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Motivation

In this work, we address the problems of stability analysis and stabilization of several classes of SISO and MIMO systems. We work in the frequency domain and our aim is to find easy-to-check conditions of stability as well as explicit expressions of controllers having in mind an integration of our results in a software.

We are interested in two major classes of systems regarding applications: delay systems and fractional systems. Both need tools of infinite-dimensional control theory.

In the time domain, fractional models involve derivatives and/or integrals of orders which are not necessarily integers. Similarly, they involve in the frequency domain non (necessarily) integer powers of the Laplace variable s. These models have found applications in many fields, for instance electromagnetics [START_REF] Westerlund | Capacitor theory[END_REF][START_REF] Knospe | Performance limitations of non-laminated magnetic suspension systems[END_REF], mechanics [START_REF] Caputo | A new dissipation model based on memory mechanism[END_REF][START_REF] Koh | Application of fractional derivatives to seismic analysis of based-isolated models[END_REF][START_REF] Vinagre | Frequency domain identification of a flexible structure with piezoelectric actuators using irrational transfer function models[END_REF], and biology [START_REF] Ionescu | Time domain validation of a fractional order model for human respiratory system[END_REF][START_REF] Grahovac | Modelling of the hamstring muscle group by use of fractional derivatives[END_REF]. The increasing popularity of fractional models is due to two reasons. First, more physical phenomena have been described using fractional laws and thus system descriptions constructed from these physical laws are also fractional models. Second, for various macroscopic behaviors, fractional models provide models with less parameters and at the same time better fittings to collected data than integer-order models. For more details about fractional calculus and examples, see [START_REF] Oldham | The Fractional Calculus[END_REF][START_REF] Podlubny | Fractional Differential Equations: An Introduction to Fractional Derivatives[END_REF] and references therein.

In control engineering, a lot of results are available on fractional controllers and their implementation. See for example [START_REF] Oustaloup | The CRONE control of resonant plants: Application to a flexible transmission[END_REF][START_REF] Podlubny | Fractional-order systems and P I λ D µ -controllers[END_REF][START_REF] Chen | Fractional order control -A tutorial[END_REF][START_REF] Magin | On the fractional signals and systems[END_REF] and the references therein. Two well-known types of fractional 1 controllers are CRONE [START_REF] Oustaloup | The CRONE control of resonant plants: Application to a flexible transmission[END_REF] and fractional PID [START_REF] Podlubny | Fractional-order systems and P I λ D µ -controllers[END_REF].

Applications of these fractional controllers on benchmark problems have been reported and have been showed to provide better performance than integer-order controllers [START_REF] Oustaloup | The CRONE control of resonant plants: Application to a flexible transmission[END_REF][START_REF] Xue | Fractional order PID control of a DC-motor with elastic shaft: A case study[END_REF].

With the spreading of fractional systems including both plants and controllers, it is natural to think about fractional systems with delays since delays are commonly encountered in real systems due to unavoidable communication or transfer distances. Furthermore, as reported in the huge literature of classical (integer-order) systems, delays may in certain cases strongly influence the stability of systems. Sometimes delays help to stabilize the systems, but more often they make the systems unstable and even the task of stabilization becomes more difficult. Therefore, delays could be expected to also play such important roles in the field of fractional systems.

There has been a growing interest for studying fractional systems with delays. The question of stability of linear fractional systems with delays has been answered by many authors.

In (Hotzel, 1998a), the system described by the transfer function 1 (as µ +b)+(cs µ +d)e -sh (a, b, c, d, h ∈ R, h > 0) was considered and conditions for BIBO-stability were derived. Since then many other studies have been conducted in the frequency domain and many results have been obtained for fractional systems with arbitrary real orders and with arbitrary positive delays. [START_REF] Bonnet | Analysis of fractional delay systems of retarded and neutral type[END_REF] studied the BIBO-stability of the general class of fractional systems with delays. A more general class of systems was then examined in [START_REF] Bonnet | Stabilization of fractional exponential systems including delays[END_REF]. This has been the most general class of linear fractional systems with delays considered in the literature. In [START_REF] Chen | Analytical stability bound for a class of delayed fractionalorder dynamic systems[END_REF], by using the Lambert function, the authors derived the closed form solution of the characteristic equation of simple fractional systems with one delay. Fractional systems described by delay fractional differential equations were considered in [START_REF] Deng | Stability analysis of linear fractional differential system with multiple time delays[END_REF] and conditions for Lyapunov globally asymptotic stability were derived. Recently, robust BIBO-stability of some classes of fractional systems with delays were studied in (Akbari Moornani andHaeri, 2010, 2011).

All the stability conditions obtained in the aforementioned work concern the location of poles in the complex plane. For delay fractional systems of retarded type, the necessary and sufficient conditions for stability is the familiar one 'no pole in the closed right halfplane'. In order to check this condition, several numerical methods have been proposed. We can classify these methods into two categories. In the first one, one checks the stability of the system at fixed delays. Such methods were presented in (Hwang andCheng, 2005, 2006), being based on Cauchy's integral theorem and the Lambert function respectively. The second category consists of methods which determine the intervals of delay in which the systems are stable. We mention here [START_REF] Ozturk | An analysis stability test for a certain class of distributed parameter systems with delays[END_REF][START_REF] Fioravanti | A numerical method for stability windows and unstable root-locus calculation for linear fractional time-delay systems[END_REF][START_REF] Mesbahi | Stability of linear time invariant fractional delay systems of retarded type in the space of delay parameters[END_REF]) among others.

The numerical methods mentioned above exclusively deal with fractional systems of retarded type except [START_REF] Fioravanti | Stability of fractional neutral systems with multiple delays and poles asymptotic to the imaginary axis[END_REF] whose method can be applied to some fractional systems of neutral type. As well in the references on the stability analysis cited earlier, while for retarded systems 'no pole in the closed right half-plane' is the necessary and sufficient condition for stability, it is only a necessary condition for neutral systems. This can be explained by the complicated locations of poles of neutral systems: infinitely many isolated poles gather in some vertical strips in the complex plane [START_REF] Bellman | Differential-Difference Equations[END_REF]Hotzel, 1998a;[START_REF] Bonnet | Analysis of fractional delay systems of retarded and neutral type[END_REF].

In the simplest case of systems with commensurate fractional orders and with commensurate delays where the above phenomenon reduces to poles asymptotic to vertical lines, attempts were made in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF][START_REF] Fioravanti | Stability of fractional neutral systems with multiple delays and poles asymptotic to the imaginary axis[END_REF] to obtain necessary and sufficient conditions for H ∞ -stability (which is a weaker notion than BIBO-stability) for a class of these systems. Some works with the same purpose are also available for classical (integer-order) systems of neutral type for which the same difficulty is encountered. In the frequency domain, we have [START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF] for H ∞ -stability and [START_REF] Abusaksaka | BIBO stability of some classes of delay systems and fractional systems[END_REF] for BIBO-stability. And in the time domain, [START_REF] Rabah | Stability and stabilizability of mixed retarded-neutral type systems[END_REF] considered the asymptotic stability.

In this thesis, we choose to consider linear fractional systems with commensurate fractional orders and commensurate delays using frequency methods. This means their transfer functions are ratios of two quasi-polynomials in e -sτ and s α where τ > 0 is the delay and α > 0 is the arbitrary order and often takes values in (0, 1).

The choice to consider commensurate quantities has some advantages.

• Commensurate fractional orders are commonly obtained via identification for linear fractional systems. Together with delays they constitute interconnected systems whose models are linear fractional systems with delays. These systems have a similar form to classical delay systems and thus the stability analysis and control might benefit from large collections of tools used for classical ones.

• Delays measured in reality are commensurate. Although the ratios between them may be constants for a short amount of time and likely to vary, the corresponding systems at an instant are quite simple to analyze and hence provide a good starting point for studying the characteristics of the systems.

Although there have been many results concerning stability analysis, the problem of stabilization of fractional systems with delays has just been marginally addressed. In the early work [START_REF] Hotzel | Contributions à la théorie structurelle et la commande des systèmes linéaires fractionnaires[END_REF], a control strategy involving distributed delays was proposed to control MIMO linear fractional systems with input delays. Also for SISO fractional systems with one input delay, PID controllers were designed in (Özbay et al., 2012). The parametrization of all stabilizing controllers was obtained in [START_REF] Bonnet | Stabilization of fractional exponential systems including delays[END_REF] for SISO fractional systems of retarded type and in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF] for some SISO fractional systems of neutral type.

To analyze this left wide open area of stabilization of fractional delay systems, we choose the factorization approach to analysis and synthesis problems [START_REF] Vidyasagar | Control System Synthesis: A Factorization Approach[END_REF]. With its algebraic nature, this powerful approach allows one to derive the set of all stabilizing controllers which can be used to study various control problems and in particular robust control.

While the tools for applying the factorization approach to finite-dimensional systems are numerous, they are quite limited for infinite-dimensional systems though qualitative results are available (Quadrat, 2006b). In this thesis, by deriving explicit expressions of coprime factorizations and Bézout factors for some classes of fractional systems with delays, we contribute to the "implementation" phase of the factorization approach for infinite-dimensional systems.

For MIMO systems, the question of parametrization of all stabilizing controllers has been studied by A. Quadrat and K. Mori who are able to derive the set of all stabilizing controllers once one already knows a particular stabilizing controller [START_REF] Mori | Parameterization of stabilizing controllers over commutative rings with application to multidimensional systems[END_REF]Quadrat, 2006b). For the particular class of MIMO (integer-order) systems with I/O delays, the idea in [START_REF] Mirkin | State-space parametrization of all stabilizing dead-time controllers[END_REF][START_REF] Moelja | Parametrization of stabilizing controllers for systems with multiple I/O delays[END_REF] was to reduce the problem to an equivalent finite-dimensional stabilization problem by involving an unstable finitedimensional system and a stable infinite-dimensional system (FIR filter). Our purpose in this work is to derive explicit expressions of coprime factorizations and Bézout factors of MIMO fractional systems with I/O delays.

Outline of the thesis

We consider two classes of linear time-invariant fractional systems with discrete delays. The first one consists of MISO fractional systems of commensurate orders with output or input delays. The second one consists of SISO fractional neutral systems with commensurate delays.

This manuscript is divided into 7 chapters.

We study the stabilization of the first class of systems in Chapter 3 using the factorization approach. We derive explicit expressions of left and right coprime factorizations and Bézout factors, which are the elements to constitute the set of all stabilizing controllers.

The second class of systems are examined in Chapters 4,6,and 7. We are interested in the critical case where these systems have poles asymptotic to the imaginary axis. First, the stability analysis is realized in Chapter 4. This analysis consists of determining location of poles about the imaginary axis via approximation and then deriving necessary and sufficient conditions for H ∞ -stability. The analysis is similar for classical systems of the same form and thus is extended for these systems in Chapter 5. Then in Chapter 6 we present a new method which allows a unified approach to analyze the stability of both fractional and classical delay systems. The new method covers not only cases considered in the two preceding chapters but also all other (unsolved) possible cases. Furthermore, it can be easily programmed in computation software. Next, the question of stabilization is studied in Chapter 7 for a subclass of fractional systems, making use of the stability analysis results and the factorization approach.

To facilitate the understanding of the aforementioned chapters, some preliminaries are given in Chapter 2. As the second class of systems will be studied in several chapters, in order to avoid repetition, we present it in detail in Chapter 2 along with some basic facts.

Finally, we give conclusions and perspectives in Chapter 8.

Preliminaries

Stability

The references used for this subsection are [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF][START_REF] Zhou | Robust and Optimal Control[END_REF] for H ∞ -stability, and [START_REF] Desoer | Feedback Systems: Input-Output Properties[END_REF] for BIBO-stability.

Definition 2.1. For 1 ≤ p < ∞, |f (t)|.

L p [0, ∞) := {f : [0, ∞) → C | f is Lebesgue measurable and ∞ 0 |f (t)| p dt < ∞}. L ∞ [0, ∞) := {f : [0, ∞) → C | f is
Definition 2.5. A linear continuous-time system defined by a linear operator

Σ : L p [0, ∞) → L p [0, ∞) for 1 ≤ p ≤ ∞ is L p -stable if ||Σ|| p < ∞,
where ||Σ|| p is the norm of the operator and is defined by

||Σ|| p := sup{||Σf || p | f ∈ L p [0, ∞), ||f || p = 1} = sup 0 =f ∈Lp[0,∞) ||Σf || p ||f || p .
Roughly speaking, a system is L 2 -stable if it provides an output signal of bounded energy for an input signal of bounded energy.

Similarly, a system is L ∞ -stable if it provides a bounded output signal for a bounded input signal. Hence, L ∞ -stability is also called BIBO-stability.

Let us denote

A := {h(t) = f (t) + +∞ i=1 a i δ(t -t i ) | f ∈ L 1 (R + ), a i ∈ C, ∞ i=0 |a i | < ∞, t i ∈ R + , 0 = t 0 < t 1 < . . .}.
Theorem 2.6. If the impulse response of a linear time-invariant system is in A, then the system is L p -stable for p ∈ [1, ∞].

Theorem 2.7. If a linear time-invariant system whose impulse response has vanishing non-atomic singular part is L ∞ -stable, then its impulse response is in A.

Due to Theorems 2.6 and 2.7, if we only consider linear time-invariant systems whose impulse response has vanishing non-atomic singular part, then a linear time-invariant system is BIBO-stable if and only if its response impulse is in A, or its transfer function is in Â, which is the set of Laplace transforms of functions in A.

Definition 2.8 (Hardy spaces).

H 2 (C + ) := {f : C + → C | f is analytic in C + and sup σ>0 ∞ -∞ |f (σ + jω)| 2 dω < ∞}, H ∞ (C + ) := {f : C + → C | f is analytic in C + and sup s∈C + |f | < ∞}.
Lemma 2.9. H 2 (C + ) is a Hilbert space under the inner product and the induced norm

f, g := 1 2π ∞ -∞ f * (jω)g(jω)dω, ||f || 2 := f, f . Theorem 2.10 (Paley-Wiener theorem). L 2 [0, ∞) is isomorphic to H 2 (C + ) under the Laplace transform. Lemma 2.11. H ∞ (C + ) is a Banach space under the H ∞ -norm ||f || ∞ := sup s∈C + |f (s)|. Lemma 2.12. For f ∈ H ∞ (C + ), sup s∈C + |f (s)| = ess sup ω∈R |f (jω)|. Definition 2.13. L ∞ (jR) := {f : jR → C | ess sup ω∈R |f (jω)| < ∞}. Theorem 2.14. If G ∈ H ∞ (C + ) and û ∈ H 2 (C + ), then Gû ∈ H 2 (C + ).
Moreover, the norm of the multiplication operator Σ : û → Gû, defined by

|| Σ|| := sup 0 =û∈H 2 (C + ) ||Gû|| 2 ||û|| 2 , satisfies || Σ|| = ||G|| ∞ . Lemma 2.15. H ∞ (C + ) is a closed subspace of L ∞ (jR). Theorem 2.16. If G ∈ L ∞ (jR), then G ∈ H ∞ (C + ) if and only if Gû ∈ H 2 (C + ) for all û ∈ H 2 (C + ).
Hence, due to Theorems 2.10 and 2.16, if we only consider linear time-invariant systems whose transfer function is in L ∞ (jR), then a linear time-invariant system is L 2 -stable if and only if its transfer function is in H ∞ . For this reason, L 2 -stability is called H ∞ -stability.

Stabilization

The references for this subsection are [START_REF] Desoer | Feedback system design: The fractional representation approach to analysis and synthesis[END_REF][START_REF] Vidyasagar | Algebraic and topological aspects of feedback stabilization[END_REF][START_REF] Vidyasagar | Control System Synthesis: A Factorization Approach[END_REF].

We denote S a commutative (integral) domain with identity and F the quotient field of S, i.e.

F := {a/b | a, b ∈ S, b = 0}.
Remark 2.17. It can be proved easily that F is a field if every nonzero element of S is invertible, i.e. S is a commutative field, which is normally the case for real systems and which is the case here since a/b is understood in the usual way, i. For the more general case where S is not necessarily a field, a detailed construction of F is given in Appendix A.2, [START_REF] Vidyasagar | Control System Synthesis: A Factorization Approach[END_REF] with a more general meaning of a/b. In this case, F is still a field.

Remark 2.18. A set of SISO stable linear systems is a commutative (integral) domain with identity. In particular, parallel and cascade connections of stable systems are also stable.

From now on, we consider S as a set of SISO stable linear systems. Then F consists of stable and unstable systems.

However, the following basic results are also applicable for other purposes than stabilization as long as the set of desired systems is a commutative (integral) domain with identity.

Internal stability

We consider the closed-loop system in Figure 2.1, where G of dimension n × m is the plant and K of dimension m × n the controller.

The transfer matrix between

[u 1 , u 2 ] T and [e 1 , e 2 ] T is H(G, K), i.e. e 1 e 2 = H(G, K) u 1 u 2 , K G u 1 + e 1 y 1 + e 2 y 2 u 2 + - Figure 2.1 -Closed-loop system which is given by H(G, K) = I n -G(I m + KG) -1 K -G(I m + KG) -1 (I m + KG) -1 K (I m + KG) -1 = (I n + GK) -1 -(I n + GK) -1 G K(I n + GK) -1 I m -C(I n + GK) -1 G since G(I m + KG) -1 = (I n + GK) -1 G by basic matrix manipulations. The transfer matrix between [u 1 , u 2 ] T and [y 1 , y 2 ] T is W (G, K), i.e. y 1 y 2 = W (G, K) u 1 u 2 ,
which is given by

W (G, K) = 0 I n -I m 0 (H(G, K) -I m+n ) (2.1) = K(I n + GK) -1 -KG(I m + KG) -1 GK(I n + GK) -1 G(I m + KG) -1 .
Definition 2.19. The closed-loop system given as in Figure 2.1 is internally stable if H(G, K) ∈ S (m+n)×(m+n) .

Remark 2.20. Due to (2.1), the closed-loop system is internally stable if and only if W (G, K) ∈ S (m+n)×(m+n) . Hence, the closed-loop system is internally stable if and only if all the input/output maps are bounded.

Lemma 2.21 [START_REF] Vidyasagar | Control System Synthesis: A Factorization Approach[END_REF].

If W (G, K) ∈ S (m+n)×(m+n) , then G ∈ F n×m , K ∈ F m×n .
Proof. Let us denote

P = K 0 0 G , F = 0 I n -I m 0 , then W (G, K) can be rewritten as W (G, K) = P (I + F P ) -1 ,
from which, we derive

P = W (I m+n -F W ) -1 = W Adj(I m+n -F W ) det(I m+n -F W ) ,
where Adj(I m+n -F W ) is the adjoint of (I m+n -F W ). Therefore, P ∈ F (m+n)×(m+n) , and thus G ∈ F n×m , K ∈ F m×n .

The previous lemma shows that only systems with transfer function with entries in F can be stabilized with the feedback scheme in Figure 2.1. Hence, from now on we consider plants with transfer function of this kind. 

XN + Y D = I m . Definition 2.23. (N, D) with N ∈ S n×m , D ∈ S m×m is a right factorization of G ∈ F n×m if det D = 0 and G = N D -1 .
Remark 2.24. Since S is commutative, every G ∈ F n×m admits right factorizations. The element (i, j) of G can be written as g ij = p ij /q ij where p ij , q ij ∈ S. Let us denote b = i j q ij = 0 and A the matrix whose elements are a ij = bp ij /q ij ∈ S, we have Remark 2.27. Similarly, we can construct left factorizations of every G ∈ F n×m . Indeed,

G = A(bI m ) -1 .
G = (bI n ) -1 A. Definition 2.28. ( N , D) with N ∈ S n×m , D ∈ S n×n is a left factorization (l.c.f.) of G ∈ F n×m if det D = 0 and G = D -1 N . Definition 2.29. ( N , D) with N ∈ S n×m , D ∈ S n×n is a left coprime factorization (l.c.f.) of G ∈ F n×m if ( N , D
) is a left factorization of G and N , D are left coprime.

Properties of coprime factorizations

The following properties give an idea of the common features of the definition of coprimeness with the usual definition of coprimeness, i.e. with common factors. The proof of the lemma makes use of the following result.

Lemma 2.31 (Vidyasagar, 1985, Fact B.1.7). U is a unit in S m×m if and only if det U is a unit in S. 

Proof of

) det U = 1. Since S is a commutative ring, then det U is a unit in S, hence U is a unit in S m×m .
Lemma 2.32 (Desoer et al., 1980, Property 2).

If (N, D) is an r.c.f. of G ∈ F n×m and (N 1 , D 1 ) is a right (not necessarily coprime) factorization of G, then there exists R ∈ S m×m such that N 1 = N R and D 1 = DR. Lemma 2.33. If (N, D) and (N 1 , D 1 ) are r.c.f.'s of G ∈ F n×m , then there exists a unit U ∈ S m×m such that N 1 = N U and D 1 = DU .
Proof. Due to Lemma 2.32, there exists U ∈ S m×m such that

N 1 = N U , D 1 = DU . Since (N 1 , D 1
) is an r.c.f., then there exist

X 1 ∈ S m×n , Y 1 ∈ S m×m such that X 1 N 1 +Y 1 D 1 = I m . Then (X 1 N + Y 1 N )U = I m ,
and thus det U is a unit in S. Therefore, U is a unit in S m×m .

Lemma 2.34. If (N, D) is an r.c.f. of G ∈ F n×m , then (N U, DU ) is an r.c.f. of G for all unit U ∈ S m×m .

Proof. There exist X ∈ S m×n , Y ∈ S m×m such that XN + Y D = I m , and

U -1 XN U + U -1 Y DU = I m . Therefore, (N U, DU ) is an r.c.f. of G.
From Lemmas 2.33 and 2.34, the following statement is immediate. Corollary 2.35 ((Vidyasagar et al., 1982, Section II) or (Vidyasagar, 1985, Lemma 8.1.1)). If (N, D) is an r.c.f. of G ∈ F n×m , then all the r.c.f.'s of G are given by (N U, DU ) with U is a unit in S m×m .

"Thus, an r.c.f. of an element in F n×m is unique to within a right associate if an r.c.f. exists. " (Vidyasagar et al., 1982, Section II) The properties for l.c.f.'s are similar and omitted here.

Lemma 2.36 (Corona theorem, (Vidyasagar, 1985, Lemma 8.1.12)). Suppose S is a Banach algebra over C, with maximal ideal space Ω. Suppose Γ is a dense subset of Ω,

and suppose a 1 , • • • , a n ∈ S. Then there exist x 1 , • • • , x n ∈ S such that n i=1 x i a i = 1 if and only if inf ω∈Γ n i=1 |â i (ω)| > 0
where âi is the Gelfand transform of a i .

Existence of coprime factorizations

The following lemmas are the conditions for the existence of l.c.f.'s and/or r.c.f.'s of G ∈ F n×m .

Lemma 2.37 ( (Vidyasagar et al., 1982, Lemma 2.1) or (Vidyasagar, 1985, Lemma 8.1.3) (Vidyasagar, 1985, Theorem 8.1.23). The following three statements are equivalent:

1. S is a Hermite ring.

2. If G ∈ F n×m has an r.c.f., then it has an l.c.f.

3.

If G ∈ F n×m has an l.c.f., then it has an r.c.f. Lemma 2.47. Every Bézout domain is Hermite.

Lemma 2.48. H ∞ is Hermite.
Proof. The result is immediate from (Vidyasagar, 1985, Lemma B.2.1).

Theorem 2.49 (Vidyasagar et al., 1982, Theorem 2.1). Given S, suppose that there exists a subring S 0 of S and a subset I of S 0 \0 such that 1. I is closed under multiplication (i.e., x ∈ I, y ∈ I implies that xy ∈ I).

2. Every factor in S 0 of an element of I belongs to I (i.e., x ∈ S 0 , y ∈ S 0 , xy ∈ I implies that x ∈ I, y ∈ I).

3. Whenever x ∈ S 0 and y ∈ I, the ideal in S 0 generated by x and y is principal.

Under these conditions the set of fractions G := {n/d, n ∈ S 0 , d ∈ I} is a subring of F. Moreover, for every n, m, every element of G n×m has both an r.c.f. and an l.c.f. Theorem 2.50 [START_REF] Smith | On stabilization and the existence of coprime factorizations[END_REF].

If G ∈ F n×m with S = H ∞ , then if G is stabilizable, then
G has both l.c.f.'s and r.c.f.'s.

Parametrization of stabilizing controllers

Lemma 2.51 (Vidyasagar et al., 1982, Lemma 3.1).

Suppose G ∈ C n×m r , K ∈ C m×n l
, where C n×m r and C n×m l denote the sets of all G ∈ F n×m that have an r.c.f. and an l.c.f. respectively. Let (N p , D p ) be any r.c.f. of G, ( N k , D k ) any l.c.f. of K. Under these conditions the pair (G, K) is stable if and only if

∆ := D k D p + N k N p is a unit in S m×m .
Theorem 2.52 (Vidyasagar, 1985, Theorem 8.3.5). Suppose G ∈ F n×m has an r.c.f. (N, D) and an l.c.f.

( N , D). Select X ∈ S m×n , Y ∈ S m×m , X ∈ S m×n , Y ∈ S n×n such that XN + Y D = I m , N X + D Y = I n . Then S(G) = {(Y -R N ) -1 (X + R D) : R ∈ S m×n and det(Y -R N ) = 0} = {( X + DR)( Y -N R) -1 : R ∈ S m×n and det( Y -N R) = 0}. Remark 2.53. • (Y -R N ) and (X + R D) are left coprime. Indeed, (Y -R N )D + (X + R D)N = I m since XN + Y D = I m and DN = N D. • ( X + DR) and ( Y -N R) are right coprime. Indeed, N ( X + DR) + D( Y -N R) = I n since N X + D Y = I n and DN = N D.
• If det Y = 0, then a stabilizing controller is given by K = Y -1 X, which corresponds to R = 0.

• If det Y = 0, then a stabilizing controller is given by K = X Y -1 , which corresponds to R = 0.

Fractional calculus

Fractional derivatives and integrals are generalizations of classical derivatives and integrals (of integer order) to arbitrary real order. Hence, more precisely, they should be called derivatives and integrals to arbitrary real order.

There exist numerous definitions of fractional differintegrals, which is the short name for fractional derivatives and integrals. We introduce here three definitions which are widely used.

Definition 2.54. The Grünwald-Letnikov differintegral is given by

GL a D µ t f (t) := lim h→0 h -µ [ t-a h ] j=0 (-1) j µ j f (t -jh).
The Riemann-Liouville differintegral is given by

RL a D µ t f (t) := 1 Γ(n -µ) d n dt n t a f (τ ) (t -τ ) µ-n+1 dτ where n -1 < µ ≤ n and Γ(•) is the Gamma function. The Caputo differintegral is given by C a D µ t f (t) := 1 Γ(n -µ) t a f (n) (τ ) (t -τ ) µ-n+1 dτ where n -1 < µ ≤ n.
While the first two definitions are equivalent [START_REF] Oldham | The Fractional Calculus[END_REF], the Caputo definition exhibits some differences [START_REF] Podlubny | Fractional Differential Equations: An Introduction to Fractional Derivatives[END_REF]. One of the differences is the Laplace transform of the fractional differintegrals.

Theorem 2.55. The Laplace transform of the Riemann-Liouville and the Caputo differintegrals are respectively given by

L( RL 0 D µ t f (t)) = s µ L(f (t)) - n-1 k=0 s k RL 0 D µ-k-1 t f (t) t=0 L( C 0 D µ t f (t)) = s µ L(f (t)) - n-1 k=0 s µ-k-1 C 0 D k t f (t) t=0 where n -1 < µ ≤ n.
Before introducing some useful Laplace transform pairs, let us define the Mittag-Leffler function in two parameters (also called the generalized Mittag-Leffler function).

Definition 2.56. The Mittag-Leffler function in two parameters is defined as

E µ,ν (z) := ∞ k=0 z k Γ(µk + ν) , ν > 0, ν > 0.
Now, for k ∈ Z + , we have the following Laplace transforms

L(t µk+ν-1 E (k) µ,ν (at µ )) = k!s µ-ν (s µ -a) k+1 .
for (s) > |a| 1/µ . Then we obtain the following inverse Laplace transforms

L -1 1 (s µ -a) k+1 = 1 k! t µ(k+1)-1 E (k) µ,µ (at µ ).

Fractional systems

For the rest of the thesis, we consider systems which are linear and time-invariant.

System descriptions

In the time domain, a fractional linear time-invariant system can be described by a fractional differential equation as follows [START_REF] Podlubny | Fractional Differential Equations: An Introduction to Fractional Derivatives[END_REF])

a n D αn y(t) + a n-1 D α n-1 y(t) + • • • + a 0 D α 0 y(t) = b m D βm u(t) + b m-1 D β m-1 u(t) + • • • + b 0 D β 0 u(t)
where D µ is the Riemann-Liouville or Caputo derivative with the lower limit a = 0; a k ∈ R, α k > 0 for k = 0, . . . , n; b l ∈ R, β l > 0 for l = 0, . . . , m; y(t) and u(t) are the output and input signals respectively.

In the frequency domain, the above system is described by the following transfer function

G(s) := Y (s) U (s) = b m s βm + b m-1 s β m-1 + • • • + b 0 a n s αn + a n-1 s α n-1 + • • • + a 0 .
In the particular case of commensurate orders, G(s) is of the form

G(s) = M k=1 b k (s µ ) k N k=1 a k (s µ ) k .

Examples

Linear fractional models have been used in a lot of domains and many of them were obtained through identification methods. They were showed to fit measured data better than their integer counterparts in requiring less parameters to identify thus reducing computation costs.

In this subsection, we mention some examples of real systems described by linear fractional models.

Although the examples will be classified in different application domains, they seem to share some common characteristics which are at the origin of the emergence of fractional models, for instance viscoelasticity, diffusion, and fractal.

Circuit

In [START_REF] Westerlund | Capacitor theory[END_REF], the authors proposed a fractional model for capacitors due to the observation that real capacitors behave according to Curie's empirical law

i(t) = U 0 h 1 t α
where U 0 is the constant voltage applied at t = 0, h 1 and α are constants, and α ∈ (0, 1).

The fractional capacitor model is

Z(s) = 1 Cs α
where Z(s) is the impedance of the capacitor and C is a constant which is lightly different from the usually defined capacitance. This model was showed to be more suitable than integer-order models for applications concerning broad frequency bands and high energy losses.

Recently, attempts have been made for fabricating fractional capacitors whose fractional order can be tuned (Cisse [START_REF] Haba | Use of a component with fractional impedance in the realization of an analogical regulator of order 1/2[END_REF][START_REF] Elshurafa | Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites[END_REF][START_REF] Sivarama Krishna | Fabrication of a fractional order capacitor with desired specifications: A study on process identification and characterization[END_REF].

Non-laminated electromagnetic suspension systems

In most of electromagnetic suspension systems, laminated ferromagnetic materials are used to make stators and flotors in order to reduce the negative effects of eddy currents. However, non-laminated material is preferred in several applications, for example thrust magnetic bearings in rotating machinery, and thus the effects of eddy currents cannot be neglected.

In [START_REF] Zhu | Analytic model for a nonlaminated cylindrical magnetic actuator including eddy currents[END_REF] and [START_REF] Zhu | Modeling of nonlaminated electromagnetic suspension systems[END_REF], non-laminated electromagnetic suspension systems are first modeled based on physical laws and the obtained transfer functions involves complex functions (hyperbolic tangent and modified Bessel functions). In order to simplify the model for control design purpose, the magnetic reluctance of the system is approximated [START_REF] Zhu | Analytic model for a nonlaminated cylindrical magnetic actuator including eddy currents[END_REF] and has the form

R(s) = R 0 + c √ s,
where R 0 is the static reluctance, c is the eddy current coefficient of the stator and the flotor's ferromagnetic material, and s is the Laplace variable.

For systems in current-mode operation with time-varying displacement [START_REF] Zhu | Modeling of nonlaminated electromagnetic suspension systems[END_REF], the transfer function from perturbation current to flotor displacement is

X(s) I p (s) = K i R 0 H(s) R(s) -K x R 0 H(s)
where in the case of a rigid flotor with no mechanical contact

H(s) = 1 ms 2
with m being the flotor mass. Then the transfer function is

X(p) I p (s) = K i m c R 0 s 5/2 + s 2 -Kx m ,
which is demonstrated to have one real unstable pole [START_REF] Knospe | Performance limitations of non-laminated magnetic suspension systems[END_REF].

Biomedicine and biology

In the field of bioimpedance, electrochemical behaviors of biological materials are modeled using measured impedances of materials over wide ranges of frequencies. A widely used empirical model is the Cole impedance model which is given by

Z(s) = R ∞ + R 1 1 + s α 1 R 1 C 1 where R ∞ , R 1 , C 1 ,
and α 1 are all positive and α 1 ∈ (0, 1). Various applications are reported in the survey paper [START_REF] Freeborn | A survey of fractional-order circuit models for biology and biomedicine[END_REF], including organ tissues, human blood, skull, teeth, fruits and vegetables.

Other modified versions of the Cole model are also used to provide better fittings with experimental data in some cases [START_REF] Freeborn | A survey of fractional-order circuit models for biology and biomedicine[END_REF]. Among them are some applications which potentially require control actions:

• wood tissue whose model is given by

Z(s) = 1 s α 1 C 1 + R 2 1 + s α 2 R 2 C 2 ,
• electrode/tissue interface (in pacemakers for example)

Z(s) = R ∞ + 1 s α 1 C 1 + 1 s α 2 C 2 ,
• human respiratory system

Z(s) = R + s α L + 1 s β C .

Stability analysis

Theorem 2.57 [START_REF] Matignon | Stability properties for generalized fractional differential systems[END_REF]. A commensurate order system described by a rational transfer function

G(s) = Q(s α ) P (s α ) for (s) > a ≥ 0 where P and Q are two coprime polynomials, α ∈ R + , α ∈ (0, 1) is BIBO-stable if and only if | arg(σ)| > α π 2 ,
for all σ ∈ C such that P (σ) = 0.

Theorem 2.58 [START_REF] Bonnet | Coprime factorizations and stability of fractional differential systems[END_REF]. Let G be a strictly proper transfer function given by

G(s) = b m s βm + b m-1 s β m-1 + • • • + b 0 a n s αn + a n-1 s α n-1 + • • • + a 0 = Q(s) P (s)
where

a k ∈ R for k = 0, . . . , n, a n = 0, 0 = α 0 < α 1 < • • • < α n , b l ∈ R for l = 0, . . . , m, 0 = β 0 < β 1 < • • • < β m < α n , P and Q have no common zeros.
Then G is BIBO-stable if and only if G has no poles in the closed right half-plane.

Delay systems

System descriptions

A linear time-delay system can be described by a transfer function of the form

G(s) = t(s) + M l=1 t l (s)e -β l s p(s) + N k=1 q k (s)e -α k s
where • t, t l for l = 1, . . . , M , p and q k for k = 1, . . . , N are real polynomials;

• deg t, deg t l ≤ deg p in order to have a proper transfer function;

• α k , β l ≥ 0 for k = 1, . . . , N and l = 1, . . . , M .

According to the degrees of p and q k , k = 1, . . . , N , the system can be of one of three types:

• If deg p > deg q k , k = 1, .
. . , N , then the system is of retarded type.

• If deg p ≥ deg q k , k = 1, . . . , N , and deg p = deg q k for at least one value of k, then the system is of neutral type.

• If deg p < deg q k for at least one value of k, then the system is of advanced type.

Examples

There have been a lot of applications modeled by delay systems of retarded and neutral types. Advanced type systems are rarely used because of their stability properties that we will see later. Here we briefly present some linear neutral systems since they will be one of the objects considered in this thesis.

Linear neutral delay systems are encountered as models of open-loop systems or are obtained in closed-loop systems.

An example of an open-loop system is a lossless transmission line. This example was mentioned in many references, for example [START_REF] Brayton | Nonlinear oscillations in a distributed network[END_REF][START_REF] Hale | Introduction to Functional Differential Equations[END_REF][START_REF] Kolmanovskii | Applied Theory of Functional Differential Equations[END_REF], and served as a typical example of neutral delay systems.

An example of neutral systems as models of closed-loop systems is presented in [START_REF] Niculescu | Force measurement time-delays and contact instability phenomenon[END_REF]. The authors described a one-degree-of-freedom prismatic manipulator contacts a one-degree-of-freedom rigid environment. The interaction force is controlled by a PI controller with measurement delay. The closed-loop system is then described by a functional differential equation of neutral type.

Stability analysis

The classification of linear delay systems into retarded, neutral and advanced types is due to their distinct stability properties [START_REF] Bellman | Differential-Difference Equations[END_REF]. For systems with commensurate delays, the stability is characterized as follows:

• A retarded system has at most finitely many poles in the closed right half-plane and for poles of large modulus Re(s) → -∞. Therefore, retarded systems are BIBOstable if and only if they have no poles in the closed right half-plane. Furthermore, BIBO-stability is equivalent to H ∞ -stability.

• A neutral system has poles approaching vertical lines. If all these lines are in the open left half-plane, then the system has at most finitely many unstable poles and exhibits the same stability properties as retarded systems. Now, if there is one asymptotic line in the open right half-plane, the system has infinitely many unstable poles and thus is unstable. The last situation where the imaginary axis is one of the asymptotic lines is the most delicate and will partly considered in this thesis.

• An advanced system has infinitely many unstable poles. In addition, for the poles of large modulus, Re(s) → +∞. The system is then unstable.

In the case of incommensurate delays, while the stability characteristics of retarded and advanced systems are the same as above, neutral systems now have poles located in vertical strips.

