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ABSTRACT

In this dissertation, we present the periodic homogenization of a spectral prob-
lem and the wave equation with periodic rapidly varying coefficients in a bounded
domain. The asymptotic behavior is addressed based on a method of Bloch wave ho-
mogenization. It allows modeling both the low and high frequency waves. The low
frequency part is well-known and it is not a new point here. In the opposite, the high
frequency part of the model, which represents oscillations occurring at the microscopic
and macroscopic scales, was not well understood. Especially, the boundary conditions
of the high-frequency macroscopic equation established in [36] were not known prior to
the commencement of thesis. The latter brings three main contributions. The first two
contributions, are about the asymptotic behavior of the periodic homogenization of
the spectral problem and wave equation in one-dimension. They are derived starting
from a system of first order equation as in [36] but also from the usual second order
equation. The two-scale models are only for high frequency waves in the case of the
spectral problem and for both high and low frequencies for the wave equation. The
high frequency models include a microscopic and a macroscopic part, both including
boundary conditions, which for the latter is a novelty. Numerical simulation results
are provided to corroborate the theory. The third contribution consists in an exten-
sion of the model for the spectral problem to a thin two-dimensional bounded strip
Q = (0,a) x (0,6) C R% The homogenization result includes boundary layer effects
occurring in the boundary conditions of the high-frequency macroscopic equation.

Keywords: Homogenization, Bloch waves, Bloch wave decomposition, Spectral prob-
lem, Wave equation, Two-scale transform, Two-scale convergence, Unfolding method,
Boundary layers, Boundary layer two-scale transform, Macroscopic equation, Micro-
scopic equation, Boundary conditions.



Résumé

Dans cette thése, nous présentons des résultats d’homogénéisation périodique d'un
probléme spectral et de I'équation d’ondes avec des coefficients périodiques variant
rapidement dans un domaine borné. Le comportement asymptotique est étudié en se
basant sur une méthode d’homogénéisation par ondes de Bloch. Il permet de mod-
éliser les ondes a basse et haute fréquences. La partie du modéle & basse fréquence
est. bien connu et n’est pas donc abordée dans ce travail. A contrario, la partie a
haute fréquence du modéle, qui représente des oscillations aux échelles microscopiques
et macroscopiques, est un probléme laissé ouvert. En particulier, les conditions aux
limites de 1’équation macroscopique a hautes fréquences établies dans [36] n’étaient
pas connues avant le début de la thése. Ce dernier travail apporte trois contributions
principales. Les deux premiéres contributions, portent sur le comportement asympto-
tique du probléme d’homogénéisation périodique du probléme spectral et de ’équation
des ondes en une dimension. Elles sont dérivées soit a partir d’un systéme d’équation
du premier ordre comme dans [36], soit a partir de I’équation du second ordre. Les
modeéles & deux échelles sont obtenus pour des ondes & haute fréquence seulement pour
le probléme spectral et pour les basses et hautes fréquences pour ’équation des on-
des. Les modéles a haute fréquence comprennent a la fois une partie microscopique
et une partie macroscopique, cette derniére incluant des conditions au bord, ce qui
est une nouveauté. Des résultats de simulations numériques corroborent la théorie.
La troisiéme contribution consiste en une extension du modéle du probléme spectral
posé dans une bande mince bidimensionnelle et bornée. Le résultat d’homogénéisation
comprend des effets de couche limite qui se produisent dans les conditions aux limites
de I’équation macroscopique a haute fréquence.

Mots-clés: Homogénéisation, Ondes de Bloch, Décomposition en ondes de Bloch,
Probléme spectral, Equation des ondes, Transformée a deux-échelles, Convergence a
deux échelles, Méthode d’éclatement périodique, Couches limites, Transformation a
deux échelles pour des couche limites.
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Introduction

The homogenization theory was introduced in order to describe the behaviour of com-
posite materials. Composite materials are characterized by both a microscopic and
macroscopic scales describing heterogeneities and the global behaviour of the compos-
ite respectively, see Figure [l as an example. The aim of homogenization is precisely to
give macroscopic properties of the composite by taking into account properties of the
microscopic structure. The name “homogenization” was introduced in 1974 by Babuska
in [14] and it became an important subject in Mathematics. In the mathematical lit-
erature, the homogenization of physical systems with a periodic microstructure or
periodic media is called "periodic homogenization". A vast literature exists where one
distinguishes between stochastic and deterministic homogenization corresponding to
stochastic and deterministic micro-structures, the later being mostly concerned with
periodic homogenization. Nevertheless, there are also research works on non-periodic
deterministic micro-structures as in [91], [93], [92], [34]. T recommend the introduc-
tory book by D. Cioranescu and P. Donato [44] which is a good start to study the
homogenization theory of partial differential equations. I also recommend the books
[99], [19], [63], [L09] to understand, not only the homogenization theory, but also its
motivation, historical development and larger view over various methods, see also two
thesis works [I08] and [55] for a brief history.

This thesis falls within the area of deterministic homogenization and its aim is to
study the periodic homogenization of a spectral problem, at high frequency, and of
the wave equation, simultaneously at high and low frequencies, in an open bounded
domain 2 C RY with time-independent periodic coefficients. Our complete results are
presented for a one-dimensional geometry and also for a thin two-dimensional strip,
however a significant part of our results extend trivially to multi-dimensional cases.
The model derivation method is based on the modulated-two-scale transform and the
Bloch wave decomposition. I recall that the two-scale transform or periodic unfolding
operator [77], [79], [78], [76], [43], [37] or [46], transforms a function of the variable in
the physical space into a function of two variables, namely the macroscopic variable
and the microscopic variables. This is how the concept of two scale-convergence turns
out to be a usual notion of convergence of functions that can be weak or strong. The
modulated-two-scale transform was defined in [36] by multiplying the usual two-scale
transform by a family of oscillating exponential functions which effect is to yield a
corresponding family of two-scale limits with all possible periodicities also refered as
quasi-periodicities. We also use its counterpart defined from the two-scale convergence

issued from [89], [90], [1], [2], [81].

The Bloch wave decomposition, also known as Floquet decomposition, was intro-
duced in the original work of F. Bloch [29], and is well exposed in [I11], [99] and [102].



Introduction

A Bloch wave decomposition of a function, consists in an expansion over a family of
the eigenfunctions solution to the spectral problem

div, (aV,¢") = —\*¢"

posed in the reference cell Y C RY equipped with k-quasi-periodic boundary conditions
for some k € [—1/2,1/2)N. We refer to [104], [99], [I11] for an introduction to the Bloch
waves in spectral analysis. Such a decomposition is used in the so-called Bloch wave
homogenization method for spectral problems [7], [51], [8] and for elliptic problems
[48], [50]. We notice that we call our approach with the same name "Bloch wave
homogenization" even if the techniques differ in some aspects but we think that they
yield similar results.

For a two-dimensional strip, a boundary corrector is required so that the asymp-
totic solution satisfies the nominal boundary condition. It is solution to a boundary
layer problem posed in Rt x (0,1). Tts solution might decreases exponentially with
respect to the first variable. The derivation of this part of model is achieved by a
two-scale transform dedicated to boundary layers that can be related to the two-scale
convergence for boundary layers as in [9].

In all this work, the homogenization process starts with a very weak formulation of the
spectral or wave equation. Applying our method, provides two-scale models including
the expected high frequency parts but also a low frequency part for the wave equation.
The latter is well known since it has been found by various authors, so our work focuses
mainly on the high frequency part. It comprises so-called high-frequency microscopic
and macroscopic equations, the first being a second order partial differential equation
and the second a system of first order partial differential equations. In the strip case,
the boundary layer problem is a second order partial differential equation.

The thesis includes three main contributions. In the first one, we consider the
solution (w®, A°) of the spectral problem

—0, (a°0,w®) = X p°w°, (1)

posed in a one-dimensional open bounded domain 2 C R, with Dirichlet or Neu-
mann boundary conditions. An asymptotic analysis of this problem is carried out
where € > 0 is a parameter tending to zero and the coefficients are e-periodic, namely
@ =a(%) and p° = p(%), a(y) and p(y) being l-periodic in R. Homogenization
of spectral problems has been studied in various works providing the asymptotic be-
haviour of eigenvalues and eigenvectors. The low frequency part of the spectrum has
been investigated in [69], [70], [II0]. Then, many configurations have been analyzed,
as [52] and [49] for a fluid-structure interaction, [21], [5] for neutron transport, [86], [98]
for p which changes sign or [6] for the first high frequency eigenvalue and eigenvector
for a one-dimensional non-self-adjoint problem with Neumann boundary conditions.
Higher order of asymptotic of the eigenvalues have been studied in [I06] and [TI0T]. A
survey on recent spectral problems encountered in mathematical physics is available
in [71]. In an important contribution [§], G. Allaire and C. Conca studied the asymp-
totic behaviour of both the low and high frequency spectrum. In order to analyze
the asymptotic behaviour of the high frequency eigenvalues, they used the Bloch wave
homogenization method. They have shown that the limit of the set of renormalized



eigenvalues £2)\° is the union of the Bloch spectrum and the boundary layer spectrum,
when € goes to 0. However, the asymptotic behaviour of the corresponding eigenvec-
tors was not addressed for a bounded domain €2. This is the goal of this contribution.
We only focuses on the Bloch spectrum of the high frequency part. By applying the
Bloch wave homogenization method, the two-scale model is derived including both
microscopic and macroscopic eigenmodes with boundary conditions. We derive the
homogenization model from both the second order equation (21 and an equivalent
first order system of equations. We observe that the two models are equivalent. The

asymptotic behaviour of the eigenvalue A\* and corresponding eigenvector w® are pro-
vided.

In the second contribution, we establish a homogenized model for the wave equa-
tion,
pFO0pus — 0, (a°0,u®) = f°, (2)
u® (t=0,2) =uf and Jyu® (t = 0,x) = v§,

posed in a finite time interval I C R* and in a one-dimensional open bounded domain
) C R with Dirichlet boundary conditions. The asymptotic analysis is carried out un-
der the same assumptions as for the spectral problem regarding € and the coefficients.
The homogenization of the wave equation has been studied in various works. The
construction of homogenization and corrector results for the low frequency waves has
been published in [33], [60]. These works were not taking into account fast time oscilla-
tions, so the models reflect only a part of the physical solution. Similar solutions have
been derived for the case where the coefficients depend on the time variable ¢ in [47],
[38]. In [35] and [36], an asymptotic analysis of the solution u® (¢, x), that conserves
time and space oscillations occurring both at low and high frequencies in a bounded
domain, has been introduced. It is derived from a formulation of the wave equation
as a first order system and uses a decomposition over Bloch modes. It extends the
thesis work [65] achieved in one-dimension. By using the Bloch wave homogenization
method, the resulting asymptotic model includes separated parts for low and high
frequency waves respectively. The latter is comprised with a microscopic equation and
with a first order macroscopic equation which boundary conditions are missing. A
similar result has been obtained in [39], based on the second order formulation of the
wave equation, which homogenized solution is periodic in space because it does not
include a decomposition on Bloch modes. In the present contribution, we synthesize
these ideas in a model, based on the second order formulation of the wave equation,
using the Bloch wave decomposition of the solution and more importantly including
boundary conditions. The main result of this contribution is the boundary conditions
of the high frequency macroscopic model. However, the high frequency macroscopic
model is also new since it differs from this in [36] derived from a first order system
only. In addition, the proof has been simplified. Moreover, for the sake of comparison,
the homogenization is also presented under the first order formulation as in [35] and
[36], then boundary conditions for the one-dimensional model of these works have been
announced. In conclusion, the physical solution u° is approximated by a sum of a low
frequency term, the usual corrector in elliptic problems, using the solution of the cell
problem, and a sum of Bloch waves being the corrector for the high frequency part.
The same result is also established for the Neumann boundary conditions and also for
a generalization of the wave equation taking into account a zero order term as well as
first order time and space derivatives.
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We quote that in both contributions, the models and proofs have been written
in one-dimension but they extend trivially to multi-dimensional cases, except what
refers to the high frequency macroscopic boundary conditions which remains an open
question in higher dimension. Hence, to do a step towards the possibility of taking
into account a multi-dimensional geometry, we address the case of a two-dimensional
bounded strip. This yields the third contribution. Due to time limitation, only results
on the spectral problem are reported, but we expect that they extend to the wave
equation. We study the periodic homogenization of the spectral problem

—div (a*Vw®) = X p w*°

posed in an open bounded strip = w; x (0,e) C R? with w; = (0, ) C RT, with the
boundary conditions

w® =0 on dw; X (0,e) and a*V,w".n, =0 on wy x {0,¢e},

with the same assumptions regarding ¢ and the coefficients excepted that the reference
cell Y C R2. The results of this part are an extension of those obtained in the first
one, and the main remaining difficulty consists in establishing the boundary condi-
tions of the macroscopic equation. The model derivation method is still based on the
Bloch wave homogenization method using the modulated-two-scale transform, how-
ever this tool is not enough. So, a boundary corrector is added, it is solution to a
boundary layer problem which is an Helmholtz equation posed in R x (0, 1) and with
a non-homogeneous boundary condition at left. Its solution is expected to decrease
exponentially with respect to the first variable. The derivation of this part of model is
achieved by a two-scale transform dedicated to boundary layers that can be related to
the two-scale convergence for boundary layers as in [9]. The complete asymptotic be-
haviour of the eigenvalue \° and corresponding eigenvectors w® including the boundary
layer effects are provided. We observe that a similar problem was also investigated in
[53] but posed in the unbounded domain 2 = R? and for k € {0, %} only. The deriva-
tion uses the asymptotic expansion technique and the macroscopic equation arises as
a compatibility condition. Higher order equations are also derived. Related works [26]
and [27] focus on the homogenization in a vicinity of a gap edge of the Bloch spectra.
We recently have been aware of the paper [40] which provides the boundary condition
for the high frequency macroscopic equation for the periodic case (k = 0).

In our viewpoint, the asymptotics of eigenvalues, eigenvectors and wave propa-
gation are important problems. They have been widely studied in transport theory,
reaction-diffusion equations and fluid dynamics, so we present more bibliographical
references. For general results on the spectral problem, we refer to [I8], [24], [41],
[66], [69], [70], [84], [85], [86], [I10] and the references therein. In a fixed domain, the
homogenization of spectral problems with point-wise positive density function goes
back to [69], [70]. In perforated domains, the first homogenization result is referred to
[I10]. Furthermore, many other authors have addressed similar problems connected
with the homogenization of the wave equation for long-term approximation based on
convergence methods or asymptotic expansions as [99], [32], [31], [42], [56], [57], [43],
[58], [20], [T1], [13] to take into account rapid spatial fluctuations. They are valid in the
low frequency range only. Most of these results involve more than the two usual terms
in the asymptotic expansion, so they involve higher order partial differential equations
in addition to the usual second order macroscopic and microscopic equations, and
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thus additional regularity of the solutions is needed. Non linear cases have also been
considered as for instance in [59] and the bibliography herein. Similar problems have
been addressed with the perspective of effective coefficient derivation based on various
approaches, see for instance the recent works [87] or [12]. They involve Bloch-mode
analysis but also refer to a long history of works as the self-consistent schemes in dy-
namic homogenization by [103], [67] and [68] to cite only few. Other related problems
have been studied on the asymptotic regime of the singularly perturbed wave equation
for propagation in a periodic medium with volume mass £2° as in [I0] or with a large
potential as in [3]. Another work in [73] studied the very long time behaviour of waves
in a strongly heterogeneous medium. In addition, other asymptotic results for the
wave equation can be found in [105], [75], [97] and [6I]. Another point of view refers
to the midfrequency approach built upon the notions of effective energy density. One
of such method was initiated in [22], [23] and has been pursued in the recent years
by several authors including [64], [74] and [30]. Other numerical techniques have been
developed in the recent years as [72] or those in the review paper [54].

We conclude this introduction by giving a few references to related works on bound-
ary layers in homogenization. Also related to the homogenization of eigenvalue prob-
lem, boundary layer has been studied in many works such as [106], [82], [83], [96],
[I01]. In these publications, boundary layer equations are elliptic equation posed in
the macroscopic domain €2, and they yields correctors for the low frequency part. In [9]
and [8], the boundary spectra is studied, it involved a spectral problem which solution
is localized along the boundary. Moreover, we refer to [88], [62], [100] for studies of
boundary layers for homogenization of highly oscillating solution of elliptic equations.
These boundary layers are correctors to the formal the two-scale expansion. In addi-
tion, we refer to [19], [106], [28], [L09] for other works and references about boundary
layers.

This dissertation is organized as follows. Chapter 1 introduces the notations, defi-
nitions and properties which are used throughout the thesis. In Chapter 2, we present
the homogenization of the spectral problem in one dimension. This corresponds to the
published paper [95]. Chapter 3 addresses the homogenization of the one-dimensional
wave equation. A first part is based on the second order formulation, which correspond-
ing paper is in preparation. Its second part is based on the first order formulation and
is to appear in the proceeding of the conference ENUMATH 2013 held in Lausanne.
The results for the strip are presented in Chapter 4. We draw our conclusions in
Chapter 5 with some remarks on future research work. Some mathematical proofs and
additional material are presented in Appendix.
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i i Material shape
Microscopic structure

Figure 1: Composite material has a macroscopic shape and a microstructure. The
ratio between the size of the microstructure and the size of the material is e.



Chapter 1

Notations, assumptions and
elementary properties

Contents
L1 Notationd . . . . . oo vttt e 7
[1.2_Bloch waves and two-scale transform . . . . . . . . . . ... 8
[L2.1 Inonedimensiod . . . .. ... ... ... ... ...... 8

This chapter introduce the notations, definitions, elementary properties and as-
sumptions which are used throughout the thesis.

1.1 Notations

For N € N* and an open bounded domain  C R¥, the functional space L2 (Q) of
square integrable functions is over C. For m-dimensional complex-valued functions
u = (u;); and v = (v;); of L? ()™, the dot product is denoted by u.v := Y u;v; and

the hermitian inner product by

/ﬂu-vd:c:/ﬂu(:c).@ dzx. (1.1)

The notation O (g) refers to numbers or functions tending to zero when ¢ — 0 in a
sense made precise in each case, d,u = % is the x—derivative of the function u in one
dimension and [u]._,? is the integration of a function u on the boundary 0X = {ay, s}
of an interval X = (a1, ) C R. The vectors n, and n, are the outer unit normals
to the boundaries 92 and 9Y of €2 and Y. For the sake of convenience, we shall use
the abbreviation "LF" and "HF" to refer to "low frequency" and "high frequency"
respectively. Moreover, we introduce a characteristic function x, (k) = 1 if £ = 0 and
= 0 otherwise.

In the following, we use the notations for Bloch wave decomposition defined in [36]

where the dual cell or first Brillouin zone is Y* = [-1/2,1/2) and the subset of the

7



Chapter 1. Notations, assumptions and elementary properties

wave numbers used in the model is

I — {—2&-. .., 4= — &} C Lif K is even, (1.2)
K {-52, B2 C Lif K is odd,

for K € N*. Note that L} — Y* when K — co. The super-cell Y = (0, K)x (0, 1)V
is made of K cells translated from Y = (0,1)". For r € {1,..., N}, the variable z is
written as
r = (x,,2,) with T, = (X1, ..., Tp_1, Tpi1, .o, TN) -
For any k& € Y* the space of square integrable k—quasi-periodic functions in x, direc-
tion is
L ={ue L RY) | u(z, +£,2,) = u(x)e*™* a.e. in RY for all £ € Z},

loc

or equivalently

L} ={uec L} (RY) | e LﬁQ such that u(z) = v(2)e*™ a.e. in RV},

loc

where L7 is the traditional notation for L7 in the periodic case i.e. when k = 0.
Likewise, we set

Hp = L;NH, (RY)
bearing in mind that the subscript ff would be more appropriate in the periodic case

k = 0. In addition, the operator @, : L?(Y) — L2 denotes the k—quasi-periodic
extension operator. Finally, we denote

1
I* = {~k k} if k € Y*\ {0, —5} and I* = {k} otherwise. (1.3)

1.2 Bloch waves and two-scale transform

We distinguish between two cases: in one dimension and in a two-dimensional trip.

1.2.1 In one dimension

We consider 2 = (0, ) C Rt an interval, which boundary is denoted by 052, and two
functions (a°, p°) assumed to obey a prescribed profile,

a® =a (E) and p° :=p (£> ,
€ £

where p € L* (R), a € W (R) are both Y-periodic where Y = (0,1). Moreover,
they are required to satisfy the standard uniform positivity and ellipticity conditions:

0 1 0 1
p <p<p anda <a<a,

for some given strictly positive p°, p', a’ and a'.

Two-scale operators For the sake of notation simplicity, we denote P¢ = —0,. (a®0,,)
and Q° = p°0y. For a function u (x,y) defined in 2 x R and a function v (¢, 7) defined
in I x R, we introduce,

Py = -0, (ad,u), P'u= -0, (adyu) — 9, (adyu) and P*u= -39, (ad,u), (1.4)
Q" = poyv, Q'v = 2p0d,0-v and Q*v = pd..v.



1.2.  Bloch waves and two-scale transform

Bloch waves For a given k € Y*, the Bloch eigenelements (A", ¢*) indexed by n € N
are solution to

P(k) : =0, (ady@},) = Xypd), in Y with ¢ € Hi(Y) and [[¢)]] oy =1, (1.5)

where the eigenvalues )\Z constitute a non-negative increasing sequence. The zero
eigenvalue only for £ = 0 is denoted by )\8. We state some properties of the Bloch
eigenelements ()\Z, qﬁfl) solution to (LB]) which are useful in studying the HF-waves.
For a given k € Y*, the operator P? := —0, (ad,.) : D (P?) C Li(Y)/Ker(P?) —
L (Y)/ Ker(P?) with dense domain is positive self-adjoint and with compact inverse,
so its spectrum is made with an increasing sequence of positive real numbers tending
to infinity. Moreover, the family (gbfl)n constitutes an orthonormal basis of the space
L2 (Y) for the hermitian inner product. The only zero eigenvalue is A corresponding
to a constant eigenvector, equal to one by normalization. Therefore, Ker (P?) = & for
all k € Y* except for £k = 0. This is the same for the case of a two-dimensional strip
in Section

Notation 1 For k # 0, n € M*, the conjugate gb_fl of gbfl is solution of P(—k). We
choose the numbering of the eigenvectors qb;k so that qb;k = qbﬁ which implies that
A= \E

Remark 2 For each k € Y*, n € N*, the second order differential equation (I3)
admits two independent solutions, which according to Notation [1, are gbﬁ and gb;k
when k & {0, —%} So, the eigenvalues )\Z and )\;k are both simple while in the other
case the eigenvectors are or periodic or anti-periodic and the eigenvalues are or simple

or double.

The L?—orthogonal projector onto ¢Z is denoted by II*¥ and the associated time scale

is af = %, with o = oo. Denote by M* the set of the indices n of all Bloch
eigenelementns,
M" =N for k =0 and M* = N* for k # 0. (1.6)

The space-modulated-two-scale transform Let us assume from now on that the
domain €2 is the union of a finite number of entire cells of size ¢ or equivalently
that e belongs to a subsequence of €, = & for n € N*. The set of all cells of {2 is
C:={w.=cel+eY |l €Zel+eY CQ}.

Definition 3 For any k € Y*, the modulated-two-scale transform S§ : L*(Q) —
L*(Q X Y) of a function u € L? () is defined by

Siu(w,y) = Y (el +ey) X, () e 2™, (1.7)

We GCE

where €l stands for the unique node in €L of w. and x,,_ s the characteristic function
of we.

From Definition Bl of the modulated-two-scale transform, the three following properties
can be checked by using (7)) and are admitted. For k£ € Y™ and two functions

9



Chapter 1. Notations, assumptions and elementary properties

u,v € L* ()
£ 2 o e 12 o 2 - 2
ISEuluery = | 15ul® dady = > [ w09
Sp(uv) = 55(u)Si(v),
1
and Sy (O,u) (z,y) = gﬁyS}iu (z,y) forue H'(Q). (1.9)

The adjoint S¢* : L? (Q x Y) — L? (Q) of S is defined by
[ @ w@ de= [ o) (55w @) dedy, (110
XY

for all w € L? () and v € L? (2 x Y'). A direct computation, see [95], shows that the
explicit expression of S;*v is

(Spv) (x) = Z 5_1/ v (z, - Elws)dzst (z)e2imhles (1.11)

g
weeC

it maps regular functions in 2 X Y to a piecewise-constant functions in ).

Remark 4 Let k € Y* and a bounded sequence u® in L? (Q) such that Siu® converges
to u* in L*(Q2 X Y) weakly when e — 0, then S°, u® converges to some u™" in L*(Q x
Y) weakly. Moreover, since Siu® and S, u¢ are conjugate then u* and u=" are also
conjugate.

According to (LI, S{*v is not a regular function. For various reasons, we need a
regular approximation of S{*v that will denote by R¥v. The expression of RFv depends
on the regularity of v with respect to its first variable. Prior to defining R*v, it is
required to extend v (z,y) to y € R by k—quasi-periodicity. Hence, we denote by JR*
the operator operating on functions v(x,y) defined in Q x R and k—quasi-periodic in
y7
& x

(R*)(x) = v(z, g) (1.12)
The next lemma shows that R* is an approximation of S¢* for k—quasi-periodic func-
tions.

Lemma 5 Let v € C'(Q x Y) be a k—quasi-periodic function in y then
v =R+ O () in the L? (Q) weak sense. (1.13)

Moreover, for v e C? (2 xY) a k—quasi-periodic function in y then
1
Ry = S5* (v +e€ (y — 5) @Cv) +€0 (¢) in the L* (I x Q) weak sense.  (1.14)

We refer to Lemma 3 in [95] and to [80] for the proof, see also the proof of forthcom-
ing Lemma [8 in Appendix when the time variables are dismissed. In the proof, we
constantly use the following consequence.

10



1.2.  Bloch waves and two-scale transform

Corollary 6 Letv € C' (Q x Y) and k—quasi-periodic in y, for any bounded sequence
u® in L? (Q) such that Siu® converges to u in L*(Q X Y) weakly when & — 0 then

/ue-%kvdx—) u-v drdy when e — 0.
Q

QXY

Note that for & = 0, this corresponds to the definition of two-scale convergence in [I]
and [89].

The time-two-scale transform A two-scale transform is then introduced for the
time variable, let Z be as a canonical lattice and A = (0, 1) as a time unit cell, we set
D:={0.=cl+eN|l€Z,cl+ecA C I} the family of all eA—cells contained in /.

Definition 7 The time two-scale transform T¢ : L*> (I) — L? (I x A) of the function
uw € L* (1) is defined by

Teu(t,7) = Z u (ely, +e7) Xy (t) (1.15)

6-.€D

where ly. € eZ stands for the left end point of 0. and x,_ is the characteristic function
of 0..

