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Résumé

Nous considérons deux classes de systémes fractionnaires linéaires invariants dans le temps
avec des ordres commensurables et des retards discrets. La premiére est composée de
systémes fractionnaires & entrées multiples et & une sortie avec des retards en entrées ou
en sortie. La seconde se compose de systémes fractionnaires de type neutre avec retards
commensurables. Nous étudions la stabilisation de la premiére classe de systémes a 'aide
de I'approche de factorisation. Nous obtenons des factorisations copremiéres & gauche et
a droite et les facteurs de Bézout associés: ils permettent de constituer ’ensemble des
contréleurs stabilisants. Pour la deuxiéme classe de systémes, nous nous sommes intéressés
au cas critique ou certaines chaines de podles sont asymptotiques & I’axe imaginaire. Tout
d’abord, nous réalisons une approximation des poles asymptotiques afin de déterminer
leur emplacement par rapport & ’axe. Le cas échéant, des conditions nécessaires et
suffisantes de stabilité H,, sont données. Cette analyse de stabilité est ensuite étendue
aux systémes a retard classiques ayant la méme forme. Enfin, nous proposons une
approche unifiée pour les deux classes de systémes a retards commensurables de type
neutre (standards et fractionnaires). Ensuite, la stabilisation d’une sous-classe de systémes
neutres fractionnaires est étudiée. Premiérement, ’ensemble de tous les controleurs
stabilisants est obtenu. Deuxiémement, nous prouvons que pour une grande classe de
controéleurs fractionnaires a retards il est impossible d’éliminer dans la boucle fermée les
chaines de poéles asymptotiques & ’axe imaginaire si de telles chaines sont présentes dans
les systémes & controler.

Abstract

We consider two classes of linear time-invariant fractional systems with commensurate
orders and discrete delays. The first one consists of multi-input single-output fractional
systems with output or input delays. The second one consists of single-input single-output
fractional neutral systems with commensurate delays. We study the stabilization of
the first class of systems using the factorization approach. We derive left and right
coprime factorizations and Bézout factors, which are the elements to constitute the set
of all stabilizing controllers. For the second class of systems, we are interested in the
critical case where some chains of poles are asymptotic to the imaginary axis. First, we
approximate asymptotic poles in order to determine their location relative to the axis.
Then, when appropriate, necessary and sufficient conditions for H.-stability are derived.
This stability analysis is then extended to classical delay systems of the same form and
finally a unified approach for both classes of neutral delay systems with commensurate
delays (standard and fractional) is proposed. Next, the stabilization of a subclass of
fractional neutral systems is studied. First, the set of all stabilizing controllers is derived.
Second, we prove that a large class of fractional controllers with delays cannot eliminate
in the closed loop chains of poles asymptotic to the imaginary axis if such chains are
present in the controlled systems.
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Chapter 1

Introduction

Contents
I Motivationl . . .« ¢ ¢ v v i i i e e e e e e e e e e e e e e e e 1
[1.2 Outline of the thesisl. . . . . . . . v v v v v i v it it e e v 4

1.1 Motivation

In this work, we address the problems of stability analysis and stabilization of several
classes of SISO and MIMO systems. We work in the frequency domain and our aim is
to find easy-to-check conditions of stability as well as explicit expressions of controllers
having in mind an integration of our results in a software.

We are interested in two major classes of systems regarding applications: delay systems
and fractional systems. Both need tools of infinite-dimensional control theory.

In the time domain, fractional models involve derivatives and/or integrals of orders
which are not necessarily integers. Similarly, they involve in the frequency domain
non (necessarily) integer powers of the Laplace variable s. These models have found
applications in many fields, for instance electromagnetics (Westerlund and Ekstam) [1994;
Knospe and Zhu, 2011), mechanics (Caputo and Mainardi, [1971}; |Koh and Kelly, {1990
Vinagre et al., [1998)), and biology (Ionescu and De Keyser, 2008; |Grahovac and Zigic,
2010). The increasing popularity of fractional models is due to two reasons. First,
more physical phenomena have been described using fractional laws and thus system
descriptions constructed from these physical laws are also fractional models. Second, for
various macroscopic behaviors, fractional models provide models with less parameters and
at the same time better fittings to collected data than integer-order models. For more
details about fractional calculus and examples, see (Oldham and Spanier} 1974} Podlubnyl,
1998) and references therein.

In control engineering, a lot of results are available on fractional controllers and their
implementation. See for example (Oustaloup et al., [1995; [Podlubny| [1999; (Chen et al.,
2009; Magin et al 2011) and the references therein. Two well-known types of fractional

1



2 CHAPTER 1. INTRODUCTION

controllers are CRONE (Oustaloup et al., |1995)) and fractional PID (Podlubnyl 1999).
Applications of these fractional controllers on benchmark problems have been reported and
have been showed to provide better performance than integer-order controllers (Oustaloup
et al [1995; Xue et al., |20006]).

With the spreading of fractional systems including both plants and controllers, it is natural
to think about fractional systems with delays since delays are commonly encountered in
real systems due to unavoidable communication or transfer distances. Furthermore, as
reported in the huge literature of classical (integer-order) systems, delays may in certain
cases strongly influence the stability of systems. Sometimes delays help to stabilize the
systems, but more often they make the systems unstable and even the task of stabilization
becomes more difficult. Therefore, delays could be expected to also play such important
roles in the field of fractional systems.

There has been a growing interest for studying fractional systems with delays. The question
of stability of linear fractional systems with delays has been answered by many authors.
In (Hotzel, 1998a), the system described by the transfer function @ 1D +(csu e

(a,b,c,d,h € R,h > 0) was considered and conditions for BIBO-stability were derived.
Since then many other studies have been conducted in the frequency domain and many
results have been obtained for fractional systems with arbitrary real orders and with
arbitrary positive delays. (Bonnet and Partington) 2002)) studied the BIBO-stability
of the general class of fractional systems with delays. A more general class of systems
was then examined in (Bonnet and Partington, [2001). This has been the most general
class of linear fractional systems with delays considered in the literature. In (Chen and
Moore, 2002), by using the Lambert function, the authors derived the closed form solution
of the characteristic equation of simple fractional systems with one delay. Fractional
systems described by delay fractional differential equations were considered in (Deng et al.,
2007) and conditions for Lyapunov globally asymptotic stability were derived. Recently,
robust BIBO-stability of some classes of fractional systems with delays were studied in
(Akbari Moornani and Haeri, 2010, [2011)).

All the stability conditions obtained in the aforementioned work concern the location of
poles in the complex plane. For delay fractional systems of retarded type, the necessary
and sufficient conditions for stability is the familiar one ‘no pole in the closed right half-
plane’. In order to check this condition, several numerical methods have been proposed.
We can classify these methods into two categories. In the first one, one checks the stability
of the system at fixed delays. Such methods were presented in (Hwang and Cheng, 2005,
2006)), being based on Cauchy’s integral theorem and the Lambert function respectively.
The second category consists of methods which determine the intervals of delay in which
the systems are stable. We mention here (Ozturk and Uraz, [1985; |[Fioravanti et al., [2012}
Mesbahi and Haeri, 2013)) among others.

The numerical methods mentioned above exclusively deal with fractional systems of
retarded type except (Fioravanti et al.) 2010) whose method can be applied to some
fractional systems of neutral type. As well in the references on the stability analysis cited
earlier, while for retarded systems ‘no pole in the closed right half-plane’ is the necessary
and sufficient condition for stability, it is only a necessary condition for neutral systems.
This can be explained by the complicated locations of poles of neutral systems: infinitely
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many isolated poles gather in some vertical strips in the complex plane (Bellman and
Cookel, 1963; |[Hotzel, |1998a; Bonnet and Partington, 2002]).

In the simplest case of systems with commensurate fractional orders and with com-
mensurate delays where the above phenomenon reduces to poles asymptotic to vertical
lines, attempts were made in (Bonnet and Partington, 2007; |[Fioravanti et al.l 2010)) to
obtain necessary and sufficient conditions for H.,-stability (which is a weaker notion than
BIBO-stability) for a class of these systems.

Some works with the same purpose are also available for classical (integer-order) systems
of neutral type for which the same difficulty is encountered. In the frequency domain, we
have (Bonnet et al., 2011)) for H-stability and (Abusaksaka and Partington, 2014)) for
BIBO-stability. And in the time domain, (Rabah et al. 2012) considered the asymptotic
stability.

In this thesis, we choose to consider linear fractional systems with commensurate fractional
orders and commensurate delays using frequency methods. This means their transfer
functions are ratios of two quasi-polynomials in e™*7 and s* where 7 > 0 is the delay and
a > 0 is the arbitrary order and often takes values in (0,1).

The choice to consider commensurate quantities has some advantages.

e Commensurate fractional orders are commonly obtained via identification for linear
fractional systems. Together with delays they constitute interconnected systems
whose models are linear fractional systems with delays. These systems have a similar
form to classical delay systems and thus the stability analysis and control might
benefit from large collections of tools used for classical ones.

e Delays measured in reality are commensurate. Although the ratios between them
may be constants for a short amount of time and likely to vary, the corresponding
systems at an instant are quite simple to analyze and hence provide a good starting
point for studying the characteristics of the systems.

Although there have been many results concerning stability analysis, the problem of
stabilization of fractional systems with delays has just been marginally addressed. In the
early work (Hotzel, 1998b), a control strategy involving distributed delays was proposed
to control MIMO linear fractional systems with input delays. Also for SISO fractional
systems with one input delay, PID controllers were designed in (Ozbay et al., 2012). The
parametrization of all stabilizing controllers was obtained in (Bonnet and Partington)
2001)) for SISO fractional systems of retarded type and in (Bonnet and Partington, [2007)
for some SISO fractional systems of neutral type.

To analyze this left wide open area of stabilization of fractional delay systems, we choose
the factorization approach to analysis and synthesis problems (Vidyasagar, [1985)). With
its algebraic nature, this powerful approach allows one to derive the set of all stabilizing
controllers which can be used to study various control problems and in particular robust
control.

While the tools for applying the factorization approach to finite-dimensional systems
are numerous, they are quite limited for infinite-dimensional systems though qualitative
results are available (Quadrat, 2006b)). In this thesis, by deriving explicit expressions
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of coprime factorizations and Bézout factors for some classes of fractional systems with
delays, we contribute to the “implementation” phase of the factorization approach for
infinite-dimensional systems.

For MIMO systems, the question of parametrization of all stabilizing controllers has
been studied by A. Quadrat and K. Mori who are able to derive the set of all stabilizing
controllers once one already knows a particular stabilizing controller (Mori, 2002; Quadrat},
2006b)). For the particular class of MIMO (integer-order) systems with I/O delays, the
idea in (Mirkin and Raskin, 1999; [Moelja and Meinsma, 2003 was to reduce the problem
to an equivalent finite-dimensional stabilization problem by involving an unstable finite-
dimensional system and a stable infinite-dimensional system (FIR filter). Our purpose in
this work is to derive explicit expressions of coprime factorizations and Bézout factors of
MIMO fractional systems with 1/O delays.

1.2 Outline of the thesis

We consider two classes of linear time-invariant fractional systems with discrete delays. The
first one consists of MISO fractional systems of commensurate orders with output or input
delays. The second one consists of SISO fractional neutral systems with commensurate
delays.

This manuscript is divided into 7 chapters.

We study the stabilization of the first class of systems in Chapter [3 using the factorization
approach. We derive explicit expressions of left and right coprime factorizations and Bézout
factors, which are the elements to constitute the set of all stabilizing controllers.

The second class of systems are examined in Chapters [4] [6], and [7] We are interested
in the critical case where these systems have poles asymptotic to the imaginary axis.
First, the stability analysis is realized in Chapter [4 This analysis consists of determining
location of poles about the imaginary axis via approximation and then deriving necessary
and sufficient conditions for H.-stability. The analysis is similar for classical systems of
the same form and thus is extended for these systems in Chapter [5} Then in Chapter [0]
we present a new method which allows a unified approach to analyze the stability of both
fractional and classical delay systems. The new method covers not only cases considered
in the two preceding chapters but also all other (unsolved) possible cases. Furthermore,
it can be easily programmed in computation software. Next, the question of stabilization
is studied in Chapter [7] for a subclass of fractional systems, making use of the stability
analysis results and the factorization approach.

To facilitate the understanding of the aforementioned chapters, some preliminaries are
given in Chapter [2] As the second class of systems will be studied in several chapters,
in order to avoid repetition, we present it in detail in Chapter [2 along with some basic
facts.

Finally, we give conclusions and perspectives in Chapter
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6 CHAPTER 2. BASIC RESULTS
2.1 Preliminaries

2.1.1 Stability

The references used for this subsection are (Curtain and Zwart, 1995 [Zhou et al., |1995)
for Hoo-stability, and (Desoer and Vidyasagar, |1975) for BIBO-stability.

Definition 2.1. For 1 < p < oo,
Ly[0,00) :={f :[0,00) — C| f is Lebesgue measurable and / |f(t)[Pdt < oo}
0

L[0,00) :={f:[0,00) — C | f is Lebesgue measurable and esssup |f(t)| < oco}.
t€[0,00)

Lemma 2.2. L,[0,00) for 1 <p < oo are Banach spaces under the norms

sl = ([ 1ror) "

Lemma 2.3. L3[0,00) is a Hilbert space under the inner product and the induced norm

)= /0 (gt
1 O)ll2 = VT T

Lemma 2.4. L[0,00) is a Banach space under the norm

1f(8)]oo := esssup |f(2)]-

te[0,00)
Definition 2.5. A linear continuous-time system defined by a linear operator
¥ :Lpl0,00) — Lpl0,00) forl<p<oo
is L,-stable if
151l < oo,

where ||X]|, is the norm of the operator and is defined by

s
ISl = sup{IZ]ly | £ € Ly0,oc)s Ifllp =1} =  sup  L=d Ll
0£feLyfo00) Ifllp

Roughly speaking, a system is Ls-stable if it provides an output signal of bounded energy
for an input signal of bounded energy.

Similarly, a system is Lso-stable if it provides a bounded output signal for a bounded
input signal. Hence, Loo-stability is also called BIBO-stability.

Let us denote

A= {h(t) —i—Zal |fEL1(R+)al€(CZ\aZ|<oot eR,,
=0

0:t0<t1<...}.
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Theorem 2.6. If the impulse response of a linear time-invariant system is in A, then
the system is Ly-stable for p € [1, 00].

Theorem 2.7. If a linear time-invariant system whose impulse response has vanishing
non-atomic singular part is Loo-stable, then its impulse response is in A.

Due to Theorems [2.6] and [2.7] if we only consider linear time-invariant systems whose
impulse response has vanishing non-atomic singular part, then a linear time-invariant
system is BIBO-stable if and only if its response impulse is in A, or its transfer function
is in A, which is the set of Laplace transforms of functions in A.

Definition 2.8 (Hardy spaces).

Hy(Cy) :={f:Cy — C| fis analytic in Cand sup/ |f (o + jw)|2dw < oo},
o>0

Hoo(Cy):={f:C4— C| fis analytic in C; and sup |f| < co}.
seCy

—0o0

Lemma 2.9. Hy(C.) is a Hilbert space under the inner product and the induced norm

)= o [ Ue)gtio)de,
HfH2 =V <faf>

Theorem 2.10 (Paley-Wiener theorem). L2[0,00) is isomorphic to Ha(Cy) under the
Laplace transform.

Lemma 2.11. Hy(C,) is a Banach space under the Ho-norm

[ flloc = sup [f(s)]

seCy

Lemma 2.12. For f € Hy(C4),

sup |f(s)| = esssup [f(jw)].
SE(C+ weR

Definition 2.13.

Loo(JR) = {f : jR 5 €| esssup| /()] < o0},

Theorem 2.14. If G € Hoo(C4) and 4 € Hy(Cy ), then G € Hy(Cy). Moreover, the
norm of the multiplication operator 3 : 4 — G, defined by
Gl

S]] == sup ——
0#acHy(Cy) |lTll2

satisfies

15l = [|Glloo-
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Lemma 2.15. Ho(Cy) is a closed subspace of Loo(jR).

Theorem 2.16. If G € Lo (jR), then G € Hoo(Cy) if and only if Gu € Ho(Cy.) for all
U € HQ((C+),

Hence, due to Theorems and if we only consider linear time-invariant systems
whose transfer function is in Lo (jR), then a linear time-invariant system is Lo-stable
if and only if its transfer function is in H,,. For this reason, Lo-stability is called
H-stability.

2.1.2 Stabilization

The references for this subsection are (Desoer et al.l [1980; Vidyasagar et al., [1982;
Vidyasagar, |1985)).
We denote S a commutative (integral) domain with identity and F the quotient field of
S, ie.

F:={a/b|a,beS,b+#0}.
Remark 2.17. It can be proved easily that F is a field if every nonzero element of S is
invertible, i.e. S is a commutative field, which is normally the case for real systems and
which is the case here since a/b is understood in the usual way, i.e. a/b = ab™!, in the
definition of F. Here is the simple proof.
If a/b € F with a # 0, then b/a € F, and (a/b)(b/a) = (b/a)(a/b) = (ab)/(ab) = 1. Thus
every x € F,x # 0is a unit in F. Therefore, F is a field.
For the more general case where S is not necessarily a field, a detailed construction of F

is given in Appendix A.2, (Vidyasagar} [1985)) with a more general meaning of a/b. In
this case, F is still a field.

Remark 2.18. A set of SISO stable linear systems is a commutative (integral) domain
with identity. In particular, parallel and cascade connections of stable systems are also
stable.

From now on, we consider S as a set of SISO stable linear systems. Then F consists of
stable and unstable systems.

However, the following basic results are also applicable for other purposes than stabilization
as long as the set of desired systems is a commutative (integral) domain with identity.

2.1.2.1 Internal stability
We consider the closed-loop system in Figure [2.1) where G of dimension n x m is the
plant and K of dimension m x n the controller.

The transfer matrix between [u1,us]? and [eq, e2]? is H(G, K), i.e.

o ]=renli]

€2 Uz
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UQ/L
Jr
U1 N el Y1 €2 Y2
+\f K T/ ¢

Figure 2.1 — Closed-loop system

which is given by

HG.K) = [ Iy — GIn+ KG)'K —G(I, + KG)™? ]

(I, + KG)'K (Im +KG)™!

(I, + GK)™1 —(I, + GK)~'G
K(I, +GK)™' I,-C(,+GK)"'G

since G(I,, + KG)™! = (I, + GK)™'G by basic matrix manipulations.

The transfer matrix between [u1, us]? and [y1,92]7 is W(G, K), i.e.

[n]=wemls]

Y2 U2
which is given by

we ) =| 5| e s - ) (2.)

[ K(I,+GK)™! —KG(I,+KG)™
| GK(I, + GK)™' Gy + KG)™!

Definition 2.19. The closed-loop system given as in Figure is internally stable if
H(G, K) € Stmtn)x(m+n),

Remark 2.20. Due to ([2.1)), the closed-loop system is internally stable if and only if
W(G, K) € Stmtm)x(m+n) “Hence, the closed-loop system is internally stable if and only
if all the input/output maps are bounded.

Lemma 2.21 (Vidyasagar, [1985). If W(G, K) € Sm+mx(m+n) then G € F**™ K €
J—_'an.

Proof. Let us denote

then W(G, K) can be rewritten as

W(G,K)=P(I+ FP)™},
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from which, we derive

P=W(Iyin— FW)!
Adj(Iyyin — FW)

=W
det(Im+n — FW) ’

where Adj(Insn — FW) is the adjoint of (I, — FW). Therefore, P € Fmtn)x(min)
and thus G € F"*™ K € F™mxn, O

The previous lemma shows that only systems with transfer function with entries in F can
be stabilized with the feedback scheme in Figure Hence, from now on we consider
plants with transfer function of this kind.

2.1.2.2 Coprime factorizations

Definition 2.22. N € §™"™ D € §™*™ are right coprime if there exist X € S™*" Y €
S™*™ guch that

XN+YD=1I,.

Definition 2.23. (N, D) with N € §"*™, D € §™*™ is a right factorization of G €
Frxmif det D # 0 and G = ND~ L.

Remark 2.24. Since S is commutative, every G € F™*™ admits right factorizations. The
element (i,j) of G can be written as g;; = p;;j/q;; where p;j,q;; € S. Let us denote
b=1I, Hj ¢ij # 0 and A the matrix whose elements are a;; = bp;j/q;; € S, we have
G = A(bL,)~ L

Definition 2.25. (N, D) with N € §"*™ D € §™*™ is a right coprime factorization
(r.cf) of G € F»*™ if (N, D) is a right factorization of G and N, D are right coprime.

Definition 2.26. N € S"*™ D € §"*" are left coprime if there exist X € S™*"Y €
S™*™ guch that

NX 4+ DY =1I,.
Remark 2.27. Similarly, we can construct left factorizations of every G € F™*™. Indeed,
G = (bI,) 1 A.

Definition 2.28.~(K7, D) with ]\~f~€ srxm, D € 8™ is a left factorization (Lc.f.) of
G e F*mif det D # 0 and G = D~!N.

Definition 2.29. (]\7, 5~) with N € 8™m D e 8™ g a left coprime factorization
(Lef) of G € F»*™ if (N, D) is a left factorization of G and N, D are left coprime.

2.1.2.3 Properties of coprime factorizations

The following properties give an idea of the common features of the definition of coprime-
ness with the usual definition of coprimeness, i.e. with common factors.
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Lemma 2.30. If N € 8" and D € 8™ ™ are right coprime, then every common
right divisor of N and D, i.e. U € S8™™ satisfying N = N'U and D = D'U with
N' e S»™m D' e S™*™ s a unit in S™*™.

The proof of the lemma makes use of the following result.

Lemma 2.31 (Vidyasagar, 1985, Fact B.1.7). U is a unit in S™*™ if and only if det U
is a unit in S.

Proof of Lemma[2.50. Since N and D are right coprime, then there exist X € S™ ™Y €
S™*M guch that XN +YD = I,,.

Since N = N'U and D = D'U, then XN'U +YD'U = I,, or (XN' +YD"\U = I,
thus U has a left-inverse in S™*". By taking the determinant of the both sides of the
equation, we have det(X N’ + Y D')det U = 1. Since S is a commutative ring, then det U
is a unit in S, hence U is a unit in S™*™., O

Lemma 2.32 (Desoer et al., 1980, Property 2). If (N, D) is an r.c.f. of G € F™*™
and (N1, D1) is a right (not necessarily coprime) factorization of G, then there exists
R e 8™*™ such that Ny = NR and Dy = DR.

Lemma 2.33. If (N,D) and (N1, D1) are r.c.f.’s of G € F™*™, then there exists a unit
U e 8™™ such that Ny = NU and D, = DU.

Proof. Due to Lemma there exists U € S™*™ such that Ny = NU, D; = DU. Since
(N1, Dq) is anr.c.f., then there exist X7 € S™*" Y] € §™*™ such that X1 N1+Y1 D1 = I,,,.
Then (X1N + Y1N)U = I,,,, and thus det U is a unit in S. Therefore, U is a unit in
Sme. D

Lemma 2.34. If (N, D) is an r.c.f. of G € F"*™, then (NU,DU) is an r.c.f. of G for
all unit U € §™*™m,

Proof. There exist X € S™*". Y € S™*™ such that XN +YD = I,,,, and U"'XNU +
U~YYDU = I,,,. Therefore, (NU, DU) is an r.c.f. of G. O
From Lemmas and the following statement is immediate.

Corollary 2.35 ((Vidyasagar et al., [1982, Section II) or (Vidyasagar, 1985, Lemma
8.1.1)). If (N, D) is an r.c.f. of G € F"™ ™, then all the r.c.f.’s of G are given by
(NU,DU) with U is a unit in S™*™.

“Thus, an r.c.f. of an element in F™*™ is unique to within a right associate if an r.c.f.
exists. " (Vidyasagar et al., 1982 Section II)
The properties for l.c.f.’s are similar and omitted here.

Lemma 2.36 (Corona theorem, (Vidyasagar, 1985, Lemma 8.1.12)). Suppose S is a
Banach algebra over C, with mazimal ideal space ). Suppose ' is a dense subset of €2,
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and suppose ai,--- ,an, € S. Then there exist x1,--- ,x, € S such that

n
E Ty = 1
=1

if and only if

n

:}2{,;|ai(w)| >0

where a; is the Gelfand transform of a;.

2.1.2.4 Existence of coprime factorizations

The following lemmas are the conditions for the existence of l.c.f.’s and/or r.c.f.’s of
G e Frm,

Lemma 2.37 ((Vidyasagar et al.l 1982 Lemma 2.1) or (Vidyasagar, 1985, Lemma 8.1.3)).
G € F™"™™ and (N, D) is a right factorization of G. Then G has an r.c.f. if and only if
the left ideal in S™*™ generated by N and D is a left principal ideal.

Definition 2.38. S is a Bézout domain if every finitely generated ideal in S is principal.

Lemma 2.39 (Vidyasagar et al., 1982, Corollary 2.3). If S is a Bézout domain, then all
finitely generated left ideals and right ideals in S™*™ are principal.

From Lemmas and the following result is immediate.

Corollary 2.40. If S is a Bézout domain, then every G € F™*™ has right and left
coprime factorizations.

Lemma 2.41. H is not a Bézout domain.

Remark 2.42. The above lemma shows that there exists G € HZ*™ that does not have
left or right or both coprime factorizations.

Definition 2.43 (Complemented matrix). Suppose A € S™*"™ with m < n; then we say

that A can be complemented if there exists a unit U € S"*" containing A as a submatrix.

Definition 2.44 (Unimodular row). A row [ay,...,a,] € S1*™ is a unimodular row if
ai,...,a, together generate S.

Definition 2.45 (Hermite ring). A ring S is Hermite if every unimodular row can be
complemented.

Lemma 2.46 (Vidyasagar, (1985, Theorem 8.1.23). The following three statements are
equivalent:

1. § is a Hermite ring.

2. If G € F™™ has an r.c.f., then it has an l.c.f.
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3. If G € F™™ has an l.c.f., then it has an r.c.f.
Lemma 2.47. FEvery Bézout domain is Hermite.

Lemma 2.48. H., is Hermite.

Proof. The result is immediate from (Vidyasagar, 1985, Lemma B.2.1). O

Theorem 2.49 (Vidyasagar et al., 1982, Theorem 2.1). Given S, suppose that there
exists a subring So of S and a subset T of Sp\O such that

1. T is closed under multiplication (i.e., x € Z, y € T implies that xy € T).

2. Every factor in Sy of an element of T belongs to I (i.e., v € Sy, y € Sp, 2y € L
implies that t € T, y € T).

3. Whenever x € Sy and y € Z, the ideal in Sy generated by x and y is principal.

Under these conditions the set of fractions G := {n/d,n € So,d € I} is a subring of F.
Moreover, for every n,m, every element of G"*™ has both an r.c.f. and an l.c.f.

Theorem 2.50 (Smith} (1989). If G € F™"*™ with S = Hy, then if G is stabilizable, then
G has both l.c.f.’s and r.c.f.’s.

2.1.2.5 Parametrization of stabilizing controllers

Lemma 2.51 (Vidyasagar et al 1982, Lemma 3.1). Suppose G € C}*™, K € C/"*",
where C*™ and C"*™ denote the sets of all G € F™™ that have an r.c.f. and an l.c.f.
respectively. Let (Np, D,) be any r.c.f. of G, (Ng, D) any l.c.f. of K. Under these
conditions the pair (G, K) is stable if and only if

A= ]_N)kDp + NkNp

18 @ unit in SMX™,

Theorem 2.52 (Vidyasagar, 1985, Theorem 8.3.5). Suppose G € F"*™ has an r.c.f.
(N, D) and an l.c.f. (N, D). Select X € S™*", Y € S™™, X € ™", Y € 8™ such
that XN +YD = I, NX—{—DY-I Then

S(G)={(Y — RN)"YX + RD) : R € 8™" and det(Y — RN) # 0}
= {(X +DR)(Y = NR)™': Re 8™ and det(Y — NR) # 0}.

Remark 2.53. e (Y — RN) and (X 4+ RD) are left coprime. Indeed, (Y — RN)D +
(X + RD)N = I,,, since XN +YD = I,,, and DN = ND.
o (X—|—D~R~) and (~Y—NR) are right coprime. Indeed, N(X+DR)+D(Y—-NR) =1,
since NX + DY =1, and DN = ND.

e If det Y # 0, then a stabilizing controller is given by K = Y ~!X which corresponds
to R=0.

o If det Y = 0, then a stabilizing controller is given by K = X }7*1, which corresponds
to R=0.



14 CHAPTER 2. BASIC RESULTS

2.1.3 Fractional calculus

Fractional derivatives and integrals are generalizations of classical derivatives and integrals
(of integer order) to arbitrary real order. Hence, more precisely, they should be called
derivatives and integrals to arbitrary real order.

There exist numerous definitions of fractional differintegrals, which is the short name for
fractional derivatives and integrals. We introduce here three definitions which are widely
used.

Definition 2.54. The Griinwald-Letnikov differintegral is given by

h
GLDEf(t) == lim h™~ “ () (t — jh).

The Riemann-Liouville differintegral is given by

RL _ 1 oar o f(r)
DS ()= I'(n—p) dt”/a (t — 7)p—n+l dr

where n — 1 < u < n and I'(+) is the Gamma function.

The Caputo differintegral is given by
1 L)
C —
JDyf(t) = / dr
/) 1) Ja ( -

where n — 1 < u < n.

While the first two definitions are equivalent (Oldham and Spanier} [1974)), the Caputo
definition exhibits some differences (Podlubny}, {1998). One of the differences is the Laplace
transform of the fractional differintegrals.

Theorem 2.55. The Laplace transform of the Riemann-Liouville and the Caputo differ-
integrals are respectively given by

|
—

n

LEGDLF®) = s"L(F(8) = Y sF Dl p )|

T T
=]

LGDEF) = $“L((1) = > 1 GDEf(1)]

t=0

e
Il
o

wheren —1 < p < n.

Before introducing some useful Laplace transform pairs, let us define the Mittag-Lefler
function in two parameters (also called the generalized Mittag-Leffler function).

Definition 2.56. The Mittag-Leffler function in two parameters is defined as

o0 k

z
E, . (z):= - , .
v (2) kgo Tk + ) v>0,vr>0
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Now, for k € Z,, we have the following Laplace transforms

klst—v

/J'vy(

for R(s) > |a|'/*. Then we obtain the following inverse Laplace transforms

1 1
o1 k+1)—1 (ke

n
sh— )kl 2l (ath).

2.2 Fractional systems

For the rest of the thesis, we consider systems which are linear and time-invariant.

2.2.1 System descriptions

In the time domain, a fractional linear time-invariant system can be described by a
fractional differential equation as follows (Podlubny, 1998])

an D y(t) + an—1 D" y(t) + -+ - + agD*y(t) = me’B’"u(t) + bm_lDﬁm‘lu(t) + e
+ boDﬁou(t)

where D* is the Riemann-Liouville or Caputo derivative with the lower limit a = 0;
ar € R, ap >0for k=0,...,n; 0 € R, 5; >0 for I =0,...,m; y(t) and u(t) are the
output and input signals respectively.

In the frequency domain, the above system is described by the following transfer function

Y(S) . bmsﬁm _|_ bmilsﬁm—l _|_ . _|_ bO
U(s)  aps® +ap_18—1+---+ag

In the particular case of commensurate orders, G(s) is of the form

M b(st)k
G(s) = k=17 7
) Sl ar(st)k

2.2.2 Examples

Linear fractional models have been used in a lot of domains and many of them were
obtained through identification methods. They were showed to fit measured data better
than their integer counterparts in requiring less parameters to identify thus reducing
computation costs.

In this subsection, we mention some examples of real systems described by linear fractional
models. Although the examples will be classified in different application domains, they
seem to share some common characteristics which are at the origin of the emergence of
fractional models, for instance viscoelasticity, diffusion, and fractal.
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2.2.2.1 Circuit

In (Westerlund and Ekstam, 1994), the authors proposed a fractional model for capacitors
due to the observation that real capacitors behave according to Curie’s empirical law

. Uo
l(t) - hite

where Uy is the constant voltage applied at ¢t = 0, h; and « are constants, and a € (0, 1).
The fractional capacitor model is

1

Z(s):@

where Z(s) is the impedance of the capacitor and C' is a constant which is lightly different
from the usually defined capacitance. This model was showed to be more suitable than
integer-order models for applications concerning broad frequency bands and high energy
losses.

Recently, attempts have been made for fabricating fractional capacitors whose fractional
order can be tuned (Cisse Haba et al., 2008; Elshurafa et al., 2013} |Sivarama Krishna,
et al. 2011).

2.2.2.2 Non-laminated electromagnetic suspension systems

In most of electromagnetic suspension systems, laminated ferromagnetic materials are
used to make stators and flotors in order to reduce the negative effects of eddy currents.
However, non-laminated material is preferred in several applications, for example thrust
magnetic bearings in rotating machinery, and thus the effects of eddy currents cannot be
neglected.

In (Zhu et al.; 2005) and (Zhu and Knospe, 2010), non-laminated electromagnetic suspen-
sion systems are first modeled based on physical laws and the obtained transfer functions
involves complex functions (hyperbolic tangent and modified Bessel functions). In order
to simplify the model for control design purpose, the magnetic reluctance of the system is
approximated (Zhu et al., 2005 and has the form

R(s) = R® + ¢/,

where RY is the static reluctance, c is the eddy current coefficient of the stator and the
flotor’s ferromagnetic material, and s is the Laplace variable.

For systems in current-mode operation with time-varying displacement (Zhu and Knospe,
2010), the transfer function from perturbation current to flotor displacement is

X(s) K;RVH ()

I,(s) R(s)— K,RVH(s)

where in the case of a rigid flotor with no mechanical contact

1

ms2

H(s) =
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with m being the flotor mass. Then the transfer function is

X(p) A

m
Ip(s) 758912 + 52 — %’

which is demonstrated to have one real unstable pole (Knospe and Zhu, 2011)).

2.2.2.3 Biomedicine and biology

In the field of bioimpedance, electrochemical behaviors of biological materials are modeled
using measured impedances of materials over wide ranges of frequencies. A widely used
empirical model is the Cole impedance model which is given by

Ry

where R, Ry, C1, and «; are all positive and oy € (0,1). Various applications are
reported in the survey paper (Freeborn, [2013)), including organ tissues, human blood,
skull, teeth, fruits and vegetables.

Other modified versions of the Cole model are also used to provide better fittings with
experimental data in some cases (Freeborn, [2013]). Among them are some applications
which potentially require control actions:

e wood tissue whose model is given by

1 n Ry
sa1(Cy 1+ SC“QRQC'Q7

Z(s) =

e clectrode/tissue interface (in pacemakers for example)

1 1

Z(s) = R —,
(s)=R +5a101+5a202

e human respiratory system

1
A =R L4+ ——.
(s) + s*L + FC

2.2.3 Stability analysis

Theorem 2.57 (Matignon, [1998)). A commensurate order system described by a rational
transfer function
Q(s7)

P(s9)
where P and Q are two coprime polynomials, o € Ry, o € (0,1) is BIBO-stable if and
only if

G(s) = for R(s) >a >0

|arg(0)| > a g,

for all o € C such that P(c) = 0.
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Theorem 2.58 (Bonnet and Partington, 2000). Let G be a strictly proper transfer
function given by

b 8Pm 4 by 1851 - 4 by ~ Q(s)
8% + @y 1891 +---+ag  P(s)

G(s) =
where ap €R fork=0,....,n,a,#0,0=ay< a1 < - <ay, b €R forl=0,...,m,

0=08p < fB1 << Bm<an, PandQ have no common zeros. Then G is BIBO-stable
if and only if G has no poles in the closed right half-plane.

2.3 Delay systems

2.3.1 System descriptions

A linear time-delay system can be described by a transfer function of the form

t(s) + o0t tils)e e

G(s) =
=) P(8) + Sy ai(s)eows

where
et tyforl=1,...,M, pand g for k=1,..., N are real polynomials;
e degt, degt; < degp in order to have a proper transfer function;
e ap, /i >0fork=1,....Nandl=1,..., M.

According to the degrees of p and ¢, k = 1,..., NV, the system can be of one of three
types:
o If degp > degqr, k=1,..., N, then the system is of retarded type.

o Ifdegp >degqr, k=1,...,N, and degp = deg gy, for at least one value of k, then
the system is of neutral type.

o [f degp < deg g for at least one value of k, then the system is of advanced type.

2.3.2 Examples

There have been a lot of applications modeled by delay systems of retarded and neutral
types. Advanced type systems are rarely used because of their stability properties that
we will see later. Here we briefly present some linear neutral systems since they will be
one of the objects considered in this thesis.

Linear neutral delay systems are encountered as models of open-loop systems or are
obtained in closed-loop systems.

An example of an open-loop system is a lossless transmission line. This example was
mentioned in many references, for example (Brayton) [1967; |Hale|, 1993; |Kolmanovskii and
Myshkis|, 1992)), and served as a typical example of neutral delay systems.
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An example of neutral systems as models of closed-loop systems is presented in (Niculescu
and Brogliatol [1999)). The authors described a one-degree-of-freedom prismatic manipula-
tor contacts a one-degree-of-freedom rigid environment. The interaction force is controlled
by a PI controller with measurement delay. The closed-loop system is then described by
a functional differential equation of neutral type.

2.3.3 Stability analysis

The classification of linear delay systems into retarded, neutral and advanced types is
due to their distinct stability properties (Bellman and Cooke, [1963). For systems with
commensurate delays, the stability is characterized as follows:

e A retarded system has at most finitely many poles in the closed right half-plane and
for poles of large modulus Re(s) — —oo. Therefore, retarded systems are BIBO-
stable if and only if they have no poles in the closed right half-plane. Furthermore,
BIBO-stability is equivalent to Ho-stability.

e A neutral system has poles approaching vertical lines. If all these lines are in the
open left half-plane, then the system has at most finitely many unstable poles and
exhibits the same stability properties as retarded systems. Now, if there is one
asymptotic line in the open right half-plane, the system has infinitely many unstable
poles and thus is unstable. The last situation where the imaginary axis is one of
the asymptotic lines is the most delicate and will partly considered in this thesis.

e An advanced system has infinitely many unstable poles. In addition, for the poles
of large modulus, Re(s) — +o00. The system is then unstable.

In the case of incommensurate delays, while the stability characteristics of retarded and
advanced systems are the same as above, neutral systems now have poles located in
vertical strips.

2.4 Fractional systems with delays

2.4.1 System descriptions

A linear fractional system with delays can be described by a transfer function of the form

t(s) + Dm tu(s)e P
p(s) + Sny qr(s)e—ons

G(s) =

where

o t,t;forl=1,...,M, pand g, for k =1,..., N are real quasi-polynomials involving
powers of s of fractional exponent;

e degt, degt; < degp in order to have a proper transfer function;

e ap, /i >0fork=1,...,.Nandl=1,..., M.
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The classification of these systems into three categories (retarded, neutral, and advanced)
is similar to that of classical delay systems.

2.4.2 Stability analysis

For linear fractional systems with commensurate delays and with commensurate fractional
orders, the stability characterized in the frequency domain is similar to that of classical
delay systems (Hotzel, 1998aj | Bonnet and Partington, 2002|). We present some basic facts
here for further use in the next chapters.

A class of (fractional) neutral time-delay systems with commensurate orders and com-
mensurate delays is described by transfer function of the form

G(s) = () , (2.2)

where
e 7 > () is the delay,
e ¢, p, and g for all k € Ny are real polynomials in s#, 0 < pp <1,
e —7 < arg(s) < 7 in the case where 0 < p < 1 in order to have a single value of s,

e degp > degt, degp > deggqy for all £ € Ny, and degp = degqx at least for one
k € Ny in order to deal with proper neutral systems.

Here, the degree of a (quasi-)polynomial refers to the degree in s*.

Since deg p > deg g for all k € Ny, then for each k£ we obtain

:04194‘74—874-874—87-1-0(8_5“) as |s| — oc. (2.3)

The coefficient of the highest degree term of the denominator of the transfer function
(2.2) can be written as a multiple of the following polynomial in z

N
calz) =1+ ayz", (2.4)
k=1

where z = e7%7. It is called formal polynomial.