Fractional systems with delays

System descriptions

A linear fractional system with delays can be described by a transfer function of the form

G(s) = t(s) + M l=1 t l (s)e -β l s p(s) + N
k=1 q k (s)e -α k s where • t, t l for l = 1, . . . , M , p and q k for k = 1, . . . , N are real quasi-polynomials involving powers of s of fractional exponent;

• deg t, deg t l ≤ deg p in order to have a proper transfer function;

• α k , β l ≥ 0 for k = 1, . . . , N and l = 1, . . . , M .

The classification of these systems into three categories (retarded, neutral, and advanced) is similar to that of classical delay systems.

Stability analysis

For linear fractional systems with commensurate delays and with commensurate fractional orders, the stability characterized in the frequency domain is similar to that of classical delay systems (Hotzel, 1998a;[START_REF] Bonnet | Analysis of fractional delay systems of retarded and neutral type[END_REF]. We present some basic facts here for further use in the next chapters.

A class of (fractional) neutral time-delay systems with commensurate orders and commensurate delays is described by transfer function of the form

G(s) = t(s) p(s) + N k=1 q k (s)e -ksτ , (2.2) 
where

• τ > 0 is the delay,

• t, p, and q k for all k ∈ N N are real polynomials in s µ , 0 < µ ≤ 1,

• -π < arg(s) < π in the case where 0 < µ < 1 in order to have a single value of s µ ,

• deg p ≥ deg t, deg p ≥ deg q k for all k ∈ N N , and deg p = deg q k at least for one k ∈ N N in order to deal with proper neutral systems.

Here, the degree of a (quasi-)polynomial refers to the degree in s µ .

Since deg p ≥ deg q k for all k ∈ N N , then for each k we obtain

q k (s) p(s) = α k + β k s µ + γ k s 2µ + δ k s 3µ + k s 4µ + O(s -5µ ) as |s| → ∞. (2.
3)

The coefficient of the highest degree term of the denominator of the transfer function (2.2) can be written as a multiple of the following polynomial in z

c d (z) = 1 + N k=1 α k z k , (2.4) 
where z = e -sτ . It is called formal polynomial.

Each neutral chain of poles of G is associated to each root r of (2.4) and is first approximated by

s n τ = λ n + o(1), (2.5) 
where

λ n = -ln(r) + 2πn, n ∈ Z, (2.6) 
as n → ∞ [START_REF] Bellman | Differential-Difference Equations[END_REF]Hotzel, 1998a;[START_REF] Fioravanti | Stability of fractional neutral systems with multiple delays and poles asymptotic to the imaginary axis[END_REF].

As a consequence, the neutral chain of poles asymptotically approaches the vertical line

(s) = - ln(|r|) τ . (2.7)
If the vertical line is on the right or on the left of the imaginary axis, which happens when |r| < 1 or |r| > 1, then poles asymptotic to this vertical line are respectively on the right or on the left of the imaginary axis, and then their effects on H ∞ -stability which only depends on their location about the imaginary axis are easily concluded [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF][START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF].

The next lemma presents properties of the formal polynomial when it has multiple roots.

Lemma 2.59. Let r be a root of multiplicity m >

1 of f (z) = 1 + N k=1 α k z k , where α k ∈ C. Then N k=1 k l α k r k = 0 for l = 1, . . . , m -1 and N k=1 k m α k r k = 0. Proof. Since z = r is a root of multiplicity m of f (z) = 1 + N k=1 α k z k , then it is not difficult to see that z = r is also a root of multiplicity m of f l (z) = z l f (z) with l = 1, . . . , m -1. For l = 1, taking the derivative of f 1 (z) = z + N k=1 α k z k+1 , we obtain f 1 (z) = 1 + N k=1 α k z k + N k=1 kα k z k . Since f 1 (r) = 0 and 1 + N k=1 α k r k = 0, then N k=1 kα k r k = 0. Now, assume that N k=1 k l α k r k = 0 for 1 ≤ l ≤ a where 1 ≤ a ≤ m -1. For l = a + 1, we have f (a+1) a+1 (z) = (a + 1)! + N k=1 (k + 1)(k + 2) . . . (k + a + 1)α k z k . It is not difficult to see that f (a+1) a+1 (r) after being expanded contains the term (a + 1)!(1 + N k=1 α k r k ), the terms N k=1 k l α k r k for 1 ≤ l ≤ a, which are zeros, and N k=1 k a+1 α k r k . Since f (a+1) a+1 (r) = 0, we derive N k=1 k a+1 α k r k = 0. For l = m, that is a = m -1, since f m m (r) = 0, then N k=1 k m α k r k = 0.
Chapter 3

Stabilization of MISO fractional systems with delays 

Introduction

The controller synthesis of fractional systems has been of great interest in recent years. However, only few studies have dealt with fractional systems with delays.

Most of the available results concerned SISO systems (Bonnet andPartington, 2002, 2007;[START_REF] Hamamci | An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers[END_REF][START_REF] Özbay | PID controller design for fractional-order systems with time delays[END_REF]. In the framework of fractional representation approach to synthesis problems [START_REF] Vidyasagar | Control System Synthesis: A Factorization Approach[END_REF], the works in (Bonnet andPartington, 2002, 2007) derive coprime factorizations of the transfer function of the system and the corresponding Bézout factors. Recently, PID controllers have been designed for a class of fractional time delay systems with only one unstable pole (Özbay et al., 2012).

For MIMO systems, [START_REF] Curtain | Coprime factorization for regular linear systems[END_REF] derived coprime factorizations for a large class of infinite-dimensional systems. The factorizations were expressed in terms of operators used in a pseudo state-space representation of the systems.

In this work, we consider MISO fractional systems with delays in inputs or output. The MISO structure, which is a particular and simple MIMO case, might be encountered in communication networks, for example [START_REF] Quet | Rate-based flow controllers for communication networks in the presence of uncertain time-varying multiple time-delays[END_REF]. With this structure, a class of classical (integer-order) systems with multiple transmission delays was studied in [START_REF] Bonnet | PID stabilization of SISO delay systems and robust stabilization of systems with multiple transmission delays[END_REF] and coprime factorizations and associated Bézout factors over H ∞ were derived. Now for MISO fractional systems with delays, we would like to find explicit expressions of these factors also regarding H ∞ which allow us an immediate application and which benefit from the fact that fractional transfer functions are often obtained by means of frequency identification, for examples [START_REF] Sabatier | Fractional system identification for lead acid battery state of charge estimation[END_REF][START_REF] Vinagre | Frequency domain identification of a flexible structure with piezoelectric actuators using irrational transfer function models[END_REF]. The determination of these factors is the first step for determining the set of all stabilizing controllers.

The chapter is organized as follows. In Section 3. 

A class of MISO fractional time-delay systems

We consider systems described by transfer matrices of the form

G(s) = e -sh 1 R 1 (s α ), . . . , e -shn R n (s α ) , (3.1) 
where

• 0 ≤ h k ∈ R for k = 1, .
. . , n are the delays;

• α ∈ R, 0 < α < 1; • R k (s α ) = q k (s α )/ p k (s α )
, where p k (s α ) and q k (s α ) are polynomials of integer degree in s α , p k (s α ) and q k (s α ) have no common roots, and deg p k (s α ) ≥ deg q k (s α ) for k = 1, . . . , n;

• d k is the degree in s α of p k (s α );

• s is in the principle branch C\R -, that is arg(s) ∈ (-π, π), in order to guarantee a unique value of the transfer function involving s α with α ∈ (0, 1).

We refer to poles (resp. roots) in the closed right half-plane C + as unstable poles (resp. roots).

The following notations will be of intense use later.

Denote

• p(s α ) the lowest common denominator of R k (s α ) for k = 1, . . . , n;

• d the degree in s α of p(s α ).

Then rational transfer functions R k (s α ) can be rewritten as

R k (s α ) = q k (s α ) p(s α ) ,
where q k (s α ) are polynomials in s α .

We can decompose

p(s α ) = (s α ) m 0 N i=1 (s α -b i ) m i   N j=1 (s α -c j ) m j   ,
where

• b i ∈ D := {σ ∈ C\{0} | -πα/2 ≤ Arg(σ) ≤ πα/2}, • c j ∈ C\{D ∪ {0}},
• m 0 , m i , m j ∈ Z + for i = 1, . . . , N and j = 1, . . . , N .

Hence

s i = b 1/α i
are the non-zero unstable roots in s of p(s α ).

Similarly, we write

p k (s α ) = (s α ) m 0k N i=1 (s α -b i ) m ik   N j=1 (s α -c j ) m jk   ,
where m 0k , m ik , m jk ∈ Z + for i = 1, . . . , N , j = 1, . . . , N and k = 1, . . . , n. It is obvious that m 0k ≤ m 0 , m ik ≤ m i , and m jk ≤ m j .

Left coprime factorizations and Bézout factors

In this section, we present left coprime factorizations and Bézout factors for the transfer matrix (3.1).

Left coprime factorizations

Due to the dimension of the transfer matrix, finding a left coprime factorization is straightforward.

Proposition 3.1. Let G(s) be given by (3.1). Then

M (s) = p(s α ) (s α + 1) d and N (s) = 1 (s α + 1) d e -sh 1 q 1 (s α ), . . . , e -shn q n (s α ) (3.2) is a left coprime factorization over H ∞ of G. Proof. It is obvious that M (s) -1 N (s) = G(s).
We see that

M (s) ∈ H ∞ . Also, each component of N (s) is in H ∞ , and then N (s) ∈ M(H ∞ ).
For all roots σ of p, there exists at least one

1 ≤ k ≤ n such that q k (σ) = 0. Thus inf s∈C + ( n k=1 | N k | + | M |) > 0 which ensures that ( M , N ) is a left coprime factorization over H ∞ of G.

Bézout factors

Our objective in this subsection is to propose left Bézout factors corresponding to the left factorization obtained above. It is interesting to note that besides being elements to construct the set of stabilizing controllers using Youla-Kučera parametrization, a pair of left Bézout factors X, Y immediately provides us a stabilizing controller C = Y X -1 (Quadrat, 2006a, Corollary 5).

For the sake of clarity, we consider several cases of systems (3.1) beginning with simple cases before tackling the general one.

Systems with one unstable pole for each element of the transfer matrix

The first proposition gives Bézout factors for systems involving at most one unstable pole for each element of the transfer matrix.

Proposition 3.2. Let G(s) be given by (3.1) with

R k (s α ) = a k s α -σ k with a k , σ k ∈ R for k = 1, . . . , n. (3.3)
Then Bézout factors corresponding to the left coprime factorization (3.2) are given by

X(s) = (s α + 1) d -n k=1 e -sh k q k (s α ) Y k p(s α ) , Y (s) = Y 1 , . . . , Y n T ,
where Y k for k = 1, . . . , n are constant and satisfy

n k=1 e -sh k q k (s α ) Y k = (s α + 1) d (3.4) at s = b 1/α for all b ∈ D ∪ {0}.
In the case where all σ k are positive (σ k ≥ 0) and distinct, the unique solution of Y k is given by

Y k = e σ 1/α k h k (σ k + 1) n q k (σ k ) . (3.5)
In the case where σ 1 = . . . = σ n = σ > 0, then Y k satisfy the single equation

n k=1 e -σ 1/α h k a k Y k = σ + 1. (3.6)
Proof. From the left Bézout identity, we obtain

X(s) = M -1 (1 -N Y ) = (s α + 1) d -n k=1 e -sh k q k (s α ) Y k (s) p(s α ) . If we choose Y (s) = Y 1 (s), . . . , Y n (s) T ∈ M(H ∞ ) such that the numerator of X(s) vanishes at s = b 1/α for all b ∈ D ∪ {0}, then X(s) is analytic in C + since s = b 1/α
are also the roots of the denominator of X(s). In this particular case, it suffices to choose constants Y 1 , . . . , Y n such that

n k=1 e -sh k q k (s α ) Y k = (s α + 1) d at s = b 1/α for all b ∈ D ∪ {0} to have X(s) ∈ H ∞ .
For all b ∈ D ∪ {0}, we see that

q k (b) = 0 if b = σ k . Then it remains to solve k:1≤k≤n,σ k =b e -b 1/α h k q k (b) Y k = (b + 1) d ,
which gives infinitely many solutions except the case where all σ k for k = 1, . . . , n are positive and distinct.

Indeed, in that case, d = n and the number of equations is equal to the number of unknowns, which is n. We deduce then the unique solution (3.5).

The case where σ 1 = . . . = σ n = σ > 0 corresponds to d = 1. Trivially we have p(s α ) = s α -σ and q k (s α ) = a k . Thus we have to solve

n k=1 e -σ 1/α h k a k Y k = σ + 1,
which gives a unique solution if n = 1 and infinitely many solutions if n > 1.

We illustrate the proposition by the next example.

Example 3.1.

G(s) = e -s √ s , e -s √ s -1 It is easy to see that p( √ s) = √ s( √ s -1), q 1 ( √ s) = √ s -1, and q 2 ( √ s) = √ s.
Then we obtain

M (s) = √ s( √ s -1) ( √ s + 1) 2 , N (s) = e -s ( √ s -1) ( √ s + 1) 2 , e -s √ s ( √ s + 1) 2 .
This system corresponds to the case of unstable and distinct poles. So we obtain

Y (s) = [-1, 4e] T , X(s) = ( √ s + 1) 2 + e -s ( √ s -1) -4e 1-s √ s √ s( √ s -1) . 

Systems with constraints on the multiplicity of the pole at zero

The next proposition considers a class of systems which is already general except that the multiplicity of the zero pole is restricted. This allows us to obtain Bézout factors that only contain commensurate powers of s.

Proposition 3.3. Let G(s) be given by (3.1) and suppose that the multiplicity of the root at zero of p(s α ) verifies the condition m 0 α ≤ 1. Then Bézout factors corresponding to the left coprime factorization (3.2) are given by

X(s) = (s α + 1) d u(s α ) -n k=1 e -sh k q k (s α )µ k (s α ) p(s α )u(s α ) , (3.7) 
Y (s) = µ 1 (s α ) u(s α ) , . . . , µ n (s α ) u(s α ) T , (3.8) 
where u(s α ) is a polynomial in s α of degree greater or equal to d whose zeros are stable, and µ k (s α ) for k = 1, . . . , n are polynomials in s α of degree m 0k + N i=1 m ik satisfying

(s α + 1) d u(s α ) - n k=1 e -sh k q k (s α )µ k (s α ) ∼ s→0 s m 0 α , (3.9) 
and

(s α + 1) d u(s α ) - n k=1 e -sh k q k (s α )µ k (s α ) (l) = 0 (3.10) at s = b 1/α i for 0 ≤ l ≤ m i -1. Proof. It is obvious that Y (s) ∈ M(H ∞ ).
The condition (3.9) is satisfied if in the development of the denominator of X(s) around zero the powers of s whose order is smaller than m 0 α are canceled. Then this fact gives m 0 equations of unknown coefficients of µ k (s α ). The second condition (3.10) introduces N i=1 m i equations. Hence in total, there are

m 0 + N i=1 m i equations of n k=1 m 0k + n k=1 N i=1 m ik + n unknowns. As m 0 + N i=1 m i ≤ n k=1 m 0k + n k=1 N
i=1 m ik + n, the system of equations admits solutions.

The boundedness of X(s) at zero is assured by (3.9). Then following the same arguments as in the proof of the previous proposition, we can conclude that X(s) ∈ H ∞ .

The left Bézout identity is satisfied.

Remark 3.4. When m 0 α > 1, for the condition (3.9), the development of e -sh k around zero will contain powers of s, which might not be multiples of s α . This imposes that µ k might no longer be polynomials in s α .

The following example illustrates how to apply the proposition.

Example 3.2. G(s) = e -s s 1/3 -1 , e -s s
It is obvious that p(s 1/3 ) = s(s 1/3 -1) with degree d = 4 in s 1/3 . It has two unstable roots which are b 0 = 0 of multiplicity m 0 = 3 and b 1 = 1 of multiplicity m 1 = 1. We have then q 1 (s 1/3 ) = s, and q 2 (s 1/3 ) = s 1/3 -1.

From Proposition 3.1, we obtain a left coprime factorization as follows

M (s) = s(s 1/3 -1) (s 1/3 + 1) 4 , N (s) = 1 (s 1/3 + 1) 4 se -s , (s 1/3 -1)e -s .
From Proposition 3.3, we can choose u(s 1/3 ) = (s 1/3 + 1) 4 , which has no unstable roots. Also, µ 1 (s 1/3 ) and µ 2 (s 1/3 ) have the form

µ 1 (s 1/3 ) = β 01 + β 11 s 1/3 , µ 2 (s 1/3 ) = β 02 + β 12 s 1/3 + β 22 s 2/3 + β 32 s.
As s → 0, the numerator of X(s) is developed as

(s 1/3 + 1) 4 u(s 1/3 ) -e -s q 1 (s 1/3 )µ 1 (s 1/3 ) -e -s q 2 (s 1/3 )µ 2 (s 1/3 ) = 1 + β 02 + (8 -β 02 + β 12 )s 1/3 + (28 -β 12 + β 22 )s 2/3 + O(s).
The first condition of Proposition 3.3 is satisfied if and only the powers of s whose exponent is smaller than m 0 α vanish, thus giving β 02 = -1, β 12 = -9, and β 22 = -37.

From the second condition, at the non-zero unstable pole s = 1 of X(s), we must have (s 1/3 + 1) 4 u(s 1/3 ) -e -s q 1 (s 1/3 )µ 1 (s 1/3 ) -e -s q 2 (s 1/3 )µ 2 (s 1/3 ) = 0. This gives β 01 + β 11 = 256e. One possible solution is β 01 = 256e, and β 11 = 0.
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There is no constraint on β 32 , then we can choose β 32 = 0.

In conclusion, we obtain the Bézout factors as follows s 1/3 + 1) 4 , -1 -9s 1/3 -37s 2/3 (s 1/3 + 1) 4 , X(s) = (s 1/3 + 1) 8 -e 1-s 256s -e -s (s 1/3 -1)(-1 -9s 1/3 -37s 2/3 ) s(s 1/3 -1)(s 1/3 + 1) 4 .

Y (s) = 256e (

General case

Now we will tackle the problem of finding Bézout factors of the system (3.1) in its most general configuration.

Proposition 3.5. Let G(s) be given by (3.1). Then Bézout factors corresponding to the left coprime factorization (3.2) are given by

X(s) = (s α + 1) d u(s α ) -n k=1 e -sh k q k (s α )µ k (s) p(s α )u(s α ) , (3.11) Y (s) = µ 1 (s) u(s α ) , . . . , µ n (s) u(s α ) T , (3.12) 
where u(s α ) is a polynomial in s α of degree greater or equal to d whose zeros are stable, and µ k (s) for k = 1, . . . , n have the following form

µ k (s) = λ = a + bα < m 0 α a, b ∈ Z + β λk s λ + m 0 + N i=1 m ik j=m 0 β (jα)k (s α ) j (3.13)
and verify two conditions (i) as s → 0

(s α + 1) d u(s α ) - n k=1 e -sh k q k (s α )µ k (s) ∼ s m 0 α , (ii) for each non-zero unstable root s = b 1/α i , i = 1, . . . , N , of p(s α ) (s α + 1) d u(s α ) - n k=1 e -sh k q k (s α )µ k (s) (l) = 0, where 0 ≤ l ≤ m i -1.
Proof. It is easy to verify that X(s) and Y (s) satisfy the left Bézout identity.

The degree in

s of µ k (s) is (m 0 + N i=1 m ik )α ≤ (m 0 + N i=1 m i )α ≤ dα. With the choice of u(s α ), we see that Y (s) ∈ M(H ∞ ).
Before proving X(s) ∈ H ∞ , we discuss the existence of µ k (s) satisfying the two conditions. The first condition implies that the numerator of X(s) has the same or greater order than the denominator near s = 0. This in turn implies that in the development of the numerator near zero, all powers of s whose exponent is smaller than m 0 α are canceled. Due to the presence of e -sh k and µ k (s), these powers are s λ with λ = a + bα < m 0 α, a, b ∈ Z + . This fact gives a number of equations equal to the number of terms s λ . In addition, the second condition gives N i=1 m i equations. On the other hand, the number of coefficients associated to terms s λ in µ k (s) for k = 1, . . . , n is greater than the number of terms s λ . Also, the number of coefficients associated to terms

(s α ) j , j ≥ m 0 is n k=1 N i=1 m ik + n > N i=1 m i .
Therefore the number of unknowns is greater than the number of equations. The system of equations thus admits a solution.

We see that X(s) is bounded at ∞ in C + . Moreover, by interpolating the non-zero unstable poles of X(s), the second condition assures that X(s) is analytic in C + . The boundedness of the function at s = 0 is satisfied by the first condition. Then X(s) ∈ H ∞ .

Remark 3.6. In the case where α = 1/m with m ∈ Z + \{0, 1}, we see that λ are multiples of α. Then we obtain an elegant formula of µ k which only contains the terms in s α .

Example 3.3.

G(s) = e -s (s 1/2 -1) 2 , e -2s s 3/2
Obviously, p(s 1/2 ) = s 3/2 (s 1/2 -1) 2 of degree d = 5 in s 1/2 . Its unstable roots are b 0 = 0 of multiplicity m 0 = 3 and b 1 = 1 of multiplicity m 1 = 2. We have q 1 (s 1/2 ) = s 3/2 , and q 2 (s 1/2 ) = (s 1/2 -1) 2 .

The left coprime factorization obtained from Proposition 3.1 is

M (s) = s 3/2 (s 1/2 -1) 2 (s 1/2 + 1) 5 , N (s) = 1 (s 1/2 + 1) 5 [e -s s 3/2 , e -2s (s 1/2 -1) 2 ].
From Proposition 3.5, we can choose u(s 1/2 ) = (s 1/2 + 1) 5 , which has no unstable roots. The powers of s whose exponent is a linear combination of 1 and α = 0.5 and is smaller than m 0 α are 1, s 1/2 , s. Then µ 1 (s) and µ 2 (s) have the form

µ 1 (s) = β 01 + β (1/2)1 s 1/2 + β 11 s + β (3/2)1 s 3/2 + β 21 s 2 + β (5/2)1 s 5/2 , µ 2 (s) = β 02 + β (1/2)2 s 1/2 + β 12 s + β (3/2)2 s 3/2 .
As s → 0, the numerator of X(s) is developed as

(s 1/2 + 1) 5 u(s 1/2 ) -e -s q 1 (s 1/2 )µ 1 (s) -e -2s q 2 (s 1/2 )µ 2 (s) = 1 -β 02 + (10 + 2β 02 -β (1/2)2 )s 1/2 + (45 + β 02 + 2β (1/2)2 -β 12 )s + O(s 3/2 ).
The first condition of Proposition 3.5 is satisfied if and only if the powers whose exponent is smaller than m 0 α = 3/2 vanish, thus giving β 02 = 1, β (1/2)2 = 12, and β 12 = 70.

From the second condition, we have two equations, that is (s 1/2 + 1) 5 u(s 1/2 ) -e -s q 1 (s 1/2 )µ 1 (s) -e -2s q 2 (s 1/2 )µ 2 (s) This gives 1024 -e -1 (β 01 + β (1/2)1 + β 11 + β (3/2)1 + β 21 + β (5/2)1 ) = 0, 2560 -e -1 (0.5β 01 + β (1/2)1 + 1.5β 11 + 2β (3/2)1 + 2.5β 21 + 3β (5/2)1 ) = 0. One possible solution is β 01 = -3072e, β (1/2)1 = 4096e, and

(l) = 0 at s = b 1 = 1 for l = 0, 1.
β 11 = β (3/2)1 = β 21 = β (5/2)1 = 0.
Therefore, we have

X(s) = (s 1/2 + 1) 10 -e -s s 3/2 µ 1 (s) -e -2s (s 1/2 -1) 2 µ 2 (s) s 3/2 (s 1/2 -1) 2 (s 1/2 + 1) 5 , Y (s) = µ 1 (s) (s 1/2 + 1) 5 , µ 2 (s) (s 1/2 + 1) 5 ,
where µ 1 (s) = -3072e + 4096es 1/2 , and µ 2 (s) = 1 + 12s 1/2 + 70s.

Minimal form of Bézout factors in the general case

We have seen in Examples 3.2 and 3.3 that we have infinite choices for some coefficients of µ k for k = 1, . . . , n and so far we have chosen the values for these coefficients such that the orders of µ k are smallest.

In the next proposition, we present Bézout factors of G(s) in the general case with µ k for k = 1, . . . , n such that the number of coefficients and the order of µ k are minimal. The proof justifies in details that a unique solution exists for that form of µ k and of course solutions exist for the non-minimal forms of µ k presented in Propositions 3.3 and 3.5. Before stating the proposition, let us denote

k i := min{k | k ∈ {1, . . . , n}, m ik = m i } for i = 0, . . . , N, (3.14) 
f k := i∈{1,...,N },k i =k m i for k = 1, . . . , n, L(m 0 α) := {x ∈ R | x = a + bα < m 0 α, a, b ∈ Z + }. (3.15)
Proposition 3.7. Let G(s) be given by (3.1). Then Bézout factors corresponding to the left coprime factorization (3.2) are given by

X(s) = (s α + 1) d u(s α ) -n k=1 e -sh k q k (s α )µ k (s) p(s α )u(s α ) , Y (s) = µ 1 (s) u(s α ) , . . . , µ n (s) u(s α ) T ,
where u(s α ) is a polynomial in s α of degree greater or equal to d whose zeros are stable, and µ k (s) for k = 1, . . . , n have the following form

µ k (s) =              λ∈L(m 0 α) β λk s λ + m 0 +f k -1 j=m 0 β (jα)k (s α ) j if k = k 0 , f k -1 j=0 β (jα)k (s α ) j if k = k 0 ,
and satisfy

(s α + 1) d u(s α ) - n k=1 e -sh k q k (s α )µ k (s) = O(s m 0 α ) (3.16)
as s → 0 and

(s α + 1) d u(s α ) - n k=1 e -sh k q k (s α )µ k (s) (l) = 0, (3.17) 
for each non-zero unstable root s = b

1/α i , i = 1, . . . , N , of p(s α ) and for 0 ≤ l ≤ m i -1. Remark 3.8. If f k = 0, then µ k (s) =    λ∈L(m 0 α) β λk s λ if k = k 0 , 0 if k = k 0 .
Proof. It is easy to verify that X(s) and Y (s) satisfy the left Bézout identity.

The degree of µ k (s) is smaller than or equal to the degree of u(s α ), and so

Y (s) ∈ M(H ∞ ).
We see that X(s) is bounded at ∞ in C + . Moreover, due to (3.17), the numerator of X(s) has the same non-zero unstable roots as the denominator, which assures that X(s) is analytic in C + . The boundedness of the function at s = 0 is satisfied by (3.16). Then

X(s) ∈ H ∞ .
Now it remains to prove the existence of µ k (s) satisfying the two conditions (3.16) and (3.17).

First, we consider the condition (3.16) on the poles at zero. If the system has no zero pole, then the condition is satisfied. Otherwise, the numerator of X(s) can be developed around zero as follows

(s α + 1) d u(s α ) - n k=1 e -sh k q k (s α )µ k (s) = a 0 + a 1 s α + . . . + a m 0 -1 s (m 0 -1)α + O(s m 0 α ) - n k=1 (1 -sh k + . . . + O(s m 0 α )) × (b 0k + b 1k s α + . . . + b (m 0 -1)k s (m 0 -1)α + O(s m 0 α ))   λ∈L(m 0 α) β λk s λ + O(s m 0 α )   = a 0 + a 1 s α + . . . + a m 0 -1 s (m 0 -1)α - n k=1   λ∈L(m 0 α) γ λk s λ     λ∈L(m 0 α) β λk s λ   + O(s m 0 α ).
The condition imposes that all powers of s whose order is smaller than m 0 α are eliminated.

Let us denote the elements of L(m 0 α) by λ j , j = 0, . . . , N -1 with N = card(L(m 0 α)) and assume that 0 = λ 0 < . . . < λ N -1 , then the condition is equivalent to the following matrix equation

n k=1 Γ k B k =      a N -1 a N -2 . . . a 0      , (3.18) 
where Γ k ∈ R N ×N are upper triangular matrices which contain γ λk and whose entries on the main diagonal are all γ λ 0 k ; the column vectors B k contain β λk ; for j = 0, . . . , N -1, a j = a x if λ j = xα, x ∈ Z + and a j = 0 otherwise. From the precedent development of the numerator of X(s), note that the coefficients γ λk are obtained from the product of

(1 -sh k + . . . + O(s m 0 α )) and (b 0k + b 1k s α + . . . + b (m 0 -1)k s (m 0 -1)α + O(s m 0 α ))
and in particular γ λ 0 k = b 0k . For k = k 0 with k 0 defined by (3.14), b 0k 0 = 0 since q k 0 (s α ) does not have roots at zero. Then det Γ k 0 = 0. And so B k 0 admits a unique solution for any values of β λk with λ < m 0 α and k ∈ {1, . . . , n}, k = k 0 .

Next, we analyze the second condition (3.17) on non-zero poles.

We first examine the system of equations obtained by replacing s by a non-zero unstable pole b

1/α i and study the existence of µ

(l 2 ) k i (b 1/α i ) for l 2 = 0, . . . , m i -1 satisfying the equations. The first equation which corresponds to l = 0 contains q k i (b i )µ k i (b 1/α i ) with q k i (b i ) = 0. The second equation, i.e. l = 1, contains a linear sum of q k i (b i )µ k i (b 1/α i ) and q k i (b i )µ k i (b 1/α i ).
Generally, the equation corresponding to the l-th derivative contains a linear sum of

q k i (b i )µ (l 2 ) k i (b 1/α i ) with l 2 = 0, . . . , l -1. Therefore, for arbitrary values of µ (l 2 ) k (b 1/α i ) for k = 1, . . . , n, k = k i and l 2 = 0, . . . , m i -1, the system of m i equations can be recursively solved for m i unknowns µ (l 2 ) k i (b 1/α i )
with l 2 = 0, . . . , m i -1 and admits a unique solution.

Hence, the second condition introduces in total N i=1 m i equations. This system of equations has a unique solution for µ

(l 2 ) k i (b 1/α i ) with i = 1, . . . , N and l 2 = 0, . . . , m i -1 if we choose any values of µ (l 2 ) k (b 1/α i ) for i = 1, . . . , N , k = 1, . . . , n, k = k i and l 2 = 0, . . . , m i -1.
Hence, for each k ∈ {1, . . . , n} and k = k 0 , the coefficients

β (jα)k , j = 0, . . . , f k -1 of µ k (s) satisfy the equations µ (l 2 ) k (b 1/α i ) = a k,i,l 2 for i = 1, . . . , N such that k i = k and l 2 = 0, . . . , m i -1.
This is the problem of Hermite interpolation and there exists a unique solution.

For k = k 0 , the coefficients of µ k 0 (s), i.e. β λk 0 with λ ∈ L(m 0 α) and β (jα)k with j = m 0 , . . . , m 0 + f k -1, satisfy the equations

µ (l 2 ) k 0 (b 1/α i ) = a k 0 ,i,l 2 for i = 1, . . . , N such that k i = k 0 and l 2 = 0, . . . , m i -1. We can write µ k 0 (s) as follows µ k 0 (s) = ν k 0 (s) + s m 0 α η k 0 (s α )
where

ν k 0 (s) = λ∈L(m 0 α) β λk 0 s λ , η k 0 (s α ) = m 0 +f k 0 -1 j=m 0 β (jα)k 0 s (j-m 0 )α .
For arbitrary values of the coefficients β λk 0 with λ ∈ L(m 0 α), we can derive the values of η

(l 2 ) k 0 (b i ) for i = 1, . . . , N such that k i = k 0 and l 2 = 0, . . . , m i -1.
Note that the numbers of unknowns and of equations are the same and are equal to f k 0 . This returns to the problem of Hermite interpolation and there exists a unique solution.

Remark 3.9. If m 0 α ≤ 1 or α = 1/m with m ∈ Z + \{0, 1}, then λ are multiples of α and we obtain an elegant formula of µ k 0 which only contains the terms in s α . More generally, if α is rational, then µ k 0 contains powers of s of commensurate exponents. This can also be achieved if we introduce more coefficients in µ k (s), k = 1, . . . , n, k = k 0 than in the forms given in the proposition. More precisely, if we denote x the number of values of λ ∈ L(m 0 α) such that λ = bα, b ∈ Z + , then we have to add at least x terms in s α of higher orders. Then it is possible to choose β λk 0 = 0 for λ ∈ L(m 0 α), λ = bα, b ∈ Z + and solve the system of equations for other coefficients which admit unique or infinitely many solutions.

Remark 3.10. It is enough to choose u(s α ) of degree in s greater or equal to the degree in s of µ k (s) for k = 1, . . . , n in order to ensure that Y ∈ M(H ∞ ).

Remark 3.11. The case studied in Proposition 3.2 is obviously included in Proposition 3.7. However, the expressions of the Bézout factors given in the former are slightly different from those given in the latter. In fact, in Proposition 3.2, u(s α ) is chosen to be of minimal degree as explained in Remark 3.10 while µ k (s) for k = 1, . . . , n have more free coefficients.

The same remarks can be stated for Propostions 3.3 and 3.5.

The following example illustrates the case where α is irrational.

Example 3.4. G(s) = e -s s π/2 (s π/4 -1) 2 , e -3s s π/4 -1
We have p(s π/4 ) = s π/2 (s π/4 -1) 2 with degree d = 4 in s π/4 . Its unstable roots are b 0 = 0 and b 1 = 1 with multiplicity m 0 = 2 and m 1 = 2 respectively. Obviously, q 1 (s π/4 ) = 1 and q 2 (s π/4 ) = s π/2 (s π/4 -1). Then from Proposition 3.1, we obtain a left coprime factorization as follows

M (s) = s π/2 (s π/4 -1) 2 (s π/4 + 1) 4 , N (s) = 1 (s π/4 + 1) 4 e -s , e -3s s π/2 (s π/4 -1) .
To complete the expressions of the Bézout factors given in Proposition 3.7, we now choose u(s π/4 ) and search for µ 1 (s) and µ 2 (s) by solving the equations imposed by the two conditions (3.16), (3.17).

Here, we choose u(s π/4 ) = (s π/4 +1) 4 . It is easy to see that L(m 0 α) = L(π/2) = {0, π/4, 1} and f 1 = 2, f 2 = 0. Therefore, µ 1 (s) and µ 2 (s) have the forms

µ 1 (s) = β 01 + β (π/4)1 s π/4 + β 11 s + β (π/2)1 s π/2 + β (3π/4)1 s 3π/4 , µ 2 (s) = 0.
The numerator of X(s) is then (s π/4 + 1) 8 -e -s µ 1 (s).

Its development around zero is

(1 -β 01 ) + (8 -β (π/4)1 )s π/4 + (β 01 -β 11 )s + O(s π/2 ).
The condition (3.16) implies that all powers of s with degree smaller than π/2 vanish, thus leads to β 01 = 1, β (π/4)1 = 8, and β 11 = 1.

The other coefficients are derived from the condition (3.17), which is represented by

(s π/4 + 1) 8 -e -s µ 1 (s) = 0, [(s π/4 + 1) 8 -e -s µ 1 (s)] = 0 at s = 1. The unique solution of these two equations is β (π/2)1 = -2(11π + 128eπ -2 + 512e)/π and β (3π/4)1 = 4(3π + 128eπ -1 + 256e)/π.
Hence, the Bézout factors are Y (s) = µ 1 (s) (s π/4 + 1) 4 ,0 , where

X(s) = (s π/4 + 1) 8 -e -s µ 1 (s) s π/2 (
µ 1 (s) = 1 + 8s π/4 + s - 2(11π + 128eπ -2 + 512e) π s π/2 + 4(3π + 128eπ -1 + 256e) π s 3π/4 .

Right coprime factorizations and Bézout factors

The previous section showed that the systems G(s) under study admit left coprime factorizations over H ∞ , and one of which is given by (3.2). Since H ∞ is a Hermite ring, then by (Quadrat, 2003a, Corollary 4.14), we deduce that there exist right coprime factorizations for G(s).

For our transfer matrices, right coprime factorizations and right Bézout factors are matrices involving more entries than their left counterparts. We will consider two large classes of systems. First, for systems with distinct poles, i.e. p k (s α ) and p k (s α ) have no common roots if k = k , the matrix M (s) can be simply of diagonal form, which reduces calculation complexity since the inverse matrix is obtained easily. For this class, we will consider three cases ranging from particular to general ones. They were studied in the same order in the previous section for left Bézout factors: systems with at least one unstable pole for each element of the transfer matrix, systems with constraints on the multiplicity of poles at zero, and systems without constraints. Second, for systems with identical poles, the form of the matrix M (s) is much more complicated. Two particular cases are considered as our first attempt: systems with the same pole for all elements of the transfer matrix and systems with one pole for each element.

Distinct poles

Systems with one unstable pole for each element of the transfer matrix

We consider the particular case of polynomials p k of degree one. This class of systems was studied in Proposition 3.2 for left Bézout factors.

