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Conception d’un Convertisseur à Haut Rendement 
et Très Forte Puissance Massique pour Alimentation 

du Réseau de Bord Basse Tension des Véhicules 
Electriques et Hybrides 

Résumé 

Cette thèse traite de la conception d’un convertisseur DC / DC destiné aux véhicules 

électriques et hybrides (2,5 kW, 400V/14V, 250kHz). Dérivé de la topologie LLC à 

résonance, ce convertisseur bénéficie des nombreux avantages propres à cette structure 

particulière. C’est ainsi que le prototype réalisé présente un rendement très élevé, une densité 

de puissance très forte avec des perturbations EMI très réduites. La première partie de cette 

thèse est consacrée à l’analyse théorique du circuit LLC afin de dégager un modèle de 

conversion et une stratégie de contrôle adaptée à l’application visée. Afin de conserver un 

rendement important sur une large plage de charge, une structure basée sur la mise en 

parallèle de deux modules LLC est proposée. Une nouvelle stratégie de contrôle à deux 

boucles est également proposée pour équilibrer le courant entre les deux modules. La seconde 

partie de la thèse fait appel à la simulation et à l’expérimentation. Il s’agit de minimiser la 

masse et l’encombrement tout en maximisant le rendement. Un composant magnétique 

spécial est conçu puis dimensionné pour intégrer le transformateur et diverses inductances. 

Pour cela, les pertes dans le circuit magnétique et les enroulements sont quantifiées en 

fonction de divers modes de réalisation et diverses géométries. Ce convertisseur met 

également en œuvre un système de redressement synchrone robuste avec une compensation 

de phase, un module de puissance avec une résistance thermique très faible et un système de 

refroidissement efficace par air. Le rendement maximal mesuré est 95%. Le rendement 

demeure supérieur à 94% sur une plage de puissance s’étalant de 500 W à 2 kW. La densité 

de puissance est 1W/cm3. La CEM du convertisseur est développée dans cette thèse. 

 

Mots-clés: convertisseur à résonance LLC, commutation douce, composant magnétique, 

augmentation du rendement, équilibrage de courant 
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Design of a High Efficiency High Power Density 
DC/DC Converter for Low Voltage Power Supply in 

Electric and Hybrid Vehicles 

Abstracts 

In this dissertation, a 2.5kW 400V/14V, 250kHz DC/DC converter prototype is developed 

targeted for electric vehicle/hybrid vehicle applications. Benefiting from numerous 

advantages brought by LLC resonant topology, this converter is able to perform high 

efficiency, high power density and low EMI. A first part of this dissertation is the theoretical 

analysis of LLC: topology analysis, electrical parameter calculation and control strategy. To 

arrange high output current, this thesis proposes parallel connected LLC structure with 

developed novel double loop control to realize an equal current distribution. The second part 

concerns on the system amelioration and efficiency improvement of developed LLC. A 

special transformer is dimensioned to integrate all magnetic components, and various types of 

power losses are quantified based on different realization modes and winding geometries to 

improve its efficiency. This converter also implements a robust synchronous rectification 

system with phase compensation, a power semiconductor module, and an air-cooling system. 

The power conversion performance of this prototype is presented and the developed prototype 

has a peak efficiency of 95% and efficiency is higher than 94% from 500W to 2kW, with a 

power density of 1W/cm3. The CEM analysis of this converter is also developed in this thesis.  

 

Keywords: LLC resonant converter, soft switching, magnetic components, efficiency 

improvement, current sharing 
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RESUME

La principale source d’alimentation des futurs véhicules électriques sera généralement une 

batterie haute tension, de tension comprise entre 220V et 410V. Elle permettra 

essentiellement le pilotage de la chaîne de traction. Le choix d’une tension de batterie 

beaucoup plus élevée qu’actuellement s’explique par la puissance électrique à fournir (entre 

15kW et 100kW selon le type de véhicule) et l’autonomie recherchée (variant de 100km à 

400km selon les cahiers des charges). Pour des problèmes liés à la sécurité des personnes, ce 

réseau HT sera confiné dans une partie du véhicule et limité aux équipements de traction ou 

de forte puissance. En ce qui concerne les autres fonctions à assurer dans le véhicule,

l’alimentation se fera via le réseau BT classique 14V (variant entre 12V et 16V). 

Figure R-1. Chaine de traction électrique dans un véhicule électrique ou hybride

Tous les véhicules électriques (ou hybrides) seront équipés d’un convertisseur DC/DC 

abaisseur générant une tension 14V à partir de la batterie haute tension (figure R-1). Une 

seconde batterie 14V sera également connectée sur ce réseau pour les phases de démarrage, 

d’arrêt et de diagnostique (la batterie haute tension n’étant pas activée durant ces phases). Il 

est important d’innover pour la réalisation de cette fonction afin d’optimiser le rendement, le 

volume et les performances. Dans les véhicules électriques/hybrides, ce convertisseur DC/DC 

doit pouvoir fonctionner à n’importe quelle puissance, de 0 à 2.5kW. Cependant, il y a deux 

gammes de puissance particulièrement utilisées : 600-900W et 1,5k-1,8kW. Assurer un 

rendement de conversion plus élevé dans ces deux domaines de puissance est très important 

afin d’améliorer les performances globales du convertisseur.

Chaîne de traction
&

Equipements de forte 
puissance

Batterie
Haute
Tension
(220V - 410V)

DC/DC 
abaisseur

2.5kW
Réseau 14V
(12V-16V)

Batterie
Basse

Tension

R-i



Le convertisseur LLC, dont la topologie est présentée à la figure R-2, se développe 

rapidement à l’heure actuelle dans les systèmes de conversion d’énergie de type ‘front-end’. 

Le convertisseur LLC permet de réaliser des commutations à zéro de tension (ZVS) au niveau 

des interrupteurs primaires et des commutations à zéro de courant (ZCS) au niveau des 

interrupteurs secondaires. Cela permet d’augmenter beaucoup la fréquence de découpage par 

rapport à celle des convertisseurs MLI (PWM) traditionnels. Le circuit résonnant comprend 

deux inductances et un condensateur. L'inductance de magnétisation du transformateur peut 

être utilisée pour réaliser l’inductance Lm. De la même façon, l'inductance de fuite du 

transformateur est utilisable pour réaliser totalement ou partiellement l’inductance de 

résonance. Le volume global des composants magnétiques peut être donc réduit, ce qui 

présente un très grand avantage du convertisseur LLC par rapport à d'autres types de 

convertisseurs. 

 
Figure R-2. Convertisseur LLC en forme de demi-pont avec redressement synchrone 

Etude théorique : 

Le choix d’un convertisseur à résonance LLC lors de la conception des alimentations DC/DC 

de puissance faible ou moyenne, dans les applications HT/BT, se traduit généralement par un 

très bon rendement. En général, les convertisseurs LLC mentionnés dans les publications sont 

de puissance inférieure à 1kW, souvent comprise entre 300W et 1kW. Une puissance 

supérieure mène à deux difficultés majeures : 

Le premier problème réside dans la réalisation du transformateur. L’inductance magnétisante 

du transformateur nécessaire dans le circuit LLC est proportionnelle à la résistance de charge. 

Pour le convertisseur LLC de 2,5 kW, la charge équivalente est de 80mΩ. La valeur Lm 

requise est trop basse pour être réalisée en utilisant classiquement un noyau magnétique à 

entrefer. L’entrefer serait en effet beaucoup trop large, ce qui entrainerait notamment un flux 
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de fuite important vers les enroulements et donc des pertes supplémentaires par courants de 

Foucault. En comparaison pour un convertisseur LLC de puissance moitié, soit 1.25kW, 

l'inductance de magnétisation du transformateur requise est doublée et la largeur d’entrefer 

devient plus raisonnable.  

La deuxième difficulté est l’augmentation très rapide des pertes par conduction dans les semi-

conducteurs et dans le transformateur en fonction de la puissance du convertisseur. Le courant 

efficace dans les MOSFETs primaires et secondaires d’un convertisseur LLC de 2,5 kW est 

deux fois plus élevé que dans un convertisseur LLC de 1.25kW. Afin de réduire les pertes 

globales par conduction, plusieurs transistors MOSFET doivent être connectés en parallèle. 

La section des enroulements du transformateur devant également être augmentée, il en résulte 

un volume supérieur de circuit magnétique, ce qui rend encore plus difficile d’obtenir une 

faible inductance magnétisante. 

Nous avons retenu le convertisseur de type LLC compte tenu de ses caractéristiques 

intéressantes pour l’application visée. Cependant, pour pallier aux problèmes dus à 

l'augmentation de puissance, il est intéressant de réaliser le convertisseur sous la forme de 

plusieurs modules LLC fonctionnant en parallèle et se partageant le courant total. Nous avons 

opté pour l’utilisation de deux modules. 

Le convertisseur LLC à deux cellules entrelacées, connectées en parallèle au primaire comme 

au secondaire est connu d’après la bibliographie comme un bon candidat pour gérer la forte 

puissance. Les principes décrits dans les publications font état de deux modules fonctionnant 

simultanément à une même fréquence. Les deux modules sont commandés par un même 

contrôleur imposant un déphasage de 90° entre eux de manière à minimiser le contenu 

harmonique des courants d’entrée et de sortie du convertisseur global. Cela fonctionne 

parfaitement si les deux circuits résonnants sont identiques. Cependant, la dispersion des 

valeurs de composants entraîne une répartition aléatoire de courant entre les deux cellules. 

Afin d’équilibrer correctement les transferts d’énergie entre les deux modules et de leur faire 

partager équitablement les contraintes, notamment les pertes, nous proposons dans cette thèse 

une autre solution pour commander ce convertisseur LLC parallèle-parallèle. La nouvelle 

méthode de contrôle fait appel à deux boucles de régulation : une boucle externe pour la 

tension de sortie et une boucle interne pour le courant d'entrée. L’équilibrage de courant entre 

les deux modules en parallèle est assuré en contrôlant le courant d'entrée de chaque cellule. La 

mesure des courants d’entrée est assurée par un shunt résistif pour raison de simplicité. La 
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figure R-3 montre le convertisseur LLC proposé à double phase et avec les deux capteurs de 

courant RA et RB à l’entrée de chaque cellule. Le capteur de courant est placé entre la cellule 

de puissance et la masse primaire de manière à ce que la mesure de courant ne soit pas 

flottante. 

 
Figure R-3. Convertisseur LLC à double phase proposé avec capteurs de courant 

 
Figure R-4. Schéma-bloc du circuit de commande pour équilibrer les courants entre les deux 

modules LLC du convertisseur  
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Le schéma-bloc du circuit de commande proposé pour équilibrer les courants entre modules, 

adapté au convertisseur LLC à double phase, est présenté à la figure-R4. Le shunt RA de la 

cellule de puissance A et le shunt RB de la cellule de puissance B renvoient les signaux de 

courant d'entrée sous forme de tensions distinctes VRA et VRB. Après filtrage et amplification à 

un niveau approprié, ces signaux sont notés ImA et ImB. Ils reflètent les valeurs moyennes des 

courants en entrée de chaque cellule. Le filtre réalise une caractéristique de type passe-bas 

avec une forte atténuation dans la gamme de fréquence opérationnelle du convertisseur. En ce 

qui concerne la boucle externe de régulation de la tension de sortie, celle-ci est comparée à la 

tension de référence, puis l’erreur de comparaison eV est soumise à un régulateur de tension 

du type PI. La régulation de tension fournit la référence de courant Iref, unique pour les deux 

cellules de puissance. Cette référence Iref doit être isolée de la partie BT et limitée à une 

certaine valeur pour éviter toute surintensité. Les images ImA et ImB des courants sont asservis 

à la référence Iref par le régulateur de courant respectif à chaque cellule. C’est ainsi que 

l’équilibrage des courants d’entrée entre les deux cellules de puissance peut être assuré. Les 

signaux eI1 et eI2 sont envoyés à deux oscillateurs (des oscillateurs contrôlés en tension de 

type VCO ou des oscillateurs contrôlés en courant de type ICO). Des drivers permettent de 

commander correctement les MOSFETs du demi-pont. 

Il est important de remarquer que les deux convertisseurs fonctionnent ainsi à deux fréquences 

légèrement différentes afin de maintenir le même ratio de conversion de tension. La 

différence de fréquences provient de la dispersion des valeurs de composants dans les deux 

circuits résonnants. L’analyse des conséquences de cette double fréquence de découpage fait 

partie de cette thèse. 

Le logiciel Simplis est utilisé pour étudier la fonction de transfert du convertisseur LLC et 

désigner les paramètres des régulations. La modèle dynamique du convertisseur à résonance 

en régime de faible amplitude est difficile à obtenir par la méthode de l’état moyenné. Le 

logiciel Simplis intègre une analyse périodique du point de fonctionnement (POP analysis) 

qui permet de déterminer la fonction de transfert du convertisseur LLC sans établir son 

modèle à faible signal. Grâce aux résultats obtenus par simulation, nous avons pu déterminer 

les paramètres de régulation pour obtenir un système rapide, stable et précis, comme l’atteste 

la figure R-5. 
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Figure R-5. Diagramme de Bode de la fonction de transfert en boucle ouverte non corrigée

(NC) et corrigée (C) à P=1250W et Vin=330V pour la boucle interne de courant

Pour la boucle de courant, après correction, la bande passante obtenue est de 3kHz, avec une 

marge de phase de 83º et une marge de gain de 8dB. La même simulation est faite pour la

boucle externe de tension, avec les résultats de la figure R-6.
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Figure R-6. Diagramme de bode de la fonction de transfert en boucle ouverte non corrigée

(NC) et corrigée (C) à P=1250W et Vin=330V pour la boucle externe de tension

Pour le boucle de tension, après correction, la bande passante obtenue est de 2.5kHz, avec une 

marge de phase de 74º et une marge de gain de 12dB.

En outre, le convertisseur de LLC est capable de réaliser la fonction de démarrage progressif 

(soft-start), la protection en cas de surcharge ou de court-circuit, la protection en cas de 

surtension…

Concernant le dimensionnement du circuit LLC, afin d’obtenir une grande plage de variation 

de tension en entrée avec une plage de fréquence de fonctionnement limitée, une faible valeur 

est nécessaire pour l’inductance Lm. À cause de cette faible inductance, le courant de 

magnétisation est important en regard du courant de résonance, ce qui tend à dégrader le 

rendement global. Le moyen le plus efficace pour améliorer le facteur de puissance des bras 
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de pont est d’augmenter le plus possible l’inductance magnétisante Lm. Cependant, la plage 

de variation de tension en entrée doit alors être réduite. En particulier, une inductance Lm trop 

forte abaisse trop le gain statique du convertisseur et le rend inapte à fonctionner sous la 

tension minimale de 220 V en entrée. En conséquence, un convertisseur de type BOOST doit

alors être placé en amont du convertisseur LLC, comme à la figure R-7.

Figure R-7. Double étage LLC+BOOST pour améliorer le rendement global

Comme indiqué sur la figure R-7, la plage de variation de la tension en entrée du 

convertisseur LLC est réduite à 330-410V. Pour une tension en entrée du système global Vin 

inférieure à 330 V, le convertisseur BOOST est activé pour augmenter la tension jusque vers 

330V. Pour Vin supérieure à 330 V, le convertisseur BOOST est désactivé de manière à 

appliquer directement la tension d'entrée au convertisseur LLC (seule la diode du BOOST 

conduit alors). La limite de 330 V est choisie en fonction des caractéristiques de charge de la 

batterie dans les véhicules électriques (figure R-8).

Figure R-8. Etat de charge d’une batterie au lithium-ion dans les véhicules électriques

D’après la figure R-8, la plage de fonctionnement de [220V 330V] correspond en fait à un 

domaine de fonctionnement marginal du convertisseur. Ainsi, la plupart du temps, le 
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convertisseur BOOST n'est pas activé. La comparaison des performances, avec et sans 

BOOST, fait partie de cette thèse. C’est ainsi que le BOOST permet d’augmenter le 

rendement global d’au moins 2% dans la gamme de tension [330V 410V] et d’au moins 1% 

dans la gamme [220V 330V]. Durant la thèse, les travaux ont porté essentiellement sur la 

conception du convertisseur LLC, ce qui a permis de réaliser et d’optimiser un prototype 

toutefois sans BOOST.

L’approximation dite « du premier harmonique » (FHA) est une méthode simplifiée 

permettant d’analyser beaucoup de convertisseurs à résonance. Elle permet en particulier 

d’établir le circuit électrique équivalent d'un convertisseur LLC en approchant les formes de 

courant et de tension par une forme sinusoïdale tout en négligeant les effets des autres 

harmoniques d'ordre plus élevé. Dans l’analyse traditionnelle du convertisseur LLC, l’effet de 

l’inductance de fuite partielle au secondaire du transformateur (et de l’inductance de câblage 

secondaire) est négligé. Toutefois, à fréquence suffisamment élevée et en cas de fort courant 

et faible tension en sortie, l’impédance de cette inductance parasite devient non négligeable 

devant la charge nominale : l2=120nH, soit 116mΩ à 150kHz, comparable à la charge de 

160mΩ. Son effet doit être donc pris en compte dans la conception et le dimensionnement du 

convertisseur. La figure R-9 représente les circuits équivalents d'une cellule de résonance 

LLC idéalisée et d’une cellule comprenant l’inductance parasite précédente.

Figure R-9. Les circuits équivalents d'une cellule de résonance LLC idéalisée et d’une cellule 

avec l’inductance parasite ramenée au primaire

L’étude analytique par la méthode du premier harmonique d’un convertisseur LLC doté d’une 

cellule de résonance idéale (figure R-9(1)) mène à un ratio de conversion normalisé donné par 

la relation R-1 :
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La figure R-10 montre la différence entre les deux ratios.

Figure R-10. Caractéristiques des cellules LLC idéale (Lr=7.5uH, Cr=50nF, Lm=42µH) et 

non-idéale (avec l2=120nH)

Plusieurs conclusions relatives à la présence de L2 peuvent être tirées de ce qui précède :

(1) En l'absence de charge, Q = 0, le gain reste le même que dans le convertisseur LLC idéal.
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(4) Pour une même valeur de Q, le taux de conversion maximal est augmenté.

En conclusion, le dimensionnement des deux modules LLC doit prendre en compte toutes les 

inductances de fuite partielles du transformateur et les inductances de câblage. Comme 

indiqué sur la figure R-10, le convertisseur LLC est conçu pour fonctionner avec une tension 

d’entrée de 330-410V et une tension de sortie 12-16V. La fréquence de fonctionnement est 

alors comprise entre 150 kHz et 260kHz. Toutefois, afin de simplifier les tests du prototype, 

la tension de sortie a été régulée à une valeur constante de 14 V en présence d’une charge 

purement résistive, variable dans de grandes proportions (0 à 2.5 kW).

Réalisation pratique et expérimentation

Un point critique concerne les pertes énergétiques dans la partie secondaire, notamment dans 

les MOSFETs des redresseurs synchrones, à cause du courant de sortie très intense sous basse 

tension. Les MOSFETs standards, sous forme d’éléments discrets, sont difficiles à utiliser ici 

en raison de leur conductivité thermique limitée et de leur résistance d'interconnexion.

Plusieurs MOSFETs devraient être connectés en parallèle afin de résoudre ce problème, ce 

qui augmenterait le nombre global de semi-conducteurs et l’encombrement global. Nous 

avons plutôt opté pour un module de puissance dédié intégrant tous les MOSFETs BT. 

Figure R-11. Intégration des 4 MOSFETs BT « nus » dans le module de puissance IML

Dans le cadre de notre projet, un module de puissance du type ‘lead-frame inséré surmoulé

(IML) a été conçu. Il est représenté à la figure R-11. Les lead-frames sont insérés dans une 

pièce moulée en matière plastique qui présente des zones ouvertes horizontales dans 

lesquelles les puces nues de MOSFETs sont brasées. Les lead-frames supportent donc les 
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puces, et s’étendant aussi vers l'extérieur, ils forment également les bornes de connexion 

électrique. Le module de puissance conçu est composé de quatre puces nues formant une 

configuration à double phase. Les quatre sources des puces sont connectées ensemble (voir la 

figure R-3) et vers le lead-frame par des liaisons 5x500μm. Afin d'effectuer la rectification 

synchrone, les connexions de signal sont réalisées par les liaisons 125μm. Le module de 

puissance lui-même est fixé à la plaque de refroidissement par des vis. Le lead-frame est 

constitué de cuivre de 0,8 mm d'épaisseur permettant ainsi une bonne conductivité électrique 

et thermique. La puce nue choisie est fournie par Infineon : IIPC22S4N06. Elle présente une

résistance interne Rdson = 1.3mΩ , une charge de grille Qg = 208nC et une tension VDSS = 

60V. La résistance totale, y compris celle du lead-frame, est inférieure à 2mΩ. La résistance 

thermique totale, y compris celle des interfaces thermiques, est Rth=1.393 ºC/W.

L’inductance magnétisante nécessaire est Lm = 42uH. La réalisation ne pose pas de 

problème : pour 16 tours du côté primaire du transformateur, un noyau magnétique possédant 

une faible inductance spécifique AL, de l’ordre de 165nH, doit être utilisé (ex : avec entrefer).

Une inductance de fuite suffisante pour réaliser une inductance de résonance impose de 

séparer les enroulements secondaires du primaire. La solution retenue consiste à intercaler les 

16 spires du primaire entre les enroulements secondaires, comme à la figure R-12.

Figure R-12. Réalisation du transformateur avec inductance de fuite lf=1.5 µH
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Dans cette configuration, une plus forte densité de flux existe dans l’intervalle entre 

enroulements : Bpk≈50mT. Avec un espace suffisant entre primaire et secondaires, ce 

transformateur peut ainsi réaliser une inductance de fuite lf=1.5μH. L'inductance de résonance 

nécessaire étant plus élevée, il est nécessaire de rajouter un noyau RM12 à entrefer avec 6 

tours. La photo d'un prototype de transformateur est donnée à la figure R-13.

Figure R-13. Transformateur et inductance additionnelle nus (à gauche) et dans un récipient 

(« sarcophage ») de refroidissement (à droite)

Du fil de Litz (800x0.05mm primaire, 1200x0.05mm secondaire) est utilisé pour éviter l'effet 

de peau et de réduire l'effet de proximité dans les enroulements du transformateur. Les pertes  

dans les fils de Litz doivent être finement analysées pour êtres estimées avec précision. 

Pour le fil de Litz, le diamètre de chaque brin doit être inférieur à l'épaisseur de peau σ. Sous 

cette condition, la répartition de courant peut être considérée comme homogène dans la 

section de chaque brin. Cependant, des pertes importantes peuvent encore être dues à l'effet de 

proximité. Il est possible de distinguer l’effet de proximité interne et l'effet de proximité 

externe. L’effet de proximité interne fixe la distribution de courant dans un brin en fonction 

du courant dans tous les autres brins lorsqu’il n’y a pas de champ externe. L’effet de 

proximité externe est dû à un champ magnétique externe provenant par exemple, comme dans 

notre cas, de l'entrefer d’un transformateur. Les pertes dues à l’effet de proximité externe, les 

principales dans notre cas, peuvent être estimées par l’équation suivante :

𝑃𝑒𝑑𝑑𝑦 =
4𝜔2𝑙𝐵𝑝𝑘2 𝑑2𝑆

128𝜌

ρ est la résistivité du fil, d est le diamètre de chaque brin, l est la longueur du fil, Bpk est le 

pic du champ magnétique externe à une pulsation ω. S est la section effective du fil de Litz, 
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avec 𝑆 = 𝑁𝜋𝑑2/4 . Il semble évident que la diminution du diamètre des brins et 

l’augmentation de leur nombre pour conserver une même section effective permettent de 

réduire les pertes. Cependant, l’isolant nécessaire autour de chaque brin conserve une 

épaisseur équivalente. C’est ainsi qu’un plus grand nombre de brins plus fins pour une même 

section utile totale se traduit par une section totale supérieure, donc par un circuit magnétique 

plus volumineux. En outre, lorsque des brins plus fins sont nécessaires, le coût du fil de Litz 

augmente. Ainsi, le diamètre du brin doit être soigneusement sélectionné afin de réaliser le 

meilleur compromis entre rendement, encombrement et coût. Dans ce projet, nous avons 

choisi le fil de Litz de type 44AWG avec un diamètre de brin de 50 µm (soit environ 1/3 de 

l’épaisseur de peau).

Certaines spires de l’enroulement primaire sont plus proches de l’entrefer et baignent dans un 

champ magnétique plus intense. Dans le but de réduire l’effet de proximité externe, il est 

intéressant d’éloigner les enroulements du noyau central. Afin d'estimer les pertes dans les 

enroulements du transformateur il est possible de recourir à la simulation numérique. La 

figure R-14 donne un exemple de calcul.

Figure R-14. Calcul des pertes dans chaque spire pour une géométrie donnée

La figure R-14 est relative à une distance de 2,5 mm entre enroulements et noyau central 

(épaisseur de la « carcasse »). Les pertes totales dans l’enroulement primaire, dues 

principalement à des courants induits (de Foucault), sont alors de 1.5W. Lorsque la distance 

diminue jusqu’à 1mm, ces pertes passent de 1.5W à 3.5W.
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Dans le cadre de cette thèse, il nous a semblé intéressant de tester un mode de refroidissement 

innovant. Dans un système de refroidissement à air classique, le profilé d’aluminium n’a pas

la capacité d’évacuer efficacement les calories générées par les composants de puissance car

des points chauds existent. La solution de refroidissement adoptée ici passe par l’utilisation 

d’une chambre à vapeur à la base du dissipateur, comme indiqué à la figure R-15.