Similarly, for v € L? (I) and v € H' (I), the two following properties can be checked

by using (IT5),

Tl = [ Tulattr =3 [ it = ulfey, (116)
IxA 0.€D O
1
and T° (Op) (t,7) = 287 (T°v) (t, 7). (1.17)

The adjoint 7% : L? (I x A) — L*(I) of T¢ is defined by

/(T‘f*v) (t)-w(t) dt = / v(t,T)- (T7w) (t,7) dtdr, (1.18)
I IxA
for all w(t) € L* (I) and v (t,7) € L* (I x A). The explicit expression of T*v is

(T=v) (t) = > e /9 v (z ! —;z%)d%s (t), (1.19)

0-€D

it maps regular functions in I x A to a piecewise-constant functions in /.
The operator 8%, transforming two-scale functions v(t, 7, z,y) defined in I x RxQ x R
by functions of the physical space-time variables, is then

t
—F,

k _
(%nv)(t7 .T) - U(t7 80[@7 )

). (1.20)

o8

Next Lemma presents the relation between B%v and T°**S&*v for a function v which
is periodic in 7 and k—quasi-periodic in y for any n € N*.

11
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Lemma 8 Fork € Y* andn € N*, letv e C' (I x A x Q xY) be a periodic function
in T and k—quasi-periodic function in y, then

Bly = TS0 + O (¢) in the L* (I x Q) weak sense. (1.21)

Moreover, if v € C*(I x A x Q xY) is a periodic function in 7 and k—quasi-
periodic function in y, then BEv can be approzimated at the first order by

1 1
BEy = Teonx g (v + eak (T — 5) Ow+e (y — 5) &Bv) +¢0 (¢) (1.22)
in the L? (I x Q) weak sense.

It would take long to present here the proof, based on Lemma 3 in [95] and [80], of
Lemmal[8in details, thus it is postponed in Appendix. Moreover, for a function u (x, y)
defined in © x R and a function v (¢,7) defined in I x R, we observe that,

2
PRy = Z e "R Py, PT(BEu) = B (PPu+e'Plu+e?Pu), (1.23)

n=0

and Q°BFv = BF <Q0v + (eozﬁ)fl Qv + (80&)72 Q%) :

1.2.2 In a two-dimensional strip

We consider an open bounded domain Q = w; X ws with w; = (0,a) C R* and
we = (0,¢) with ends I'y,,y = Ow; X wy and lateral boundary I'j,; = wq X Qws. As usual
in homogenization papers, € > 0 denotes a small parameter intended to go to zero. A
2 x 2 matrix a® and a real function p° are assumed to obey a prescribed profile,

at=a (E) and p° :=p (£> ,
€ €

where p € L (R?) and a € W1 (R2)*** is symmetric. They are both Y —periodic
with respect to the reference cell Y C R2. Moreover, they are required to satisfy the
standard uniform positivity and ellipticity conditions,

p" < p<p'and o |[¢]* < ¢"ag < a' [|¢]? for all £ € R? (1.24)

for some given strictly positive numbers p°, p!, @ and a'. We note that variables x
and y can be written as,

x = (r1,72) and y = (y1,¥2) -

For Y1 = Y, = (0,1), let us define the unit cell Y = Y] x Y5 = (0, 1)2 which, upon
rescaling to size €, becomes the period in €. The boundary 9Y is decomposed into
Y = Yena Y Viar Where v, = 0Y; x Yy and v,,, = Y7 x 0Ys. The cells (wjlg)jeN and

5

(wl) jen of size €, and their indices (le> are decomposed accordingly
jEN

w{g:g(j+}/1),wg:w{axw2 and lwg:(j,O) for j € N.

12



1.2.  Bloch waves and two-scale transform

With the same convention, the boundary layer cell is in direction g, and is defined as,

YI=R"xY..
The boundary 9Y} of Y is decomposed into 7 ., = {0} x Y3 and L ,, = RT x 9Y5.
Two-scale operators Similarly to the one-dimensional case, we denote P = — div, (a°V,.)
and

PO = —8331 (anﬁzl.), Pl = —&Tl (al,Vy.) — diVy (a,lﬁzl.) , P2 = — diVy (avy.) .

Bloch waves For k € Y*, the Bloch eigenelements (A", ¢*) indexed by n € N are
solution to

P(k) : —div, (aV,6E) = Nipgk in Y with ¢f € H? (Y) N L? (H}(Y1);Ya)  (1.25)
such that avygbfl.ny =0 on 7,,, and Hgbszm(y) =1,

where the eigenvalues )\ﬁ constitute a non-negative increasing sequence. The zero
eigenvalue only for £k = 0 is denoted by )\8.

The modulated-two-scale transform In the statement of the results, the asymp-
totic behaviour of the solution is expressed by using the following definition of the
modulated-two-scale transform. Let us assume from now on that €2 is the union of
a finite number of entire cells of size £ or equivalently that the sequence ¢ is exactly
En =1 for n € N*. We set,

J:{jENsuchthatwgCQ},
then J is the set of indices of finite cells of size .

Definition 9 For any k € Y™, the modulated-two-scale transform of the function
uwe L?(Q), S5 : L?(Q) — L? (wy xY), is defined by

Siu(z1,y) = Z u(ej + ey, €ya) Xud, () e~ 2imki (1.26)
jeJ

where x_; is the characteristic function on wi,.
1>

From Definition [@ of the modulated-two-scale transform, the three following properties
can be checked by using (I.26) and are admitted. For u,v € L? (Q)

1 1

2 2 2 2

15032 ey = /wle |Su)*dydy = ze; ’ (; /wj |ul dx) X (w1)day = . ull’, , -
J < N

(1.27)
Si(uv) = 55(u)Si(v),

1
and S§ (V,u) (11,y) = gvy (Siu) (z1,y) forue H'(Q).

Then, the adjoint S5* : L? (w; x V) — L*(Q) of S§ is defined by
1
S @ w o= [ o) (S @) dedy, (128)
Q

19 w1 XY
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Chapter 1. Notations, assumptions and elementary properties

for all w € L? () and v € L* (w; x Y'). A direct computation shows that the explicit
expression of S;*v is

Z/ £~ v(z ;l ) dz X, (x)e*™, (1.29)

jeJ wi

it maps regular functions in w; X Y to a piecewise-constant function in 2. Moreover,
the operator JR*, transforming two-scale functions v(xy,y) defined in w; x R? and
k—quasi-periodic in y; by functions of the physical space variables, is then

Xz

(RH0)(z) = v(ws, 7). (1.30)

The next Lemma shows that 9R* is an approximation of S¢* for k—quasi-periodic
functions in y;, it is a simple extension of Lemma [l also of [80]. The proof is referred
in Appendix.

Lemma 10 Let v € C' (wy; X Y) a k—quasi-periodic function in y; then
Se*v = R + O (e) in the L* (Q) weak sense. (1.31)

Moreover, for k € Y*, the definition of the modulated-two-scale transform yield rela-
tions between S;u® and S%,u°

e S;u® and 5S¢, u° are conjugate,

e if u is a sequence such that Siu® converges weakly to u* in L?(w; x Y) when
e — 0, then S°, u® converges weakly to u" in L?(w; x Y') weakly; moreover u*
and u % are conjugate.

The boundary layer two-scale transform In order to study the oscillations of
waves near the boundary, we introduce the boundary layer two-scale transform which
will be defined by adapting the modulated-two-scale transform to the case boundary
layers, that is, sequences of functions in €2 which concentrate near the boundary {0} x
we and {a} X wy. It is also based on the motivation of two-scale convergence for
boundary layers in [9).

Definition 11 For 9 € {0,a}, the boundary layer two-scale transform SY applies to
functions u (x) € L (Q),
Sy LP(Q) — L* (V)

is a simple et —dilation and is defined by,

(Sl(y]u) (y) =u (&‘y) X(O,a/e) (yl) ) (132)

and
(Spu) (y) = u(—ey1 + @, €Y2) X(0,a/e) (Y1) - (1.33)

For u € L? (), the boundness property of SYu can be showed in the next lemma.

Lemma 12 For u € L? () such that u is bounded in L* (), then

/ lul? (z) da —/ }Sbu‘ )dy for v € {0,a}. (1.34)

14
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Moreover, the adjoint SP* : L? (Y1) — L?(Q) of S/, is defined by

1/Q (S,?*v> () -w(z) de = E/Y;g v (y) - (S{w) (y)dy for any ¥ € {0,a}  (1.35)

€
for all w (z) € L* () and v (y) € L*(Y}). Furthermore, for a function v (y) defined
in Y5, the operators RR) and Ry, transforming the functions v(y) defined in Y} by
functions of the physical variables, are introduced by

a— T T2

R (v) () =v (g) and Ry (v) () = v ( , ?> for x € Q. (1.36)

3

The next lemma, presents the relation between S}f* and RY for a function v defined in
Y.

Lemma 13 For v (y) € C' (YY) then
Sy =Rv in L* (Q) for any ¥ € {0,a} . (1.37)

The proofs of Lemma [[2] and Lemma[[3 are postponed in Appendix. For the functions
v(z1,y) and w (y) defined respectively in w; x R? and Y}, we observe that

2
PRy =) "R P and PCRYw = =Ry PPw, (1.38)
n=0

Finally, from now on the notation P? is used instead of P? for all cases.

1.3 Assumption of sequence ¢

The following condition on the sequence ¢ is made so that to be able to pass to the
limit the boundary conditions at z; = a.

Assumption 14 For each k € Y™, considering the decomposition in

k
% = hE 41, (1.39)

with the integer part h* = [%k} and the rest [¥ € [0,1), we assume that the sequence ¢
belongs to a set E), C RY* such that the sequence I* is convergent

15— 1" when e — 0. (1.40)

For k =0, we observe that h? = 0,12 =0 s0 =0 and Ey = R™™.
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Chapter 2

Homogenization of the spectral
problem in one-dimension

Contents

R.5.4 Order of convergencd . . . . . . . ... ... 42

Abstract. In this chapter, the asymptotic behavior of a one-dimensional spectral
problem with periodic coefficient is addressed for HF-modes by a method of Bloch
wave homogenization. The analysis leads to a spectral problem including both HF-
microscopic and HF-macroscopic eigenmodes. Numerical simulation results are pro-
vided to corroborate the theory. This work has been published in [95].

2.1 Introduction

We consider the spectral problem
—0, (a°0,w%) = N p w® (2.1)

17



Chapter 2. Homogenization of the spectral problem in one-dimension

posed in an one-dimensional open bounded domain €2 C R with Dirichlet boundary
conditions. An asymptotic analysis of this problem is carried out where ¢ > 0 is
a parameter tending to zero and the coefficients are e-periodic, namely a®* = a (f)
and p° = p (£) where a(y) and p(y) are l-periodic in R. In this chapter, we search
eigenvalues \° satisfying the expansion

2N =\ 4 e +20 (e). (2.2)

It comes that A’ is equal to an eigenvalue )\fl solution of the Bloch wave spectral
problem (LI) for n € N* and k£ € Y*, also called the HF-microscopic equation in
this work. To guarantee that Bloch waves are kept in the weak limit, we apply the
modulated two-scale transform S; defined in (IL7). Passing to the limit in the weak

formulation, it is shown that > SZw® is weakly converging to two-scale modes
oelk

g (y) = Y Y ul (2) 67, (y)

oclk m

where the second sum runs over all modes ¢7, with the same eigenvalue A\*. Here,
the modes ¢7, are called Bloch modes. The factors (u?,),, are solution of the HF-
macroscopic system of first order differential equation,

Zc(a,n, m) Opul, + N'b(o,n,m)us, =0 in Q for each o € I*, (2.3)
which boundary conditions and the constant ¢ (o, n,m) are depending on the involved
Bloch modes and eigenvalues. The physical solution w® is then approximated by two-

scale modes .
wf (o)~ Y D u (@), (2)) (2.4)
oelk m
These results are also established for Neumann boundary conditions.

In fact, the method introduced in this chapter is inspired from [36] dedicated to
the wave equation, except that in the latter work the two-scale transforms S;w® and
5S¢, w® were analyzed separately and the macroscopic boundary conditions were lack-
ing. Moreover, the model derivation in [36] is starting from the wave equation written
as a first order system. So, for the sake of comparison, we derive the homogenized
spectral equation from a first order formulation. All presented results are straight-
forwardly extended to multiple space dimensions except the macroscopic boundary
conditions satisfied by the modulation coefficient uZ, (x) of the Bloch modes.

In addition, we report exploration results regarding approximations of physical
eigenmodes by two-scale modes. First, for a given € and each high frequency physical
eigenelement (A\°, w®), we show how to find quadruplets ()\fl, A, fl,ufl)nk satisfying
the approximations (2.2]) and (Z4]). This shows that each high frequency eigenelement
can be approximated by a two-scale mode. Conversely, the high frequency physical
eigenelements can be built from the two-scale eigenelements only. Namely, for a given
Bloch mode ()\Z, ngfL), a macroscopic eigenelement ()\1, uk) is minimizing the error on

n

the physical equation (2I) where w® and A° are replaced by their approximations (2:2])
and (2.4).

Remaining of this chapter is organized as follows. In Section B5.J] we state the
physical spectral equation with Dirichlet boundary conditions. In Section and
2.4l the model homogenization is derived based on the second order and first order
formulations respectively. Finally, the numerical results are reported in the last section.
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2.2. Statement of the problem

2.2 Statement of the problem

We consider 2 = (0,«) C R* an interval, which boundary is denoted by 99, and two
functions (a°, p°) assumed to obey a prescribed profile,
a®:=a <E) and p :=p (E) , (2.5)
€ €
where p € L™ (R), a € W1 (R) are both Y-periodic where Y is an open interval.
Moreover, they are required to satisfy the standard uniform positivity and ellipticity

conditions:
P’ <p<ptanda® <a<dl, (2.6)

for some given strictly positive p°, pt, a and a'.
With the operators P* = —0, (a°0,.), the spectral problem with Dirichlet boundary
conditions is
Pfw® = XA p*w® in Q and w® = 0 on 012, (2.7)
where as usual € > 0 denotes a small parameter intended to go to zero.
The eigenvectors w® € H?(Q) N H} () are normalized by

3
ey = ( / |w€|2da:) 1, (2.8)

and we search the eigenvalues such that
20 = X" + el +£0(e), (2.9)
where \° is a non negative real number and O(g) tends to zero with . The weak

formulation of the spectral problem (7)) is: find w® € H(£2) such that

/ a“0,w*0,v dx = )\6/ pfwv dx for all v € Hy(Q). (2.10)
0 0

Since £2)\° is bounded, it results the uniform bound

€0, 2(0) < No. (2.11)

2.3 Homogenization of the high-frequency eigenvalue
problem

Before starting the homogenized results, for any n,m € N* we introduce the HF-
macroscopic model coefficients

cthn,m) = [ a0yt of - ot 00,0k dy and bknm) = [ poty- oy (212)
Y Y
and observe that the following properties hold,
c(k,n,m) = c(—=k,n,m), c(k,m,n) = —c(k,n,m), c(k,n,m) =—c(—k,m,n)

and
b(k,n,m) = b(k,m,n), b(k,n,m)=>b(—k,m,n), b(k,n,n) > 0.

In particular for £ = 0, if the eigenvectors are chosen as real functions thus ¢ (0,n,n) =
0. In the special case p = 1, b(k,n,m) = 1 for n = m and b(k,n,m) = 0 otherwise.
Here we study our problem with k € Y* = (—%, %) The process is similar to k = —%
but the detail is not reported.
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2.3.1 Main result

The HF-macroscopic equation is stated for each £ € Y* and each Bloch wave eigenvalue
)\Z. For k # 0, we assume that c(o,n,n) # 0 for each o € I*, so it is stated as an
eigenvalue problem

c(o,n,n)0pul + Nb(o,n,n)us =0 in Q (2.13)

for each o, with the boundary conditions

n

. kg
Z uy (z) 7 (0) e (@2 — 0 on 1 € 09, (2.14)

ocIk

where [¥ is defined in (40). We observe that the first order operator ¢ (k, n,n) ( O

of this system is self-adjoint on the domain

D* = {(uy, va) € H' (Q)? satisfying @ZI2) }

so A!is real.
For k = 0, assuming that )\2 is a double eigenvalue corresponding to two eigenvec-
tors ¢2 and gb?n, and that ¢ (0,n,m) # 0, the HF-macroscopic system states

Z c(0,p,q) Opug + Alb((),p, q)ug = 0in Q for p € {n,m}, (2.15)

qe{n,m}

with the boundary conditions

Z ug (z) g (0) =0 on x € O (2.16)

g€{n,m}

0 0,

. 1 .
Again A" € R since ¢ (0,n,m) ( 9, 0

) is self-adjoint on

D% = {(up,up) € H' (Q)? satisfying 16) } -

Remark 15 (i) If c(k,n,n) = 0 for k # 0 or ¢(0,p,q) = 0 for all p,q varying in
{n,m}, the HF-macroscopic equations (Z.13) or (Z13) are \' =0 oru = (u5), s =0.
If \' = 0 then this model does not provide any equation for ul.

(ii) For k # 0, if ¢* (0) = 0 then ¢F (1) = 0 and ¢¥, is a periodic solution that is
a solution of k = 0. So, we consider always that ¢* (0) # 0 for k # 0.

(1ii) For k = 0, in case where ¢,(0) = ¢,,(0) = 0 the boundary conditions of the
HF-macroscopic equation vanishes.

Remark 16 This work focuses on the Bloch spectrum. To avoid eigenmodes related
to the boundary spectrum, according to Proposition 7.7 in [8], we shall assume that the
weak limit of Siw® in L* (Q; HY(Y)) is not vanishing.

The main Theorem states as follows.
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2.83.  Homogenization of the high-frequency eigenvalue problem

Theorem 17 Fork € Y™, let (\°, w®) be solution of (271) then > Siw® is bounded in
oelk

L*(Q; HY(Y)). Fore € Ey, as in (L33, [T]0), assuming that the weak limit of Siw®

in L? (Q; HY(Y)) is non-vanishing and the renormalized sequence £2)\° satisfies the

decomposition (Z9), there exists n € N* such that \° = \¥ with \¥ an eigenvalue of the

Bloch wave spectrum and the limit g, of any weakly converging extracted subsequence

of > Scw® in L*(Q; HY(Y)) can be decomposed on the Bloch modes

oclk

g (z,y) = Y uf(2) 67 (y) for k #0 (2.17)
oelk
and go (z,y) = Z ug () gbg (y) otherwise.
q€{n,m}

Moreover, ug, € H*(Q) and (u3,),, . are solutions of the HF-macroscopic equations

(213, [2.73) and (213, 218). Finally, uf, and u,f are conjugate.

Thus, it follows from (2I7) that the physical solution w® is approximated by two-
scale modes

w® () ~ Z u) (x) 7 (g) for kK #£0 (2.18)
oelk
and w® (z) = Z ug () ¢y (g) otherwise.
qe{n,m}

The boundary conditions (ZI4) and (ZI6) can be directly derived by replacing w® in
the physical boundary condition by its approximations,

Z ul (z) ¢y (g): 0 for kK #0 (2.19)
oelk
0 o(T .
and Z u, () ¢, <g): 0 otherwise at x € 0S.
q€{n,m}

For k # 0, they result from

x 2i7ra§ sign(o iﬂmM sign(o iwxﬁ
07 () =or e =g (0) TR < g1 (0) N for g € 00
and the assumption (¥ — [*. For k = 0, the conditions follow from the periodicity
of ¢0. Furthermore, we observe that g (x,0) and g (z,1) are generally not vanishing
except for k = 0.
Proposition 18 For k € Y*, n € N*, if the HF-macroscopic solution u® is a non-
vanishing constant, then any two-scale mode (Z18) is a physical eigenmode i.e. a

solution to (27).

Proof. For k € Y*, n € N*, if the HF-macroscopic solution u* is constant then
A'=0and (ug,),, . are constant for all o € I* and m € N* such that A7, = \7. Now,
we consider p = 1 and the proof is similar for p # 1. Based on Remark about
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Chapter 2. Homogenization of the spectral problem in one-dimension

the macroscopic solutions in Section 2.3.4] A\! = 0is equivalent to ¢ = %TO‘ From the
o—quasi-periodicity of ¢,

¢Z (%) — ¢Z (O) esign(a)2i7rk% _ sz (0) esign(o)iﬂé _ :l:(bz (O),

then ¢7 is a—periodic or a—anti-periodic for o € I*. Hence ¢ (£) is a solution of the

equation
T T N T\ .
0, (a (—) 8y (—)) = _Zngo (—) in O (2.20)
€ € € €
and ¢, (£> is o — periodic or o — anti-periodic,
€

and ug,¢7, (£) is also a solution of [Z20). Denote by w® := Y > ug,¢7, (£) and
oclk m
observe that w® is a solution of the equation

0, (a°0,w") = —A*w® in Q

with the boundary conditions

w (0) =33 ugeg, (0) = 0 and wf (a) = 33 ug ¢, (g) — +uf (0) = 0.

oclk m oclk m

Finally, Proposition [[8 is concluded. W

Remark 19 The converse is probably true, and is numerically studied in Section[2.5.2,
i.e. for any (A\°,w®) solution to (Z71), there exist k € Y*, n € N* and two complez
numbers &, and &, such that \* = N\ /e* and

w (@) = ok (2)+ 6" (2) kA0 (2.21)
and w® (x) = &,6° <§>+§2¢0m (g) otherwise

for &,&, two numbers such that the boundary conditions (Z18), respectively (2-17),
are satisfied for k = 0, respectively for k # 0. In the later case £, and &, are conjugate.

Remark 20 (i) The case of non-constant coefficients u is used for approzimations
of the solution to the homogenized wave equation that may be derived from [36]. In
such case k belongs to a finite subset Lj, of Y* made with values distant from 1/K
and including 0. We cannot expect that there always exists a pair (k,n) such that u®
15 a constant.

(ii) The case of non-constant coefficients u® is also seen as a preparation to derive
homogenized spectral problems in higher dimension where the boundary conditions con-
stitute a more difficult problem and may require a more general solution than constant
Proof. [Proof of Theorem [I7] The proof is based on Lemma 21l in Section and
on the HF-macroscopic model derivation in Section 2.3.3l For a given k£ € Y*, let w®
be solution of (1) which is bounded in L*(€2), the property (L8] yields the uniform
boundness of [|S5w? || 2oy for any o € I*. So there exist w” € L*(Q x Y') such that
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2.83.  Homogenization of the high-frequency eigenvalue problem

up the extraction of a subsequence Sw® — w?” in L? (2 x Y') weakly. Furthermore,

195 (€0xw )| p2xyy = 10y Sow® HLg(Qxy) is uniformly bounded as [|0,w®([ ;2 (o), hence
lim OySow® - vdxdy = lim —SEw® - Oyvdrdy = —/ w’ - Oyvdxdy
=0 Jaxy =0 Jaxy QxY

for all v € L*(Q; H}(Y)). If w® € L*(Q; H'(Y)) then

lim OySyw® - vdxdy = Oyw? - vdxdy.

e=0 QXY QXY

Therefore SSw® tends weakly to w? also in L?(Q; H' (Y)). Hence, > Scw® converges

oelk
to
= Z w? (x,y) .
oelk
Using the decomposition ([2:22]) of w” in Lemma 21} for (¢;)Up the Bloch wave eigen-

modes corresponding to \’,

g (z,y) = > vy (z) @7 (y) for k # 0,

oclk

goley)= ¥ (@)l (y) for k=0.

pe{n,m}

Finally, (ug )op is solution of the HF-macroscopic problem as proved in Section 2.3.3
. I

2.3.2 Modal decomposition on the Bloch modes

Lemma 21 For (\°,w®) solution of (Z71) and satisfying (29), for a fized k € Y*
there exists at least a subsequence of S;w*® converging weakly towards non-vanishing
function w* in L* (2 x Y) when € tends to zero. If w* € L*(Q; H*(Y)) then (A\°,w")
is solution of the Bloch wave equation (L3) and w* admits the modal decomposition,

Z uy, ) foruf € L?(Q) (2.22)

where the sum s over all Bloch modes gbﬁl associated to \°. Moreover for k # 0 the
two factors u and u,." are conjugate.

Proof. The test functions of the weak formulation (2I0) are chosen as
v = Ry € Hi(Q) N H*(Q), (2.23)

with
v € Hy( Li(Y)) N L*(G HX(Y)) N H? (5 Ly (Y)) - (2.24)

Applying two integrations by parts and the boundary conditions satisfied by w® and
by R*v, it remains

/ w® - (P° = \*p°)v° da = 0. (2.25)
0
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Chapter 2. Homogenization of the spectral problem in one-dimension

From (L23) multiplied by € and (2.9),
/ w® - RE((P? = X)) do = O(e).
Q

Since (P? — \p)v is k—quasi-periodic and Siw® — w” in L?(Q x Y') weakly, Corollary
allows to pass to the limit

/ w - (P? = \°p)v dxdy = 0,
Qxy

or equivalently

w* - 9, (ad,v) + w* - \°pv dady = 0. (2.26)
QxY

Using the assumption w* € L?(Q; H?(Y')) and applying integrations by parts,
/ Oy (aaywk) v+ wh X pu dady + / [awk - Oyv — ad,w" - v]z:) dz = 0.
Qxy Q

Then, choosing test functions v € L?(Q; H3(Y')) comes the strong form
—9y (adyw") = \’pw* in Q x Y. (2.27)
So, it remains

/Q [awk - Oyv — aﬁywk . v] zitl) dr =10
for general test functions (Z24)), which implies that w* and 9,w" are k—quasi-periodic
in the variable y.
As we know that \° is an eigenvalue )\Z of the Bloch wave spectrum, then w
Bloch eigenvector and is decomposed as

wh (,y) =Y up, (2) 6, (y) with uf, € L (Q)

ks a

the sum being over all Bloch modes ¢, associated to \° where uf, (z) = [, w*(z,y) -

oF (y) dy. For k # 0, ¢*, :gb—;f and from Definition Blof modulated two-scale transform,

€0 — Q€ € k —k : : kE _ . —k
Spw® = S, we thus w;, and u,* are conjugate i.e. u;, = u,*. M

2.3.3 Derivation of the high-frequency macroscopic equation

Before continuing with the derivation of the HF-macroscopic equation, we establish
an auxiliary result for existence of special test functions. For £ € Y*\ {0}, n € N* and
o € I*, we consider the two functions ¢* (), v " (z) € H? (Q) such that

O () ¢F (0) ™5 +p7F (2) ¢ (0) e > ™G = 0 on 00 (2.28)

n

where [* is defined in ([C40).