Proposition 3.12. Let G(s) be given by (3.1) with

R k (s α ) = a k s α -σ k with a k , σ k ∈ R for k = 1, . . . , n.
Suppose that all (zero and non-zero) unstable roots of p k (s α ) for k = 1, . . . , n are distinct, i.e. σ k = σ k for σ k , σ k ≥ 0, k = k . Then a right coprime factorization and associated Bézout factors are given by

N (s) = [N 1 (s), . . . , N n (s)], M (s) =    M 11 (s) • • • 0 . . . . . . . . . 0 • • • M nn (s)    , X(s) =    X 11 (s) • • • X 1n (s) . . . . . . . . . X n1 (s) • • • X nn (s)    , Y (s) = [Y 1 (s), . . . , Y n (s)] T ,
where for k, k ∈ {1, . . . , n} and k = k

N k (s) = e -sh k a k s α + 1 , M kk (s) = s α -σ k s α + 1 , Y k (s) = µ k u(s α ) σ j ∈D∪{0},j =k (s α -σ j ), X kk (s) = 1 -Y k (s)N k (s) M kk (s) , (3.19) X kk (s) = -Y k (s) e -sh k a k s α -σ k ,
where u(s α ) is a polynomial of degree (card(D) -1) in s α that has no unstable zeros; µ k , k = 1, . . . , n are constants and µ k such that σ k ≥ 0 are given by

µ k = u(σ k )(σ k + 1)e σ 1/α k h k a k σ j ∈D∪{0},j =k (σ k -σ j ) . (3.20) Proof. It is obvious that N k (s), M kk (s), Y k (s), X kk (s) ∈ H ∞ .
X kk (s) in (3.19) can be written as

X kk (s) = u(s α )(s α + 1) -µ k e -sh k a k σ j ∈D∪{0},j =k (s α -σ j ) u(s α )(s α -σ k ) .
If σ k ≥ 0, then µ k as in (3.20) makes the numerator vanish at σ k , thus guaranteeing that

X kk (s) ∈ H ∞ . Otherwise, i.e. σ k < 0, X kk (s) ∈ H ∞ with any constant µ k .
We see also that G(s) = N (s)M (s) -1 and that the right Bézout identity X(s)M (s) + Y (s)N (s) = I is verified.

The following illustrative example continues Example 3.1.

Example 3.5.

G(s) = e -s √ s , e -s √ s -1
The right coprime factorization and Bézout factors proposed by Proposition 3.12 are

N (s) = e -s √ s + 1 , e -s √ s + 1 , M (s) = √ s √ s+1 0 0 √ s-1 √ s+1 , Y (s) = 1 - √ s √ s + 1 , 4e √ s √ s + 1 T , X(s) =   ( √ s+1) 2 +( √ s-1)e -s √ s( √ s+1) e -s √ s+1 -4e 1-s √ s+1 ( √ s+1) 2 -4e 1-s √ s ( √ s-1)( √ s+1)   .

Systems with constraints on the multiplicity of the pole at zero

The systems considered in the next proposition have the same condition on the multiplicity of the root at zero as those considered in Proposition 3.3. For non-zero roots, no condition is imposed, and thus finding Bézout factors by interpolation becomes more difficult than the previous case.

Proposition 3.13. Let G(s) be given by (3.1). Suppose that p k (s α ) and p k (s α ) have no common (zero and non-zero) unstable roots if k = k for k, k ∈ {1, . . . , n}, and suppose that the multiplicity of the root at zero of p(s α ) verifies the condition m 0 α ≤ 1. Then a right coprime factorization and associated Bézout factors are given by

N (s) = [N 1 (s), . . . , N n (s)], M (s) =    M 11 (s) • • • 0 . . . . . . . . . 0 • • • M nn (s)    , X(s) =    X 11 (s) • • • X 1n (s) . . . . . . . . . X n1 (s) • • • X nn (s)    , Y (s) = [Y 1 (s), . . . , Y n (s)] T ,
where for k, k ∈ {1, . . . , n} and k = k

N k (s) = e -sh k q k (s α ) (s α + 1) d k , (3.21) M kk (s) = p k (s α ) (s α + 1) d k , (3.22) Y k (s) = µ k (s α ) u(s α ) 1≤j≤n,j =k (s α ) m 0j N i=1 (s α -b i ) m ij , X kk (s) = 1 -Y k (s)N k (s) M kk (s) , X kk (s) = -Y k (s)e -sh k q k (s α ) p k (s α ) , with d k is the degree of p k in s α ; u(s α ) is a polynomial of degree d in s α that has no unstable zeros; and µ k (s α ) are polynomials in s α of degree m 0k + N i=1 m ik satisfying u(s α )(s α + 1) d k -e -sh k q k (s α )µ k (s α ) 1≤j≤n,j =k N i=1 (s α -b i ) m ij = O(s m 0 α ) (3.23) as s → 0 if p k (s α
) has a root at zero, and for each non-zero unstable root of

p k (s α ), i.e. s = b 1/α i with m ik = 0 for i = 1, . . . , N ,   u(s α )(s α + 1) d k -e -sh k q k (s α )µ k (s α ) 1≤j≤n,j =k (s α ) m 0j N i=1 (s α -b i ) m ij   (l)
= 0

(3.24) where l = 0, . . . , m ik -1.

Proof. It is obvious that N k (s), M kk (s), Y k (s), X kk (s) ∈ H ∞ .
The two conditions (3.23) and (3.24) guarantee X kk (s) ∈ H ∞ for k = 1, . . . , n. We can find µ k (s α ) that satisfies the two conditions. Indeed, if m 0k = 0, the condition (3.23) is satisfied if the first m 0k terms, whose order in s α are 0, . . . , m 0k -1, in the development around zero of the left expression are zero. Thus (3.23) gives m 0k equations, and (3.24) gives N i=1 m ik equations. On the other hand, the number of unknown coefficients of µ k (s) is one greater than that of equations and the system of equations admits solutions.

We see also that G(s) = N (s)M (s) -1 and the right Bézout identity

X(s)M (s) + Y (s)N (s) = I is verified. Remark 3.14. If m 0 α > 1, then e -sh k needs to be developed to 1 -sh k + . . . + O(s m 0 α ).
And in the case where 1/α is not an integer, the condition (3.23) is no longer satisfied since others terms, which are polynomials in s α , cannot compensate s.

The following example continues Example 3.2.

Example 3.6.

G(s) = e -s s 1/3 -1 , e -s s
The right coprime factorizations obtained by using Proposition 3.13 are

N (s) = e -s s 1/3 + 1 , e -s (s 1/3 + 1) 3 , M (s) = s 1/3 -1 s 1/3 +1 0 0 s (s 1/3 +1) 3 . We choose u(s 1/3 ) = (s 1/3 + 1) 4 . Then Y (s) has the form Y (s) = µ 1 (s 1/3 )s (s 1/3 + 1) 4 , µ 2 (s 1/3 )(s 1/3 -1) (s 1/3 + 1) 4 T where µ 1 (s 1/3 ) = β 01 + β 11 s 1/3 and µ 2 (s 1/3 ) = β 02 + β 12 s 1/3 + β 22 s 2/3 + β 32 s.
The condition (3.23) is only applied for k = 2. We develop the left expression around zero as follows

(s 1/3 + 1) 7 -e -s µ 2 (s 1/3 )(s 1/3 -1) = (1 + β 02 ) + (7 -β 02 + β 12 )s 1/3 + (21 -β 12 + β 22 )s 2/3 + O(s).
It turns out that all the terms with orders smaller than s in the development have to be zero, thus giving β 02 = -1, β 12 = -8, and β 22 = -29.

Other unknown coefficients are deduced from applying the condition (3.24).

(s 1/3 + 1) 5 -e -s µ 1 (s 1/3 )s = 0 at s = 1, then β 01 + β 11 = 32e. We choose β 01 = 32e, β 11 = 0, and β 32 = 0 in order to reduce the order of µ 1 (s 1/3 ) and µ 2 (s 1/3 ).

Finally, the right Bézout factors are

Y (s) = 32es (s 1/3 + 1) 4 , -(29s 2/3 + 8s 1/3 + 1)(s 1/3 -1) (s 1/3 + 1) 4 T X(s) =   (s 1/3 +1) 5 -32e 1-s s (s 1/3 -1)(s 1/3 +1) 4 -32e 1-s (s 1/3 +1) 4 (29s 2/3 +8s 1/3 +1)e -s (s 1/3 +1) 4 X 22 (s)  
where X 22 (s) = (s 1/3 + 1) 7 + (29s 2/3 + 8s 1/3 + 1)(s 1/3 -1)e -s s(s 1/3 + 1) 4 .

General case

We now consider the general form of systems with distinct poles between different elements of the transfer matrix.

Proposition 3.15. Let G(s) be given by (3.1). Suppose that all (zero and non-zero) unstable roots of p k (s α ) for k = 1, . . . , n are distinct. Then one right coprime factorization and associated Bézout factors are given by

N (s) = [N 1 (s), . . . , N n (s)], M (s) =    M 11 (s) • • • 0 . . . . . . . . . 0 • • • M nn (s)    , X(s) =    X 11 (s) • • • X 1n (s) . . . . . . . . . X n1 (s) • • • X nn (s)    , Y (s) = [Y 1 (s), . . . , Y n (s)] T , where for k, k ∈ {1, . . . , n} and k = k N k (s) = e -sh k q k (s α ) (s α + 1) d k , (3.25) 
M kk (s) = p k (s α ) (s α + 1) d k , (3.26) Y k (s) = µ k (s) u(s α ) 1≤j≤n,j =k (s α ) m 0j N i=1 (s α -b i ) m ij , X kk (s) = 1 -Y k (s)N k (s) M kk (s) , X kk (s) = -Y k (s)e -sh k q k (s α ) p k (s α ) , with d k is the degree of p k in s α ; u(s α
) is a polynomial of degree d in s α that has no unstable zeros; and µ k (s) have the following form

µ k (s) = λ∈L(m 0k α) β λk s λ + m 0k + N i=1 m ik j=m 0k β (jα)k (s α ) j
and satisfy the following conditions

(i) if p k (s α ) has a root at zero, as s → 0 u(s α )(s α + 1) d k -e -sh k µ k (s) q k (s α ) 1≤j≤n,j =k N i=1 (s α -b i ) m ij = O(s m 0k α ), (3.27) (ii) for each non-zero unstable root of p k (s α ), i.e. s = b 1/α i with m ik = 0 for i = 1, . . . , N ,   u(s α )(s α + 1) d k -e -sh k µ k (s) q k (s α ) 1≤j≤n,j =k (s α ) m 0j N i=1 (s α -b i ) m ij   (l)
= 0

(3.28) where l = 0, . . . , m ik -1.

Proof. It is obvious that N k (s), M kk (s), Y k (s), X kk (s) ∈ H ∞ .
The two conditions (3.27) and (3.28) guarantee X kk (s) ∈ H ∞ for k = 1, . . . , n. We can find µ k (s) that satisfies the two conditions. Indeed, (3.27) gives a number of equations which is equal to the number of the terms s λ , and (3.28) gives N i=1 m ik equations. On the other hand, the number of unknown coefficients of µ k (s) is one greater than that of equations. Therefore, for each k = 1, . . . , n, the system of equations generally admits solutions.

We see also that

G(s) = N (s)M (s) -1 and the right Bézout identity X(s)M (s) + Y (s)N (s) = I is verified. Remark 3.16. u(s α ) can be a polynomial of degree d in s α , where d is the number of unstable poles of all R k (s α ), that is d = n k=1 N i=0 m ik .

Minimal form of Bézout factors in the general case

In this context of determining right Bézout factors, the choice of µ k for k = 1, . . . , n for minimal number of coefficients and minimal order is not quite different from that presented in the preceding proposition. Proposition 3.17. Let G(s) be given by (3.1). Suppose that all (zero and non-zero) unstable roots of p k (s α ) for k = 1, . . . , n are distinct. Then one right coprime factorization and associated Bézout factors are given by

N (s) = [N 1 (s), . . . , N n (s)], M (s) =    M 11 (s) • • • 0 . . . . . . . . . 0 • • • M nn (s)    , X(s) =    X 11 (s) • • • X 1n (s) . . . . . . . . . X n1 (s) • • • X nn (s)    , Y (s) = [Y 1 (s), . . . , Y n (s)] T ,
where for k, k ∈ {1, . . . , n} and k = k

N k (s) = e -sh k q k (s α ) (s α + 1) d k , (3.29) M kk (s) = p k (s α ) (s α + 1) d k , (3.30) Y k (s) = µ k (s) u(s α ) 1≤j≤n,j =k (s α ) m 0j N i=1 (s α -b i ) m ij , X kk (s) = 1 -Y k (s)N k (s) M kk (s) , X kk (s) = -Y k (s)e -sh k q k (s α ) p k (s α ) , with d k is the degree of p k in s α ; u(s α
) is a polynomial of degree d in s α that has no unstable zeros; and µ k (s) have the following form

µ k (s) = λ∈L(m 0k α) β λk s λ + m 0k + N i=1 m ik -1 j=m 0k β (jα)k (s α ) j , satisfying u(s α )(s α + 1) d k -e -sh k µ k (s) q k (s α ) 1≤j≤n,j =k N i=1 (s α -b i ) m ij = O(s m 0k α ) (3.31) as s → 0 if p k (s α
) has a root at zero, and for each non-zero unstable root of p k (s α ), i.e.

s = b 1/α i with m ik = 0 for i = 1, . . . , N ,   u(s α )(s α + 1) d k -e -sh k µ k (s) q k (s α ) 1≤j≤n,j =k (s α ) m 0j N i=1 (s α -b i ) m ij   (l) = 0 (3.32) where l = 0, . . . , m ik -1. Proof. It is obvious that N k (s), M kk (s), Y k (s), X kk (s) ∈ H ∞ . The two conditions (3.31) and (3.32) guarantee X kk (s) ∈ H ∞ for k = 1, . . . , n. We see also that G(s) = N (s)M (s) -1 and the right Bézout identity X(s)M (s) + Y (s)N (s) = I is verified.
To complete the proof, we prove the existence of µ k (s) satisfying the two conditions. First, we consider the condition (3.31) on zero pole. For k ∈ {1, . . . , n} such that m 0k > 0, we develop the numerator of X k k(s) around zero as follows

u(s α )(s α + 1) d k -e -sh k µ k (s) q k (s α ) 1≤j≤n,j =k N i=1 (s α -b i ) m ij = a 0 + a 1 s α + . . . + a m 0k -1 s (m 0k -1)α -   λ∈L(m 0k α) γ λk s λ     λ∈L(m 0k α) β λk s λ   + O(s m 0k α ) (3.33) where u(s α )(s α + 1) d k = a 0 + a 1 s α + . . . + a m 0k -1 s (m 0k -1)α + O(s m 0k α ), e -sh k q k (s α ) 1≤j≤n,j =k N i=1 (s α -b i ) m ij = λ∈L(m 0k α) γ λk s λ + O(s m 0k α ), (3.34) µ k (s) = λ∈L(m 0k α) β λk s λ + O(s m 0k α ).
Eliminating the powers of s with order smaller than m 0k α in the numerator gives the matrix equation

Γ k       β λ N k -1 k β λ N k -2 k . . . β λ 0 k       =       a N k -1 a N k -2 . . . a 0       , (3.35) 
where

N k = card(L(m 0k α)), λ j ∈ L(m 0k α), λ 0 < . . . < λ N k -1 ;
Γ k is an upper triangular matrix whose entries on the main diagonal are all γ λ 0 k ; a j = a x if λ j = xα, j = 0, . . . , N k -1, otherwise a j = 0. From (3.34), we see that λ 0k = 0, then Γ k is invertible and the system of equations admits a unique solution.

Now, we analyze the second condition (3.32) related to non-zero unstable poles. We can write µ k (s) as follows

µ k (s) = ν k (s) + s m 0k α η k (s α )
where

ν k (s) = λ∈L(m 0k α) β λk s λ , η k (s α ) = m 0k + N i=1 m ik -1 j=m 0k β (jα)k s (j-m 0k )α .
Then for each k ∈ {1, . . . , n}, we can derive the values of η

(l 2 ) k (b i ) for i ∈ {1, . . . , N } such that m ik > 0 and l 2 = 0, . . . , m ik -1. If we consider the coefficients β (jα)k , j = m 0k , . . . , m 0k + N
i=1 m ik -1 as unknowns, then the number of unknowns is the same as the number of equations and is equal to N i=1 m ik . This is the problem of Hermite interpolation and there exists a unique solution.

Remark 3.18. We cannot eliminate the powers of s with non-commensurate order in µ k (s) such that m 0k > 0 by adding more coefficients as we can in the case of left Bézout factors. In fact, powers of s with order higher than m 0k α do not appear in the development up to order m 0k α of the numerator of X kk (s) and thus do not affect the matrix equation (3.35).

Here is a numerical example of the use of the proposition.

Example 3.7.

G(s) = e -s s π/2 (s π/4 -1) 2 , e -3s s π/4 -2
By applying Proposition 3.17 we obtain the right coprime factorizations as follows

N (s) = e -s (s π/4 + 1) 4 , e -3s s π/4 + 1 , M (s) =   s π/2 (s π/4 -1) 2 (s π/4 +1) 4 0 0 s π/4 -2 s π/4 +1   .
We choose u(s π/4 ) = (s π/4 + 1) 5 , then Y (s) has the form

Y (s) = µ 1 (s)(s π/4 -2) (s π/4 + 1) 5 , µ 2 (s)s π/2 (s π/4 -1) 2 (s π/4 + 1) 5 T where µ 1 (s) = β 01 + β (π/4)1 s π/4 + β 11 s + β (π/2)1 s π/2 + β (3π/4)1 s 3π/4 and µ 2 (s) = β 02 .
The condition (3.31) is only applied for k = 1. We develop the numerator of X 11 (s) around zero as follows

(s π/4 + 1) 9 -e -s µ 1 (s)(s π/4 -2) = (1 + β 01 ) + (9 -β 01 + β (π/4)1 )s π/4 + (β 11 -β 01 )s + O(s π/2 ).
It turns out that all the terms with order smaller than π/2 in the development have to be zero, thus giving β 01 = -1/2, β (π/4)1 = -19/4, and

β 11 = -1/2.
Other unknown coefficients are deduced from applying the condition (3.32).

(s π/4 + 1) 9 -e -s µ 1 (s)(s π/4 -2) = 0, [(s π/4 + 1) 9 -e -s µ 1 (s)(s π/4 -2)] = 0 at s = 1 and (s π/4 + 1) 6 -e -3s µ 2 (s)s π/2 (s π/4 -1) 2 = 0 at s = 2 4/π , then the unique solution of the above equations is β (π/2)1 = (25π + 2560eπ -4 + 4096e)/(2π), β (3π/4)1 = -(27π + 7168eπ -8 + 8192e)/(4π), and β 02 = (729(e 2 4/π ) 3 )/4.

Finally,

X(s) =   (s π/4 +1) 9 -e -s µ 1 (s)(s π/4 -2) s π/2 (s π/4 -1) 2 (s π/4 +1) 5 -e -3s µ 1 (s) (s π/4 +1) 5 -e -s µ 2 (s) (s π/4 +1) 5 (s π/4 +1) 6 -e -3s µ 2 (s)s π/2 (s π/4 -1) 2 (s π/4 -2)(s π/4 +1) 5   where µ 1 (s) = - 1 2 - 19 4 s π/4 - 1 2 s + 25π + 2560eπ -4 + 4096e 2π s π/2 - 27π + 7168eπ -8 + 8192e 4π s 3π/4 , µ 2 (s) = 729(e 2 4/π ) 3 4 .

Identical poles

While simple expressions are obtained for systems with distinct poles, much more attention has to be paid for the case of identical poles. The matrix M (s) in diagonal form and N k (s), M kk (s) in the forms (3.25), (3.26) do not work for the latter case. We deduce from the right Bézout identity X(s)M (s) + Y (s)N (s) = I that for k, k ∈ {1, . . . , n} and

k = k X kk (s) = 1 -Y k (s)N k (s) M kk (s) , X kk (s) = -Y k (s) N k (s) M k k (s) .
In order for X kk (s) to be in H ∞ , all unstable roots of M k k (s) have to be roots of Y k (s).

Consequently, if M kk (s) and M k k (s) have a common root, then X kk (s) at that root is infinite, thus X kk (s) / ∈ H ∞ .

Systems with one identical pole for each element of the transfer matrix

In the following proposition, we only consider the case where all the p k , k = 1, . . . , n have the same root. Although the matrix M (s) is no longer diagonal, its inverse can also be easily calculated.

Proposition 3.19. Let G(s) be given by (3.1) with

h 1 ≤ . . . ≤ h n , R k (s α ) = a k s α -σ with a k , σ ∈ R for k = 1, . . . , n.
Then a right coprime factorization and associated Bézout factors are given by

N (s) = a 1 e -sh 1 s α + 1 , 0, . . . , 0 , M (s) =      s α -σ s α +1 -a 2 e -s(h 2 -h 1 ) a 1 • • • -ane -s(hn-h 1 ) a 1 0 1 • • • 0 . . . . . . . . . . . . 0 0 • • • 1      , Y (s) = [β, 0, . . . , 0] T , X(s) = M -1 (s) -Y (s)G(s),
where β is given by

β = (σ + 1)e σ 1/α h 1 a 1 , (3.36) and M -1 (s) is given by M (s) -1 = M inv (s) with M inv (s) :=    M inv 11 (s) • • • M inv 1n (s) . . . . . . . . . 0 • • • M inv nn (s)    , (3.37) M inv 1k (s) = a k e -s(h k -h 1 ) (s α + 1) a 1 (s α -σ) ∀k = 1, . . . , n, M inv kk (s) = 1 ∀k = 2, . . . , n, M inv kk = 0 ∀k = k , k = 2, . . . , n, k = 1, . . . , n.
Proof. It is easy to verify that the matrix

M inv (s) in (3.37) is the inverse of M (s) and that N (s)M -1 (s) = G(s). The right Bézout identity X(s)M (s) + Y (s)N (s) = I is clearly satisfied. It is obvious that N (s), M (s), Y (s) ∈ M(H ∞ ).
We see that X k k (s) for k = 2, . . . , n and k = 1, . . . , n are constants. Now we consider X 11 (s) and X 1k (s) for k = 2, . . . , n.

X 11 (s) = s α + 1 s α -σ -β a 1 e -sh 1 s α -σ , X 1k (s) = a k e -s(h k -h 1 ) (s α + 1) a 1 (s α -σ) -β a k e -sh k s α -σ .
With β given by (3.36), the numerators of X 11 (s) and X 1k (s) vanish at s = σ 1/α , which is the unique unstable root of the denominators. Hence, X(s) ∈ M(H ∞ ).

More general case

In the following part, we derive right coprime factorizations and Bézout factors for a particular system whose entries (which only have one simple pole) may involve identical poles. To help clarify the demonstration of those results, we will begin with a lemma who derives the inverse of a particular upper triangular matrix.

We consider sparse matrices with some conditions imposed on the entries above the main diagonal: if any entry on the k-th row is non-zero, then all entries on the k-th column must be zeros; if any entry on the k-th column is non-zero, then all other entries on the k-th column as well as those on the k-th row must be zeros.

Lemma 3.20. Let the upper triangular matrix M ∈ R n×n be given by

M =    M 11 • • • M 1n . . . . . . . . . 0 • • • M nn    ,
where the entries on the main diagonal are not equal to zero and the entries above the main diagonal satisfy the following conditions

(i) for k = 1, . . . , n, if there exists l ∈ Z, l ∈ (k, n] such that M kl = 0 then M lk = 0 for l ∈ {1, . . . , k -1}, (ii) for k = 1, . . . , n, if there exists l ∈ Z, l ∈ [1, k) such that M l k = 0 then M lk = 0 for l ∈ {1, . . . , k -1}\{l } and M kl = 0 for l ∈ {k + 1, . . . , n}.
Then its inverse is given by

M -1 = M inv with M inv :=    M inv 11 • • • M inv 1n . . . . . . . . . 0 • • • M inv nn    ,
where the entries on and above the main diagonal satisfy

M inv kk = 1 M kk , (3.38) 
M inv kk = - M kk M kk M k k (3.39)
for k, k ∈ {1, . . . , n} and k < k .

Proof. It is obvious that the entries below the main diagonal of the product M M inv are all zero, and the entries on the main diagonal are all one. Now we consider the entries above the main diagonal of the product:

(M M inv ) ij = n k=1 M ik M inv kj = j k=i M ik M inv kj for i < j. Considering i < k < j, if M ik = 0, then M kj = 0 under the assumption (ii),
and thus M inv kj = 0 due to (3.39). Therefore,

(M M inv ) ij = M ii M inv ij + M ij M inv jj .
By replacing M inv ij and M inv jj with (3.39) and (3.38) respectively, we obtain (M M inv ) ij = 0.

Example 3.8. The following matrix satisfies all the conditions in Lemma 3.20.

M =       M 11 0 M 13 0 0 0 M 22 0 M 24 M 25 0 0 M 33 0 0 0 0 0 M 44 0 0 0 0 0 M 55      
with M ii = 0, i = 1, . . . , 5, and M 13 , M 24 , M 25 = 0.

Its inverse is

M -1 =        1 M 11 0 -M 13 M 11 M 33 0 0 0 1 M 22 0 -M 24 M 22 M 44 -M 25 M 22 M 55 0 0 1 M 33 0 0 0 0 0 1 M 44 0 0 0 0 0 1 M 55        .
In the following proposition, we consider G(s) with one pole for each of its entries and some entries may have the same pole. To simplify the presentation, we assume that the delays are ordered. A discussion on how to apply the next result to the case of unordered delays will follow the proposition.

Proposition 3.21. Let G(s) be given by (3.1) with

h 1 ≤ . . . ≤ h n , R k (s α ) = a k s α -σ k with a k , σ k ∈ R for k = 1, . . . , n. We denote I 1 := ∅ and I k := {j | j ∈ {1, . . . , k -1}, σ j = σ k } for k = 2, . . . , n.
One right coprime factorization and associated Bézout factors are given by

N (s) = [N 1 (s), . . . , N n (s)], (3.40) 
M (s) =    M 11 (s) • • • M 1n (s) . . . . . . . . . 0 • • • M nn (s)    , (3.41) Y (s) = [Y 1 (s), . . . , Y n (s)] T , X(s) = M -1 (s) -Y (s)G(s),
where for k, k ∈ {1, . . . , n} and k = k

N k (s) = 0 if I k = ∅, a k e -sh k s α +1 otherwise, (3.42) M kk (s) = 1 if I k = ∅ s α -σ k s α +1 otherwise, (3.43) M k k (s) = -a k e -s(h k -h k ) a k if k = min I k , 0 otherwise, (3.44) Y k (s) = 0 if I k = ∅, β k pk (s α ) u(s α )
otherwise, with u(s α ) is a polynomial of degree d in s α that has no unstable zeros; pk (s α ) = p(s α )/(s α -σ k ); β k (for those k such that I k = ∅ and σ k ≥ 0) are given by

β k = u(σ k )(σ k + 1)e σ 1/α k h k a k p k (σ k ) , (3.45) 
β k for other k can be chosen arbitrarily, and M -1 (s) are given by

M -1 (s) =    M inv 11 (s) • • • M inv 1n (s) . . . . . . . . . 0 • • • M inv nn (s)    (3.46)
where the entries on and above the main diagonal satisfy 

M inv kk = 1 M kk , M inv kk = - M kk M kk M k k for k, k ∈ {1, . . . ,
I k = ∅, hence M k k = 0 for k < k . The assumption (i) is then satisfied.
Consequently, due to Lemma 3.20, the inverse of M (s) is given by (3.46).

We now prove that N (s)M -1 (s) = G(s).

For k ∈ {1, . . . , n}, we have

(N (s)M (s) -1 ) k = n l=1 N l (s)M inv lk (s) = k-1 l=1 N l (s)M inv lk (s) + N k (s)M inv kk (s). • If I k = ∅, then M inv lk (s) = 0 for l = 1, . . . , k-1, and (N (s)M (s) -1 ) k = N k (s)M inv kk (s) = e -sh k R k (s). • If I k = ∅, then M inv lk (s) = 0 for l ∈ {1, . . . , k -1}\{k } where k = min I k and N k (s) = 0. Therefore, (N (s)M (s) -1 ) k = N k (s)M inv k k (s) = -N k (s) M k k (s) M k k (s)M kk (s)
.

Note that I k = ∅ since k = min I k . By replacing the above terms with appropriate expressions in (3.42), (3.43) and (3.44) and by noting that

σ k = σ k , we get (N (s)M (s) -1 ) k = e -sh k R k (s). It is obvious that N k (s), M kk (s), M k k (s), Y k (s) ∈ H ∞ .
Let us now prove that X(s) ∈ M(H ∞ ).

For k, k ∈ {1, . . . , n}, we have

X k k (s) = M inv k k (s) -Y k (s)e -sh k R k (s). • If I k = ∅, then Y k (s) = 0, and thus X k k (s) = M inv k k (s). Now, for k > k, M inv k k = 0. For k = k, M inv k k = 1. For k < k, from the fact that I k = ∅, we deduce that k = min I k , thus M inv k k = 0. • If I k = ∅, then Y k (s) involves pk (s α ). • For k > k, the fact that I k = ∅ leads to σ k = σ k . Therefore, Y k (s)R k (s) = a k β k pk (s α ) (s α -σ k )u(s α ) = a k β k p(s α ) (s α -σ k )(s α -σ k )u(s α ) belongs to H ∞ since (s α -σ k )(s α -σ k ) is eliminated by the same term in p(s α ). It is also obvious that M inv k k = 0. Therefore, X k k (s) ∈ H ∞ . • For k = k, we have X k k (s) = M inv k k (s) -Y k (s)e -sh k R k (s) = 1 M k k (s) -Y k (s)e -sh k R k (s) = s α + 1 s α -σ k - β k pk (s α ) u(s α ) a k e -sh k s α -σ k = u(s α )(s α + 1) -β k pk (s α )a k e -sh k u(s α )(s α -σ k ) . If σ k < 0, then X k k (s) ∈ H ∞ for all β k . If σ k ≥ 0, since β k given by (3.45) makes the denominators of X k k (s) vanish at s = σ 1/α k , then X k k (s) ∈ H ∞ . • For k < k, if k = min I k , together with the fact that I k = ∅ then σ k = σ k , and thus Y k (s)R k (s) ∈ H ∞ . We also have M inv k k = 0, leading to X k k (s) ∈ H ∞ .
In the case where k = min I k , thus σ k = σ k , we have

X k k (s) = M inv k k (s) -Y k (s)e -sh k R k (s) = - M k k (s) M k k (s)M kk (s) -Y k (s)e -sh k R k (s) = s α + 1 s α -σ k a k e -s(h k -h k ) a k - β k pk (s α ) u(s α ) a k e -sh k s α -σ k = a k e -sh k u(s α )(s α + 1)e sh k -β k pk (s α )a k u(s α )(s α -σ k )a k .
By the same argument as in the case where k = k, we conclude that

X k k (s) ∈ H ∞ .
The right Bézout identity X(s)M (s) + Y (s)N (s) = I is clearly satisfied.

Remark 3.22. A transfer matrix G given by (3.1) with the delays of its elements not in order can be transformed to a transfer matrix G 0 with ordered delays by multiplying G by an appropriate permutation matrix P . It is well known that this matrix P is orthogonal and its inverse is P T . Assume that (M 0 , N 0 ) is a right coprime factorization over H ∞ of G 0 and X 0 , Y 0 are the corresponding right Bézout factors. We have then

G = G 0 P -1 = N 0 M -1 0 P -1 = N 0 (P M 0 ) -1 . It is obvious that P M 0 ∈ M(H ∞ ). Furthermore, X 0 P -1 P M 0 + Y 0 N 0 = I and X 0 P -1 ∈ M(H ∞ ).
Hence, (P M 0 , N 0 ) is a right coprime factorization of G and X 0 P -1 , Y 0 are the corresponding Bézout factors.

The next example illustrates the proposition.

Example 3.9.

G(s) = e -s √ s , e -s √ s -1 , e -3s √ s -1
From (3.40), (3.41), (3.42), (3.43), and (3.44), we obtain

N (s) = e -s √ s + 1 , e -s √ s + 1 , 0 , M (s) =    √ s √ s+1 0 0 0 √ s-1 √ s+1 -e -2s 0 0 1    .
The inverse of M (s) is

M -1 (s) =    √ s+1 √ s 0 0 0 √ s+1 √ s-1 e -2s ( √ s+1) √ s-1 0 0 1    ,
which will be used to derive X(s).

The least common denominator of the entries of G(s

) is p( √ s) = √ s( √ s -1). Then p 1 ( √ s) = √ s -1, and p 2 ( √ s) = √ s. We choose u( √ s) = ( √ s + 1)
2 , which has no unstable poles. We have then

Y (s) = β 1 ( √ s -1) ( √ s + 1) 2 , β 2 √ s ( √ s + 1) 2 , 0 T X(s) = M -1 (s) -Y (s)G(s) =    ( √ s+1) 3 -β 1 ( √ s-1)e -s √ s( √ s+1) 2 -β 1 e -s ( √ s+1) 2 -β 1 e -3s ( √ s+1) 2 -β 2 e -s ( √ s+1) 2 ( √ s+1) 3 -β 2 e -s √ s ( √ s-1)( √ s+1) 2 e -2s ( √ s+1) 3 -β 2 e -3s √ s ( √ s-1)( √ s+1) 2 0 0 1   
We see that X 12 (s), X 13 (s), X 21 (s) ∈ H ∞ . From (3.45), we obtain β 1 = -1 and β 2 = 8e, which make X 11 (s), X 22 (s), and X 23 (s) be in H ∞ respectively.

Conclusion

In this chapter, we have considered MISO fractional systems with input or output delays. Explicit expressions of a left coprime factorization over H ∞ of the transfer matrices as well as the corresponding Bézout factors are given. Right coprime factorizations and right Bézout factors are also found for systems with entries of the transfer matrix containing different poles. In the case of identical poles, the right factors are primarily found for some simple classes of systems. Hence, in conclusion, we can have Youla-Kučera parametrization of stabilizing controllers for all systems with distinct poles and a class of systems with identical poles where each element of the transfer matrix involves one pole since for these systems both left and right coprime factorizations and Bézout factors are available.

Determining the right factors of more general systems with identical poles is the objective of a forthcoming work.

Chapter 4

Stability analysis of SISO fractional neutral systems with commensurate delays 

N k=1 β k r k = 0, N k=1 kβ k r k = 0, N k=1 k 2 β k r k = 0, N k=1 γ k r k = 0, N k=1 kγ k r k = 0,

Introduction

An increasing interest has been paid towards fractional systems with delays, both for stability aspects and also for stabilization problems. For stability aspects, most of the results are obtained in the frequency domain, i.e. by considering the spectrum of the characteristic equation. Note that the characteristic equation is single-valued provided that the Laplace variable s is limited in a sheet of the corresponding Riemann surface, for example, -π < arg(s) < π.

The stability of fractional delay systems with non-commensurate orders and non-commensurate delays was first investigated in [START_REF] Bonnet | Analysis of fractional delay systems of retarded and neutral type[END_REF] in the sense BIBO. In that paper, the classical stability condition "no poles in the closed right halfplane" is proved to be a necessary and sufficient condition for systems of retarded type and only a necessary condition for neutral systems. Recently, robust BIBO-stability regarding parameter uncertainties was considered in (Akbari [START_REF] Moornani | On robust stability of LTI fractional-order delay systems of retarded and neutral type[END_REF] for some classes of the same systems and necessary and sufficient stability conditions were derived.

For fractional delay systems with commensurate orders and commensurate delays, the characteristics of poles are similar to those of classical systems with delays, i.e. there are infinitely many poles in chains which can be classified in retarded, advanced and neutral types (Hotzel, 1998a;[START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF]. For retarded systems, the stabilities in the senses BIBO, L 1 -L 1 and H ∞ are equivalent and also share the same usual necessary and sufficient condition "no poles in the closed right half-plane" (Hotzel, 1998a;[START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF]. Nevertheless, this is only a necessary condition for neutral systems since, in the critical case where poles approach the imaginary axis, the system may be unstable even though all poles are in the open left half-plane. This interesting phenomenon is also present in classical delay systems.

In such a delicate situation, H ∞ -stability of fractional systems with one delay is studied in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF] where simple necessary and sufficient conditions are derived. Within the same framework, [START_REF] Fioravanti | Stability of fractional neutral systems with multiple delays and poles asymptotic to the imaginary axis[END_REF] studies H ∞ -stability of some classes of fractional systems with commensurate delays and with single chains of poles asymptotic to the imaginary axis, namely there is no more than one neutral chain of poles asymptotic to a set of points on the imaginary axis.

In this chapter, we will extend the work in [START_REF] Fioravanti | Stability of fractional neutral systems with multiple delays and poles asymptotic to the imaginary axis[END_REF] to the case of multiple neutral chains of poles asymptotic to a same set of points on the imaginary axis.

In general, when some chains of poles are asymptotic to the imaginary axis, the idea is that the stability depends on not only the location of poles about the axis but also the magnitude of the transfer function on the axis. This idea is no longer new and is exploited in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF][START_REF] Fioravanti | Stability of fractional neutral systems with multiple delays and poles asymptotic to the imaginary axis[END_REF] for fractional systems and in [START_REF] Partington | H ∞ and BIBO stabilization of delay systems of neutral type[END_REF][START_REF] Bonnet | Stability of neutral systems with multiple delays and poles asymptotic to the imaginary axis[END_REF][START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF] for classical systems. The common method is to approximate solutions of high modulus of the characteristic equation, which is a quasi-polynomial involving powers of s and e s . This approximation then allows one to evaluate the magnitude of the transfer function and to derive stability conditions.

We are interested in the effects of poles of large modulus on the stability and will not pay attention to poles of small modulus. For exact values of these poles, numerical methods such as QPmR [START_REF] Vyhlidal | QPmR v.2 -Quasipolynomial rootfinder, algorithm and examples[END_REF] and YALTA (Avanessoff et al., 2014) can be used. For their relative location around the imaginary axis, methods for determining crossing frequencies and stability windows such as [START_REF] Marshall | Time-Delay Systems: Stability and Performance Criteria with Applications[END_REF][START_REF] Fioravanti | A numerical method for stability windows and unstable root-locus calculation for linear fractional time-delay systems[END_REF]) can be applied.