Figure R-15. Utilisation d'une chambre à vapeur à la base du dissipateur

Une chambre à vapeur est un caloduc plat qui utilise le principe de l'évaporation et de la 

condensation afin de répartir au mieux la chaleur sur le dissipateur, comme une plaque de 

conductivité thermique très élevée. La chaleur est évacuée par l’intermédiaire d’un fluide qui 

s’évapore puis se condense assurant ainsi une répartition uniforme de la température et une 

élimination des points chauds.

Les photos de la figure R-16 montrent l'implantation des composants dans le prototype. 

Comme les pertes dans le PCB du filtre d’entrée sont limitées, celui-ci est monté 

verticalement afin de réduire l’encombrement global. Les MOSFETs HT sont placés en 

dessous du filtre d'entrée et sont fixés directement à la chambre de vapeur par des vis afin de 

faciliter le refroidissement. Des interfaces thermiques sont toutefois nécessaires pour isoler les 

MOSFETs HT de la chambre de vapeur. Les composants magnétiques et les modules 

MOSFET BT sont également montés directement sur la chambre à vapeur. La carte de circuit 

imprimé de commande est montée sur quatre entretoises, au-dessus des composants de 

Module de puissance
58W

Components Magnétiques
28W

Dissipateur
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puissance. Un connecteur externe à 16 broches est utilisé pour échanger des signaux de 

commande et des signaux de mesure avec l'extérieur. Après assemblage, le prototype a un 

encombrement global de 2.5l et une masse de 3 kg. Pour une puissance nominale de 2,5kW 

(puissance crête de 3 kW), cela représente une densité volumique de 1W/cm3 et une densité 

massique de 0.83W/kg, ce qui est très important pour ce type de convertisseur. A l’ambiant, 

seule la convection naturelle est suffisante. Quand la température ambiante s’élevée à 70ºC, 

une convection forcé avec vitesse du vent 1.5m/s est nécessaire afin de garantir les 

composants de puissances sont bien au dessous de 105ºC.
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MOSFETs HT MOSFETs BT Filtre de sortie
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Signaux
externes

Composants magnétiques Chambre à vapeur

Dissipateur
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Figure R-16. Prototype du convertisseur LLC réalisé avec une densité de 1W/cm3

Résultats

Les figures R-17 et R-18 montrent les résultats expérimentaux mesurés sur le prototype.

Figure R-17. Formes d'onde au primaire pour la phase B, avec Io = 150A, Vin=350V.

(Ir:10A/div)

Figure R-18. Formes d'onde au secondaire pour la phase B, avec Io = 150A, Vin=350V.

(Is:20A/div)

Les MOSFETs HT choisis (STW88N65M5) sont du type « super-jonction » avec une 

caractéristique très non-linéaire pour la capacité de sortie : Coss est très élevée à une tension 

Vds basse. La tension drain-source est maintenue constante au début du blocage ZVS,

pendant environ 150 ns, puis la tension décroît linéairement jusqu’à zéro, avant la fin du

temps mort. Les MOSFETs sont également mis en conduction en mode ZVS. Le temps mort 

finalement adopté est de 400ns. La partie secondaire du convertisseur fait appel au 
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redressement synchrone ce qui mène à des pertes par conduction extrêmement faibles. 

Comme le montre la figure R-18, le signal de redressement synchrone est pratiquement en 

phase avec le courant de sortie mais, durant un laps de temps très court, le redressement par 

transistor n’a pas lieu : le redressement synchrone se termine 300ns avant que le courant ne 

s’annule. Des pertes par conduction sont prévisibles dans la diode, mais ces pertes sont 

négligeables compte tenu de son temps de conduction. Le courant de recouvrement  inverse 

(~ 10A) entraîne aussi des pertes de l’ordre de 1.5W par MOSFET. Le rendement a été 

mesuré pour chaque cellule A et B et pour les deux cellules de puissance fonctionnant

ensemble en parallèle (figure R-19).

Figure R-19. Rendement mesuré pour Vin = 330V

Le rendement de conversion d’une seule cellule LLC est maximale lorsqu’elle délivre 700 W,

avec un rendement maximal de 95% pour la phase A et 94,7 % pour la phase B. En raison des 

dispersions des composants, les performances de ces deux cellules de puissance sont 

légèrement différentes. Le rendement commence à diminuer lorsque la puissance de charge 

dépasse 700W. Il est intéressant de faire fonctionner une seule cellule tant que la puissance 

appelée par la charge ne dépasse pas 1,1 kW et de faire fonctionner les deux modules 

simultanément pour une puissance supérieure. C’est ainsi que le rendement de conversion 

global peut être maximisé. Le rendement continue d'augmenter entre 1,1 kW et 1,5 kW.

Commutation point

Double phase operationSingle phase operation
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Le convertisseur LLC à deux phases permet donc d’obtenir un très bon rendement : η> 94 % 

de 500W à 2kW ; η > 93 % de 300W à 2,5 kW. Même à très faible charge (140W), le 

rendement de conversion est d'environ 89 %.

La figure R-20 présente les résultats de mesure CEM du côté haute tension.

Figure R-20. Mesure CEM de haute fréquence à LISN LV + (détecteur de AVG, Vin = 330V)

Comme le montre la figure R-20, tous les bruits sont maintenus en-dessous des limites 

spécifiées par des fabricants de véhicules. Le bruit principal est détecté aux fréquences 2kfs.

L’asymétrie des secondaires de transformateurs (le courant n’est pas parfaitement distribué 

entre les deux enroulements secondaires du transformateur) provoque des bruits 

supplémentaires aux fréquences (2k-1)fs. En particulier pour fs, le niveau de bruit généré est 

inférieure à celui correspondant à 2fs ; cependant, l'atténuation du filtre d’entrée pour fs est 

15dB plus basse qu’à 2fs ; ainsi le bruit mesuré à fs devient important devant celui à 2fs

(72dBμV vs 78dBμV). La symétrie des enroulements secondaires du transformateur doit être 

précisément contrôlée pour éviter ce bruit. 

Pour la composante fondamentale et les premières composantes harmoniques, il n'est pas 

possible de distinguer une différence entre fa et fb à cause de la résolution de l’appareil de 

mesure. À partir de 5fs, les différences entre fréquences adjacentes deviennent apparentes. Les 

niveaux de bruits aux fréquences adjacentes sont égaux, ce qui vérifie que le bruit est 

superposé dans le domaine fréquentiel. En concevant des filtres d'entrée/sortie basés sur le

niveau de bruit généré par une phase, l’autre phase bénéfice naturellement de la même 

atténuation à une fréquence adjacente. 

Dans le convertisseur, l'interaction entre les bruits de commutation de chaque cellule crée des 

fréquences de battement indésirables, à des fréquences multiples de la différence entre les
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fréquences de fonctionnement : un battement à basse fréquence 2(fb-fa) apparaît en entrée et 

en sortie. Étant donné que les deux fréquences sont proches l'une de l'autre, ce battement ne

peut pas être suffisamment atténué par le filtre passe bas d'entrée ou de sortie.

Pour atténuer ce battement, des condensateurs de découplage avec des capacités suffisantes 

sont nécessaires à l'entrée de chaque cellule de puissance. De plus, les filtres d'entrée et de 

sortie ne doivent pas faire apparaitre de résonance à basse fréquence pour éviter d’amplifier 

ces battements. Ainsi, chaque filtre doit être précisément conçu et contrôlé. Les mesures à

basse fréquences sont données à la figure R-21.

Figure R-21. Mesure CEM de basse fréquence à LISN LV + (détecteur de AVG, Vin = 410V)

Le principal battement à la fréquence 2(fb-fa) est mesuré à 78dBμV ; un autre battement à la 

fréquence (fb-fa) à 65dBμV est dû à l’asymétrie de transformateur. Comme le bruit de 

battement est inférieur au bruit de commutation principal, il n’a pas d’influence sur le bon 

fonctionnement du convertisseur LLC et sur ses performances.

Conclusion

La solution consistant à connecter en parallèle deux cellules de puissance LLC est intéressante 

dans les applications à fort courant, en particulier dans la notre (180A en sortie). Le 

rendement est ainsi optimisé. Il peut l’être davantage en faisant fonctionner une seule cellule à 

faible puissance et les deux simultanément à forte puissance. Afin d'équilibrer les courants 

entre les deux cellules, une stratégie de commande à double boucle est proposée. Elle repose 

sur des fréquences de fonctionnement indépendantes dans les deux cellules. Les deux 

fréquences sont légèrement différentes à cause de la dispersion des valeurs de composants 

dans chaque circuit résonnant.

fb-fa

2(fb-fa)
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Outre la conception de cette topologie, ce travail de thèse repose également sur de nombreux 

essais, à la fois par calcul, par simulation et expérimentalement, dans le but d’améliorer 

toujours davantage les performances du convertisseur LLC. En particulier, l’utilisation d’un 

noyau classique en E avec entrefer a été validée pour intégrer toutes les inductances de 

résonance nécessaires dans le transformateur sous les formes d’inductance de magnétisation et 

d’inductances de fuite. C’est ainsi que l’encombrement et la masse des composants 

magnétiques ont pu être minimisés. Le choix même du fil de Litz et celui de son emplacement 

dans la fenêtre du circuit magnétique ont été optimisés.  Les MOSFET BT du secondaire ont 

été réalisés sous forme d’un seul module IML, ce qui a permis de réduire beaucoup les pertes 

par conduction ainsi que les résistances thermiques. L’emploi d’une chambre à vapeur a 

montré son efficacité dans ce type d’application. Le filtrage a lui aussi été optimisé compte 

tenu d’un petit défaut inhérent au principe retenu : deux fréquences de découpage doivent 

coexister. Moyennant quelques aménagements, les battements qui en découlent peuvent être 

rendus négligeables.  

En conclusion, le convertisseur LLC à double phase proposé semble être une bonne solution 

pour construire des convertisseurs de quelques kilowatts à fort rendement et à forte puissance 

massique. Le prototype réalisé, presque directement industrialisable, convient en particulier 

pour les applications DC/DC de 2,5 kW HT / BT dans les futurs véhicules électriques et 

hybrides. 
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Chapter 1. Introduction 

1.1 Backgrounds and project introduction 

Power electronics plays an important role in automotive and transport industrial applications, 

converting normally voltages from 200V to 3000V. Energy saving is now in strong demand to 

cope with growing demand for electrical applications and limited ecological resources, calling 

for rapid advancement in power semiconductor devices, conversion, and storage technologies. 

This puts a considerable pressure on all industries to innovate on levels of systems, device, 

technology and manufacturing [1-1]. (References are attached at the end of each chapter.) 

In Automotive, the upcoming trend for electric vehicles calls for economical, efficient and 

low cost solutions, based on new packaging and innovative components. By a study 

combining from Strategy Analytics and IFX it is estimated that in 2015 roughly 6.2 million 

hybrid and electric vehicles will be produced per year. In total this indicates a market volume 

of roughly 1 Billion € of automotive power electronics in 2015. 

 

Figure 1-1: Typical electrical vehicles in mass production or demo (PHEV=plug-in hybrid 

electric vehicle, EREV= extended range electric vehicle, EV=electric vehicule) 
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Currently a variety of different electric vehicle concepts, battery systems, and individual 

technical solutions is pursued for concept cars and small fleets of electric vehicles in order to 

gather experience with this new kind of cars, shown as in Figure 1-1. Technologies are 

adapted from industry, but the power traction units are far from being optimized with respect 

to efficiency, volume, or mass production.  

 

Figure 1-2: A typical mechanical traction and power conversion system in electric vehicles 

The traction system in electric vehicles is shown as in the above Figure 1-2. The electric 

vehicles are principally powered by a high voltage battery permitting to drive the traction 

chains. The high voltage (HV) battery is constructed by connecting in series or parallel 

several battery cells, with the number of cells properly selected according to the required 

power (from 15kW to 100kW depending on the type of vehicle) and the targeted autonomic 

distance (variant from 100km to 400km depending on the specification). A DC/AC inverter 

converts the HV battery voltage to three phase AC voltage to drive the electric motors.  

Considering the other functions, other equipments are all powered by a classical 14V low 

voltage (LV) network, as in Figure 1-2. In order to power the LV network, all the electric 

vehicles are equipped with a HV/LV DCDC converter generating an insulated 14V voltage 

based on the HV battery. A secondary 14V battery is connected at the LV network for the 

start, stop and diagnostic phases while the HV battery is not activated during these phases.  
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The aim of this dissertation is to develop a high efficient DCDC converter, with the following 

main requirements as electrical parameters:  

Table 1-1: Objective specifications of the DCDC converter project 

Energy flow From HV-DC to LV-DC unidirectional 

Efficiency 93% peak, >92% from 1kW  

Input voltage 220-410V 

Output voltage 12-16V 

Maxi output power  2.5kW 

Mini output power 0W 

Maxi continuous output current 180A 

Operating temperature -40ºC to 70ºC by using natural convection 

Maximum volume (without heat sink) 2.5L 

Mini power density 1W/cm3 

Voltage regulation accuracy ±1% 

 

Energy conversion efficiency and power density are the two top concerns for power 

electronics converters in electrical/hybrid car industries. In order to attain the objectives of 

conversion efficiency and volume, soft-switching techniques should be adopted to increase 

the switching frequency and minimize the size of magnetic components and passive filters. 

Synchronous rectification is mandatory to get high conversion efficiency rather than Schottky 

diodes. Besides, the converter should also be able to generate the low output voltage based on 

a large input voltage variation range. Therefore, this dissertation mainly focuses on the 

topology investigation and performance amelioration to comply with the specified objectives 

of HV/LV DCDC converters with wide input voltage range operation at a wide output power 

range.  

The converter is designed to be capable of generating 12-16V output. But in order to simplify 

configuration, the converter demonstrator is regulated to 14V constant output and is 

connected to a pure resistive power load. This dissertation mainly draws its attention on 

power electronic issues in circuit operation and efficiency improvement. 
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1.2 Discussions on existed soft-switching converter solutions 

1.2.1 H-bridge phase shift converter 

Soft-switching PWM converter, especially H-bridge (full bridge) phase shift PWM converter 

[1-2], is a widely used topology in HV/LV DCDC conversion, with its typical circuit 

schematic given at Figure 1-3. Primary side is in full bridge structure and secondary side is in 

a center-tapped structure.  

 

Figure 1-3. The H-bridge phase shift PWM converter 

 

Figure 1-4. Typical waveforms of H-bridge phase shift PWM converter 

The phase shift PWM converter operates at a constant frequency, varying the phase shift 

between the two half bridges to regulate the output voltage. With this topology, it is possible 

to assure a ZVS soft-switching at the primary MOSFETs and a reduced switching loss can be 

attained. However, secondary LV MOSFETs are still exposed to hard-switching which 

influences its efficiency.  The recovery current introduces high voltage spikes at the switch-

off of MOSFETs due to the secondary leakage inductance and filtering inductor. In this case, 

a bulky snubber is necessary to limit the voltage spike. MOSFETs with higher drain-source 
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withstand voltage should be selected, resulting in an increase of the on resistance and 

conduction loss. This is a common disadvantage of the center-tapped topology with a filtering 

inductance at output. Another problem, as shown Figure 1-4, large circulating current exists at 

the freewheeling periods, which greatly deteriorates its efficiency, especially for low input 

voltage case.  

VALEO has designed a first prototype at year 2011 using full bridge phase-shift topology 

based on the same specifications as Table 1-1, shown as in the Figure 1-5.  

 

Figure 1-5. VALEO’s 2.5kW, 400/14V, 100kHz, full bridge phase shift DCDC converter with 

0.61W/cm3 power density  

H bridge phase-shift topology with synchronous rectification is applied. As shown in Figure 

1-5, two bulky filtering inductors (each with Lf/2) occupy too much volume due to high 

conductive current thus the total power density is deteriorated. Due to the hard switching-off 

of LV MOSFETs, the switching frequency is limited to 100kHz, which restricts the volume 

miniaturization of magnetic components. In all, the converter prototype performs a peak 

efficiency of 92%, with a volume 4.8L and a power density of 0.61W/cm3, water-cooled. 

Referring to Table 1-1, the developed prototype cannot attain the mechanical requirements 

and the efficiency is not in line with the new market expectations.  

1.2.2 Series resonant converter  

The most efficient way to get a high power density is to increase the switching frequency so 

that the size of magnetic components can be greatly reduced. Resonant converters are possible 

to work at higher switching frequency thanks to very low switching loss. In resonant 

Filtering Inductors 
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converters, the output/input voltage conversion ratio is varied by its switching frequency, 

other than varying its pulse width or phase shift.  

Half-bridge series resonant converter [1-3, 1-4, 1-5, 1-6] is a popular topology in resonant 

converters for HV/LV power conversion. The resonant tank is composed by a resonant 

inductor Lr, a resonant capacitor Cr and a transformer Tf, shown as in Figure 1-6. The voltage 

conversion ratio equation of the resonant tank is expressed as follows: 

 

Figure 1-6. Half bridge series resonant converter with synchronous rectification 
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Figure 1-7. Voltage conversion ratio characteristics of series resonant converter 

The resonant tank and the load constitute a voltage divider thus the DC voltage transfer ratio 

is always ≤1. At the resonant frequency, the impedance of tank is 0 so the DC gain is 

maximal. At this point, the DC gain is independent with the load thus it is called the load 

independent point. As to HV MOSFETs operating at high efficiency, the operation at ZVS 

(where gain slope is negative) is highly preferred than ZCS (where gain slope is positive) thus 

the switching frequency is always kept higher than the resonant frequency.  

Series resonant converter brings many advantages over H bridge phase shift converter. As the 

transformer’s secondary side behaves as a current source to the load, thus only a filtering 

capacitor is sufficient. Furthermore, the reverse-recovery current of LV MOSFETs does not 

introduce a voltage spike and the MOSFETs can be switched on at ZVS and switched off 

totally at ZCS.  

The main problem of series resonant converter is its degraded performance at light load & 

high input voltage conditions. Referring to Figure 1-7, for the curve Q=1(10% load), the 

switching frequency increases with the increase of input voltage and finally the frequency will 

be very high if input voltage is increased to 410V; skin effect and proximity effect became 

significant and the efficiency at low load is deteriorated. As to no-load conditions, the 

resonant circuit is in series with an open circuit thus the resonant operation is no longer 
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possible. Based on the above analysis, the series resonant converter attains a high efficiency at 

nominal power while its efficiency at light load condition is sacrificed, thus it is not a good 

solution for the targeted converter.  

1.2.3 Parallel resonant converter 

Parallel resonant converter [1-7, 1-8, 1-9] is also a well-known converter. Its circuit schematic 

is shown as follows: 

 

Figure 1-8. Half bridge parallel resonant converter with synchronous rectification 

The voltage conversion ratio equation of the parallel resonant tank is expressed as follows: 
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The difference between series resonant and parallel resonant converter is that the resonant 

capacitor behaves a voltage source to the secondary side; this voltage needs to be further 

filtered by a LC filter at the output. The equivalent resistance calculations of a current source 

resonant converter (series or LLC in 1.2.5) and a voltage source resonant converter (parallel 

or series-parallel in 1.2.4) are shown as follows [1-10]:  
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Figure 1-9. Equivalent ac resistors presented by different rectifier loads: (a) voltage source 

converter, (b) current source converter 

Following the above figure, the definitions in parallel converters are:
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conversion ratio characteristics and the operation region are shown in the following figure: 

 

Figure 1-10. Voltage conversion ratio characteristics of parallel resonant converter 
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The operating region of parallel resonant converter is much smaller than series resonant 

converter. The switching frequency does not change too much to keep the output voltage 

regulated. Thus the light load problem and no load incapability do not exist in parallel 

resonant converters. 

One drawback of parallel resonant converter is its high reactive power. Even at light load, the 

resonant cell exhibits small impedance and the resonant current is high. Another drawback of 

parallel resonant converter is that it behaves as voltage source to the secondary side, thus a 

filtering inductor Lo is mandatory. As a result, this topology sees all the drawbacks of center-

tapped transformer with filtering inductor discussed in 1.2.1. In conclusion, the parallel 

resonant converter is not a good candidate. 

1.2.4 Series-parallel resonant converter 

The schematic of series-parallel resonant converter [1-11] is shown at the following Figure.  

 

Figure 1-11. Half bridge series-parallel resonant converter with synchronous rectification 

The resonant tank is composed by three components: resonant inductor Lr, series resonant 

capacitor Cr, parallel resonant capacitor Cp. The resonant tank can be considered as a 

combination of the series resonant tank and the parallel resonant tank, thus it benefits both the 

advantages of two converters. The voltage conversion characteristics are shown at the 

following figure: 
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Figure 1-12. Gain characteristics of series-parallel resonant converter (Cr=Cp) 

As shown in Figure 1-12, the series-parallel resonant converter has two resonant frequencies. 

At the series resonant frequency fr2, the impedance of the Lr and Cr is 0 and the voltage 

conversion ratio is 1, like the series converter. At the main resonant frequency fr, the gain 

increases sharply, like the parallel converter. The operation region is shadowed at the above 

figure. We can see that the series-parallel converter has a narrow switching frequency range 

and no-load regulation capability. At light load conditions, due to the presence of a capacitor 

Cp, the reactive power is much smaller than that of the parallel resonant converter. 

Unfortunately, like the parallel converter, the series-parallel converter also needs a filtering 

inductance at the output side. Therefore, it still sees all the inconveniences of center-tapped 

transformer with filtering inductor discussed in 1.2.1. Thus in conclusion, the series-parallel 

resonant converter is not a good candidate. 

1.2.5 LLC resonant converter 

The simplified circuit schematic of LLC [1-12, 1-13] is shown in the following figure: 

fr2=1/2πsqrt(CrLr) 

Ceq=CrCp/(Cr+Cp) 
fr=1/2πsqrt(CeqLr) 
Q=Rac/sqrt(Lr/Ceq) 

 
 

220/16V 

410/12V 

ZCS ZVS 



23 
 

 

Figure 1-13. Half bridge LLC converter with synchronous rectification 

Same as the series resonant converter, the center-tapped transformer in LLC disposes a 

current source to the load thus no bulky inductor is needed. The resonant tank contains two 

inductors, one resonant capacitor and a transformer. The inductor Lm can be integrated into 

the transformer as its magnetizing inductance. Furthermore, the resonant inductor can be fully 

or partially integrated into the transformer’s leakage inductance. The overall volume of 

magnetic components can be minimized; this is a great advantage of LLC converter over 

other converter types.   

The operation of LLC converter can be divided into three modes: (1) ZCS mode, (2) ZVS 

discontinuous current mode and (3) ZVS continuous current mode, as shown as in the 

following figure:  

 

Figure 1-14. Gain characteristics of LLC resonant converter (Lm=4Lr) 
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As discussed above, the ZCS mode should be avoided. Both mode (2) and mode (3) exhibit 

ZVS operation. The key waveforms of LLC in the mode (2) and mode (3) are shown as 

follows (The detailed discussions of these three operating modes will be presented at the 

Chapter 2). 

 

 

Figure 1-15. Operating waveforms of LLC converter at ZVS-DCM 

The operation of LLC converter in ZVS-DCM can be divided into the following different 

stages: 

a. [t1-t2]: ZVS turn off 

When QL is switched off, capacitor CL starts to be charged and CH starts to be discharged by 

the resonant current. The presence of the ZVS capacitor CL makes the voltage across QL 

increase linearly thus results in a ZVS switch-off. It is also required that the charging time of 
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ZVS capacitor should be shorter than the dead time, thus the CL can be fully charged to Vin 

and CH be discharged to 0 within the dead time.  

B. [t2-t3]: ZVS turn on 

After CH has been fully discharged to zero, the body diode of QH conducts to maintain the 

current continuity of Ir and the voltage across QH is zero. The QH then can be switched on at 

ZVS at the instant of t3. 

C. [t3-t4]: Lr resonant with Cr 

In this period, the transformer’s voltage VLm is clamped by the load to a constant value equal 

to Vout/n. The resonant inductor Lr is then in resonance with the capacitor Cr and the 

magnetizing current increases linearly from negative to positive, which signifies that the Lm 

shifts from energy releasing to energy charging between t3 and t4. 

D. [t4-t5]: Lr resonant with Cr and Lm 

This period starts from the moment that the resonant current Ir meets the magnetizing current 

ILm. No current circulates at the transformer’s secondary side and the Lm participates into 

resonance, thus the resonant period is expended and the current remains nearly constant at this 

period. As no current are sent to the secondary side, the current at the secondary MOSFET 

remains at zero and this is the so-called discontinuous current mode. 

E. [t5-t6] : ZVS switching 

This period is the same as the period [t1-t3] except that the operation order of MOSFETs is 

totally reversed. The QH is switched off in ZVS mode and the QL will be switched on in ZVS 

mode.  
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Figure 1-16. The operation of LLC resonant converter in ZVS-CCM 

The difference between ZVS-CCM and ZVS-DCM is that stage [t3-t4] in CCM lasts until the 

end of the switching period. The secondary pulse current duration equals to the half switching 

period, which is called the continuous current mode. As switching period is lower than the 

resonant period, the transformer is never liberated from being clamped.  

