve better performance in wireless networks is to rely

on a measurement-based strategy to undoubtedly check system behavior and react accord-

ingly [5;21;82]. Analyzing the wireless traffic uncovers problems hard to discover otherwise.

To monitor the wireless traffic is also useful to studymobility [28;102;111], contacts in DTNs [84],

and wireless network protocols [112].

5.1. Legacy monitoring methods

Several monitoring methods and tools that attempt to monitor wireless activity, as much

faithfully as possible, have appeared in the latest years [10;24;26;41;55;66;91;105;107]. Initially, net-

worksweremostlymonitored through SNMPor logs recorded from thewired side of APs [10;41].

These solutions did not provide a complete view of the traffic on the medium: unassociated

stations were basically ignored. Instrumenting all the nodes, possibly managed by different

entities, in order to gather communication records is unfeasible. For evident coverage limi-

47

48 5.1. Legacy monitoring methods

tations, these methods have been in past replaced by “passive” monitoring methods where

some stations were dedicated to listen and record all the ongoing traffic.

Even for passive wireless networking measurements the completeness problem still re-

mains. Monitoring nodes may lose events because of wireless physical issues, e.g., fading

channels, interference, collisions, and hardware outages [24]. Therefore, relying on a single

monitor is error prone and may lead to biased conclusions. As a consequence, typical mon-

itoring systems employ multiple passive nodes scattered out across an area of interest to

capture as much information as possible. The outcome of such a process is a collection of

traces, each one from a different monitor, which are merged into a single file that provides a

better and more complete picture of the wireless activity in the target area [100].

Using distributedmonitors improves completeness but also introduces more complexity

and scalability issues to the system. A distributed monitoring system increases the amount

of data collected but imposes the utilization of merging techniques to come out with a co-

herent merged trace. Leaving aside storage limitations, merging traces can be cumbersome,

as it introduces complex synchronization issues. Prior to the merging procedure, predefined

heuristics are employed to circumvent clock drifts among the different traces. The monitor-

ing system must shift the timestamps in the traces so as to make them coherent. This drift

may not be constant throughout the traces and must be recomputed using received probes

as references. After adjusting the timestamps, traces can be finally merged. Furthermore, in

such a procedure, each single packet must be identified without ambiguity to be considered

only once in the merged trace [92].

5.1.1. Large deployments

Much effort has been devoted to large-scale monitoring systems andmerging techniques.

Cheng et al. claim that the dynamics of a wireless environment can be only rebuilt if all

frames and delivery outcomes are captured [24]. In this direction, typical approaches rely

on the deployment of as many distributed passive monitors as possible. They use a central

entity in charge of generating merged traces; they are also concerned with the contrasting

requirements of completeness of the captured traces and scalability of the monitoring sys-

tems. Yeo et al. have been among the first to deal with monitor placement and capture

quality [116]. DIST is a large-scale general-purposeWLANmonitoring system (210 monitors,

with double radio interface) at the Dartmouth College campus separate from the WLAN

infrastructure [107]. VISUM, developed at UC-Santa Barbara, is an extensible Java-based sys-

tem with a real time presentation feature of various captured data statistics [42]. WizNet is a

WLAN performance monitoring system built on 2.4 GHz off-the-shelf ZigBee sensors [123].

ZigBee devices have the advantages of low price and low battery power consuming. Pazl

is a promising low cost and automated mobile crowdsensing based Wi-Fi monitoring sys-

Chapter 5. IEEE 802.11 traffic monitoring: Background and problem statement 49

tem [80]. Wizned and Pazl are essentially used to study the wireless signal and the covering

respectively.

Even though these systems are sophisticated, their main goal is simply to merge as many

traces as possible, rather than improving the merging efficiency by previously selecting the most

relevant traces.

5.1.2. Trace inference

Inferring missing information in captured traces is a smart way to integrate traces. Jig-

saw (system with 96 monitors) and Wit propose some heuristics to fill traces with missing

elements [24;66]. These heuristics are based on the IEEE 802.11 protocol behavior. For exam-

ple, if a monitor captures a RTS and a DATA frame from a station, it is easy to conclude that

the station received a CTS before the DATA even if it has been missed by the monitor. If an

ASSOCIATION RESPONSE sent by an AP is captured, it means that the AP preemptively

received an ASSOCIATIONREQUEST. Like this, a series of finite state machines can be built

and, reading the trace in inverse temporal way, the states which are skipped correspond to

missed packets.

This solution is still limited and correlated to the initial quality of the capture, e.g., if

neither an ACK nor a retransmission is captured after a DATA frame, we cannot conclude if

the framewas lost or just the ACKwas not captured. For this kind of ambiguity, Jigsaw relies

on a double level of inference: link-layer and transport layer inference. For the last example,

we could check if a TCP ACK is transmitted to prove that the data link-layer frame has been

actually well delivered.

5.2. IEEE 802.11 background

For the sake of completeness and because our proposals rely in the operation of the IEEE

802.11 protocol, we briefly present its structure and operation. We focus on the aspects that

are directly related to our work.

The IEEE 802.11 standard denotes a set of four media access control (MAC) mechanisms

(DCF, PCF, HCF-EDCA, HCF-HCCA) and a set of six physical layer (PHY) specifications

(FHSS, DSS, IR, OFDM, HR/DSSS, ERP) [101]. In this section, we recall only some aspects of

the IEEE 802.11 standard that will be useful in this work. For a complete view we refer to

the whole standardization.

Devices equipped with a wireless local area network (WLAN) card, called wireless sta-

tions (STA), are federated in Basic Service set (BSS) or Independent BSS (IBSS). In the first

case, stations communicate through a common access point (AP), they are so supported by

a network infrastructure. In the latter case, stations can directly communicate among them

in ad hoc mode.

50 5.2. IEEE 802.11 background

Medium access mechanism

One of the most interesting aspects in WLAN is how the problem of the access to the

medium has been tackled. Despite wired networks, additional problems arise: (i) higher

error probability, (ii) dynamic topology, (iii) STAs have a limited view of the network, (iv)

hidden stations, (v) shared medium.

Since we will mainly deal with ad hoc networks in this thesis, we focus on the Dis-

tribution Coordination Function (DCF) MAC. Since Wi-Fi devices are half duplex, DCF

relies on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). We high-

light the word “avoidance” and not “detection” as in wired networks. Before transmit-

ting, a station senses the medium for ongoing communications. If the medium is idle,

the STA transmits its frame. If not, the station waits a Distributed Inter-Frame Spacing

(DIFS) time and, after the ongoing transmission ends, it calculates another waiting time as

Random(CW) × collisionSlot. Random(CW) gives a number between 1 and n − 1 of con-

tention windows (CW). The additional waiting time, called backoff, is due to the presence

of other STAs waiting to transmit. Stations with a lower waiting time start to transmit as

soon as the medium is idle, the others cut this time from their waiting time.

Acknowledgment for point to point communications

Since a station cannot detect collisions while transmitting, the standard provides an ACK

frame for point to point communications. In this case, a STA receiving a frame gives back

an ACK frame to the transmitter. The ACK is sent after a Short Inter-Frame Spacing (SIFS)

time (SIFS < DIFS). If a transmitter STA does not receive an ACK, it proceeds with a

retransmission. The stations must gain the access to the medium as before, but this time

the CW is doubled. In according to the Binary Exponential Backoff algorithm, at every

retransmission CW is doubled until a CWmax. The standard provides values for CWmin,

CWmax, SIFS, DIFS, collisionSlot, and the maximum number of retransmission essays, after

which the upper layer will be informed about the frame rejection.

RTS, CTS, and NAV

In point to point communications, the standard defines an optional mechanism to re-

serve the medium for a specific time. Before transmitting a STA sends a Request to Send

(RTS) frame to the destination STA. If this last answers with a Clear to Send (CTS) frame,

then the sender transmits its frame and waits for an ACK (Figure 5.1). A frame exchange

becomes a tuple (RTS-CTS-DATA-ACK). If this chain is broken, the whole procedure must

restart. This mechanism also allows protecting frame exchange from hidden terminal colli-

sions.

RTS and CTS frames have a duration field that defines the total exchange elapsing time

(in µ seconds). Neighboring STAs thus know the duration of the following transmissions.

Chapter 5. IEEE 802.11 traffic monitoring: Background and problem statement 51

Figure 5.1: RTS-CTS mechanism and fragmentation.

+---------+----------+---------+---------+---------+----------+----------+--------------+---------+

| FC | Duration | Addr 1 | Addr 2 | Addr 3 | Seq. Num.| Addr 4 | Payload | FCS |

| 2 bytes | 2 bytes | 6 bytes | 6 bytes | 6 bytes | 2 bytes | 6 bytes | 0-2312 bytes | 4 bytes |

+---------+----------+---------+---------+---------+----------+----------+--------------+---------+

| \

| \

| __

| \

+---------+--------+---------+-------+---------+-------+-------+---------+-----------+-------+-------+

| Version | Type | Subtype | To DS | From DS | Frag. | Retry | Pwr Mgt | More Data | WEP | Ord. |

| 2 bits | 2 bits | 4 bits | 1 bit | 1 bit | 1 bit | 1 bit | 1 bit | 1 bit | 1 bit | 1 bit |

+---------+--------+---------+-------+---------+-------+-------+---------+-----------+-------+-------+

Figure 5.2: MAC frame format and frame control field structure.

They save these values in a Network Allocation Vector (NAV) and during these periods

they cannot send any frame, neither a CTS. With NAV, STAs know, far in the future, if the

medium has been reserved by RTS-CTS.

Fragmentation

In order to increase the transmission reliability, large frames are split into smaller frame

fragments. Once a source gets the access to the medium, it is authorized to send fragments

in a burst until the end or until an ACK relative to a fragment is missed. During a normal

operation, a fragment is followed by a SIFS and by the corresponding ACK, as shown in

Figure 5.1.

MAC frame format

As illustrated in Figure 5.2, the first two fields of a frame are two bytes for frame control

and two bytes for the duration specification. The frame control fields, in turn, is composed

52 5.3. Detailed problem statement

Figure 5.3: Typical wireless measurement system architecture: sensing, merge, and presentation modules.

by 11 subfields. The first three fields identify the version and the type of frame (control,

management, data). Next two bits reveal the type of communication (infrastructure or ad

hoc). Next two bits signal if this frame is part of a bigger fragmented frame and if it has

been retransmitted. The sequential number field contains a 2 bytes value increased at each

frame exchange. We use this counter to estimate the accuracy of a wireless traffic capture in

Section 7.3.

5.3. Detailed problem statement

Awireless sensing system is generally composed of three main modules: sensing, merg-

ing, and presentation as shown in Figure 5.3. In the sensing module, monitoring nodes are

responsible to collect frames it observes in the wireless medium.1 As there are potentially

several monitors, the output is a collection of traces obtained by different monitors. For

sake of simplicity we assume that each monitor produces only one trace. The merging mod-

ule is in charge of building the compiled trace using as input all the traces collected by the

sensing module. Before merging, reference frames must be identified from unique frames.

These unique frames embed a 64-bit timestamp and are transmitted only once, such as bea-

cons and non-retransmitted probe responses. Finally, the presentation module is responsible

to store previous measurements and to deliver statistics concerning the wireless network

activity.

The main problems arising with this approach are the following:

Sensing module scalability.

Monitor placement.

Merging module computational complexity.

Biased measures due to corrupted traces.

1We consider wireless activity at the MAC layer. For this reason, a trace is a set of MAC traces that a monitor

in promiscuous mode can “hear”.

Chapter 5. IEEE 802.11 traffic monitoring: Background and problem statement 53

We will give particular attention to the first two problems, and they will be the focus

of the following two chapters of this thesis. For the the sake of completeness, we briefly

discuss below the other two problems.

5.3.1. Merging module computational complexity

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7
T
im

e
u
n
it
s
(s
)

Number of merge operations

37.7%

Mean elapsed merging time
Linear regression

Figure 5.4: Time elapsed after a complete merging pro-

cedure for an increasing number of traces. Average time

and 95% confidence interval are calculated over 10 ex-

periments. Reducing the number of traces can signifi-

cantly affect the time required for the entire operation.

The problem is that the merging mod-

ule concentrates the main computational ef-

forts of the system. Let T = {t1, ..., tk}

be the set of k traces captured by k moni-

tors during the same time interval, where

each trace ti is composed of v events (i.e.,

frames),2 we can estimate that the merging

procedure requires O(k × v). This can be

more easily observed if we subdivide the

merging procedure into at least the follow-

ing tasks: reading traces, extracting unique

frames, discovering reference frames, syn-

chronizing traces, and writing the result

into another trace as the final merge. These

tasks are executed k− 1 times until the final

single merged trace is achieved because the merging procedure is executed over pairs of

traces (ti, tj ∈ T) in a recursive fashion. Hence, the input of each merging procedure is the

result of the previous one with another trace from T .

The first task requires O(v), as the identification of unique frames is performed in a sin-

gle parse of the trace. These frames are inserted into a hash table, using their embedded

timestamp as key. Therefore, whenever a hash collision occurs, a reference frame is discov-

ered since the same frame is identified in both traces (this operation involves only two traces

at time). The output lists the set of reference frames used for timestamp synchronization.

To accomplish that, one of the traces has the timestamps of its reference frames adjusted

according to the timestamps of the other trace. The remaining frames of the updating trace,

on the other hand, are adjusted using a linear regression method. The synchronization task

takes then O(v) and the writing task into the output trace takes O(v). Finally, the whole

procedure requires O(k× v).

Although the merging procedure is linear, the number of events within traces can be

huge, leading to a potentially very large total time required before convergence. Therefore,

even the linear procedure may not be fast enough for merging traces. Our proposal pre-

sented in Chapter 6 reduces the amount of time needed for merging, independent of the

2We refer to the contents of a trace as “events” to keep the nomenclature as generic as possible.

54 5.4. Summary

algorithms employed, by reducing the number of merging operations. The main challenge,

however, is the definition of the most appropriate metric and, furthermore, the criteria used

to select the subset of the most representative traces.

To reinforce our arguments, we consider an experimentwherewe capture wireless traffic

with eight monitors and traces are truncated at only 300,000 frames each. Figure 5.4 illus-

trates the time elapsed after a complete merging procedure. Although the problem is linear,

the slope of the curve is greater than one. Thus, if we reduce the number of traces by only

two (25%), we can save approximately 38% of the time. If we consider offline applications

requiring timely responses from measurements, reducing the amount of time needed for

merging is fundamental.

5.3.2. Biased measures due to corrupted traces

Trace corruption or adulteration could lead to biased measurements. The problem be-

comes trickier when there is no central measurement unit. This is exactly what happenswith

wireless community networks [8;86;117], where users, in exchange of something (e.g., connectiv-

ity), contribute with their own resources. The undeniable problem from users’ participation

is the possibility of malicious actions.

Counting on users’ participation is a low cost alternative to improve the efficiency of a

wirelessmeasurement system. Nevertheless, usersmust receive incentives to participate [56].

Such incentives could be the possibility of improving the quality of their ownwireless access

network based on their behavior. The main counterpart of such a system is that malicious

users can see this as an opportunity to benefit themselves in detriment of the others or as an opportu-

nity to simply disrupt the network operation.

Users can feel motivated to insert fake traces into the monitoring systemwith the aim to

achieve some rewards (i.e., virtual credits, micro payments, gadgets, improved connection

quality, better reputation in the internal social system, etc.). This attack can have, as a conse-

quence, either the attraction of additional infrastructure towards the malicious node or the

purge of near infrastructure to other areas. We call these attacks, respectively, attractive and

repulsive attacks (see Section 7.1 for a more formal definition of these types of attacks).

5.4. Summary

In this chapter, we browsed legacy wireless traffic monitoring architecture. They can be

divided in active (with generation of polling and managing traffic) and passive (just listen

and record everything passing through the medium). Passive methods can be also divided

in large monitoring deployment, where a sizable fleet of monitors is installed in the area of

interest, and trace inference, where missed frames in the traces are reconstructed following

the IEEE 802.11 protocol behavior.

Chapter 5. IEEE 802.11 traffic monitoring: Background and problem statement 55

These approaches tend to save and process as much data as possible rather than capture

and process the right data, with evident problems of scalability.

The main problems of traditional wireless monitor systems that we detect and we tackle

in following of this work are:

1. Scalability. Quality of measurement is correlated to the quantity of monitors em-

ployed [99;116]. Due to cost issues, it becomes hard to get a wide area capture.

2. Geographic distribution. Monitors’ range should overlap for redundancy purposes

and, at the same time, they should cover the whole capturing area.

3. Sensitivity. Corrupted or adulterated traces may lead to biased measurements.

56 5.4. Summary

Chapter 6

Scalable wireless traffic capture

The first contribution in the area of WLANmonitoring is to design, deploy, and test new

wireless traffic capturing methods. We try to maximize the amount of captured traffic keep-

ing costs low. Costs are the sum of fixed costs and variable costs. Fixed costs increase when

a new monitor must be purchased, installed, deployed, and maintained. We can consider

that this cost is amortized if the new monitor significantly improves the capture process. A

newmonitor also means a new trace to process. Gathering, analyzing and merging together

more data increases variable costs. Thus, also in this case we can consider that this cost is

more or less amortized if the additional trace contains or not original useful data.

In relation to the approaches presented in Section 5.1, we address the following question:

is it worth merging all the traces or a subset of them is enough? In fact, different traces

likely bring their own specific observations. Nevertheless, traces might have a high level of

similarity. As a consequence, it becomes possible to improve system scalability by reducing

the number of traces to be merged while keeping the quality of the final fully merged trace.

The main idea behind our trace selection methodology relies on the notion of similar-

ity between traces, which can be used as input of community detection algorithms. These

algorithms find subsets of traces with high similarity (i.e., “communities of traces”). If we

consider that at least one trace per community must be used in the merging procedure, we

have a clue to the minimum number of traces to be used. This cutoff value is computed

based on an additional criterion defined from experimental observations. The problem be-

comes then finding the exact traces to be used from each community. To accomplish that,

we rank all the traces according to their individual contribution, to the final merged trace

considering pairwise similarity values [96]. This ranking procedure stops when every trace is

sufficiently different from the others, which happens when the number of ranked traces and

communities match. Our results show that the proposed approach is efficient as the k top-

ranked traces are from k different communities. The main idea is illustrated in Figure 6.1.

In Figure 6.1(a), we depict the fact that the final merged trace is richer if we consider all the

traces collected. The shortcoming in this case is the number of pairwise merging operations

executed, which can be very large. On the other hand, Figure 6.1(b) shows that we can sig-

57

58 Chapter 6. Scalable wireless traffic capture

Full merging

trace ktrace 1 trace 2

...

merged
trace

(a) All collected traces are merged. The final output

has 9
10 of all frames transmitted and is obtained after

k− 1 merging operations.

Partial merging

trace 3trace 1 trace 2 merged
trace

Communities

1

2

3

(b) Only the traces from the most representative mon-

itors of each community are merged. The final out-

put has 8
10 of all the frames transmitted, but can be

obtained after only 2 merging operations.

Figure 6.1: Impact of merging a selected subset of traces. In each trace, the collected and missed frames are

represented by black and white rectangles, respectively. Merging all traces together permits more complete

results but also incurs in more merging operations.

nificantly reduce the number of merging operations without losing too much information

(wireless frames) if we properly select a representative subset of traces.

In a nutshell, our contributions can be summarized as follows:

Trace similarity analysis. We propose five metrics to analyze the similarity between

pairs of traces. Each trace is composed of a sequence of IEEE 802.11 frames organized

in chronological order. These frames come from different communications (flows)

within the same area. The level of similarity depends on the amount of flows or frames

captured by both traces. Hence, the higher the intersection between the traces, the

higher their similarity. The identified intersection can have different impacts on the

metric depending on additional parameters, such as the rarity or the duration of the

flow. We also evaluate these alternatives assigning weights to them.

Community identification. We observe that although monitors are scattered out in

the area of interest, their contributions to the final merged trace may overlap. We

propose the utilization of community-based algorithms to find such “communities of

traces”, giving us a clue to the number of top-ranked traces to be used in the merging

procedure.

Trace ranking. We propose a method to rank individual traces according to their po-

tential contribution to themerged trace. This ranking methodmodels the problem as a

fully-connected graph, where the vertices represent the traces and the edges between

them are weighted according to pairwise trace similarity. Based on this model, we can

rank the more relevant traces computing possible paths in the graph.

Monitor positioning. A positive side-effect of our ranking method is the additional

possibility to identifymonitors not well positioned in themonitoring area. If we follow

Chapter 6. Scalable wireless traffic capture 59

First deployment

of K monitors

Trace similarity

computation

Identification of

K

c

 communities

Ranking for merging

K traces

T

n

T

3

T

1

T

2

T

1+2

T

1+2+3

T

1+2+3+n

Repositioning of

K-K

c

 monitors

K

c

 < K

T

1+2+3+K

=

final merge

Yes

No

...

Trace raking and

merging K

c

 traces

T

1+2+3+Kc

=

partial merge

Figure 6.2: Additional tasks of the proposed merging procedure.

the list of ranked traces from bottom-up, we can have an idea of monitors that are

badly placed. Therefore, we can have the list of appropriate candidates to be moved

elsewhere.

Scalability gains. We show results attesting that our method leads to scalability im-

provements, meaning that we can achieve a higher level of accuracy with a lower

number of traces. Selecting a subset of traces can improve scalability as the proce-

dure of finding the subset of the most representative traces help reduce the number of

merging operations (which are costly). Although the subset selection procedure adds

complexity to the system, it is executed less often then the whole merging procedure.