Lemma 22 For k € Y*\ {0}, let € € Ey, there exist ™ ™" € H?(Q) satisfying
i) the boundary conditions
PR () ¢F (0) 2™ 1R (2) ¢, (0) e 25 = 0 on 09, (2.29)

ii) and the strong convergence

W7 — 7 in H? (Q) when e — 0 for o € I". (2.30)
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2.83.  Homogenization of the high-frequency eigenvalue problem

Proof. [Proof of Lemma B2] For any ¢ € Ej, and let the two functions ¢* (),
v F () € H?(Q) satisfying [ZZ8), we prove that the following choice satisfies the
conditions,

Phe (@) =

M(x) € H?(Q) (2.31)
and ¢ "¢ (z) = F

v
™ () + 1° () where pf (2) € H?(Q)

with
e () = = (1= ")) ()

where ¥ and [* is defined in (L39) and (L40).
i) Replacing (2.31)) in (2:29)), the boundary conditions are

U8 () @ (0) €= + (78 (2) + 7 (2)) 9, (0) €™ = 0 on 9.
Using (L39) and (L40) with remarking that e*™a =1 at 2 € 9Q, so

UF (z) ¢f (0) ™ + (vF (2) + p° (2)) ¢, (0) e #™ha = 0 on 0.

T
o

Or equivalently,

Il
o

U () ¢ (0) m(PHEP)E L (4 () 4 4 () y* (0) e 2 HE)

Il
o

U (@) ¢k (0) " 2 ()T 4 (97 (2) 4 4 (@) 67* (0) e Ee (503
on 9. From (2.28)),
i/ik (:U) gbfl (O) €2i”lk§ — _w—k (:U) (br_zk (0) 672i7rl’€§ on 9.

After replacement, the equation remains,

b (z) ¢;k (0) p—2imlE L <672m(l;4k)§ _ 62i7r(lzflk)§>
1 () 6% (0) p2imlt 2 2 (5-1F)E _ (g 0 90,

This equation is satisfied with the above p°.

ii) For o = k, the strong convergence is true since Y% is independent on e. For
o = —k, the strong convergence of u (z) in H? () is trivial, i.e. p°(z) — 0in H?(Q)
strongly when & — 0. Therefore, 1) "¢ — ¢ in H?(Q) strongly when ¢ — 0. H

In the HF-macroscopic model derivation, we distinguish between the two cases
k # 0 and k = 0.

Case k # 0

We consider A\’ = A\* and the two conjugate eigenvectors ¢ and ¢ * discussed in
Notation [l We restart from the very weak formulation (Z25]) with the test function

v° () = R o) € Hy (Q) N H?(Q). (2.32)
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Chapter 2. Homogenization of the spectral problem in one-dimension

Furthermore, we pose v7°(z,y) = ¥7(2)¢%(y) with v € H*(Q) for o € I*¥ and
use the o—quasi-periodicity of ¢n, ie. ¢ (%) = ¢7 (0)e*™ < at any z € 9. So the
boundary condition in (Z32) is equivalent to

wk,e (l‘) ¢k(0) 2Tk +w—ka( )¢—k(0)e—2mk8 —0 at any x € o0,

Applying the relation (L39),

hE ik

. pkgak . k
S @)oh ()™ 4 gTE @)g R 0)e T = 0,

. pk
Since x% =0at z =0 and x% = h* at © = a with h¥ € Z then e**™ & = 1. From
(T0), ™5 — =275 when & — 0. Using Lemma 22, passing to the limit, the
limit v of the test function v7° is

v (z,y) = 7 (2)dy (v)

and the boundary conditions of the test function are

ik, L
W (2) ¢k (0)eX™ s + () F(0)e 2™ = 0 on ON. (2.33)
From (L23) multiplied by ¢, 23) and P?*v7 — \°pv® = 0,

Z/w SR (=P 4+ X pu™F) da = Ofe). (2.34)

ocIk

Extracting a subsequence of w® so that S{w® and S¢,w* are converging to w* and w=*
in L?(Q x Y) weak, since —P'v"¢ + A\ pv7* is o —quasi-periodic then Corollary Bl and
Lemma [22] infer that

Z / w’ - (=P + X pv?) dady = 0,
celk Qxy

ie.
/ w” - (9, (adyv”) + 0, (ad,v7) + M pv® ) dady = 0.
P Qxy

This is the very weak form of the HF-macroscopic equation for all test functions
v’ € H' (Q; HL (Y)), reached by density, satisfying (233). Now, we derive the strong
formulation. We assume that w® € HY(Q; L*(Y)), since w® € L*(Q; HY(Y)) after two
integrations by parts,

Z [ 9y (a0,w) - v7 + 0, (adyw?) - v7 + N pw” - v7 dady

celk QxY

xT

+ /Y [w? - adyv? — adyw? - V7], dy
+ /Q (W7 + adyv” — ad,w? - UO]ZZ) dy| = 0.

From Lemma 1] w? is solution to the Bloch mode equation and is decomposed as
w’ (. y) = u’ (x)P5(y)- (2.35)
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2.83.  Homogenization of the high-frequency eigenvalue problem

After replacement,
3 [ / B, (ag?) - 4% + adyd% - 67 dy / Oy -1 da (2.36)
— Ly Q
Al / P67 42 dy / W i+ / 0 - ady % — adyds - ¢ dy [u” - oS
Y (9] Y
167 ag)! / W O — Oyt” - da:} 0.
Q

Let us recall that b(.,.,.) and ¢(.,.,.) have been defined in (ZI2). For the sake of
simplicity, we use ¢(o,n) := ¢(o,n,n) and b(o,n) := b(o,n,n) and observe that

/Y 0,(ad5) - 6 + adyd, - &, dy = (),

which results from integrations by parts and from the o—quasi-periodicity of ¢;. So,
using the o-quasi-periodicity of ¢¢, (Z30) can be rewritten as

> foc(a, )0’ + b (o, n)u”) 07 do — c(o,n) [u - 71275 | =0.

o

Choosing the test function 7 = 0 on 02, the boundary condition ([2.33)) is satisfied
and by density of H} () in L?(Q), the internal equation satisfied by u° follows,

c(o,n)0,u” + X'b(o,n)u’ =0 in Q for each o. (2.37)
Choosing general 7 € H' () satisfying (2.33) yields the boundary conditions

Z c(o,n)u’y’ =0 on 9. (2.38)

We introduce the matrices Cy = diag((c(o,n)),), Ca = diag((b(o,n)),) and the vectors
. Ok
u:@mm¢:wmm¢:@ymwmmﬁﬂ with o € I*, so that (233 B3

ag
2.38) can be written on the matrix form

C0,u+ N Chu=01in Q ,
and Cyu(z).(z) = 0 on 9N for all ¢ such that B(z,0).4(z) = 0 on IN.

The boundary condition is equivalent to
Cyu(zx) is collinear with p(x,0) i.e. det(Ciu(x),®(x,0)) = 0.

Equivalently

{ ek, n)uk (0) 6 (0) = e(—k, n)u* (0) ¢ (0) = 0,
c(k,n)uf (a) % (0) e=27" — c(—k, n)u~" (a) ¢ (0) e2iml* = 0.

Finally, since c¢(k,n) = —c(—k,n) and c(k,n) is assumed to do not vanish, the bound-
ary conditions of HF-macroscopic equation (2.37) are

L L
ub () oF (0) ™= 4 u ™ () 0,7 (0) e 2™ & =0 at x € 0N

n n
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Chapter 2. Homogenization of the spectral problem in one-dimension

Case k=0

In case k = 0, to avoid any confusion with \°, the upper indices k& = 0 are removed.
We denote by ¢, ¢, the eigenvectors associated to \” = X\, = \,,, solutions to P(0)
in (LH), and by >_ , >, the sums over p or ¢ varying in {n,m}. We restart with a
test function

v (z) =R v,) € Hy () NH?(Q) (2.39)

p

for the very weak formulation (Z34). We pose v,(z,
H?(Q) for p € {n,m}. Since ¢, is periodic thus ¢, (
boundary condition in (2.39) is equivalent to

D 1, (2)6,(0) =0 at 2 € 0.

(@), () with 1, (z) €
¢,(0) at x € 0Q and the

)

Y)
c

By setting ¢(p, q) := ¢(0,p, q) for p,q € {n, m}, using the expression in Lemma 2] of
the weak limit w® of S5w®,

w’ (z,y) =) up (2) 6, (y), (2.40)

using the periodicity of (gbp)p and conducting the same calculations as for £ # 0, we
obtain

2. l/g@(p, 0)0xttq + N'b(p, 4)tg) - ¥, d = [e(p, QJuq - ], 2 | = 0.

p.q

With v = (up)pa Y = (wp)lh ¢ = (¢p)p and C; = (c(p, Q))p,qv Cy = (b(p, Q))pvq’ the
HF-macroscopic problem turns to be

C10,u+ AN Cyu =0 in Q, (2.41)
with the boundary conditions
Cru(x).1p(x) = 0 on OS2 for all ¢ such that ¢(x).¢(0) = 0 on OS2
Equivalently, Chu(x) is collinear to ¢(0) on 0S2 or
det (Cyu(z), »(0)) = 0 on Of2. (2.42)
But ¢(p, p) = 0, so (242) simplifies to

{ ¢ (n,m)um (0) @, (0) — c(m,n)u, (0) ¢, (0) =0,
c(n,m)un, (@) ¢, (0) —c(m,n) u, (a) ¢, (0) = 0.

Finally, since ¢ (n,m) = —c(m,n) and ¢ (n,m) # 0, the boundary conditions are

Uy, () ¢, (0) + up, () ¢,,, (0) = 0 on 9.

2.3.4 Analytic solutions

For k € Y* and p = 1, we solve the HF-macroscopic equations In Section 2.3.4. These
solutions are used to validate the numerical results in the final Section. Moreover, in
Section 2.3.4.0] the exact formulations of the two-scale eigenmodes are found for p =1
and a = 1.
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The case p=1

For k # 0 and b(n,n) = 1, the exact solutions of the HF-macroscopic equation (2.13)
are

u) (x) = d°e'eem e fo1 each o € IF

where d? is any complex number. Applying the boundary condition (2.I4) and assum-
ing that ¢* (0) # 0, the eigenvalue is

(K, n)

(%

A= &

(2iml* — itr) for ¢ € Z. (2.43)

Furthermore, u* = u-* and ¢* (0)

n —

for any 0 € R. Thus,

6,5 (0) then Re (d¥¢k (0)) = 0, or d¥¢" (0) = id

d" = 0 and % = —L for any 0 € R.

9}, (0) %" (0)
For k = 0, using the equalities ¢ (n,n) = ¢(m,m) =0, b(n,m) = b(m,n) = 0 and
b(n,n) =b(m,m) =1, the HF-macroscopic equation (215 is rewritten

0 Lo _ :
{c(n,m)@zum—i-)\un—o in Q, (2.44)

¢(m,n)d,u® + Nl =0 in Q.

If \' =0, 9,u°, =0 and 9,u’ =0 in €, then 2, and u® are independent on z,
equivalently, u® and u? are complex numbers.
0
If A\' # 0, the first equation gives u® = —% in Q and since ¢(n,m) =
—c(m,n) then

1 2
Oyl = — ( A ) ul, (2.45)

¢(n,m)

)= oo () v ()

for two constants for di,d, € C and u® follows by its above expression. Applying the
boundary condition (I0), if ¢2, (0) # 0,

and

0
_mem) g p ez and dy = — dy o
a O (0)

for any ¢ € Z and dy € C. If ¢° (0) = 0 then ¢2 (0) = 0 or w2 (z) = 0 on 9. In

n

the case ¢ (0) = 0, the HF-macroscopic equation is lacking of boundary conditions

and their solutions are not unique, they depend on arbitrary coefficients d;, dy and \'.
When v (z) = 0 at 0Q, there is an alternative, or u? is the trivial solution or

0 1
det { _ sin (c(r’L\}m) a) cos (ﬁa) =0
and then dy = 0, \! = w for any ¢ € Z and d; € C.

Remark 23 According to (374) and (246), \' = 0 iff £ = 21* for k # 0 and iff ¢ = 0
otherwise. So, in any case small values of X" correspond to indices € in a vicinity of
20% or to %TO‘ when ¢ > 0.

)\1

(2.46)
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Chapter 2. Homogenization of the spectral problem in one-dimension

The case a =p =1
We consider the spectral problem
2 ik \k k-
—0,,¢" =A"¢" inY

with the k—quasi-periodicity conditions.
For k # 0, for a mapping m +— n(m) from Z to N* not detailed here, \*

n(m)
4m*(m+k)? and there are exactly two conjugated solutions ¢, (y) = 65’9"((’)2”(m+ .
for any m € Z and o € I*. Tt follows that c(o,n(m)) = sign(o)4dir(m + k),
b(o,n(m)) =1and \' = —%(21"C —0)(m + k) for any ¢ € Z, so

uo_ ( )_da su]n(o)mr(2lk Z)

n(m)
and the resulting two-scale eigenmode is

sign(o)im k_ . .
w® (SL’, y> —d% o (2t ﬁ)xeszgn(a)Zzw(n-i-k)y.

For k = 0, for each )\n(m) = (27m)? there are two eigenvectors ¢, (y) = cos(2mmy)
and @y, ;) 11(y) = sin(2wmy) so

- 0 1 /1o Grmy (0) (1
01_2””?(—1 0)’02_2<0 1)’(¢n(m)+1(0) A
It implies that \! = % for any ¢ € Z and

Un(m) (T) = do sin <€7T£> and wp(my+1() = do cos(&rz),
o o
then the two-scale eigenmode is

w(x,y) = dy[sin (Eﬂg) cos(2mmy) + cos(ﬂﬂg) sin(2wmy)] for £, m € 7Z.

2.3.5 Neumann boundary conditions

We consider the spectral problem with Neumann boundary conditions
Pfw® =X p*w® in Q and O,w*=0 on ON.

The process of homogenization and the results are similar to the case of Dirichlet
boundary conditions. The HF-microscopic problem and the internal HF-macroscopic
equation are unchanged while the boundary conditions of the latter are

) kg
S5 g, (@) 9,65, (0) 9T — 0 on 90
oelk m

where the cases k # 0 and k = 0 are not separated so a general notation is adopted for
the sum over m and o. Their derivation follows the same steps, so we only mention
the boundary condition satisfied by the test functions. They are chosen to satisfy
0,0 (x) = 0 on 052 or equivalently,

3 S 0is @ () + v 00, (5) o on 00
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Multiplying by e,
S5 g (@) yqs“( ) +0(z) =0 on 09, (2.47)
oclk m

then using the o—quasi-periodicity of ¢; and passing to the limit

S S0, (@) 9,68, (0) e OHTE — 0 on 90,

o€lk m

2.4 Homogenization based on a first order formula-
tion
In this section, the homogenized model is derived based on a first order formulation.

The calculations are less detailed than in Section 2.3, only the main results and the
proof principles are given.

2.4.1 Reformulation of the spectral problem and the main re-
sult

We start by setting

e (5 ) -

€ 1 €
Aa:( 18o m—am(ﬁ.))w: 1 ( 0 ﬁnﬂ)
—= pP°

= . (Vas.) 0 Varng 0

with the domain of the operator A®,

D (A7) = {(p,0) € L* (@) x L (@) |Vaip € H' (Q) .6 € H} (@) } © LX)

so that 1A° is self-adjoint on L?(2)? as proved in [36]. The spectral equation (Z.7) can
be recasted as a first-order system

A*U® = ipfU° in Q and Us =0 on 012, (2.48)

where U3 is the second component of U*. We observe that [|\/o*w®|;2q) < (V%] (q)

and that ‘ Vaga“”w o) < My can be deduced from the weak formulation (ZI0),
2(Q
therefore U*® is umforrnly bounded,

||UE||i2(Q) < M. (2.49)

We start our analysis from the system expressed in a distributional sense,
/ U - (ip — A%) U dx = 0, (2.50)
Q
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Chapter 2. Homogenization of the spectral problem in one-dimension

for all admissible test functions U = (p, 1) € H' (Q) x HL (Q). We choose o = VA
and p; = )‘ , S0 pf can be decomposed as

)= @ 40 (e). (2.51)

The asymptotic spectral problem (L3) is also restated as a first order system by setting

o 0 \/an Lp B L 0 \/Eny
Ay = < \/Lﬁay (Vi) O<f) ) and nyu, = N ( Jan, 0 ) . (2.52)

and

szgn(n 8 ¢
= ( \/7\/_ ( ‘n|) ) and pu* = sign(n) )\fn‘ foralln € Z*.  (2.53)
N

As proved in [36], Ay is self-adjoint on the domain

3
\/ﬁ

The Bloch wave spectral problem P(k) is equivalent to finding pairs (u¥, e¥) indexed
byn € Z* solution to

D(A) = {«o, 6) € I (V) |Vap € H (V) e 1) <Y>} c (V)

Q(k) : Agel =iplek inY with ef € HE (V). (2.54)

The corresponding weak formulation is
/ el (A —ipy) Udy =0 for all U € D (Ay). (2.55)
%

The relation between the operator A® and the scaled operator A; is obtained by con-
sidering any regular vector ¢ = 1) (x,y) depending on both space scales,

a (0w 2) = ((Far8) ) (=), (2.50)

where the operator B is defined as the result of the formal substitution of x—derivatives
by y—derivatives in Ay, i.e.

B := < \/Lﬁaz()(\/a.) \/aawo(ﬁ) ) . (2.57)

For any n € Z* and k € Y*, M} = {i € Z* | uf = pk} is the set of indices of

eigenvectors related to the same eigenvalue p*. For all k € Y™\ {0}, since uf = u_*
then M* = M_*.

Remark 24 From now on, we shall assume that the weak limit of S{U® in L* (2 X Y)
is not vanishing to avoid eigenmodes related to the boundary spectrum (see Proposition

7.7 in [8]).
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2.4. Homogenization based on a first order formulation

Theorem 25 Fork € Y*, let (15, U*) be solution of (2.48) then > S;U® is bounded
ocIk
in L>(Q xY). For e € Ey, assuming that the renormalized sequence eu® satisfies the

decomposition (Z51) with py = p* an eigenvalue of the Bloch wave spectrum, any weak
limit Gy, of > SeU® in L? (Q x Y') has the form

o€elk

Gilwy)= Y  uj(x)ef, (), (2.58)

ocelk meMg

where (u?,), _ are the solutions of the HF-macroscopic equations (213, [2.14) or (213,

[2.14).

m,o

Therefore, the physical solution U¢ can be approximated by

Ut (x) ~ Z u? (x)ed (£> (2.59)

oelk meMg

Proof.  For a given k € Y*, let U be solution of (Z48) which is bounded in
L*(Q), the property (L) yields the boundness of [[S;U®| ;2q.y)- So there exist U” €
L?(2 x Y)? such that, up the extraction of a subsequence, S:U¢ tends weakly to U
in L?(Q x Y)? and hence, Y. SSU® converges to Gy, (x,y) = Y. U (x,y). Using the

oclk oclk

decomposition (Z60) of U7 in the forthcoming Lemma 26

Grlry)= D up(@)e(y).

oelk meMg

The HF-macroscopic problem solved by the coefficients (ug,)_ , is derived in Section
2.4.20 W

2.4.2 Model derivation
Modal decomposition on the Bloch modes

Lemma 26 Let a sequence (u°,U¢) be solution of (2.48) and satisfies (Z21) with
o = pE for givenn € Z* and k € Y*, we extract a subsequence of €, still denoted by ¢,
such that SSU® converges weakly to U* in L2 (Q x Y)?. If U* € D (A;) then (uk,U")
is solution of the Bloch wave equation (2.57) and U* admits the modal decomposition

Uk (2,y) = Z uk () ef (y) with u® € L* (Q). (2.60)

m m
meMk

Proof.  For each k € Y*, taking VU (z,y) = 0(z)¢p(y) with 8(z) € C°(2) and
d(y) € C=(Y)? k—quasi-periodic in y, considering 9%*¥ as a test functions in (Z50),

and using (Z562.5T)),

/UE-D@{’LC (i%jLwl—%—B)\I!da:—i—O(a):O.
0

Multiplying by e
/U’S-iﬁk(mo—Ak)\If dr+ O (¢) =0,
Q
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Chapter 2. Homogenization of the spectral problem in one-dimension

and passing to the limit thanks to Corollary [6]
1

Y] Jo.r
which is the weak formulation of the Bloch wave equations. If in addition U* € D (4,
integrating by parts yields
1
YT Joxr

providing in turn the strong formulation,

UR - (iptg — Ap) U dady = 0

1 -
(A —ipo) U* - W dady — v/, [U* - nAk\If}z:é dr =0 (2.61)

A UR =ip U in Qx Y. (2.62)
Since the product of a periodic function by a k—quasi-periodic function is k—quasi-

periodic then n4, ¥ is k—quasi-periodic in y. Therefore, U* is k—quasi-periodic in y
and finally is a Bloch eigenvector in y. By projection, it can be decomposed as

1
U ) = 3 b ) e () with o, = o | UF ek dy e 12(9).

meMk

n

Derivation of the HF-macroscopic equation

The HF-macroscopic equation is stated for each k € Y* and each eigenvalue p* of the
Bloch wave spectral problem Q(k). We pose

—ic(k,n,m)
2410
where ¢ (k,n,m) is defined in (2I2)) and notice that

K (k,n,m) = for m € MF (2.63)

k(k,n,m)=—k(=k,m,n), k(k;n,m)=—r(—k,n,m),
k(k,n,m)=—kr(k,m,n), and x (0,n,n) = 0.

For the sake of simplicity, we do the proof for n € Z** only and denote by « (k,n) =
k (k,n,n) and r (n,m) = x(0,n,m). For general n, the proof is the same but ¢” is
replaced by ¢|kn|‘

Case k # 0 The pairs (uf,e¥) and (4%, e,*) are the eigenmodes of the spectral
equations Q(+k) in ([Z54) corresponding to the eigenvalue u, = uf = p-*. We pose
e = RF (Uhe + Uhe) € HY(Q) x Hj(RQ) as a test function in the weak formulation
(Z350), with each U7 (z,y) = ¢7° (z)el(y) where 7° € H'Y(Q) and satisfies the
boundary conditions,

Zw‘”s () @7 <£> =0 on 0f).

€

Notice that this condition is related to the second component of U¢ only. Proceeding
as in Section 233 yields (Z33]). Since (ipy, — A,) ¥¢ = 0 for all o, applying (2511
2.50), then Equation (2.50) yields

> / U® - R (ip, — B) U7 da+0 (¢) = 0. (2.64)
o Q
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2.4. Homogenization based on a first order formulation

But (ip; — B) W is o—quasi-periodic so passing to the limit thanks to Corollary
and Lemma 22 where W7 is limit of W¢,

1 / .
— g U° - (ip; — B)VY9dxdy = 0. 2.65
IYI . Oy ( 1 ) ( )

From Lemma 26] U is decomposed as

U7 (z,y) = uj, (z) e (y) .

After replacement,

S [ Cimb (o) u o4 o) - 0,0%) de =0
o Q

for all v € H'(Q) fulfilling [Z33). Moreover, if uJ € H' () it satisfies the strong
form of the internal equations

K (0,n) Opul —ipb (o,n)u’ =0 in Q for all o € I*, (2.66)
and the boundary conditions

Z K (o,n)up-y? =0 on 0.
Following the same calculations as in Section2.3.3] with the matrices Cy = diag (x (o, n)),
, gk
Cy = diag (b(o,n)) and the vectors u = (u?),_ , ¢ = (¢7),,¢ = <gz$” (0) esign(@)2ime’c
(2.60) is written on the matrix form

o

C10,u = ip;Cyu in

with boundary condition

Ciu (z) 4 (x) =0 on 09 for all ¢ such that @ (z,0) .1 (x) =0 on Of.

Equivalently, Cu (z) is collinear with © (x,0) yielding the boundary conditions

W () @ (0) S 4w () ¢ (0) e 2E = 0 on O (2.67)

n n

after remarking that «(o,n) # 0. Finally, with Z83) and \' = 2y, the HF-
macroscopic problem (213 2.T4)) is recovered.

Case k. = 0 We adopt the same simplifications of notations that for the case of
k = 0 in Section Let e, and e, be the Bloch eigenmodes of Q(0) in (Z54)
regarding the double eigenvalue p, = u, = p,,- In this case M? = {n,m}. Taking
U= Y RO(¥,) € H' (Q) x Hj () as a test function with ¥, (z,y) = ¥, () e,(y)

pEMY
and 1, € H'(Q2). Due to the periodicity of ¢,, the second component of ¥¢ satisfies
the boundary conditions

> 4, ()¢, (0) =0 on 0. (2.68)

peM
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Chapter 2. Homogenization of the spectral problem in one-dimension

Following similar calculations as for the case k # 0, the weak limit U° of S5U® in
L2 xY)?is
U (z,y) = > up(x) ey (y)
peMS

and w, is solution to the weak formulation

Z/_Z:ulb<p7Q)qup+ R(]%Q)uqax’l/}p dr =0
Q

qeM)

for all ¢, € H'(Q) with p € M. If u, € H'(Q) it is a solution to the internal
equations

Z K (p, q) Oy — ity b(p,q)u, =0 in Q for p € M, (2.69)

qeMY
and to the boundary conditions
Tr=x

Z K’(pa Q) Uq'wp =0.

p,qEM} o

Here, with C1 = (& (p,q)),,, C2 = (b (p,4)), o = (up),, = (¥,),, 6= (4),,
C10,u = ip,;Cyu in €,

and Cyu (x) .4 (z) = 0 on 99 for all ¢ such that ¢ (0) .1 (z) = 0 on 9.
But & (p,p)= 0, therefore

U () ¢, (0) + wy, () B,,, (0) = 0 on ON. (2.70)

As for k # 0, these HF-macroscopic equations are equivalent to (215 216).

2.5 Numerical simulations

We report simulations regarding comparisons of physical eigenmodes and their ap-
proximation by two-scale modes for p = 1. In Subsection 2.5.2] for each given high
frequency physical eigenelement, a two-scale eigenelement realizing a good approxi-
mation is identified. This shows that the two-scale model can actually be used as an
approximation of the complete high-frequency spectra. Conversely, Subsection 2.5.3]
addresses the modeling problem i.e. it introduces a way to generate approximations
of high-frequency spectra from the two-scale model only. Finally, in the order
of convergence with respect to ¢ is analyzed. The next section describes the main
simulation parameters.