LLC converter overcomes all the inconveniences of other converter topologies, provides 

design flexibility and both step-down and step-up functions. It has to paid attention that in 

LLC, the reverse-recovery current may cause a voltage spike due to transformer winding’s 

wire parasite inductance, but this voltage spike is highly limited compared to that of parallel 

or series-parallel converter.  Furthermore, ZVS capability from no load to full load makes the 

LLC converter one of the most desirable topologies in energy conversion. The following 

figure presents a developed LLC mock-up from Virginia Polytechnic University [1-14, 1-15]: 
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Figure 1-17. 1MHz 1kW, 400V/48V converter mock-up of Virginia Polytechnic University, 

peak efficiency up to 96%, with 8.9W/cm3 power density (only main components) 

As reported at the above figure, only one magnetic component is adopted to include all the 

magnetic components. No filtering inductor appears at the output side and the efficiency goes 

up to 96%. In all, considering the aspects of volume minimization and efficiency 

improvement, LLC topology is a more competent candidate than other topologies for energy 

conversion.  

1.3 Challenges of LLC resonant converters 
Although LLC converter has aroused much popularity in designing high efficient DCDC 

converters, the following issues need to be further improved.  

1.3.1 High efficiency among large load range 

In electric/hybrid vehicles, the targeted 2.5kW automobile DC/DC converter may operate at 

any power from 0 to 2.5kW, but the estimated operation time is different at different power 

ranges, shown as in the following figure: 
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Figure 1-18. Example of operating time distribution of the targeted 2.5kW converter 

As shown in the above figure, the converter has higher probabilities in operating mainly at 

two power ranges: 600-900W and 1.5-1.8kW. Assuring high conversion efficiency at these 

above two power ranges is very important to improve the overall performance of the 

converter in energy savings. Like all the other types of converters, traditional LLC converter 

is able to perform high conversion efficiency at the nominal load but efficiency is deteriorated 

when load decreases (referring to Figure 1-17). It is thus important to find a solution to keep a 

high efficiency at a large load variation range, especially at the two power ranges mentioned 

above.  

1.3.2 High output current arrangement 

One critical difficulty in this project is how to arrange secondary high output current 

efficiently. As the output voltage is very low, the converter should deliver up to 180A DC 

current. The traditional solution to tackle with high conduction current is to parallel more 

semiconductor components. The problem of this solution lies in the aspects of equal current 

sharing among the paralleled MOSFETs [1-16, 1-17]. For the static current, MOSFETs in 

parallel is a current divider where overall current is shared between MOSFETs according to 

their Rdson; for the dynamic current, the important parameter is the threshold voltage (Vgsth) 

since the MOSFET with lowest Vgsth switches on as the first one and off as the last one, thus 

conducts higher current during transients.  

As a result, due to a slight difference on Rdson and Vgsth between MOSFETs in parallel, 

power loss cannot be distributed equally. Paralleling several MOSFETs to reduce the 

Main operations 
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conductive power loss is not a good solution. Some other new topologies as power cell 

interleaving permitting to arrange high output current should be studied and investigated.   

1.3.3 Large voltage variation capability at limited frequency range 

Various EMC requirements in electric vehicles authorize a high level of switching noises at 

[280 530] kHz, shown as in the following figure as an example: 

 

Figure 1-18. EMC specification for HV battery defined by car constructors BMW 

To limit the main noise frequency into the described noise range, the switching frequency can 

be set between [150, 250] kHz (noise frequency can be doubled in LLC). If LLC converter is 

designed to fully compromise the input voltage variation range, a high gain should be attained 

at the minimum frequency, and this gain should be precisely calculated and controlled. Based 

on the established first-harmonic model, the voltage conversion ratio can be calculated 

precisely and the whole calculation process is described in this dissertation.  

Following this proposed process for LLC circuit dimensioning, one can design a LLC 

converter, based on the required input and output voltage ranges, to obtain the resonant cell 

parameters under limited switching frequency range. However, when input voltage variation 

is large, a low Lm is always derived following the calculation process. Too low Lm results in 

a high circulating current and a bad power factor, which influences its efficiency. As a result, 

how to broaden the input voltage range while keeping a high power factor (high efficiency) is 

an essential topic to be solved in this dissertation.   
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1.3.4 Transformer improvement and integration  

Transformer is a key part in LLC resonant converters while its dimension greatly influences 

the final volume of the prototype. Thanks to higher switching frequency 150-250kHz, the 

transformer can be selected with a low effective core area. A successful transformer design in 

LLC converter should include its magnetizing inductance and resonant inductance within the 

transformer to minimize the total volume of magnetic components. Planar cores are highly 

preferred in power electronics converter design due to its limited height, large dissipation area 

and printed PCB board as windings. The following figure shows several transformers in 

Planar E cores and ER cores. 

 

Figure 1-19. Planar E cores and Standex center-tapped transformer with Planar ER cores 

Planar core offers convenience in the aspects of package simplicity and thermal conductivity. 

However, as high power LLC converter adopts usually a very low magnetizing inductance, 

large air-gap should be integrated into magnetic cores. Planar cores have limited height to 

include a large air-gap. Furthermore, to integrate the resonant inductance as leakage 

inductance, planar cores have insufficient window to separate the primary and secondary 

windings, making it less flexible to design sufficient leakage energy storage. Other core types 

which can integrate a large air-gap and high leakage energy should be investigated to replace 

the planar core.  

At higher switching frequencies, Litz wire is often adopted as winding solution rather than 

copper foils or printed PCB to avoid the skin effect and proximity effect. Large air-gap 

creates large eddy-current loss at Litz wire, especially to those close to air-gaps; this loss 

should be precisely quantified and the winding method should be improved to reduce this 

loss.   



31 
 

1.3.5 Component and system for effective cooling  

High output current generates higher power loss at secondary MOSFETs than primary 

MOSFETs. Discrete semiconductor components are difficult to be cooled effectively due to 

its package thermal resistance. Designing and investigating a dedicated power module is a 

preferred solution to replace the discrete semiconductors. 

As dissipated power and power density increase, new enhanced and reliable cooling solutions 

are needed, other than liquid loop with pump, micro channel, etc. Two phase systems (Heat 

Pipe, Loop Heat Pipe (LHP)) have proven their reliability and heat transfer capability in 

spatial applications for decades. They can now be adapted to ground applications and offer 

improved heat transfer and integration capabilities, in particular vapor chambers with heat 

pipes.  

1.3.6 Robust synchronous rectification 

Synchronous rectification (SR) can be classified by its control type into three categories: 

control driven SR, current driven SR and voltage driven SR. 
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Figure 1-20. Three types of synchronous rectification circuit  

In CCM PWM converters, secondary MOSFETs conduction time is in phase with primary 

control, the control driven SR can be applied. But in LLC converter, the secondary current is 

not in phase with primary control except for operating at load independent point. Apparently, 

the control driven SR is not a good solution for LLC converter. Current driven SR uses a 

current transformer to sense the current information. As in LLC converter, the sensed primary 

current is the sum of the magnetizing current and the transformer current thus current control 

SR is neither a good candidate for LLC. The only solution for LLC converter is the voltage 

driven SR: the drain-source voltage of MOSFETs is sensed and processed to determine the on 

and off timing of MOSFETs. 

However, the sensed drain-source voltage in voltage driven SR suffers from external 

interferences and internal parasites, reducing its robustness. It is difficult to control the 

measurement precision in ~mV level. A non precise measurement causes either an early 

a. control driven b. current driven 

c. voltage driven 
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switch-off or a late switch-off of MOSFET, which reduces the overall efficiency and may 

cause catastrophic operation failure. A more robust system for SR should be investigated and 

applied in LLC converter.  

1.4 Dissertation outline 

Chapter 2 proposes to use double phase parallel-parallel interleaved LLC to share the total 

high output current. The efficiency performance of single cell and double cell LLC is 

compared. A power cell switching logic is introduced to assure a high efficiency at large load 

variation range. As to the resonant tank parameters dimensioning, the equivalent circuit based 

on first-harmonic model is established and the characteristics of LLC are discussed. A new 

circuit design procedure is proposed in this dissertation: the influence of leakage inductance is 

considered and the magnetizing inductance should be carefully adjusted. This part also gives 

the design considerations for ZVS condition fulfillment.  

Chapter 3 is dedicated to the operation and control of the double-phase LLC converter. 

Problems of traditional phase-shift parallel LLC is investigated here and a new control 

method for equal current sharing is described in this paper. The LLC’s ac signal model is 

analyzed by Simplis modeling software and the regulators design for control loops are 

described in this chapter. Also, some other protection circuits, as soft-start, over current 

protection, over voltage protection, are presented in this chapter. 

Chapter 4 is dedicated to the performance and system improvement of designed LLC 

converter. To cope with high secondary conduction loss at LV MOSFETs, an inserted molded 

lead-frame module integrating all MOSFETs dies is developed. Several transformer 

realization proposals are investigated and compared in this chapter, including material 

selection, resonant inductance integration, and eddy current loss analysis. Synchronous 

rectification is described and a new robust SR scheme is proposed to get improved phase 

compensation results. An air cooling system based on vapor chamber is designed in this 

prototype, with thermal experimental results verifying the performance of this cooling 

solution. Finally, the main performance results are reported in this chapter.  

In Chapter 5, the EMC issues, mainly conducted DM noise issues of proposed double phase 

LLC converter are presented. The EMI noise emission characteristics of proposed double 

phase LLC are discussed and the phenomenon of low frequency beating is analyzed in detail. 

Input and output filter are designed for noise attenuation. The EMC performance of this 

designed prototype is validated through experimental results.   
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Chapter 2. Parallel-parallel double phase LLC: 

Topology and Dimensioning  

2.1 From single cell LLC to double cell LLC 

2.1.1 Challenges of single phase LLC resonant converters for high current 

output 

For HV/LV power conversion, LLC resonant converter generally keeps a very competitive 

efficiency in designing DC/DC power supplies in low or medium power level [2-1 – 2-5]. 

Generally, the reported LLC resonant converters in literatures are under 1.5kW, especially 

between 300W and 1kW [2-6 – 2-8]. Increasing load brings the following two main 

difficulties: 

The first difficulty of increasing the LLC converter’s power level lies in the transformer core 

realization. Table 2.1 shows the dimensioning results of a 2.5kW LLC converter and 1.25kW 

LLC converter with the same specified input voltage and output voltage. In terms of 

dimensioning the resonant tank parameters for a 2.5kW LLC converter, as shown in Table 

2.1, the required transformer’s magnetizing inductance is 12µH, with a transfer ratio 

N1/N2=16. Even if the secondary turn number is set to N2=1, an inductance factor of 

AL=50nH is still needed for realizing the low magnetizing inductance, which is too low to be 

realized practically. For example, as to a transformer core with an effective area Ae=200mm2 

(Bpk≈150mT at 150kHz), the required air-gap length is about 6mm. Currently, no commercial 

magnetic cores are available in the market with such a huge air gap. Furthermore, huge air 

gap enables more fringing flux penetrating the windings and causes additional winding losses 

due to eddy current. Special gapping technologies should be applied to the magnetic cores to 

integrate large air-gap; for example, two or more air gaps should be created, which increases 

the design and production complexity. However, as to a 1.25kW LLC converter (power is half 

reduced), the required transformer’s magnetizing inductance is doubled, shown as in Table 

2.1. The inductance factor is then increased to AL=100nH, thus a more rational air-gap length 

is obtained. A centralized air-gap with e≈3mm is sufficient for creating the required 

inductance factor and many magnetic cores are available at the market, such as E41/21/15, 

E41/21/20, E42/33/20, etc.  
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Table 2-1. Parameter dimensioning comparison results for 2.5kW and 1.25kW LLC resonant 

converters, Vin=220-410V, Vout=14V 

Parameters calculated for 2.5kW cell 1.25kW cell 

Resonant inductance (Lr) 3.75µH 7.5µH 

Resonant capacitance Cr (nF) 100nF 50nF 

Magnetizing inductance Lm (µH) 12µH 24µH 

RMS resonant current (Ir_rms) 36A 18A 

RMS current per switch, HV side (IQ_rms) 25.2A 12.6A 

RMS current per switch, LV side (IS_rms) 160A 80A 

Primary MOSFET 

STW88N65M5 (Rdson=29mΩ) 
2 per switch 1 per switch 

Secondary MOSFET 

IPB180N06S4-H1 (Rdson=1.5mΩ) 
2  per switch 1 per switch 

Transformer windings 

Pri. 1600 strands of 
44AWG 

Sec. 2400 strands of 
44AWG 

Pri.800 strands of 
44AWG 

Sec. 1200 strands of 
44AWG 

 

The second difficulty is that higher power increases sharply the conduction losses at the 

semiconductor devices and transformers. As shown in Table 2.1, the RMS current at the 

primary and secondary MOSFETs in 2.5kW LLC is two times higher than that in a 1.25kW 

LLC. In order to lower the overall conduction loss, two MOSFETs should be paralleled at 

both HV switch and LV switch. The number of strands in transformer’s windings should also 

be increased thus it results in a larger transformer volume, which makes it even more difficult 

for obtaining a low magnetizing inductance.  

In all, increasing LLC converter’s power level creates difficulties in transformer realization 

and increases the primary resonant current and secondary pulse current. New topologies or 

ways of interleaving should be proposed to better treat these problems.  

2.1.2 Proposition of double phase LLC resonant converter and its 

operational strategy 

Considering the difficulties in building a 2.5kW LLC converter compared to a 1.25kW LLC 

converter, paralleling two power cells of 1.25kW is an efficient way to achieve high power 

conversion efficiency without paralleling more MOSFETs or increasing transformer’s wire 
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gauge. Figure 2-1 is the framework of the proposed double phase LLC resonant converter by 

paralleling two LLC cells.  

 

Figure 2-1. The framework of proposed double phase LLC resonant converter 

As shown in Figure 2-1, both the two power cells A and B share the same input filter and the 

same output filter. Each power cell contains its own power MOSFETS in half-bridge 

topology, resonant capacitors, resonant inductors and transformers. The transformer’s 

secondary windings are connected to a power module which contains four LV MOSFETs (2 

for power cell A, 2 for power cell B). All the LV MOSFETs are integrated into the power 

module mounted on the cold plate to get a better cooling effect. The control circuit contains 

the regulators, MOSFETs drivers, auxiliary power supplies and synchronous rectification 

controllers, etc.  Power sharing between the two cells shall be balanced to better distribute the 

current among different power units. An innovative solution will be proposed to achieve this 

good power sharing and is described in Chapter 3. The primary circulating current and 

secondary pulse current can be greatly reduced and the current constraints imposed to the 

HV/LV MOSFETs will be decreased and balanced among different power units. The 

proposed operational principles of the double cell LLC resonant converter is shown as 

follows: 
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Figure 2-2. State diagram of cell switching 

The operating strategy is as follows: When the converter is started at light load, power cell A 

operates to supply current to the load, this corresponds with the state S0. When output power 

is higher than 1kW, the power cell B is switched on and both the two power cells supply 

current to the load, with each power cell shares 50% of the output power, which corresponds 

to the state S1. Then when load is again reduced to lower than 1kW, the power cell B remains 

on and the power cell A is off, while the state is moved to S2. The optimal switch-point is pre-

set to be 1kW, but shall be checked and adjusted following experimental results to get an 

overall optimized efficiency. Thus through this cell switching strategy, both the two power 

cells operate simultaneously only if necessary (at heavy load). As each power cell’s operating 

time is almost the same at a long term, this control strategy also assures an equal aging speed 

of the two resonant cells and extends greatly the converter’s operating life. Furthermore, when 

one power cell fails to operate, this converter is also possible to work with the other power 

cell.  

In order to make a predictive comparison on power losses existed in single phase and the 

proposed double phase LLC converters, especially conduction loss and drive loss, simulations 

are executed using the configurations shown as in Table 1-1 and power loss results are 

reported at the following Figure 2-3 and Figure 2-4. The Figure 2-5 shows the efficiency 

prediction comparison between single phase LLC and double phase LLC, by considering only 

the conduction losses & drive losses. Switching loss and core loss are temporally not taken 

into consideration for this analysis. 
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Figure 2-3. Comparison of the calculated power loss between single phase LLC converter and 

double phase LLC at 2.5kW 
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Figure 2-4. Comparison of the calculated power loss between single phase LLC converter and 

double phase LLC at 100W 

 

Figure 2-5. Comparison of the calculated power loss between single phase LLC converter and 

double phase LLC at 100W (considering only conduction losses & drive losses) 

At nominal power, assuming that the current is well distributed between the two paralleled 

MOSFETs, the efficiency of double cell LLC is the same to single cell LLC. From Figure 2-5, 

the efficiency of these two structures from 1kW to 3kW is equal. However, at light load 

conditions (Pout<1kW), the performance of double cell LLC converter is more interesting. 

When load is reduced to lower than 1kW, one power cell is switched-off and only one power 

cell continues to operate. Other than single cell LLC whose efficiency continues to decrease 

from 1kW to zero load, the double phase LLC’s efficiency is firstly increased until 500W and 

then start to be decreased. At 100W, the secondary current is very small and the conduction 

losses at LV MOSFETs and transformer secondary windings for both two structures are very 

limited. However, a higher circulating current exists at single cell LLC than double cell LLC 

(16A versus 7.8A due to a lower power factor at light load for single cell LLC than for double 

cell LLC), which causes higher conduction loss. Referring to the Figure 2-4, the power loss, 

especially primary conduction loss in double cell converter is greatly reduced. Furthermore, 

only one cell operates in light load, with only 2 HV MOSFETs and 2 LV MOSFETs 

switching instead of 4 as for single phase LLC. The MOSFETs drive loss thus can be reduced 

by 50%.  
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It is obvious that by applying the double cell structure together with the proposed power cell 

switching strategy, an overall high efficiency could be obtained at a large output power range 

from 100W to 3kW. The double cell LLC converter has special interests in improving the 

power conversion efficiency at light load conditions and obtaining an equal aging speed thus 

an extended operating life. This is quite interesting since the designed DC/DC converter in 

electric vehicles has a large probability of operating under 1kW, where in this condition 

double phase LLC is an excellent candidate in designing automobile DCDC converters.   

2.2 LLC optimal dimensioning 

As two power cells with each cell at nominal power of 1.25kW is needed for building the 

double phase converter, this part concerns the dimensioning of a 1.25kW LLC power cell. 

How to optimize the design procedures to get a wide input/output voltage variation, while 

keeping a limited operational frequency range is detailed in this part. 

Various dimensioning methods are proposed to determine and optimize the resonant cell 

parameters to improve its performance. Paper [2-9] has proposed a design work flow-chart for 

LLC power cell dimensioning. In [2-10], the author proposes a calculative approach to 

determine each parameter step by step. This approach enables the authors to have a rough idea 

of the resonant circuit.  Some design considerations can also be found at [2-11] and [2-12]. 

But seldom of them includes the effect of leakage inductance into consideration, thus the 

obtained designing results work well only under several ideal conditions. In [2-13] and [2-14], 

the author do consider the effect of secondary leakage inductance in increasing voltage 

conversion ratio, but fails to detect the left-shift phenomena of the converter’s load-

independent point and the models proposed are not accurate enough.  In order to keep a large 

input voltage variation range at limited frequency range, the magnetizing inductance should 

not be set too far from Lr. With high switching frequency and high nominal power, secondary 

leakage inductance has a great influence on the characteristics of LLC power cell and needs to 

be considered in this design. The proposed design procedures can be explained as in Figure 

2-6. 
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Figure 2-6. Proposed design procedures 

Based on the converter specifications, it is possible to firstly fix the switching frequency 

range, the transformer turns ratio and select the adequate MOSFET. LLC’s voltage 

conversion ratio analysis is established without considering the secondary parasite inductance, 

in order to get a design result for ideal resonant tanks. Based on the derived parameters, by 

considering the influence of secondary parasite inductance (l2), the new voltage conversion 

ratio plot is built and the circuit quality factor value is revised to re-adapt the gain 

requirement. This design procedure considers fully the influence of secondary leakage 
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inductance and searches the optimal dimensioning results for improving the power factor and 

increasing power conversion efficiency. 

The above procedures permits to get the optimized dimensioning results based on limited 

frequency to comply with large voltage range. The last step (necessary in several cases) is to 

adjust the Lm value based on the derived calculations to further improve its power factor. 

Increment of Lm improves the power factor, but reduces the input voltage variation range. 

Details of dimensioning the LLC cell will be presented and compared to search the optimum 

results at the following sections.  

2.2.1 Equivalent circuit and frequency domain analysis  

First harmonic analysis (FHA) method is a common method for establishing the equivalent 

electrical circuit of a LLC converter by approximating the voltage/current waveforms as first 

order sinusoidal wave, while neglecting the impacts of the other high order harmonics [2-15]. 

In order to get the equivalent model of the LLC resonant converter, several assumptions are 

adopted: 

(1) The switching components, including the primary and secondary MOSFETs, are 

considered as ideal MOSFETs. The MOSFET’s on resistance Rdson, parasitic 

capacitor Ciss, Crss & Coss, body diode’s forward biased voltage are neglected. 

(2) The magnetic components are considered as ideal components. Inductor’s 

resistances, transformer’s primary and secondary resistances are neglected. 

Transformer’s leakage inductance is also neglected, except that the transformer’s 

primary leakage inductance can be merged with the resonant inductance. 

(3) The influence of the dead-time’s length is neglected. In fact, its influence is rather 

limited when its length is far less than the switching period [2-16]. 

Referring to the Figure 1-13, the equivalent circuit of the LLC resonant converter can be 

presented in the Figure 2-7: 
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Figure 2-7. The equivalent circuit of the single cell LLC resonant converter 

Irpeak is the peak value of the resonant current in the resonant tank and vQLds(t) is the drain-

source voltage of the MOSFET QL. φs is the phase shift between ir(t) and vQLds(t). srI 


cos1  

signifies the average current debited from the DC source. Rac signifies the equivalent 

resistance of the load resistance R transferred to the transformer’s primary side, which can be 

obtained as follows: 
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ac  (2-1) 

The amplitude of the fundamental series of the vRac(t) can be expressed by equation (2-2).  

n
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RacI
n
2  is the average rectified output current. Based on the above equations, the converter’s 

global gain can be calculated as: 
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Where the  
sjs

sH


is the transfer function of the resonant tank, which can be presented by 

G=||H(s)||. The equation (2-3) signifies that the global gain of the resonant converter equals 

to the product between the DC gain of the resonant tanks H(s), the transfer ratio of the 
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transformer n and the gain of the half bridge converter 1/2, as shown in the following equation 

(2-4). 
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The gain of the resonant tank at normalized frequency domain is represented in the equation 

(2-5): 
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Where the 
ac

rr

R
CL

Q  , the quality factor of the resonant converter; 
r

s
n f

f
f  , the switching 

frequency after normalization; 
rr

r CL
f

2
1

 , the main resonant frequency; 

  rmr
r CLL

f



2

1
2 , second resonant frequency; 

m

r

L
L

 , ratio between the leakage 

inductance and the magnetizing inductance.  

The Figure 2-8 shows the DC gain characteristics of a LLC resonant converter under different 

Q values with λ=0.25. 

 

Figure 2-8. The DC gain characteristics of LLC resonant converter at λ=0.25 
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It is apparent that at fn=1, the gain of different Q values are equal to 1, which is called the load 

independent point. The operation of LLC resonant converter can be divided to 3 different 

regions. In the region (1), the slope of the gain curve is positive and the resonant current leads 

the resonant voltage, thus the circuit is possible to operate in ZCS mode. Since the ZVS is 

highly preferred than ZCS for the switching of MOSFET, this operating region has to be 

avoided during all the operational frequencies. The region (2), which is separated from the 

region (1) by the plotted borderline and separated from the region (3) by the curve fn=1, is the 

ZVS-BOOST region. The gain of the resonant tank at this region is higher than 1. In this 

mode, the transformer is not fully clamped by the load and the output current at the center-

tapped secondary side is discontinuous. It has to be reminded that the region (2) only occurs 

for converters with a lower Q value. The region (3) is the ZVS-BUCK region. In this region, 

the transformer will be fully clamped by the load and the output current waveform is 

continuous.  

To compare the different operational regions, the Figure 2-9 shows the vector diagram of the 

LLC circuit operating in ZVS-BUCK, ZVS-BOOST and ZCS region, respectively. 

 

ZVS-BUCK (CCM)         ZVS-BOOST (DCM)                         ZCS  

Figure 2-9. The vector diagram of the LLC converter operating in different regions 

vQLds is a quasi-square wave produced by the half bridge inverter, with an amplitude Vin/2 and 

a first-order harmonic amplitude of       . In ZVS-BUCK, as shown in Figure 2-9, while the 

operational frequency is above the resonant frequency, the resonant tank composed by Lr and 

Cr appears inductive and        leads       with π/2. The obtained                  leads       with an important 

phase difference φs thus results in a low power factor. In ZVS-BOOST, as the operational 

frequency is below the resonant frequency, the resonant tank is capacitive and the tank 

voltage turns to the opposite direction. This results in a reduced phase difference φs and a 

higher power factor. As srQLdsin ivP cos , under a given input voltage and input power, a 

higher power factor is helpful to reduce the primary resonant current ir thus reduce the power 
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loss at HV MOSFETs and transformer primary windings. This is one great advantage of 

operating LLC at ZVS-BOOST mode. Finally when the frequency continues to decrease, the 

resonant tank turns to be even more capacitive and finally the                  lags      , which enters to 

ZCS mode. In all, operating in the ZVS-BOOST region is possible to limit the converter’s 

switching frequency between two resonant frequencies fr and fr2, and can also improve the 

converter’s quality factor, which is highly preferred in attaining the requirement of designing 

HV/LV DCDC converters in electric automobile industries: limited operational frequency 

range, large input voltage variation. Thus the ZVS-BOOST region is selected in designing this 

prototype.  