The rest of the chapter is organized as follows. In section 4.2, we present the fractional delay system of interest and approximate the characteristic equation around its poles of large modulus. The obtained expression is repeatedly used in the next two sections to determine pole location with respect to asymptotic axes and estimate the magnitude of the characteristic equation on the imaginary axis, which allows one to conclude about H ∞ -stability of the system. Section 4.3 examines single neutral chains of poles while section 4.4 is dedicated to multiple chains. Illustrative examples are given in section 4.5. We conclude the chapter with section 4.6.

Approximation of the characteristic equation

We consider fractional neutral time-delay systems with transfer function given by (2.2), which is recalled here for easy access. The transfer function is of the form

G(s) = t(s) p(s) + N k=1 q k (s)e -ksτ , (4.1) 
where

• τ > 0 is the delay,

• t, p, and q k for all k ∈ N N are real polynomials in s µ ,

• 0 < µ < 1, -π < arg(s) < π in order to have a single-valued transfer function,

• deg p ≥ deg t, deg p ≥ deg q k for all k ∈ N N , and deg p = deg q k at least for one k ∈ N N in order to deal with proper neutral systems.

Note that degrees of the polynomials in this chapter stand for the degrees in s µ .

For preliminaries regarding these systems, the reader is refered to Subsection 2.4.2.

We already have the first approximation of neutral poles corresponding to a root r of c d (z) in (2.5). Our objective is to find the next non-zero approximation term of these poles, which are denoted by s n . Let us write

s n τ = λ n + ν n,1 + o(n -y 1 ),
where

ν n,1 = ν 1 n y 1 , ν 1 = 0, y 1 > 0, n ∈ Z, n → ∞.
We will see later that y 1 = µ, for example, in certain cases of single chains, but y 1 = µ/m in certain cases of multiple chains, where m is the multiplicity of r.

We have

(s n ) = [ (λ n ) + (ν n,1
) + o(n -y 1 )]/τ . Therefore, the sign of (ν n,1 ) indicates the location of poles of the neutral chain with respect to the asymptotic axis.

Remark 4.1. Note that for a neutral chain of poles relative to a root r

(ν n,1 ) n>0 = (ν 1 ) n y 1 , (ν n,1 ) n<0 = (ν 1 ) cos(y 1 π) + (ν 1 ) sin(y 1 π) |n| y 1 .
Since the signs of (ν n,1 ) n>0 and (ν n,1 ) n<0 , which are determined by the signs of (ν 1 ) and ( (ν 1 ) cos(y 1 π) + (ν 1 ) sin(y 1 π)) respectively, may be different, so are the locations around the asymptotic axis of poles of large modulus in the upper and lower half-planes.

Approximation of neutral poles of the system will be derived from the approximation of the characteristic equation around s n .

Since s n is a pole of G(s), we have

d(s n ) := p(s n ) + N k=1 q k (s n )e -ksnτ = 0.
Dividing both sides by p(s n ), we have

1 + N k=1 q k (s n ) p(s n ) e -ksnτ = 0.
As |s n | → ∞, using (2.3) leads to

1 + N k=1 α k + β k s µ n + γ k s 2µ n + δ k s 3µ n + k s 4µ n + o(s -4µ n ) e -ksnτ = 0. (4.2)
We choose indeed a development of order 4µ which will allow us to analyze in this chapter several cases of interest.

Assume s n has the form

s n τ = λ n + ν n,1 + ν n,2 + . . . + ν n,M + o(n -4µ ) with ν n,i = ν i n -y i , i = 1, . . . , M where ν i = 0 and 0 < y 1 < . . . < y M ≤ 4µ.
Note that

e -λn = r, e -kν n,i = 1 + 4µ y i l=1 (-1) l ν l i k l l!n ly i + o(n -4µ ).
Thus when n is large enough, (4.2) becomes

1 + N k=1 α k + β k τ µ (2πn) µ 1 + O(n -1 ) + γ k τ 2µ (2πn) 2µ 1 + O(n -1 ) + δ k τ 3µ (2πn) 3µ + k τ 4µ (2πn) 4µ + o(n -4µ ) r k M i=1   1 + 4µ y i l=1 (-1) l ν l i k l l!n ly i + o(n -4µ )    = 0
and we obtain

1 + N k=1 α k + β k τ µ (2πn) µ 1 + O(n -1 ) + γ k τ 2µ (2πn) 2µ 1 + O(n -1 ) + δ k τ 3µ (2πn) 3µ + k τ 4µ (2πn) 4µ + o(n -4µ ) r k ×   1 + (l 1 ,...,l M )∈L(4µ) (-1) M i=1 l i M i=1 ν l i i k M i=1 l i M i=1 l i ! n M i=1 l i y i + o(n -4µ )   = 0 where L(x) := (l 1 , . . . , l M ) | l i ∈ Z + , M i=1 l i ≥ 1 and M k=1 l i y i ≤ x .
After simple computations, we get

d(s n ) p(s n ) = g 1 + g 2 + g 3 + o(n -4µ ) = 0 (4.3) 
where

g 1 = 1 + N k=1 α k r k + τ µ (2πn) µ 1 + O(n -1 ) N k=1 β k r k + τ 2µ (2πn) 2µ 1 + O(n -1 ) N k=1 γ k r k + τ 3µ (2πn) 3µ N k=1 δ k r k + τ 4µ (2πn) 4µ N k=1 k r k , (4.4 
)

g 2 = (l 1 ,...,l M )∈L(4µ) (-1) M i=1 l i M i=1 ν l i i M i=1 l i ! n M i=1 l i y i N k=1 α k r k k M i=1 l i , (4.5) 
and

g 3 = τ µ (2πn) µ 1 + O(n -1 ) (l 1 ,...,l M )∈L(3µ) (-1) M i=1 l i M i=1 ν l i i M i=1 l i ! n M i=1 l i y i N k=1 β k r k k M i=1 l i + τ 2µ (2πn) 2µ 1 + O(n -1 ) (l 1 ,...,l M )∈L(2µ) (-1) M i=1 l i M i=1 ν l i i M i=1 l i ! n M i=1 l i y i N k=1 γ k r k k M i=1 l i + τ 3µ (2πn) 3µ (l 1 ,...,l M )∈L(µ) (-1) M i=1 l i M i=1 ν l i i M i=1 l i ! n M i=1 l i y i N k=1 δ k r k k M i=1 l i . (4.6)
In fact, this decomposition into three terms g 1 , g 2 , and g 3 is convenient as in each term it is easy to find the highest order of the development.

Note that for example in g 1 , the highest order in n is

-µ if N k=1 β k r k = 0. It is -2µ if N k=1 β k r k = 0 and N k=1 γ k r k = 0.
To find the highest order in n for g 2 , note that Lemma 2.59). In this case we have M i=1 l i y i ≥ my 1 and the highest order in n is -my 1 . Hence, the highest order of the sum (g 1 + g 2 + g 3 ) may be a function of y 1 .

N k=1 α k r k k M i=1 l i = 0 if M i=1 l i < m and it is non-zero if M i=1 l i = m (see
As g 1 + g 2 + g 3 + o(n -4µ ) = 0, the term of highest order of the sum (g 1 + g 2 + g 3 ) is then zero. As we will see in the sequel, this allows us to derive y 1 and ν 1 .

We have already seen that an important role is played by the coefficients N k=1 α k r k , N k=1 β k r k , . . .. In the following sections, we will derive y 1 and ν 1 for classes of systems which may have some of these coefficients vanishing.

We start with the case of single chains, i.e. m = 1, for which the analysis for systems with vanishing or non vanishing coefficients does not differ too much. The analysis in the case of multiple chains, i.e. m ≥ 2, needs in each case (vanishing or non vanishing coefficients) an appropriate development to get y 1 and ν 1 from the highest order of development in the terms g 1 , g 2 , and g 3 .

Single chains of poles

To complete the presentation and to facilitate the comparison between the previous and new results, we recall the results presented in [START_REF] Fioravanti | Stability of fractional neutral systems with multiple delays and poles asymptotic to the imaginary axis[END_REF] in the next subsection.

4.3.1

The case where N k=1 β k r k = 0

First, the following theorem gives a more precise approximation of roots of large modulus of the characteristic equation than that given in (2.5).

Theorem 4.2. Let G(s) be a fractional neutral delay system defined by (4.1) and suppose that at least one root of the formal polynomial c d (z) defined in (2.4) has multiplicity one. If such a root, denoted by r, satisfies

N k=1 β k r k = 0, (4.7) 
then for large enough n ∈ Z poles of the neutral chain relative to r are approximated by

s n τ = λ n + ν n,1 + o(n -µ )
with λ n given by (2.6) and

ν n,1 = τ µ N k=1 β k r k (2πn) µ N k=1 kα k r k . (4.8)
Proof. Under the condition (4.7), the highest order in n of g 1 is -µ. Obviously, the highest order of g 3 is smaller than that of g 2 , which is -y 1 . Therefore, y 1 = µ and (4.3) can be rewritten as

τ µ (2πn) µ N k=1 β k r k - ν 1 n y 1 N k=1 kα k r k + o(n -µ ) = 0,
which completes the proof.

Given a more precise approximation of neutral poles of large modulus as above, now our interest is mainly on which side of the vertical line the poles are, in other words, to find out the sign of (ν n,1 ) for n sufficiently large. This question is particularly important when the asymptotic axis is the imaginary axis.

Recall from Remark 4.1 that for a chain relative to a root of c d (s), its poles in the upper and lower half-planes may lie on different sides of the asymptotic axis. Fortunately, for the case considered in this subsection, these two parts of the chain may be on the same side. This behavior is characterized in the next two corollaries.

Corollary 4.3. Let 0 < µ < 1, ν n,1 be given by ( 4.8) and let us denote

K r = N k=1 β k r k N k=1 kα k r k . ( 4.9) 
Then (ν n,1 ) < 0 for all n ∈ Z if and only if

(K r ) < -tan µπ 2 | (K r )|. (4.10)
Proof. Besides K r , the only term of interest is J = (n) -µ , as sgn( (ν n,1 )) = sgn( (JK r )).

Since n can be both positive or negative, this term is given by

J = 1 |n| µ cos µπ 2 ∓  sin µπ 2 .
Multiplying J by K r and getting its real part leads to

(JK r ) = 1 |n| µ cos µπ 2 (K r ) ± sin µπ 2 (K r )
from which (4.10) follows from the fact that 0 < µ < 1.

Some remarks can be drawn from this corollary. First, the condition (4.10) does not depend on the delay τ . This means that for all τ > 0 the chain of poles does not change side with respect to the vertical line in question when the delay varies. Second, the condition (4.10) still holds if r is replaced by its complex conjugate r, which is also a root of the formal polynomial c d (z). Therefore, the chain relative to r lies on the same side as the one relative to r.

As K r is independent of µ, we can reformulate the previous corollary to give the critical value of µ as follows.

Corollary 4.4. Let 0 < µ < 1, ν n,1 be given by (4.8) and its associated K r by (4.9). Then, if (K r ) < 0, all poles of the respective chain asymptotic to the vertical line (s) = -ln(|r|)/τ will be on the left of this line if .11) Proof. This follows directly from Corollary 4.3.

µ < 2 π arctan - (K r ) | (K r )| . ( 4 
In the case where (ν n,1 ) = 0, further analysis is needed to determine the location of poles. However, the procedure is similar to the one given in [START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF]) and therefore will be omitted. Now, we are interested in answering the question of stability of G(s) in the H ∞ -sense.

For systems without chains of poles asymptotic to the left of the imaginary axis, the stability can be concluded if there is no poles in the closed right half-plane.

On the other hand, if there exist neutral chains of poles approaching the imaginary axis from the left, we may have to consider the magnitude of the transfer function on the axis in order to answer the question of H ∞ -stability. This is the objective of the proposition below.

Recall that we refer to poles in the closed right half-plane C + as unstable poles.

Proposition 4.5. Let G(s) be a transfer function given as in (4.1) and suppose that the formal polynomial c d (z) defined in (2.4) has at least one simple root of modulus one, the other roots being of modulus strictly greater than one. We also suppose that every root of modulus one which is denoted by r satisfies (4.7).

1. Suppose that (ν n,1 ) < 0 for all r and that G has no unstable pole of small modulus (which could exist only in a finite number), then G is H ∞ -stable if and only if deg p ≥ deg t + 1.

2.

If there exists a root r for which (ν n,1 ) = 0, then the condition

deg p ≥ deg t + 1 is necessary for H ∞ -stability. Proof. Let s = s n + η ∈ R, we have p(s) + N k=1 q k (s)e -ksτ ≈ |η| p (s n ) + N k=1 q k (s n ) -kτ q k (s n ) e -ksnτ ≈ |η| |p(s n )| p (s n ) p(s n ) + N k=1 q k (s n ) p(s n ) -kτ q k (s n ) p(s n ) e -ksnτ ≈ τ |η| |p(s n )| N k=1 kα k r k as n → ∞, n ∈ Z.
Recall that N k=1 kα k r k is non zero by assumption.

If (ν n,1 ) = 0, then η is at least of order n -µ and a necessary and sufficient condition of H ∞ -stability is that deg p ≥ deg t + 1. If (ν n,1 ) = 0 the condition is still necessary.

The results of this subsection are illustrated later by Example 4.1 in Section 4.5.

In the next section, the same stability analysis will be realized for other cases of systems with single chains of poles, thus completing the analysis for this class of systems.

Other cases

Returning to the approximation of the characteristic equation around poles of a single chain, we see that the terms of highest order are only constituted from those of g 1 and g 2 given in (4.4) and (4.5) respectively since the highest order of g 3 (4.6) is smaller than that of g 2 . While that term of g 2 remains the same, i.e. (-ν n,1 N k=1 kα k r k ), for all cases of single chains, that of g 1 is decided by its non-zero terms. Some examples are cases where

• N k=1 β k r k = 0 and N k=1 γ k r k = 0 (the term of highest order of g 1 is τ 2µ N k=1 γ k r k / (2πn) 2µ ), • N k=1 β k r k = 0, N k=1 γ k r k = 0, and N k=1 δ k r k = 0 (the term of highest order of g 1 is τ 3µ N k=1 δ k r k /(2πn) 3µ
), • and so on.

Similarly, we easily obtain ν n,1 for the cases above by noting that in the development of the characteristic equation around a pole the coefficient of the highest order is zero. In general,

ν n,1 = τ 2πn xrµ K r (4.12)
with K r a function in r and the coefficients α k , β k , . . . in (2.3), and x r ∈ N. Note that we get a value of x r for each root r of multiplicity one of c d (z) (2.4), where comes the subscript. For example,

• if r satisfies the first case above, i.e.

N k=1 β k r k = 0 and N k=1 γ k r k = 0, then x r = 2 and K r = N k=1 γ k r k /( N k=1 kα k r k ); • if r satisfies the second case, i.e. N k=1 β k r k = 0, N k=1 γ k r k = 0, and N k=1 δ k r k = 0, then x r = 3 and K r = N k=1 δ k r k /( N k=1 kα k r k
). Now, as in the previous subsection, we can realize a similar analysis about the location of the chain of poles relative to r. Here, sgn( (ν n,1 )) = sgn( ( -xrµ K r )). Therefore, (ν n,1 ) < 0 for all n ∈ Z, i.e. the chain is on the left of the asymptotic axis, if and only if

cos x r µπ 2 (K r ) < -sin x r µπ 2 (K r ) . (4.13)
However, (4.13) does not hold for x r µ = 2k + 1 for k ∈ N, 0 < µ < 1. In that case, we will be in the same situation as the case µ = 1 [START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF], where either (ν n,1 ) = 0 for all n ∈ Z (when (K r ) = 0) or (ν n,1 ) = ±c = 0 for n positive/negative (when (K r ) = 0), meaning that respectively more approximation terms are needed or we conclude to have unstable poles. From all the above analyses about the location of poles of large modulus, the H ∞ -stability condition for systems with single chains asymptotic to the imaginary axis can be restated as follows.

Proposition 4.6. Let G(s) be a transfer function given as (4.1) and suppose that the formal polynomial c d (z) defined in (2.4) has at least one simple root of modulus one, denoted r, the other roots being of modulus strictly greater than one.

1. Suppose that (ν n,1 ) < 0 for all r and that G has no unstable pole of small modulus, then G is H ∞ -stable if and only if deg p ≥ deg t + max r {x r }, where, for each r, -x r is the order in n of ν n,1 .

2. If (ν n,1 ) = 0 for any r, then the condition deg p ≥ deg t + max r {x r } is necessary for H ∞ -stability.

Proof. As in the proof of Proposition 4.5, let us consider the numerator of G(s) at s on the imaginary axis near poles of the neutral chain relative a root r. Let s = s n + η ∈ R, we also have

p(s) + N k=1 q k (s)e -ksτ ≈ τ |η| |p(s n )| N k=1 kα k r k as n → ∞, n ∈ Z.
Here, if (ν n,1 ) = 0, then η is at least of order n -xrµ .

Multiple chains of poles

While the stability analysis of single chains under different conditions results in similar conclusions, the stability of multiple chains differs significantly from case to case.

In this section, we do not aim for a complete analysis of general cases but for a large class of systems. This analysis reveals interesting different behaviors.

4.4.1

The case where m ≥ 2 and N k=1 β k r k = 0

Under the same condition, an exhaustive H ∞ -stability analysis for neutral chains relative to roots of multiplicity one of (2.4) has been conducted in Subsection 4.3.1. In this section, multiple chains will be studied. The first step is also to approximate the pole location.

However, the analysis based on this approximation ends shortly.

Theorem 4.7. Let G(s) be a fractional neutral delay system defined by (4.1), and suppose that at least one root of the formal polynomial c d (z) defined by (2.4) has multiplicity m > 1. If for such a root, denoted by r, the condition (4.7) is satisfied, then for large enough n ∈ Z, poles of neutral chains relative to those m identical roots are approximated by

s n τ = λ n + ν n,1 + o(n -µ/m ),
with λ n given by (2.6) and

ν n,1 = ν 1 n -µ/m , (4.14) 
where

ν m 1 = (-1) m+1 m!τ µ N k=1 β k r k (2π) µ N k=1 k m α k r k . (4.15)
Proof. Because of the condition (4.7), the highest order in n of g 1 is -µ, which is obviously higher than that of g 3 . Therefore, in order to vanish the highest order of d(s n )/p(s n ), those of g 1 and g 2 must be equal. Recall that the highest order of g 2 is -my 1 . Then y 1 = µ/m and from (4.3), we obtain

τ µ (2πn) µ N k=1 β k r k + (-1) m m!n my 1 ν m 1 N k=1 k m α k r k + o(n -µ ) = 0,
then (4.15) holds, which completes the proof.

It is interesting to see that, in this case, the order in n of ν n,1 is no longer a multiple of µ as in the cases of single chains but -µ/m. Also, note that (4.14) and (4.15) are identical to (4.8) for m = 1.

Although approximations of poles of single and multiple chains seem to share a similar form, we will show in the next corollary that they have a different position relative to their asymptotic axis.

Corollary 4.8. Let G(s) be a fractional neutral delay system defined by (4.1). If a root r of multiplicity m > 1 of the formal polynomial c d defined in (2.4) satisfies (4.7), then there exist neutral chains of poles on both sides of the corresponding asymptotic axis (s) = -ln(|r|)/τ .

Proof. Under the assumptions, ν n,1 is given by (4.14) and (4.15) for neutral chains relative to r.

Recall from Remark 4.1 that the location of poles of large modulus around the asymptotic axis is decided by the sign of (ν 1 ) in the upper half-plane, i.e. n > 0, and by the sign of ( (ν 1 ) cos(µπ/m) + (ν 1 ) sin(µπ/m)) in the lower half-plane, i.e. n < 0.

First, we consider (ν 1 ). Note that the equation of ν m 1 (4.15) has m distinct roots that are equally distributed on a circle centered at the origin in the complex plane.

If m ≥ 3, it is obvious that there exist both roots with positive and negative real part.

If m = 2, the two roots are symmetric with respect to the origin. Hence, there is always one root with positive real part and the other root with negative real part except for the case of two purely imaginary roots.

In that case, (ν 1 ) = 0 and (ν 1 ) = ±c = 0, then (ν 1 ) cos(µπ/m) + (ν 1 ) sin(µπ/m) = ±c = 0 and thus in the lower half-plane there are one chain on the left and one chain on the right of the asymptotic axis.

In conclusion, if any multiple root of modulus one of (2.4) satisfies the condition (4.7), then the system is unstable. Clearly, this condition does not depend on τ and µ, with 0 < µ < 1.

In the next subsections, we progress in the analysis of the remaining cases and we start in Subsection 4.4.2 with the case of N k=1 β k r k = 0.

4.4.2

The case where m ≥ 2, N k=1

β k r k = 0, N k=1 kβ k r k = 0, N k=1 γ k r k = 0
In the previous case, all neutral chains relative to the same root r of (2.4) approach the asymptotic axis at the same rate since the corresponding approximation terms have the same order in n. This may no longer occur for the current case as well as for other cases that we will study later.

Theorem 4.9. Let G(s) be a neutral delay system defined by (4.1), and suppose that one of the roots of the formal polynomial c d (z) defined in (2.4) has multiplicity m > 1. If this root, denoted by r, satisfies

N k=1 β k r k = 0, (4.16) 
N k=1 kβ k r k = 0, (4.17)

N k=1 γ k r k = 0, (4.18) 
then, for large enough n ∈ Z, poles of neutral chains relative to those m identical roots are approximated by

s n τ = λ n + ν n,1 + o(n -y 1 ),
with λ n given by (2.6) and

ν n,1 = ν 1 n -y 1 ,
where for m = 2, y 1 = µ and ν 1 satisfies the equation

ν 2 1 2 N k=1 k 2 α k r k - ν 1 τ µ (2π) µ N k=1 kβ k r k + τ 2µ (2π) 2µ N k=1 γ k r k = 0, (4.19) 
and for m ≥ 3, (y 1 , ν 1 ) takes m different pair of values below

y 1 = µ, ν 1 = τ µ N k=1 γ k r k (2π) µ N k=1 kβ k r k , ( 4.20 
)

y 1 = µ m -1 , ν m-1 1 = (-1) m m!τ µ N k=1 kβ k r k (2π) µ N k=1 k m α k r k . ( 4 

.21)

Proof. From the conditions (4.16)-( 4.18), we deduce that the highest orders in n of g 1 , g 2 , and g 3 , which are given by (4.4), (4.5), and (4.6), are -2µ, -my 1 , and -µ -y 1 respectively.

The following cases may occur in order to eliminate the terms of highest order of the denominator at s n 2µ = my 1 < µ + y 1 (4.22) 2µ = µ + y 1 < my 1 (4.23)

my 1 = µ + y 1 < 2µ (4.24
)

my 1 = µ + y 1 = 2µ (4.25)
The case (4.22) is eliminated as it cannot be satisfied for m ≥ 2.

The case (4.25) is equivalent to y 1 = µ, m = 2 and, from (4.3), we have

τ 2µ (2πn) 2µ N k=1 γ k r k + ν 2 1 2n 2µ N k=1 k 2 α k r k - ν 1 τ µ (2πn) µ n µ N k=1 kβ k r k + o(n -2µ ) = 0
and then (4.19) follows immediately.

When m > 2, it is easy to see that both (4.23) and ( 4.24) are satisfied.

From (4.23), we deduce that y 1 = µ and thus (4.3) can be rewritten as

τ 2µ (2πn) 2µ N k=1 γ k r k - ν 1 τ µ (2πn) µ n µ N k=1 kβ k r k + o(n -2µ ) = 0, giving one value ν 1 in (4.20).
Other values of ν 1 are derived from the case (4.24), where y 1 = µ m-1 . In turn, (4.3) becomes

(-1) m ν m 1 m!n my 1 N k=1 k m α k r k - τ µ (2πn) µ ν 1 n y 1 N k=1 kβ k r k + o(n -(µ+y 1 ) ) = 0, giving m -1 non-zero values of ν 1 in (4.21).
Remark 4.10. A previous version of the above theorem was stated in (Nguyen and Bonnet, 2012). However, the result about ν n,1 for the case m ≥ 3 was incomplete. Indeed, only the value (4.20) of ν n,1 was given and the others values with different order in n were missing.

As we have seen from (4.20) and (4.21) in the above theorem, due to different order of ν n,1 , the chains of poles relative to a multiple root r with m ≥ 3 approach the asymptotic axis with different rates. An example of such a system is given in Example 4.3 in Section 4.5.

We recognize that ν m-1 1 , m ≥ 3 in (4.21) has the same pattern as ν m 1 , m ≥ 2 in (4.15), leading to the same conclusion on stability.

Corollary 4.11. Let G(s) be a neutral delay system defined by (4.1), and suppose that at least one root r of the formal polynomial c d (z) defined in (2.4) has multiplicity m ≥ 3, satisfies (4.16) and (4.17). Then there exist neutral chains of poles on both sides of the asymptotic axis (s) = -ln(|r|)/τ .

Proof. The proof is similar to the one of Corollary 4.8.

Remark 4.12. The condition (4.18) is omitted in the above corollary. Indeed, whether or not the condition holds does not affect ν m-1 1 in (4.21), and thus the existence of a neutral chain on the right of the asymptotic axis. Furthermore, the result in the corollary does not depend on τ and µ, with 0 < µ < 1.

Under the conditions in Theorem 4.9, two chains relative to r of multiplicity two may both lie on the left of the asymptotic axis. We will see such a system later in Example 4.3 in Section 4.5. Therefore, the complementary condition to ensure H ∞ -stability of the system in that situation is the objective of the following proposition. Proposition 4.13. Let G(s) be a neutral delay system defined by (4.1), and suppose that the formal polynomial c d (z) defined in (2.4) has at least one root of modulus one of multiplicity two, the other roots being of modulus strictly greater than one. We also suppose that each root of modulus one of c d (z) satisfies (4.16)- (4.18). If (ν n,1 ) < 0 and G has no unstable poles of small modulus then G is H ∞ -stable if and only if deg p ≥ deg t + 2.

Proof. Under the assumptions, all the poles of G(s) are in the open left half-plane. Now, G(s) is H ∞ -stable if and only if G(s) is bounded on the imaginary axis. Therefore, let us consider the magnitude of G(s) on the imaginary axis by first examining its denominator d(s).

Let s = s n + η n ∈ jR, where s n is one of poles of the neutral chain relative to a root r of modulus one and of multiplicity two of c d (z). Recall that s n = (λ n + ν 1 n -µ )/τ + o(n -µ ) and note that (λ n ) = 0. Since (ν n,1 ) = 0, then η n is at least of order n -µ . In this case, we can write η n = ηn -µ + o(n -µ ), and thus s = [λ n + (ν 1 + ητ )n -µ ]/τ + o(n -µ ), which is of the same form as s n recalled earlier if we replace ν 1 = ν 1 + ητ .

Therefore, the developments of the denominator of G around s and s n are the same. Note that the development of d(s n ) as |s n | → ∞ is obtained from (4.3) by collecting terms of highest order of g 1 , g 2 , g 3 as follows

d(s n ) = p(s n ) f (ν 1 ) n 2µ + o(n -2µ )
where f (ν 1 ) is the left expression of (4.19). Similarly, d(s) as |s| → ∞, s ∈ jR near s n is given by

d(s) = p(s) f (ν 1 + ητ ) n 2µ + o(n -2µ )
Now, we will prove that f (ν 1 + ητ ) = 0. Let us denote ν

1 and ν

(2)

1 two roots of f (ν 1 ) and first consider f (ν

(1)
1 + ητ ). We see that f (ν

(1) 1 + ητ ) = 0 if and only if ν (1) 1 + ητ = ν (2) 1 , which is in turn equivalent to η = ν (2) 1 -ν (1) 1 τ . (4.26)
However, this condition cannot be satisfied because

(η) = (ν (2) 1 ) -(ν (1) 1 ) τ . (4.27) Indeed, (η) = -(ν (1) 
1 )/τ since s ∈ R and (ν

2 ) = 0 under the assumption (ν n,1 ) < 0. Therefore, f (ν

(1)
1 + ητ ) = 0. Similarly, we can prove that f (ν

(2) 1 + ητ ) = 0. Hence, the order in n µ of the denominator of G(s) is deg p -2.
While systems considered in the previous subsection were all unstable, we have been able to find in this subsection systems with multiple chains asymptotic to the imaginary axis which are H ∞ -stable. We will then continue our analysis for other cases in order to see in which situation there may exist H ∞ -stable systems.

The case where

m ≥ 2, N k=1 β k r k = 0, N k=1 kβ k r k = 0, N k=1 k 2 β k r k = 0, and N k=1 γ k r k = 0
As for the previous cases, pole location is considered first.

Theorem 4.14. Let G(s) be a neutral delay system defined by (4.1), and suppose that one of the roots of the formal polynomial c d (z) defined in (2.4) has multiplicity m > 1. If this root, denoted by r, satisfies

N k=1 β k r k = 0, N k=1 kβ k r k = 0, N k=1 k 2 β k r k = 0, (4.28) N k=1 γ k r k = 0, (4.29) 
then, for large enough n ∈ Z, poles of neutral chains relative to those m identical roots are approximated by

s n τ = λ n + ν n,1 + o(n -y 1 ),
with λ n given by (2.6) and

ν n,1 = ν 1 n -y 1 ,
which lead to (4.30), (4.32), (4.33), and (4.31) respectively.

Remark 4.15. Note that in the case 2 ≤ m ≤ 3, condition (4.28) is not necessary and in the case m ≥ 5 condition (4.29) is not necessary (and we may conclude as well on the presence of chains of poles in the right half-plane).

Some quick observation leads to the following conclusions on the stability of the system in the current case.

Corollary 4.16. Let G(s) be a neutral delay system defined by (4.1), and suppose that at least one root of the formal polynomial c d (z) defined in (2.4) 

has multiplicity m ≥ 2, satisfies N k=1 β k r k = 0, N k=1 kβ k r k = 0 and • for 2 ≤ m ≤ 3, N k=1 γ k r k = 0, • for m = 4, N k=1 k 2 β k r k = 0 and N k=1 γ k r k = 0 • for m ≥ 5, N k=1 k 2 β k r k = 0.
Then there exist neutral chains of poles on both sides of the asymptotic axis (s) = -ln(|r|)/τ . Proof. For 2 ≤ m ≤ 3 and m ≥ 5, the proof is similar to that of Corollary 4.8. Now, we consider the case of m = 4. By replacing ν 2 1 = x in (4.31), we obtain

x 2 4! N k=1 k 4 α k r k + xτ µ 2(2π) µ N k=1 k 2 β k r k + τ 2µ (2π) 2µ N k=1 γ k r k = 0
Let us denote x 1 and x 2 the two roots of the above equation. Equation (4.31) has at least one value of ν 1 with positive real part except the case where both roots x 1 , x 2 are negative. However, we will demonstrate that this case does not exist.

The two roots of the equation satisfy

x 1 + x 2 = - 12τ µ N k=1 k 2 β k r k (2π) µ N k=1 k 4 α k r k = - 12τ µ (2π) µ K r where K r = N k=1 k 2 β k r k / N k=1 k 4 α k r k . We consider r ∈ R and r ∈ C\R.
If r is real, then x 1 + x 2 is not real. Therefore, x 1 and x 2 cannot be both real.

If r is not real, then r is also a root of (2.4). Denote x 1 and x 2 roots corresponding to r. Hence, they satisfy

x 1 + x 2 = - 12τ µ (2π) µ Kr . Therefore x 1 + x 2 + x 1 + x 2 = - 24τ µ (2π) µ (K r ),
indicating that x 1 , x 2 , x 1 , and x 2 cannot be all real.

4.4.4

The case where m ≥ 2, N k=1

β k r k = 0, N k=1 kβ k r k = 0, N k=1 k 2 β k r k = 0, N k=1 γ k r k = 0, N k=1 kγ k r k = 0, and N k=1 δ k r k = 0
We continue one more step in this kind of development because this case presents an interesting behavior. Besides systems which may be H ∞ -stable, we will encounter here those whose stability may not be concluded with the first approximation. Such systems have not been seen in any of the previous cases with multiple chains.

As usual, we obtain the approximation of roots of large modulus of the characteristic equation in the next theorem.

Theorem 4.17. Let G(s) be a neutral delay system defined by (4.1), and suppose that one of the roots of (2.4) has multiplicity m > 1. If this root, denoted by r, satisfies then, for large enough n ∈ Z, poles of neutral chains relative to those m identical roots are approximated by

N k=1 β k r k = 0, (4.34) N k=1 kβ k r k = 0, (4.35) 
N k=1 k 2 β k r k = 0, (4.36) 
s n τ = λ n + ν n,1 + o(n -y 1 ),
with λ n given by (2.6) and

ν n,1 = ν 1 n -y 1 ,
where for m = 2, y 1 = 3µ/2 and

ν 2 1 = 2τ 3µ N k=1 δ k r k (2π) 3µ N k=1 k 2 α k r k , ( 4 

.40)

for m = 3, y 1 = µ and ν 1 satisfies (4.41) and for m ≥ 4, (y 1 , ν 1 ) takes one of m different pairs of values

- ν 3 1 3! N k=1 k 3 α k r k + τ µ ν 2 1 2(2π) µ N k=1 k 2 β k r k - τ 2µ ν 1 (2π) 2µ N k=1 kγ k r k + τ 3µ (2π) 3µ N k=1 δ k r k = 0,
y 1 = µ m -2 , ν m-2 1 = (-1) m+1 m!τ µ N k=1 k 2 β k r k 2(2π) µ N k=1 k m α k r k ,
or y 1 = µ and ν 1 satisfies

τ µ ν 2 1 2(2π) µ N k=1 k 2 β k r k - τ 2µ ν 1 (2π) 2µ N k=1 kγ k r k + τ 3µ (2π) 3µ N k=1 δ k r k = 0.
Proof. We deduce that the terms of highest order in n of g 1 , g 2 , and g 3 , which are given by (4.4), (4.5), and (4.6), are -3µ, -my 1 , and max{-µ -2y 1 , -2µ -y 1 } respectively. Unlike the previous case where we can actually reduce the number of orders to consider, for this case we cannot omit beforehand any of the two possible orders of g 3 , thus all the four orders above have to be taken into account resulting in more possible cases which may occur mong them. However, the same procedure as in the proof of Theorem 4.9 is applied.

For m = 3, Equation (4.41) may admit all roots with negative real part (see Example 4.4 in Section 4.5). In such systems, the following condition on H ∞ stability may be applied. It is similar to the case in Subsection 4.4.2 and is stated below without proof. Proposition 4.18. Let G(s) be a neutral delay system defined by (4.1), and suppose that (2.4) has at least one root of modulus one of multiplicity three, the other roots being of modulus strictly greater than one. We also suppose that each root of modulus one of (2.4) satisfies (4.34)-(4.39). If (ν n,1 ) = 0 and G has no unstable poles of small modulus then G is H ∞ -stable if and only if deg p ≥ deg t + 3.

For other multiplicities, except for a special case when m = 2, we obtain at least one ν n,1 of positive real part as stated in the next corollary.

Corollary 4.19. Let G(s) be a neutral delay system defined by (4.1), and suppose that either of the following conditions is satisfied • a root of (2.4) has multiplicity m ≥ 4 and satisfies (4.34)-(4.39),

• a root of (2.4) has multiplicity m = 2 and satisfies (4.34), (4.35), (4.37), and (4.39), and µ = 2/3.

Then there exist neutral chains of poles on both sides of the asymptotic axis given by (2.7).

Proof. For m = 2 with µ = 2/3 and m ≥ 4, the proof is similar to that of Corollary 4.8.

The special case of m = 2 and µ = 3/2 is analyzed as follows.

Corollary 4.20. Let G(s) be a neutral delay system defined by (4.1), and suppose that µ = 2/3. If a root of (2.4) has multiplicity m = 2 and satisfies (4.34), (4.35), (4.37), and (4.39), then for this root either (ν n,1 ) = 0 for all n ∈ Z or (ν n,1 ) = ±c/n with c = 0.

Proof. With µ = 2/3, then ν n,1 = ν 1 /n and (4.40) becomes

ν 2 1 = - τ 2 N k=1 δ k r k 2π 2 N k=1 k 2 α k r k . (4.42) If N k=1 δ k r k / N k=1 k 2 α k r k > 0,
then the two values of ν 1 are purely imaginary. In this case, from Remark 4.1 we have (ν n,1 ) n<0 = 0.

Otherwise, (ν 1 ) = ±c = 0.

In the case above, in order to determine the location of the corresponding chain of poles we need to continue the approximation to at least ν n,2 .

Remark 4.21. If m = 2, then we obtain ν n,1 = ν 1 /n with ν 1 given by ( 4.40) independently of the conditions (4.36) and (4.38). First, let us consider the system with the transfer function given by G 1 (s) = s 0.5 + 1 s + (-1.9s + s 0.5 )e -s + (s -s 0.5 + 0.3)e -2s .

Examples

For this system, the fractional order is µ = 0.5 and the delay is τ = 1. It is easy to see that the coefficients of the development q k (s)/p(s) are α 1 = -1.9, β 1 = 1, α 2 = 1, β 2 = -1, and thus the formal polynomial is c d (z) = 1 -1.9z + z 2 , which has two complex conjugate roots r = (19 ±  √ 39)/20 of multiplicity m = 1. Since |r| = 1 for each r, then the asymptotic axis defined by (s) = -ln(|r|)/τ is the imaginary axis.

As 2 k=1 β k r k = 0 for both r, Theorem 4.2 is applied and we obtain ν n,1 = (-0.1636 + 0.1185)/n 0.5 for r = (19 +  √ 39)/20 and ν n,1 = (-0.1185 + 0.1636)/n 0.5 for r = (19 - √ 39)/20. Therefore, in the upper half-plane, i.e. n > 0, the two neutral chains of poles are on the left of the imaginary axis. So are the chains in the lower half-plane since poles of G(s) are symmetric about the real axis, which is due to the fact that the denominator of G(s) is a quasi-polynomial with real coefficients.