2.5.1 Simulation methods and conditions

Both, the physical spectral problem and the Bloch wave spectral problem are dis-
cretized by a quadratic finite element method. The number of elements are respec-
tively denoted Nppys and Nyjoen. The implementation of the k—quasi-periodic boundary
condition is achieved by elimination of the last degree of freedom. More precisely, for
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2.5. Numerical simulations

n € {1,...,2Nyoen, + 1} the node indices, ¢,, a degree of freedom of ¢ a Bloch eigenmode
and ¢, the corresponding quadratic Lagrange interpolation function,

2Npioch

¢ (y) = Z ¢n90n + ¢1(p1 + ¢2Nbloch+1§02Nbloch+1.

n=2

Using the relation ¢ (1) = e*™ ¢ (0) and taking ¢, + e*™ g,y . as the first base
function allows to eliminate ¢oy, 1,

2Nbpioch

¢ (y) ~ Z OnPn + 01 (‘Pl + eQZ'WkSoszlocthl) .

n=2

The sets of indices considered in the simulations of high frequency physical modes
and Bloch modes are denoted by J¢ and J*, the former being generally included in
(a/2e, Nppys/2). The Bloch modes are calculated for £ > 0 only, and the other cases
can be deduced by conjugation. For each Bloch eigenmode ()\Z, ngfL), the macroscopic

solutions ()\” K ) are given in Section 3.4 with 6 = 1 and dy = ¢°, (0) for

) mé
any m such that \* = A\* and ¢ € Z. In fact, according to Remark 23 the index ¢
should vary in J* = [%] + {—r,...,7}, for a small integer r, so that only the first
macroscopic eigenmodes be taken into account. In the next discussions, we use the
following notations for the two-scale approximations of the eigenvalues and eigenmodes
exhibiting clearly their parameters ¢, k,n and ¢,

=N A and b (2) = 30 S ug, () (g) for € € J5 ne Jb. (2.71)

oclk m

In the simulations reported in Sections and only one physical problem is
used, namely Q = (0,1), a° (z) = sin 27z /e) + 2, 50 cells (i.e. € = 1/50), and Nppys =
2,000. Other number of cells are used in Section 2.5.4] for the convergence analysis.
Consequently, the coefficient of the Bloch wave spectral problem is a (y) = sin (27y)+2.
The set Y* of positive wave numbers in Y* is discretized by Li;s = {0, ...,62/125} with
step Ax = 1/125 and Ny, = 50. The subset of macroscopic eigenvalues is restricted
by r = 15.

The first ten graphs (k — )\fl)n:17,.,710 of Bloch eigenvalues are described in Figure
1. The graphs are symmetric about the axis k = 0 which confirms that \¥ = \~*
remarked in Notation [l Moreover, all eigenvalues )\’,2 are simple for k& # 0 and double
for k € {0,+3}.

2.5.2 Approximation of physical modes by two-scale modes

We discuss the approximation of a given solution ()\;,w;) of Equation (27) for a
given value of e. From Remark we expect to show nurnerically that there exists a
suitable pair (k,n) such that the equality (A5, w$) = (r Uy ) is exact with (75" Uy k)
defined in (ZZI) and A\ = 0. Moreover, in the perspective of Remark 20, k& varies in
Li3; only and approximations with A £ 0 are expected. Whatever if A1 vanishes
or not, we expect to search approximations for both eigenvalues and eigenvectors

which turns to be an multi-objective optimization problem that might be solved by a

37
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Figure 2.1: First ten eigenvalues of the Bloch wave spectral problem.

dedicated method. However, to reduce the computational cost, we propose an alternate
approach consisting in minimizing the error on eigenvalues in the approximation (29,

2 ik
2N, — Y

eryaiue (k) = min

2.72
neN, ek 2N ' ( )

for each k € Lj;;, and then in finding which one minimizes

(k) Mﬁ_wﬁ“L%n
ETvector -
t g HLOO )

the error on eigenvectors in the approximation (ZI8) where ¢, n; are the optimal
arguments in (2.72). The optimal error on eigenvectors is then

€T vector = TN €T yector (k). (2.73)
keLiss
(a) )
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Figure 2.2: (a) Errors for p = 85 and k € Lj;;. (b) Errors for a selection of k s.t.
el pector (k) < 0.2.

Figure (a) shows the distributions of errors er,que(k) and eryeqor(k) in loga-
rithmic scale for the index p = 85 of physical eigenmode with respect to k varying
in L}J;. The minimal error is reached for k = 0.16, n = 2, £ = 17, \* = 51.1 and
A= 58.9 yielding the errors erpame = 107* and eryector = 4.1073. Figure (b)
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Figure 2.3: (a) Bloch wave solution ¢*. (b) Macroscopic solutions u,, , and u;fz.
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focuses on values of k such that eryecor(k) < 0.2. In Figure 23 (a) the real (dashed
line) and the imaginary (solid line) parts of the Bloch wave ¢ are shown when Figure
2.3 (b) presents the real (solid line) and the imaginary (dashed-dotted line) parts of
ul , and also the real (dotted line) and the imaginary (dashed line) parts of u;@. In

addition, the physical eigenmode wy and the relative error vector between wj, and 1/12"2
are plotted in Figure 2.4 (a) and (b).
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Figure 2.4: (a) Physical eigenmode w;. (b) Relative error between w; and wi]z

After presenting a detailed study of the approximation of a given physical mode,
i.e. for a single physical mode index p, we report approximation results for the list
J§ = {40,...,150} \ {50} of consecutive physical mode indices. The list starts at
p = 40 corresponding to an intermediary mode between the low frequency modes
approximated by the classical homogenized method and the high frequency modes
considered in this chapter. The index p = 50 is excluded from the list since the
corresponding eigenvector is evanescent, and as such corresponds to an element of the
boundary spectrum. The previous optimization has been applied to each p yielding
errors plotted in logarithm scale in Figure[23] (a). The error bounds are eryq,e < 6.1073
and eryector < 8.1072.

Globally, the errors start by growing before to decrease except around p = 100
where they exhibit a peak that we do not explain. Figure (b) reports the corre-
sponding macroscopic eigenvalues A\'**. Some of them are close to pairs (k,n) such
that A\ vanishes as discussed in Remark 324} their relative errors on eigenvalues are
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Figure 2.5: (a) Errors for p varying in J§. (b) Macroscopic eigenvalues.

in the order of 107°. A way to answer the question in Remark B.2.4] is to decrease
the step A, and see if all error decrease. A detailed presentation is made in Table 2.1]
for two indices, namely p = 66 related to an eigenvalue in the beginning of the high
frequency spectrum and p = 102 corresponding to one of the large errors. In both
cases, the error diminishes as the step Ay is reduced from 8e-3 to 3e-3.

Table 2.1: Errors for A, = 8.¢ — 3 and 3e — 3.

)\176 E€Tvalue | €Tvector
-92 | 1.2e-3 | 1.9e-2
21.7 | 9.0e-5 | 5.3e-3
-147 | 4.0e-4 | 5.8e-3
35.9 | 3.0e-5 | 1.4e-3

8.0e-3 | 66 | 2.16e-1
3.0e-3 | 66 | 3.4e-1
8.0e-3 | 102 | 4.0e-2
3.0e-3 | 102 | 1.5e-2

Wl W N N3

Figure (a) is a global view of the errors in logarithm scale when A, = 8.e — 3 for
90 < p < 110. Tt shows that for this k-step a large part of the errors on eigenvalues is
in the range of 1.0e-5 i.e. almost the roundoff error. A measure of the error reduction
is provided in Figure (b) where the two ratios

Ak=3.673 Ak=3.6*3

ervalue and E _ ervalue
Ap=8.e-3 vector ™ " A, =8.e—3

value vector

Evalue -

of error reduction are represented in logarithmic scale.

(a) (0)

w

| |
&) ~
N
o
T
L]
L]

Errors in Logarithm scale
bk
L]
*
.
”*
L]
.
Errors of improvement
- oo
E
M
*

o4
3
T

*
.

3 105 105 110

|
e
o
ol
o
.
o
©w©
o
©
[52]
=
o

Figure 2.6: (a) Error of approximation for Ay = 3.0e — 3. (b) Ratios Eyque and Eyecror
of error reduction.
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2.5. Numerical simulations

2.5.3 The modeling problem

The modeling problem is reciprocal to the previous one. It consists in fixing a period
e as well as the parameters (k,n) of a Bloch mode and to search if there exists ¢ € J*
such that (fyi’fz, 1/12’2) is close from a physical mode or in other words if it is almost a
solution to the physical spectral problem i.e. if

2Py — il = 0(e) in Q. (2.74)

|

Posing for ¢ € J*,

2 pe, | &k ek ek
e°pP wn,é - /yn,f n,l
(8

the modeling problem relies to the minimization problem F=%((y) = min F=*(¢). If
ek
the minimum is small enough, (72’,]2()’ @/)an”lzo) is close from a physical eigenelement and
it is a solution to the modeling problem. A subsequent problem is to identify the
corresponding physical eigenelement. This is done be minimizing the errors er e
and eryecor introduced in the previous section but considered as depending on the
parameter p € J° instead of k. Two illustrative examples are reported in Table 2.2]
one yielding A\'** = 0 and the other A % 0. The solution @/)fllz and the relative error

between wilz and w; are reported in Figures 2.7 (a) and (b).

L)

F(0) =

Sy (2.75)

nlt nl

L2(9)

Table 2.2: Results for the modeling problem.

k n )‘]:L Fr?k (E) )‘176 P ETvalue ETlvector
1.6e-1 | 2 | 5.11el | 8.9e-3 0 84 | 3.4e-5 | 2.1e-5
3.52e-1 | 2 | 3.14el | 4.5e-2 | -8.55 | 65 | 1.5e-2 | 4.3e-3

(b)

0.01
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2 02 04 06 08 1 0015 02 04 06 08 1
X X
. . . e,k . ek
Figure 2.7: (a) Two-scale eigenmode ., (b) Relative error vector between ¢, and
w€
o

Additional results for & = 3.52¢ — 1 with n = {1, ..., 15} are reported in Figures
(a) and (b) showing A" and vr , respectively.
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Figure 2.8: (a) A" with respect to n. (b) 7%, with respect to n.

nt

2.5.4 Order of convergence

For a given pair k and n € J*, we investigate the order of convergence of the errors
eTvatue AN €T4eetor When the number of cells increases. To follow the convergence result,
the sequence of periods ¢ is in fact a subsequence ¢;, satisfying

1 h+l
= eN
Eh k

with [ € [0,1) and for a sequence of h € N*. Table 23] summarizes the results for
k=0.3,1=0.6and h e {3,9,15,21}.

Table 2.3: Errors for a decreasing subsequence &y,.

3 | 83e-2 | 4.3e-2 | 6.3e-3 | 17
9 | 3.1e-2 | 1.6e-2 | 2.4e-3 | 45
15 | 1.9e-2 | 1.0e-2 | 1.5e-3 | 73
21 | 1.4e-2 | 7.0e-3 | 1.0e-3 | 101

To evaluate the decay rate of the errors, we pose er
, so the decay rates satisfy

Guector

Cyector (5h)

log (er:)bjlue/er

K¢

value

Qualue =

log (Eh/gh’)

Using successive results for h and A/, yields

and Quector =

h,t

log (

h,t
ervector

Jer

= Qval h.,t
value — Cvalue <5h) valve and er

h! e
vector

10g (5h/5h’)

vector

Goatue = 10.988, 0.995, 0.985} ~ 1 and quector = {0.985, 0.993, 0.994} ~ 1

with coefficients

Coatue = {0.504, 0.518, 0.497} =~ 0.5 and Cyector = {0.0734, 0.0755, 0.0757} ~ 0.07.
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Abstract In this chapter, we present a method for periodic homogenization of the
one-dimensional wave equation in a bounded domain. It allows modelling both the
low and high frequency waves. The high frequency model part includes oscillations
occurring at the microscopic scale which amplitudes are governed by a well posed
hyperbolic system of macroscopic equation. This model was already presented in [36]
but for entire n-dimensional spaces, so the formulation of the boundary conditions

were left as an open problem.
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Chapter 3. Homogenization of the one-dimensional wave equation

3.1 Introduction
We establish a homogenized model for the wave equation,

pe0put — 0, (a0, uf) = f°, (3.1)
u® (t =0,2) = uj and Quu° (t = 0,z) = v§, '
posed in a finite time interval I/ C R* and in an one-dimensional open bounded domain
2 C R with Dirichlet boundary conditions. An asymptotic analysis of this problem
is carried out where € > 0 is a parameter tending to zero and the time-independent
coefficients are e—periodic, namely a° = a (%) and p° = p (£) where a(y) and p(y)
are Y —periodic with respect to a lattice of reference cell Y C R.

In conclusion, the physical solution u® is approximated by a sum of a low fre-
quency term u", the usual corrector in elliptic problems, using @ the solution of the
cell problem, and a sum of Bloch waves being the corrector for the high frequency
part,

uf (t,x) = u’ (L, ) +50< )8 u (t,x +€Z Z S /\\"t/agb‘n‘ <§) .

k nezZ*

The Bloch wave amplitudes (u*),cz- are solution of a first order system of differential
equations constituting the high frequency macroscopic problem. In particular, for
ke Y™\ {0, —%} and for each n, the HF-macroscopic model has the form

b(k,n,n)ouf +c(k,n,n)out = EF (3.2)

n

b(—k,n,n) 0l +c(—k,n,n)du,® = F %inIxQ,
with some initial conditions, and boundary conditions on the form
kg
uy (t,x) ¢l (0) XS Lk (8 x) i (0) e ~2mE _ 0 on [ x 90 (3.3)

We observe that the two partial differential equations in ([B.2) are not coupled, the
coupling being due to the boundary conditions only. For k£ € {O, —%}, in the case

of double eigenvalue )\fn/| = )\fn‘, the model is also a pair of equations indexed by
q € {n,n'},
> bk, p.q) Ol +c(k,p,q) dpul = FF in T x Q, (3.4)
pE{n,n'}

with some initial conditions, and for £ = 0 with the boundary conditions

up (£, ) ¢y (0) + upy (£, ) @), (0) = 0 on 1 x 9, (3.5)
and otherwise for k = —%,
(c (kyn,m) @ (0) — ¢ (k,n',m) 6f, (0 )) n(t ) (3.6)
+ (c(k,n,n') ¢y (0) = ¢ (k,n',n') ¢, (0) ub, (t,2) = 0 on I x OQ.

The main contribution of this work is the boundary conditions of the HF-macroscopic
model. However, the HF-macroscopic model is also new since it differs from this in [36]
derived from a first order system. Moreover, the proof has been simplified. We quote
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3.2. Statement of the results for the wave equation

that all models and proofs have been written in one-dimension but they extend trivially
to the general case, except what refers to the HF-macroscopic boundary conditions
which remains an open question in higher dimension.

The same result is also established for the Neumann boundary conditions and also
for a generalization of the wave equation taking into account a zero order term as well as
first order time and space derivatives. Moreover, the homogenization is also presented
under the first order formulation as in [35] and [36], then boundary conditions for the
one-dimensional model of these works have been announced.

This chapter is organized as follows. Section is devoted to the statement of the
model and the main results. Section 3.3 includes the model derivation. These results
are then established for Neumann boundary conditions and for a generalization of the
wave equation in Section B4l The homogenization is presented under the first order
formulation in Section B4l Finally, numerical examples are provided for the first order
formulation in the last section.

3.2 Statement of the results for the wave equation

We consider I = (0,7) C R* a finite time interval and Q = (0,a) C R a space
interval, whose boundary is denoted by 0f). As usual in homogenization papers, € > 0
denotes a small parameter intended to go to zero. Two functions (a, p°) are assumed
to obey a prescribed profile,

a=a (E) and p° :=p (£> ) (3.7)

€ €

where p € L™ (R) and a € W2 (R) are both Y —periodic with respect to the reference
cell Y = (0,1). Moreover, they are required to satisfy the standard uniform positivity
and ellipticity conditions,

0<p'<p<pland0<a’ <a<d, (3.8)

for some given strictly positive numbers p°, p', a® and a'. In addition, a € W* (R)
is applied for the model based on the first order formulation in Section B.3 We
consider u°(t, x) solution to the weak form of the wave equation with the source term
[ € L*(I x Q), initial conditions u§ € H' (Q2), v§ € L* () and homogeneous Dirichlet
boundary conditions,

pe0uf — Oy (a0, u®) = f€in I x €,

ut (t=0,2) =uj and Jwu® (t = 0,2) = v§ in €, (3.9)

u® =0 on I x JN.

Assuming that the data are bounded,

l06ll 22 ) + 1ol ) + 15 r2rx) < cos (3.10)
the uniform bound
”atuEHL?(IxQ) ’ ||8xu€||L2(I><Q) <a (3.11)
holds, see e.g. Theorem 3 in [36].

Remark 27 The optimal reqularity of the coefficient and of the solution is not in the
focus on this work, so the regularity imposed to the coefficient a is not optimal. We
refer to the recent work [{0] which derives part of our results with a € L*(Y") only,
by being more careful on the manner to conduct the derivations. We do not see any
obstacle to get our results with the same reqularity.
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Chapter 3. Homogenization of the one-dimensional wave equation

3.2.1 Assumptions

In the statement of the results, the assumptions on the data are expressed using the
following definitions of two-scale transform when the first order approximation of the
solution uses the operator B% defined in (L20). The reason is that the latter yields
approximations satisfying the periodicity or quasi-periodicity conditions, without fur-
ther transformation. According to definition ((L20) of the operator B~ it allows for
the following definition of a generalization of the two-scale convergence of [89], [90]
and [I] of a sequence (uf). defined in I x Q to a limit u%* defined in I x A x Q2 x Y by

/ u (t,x) - (iBﬁgo) (t,z) dtdx (3.12)
IxQ
= / ulk (t, 7,2, y) - o (t,7,2,y) dtdrdedy + O ()

IXAXQXY

for any ¢ € CY(I x A x Q x Y) being k-quasi-periodic in y and periodic in 7. We
shall say that u%* is a (n, k)-mode two-scale approximation of u®, since it relies to the
Bloch mode gbﬁ, and denote it by

us =TSk 0k 1 O(e). (3.13)

Slmllarly we define the first order (n, k)-mode wave-two-scale approximation u* (¢, 7, z, y)+
ub® (t,7,2,y) of u by

/ u (t,z) - (Bhy) (t,2) dide (3.14)

IxQ

= / Ok (t,7,2,y) +eup® (t,7,2,y)) - o (t,7,2,y) dtdrdady + =0 (g)
IXAXQXY

for any o € C?(A x Y;C? (I x Q)N C%(I x Q)) being periodic in 7 that we denote
B.14)

uf WISk 0k 4 gLk 4 o0 (2, (3.15)

We also require the so-called wave-two-scale approximation of ¢ towards u® by

/ )oY > (BEITE) (¢, x) dide (3.16)

keLy neMk

= / u (t,7,2,y) - (t,7,2,y) didrdzdy + O ()
IXAXQXYE

for any ¢ € C1(I x A x Q x Y) being periodic in 7 and denote it by
U = _WTS 04+()()

Finally, the first order wave-two-scale approximation of u® by u° (¢, 7, z, y)+eu' (t, 7,2, y)
satisfies

/ )Y (BiTEY) (@) dide (3.17)
IxQ

k€L neM*k

S / (WO (t,7,2,y) +eu (t,7,3,y)) - @ (t,7,2,y) didrdedy + <O (¢)
IXAXQXY
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3.2. Statement of the results for the wave equation

for any ¢ € C* (A x Y;C*(I x Q)N C? (I x Q)) being periodic in 7, and is denoted
by
u® =15 40 4 eul +£0(e).

Remark 28 Instead an assumption like (313), we could carry on the proof with the
usual ansatz

t t t
ut (t,x) = u (t, -, E) + eul (t, -, T, E) + e%u? (t, -, T, E) +£20(s)  (3.18)
e e e e e e

or to use a usual weak convergence approach. In this work, we adopt an intermediary
method based on a solution expansion, to simplify the derivation, but expressed as
an approrimation in a weak sense keeping the essential idea lying in the convergence
proof. Another reason for this choice is that we expect to use the model derivation in
the context of automatic model derivation as in [25] which requires only computational
steps and forbid abstract reasoning.

We already have assumed that f¢, u§ and v are bounded in L? (I x Q), H' ()
and L? () respectively, so according to the two-scale convergence theory in [77], [80]
or [46] and the boundness property of Sg, there exist f0 € L2 (I x Q x V), h0 € L?(Q)
and ¢° € L?*(2 xY) such that, up to a subsequence ¢, the data converge weakly
according to

fO=1limS;f* € L (IxQxY), ho = lim S§up € L* (92), (3.19)
E—r E—r
g’ = lin%ngg eL*(OxY),
e—

~ ~ 1
and the averages f0 = / fldy € L (I x Q), ¢g° = ;/ ¢*-pdyc L*(Q). (3.20)
Y PJy

These assumptions are the same as in [60], [33]. Moreover, in order to describe the
HF-homogenized model, we assume that the additional weak convergences hold

sign (
= lim / J 8IS,iu8~ (ady 8t + 0y (adl,))) + Sivi-pdlydy € L* (), (3.21)

e—0

and Fk = 112% Teen S fe - esommnt ok drdy € L? (I x ),
€ AXY

for any n € Z*. Finally, for each k € Y* and n € M*, the sequence v admits a first
order (n, k)-mode two-scale approximation (315]).

3.2.2 The model

In order to describe the LF-homogenized model, let us introduce the usual homogenized
coefficients,

a= / a(l4+0,0)(1+0,0)dy and p = / pdy (3.22)
Y Y
where 6 is a solution of the cell problem

dy(a(0,0+1))=0inY and 0 is Y — periodic. (3.23)
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Chapter 3. Homogenization of the one-dimensional wave equation

Thus, the LF-homogenized equation states as in [36], [33],

PO’ — 8, (@0,u°) = fOin I x Q, (3.24)
uo(t:O):f/L\O and 8tu0(t:0):g/\0in Q,
u’ =0 on I x 9.

For p,q € Z* such that )\f‘;| = )\f“q‘, we introduce the coefficients

c(k.p.q) / Dot - @By blg) — a0,y - Py (3.25)

and b (k,p,q) = sign (p \/ )‘\p / p¢\p\ ¢\Q\dy

and observe that,

C<k7p7 q) = C(_k7p7 q)) C<k7Q7p) = —C <k7p7 Q)J C(k7p7 q) = —C (_k7q7p) .

In particular, ¢(0,p,p) = 0. Before to state the main result, the HF-macroscopic
model is stated in all possible cases of k and of multiplicity of the Bloch eigenvalues.

A. k¢ {0,—1) and
c(k,n,n) # 0 and gblkm (0) #0 for all n € Z*. (3.26)

The solutions of the HF-macroscopic model are the family of pairs (u* u_*),cz- solu-
tion to the system of equations where o € {—k, k},

b(o,n,n) 0w +c(o,n,n)dul =F in I xQ (3.27)
with the initial condition
b(o,n,n)uy (t=0) =gy in , (3.28)

and the boundary condition,
kg ik
uf (t, ) ¢fn| (0) e2m's 4+ u* (t, x) gbﬁﬁ (0) e 27" = 0 on I x 090 (3.29)

We observe that the couple of partial differential equations ([3.27) are not coupled, the
coupling being due to the boundary conditions only.
If ¢(k,n,n) = 0 then whatever the value of gbﬁ” (0), the HF-macroscopic equation

B210) is replaced by
b(o,n,n)ow) =F7in I xQ for o € {—k, k} (3.30)

which does not require any boundary condition.
If gb‘kn‘ (0) = 0 then whatever the value of ¢ (k,n,n), the k-quasi-periodicity implies
that gblkm (1) = 0 which says that gb‘kn‘ is periodic. This case is covered by the case k = 0
and can be ignored when k # 0.

B. k € {0,—1}, each eigenvalue A is double, and (320)), (B31)

¢(0,n,n') # 0 and ¢f, (0) # 0 or ¢f,, (0) # 0 (3.31)
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3.2. Statement of the results for the wave equation

where n' is the index of the second eigenvalue )\fn,| = )‘fnl' Each pair of the family
(uf, uF,),ez+ is solution to the system of first order boundary value problems where
q € {n,n'},
Z b(k,p,q) &gu’; +c(k,p,q) 6Iu’; = Fqk in I x Q, (3.32)
pe{n,n'}

with initial condition
> b(k,p,q)ul(t=0)=glinQ. (3.33)
pE{n,n’}

The boundary condition is for k = 0,

— > u(t,x) ¢, (0) =0on I x Q. (3.34)
pE{n,n'}
and for k = —1,
(C (kv n, n) (b\kn’\ (0) —C (kv n/v n) ¢|kn\ <O>) ui(t, ZL’) (335)

+ (¢ (k,n,n') ngfcn,‘ (0) — ¢ (k,n',n") gb‘kn‘ (0)) uk, (t,2) =0 on I x 9.

For k = 0, if ¢(0,n,n") = 0, whatever the values of ¢|On| (0) and ¢?n/| (0), then the
HF-macroscopic model ([B.32)) is replaced by

Z b(k,p,q) Oy = F) in I xQ for g € {n,n'} (3.36)

pe{n,n’}

and the boundary condition (834]) does not apply.

Still for k£ = 0, if qb?n‘(O) = gb?n,‘(()) = 0, whatever the values of ¢ (0, n,n’), the boundary
condition (334 does not apply.

Finally, for k € {O, —%} but if the eigenvalue )‘\kn| is simple, then the condition (B.31))
does not apply and for £ = 0 the HF-macroscopic equation (3.32)) is replaced by

b(0,n,n)0ul = F2in I x Q with b(0,n,n)u) (t =0) = ¢2 in Q (3.37)
without boundary condition, when for k = —1,
b(k,n,n) Ot +c(k,n,n)duf = FFin I x Q, (3.38)

with b (k,n,n)uf (t =0) = ¢~ in Q,

and without boundary condition if ¢ (k,n,n) = 0 whatever the values of qﬁfn‘ (0) or
uf =0 on I x 00 if gblkm (0) = 0 whatever the values of ¢ (k,n,n) .

3.2.3 Approximation result

Theorem 29 For any fired K € N* and any bounded data as in (ZI0), let u® be
solution of the weak formulation of the wave equation (3.9) satisfying the uniform
bound (3I1) and the assumption ([FI3), then there exists u® in H' (I x Q) and a
family (u})ers nez- in L* (I x Q) such that

ut (t,7,2,y) =" 00 (t, ) + €0 (y) 0,u° (t, ) (3.39)
ve Y ()R )+ 0(),
keLj, neZr
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Chapter 3. Homogenization of the one-dimensional wave equation

Moreover, if (3.19) satisfies then u° is the solution of the weak formulation of the
LF-homogenized equation ([3-24).

Finally, if € € Ey/xc and if for any k € Ly, (321) is fulfilled and uf € H* (I x Q)
then the latter is the solution of the HF-macroscopic model (327)-(3.30), (333)-
(2.38).