As depicted in the Figure 2-8, the selection of Q value greatly influences the voltage gain at 

the ZVS DCM region. The voltage gain attained by the LLC resonant converter increases with 

Q decreases. Besides, the lower the Q value, the nearer that the maximum gain will approach 

the second resonant frequency. For its value selection, Q should be selected sufficiently low 

to satisfy the enough gain requirement at minimum operational frequency, but it should not be 

selected too small. A smaller Q will result in a lower impedance characteristic of the resonant 

tank and a poorer power factor. Thus the Q parameter should be properly selected to attain the 

gain requirement, while keeping a high quality factor.  

The G-f characteristics of the LLC converter at different λ values are represented in the 

following figures. 

 

Figure 2-10. The DC gain characteristics of LLC resonant converter at λ=0.1 



49 
 

 

 

Figure 2-11. The DC gain characteristics of LLC resonant converter at λ=0.5 

 

Figure 2-12. The DC gain characteristics of LLC resonant converter at λ=1 

As shown in the above figures, a lower λ value results in a left-shift of the second resonant 

frequency and an expansion of the ZVS-BOOST operation range.  It seems that a lower value 

is preferable to obtain a large ZVS-BOOST zone; however, if the λ value is selected too 

small, the converter’s minimum operational frequency should drop to a low value to exhibit 
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high voltage transfer ratio with low Q, the benefit of LLC resonant converter working at high 

frequency cannot be maintained. Furthermore, low λ value also causes more discontinuous 

current at the secondary windings thus more conduction loss. In conclusion, the λ value is 

ideally to be selected to assure the second resonant frequency a little lower than the 

converter’s minimum switching frequency.  

From the above analysis, it is clear that the λ value decides the operational frequency range 

and the Q value decides the maximum gain that can be achieved at the minimum operational 

frequency. Thus, in order to keep a large voltage regulation capability at a specified 

operational frequency range, it is better to select firstly the λ value according to the frequency 

range definition and then find an adequate Q value to attain the maximum gain requirement at 

minimum operational frequency.  

2.2.2 Circuit design 

As described in the above section, ZVS-BOOST region is selected for this LLC converter 

designing. The aim of this circuit design is to find the optimal electrical parameters to better 

fit the requirement of large input variation range, limited operational frequency and high 

quality factor. In LLC resonant converter, the two operational frequency ranges of ZVS-

BUCK and ZVS-BOOST are separated by the resonant frequency. To ensure the operation of 

ZVS-BOOST among all the operational frequency ranges, the maximum switching frequency 

should not be set to a frequency higher than the resonant frequency fr. In fact, it is optimal to 

set the resonant frequency to the same as the maximum switching frequency (265kHz) which 

will greatly simplify the design procedures so that the voltage conversion ratio at this 

frequency depends only on the transformer ratio. Thus,  

maxsr ff  (2-6) 

The load independent point is set to get the minimum output voltage at maximum input 

voltage, the transformer’s transfer ratio can then be selected as follows:  

2/max
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½ represents the gain of the half bridge and N2, N1 should be integer values. The obtained n 

value is 1/16, with N2=1, N1=16. 
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As discussed in the above section, the selection of the ratio between resonant inductor and 

magnetizing inductor greatly influences the ZVS-BOOST region’s width. To keep the 

circuit’s operation at ZVS-BOOST mode, the second resonant frequency fr2 should be inferior 

to the minimum switching frequency 150kHz. 

min
2

max
2

min
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ss
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As discussed in the above section, the λ should be chosen to a value slightly less than the 

above calculated result. In this design, λ = 0.33.  

Set the load independent point to ensure the sufficient output voltage at the maximum input 

voltage (Vinmax, Vomin) and the point at fsmin should be set as (Vinmin, Vomax). Thus a sufficient 

gain of 

minmin

maxmax

oin

ino

VV
VVg



 (2-9) 

should be attained at fsmin to get an enough voltage gain. By referring to the G-f plot, a Q value 

can be found to meet the desired gain requirement, illustrated in the Figure 2-13. It has to pay 

attention that under a same λ value, a higher Q helps to improve the power factor thus the Q 

value should be selected as high as possible. Q=0.25 is adopted in this project. With the 

obtained parameters for λ and Q values, the resonant cell’s voltage conversion ratio 

characteristics and operational regions can be plotted in the following figure. 
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Figure 2-13. The operating zone of the designed LLC resonant power cell 

The nominal output current and the nominal load can be derived from the following 

equations: 

o
o V

PI  (2-10) 

o

o
out I

VR  (2-11) 

Based on the definition of the quality factor and resonant frequency of a resonant circuit, the 

parameters for resonant inductor and resonant capacitor can be developed as: 
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Once the resonant inductance is obtained, the transformer’s magnetizing inductance can be 

calculated by the following equation:  

Open load 

Q=0 

Full load 

Q=0.25 

Borderline 
ZVS/ZCS 

Operating zone 

220V/16V 

410V/12V 

fr2 

Gain=2.5 

150kHz 265kHz 
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
r

m
LL  (2-13) 

The derived circuit parameters are: Lr=5µH, Lm=15µH, Cr=80nF. 

2.2.3 Influence of secondary leakage inductance 

The primary leakage inductance of a transformer can be integrated with the series resonant 

inductor; however, the influence of the secondary leakage inductance can neither be 

integrated nor neglected. Secondary leakage inductance exists in all transformers, whose 

value depends on the coupling factor of primary and secondary windings and its external wire 

length. In this project, an additional wire length of 16cm is needed at the transformer’s 

secondary side to connect the LV MOSFET module and the output PCB filter card, while the 

leakage inductance is measured to be l2=123nH. In case of high frequency, high power 

applications, the impedance of this secondary leakage inductance is increasing (116mΩ at 

150kHz, 193mΩ at 250kHz) and even rise up to be the same order as the nominal load 

R=160mΩ. Its effect should thus be considered in the design and dimensioning of power cell 

parameters. Figure 2-14 shows the AC equivalent circuits of an ideal LLC resonant cell and a 

LLC cell including secondary leakage inductance.  

 
Figure 2-14. Equivalent circuit of the LLC resonant converter cell without (1) or with (2) 

secondary leakage inductance 

The voltage conversion ratio of LLC converter including the leakage inductance can be 

written as: 
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Where 
rr

r CL
1

 ; 
rm

m CL
1

 ; L2 is the secondary leakage inductance transferred to the 

primary side, 2
2

2 n
lL  . The equation (2-14) is firstly proposed in [2-18]; however, the author 

neither continues to fully explore the characteristics of LLC converter including its secondary 

leakage inductance, nor proposed how does this leakage inductance affects converter’s 

parameter dimensioning in obtaining an optimal designing result. In the following part, the 

influence of this secondary leakage inductance will be fully analyzed, particularly in case of 

L2 close to Lm, which always happens under high power and large input voltage variation 

range conditions. In order to study the influence of secondary leakage inductance analytically; 

it is better to normalize the above equation (2-14) and to represent it in the following format: 
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  (2-15) 

The graph of DC gain characteristics is plotted in Figure 2-15. 

 

Figure 2-15. DC gain characteristics of LLC resonant converter with l2=120nH 

 

Load independant point  

fr  
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Several conclusions can be drawn based on the developed equation: 

(1) At no load, Q=0, the voltage gain remains the same as in ideal LLC resonant converters. 

This is easy to understand since there is no current in the secondary leakage inductance. 

(2) At the normalized frequency fn=1, the gain expression can be written as: 
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Due to the imaginary part in the above equation, the gain at fn=1 is less than 1, except for 

open circuit. This means that the main resonant frequency is no longer a load independent 

point. At a heavier load (low Rac, high Q), the gain is lower. This is due to the fact that at 

lower Rac, the leakage inductance’s impedance is closer to the load resistance and it plays a 

role of voltage divider. 

(3) By imposing the imaginary part of equation (2-15) equal to 0, it is possible to derive the 

new load independent point as follows: 
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From equation (2-17), if L2<<Lm, the find remains close to 1 and the converter’s load 

independent point is not greatly influenced by this leakage inductance. In this case, the 

secondary leakage inductance has very limited influence to the characteristics of LLC power 

cell. But in this converter design, L2=30µH, which is even higher than the pre-designed Lm 

value Lm=15µH. As a result, the DC gain characteristics of this resonant cell are greatly 

influenced. The gain at the new load independent point can be obtained as: 

m

m
findf L

LL
G 2

 (2-18) 

Equation (2-18) shows that the voltage conversion gain at load independent point including 

secondary leakage inductance is higher than 1, moreover, it increases with the increase of L2. 

By developing the equation (2-17), the frequency at the independent point can be derived as: 
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From equation (2-19), it is obvious that the new load independent point appears at a frequency 

where Cr is in resonant with all the three inductors. The new independent frequency locates 

between the first resonant frequency and second resonant frequency: fr>find>fr2. In conclusion, 

the leakage inductance moves the load independent point to left with a gain higher than one. 

(4) As to a same Q value, the maximum voltage conversion ratio is increased by including 

secondary leakage inductance compared with ideal LLC. As studied in the above section, the 

maximum gain obtained in ideal LLC resonant cell with Q=0.25 is G=2.8 at fn=0.55 (referring 

to Figure 2-13). In comparison, this G is raised up to 3.4 under the same Q value (referring to 

Figure 2-15).  The added leakage inductance increases the maximum gain, but decreases the 

power factor according to discussions at the part 2.2.1. Gain=3.4 is far higher than required 

voltage conversion ratio of 2.5. It is possible to continue with the actual Q value, but the 

converter will encounter serious power factor problems and thus a worse power efficiency. 

Increasing the Q value from 0.25 to 0.4 is a good solution to reduce the gain and improve the 

power factor.  

The phase difference between the half bridge middle point voltage VQLds and resonant current 

waveform ir can be analysed by evaluating the input impedance of resonant power cell with

 inZangle , of which the results are shown in the following figure. 
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Figure 2-16. Operating points transition at nominal power under two different input voltages 

(Vin=220V, Vin=410V, separately) 

In Figure 2-16, a positive phase difference means the resonant current lags the half bridge 

voltage, vice versa. For an ideal LLC operating at Vin=220V with nominal power, a phase 

difference of 38º is observed (cosφ=0.79). After including the secondary leakage inductance, 

the operating point is shifted to the red point where Δφ=60º, which greatly deteriorates its 

power factor (cosφ=0.5). Adopting a higher Q=0.4 helps to move the operating point to a 

reduced phase difference Δφ=45º (purple point, cosφ=0.71). At Vin=410V, an ideal LLC 

converter operates at 223kHz with a Δφ=54º (cosφ=0.59). By including the secondary leakage 

inductance, a higher gain needs to be developed thus the operating point shifts to 187kHz with 

Δφ=71º (cosφ=0.33). Increasing the quality factor from 0.25 to 0.4 makes the operating point 

shift to 192kHz where Δφ=62º (purple point, cosφ=0.47).  

With the revised Q value, it is possible to recalculate the power cell’s parameters. Finally the 

obtained power cell parameters are: Lr= 7.5uH, Lm=24uH, Cr=50nF. The voltage conversion 

ratios with the revised resonant tank circuit parameters under different load conditions are 

plotted in the following figure. 

Vin=220V  

Vin=410V 
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Figure 2-17. Theoretical and experimental voltage conversion ratio under different loading 

conditions, including transformer’s secondary leakage inductance 

In the above calculation and measurement, the transformer’s conversion ratio is included.       

-24dB=20log(1/16) signifies the unit voltage gain, -16dB=20log (2.5/16) signifies the targeted 

gain of 2.5, with n=1/16.  As plotted, the resonant tank operates between 150kHz and 

265kHz, and is capable of attaining a sufficient gain=2.5 at 150kHz. Experiments are 

launched to verify the voltage conversion ratio characteristics with the real transformer and 

inductor under different load conditions, of which the results are in good accordance with the 

theoretical results, which verifies the established resonant cell model. It is also apparent that 

the secondary leakage inductance makes the operation region of LLC narrower. 

The above part shows the influence of secondary leakage inductance to the parameter 

dimensioning of resonant power cells, it is also interesting to study the consequences of 

leakage inductance on circuit operation and dimensioning of power components.  

(1) By including the secondary leakage inductance into consideration, the converter operates 

also in ZVS-BOOST mode, but not fully DCM. At low load, the leakage inductance has 

limited influence to the circuit operation and the circuit operates still in DCM. With the 

increase of power load and decrease of load resistance, the output current increases and 

leakage inductance slows down the secondary current waves then the circuit operates in 

CCM. Working in CCM reduces the RMS value of secondary current thus reduces the 

conduction power loss at LV MOSFETs.  

(2) Secondary leakage inductance increases the AC voltage amplitude at the transformer 

secondary side and thus increases the transformer’s core loss. Due to a half sinus current 

-16dB  

-24dB  

5dB/div  

full load  

half load  
1/4 load  

open  
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across the leakage inductor, a sinus voltage ul2 is developed. The transformer’s secondary 

voltage uT2 thus sees a combination of the voltage ul2 and uo, as shown in Figure 2-18. 

Besides, due to a CCM operation, the magnetizing or demagnetizing time duration is longer 

than DCM. The Bpk is then increased from 100mT to 150mT (simulated with E42/21/15, 

Se=178mm2).  

 

 

Figure 2-18. Waveforms of circuit operation considering the secondary leakage inductance 

(3) Secondary leakage inductance develops a sinus voltage and this voltage is reflected to 

another SR MOSFET. For example, when S1A is switched on, S1A suffers a voltage 

combination of uT2+uo. Since uT2 is deformed by the secondary leakage inductance, SR 

MOSFET may need to support more withstand voltage. In this project, the withdrawn voltage 
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is increased from 30V to 40V. LV MOSFET with withstand voltage of at least 60V should be 

selected rather than 40V considering a design margin.  

2.2.4 Re-evaluation of Magnetizing Inductance vs. input voltage regulation 

capability  

Following the above calculations, one can derive ameliorated circuit parameters of resonant 

tanks to comply with large input voltage variation at limited frequency range. Although that 

the power factor has been ameliorated by increasing Q value following the above process, the 

obtained result still drops into a low Lm value, Lm=24µH. Simulation shows that the rms 

resonant current at Vin=330V is 17A and the rms magnetizing current is 11.9A. The 

magnetizing current occupies a large fraction of resonant current and the overall performance 

is far from being ameliorated.  

The most efficient way of improving the power factor is to increase the magnetizing 

inductance Lm to reduce the reactive power, but the input variation range will also be 

reduced. Large Lm makes the converter has insufficient gain to be able to operate at Vinmin. 

As a result, a BOOST PFC converter should be connected at the input of LLC, shown as 

follows: 

 

Figure 2-19. Proposal of BOOST+LLC to improve the power factor 

As shown in the above figure, the input voltage variation range is reduced to 330-410V. For 

input voltage Vin less than 330V, the BOOST converter operates to increase the voltage to 

330V; for Vin higher than 330V, the BOOST converter is inactive and the input voltage is 

added directly to LLC (with a diode voltage drop). The breakpoint of 330V is selected 

according to the charging characteristics of battery in electric vehicles. 
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Figure 2-20. Typical state-of-charge (SOC) of a lithium ion battery in electric vehicles 

For Lithium ion battery, principally, the battery works with a voltage higher than 330V. When 

the battery is discharged to less than 10%, its voltage falls from 330V to 220V rapidly. The 

operation range of [220V 330V] is in fact a marginal operation region of the proposed 

converter. For most of the time, the BOOST converter is not activated. A comparison of 

selecting different Lm values is shown at the following table. 

Table 2-2. Comparison of different selections of Lm with loss predicted for Vin=220V, one 

cell 

Lm selection 1. Lm=24µH 2. Lm=42µH 3. Lm=75µH 

λ value λ=0.31 λ=0.18 λ=0.1 

Air-gap length 3.96mm 1.98mm 0.90mm 

Vin reg. capability [220V 410V] [330V 410V] [380V 410V] 

Boost needed No Yes Yes 

BOOST start at Never SOC< 10% 
BOOST seldom on 

SOC<90% 
BOOST always on 

BOOST loss 0 15W 15W 

Trf pri. Conduction 
loss 10.5W 3.9W 3.0W 

MOSFET loss x2 18.5W 6.86W 5.14W 

Eddy current loss 5.8W 1.5W 0.8W 

Inductor loss 9.50W 3.81W 2.43W 

ZVS HV MOSFET Yes Yes Lost at low load 

Total loss balance 0W -13.23W -17.93W 
 

410V 

220V 

100       80       60          40            20           0    % 

330V 

Principal region 
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With Lm=42µH, the rms resonant current is reduced to 12A with 6A as rms magnetizing 

current. A reduction of resonant current decreases the conduction loss of HV MOSFETs, 

transformers and inductors. Furthermore, the air-gap length can be reduced to a half, which 

reduces greatly the winding’s eddy-current loss (referring to chapter 4). Considering the 

overall loss, although the BOOST converter introduces an extra 15W loss, the whole system 

still gains more loss reduction of 13.23W (~1%) from the other components. For input voltage 

higher than 330V, the BOOST converter is off, the converter benefits even more efficiency 

improvement (>2%) in this case.  

 

Figure 2-21. Voltage conversion ratio of modified LLC resonant cell with Lm=42µH 

If the Lm is further raised to 75µH, the reactive current can again be reduced. However, too 

low reactive current makes it difficult to exhibit ZVS at full operation range. The dead-time 

should be increased, if not, the ZVS at light load maybe lost. Another disadvantage is that 

with Lm=75µH, the BOOST shall operate when SOC<90%, which means the BOOST should 

always be activated and this sacrifice the overall efficiency at HV battery’s principal 

operational region. 

In this dissertation, transformers with Lm=42µH and Lm=24µH are both built to verify the 

efficiency prediction of the LLC. Only the LLC conversion part is designed and built as 

prototype, the BOOST PFC is for fictive analysis and will not be built. 

 

330V/16V 

410V/12V 
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Following the above analysis, it is not a sensible idea to integrate all the functions of a DCDC 

into the LLC converter, but design the LLC converter to target a high efficiency at a reduced 

input voltage range with a BOOST PFC to broaden the input voltage regulation capability. 

This structure also brings us the design flexibility: if another car fabricant specifies an input 

voltage different from the prototype, we can re-design the BOOST PFC part only, without 

changing too much the design of the LLC.  

2.2.5 ZVS condition fulfilment 

To keep the correct ZVS during all ranges of input voltages and output powers, it is necessary 

to ensure that the ZVS equivalent capacitor across switching MOSFETs can be fully charged 

or discharged during the dead time. The lowest ZVS current happens at the maximum 

operational frequency and zero load condition. At no load, there is no current transferred to 

the secondary side and the current in the tank is just the magnetizing current of transformer. In 

each half-cycle, the resonant current is a linear straight line as the clamped voltage charged 

the magnetizing and resonant inductance, the minimum instant resonant current value at dead 

time for ZVS (IZVS) can be calculated as follows: 

 
 mr

in
ZVSin

ZVSZVS
rm LLf

VIV
T

IILL






max

min
min 42/

)( (2-20) 

 

Figure 2-22. ZVS operation at the half bridge middle point 

The obtained ZVS current is IZVS=6.6A. At the dead time, ZVS current charges one 

MOSFET’s output capacitor and discharge the other. An additional ZVS capacitance is 

always added in order to limit the maximum dv/dt. This ZVS capacitor can either be directly 

paralleled with QLA or be divided into two capacitors and paralleled with both QHA and QLA. 

The total capacitance can be obtained as: 

QH 

QL 

CossH 

CossL 
CZVS 

Vin 

IZVS 

VQLds 
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HLZVS CossCossCC   (2-21) 

Unlike linear capacitors whose capacitance is independent of the applied voltage, the Coss of 

MOSFET is a nonlinear capacitance, with its value as a function of VDS. In this project, 

Super-junction MOSFET STW88N65M5 (650V, 24mΩ, TO247) is selected due to its low 

Rdson value and high dv/dt capability, of which the Coss vs. Vds relationship is shown as 

follows: 

 
Figure 2-23. Capacitance variations of MOSFET STW88N65M5 vs. Vds 

As reported in Figure 2-23, super-junction MOSFET STW88N65M5 performs high nonlinear 

capacitance property and it is hard to specify the Coss of super-junction MOSFET by a 

constant value. The Coss at low Vds is close to 120nF while at high Vds is close to 0.2nF. 

When one MOSFET is charging from 0V, another MOSFET is discharging from Vin and 

Coss of the latter can be neglected. Thus only one MOSFET’s Coss need to be considered at 

the start of charging. In order to study its characteristics, it is possible to divide the charging 

into several periods that each period can be considered with linear capacitance properties, 

shown as in the following figure. 
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+ 

Figure 2-24. Capacitance variations of MOSFET STW88N65M5 vs. Vds 

The beginning of the capacitor charging can be approximated into three periods with linear 

capacitances. The time for vQLds rise from 0V to 15Vcan be calculated as the sum of the time 

for capacitor charging from ΔV1: [0 1V], ΔV2: [1V, 5V] and ΔV3:  [5V 15V], respectively.  
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The derived charging time tch=85ns. During this time period, the MOSFET drain-source 

current remain slightly changed.From VQLds= 15V, the total output capacitor is dramatically 

reduced and its value finally drops to 200pF at 100V, which can be neglected. The value of 

the added ZVS capacitor became dominant and plays a role of controlling the MOSFET’s 

dv/dt. Without CZVS, high dv/dt rate across the drain-source of MOSFET exceeds the dv/dt 

capability then the voltage Vgs may become higher than the threshold voltage, forcing the 

MOSFET into conduction and a catastrophic failure may occur. Selecting CZVS=3.3nF, the 

time for ZVS capacitor charging is: tZVS=205ns and the dv/dt rate is 2V/ns (maximum 15V 

authorized for selected MOSFET). Finally, the selected dead time td should be higher than the 

sum of tch and tZVS. The primary switching waveforms with td=400ns are reported by the 

following figure: 

Lin1 :[0V-1V], Coss_avg1=100nF 

Lin2 :[1V-5V], Coss_avg2=55nF 

Lin3 :[5V-15V], Coss_avg3=25nF 

Vds (V) 

(n
F)
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CH1: VQLgs, CH2: VQHgs, CH3: VQLds, CH4: Ir (50mV-1A) 

Figure 2-25. Waveforms of ZVS switching with td=400ns at Vin=330V, P=300W 

As reported from Figure 2-25, when QH is switched off, resonant current starts to discharge 

the CossL and charge the CossH. CossH performs a high capacitance value thus the charging is 

long, a hold-on time of about 100ns is detected. The voltage VQLds across the MOSFET 

remains almost constant and the MOSFET QH is switched off at zero voltage. Then the half 

bridge middle point voltage decreases linearly. At the end of the dead time, the drain-source 

voltage decrease to zero, the MOSFET QL is then be switched on at zero voltage. At the 

primary side, both the ZVS switch-on and switch-off can be assured by carefully selecting the 

dead time length. However, ignoring the Vds voltage hold-on phenomena results in an early 

switch-on of MOSFET QL and result in hard switching. Figure 2.24 shows an experimental 

result with reduced td=200ns, executed at Vin=50V, open load. In order to protect the 

MOSFETs and boot-strap circuit, this experiment is implemented at a reduced input voltage 

level.  

Hold-on  

ZVS  
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CH1: VQLgs, CH2: VQHgs, CH3: VQLds, CH4: Ir (50mV-1A) 

Figure 2-26. Failure of a ZVS switching when td=200ns (tested at Vin=50V, no load) 

As reported from the Figure 2-26, due to a limited dead time length and insufficient resonant 

current value, the voltage VQLds (Ch3) remain almost unchanged during the dead-time. Soft-

switching is not attained and there is a great voltage fluctuation at MOSFET switch-on due to 

track’s series parasite inductance and MOSFET paralleled ZVS capacitor. A large voltage 

spike appears with resonance which makes the converter work at hard switching.  
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Chapter 3. Parallel-parallel Double Phase LLC: 

Operation and Control  

3.1 Current Sharing in Double Phase LLC  

3.1.1 Current sharing problems in phase-shift parallel-parallel LLC 

converter 

In the previous chapter, it is described and proved that parallel interleaving two 1.25kW LLC 

power cells is a good solution for constructing a 2.5kW converter with high efficiency among 

a large output power range. The structure after power cell interleaving is shown in Figure 3-1.   

 

Figure 3-1. Two-phase interleaving LLC resonant converter with 90º phase shift 

The double phase LLC resonant converter thus contains two phases LLC resonant cells, noted 

as cell (A) and cell (B), separately. To share the total output power, its input sides are 

connected in parallel and output sides are connected also in parallel. A filter capacitor CO 

receives and filters the output current. The above double-phase or multi-phase LLC has 

appeared in several literatures [3-1 – 3-6] as a good candidate to manage high power 

applications. Traditional control method described in the above papers is to operate both the 

two phases at the same frequency with one same controller driver, but with a phase shift of 
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90° between adjacent cells to get an output current with fewer ripples. This works perfectly if 

the two resonant tanks of the two cells are identical. However, resonant cell component 

mismatch causes the two cells to exhibit different voltage conversion ratios characteristics; as 

a result, the load current is no longer equally distributed among the two power cells. Thus the 

applied control method is true only under the hypothesis that all the power cells have exactly 

the same electric parameters: the same resonant inductance, the same resonant capacitor, and 

the same magnetizing inductance. This is also to say, super-symmetry should be kept among 

both the power cells. If this is not the case, a slight component mismatch may introduce huge 

current balancing problems, more current attempts to pass through one of the power unit than 

the other, leaving the other units with lower power output. The following simulation is done 

to illustrate the current sharing problems under several typical component tolerances. 