The same conclusion about the location of neutral poles can be drawn using Corollary 4.4. The critical value of µ is

µ c = (2/π) arctan(-(K r )/| (K r )|) = 0.8989 with K r = 2 k=1 β k r k / 2 k=1 kα k r k .
Recall that µ c is the same for both r. Since µ = 0.5 < µ c , then the two neutral chains of poles relative to r are on the left of the imaginary axis as we can see in Figure 4.1a.

In addition, all poles of small modulus of the system are in the open left half-plane. Then Proposition 4.5 shows that G is H ∞ -stable since deg t = deg p -1. Indeed, G(s) is bounded on the imaginary axis, which can be seen in Figure 4.2. The system is given by G 2 (s) = (s + (-2s + s 0.5 + 0.25)e -s + (s -s 0.5 )e -2s ) -1 .

We see that the delay is τ = 1 and the fractional order is µ = 0.5. The polynomial c d (z) given in (2.4) has root r = 1 of multiplicity two, then the system has two chains of poles asymptotic to the imaginary axis. The system satisfies 2 k=1 β k r k = 0, 2 k=1 kβ k r k = 0, and 2 k=1 γ k r k = 0, then Theorem 4.9 is applied. Equation ( 4.19) has a double root, which gives ν n,1 = (-0.1410 + 0.1410)/n 0.5 for n → +∞. Therefore, the two neutral chains are on the left of the imaginary axis.

If some parameters of G 2 (s) change slightly, the system might fail to satisfy the condition 2 k=1 β k r k = 0, and thus is no longer stable due to Corollary 4.8. This remark fits in the following system G ∆ 2 (s) = (s + (-2s + s 0.5 + 0.25)e -s + (s -(1 + ∆)s 0.5 )e -2s ) -1 .

If ∆ = 0, then 2 k=1 β k r k = 0, thus Corollary 4.8 states that the system has a chain of poles in the right half-plane. Proposition 4.13 shows that G 2 (s) is stable in the sense of H ∞ -stability. Indeed, the system does not have unstable poles and is bounded on the imaginary axis (see Figure 4.4). Clearly, the system defined by (s 0.5 + 1)G 2 (s) is unstable since the order of the numerator is too high making the transfer function unbounded on the imaginary axis (see Figure 4.5). We consider the system with the transfer function given by G 3 (s) = (s 0.8 + (-3s 0.8 + 3s 0.4 + 1)e -s + (3s 0.8 -5s 0.4 + 2)e -2s + (-s 0.8 + 2s 0.4 + 3)s -3s ) -1 .

Here, we see that µ = 0.4, τ = 1, and c d (z) = 1 -3z + 3z 2 -1 with a root r = 1 of multiplicity m = 3. Therefore, the chains of poles approach the imaginary axis.

Since 3 k=1 β k r k = 0, 3 k=1 kβ k r k = -1, and 3 k=1 γ k r k = 6, then Theorem 4.9 is applied. More precisely, since m = 3, we obtain from (4.20) and (4.21) three values of ν n,1 , which are (0.2140 + 0.6585)/n 0.2 , (-0.2140 -0.6585)/n 0.2 , and (-2.3272 + 1.6908)/n 0.4 . Therefore, the system has one chain of poles on the right and two chains on the left of the imaginary axis, which are shown in Figure 4.6. It is interesting to note that one chain approaches the imaginary axis faster than the other two, which is due to different orders of ν n,1 .

Example 4.4. (Subsections 4.3.1 and 4.4.4) The system is described by the transfer function

G 4 (s) = t(s) d(s) (4.43)
where the characteristic equation of the system is a product of the characteristic equations of 3 single time-delay systems and is given by

d(s) = [(s 0.2 + 1) + s 0.2 e -s ][(s 0.2 + 2) + (s 0.2 -1)e -s ][(s 0.2 + 3) + (s 0.2 + 1)e -s ]
= s 0.6 + 6s 0.4 + 11s 0.2 + 6 + (3s 0.6 + 12s 0.4 + 10s 0.2 -1)e -s + (3s 0.6 + 6s 0.4 -2s 0.2 -1)e -2s + (s 0.6 -s 0.2 )e -3s .

The formal polynomial of this system is c d (z) = 1 + 3z + 3z 2 + z 3 and has r = -1 of multiplicity m = 3. There are then 3 neutral chains of poles approaching the imaginary axis. The conditions in Theorem 4.17 are all satisfied. Therefore, ν n,1 = ν 1 n -0.2 where ν 1 is given by (4.41) and has three values -0.6585 + 0.2140, -1.3170 + 0.4279, and -1.9756 + 0.6419. The upper parts of the chains of poles are then on the left of the imaginary axis and so are the lower parts since poles are symmetric about the real axis.

We obtain the same values of ν n,1 if considering separately each factor of the characteristic equation using the results in Theorem 4.2.

The poles of small modulus are also in the open left half-plane as we can see in Figure 4.7. Therefore, Proposition 4.18 can be applied to determine the necessary and sufficient condition for the system to be H ∞ -stable. The system is H ∞ -stable if and only if t(s) is a constant. Figures 4.8 and 4.9 show the magnitude of the transfer function when t(s) = 1 and t(s) = s 0.2 + 2 respectively. The transfer function is bounded in the former case and unbounded in the latter one.

Conclusion

Fractional delay systems of neutral types where poles approach the imaginary axis is delicate for stability analysis. In this chapter, we answer the stability question in the sense of H ∞ -stability for a large class of systems, in particular systems with multiple chains asymptotic to the imaginary axis, and the necessary and sufficient conditions obtained are related not only to the location of poles w.r.t. the imaginary axis but also the relative order between the numerator and the denominator of the transfer function. These results will also be of use to decide on H ∞ -stabilizability of several classes of fractional delay systems by rational or fractional controllers (with delays). The deployed method can be used for other cases which are not examined here. However, it requires time and effort for each particular system.

Chapter 5 

Stability analysis of SISO classical neutral systems with commensurate delays

N k=1 β k r k = 0, N k=1 kβ k r k = 0, N k=1 k 2 β k r k = 0, N k=1 γ k r k = 0, N k=1 kγ k r k = 0,

Introduction

For the fractional systems considered in the previous chapter, if the fractional order µ ∈ (0, 1) is replaced by µ = 1, then they will become classical systems with commensurate delays. The stability of this class of delay systems has been studied intensively (see for instance [START_REF] Bellman | Differential-Difference Equations[END_REF][START_REF] Richard | Time-delay systems: An overview of some recent advances and open problems[END_REF][START_REF] Michiels | Stability and Stabilization of Time-Delay Systems[END_REF] and the references therein). Despite the large literature, the critical case of poles asymptotic to the imaginary axis has not been studied thoroughly and the available results are at the same point as those for fractional systems. More precisely, in the frequency domain [START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF] considered the case of single chains and also a particular case of multiple chains where the characteristic equation was a product of characteristic equations of systems with single chains. However the general case of multiple chains has not been addressed. In the time domain, neutral systems with poles approaching the imaginary axis was studied in [START_REF] Rabah | Stability and stabilizability of mixed retarded-neutral type systems[END_REF]. Sufficient conditions for asymptotic stability were obtained for single chains of poles but the case of multiple chains was still left open.

This chapter aims at extending the work in [START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF] to systems of the second case. Based on the similarities with fractional systems, approximations of the pole location for classical systems are obtained from the results in the previous chapter by simply replacing the fractional order µ ∈ (0, 1) by µ = 1. Nevertheless, the analysis of these approximations may lead to more conservative conclusions in the case of classical systems. For clarity of presentation, we recall the similar results without proof and only provide proofs for new results. This chapter has the same organization as the previous chapter. First, we recall the systems to be considered in Section 5.2. The cases of single and multiple chains of poles are studied in Sections 5.3 and 5.4 respectively. Illustrative examples are given in Section 5.5. Finally, in Section 5.6 we conclude the chapter with some final remarks and a discussion about the relation between the results presented here (in the frequency domain) and those in [START_REF] Rabah | Stability and stabilizability of mixed retarded-neutral type systems[END_REF] (in the time domain).

Neutral time-delay systems

We consider neutral systems with commensurate delays whose transfer function is given by (2.2) and is recalled here.

G(s) = t(s) p(s) + N k=1 q k (s)e -ksτ = t(s) d(s) , (5.1) 
where τ > 0 is the delay, t, p, and q k for all k ∈ N N are real polynomials, deg p ≥ deg t, deg p ≥ deg q k for all k ∈ N N , and deg p = deg q k at least for one k ∈ N N in order to deal with proper neutral systems.

We refer the reader to Subsection 2.4.2 for some basic facts regarding these systems.

Recall that we denote s n a pole of G(s) relative to a root r of the formal polynomial c d (z) defined by (2.4) and assume that s n has the form

s n τ = λ n + ν n,1 + ν n,2 + . . . + ν n,M + o(n -4 ) (5.2)
with λ n = -ln(r) + 2πn and ν n,i = ν i n y i for i = 1, . . . , M where ν i = 0 and 0 < y 1 < . . . < y M ≤ 4.

In the next sections, we will first be interested in determining ν n,1 in different cases since the sign of (ν n,1 ) indicates in which side of the asymptotic axis the poles are. If knowing ν n,1 is not enough to know the location of poles around the asymptotic axis, we will proceed to determine ν n,2 . For that purpose we develop d(s)/p(s) at s n of large modulus as follows

d(s n ) p(s n ) = g 1 + g 2 + g 3 + o(n -4 ) = 0 (5.3)
where

g 1 = 1 + N k=1 α k r k + τ 2πn 1 + O(n -1 ) N k=1 β k r k + τ 2 (2πn) 2 1 + O(n -1 ) N k=1 γ k r k + τ 3 (2πn) 3 N k=1 δ k r k + τ 4 (2πn) 4 N k=1 k r k ,
(5.4)

g 2 =
(l 1 ,...,l M )∈L( 4)

(-1) M i=1 l i M i=1 ν l i i M i=1 l i ! n M i=1 l i y i N k=1 α k r k k M i=1 l i , (5.5) 
and

g 3 = τ 2πn 1 + O(n -1 ) (l 1 ,...,l M )∈L(3) (-1) M i=1 l i M i=1 ν l i i M i=1 l i ! n M i=1 l i y i N k=1 β k r k k M i=1 l i + τ 2 (2πn) 2 1 + O(n -1 ) (l 1 ,...,l M )∈L(2) (-1) M i=1 l i M i=1 ν l i i M i=1 l i ! n M i=1 l i y i N k=1 γ k r k k M i=1 l i + τ 3 (2πn) 3 (l 1 ,...,l M )∈L(1) (-1) M i=1 l i M i=1 ν l i i M i=1 l i ! n M i=1 l i y i N k=1 δ k r k k M i=1 l i .
(5.6)

Single chains of poles

The chain of poles corresponding to a single root of the formal polynomial c d (z) defined in (2.4) is a single chain.

In this section, we determine the relative location of single chains of poles w.r.t. their asymptotic axes and derive necessary and sufficient conditions for the system to be H ∞ -stable when it is applicable.

5.3.1

The case where N k=1 β k r k = 0

This subsection recalls the results obtained in [START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF] but presenting them in the framework adopted here (see (5.2)) which indeed allows us to extend some of them in the next subsection.

The next theorem, which approximate poles in a neutral chain, can be obtained from Theorem 4.2 by changing the value of µ to one.

Theorem 5.1. Let G(s) be a neutral delay system defined by (5.1) and suppose that at least one root of the formal polynomial c d (z) defined in (2.4) has multiplicity one. If such a root, denoted by r, satisfies

N k=1 β k r k = 0, (5.7) 
then for large enough n ∈ Z poles of the neutral chain relative to r are approximated by

s n τ = λ n + ν n,1 + o(n -1 )
where λ n is given by (2.6) and

ν n,1 = ν 1 n -1 with ν 1 = τ N k=1 β k r k 2π N k=1 kα k r k . (5.8)
The sign of the real part of the above approximation is analyzed in the following corollary.

Corollary 5.2. Let G(s) be a neutral delay system defined by (5.1). Suppose that r is a root of (2.4) of multiplicity one and satisfies (5.7). Then the values of ν 1 relative to r and r have either (ν 1 ) = 0 or (ν 1 ) = ±c = 0.

Remark 5.3. For the classical systems considered in this subsection, in contrast with the case of fractional neutral systems, the sign of ν n,1 is not sufficient to detect a chain of poles lying on the left of the asymptotic axis.

When (ν 1 ) = 0, the next approximation may be needed.

Theorem 5.4. Let G(s) be a neutral delay system defined by (5.1). Then the neutral poles corresponding to each root r of multiplicity one satisfying (5.7) are approximated by

s n = 1 τ λ n + ν 1 n y 1 + ν 2 n y 2 + o(n -y 2 )
where λ n is given by (2.6), ν 1 is given by (5.8), y 1 = 1, y 2 = 2 and ν 2 is given by

ν 2 = τ ln(r) N k=1 β k r k + τ 2 N k=1 γ k r k -2π 2 ν 2 1 N k=1 α k r k k 2 -2πτ ν 1 N k=1 β k r k k (2π) 2 N k=1 α k r k k .
For some examples of systems with (ν 2 ) < 0, see [START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF]. In addition, some systems there have no unstable poles of small modulus.

However, all poles on the left of the imaginary axis is not sufficient for H ∞ -stability if there are chains of poles asymptotic to the axis. In this scenario, the next theorem provides necessary and sufficient stability condition.

Theorem 5.5. Let G(s) be a transfer function defined by (5.1) and suppose that G(s) has no unstable pole of small modulus. Suppose also that the formal polynomial c d (z) defined in (2.4) has at least one root of multiplicity one and modulus one which satisfies (5.7). The other roots of c d (z) are of modulus strictly greater than one. Suppose that

(ν 2 ) < 0. Then G is H ∞ -stable if and only if deg p ≥ deg t + 2.

Other cases

In the previous subsection, we consider single roots r of the formal polynomial c d (z) defined in (2.4) satisfying the condition N k=1 β k r k = 0. If a root r of multiplicity one satisfies other conditions involving the coefficients α k , β k , . . . defined in (2.3), then ν n,1 has the form

ν n,1 = τ 2πn xr K r
(5.9)

with K r a function in r and α k , β k , . . ., and x r ∈ N.

Note that we get a value of x r for each root r of multiplicity one of c d (z), where comes the subscript. For example, if r satisfies N k=1 β k r k = 0 and N k=1 γ k r k = 0, then x r = 2 and K r = N k=1 γ k r k /( N k=1 kα k r k ). By analyzing ν n,1 , we draw the following conclusions.

• If x r = 2k -1, k ∈ N, then τ xr /(2πn) xr ∈ R. Similar to the case considered
previously, for all values of ν 1 relative to r and r we have (ν 1 ) = 0 or (ν 1 ) = ±c = 0. In the former situation further approximation may be needed while in the latter the system is unstable.

• If x r is even, then sgn(ν n,1 ) = sgn( (K r )) when x r = 4k, k ∈ N and sgn(ν n,1 ) = -sgn( (K r )) when x r = 4k -2, k ∈ N.

In the case of x r being even, it may happen that (ν n,1 ) < 0 and the following proposition can be used to verify whether the system is H ∞ -stable.

Proposition 5.6. Let G(s) be a transfer function given as (5.1) and suppose that the formal polynomial c d (z) defined in (2.4) has at least one simple root of modulus one, denoted r, the other roots being of modulus strictly greater than one.

1. Suppose that (ν n,1 ) < 0 for all r and that G has no unstable pole of small modulus, then G is H ∞ -stable if and only if deg p ≥ deg t + max r {y 1 }, where, for each r, -y 1 is the order in n of ν n,1 .

2. If (ν n,1 ) = 0 for any r, then the condition deg p ≥ deg t + max r {y 1 } is necessary for H ∞ -stability.

Multiple chains of poles

The chains of poles relative to a multiple root of the formal polynomial c d (z) defined by (2.4) are called multiple chains. The poles of these chains approach a same set of points on the vertical line defined by (s) = -ln(|r|)/τ (2.7).

5.4.1

The case where m ≥ 2 and N k=1 β k r k = 0

The approximation of neutral poles is given in the next theorem. Analyzing this approximation yields the same conclusion as in the fractional case presented in Subsection 4.4.1.

Theorem 5.7. Let G(s) be a neutral delay system defined by (5.1), and suppose that at least one root of the formal polynomial c d (z) defined by (2.4) has multiplicity m > 1. If for such a root, denoted by r, the condition

N k=1 β k r k = 0 (5.10)
is satisfied, then for large enough n ∈ Z, poles of neutral chains relative to those m identical roots are approximated by

s n τ = λ n + ν n,1 + o(n -1/m ),
with λ n given by (2.6) and (5.11) where

ν n,1 = ν 1 n -1/m ,
ν m 1 = (-1) m+1 m!τ N k=1 β k r k 2π N k=1 k m α k r k .
(5.12)

Corollary 5.8. Let G(s) be a neutral delay system defined by (5.1). If a root r of multiplicity m > 1 of the formal polynomial c d defined in (2.4) satisfies (5.10), then there exist neutral chains of poles on both sides of the corresponding asymptotic axis (s) = -ln(|r|)/τ .

The case where

m ≥ 2, N k=1 β k r k = 0, N k=1 kβ k r k = 0, N k=1 γ k r k = 0
The similar class of fractional systems is studied in Subsection 4.4.2. However, the approximation of pole location for the classical systems here leads to different conclusions in some situations. Theorem 5.9. Let G(s) be a neutral delay system defined by (5.1), and suppose that one of the roots of the formal polynomial c d (z) defined in (2.4) then, for large enough n ∈ Z, poles of neutral chains relative to those m identical roots are approximated by

s n τ = λ n + ν n,1 + o(n -y 1 ),
with λ n given by (2.6) and

ν n,1 = ν 1 n -y 1 ,
where for m = 2, y 1 = 1 and ν 1 satisfies the equation (5.16) and for m ≥ 3, (y 1 , ν 1 ) takes m different pair of values below

ν 2 1 2 N k=1 k 2 α k r k - ν 1 τ 2π N k=1 kβ k r k + τ 2 (2π) 2 N k=1 γ k r k = 0,
y 1 = 1, ν 1 = τ N k=1 γ k r k 2π N k=1 kβ k r k , ( 5 
.17)

y 1 = 1 m -1 , ν m-1 1 = (-1) m m!τ N k=1 kβ k r k 2π N k=1 k m α k r k .
(5.18)

Corollary 5.10. Let G(s) be a neutral delay system defined by (5.1), and suppose that at least one root r of the formal polynomial c d (z) defined in (2.4) has multiplicity m ≥ 3 and satisfies (5.13) and (5.14). Then there exist neutral chains of poles on both sides of the asymptotic axis (s) = -ln(|r|)/τ .

Remark 5.11. The conclusion in Corollary 5.10 is drawn from analyzing the values of ν 1 given in (5.18) and not from (5.17). Therefore, it does not depend on the condition (5.15) which is omitted in the corollary.

with λ n given by (2.6), y 1 = 1 and ν 1 given by ( 5.16), ν 1 satisfies the conditions (5.19)

f n (ν 1 ) := 2τ 2 ln(r) (2π) 3 N k=1 γ k r k + τ 3 (2π) 3 N k=1 δ k r k - ν 3 1 3! N k=1 α k k 3 r k + τ 2π ν 2 1 2 N k=1 β k k 2 r k - τ ln(r) (2π) 2 ν 1 N k=1 β k kr k - τ 2 (2π) 2 ν 1 N k=1 γ k kr k = 0,
f d (ν 1 ) := -ν 1 N k=1 α k k 2 r k + τ 2π N k=1 β k kr k = 0.
(5.20)

Then the approximation of the neutral poles can be extended to

s n = 1 τ λ n + ν 1 n y 1 + ν 2 n y 2 + o(n -y 2 )
where y 2 = 2 and ν 2 is given by

ν 2 = f n (ν 1 ) f d (ν 1 ) . (5.21)
Proof. Our objective is to find the next approximation term ν 2 /n y 2 of s n with ν 2 = 0 and y 2 > y 1 . To do that, in (5.3) we develop 1/s p n (with p ∈ N) more precisely as follows

1 s p n = τ p (2πn) p 1 + p ln(r) 2πn + O(n -2 ) . (5.22)
Now we will prove that y 2 = 2 is the appropriate value.

If y 2 < 2, then the development (5.3) can be rewritten as

f 1 (ν 1 ) -ν 2 f d (ν 1 ) n 1+y 2 + o(n -(1+y 2 ) ) = 0
where f 1 (ν 1 ) is the left expression in (5.16) and f 1 (ν 1 ) = 0. Consequently, ν 2 = 0 which does not satisfy the requirement.

If y 2 > 2, then (5.3) becomes

f 1 (ν 1 ) + f n (ν 1 ) n 3 + o(n -3 ) = 0 which cannot happen since f 1 (ν 1 ) = 0 and f n (ν 1 ) = 0.
Therefore y 2 = 2 and (5.3) becomes .23) From this, the result is immediate.

f 1 (ν 1 ) + f n (ν 1 ) n 3 -ν 2 f d (ν 1 ) n 1+y 2 + o(n -3 ) = 0. ( 5 
Remark 5.15. Note that f n (ν 1 ) = f 1 (ν 1 ). Then, the assumption f n (ν 1 ) = 0 implies that ν 1 is not a double root of f 1 , because otherwise f 1 (ν 1 ) = 0.

There exist systems with m = 2 and all purely imaginary ν 1 that have all values of ν 2 with negative real part. Example 5.5 is one such system. In that case, the following criterion allows one to determine the H ∞ -stability of the system.

Theorem 5.16. Let G(s) be a neutral delay system defined by (5.1) satisfying the following conditions

• G has no unstable poles of small modulus.

• the formal polynomial (2.4) has roots of modulus one and all these roots, denoted by r, are of multiplicity 2 and satisfies (5.13), (5.14), and (5.15).

• the poles associated with each root of (2.4) are approximated by

s n τ = λ n + ν n,1 + ν n,2 + o(n -2
) where ν n,1 = ν 1 n -1 with ν 1 given by ( 5.16) and satisfying (5.19) and ( 5.20), ν n,2 = ν 2 n -2 with ν 2 given by ( 5.21) and (ν n,2 ) < 0.

Then G is H ∞ -stable if and only if deg p ≥ deg t + 3.
Proof. We consider the module of the denominator of G at a point s on the imaginary axis near a pole s n relative to a root r of modulus one of (2.4). Let s = s n + η n ∈ R.

Recall that

s n = 1 τ λ n + ν 1 n + ν 2 n 2 + o(n -2
) and (λ n ) = 0, (ν 1 ) = 0, and (ν 2 ) < 0. Therefore η n is at least of order n -2 . In this case, we can write

η n = η n 2 + o(n -2 ). Therefore, s = s n + η n = 1 τ λ n + ν 1 n + ν 2 + τ η n 2 + o(n -2 ) .
(5.24)

We see that s has the same form as s n if we replace ν 2 = ν 2 + τ η in the above expression of s. Therefore, the approximation of d(s) as |s| → ∞ is similar to that of d(s n ) as

|s n | → ∞.
We can rewrite the approximation (5.3) 

of d(s n ) as |s n | → ∞ as d(s n ) = p(s n ) f 1 (ν 1 ) n 2 + f 2 (ν 1 , ν 2 ) n 3 + o(n -3 )
where f 1 (ν 1 ) is the left expression in (5.16) and

f 2 (ν 1 , ν 2 ) = f n (ν 1 ) -ν 2 f d (ν 1 ) with f n (ν 1 )
and f d (ν 1 ) given by (5.19) and ( 5.20) respectively. Similarly, we obtain the approximation of d(s) as |s| → ∞ as follows

d(s) = p(s) f 1 (ν 1 ) n 2 + f 2 (ν 1 , ν 2 + τ η) n 3 + o(n -3 ) .
Note that f 1 (ν 1 ) = 0. Now we prove that f 2 (ν 1 , ν 2 + τ η) = 0. From (5.23) we see that ν 2 is the only root of f 2 (ν 1 , .). Consequently, if f 2 (ν 1 , ν 2 + τ η) = 0 then η = 0. However, this cannot happen. Indeed, since s ∈ R, then from (5.24) we derive that (ν 2 + τ η) = 0 and thus 3) , where d 0 is the degree of p(s).

(η) = -(ν 2 )/τ = 0. Therefore, f 2 (ν 1 , ν 2 + τ η) = 0. Hence the order of the denominator of G(s) is n -(d 0 -

The case where

m ≥ 2, N k=1 β k r k = 0, N k=1 kβ k r k = 0, N k=1 k 2 β k r k = 0, and N k=1 γ k r k = 0
For this class of classical systems, both the approximation of pole location and the conclusions drawn from it are the same as those of fractional systems satisfying the same conditions (see Subsection 4.4.3) except for m = 2.

Theorem 5.17. Let G(s) be a neutral delay system defined by (5.1), and suppose that one of the roots of the formal polynomial c d (z) defined in (2.4) has multiplicity m > 1. If this root, denoted by r, satisfies

N k=1 β k r k = 0, (5.25) N k=1 kβ k r k = 0, (5.26) N k=1 k 2 β k r k = 0, N k=1 γ k r k = 0, (5.27) 
then, for large enough n ∈ Z, poles of neutral chains relative to those m identical roots are approximated by

s n τ = λ n + ν n,1 + o(n -y 1 ),
with λ n given by (2.6) and

ν n,1 = ν 1 n -y 1 ,
where for 2 ≤ m ≤ 3, y 1 = 2/m and .28) for m = 4, y 1 = 1/2 and ν 1 satisfies (5.29) and for m ≥ 5, (y 1 , ν 1 ) takes one of m different pairs of values .30) .31) The same stability results as in the case of fractional systems are obtained for m ≥ 3.

ν m 1 = (-1) m+1 m!τ 2 N k=1 γ k r k (2π) 2 N k=1 k m α k r k , ( 5 
ν 4 1 4! N k=1 k 4 α k r k + ν 2 1 τ 4π N k=1 k 2 β k r k + τ 2 (2π) 2 N k=1 γ k r k = 0,
y 1 = 1 2 , ν 2 1 = - 2τ N k=1 γ k r k 2π N k=1 k 2 β k r k , ( 5 
y 1 = 1 m -2 , ν m-2 1 = (-1) m+1 m!τ N k=1 k 2 β k r k 4π N k=1 k m α k r k . ( 5 
Corollary 5.18. Let G(s) be a neutral delay system defined by (5.1), and suppose that at least one root of the formal polynomial c d (z) defined in (2.4) has multiplicity m ≥ 3, satisfies N k=1 β k r k = 0, N k=1 kβ k r k = 0 and

• for m = 3, N k=1 γ k r k = 0, • for m = 4, N k=1 k 2 β k r k = 0 and N k=1 γ k r k = 0 • for m ≥ 5, N k=1 k 2 β k r k = 0.
Then there exist neutral chains of poles on both sides of the asymptotic axis (s) = -ln(|r|)/τ .

In the next corollary, we show that when m = 2, in most cases we will have chains of poles on both sides of the asymptotic axis.

Corollary 5.19. Let G(s) be a neutral delay system defined by (5.1), and suppose that r is a root of multiplicity m = 2 of the formal polynomial c d (z) defined in (2.4) and r satisfies (5.25), (5.26), and (5.27). Then either (ν 1 ) = 0 for all values of ν 1 corresponding to r and r or (ν 1 ) = ±c = 0.

Proof. When m = 2, (5.28) becomes 5.32) where

ν 2 1 = τ 2 2π 2 K r ( 
K r = N k=1 γ k r k / N k=1 k 2 α k r k .
If K r < 0, then (ν 1 ) = 0 for two values of ν 1 . If r is not real, then r is also a root of c d (z) and K r = K r < 0. Hence the two values of ν 1 relative to r also has (ν 1 ) = 0.

In other cases of K r , it is obvious that (ν 1 ) = ±c = 0 for ν 1 relative to r and r.

As usual, in the case where (ν 1 ) = 0, further approximation may be needed.

The case where

m ≥ 2, N k=1 β k r k = 0, N k=1 kβ k r k = 0, N k=1 k 2 β k r k = 0, N k=1 γ k r k = 0, N k=1 kγ k r k = 0, and N k=1 δ k r k = 0
The similar class of fractional systems considered in Subsection 4.4.4 has been showed to include systems whose stability cannot be determined with ν n,1 alone. This behavior is rare for fractional systems but is quite common for classical ones as we have seen in many of the cases considered so far in this chapter.

Interestingly, we will see in this subsection that while some fractional systems exhibit that behavior, the classical counterparts do not and vice versa.

Theorem 5.20. Let G(s) be a neutral delay system defined by (5.1), and suppose that one of the roots of ( 2 then, for large enough n ∈ Z, poles of neutral chains relative to those m identical roots are approximated by

s n τ = λ n + ν n,1 + o(n -y 1 ),
with λ n given by (2.6) and

ν n,1 = ν 1 n -y 1 ,
where for m = 2, y 1 = 3/2 and (5.39) and for m ≥ 4, (y 1 , ν 1 ) takes one of m different pairs of values

ν 2 1 = 2τ 3 N k=1 δ k r k (2π) 3 N k=1 k 2 α k r k , for m = 3, y 1 = 1 and ν 1 satisfies - ν 3 1 3! N k=1 k 3 α k r k + τ ν 2 1 4π N k=1 k 2 β k r k - τ 2 ν 1 (2π) 2 N k=1 kγ k r k + τ 3 (2π) 3 N k=1 δ k r k = 0,
y 1 = 1 m -2 , ν m-2 1 = (-1) m+1 m!τ N k=1 k 2 β k r k 4π N k=1 k m α k r k , or y 1 = 1 and ν 1 satisfies τ ν 2 1 4π N k=1 k 2 β k r k - τ 2 ν 1 (2π) 2 N k=1 kγ k r k + τ 3 (2π) 3 N k=1 δ k r k = 0.
For multiplicities other than m = 3, we obtain at least one ν n,1 of positive real part as stated in the next corollary. Since 2 k=1 β k r k = -4, then by applying Theorem 5.7 we obtain ν n,1 = (-0.5642 + 0.5642)/n 1/2 and ν n,1 = (0.5642 -0.5642)/n 1/2 for n ∈ Z, n → ∞. This implies that in the upper half-plane there is one neutral chain of poles on the left of the imaginary axis and another one on the right. This can be seen in Figure 5.1, which is given by the QPmR algorithm [START_REF] Vyhlidal | QPmR v.2 -Quasipolynomial rootfinder, algorithm and examples[END_REF]. Therefore, G 1 (s) is unstable. This fact can be deduced directly from Corollary 5.10. G 2 (s) = 1 s -10e -s + (3s -3)e -2s + 7e -3s + (3s + 1)e -4s -4e -5s + (s -8)e -6s .

We have c d (z) = 1 + 3z 2 + 3z 4 + z 6 . It has roots r =  and r = - both of multiplicity m = 3. Since 3 k=1 β k r k = 0, then G 2 (s) is unstable from Corollary 5.10. Moreover, by Theorem 5.7, we obtain for r =  two values of ν 1 of negative real part and one of positive real part, and for r = - one of negative real part and two of positive real part. Therefore, there are three chains of poles in each half-plane (see Figure 5.2). and2 k=1 γ k r k = 13 then Theorem 5.9 is applied. Resolving (5.16), we obtain ν n,1 = (-0.5683 -0.0796)/n and ν n,1 = (0.5683 -0.0796)/n. There is one neutral chain of poles on the right of the imaginary axis (see Figure 5.3), thus G 3 (s) is unstable. The following particular system allows the application of Theorem 5.1 and Theorem 5.4, as well as Theorem 5.9 and Theorem 5.14.

G 3 (s) = 1 s 2 + (-2s 2 + s + 10)e -s + (s 2 -s + 3)e -2s . c d (z) has root r = 1 with multiplicity m = 2. Since 2 k=1 β k r k = 0, 2 k=1 kβ k r k = -1,
G 4 (s) = 1 (s + 3e -s + (-s + 5)e -2s )(s + 1 + (-s + 2)e -s )
.

For the first quasi-polynomial in the denominator, c d (z) corresponding to the first has roots r 1 = 1 and r 2 = -1 both of multiplicity one. For the second one, c d (z) has one root r 3 = 1 also of multiplicity one. Therefore, by applying Theorem 5.1 for each quasi-polynomial, we obtain ν

(1) n,1 = 0.6366/n, ν (2) 
n,1 = 0.1592/n, and ν

n,1 = 0.4775/n respectively relating to r 1 , r 2 , and r 3 . As the real part of ν 

Conclusion

Before proceeding to the conclusion remarks, we analyze the stability of an example using the results stated in this chapter and those in [START_REF] Rabah | Stability and stabilizability of mixed retarded-neutral type systems[END_REF]. A system is described by

ż(t) = -1 0 0 -1 ż(t -1) + -b 0 0 -b z(t) + b 1 b 2 u(t), y(t) = [ c 1 c 2 ]z(t) where z ∈ C 2 , t ≥ 0, b, b 1 , b 2 , c 1 , c 2 ∈ R
, and b > 0. Without the input u(t) and the output y(t), this system was considered in (Rabah et al., 2012, Section 5.1) and was demonstrated to be asymptotically stable. To applied the results in this chapter, we determine the transfer function of the system:

G(s) = Y (s) U (s) = b 1 c 1 + b 2 c 2 s + b + se -s .
As proved in (Rabah et al., 2012, Section 5.1), the denominator of G(s) has no unstable root. Theorem 5.5 can be applied and shows that G(s) is H ∞ -unstable.

Now, let us state some final remarks.

The results on approximating poles of neutral chains for classical delay systems are the same as those of fractional systems studied in Chapter 4 provided that the fractional order µ is replaced by µ = 1. For classical systems as well as for fractional systems, in the case of multiple chains of poles, these approximations reveal various patterns of chains approaching their asymptotic axis. They may approach the axis with the same rate (i.e. the approximations have the same order) or with different rates (i.e. the approximations have different orders).

Analyzing these approximations in order to determine the pole location about the asymptotic axis leads to different results in comparison with fractional systems in certain cases.

The phenomenon observed in these cases is that while for fractional systems stable chains of poles may be indicated by the first approximation, for classical systems we need higher approximations to detect such chains. Nevertheless, as shown in the last example, this phenomenon is not general.

The analysis also leads to an important observation that most of the classical systems in the considered classes have chains of poles on the right of the corresponding asymptotic axes. For systems with chains of poles asymptotic to the imaginary axis, this implies that most of those systems are unstable.

The analysis procedure as well as the diverse analysis techniques presented through various cases in the previous and current chapters could be systematically applied to other cases not considered here. However, some efforts are required. To make the procedure easier is the objective of the next chapter where some common results in the previous and current chapters will be generalized to all possible cases.

Chapter 6

Stability analysis of SISO classical and fractional neutral systems with commensurate delays 

N k=1 α 1,k r k = 0, N k=1 kα 1,k r k = 0, N k=1 k 2 α 1,k r k = 0, N k=1 α 2,k r k = 0,

Introduction

Stability analysis has been made in Chapters 4 and 5 for some classes of (fractional) neutral systems with commensurate delays and with chains of poles asymptotic to the 101 imaginary axis. For each class of systems, the analysis procedure was to approximate poles of large modulus, to examine the approximations and to give necessary and sufficient conditions for H ∞ -stability when it was appropriate.

Although the conclusions on the location of chains of poles about the imaginary axis were different for different classes of systems, the tools used for approximating poles in neutral chains remained the same. However, establishing the results became more complicated when the classes of systems were defined with more conditions on the coefficients.

To overcome this difficulty, we provide in this chapter new results which generalize those of the previous chapters and which can be easily implemented in computation software. They cover both classical and fractional systems in almost every configuration.

The chapter is organized as follows. Section 6.2 presents the (fractional) neutral delay systems of interest. The main results concerning the location of poles and stability conditions are presented in Sections 6.3 and 6.4 respectively. These results are compared with those presented in Chapters 5 and 4 in Section 6.5. The chapter is then concluded by Section 6.6.

A class of (fractional) neutral time-delay systems

We consider (fractional) neutral time-delay systems with transfer function of the form

G(s) = t(s) p(s) + N k=1 q k (s)e -ksτ
, (6.1) where

• τ > 0 is the delay,

• t, p, and q k for all k ∈ N N are real polynomials in s µ ,

• 0 < µ ≤ 1,
• -π < arg(s) < π in the case where 0 < µ < 1 in order to have a single value of s µ ,

• deg p ≥ deg t, deg p ≥ deg q k for all k ∈ N N , and deg p = deg q k at least for one k ∈ N N in order to deal with proper neutral systems.

Here, the degree of a (quasi-)polynomial refers to the degree in s µ .

Note that with µ ∈ (0, 1], the systems defined by (6.1) encompass those studied in both Chapters 4 and 5. Some basic characteristics of these systems are described in Subsection 2.4.2.

In this chapter, for the purpose of developing more general results, we change some notations compared to Chapters 4 and 5. In the development of q k (s)/p(s) for k = 1, . . . , N as |s| → ∞, the coefficients corresponding to the terms s -lµ for l ∈ Z + are now denoted by α l,k . Hence α 0,k , α 1,k , α 2,k , α 3,k , and α 4,k replace respectively α k , β k , γ k , δ k , and k in the previous chapters. The development of q k (s)/p(s) can be rewritten as

q k (s) p(s) = α 0,k + M l=1 α l,k s lµ + O(s -(M +1)µ ) (6.2)
where M ∈ Z + and can be arbitrarily large. The formal polynomial is now

c d (z) = 1 + N k=1 α 0,k z k , (6.3) 
where z = e -sτ .