As a consequence, the two-scale structure of the solution u¢ including the correctors
is

uf (t,x) =’ (t,z) + <0 <£> Oy’ (t, ) + € Z u (t,z) et Afn‘t/aqﬁfﬁn‘ (x) .
€

IS
keLj neZ*

(3.40)

Remark 30 To improve the asymptotic expansion (3-40) of u® near the boundary of
Q, we usually introduce a boundary layer term to compensate the lack of zero boundary

condition of the LF-term 6 (%) O,ul (t,x), see e.g. [I7], [16], [15], [107], [82], [, [62]

for elliptic problems, but the same equation holds for the wave equation. Furthermore,
the boundary conditions (3.29) and (3.54) of the HF-model can be built independently.
They can be derived directly by retaining only the eigenmodes corresponding to a same
eigenvalue in the HF-decomposition of (3.40), by using the condition u® = 0 at 02 and
by simplifying the time-dependent term:

S gt o, (g) - Ofork;gé{o,—%},

oe{k,—k}

Sk (ta) o (g) - Ofork:{—%,O}.

p€{n,n’}
Using the equalities

o Z ko k k
Zimo £ he+1g l

. . ky . -
_ Qbrm‘ (0) eszgn(a)?um: s ¢T7m‘ (0) eszgn(a)?um‘a

Pl (f) = @ (0) €

for x € 09, the convergence I¥ — I* as in Assumption[T) for k # 0, and the periodicity
of ¢fm| for k =0 yields the HF-macroscopic boundary condition of the model.

Remark 31 The solution (Z39) is A—periodic in T but the physical solution (3.40)
is ea -periodic which is due to the choice of the time-scaling in B~ .

Remark 32 Assumptions (312) and (3.14) can be replaced by approzimations
(7550 ) (17, ,9) = Wl (87, ,9) + O 2)

and
(Tmﬁ&iua) (t,m,2,y) = uy® (7, 2,y) + €u* (87,2, y) +20 (¢)

in L* (I x A x Q xY) weakly as proved in Lemma [33.
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3.2. Statement of the results for the wave equation

3.2.4 Analytic solutions for the homogeneous equation (f = 0)

For k € Y*, n € Z* and p = 1, we solve the HF-macroscopic equation with non degen-
erate boundary conditions. We solve the HF-macroscopic equations by distinguishing
two cases k ¢ {O, —%} and £ = 0. Here we solve the HF-macroscopic equation under
the matrix form (B.II6) as in proof of Lemma [B6 in Subsection B3Il For the present,
we consider n > 0, then another case is similar.

Case k ¢ {0,—1}

For each o € I*, we observe that
clonn) = [ 6700, — a7 dy
Y
~ [ a0, - a0, dy
Y

:QM(/ﬁ@@@)
Y

and introduce the matrices C' = diag (c(o,n,n)),, B = diag (b(o,n,n)),, hence, the
operator C0, (.) with domain

D:{wEL2(Q)2 such that w-¢ = 0 at z € 9Q}

is self-adjoint on L2 (Q)*. Thus the solution U of BII6) can be decomposed by

Ut,z) =Y n(t)Vi(z)

leN*
where ()\ll, Vl) are solution of the eigenvalue problem
CO,V, + A\ BV; =0 in ©, (3.41)
and r; are solution of the equation
O+ N1 =0in 1. (3.42)
1

We pose V| = ( 512 ) and from the assumption ¢ (k,n,n) # 0, then the equation
]

B41) is equivalent to

{ vt + Nb(k,n,n) /c(k,n,n)v} =0

0pv} + Allb (—k,n,n) Jc(—k,n,n)v} = 0. (3.43)

The exact solutions of the equations (B.42)) and (3.43) are,
ri(t) =r (0)e N,
v} (z) = v} (0) e~ bknm)/eknm)z onq v? (z) = v} (0) e~ b(knm)/e(—knn)z
The boundary condition (3.29) is equivalent to,
vt (0) ¢y (0) + 27 (0) 61 (0) =0
and ,Ull (0) e—Allocb(k,n,n)/c(k,n,n)—l—%ﬂlk¢|k (O) + vlz (O) e—Allab(—k,n,n)/c(—km,n)—2i7rlk¢|;Ll‘c (0) —0.

n|
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Chapter 3. Homogenization of the one-dimensional wave equation

Since b(k,n,n) = b(—k,n,n), c(k,n,n) = —c(—k,n,n) and from the first boundary
condition, —v/ (0) ¢f;, (0) = v (0) qb‘;’f (0), so

=Ml ab(k,n,n)/c(kn,n)+2inlk _ e,\}ab(k,n,n)/a(k,n,n)amk —2\} ab(k,n,n)/c(k,n,n)+4inlk 1.

(& or e

Therefore, the eigenvalues of (B.41]) are

c(k,n,n) , .
A= Y TR eonn) (227le — ’Llﬂ') for | € Z. (3.44)
Furthermore, —v; (0) ¢t (0) = v? (0) ¢ F (0) then HO) _ 9O Thus
» =V (0) @y (O) = 07 (0) oy 0 T 9,0 ’
(0
1 | 2 2
v (0) = — v (0) for any v; (0) € C.
Ol (0)
Using the orthogonality of the eigenvectors V;, the initial condition is equivalent to,
1 _
7‘1(0)/91)11-1)11 + o7 - vidr = m/ﬂgs-v}+gnk-vfdx.
Finally,
1 g* vl + g kv de 1 gF ol + g% 02 do
7 (0) = fQ 1 l1 2 ; or 1, (0) = fQ : 2 : ’
b(k,n,n) [,u) v} +v}-vide b(k,n,n) ”V1HL2(9)
Case k=0

In this case, \> = A2, denote the double eigenvalue and b(0,n,m) = sign (n) 2iy/\>
if n = m and = 0 otherwise. By posing C' = (¢ (0, p, q))p,q and B = (b(0,p,q)),,, we

pq’

know that iCd, (.) with domain D is self-adjoint on L2 (Q)*. Thus, the solution U of
(BI18) can be decomposed by

Ut,z) =Y n(t)Vi(z)

leN~
where ()\11, Vl) are solution of the eigenvalue problem
iCO,V, + M\iBV; = 0 in €, (3.45)
and r; are solution of the equation
Oy +Nr=0in 1. (3.46)
1
We pose V; = ( 212 ) and remark that b (0,n,n) = b(0,m,m), c(0,n,m) = —c(0,m,n),

i
the equation (B4I]) is equivalent to

c(0,n,m) 0,07 + A\b(0,n,n) v} =0and — c(0,n,m)d,v} + \b(0,n,n)v? =0.

c(0,n,m)0,v7 () .
NbOnm) the second equation becomes,

2
82:2:1)12 — ()\llb (O,n,n)) 'Ulz-

c(0,n,m)

From the first equation v} = —
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3.2. Statement of the results for the wave equation

Thus, the exact solutions are,

)\1b )\1b
v (@) = di cos <Mx) + dy sin (M;p)

c(0,n,m) c(0,n,m)

for all dy, dy are complex numbers. Therefore,

1 1 1

c(0,n,m) c(0,n,m) c(0,n,m)
Applying the boundary condition (329,

1
MbOmm)ds 0y 4 g 50 (0)

c(0,n,m)
Alb Ab b
and M —d, sin Ma + ds cos Ma ¢n (0)
c(0,n,m) c(0,n,m) c(0,n,m)
A (0,n,n) A6 (0,m,n)
d M S Rt ) dosin [ 222207 0 = 0.
+ 1005( (0,1, m) a) + QSIH( c(0,7,m) 04) O (0) =0

According to the first condition, the second condition remains

[ Ab(0,n,n) —d14° (0) A\jb(0,m, 1) B
o < c(0,n,m) a) ( c(0,n,m) + dod, (O)) =0

Hence,

c(0,n,m) (m+ ) for 1 € Z

1 1
sin (Ma) =0or Ma = m+lm or \ =

c(0,n,m) c(0,m,m) ab(0,n,n)
and
I7) ¢ (0)d
dlz—(ﬁ—i_ Wg(b"(o) 2foranyd2€(C,ZEZ.
agy, (0)

Moreover, the exact solution of (3.40) is,

1

r (t) =1(0) e Nt

Using the orthogonality of the eigenvector V;, the initial condition is equivalent to,

1
0 Ul 402 02dy — /0_1 0 . 2 do.
71 ( )/QUI v+ vpax 7b(0,n,n) an U+ Gy, Uy AT
Finally,
. 1 Jo 99 v} + g0 - v da . 1 Jo 9% v} + g0 - vida
] (0): 1 1 2 2 or T <O>: 2 .
b(0,n,n) [v} v} +of-vide b(0,n,n) IVillZ2 0

23



Chapter 3. Homogenization of the one-dimensional wave equation

3.3 Model derivation

According to Remark B1] for each (k,n), a two-scale transform in time is defined from
the time cells

D:={6. = eafl +eafN |1 € Zeall +eakA C I}

together with a scaling of the time variable ¢ — m% This yields a microscopic time
variable 7 always belonging to A. This plays an important role in the derivation of

forthcoming Lemma [35] and justifies the use of the operator T instead of T¢ with

. . k
the consistent convention 7°%» := 1 when of = co.

The decomposition of the time-space-two-scale function TmﬁS,iuE is provided in
the next lemma, which justify Remak

Lemma 33 For any k € Y*, n € M*, for a sequence u® uniformly bounded in L*(I x

0) satisfying (313) then
(14 50 (., = 85 1)+ 00 (3.7)

in L? (I x A x Q xY) weakly. Moreover, if a sequence u® uniformly bounded in L*(I X

Q) satisfies (3.13) then
(1505520 ) 1. 70) = 8 (o) 4 e ) 420 () (549

in L? (I x A x Q xY) weakly with the relation

1 1
W (6 i (= 3 ) Qi () + 20 (7= 3 ) 0t (6 ut¥ 1.7

(3.49)
provided that u®F is sufficiently regular.

Proof. |[Proof of Lemma B3] For any k € Y*, n € M*, and a sequence u® uniformly
bounded in L*(IxQ), let o € C* (I x A x Q x Y') a periodic function in 7 and k-quasi-
periodic function in y, according to (LI3) and (LI8)) the definitions of the operators
T=on* and S&*,

/1 - YTmflS,iu6 - pdtdrdxdy = / u€~T€°‘ﬁ*S,§*g0dtdx.
XAXELIX

IxQ)

Using the relation (I2I) between BF and Te* S,
:/ u® - BEpdtdr + O (e).
IxQ2
From BI3), u® ="SWmk 40k 1 O(e),
= / ul* - pdtdrdrdy + O (¢) .
IXAXQXY

Therefore, the decomposition ([B41) follows.
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3.3. Model derivation

Moreover, for ¢ € C* (A xY;C*(I x Q)N C? (I x Q)) a periodic function in 7
and k—quasi-periodic function in y, according to (L22)) the first order approximation
between B and T=%* S| we get

/ u® - B pdtdr (3.50)
I8

1 1
= / (e Tmﬁ*S,i* (gp + eak (7’ — —) O+ ¢ (y — —) @cp) dtdx
IxQ 2 2
1 1
= / T‘fo‘%’,’iu6 : (ap + eat (7’ - —) Owp +¢ (y — —) &Ccp) dtdrdzxdy + €O (¢) .
IXAXQXY 2 2
From (347), we can decompose T Suf as
TEOC,'I,CL CuE (t _ 0,k —1.k
) (67 y) = wy (6T, y) + euy” (G 7,2, y) + 20 (€)

in L? (I x A x Q x Y) weakly. Furthermore, from @I5), u® =75W0k 30k 1 oLk 1
e0(e), thus (B50) yields

/ (up® + euy®) - pdtdrdzdy
IXAXQXY

1 1
= / (up® + euy*) - ((p +eak (T — —) Oip + € (y — —) 6Ig0) dtdrdzdy + 0 (g).
IXAXQXY 2 2

Assuming that u2* € H'(I x ), taking the integration by parts and applying the
conditions of ¢ on dI and 02,

/ (un® + eup®) - pdtdrdzdy
IXAXQXY

1 1
= / (ugk + eu* — ek (7’ - —) oud* — ¢ (y - —) &Eu%k) ~dtdrdzdy + €0 (¢) .
IXAXQXY 2 2

Or equivalently,

1 1
/ (eﬂik —eak (7’ — —) ol — ¢ (y — —) Dpult — eu}@k) «pdtdrdzdy = €0 (¢).
IXAXQXY 2 2

Finally, the decomposition ([B48]) and the relation (349) follow. |
For any k € Y* and for each n € MF*, let u® € L*(I x Q) satisfying the uni-

form bound (II), then the time-space-two-scale functions T5n Scu® are bounded in
L?(I x A x Q xY). According to (L) and (LI7),

1 1
T SE0,u° = =0, (Tmﬁ S;uf) and T Sz0u° = —-0, (Tmﬁsgue)
€ eak

where HT‘”‘I@ Spoyu° are bounded thanks to

: and HT’”‘I@ S0

L2(IxAXQxY L2(IxAXQXY)
(BI1)) and the boundness of the two-scale operators S§ and T=on. Hence,

and ‘

(3.51)

0, (T*% S5

k
— HT“‘” SED,u°

L2(IxAXQXY) L2(IXAXQXY)

k
= ol || T SO

2, (Tmﬁsgus)

L2(IxAXQXY) L2(IxAXQXY)
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Chapter 3. Homogenization of the one-dimensional wave equation

tend to 0 when ¢ goes to 0. Thus, u%* is independent on (7,y), u%* = u%* (¢, z).
Therefore, the decomposition (348]) reads,

(T8 (0 = w0 (4.0) + e (o, 20) +0() (352)

in the L? (I x A x Q x Y)) weak sense. In particular, for £ = 0 and for any n € N, we
know that u2? is independent on n, see e.g. [46]. Then, there exists u° (¢, z) such that

lim 7507 Seuf = u® in L2 (I x A x Q x Y) weakly (3.53)

e—0

for all n € M°.

Finally, for k = 0 and n = 0, 7°% = 1 so the first order (0, 0)-mode wave-two-scale
approximation of u° is independent on 7. Thus, u(l]’o (t,x,y) = u(l]’o (t,7,2,y) and (3.14)
is rewritten by

/1 Qu8 (t,z) - (R%) (t,z) dtdx (3.54)

[ ) bl () () dedndy 20 )
IxQxXY

for any p € C? (I x Y;C?* () N C?(Q)).

In order to prove the main result, we introduce some preliminary homogenized
results including their proofs in Section B3]. Then, Theorem 29]is proved in Section
5,0, 2

3.3.1 Preliminary homogenization results and their proofs

Before to state the preliminary homogenized results, for £ € Y* and n € N*, we pose

1
M}, = {#£n,£n'} such that A}, = A} for k € {0, —5} (3.55)
and ]\4,’;jE = {£n} otherwise,

)\k
MF = {meZ such thaty| 2 e N* § (3.56)
n,int Ak

In order to apply the assumptions [BI3)), (B13) of (n, k)-mode two-scale approximation
of the wave solution u°, the proofs are always restarted with the very weak form of
the wave equation (3.9).

The next lemma states the LF-part of the model from the (n, k)-modal two-scale
approximations. Doing so, we recover the model of [33]. This was already done in [36]
but in a different form since the calculation are done on a first order formulation of
the wave equation.

Lemma 34 Fork € Y*, n € M* and any bounded data as in (Z10), let u® be solution
of the weak formulation of the wave equation (329) satisfying the uniform bound (311)
and the assumption (3.17). Then,

up® = X (k) u’, (3.57)
and u° is the unique solution of the LF-homogenized model [3.23) and
ug” (t,,y) = Opu’ (t,2) 0 (y) . (3.58)
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3.3. Model derivation

Proof. [Proof of Lemma [B4] The proof is carried out in three steps. First, we prove
that u®* = 0if k # 0. Second, the two-scale model involving u° and u;" is established.
Then, the model (3:24) is derived thanks to (358]).

i) For any k € Y* and for each n € M*, we restart with the weak formulation of
the wave equation ([B3) by choosing w decomposed as

w<t7 T7 x? y) = wo <t7 :I;) _'_gwl (t7 T? x7 y) Y (3'59)

with wo € C® (I x Q)N L* (I; Hy (Q)) and wy € C* (I x Ax QxY) (3.60)
NL* (I x Ax Q;H (Y))NL? ([ x A Hy (L2 (Y))) N LA(L? (I; Hy (M) ;2 x Y)
such that wy(t =T)=w, (t =T) =0 and Qwy (t =T) = Qyw, (t =T) = 0.

Choosing w® = BFw as a test function,
w' e H*(IxQ)NL*(I;Hy (), w (t=T)=0and du” (t=T)=0. (3.61)

Applying two integrations by parts and the boundary conditions satisfied by u® and
by BFw, it remains,

/ u (Q° (Bhw) + P (Bhw)) — f°- Brwdtdx (3.62)
IxQ
+/ ugp=0; (BEw) (t =0) — v - p*BEw (t = 0) da = 0.
0
According to (IL23)),
2
/ us - Bk (Z ((mﬁ)‘l Q'w + 5_lle>> — f-BFwdtdx (3.63)
IxQ =0
1
+/ ug-BEp (&w + J@w) (t=0) — v - BFpw (t =0) dov = 0.
Q n
Moreover, from (L4), (3.59), 0,wo = dywo = 0 and

! ; 8TTw1> (3.64)

S CH

- (896 (a0ywo) + 0y (adywy) + gﬁy (a0ywo) + 0y (adywy) + gﬁy (aaywl)) ,

2
Z ((eozﬁ) - Qw + 671le> (8ttw0+ Orwy +
1=0

so, Equation (B.63)) reads,

2
/ B [ttt O+~ Orrn) 0 (aie) — 0 (a0yr)  (365)
IxQ) n

L
e (af)
—éay (a0ywp) — 0y (adyw) — éﬁy (adyw:)] — f5 - BFwg |dtdx

1
+/ (ué-’BZ (,0 (@wo + J&wl)) — g - BF (pwo)) (t=0,7=0) dedy = 0.
Q n
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Chapter 3. Homogenization of the one-dimensional wave equation

Multiplying by e, then using ([B.I12]) and passing to the limit,

1
/ ulk. (p—zﬁﬁwl — 0y (a0, wo) — 0, (aﬁywl)) dtdrdxzdy =0.  (3.66)
IXAXQXY (Oék)

n

; 0,k
Since u,,

is independent on (7,y), w; is periodic in 7 and a is periodic in y, so

Y

1
/Aug’k'p(ak)z Or;widr = 0 and / Uy -9, (adywo) dy = 0.

n

In equation (B.66)), it remains,
/ u®* - 9, (adyw,) dtdrdrdy = 0. (3.67)
IXAXQXY

Or equivalently,

/1 . ulk (/A [aﬁywl]‘zié dT) dtdz = 0 for all w; satisfying (3.60).
X

Therefore w; is a periodic function in y or u2* = 0 in I x Q. It means that
ud* =0in I x Qif k # 0 or u2* = x, (k) u°

where u” is introduced in ([B.53).
ii) We restart with the very weak formulation (8:62)) by choosing w decomposed as

w(t,z,y) = wo (t,2) +ewyp (t, z,y) (3.68)
with

wy € C™ (I x Q)N L* (I; Hy (Q)) such that wy (t =T) = dwo (t =T) =0 (3.69)
and wig € C™ (I xY;C™(Q)NHy () NL* (I xQ; Hy (V)
such that wW1,0 (t = T) = 8tw170 (t = T) = 0.

Choosing w® = R%w as a test function,

w® =R e H? (I x Q)N L* (I; Hy (Q)) (3.70)
such that w® (t =7) = 0 and Jyuw° (t =T) = 0.

The very weak formulation 62) yields,
/1 ) u' (Q°F (Rw) + P* (Rw)) — f° - ROwdtdx
+/ng-,050t (RW) (t = 0) — v - pP"Rw (t = 0) dz = 0.
From (L23), (L), (B68) and 0,w = 0,
/“Q[u6 R [pOywo — 0, (adywy) — D, (adywi o) — éﬁy (a0ywo) — Oy (a0ywi o) (3.71)

1
—gﬁy (adywi )] — £ - ROwp|dtdx + / ug - Rpd,wy (t = 0) — vf - R0pwy (t = 0) dx = 0.
Q
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3.3. Model derivation

Choosing wy = 0, multiplying by € and using (8.54]), Equation (371 becomes
/ (u® + eug®) - (=20, (adywi ) — €0, (adywi o) — 9, (adywip)) dtdzdy = €O (€) .
IxQxY
Observing that,
/ u’-d, (adywy ) dy = 0 and / u®-0, (adywy o) dy = 0,
Y Y
hence, the equation yields,
/ —eu®-0, (adywy o) — euy”-0, (adyw, o) dtdrdy = 0 (¢) .
IxQxXY
Dividing by ¢ and passing to the limit,
/ u® - 9, (adywy o) + uy” - 8, (adyw o) dtdzdy = 0. (3.72)
IxQxY

Assuming that «® € L (I; H' (Q)), uy° € L*(I x Q; H? (Y)), taking integrations by
parts, using the boundary conditions w; o = 0 at x € 92 and the periodicity of w, o in
y, Equation [B12) yields,

/ (0, (a0,u°) + 9, (adyuy®)) - wi odtdzdy

IxQxY

+/ [u(l)’o - adywy o — adyuy” - wy o] Zz(l] dtdz = 0.
IxQ)

By choosing the test function such that wy o (¢, 2,.) € H3 (V) for all (¢,z) € I x Q, the
internal equation is stated as,

0y (a0,u") + 0, (ad,ue®) =0in I x Q x Y. (3.73)

Thus, the boundary term remains,

10 10 y=1
/ [uy” - adywrp — adyug” - wy o] y—o dtdz = 0.
IxQ

. . ... . ... 1,0 1,0
Since w; o is periodic in y so Jyw o is periodic in y. Therefore, uy™~ and dyu," are also
periodic in y.

Moreover, by choosing w;o = 0 and multiplying by ¢ then Equation [B.71) is
equivalent to

/ u - R° [epdywy — €0, (adywy) — 9, (adywy)] — £ - ROwodtdz
Ix$Q
+/ eus- R (p0,wo) (t = 0) — evs - R (pwy) (t = 0) dv = 0.
0

Using (854) and the data (3.19),

/ (v’ + sué’o) - [epOuwy — €0, (adpwy) — 8y (adywy)] — ef° - wodtdzdy
IxXQxXY

+/ d?o-patwo (t =0) —eg”- pwo (t =0) dady = O (¢).
Qxy
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Chapter 3. Homogenization of the one-dimensional wave equation

Remarking that [, u® -, (ad,wo) dy = 0, dividing by ¢ and passing to the limit,

/ u® - pdywe — u° - 0, (adywo) — uy” - 9y (adywo) — fO - wodtdady
IxQxY

+/ R0-pd,wo (t = 0) — g° - pwo (t = 0) dady = 0.
Qxy

Assuming that «® € H?(I x Q) and u,° € L?(I; H' (2 x Y)), taking integrations
by parts, using wy € L* (I; Hy (Q)) with wo (t =T) = 0 and dyw (t =T) = 0, and
periodicity of ué’o, it remains,

/1 XQ(( /Y pdy) Dy’ — 9, (( /Y ady)d,u’) — 0, ( /Y adyuy’dy) — / FOdy) - wodtdz
(3.74)

/pdy/ Do (£ = 0) + Dy - wo (¢ ZO)da;—/IK/Yady) u0-amw0f:dt
+/Q (/Ypdy) hO-0ywq (t = 0) — (/Ygo-pdy) ~wp (t = 0)dx = 0.

Choosing test functions wy € H} (I x ), then the strong form comes

(/ pdy) O’ — 0, ((/ ady) a,ruo) — Oy (/ aﬁyué’ody) = ﬁ] in I xQ, (3.75)
1% 1% 1%

So, Equation ([B74) remains,

</y pdy) /g O (£ = 0) + O’ - wo (£ = 0) do / ady /  Bpwo] "o dt
+/Q ((/Y pdy) h0-Oywo — (/Y go-pdy) -wo) (t=0) dz = 0.

According to ([B.:20), the initial conditions are,
uo(tzo):@ and 9,u’ = ¢¥ in O
and the boundary conditions are
u’ =0 on I x O9.
iii) From (B73), uy° can be decomposed as
uy® (t,x,y) = 0,ul (t,2) 0 (y) with 6 € HL(Y). (3.76)
After replacement, Equation (B.73)) is equivalent to
(0, (a0,0) + 9,a) 0,u’ = 0in I x Q x Y.

Without loss of generality, we consider 9,u’ # 0. Therefore, 6 is a solution of the cell
equation (3.23)). In addition, since (B.70) and

/ 0 (140,0) dy — / 0 (140,0) - (140,0) dy— / 0 (140,0) - 9,0dy
Y Y Y

- / a (1+0,0) - (1+0,0) dy— / 0, (a (148,0)) - bdy+ [a (1+0,0) - 6]'=,

:/a(1+ay9)-(1+ay9) dy =

60



3.3. Model derivation

0, ((/ ady) &Buo) + 0, (/ aﬁyué’ody) = 0, (@0,u") .
Y Y

Thus, Equation (B.73]) is equivalent to,

S0,

PO’ — 8, (@0,u®) = fOin I x Q.

|

This result shows that the LF-waves are related to ug” only which is therefore not
belonging to the HF-model. Therefore, the HF-waves are searched for £k € Y* and
n € N*. Let us define

Wy (b y) =t (T ) = X (R) ug” (E2,y), (3.77)

thus,
u,llk (t,7,2,y) = X, (k) ué’o (t,x,y) + ﬂ}zk (t,7,2,9). (3.78)

Lemma 35 For k € Y*, n € N* and any bounded data as in (3I0), let u® be the
solution of the weak formulation of the wave equation (39) satisfying the uniform
bound ([EI1) and the assumption (3.17). Then ul* (t,7,x,y) is solution of the HF-
microscopic equation

(ozk)_2 pO " — 9, (ad,uy*) =0in I x Ax QXY (3.79)

n

where ﬁ,llk s periodic in T and k — quasi-periodic in y

in the very weak sense (i.e., it is solution of the very weak formulation (Z83)). More-
over, if ubk € L2(I xQ; H*(AXY)) then ULk is solution of the HF-microscopic equation
(379) and admits the modal decomposition,

Ak
sign(m)2im Zlml

at )= ) un (e M Gl () (3.80)

k
meMn,int

with u®, (t,z) € L? (I x ).

Proof. |[Proof of Lemma [B5] For a given £ € Y* and n € N*, we restart with the
very weak formulation (.62) in the proof of Lemma [34] by choosing test functions as

in (359), (B:60), (3.6I) but such that wy = 01in I x 2 and
w; € CP(I x QA xAXY)NL* (AxY;Hy (I xQ)).
Multiplying by ¢, Equation ([B:65) becomes,
2 1
/ uf - B [ple—0pwy + ——50-,w;) — €0, (ad,wy) (3.81)
IxQ2 ok k)

n (an

—£0, (a0ywy) — Oy (adywy)] dtdz = 0.