In the Simetrix software, set the power cell A as the reference power cell with the following 

resonant tank parameters: Lr= 7.5uH, Cr=50nF, Lm=42uH. The parallel-connected power cell 

B is considered to have value tolerances on these three tank components. The circuit operates 

at nominal power with the following electrical parameters are: Vin=360V, Ro=80mΩ, 

T=5.8us, f= 169.2 kHz, P=2.5kW. The primary driving signal of the power cell B is with 90º 

phase lag compared to the power cell A.  Simulations are conducted in four scenarios: 

scenario No.1, the power cell B has 5% tolerance on resonant capacitor Cr (typical tolerance 

of a NPO ceramic capacitor); scenario No.2 : the power cell B has 10% tolerance on resonant 

inductor Lr (typical tolerance);  scenario No.3 : the power cell B has 10% tolerance on 

magnetizing inductor Lm (typical tolerance); scenario No.4 : the power cell B has all the 

tolerances mentioned in the above three scenarios. The obtained results are shown in the 

following table. 

Table 3-1. Current dissymmetry simulation results between two different power cells 

Cell A Cell B 

Reference 
Lr=7.5uH 
Lm=42uH 
Cr=50nF 

Reference 
Lr=7.5uH 
Lm=42uH 
Cr=50nF 

Scenario No. 1 
Lr=7.5uH 
Lm=42uH 
Cr=52.5nF 

Scenario No. 2 
Lr=8.25uH 
Lm=42uH 
Cr=50nF 

Scenario No. 3 
Lr=7.5uH 

Lm=46.2uH 
Cr=50nF 

Scenario No. 4 
Lr=8.25uH 
Lm=46.2uH 
Cr=52.5nF 

IB/(IA+IB) 50% 26.9% 35.6% 37.2% 13.4% 

Waveforms 
     

 



72 
 

IA stands for the average output current of the power cell A, while IB stands for the average 

current of the power cell B. As is shown in the Table 3-1, component value tolerance has a 

great effect on the output power distribution, and may cause serious current sharing problems 

on the double-phase interleaved LLC power cell. Scenario 4 is a simulation of the current 

distribution under the worst case, where the current asymmetry problem is the most severe, 

from which the second power cell only shares 13.4% of the total power. As seen from the 

Table 3-1, the current sharing problem is more sensitive to the tolerance degree of the 

resonant capacitor Cr, as a 5% tolerance of Cr causes higher dissymmetry effect than 10% 

tolerance of Lr and Lm.   

To better illustrate the current sharing result, Monte-Carlo analysis is executed in Simetrix 

software. Tolerance settings of 5% for resonant capacitors and 10% for inductors are taken in 

the simulation for both two power cells. Figure 3-2 shows the Monte-Carlo analysis results of 

the percentage shared by the power cell B versus the total output current, by executing 1000 

steps of transient circuit simulation in Simetrix. 

 

Figure 3-2. Histogram plot of the current percentage shared by the power cell B in Monte-

Carlo analysis 

IB/(IA+IB) with a variation of ±10% is accepted for keeping a relative balanced power 

distribution without causing serious operational problems at nominal power output. The 

Monte-Carlo analysis shows that the double-phase converter has a probability of 51.5% 

IB/(IA+IB) 

Safety region 
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working in the safety operation region, with a current sharing percentage limited into the 

interval [40%, 60%]. However, the converter still has a probability of 48.5% operating in the 

unbalanced current distribution region. In laboratory conditions, it is possible to assure a 

satisfactory current sharing by carefully selecting and identifying the component values 

before prototype assembly. However, in the automobile industry, the situation is not the same. 

Nearly 50% converter prototype will encounter current sharing problem and will be failed 

products.  

In conclusion, from the simulation results, the well-applied unique operational frequency with 

phase-shift control method applied to double phase LLC converter is totally difficult to assure 

an equal current balancing between different power units, especially for DCDC converters in 

automobile industries where each resonant component is susceptible to have a value tolerance. 

3.1.2 Current balancing among different power cells 

Considering the phenomena of current dissymmetry existed in parallel-parallel interleaving 

LLC converter with phase-shift control, methods for current balancing among different power 

cells should be taken into consideration when designing the double phase LLC resonant 

converter. In [3-7] and [3-8], the authors analyzed the current balancing problems and gave 

some suggestions for designers to avoid serious current dissymmetry by careful circuit 

dimensioning. What the authors proposed are methods for ameliorating the current 

distribution under phase shift control method but it cannot overcome current dissymmetrical 

problems essentially. In [3-9], the author proposed to control the current sharing by 

controlling phase difference between adjacent power cells in a star connected three-phase 

LLC converter. All the three power cells operate at the same frequency but with variable 

phase differences to reduce the current mismatch. This control method applies very well at a 

three phase star connected LLC converter but the feasibility on double phase LLC is 

unknown. 

In order to satisfy the equal current balancing requirements in double phase parallel-parallel 

LLC resonant converter, a novel control circuit is proposed in this thesis, which is a European 

patent of this dissertation [3-10]. The novel control method adopts two regulation loops: 

external output voltage loop and internal input current loop. It assures a current balancing 

among different paralleled power cells by controlling each cell’s input current. In order to 

sense the input current of each power cell, a resistive shunt is connected in series with it.  

Figure 3-3 shows the proposed double-phase resonant converter with primary input current 
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sensors RA and RB. The sensor’s resistance may vary between several mΩ and several 

hundreds mΩ, depending on the input current value and the sensor voltage level. In this 

project, considering the input current level, a shunt of 10mΩ is adopted. The shunt may 

dissipate up to 0.5W thus a large package of “1812” is selected. The current sensor is placed 

between the half bridge power cell and the primary power ground thus the current 

measurement is not floated.   

 

Figure 3-3. Proposed double phase LLC resonant converter with primary current sensors 
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Figure 3-4. Bloc schematic of the control circuit for input current balancing applied to double 

phase LLC converter 

The bloc schematic of proposed novel control circuit for input current balancing adapted to 

the double phase LLC converter is depicted in Figure 3-4. As shown in Figure 3-4, the current 

shunt RA of the power cell A and RB of the power cell B forwards the sensed input current 

signals in forms of VRA and VRB, separately. The sensed signals are filtered and amplified to a 

suitable level (noted as ImA and ImB) and they reflect the average active input current of each 

cell. The filter performs low pass characteristics and a high attenuation among the converter’s 

operational frequency range to filter the AC noise brought by MOSFET switching. The whole 

control loop contains an external voltage control loop and an internal current control loop. 

The output voltage is compared with the reference voltage and the comparison error eV is 

regulated by a voltage regulator PI. The voltage regulation gives a unique current reference 

Iref for both the two power cells. This Iref should be isolated from LV part and limited to a 

certain value to avoid over-current problems. The measured currents ImA and ImB are regulated 

to Iref by its respective current regulators, while a uniform input current balancing among 

different power cells can be assured. The obtained comparison errors eI1 and eI2 are sent to 

different oscillators (can be either voltage controlled oscillator: VCO or current controlled 

oscillator: ICO) and drivers to drive the half bridge MOSFETs. It is apparent that under 

component mismatch, two converters operate at different frequencies to keep the same 

voltage conversion ratio. The operational difference nature of these two control strategies can 

be explained essentially by the voltage conversion ratio plotted in Figure 3-5 and Figure 3-6. 

Figure 3-5 shows an example of operational point movement with power cell component 

mismatch at nominal power under phase-shift control strategy. Figure 3-6 is an example of 

operational frequency differences under power cell component mismatch at nominal power 

under proposed double loop control. The cell A adopts the calculated tank parameters with 

Lr=7.5µF, Lm=42µF, Cr=50nF; the cell B adopts 10% capacitor tolerance with Lr=7.5µF, 

Lm=42µF, Cr=45nF. (Note: 10% maybe not a rational tolerance value for real applications. It 

is adopted as an example to better illustrate the current dissymmetry phenomena.) 
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Figure 3-5. Operational point movement with component mismatch at Vin=360V, Vo=14V, 

P=1250W under phase shift control 

The given input voltage and output voltage imposes a power cell gain of 1.3 required for both 

the two cells. If the output current is equally distributed between the two cells, the cell A 

operates at the point “a” with a gain less than 1.3 and the cell B operates at the point “b” with 

a gain more than 1.3. With parallel connection, both the two power cells should perform the 

same gain as they share the same input/output voltage at the same operational frequency of 

169 kHz. Thus the cell A tends to share less load to increase its voltage conversion ratio and 

the cell B turns to share more load to decrease its voltage ratio. The operational point of cell A 

shift from “a” to “c” (with gain curve shift from black line to blue line) and the operational 

point of cell B shift from “b” to “c” (with gain curve shift from red line to green line). The 

system then stabilizes and voltage conversion ratios of both the two power cells are equal to 

1.3. The cell A’s load resistance is increased to 0.5Ω and the cell B’s load resistance is 

decreased to 0.1Ω, which causes a current dissymmetry of IA/IA+IB=16.7%.   

a 

b 

c 
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Figure 3-6. Operational points determination for two phase parallel LLC with component 

mismatch at Vin=360V, Vo=14V, P=1250W under proposed double loop control 

As reported in Figure 3-6, using proposed double loop control, the case is not the same. Other 

than varying its load to adapt to the same voltage conversion ratio, the power cell varies its 

switching frequency to attain the same target. With double phase control loop and different 

drivers for different power cells, the switching frequencies for the two cells are not forced to 

be the same but to be independent of each other. Referring to Figure 3-6, the power cell A 

operates at 163.5kHz and power cell B operates at 173kHz. Each cell shares a load resistance 

of 0.16Ω and there is no current sharing problem in this control strategy.  

It has to be reminded that although the proposed control strategy is applied to double phase 

LLC resonant converters, but the principle can be easily promoted to N phase (N>=2) LLC 

resonant converters by adjusting the number of current control loops.  

In summary, the explications above show that the double-cell LLC converter by the proposed 

control strategy has the following features: 1) Simple to construct and execute. 2) Ideal 

current balancing among different power units regardless of the components value tolerance. 

3) Uniform power distribution between different power units, thus uniform power loss and 

temperature rise. 4) Possible to handle higher power by paralleling more power units with 

a’ 
b’ 

163.5kHz 173kHz 
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high efficiency. 5) When prompted to the operating between 2 voltage sources at a real 

vehicle, the internal current loop control simplifies converter power management during 

various operating mode. All the above features show that it is an excellent candidate for 

voltage regulation and current balancing of high power conversion in electric vehicle 

applications. 

Based on the above discussions, the control board is designed as follows: 

 

Figure 3-7.Framework of the control board applying proposed control strategy 

A 6W quasi-resonant Flyback converter with multiple outputs is designed for providing 15V 

and 11V power supply to the high-side resonant controllers (+15V) and MOSFET drivers 

(+11V). This quasi-resonant Flyback converter converts the low side battery voltage 

(10~20V) to constant voltages with galvanic isolation. The designed converter is a Flyback 

converter with ZVS switching, while ZVS is realized by adding resonant capacitors and logic 

circuits to detect the zero crossing instant of MOSFET’s drain-source voltage and it operates 

with a variable frequency between 100kHz and 300kHz with a maximum efficiency of 86%. 

The ON/OFF enables the Flyback converter to operate when receiving an ON command, and 

disables its operation when an over voltage (>18V) at LV_Bat occurs. An over voltage 

protection (OVP) circuit is designed to detect the over voltage at the LV battery. The output 

voltage is regulated by an output regulator and gives a reference signal I_ref for current 

regulation. The I_ref is isolated from the LV area and limited by the block ‘I Limit’ in 
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function of the input power and input voltage. The shunt amplifier & filter of respective 

power cell senses the input current of each power cell and the measured results are added and 

analyzed by ‘1 or 2 cells’ to decide the number and order of cells to operate, following the 

logic indicated at Figure 2-2. The measured current of each cell is referenced to I_ref and 

regulated by its respective current regulators. A resonant controller is adopted at each phase 

for frequency conversion and drivers are utilized to amplify the driving capability. In addition, 

the adopted resonant controller FAN7631 is also possible to execute soft-start, over-current 

protection and under-voltage lock-out. The components arrangement at the control PCB card 

is shown in the following figure: 

 

Figure 3-8. Components arrangement and design results of the control PCB card 

The control board PCB adopts 8 layers, with 105µm thickness at the external layers and 70µm 

at the internal layers. The total PCB thickness is 1.6mm. As shown in Figure 3-8, an 

insulation distance of 4mm is used to separate the LV area (shadowed) from HV area. The 

ON/OFF, synchronous rectifier drivers and Vreg are placed at the LV area. QR Flyback 

converter is an interface between HV and LV area. The designed PCB board adopts a 

symmetrical structure, arranging the controllers and drivers of cell A at the left side and those 

of cell B at the right side. Wires are soldered at the pins and to drive the high side MOSFETs 

Con & Dri A  
 

Synchro Drivers 

Con & Dri B  
 

I_meas_A 
 

I_meas_B 
 

1 or 2 cells 
 

Ireg_B 
 

Ireg_A 
 

QR Flyback DCDC 
LV area 

ON/OFF 

Vreg 

GND_LS 

Terminals 
Connect to input  
 

ON/OFF

Vreg

Signals output 



80 
 

which are located at the ‘input filter’ PCB board. The current measurement is placed close to 

the current regulation. The detailed electrical schematic can be found at the Annex1.  

3.2 Control and regulations 

In DC/DC power converters, the small signal analysis is essential for the feedback loop 

design. As to PWM power converters, the state space average modeling is a widely adopted 

solution, which groups the separate operating states proportionally by their respective duty 

cycle. This method provides simple but accurate solution for circuit’s modeling for up to half 

switching frequency. However, in resonant converters, the state space average method can no 

longer be applied. In resonant converter, the switching frequency is too close to the resonant 

frequency of the resonant tanks and the state contain mainly switching frequency harmonics 

instead of low frequency content as in PWM converter, the circuit’s dynamics cannot be 

precisely predicted. Two methods have been proposed to perform its small signal analysis: the 

extended describing function analysis [3-11~3-13] and time domain simulation method [3-

14]. However, these methods are time-consuming and not easy to implement. The paper [3-

15] gives some natural explanations of the LLC’s vout/f transfer function and gives some 

design considerations. As described in paper [3-15], the vout/f is proportional to the slope of 

the voltage gain curve at the operating point; the poles moved with the operating point. The 

papers [3-16~3-19] also propose some other control method for stabilizing the LLC 

converter’s control loop, for example, nonlinear adaptive control, etc. Other than the voltage 

single loop controls appeared at the above literatures, a double loop control scheme is 

established in this thesis, where the main difficulty lies in how to obtain the LLC’s small 

signal transfer function of input current/switching frequency, noted as vR/f (vR is the voltage at 

the input current sensor). To simplify the modeling process, the Simplis software is adopted 

as an analyzing tool and the vR/f transfer function analysis can be derived without repeated 

time domain simulation. With this software, bode diagram of the converter’s transfer function 

at given operating point can be simulated in several seconds instead of several hours in 

previous time domain simulation method. Based on the obtained transfer function diagrams at 

the current open loop and voltage open loop, different control scheme are proposed and 

regulators are designed to regulate the input current and output voltage dynamics. Finally, the 

simulation results are provided to verify the stability and dynamic performance of the 

designed LLC resonant converter.  

The Simplis software has integrated a Periodic Operating Point (POP) Analysis which adopts 

a special algorithm to accelerate convergence to the steady-state for a switching system, thus 
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the converter can reach the steady state faster than it would be in other simulation methods. 

The POP analysis is realized by different iterative time domain simulations. After reaching 

steady state, by injecting AC excitations at the desired point, the software executes an AC 

sweep analysis at a given frequency range to get the transfer function of any two points set as 

input and output. Through this simulation, the transfer function of LLC converter can be 

simulated by correctly imposing its steady operational point, without establishing its small 

signal model. The detailed simulation results are discussed in the following parts.  

3.2.1 Current regulation control 

As shown in Figure 3-3, input current of each power cell is measured by its respective shunts 

RA and RB, and the result is a voltage difference between the power ground and the signal 

ground, noted as HV_GND, GND_A_SG for the cell A and GND_B_SG for the cell B, 

respectively. The following figure show the input current filtering and amplifier circuit for the 

power cell B. The circuit at power cell A is the same as that in power cell B. 

 

Figure 3-9. Input current filtering and amplifier circuit at the cell B 

The input current is sensed by a 10mΩ resistive shunt inserted between HV_GND and 

GND_B_SG, with a maximum average input current of 4.2A (42mV maximal). Then a 

second order RC low pass filter is adopted to extract the average input current; its transfer 

function is written as GLPF(s). The signal is then amplified by U302 with a gain of GA=34 for 

further processing. 

        
 

            
         

The proposed input current regulation circuit is shown in the following figure: 

Signal ground 

Power ground 

RB 
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Figure 3-10. Current regulation circuit applied for the power cell B 

The controller FAN7631 integrates a current controlled oscillator (ICO) where the frequency 

is proportional to the current sensed at the pin RT of controller U307(internally regulated to 

+2V), with a gain of 270Meg.  

                    

The resistances R62 and R63 set a minimum current of 0.5mA at the pin RT, which impose a 

minimum switching frequency of 135 kHz. The switching frequency increases as the current 

flowing through R61 increases. The switching frequency can be regulated indirectly by the 

base voltage at Q4, through varying the total current sensed at the pin RT. The transistor Q3 

operates at its forward-active region and the current flowing through R59 and R60 is the 

same. The following equation can then be obtained: 

                      

Here, the transistor Q3 plays two roles: Firstly, the resonant controller is referenced to 

GND_B_SG and the regulator is reference to the GND_HV. Q3 transfers the regulator’s 

output voltage to the controller side by current equilibration through Q3’s collector and 

emitter, thus resulting in insulation between the two grounds. Secondly, since the voltage 

conversion gain is decreasing with the increasing of frequency, increase the voltage VQ4b 

decreases the frequency and increases the cell’s input current. In order to realize a negative 

feedback, the gain is inversed by the transistor Q3, with the following equation obtained from 

(3-3): 

regulator 
 

controller 
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The voltage VQ3b controls the current flowing through R61 thus controls the operational 

frequency, in a way of negative feedback.  

A resistance R46 is placed at the regulator’s output. This resistance also has two roles. Firstly, 

the resistance avoids the possible saturation of the PNP transistor Q3 at the start phase. 

Without this resistor, once the output of U301 gives 0, the Q3 conduct and 

VQ3e=VQ3c>VQ3b, which saturates definitively the transistor Q3. With this resistor R46, 

Q3 will never be saturated even if the output of U301 gives 0. Secondly, this resistor limits 

the maximal switching frequency by limiting the maximum voltage of VQ4b. In case of U301 

gives 0, the VQ4b attains its maximum value of 1.9V, which signifies a maximum current of 

0.59mA flowing through R61 (signifies a maximum possible switching frequency of 290 

kHz). However, this resistance also influences the gain of the control loop and reduces the 

regulator’s gain with: 

   
   

       
        

The block diagram of current regulation for cell B can be represented in the following figure: 

  

Figure 3-11. Block diagram of current regulation in proposed LLC resonant converter 

The adopted PI regulator’s transfer function can be expressed as follows: 

      
       

           
 

   

   
   

 

       
          

The current open loop transfer function before correction and after correction can be 

presented as follows: 

IREF GI(s) Gr -1 
VQ3b 

5-Vbe 

VQ4b 

-Vbe 

1/R61 

Imin 

IV IRT Fsw Gico LLC 

GLPF 

PI regulator ICO 

2nd degree LPF 

GA 

amplifier 

VRB IMB 

- 



84 
 

        
      

   
                      

                            

The LLC power cell’s input current to switching frequency transfer function GLLC(s)=vR/f is 

unknown to us. A simple way to study its characteristic, as discussed in the above section, is 

to utilize Simplis software to plot its transfer function. The LLC circuit with the proposed 

current regulation circuit is modeled and simulated in Simplis software to obtain its transfer 

function, which is shown in the following Figure 3-12. As the frequency varies in kHz and 

sensed input current vR varies in mV, the LLC’s transfer function GLLC(s)=vR/f has a very low 

gain. The phase of GLLC(s) starts with –π, which signifies a negative gain of GLLC(s). A 

resonance is detected at 10 kHz. The GLLC(s) approximation results by identification of 

transfer function’s breakpoints can be expressed in the following form: 

          
  

 
  

   
 
  

    
 
  

 
        

 Through identification, K=2e-6, ω1=1kHz, ω2=6kHz, ω3=10kHz. ω2 is very close to ω3. In 

order to damp the resonance at ω3, the second order RC filter’s breaking frequency is set to 

be ω3. The low pass filter GLPF(s) adds two supplementary poles at 10 kHz, of which the 

results are shown as in the following figure:  
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Figure 3-12. Bode diagram of GLLC(s), open loop transfer function before correction (BC) and 

after correction (AC) at nominal power 1250W, Vin=330V 

It can be considered that, after low pass filter damping, the open loop transfer function before 

correction performs a 0 slope up to 10kHz and a -3 slope afterwards. Select the PI regulator’s 

zero to compensate one of these three poles, and select a low gain to obtain a large phase 

margin, as shown in the above figure. After correction, the obtained bandwidth is 3kHz, with 

a phase margin of 83º and a gain margin of 8dB.  

Increasing input voltage or decreasing load makes the input current less sensitive to the 

variation of switching frequency, thus the open loop gain BC shall be decreased. As a result, 

the condition of operating at nominal power with Vin=330V is a case where a highest open 

loop gain may occur, which is the most instable operating point to be considered when 

dimensioning regulator parameters.  The following figure shows the bode diagram of open 

loop transfer function at light load Vin=330V, P=100W. 
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Figure 3-13. Bode diagram of open loop transfer function before correction (BC) and after 

correction (AC) at 100W, Vin=330V 
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As reported in the above figures, at Vin=330V P=100W, through identification, the 

parameters in transfer function GLLC(s) are: K=0.6e-7, ω1=100Hz, ω2=6kHz, ω3=25kHz. Due 

to the fact that the zero frequency ω1 is left sifted to 100kHz, the gain starts to increase at 

very low frequency and results in a large resonant gain at 10kHz, which cannot fully be 

damped by the inserted low pass filter. The transfer function before correction performs a 

0-10-3 slope characteristic rather than 0-3 characteristic. The regulated system’s 

bandwidth is reduced to 60Hz, with a phase margin of 120º and a gain margin of 34dB.  

3.2.2 Voltage regulation control 

The electrical schema applied to voltage control is presented as follows.  

 

Figure 3-14. Electric schema for voltage regulation 

The voltage reference signal may origins from an internal signal by U1 (reference 2.5V) or by 

an external signal. The internal signal regulates the LLC’s output voltage to the nominal 

output voltage of 14V. A PI regulator is adopted for voltage regulation, with its transfer 

function represented as: 
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R22 and C11 form a low pass filter for filtering the high frequency voltage ripples at Vout. 

Opto-coupler U6 is used here for transforming the compared errors to LV side.  

The LLC’s voltage open loop transfer function is plotted by Simplis software and the results 

are shown in Figure 3-15. In order to obtain a more robust system with large bandwidth, a RC 

circuit is designed for damping the resonance found at LLC’s voltage open loop transfer 

function. 

 

 

Figure 3-15. Bode diagram of LLC’s voltage open loop transfer function before RC damping 

(BD) and after RC damping (AD) 
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As shown in Figure 3-15, without the RC damping, a resonance at 10kHz is detected, which 

adds the difficulties for designing the voltage regulator. Thus an RC damping (R38 C19) with 

a breaking frequency equal to the transfer function’s zero point (2.5kHz) is thus introduced. 

After this RC damping, the zero is compensated and the gain at resonance point is greatly 

decreased, ready for regulation by a PI controller. It should be noted that adding a RC 

damping filter reduces also the phase-margin, thus the regulator’s parameter should be 

correctly selected to satisfy the voltage loop stability requirements. 

The proposed control diagram for voltage regulation can be represented at the following 

figure: 

 

Figure 3-16. Block diagram of voltage regulation in proposed LLC resonant converter 

As shown in Figure 3-16, Gf(s) is the transfer function of the RC damping circuit and Gv(s) is 

the adopted voltage regulator. Opto-coupler has a constant unit gain. The Iref limit function 

limits the reference current to a certain value in function of the input voltage and does not 

interfere into the transfer function. In order to design the regulator parameters, Simplis 

software is utilized to plot the voltage open loop transfer function before correction. Figure 

3-17 and Figure 3-18 shows the voltage open loop transfer function before or after correction 

under different operating points.  

IREF 
GI(s) Gr -1 

VQ3b 

Vcc-Vbe 

VQ4b 

-Vbe 

1/R61 

Imin 

IV IRT Fsw Gico LLC 

GLPF 

PI regulator ICO 

2nd degree LPF 

GA 

amplifier 

- 

VREF 

Vo 

GV(s) 
opto limit 

 

Iref 

Vin 

- 
Gf(s) 

- 

VRB 

- 
IMB 



90 
 

 

Figure 3-17. Bode diagram of voltage open loop transfer function before correction (BC) and 

after correction (AC) at nominal power 1250W, Vin=330V 

As depicted in the above figure, the voltage open-loop transfer function BC can be 

approximated by a 0-1-3 curve, while the first pole appears at 300Hz and the second 

double pole appears at 20kHz. The corrector is designed with a high gain to increase the 

bandwidth and the zero is placed at 300Hz to compensate the voltage open loop transfer 

function’s pole. After correction, the converter’s bandwidth is 2.5kHz, with a phase margin 

74º and a gain margin 12dB. 
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Figure 3-18. Bode diagram of voltage open loop transfer function before correction (BC) and 

after correction (AC) at power 100W, Vin=330V 

From the results reported in Figure 3-18, at light load, the system’s bandwidth is 2.6kHz, with 

a phase margin 35º and a gain margin 27dB.   