Each neutral chain of poles of G is associated to each root r of (2.4]) and is first approxi-
mated by

SpT = An + 0(1), (2.5)
where

An = —In(r) + 210, n€Z, (2.6)
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as n — oo (Bellman and Cooke, (1963} Hotzel, 1998a; Fioravanti et al., 2010).

As a consequence, the neutral chain of poles asymptotically approaches the vertical
line

R(s) = — . (2.7)

If the vertical line is on the right or on the left of the imaginary axis, which happens
when |r| <1 or |r| > 1, then poles asymptotic to this vertical line are respectively on the
right or on the left of the imaginary axis, and then their effects on H.-stability which
only depends on their location about the imaginary axis are easily concluded (Bonnet
and Partington, 2007; Bonnet et al., 2011]).

The next lemma presents properties of the formal polynomial when it has multiple
roots.

Lemma 2.59. Let r be a root of multiplicity m > 1 of f(z) =1+ Zivzl az”, where
ai € C. Then Z,]gv:l Elagr¥ =0 forl=1,...,m—1 and Zgil Emoyrk 0.

Proof. Since z = r is a root of multiplicity m of f(z) = 1 + Z]kvzl a2, then it is
not difficult to see that z = r is also a root of multiplicity m of fij(z) = 2'f(z) with
l=1,...,m—1.

For [ = 1, taking the derivative of fi(z) = z + Z]kV:1 a2t we obtain
N N
fi(z) =1+ Z ot + Z ko2~
k=1 k=1

Since f{(r) =0 and 1+ Zszl a,r® =0, then Zi\[:1 kogr* = 0.
Now, assume that Zszl Eagr®* =0for 1 <1<awherel <a<m-—1.
For | = a + 1, we have

N
@ = @+ DYk + 1)k +2) ... (k+a+ Dagzh.
k=1

It is not difficult to see that féf{l)(r) after being expanded contains the term (a + 1)!(1 +

Z]kvz1 o), the terms chvzl Kloyr® for 1 <1 < a, which are zeros, and Zi\fd kot lagrk.

Since fé(_ﬁl)(r) =0, we derive Y5 k%t lagrk = 0.

For [ = m, that is a = m — 1, since f,}'(r) # 0, then ch\;l Emagrk # 0. O
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3.1 Introduction

The controller synthesis of fractional systems has been of great interest in recent years.
However, only few studies have dealt with fractional systems with delays.

Most of the available results concerned SISO systems (Bonnet and Partington) 2002,
2007; Hamamci, 2007; |Ozbay et al.,[2012). In the framework of fractional representation
approach to synthesis problems (Vidyasagar, 1985), the works in (Bonnet and Partington,
2002, [2007) derive coprime factorizations of the transfer function of the system and the
corresponding Bézout factors. Recently, PID controllers have been designed for a class of
fractional time delay systems with only one unstable pole (Ozbay et al., 2012).

For MIMO systems, (Curtain et al., [1996)) derived coprime factorizations for a large class
of infinite-dimensional systems. The factorizations were expressed in terms of operators
used in a pseudo state-space representation of the systems.

In this work, we consider MISO fractional systems with delays in inputs or output. The
MISO structure, which is a particular and simple MIMO case, might be encountered in
communication networks, for example (Quet et al. 2002). With this structure, a class of
classical (integer-order) systems with multiple transmission delays was studied in (Bonnet
and Partington, [2004) and coprime factorizations and associated Bézout factors over Ho,
were derived. Now for MISO fractional systems with delays, we would like to find explicit
expressions of these factors also regarding H., which allow us an immediate application
and which benefit from the fact that fractional transfer functions are often obtained by
means of frequency identification, for examples (Sabatier et al., [2006; [Vinagre et al.,
1998)). The determination of these factors is the first step for determining the set of all
stabilizing controllers.

The chapter is organized as follows. In Section the class of systems of interest
is presented. The results are stated in Sections [3.3] and 3.4l We gives in Section
explicit expressions of left coprime factorizations and associated Bézout factors over
H, of the transfer function of the systems under study. Right coprime factorizations
and right Bézout factors for several classes of systems are given in Section Some
examples are provided to illustrate the results. Finally, Section [3.5] gives conclusions and
perspectives.

3.2 A class of MISO fractional time-delay systems

We consider systems described by transfer matrices of the form
G(s) = [e ™Ry (s2),..., e*shan(sa)] : (3.1)

where
e 0<hpeRfor k=1,...,n are the delays;

e acR O<a<l;
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o Rp(s*) = qx(sY)/pr(s*), where pr(s®) and gx(s) are polynomials of integer degree
in s% pr(s®) and gx(s*) have no common roots, and degpy(s®) > deg qi(s®) for
k=1,...,n;

e dj is the degree in s of pi(s®);

e s is in the principle branch C\R_, that is arg(s) € (—m, ), in order to guarantee a
unique value of the transfer function involving s with a € (0, 1).

We refer to poles (resp. roots) in the closed right half-plane C as unstable poles (resp.
roots).

The following notations will be of intense use later.

Denote
o p(s%) the lowest common denominator of Ry(s*) for k =1,...,n;
e d the degree in s* of p(s%).

Then rational transfer functions Ry (s*) can be rewritten as

Y

where gx(s®) are polynomials in s®.
We can decompose
N N’
p(s®) = (s4)™ (H(Sa - bi)””) [IG™=ep™ |,
i=1
where
o b cD:={0ecC\{0}| —ma/2 < Arg(o) < ma/2},
e ¢; € C\{DU{0}},

o mg, mj, mj; € Zy fori=1,...,Nandj=1,...,N".

Hence s; = bi /* are the non-zero unstable roots in s of p(s%).
Similarly, we write
N N’
Prls®) = (5™ (H(w - bi)mm> [T e |
i1 j=1
where mog, mg, mly € Zy fori=1,...,N,j=1,...,N and k=1,...,n. It is obvious
!/

that mor < mg, mi < m;, and m;k <m/

3.3 Left coprime factorizations and Bézout factors

In this section, we present left coprime factorizations and Bézout factors for the transfer
matrix ((3.1)).
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3.3.1 Left coprime factorizations

Due to the dimension of the transfer matrix, finding a left coprime factorization is
straightforward.

Proposition 3.1. Let G(s) be given by . Then

oo p(s?) YIRS |

g and N(s) e+ 1)l [efshlm(sa), e g (59 (3.2)

1s a left coprime factorization over Hy of G.

Proof. It is obvious that M(s)_lﬁ(s) = G(s).

We see that M(s) € He. Also, each component of N(s) is in Ha, and then N(s) €
M(H..).

For all roots o of p, there exists at least one 1 < k < n such that gx(0) # 0. Thus
infsec, (3 p_q |Ni| + [M]) > 0 which ensures that (M, N) is a left coprime factorization
over Hy, of G. L]

3.3.2 Bézout factors

Our objective in this subsection is to propose left Bézout factors corresponding to the
left factorization obtained above. It is interesting to note that besides being elements to
construct the set of stabilizing controllers using Youla-Kucera parametrization, a pair
of left Bézout factors X, Y immediately provides us a stabilizing controller C' = yX!
(Quadrat, 20064, Corollary 5).

For the sake of clarity, we consider several cases of systems (3.1) beginning with simple
cases before tackling the general one.

3.3.2.1 Systems with one unstable pole for each element of the transfer
matrix

The first proposition gives Bézout factors for systems involving at most one unstable pole
for each element of the transfer matrix.

Proposition 3.2. Let G(s) be given by with

Ry (s%) = aak with ag, o, €R for k=1,..., n. (3.3)

s¢ — oy,

Then Bézout factors corresponding to the left coprime factorization are given by

A G D — S0 e g (s*)Ys
p(s%)

V(s) = [V T

)
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where ?k fork=1,... n are constant and satisfy
n ~
Z e g (s*)Yy = (s* 4+ 1)4 (3.4)
k=1

at s = bY* for all b € DU{0}.

In the case where all oy, are positive (o, > 0) and distinct, the unique solution of ?k 18
given by

/«
e "B (o, + 1)"

Y, = 3.5
ak(o%) (3:5)
In the case where o1 = ... =0, =0 >0, then ?k satisfy the single equation
n L _
Z e’ /ahkakYk =0+ 1. (3.6)
k=1

Proof. From the left Bézout identity, we obtain

(s +1)¢ — > orq e_Shqu(so‘)}N/k(s).

X(s)=M Y(1-NY)= D)

- - - T -
If we choose Y(s) = [Yl(s), . ,Yn(s)} € M(H) such that the numerator of X(s)

vanishes at s = b/ for all b € DU {0}, then X (s) is analytic in Cy since s = bY/* are
also the roots of the denominator of X (s). In this particular case, it suffices to choose
constants Y7, ...,Y, such that

n
> e gy (s™) Yy = (5% + 1)
=1

at s = b/ for all b € DU {0} to have X(s) € Hao.
For all b € DU {0}, we see that gx(b) = 0 if b # 0. Then it remains to solve
Z e*bl/ahqu(b)i}k — (b+ 1)d,
k:1<k<n,orp=b

which gives infinitely many solutions except the case where all o for k = 1,...,n are
positive and distinct.

Indeed, in that case, d = n and the number of equations is equal to the number of
unknowns, which is n. We deduce then the unique solution ({3.5)).

The case where 0y = ... = 0, = ¢ > 0 corresponds to d = 1. Trivially we have
p(s%) = s* — o and gx(s*) = ax. Thus we have to solve

n

_ 1/ =~
S e Yy =0+ 1,
k=1

which gives a unique solution if n = 1 and infinitely many solutions if n > 1. O
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We illustrate the proposition by the next example.

Example 3.1.

It is easy to see that p(y/s) = /s(v/s — 1), ¢1(v/s) = /s — 1, and g2(v/s) = v/s. Then we

obtain

M(S) \/§<\/g — 1) N(S) _ |:€_S(\/g — 1) e—s\/g

IR (Vs + 12 (Vs + 12

This system corresponds to the case of unstable and distinct poles. So we obtain

Y (s) = [—1,4¢]” X (s —(\/§+1)2+6_S(\/§_1)_461_8\/§
Y(s)=[-14e , X(s)= N .

3.3.2.2 Systems with constraints on the multiplicity of the pole at zero

The next proposition considers a class of systems which is already general except that the
multiplicity of the zero pole is restricted. This allows us to obtain Bézout factors that
only contain commensurate powers of s.

Proposition 3.3. Let G(s) be given by and suppose that the multiplicity of the root
at zero of p(s®) wverifies the condition moaw < 1. Then Bézout factors corresponding to the
left coprime factorization are given by

v (5% + D%u(s®) — 35y e~ raqn(s™)ui(s®)

X(s) = , 3.7
) P () 7
o (07 T
O I G UGl iy (3.8)
u(s®) u(s®)
where u(s%) is a polynomial in s* of degree greater or equal to d whose zeros are stable,
and ug(s®) for k=1,...,n are polynomials in s* of degree moy + Zfil my Satisfying
(% D%u(s®) = Y e (s n(s®) ~amso 8™, (3.9)
k=1
and
n O]
(s + Du(s) = D7 e Mha(s™)un(s®)| =0 (3.10)
k=1

atS:bl-l/aforOglgmi—l.

Proof. Tt is obvious that Y (s) € M(Ha).

The condition (3.9) is satisfied if in the development of the denominator of X (s) around
zero the powers of s whose order is smaller than mga are canceled. Then this fact gives
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mg equations of unknown coefficients of py(s®). The second condition (3.10]) introduces

Zfi L m; equations. Hence in total, there are mg + ;" m; equations of Y ,_; mor +
N N N

Doy sy My, + nounknowns. As mg 4+ D il My <Y o Mok + D gy D ieq Mik + T,

the system of equations admits solutions.

The boundedness of X (s) at zero is assured by (3.9). Then following the same arguments
as in the proof of the previous proposition, we can conclude that X (s) € He.

The left Bézout identity is satisfied. O

Remark 3.4. When moa > 1, for the condition (3.9), the development of e~*" around
zero will contain powers of s, which might not be multiples of s*. This imposes that ug
might no longer be polynomials in s.

The following example illustrates how to apply the proposition.
Example 3.2.

6_8

60 =]

It is obvious that p(s'/3) = s(s'/3 — 1) with degree d = 4 in s'/3. It has two unstable
roots which are by = 0 of multiplicity mg = 3 and b; = 1 of multiplicity m; = 1. We have
then q1(s'/3) = s, and go(s'/3) = /3 — 1.

From Proposition [3.1], we obtain a left coprime factorization as follows

s(st/?—1) < 1

M(s) = AT NO=

m [86_8, (81/3 — 1)6_5 .

From Proposition we can choose u(s'/3) = (s'/3 + 1)*, which has no unstable roots.

Also, ju1(s'/3) and ps(s'/3) have the form

p1(s3) = o1 + Br1s'/3,
p12(5'/%) = Bog + 1253 + Bags?? + Baos.

As s — 0, the numerator of X (s) is developed as
(31/3 + 1)4u(81/3) — e_SQ1(Sl/3)u1(sl/3) — 6_5q2(31/3)u2(31/3)
=1+ Boz + (8 — Boz + B12)s"? + (28 — Bra + Ba2)s*/* + O(s).

The first condition of Proposition [3.3] is satisfied if and only the powers of s whose
exponent is smaller than moa vanish, thus giving Bo2 = —1, 12 = —9, and [e2 = —37.

From the second condition, at the non-zero unstable pole s = 1 of X (s), we must have
(5" 4 1) (%) — e a5V )i (579) — e Pan(sV)pun(5) =0

This gives Bp1 + 11 = 256e. One possible solution is 8y; = 256¢, and 317 = 0.
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There is no constraint on f3s, then we can choose 835 = 0.

In conclusion, we obtain the Bézout factors as follows

Fls) = 256e  —1—9s'/3 —375%/3
o (s1/3 4 1)4’ (s1/3 4 1)4 ’
T(s) = (s1/3 4+ 1)8 — el 792565 — e~5(s1/3 — 1)(—1 — 95/ — 375%/3)

s(s1/3 —1)(s1/3 +1)4

3.3.2.3 General case

Now we will tackle the problem of finding Bézout factors of the system (3.1]) in its most
general configuration.

Proposition 3.5. Let G(s) be given by . Then Bézout factors corresponding to the
left coprime factorization are given by

5 (5% + Dfu(s®) — 35y e~ qr(s*)pn(s)

X(s) = S , (3.11)
o [ ()]
Y(S)_[u(sa)’“"u(sa)} , (3.12)

where u(s®) is a polynomial in s of degree greater or equal to d whose zeros are stable,
and ug(s) for k=1,...,n have the following form

N
mo+3;1 g Mk

pr(s) = Z Baks™ + Z Bliap(s*) (3.13)
A =a+ ba < mpa J=mo
a,beZy

and verify two conditions

(i) as s =0
n
(5" + 1)%u(s?) =) e Sthk(Sa)Nk(s)] ~ 80,
k=1
(ii) for each non-zero unstable root s = bi/a, i=1,...,N, of p(s%)

n

)
(5% 4+ 1)%u(s®) — Z e_Shqu(sa)uk(s)] =0,

k=1

where 0 <1 <m; — 1.

Proof. It is casy to verify that X (s) and Y (s) satisfy the left Bézout identity.
The degree in s of py(s) is (mo + sz\il mig)o < (mo+ sz\i1 m;)a < da. With the choice

of u(s®), we see that Y(s) € M(H).
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Before proving X (s) € Ha,, we discuss the existence of ju,(s) satisfying the two conditions.
The first condition implies that the numerator of X (s) has the same or greater order
than the denominator near s = 0. This in turn implies that in the development of the
numerator near zero, all powers of s whose exponent is smaller than mga are canceled.
Due to the presence of e %" and ur(s), these powers are N with A = a + ba < moa,
a, b € Z,. This fact gives a number of equations equal to the number of terms s*. In
addition, the second condition gives ZZ]\; 1 m; equations.

On the other hand, the number of coefficients associated to terms s* in py(s) for k =
1,...,nis greater than the number of terms s*. Also, the number of coefficients associated
to terms (s*)7,j > mq is Sp_; SN mir +n > SN m;. Therefore the number of
unknowns is greater than the number of equations. The system of equations thus admits
a solution.

We see that X (s) is bounded at co in C.. Moreover, by interpolating the non-zero unstable
poles of X(s), the second condition assures that X (s) is analytic in C,. The boundedness
of the function at s = 0 is satisfied by the first condition. Then X(s) € H. O

Remark 3.6. In the case where a = 1/m with m € Z\{0, 1}, we see that A are multiples
of a. Then we obtain an elegant formula of pj which only contains the terms in s*.

Example 3.3.
e~ S 6725

(s1/2 = 1)2 s3/2

G(s) =

Obviously, p(s'/?) = s3/2(s'/2 — 1)? of degree d = 5 in s/2. Its unstable roots are by = 0
of multiplicity mg = 3 and b; = 1 of multiplicity m; = 2. We have q;(s'/?) = s3/2, and
() = (512~ 17

The left coprime factorization obtained from Proposition [3.1] is

M 83/2(81/2—1)2 - 1

(5) = AT N(s) = m[e‘Ssi*/?,e—?s(sl/? —1)%.

From Proposition , we can choose u(s'/?) = (s'/2 +1)°, which has no unstable roots.

The powers of s whose exponent is a linear combination of 1 and o = 0.5 and is smaller
than moa are 1,52, 5. Then j;(s) and ps(s) have the form

p1(8) = Bot + B oy s + Buis + Bajays™? + Bars® + Bis oy s,
p2(s) = Boz2 + 5(1/2)251/2 + B12s + »3(3/2)253/2-

As s — 0, the numerator of X (s) is developed as

(52 4+ 1)%u(s'?) — e *qu (s ) pr(s) — e > qa(s"/?)pa(s)
—1— /802 + (10 + 2/602 — 5(1/2)2)81/2 + (45 + 602 + 2/6(1/2)2 - 612)8 + 0(83/2).

The first condition of Proposition [3.7] is satisfied if and only if the powers whose exponent
is smaller than moa = 3/2 vanish, thus giving fo2 = 1, B(1/2)2 = 12, and 12 = 70.
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From the second condition, we have two equations, that is

0]
(12 + 1)°u(s"?) — e Squ(s"*)pa(s) — e 2 qa(s*)ua(s)| =0

at s =b; =1 for [ =0,1. This gives

1024 — e (Bor + Byt + B + Bayy1 + Bai + Bsjan) =0,
2560 — e~ (0.5801 + B(1/2)1 + 1.5811 + 2B(3/2)1 + 2.5621 + 3B52)1) = 0.

One possible solution is So1 = —3072e¢, B(1/2)1 = 4096e, and f11 = Bz2)1 = P21 =

B(s/2)1 = 0.

Therefore, we have
X(S) _ (81/2 + 1)10 _ 6_883/2;L1(S) _ 6—25(81/2 _ 1)2N2(5)
$3/2(s1/2 — 1)2(s1/2 4 1)5 ’

¥(s) = (81;;21 (j)1)5’ (3172‘2 (j)1)5 ’

where j1(s) = —3072¢ 4 4096es'/2, and pg(s) = 1 + 125'/2 4 70s.

3.3.2.4 Minimal form of Bézout factors in the general case

We have seen in Examples and [3.3] that we have infinite choices for some coefficients
of pug for k =1,...,n and so far we have chosen the values for these coefficients such that
the orders of uy are smallest.

In the next proposition, we present Bézout factors of G(s) in the general case with py
for kK = 1,...,n such that the number of coefficients and the order of u; are minimal.
The proof justifies in details that a unique solution exists for that form of u; and of
course solutions exist for the non-minimal forms of py presented in Propositions [3.3] and
3.0l

Before stating the proposition, let us denote

ki :=min{k | k€ {1,...,n},my =m;} fori=0,..., N, (3.14)
fr = Z m; fork=1,...,n,
iE{l,...,N},k}iZkJ
L(moa) :={z €eR |z =a+ba <moa,a,be Zy}. (3.15)

Proposition 3.7. Let G(s) be given by . Then Bézout factors corresponding to the
left coprime factorization are given by
X(s) = (5% + Dfu(s®) — 35y e qr(s)pun(s)
p(s*)u(s*) ’
T

<o [rals) fin(S)
Y(s) = a5 )|
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where u(s%) is a polynomial in s of degree greater or equal to d whose zeros are stable,
and ug(s) for k=1,...,n have the following form

mo+fr—1

Z B)\k‘s + Z ﬁ(]a ( a)j if k= ko,
AEL(moa) Jj=mo
pi(s) =
=1
Z B]a ( ka 7é kO:

and satisfy

= O(s™) (3.16)

(s* +1)7 Ze Shie g (5%) e (5)

k=1

as s — 0 and

n 0)
(s* + 1)4 Ze he e (s)] =0, (3.17)

k=1

1/a

for each non-zero unstable root s = b, i =1,...,N, of p(s*) and for 0 <1 <m; — 1.

Remark 3.8. If fr, =0, then
> Baws™ i k= ko,

,U,k(s) = /\E,C(mooc)
0 if k £ ko.

Proof. Tt is easy to verify that X (s) and }7(5) satisfy the left Bézout identity.
The degree of 11 (s) is smaller than or equal to the degree of u(s®), and so Y (s) € M(Hyo).

We see that X (s) is bounded at oo in Cy. Moreover, due to 1) the numerator of
X (s) has the same non-zero unstable roots as the denominator, which assures that X (s)
is analytic in C;. The boundedness of the function at s = 0 is satisfied by (3.16). Then
X(s) € Hy

Now it remains to prove the existence of py(s) satisfying the two conditions (3.16) and
(13.17)).

First, we consider the condition (3.16]) on the poles at zero. If the system has no zero
pole, then the condition is satisfied. Otherwise, the numerator of X (s) can be developed
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around zero as follows

n

(5" + 1)%u(s™) = Y e (™) (s)
k=1

= ag+a15% 4 ... 4 U180V L O(sM0%) = (1 — shy + ... + O(s™0Y))
k=1

X (Do + D1ks® + -+ bmg—1ps ™ T H O™ [ YD B + O(s™%)

AEL(Mo)
n
=ag+a1s*+...+ amo_ls(mo’l)a — Z Z ’Y,\kS’\ Z BAkSA
k=1 \XeL(moa) AEL(Moa)

+ O(s™).

The condition imposes that all powers of s whose order is smaller than mga are eliminated.
Let us denote the elements of L(moa) by Aj, j =0,...,N” —1 with N” = card(L(moa))
and assume that 0 = A\g < ... < Ay»_1, then the condition is equivalent to the following
matrix equation

Uy
- Urr_s
Z ['.B; = _ , (3.18)
k=1 :
ag

where T, € RV "XN" are upper triangular matrices which contain vy and whose entries on
the main diagonal are all v)x; the column vectors By, contain fSy; for j =0,...,N” —1,

a} =a, if \j; = za, v € Z4 and a} = 0 otherwise. From the precedent development of

the numerator of X (s), note that the coefficients yy;, are obtained from the product of
(1 —shg+...+0(s™)) and (bog + b1x5® + ... + b(my—1 ps(mo—1e 1 O(s™0%)) and in
particular yy,x = box. For k = ko with ko defined by , bok, # 0 since gy, (s*) does
not have roots at zero. Then detI'y, # 0. And so By, admits a unique solution for any
values of By with A < mga and k € {1,...,n}, k # ko.

Next, we analyze the second condition (3.17) on non-zero poles.

We first examine the system of equations obtained by replacing s by a non-zero unstable

pole bi/ “ and study the existence of ul(f)(b; /o

) for I = 0,...,m; — 1 satisfying the
equations. The first equation which corresponds to [ = 0 contains gy, (b;) ,uki(bi/ “) with
qk, (bi) # 0. The second equation, i.e. [ = 1, contains a linear sum of qki(bi)uki(bg/a) and
qx, (bi) uzi(b; / “). Generally, the equation corresponding to the I-th derivative contains a

linear sum of qki(bi)pl(glf)(bi/a) with Iy = 0,...,l — 1. Therefore, for arbitrary values of

;L,(CZQ)(bZ-l/a) fork=1,...,n, k# k; and ls = 0,...,m; — 1, the system of m; equations
can be recursively solved for m; unknowns ugf) (bi/ ) with Iy = 0,...,m; — 1 and admits

a unique solution.
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Hence, the second condition introduces in total Zf\il m; equations. This system of
equations has a unique solution for M,(gliQ)(bg/a) withi=1,...,Nand lob =0,...,m; — 1

if we choose any values of ;L,(CZQ)(b-l/a) fori=1,...,.N, k=1,...,n, k # k; and I, =

7
0,...,mz-—1.

Hence, for each k € {1,...,n} and k # ko, the coefficients B(jq)x, 7 = 0,..., fr — 1 of
1k (s) satisfy the equations

w26 = ag,

fori=1,..., N such that k; = k and I3 = 0,...,m; — 1. This is the problem of Hermite
interpolation and there exists a unique solution.

For k = ko, the coefficients of p,(s), i.e. Bk, with A € L(moa) and Bjq); with

j=mg,...,mg~+ fr — 1, satisfy the equations
l2) /71
Ml(cog)(bi /a) = Qko,i,la

for i =1,..., N such that k; = ko and I3 = 0,...,m; — 1. We can write py,(s) as follows

Fiko (8) = Vo (8) + 8™ %1 (%)

where

Vio(8) = D Bakes,
)\EE(WLQO[)
m0+fk071

Mo (8%) = Z Bjake ST,

Jj=mo

For arbitrary values of the coefficients Sy, with A € £L(moa), we can derive the values of
17,(!02)(1)1') for i =1,..., N such that k; = kg and I = 0,...,m; — 1. Note that the numbers
of unknowns and of equations are the same and are equal to fi,. This returns to the
problem of Hermite interpolation and there exists a unique solution. O

Remark 3.9. If mpa <1 or a = 1/m with m € Z4\{0,1}, then X are multiples of o and
we obtain an elegant formula of p, which only contains the terms in s*. More generally,
if o is rational, then p, contains powers of s of commensurate exponents.

This can also be achieved if we introduce more coefficients in pg(s), k =1,...,n, k # ko
than in the forms given in the proposition. More precisely, if we denote x the number of
values of A € L(mpa) such that A # ba, b € Z, then we have to add at least  terms
in s of higher orders. Then it is possible to choose Sy;, = 0 for A € L(mpa), X # ba,
b € Z and solve the system of equations for other coefficients which admit unique or
infinitely many solutions.

Remark 3.10. It is enough to choose u(s®) of degree in s greater or equal to the degree
in s of ug(s) for k =1,...,n in order to ensure that Y € M(H).
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Remark 3.11. The case studied in Proposition [3.2]is obviously included in Proposition
However, the expressions of the Bézout factors given in the former are slightly
different from those given in the latter. In fact, in Proposition u(s®) is chosen to be
of minimal degree as explained in Remark while pg(s) for k =1,...,n have more
free coefficients.

The same remarks can be stated for Propostions [3.3] and [3.5]

The following example illustrates the case where « is irrational.

Example 3.4.

—3s

e’ e

87r/2(87r/4 _ 1)2’ sT/4 1

G(s) =

We have p(s™*) = s™/2(s™/* —1)? with degree d = 4 in s™*. Its unstable roots are by = 0
and b; = 1 with multiplicity mo = 2 and m; = 2 respectively. Obviously, q;(s™*) =1
and ga(s™*) = s™/2(s™/* — 1). Then from Proposition we obtain a left coprime
factorization as follows

. 8#/2(87r/4 _ 1)2 - 1

M(s) = ———— ", N(S):m

—s ,—3s.m/2(. /4
AT 1) [e ye s 4(s 1)]

To complete the expressions of the Bézout factors given in Proposition [3.7, we now choose
u(s™*) and search for p;(s) and puy(s) by solving the equations imposed by the two

conditions (3.16]), (3.17]).

Here, we choose u(s™/%) = (s™/441)%. Tt is easy to see that L(mga) = L(7/2) = {0,7/4,1}
and f1 =2, fo = 0. Therefore, p;(s) and pa(s) have the forms

11(8) = Bor + Blayayns™* + Bris + Birjayis™ + Bear an s,
p2(s) = 0.
The numerator of X (s) is then (s™/4 + 1)8 — e (s).
Its development around zero is
(1= Bor) + (8 = Birjay1)s™* + (Bor — B11)s + O(s™/?).

The condition (3.16) implies that all powers of s with degree smaller than 7/2 vanish,
thus leads to Bo1 = 1, B(x/4)1 = 8, and B11 = 1.

The other coefficients are derived from the condition (3.17)), which is represented by
(/4 + 18 — e pui(s) = 0,
[(s™/* +1)° —e*p(s)) =0

at s = 1. The unique solution of these two equations is (/) = —2(117 + 128er — 2 +
512¢)/m and B(3r/4y1 = 4(37 + 128em — 1 + 256¢) /7.
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Hence, the Bézout factors are
. (/4 + 1) — e=*pua(s)
- 871'/2(87r/4 _ 1)2(S7r/4 + 1)4’

where

ba(s) =1+ 8574 +5— 2(11m + 128em — 2 + 512€)Sﬂ./2
T

| A3+ 128em — 14 256¢) gy
T

3.4 Right coprime factorizations and Bézout factors

The previous section showed that the systems G(s) under study admit left coprime
factorizations over Ho, and one of which is given by (3.2). Since H is a Hermite
ring, then by (Quadrat, [2003a), Corollary 4.14), we deduce that there exist right coprime
factorizations for G(s).

For our transfer matrices, right coprime factorizations and right Bézout factors are
matrices involving more entries than their left counterparts. We will consider two large
classes of systems. First, for systems with distinct poles, i.e. px(s®) and py(s®) have no
common roots if k # k/, the matrix M(s) can be simply of diagonal form, which reduces
calculation complexity since the inverse matrix is obtained easily. For this class, we will
consider three cases ranging from particular to general ones. They were studied in the
same order in the previous section for left Bézout factors: systems with at least one
unstable pole for each element of the transfer matrix, systems with constraints on the
multiplicity of poles at zero, and systems without constraints. Second, for systems with
identical poles, the form of the matrix M(s) is much more complicated. Two particular
cases are considered as our first attempt: systems with the same pole for all elements of
the transfer matrix and systems with one pole for each element.

3.4.1 Distinct poles

3.4.1.1 Systems with one unstable pole for each element of the transfer
matrix

We consider the particular case of polynomials py of degree one. This class of systems
was studied in Proposition for left Bézout factors.

Proposition 3.12. Let G(s) be given by with

a
R (s%) = o —kak with ag, 0, €R for k=1,...,n.
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Suppose that all (zero and non-zero) unstable roots of pr(s*) for k =1,...,n are distinct,
i.e. o # o for op, o >0, k #K'. Then a right coprime factorization and associated
Bézout factors are given by

Mii(s) 0
M(s) = : : :
0 M (s)
X11(s) Xin(s)
X(s) = : . : )
Xp1(s) - Xan(s)

Y(s) = [Yi(s),.... Ya(s)",

where for k, k" € {1,...,n} and k # kK

e—shkak
N —
k(s) T
s — oy,
M —
ok (8) w1

Yis)= 2 I (s* — o),
u(s )ajeDu{o},j¢k
Xik(s) = W (3.19)

—shy

e ay

Xk () = _Yk(s)m7

where u(s®) is a polynomial of degree (card(D) — 1) in s* that has no unstable zeros; pi,
k=1,...,n are constants and uy such that o > 0 are given by

ot/ op

u(oy)(og + 1)e%s "
M = .
ak HajGDU{O},j;ék:(o-k —0j)

(3.20)

Proof. 1t is obvious that Ng(s), Myr(s), Yi(s), Xgr (s) € Heo.
Xkr(s) in (3.19) can be written as

u(sY)(s® + 1) — pre " ay, 11 (8% —0y)
0, €DU{0}, 2k

u(s®)(s* — o)

Xik(s) =

If o > 0, then ug as in (3.20)) makes the numerator vanish at oy, thus guaranteeing that
Xkr(s) € Hy. Otherwise, i.e. o < 0, Xpx(s) € Hoo with any constant py.

We see also that G(s) = N(s)M(s)~! and that the right Bézout identity X (s)M(s) +
Y (s)N(s) = I is verified. O
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The following illustrative example continues Example [3.1]

Example 3.5.

The right coprime factorization and Bézout factors proposed by Proposition [3.12] are

o= [ir 5]

Vs 0
M(s) = [ “%“ Vo1 ] :
Vtl

1—/s 46\/§:|T7

Yis) = [\/5+1’\/§+1

(\/§+1}ft(/§;1)e—s \6/51
X(S) = j(4618j_s ) (\/§+1)2i—26175\/§
Vs+l (Vs=1)(Vs+1)

3.4.1.2 Systems with constraints on the multiplicity of the pole at zero

39

The systems considered in the next proposition have the same condition on the multiplicity

of the root at zero as those considered in Proposition [3.:3] For non-zero roots, no condition

is imposed, and thus finding Bézout factors by interpolation becomes more difficult than

the previous case.

Proposition 3.13. Let G(s) be given by (3.1). Suppose that py(s*) and py(s*) have

common (zero and non-zero) unstable roots if k # k' for k, k' € {1,...,n}, and suppose

no

that the multiplicity of the root at zero of p(s®) verifies the condition moax < 1. Then a

right coprime factorization and associated Bézout factors are given by

Mii(s) 0
M(s) = : : 7
0 My (s)
X11(s) Xin(s)
X(s) = : ,
Xn1(s) Xnn(s)
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where for k, k' € {1,...,n} and k # k'

7shk a
Ni(s) = (safﬁ()dk)’ (3.21)
Mg (s) = (50 J(r 1))dk’ (3.22)
() N
Yi(s) =222 T (s T (s — i)™ |
u(s®) 1<) <n,jtk i=1
X (8) = —Yi(s)e 7@/(80‘)

with dy, is the degree of pr in s*; u(s®) is a polynomial of degree d in s* that has no
unstable zeros; and ug(s®) are polynomials in s* of degree moy + Zfil myp satisfying

N
u(s®)(s® + )% — e Mg (s™)u(s”) ] (H(S“ _bi)mij> =0(s™")  (3.23)

1<j<n,j#k

as s — 0 if pp(s®) has a root at zero, and for each non-zero unstable root of py(s®), i.e.
s = b1/ with my, #0 fori=1,...,N,

N
u(s™) (s + 1% — MG (7)) ] <<sa>m0jﬂ<sa—b»mij) =0

1<j<n,jk

where l =0,...,m; — 1.

Proof. 1t is obvious that Ny (s), Mgi(s), Yi(s), Xgr (s) € Heo

The two conditions and guarantee Xyr(s) € Hy for k =1,...,n. We can
find p(s®) that satisfies the two conditions. Indeed, if mgx # 0, the condition is
satisfied if the first mg; terms, whose order in s* are 0 , Mok — 1, in the development
around zero of the left expression are zero. Thus gives myq equations, and -
gives Zl 1 Mix equations. On the other hand, the number of unknown coefficients of
pr(s) is one greater than that of equations and the system of equations admits solutions.

We see also that G(s) = N(s)M(s)~! and the right Bézout identity X (s)M(s) +
Y (s)N(s) = I is verified. O

Remark 3.14. If moa > 1, then e needs to be developed to 1 — shy, + ...+ O(s™0%).
And in the case where 1/« is not an integer, the condition (3.23) is no longer satisfied
since others terms, which are polynomials in s*, cannot compensate s.

The following example continues Example
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Example 3.6.

e—s

ORI

The right coprime factorizations obtained by using Proposition [3.13] are

e e s
N(S)_ |:81/3+17(81/3+1)3:| )
si/3-1 0
M(s) = | s/°+1 s .
0 Gy

We choose u(s'/3) = (s'/3 +1)*. Then Y (s) has the form

i(sY3)s (s (53 - 1)]"

Yis) = (s¥/3 4+ 1)¥ (s1/3 +1)4

where p11(s'/3) = Bo1 + B115"/3 and pa(s'/3) = Boa + Pr2s'/3 + Bazs?3 + Bazs.

The condition (3.23)) is only applied for £k = 2. We develop the left expression around
zero as follows

<81/3 + 1)7 o 675M2(81/3)<81/3 o 1)
= (1+ Boz2) + (7 — Boa + Bi2)s*3 4 (21 — Bra + Baz)s*/3 + O(s).

It turns out that all the terms with orders smaller than s in the development have to be
zero, thus giving Bpo = —1, f12 = —8, and [Bag9 = —29.

Other unknown coefficients are deduced from applying the condition (3.24]).
(s'3 +1)° — ey (sY3)s = 0

at s = 1, then By1 + B11 = 32e. We choose g1 = 32¢, $11 = 0, and 32 = 0 in order to
reduce the order of p1(s'/3) and po(s/3).

Finally, the right Bézout factors are

T
Y(s) s2es —(295*/% 4 8513 1 1)(s'/3 — 1)
S) = ,
(s1/3 +1)4 (s1/3 + 1)

(s1/341)5—32e1—5s  _3¢1-s
1/3_1)(s1/341)4 1/311)4
X(s) = (2(9852/3+§S/3+JE)23*5 (;( +1)
G 22(5)

where

(s1/3 4+ 1)7 + (2953 + 8s1/3 4+ 1)(s1/% — 1)e~*

Xanls) = s(s13 1 1)1
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3.4.1.3 General case
We now consider the general form of systems with distinct poles between different elements

of the transfer matrix.

Proposition 3.15. Let G(s) be given by . Suppose that all (zero and non-zero)
unstable roots of pr(s*) for k =1,...,n are distinct. Then one right coprime factorization
and associated Bézout factors are given by

N(s) = [N1(s),...,Nn(s)],

MH(S) . 0
M(s) = : : :
X1(s) -+ Xin(s)
X(s) = : : ;
Xn1(s) -+ Xpn(s)

Y(S) - [Y1(3)7 cety Yn(s)]T7
where for k, k' € {1,...,n} and k #k

Ni(s) T (3.25)
Mi(s) (j’“f;)dk, (3.26)
:U’k(s) a\mo; Al «a mij
YVels) = 225 T (oo s — by ) |
u(s%) | < iem i i=1
) = LBl

e_Shk/ M

X (8) = =Yi(s) B (5%)

i

with dy, is the degree of pr in s*; u(s®) is a polynomial of degree d in s* that has no
unstable zeros; and pg(s) have the following form

N
mok+_im1 Mik

pr(s) = Z Bags™ + Z Biiay(s")

)\E,C(m()ka) j:mok
and satisfy the following conditions

(1) if pr(s*) has a root at zero, as s — 0

N
u(s*)(s* + 1)dk _ e_Shk/lk(S)ak(Sa) H (H(Sa _ bz)m”> = O(s™ore),

1<j<n,j#k \i=1
(3.27)
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(ii) for each non-zero unstable root of px(s®), i.e. s = bil/a with my, #0 fori=1,..., N,

N
u(sa)(sa + 1)dk — e_Shka(S)ak(sa) H <(Sa)moj H(Sa B bl)mu) -

1<j<n,j#k

where I =0,...,m; — 1.

Proof. 1t is obvious that Ny (s), Myr(s), Yi(s), Xkr (s) € Heo.

The two conditions and guarantee Xy (s) € Hy for k =1,...,n. We can
find p(s) that satisfies the two conditions. Indeed. 1) gives a number of equations
which is equal to the number of the terms s*, and (3.28)) gives Zf\; 1 Mix equations. On
the other hand, the number of unknown coefficients of 1k (s) is one greater than that of
equations. Therefore, for each k = 1,...,n, the system of equations generally admits

solutions.

We see also that G(s) = N(s)M(s)~! and the right Bézout identity X (s)M(s) +
Y (s)N(s) = I is verified. O

Remark 3.16. u(s®) can be a polynomial of degree d’' in s*, where d’' is the number of
unstable poles of all Ry(s®), that is d' =>}_, Zz‘]\io Mk

3.4.1.4 Minimal form of Bézout factors in the general case

In this context of determining right Bézout factors, the choice of ug for k = 1,....n
for minimal number of coefficients and minimal order is not quite different from that
presented in the preceding proposition.