6.1. Improving Trace Selection

In our approach, we introduce additional tasks within the merging module. Three new

tasks are added to reduce the number of traces to be merged. Without loss of generality, we

assume that each monitor produces one trace. The proposed tasks, shown in Figure 6.2, are

executed in the following sequence:

Step 1: similarity metric computation. This task receives the set of traces T and computes

the pairwise similarity matrix between them. We test five possible metrics (explained in

details in Section 6.2.3): intra- and inter-flow, Adamic, Power, and Weighted inter-flow. The

first two metrics compute, respectively, the fraction of frames captured by both traces over

the total number of frames and the fraction of flows captured by both traces over the total

number of flows. The last threemetrics provide different weights according to the number of

common flows, the rarity of flows, and the number of frames per flow. The outcome of this

task is modeled as a fully connected graph G(V , E), where the set of vertices V represents T

and edges in E have a weight proportional to the pairwise similarity between traces.

Step 2: community identification. Our graph model yields the observation of subsets of

traces containing higher similarity. The identification of such subsets leads to the organiza-

tion of traces in “communities”. In practical terms, these communities are formed among

60 6.1. Improving Trace Selection

monitors producing similar traces. This is possibly a consequence of monitors’ physical po-

sition since the closer the monitors, the more similar their traces. Upon running community

detection algorithms, we have the number of communities, which is used as a cutoff value

on the number of traces for merging. Such cutoff value is denoted by kc, where kc ≤ k. In

this work, we find communities by using three different algorithms: Walktrap, Infomap, and

Label Propagation. These algorithms consider as a community the set of vertices connected

through high number of edges. In our case, however, since the graph is fully connected, they

consider as a community the set of traces connected through edges with higher weights.

Step 3: trace ranking. The ranking task receives as input the set of traces T and the num-

ber of communities kc. Based on these parameters, the obtained traces are ranked in an

ascending order of similarity as computed by a sorting algorithm. In our case, we compute

the Travelling Salesman Problem solution path to obtain the sequence of traces. Since the

weights of the edges connecting traces within different communities are lower, the mini-

mum path becomes composed of consecutive traces from different communities. If kc = k,

we consider that all the monitors have captured representative traces and that they are all

well located. The final merge, in this case, is composed of all the k traces. Unlikely, if kc < k,

the first kc traces in the TSP solution sequence are used to set up the most efficient merge,

since they are the most dissimilar traces. We denote the set of ranked traces as a sequence

S = 〈t′1, . . . , t
′
kc
〉, where t′i ∈ T and t′1 � · · · � t′kc . The remaining traces not included in S are

from monitors that could be moved elsewhere to also contribute with representative traces.

Merging the traces in S , we can reach an efficient balance between completeness and scalability of

the sensing system.

Algorithm 3 illustrates the sequence of tasks proposed to reduce the number of traces

before merging. Note that the sequence of traces found is used as an input of the next task

within the merging module.

Algorithm 3 Trace selection algorithm.

Require: T = {t0, . . . , tk}

Ensure: S = 〈t′1, . . . , t
′
kc
〉

G(T , E)⇐ compute_metric_similarity(T)

kc ⇐ identify_communities(G(T , E))

if kc < k then

S ⇐ rank_traces(T , kc)

else

S ⇐ rank_traces(T)

end if

Chapter 6. Scalable wireless traffic capture 61

Discussion

The proposed trace selection algorithm can improve the scalability of sensing systems

by reducing the number of traces to merge. The additional tasks add some complexity, but,

once the ranking process shown in Figure 6.2 is concluded, it will only remain to start the

usual sensing, merging and presentation modules, for all the next captures.

The similarity computation complexity, between two traces, may be considered as linear

if equal events are detected with hash collisions, hashing traces events. The slower commu-

nity detection algorithm, Walktrap, has a worst case time complexity of O(e× k2) (where k

and e are the number of vertices and edges in the input graph respectively) [79]. The Trav-

eling Salesman Problem is NP-Hard. Nevertheless, we work on a fully connected graph

satisfying the triangle inequality. Under these conditions, heuristics with a O(log(k)) com-

plexity are available [93]. Although we include problems with complexity higher than linear,

we argue that the number of traces is much smaller than the number of events per trace

(k≪ v). As a consequence, the time required for convergence tends to be smaller than if we

considered all the collected traces. Besides the input size, we advocate that heuristics exist,

which can also bring down the overall complexity. In addition, the proposed trace selection

algorithm can be run only during the first monitor deployment to settle it down. After that,

it can be only rerun if a new monitor is installed or if a monitor repositioning is required.

This is an additional heuristic to reduce the number of times the whole solution is executed.

6.2. Experimental Setup

In this section, we describe the merging tool used in this work and the experimental

scenarios.

6.2.1. Scenarios

We have conducted experiments in two scenarios. We call the first one “IRCICA”, as

we deployed eight monitors at the second floor of the IRCICA/LIFL computer science lab-

oratory of Lille1; and we call the second one “INRIA”, as we conducted our experiment at

the INRIA building also in Lille. Figure 6.3(a) shows the placement of monitors along the

corridor at IRCICA (leading to a linear shape). Note that monitors 1 to 6 are equally spaced,

while monitors 7 and 8 are slightly separated from the others. At INRIA, as shown in Fig-

ure 6.3(b), monitors are placed along the L-shaped floor. Monitors cannot directly view each

other, as they are separated by walls.

In both scenarios, the nodes sensed the wireless network activity during 100 minutes,

collecting IEEE 802.11b/g frames. The wireless traffic collected in both scenarios is com-

1Measures have been conducted in collaboration with the Inria FUN team in the context of the ANR Rescue

Project.

62 6.2. Experimental Setup

12345678

10m

(a) IRCICA scenario.

10m

1

2 3

4

5

6

7

8

(b) INRIA scenario.

Figure 6.3: Monitor deployment for IRCICA and INRIA scenarios.

posed of control, management, and data frames to and from access points in the area. Ac-

cording to our measurements, we have collected frames to and from 37 and 9 access points

in the IRCICA and INRIA scenarios, respectively. Figure 6.4 shows the amount of traffic

captured in both scenarios after merging the traces collected by the eight monitors in the

same time interval. We plot all the traffic captured on each IEEE 802.11b/g non-overlapping

channels, i.e., channels 1, 6, and 11.

Note that the network activity is similar in all non-overlapping channels on each sce-

nario. In this work, we decided to use channel 1 as our reference. Nevertheless, it is worth

mentioning that the obtained results are not significantly affected by the operating channel.

All trace sizes are reported in Table 6.1. In our experiments, the size of the captured frames

is limited to 220 bytes and MAC addresses are anonymous.

Frame losses always occur independent from the sniffer hardware and software con-

figuration [99]. In our experiments, we use Asus EEEPC-4G netbooks as sniffers. They are

equipped with 512-MByte RAM and three USB Wi-Fi Netgear WG111v3 cards as wireless

network adapters. The operating system is a Xandros OS with a customized kernel.

Chapter 6. Scalable wireless traffic capture 63

0

20000

40000

60000

80000

100000

0 20 40 60 80 100

N
u
m
b
er

of
ca
p
tu
re
d
fr
am

es

Minute

Channel 1
Channel 6
Channel 11

(a) IRCICA scenario.

0

20000

40000

60000

80000

100000

0 20 40 60 80 100

N
u
m
b
er

of
ca
p
tu
re
d
fr
am

es

Minute

Channel 1
Channel 6
Channel 11

(b) INRIA scenario.

Figure 6.4: Wireless traffic characterization in IRCICA and INRIA scenarios.

6.2.2. Merging tool

Table 6.1: Trace size for IRCICA and sce-

narios.

Trace Size (Mbyte)

Trace IRCICA INRIA

1 183 129

2 193 120

3 214 114

4 303 72

5 269 99

6 246 150

7 127 140

8 107 61

The traditional approach to merging traces in-

volves a previous synchronization, which finds iden-

tical frames according to their timestamps. After iden-

tifying such frames, they are inserted only once in

the final trace. We use WiPal tool to do this job [25;26].

WiPal gets as input an arbitrary number of IEEE 802.11

PCAP traces from different sensing nodes and com-

pute a merged PCAP trace as result. WiPal also uses

additional software for trace synchronization and for

extraction of reference frames. Given two traces Ti and

Tj, WiPal effectuates the following steps to provide a

merged trace in output:

1. Identifying reference frames: A frame is said

to be unique when it appears on the wireless

medium once and only once for the whole mea-

surement duration. WiPal considers every bea-

con frame and non-retransmitted probe response as unique frames due to the 64-bit

timestamps they embed (these timestamps are not related to the actual timestamps

used for synchronization). These frames are extracted from the input traces and then

intersected. The intersection process first puts every unique frame of Ti in a hash table

h, then does the same for Tj unique frames. If a collision occurs, a reference frame is

found.

2. Synchronization: Synchronizing two tracesmeans

mapping trace one’s timestamps to values com-

patible with trace two’s. WiPal operates on win-

dows of w + 1 reference frames and for each of

64 6.2. Experimental Setup

them (Ri) the process performs a linear regres-

sion using reference frames Ri−⌊w/2⌋, . . . , Ri+⌈w/2⌉.

Once the reference frames are synchronized, the

two traces are synchronized too accordingly.

3. Merging: Frames from synchronized traces are

copied to the output trace avoiding duplicates.

WiPal operates offline and has shown to outperform other tools available, which made

us adopt this solution in our work.

6.2.3. Trace Similarity

We propose five metrics to discover how similar two traces are. The intra-flow similar-

ity computes the ratio of the number of frames simultaneously captured by two monitors

over the total number of frames captured by them. The inter-flow similarity, on the other

hand, considers the intersection of flows instead of frames. Therefore, it computes the ra-

tio between the number of flows “observed” by the two monitors over the total number of

flows “observed” by them. A flow is considered “observed” if at least one of its frames is

captured. In addition, since flows may not be “observed” by all monitors and can have dif-

ferent numbers of frames, we give them different weights. The rarer the flow, the higher the

weight assigned to it by the similarity metric. Likewise, the higher the number of frames in a

flow, the more important it is for the similarity metric. This rationale is followed in both the

Adamic and Power similarity metrics. They explore the rarity principle by assigning more

weight to the similarity of traces sharing more rare flows. Finally, the Weighted inter-flow

similarity assigns an additional weight to the number of frames in common per flow.

We consider that each trace is composed of flows of frames denoted by f . In addition,

we consider that fmi is the mth source-destination flow in trace ti and that pni is the n
th frame

in ti. Finally, we denote the cardinality of a set with | • |.

Intra-flow similarity

We use the Jaccard similarity index to compute the Intra-flow similarity. This metric

considers all the frames captured by two monitors, digging into each source-destination

flow. This is why we consider this metric as intra-flow. Considering two captured traces ti
and tj as a set of frames, i.e., ti = {p0i , . . . , p

n
i } and tj = {p

0
j , . . . , p

n′

j }, the intra-flow (Intra)

similarity is computed as follows:

Intra(ti, tj) =
|{p0i , . . . , p

n
i } ∩ {p

0
j , . . . , p

n′

j }|

|{p0i , . . . , p
n
i } ∪ {p

0
j , . . . , p

n′
j }|
· (6.1)

Chapter 6. Scalable wireless traffic capture 65

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
on

it
or

ID

Monitor ID

0

0.2

0.4

0.6

0.8

1

S
im

il
ar
it
y

(a) Intra-flow similarity matrix.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
on

it
or

ID

Monitor ID

0.2

0.4

0.6

0.8

1

S
im

il
ar
it
y

(b) Inter-flow similarity matrix.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
on

it
or

ID

Monitor ID

0.4

0.6

0.8

1

S
im

il
ar
it
y

(c) Adamic similarity matrix.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
on

it
or

ID

Monitor ID

0.2

0.4

0.6

0.8

1

S
im

il
ar
it
y

(d) Power similarity matrix.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
M
on

it
or

ID
Monitor ID

0

0.2

0.4

0.6

0.8

1

S
im

il
ar
it
y

(e) Weighted inter-flow similarity

matrix.

Figure 6.5: IRCICA scenario, similarity matrices. (a) Intra-flow, (b) Inter-flow, (c) Adamic, (d) Power, (e)

Weighted inter-flow.

Note that n 6= n′ because the number of frames in ti and tj may be different.

Figure 6.5(a) depicts the intra-flow similarity matrix of the traces from IRCICA. Each

point (i, j) is gradually colored according to its value of Intra(ti, tj). As the monitors have

been sequentially placed, higher values are near the diagonal. In the figure, we can identify

three geographical regions: a central region (monitors 4-5-6) and two side regions (monitors

1-2-3 and 7-8). As monitors 7-8 are slightly isolated from the others (see Figure 6.3(a)), they

present a high similarity in opposition to the low similarity compared with all the others.

This means that small changes in the geographic placement of monitors have a consider-

able impact on the amount of original data captured. In the INRIA scenario, shown in

Figure 6.6(a), traces 1 and 2 share a low intra-flow similarity with all the others, whereas the

remaining traces are split into two sets, 3-5-6-7 and 4-8.

Inter-flow similarity

We also use the Jaccard index to compute the Inter-flow similarity. In this case, we con-

sider the traces ti and tj as a set of flows, i.e., ti = { f 0i , . . . , f
n
i } and tj = { f

0
j , . . . , f

n′

j }. Then,

the inter-flow (Inter) similarity of traces ti and tj is computed as follows:

Inter(ti, tj) =
|{ f 0i , . . . , f

n
i } ∩ { f

0
j , . . . , f

n′

j }|

|{ f 0i , . . . , f
n
i } ∪ { f

0
j , . . . , f

n′
j }|
· (6.2)

66 6.2. Experimental Setup

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
on

it
or

ID

Monitor ID

0

0.2

0.4

0.6

0.8

1

S
im

il
ar
it
y

(a) Intra-flow similarity matrix.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
on

it
or

ID

Monitor ID

0

0.2

0.4

0.6

0.8

1

S
im

il
ar
it
y

(b) Inter-flow similarity matrix.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
on

it
or

ID

Monitor ID

0

0.2

0.4

0.6

0.8

1

S
im

il
ar
it
y

(c) Adamic similarity matrix.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
on

it
or

ID

Monitor ID

0

0.2

0.4

0.6

0.8

1

S
im

il
ar
it
y

(d) Power similarity matrix.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
M
on

it
or

ID

Monitor ID

0

0.2

0.4

0.6

0.8

1

S
im

il
ar
it
y

(e) Weighted inter-flow similarity

matrix.

Figure 6.6: INRIA scenario, similarity matrices. (a) Intra-flow, (b) Inter-flow, (c) Adamic, (d) Power, (e) Weighted

inter-flow.

Figure 6.5(b), concerning the IRCICA scenario, shows that traces are divided in two

blocks of 1-2-3-4-5-6 and 7-8, sharing a low similarity. In the INRIA scenario, on the other

hand, there is no appreciable difference compared with the intra-flow similarity metric. This

suggests a correlation between flows and frames captured in more distributed scenarios.

Adamic similarity

The Adamic metric was originally proposed to evaluate the similarity between plain

texts [6]. We can consider traces also as a text file which lists flows of frames. Hence, we

compute the similarity between traces ti and tj as follows:

Adamic(ti, tj) = ∑
f∈{ti∩tj}

1
log (φ f)

· (6.3)

We denote φ f as the number of times a given flow f appears in all traces. This number

is called the frequency of f in T . Thus, if a flow f belongs to the intersection between ti

and tj, we take it into account for the Adamic metric computation. The first step is to count

the number of times it appears in all traces. For instance, if f ∈ {t1 ∩ · · · ∩ tk}, then φ f = k.

Otherwise, if f appears only in those two traces, ti and tj, then φ f = 2. Note that considering

the inverse of φ f in the metric, the weight of a flow becomes proportional to its rarity in the

collected traces. As a consequence, the similarity of the traces sharing rare flows is higher

Chapter 6. Scalable wireless traffic capture 67

since it is assumed that they are likely from a near location. As the range of the Adamic

metric is not upper bounded, we normalize the values.

Figures 6.5(c) and 6.6(c) show the same sets of traces discovered with the inter-flow sim-

ilarity. In this case, however, we note that they present a stronger inner connection as the

color is darker. This means that traces with high similarity tend also to share rare flows.

Power similarity

Although the Adamic similarity takes into consideration the flows in common and their

rarity, one may want to further increase the rarity impact. The Power similarity metric

(Power) presents a power function in place of the logarithm function to compute the simi-

larity of traces ti and tj. Hence,

Power(ti, tj) = ∑
f∈{ti∩tj}

1
φ
p
f

, (6.4)

where we assume that p = 3, similarly to Cunche et al. [28]. We also normalize the metric.

In Figure 6.5(d), we show that in the IRCICA scenario, the metric identifies two sets of

traces with high similarity, i.e., sets 7-8 and 4-5-6. In the INRIA scenario, on the other hand,

the metric still produces the same result obtained by the previous metrics.

Weighted inter-flow similarity

From a higher point of view, it is worth considering the flows shared between two traces.

The importance of each flow is proportional to the number of frames it has. Let us consider

T the corpus of traces and each unique flow fmi as a single term in a trace ti. Note that both

fmi and ti are sets of frames, where fmi ⊆ ti. We weight the importance of a flow using

the Term Frequency-Inverse Document Frequency (TDF) metric [85]. TDF is widely used in

information retrieval and text mining fields. In our context, documents are traces and terms

are flows. The Weighted inter-flow (W-Inter) similarity between two traces is computed as

follows. A vector of TDF is assigned to each trace. The m elements of the vector are the

products of two factors. The first one is the flow frequency in that trace, whereas the second

is the logarithm of the inverse of the trace (the one containing that flow) frequency over all

the traces in the corpus.

TDF(ti,m) =
| fmi |

|ti|
· log

|T |

|{ti ⊆ T | fmi ⊆ ti}|
· (6.5)

68 6.3. Community detection

The Weighted Inter-flow similarity (W-Inter) is a value in the range [0;1] (from orthog-

onal traces to equal ones), given by the cosine of the angle between these vectors. This is

equal to the dot product of the vectors, divided by the product of their magnitude:

W-inter(ti, tj) =
∑m TDF(ti,m) · TDF(tj,m)

√

∑m TDF(ti,m)2 ·
√

∑m TDF(tj,m)2
· (6.6)

In Figures 6.5(e) and 6.6(e), we can observe how the inter-flow similarity metric can clar-

ify the relationship between traces. In the IRCICA scenario, Figure 6.5(e), we can clearly

distinguish a first cluster of high similarity traces from monitors 7-8, which correspond to

the monitors located on the west side of the building. Because they are slightly separated

from the other monitors, they present low similarity with them. Central monitors 4-5-6 com-

pose another cluster, while on the east side of the building, we have a set of monitors 2-3 and

a singleton with monitor 1. This last monitor produces a trace with a perceptible similarity

with trace 2 fading down up to trace 6. We remark that, even if very geographically close,

trace pairs 1-2 and 3-4 do not present a very high similarity among them.

Figure 6.6(e) shows that the traces from monitors 3-5-6-7, placed in the east side of the

INRIA building (Figure 6.3(b)), have a very high inter-flow similarity as well as traces from

monitors 2-4. Monitors 1 and 8 constitute two singletons.

6.3. Community detection

After computing the similarity between traces, we aim at detecting communities among

them. In this section, we analyze the similarity metrics to find the one which better reveals

community relationships among traces. For each metric in Section 6.2.3, we build the adja-

cencymatrix of a graph, using the similarity values found earlier between each pair of traces

as edge weight.

We use three different algorithms for community detection (or graphmodularity discov-

ery): Walktrap [79], Infomap [94], and Label Propagation [81].

The evaluation of the goodness of the graph division made by a community detection

algorithm relies on the Newman and Girvan’s modularity metric [74]. Assuming that the al-

gorithm finds k communities, the modularity is defined as:

modularity =
k

∑
i=1

(wii − a2i), (6.7)

where wij is the element of a k× k matrix. wij is equal to the weight fraction of all the edges

linking vertices from community i to community j, over all the weights in the graph, and

ai = ∑
k
j=1 wij is the weight fraction of all the edges touching nodes in community i. If the

Chapter 6. Scalable wireless traffic capture 69

Table 6.2: Walktrap modularity values and relative communities for all the similarity metrics.

Scenario Intra-flow Inter-flow Adamic Power W-inter

IRCICA
Modularity 0.195 0.195 0.146 0.165 0.239

Communities No No No No
[1,2,3]

[4,5,6][7,8]

INRIA

Modularity 0.223 0.193 0.172 0.185 0.337

Communities
[1,2,4,8]

[3,5,6,7]
No No No

[1,2,4,8]

[3,5,6,7]

Table 6.3: Infomap modularity values and relative communities for all the similarity metrics.

Scenario Intra-flow Inter-flow Adamic Power W-inter

IRCICA

Modularity -0.004 -0.0007 -0.019 -0.005 0.197

Communities No No No No [1,2,3,4,5,6]

[7,8]

INRIA

Modularity -0.005 -0.013 -0.0004 -0.016 0.395

Communities No No No No
[1,2,4,8]

[3,5,6,7]

Table 6.4: Label propagation modularity values and relative communities for all the similarity metrics.

Scenario Intra-flow Inter-flow Adamic Power W-inter

IRCICA

Modularity -0.004 -0.0007 -0.019 -0.005 0.362

Communities No No No No

[1,2,3]

[4,5,6]

[7,8]

INRIA

Modularity 0.179 0.137 -0.0004 0.123 0.261

Communities

[1,2] [3] [4]

[5] [6] [7]

[8]

[1,4] [2] [3]

[5] [6] [7]

[8]

No [1,2,3,5,6,7]

[4,8]

[1,2,4] [3]

[5] [6] [7]

[8]

70 6.3. Community detection

community detection algorithm is not able to find any community structure or the partition

can be assimilated as a random one, then modularity ≤ 0; otherwise it is positive and upper

bounded by 1 for graphs with a very clear and strong community structure.

6.3.1. Algorithms

Walktrap. It is a hierarchical agglomerative community detection algorithm. It starts con-

sidering every single node as a community and then it iteratively advances merging com-

munities together. The idea behind the merging is that, once a distance metric between

nodes is defined, short random walks tend to remain in the same community. The process

ends when only one community, containing all the nodes, is achieved, but the best split is

the one which maximize the modularity metric.