It can be seen that both the regulator parameters are precisely designed to obtain a stable, 

rapid and precise current/voltage control.  

A Iref limitation circuit is designed for limiting the current reference signal, forwarded by the 

voltage regulator, to a certain range to avoid over current problems. The circuit is designed as 

in the following schema Figure 3-19.  
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Figure 3-19. Iref saturation circuit design in voltage control loop 

The aim of Iref limitation is to limit the total power of one cell to less than its maximum 

power thus the Iref signal should be limited to different values under different input voltages. 

According to the measured input voltage, the operational amplifier U402 forwards a signal 

ISAT, signifying the maximum current Iref to be limited. The ISAT signal is linearly inverse 

proportional to the input voltage. 

Referring to the Figure 3-19, Q2 is always active. In case Iref is higher than the ISAT, Q1’s 

base-emitter is forward biased and Iref is limited to VQ2b+Vbe. Since the base-emitter 

voltage of the two PNP transistors can be considered as the same, the Iref is limited to ISAT. 

The voltage difference is addedw at the resistance R38.  

Iref limitation is a way for realizing over current protection. Especially when one cell 

encounters default at high output power, the input current of the other phase is limited to 

ISAT to avoid that all the power passes through this cell. This is a great advantage of this 

control method than phase shift double cell LLC. The converter is further protected by various 

current protections (to protect principally the HV and LV MOSFETs), including output 
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current protection, fast input current protection, which will be presented at the following 

section.  

3.3 Other Controls and Protections 

Other than current and voltage control loop, the LLC converter includes also soft-start control, 

over-current protection, over voltage protection, etc, to insure a complete system protection to 

abnormal conditions.  

1)  Soft-Start  

Since the voltage conversion ratio of the resonant converter is inversely proportional to the 

switching frequency in ZVS mode, the soft-start is implemented by sweeping down the 

switching frequency from a high initial frequency (600 kHz) until the output voltage is 

established. The soft-start function is integrated into the controller FAN7631. Referring to the 

Figure 3-20, during soft-start, the sourcing current of the SS pin (30µA) charges the capacitor 

C30 and the voltage Vss rises slowly until it reaches the threshold (4.2V), allowing slow 

decrease of the switching frequency. The total soft-start time then can be parameterized by 

selecting the correct capacitance C30. 

 

CH1: Vss (5V/div), CH2: VQLds (100V/div), CH3: Vo(10V/div) 

Figure 3-20. Experimental results for converter’s soft-start 

The soft-start time is programmed to tss=300ms. As shown in Figure 3-20, the converter 

needs about 200ms to establish to the targeted output voltage and then the voltage regulation 

tss 
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takes part in. During soft-start, the output voltage is slowly increased until constant output is 

established.  

2) Over current protection 

During operation, the converter is subject to various over-current events. In order to protect 

the correct operation and avoid damages to the power components, over current protections 

are adopted at both primary and secondary sides.   

At the output side, a 220A fuse is connected in series at the converter’s output to avoid short-

circuiting the LV battery in case of converter failure. 

At the primary side, fast over current protection is realized by the CS pin of FAN7631. As 

shown in the Figure 3-10, the CS pin senses the instantaneous input current of each power cell 

by the added resistive shunt. When the sensed voltage on the CS pin (minus value) drops 

below the threshold VOLP (-0.37V) for more than 200ns, FAN7631 disables the driver signal 

and repeats discharging and charging the Css four times, then restarts. This avoids the 

converter to suffer from temporary over-load without interrupting its normal operation.  

Besides, if short-circuit happens at the secondary-side rectifier MOSFETs or at primary side 

components, a large current can flow through the primary MOSFETs. When the sensed 

voltage drops below -1.1V, the switching operation is disabled completely.  

3) Over voltage protection 

Over voltage at the LV battery side is considered at the development of this prototype. The 

supply voltage for all components at secondary LV side (including Flyback controllers, 

synchronous drivers and other components) origins from the LV battery voltage and is 

internal limited to +15V. In case the LV battery voltage is higher than 15V, a circuit is 

designed to internally limit the supplying voltage to +15V, shown as follows. 
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Figure 3-21. Voltage limitation circuit limiting the LV supply voltage to 15V maximal 

The operation is presented in the following two cases: 

a. LV_BAT is lower than 15V. When On/OFF gives ON, Q9 conducts. Resistances R146 and 

R154 imposes the VGS of P channel MOSFET Q12 to be negative, which turns the MOSFET 

Q12 on and the obtained +15V_LV follows the voltage LV_BAT. During this period, the 

Zener diode D14 is blocked and thus Q10 is off, same as Q11.  

b. When LV_BAT is larger than 15V, the VQ10b attains the threshold of Zener diode D14: 

Vbe+VD14, Q10 is thus active, same as Q11. Under this circumstance, the Vgs of P channel 

MOSFET Q12 increase (due to voltage divider by R146 and R152), which forces the 

MOSFET to transit from linear region to saturation region, and the voltage difference between 

LV_BAT and +15V_LV is supported by the drain-source voltage of MOSFET Q2. Through 

this regulation, the LV supply voltage is limited to +15V. 

When abnormal voltage appearing at the battery side (higher than 18V), converter should be 

stopped immediately. An over voltage protection circuit is designed to turn off the LLC 

converter if over output voltage appears, as shown in the following figure.  
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Figure 3-22. Over voltage protection circuit designed for the LLC converter 

When LV_BAT attains higher than the threshold voltage of Zener diode D36 (18V), D36 

conducts and Q14 is saturated, which in turn saturates the PNP transistor Q8 and Q7, the 

collector of Q7 is driven to 0V and then the voltage at MP67 maintains at 0V. The converter 

is stopped completely and can’t be self restarted. During normal operation, the collector of Q7 

and Q14 performs high resistances and has no influence to the ON/OFF command.  

The simulation results of the proposed over voltage protection circuit is shown as follows: 
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Figure 3-23. Simulation results for LV supply voltage limiting and over voltage protection 

In the simulation, a resistor of 50Ω is connected at the +15V_LV to act as a 4W load.  As 

reported by Figure 3-23, the LV_BAT voltage is initially at 15V. LV_BAT rises linearly from 

15V to 20V between 5ms~6ms and then remains stable at 20V. When LV_BAT=15V, the 

supply voltage +15V_LV follows the battery voltage. A voltage difference is detected due to 

the on resistance of Q2, which causes a voltage drop through the source-drain of MOSFET. 

When battery voltage rises higher than 15V, Q2 transits to the saturation operation region and 

+15V_LV is limited to 15V. During this period, VQ2sd increases with the increase of 

LV_BAT and supports the voltage difference of LV_BAT and +15V_LV. When battery 

voltage is higher than 18V, the collector voltage at Q14 is reduced to 0 and the converter is 

turned off.  
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Chapter 4. Efficiency Improvement and System 

Optimization of LLC Converter 

4.1 Power module development for LV MOSFETs integration 

One challenge of this project is how to handle significant power loss caused by high output 

current circulating at LV MOSFETs. Standard discrete MOSFETs components are difficult to 

use here due to limited thermal conductivity and packaging interconnection resistance. More 

discrete MOSFETs should be paralleled in order to overcome this problem and this increases 

the overall number of semiconductor devices and increases the overall volume. In this case, 

an interesting solution is to use a dedicated power module integrating all the LV MOSFETs. 

[4-1] 

 

Figure 4-1. Integration of four LV MOSFETs dies in IML power module (3D model). 

In this project, an inserted molded lead-frame (IML) power module is designed, shown as in 

Figure 4-1. Metal lead-frames (0.8mm thickness to offer low conduction resistance) are 

inserted into a plastic molding, which present horizontal open areas, where the MOSFETs 

dies are placed and brazed on. Not only holding the bare dies, the lead-frame also spreads to 

the outside, forming out electrical connection terminals. The designed power module consists 

of four dies arranged in a double phase configuration, as shown in Figure 4-2.  For each 

MOSFET die, the die’s drain is soldered to the metal lead-frame and the process is conducted 

in a well controlled multi-chamber vacuum oven. This process is important since the solder 

joint is the first thermal contact layer to the die and needs to be as thermally conductive as 

possible [4-2]. Solder joint must be checked by an X-ray imaging system to avoid joint 

voiding. The die’s source is connected to the lead-frame by a set of double stitch bondings 

Source 

Drain 

Gate 
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(5x500µm or 7x375µm). All the four dies share the same source connections. In order to 

perform synchronous rectification, small signal connections are drawn out by bondings 

125µm. The power module itself is fixed to the cooling plate by screws and turnbuckles.  

 

Figure 4-2. Populated IML power module and its equivalent electrical circuits of the designed 

power module 

The lead-frame is made up from copper for high electrical and thermal conductivity. The 

surface of frame is plated with a thin film of Nickel.  At the real power module, 7x375µm 

bondings are soldered. After bonding soldering, the modules undergo a cleaning process and 

finally the module is potted with silicone gel which protects the electronics components from 

dust and moisture. The adopted bare die is Infenion IIPC22S4N06, with an internal resistance 

Rdson=1.3mΩ, a gate charge of Qg=208nC and a breakdown voltage of VDSS=60V. The 

total resistance including metal lead-frame is less than 2mΩ. 

The main advantage of adopting IML power module is that the heat dissipation of MOSFETs 

dies is greatly facilitated through the metal lead-frame. But we should take care that the IML 

module’s bottom side is exposed and can cause short circuit if not properly insulated. A 

thermal interface (BFG30A, c=5W/mK, 300µm) should be inserted below the power module 

to ensure an electrical insulation between lead-frame and cooling-plate. The thermal 

characteristics of designed module are shown as in Figure 4-3. 
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Figure 4-3. Thermal resistances of IML power module. 

The total thermal resistance from the MOSFET die to the cooling plate is: Rth=1.393 ºC/W. 

Supposing a power loss of 15W of each MOSFET (referring to the part 4.3), a temperature 

difference of about 20ºC is expected between the cooling plate and the MOSFET dies. It can 

be concluded that IML power modules have significant advantages in thermal performances 

over discrete FET components. Fewer components, simpler assembly and good current 

carrying capability can be obtained with the proposed IML power module technology. 

4.2 Transformer Design and Improvement 
4.2.1 Core Material Analysis and Selection 

LLC converter generally requires a very low magnetizing inductance to allow high output 

power and large scale Vout/Vin regulation capability. In the targeted convertor prototype, the 

calculated magnetizing inductance is Lm=42uH for input voltage variation range 

[330V 410V] (Lm=24µH for variation range [220V 410V]). With 16 turns at the 

transformer’s primary side, magnetic cores with a low inductance factor AL≈165nH should be 

selected. Two types of materials are available for constructing a core with such a low 

inductance factor: low-permeability magnetic material or gapped soft-ferrite material.  

Low permeability magnetic core realizes a low relative permeability by distributed air-gap. 

For example, MPP cores (magnetic molypermalloy powder) are cores with distributed air gap 

made from 81% nickel, 17% iron and 2% molybdenumalloy powder. Kool Mµ core also 

realizes a low permeability by distributed air gap made from a ferrous alloy powder. They 

exhibit soft saturation with higher saturation induction level. Table 4-1 shows a comparison 

result of magnetic characteristics for different magnetic materials.  

Table 4-1. A comparison of available magnetic materials for core construction 

Die (silicone), 0.066ºC/W 

Solder (tin), 0.069ºC/W 

Lead-frame (Cu), 0.093ºC/W 

Interface (BFG30A), 1.165 ºC/W 

Cooling plate 

Heat sink 
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Desciption Low permeability Soft-ferrite 

Material MPP Kool Mµ 3C94 3C95 3C96 3C97 3F3 

µr  14-550 26-125 2300 3000 2000 3000 2000 

Bsat 0.65T 0.95T 0.38T 0.41T 0.44T 0.41T 0.37T 

Air-gap distributed distributed centralized centralized centralized centralized centralized 

µe  
tolerance ±8% ±8% ±10% ±1 0% ±1 0% ±1 0% ±1 0% 

 

As low-permeability materials adopts distributed air-gaps to reduce its relative permeability, 

thus no centralized air-gap is created and thus there is no eddy current loss at the 

transformer’s winding. However, one problem of low permeability material is its high core 

loss density. At a given flux density Bpk, the core loss density of low permeability core is 

about ten times more than that of the soft-ferrite. Due to this shortcoming, the low 

permeability cores are more suitable for designing EMI chokes where the AC flux density is 

rather limited. Its utilization in transformer or resonant inductor is therefore not recommended 

[4-3].  

The core loss density Pv approximation of a soft-ferrite material can be obtained from an 

empirical equation (3-1) forwarded by the supplier: [4-4, 4-5] 

          
                 

   (3-1) 

In this formula, f is the frequency (Hz); Bpk is the peak flux density, which equals to a half of 

the AC flux swing (T); T is the temperature (°C ); Cm, x, y, ct0, ct1 and ct2 are parameters 

found by curve fitting of the measured power loss data. For most soft ferrite materials, y is 

generally between [2, 3]; x is generally between [1, 2]. Peak flux density has a higher weight 

than operating frequency in transformer’s core loss calculations. 

According to the Farady’s law, the peak flux density of a transformer seeing a square wave 

voltage can be calculated as follows: 

    
   
    

        

Vo is the output voltage, T is the switching period, S is the core’s effective section, N2 is the 

number of transformer secondary turns. It is obvious that the transformer’s core loss (or peak 

induction) in LLC resonant converter depends mainly on its switching period T and the core’s 
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effective section S. To select a proper magnetic material, it is meaningful to compare the 

relationship of its core loss density (Pv) and peak induction (Bpk) among the switching 

frequency range, shown as in Figure 4-4 for operating at 150kHz and Figure 4-5 for operating 

at 250kHz, separately.  

 

Figure 4-4. Core loss of different magnetic materials at 100ºC, 150 kHz with peak flux 

density as a parameter 
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Figure 4-5. Core loss of different magnetic materials at 100ºC,  250kHz with peak flux 

density as a parameter  

The maximum targeted Bpk=150mT is selected to get a good compromise on transformer’s 

volume and core loss. From Figure 4-4 and Figure 4-5, at 150 kHz, the core loss of soft ferrite 

materials is: 3C97<3C95<3C96<3C94<3F3 at the targeted operating Bpk. At 250 kHz, the 

core loss density is 3C97≈3C95<3C96<3C94≈3F3. Obviously, 3C97 performs the best core 

loss density characteristics among the available magnetic materials over a wide frequency 

range. For the designed LLC converter, the maximum peak flux density appears at minimum 

input voltage, where the switching frequency is the minimum, which corresponds to 

Bpk=150mT, f=150kHz. Figure 4-6 shows core loss of different materials at 150kHz, 150mT 

with temperature as a parameter, which corresponds to the operating point with the most core 

loss. 

 

Figure 4-6. Core loss of different magnetic materials at 150kHz, Bpk=160mT with 

temperature as a parameter  

As reported in Figure 4-6, 3C94, 3C96, 3F3 materials perform a low core loss at 100oC, but 

increasing or decreasing the operational temperature increase sharply the power loss. 

Considering that the components’ operating temperature is under 120oC (referring to the part 

4.4 for air-cooling system design), 3C97 have a better performance than 3C95 material, 
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whereas 3C95 is preferred for operating at a temperature higher than 120oC. 3C97 material is 

finally selected as the proper magnetic materials for transformers and resonant inductors.  

4.2.2 Transformer design and resonant inductance integration 

Thanks to the benefits brought by resonant topology, LLC converter is capable to operate at a 

frequency much higher than PWM converter (150-250kHz in this project). In most of PWM 

converters and series resonant converters, planar magnetic cores and multilayer PCB are 

frequently employed in order to get a smaller height, larger dissipation area and more 

facilitated assembly. In these structures, the transformer’s magnetizing inductance value is 

very high so that no air-gap is needed [4-6]. However, LLC converter’s magnetizing 

inductance should be maintained at a low value to achieve a large ZVS region thus a large air-

gap is always unavoidable to attain the desired inductance value. Planar structure has 

difficulty in integrating a large air-gap due to its limited height and large section. Fringing 

flux penetrates the PCB winding hence very high eddy current is generated and it results in a 

high winding loss. Furthermore, the PCB layer’s thickness should be kept at a very low value 

to avoid the skin-effect and the proximity effect caused by a higher switching frequency thus 

reduces its dc resistance. As a result, it is difficult to continue to adopt the planar structure 

with multilayer PCB board for the transformer with low magnetizing inductance. Traditional 

E cores, EI cores or U cores which can integrate a large air-gap are more suitable to attain the 

required magnetizing inductance. As to the windings, the Litz wire, which is less sensitive to 

the internal and external flux are generally adopted to get better performances. The primary 

winding is wound by 16 turns of Litz wire 800 strands of 44AWG (0.05mm diameter each 

strand, insulated by Kapton 2.5kV), the two secondary windings are wound by the 1200 

strands of 44AWG with 4 turns in parallel. To create the required Lm is not a problem; an 

adequate air-gap length should be selected to get the desired inductance value. In this case, the 

adopted core is Ferroxcube E42/21/15-3C97 and the created air-gap length is selected to 

1.96mm (to realize Lm=24µH, the air-gap length is 3.96mm, this will be discussed later for 

comparison).  

It is possible to study the value of the leakage inductance by modeling the transformer core 

and windings in a finite element simulation software. Imposing the total ampere turns to zero 

(N1I1+N2I2=0), the effect of magnetizing inductance is thus annulled and the residual 

magnetic field energy reflects the total leakage energy [4-7]. The reflected total leakage lft 

inductance can then be calculated as follows: 
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prpkft EIl 2

2
1 (4-2) 

Ep is the residual magnetic field energy at the full space, which can be obtained through 

FEMM simulation. Irpk is the peak value of imposed sinusoidal current at the primary side 

(equals to the resonant current). Following the equation (4-2) and FEMM simulation, it is 

possible to obtain a simulation result of leakage flux distribution and leakage inductance but it 

is difficult to know how this leakage inductance is distributed between primary or secondary 

side. As it is interesting for LLC converter to integrate more primary leakage inductance, one 

solution to determine the primary inductance is by direct measurement. 

Various transformer realization methods are proposed and compared here. One conventional 

winding method, as shown in Figure 4-7, is to wind the 16 turns of primary at the inner layer 

across the coil former and the secondary at the outer layer. An insulation material is always 

needed to be inserted between the primary and secondary to keep a high insulation voltage. 

Each secondary winding is made up of 4 turns in parallel. Simulation results show the leakage 

flux distribution and the induction magnitude along the cross-section of the transformer (red 

line).   
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Figure 4-7. Leakage induction distribution for transformer structure I, lf=320nH 

In this transformer structure I, the primary windings is covered by the secondary winding. 

During operation, leakage flux traverses the window area, induction increases and decreases 

linearly at the window area along the transverse axis. The induction is the highest at the inter-

space between primary and secondary windings, with a Bpk≈30mT. No induction is detected 

at the center leg and air-gap. This conventional transformer winding method obtains a good 

coupling effect with low leakage inductance. In this case, nearly the totality of resonant 

inductance should be made by an additional resonant inductor.  

Higher leakage inductance is possible to be realized by separating the secondary windings 

from the primary windings. Structure II shows another possible winding solution by winding 

the 16 turns of primary winding at the center and secondary winding at two extremities, 

shown as in Figure 4-8. 
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Figure 4-8. Leakage induction distribution for transformer structure II, lf=1.5 µH 

It is more interesting to study the flux density magnitude along the vertical axis of window 

area (see the red line). As shown in Figure 4-8, higher flux density is detected at the insulation 

layer, Bpk≈50mT. With a large inter-space between primary and secondary side, this 

transformer performs a higher leakage inductance of lf= 1.5µH. The remaining resonant 

inductor shall be completed by an additional RM12 core, with 6 turns. A photo of transformer 

prototype is shown in the Figure 4-9. 

 

Figure 4-9. Transformer structure II, with additional resonant inductor RM12 without cooling 

container (left) and in a cooling container (right) 
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In order to integrate more leakage inductance and get a satisfactory compromise on system’s 

volume, performance and mass, a new concept of inserting a magnetic shunt between the 

primary and secondary windings is proposed to get an easy-to-regulate leakage inductance 

integrated into the transformer. The author of paper [4-8] describes this idea and applies it in 

an X-compressed planar transformer for series resonant inductor. The author of [4-9] 

introduces the Ferrite Polymer Composite (FPC) material [4-10] to the construction of a 1kW 

E structure LLC resonant converter and obtains satisfactory results. FPC film is a thin, 

mechanically flexible film with a low permeability µr=9 (for material C350 and C351) or 

µr=17 (for material C302). From the datasheet forwarded by the supplier, it is available in 

0.2mm and 0.3mm thicknesses, and performs an insulation voltage of 1kV/mm. As shown in 

Figure 4-10, the insulation layer is replaced by the FPC film with a relative permeability µr=9, 

1.5mm thickness to create a magnetic shunt between primary and secondary windings.   

 

 

Figure 4-10. Leakage induction distribution with FPC film insertion, structure III, lf=3.8uH  

As shown in Figure 4-10, leakage flux is concentrated at the FPC film due to a low reluctance 

created, with Bpk≈300mT. Higher magnetic field energy is stocked at the inserted FPC film. 

Simulation results show that a leakage inductance of 3.8µH is created. As the targeted 
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resonant inductance is 7.5µH, this transformer structure has already integrated 50% resonant 

inductance while the additional part needed to be compensated by a resonant inductor is half 

reduced. The following figure shows a photo of the transformer with FPC film material 

insertion.    

 

Figure 4-11. Transformer structure III, with FPC material separating primary and secondary 

windings 

Despite advantages brought by FPC material in integrating higher leakage inductance, some 

limitations exist when applying this method into practical applications. Firstly, as leakage flux 

passes through the magnetic shunt, a relatively high flux density is generated which causes an 

extra power loss. FPC film has higher core losses than soft ferrite magnetic materials. 

Considering that this film is stacked with the windings and is difficult to be cooled, an internal 

regional high temperature may appear. Secondly, leakage inductance value tolerance is 

another important issue that should be taken into consideration. In the structure II, the leakage 

flux is fixed by the core’s structure and bobbin’s geometry and all the leakage flux passes 

through air whose relative permeability is constant µr=1, making it not sensitive to 

atmosphere and operational condition changes. As to the transformer structure III, flux 

linkage passes through the FPC film whose relative permeability is subjected to a tolerance of 

±20%. ±20% resonant inductance variation causes a maximum ±9% variation of the resonant 

frequency. These two drawbacks reduce its interest in transformer design.  

FPC film 
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Another possible approach to integrate more leakage inductance is to use the U core and 

separate the primary and secondary windings at different core legs. Under the same branch leg 

width, the U core’s depth should be doubled to get the same effective section, but the air-gap 

can be distributed to two legs thus the gap length at each leg is half reduced. Winding primary 

side at one leg and secondary side at the other leg results in a poor coupling thus a high 

leakage inductance can be retained. The following figure shows the simulation results of 

proposed transformer based on a U30/21/30 core (not a standard core, 30/21/30 means half 

core’s width, length and depth in mm, respectively). 

 

Figure 4-12. Leakage induction distribution of transformer structure IV, lf=7.5uH  

U core transformer creates a high leakage inductance naturally and can integrate the totality of 

resonant inductance. The leakage inductance can be regulated by adjusting the core’s window 

width: separating the primary winding from the secondary winding increase the magnetic 

field energy stored at the window area thus increase its leakage inductance, vice versa. But 
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unlike the E cores whose magnetic field energy is limited at the window area, the magnetic 

field energy of U cores is dispersed to the outer space. At the prototype, the aluminium 

cooling plate and the control circuit PCB board are thus exposed to the leakage flux, causing 

extra eddy current loss at the cooling plate and making the circuit operation threaten by 

radiated electro-magnetic induction. A transformer prototype of structure IV has been 

designed and constructed (Figure 4-13); we found by experimentation that the synchronous 

rectification circuit is disturbed by the leakage flux. Moreover, the power loss of the whole 

prototype is not improved. The extra eddy current loss caused by leakage flux is more costly 

than that of a resonant inductor. Furthermore, in order to attain the targeted lf value, the core’s 

mechanical dimension should be carefully studied and designed, which frequently results in a 

non industrialized magnetic components and adds the cost. Thus the U core structure is not a 

good candidate for LLC transformer solution. 

 

Figure 4-13. Transformer structure IV mounted at the proto, with U cores integrating the 

resonant inductor 

In conclusion, the transformer structure II is finally selected. Its advantages are mainly: 

leakage inductance partially integrated into transformer, leakage inductance with limited 

value dispersion, commercialized magnetic components, low EMC radiation, etc. The 

transformer design details are summarized in the following table. 
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Table 4-2. Transformer design summary by structure II 

Description Types Values 

Transformer Magnetic 
core 

Core type E42/21/15-3C97 

Inductance factor (AL) 170nH 

Effective area(Ae) 1.78cm2 

Volume(V) 17.3cm3 

Air-gap length(e) 2mm 

Magnetic inductance (Lm) 42µH  

Leakage inductance(lf) 1.5µH  

Peak induction (Bpk) 160mT 

Transformer Wire Primary turns (N1) 16 

 Primary wire size Round Litz 800 strands of 
44AWG, Kapton insulated 

 Secondary turns (N2) 1 

 Secondary wire size Round Litz 1200 strands of 
44AWG, 4 in parallel 

 Fill factor 80% 

 Primary AC resistance 
(Rac_p) 25mΩ 

 
Secondary AC 

resistance(Rac_s, including 
external connections) 

1.5mΩ 

 

For the design of resonant inductor, the design process is simple. Different from transformers, 

the magnetic core in resonant inductors serves only to guide the magnetic induction.  The 

dimensioning of resonant inductor is to select a proper core with proper air-gap volume to 

satisfy the requirement for energy storage in resonant inductor.  

eA
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BHVIl e
pk

gaprpkaddr
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2
2

_ 22
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2
1


 (4-3) 

In equation (4-3), lr_add is the targeted additional resonant inductance; Ae is the effective area 

of selected magnetic core. Material’s core loss property suggests a maximum peak induction. 

