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SUR LA THEORIE DES REPRESENTATION ET LES ALGEBRES
D’OPERATEURS DES PRODUITS EN COURONNES LIBRES

Résumé
par FRANCOIS LEMEUX

Dans cette thése, on étudie les propriétés combinatoires, algébriques et analytiques de
certains groupes quantiques compacts libres. On prouve au Chapitre 2 que les duaux des
groupes quantiques de réflexions complexes H]S\,Jr possédent la propriété d’approximation
de Haagerup pour tout N > 4 et s € [1,400). On utilise la surjection canonique
7 C(HY) — C(Sy) et on décrit comment les caractéres de C(Hy") se comportent
via ce morphisme 7 grace a la description des régles de fusion liant les coreprésentations
irréductibles de Hf\;r calculée par Banica et Vergnioux. Cela nous permet de construire
des états sur la C*-algebre centrale C(Hjy )y engendrée par les caractéres de C(Hy)
et d’utiliser un théoréme fondamental de Brannan proposant une méthode de construc-
tion d’applications normales, unitales, complétement positives et préservant la trace sur

I'algébre de von Neumann d’un groupe quantique compact de type Kac.

Au Chapitre 3, on décrit les régles de fusion des produits en couronnes libres 1N Sj(,
pour tout groupe discret I'. Pour cela on détermine les espaces d’entrelaceurs entre
certaines coreprésentations "basiques" de ces produits en couronnes libres en termes de
partitions non-croisées décorées par les éléments du groupe I'. On peut alors identifier les
coreprésentations irréductibles et décrire les régles de fusion des produits en couronnes
libres T, Sj(,. On propose ensuite plusieurs applications de ce résultat. On démontre
premiérement que la C*-algébre réduite des produits en couronnes libres T S]J{, est dans
la plupart des cas simple et & trace unique. On adapte pour cela une méthode de Powers
utilisée par Banica pour montrer la simplicité de C'T(U]J\;) et on utilise la simplicité de
C,(S%;) pour tout N > 8, établie par Brannan [Bral2b]. Puis on prouve que l'algébre
de von Neumann associée est un facteur de type II; et que ce facteur est plein. Pour
cela, on adapte la méthode classique des "14 — e" utilisée pour démontrer que les facteurs
du groupe libre L(Fj) ne possédent pas la propriété I'. On montre finalement que les
produits en couronnes libres T, S’JJ{, possédent la propriété de Haagerup pour tout groupe

T fini.
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ON THE THEORY OF REPRESENTATIONS AND THE OPERATOR ALGEBRAS
OF FREE WREATH PRODUCTS

Abstract

by FRANCOIS LEMEUX

In this thesis, we study the combinatorial and operator algebraic properties of certain
free compact quantum groups. We prove in Chapter 2 that the duals of the quantum
reflection groups Hj' have the Haagerup property for all N > 4 and s € [1,00). We
use the canonical arrow 7 : C (HJS\,JF) — C’(S]'\F,) onto the quantum permutation group,
and we describe how the characters of C(H3y") behave with respect to this morphism
thanks to the description by Banica and Vergnioux of the fusion rules binding irreducible
corepresentations of HJSVJF. This allows us to construct states on the central C*-algebra
C(H3)o generated by the characters of C(HY") and to use a fundamental theorem
proved by Brannan giving a method to construct nets of trace-preserving, normal, unital
and completely positive maps on the von Neumann algebra of a compact quantum group

of Kac type.

In Chapter 3, we describe the fusion rules of the free wreath products L. S]J\r, for all
discrete groups I'. To do this we describe the intertwinner spaces between certain "ba-
sic" corepresentations of these free wreath products in terms of non-crossing partitions
decorated by the elements of the group I'. This provides a whole new class of compact
quantum groups whose fusions rules are explicitly computed. We give several applica-
tions to this result. We prove that in most cases the reduced C*-algebra associated with
these free wreath products is simple with unique trace. To do this, we adapt Powers’
methods used by Banica and we use the simplicity of C,(Sy) for all N > 8 proved
by Brannan. We also prove that the associated I;-factor Loo(f L S3;) is full. This is
adapted from the "14 — €" method used to prove that the free group factor L(Fy) doest
not have the property I'. To conclude, we extend the result of Chapter 2, proving that
the duals of the free wreath products T S]J\r, have the Haagerup property for all finite
groups I'.
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Introduction

Motivations Dans cette premiére partie, je donne quelques motivations de mon tra-
vail et tente de replacer mes recherches dans le contexte mathématique dans lequel je
les développe. Mes recherches se situent dans le domaine des algébres d’opérateurs
c’est a dire des algébres d’applications linéaires continues sur des espaces vectoriels
topologiques. Lorsque ’espace vectoriel en jeu est un espace de Hilbert, ’application
adjointe sur les opérateurs produit alors une involution naturelle sur ces algébres. Les
algébres d’opérateurs auto-adjointes sont un sujet d’étude depuis les années 1930 avec
notamment les travaux de Murray et von Neumann. Ces objets recouvrent a la fois les
C*-algébres et les algébres de von Neumann. Des caractérisations simples en termes de
normes permettent de caractériser les C*-algébres au sein des algébres d’opérateurs auto-
adjointes. Il est également remarquable que les algébres de von Neumann admettent une
caractérisation algébrique simple en terme de bi-commuttant. On pourra se référer a
[Jon10], [Con00], [Con90b| et [BOO§| pour des introductions aux algébres d’opérateurs

et aux outils nécessaires & leur étude.

Les algébres de von Neumann peuvent étre caractérisées comme des sous-algébres fermées
pour la topologie ultrafaible d’espace d’opérateurs B(H), avec H un espace de Hilbert.
Comme rappelé ci-dessus, elles sont également caractérisées algébriquement. Ces deux
aspects, analytique et algébrique, permettent d’aborder les questions concernant ces
objets sous différents angles. C’est le cas pour les problémes liés & leur classification.
La classification des algébres de von Neumann se raméne & celle des facteurs, c’est a
dire les algébres dont le centre est trivial. On distingue alors trois types de facteurs
selon les propriétés des projections qu’ils contiennent : types I, I1, I11. Les facteurs de
type I sont isomorphes & un B(H) pour un certain espace de Hilbert H et les algébres
de matrices en sont donc des exemples, trés élémentaires. Le probléme beaucoup plus
difficile de la classification des facteurs de type II1 a été résolu par Connes dans les
années 1970 [Con73]. Les facteurs de I se décomposent en deux sous-familles, ceux de
type 117 et de type I, ces derniers étant en fait des produits tensoriels de facteurs de
type I et de type I1;. Un sujet particuliérement intéressant est donc la classification des
facteurs de type I1;. Ce probléme est en fait tres difficile et a été source de nombreux
développements. Les premiers résultats ont été obtenus par Murray et von Neumann
qui ont montré en particulier qu’il existe un unique facteur hyperfini de type I, c’est a
dire réunion croissante de sous-C*-algébres de dimensions finies. Un tel facteur hyperfini
peut étre obtenu en considérant 1’algébre de von Neumann L(G) d’un groupe moyennable
infini & classes de conjugaisons infinies, G = S, par exemple. En fait, tout groupe discret

ayant la propriété des classes de conjugaisons infinies tel que le groupe libre non-abélien
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F,,, n > 2, produit un exemple de facteur de type II;. Mais Murray et von Neumann
ont montré que pour aucun n > 2, L(F,) n’est isomorphe & L(Sy). Au dela de ces
exemples, la difficulté de classifier les facteurs de type I1; s’illustre par exemple dans le
probléme toujours ouvert de I'isomorphisme des facteurs du groupe libre : est-il vrai que

L(F,) ~ L(F,,) pour différentes valeurs de n et m ?

Une avancée significative sur ce probléme d’isomorphisme est liée a la notion de groupe
fondamental qui produit un invariant pour les facteurs de type I1j ; il s’agit d’un sous-
groupe de RT. Précisément le groupe fondamental d'un facteur de type II; muni d’une
trace 7, (M, 7), est 'ensemble des réels ¢t > 0 tels que M; ~ M ou M; = pMp avec
p € M une projection de trace t. Dykema |[Dyk94| et Radulescu [Rad94| ont mon-
tré, indépendamment, que tous les facteurs du groupe libre interpolé L(F,) sont soit
tous mutuellement isomorphes soit non-isomorphes deux-a-deux. Ce résultat repose sur
I’étude de leur groupe fondamental. Malheureusement, on ne sait pas décider si le groupe
fondamental des facteurs du groupes libres (interpolés) sont tous égaux a RT ou bien
tous triviaux (et le précédent résultat repose en fait sur cette alternative). De maniére
général, on connait peu les groupes fondamentaux des facteurs de type II;. Principale-
ment, on sait que .#(L(Sx)) = RT et qu'on a également .#(L(Fy)) = RT. Popa a

donné un exemple ou le groupe fondamental est trivial [Pop04].

Ces avancées trouvent leur cadre dans le domaine des probabilités libres. Les facteurs du
groupe libre interpolés L(F,) proviennent d’une famille continue de facteurs de type 113,
qui est en correspondance aux valeurs entiéres avec les facteurs du groupe libre usuels
et est construite & partir d’'une famille infinie d’éléments semi-circulaires libres d’un
espace de probabilité non-commutatif. La théorie des probabilités non-commutatives
a été introduite par Voiculescu. Elle repose sur la notion d’x-algébre et de variables
aléatoires non-commutatives libres, ’analogue non-commutatif de I'indépendance des
variables aléatoires classiques, voir par exemple [Voi95|. Cette théorie s’est développée
depuis les années 1980 et a donné des résultats remarquables comme ceux rappelés ci-
dessus. Les concepts de matrices aléatoires et de liberté asymptotique sont centraux dans
ces questions et le calcul des moments de variables aléatoires est donc essentiel pour les
appréhender. Speicher et Nica ont, en particulier, donné des formules permettant le calcul
de tels moments via la notion de cummulants libres [NS06]. Les méthodes utilisées sont

trés combinatoires et les objets centraux sont les partitions non-croisées.

Les groupes quantiques compacts libres sont a la croisée des différentes problématiques
évoquées ci-dessus. En effet, on peut étudier ces groupes quantiques du point de vue
des algébres d’opérateurs, c’est I'un des objets des prochains chapitres de cette thése ;
mais on peut également étudier ces groupes quantiques d’un point de vue combinatoire

et ce sera aussi I'objet d'une partie du chapitre 3. En effet, Banica puis Banica et
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Collins, Banica et Speicher ont initié ’étude de certaines familles de groupes quantiques
compacts de ce point de vue [Ban97|, [BC07], [BS09| : on sait par exemple que 1'état
de Haar sur O]"t, est par déterminé par les coefficients d’une matrice de Weingarten. Les
groupes quantiques étudiés dans de cette thése ont de plus la propriété remarquable
que les espaces d’entrelaceurs entre leurs coreprésentations sont encodés par certaines
partitions non-croisées, voir Chapitre 1 Sous-section 1.1.6 et Chapitre 3 Theorem 3.2.12,

Theorem 3.2.20.

Le dualité de Tannaka-Krein obtenue par Woronowicz dans [Wor88| montre que les
groupes quantiques sont fortement déterminés par leurs espaces d’entrelaceurs. La de-
scription combinatoire de ces entrelaceurs est donc un outil puissant, et en fait essentiel,
pour approfondir la connaissance des groupes quantiques et par conséquent des algébres

d’opérateurs associées, voir ci-dessous.

Notons avant de poursuivre que le lien entre les groupes quantiques et les probabilités
libres est illustré également au travers d’un analogue non-commutatif du théoréme de
De Finetti [KS09]. Ce dernier stipule que dans un espace de probabilité non-commutatif
(A, ¢), la distribution jointe d’une suite infinie d’élément (zj)ren est invariante par
permutations quantiques si et seulement si la suite est i.i.d et libre par rapport a
I'espérance conditionnelle sur ﬂnZI vN(zg : kK > n), au sens de Voiculescu. Les récents
résultats de classifications sur les groupes quantiques easy (voir par exemple [Web13],
[RW12], [FW13]) ouvrent alors le champ a I’étude de symétries quantiques associées a

d’éventuelles nouvelles distributions non-commutatives.

Comme évoquée plus haut, la connaissance des espaces d’entrelaceurs de certains groupes
quantiques compacts a permis de déterminer leurs coreprésentations irréductibles et le
calcul de leurs régles de fusion ; c’est a dire de donner des formules explicites permet-
tant le calcul de produits tensoriels entre coreprésentations irréductibles, voir [Ban96],
[Ban97]|, [Ban99b|,[BV09|. Les propriétés combinatoires de ces régles de fusion sont en
quelque sorte le pendant non-commutatif des propriétés combinatoires des groupes dis-
crets classiques. En suivant cette idée, la connaissance des régles de fusion de certains
groupes quantiques compacts a permis d’étudier les propriétés des algébres d’opérateurs
associées telles que la (non-) co-moyennabilité [Ban97|, la propriété de décroissance
rapide [Ver07] ainsi que les propriétés de factorialité, d’Akemann-Ostrand et d’exactitude
[Ver05], [VVO07] pour les groupes quantique libres orthogonaux et unitaires dans la plu-
part des cas. En outre, en vue des résultats prouvés au Chapitre 3 de cette thése, il est
intéressant de noter que les méthodes de Banica pour prouver la simplicité de CT(U]@
sont inspirées de celles de Powers pour démontrer la simplicité de C,(Fx). On retrouve a
nouveau l'idée que ’étude des propriétés combinatoires des groupes classiques se traduit

dans le cas quantique au niveau des propriétés combinatoires des régles de fusion.
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Plus récemment, Brannan a obtenu la propriété de Haagerup pour les algébres de von
Neumann associées aux groupes quantiques compact libres orthogonaux et unitaires ainsi
que pour les groupes quantiques de permutations [Bral2al, [Bral2b]. On détaille cer-
tains de ces résultats dans le Chapitre 1. On réalise donc que les propriétés d’algébres
d’opérateurs partagées par les facteurs des groupes libres et les algébres de von Neumann
associées & ces groupes quantiques libres sont nombreuses. De récents résultats pour les
groupes quantiques mettent a nouveau ces objets en paralléle. On sait depuis longtemps
que L(Fy) n’a pas de sous-algébre de Cartan, [Voi96|. Ce résultat a été généralisé par
Popa et Ozawa grace a des techniques de déformation/rigidité qui ont produit des ré-
sultats de structures trés profonds. En particulier, les facteurs du groupe libre sont
fortement solides. Cela redémontre qu’ils n’admettent pas de sous-algébres de Cartan et
également qu’ils ne peuvent pas s’écrire comme produit tensoriel de facteurs de dimension
infinie. Ces techniques sont aussi & I'origine de résultats sur les sous-algébres de Cartan
de certains produits croisés provenant d’actions de groupes hyperboliques [VP11]. Suiv-
ant ces idées, Isono a donné une condition suffisante de solidité forte pour des algébres de
von Neumann ne provenant pas nécessairement des groupes. En combinant ces résultats
avec la moyennabilité faible prouvée par Freslon pour les groupes quantiques libres or-
thogonaux, il a montré ’absence de sous-algébres de Cartan pour LOO(O;{,). Depuis, on
connait d’autres résultats concernant la moyennabilité faible des algébres d’opérateurs
associées & certains groupes quantiques compact libres [DCFY13]. Des résultats struc-
turels tels que la bi-exactitude étant déja connus, les auteurs de [DCFY13] obtiennent
dans certains cas (des hypothéses techniques assurant la non-injectivité), ’absence de
sous-algébres de Cartan pour les algébres de von Neumann associées & des groupes quan-
tiques compacts libres non nécessairement de type Kac. On détaille ceci au Chapitre 1

et on fait le lien avec les résultats présentés dans les autres chapitres.

Dans le prochain paragraphe, je détaille le plan de cette thése et j’explique comment les

résultats de celle-ci s’intégrent dans la lignée des travaux décrits ci-dessus.

Plan de la thése L’un des objectif de mes travaux est de poursuivre I’étude des al-
gebres d’opérateurs associées aux groupes quantiques compacts libres. On montre dans
le Chapitre 2 que les algébres de von Neumann des groupes quantiques de réflexions
complexes va+, ont la propriété de Haagerup pour tout N > 4 et tout s € [1,400),
Théoréme 2.3.5. Ce résultat donne un nouvel exemple d’une famille de groupes quan-
tiques compacts vérifiant cette propriété. Jusqu’alors, cette propriété n’était connue que
pour les algébres de von Neumann des groupes quantiques orthogonaux et unitaires libres
et des groupes d’automorphismes quantiques des C*-algébres de dimension finie munies
d’une trace. Ce résultat est également motivé par un résultat provenant des groupes

discrets classiques : la propriété de Haagerup est stable pour le produit en couronne de
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groupes discrets classiques [CSV12|. En effet, les groupes quantique de réflexions sont
des analogues quantiques de groupes de réflexions complexes HY; : d’une part la C*-
algébre C(H3R;) est un quotient de C(Hif) et d’autre part, on a la formule suggestive
va+ ~ 7./s7 1 S5, analogue du produit en couronne classique HY, = 7Z/sZ!Sn. La
question de la stabilité dans le cas des groupes quantiques est donc naturelle et l'on y

apporte une réponse partielle dans cette thése, au Chapitre 2.

Pour démontrer la propriété de Haagerup, on utilise un résultat fondamental de Brannan
[Bral2a] qui propose une méthode de construction d’applications complétement positives
sur l'algébre de von Neumann d’un groupe quantique de type Kac a partir d’états sur
I’algébre centrale. Plus précisément, partant d’un groupe quantique G de type Kac,
et d’'un état v sur l'algébre engendrée par les caractéres x, des coreprésentations irré-

ductibles, le théoréme de Brannan montre que 1’application

Ty= Y ng") Pa
aclrr(G)

est une application normale, unitaire, complétement positive sur L°°(G). Dans le cas
ou G = Hﬁfr, I'objectif est donc de déterminer une suite d’états appropriée sur la C*-
algebre C'(HY)o engendrée par les caractéres irréductibles de Hy™. Pour cela on utilise
la surjection canonique 7 : C(Hy') — C(S);) a laquelle correspond un foncteur 7 :
Rep(H3') — Rep(Sn+) associant a la matrice génératrice U de Hf;(T), la génératrice
v de S]\L,. On détermine alors via cette fleche 'image des caractéres irréductibles de
H]s\ﬁ, voir Proposition 2.2.1. Avec les notations du Chapitre 2, le caractére x,, a =
a'zj, ...al, s’envoie sur le produit des polynomes de Tchebytchev []; A;, (v/7).

On obtient alors pour tout z € (0, N) un état 1, € C(H¥"); par composition ev, o, olt
evy € C(S%)5 ~ C([0,N])*. En faisant z — N, on voit alors que ces états convergent
vers la counité et I'on en déduit facilement que les applications T, convergent vers

l'identité point par point en norme 2. Pour montrer que les extensions L?, encore notées
¥(xa)
d

Ty, , sont compactes, il suffit de montrer que les valeurs propres de cet opérateur
(0%

diagonal par bloc sont dans co(Irr(G)) (en effet, les projections p, sont de rang fini).

Pour montrer cela, on utilise les estimés de la Proposition 2.1.7 : pour tout N > 2, et

tout x € (2, N), il existe une constante ¢ € (0, 1) telle que pour tout entier ¢ > 1,
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On en déduit alors que pour N > 5 et tout = > 5,

Yz (Xa) _ H Ay, (V) < (x )%Zzi
. L wm=\§
Cette quantité converge vers 0 lorsque Zli — o00. Le cardinal du groupe Z/sZ étant fini,

on en déduit que la fonction ), l; est propre sur Irr(G) et par suite que

balia) _p AVE)
g~ g U € @),

i
Les cas particuliers N = 2 et N = 4 sont également traités dans le Chapitre 2. Le cas
N = 3 reste ouvert. En effet, les régles de fusion ne sont pas connues dans ce cas, et on

ne parvient pas a exprimer C (H§+) plus simplement comme dans le cas N = 2.

Dans le Chapitre 3, je détermine dans la section 3.2 les régles de fusion des produits en
couronnes libres T' s S]J\“, pour tout groupe discret classique I'. Pour cela, on commence
par déterminer les espaces d’entrelaceurs dans le produit libre de groupes quantiques
(H¥*)* ot p désigne le cardinal d'une partie génératrice du groupe I'. On en déduit
alors, en étudiant le noyau du morphisme p : C(Hy")** — C(H(I)), que les espaces
d’entrelaceurs dans H;(T') entre les coreprésentations dites basiques a(g) = (¢@v;;),

g € T, sont donnés (au Théoréme 3.2.20) par

Homyt ry(algr) © - - @ a(gr); a(h1) @ - - © a(hy)

= span{Ty : p € NCr(g1, ..., gk; h1, ..., i)}

On anoté NCr(g1,-..,9k; b1, .., ) 'ensemble des partitions non-croisées dans NC'(k, 1)
telles que dans chaque bloc, [[,; ¢; = Hj hj et T, sont les opérateurs naturels associés,
voir Definition 3.2.17. Les propriétés supplémentaires vérifiées par ces partitions non-
croisées décorées par les éléments de I, p € NCr proviennent des relations contenues
dans le noyau du morphisme p : C(H¥)*? — C(H(T)).

On obtient alors les régles de fusion des produits en couronnes libres r s S]J{[ pour tout
groupe I' (sans nécessairement supposer que I' est finiment engendré). Précisément, on
obtient le Théoréme 3.2.25 que 'on peut résumer comme suit : les coreprésentations irré-

ductibles de H (") peuvent étre indexées par les mots (g1, ..., gx) € (I') avec I'involution
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(g1,---,9k) = (gk_l7 e ,gl_l) et les régles de fusion:

(gla"'vgk) ® (h17~--7hl>
= (gl7 vee 7gkflagk7h1ah27' . 'ahl) 2] (gla v 7gk7179kh17h2a .- '7hl)
D 6gkh1,e(gla ... ,gk_l) X (hg, .. .,hl).

Dans les Sous-sections 3.3.1 et 3.3.2, on exploite la connaissance de ces régles de fu-
sion pour étudier les algébres d’opérateurs des produits en couronnes libres T' S]J{].
Premiérement, on montre que C,(H;;(T')) est simple avec une trace unique, ce qui im-
plique en particulier que L>°(Hy(I')) est un facteur de type II;, voir Theorem 3.3.5 et
son corollaire. Pour cela on utilise des méthodes proches de celles de Powers pour la
preuve de la simplicité de la C*-algébre réduite du groupe libre. On s’inspire notamment
de la preuve de Banica pour la simplicité de C,(Uy), [Ban97]. Il s’agit de remplacer,
dans les méthodes classiques de Powers, les partitions du groupe libre par une partition
des irréductibles de H]J\?(F) Les actions par automorphismes intérieurs sont remplacées
par P'action des caractéres via I'application adjointe. Celle-ci produit des applications
complétement positives T; : C.(Hy(T)) — Cr(HA(T))

x E apzray,
k

avec des coefficients ap qui proviennent de coreprésentations irréductibles de H]T,(F)
Suivant les techniques de Powers, on fixe trois coreprésentations irréductibles distinctes
r; et I'on obtient alors une application unifére complétement positive T'=C')_, T;, ot C
est le facteur de renormalisation. Cette application est contractante sur un certain sous-
espace . de C,.(H;(T)), engendré par les coefficients de coreprésentations irréductibles
indexées par des mots commencant et se terminant par une lettre différente de epr. En
partant, s’il existe, d’'un élément 0 # x € J N.¥ ot J est un idéal bilatére non nul
J < Cp(HY(T)), on peut alors grace a la forme des applications T; ci-dessus, itérer

I’application T' et obtenir un élément de J proche de I'unité :
11 =T (@)||, = [T (1 = 2)||, < 1.

On peut alors conclure que J = C,(Hy(I')). Le probléme est donc de produire un
tel élément x € J N .. La différence majeure avec la méthode de Banica dans le cas
du groupe quantique Uy provient du fait que C(H};(T)) contient une copie de C(Sy).
L’ensemble des coefficients des coreprésentations indexées par les mots e{? = (er,...,er)
constitués uniquement de la lettre ep, produisent en effet une sous-*-algébre ¢ isomorphe
a Pol(S5;). Les régles de fusion dans Hy(I') montrent que si le support de « € J contient

une coreprésentation indexée par un mot e, on ne pourra pas nécessairement produire
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un élément de J N . "en conjuguant” z. On remédie & cela en utilisant I'espérance
conditionnelle P : C,.(H(T)) — C,(S;) qui produit alors un antécédent de 1 = E(z)
grace a la simplicité de C,(S7;). On obtient alors une décomposition z = 1—z ott 2z € .%.
On peut finalement appliquer les méthodes de Banica & z € .% et conclure. La preuve

de T'unicité de la trace suit des raisonnements similaires, voir Theorem 3.3.5.

Enfin, on montre la plénitude du facteur L>(H};(T")) de type IIy, Theorem 3.3.10. La
démonstration repose sur une adaptation de la méthode des 14 — e. Vaes I’a adapté par
exemple pour montrer la plénitude de LOO(U]'G). A nouveau, on doit se ramener au cas

ou les éléments avec lesquels on travaille sont dans l'espace . ci-dessus et utiliser la

plénitude de L>®(Sy).