Proposition 3.17. Let G(s) be given by , Suppose that all (zero and non-zero)
unstable roots of pr(s*) for k =1,...,n are distinct. Then one right coprime factorization
and associated Bézout factors are given by

Mii(s) 0
M(s) = : : 7
0 My (s)
X11(s) Xin(s)
X(s) = : ,
Xn1(s) Xnn(s)
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where for k, k' € {1,...,n} and k # k'

e—sh;C Z]Vk(sa)

Ni(s) = ICED (3.29)
Mige(s) = (S];kf:;dk’ (3.30)
(s) :
vits) = e [T (o T —eym ).
(™) | < Znee i=1
Xia(s) =~ rp i),

iy Q' (57)
ka/ S) = —Yk s)e shis = 5
) = e )
with dy, is the degree of pr in s*; u(s®) is a polynomial of degree d in s* that has no
unstable zeros; and pg(s) have the following form

N
Mok+2 ;0 Mip—1

pe(s) = Y Bws + > Bayk (™),

AEL(Mor ) J=mok

satisfying

N
U(Sa)(sa + 1)dk _ e_Shk,U/k(S)ak(Sa) H (H(Sa _ bz)m”> — O(smoka)
1<j<n,j#k \i=1
(3.31)
as s — 0 if pr(s®) has a root at zero, and for each non-zero unstable root of pi(s®), i.e.
s:bg/a with myp, #0 fori=1,..., N,
N O]
u(s*)(s” + D™ — e M ()gi(s*) ] ((Sa)m(’j [ (G bz')m“> =0
1<j<n.j#k /
(3.32)
where L =0,...,m;r — 1.

Proof. 1t is obvious that Ng(s), Mgk (s), Yi(s), Xgr (s) € Hs. The two conditions (3.31))
and (3.32)) guarantee Xy (s) € Hy for k= 1,...,n. We see also that G(s) = N(s)M(s)~!
and the right Bézout identity X (s)M(s) + Y (s)N(s) = I is verified.

To complete the proof, we prove the existence of p(s) satisfying the two conditions.

First, we consider the condition (3.31)) on zero pole. For k € {1,...,n} such that mqg; > 0,
we develop the numerator of X;k(s) around zero as follows

N
u(s®) (s + )% —e M (s)an(s®) ] (H(sa - b»mn)
1<j<n,j#k \i=1

-1
= ay+a1s*+...+ am%_ls(mo’C Jor

- >0 s ST Bust | +O(smo) (3.33)

AeL(mop ) AeL(mop )
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where

u(s¥) (5% + 1)% = ag + a15% + ... + @y, 15"V 4 O(sM0kY),
N
e Mg(s*) ] (H(sa B bi)mij> = > st +O(s™), (3.34)
1<j<n,j#k \i=1 AeL(mok )
pi(s) = Z Bars™ + O(sMor),

AEL(Mor )

Eliminating the powers of s with order smaller than mgra in the numerator gives the
matrix equation

/BANllglilk’ a/]V];’—l
B k ay,
I e S L (3.35)
!
Bok ag

where N}/ = card(L(mor)), A\j € L(morar), Ao < ... < Any—1; Iy is an upper triangular
matrix whose entries on the main diagonal are all ~y; a; = a; it \j = 20, j =

0,..., N/ — 1, otherwise a;- = 0. From (3.34), we see that Aoy # 0, then I'y is invertible

and the system of equations admits a unique solution.

Now, we analyze the second condition ({3.32)) related to non-zero unstable poles. We can
write pg(s) as follows

pi(s) = vi(s) + 8" (s”)

where

w(s)= Y, Bus
AEL (Mo )
m0k+2f\]:1 msp—1
nk(s”) = Z /B(ja)ks(j_m%)a'

J=moy

Then for each £ € {1,...,n}, we can derive the values of n,(cb)(bi) fori € {1,...,N}
such that mgy > 0 and lp = 0,...,my — 1. If we consider the coefficients B(jak,
7 =mog,-.., Mok + ZZ]L m; — 1 as unknowns, then the number of unknowns is the same
as the number of equations and is equal to Zf\;1 m;k. This is the problem of Hermite
interpolation and there exists a unique solution. O

Remark 3.18. We cannot eliminate the powers of s with non-commensurate order in pi(s)
such that mgg > 0 by adding more coefficients as we can in the case of left Bézout factors.
In fact, powers of s with order higher than mgia do not appear in the development up to
order moia of the numerator of X (s) and thus do not affect the matrix equation ([3.35).

Here is a numerical example of the use of the proposition.
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Example 3.7.

e—S

e—3s
G(s) = |:S7r/2(87r/4 )2 gn/A 2]

By applying Proposition [3.17 we obtain the right coprime factorizations as follows

e*S

e 3s
N6 = | e e

s7r/2(s7r/4_1)2

o 0
M(S) = (S /4+1)4 sm/4_g
0 s™/441

We choose u(s™/4) = (s™/* +1)°, then Y (s) has the form

m(s) (™ —2)  pa(s)sT2(s7 —1)2]
Y(s) = [ l(sw/4+1)5 , = (s7/1 + 1)5 ]

where p1(5) = Bor + B/ 5™ + B115 + Biajay15™2 + Bear/ayis°™/* and pa(s) = Boo-

The condition ([3.31) is only applied for k£ = 1. We develop the numerator of Xii(s)
around zero as follows

(s +1)? = e (s)(s7/* - 2)
= (14 Bo1) + (9 — Bor + Bwyay1)s™* + (i1 — Bor)s + O(s™3).

It turns out that all the terms with order smaller than 7/2 in the development have to
be zero, thus giving Bo1 = —1/2, Bz 41 = —19/4, and B11 = —1/2.

Other unknown coefficients are deduced from applying the condition (3.32]).
(s7/*+1)° — ey (s)(s7* = 2) =0,
[(s™/* +1)° — e p(s)(s7* = 2)) = 0
at s =1 and
(Sﬂ'/4 + 1)6 - 6735/1/2(8)(9#/2(877/4 - 1)2 -0

at s = 2%/7 then the unique solution of the above equations is B2 = (257 + 2560em —
4+4096€)/(27), Bgn/an = —(27m 4 7168em — 84 8192¢) /(47), and oz = (729(e27)3) /4.

Finally,
(s7/441)—e=* a1 () (s7/1~2) —e=3n (s)
o Tr/2( 7r/4,1)2( 7r/4+1)5 ( 7r/4+1)5
X(S) - B * —675,[12(2) (577/4_’_1)6_6753511/2(S)SW/Z(STF/4_1)2
(S-rr/4+1)5 (Sﬁ/4_2)(577/4+1)5
where
1 19 ., 1 257+ 2560em — 4+ 4096¢
mls) = =5 = o gs e o °
_ 27 £ T168er — 84 8192 5.,
4 ’
729(e2"7)3

p2(s) 1
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3.4.2 Identical poles

While simple expressions are obtained for systems with distinct poles, much more attention
has to be paid for the case of identical poles. The matrix M(s) in diagonal form and
Ni(s), Myi(s) in the forms (3.25), do not work for the latter case. We deduce
from the right Bézout identity X (s)M(s) + Y (s)N(s) = I that for k, k" € {1,...,n} and
k#FE

i 1-— Yk<8>Nk(8)

Xk:k(s) - Mkk(s)
X (s) = —Yk(s)m-

In order for Xy (s) to be in Hy, all unstable roots of My (s) have to be roots of Yi(s).
Consequently, if My, (s) and My (s) have a common root, then Xy (s) at that root is
infinite, thus Xyx(s) ¢ Heo.

3.4.2.1 Systems with one identical pole for each element of the transfer
matrix

In the following proposition, we only consider the case where all the pg, £k = 1,...,n have
the same root. Although the matrix M(s) is no longer diagonal, its inverse can also be
easily calculated.

Proposition 3.19. Let G(s) be given by with

hy < ... < hp,
ag
Ri(s%) =
k(%) s* —o
with ag, 0 € R for k=1,...,n. Then a right coprime factorization and associated Bézout

factors are given by

—shi
N(s) = [“16 0 ..,0],

s 4 1 s Uy e
=g —age*(h2—h1) —a,e—s(hn—h1)
SO+1 a1 e o
0 1 . 0
M(s) = ! |
0 0 1

where B is given by

P e — (3.36)
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and M~1(s) is given by ‘
M(s)—l —_ va(s)

with
' M (s) - M{RY(s)
M™(s) := : - : , (3.37)
0 e MR(s)
) —s(hg—h1)( o 1
Minv(s) = 2kC e (S)+ ) Wk=1,....n
1 —0

Mimv(s)=1 Vk=2,...,n,
M =0 Vk#k,k=2,...,n, k' =1,...,n.
Proof. Tt is easy to verify that the matrix M™(s) in (3.37) is the inverse of M (s) and

that N(s)M~1(s) = G(s). The right Bézout identity X (s)M(s)+Y (s)N(s) = I is clearly
satisfied.

It is obvious that N(s), M(s), Y(s) € M(H).

We see that Xpip(s) for ¥ =2,...,nand k = 1,...,n are constants. Now we consider
X11(s) and Xqx(s) for k=2,... n.
s+ 1 aje s
X11(s) = -
n(s) s*—o s —o’
ape sthe=h1) (g 4 1 ape S
X1k(s) = o ( ) o
a1 (s* — o) s¥—o
With j given by (3.36), the numerators of X1;(s) and X1(s) vanish at s = o'/, which
is the unique unstable root of the denominators. Hence, X (s) € M(H). O

3.4.2.2 DMore general case

In the following part, we derive right coprime factorizations and Bézout factors for a
particular system whose entries (which only have one simple pole) may involve identical
poles. To help clarify the demonstration of those results, we will begin with a lemma who
derives the inverse of a particular upper triangular matrix.

We consider sparse matrices with some conditions imposed on the entries above the main
diagonal: if any entry on the k-th row is non-zero, then all entries on the k-th column
must be zeros; if any entry on the k-th column is non-zero, then all other entries on the
k-th column as well as those on the k-th row must be zeros.

Lemma 3.20. Let the upper triangular matriz M € R™™ be given by
My - My
0 - My,

where the entries on the main diagonal are not equal to zero and the entries above the
main diagonal satisfy the following conditions
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(i) for k =1,...,n, if there exists ' € 7, I' € (k,n] such that Myy # 0 then My, =0
forle{l,....k—1},

(i1) for k=1,...,n, if there exists I € Z, I" € [1,k) such that My, # 0 then My, =0
forle{l,....k—1\{I"} and Myy =0 forl' e {k+1,...,n}.

Then its inverse is given by

M—l _ Minv
with
M M
MY .— : ,
0 Mr%v

where the entries on and above the main diagonal satisfy

: 1

My = M (3.38)
; Mg

M = ——— 3.39
Kk My My (3.39)

for kK € {1,...,n} and k < K'.

Proof. It is obvious that the entries below the main diagonal of the product MM are
all zero, and the entries on the main diagonal are all one.
Now we consider the entries above the main diagonal of the product:
(MM™);; = MyMi® = My M{"
k=1 k=i
for i < j. Considering i < k < j, if M;, # 0, then My; = 0 under the assumption ,
and thus M,?j“’ = 0 due to (3.39)). Therefore,
(MMim})Z‘j = M”Mlljmj + MZ]MJZ?U
By replacing Ml’]”” and M ;3“’ with lb and 1’ respectively, we obtain (MM™);; =
0. O

Example 3.8. The following matrix satisfies all the conditions in Lemma [3.20

M4 0 Ms 0 0

0 My 0 My Moy
M = 0 0 Mss 0 0
0 0 0 Myy 0

0 0 0 0 Mss

with Mu 75 0, 1= 1, ceey 5, and Mlg, M24, M25 75 0.
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Its inverse is

-4 M -
M1 0 _M11}\3133 0 0
0 1 0 Moy __ Mpss
. Moo 1 Moo Mayy Moo Mss
M~ = 0 0 s (1) 0
0 0 0 e 0
i 0 0 0 0 e ]

In the following proposition, we consider G(s) with one pole for each of its entries and
some entries may have the same pole. To simplify the presentation, we assume that the
delays are ordered. A discussion on how to apply the next result to the case of unordered
delays will follow the proposition.

Proposition 3.21. Let G(s) be given by with

h1 < ... < hy,
ag
Ry (s%) =
R(s%) = 3 -
with ag, 0 € R fork=1,...,n. WedenoteZy :=0 andZ :={j|je{1,...,k—1},05 =
or} for k=2,...,n. One right coprime factorization and associated Bézout factors are
given by
N(s) = [Ni(s), ..., Na(s)], (3.40)
MH(S) Mln(s)
M(s) = : : : (3.41)
0 R Mnn(s)

Y(s) = [Yi(s),... ,Yn(s)]T,
X(s) =M~ (s) = Y(5)G(s),

where for k, k' € {1,...,n} and k' £ k

0 if T, # 0,
Ne(s) =4 O, . (3.42)
] otherwise,
1 if T, # 0
My (s) = { S:a_ff otherwise, (349)
—s(hg—hyr) X .
_age TURTRT f =
Mk/k(S) = (7% lf k= mank, (3'44)
0 otherwise,
0 if T, # 0,
Yi(s) = { %&5;) otherwise,

with u(s®) is a polynomial of degree d in s that has no unstable zeros; pp(s®) =
p(s*)/(s* — or); B (for those k such that I, = ) and o, > 0) are given by

/o
w(op) (og + 1)e “hn
agpl (o)

By = (3.45)
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By for other k can be chosen arbitrarily, and M~'(s) are given by

Migv(s) - M{p¥(s)
M~ (s) = T (3.46)
0 o M(s)
where the entries on and above the main diagonal satisfy
, 1
MZTL’U — ,
kk Mr
My = Miw
My M

for kK € {1,...,n} and k < K'.

Proof. Let us prove that M(s) given by (3.41)), (3.43), and (3.44]) satisfies the assumptions
in Lemma Let k € {1,...,n}, if My # 0 then due to (3.44) £ = minZj, and
My, = 0 for K" # k'. Also, since k' = minZy, then k # minZy» for k” > k, and thus

My = 0. Hence the assumption in Lemma is satisfied. On the other hand,
k' = minZ;, implies that Z;; = (), hence My = 0 for k" < k’. The assumption (fi]) is
then satisfied.

Consequently, due to Lemma the inverse of M(s) is given by (3.46)).
We now prove that N(s)M~1(s) = G(s).

For k € {1,...,n}, we have

(N(5)M(s)™ ) = D Ni(s) M (s)
=1

k—1
=" Ni(s) MIE¥(s) + Nu(s) MR (s).
=1

o If7; =0, then M/["(s) =0forl =1,...,k—1,and (N(s)M(s) 1) = Ni(s)Mj*(s) =
ek Ry (s).

o If 7j # 0, then MjI"(s) =0 for | € {1,...,k — 1}\{k'} where ¥’ = minZ; and
Ni(s) = 0. Therefore,

(N(s)M(s)™" )k = Ny (s) M (s)

— Nu(e) Muwn(s)
Nie( )Mk’k’(S)Mkk(S)‘

Note that Zps = () since ¥/ = minZ;. By replacing the above terms with appropriate
expressions in (3.42), (3.43) and (3.44)) and by noting that o = op, we get
(N(s)M ()™ )k = e Ry(s).

It is obvious that Ng(s), Mkk(s), Mpk(s), Yi(s) € Heo.
Let us now prove that X (s) € M(Hx).
For k, k' € {1,...,n}, we have Xy (s) = MIW(s) — Yir(s)e™ " Ry (s).
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o If I}y # 0, then Yy (s) = 0, and thus Xy (s) = M7 (s). Now, for k' > k, M7 = 0.
For k' = k, M}W = 1. For k' < k, from the fact that Zy # 0, we deduce that
k' # minZy, thus MW = 0.

o If 7;y = (), then Yy (s) involves pg(s®).
o For k' > k, the fact that Zs = () leads to o # o). Therefore,

o apBupr(sY) arBep(s)
Vi (9)B(8) = 15 ulsm) ~ (5% — o) (s — o )u(s®)

belongs to Hy since (s — 0)(s* — ops) is eliminated by the same term in

p(s%). It is also obvious that M = 0. Therefore, Xy (s) € Heo.

o For k' = k, we have

Xk/k/(s) = ]?/1,:/ (S) — Yk/(s)eishk/ Rk/(s)

1
= Yu(s)e MW R(s
T~ e R
s+ 1 Bupr(s®) ae s
8% — oy u(s®) s — oy

U(Sa)(sa + 1) — ﬁk/ﬁk/(sa)ak/efshk’
u(s¥)(s* — o) '

If o < O, then Xk/k/(s) S Hoo for all 5]4. If o > 0, since 5]4 given by "
makes the denominators of X4/ (s) vanish at s = 0,1,/01, then Xpp/(s) € Hoo.

o For k' <k, if k' # minZy, together with the fact that Z;, = () then oy # oy,
and thus Yy (s)Ri(s) € Heo. We also have MY = 0, leading to Xpx(s) € Heo.
In the case where k' = min 7, thus o) = o, we have

Xpi(s) = M (s) = Yir(s)e ™" Ry (s)

Miyri.(s) —sh
=— — Y (s)e *"* Ry (s
My (8) M () (s) (=)
B s¢ 41 akefs(hkfhk/) /Bk’ﬁk’(sa) akefshk
S — oy ay u(s®) s —oy

Can u(s*) (s + D)et — Bpps (s*)ag

= age u(sY)(s* — opr)ags

By the same argument as in the case where k' = k, we conclude that X4 (s) €
H.

The right Bézout identity X (s)M (s) + Y (s)N(s) = I is clearly satisfied. O

Remark 3.22. A transfer matrix G given by with the delays of its elements not in
order can be transformed to a transfer matrix Gy with ordered delays by multiplying
G by an appropriate permutation matrix P. It is well known that this matrix P is
orthogonal and its inverse is PT. Assume that (My, Np) is a right coprime factorization
over H,, of Gy and X, Y are the corresponding right Bézout factors. We have then G =
GoP~ ! = NOM(;1P_1 = No(PMy)~!. It is obvious that PMy € M(H,,). Furthermore,
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XoP 1PMy+ YoNg = I and XoP~! € M(H). Hence, (PMy, Ny) is a right coprime
factorization of G and XoP~!, Y, are the corresponding Bézout factors.

The next example illustrates the proposition.

Example 3.9.

G(s) = {

e~ s e~ s 6735
Vs s =15 - J
From (3.40)), (3.41)), (3.42)), (3.43)), and (3.44)), we obtain

v [ ]

NG
vt 00
— S— —2s
M(s) 0 sl €
0 0 1
The inverse of M(s) is
Vsl
75 0 0
M~Y(s) = 0 Vatl  em?(Vs41)
/o1 /o1
0 0 1

which will be used to derive X(s).

The least common denominator of the entries of G(s) is p(v/s) = v/s(v/s —1). Then
p1(v/s) = /s — 1, and ph(\/5) = /5. We choose u(y/s) = (/s + 1)?, which has no

unstable poles. We have then

_[Bs=1)  Bavs g
HC R E e v
X(s) = M7 (s) = Y(5)G(s)

(V/5+1)* =1 (v/5=1)e”* _ _Bie”® _ Bie~3s
Vs(v/s+1)? (ys+1)? (Vs+1)?
= _ _Poe”® (Vs+1)®P—Boe™*/s  e7?*(\/5+1)3—Bre 3°\/s
(\/é+1)2 (\/5—1)(()\/54-1)2 (\/5—1)§\/5+1)2

We see that X12(s), X13(s), X21(s) € Hy. From (3.45), we obtain 51 = —1 and (35 = 8e,
which make X11(s), X22(s), and Xa3(s) be in Hy, respectively.

3.5 Conclusion

In this chapter, we have considered MISO fractional systems with input or output delays.
Explicit expressions of a left coprime factorization over H,, of the transfer matrices
as well as the corresponding Bézout factors are given. Right coprime factorizations
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and right Bézout factors are also found for systems with entries of the transfer matrix
containing different poles. In the case of identical poles, the right factors are primarily
found for some simple classes of systems. Hence, in conclusion, we can have Youla-Kucera
parametrization of stabilizing controllers for all systems with distinct poles and a class of
systems with identical poles where each element of the transfer matrix involves one pole
since for these systems both left and right coprime factorizations and Bézout factors are
available.

Determining the right factors of more general systems with identical poles is the objective
of a forthcoming work.
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4.1 Introduction

An increasing interest has been paid towards fractional systems with delays, both for
stability aspects and also for stabilization problems. For stability aspects, most of the
results are obtained in the frequency domain, i.e. by considering the spectrum of the
characteristic equation. Note that the characteristic equation is single-valued provided
that the Laplace variable s is limited in a sheet of the corresponding Riemann surface,
for example, —7 < arg(s) < .

The stability of fractional delay systems with non-commensurate orders and non-com-
mensurate delays was first investigated in (Bonnet and Partington, 2002) in the sense
BIBO. In that paper, the classical stability condition “no poles in the closed right half-
plane” is proved to be a necessary and sufficient condition for systems of retarded type
and only a necessary condition for neutral systems. Recently, robust BIBO-stability
regarding parameter uncertainties was considered in (Akbari Moornani and Haeri, 2010)
for some classes of the same systems and necessary and sufficient stability conditions were
derived.

For fractional delay systems with commensurate orders and commensurate delays, the
characteristics of poles are similar to those of classical systems with delays, i.e. there
are infinitely many poles in chains which can be classified in retarded, advanced and
neutral types (Hotzel, 1998a; Bonnet and Partington, 2007). For retarded systems, the
stabilities in the senses BIBO, L1 — L1 and H, are equivalent and also share the same
usual necessary and sufficient condition “no poles in the closed right half-plane” (Hotzel,
1998a} Bonnet and Partington, 2007)). Nevertheless, this is only a necessary condition
for neutral systems since, in the critical case where poles approach the imaginary axis,
the system may be unstable even though all poles are in the open left half-plane. This
interesting phenomenon is also present in classical delay systems.

In such a delicate situation, H-stability of fractional systems with one delay is studied
in (Bonnet and Partington|, 2007) where simple necessary and sufficient conditions are
derived. Within the same framework, (Fioravanti et al., |2010]) studies H.o-stability of
some classes of fractional systems with commensurate delays and with single chains of
poles asymptotic to the imaginary axis, namely there is no more than one neutral chain
of poles asymptotic to a set of points on the imaginary axis.

In this chapter, we will extend the work in (Fioravanti et al., 2010) to the case of multiple
neutral chains of poles asymptotic to a same set of points on the imaginary axis.

In general, when some chains of poles are asymptotic to the imaginary axis, the idea
is that the stability depends on not only the location of poles about the axis but also
the magnitude of the transfer function on the axis. This idea is no longer new and is
exploited in (Bonnet and Partington) 2007; Fioravanti et al., 2010) for fractional systems
and in (Partington and Bonnet, 2004 [Bonnet et al., 2009, |2011)) for classical systems.
The common method is to approximate solutions of high modulus of the characteristic
equation, which is a quasi-polynomial involving powers of s and e®. This approximation
then allows one to evaluate the magnitude of the transfer function and to derive stability
conditions.
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We are interested in the effects of poles of large modulus on the stability and will not pay
attention to poles of small modulus. For exact values of these poles, numerical methods
such as QPmR (Vyhlidal and Zitek, 2014)) and YALTA (Avanessoff et al., [2014) can be
used. For their relative location around the imaginary axis, methods for determining
crossing frequencies and stability windows such as (Marshall et al., (1992} Fioravanti et al.,
2012)) can be applied.

The rest of the chapter is organized as follows. In section [£.2] we present the fractional
delay system of interest and approximate the characteristic equation around its poles of
large modulus. The obtained expression is repeatedly used in the next two sections to
determine pole location with respect to asymptotic axes and estimate the magnitude of
the characteristic equation on the imaginary axis, which allows one to conclude about
Ho-stability of the system. Section [£.3] examines single neutral chains of poles while
section [4.4]is dedicated to multiple chains. Illustrative examples are given in section 4.5
We conclude the chapter with section [£.6]

4.2 Approximation of the characteristic equation

We consider fractional neutral time-delay systems with transfer function given by (2.2)),
which is recalled here for easy access. The transfer function is of the form

G(s) = , (4.1)

where
e 7 > ( is the delay,
e ¢, p, and ¢ for all £ € Ny are real polynomials in s*,
e 0 <pu<l1, —7 <arg(s) <7 in order to have a single-valued transfer function,

e degp > degt, degp > deggqy for all k£ € Ny, and degp = degqi at least for one
k € Ny in order to deal with proper neutral systems.

Note that degrees of the polynomials in this chapter stand for the degrees in s*.
For preliminaries regarding these systems, the reader is refered to Subsection [2.4.2]

We already have the first approximation of neutral poles corresponding to a root r of
¢q4(z) in (2.5). Our objective is to find the next non-zero approximation term of these
poles, which are denoted by s,. Let us write

SpT = Ap + U1 +o(n™9),
where

v
Un1 ! 1 #0, y1 >0, n € Z,n — oo.

’ _nyl7
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We will see later that y; = u, for example, in certain cases of single chains, but y; = u/m
in certain cases of multiple chains, where m is the multiplicity of r.

We have R(sy,) = [R(An) + R(vp,1) + o(n~Y")]/7. Therefore, the sign of R(v, 1) indicates
the location of poles of the neutral chain with respect to the asymptotic axis.

Remark 4.1. Note that for a neutral chain of poles relative to a root r

R
RO )0 = 1),
R(vn,1)n<o = R(v1) cos(yim) + I(v1) Sin(ym)_

‘n‘yl

Since the signs of R(vp,1)n>0 and R(vp, 1)n<o, which are determined by the signs of $(v)
and (R(v1) cos(yi1m) + S(v1) sin(y17)) respectively, may be different, so are the locations
around the asymptotic axis of poles of large modulus in the upper and lower half-planes.

Approximation of neutral poles of the system will be derived from the approximation of
the characteristic equation around s,,.

Since sy, is a pole of G(s), we have

N

d(sn) :=p(sn) + Z Qr(sp)e B = 0.
k=1

Dividing both sides by p(s,), we have

dk S'ﬂ) —ks T
1+ nt = (.
4

As |s,| — oo, using (2.3)) leads to

1+ Z < Q, + 7 + 2u + 53]; T 64ku + 0(554“)) e~k = 0. (4.2)
We choose indeed a development of order 4u which will allow us to analyze in this chapter
several cases of interest.
Assume s,, has the form
SpT =My +Vp1+Un2+...+Vp M+ o(n_4“)
with v, ; =vyn ¥, i=1,...,M where v; Z0 and 0 < y; < ... <ym < 4pu.
Note that

e M = T,

ﬁ
sl
o

e*kl/n,i _ 1 + (—].)ly,fkl

—4
Tl + o(n™*).

T
I
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Thus when n is large enough, (4.2)) becomes

N 2 3
143 (o0t e (14 06) + A (14 0() +
k=1

(y27n)H (y27n)2H (727n)3m
4
€T M [f] (—D)!E! 4
_SkT )R —apy | _
D o) L 2 S e =0

and we obtain

N
BrTH 1 Y2 1 S
1 1 (4 e
+Z <ak t Oy (1+0mn™h) + (Gamm) (1+0mn™h) +
Ek-T _4u
G )

M 1l ll kzi\i l;
<1+ 3 (D> = <H L> '
(l1sesln ) EL(4p) (Hz‘:l li!) n2i=1 liyi

+o(n )| =0

where £(z) := {(zl, ) L €Zy, M > Tand SSM Ly < x}

After simple computations, we get

d(Sn) —4p
(sn) g1+ 92 +9g3+o(n) (4.3)
where
N TH
91:1+Zakrk+(j27r Ji (1+0(n Zﬁkr —l— (1+0(n nykr
k=1
7_3,u N 7_4,u, N
Sk k 4.4
+ (]27”1)3“ ; BT+ (]2717@)4“ ;Ekr ) ( )
(—1)2i=rhi (Hf\/l1 z) N

and

M . M 1.
T (*1)21':1 i (Hz‘fl vt
g3 = 1+o(n™) >
(j?ﬂn)“ (1150 slar ) EL(3p) <sz\il li') Tl
M ML

T2 (—1)xim ki (Hifl Vil) N M

+—— (1+0n™h) > > qrkkish

(y2mm) (11yeeslar) EL(202) (H@ 1 i ') nZii b o

S DEL (T, o
T

(9273 e (H I |> Nl Ly

) i 5krkk2f‘i1 Li
k=1

) 25 PRt (4.6)
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In fact, this decomposition into three terms g1, g2, and g3 is convenient as in each term it
is easy to find the highest order of the development.

Note that for example in g1, the highest order in n is —p if ch\;l Brrk # 0. Tt is —2pu
if Zévzl Ber® = 0 and Zszl ver* # 0. To find the highest order in n for gs, note that
Zivzl arF kSl = 0 if Zf\il l; <'m and it is non-zero if Zf\il li =m (see Lemma.
In this case we have sz\il l;y; > my1 and the highest order in n is —my;. Hence, the
highest order of the sum (g1 4+ g2 + g3) may be a function of y;.

As g1 + g2 + g3+ o(n~*) = 0, the term of highest order of the sum (g; + g2 + g3) is then
zero. As we will see in the sequel, this allows us to derive y; and v.

We have already seen that an important role is played by the coefficients
ij:l agr®, Zszl Bir®, .... In the following sections, we will derive y; and v; for
classes of systems which may have some of these coefficients vanishing.

We start with the case of single chains, i.e. m = 1, for which the analysis for systems with
vanishing or non vanishing coefficients does not differ too much. The analysis in the case
of multiple chains, i.e. m > 2, needs in each case (vanishing or non vanishing coefficients)
an appropriate development to get y; and v; from the highest order of development in
the terms g1, go, and gs.

4.3 Single chains of poles

To complete the presentation and to facilitate the comparison between the previous
and new results, we recall the results presented in (Fioravanti et al., 2010) in the next
subsection.

4.3.1 The case where > Bk #0

First, the following theorem gives a more precise approximation of roots of large modulus
of the characteristic equation than that given in (2.5)).

Theorem 4.2. Let G(s) be a fractional neutral delay system defined by and suppose
that at least one root of the formal polynomial ¢4(z) defined in has multiplicity one.
If such a root, denoted by r, satisfies

N
> Bt #0, (4.7)
k=1

then for large enough n € 7Z poles of the neutral chain relative to r are approrimated by
ST = Ay +vp1 +o(n™H)
with A, given by @) and

N
T Zk:1 /Bkrk

(72mn)H Zivzl kayrk’

Un,i1 =
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Proof. Under the condition (4.7]), the highest order in n of g; is —u. Obviously, the
highest order of g3 is smaller than that of go, which is —y;. Therefore, y; = p and (4.3))
can be rewritten as

N N
T 1 _
(2mn)r DBt = > oyt +o(n™) =0,
J k=1 k=1
which completes the proof. O

Given a more precise approximation of neutral poles of large modulus as above, now our
interest is mainly on which side of the vertical line the poles are, in other words, to find
out the sign of R(v,,1) for n sufficiently large. This question is particularly important
when the asymptotic axis is the imaginary axis.

Recall from Remark that for a chain relative to a root of ¢4(s), its poles in the upper
and lower half-planes may lie on different sides of the asymptotic axis. Fortunately, for
the case considered in this subsection, these two parts of the chain may be on the same
side. This behavior is characterized in the next two corollaries.

Corollary 4.3. Let 0 < <1, v, 1 be given by (@ and let us denote

. , 1.9
fo:l koy,rk (4.9)

Then R(vy,1) <0 for all n € Z if and only if
R(K,) < — tan (%) IS(K,). (4.10)

Proof. Besides K, the only term of interest is J = (yn)™*, as sgn(R(vy,,1)) = sgn(R(JK,)).
Since n can be both positive or negative, this term is given by

e e () 2o (5).

Multiplying J by K, and getting its real part leads to

_ T o (P o
R(JK,) = T <cos ( 5 ) R(K,) £ sm( 5 ) \S(KT))
from which (4.10]) follows from the fact that 0 < pu < 1. O

Some remarks can be drawn from this corollary. First, the condition does not
depend on the delay 7. This means that for all 7 > 0 the chain of poles does not change
side with respect to the vertical line in question when the delay varies. Second, the
condition still holds if r is replaced by its complex conjugate 7, which is also a root
of the formal polynomial ¢4(z). Therefore, the chain relative to 7 lies on the same side as
the one relative to r.

As K, is independent of u, we can reformulate the previous corollary to give the critical
value of p as follows.
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Corollary 4.4. Let 0 < p < 1, vp1 be given by @) and its associated K, by .
Then, if R(K,) < 0, all poles of the respective chain asymptotic to the vertical line
R(s) = —In(|r])/7 will be on the left of this line if

garc an | — %(KT)
< Zorcton (57 ) (1)

Proof. This follows directly from Corollary (-3 O

In the case where R(vy, 1) = 0, further analysis is needed to determine the location of
poles. However, the procedure is similar to the one given in (Bonnet et al., 2011)) and
therefore will be omitted.

Now, we are interested in answering the question of stability of G(s) in the H-sense.

For systems without chains of poles asymptotic to the left of the imaginary axis, the
stability can be concluded if there is no poles in the closed right half-plane.

On the other hand, if there exist neutral chains of poles approaching the imaginary axis
from the left, we may have to consider the magnitude of the transfer function on the axis
in order to answer the question of H..-stability. This is the objective of the proposition
below.

Recall that we refer to poles in the closed right half-plane C as unstable poles.

Proposition 4.5. Let G(s) be a transfer function given as in and suppose that the
formal polynomial ¢4(z) defined in has at least one simple root of modulus one, the
other roots being of modulus strictly greater than one. We also suppose that every root of

modulus one which is denoted by r satisfies .

1. Suppose that R(vy,1) < 0 for all v and that G has no unstable pole of small modulus
(which could exist only in a finite number), then G is Hoo-stable if and only if
degp > degt + 1.

2. If there exists a root r for which R(vyp1) = 0, then the condition degp > degt + 1
is necessary for Hso-stability.

Proof. Let s = s, + 1 € R, we have

N N
p() + Y ak()e™T = Il |5 (sn) + D (6h(sn) — kran(sn)) e
k=1 k=1
S G R A G B T A S
~ Il p(sa)] Sn)+;<p(sn) ; p(sn)>

~T |77| ‘p Sn

asn — 0o, n € Z.

Recall that ngvzl kayr* is non zero by assumption.
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If 8(vp,1) # 0, then 7 is at least of order n™# and a necessary and sufficient condition of
H.-stability is that degp > degt + 1. If R(vy,,1) = 0 the condition is still necessary. [

The results of this subsection are illustrated later by Example [.1]in Section [£.5]

In the next section, the same stability analysis will be realized for other cases of systems
with single chains of poles, thus completing the analysis for this class of systems.

4.3.2 Other cases

Returning to the approximation of the characteristic equation around poles of a single
chain, we see that the terms of highest order are only constituted from those of g1 and go

given in (4.4)) and (4.5) respectively since the highest order of g3 (4.6]) is smaller than
that of go. While that term of g remains the same, i.e. (—vp1 Z]kvzl kayr®), for all cases

of single chains, that of g; is decided by its non-zero terms. Some examples are cases
where

° Zszl BrrF = 0and Z,ivzl Y,r® # 0 (the term of highest order of gy is 72# Zgﬂ r®/
(92mn)?),

o Zszl Brrk =0, 22\21 ver* =0, and Z,]Ll 8xr* # 0 (the term of highest order of
g1 is T30 Srk / (52mn)H),

e and so on.

Similarly, we easily obtain v, ; for the cases above by noting that in the development of
the characteristic equation around a pole the coefficient of the highest order is zero. In

general,
T Ty
= K, 4.12

Y1 (]27m> " ( )

with K, a function in r and the coefficients ay, B, ... in (2.3)), and z, € N. Note that
we get a value of x, for each root r of multiplicity one of ¢;(z) (2.4, where comes the
subscript. For example,

e if r satisfies the first case above, i.e. Zivzl Brr® = 0 and Zgzl ver® # 0, then
zr =2 and K, = Z]kvz1 vkrk/(zlivzl koyr®);

e if r satisfies the second case, i.e. Z]kvzl Brrk =0, Z;CVZI ver® =0, and Z]kvzl Sprk #
0, then z, = 3 and K, = S0 6% /(0| kagr®).

Now, as in the previous subsection, we can realize a similar analysis about the location
of the chain of poles relative to 7. Here, sgn(R(vy,,1)) = sgn(R(y~*"*K,)). Therefore,
R(vn,1) <0 for all n € Z, i.e. the chain is on the left of the asymptotic axis, if and only
if

cos (567«57T> R(K,) < — ‘sin (%) S(Ky)| -

(4.13)

However, (4.13]) does not hold for x,u = 2k + 1 for kK € N, 0 < p < 1. In that case,
we will be in the same situation as the case p = 1 (Bonnet et al., 2011), where either
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R(vp,1) =0 for all n € Z (when I(K,) =0) or R(vy,1) = ¢ # 0 for n positive/negative
(when (K,) # 0), meaning that respectively more approximation terms are needed or
we conclude to have unstable poles.

From all the above analyses about the location of poles of large modulus, the H,-stability
condition for systems with single chains asymptotic to the imaginary axis can be restated
as follows.

Proposition 4.6. Let G(s) be a transfer function given as and suppose that the
formal polynomial ¢4(z) defined in has at least one simple root of modulus one,
denoted r, the other roots being of modulus strictly greater than one.

1. Suppose that R(vy,,1) < 0 for all r and that G has no unstable pole of small modulus,
then G is Heo-stable if and only if degp > degt 4+ max,{z,}, where, for each r,
—x, s the order in n of vy 1.

2. If R(vn,1) = 0 for any r, then the condition degp > degt + max,{x,} is necessary
for H-stability.

Proof. As in the proof of Proposition , let us consider the numerator of G(s) at s on
the imaginary axis near poles of the neutral chain relative a root r. Let s = s, + 1 € JR,
we also have

N N
p(s) + D an(s)e”™ T =7 Il p(sa)l | Y kenr®
k=1 k=1
asn — oo, n € Z.
Here, if R(vy,,1) # 0, then n is at least of order n™*"#. O

4.4 Multiple chains of poles

While the stability analysis of single chains under different conditions results in similar
conclusions, the stability of multiple chains differs significantly from case to case.

In this section, we do not aim for a complete analysis of general cases but for a large class
of systems. This analysis reveals interesting different behaviors.

4.4.1 The case where m > 2 and Zivzl Brrk #£0

Under the same condition, an exhaustive Ho-stability analysis for neutral chains relative
to roots of multiplicity one of has been conducted in Subsection In this section,
multiple chains will be studied. The first step is also to approximate the pole location.
However, the analysis based on this approximation ends shortly.

Theorem 4.7. Let G(s) be a fractional neutral delay system defined by , and suppose
that at least one root of the formal polynomial ¢4(z) defined by has multiplicity
m > 1. If for such a root, denoted by r, the condition 1s satisfied, then for large
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enough n € Z, poles of neutral chains relative to those m identical roots are approximated
by
SpT = A\p +Vp1 + o(n*li/n"b)7

with A\, given by (@ and
Up1 = Vln_“/m, (4.14)

where N
|1 k
o= (- Z,V’“:lﬂkr . (4.15)
(92 > kM agrk

Proof. Because of the condition (4.7)), the highest order in n of g; is —u, which is obviously
higher than that of g3. Therefore, in order to vanish the highest order of d(s,,)/p(sn),
those of g1 and g» must be equal. Recall that the highest order of g3 is —my;. Then

y1 = p/m and from (4.3)), we obtain

N N
T k (_1)m m m k —u
o 2o ' K + o) =0
k=1 ’ k

then (4.15]) holds, which completes the proof. O

It is interesting to see that, in this case, the order in n of v, 1 is no longer a multiple of
as in the cases of single chains but —u/m.

Also, note that (4.14) and (4.15)) are identical to (4.8]) for m = 1.

Although approximations of poles of single and multiple chains seem to share a similar
form, we will show in the next corollary that they have a different position relative to
their asymptotic axis.

Corollary 4.8. Let G(s) be a fractional neutral delay system defined by . If a root

r of multiplicity m > 1 of the formal polynomial ¢ defined in satisfies , then
there exist neutral chains of poles on both sides of the corresponding asymptotic axis

R(s) = —1In(|r])/7.