Infomap. As Walktrap, Infomap is based on random walks. At the beginning, each node

has a unique Huffman code. The trajectory of a random walk, given by the sequence of

visited nodes, will form a code of a certain length. The algorithm detects communities in

order to minimize the code describing the flow of random walks.

Label propagation. It is a hierarchical agglomerative algorithm too, but it relies on the

concept of node neighborhood. At the beginning, all nodes have a unique label. During the

iterative steps, nodes change labels, synchronously or asynchronously, according to themost

popular label in their neighborhood. The algorithm stops when no further label changes are

observed.

6.3.2. Results for community detection

We rely on the modularity metric to identify both the best similarity metric and the best

community division of the graph. Table 6.2 shows the community detection results for the

Walktrap algorithm. In the IRCICA scenario, all the modularity values are positive, but

the highest is related to the weighted inter-flow similarity. With this similarity metric, the

algorithm is also able to identify three communities while, with the other metrics, all the

nodes are part of the same unique community. For the INRIA scenario, Walktrap finds

the same two communities both with the intra-flow and the weighted inter-flow values.

Nevertheless, in the latest case, the modularity metric is higher.

Results for Infomap are shown in Table 6.3. For both scenarios, only the use of the

weighted inter-flow similarity metric presents positive modularity values. With all the other

metrics, the algorithm is not able to find any community.

Label propagation presents only one positive modularity value in the IRCICA scenario

(Table 6.4). It is also higher than the respective Walktrap or Infomap values. In the IN-

RIA scenario, instead, all but the Adamic similarity metric has a positive modularity. The

weighted inter-flow still presents the highest value.

Chapter 6. Scalable wireless traffic capture 71

3

2

4

5

6

7

1

8

(a) IRCICA scenario.

1

2

4

8

6

3

5

7

(b) INRIA scenario.

Figure 6.7: Graphs generated using traces as nodes and weighted inter-flow similarity values as edge lengths.

Different node shapes (◆, ●, ■) denote different communities.

The weighted inter-flow similarity metric is candidate to be the best similarity metric

among the proposed ones as, based on this metric, all the community detection algorithms

present the highest modularity value and often it is the only positive. With the same criteria,

we consider the following as the best community division:

IRCICA: [1,2,3]-[4,5,6]-[7,8]

INRIA: [1,2,4,8]-[3,5,6,7]

6.4. Trace ranking

Merging traces from different monitors assumes that a monitor might capture an event

that another monitor misses. Merging together many traces, however, is a CPU – and

time-consuming process. Hence, depending on the sequence and the number of traces to

merge, this proceduremay converge faster when similar traces (i.e., traces with several equal

frames) are not considered in the computation. To tackle this issue, we propose a method

to improve the selection of traces to merge. As a final remark, we show that the procedure

improves the system scalability without impacting on the monitoring information.

Strategy

For both scenarios, we consider the matrix of weighted inter-flow similarity values, cal-

culated in Section 6.2.3 and shown in Figures 6.5(e) and 6.6(e), as a weighted adjacency

matrix of a fully connected graph. In this graph, each vertex vi corresponds to a captured

trace ti and each edge eij is linearly weighted proportionally to the similarity value between

72 6.4. Trace ranking

traces ti and tj (W-inter(ti, tj)). For the sake of visualization, we consider the length of each

edge as proportional to its weight. The generated graph is a 3D graph. To respect all the

distance relationships among nodes on a 2D representation, we use the ForceAtlas2 algo-

rithm embedded in Gephi, a graph visualization and manipulation software, to lay out the

graph [12].

Figures 6.7(a) and 6.7(b) show how nodes are arranged on a plane, in IRCICA and INRIA

scenarios, respectively. In order to represent communities, nodes belonging to the same

community have the same shape. We observe that pairs of vertices with high similarity (the

ones belonging to the same community) are likely placed farther away, whereas vertices

with lower similarity (vertices belonging to different communities) are placed closer.

In Figure 6.7(a), nodes of the community represented with a square ■(4,5,6) are placed

very far from each other and nodes belonging to the diamond community ◆(7,8) are placed

at the opposite respect the graph’s barycenter. Nodes of the last community ●(1,2,3), are de-

ployed along the vertical axis, at themiddle of the graph as theymust be far from each other,

but close to all the other nodes at the same time. Node 1 falls close to the barycenter because,

although it has been grouped with nodes 1 and 2, it does not share an high similarity with

them and even less with the other ones (Figure 6.5(e)). Thus, considering a node, in its im-

mediate proximity there are nodes belonging to different communities. The same trade off

explains the dichotomy shown by the graph in Figure 6.7(b) related to the INRIA scenario.

Nodes of the community ■(3,5,6,7) are placed very far from each other and at the opposite

respect to the barycenter. Nodes of the second community ●(1,2,4,8) form a rhombus shape

in the middle as they must be far from each other but close to the first ones. Nodes 1 and

8 fall in the middle as they are part of the second community but they do not have a very

high similarity (Figure 6.6(e)).

Our ranking strategy is the following: considering the weighted adjacency matrices with

the similarity values, we solve the Traveling Salesman Problem with the Concorde TSP

Solver [27]. The solution represents the order of traces to merge. This is because it ranks traces

according to their contribution to the final merge. The TSP solution path, in fact, sequen-

tially touches closer nodes, which share a low similarity, and which give more new unique

frames to the merged trace. This is especially true until a merge step equal to the number of

communities found.

At the end, we can select a subset of traces with higher contribution to be merged and

we can also identify the monitors not satisfactorily contributing to the measure. Merging a

subset of traces can improve the system scalability while moving nodes to other positions

can improve the monitoring system performance by extending the monitored area.

Chapter 6. Scalable wireless traffic capture 73

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7

C
u
m
u
la
ti
ve

p
er
ce
n
ta
ge

of
fr
am

es

Number of merge operations

Trace size sequence
TSP sequence

(a) IRCICA scenario.

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7

C
u
m
u
la
ti
ve

p
er
ce
n
ta
ge

of
fr
am

es

Number of merge operations

Trace size sequence
TSP sequence

(b) INRIA scenario.

Figure 6.8: Comparison of the merging process performance ranking traces according to the size and the TSP

solution.

6.5. Evaluation

6.5.1. Proposed strategy vs. trace size

We evaluate our ranking strategy comparing its performance with the sequence of traces

sorted in reverse size order. This last ranking method could be reasonable to use in absence

of different methods proposed in literature, as the goal is to have the most complete merged

trace with less traces.

The trace size reverse sorting for the IRCICA scenario is:

4− 5− 6
︸ ︷︷ ︸

■

−

●
︷ ︸︸ ︷

3− 2− 1− 7− 8
︸ ︷︷ ︸

◆

.

The first three nodes are exactly the nodes of the community denoted by squared nodes

in Figure 6.7(a). The following three nodes also compose the second community (circle

nodes) and the last two (diamond) nodes constitute the last community. The TSP solution,

from the same starting node is:

4
︸︷︷︸

■

−

◆
︷︸︸︷

7 − 1
︸︷︷︸

●

−

■
︷︸︸︷

6 − 3
︸︷︷︸

●

−

■
︷︸︸︷

5 − 8
︸︷︷︸

◆

−

●
︷︸︸︷

2 .

The first three nodes belong to the three different communities. Next nodes are taken

jumping from community to community. Figure 6.8(a) shows the performance of the above-

mentioned methods. The TSP sequence achieves in three steps (four traces) more than 95%

of the total traffic against six steps (seven traces).

For the INRIA scenario, the trace size reverse sorting is the following:

74 6.5. Evaluation

1

2

3

5

4

Community A

Community B

Figure 6.9: A fully connected graph with 5 nodes belonging to 2 communities. Higher the similarity between

traces, thicker the edges connecting them.

6− 7
︸ ︷︷ ︸

■

−

●
︷ ︸︸ ︷

1− 2− 3− 5
︸ ︷︷ ︸

■

−

●
︷ ︸︸ ︷

4− 8,

while the TSP sequence from the same starting node is:

6
︸︷︷︸

■

−

●
︷ ︸︸ ︷

1− 8− 5− 7
︸ ︷︷ ︸

■

−

●
︷︸︸︷

4 − 3
︸︷︷︸

■

−

●
︷︸︸︷

2 .

The most relevant difference is the choice of the first two nodes. Since two communities

have been detected, TSP selects one node per part. This choice leads to a 20% difference

between the two strategies at the first merge operation, as shown in Figure 6.8(b). Trace 8 is

the third trace chosen by TSP and it gives almost 7% of contribution over the total captured

traffic. It gives the same important contribution in the reverse sorting strategy, but it is

chosen only at the last merging operation, while the four previous traces do not give any

important contribution to the merge. Moreover, the TSP selection covers all the wireless

traffic, only merging the first five traces. This allows relocating the last three monitors,

further enlarging the monitored area.

6.5.2. Proposed strategy vs. node degree

We consider as node’s degree the sum of the weights of the edges exiting from that

node, δ(vi) = ∑j∈V eij. Each node has a degree value composed by two main contributions

(Figure 6.9). The first contribution is given by all the edges’ weights connecting the given

node with others in the same community. These values are high and similar. Also edges’

weight values in other communities will be high and similar among them, but sufficiently

different from other communities, otherwise they would be part of the same community.

The second contribution is given by the edges’ weights connecting the given node with

Chapter 6. Scalable wireless traffic capture 75

nodes of different communities. As these values are much lower than the first ones, sorting

nodes in according to the degree, will give a sequence composed by all the nodes of one

community first, then all the nodes from a second community and so forth.

Using the weighted inter-flow similarity values, the ascending degree order for both

scenarios is:

IRCICA:

7− 8
︸ ︷︷ ︸

◆

−

●
︷ ︸︸ ︷

1− 2− 3− 6− 4− 5
︸ ︷︷ ︸

■

INRIA:

1− 8− 2− 4
︸ ︷︷ ︸

●

−

■
︷ ︸︸ ︷

3− 5− 6− 7 .

TSP solutions, from the same starting nodes, are:

IRCICA:

7
︸︷︷︸

◆

−

■
︷︸︸︷

6 − 3− 1
︸ ︷︷ ︸

●

−

■
︷︸︸︷

5 − 8
︸︷︷︸

◆

−

●
︷︸︸︷

2 − 4
︸︷︷︸

■

INRIA:

1
︸︷︷︸

●

−

■
︷ ︸︸ ︷

6− 3− 4
︸︷︷︸

●

−

■
︷︸︸︷

7 − 8
︸︷︷︸

●

−

■
︷︸︸︷

5 − 2
︸︷︷︸

●

.

Figure 6.10(a) shows, for the IRCICA scenario, the comparison between the merging

processes according to the ascending degree sequence and the TSP solution starting from

the same node. With the sequence based on the degree, the first merge operation does

not generate a relevant improvement because traces 7 and 8 compose a unique community.

The second merge operation regards merging trace 1 that is part of a new community. The

increment is around 30%. Next two operations finish that community with a total increment

of around 6%. Changing again community, trace 6 gives an increment of about 20% at the

fifth merging step. The greatest increments appear when the new traces to merge are taken

from a new community. The TSP sequence naturally jumps from community to community,

achieving about 82% in only two steps (corresponding to three traces, just as the number of

communities).

Figure 6.10(b) exhibits the same behavior for the INRIA scenario. The two communities,

discovered by the community detection algorithms in Tables 6.2 and 6.3, can be identified

76 6.6. Summary

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

C
u
m
u
la
ti
ve

p
er
ce
n
ta
ge

of
fr
am

es

Number of merge operations

Node degree sequence
TSP sequence

(a) IRCICA scenario.

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

C
u
m
u
la
ti
ve

p
er
ce
n
ta
ge

of
fr
am

es

Number of merge operations

Node degree sequence
TSP sequence

(b) INRIA scenario.

Figure 6.10: Comparison of the merging process performances ranking traces according to the ascending node

degree and the TSP solution.

looking to figure 6.10(b) too. The ascending degree order presents only a remarkable incre-

ment at step four where a trace from a new community is merged, while the trace merged

at step three does not produce any increment as it was the last one merged from the first

community. The TSP sequence also presents a unique remarkable increment, but earlier, at

step one, achieving almost 90% of the captured traffic.

6.6. Summary

It is difficult to define a rule to establish the exact number and position ofWi-Fi monitors

to capture traffic in a target area. Their capturing range should overlap for redundancy

purposes, so a high number of monitors is needed to cover a wide area. In this chapter, we

have showed how, starting from an initial deployment, we can select monitors whose traces

are actually important to merge together.

We propose five metrics to score the similarity among traces. We create a graph having

traces as nodes and edgeswith a length proportional to the similarity value of the nodes they

connect. On such a graph we discover the presence of clusters with community detection

algorithms. These algorithms tell us how many traces are really important (as much as the

number of communities detected) and which is the best similarity metric (the one producing

the highest value of modularity after the division in communities). As a result, we know

howmany traces we need tomerge and howmany nodeswe canmove somewhere else. The

subset of traces to be merged can still provide high traffic coverage, whereas the remaining

traces belong to monitors that can be relocated to enlarge the target area. In order to select

which traces to merge and which to move, we solve the Traveling Salesman Problem on the

graph. Its solution, a sequence of nodes, is the rank of traces. This process can be iterated

until the number of nodes is equal to the number of communities or, in the worst case, until

Chapter 6. Scalable wireless traffic capture 77

all the number of nodes is equal to the number of monitors. This last possibility means that

all the traces must be merged to have a good capture quality.

78 6.6. Summary

Chapter 7

Sensitivity to input traces

In a collaborative measurement system, where network users themselves contribute to

the monitoring activity, the ratio between the number of stations and monitors should be

to the designer’s discretion depending on his needs, giving space for low-cost and scalable

solutions. The problem of monitor placement is avoided too as we expect to have enough

density in most places due to the proliferation of wireless devices. Also, since the only

requirement is to run a packet sniffer for his own benefit, we assume this should not be

cumbersome for most users. It is worth mentioning that an active packet sniffer can run in

background, consuming less than 1.5 kB of virtual memory, which includes the code, data,

shared libraries, and usedmemory pages.1 Users’ willingness can also be compensatedwith

incentives, such as resource allocation, micro payments, and higher reputation based on the

contribution level.

We propose a collaborative method to improve the accuracy of a wireless network mea-

surement system both considering time and space. In the proposed system, the achieved

trace accuracy is correlated to spatial information to give a hint about overloading condi-

tions in a certain area. Based on such information, it is possible to better adapt the network

bymoving additional infrastructure to overloaded areas. In order to improve the trace accu-

racy, wireless users collaborate to the system. Even though there are many signal processing

techniques as well as many upper layer mechanisms for error detection and recovery, data

losses are likely to occur especially when dealing with large and dynamic scenarios. There-

fore, merging an increasing number of individual traces collected by distributed sensors

can substantially improve the accuracy of the final trace. A user can indirectly improve the

quality of its access network by collaborating to the wireless self-organizing network.

We conduct experimental tests using two different scenarios, called collocated and scat-

tered, with different density of sensing nodes. In both scenarios, we show that every indi-

vidual trace improves the accuracy (defined in Sec. 7.1.1) of the merged one and that the

geographical distribution of sensing nodes can also impact on the final result. In addition,

1Test conducted using tcpdump on a Debian machine.

79

80 7.1. Detecting vulnerabilities

by introducing fake traces, we show that the detecting system can recognize a malicious

node. In summary, the main contributions of this approach are three-fold:

We propose a collaborative system to improve the accuracy of wireless measurement

systems: We show that the accuracy of a given trace increases with the number of

sensing nodes. Consequently, we demonstrate that users’ collaboration represents a

low cost alternative to improve the system performance in terms of final trace com-

pleteness. We also show that the accuracy of a trace depends on the spatial-temporal

distribution of the sensing nodes.

We identify possible weaknesses of the proposed system concerning users’ participa-

tion: we address two possible attacks based on the insertion of fake traces, i.e. attrac-

tive and repulsive attacks.

We propose a metric to identify malicious users participating of the measurement sys-

tem: We show that it is possible to detect malicious nodes adopting one of the attacks

model we identify in this work. We show that such malicious nodes tend to display

different characteristics from the other nodes in the accuracy graph we build.

7.1. Detecting vulnerabilities

In this work, we consider two different malicious behaviours (we call them “attacks” for

sake of simplicity) based on the captured trace adulteration:

Repulsive attack. It consists of inserting fake traceswith complete sequences of frames,

i.e., basing on the sequence counter field, apparently no frames are missed.

Attractive attack. It consists of inserting fake traces with empty sequences of frames,

i.e., containing only the first and the last frame of a sequence.

Depending on the type of incentive, a malicious user could find benefit prosecuting one

of these attacks. For instance, let us suppose that users who succeed to capture a mini-

mum number of frames are rewarded with micro payments, improved connection quality,

or better reputation in the internal social system; in this case, malicious users would adopt a

repulsive behavior. We name it repulsive because it is also a way to make the measurement

system infer that the measurement quality (we formally define the accuracy in Section 7.1)

in a certain area is high and, therefore, is operating normally, thus “repulsing” the wireless

infrastructure away. If, on the other hand, users who find leaks in the measurement system

are rewarded, they could adopt the second kind of attack that we call attractive. In this case

the attacker could make believe that there is the need to move the infrastructure to the area

where the attacker operates. Then the infrastructure is “attracted” toward that geographical

area. This same attack could be also convenient to give the impression that the network is

Chapter 7. Sensitivity to input traces 81

S2

S1

A
B

C

D trace S1 trace S2 merged trace

#2
#1

#1

#4

#4
#3

#1
#4

#4
#3

#2
#1

#1

#4

Figure 7.1: The fraction of captured frames increases after merging two individual traces from different sensing

nodes. Each individual sensing node, S1 and S2, has captured 50% of the total frames numbered in sequential

order from 1 to 4. After merging, the fraction of captured frames increases to 75%.

overloaded in an area with the aim to attract more network resources and benefit from the

improved quality of their own wireless access network.

We would like to underline that, independently of the attack, this could be motivated

by the possibility of simply disrupting the network operation. In a corporate building, for

instance, any attack could be triggered by an intruder only motivated to start a counterpro-

ductive action. Alternatively, a malicious user logged in to a private or corporate environ-

ment could use the attractive attack to draw the wireless infrastructure in places where it is

insufficient, i.e., at the far ends of a building.

Figure 7.1 illustrates the normal operation of the system. In this figure, two sensing

nodes, S1 and S2, overhear different areas within the same wireless network. These nodes

are part of the sensing module, where each one can be dedicated or from a user contributing

to the monitoring system. Nodes A and C, on the other hand, are wireless infrastructure

nodes, while B and D are simple communicating nodes. In the figure, the dotted lines rep-

resent the links between the sensing and the communicating nodes, whereas the full lines

represent the links between the communicating nodes. Note that the sensing node S1 cap-

turesmore frames from the communication between nodes A and B (white frames), whereas

S2 captures more frames from C and D (gray frames). Assuming that on each communica-

tion, nodes exchange four frames as enumerated in the figure, nodes S1 and S2 capture 50%

of the total number of transmitted frames. S1 captured 3/4 of the frames from AB and 1/4

from CD, whereas S2 captured 1/4 from the AB and 3/4 from CD. After merging these two

traces, the final result has 75% of the total frames, which leads the system to improve its

performance.

Figures 7.2 and 7.3 illustrate the repulsive and the attractive attack, respectively. We

now have a malicious node M, under control of a malicious user, inserting a fake trace in

the system. In a repulsive attack, as illustrated in Figure 7.2(a), the malicious node M forges

a trace with all four frames from a nonexistent communication (i.e., it creates from scratch

a pair of communicating nodes). After merging, the fraction of captured frames over the

total is approximately 83%, which is higher than the 75% captured in normal operation

(Figure 7.1). As a possible attack outcome, the available infrastructure (nodes A and C) can

82 7.1. Detecting vulnerabilities

S2

S1

B

C

D trace S1 trace S2 merged trace

M

trace M

#2
#1

#1

#4

#4
#3

#4

#2

#3

#1

#4

#2

#3

#1

#1
#4

#4
#3

#2
#1

#1

#4

A

(a) Malicious node M inserts fake traces with com-

plete sequences of frames.

S2

S1

B

D

M

A

C

p0

p0

(b) Infrastructure nodes

in their initial position p0

move farther way from

M.

S2

S1

B

D

M

A

C

(c) Network final posi-

tion.

Figure 7.2: Repulsive attack. Malicious node M forges a trace containing a complete sequence of frames. As

a consequence, the fraction of captured frames increases from 75% to 83% and the wireless infrastructure is

repulsed to other areas. At the end, the wireless infrastructure becomes farther away from M.

S2

S1

B

C

D trace S1 trace S2 merged trace

M

trace M

#2
#1

#1

#4

#4
#3

#4

#1

#4

#1

#1
#4

#4
#3

#2
#1

#1

#4

A

(a) Malicious node M inserts fake traces with empty

sequences of frames.

S2

S1

B

C

D

M

A p0

p0

(b) Infrastructure nodes

in their initial position p0

move closer to M.

S2

S1

B

C

D

M

A

(c) Network final posi-

tion.

Figure 7.3: Attractive attack. Malicious node M forges a trace containing an empty sequence of frames. As

a consequence, the fraction of captured frames reduces from 75% to 66% and the wireless infrastructure is

attracted toward M. At the end, the wireless infrastructure becomes closer to M.

be moved to an overloaded region as seen in Figures 7.2(b) and 7.2(c). On the other hand, in

the attractive attack (Figure 7.3(a)), after the merge, 66% of the frames are considered to be

captured. Thus, the fraction of the total frames becomes lower than the one obtained by the

normal operation. The consequence, could be the attraction of more infrastructure resources

(nodes A and C) towards the malicious node.

We assume that each sensing node contributes with only one trace. This is an important

assumption because the impact of a malicious node can be accentuated by the number of

traces it adds to the system. In addition, each trace has the same format, is obtained or

forged during the same time frame, and contains coherent amount of data. We consider that

the merging software discards traces which do not match these assumptions.