Dans la Section 1.3 du Chapitre 1, on motivera le fait que ces propriétés de plénitude et
donc de non-injectivité pour les produits en couronnes libres sont liées & des résultats de

structures des algébres de von Neumann de groupes (quantiques) obtenus récemment.
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Preliminaries

1.1 Quantum groups

One motivation for the construction of quantum groups was the generalization of Pontr-
jagin duality to non-abelian locally compact groups: if G is an abelian locally compact
group then the set of characters G is an abelian locally compact group again and 5 ~ (.
Of course if G is no longer abelian, one can not expect that 5 ~ (G and then one has
to look for a larger category, the one of quantum groups, that includes locally compact
groups and their (generalized) duals. In [VK74| and [ES75], the authors defined the no-
tion of a Kac algebra A in the setting of von Neumann algebras, of the dual Kac algebra
A and proved that jl\ ~ A. Kac algebras are endowed with the same structural maps as
Hopf-algebras (coproduct, antipode, counit). A C*-algebraic theory and analogue results
were proved in this setting, see [EV93|. These algebras together with their structural

maps are examples of quantum groups.

However, in [Wor87b| the author constructed a C*-algebra, the so called twisted SU,(2)
quantum groups, with a coproduct but with an unbounded antipode that is not a *-anti-
automorphism as in the case of Kac algebras. So the category of Kac algebras appeared
not large enough to contain all interesting examples of quantum groups. In [Wor87al,
[Wor98|, the author introduced a general theory of compact quantum groups in the
setting of C*-algebras. This construction includes also the Drinfeld-Jimbo type quantum
groups. Under minimal assumptions, the existence and uniqueness of a Haar state could
be proved and a Peter-Weyl (co-)representation theory of compact quantum groups could
be developed, very close to the one for (classical) compact groups. Moreover, as in the
classical case the dual G of a compact quantum group G is a discrete quantum group

i.e. the underlying C*-algebra is direct sum of matrix algebras. The matrix algebras
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arise from the representation theory of G, the irreducible G-representations being finite

dimensional.

In [BS93|, the authors used multiplicative unitaries to encode simultaneously a compact
quantum group and its discrete dual. These multiplicative unitaries are also a key tool in
the general theory of locally compact quantum groups in the setting of C*/von Neumann
algebras (see e.g. [KV00]) giving a complete answer to the generalization of Pontrjagin

duality mentioned above.

1.1.1 Compact quantum groups

In this subsection, we give basic definitions, examples, results and constructions relative
to compact quantum groups that we will need in the sequel. One can refer to [Wor98§],
[MVD98| and to [Tim| for more details. We denote by A® B the minimal tensor product
of two C*-algebras faithfully represented on Hilbert spaces (w4, Ha), (75, Hp) that is
the completion of the algebraic tensor product A® B with respect to the C*-norm induced
by the representation 74 ® g on Hq ® Hp.

Definition 1.1.1. A compact quantum group G is a pair G = (C(G), A) where C(G) is
a Woronowicz-C*-algebra, that is a unital C*-algebra together with a x-homomorphism
A:C(G) = C(G) ® C(G) such that
1. A(C(G))(1®C(G)) and A(C(G))(C(G) ® 1) are linearly dense in C(G) @ C(G),
2. (A®id)o A= (id® A)oA.

Example 1.1.2. Two basic examples arise from groups:

e Let G be a compact group, consider C(G) the algebra of complex functions on G.
Then (C(G),A) is a compact quantum group with A : C(G) — C(G) ® C(G) ~
C(G x G),A(f)(x,y) = f(zy). Notice that these examples are commutative.

o Let I' be a discrete group, and consider the reduced group C*-algebra C}(I"), then
(CHT),A) is a compact quantum group with A(g) = g ® g, Vg € I'. Notice that
these examples are cocommutative, that is ¥ o A = A if 3 denotes the flip map in

C*(I") ® C*(T).

The minimal assumptions of Definition 1.1.1 above allow to prove the following theorem:

Theorem 1.1.3. Let G be a compact quantum group. There exists a unique state, called

Haar state, h : C(G) — C satisfying the bi-invariance relations:

(h®id) o A(:) =h(-)1 = (id® h) o A(+)
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The Haar state h is not a trace in general. When h is a trace, we say that the compact

quantum group is of Kac type. However, this state is always a KMS state.

If G is a compact group, the relations above are the analogue of the left invariance
relation satisfied by the Haar measure: [ f(zg)dy = [, f(9)dy = [ f(g9x)dg for all
reGandall f:G— C.

We can recall here the construction of the reduced C*-algebra associated to G. Let Ap

be the GNS-representation of the Haar state h (also called left regular representation of
C(G)), M\, : C(G) — B(L*(G)) with GNS space denoted by L?(G). We recall that this
construction comes with a GNS map A : C(G) — L?*(G) with dense image and such that

(A(a), A(b)) = h(a™b) and Ap(a)A(b) = A(ab), Va,b € C(G).
There exists also a cyclic vector g = A(1), that is a unit vector such that
A(a) = An(a)o and h(a) = (S0, An(a)éo), Va € C(G).
The reduced C*-algebra associated with G is defined and denoted as follows:
Cr(G) := M(C(G)) = C(G)/ker(An)-
One can define a canonical coproduct A, and Haar state h, on C,(G) with the formulas
Arodpy =M @A)A, hpoy=nh

and one can show that G, := (Cy(G), A;) is a compact quantum group on which A, is

faithful. We will denote h, simply by A in the sequel.

The compact quantum group G also admits a maximal (or universal) version G,. The
underlying C*-algebra C(G,,) is the completion of a certain dense *-subalgebra Pol(G) C
C(G) with respect to the following norm:

|lallu = sup || (a)[l,
s

where 7 runs over all the unital x-representations of Pol(G). The algebra Pol(G) is an
essential object when one studies the properties of a compact quantum group G, we give

a precise definition of this algebra below, see (1.2).

Before giving the results of Peter-Weyl’s (co-)representation theory for compact quantum
group, we recall that if B(H) denotes the algebra of bounded operators on a Hilbert space
then B(H) is the multiplier algebra of K(H) the C*-algebra of compact operators (i.e.
B(H) is the largest C*-algebra containing K (H) as an essential ideal).
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Definition 1.1.4. Let G = (C(G),A) be a compact quantum group. A representation
of G (or corepresentation of C(G)) on a Hilbert space H is an element in the multiplier
algebra M(C(G) ® K(H)) such that

(A & Zd) (’U) = ’U(lg)’U(Qg), (11)

where v(13) = (1@ X)(v® 1) and ve3y = 1®@v and ¥ is the flip map. If v is unitary then

the corepresentation is said to be unitary.

If G is a compact group and 7 : G — B(H) is a strongly continuous unitary representa-
tion then 7 is also continuous for the strict topology 7 : G — M (K (H)). Then one can
see m € M(C(G) ® K(H)) and one can identify elements in M (C(G x G) ® K(H)) with
strictly continuous B(H)-valued functions on G x G. We get

W(lS)(gah) = W(g)a 7T(23)(9>h) = W(h)7 Vg,h € G

and since

(A ®id)(7)(g,h) = 7(gh),

the relation (1.1) simply translates into

m(gh) = m(g)m(h).

We will mainly deal with unitary finite dimensional corepresentations. They are unitary
matrices U € My (C(G)) ~ C(G) ® My (C) with entries in C(G) satisfying

N
A(Uy) = Ui ® Uy;.
k=1
This is simply the translation of the relation (2.2) to this situation. We say that
T € My, n,(C) is an intertwiner between two corepresentations u € My, (C(G)),v €
Mpy, (C(G)) if T is a matrix such that v(1®T) = (1 ® T)u. We write T' € Homg(u,v).
We say that u and v are equivalent, and we write u ~ v, if T' is invertible. We say that

a finite dimensional corepresentation wu is irreducible if Hom(u,u) = Cid.

All these definitions have of course non finite-dimensional counterparts. However, in
the next chapters and especially in Chapter 3, when we compute the fusion rules of
the free wreath products T S]'\F,, we will only have to deal with finite-dimensional

corepresentations thanks to the following theorem:
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Theorem 1.1.5. Fvery irreducible corepresentation of a compact quantum group is
finite-dimensional. Furthermore, every unitary corepresentation is unitarily equivalent

to a direct sum of irreducible corepresentations.

We will denote by Irr(G) the set of equivalence classes of irreducible corepresentations
of C(G). For each a € Irr(G), the previous theorem allows us to choose a unitary

representative corepresentation U%. We will denote by H, the representation space of
Ue.

We will denote by
Pol(G) Cc C(G) (1.2)

the subspace generated by the coefficients (id® ¢)(U?%), ¢ € B(H,)* of irreducible corep-
resentations U% « € Irr(G). It is a remarkable fact that this sub-algebra is dense in
C(G). The irreducible characters of G are the traces yo = Zf;l Us.

If U® is an N-dimensional unitary corepresentation of C(G), U* = (U}}) € Mn(C(G)),
U := ((U;3)*) is also a corepresentation called the conjugate of U®. However it is not
necessarily unitary anymore but there exists a unique positive definite Q, € My (C) with
Tr(Qs) = Tr(Q,1) such that QP TaQ " is unitary. The number Tr(Q,) is called
the quantum dimension of U®, dimqy(U®). If Qo = id then the quantum dimension is
the usual dimension N = dim(U®). Notice that, in this thesis, we will mainly deal with
Kac type compact quantum groups G. G is of Kac type if and only if (), = id for all
a € Irr(G).

Furthremore, we have the following "Schur’s" orthogonality relations for any U% «a €
Irr(G):

(Qa")jk
Tr(Qa)’ h

(Qa)jl
Tr(Qa)’

(U UL) = 5,500 (US(U)") = da,pdin

One can prove that Pol(G) is a Hopf *-algebra. That is Pol(G) is a unital *-algebra

endowed with the following structural maps:
e a x-homomorphism called coproduct : § : Pol(G) — Pol(G) ® Pol(G) satisfying
(id®d)od = (0 ®id)od,
e a x-homorphism € : Pol(G) — C called counit satifying (e®id)od = id = (id®e€)od,

e a linear map called antipode : k : Pol(G) — Pol(G) satisfying mo (k ® id) 0§ =
noe=mo (id® k) od,



Chapter 1. Preliminaries 25

where 7 : C — Pol(G) is the unit map A — Ay and m : Pol(G) ® Pol(G) — Pol(G)
is the multiplication map m(a ® b) = ab. Of course ¢ is the restriction of A : C(G) —
C(G) ® C(G) to Pol(G) and we will denote § by A in the sequel.

The antipode satisfies: Kk o x 0 Kk 0 x = id. Thus k is bijective and actually it is a
antiautomorphism on Pol(G). We recall that a compact quantum group is of Kac type

if and only if the Haar state h is a trace. This is also equivalent to the fact the % = id.

Starting with a family of (irreducible) corepresentations, one can construct new corep-
resentations. Of course one can consider the direct sum of two corepresentations. One
can also define the tensor product of corepresentations thanks to the product in C(G)

as follows:

Definition 1.1.6. Let U and V be unitary G-corepresentations on certain Hilbert spaces
Hy and Hy. Then the tensor product of U and V' is defined as follows

UV = U(lg)V(lg) € M(C(G)® K(Hy ® Hy)).

In view of Theorem 1.1.5, it is clear that an essential question when one studies compact
quantum groups is to describe their irreducible corepresentations and the fusion rules

binding them. We recall:

Definition 1.1.7. Let G be a compact quantum group with Woronowicz C*-algebra C(G).
The fusion semiring R (C(G)) is the set of equivalence class of finite dimensional corep-
resentations of C(G), endowed with the direct sum of (classes) of corepresentations and

the tensor product of (classes) of corepresentations.

The fusion semiring R*(C(G)) encodes the relations of the form

a® B =P

iel

with «, 8,7; € Irr(G) and some finite set I. These formulas then describe the splitting
of a tensor product of irreducible corepresentations into a sum of irreducible corepre-
sentations and are called fusion rules for the irreducible corepresentations of C(G). We
denote v C a ® B if the irreducible corepresentation v appears in the decomposition of
the tensor product a® 3. Such an inclusion gives rise to linear maps 17" : H, — H, ® Hg
and thus to morphisms (1 ®T) € Hom(y; a ® ). We will call multiplicity of v C a®
the dimension of the space Hom(y;a ® 3).

We will give examples of compact quantum groups and the fusion rules binding their

irreducible corepresentations in the Subsection 1.1.4.
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The knowledge of these fusion rules is a key tool if one investigates the operator algebraic
properties satisfied by the C* /von Neumann algebras associated to quantum groups (see
Chapters 2, 3). We now recall briefly the construction of the duals of compact quantum

groups.

1.1.2 Discrete quantum groups

A discrete quantum group is the dual of a compact one. Starting with a complete set
{U*: a € Irr(G)} of pairwise non-equivalent G-irreducible corepresentations it is easy
to construct the dual quantum group G. The dual G of G is the pair (B, ﬁ) where B is
the completion (with respect to a naturally arising C*-norm, see below) of the subspace
By C C(G)* generated by the linear functionals on C(G) defined by = +— h(az) for
a € Pol(G). One shows that By is a multiplier Hopf x-algebra with structural maps
obtained by dialyzing the ones of C(G). Furthermore, By is a direct sum of matrix
algebras, and the completion of By with respect to the unique C*-norm on By then gives
the C*-algebra B. One can refer to [MVD98| for more details.

Standard notations are the following ones. If G be a compact quantum group, the
underlying C*-algebra B of G is isomorphic with:

@) =c- @ B(H.)

a€lrr(G)

and the coproduct A implemented by natural unitary W € M(C(G) ® ¢ (@)),

W= € U

aclrr(G)

>

2 co(G) = co(G) ® co(G), (id ® A)(W) = Wig) W)

The unitary W is a multiplicative unitary in the sense of [BS93| that is W satisfies the
pentagonal equation:
Wa2)Was)Wias) = Wia)Waa).

Notice that A is characterized by A(z)T = Tz for z € B(H,) and T' € Hom(v,a ® ).

One can also associate a von Neumann algebra to the discrete quantum group G:

1°(G) = 1™ — é B(Hy,).

a€clrr(G)
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We denote by p,, the minimal central projection in loo(@) corresponding to the identity

~

of B(H,). One can then define weights ¢, on ¢o(G) as follows:

o(x) = Z dimg (o) Tr(Qapat),

a€lrr(G)

U(x)= D dimg(a)Tr(Qy pa),

aclrr(G)

with @, defined in the previous subsection. They are left and right invariant under A
respectively. However, they are not states in general (in fact co(@) is not unital unless
it is finite dimensional) and they do not coincide either. If they are equal, we say that

G is unimodular. This is equivalent to the fact that G is of Kac type.

1.1.3 Regular and adjoint representations

Let G be a Kac type compact quantum group with Haar trace h. Recall that we denote
by A, : C(G) — B(L?(G)) the regular representation of G, that is the GNS construction
(An, An, L2(G)) associated with the Haar state h:

Mn(a)Ap(b) = Ap(ab) € L*(G),VYa,b € C(G).

In the Kac type case, the right regular representation py, : C(G) — B(L?(G, h)) is given
by

pr(@)An(y) = Ap(yr(z)).
In the non Kac type case, one has to convolve by Woronowicz’s characters inside the
antipode. The right regular representation commutes with A, and if G is full, that
is if the underlying Woronowicz C*-algebra is maximal, one can consider the adjoint

representation

ad := (A, pr) 0 A : Cu(G) — B(L*(G, h)).

In the Kac case, the irreducible characters act as follows
ad(xr)(z) = Z Tij AT
]

Notice that the map z +— ad(x,)(z) is completely positive for all » € Irr(G). We will

use these maps in Chapter 3.
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1.1.4 Examples: free compact quantum groups

We will deal with many classical examples of compact quantum groups in this thesis.
Some of the techniques we will use are adapted from existing ones relative to the following

examples.

Free unitary quantum groups The following family of examples was introduced by
Wang in [Wan93|.

Definition 1.1.8. Let N > 2. The free unitary quantum group is the pair U;\,“ =
(C(U), A) where C(Uy,) is the universal C*-algebra generated by N? elements U;j such

that the matrices U and U are unitary and
A:CUY) = OUY) & CUR)

is the unital x-homomorphism such that for all i,5 € {1,...,N}

N
A(Uij) = Z Uir @ Uy;.
k=1

For any matrix F' € GLx(C), one can define a compact quantum group U;t = (A, (F), A)
where A, (F) is the universal C*-algebra generated by N? elements Uj; such that U’ =

(U};) and F U'F~! are unitary and A is a unital *-homomorphism
A AL(F) = Ay(F) @ Ay(F)

such that N
A(U;;) = Z Ujr @ Uy
k=1

for all Vi,7 € {1,..., N}. In this thesis, we will mainly deal with A,(Iy) that is to say

with the free unitary quantum groups U;.

Banica has computed the fusion rules of Uy; in [Ban97]: we recall one of the main results
of this paper in the next theorem. Let us first fix some notations. We denote by N x N
the free product of the monoid N with itself and by «, 8 € NxN two canonical generators
and by () the empty word. We will consider the unique anti-multiplicative involution on
N # N defined by § =0, a = and 3 = a.

Theorem 1.1.9. There exists a family of pairwise inequivalent irreducible corepresenta-

tions (Uy)zensn of Uy such that
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and for all x,y € Nx N
U Uy = > U,
Tr=ac
y=cb
Furthermore, every irreducible representation of UJJ\; is equivalent to a corepresentation

U, for some x € N*N.

Free orthogonal quantum groups The orthogonal case was also introduced by
Wang in [Wan93|.

Definition 1.1.10. Let N > 2. The free orthogonal quantum group is the pair OF =
(C(O%),A) where C(O%,) is the universal C*-algebra generated by N? self adjoint ele-

ments Vi; such that the matriz V = (Vi;) is unitary and
A C(Of) = C(07) ® C(OF)

is a unital x-homomorphism such that for all i,5 € {1,..., N}
N

A(Vig) =Y Vir ® Vi
=1

For any matrix F' € GLy(C), one can define a compact quantum group O}, = (4,(F), A)
where A,(F) is the universal C*-algebra generated by N? elements Vz/] such that V' =
(V) is unitary and FV'F~! = V' and A is a unital *-homomorphism

ij
A A(F) = A)(F) @ Ay(F)
such that
N
AV = Vi oV
k=1

Vi,j € {1,...,N}. In this thesis, we will mainly deal with A,(Iy) that is to say with

the free orthogonal quantum groups O]J\r,.

Banica has computed the fusion rules for the orthogonal quantum groups in [Ban96|. We

recall the main theorem of this paper in the following theorem:

Theorem 1.1.11. There exists a family of pairwise inequivalent irreducible corepresen-

tations (V™) nen of OF; such that for alln € N

0 1 I n n
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and for all r,s € N

min{r,s}
VIV = @ Vr+s—2l_
=0
Furthermore, every irreducible representation of OX, s equivalent to a corepresentation

V,, for some n € N.

The dimensions of the corepresentations V™ are given for all N > 3 by:

o A(N)M —g(N) !
dp :=dimV" = Vn € N,
q(N) —q(N)~*

where g(N) = Mf]\f?—zl.
If N =2, we simply have d, =n+ 1 for all n € N.

The irreducible characters x, = Z?;l Vi satisfy the recursive relations:

X1Xn = Xn+1 + Xn—1 Vn > 1

One can prove that the "complexification" of OX, is U]'G: we have an embedding at the
level of the reduced C*-algebras C,(Uy;) C C(T) *, C(O%;) given by

WhU]'*\} (UIJ) = Zﬂhoj\-] (V;« )

where z = idy designates a generator of C(T), Th, + (resp. Th, . ) is the GNS represen-
N N

tation associated to the Haar state on Uy, (resp. O3;) and the reduced free product is

taken with respect to these Haar states (see e.g. [BC07, Theorem 9.2]). When we discuss

Haagerup property and recall the results proved by Brannan, this fact will be important.

Quantum permutation groups Another important and well studied family of free

compact quantum groups was also introduced by Wang in [Wan98|.

Definition 1.1.12. Let N > 2. The quantum permutation group is the pair S]J\r, =
(C(S3),A) where C(Sy) is the universal C*-algebra generated by N? elements v;j such
that the matriz v = (v;;) is magic unitary that is to say its entries are pairwise orthogonal

projections which sum up to one on each row and column and

A C(SH) — C(SH) ® C(SH)
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is a unital x-homomorphism such that for all i,5 € {1,..., N}

N

A(Uij) = Zvik & Vkj-
k=1

It is possible to define a (universal) quantum automorphism group Ggu:(B, ) for any
finite dimensional C*-algebra equipped with a faithful state ¢ in terms of right action
of compact quantum group on B (see [Wan98] and [Ban02]). The case of Sy, coincides
with the situation where B = C({1,...,N}) = CV and ¢ is the uniform probability
measure on {1,..., N}. In this thesis, we will mainly deal with the case of the quantum

permutation group Sj{,.

Banica computed the fusion rules for the quantum permutation groups in [Ban99b|, we

recall the results in the following theorem:

Theorem 1.1.13. There exists a family of pairwise inequivalent irreducible corepresen-

tations (V" )pen of S]'\F[ such that for all n € N

0 1 =~
v :10(5;\;), v=1@v, W ~v"VneN

and for all r;s € N

2min{r,s}

VR v = @ vr+sfl.

=0
Furthermore, every irreducible representation of S]J\“, 1s equivalent to a corepresentation

vy, for some n € N.

The dimensions dy, of the corepresentations v"™ are given recursively by :

do=1,dy ;=N —1 and did, = dn4+1 +dp +dn—1 Vn € N.

The irreducible characters x, = Z?;l v satisfy the recursive relations:

X1Xn = Xn+1 + Xn + Xn-1 Vn > 1.

Free wreath product quantum groups In [Bic04|, Bichon introduced new examples
of compact quantum groups. If A is a unital C*-algebra, we denote by v; the canonical
homomorphism v; : A — A*N sending A to the i-th copy of A in the full free product
AN,
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Definition 1.1.14. Let A be a Woronowicz-C*-algebra and N > 2. The free wreath
product of A by the quantum permutation group SJJ\? 1s the quotient of the C*-algebra
AN 5 C(S%) by the two-sided ideal generated by the elements

ve(a)vg; — vpive(a), 1<,k <N, ac A

It is denoted by A x, C(S%).

Theorem 1.1.15. Let A be a Woronowicz-C*-algebra, then free wreath product A *
C’(S;(,) admits a Woronowicz-C*-algebra structure: Ya € A,V 1 <1i,5 < N,

N

A(Uij) = Zvik (=) Ukj N

k=1 k=1

Mz

Vz Uzk®l/k( ( ))

N
e(vig) = 615 ; e(vi(a)) = eala) 5 S(vy) = vji ; S(vi(a)) =D vi(Sala))vk.
k=1
vy = vij 5 vi(a)” = vi(a”).

Moreover, if G is a full compact quantum group, then G, S]'\F[ = (A *y C’(S]'\F[), A) is also

a full compact quantum group.

Special cases of these free wreath products were studied:

Example 1.1.16. Let I be a (discrete) group, N > 2. Let C(H7(T)) be the universal C*-
algebra with generators a;j(g),1 <1i,j < N,g € I' together with the following relations:

aij(g)aix(h) = djkai;(gh) 5 aji(g)ari(h) = dra;i(gh) Zazz Zau(e),

and involution a;j(9)* = a;j(g~"). Then Hy(T) := (C(Hn(T)),A) is a compact quantum
group with:

a'Lj Z azk ® ak] )

We have for all g € T, €(a;j(g)) = &i; and S(a;j(g)) = aji(g~'). Furthermore, H(T') is

isomorphic, as compact quantum group, with T SJJ{,.

With I' = Zs :=7Z/sZ or T = Z, one gets the quantum reflection groups:

Definition 1.1.17. Let s > 1 be an integer and N > 2. The quantum reflection group
HY is the pair (C(HY), A) where C(H3') is the universal C*-algebra generated by N>
normal elements U;; such that for all 1 <i,j < N:

o (a) U= (Uy) and 'U = (Uj;) are unitary,



Chapter 1. Preliminaries 33

(b) UizU;; is a projection,
(c) U3 = U, U

@5’

(d) A(Usj) = S0, Ui ® Uy

o IfT' =7, one gets Hy ™ = (C(HY),A) where C(HY') and A are defined as

above except that one removes the relations (1c) above.

Their fusion rules were computed by Banica and Vergnioux in [BV(09]. We will use the fol-

lowing operations on the monoid (Zs) generated by the words over Zg. If (i1, ..., i), (j1,---,J1) €
(Zs),
e Concatenation : (il, oo ,ik)(jl, cee 7jl> = (il, oo ,ik,jl, ces 7.jl)7

e Fusion : (i1,...,0k) - (J1y---51) = (i1y -« yik + 41,5 1),

where the sum is taken in Zs for s € [1,+00) (resp. Z if s = 00).

Theorem 1.1.18. Let N >4, s € [1,00]. C(HY") has a unique family of N-dimensional
corepresentations (called basic corepresentations) {Uy : k € Z} satisfying the following

conditions:

1. U, = (Ui’;) for any k > 0. 4. Uy is irreducible Yk #£ 0.
2. U = Upys for any k € Z. 5. Up =1 po, po wrreducible.
3. Up=U_y forany k € Z. 6. po,Ur,...,Us_1 are inequivalent

corepresentations.

Furthermore if we write for all i € Zg, p; = U; © 6,01, then the irreducible corepresen-
tations of C(H3') can be labelled by p, where z is a word in the monoid (Zs) and the

involution and fusion rules are p, = pz and

Pz Q Py = Z Pow D Z Pv.w

T=0z, Y=zZW T=Vz, Y=2ZW

v#£D,w#D

The case of the fusion rules for the free wreath products T U S]T, for arbitrary I was not

known except when N = 2:

Theorem 1.1.19. [Bic04] Let ' be a group.