Proof. Under the assumptions, vy, 1 is given by (4.14) and (4.15]) for neutral chains relative
to 7.

Recall from Remark that the location of poles of large modulus around the asymptotic
axis is decided by the sign of R(r4) in the upper half-plane, i.e. n > 0, and by the sign of
(R(v1) cos(pum/m) + I(v1) sin(um/m)) in the lower half-plane, i.e. n < 0.

First, we consider R(v1). Note that the equation of v{* (4.15]) has m distinct roots that
are equally distributed on a circle centered at the origin in the complex plane.

If m > 3, it is obvious that there exist both roots with positive and negative real part.

If m = 2, the two roots are symmetric with respect to the origin. Hence, there is always
one root with positive real part and the other root with negative real part except for the
case of two purely imaginary roots.
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In that case, R(v1) = 0 and (1) = £c # 0, then R(v1) cos(um/m) + (v1) sin(pr/m)
= +¢’ # 0 and thus in the lower half-plane there are one chain on the left and one chain
on the right of the asymptotic axis. O

In conclusion, if any multiple root of modulus one of (2.4]) satisfies the condition (4.7]),
then the system is unstable. Clearly, this condition does not depend on 7 and p, with
O<p<l.

In the next subsections, we progress in the analysis of the remaining cases and we start
in Subsection with the case of Z]kvzl Bk = 0.

4.4.2 The case where m > 2, S0 Bur® = 0, S0 kfBpr® # 0, Son, yr* #
0

In the previous case, all neutral chains relative to the same root r of approach the
asymptotic axis at the same rate since the corresponding approximation terms have the
same order in n. This may no longer occur for the current case as well as for other cases
that we will study later.

Theorem 4.9. Let G(s) be a neutral delay system defined by , and suppose that one
of the roots of the formal polynomial ¢4(z) defined in has multiplicity m > 1. If this
root, denoted by r, satisfies

N
> Bk =0, (4.16)
kj;l
> kBt #0, (4.17)
k=1
>k #0, (4.18)
k=1

then, for large enough n € 7Z, poles of neutral chains relative to those m identical roots
are approximated by
SpT = Ay 4+ vp1 +o(n™9),

with Ay, given by (@) and

Upa =vin ¥,

where for m = 2, y1 = u and vy satisfies the equation

vi = ok Th = k & k
5 Z E agr® — (2n)r Z kEBpr”™ + (2 kar =0, (4.19)
k=1 k=1 k=1
and for m > 3, (y1,1v1) takes m different pair of values below

T Zszl et
(s2m)m Sy kBt
g = K yml = (—1)mm!T“NZkN:1 kﬁkrk' (4.21)

(92w > kM agrk

Y1 = M, v = (4.20)




4.4. MULTIPLE CHAINS OF POLES 67

Proof. From the conditions —14.18: , we deduce that the highest orders in n of g1,

g2, and g3, which are given by (4.4)), @, and , are —2u, —my1, and —p — 41
respectively.

The following cases may occur in order to eliminate the terms of highest order of the
denominator at s,

2u=my1 < pp+ Y1 (
2u = p+y1 <myr (4.23
myr = p+y1 < 2p (
myr = p+y1 = 2u (

The case is eliminated as it cannot be satisfied for m > 2.
The case is equivalent to y; = u, m = 2 and, from , we have
T2 N 9 V1
sz'ykr +22N2kakr —WZkﬁkr +o(n™) =0
and then follows immediately.
When m > 2, it is easy to see that both and are satisfied.

From (4.23)), we deduce that y; = p and thus (4.3) can be rewritten as

T2m

N N
k nth k —2uy\ _
WZ')@CT —WZkﬂkr +O(n M)—O,
k=1 k=1

giving one value v; in (4.20)).

Other values of v are derived from the case (4.24), where y; = ;£5. In turn, (4.3)
becomes

(=)™ +
mlnmyt kaakr B ]27rn M nyi Zkﬁkr + O e y1)) =0,

giving m — 1 non-zero values of vy in (4.21). O

Remark 4.10. A previous version of the above theorem was stated in (Nguyen and Bonnet,
2012). However, the result about v, 1 for the case m > 3 was incomplete. Indeed, only
the value (4.20)) of v, 1 was given and the others values with different order in n were
missing.

As we have seen from (4.20]) and (4.21]) in the above theorem, due to different order of
Un,1, the chains of poles relative to a multiple root  with m > 3 approach the asymptotic
axis with different rates. An example of such a system is given in Example in Section

We recognize that /"' m >3 in (4.21)) has the same pattern as v, m > 2 in (4.15),

leading to the same conclusion on stability.
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Corollary 4.11. Let G(s) be a neutral delay system defined by , and suppose that
at least one root v of the formal polynomial cq(z) defined in has multiplicity m > 3,
satisfies (4.16) and (4.17). Then there exist neutral chains of poles on both sides of the
asymptotic axis R(s) = —In(|r|)/7.

Proof. The proof is similar to the one of Corollary O

Remark 4.12. The condition (4.18]) is omitted in the above corollary. Indeed, whether or
not the condition holds does not affect 1/1“_1 in , and thus the existence of a neutral
chain on the right of the asymptotic axis. Furthermore, the result in the corollary does
not depend on 7 and p, with 0 < p < 1.

Under the conditions in Theorem two chains relative to r of multiplicity two may
both lie on the left of the asymptotic axis. We will see such a system later in Example
[4:3]in Section Therefore, the complementary condition to ensure Hoo-stability of the
system in that situation is the objective of the following proposition.

Proposition 4.13. Let G(s) be a neutral delay system defined by , and suppose
that the formal polynomial ¢4(z) defined in has at least one root of modulus one of
multiplicity two, the other roots being of modulus strictly greater than one. We also suppose

that each root of modulus one of ¢4(z) satisfies —. If R(vp1) <0 and G has
no unstable poles of small modulus then G is Hxo-stable if and only if degp > degt + 2.

Proof. Under the assumptions, all the poles of G(s) are in the open left half-plane. Now,
G(s) is Hoo-stable if and only if G(s) is bounded on the imaginary axis. Therefore, let us
consider the magnitude of G(s) on the imaginary axis by first examining its denominator

d(s).

Let s = s, + 1, € jR, where s,, is one of poles of the neutral chain relative to a root r of
modulus one and of multiplicity two of ¢4(z). Recall that s, = (A, + vin™#)/7 4+ o(n™*)
and note that ®(\,,) = 0. Since R(vp,1) # 0, then 7, is at least of order n™#. In this case,
we can write 1, = nn~* + o(n™*), and thus s = [\, + (v1 + n7)n""]/7 4+ o(n™*), which
is of the same form as s,, recalled earlier if we replace 1| = vy + 7.

Therefore, the developments of the denominator of G' around s and s,, are the same. Note
that the development of d(s,) as |s,| — oo is obtained from (4.3|) by collecting terms of
highest order of g1, g2, g3 as follows

o) = (o) (L5520 o)

n2

where f(v1) is the left expression of (4.19). Similarly, d(s) as |s| = oo, s € jR near s, is
given by

n2k

i(s) = pls) (L) o))

Now, we will prove that f(v1 +n7) # 0. Let us denote V%l) and V£2) two roots of f(v1)

and first consider f(yg) +n7). We see that f(yil) +n7) = 0 if and only if Vgl) +nT = 1/52),
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which is in turn equivalent to

@ _ 0
p= 1 (4.26)

T

However, this condition cannot be satisfied because

(4.27)

Indeed, R(n) = —%(l/g))/’r since s € JR and %(1/52)) # 0 under the assumption R(vy, 1) <

0. Therefore, f (V%l) +n7) # 0. Similarly, we can prove that f (1/9) +n7) # 0. Hence, the
order in n* of the denominator of G(s) is degp — 2. O

While systems considered in the previous subsection were all unstable, we have been able
to find in this subsection systems with multiple chains asymptotic to the imaginary axis
which are Hy-stable. We will then continue our analysis for other cases in order to see in
which situation there may exist Hso-stable systems.

4.4.3 The case where m > 2, ch\; Berk =0, Z,ivzl kBprt =0, Z]kvzl k2 Bk
0, and 0 7t #0

As for the previous cases, pole location is considered first.

Theorem 4.14. Let G(s) be a neutral delay system defined by , and suppose that
one of the roots of the formal polynomial ¢4(z) defined in has multiplicity m > 1. If
this root, denoted by r, satisfies

Yr® # 0, (4.29)

N
>
k=1
N
> kK Ber* #£0, (4.28)
k‘;l
>

then, for large enough n € Z, poles of neutral chains relative to those m identical roots
are approximated by

SpT = Ap + Un1 +o(n™ YY),

with A, given by @ and

Uni =vin ¥,
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where for 2 <m <3, y; =2u/m and
i — (— 1)m+1m‘72“2 L er®
(y2m)2H Zk:l kmagrk
form =4, y1 = u/2 and v, satisfies

i ok, AT o k. T Se i
-3 k k
1 kz_l o+ 2(27)F ; Brr”® + (j2m)2 ;%r

and for m > 5, (y1,v1) takes one of m different pairs of values

N
y= 2o 2 e
2 (s2m)% S, k2 By
o B e GOm0 2Bt
m—2’ ! 2(y2m)H Z,]fv:l Emoy,rk

(4.30)

0, (4.31)

(4.32)

(4.33)

Proof. Under the assumptions, the terms of highest order in n of g1, go, and g3, which are

given by (4.4]), (4.5), and (4.6]), are —2p, —my;, and max{—p—2y1, —2u—1y1 } respectively.
Obviously, we just need to compare the first three orders as —2u > —2u — y;.

To determine y; and vq, we proceed similarly to the proof of Theorem [4.9]

The following cases may occur for the highest order of the development of the denominator

at s,
2p=my1 < p+ 2y,
20 = p+2y1 < my,
myr = p+ 2y <2,
2 =my1 = p+ 2y1.
These cases are respectively equivalent to
y1 =2u/m and m <4,
y1 = p/2 and m >4,
y1 =p/(m—2) and m >4,
y1 =p/2 and m=4.
Hence, from we obtain respectively

2u

T m .
7(]27m o nykr + m'nmyl Zakk r* +o(n7) =0,
2p H
T k T V1 2 k —2uN
(j27T7'L)2‘U' Z’Yk'r + 4(]27_[_”)“ 2!n2y1 kZﬁkk rT + O(TL ,LL) = Oa
=1

N

—1)ym I 2
LZQ R e S D ORI o(n ™) = 0

mlnmy1 j2mn)k 2ln2un pt

T - Z P+ vi Z apktr® + T vi XN: Buk’rt + o(n™?") =0
(j2mn)2m Tk 4Intn F (j2mn)k 2In20 k o
k=1 k=1 k=1
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which lead to (4.30), (4.32), (4.33)), and (4.31) respectively. O

Remark 4.15. Note that in the case 2 < m < 3, condition (4.28]) is not necessary and in
the case m > 5 condition (4.29) is not necessary (and we may conclude as well on the
presence of chains of poles in the right half-plane).

Some quick observation leads to the following conclusions on the stability of the system
in the current case.

Corollary 4.16. Let G(s) be a neutral delay system defined by , and suppose that
at least one root of the formal polynomial ¢4(z) defined in has multiplicity m > 2,
satisfies Zévzl Brrk =0, chvzl kBpr* =0 and

o for2<m <3, N yrk 40,

e form =4, Zgzl k2B #+ 0 and Zgzl Yer® #0

e form >5, Zgil k2Burk 0.
Then there exist neutral chains of poles on both sides of the asymptotic axis R(s) =
—In(|r])/T.
Proof. For 2 < m < 3 and m > 5, the proof is similar to that of Corollary @

Now, we consider the case of m = 4. By replacing v = x in (4.31)), we obtain

N

a? a 4k ah 245 k T2 N k
— k k —_— =0
4! ; kTt 2(92m)H ; Bir™ + (y2m)2m ;%r

Let us denote z1 and x5 the two roots of the above equation. Equation (4.31)) has at
least one value of 11 with positive real part except the case where both roots x1, x5 are
negative. However, we will demonstrate that this case does not exist.

The two roots of the equation satisfy
1274 30 K2 Br® 127+
Ty +x2 = — N = - r
(92m)1 >y kroyer® (g2m)H
where K, = S0 K28k ) ST K agrk

We consider € R and r € C\R.

If r is real, then x1 + x2 is not real. Therefore, z1 and x2 cannot be both real.

If 7 is not real, then 7 is also a root of (2.4). Denote j and x, roots corresponding to 7.
Hence, they satisfy

1274
/ I
x1 + 75 = (2r) K,.
Therefore o4
-
Ty + To + T+ hH = —W%(Kr)a

indicating that x1, z9, 2, and 2/, cannot be all real. O
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Corollary shows that if (2.4]) possesses a multiple root of modulus one satisfying the
conditions in Theorem then the system is unstable.

4.4.4 The case wherem > 2, S Bur* =0, S0 kBur® = 0, S0, k*Bur® #
0, Zivzl vert =0, Zszl kver® # 0, and Zszl S #£0

We continue one more step in this kind of development because this case presents an
interesting behavior. Besides systems which may be H,-stable, we will encounter here
those whose stability may not be concluded with the first approximation. Such systems
have not been seen in any of the previous cases with multiple chains.

As usual, we obtain the approximation of roots of large modulus of the characteristic
equation in the next theorem.

Theorem 4.17. Let G(s) be a neutral delay system defined by , and suppose that
one of the roots of has multiplicity m > 1. If this root, denoted by r, satisfies

N
> Bk =0, (4.34)
k=1
N
> kpurt =0, (4.35)
k=1
N
> K Bert #£0, (4.36)
k=1
N
> wrt =0, (4.37)
k=1
N
> ket £ 0, (4.38)
k=1
N
> sk #£0, (4.39)
k=1

then, for large enough n € 7Z, poles of neutral chains relative to those m identical roots
are approximated by
SpT = Ap 4+ vp1 +o(n™9),

with A, given by @ and

Up1 =vin 9,
where for m =2, y; = 3u/2 and
N k
2 2T Gkr (4.40)
(y2m)3m E{;V:l k2ayrk
form =3, y1 = p and vy satisfies

3

N N
Z k?’akr —I— ) Z Qﬂk — T Vl Z ")/k ;Lgu Z(Skrk =0, (4.41)
k=1
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and for m >4, (y1,11) takes one of m different pairs of values

M m—2 (_1)m+1m!7“ Z]kvzl k2 Bpr”
2(y2m)H Zszl kmagrk

or y1 = p and vy satisfies

Ty} Nkz ko T Nk k T3 N(S k_0
2(j27)H > KBt — (j2m)2H >kt + (32m)3H > ot =0.
JE 3 J k=1 J k=1

Proof. We deduce that the terms of highest order in n of g1, g2, and g3, which are given
by , , and (4.6), are —3pu, —my;, and max{—pu — 2y, —2u — y1} respectively.
Unlike the previous case where we can actually reduce the number of orders to consider,
for this case we cannot omit beforehand any of the two possible orders of g3, thus all the
four orders above have to be taken into account resulting in more possible cases which
may occur mong them. However, the same procedure as in the proof of Theorem [£.9] is
applied. O

For m = 3, Equation (4.41)) may admit all roots with negative real part (see Example
in Section . In such systems, the following condition on H, stability may be applied.
It is similar to the case in Subsection and is stated below without proof.

Proposition 4.18. Let G(s) be a neutral delay system defined by , and suppose that
has at least one root of modulus one of multiplicity three, the other roots being of
modulus strictly greater than one. We also suppose that each root of modulus one of

satisfies —. If R(vn1) # 0 and G has no unstable poles of small modulus then
G is Hyo-stable if and only if degp > degt + 3.

For other multiplicities, except for a special case when m = 2, we obtain at least one v, 1
of positive real part as stated in the next corollary.

Corollary 4.19. Let G(s) be a neutral delay system defined by , and suppose that
either of the following conditions is satisfied

e a root of has multiplicity m > 4 and satisfies -,

e a root of has multiplicity m = 2 and satisfies (4.34), (4.39), (4.37), and {4.39),
and u # 2/3.

Then there exist neutral chains of poles on both sides of the asymptotic axis given by .

Proof. For m = 2 with p # 2/3 and m > 4, the proof is similar to that of Corollary
L8 O

The special case of m =2 and p = 3/2 is analyzed as follows.

Corollary 4.20. Let G(s) be a neutral delay system defined by , and suppose that

w=2/3. If a root of has multiplicity m = 2 and satisfies (4.34), (4.39), (4-37), and
([4.39), then for this root either R(vp1) = 0 for alln € Z or R(vp1) = £c/n with ¢ # 0.
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Proof. With p = 2/3, then v, 1 = v1/n and (4.40|) becomes

2 N 5 k
% T 1 OkT (4.42)

vi = — . :
2m2 Y KPogrk

If Zi\;l St/ Zivzl k2apr® > 0, then the two values of v are purely imaginary. In this
case, from Remark we have R(vp, 1)n<o = 0.

Otherwise, R(v1) = £¢ # 0. O

In the case above, in order to determine the location of the corresponding chain of poles
we need to continue the approximation to at least v, o.

Remark 4.21. If m = 2, then we obtain v, 1 = v1/n with v; given by (4.40|) independently
of the conditions (4.36)) and (4.38]).

4.5 Examples

Example 4.1. (Subsection [4.3.1))

First, let us consider the system with the transfer function given by

s+ (=1.95+ s05)e=5 4 (s — 505 +0.3)e2s"

Gi(s) =

For this system, the fractional order is ;4 = 0.5 and the delay is 7 = 1. It is easy to
see that the coefficients of the development ¢ (s)/p(s) are oy = —1.9, 81 =1, as = 1,
32 = —1, and thus the formal polynomial is ¢;(z) = 1 — 1.9z + 22, which has two complex
conjugate roots r = (19 £ 3v/39) /20 of multiplicity m = 1. Since |r| = 1 for each r, then
the asymptotic axis defined by R(s) = —In(|r|)/7 is the imaginary axis.

As Zizl Brr* # 0 for both r, Theorem is applied and we obtain v, ; = (—0.1636 +
70.1185)/n%5 for r = (19 + 3v/39)/20 and v,1 = (—0.1185 + 70.1636)/n%° for r =
(19 — 7v/39)/20. Therefore, in the upper half-plane, i.e. n > 0, the two neutral chains
of poles are on the left of the imaginary axis. So are the chains in the lower half-plane
since poles of G(s) are symmetric about the real axis, which is due to the fact that the
denominator of G(s) is a quasi-polynomial with real coefficients.

The same conclusion about the location of neutral poles can be drawn using Corollary
4.4 The critical value of u is p. = (2/m)arctan(—R(K,)/|S(K;)|]) = 0.8989 with
K, = Zi:l Ber®/ 22:1 koyr®. Recall that p, is the same for both r. Since u = 0.5 < e,
then the two neutral chains of poles relative to r are on the left of the imaginary axis as

we can see in Figure

In addition, all poles of small modulus of the system are in the open left half-plane.
Then Proposition shows that G is Hso-stable since degt = degp — 1. Indeed, G(s) is
bounded on the imaginary axis, which can be seen in Figure
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Figure 4.1 — Neutral chains of poles of G (s)
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Figure 4.2 — Bode diagram of G1(s)

If 4 =0.9 > ., then chains of poles go to the right of the imaginary axis (see Figure
4.1D)).

Example 4.2. (Subsections and [4.4.2)

The system is given by

Go(s) = (s + (=25 + 5" +0.25)e ™ + (s — s"7)e2*) 71,

We see that the delay is 7 = 1 and the fractional order is g = 0.5. The polynomial ¢4(z)
given in has root r = 1 of multiplicity two, then the system has two chains of poles
asymptotic to the imaginary axis. The system satisfies Ei:l Brrk =0, Zi:l kByrk # 0,
and Zz:1 ver® # 0, then Theorem is applied. Equation has a double root,
which gives v, 1 = (—0.1410 + 0.14107) /n®® for n — +o00. Therefore, the two neutral
chains are on the left of the imaginary axis.

If some parameters of Ga(s) change slightly, the system might fail to satisfy the condition
22:1 Ber® = 0, and thus is no longer stable due to Corollary This remark fits in the

following system
G5 (s) = (54 (=25 + "5 +0.25)e™ + (s — (1 + A)s"P)e 25) 7L,

If A # 0, then Zi:l Bir* # 0, thus Corollary states that the system has a chain of
poles in the right half-plane.
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400 : : : : : 400 : : : : :
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Figure 4.3 — Neutral chains of poles of Ga(s) and G5'(s)
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Figure 4.4 — Bode diagram of Ga(s)

We observe the chains of poles of Ga(s) and G5'(s) with A = 0.01 in Figure and
4.3bl The unstable chain of G5* crosses the imaginary axis from left to right.

Proposition shows that Ga(s) is stable in the sense of Hyo-stability. Indeed, the
system does not have unstable poles and is bounded on the imaginary axis (see Figure
. Clearly, the system defined by (s’ 4+ 1)Ga(s) is unstable since the order of the

numerator is too high making the transfer function unbounded on the imaginary axis (see

Figure .
Example 4.3. (Subsection [4.4.2))
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Figure 4.5 — Bode diagram of (5% + 1)Ga(s)
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Figure 4.6 — Neutral chains of poles of G3(s)

We consider the system with the transfer function given by

Gs(s) = ("8 4+ (=35"8 + 3504 4 1)e™% + (3598 — 5504 + 2)e2¢
+ (—80'8 + 280.4 + 3)8_38)_1.

Here, we see that u = 0.4, 7 = 1, and ¢4(2) = 1 — 32 + 322 — 1 with a root » = 1 of
multiplicity m = 3. Therefore, the chains of poles approach the imaginary axis.

Since Zzzl Bk = 0, Zzzl kBir* = —1, and Zzzl ver® = 6, then Theorem is
applied. More precisely, since m = 3, we obtain from and three values of v, 1,
which are (0.2140 + 70.6585) /n%2, (—0.2140 — 70.6585) /n"2, and (—2.3272+ 71.6908) /n"4.
Therefore, the system has one chain of poles on the right and two chains on the left of the
imaginary axis, which are shown in Figure It is interesting to note that one chain
approaches the imaginary axis faster than the other two, which is due to different orders
of Un,1-

Example 4.4. (Subsections and [4.4.4)

The system is described by the transfer function
t
G4(S) = ﬂ (4.43)

where the characteristic equation of the system is a product of the characteristic equations
of 3 single time-delay systems and is given by

d(s) = [(s*% +1) + 5% 7)(s% +2) + (572 = 1)e[(s*% + 3) + (s" + 1)e™]
=590 4 65%% 4+ 11572 + 6 + (3520 + 125" + 10592 — 1)e™*
+ (380'6 + 680'4 _ 280'2 _ 1)6725 + (80'6 . 80.2)6735.

The formal polynomial of this system is ¢g(2) = 1 + 32 + 322 + 23 and has r = —1 of
multiplicity m = 3. There are then 3 neutral chains of poles approaching the imaginary
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Figure 4.7 — Poles of G4(s)
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Figure 4.8 — Bode diagram of G4(s) with t(s) =1

axis. The conditions in Theorem are all satisfied. Therefore, v, 1 = vin~ %2 where
vy is given by and has three values —0.6585 + 0.2140y, —1.3170 + 0.42797, and
—1.9756 + 0.64195. The upper parts of the chains of poles are then on the left of the
imaginary axis and so are the lower parts since poles are symmetric about the real axis.

We obtain the same values of v, 1 if considering separately each factor of the characteristic
equation using the results in Theorem [£.2]

The poles of small modulus are also in the open left half-plane as we can see in Figure
[4.7 Therefore, Proposition can be applied to determine the necessary and sufficient
condition for the system to be Hoo-stable. The system is H-stable if and only if #(s) is a
constant. Figures and show the magnitude of the transfer function when t(s) =1
and t(s) = §%2 + 2 respectively. The transfer function is bounded in the former case and
unbounded in the latter one.

4.6 Conclusion

Fractional delay systems of neutral types where poles approach the imaginary axis is
delicate for stability analysis. In this chapter, we answer the stability question in the sense
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Magnitude (dB)
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Figure 4.9 — Bode diagram of G4(s) with #(s) = s%2 42

of H,o-stability for a large class of systems, in particular systems with multiple chains
asymptotic to the imaginary axis, and the necessary and sufficient conditions obtained
are related not only to the location of poles w.r.t. the imaginary axis but also the relative
order between the numerator and the denominator of the transfer function. These results
will also be of use to decide on H,-stabilizability of several classes of fractional delay
systems by rational or fractional controllers (with delays). The deployed method can be
used for other cases which are not examined here. However, it requires time and effort
for each particular system.
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5.1 Introduction

For the fractional systems considered in the previous chapter, if the fractional order
p € (0,1) is replaced by = 1, then they will become classical systems with commensurate
delays. The stability of this class of delay systems has been studied intensively (see for
instance (Bellman and Cooke, |1963; Richard| 2003 Michiels and Niculescu, |2007)) and
the references therein). Despite the large literature, the critical case of poles asymptotic
to the imaginary axis has not been studied thoroughly and the available results are at
the same point as those for fractional systems. More precisely, in the frequency domain
(Bonnet et al. [2011]) considered the case of single chains and also a particular case of
multiple chains where the characteristic equation was a product of characteristic equations
of systems with single chains. However the general case of multiple chains has not been
addressed. In the time domain, neutral systems with poles approaching the imaginary
axis was studied in (Rabah et al., |2012)). Sufficient conditions for asymptotic stability
were obtained for single chains of poles but the case of multiple chains was still left
open.

This chapter aims at extending the work in (Bonnet et al., |2011) to systems of the
second case. Based on the similarities with fractional systems, approximations of the pole
location for classical systems are obtained from the results in the previous chapter by
simply replacing the fractional order u € (0,1) by = 1. Nevertheless, the analysis of
these approximations may lead to more conservative conclusions in the case of classical
systems. For clarity of presentation, we recall the similar results without proof and only
provide proofs for new results.

This chapter has the same organization as the previous chapter. First, we recall the
systems to be considered in Section [5.2] The cases of single and multiple chains of
poles are studied in Sections and respectively. Illustrative examples are given
in Section [5.5 Finally, in Section [5.6) we conclude the chapter with some final remarks
and a discussion about the relation between the results presented here (in the frequency
domain) and those in (Rabah et al. [2012) (in the time domain).

5.2 Neutral time-delay systems

We consider neutral systems with commensurate delays whose transfer function is given

by (2.2) and is recalled here.

G(s) = ——) - (5.1)
p(s) + kgl qr(s)eksT

where 7 > 0 is the delay, t, p, and g for all £ € Ny are real polynomials, degp > degt,
degp > degqy, for all £ € Ny, and degp = deg gy, at least for one k € Ny in order to deal
with proper neutral systems.

We refer the reader to Subsection for some basic facts regarding these systems.
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Recall that we denote s,, a pole of G(s) relative to a root r of the formal polynomial ¢4(z)
defined by (2.4)) and assume that s, has the form

SpT=Ap+VUn1+Un2+...+Vpp+ o(n_4) (5.2)
with
An = —1In(r) + y2mn
and
Vi
Vn’i - nYi

fori=1,...,M where v; Z0and 0 < y; < ... < yp < 4.

In the next sections, we will first be interested in determining v, 1 in different cases since
the sign of R(v,,1) indicates in which side of the asymptotic axis the poles are. If knowing
Up,1 is not enough to know the location of poles around the asymptotic axis, we will
proceed to determine v, . For that purpose we develop d(s)/p(s) at s, of large modulus
as follows

d(sn)

Do) gt+g+gs+on ) =0 (53)
where
N - N 2 N
k -1 k -1 k
k=1 k=1 k=1
’7'3 N k ’7'4L N k
- ) 4
+ 2 ; K+ (2rn)t ; exr”, (5.4)
M M L
(— )Z li (Hi:1 Vf) N M
g2 = M M Z akrkkz:i:l lia (5.5)
(U1 seenlar ) EL(4) (Hi:l lz'!) nimlivi (T
and

) Zﬁlﬂ“kka 1

(—1)Z¢]\illi (Hl\fl 1;
g Z
gp=——(1+0m™") Y

s (11,0000 EL(3) (HM ll) ntL iy

2 (*1)21&1” (wa1 v

+ (1+0(n™) Z
(s2mn)? (I1,lar)EL(2) <Hz 1l '> nXis livi

C oy (~1)ZEt (T, v

+ 3 M
(J2ﬂ—n) (I1,-,Iar)€L(1) (Hi]\illi!) s livi

) Z e E T

> 25 Rl (5.6)

5.3 Single chains of poles

The chain of poles corresponding to a single root of the formal polynomial ¢4(z) defined
in (2.4) is a single chain.
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In this section, we determine the relative location of single chains of poles w.r.t. their
asymptotic axes and derive necessary and sufficient conditions for the system to be
H-stable when it is applicable.

5.3.1 The case where 1 Bir* #0

This subsection recalls the results obtained in (Bonnet et al., [2011]) but presenting them
in the framework adopted here (see ([5.2))) which indeed allows us to extend some of them
in the next subsection.

The next theorem, which approximate poles in a neutral chain, can be obtained from
Theorem by changing the value of u to one.

Theorem 5.1. Let G(s) be a neutral delay system defined by and suppose that at
least one root of the formal polynomial ¢q(z) defined in has multiplicity one. If such
a root, denoted by r, satisfies

N
> Bt #0, (5.7)
k=1

then for large enough n € 7Z poles of the neutral chain relative to r are approrimated by
SpT = Ap 4+ Vn1 + o(n_l)

where Ay is given by @ and

Up1 = ulnfl

with

T ZkN:1 Bkrk
vy = N P (58)

927y oy kogr
The sign of the real part of the above approximation is analyzed in the following corol-
lary.

Corollary 5.2. Let G(s) be a neutral delay system defined by . Suppose that r is a
root of of multiplicity one and satisfies . Then the values of v1 relative to r
and 7 have either R(v1) =0 or R(v1) = £c # 0.

Remark 5.3. For the classical systems considered in this subsection, in contrast with the
case of fractional neutral systems, the sign of v, 1 is not sufficient to detect a chain of
poles lying on the left of the asymptotic axis.

When R(v1) = 0, the next approximation may be needed.

Theorem 5.4. Let G(s) be a neutral delay system defined by . Then the neutral
poles corresponding to each root r of multiplicity one satisfying are approximated by

1 V1 V2 —y2
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where A\, is given by (@, V1 s given by (@, y1 =1, yo = 2 and vy is given by

7 In(r) Zgzl Bk 4+ 12 Zgzl ek — 27T2V12 Zgzl aprfk? — 2nTin Zivzl Birkk

Vo =
(y2m)2 Zévzl aprkk

For some examples of systems with R(r2) < 0, see (Bonnet et al., 2011)). In addition,
some systems there have no unstable poles of small modulus.

However, all poles on the left of the imaginary axis is not sufficient for H.-stability
if there are chains of poles asymptotic to the axis. In this scenario, the next theorem
provides necessary and sufficient stability condition.

Theorem 5.5. Let G(s) be a transfer function defined by and suppose that G(s)
has no unstable pole of small modulus. Suppose also that the formal polynomial ¢4(2)
defined in has at least one root of multiplicity one and modulus one which satisfies
. The other roots of ¢4(z) are of modulus strictly greater than one. Suppose that
R(v2) < 0. Then G is Hy-stable if and only if degp > degt + 2.

5.3.2 Other cases

In the previous subsection, we consider single roots r of the formal polynomial ¢4(z)
defined in 1) satisfying the condition Z]kvzl Brrk # 0.

If a root r of multiplicity one satisfies other conditions involving the coefficients ay, Bk, . - .
defined in ({2.3), then v, ; has the form

T T
= K 5.9
V.1 (ﬂwn) " ( )

with K, a function in r and ay, Bk, ..., and z, € N,

Note that we get a value of x, for each root r of multiplicity one of ¢4(z), where comes
the subscript. For example, if r satisfies Z]kV:1 Brr =0 and Z]kV:1 ver® # 0, then x, = 2

and K = S50 e/ (SRl bowr®).
By analyzing v, 1, we draw the following conclusions.

o If z, =2k —1, k € N, then 7 /(y27mn)* € yR. Similar to the case considered
previously, for all values of vy relative to r and 7 we have R(v1) = 0 or R(v1) =
+c¢ # 0. In the former situation further approximation may be needed while in the
latter the system is unstable.

o If z, is even, then sgn(vy, 1) = sgn(RN(K,)) when z, = 4k, k € N and sgn(v,,1) =
—sgn(R(K,)) when x, =4k — 2, k € N.
In the case of x, being even, it may happen that (v, 1) < 0 and the following proposition

can be used to verify whether the system is Ho-stable.

Proposition 5.6. Let G(s) be a transfer function given as and suppose that the
formal polynomial ¢4(z) defined in has at least one simple root of modulus one,
denoted 7, the other roots being of modulus strictly greater than one.
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1. Suppose that R(vy,,1) < 0 for all r and that G has no unstable pole of small modulus,
then G is Hoo-stable if and only if degp > degt+ max,{y1}, where, for each r, —y;
is the order in n of vy, 1.

2. If R(vp,1) = 0 for any r, then the condition degp > degt + max,{y;} is necessary
for Hyo-stability.

5.4 Multiple chains of poles

The chains of poles relative to a multiple root of the formal polynomial ¢;(z) defined by
(2.4) are called multiple chains. The poles of these chains approach a same set of points
on the vertical line defined by R(s) = —In(|r|)/7 (2.7).

5.4.1 The case where m >2 and Y1, fur* #0

The approximation of neutral poles is given in the next theorem. Analyzing this ap-
proximation yields the same conclusion as in the fractional case presented in Subsection

44T

Theorem 5.7. Let G(s) be a neutral delay system defined by , and suppose that at
least one root of the formal polynomial ¢4(z) defined by has multiplicity m > 1. If
for such a root, denoted by r, the condition

N
> Berk #0 (5.10)
k=1

is satisfied, then for large enough n € Z, poles of neutral chains relative to those m
identical roots are approximated by

SpT = Ap + Vn1 + o(nfl/m),

with A, given by (@) and

Up1 = Vln_l/m, (5.11)

where

e SV k
= (1t T e O (5.12)
92Ty ey kM agrk

Corollary 5.8. Let G(s) be a neutral delay system defined by . If a root r of

multiplicity m > 1 of the formal polynomial ¢; defined in satisfies , then
there exist meutral chains of poles on both sides of the corresponding asymptotic axis

R(s) = —1In(|r])/T.
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5.4.2 The case where m > 2, S0 | Bk =0, S kBur® # 0, S0, yar #
0

The similar class of fractional systems is studied in Subsection However, the
approximation of pole location for the classical systems here leads to different conclusions
in some situations.

Theorem 5.9. Let G(s) be a neutral delay system defined by , and suppose that one
of the roots of the formal polynomial ¢4(z) defined in has multiplicity m > 1. If this
root, denoted by r, satisfies

N
> Bt =0, (5.13)
k=1
N
> kpert #£0, (5.14)
k=1
N
> rt #£0, (5.15)
k=1

then, for large enough n € Z, poles of neutral chains relative to those m identical roots
are approximated by

SnT = Ap + Vp1 +o(n™ %),

with A\, given by (@ and

Uni =vin Y,

where for m =2, y1 = 1 and vy satisfies the equation

vi T 2
1 2 k 1 k k

= = 1
5 E k*agr o E_ kBrr™ + (2n)? g—lfykr 0, (5.16)

and for m > 3, (yi,v1) takes m different pair of values below

y =1, v = 72%1 et : (5.17)
921y ey kBr®
et pet o GO R b (5.15)
m—1 21 SN kmayrk

Corollary 5.10. Let G(s) be a neutral delay system defined by , and suppose that
at least one root r of the formal polynomial ¢4(z) defined in has multiplicity m > 3
and satisfies and , Then there exist neutral chains of poles on both sides of
the asymptotic azis R(s) = —In(|r])/T.

Remark 5.11. The conclusion in Corollary is drawn from analyzing the values of 1

given in (5.18]) and not from (5.17). Therefore, it does not depend on the condition (/5.15))
which is omitted in the corollary.
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Corollary 5.12. Let G(s) be a neutral delay system defined by . Suppose that r is
a root of of multiplicity m = 2 and satisfies , and . Then either

R(v1) =0 for all values of vy relative to r and T or at least one value of v1 has strictly
positive real part.

Proof. Denoting V;l) et sz) roots of 1' we have

T >y kBr"

(1) (2)
v Hry = — .
! ! 3 K2y rk

If r is real, then I/£ ) (2) € JR. Thus R(1, (1 )) + R(v (2)) = 0. The conclusion is then
obvious.

If r € C\R, then 7 is also a root of multiplicity two of Denoting ui(l) , 1/1(2) roots of
(5.16)) corresponding to 7, we have

I/F) + I/§2) + 1/1(1) + yim) = ‘7 M e R
T Zk | Kok

Therefore
RY) + R + RED) + R =0

from which the conclusion is immediately drawn. O

Remark 5.13. For m > 3, the system is unstable in both classical and fractional cases.
Nevertheless, for m = 2, while v, 1 may allow one to conclude that the chains of poles
are on the left of the asymptotic axis in the fractional case, that conclusion is impossible
in the classical case. This was the same scenario occurring to single chains of poles in

Subsection [5.3.11

If all values of vy relative to r and 7 are purely imaginary, we do not know yet on which
side of the asymptotic axis the corresponding chains of poles lie. If there is no other factor
allowing one to conclude that the system is unstable, we need to approximate the poles
further in order to reach a conclusion. This is the objective of the next theorem.

Theorem 5.14. Let G(s) be a neutral delay system defined by . Suppose that a
root v of multiplicity m = 2 of the formal polynomial ¢4(z) defined by satisfies

, and (5.15). Suppose also that in the approzimation of the neutral poles
corresponding to r which is given by

1 141
— Yy
Sp = </\n -+ nm) + o(n 1)
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with A\, given by (@, y1 =1 and vy given by , V1 satisfies the conditions

N 3 N
kU 3k T V1 2k
2 )3kzékr —ykZakk:r Zﬁk‘
=1 =1

2
fn(yl) A\ 2T ln Zf}/k

(72m)3
—Tln(r)y Zﬂ krk — T2 v i\[: krF 0 (5.19)
k=1 k=1
N - N
falr1) = — 1 kzlakk:?r’f o ;Bkkrk #0. (5.20)

Then the approximation of the neutral poles can be extended to
S =~ (/\ + o) o)

where yo = 2 and vy is given by

fn(Vl)
fa(n)

Proof. Our objective is to find the next approximation term v /n¥? of s, with vy # 0
and s > y1. To do that, in (5.3) we develop 1/sh, (with p € N) more precisely as follows

511;1 - (ﬂfn)p <1 + T;T(;) + O(n—2)) . (5.22)

vy = (5.21)

Now we will prove that yo = 2 is the appropriate value.

If yo < 2, then the development (5.3) can be rewritten as

filv1) — o Zdl(_i_yylj +o(n~(+1)) = 0

where fi(v1) is the left expression in (5.16) and fi(r1) = 0. Consequently, v = 0 which
does not satisfy the requirement.

If yo > 2, then (j5.3) becomes

fi(v) + fné?) +o(n™3) =0

which cannot happen since fi(v1) =0 and f,(v1) # 0.
Therefore y, = 2 and ((5.3) becomes

fi(n) + L "7513/1) — 1 ‘Z(f?jg +o(n73) =0. (5.23)

From this, the result is immediate. O

Remark 5.15. Note that f,,(v1) = f{(v1). Then, the assumption f, (1) # 0 implies that
vy is not a double root of fi, because otherwise f](v1) = 0.
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There exist systems with m = 2 and all purely imaginary v; that have all values of 15
with negative real part. Example is one such system. In that case, the following
criterion allows one to determine the Ho-stability of the system.

Theorem 5.16. Let G(s) be a neutral delay system defined by satisfying the following
conditions

e GG has no unstable poles of small modulus.

e the formal polynomial has roots of modulus one and all these roots, denoted by
r, are of multiplicity 2 and satisfies , , and .

e the poles associated with each root of are approzimated by s, = Ay + Vp 1 +
Upo + o(n_Q) where vy, 1 = vin~! with vy given by and satisfying and
5.20)), vno = van™2 with vy given by and R(vp2) < 0.