Chapter 7. Sensitivity to input traces 83

7.1.1. Accuracy

The goal to conduct collaborative measurements is to improve traffic characterization

and, consequently, avoid misunderstandings or erroneous actions based on biased mea-

surements. It is of utmost importance to have accurate traffic measurements for the sake of

positioning wireless infrastructure. Therefore, we formally define accuracy later on in this

section, based on three main assumptions:

1. Each node in the network sends a sequence of frames sorted by an increasing sequence

number to any other node in the network.

2. Althoughmeasures are performed in a distributed fashion, traces are merged in a cen-

tral point. We consider that such procedure is CPU- and time-consuming and, there-

fore, is better handled in a central point. Multihop transmissions could be required to

gather all the traces.

3. There is a non-negligible probability of not recording a frame, even considering all the

produced traces.

Based on the above assumptions, we can estimate the maximum number of frames a

node can send to a destination as the difference between the maximum sequence number

and the first one found in the trace plus the number of retransmitted frames. Since in real

experiments it is very difficult to have a complete trace (losses are very frequent), we rely

on this metric to estimate the completeness of a captured trace, as it has been done in the

literature [98;116]. The IEEE 802.11 standard states that the difference between the sequence

numbers of successive frames that are coming from a wireless node should differ by one

modulo 4096. Hence, let N be the set of nodes in the network and i and j two nodes in N .

Let vi(t) denote the set of nodes within the neighborhood i in the time frame t. Hence, we

consider that consecutive frames have its sequence number incremented by one and that a

retransmission can be estimated by detecting repeated sequence numbers or by detecting a

retransmission flag on. The maximum number of frames a node i can send in t, si(t), is then:

si(t) =
|vi(t)|

∑
j=0

(nmax
ij (t) + s′ij(t)), (7.1)

where nmax
ij (t) and s′ij(t) is themaximum sequence number found from i to j and the number

of retransmitted frames also from i to j, respectively. Note that a node imay not send a frame

to a given neighbor. In this case, nmax
ij (t) = 0 and s′ij(t) = 0. In addition, as frames can be

lost because of physical medium issues, the total number of frames received from node i in

t, ri(t) is upper-bounded by si(t) (ri(t) ≤ si(t)). Computing the number of missed frames

84 7.1. Detecting vulnerabilities

from a node i is straightforward and is obtained by subtracting the maximum number of

frames sent from the number of received ones. Hence,

mi(t) = si(t)− ri(t). (7.2)

Generalizing Equation 7.2 for all nodes inN , we have that the number of frames missed

in t (m(t)) is equal to the number of frames sent by all nodes (s(t)) subtracted from the

number of frames received by all nodes (r(t)). Thus, m(t) is computed as follows:

m(t) = s(t)− r(t) =
|N |

∑
i=0

(si(t)− ri(t)), (7.3)

where |N | is the number of nodes in N .

Based on Equation 7.3, we can formally define the accuracy metric.

Definition 1 (Accuracy metric a:). The percentage of frames sent in the network that was captured

by at least one sensing node. Hence,

a = 1−
m(t)

s(t)
· (7.4)

Accuracy computation requires reading each trace only once. The last sequence number

of each frame is compared with the previous one (within the same flow) to check if there are

any missed frames.

7.1.2. Detection system

Wemodel the system as a fully connected graph G(V , E), where V and E denote, respec-

tively, the set of vertices and edges. Each vertex Ti represents an obtained trace, whereas

each edge represents the accuracy considering the vertices connected. In our model, the

graph G is weighted and the weight assigned to an edge TiTj is the accuracy computed con-

sidering only these two traces. The graph is considered fully connected because we compute

the accuracy for all pairwise combinations. Let a(TiTj) be the accuracy computed with re-

spect to the merged trace using as input the pair of traces Ti and Tj, then w(TiTj) = a(TiTj).

Based on the link weight defined, we define the node strength of each vertex (σ(Ti)) as fol-

lows:

σ(Ti) =
|V |

∑
j=1

a(TiTj), (7.5)

Chapter 7. Sensitivity to input traces 85

ID8 ID7 ID6 ID5

ID4ID3ID2ID1

(a) Collocated scenario.

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100

N
u
m
b
e
r
o
f
fr
a
m
e
s

Minute

Channel 1

Channel 6

Channel 11

(b) Wireless traffic characterization.

Figure 7.4: Experimental scenario.

where the number of traces is equivalent to the number of sensing nodes (i.e., |V| = |N |).

In case of large wireless community networks, we can reduce computation complexity by

relying either on parallel computation of node strengths or on a subset of trusted nodes that

would be in charge of running the measures. We argue that the weights of the edges con-

taining a malicious trace, generated to trigger one of the attacks, have a discrepant value

compared with all the real ones (if the amount of fake information introduced into the sys-

tem is sufficiently large). This is because the addition of traces with fake communicating

pairs has as the effect the accuracy increase or decrease, depending on the attack. The trace

with strength different from the others can be detected with a certain probability using an

outlier test.

We do not consider either attacks than those described in Section 5.3.2; thus, we cannot

guarantee that our detection system would work under other attack models. We believe,

however, that attractive and repulsive attacks are the strongest attacks one can make in a

collaborative measurement system; this is the reason we focus on them.

7.2. Experimental Setup

We evaluate our approach and investigate the impact of the number of nodes and the

distance between sensing nodes, in two scenarios.

Collocated Scenario: the first one, called “collocated”, was built inside a room within

LIP6 computer science laboratory fromUPMC SorbonneUniversités in Paris. All sens-

ing nodes were positioned side-by-side on a table in a room of the LIP6 lab, as illus-

trated in Figure 7.4(a). Monitors capture the wireless traffic for 90 minutes and indi-

vidual traces have an average size of 253 MBytes, whereas the merged trace has a size

of 450 MBytes. The wireless traffic collected is composed of control, management, and

data frames to and from access points in the area. Figure 7.4(b) shows the amount of

traffic captured. The traffic characterization is obtained after merging the traces col-

86 7.3. Accuracy Measurements

lected by the eight laptops in the same time interval. We plot all the traffic captured on

each IEEE 802.11b/g non-overlapping channels, i.e., channels 1, 6, and 11. Note that

the network activity is similar in all non-overlapping channels on each scenario. In

addition, the overall number of frames collected is higher in the collocated scenario,

which can be a consequence of the sensing nodes proximity or simply an occasional

characteristic of the measurements. In this work, we decided to use channel 1 as our

reference. Nevertheless, it is worth mentioning that the obtained results are not signif-

icantly affected by the operating channel.

Scattered Scenario: in contrast to the previous scenario, we make the same evalua-

tions using the IRCICA scenario presented in Section 6.2, where nodes were scattered

in the second floor of the IRCICA/LIFL building, as illustrated in Figure 6.3(a).

Although these scenarios are both indoor, they show completely different natures that

allow better understanding the operation of a malicious node. We underline that, in both ex-

perimentations, sensing nodes capture any transmitted frames they hear in the area (nodes

are in monitor mode). This means that the captured traffic can be from an access point

within the scenario, but it can also be from a pedestrian carrying on a Wi-Fi mobile phone

on a nearby street. We assume that any incoming traffic must be captured by the measuring

system, no matter how long it lasts or what kind of activity it is concerned with.

Software tools, to merge and analyse traces, are the same presented in Section 6.2.2.

7.3. Accuracy Measurements

Before addressing the security trends in Section 7.4, let us first investigate the behavior

of the measurement accuracy under normal operation of the network.

7.3.1. Individual and merged traces

Table 7.1 shows the accuracy of each individual trace compared with the merged one.2

The parameters required to compute the fraction of received frames, i.e. the maximum

sequence number and the number of retransmissions per source-destination pair (s(t)), are

extracted from the merged trace. Hence, we say that we have computed the accuracy of all

traces using the merged one as the reference. The accuracy difference between the merged

trace and the trace with the smallest accuracy varies between 2× in the collocated scenario

and 25× in the scattered scenario, considering the lowest accuracy found with individual

traces in both cases.

We observe the impact on accuracy of the distance among the sensing nodes even if the

metric is always considerably less than one because of the promiscuous nature of the mea-

surements. We do not filter traces, so we considering also the furthest long conversations.

2We refer to the “merged trace” as the result of merging all individual traces in one.

Chapter 7. Sensitivity to input traces 87

Table 7.1: Accuracy results obtained with individual and merged traces in both evaluated scenarios.

Scenarios
Traces

T1 T2 T3 T4 T5 T6 T7 T8 Merged

Collocated 0.00157 0.00158 0.00170 0.00157 0.00199 0.00182 0.00237 0.00171 0.00327

Scattered 0.00034 0.00029 0.00025 0.00135 0.00101 0.00065 0.00017 0.00012 0.00307

Monitors are able to capture only few frames of such conversations. Closer the nodes, the

smaller the difference in accuracy between individual and merged traces. This happens

because as we scatter the sensing nodes throughout an area, the difference between the in-

dividual measured traces becomes more relevant.

In the next two sections,we compute the fraction of received frames per source/destination

pair instead of the accuracy metric. We aim at better observing the impact of the number of

traces and of the sensing nodes’ position on the collaborative measurements.

7.3.2. Number of traces

Figure 7.5 illustrates the fraction of received frames from all source-destination pairs in

the network. We compare the result of the individual traces with the merged one. In the

x-axis, we sort the source-destination pairs according to the fraction of received frames. It is

important to observe that, in both scenarios, the discrepancy between the fraction of frames

received as shown by the merged trace and by a certain individual trace can be very large

for a given source-destination pair. Hence, decisions based on a single trace can lead to

considerable erroneous actions.

Comparing the results obtained for the collocated and scattered scenarios, we verify a

similar behavior and the presence of a plateau in 100%. This is concerned with manage-

ment as well as small sequences of frames. Management frames are more robust against

physical medium issues since they are typically transmitted at the network base rate. Small

sequences of frames, on the other hand, can be totally captured if at least one sensing node

overhears the transmission for a sufficiently long time.

Figure 7.6 shows the difference between the number of frames sent and the number of

frames received by each source-destination pair in the network. In this figure, we consider

only the merged trace. The x-axis is the same as in Figure 7.5. Again, note that the number

of sent and received frames is similar up to a given pair of nodes. This matches the same

pair of nodes where the percentage of received frames drops down from 100% in Figure 7.5,

i.e., the 100-th pair in the collocated scenario and the 310-th pair in the scattered one. In

addition, we observe that the sequence number is small up to the 100-th and 310-th pairs

from the collocated and scattered scenarios, respectively. This corroborates our claim that

these frames are either management frames or are simply small sequences of frames. There-

88 7.3. Accuracy Measurements

0.01

0.1

1

10

100

0 100 200 300 400 500

R
ec
ei
ve
d
fr
am

es
(%

)

Source-destination pair

Individual traces
Merged trace

(a) Collocated scenario.

0.01

0.1

1

10

100

0 100 200 300 400 500 600

R
ec
ei
ve
d
fr
am

es
(%

)

Source-destination pair

Individual traces
Merged trace

(b) Scattered scenario.

Figure 7.5: Fraction of received frames considering all source-destination pairs in both scenarios.

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0 100 200 300 400 500

N
u
m
b
er

of
fr
am

es

Source-destination pair

Frames sent
Frames received

(a) Collocated scenario.

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0 100 200 300 400 500 600

N
u
m
b
er

of
fr
am

es

Source-destination pair

Frames sent
Frames received

(b) Scattered scenario.

Figure 7.6: Sequence number variation considering all source-destination pairs in both scenarios.

fore, losses become significant when larger sequences of frames are transmitted at higher

transmission rates.

7.3.3. Position of sensing nodes

Figure 7.7 plots the correlation between the fraction of received frames and the sensing

node position. In this figure, we plot the accuracy of each individual trace. The y-axis shows

the sensor ID, whereas the x-axis is the same used in the previous figures. The sensor IDs

correspond to the ones presented in Figure 6.3. As a third magnitude in the plot, we have

color intensity to represent the fraction of received frames measured by each sensing node.

Again, we use the merged trace as the reference.

Figures 7.7(a) and 7.7(b) show that up to the 100-th and 310-th pair, respectively, there is

always at least one node receiving the transmitted frames. This can be checked by the black

points in the plot. Nevertheless, even assuming that these frames are for management,

they are frequently not overheard by all sensing nodes. This is because their position can

even affect the frames transmitted at lower transmission rates. On the other hand, as the

sequence number increases, the percentage of received frames drops for all sensing nodes,

Chapter 7. Sensitivity to input traces 89

as represented by lighter colors. This indicates that nodes are transmitting at higher rates,

as expected for data frames.

An interesting issue from Figure 7.7 is that the fraction of received frames changes ac-

cording to the sensing node position, independently of the scenario. This observation is

done by taking a look at the color variation of any vertical line in the plot, i.e., from any

source-destination pair. Figure 7.8 clearer shows this effect. We have sorted in decreasing

order the x-axis according to the fraction of received frames of the first sensing node. In case

of tie, we compare the fraction of the second sensing node, and so on.

1
2
3
4
5
6
7
8

0 100 200 300 400 500

S
en
so
r
ID

Source-destination pair

0.01

0.1

1

10

100

R
ec
ei
ve
d
fr
am

es
(%

)

(a) Collocated scenario.

1
2
3
4
5
6
7
8

0 100 200 300 400 500 600

S
en
so
r
ID

Source-destination pair

0.01

0.1

1

10

100

R
ec
ei
ve
d
fr
am

es
(%

)

(b) Scattered scenario.

Figure 7.7: Geographical distribution of percentage of received frames considering all source-destination pairs

in both scenarios.

1
2
3
4
5
6
7
8

0 100 200 300 400 500

S
en
so
r
ID

Source-destination pair

0.01

0.1

1

10

100

R
ec
ei
ve
d
fr
am

es
(%

)

(a) Collocated scenario.

1
2
3
4
5
6
7
8

0 100 200 300 400 500 600

S
en
so
r
ID

Source-destination pair

0.01

0.1

1

10

100

R
ec
ei
ve
d
fr
am

es
(%

)

(b) Scattered scenario.

Figure 7.8: Geographical distribution of percentage of received frames for sorted fraction of received frames

considering all source-destination pairs in both scenarios.

90 7.4. Impact of Attacks

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 25 50 100 200 400

A
cc
u
ra
cy

Number of fake communicating pairs

Collocated
Scattered

(a) Repulsive attack.

0.00305

0.0031

0.00315

0.0032

0.00325

0.0033

0 25 50 100 200 400

A
cc
u
ra
cy

Number of fake communicating pairs

Collocated
Scattered

(b) Attractive attack.

Figure 7.9: Impact of inserting traces with fake communicating pairs on the accuracy of the merged trace.

7.4. Impact of Attacks

In the previous section, we observed that: (i) the accuracy increases with the number of

sensing nodes and (ii) even small distances among sensing nodes are enough to change the

wireless activity observed by each node. These observations have a direct incidence in our

work.

First, increasing the population of sensing nodes also increases the probability that some

node from the community be malicious. As stated before, we rely on the accuracy metric to

characterize the behavior of sensing nodes. In this section, we evaluate the impact of both

attractive and repulsive attacks, described in Section 7.1, on trace accuracy. In both attacks,

a malicious user creates from scratch a trace containing fake sequences of frames between

imaginary communicating pairs. In the attractive attack, the malicious node creates traces

containing only the first and the last frames of a sequence; whereas in the repulsive attack,

it creates traces containing complete sequences of frames. The goals of these attacks are to,

respectively, artificially reduce and increase the global accuracy of the system.

Figure 7.9 depicts the impact on accuracy of the two attacks in both scenarios. We vary

the number of fake communicating pairs added by the malicious node to verify the accu-

racy variation of the merged trace. Note that attacks in dense scenarios are more effective

than in scattered ones. Again, this is because the coherence among the individual traces as

collected by closer nodes is higher. Thus, the impact of adding fake communicating pairs is

more relevant. Although plots have a similar linear behavior, the repulsive attack is more

efficient than the attractive one from the point of view of accuracy change. Whereas in the

repulsive attack, the accuracy change is near 2,200% and 150% considering collocated and

scattered scenarios, respectively; in the attractive attack, this difference is near 6% and 0.4%

also considering the collocated and the scattered scenarios. This is because the accuracy

without any attack is already low, as shown in Table 7.1. Therefore, further reducing the

accuracy requires a higher number of fake communicating pairs.

Chapter 7. Sensitivity to input traces 91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

25 50 100 200 400

N
o
d
e
st
re
n
g
th

Number of fake communicating pairs

Malicious trace
Measured traces

(a) Collocated scenario.

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

25 50 100 200 400

N
o
d
e
st
re
n
g
th

Number of fake communicating pairs

Malicious trace
Measured traces

(b) Scattered scenario.

Figure 7.10: Node strength variation in repulsive attack.

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

25 50 100 200 400

N
o
d
e
st
re
n
g
th

Number of fake communicating pairs

Malicious trace
Measured traces

(a) Collocated scenario.

0.004

0.006

0.008

0.01

0.012

0.014

0.016

25 50 100 200 400

N
o
d
e
st
en
g
th

Number of fake communicating pairs

Malicious trace
Measured traces

(b) Scattered scenario.

Figure 7.11: Node strength variation in attractive attack.

7.5. Detecting Potential Attackers

The proposed detection system relies on the accuracy of pairwise merged traces. This

means that we first merge all traces two by two and then calculate the accuracy of these

merged traces. The goal is to build a graph that will allow us detect nodes with an aver-

age different behavior than the others. Figure 7.10 shows the node strength variation of

each trace with the number of fake communicating pairs for a repulsive attack (refer to Sec-

tion 7.1). Note that the node strength of the malicious trace grows up faster in the collocated

scenario because the shorter distances among the sensing nodes also contribute to a higher

pairwise accuracy. In addition, the node strength difference of the measured traces (legit-

imate traces) is subtly, which makes them coincide in the plot. Increasing the density of

sensing nodes can improve the robustness of the system against the repulsive attack.

Figure 7.11 depicts similar results for the attractive attack. In this case, however, the

effect is the opposite in terms of node strength, i.e., the lowest node strength likely comes

from amalicious node conducting an attractive attack. Note that the impact is not as evident

as in the repulsive attack. In the collocated scenario, there is a reduction in the node strength

of all legitimate traces as a consequence of computing their accuracy with the malicious

92 7.5. Detecting Potential Attackers

trace. In the scattered scenario, however, the node strength reduction is barely seen, which

shows that this attack requires more fake communicating pairs to be effective. It is worth

mentioning that if the impact of the attack is not easily observed, the proposed system will

not be able to clearly identify the malicious user. This is not an issue since the efficiency of

the detection system is somehow proportional to the impact of the attack.

Figures 7.12, 7.13, 7.14, and 7.15 plot the graphs adjusting the edge length as a function

of its weight. We used the graphviz software to accomplish this task [37]. The visualization

can also help detecting amalicious trace and, furthermore, a malicious user. In these figures,

the black and the white circle represent the malicious and the legitimate trace, respectively.

Figures 7.12 and 7.13 plot the impact of the repulsive attack in collocated and scattered

scenarios, respectively. In both figures, the vertex representing the trace from the malicious

node becomes more distant from the others as the number of fake communicating pairs

is inserted. We only show results from the extreme cases considered, i.e. 25 and 400 fake

communicating pairs. Intermediate results show only a progressive behavior and, therefore,

are omitted. In the collocated scenario, however, the difference is more evident for a fewer

number of communicating pairs because the pairwise accuracy in this scenario is higher.

TM

T0

T1

T2

T3

T4

T5

T6

T7

(a)

TM

T0

T1

T2

T3

T4

T5

T6

T7

(b)

Figure 7.12: Graph obtained considering a malicious node executing the repulsive attack in the collocated sce-

nario: (a) with 25 fake communicating pairs and (b) with 400 fake communicating pairs.

Chapter 7. Sensitivity to input traces 93

TM

T0

T1

T2

T3

T4T5

T6

T7

(a)

TM

T0

T1

T2

T3

T4

T5

T6

T7

(b)

Figure 7.13: Graph obtained considering a malicious node executing the repulsive attack in the scattered sce-

nario: (a) with 25 fake communicating pairs and (b) with 400 fake communicating pairs.

Figures 7.14 and 7.15 plot the impact of the attractive attack in collocated and scattered

scenarios, respectively. Because the attractive attack aims at reducing the measurements

accuracy, all the edge weights containing a malicious trace tend to reduce. Thus, in opposi-

tion to the repulsive attack, the malicious node becomes located in a central position in the

graph. Again, the effect of the attack is more evident in the collocated scenario.

TM

T0

T1

T2

T3

T4

T5

T6

T7

(a)

TM

T0

T1

T2

T3

T4

T5

T6
T7

(b)

Figure 7.14: Graph obtained considering a malicious node executing the attractive attack in the collocated sce-

nario: (a) with 25 fake communicating pairs and (b) with 400 fake communicating pairs.

TM

T0

T1

T2

T3 T4

T5

T6

T7

(a)

TM

T0

T1
T2

T3
T4

T5

T6

T7

(b)

Figure 7.15: Graph obtained considering a malicious node executing the attractive attack in the scattered sce-

nario: (a) with 25 fake communicating pairs and (b) with 400 fake communicating pairs.

We also conduct an outlier test over the node strengths computed for the two attacks

in both scenarios. We use Dixon’s test because it can be run over small data sets [30]. The

goal is to demonstrate the possibility of detecting a potential malicious trace using simple

tests. Thus, we evaluate the hypothesis of a given node strength be an outlier or not. To

this end, we first verify if the node strength follows a normal distribution. Running Cramér-

von Mises test [29] for all node strengths of the legitimate traces, we could not reject the

94 7.5. Detecting Potential Attackers

Table 7.2: Cramér-von Mises results for normality hypothesis test. The results above 0.05 do not reject the

hypothesis of normality.