Using (B.14) with u%* = y, (k) u° as in Lemma B4] and remarking that,
/ Xo (k) u° - Oprwrdr = 0, / Xo (k) u® - OpwidT = 0 (3.82)
A A

and / Yo (k) - (8, (adywr) + 20, (aByws ) dy = 0,
Y
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Chapter 3. Homogenization of the one-dimensional wave equation

then dividing by ¢ and passing to the limit, Equation (B.81)) yields,

1
/I oy u%zk ((ak)Q pO--wy — Oy (aayw1)> — Xo (k) u’ - Oy (adywy) dtdrdzdy = 0.
X AxQx "
Using the decomposition (B.18) of ul*,
1
/ (XO (k) ué’o + arlz’k) ' (—2108”7“”1 -9, (aaywl))
IxAXQxXY (Oék)

n

—Xo (k) u° - 8, (ad,w,) dtdrdzdy = 0.

10 . - : o
From (B.72), and because that u," is independent on 7 and w; is periodic in 7,

/ u’ - 0, (aﬁy / wldT) + u(l)’o-ay (aay / wldT) dtdxdy = 0
IxQxXY A A

1
and/ ué’0~—2p077w1d7 = 0.
A (o)

Thus, ©L* is a solution of the very weak formulation

1
/ usk. (—zpﬁTTwl — 0, (aﬁywl)) dtdrdzdy = 0. (3.83)
IXAXQXY (Oéfl)

In addition, assuming that ul* € L? (I x Q; H*> (A x Y')) and applying integrations by
parts,

1
/ (Wﬂawﬁ};k — 0y (a@y@#’f)) - wy dtdrdzdy (3.84)
IxAXQXY .
! bk ~1,k T=1
+W /I><Q><Y [—pu}; 07wy + pOry ‘wleo dtdxdy

+/ [aL® - adywy — adyul’ - wl]yié dtdrdx = 0.
IxAXQ v=

By choosing test function wy; € L* (I x Q x Y;C® (A))NL? (I x A x Y;C>® (Y)), the

HF-microscopic equation associated to a value of is stated as,

(o) 7 po. Atk — 8, (ad,a5*) =0in I x A x Q x Y. (3.85)

n

In Equation (B.84), it remains,
1

(ak)”

+/ [aL® - adywy — adyub’ - wl]yié dtdrdx = 0.
IxAxQ v=

/ [—pﬁ};k-&wl + p@Tﬂi’k-wl}ié dtdzdy
IxQXY B

Since w; is periodic in 7 and k—quasi-periodic in y, ul*and 9,uL* are periodic in 7
and @>* and 9,ul* are k—quasi-periodic in y.
Next, we notice that 2> can be decomposed as

Wty = Y vk (67, 3) 6, () (3.86)

meN*
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3.3. Model derivation

where vF € L?(I x A x Q) and ¢!, is a solution of (I5). Replacing (3:86) in (B.85)
and since p > 0,
> ((aﬁ)” 0t + M) o =0, (387
meN*

For m and m’ € N*, applying the orthogonality in L? (Y) of ¢* and ¢%, to the equation
BRD) with [, ¢, - ¢b,dy =0if m' # m and [, ¢F, - ¢k, dy = 1if m’ =m, so

(Ozk)f2 8771) (t,7,2)+ )\fnv,’; (t,7,2) =0in I x A x Q for all m € N*.

n

. /\17k . . . . k
Since u," is periodic in 7, so vy,

)\k
Aok = 2my | )\—7]’; = 2rl for any | € N*. (3.88)

For a given m € N* satisfying (8.88), v, can be decomposed as

is also periodic in 7 for any m € N*. It implies that

2im/ 58 i [
ok () =k (ta)e VM ok (ta)e VT

m7

where (uf,u*,)) € L?(I x Q)*. Finally,

m

)\k:
R sign(m)2im | —7'
wr ey = ) (ta)e Gt ()

meMFb

n,int

with u* (t,z) € L*(Ix Q). ®
The next lemma focuses on the HF-macroscopic model (3.26))-([B.38)) for each k € Y*
and n € N*.

Lemma 36 Fork € Y*, n € N* and any bounded data as in (310), let u® be solution
of the weak formulation of the wave equation (39) satisfying the uniform bound (311))
and the assumption (3.17). For e € Ey as in Assumption[T4), if us, € H' (I x Q) for
ocelr se{+,—} andm e My, then ug, is solution of the HF-macroscopic model

(20)-(T3).

Before continuing with the proof of Lemma [B@l we establish an auxiliary result
for existence of special test functions. For k € Y*\ {O, —%}, n € N* and o € I*, we
consider the two functions ¥ (¢, ), ¢, % (t,r) € H?(I x Q) such that

ok (t,2) oF (0) 2% 4 o () ¢ (0) ™™ E =0 on T x OQ (3.89)
where [* is defined in ([C40).

Lemma 37 For k € Y*\ {0,—%}, let € € Ey, there exist ¢, o7 € H? (I x Q)
satisfying
i) the boundary conditions

on (8 2) 0 (0) ™%+ o B (1,0) 9, (0) 7™ = 0 on 1 x 99, (3.90)
ii) and the strong convergence

02— 7 in H* (I x Q) when e — 0 for o € I, (3.91)
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Chapter 3. Homogenization of the one-dimensional wave equation

Proof. [Proof of Lemma B7] For any ¢ € Ej, and let the two functions ¥ (¢, ),
ok (t,x) € H?(I x Q) satisfying ([3.89), we prove that the following choice satisfies
the conditions,

ot (tx) = ¢ (tx) € H* (I x Q) (3.92)
and o *° (t2) = o F(t,2) + p° (t,2) where p° (t,2) € H? (I x Q)

with .
i (k) = = (1= () ook (,0) =

where ¥ and [* is defined in (L39) and (L40).
i) Replacing (8:92) in (8:90), the boundary conditions are

o () @ (0) €™+ (@7 () + 7 (8,2)) 6,7 (0) e ™5 = 0 on [ x OO

n

Using (L39) and (L40) with remarking that e*™a =1 at 2 € 9Q, so

ok (t,2) 65 (0) €™5E 4 (o, * (L) + pf () 6, (0) e 7% = 0 on T x OQ.

n

Or equivalently,
Ok (8, ) ¢ (0) X UIHEL)E (o (1) + 1 (8, 2)) 6% (0) e 2 (PHE) T —
on I x 0f2. Or,
SOZ (t, ) ¢2 (0) ezz‘wzk§62m(z;4k)§
+ (o (t,2) + 1 (8, 2)) 6.7 (0) -2inlh 2 —2im (1) _
on I x 99Q. From (B.89),

ok (t,2) 6 (0) ™5 = —p, ¥ (t,2) 6, (0) e ™% on T x 9.

n n

After replacement, the equation remains,
ok (4, 2) 6 (0) o2l L (e—zm(l;—lk)g _ em(l;—lk)§>
FE (7)) 68 (0) e 2 o2 () = 0 on 1 x Q.

This equation is satisfied with the above pu°.

ii) For o = k, the strong convergence is true since ¢ is independent on . For
o = —k, the strong convergence of p° (t,z) in H* (I x Q) is trivial, i.e. u(t,z) — 0
in H%(I x Q) strongly when € — 0. Therefore, o, ¢ — o % in H? (I x Q) strongly
when e — 0. W
Proof. [Proof of Lemma B6] Let £ € Y*, s € {—,+} and n € N*, we consider
(¢ﬁ1‘)qu557061k the Bloch eigenmodes associated to the eigenvalue )\’,2 of the Bloch

modes equation. We restart with the weak formulation of the wave equation ([8.9]) by
choosing wy* decomposed as

wye (t,7,2,y) = @7 (t, 7) eSign(q)Qi”Tgba (v) (3.93)
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3.3. Model derivation

for any ¢ € M7, 0 € I* and ¢7° € C™ (I x Q) satisfying

Opg=(t=0)=0, 7 (t=T) =0 and dypy (t =T) = 0. (3.94)

The boundary condition w® = 0 at x € 92 is equivalent to

2imt

Z (pgﬁ (t’x) 6819 (Q)ea‘ ‘¢| | < ) =0on [ X aQ (395)

oelk geMg

: sign(q) 235" -
Since oy = of for all g € M7, and o € I*, s0 e lal % 0 can be eliminated. In

the case of k € {0, —%}, thanks to the periodicity or anti-periodicity of ¢, 309 is
equivalent to

Z ore (t,x) gb‘q‘()—Oon[x@Q.

qeMF

Taking go’;’e = go’; € C* (I x Q) independent on &, the boundary conditions of the test
function are

> @kt )¢l (0)=0o0n I x 00 (3.96)

qeEMY

fn the case of k € Y™\ {0, —%}, using the o—quasi-periodicity of ¢, (B39 is equiva-
ent to

Z (pg,a (t, z) gbﬁzl (0) 2™ = 0 on I x Of). (3.97)

oelk geMg

For ¢ € E), and o € I*, using Lemma 7, there exists a sequence pge e C® (I x Q)
such that (3.97) is satisfied and

@7 = 7 in C* (I x Q) strongly when ¢ — 0 (3.98)

where (gog)a satisfy (3.89). Thus, the limit w7 of the test function wy*® is

wy (t,7,2,y) = @7 (1, ) DT g7 (y) (3.99)

and the boundary conditions satisfied by the test function are

>l () 67, (0) e OB — 0 on T x 0. (3.100)

oelk ,qe Mg
Moreover, according to (3.94), (3.98) and (3.99), the test function ¢f satisfies
Opg (t=0) =g (t=T)=0py (t=T) = 0. (3.101)
We choose w® = >, BIw?c as a test functions,
oelk geMg

w' =Y BIwlT € H(Ix Q)N L*(I;Hy () (3.102)

oelk,geMg

Hence, w® reads as

2imt

wt (t,2) = Z 90276 L szgn(CI)qu‘ (b\ ‘ ( ) (3.103)

oelk,qeMg
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Chapter 3. Homogenization of the one-dimensional wave equation

and satisfies
w' (t=T)=0and Qu* (t=T)=0. (3.104)

—2
From the boundary and the initial conditions of the test functions, and since (O‘\Oqo Q2w3’5+
P?w7* = 0, the very weak formulation (B63) yields,

1
3 /I e <Z ((caf,) ™" Qg —g—llegvf)> — f7 - BIug e dide
X

=0
(3.105)

+/ uy - 0,87 (pwge) (t = 0) = vi-R (pw*) (t = 0) do = 0.
Q

For each o € I* and ¢ € M7, thanks to (L2I) and (II3) the relations between 2B

and T#*S=* R and S=*, the second and the third term in (3.I05) are approximated
by,

€ k, o, _ € EQ) * QE*, , O,
/ [ Brwy “dtdr —/ [T S wg dtdr + O (¢) (3.106)
= / T Se fe - wy dtdrdzdy + O (¢),
IXAXQXY

and

/ v R (pwd*) (t =0) do = / vg-Se (pwl*) (t=0) da + O () (3.107)
0 Q
= / Sevg-pwg© (t = 0,7 =0) drdy + O (¢)
Qxy
= / Sevo PPy Py (t=0) dedy + O (¢) .
Qxy
Moreover, the third term in (3I05) yields,

/ ug - 087 (pwl ) (t = 0)du
Q

]

£ o o,E Sign ITT O 1 o,€ Sign ITT O
:/Quo.% (@ (Pl =e™ DT f) + —0r (ppf et ¢|q|)> (t=0)dz

o o sz n(q)2inT 40 S’LgTL (q) 2im o,€ sign T O
:/uo B] | pOupy fe VAT Gl e e TG | (¢ = 0) d.
Q “q)
Since 0;¢7° (0, ) = =0, 0f, = \7;_’%’ ¢y is solution of Bloch wave equation (L),
and B7 := R’ at t =0,

_ M/ngma (P* (57 (t = 0) 7)) da

ey/ A\
Thanks to the decomposition (Z23), we have
RIP? () =’ PR () —*ROPY () —eRP (),
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3.3. Model derivation

S0,

_sign(a)i / SR [P (037 (1 =0)¢7,) ] do + O ().
Or equivalently,

S’lg’l’l, q Z €,,€ ag,e a g

= —7< ) / Seug- Oy (t = 0) (aﬁygbw + 0, (agb‘q‘)) dzxdy + O (g) .
Aﬁ Qxy

Taking the integration by part and remarking that the boundary condition SSu§ = 0

on 0f) x Y based on uj = 0 on 012,

sign (q)
= S [ seus (ady 4 0, (ad)) @07 (= 0) dady + O (2). (3.108)

k QxYy
An

Multiplying by ¢, using (3.14)), (3I06) and (3I07), and remarking that u2? = x, (o) u°,
Equation (3.I05]) becomes,

o -1 o o o o
S e ) (o) @t - Plugt Qg - ePhug)
IXAXQXY

oelk,geMg

—eT*% S5 f - wlFldtdrdady — € [S5v5-pery 7 (t=0)
QxY
sign (q)1
+97(Z)8xS§u8- (a8y¢ﬁ}| + 0, (a¢|q|)) 0) dedy] = €0 (¢).
A

n

Since Q'u” = 0 and due to the special form of wJ* in 7 so,

/AXO (o) u’ - PPw?dr = 0 and /AXO (o) u’ - Qw*dr =0, (3.109)
/AXO (0)u”- Q'wT*dr = 0 and /AXO (o) u’ - Plwl<dr =0,

hence, dividing by ¢, the equation reads

S / [y ((afy) ™ QUuge = Pluge) = T%5 - wy* Jatdrdady
IXAXQXY

oelk geMg

sign (@) iy e, o T NY T 1 G b T
_[) Y[Aaxsouo' (a8y¢\q\ + 83/ (a¢|q|)) S0q7 + Sovo'p(b\qﬁoq, ] (t = O) d"lfdy] =0 (8) :

VAL

Moreover, according to (B:21), (3:98) and (3.99)), and passing to the limit, the equation

remains,

o o -1 o o o
Z [/ Tt (a|q|) Qlwq +ub ~P1wq dtdrdxdy
IXAXQXY

oelk,geMg

—/ F - ppdtde — / g5 (t=0) d:p} = 0.
IxQ Q
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Chapter 3. Homogenization of the one-dimensional wave equation

Using the decomposition (B.78) of ul* and the definition (4],
S el a) (o) 20— 0. (a0,05)
IXAXQXY

oelk,ge Mg
—0y (adyw)]dtdrdrdy — / F - ppdtdr — / gq-¢5 (t =0)dx] = 0.
IxQ Q

. . ... 1,0 - - . . .
Since wy is periodic in 7, uy" is independent in 7 and due to the special form of w7 in
7, [y wldr =0, so

/AXO (o) ug®- ((afq‘) 200w — 0, (adywl) — 0, (a@xw;’)> dr = 0. (3.110)

Moreover, using the decompositions ([B:80) and (B99) of 4, and w{ with remarking
that the index m in (B.80) is changed by p and

sign s ﬁ’r ; ;
/ SINPRT SET  gsign(@2inT g — () if sign (p) el # sign (q¢) and = 1 otherwise,
A

(3.111)
so the equation is equivalent to,

Z /IXQ {—sign (q) dim (aﬁll)ﬂ (/Y Péf)ﬁ,%dy) oy

o€l* peMg  ,qeMg

- ( / Dl (aay% + 0, (aﬁ)) dy) ug - awg] dtdx
Y
- > Ug;’-cpZ(tzde/ Fq"-cp;'dtdx] —0.
Q IxQ)

oelk qgeMg
We observe that,
__qy=1 - . - -
[a¢|p|¢q|}y:0 =0 and /Y Py (@3y¢|q| +9, (a%)) dy = /Y Pp(a0y Pl — a0y Py Fydy-
(3.112)
Therefore,

> benauow;—cpag i

oelk peMg ,,qeMg

- Z l/ gg-0g (t=0)dx +/ Fy- cpgdtd:p} =0
Q IxQ

oelk geMg

where b (o, p,q) and ¢ (o, p, q) are defined in (3.25). Assuming that uf € H' (I xQ),
using (B.I01) and applying integrations by parts,

3 { / b(o.p,0) D + (7,0, ) Do - it
Ix

oelk,peMg ;,qeEMZ

+/b(0,p,Q)UZ-<ﬁZ (tzo)dfc—/[C(a,p,Q) 7] dt]

Q I

- > Ug;’-cpZ(tzde/ Fq"-cp;'dtdx] —0.
Q IxQ)

oGI’“,qEM;‘hS
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3.3. Model derivation

For each o € I*¥ and ¢ € M?

7 o by choosing test functions ¢ € Hy (I x Q) the strong
form comes

Zbap, 8tu+z c(o,p,q) Opuy, = F7 in I x .

pEM"' peEM

It remains,

> / > blopg)ug — g5 | ] (t=0)da (3.113)

Q

oelk geMg pEMZ o
/ Z (0,p,q %} “dt| =0.
peEMY.,
The initial condition is deduced,
Z b(o,p,q)u; (t =0) =gy on € for each ¢ € M (3.114)
peMg,s

and the boundary term is,

Z / [c(o.p,q) uy - @Z}iig dt = 0 for o satisfying (3.100). (3.115)

o€lk,p,ge Mg I

The remaining of this proof focuses on finding the boundary conditions of (u;)p the

macroscopic solutions. We distinguish between the three cases £k = 0, k = —% and
k # {0, —%} For notational convenience, we here understand n := sn and n’ := sn’
for both two cases s = — and s = +.

(i) Case k = 0 with A\ be a double eigenvalue and the condition (331)). Introducing
the matrices C' = (¢(0,p,q)),,, B = (b(0,p,q)),, and the vectors U = (ug)p, F =

(F;?)p, G = (gzo))p, ¥ = (wg)p, ¢ = (qb\(jvl)p’ we get the matrix form,

BOU +CO,U =FinlxQ, (3.116)
BU(0,2) = G in Q,
and CU(t,z).5(t,x) = 0 on I x 9N for all o such that ¢(0).p(t,2) = 0 on I x 9.

The boundary condition is equivalent to the fact that CU(t,z) is collinear to ¢(0) on
0f) for t € I. It means that,

det (CU(t,z),$(0)) =0 on I x €. (3.117)
But ¢ (0,p,p) = 0 for p € M?, the equation (B.I17) yields,
¢ (0,n,n") upy (t,2) @), (0) — ¢ (0,0, n) u)) (¢, 2) ¢, (0) = 0 on I x OQ.

Therefore, since ¢ (0,n,n') = —c(0,n/,n) and assume that ¢ (0,n,n’) # 0, the bound-
ary conditions of the HF-macroscopic equation are

up (£, ) @y (0) + upy (£, ) @), (0) = 0 on 1 x Q. (3.118)
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Chapter 3. Homogenization of the one-dimensional wave equation

Moreover, if ¢ (0,n,n") = 0 then the matrix form (BII6) yields,
BOU = Fin I x Q and BU (0,z) = G in Q

where the boundary condition has disappeared,

Still for k = 0 with ¢}, (0) = ¢[,(0) = 0 and whatever the values of ¢ (0,n,n’), the
matrix form is similar to ([B.I16) but without boundary condition.

Finally, if the eigenvalue \? is simple, then the matrix C = 0 and the HF-
macroscopic equation is stated as

b(0,n,n)0ud = F°in I x Q with b(0,n,n)u (t =0) = ¢° in Q

without boundary conditions.

(ii) Case k = —1 with A! be a double eigenvalue. Introducing the matrices C' =
(c(k,p,q),q B = (b(k,p,q)),, and the vectors U = (u’;)p, F = (Flf)p, G = (g;f)p,

ok
o= ((p’;)p, O = <¢fz,|e2”xl?> , we get the same matrix form as (BI16]). The boundary
p

conditions are equivalent to the fact that CU(t, x) is collinear to ¢(0) on 9 for t € I,
or equivalently, B
det (CU(t,),$(0)) =0 on I x O€.

Therefore,

[C (ka T, n) Qb\knﬂ (O) ufz <t7 .T) +c (k7 n, nl) Qb\knﬂ (0) ufz’ <t7 'T)
—c(k,n',n) ¢ (0)uy (t,x) — c (k,n',n') ¢y (0) uly (t,7)] 2T — 0 on I x A9,

1k

Since e?™a £ ( for all x € 09, the boundary condition of the HF-macroscopic
equation is,

(C (kv n, n) ¢|kn’\ <O> —C (kv nlv n) ¢|kn| <O>) uﬁ <t7 .T)
+ (c(k,n,n') ¢ (0) = ¢ (k,n',n) ¢y, (0) ub (t,2) = 0 on I x Q.

For k = —% with a simple eigenvalue )\2, the HF-macroscopic equation is

b(k,n,n) O +c(k,n,n)duf = F¥in I x Q,
with b (k,n,n) uf (t = 0) = g¥ in Q,
and ¢ (k,n,n) uf. ok =0 on I x 9Q for all ©* such that gb_fl(())(p_ﬁ =0on [ x 0.

If c(k,n,n) = 0 or ¥ = 0 on I x IO then the boundary condition is vanished.
Otherwise, ¢*(0) = 0 and u® =0 on I x 9.

(ili) Case k ¢ {0, —1} . According to Remark [, the Bloch eigenvalue \! is simple.
Similarly to the case £ = 0, by introducing the matrices C' = diag (c (o,n,n)),, B =
diag (b(o,n,n)), and the vectors U = (ul),, F' = (F7),, G = (97),, ¢ = (¢¥2),,
¢ = (ng%eSign((’)Qi”%) , we get the same matrix form as (BI16). The boundary

conditions are equivalent to the fact that CU(t,x) is collinear to ¢(0) on 99 for all
t € I, or equivalently,

det (CU(t,),$(0)) =0 on I x 0N
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3.3. Model derivation

Thus,
A k R k
c(k,n,n)u” (t,x) gb‘kn‘ (0) 2 _ ¢ (—k,n,n)u,” (t,x) gb‘;]r (0) e %m's =0 on I x 90

Therefore, from the assumption ¢ (k,n,n) # 0 and from ¢ (k,n,n) = —c(—k,n,n), the
boundary conditions turn to be

. k . k
ub (t,2) ¢, (0) XS +urk (t,x) ¢),f (0)e™™& =0 on I x 9.

Finally, if ¢ (k,n,n) = 0 then whatever the value of gblkn| (0), the matrix form of HF-
macroscopic equation is stated by

BOU = Fin I x Q and BU (0,2) = G in Q

which does not require any boundary condition. W

3.3.2 Proof of main Theorem

For any K € N* and any test function p € C? (A x Y;C. (I x Q)N C? (I x Q)) being
periodic in 7, let a bounded sequence u° be solution of the weak formulation of the
wave equation ([B0). For k € L} and n € M*, we already have shown the (n, k)-mode
wave-two-scale approximations

uE =TSW(kn) Xo(k)uo + E(XO(k)Qﬁxuo + Z uﬁlesign(m)%mqs‘km‘) + EO(E) (3‘119)
meMPF

n,int
and it remains to check that this approximation holds in the wave-two-scale sense,

/I " (). Y (Billh) (t,x) dide

keL} neMF

= / (u® + [00,u° + Z / uﬁeSiQ"(")zi”Tgbfn‘]) < dtdrdzdy + €0 (¢) .
IxAXQXY IXAXQxY

keL%. ,neZ*

But

/ u® (t,x)- Z BEFp (¢, 2) dide = Z / u (t,2)-BF1Fp (¢, 2) didx
IxQ IxQ

keLy, neMF keLy. mneMF

with ITI¥¢ a periodic function in 7 and k-quasi-periodic function in y. Using the
decomposition ([BI19), the fact that the projections are self-adjoint operators, and

Zﬂguo =u’, ZH%H =0,

neN neN
k k sign(m)2int 1k o k _sign(m)2inT 1k
mEMff’im me{n,—n}

yield the expected result.
Furthermore, if ([3.19) is satisfied then u® is the solution of the weak formulation
of the LF-homogenized equation (3.24) as proved in Lemma [34]
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Chapter 3. Homogenization of the one-dimensional wave equation

For any k € L, we pose k = & for p € KLj. For e € Ey/k as in (L39) and (L.40),
it implies that
j—;; =p [j—]];] + pl/E and pI/% — 1k = pI"E when £ — 0

and the data (321) is satisfied for all £ € L}, with the same sequence € € Ey k. If
ub € H' (I x Q) then u” is solution of the HF-macroscopic equation for all k € L3
based on the proof of Lemma 36l

3.4 Other cases

In this Section, we study the homogenization of the wave equation in two other cases.
1. The wave equation with Neumann boundary conditions in Section B.4.1]

2. The wave equation with additional zero and first order time and space derivatives
in Section B.4.2]

The process of homogenization is similar to Section and B.3] The final results
state similarly as in Theorem 29 but with different homogenized models. The differ-
ences are in the detail of some homogenized terms. Here we focus on discussing the
differences in the homogenization of each pair of fibers.

3.4.1 Neumann boundary conditions

We consider the wave equation with Neumann boundary conditions,

P 0put — O, (a0, u®) = f€in I x €,
ut (t=0,2) =uj and Jwu® (t = 0,2) = v§ in €,
O,u® =0on I x 0.

Here the test function w® satisfies 0,w® = 0 at x € 9€). The LF-homogenized equation
with initial conditions, the HF-microscopic equation and the internal HF-macroscopic
equation are unchanged, while the boundary conditions of the LF-homogenized equa-

tion are replaced by
9,u’ =0 on I x 0. (3.120)

Moreover, the boundary conditions of the HF-macroscopic equation are,
A kg 1
ST ug(t,2) 0,07, (0) e AT =0 on [ x 0 if k # -3
oelk peMg
and
(¢ (k,n,n) @,gf)lkn,‘ (0) — ¢ (k,n',n) 8ygz5|kn‘ (0)) uf (t,z) + (c(k,n,n) 8y¢>|kn,‘ (0)
—c(k,n',n") 0,0, (0) uk, (t,2)) = 0 on I x 9 otherwise

for any n € N* and s € {+,—}. Their derivation follows the same steps, so we only
mention the boundary condition satisfied by the test functions. They are chosen to
satisfy d,w® (t,2) =0 on I x 9 or equivalently,

> (@w;”e (ta)ofy (3) + ésoij’e (t,2) 0,6, (g)) DT Z 0 on 1 x 0.

oelk,qeMg
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. 2int
Since af = ay for all ¢ € M7 and o € I*, s0 " V5T £ 0 can be eliminated. More-

over, ngfq| is o —quasi-periodic in y, so 8yqz5fq| is also o —quasi-periodic in y. Multiplying
by e and using the o—quasi-periodicity of J,¢7,

S e (h2) 0,67, (0) ¥ +0() = 0 on T x 0. (3.121)

oelk geMg

Choosing a sequence ¢ € Ej, using (39, [LA0), taking ¢ = o7 for k € {—%,0}
and considering the strong convergence of ¢7< in H? (I x ) similar to Lemma 37 for
k ¢ {—%, O} but ¢}, (0) being replaced by d,¢[ (0), see also in Lemma[§in Appendix,
the boundary conditions of the test function are,

. . kg
Z vy (t,z) 0,07, (0) eS19m(@ATEE — () on T x 0N
oclk,qeMg
3.4.2 Generalization of the wave equation

We consider the wave equation with a damping term, a convection term and a potential
term with homogeneous Dirichlet boundary conditions,

PO uf — Oy (a0, u®) + Y Ou® + (F0,u® + Euf = f€in I x €,
u® (t =0,2) =uf and Qu° (t = 0,z) = v§ in €, (3.122)
u® = 0on I x 0f).