Then G is Hoo-stable if and only if degp > degt + 3.
Proof. We consider the module of the denominator of G at a point s on the imaginary
axis near a pole s, relative to a root r of modulus one of (2.4]). Let s = s, + 1, € JR.
Recall that
1 v v
Sp = — ()\n + 24 % + o(n_2)>
T n o n

and R(\,) =0, N(v1) = 0, and R(r2) < 0. Therefore 1, is at least of order n=2. In this
case, we can write

M = % + o(n™2).
Therefore,
1 v Vo + T _
s:sn—i—nn:()\n—l—l—i- 2 277+0(n 2)) (5.24)
T n n

We see that s has the same form as s,, if we replace /4 = v + 71 in the above expression
of s. Therefore, the approximation of d(s) as |s| — oo is similar to that of d(s,) as
|sn| — o0.

We can rewrite the approximation (5.3)) of d(sy) as |sp| — 0o as
d(sn) = plsn) (f ) | ol o(n—3))

n2 + n3
where f1(v1) is the left expression in (5.16|) and fa(v1,10) = fr(v1) —vafa(v1) with f,(v1)
and fq(v1) given by (5.19) and ([5.20) respectively. Similarly, we obtain the approximation
of d(s) as |s| — oo as follows

d(s) = p(s) <f1(”1) S G R o(n_3)) .

n? n3

Note that fi(v1) = 0. Now we prove that fa(v1,v2 + m7) # 0. From we see that 19
is the only root of fa(rq,.). Consequently, if fo(v1,v2 + 79) = 0 then n = 0. However,
this cannot happen. Indeed, since s € jJR, then from we derive that (o +71) =0
and thus R(n) = —R(v2)/7 # 0. Therefore, fo(1q,v2 + 1) # 0. Hence the order of the
denominator of G(s) is n~(%=3) where dy is the degree of p(s). O
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5.4.3 The case wherem > 2, S0 | Bur® =0, S0, kBt = 0, S0, k2 Bk #
0, and Zivzl Yer® #£0

For this class of classical systems, both the approximation of pole location and the
conclusions drawn from it are the same as those of fractional systems satisfying the same
conditions (see Subsection [4.4.3)) except for m = 2.

Theorem 5.17. Let G(s) be a neutral delay system defined by , and suppose that
one of the roots of the formal polynomial cq4(z) defined in has multiplicity m > 1. If
this root, denoted by r, satisfies

N
> Bk =0, (5.25)
k=1
N
> ket =0, (5.26)

k2 Byr® # 0,

Wr® # 0, (5.27)

k=1
N

k=1
N

k=1

then, for large enough n € Z, poles of neutral chains relative to those m identical roots
are approximated by
SnT = Ap 4+ Un1 +o(n™9),

with Ay, given by (@ and
Upa1 =vin U,

where for 2 <m <3, y; =2/m and

—1)mt1lp1 -2 N k
y;n:( L D e (5.28)

(727)2 Zszl Emoygrk

form =4, y1 =1/2 and v satisfies

1/4 N 1/27' N 7_2 N

1 4 k 1 2 k k

— E k + —— E k + =0 5.29
et kT it Ber (y2m)? 2:1 Tk ’ (5.29)

and for m >5, (y1,1v1) takes one of m different pairs of values

N
1 2 27y Atk
927 chvzl k2B;rk
(,1)m+1m!7_ Zévzl k2 Brk

! g4 Zivzl k™ ayrk (5:31)

(5.30)

The same stability results as in the case of fractional systems are obtained for m > 3.
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Corollary 5.18. Let G(s) be a neutral delay system defined by , and suppose that
at least one root of the formal polynomial ¢q(z) defined in has multiplicity m > 3,
satisfies chvzl Bk =0, Zszl kBpr* =0 and

e form =3, ch\[:l Yer® £ 0,
e form =4, Z]kvzl k2Bir* # 0 and Z]kvzl Yer® £ 0
e form >5, Zgﬂ k2BirF # 0.
Then there exist neutral chains of poles on both sides of the asymptotic axis R(s) =

—In(|r])/T.

In the next corollary, we show that when m = 2, in most cases we will have chains of
poles on both sides of the asymptotic axis.

Corollary 5.19. Let G(s) be a neutral delay system defined by , and suppose that v
is a root of multiplicity m = 2 of the formal polynomial ¢4(2) defined in and r satisfies
, (9.20), and . Then either R(v1) = 0 for all values of vy corresponding to r
and 7 or V(1) = ¢ # 0.

Proof. When m = 2, ((5.28)) becomes
T K, (5.32)

where K, = S0 e/ SON_ | 2oy

If K, <0, then R(v1) = 0 for two values of v1. If r is not real, then 7 is also a root of
¢4(z) and K7 = K, < 0. Hence the two values of vy relative to 7 also has (1) = 0.

In other cases of K, it is obvious that (v;) = +c # 0 for v; relative to r and 7. O

As usual, in the case where (1) = 0, further approximation may be needed.

5.4.4 The case where m > 2, Zgﬂ Bert =0, ngvﬂ kByrk =0, chvzl k2 Byrt
0, S r® =0, S0 kpr® #0, and SN 6k # 0

The similar class of fractional systems considered in Subsection [£.4.4] has been showed
to include systems whose stability cannot be determined with v, ; alone. This behavior
is rare for fractional systems but is quite common for classical ones as we have seen in
many of the cases considered so far in this chapter.

Interestingly, we will see in this subsection that while some fractional systems exhibit
that behavior, the classical counterparts do not and vice versa.
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Theorem 5.20. Let G(s) be a neutral delay system defined by , and suppose that
one of the roots of has multiplicity m > 1. If this root, denoted by r, satisfies

N

> Bk =0,
k=1

N

Z kﬁkrk = 0,
k=1

kQﬁkrk # 07

WE

k=1

r}/krk = 07

keyer® # 0,

6krk 75 O)

M= 1= 11

i

1

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

then, for large enough n € Z, poles of neutral chains relative to those m identical roots

are approximated by
SpT = Ap + U1 +o(n™ YY),

with A\, given by (@ and

Up1 =vin Y1,
where for m =2, y; = 3/2 and
(52m)3 S| K2ayrk’

v =

form =3, y1 =1 and v1 satisfies

N 2
1

V3 TV N T2V1 N 7_3 N
i 3k 25 k K k

T k — k - — k — opr® =0, (5.39
3 2—1 ot kE_l Brr (22 k§—1 W oy ki_l kT (5.39)

and for m >4, (y1,v1) takes one of m different pairs of values

(—=1)m*timlr Zgﬂ k2 Bjrk

gam SN kmagrk

1 m—2
[ v =
Y1 9’ 1

oryy =1 and vy satisfies

2
™

k2B, L Nk by T Nak—o
i 2R <J2w>22 W E (327r)3z R
k=1

k=1 k=1

For multiplicities other than m = 3, we obtain at least one v, 1 of positive real part as

stated in the next corollary.
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Corollary 5.21. Let G(s) be a neutral delay system defined by , and suppose that at

least one root of has multiplicity m = 2 or m > 4 and satisfies -. Then
there exist neutral chains of poles on both sides of the asymptotic axis given by .

Now, we analyze the location of poles for m = 3.

Corollary 5.22. Let G(s) be a neutral delay system defined by , and suppose that
at least one root of has multiplicity m = 3 and satisfies —. Then either

R(v1) = 0 for all values of vy relative to r and T or at least one value of v1 has strictly
positive real part.

Proof. 1If we denote Vfi), 1 =1,2,3 the values of vy, then from 1} we deduce that

2 3 3T
+V£)+V§):‘727KT

o
ith K, = (X anek?rF) /(S0 aork’r"
Wi r = (O pm1 1 k7TY) /(D= o kK0T,

If r is real, then

§R(1/§1) + I/iQ) + I/%g)) =0.

If r € C\R, then 7 is also a root of the formal polynomial. Denoting Vi(i), 1=1,2,3 the
values of v for 7, then yil) + V£2) + yf’) + 1/1(1) + 1/1(2) + 1/1(3) = 67R(K,)/(y2m), and thus

9?(141) + 1/52) + Vf)’) + 1/1(1) + 1/1(2) + 1/1(3)) = 0. O

Remark 5.23. At the approximation concerning v, 1, we cannot determine stable classical
systems while it may be possible for fractional ones. The same situation is encountered
in the cases m = 1, Zszl Brrk # 0 (see Subsection } and m = 2, Zi\[zl Brrk =0,

chvzl kBirk # 0, ch\;l Yr® # 0 (see Subsection .

However, this phenomenon is not general, for instant it does not happen for the classical
system in Example [5.6]

When $(v;) = 0 for r and 7, we can determine v, o by similar arguments to those of
Theorem [5.141

5.5 Examples

Example 5.1. (Subsection |5.4.1))

1

G = .
1(8) s?2+ (282 —s+5)e™* + (s — 3s)e™ 2

We have a1 = =2, f1 = —1, 71 =5, as =1, fo = =3, 79 = 0. Then

Ca(z) =1 — 224 22,
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System Poles
150 T

100

50

Im(s)
o
(]

-100 -

150 I . ® I I I
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Re(s)

Figure 5.1 — Neutral chains of poles of G1(s)

which has root » = 1 with multiplicity m = 2.

Since 22:1 Brr® = —4, then by applying Theorem we obtain v, 1 = (—0.5642 +
0.56427)/n'/? and v, 1 = (0.5642 — 0.5642)) /n'/? for n € Z, n — oo. This implies that
in the upper half-plane there is one neutral chain of poles on the left of the imaginary
axis and another one on the right. This can be seen in Figure which is given by the
QPmR algorithm (Vyhlidal and Zitek, [2014]). Therefore, G1(s) is unstable.

This fact can be deduced directly from Corollary [5.10]

Example 5.2. (Subsection [5.4.1))

1

G = .
2(5) s—10e7% + (3s —3)e 25+ Te =35 4+ (3s + 1)e 45 — 475 + (s — 8)e 6%

We have ¢4(z) = 1+ 322 + 32* + 25. It has roots r = j and 7 = —7 both of multiplicity
m = 3. Since Y3_, Brr® # 0, then Go(s) is unstable from Corollary

Moreover, by Theorem [5.7] we obtain for r = j two values of v1 of negative real part and
one of positive real part, and for r = —j one of negative real part and two of positive real
part. Therefore, there are three chains of poles in each half-plane (see Figure [5.2]).

Example 5.3. (Subsection |5.4.2))

1

G = .
3(s) s2 4+ (=252 +s+10)e 5 + (s2 — s+ 3)e2s

¢qa(z) has root r = 1 with multiplicity m = 2.

Since zzzl Brrk = 0, Zi:l kBpr* = —1, and Zi:l ver*® = 13 then Theorem is
applied. Resolving , we obtain v, 1 = (—0.5683 — 0.07967)/n and vy, 1 = (0.5683 —
0.07967)/n. There is one neutral chain of poles on the right of the imaginary axis (see
Figure , thus G3(s) is unstable.
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System Poles
150 o T

s 2 H
100+ S 5

50

Im(s)
o
-~

celzeanteent”

.
L [ H
-100 FR :

-150 i = L : o i i
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Re(s)

Figure 5.2 — Neutral chains of poles of Ga(s)

System Poles
200 T

150 -
100 -

50

Im(s)
o

-100 -

-150 -

_200 i i i oo i i
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 5.3 — Neutral chains of poles of G3(s)

Example 5.4. (Subsections and [5.4.2))

The following particular system allows the application of Theorem and Theorem
as well as Theorem [5.9 and Theorem [5.14

1

Gals) = (s+3e s+ (=s+5)e2)(s+ 1+ (=s+2)e %)

For the first quasi-polynomial in the denominator, ¢4(z) corresponding to the first has
roots r1 = 1 and 79 = —1 both of multiplicity one. For the second one, ¢4(z) has
one root r3 = 1 also of multiplicity one. Therefore, by applying Theorem for each
quasi-polynomial, we obtain VS% = 0.63667/n, Vﬁ?i = 0.1592)/n, and V,(LS% = 0.4775)/n
1 @ 3)

v and v, ] are
b

respectively relating to ry, o, and r3. As the real part of v AES o

n,l»
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(1) 1/7(3%, and 1) by using Theorem We obtain

n,2

V) =0.2533/n2, %) = (0.0633 + 0.07967)/n%, and 1) = 0.0380/n.

zero, we continue to calculate v, 5,
b

On the other hand, the quasi-polynomial obtained by expanding the denominator has
¢4(z) with root r = 1 of multiplicity m = 2 and root » = —1 of multiplicity m = 1. For
r = 1, since 22:1 Brr* = 0, we use Theorem and then Theorem which give
identical results to Theorem [5.1] and Theorem [5.4]

Example 5.5. (Subsection [5.4.2))

The transfer function of the system is given by

1
G=(s) = .
() 3+ (—283+ 52 —10s+5)e 5+ (3 — 2 +3s+ 1)e~2s

The formal polynomial ¢4(z) has one root r = 1 with multiplicity m = 2. This root
satisfies Zi:l Brrk =0, Zzzl kBir* # 0, and Zi:l ver* # 0. Therefore, Theorem
can be applied and thus v has the values V§1) = —0.3490y and I/P) = 0.5081.

Since the values of v are all purely imaginary, we need to determine vo using Theorem
We obtain v = —0.0140 for V{l) = —0.3490y and v5 = —0.0493 for V{Q) = 0.5081y.
Hence, the two neutral chains of poles are on the left of the imaginary axis.

Example 5.6. (Subsection [5.3.2))

A system is described by the transfer function

S) = .
0 $2+25+3— (1.652 4325+ 2)e—> + (2 + 25 + 4)e—25

The formal polynomial is ¢4(2) = 1 — 1.6z + 22, having two complex conjugate roots
r = 0.8 £ 7/2.44/2 whose absolute values are 1. The system then has two neutral chains
of poles asymptotic to the imaginary axis.

For each root r, the conditions ZZZI Brrk =0, and Zi:l er® # 0 are satisfied, then
Up, is given by (5.9). We can write v, 1 = vq1/n® where x, = 2 and v; is equal to
—0.0127 + 0.07607 for r = 0.8 4+ 5/2.44/2 or —0.0127 + 0.07607 for r = 0.8 — 7v/2.44/2.
Consequently, the two neutral chains approach the imaginary axis from the left side.

Proposition indicates that a necessary condition for Gg(s) to be Hy-stable is that
degt < degp — max,{x,}. Since z, = 7 = 2, the condition is degt < degp — 2. It is
not satisfied if ¢(s) = s + 1 and thus the system is unstable. Figure shows that the
magnitude of the transfer function increases with increasing frequencies. On the other
hand, the condition is satisfied if ¢(s) = 1. In Figure , we see that the magnitude of
the transfer function tends to a constant as the frequencies increase and thus is bounded.
However, the system has unstable poles of small modulus, which can be seen using QPmR
algorithm (Vyhlidal and Zitek|, 2014), and then is unstable.
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5.6 Conclusion

Before proceeding to the conclusion remarks, we analyze the stability of an example using
the results stated in this chapter and those in (Rabah et al.;2012). A system is described

A(t) = [ N _01}2(15—1)—1— [ ) _Ob}z(t)—i— [ Z; ]u(t),

yit)=[ca c2 J2(t)

where z € C?, t > 0, b,by,b2,¢1,c2 € R, and b > 0. Without the input u(¢) and the
output y(t), this system was considered in (Rabah et al., 2012, Section 5.1) and was
demonstrated to be asymptotically stable. To applied the results in this chapter, we
determine the transfer function of the system:

Y(S) B bic1 + baco
CU(s) s+b+ses

As proved in (Rabah et al., 2012, Section 5.1), the denominator of G(s) has no unstable
root. Theorem can be applied and shows that G(s) is Heo-unstable.

Now, let us state some final remarks.

The results on approximating poles of neutral chains for classical delay systems are the
same as those of fractional systems studied in Chapter [4] provided that the fractional
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order u is replaced by u = 1. For classical systems as well as for fractional systems, in the
case of multiple chains of poles, these approximations reveal various patterns of chains
approaching their asymptotic axis. They may approach the axis with the same rate (i.e.
the approximations have the same order) or with different rates (i.e. the approximations
have different orders).

Analyzing these approximations in order to determine the pole location about the asymp-
totic axis leads to different results in comparison with fractional systems in certain cases.
The phenomenon observed in these cases is that while for fractional systems stable chains
of poles may be indicated by the first approximation, for classical systems we need higher
approximations to detect such chains. Nevertheless, as shown in the last example, this
phenomenon is not general.

The analysis also leads to an important observation that most of the classical systems in
the considered classes have chains of poles on the right of the corresponding asymptotic
axes. For systems with chains of poles asymptotic to the imaginary axis, this implies that
most of those systems are unstable.

The analysis procedure as well as the diverse analysis techniques presented through various
cases in the previous and current chapters could be systematically applied to other cases
not considered here. However, some efforts are required. To make the procedure easier is
the objective of the next chapter where some common results in the previous and current
chapters will be generalized to all possible cases.
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6.1 Introduction

Stability analysis has been made in Chapters [4] and [5] for some classes of (fractional)
neutral systems with commensurate delays and with chains of poles asymptotic to the

101
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imaginary axis. For each class of systems, the analysis procedure was to approximate
poles of large modulus, to examine the approximations and to give necessary and sufficient
conditions for Hs.-stability when it was appropriate.

Although the conclusions on the location of chains of poles about the imaginary axis were
different for different classes of systems, the tools used for approximating poles in neutral
chains remained the same. However, establishing the results became more complicated
when the classes of systems were defined with more conditions on the coefficients.

To overcome this difficulty, we provide in this chapter new results which generalize those
of the previous chapters and which can be easily implemented in computation software.
They cover both classical and fractional systems in almost every configuration.

The chapter is organized as follows. Section presents the (fractional) neutral delay
systems of interest. The main results concerning the location of poles and stability
conditions are presented in Sections [6.3] and [6.4] respectively. These results are compared
with those presented in Chapters [ and [4 in Section The chapter is then concluded

by Section [6.6]

6.2 A class of (fractional) neutral time-delay systems

We consider (fractional) neutral time-delay systems with transfer function of the form

G(s) = Hs) : (6.1)

where
e 7 > () is the delay,
e ¢, p, and gi for all k € Ny are real polynomials in s*,
e 0<u<l,
e —7 < arg(s) < m in the case where 0 < p < 1 in order to have a single value of s*,

e degp > degt, degp > degqy for all k£ € Ny, and degp = deg ¢ at least for one
k € Ny in order to deal with proper neutral systems.

Here, the degree of a (quasi-)polynomial refers to the degree in s*.

Note that with p € (0, 1], the systems defined by (6.1)) encompass those studied in both
Chapters {4 and [5l Some basic characteristics of these systems are described in Subsection
2.4.2)

In this chapter, for the purpose of developing more general results, we change some
notations compared to Chapters[d/and[f] In the development of gx(s)/p(s) fork =1,..., N
as |s| — oo, the coefficients corresponding to the terms s~/ for | € Z, are now denoted
by oy k. Hence ag g, aq g, ok, a3k, and oy replace respectively ag, B, Vi, 0k, and e
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in the previous chapters. The development of gx(s)/p(s) can be rewritten as

M’
Qk(s) ALk —(M'+1)p
2
(5) Qp,k + ;1 S + O(s ) (6.2)

where M’ € Z and can be arbitrarily large. The formal polynomial is now

N
ca(z) =1+ Z ao 2", (6.3)
k=1

where z = e~ 57.

6.3 Location of neutral poles

As we have seen in Subsection , to each root r of the formal polynomial ¢4(z)
corresponds a chain of poles of neutral type. The approximation of these poles given in
only indicates the vertical line to which the pole chain approaches. To determine the
position of the chain around the asymptotic axis, similarly to the two previous chapters,
we examine in this section a more precise approximation of neutral poles of the form

SpT = Ap +vp1 +o(n™¥) (6.4)
with

Vn1 = - VI #0,y1 >0,n € Z,n— .

n
In other words, we determine the next non-zero approximation term when it is appropriate.
Such an approximation term does not exist if the neutral poles are precisely s, =

An/T.

Except that special case, vy, 1 exists and the sign of (v /n¥") then shows on which side
of the asymptotic axis the poles are. Note that the sign may change for positive and
negative n. Hence, the upper and lower parts of a poles chain may lie on different sides
of the asymptotic axis.

Here, remark that we do not fix a value of y; beforehand but look for y; such that 14 # 0.
This ensures that the approximation gives some new information about the location of
poles. The only case where the information is not useful is when R(v;/n¥') = 0 and we
may need to approximate further to know the location of poles about the asymptotic
axis.

Before presenting the main results about the location of poles around the asymptotic
axis, we define some notions which will be of use.

e For a root r of ¢(z),

N
AB(r) ={(a,b) €Z2 a+b#0,>  agpk’r" #0}. (6.5)
k=1
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b
Sy = {(a2,b2), (a3, b3)}
my = tan s
(az, ba)
Y2 .
(a37 b3)
;
0 ag + by tan vy

Figure 6.1 — A lower left boundary segment of a set of points in the plane

e S denotes a subset of AB(r) such that n(S) > 2 and there exists m > 0 such that
a+bm=d +bVmV(a,b),(a,b) €S and a+bm < o’ +V'm V(a",b") € AB(r)\S.
We will call S a lower left boundary segment of AB(r).

e m defined as above for each § is obviously unique and we call it the slope of the
segment.

e G(AB(r)) denotes the set of all lower left boundary segments of AB(r).

A lower left boundary segment is illustrated in Figure Note that if we denote mo the
slope of the segment then ms = tan -y, with ~9 presented in the figure.

The approximation of neutral chains of poles is the objective of the next theorem.

Theorem 6.1. Let G(s) be a neutral delay system defined by and r a root of
multiplicity m of the formal polynomial ¢4(s) defined by . With aq . defined as in

, let us define

Tap b b N b k
C(a,b,v) := 2y Zaa pkor (6.6)
B(S) := < (v,y) : v is a non-zero root of Z C(a,b,v) =0, y=mu . (6.7)
(a,b)eS
Let us denote ny the number of chains of poles relative to r with poles s, = A\p/T

where n € Z, n — 0o and A, 1S given by (@ Then poles of the other neutral chains
corresponding to r are approximated by

_1 et —u1
5 == </\n + n?ﬂ) +o(n~h) (6.8)
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where for each chain of poles (v1,y1) takes one of the m —ny values (counting multiplicity)
given by

e |J B

SEG(AB(r))
Proof. Denote s, a pole of G(s), then
N
d(sn) == p(sn) + Z Qk(sn)e_ksm 0
k=1

n =1

As |sp| — oo, using (6.2) leads to

+Z (aok-l-zalk—l—(’) —(M'+1D)p )) e FenT =

where M’ € Z\{0}.

Assume s,, has the form
SnT = An 4 Un1 + Vno + .. + Vs 4+ o(n™MH)

with v, ; =vn ¥, i=1,...,M where v; #0and 0 < y; < ... <ym < M'p.

Note that

o T,

el

Yi l L.l

ki =1 4 Z vik +o(n~M'") with | € Z,\{0}
l'nlyz + ’

Thus when n is large enough

M
XH 1+ Z U +on M) =0
‘ 1
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and we obtain

Oél k;’T _ A
1+Z <a0k+z 27rn ras—m 1—|-O(n 1)) +0(n Mu)) rk
(~)ZE (T, ) kEE
x |1+ Z o
(11 Iar) EL(M 1) (Hizl lz'!) ni s
where L(z) := {(ll,...,lM) € ZJF,ZZEI l; > 1, and le\il Liy; < CC}
By simple calculations, we obtain
N . k;T
k -1
L3 <a0k+z 2T (140~
(—1)=iit (Hf\fl,, )kZz .
* 0,k Z M Z Loy
(L yeeslnr ) EL(M ) (Hi:l li!) né-i=1"ivi

z (1=t (T, v ) kst
+ Z Oé2l7k7' - (1 +O(n—1)) ( )

M M Ly
(01 lng ) EHL(M 1) (H@-:l lz'!> iz i

+ o(n_Ml“)> =0,

+ o(n_M/“) =0,

where HL(x) := {(l,ll, o) ez \{0},1; € Z+,Zf‘i1 l; > 1, and lp + Zf\il Liyi < x},
and then

1—|—Za0kr —|—Z 1+O Zalkr

<—1>Efﬁ1li (H?ilvﬁi) v y
+ Qp, pkg2iz b
(zl,.‘.,le)e:c(M/u) (Hf‘illz‘!) nZit livi ; o
Co=SE (L) &
(ITH, 1t) m=ta o 2 ok

+o(n~Mmy =0. (6.9)

e

i Z (727n)tm (1+0(™)

(Llyyelm ) EHL(M 1)

Since 1 + Zivzl ao’krk = 0, then the highest order in n of the above development has the
form —(ap + by1) where (a, b) belongs to AB(r) defined in (6.5) and there exists y; > 0
such that ap + by; < a’'p+ by V(a', V') € AB(r).

If the equality only happens for (a’,b’) = (a,b), then the term of highest order is
C(a,b,v1)/n™* %1 and thus vy = 0, which does not satisfy the assumptions.

The equality holds for point(s) other than (a, b) if (a, b) belongs to a segment S € S(AB(r))
and y; = my with m be the slope of S.
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Now, consider a segment S. By definition, ap + by; = d'u + b'yy V(a,b), (a', V) € S
and ap + byy > a’p+ 0"y V(a”,b") € AB(r)\S. Hence, the term of highest order is
2 (ap)es C(a, B,v1)/n P with C(a, B,v1) defined in . Note that due to
this term is zero, which allows us to derive v;. Since there are different (a, §) € S, we
obtain some non-zero values of v;. O

Now we will discuss how to construct all the lower left segments of the set AB(r).

First, we mention two important points of AB(r) which limits a subset of AB(r) containing
the lower left segments. The first point is (0,m). This point belongs to AB(r) since
Z]kvz1 a07kk:mrk # 0 (see Lemma . The second point, denoted by (ar,br), is the
leftmost point among the lowest points of AB(r), i.e.

by, = min{b | (a,b) € AB(r)}

ar, = min{a | (a,br) € AB(r)}. (6.10)

The lower left segments of AB(r) then belong to the subset AT = {(a,b) € AB(r) | a <
ar,b < m} (see Figure[6.2). Indeed, if (a,b) € AB(r) and a > ar, then a+bm > ar+brm
for all m > 0 since b > by, by definition. If (a,b) € AB(r) and b > m, then a + bm > mm
for all m > 0 since a > 0 by definition.

The subset A7 has finite points and thus its convex hull is a convex polygon (De Berg
et al., 2008)). The vertices of this polygon are points in A" and the line containing each
of its edges defines a closed half-plane containing all the points of A7'. There is no other
line containing two points of A" with such a characteristic.

Therefore, by definition, the points of a lower left segment of AB(r) belong to an edge of
the convex hull of A7" and two of them are vertices of the hull.

There exist numerous algorithms for determining the points of a finite set in R? which
are on the boundary of its convex hull (De Berg et al., [2008). Among them, we can pick
up points belonging to lower left segments.

The above discussion indicates that we need to know the points (0, m) and (ar, br,) before
using convex hull algorithms to determine the lower left segments. In the rest of this
section, we present a method to find (ar,by) numerically.

0 ar

Figure 6.2 — The subset A7 of AB(r) which contains all lower left segments of AB(r)
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First, remark that by = n; with n; be the number of chains of poles with s, = A, /7.
Indeed, m — n is the total number of non-zero values of v;. This number is also equal to
(max{b | (a,b) € Usecgap()S} — min{b | (a,b) € Usce(ap()S}) since the number of
non-zero values of vy for each S € §(AB(r)) is (max{b | (a,b) € S} —min{b | (a,b) € S})
and the segments in G(AB(r)) are interconnected. Also note that max{b | (a,b) €
Uses(ap(r)S} = m and min{b | (a,b) € Usce(ap)S} = bL.

The next lemma provides a tool to derive the number of chains of poles with s, =
An/T.

Lemma 6.2. Let G(s) be a neutral delay system defined by . Its denominator can
be written as

Let us denote by r a root of multiplicity m of ¢q(z) defined by . The following
statements are equivalent:

(i) D(s,z) has ny identical chains of poles s, on the asymptotic axis corresponding to
r with s, = A\ /T where n € Z and X\, is given by (@

(i)

d’D(s, z) _
TZ:TZO, bZO,...,'rLl—l, (611)
d™ D(s, z)
—_— 0 6.12
ds™ z=r 70 (6.12)

where d°D(s, 2)/ds® = D(s, ).

Proof. == :

The fact that s,, for n € Z are roots of multiplicity n; of D(s, z) is equivalent to

d®D(s, z)
T szs,ﬁs ] :0, b:O,...,nl —17 (613)

d™ D(s, z)
_ 0. 6.14
ds™ s=sn 7 ( )

z=e nT=r

Equations (6.13)) show that % =0,b=0,...,n1 — 1 have infinitely many

=T

d®D(s,z)
ds?
Otherwise they would have a finite number of roots.

It is obvious that (6.14]) implies (6.12)).
) = @:

roots sp, n € Z. This implies (|6.11f) since are polynomials in s#, u € (0, 1].
Z=T
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b
From (6.11f), we deduce that s,, n € Z are roots of %S’Z)

s b = 0,...,??,1—1.
z=r

£ d®D(s,z)
dst

ST

Furthermore, s, are roots of e~%™ = r. Therefore, s,, are roots o

On the other hand, due to (6.12)), the polynomial %n(f’z) has a finite number of
z=r

roots and its roots are bounded. Therefore, there exists N1 € Z such that for |n| > Ny

sy, are not roots of dn%n(f’z) and thus are not roots of dn%n(f’z).
z=r
Hence, we conclude that s,, n € Z are roots of multiplicity n; of D(s, z). O

After determining by, using the previous lemma, we can determine ay, by running a loop
to find the smallest value of a such that Zgil amkk:bL k£ 0.

6.4 Stability

In this section, we study whether or not a system is H,-stable based on the approximation
of poles obtained in the preceding section. Here, we are only interested in systems with
neutral chains asymptotic to the imaginary axis.

The next theorem provides quick tests on the instability of the systems. It does not even
require to know vy, 1.

Theorem 6.3. Let G(s) be a neutral delay system defined by , and suppose that
the formal polynomial ¢4(z) defined in has roots of modulus one. If for such a root,
denoted by r, there ezists S € S(AB(r)) with AB(r) defined in such that n(S) = 2
and either of the following conditions holds for (a1,b1), (az,b2) € S,b; > by

o by — by >3,
o by — by =2, and (az — a1)p # 2k, k € Z:\{0},

then the system is unstable.

Proof. vy of entries of B(S) defined by (6.7) are given by

_ _ N
VbI*bQ _ rlaz—a1)p <_1)(b2 bl)bl! Zk:l Oéaz,kkaTk'
' (y2m)azan)u by! Yohly Qay kT

It is easy to see that for by — by > 3 there exists at least one value of vy with positive real
part.

This is also the case for by — by = 2 if V% € C\R_. Let us denote
N
K — Zk):l aGkakaTk
" N Ebipk’
Zk‘zl aalvk r
From now on we only consider positive n since poles are symmetric w.r.t. the real axis.

If r € R, then K, € R. However, if (ag — ay)p # 2k, k € Z,\{0} then j@—0)n —
(ag—aq)puw
= C\R, thus leading to v? € C\R. This indicates that the two values of v

(&
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have non-zero real parts. Since they are symmetric w.r.t. the origin then one of them has
positive real part, which implies that the system is unstable.

If » € C\R, then 7 is also a root of the polynomial ¢4(z) (6.3)). Denote vy(,) and v the
values of vy relative to r and 7 respectively. We obtain thus

(a2—a1)p  (_q1)(b2—b1)p |
2 2 T (=1) by!
Vl(?“) + Vl(f) - (]271_)(0127(”)“ b2' 2%(KT)7

which is not real. It turns out that either 1/12(r) or 1/12(17) is not real, thus giving at least
one value of v1 with positive real part. ]

Several unstable systems that do not fit in those described in the previous theorem can
be found in Chapters [d and [5} We were able to conclude about the instability of those
systems by using other analyses.

In the favorable case where neutral chains approach the imaginary from the left, the next
theorem presents other conditions for the system to be Hy.-stable.

To facilitate the proof of the theorem, we first state a primarily result.

Lemma 6.4. Suppose that S(AB(r)) # 0. Let S;, € S(AB(r)) be the segment containing
(ap,br) and my the slope of the segment. Then for all S € G(AB(r)), every point
(a,b) € S satisfies a+bm < ap, + brmy,.

Proof. Let S € G(AB(r)). We consider (a,b) € S and (a,b) # (ar,br). By definition,
a+bm < ar + bym, which leads to m < (ar, —a)/(b— br,) since b > by.

Also by definition, ar, + bymy, < a + bmy, which leads to my, > (ar — a)/(b —br).

Therefore, m < my, and thus a +bm < ay +bym < ap + brmy. OJ

Theorem 6.5. Let G(s) be a neutral delay system defined by , and suppose that G
has no unstable poles of small modulus and no chain of poles on the imaginary axis. Also
suppose that the formal polynomial ¢4(2) defined in has roots of modulus one, denoted
by r, and that all values of v1 relative to each r satisfy R(v1) < 0 where vy is defined by
0.8). Then G is Hyo-stable if and only if degp > degt + = where x = max,{ar} with
(ap,br) defined as in (it is the leftmost point among the lowest points of AB(r)).

Proof. Since G has poles approaching the imaginary axis, then |G(s)|se;r is large near
these asymptotic poles.

Let us consider the denominator of G at a point s on the imaginary axis near an
asymptotic pole relative to a root r of modulus one of ¢;(z). We can write s = s, +
N € JR, where s, is one of the poles of the neutral chain relative to r. Recall that
Sp=(An +14an" ) /7 + o(n"Y"). Since R(v1) # 0, then 7, is at least of order (—y;) and
has the form 7, = nmn™Y" 4+ o(n™Y"). We can then write

An | v1+NT

§=—

= j— +o(n™). (6.15)

Note that s is of the same form as s,, if we denote v = vy + 7.
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Therefore, the developments of the denominator of G around s as |s| — oo and around sy,
as |sp| = oo are the same. Recall from and the discussion that follows the equation
that the development of d(s,) as |s,| — oo is

d(su) = plsn) (f“ n o<n—<“+bm>ﬂ>) ,

nlatbm)u
where (a,b) € S for each § € G(AB(r)), mis the slope of S, and fi(v1) = 32, yyes Ca, b, v1).
Hence, the development of d(s) for s € JR near sy, is

d(s) = p(s) <f’(’/1+m_) + O(H—(a%m)u)) '

nlat+bm)p

Since s € jR, then (6.15)) shows that R(v1+n7) = 0, and thus f;(v1+n7) = fi(1S(vi+n7)).
Since every root of f;(v1) has strictly negative real part, then f;(yS(v1 +n7)) # 0. Hence,
the order of the denominator of G(s) is n(®0=2=b™¢ where dy = degp.

Under the assumption that G has no chains of poles on the imaginary axis, the leftmost
lowest point of AB(r) is (ar,,0). Due to Lemmal6.4, (a+bm)p < appforall S € G(AB(r)).

Then the lowest order of the denominator of G(s) for s € jR near s, relative to r is
(do—ar)n
n .

For all roots 7 of ¢4, the lowest order of the denominator of G(s) on the imaginary axis is
n(d=2)1 with & = max,{ay}. O

6.5 Comparison with previous results

Now we apply Theorems [6.1] [6.3] and [6.5] to examine the classes of systems considered
in Chapter [4 and [5} The results obtained here are the same as those obtained in the
previous chapters. Note that we consider fractional and classical systems at the same
time, that is p € (0,1].

At the end of this section, we will summarize the stability results of all these classes of
systems pointing when the method of this chapter allows one to conclude more quickly:
we will see that Theorem [6.3] can be used to conclude in many situations.

Recall that in this chapter we make some changes of notation. In comparison with
Chapters [ and f} aor = o, a1k = B, azx = Yk, and azp = .

6.5.1 The case where m =1 and Y, ;7" #0

This case was considered in Subsection in Chapter [4] and in Subsection [5.3.1] in
Chapter [5

Since Z,]qul a1 ;7% # 0, then (1,0) € AB(r). Recall from our discussion after Theorem
that (0,m) € AB(r). It is then easy to see that S(AB(r)) = {S1} with S = {(0,1), (1,0)}
(see Figure . Therefore, Theorem shows that

N

N
n
Z C(a,b,ivn) = —11 Zao,kkrk + % ZaLkrk =0 and y; =mipu
(a.b)eS =1 (2m) =
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0 1

Figure 6.3 — The lower left boundary segment of AB(r) in the case where m = 1 and

which give respectively

T E;ivzl Oél,m“k
= and y; = p.

(g2m)~ chvzl ap k¥

This result is identical to the one obtained in Theorems and G511

Some fractional systems in the class of systems considered in this subsection may have all
chains of poles asymptotic to the imaginary axis from the left side. If

e these pole chains correspond to the roots of modulus one of the formal polynomials
cq(z) that satisfy the conditions in this subsection,

e other roots of ¢4(z) are of modulus greater than one,
e and the system has no unstable poles of small modulus,

then due to Theorem the necessary and sufficient condition for the system to be
H-stable is degt < degp — 1 as for every root of modulus one of ¢4(z) the leftmost
lowest point is (1,0). The same condition was obtained in Proposition

6.5.2 The case where m = 1, Zivzl ay,r¥ =0, and ij:l Qg # 0

This case was studied in Subsection [£:3.2]in Chapter [4 and in Subsection [5.3.2]in Chapter
Bl

We have (2,0) € AB(r) since S0, appr* # 0 and (1,0) ¢ AB(r) since S0, ay 7% = 0.
Also, (0,m) € AB(r) with m = 1. Then &§(AB(r)) = {S1} with §; = {(0,1),(2,0)} (see
Figure . Due to Theorem we obtain

N 2u N
k T k
E C(a,b,v1) = —1n E ag pkr” + W E agpr” =0 and y; = myp,
(a,b)eS1 k=1 k=1

which gives

2u N~V k
v = T 2 02T and y; = 2u. (6.16)

(y2m)2m Z,ivzl ag krk

The same result was obtained in Subsections [.3.2] and [£.3.2]
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0 1 2

Figure 6.4 — The lower left boundary segment of AB(r) in the case where m = 1,
Z]kvzl al,krk =0, and Zivzl 0427167”C # 0. The black and white dots represent respectively
points in AB(r) and points not in AB(r).

For fractional systems whose formal polynomial ¢;(z) has single roots of modulus one
satisfying the conditions in this subsection and other roots of modulus greater than one, if
other conditions in Theorem are satisfied, then the system is Hyo-stable if and only if
degt < degp — 2. This is easy to derive since for all roots 7 of modulus one of ¢4(z), the
leftmost lowest point of AB(r) is (2,0). We obtained the same condition in Proposition
4.0

6.5.3 The case where m > 2 and fovzl £ 0

This case was studied in Subsection £.4.1]in Chapter [4 and in Subsection in Chapter
Gl

Since Z,vazl a1 ;% # 0, then (1,0) € AB(r). It is also known that (0,m) € AB(r)
and (0,m’) ¢ AB(r) for m’ < m. Hence, it is easy to see that S(AB(r)) = {S1} with
S1 ={(0,m), (1,0)} (see Figure[6.5).

From Theorem [6.1} we obtain

( ) Vl m, .k TH
Z C(a,b,1n) = Zaokk rt 4+ )

N
Zal,krk =0 and y; =mpu
(a,b)ES1 k=1 ( k=1

thus

— 1)Ll SN g ek
V{n — ( ) Zk-l 1Lk and Y1 = —

(72m) S0 ag gk
which verifies Theorems [.7] and
Theorem shows that

e if m =2, we have n(S1) =2,b1 —bo =m —0=2 and (ag — a1)u = p # 2k, k €
Z4\{0}, p € (0,1], then the system is unstable,

e if m > 3, we have n(S;) = 2 and by — by = m — 0 = m > 3, then the system is
unstable.