Location of neutral poles

As we have seen in Subsection 2.4.2, to each root r of the formal polynomial c d (z) corresponds a chain of poles of neutral type. The approximation of these poles given in (2.5) only indicates the vertical line to which the pole chain approaches. To determine the position of the chain around the asymptotic axis, similarly to the two previous chapters, we examine in this section a more precise approximation of neutral poles of the form

s n τ = λ n + ν n,1 + o(n -y 1 ) (6.4) 
with

ν n,1 = ν 1 n y 1 , ν 1 = 0, y 1 > 0, n ∈ Z, n → ∞.
In other words, we determine the next non-zero approximation term when it is appropriate. Such an approximation term does not exist if the neutral poles are precisely s n = λ n /τ .

Except that special case, ν n,1 exists and the sign of (ν 1 /n y 1 ) then shows on which side of the asymptotic axis the poles are. Note that the sign may change for positive and negative n. Hence, the upper and lower parts of a poles chain may lie on different sides of the asymptotic axis.

Here, remark that we do not fix a value of y 1 beforehand but look for y 1 such that ν 1 = 0. This ensures that the approximation gives some new information about the location of poles. The only case where the information is not useful is when (ν 1 /n y 1 ) = 0 and we may need to approximate further to know the location of poles about the asymptotic axis.

Before presenting the main results about the location of poles around the asymptotic axis, we define some notions which will be of use.

• For a root r of c(z), We will call S a lower left boundary segment of AB(r).

AB(r) = {(a, b) ∈ Z 2 + : a + b = 0, N k=1 α a,k k b r k = 0}. (6.5) 0 a b (a 2 , b 2 ) (a 3 , b 3 ) γ 2 a 2 + b 2 tan γ 2 S 2 = {(a 2 , b 2 ), (a 3 , b 3 )} m 2 = tan γ 2
• m defined as above for each S is obviously unique and we call it the slope of the segment.

• S(AB(r)) denotes the set of all lower left boundary segments of AB(r).

A lower left boundary segment is illustrated in Figure 6.1. Note that if we denote m 2 the slope of the segment then m 2 = tan γ 2 with γ 2 presented in the figure.

The approximation of neutral chains of poles is the objective of the next theorem.

Theorem 6.1. Let G(s) be a neutral delay system defined by (6.1) and r a root of multiplicity m of the formal polynomial c d (s) defined by (6.3). With α a,k defined as in (6.2), let us define

C(a, b, ν) := τ aµ (2π) aµ (-1) b ν b b! N k=1 α a,k k b r k , (6.6) B(S) :=    (ν, y) : ν is a non-zero root of (a,b)∈S C(a, b, ν) = 0, y = mµ    . (6.7)
Let us denote n 1 the number of chains of poles relative to r with poles s n = λ n /τ where n ∈ Z, n → ∞ and λ n is given by (2.6). Then poles of the other neutral chains corresponding to r are approximated by

s n = 1 τ λ n + ν 1 n y 1 + o(n -y 1 ) (6.8)
where for each chain of poles (ν 1 , y 1 ) takes one of the m -n 1 values (counting multiplicity) given by

(ν 1 , y 1 ) ∈ S∈S(AB(r))
B(S).

Proof. Denote s n a pole of G(s), then

d(s n ) := p(s n ) + N k=1 q k (s n )e -ksnτ = 0.
Dividing both sides by p(s n ), we have

d(s n ) p(s n ) = 1 + N k=1 q k (s n ) p(s n ) e -ksnτ = 0.
As |s n | → ∞, using (6.2) leads to

d(s n ) p(s n ) = 1 + N k=1 α 0,k + M l=1 α l,k s lµ + O(s -(M +1)µ ) e -ksnτ = 0
where M ∈ Z + \{0}.

Assume s n has the form

s n τ = λ n + ν n,1 + ν n,2 + . . . + ν n,M + o(n -M µ )
with ν n,i = ν i n -y i , i = 1, . . . , M where ν i = 0 and 0 < y 1 < . . . < y M ≤ M µ.

Note that

e -λn = r, e -kν n,i = 1 + M µ y i l=1 (-1) l ν l i k l l!n ly i + o(n -M µ ) with l ∈ Z + \{0}.
Thus when n is large enough

d(s n ) p(s n ) = 1 + N k=1 α 0,k + M l=1 α l,k τ lµ (2πn) lµ 1 + O(n -1 ) + o(n -M µ ) r k × M i=1     1 + M µ y i l=1 (-1) l ν l i k l l!n ly i + o(n -M µ )     = 0
Now, consider a segment S. By definition, aµ + by 1 = a µ + b y 1 ∀(a, b), (a , b ) ∈ S and aµ + by 1 > a µ + b y 1 ∀(a , b ) ∈ AB(r)\S. Hence, the term of highest order is (α,β)∈S C(α, β, ν 1 )/n αµ+βy 1 with C(α, β, ν 1 ) defined in (6.6). Note that due to (6.9) this term is zero, which allows us to derive ν 1 . Since there are different (α, β) ∈ S, we obtain some non-zero values of ν 1 . Now we will discuss how to construct all the lower left segments of the set AB(r).

First, we mention two important points of AB(r) which limits a subset of AB(r) containing the lower left segments. The first point is (0, m). This point belongs to AB(r) since Lemma 2.59). The second point, denoted by (a L , b L ), is the leftmost point among the lowest points of AB(r), i.e.

N k=1 α 0,k k m r k = 0 (see
b L = min{b | (a, b) ∈ AB(r)} a L = min{a | (a, b L ) ∈ AB(r)}.
(6.10)

The lower left segments of AB(r) then belong to the subset

A m L = {(a, b) ∈ AB(r) | a ≤ a L , b ≤ m} (see Figure 6.2). Indeed, if (a, b) ∈ AB(r) and a > a L , then a+bm > a L +b L m for all m > 0 since b ≥ b L by definition. If (a, b) ∈ AB(r) and b > m, then a + bm > mm for all m > 0 since a ≥ 0 by definition.
The subset A m L has finite points and thus its convex hull is a convex polygon (De [START_REF] Berg | Computational Geometry[END_REF]. The vertices of this polygon are points in A m L and the line containing each of its edges defines a closed half-plane containing all the points of A m L . There is no other line containing two points of A m L with such a characteristic. Therefore, by definition, the points of a lower left segment of AB(r) belong to an edge of the convex hull of A m L and two of them are vertices of the hull. There exist numerous algorithms for determining the points of a finite set in R 2 which are on the boundary of its convex hull [START_REF] Berg | Computational Geometry[END_REF]. Among them, we can pick up points belonging to lower left segments.

The above discussion indicates that we need to know the points (0, m) and (a L , b L ) before using convex hull algorithms to determine the lower left segments. In the rest of this section, we present a method to find (a L , b L ) numerically. The next lemma provides a tool to derive the number of chains of poles with s n = λ n /τ . Lemma 6.2. Let G(s) be a neutral delay system defined by (6.1). Its denominator can be written as

D(s, z) = p(s) + N k=1 q k (s)z k , z = e -ksτ .
Let us denote by r a root of multiplicity m of c d (z) defined by (2.4). The following statements are equivalent:

(i) D(s, z) has n 1 identical chains of poles s n on the asymptotic axis corresponding to r with s n = λ n /τ where n ∈ Z and λ n is given by (2.6).

(ii)

d b D(s, z) ds b z=r ≡ 0, b = 0, . . . , n 1 -1, (6.11) 
d n 1 D(s, z) ds n 1 z=r ≡ 0, (6.12) 
where d 0 D(s, z)/ds 0 = D(s, z).

Proof. (i) =⇒ (ii):

The fact that s n for n ∈ Z are roots of multiplicity n 1 of D(s, z) is equivalent to It is obvious that (6.14) implies (6.12).

d b D(s, z) ds b s=sn z=e -snτ =r = 0, b = 0, . . . , n 1 -1, (6.13) 
d n 1 D(s, z) ds n 1
(ii) =⇒ (i):

From (6.11), we deduce that s n , n ∈ Z are roots of d b D(s,z)

ds b z=r , b = 0, . . . , n 1 -1.
Furthermore, s n are roots of e -sτ = r. Therefore, s n are roots of d b D(s,z) ds b .

On the other hand, due to (6.12), the polynomial d n 1 D(s,z)

ds n 1 z=r
has a finite number of roots and its roots are bounded. Therefore, there exists N 1 ∈ Z + such that for |n| > N 1 s n are not roots of d n 1 D(s,z)

ds n 1 z=r and thus are not roots of d n 1 D(s,z)

ds n 1
.

Hence, we conclude that s n , n ∈ Z are roots of multiplicity n 1 of D(s, z).

After determining b L using the previous lemma, we can determine a L by running a loop to find the smallest value of a such that N k=1 α a,k k b L r k = 0.

Stability

In this section, we study whether or not a system is H ∞ -stable based on the approximation of poles obtained in the preceding section. Here, we are only interested in systems with neutral chains asymptotic to the imaginary axis.

The next theorem provides quick tests on the instability of the systems. It does not even require to know ν n,1 .

Theorem 6.3. Let G(s) be a neutral delay system defined by (6.1), and suppose that the formal polynomial c d (z) defined in (6.3) has roots of modulus one. If for such a root, denoted by r, there exists S ∈ S(AB(r)) with AB(r) defined in (6.5) such that n(S) = 2 and either of the following conditions holds for (a

1 , b 1 ), (a 2 , b 2 ) ∈ S, b 1 > b 2 • b 1 -b 2 ≥ 3, • b 1 -b 2 = 2, and (a 2 -a 1 )µ = 2k, k ∈ Z + \{0},
then the system is unstable.

Proof. ν 1 of entries of B(S) defined by (6.7) are given by

ν b 1 -b 2 1 = - τ (a 2 -a 1 )µ (2π) (a 2 -a 1 )µ (-1) (b 2 -b 1 ) b 1 ! b 2 ! N k=1 α a 2 ,k k b 2 r k N k=1 α a 1 ,k k b 1 r k .
It is easy to see that for b 1 -b 2 ≥ 3 there exists at least one value of ν 1 with positive real part.

This is also the case for b

1 -b 2 = 2 if ν 2 1 ∈ C\R -. Let us denote K r = N k=1 α a 2 ,k k b 2 r k N k=1 α a 1 ,k k b 1 r k .
From now on we only consider positive n since poles are symmetric w.r.t. the real axis.

If r ∈ R, then K r ∈ R. However, if (a 2 -a 1 )µ = 2k, k ∈ Z + \{0} then  (a 2 -a 1 )µ = e  (a 2 -a 1 )µπ 2
∈ C\R, thus leading to ν 2 1 ∈ C\R. This indicates that the two values of ν 1 have non-zero real parts. Since they are symmetric w.r.t. the origin then one of them has positive real part, which implies that the system is unstable.

If r ∈ C\R, then r is also a root of the polynomial c d (z) (6.3). Denote ν 1(r) and ν 1(r) the values of ν 1 relative to r and r respectively. We obtain thus

ν 2 1(r) + ν 2 1(r) = - τ (a 2 -a 1 )µ (2π) (a 2 -a 1 )µ (-1) (b 2 -b 1 ) b 1 ! b 2 ! 2 (K r ),
which is not real. It turns out that either ν 2 1(r) or ν 2 1(r) is not real, thus giving at least one value of ν 1 with positive real part.

Several unstable systems that do not fit in those described in the previous theorem can be found in Chapters 4 and 5. We were able to conclude about the instability of those systems by using other analyses.

In the favorable case where neutral chains approach the imaginary from the left, the next theorem presents other conditions for the system to be H ∞ -stable.

To facilitate the proof of the theorem, we first state a primarily result. Lemma 6.4. Suppose that S(AB(r)) = ∅. Let S L ∈ S(AB(r)) be the segment containing (a L , b L ) and m L the slope of the segment. Then for all S ∈ S(AB(r)), every point

(a, b) ∈ S satisfies a + bm ≤ a L + b L m L . Proof. Let S ∈ S(AB(r)). We consider (a, b) ∈ S and (a, b) = (a L , b L ). By definition, a + bm ≤ a L + b L m, which leads to m ≤ (a L -a)/(b -b L ) since b > b L . Also by definition, a L + b L m L ≤ a + bm L , which leads to m L ≥ (a L -a)/(b -b L ).
Therefore, m ≤ m L , and thus a

+ bm ≤ a L + b L m ≤ a L + b L m L .
Theorem 6.5. Let G(s) be a neutral delay system defined by (6.1), and suppose that G has no unstable poles of small modulus and no chain of poles on the imaginary axis. Also suppose that the formal polynomial c d (z) defined in (6.3) has roots of modulus one, denoted by r, and that all values of ν 1 relative to each r satisfy (ν 1 ) < 0 where ν 1 is defined by (6.8). Then G is H ∞ -stable if and only if deg p ≥ deg t + x where x = max r {a L } with (a L , b L ) defined as in (6.10) (it is the leftmost point among the lowest points of AB(r)).

Proof. Since G has poles approaching the imaginary axis, then |G(s)| s∈R is large near these asymptotic poles.

Let us consider the denominator of G at a point s on the imaginary axis near an asymptotic pole relative to a root r of modulus one of c d (z). We can write s = s n + η n ∈ R, where s n is one of the poles of the neutral chain relative to r. Recall that s n = (λ n + ν 1 n -y 1 )/τ + o(n -y 1 ). Since (ν 1 ) = 0, then η n is at least of order (-y 1 ) and has the form η n = ηn -y 1 + o(n -y 1 ). We can then write

s = λ n τ + ν 1 + ητ τ n y 1 + o(n -y 1 ). (6.15)
Note that s is of the same form as s n if we denote ν 1 = ν 1 + ητ .

Therefore, the developments of the denominator of G around s as |s| → ∞ and around s n as |s n | → ∞ are the same. Recall from (6.9) and the discussion that follows the equation that the development of

d(s n ) as |s n | → ∞ is d(s n ) = p(s n ) f i (ν 1 ) n (a+bm)µ + o(n -(a+bm)µ ) ,
where (a, b) ∈ S for each S ∈ S(AB(r)), m is the slope of S, and

f i (ν 1 ) = (a,b)∈S C(a, b, ν 1 ).
Hence, the development of d(s) for s ∈ R near s n is

d(s) = p(s) f i (ν 1 + ητ ) n (a+bm)µ + o(n -(a+bm)µ ) .
Since s ∈ R, then (6.15) shows that (ν 1 +ητ ) = 0, and thus

f i (ν 1 +ητ ) = f i ( (ν 1 +ητ )).
Since every root of f i (ν 1 ) has strictly negative real part, then f i ( (ν 1 + ητ )) = 0. Hence, the order of the denominator of G(s) is n (d 0 -a-bm)µ where d 0 = deg p.

Under the assumption that G has no chains of poles on the imaginary axis, the leftmost lowest point of AB(r) is (a L , 0). Due to Lemma 6.4, (a+bm)µ ≤ a L µ for all S ∈ S(AB(r)).

Then the lowest order of the denominator of G(s) for s ∈ R near s n relative to r is

n (d 0 -a L )µ .
For all roots r of c d , the lowest order of the denominator of G(s) on the imaginary axis is n (d 0 -x)µ with x = max r {a L }.

Comparison with previous results

Now we apply Theorems 6.1, 6.3 and 6.5 to examine the classes of systems considered in Chapter 4 and 5. The results obtained here are the same as those obtained in the previous chapters. Note that we consider fractional and classical systems at the same time, that is µ ∈ (0, 1].

At the end of this section, we will summarize the stability results of all these classes of systems pointing when the method of this chapter allows one to conclude more quickly: we will see that Theorem 6.3 can be used to conclude in many situations.

Recall that in this chapter we make some changes of notation. In comparison with Chapters 4 and 5, Since N k=1 α 1,k r k = 0, then (1, 0) ∈ AB(r). Recall from our discussion after Theorem 6.1 that (0, m) ∈ AB(r). It is then easy to see that S(AB(r)) = {S 1 } with S 1 = {(0, 1), (1, 0)} (see Figure 6.3). Therefore, Theorem 6.1 shows that 

α 0,k = α k , α 1,k = β k , α 2,k = γ k ,
(a,b)∈S 1 C(a, b, ν 1 ) = -ν 1 N k=1 α 0,k kr k + τ µ (2π) µ
ν 1 = τ µ N k=1 α 1,k r k (2π) µ N k=1 α 0,k kr k and y 1 = µ.
This result is identical to the one obtained in Theorems 4.2 and 5.1.

Some fractional systems in the class of systems considered in this subsection may have all chains of poles asymptotic to the imaginary axis from the left side. If

• these pole chains correspond to the roots of modulus one of the formal polynomials c d (z) that satisfy the conditions in this subsection,

• other roots of c d (z) are of modulus greater than one,

• and the system has no unstable poles of small modulus, then due to Theorem 6.5 the necessary and sufficient condition for the system to be H ∞ -stable is deg t ≤ deg p -1 as for every root of modulus one of c d (z) the leftmost lowest point is (1, 0). The same condition was obtained in Proposition 4.5.

6.5.2

The case where m = 1, N k=1 α 1,k r k = 0, and N k=1 α 2,k r k = 0

This case was studied in Subsection 4.3.2 in Chapter 4 and in Subsection 5.3.2 in Chapter 5.

We have 2, 0)} (see Figure 6.4). Due to Theorem 6.1, we obtain For fractional systems whose formal polynomial c d (z) has single roots of modulus one satisfying the conditions in this subsection and other roots of modulus greater than one, if other conditions in Theorem 6.5 are satisfied, then the system is H ∞ -stable if and only if deg t ≤ deg p -2. This is easy to derive since for all roots r of modulus one of c d (z), the leftmost lowest point of AB(r) is (2, 0). We obtained the same condition in Proposition 4.6. Since N k=1 α 1,k r k = 0, then (1, 0) ∈ AB(r). It is also known that (0, m) ∈ AB(r) and (0, m ) / ∈ AB(r) for m < m. Hence, it is easy to see that S(AB(r)) = {S 1 } with S 1 = {(0, m), (1, 0)} (see Figure 6.5).

(2, 0) ∈ AB(r) since N k=1 α 2,k r k = 0 and (1, 0) / ∈ AB(r) since N k=1 α 1,k r k = 0. Also, (0, m) ∈ AB(r) with m = 1. Then S(AB(r)) = {S 1 } with S 1 = {(0, 1), (
(a,b)∈S 1 C(a, b, ν 1 ) = -ν 1 N k=1 α 0,k kr k + τ 2µ (2π) 2µ N k=1 α 2,k r k = 0 and y 1 = m 1 µ, which gives ν 1 = τ 2µ N k=1 α 2,k r k (2π) 2µ N k=1 α 0,k kr k
From Theorem 6.1, we obtain

(a,b)∈S 1 C(a, b, ν 1 ) = (-1) m ν m 1 m! N k=1 α 0,k k m r k + τ µ (2π) µ N k=1 α 1,k r k = 0 and y 1 = m 1 µ thus ν m 1 = (-1) m+1 m!τ µ N k=1 α 1,k r k (2π) µ N k=1 α 0,k k m r k and y 1 = µ m ,
which verifies Theorems 4.7 and 5.7.

Theorem 6.5 shows that

• if m = 2, we have n(S 1 ) = 2, b 1 -b 2 = m -0 = 2 and (a 2 -a 1 )µ = µ = 2k, k ∈ Z + \{0}, µ ∈ (0, 1], then the system is unstable, • if m ≥ 3, we have n(S 1 ) = 2 and b 1 -b 2 = m -0 = m ≥ 3, then the system is unstable.
These are also the conclusions of Corollaries 4.8 and 5.8. Due to the above conditions, (1, 0) / ∈ AB(r) and (1, 1), (2, 0) ∈ AB(r). It is also known that (0, m) ∈ AB(r).

• If m = 2, then S(AB(r)) = {S 1 } with S 1 = {(0, 2), (1,1), (2, 0)} (see Figure 6.6).

Therefore, from Theorem 6.1 we obtain

(a,b)∈S 1 C(a, b, ν 1 ) = ν 2 1 2 N k=1 α 0,k k 2 r k - τ µ (2π) µ ν 1 N k=1 α 1,k kr k + τ 2µ (2π) 2µ N k=1 α 2,k r k = 0
and y 1 = m 1 µ = µ. Identical results were presented in Theorems 4.9 and 5.9. For fractional systems which have no unstable poles but have neutral chains of poles approaching the imaginary axis, if all these chains are relative to double roots of the formal polynomial c d (z) that satisfy the conditions in this subsection, then from Theorem 6.5 these systems are stable in the sense H ∞ if and only if 2, 0) for all r being a root of modulus one of c d (z). The same stability condition was obtained in Proposition 4.13.

deg t ≤ deg p -max r {a L } where max r {a L } = 2 since the leftmost lowest point of AB(r) is (a L , b L ) = (
• If m ≥ 3, then S(AB(r)) = {S 1 , S 2 } with S 1 = {(0, m), (1, 1)} and S 2 =
{(1, 1), (2, 0)} (see Figure 6.6). Therefore, 

ν m-1 1 = (-1) m m!τ µ N k=1 α 1,k kr k (2π) µ N k=1 α 0,k k m r k and y 1 = µ m -1 , ν 1 = τ µ N k=1 α 2,k r k (2π) µ N k=1 α 1,k kr k and y 1 = µ.
These results are the same as those showed in Theorems 4.9 and 5.9.

If m = 3, we have n(S 1 ) = 2, b 1 -b 2 = m -1 = 2 and (a 2 -a 1 )µ = (1 -0)µ = µ = 2k, k ∈ Z + \{0}
, then the system is unstable.

If m ≥ 4, we have n(S 1 ) = 2 and b 1 -b 2 = m -1 ≥ 3, then the system is unstable.

In Chapter 5, we derive the same conclusions about the stability of the system (see Corollary 5.10). The above conditions imply that (1, 0), (1, 1) / ∈ AB(r) and (1, 2), (2, 0) ∈ AB(r).

The case where

m ≥ 2, N k=1 α 1,k r k = 0, N k=1 kα 1,k r k = 0, N k=1 k 2 α 1,k r k = 0,
• If 2 ≤ m ≤ 3, then S(AB(r)) = {S 1 } with S 1 = {(0, m), (2, 0)} (see Figure 6.7).
From Theorem 6.1, we obtain 

(a,b)∈S 1 C(a, b, ν 1 ) = 0 and y 1 = m 1 µ, giving ν m 1 = (-1) m+1 m!τ 2µ N k=1 α 2,k r k (2π) 2µ N k=1 α 0,k k m r k
N k=1 α 1,k r k = 0, N k=1 kα 1,k r k = 0, N k=1 k 2 α 1,k r k = 0, and N k=1 α 2,k r k = 0 • If m = 2, then S(AB(r)) = {S 1 } with S 1 = {(0, 2), (3, 0) 
} (see Figure 6.8). From Theorem 6.1, we obtain

(a,b)∈S 1 C(a, b, ν 1 ) = 0 and y 1 = m 1 µ, giving ν 2 1 = - 2τ 3µ N k=1 α 3,k r k (2π) 3µ N k=1 α 0,k k 2 r k and y 1 = 3µ 2 .
This approximation is the same as the one provided in Theorems 4.17 and 5.20. We have n(S 1 ) = 2, b 1 -b 2 = 2 -0 = 2, and (a 2 -a 1 )µ = (3 -0)µ = 3µ. If µ ∈ (0, 1] and µ = 2/3 then Theorem 6.5 shows that the system is unstable. The same conclusion was drawn in Corollaries 4.19 and 5.21. (1,2), (2, 1), (3, 0)} (see Figure 6.8). From Theorem 6.1, we obtain

• If m = 3, then S(AB(r)) = {S 1 } with S 1 = {(0, 3),
(a,b)∈S 1 C(a, b, ν 1 ) = 0 and y 1 = m 1 µ leading to - ν 3 1 3! N k=1 α 0,k k 3 r k + ν 2 1 τ µ 2(2π) µ N k=1 α 1,k k 2 r k - ν 1 τ 2µ (2π) 2µ N k=1 α 2,k kr k + τ 3µ (2π) 3µ N k=1 α 3,k r k = 0
(6.17) and y 1 = µ. This approximation is the same as the one provided in Theorems 4.17 

N k=1 α 1,k r k = 0, N k=1 kα 1,k r k = 0, N k=1 k 2 α 1,k r k = 0, N k=1 α 2,k r k = 0, N k=1 kα 2,k r k = 0, and N k=1 α 3,k r k = 0
• Unstable (due to Theorem 6.3): All the systems are unstable due to Theorem 6.3.

• Unstable: All the systems are unstable. This conclusion is not due to Theorem 6.3.

Conclusion

In this chapter we have considered the H ∞ -stability of (fractional) neutral systems with commensurate delays and chains of poles asymptotic to the imaginary axis. More precisely, we have studied the location of theses chains of poles around the axis and the boundedness of the transfer function on the axis. The new results generalize those presented in Chapters 4 and 5. They concern both classical and fractional systems and cover all possible cases, some of which were studied separately in the previous chapters. The analysis allows one to reach stability conclusions in a lot of cases except when the location of poles about the axis cannot be determined from the approximation provided and further analyses may be then needed. 

0 < µ < 1 Ssec µ = 1 Ssec m = 1, N k=1 α 1,k r k =
m = 4, N k=1 α 1,k r k = 0, N k=1 kα 1,k r k = 0, N k=1 k 2 α 1,k r k = 0, N k=1 α 2,k r k = 0 unstable unstable m ≥ 5, N k=1 α 1,k r k = 0, N k=1 kα 1,k r k = 0, N k=1 k 2 α 1,k r k = 0
unstable (due to Theorem 6. 

N k=1 α 1,k r k = 0, N k=1 kα 1,k r k = 0, N k=1 α 2,k r k = 0, N k=1 α 3,k r k = 0
(ν 1 ) = 0 or unstable unstable (due to Theorem 6.3)

m = 3, N k=1 α 1,k r k = 0, N k=1 kα 1,k r k = 0, N k=1 k 2 α 1,k r k = 0, N k=1 α 2,k r k = 0, N k=1 kα 2,k r k = 0, N k=1 α 3,k r k = 0 may be stable (ν 1 ) = 0 or un- stable m = 4, N k=1 α 1,k r k = 0, N k=1 kα 1,k r k = 0, N k=1 k 2 α 1,k r k = 0, N k=1 α 2,k r k = 0, N k=1 kα 2,k r k = 0, N k=1 α 3,k r k = 0
unstable (due to Theorem 6.3) unstable (due to Theorem 6.3) 

Introduction

Fractional systems are systems involving non-integer derivatives in the time domain and thus containing power of non-integer order of the Laplace variable s (i.e. s µ with µ non-integer) in the frequency domain. Such models appear in many engineering fields since they describe certain systems better than their integer counterpart, see for example [START_REF] Hilfer | Applications Of Fractional Calculus In Physics[END_REF] and references therein.

As delays are usually encountered in real-life situations, fractional systems with delays have been of increasing interests in the past ten years. Stability of this kind of systems has been studied in several publications such as (Hotzel, 1998a;Bonnet andPartington, 2002, 2007;[START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF][START_REF] Hwang | A numerical algorithm for stability testing of fractional delay systems[END_REF][START_REF] Fioravanti | Stability windows and unstable root-loci for linear fractional time-delay systems[END_REF]Akbari Moornani andHaeri, 2010, 2011). However, not many results are available for stabilization. Some references are [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF] on H ∞ -stabilization, [START_REF] Si-Ammour | A sliding mode control for linear fractional systems with input and state delays[END_REF] on sliding mode control, [START_REF] Hamamci | An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers[END_REF][START_REF] Hamamci | Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems[END_REF]) on stabilization of dead-time fractional systems, and [START_REF] Lazarević | Stability and stabilization of fractional order time delay systems[END_REF] on finite-time stabilization.
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In [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF], a rather complete study from stability to stabilization is realized for a class of neutral fractional systems with one delay. The main result of this study is a parametrization of all stabilizing controllers. However, the problem of finding a parametrization for systems with large poles clustering the imaginary axis remained unsolved. Later, the stability of neutral fractional systems with commensurate delays and with large poles asymptotic to the imaginary axis has been studied in [START_REF] Fioravanti | Stability of fractional neutral systems with multiple delays and poles asymptotic to the imaginary axis[END_REF]. In this chapter we apply these stability results to examine some stabilizability properties of fractional neutral systems with commensurate delays and an infinite number of unstable poles. We find that a majority of these systems cannot be stabilized by the class of rational fractional controllers of commensurate order except systems with the lowest degree. The systems considered in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF] belong to this exception. A parametrization of stabilizing controllers is derived for these systems.

Remark that some systems we consider (those with infinitely many unstable poles) belong to the class considered in [START_REF] Gümüşsoy | On the mixed sensitivity minimization for systems with infinitely many unstable modes[END_REF]. However the parametrization of all stabilizing controllers they proposed requires an inner/outer factorization of the plant.

By using the parametrization previously derived, we demonstrate that for a large class of stabilizing controllers, the closed-loop system still has chains of poles asymptotic to the imaginary axis, which makes the stabilization sensitive to some parameter changes.

The rest of the chapter is organized as follows. In Section 7.2, we examine the stabilizability of neutral fractional systems with commensurate delays and with chains of poles in the right half-plane. In Section 7.3, we obtain a parametrization of all stabilizing controllers for systems with only one delay, allowing here chains of poles clustering the imaginary axis from the left or the right hand side. These systems with one delay continue to be considered in Section 7.4 where we study the stability of the closed-loop system with a large class of stabilizing controllers. Finally, we conclude the chapter by Section 7.5.

Stabilizability properties of fractional systems with commensurate delays

We study the H ∞ -stabilization of fractional time-delay systems of neutral type with commensurate delays given as follows

G(s) = 1 p(s) + N k=1 q k (s)e -skτ (7.1)
where τ > 0 is the delay, p and q k , k ∈ N N are real polynomials in s µ , µ ∈ (0, 1), deg p ≥ 1, deg p ≥ deg q k , and there is at least one q k , k ∈ N N such that deg p = deg q k . Here the degree is interpreted as the degree in s µ and so is an integer. In order to avoid multi-valued functions, we consider s in the Riemann sheet such that -π < arg s < π.

This class of systems obviously belongs to those described by (2.2).

Let us consider controllers of the form

K(s) = N (s) D(s) (7.2)
Proof. Recall from Theorem 4.2 that the poles of large modulus corresponding to r, denoted by s n , are approximated by

s n τ = -ln(r) + 2jnπ + ν n,1 + O(n -2µ )
Under the assumption (7.6), we see that G has infinitely many poles in the open right half-plane.

Let us examine the denominator of the transfer functions of the closed-loop which is

D(s)(p(s) + N k=1 q k (s)e -skτ ) + N (s) = D(s)p(s) + N (s) + N k=1 D(s)q k (s)e -skτ .
We consider the development at infinity of

D(s)q k (s) D(s)p(s) + N (s) = ᾱk + βk s µ + o(s -µ ).
As deg p ≥ 1 and deg D ≥ deg N , we have that ᾱk = α k where α k is a coefficient of the development of q k (s)/p(s) as |s| → ∞ given in (2.3). Now, if deg p > 1, we also have that βk = β k where β k is also defined in (2.3). In this case, the closed-loop has an infinite number of unstable poles and thus cannot be H ∞ -stable.

Remark 7.3. The systems considered in Proposition 7.2 are not the only ones with chains of poles approaching the imaginary axis from the right. This may also happen to systems with (ν n,1 ) = 0 but this case needs further analysis as described in [START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF].

Parametrization of the set of stabilizing controllers in a particular case

The simplest systems described by (7.1) and with deg p = 1 are systems with one delay. They have been studied in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF]. For such systems with transfer function given by

G(s) = 1 (as µ + b) + (cs µ + d)e -sτ , (7.7)
where a, b, c, d ∈ R, a > 0, |a| = |c|, and µ ∈ (0, 1), fractional PI controllers have been obtained.

These controllers are the starting point to obtain a parametrization of all stabilizing controllers, which is the main result of this section. Before stating the main result, we will recall the results on fractional PI controllers in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF]. First, to simplify its presentation, we derive the opposite condition to Remark 4.1 in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF].

Lemma 7.4. a 2 z 2 + a 1 z + a 0 = 0 with a 2 , a 1 , a 0 ∈ R, a 2 > 0 has all roots in {z ∈ C\{0} : |Arg(z)| > µπ/2} with µ ∈ (0, 1) if and only if a 0 > 0 and a 1 > -2 √ a 0 a 2 cos(µπ/2).

Proof. The equation has two strictly negative roots if and only if

   ∆ = a 2 1 -4a 0 a 2 ≥ 0 a 1 > 0 a 0 > 0 ⇔    ∆ = (a 1 -2 √ a 0 a 2 )(a 1 + 2 √ a 0 a 2 ) ≥ 0 a 1 > 0 a 0 > 0 ⇔ a 1 ≥ 2 √ a 0 a 2 a 0 > 0
The equation has two complex conjugate roots, denoted re ±jφ , with φ ∈ (µπ/2, π) ∪ (-π, -µπ/2) if and only if

   ∆ = a 2 1 -4a 0 a 2 < 0 a 0 > 0 cos φ = -a 1 2 √ a 0 a 2 < cos µπ 2 ⇔    a 1 < 2 √ a 0 a 2 a 0 > 0 a 1 > -2 √ a 0 a 2 cos(µπ/2)
We now recall the characterization of H ∞ -stabilizing fractional PI controllers of systems (7.7).

Proposition 7.5 (Proposition 4.1 [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF]). Let G be given by (7.7) and K(s 

) = k p + k i /s µ with k p , k i ∈ R. 1. Let a = c. If k p and k i satisfy b+d+kp a+c > -2 k i a+c cos µπ 2 and k i > 0 then K stabilizes G when τ = 0. Moreover, if a(b + k p -d) cos( µπ 2 ) > 0, then K stabilizes G for small τ . If k p and k i satisfy also (b + k p ) 2 + 2ak i cos(µπ) -d 2 > 0 and k i (b + k p ) cos( µπ 2 ) > 0 then K stabilizes G for all τ . 2. Let a = -c. If k i (b + k p + d) > 0, then K stabilizes G when τ = 0. Moreover, if a(b + k p + d) cos( µπ 2 ) > 0 then K stabilizes G for small τ . If k p and k i satisfy also (b + k p ) 2 + 2ak i cos(µπ) -d 2 > 0 and k i (b + k p ) cos( µπ 2 ) > 0 then K stabilizes G for all τ .
G 1 (s) = 1 (s 1/2 + 1) + (s 1/2 + 2)e -s , K 1 (s) = 3 + 2 s 1/2 .
(7.8)

The poles of the open-loop and of the closed-loop systems computed by QPmR algorithm [START_REF] Vyhlidal | QPmR v.2 -Quasipolynomial rootfinder, algorithm and examples[END_REF] are showed in Figure 7.1.

Example 7.2.

G 2 (s) = 1 (s 1/2 -3) + (-s 1/2 + 1)e -s , K 2 (s) = 5 + 1 s 1/2 .
Given K 0 (s), a stabilizing controller of the system (7.7), we can directly obtain a parametrization of all stabilizing controllers without finding coprime factorizations by using (Quadrat, 2003b, Theorem 2).

Proposition 7.7. Let G(s) be given as in (7.7). A parametrization with two degrees of freedom of all H ∞ -stabilizing controllers of G(s) is given by 

-T (s µ R + T ) + (s 2µ Q 1 + Q 2 T 2 )R s µ (s µ R + T ) + (s 2µ Q 1 + Q 2 T 2 ) (7.9) where Q 1 , Q 2 ∈ H ∞ are two free parameters, R(s) = (as µ + b) + (cs µ + d)e -sτ , T (s) = k p s µ + k i , - 2 
k i > 0 and k p satisfy b + d + k p a + c > -2 k i a + c cos µπ 2 for a = c, k i (b + d + k p ) > 0 for a = -c, (a(b + k p ) -cd) cos µπ 2 > 0, (b + k p ) 2 + 2ak i cos(µπ) -d 2 > 0, k i (b + k p ) cos µπ 2 > 0.
Proof. From Proposition 7.5, we have that the fractional PI controller given by K 0 (s) = k p + k i /s µ stabilizes G(s). Denoting

A(s) = 1 1 + G(s)K 0 (s) B(s) = - K 0 (s) 1 + G(s)K 0 (s) ,
we have that A(s) and B(s (Quadrat, 2003b) shows that a parametrization of all stabilizing controllers of G(s) in the sense of H ∞ is given by

) satisfy 0 = A(s), B(s) ∈ H ∞ , A(s) -B(s)G(s) = 1 and A(s)G(s) ∈ H ∞ . Then Theorem 2 in
B + Q 1 A 2 + Q 2 B 2 A + Q 1 A 2 G + Q 2 B 2 G
where Q 1 , Q 2 ∈ H ∞ are two free parameters. This gives (7.9). However, the Youla-Kučera parametrization (with one parameter) may be more favourable for controller design and as G is H ∞ -stabilizable, we know that G necessarily admits a coprime factorization over H ∞ [START_REF] Smith | On stabilization and the existence of coprime factorizations[END_REF]. The next proposition, which characterizes quasi-polynomials with all roots in the open left half-plane, will be useful to find a coprime factorization of the transfer function of the system, which is required to derive a parametrization of stabilizing controllers using Youla-Kučera formula. 

• b + d > 0 and b -d > 0 if a = c, • b + d > 0 and b -d ≥ 0 if a = -c.
Proof. From [START_REF] Marshall | Time-Delay Systems: Stability and Performance Criteria with Applications[END_REF], we have that the equation has no roots in the closed right half-plane for all τ if and only if

• the equation has no roots in the closed right half-plane for τ = 0,

• infinitely many poles approach the imaginary axis from the left side for τ sufficiently small,

• there is no roots crossing the imaginary axis for τ > 0.