1. To any element x € T' xT'\ {e} corresponds a two-dimensional irreducible corep-

resentation v, of H;(F) Two such corepresentations v, and v, are isomorphic
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if and only if x =y or x = 7(y) where T denotes the canonical involutive group
automorphism of I'xI'. There also exists a non-trivial one-dimensional irreducible

corepresentation d.

2. Any non-trivial irreducible representation of H2Jr (T') is equivalent to one the irre-

ducible corepresentations listed above.

3. One has the following fusion rules: Yx,y € T «T'\ {e}
Vg @ Vy = Vpy © Vgr(y) if T # y! and z # 7(y) L,

Uz @Up-1 = 1B dB Vpr(z)-1, d®A=1, 1, Q@d=v, =d® vy

One aim of this thesis is to generalize both previous results that is to say to describe the
fusion rules of the free wreath product T, Sy for any (discrete group) I' and all N > 4.

The case N = 3 remains open.

1.1.5 (*-tensor categories

A category ¢ is a structure that includes two classes Ob(%¢) and Hom(%'). The elements
a € Ob(¥) are called objects, the elements f € Hom(%) are called morphisms and have
a unique source object a € Ob(%) and a unique target object b € Ob(¥), f : a — b.
We denote by Hom(a,b) the class of all morphisms from a to b and we set End(a) =

Hom(a,a).

We must add some structure on these algebraic objects to get the good framework for
our purpose. We will call monoidal C*-tensor category, a category € with Ob(%) as a

set of objects and such that (see e.g. [NT], Section 2):

e VU,V € Ob(¢), Hom(U,V) is a Banach space and YU, V,W € Ob(%), the map
(S,T) € Hom(U,V) x Hom(V,W) — ST € Hom(U,W) is bilinear and ||ST|| <
ST

e There is an antilinear contravariant functor * : ¥ — % which is the identity on
Ob(¢). Contravariant here means 7' € Hom(U,V) = T* € Hom(V,U). We
assume furthermore that T** = T, ||T*T|| = ||T||?,¥T. In particular End(U) is a
C*-algebra for all U € Ob(¥).

e The category is monoidal that is there are a bilinear bifunctor ® : 4 x ¢ — ¥, a

natural unitary associativity isomorphism agyw : (U@V)W — U®(VeW), an
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object 1 := l¢ and natural unitary isomorphisms Ay : 1QU — U, py : U®1 = U
such that YU, V, W, X € Ob(%):

(idy@ayw.x)oayyvewxo(ayyw®idx) : (UV)@W)@X - U(Ve(WeX))
and

avvwex cawevwx (U V)eW)eX - U (Ve (W e X))
are equal, and similarly,

idy ® Avauely = pu @ idy in Hom(U® 1) @ V,U® V).

o (S®T)* =8 ®@T*VS,T € Hom(%).

¢ has finite direct sums: YU,V € Ob(%¥), IW € Ob(¥¢) and isometries u €
Hom(U,W),v € Hom(V,W) such that vu* + vov* = 1.

% has sub-objects: YU € Ob(%),Vp € End(U) such that p? = p = p*, IV € Ob(%)
and an isometry v € Hom(V,U) such that vv* = p.

e FEnd(l) =Cl1.

A C*-tensor category C' is said to be strict if for all objects U, VW € Ob(%¢), (U®V)®
W=U®(VaeW),1®U =U =U®1 ie all morphisms ayyw, A\v, pu are the
identity morphisms. It is proved in [ML9§| that any C*-tensor category as above can be

strictified and computations can be done as if the category were actually strict.

Let us denote as in [NT|, Hilb; the C*-tensor category of all finite-dimensional Hilbert
spaces: one must restrict to a set of finite-dimensional Hilbert spaces, instead of the
class of all finite-dimensional Hilbert spaces, for the category to be small (this will be
the case when we deal with the category a finite dimensional corepresentations of a
compact quantum group G). The one-dimensional Hilbert space is chosen to be C.
The morphisms are linear maps between these Hilbert spaces and the discussion on the
strictified categories above, allows us to work in this category as if it were a strict one,

the natural associativity morphisms being the followings (£ @ ) ® ( = £ ® (n ® ().

Another fundamental example that we will consider and investigate is the category of
corepresentations of a compact quantum group, see Section 1.1, where the functor is
given by the tensor product of corepresentations. Unlike the case of Hilbert spaces, u® v

is not isomorphic to v ® u in general.
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A tensor functor between two C*-tensor categories ¢ and %”, is a functor F : 4 — ¢,
linear on morphisms and given with an isomorphism Fj : 1¢» — F(ly) and a natural
isomorphism F» : F(U)® F(V) — F(U ® V) such that for all U, V,W € Ob(%), we have
the following equality in the Home: set

(FU)F(V)FW)—=FU®(VaW)):

Flavgv,w) o Fo ® (F @ idpay)) = F o (idpwy @ F2) o ap@)erv),Fw)
and the following equalities in Homg (14 @F (U), F(U)) and Homg (F(U)®14r, F(U)) :

F(Av) o Fa o (Fy ® idpw)) = Np()»
F(pu) o Fyo (idpy ® Fo) = pr-

A tensor functor is said to be unitary if in addition, we have : F(T*) = F(T)* for all

morphisms 7" and if F5 and Fy are unitary.

We will say that two C*-tensor categories ¢ and ¢’ are unitarily monoidally equivalent
if there exist unitary tensor functors F' : € — ¢’ and G : ¢’ — € such that FG and

GF are naturally and unitarily monoidally isomorphic to the identity functor.

We will state Woronowicz’s Tannaka-Krein duality theorem in Subsection 1.1.6 and we
must therefore require one more assumption on the categories we consider; they must be
rigid i.e. any object has a conjugate: U is said to be a conjugate to U € Ob(%), if there
exist morphisms

R:1-5U®Uand R:15U®U

such that

are the identity in Hom(U,U) and Hom(U,U). The maps R, R are called the duality
maps. We now cite the following theorem called Frobenius reciprocity theorem since we

will use it several times in the sequel (see Chapter 3).

Theorem 1.1.20. Let € be a monoidal rigid C*-tensor category and let U, U, R, R be an
object, its conjugates and the morphisms satisfying the conjugate equations (1.3). Then

for all VW € Ob(%) the map

Hom(U @ V,W) —= Hom(V, U@ W), T+ (idg @ T) o (R® idy)
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18 a linear isomorphism with inverse
S (R* ®@idw) o (idy @ S).

Similarly, Hom(V @ U,W) ~ Hom(V,W @ U).

Notice that the previous theorem holds even if we do not assume the category to be rigid
but if we only assume that U has a conjugate. A corollary is that for any object U with a
conjugate, End(U) is finite-dimensional. In particular in a rigid monoidal category any
object has a finite-dimensional End space. Notice that such categories are semi-simple:

any object decomposes as a direct sum of simple objects Uy, (i.e. End(Uy) = Cid).

One can see that the category of all finite-dimensional Hilbert spaces is rigid considering
the duality maps
7‘:(C—>]:I®H,1'—>Zéi®ei
i€l
and
FCoHH 11— Y @6,
el

where H = (e; : i € I) is any finite dimensional Hilbert space.

The category of unitary corepresentations of a compact quantum group is also rigid if

one considers the conjugation of unitary corepresentations recalled in Subsection 1.1.1.

To conclude this section, we recall the notion of fiber tensor functor F' : ¢ — Hilby:

they are tensor functors F': ¢ — Hilby which are injective on morphisms.

1.1.6 Woronowicz’s Tannaka-Krein duality

We now combine the notions introduced in Subsection 1.1.1 and in Subsection 1.1.5.
For a given compact quantum group G, we denote by Rep(G), the category with
e objects: all finite dimensional unitary corepresentations U% of G acting on Hilbert
space H,,
e morphisms: all intertwiners 7' : H, — Hpg between corepresentations U «UP e

Rep(G).

One can prove that it is a monoidal rigid C*-tensor category with the obvious bifunctor,

conjugates, unit object, sub-objects and direct sums.
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With the previous notations, notice that there is a canonical fiber functor
Rep(G) — Hilby,

given by U — Hy where U is the representation Hilbert space of any finite dimensional

G-corepresentation U. We can now give Woronowicz’s Tannaka-Krein duality theorem:

Theorem 1.1.21. Let € be a rigid monoidal C*-tensor category, F : ¢ — Hilby a uni-
tary fiber functor. Then there exist a compact quantum group G and a unitary monoidal
equivalence E : € — Rep(G) such that F is unitarily monoidally isomorphic to the
composition of the canonical fiber functor Rep(G) — Hilby with E.

We say that two compact quantum groups G; and Ga are monoidally equivalent if
Rep(Gq) and Rep(Gy) are unitarily monoidally equivalent. Monoidal equivalence trans-
poses many interesting properties, see [DR07|. This allows for instance the authors of
[VVO07], [Frel3], [DCFY13| to translate algebraic and analytical properties of certain

compact quantum groups to other ones.

We recall a few notions on non-crossing partitions and the linear maps which naturally

arise from them.

Definition 1.1.22. We denote by NC(k,l) the set of non-crossing diagrams between k
upper points and l lower points, that is the non-crossing partitions of the sets with k 4+ 1

ordered elements, with the following pictorial representation:

with k upper points, | lower points and & is a a diagram composed of strings which

connect certain upper and/or lower points and which do not cross one another.

Such non-crossing partitions give rise to new ones by tensor product, composition and

involution:

Definition 1.1.23. Let p € NC(k,l) and ¢ € NC(I,m). Then, the tensor product,
composition and involution of the partitions p,q are obtained by horizontal concatenation,

vertical concatenation and upside-down turning:

pRq={P2}, pq= { }i } — {closed blocks}, p* = {P*}.

The composition pq is only defined if the number of lower points of q is equal to the
number of upper points of q. When one identifies the lower points of p with the upper
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points of q, closed blocks might appear, that is strings which are connected neither to the
new upper points nor to the new lower points. These blocks are discarded from the final
pictorial representation. We denote by NC' the collection of all non-crossing partitions.
From non-crossing partitions p € NC(k,[) naturally arise linear maps T,

Definition 1.1.24. Consider (e;) the canonical basis of CN. Associated to any non-

crossing partition p € NC(k,l) is the linear map T, € B ((CNM, CN®l) :

Tp(ei, @ ®e) = Y Spli,jle; ®-- ®e;
j17"'7.jl

where i (respectively j) is the k-tuple (i1,...,1) (respectively l-tuple (ji,...,71)) and
dp(i,7) is equal to:

1. 1 4f all the strings of p join equal indices,

2. 0 otherwise.
Tensor products, compositions and involutions of diagrams behave as follows with respect
to the associated linear maps:

Proposition 1.1.25. (/BS09, Proposition 1.9] Let p,q be non-crossing partitions and

b(p,q) be the number of closed blocks when performing the vertical concatenation (when

it is defined). Then:

1. Tpeg = Tp © Ty,
2. Tpy = n 2T, T,

3. Ty =T5.
The Proposition 1.1.25 implies easily that the collection of spaces
span{T, :p € NC(k,l)}

form a C*-tensor category with N as a set of objects. Furthermore, this tensor category

is rigid since the partitions of type

0
r:{| =] |}€NC’(@;2]€)
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are non-crossing and since the following conjugate equations hold:
(Tr @id)o (id®T,) =id = (i d@T}) o (T, ®@id), (1.4)

as one can see by a direct computation or by composing the diagrams:

‘=111 | H‘
N pa——

id(cnyek

and this gives the required duality map R with the notations of Section 1.1.5 (in this
case R = R).

We can give a result we will use many times in this thesis. We recall that we denote by

v the magic unitary matrix generating C(S¥).

Theorem 1.1.26 ([Ban99b|). Let k,l € N. Then

Homg: (v 0%') = span{T;, : p € NO(k,1)}.

Sketch of proof. 1t is easy to check the inclusion D. One just has to use the properties
of the magic unitary v. Conversely, applying Woronowicz’s Tannaka-Krein provides
a compact (matrix) quantum group G = (A4, A,v’) whose Hom spaces are given by
the linear maps associated to all non-crossing partitions in NC' and whose underlying
Woronowicz-C*-algebra A is generated by the coefficients of a unitary matrix v'. To
conclude, one has to prove that v’ shares exactly the same properties as v. One can
easily check, thanks to Frobenius reciprocity theorem (see Theorem 1.1.20) that v’ is a

magic unitary using the linear maps
T,, € Hom(1,v"),
Ty, € Hom(1, (v)®¥%) ~ Hom (?, v') ,
Ty, € Hom(1, (v)¥3) ~ Hom (?, (v')®2)

and their adjoints, where

e (i (8] - ()
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Furthermore, it is clear that by basic operations on non-crossing partitions recalled above,
one can recover any non-crossing partition in NC' from p1, ps, p3. Then A is not only a
quotient but is actually isomorphic with C(Sj\}). Then one gets that the Hom spaces
between tensor products of the generating matrix of SJJ([ are described by the linear maps

T, where p runs over the collection of all non-crossing partitions in NC' O

This theorem is well known now and generalizes the analogue result in the case of C(Sy),
where S designates the classical permutation group where any (non-crossing or crossing)
partition gives rise to an intertwiner. We refer the reader to the remark in [BV09] after
Theorem 5.5 and e.g. [Spe97| for more informations on non-crossing partitions and this

passage from classical to free probabilities.

In the next chapters, we will have to consider certain non-crossing partitions with addi-
tional properties. For instance, one can describe the intertwiner spaces in H fv+ as follows

(see Section 1.1.4 for the definition of quantum reflection groups):

Theorem 1.1.27 (|[BV09]). Let iy, ... ik, j1,.--,J1 € Zs then:
HomH}sv+(U¢1 ®--- U, Uy @ @Uj;) =span{T, : p € NCs(i, j)}

where p is an element of NC(i,7)) if and only if it is a non-crossing partition in NC(k, 1)
satisfying the additional rule: if one puts the k-tuple i on the k-upper points of p and j
on the l-lower points then, in each block, the sum on the i-indices must be equal to the
sum on the j-indices modulo s (if s = oo we take tuples in Z and make the convention

that equalities modulo s are equalities).

Sketch of proof. Similar arguments as above for NC show that the collection of spaces
span{T, : p € NC(i,j)} form a rigid C*-tensor category. One can prove, applying
Woronowicz’s Tannaka-Krein duality, that one recovers the quantum reflection groups
H% (see [BV09]). More precisely, since C(Hy") is generated by the coefficients of tensor
products of the generating matrix U and its conjugate U, one can first focus on the Hom
spaces Hom s (U @ --- @ U, U™ @ --- @ U™) with ¢ € {1,—}. This is done in
[BBCC11|, where the authors deduce these intertwiner spaces from the ones in (Ag, A)
(computed in [Ban08| and [BBCO07]). Recall that Ay, is the universal C*-algebra generated
by N? elements Wi;; such that W and W are unitary ab* = a*b = 0 on for a, b any element
on the same row or column of W. The intertwiner spaces in Ay between tensor products
of W, W corresponds again to certain linear maps obtained from diagrams. They are
colorable diagrams p such that if one puts W colored z,y and W colored ¥,z on the
points of p then the strings of p must match the colors. It is easy to check that C (H}iﬁ),
s € [1,+00] is a quotient of the A; and that the normality conditions satisfied by the
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generators U;; of Hy't are equivalent to the fact that T, € Hom(W @ W, W @ W) with
p = {H}. Then the category of morphisms in H3' is generated by the one in Ay and by
the morphisms induced by p. This allows to deduce the theorem. O

We will use similar arguments to deduce the intertwiner spaces in H]T,(F) from the ones

of certain free product quantum groups (Hy*)*?, see Chapter 3.

1.2 Operator algebraic properties for quantum groups

1.2.1 Group algebras and approximation properties

Many results and clear expositions of the following notions are contained in [BO08]| and

[cCI.

Amenability To any discrete group I', one can associate a full (also named universal)
group C*-algebra as follows:

where || - ||, is the universal C*-norm defined by:

|||, = sup{||7(z)|| such that 7 : C[I'] — B(Hy) is a *-representation}.
™

One can also complete the group *-algebra C[I'] with respect to the norm implemented

by the left regular representation
A:T = B(I2(T)), \(s)d; = 0.

One puts:

where

x|l = [[M@)]|a2(ry)-

The universal C*-algebra C*(T") satisfies a universal property and in particular there is
a canonical surjective *-homomorphism C*(I') — C,(I") given by A. One says that T is
amenable if X is injective, that is C*(I") = C}(I).

Amenability admits many other reformulations including the following ones:
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the trivial representation is weakly contained in the left regular representation A:
3(&)i € (D), [[&ill2 = 1, such that [|Xs(&) — &ll2 — 0,Vs € T;

e there exists a net (¢;); of finitely supported positive definite functions (Vg € T,
(¢(gx ' 1))k is positive) on T such that ¢; — 1 pointwise:

e there exists a left invariant mean: 3 a state m : {*°(I') — C such that m(fg) =

m(g),Vf,g € 1=().

e C¥(I') (or equivalently C*(I")) is nuclear: there exist nets of completely positive
maps a; : CF(T) = My (C), Bi : My — CF(T') such that §; o ai(w) —; z, V.

Compact and abelian groups are basic examples of amenable groups. However, this

property fails for free groups.

Haagerup approximation property The non abelian free group on two generators
F5 = (a,b) is not amenable. One can see it thanks to the invariant mean characterization
recalled above and considering the subsets A*, B¥ C F, of the reduced words starting
by a,a”!,b,b=!. However the free groups F,,n > 1 possess another approximation
property known as the Haagerup approximation property. As for the amenability, this

approximation property has many equivalent formulations.
Let us first recall a few notions.

Definition 1.2.1. Let I" be a discrete group and let (w, H) be a unitary representation

of I'. We say that a function b: ' — H s a 1-cocycle on I if for all s,t € I':
b(st) = b(s) + m(s)b(t).

We say that b is metrically proper if the map I' — R, s — ||b(s)]| is proper, that is for all
K >0,
#{seTl:||b(s)|]| < K} < 0.

Proposition 1.2.2. A function b: ' — H is a 1-cocycle if and only if the map 0 : T" —
Aff(H) defined for all s €T and all £ € H by

0(5)(§) = m(s)€ + b(s)

is a group homomorphism. Af f(H) designates the group of affine isometries on H. Any
group homomorphism from T into Af f(H) for some Hilbert space is of this form for a

certain representation w: I' — U(H).
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We have recalled the definition of positive definite functions above. There is a (condi-

tionally) negative definite counterpart to this definition:

Definition 1.2.3. A conditionally negative definite function on a discrete group I' is a
function v : T' — C such that for all n, all \i,..., A, € C with Y "y X\ = 0, for all

S1,...,8, € ', one has

Z S\iAji/)(sflsj) S 0.
2%
We say that 1 is proper if ¥(s) — oo when s — 00.
Both notions of positive and conditionally negative definite functions are linked by the
following theorem.
Theorem 1.2.4. (Schoenberg’s Theorem) Let 1y : I' — R be a function such that ¥ (e) = 0
and (s) = ¥ (s™1) for all s € T. Then the following assertion are equivalent:
e 1) is a conditionally negative definite function,
e the function exp(—ty) is positive definite for all t > 0.
Theorem 1.2.5. Let I' be a discrete group. The following assertions are equivalent and

if I' satisfies one of the following condition, we say that I' has the Haagerup property:

o There exists a unitary co-representation of I', m : I' — U(H) ({(n(s)&,n) —
0,Vv¢,n € H) weakly containing the trivial.

There exists a net (¢;) of positive definite functions on T' such that ¢;(e) = 1, ¢;

vanishes at infinity and ¢; — 1 pointwise.

o There exists a proper conditionally negative definite function ¢ : G — R

I' admits a metrically proper 1-cocycle.

I' admits a metrically proper affine isometric action on a real Hilbert space.

Recall that cg-representation are also called mixing. Obviously, amenable groups have
the Haagerup property. A well known result is the fact that a group acting faithfully
on a tree has the Haagerup property. Indeed, the action of I' on the [?-space of the
edges admits a proper 1-cocycle b : I' — [2(E). The free groups Fy have the Haagerup

property as one can see thank to their action on their Cayley tree.

The class of groups having the Haagerup property is closed under taking subgroups, free

products, increasing unions. This property is also closed under taking wreath products
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(see e.g. [CSV12]): H1G = H®) x G where
H@) .= {functions f : G — H : |supp(f)| < oo}.

This is proved in [CSV12] using the notion of wall space structures. It is one purpose of

this thesis to prove, in certain cases, a quantum analogue of this result.

We will denote by L(T") the von Neumann algebra generated by C,(T'): L(T') = C,.(T")".
It is a well known result that I has the Haagerup property if and only if L(I') has the
Haagerup property (see Subsection 1.2.3 for the definition of this property in the finite
von Neumann setting). In this thesis, we will study the Haagerup property for certain
von Neumann algebras associated to compact quantum groups of Kac type. This is

consistent in view of Theorem 1.2.12.

1.2.2 Amenability for quantum groups

In this subsection, we give an overview of the results that one can find in particular in
[BMTO1] and [TomO06|. Recall first that there is a general notion of operator amenability
for Banach algebras. The concept of amenability for Kac algebras was then introduced
by Voiculescu [Voi79| via the existence of a left invariant mean. This was a priori a
weaker form of amenability. In the setting of Hopf von Neumann algebras, Ruan proved
that both notions of amenability coincide and are also equivalent to the so called strong

Voiculescu amenability in the case of discrete Kac algebras [Rua96|.

Recall that if G = (C(G),A) is a compact quantum group, the counit € : Pol(G) — C
satisfies €(u;;) = 0;; for any coefficient w;; of a corepresentation u € Rep(G). We denote
by C\(G) and C,(G) the reduced and universal version of the C*-algebra C'(G). Because
of the definition of Cy(G), the counit is bounded on C,(G) but this may be not the case
on C,.(G).

Definition 1.2.6. A compact quantum group G = (C(G), A) is said to be coamenable,
if the counit is bounded on the reduced C*-algebra Cy(Q).

This definition is motivated by compact quantum groups arising from the classical dis-
crete groups case (C*(I'),A), A(g) = g ® g,Vg € T'. In Subsection 1.2.1, we have seen
above that I' is amenable if and only if the trivial representation weakly contains the
regular one. This is equivalent to the fact that the counit €(g) = d4 ¢ is norm-bounded on
C7(T'). We have recalled in Subsection 1.2.1 that the free group I' = F5 is not amenable
because one can not find an invariant mean on [°°(F3). One can also use the fact that
C}(Fy) is simple [Pow75], which implies that any s-homomorphism p : C}(Fy) — C

vanishes. As a consequence, the counit € : I' — C can not be norm-bounded on C}(F5).
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On the other hand, the examples arising from classical compact groups (C(G), A)

A(f)(x,y) = f(wy),Vz,y € G

are coamenable since in this case, the counit is given by the map f +— f(e) and the Haar

state is faithful.

The previous definition of coamenability is equivalent (see [BMTO01]) to the fact that, as in
the classical case, the canonical surjective morphism C,(G) — C,(G) is an isomorphism.
More precisely, if G = (C(G),A) is a compact quantum groups with Haar state h and
counit € : Pol(G) — C, then the following are equivalent:

e (C(G),A) is coamenable (e is bounded on C,.(G)).
e the canonical map from C,(G) to C;(G) is a *-isomorphism.

e The Haar state h is faithful on C,(G).

We recall the definition of the twisted SU4(2) compact quantum group (see [Wor87b]).
They are the compact matrix quantum groups generated by the entries of the fundamen-

—qv*

@
tal unitary corepresentation ( X

) . This matrix is unitary if and only if
v«

oty =1, vy ="
aFat vy =1, ay =qra
ay’ =gyt

The g-deformations SU,(2) are coamenable for all ¢ # 0 and of non-Kac type for ¢ # +1.
A crucial tool for the proof of this fact is the theory of corepresentations of these compact

quantum groups that one can find in [Wor98|.

It is more consistent to call a quantum group amenable when one deals with a discrete
(or locally compact) quantum group to stick with the classical situation. This is why the
vocable coamenable was introduced in the compact setting. The common definition for
Kac algebras we mentioned above can be extended to locally compact quantum groups
and it is equivalent, in the unimodular and discrete case, to the above definition via the

duality we explained before.

Definition 1.2.7. A discrete quantum group G = (loo(@),ﬁ) 1s said to be amenable, if

it admits an invariant mean that is a state m on loo(@) such that

m((w @ id)A(z)) = w(l)m(z),
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m((id @ w)A(z)) = w(1)m(z),

for all z € co(G) and all w € 1°(G),.

One can find in [Tom06], a summary of the previous work on (co)amenability for quan-
tum groups in [BMTO01], [BMT02]|, [BMTO03|, [BCT05| and the striking result with the

invariant mean formulation without the Kac type assumption:

Theorem 1.2.8. (/Tom06]) Let G = (co(G), A) be a discrete quantum group. Then the

following are equivalent:

1. G is amenable.

2. G is coamenable.

In the unimodular case, the assertions above hold if and only if C'(G) is nuclear and also

if and only if L*>°(G) is injective.

However, in the non-Kac/non-unimodular case, it is still open whether nuclearity of C(G)
or injectivity of L>°(G) imply the amenability of G. We will come back to the definition
of injectivity and the links with structure results for von Neumann algebras associated

with free compact quantum groups in Section 1.3.