These are also the conclusions of Corollaries 4.8 and [5.8]



114 CHAPTER 6. STABILITY OF SISO (FRACTIONAL) SYSTEMS

(a) m=2 (b)y m=3

Figure 6.5 — The lower left boundary segment of AB(r) in the case where m > 2 and
N k
Zk‘:l Q1T #0

6.5.4 The case where m > 2, Z,ivzl gt =0, E,]Cvzl kaygr® # 0, and
N
D ke Q2" # O
This case was studied in Subsection in Chapter 4 and in Subsection in Chapter
[l

Due to the above conditions, (1,0) ¢ AB(r) and (1,1),(2,0) € AB(r). It is also known
that (0,m) € AB(r).

e If m = 2, then §(AB(r)) = {S&1} with & = {(0,2),(1,1),(2,0)} (see Figure[6.6).
Therefore, from Theorem we obtain

Z CabVl Zaokak ™ Vlzalkk —|— Q,MZ QkT’ =0

(a,b)ES1

and y; = mypu = p. Identical results were presented in Theorems [£.9) and [5.9]

For fractional systems which have no unstable poles but have neutral chains of
poles approaching the imaginary axis, if all these chains are relative to double
roots of the formal polynomial ¢;4(z) that satisfy the conditions in this subsection,
then from Theorem [6.5] these systems are stable in the sense Hy, if and only if
degt < degp — max,{ar} where max,{ar} = 2 since the leftmost lowest point of
AB(r) is (ar,br) = (2,0) for all  being a root of modulus one of ¢4(z). The same
stability condition was obtained in Proposition

o If m > 3, then S(AB(r)) = {S1,82} with & = {(0,m),(1,1)} and S» =
{(1,1),(2,0)} (see Figure[6.6)). Therefore,

Z C(av b7 Vl) =0 and Y1 = mipu,

Z C<a7 b, Vl) =0 and y1 =mapy,
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b b
3
2 2
1 1
a a
0 1 2 0 1 2
(a) m=2 (b)ym=3

Figure 6.6 — The lower left boundary segment of AB(r) in the case where m > 2,
Zszl oyt =0, Zszl kay ,rk # 0, and Zi\;l g pr® £ 0

which are respectively equivalent to

1)l S o pkrk
=l = (=1 mTNZk_l ALENTd y1 =
(927 32—y o gk

N k
TH Qo T
v = L1 02, and  y1 = p.

(y2m)- Zszl ay gkrk
These results are the same as those showed in Theorems [£.9 and [5.9
If m =3, wehave n(S1) =2,b1 —bo=m—1=2and (ag—a1)p=1-0)pu=p#
2k, k € Z4\{0}, then the system is unstable.
If m >4, we have n(S1) = 2 and by — by = m — 1 > 3, then the system is unstable.
In Chapter |5, we derive the same conclusions about the stability of the system (see

Corollary [5.10)).

6.5.5 The case where m > 2, Zé;vﬂ oyt =0, chvzl ko gt =0, fo:l Ky pr® #
0, and Zivzl gt £ 0
This case was studied in Subsection [£.4.3]in Chapter [4 and in Subsection [5.4.3]in Chapter
Bl
The above conditions imply that (1,0), (1,1) ¢ AB(r) and (1,2),(2,0) € AB(r).
o If 2 < m < 3, then S(AB(r)) = {S1} with 8§ = {(0,m),(2,0)} (see Figure [6.7).
From Theorem we obtain
Z C(a7b7 Vl) =0 and Y1 = miu,
(a,b)€S1

giving

(—1)" T2 ST o gk 24

= and y; = —.
(52m)2 >0l ag ket m

Vm
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Theorems [£.14] and presented the same results.

If m=2 wehave n(S1) =2,b1 —be =m—0=2, and (a2 —a1)pu = (2 —0)pu = 2.
If o € (0,1) then 2u # 2k, k € Z4\{0}, and thus Theorem shows that the
system is unstable. (The same conclusion was obtained in Corollary ) Ifu=1,
further analyses are needed. (These analyses were realized in Corollary )

If m = 3, we have n(S1) = 2 and by — by = m — 0 = 3, then the system is unstable.

e If m = 4, then §(AB(r)) = {81} with & = {(0,4), (1,2),(2,0)} (see Figure[6.7).
From Theorem we obtain

Z C(avbayl)zo and y; = mypu,

(a,b)EST
and thus
4 N 2 N o N
Vi 4.k T 2 k T k K
— ag k" + oy kot + agpr” =0 and ¥y = ~.
npy 22 2 (2P 2= ;

Theorems [£.14] and presented the same results.
Theorem cannot be applied here and we have to study the sign of R(v, 1) as in
Corollaries [£.16] and [5.18], which showed that the system is unstable.

o If m > 5, then S(AB(r)) = {S1,82} with & = {(0,m),(1,2)} and Sy =
{(1,2),(2,0)} (see Figure[6.7). From Theorem we obtain

Z C(a7 b, Vl) =0 and y1 =mpy,
(a,b)ESL

Z C(a7 b, Vl) =0 and y1 = maf,
(a,b)ESQ

which are respectively equivalent to

(—1)mFimlre Zi\le al’kk%k

_ [
T2 = and y; = ——,
1 2(s2m) Y o kmrk m—2
27 S0 b
1/12 =— T 213\71 Q267 and 1y = H.
(g2m)1 3y o k2rk 2

Theorems and presented the same results.
We have n(S1) = 2 and by — b = m — 2 > 3, then Theorem shows that the
system is unstable. This conclusion was also obtained in Corollaries and [5.18]

6.5.6 The case where m > 2, Zgil aypr® =0, chvzl kay gr® =0, 25:1 Ky g
N N N
0, S opr® =0, > kaggr® #0, and >, azpr® #0
This case was studied in Subsection in Chapter [4] and in Subsection in Chapter
[l

From the conditions, we deduce that (1,0), (1,1), (2,0) ¢ AB(r) and (1,2),(2,1),(3,0) €
AB(r). We also have (0, m) € AB(r).



6.5. COMPARISON WITH PREVIOUS RESULTS 117

b b b
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
0 1 2 “ 0 1 2 “ 0 1 2 “
(a) m =2 (b) m=14 (c)m=>5

Figure 6.7 — The lower left boundary segment of AB(r) in the case where m > 2,
Zévzl al,krk =0, Zgzl kal,krk =0, Zgzl kzal’krk # 0, and Zivzl a27krk #0

o If m =2, then &(AB(r)) = {S1} with S; = {(0,2), (3,0)} (see Figure[6.8). From
Theorem [6.1], we obtain

Z C(a,b,v1) =0 and y1 = mp,

(avb)esl
giving
Y, 27 Z]kvzl 0437;67”’“ and y; = 3p
L (02m o cork?rh 2

This approximation is the same as the one provided in Theorems and
We have n(S1) =2, b1 —ba =2—0 =2, and (a2 —a1)p = (3 —0)p = 3p. If
w € (0,1] and p # 2/3 then Theorem shows that the system is unstable. The
same conclusion was drawn in Corollaries and £.211

e If m =3, then S(AB(r)) = {S1} with S = {(0,3), (1,2),(2,1),(3,0)} (see Figure
[6.8). From Theorem [6.1] we obtain

Z C(a,b,v1) =0 and y; =mp

(a,b)eSL
leading to
3 N 2, 1 N 2 N 3u N
Vi 3.k, WNT 2 k. NT k T k
e oo k’r a1 gk rt— oo Lkt —— azpr” =0
30 ; 0.k +2(j27r)“ ; 1k (2m)2 ; 2,k +(j27r)3“ ; 3.k

(6.17)
and y; = p. This approximation is the same as the one provided in Theorems [.17]

and (.200
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Theorem cannot be applied in this case. For classical systems, the sign of R(vp 1)
was analyzed in Corollary [5.22]

There exist fractional systems without unstable poles and with chains of poles
asymptotic to the imaginary axis. If these chains correspond to the triple roots
of the formal polynomial ¢4(z) that satisfy the conditions in this subsection, then
Theorem shows that the necessary and sufficient for the H,,-stability of the
systems is degt < degp — max,{ar} where max,{ar} = 3 since a;, = 3 for all
the roots of modulus one of ¢4(z). This stability condition was also obtained in
Proposition [4.18

If m > 4, then §(AB(r)) = {S1,S2} with St = {(0,m), (1,2)} and S2 = {(1,2),
(2,1), (3,0)} (see Figure [6.8). From Theorem we obtain
Z C(a7 b, Vl) =0 and y1 =mpy,
(a,b)ESl

Z C(CL, b7 Vl) =0 and Y1 = map,
(a,b)ESQ

which are respectively equivalent to

(1)l S enk?rE B
= and y =
2(y2m)H Zgzl ag kkmrk m

m—2

and

2

viTH Y 12k nrh & o o k
_ - =0
2()2m)" ;@m (2m)2 ;0‘2,16 T+ (2m)o kz_l Qaz.kT

and y; = p. These approximations are the same as those provided in Theorems
and

We have n(S1) =2. If m =4, then by —by =4—2=2and (a2 —a))p=(1—-0)u =
w # 2k for all u € (0,1] and k € Z1\{0}. Hence the system is unstable due to
Theorem [6.5

If m > 5, then by — by = m — 2 > 3, and thus the system is unstable due to the
same theorem.

The same conclusions were drawn in Corollaries and (5211

6.5.7 Summary of previous results

Table summaries the stability results of the classes of systems that are already studied
in the two precedent chapters and reconsidered in this section. The comments in the
table should be understood as follows:

e May be stable: There exist stable systems belonging to the considered class.

e R(v1) = 0 or unstable: There are two possibilities for chains of poles relative to r

and 7. First, R(v1) = 0 for all values of v; corresponding to r and 7. In that case,
the next approximation is needed to determine the location of poles around the
asymptotic axis. Second, the system is unstable.
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b b b
4 4 4
3 3 3
2 2 2
1 1 1
a a a
0 1 2 3 0 1 2 3 0 1 2 3
(a) m=2 (by m=3 (c)m=4

Figure 6.8 — The lower left boundary segment of AB(r) in the case where m >
2, Zszl appr® =0, Z;cvzl kayer® = 0, Z]kvzl Kaiprt # 0, Z]kvzl aggrt =
Zszl kazkrk # 0, and Zgil O£37k7‘k #£0

=

e Unstable (due to Theorem : All the systems are unstable due to Theorem
e Unstable: All the systems are unstable. This conclusion is not due to Theorem

6.6 Conclusion

In this chapter we have considered the Hoo-stability of (fractional) neutral systems with
commensurate delays and chains of poles asymptotic to the imaginary axis. More precisely,
we have studied the location of theses chains of poles around the axis and the boundedness
of the transfer function on the axis. The new results generalize those presented in Chapters
[ and [f] They concern both classical and fractional systems and cover all possible cases,
some of which were studied separately in the previous chapters. The analysis allows one
to reach stability conclusions in a lot of cases except when the location of poles about the
axis cannot be determined from the approximation provided and further analyses may be
then needed.
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Ssec

m =1, 25:1 al,krk #0

may be stable

R(v1) = 0 or un-
stable

m > 2, Zévzl Oél,krk 7é 0

unstable (due to

unstable (due to

ERBEEE
ERBEEE

Theorem [6.3)) Theorem [6.3))
m = 2, Eszl a1 " = 0, | may be stable R(r1) = 0 or un-
Zivd ko jor® # 0, stable

N
Zk‘:l a2,k7'k # 0

m > 3, SN ayprF = 0, unstable (due to unstable (due to

SN ko gk £ 0 Theorem [6.3)) Theorem [6.3)
m = 2, YN ap " = 0, unstable (due to |[EZ3, | R(11) = 0 or un- | 543}
Zlkvzl k:oszrk = 0, | Theorem |6.3)) @ stable @

N
Zkzl 042,ka 7é 0

m = 3, Eszl a1 ;7% = 0, | unstable (due to unstable (due to

Zgﬂ kOéLk?”k — 0, | Theorem |6.3) Theorem [6.3))
m = 4, Zi\;l a1 xr* = 0, | unstable unstable

N

Y ket kalykrk = 0,
N

Zk:l ]4320117]97’]9 7é Oa
N

Zk:l 042,ka #0

N
m > 5, Yy aprt =
N
0, Zkzlkamrk = 0,
N
Y ket k‘zaljkrk #0

unstable (due to
Theorem [6.3])

unstable (due to
Theorem [6.3|)

m = 2 and p # 3/2,| unstable (due to |[f44] | unstable (due to | [5.44]
SN L aggrk = 0, | Theorem [6.3) 656 | Theorem [6.3) 656
Z]kvzl kaLkrk = 0,

>y azgr” = 0,

>y asgrk # 0

m = 2 and p = 3/2,| R(v1) =0 or un- unstable (due to
Zszl oy gr* = 0, | stable Theorem [6.3))
Zévz1 k‘alvkrk = 0,

Zévzl a2,krk = 0,

Z]kzvzl 0‘37ka #0

m = 3, Zl]j:l a1 ,m® = 0, | may be stable R(v1) = 0 or un-
S kag gk = 0, stable

Yoy Kagrt A0,

>y azkr” = 0,

Yy kagert  #0,

Zivzl 043,ka #0

m = 4, Zszl a1 7% = 0, | unstable (due to unstable (due to
Zévzl kaLkrk = 0, | Theorem |6.3)) Theorem [6.3))
Ypoy Kt A0,

Z}]ﬁvzl 042,ka = 0,

iy kagpr® £ 0,

N
Zkzl 043,k7”k #0

Table 6.1 — Classes of systems considered in the literature
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7.1 Introduction

Fractional systems are systems involving non-integer derivatives in the time domain and
thus containing power of non-integer order of the Laplace variable s (i.e. s* with pu
non-integer) in the frequency domain. Such models appear in many engineering fields
since they describe certain systems better than their integer counterpart, see for example
(Hilfer, 2000) and references therein.

As delays are usually encountered in real-life situations, fractional systems with delays
have been of increasing interests in the past ten years. Stability of this kind of systems
has been studied in several publications such as (Hotzel, |1998a; |Bonnet and Parting-
tonl, 2002} [2007; [Bonnet et al. |2011; [Hwang and Cheng, 2000}, |[Fioravanti et al., 2011}
Akbari Moornani and Haeri, 2010, 2011). However, not many results are available for
stabilization. Some references are (Bonnet and Partington, 2007) on H..-stabilization,
(Si-Ammour et al., 2009) on sliding mode control, (Hamamci, |2007; [Hamamci and Koksal,
2010) on stabilization of dead-time fractional systems, and (Lazarevic, |2011) on finite-time
stabilization.

121
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In (Bonnet and Partington) 2007), a rather complete study from stability to stabilization
is realized for a class of neutral fractional systems with one delay. The main result of this
study is a parametrization of all stabilizing controllers. However, the problem of finding
a parametrization for systems with large poles clustering the imaginary axis remained
unsolved. Later, the stability of neutral fractional systems with commensurate delays and
with large poles asymptotic to the imaginary axis has been studied in (Fioravanti et al.|
2010). In this chapter we apply these stability results to examine some stabilizability
properties of fractional neutral systems with commensurate delays and an infinite number
of unstable poles. We find that a majority of these systems cannot be stabilized by the
class of rational fractional controllers of commensurate order except systems with the
lowest degree. The systems considered in (Bonnet and Partington|, 2007)) belong to this
exception. A parametrization of stabilizing controllers is derived for these systems.

Remark that some systems we consider (those with infinitely many unstable poles) belong
to the class considered in (Giimiigsoy and Ozbay, 2004). However the parametrization
of all stabilizing controllers they proposed requires an inner/outer factorization of the
plant.

By using the parametrization previously derived, we demonstrate that for a large class of
stabilizing controllers, the closed-loop system still has chains of poles asymptotic to the
imaginary axis, which makes the stabilization sensitive to some parameter changes.

The rest of the chapter is organized as follows. In Section we examine the stabilizability
of neutral fractional systems with commensurate delays and with chains of poles in the
right half-plane. In Section we obtain a parametrization of all stabilizing controllers
for systems with only one delay, allowing here chains of poles clustering the imaginary
axis from the left or the right hand side. These systems with one delay continue to be
considered in Section where we study the stability of the closed-loop system with a
large class of stabilizing controllers. Finally, we conclude the chapter by Section [7.5]

7.2 Stabilizability properties of fractional systems with com-
mensurate delays

We study the Ho-stabilization of fractional time-delay systems of neutral type with
commensurate delays given as follows

1
G(s) = (7.1)
N _
P(s) + ko Gi(s)e™FT

where 7 > 0 is the delay, p and g, k € Ny are real polynomials in s#, u € (0,1), degp > 1,
degp > degqg, and there is at least one g, k € Ny such that degp = degqi. Here the
degree is interpreted as the degree in s* and so is an integer. In order to avoid multi-valued
functions, we consider s in the Riemann sheet such that —m < args < .

This class of systems obviously belongs to those described by (2.2]).

Let us consider controllers of the form
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where N and D are real polynomials in s#, u € (0,1). These controllers are called rational
fractional controllers of commensurate order. From (Partington and Bonnet| 2004, Lemma
4.1), we know that deg N < deg D if K(s) stabilizes G(s) in the sense Hoo. Suppose that
N(s) and D(s) do not have common zeros, and N(s) does not have common zeros with
the denominator of G(s).

The closed-loop [G, K] is stable if and only if the following transfer functions are sta-
ble

1 DE)@s) + 3k als)e*) 73
L+ G(S)K(s)  D(s)(p(s) + 250 an(s)e™*7) + N(s)’ |
Gs) D(s) )
L+G($)K(s)  D(s)(p(s) + Xl an(s)e ) + N(s)’
K(s)  _ N(s)@(s) + 350 aels)e™*) 75)
L+ G(S)K(s)  D(s)(p(s) + 250 an(s)e™*7) + N(s)’ |

Under the assumptions about the zeros of N(s) and D(s), the transfer functions (7.3)), (7.4)),
and ([7.5)) do not have zero cancellation between the numerator and the denominator.

If the formal polynomial ¢;(z) defined by has a root r with |r| < 1, then due to
, the chain of poles relative to r is asymptotic to a vertical line lying in the open
right half-plane. Thus this chain has infinitely many poles in the open right half-plane
and the system is unstable. The stabilization of such systems under controllers of the
form is examined in the following proposition.

Proposition 7.1. Let G be given as in . If ¢4(2) has roots of modulus strictly
smaller than one, then G cannot be stabilized by a controller given as in .

Proof. Since deg N < deg D and degp > 1, the denominator of the closed-loop transfer
function ([7.4) also has the formal polynomial ¢;(z) with roots of modulus strictly smaller
than one. 0

Another situation where G has an infinite number of poles in the open right half-plane is
when G has chains of neutral poles approaching the imaginary axis from the right and
the other neutral chains asymptotic to vertical lines in the open left half-plane. The next
proposition addresses this class of systems.

Proposition 7.2. Let G be given by . Suppose that the polynomial ¢q(z) has roots
of modulus one of multiplicity one and that the other roots are of modulus greater than
one. Suppose also that at least one root of modulus one of ¢4(z), denoted r, satisfies

R(vpa) >0 (7.6)
where

s Zi;v:1 ﬁkrk
(2jnm)H Zé\le kagrk

Uni1 =

Then G can be stabilized by controllers of the form only if degp = 1.
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Proof. Recall from Theorem that the poles of large modulus corresponding to r,
denoted by s,, are approximated by

spT = —1In(r) + 2jnm + vy 1 + O(n=2H)

Under the assumption (7.6, we see that G has infinitely many poles in the open right
half-plane.

Let us examine the denominator of the transfer functions of the closed-loop which is

N
D(s)(p(s) + Y _ ar(s)e™*") + N(s) = D(s)p(s) + N(s) + Y _ D(s)a(s)e "
k=1

We consider the development at infinity of

D(s)ar(s) a Br ol s
Ds)p(s) + N(s) ~ k + g Hol™):

As degp > 1 and deg D > deg N, we have that ap = ai where «y, is a coefficient of the
development of gx(s)/p(s) as |s| — oo given in (2.3). Now, if degp > 1, we also have that
B = B where f3; is also defined in . In this case, the closed-loop has an infinite
number of unstable poles and thus cannot be H.-stable. O

Remark 7.3. The systems considered in Proposition [7.2] are not the only ones with chains
of poles approaching the imaginary axis from the right. This may also happen to systems
with R(1,,1) = 0 but this case needs further analysis as described in (Bonnet et all [2011)).

7.3 Parametrization of the set of stabilizing controllers in a
particular case

The simplest systems described by (7.1)) and with degp = 1 are systems with one delay.
They have been studied in (Bonnet and Partington) [2007). For such systems with transfer
function given by

1
(ast +b) + (cst + d)e=sT’

where a,b,¢c,d € R, a > 0, |a] = |¢|, and p € (0,1), fractional PI controllers have been
obtained.

These controllers are the starting point to obtain a parametrization of all stabilizing
controllers, which is the main result of this section. Before stating the main result, we
will recall the results on fractional PI controllers in (Bonnet and Partington, [2007)). First,
to simplify its presentation, we derive the opposite condition to Remark 4.1 in (Bonnet
and Partington, 2007)).

Lemma 7.4. as2%+a1z+ag = 0 with as, a1,ap € R, ag > 0 has all roots in {z € C\{0} :
|Arg(2)| > pm/2} with p € (0,1) if and only if ap > 0 and a1 > —2\/agaz cos(umn/2).
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Proof. The equation has two strictly negative roots if and only if

A:a%—4a0a220

a; >0

ag >0

A = (a1 — 2\/anas) (a1 + 2 /agaz) = 0
= a; >0

ag >0

>9
o { a1 > 2y/apaz

ag >0

The equation has two complex conjugate roots, denoted re™?, with ¢ € (ur/2,7) U
(—m, —pm/2) if and only if

A = a? —4dagaz < 0
ag >0

_ a wmw
cos o = —2\/(11072 < cos (7)

a1 < 2+/agas

= ag >0

a; > —2\/apaz cos(um/2)

O

We now recall the characterization of H-stabilizing fractional PI controllers of systems

@D

Proposition 7.5 (Proposition 4.1 (Bonnet and Partington, [2007)). Let G be given by
and K(s) = kp + k;i/s"* with ky, k; € R.

1. Let a = c. If k, and k; satisfy b+a‘fck” > =2 a’jfc cos (%) and k; > 0 then K
stabilizes G when T = 0.
Moreover, if a(b+ k, — d) cos(4) > 0, then K stabilizes G for small 7.
If ky and k; satisfy also (b+ ky)? 4 2ak; cos(um) — d* > 0 and ki(b+ k) cos(457) > 0
then K stabilizes G for all T.

2. Let a = —c. If kj(b+ ky +d) > 0, then K stabilizes G when T = 0.
Moreover, if a(b + k, + d) cos(5) > 0 then K stabilizes G for small 7.
If kp and k; satisfy also (b+ ky)? 4 2ak; cos(um) — d* > 0 and k;(b+ ky) cos(4F) > 0
then K stabilizes G for all T.

Remark 7.6. The system G considered in Proposition may have infinitely many poles
in the open right or left half-plane.

In the following examples, we observe the change of side of the chain of poles from
open-loop to closed-loop. We have a = ¢ for the first example and a = —c for the
second.
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Figure 7.1 — Poles of G1(s) and of the closed-loop system [G1(s), K1(s)]

Example 7.1.
1
G =
1(5) (s1/2+1) + (s1/2 +2)es’
2

The poles of the open-loop and of the closed-loop systems computed by QPmR algorithm
(Vyhlidal and Zitek| [2014) are showed in Figure[7.1]

Example 7.2.

1
(s1/2 = 3) 4+ (=s1/2 + 1)e—s’
1

KQ(S) = 5 + m

GQ(S) =

Given Ky(s), a stabilizing controller of the system (7.7), we can directly obtain a
parametrization of all stabilizing controllers without finding coprime factorizations by
using (Quadrat, 2003b, Theorem 2).

Proposition 7.7. Let G(s) be given as in , A parametrization with two degrees of
freedom of all Hy-stabilizing controllers of G(s) is given by

—T(s*R+T)+ (s*Q1 + Q2T*)R
st(sPFR+T) + (s1Q1 + Q217)

(7.9)

where Q1,Q2 € Hy are two free parameters,

R(s) = (as" +b) + (cs" + d)e™ ",
T(s) = kps" + k;,
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ki > 0 and k, satisfy

b+d+k k;
g>—2 cos('u—ﬂ) for a = c,
a+c a+c 2
ki(b+d+ky,) >0 fora=—c,

_ KT
(a(b+ kp) cd)cos(2)>0,

(b+ kp)? + 2ak; cos(um) — d* > 0,
: addl
k;i(b+ kp) cos ( 5 ) > 0.

Proof. From Proposition [7.5, we have that the fractional PI controller given by Ko(s) =
k, + k; /st stabilizes G(s). Denoting

1
AB) = T G Kol
B(s) = Ko(s)

1+ G(s)Ko(s)’

we have that A(s) and B(s) satisfy 0 # A(s), B(s) € Hx, A(s) — B(s)G(s) = 1 and
A(s)G(s) € Hy. Then Theorem 2 in (Quadrat, |2003b|) shows that a parametrization of
all stabilizing controllers of G(s) in the sense of Hy, is given by

B+ Q1A% + QB2
A+ Q1A%2G + Q2 B%G

where Q1,Q2 € Hy, are two free parameters. This gives (7.9). O]

However, the Youla-Kucera parametrization (with one parameter) may be more favourable
for controller design and as G is Hso-stabilizable, we know that G necessarily admits a
coprime factorization over Ho, (Smith, [1989). The next proposition, which characterizes
quasi-polynomials with all roots in the open left half-plane, will be useful to find a
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coprime factorization of the transfer function of the system, which is required to derive a
parametrization of stabilizing controllers using Youla-Kucera formula.

Proposition 7.8. The equation
(ast +b) + (cs* +d)e™*" =0 (7.10)

witha > 0, b,c,d,h € R, |a|] = |¢|, and p € (0,1) has no roots in the closed right half-plane
for all 7 > 0 if and only if

eb+d>0andb—d>0ifa=c,

eb+d>0andb—d>0ifa=—c.
Proof. From (Marshall et al., 1992), we have that the equation has no roots in the closed
right half-plane for all 7 if and only if

e the equation has no roots in the closed right half-plane for 7 = 0,

e infinitely many poles approach the imaginary axis from the left side for 7 sufficiently
small,

e there is no roots crossing the imaginary axis for 7 > 0.

First, we consider the case a = c.

When 7 = 0, (7.10) becomes
2as* +b+d =0,
which has no root in the closed right half-plane if and only if b+ d > 0.

For 7 > 0, no crossings means W(w) := |p(iw)|?> — |q(iw)|*> # 0 Yw > 0 (Bonnet and
Partington, [2007)). We have

W(w) = (a* — A)w* + b* — d* + 2w cos (%) (ab — cd). (7.11)

For a = ¢, the above expression becomes

W(w) = (b—d) [(b+d) + 2aw" cos <,u?7r)} .

Then W(w) # 0 Vw > 0 if and only if b # d and b+ d > 0.
Next, we have

as +b a  bc— ad% —1—0(3_2").
s

cst4+d ¢ c?

Since bc — ad # 0 from the previous argument, Theorem 3.1 in (Bonnet and Partington,
2007) shows that large roots of ([7.10)) are stable if and only if

bcfadg
2 a
Sb—d>0

>0 (7.12)
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From the three conditions, we derive that b+d > 0 and b — d > 0.

Similarly, we consider the case a = —c.

For 7 =0, becomes
b+d=0,
which has no root in the closed right half-plane if and only if b + d # 0.
For a = —c, becomes
W(w) = (b+d) [(b —d) + 2aw" cos (%)} :

Then W(w) # 0Vw > 0 if and only if b+d # 0 and b —d > 0.
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With a = —¢ > 0, the condition ((7.12)) for stable chain of poles becomes b+ d > 0.

From the three conditions, we derive that b+d > 0 and b —d > 0.

Now we give a parametrization of all stabilizing controllers of systems given by (|7.7)).

Theorem 7.9. Let
1
(ast +b) + (cst + d)e=sT

G(s) =

with a,b,c,d € R, a >0, |a| = |¢|, and pu € (0,1). The set of all Huo-stabilizing controllers

s given by
V 4+ MQ
U—-NQ
where
1
N =
() (a/st+ V) + (st + d)e 5T’
(ast 4+ b) + (cst + d)e™*"
M(s) =
() (/s + V) + (st + d)e 5T’
Us) = st[(a's* + ') 4 (st + d')e™*T]
 st(ast + b+ kp) + ki + sk (cst 4+ d)e=sT]
Vi(s) = (kpst + k;)[(a's* + ') + (s* + d')e™"7]

sh(ast + b+ kp) + ki + st (cst + d)esT’

Q s a free parameter in Hy, k; > 0 and k, satisfy

b+d+k k;
otathy > —2 ' cos ('u—ﬂ) for a = c,
a+c a-+c 2

ki(b+d+ky,) >0 fora=—c,
um
(a(b+ kp) — cd) cos (7) > 0,
(b + kp)? + 2ak; cos(um) — d* > 0,
| pm
k,a>+-kp)cos( : ) >0,

(7.13)

(7.14)

(7.15)



130 CHAPTER 7. STABILIZATION OF SISO FRACTIONAL SYSTEMS

and o', V', ,d € R satisfy

a >0,
d a
Jd
bV +d >0, (7.16)
¥ —d > 0. (7.17)

Proof. Under the above conditions, (a’s* 4+ b') 4 (¢/s* 4+ d')e™*™ has no poles in the closed
right half-plane.

Now, M (s) can be decomposed as follows

M()_a+ b— 2 N d—5d Cer
= (a'st+b)+ (st +d)es™  (a's*+ V) + (st + d’)e‘”e ’

Under the conditions ([7.16) and ([7.17)), Corollary 3.2 in (Bonnet and Partington, [2007)
shows that N(s) and M(s) belong to He.

It is also easy to see that infy(s)5o(|V(s)] + [M(s)[) > 0 so that (N, M) is a coprime
factorization of G over H..

By the same arguments as in (Bonnet and Partington) 2007), knowing a stabilizing
controller Ky, one can derive the pair of Bézout factors U, V from the following expressions

1

MU

1+ GK) 7
Ky

_ B0y

1+ GK,

Now, U and V in (7.14]), (7.15) are obtained by using a PI controller proposed in
Proposition . By decomposing U and V as in (Bonnet and Partington, [2007), we
conclude that U,V € H.. [

The following example shows another stabilizing controller of the system G in Example
obtained from the above parametrization.

Example 7.3. A coprime factorization of G is

1
N(s) =
5) (s/243) 4 (s/2 + 2)e=*’
M(s) = (sY/2 4 1) + (s1/2 4 2)e*
C(sY2+3) + (s12 4 2)e s

Besides, U(s) and V (s) are obtained based on the PI controller as in ((7.8)).

Now, in order to have another controller we choose Q € Hy,. The simplest case is a
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Figure 7.3 — Poles of the transfer functions of the closed-loop system [G1(s), K1(s)]

constant, e.g. () = 1. The corresponding controller is

Ro(s) = V(s)+ M(s)
U(s) = N(s)
= [45%/% + 255 + 45572 420 + (85%/% + 435 4 685/ + 28)e
+ (4532 4185 4 24512 + 8)e %] /[s%/% 4+ 55+ 5s'/2 — 2
+ (2572 + 95+ 105/2)e ™ + (572 4 4s + 45'/2)e %]

which involves commensurate delays.

7.4 H,-stabilization

Let us denote

A(s) = (as” +b) + (cs! + d)e™*7,
Al(s) = (a's" + V) + (st + d')e ",
B(S) = kps“ + ki,

then the transfer functions of the closed-loop system can be written as

1 A(s#A? - Q(s*A+ B)) (7.18)
1+ GK A2(stA+ B) ’ '

G sFA?—Q(s*A+ B) (7.19)
1+GK A2(stA+ B) '

K A(BA?+ AQ(s"A+ B)) (7.20)
1+GK A”(s* A+ B) '

The transfer functions can have the terms A’ or (s#A + B) in the denominator with
appropriate values of (. These terms have all roots in the open left half-plane but have
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roots of large modulus approaching the imaginary axis. Small changes in their coeflicients
may move the asymptotic axis to the right and thus the closed-loop system becomes
unstable.

In applications where robust stabilization is required, one may wish to eliminate chains of
poles asymptotic to the imaginary axis. However, in the next propositions, we demonstrate
that for a large class of controllers, this cannot be achieved. First we consider the case of
rational p and then irrational pu.

Proposition 7.10. Let G be given as in with w be rational. If a controller that guar-
antees the internal stability of the closed-loop system has the form K(s) = Nk(s)/Dg(s)
where N (s) and Dg(s) are quasi-polynomials with real coefficients in e 57 and s,
v € (0,1) and is rational, then the closed-loop system necessarily has chains of poles
asymptotic to the imaginary axis.

Proof. Due to ([7.13]), the controllers of interest can be written as

_ Ng  BA? 4+ AQ(s*A+ B)

K=K _ .
Dk stA? —Q(s*A+ B)

Then

A/2(S“NK - BDK)
(S'U“A + B)(NK + ADK) ’

Q=
If Q is written as @Q = Ng/Dg, then Ng(s) and Dg(s) are quasi-polynomials in e™*7
and s® where 6 € (0,1) such that p = mé and v = m’§ with m, m’ € N.

Now, let us consider the following transfer function of the closed-loop system

G stA”Dg — Ng(s*A + B)

1+GK A2 (st A+ B)Dg

The denominator of the closed-loop transfer function involves A?(s*A 4 B) which corre-
sponds to chains of poles approaching the imaginary axis.

To eliminate all the chains of poles asymptotic to the imaginary axis of the transfer
function, a necessary condition is that all the roots of modulus one of the formal polynomial
corresponding to the denominator are roots of the formal polynomial corresponding to
the numerator.

Recall that the corresponding formal polynomial is deduced from a quasi-polynomial by
picking up highest degree terms. In the numerator of the transfer function, deg(s*A?Dg) >
deg(Ng(s*A + B)). Indeed deg(s*A™) > deg(s*A + B) and deg Dy > deg Ng since
Q = Np/Dq € Hy. Therefore, the highest degree term of the numerator is a multiple
of st (a'st + ' ste™57)25%QC 0 (e*") where dyg = deg D and ¢4q is the formal poly-
nomial corresponding to D¢g. The formal polynomial associated to the numerator is
(1+ (d/a)2)*Cuq(z) with z = e™5T.

By similar arguments, we derive that the formal polynomial associated to the denominator
is (14 (¢'/d’)2)%(1 + (¢/a)z)caq(z). It then has one root of modulus one more than the
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formal polynomial associated to the numerator since |c/a| = 1 and does not satisfy the
necessary condition being that all the roots of modulus one of the formal polynomial
corresponding to the denominator are roots of the formal polynomial corresponding to
the numerator. Hence, the closed-loop system has at least one chain of poles approaching
the imaginary axis for all controllers of the prescribed form. O

Remark 7.11. Controllers of the form K(s) = Ng(s)/Dx(s) where Ng(s) and Dg(s)
are quasi-polynomials in e™*7, s#, and s are a particular case of the controllers considered
in Proposition Indeed, if 4 = m/n with m,n € N, then Ng(s) and Dg(s) can be
seen as quasi-polynomials in e™*" and st/n,

We now give an example to illustrate Proposition [7.10] as well as Remark [7.11]

Example 7.4.

1

Ga(s) = s1/2 4 (s1/2 4 2)e—s7

This system has one chain of poles approaching the imaginary axis from the right.

For @ =1/(s+1) and A’, B chosen as follows

A= (Y2 43) + (52 = 1)e7*T,
B=3s/2412,

which satisfy the conditions in Theorem the controller is

where

Ni(s) = (3572 — 4% + 3532 4 25 + 351/ 4 2)e™ 27
+ (65°/2 +165% — 253/ + 115 — 251/2 — 8)e ™7
+35%/2 4 208% + 435%/% + 415 + 415Y/% + 18,
Di(s) = (s7/% — 252 + 2532 — 25 4 s1/2)e 727
+ (25°/% + 45% — 4532 4 35 — 8s!/2)e™5T
+ %% 4+ 65% + 10532 + 55 + 65/% — 2,

which are quasi-polynomials in e 57, s¥/2, and s.

The denominator of the transfer functions of the closed-loop system is [(s'/2 +3) 4 (s'/2 —
e *72[(s — 25'/2)e™*T 4 5 4+ 35'/2 4 2](s + 1). Tt has three chains of poles asymptotic to
the imaginary axis. Among them, two chains are identical. The poles of the closed-loop
system are showed in Figure [7.4]

We now consider the case of irrational pu. Here the result is restricted to a class of
controllers involving s*.
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Figure 7.4 — Poles of the closed-loop system [Ga(s), K(s)]

Proposition 7.12. Let G be given as in with p be irrational. If a stabilizing con-
troller has the form K(s) = Nk(s)/Dgk(s) where Ni(s) and Dk (s) are quasi-polynomials
with real coefficients in s* and e™*7, then the closed-loop system necessarily has chains of
poles asymptotic to the imaginary axis.

Proof. Here, we deduce that Ng(s) and Dg(s) are quasi-polynomials in e™*7 and s*.
Then similar arguments on formal polynomials lead to the conclusion. O

7.5 Conclusion

In this chapter, we have considered first the stabilization of general fractional delay systems
of the neutral type by rational fractional controllers of commensurate order.

Then, for the special class of fractional delay systems with one delay we have derived a
two-degree-of-freedom parametrization of the set of all Hy-stabilizing controllers and
given an explicit expression of coprime and Bézout factors allowing to obtain the Youla-
Kucera parametrization of all the H,-stabilizing controllers. However, we have then
proved that a large class of stabilizing controllers is unable to put the infinite number of
poles far away from the imaginary axis in the left half-plane.

Future work could consider a larger class of stabilizing controllers, namely those which
might contain non-commensurate delays or terms in e®” as they still remain a simple class
of controllers. But, non-commensurate delays increase a lot the difficulty of the analysis
and make the implementation of such controllers non trivial. Of course the same question
addressed in full generality to the whole class of stabilizing controllers is a theoretically
challenging one.

After that, future work will be devoted to the stabilization of a larger class of systems
with several delays.



Chapter 8

Conclusions

In this thesis, we have considered the stability analysis and stabilization problems, both in
the sense of Hy, of linear fractional systems with delays. Concretely, we have dealt with
systems with commensurate fractional orders and with commensurate /non-commensurate
delays. All the results have been established exclusively in the frequency domain using
analytical techniques.

Two classes of systems have been considered.

The first class consists of MISO fractional systems with multiple I/O delays (which are
not necessarily commensurate). For this class of systems, the stabilization problem has
been addressed in Chapter [3] In the framework of the factorization approach to analysis
and synthesis problems, explicit expressions of left and right coprime factorizations and
Bézout factors were derived.

The second class involves SISO fractional neutral systems with commensurate delays.
In particular, we have been interested in the delicate case where poles approach the
imaginary axis. For this class of systems, we have considered both problems of stability
analysis and stabilization.

Chapter [4 has been dedicated to answer the stability question for a large class of systems,
in particular systems with multiple chains of poles asymptotic to the imaginary axis. The
location of neutral chains of poles w.r.t. the imaginary axis has been determined and the
necessary and sufficient conditions obtained are related not only to the location of poles
but also the relative order between the numerator and the denominator of the transfer
function.

The results on approximating poles of neutral chains for fractional delay systems have
been carried over to classical delay systems by simply replacing the fractional order
w € (0,1) with the integer order u = 1 in Chapter . Analyzing these approximations in
order to determine the pole location about the asymptotic axis leads to different results in
certain cases. The phenomena observed in these cases is that while for fractional systems
stable chains of poles may be indicated by the first approximation, for classical systems
we need higher approximations to detect such chains. Nevertheless, this phenomena is
not general.

135
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In Chapter [6] a unified approach to stability analysis has been proposed. This new
method addresses both fractional and classical neutral systems and covers not only the
cases studied in Chapters [4] and [f] but also all other unsolved cases. The method has been
carefully described with the intention of implementation in computation software.