First, we consider the case a = c.

When τ = 0, (7.10) becomes

2as µ + b + d = 0,
which has no root in the closed right half-plane if and only if b + d > 0.

For τ > 0, no crossings means W (ω) := |p(iω)| 2 -|q(iω)| 2 = 0 ∀ω > 0 [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF]. We have

W (ω) = (a 2 -c 2 )w 2µ + b 2 -d 2 + 2w µ cos µπ 2 (ab -cd). (7.11)
For a = c, the above expression becomes

W (ω) = (b -d) (b + d) + 2aω µ cos µπ 2 .
Then W (ω) = 0 ∀ω > 0 if and only if b = d and b + d ≥ 0.

Next, we have

as µ + b cs µ + d = a c + bc -ad c 2 1 s µ + O(s -2µ ).
Since bc -ad = 0 from the previous argument, Theorem 3.1 in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF] shows that large roots of (7.10) are stable if and only if bc -ad c 2 c a > 0 (7.12)

⇔ b -d > 0
From the three conditions, we derive that b + d > 0 and b -d > 0.

Similarly, we consider the case a = -c. With a = -c > 0, the condition (7.12) for stable chain of poles becomes b + d > 0.

From the three conditions, we derive that b + d > 0 and b -d ≥ 0.

Now we give a parametrization of all stabilizing controllers of systems given by (7.7).

Theorem 7.9. Let

G(s) = 1 (as µ + b) + (cs µ + d)e -sτ
with a, b, c, d ∈ R, a > 0, |a| = |c|, and µ ∈ (0, 1). The set of all H ∞ -stabilizing controllers is given by

V + M Q U -N Q (7.13)
where Now, M (s) can be decomposed as follows

N (s) = 1 (a s µ + b ) + (c s µ + d )e -sτ , M (s) = (as µ + b) + (cs µ + d)e -sτ (a s µ + b ) + (c s µ + d )e -sτ , U (s) = s µ [(a s µ + b ) + (c s µ + d )e -sτ ] s µ (as µ + b + k p ) + k i + s µ (cs µ + d)e -sτ , (7.14) V (s) = (k p s µ + k i )[(a s µ + b ) + (c s µ + d )e -sτ ] s µ (as µ + b + k p ) + k i + s µ (cs µ + d)e -sτ , (7.15) Q is a free parameter in H ∞ , k i > 0 and k p satisfy b + d + k p a + c > -2 k i a + c cos µπ 2 for a = c, k i (b + d + k p ) > 0 for a = -c, (a(b + k p ) -cd) cos µπ 2 > 0, (b + k p ) 2 + 2ak i cos(µπ) -d 2 > 0, k i (b + k p ) cos µπ 2 > 0,
M (s) = a a + b -a a b (a s µ + b ) + (c s µ + d )e -sτ + d -a a d (a s µ + b ) + (c s µ + d )e -sτ e -sτ .
Under the conditions (7.16) and (7.17), Corollary 3.2 in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF] shows that N (s) and M (s) belong to H ∞ .

It is also easy to see that inf

(s)>0 (|N (s)| + |M (s)|) > 0 so that (N, M ) is a coprime factorization of G over H ∞ .
By the same arguments as in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF], knowing a stabilizing controller K 0 , one can derive the pair of Bézout factors U , V from the following expressions

1 1 + GK 0 = M U, K 0 1 + GK 0 = M V.
Now, U and V in (7.14), (7.15) are obtained by using a PI controller proposed in Proposition 7.5. By decomposing U and V as in [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF], we conclude that U, V ∈ H ∞ .

The following example shows another stabilizing controller of the system G 1 in Example 7.1 obtained from the above parametrization.

Example 7.3. A coprime factorization of G 1 is

N (s) = 1 (s 1/2 + 3) + (s 1/2 + 2)e -s , M (s) = (s 1/2 + 1) + (s 1/2 + 2)e -s (s 1/2 + 3) + (s 1/2 + 2)e -s .
Besides, U (s) and V (s) are obtained based on the PI controller as in (7.8). Now, in order to have another controller we choose Q ∈ H ∞ . The simplest case is a constant, e.g. Q = 1. The corresponding controller is

K1 (s) = V (s) + M (s) U (s) -N (s)
= [4s 3/2 + 25s + 45s 1/2 + 20 + (8s 3/2 + 43s + 68s 1/2 + 28)e -s + (4s 3/2 + 18s + 24s 1/2 + 8)e -2s ]/[s 3/2 + 5s + 5s 1/2 -2 + (2s 3/2 + 9s + 10s 1/2 )e -s + (s 3/2 + 4s + 4s 1/2 )e -2s ] which involves commensurate delays.

H ∞ -stabilization

Let us denote

A(s) = (as µ + b) + (cs µ + d)e -sτ , A (s) = (a s µ + b ) + (c s µ + d )e -sτ , B(s) = k p s µ + k i ,
then the transfer functions of the closed-loop system can be written as

1 1 + GK = A(s µ A 2 -Q(s µ A + B)) A 2 (s µ A + B) , (7.18) G 1 + GK = s µ A 2 -Q(s µ A + B) A 2 (s µ A + B) , (7.19) K 1 + GK = A(BA 2 + AQ(s µ A + B)) A 2 (s µ A + B) . (7.20)
The transfer functions can have the terms A or (s µ A + B) in the denominator with appropriate values of Q. These terms have all roots in the open left half-plane but have roots of large modulus approaching the imaginary axis. Small changes in their coefficients may move the asymptotic axis to the right and thus the closed-loop system becomes unstable.

In applications where robust stabilization is required, one may wish to eliminate chains of poles asymptotic to the imaginary axis. However, in the next propositions, we demonstrate that for a large class of controllers, this cannot be achieved. First we consider the case of rational µ and then irrational µ.

Proposition 7.10. Let G be given as in (7.7) with µ be rational. If a controller that guarantees the internal stability of the closed-loop system has the form

K(s) = N K (s)/D K (s)
where N K (s) and D K (s) are quasi-polynomials with real coefficients in e -sτ and s ν , ν ∈ (0, 1) and is rational, then the closed-loop system necessarily has chains of poles asymptotic to the imaginary axis.

Proof. Due to (7.13), the controllers of interest can be written as 

K = N K D K = BA 2 + AQ(s µ A + B) s µ A 2 -Q(s µ A + B) . Then Q = A 2 (s µ N K -BD K ) (s µ A + B)(N K + AD K ) . If Q is written as Q = N Q /D Q , then N Q (s)
G 1 + GK = s µ A 2 D Q -N Q (s µ A + B) A 2 (s µ A + B)D Q .
The denominator of the closed-loop transfer function involves A 2 (s µ A + B) which corresponds to chains of poles approaching the imaginary axis.

To eliminate all the chains of poles asymptotic to the imaginary axis of the transfer function, a necessary condition is that all the roots of modulus one of the formal polynomial corresponding to the denominator are roots of the formal polynomial corresponding to the numerator.

Recall that the corresponding formal polynomial is deduced from a quasi-polynomial by picking up highest degree terms. In the numerator of the transfer function, deg(

s µ A 2 D Q ) > deg(N Q (s µ A + B)). Indeed deg(s µ A 2 ) > deg(s µ A + B) and deg D Q ≥ deg N Q since Q = N D /D Q ∈ H ∞ .
Therefore, the highest degree term of the numerator is a multiple of s µ (a s µ + c s µ e -sτ ) 2 s d dQ δ c dQ (e -sτ ) where d dQ = deg D Q and c dQ is the formal polynomial corresponding to D Q . The formal polynomial associated to the numerator is

(1 + (c /a )z) 2 c dQ (z) with z = e -sτ .
By similar arguments, we derive that the formal polynomial associated to the denominator is (1 + (c /a )z) 2 (1 + (c/a)z) c dQ (z). It then has one root of modulus one more than the formal polynomial associated to the numerator since |c/a| = 1 and does not satisfy the necessary condition being that all the roots of modulus one of the formal polynomial corresponding to the denominator are roots of the formal polynomial corresponding to the numerator. Hence, the closed-loop system has at least one chain of poles approaching the imaginary axis for all controllers of the prescribed form.

Remark 7.11. Controllers of the form K(s) = N K (s)/D K (s) where N K (s) and D K (s) are quasi-polynomials in e -sτ , s µ , and s are a particular case of the controllers considered in Proposition 7.10. Indeed, if µ = m/n with m, n ∈ N, then N K (s) and D K (s) can be seen as quasi-polynomials in e -sτ and s 1/n . We now give an example to illustrate Proposition 7.10 as well as Remark 7.11.

Example 7.4.

G 2 (s) = 1 s 1/2 + (s 1/2 + 2)e -sτ
This system has one chain of poles approaching the imaginary axis from the right.

For Q = 1/(s + 1) and A , B chosen as follows

A = (s 1/2 + 3) + (s 1/2 -1)e -sτ , B = 3s 1/2 + 2,
which satisfy the conditions in Theorem 7.9, the controller is

K(s) = N K (s) D K (s)
where N K (s) = (3s 5/2 -4s 2 + 3s 3/2 + 2s + 3s 1/2 + 2)e -2sτ

+ (6s 5/2 + 16s 2 -2s 3/2 + 11s -2s 1/2 -8)e -sτ + 3s 5/2 + 20s 2 + 43s 3/2 + 41s + 41s 1/2 + 18,

D K (s) = (s 5/2 -2s 2 + 2s 3/2 -2s + s 1/2 )e -2sτ
+ (2s 5/2 + 4s 2 -4s 3/2 + 3s -8s 1/2 )e -sτ + s 5/2 + 6s 2 + 10s 3/2 + 5s + 6s 1/2 -2, which are quasi-polynomials in e -sτ , s 1/2 , and s.

The denominator of the transfer functions of the closed-loop system is [(s 1/2 + 3) + (s 1/2 -1)e -sτ ] 2 [(s -2s 1/2 )e -sτ + s + 3s 1/2 + 2](s + 1). It has three chains of poles asymptotic to the imaginary axis. Among them, two chains are identical. The poles of the closed-loop system are showed in Figure 7.4.

We now consider the case of irrational µ. Here the result is restricted to a class of controllers involving s µ . Proposition 7.12. Let G be given as in (7.7) with µ be irrational. If a stabilizing controller has the form K(s) = N K (s)/D K (s) where N K (s) and D K (s) are quasi-polynomials with real coefficients in s µ and e -sτ , then the closed-loop system necessarily has chains of poles asymptotic to the imaginary axis.

Proof. Here, we deduce that N Q (s) and D Q (s) are quasi-polynomials in e -sτ and s µ . Then similar arguments on formal polynomials lead to the conclusion.

Conclusion

In this chapter, we have considered first the stabilization of general fractional delay systems of the neutral type by rational fractional controllers of commensurate order.

Then, for the special class of fractional delay systems with one delay we have derived a two-degree-of-freedom parametrization of the set of all H ∞ -stabilizing controllers and given an explicit expression of coprime and Bézout factors allowing to obtain the Youla-Kučera parametrization of all the H ∞ -stabilizing controllers. However, we have then proved that a large class of stabilizing controllers is unable to put the infinite number of poles far away from the imaginary axis in the left half-plane.

Future work could consider a larger class of stabilizing controllers, namely those which might contain non-commensurate delays or terms in e s ν as they still remain a simple class of controllers. But, non-commensurate delays increase a lot the difficulty of the analysis and make the implementation of such controllers non trivial. Of course the same question addressed in full generality to the whole class of stabilizing controllers is a theoretically challenging one.

After that, future work will be devoted to the stabilization of a larger class of systems with several delays.

Chapter 8

Conclusions

In this thesis, we have considered the stability analysis and stabilization problems, both in the sense of H ∞ , of linear fractional systems with delays. Concretely, we have dealt with systems with commensurate fractional orders and with commensurate/non-commensurate delays. All the results have been established exclusively in the frequency domain using analytical techniques.

Two classes of systems have been considered.

The first class consists of MISO fractional systems with multiple I/O delays (which are not necessarily commensurate). For this class of systems, the stabilization problem has been addressed in Chapter 3. In the framework of the factorization approach to analysis and synthesis problems, explicit expressions of left and right coprime factorizations and Bézout factors were derived.

The second class involves SISO fractional neutral systems with commensurate delays. In particular, we have been interested in the delicate case where poles approach the imaginary axis. For this class of systems, we have considered both problems of stability analysis and stabilization.

Chapter 4 has been dedicated to answer the stability question for a large class of systems, in particular systems with multiple chains of poles asymptotic to the imaginary axis. The location of neutral chains of poles w.r.t. the imaginary axis has been determined and the necessary and sufficient conditions obtained are related not only to the location of poles but also the relative order between the numerator and the denominator of the transfer function.

The results on approximating poles of neutral chains for fractional delay systems have been carried over to classical delay systems by simply replacing the fractional order µ ∈ (0, 1) with the integer order µ = 1 in Chapter 5. Analyzing these approximations in order to determine the pole location about the asymptotic axis leads to different results in certain cases. The phenomena observed in these cases is that while for fractional systems stable chains of poles may be indicated by the first approximation, for classical systems we need higher approximations to detect such chains. Nevertheless, this phenomena is not general.
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In Chapter 6, a unified approach to stability analysis has been proposed. This new method addresses both fractional and classical neutral systems and covers not only the cases studied in Chapters 4 and 5 but also all other unsolved cases. The method has been carefully described with the intention of implementation in computation software.

The stabilization problem has been considered in Chapter 7. First, we have studied the stabilization of general fractional delay systems of neutral type by rational fractional controllers of commensurate order. Then, for the special class of fractional delay systems with one delay we have derived two parametrizations of the set of all H ∞ -stabilizing controllers. The first parametrization has two degrees of freedom and has been obtained immediately with a particular stabilizing controller. The second is the usual Youla-Kučera parametrization constructed from the coprime factorizations and Bézout factors derived in explicit forms. However, we have then proved that a large class of stabilizing controllers is unable to put the infinite number of poles far away from the imaginary axis in the left half-plane.

Future work could consist of the following directions.

For MISO systems with I/O delays, in Chapter 3, doubly coprime factorizations have not been obtained in the general case where elements of the transfer matrix may have identical poles. In order to use the Youla-Kučera parametrization, we need to determine the right factors which are now still missing.

In the set of stabilizing controllers constructed from the obtained coprime and Bézout factors, we should investigate methods to choose controllers to be implemented that are not sensitive to parameter uncertainties. This problem was reported for classical systems in [START_REF] Gumussoy | Coprime-inner/outer factorization of SISO time-delay systems and FIR structure of their optimal H ∞ controllers[END_REF].

For SISO fractional neutral systems, the stability analysis results presented in Chapters 4, 5 and 6 could be used to decide on H ∞ -stabilizability of several classes of fractional delay systems by rational or fractional controllers (with delays).

The unified method in Chapter 6 allows one to reach stability conclusions in all cases except when the location of poles about the axis cannot be determined from the approximation provided and further analyses may be then needed. Although the next approximation terms can be determined using the same procedure as presented for some cases in the chapter, one has to repeat this procedure for each particular case. Hence, future work could consist of investigating methods to determine approximation terms with less effort required.

For the stabilization problem of fractional neutral systems in the critical case of poles asymptotic to the imaginary axis, future work could consider a larger class of stabilizing controllers, namely those which might contain non-commensurate delays or terms in e s ν as they still remain a simple class of controllers. Although non-commensurate delays increase a lot the difficulty of the analysis, studying these systems could provide a better understanding of the behaviors of real systems where variation of delays usually occurs. Of course the same question addressed in full generality to the whole class of stabilizing controllers is a theoretically challenging one. After that, future work could be devoted to the stabilization of a larger class of systems with several delays.

B.1 Introduction

Dans ce travail, nous abordons les problèmes d'analyse de stabilité et de stabilisation de plusieurs classes de systèmes SISO et MIMO. Nous travaillons dans le domaine fréquentiel et notre objectif est de trouver des conditions de stabilité faciles à vérifier ainsi que des expressions explicites de contrôleurs ayant à l'esprit une intégration de nos résultats dans un logiciel.

Nous sommes intéressés par deux grandes classes de systèmes : les systèmes à retard et les systèmes fractionnaires. Les deux ont besoin d'outils de la théorie du contrôle de dimension infinie.

Dans le domaine temporel, les modèles comprennent des dérivées et/ou des intégrales d'ordre arbitraire. De même, ils contiennent dans le domaine fréquentiel des puissances d'ordre arbitraire de la variable de Laplace s. Pour plus de détails sur l'analyse fractionnaire et des exemples, voir [START_REF] Oldham | The Fractional Calculus[END_REF][START_REF] Podlubny | Fractional Differential Equations: An Introduction to Fractional Derivatives[END_REF] et leurs références.

Ces modèles se retrouvent dans de nombreux domaines d'applications, voir par exemple [START_REF] Westerlund | Capacitor theory[END_REF][START_REF] Knospe | Performance limitations of non-laminated magnetic suspension systems[END_REF][START_REF] Vinagre | Frequency domain identification of a flexible structure with piezoelectric actuators using irrational transfer function models[END_REF][START_REF] Grahovac | Modelling of the hamstring muscle group by use of fractional derivatives[END_REF], puisque les lois fractionnaires ont été de plus en plus utilisées pour décrire des phénomènes physiques et les modèles fractionnaires collent mieux aux données recueillies que les modèles d'ordre entier et avec moins de paramètres.

Dans le domaine de la commande, de nombreux résultats sont disponibles sur les contrôleurs fractionnaires et leur mise en oeuvre. Voir, par exemple [START_REF] Oustaloup | The CRONE control of resonant plants: Application to a flexible transmission[END_REF][START_REF] Podlubny | Fractional-order systems and P I λ D µ -controllers[END_REF][START_REF] Chen | Fractional order control -A tutorial[END_REF][START_REF] Magin | On the fractional signals and systems[END_REF] et leurs références.

Lorsqu'on considère des schémas de commande avec des systèmes fractionnaires, il est naturel de penser à des systèmes fractionnaires à retards car les retards sont couramment rencontrés dans les systèmes réels en raison de la communication ou des distances de transport et leurs effets sur la stabilité ne peuvent être négligés.

Il y a eu un intérêt croissant pour l'étude des systèmes fractionnaires à retards. La question de la stabilité des systèmes linéaires fractionnaires à retards a été étudiée par de nombreux auteurs (Hotzel, 1998a;Bonnet andPartington, 2002, 2001;[START_REF] Chen | Analytical stability bound for a class of delayed fractionalorder dynamic systems[END_REF][START_REF] Deng | Stability analysis of linear fractional differential system with multiple time delays[END_REF]Akbari Moornani andHaeri, 2010, 2011). Toutes les conditions de stabilité obtenues dans ces articles concernent la localisation des pôles dans le plan complexe. Pour les systèmes fractionnaires de type retardé, la condition nécessaire et suffisante pour la stabilité est "pas de pôle dans le demi-plan droite fermé" qui est classique. Afin de vérifier cette condition, plusieurs méthodes numériques ont été proposées (Hwang andCheng, 2005, 2006;[START_REF] Ozturk | An analysis stability test for a certain class of distributed parameter systems with delays[END_REF][START_REF] Fioravanti | A numerical method for stability windows and unstable root-locus calculation for linear fractional time-delay systems[END_REF][START_REF] Mesbahi | Stability of linear time invariant fractional delay systems of retarded type in the space of delay parameters[END_REF].

Pour les systèmes de type neutre, la condition "pas de pôle dans le demi-plan droite fermé" n'est que nécessaire. Ceci peut être expliqué par les localisations compliquées des pôles des systèmes neutres : une infinité de pôles isolés se rassemblent dans des bandes verticales dans le plan complexe [START_REF] Bellman | Differential-Difference Equations[END_REF]Hotzel, 1998a;[START_REF] Bonnet | Analysis of fractional delay systems of retarded and neutral type[END_REF].

Dans le cas le plus simple des systèmes d'ordres fractionnaires commensurables et à retards commensurables où le phénomène ci-dessus se réduit à des pôles asymptotiques à des axes verticaux, des tentatives ont été faites dans [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF][START_REF] Fioravanti | Stability of fractional neutral systems with multiple delays and poles asymptotic to the imaginary axis[END_REF] pour obtenir des conditions nécessaires et suffisantes pour la stabilité H ∞ (qui est une notion plus faible que la stabilité BIBO) pour une sous-classe de ces systèmes.

Certains travaux ayant le même objectif sont également disponibles pour les systèmes classiques (d'ordres entiers) de type neutre pour lesquels la même difficulté est rencontrée. Dans le domaine fréquentiel, nous avons [START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF] pour la stabilité H ∞ et [START_REF] Abusaksaka | BIBO stability of some classes of delay systems and fractional systems[END_REF] pour la stabilité BIBO. Et dans le domaine temporel, [START_REF] Rabah | Stability and stabilizability of mixed retarded-neutral type systems[END_REF] a considéré la stabilité asymptotique.

Bien qu'il y ait eu de nombreux résultats concernant l'analyse de stabilité, le problème de stabilisation des systèmes fractionnaires à retards a très peu été traité [START_REF] Hotzel | Contributions à la théorie structurelle et la commande des systèmes linéaires fractionnaires[END_REF]Bonnet andPartington, 2001, 2007;[START_REF] Özbay | PID controller design for fractional-order systems with time delays[END_REF].

Pour étudier ce problème ouvert de stabilisation des systèmes à retards fractionnaires, nous choisissons l'approche de factorisation [START_REF] Vidyasagar | Control System Synthesis: A Factorization Approach[END_REF]. Avec sa nature algébrique, cette approche puissante permet de dériver l'ensemble des contrôleurs stabilisants qui peuvent être utilisés pour étudier divers problèmes de contrôle et en particulier la commande robuste.

Pour les systèmes MIMO, la question de paramétrage de tous les contrôleurs stabilisants a été étudiée dans [START_REF] Mori | Parameterization of stabilizing controllers over commutative rings with application to multidimensional systems[END_REF]Quadrat, 2006b;[START_REF] Mirkin | State-space parametrization of all stabilizing dead-time controllers[END_REF][START_REF] Moelja | Parametrization of stabilizing controllers for systems with multiple I/O delays[END_REF]. Notre objectif dans ce travail est d'obtenir des expressions explicites de factorisations copremières et de facteurs de Bézout des systèmes fractionnaires MIMO avec retards en entrées et/ou sortie.

Nous considérons deux classes de systèmes fractionnaires linéaires invariants dans le temps avec retards discrets. Le premier se compose de systèmes fractionnaires MISO avec retards quelconques en entrées et/ou sortie. La seconde se compose de systèmes fractionnaires neutres SISO avec retards commensurables.

Le résumé est organisé comme suit. Tout d'abord, quelques préliminaires sont donnés dans la Section B.2. Nous étudions la stabilisation de la première classe de systèmes dans la Section B.3 en utilisant l'approche de factorisation. Nous obtenons des expressions explicites de factorisations copremières à gauche et à droite et les facteurs de Bézout associés, qui sont les éléments pour constituer l'ensemble des contrôleurs stabilisant. Pour la deuxième classe de systèmes, nous sommes intéressés au cas critique où ces systèmes ont des pôles asymptotiques à l'axe imaginaire. Tout d'abord, l'analyse de stabilité est réalisée dans la Section B.4. Cette analyse est applicable pour les systèmes classiques de la même forme. En outre, elle peut facilement être programmée dans des logiciels de calcul. Ensuite, la question de stabilisation est étudiée dans la Section B.5 pour une sous-classe de systèmes fractionnaires, en utilisant les résultats de l'analyse de stabilité et l'approche de factorisation. Enfin, nous donnons les conclusions et les perspectives dans la Section B.6. 

B.2.2 Stabilité H ∞

Les références utilisées pour cette sous-section sont [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF][START_REF] Zhou | Robust and Optimal Control[END_REF].

Définition B.1. L 2 [0, ∞) := {f : [0, ∞) → C | f est Lebesgue-mesurable et ∞ 0 |f (t)| 2 dt < ∞}.
Définition B.2. Un système linéaire continu défini par un opérateur linéaire

Σ : L 2 [0, ∞) → L 2 [0, ∞) est L 2 -stable si ||Σ|| 2 < ∞,
où ||Σ|| 2 est la norme de l'opérateur et est défini par

||Σ|| 2 := sup{||Σf || 2 | f ∈ L 2 [0, ∞), ||f || 2 = 1} = sup 0 =f ∈L 2 [0,∞) ||Σf || 2 ||f || 2 .
Autrement dit, un système L 2 -stable produit un signal de sortie à énergie bornée pour un signal d'entrée à énergie bornée.

Définition B.3 (Espaces de Hardy).

H 

2 (C + ) := {f : C + → C | f est analytique dans C + et sup σ>0 ∞ -∞ |f (σ + jω)| 2 dω < ∞}, H ∞ (C + ) := {f : C + → C | f est analytique dans C + et sup s∈C + |f | < ∞}.
|| Σ|| := sup 0 =û∈H 2 (C + ) ||Gû|| 2 ||û|| 2 , satisfait || Σ|| = ||G|| ∞ . Lemme B.7. H ∞ (C + ) est une sous-espace de L ∞ (jR). Théorème B.8. Si G ∈ L ∞ (jR), alors G ∈ H ∞ (C + ) si et seulement si Gû ∈ H 2 (C + ) pour tous û ∈ H 2 (C + ).

B.2.3 Stabilisation interne

Les références pour cette sous-section sont [START_REF] Desoer | Feedback system design: The fractional representation approach to analysis and synthesis[END_REF][START_REF] Vidyasagar | Algebraic and topological aspects of feedback stabilization[END_REF][START_REF] Vidyasagar | Control System Synthesis: A Factorization Approach[END_REF].

On note S un anneau commutatif unitaire intègre et F le corps de fractions de S, c'est-à-dire,

F := {a/b | a, b ∈ S, b = 0}.
Remarque B.9. Un ensemble de systèmes linéaire stable SISO est un anneau commutatif unitaire intègre. En particulier, les connexions parallèles et cascades des systèmes stables sont aussi stables.

Dans la suite, on considère que S est un ensemble de systèmes linéaire stable SISO. Alors F comprend des systèmes stables et instables.

Pourtant les résultats basiques suivants sont aussi utiles pour d'autres buts que la stabilisation à condition que l'ensemble de systèmes désirés soit un anneau commutatif unitaire intègre. Remarque B.15. Comme S est commutatif, chaque G ∈ F n×m admet des factorisations copremières. L'élément (i, j) de G peut être écrit comme Lemme B.21 (Théorème de la couronne, (Vidyasagar, 1985, Lemme 8.1.12) On considère les systèmes décrits par les matrices de transfert de la forme

B.2.4 Factorisations copremières

g ij = p ij /q ij où p ij , q ij ∈ S. En notant b = i j q ij = 0 et A la matrice dont les éléments sont a ij = bp ij /q ij ∈ S, on obtient G = A(bI m ) -1 .
G(s) = e -sh 1 R 1 (s α ), . . . , e -shn R n (s α ) , (B.2) où • 0 ≤ h k ∈ R pour k = 1, . . . , n sont les retards ; • α ∈ R, 0 < α < 1 ; • R k (s α ) = q k (s α )/ p k (s α ), où p k (s α ) et q k (s α ) sont des polynômes de degré entier en s α , p k (s α ) et q k (s α ) n'ont pas de racines communes, et deg p k (s α ) ≥ deg q k (s α ) pour k = 1, . . . , n ;
• d k est le degré en s α de p k (s α ) ;

• s est dans la branche principale C\R -, c'est-à-dire arg(s) ∈ (-π, π), afin d'assurer une valeur unique pour la fonction de transfert qui contient des termes en s α avec α ∈ (0, 1).

On étudie le problème de stabilisation du système dans le cadre de l'approche de factorisation. Plus précisément, on souhaite chercher des factorisations copremières à gauche et à droite de la matrice de transfert du système ainsi que les facteurs de Bézout associés afin d'obtenir l'ensemble des contrôleurs stabilisants.

Les notations suivantes seront utiles dans la suite.

Notons

• p(s α ) le plus petit commun multiple de tous les dénominateurs des R k (s α ) pour k = 1, . . . , n ;

• d le degré en s α de p(s α ).

Alors, les fonctions de transfert rationnelles R k (s α ) peuvent se réécrire comme suit

R k (s α ) = q k (s α ) p(s α ) ,
où q k (s α ) sont des polynômes en s α .

On peut décomposer

p(s α ) = (s α ) m 0 N i=1 (s α -b i ) m i   N j=1 (s α -c j ) m j   , où • b i ∈ D := {σ ∈ C\{0} | -πα/2 ≤ Arg(σ) ≤ πα/2}, • c j ∈ C\{D ∪ {0}}, • m 0 , m i , m j ∈ Z + pour i = 1, . . . , N et j = 1, . . . , N . Ainsi s i = b 1/α i
sont les racines instables non-nulles en s de p(s α ).

De manière similaire, on écrit

p k (s α ) = (s α ) m 0k N i=1 (s α -b i ) m ik   N j=1 (s α -c j ) m jk   , où m 0k , m ik , m jk ∈ Z + pour i = 1, . . . , N , j = 1, . . . , N et k = 1, . . . , n. Il est évident que m 0k ≤ m 0 , m ik ≤ m i , et m jk ≤ m j .

B.3.2 Factorisations copremières à gauche et facteurs de Bézout associés

Dû à la dimension de la matrice de transfert, une factorisation copremière à gauche est facile à trouver.

Proposition B.31. Soit G décrit par (B.2). Alors M (s) = p(s α ) (s α + 1) d et N (s) = 1 (s α + 1) d e -sh 1 q 1 (s α ), . . . , e -shn q n (s α ) (B.3) est une factorisation copremière à gauche de G sur H ∞ .

Avant de donner les facteurs de Bézout associés, notons

k i := min{k | k ∈ {1, . . . , n}, m ik = m i } for i = 0, . . . , N, (B.4) f k := i∈{1,...,N },k i =k m i for k = 1, . . . , n, L(m 0 α) := {x ∈ R | x = a + bα < m 0 α, a, b ∈ Z + }. (B.5)
Proposition B.32. Soit G(s) décrit par (B.2). Alors les facteurs de Bézout associés à la factorisation copremière à gauche obtenue dans (B.3) sont donnés par Pour que X kk (s) appartienne à H ∞ , toutes les racines instables de M k k (s) doivent être racines de Y k (s). Par conséquent, si M kk (s) et M k k (s) ont une racine commune, alors X kk (s) est infini en cette racine, et alors X kk (s) / ∈ H ∞ .

X(s) = (s α + 1) d u(s α ) -n k=1 e -sh k q k (s α )µ k (s) p(s α )u(s α ) , Y (s) = µ 1 (s) u(s α ) , . . . , µ n (s) u(s α ) T , où 
µ k (s) =              λ∈L(m 0 α) β λk s λ + m 0 +f k -1 j=m 0 β (jα)k (s α ) j si k = k 0 , f k -1 j=0 β (jα)k (s α ) j si k = k 0 , et vérifient (s α + 1) d u(s α ) - n k=1 e -sh k q k (s α )µ k (s) = O(s m 0 α ) (B.6) lorsque s → 0 et (s α + 1) d u(s α ) - n k=1 e -sh k q k (s α )µ k (s) (l) = 0, (B.7) pour chaque racine instable non-nulle s = b 1/α i , i = 1, . . . , N , de p(s α ) et pour 0 ≤ l ≤ m i -1. Remarque B.33. Si f k = 0, alors µ k (s) =    λ∈L(m 0 α) β λk s λ si k = k 0 , 0 si k = k 0 .
Ici, nous considérons les transferts G(s) pour lesquels chaque élément contient un pôle et certains éléments pouvant avoir des pôles communs. Pour la clarté de la présentation de ces résultats, nous commencerons par un lemme concernant l'inverse d'une matrice triangulaire supérieure.

Nous considérons des matrices creuses dont les éléments au-dessus de la diagonale principale satisfont les conditions suivantes : si un élément de la ligne k-ème est non-nul, alors tous les éléments de la colonne k-ème doivent être nuls ; si un élément de la colonne k-ème est non-nul, alors tous les autres éléments de la même colonne ainsi que ceux de la ligne k-ème doivent être nuls. 2) dont les éléments ont des retards quelconques peut être transformée en une matrice de transfert G 0 avec des retards rangés par ordre croissant en multipliant G par une matrice de permutation appropriée P . Il est bien connu que cette matrice P est orthogonale et son inverse est P T . Supposons que (M 0 , N 0 ) est une factorisation copremière à droite sur H ∞ de G 0 et X 0 , Y 0 sont les facteurs de Bézout associés. Nous avons donc G = G 0 P -1 = N 0 M -1 0 P -1 = N 0 (P M 0 ) -1 . Il est évident que P M 0 ∈ M(H ∞ ). De plus, X 0 P -1 P M 0 +Y 0 N 0 = I et X 0 P -1 ∈ M(H ∞ ). Alors, (P M 0 , N 0 ) est une factorisation copremière à droite de G et X 0 P -1 , Y 0 sont les facteurs de Bézout associés. lorsque n → ∞ [START_REF] Bellman | Differential-Difference Equations[END_REF]Hotzel, 1998a;[START_REF] Fioravanti | Stability of fractional neutral systems with multiple delays and poles asymptotic to the imaginary axis[END_REF].

Par conséquent, la chaîne de pôles approche l'axe vertical Si l'axe vertical est strictement à droite ou à gauche de l'axe imaginaire, ce qui est les cas lorsque |r| < 1 ou |r| > 1, alors les pôles asymptotiques à cet axe vertical sont respectivement à droite ou à gauche de l'axe imaginaire, et alors leur effets sur la stabilité H ∞ sont facilement déduits car ils ne dépendent que leur localisation par rapport à l'axe imaginaire [START_REF] Bonnet | Stabilization of some fractional delay systems of neutral type[END_REF][START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF].

L'analyse de stabilité est plus délicate dans le cas où des chaînes de pôles sont asymptotiques à l'axe imaginaire. Pour cette analyse, nous serons intéressés dans un premier temps à la localisation des pôles des chaînes par rapport à l'axe. Ensuite, le cas échéant, nous déduirons des conditions nécessaires et suffisantes pour la stabilité H ∞ . Enfin, nous illustrerons les résultats par un exemple d'une sous-classe de systèmes.

Nous présentons dans le lemme suivant quelques propriétés du polynôme formel quand ce dernier a des racines multiples. 

B.4.2 Localisation des pôles neutres

Comme nous avons vu précédemment, à chaque racine r du polynôme formel c d (z) correspond une chaîne de pôles de type neutre. L'approximation de ces pôles donnée dans (B.24) n'indique que l'axe vertical vers lequel la chaîne de pôles s'approche. Afin de déterminer la localisation de la chaîne par rapport à l'axe asymptotique, nous examinerons dans cette section une approximation plus précise des pôles de type neutre de la forme 

B(S).

Maintenant nous allons discuter comment construire tous les segments de frontière en bas à gauche de l'ensemble AB(r).

Dans un premier temps, nous mentionnons deux points importants de AB(r) qui limitent un sous-ensemble de AB(r) contenant les segments de frontière en bas à gauche. Le premier point est (0, m). Ce point appartient à AB(r) car Par conséquent, par définition, les points d'un segment de frontière en bas à gauche de AB(r) appartiennent à un côté de l'enveloppe convexe de A m L et deux d'entre eux sont sommets de l'enveloppe.

Il existe de nombreux algorithmes pour déterminer dans un ensemble fini de points dans R 2 les points qui appartiennent à l'enveloppe convexe [START_REF] Berg | Computational Geometry[END_REF]. Parmi ceux-ci, nous pouvons collecter les points appartenant aux segments de frontière en bas à gauche. Cependant, la parametrisation de Youla-Kučera (avec un paramètre) pourrait être plus favorable pour la synthèse de contrôleurs et comme G est H ∞ -stabilisable, nous savons que G admet nécessairement une factorisation copremière sur H ∞ [START_REF] Smith | On stabilization and the existence of coprime factorizations[END_REF]. La proposition suivante qui caractérise les quasi-polynômes dont toutes les racines sont dans le demi-plan gauche ouvert sera utile dans la recherche d'une factorisation copremière de la fonction de transfert du système. Cette dernière est nécessaire à l'obtention d'une parametrisation des contrôleurs stabilisants en utilisant le formulaire de Youla-Kučera. Les fonctions de transfert ci-dessus contiennent les termes A ou (s µ A+B) en dénominateur (sauf pour certaines valeurs de Q aboutissant à des simplifications entre numérateur et dénominateur). Ces termes ont toutes les racines dans le demi-plan gauche ouvert mais elles ont des racines à large module approchant l'axe imaginaire. Cependant, de petites variations de leurs coefficients pourraient décaler l'axe asymptotique à droite et la boucle fermée deviendrait donc instable.

La discussion

Dans des applications où la stabilisation robuste est demandée, nous souhaitons éliminer les chaînes de pôles asymptotiques à l'axe imaginaire. Cependant, dans les propositions suivantes, nous montrons que pour une large classe de contrôleurs, il est impossible d'atteindre cela. Dans un premier temps, nous considérons le cas de µ rationnel et puis celui de µ irrationnel.

Proposition B.53. Soit G donné par (B.38) avec µ rationnel. Si un contrôleur qui assure la stabilité interne de la boucle fermée est de la forme K(s) = N K (s)/D K (s) où N K (s) et D K (s) sont des quasi-polynômes à coefficients réels en e -sτ et s ν , ν ∈ (0, 1) et est rationnel, alors la boucle fermée a nécessairement des chaînes de pôles asymptotiques à l'axe imaginaire. 

B.6 Perspectives

Le travail à venir suivra les directions suivantes.