The basic examples of free compact quantum groups of Kac type we recalled in Subsection
1.1.4 are in most cases non coamenable: U]J\r, is not coamenable for all N > 2, O]J\r, is not
coamenable for all N > 3, S is not coamenable for all N > 5 (see [Ban97|, [Ban99b]).
The proofs of these facts use a "Kesten"-criterion for compact matrix quantum groups

[Ban99a|. Notice that this criterion was extended to all compact quantum groups [Kye08|.

As in the classical case, amenability seems too strong to include several basic examples.
The Haagerup property for the above examples of compact quantum groups was proved

recently by Brannan.

1.2.3 Haagerup approximation property

For a long time, the Haagerup property for free quantum groups was not known. Brannan
first proved in [Bral2a| the Haagerup property for L>(O%) and L>®(Uy;) and later on
for LOO(SJJ([). However, they were the only non-amenable quantum groups with this
property. It is an aim of this thesis to prove the Haagerup approximation property for

other examples of free compact quantum groups.

We first recall the definition of the Haagerup property for finite von Neumann algebras
equipped with a faithful normal trace, see [Cho83|:
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Definition 1.2.9. Let (M, 1) be a finite von Neumann algebra with separable predual and
faithful normal trace 7. M has the Haagerup property with respect to T if there exists a
net (¢z)zen of normal, unital and completely positive (NUCP) maps ¢, : M — M such
that

1. 7o ¢, =T and the L*-extension ¢, € B(L*(M)) is compact,

2. ||pz(a) — al|2 = 0 for all a € M — L*(M).

One can relax the condition 70 ¢, = 7 to 70 ¢, < 7 and the definition does not depend

on the choice of the faithful trace M.

Given a compact quantum group G of Kac type, Brannan introduced a method to con-
struct nets of NUCP and trace preserving maps on L*°(G) starting from states on the
central algebra of G, that is the unital C*-algebra generated by the characters of the irre-
ducible G-corepresentations. We denote by L2 (G) the image in the GNS representation
of the space of coefficients of the irreducible corepresentation o € Irr(G) of dimension
ds and by p, the orthogonal projection of L?(G) onto L2(G). We still denote by h, A
the Haar state and coproduct on the reduced C*-algebra C,(G) and their extension to
the von Neumann algebra L>°(G).

Theorem 1.2.10. (/Bral2a]) Let G = (A, A) be a compact quantum group of Kac type
and consider the unital C*-subalgebra C(G)g = C* — (xa : a € ITr(G)) generated by the
wrreducible characters xo = Z?il aji. Then, for any state ¢ : C(G) — C the map

T, = Z ¢(>ia)pa

d
aclrr(G)
is a unital contraction on L*(G) and the restriction Tplreo() is a NUCP h-preserving

map.

The proof of this result relies on an averaging of the convolution operator (id ® 1)) o A :
C(G) — C(G) which factorizes to a map Cy : Cr(G) = C,(G). A calculation on the

coefficients of the irreducible corepresentations allows to see that
At oFEo((koCyor)®id)oA =Ty

where E : L®(G) ® L>®(G) — A(L*(G)) is the normal conditional expectation which
satisfies for all corepresentations «, 5 € Irr(G) (see also [CFK12]),

00805
E(aij @ Br) = %A(ail)-

(07
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This averaging method, combined with a study of the central algebra of the free orthog-

onal and quantum permutation group, allowed Brannan to prove that:

Theorem 1.2.11. (/Bral2a/,[Bra12b])

1. For all N > 2 LOO(O]"\F,) has the Haagerup approximation property.

2. Let B be a finite dimensional C*-algebra with d-trace 7. Then L (Gayu(B,T)) has

the Haagerup approrimation property.

Sketch of proof. The states 1, that one can consider as in Theorem 1.2.10 are the eval-
uation states ev,,z € Iy with Iy = (—N, N) in the case of OF; and Iy = (0, N) in the
case of S]J{, (or more generally for all Kac type quantum automorphisms groups). Indeed,
thanks to the commutative fusion rules binding the irreducible corepresentations indexed
by N of these compact quantum groups (see Subsection 1.1.4), one can show that the
central algebras C(O3)o and C(S;)o are commutative and isomorphic with C([—N, N])
and C([0, N]), respectively (see below). When one makes © — N, these states converge
to the counit, €(xo) = do. Then, it is easy to see that the maps (T, )zer, converge
to the identity in L?-norm. It remains to prove that their L?-extension are compact

operators. To do this, since the operators p, have finite rank, one only has to prove that
7/}96(Xn)
d

n

their eigenvalues are in ¢o(N), z € Iy.

Yz (Xn)
d

Proving € ¢o(N) then follows from certain estimates on Tchebyshev polynomials.
n
Indeed, as mentioned above the commutativity satisfied by the fusion rules in these

compact quantum group yields the following isomorphisms:
C(0%)o = C([10, N1), xi = Ax(x)

C(S)o — C([=N, N]), x = Aze(V).

where (Ap)ren designates the family of dilated Tchebyshev polynomials, defined recur-
sively by Ag = 1, A; = X, A1 Ay = Ag+1 + Ax—1. Under the above identifications one
can prove that

Yz (Xn) _ Apk(xl/p)
dn Apk(Nl/p)7

with p = 1 in the case of OE and p = 2 in the case of S]J\r,. To conclude, one uses
Az T \F

A:((N)) < Oy, (N) for some

constant Cy, only depending on some fixed 2 < g < 3. O

as announced certain estimates on these polynomials:

Notice that the Haagerup property for the dual of UJJ\; can be obtained by using the fact

that the free complexification of O;{, is U]'\t. We will adapt these methods and estimates
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in Chapter 2 to prove that the von Neumann algebras L>®(H%") have the Haagerup
approximation property for all s € [1,+00) and all N > 4.

Given a state 7 on a von Neumann algebra M, one can ask whether (M,7) has the
Haagerup approximation property, as in Definition 1.2.9. In the non-tracial situation,
the property may rely on the chosen state 7. In the quantum setting, this implies that
one can ask whether (the dual) of a non-Kac type compact quantum group has the
Haagerup approximation property. This was investigated in [DFSW13|, where several
characterizations of the Haagerup property are proved to be equivalent for compact
quantum groups. They are equivalent, in the Kac type setting, to the fact that L>°(G)
has the Haagerup property.

Theorem 1.2.12. ([DFSW13]) Let G be a compact quantum group. The following state-

ments are equivalent and if one holds one says that G has the Haagerup approximation

property.

1. G has a mizing representation weakly containing the trivial.

2. There exists a convolution semigroup of states (u¢)e>0 on Cy(G) such that each

a; = (u @1id)(W) € ¢o(G)) and a; tends to 1 as t — 0.

3. G admits a proper real cocycle.

In the above equivalence, the unimodularity of G is not required. The above statements
all imply that L°>°(G) has the Haagerup approximation property and the converse is true
in the Kac case. In this thesis, we will deal with Kac type compact quantum groups G.
Therefore, in the statements concerning the Haagerup property, we will say that the dual

of G has the Haagerup property and will actually prove that L°°(G) has the Haagerup
property.

1.2.4 Further operator algebraic properties

In this subsection, we give an overview of certain recent results concerning operator
algebraic properties for quantum groups and we try to explain how one could tackle
related problems with regards to the free wreath product quantum groups studied in

this thesis.

In Subsection 1.2.2, we mentioned the notion of injectivity for a finite von Neumann
algebra with faithful normal trace (M, 7). We may recall a few facts on the subject.

Definitions and proofs can be found in [Con76] or in [Con90a).
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Definition 1.2.13. Let (M, 1) be a finite von Neumann algebra with trace T acting on

an Hilbert space H .

e M is said to be amenable if there exists an M -central state ¢ on B(H) such that

gp]M:T.

e M is said to be injective if there exists a conditional expectation E : B(H) — M.

Actually a finite von Neuman (M, 7) is injective if and only if it is amenable. Further-
more, one can easily show that any hyperfinite von Neumann algebra is amenable. The

converse is due to Connes.

Theorem 1.2.14. (Connes) A finite von Neumann algebra is hyperfinite if and only if

it is amenable.

The (easy) direct implication actually provides as a nice corollary that the free group
factor L(F) is not isomorphic with the unique hyperfinite I1;-factor. Indeed, a discrete
group I' is amenable if and only if L(I") is amenable. However, the original proof comes
from the fact that the free group factor does not have the property I', i.e. that there
are no bounded asymptotically central sequences which are not asymptotically trivial.
Since injectivity is equivalent to hyperfiniteness and implies the property I', one gets the

result.

We will see in next section that this property I' is linked to recent developments on
structure results for (quantum group) von Neumann algebras. Indeed, we recall here
results by Isono ([Iso12], [Iso13]) and De Commer, Freslon, Yamashita (|[DCFY13]). Let
us begin by the definition of (weak-*) Completely Bounded Approximation Property for
discrete quantum groups. Let G be a discrete quantum group. The Herz-Schur multiplier
associated to a € 1°(G) is given by (mq®id)(ug) = (1®apy)u, for all z € Irr(G) acting

~

on H,, where p, is the minimal central projection in [*°(G) corresponding to the identity

on B(H;).
Definition 1.2.15. Let G be a discrete quantum group and M be a von Neumann algebra
with separable predual.

o We say that G is weakly amenable if there exists a net (a;) C loo(@) such that

- a;py = 0 except for finitely many x € Irr(G) (finite support).
- a;py converges to py in B(Hy) for all x € Irr(G) (p.w. convergence to 1).

- limsup; ||mq,||e s finite.



Chapter 1. Preliminaries 52

o We say that M has the W*CBAP if there exists a net (v;); of normal, c.b. maps
on M such that

- M — M s normal and completely bounded.
- 1); has finite rank and (1;) converges p.w. to id in the o-weak topology.

- limsup [J¢i]|os < oo

If the above conditions are satisfied, we put (and call them Cowling-Haagerup con-
stant)
Acp(G) = inf{limsup ||mq,||p, (a;) as above},

Acp(M) = inf{limsup ||1;|| e, (1) as above}.

Theorem 1.2.16. ([FW13],[DCFY13]) The following hold.

1. L®(U}) has the W*CBAP with Cowling-Haagerup constant 1 for any matriz F €
GLN(C).

2. L>®(0O}) has the W*CBAP with Cowling-Haagerup constant 1 for any matriz F €
My(C) such that FF € Rly.

3. L™®(Ggut(B, 7)) has the W*CBAP with Cowling-Haagerup constant 1 for any §-

form i on a finite-dimensional C*-algebra B.

To prove this result, the authors use the monoidal equivalence between O; and SU4(2)
for a certain ¢ satisfying ¢ + ¢~! = FTr(F*F) if FF = +Iy. Then, they prove a
central approximation property for the SU,(2) quantum groups. The property also
holds for the discrete quantum groups in Theorem 1.2.16 above by monoidal equivalence,
complexification and stability of this property by subgroups and free products. As a

corollary, one has:
Corollary 1.2.17. ([Iso13]) Any of the following von Neumann algebras has no Cartan
subalgebras if it is non-injective.

1. L>°(UR) for any invertible F € GLy(C),

2. L®(0}) for any F € My(C) such that FF € Rly,

3. L®(Gaue(B, 1)) for a o-form v on a finite-dimensional C*-algebra B.
Notice that the hypothesis on the injectivity for LOO(U;) is redundant since Vaes proved
that it is full via the 14 — € method, see an Appendix in [DCFY13]. We will adapt this

method in Chapter 3 to obtain the fullness of the von Neumann algebras L>(H(T'))

for any discrete group I'.
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1.3 Problems and projects

1.3.1 Fusion rules for free wreath products

In this thesis, we describe the fusion rules of the free wreath products IR S]T, for any
discrete group I' and NV > 4, Theorem 3.2.25. I am currently investigating the free wreath
products GZ*S]J\F, for any compact matrix quantum group G and N > 4. We can tackle this
problem by first describing the intertwiner spaces between certain basic corepresentations
indexed by the equivalence classes of G-representations. The underlying objects are again
certain non-crossing partitions p € NC'. Instead of being decorated by the elements of
the group I' as in the case r Uk S]T,, they are non-crossing partitions where the points
are decorated by G-representations and the blocks are decorated by G-morphisms. Then
one can adapt the method of this thesis to obtain the fusion rules of such free wreath
products. One could then deduce informations on the moments of characters of free

wreath products G . S3; in view of Conjecture 3.1 in [BB07].

Another project that one could investigate would be to try and describe the fusion rules of
r %Gyt (B, 7) for any discrete group I' and any finite dimensional C*-algebra B equipped

with a d-form. This could provide new non-Kac examples of free wreath products.

1.3.2 Operator algebraic properties for free wreath products

We prove in this thesis that the von Neumann Loo(f L S%) is full and thus that it
is non-injective for any discrete group I' and N > 8. Actually, non-injectivity can be
easily deduced from the fact that the compact quantum group fz* SJJ{, is not coamenable
because SX, is not coamenable, for all N > 5. However, as mentioned above, one could
consider the free wreath product quantum groups r U Gaut (B, 7). If 7 is not a trace,
the compact quantum group Gg¢ (B, 7) is not of Kac type and the non-coamenability is
not enough to conclude to the non-injectivity of the associated von Neumann algebra.
However, non-injectivity could be obtained in the same way we proceed in this thesis
(adapted 14 — e methods) provided that L*(Ggut(B, 7)) has not the property I' which
is only known in the tracial case, [Bral2b]. However, in this paper the author does not

use the tracial property of the Haar state to prove this property.

To conclude, notice that for free wreath product quantum groups HJJ{,(F) =T, SX, (and

more generally the free wreath products by any quantum automorphism group), natural
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candidates for central multiplier operators on Pol(Hy(T')) are given by

Z HAZ\/(J +q

anI?"r(HJr )) =1

Pa, if one writes a € Irr(HA(T)), a =a'z, ... a'%,

with ¢ + ¢~! = N and the notation of Chapter 2 and [DCFY13].

The problem is then two fold:

1. Proving that these central multipliers yield the central approximation property as
in [DCFY13] when I is finite.

2. Improving these central multipliers to prove the central approximation property

for infinite groups.

The second question is of course related to a question arising from some results of the
next two chapters. Indeed we prove that L>(H;(T')) has the Haagerup approximation
property when I' is finite but the methods presented in this thesis fail when I' is infinite
essentially because the function L(a) = 3, 1;, Voo = a'tz,, ... alka is not proper when T
is infinite. The archetypal example one could consider is the quantum reflection group
HEY =72, S5

The study of this property together with bi-exactness properties and combined with the
results of Isono [Isol3], would allow in particular to conclude to strong solidity and thus

to the absence of Cartan subalgebras.

Another strategy to study the operator algebraic properties of the free wreath product
quantum groups I}, S} v» would be to try and prove monoidal equivalence with a more
tractable compact quantum group and then use similar techniques as in [DCFY13]. If

N = n? is a square, one could try and prove that L. SZQ is monoidally equivalent to
H = (C(H), A), where

C(H) :=C* — (VijgViu : g € T,1 < 4,5,k 1 <n) C C*(T) x C(O;),

and V is the generating representation of O;f. Notice that C(H) is generated by the
T % O;-representations, V®g®V,g € I'. This project is motivated by the fact that
when T is trivial, S,2 is monoidally equivalent with the so-called even part of O;f. We
also obtained preliminary results concerning the H-intertwiner spaces using Proposition
3.2.15 of this thesis describing intertwiner spaces in the free products of certain compact

quantum groups. Similar arguments also hold for the more general free wreath products
Gu Sh



Chapter 2

Haagerup approximation property

for quantum reflection groups

This chapter is the text of an article published in Proceedings of the American
Mathematical Society [Lem13b]. We prove that the duals of the quantum reflection
groups HJS\,+ have the Haagerup property for all N > 4 and s € [1,00). We use the
canonical arrow 7 : C(Hy") — C(S3;) onto the quantum permutation groups, and we
describe how the characters of C (va+) behave with respect to this morphism 7 thanks
to the description of the fusion rules binding irreducible corepresentations of C'(H3")
(IBV09]). This allows us to construct states on the central C*-algebra C(HR)o generated
by the characters of C(H¥") and to use a fundamental theorem proved by M.Brannan
giving a method to construct nets of trace-preserving, normal, unital and completely
positive maps on the von Neumann algebra of a compact quantum group G of Kac type
(|[Bral2al).

Introduction

A (classical) discrete group I' has the Haagerup property if (and only if) there is a net (¢;)
of normalized positive definite functions in Cy(I") converging pointwise to the constant
function 1. There are lots of examples of discrete groups with the Haagerup property: all
amenable groups have this property. The free groups Fiy are examples of discrete groups
with Haagerup property (see [Haa79]) but which are not amenable. Thus, one says that
the Haagerup property is a weak form of amenability. This property is also known as a
“strong negation" of Kazhdan’s property (7'): the only (classical) discrete groups with
both properties are finite. Another weak form of amenability is the weak amenability,

see below for examples in the quantum setting. One can find more examples and a more
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complete approach to the problems and questions related to the Haagerup property, also
called “a-T-amenability", in [CCJT].

The Haagerup property has many interests in various fields of mathematics such as
geometry of groups or functional analysis. We can mention e.g. groups with wall space
structures (see [CSV12| and [CDH10]) as illustrations of the interest in the Haagerup
property with respect to the theory of geometry of groups. In functional analysis, the
Haagerup property appears e.g. in questions related to the Baum-Connes conjecture (see

[HKO1]) or in Popa’s deformation /rigidity techniques (see [Pop06]).

In [Bral2a|, a natural definition of the Haagerup property for compact quantum groups
G of Kac type is proposed: G has the Haagerup approximation property if and only if
its associated (finite) von Neumann algebra L>°(G) has the Haagerup property (see also
below, Definition 2.1.1). We use this definition with the slight modification: the dual
G of G has the Haagerup property if L>°(G) has the Haagerup property, so that this
definition is closer to the classical case where G is a classical discrete group. The author
of |Frel3| proposes another definition for the Haagerup property of discrete quantum
groups: G has the Haagerup property if there exists a net (a;) in ¢ (([A}) which converges
to 1 pointwise and such that the associated multipliers m,, are unital and completely
positive. These approaches are equivalent in the unimodular case. We refer the reader

to [DFSW13| for more informations on the Haagerup property in the (more general)

context of locally compact quantum groups.

In [Bral2a| and [Bral2b|, the author shows that the duals of the compact quantum
groups OF, Uy and Sf, introduced by Wang (see [Wan95| and [Wan98|) have the
Haagerup property. In fact, in [Bral2b], it is proved that any trace-preserving quan-
tum automorphism group of a finite dimensional C*-algebra has the Haagerup property.
In [Frel3|, using some block decompositions and Brannan’s proof of the fact that 5§
has the Haagerup property (precisely that some completely positive multipliers can be
found), the author proves that 6% is weakly amenable (in fact, it is also proved in [Frel3]
that the ﬁ]jvr C Zx* 5£ is weakly amenable, and an argument of monoidal equivalence
allows to prove, in particular, that g;:r, is weakly amenable too). In [Fim10], a definition
of property (7') for discrete quantum groups and some classical properties for discrete
groups are generalized, for instance: discrete quantum groups with property (7) are

finitely generated and unimodular.

The aim of this chapter is to prove that the duals of quantum reflection groups H}iﬁ,
introduced in [BBCC11|, have the Haagerup property. It is a natural generalization of
the case s = 1 treated in [Bral2b] (since Hy" = SY;). However, this generalization is not
immediate: as a matter of fact, the sub C*-algebra generated by the characters is not

commutative so that the strategy used in [Bral2a] and [Bral2b| does not work anymore.
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However, a fundamental tool of the proof of the main result of this chapter is [Bral2a,
Theorem 3.7].

What motivates this chapter of our thesis is also the fact that quantum reflection groups
are free wreath products between Zs and Sj; (see [Bic04] and Theorem 2.1.14 below)
and the result we prove in this chapter naturally leads to the following question: is it
true that if I" is a discrete group which has the Haagerup property then r lw SX, has the
Haagerup property ? One can notice the similarity with the result in [CSV12]| concerning
(classical) wreath products of discrete groups: If I, I” are countable discrete groups with
the Haagerup property then I' } TV also has the Haagerup property. This similarity is
however formal: in this thesis we are considering (free) wreath products of groups whose

duals have the Haagerup property.

Our proof of the fact I—I]SV+ have the Haagerup property relies on the knowledge of the
fusion rules of the associated compact quantum group Hy', determined in [BV09)]. In-
deed, there is no general result about fusion rules for free wreath products of compact

quantum groups yet.

The rest of this chapter is organized as follows. In the section 2.1, we recall the defini-
tion of the Haagerup property for compact quantum groups of Kac type and we give the
result of Brannan concerning the construction of normal, unital, completely positive and
trace-preserving maps on L (G) (see Theorem 1.2.10). We also give a positive answer to
a question asked in [Wor87al, in the discrete and Kac setting case, concerning symmet-
ric tensors with respect to the coproduct. Then we collect some results on Tchebyshev
polynomials: some are already mentioned and used in [Bral2a], but we give suitably
adapted statements and proofs for our purpose. Thereafter, we recall the definition of
quantum reflection groups H]SVJF, and we describe their irreducible corepresentations and
the fusion rules binding them. We also recall that at s = 1, we get the quantum permu-
tation groups SJJ{,. In section 2.2, we identify the images of the irreducible characters of
C(HZT) by the canonical morphism onto C(S3;). In the section 2.3, we prove that the
duals of the quantum reflection groups Hf\;r have the Haagerup approximation property
for all N > 4.

2.1 Preliminaries

Let us first fix some notations. One can refer to [Bral2al, [VV07], [KV00] and [Wor98] for
more details. Recall that G = (C(G), A) will denote a compact quantum group, where
C(G) is a full Woronowicz C*-algebra. Furthermore, every compact quantum group G

considered in this chapter is of Kac type (or equivalentely, its dual G is unimodular) that



Chapter 2. HAP for quantum reflection groups 58

is: the unique Haar state h on C(G), is tracial. (We recall that L>°(G) is defined by
L®(G) = C.(G)" = M(C(G))", where (L?(G), \,) is the GNS construction associated
to h).

2.1.1 Haagerup property for compact quantum groups of Kac type

Definition 2.1.1. The dual G of a compact quantum group G = (C(G),A) of Kac type
has the Haagerup approximation property if the finite von Neumann algebra (L*°(G), h)
has the Haagerup approzimation property i.e. if there exists a net (¢5) of trace preserving,
normal, unital and completely positive maps on L°°(G) such that their unique extensions

to L?(G) are compact operators and (¢) converges to idpeo () pointwise in L?-norm.

One essential tool to construct nets of normal, unital, completely positive and trace
preserving maps (we will say NUCP trace preserving maps) is the next theorem proved in
[Bral2a]. We will denote by Ir7(G) the set indexing the equivalence classes of irreducible
corepresentations of a compact quantum group G and by Pol(G) the linear space spanned
by the matrix coefficients of such corepresentations u®,a € Irr(G). If a € Irr(G), let
L2(G) C L?*(G) be the subspace spanned by the GNS images of matrix coefficients
ugs, 4,5 € {1,...,da} of the irreducible unitary corepresentation u® (do = dim(ug}))
and p, : L?(G) — L2(G) be the associated orthogonal projection. Then L?(G) =
2 — Docrr(c) L2(G). We denote by C(G)g C C(G) the C*-algebra generated by the
irreducible characters xy, = ?21 ug; of a compact quantum group G and xg the character

of the associated conjugate corepresentation u®.

We will use in an essential way Theorem 1.2.10 which provides a construction of NUCP
maps on L>°(G) starting from states on the central algebra of a compact quantum group

of Kac type.

The averaging methods used to prove this theorem allow us to answer, in a restricted

setting, a question asked in [Wor87al.

Let G = (C(G),A) be a compact quantum group. Then consider the C*-subalgebra
C(G)eentral := {a € C(G) : A(a) = ¥ o A(a)} i.e. the C*-subalgebra of the symmetric
tensors in C(G) ® C(G) with respect to A (X denotes the usual flip map ¥ : C(G) ®
C(G) = C(G)®C(G),a®b — b®a). In [Wor87a|, the author also defines Pol(G)central :=
{a € Pol(G) : A(a) = ¥ o A(a)}. We recall the question asked by Woronowicz (see
[Wor87a| thereafter Proposition 5.11):

Question 2.1.2. Is Pol(G)central dense in C(G)central (for the norm of C(G)) ?



Chapter 2. HAP for quantum reflection groups 59

Then the answer is yes, at least in the Kac and discrete setting. We simply denote
by ||.|| the norm on C(G). It is clear, and proved in [Wor87a|, that Pol(G)central =

;-121 u$; denotes the character of an irreducible finite

span{xq : @ € Irr(G)} where xo = Y,
dimentional corepresentation (u%) So the problem reduces to prove that C(G)central C

span!l{ x4 : a € Irr(G)}, the other inclusion being clear.

Theorem 2.1.3. Let G, = (C(G,),A,) be a compact quantum group of Kac type with
faithful Haar state. Then Pol(GT)Centraln'H = C(Gy)central-

Proof. We first note that A, preserves the trace in the sense that (h ® h) o A, = h.
As a result the Hilbertian adjoint A%, of the L?-extension of A,, is well-defined and
we have ||A%(z)|| < ||z]| for z € C(G,) ® C(G,) with respect to the operator norms
(note that this is particular to the tracial situation). Since AX clearly maps the subspace
Pol(G,) ® Pol(G,) of L*(G,) ® L*(G,) to Pol(G,), it also restricts to a contractive
map from C(G,) ® C(G,) to C(G,), still denoted A¥. Now we put E = AfoX oA, :
C(G,) — C(G;). We have ||E|| <1, and for a € C(Gy)central, E(a) = A o Ar(a) = a so
that C(Gy )eenteat C E(C(G).