The stabilization problem has been considered in Chapter [7] First, we have studied the
stabilization of general fractional delay systems of neutral type by rational fractional
controllers of commensurate order. Then, for the special class of fractional delay systems
with one delay we have derived two parametrizations of the set of all Hy-stabilizing
controllers. The first parametrization has two degrees of freedom and has been obtained
immediately with a particular stabilizing controller. The second is the usual Youla-Kucera
parametrization constructed from the coprime factorizations and Bézout factors derived
in explicit forms. However, we have then proved that a large class of stabilizing controllers
is unable to put the infinite number of poles far away from the imaginary axis in the left
half-plane.

Future work could consist of the following directions.

For MISO systems with I/O delays, in Chapter (3] doubly coprime factorizations have
not been obtained in the general case where elements of the transfer matrix may have
identical poles. In order to use the Youla-Kucera parametrization, we need to determine
the right factors which are now still missing.

In the set of stabilizing controllers constructed from the obtained coprime and Bézout
factors, we should investigate methods to choose controllers to be implemented that are
not sensitive to parameter uncertainties. This problem was reported for classical systems
in (Gumussoy, 2012]).

For SISO fractional neutral systems, the stability analysis results presented in Chapters
and [6] could be used to decide on Hoo-stabilizability of several classes of fractional
delay systems by rational or fractional controllers (with delays).

The unified method in Chapter [6]allows one to reach stability conclusions in all cases except
when the location of poles about the axis cannot be determined from the approximation
provided and further analyses may be then needed. Although the next approximation
terms can be determined using the same procedure as presented for some cases in the
chapter, one has to repeat this procedure for each particular case. Hence, future work
could consist of investigating methods to determine approximation terms with less effort
required.

For the stabilization problem of fractional neutral systems in the critical case of poles
asymptotic to the imaginary axis, future work could consider a larger class of stabilizing
controllers, namely those which might contain non-commensurate delays or terms in e*”
as they still remain a simple class of controllers. Although non-commensurate delays
increase a lot the difficulty of the analysis, studying these systems could provide a better
understanding of the behaviors of real systems where variation of delays usually occurs.
Of course the same question addressed in full generality to the whole class of stabilizing
controllers is a theoretically challenging one. After that, future work could be devoted to
the stabilization of a larger class of systems with several delays.
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We are integrating the results obtained in Chapters [6] and [7]in the Matlab toolbox YALTA
which can be downloaded at http://team.inria.fr/disco/software/.


http://team.inria.fr/disco/software/

138 CHAPTER 8. CONCLUSIONS



Bibliography

A. B. Abusaksaka and J. R. Partington. BIBO stability of some classes of delay systems
and fractional systems. Systems and Control Letters, 64(0):43-46, 2014.

K. Akbari Moornani and M. Haeri. On robust stability of LTI fractional-order delay
systems of retarded and neutral type. Automatica, 46(2):362-368, 2010.

K. Akbari Moornani and M. Haeri. Necessary and sufficient conditions for BIBO-stability
of some fractional delay systems of neutral type. IFEE Transactions on Automatic
Control, 56(1):125-128, 2011.

D. Avanessoff, A. R. Fioravanti, C. Bonnet, and L. H. V. Nguyen. H.-stability analysis
of (fractional) delay systems of retarded and neutral type with the Matlab Toolbox
YALTA. In T. Vyhlidal, J. F. Lafay, and R. Sipahi, editors, Delay systems: From
Theory to Numerics and Applications, volume 1 of Advances in Delays and Dynamics.
Springer, 2014.

R. Bellman and K. L. Cooke. Differential-Difference Equations. Academic Press, New
York, London, 1963.

C. Bonnet and J. R. Partington. Coprime factorizations and stability of fractional
differential systems. Systems and Control Letters, 41(3):167-174, 2000.

C. Bonnet and J. R. Partington. Stabilization of fractional exponential systems including
delays. Kybernetika, 37(3):345-353, 2001.

C. Bonnet and J. R. Partington. Analysis of fractional delay systems of retarded and
neutral type. Automatica, 38(7):1133-1138, 2002.

C. Bonnet and J. R. Partington. PID stabilization of SISO delay systems and robust
stabilization of systems with multiple transmission delays. In 16th International
Symposium on Mathematical Theory of Networks and Systems, pages 1-7, 2004.

C. Bonnet and J. R. Partington. Stabilization of some fractional delay systems of neutral
type. Automatica, 43(12):2047-2053, 2007.

C. Bonnet, A. R. Fioravanti, and J. R. Partington. Stability of neutral systems with
multiple delays and poles asymptotic to the imaginary axis. In /8th IEEE Conference
on Decision and Control (CDC) held jointly with the 28th Chinese Control Conference
(CCC), pages 269-273, 2009.

139



140 BIBLIOGRAPHY

C. Bonnet, A. R. Fioravanti, and J. R. Partington. Stability of neutral systems with
commensurate delays and poles asymptotic to the imaginary axis. SIAM Journal on
Control and Optimization, 49:498-516, 2011.

R. Brayton. Nonlinear oscillations in a distributed network. Quarterly of Applied
Mathematics, 24(4):289-301, 1967.

M. Caputo and F. Mainardi. A new dissipation model based on memory mechanism.
Pure and Applied Geophysics, 91(1):134-147, 1971.

Y. Q. Chen and K. L. Moore. Analytical stability bound for a class of delayed fractional-
order dynamic systems. Nonlinear Dynamics, 29(1):191-200, 2002.

Y. Q. Chen, I. Petras, and D. Xue. Fractional order control - A tutorial. In American
Control Conference, pages 13971411, 2009.

T. Cisse Haba, G. L. Loum, J. T. Zoueu, and G. Ablart. Use of a component with
fractional impedance in the realization of an analogical regulator of order 1/2. Journal
of Applied Sciences, 8:59-67, 2008.

R. F. Curtain and H. Zwart. An Introduction to Infinite-Dimensional Linear Systems
Theory, volume 21. Springer, 1995.

R. F. Curtain, G. Weiss, and M. Weiss. Coprime factorization for regular linear systems.
Automatica, 32(11):1519-1531, 1996.

M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf. Computational
Geometry. Springer, 3rd edition, 2008.

W. Deng, C. Li, and J. Lii. Stability analysis of linear fractional differential system with
multiple time delays. Nonlinear Dynamics, 48(4):409-416, 2007.

C. A. Desoer and M. Vidyasagar. Feedback Systems: Input-Output Properties. Society for
Industrial and Applied Mathematic, 1975.

C. A. Desoer, R.-W. Liu, J. Murray, and R. Saeks. Feedback system design: The fractional
representation approach to analysis and synthesis. IEEFE Transactions on Automatic
Control, 25(3):399-412, 1980.

A. M. Elshurafa, M. N. Almadhoun, K. N. Salama, and H. N. Alshareef. Microscale
electrostatic fractional capacitors using reduced graphene oxide percolated polymer
composites. Applied Physics Letters, 102(23):232901, 2013.

A. R. Fioravanti, C. Bonnet, and H. Ozbay. Stability of fractional neutral systems with
multiple delays and poles asymptotic to the imaginary axis. In 49th IEEE Conference
on Decision and Control, pages 31-35, 2010.

A. R. Fioravanti, C. Bonnet, H. Ozbay, and S.-I. Niculescu. Stability windows and unstable
root-loci for linear fractional time-delay systems. In 18th IFAC World Congress, 2011.

A. R. Fioravanti, C. Bonnet, H. Ozbay, and S.-I. Niculescu. A numerical method for
stability windows and unstable root-locus calculation for linear fractional time-delay
systems. Automatica, 48(11):2824-2830, 2012.



BIBLIOGRAPHY 141

T. J. Freeborn. A survey of fractional-order circuit models for biology and biomedicine.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3):416-424,
2013.

N. M. Grahovac and M. M. Zigic. Modelling of the hamstring muscle group by use of
fractional derivatives. Computers and Mathematics with Applications, 59(5):1695-1700,
2010.

S. Gumussoy. Coprime-inner /outer factorization of SISO time-delay systems and FIR
structure of their optimal H, controllers. International Journal of Robust and Nonlinear
Control, 22(9):981-998, 2012.

S. Giimiigsoy and H. Ozbay. On the mixed sensitivity minimization for systems with
infinitely many unstable modes. Systems and Control Letters, 53(3):211-216, 2004.

J. K. Hale. Introduction to Functional Differential Equations, volume 99. Springer, 1993.

S. E. Hamamci. An algorithm for stabilization of fractional-order time delay systems
using fractional-order PID controllers. IEEE Transactions on Automatic Control, 52
(10):1964-1969, 2007.

S. E. Hamamci and M. Koksal. Calculation of all stabilizing fractional-order PD controllers
for integrating time delay systems. Computers and Mathematics with Applications, 59
(5):1621-1629, 2010.

R. Hilfer. Applications Of Fractional Calculus In Physics. World Scientific, 2000.

R. Hotzel. Some stability conditions for fractional delay systems. Journal of Mathematical
Systems, Estimation, and Control, 8(4):1-19, 1998a.

R. Hotzel. Contributions a la théorie structurelle et la commande des systémes linéaires
fractionnaires. PhD thesis, Université Paris Sud, 1998b.

C. Hwang and Y.-C. Cheng. A note on the use of the Lambert W function in the stability
analysis of time-delay systems. Automatica, 41(11):1979-1985, 2005.

C. Hwang and Y .-C. Cheng. A numerical algorithm for stability testing of fractional delay
systems. Automatica, 42(5):825-831, 2006.

C. M. Ionescu and R. De Keyser. Time domain validation of a fractional order model for
human respiratory system. In 14th IEEE Mediterranean Electrotechnical Conference,
pages 89-95. IEEE, 2008.

C. R. Knospe and L. Zhu. Performance limitations of non-laminated magnetic suspension
systems. IEEE Transactions on Control Systems Technology, (99):1-10, 2011.

C. G. Koh and J. M. Kelly. Application of fractional derivatives to seismic analysis
of based-isolated models. Farthquake Engineering and Structural Dynamics, 19(2):
229-241, 1990.

V. Kolmanovskii and A. Myshkis. Applied Theory of Functional Differential Equations.
Springer, 1992.



142 BIBLIOGRAPHY

M. Lazarevi¢. Stability and stabilization of fractional order time delay systems. Scientific
Technical Review, 61(1):31-45, 2011.

R. Magin, M. D. Ortigueira, I. Podlubny, and J. Trujillo. On the fractional signals and
systems. Signal Processing, 91(3):350-371, 2011.

J. E. Marshall, H. Gorecki, A. Korytowski, and K. Walton. Time-Delay Systems: Stability
and Performance Criteria with Applications. Ellis Horwood New York, 1992.

D. Matignon. Stability properties for generalized fractional differential systems. ESAIM:
Proceedings, 5:145-158, 1998.

A. Mesbahi and M. Haeri. Stability of linear time invariant fractional delay systems of
retarded type in the space of delay parameters. Automatica, 49(5):1287-1294, 2013.

W. Michiels and S.-I. Niculescu. Stability and Stabilization of Time-Delay Systems
(Advances in Design and Control). Society for Industrial and Applied Mathematics,
U.S., 2007.

L. Mirkin and N. Raskin. State-space parametrization of all stabilizing dead-time con-
trollers. In 38th IEEE Conference on Decision and Control, volume 1, pages 221-226.
IEEE, 1999.

A. A. Moelja and G. Meinsma. Parametrization of stabilizing controllers for systems with
multiple I/O delays. In 4th IFAC Workshop on Time Delay Systems, Rocquencourt,
France, 2003.

K. Mori. Parameterization of stabilizing controllers over commutative rings with appli-
cation to multidimensional systems. IFEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 49(6):743-752, 2002.

L. H. V. Nguyen and C. Bonnet. Stability analysis of fractional neutral time-delay systems
with multiple chains of poles asymptotic to same points in the imaginary axis. In 51st
IEEE Conference on Dicision and Control, 2012.

S.-I. Niculescu and B. Brogliato. Force measurement time-delays and contact instability
phenomenon. FEuropean Journal of Control, 5(2-4):279-289, 1999.

K. B. Oldham and J. Spanier. The Fractional Calculus. Academic Press, 1974.

A. Oustaloup, B. Mathieu, and P. Lanusse. The CRONE control of resonant plants:
Application to a flexible transmission. European Journal of Control, 1(2):113-121, 1995.

H. Ozbay, C. Bonnet, and A. R. Fioravanti. PID controller design for fractional-order
systems with time delays. Systems and Control Letters, 61(1):18-23, 2012.

N. Ozturk and A. Uraz. An analysis stability test for a certain class of distributed
parameter systems with delays. IEEE Transactions on Clircuits and Systems, 32(4):
393-396, 1985.

J. R. Partington and C. Bonnet. H,, and BIBO stabilization of delay systems of neutral
type. Systems and Control Letters, 52(3-4):283-288, 2004.



BIBLIOGRAPHY 143

I. Podlubny. Fractional Differential Equations: An Introduction to Fractional Derivatives,
Fractional Differential Equations, to Methods of Their Solution and Some of Their
Applications. Academic Press, 1998.

I. Podlubny. Fractional-order systems and PI*D*-controllers. IEEE Transactions on
Automatic Control, 44(1):208-214, 1999.

A. Quadrat. The fractional representation approach to synthesis problems: An algebraic
analysis viewpoint, Part I: (Weakly) doubly coprime factorizations. SIAM Journal on
Control and Optimization, 42(1):266—299, 2003a.

A. Quadrat. On a generalization of the youla—kuéera parametrization, Part I: The
fractional ideal approach to SISO systems. Systems and Control Letters, 50(2):135-148,
2003b.

A. Quadrat. A lattice approach to analysis and synthesis problems. Mathematics of
Control, Signals, and Systems, 18(2):147-186, 2006a.

A. Quadrat. On a generalization of the youla—kuéera parametrization, Part II: The lattice
approach to MIMO systems. Mathematics of Control, Signals, and Systems, 18(3):
199-235, 2006b.

P. F. Quet, B. Ataglar, A. Iftar, H. Ozbay, S. Kalyanaraman, and T. Kang. Rate-based
flow controllers for communication networks in the presence of uncertain time-varying
multiple time-delays. Automatica, 38(6):917-928, 2002.

R. Rabah, G. M. Sklyar, and P. Y. Barkhayev. Stability and stabilizability of mixed
retarded-neutral type systems. ESAIM: Control, Optimisation and Calculus of Varia-
tions, 18(03):656-692, 2012.

J.-P. Richard. Time-delay systems: An overview of some recent advances and open
problems. Automatica, 39:1667-1694, 2003.

J. Sabatier, M. Aoun, A. Oustaloup, G. Grégoire, F. Ragot, and P. Roy. Fractional system
identification for lead acid battery state of charge estimation. Signal processing, 86:
26452657, 2006.

A. Si-Ammour, S. Djennoune, and M. Bettayeb. A sliding mode control for linear
fractional systems with input and state delays. Communications in Nonlinear Science
and Numerical Simulation, 14(5):2310-2318, 2009.

M. Sivarama Krishna, S. Das, K. Biswas, and B. Goswami. Fabrication of a fractional
order capacitor with desired specifications: A study on process identification and
characterization. IEEE Transactions on Electron Devices, 58(11):4067-4073, 2011.

M. C. Smith. On stabilization and the existence of coprime factorizations. I[IEEE
Transactions on Automatic Control, 34(9):1005-1007, 1989.

M. Vidyasagar. Control System Synthesis: A Factorization Approach. MIT Press, 1985.

M. Vidyasagar, H. Schneider, and B. Francis. Algebraic and topological aspects of
feedback stabilization. IEEE Transactions on Automatic Control, 27(4):880-894, 1982.



144 BIBLIOGRAPHY

B. M. Vinagre, V. Felia, and J. J. Felid. Frequency domain identification of a flexible
structure with piezoelectric actuators using irrational transfer function models. In 37th
IEEE Conference on Decision and Control, volume 2, pages 12781280, 1998.

T. Vyhlidal and P. Zitek. QPmR v.2 — Quasipolynomial rootfinder, algorithm and
examples. In T. Vyhlidal, J. F. Lafay, and R. Sipahi, editors, Delay systems: From
Theory to Numerics and Applications, volume 1 of Advances in Delays and Dynamics.
Springer, 2014.

S. Westerlund and L. Ekstam. Capacitor theory. IEEE Transactions on Dielectrics and
FElectrical Insulation, 1(5):826-839, 1994.

D. Xue, C. Zhao, and Y. Q. Chen. Fractional order PID control of a DC-motor with
elastic shaft: A case study. In American Control Conference, Minneapolis, Minnesota,

USA, 2006.

K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, 1st
edition, 1995.

L. Zhu and C. R. Knospe. Modeling of nonlaminated electromagnetic suspension systems.
IEEE/ASME Transactions on Mechatronics, 15(1):59-69, 2010.

L. Zhu, C. R. Knospe, and E. H. Maslen. Analytic model for a nonlaminated cylindrical
magnetic actuator including eddy currents. IEEE Transactions on Magnetics, 41(4):
1248-1258, 2005.



Appendix A

List of publications

Conference papers

1]

2]

3]

[4]

[5]

L. H. V. Nguyen, A. R. Fioravanti, and C. Bonnet. Analysis of neutral systems with
commensurate delays and many chains of poles asymptotic to same points on the
imaginary axis. In 10th IFAC Workshop on Time Delay Systems, Boston, MA, June
2012.

L. H. V. Nguyen and C. Bonnet. Coprime factorizations of MISO fractional time-delay
systems. In 20th International Symposium on Mathematical Theory of Networks and
Systems, Melbourne, Australia, July 2012.

L. H. V. Nguyen and C. Bonnet. Stability analysis of fractional neutral time-delay
systems with multiple chains of poles asymptotic to same points in the imaginary axis.
In 51st IEEE Conference on Decision and Control, Maui, Hawaii, December 2012.

L. H. V. Nguyen and C. Bonnet. Right coprime factorizations of MISO fractional
time-delay systems. In 1st IFAC Workshop on Control of Systems Modeled by Partial
Differential Equations, Paris, France, September 2013.

L. H. V. Nguyen and C. Bonnet. Stabilization of fractional neutral systems with
one delay and a chain of poles asymptotic to the imaginary axis. In International
Conference on Fractional Differentiation and its Applications, Catania, Italy, June
2014.

Book chapters

1]

D. Avanessoff, A. R. Fioravanti, C. Bonnet, and L. H. V. Nguyen. H-stability
analysis of (fractional) delay systems of retarded and neutral type with the Matlab
toolbox YALTA. In T. Vyhlidal, J. F. Lafay, and R. Sipahi, editors, Delay systems:
From Theory to Numerics and Applications, volume 1 of Advances in Delays and
Dynamics. Springer, 2014.

145



146 APPENDIX A. LIST OF PUBLICATIONS

[2] L. H. V. Nguyen and C. Bonnet. Stabilization of some fractional neutral delay systems
which possibly possess an infinite number of unstable poles. In C. Bonnet, H. Mounier,
H. Ozbay, and A. Seuret, editors, Low complexity controllers for time-delay systems,
volume 2 of Advances in Delays and Dynamics. Springer, 2014.

Preprints

[1] L. H. V. Nguyen, C. Bonnet, and A. R. Fioravanti. H..-stability analysis of frac-
tional delay systems of neutral type. Submitted to SIAM Journal on Control and

Optimization.



Appendix B

Résumé

Sommaire
[B.1 Introductionl ... ......... . ... . 0 0., 148
B.2 Préliminaires| . . . . ... ... ... . 00000000, 150
B.2.1 Notationsl . . . . ... ... 150
[B22 Stabilite Ho ] . . . . . . . . . o 150
[B.2.3 Stabilisation internel . . . . . . .. ... o oL 151
IB.2.4  Factorisations copremiéres|. . . . . . . . . . . ... .. ... .. 153
B.2.5 Parameétrisation de controleurs stabilisants] . . . ... ... .. 154

IB.3 Stabilisation des systémes fractionnaires MISO a retards| . . 155

IB.3.1 Une classe de systemes fractionnaires MISO a retards| . . . . . 155

IB.3.2  Factorisations copremiéres a gauche et facteurs de Bézout associés[l56

IB.3.3  Factorisations copremiéres a droite et facteurs de Bézout associés|l57

[B.3.3.1 Polesdistinctsl . . . . . . .. ... 158
[B.3.3.2  Poles identiques| . . . . ... ..o oL 159

IB.4 Analyse de la stabilité des systémes classiques et fraction- |

[ naires SISO a retards commensurables] . ............ 162

IB.4.1 Une classe de systémes classiques et fractionnaires de type neutrefl 62

IB.4.2  Localisation des poles neutres| . . . . . . . ... ... ... ... 163
............................... 167

IBi4.4 Unexemplel . . . . ... oo 168

IB.5 Stabilisation des systémes fractionnaires SISO a retards com- |
[ mensurablesl. . ... ...... .. ... . . L. 169
IB.5.1 Propriétés de stabilisabilité] . . . . .. ... .00 169

B.50.2 Parameétrisation des controleurs stabilisants| . . . . . . . . . .. 171

IB.5.3 Stabilisation H.o| . . . . . . . . . . ... 173

IB.6 Perspectives|. . . . . . . . . 00 s e e e e 174

147



148 APPENDIX B. RESUME

B.1 Introduction

Dans ce travail, nous abordons les problémes d’analyse de stabilité et de stabilisation de
plusieurs classes de systémes SISO et MIMO. Nous travaillons dans le domaine fréquentiel
et notre objectif est de trouver des conditions de stabilité faciles a vérifier ainsi que des
expressions explicites de controleurs ayant & l'esprit une intégration de nos résultats dans
un logiciel.

Nous sommes intéressés par deux grandes classes de systémes : les systémes & retard
et les systémes fractionnaires. Les deux ont besoin d’outils de la théorie du controle de
dimension infinie.

Dans le domaine temporel, les modéles comprennent des dérivées et/ou des intégrales
d’ordre arbitraire. De méme, ils contiennent dans le domaine fréquentiel des puissances
d’ordre arbitraire de la variable de Laplace s. Pour plus de détails sur ’analyse frac-
tionnaire et des exemples, voir (Oldham and Spanier, 1974 |[Podlubny, [1998)) et leurs
références.

Ces modéles se retrouvent dans de nombreux domaines d’applications, voir par exemple
(Westerlund and Ekstam), [1994; Knospe and Zhul 2011; [Vinagre et al., |1998; Grahovac
and Zigic, 2010), puisque les lois fractionnaires ont été de plus en plus utilisées pour
décrire des phénomeénes physiques et les modéles fractionnaires collent mieux aux données
recueillies que les modéles d’ordre entier et avec moins de paramétres.

Dans le domaine de la commande, de nombreux résultats sont disponibles sur les contro-
leurs fractionnaires et leur mise en ceuvre. Voir, par exemple (Oustaloup et al.l [1995;
Podlubny, [1999; |Chen et al., 2009; [Magin et al., 2011)) et leurs références.

Lorsqu’on considére des schémas de commande avec des systémes fractionnaires, il est
naturel de penser & des systémes fractionnaires a retards car les retards sont couramment
rencontrés dans les systémes réels en raison de la communication ou des distances de
transport et leurs effets sur la stabilité ne peuvent étre négligés.

Il y a eu un intérét croissant pour I’étude des systémes fractionnaires & retards. La question
de la stabilité des systémes linéaires fractionnaires a retards a été étudiée par de nombreux
auteurs (Hotzel, |1998a; Bonnet and Partington, 2002} 2001; (Chen and Moore, |2002; Deng
et al.l 2007; [Akbari Moornani and Haeri, [2010] [2011]). Toutes les conditions de stabilité
obtenues dans ces articles concernent la localisation des péles dans le plan complexe.
Pour les systémes fractionnaires de type retardé, la condition nécessaire et suffisante pour
la stabilité est “pas de poOle dans le demi-plan droite fermé” qui est classique. Afin de
vérifier cette condition, plusieurs méthodes numériques ont été proposées (Hwang and
[Cheng, 2005}, [2006}; [Ozturk and Uraz, 1985} [Fioravanti et al.| [2012; [Mesbahi and Haeri,

2013).

Pour les systémes de type neutre, la condition “pas de péle dans le demi-plan droite
fermé” n’est que nécessaire. Ceci peut étre expliqué par les localisations compliquées des
poles des systémes neutres : une infinité de péles isolés se rassemblent dans des bandes
verticales dans le plan complexe (Bellman and Cooke, |1963; |Hotzel, [1998a; Bonnet and|
Partington, |2002).
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Dans le cas le plus simple des systémes d’ordres fractionnaires commensurables et a
retards commensurables oil le phénoméne ci-dessus se réduit a des poles asymptotiques
a des axes verticaux, des tentatives ont été faites dans (Bonnet and Partington), 2007}
Fioravanti et al., |2010) pour obtenir des conditions nécessaires et suffisantes pour la
stabilité Ho (qui est une notion plus faible que la stabilité BIBO) pour une sous-classe
de ces systémes.

Certains travaux ayant le méme objectif sont également disponibles pour les systémes
classiques (d’ordres entiers) de type neutre pour lesquels la méme difficulté est rencontrée.
Dans le domaine fréquentiel, nous avons (Bonnet et al., [2011) pour la stabilité Hy, et
(Abusaksaka and Partington, 2014)) pour la stabilité BIBO. Et dans le domaine temporel,
(Rabah et al 2012) a considéré la stabilité asymptotique.

Bien qu’il y ait eu de nombreux résultats concernant ’analyse de stabilité, le probléme de
stabilisation des systémes fractionnaires a retards a trés peu été traité (Hotzel, 1998b;
Bonnet and Partington, 2001}, |2007; |Ozbay et al. |2012]).

Pour étudier ce probléme ouvert de stabilisation des systémes a retards fractionnaires, nous
choisissons l'approche de factorisation (Vidyasagar, 1985)). Avec sa nature algébrique, cette
approche puissante permet de dériver I'ensemble des controleurs stabilisants qui peuvent
étre utilisés pour étudier divers problémes de contréle et en particulier la commande
robuste.

Pour les systémes MIMO, la question de paramétrage de tous les controleurs stabilisants
a été étudiée dans (Mori, [2002; |Quadrat] 2006bj; Mirkin and Raskin, |1999; Moelja and
Meinsmal, 2003). Notre objectif dans ce travail est d’obtenir des expressions explicites de
factorisations copremiéres et de facteurs de Bézout des systémes fractionnaires MIMO
avec retards en entrées et/ou sortie.

Nous considérons deux classes de systémes fractionnaires linéaires invariants dans le temps
avec retards discrets. Le premier se compose de systémes fractionnaires MISO avec retards
quelconques en entrées et/ou sortie. La seconde se compose de systémes fractionnaires
neutres SISO avec retards commensurables.

Le résumé est organisé comme suit. Tout d’abord, quelques préliminaires sont donnés
dans la Section Nous étudions la stabilisation de la premiére classe de systémes dans
la, Section en utilisant 'approche de factorisation. Nous obtenons des expressions
explicites de factorisations copremiéres a gauche et & droite et les facteurs de Bézout
associés, qui sont les éléments pour constituer ’ensemble des contréleurs stabilisant. Pour
la deuxiéme classe de systémes, nous sommes intéressés au cas critique ol ces systémes
ont des podles asymptotiques & I'axe imaginaire. Tout d’abord, ’analyse de stabilité est
réalisée dans la Section [B:4] Cette analyse est applicable pour les systémes classiques
de la méme forme. En outre, elle peut facilement étre programmée dans des logiciels
de calcul. Ensuite, la question de stabilisation est étudiée dans la Section [B.5 pour une
sous-classe de systémes fractionnaires, en utilisant les résultats de ’analyse de stabilité et
I'approche de factorisation. Enfin, nous donnons les conclusions et les perspectives dans

la Section [B.6l

Notons que comme il s’agit d’un résumé, les résultats sont tous donnés sans preuves.
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B.2 Préliminaires

B.2.1 Notations

Cy ensemble de nombres complexes & partie réelle positive

Cy ensemble de nombres complexes a partie réelle non-négative
card(£) mnombre d’¢léments de l'ensemble £

N ensemble de nombres naturels (non compris zéro)

Ny ensemble des N premiers nombres naturels

R4 ensemble de nombres réels positifs

[x] partie entiére de z € R.

Zy ensemble des nombres entiers non-négatifs

7y ensemble des nombres entiers positifs

Les poles (resp. racines) dans le demi-plan droit fermé C, sont appelés les poles (resp.
racines) instables.

B.2.2 Stabilité H

Les références utilisées pour cette sous-section sont (Curtain and Zwart, [1995; |Zhou et al.,
1995)).

Définition B.1.
o
Ls[0,00) :={f :[0,00) = C | f est Lebesgue-mesurable et / |£(1)]?dt < o0},
0
Définition B.2. Un systéme linéaire continu défini par un opérateur linéaire
X LQ[0,00) — LQ[O, OO)
est Lo-stable si
[E]]2 < oo,

ot ||X]|]2 est la norme de l'opérateur et est défini par

by
1]z := sup{||Sfll2 | f € L2[0,00), [|fll2 =1} =  sup 1Zf]l2
0#fe€L2[0,00) Hf”2

Autrement dit, un systéme Lo-stable produit un signal de sortie a énergie bornée pour un
signal d’entrée a énergie bornée.

Définition B.3 (Espaces de Hardy).

Hy(Cy) :={f:C4 — C| f est analytique dans Cet sup/ |f (o + jw)Pdw < oo},

c>0J—0co

Hoo(Cy) :={f : CL — C| f est analytique dans C; et sup |f]| < oo}.
seCy



B.2. PRELIMINAIRES 151

Théoréme B.4 (Théoréme de Paley-Wiener). Lg[0,00) est isomorphe & Ha(Cy) par la
transformée de Laplace.

Définition B.5.

Lo(jR) :=={f: jR— C | essesﬂlgp]f(jw)\ < 00}

Théoréme B.6. Si G € Hy(Cy) et u € Ha(Cy), alors Gu € Ha(Cy). De plus, la
norme de l'opérateur de multiplication ¥ : u — Gu définie par

2 |G|z
Bl =  sup L1GUE
0£acHy(Cy) |lT]l2

satisfait
1E]] = 11Gllce-

Lemme B.7. H(C.) est une sous-espace de Loo(jR).

Théoréme B.8. Si G € Lo (jR), alors G € Hxo(Cy) si et seulement si Gu € Ha(Cy)
pour tous u € Hao(Cy).

Ainsi, d’aprés les Théorémes et si l'on se restreint aux systémes linéaires invariants
dans le temps dont la fonction de transfert appartient a Lo (jR), alors un systéme linéaire
invariant dans le temps est Lo-stable si et seulement si sa fonction de transfert appartient
a4 Ho. Pour cette raison, la stabilité Lo — Lo est appelée la stabilité H..

B.2.3 Stabilisation interne

Les références pour cette sous-section sont (Desoer et al., [1980; [Vidyasagar et al.| (1982}
Vidyasagar, [1985)).

On note § un anneau commutatif unitaire intégre et F le corps de fractions de S,
c’est-a-dire,

F:={a/bla,beS,b+#0}.

Remarque B.9. Un ensemble de systémes linéaire stable SISO est un anneau commutatif
unitaire intégre. En particulier, les connexions paralléles et cascades des systémes stables
sont aussi stables.

Dans la suite, on considére que S est un ensemble de systémes linéaire stable SISO. Alors
F comprend des systémes stables et instables.

Pourtant les résultats basiques suivants sont aussi utiles pour d’autres buts que la
stabilisation & condition que I’ensemble de systémes désirés soit un anneau commutatif
unitaire intégre.
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u2
Ul el Y1 < €2 Y2
K G

+ +

FIGURE B.1 — La boucle fermée

On considére le systéme bouclé présenté dans la Figure ou G de dimension n X m est
la matrice de transfert du systéme & controler et K de dimension m X n la matrice de
transfert du controleur.

La fonction de transfert entre [u,us]? et [e1,ea]” est H(G, K), c’est-a-dire,
a]-men]
e2 U2
avec

H(G,K) = [ Iy — G + KG)'K  —G(Ip + KG)™! }

(In + KG) 'K (Im + KG)™1
[ (I,+GK)™! —(I, + GK)™'G
| KL, +GK)™' I,-C(,+GK)"'G
car avec quelques manipulations matricielles basiques nous obtenons G(I,, + KG)~! =

(I, + GK)"'G.

La fonction de transfert entre [u,u2]? et [y1,y2]? est W(G, K), c’est-a-dire,

2w 2]

L Y2 U2
avec
[0 I,
wie ) =| 5| e s - ) (B.1)

K(I, + GK)™'  —KG(I,, + KG)™.
| GK(I, +GK)™'  G(,+KG)™ |

Définition B.10. Le systéme bouclé dans la Figure [B:I] est stable de maniére interne si
H(G, K) € Stmtn)x(m+n),

Remarque B.11. Du a (B.1]), la boucle fermée est stable de maniére interne si et seulement
si W(G,K) € Stmtm)x(min) - Autrement dit, la boucle fermée est stable de maniére
interne si et seulement si toutes les relations entrée-sortie du systéme bouclé sont bornées.

Lemme B.12 (Vidyasagar, [1985). Si W (G, K) € Stmtmx(m+n) - glors G € FP*™ K €
]_‘an‘

Le lemme précédent montre que seulement les systémes dont les éléments de la fonction
de transfert sont dans F peuvent étre stabilisés avec le schéma de retour de la Figure [B.1]
Alors, dans la suite, nous considérons les systémes de ce type.
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B.2.4 Factorisations copremiéres

Définition B.13. N € §™™ D € S™*™ gont copremiers a droite s’il existe X €
SMXNY € SMX™M tels que

XN+YD=1,.

Définition B.14. (N, D) avec N € S D € S™*™ est une factorisation a droite de
GeFXmsidetD#0et G=ND1.

Remarque B.15. Comme S est commutatif, chaque G € F™*"™ admet des factorisations
copremiéres. L’élément (4, j) de G peut étre écrit comme g;; = p;j/qij ot pij, qij € S. En
notant b = [, Hj gij # 0 et A la matrice dont les éléments sont a;; = bp;j/¢ij € S, on
obtient G = A(bl,,)~!

Définition B.16. (N, D) avec N € ™™ D € S™*™ est une factorisation copremiére a
droite de G € F™*™ si (N, D) est une factorisation a droite de G et N, D sont copremiers
a droite.

Définition B.17. N € 8™ D € 8™ sont copremiers gauche g’il existe X €
STXNY € S™X™ tels que

NX + DY =1I,.
Remarque B.18. De maniére similaire, on peut construire des factorisations & gauche de

tous G € F™™. En fait, G = (bI,) 1 A.

Définition B.19.~(]T7, D) avec ]Sf e smm, D € 8™*™ est une factorisation a gauche de
GeF>XmsidetD#0et G=D!N.

Définition B.20. (N, D) avec N € 8™ D € §"*" est une factorisation copremiere
a gauche de G € F™*™ si (N D) est une factorisation & gauche de G et N, D sont
copremiers & gauche.

Lemme B.21 (Théoréme de la couronne, (Vidyasagar, 1985 Lemme 8.1.12)). Soit S une
algébre de Banach sur C avec l’idéal maximal ). Supposons que I' est un sous-ensemble
dense de Q2 et que aq,--- ,a, € S. Alors il existe x1,--- ,x, € S tels que

n
Z Tia; = 1
i=1
si et seulement si
inf aj(w)| >0
wel Z ’ ! ’
ou a; est la transformée de Gelfand de a;.

Corollaire B.22. Si S est un anneau de Bézout, alors tous G € F™™ possédent des
factorisations copremiéres a gauche et a droite.

Lemme B.23. H., n’est pas un anneau de Bézout.
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Remarque B.24. Le lemme précédent montre qu’il existe G € HX™ qui n’a pas de
factorisations a gauche ou/et a droite.

Lemme B.25 (Vidyasagar, (1985, Théoréme 8.1.23). Les trois assertions suivantes sont
équivalentes :

1. S est un anneau d’Hermite.

2. Si G € F™™ q une factorisation copremiere a droite, alors il a une factorisation
copremiére a gauche.

3. Si G € F™™ q une factorisation copremiére a gauche, alors il a une factorisation
copremiére a droite.

Lemme B.26. Tous les anneaur de Bézout sont des anneaux d’Hermite.

Lemme B.27. H., est un anneau d’Hermite.

B.2.5 Paramétrisation de contrdleurs stabilisants

Lemme B.28 (Vidyasagar et al., |1982, Lemme 3.1). Soient G € C*™, K € C"*",
o CI*™ et C*™ désignent les ensembles de tous G € F™™ ayant une factorisation
copremiére & droite et une factorisation copremiére a gauche respectivement. Supposons
que (Np,D,) est une factorisation copremiére & droite de G et que (]\~7k,l~)k) est une
factorisation copremiére a gauche de K. Sous ces conditions la paire (G, K) est stable si
et seulement st

A = .5kDp + ZA\}kNp
est une unité dans S™*™.

Théoréme B.29 (Vidyasagar, |1985, Théoréme 8.3.5). Soit G € F"*™ ayant une fac-
torisation copremiére a droite (N, D) et une factorisation copremiére a gauche (N D)
Supposons que X € S™*", Y € S™X™, X e SmXn Y € 8" tels que XN +YD =1,
NX + DY = 1I,,. Alors

S(G)={(Y —RN) (X + RD) : R € ™" et det(Y — RN) # 0}
={(X+DR)(Y = NR) ' : Re 8™" et det(Y — NR) # 0}.
Remarque B.30. o (VY — RN) et (X + RD) sont copremiers a gauche. En fait, (Y’
RN)D + (X + RD)N = I,,, car XN + YD = I,, et DN = ND.

o ()~(+D13)5t (}Z:NR) sont copremiers & droite. En fait, N(X+DR)+D(Y—NR) =
I,car NX+DY =1, et DN =ND.

e SidetY # 0, alors un controleur stabilisant est donné par K = Y ' X qui correspond
aR=0.

e Sidet Y = 0, alors un contréleur stabilisant est donné par K = Xy-! qui correspond
aR=0.
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B.3 Stabilisation des systémes fractionnaires MISO & re-
tards

B.3.1 Une classe de systémes fractionnaires MISO a retards

On considére les systémes décrits par les matrices de transfert de la forme

G(s) = |[e*M R (sY),...,e " R, (s*)], (B.2)

0< hg € Rpour k=1,...,n sont les retards;
e aeR O<a<l;

o Ri(sY) = qx(sY)/pr(s®), ou pr(s®) et qx(s*) sont des polyndmes de degré entier
en s, pr(s®) et qx(s“) n’ont pas de racines communes, et degpi(s®) > deg gi(s“)
pour k=1,...,n;

o dj est le degré en s* de p(s®);

e s est dans la branche principale C\R_, c’est-a-dire arg(s) € (—m,7), afin d’assurer
une valeur unique pour la fonction de transfert qui contient des termes en s avec
a € (0,1).

On étudie le probléme de stabilisation du systéme dans le cadre de I’approche de factori-
sation. Plus précisément, on souhaite chercher des factorisations copremiéres a gauche et
a droite de la matrice de transfert du systéme ainsi que les facteurs de Bézout associés
afin d’obtenir ’ensemble des controleurs stabilisants.

Les notations suivantes seront utiles dans la suite.
Notons

e p(s¥) le plus petit commun multiple de tous les dénominateurs des Ry (s®) pour
k=1,...,n;

e d le degré en s* de p(s®).

Alors, les fonctions de transfert rationnelles Ry (s*) peuvent se réécrire comme suit

ol g (s®) sont des polynomes en s*.

On peut décomposer

j=1



156 APPENDIX B. RESUME

e b €D :={0ecC\{0}| —ma/2 < Arg(o) < ma/2},
e ¢; e C\{DU{0}},
e mg, mj, m; € Zy powri=1,...,Net j=1,...,N"
Ainsi s; = b} /* sont les racines instables non-nulles en s de p(s).

De maniére similaire, on écrit

N N’ ,
ils°) = ()" <H<sa - bz-)mik) [T = e |

i=1 j=1

ol Mo, Mik, My, € Zy pour i =1,... N, j=1,....,N' et k=1,...,n. Il est évident
que mog < Mo, M, < My, et mly < mj.