Scenarios Legitimate
Repulsive Attractive

Attack Attack

Collocated 0.09199 4.224×10−7 0.0006139

Scattered 0.08413 0.005008 0.08194

0

0.2

0.4

0.6

0.8

1

25 50 100 200 400

p
-v
a
lu
e

Number of fake communicating pairs

90%
95%

99%

Scattered
Collocated

(a) Repulsive attack.

0

0.2

0.4

0.6

0.8

1

25 50 100 200 400

p
-v
a
lu
e

Number of fake communicating pairs

90%
95%

99%

Scattered
Collocated

(b) Attractive attack.

Figure 7.16: Outlier detection using Dixon’s test.

hypothesis of following a normal distribution. In both cases, the p-value is above 0.05,

which gives a confidence level of 95%. In our model, all nodes have the same degree and

the node strength becomes a function of pairwise accuracy.

Note that a preliminary test could be conducted simply verifying the degree distribu-

tion. Hence, if the distribution deviates from normality, this can represent a potential attack.

Table 7.2 presents the p-values obtained with the Crameér-von Mises test, considering the

node strength computed for the traces without attack, i.e., with only the eight legitimate

traces; and with each attack, i.e., with all the eight legitimate traces plus the malicious one.

We show the results obtained with 400 forged communicating pairs. Note that we can have

already a hint that an attack is under way since the hypothesis of following a normal distri-

bution could not be rejected. In the scattered scenario with attractive attack, we cannot have

such idea since the scenario does not lead to enough difference among node strengths.

Figure 7.16 shows the result of the Dixon’s test considering 90%, 95%, and 99% confi-

dence levels. Similarly to the normality test, we evaluate the hypothesis of the malicious

trace be not an outlier. We observe that the hypothesis is never confirmed for the collocated

scenario, independent of the attack. On the other hand, in the scattered scenario, the hy-

pothesis is only not confirmed in the repulsive attack for more than 200 and 400 malicious

communication nodes – the former with 90% of confidence level, whereas the latter with

more than 99%.

Chapter 7. Sensitivity to input traces 95

7.6. Summary

We prove that the geographical distribution as well as the number of collected traces

can significantly improve the correctness of the merged trace, allowing better informed de-

cisions. To increase the number of traces, we rely on users participation, which can extract

benefits from more accurate monitoring. The shortcoming of users’ participation is, how-

ever, the possibility of malicious actions.

In this chapter, we have experimentally evaluated the impact of malicious nodes in dis-

tributed collaborative measurements in wireless community networks. We identify two pos-

sible attacks: repulsive and attractive. The first one is based on the insertion of fake traces

with complete sequences of frames, whereas the latter is based on the insertion of sequences

of frames containing only the first and the last frames. As a consequence, users can, respec-

tively, repulse infrastructure as an attempt to provoke a denial of service attack or can attract

more infrastructure towards its location. We have shown that the repulsive attack has more

chances to succeed, especially in scenarios where sensing nodes are close to each other.

We have also proposed a detecting systemwhich models the system as a fully connected

graph, where each vertex is a trace from a sensing node and each link represents the accuracy

of the connected traces. From this model, we were able to infer with certain probability a

malicious node by computing the node strength of each trace. Our detecting system is based

on the analysis of possible outliers since the node strength computed for malicious nodes

tends to be discrepant when compared with legitimate traces. We believe the detection

system output can be even used as a trust metric for user behavior evaluation. As a future

work, we plan to conduct more experiments and to formal define a trust metric.

96 7.6. Summary

Chapter 8

Conclusion and perspectives

8.1. Conclusion

The opportunistic communication mode has several advantages. It is useful for com-

munication and content dissemination purposes in contexts where there is no network in-

frastructure. When, at the contrary, an infrastructure is present, the opportunistic content

dissemination gives benefits offloading the infrastructure. It is also important in environ-

ments where nodes are highly mobile and their contacts are very short.

In this thesis we focused on the fair opportunistic dissemination of multiple large con-

tents. We implemented EPICS, an opportunistic content dissemination protocol atop PePiT,

an Android-based application running on off-the-shelf handsets. By running PePiT on a real

setup composed of several smartphones, we could test the goodness and fairness of EPICS.

At the same time, leading experiments on real devices in uncontrolled environments, we

discovered some limitations for the content dissemination due to the protocol design itself.

Other results were unexpected.

For this reason, we started to capture the wireless traffic generated by our devices along

with the surrounding traffic. With a more complete view, we had some insights to improve

the diffusion latency. We designed then DAD, a solution that extends EPICS to dynamically

adapt the amount of pieces to send according to the density of the network. With respect to

EPICS, DAD improves the diffusion latency when the node degree is less than 5. In order to

study the profit margin of this improvement, we analyzed real-world and synthetic mobil-

ity traces and showed that, depending on the node density and detecting range, DAD has

different levels of impact. As a matter of fact, we ran more than 500 experiments (equivalent

to about 300 hours), collected and analyzed around four thousand application level logs and

60 Gbytes of wireless traces.

During all the experiments, we captured the wireless traffic using a passive monitoring

system. In particular, it helped us design DAD and confirm that EPICS limitations were due

only to the protocol design, and not to surrounding (uncontrolled) traffic. As a consequence,

with the purpose to deploy a large testbed with much more mobile nodes, new challenges

97

98 8.2. Perspectives

about how tomonitor traffic in a large area arises. The second part of this thesiswas centered

on this issue. We made two main contributions.

The first one is based on trace similarity and community detection algorithms. Such an

approach allows selecting only a significant subset of traces to merge. Monitors producing

the other traces could be either suppressed or relocate to enlarge the area under monitoring.

In this way, having a fleet of monitors, we can detect the widest area that is possible to

monitor without impacting the capture quality. Similarly, given an area of interest, we can

detect the number of monitors to employ for a high ratio between quality and costs.

The second approach is a collaborative wireless measurement system where users con-

tribute to the monitoring in exchange of something (e.g., connectivity). Being totally de-

centralize, this method could suffer from malicious users’ activities. For this reason, we

also introduced two kinds of possible attacks and relative countermeasure to detect such at-

tacks. We have tested our methods in three scenarios in distinct locations and with different

monitors’ position.

8.2. Perspectives

Enclosing and combining two topics, this thesis raises several possibilities of future

work.

Testbed scalability. The large scale deployment of PePiT is limited by Google’s policies

forbidding the 802.11 ad hoc communications for Android operating systems. A quite in-

vasive procedure is needed to enable this feature on off-the-shelf devices. At present, PePiT

supports a limited number of handset models. To tackle this limitation, we made PePiT to

support the Android-x86, a porting of the Android operative system to the x86 platform.

In this way, potentially every laptop with an Android-x86 virtual machine can run PePiT.

Moreover, the second part of this thesis deals with how to scale a monitoring system to

capture wireless traffic during experiments. Anyway testing PePiT in a large scale mobile

scenario remains an issue for the amount of people and equipment involved.

Communication technology. When PePiT has been implemented, Bluetooth and 802.11 Wi-

Fi were the only possible communication technologies. Some devices were shipped with

Wi-Fi Direct, but no APIs were yet available to exploit it. As a future improvement, PePiT

may use Wi-Fi Direct or Wi-Fi Opp. This change could make PePiT deployable on every

Android device. Different technologies will have also an impact on energy consumption.

More dynamics. DAD modulates the burst of pieces to send in according to the neighbor-

hood size. This adaptation leads to a faster content dissemination and we showed that it is

exploitable in many contexts. While the chunk size and the transport protocol have fixed

values, other parameters may change accordingly to current network environment (e.g.,

transmission rate and beaconing frequency).

Chapter 8. Conclusion and perspectives 99

Content selection. The grey relational analysis (GRA) paradigm provides an extensible

inter-content selection strategy. We based our selection on content size and creation time,

but many other options are possible. We may give priority to contents with a larger part still

to fetch or to contents which are flagged as important. Without, or in collaboration with, the

GRA, we may use content diffusion prediction techniques.

Security. During our experiments, we assumed that every node was interested in all con-

tents since we were interested to the content diffusion latency. We did not take into account

issues like content integrity, privacy, and security. In order to deploy PePiT beyond our

boundaries, we must address the problem of protecting and detecting contents corrupted

by untrusted peers.

Monitoring system. Although the weighted inter-flow similarity metric has a good impact

on the community detection, many other similarity metrics are possible. Different kinds of

community detection algorithms (hierarchical with a divisive approach, modularity-based,

etc.) are available too. The TSP solution, as a ranking method, leads to good performance

against a ranking solution based on trace size or node degree. We wish to compare it with

other ranking methods that are able to sequentially choose the most relevant nodes from

different communities.

Trace corruption detection. Since the tests we used to detect outliers among captured traces

are statistic, we can use additional metrics to evaluate the obtained traces. For example,

we can combine our tests with trust metrics to obtain a final evaluation [113]. The result of

the outlier test proposed should be used as an input of the trust metric, which could also

consider other inputs such as reputation to avoid premature decisions. In addition, the

same framework we proposed, starting from the node strength (σ(Ti)) computation, could

be repeated after removing a malicious trace so as to verify if another could also be detected.

100 8.2. Perspectives

Appendices

101

Appendix A

Résumé de la thèse en français

A.1. Introduction

La croissance du trafic à partir d’appareils mobiles et sans fil a des prévisions plus que

optimistes [3]. Dans ce sens, ainsi que l’introduction de framework innovantes de développe-

ment mobile, des nouvelles applications de partage opportunistes du contenu sont sur-

gis [7;16;70;72;75;110].

Ces applications répondent à la demande de l’actuelle société à produire et à consommer

des contenus de taille de plus en plus important générés par les utilisateurs (UGC) [23] selon

le paradigme triple A (Anyware, Anytime, Any device).

La compatibilité des appareils mobiles sans fil à le paradigme triple-A justifie l’effort

prodigué par la communauté de recherche sur les réseaux opportunistes dans les dernières

années. Les réseaux opportunistes sont créés par des contacts sporadiques et directes entre

les utilisateurs mobiles. Cette particularité les rend aptes à échanger des contenus dans de

nombreux contextes et des environnements tels que : les événements locaux et temporaires,

de reprise après sinistre et les endroits bondés, les réseaux de véhicules et de capteurs et

les communications entre satellites [20;39;43;44;51;76;121]. Ce type de réseau est parfois identifié

comme Delay/Disruption Tolerant Networks (DTNs) parce que il est mis en compte un

retard pour la réception du contenu.

Comprendre la dynamique au niveau d’application et des mécanismes de la communi-

cation sans fil sous-jacent devient fondamentale pour concevoir un protocole d’échange de

contenu efficace, en particulier dans des environnements surpeuplés ou dans des situations

où de courtes fenêtres de contact sont la règle .

Dans cette thèse, nous abordons ces problèmes en reliant le rendement d’applications

de partage opportuniste du contenu avec le trafic sans fil environnante. Sans diminuer

l’importance des simulations, seulement dans des conditions très proches à la réalité nous

pouvons faire face à des questions pareils. Pour cette raison, nous avons délibérément

adopté une approche expérimentale et fondé notre analyse sur des applications réelles dé-

ployées sur les dispositifs disponibles sur le marché.

103

104 A.2. Définition du problème

Figure A.1: Problèmes qui se posent dans les communications sans fil.

A.2. Définition du problème

Réseaux Opportunistes. Supposons que Bob veut transmettre unmessage à Peter par l’aide

de communications opportunistes comme montré par la Figure A.1. Ils sont trop loin l’un

l’autre pour communiquer directement. Bob pourrait alors envoyer le message à Alice qui

passe à coté. Divers problèmes de communication sans fil peuvent se produire: atténua-

tion par un obstacle, multi-chemin, erreurs de transmission, perte de messages pour ne citer

que quelques-uns. Si Alice parvient à recevoir le message, elle l’enregistre et le transporte

jusqu’à ce qu’elle parviens dans la plage de transmission/réception de Peter. Un tel mécan-

isme, appelé “store-carry-and-forward” est l’approche générale pour router les messages

dans réseaux DTN.

Les protocoles de routage pour les DTN doivent négocier le compromis entre la charge

de communication et la performance de livraison. Ce compromis à été étudiée dans nom-

breux systèmes de routage qui tiennent en compte de la mobilité des nœud et la probabilité

des contacts [11;19;45;63;65;104;109;119;120;122].

L’architecture DTN est intrinsèquement centré sur les nœuds avec transmissions directs

entre eux indépendamment des protocoles de transport sous-jacents [22]. Les messages peu-

vent être fragmentés et les fragments peuvent être regroupés n’importe où dans le réseau.

Hacher de grandes contenus en petits morceaux pour une diffusion plus efficace est, en fait,

une approche naturelle à adopter dans les DTN et c’est l’approche utilisé dans cette thèse

aussi. Néanmoins, plusieurs problèmes (étonnamment sous-considérés dans la littérature)

se posent:

Quel est le contenu à transmettre quand un contact se produit?

Une fois le contenu est sélectionné, quelle pièce devrait être choisi?

Appendix A. Résumé de la thèse en français 105

Monitor setting

Wireless traffic

measure

Application level

measure

Improvement

found

Protocol setting

Experiment

Figure A.2: Flux de travail.

Quelle taille devrait avoir un morceau?

Est-il intéressant d’utiliser un protocole de transport fiable?

Est-il utile de transmettre une rafale de morceaux?

Nous étudions tous ces aspects dans la première partie de ce travail.

Systeme de surveillance. Nous avons trouvé très utile l’analyse de traces de trafic sans fil

afin de trouver des réponses à des comportements inattendus et de trouver les limites intrin-

sèques du protocole réseau dédié au partage de contenu dans DTN. Nous présentons dans

la figure A.2 notre flux de travail expérimental complet. Une fois le terrain de l’expérience

est choisi, nous procédons au réglage des paramètres du protocole et du système de surveil-

lance passive. Ce dernière concerne de trouver la quantité de moniteurs nécessaires pour

avoir une capture qualitative et leur position. Le paramètres du protocole impliquent le

réglage de paramètres spécifique à l’essai. De cette façon, nous obtenons deux mesures de

niveau application et niveau de liaison de données. Si l’analyse de ces mesures met en évi-

dence des améliorations possibles, les paramètres de protocole sont ajustés en conséquence

et nous pouvons commencer une nouvelle série d’expériences.

Un système de surveillance passive est généralement composé de trois modules prin-

cipaux : détection, fusion et présentation comme dans la Figure A.3. Dans le module de

détection, des nœuds de surveillance sont responsables de recueillir les trames qu’il observe

dans le medium sans fil.1 Comme il y a potentiellement plusieurs moniteurs, la sortie est

1Nous considérons l’activité sans fil à la couche MAC. Pour cette raison, une trace est un ensemble de trames

MAC qu’un moniteur en mode promiscuité peut entendre.

106A.3. Contribution 1 : PePiT, un substrat basé sur Android pour la diffusion multi-contenu

Figure A.3: Modules de détection, de fusion et de présentation : typique architecture du système de surveillance

passive.

une collection de traces obtenues par les différents observateurs. Pour simplicité, nous sup-

posons que chaque moniteur ne produit qu’une seule trace. Le module de fusion est en

charge d’une trace unique en utilisant comme entrée toutes les traces collectées par le mod-

ule de détection. Enfin, le module de présentation est responsable de stocker les mesures

précédentes et à fournir des statistiques sur l’activité du réseau sans fil.

Les principaux problèmes qui découlent de cette approche sont les suivants :

Passage à l’échelle du module de détection.

Placement des moniteurs.

Complexité de calcul du module de fusion.

Mesures biaisée en raison de traces fallacieuses .

Nous étudions tous ces aspects dans la deuxième partie de ce travail.

A.3. Contribution 1 : PePiT, un substrat basé sur Android pour la

diffusion multi-contenu

Malgré le nombre de protocoles et de stratégies de diffusion opportunistes fondées sur la

mobilité des utilisateurs et leur comportement social, il n’y a pas autant de véritables mises

en œuvre. Pour combler cette lacune, nous avons développé une application mobile pour

Android appelé PePiT [95] qui est basée sur le protocole EPICS et montré dans la Figure A.4.

EPICS comprend une stratégie de sélection inter-contenu basée sur l’analyse relation-

nelle gris [32] pour de choisir, à chaque rencontre entre deux nœuds, le contenu à échanger

afin d’avoir une diffusion rapide et équitable entre tous les contenus. Dans notre travail,

l’analyse gris relationnelle tend à donner la priorité aux contenus de grosse taille et aux

contenus plus récemment créé. Mais EPICS comprennent également PACS, une stratégie de

sélection intra-contenu [14;15]. Une fois le contenu à partager est choisi, PACS choisit quelle

pièce de ce contenu à transmettre.

A.3.1. Évaluation

Appendix A. Résumé de la thèse en français 107

(a) PePiT. From left to right: exchanges in progress, history of content pieces

received from different peers, preview of the received picture.

(b) PePiT settings menu.

Figure A.4: PePiT user interface.

Table A.1: Paramètres expérimentaux with

PACS and EPICS.

Paramètre Valeur

Protocole de transport UDP

Nombre de noeuds 10

Nombre de contenus 40

Taille de pièces 64kB

Taille de contenus 16kB, 3.5MB

Le développement de PePiT nous donne l’opportunité

d’évaluer EPICS, comme protocole d’échange oppor-

tuniste de contenus, dans le monde réel. Nous

comparons EPICS à une stratégie uniforme. Nous

appelons stratégie uniforme, une stratégie qui,

comme EPICS, utilise PACS pour la sélection intra-

contenu, mais sélectionne le contenu à transmettre de

façon aléatoire uniforme. Expériences durent aussi

longtemps que nécessaire pour les deux stratégies

pour assurer la pleine diffusion de tous les contenus.

Nous avons mis 10 téléphones Android (4 HTC Desire et Samsung Galaxy 6-S-II équipé

d’Android 2.3.3) sur des emplacements fixes dans un bureau. Les autres paramètres expéri-

mentaux sont montré dans le Tableau A.1.

Nous testons trois scénarios :

VS-VT: taille variable et temps de création la variables. Quarante contenu (dix par

nœud) avec des tailles à partir d’un pièce jusqu’à 56 pièces sont créés à des moments

différents.

VS-FT: taille variable et temps de création fixe. Les mêmes contenus sont créés simul-

tanément après 2 minutes.

FS-VT: taille fixe et temps de création variables. Quarante contenu de 3 pièces, dix par

nœud, sont créées à des instants différents.

Nous répétons chaque scénario dix fois et nous obtenons la duréemoyenne pour la com-

plète diffusion µ et l’écart type σ. Avec µ et σ nous construisons les distributions normales

108 A.4. Contribution 2 : DAD, EPICS dynamique

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50 60
C
om

p
le
ti
on

ti
m
e
d
is
tr
ib
u
ti
on

Time (minutes)

EPICS
Uniform

(a) VS-VT

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60

C
om

p
le
ti
on

ti
m
e
d
is
tr
ib
u
ti
on

Time (minutes)

EPICS
Uniform

(b) VS-FT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60

C
om

p
le
ti
on

ti
m
e
d
is
tr
ib
u
ti
on

Time (minutes)

EPICS
Uniform

(c) FS-VT

Figure A.5: Distributions des temps d’achèvement des expériences.

représentéesdans les figuresA.5. Non seulement EPICS est plus rapide que l’uniforme, mais

il a aussi un écart plus étroit ce qui signifie qu’il tente de compléter une diffusion équitable

entre tous les contenus concernant la taille et l’heure de création.

A.4. Contribution 2 : DAD, EPICS dynamique

Lorsque les nœuds entrent en contact et ils veulent partager des contenus en utilisant

EPICS, ils échangent d’abord des informations dans le but de maximiser l’utilité du con-

tact en choisissant la bonne pièce à transmettre. Néanmoins, cet expédient ne permet pas

d’éviter totalement pièces doubles car la décision sur le pièce à envoyer est indépendam-

ment prise par chacun des nœuds. Une telle stratégie peut entraîner des frais de communi-

cation non négligeable. Une question semble approprié ici : Serait-il intéressant d’envoyer une

rafale de pièces à chaque contact?

Nous étudions ce point en varier la quantité de nœuds impliqués dans l’échange de

contenu. Nous partagions un contenu de 3Mo avec une seule source et un nœud demandant

le contenu (deux nœuds au total), une source et deux autres nœuds(trois nœuds au total),

jusqu’à huit nœuds au total, en changent la taille de la rafale de l’un à dix.

Appendix A. Résumé de la thèse en français 109

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7

B
u
rs
t
si
ze

Source node’s degree

Minimum diffusion time

(a) DAD zone d’opération : taille de la rafale

pour temps de diffusion minimum (ligne rouge)

et écart de 30 seconds du minimum (plage gris).

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

C
D
F

Time [s]

DEPICS
EPICS

EPICS, burst = 10

(b) DAD vs. EPICS et vs. EPICS avec une rafale

de dix pièces. CDF des temps de dissemination

par contenu et par noeud.

Figure A.6: DAD: mode d’opération et évaluation.

Dans la figure A.6(a), nous montrons les temps de diffusion minimales recueillies (ligne

rouge). La zone grise comprend des valeurs au plus 30 secondes plus que le minimum.

Notez que cette zone devient de plus en plus étroite que le nombre de nœuds en contact

augmente. Dans ce graphique EPICS se déplace sur le fond, ce qui signifie qu’il peut être

amélioré jusqu’à un degré de quatre nœuds. En particulier, dans le cas de deux nœuds (y

compris la source), il est intéressant d’envoyer 10 pièces d’affilié, quatre pièces avec trois

nœuds, trois pièces avec trois nœuds et deux pièces avec quatre nœuds. D’un nœud degré

de cinq haut, il est intéressant de partager un seul morceau par échange par contact.