But, on the other hand, for any matrix coefficient of a finite dimensional unitary corep-

resentations (ug};), we have

Eu$) =AfoT oA (uf) =AfoX (Z u, @ ugj> = A¥ (Zugj ® ugk) .
k

k

We compute Ay (Zk ugj ® u%) using the duality pairing induced by the inner product
coming from the Haar state h: let 5 € Irr(G,;), then for all 1 < p,q < dg:

83070
<u£q, A (Z uf; @ uf‘k> > =3 <u§l ® ufq,ugj ® u?k>h _ %ﬂpq
k h @

Lk

i >
_ B Y
=\ Upg> Xa .
< Y4 da A

Then summarizing, we have E(u%) = Z’—Zxa € Pol(Gy)central; || E|| = 1 and E|py(g,)

central

id. Thus we obtain a conditional expectation E : C(G,) — Pol(G,)central =~ = span”‘”{xa :
a € Irr(G,)}. But we have C(Gy)central € F(C(G,)) and the result follows. O

Notation 2.1.4. We will denote by Pol(G)y and C(G)q the central *-algebras and C*-

algebras generated by the irreducible characters of a compact quantum group G.
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2.1.2 Tchebyshev polynomials.

Definition 2.1.5. We define a family of polynomials (A¢)en as follows: Ag =1, A1 = X
and for all t > 1
A1A; = At+1 + Ai_q. (21)

We call them the dilated Tchebyshev polynomials of second kind.
We will use the following results on Tchebyshev polynomials A;. The second one is based
upon a result proved in [Bral2a, Proposition 4.4], but suitably adapted to our purpose.

Proposition 2.1.6. for allt,s > 1 we have: AjAs = Aprs + A 1451

Proof. This result is easily proved by induction on ¢ > 1. O

Proposition 2.1.7. Let N > 2. For all x € (2,N), there exists a constant ¢ € (0,1)
such that for all integers t > 1 we have

0< it((j\cr)) <(3)"

Proof. First, we follow the proof of [Bral2a, Proposition 4.4] and introduce the function

q(r) = T2 V;274, for z > 2. Then an induction and the recursion formula (2.1) for the

polynomials A; show that for all ¢ > 0, we have

g(a)"*! — g(a)~"!
q(z) —q(z)~!

At(J?) =

Then using the same tricks as in [Bral2a], we get that for all fixed z € (2, N) and all
t>1

1—q(z)~20—2

Now notice that the factor Tog(N)=2F=2

is less than 1 because ¢ is increasing. Further-

more, we have
t

4
LhyL- ) 1-g?

14, /1— & ) T-al@)® e




Chapter 2. HAP for quantum reflection groups 61

4

+,/1-
since the last factor does not depend on t and V22 o, Hence, there exists £y such
I+ /1-3
thtAt(x)<(x)tf 1 ¢ > to. It remains to show that there exists ¢ € (0,1) such
a — ) for a . It remains to show that there exists ¢ suc
A,(N) —\N =0 ’
A ct ct
that AZ((XT)) < (%)Cto forallt =1,...,to— 1, since for all 0 < t < g, <%) ’ < (%) )

To prove that such a c exists, we notice that max { ftt((]f,)) t=1,...,tg— 1} =D <1
since the Tchebyshev polynomials are increasing on (2, 4+00). Hence, it is clear that we

T \ cto
can find ¢ > 0 such that (N> > D. O

Remark 2.1.8. The following hold.

1. In [Bral2a, Proposition 6.4/, the exponent is better (there is no constant c) but there
T\t
18 a constant multiplying (N) . Our version allows an easy proof of Proposition
2.3.8 below.

2. The previous proposition gives information on the behavior of the dilated Tcheby-

Ai(z)
A(N)
respect to t > 1. We will also need some informations on this quotient when

x € (0,2) and N = 2. That is the aim of the next paragraph.

shev polynomials on (2,+00): the quotient has an exponential decay with

The polynomials A; are linked to the Tchebyshev polynomials of second kind U; by the
following formula: Vt € N,z € [0, 1], A¢(2x) = Uy(x). Indeed, we recall (see |Riv| for more
details) that the Tchebyshev polynomials of second kind Uy are defined for all z € [—1, 1]
by

sin((t + 1) arccos(x))  sin((t + 1)0)

Ui(z) = N = @) with x = cos(6). (2.2)

In particular, Uy = 1, Uj(x) = 2z and for all ¢ € N*, U (1) =t + 1. Then one can check
that for all t € N and z € [0, 1]: 2zU(z) = Uy (x) + Up—1(x).

Proposition 2.1.9. Let x € (0,2). Then for any integer t > 1

Ay(x) 1 |sin((t +1)8) .
‘At(2) [T smge) | Wit w=cos®)
A
In particular, there exists a positive constant D < 1 such that Vt > 1, ' Atg; <D and
t

At(flf)
Ay(2)

—> 0 ast — oo.
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Proof. First, by what we recalled above, we can write

x = 2cos(f), we have by the relation (2.2) above

1
Ct+1

sin((t + 1)0)
sin(6)

— 0.

t—o0

'f4t($)
A(2)

On the other hand, on [0, 1], the polynomials U;,t > 1 have ¢ + 1 as a maximum, only
attained in 1. Then, it is clear that for all ¢ > 1 and z € (0, 2):
Ai(z) _ Ui(3)

= 1.
0< 4@ = 131~

So the existence of the announced constant D is clear. O

2.1.3 Quantum reflection groups

In this subsection, we recall the definition of the quantum reflection groups Hf\,Jr and the
particular case of the quantum permutation groups Sj;. We also recall that C(Hy") is the
free wreath product of two quantum permutation algebras. In the end of this subsection,
we recall the description of the irreducible corepresentations of C (Hf;f) together with

the fusion rules binding them.

Recall from Definition 1.1.17 that for all s > 1 and N > 2, the quantum reflection group
H is the pair (C(H3'),A) composed of the universal C*-algebra generated by N2
normal elements U;; satisfying the following relations U = (Uj;) is unitary, ‘U = (Uj;) is
unitary, p;; = UijUi’; is a projection, Ufj = p;; and such that U is a corepresentation of
C(H3).

Remark 2.1.10.

1. For s = 1 we get the quantum permutation group SJJ\F,. The definition of Sj\; thus
may be summed up as follows (see also [Wan98]): Sy is the pair (C(S¥), A) where

(a) C(S}) is the universal C*-algebra generated by N* elements v;; such that the

*

matriz v = (vij) is unitary and vi; = v}; vizj (i.e. v is a magic unitary).

(b) The coproduct is given by the usual relations making of v a corepresentation

(the fundamental one) of C(Sy).

2. For s =2, we find the hyperoctahedral quantum group, i.e. the easy quantum group
Hy studied e.g. in [Web13].
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3. There is a morphism C(HY") — C(S5) of compact quantum groups: one only
has to check that the generators vi; of C(S]J\r,), satisfy the relations described in
Definition 1.1.17, which is clear.

Notation 2.1.11. We will denote by m : C(H3'") — C(S%) the canonical arrow men-

tioned in the remark above.

We refer to Theorem 1.1.13 for the results concerning the irreducible corepresentations
of C(S5;). We denote by xj = Zfil vgc) the character associated to v(*).

We will need the following proposition, proved in [Bral2b]:

Proposition 2.1.12. Let x be the character associated to the fundamental corepresenta-
tion v of C(S%). Then, x* = x and there is a x-isomorphism C*(x) = C(S%)o = C*(x¢ :
t € N) ~ C([0, N]) identifying x: to the polynomial defined 11, by Mg = 1,1I; = X — 1
and Vt > 1, 11111, = g + 10 + 11—

Remark 2.1.13. Notice that:

1. The recursion formula defining the polynomials 11; is the one satisfied by the irre-

ducible characters x;.

2. The polynomials Ay and I1; are linked by the formula: T (z) = Ay (/).

Before describing the fusion rules of C (HJS\,+), we recall that these compact quantum

groups are free wreath products:

Theorem 2.1.14. [BV09, Theorem 3.4] Let N > 2, then we have the following isomor-

phisms of compact quantum groups:

- C(HY) =~ C(Zs) % C(SF) = CHZIN) « C(SF)/ < [2i,vij] = 0 > where 2; is the
generator of the i-th copy Zs in the free product Z:N.

- In particular C(H5") ~ C(Zs) %y C(Z2), C(H51) =~ C(Zs) #4, C(S3).

We refer to Theorem 1.1.18 for the description of the irreducible corepresentations of
C(H3).

Notation 2.1.15. We will denote the basic irreducible corepresentations of C(HJS\,+) by
pi,t € {0,...,8 =1}, with pp = Uy YVt € {1,...,8 — 1} and pp = Uy © 1 (where Uy =
(Ui U5))-

The proof of the first three assertions follows from the definitions of corepresentations of

compact quantum groups and of the definition of C (HJS\,JF) The proof of the last three
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assertions is based upon Woronowicz’s Tannaka-Krein duality (see [Wor88]) and methods
inspired by |[Ban96|, [Ban99b| and [BBCC11|. Now, we can give the description of the

fusion rules:

Theorem 2.1.16. [BV09, Theorem 8.2] Let M be the monoid M = (a,z : z° = 1)

with involution a* = a, z* = z~', and the fusion rules obtained by recursion from the

formulae

vaz' @ Zaw = vaz"aw @ ;10 (v @ w) (2.3)

Then the irreducible corepresentations ro of C'(H]SV+) can be indezed by the elements o
of the submonoid S generated by the elements az'a,i =0,...,s — 1, with involution and

fusion rules above.

Remark 2.1.17.

1. 8 is composed of elements a™ 2zt ... z/K-1aLK with

- Ji, L; > 0 integers.
- L1, Lg odd integers and all the L;’s, i € {2,..., K — 1} even integers.

- Except if K =1, then Li is an even integer.

2. With this description, we can identify the basic corepresentations introduced above:
the corepresentation r,2 is the corepresentation py = (UijU;;-) 61 and fort # 0,

Tasta 1S the corepresentation py = (Uztj)

3. In Proposition 2.2.1, we will use the suggestive notation
vazaw = (vaz' @ 2aw) © iyj0(v @ w),

which simply means that we have the relation (2.3) in the monoid S.
4. If o = alr 2/ 2/k-10lx € S| then the conjugate corepresentation of T4 is in-
dezed by @ = alK z=/x-1 27 igln
We end this subsection by the following proposition which summarizes the results above:

Proposition 2.1.18. The canonical morphism 7 : C(HY") — C(S%) maps all the
corepresentations Uy, t € Z onto the fundamental corepresentation v of C’(S;{,) ;in other

words, it maps all pp = ry,tq,t # 0 onto v and pg = 1,2 onto v,
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2.2 Characters of quantum reflection groups and quantum

permutation groups

As announced in the introduction, we find the images of the irreducible characters of
C(H fﬁ) under the canonical morphism 7 : C(H3") — C(S%).

Proposition 2.2.1. Let x, be the character of an irreducible corepresentation ro of
C(HZ). Write a = aliz9t .. 2Jk=1a'. Then, identifying C(S})o with C([0,N]), the

image of Xa, say Py, satisfies:
k
Po(X?) = m(xa)(X?) = [T AL(X).
i=1

Proof. We shall prove this proposition by induction on the even integer Zle l; using the
description of the fusion rules given by Theorem 2.1.16, the recursion formula satisfied

by the Tchebyshev polynomials, Proposition 2.1.6 and Proposition 2.1.18.

Let HR()) be the following statement: m(xq)(X?) = Hle Ay, (X) forany a = alt 291 ... ZIk-1qlk
such that 2 < )" 1; <.

Let us begin by studying simple examples (and initializing the induction).

Consider the element aza. Then, the irreducible corepresentation 74, (written p; in
Notation 2.1.15) is sent by 7 onto v = 1 @ v by Proposition 2.1.18. Thus, in term of

characters, we obtain by Proposition 2.1.12
T(Xaza)(X) =14 (X — 1) = X = 4(X)
ie.
Paza(Xz) = X2 = Al(X)Al(X)

Actually, this holds for all elements o = az’/a, j € {1,...,s— 1} (since every irreducible

corepresentation r, is sent by 7w onto 1 & U(l), as is T'qzq)-

azia

Consider the element a?. Then, the irreducible corepresentation 7,2 (written pg in No-

tation 2.1.15) is sent by 7 onto v, Thus 7(x,2)(X) = X — 1. i.c.

Pa2(X?) = X% - 1= AyX).

To prove HR/(2) one has to show that 7(x,2)(X?2) = A2(X) and 7(Xgz5a) (X2) = 4141 (X)
for all j € {1,...,s — 1}, what we have just done above.
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Now assume HR(A) holds: 7(xs)(X?) = ]_[f:1 Ay, (X) for any B = al1271 ... 2Jk-1g!k such
that 2 < ). 1; < X\. We now show HR(A + 2).

Let a = al1271 . al% | with 3, L; = A+ 2. In order to use HR()), we must “break”
using the fusion rules as in the examples above. Then, essentially, one has to distinguish
the cases Lg = 1,Lx = 3 and Lx > 5 (in the case Lx > 5 we can “break « at alx" but
in the other cases we must use a5 -1 or a5-2 if they exist, that is if there are enough

factors a’?). So first, we deal with two special cases below, in order to have “enough”

L

factors a” in « in the sequel. We use the fusion rules described in Theorem 2.1.16 (and

the notations described after, see Remark 2.1.17).

S K=1ie Lx=A+2, J; =0 Vi, write:
a:a)\—‘rQ:(a)\®a2)@(a)\—1®a):(a)\®a2)@a)\@a>\—2.

Then using the hypothesis of induction and Proposition 2.1.6, we get

T(xa) (X?) = ArAz(X) = AN(X) — Ay 2(X)
= A\A2(X) — (Ax(X) + Ax—2(X))
= A)A2(X) — Ay A1 (X)
= Axp2(X).

(Notice that if A = 2 one has A—2 = 0 and a* = (a’?®a?)S(a®a) = (a*®a?)Ca’c1

so that the result we want to prove then is still true.)

-t K =2,J:=J1 #0, write a = at1z7al2. We have Ly + Ly = A+ 2 > 4 and
L1, Ly are odd hence Ly or Ly > 3, say L; > 3. Write

a2l ek = (0 @ aP1 7227 al2) © (a0 @ a3 b2,

J

If L, = 3 then the tensor product a ® a1 =3z7al2 is equal to az”a’? hence a =

a®27al? satisfies

T(Xa)(X?) = Ag A1 AL, (X) — A1 AL, (X)
= A3(X)ArL,(X).
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If Ly > 3 (ie. L; > 5), then the tensor product a ® a“*=327a’ is equal to

alr7227al2 @ o142 ql2 . We get

T(Xa)(X?) = A AL, 2 AL, (X) — AL, —2AL,(X) — AL, _4AL,(X)
= ALI (X)ALQ (X)

- From now on, we suppose that there are more than three factors a“ in «a ie.

K > 3. We will have to distinguish three cases: Ly =1,Lx =3 and Lg > 5.

If 5 < Lg <3, L;, write Lx = mg + 2. Then we have mg > 3, so

alr2 . alx =gl gmet?
= (ale‘]1 .aME ® a2) o (ale‘]1 La"E Tl g a)
= (al2 . a™E @a?) e a2t amE o al g2

Then

W(Xa)(X2) = AL1 e ALK_lAmkAQ(X) — AL1 .. .AmK(X) — AL1 .. .AmK_z(X)
=Ap, ... Ap,._ Ap.(X).

If mg =1, ie. Lg =3, we proceed in the same way using

alizv . 2Kk-103 = (a2 a@a?) e a2 TR,

To conclude the induction, one has to deal with the case Lx = 1. We have to

distinguish the following cases:

If Lg_1 > 4. We have

al1zn | alx-1pTr-1g = (aP 2 PRl @ TR 10) © (el 2 el k1T @ 2 K1)

= (a2t aPE 1Tt @ azR-1a) @ el el r-1m2 TR,
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Then

Tr(Xa)(Xz) = AL1 e ALK_l—lAlAl(X) — ALl e ALK_1—2A1(X)
= Ap, ... Ap,._ A(X).

If Ly 1 =2and Jx_1+ Jx_2 =0 mod s, we can proceed in the same way using

alrz | gtr-2 k262 Tk

= (aLIzJ1 cabr—2dK2g g azJK—la) oalry | gbr—2tl g gliyh o gbr—2—l

The last case to deal with is L1 = 2 and Jx_1 + Jx—2 # 0 mod s, and again we

can conclude thanks to

alizlt | 2IK-2g2 k-1 = (aL1 abr-2IRk2g azJKfla) oalizlt | alr-2yIr-2t k-1

As a corollary, we can get the result also proved in [BV09| (see Theorem 9.3):

Corollary 2.2.2. Let 1, be an irreducible corepresentation of C(HY) with a = a1 271 .. . al*.

Then .
dim(ro) = [ Au(VN).
=1

Proof. We have dim(r,) = eC(HJSVJr)(Xa) = €o(st) © 7(Xa) since 7 is a morphism of
Hopf algebras. But the counit on C(S3)o is given by the evaluation in N. Indeed,
an immediate corollary of Theorem 1.1.13 and Proposition 2.1.12, is €(II;) = II;(N)

for all polynomials II;, which form a basis of R[X]. Now by the previous proposition

m(ve) () = [Ty A (V). then sty 0 m(xa) = [T, AL (VE). O
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2.3 Haagerup property for quantum reflection groups

In this section we show that duals of the quantum reflection groups C(Hy") = C(Zs) 4
C’(S]T,), s > 1 have the Haagerup property for N > 4.

We still denote by 7 the canonical surjection 7 : C(Hy") — C(S};) and by ¢, = ev,
the states on C(Sf)o ~ C([0, N]) used to show that C(S};) have the Haagerup property
(see [Bral2b]). Essentially, we are going to use both morphisms 7,1, in this way: we
can define states ¢, composing these maps, ¥, o 7, where 7 sends characters of C (va+)
on characters of C(S};). Thus, we obtain states on the central algebra C(H3 )y and,

after checking that these states have some decreasing properties, we can use the Theorem
1.2.10 and conclude.

Lemma 2.3.1. Let ¢, x € [0,N] be the states given by the evaluation in x on the
central C*-algebra C(Sy)o. Then for all z € [0,N], ¢ =, o is a state on C(HY )o.

Proof. One just has to note that 7 is Hopf +-homomorphism and hence sends C(Hy')o
to C(S5)o. Then 1, o7 is indeed a functional on C(Hx')o. The rest is clear. O

Notation 2.3.2. We introduce a proper function on the monoid S (see Theorem 2.1.16).
Let L be defined by L(a) = Zfil l; for o = al29' ... alke . Notice that for all R > 0 the
set B = {a =ahzd .. a%e : L(a) = 2?21 l; < R} C S is finite. Thus we get that a
net (fa)aes belongs to co(S) <= Ve >0 3R > 0:Va € S,(L(a) > R = |fo| <€). We
say that a net (fo)a converges to 0 as o — o0 if (fa)a € co(S).

Proposition 2.3.3. Let N > 5 and let xo be an irreducible character of C(HY") as-
sociated to the irreducible corepresentation ro with o = a''291a!2 ... a'%a. Then for all
x € [0, N]

ka
Ca(CC) o ¢z(Xa) _ ¢x OT‘-(XCV)(X) _ H All(\/E)
=1

" dim(r,)  dim(rg) = m

3

Moreover Cy(x) converges to 0 as o — oo for all x € [4, N).

Proof. Let o = a1291 ... a'*a. We obtain the first assertion using Proposition 2.2.1 and
Corollary 2.2.2:
T(Xa)(X) = Ay, ... Ay, (VX),

ka
dy = dim(ra) = [ [ A, (VN).
=1
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By Proposition 2.1.7, for any fixed = € (4, N), there exists a constant 0 < ¢ < 1 such

AWz _ (VE\?
that Al(\/]v) < <\/N> for all { > 1. Then

Cale) = L2000) _ ] AV (LY ()

Proposition 2.3.4. (Case N = 4) Let xo be an irreducible character of C(H;") as-
sociated to the irreducible corepresentation 1o with o = az7a’2 ... aka. Then for all
x € ]0,4]

L Pz (Xa) _ Yz 0 T(Xa)(X) _ o Az(\/E)
Cal@ - e

" dim(ry) dim(rg
Moreover Cy(x) converges to 0 as o — oo for all x € (0,4).
Proof. The proof of the first assertion is similar to the one of the previous proposition.

For the second assertion, we use Proposition 2.1.9. We recall that we proved in that

proposition that there exists a constant D < 1 such that for all x € (0,4) and all [ > 1

Ai(Vz)
A <D (2.4)

Let € > 0 and = € (0,4). We want to prove that,
7 AuL(V2)
H ———>— < ¢ for a large enough. (2.5)
S SE

ko Ay (Vo)

By (2.4), there exists a K > 0 such that [[;, NN

< € for all € § with k, > K.

Ai(Vz)
Ai(2)

But by Proposition 2.1.9 there is also an L > 0 such that < eforalll > L, since

this quotient converges to 0.

Now let o« = a1 291 ... alka € S, with L(a) > LK. Then either k, > K, or there exists
io € {1,...,kq} such that [;, > L. In both case we can get (2.5) since

AL (VE) | A, (V)
750 < 4w

each factor of the product being less that one. O

Then we can prove the theorem:
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Theorem 2.3.5. The dual of va+ has the Haagerup property for all N > 4.

Proof. We follow the proof in [Bral2a] for OF. We prove that the dual of Hy' has
the Haagerup approximation property for all N > 4 using both previous propositions.
Consider the net (Ty,), o, with Iy = (4,N) if N =25, Iy =(0,4) if N =4 and

T¢>z = Z quéi(a) Pa

aclrr(H3)

The ¢, are states on C(Hy )o so, by Theorem 1.2.10, the T}, are a unital contractions
of L2(H3), and their restrictions to L>°(Hy') are NUCP h-preserving maps. Moreover,
Proposition 2.3.4 in the case N = 4 and Proposition 2.3.3 in the cases N > 5, together
with the fact that the p, are finite rank operators, show that for each x € Iy, the

operator Ty is compact. To conclude one has to show that for all x € Iy,
Ty a— — 0 2.6
.0 —all, — (26)

for all @ € L®(HY") (via a € L®(HY) — L*(HY')). First let us prove that it is
true for any element a € Pol(H3y') i.e. any linear combination of matrix coefficients
U of irreducible corepresentations of C (H3) (by linearity, we can do that only for the
elements U). Notice that if o = altzin | zika-1glka then @ = alkazFka—1 2 771gh =
a'ka z57Jka=1  z5=J1gh . Thus by Proposition 2.2.1 ¢, (xa) = ¥z om(xa) = Yz o T(Xa) =
¢z (Xa). Hence,

k
T A (V)
T, Ui = Uijllee = UGN (1= || — 5 | -
o5 = Ugllaz = W05lLa (1= 11 355005
so let x — N and the assertion (2.6) holds for all these matrix coefficient. Now by
L%-density of Pol(H}") and the fact that all Ty, , x € Iy, are unital contractions (and

thus are uniformly bounded), we obtain that (2.6) is true for any a € L?(H fv+) O

Remark 2.3.6. In [Bic04/], it is proved that there is a *-algebras isomorphism between
C(H3T) and C*(ZsxZsxZs) (see Example 2.5 and thereafter in that paper). Furthermore,
the Haar state on C*(Zs) *y C’(S;) 1s given by h = h1 ® hy where hg is the Haar state
on C(S3) and hy is the free product of the Haar states on C*(Zs)). Then, it is clear
that H;Jr has the Haagerup property by the stability properties of the Haagerup property
on groups (see e.g. [CCJ'])

The algebra C’(H§+) is more complicated and does not reduce to a more comprehensive
tensor product as for the case N = 2. We are unable at the moment to prove that H§+

has the Haagerup property.



Chapter 3

The fusions rules for certain free
wreath product quantum groups

and applications

This Chapter is the text of the chapter [Lem13a]. We find the fusion rules of
the free wreath products T S for any (discrete) group I'. To do this we describe the
spaces of intertwiners between basic corepresentations which allows us to identify the
irreducible corepresentations. We then apply the knowledge of the fusion rules to prove,
in most cases, several operator algebraic properties of the associated reduced C'*-algebras
such as simplicity and uniqueness of the trace. We also prove that the associated von
Neumann algebra is a full type II1-factor and that the dual of T, S]J\rf has the Haagerup

approximation property for all finite groups I'.

Introduction

Wang constructed in [Wan93| and [Wan95|, new examples of compact quantum groups
U; and O]J\r, called the free unitary and free orthogonal quantum groups and introduced
also, in [Wan98|, the quantum permutation group S]T,. We recall the definitions of the

underlying Woronowicz-C*-algebras:

e C(UY) =C*—(uj: 1<,i,5 < NJ (uij);; and (uj;)ij are unitaries)
e C(Of)=C*—{0ij: 1<,i,j <N| 0j; = 0jj and (0;;);; is unitary)

o C(SH)=0C*—(v;j: 1<,i,j <NJ (vj5)ij is a magic unitary)
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which are “free" versions of the commutative C*-algebras of functions C(Uy), C(On),
C(Sy). These compact quantum groups were studied by Banica who described, in
[Ban97]|, [Ban96] and [Ban05|, their irreducible corepresentations and the fusion rules
binding them. This work laid the foundations for the study of the geometric, analytic

and combinatoric properties of these quantum groups.