Selecting the maximum Bpk=150mT, a minimum air-gap volume can be derived from the 

above equation (4-3) Vgapmin=0.113cm3. From the supplier’s catalogue, a suitable magnetic 

core which satisfies the minimum gap volume should be selected. Finally, the selected 
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magnetic core is RM12/I-3C97, with Vgap=0.196 cm3 and the final Bpk=114mT. The 

designed resonant inductor dimensioning is shown in the following figure. 

 

Figure 4-14. Resonant inductor designed in RM12/I core 

We use the same wire for realizing the transformer’s primary winding and inductor’s winding, 

in order to avoid an external connection between these two components. The inductor design 

details are shown at the Table 4.3. 

Table 4-3. Resonant Inductor design summary 

Description Core type RM12/I-3C97-A160 

Inductor magnetic 
core 

Inductance factor (AL) 160nH 

Effective area(Ae) 1.46cm2 

Minimum effective area(Aemin) 1.25cm2 

Volume(V) 8.34cm3 

Air-gap length (e) 1.57mm 

Resonant inductance (Lr) 6µH  

Peak induction (Bpk) 114mT 

Inductor wire 

Wire size Round Litz 800 strands of 
44AWG, Kapton insulated 

Number of turns (N) 6 

Fill factor 60% 

AC resistance (Rac, including 
external connections) 10mΩ 

 

gap 

Wire in 

Wire out 
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4.2.3 Eddy current loss study 

Litz wire is composed of copper conductors made up of multiple individually insulated 

strands twisted or woven together. It is generally used to avoid skin effect and reduce 

proximity effect of windings in transformer construction. As insulators are inserted among 

different strands, Litz wire then has a poor thermal conductivity compared to pure copper 

wire. If not properly designed, heat produced by Litz wire will be difficult to be dissipated 

and the wire strands may be melted. Therefore, the power losses of Litz wire should be 

precisely estimated and controlled. The power losses of Litz wire is shown in the Figure 4-15. 

[4-11] 

 

Figure 4-15. Types of power loss in Litz wire 

In Litz wire, the diameter of each strand should be less than the skin depth defined in the 

following equation: 

   
  

  
         

Under this condition the current distribution is expected to be homogenous. However, 

considerably high loss can still be generated due to proximity effect. It may still further be 

divided into internal proximity effect and external proximity effect. Internal proximity effect 

is the current distribution effect affected by the adjacent strands and windings. As shown in 

Figure 4-15, the surrounding strands are influenced by the induction generated by the central 

strand. When the number of strands becomes large, all the strands have an influence on its 

Litz wire 
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adjacent stands and the mutual interaction is significant. [4-11] proposed an equation to 

calculate the ac resistance caused by internal proximity effect in a defined winding area filled 

with Litz wire strands, based on the further development of Dowell function. The proposed 

equation is possible to predict the ac resistance of transformer winding composed by Litz wire 

under no external field. When Litz wire is exposed to an external magnetic field generated by 

transformer’s air gap, fringing flux penetrates into the Litz wire and the equation described in 

[4-11] is no further applicable.  

In order to analyze the eddy current loss when wire is exposed to an external flux Bpk, an 

equation is proposed to approximate the loss where conductor’s diameter is smaller than skin 

depth [4-12], [4-13], [4-14]: 

  
       

   

    
         

Where ρ is the resistivity of the conductor, d is the diameter of the wire, l is the length of the 

conductor, Bpk is the peak external magnetic field perpendicular to the axis of the wire at a 

radian frequency ω. One turn of Litz wire with N strands exposed under a certain magnetic 

field can then be approximated as follows: 

       
       

   

    
         

The total primary winding loss of Litz wire then can be expressed by: 

                
      

       
   

    
         

Where Rac is the dc resistance of the Litz wire, Rac≈Rdc for d<σ;  Irrms is the RMS value of 

resonant current. In order to further explore the relationship of eddy current loss and each 

strand’s diameter, the equation (4-6) can further be written as: 

      
       

    

    
         

Where S is the total effective conductive section of Litz wire,           . From equation 

(4-8), it is obvious that under the same total effective conductive section S, decreasing the 

strand diameter greatly reduces the eddy current loss in a Litz wire. To obtain a low eddy 

current loss, choosing a large number of fine strands and decreasing the strand’s diameter is 
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an effective solution. However, as the number of strands increases, the fraction of the window 

area filled with insulator increases and these results in an increase in dc resistance. 

Furthermore, finer strands are more expensive and difficult to precisely control its 

configuration. Thus the strand diameter should be carefully selected and verified for 

efficiency, feasibility and cost compromise. Paper [4-11] has proposed a recommended strand 

diameter selection criteria for Litz wire, d=σ/4~ σ/3. In this dissertation, we select Litz wire 

800*44AWG with d=50µm (~ σ/3). 

In order to estimate the eddy current loss of the proposed transformer, it is possible to obtain 

calculation results from equation (4-6) based on simulations at FEMM software which gives 

the Bpk value at each Litz wire’s section. Or we can obtain the eddy current loss results 

directly from FEMM software. For Litz wire model, FEMM cannot plot the current 

distribution of each strand, but it is possible to compute an eddy current power loss at each 

wire’s cross section.  

 

Figure 4-16. The eddy current loss simulation results for primary windings  

Simulation reported in Figure 4-16 shows the eddy current loss of each primary conductor at 

the left window. FEMM is 2D simulation software while the wire length is defined to be the 

same length to the core’s height, that is 15mm. Considering that the average length of turn is 

93mm for this magnetic core, the total eddy current loss should be the sum of all the 16 turns 
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then multiplied by 6 (~93/6). From Figure 4-16, the two Litz wire close to the air gap is 

penetrated by the fringing flux with Bpk≈60mT, and a large eddy current loss of 106mW is 

generated for each. For wires far away from the air-gap, fringing flux is gradually reduced and 

the corresponding eddy current loss is also gradually reduced. Simulation results give a total 

eddy current loss of 3.2W. By applying simulated peak magnetic field density into the 

equation (4-6), we obtain a total loss of 3.3W, which is in accordance with the FEMM 

simulation results.   

In order to reduce the eddy current loss, one solution is to create a forbidden zone of 

4mmX2mm, as shown in the Figure 4-17. 

 

Figure 4-17. Creating a forbidden zone to a get reduced proximity effect  

From the Figure 4-17, the two turns closest to air-gap is removed to the outside layer to avoid 

being penetrated by fringing flux. Eddy current loss is then reduced to 2.6W. Calculation 

results also give 2.6W. The conception of this winding arrangement is rather simple; however, 

it is difficult to be realized by transformer suppliers and also difficult for mass production 

since the forbidden zone is difficult to be created easily. A special form of coil former 

containing a rectangular forbidden zone needs to be designed. Furthermore, the existence of 

the forbidden region makes it difficult to automatically wind the Litz wires by a winding 

machine. All the existed winding machines wind the wires uniformly following a given step 
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length equal to the wire diameter and it is difficult to skip the forbidden zone automatically. 

Another proposed method in this thesis relates to insert an insulation layer of about 2mm to 

keep the windings away from the air-gap, shown as in Figure 4-18: 

 

Figure 4-18. Proposal of shifting the primary winding to get a reduced proximity effect  

By keeping the windings away from the air-gap, all the primary turns see a reduced magnetic 

field induction and the proximity effect can further be reduced. The obtained eddy current loss 

under this case is 1.5W. Keeping the windings away from the air-gap can be realized easily by 

increasing the thickness of the coil former and this solution is finally adopted in the 

transformer design at this dissertation.  

With the same concept, it is also possible to simulate the eddy current loss when selecting a 

low magnetizing inductance Lm=24uH for Vin [220V 410V]. In this case, an air-gap of 

3.96mm is created and the simulation results are shown in Figure 4-19.  
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Figure 4-19. Eddy current loss simulation under e=3.96mm for a reduced Lm=24uH 

As discussed in the chapter 2, selecting low Lm value permits to get a large input voltage 

variation range. From the simulation results, it is clear that selecting a low Lm not only 

increases the reactive current at primary, but also causes a large eddy current loss due to a 

large air-gap. Detailed experimental results will be presented at the part 4.5. 

4.3 Improvement of synchronous rectification 

4.3.1 Synchronous rectification and its imperfections in LLC resonant 

converters 

LV side synchronous rectification is necessary to keep a high efficiency since the MOSFETs 

have a voltage drop equal to Rdson*IS1 or Rdson*IS2, rather than a Schottky diode whose forward 

voltage is at least 0.4V or even higher [4-15, 4-16, 4-17]. The typical waveforms of a 

synchronous rectification by sensing the drain-to source voltage under LLC resonant 

converter are shown in the Figure 4-20[4-18]. 
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Figure 4-20. Typical waveform of the LV synchronous rectification in a LLC converter by 

sensing the drain-source voltage of MOSFET 

The VdsS1 is the drain-source voltage of the MOSFET S1. VTH1, VTH2 and VTH3 are the turn-off 

threshold, turn-on threshold and the reset threshold, respectively. VdsS1, VgsS1  and IS1 are the 

drain-source voltage, driving signal and source-drain current of the MOSFET S1. The 

operation of a synchronous rectification can be divided into two phase: the turn-on phase and 

turn-off phase, separately. 

A. Turn-on phase 

When the conduction phase of the MOSFET is initiated, current will start flowing through its 

inverse body diode, and a negative voltage will be generated across drain-source of the 

MOSFET. This voltage drop (normally 0.4-1.5V) is higher than the turn-on threshold VTH2 

and will trigger the turn on of the MOSFET. As the body diode turns on in prior to the 

MOSFET, the MOSFET can be switched on in ZVS mode.  

The selected SR controller has a function called minimum on time (MOT) that will maintain 

the MOSFET on for a minimum amount of time. At the end of the each MOT, the controller 

senses the MOSFET’s drain-source voltage. If the VdsS1 is higher than the VTH1, the MOSFET 

is switched-off suddenly and the driver signals for the next period is inhibited. This function 

is to prevent high reverse conductive current at very light load. 

B. Turn-off phase 

Once the MOSFET has been switched on, it will remain on until the rectified current decays 

to a level where VdsS1 cross the turn-off threshold VTH1 (usually several mill-volts).  Once the 

threshold is crossed, the resonant current is not zero but remains at a very low value and the 
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remaining current will flow again through the body diode, which causes the MOSFET’s 

drain-source voltage jump negative and could trigger the turn-on threshold. To prevent this 

case, the VTH2 is blanked for some time until VTH3 is crossed to avoid the regeneration of the 

wrong turn-on driving signal and the MOSFET is switched off. During this time period, the 

drain-source voltage jumps to positive and cross the VTH3 which terminates the blank period. 

The MOSFET is switched off naturally in quasi-ZCS mode.  

In the above analysis, MOSFET is considered to be fully resistive and other imperfections or 

parasite components are not taken into consideration. However, it is difficult to implement the 

described SR strategy directly to the designed LLC converter. The selected secondary 

MOSFET die’s internal resistance is very low: 2mΩ and thus the Vds across the MOSFET is 

at several mV levels and is difficult to keep the measurement precision. The measurement is 

easy to be disturbed by the noises and SR operation error occurs, shown as in Figure 4-21.  

 

Figure 4-21. Synchronous rectification error at the fault switching-off timing (CH1:VgsS1, 

CH2: VgsS2, CH3: Vgs_QL, CH4: Is2+Is1) 

As shown in Figure 4-21, the SR command signal stops while the current has not fallen to 

zero but at the end of each MOT. The measurement circuit senses a false voltage higher than 

VTH1and triggers the MOT protection mode, the command stops too early and the command 

for the next period is also inhibited.  

In order to increase the robustness of SR, this paper proposes to include some parasite 

inductances to the drain-source measurement, shown as in the Figure 4-22.  
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Figure 4-22. Proposed drain-source measurement method to improve the SR robustness 

In a MOSFET power module (Referring to Figure 4-1), two types of parasite inductances 

exist: parasite inductance between drain terminal and die’s drain: ltd ~10nH, and bonding 

inductance between die’s source and source terminal lbond ~5nH. If we use the power 

module’s drain terminal for the drain signal measurement, this includes the parasite 

inductance of ltd in series with the MOSFET. When current increases, negative voltage is 

developed at the inductance and this helps to keep a sufficient negative voltage level, to be 

less sensitive to the noises and avoid wrong MOT protection. Including the bonding parasite 

inductance is not recommended. When two power cells operate at different frequencies, 

mutual influence between the two phases results in a SR wrong action by lbond. 

Supposing the current flowing through each MOSFET is perfect half-wave sinusoid, the 

measured drain-source voltage across the MOSFET can be calculated as follows [4-19]:  

tdsdsondsontdsspktdsdsonsdsm ljRRlatIsljRiV   )]/tan(sin[)(  (4-9) 

SR duty cycle can be derived as imposing the equation (4-9) to be zero: 
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From the equation (4-10), due to the presence of the inserted parasite inductance, the duty 

cycle is less than 1 and the MOSFET is switched-off earlier. The phase lost can be calculated 

as:  

s

dsontds
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dsontds

f
RlaTRlaP
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



2
)/tan(

2
)/tan(

  (4-11) 

It can be seen from the equation (4-11) that the phase lost depends on the operating frequency 

and the ratio of parasite inductance/ON resistance, not on the output current. The calculated 

phase lost for f=150kHz to 250kHz is plotted as follows (ltd=10nH, Rdson=2mΩ): 

 

Figure 4-23. Calculated phase lost for applied LV MOSFETs Vds voltage measurement 

The following figure reports a simulation result of this effect at nominal power, Vin=330V, 

f=150kHz.  
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Figure 4-24. SR phase lost results of MOSFETs at nominal power, f=153kHz 

As reported in Figure 4-24, when rectifier current IS1 starts to decrease, a positive voltage 

caused by parasite inductance superpose with the resistive negative voltage and forced the 

total voltage to increase and cross the turn-off threshold too early. A phase lost of 900ns is 

detected and the MOSFET is not switched off at ZCS. The obtained phase lost is smaller than 

calculated (900ns vs. 1.4µs) because the secondary current waveform is not an ideal 

sinusoidal wave. The current increases slowly and decreases rapidly which shortens the phase 

lost duration.  

The driving loss (gate charge loss) and conduction loss of each MOSFET can be calculated by 

the following formulas: 

swggsdri fQUP  (4-12) 

dsonFETrmsmosc RIP _
2

_  (4-13) 

Where Ugs is the driving voltage, Irms_FET is the RMS current value of each FET die. The 

obtained driving loss is 0.73W per FET.  

The power loss caused by phase lost (diode conduction) can be estimated as follows:  
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Where IDavg is the average current of diode during this phase lost; VSD is the forward voltage 

of the MOSFET’s inverse diode; fs is the switching frequency; P is the phase lost duration. 

From the equation (4-14), diode conduction power loss of 14.6W is obtained for each LV 

MOSFET, which is even higher than the MOSFET conduction loss and should be reduced to 

obtain a high efficiency.  

4.3.2 Proposed phase compensation scheme for synchronous rectification 

in LLC converters 

As discussed in the above section, it is necessary to compensate the phase lost in synchronous 

rectification driving scheme for LLC resonant converters due to the LV MOSFET’s series 

parasite inductance.  Proposed solution for the prototype is to use a RDC filter to delay the 

voltage sense of Vds and compensate the phase lost with a time coefficient.  

 

Figure 4-25. Proposed phase compensation scheme 

The phase compensation scheme uses a RC filter to delay the measurement of Vds. At 

MOSFET turn-off, the Vd’s measured waveform is delayed by the added RC filter by a time 

coefficient of ξ=RC. At the turn-on phase, a negative voltage is generated across drain-source 

of the MOSFET and this voltage turns the Schtokky diode D on instantaneously, which not 

delays the turn-on of MOSFET. Benefiting from the proposed phase compensation circuit, the 

MOSFET’s switched off can be controlled by the filter’s coefficient and the phase lost can be 

compensated. Figure 4-26 shows the compensation results by using R=150Ω, C=4.7nF.  
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Figure 4-26. Phase compensation results by using R=150Ω, C=4.7nF 

As reported by Figure 4-26, the measured Vd’s is delayed compared to Vds which delays the 

MOSFET’s turn-off. Phase lost is then reduced to 430ns. With lower current circulating the 

body-diode, the diode’s conduction loss can then be reduced to 3.4W.  

 

Figure 4-27. Phase compensation results by using R=220Ω, C=4.7nF 
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Figure 4-27 reports the phase compensation results by using R=220Ω, C=4.7nF. The phase 

lost is then reduced to 220ns and in this case, the switching loss is reduced to 1.4W. As shown 

in the above reported results, it is possible to fully compensate the phase difference by 

selecting a large time coefficient. However, for light load operation and high input voltage, 

switching frequency is increased and thus switching period is reduced. Moreover, at light 

load, the secondary current is low and the phase lost duration is also shorter (referring to 

Figure 4-23). Under this consistence, keeping a large time compensation coefficient risks in a 

late MOSFET turn-off then a reverse current circulates from the output capacitor back to the 

primary side (destroy the MOSFET easily). Thus in order to maintain a high efficiency for a 

wide load range, R=150Ω, C=4.7nF is the selected compromising solution. 

4.3.3 Snubber design for voltage spike elimination 

During the simulation analysis at the above section, the LV MOSFET’s reverse recovery 

current is neglected. Due to large parasite inductance at transformer’s secondary windings 

(~120nH), the diode’s recovery current leads to a voltage spike across the MOSFET drain-

source at switch-off. At low output current, the secondary current di/dt is low and this voltage 

spike is not significant, however, at high current, the reverse current becomes important and 

the Vds may exceed the avalanche voltage of MOSFET, which causes an additional power 

losses. Proposed solution to control this voltage spike is to implement a snubber at the IML 

terminals MOSFET level, shown as in the following circuit figure. 

 

Figure 4-28. Proposed Snubber circuit to reduce the voltage spike (for switch S1) 

In Figure 4-28, l2 is the secondary wire leakage inductance; ltd and lbond are the terminal 

parasite inductance and bonding inductance. Snubber power loss can be approximated by the 

following equation: 
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In order to limit the power loss at each snubber to 2W, the Csnu should be limited to 5nF. The 

output capacitance for the selected MOSFET die is 4nF. A multi-step simulation is executed 

to find the optimal resistance Rsnu to attain the best damping, shown as in Figure 4-29. 

 

Figure 4-29. Damping characteristics by trying different resistance values  

The voltage across MOSFET drain-source is measured in dB with sinus AC signal as 

simulated input. As reported by Figure 4-29, a snubber resistance Rsnu=9Ω permits to get the 

best resonant amplitude damping and is finally selected. Experimental results report the 

synchronous rectification results and voltage spike before and after damping: 

 

(a)         (b) 

S1: 10V/div, S2: 10V/div, Is: 50A/div, VdsS2: 20V/div in (a) and 10V/div in (b) 

Figure 4-30. Phase compensated secondary waveforms without (a) and with snubber (b) 

(Vin= 330V, Iout=80A) 

t=400ns 

S1 

S2 

Is 

VdsS2 
VdsS2 

S2 

S1 

Is 

R increase 

R=1Ω 

R=9Ω 

R=19Ω 



131 
 

As reported in Figure 4-30, the switch-off signal arrive 400ns earlier than the current falls to 

zero, which is in accordance with the simulation results found in Figure 4-26 and verifies the 

proposed phase compensation circuit. 

As reported in Figure 4-30 (a), the drain-source spike runs up to 70V (voltage clipped at 70V 

due to avalanche effect) without snubber. When a snubber is added, the drain-source voltage 

spike is reduced to 60V and the resonance is damped. The voltage clip phenomenon 

disappears.  

The detected reverse-recovery time is trr=60ns and the maximum reverse current 10A. The 

switching loss due to reverse recovery current can be approximated by the following equation: 
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The obtained Psw is 1.5W for each MOSFET. The total power loss for each LV MOSFET is: 

rrdriMOS PdioPcmosPcPP  __  (4-17) 

The total power loss for each MOSFET is 15.42W. 

The following figure shows the output current sharing when both two power cells are on.  

 

ISA: 10A/div, ISB: 10A/div, VdsS2B: 10V/div 

Figure 4-31. Current sharing result at Iout=40A, IA=IB=20A, Vin=330V  

As reported at the above figure, the current is well distributed between the two power cells. 

The two power cells operate at different frequencies to keep the same output voltage and 
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share the same input current (A at 153.254 kHz, B at 154.812 kHz). It can be seen that at low 

output current, the MOSFET reverse recovery current is low and the drain-source is rather 

limited, compared to that of Figure 4-30.  

4.3.4 Further discussion for practical applications 

As discussed above, since the SR voltage measurement level is low, long wire connection 

introduces a parasite inductance and is susceptible to perturb MOSFET’s command. Keeping 

the SR system robust is essential to the good operation of the whole resonant converter. A SR 

command failure at high output load often means a high diode conduction loss and risk to 

damage LV MOSFETs. Thus in practical applications, tasks should be done to get a robust SR 

system, make it less sensible to the parasite elements and external noises. In order to get a 

more robust SR and reduce connection length, a dedicated PCB is designed to connect 

directly on the modules, shown as in the following figure:  

 

Figure 4-32. Practical ameliorations by a dedicated PCB board directly on the power module 

As shown at the above figure, the designed synchronous rectification PCB is mounted directly 

on the signal connectors of IML power module and long wire connections are avoided. Four 

snubbers are connected to the drain terminals and source terminals. The drain voltage 

measurement is realized by a direct connection to the power module’s drain terminal. 

Experimental results among all the power load range prove that this SR arrangement achieves 

a correct and robust operation. 
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4.4 Air cooling system and prototype assembly 
4.4.1 Vapor chamber as a new solution for air cooling in automotive DCDC 

converters 

As power electronic devices decreases in size and increases in power, the thermal 

management is a key for power applications. One challenge of the actual designed LLC 

resonant converter is the ability to implement an innovative cooling solution. As for air 

cooling solution, standard aluminum extrusions no longer have the capacity to sufficiently 

spread the power losses generated by electronic components and hot points exist. The 

cooling solution adopted here is by inserting a vapor chamber into the base of the heat sink, 

shown as in the Figure 4-33. 

 

Figure 4-33. Insertion of a vapor chamber into the base of the heat sink for cooling 

The principle of vapor chambers is explained as follows [4-20, 4-21]: Vapor chambers are 

essentially flat or planar heat pipes that use the principles of evaporation and condensation to 

produce a heat spreading device with a very high conductivity thermal plane. Like traditional 

cylindrical heat pipes, heat is evacuated using internal wick structure and a working fluid, 

assuring a uniform temperature distribution and an elimination of hot spots, as shown in 

Figure 4-34:  
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Figure 4-34. Principles of vapor chambers for heat spreading 

The wick is saturated with a working fluid. At the location where the heat is produced, the 

fluid immediately vaporizes and the vapor rushes to fill the vacuum. Once the vapor comes 

into contact with a cooler surface it condenses, releasing its latent heat of vaporization. The 

condensed fluid returns to the heat source via capillary action at the wick, ready to be 

vaporized again and the cycle continues. Furthermore, the capillary action enables the vapor 

chamber to work in any orientation effectively with respect to gravity. Physically, the vapor 

chamber enables to better distribute the heat among its total surface. The most common 

combination in the electronics cooling field is copper and water due to the LLC converter’s 

operating temperature in automotive use.  

Experimental and simulation are done in order to study the effectiveness of vapor chamber 

compared to a copper plate as heat spreader. The experiment is shown in Figure 4-35.  
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Figure 4-35. Experiment and simulation set-up for vapor chamber study 

Heat source of 58W (to simulate the heat generated by LV power module) is produced by two 

power resistors of 29W each. An infra-red camera (IR camera) and a laptop are used to record 

temperature information from experiment. In order to make a precise temperature 

measurement, the vapor chambers and fin heat sinks are painted to black. Three scenarios are 

considered in this experiment: one with copper plate (with same dimension as vapor chamber) 

as heat spreader, one with vapor chamber as heat spreader, the last one with vapor chamber 

and heat sink. Thermal simulation is modeled and conducted by computational fluid dynamics 

(CFD) software. The obtained results are shown in Figure 4-36. 

 

Figure 4-36. Experimental and simulation results for vapor chamber study 

Results find that there is a good correlation between the experimental results and simulation 

results. The thermocouple at the heat source extracts a temperature at 55°C, while the 

simulation is at 56°C. The maximum of temperature on the heat sink is observed at 52°C 

during the measurements and also in the simulation. Results also find that the vapor chamber 

alone is a little more effective than a copper plate (with same dimension) a few degrees (~ -
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10°C). Moreover, the vapor chamber associated with the pin fin heat sink is much 

more efficient (~ -50°C). 

4.4.2 Prototype assembly and cooling system performance 

The following picture shows the components integration within the prototype. As the input 

filter PCB’s power loss is rather limited, it is mounted vertically to reduce the overall volume. 