A.4.1. Évaluation

Nous comparons DAD à la version base d’EPICS (c’est à dire, avec une taille de rafale

unitaire) et à la version d’EPICS qui envoie toujours une rafale de dix pièces. La taille

de pièce est de 25 Ko. Nous commençons cette expérience avec seulement deux nœuds :

une source qui a dix contenu de 3 Mo et un autre nœud. Ensuite, toutes les trois minutes

nous ajoutons un nouveau nœud, exigeant tous les contenus, jusqu’à sept nœuds. Nous re-

cueillons des temps relatifs d’achèvement pour chaque contenu pour chaque nœud et nous

présentons la CDF dans la figure 4.13. Même si DAD et EPICS prennent le même temps

de diffuser tous les contenus sur tous les nœuds, ils présentent une différence considérable

jusqu’au 97 centile. Cela signifie que l’adaptation dynamique à la taille du voisinage, non

seulement facilite la diffusion quand il ya seulement quelques nœuds, mais, puisque le con-

tenu est presque entièrement reçu dans de nombreux nœuds, ces nœuds peuvent mieux

soutenir la diffusion, même quand plusieurs nœuds sont présents dans le réseau. D’autre

part, en utilisant EPICS avec la rafale maximum, la diffusion est très rapide pour les pre-

miers contenus (c’est à dire quand il n’y a que quelques nœuds), puis elle ralentit en prenant

cinq fois plus longtemps.

110 A.5. Contribution 3 : Passage à l’échelle de systèmes de surveillance passive

First deployment

of K monitors

Trace similarity

computation

Identification of

K

c

 communities

Ranking for merging

K traces

T

n

T

3

T

1

T

2

T

1+2

T

1+2+3

T

1+2+3+n

Repositioning of

K-K

c

 monitors

K

c

 < K

T

1+2+3+K

=

final merge

Yes

No

...

Trace raking and

merging K

c

 traces

T

1+2+3+Kc

=

partial merge

Figure A.7: Tâches supplémentaires proposé pour le module de fusion de traces.

A.5. Contribution 3 : Passage à l’échelle de systèmes de surveil-

lance passive

La première contribution dans le domaine de la surveillance de réseaux sans fil est de

concevoir, déployer et tester de nouvelles méthodes de capture du trafic sans fil. Nous

essayons de maximiser la quantité de trafic capturé en gardant les coûts. Les coûts sont liés

à l’achat, l’installation, le déploiement et la maintenance de moniteurs.

Nous abordons la question suivante : est-t-il valable de fusionner toutes les traces, ou une par-

tie d’entre eux est suffisant? L’idée principale derrière notreméthodologie de sélection de trace

est montré dans la figure A.7 et repose sur la notion de similitude entre eux (nous testons

cinq métriques possibles : intra- et inter-flux, Adamic [6], Power [28] et inter-flux pondéré [85]), qui

peut être utilisé comme entrée d’algorithmes de détection de la communauté (nous avons

testé trois algorithmes différents : Walktrap [79] , Infomap [94] et Label Propagation [81]). Ces

algorithmes trouver des sous-ensembles de traces avec une similarité élevée (c’est à dire,

“une communautés de traces”). Si l’on considère qu’au moins une trace par communauté

doit être utilisé dans la procédure de fusion, nous avons une idée du nombre minimum

de traces à utiliser. Le problème devient alors de trouver les traces exactes à utiliser dans

chaque communauté. Pour cela, nous classons toutes les traces en fonction de leur con-

tribution individuelle à la trace fusionné final, compte tenu des valeurs de similarité par

paires [96]. Cette procédure de classement est basé sur le Travelling Salesman Problem (TSP).

Nous considérons les traces comme les nœuds d’un graphe et chaque arche entre deux

nœuds a un poids proportionnel à la similarité entre eux. La solution du TSP sur ce graphe,

en fait, donne le classement.

A.5.1. Évaluation

Nous avons fait des expériences dans deux scénarios. Nous appelons le premier “IR-

CICA”, car nous avons déployé huit moniteurs le long un couloir au deuxième étage du lab-

oratoire d’informatique IRCICA de Lille et nous appelons le deuxième “INRIA”, car nous

avons placé le même huit moniteurs sur l’étage du bâtiment INRIA, à Lille également.

Appendix A. Résumé de la thèse en français 111

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7

C
u
m
u
la
ti
ve

p
er
ce
n
ta
ge

of
fr
am

es

Number of merge operations

Trace size sequence
TSP sequence

(a) IRCICA scenario.

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5 6 7

C
u
m
u
la
ti
ve

p
er
ce
n
ta
ge

of
fr
am

es

Number of merge operations

Trace size sequence
TSP sequence

(b) INRIA scenario.

Figure A.8: Comparaison des processus de fusion des traces avec le classement proposé et le classement en

fonction de la taille des traces.

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

C
u
m
u
la
ti
ve

p
er
ce
n
ta
ge

of
fr
am

es

Number of merge operations

Node degree sequence
TSP sequence

(a) IRCICA scenario.

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

C
u
m
u
la
ti
ve

p
er
ce
n
ta
ge

of
fr
am

es

Number of merge operations

Node degree sequence
TSP sequence

(b) INRIA scenario.

Figure A.9: Comparaison des processus de fusion des traces avec le classement proposé et le classement en

fonction du degré des nœuds.

Dans les deux cas on compare notre solution de classement de traces avec un classe-

ment basé sur le tri décroissante de les tailles des traces (figureA.8) et avec le trie croissante

(pareil si décroissante) du degré des traces (figureA.9). Nous considérons le degré d’une

trace comme suit: nous considérons les traces comme les nœuds d’un graphe avec les arches

entre eux de poids proportionnelle aux valeurs de similarité. Ensuite, le degré d’un nœud

est la somme des poids sortant de ce nœud.

Dans tous les cas, notre stratégie, avec un nombre limité de traces (égal au nombre de

communautés qui se trouvent sur le graphe) recueille un plus grand nombre de trames,

approchant rapidement au montant total de trames capturées. Ca sera donc suffisant, en

gardant la qualité de capture, d’utiliser que ces premières moniteurs et, en plus, déplacer les

autres pour élargir la surface sous surveillance.

112 A.6. Contribution 4 : Sensibilité aux traces d’entrée

A.6. Contribution 4 : Sensibilité aux traces d’entrée

Nous proposons une méthode collaborative pour améliorer la précision de systèmes de

mesure sans fil de réseau. Dans le système proposé, la précision de la trace obtenue est

corrélée à l’information spatiale pour donner un indice sur la surcharge des conditions dans

un certain endroit. Sur la base de ces informations, il est possible de mieux adapter le réseau

en déplaçant des infrastructures supplémentaires pour les zones surchargées.

Dans un système de mesure collaboratif, où les utilisateurs du réseau eux-mêmes con-

tribuent à l’activité de surveillance, le rapport entre le nombre de stations et moniteurs de-

vrait être à la discrétion du concepteur en fonction de ses besoins, en donnant la possibilité

l’avoir des solutions peu coûteuses et évolutives. Le problème du placement des moni-

teurs est résolu d’avantage, parce que nous nous attendons avoir assez de densité dans la

plupart des endroits en raison de la prolifération des appareils sans fil [4]. La collaboration

des utilisateurs peut également être compensée par des primes, telles que l’allocation des

ressources supplémentaires, micro-paiements ou une réputation plus importante basée sur

le niveau de contribution.

Cette approche n’est pas exemptée de problématiques. Selon le type d’incitation, un util-

isateur malveillant pourrait trouver avantageuse de poursuivre une des attaques suivantes :

Attaque répulsive. Il consiste à insérer des faux traces avec des numéros de séquence

complètes (champ sequence number). Apparemment donc il n’y a pas de trames man-

quantes.

Attaque attrayant. Il consiste à insérer des traces de faux avec que le première et le

dernière numéro de séquence.

A.6.1. Système de détection

On définit comme accuracy a le pourcentage de trames émises dans le réseau qui a été

capturée par au moins un moniteurs. Le calcul de l’accuracy nécessite la lecture de chaque

trace qu’une seule fois. Le dernier numéro de séquence de chaque trame est comparée à la

précédente (du même flux) pour vérifier s’il ya des trames manqués.

Nous modélisons le système comme un graphe entièrement connecté G(V , E), où V et E

désignent, respectivement, l’ensemble des nœuds et des arcs. Chaque nœud Ti représente

une trace, alors que chaque arc représente l’accuracy compte tenu des nœuds reliés a(Ti, Tj).

On définit le strenght d’un nœud, σ(Ti), comme:

σ(Ti) =
|V |

∑
j=1

a(TiTj), (A.1)

Appendix A. Résumé de la thèse en français 113

Table A.2: Accuracy obtenue avec les traces individuelles et avec tous les traces fusionnées.

Scenarios
Traces

T1 T2 T3 T4 T5 T6 T7 T8 Merged

Collocated 0.00157 0.00158 0.00170 0.00157 0.00199 0.00182 0.00237 0.00171 0.00327

Scattered 0.00034 0.00029 0.00025 0.00135 0.00101 0.00065 0.00017 0.00012 0.00307

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

25 50 100 200 400

N
o
d
e
st
re
n
g
th

Number of fake communicating pairs

Malicious trace
Measured traces

(a) Collocated scenario.

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

25 50 100 200 400
N
o
d
e
st
re
n
g
th

Number of fake communicating pairs

Malicious trace
Measured traces

(b) Scattered scenario.

Figure A.10: Variation de la métrique strength pour l’attaque répulsive.

A.6.2. Évaluation

Nous effectuons des tests expérimentaux utilisant deux scénarios différents, appelés scat-

tered et collocated. Le premier est celui qui nous avons appelé IRCICA à la section A.5.1; dans

le second, nous mettons les mêmes huit moniteurs très proches les uns des autres sur un

bureau.

Le tableau A.2 montre l’accuracy par traces individuelles et une fois tous les traces sont

fusionnées. Ce dernière valeur est plus important dans tous les deux cas indépendamment

de la densité des moniteurs.

Pour tester le système de détection d’attaques, on va ajouter des faux flux dans le traces

(25, 50, 100, 200 et 400 flux) et on regarde comment change la métrique strenght pour chaque

noued dans les figures A.10 et A.11. Sauf dans le cas d’un attaque attrayant et scenario

scattered, le nœud malveillant a une valeure de strength biaisé par rapport à tous les autre

nœuds.

Sur cette base, on peut identifier le nœudmalveillant soit avec une représentation graphique

de G où les arcs ont une longueur proportionnelle à le strength, soit avec des tests statis-

tiques. Dans ce dernier cas, on utilise le test de Cramér-von Mises (table A.3).

A.7. Conclusions et perspectives

Le mode de communication opportuniste présente plusieurs avantages. Il est utile pour

la communication et la diffusion de contenus dans contextes où il n’existe aucune infrastruc-

114 A.7. Conclusions et perspectives

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

25 50 100 200 400

N
o
d
e
st
re
n
g
th

Number of fake communicating pairs

Malicious trace
Measured traces

(a) Collocated scenario.

0.004

0.006

0.008

0.01

0.012

0.014

0.016

25 50 100 200 400

N
o
d
e
st
en
g
th

Number of fake communicating pairs

Malicious trace
Measured traces

(b) Scattered scenario.

Figure A.11: Variation de la métrique strength pour l’attaque attrayant.

Table A.3: Test de Cramér-von Mises pour l’hypothèse de normalité. Les résultats au dessus de 0.05 ne rejetent

pas l’hypothèse de normalité.

Scenarios Legitimate
Repulsive Attractive

Attack Attack

Collocated 0.09199 4.224×10−7 0.0006139

Scattered 0.08413 0.005008 0.08194

ture de réseau. Quand, au contraire, une infrastructure est présente, la diffusion de contenu

opportuniste donne des avantages pour le déchargement de l’infrastructure. Il est égale-

ment important dans les environnements où les nœuds sont très mobiles et leurs temps de

contacts sont très courts.

Dans cette thèse, nous nous sommes concentrés sur la diffusion opportuniste de plusieurs

contenus de grosse taille. Nous avons implémenté EPICS, un protocole de diffusion oppor-

tuniste de contenus dans PePiT, une application Android fonctionnant sur portables trou-

vables sur le marché. Avec PePiT nous avons pu tester la bonté et l’équité de diffusion de

EPICS. Dans le même temps, menant des expériences sur des dispositifs réels dans des en-

vironnements non contrôlés, nous avons découvert quelques limitations pour la diffusion

de contenu en raison de la conception du protocole lui-même. D’autres résultats étaient

inattendus.

Pour cette raison, nous avons mis en place la capturer du trafic sans fil généré par nos

appareils et du trafic environnant. Avec cette vue plus complète, nous avons eu des idées

pour améliorer la latence de diffusion. Nous avons donc conçu DAD, une solution qui étend

EPICS en adaptant dynamiquement la quantité de pièces à envoyer en fonction de la den-

sité du réseau. En ce qui concerne EPICS, DAD améliore la latence de la diffusion lorsque le

dégrée d’un nœud est inférieure à 5. Afin d’étudier la marge de rentabilité de cette amélio-

ration, nous avons analysé des traces réelles et synthétiques de mobilité et on a montré que,

en fonction de la densité de nœuds et de leur plage de détection, DAD a différents niveaux

Appendix A. Résumé de la thèse en français 115

d’impact. En fait, nous avons ressemblé plus de 500 expériences (équivalant à environ 300

heures), près de quatre mille journaux au niveau application recueillies et 60 Go de traces

du trafic sans fil analysées.

Au cours de toutes les expériences, nous avons capturé le trafic sans fil en utilisant un

système de surveillance passive. En particulier, ça nous a aidé à concevoir DAD (un nou-

veau protocole de réseau) et à confirmer que les limitations de EPICS étaient dus unique-

ment à la conception du protocole, et donc pas au trafic environnant (non contrôlé). En

conséquence, dans le but de déployer un grand banc d’essai avec des nœuds mobiles, la

complication sur la façon de surveiller le trafic dans une grande région géographique se

pose. La deuxième partie de cette thèse a été centré sur cette question. Nous avons fait deux

contributions principales.

La première est basée sur la similarité des traces et sur algorithmes de détection de com-

munautés. Une telle approche permet de sélectionner seulement un sous-ensemble signifi-

catif de traces à fusionner. Étant donné une plage cible d’intérêt, nous pouvons détecter le

nombre minimum de moniteurs à employer pour un grand rapport entre la qualité de cap-

ture et les coûts. Les moniteurs produisant les autres traces pourraient être soit supprimées

ou délocalisées pour agrandir la surface sous surveillance. De la même manière, ayant une

flotte de moniteurs, on peut trouver la surface à surveiller la plus large possible sans nuire

à la qualité de la capture.

La deuxième approche est un système de mesure sans fil collaboratif où les utilisateurs

contribuent à la surveillance en échange de quelque chose (connectivité, par exemple). Cette

méthode, totalement décentraliser, pourrait souffrir d’activités des utilisateurs malveillants.

Pour cette raison, nous avons également introduit deux types d’attaques possibles et rela-

tives méthodes pour détecter tels attaques. Nous avons testé nos méthodes dans trois scé-

narios dans des endroits distincts et avec positions différents de moniteurs.

A.8. Perspectives

Combinant deux thèmes, cette thèse soulève plusieurs possibilités de travaux futurs.

Passer à l’échelle le banc d’essai. Le déploiement à grande échelle de PePiT est limitée

par les politiques de Google interdisant les communications 802.11 ad hoc sur les systèmes

d’exploitation Android. Une procédure très invasive est nécessaire pour activer cette fonc-

tion sur les appareils disponibles sur le marché. À l’heure actuelle, PePiT prend en charge

un nombre limité de modèles de téléphones. Pour remédier à cette limitation, nous avons

développé PePiT pour être compatible avec Android-x86, un portage d’Android pour les

plate-formes x86. De cette façon, potentiellement chaque ordinateur portable avec une ma-

chine virtuelle Android-x86 peut exécuter PePiT. Par ailleurs, la deuxième partie de cette

thèse traite de la manière de passer à l’échelle un système de surveillance pour capturer le

116 A.8. Perspectives

trafic sans fil au cours des expériences. Néanmoins, tester PePiT dans un scénario mobiles à

grande échelle reste un problème pour le nombre de personnes et de l’équipement en cause.

Technologie de communication. Lorsque PePiT a été mis en œuvre, Bluetooth et Wi-Fi

802.11 étaient les seules technologies de communication possibles. Certains appareils ont

été livrés avec une connexionWi-Fi Direct, mais aucune API étaient encore disponibles pour

l’exploiter. Comme amélioration future, PePiT pourrait utiliser le Wi-Fi Direct ou Wi-Fi

Opp. Ce changement pourrait rendre PePiT compatible avec tous les appareils Android.

Différentes technologies auront aussi un différent impact sur la consommation d’énergie .

Dynamique. DADmodule la rafale de pièces à envoyer en fonction de la taille du voisinage.

Cette adaptation conduit à une diffusion du contenu plus rapide et nous a montré qu’il est

exploitable dans de nombreux contextes. Tandis que la taille de pièces et le protocole de

transport ont des valeurs fixes, d’autres paramètres peuvent être modifiés en conséquence

à l’environnement réseau courant (par exemple, le taux de transmission et la fréquence de

balisage) .

Sélection du contenu. Le “grey relational analysis” (GRA) fournit une stratégie extensi-

ble de sélection entre plusieurs contenus. Nous avons basé notre sélection sur la taille du

contenu et le temps de création, mais de nombreuses autres options sont possibles. Nous

pouvons donner la priorité au contenu ayant la plus grande partie encore à chercher ou à

des contenus qui sont marqués comme importants. Sans, ou en collaboration avec, le GRA,

nous pouvons utiliser aussi des techniques de prédiction de diffusion du contenu.

Sécurité. Au cours de nos expériences, nous avons supposé que chaque nœud est intéressé

à tous les contenus car nous nous sommes intéressés à la latence de diffusion. Nous n’avons

pas pris en compte des questions comme l’intégrité du contenu, la confidentialité et la sécu-

rité. Pour rendre PePiT disponible au-delà de nos frontières, nous devons aborder le prob-

lème de la protection et de détection de contenus corrompu par utilisateurs malveillants.

Système de surveillance. Nombreuses métriques de similarité entre traces sont possibles

au delà de celles proposées. Différents types d’algorithmes de détection de communautés

(hiérarchiques avec une approche de division, basée sur la modularité, etc.) sont également

disponibles. La solution TSP, comme méthode de classement, conduit à une bonne perfor-

mance contre une solution de classement basé sur la taille des traces ou le degré des nœuds.

Nous tenons à le comparer avec d’autres méthodes de classement qui sont en mesure de

choisir les nœuds les plus pertinentes provenant de différentes communautés.

Détection de traces fallacieuses. En plus de méthodes statistiques que nous avons utilisés

pour détecter des valeurs aberrantes parmi les traces capturées, nous pouvons utiliser des

paramètres supplémentaires pour évaluer les traces obtenues. Par exemple, nous pouvons

combiner nos tests avec des mesures de confiance afin d’obtenir une évaluation finale [113].

Le résultat du test de valeurs aberrantes proposé devrait être utilisé comme entrée de la

Appendix A. Résumé de la thèse en français 117

métrique de confiance, ce qui pourrait aussi envisager d’autres inputs, tels que la réputation,

au fin d’éviter des décisions prématurées. En outre, le calcul de σ(Ti), pouvant être répétée

après l’enlèvement d’une trace malveillant de manière à vérifier si une autre peut aussi être

détectée.

118 A.8. Perspectives

Appendix B

PePiT: code snippet and UML class

diagram

Listing B.1: PePiT: how to start/join an ad hoc network for Galaxy S II devices.

1 private ShellInterface shell = new ShellInterface();

2 // ...

3 switch (phoneType) {

4 // ...

5 case SAMSUNG_GALAXY_S_II:

6 shell.startCommand("insmod /lib/modules/dhd.ko \"firmware_path=/←֓

system/etc/wifi/bcm4330_sta.bin nvram_path=/system/etc/wifi/←֓

nvram_net.txt\"");

7 shell.startCommand(APP_PATH+"/bin/iwconfig eth0 essid " + ←֓

ESSID_NAME_S + " mode ad-hoc");

8 shell.startCommand(APP_PATH+"/bin/iwconfig eth0 channel 1");

9 shell.startCommand(APP_PATH+"/bin/iwconfig eth0 commit");

10 shell.startCommand(APP_PATH+"/bin/ifconfig eth0 " + this.mAddress←֓

+ " netmask 255.255.0.0");

11 break;

119

120 Appendix B. PePiT: code snippet and UML class diagram

Figure B.1: PePiT communication module UML class diagram.

Appendix B. PePiT: code snippet and UML class diagram 121

Figure B.2: PePiT communication module UML class diagram.

122 Appendix B. PePiT: code snippet and UML class diagram

Figure B.3: PePiT communication module UML class diagram.

Appendix C

List of publications

C.1. Published

Matteo Sammarco, Miguel Elias Mitre Campista and Marcelo Dias de Amorim, Trace Se-

lection for Improved WLAN Monitoring in ACM Sigcomm 2013, HotPlanet Workshop, Hong

Kong, China, August 2013.

Matteo Sammarco, Miguel Elias Mitre Campista and Marcelo Dias de Amorim, Towards a

Scalable WiFi Monitoring System, in WNetVirt 2013, Angra dos Reis, Rio de Janeiro, Brazil,

October 2013.

Matteo Sammarco, Nadjet Belblidia, Yoann Lopez, Marcelo Dias de Amorim, Luís Hen-

rique Maciel Kosmalski Costa, and Jérémie Leguay, PePiT: Opportunistic Dissemination of

Large Contents on Android Mobile Devices, ACM MobiOpp workshop Demo Session, Zurich,

Switzerland, March 2012.

Matteo Sammarco, Miguel Elias Mitre Campista and Marcelo Dias de Amorim, Highly Scal-

able Wi-Fi Monitoring Systems, Ecole d’été ResCom, Porquerolles, France, May 2013.

C.2. Under review

Miguel Elias Mitre Campista, Matteo Sammarco, Marcelo Dias de Amorim and Tahiry

Razafindralambo, Collaborative Wireless Measurements at Risk: Vulnerabilities When Users Come

at Play, under review (3rd round) at IEEE Transactions on Parallel and Distributed Systems,

July 2013.