Pour les systèmes MISO avec retards en entrées/sortie, dans la Section B.3, des factorisations copremières doubles n'ont pas encore été obtenues dans la cas général où des éléments de la matrice de transfert auraient des pôles identiques. Nous allons nous y atteler à l'avenir.

Pour l'ensemble de contrôleurs stabilisants construits à partir des facteurs copremiers et de Bézout obtenus, nous souhaitons chercher des méthodes pour choisir des contrôleurs à implémenter qui ne sont pas sensibles aux incertitudes des paramètres. Ce problème a été étudié pour les systèmes classiques dans [START_REF] Gumussoy | Coprime-inner/outer factorization of SISO time-delay systems and FIR structure of their optimal H ∞ controllers[END_REF].

Pour les systèmes fractionnaires SISO de type neutre, les résultats de l'analyse de stabilité obtenus dans la Section B.4 pourraient être utiles pour décider sur la stabilisabilité de plusieurs classes de systèmes fractionnaires à retards par des contrôleurs rationnels ou fractionnaires sans ou avec retards.

La méthode dans la Section B.4 permet de conclure sur la stabilité du système dans tous les cas à l'exception du cas où la localisation des pôles relatifs à l'axe imaginaire ne peut être déterminé à l'aide de l'approximation obtenue et d'autres analyses sont nécessaires. Bien que le terme d'approximation suivant puisse être déterminé en suivant la même procédure présentée pour certains cas dans la section, on doit répéter la procédure pour chaque cas particulier. Alors une piste intéressante serait de déterminer une méthode plus systématique dans l'esprit de ce qui a été réalisé dans la Section B.4 (la même approche ne paraissait toutefois pas pouvoir être étendue à ce cas).

Pour le problème de stabilisation des systèmes fractionnaires de type neutre dans le cas critique où des pôles sont asymptotiques à l'axe imaginaire, le travail à venir pourrait considérer une plus large classe de contrôleurs stabilisants, par exemple ceux qui contiennent des termes en e -s ν ou des retards non-commensurables car il s'agit d'une classe de contrôleurs simple. Bien que les retards non-commensurables augmentent la difficulté de l'analyse, l'étude de ces systèmes pourrait fournir une meilleure compréhension des comportements des systèmes réels où la variation des retards est courante (transformant donc un système à retards commensurables en un système à retards noncommensurables). La même question adressée à la classe plus générale de contrôleurs stabilisants est certainement difficile. Ensuite, le travail à venir pourrait être consacré au problème de stabilisation d'une classe plus large de systèmes à plusieurs retards.

Nous sommes entrain d'intégrer les résultats obtenus dans les Sections B.4 et B.5 dans le toolbox Matlab YALTA qui peut être téléchargé à l'adresse http://team.inria.fr/ disco/software/.
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  e. a/b = ab -1 , in the definition of F. Here is the simple proof. If a/b ∈ F with a = 0, then b/a ∈ F, and (a/b)(b/a) = (b/a)(a/b) = (ab)/(ab) = 1. Thus every x ∈ F, x = 0 is a unit in F. Therefore, F is a field.

Definition 2 .

 2 25. (N, D) with N ∈ S n×m , D ∈ S m×m is a right coprime factorization (r.c.f.) of G ∈ F n×m if (N, D) is a right factorization of G and N, D are right coprime. Definition 2.26. N ∈ S n×m , D ∈ S n×n are left coprime if there exist X ∈ S m×n , Y ∈ S n×n such that N X + D Y = I n .

Lemma 2 .

 2 30. If N ∈ S n×m and D ∈ S m×m are right coprime, then every common right divisor of N and D, i.e. U ∈ S m×m satisfying N = N U and D = D U with N ∈ S n×m , D ∈ S m×m , is a unit in S m×m .

  Lemma 2.30. Since N and D are right coprime, then there exist X ∈ S m×n , Y ∈ S m×m such that XN + Y D = I m . Since N = N U and D = D U , then XN U + Y D U = I m or (XN + Y D )U = I m , thus U has a left-inverse in S m×m . By taking the determinant of the both sides of the equation, we have det(XN + Y D

  n} and k < k .Proof. Let us prove that M (s) given by(3.41), (3.43), and (3.44) satisfies the assumptions in Lemma 3.20. Let k ∈ {1, . . . , n}, if M k k = 0 then due to (3.44) k = min I k , and M k k = 0 for k = k . Also, since k = min I k , then k = min I k for k > k, and thus M kk = 0. Hence the assumption (ii) in Lemma 3.20 is satisfied. On the other hand, k = min I k implies that
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  Proposition 7.8. The equation (as µ + b) + (cs µ + d)e -sτ = 0 (7.10) with a > 0, b, c, d, h ∈ R, |a| = |c|, and µ ∈ (0, 1) has no roots in the closed right half-plane for all τ ≥ 0 if and only if

For τ = 0 , 2 .

 02 (7.10) becomes b + d = 0, which has no root in the closed right half-plane if and only if b + d = 0. For a = -c, (7.11) becomes W (ω) = (b + d) (b -d) + 2aω µ cos µπ Then W (ω) = 0 ∀ω > 0 if and only if b + d = 0 and b -d ≥ 0.

  Under the above conditions, (a s µ + b ) + (c s µ + d )e -sτ has no poles in the closed right half-plane.
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  and D Q (s) are quasi-polynomials in e -sτ and s δ where δ ∈ (0, 1) such that µ = mδ and ν = m δ with m, m ∈ N. Now, let us consider the following transfer function of the closed-loop system
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 74 Figure 7.4 -Poles of the closed-loop system [G 2 (s), K(s)]

Théorème B. 4 (

 4 Théorème de Paley-Wiener). L 2 [0, ∞) est isomorphe à H 2 (C + ) par la transformée de Laplace. Définition B.5.L ∞ (jR) := {f : jR → C | ess sup ω∈R |f (jω)| < ∞}. Théorème B.6. Si G ∈ H ∞ (C + ) et û ∈ H 2 (C + ), alors Gû ∈ H 2 (C + ).De plus, la norme de l'opérateur de multiplication Σ : û → Gû définie par

  Définition B.13. N ∈ S n×m , D ∈ S m×m sont copremiers à droite s'il existe X ∈ S m×n , Y ∈ S m×m tels que XN + Y D = I m . Définition B.14. (N, D) avec N ∈ S n×m , D ∈ S m×m est une factorisation à droite de G ∈ F n×m si det D = 0 et G = N D -1 .

  Définition B.16. (N, D) avec N ∈ S n×m , D ∈ S m×m est une factorisation copremière à droite de G ∈ F n×m si (N, D) est une factorisation à droite de G et N, D sont copremiers à droite. Définition B.17. N ∈ S n×m , D ∈ S n×n sont copremiers à gauche s'il existe X ∈ S m×n , Y ∈ S n×n tels que N X + D Y = I n . Remarque B.18. De manière similaire, on peut construire des factorisations à gauche de tous G ∈ F n×m . En fait, G = (bI n ) -1 A. Définition B.19. ( N , D) avec N ∈ S n×m , D ∈ S n×n est une factorisation à gauche de G ∈ F n×m si det D = 0 et G = D -1 N . Définition B.20. ( N , D) avec N ∈ S n×m , D ∈ S n×n est une factorisation copremière à gauche de G ∈ F n×m si ( N , D) est une factorisation à gauche de G et N , D sont copremiers à gauche.

  u(s α ) est un polynôme de degré supérieur ou égal à d en s α dont les racines sont stables, et les polynômes fractionnaires (d'ordre non-commensurable) µ k (s) pour k = 1, . . . , n ont la forme suivante

Remarque B. 34 .

 34 Si m 0 α ≤ 1 ou α = 1/m avec m ∈ Z + \{0, 1}, alors λ sont des multiples de α et nous obtenons une expression élégante pour µ k 0 qui ne contient que des termes en s α . Plus généralement, si α est rationnel, alors µ k 0 contient des puissances de s à exposants commensurables.Cela est aussi obtenu si nous introduisons plus de coefficients dans µ k (s), k = 1, . . . , n, k = k 0 que dans les formes données dans la proposition. Plus précisément, si nous notons x le nombre de valeurs de λ ∈ L(m 0 α) telles que λ = bα, b ∈ Z + , alors nous devons ajouter au moins x termes en s α d'ordres plus élevés. Alors il est possible de choisirβ λk 0 = 0 pour λ ∈ L(m 0 α), λ = bα, b ∈ Z + etde résoudre le système d'équations pour les autres coefficients car ce système d'équations admet une solution unique ou une infinité de solutions. Remarque B.35. Il suffit de choisir u(s α ) de degré en s supérieur ou égal au degré en s de µ k (s) pour k = 1, . . . , n afin d'assurer que Y ∈ M(H ∞ ).B.3.3 Factorisations copremières à droite et facteurs de Bézout associésLa section précédente a montré que le système G(s) admettait des factorisations copremières à gauche sur H ∞ , et l'une d'entre elles est donnée par (B.3). Comme H ∞ est un où d k est le degré en s α de p k ; u(s α ) est un polynôme de degré d en s α qui n'a pas de racines instables ; et µ k (s) ont la forme suivante µ k (s) = λ∈L(m 0k α)β λk s λ + m 0k + N i=1 m ik -1 j=m 0k β (jα)k (s α ) j , et vérifient u(s α )(s α + 1) d k -e -sh k µ k (s) q k (s α ) -b i ) m ij = O(s m 0k α ) (B.10) lorsque s → 0 si p k (s α ) a une racine nulle, et pour chaque racine instable non-nulle de p k (s α ), c'est-à-dire s = b 1/α i avec m ik = 0 pour i = 1, . . . , N ,   u(s α )(s α + 1) d k -e -sh k µ k (s) q k (s α ) 1≤j≤n,j =k (s α ) m 0j N i=1 (s α -b i ) m ij où l = 0, . . . , m ik -1.Remarque B.37. Nous ne pouvons pas éliminer les puissances de s d'ordre non-commensurable dans µ k (s) telles que m 0k > 0 en ajoutant plus de coefficients comme nous le pouvons dans le cas des facteurs de Bézout à gauche.B.3.3.2 Pôles identiquesTandis que nous obtenons des expressions simples pour les systèmes avec pôles distincts, le cas de pôles identiques demande plus d'attention. Pour ce dernier, la matrice M (s) sous forme diagonale et N k (s), M kk (s) sous les formes (B.9), (B.10) ne sont plus possible. Nous déduisons de l'identité de Bézout à droite X(s)M (s) + Y (s)N (s) = I que pour k, k ∈ {1, . . . , n} et k = kX kk (s) = 1 -Y k (s)N k (s) M kk (s) , X kk (s) = -Y k (s) N k (s) M k k (s) .

Lemme B. 38 .Y

 38 Soit M ∈ R n×n une matrice triangulaire supérieure donnée par sur la diagonale principale sont non-nuls et les éléments au-dessus de la diagonale principale vérifient les conditions suivantes(i) pour k = 1, . . . , n, s'il existe l ∈ Z, l ∈ (k, n] tel que M kl = 0 alors M lk = 0 pour l ∈ {1, . . . , k -1}, (ii) pour k = 1, . . . , n, s'il existe l ∈ Z, l ∈ [1, k) tel que M l k = 0 alors M lk = 0 pour l ∈ {1, . . . , k -1}\{l } et M kl = 0 pour l ∈ {k + 1, . . . , n}.Alors, l'inverse de M est donné parM kk M k k (B.13) pour k, k ∈ {1, . . . , n} et k < k .Dans la proposition suivante, nous proposons des factorisations copremières et des facteurs de Bézout correspondants des systèmes G(s) pour lesquels chaque élément contient un pôle et certains éléments pouvant avoir des pôles communs. Afin de simplifier la présentation, nous supposons que les retards sont rangés en ordre. L'extension du résultat au cas des retards arbitraires sera discutée après la proposition.Proposition B.39. Soit G(s) décrit par (B.2) avech 1 ≤ . . . ≤ h n , R k (s α ) = a k s α -σ k avec a k , σ k ∈ R pour k = 1, . . . , n. Nous notons I 1 := ∅ et I k := {j | j ∈ {1, . . . , k -1}, σ j = σ k } pour k = 2, .. . , n. Une factorisation copremière à droite et les facteurs de Bézout associés sont donnés parN (s) = [N 1 (s), . . . , N n (s)], (s) = [Y 1 (s), . . . , Y n (s)] T , X(s) = M -1 (s) -Y (s)G(s), où pour k, k ∈ {1, . . . , n} et k = k N k (s) = 0 si I k = ∅, a k e -sh k s α +1 sinon, (B.16) M kk (s) = 1 si I k = ∅ s α -σ k s α +1sinon, (B.17)M k k (s) = -a k e -s(h k -h k ) s α) est un polynôme de degré d en s α qui n'a pas de racines instables ; pk (s α ) = p(s α )/(s α -σ k ) ; β k (pour les valeurs de k telles que I k = ∅ et σ k ≥ 0) sont donnés parβ k = u(σ k )(σ k + 1)e σ 1/α k h k a k p k (σ k ) ,(B.19) β k pour les autres valeurs de k peuvent être choisis de façon arbitraire, et M -1 (s) kk M k k pour k, k ∈ {1, . . . , n} et k < k . Remarque B.40. Une matrice de transfert G donnée par (B.

B. 4

 4 Analyse de stabilité des systèmes classiques et fractionnaires SISO à retards commensurables B.4.1 Une classe de systèmes classiques et fractionnaires de type neutre Nous considérons les systèmes (fractionnaires) à retards de type neutre dont la fonction de transfert est de la forme G0 est le retard,• t, p, et q k pour tous k ∈ N N sont des polynômes réels en s µ ,• 0 < µ ≤ 1,• -π < arg(s) < π dans le cas où 0 < µ < 1 afin d'avoir une valeur unique de s µ ,• deg p ≥ deg t, deg p ≥ deg q k pour tous k ∈ N N , et deg p = deg q k pour au moinsune valeur de k ∈ N N pour que le système soit propre et de type neutre.Notons que le degré d'un (quasi-)polynôme signifie le degré en s µ .Comme deg p ≥ deg q k pour tous k ∈ N N , alors pour chaque k nous obtenonsq k s lµ + O(s -(M +1)µ ) lorsque |s| → ∞,(B.22) où M ∈ Z + et peut être arbitrairement large. Le coefficient de la terme de degré le plus élevé du dénominateur de la fonction de transfert (B.21) peut s'écrire comme un multiple du polynôme en z ci-dessous c d (z) = 1 + N k=1 α 0,k z k , (B.23) où z = e -sτ . Il est appelé le polynôme formel. A chaque racine r de (B.23) est associée une chaîne de pôles de type neutre de G et les pôles à grand module de cette chaîne sont approximés par s n τ = λ n + o(1), (B.24) où λ n = -ln(r) + 2πn, n ∈ Z, (B.25)

Lemme B. 41 .

 41 Soit r une racine de multiplicité m > 1 de f (z) = 1 + N k=1 α k z k , où α k ∈ C. Alors N k=1 k l α k r k = 0 pour l = 1, . . . , m -1 et N k=1 k m α k r k = 0.

sy 1 2 a 2 + b 2 tan γ 2 S 2 = 2 = tan γ 2 Figure B. 2 -

 12222222 Figure B.2 -Un segment de frontière en bas à gauche d'un ensemble de points dans le plan

  N k=1 α 0,k k m r k = 0 (voir le Lemme B.41). Le second point, noté par (a L , b L ), est le point le plus à gauche parmi ceux les plus bas de AB(r), c'est-à-dire bL = min{b | (a, b) ∈ AB(r)} a L = min{a | (a, b L ) ∈ AB(r)}. (B.32)Les segments de frontière en bas à gauche de AB(r) appartiennent donc au sous-ensembleA m L = {(a, b) ∈ AB(r) | a ≤ a L , b ≤ m} (voir la Figure B.3). En fait, si (a, b) ∈ AB(r) et a > a L ,alors a+bm > a L +b L m pour tous m > 0 car b ≥ b L par définition. Si (a, b) ∈ AB(r) et b > m, alors a + bm > mm pour tous m > 0 car a ≥ 0 par définition. Le sous-ensemble A m L a un nombre fini de points et son enveloppe convexe est donc un polygone convexe (De Berg et al., 2008). Les sommets de ce polygone sont dans A m L et la ligne contenant chacun de ses côtés définit un demi-plan fermé contenant tous les points de A m L . Il n'existe pas d'autres lignes contenant deux points de A m L avec une telle caractéristique.
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 342 Figure B.3 -Le sous-ensemble A m L de AB(r) qui contient tous les segments de frontière en bas à gauche de AB(r)

  Proposition B.51. L'équation (as µ + b) + (cs µ + d)e -sτ = 0 (B.40) avec a > 0, b, c, d, h ∈ R, |a| = |c|, et µ ∈ (0, 1) n'a pas de racines dans le demi-plan droit fermé pour tous τ ≥ 0 si et seulement si• b + d > 0 et b -d > 0 si a = c, • b + d > 0 et b -d ≥ 0 si a = -c.Nous donnons à présent une parametrisation de tous les contrôleurs stabilisants des systèmes donnés par (B.38).Théorème B.52. SoitG(s) = 1 (as µ + b) + (cs µ + d)e -sτ avec a, b, c, d ∈ R, a > 0, |a| = |c|, et µ ∈ (0, 1). L'ensemble de tous les contrôleurs stabilisants H ∞ est donné par V + M Q Uµ + b ) + (c s µ + d )e -sτ , M (s) = (as µ + b) + (cs µ + d)e -sτ (a s µ + b ) + (c s µ + d )e -sτ , U (s) = s µ [(a s µ + b ) + (c s µ + d )e -sτ ] s µ (as µ + b + k p ) + k i + s µ (cs µ + d)e -sτ , (B.42) V (s) = (k p s µ + k i )[(a s µ + b ) + (c s µ + d )e -sτ ] s µ (as µ + b + k p ) + k i + s µ (cs µ + d)e -sτ , (B.43) Q est le paramètre libre qui appartient à H ∞ , k i > 0 et k p vérifient b + d + k p a + c > -2 k i a + c cos µπ 2 pour a = c, k i (b + d + k p ) > 0 pour a = -c, (a(b + k p ) -cd) cos µπ 2 > 0, (b + k p ) 2 + 2ak i cos(µπ) -d 2 > 0, k i (b + k p ) cos µπ 2 = (as µ + b) + (cs µ + d)e -sτ , A (s) = (a s µ + b ) + (c s µ + d )e -sτ , B(s) = k p s µ + k i ,alors les fonctions de transfert de la boucle fermée peuvent être écrites comme suit :1 1 + GK = A(s µ A 2 -Q(s µ A + B)) A 2 (s µ A + B) , (B.46) G 1 + GK = s µ A 2 -Q(s µ A + B) A 2 (s µ A + B) , 2 + AQ(s µ A + B)) A 2 (s µ A + B) . (B.48) 

Remarque B. 54 .

 54 Les contrôleurs de la forme K(s) = N K (s)/D K (s) où N K (s) et D K (s) sont des quasi-polynômes en e -sτ , s µ , et s sont un cas particulier des contrôleurs considérés dans la Proposition B.53. En fait, si µ = m/n avec m, n ∈ N, alors N K (s) et D K (s) peuvent être vus comme les quasi-polynômes en e -sτ et s 1/n . Proposition B.55. Soit G donné par (B.38) avec µ irrationnel. Si un contrôleur stabilisant est de la forme K(s) = N K (s)/D K (s) où N K (s) et D K (s)sont des quasi-polynômes à coefficients réels en s µ et e -sτ , alors la boucle fermée a nécessairement des chaînes de pôles asymptotiques à l'axe imaginaire.
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  Lebesgue measurable and ess sup

	|f (t)| < ∞}.
	t∈[0,∞)
	Lemma 2.2. L

p [0, ∞) for 1 ≤ p < ∞ are Banach spaces under the norms

||f (t)|| p := ∞ 0 |f (t)| p dt 1/p . Lemma 2.3. L 2 [0, ∞)

is a Hilbert space under the inner product and the induced norm

f, g := ∞ 0 f * (t)g(t)dt, ||f (t)|| 2 := f, f . Lemma 2.4. L ∞ [0, ∞)

is a Banach space under the norm ||f (t)|| ∞ := ess sup t∈[0,∞)

  Definition 2.43 (Complemented matrix). Suppose A ∈ S m×n with m < n; then we say that A can be complemented if there exists a unit U ∈ S n×n containing A as a submatrix.Definition 2.44 (Unimodular row).A row [a 1 , . . . , a n ] ∈ S 1×n is a unimodular row if a 1 , . . . , a n together generate S.

	Definition 2.45 (Hermite ring). A ring S is Hermite if every unimodular row can be
	complemented.
	Lemma 2.46

). G ∈ F n×m and (N, D) is a right factorization of G. Then G has an r.c.f. if and only if the left ideal in S m×m generated by N and D is a left principal ideal. Definition 2.38. S is a Bézout domain if every finitely generated ideal in S is principal.

Lemma 2.39

(Vidyasagar et al., 1982, Corollary 2.3)

. If S is a Bézout domain, then all finitely generated left ideals and right ideals in S m×m are principal.

From Lemmas 2.37 and 2.39, the following result is immediate. Corollary 2.40. If S is a Bézout domain, then every G ∈ F n×m has right and left coprime factorizations. Lemma 2.41. H ∞ is not a Bézout domain. Remark 2.42. The above lemma shows that there exists G ∈ H n×m ∞ that does not have left or right or both coprime factorizations.
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  Ainsi, d'après lesThéorèmes B.4 et B.8, si l'on se restreint aux systèmes linéaires invariants dans le temps dont la fonction de transfert appartient à L ∞ (jR), alors un système linéaire invariant dans le temps est L 2 -stable si et seulement si sa fonction de transfert appartient à H ∞ . Pour cette raison, la stabilité L 2 -L 2 est appelée la stabilité H ∞ .

  Si S est un anneau de Bézout, alors tous G ∈ F n×m possèdent des factorisations copremières à gauche et à droite.

	n i=1 ω∈Γ inf n i=1 x i a i = 1 |â i (ω)| > 0 où âi est la transformée de Gelfand de a i . si et seulement si tards Corollaire B.22. B.3 Stabilisation des systèmes fractionnaires MISO à re-B.3.1 Une classe de systèmes fractionnaires MISO à retards

). Soit S une algèbre de Banach sur C avec l'idéal maximal Ω. Supposons que Γ est un sous-ensemble dense de Ω et que a 1 , • • • , a n ∈ S. Alors il existe x 1 , • • • , x n ∈ S tels que Lemme B.23. H ∞ n'est pas un anneau de Bézout.
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where for 2 ≤ m ≤ 3, y 1 = 2µ/m and

for m = 4, y 1 = µ/2 and ν 1 satisfies (4.31) and for m ≥ 5, (y 1 , ν 1 ) takes one of m different pairs of values

)

.33)

Proof. Under the assumptions, the terms of highest order in n of g 1 , g 2 , and g 3 , which are given by (4.4), (4.5), and (4.6), are -2µ, -my 1 , and max{-µ-2y 1 , -2µ-y 1 } respectively. Obviously, we just need to compare the first three orders as -2µ > -2µ -y 1 .

To determine y 1 and ν 1 , we proceed similarly to the proof of Theorem 4.9.

The following cases may occur for the highest order of the development of the denominator at s n Hence, from (4.3) we obtain respectively

Corollary 5.12. Let G(s) be a neutral delay system defined by (5.1). Suppose that r is a root of (2.4) of multiplicity m = 2 and satisfies (5.13), (5.14) and (5.15). Then either (ν 1 ) = 0 for all values of ν 1 relative to r and r or at least one value of ν 1 has strictly positive real part.

Proof. Denoting ν (1)

1 roots of (5.16), we have

If r is real, then ν

(1)

1 ) + (ν

1 ) = 0. The conclusion is then obvious.

If r ∈ C\R, then r is also a root of multiplicity two of 2.4. Denoting ν roots of (5.16) corresponding to r, we have

1 ) + (ν

1 ) + (ν

1 ) + (ν

1 ) = 0 from which the conclusion is immediately drawn.

Remark 5.13. For m ≥ 3, the system is unstable in both classical and fractional cases. Nevertheless, for m = 2, while ν n,1 may allow one to conclude that the chains of poles are on the left of the asymptotic axis in the fractional case, that conclusion is impossible in the classical case. This was the same scenario occurring to single chains of poles in Subsection 5.3.1.

If all values of ν 1 relative to r and r are purely imaginary, we do not know yet on which side of the asymptotic axis the corresponding chains of poles lie. If there is no other factor allowing one to conclude that the system is unstable, we need to approximate the poles further in order to reach a conclusion. This is the objective of the next theorem.

Theorem 5.14. Let G(s) be a neutral delay system defined by (5.1). Suppose that a root r of multiplicity m = 2 of the formal polynomial c d (z) defined by (2.4) satisfies (5.13), (5.14) and (5.15). Suppose also that in the approximation of the neutral poles corresponding to r which is given by

Corollary 5.21. Let G(s) be a neutral delay system defined by (5.1), and suppose that at least one root of (2.4) has multiplicity m = 2 or m ≥ 4 and satisfies (5.33)-(5.38). Then there exist neutral chains of poles on both sides of the asymptotic axis given by (2.7).

Now

, we analyze the location of poles for m = 3.

Corollary 5.22. Let G(s) be a neutral delay system defined by (5.1), and suppose that at least one root of (2.4) has multiplicity m = 3 and satisfies (5.33)-(5.38). Then either (ν 1 ) = 0 for all values of ν 1 relative to r and r or at least one value of ν 1 has strictly positive real part.

Proof. If we denote ν (i) 1 , i = 1, 2, 3 the values of ν 1 , then from (5.39) we deduce that 2π), and thus (ν

Remark 5.23. At the approximation concerning ν n,1 , we cannot determine stable classical systems while it may be possible for fractional ones. The same situation is encountered in the cases m = 1, N k=1 β k r k = 0 (see Subsection 5.3.1) Subsection 5.4.2). However, this phenomenon is not general, for instant it does not happen for the classical system in Example 5.6.

When (ν 1 ) = 0 for r and r, we can determine ν n,2 by similar arguments to those of Theorem 5.14. 

Examples

We have

n,2 , and ν

(3) n,2 by using Theorem 5.4. We obtain ν

n,2 = (0.0633 + 0.0796)/n 2 , and ν

On the other hand, the quasi-polynomial obtained by expanding the denominator has c d (z) with root r = 1 of multiplicity m = 2 and root r = -1 of multiplicity m = 1. For r = 1, since 3 k=1 β k r k = 0, we use Theorem 5.9 and then Theorem 5.14, which give identical results to Theorem 5.1 and Theorem 5.4. Example 5.5. (Subsection 5.4.2) The transfer function of the system is given by

The formal polynomial c d (z) has one root r = 1 with multiplicity m = 2. This root satisfies 2 k=1 β k r k = 0, 2 k=1 kβ k r k = 0, and 2 k=1 γ k r k = 0. Therefore, Theorem 5.9 can be applied and thus ν 1 has the values ν

Since the values of ν 1 are all purely imaginary, we need to determine ν 2 using Theorem 5.14. We obtain ν 2 = -0.0140 for ν The formal polynomial is c d (z) = 1 -1.6z + z 2 , having two complex conjugate roots r = 0.8 ±  √ 2.44/2 whose absolute values are 1. The system then has two neutral chains of poles asymptotic to the imaginary axis.

For each root r, the conditions 2 k=1 β k r k = 0, and 2 k=1 γ k r k = 0 are satisfied, then ν n,1 is given by (5.9). We can write ν n,1 = ν 1 /n xr where x r = 2 and ν 1 is equal to -0.0127 + 0.0760 for r = 0.8 +  √ 2.44/2 or -0.0127 + 0.0760 for r = 0.8 - √ 2.44/2. Consequently, the two neutral chains approach the imaginary axis from the left side. Proposition 5.6 indicates that a necessary condition for G 6 (s) to be H ∞ -stable is that

It is not satisfied if t(s) = s + 1 and thus the system is unstable. Figure 5.4 shows that the magnitude of the transfer function increases with increasing frequencies. On the other hand, the condition is satisfied if t(s) = 1. In Figure 5.5, we see that the magnitude of the transfer function tends to a constant as the frequencies increase and thus is bounded. However, the system has unstable poles of small modulus, which can be seen using QPmR algorithm [START_REF] Vyhlidal | QPmR v.2 -Quasipolynomial rootfinder, algorithm and examples[END_REF], and then is unstable. and we obtain

where L(x) := (l 1 , . . . , l M ) :

By simple calculations, we obtain

where HL(x) := (l, l 1 , . . . , l M ) : l ∈ Z + \{0}, l i ∈ Z + , M i=1 l i ≥ 1, and lµ + M i=1 l i y i ≤ x , and then

Since 1 + N k=1 α 0,k r k = 0, then the highest order in n of the above development has the form -(aµ + by 1 ) where (a, b) belongs to AB(r) defined in (6.5) and there exists

If the equality only happens for (a , b ) = (a, b), then the term of highest order is C(a, b, ν 1 )/n aµ+by 1 and thus ν 1 = 0, which does not satisfy the assumptions.

The equality holds for point(s) other than (a, b) if (a, b) belongs to a segment S ∈ S(AB(r)) and y 1 = mµ with m be the slope of S.

Theorems 4.14 and 5.17 presented the same results. m = 3, we have n(S 1 ) = 2 andb 1 -b 2 = m -0 = 3, then the system is unstable. 0,4),(1,2),(2,0)} (see Figure 6.7).

From Theorem 6.1, we obtain

and thus

Theorems 4.14 and 5.17 presented the same results. Theorem 6.3 cannot be applied here and we have to study the sign of (ν n,1 ) as in Corollaries 4.16 and 5.18, which showed that the system is unstable. 2, 0)} (see Figure 6.7). From Theorem 6.1, we obtain 

Theorems 4.14 and 5.17 presented the same results.

We have n(S 1 ) = 2 and b 1 -b 2 = m -2 ≥ 3, then Theorem 6.5 shows that the system is unstable. This conclusion was also obtained in Corollaries 4.16 and 5.18.

The case where

Theorem 6.3 cannot be applied in this case. For classical systems, the sign of (ν n,1 ) was analyzed in Corollary 5.22. There exist fractional systems without unstable poles and with chains of poles asymptotic to the imaginary axis. If these chains correspond to the triple roots of the formal polynomial c d (z) that satisfy the conditions in this subsection, then Theorem 6.5 shows that the necessary and sufficient for the H ∞ -stability of the systems is deg t ≤ deg p -max r {a L } where max r {a L } = 3 since a L = 3 for all the roots of modulus one of c d (z). This stability condition was also obtained in Proposition 4.18.

(2, 1), (3, 0)} (see Figure 6.8). From Theorem 6.1, we obtain

which are respectively equivalent to

and

and y 1 = µ. These approximations are the same as those provided in Theorems 4.17 and 5.20. We have n(S 1 ) = 2. If m = 4, then b 1 -b 2 = 4 -2 = 2 and (a 2 -a 1 )µ = (1 -0)µ = µ = 2k for all µ ∈ (0, 1] and k ∈ Z + \{0}. Hence the system is unstable due to Theorem 6.5. If m ≥ 5, then b 1 -b 2 = m -2 ≥ 3, and thus the system is unstable due to the same theorem. The same conclusions were drawn in Corollaries 4.19 and 5.21.

Summary of previous results

Table 6.1 summaries the stability results of the classes of systems that are already studied in the two precedent chapters and reconsidered in this section. The comments in the table should be understood as follows:

• May be stable: There exist stable systems belonging to the considered class.

• (ν 1 ) = 0 or unstable: There are two possibilities for chains of poles relative to r and r. First, (ν 1 ) = 0 for all values of ν 1 corresponding to r and r. In that case, the next approximation is needed to determine the location of poles around the asymptotic axis. Second, the system is unstable.

where N and D are real polynomials in s µ , µ ∈ (0, 1). These controllers are called rational fractional controllers of commensurate order. From (Partington and Bonnet, 2004, Lemma 4.1), we know that deg N ≤ deg D if K(s) stabilizes G(s) in the sense H ∞ . Suppose that N (s) and D(s) do not have common zeros, and N (s) does not have common zeros with the denominator of G(s).

The closed-loop [G, K] is stable if and only if the following transfer functions are stable

Under the assumptions about the zeros of N (s) and D(s), the transfer functions (7.3), (7.4), and (7.5) do not have zero cancellation between the numerator and the denominator. Proposition 7.2. Let G be given by (7.1). Suppose that the polynomial c d (z) has roots of modulus one of multiplicity one and that the other roots are of modulus greater than one. Suppose also that at least one root of modulus one of c d (z), denoted r, satisfies

where

Then G can be stabilized by controllers of the form (7.2) only if deg p = 1. (m+n) . Autrement dit, la boucle fermée est stable de manière interne si et seulement si toutes les relations entrée-sortie du système bouclé sont bornées.

List of publications

La fonction de transfert entre

Lemme B.12 [START_REF] Vidyasagar | Control System Synthesis: A Factorization Approach[END_REF]. Si W (G, K) ∈ S (m+n)×(m+n) , alors G ∈ F n×m , K ∈ F m×n .

Le lemme précédent montre que seulement les systèmes dont les éléments de la fonction de transfert sont dans F peuvent être stabilisés avec le schéma de retour de la Figure B.1. Alors, dans la suite, nous considérons les systèmes de ce type.

Remarque B.24. Le lemme précédent montre qu'il existe G ∈ H n×m ∞ qui n'a pas de factorisations à gauche ou/et à droite.

Lemme B.25 (Vidyasagar, 1985, Théorème 8.1.23). Les trois assertions suivantes sont équivalentes :

1. S est un anneau d'Hermite.

2. Si G ∈ F n×m a une factorisation copremière à droite, alors il a une factorisation copremière à gauche.

3. Si G ∈ F n×m a une factorisation copremière à gauche, alors il a une factorisation copremière à droite.

Lemme 

B.2.5 Paramétrisation de contrôleurs stabilisants

Lemme B.28 (Vidyasagar et al., 1982, Lemme 3.1). Théorème B.29 (Vidyasagar, 1985, Théorème 8.3.5). Soit G ∈ F n×m ayant une factorisation copremière à droite (N, D) et une factorisation copremière à gauche ( N , D).

• Si det Y = 0, alors un contrôleur stabilisant est donné par K = Y -1 X qui correspond à R = 0.

• Si det Y = 0, alors un contrôleur stabilisant est donné par K = X Y -1 qui correspond à R = 0.

anneau d'Hermite, alors à partir de (Quadrat, 2003a, Corollaire 4.14), nous déduisons qu'il existe des factorisations copremières à droite pour G(s).

Pour nos matrices de transfert, les factorisations copremières à droite et les facteurs de Bézout associés sont des matrices contenant plus d'éléments que celles intervenant dans les factorisations à gauche. Nous considérerons deux larges classes de systèmes. La première classe comprend des systèmes avec des pôles distincts, c'est-à-dire p k (s α ) et p k (s α ) n'ont pas de racines communes si k = k . Dans ce cas, la matrice M (s) peut être de forme diagonale, ce qui réduit la complexité des calculs car il est facile d'obtenir la matrice inverse. La seconde classe comprend des systèmes à pôles identiques et la matrice M (s) a donc une forme plus compliquée. Pour cette classe, on ne considère qu'une sous-classe assez simple de systèmes.

B.3.3.1 Pôles distincts

Proposition B.36. Soit G(s) décrit par (B.2). Supposons que toutes les racines instables (nulles ou non-nulles) de p k (s α ) pour k = 1, . . . , n sont distinctes. Alors une factorisation copremière à droite et les facteurs de Bézout associés sont donnés par

A l'exception de ce cas spécial, ν n,1 existe et le signe de (ν 1 /n y 1 ) montre de quel côté de l'axe asymptotique se situent les pôles. Notons que le signe pourrait changer pour n positif et négatif. Ainsi, les parties en haut et en bas de la chaîne de pôles pourraient se situer de différents côtés de l'axe asymptotique.

Notons que nous ne fixons pas une valeur de y 1 à priori mais nous la cherchons pour que ν 1 = 0. Cela assure que l'approximation donne des nouvelles informations sur la localisation des pôles. Le seul cas où l'information donnée n'est pas utile est lorsque (ν 1 /n y 1 ) = 0 et nous devons chercher d'autres termes d'approximation pour déterminer la localisation des pôles relatif à l'axe asymptotique.

Avant de présenter les résultats principaux sur la localisation des pôles par rapport à l'axe asymptotique, nous définissons des notions utiles pour la suite. Nous appelons S un segment de frontière en bas à gauche de AB(r).

• m défini précédemment pour chaque S est évidemment unique et nous l'appelons la pente du segment.

• S(AB(r)) désigne l'ensemble de tous les segments de frontière en bas à gauche de AB(r).

Un segment de frontière en bas à gauche est illustré sur la 

B.4.3 Stabilité

Dans cette sous-section, nous étudions la stabilité de type H ∞ des systèmes d'intérêt en utilisant l'approximation de pôles obtenue dans la sous-section précédente. Ici, nous sommes intéressés uniquement par les systèmes avec des chaînes de pôles de type neutre asymptotiques à l'axe imaginaire.

Le théorème suivant donne des critères pour vérifier rapidement si un système est instable.

Nous n'avons pas besoin de connaître ν n,1 pour appliquer ces critères. 

B.4.4 Un exemple

On considère ici les systèmes G(s) où m ≥ 2, Remarque B.48. Les systèmes considérés dans la Proposition B.47 ne sont pas les seuls à avoir des chaînes de pôles approchant l'axe imaginaire à droite. Cela pourrait arriver pour les systèmes avec (ν n,1 ) = 0 mais dans ce cas d'autres analyses sont nécessaires comme décrites dans [START_REF] Bonnet | Stability of neutral systems with commensurate delays and poles asymptotic to the imaginary axis[END_REF].