HV MOSFETs are placed at the bottom of the input filter PCB, and they are mounted directly 

to the vapor chamber and fixed by screws to improve the cooling effect. Thermal interfaces 

are needed to isolate the HV MOSFETs from the vapor chamber. Magnetic components, LV 

MOSFETs modules are mounted also on the vapor chamber directly. Here, the long wires of 

IML can be replaced by a dedicated PCB shown in Figure 4-32. The control board is mounted 

on top of the transformer with a 4-leg support. One spacer connects the chassis ground to the 

control PCB board. The control PCB board is mounted on the four spacers, above the power 

components. An external connection with 16 lines is used for exchanging control signals and 

export measurement results. After assembly, the prototype performs an overall volume of 

2.5L, 3kg and 2.5kW nominal power (3kW peak power). The power density is 1W/cm3.  
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Figure 4-37. Prototype assembly of LLC converter, power density 1W/cm3  

Experiments are made to test the effectiveness of cooling system integration and system 

assembly, with experimental results shown as follows: 

Table 4-4. Experimental results of the cooling system’s thermal characteristics with the 

prototype 
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Heat spreader Heat load (W) Ambient (°C) Orientation ∆TXY ∆TZ Tmax at vapour chamber 

       Copper plate 150 22°C room Horizontal 16°C 10°C 101°C 

Vapor chamber 150 22°C room Horizontal 4°C 7°C 84°C 

Vapor chamber 150 -20°C oven Horizontal 25°C 0,5°C 28°C 

Vapor chamber 150 0°C oven Horizontal 19°C 1°C 46°C 

Vapor chamber 150 70°C oven Horizontal 4°C 11°C 119°C 

Vapor chamber 150 70°C oven Vertical 3°C 13°C 123°C 

 

Where ΔTXY stands for temperature difference along the vapor chamber flat surface, and the 

ΔTZ stands for the temperature difference along vertical axis.  

As reported in the Table 4-4, vapor chamber is more efficient in spreading heat equally 

among its flat surface than a copper plate, with a ΔTXY=4°C  compared to  ΔTXY=16°C under 

22°C ambient. As temperature decreases, its ability in spreading heat among XY surface is 

decreased (with ΔTXY=19°C  at 0°C  oven and ΔTXY=25°C  at -20°C  oven). At ambient 

temperature -20°C , 0°C  and 22°C , the maximum temperatures are all maintained less than 

105°C  (maximum authorized at specification). As ambient temperature increases to 70°C , the 

maximum temperature attains 119°C . It is also found that there are no significant differences 

from horizontal to vertical orientation (~ +4°C ), which in turn verifies the vapor chamber’s 

solid effectiveness regardless of its real orientation in practical use, which is an ideal solution 

for electric/hybrid vehicle manufacturers to arrange it in any orientation inside the cars.  

As shown in Table 4.4, under an ambient temperature 70°C , the maximum temperature attains 

119°C , which exceeds the upper limit of 105°C  defined for components internal environment. 

In this case, the converter needs to be further cooled by external forced air convections. 

Figure 4-38 shows the simulation results with forced air-convection 1.5m/s under CFD 

analysis. 
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Figure 4-38. Simulation results of temperature rise at nominal power with a forced air-

convection 1.5m/s at ambient 70°C  

As shown in Figure 4-38, the internal temperature is maintained less than or around 105°C  

and ΔTXY=4°C . The proposed prototype can be used at room temperature without air 

convection and at 70°C  with forced air convection to get a better cooling effect. 

After careful prototype assembly and cooling system design, a small size, high efficiency, and 

high power density LLC converter prototype is obtained. Experimental verifies that using 

vapor chambers can be an efficient way to manage heat in LLC converter design and 

implementations, where effective cooling helps ensure long component life and high 

reliability. 
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4.5 Efficiency and power loss analysis  
The most important aspect of this designed LLC converter is its performance in conversion 

efficiency. The designed test bench for converter’s operation and efficiency measurement is 

shown as follows:  

 

Figure 4-39. Test bench of designed LLC converter prototype 

Efficiency has been measured for the power cell A, power cell B and for the two power cells 

operating in parallel together. Figure 4-40 shows the measurement efficiency result for 

Vin=330V; Figure 4-41 shows the measurement efficiency result for Vin=410V. 
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Figure 4-40. Measured efficiency result for Vin=330V 

As reported in Figure 4-40, the conversion efficiency of a single cell LLC converter is 

maximal at 700W, with a peak efficiency of 95% for phase A and 94.7% for phase B. Due to 

the component dispersions, the performance of these two power cells is slightly different. 

Efficiency begins to decrease when load power exceeds 700W.  Setting P=1.1kW as the 

boundary for single cell operation and double cell operation is a good choice to keep a high 

efficiency over a high output power range. When output current exceeds 1.1kW, both the two 

cells operate and efficiency continues to increase from 1.1kW to 1.5kW.   

 

Commutation point 

Double phase operation Single phase operation 

Commutation point 

Double phase operation Single phase operation 
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Figure 4-41. Measured efficiency result for Vin=410V 

At 410V, the converter operates at a higher switching frequency, which increases all the ac 

resistances but decreases its primary current. These two effects balance the overall power loss. 

The overall power efficiency result is similar to that of 330V, with a peak efficiency at 410V 

slightly reduced to 94.7% instead of 95%. In all, the designed double phase LLC converter 

exhibits very good conversion efficiency at a large load variation range: Efficiency >94% 

from 500W to 2kW; Efficiency>93% from 300W to 2.5kW. Even at very low load (150W), 

the conversion efficiency is around 90%. The obtained conversion efficiency is far higher 

than the specified efficiency 92% described at the beginning of this project. 

The loss breakdown of the proposed 2.5kW, 250kHz, HV/LV LLC resonant converter is 

shown in the following two tables. The calculations are in good agreement with the 

experimental results. 

Table 4-5. Calculated loss breakdown of the designed LLC converter at 800W, Vin=330V 

(single cell operation) 

Description Types Values 

Primary MOSFET 

Conduction loss 1.58W 

Gate loss 0.60W 

Switching loss ~0W 

Total loss (x2) 4.36W 

Secondary 

MOSFET 

Driving loss 0.72W 

FET Conduction loss 4.0W 

Diode conduction loss 1.5W 

Reverse recovery loss 0.7W 

Total loss (x2) 13.84W 

Inductor 

Core loss 0.85W 

Copper loss 0.90W 

Total Loss (x1) 1.75W 

Transformer 

Primary copper loss 

Primary Eddy current loss 

1.8W 

1.5W 

Secondary copper loss 6W 

Total copper loss 9.3W 

Core loss 8.4W 

Total loss (x1) 17.7W 

Input filter Conduction loss 0.20W 

Output filter Conduction loss 0.44W 

Snubber Conduction loss 4.00W 
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RS filter Conduction loss 2.65W 

fuse Conduction loss 0.81W 

Total Total Loss  45.75W 

Efficiency (driver 

included)  

 
94.6% 

Efficiency  94.9% 

 

Table 4-6. Calculated loss breakdown of the designed LLC converter at 2.5kW, Vin=330V  

(Double cell operation) 

Description Types Values 

Primary MOSFET 

Conduction loss 3.43W 

Gate loss 0.60W 

Switching loss ~0W 

Total loss (x4) 16.12W 

Secondary 

MOSFET 

Driving loss 0.72W 

FET Conduction loss 9.8W 

Diode conduction loss 3.4W 

Reverse recovery loss 1.5W 

Total loss (x4) 61.68W 

Inductor 

Core loss 1.85W 

Copper loss 1.96W 

Total Loss (x2) 7.62W 

Transformer 

Primary copper loss 

Primary Eddy current loss 

3.92W 

1.5W 

Secondary copper loss 14.7W 

Total copper loss 20.12W 

Core loss 8.4W 

Total loss (x2) 56.24W 

Input filter Conduction loss 2.20W 

Output filter Conduction loss 4.20W 

Snubber Conduction loss 8.00W 

RS filter Conduction loss 5.33W 

fuse Conduction loss 10W 

Total Total Loss  171.39W 

Efficiency(driver 

included) 

 
93.5% 

Efficiency  93.7% 

 

In the chapter 2, we proved that in order to broaden the input voltage range of the designed 

LLC converter, adopting a BOOST converter at the input stage of the LLC is a sensible 
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solution instead of setting a low magnetizing inductance value Lm, while the latter causes 

higher reactive circulating currents and even worse efficiency. Under this case, a BOOST 

converter is needed to increase the voltage level from 220-330V to 330V. High voltage 

BOOST converter with very high efficiency (98.7%-98.4% estimated) is easy to be designed. 

In order to validate this proposal, we adopt the transformer with Lm=24µH (e=3.96mm) 

described at the part 4.2.3 into the same converter prototype and compare its efficiency by 

experiment. Comparison is made for two cases:  single stage LLC with Lm=24uH, Vin=220V 

and double stage BOOST+LLC with Lm=42uH, Vin=220V. Experiments are executed for 

operation of single cell “A” until 1.5kW. 

 

Figure 4-42. An efficiency comparison of single stage LLC and double stage BOOST+LLC 

Based on the measured efficiency curve of single stage LLC, the double stage LLC’s 

efficiency can be predicted and a fictive efficiency curve is plotted. This fictive curve includes 

the efficiency prediction of a BOOST PFC from 220V to 330V and a LLC from 330V to14V. 

As reported at the above figure, although double stage LLC includes extra loss from the PFC, 

its overall conversion efficiency is still at least 1% higher than single stage LLC. Single stage 

LLC with Lm=24uH results in a poor power factor (primary rms current increased from 13A 

to 18A due to high circulating magnetizing current), which doubles the primary conduction 

loss and the inductor core loss. Furthermore, the transformer’s air-gap is increased from 

1.98mm to 3.96mm, causing 4.3W more eddy current loss at each transformer.  

fictive 
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For double stage LLC, when input voltage is higher than 330V, the BOOST converter is 

inhibited and there is only a slight diode voltage drop at the input stage, the conversion 

efficiency will not be influenced. In all, double stage BOOST+LLC is a more suitable 

candidate solution for improving the voltage regulation range other than single stage LLC. 
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Chapter 5. Electromagnetic Compatibility Analysis of 

Double Phase LLC 

5.1 Improvement of double phase LLC for conducted emission reduction 

5.1.1 LLC cell arrangement  

There are two different ways of arranging a LLC resonant cell. A traditional way is keeping a 

separate resonant capacitor, as that shown in Figure 5-1(a). Another way is to divide the 

resonant capacitor into two capacitors in parallel and arrange them as that shown in Figure 

5-1(b). 

 

(a)          (b) 

Figure 5-1. Two different ways of arranging the LLC power cell 

The two different power cell arrangements neither change the circuit principle, nor the circuit 

operation. However, the structure (b) is highly preferred than structure (a) in the aspects of 

differential mode conducted emission reduction.  

In the structure (a), the input current injected to the power source equals to the current passing 

through the MOSFET QH and the capacitor CH. QH is switched on for half a period and 

switched off for another half period, thus the input current is a rectified half sinus waveform 

(with some phase difference as the power factor is less than 1), as that shown in the Table 5.1. 

The main noise is at its switching frequency, 174dBµV at fs=153kHz. Another important 

noise is at at 2fs, with 170dBµV. As in the structure (b), the resonant current is split equally to 

two currents flowing through two half resonant capacitors. The input current is thus the sum 

of the half resonant current and the current of QH, which is a rectified full sinus wave (also 

with some phase difference as the power factor is less than 1), shown as in Table 5-1. The 
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basic noise is at 2fs, 171 dBµV. In conclusion, the structure (b) eliminates all the 2k-1 

harmonic noises. Furthermore, the basic noise frequency can be doubled without doubling the 

switching frequency. The converter can be operated at 150-250kHz to get a targeted emission 

range from 300-500kHz. Of course, the structure (b) is a better candidate than structure (a) for 

noise reduction and is the final solution adopted in this project. 

Table 5-1. Comparison of conducted emissions for circuit structure (a) and (b)  

 Structure (a) Structure (b) 

Iin current waveform 

  
Main noise at fs 2*fs 

Primary harmonics at Iin VLISN Iin VLISN 

fs 20dBA 174dBµV ~ ~ 

2fs 16dBA 170dBµV 17dBA 171dBµV 

3fs -17dBA 137dBµV ~ ~ 

4fs 7dBA 161dBµV 8dBA 162dBµV 

5fs -23dBA 131dBµV ~ ~ 

Good candidate? No Yes 
 

At the secondary side, the two structures have no difference in views of conducted noise.  

Table 5-2. Conducted emissions for at the secondary sides 

Secondary harmonics at  Io VLISN 

fs  ~ ~ 

2fs  35dBA 189dBµV 

3fs  ~ ~ 

4fs  21dBA 175dBµV 

5fs  ~ ~ 
 

5.1.2 EMC discussion of double phase LLC  

In the designed double phase LLC resonant converter, slight variations and component 

mismatches among different cells generate small differences in their operating frequencies. 
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The interaction between the switching noises of each resonant cell creates the undesired beat 

frequencies, at multiples of the differences between their operating frequencies. Very few 

literatures report this phenomenon: the reference [5-1] has proposed a signal sampling-

recovery model for calculating the beat frequency and its amplitude in a BUCK converter 

under the condition that the input voltage is with high frequency interference. The reference 

[5-2] prompts it to the applications of multi-phase Buck converters. In parallel-parallel LLC 

converter, the case is different. 

From the considerations of designing simplicity and component sizes minimization, both the 

two power cells share the same input filter, the only filtering between the two cells is the 

decoupling capacitors C1 and C2. Because of different switching frequencies of the two 

power cells, their ac input ripple current frequencies are also different. With a common input 

and no inductive filtering, the ac ripple current from the cell (a) generate voltage ripples va 

with 2fa at the input of cell (b). Shown as in the following figure: 

 

Figure 5-2. Circulating ac current from the phase (a) to phase (b) and a model for beat 
frequency analysis 

Firstly, let’s start at considering the influence of the phase (a) to the phase (b), referring to 

Figure 5-2. The ripple current of the phase (a) at frequency 2fa develops an ac voltage at the 

bypass capacitor C2 with an amplitude Va. This ac voltage adds up with Vin as the input 

voltage of the phase (b). By LLC half bridge switching and center-tapped rectifying, an 

amplitude modulation is generated at 2 times of the switching frequency of phase (b): 2fb. 

Low frequency (LF) component at 2(fb-fa) appears at the output side. Moreover, considering a 

mutual interference between phase (a) and phase (b) by circulating ac current, this LF beating 

also appears at the input side; the corresponding spectrums and waveforms are shown in 
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Figure 5-3. As the two frequencies are close to each other, this LF beating noise may not be 

sufficiently attenuated by the LP filter. 

 

Figure 5-3. Illustration of beat frequency at low frequency domain of double cell LLC 

High additive ripple currents can stress input bypassing capacitors and system noise can be 

increased, depending on the board layout. In some cases, these circulating currents can 

interfere constructively with sufficient amplitude to lead to converter’s unpredictable behavior 

[5-3]. To damp this LF beating, sufficient bypass capacitors are necessary at the input of each 

power cell to reduce the voltage level of va. If LF beating is still important, one can series 

connect an inductor for each power cell to inhibit the circulating ac current. Shown as in 

Figure 5-3, the input ripple voltage is rather limited by properly choosing the bypass capacitor 

value. 

Furthermore, input and output filters should not contain any resonant points at low frequency 

range; if not, this ripple may be amplified by the filters and is harmful to the stable operation 

of LLC resonant converter. Thus the filter’s gain should be precisely designed and controlled.   

At high frequency, the EMC plot of each cell’s input/output current shows the main noises at 

2fa and 2fb. A sum of two currents results in a superposition of noises at the frequency 

domain, as shown in Figure 5-4.  
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Figure 5-4. Superposition of two output currents in frequency domain 

After superposition, the noise at one phase’s output current superpose with the noise of other 

phase whose noise frequency is slightly different. One can design the input/output filters 

based on the conducted noise levels of one phase, the other phase benefits naturally the same 

attenuation at the adjacent frequency. Compared with one single LLC cell at 2.5kW, double 

phase LLC benefits a 6dB noise level reduction at both input/output sides. This is one great 

advantages of the proposed double phase LLC. 

5.2 Filter Design and Improvement 
5.2.1 Input Filter Design and Dimensioning 

The adopted filter topology as input filter is the PI (Π) filter, shown as in Figure 5-5. 
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Figure 5-5. Basic topology of PI filter as input filter for DM noise filtering 

At the targeted high noise frequency, ωL2<50Ω, the PI filter (also written as Π filter) can be 

considered a fourth order filter composed by two 2nd order LC filters: L2+L3 and C2, L1 and 

C1//C3. L2 and L3 are the line inductances of the line impedance stabilization network 

LISN+ and LISN-, separately. The filter’s attenuation at the targeted noise frequency can be 

approximated by the following equation: 

  4231212
1

sCCCLLi
iGain
AC

in


 (5-1) 

With L1ω>>1/(C2+C3) ω, 2L2ω>>1/C2ω at ω =2π(2fs). The inductor and capacitor values are 

selected according to the targeted gain requirements at the switching frequency range. C3 

capacitor of 1uF corresponds to the 470nF local decoupling capacitor added to each cell. At 

the designed PI filter, two resonances exist: L2+L3 is resonant with C2 at fl1= 36kHz and L1 

is resonant with C1//C3 at fl2=17kHz. As described at the above section, resonances at low 

frequencies may cause unpredictable behavior to the parallel operation of LLC resonant cells 

and should be properly damped. The following figure proposed a well damped version of the 

PI filter: 

LISN+ 

LISN- PI filter 

iac 
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LISN+

iac

iin



154 
 

 

Figure 5-6. Damped version of proposed PI filter 

To damp the resonance at fl1, an electrolytic capacitor C7 is placed across C2. The capacitor 

C7 and its internal resistance serve as a gain attenuator. To damp the resonance at fl2, L4 and 

R5 are added. C6 is implemented to reduce the impedance of the parallel path connected 

across L1 which reduce the filter gain at higher frequency. A further resonance introduced by 

L4 and C6 is damped by R5 and C1. The filter’s performances before damping and after 

damping are compared at the following figure.  
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Figure 5-7. Filter’s gain before (red) and after (green) damping 

As shown at the above figure, the two resonant points are eliminated and filter no longer 

contains resonant points at low frequency range. The designed input filter PCB board is 

shown at Figure 5-8 and its measurement results are shown at Figure 5-9:  

 

Figure 5-8. PCB board design of input filter 
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Figure 5-9. Simulation results considering components parasite and experimental results of 

input filter 

Globally, the experimental results are in accordance with the simulation results up to the 

targeted emission frequency range: -77dB in experimentation for 300kHz. The effects of 

parasite elements become important when frequency continues to increase and filter’s gain 

does not continue to decrease. A resonant frequency is detected at 3MHz. This is due to the 

parasite series inductance of the adopted film capacitor C1. The level of resonance is higher 

than simulated. Considering natural harmonic level reduction, the lower filter attenuation will 

not generate non compliance to EMC limits levels. 

5.2.2 Output filter design and dimensioning 

To achieve also high noise rejection, a Π filter solution is also selected at the secondary, 

shown as in Figure 5-10. 

self resonance C1 
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Figure 5-10. Proposed PI filter as output filter 

Similarly, the basic Π filter is composed by C1, L1, C2 and L3+L4.  L2 and R1 are used to 

damp the resonance between C1 and L1, the electrolytic capacitor C5 is adopted to damp the 

resonance between C2 and L3+L4. The output filter’s PCB board is shown in Figure 5-10 and 

its performance is shown in Figure 5-11: 
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Figure 5-11. PCB board design of the output filter 

The EMI choke L1 is made by a low permeability tore crossed by one conductor turn. The 

inductor L2 is simplified by using a 2cm length round copper wire of 2mm diameter. 

 

Figure 5-12. Simulation results considering components parasite and experimental results of 

output filter 

As huge current ripples appear at output side, capacitor C1 and C2 are capacitor arrays to 

arrange high ripple: C1 is composed by 50x4.7uF ceramic capacitors in parallel, C2 is 

composed by 10x10uF ceramic capacitors in parallel. As ceramic capacitor has less parasite 

inductances than film capacitors, no resonance here is detected. The obtained gain at 300kHz 

is -95dB (the network analyzer can measure up to -100dB and limited to -100dB from then 

on).  

5.3 Measurement results on conducted EMC and Discussions 

To validate the effectiveness of designed filters, the conducted EMC of LLC converter is 

measured for single phase operation, double phase operation at Vin=330V and 410V, 

separately. The test bench for this EMC measurement and the measurement results are shown 

in the following parts: 
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Figure 5-13. EMC measurement set up and its pictures 
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Figure 5-14. EMC conducted emission measurement at LISN LV (AVG detector, Vin=330V) 

The main switching noise is detected at 2kfs frequencies. Transformer secondary asymmetries 

(current distributed not perfectly between two secondary windings of the transformer) cause 

additional noises at (2k-1)fs frequencies. Particularly for fs, the generated noise level is far 

less than that at 2fs, but as filters’ attenuation at fs is 15dB less than 2fs, the noise at fs 

becomes significant in front of 2fs (72dBµV vs. 78dBµV). The asymmetries of transformer 

secondary windings should be precisely controlled in order to eliminate this noise. 

As shown in Figure 5-14, for the fundamental and the first harmonic frequency it is not able 

to distinguish the difference of fa and fb due to the measurement resolution. Starting from the 

5fs, the differences of two adjacent frequencies become apparent. The noises levels at 

adjacent frequencies are equal, verifying the discussed noise superposition in frequency 

domain. To further study the interferences between two power cells, an EMC measurement at 

low frequency range is done, shown as in Figure 5-15. 

 

Figure 5-15. EMC measurement for low frequency at LISN LV+ (AVG detector, Vin=330V) 

fb-fa 

2(fb-fa) 
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The main beat frequency 2(fb-fa) is measured at 78dBµV (76dBµV simulated) and another 

beat frequency (fb-fa) appears due to transformer asymmetries. As the beating noise is very 

limited, it will not influence the correct circuit converter operation behavior.  

Different EMI limits applicable to HV battery as it allows higher levels of conducted 

emissions than LV battery [5-4, 5-5]. The measurement results are shown at Figure 5-16. 

 

Figure 5-16. EMC conducted emission measurement at LISN HV+ (AVG detector, 

Vin=330V) 

As reported in Figure 5-16, almost all the noises are kept under the specified limits. The noise 

for 4fs is slightly above the defined limit. This is because that the input filter performs lower 

attenuation for this frequency as reported in Figure 5-9. Improving the circuit board layout 

can effectively reduce the noise.  
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Chapter 6. Conclusions 

This dissertation verifies LLC structure as a good candidate to realize efficient DC/DC 

HV/LV power conversion in automotive industry. The reported performance of this converter 

prototype shows its advantages in terms of efficiency improvement, volume miniaturization 

and EMI reduction than other available topologies.   

This thesis proposes a new LLC converter designing procedure to ameliorate the circuit 

electrical parameters. In this procedure, secondary leakage inductance’s effect to the LLC’s 

characteristics is analyzed in detail and it is verified that its effect cannot be neglected when 

secondary resistance is low. To exhibit ZVS at HV MOSFETs, the dead-time selection should 

consider the effects of nonlinear output capacitance characteristics of MOSFETs. To obtain 

high power capacity while keeping a large input variation range, double stage LLC with 

BOOST as an input-stage power factor corrector is verified to be a better solution than single 

stage LLC. LLC converter should be designed to offer high efficiency between [330V 410V], 

and a BOOST stage is designed to broaden the input variation range. 

The proposed double cell parallel arrangement to handle 180A output current is able to keep a 

high efficiency at a wide load range. High efficiency at light load is assured by switching off 

one power cell. In order to avoid the current dissymmetry problems in parallel interleaving 

LLC, proposed double loop control strategy can equalize the current distribution between two 

power cells. Regulation parameters can be designed by the aid of Simplis simulation software 

to obtain both stability and rapidity at current/voltage control loops. 

This work also proposes many new implementations for improving the performance of LLC 

converter. Transformer with E structure integrating magnetizing inductor and partial resonant 

inductor is verified to be a good solution to get a compact magnetic integration. The Litz wire 

is a good solution implemented to reduce eddy current loss but its strand diameter should be 

carefully selected and should be kept away from air-gap.  LV MOSFETs in IML module 

proved its effectiveness in reducing thermal resistances and it is a good solution to handle 

high output current conduction loss. The air-cooling system with vapor-chamber as heat 

spreader is effective in rapid and homogenous heat spreading.  

Double cell LLC with equal current distribution has two operational frequencies close to each 

other.  The dimensioning of input/output filter can be simplified by considering the noises of 

only one cell; the other cell at adjacent frequency beneficed the same damping naturally. To 
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allow a stable operation of double cell LLC, low frequency beatings should be filtered by 

bypass capacitors close to each power cell. 

Considering the future work, the converter can be further improved in the following aspects: 

Firstly, since double stage LLC is highly preferred than single stage LLC, it is interesting to 

study the possibility to operate the LLC at its load independent point with a fixed frequency, 

while the duty cycle of BOOST is controlled to regulate the output voltage. As the LLC works 

at a fixed frequency, its secondary rectification keeps the same frequency as primary driving 

signal and thus can be greatly simplified. Secondly, the transformer’s secondary leakage 

inductance should be minimized to reduce conduction loss and reduce the spike voltage. The 

reverse recovery loss can be avoided and additionally, the secondary snubber is no longer 

indispensable (snubber loss can be further reduced). Thirdly, for the final industrialized 

version LLC, it is possible to keep all the magnetic components in the original three-element 

structure, while all the inductances or transformers can be realized by planar magnetic cores. 

The total magnetic component number is thus increased but considering that the planar 

structure has a larger dissipation area and a possibility for winding within PCB board, it may 

be a good solution for industrializing the prototype’s magnetic components.   