Later, new examples of compact quantum groups appeared. Banica and Speicher intro-
duced the notion of easy quantum groups, [BS09|. They are compact quantum groups
whose Woronowicz-C*-algebras are generated by a unitary matrix (with additional prop-
erties). Their intertwiner spaces have a combinatorial description in terms of non-crossing
partitions. These compact quantum groups cover the basic examples O]'\F,, U;, S]T, we
mentioned above and include new ones. More recently, Weber [Web13|, Raum and We-
ber [RW12|, Freslon and Weber [FW13], investigated these “combinatorial" quantum
groups in order to classify them. Earlier in [BV09|, Banica and Vergnioux found the
fusions rules of the quantum reflection groups H]s\,+ (for s > 1 and N > 4) another family

of compact quantum groups introduced in [BBCC11].

In [Bic04], Bichon introduced the notion of free wreath product A %, C(S%) where A is
any unital C*-algebra (see |Bic04]). Furthermore, Bichon proved that when G = (4, A)
is a compact quantum group, G2, S}, = (C(Zs) *wC(SJJ\r,), A) is again a compact quantum
group. Bichon, Banica and Vergnioux, proved that HR,JF is the free wreath product of
compact quantum groups Zg S]T,. However, there is no description of the fusion rules of

G Sy, in general except when G is the dual of Z or Z corresponding to Hy', s € [1, o0].

We propose to generalize the description of the fusion rules of i; L S]T, to the free wreath
products T2, Sy (with the notation above, A = C*(I')) for any (discrete) group I'. This
provides a whole new class of compact quantum groups with an explicit description of

the fusion rules.

Another motivation of this work is to pursue the study of the operator algebras associated
to compact quantum groups started by Banica ([Ban97]) with the simplicity of C,(Uy).
Vergnioux proved in [Ver05] the property of Akemann-Ostrand for L (Uy;) and L>(0};)
and together with Vaes proved the factoriality, fulness and exactess for LOO(OX,) in
[VVO07]. More recently Brannan (|Bral2a], [Bral2bl]) proved the Haagerup property
for L>(0y), L>®(Uy;) and L>°(S};). Freslon proved the weak-amenability of L>°(0}),
L>®(Uy;) in ([Frel3]) and together with De Commer and Yamashita proved the weak
amenability for L>(S};) in [DCFY13]. In each of these results, the knowledge of the
fusion rules of the compact quantum groups is a crucial tool to prove the properties of

the associated reduced C* and von Neumann algebras.

From the results proved in this thesis arise the following questions:
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e Is it true that if I' is a discrete group with the Haagerup property, then the dual
of H;{,(F) ~ T S]J([ has the Haagerup property 7

e Is it true that the dual of T ¢, S]f, is weakly-amenable ?

e Which other algebraic operator properties possess C,.(Hy(I)), L>(H(T)) (bi-
exactness, property RD etc.) ?

e Can one compute the fusion rules of wreaths products G, S]J{[ if G is a compact

quantum group with known fusion rules 7

The rest of this chapter is organized as follows. The first section is dedicated to recall
some definitions and general results on compact quantum groups, the definitions of the
quantum permutation group SJJ{, and of the free wreath products by SJJ{,, HJJ(,(I’) ~ fZ*SJJ\r,,
especially HK,°+ ~ 7. S]‘\*}.

In the second section, we recall the concept of Tannaka-Krein duality and we describe the
intertwiner spaces of certain basic corepresentations in H]T, (T") using a canonical arrow
from the universal algebra of a certain free product of compact quantum groups onto
C(H#(T)). This allows us to compute the fusion rules binding irreducible representations
of H(T).

In the third section, we propose several applications of this description of the fusion rules:

e The simplicity and the uniqueness of the trace of the reduced C*-algebra C,(H(T'))
for all discrete groups |I'| > 4 and all N > 8 (in particular L°°(H(I)) is a I];-
factor). We adapt a variant of Powers’ methods used by Banica in [Ban97]| and we
use the simplicity of C,(S¥) for all N > 8 proved in [Bral2b].

e The fullness of the Ij-factor L=(H (') (N > 8, any discrete group I') which is
adapted from the “14 — ¢ method" which is used in the classical proof of the fact

that L>°(F),) has not the property I'. This application is based upon work by Vaes
for the fullness of L°°(U};) which can be found in an appendix to [DCFY13].

e We finish this work by extending the main result in [Lem13b]| by proving that the
dual of the free wreath products T S]T, has the Haagerup property for all finite
groups I' and all N > 4.

3.1 Preliminaries

In this first section we recall a few facts and results about compact quantum groups and

about free wreath products by the quantum permutation groups S]J{,.
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A compact quantum group is a pair G = (C(G), A) where C(G) is a unital (Woronowicz)-
C*-algebra and A : C(G) — C(G) ®pmin C(G) is a unital *-homomorphism i.e. they
satisfy the coassociativity relation (id ® A) o A = (A ® id) o A, and the cancellation
property, that is span{A(a)(b® 1) : a,b € C(G)} and span{A(a)(1®0b) : a,b € C(G)}
are norm dense in C(G) ® C(G). These assumptions allow to prove the existence and
uniqueness of a Haar state h : C(G) — C satisfying the bi-invariance relations (h ® id) o
A(-) =h(-)1 = (id®h)oA(+). In this chapter we will deal with compact quantum groups
of Kac type, that is their Haar state h is a trace.

One can consider the GNS representation )\, : C(G) — B(L?(G, h)) associated to the
Haar state h of G = (C(G), A) and called the left regular representation. We will denote
by Ay, the GNS map. The reduced C*-algebra associated to G is then defined by C,.(G) =
M (C(G)) ~ C(G)/Ker(M) and the von Neumann algebra by L>®(G) = C,.(G)”. One
can prove that C,(G) is again a Woronowicz-C*-algebra, that ho A, is its Haar state and
that it extends to L>°(G). We will denote simply by A and h the coproduct and Haar
state on C,(G). The full version (also called universal) of a compact quantum group G,
will be denoted by G, = (Cy(G), A).

An N-dimensional (unitary) representation u = (u;;);; of G (or corepresentation of C(G))
is a (unitary) matrix u € My(C(G)) ~ C(G)® B(C¥) such that for all 4, j € {1,..., N},

one has
N
Augj) = Zuzk @ U
k=1

*

The matrix u = (u;;) is called the conjugate of u € My(C(G)) and in general it is not
necessarily unitary even if u is. However all the compact quantum groups we will deal
with are of Kac type and in this case the conjugate of a unitary corepresentation is also

unitary.

An intertwiner between two corepresentations
u € My, (C(G)) and v € My, (C(G))

is a matrix T' € Mn, n,(C) such that v(1®T) = (1 ® T)u. We say that u is equivalent
to v, and we note u ~ v, if there exists an invertible intertwiner between v and v. We
denote by Homg(u,v) the space of intertwiners between u and v. A corepresentation u is
said to be irreducible if Homg(u,u) = Cid. We denote by Irr(G) the set of equivalence

classes of irreducible representations of G.

We recall that C'(G) contains a dense x-subalgebra denoted by Pol(G) and linearly gen-
erated by the coefficients of the irreducible representations of G. The coefficients of a

G-representation r are given by (id ® ¢)(r) for some ¢ € B(H,)* if the corepresentation
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acts on the Hilbert space H,. This algebra has a Hopf-x-algebra structure and in partic-
ular there is a x-antiautomorphism « : Pol(G) — Pol(G) which acts on the coefficients
of an irreducible corepresentation r = (r;;) as follows x(r;;) = r;;- This algebra is also
dense in L?(G, h). Since h is faithful on the -algebra Pol(G), one can identify Pol(G)
with its image in the GNS-representation A, (C(G)). We will denote by x, the character
of the irreducible corepresentation r € Irr(G), that is x, = (id @ T'r)(r).

In the Kac type case, the right regular representation py, : C(G) — B(L?*(G, h)) is given
by pp(x)An(y) = Ap(yk(x)). It commutes with A and if G is full, one can consider the
adjoint representation (Ay, pp) 0 A : Cy(G) — B(L?*(Gy, h)). This representation acts on

the irreducible characters as follows
ad(x,)(z) = g Tij 2T
ij

Notice that the map z — ad(x,)(z) is completely positive for all r € Irr(Hy(T)).

In [Ban97|, the author uses the notion of support of an element z € Pol(G). The support
of z € Pol(G) is denoted supp(x) and defined as the smallest subset G C Irr(G) such

that x is a linear combination of certain coefficients of elements r € GG. In other words,

r ¢ supp(z) < h(xrj;) = 0, for all coefficients 7;; of r.

A fundamental and basic family of examples of compact quantum groups are the quantum
reflection groups S]'f,, see Definition 1.1.12. Recall that C(Sy) is generated N? elements

v;; such that the matrix v = (v;;) is a magic unitary.

In the cases N = 2,3, one obtains the usual algebras C(Z3), C(S3) since a magic unitary
of size 2 (respectively 3) is composed of commuting projections as one can see using the
Fourier transformation over Zso, resp. Zs. If N > 4, one can find an infinite dimensional

quotient of C(Sy;) so that C(Sy) is not isomorphic to C(Sx), see e.g. [Wan98], [Ban05|.
The representation theory of S]\L, is well known and recalled in Theorem 1.1.13.

In [Wan95|, Wang defined the free product G = G; * Go of compact quantum groups,
showed that G is still a compact quantum group and gave a description of the irreducible
representations of G as alternating tensor products of nontrivial irreducible representa-
tions. Indeed, one can identify the set Irr(G) of irreducible representation of G = G1%Go
with the set of alternating words Irr(Gy) * Irr(G2) and the fusion rules may be recur-

sively described as follows:
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e if the words z,y € Irr(G) end and start respectively in Irr(G;) and Irr(G;j)
with j #£ ¢ then & ® y is an irreducible representation of G corresponding to the

concatenation zy € Irr(G).

e if x =vz and y = /v with 2,2’ € Irr(G;) then

TRY = @ vtw @ 0z (v @ w)
1#4tCzRz2’

where the sum runs over all non-trivial irreducible corepresentations ¢ € Irr(G;)

contained in z ® 2.

We will use this fact to describe the fusion rules of another type of product of compact
quantum groups: the free wreath products T S]J{,, with T" a discrete group (see section

3.2).

We refer to Definition 1.1.14 and Theorem 1.1.15 for the definition and a fundamental

result on free wreath products.

The following examples are fundamental for the rest of this chapter.

Example 3.1.1. (/Bic04, Example 2.5]) Let T be a (discrete) group, N > 2. Let An(T)
be the universal C*-algebra with generators ai;j(g),1 <i,j < N,g € I' together with the

following relations:

aij(9)aix(h) = djraij(gh) 5  aji(g)ari(h) = d;ra5(gh) (3.1)
N N
Zail(e) =1= Zali(e), (3.2)
= =1

and involution a;;(g9)* = a;;(g7). Then H(T) := (An(T),A) is a compact quantum
group with:

N
A(aij(g)) = Z air(g) ® ay;(g).- (3.3)
k=1

We have for all g € T, €(a;j(g)) = & and S(a;j(g)) = aji(g~"). Furthermore, H(T) is
isomorphic, as compact quantum groups, with IS S]T,. Consider the following important

special cases:

1. If I' = Zs for an integer s > 1, one gets the quantum reflection groups Hf\,Jr
(see [BBCC11] and [BV09]). C(HY) is the universal C*-algebra generated by N2
normal elements U;; such that for all 1 <i,j < N:

(a) U = (Usj) and *U = (Uj;) are unitary,
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(b) UizU;; is a projection,
(c) U =UyU},

(d) A(Uij) = S0, U ® Uy

2. If T = Z, one gets Hy™ = (C(Hy™),A) where C(HY') and A are defined as

above except that one removes the relations (1c) above.

We will use the following proposition to find the fusion rules of H;{,(F)

Proposition 3.1.2. Let I' be a finitely generated group T' = (y1,...,7p). We have
canonical arrows
C(HFT)™? =5 C(H{(T)) =2 C(SY)

gwen, for all 1 < i, 54 < N, by

Tl (Uz'(fjll) s Ugﬁg) = Qiyjy (’Wl) oo Qg gy (’YTk>v

and for all 1 < 4,7 < N,g el by

ma(aij(g)) = vij-

where UZ»(;) is the coefficient of the fundamental corepresentation of C’(H]ci,o"r) chosen in

the r-th copy of C(H]J\F,OO) in the free product C(HX,M)*]’ with 1 < r < p.

Proof. The existence of the arrow my is clear by universality of C(H;(T)). For 7,
notice that for all 1 < r < p there is, by universality of C' (H]c{,o+), an arrow Wgr) such that

w%r)(Ui(;")) = aij(yy) for all 1 <4,j < N. Then m = *lewgr) tC(HY )™ — C(Hy(D))

satisfies for all 1 < rqy,...,rp < p,

T (Uz’(jrl) s Uz’(;k)> = 7TY1) (Ui(;ql)) e 'Wyk) (Ui(;k)> = Qiyg (Yry) - - Qi i, (%k)~

O

We refer to Theorem 1.1.18 for the description of the corepresentations and fusion rules

proved in [BV09] for the compact quantum reflection groups Hy', Hy ™ (N > 4).

We want to prove that one can generalize this description of the irreducible corepresen-
tations and fusion rules to H;{,(I‘) =T S]T, for any (discrete) group I', N > 4, and get

several applications that one can deduce from the knowledge of the fusion rules.

We recall that it is already known in the case I' = Z; (s > 1 finite):

Theorem 3.1.3. ([Lem13b]) The dual of HY" has the Haagerup property for all N >
4,5 € [1,+00).
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3.2 Fusion rules for some free wreath products by the quan-

tum permutation group

In this section I' is any (discrete) group I', N is an integer N > 4. We are going to
describe the irreducible representations of Hy;(T') = T Sy and the fusion rules binding
them. To fulfill this, we are going to use techniques introduced in [Ban96]|, [Ban97],
[Ban99b| and developed in [BBCC11] and [BV09].

More precisely, let G = (C(G), A) be a compact quantum group such that C(G) is gener-
ated by the coefficients of a certain family (v;);cs of finite dimensional G-representations.
Denote by Rep(G) the complete C*-tensor category with conjugates of all finite dimen-
sional representations of G (see e.g. |[Wor88| and |[NT]| for the definitions of such rigid

monoidal categories). We will keep the following notation in the sequel of this chapter:

Notation 3.2.1. We denote by Tens(G, (v;)icr) C Rep(G) the full tensor subcategory
with:

- objects: all the tensor products between corepresentations v; and vy,

- morphisms: intertwiners between such tensor products.

Tens(G, (v;)ier) is contained in the category of (all) linear maps between tensor prod-
ucts of the representation spaces H; of the corepresentations v;. Denote this category

Vect(H;).

We will denote by v the generating matrix of S]f, and denote by ay(7;) the generating
elements of H]T,(I‘) Notice that, if U®) denotes the i-th copy of the fundamental repre-
sentation of Hy" in (Hy*)*?, then the arrows of Proposition 3.1.2 at the level of the
objects

UD — (am(7))ra — v,

give functors at the level of the categories

Tens ((Hﬁ,o"')*p, {U(i) }p

.71) — Tens (HJ‘\F](F), a(yi)ri=1,... ,p) — Tens(S]'\'}, v).

(3.4)

It is known (and recalled in the next section) that the tensor categories Tens(HY ,U)
and Tens(SJJ\r,, v) have a diagrammatic description in terms of non-crossing partitions:
morphisms (i.e. intertwiners between representations) can be described by (certain)
non-crossing partitions. We use this fact to obtain a diagrammatic description of the

tensor category Tens(H;{,(F), a(v;) :i=1,...,p). The inclusions (3.4) above, together
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with the diagrammatic description of Tens ((Hy")*?, U (i)) (which we will obtain in the

subsection 3.2.2), will allow us to conclude.

Before investigating these questions, we recall that the fusion rules of Hy(I') are known
in the case N = 2, see [Bic04]. In the sequel, we assume that N > 4. The case N = 3 is

not investigated in this thesis.

3.2.1 Non-crossing partitions, diagrams. Tannaka-Krein duality

The following paragraph recalls a few notions on non-crossing partitions, see e.g. [BV09|
for more informations. We repeat certain definitions and results of the Chapter 1 since

we will use certain less standard notation.

Definition 3.2.2. We denote by NC(k,l) the set of non-crossing diagrams between k
upper points and | lower points, that is the non-crossing partitions of the sets with k + [

ordered elements, with the following pictorial representation:

with k-upper points, l-lower points and & is a a diagram composed of strings which

connect certain upper and/or lower points and which do not cross one another.

Such non-crossing partitions give rise to new ones by tensor product, composition and

involution:

Definition 3.2.3. Let p € NC(k,l) and ¢ € NC(I,m). Then, the tensor product,
composition and involution of the partitions p,q are obtained by horizontal concatenation,

vertical concatenation and upside-down turning:

pRq={P2}, pqg= { fz } — {closed blocks}, p* = {P*}.

The composition pq is only defined if the number of lower points of q is equal to the
number of upper points of q. When one identifies the lower points of p with the upper
points of q, closed blocks might appear, that is strings which are connected neither to the
new upper points nor to the new lower points. These blocks are discarded from the final

pictorial representation.
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Example 3.2.4. Following the rules stated above (discarding closed blocks and following
the lines when one identifies the upper points of p with the lower points of q), we get

12 3 4 1238 45 (1 2 3 4 5

I L | I
if p= and ¢ = then pq =

1 | [] 1|

123 12 38 4 123

From non-crossing partitions p € NC(k,l) naturally arise linear maps T, : cN®
CcN®,

Definition 3.2.5. Consider (e;) the canonical basis of CV. Associated to any non-

crossing partition p € NC(k,l) is the linear map T, € B ((CN‘M’ CN@!) .
Tp(eil K& eik) = Z 5P(iaj)€j1 Q& ey
j17"'7.jl
where i (respectively j) is the k-tuple (i1,...,1) (respectively l-tuple (ji,...,71)) and
dp(i,7) is equal to:
1. 1 if all the strings of p join equal indices,
2. 0 otherwise.

Example 3.2.6. We consider an elementp € NC(4,3), choose any tuples i = (i1, 12,13, 14)
and j = (j1,j2,73), and put them on the diagram:

11 12 13 14
p= Then 6,(i,7) = {

J1 J2 J3

1 if 4y =dp = ig = jo

0 otherwise.

Example 3.2.7. We give basic examples of such linear maps
(i) T { ‘ } = iden
(ii.) T_{N}H1) = 2,ea®ea

Tensor products, compositions and involutions of diagrams behave as follows with respect

to the associated linear maps:
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Proposition 3.2.8. (/BS09, Proposition 1.9] Let p,q be non-crossing partitions and
b(p,q) be the number of closed blocks when performing the vertical concatenation (when

it is defined). Then:

1. Tpgq = Tp ® Ty,
2. Tpy = nPIT,T,,

3. Ty =T5.

We will keep the following notation in the sequel:

Notation 3.2.9.

o We will denote by NC' the collection of all the sets NC(k,l) which form a monoidal

category with involution and with N as a set of objects.

o We will denote by NC! the set of non-crossing partitions whose objects are tuples
of elements of the set I and morphisms between a k-tuple and an l-tuple are the

ones of NC(k,1).

e An important example (see Theorem 8.2.12) is NC%s which contains the subcat-
egory NCy defined as follows: objects are the same as the ones of NC% and
morphisms p € NC%s (i,7) are non-crossing partitions decorated by a k-tuple i =
(i1,...,ix) € ZF and an l-tuple Jj = (,....5) € 7L having the property that,
putting i on the upper row of p and j on the lower row of p, then in each block, the
sum of © indices equals the sum of j indices modulo s. In the case s = oo, we make

the convention that this equality modulo s is equality.

The Proposition 3.2.8 implies easily that the collection of spaces span{T}, : p € NC(k,l)}
form a C*-tensor category with N as a set of objects. Furthermore, this tensor category

has conjugates since the partitions of type

0
r:{| =0 |}eNC’(®;2k)

are non-crossing and since the following conjugate equations hold:
(Tr ®id)o (id®T,) =id = (idT)) o (T, ®id). (3.5)

Similar arguments show that the collection of spaces span{T}, : p € NC,(i, j)} form a

C*-tensor category with conjugates.

In addition to notation 3.2.1 and 3.2.9, we will use the following one:
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Notation 3.2.10. We will denote by Lin the “projective” functor from NC' to Vect(H;),
where the H; are copies of CN for some fized N, defined as follows:

o Lin(iy,...,ix) = Hy, @ ® Hy, : (i1,...,4) € I¥,

o Lin(p) =T, € B ((CN®k,CN®l> .pe NC.

Remark 3.2.11. The terms “projective” above is used because of the numerical factor
appearing in the formula T, = n_b(p’q)Tqu above (Proposition 3.2.8). Lin is then a
functor when one replaces the target vector spaces by the associated projective spaces

where one quotients by the colinearity equivalence relation.

Using notation 3.2.1, 3.2.10 and 3.2.9 we can now give a homogeneous result concerning
the diagrammatic description of Tens(Sy,v) and Tens(Hy', U) (see [Ban99b|, [BV09])
that we will generalize in the next subsections. All the categories considered below are

then contained in Vect(H;) as defined above:

Theorem 3.2.12. Let N > 2, s € [1,00], v be the fundamental corepresentation of
C(S5) and U be the fundamental corepresentation of C(HY") (see section 3.1).

1. Tens(Sy,v) = span{Lin(NC)} i.e. for all k,1 € N

Hom(v®* v®) = span{T, : p € NC(k,1)}.

2. Tens(HY ,{U;}) = span{Lin(NCs)} i.e. for all k,l € N and iy, j, € Zs (the case

s = oo corresponds to 7.)

Hom(Usy, ® --- @ U, ,Uj, @ --- @ Uj,) = span{Ty, : p € NCs(i; j)}.
3. Moreover, the linear maps T),,p € NC(k,l) are linearly independent for all N > 4.

We recall that in a C*-tensor category with conjugates, we have the following Frobenius

reciprocity theorem (see [Wor88| and [NT|) that we will use in Proposition 3.2.15.

Theorem 3.2.13. Let € be a C*-tensor category with conjugates. If an object U € €
has a conjugate, with R and R solving the conjugate equations (see [NT, Definition 2.2.1],
or (3.5) above), then the map

Mor(U®V,W) = Mor(V,U@W),T + (idg ® T)(R ® idy)

is a linear isomorphism with inverse S — (R @ idy ) (idy ® S).
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The next proposition is an application of Woronowicz’s Tannaka-Krein duality and will
be useful when computing the tensor category of certain compact quantum groups (see
Theorem 3.2.20 below and compare with [BBCC11, Theorem 12.1]).

Proposition 3.2.14. Let G; = (C(G1),{w;}) and Gy = (C(G2),{v;}) be two com-
pact quantum groups such that C(Gy),C(Gsa) are generated by the coefficients of some

corepresentations {u;}, {v;}.

Suppose that there is a surjective morphism m : C(G1) — C(Ga) intertwining the co-
products (i.e. @ - ((/}I) Suppose furthermore that ker(m) is generated by intertwining
relations that is by a set Z of linear maps T which are morphisms in Vect(H,,) giv-
ing equations in C(G1). Then Tens(Go,v;) is generated as a rigid monoidal C*-tensor

category by Tens(Gy) and % :

Tens(Go, m(u;)) = (Tens(Gy,u;), #Z).

Proof. Let G} be the compact quantum group, obtained by Tannaka-Krein duality, whose
representation category is the completion of (w(Tens(Gq,u;)), %Z). By construction, the
sets of the intertwining relations in G, and Gy coincide: they are composed of the
relations in G; and the additional ones described by #. Thus, the morphism 7 : C(G;) —

C(Gy), with kernel Z, factorizes into an isomorphism of compact quantum groups 7’ :
C(Gy) = C(Gy)/# — C(Gy). O

3.2.2 Free product of compact matrix quantum groups and intertwiner

spaces

We are going to find a diagrammatic description of the spaces of intertwiners of the free
product (Hy*)*P. We prove a more general result on the free product of a finite family
of compact matrix quantum groups G = xi_,G;. We will use the following notation: if
U; is the fundamental corepresentation matrix of the compact quantum group G; then

Uf will denote Uj; if € = 1 and its conjugate U; when e = —1.

Proposition 3.2.15. Let G be a free product of a finite family of compact matrix quan-
tum groups: G = xt_,(G;,U;). We denote by T the category generated by the categories
Tens(G;, U;) that is

e objects are tensor products Ufl @ --- @ Uk (ri € {1,...,p}),

e morphisms are linear combinations and compositions of morphisms of the type id®

g ® id where g is a morphism in a certain category Tens(G;, U;).
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Then we have Tens(G,{U;}) = 7.

Proof. We first claim that .7 C Tens(G, {U;}). Indeed, if

g€ Homg, (U @ --- @ U UM @--- @ UM)
(for a fixed r € {1,...,p}), then we clearly also have

g€ Homg(US' @ ---@U* UM @@ UM)

and moreover T'ens(G, {U;}) is stable under the operations used to generate .7.

Now, we prove the other inclusion Tens(G,{U;}) C 7. The Frobenius reciprocity
allows us to restrict to the cases k = 0 : indeed the duality maps T, (see (3.5)) are
compositions of maps id® T, ® id which are in .7. We have to prove that the morphisms
C— Ul ®@---®@Ud (ie. the fixed vectors of this latter tensor product) are linear
combinations of compositions of maps of the type id ® g ® id, where g is a fixed vector

for some factor G;.