Here three functions (7¢, (%, &%) are assumed to obey a prescribed profile

o (2) =6 (2) mac ()

e
where 7, ( and £ are Y —periodic and bounded in L* (R). The equation (3.122) is also
taken in the weak sense,

/ P70t - w® + ao,u’ - Opw® + Oyt - wt + Jyut - w® + uf - wodtdx (3.123)
IxQ

= f°-wodtdx
IxQ
with v (t = 0,2) = uj and du® (t = 0,2) = vj in €,
for all the admissible test functions

w® e L? (I; Hy (). (3.124)
From the assumption (8.10), the uniform bounds (BI1]) can be derived.

Statement of the models

The process of homogenization is also similar to the case in Section The HF-
microscopic equation is unchanged while the LF-homogenized equation and the HF-
macroscopic equations include other terms related to the first and zero order terms.
After extraction of a subsequence, similarly to (3:21]), we introduce

hF = lim / Spugyoh,dy € L* (). (3.125)
€ Y
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Chapter 3. Homogenization of the one-dimensional wave equation

Moreover, we define the coefficients

9= /quy, (= /YC(I +8,0) dy and ¢ = /Yﬁdy, (3.126)

and
d(k,n,m)=— (—sign (n) 2im (aﬁ)fl /wakn -¢fm|dy + /}/(bﬁl - O <C%) d(y ) . |
3.127

Thus, the LF-homogenized equation states
PO — 9, (@0,u®) + 70’ + COu° + €u® = fOin I x Q, (3.128)
uo(tzo):@ and d,u’ = g0 in Q,
u’ =0on I x 09,

where @, 7, f0, 0 and ¢0 are defined in B22) and [B20) in Section B2Z2

Before to state the HF-macroscopic model, we remarking that it is stated under
the assumptions (3.26) and B31). For each k € Y*, 0 € I*¥, s € {+,—} and ¢ € M7,
the macroscopic system is stated by,

N (b(o,p.q) 0+ ¢(0,p.q) 0ol +d(0,p,q)ul) = FY in I x Q,  (3.129)

pEMS

n,s

> bopq)ug (t=0) = g5 +h] in Q,

peEMZ

with the boundary conditions as in (3:29), (8:34), and (335 in Section

Homogenization results and their proofs

We only state the LF-homogenized equation and HF-macroscopic equation since the
others parts of the model remain unchanged. We observe that the HF-microscopic
equation relies to the second order part only, thus it is unchanged in this case, see also
Remark 9] after the proof of Lemma B8] regarding its derivation.

Lemma 38 Fork € Y* . n € M* and any bounded data as in (310), let u® be solution
of the wave equation (3123) satisfying the uniform bound (F11]) and the assumption

(312). Then,

ud*F = (K)u® in L? (I x Q) weakly,
where u°® is the unique solution of the LF - homogenized equation (Z128).

Proof. |Proof of Lemma B8] For any k& € Y* and for each n € M*, the test functions

w® of the weak formulation (B.I23)) are chosen as in (361 B.59, B.60) in Subsection
3.3.21 Applying two integrations by parts and the boundary conditions satisfied by u®
and by B*w, it remains,

/ u (p°0uBEw — 0, (a0, Bw) — ¥ 0B w — u - 0, (CBEw) + EBLw) dide
IxQ
+/ —v5p° (Bhw) (t = 0) 4+ uf - p°0; (Brw) (t = 0)
Q

—u§ - Y BFw (t = 0) dr = fe - Brwdtdz.
IxQ
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3.4. Other cases

Using the decomposition ([.23) of the two-scale operators with remarking that (B%w) (t = 0) =
(RFw) (¢ =0),

2
/ u- BE (Z ((eaﬁ)" Q'w + elle>> — f-BFwdtdr (3.130)
IxQ

=0

1 1
—/ u® - B (fyﬁtw + E—fy@w + (0w + gay (Cw) — £w) dtdz
IxQ

an
1
—|—/ (ug AL (&w + &78711}) — vy R* pw — ug - %kfyw) (t=0,7=0)dtde = 0.
Q n

Moreover, from (L4)), (B:59) and 9wy = 9wy = 0 so

2 1
/ [ua . Z'B];[p (8@5’&104‘@8”’101 + W&Twl) — 8x (a@xwo) (3131)
IxQ n n

—0, (adywy) — éﬁy (a0ywp) — 0y (adywy) — éﬁy (adyw,)] — f° - BFw) dtdx
1 1
_/ ut - %Z (Vﬁtwo -+ JvﬁTwl + C@xwo -+ gay (Qwo) + 8y (Cwl) — f’wo) dtdzx
Ix0 n

1
+/ (ug-‘ﬁkp (@wo + —k&wl) — g - R pwo — ug - ‘ﬁkvwo) (t=0,7=0)dtde = 0.
Q «

n

Multiplying by e, then using the assumption (B.12]), Equation (BI3I]) yields,

/ u%k-[%ﬁwwl — 0y (a0, wo) — 0, (a0yw1) — 0, (Cwp)] dtdrdxdy = O (¢).
IXAXQXY (Oék)
(3.132)

n

Passing to the limit and observing that

/A st (p (ﬁaw) — 8, (aBywp) — B, <<wo>) drdy = 0,

so, Equation (BI32) is equivalent to (B.67) in the proof i) of Lemma [34]
/ u®*.0, (adyw,) dtdrdrdy = 0.
IXAXQXY
Thus, we also obtain u%* = 0in I x Q if k # 0 and u2* = y, (k) u°.

In order to find the LF-homogenized equation, we also consider £k = 0 and n = 0
as in Section B3 We restart with the weak formulation (B123]) by choosing the test
functions as in (370, B.68 B.69) in the proof ii) of Lemma B4l So the very weak
formulation (BI31)) is equivalent to,

/ [UE . ERO [p@ttwo — 833 (a@zwo) — 61 (aawao) (3133)
I8
1 1
—gay (a@zwo) — 0y (a&vww) — gay (aawao)] — f6 . %O’wo] dtdx
1
—/ UE . %0 (’}/atwo + C&BUJO —+ gay (Cwo) + 83/ (CU}L()) — §w0) dtdx
IxQ

+/ (ug-Rpdwo — vg - ROpwy — u - ROywy) (t = 0) dz = 0.
0
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Chapter 3. Homogenization of the one-dimensional wave equation

Choosing wy = 0 and multiplying by &,
/1 . u® - R° (=20, (adywi o) — €0, (adywi ) — 9, (adywi o) — €0, (Cwy)) dtdz = 0.
x
Using (854) the (0,0)-mode two-scale approximation of u® and observing that
/Yuo- (€0, (a0yw1 ) — 0y (a0ywq ) — €0ywi ) dy = 0,
the equation remains,
/ —cu - 9, (adywy o) — euy’-0, (adywy o) dtdrdy = €O (¢) .
IxQxY

Dividing by € and passing to the limit, the equation becomes (B.72)) in the proof ii) of
Lemma, [34]

/ u® - 9, (adywr o) + uy® - 8, (adyw o) dtdzdy = 0.
IxQxY

Therefore, the equation (B.73)) is obtained in this case also.
Furthermore, by choosing w; o = 0 and multiplying by e, Equation ([B.I33) becomes

/1 Q[uE - RO[epdyw, — €0, (adywo) — 9, (adywo)] — e f° - ROwy) dtdx
—& /I ) u® - R (yOywo + COpwo + 0, (Cwo) — Ewp) dtdx
+e /Q (ug-R°pd,wo — vg - R pwo — ug - ROywo) (t = 0) dz = 0.
According to (354), the data (3I9) and remarking that
/Y u - (9 (adywo) + 9, (Cwo)) dy = 0,
SO,
e oy = 0. (ad.a0w) = <y 0, (ad.ain) + 0, (Gun)

—ef0 - wodtdzdy] — / eu’ - (yOuwo + COpwo — Ewg) dtdxdy

IxQxXY
+€/ <f/lb-p6two —¢° pwo — O - fywo) (t=0)dtdx =0 (¢).
Qxy
Dividing by ¢ and passing to the limit,
[ (00, = 0. (adwn)) = 4y (8, (aDwn) + B, (Gue)
IxQxY
—f° - wodtdxdy] — / u® - (YO,wo + (Opwo — Ewy) dtdxdy

IxXQXY

+/ (hAO-,Oatwo — g pwy — ho - 7w0> (t=0)dtdx = 0.
Qxy
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3.4. Other cases

Assuming that u® € H? (I x Q) and uy” € L* (I; H' (Q x Y)), taking integrations by
parts, using (320), wy € L? (I; H} (Q)) and periodicity of ug”, it remains,

/ (ﬁ&ttuo — Oy ((/ ady) 0mu0) — Oy (/ aﬁyué’ody) - fo) ~wodtdr  (3.134)
IxQ Y 1%
+/ (ﬁﬁtuo + (/ Qdy) O’ +/ Cayué’ody +/§\u0> - wodtdx
IxQ Y Y

_/1 [(/yady) uO.amwo]:_:dH/Q (5 (—u” - Quwo (t = 0) + dpu’ - wy (t = 0))

+Au’ - woldw + / (ﬁi/z\o-atwo — ﬁg}b Swy — /v\f/L\O . w0> (t=0)dx =0.
Q

According to the proof iii) of Lemma [34]

o8 (( /Y ady) 8xu0) +0, ( /Y aﬁyué’ody> =0, (( /Y a (14+0,0) - (1+0,0) dy) @Cuo) ,

and
(/ Qdy) O +/ Cayué’ody = / (¢ + ¢0,0) dydu’ = Z@xuo.
Y 1% 1%

Therefore, (B134) is equivalent to,

/ (ﬁ@ttuo — 0, (a0, u’) — ]?0> Swo + <§8tu0 + Cou° —|—Eu0> ~wodtdr  (3.135)

IxQ
_/ [au® - Dywo]”_, dt + / —u” - (POywo — Jwo) (t = 0) 4+ DO’ - wo (t = 0) dz
I Q

+/f§]-<ﬁatw0—awo)<t:0)—ﬁg?*wo(t:O)dx:O-
Q

Choosing test functions wy € H} (I x Q), then the strong form of the homogenized
equation is

P0uu’ — 0, (?iawuo) + 70’ + Z@wuo +/§\u0 = ]?0 in I x Q.
So, in (BI30) it remains,
— / [au” - d,wo) Zg dt + / —u’ - (pOywy — Fwe) (t = 0) + pou’ - wy (t = 0) dw
I 0

+/ﬁo'(ﬁ0two—ﬁwo)(t=0)—ﬁfﬁ)'wo(t:o) dx = 0.
Q

Then, the initial conditions and the boundary conditions of the LF-homogenized equa-
tion follow. W

Remark 39 The derivation of the HF-microscopic equation is done for a given k € Y*
by restarting from the weak formulation (Z123) and by following the proof of Lemma
[Z8  Choosing test functions as (361, [3.59, [F60) with wy = 0 in [ x Q and wy €
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Chapter 3. Homogenization of the one-dimensional wave equation

L*(C (I x Q) ;A xY), the very weak formulation (Z131) becomes,

. 2 1
/;Xa u - %Z[,O <J8hw1 -+ W&Twl) — 83; (aﬁywl)

n

—0y (a0, wy) — éﬁy (a0ywn )|dtdx
—/ u® - BE (ik’y@Twl + 0y (Cwl)) dtdr = O ().
IxQ a,

Multiplying by €, observing that
1
5/ us - BF <—kvé97w1 + 0, (le)) dtdrdzdy
IxQ an
1
= e[ ) (o 0, o)) =<0 @),
IXAXQXY an

the equation is recovered to (3.81) in the proof of Lemma [33 Therefore, the HF -
microscopic equation is then the same as in Section [F.31.

In order to be easier to follow the next lemma, we recall the modal decomposition
([3:80) of the HF-macroscopic solution "

NG
sign(p)2im M7'
e = Y upa e ﬁaﬁ‘; (v) with w (t,2) € L* (T < ).

P
peMk

n,int

(3.136)

Lemma 40 For each k € Y*, n € N* and any bounded data as in (310), let uf
be solution of the wave equation (Z1Z23) satisfying the uniform bound (F11l) and the
assumption (313). For ¢ € Ej as in Assumption if uj € H' (I x Q) for each
oel* se{+, —} and g € MZ, with (320) and (331) satisfying, then u is solution

of the HF-macroscopic model (Z128) including the boundary conditions.

Proof. [Proof of Lemma [0] Let £ € Y*, n € N* and s € {—,+}, we consider

o the Bloch eigenmodes corresponding to the eigenvalue A of the Bloch
(QS‘Q‘)quO' ocrlk g g g n

mode equation. We restart with the very weak formulation (BI30) by choosing test

functions as in (3102, B93] 3.94, BI103 3104 B95] 396, B.98, B:99 BI00) in the
proof of Lemma B8l Using (a?) > Q*w* 4+ P*wJ< = 0, multiplying by € and applying
the decomposition (L)), so the very weak formulation (B.I30) yields,

2
> / U - BY [ pOrw]F + £pOuw® — O, (ad,w]*) (3.137)
oelk geMs U TX9 n

—0y (a@xw;”a) — 0, (a@xw;”a)] —ef - Brwy® —

1
u® - BY (s*y@twg’g + ny@wg’s + eCO,wl* + 0, (Cwl®) — 5£w‘q”€) dtdz

+6/ (ug - p°0; (Bhw) — v - R (pwd®) — uf - R (yw*)) (t = 0) dw = 0.
0
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3.4. Other cases

Thanks to (L2I) and (LI3) the relation between BY and T°*7*S<*, R and S*, we
observe that

/ fo o BEwgedtde = / o T S wgedtdr + O (¢) (3.138)
IxQ) IxQ)

- / To0% 85 f° - wi dtdrdrdy + O (),
IXAXQXY

/Qvg- R (pw;”g) dr = /Qvg-Sj* (pw;”a) dzx + O (e) (3.139)
= / Sevg-pwy < drdy + O (g)
QxY

= Sovi PPy ey " (t=10) dedy + O (g),
QxY

/ ug - 0By (pwg’a) (t=0)dx
Q

s1gn 7
= ST T s (00,67, + 0, (a6f)) e (6 = 0)dady + O c)
)\n XY

and

ug-S5* (ywd*®) da 4 O (¢) (3.140)

S~

/u8~ R (ywl®) do =
Q

Ssugywg = dzdy + O (¢)

Il
S~

QXY

Seug Py Py (t =0) dzdy + O (e).

S~

QXY

Using the assumption ([BI2), the decompositions (BI38)-B.I140), B.77) and (B.73),

and remarking that u%° = x, (¢) u°, Equation (B.I37) is rewritten by

R 2
3 / (X0 (0) 1° + £x0 (0) b + €TL7) [ pyy e
aelk,qEM;'L’S IXAXQXY an

+epOuw]® — Oy (aﬁng’a) — 0, (a8$wg’5) — €0, (a@xw;”a)]

TS f w0 = (o (0) 0+ £xp (0) g + <L) - 9D

1
+J787wg’5 + eCo,wy " + 0, (Cw;”s) — ewyF|dtdrdxdy

SigN(Q) o e < o o\ oe
- /g[i(k)axsauﬂ (ady oy + 9y (adpy)) wg= (t=0)
)\n

+ (S5v5-p80y 90" + Sougf,pe°) (t = 0) dxdy = 0.

_ . C 1,0
Moreover, since [, wydr = 0, [, d;ws*dr = 0, w* is periodic in 7, v and uy" are
independent on 7, so

2
/ Xo (0) (uo + Eué’o) . (Jpahwg’a +epOywy® — O, (aﬁyw;”a) — 0y (a@xw;”a)
A n

1
—£0, (a@xwg’a) + edywg© + J@ng,a + 0wy © + Oywy® — ewy©)dr = 0.

n
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Chapter 3. Homogenization of the one-dimensional wave equation

Moreover, according to (8.93), (3.21)) and (B.123)

lim TSz f° - w)* dtdrdady = / E7 - g dtde,
20 JrxAxQxy IxQ

Slgn £ o g a,&
lim 8 Ssug- (ady ¢y + 9y (agry)) ©7° (t = 0)

e—0 axY /
n

+S505 PPy Py "+ Seug Py ey (t=0,7=0)dxdy = / (97 +h3) - @7 (t=0)da.
Q

Dividing by ¢ and passing to the limit, the equation (3I37) reads,

> / p@tTw — 8, (adyw]) — 0, (ad,w))] dtdrdxdy
I><A><Q><Y

oelk geMg

1
—/ Fy - opdtdr — / use - (J’y&w‘q’ + 0, (Cw;’)) dtdrdxdy
Ix8 IXAXQXY n

—/Q(gg—l—hg) g (t=0)dx = 0.
From the decomposition (B.I36) of ©.7 and B.I1I),
-1 o o o o
Z / {—szgn ) dim ( ) (/ p¢|p|¢q|dy) ug 017
Y

oel* peMg  ,qeMg

([ 45 (a7 + 0, (7)) dy> o

_ (—sign (q) 2im (o)™ / Yl Py dy + / 47,0, gqs‘ql dy) }dtdw
- > {/g(gﬁfl;’)-w;’(t:omm/

IxQ)
oelk geMg

F7- dtdx} 0.

From (BI12) and (3I27), so

S [ b ag - clopa) i g+ d(opa) g - e
IxQ

oel* peMg ;,qeMZ

- [/(93+h2)~90;’(t=0)d:c+/ Fj-wgdtdx}:().
Q IxQ

oelk qe Mg
Assuming that uj € H' (I x Q) and taking integrations by parts,

Z |:/ b(O’,p, Q) atug'SOZ +C(O’,p, q) 8:1:“; . SOZ
IxQ

oelk,peMg ,qEMZ

+d (o, p,q) u§~90§dtdx+/b(a,p, q) up-5 (t = 0)dx —/[C(a,p, q) u;',wog]igdtd:c]
Q I

- > Usz(gg+hg)'903(t=0)dx+/l

oelk geMg

Fy - cpgdtdx} =0.

x€)
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3.5.  Homogenization based on a first order formulation

For each o € I* and ¢ € M, by choosing test functions 7 € Hj (I x Q) the strong
form comes

N b(o.p,a) Ol + ¢ (0,p,q) Dol + d (0, p,q)ul = FY in I x Q.
peEMY

[t remains,

Z /Q Z b(o,p,q)u; —gg —hg | w7 (t=0)dz (3.141)

aefkgeﬂias peAJ%s
[ Y Lol a| ~o
IpEMf{,s
Therefore, the initial condition is deduced,
Z b(o,p,q)uy (t=0)= g7+ hy in €, (3.142)
peMg,s

and the boundary term is,

Z /I [c(o.p.q)uf - 7] Zg dt = 0 for oy satisfies (3.I00).  (3.143)

oel® peMg ,,qeMg

This formula is the same as in the proof of Lemma[36l Finally, the boundary conditions
are found exactly on the same way. W

3.5 Homogenization based on a first order formula-
tion

In this section, the homogenization is studied based on the first order formulation of
the wave equation (B.9)). This result has already been published in [94] and is to appear
in proceeding of ENUMATH 2013.

In fact, the method introduced here is inspired from in [35], except that in the
present work the two-scale transform T S; and Teon Se . are analyzed separately. In
[35], the homogenization is studied based on the first order, but the boundary condi-
tions of the homogenized model was not found. Therefore, establishing the boundary
conditions of the homogenized model is critical and is the goal of this section which
also extends [65].

To this end, the wave equation is written under the form of a first order formulation
and the modulated two-scale transform W , which is defined as in [35], is applied to
the solution U®. Similarly to the homogenization based on the second order formu-
lation, the homogenized model is also derived for a set of pairs of fibers I* defined
in (L3]) which allows to derive the expected boundary conditions. The weak limit of

> WEU*® includes low and high frequency waves, the former being solution of the
ocIk
homogenized model derived in [33], [60] and the latter are associated to Bloch wave

expansions. Numerical results comparing solutions of the wave equation with solution
of the two-scale model for fixed ¢ and k are reported in the forthcoming Section
The calculations are less detailed than the model in Section only the main results
and the proof principles are given.
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Chapter 3. Homogenization of the one-dimensional wave equation

3.5.1 Reformulation of the wave equation under the first order
formulation

Similar to Section 2.4] in Chapter [2 for the case of the spectral problem, we start by
setting,

£ 1
= (Va 0,0 NP0, A7 = ( y 0 Ve, (=) ) |
7

Us == (Vazd,ug, v/pfug) and F© = (0, f°//p).
We reformulate the wave equation ([B.9) as an equivalent system,
(O — A)US = FFin I x Q, U (t =0) = U¢ in Q and U5 = 0 on I x OQ,

where U5 is the second component of U®. From now on, this system will be referred
to as the physical problem and taken in the distributional sense,

/ Fe- U 4 U°- (0, — A% \I/dtdx+/U§-\I/(t:O) dx =0, (3.144)
IxQ Q

for all the admissible test functions ¥ € H'(I x Q) such that W (¢,.) € D (A?) for a.e.
t € I where the domain
D(A%) = {(p,0) € L* ()" |Varp € H' (Q),¢/p € Hy (V)}.

As proved in [35], the operator iA° with the domain D(A®) is self-adjoint on L?(Q)2.
According to the assumption ([B.I0), U* is uniformly bounded in L? (I x ), see detail
of proof of Theorem 3 in [35].

3.5.2 Homogenized results and proofs

The Bloch wave spectral problem P(k) in (L3 is also reformulated under the first
order formulation as in (Z54]) in Section [Z4] in Chapter 21 For each k € Y*, n € Z*,

we also pose
M:F = {m e Z*|)\‘m‘—)\|n| and sign (m) = sign (n)}

and introduce the HF-macroscopic model coefficients

sign (n

kp,zQ\/f

for any p,q € M*. For any k € Y*, we introduce the operator W¢ : L? (I x 9)2
L2 (I x A x Q x Y)? acting in all time and space variables,

WE = x, (k) <1 - H2> Sg+ Y TR SE (3.145)

nez* oclk neZ*

/Y¢|];;| ‘a8y¢@| - aﬁygbﬁ)‘ ‘¢|kq|d?/ and b(k,p,q) = /Ypﬁbﬁﬂ : ¢ﬁ;|dy

where af , the time and space two-scale transforms T°% and S¢ are defined in (1)

and (LI3), the one-dimensional L?—orthogonal projector I1¢ onto €7 are defined in
k

[35]. Thanks to the boundness of 7°I»l and S%, it is proved that,

2 2
HWEUHH(MAxQxy) = ”U”m(zxg)- (3.146)
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3.5.  Homogenization based on a first order formulation

For a function v (¢, 7, x,y) defined in I x A x 2 x Y, we observe that

A7k, — Bt ((% + B) v) and 3, (BEv) — B <<Ei; 4 at> v) . (3.147)

In|

where the operators Ay and B are defined in (2.52) and ([2.57).
After extraction of a subsequence, we introduce the weak limits of the relevant
projections along e* for any n € Z*,

FF .= lim Tm\kn\SiFe - S m2AnT ok gy dr and UF = lin%/ SEUE - ek dy.
’ e=0 Jy

" e—0 AXY

(3.148)
The low frequency part UY relates to the weak limit in L2 (I x Q x Y))* of the kernel
part of S§ in It has been treated completely, in [33, 35]. Here, we focus on
the non-kernel part of S, it relates to the high frequency waves and microscopic and
macroscopic scales. In order to obtain the solution of the model, we analyze the
asymptotic behaviour of each mode through Tm\kn\S;j as in Lemma 2] and Lemma [43]
stated below. Then the full solution is the sum of all modes. The main Theorem states
as follows.