Matteo Sammarco, Miguel Elias Mitre Campista and Marcelo Dias de Amorim, Scalable

Wireless Traffic Capture Through Community Detection and Trace Similarity, under review at

IEEE Transactions on Mobile Computing, October 2013.

123

124 C.3. Other publications

Nadjet Belblidia, Matteo Sammarco, Luís Henrique Maciel Kosmalski Costa and Marcelo

Dias de Amorim, Opportunistic Multi-Content Dissemination, under review at IEEE Transac-

tions on Mobile Computing, October 2013.

Miguel Elias Mitre Campista, Matteo Sammarco, Marcelo Dias de Amorim and Tahiry

Razafindralambo, Monitoramento Colaborativo de Redes Sem-fio: Acurácia do Sistema e Denún-

cia de Farejadores Maliciosos, under review at the 32nd Brazilian Symposium on Computer

Networks and Distributed Systems.

Nadjet Belblidia, Matteo Sammarco, Luís Henrique Maciel Kosmalski Costa and Marcelo

Dias de Amorim, Disseminação Oportunista de Múltiplos Conteúdos de Grande Porte Usando a

Análise Relacional Cinza, under review at the 32nd Brazilian Symposium on Computer Net-

works and Distributed Systems.

C.3. Other publications

Dario Rossi, Paolo Veglia,Matteo Sammarco and Federico Larroca,ModelNet-TE: An emula-

tion tool for the study of P2P and Traffic Engineering interaction dynamics. Springer Peer-to-peer

Networking and Applications (PPNA), June 2013, Volume 6, Issue 2, pp 194-212.

Bibliography

[1] URL http://www.android-x86.org.

[2] URL http://www.podnet.ee.ethz.ch/scope/start.

[3] Wireless lan equipment and wifi phones quartely market share, size, and forecasts.
White Paper.

[4] Cisco visual networking index: Global mobile data traffic forecast update, 2012–2017.
White Paper, 2013.

[5] Prashanth A. K. Acharya, Ashish Sharma, Elizabeth M. Belding, Kevin C. Almeroth,
Senior Member, and Dina Papagiannaki. Rate adaptation in congested wireless net-
works through real-time measurements. IEEE Transactions on Mobile Computing, 9(11):
1535–1550, November 2010.

[6] Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. SOCIAL NET-
WORKS, 25:211–230, 2001.

[7] Adnan Agbaria and Roy Friedman. Efficient and reliable dissemination in wireless
opportunistic networks by location extrapolation. In ACM MobiOpp, pages 101–109,
Pisa, Italy, 2010.

[8] Panayotis Antoniadis, Bénédicte Le Grand, Anna Satsiou, Leandros Tassiulas, Rui
Aguiar, Joã Paulo Barraca, and S. Sargento. Community building over neighborhood
wireless mesh networks. IEEE Technology and Society, 27(1):48–56, February 2008.

[9] A. Asterjadhi, E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. Toward network coding-
based protocols for data broadcasting in wireless Ad Hoc networks. IEEE Transactions
on Wireless Communications, 9(2), Feb. 2010.

[10] Anand Balachandran, Geoffrey M. Voelker, Paramvir Bahl, and P. Venkat Rangan.
Characterizing user behavior and network performance in a public wireless LAN. In
ACM SIGMETRICS, pages 195–205, June15-19 2002.

[11] Aruna Balasubramanian, Brian Levine, and Arun Venkataramani. DTN routing as a
resource allocation problem. In ACM Sigcomm, pages 373–384, Kyoto, Japan, 2007.

[12] M Bastian, S Heymann, and M Jacomy. Gephi: an open source software for exploring
and manipulating networks. 2009. In International AAAI Conference on Weblogs and
Social Media, 2011.

[13] Nadjet Belblidia. Capacity-Aware Opportunistic Networks: Characterization and Impact
on the Dissemination of Large Contents. PhD thesis, University Pierre and Marie Curie,
2012.

125

http://www.android-x86.org
http://www.podnet.ee.ethz.ch/scope/start

126 Bibliography

[14] Nadjet Belblidia, Marcelo Dias de Amorim, Luís H. M. K. Costa, Jeremie Leguay, and
Vania Conan. PACS: Chopping and shuffling large contents for faster opportunistic
dissemination. In IFIP/IEEE Annual Conference on Wireless On-demand Network Systems
and Services, pages 9–16, Bardonecchia, Italy, 2011.

[15] Nadjet Belblidia, Marcelo Dias de Amorim, Luís H. M. K. Costa, Jeremie Leguay, and
Vania Conan. Part-whole dissemination of large multimedia contents in opportunistic
networks. Computer Communications, Mar. 2012.

[16] C. Boldrini, M. Conti, F. Delmastro, and A. Passarella. Context- and social-aware mid-
dleware for opportunistic networks. J. Netw. Comput. Appl., 33(5):525–541, September
2010. ISSN 1084-8045. doi: 10.1016/j.jnca.2010.03.017. URL http://dx.doi.org/10.

1016/j.jnca.2010.03.017.

[17] Chiara Boldrini, Marco Conti, and Andrea Passarella. Contentplace: social-aware data
dissemination in opportunistic networks. In ACM International Symposium on Model-
ing, Analysis and Simulation of Wireless and Mobile Systems, pages 203–210, Vancouver,
Canada, 2008.

[18] Vincent Borrel, Franck Legendre, Marcelo Dias de Amorim, and Serge Fdida. Simps:
using sociology for personal mobility. IEEE/ACM Trans. Netw., 17(3):831–842, 2009.
URL http://dblp.uni-trier.de/db/journals/ton/ton17.html#BorrelLAF09.

[19] John Burgess, Brian Gallagher, David Jensen, and Brian N. Levine. MaxProp: Rout-
ing for Vehicle-Based Disruption-Tolerant Networking. In IEEE Infocom, pages 1–11,
Barcelona, Spain, 2006.

[20] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott, and H. Weiss.
Delay-tolerant networking: an approach to interplanetary internet. IEEE Communica-
tions Magazine, 41(6):128–136, Jun. 2003.

[21] Miguel Elias M. Campista, Marcelo Dias de Amorim, and Luís Henrique M. K. Costa.
Big wireless measurement campaigns: Are they really worth the price? In ACM In-
ternational Workshop on Hot Topics in Planet-Scale Measurements (ACMHotPlanet), pages
27–32, June25 2012.

[22] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and H. Weiss.
Delay-Tolerant Networking Architecture. RFC 4838 (Informational), April 2007. URL
http://www.ietf.org/rfc/rfc4838.txt.

[23] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue Moon. I
tube, you tube, everybody tubes: Analyzing the world’s largest user generated con-
tent video system. In Proceedings of the 7th ACM SIGCOMMConference on Internet Mea-
surement, IMC ’07, pages 1–14, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
908-1. doi: 10.1145/1298306.1298309. URL http://doi.acm.org/10.1145/1298306.

1298309.

[24] Yu-Chung Cheng, John Bellardo, Péter Benkö, Alex C. Snoeren, Geoffrey M. Voelker,
and Stefan Savage. Jigsaw: solving the puzzle of enterprise 802.11 analysis. In ACM
SIGCOMM, pages 39–50, September11-15 2006.

[25] Thomas Claveirole and Marcelo Dias de Amorim. WiPal: IEEE 802.11 traces manipu-
lation software, January 2010. URL http://wipal.lip6.fr/.

http://dx.doi.org/10.1016/j.jnca.2010.03.017
http://dx.doi.org/10.1016/j.jnca.2010.03.017
http://dblp.uni-trier.de/db/journals/ton/ton17.html#BorrelLAF09
http://www.ietf.org/rfc/rfc4838.txt
http://doi.acm.org/10.1145/1298306.1298309
http://doi.acm.org/10.1145/1298306.1298309
http://wipal.lip6.fr/

Bibliography 127

[26] Thomas Claveirole and Marcelo Dias de Amorim. Manipulating Wi-Fi packet traces
with WiPal: design and experience. Software Practice & Experience, 42(5):585–599, May
2012.

[27] William Cook. Concorde tsp solver. See: http://www. tsp. gatech. edu/concorde. html,
2005.

[28] M. Cunche, M.-A. Kaafar, and R. Boreli. I know who you will meet this evening!
linking wireless devices using wi-fi probe requests. In World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2012 IEEE International Symposium on a, pages 1–9,
June. doi: 10.1109/WoWMoM.2012.6263700.

[29] D. A. Darling. The Kolmogorov-Smirnov, Cramér-von Mises Tests. The Annals of
Mathematical Statistics, 28(4):823–838, December 1957.

[30] R. B. Dean and W. J. Dixon. Simplified statistics for small numbers of observations.
Analytical Chemistry, 23(4):636–638, April 1951.

[31] J. L. Deng. Control problems of grey systems. Systems & Control Letters, 1(5):288–294,
1982.

[32] J. L. Deng. Introduction to grey system theory. Journal of Grey System, 1:1–24, Nov.
1989.

[33] Christina Fragouli, Jörg Widmer, and Jean-Yves Le Boudec. Efficient broadcasting
using network coding. IEEE/ACM Transactions on Networking, 16(2):450–463, 2008.

[34] N. Gaddam and A. Potluri. Study of BitTorrent for file sharing in AdHoc networks. In
IEEE Wireless Communications and Networking Conference, pages 1–6, Allahabad, India,
2009.

[35] Adriano Galati and Chris Greenhalgh. CRAWDADdata set nottingham/mall (v. 2013-
02-05). Downloaded from http://crawdad.cs.dartmouth.edu/nottingham/mall,
February 2013.

[36] S.K. Goel, M. Singh, Dongyan Xu, and Baochun Li. Efficient peer-to-peer data dissem-
ination in mobile Ad Hoc networks. In International Conference on Parallel Processing
Workshops, pages 152–158, Vancouver, Canada, 2002.

[37] graphviz. Graphviz - Graph Visualization Software, September 2012. URL http://

www.graphviz.org.

[38] Nidhi Hegde, FabienMathieu, and Diego Perino. Size doesmatter (in p2p live stream-
ing). CoRR, abs/0909.1713, 2009.

[39] Wendi Rabiner Heinzelman, Joanna Kulik, andHari Balakrishnan. Adaptive protocols
for information dissemination in wireless sensor networks. In ACM Mobicom, pages
174–185, Seattle, Washington, United States, 1999.

[40] Ólafur R. Helgason, Emre A. Yavuz, Sylvia T. Kouyoumdjieva, Ljubica Pajevic, and
Gunnar Karlsson. A mobile peer-to-peer system for opportunistic content-centric net-
working. In ACM SIGCOMM workshop on Networking, systems, and applications on mo-
bile handhelds, pages 21–26, New Delhi, India, 2010.

[41] Tristan Henderson, David Kotz, and Ilya Abyzov. The changing usage of a mature
campus-wide wireless network. In ACMMobiCom, pages 187–201, Sep.-Oct.26-1 2004.

http://www.graphviz.org
http://www.graphviz.org

128 Bibliography

[42] Camden C. Ho, Krishna N. Ramachandran, Kevin C. Almeroth, and Elizabeth M.
Belding-Royer. A scalable framework for wireless network monitoring. In Proceed-
ings of the 2nd ACM international workshop on Wireless mobile applications and services on
WLAN hotspots, WMASH ’04, pages 93–101, New York, NY, USA, 2004. ACM. ISBN
1-58113-877-6. doi: 10.1145/1024733.1024745. URL http://doi.acm.org/10.1145/

1024733.1024745.

[43] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and
Christophe Diot. Pocket switched networks and human mobility in conference en-
vironments. In ACM SIGCOMMworkshop on Delay-tolerant networking, pages 244–251,
Philadelphia, Pennsylvania, USA, 2005.

[44] Pan Hui, Augustin Chaintreau, Richard Gass, James Scott, Jon Crowcroft, and
Christophe Diot. Pocket switched networking: Challenges, feasibility and imple-
mentation issues. In Proceedings of the Second International IFIP Conference on Auto-
nomic Communication, WAC’05, pages 1–12, Berlin, Heidelberg, 2006. Springer-Verlag.
ISBN 3-540-32992-7, 978-3-540-32992-3. doi: 10.1007/11687818_1. URL http://dx.

doi.org/10.1007/11687818_1.

[45] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble rap: social-based forwarding in
delay tolerant networks. In ACMMobihoc, pages 241–250, Hong Kong, China, 2008.

[46] E. Hyytia, J. Virtamo, P. Lassila, J. Kangasharju, and J. Ott. When does content float?
characterizing availability of anchored information in opportunistic content sharing.
In IEEE Infocom, pages 3137–3145, Shanghai, China, 2011.

[47] S. Ioannidis, A. Chaintreau, and L. Massoulie. Optimal and scalable distribution of
content updates over a mobile social network. In IEEE Infocom, pages 1422–1430, Rio
de Janeiro, 2009.

[48] Stratis Ioannidis, Laurent Massoulie, and Augustin Chaintreau. Distributed caching
over heterogeneous mobile networks. In ACM Sigmetrics, pages 311–322, New York,
NY, USA, 2010.

[49] Behrouz Jedari and Feng Xia. A survey on routing and data dissemination in oppor-
tunistic mobile social networks. CoRR, abs/1311.0347, 2013.

[50] Sewook Jung, Uichin Lee, Alexander Chang, Dae-Ki Cho, and Mario Gerla. Bluetor-
rent: Cooperative content sharing for bluetooth users. In IEEE International Conference
on Pervasive Computing and Communications, pages 47–56, New York, USA, 2007.

[51] Aman Kansal, Michel Goraczko, and Feng Zhao. Building a sensor network of mobile
phones. In Proceedings of the 6th International Conference on Information Processing in
Sensor Networks, IPSN ’07, pages 547–548, New York, NY, USA, 2007. ACM. ISBN 978-
1-59593-638-7. doi: 10.1145/1236360.1236433. URL http://doi.acm.org/10.1145/

1236360.1236433.

[52] Gunnar Karlsson, Vincent Lenders, and Martin May. Delay-tolerant broadcasting.
IEEE Transactions on Broadcasting, 53(1):369–381, Mar. 2007.

[53] Abdelmajid Khelil, Christian Becker, Jing Tian, and Kurt Rothermel. An epidemic
model for information diffusion in manets. In ACM International Symposium on Model-
ing, Analysis and Simulation of Wireless and Mobile Systems, pages 54–60, Atlanta, Geor-
gia, USA, 2002.

http://doi.acm.org/10.1145/1024733.1024745
http://doi.acm.org/10.1145/1024733.1024745
http://dx.doi.org/10.1007/11687818_1
http://dx.doi.org/10.1007/11687818_1
http://doi.acm.org/10.1145/1236360.1236433
http://doi.acm.org/10.1145/1236360.1236433

Bibliography 129

[54] A. Klemm, C. Lindemann, and O.P. Waldhorst. A special-purpose peer-to-peer file
sharing system for mobile ad hoc networks. In IEEE Vehicular Technology Conference,
volume 4, pages 2758–2763, Orlando, USA, 2003.

[55] Vinod Kone, Mariya Zheleva, Mile Wittie, Ben Y. Zhao, Elizabeth M. Belding, Haitao
Zheng, and Kevin Almeroth. AirLab: consistency, fidelity and privacy in wireless
measurements. SIGCOMM Comput. Commun. Rev., 41(1):60–65, January 2011.

[56] Iordanis Koutsopoulos. Optimal incentive-driven design of participatory sensing sys-
tems. In INFOCOM, pages 1402–1410, 2013.

[57] Amir Krifa, Chadi Barakat, and Thrasyvoulos Spyropoulos. Optimal Buffer Manage-
ment Policies for Delay Tolerant Networks. In IEEE Conference on Sensor, Mesh and Ad
Hoc Communications and Networks, San Francisco, USA, 2008.

[58] Amir Krifa, Mohamed Karim Sbai, Chadi Barakat, and Thierry Turletti. Bithoc: A con-
tent sharing application for wireless ad hoc networks. In IEEE International Conference
on Pervasive Computing and Communications, pages 1–3, Galveston, TX, USA, 2009.

[59] Nikolaos Laoutaris, Damiano Carra, and Pietro Michiardi. Uplink allocation beyond
choke/unchoke or how to divide and conquer best, 2008.

[60] K.C. Lee, Seung-Hoon Lee, Ryan Cheung, Uichin Lee, and M. Gerla. First experience
with cartorrent in a real vehicular ad hoc network testbed. In IEEE Mobile Networking
for Vehicular Environments, pages 109–114, Anchorage, Alaska, USA, 2007.

[61] Uichin Lee, Joon-Sang Park, Joseph Yeh, Giovanni Pau, and Mario Gerla. Code tor-
rent: content distribution using network coding in vanet. In International workshop on
Decentralized resource sharing in mobile computing and networking, pages 1–5, Los Ange-
les, California, 2006.

[62] Uichin Lee, Sewook Jung, Dae-Ki Cho, A. Chang, Junho Choi, and M. Gerla. P2P con-
tent distribution to mobile bluetooth users. IEEE Transactions on Vehicular Technology,
59(1):356–367, Jan. 2010.

[63] Jérémie Leguay, Timur Friedman, and Vania Conan. Dtn routing in a mobility pat-
tern space. In ACM SIGCOMM workshop on Delay-tolerant networking, pages 276–283,
Philadelphia, Pennsylvania, USA, 2005.

[64] Vincent Lenders, Martin May, Gunnar Karlsson, and ClemensWacha. Wireless ad hoc
podcasting. ACMMobile Computing and Communications Review, 12:65–67, Jan. 2008.

[65] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic routing in intermittently
connected networks. SIGMOBILE Mob. Comput. Commun. Rev., 7:19–20, Jul. 2003.

[66] Ratul Mahajan, Maya Rodrig, David Wetherall, and John Zahorjan. Analyzing the
MAC-level behavior of wireless networks in the wild. In ACM SIGCOMM, pages
75–86, September11-15 2006.

[67] Pawel Marciniak, Nikitas Liogkas, Arnaud Legout, and Eddie Kohler. Small is not
always beautiful. CoRR, abs/0802.1015, 2008.

[68] Abraham Martín-Campillo, Jon Crowcroft, Eiko Yoneki, Ramon Martí, and Carlos
Martínez-García. Using haggle to create an electronic triage tag. In Proceedings of
the Second International Workshop on Mobile Opportunistic Networking, MobiOpp ’10,
pages 167–170, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-925-1. doi:
10.1145/1755743.1755775. URL http://doi.acm.org/10.1145/1755743.1755775.

http://doi.acm.org/10.1145/1755743.1755775

130 Bibliography

[69] Syed Haani Masood, Syed Ali Raza, and Mark Coates. Content distribution strategies
in opportunistic networks. CoRR, abs/1308.0786, 2013.

[70] Paolo Meroni, Elena Pagani, Gian Paolo Rossi, and Lorenzo Valerio. An opportunistic
platform for android-based mobile devices. In Proceedings of the Second International
Workshop on Mobile Opportunistic Networking, MobiOpp ’10, pages 191–193, New York,
NY, USA, 2010. ACM. ISBN 978-1-60558-925-1. doi: 10.1145/1755743.1755783. URL
http://doi.acm.org/10.1145/1755743.1755783.

[71] Arezu Moghadam, Suman Srinivasan, and Henning Schulzrinne. 7ds - a modular
platform to develop mobile disruption-tolerant applications. In Proceedings of the 2008
The Second International Conference on Next Generation Mobile Applications, Services, and
Technologies, NGMAST ’08, pages 177–183, Washington, DC, USA, 2008. IEEE Com-
puter Society. ISBN 978-0-7695-3333-9. doi: 10.1109/NGMAST.2008.75. URL http://

dx.doi.org/10.1109/NGMAST.2008.75.

[72] Mirco Musolesi and Cecilia Mascolo. Controlled Epidemic-Style Dissemination Mid-
dleware for Mobile Ad Hoc Networks. In International Conference on Mobile and Ubiq-
uitous Systems: Networks and Services, pages 1–9, San Jose, CA, USA, 2006.

[73] A. Nandan, S. Das, G. Pau, M. Gerla, and M.Y. Sanadidi. Co-operative downloading
in vehicular Ad Hoc wireless networks. In IFIP/IEEE Annual Conference on Wireless
On-demand Network Systems and Services, pages 32–41, St.Moritz, Switzerland, 2005.

[74] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(2):026113+, February 2004. doi: 10.1103/physreve.69.
026113. URL http://dx.doi.org/10.1103/physreve.69.026113.

[75] Jörg Ott and Jussi Kangasharju. Opportunistic content sharing applications. In Pro-
ceedings of the 1st ACMWorkshop on Emerging Name-Oriented Mobile Networking Design -
Architecture, Algorithms, and Applications, NoM ’12, pages 19–24, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1291-2. doi: 10.1145/2248361.2248367. URL http://

doi.acm.org/10.1145/2248361.2248367.

[76] Charith Perera, Arkady B. Zaslavsky, Peter Christen, Ali Salehi, and Dimitrios Geor-
gakopoulos. Capturing sensor data from mobile phones using global sensor network
middleware. In PIMRC, pages 24–29. IEEE, 2012. ISBN 978-1-4673-2566-0. URL
http://dblp.uni-trier.de/db/conf/pimrc/pimrc2012.html#PereraZCSG12.

[77] Anna-Kaisa Pietiläinen, Earl Oliver, Jason LeBrun, George Varghese, and Christophe
Diot. Mobiclique: Middleware for mobile social networking. In Proceedings of the
2Nd ACM Workshop on Online Social Networks, WOSN ’09, pages 49–54, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-445-4. doi: 10.1145/1592665.1592678. URL
http://doi.acm.org/10.1145/1592665.1592678.

[78] Mikko Pitkänen, Ari Keränen, and Jörg Ott. Message fragmentation in opportunistic
dtns. In IEEE International Symposium on a World of Wireless Mobile and Multimedia
Networks, pages 1–7, Newport Beach, CA, USA, 2008.