B.3.2 Factorisations copremiéres & gauche et facteurs de Bézout asso-
ciés

Dt a la dimension de la matrice de transfert, une factorisation copremiére a gauche est
facile a trouver.
Proposition B.31. Soit G décrit par . Alors

() = 26D o Fis) =

(sa + 1)d . d [eishIQI(Sa% ce 7675hHQn(3a):| (B3)

(s*+1)

est une factorisation copremiére a gauche de G sur Hy.

Avant de donner les facteurs de Bézout associés, notons

ki :==min{k | k € {1,...,n},my =m;} fori=0,...,N, (B.4)
fr = Z m; fork=1,...,n,
ie{1,...N} ki=k
L(mpa) :={z e R |z =a+ba < mya,a,be Zy}. (B.5)

Proposition B.32. Soit G(s) décrit par (B.4). Alors les facteurs de Bézout associés a
la factorisation copremiére & gauche obtenue dans sont donnés par

Foo L (T DTu(s®) = iy e au(s®)un(s)

p(s*)u(s®) ’
Sy [ mals) pn(3)]"
Y(S) - U(Sa))"" U(SO‘) )

ot u(s®) est un polynome de degré supérieur ou égal a d en s* dont les racines sont stables,
et les polynomes fractionnaires (d’ordre non-commensurable) ug(s) pour k =1,....n ont
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la forme suivante

mo+fr—1 )
Y Bwst Y Biaw(s®)Y si k= ko,
AEL(Mmoa) Jj=mo
pi(s) =
Je—1 .
Zo Bliayr(s*)? si k # ko,
‘7:

et vérifient

(s + D%u(s*) = D> e qu(s®)ui(s) | = O(s™) (B.6)
k=1
lorsque s — 0 et
n 0]
(2 +1)u(s™) — Y e‘shqu<sa>uk<s>] -0, (B.7)
k=1
pour chaque racine instable non-nulle s = bz/a, i=1,...,N, de p(s*) et pour 0 <1<

mi—l.

Remarque B.33. Si fi =0, alors

Z 5)\k8)‘ si k = k(),
,Ufk(s) = /\E,C(mooc)
0 si k # ko.

Remarque B.34. Si mpa <1 ou a = 1/m avec m € Z\{0, 1}, alors A sont des multiples
de o et nous obtenons une expression élégante pour uy, qui ne contient que des termes
en s*. Plus généralement, si a est rationnel, alors py, contient des puissances de s a
exposants commensurables.

Cela est aussi obtenu si nous introduisons plus de coefficients dans ux(s), k=1,...,n,
k # ko que dans les formes données dans la proposition. Plus précisément, si nous notons
x le nombre de valeurs de A € L(mpa) telles que A # ba, b € Z,, alors nous devons
ajouter au moins x termes en s d’ordres plus élevés. Alors il est possible de choisir
Bake = 0 pour A € L(moar), A # ba, b € Z et de résoudre le systéme d’équations pour les
autres coefficients car ce systéme d’équations admet une solution unique ou une infinité
de solutions.

Remarque B.35. 11 suffit de choisir u(s®) de _degré en s supérieur ou égal au degré en s de
ur(s) pour k =1,...,n afin d’assurer que ¥ € M(Hy).

B.3.3 Factorisations copremiéres a droite et facteurs de Bézout asso-
ciés

La section précédente a montré que le systéme G(s) admettait des factorisations copre-
miéres & gauche sur Hy, et I'une d’entre elles est donnée par (B.3)). Comme Hy, est un
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anneau d’Hermite, alors a partir de (Quadrat), [2003al Corollaire 4.14), nous déduisons
qu’il existe des factorisations copremiéres a droite pour G(s).

Pour nos matrices de transfert, les factorisations copremiéres a droite et les facteurs de
Bézout associés sont des matrices contenant plus d’éléments que celles intervenant dans les
factorisations & gauche. Nous considérerons deux larges classes de systémes. La premiére
classe comprend des systémes avec des poles distincts, c’est-a-dire pg(s®) et pp(s¢) n’ont
pas de racines communes si k # k’. Dans ce cas, la matrice M (s) peut étre de forme
diagonale, ce qui réduit la complexité des calculs car il est facile d’obtenir la matrice
inverse. La seconde classe comprend des systémes & poles identiques et la matrice M(s) a
donc une forme plus compliquée. Pour cette classe, on ne considére qu’'une sous-classe
assez simple de systémes.

B.3.3.1 Poles distincts

Proposition B.36. Soit G(s) décrit par . Supposons que toutes les racines instables
(nulles ou non-nulles) de pg(s®) pour k =1,...,n sont distinctes. Alors une factorisation
copremiére a droite et les facteurs de Bézout associés sont donnés par

Mii(s) 0
M(s) = : : :
0 M (s)
X11(s) -+ Xin(s)
X(s) = : : ;
Xn1(s) - Xan(s)

Y(s) = [Yi(s),.... Ya(s)]",

ot pour k, k' € {1,...,n} et k # K

Mils) = B, B3)
Mials) = P15 (B.9)
Yis) = iy <<sa>m0f ﬁ( b~>mw> ,

—s /~ (s
Xy (5) = =V (s)e ;ZESO‘%’
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ot dy, est le degré en s* de py ; u(s®) est un polynome de degré d en s* qui n’a pas de
racines instables; et pp(s) ont la forme suivante

m0k+2f\]:1 my—1
pe(s) = > Bus'+ > Bayk(s),

AEL(mop ) J=mok

et vérifient

N
u(s*) (s + 1)dk _ e—shkuk(s)ak(soé) H (H(Sa _ bi)mij> — O(s™0r)
1<j<n,j7#k \i=1
(B.10)

lorsque s — 0 si pr(s) a une racine nulle, et pour chaque racine instable non-nulle de

pr(s%), c’est-a-dire s = bil/a avec mi, 0 pouri=1,..., N,
N 0
u(s¥)(s* 4+ )% — =M 1y ()G (sY) H ((so‘)moﬂ' H(so‘ - bi)mi1> =0

1<j<n,j#k
(B.11)

oul=0,...,my — 1.

Remarque B.37. Nous ne pouvons pas éliminer les puissances de s d’ordre non-commensurable
dans ug(s) telles que mgr > 0 en ajoutant plus de coefficients comme nous le pouvons
dans le cas des facteurs de Bézout a gauche.

B.3.3.2 Poébles identiques

Tandis que nous obtenons des expressions simples pour les systémes avec poles distincts,
le cas de poles identiques demande plus d’attention. Pour ce dernier, la matrice M(s)
sous forme diagonale et N(s), Myx(s) sous les formes , ne sont plus possible.
Nous déduisons de l'identité de Bézout a droite X (s)M(s) + Y (s)N(s) = I que pour
kK e{l,...,n}etk#K

1= Y(s)Ni(s)

Hii(s) = M (s)
Xy (8) = _Yk(s)m'

Pour que Xy (s) appartienne a Ho, toutes les racines instables de My (s) doivent étre
racines de Yj(s). Par conséquent, si Myi(s) et Myps(s) ont une racine commune, alors
X (s) est infini en cette racine, et alors Xpx(s) ¢ Hoo.

Ici, nous considérons les transferts G(s) pour lesquels chaque élément contient un poéle
et certains éléments pouvant avoir des poles communs. Pour la clarté de la présentation
de ces résultats, nous commencerons par un lemme concernant l'inverse d’une matrice
triangulaire supérieure.

Nous considérons des matrices creuses dont les éléments au-dessus de la diagonale princi-
pale satisfont les conditions suivantes : si un élément de la ligne k-éme est non-nul, alors
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tous les éléments de la colonne k-éme doivent étre nuls; si un élément de la colonne k-éme
est non-nul, alors tous les autres éléments de la méme colonne ainsi que ceux de la ligne
k-éme doivent étre nuls.

Lemme B.38. Soit M € R™ "™ une matrice triangulaire supérieure donnée par
My - My,

0 - My,
ot les €léments sur la diagonale principale sont non-nuls et les éléments au-dessus de la

diagonale principale vérifient les conditions suivantes

(i) pour k=1,...,n, s’il existe ' € Z, I' € (k,n] tel que Myy # 0 alors My, = 0 pour
lef{l,....,k—1},

(i1) pour 'k =1,...,n, s’il existel" € Z, 1" € [1,k) tel que My # 0 alors My, = 0 pour
le{l,....k—1]\{l"} et My =0 pourl € {k+1,...,n}.

Alors, linverse de M est donné par

M~ =M
avec
inv inv
Mll AR Mln
mnu o, __ . . .
M"Y = : . : ,

inv
0 .- M

ot les éléments sur ou au-dessus de la diagonale principale satisfont

1
My’
M

MY = R B.13
ok Mo Moy (B.13)

M = (B.12)

pour k. k' € {1,...,n} et k <k’

Dans la proposition suivante, nous proposons des factorisations copremiéres et des facteurs
de Bézout correspondants des systémes G(s) pour lesquels chaque élément contient un pole
et certains éléments pouvant avoir des poles communs. Afin de simplifier la présentation,
nous supposons que les retards sont rangés en ordre. L’extension du résultat au cas des
retards arbitraires sera discutée aprés la proposition.

Proposition B.39. Soit G(s) décrit par avec

hi <...<hy,

a
Ry(s®) = —*

SO‘—Uk
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avec ag, 0 € R pour k = 1,...,n. Nous notons Iy :==0 et I, :={j | j € {1,...,k —
1},05 = o} pour k =2,...,n. Une factorisation copremiére a droite et les facteurs de
Bézout associés sont donnés par

N(s) = [N1(s),..., Nu(s)], (B.14)
Mll(s) e Mln(s)

M(s) = : : : (B.15)
0 A Mnn(s)

Y(s) = [Yi(s), ... Ya(s)]".
X(s) = M~ (s) — Y (5)G(s),

ot pour k,k' € {1,...,n} et k' #k

0 St Ik 75 @,
Ne(s) =9 ape—she - (B.16)
ST sinon,

1 si Ty # 0

M (s) :{ oy 7 (B.17)
it sinon,

—s(hk—hk/) . .

__age / —

Myp(s) =4~ ap Sk =miny (B.18)
0 sinon,

0 si Iy # 0,
Yk(s) = { Brpr(s*)

w(sey . sinon,

ot u(s*) est un polynéome de degré d en s qui n’a pas de racines instables; pp(s®) =
p(s*)/(s* — k) ; B (pour les valeurs de k telles que Iy, = ) et o, > 0) sont donnés par

Ul/ah
u(oy)(op + 1)e?r "
akP%(Uk)

B = , (B.19)

Bi pour les autres valeurs de k peuvent étre choisis de fagon arbitraire, et M~1(s) sont
donnés par

Mipe(s) - M{pU(s)
M~(s) = : : (B.20)
0 M)

ot les éléments sur et au-dessus de la diagonale principale satisfont

. 1
MI?I;U = ’
My,
Minv _ _M
kk Mk’k:Mk/k"

pour k, k' € {1,...,n} et k < k.

Remarque B.40. Une matrice de transfert G donnée par (B.2|) dont les éléments ont des
retards quelconques peut étre transformée en une matrice de transfert Gy avec des retards
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rangés par ordre croissant en multipliant G’ par une matrice de permutation appropriée P.
Il est bien connu que cette matrice P est orthogonale et son inverse est PT. Supposons
que (My, Np) est une factorisation copremiére a droite sur Hy, de G et Xp, Yy sont les
facteurs de Bézout associés. Nous avons donc G = GoP~! = ]\f()M(;lP_1 = No(PMoy)~t.
I est évident que PMy € M(Hy,). De plus, XoP ' PMy+YoNy = I et XoP~! € M(Hy).
Alors, (PMy, Ny) est une factorisation copremiére a droite de G et XoP~ 1, Y, sont les
facteurs de Bézout associés.

B.4 Analyse de stabilité des systémes classiques et fraction-
naires SISO a retards commensurables

B.4.1 Une classe de systémes classiques et fractionnaires de type neutre

Nous considérons les systémes (fractionnaires) a retards de type neutre dont la fonction
de transfert est de la forme

G(s) = : (B.21)

ol

7 > 0 est le retard,

t, p, et qi pour tous k € Ny sont des polynémes réels en s*,

O0<p<l,

—m < arg(s) < m dans le cas out 0 < p < 1 afin d’avoir une valeur unique de s*,

degp > degt, degp > degqi pour tous k € Ny, et degp = deg qr pour au moins
une valeur de k € Ny pour que le systéme soit propre et de type neutre.

Notons que le degré d’un (quasi-)polyndme signifie le degré en s*.

Comme degp > deg g pour tous k € Ny, alors pour chaque k£ nous obtenons

M/
Qk((S)) = g+ Z aﬁf " O(S_(Murl)u) lorsque |s| — oo, (B.22)
p(s 5

=1

ou M’ € Z, et peut étre arbitrairement large.

Le coefficient de la terme de degré le plus élevé du dénominateur de la fonction de transfert
(B.21) peut s’écrire comme un multiple du polynéme en z ci-dessous

N
Ca(z) =14 agpa®, (B.23)
k=1

ou z = e %7, Il est appelé le polynéme formel.
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A chaque racine r de (B.23) est associée une chaine de poles de type neutre de G et les
poles a grand module de cette chaine sont approximés par

SnT = Ap + 0(1), (B.24)

An = —In(r) 4+ y2mn, neZ, (B.25)

lorsque n — oo (Bellman and Cooke, |1963; Hotzel, |1998a; Fioravanti et al., 2010).

Par conséquent, la chaine de poles approche I’axe vertical

R(s) = — . (B.26)

Si 'axe vertical est strictement a droite ou a gauche de ’axe imaginaire, ce qui est les
cas lorsque |r| < 1 ou |r| > 1, alors les poles asymptotiques a cet axe vertical sont
respectivement & droite ou a gauche de I'axe imaginaire, et alors leur effets sur la stabilité
H, sont facilement déduits car ils ne dépendent que leur localisation par rapport a 'axe
imaginaire (Bonnet and Partington, [2007; |Bonnet et al., [2011)).

L’analyse de stabilité est plus délicate dans le cas ou des chaines de poles sont asymp-
totiques & 'axe imaginaire. Pour cette analyse, nous serons intéressés dans un premier
temps & la localisation des poles des chaines par rapport & I'axe. Ensuite, le cas échéant,
nous déduirons des conditions nécessaires et suffisantes pour la stabilité H.,. Enfin, nous
illustrerons les résultats par un exemple d’une sous-classe de systémes.

Nous présentons dans le lemme suivant quelques propriétés du polynéme formel quand ce
dernier a des racines multiples.

Lemme B.41. Soit r une racine de multiplicité m > 1 de f(z) =1+ Z,ivzl apz®, ou
ap € C. Alors Z]k;vzl klakrk =0pourl=1,...,m—1 et Zévzl ]{:makrk £ 0.

B.4.2 Localisation des po6les neutres

Comme nous avons vu précédemment, & chaque racine r du polynéme formel ¢4(z) corres-
pond une chaine de péles de type neutre. L’approximation de ces poles donnée dans
n’indique que 'axe vertical vers lequel la chaine de poles s’approche. Afin de déterminer
la localisation de la chaine par rapport & l’axe asymptotique, nous examinerons dans cette
section une approximation plus précise des poles de type neutre de la forme

ST = Ay +1vp1 +o(n™9) (B.27)
avec

1
Vni = —= VI #0,y1 >0,n€Z,n— .
n
Autrement dit, le cas échéant, nous déterminerons le terme d’approximation non-nul

suivant. Un tel terme n’existe pas si les poles neutres sont précisément s, = A, /7.
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A T'exception de ce cas spécial, v, 1 existe et le signe de R(v1/n¥") montre de quel coté
de 'axe asymptotique se situent les péles. Notons que le signe pourrait changer pour n
positif et négatif. Ainsi, les parties en haut et en bas de la chaine de pdles pourraient se
situer de différents cétés de I'axe asymptotique.

Notons que nous ne fixons pas une valeur de y; a priori mais nous la cherchons pour
que v; # 0. Cela assure que 'approximation donne des nouvelles informations sur la
localisation des poles. Le seul cas ou 'information donnée n’est pas utile est lorsque
R(v1/n¥) = 0 et nous devons chercher d’autres termes d’approximation pour déterminer
la localisation des poles relatif a4 I’axe asymptotique.

Avant de présenter les résultats principaux sur la localisation des péles par rapport a l'axe
asymptotique, nous définissons des notions utiles pour la suite.

e Pour une racine r de ¢(z),

N
AB(r) = {(a,b) € Z34 :a+b#0,>  aqpk’r" # 0}. (B.28)
k=1

e S désigne un sous-ensemble de AB(r) tel que n(S) > 2 et il existe m > 0 tel que
a+bm=d +VmV(ab),(ad,b)eSetatbdm<a +b'mV(,b")e AB(r)\S.
Nous appelons S un segment de frontiére en bas a gauche de AB(r).

e m défini précédemment pour chaque S est évidemment unique et nous 'appelons la
pente du segment.

e G(AB(r)) désigne 'ensemble de tous les segments de frontiére en bas & gauche de
AB(r).

Un segment de frontiére en bas a gauche est illustré sur la Figure Notons que si nous
notons my la pente du segment alors my = tan s avec 2 présenté sur la figure.

L’approximation des chaines de poles de type neutre est I’objectif du théoréme sui-
vant.

Théoréme B.42. Soit G(s) un systéme a retards de type neutre décrit par etr
une racine de multiplicité m du polynome formel cq(s) donné par . Avec o, donné

comme dans , nous définissons

T (1) & bk
= B.2
C(a7 b7 V) (]27I')aru‘ B! ; aa,kk T, ( 9)
B(S) := < (v,y) : v est une racine non-nulle de Z C(a,b,v) =0, y =mp

(a,b)eS
(B.30)

Notons ni le nombre de chaines de pdles relatives a r dont les poles sont donnés par
Sp = Ap/T 0un € Z, n — o0 et A\, est donné par . Alors, les poles des autres
chaines neutres correspondant a r sont approrimés par

_1 it —u1
8= </\n n n?ﬂ) +o(n~®) (B.31)
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b
Sz = {(az, b2), (a3, b3)}
my = tan s
(ag,bo)
2 .
(CL3, b3)
;
0 az + by tan s

FIGURE B.2 — Un segment de frontiére en bas & gauche d’un ensemble de points dans le
plan

ot pour chaque chaine de poles (v1,y1) prend une des m — ny valeurs (en tenant compte
des multiplicités) données par

vy e |J B

SEG(AB(r))

Maintenant nous allons discuter comment construire tous les segments de frontiére en bas
a gauche de 'ensemble AB(r).

Dans un premier temps, nous mentionnons deux points importants de AB(r) qui limitent
un sous-ensemble de AB(r) contenant les segments de frontiére en bas a gauche. Le
premier point est (0,m). Ce point appartient a AB(r) car Zgzl g k™r* # 0 (voir le
Lemme . Le second point, noté par (ar, br,), est le point le plus & gauche parmi ceux
les plus bas de AB(r), c’est-a-dire

br, = min{b | (a,b) € AB(r)}

ar, = min{a | (a,br) € AB(r)}. (B.32)

Les segments de frontiére en bas a gauche de AB(r) appartiennent donc au sous-ensemble
AT ={(a,b) € AB(r) | a < ar,,b < m} (voir la Figure [B.3)). En fait, si (a,b) € AB(r) et
a > ar, alors a+bm > ar+bym pour tous m > 0 car b > by, par définition. Si (a,b) € AB(r)
et b > m, alors a + bm > mm pour tous m > 0 car ¢ > 0 par définition.

Le sous-ensemble A7" a un nombre fini de points et son enveloppe convexe est donc un
polygone convexe (De Berg et al., 2008). Les sommets de ce polygone sont dans A7’
et la ligne contenant chacun de ses cotés définit un demi-plan fermé contenant tous les
points de A7'. Il n’existe pas d’autres lignes contenant deux points de A" avec une telle
caractéristique.
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Par conséquent, par définition, les points d’un segment de frontiére en bas a gauche de
AB(r) appartiennent a un coté de I'enveloppe convexe de A} et deux d’entre eux sont
sommets de ’enveloppe.

Il existe de nombreux algorithmes pour déterminer dans un ensemble fini de points dans
R? les points qui appartiennent a l’enveloppe convexe (De Berg et al., [2008)). Parmi
ceux-ci, nous pouvons collecter les points appartenant aux segments de frontiére en bas a
gauche.

La discussion ci-dessus indique que nous devons connaitre les points (0,m) et (ar,br)
avant d’utiliser des algorithmes pour déterminer I’enveloppe convexe. Dans le reste de cette
section, nous présentons une méthode pour chercher (ar,br) de fagon numérique.

D’abord, notons que by, = nj ot ny est le nombre de chaines de poéles avec s, = A\, /7. En
fait, m—mnq est le nombre total de valeurs non-nulles de v;. Ce nombre est également égal &
(max{b | (a,b) € Useg(aB(r)S}—min{b | (a,b) € Uscg(ap(r)S}) car le nombre de valeurs
non-nulles de v; pour chaque § € G(AB(r)) est (max{b| (a,b) € S} —min{b | (a,b) € S})
et les segments dans G(AB(r)) sont interconnectés. De plus, notons que max{b | (a,b) €
Uses(aB(r)S}t =m et min{b | (a,b) € Useg(ap(r)S} = br.

Le lemme suivant fournit un outil pour déduire le nombre de chaines de pdles avec

Sp = An/T.

Lemme B.43. Soit G(s) un systéme a retards de type neutre défini par . Son
dénominateur peut s’écrire comme suit

D(s,z) =p(s) + qu(s)zk, z=e kT,

Notons r une racine de multiplicité m de ¢4(z) défini par . Les assertions suivantes
sont équivalentes :

(i) D(s,z) posséde ny chaines de poles identiques qui se situent sur l’aze imaginaire,
sont associées a la racine v de ¢4(z) et ont les poles donnés par s, = \p/T ot n € Z

et An est donné par .

0 ar,

FIGURE B.3 — Le sous-ensemble A7* de AB(r) qui contient tous les segments de frontiére
en bas a gauche de AB(r)
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(i)

d’D(s, z) _
| = 0, b=0,...,n —1, (B.33)
d™ D(s, z)
0 B.34
dsm |, 70 ( )

ot d°D(s,2)/ds® = D(s, 2).

Aprés avoir déterminé by, en appliquant le lemme précédent, nous pouvons déterminer aj,
en langant une boucle pour chercher le plus petit a telle que ch\;l aa,kkerk #0.

B.4.3 Stabilité

Dans cette sous-section, nous étudions la stabilité de type H,, des systémes d’intérét
en utilisant 'approximation de péles obtenue dans la sous-section précédente. Ici, nous
sommes intéressés uniquement par les systémes avec des chaines de poéles de type neutre
asymptotiques a l’axe imaginaire.

Le théoréme suivant donne des critéres pour vérifier rapidement si un systéme est instable.
, . . . s
Nous n’avons pas besoin de connaitre v, ; pour appliquer ces critéres.

Théoréme B.44. Soit G(s) un systéme a retard de type neutre défini par , et
supposons que le polynome formel ¢y(z) défini par a des racines de module un. Si
pour une racine r, il exviste S € &(AB(r)) avec AB(r) défini par tel que n(S) = 2
et une des deur conditions suivantes est satisfaites pour (a1,b1), (a2,bs) € S,b1 > bo

® by —by >3,
o by —by=2, et (a2 —a1)u # 2k, k € Z\{0},

alors le systéme est instable.

Plusieurs systémes instables qui ne satisfont pas les conditions du théoréme précédent se
trouvent dans la sous-section suivante. Pour ces systémes, nous serons capable de conclure
sur l'instabilité en utilisant d’autres analyses.

Dans le cas favorable oul les chaines neutres approchant I’axe imaginaire par la gauche, le
théoréme suivant présente d’autres conditions pour que le systéme soit H.-stable.

Théoréme B.45. Soit G(s) un systéme a retards de type neutre défini par , et
supposons que G n’a pas de poles instables de petit module et de chaines de pdles sur l’aze
imaginaire. Supposons aussi que le polynome formel cy(z) défini par a des racines
r de module un et que toutes les valeurs de vy relatives a chaque r vérifient R(v1) < 0 od
v, est dénini par . Alors, G est Hyo-stable si et seulement si degp > degt + = ot
x =max,{ar} avec (ap,br) défini par (il s’agit du point le plus 4 gauche parmi
ceuz les plus bas de AB(r)).
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B.4.4 Un exemple

On considére ici les systémes G(s) ou m > 2, Zgzl oy, =0, Zi\[zl kaq gk = 0,
Z,ivzl k2aq gr® £ 0, et Zgil gk #£ 0.
Les conditions ci-dessus impliquent que (1,0), (1,1) ¢ AB(r) et (1,2),(2,0) € AB(r).

Si2 < m <3, alors 6(AB(r)) = {S1} avec S; = {(0,m),(2,0)} (voir la Figure
B.4). Grace au Théoréme |B.42{ nous obtenons

Z Cla,b,v1) =0 et y1 =mp,
(a,b)ESl

ce qui donne

mo_ (_1)m+1m!7—2# Z]k’V:l OéQ’ka et Yy = 27M
! (2m)2 S g ko m

Sim =2, nous avons n(S1) =2, b1 —ba =m—0=2, et (aa—a)u = (2—0)u = 2u.
Sip € (0,1) alors 2u # 2k, k € Z1\{0}, et donc le Théoréme montre que le
systéme est instable. Si g = 1, d’autres analyses sont nécessaires.

Sim = 3, nous avons n(S1) = 2 et by — by = m — 0 = 3, et donc le systéme est
instable.

Sim =4, alors 6(AB(r)) = {S1} avec S§; = {(0,4),(1,2),(2,0)} (voir la Figure
B.4)). Grace au Théoréme [B.42, nous obtenons

Z Cla,b,v1) =0 et y1 =mp,
(a,b)ESl

alors

V% Y 4k V%T“ a 2 k T2 a k K
Z ZO&O’]@]{: rY 4+ 2(]27[‘)“ Zal’kk e+ (]271’)2“ Z Qo T = 0 et y1 = 5
k=1 k=1 k=1

Le Théoréme [B.44] ne peut pas étre appliqué dans ce cas. Pour étudier la stabilité,
nous pouvons calculer vy pour chaque systéme particulier et puis étudier le signe
de R(vp,1). D’ailleurs, nous pouvons faire I’analyse pour des classes de systémes
comme cela a été fait dans les Corollaires [4.16] et dans lesquels nous avons
prouvé que le systéme était instable.

Sim > 5, alors S(AB(r)) = {S1,S2} avec S = {(0,m), (1,2)} et So = {(1,2),(2,0)}
(voir la Figure [B.4)). Grace au Théoréme nous obtenons

Z Cla,b,v1) =0 et y1=mp,
(a,,b)esl

Z C(a7 ba Vl) =0 et Y1 = maoll,
(a,b)eSs
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b b b
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
0 1 2 “ 0 1 2 “ 0 1 2 “
(a) m =2 (b) m=14 (c)m=>5

FIGURE B.4 — Les segments de frontiére en bas a gauche de AB(r) dans le cas ou m > 2,
SN Lt =0, S kot =0, S KRt £ 0, et ST ag et £ 0

qui sont respectivement équivalents a

(—1)mFimlre Z]kvzl a k2t

= N et = La
2(92m)r >0 o kmrk m—2
N
V2 = — 2t Zk:l aQ,kT‘k et Y1 = H
L2 D an gk 2

Nous avons n(S1) = 2 et by — b = m — 2 > 3, alors le Théoréme montre que
le systéme est instable.

B.5 Stabilisation des systémes fractionnaires SISO & retards
commensurables

B.5.1 Propriétés de stabilisabilité

Nous étudions la stabilisation H, des systémes a retards commensurables de type neutre
définis comme suit

Gls) = 1 (B.35)
ORDINIEAC)
o 7 > 0 est le retard, p et ¢, k € Ny sont des polynémes réels en s#, u € (0,1),
degp > 1, degp > degqy, et il existe au moins un qx, k € Ny tel que degp = degq.
Ici, le degré est interprété comme le degré en s* et est donc un entier. Afin d’éviter des
fonctions de valeurs multiples, nous considérons s dans un feuillet de Riemann telle que
—m < args <.
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Cette classe de systémes appartient évidemment & celles décrites par (B.21)).

Considérons les controleurs de la forme

K(s) = (B-36)

ou N et D sont des polyndmes réels en s#, € (0,1). Ces controleurs sont appelés les
controleurs fractionnaires rationnels d’ordre commensurable. A partir de (Partington and
Bonnet), 2004, Lemme 4.1), nous savons que deg N < deg D si K (s) stabilise G(s) au sens
Hoo. Supposons que N(s) et D(s) n’ont pas de racines en commun, et N(s) n’a pas de
racines en commun avec le dénominateur de G(s).

Nous considérons la stabilité interne.

Si le polynome formel ¢;(z) défini par a une racine r vérifiant |r| < 1, alors grace a
, la chaine de poéles relative a r est asymptotique & un axe vertical qui se situe dans
le demi-plan droit ouvert. Alors cette chaine a une infinité de poles dans le demi-plan
droit ouvert et le systéme est instable. La stabilisation de tels systémes par les controleurs
de la forme ([B.36]) est examinée dans la proposition suivante.

Proposition B.46. Soit G décrit par , Sicq(z) a des racines de module strictement
inférieur a un, alors G ne peut pas étre stabilisé par un controleur de la forme .

Une autre situation ou G a une infinité de poles dans le demi-plan droit ouvert est lorsque
G a des chaines de pole de type neutre qui approchent ’axe imaginaire a droite avec
des autres chaines neutres asymptotiques a des axes verticaux dans le demi-plan gauche
ouvert. La proposition suivante considére cette classe de systémes.

Proposition B.47. Soit G décrit par . Supposons que le polynome ¢q4(z) a des
racines de module un et de multiplicité une et que les autres racines sont de module
supérieur & un. Supposons aussi qu’au moins une racine de module un de ¢q(z), notée r,
vérifie

R(vn,1) >0 (B.37)

ot

s ZIICV:1 ﬁkrk
(2jnm)H Zévzl kagrk

Uni1 =

Alors G peut étre stabilisé par les contréleurs de la forme st et seulement si
degp = 1.

Remarque B.48. Les systémes considérés dans la Proposition ne sont pas les seuls
& avoir des chaines de pdles approchant I'axe imaginaire a droite. Cela pourrait arriver
pour les systémes avec (v, 1) = 0 mais dans ce cas d’autres analyses sont nécessaires
comme décrites dans (Bonnet et al.l 2011)).
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B.5.2 Paramétrisation des controleurs stabilisants

Les systémes les plus simples parmi ceux décrits par (B.35) et avec degp = 1 sont les
systémes & un retard. Ils ont été étudiés dans (Bonnet and Partington, 2007). Pour de
tels systémes dont la fonction de transfert est donnée par

1
G(s) = B.38
() (ast 4+ b) + (cst + d)e=s7’ ( )
o a,b,c,d € R, a >0, |a] =|c|, et p € (0,1), des controleurs PI fractionnaires ont été

obtenus.

Ces controleurs sont le point de départ pour obtenir des parametrisations de tous les
controéleurs stabilisants.

Remarque B.49. Les systémes G définis par (B.38) peuvent avoir une infinité de poles
dans les demi-plans gauche ou droit ouverts.

Avec la connaissance d’'un controleur stabilisant Ko(s) du systéme ([B.38]), nous pouvons
obtenir directement une parametrisation de tous les contrdleurs stabilisants sans la
connaissance des factorisations copremiéres en utilisant (Quadrat), [2003b, Théoréme
2).

Proposition B.50. Soit G(s) décrit par . Une parametrisation a deuzr degrés de
liberté de tous les controleurs stabilisants Hyo de G(S) est donnée par
~T(s*R+T) + (s*Q1 + Q2T*R
SR+ T) + (7Q; + QaI?)
ol Q1, Q2 € Hoo sont les deux paramétres libres,
R(s) = (as" +b) + (cs! +d)e™ "7,
T(S) = kpS“ + k’i,

(B.39)

ki > 0 et k, vérifient

b+d+k ;

Q>—2 ki cos(ﬂ) pour a = c,
a+c a+c 2
ki(b+d+ky) >0 poura = —c,

(a(b+ kp) — cd) cos ('%T) > 0,

(b+ kp)? 4 2ak; cos(ur) — d* > 0,
: atdl
ki(b+ kp) cos ( 5 ) > 0.

Cependant, la parametrisation de Youla-Kucera (avec un paramétre) pourrait étre plus fa-
vorable pour la synthése de contrdleurs et comme G est Ho-stabilisable, nous savons que G
admet nécessairement une factorisation copremiére sur Ho, (Smith, [1989)). La proposition
suivante qui caractérise les quasi-polynémes dont toutes les racines sont dans le demi-plan
gauche ouvert sera utile dans la recherche d’une factorisation copremiére de la fonction
de transfert du systéme. Cette derniére est nécessaire & I’obtention d’une parametrisation
des controleurs stabilisants en utilisant le formulaire de Youla-Kucera.
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Proposition B.51. L’équation
(ast +b) + (cs* +d)e™*" =0 (B.40)

avec a > 0, b,e,d,h € R, |a| = |c|, et p € (0,1) n'a pas de racines dans le demi-plan droit
fermé pour tous T > 0 si et seulement si

eb+d>0etb—d>0sia=c,

eb+d>0etb—d>0sia=—c.
Nous donnons & présent une parametrisation de tous les controleurs stabilisants des
systémes donnés par (B.38).

Théoréme B.52. Soit

1
G(s) =
() (ast 4+ b) + (cs* + d)e=5T
avec a,b,c,d € R, a > 0, |a| = |c|, et p € (0,1). L’ensemble de tous les controleurs
stabilisants Hy, est donné par
V+MQ
-_— B.41
U_NO (B.41)
ot
N(s) =
(s) (a'st +b') + (cs”—i—d’ e=sT’
M(s) = (as* 4+ b) + (cs* 4+ d)e™ 7
(a’st+b') + (s + d’)e ST
" ! ot / / ok 1\ ,—ST
Us) = st(a’s" +b') + ('s* + d)e™7] ’ (B.A42)
st(ast + b+ kp) + ki + st(cst + d)esT
k. gt kl ! ot b/ / ol dl —S8T
V(s):(ps + ki)[(a's* +b) + (ds* + )67]’ (B.43)
st(ast + b+ kp) + ki + st (cst + d)e5T
Q est le parametre libre qui appartient a He,, k; > 0 et ky vérifient
b+d+k, [ ks 7%
— > -2 COS( > pour a = ¢,
a-+c a+c 2
ki(b+d+ky,) >0 poura=—c,
B ol
(a(b+ ky) cd)cos( ; ) >0,
(b+ kp)? + 2ak; cos(um) — d* > 0,
' o
ki(b + k, )cos( ; ) >0,
et a',b,c,d € R vérifient
a >0,
@ _a
d ¢
V+d >0 B.44
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B.5.3 Stabilisation H.,

Notons

A(s) = (ast +b) + (cs* + d)e™ ",
Al(s) = (a's" + V) + (ds* +d)e ",
B(s) = kps" + ki,

alors les fonctions de transfert de la boucle fermée peuvent étre écrites comme suit :

1 A(s#A? - Q(s*A+ B)) (B.46)
1+GK A2 (s* A+ B) ’ '

G  s'A?—-Q(s"A+ B) (B.47)
1+GK A2(stA+B) '

K A(BA?+ AQ(s*A+ B)) (B.48)
14+ GK A?(stA + B) '

Les fonctions de transfert ci-dessus contiennent les termes A’ ou (s* A+ B) en dénominateur
(sauf pour certaines valeurs de @) aboutissant a des simplifications entre numérateur et
dénominateur). Ces termes ont toutes les racines dans le demi-plan gauche ouvert mais
elles ont des racines & large module approchant ’axe imaginaire. Cependant, de petites
variations de leurs coefficients pourraient décaler ’axe asymptotique a droite et la boucle
fermée deviendrait donc instable.

Dans des applications ol la stabilisation robuste est demandée, nous souhaitons éliminer
les chaines de poles asymptotiques & I'axe imaginaire. Cependant, dans les propositions
suivantes, nous montrons que pour une large classe de controleurs, il est impossible
d’atteindre cela. Dans un premier temps, nous considérons le cas de p rationnel et puis
celui de p irrationnel.

Proposition B.53. Soit G donné par avec p rationnel. Si un contréoleur qui
assure la stabilité interne de la boucle fermée est de la forme K(s) = Nk(s)/Dgk(s) ot
Nk(s) et Di(s) sont des quasi-polynémes a coefficients réels en e™*" et s¥, v € (0,1) et
est rationnel, alors la boucle fermée a nécessairement des chaines de poles asymptotiques
a l'axe imaginaire.

Remarque B.54. Les contrdleurs de la forme K(s) = Nk (s)/Dk(s) ou Nk(s) et Dg(s)
sont des quasi-polynoémes en e %7, s#, et s sont un cas particulier des contréleurs considérés
dans la Proposition [B.53] En fait, si p = m/n avec m,n € N, alors Nk(s) et Dg(s)
peuvent étre vus comme les quasi-polyndémes en e *" et si/m,

Proposition B.55. Soit G donné par avec p irrationnel. Si un controleur stabili-
sant est de la forme K(s) = Nk(s)/Dg(s) ot Ng(s) et Dk (s) sont des quasi-polynomes
a coefficients réels en st et €57, alors la boucle fermée a nécessairement des chaines de
poles asymptotiques a I’axe imaginaire.
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B.6 Perspectives

Le travail & venir suivra les directions suivantes.

Pour les systémes MISO avec retards en entrées/sortie, dans la Section des facto-
risations copremiéres doubles n’ont pas encore été obtenues dans la cas général ot des
éléments de la matrice de transfert auraient des poles identiques. Nous allons nous y
atteler a l'avenir.

Pour I’ensemble de controleurs stabilisants construits a partir des facteurs copremiers et
de Bézout obtenus, nous souhaitons chercher des méthodes pour choisir des controleurs a
implémenter qui ne sont pas sensibles aux incertitudes des paramétres. Ce probléme a été
étudié pour les systémes classiques dans (Gumussoy, 2012]).

Pour les systémes fractionnaires SISO de type neutre, les résultats de ’analyse de stabilité
obtenus dans la Section [B.4] pourraient étre utiles pour décider sur la stabilisabilité de
plusieurs classes de systémes fractionnaires a retards par des contréleurs rationnels ou
fractionnaires sans ou avec retards.

La méthode dans la Section [B.4] permet de conclure sur la stabilité du systéme dans tous
les cas & l'exception du cas ou la localisation des poles relatifs & 1’axe imaginaire ne peut
étre déterminé a l'aide de 'approximation obtenue et d’autres analyses sont nécessaires.
Bien que le terme d’approximation suivant puisse étre déterminé en suivant la méme
procédure présentée pour certains cas dans la section, on doit répéter la procédure pour
chaque cas particulier. Alors une piste intéressante serait de déterminer une méthode plus
systématique dans ’esprit de ce qui a été réalisé dans la Section (la méme approche
ne paraissait toutefois pas pouvoir étre étendue a ce cas).

Pour le probléme de stabilisation des systémes fractionnaires de type neutre dans le
cas critique ol des poéles sont asymptotiques a l'axe imaginaire, le travail & venir pour-
rait considérer une plus large classe de controleurs stabilisants, par exemple ceux qui
contiennent des termes en e~ ou des retards non-commensurables car il s’agit d’une
classe de controleurs simple. Bien que les retards non-commensurables augmentent la
difficulté de 'analyse, ’étude de ces systémes pourrait fournir une meilleure compré-
hension des comportements des systémes réels ou la variation des retards est courante
(transformant donc un systéme a retards commensurables en un systéme a retards non-
commensurables). La méme question adressée a la classe plus générale de controleurs
stabilisants est certainement difficile. Ensuite, le travail & venir pourrait étre consacré au
probléme de stabilisation d’une classe plus large de systémes a plusieurs retards.

Nous sommes entrain d’intégrer les résultats obtenus dans les Sections et dans
le toolbox Matlab YALTA qui peut étre téléchargé a I'adresse http://team.inria.fr/
disco/software/.


http://team.inria.fr/disco/software/
http://team.inria.fr/disco/software/
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