Let T be a morphism 7: C —» Ud' @ --- @ U and set V =UJ! @ --- @ U. We will call

any tensor product
t+m

Ul @@ UM = Q U,
r=t

a sub-block of V' if this is a “sub-tensor word" of V' such that s; = sp41 =+ = s4m = s
(1<t<---<t+m<I)ie atensor word in Uy and U, coming from the same copy
G; ; such a sub-block will be called mazimal when s;_1 # s # Sy+m+1 (Whenever this is
well defined).

We are going to prove the desired assertion by induction over the number of maximal
sub-blocks. The initialization corresponds to the case where there is only one maximal
sub-block i.e. in this case each copy Ug’ comes from the same factor G, and thus the

assertion is clear.

We denote the maximal sub-blocks by

ti+m;
Bi= Q@ Ulri=1,....k
r=t;
(k > 1) with constant index s; and we set for alli =1,...,k
Ci= ) Ur.
r<t;,

r>ti+m;



Chapter 3. Fusion rules, and applications, for certain free wreath products 86

We fix (SJ) an orthonormal basis of Fizp, := Homg,(C, B;), note that SZ €J.

Let Vi = 1,...,k, P; : B; — B; be the orthogonal projections from the space of B; to
Fixp,, that is, with our notation P; = Zj Sfo* Notice that

(id@ P @id)oT = (id® 5] ®id)o (id® S{* ®id)oT
J

and that for all j
[(id® $7* @id)oT :C — C;] € Hom#(C,C;)
since C; has less maximal sub-blocks than V. So, we obtain that

[(id® P;@id)oT:C— V] =Y \(id® gj1 ®id)o--ogj, (3.6)
J
is a linear combination of composition of maps of type id ® g; ® id where g; is a fixed

vector for some factor G;, in other words (id ® P; ® id) o T' is a morphism in .7.

On the other hand, we can write
T=P+(Gd-P))® (P +(id-F))® @ (P + (id— Py))oT.  (3.7)

We denote Vi =1,...,k,

w [ P if ¢ =1,
PV =
id— Py if e =—1.

We are going to expand (3.7) and conclude. The properties of the fusion rules of a free
product of compact quantum groups recalled in Section 3.1 yield that Pl(_l) ®-- -®PI§_1)

maps V onto some direct sum

(s1) (Sk)
ED ry & .

ri#1

_1)

Indeed, each projection Pi( maps the space of B; on the orthogonal complement
of Fizp, so that Pi(fl)(Bi) decomposes as a direct sum of non-trivial irreducible G;-
representations. Hence, since the sub-blocks are maximal, the calculation rules of the
alternated tensor words of corepresentations in a free product of compact quantum groups
(see section 3.1) yield that the tensor product Pl(_l)(Bl) ®--® P,g_l)(Bk) decomposes

into non-trivial irreducible representations of the free product quantum group.



Chapter 3. Fusion rules, and applications, for certain free wreath products 87

Now, since Im(T') is a copy of the trivial corepresentation 1 C V', we have Pl(fl) Q- ®
P,g_l) oT = 0. Then we get

r= > (PYe-ep™)or

(€1,..-,€k)EQ
where Q = {1, +1}*\{(-1,—-1,...,-1)}.
Hence we can write
T= > (Pl(ﬂ)®"'®(Pio)®"'®P;§Ek))OT (6o =1)
(€1, )EQ
- X (Pl(“) ®---®(id)®---®P,§e’“)> o (id® Py ®id) o T.
(€1,e.rs€)EQ

and T is as announced by (3.6) and the definition of the maps F;.

3.2.3 Intertwinner spaces in H(T)

Before proving a similar result for H]'{}(F) =T, S]‘i} as Theorem 1.1.18, we give a col-
lection of corepresentations, called basic corepresentations, for Hy;(I') = (C(HN(I)), A)
and then describe their intertwiner spaces in terms of diagrams. With the notation of

Example 3.1.1, we can obtain the following result.

Proposition 3.2.16. The algebra C(H;(T)) has a family of N-dimensional (basic)

unitary corepresentations {a(g) : g € '} satisfying the conditions:

1. forall g €T, a(g)ij = aij(9)

2. a(g) =alg™).
Proof. This is clear, with the relations (3.1), (3.2), (3.3) , that setting a(g) = (a:;(9))i jeq1,... N}
gives the desired family of corepresentations. O
Notation 3.2.17. Let us first fix some notation.

o When 2 is a subset of diagrams in NC' for a certain set I, we denote by () the

set of all diagrams that can be obtained by usual tensor products, compositions and

involutions of diagrams in 9 (see Definition 3.2.3).

o [f T is finitely generated, we will only consider generating subsets St of I' which

are stable under inversion and the category NC (see Notation 3.2.9).
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o We denote by NCSt ¢ NCOT, the sub-tensor category where morphisms are the
non-crossing diagrams satisfying the rules: for each block there is one element
g € Sr such that the points of this block are decorated by elements g*' and the sum

of the exponents are equal on top and bottom.

o We denote by NCrs. C NC?r, the sub-tensor category where the diagrams are
decorated by elements g;, h; € Sr such that in each block [, g; = Hj h;.

o We denote by NCr € NCT, the sub-tensor category where the diagrams are deco-
rated by elements g;, hj € I' such that in each block []; g; = []; h;.
One can notice the following fact that we will use in the proof of the next theorem.
Proposition 3.2.18. If T is a finitely generated (discrete) group I' = (Sr), |Sr| = p,

then the tensor categories NCST and Tens ((H]?,OJ’)*”, {U(i)}le) satisfy:

Tens ((Hf\fﬂ*p, {U(i)}é ) = span {Lin(NC’i{)} .

=1

Proof. This follows immediately from Proposition 3.2.15. O

We are now ready to prove the following theorem:

Theorem 3.2.19. IfT" is a finitely generated (discrete) group I' = (St),

Tens(HY(T),a(g) : g € Sr) = span{Lin(NCr s.)}.

This theorem can be generalized in the following more concrete statement:

Theorem 3.2.20. Let T’ be any (discrete) group. Then for all ¢1,..., gk, h1,...,hy €T

Homyy ry (a(g1) @ - ® a(gr), alhy) ® -+~ @ a(hy))

:span{Tp:peNCp(gl,...,gk;hl,...,hl)}.

where the sets NCr(g1, ..., 9k; h1, ..., h) are composed of non-crossing partitions having
the property that, when putting the elements g; and h; on the upper and lower row
respectively, then in each block we must have Hle gi = ngl h;.

Proof. First, let us notice that, in order to deduce Theorem 3.2.20 from Theorem 3.2.19,
it is enough to consider the subgroup I generated by the elements g;,h; € T' and St
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containing these elements g;, h; € I'. Indeed, C(H;(I")) is then a sub-Woronowicz-C*-
algebra of C'(H};(T')) and it suffices to determine the morphisms in the full sub-category
of intertwiners in H3;(I") to get Theorem 3.2.20.

We recall (see Proposition 3.1.2) that we have a morphism 71 : C(Hy1)*® — C(H(T))
given by
U(Tl) ) U( Ic) 4, (grl) e Qg (grk)7

2171 Ik

with p = |Sp|. We are going to determine the kernel of this morphism and apply
Proposition 3.2.14 and Proposition 3.2.15 to describe the category

Tens (Hy(T),a(g) : g € Sr) .

We claim that the kernel of m; is generated by the relations:
- oo = ol S it T g = 19,

- U =0=U )U,j> if j # k

SO 5 U p 1 it [T e

Indeed, if one denotes I the associated ideal I C C(Hy™)*P, it is clear that I C
ker(m1). To prove the other inclusion, it is enough to prove that there is a morphism
s C(HYL(T)) — CHF)*/I such that som = ¢ : C(HY') — C(Hy")/I is the

canonical quotient morphism. We define s as follows:
s(aij(9)) = q(UIY ..U

for g =[], gr,- The relations satisfied by the elements a;;(g) (see Example 3.1.1) are also
clearly satisfied by the elements q(U( ) Ui(jr’“)) in C(H{™)/1. So by universality, s is
well defined.

Moreover, s satisfies som; = ¢q. Hence, ker(m1) = I is generated by the relations presented

above.

Before applying Proposition 3.2.14, we have to show that the relations generating ker ()
can be described by diagrams. With Notation (3.2.17), we claim that the one-block par-
titions By ; € NCr s, k,l € N, decorated by elements certain g, ..., g, and gs,,..., gy,
of Sr with [], gr, = [1, s, describe these relations. Their pictorial representations are

as follows
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By = | || | | € NCOT(Grys- -+ Gri3 Gsir > Gsy)-

The conditions
Ugl) . Ui(;’“) = Ui(jsl) . Usl with ngz Hgsi
follow from
Tp,, := Tiy € Hom <U(’“1) ® UMW U g...g U(Sl)> .
More precisely, if (e;) denotes the canonical basis of C, we have

U(Sl)®"'®U(Sl)(1®Tk,l)(1®€p1®--~€pk):(1®Tkl)U(T1)®"‘®U(Tk)(1®€p1®~-€pk)
< Op, = _kaUupl"'U( )®6Z1®"'®eu—(1®Tkl ZUupl.,,U,(Tk)®€i1®“’®eik

Up1 1k Pk
Ulyeensl] Ulyeesll
&0 Uiy Uil ®en © e U”) U @ et
P1=""=Pk tpr T TPt i1 ® u 11p1 1Pk )

11 5mensl

i.e.

Ty, € Hom (U(n) ® UMW U g... g U(Sz))

i pte =gl |yl

) ) ) v

U U Z0if py £ ps and UYL U = 0 if 4, # i, for some t,s.

ip1 U2 11p (254

The last relations are equivalent to U;;U;, = 0 = Uj;Uy,; if j # k. Similar computations

with [ = 0 in the case g;, ...g,, = e give the relations
Sui .ol = Z ust.Luge =
i

Notice that these one-block partitions Bj; generate with the usual tensor product,
composition and involution operations all the diagrams in NCrg.. Thus, with re-
marks following Notation 3.2.17, Proposition 3.2.14, Proposition 3.2.18 and the fact
that NCSr € NCr s we get:

Tens(Hj\}(F),a(g) :g € Sp) = span{Lin(NCp,SF,NCEgﬂ = span{Lin(NCr s.)}.
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We get the following corollary concerning the basic corepresentations:

Corollary 3.2.21. Let N > 4. The basic corepresentations of C(H(T')) satisfy:

1. The corepresentations a(g), g # e are irreducible.
2. ale) = 1@ wle), with w(e) an irreducible corepresentation.
3. The corepresentations w(e),a(g),g € I' \ {e} are pairwise non-equivalent.
Proof. We use the previous theorem and the fact that the linear maps T, are linearly

independent (so that we can identify these maps with the associated non-crossing parti-

tions). Let g, h € T, the previous theorem gives that
dim(Hom(a(g),a(h)) = #NCr(g, h).

But it is easy to see that the only candidate elements in NCr(g, h) are

p=4 | ¢ andqg=

g 1
h |

h

with the conditions p € NCr(g,h) < g = h and ¢ € NCr(g,h) < g = h = e. Now we
can compute the cardinal #NCr(g, h):

0 ifg#h
#NCr(g,h) =4 1 ifg=h+#e
2 ifg=h=e

Then the second equality proves that the corepresentations a(g),g # e are irreducible.
The last equality, together with the fact that the trivial corepresentation is contained
in a(e) (since #NCr(0;e) = 1), prove that a(e) = 1 @ w(e) where w(e) is an irre-
ducible corepresentation. And the fact that the basic corepresentations are pairwise

non-equivalent comes from the first equality above. O

3.2.4 Fusion rules for Hy (I

In this subsection, I denotes any (discrete) group, N > 4.

Definition 3.2.22. The fusion semiring (R*, = ,®,®) is defined as follows
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1. RY is the set of equivalence classes of corepresentations.

2. (7 ,®,®) are the usual involution, direct sum and tensor product of corepresen-

tations.

As in the Theorem 3.2.20, the irreducible representations of Hy;(T') can be indexed by

the words over (I').

Definition 3.2.23. Let M = (I') be the monoid formed by the words overs I'. We endow
M with the following operations:

1. Involution: (g1,...,9x)” = (gk_l, e ,gl_l),

2. concatenation: for any two words, we set
(917 e 7.9]6)7 (h17 ceey hl) = (917 e 7gk—17gk7 h17 h?) ceey hl)7
3. Fusion: for two non-empty words, we set

(glv s )gk)‘(hflv o ')hl) = (gla e agk—lvgk‘hlyh% . '7hl)‘

Notation 3.2.24. If (¢1,...,9x) € (I'), we will write |(g1,...,9x)| = k to denote the
length of the word (g1, ..., 9k).

Theorem 3.2.25. The irreducible representations of H(T') can be labelled w(x) with

x € M, with involution w(x) = w(T) and the fusion rules:

w(z) ®w(y) = Z w(u,v) & Z w(u.v)
r=u,t ; y=t,v r=u,t ; y=t,v

u#0,v#£0

and we have for all g € T', w(g) = a(g) © dg.l.

We consider the set of irreducible corepresentations, the fusion semiring and the fusion
ring of Hy(T'): Irr(H%(T)) € R C R. We also consider the additive monoid N(I')
with basis B := {b, : x € (I')}, involution b, = bz and fusion rules

be @by = > bup + > buw (3.8)

r=u,t ; y=t,v r=u,t ; y=t,v

uFD,v#£0

We want to prove that N(I') ~ R in such a way that B corresponds to Irr(H(I)). To

do this, we are going to construct an isomorphism ® : N(T') — R™.
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We construct and study ® at the level of Z(I') and R, where Z(I") is the free Z-module
with basis (bz)yer). Then (Z(T'), +, X) is a free ring over I for the product by x by = by y

where x,y is the concatenation of the words x, y.

Lemma 3.2.26. Z(I") is also a free ring for the product defined by the fusion rules above
(5.8) and denoted ®.

Proof. Indeed, consider the ring Z(X,4,g € I') of non-commutative polynomials with

variables indexed by I', and
F:(Z{Xg: g €T),+, %) = (Z({[), +,®)

defined by X, > by. This morphism is bijective:

For all ¢1,...,gr € I', we have by (3.8):
bgly---vgk = bg ----- g1 @ bgk © bgl ----- gr_19x O 5(gk,19k,e)b91 ----- Gl—2 (3'9>

Then an induction over the length of the words g1, ..., gx € (I') shows that F' is surjective.

Now we prove the injectivity of the morphism F. Let P € Z(X, : g € ') with F(P) = 0.
Suppose that d := deg(P) > 1, i.e. that we can write

P= Z/\gl,...,gd e Xy, FQ

with A(g1,...,94) # 0, deg(Q) < deg(P). Then, we have :

Z)\glv"'agd ®bgd+F(Q)

_Z/\glw-,gd Lynga T € (C:Zﬂmbx:!w\<d)
= A(z) = 0 Vz with |z| = d (since B is a basis of Z(I")).

Thus we obtain P = @ which contradicts deg(P) = d. O

Then, (Z(T'), 4+, ®) being a free ring, we can define a morphism ® : Z(I') — R by

(I)(bg) = W(g),g € I.

We will prove that:

o &:7Z(I') = R is injective,

o ®(B) C Irr(H(D)),
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e ®: B — Irr(HJ(I)) is surjective.
We will both denote by z — #(1 € z) the linear form counting:

- the number of copies of the trivial corepresentation contained in a z € RT,

- the coordinate of an element z € Z(I') relative to by.

We will denote by b%(w) the coordinate of w € Z(I') relative to b, i.e. {b5:x € (I')} is
the dual base of {b; : v € Z(T') }.

Lemma 3.2.27. ® commutes with the linear form z — #(1 € z).

Proof. By linearity, it is enough to check that we have

#(L € by @+ Dby,) =#(1 €w(g1) @ @w(gr)) (3.10)

and it is equivalent to show that: Vgi,...,gx € T

#(1¢e [(bgl + 591761) K- (bgk + 5gk,61)]) =#(1€alg1) ®---@algr))

by definitions of w(g) = a(g) © dg.e1.

Let us set Py := (bg, + dg,.el) ® -+ @ (bg,_, + 0g,_,.el) ® (bg, + g, 1) and prove, by

induction over k, the following statement,

HR(k) : “if x = (x1,...,2;) is a certain sequence of products (ordered 1 to k) of elements

of the set {g1,...,gr}, then

bi(Pr) = #NCr((z1, ..., 21); (91, 9k)),

where NCl.((z1,...,21); (91,---,9%)) C NCr((z1,...,21); (91, -, 9k)) is the sub-set com-
posed of the elements p € NCr((z1,...,21); (91, --,9k)) with the additional rule that in

each block there is at most one upper point and at least one lower point".

Since, by Theorem 3.2.20 and the fact that the linear maps 7}, are linearly independent

(see Theorem 3.2.12), we have

#(1€a(g)®@---®algy)) = #NCr(0; (91, - -, 9r)),

then (3.10) will result from the case x = () of HR(k) (only lower points carrying elements
gi, with product e).
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The case k = 1 is easily proved. Indeed in this case, either x = (g),g € T, or z = (). We
have

by(bg + 0gel) = 1 = #NCr(g; 9)

and

1 ifg=e

0 otherwise

by(bg +0g.e1) = { } = #NCr(0;9).

Now assume that the result is proved for all elements of type Py_1 = (bg, +6g,,el) @+ ®
(bg, , +9g, .el). Let gy € I' and & = (x1,...,2;) be a sequence of products of elements
in {g1,...,9x}. We consider P,_1 ® (bg, + 0g4,.c1) and we first deal with the case gi # e.
We have

b (Pr—1®bg, ) = Oy b (Pe—1)+b; —1y (Pr—1)+b; 1y (Pr—1)- (3.11)

(1,0 y21—1) T1,--T1G), (11,~~-7$179k )

The first term of (3.11) corresponds to the concatenation operation described by the

fusion rules (3.8) and, by induction, it is equal to

#ch‘((xh s ,I’l_l); (917 < 7.gk—l>)'

x

The concatenation of such non-crossing partitions with the one-block p = ¢ | ¢ will
9k

give all the non-crossing partitions in NC{.((z1,...,21); (91, - -, gk)) where gy, is the only

lower point in its block and connected to an upper point, {x;} = {gx}.

The second term of (3.11) corresponds to the fusion operation described in (3.8) and, by

induction, it is equal to

#NCH((1, - 211,219 )i (9155 Gr—1))-

These non-crossing partitions carry the upper point {a:lgk_l} and thus, because of the
definition of NC},, we have z; = ([, gi)gr for some g; € {g1,...,9k—1}. We obtain
this way, all the non-crossing partitions in NC[.((z1,...,27); (91,-..,9%)) where g is

connected to some other lower points and to the upper point {z;}.

The third and last term of (3.11), corresponds to the case where gj, is the inverse of the

last term in the sequence (z;);, by induction, it is equal to

#NCH((1, 2,9, ) (915 -+ Gre1))-
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These partitions carry the upper point gk_l and thus we have (][, g;)gx = e for some g; €

{91,...,9k—1}. We obtain, this way, all the non-crossing partitions in NC}.((x1, ..., x1); (g1, - -

where g is connected to other lower points but to no upper point.

Altogether, we have proved

by (Pro1 ®@by,) = #NCr((x1, ..., 21); (91, - -, 9k))-

In the case, g = e we have

b5 (Ppo1 @ (be + 1))
= <5e,wz (o1 ) (Pi=1) + 00, oy (Pe—1) + b(xl,.,.,xl,e)(Pk71)> + b0y, ) (Pr-1),
the additional term bz‘xl zl)(Pk—l) corresponding to the non-crossing partitions where

gr = e is connected neither to another lower point, neither to an upper point. This case

is not admissible if g # e. The rest of the proof is similar to the other case. O
We can now prove the theorem:

Proof of Theorem 3.2.25. We first prove that ® is injective. Let a € Z(I') in the domain
of ®. We denote by o the conjugate of a in Z(I') (given on B by b, = bz). Then, we
have by Lemma 3.2.27

P(a) =0 = P(a®a*)=0
= #(1 e P(a®a™)=0)
= #(lea®a”)=0by (3.10)

— a=0.

The last implication comes from the fact that & — #(1 € a ® a*) is a non-degenerate

quadratic form, since for all words wy,wy € (T'),

#(1 € by, @ byy,) = #(1 € by, ® bwz) = Fwz,u -

Now we prove that ®(B) C Irr(H;(T')) by induction on the length of the words z € (I').
It is clear that for all letters g € T, ®(g) € Irr(H;(T)) by Corollary 3.2.21.

Now for a word of length k, z = g;,,...,¢9;,. We have by (3.8):

bgil,-n,gz‘k = bgi1 ® bgi2:-~~7gik - bgilgi2,gi3,m,g¢k - 6gi19i276b9i37--~79ik € Z(D), (3.12)

)
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and applying ®, we get

w(gila o 7glk) = w(g’bl)®w(9127 o 7gik)_w(gilgigagi37 o 7gik)_5gilgi2,ew(gi37 cee 7glk) S R.

We want to prove that it is an element of Irr(Hy;(T)), we first prove that it is an element
of R* and then that it is an irreducible corepresentation. To fulfill the first part, since

® is injective, we only have to prove that

Hom (w(gi1gi2)gi37 cee )glk)aw(gll) ® w(.gi27 cee 79%))

and

Hom(w(gisv s ’glk)vw(gll) ® w(giQa cee 7gzk))

are one-dimensional. We have by the Frobenius reciprocity

dim Hom(w(gilgizvgiga e 79%)7 W(gil) ® w(giza e >gzk))

= dim Hom(l, w(gilgizagiga e aglk) @ w(gll) ® w(gizv s ,glk))

= #(]— S w(gi1gi27gi37 cee )glk) & w(gu) ® w(giza CIEIRS 7glk))
= #(1 € by, g1y 915,91, @ bgi; @by, g )

=# <1 € bgf1 g;kl_l,_“’gflgfl & bgi1 X bgi27~--’gik> =1.

i ig Jig

The last equality comes from the facts that

e 1€b,®b, & y=71 (and in this case #(1 € by ® b)) = 1),

® by, ®bg,, ., =2 Azby With |z[ =k = 1,0 # 0 x = (g1 9is: - - - Gir)-

A similar computation shows that Hom(w(gis,- -, i);w(gi) @ W(Gis,---,7i,,)) is also

one-dimensional in the case g;,g;, = e.

Finally, we can prove by similar arguments that

dim Hom(w(giy,-- - i) w(Giys---5 i) =1

ie. w(gi,-..,gi) is irreducible.

To conclude we must prove that ® : B — Irr(HJ;(I)) is surjective. An induction over k

shows that for all g1,...,gr € I', we have:

bgl Q- bgk- = Z Z le"~jlbgj17"'7gjl

U Jiyesdt
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for some coefficients C € N so that, applying @,

wig) @ @wlgr) =Y > Cjrji @by ..q;,)-

UoJryend
Then any tensor product between basic corepresentations w(g),g € I' is in ®(NB) =

spany(B), and the surjectivity follows since the coefficients of such tensor products

generate C(Hy;(T)) so that ®(B) D Irr(H(T)). O

We can give an alternative formulation of the description of these fusion rules: let a
be the generator of the monoid N with respect to the operation + and (zg)ger be a
family of abstract elements satisfying exactly all the relations of the group I'. We put
M' = N %, I, the free product identifying both neutral elements of N and I" with the
empty word. Then M’ is the monoid generated by the element a and the family (z4)ger
with:

*:Z_

e involution: a* = a, z; 915

e (fusion) operation inductively defined by:

vazg ® zpaw = Vazghaw + g (Vv @ w), (3.13)
e unit 2.

Any element of M’ can be written as a ‘“reduced" word in the letters a, z4,9 € T,

_ h la Ue i
o= atzga?2g,...a'* with

e [1,lp>0and ; >1foralll <i<k,
o giFeforalliif k> 1,

e a =da' in the case k = 1 for some [ > 0 and a° is the empty word equal to z.

We obtain the following reformulation of the previous theorem:

Theorem 3.2.28. The irreducible representations ro of H]T,(F) can be indexed by the
elements a of the submonoid S = (azqa : g € T') C M’ and with fusion rules given
by (3.13). Furthermore, the basic corepresentations w(g),g € '\ {e} correspond to the

words azga, w(e) to a* and the trivial one to a® = 1.
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Proof. We first use the identification proved in the previous theorem: w(gi,...,gx) —
by, . ..bg,. Then, for any words z,y €< I' > and letters g,h € I":

wz,g) @wlhy) = ) wlu,v)®wuw)
T,g=u,t
h,y=t,v

=w(x,g,h,y) ®w(x, gh,y) ® dgnew(r) @w(y)

Then with the identification mentioned above, we obtain this new (recursive) formulation

for the fusion rules:

Pby ® bpg = pbybpq ® Pbghq & dgh.ep @ q (3.14)

(with the identifications w(z) = p,w(y) = q). Now, we consider the submonoid S C M’
generated by elements azga : g € I'. It is a free monoid indexed by I' hence it is
isomorphic to (I') (the monoid of the words over I" introduced in the previous theorem)
—1a € N so this identification is compatible with

. _ .
via by = azga. We have (azga)* = az,

the involutions.

Now let p,q € S. We prove that with the fusion rules (3.13) we can get back to (3.14),

and then the identification will preserve the fusion rules. It comes as follows:

pby @ bpq = pazga ® azpaq
= pazganhaq D pazg Q@ zpaq

= pbgbrq @ pbyrq ® dgh.ep @ q.