[79] Pascal Pons and Matthieu Latapy. Computing communities in large networks using
random walks. Journal of Graph Algortihms and Applications, 10(2):191–218, 2006. doi:
10.7155/jgaa.00124.

[80] Valentin Radu, Lito Kriara, and Mahesh K. Marina. Pazl: A mobile crowdsensing
based indoor wifi monitoring system. In CNSM, pages 75–83, 2013.

http://doi.acm.org/10.1145/1755743.1755783
http://dx.doi.org/10.1109/NGMAST.2008.75
http://dx.doi.org/10.1109/NGMAST.2008.75
http://dx.doi.org/10.1103/physreve.69.026113
http://doi.acm.org/10.1145/2248361.2248367
http://doi.acm.org/10.1145/2248361.2248367
http://dblp.uni-trier.de/db/conf/pimrc/pimrc2012.html#PereraZCSG12
http://doi.acm.org/10.1145/1592665.1592678

Bibliography 131

[81] Usha N. Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to
detect community structures in large-scale networks. Physical Review E, 76(3):036106+,
September 2007. doi: 10.1103/physreve.76.036106. URL http://dx.doi.org/10.

1103/physreve.76.036106.

[82] R. Raghavendra, J. Padhye, R. Mahajan, and E. Belding. Wi-Fi Networks are Under-
utilized. Technical report, Microsoft Research, 2009.

[83] Sundaram Rajagpalan and Chien Chung Shen. A cross-layer decentralized BitTor-
rent for mobile Ad Hoc networks. In International Conference on Mobile and Ubiquitous
Systems: Networks and Services, pages 203–212, San Jose, USA, 2006.

[84] V. Ramiro, E. Lochin, P. Senac, and T. Rakotoarivelo. On the limits of dtn monitoring.
InWorld of Wireless, Mobile and Multimedia Networks (WoWMoM), 2013 IEEE 14th Inter-
national Symposium andWorkshops on a, pages 1–6, 2013. doi: 10.1109/WoWMoM.2013.
6583441.

[85] Juan Ramos. Using TF-IDF to determine word relevance in document queries. In
Proceedings of the First Instructional Conference on Machine Learning, 2003.

[86] Tahiry Razafindralambo, Thomas Begin, Marcelo Dias de Amorim, Isabelle Guérin
Lassous, NathalieMitton, andDavid Simplot-Ryl. Promoting quality of service in sub-
stitution networkswith controlled mobility. InAdHoc Networks andWireless (ADHOC-
NOW), pages 248–261, July18–20 2011.

[87] Joshua Reich and Augustin Chaintreau. The age of impatience: optimal replication
schemes for opportunistic networks. In ACM Conext, pages 85–96, Rome, Italy, 2009.

[88] Marco Di Renzo, Harald Haas, and Peter M. Grant. Spatial modulation for multiple-
antenna wireless systems: a survey. IEEE Communications Magazine, 49(12):182–191,
2011. URL http://dblp.uni-trier.de/db/journals/cm/cm49.html#RenzoHG11.

[89] Injong Rhee, Minsu Shin, Seongik Hong, Kyunghan Lee, Seongjoon Kim, and Song
Chong. CRAWDAD trace ncsu/mobilitymodels/gps/kaist (v. 2009-07-23). Down-
loaded from http://crawdad.cs.dartmouth.edu/ncsu/mobilitymodels/GPS/KAIST,
July 2009.

[90] Nikodin Ristanovic, George Theodorakopoulos, and Jean-Yves Le Boudec. Traps and
pitfalls of using contact traces in performance studies of opportunistic networks. In
INFOCOM, pages 1377–1385, 2012.

[91] Joshua Robinson, Ram Swaminathan, and EdwardW. Knightly. Assessment of urban-
scale wireless networks with a small number of measurements. In ACM MobiCom,
pages 187–198, September14–19 2008.

[92] Bilel Ben Romdhanne, Diego Dujovne, and Thierry Turletti. Efficient and scalable
merging algorithms for wireless traces. In Workshop on Real Overlays and Distributed
Systems (ROADS), pages 1–7, October 2009.

[93] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis II. An analysis of
several heuristics for the traveling salesman problem. SIAM J. Comput., pages 563–581,
1977.

[94] M Rosvall and C T Bergstrom. Maps of information flow reveal community structure
in complex networks. Technical Report arXiv:0707.0609, Jul 2007. Comments: 6 pages
and 3 figures.

http://dx.doi.org/10.1103/physreve.76.036106
http://dx.doi.org/10.1103/physreve.76.036106
http://dblp.uni-trier.de/db/journals/cm/cm49.html#RenzoHG11

132 Bibliography

[95] Matteo Sammarco, Nadjet Belblidia, Yoann Lopez, Marcelo Dias de Amorim, Luís H.
M. K. Costa, and Jeremie Leguay. PePiT: Opportunistic Dissemination of Large Con-
tents on Android Mobile Devices. In ACM MobiOpp Demo Session, Zurich, Switzer-
land, 2012.

[96] Matteo Sammarco, Miguel E. M. Campista, and Marcelo Dias de Amorim. Trace se-
lection for improved WLAN monitoring. In Proceedings of the 5th ACM workshop on
HotPlanet, HotPlanet ’13, pages 9–14, New York, New York, USA, 2013. ACM Press.
ISBN 9781450321778. doi: 10.1145/2491159.2491165. URL http://dx.doi.org/10.

1145/2491159.2491165.

[97] Mohamed Sbai, Emna Salhi, and Chadi Barakat. P2P content sharing in spontaneous
multi-hop wireless networks. In International conference on Communication systems and
Networks, pages 1–10, Bangalore, India, 2010.

[98] Aaron Schulman, Dave Levin, andNeil Spring. On the fidelity of 802.11 packets traces.
In International conference on Passive and Active network Measurement (PAM), pages 132–
141, April 2008.

[99] P. Serrano, M. Zink, and J. Kurose. Assessing the Fidelity of COTS 802.11 Sniffers. In
INFOCOM 2009, IEEE, pages 1089–1097, April. doi: 10.1109/INFCOM.2009.5062021.

[100] Yong Sheng, Guanling Chen, Hongda Yin, K. Tan, U. Deshpande, B. Vance, D. Kotz,
A. Campbell, C. McDonald, T. Henderson, and J. Wright. MAP: a scalable monitoring
system for dependable 802.11 wireless networks. Wireless Communications, IEEE, 15
(5):10–18, October 2008. ISSN 1536-1284. doi: 10.1109/MWC.2008.4653127.

[101] IEEE Computer Society. IEEE standard 802.11 part 11: Wireless LANMedium Access
Control (MAC) and Phisical Layer (PHY) Specifications, 2012.

[102] Libo Song, David Kotz, Ravi Jain, and Xiaoning He. Evaluating location predic-
tors with extensive wi-fi mobility data. Mobile Computing and Communications Re-
view, 7(4):64–65, 2003. URL http://dblp.uni-trier.de/db/journals/sigmobile/

sigmobile7.html#SongKJH03.

[103] Hasan Sözer, Metin Tekkalmaz, and Ibrahim Korpeoglu. A peer-to-peer file search
and download protocol for wireless ad-hoc networks. Computer Communications, 32:
41–50, Jan. 2009.

[104] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi Raghavendra. Single-
copy routing in intermittently connected mobile networks. In IEEE Conference on Sen-
sor, Mesh and Ad Hoc Communications and Networks, pages 235–244, Santa Clara, CA,
USA, 2004.

[105] Kannan Srinivasan, Maria A. Kazandjieva, Mayank Jain, Edward Kim, and Philip
Levis. SWAT: enabling wireless network measurements. In ACM conference on Em-
bedded network sensor systems (SenSys), pages 395–396, November5–7 2008.

[106] Jing Su, James Scott, Pan Hui, Jon Crowcroft, Eyal De Lara, Christophe Diot, Ashvin
Goel, Meng How Lim, and Eben Upton. Haggle: Seamless networking for mobile
applications. In Proceedings of the 9th International Conference on Ubiquitous Computing,
UbiComp ’07, pages 391–408, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-
540-74852-6. URL http://dl.acm.org/citation.cfm?id=1771592.1771615.

http://dx.doi.org/10.1145/2491159.2491165
http://dx.doi.org/10.1145/2491159.2491165
http://dblp.uni-trier.de/db/journals/sigmobile/sigmobile7.html#SongKJH03
http://dblp.uni-trier.de/db/journals/sigmobile/sigmobile7.html#SongKJH03
http://dl.acm.org/citation.cfm?id=1771592.1771615

Bibliography 133

[107] Keren Tan, Chris McDonald, Bennet Vance, Chrisil Arackaparambil, Sergey Bratus,
and David Kotz. FromMAP to DIST: the evolution of a large-scale WLANmonitoring
system. IEEE Transactions on Mobile Computing, 99(PrePrints):1, 2012. ISSN 1536-1233.
doi: http://doi.ieeecomputersociety.org/10.1109/TMC.2012.237.

[108] TaskBomb v1.8.12. Taskbomb v1.8.12. http://androidideas.org/taskbomb, 2012.

[109] Pierre Ugo Tournoux, Jérémie Leguay, Farid Benbadis, Vania Conan, Marcelo Dias
de Amorim, and John Whitbeck. The accordion phenomenon: Analysis, characteriza-
tion, and impact on DTN routing. In IEEE Infocom, pages 1116–1124, Rio de Janeiro,
2009.

[110] Sacha Trifunovic, Bernhard Distl, Dominik Schatzmann, and Franck Legendre. Wifi-
opp: ad-hoc-less opportunistic networking. In ACM CHANTS, pages 37–42, Las Ve-
gas, Nevada, USA, 2011.

[111] Cristian Tuduce and Thomas R. Gross. A mobility model based on wlan traces and its
validation. In INFOCOM, pages 664–674. IEEE, 2005. URL http://dblp.uni-trier.

de/db/conf/infocom/infocom2005.html#TuduceG05.

[112] Bryan Veal, Kang Li, and David K. Lowenthal. New methods for passive estimation
of tcp round-trip times. In Constantinos Dovrolis, editor, PAM, volume 3431 of Lecture
Notes in Computer Science, pages 121–134. Springer, 2005. ISBN 3-540-25520-6. URL
http://dblp.uni-trier.de/db/conf/pam/pam2005.html#VealLL05.

[113] Pedro B. Velloso, Rafael P. Laufer, Daniel de Oliveira Cunha, Otto Carlos M. B. Duarte,
and Guy Pujolle. Trust management in mobile ad hoc networks using a scalable
maturity-based model. IEEE Transactions on Network and Service Management, 7(3):
172–185, 2010.

[114] Brad Williams and Tracy Camp. Comparison of broadcasting techniques for mobile
ad hoc networks. In ACMMobihoc, pages 194–205, Lausanne, Switzerland, 2002.

[115] Bo Xing, Karim Seada, and Nalini Venkatasubramanian. Proximiter: Enabling mobile
proximity-based content sharing on portable devices. In PerCom, pages 1–3. IEEE
Computer Society, 2009. ISBN 978-1-4244-3304-9. URL http://dblp.uni-trier.de/

db/conf/percom/percom2009.html#XingSV09.

[116] Jihwang Yeo, Moustafa Youssef, and Ashok Agrawala. A framework for wireless lan
monitoring and its applications. In Proceedings of the 3rd ACM Workshop on Wireless
Security, WiSe ’04, pages 70–79, New York, NY, USA, 2004. ACM. ISBN 1-58113-
925-X. doi: 10.1145/1023646.1023660. URL http://doi.acm.org/10.1145/1023646.

1023660.

[117] Chih-Wei Yi. A unified analytic framework based on minimum scan statistics for
wireless ad hoc and sensor networks. IEEE Transactions on Parallel and Distributed
Systems, 20(9):1233–1245, September 2009.

[118] Eiko Yoneki, Pan Hui, ShuYan Chan, and Jon Crowcroft. A socio-aware overlay for
publish/subscribe communication in delay tolerant networks. In ACM International
Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages
225–234, Chania, Crete Island, Greece, 2007.

[119] Xiaolan Zhang, Jim Kurose, Brian Neil Levine, Don Towsley, and Honggang Zhang.
Study of a bus-based disruption-tolerant network: mobility modeling and impact on
routing. In ACMMobicom, pages 195–206, Montré;al, Québec, Canada, 2007.

http://androidideas.org/taskbomb
http://dblp.uni-trier.de/db/conf/infocom/infocom2005.html#TuduceG05
http://dblp.uni-trier.de/db/conf/infocom/infocom2005.html#TuduceG05
http://dblp.uni-trier.de/db/conf/pam/pam2005.html#VealLL05
http://dblp.uni-trier.de/db/conf/percom/percom2009.html#XingSV09
http://dblp.uni-trier.de/db/conf/percom/percom2009.html#XingSV09
http://doi.acm.org/10.1145/1023646.1023660
http://doi.acm.org/10.1145/1023646.1023660

134 Bibliography

[120] Zhensheng Zhang. Routing in intermittently connected mobile ad hoc networks and
delay tolerant networks: overview and challenges. IEEE Communications Surveys and
Tutorials, 8(1):24–37, quarter 2006.

[121] J. Zhao and G. Cao. Vadd: Vehicle-assisted data delivery in vehicular ad hoc networks.
In IEEE Infocom, pages 1–12, 2006.

[122] W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach for data delivery
in sparse mobile ad hoc networks. In ACM Mobihoc, pages 187–198, Roppongi Hills,
Tokyo, Japan, 2004.

[123] Ruogu Zhou, Guoliang Xing, Xunteng Xu, Jianping Wang, and Lin Gu. Wiznet:
A zigbee-based sensor system for distributed wireless lan performance monitoring.
2013 IEEE International Conference on Pervasive Computing and Communications (Per-
Com), 0:123–131, 2013. doi: http://doi.ieeecomputersociety.org/10.1109/PerCom.
2013.6526722.

[124] Gjergji Zyba, Geoffrey M. Voelker, Stratis Ioannidis, and Christophe Diot. Dissemina-
tion in OpportunisticMobile Ad-hoc Networks: the Power of Crowd. In IEEE Infocom,
pages 1179–1187, Shanghai, China, 2011.

List of Figures

1.1. Problems occurring in wireless communications. 2
1.2. Wireless traffic capturing during opportunistic content exchange 4
1.3. Experimental workflow. 6

3.1. Modules of the PePiT architecture. 20
3.2. Crowd message format. 22
3.3. PePiT user interface. 23
3.4. An illustrative scenario of the working of EPICS. 24
3.5. Distribution of completion times for experiments. 27
3.6. Content dissemination delays. 28
3.7. Contacts and inter-contacts in the emulated mobile scenario. All nodes start

at the same time. 29
3.8. EPICS versus Uniform in an emulated mobile scenario. Contents have vari-

able size and variable creation times. 30
3.9. Mobile scenario plan. Path is highlighted in red. All nodes start at the same

time. 31
3.10. EPICS versus Uniform in a mobile scenario. Contents have variable size and

variable creation times. 31

4.1. Screenshot of PePiT option settings. 34
4.2. Dissemination time by tuning the piece size and using UDP sockets. 36
4.3. Data-link and application level measurements tuning the piece size and using

UDP sockets. 37
4.4. Dissemination time tuning the piece size and using TCP sockets. 38
4.5. Average dissemination difference using TCP and UDP sockets. 39
4.6. Dissemination efficiency tuning the piece size and using TCP sockets. 40
4.7. Dissemination time and external traffic with burst mode activated. 40
4.8. View of the transmission queue. With a burst size = 10, pieces experience a

long queue delay and they result useless once transmitted. 40
4.9. Dissemination time of one content, tuning the burst size and changing the

number of nodes involved. 41
4.10. Operation area: Burst size for minimum diffusion time with a tolerance of 30

seconds. 42
4.11. Cumulative distribution function of the number of nodes that every node

perceives in his neighborhood, including itself. (a) Shopping Mall trace, (b)
KAIST trace, (c) SIMPS trace. 42

4.12. SIMPS simulator. 43
4.13. DAD vs. EPICS and vs. EPICS with a burst of ten pieces. CDF of dissemina-

tion times per content and per node. 44

5.1. RTS-CTS mechanism and fragmentation. 51

135

136 List of Figures

5.2. MAC frame format and frame control field structure. 51
5.3. Typical wireless measurement system architecture: sensing, merge, and pre-

sentation modules. 52
5.4. Time elapsed after a complete merging procedure for an increasing number

of traces. Average time and 95% confidence interval are calculated over 10
experiments. Reducing the number of traces can significantly affect the time
required for the entire operation. 53

6.1. Impact of merging a selected subset of traces. In each trace, the collected and
missed frames are represented by black and white rectangles, respectively.
Merging all traces together permits more complete results but also incurs in
more merging operations. 58

6.2. Additional tasks of the proposed merging procedure. 59
6.3. Monitor deployment for IRCICA and INRIA scenarios. 62
6.4. Wireless traffic characterization in IRCICA and INRIA scenarios. 63
6.5. IRCICA scenario, similarity matrices. (a) Intra-flow, (b) Inter-flow, (c) Adamic,

(d) Power, (e) Weighted inter-flow. 65
6.6. INRIA scenario, similarity matrices. (a) Intra-flow, (b) Inter-flow, (c) Adamic,

(d) Power, (e) Weighted inter-flow. 66
6.7. Graphs generated using traces as nodes and weighted inter-flow similarity

values as edge lengths. Different node shapes (◆, ●, ■) denote different com-
munities. 71

6.8. Comparison of the merging process performance ranking traces according to
the size and the TSP solution. 73

6.9. A fully connected graph with 5 nodes belonging to 2 communities. Higher
the similarity between traces, thicker the edges connecting them. 74

6.10. Comparison of the merging process performances ranking traces according
to the ascending node degree and the TSP solution. 76

7.1. The fraction of captured frames increases after merging two individual traces
from different sensing nodes. Each individual sensing node, S1 and S2, has
captured 50% of the total frames numbered in sequential order from 1 to 4.
After merging, the fraction of captured frames increases to 75%. 81

7.2. Repulsive attack. Malicious node M forges a trace containing a complete se-
quence of frames. As a consequence, the fraction of captured frames increases
from 75% to 83% and the wireless infrastructure is repulsed to other areas. At
the end, the wireless infrastructure becomes farther away from M. 82

7.3. Attractive attack. Malicious node M forges a trace containing an empty se-
quence of frames. As a consequence, the fraction of captured frames reduces
from 75% to 66% and the wireless infrastructure is attracted toward M. At the
end, the wireless infrastructure becomes closer to M. 82

7.4. Experimental scenario. 85
7.5. Fraction of received frames considering all source-destination pairs in both

scenarios. 88
7.6. Sequence number variation considering all source-destination pairs in both

scenarios. 88
7.7. Geographical distribution of percentage of received frames considering all

source-destination pairs in both scenarios. 89
7.8. Geographical distribution of percentage of received frames for sorted fraction

of received frames considering all source-destination pairs in both scenarios. 89

List of Figures 137

7.9. Impact of inserting traces with fake communicating pairs on the accuracy of
the merged trace. 90

7.10. Node strength variation in repulsive attack. 91
7.11. Node strength variation in attractive attack. 91
7.12. Graph obtained considering a malicious node executing the repulsive attack

in the collocated scenario: (a) with 25 fake communicating pairs and (b) with
400 fake communicating pairs. 92

7.13. Graph obtained considering a malicious node executing the repulsive attack
in the scattered scenario: (a) with 25 fake communicating pairs and (b) with
400 fake communicating pairs. 93

7.14. Graph obtained considering a malicious node executing the attractive attack
in the collocated scenario: (a) with 25 fake communicating pairs and (b) with
400 fake communicating pairs. 93

7.15. Graph obtained considering a malicious node executing the attractive attack
in the scattered scenario: (a) with 25 fake communicating pairs and (b) with
400 fake communicating pairs. 93

7.16. Outlier detection using Dixon’s test. 94

A.1. Problèmes qui se posent dans les communications sans fil. 104
A.2. Flux de travail. 105
A.3. Modules de détection, de fusion et de présentation : typique architecture du

système de surveillance passive. 106
A.4. PePiT user interface. 107
A.5. Distributions des temps d’achèvement des expériences. 108
A.6. DAD: mode d’opération et évaluation. 109
A.7. Tâches supplémentaires proposé pour le module de fusion de traces. 110
A.8. Comparaison des processus de fusion des traces avec le classement proposé

et le classement en fonction de la taille des traces. 111
A.9. Comparaison des processus de fusion des traces avec le classement proposé

et le classement en fonction du degré des nœuds. 111
A.10.Variation de la métrique strength pour l’attaque répulsive. 113
A.11.Variation de la métrique strength pour l’attaque attrayant. 114

B.1. PePiT communication module UML class diagram. 120
B.2. PePiT communication module UML class diagram. 121
B.3. PePiT communication module UML class diagram. 122

138 List of Figures

List of Tables

2.1. Summary of variables in opportunistic content dissemination context. 14

3.1. Parameters for the first experiments with PACS and EPICS. 25
3.2. Parameters for nodes of group α, β and γ. 29

4.1. Burst size in function of the node degree. 43

6.1. Trace size for IRCICA and scenarios. 63
6.2. Walktrap modularity values and relative communities for all the similarity

metrics. 69
6.3. Infomap modularity values and relative communities for all the similarity

metrics. 69
6.4. Label propagation modularity values and relative communities for all the

similarity metrics. 69

7.1. Accuracy results obtained with individual and merged traces in both evalu-
ated scenarios. 87

7.2. Cramér-von Mises results for normality hypothesis test. The results above
0.05 do not reject the hypothesis of normality. 94

A.1. Paramètres expérimentaux with PACS and EPICS. 107
A.2. Accuracy obtenue avec les traces individuelles et avec tous les traces fusionnées.113
A.3. Test de Cramér-von Mises pour l’hypothèse de normalité. Les résultats au

dessus de 0.05 ne rejetent pas l’hypothèse de normalité. 114

139

140 List of Tables

List of Tables 141