3.2.5 Dimension formula

In this section we obtain the same dimension formula as in the case I' = Zg see [BV09,
Theorem 9.3] and [Lem13b, Corollary 2.2]. In this subsection I is any (discrete) group,
N > 2.

Let us first fix some notation. Recall that there is a morphism 7 : C(H(I)) — C(S5)
and that it corresponds a functor 7 : Irr(H(T)) — Irr(SY;), sending any a(g),g € T

to the fundamental corepresentation v of Sj(,.

With the notation of Theorem 3.2.25 and Theorem 3.2.28 above, recall that if r, €
Irr(H(T)), we denote by xa = (id ® Tr)(rq) the associated character.

It is proved in [Bral2b, Proposition 4.8] that the central algebra C(S3)o = C* — (xx :
k € N) is isomorphic with C([0, N]) via xz ~ Aox(vV/X) where (Ap)ren is the family
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of dilated Tchebyshev polynomials defined inductively by Ag =1, 41 = X and A1 A =
Agg1+ Ag-1.

We now give the following proposition whose proof can be found in [Lem13b] since the
fusion rules binding irreducible representations of H X, (T") are similar for all groups I' (and

N > 4):

Proposition 3.2.29. ([Lem13b, Proposition 2.1]) Let xo be the character of an irre-
ducible corepresentation ro € Irr(Hy(T)). Write a = alizg, ...a'. Then, identifying
C(S%)o with C([0, N1), the image of X by T, say Pa, satisfies

k
Pa(X?) = 7(xa) (X2) = [] Au(X).
=1

Corollary 3.2.30. ([Lem13b, Corollary 2.2]) Let ro be an irreducible representation of

H{(T) with a = a'zy, ...a%. Then

k
dim(r,) = H A, (VN).
i=1

3.3 Properties of the reduced operator algebra C,(Hy(I'))

3.3.1 Simplicity and uniqueness of the trace of C,.(H}(T"))

In this subsection, we will assume N > 8 and |[I'| > 4. The cases |I'| = 1,2, 3 correspond
to S]J{,, H]T, and H]?{,Jr. The simplicity result proved in this subsection is already known
(and we will use it) in the case of S}, (see [Bral2b]). As for H};, it is an easy quantum
group and we do not investigate any further this subject in this thesis. We do not deal

with the case |I'| = 3, either.

The assumption on N > 8, is due to the fact that the simplicity of CT(SJJ{,) is only
known in the cases N > 8. For N = 2, we know (see |Bic04]) that C,(H, (I')) ~
CH(I'«I") ® C(Z2) which is not simple. To summarize, the cases 3 < N <7, [I'| = 2,3

remain open.

We first fix some notation. We use the description of the irreducible corepresenta-
tions indexed by the monoid M (see Theorem 3.2.25) but we will simplify the notation
w(g1,...,9x) into (g1,...,gr) and will denote the empty word by 1 since it indexes the
trivial representation. If € M, we will denote the associated irreducible corepresenta-
tion by r,. We will denote by |a| = |(g1,...,9%)| the length k e Nof « € M. If A C M,

we denote by A the set of conjugates @& of the elements a € A.
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We will use the following notation as in [Ban97|. If A, B C M, we set

AoB:={y:3(o,f) € Ax B such that r, C 1o @ rg} C M.

We denote by (g,...) € M an element starting by g € I" and (..., g) an element ending
by g.

Notation 3.3.1. We will denote e the neutral element in I' and:

o ¥ the word (e, ...,e) € M, with the convention e® = 1.

Ey:=J{(e,...)} U{1} the subset of the words starting by e.

By i=yen{e®} the subset of words with only e letters (Ey C Ey).

G1 = Uyrel(9,...)} the subset of the words starting by any g # e (notice that
gerl’

M:E1L|G1).

G2 = Uy grre{lg, - 9}

o 5 := CEQ,

Es:=SNE = El\EQ (notice that S = E3 uGl).

The definition of Fy and the fusion rules in Theorem 3.2.25, clearly show that 1 € F»,
FEy = Ey and Ey ® Ey C Ey. Let €’ be the closure in C'T(HX,(F)) of the subspace ¥
generated by the coefficients of the corepresentations rq,a € Ey. We know by [Ver04,
Lemme 2.1, Proposition 2.2|, that there exists a unique conditional expectation P :
C,(Hf(T)) — %’ such that the Haar state hgs is the restriction of the Haar state
h € C.(HX(I))* and h = hgr o P.

We recall from [Ver04|, that P is defined by the compression by the orthogonal projection
p onto the closure of ¢” in L2(H(T)): P: C.(HN (D)) = p€'p ~ €.

We will denote by .#’ the closure of . := span{z € Pol(H;(T")) : supp(z) C S}
in C,(Hy(T')). We have the decomposition C,(H%(I")) = ¢ ®.7", P
Ker(P) ="

¢ = id and

We are going to prove that ¢” can be identified with C,.(S5;), use the simplicity of C,.(S3;)
(when N > 8, see [Bral2b|) and adapt the “modified Powers method" in [Ban97] where
the author proves the simplicity of C,.(Uy;).

Proposition 3.3.2. ¢’ ~ C,.(S}).
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Proof. We first notice that at the level of the full C*-algebras, we have C(S3) ~ ¢”
where the closure is taken in C(H};(T")). Indeed, with the notation of the first section
(see Definition 1.1.12, Example 3.1.1), we can construct by universal properties the

following morphisms :

CHG(D)) = C(S}) =5 C(Hy(T)), aij(g) = vij = aij(e)-

Now notice that Vo € C(SY;), m1 o ma(z) = x and thus C(SY;) is isomorphic with the
(unital) sub-C*-algebra of C'(H;;(T)) generated by the elements a;;(e) i.e.

C(S%) =~ C* — (z € Pol(H(T)) : supp(z) C {1,a(e)}) C C(HF:(T)).

But & := #a5 — (x € Pol(H(T)) : supp(z) C {1,a(e)}) = €. Indeed : ale) = 1®r() =
1@ r.1, thus the inclusion & C % is clear. On the other hand, the coefficients of 1 = r.o
and r,1 = a(e) © 1 are in /. The inclusion ¥ C & then follows by induction since for
all £ € N*, we have

ok — bl g el o ekl

Thus we obtain @' ~ C (S%) and then an isomorphism at the level of the reduced
C*-algebras (see e.g. [Ver04]) ¢’ ~ C,.(S5). O

Notice that we also proved ¢ ~ Pol(Sy).

From now on all the closures are taken in the reduced C*-algebra C,(Hy(I)).

Let J < C(Hy(T)) be an ideal and let us prove that J is either {0} or C.(H(T)). It
is clear that P(J) is an ideal in ¢”. Hence, the simplicity of ¢ ~ CT(S]T,) implies that
P(J)={0} or €.

Let us first assume that P(J) = {0}. Then since Ker(P) = .’ we have J C .7".

But this is possible only if J = {0}. Indeed, since 1 ¢ S we have ./ C Ker(h). But now
x € J then a*x € J C " C Ker(h) i.e. h(z*z) = 0. Hence, x = 0 since h is faithful on
C,(H%(T)). We then have P(J) = {0} = J = {0}.

In the sequel, we assume that P(J) = %" and we prove that J = C,.(Hp(I)).

Since P(J) = ¢’ 5 1, there exists x € J such that x = 1 — z with z € ./, We write
z = 20+ (2—20) with 29 € . and ||z —2||, < 1/2. Notice that we can assume that z and
zo are hermitians even if this means that one takes the real part of z and approximates

zp by hermitian elements.
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We are going to prove that we can find a finite family (b;) C Pol(Hy(I')) such that
Cr(Hf(T)) 2w = Y, bywb} is unital and completely positive and || Y, bzobZ|, < 1/2.
We will then get

1= bt = 1> bi(L =)ol = || bizbi]|
<113 izl + 113 bl — 20)bi
i i
< 11D bizobi [l + Iz = 2ol < 1,
i
since any unital and completely positive map is contractive. Thus ), b;xb} € J will be

invertible and then we will get J = C,(H(T)).

Let g1, 92,93 € '\ {e} be three arbitrary chosen, pairwise different elements (recall that
IT'| > 4). With the Notation 3.3.1, we have the following proposition:

Proposition 3.3.3. Let oy := (g1,€), a0 := (g2, €), a3 := (g3, €e) in S. Let G C S finite.
Then:

1. S:Egl_lGl,GgoElﬂEl:(Z),{at}oGlﬂ{as}oGl:®,Vt7és,
2. Uiz {ai} o Ga o {ar} C G,

3. Ja € S s.t. {a}oGo{a} C G,.

Proof. The first assertion in (1) is clear. The second follows from the following compu-

tations for g, ¢’ # e:

and the third from

(gt7€)®<g,---) = (gtaevgw-')@(gtvga'“)
forg#eandt=1,2,3.
The assertion (2) follows from the following computation for g, ¢" # e:
(gt)e) ® (ga e 79/) ® (evgt_l) = ((gt7€7g7 e 79/) S (gtvg7 o )g/)) ® (e)gt_l)

= (gt7evg7"'7g/7e7gt_1)@(gt7eag7"‘7g/7gt_1)@
@<gt7g7"'7g/7€7gt_1)@<gt7gv"'7g/7gt_1)'
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For (3) consider a = (g, e,...,e) for any fixed g = g4, t = 1,2, 3, and where the number
of letters e in the word « is greater than m := max{|3| : 8 € G}. For any v € G, we can
write v = (e!=1 hy, ..., hy) with by # e,1 <1 < k. Then

-1

a®y= @ (g,€™%5 hyy... hy) sincel —1<k<m
s=—(l-1)

Now write v = (e!~1, hy, ..., hy, ek_l/) with | <!’ < k and compute

aRYRa=(g,em) @YD (em,g ")
k—U -1

= @ @ (gaem+s7hl7"'7h’l’aer+mag_1)

r=—(k=1l') s=—(1-1)

Hence, {(g,e™)} oG o {(e™, g7 1)} C Ga. O

We shall apply Proposition 3.3.3 to G = supp(zp) (with zp € .# as above Proposition
3.3.3). We will then get that 2’ = >, a;z0a; has its support in Ga, where (a;) C
Pol(H(T)) is a finite family of coefficients of 7, with o € S obtained in the assertion
(3) of the previous proposition. The proof of the simplicity of C,(Hy (T')) will then rely

on a result proved in [Ban97| that we recall below.

We recall in Section 3.1 the construction of the adjoint representation of a compact
quantum group of Kac type. We obtained for all irreducible characters x;., a completely
positive map ad(x,) € B(C,(Hx(I))), such that

ad(xr)(z) = ZrijZT;‘j.
Y]
We will simply denote ad(r) := ad(x,), if r € Irr(Hy;(T')). We then easily see that
ad(r)(1) = dim(r)1 and 7(ad(r)(z)) = dim(r)7(2) for any trace 7 € C,.(H(T'))*. Notice

that with these notation, we have 2’ = ad(ry)(20).

We put d; = dim(ra,) with ag,t = 1,2,3 defined in Proposition 3.3.3. Then, if one
ad(rey,)

considers the maps —d
t

, one can get as in [Ban97, Proposition 8|:

Proposition 3.3.4. The unital and completely positive linear map T : C,.(H(T)) —

CUHRD), T = 5L, 20

is such that:

1. T(2) =Y, a;za; for some finite family (a;) C Pol(H;(T)).

2. T is T-preserving for any trace 7 € C,.(H3;(T))* (hence h-preserving).



Chapter 3. Fusion rules, and applications, for certain free wreath products 105

3. For all z = z* € C,(Hy(T)) with supp(z) o By N Ey = 0, we have ||T(2)]|» <
0.95||z[|» and supp(T(2)) C U {ar} o supp(z) o {ow}.
Then, we can get the simplicity of C,.(H(T)).
Theorem 3.3.5. C.(Hx(T')) is simple with unique trace h, for all N > 8 and any
discrete group T, |T'| > 4.
Proof. We denote by 7 any faithful normal trace on C,(H(T')).

We recall that we assume now P(J) = ¢” (we already proved above that P(J) = {0} =
J = {0}). By the discussion before Proposition 3.3.3, it remains to prove that there
exists a finite family (b;) C Pol(H(T')) such that || >, bizobf||» < 1/2.

We first apply Proposition 3.3.4 to the hermitian 2z’ = ad(ry)(z0) with « obtained in
Proposition 3.3.3. Notice that ad(ra)(20) = Y, aizoa; € . We then get a unital 7-
preserving linear map Vi : C,.(Hy(T)) — Cr(H%(I)) of the form z — >, cizef ((¢;) C
Pol(Hy(T)) finite) with

Vi)l < 0.95[|2"],

since supp(z') C G and Gg o E1 N E7 = (). Moreover,
supp(V1(2")) € U{ay} o supp(2') o {az} C Go.

Then the 7-preserving map z — Viad(rq)(2) is of the form z — ). d;zd} for some (finite
family of elements) d; € Pol(H;;(T)), and satisfies

Vi(ad(ra)(20))" = Vi(ad(ra)(20))-

Thus we can apply the same arguments we just used as many times as needed so that
there exists m such that
Vi - .. Viad(ra)(20)]|r < 1/2.

We put V := V,,, ... Viad(r,), which is a completely positive, unital map in B(C,(H(T)))

Z Zbizbf,

where (b;) C Pol(H(T')) is finite and || >, bizobf ||, < 1/2.

of the form

The simplicity of C,(Hy (L)) then follows from these observations and the discussion

before Proposition 3.3.3.
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For the uniqueness of the trace let us first show that if 7 is any faithful normal trace
on C.(H;(T)) then the restriction to .7’ is the restriction of the Haar state h. Indeed,
let x = 2* € . Then, on the one hand we have h(z) = 0 and on the other hand if
€ > 0, we can apply the method above to find a finite family (a;) C Pol(H};(T)) such
that y = >, a;za has norm less than € > 0 and thus |7(z)| = |7(y)| < €. Letting e — 0,
we get that h and 7 coincide on the hermitians of .. But any x € .7, is the sum of two

hermitians, we then get 7| & = h|s. By continuity, we get 7|y = h|g.

Now take any z € C,(H¥(I")) and write z = y + z with y € ¢” and z € .%”. One has

T(y+2) = 7(y) + h(z) = hg (y)

by the uniqueness of the trace on C,(Sy) and what we just proved on .#’. We then get
T(z) = hsjg(w = h(x) hence 7 = h.

O

In particular there is a unique faithful normal trace on the von Neumann algebra L (H};(T)),

given by the extension of the Haar state h i.e.:

Corollary 3.3.6. L>®(Hy(I')) is a I -factor for all N > 8, and any discrete group
IT| > 4.

3.3.2 Fullness of the I1;-factor L>(Hy(T))

In this subsection, IV is again an integer greater than 8 and I' is any discrete group
IT'| > 2. Once more the case 3 < N < 7 remain open. If N = 2, we have that
L®(HS (T)) = L(I' T x Zs) and it is not a factor since I' x I' X Zs, containing Zs in
its center, is not icc . We will denote by ||.||2 the L?(HJ;(T'))-norm with respect to the
tracial Haar state h and by ||.||, the norm on C,(H(T)).

Definition 3.3.7. Let (M, 1) be a II;-factor with unique faithful normal trace 7. A
sequence (x,) C M is said to be asymptotically central if for ally € M, ||xpy—yzn|l2 — 0.
We say that (z,,) is asymptotically trivial if ||z, — 7(zn)1||2 = 0. The II;-factor (M, )

is said to be full if every bounded asymptotically central sequence is trivial.

We use the decomposition of the preceding subsection 3.3.1, Pol(H(I')) = € ®.# which
gives LX(HY(T) =% "o 77"
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We want to prove the fullness of L>(H(I")). It is easy to see that it is enough to consider
sequences in the dense subalgebra Pol(Hy(I')). We then fix a bounded asymptotically
central sequence (x,) C Pol(H]'\F,(F). One can write x,, = yn + 2n, with y, € €, 2z, € 7.
Ifae ?a_w, we have

llyna — aynHZ,LQ(%”’) = |lyna — ayn||2

= [[P(zn)a — aP(zn)||2

= [[P(zna) = Plazn)|l2 < ||lzna — azy2

where the last 2-norms are the L?(H}(T'))-norm. The first equality above comes from
the fact that the restriction to ¢” of the Haar state h of C,.(H(I')) is the Haar state on
%'. We then get ||yna — ayn|lz — 0, Va € €7 ~ L>®(S%). As a result, we obtain that
|y — B (yn)1||2 — 0 since L>(S5) is a full factor for N > 8 (see [Bral2b]). In particular,
(yn) is asymptotically central in L>(H(T')), and hence this is also the case of (2y,).

Of course, this implies that (z,,) C .# is also a central sequence in L>(H(T')).

To get the fulness of L>°(H (")) it remains to prove that (z,) is asymptotically trivial.
To do this we adapt the “14 — e method" introduced, in particular, to prove that L(F,)
has not the property I' and used also by Vaes to prove the fulness of LOO(U]'G) (see
IDCFY13]).

Once more, we use the decomposition S = F511G1 which gives two orthogonal subspaces
in L2(H(T)):

H, = spanl 2 {Ay(2) : supp(z) C B3},

Hy = span12{A},(z) : supp(z) C G1}
where Ay, is the GNS map associated to the Haar state h. Let us set H := Hy 1 Ho,

and HY, HY the corresponding subspaces before taking closures. If z € L®(H(T)), we
will simply write z = Ap,(z) via L¥(H{(T)) — L*(Hy(T)).

If B €S, we set dg := dim(rg) and Kg := L?(B(Hp), %Tr(-)), where Hpg is the repre-
sentation space of 13 € . @ B(Hp), and we consider the isometry:

vg: H = H® Kg,vga=rg(a®1)rg =rg(a® 1)rs.

We will denote the norm and scalar product on L?(H(T')) by ||.||2, (-, )2 and the scalar
product and norm on the tensor spaces H ® Kg simply by ||.||, (-, ).

We fix an element g € I', g # e. Remark that g # e implies that we must assume |I'| > 2.
The case |I'| = 1 corresponds to SJJ\? and the result we want to prove is already known in

this case.
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We recall that we denote by e, the word (e, ..., e) with k letters equal to e.

Lemma 3.3.8. With the notation above, we have

1. VB € By, {(9)} o 8o {(9)} C Gy,
2. {e¢} o Gro{e'} C E3,i=2,4,
3. {e?}oGio{e?}n{et} o Gyo{et} =0.

Proof. Let 5 € Es, i.e. f = (e,h1,...,h) with I > 1 and h; # e at least for one
i€ {l,...,l}, we have:

(9)©B®(9) = (9.1, ;) @ (9) ® (9,1, ..., ) © (9)
= (g7€ah1)' . '7hl7gil) @ (g)evh’lv ce. 7h’lgil) + 5hlg_1,e(gaeah1)' . 'ahl—l)
@ (g7h17 o 7hlagil) @ (gahla .. '7’”971) + 5hlg*1,e(gah17 .. whlfl)

and then (1) follows.

Now let a € Gy, i.e. a = (hy,...,h;) with h; # e. We have

) @a® (€)= (e h,....,n)® (e hy,....,ly) @ (e
= (e h1,. .. hi,€) @ (€ ha, . hyy € ) + Oy e(e ha,y oo hiy) @ (€72)
© (e by, b e) @ (€ b, e ) e (€T R, ) ® (€72)

and this gives (2), (3). O

Proposition 3.3.9. For all z € .7, we have

l[2]l2 < 14max{|]z ® 1 — vy 2]];, |[z2 ® 1 — ve22]], ||z ® 1 — veaz][}.

Proof. We write z = z + y with z € H{ and y € H. We put 2’ := v 2,2’ := v(yx.
Notice that by the relation (1) of Lemma 3.3.8 we have v(yyx € Ha ® K(4). In particular
(z/,x®1) = 0if (-,-) denotes the scalar product on H ® K(4). We have:

z1—z1-22)=:z®1-2,2)=(®1-2 1) (3.15)

where the last equality comes from the fact that <v(lg)y, x') = (y,x)2 = 0 since v(y) is an

isometry. Thus we have

[(z@l-zel-aa) <|zel-72la||=lz®1 -2 ||z
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We get,

l2]l3+ [yl = [lz[lz =@ 1 -2@1-2"+z@1+a'|
=|z@1l-—z®1—2|>+||z|5+ ||2/||* = 2Re(z ®1 —2®1 — 2', 2')
>[z@1l-z®l - +[l|} +|l2']* -2z @1 - || ||z[[2

by (3.15) and (:®1—2®1—2',2®1) =0 (since (2,2 ® 1) =0 and = € Hy,y € Hy).
Then we obtain
1yl = 112113 = 2l|z/l2]]z ® 1 = v(g)=]]. (3.16)

Now, we consider the isometries
v?: H - H® K, ® K. defined by v2¢ = (v,26)12,

v1: H - H® K2 ® K. defined by v1¢ = (v,46)13,

We have by (2), (3) of Lemma 3.3.8
'UiHQ CH K 2Q K., i =2,4,

v2Hy L v*Hy

We set
Yo =%y, Y3 = vy,

Ly = v2z, Z3 = vtz

Then, Ys,Y; € H; ® K2 ® K, and Y3, Y3 are perpendicular. Notice that this implies
that the vectors y ® 1 ® 1, Y5 and Y3 are pairwise perpendicular in H ® K2 ® K, 1 since
y € Hy.

Consider X == 2®1®1—-y®1®1— Y, —Y; and notice that X is perpendicular to
y®1® 1. Now we compute the scalar product:

<X7Y2> = <Z®1®1_Yéa}/é> = <Z®1®1_227Y2>7
since (v2r,Ys)s = (x,7y)2 = 0. Hence
(X, Y2)| < lyll2llz ©1 @1 = Zyf|.

Similarly, we have
(X, Ya)| < lyll2llz©1 @1 = Zs]|.
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We obtain, since (X,y®1® 1) =0,

lll3 + [lyl3 = ll2ll3 = [1X +y @ 1® 1+ Y3 + V3|
> [|X[17 + 3[lyl[5 = 2llyll2llz ® 1 © 1 = Zo|* = 2Jyll2l]z © 1 © 1 = Z3

and one can deduce that

12113 > 2119113 — 2llyll2llz ® 1 = vee2]| = 2[[yll2]]z ® 1 — veaz]]. (3.17)

We denote by A = |[z® 1 —vg)2]|, B=|[z®1—2ve:|[ and C = ||z ® 1 —va]| and we get,
applying (3.16), the fact that ||z||2, [|y||l2 < ||2]|2 and (3.17),

1y13 > ll=]I3 — 2l[2ll2A > [J[13 — 2]|2||2A
> 2|[y|[3 — 2/|z|l2(A + B+ O).
We then obtain ||y||3 < 2||z|[2(A + B + C).

On the other hand, applying (3.17), the fact that ||z||2, ||y|]2 < ||2]|]2 and (3.16), we get

12113 > 2/ly[[3 = 2l|2ll2(B + C) > 2[Ja[l3 - 2/|2||2(24 + B + C).

We then obtain ||z||2 < 2||z||2(2A + B + C) and we can conclude:
1213 < 14]|z]]2 max{A, B, C}.

O

Theorem 3.3.10. The II-factor L®(H(T')) is full for all discrete groups I' and all
N > 8.

Proof. This follows immediately from the previous proposition and the discussion before
it. O

Remark 3.3.11. The fact that any bounded asymptotically central sequence is asymp-
totically trivial implies that the center of L*°(H(T)) is trivial, and thus we get that
L>®°(H{(T)) is a factor for all N > 8 and all discrete groups I

3.3.3 Haagerup approximation property for the dual of H};(T") = fz* S
I' finite
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In this subsection, I is a finite group and N > 4. We set G = H,(T). If a € Irr(G), let
L2(G) := span{Ax(x) : supp(z) = a} C L*(G) where A}, is the GNS map associated to
the Haar state h of G.

Using the fundamental result in [Bral2b, Theorem 3.7|, we can produce a net of normal,

unital, completely positive h-preserving maps on L*°(G) given by

T,, = Z o (XE) P,

da
aclrr(G)

In this formula, ¢, = ev, o with ev, the evaluation map in x € Iy = [4,N],N > 5
(Iy = [0,4]) on functions of C(SF)o =~ C([0, N]), 7 is the canonical map

m: C(HN (D)) = C(Sk)

and P, : L?(G) — L*(G), is the orthogonal projections associated to o € Ir7(G).

We introduce a proper function on the monoid S (see Theorem 3.2.28). Let L be defined
by L(a) = Zfil li for a = alz,, ... a%e with gy, ..., gx_1 # e. Notice that, if I" is finite,
for all R > 0 the set B = {a =alzy ...al% : L(a) = Zf;l l; < R} C S is finite.
Thus we get that

anet (fo)acs € co(S) <= Ve >03IR>0:Vae S, (L(a) > R=|fa] <e¢).

We say that a net (fy)q converges to 0 as o — 00 if (fo)a € co(S). One can prove, as in

[Lem13b, Proposition 3.3, Proposition 3.4], that the net <¢xc(lxa)

as a — oo so that the extensions Ty, : L*(H(T')) — L?(Hy(T')) are compact operators.

) converges to 0
x€ln

The pointwise convergence to the identity of these operators, in 2-norm, can be proved
as in |[Lem13b, Theorem 3.5]. Then:

Theorem 3.3.12. The dual of H]'\F,(I‘) =T S]J{, has the Haagerup property for all finite
groups I' and N > 4.
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