Theorem 41 For a given k € Y*, let U¢ be a solution of (3.174) bounded in L* (I x ),
for € € Ey, as in (L33, [I0), the limit Gy, of any weakly converging extracted subse-
quence of S WEU® in L? (I x A x Q x Y)? can be decomposed as

o€lk

G (6o ) = xa M US (o) + 3 (o)™ ™57 er () (3.149)

oc€lk nez*

where (ug)w
Lemma [[3

are solutions of the HF-macroscopic equation (3.153)-(3.153) stated in

Thus, it follows from (B.I49) that the physical solution U is approximated by
two-scale modes

US (1) ~ o (k) UY, (t,x,§)+ ST ug () N e (g) (3.150)

ocEI* nez*

Proof. [Proof of Theorem [dI] For a given k € Y*, let U¢ be solution of (B.144]) which is
bounded in L*(Ix (), the property (B:148)) yields the boundness of IWSU L2 (rxaxaxy)

for o € I*. So there exists G¥ € L? (I x A x Q x Y))* such that, up to the extraction
of a subsequence, Y WZU® tends weakly to

ocIk

Gh=xo(k)UF+ > UlinL*(IxAxQxY)>

oclk nez*

The high frequency part is based on the below decomposition (BI52) and Lemma (A3
|

The next lemmas state the HF-microscopic equation for each mode and the corre-
sponding HF-macroscopic equation.
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Chapter 3. Homogenization of the one-dimensional wave equation

Lemma 42 For k € Y* and n € Z*, let U° be a bounded solution of (3.144), there

exists at least a subsequence of Tm\kn\S,an converging weakly towards a limit U* in
LA (I x AxQxY)? when e tends to zero. Then UF is a solution of the weak formulation
of the HF-microscopic equation

(%—Ak>U,’j:0mI><A><Q><Y (3.151)
o
In]
and 1s periodic in T and k—quasi-periodic in y. Moreover, it can be decomposed as
Uk (t,r,2,y) = Z u’; (t,x) eSign(p)Qi”Te]; (y) with u]; cL?*(IxQ). (3.152)
peMk

Proof. [Proof of Lemma (2] The test functions of the weak formulation (B.I44) are
chosen as W& = BEW (¢, 2) for k € Y*, n € Z* where U € C™ (I x A xQ x Y)? is peri-

odic in 7 and k—quasi-periodic in y. From (B.I47) multiplied by ¢, since (aa,g — Ak) v

In]

k
is periodic in 7 and k—quasi-periodic in y and Tm\k"\S;te — U, inL*>(IxAxQxY)
weakly, Lemma, [§ allows to pass to the limit in the weak formulation,

/ Uy 8; — Ay | Vdtdrdzdy = 0.
IXAXQXY O“n|

Using the assumption U* € D (A;) N L? (I x Q x Y; H' (A)) and applying an integra-
tion by parts,

/ - akT + Ay U,’f-\lldthd:Edy+/ Uk - Vdtdrdzdy
IxAXQXY I

O“n| XOAXQXY

— / Uk -y, Vdtdrdzdy = 0.
IXAXQXOY

Then, choosing ¥ € L* (I x Q; H} (A x Y)) comes the strong form (3I51). Since the
product of a periodic function by a k—quasi-periodic function is k—quasi-periodic then
na, V¥ is k—quasi-periodic in y. Therefore, UF is periodic in 7 and k—quasi-periodic in
y. Moreover, (BI52)) is obtained, by projection. B

Lemma 43 Fork e Y*, n € Z* and ¢ € Ey as in Assumption (T4}, let U* be a bounded
solution of ([F174) such that the weak limit U7 of T**mS;U satisfies (3153). For
each o € I* and q € M?, if uy € HY (I x Q) then uy is solution of the HF-macroscopic
equation stated by

> b(o,p,q) g — Y c(o.p,q)dpul = F7 in I xQ,

1761\4‘7 pEMU
' i : 3.153
>, blo,p,q)ug (t=0)="Ug, in Q, ( )
peEMZ

with the boundary conditions in the case of k # —% where there exist p € M¥ such that

c(k,p,q) #0 and ¢(0) #0

D ey (0)e T =0 on I x 00 (3.154)

oelk.peMg
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3.5.  Homogenization based on a first order formulation

and in the case of k = —1 where M} = {n,n'}

(¢ (k.n,n) ¢l (0) — c(k,n',n) ¢, (0)) up (3.155)
+ (c(k,n,n') ¢ (0) = ¢ (k,n/,n) ¢, (0) by = 0 on I x O

Proof. [Proof of Lemma 3] For k € Y*, let (A7 it p)peMU selk

modes of the spectral equation Q (o) corresponding to the eigenvalue )\‘kn‘. We pose

be the Bloch eigen-

=) WUl e H' (I xQ)°

ocIk

as a test function in the weak formulation (B.I44) with each

\I,U t T y Z 90 szgn(q)2i7r7-eg <y)

qeEMF

where ¢ € H' (I x Q) and satisfies the boundary conditions

Z esign(q)Qiﬂt/(Eaﬁl‘)¢Z,8 (t, ZL‘) gbﬁll <§> =0 (5) on I x €.

oIk gqe Mg

Note that this condition is related to the second component of U¢ only. Since Ozﬁz‘ = afn‘

and sign (q) = sign(n) for all ¢ € M? and o € I*, so ™" D¥™/ ) o () can be
eliminated. Extracting a subsequence ¢ € Ej, using the o—quasi-periodicity of gb‘q‘
and (L3WLAT), < converges strongly to some ¢7 in H' (I x Q) as in Lemma 37
then the boundary conditions are

A kg
Z gy (t,z) o7y (0) eSO — g on T x 0N (3.156)

oelk geMg

Applying ([BI4T) and since (ﬁ: o) U = ( for any o € I*, then in the weak

[n|

formulation it remains,

/ Fe-BOWT 4 U - B°(0; — B) Wdtdx — / Us - B0 (t = 0) dx = 0.
IxQ

oclk &

Since (0, — B) V7 is o—quasi-periodic, so passing to the limit thanks to Lemma [§
after using (BI48) and replacing the decomposition of U?,

> (/ b(0,p,q)us - Ol — c(0,p,q)us - Dup — FY - didx
IxQ

oel* {p,gyeMy
- / Uy g (t=0) d:c) =0 for all ¢7 €H" (I x Q) fulfilling (BI50).
Q

Moreover, if u7€ H' (I x Q) then it satisfies the strong form of the internal equations
B2Z1) for each o € I*, ¢ € M? and the boundary conditions

Z cl(o,p,q)uypd =0 on I x 9 for p7 satisfies ([B.I50). (3.157)

J,p,q
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Chapter 3. Homogenization of the one-dimensional wave equation

In order to find the boundary conditions of (ug)mp, we distinguish between the three
casesk#o,kzoandk:—%.

First, for k& # 0, )‘\kn| is simple so M} = {n}. Introducing C = diag (c(c,n,n)),,
B = dwg (b(o,nn)),. U = (u),, F = (F]),. Uo = (Ug,),, T = (¢7),, © =
< gsign(o)2imltx/ O‘) , Equation ([B.21) states under matrix form

BO,U +CO,U = Fin I x Qand BU (t = 0) = Up in Q, (3.158)
which boundary condition (BI57]) is rewritten as

CU (t,z).W (t,r) = 0 on I x 9 for all ¥ such that ®(x).U(t,2) =0 on I x I.

Equivalently, CU (, z) is collinear with ®(z) yielding the boundary condition
. kg L
uflgb‘kM (0) 2t +u;k¢|_n]f (0) e 2™ = 0on I x 00

after remarking that ¢ (k,n,n) # 0 and ¢ (k; n,n) = —c(—k,n,n).
Second, for k = 0, A}, is double X}, = X}, so MF = {n,m}. With C =

(¢(0.2,9)) e B = (0(0,p,0)),, U = (up) , F = (Fg)q, Up = (U8y),» ¥ = (£5),,
o = (¢?q| (0))q, the matrix form is still stated as (BI58). Here, the eigenvectors are

chosen as real functions then ¢ (0,p,p) = 0. Since ¢(0,n,m) # 0, so the boundary
condition is

Up @iy (0) 1, @) (0) = 0on I x 99

Finally, for k = —1, )‘fnl is double )\fn‘ )\‘m‘ so M* = {n,m}. By using the same
way for k = 0, the boundary condition (3.I5H) is obtained. W

Remark 44 This method allows to complete the homogenized model of the wave equa-
tion in [35] for the one-dimensional case for any K € N* by choosing a sequence
e € Eyk as in Assumption For any k € L3, defined in (L2), we denote

= kK € N, so 22 = p [ % } + ppll and ppll — IF = ppl' when ¢ — 0 with
the same sequence of € € Iy k.

3.6 Numerical examples

We report simulations regarding comparison of physical solution and its approximation
for the homogenized model under the first order formulation for 7 = (0,1), Q = (0, 1),
p=1,a=1(sin(2ry) +2), ff=0, v;=0,c =15 and k = 0.16. Since k # 0, so the
approximation (B.I50) comes

Us (t.2) ~ o (1 p) SNt o (f> 3.159

ocEI* nez*

The validation of the approximation is based on the modal decomposition of any

solution U® = > RY (t) VS (x) where the modes V7 are built from the solutions v}
lez*
of the spectral problem 0, (a*0,vf) = Ajvj in Q with v; = 0 on 0€2. Moreover, in

Chapter 2] two-scale approximations of modes have been derived on the form of linear
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3.6. Numerical examples

combinations ) 07 (z) &7, (£) of Bloch modes, so the initial conditions of the physical
oelk
problem are taken on the form

u(e)= Y. G@er (). (3.160)

neN* oelk

Two simulations are reported, one for an initial condition ug spanned by the pair
of Bloch modes corresponding to n = 2 when the other is spanned by three pairs
n € {2,3,4}. In the first case, the first component of U5 approximates the first
component of a single eigenvector V;° approximated by ([B.I59) where all coefficients
u? = 0 for n # £2. Figure Bl (a) shows the initial condition wug, when Figure
B (b) presents the real (dash line) and imaginary (dashed-dotted line) part of the
initial condition uf,,, and the real (dot line) and imaginary (solid line) part of the
initial condition ugﬁ of HF-macroscopic equation. Figure (a,b) report the HF-
macroscopic solutions (uﬁ,u;k) at t = 0.466 and = = 0.699 respectively for the real
(dash line) and imaginary (dashed-dotted line) part of u*, and the real (dot line)
and imaginary (solid line) part of u_*. In Figure B3 (a,b) the first component Uf of
physical solution and the relative error vector of Uj with its approximation are plotted
which L?(I)—norm is equal to 8e-3 at z = 0.699. Moreover, Figure (a,b) focus on
the real part of the first component U; of physical solution and the relative error vector
of Uf with its approximation which L?(€2)—norm is equal to 7e-3 at ¢t = 0.466. For
the second case where u? = 0 for n ¢ {£2,+3, £4}, the first component U and the
relative error vector of U with its approximation at ¢ = 0.466 which L?(Q)-norm is
3.8e-3 are plotted in Figure (a,b). Finally, the first component U and the relative
error vector of U with its approximation are provided in Figure (a,b) which the
L*(I) -relative errors at x = 0.699 on the first component is 3.5e-3.

3 ‘ _a ‘ b)

£
0
-k
and UO,n
-
v
L

e
2]

k
0,n

Initial condition u
o

|
o
2]

Initial condition U

1
=y

-3

0.2 0.4 0.6 0.8 1

o

0.6 0.8 1

Figure 3.1: (a) Initial condition uf. (b) Initial conditions of HF-macroscopic equation
k —k
ug , and ug .
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g = :
o 05f ] S
u ]
= x
-
_‘N or ;B
L c [
2 T )
° .., °
S -05 L g

xc | e -
: ¥==

1 . . . .
0 0.2 0.4 0.6 0.8 1

Figure 3.2: (a) HF-macroscopic solutions u* and u* at ¢ = 0.466. (b) HF-Macroscopic
solutions u® and u,* at z = 0.699.
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Figure 3.3: (a) Physical solution U at = 0.699. (b) Relative error vector between
Ui and its approximation in L?(I)-norm is 8e-3.
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Us and its approximation in L?(Q2)-norm is 7e-3.
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Figure 3.5: (a) Physical solution Ui at ¢t = 0.466. (b) Relative error vector between
Uf and its approximation in L?(Q)-norm is 3.8e-3.
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Figure 3.6: (a) Physical solution U at = 0.699. (b) Relative error vector between
Us and its approximation in L?(I)-norm is 3.5e-3.
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Chapter 4

Homogenization of the spectral
problem in a two dimensional strip
including boundary layer effects
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Abstract In this chapter, we present a result for periodic homogenization of the
spectral problem in an open bounded strip 2 = (0, a) x (0,g) C R%. The results focus
on the high frequency part of the spectrum and corresponding eigenvectors, which
is addressed by a method of Bloch wave homogenization, including boundary layer
effects. The oscillations are occurring at the microscopic scale and their amplitudes
are governed by a system of first order boundary value problems and by a boundary
layer equation.

4.1 Introduction

This chapter is concerned with the study of periodic homogenization of the spectral
problem

—div (a*Vw®) = X p w*®
posed in an open bounded strip 2 = w; x (0,¢) C R? with w; = (0,a) C RT and the
boundary conditions

w® =0 on dw; x (0,¢) and a°*V,w".n, =0 on w; x {0,¢}.
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Chapter 4. Homogenization of the spectral problem in a two dimensional strip

An asymptotic analysis of this problem is carried out where ¢ > 0 is a parameter
tending to zero and the coefficients are e—periodic, namely ¢ (z) = a (%) and p° (z) =
p (£) where a(y) and p(y) are Y —periodic with respect to a lattice of reference cell
Y C R

In this work, we search eigenvalues \° satisfying the expansion
N =\ 4 e +20 (e). (4.1)

It comes that A\’ is equal to an eigenvalue )\Z solution of the Bloch wave spectral
problem (L23) for k € Y* = [-1 1) and n € N*.

T 202
The physical eigenvector w® is approximated by a sum of Bloch waves and boundary

layer terms,

(@) D0 Y (o) o, (2) b (2) +uis (O‘;x> if k ¢ {0, —%}

oce{—k,k} m

(4.2)

and w° (z) = u (x) oF <£>+w0 (£>+w°‘ S otherwise
() Zn: m (21) oy, - bk \ 2 bk - w

where the sum 3 runs over all modes ¢, with the same eigenvalue A*. The Bloch

wave amplitudes (uF ),, are solution of a first order system of differential equations

constituting the high frequency macroscopic problem. In particular, for k ¢ {O, —%
and for each n, the high frequency macroscopic model has the following form, where
o € {—k,k} and | € N* such that A = \F,

Zc(a,m, 1) 0p,ul, — A'b(o,m, 1) u?, =0 in wy, (4.3)

1 %m
m

with boundary conditions

Z sign (o) eg (o, m, 1) uZ, (0) 5770 =0 (4.4)
cef{k,—k},m
and Z sign (o) eq (0, m,)us, (@) d, " = 0.
oef{k,—k},m

We observe that the two partial differential equations in ([€3]) are not coupled by k
and —k, the coupling is due to the boundary conditions only. Moreover, w,?vk and wy,
are solution to the boundary layer equation stated as

—div, (aVywy}y) — A pwyy = 0in RT x (0,1), (4.5)
wyy, = — Z Zu‘,’n (71) ¢, in {0} x (0,1) and aV,wy}.n, =0 on RT x {0,1}

oe{—k,k} m

and wy}. is exponentially decaying when y; — oo.
for z; € {0, a}.

This chapter is organized as follows. Section is devoted to the statements of
the models and of the main result. Section includes the model derivation.
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4.2. Statement of the results

4.2 Statement of the results

We consider an open bounded domain ©Q = w; X we with w; = (0,a) C R* and
we = (0,¢) with ends I'.,,q = 0w X wy and lateral boundary I'j,; = wy X Jwy. As usual
in homogenization papers, € > 0 denotes a small parameter intended to go to zero. A
2 x 2 matrix a® and a real function p°® are assumed to obey a prescribed profile,

a® :=a (g) and p° :=p (g) , (4.6)

where p € L (R?) and a € W1 (R2)*** is symmetric. They are both Y —periodic
with respect to the reference cell Y C R2. Moreover, they are required to satisfy the
standard uniform positivity and ellipticity conditions,

p° < p<ptand a|[¢|]" < ETag <a'|[¢])* for all € € R (4.7)

for some given strictly positive numbers p°, p', a” and a'. We consider (A°, w?®) solution
to the spectral problem

—div, (a°V,w®) = Xp°w® in Q with w® =0 on T4, (4.8)
a*V,w'n, = 0on I, and HwEHLQ(Q) = /.
We set H{ (Q) = H!

end

Q)N HL, () where

H! ( ):: {ve H' (Q) [v=00n Ty},
and Hy, () :={ve H' (Q) | a°V,v.n, =0o0n Iy}

Then the eigenvectors w® belong to H?(Q) N HE () and we search the eigenvalues
such that,
207 = A+ e 4+ 207 +£%0(e). (4.9)

The weak formulation of the spectral problem (&S] is: find w® € HL(Q) such that
/QaevzwE Vv doe = )\E/Qpew6 v dz for allv € H. ,(9). (4.10)
Posing v = w®,
o [ eV o= X iy 07
Since £2)° is bounded, then

g! / o |eVwd|* dr < e2X° 105 pooy < €
Q
so the uniform estimates

1
%HEwaEHLz(Q < c and <c (4.11)

7 [l 20
hold.
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Chapter 4. Homogenization of the spectral problem in a two dimensional strip

4.2.1 Assumptions

For k € Y*, let w® be a sequence satisfying the uniform bound (@IT]), we consider a
subsequence Sfw® converging weakly to w”® in L? (w; x Y), i.e,

Scw® (z1,y) = w¥ (x1,y) + O (¢) in the L? (w; x Y) weak sense. (4.12)

Then, we pose

wiy (@) = (1) = 3 (R7w) (x), (4.13)

oclk

and assume that there exists at least a subsequence of Sjwj, converging weakly to-

wards a function wy, in L* (Y;}) when ¢ tends to zero for any ¥ € {0, a}, i.e,

(SPw; ) (y) = why, (y) + O (¢) in the L* (Y}) weak sense. (4.14)

4.2.2 The model

For k € Y*, n € N*, a given Bloch eigenvalue A\’ = AZ and 9 € {0, a}, the boundary
layer equation is stated as an Helmholtz equation

—div, (aVywy,) — A’pwy, =0 in Y, (4.15)

[ o _ + [ _ +
Wy = — E w’ (ry = 3J) on Vooena and aVywy p.n, =0 on v .,
oelk

and w}ik is exponentially decaying when y; — oo.

Remark 45 For the moment the Helmholtz equation with an exponentially decay has
not been analyzed for time reason.

The solution w}ik is called the boundary layer term. In the scope of this work, we

assume that this solution is unique. Hence, we can define the linear operator

Lo HZ(vh,) — HY(YY)

4.16
9 = v=L(g) (416)
such that v is the solution of ([@IH]) with v (0,y2) = g (y2) in Y. We introduce
~k,0 k ko sign(k)2iml* k
(bn = (bn (07 y2) dy2 and ¢n =™ (bn (07 y2) dy27 (417)
Yo Yo
and define the set
M} = {m € N* such that Ay, = \*}. (4.18)

For p,q € M*, the HF-macroscopic model coefficients are

c(hopoq) = / a0 - ¢ — ¢ - aV, ¢k dy, bk,p,q) = / pol - o dy, (4.19)
Y Y

d(k,p,q) = /YWy (5 — L (04 (0,12))) 1y - ¢ (31 = 0) dya, (4.20)

€0 <k7p7 Q) = C<k7p7 q) - d<k7p7 q)7 €a (kvpu q) = —C (kvpu q) - d<k7p7 q) 7(421)
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4.2. Statement of the results

and observe that,

C<k7p7 q) = C(_k7p7 q)) C<k7Q7p) = —C <k7p7 Q)J C(k7p7 q) = —C (_kuqvp)7

b(k,p,q) = b(k,q,p), b(k,p,q) = b(—=Fk,p,q), b(k,p,p) >0,

d (k7p7 Q) = d<_k7p7 Q)u €0 (kvpu q) = € (_k7p7 Q) and €a (kvpu q) = €q <_k7p7 q)

In particular, for £ = 0, for the real eigenvector, ¢ (0,p,p) = 0.
For any k € Y* and n € N*, the HF-macroscopic model is introduced corresponding
to a Bloch eigenvalue \°. For k € Y™\ {O, —%}, the solutions of the HF-macroscopic

model are the family of pairs (uk u; solution to the system of equations

k)
P’ P pGMnD ,neN

Z c(o,p,q) Opuy, — Mo (o, p,q) uy =0 in wy, (4.22)

pEMYT

with the boundary conditions

. p ~0,0
Z sign (o) eo (o, p,q)uy (0) ¢, = 0 (4.23)
oelk peMa
and Z sign (o) eq (0,p, @) uj (@) ¢, = 0.
celk peMg

For k € {0, —%}, the family (u’;) is solution to the system of first order

problems where ¢ € M*

pEME neN*

Z c(k,p,q) 89@1”]; —Mb(k,p,q) u]; =0 in w;. (4.24)

pEMYT

4.2.3 Two-scale asymptotic behaviour

Theorem 46 For a given k € Y™, let (A\°,w®) be a solution of the weak formulation
(#-10) satisfying the uniform bound ({{.11)) then Siw*® is bounded in L* (wq X Y'). Take
a subsequence of we that the weak limit of Siw® in L* (wy X Y) is non-vanishing and
that the renormalized sequence €*)° satisfies a decomposition as ([f-9), there erists
n € N* such that \° = \* with \¥ an eigenvalue in the Bloch wave spectrum and the

limit g, of the weakly converging extracted subsequence of > Scw® in L? (wy X Y) can
oelk
be decomposed on the Bloch modes,

ge= Y ul()e](y) (4.25)

oelk peMg

where u’; € L*(wy). Moreover, for o € I* and ¥ € {0,a}, we assume that the
assumption (4.17)) is satisfied, and that w’ and w}ik are sufficiently reqular solution to
get the strong form then w}ik is solution of the boundary layer equation (£.13). Finally,
for e € By as in Assumption[14) if u’; € H' (wy) then (Al,u’;) is a solution of the HF-
macroscopic models ([{-23), [{-24) with boundary condition ([-23) for k ¢ {0,—1}.
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Chapter 4. Homogenization of the spectral problem in a two dimensional strip

From Theorem [l and the expansion (L.I3)), w® can be approximated by two-scale
modes

NOEEDY 1@@mﬂ%<§)+2£$<§)+uﬁk(a;$)' (4.26)

oIk peMg

Remark 47 (i) If c (k,p,q) = 0 for all p, q varying in MF, the macroscopic equations
#23) and [{23) are \' = 0 or u = (ug)p = 0 with the boundary condition at
x1 € {0,a} for all g € MF

> sin(o)dopaug 003" =0 forkg {03

oelk peMg

If \' = 0 then this model does not provide any equation for ug satisfying 4-27).

(ii) For k # 0, if oF (0,y2) = 0 then ¢* (1,y5) = 0 and gbkm is a periodic solution in
Y1 that is a solution of k = 0. So we consider always that (;S (0,y2) # 0 for the case
k # 0. Moreover, for all ¢ € MF, if fy (0,y2) dy = 0 then the boundary conditions
of the macroscopic equation vamshes

iti) For k ¢ {0,—1}, we observe that the matriz

c=<@%%®hqkhézwm>

15 skew-symmetric with even-dimension, as we know that its eigenvalues always come
in pairs £=A.  From the spectral theorem, for a real skew-symmetric matriz C, the
nonzero eigenvalues are all pure imaginary and thus are of the form i\, —i\{, ilg,
—iXa, A3, —iA3,.... where each of the \, are real. Hence, the boundary condition
(4-23) is found based on the properties of anti-symmetric matriz iC' and the relation
between eigenelements ()\fl,gbfl) and ()\;k,gb;k). Howewver, this does not apply in the

cases k=0 and k = —% since the size of matriz C = (c(k,p,q)),,, can be even or odd.

Remark 48 Here we focus on the Bloch spectrum while the boundary layer spectrum
15 not mentioned. To avoid eigenmodes related to the boundary spectrum, according to
Proposition 7.7 in [8] we assume that the weak limit of Siw® in L* (Q; H'(Y)) is not
vanishing. Moreover, we observe that the weak limit gy, of subsequence of > SZw® in
oelk
L? (wy X Y) has the same form in one dimension in [95]. In fact, the processes and
methods are extended trivially from the one-dimensional case, except what refers to the
HF-macroscopic boundary conditions which need to applied the boundary layer term.
However, this boundary layer term is not related to boundary layer spectrum and also
not to the HF-microscopic equation. It plays a role as a corrector in the asymptotic
behaviour of the macroscopic eigenvectors.

Remark 49 The analysis of the Helmholtz equation (.13) for the boundary layer
problem has not yet been carried out. In particular, it remains to exhibit a family of
exponentially decaying solutions.

Remark 50 The case \° = )\k = )\k/ s not considered as a special case, two different
models corresponding to k and k'.
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4.3 Model derivation

In order to prove the main result, we introduce some preliminary homogenized results
and their proofs are reported in Section L.3.1] 1.3.21 and 1.3.3. Finally, Theorem M6l is
proved in Section [£.3.4]

4.3.1 Derivation of the HF-microscopic equation

The next lemma states the HF-microscopic equation for each k € Y* and n € N*.

Lemma 51 For a fired k € Y*, let (\°, w®) be solution of the weak formulation ({{-10),
and satisfy ({-9) and ([11)), there exists at least a subsequence of Sgw® converging
weakly towards a non-vanishing function w* in L? (w; x Y), when € tends to zero,
which is a solution of the very weak formulation of the HF-microscopic boundary value
problem where \° = )\fl for an n € N*|

—divy (aV,w") = Npw inwy x Y, (4.28)

w is k-quasi-periodic in yi, (avywk).ny s k-anti-quasi-periodic in iy,
and aV,wFn, =0 on wi X ¥4

Moroever, assuming that w* is sufficiently reqular solution then it admits the modal
decomposition,

wh (w1,y) = > ub, (11) @, (y) for uf, € L? (wn) (4.29)

meMk
ith : k d —k
with conjugate u,, and u,," .

Proof. [Proof of Lemma [51]
For a given k € Y*, for v (z1,y) a k—quasi-periodic function in y; such that

aVyvn, =0 on wy X Yy, (4.30)
we choose test functions as

v° = (W) (z) € H,

end

(Q) N H?(Q) (4.31)

in the weak formulation ({LI0) of the spectral problem. Applying the Green formula
so that to put all derivative terms on test functions,

— / w® - div, (a°V,0°) dx +/ w® - a*V ot n, dv = \° / pow - v° da.
Q a0 Q

Using the definition P¢ = —div, (a*V,.) and since w® = 0 on [',4, so
/ w® - (P — \*p°) P da + / w® - a*V, Rvn, dr = 0. (4.32)
Q Flcr,t

Observing that,
1
Nn,.a°V, R0 = R* (ad,,v.n,) + —R* (aV,v.n,)
€
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Chapter 4. Homogenization of the spectral problem in a two dimensional strip

and using the condition (£30)), it remains,
n,.a°V, R0 = R* (a0, v.n,) . (4.33)

Applying (@33), ([£3) and (IL38), so in Equation ([@32) it yields,

Fla,zt

2
/ w* - Z e"RY (P — N> "pv) dx + / w® - R (ad,,v.n,) dv =0 ().
Q n=0
Multiply by &2,

/ w® - R* (P?v — Npv) dx + e/ w® - R* (Plo— Npv) de=¢0 ().
) Q

Since P?v — A\°pv is k—quasi-periodic in y;, from the approximation (L31I) of :R* by
Sex,

/ we - Si* (P?v — Apu) dx + e/ w® - S (Plv — N pv) de =20 (e).
0 0

Or equivalently,
Siw® - (P?v = Xpv) dzydy = O (g).

w1 XY

Since S{w® — w” in L? (w; x Y) weakly when ¢ tends to 0, passing to the limit,

/ w” - (PQU — )\Opv) dz dy = 0,
w1 XY
or equivalently,
—/ w® - div, (aV,v) + w* - \pv daydy = 0.
w1 XY
Assume that w* € L? (wy; H? (Y)) and take the integrations by parts,

/ —div, (avywk)-v—)\owkpv dxldy—i-/ —wk-avyv.ny+avywk.ny-v dz1dy = 0.
w1 XY

w1 x0Y

Hence, choosing test functions v € L? (wy; H2 (Y)) yields the strong form,
—div, (avywk) — Npwk =0inw; x Y.

So, the boundary term remains,
/ w” - aVyv.n, — avywk ~v.ny, dridy =0
w1 XY

for general test functions v a k—quasi-periodic function in y; satisfying (£30). Equiv-
alently,

/ wk-avyv.ny—avywk.ny-v dxlder/ wk-avyv.ny—avywk.ny-v dzidy = 0.
W1XYend

W1 XYqt
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4.3. Model derivation

This implies that w”* and avywk.ny are respectively k—quasi-periodic and k—anti-
quasi-periodic in the variable y;. Furthermore, since aV,v.n, = 0 on w; x v, then

k —
aVyw".n, =0 on wy X v,.

From the positive self-adjoint of operator P? (P?), we know that A’ is an eigenvalue
)\ﬁ of the Bloch wave spectrum, then w" is a Bloch eigenvector and is decomposed as

wh(z,y) = Y ub, (21) ¢F, (y) with uf, € L? (wy)
meMk
where

it () = /Y W1, y) - ¢ (9)dy.

Moreover, for k # 0, the property S;w® = 5% w® for any positive ¢ is conserved to the

limit w* = w=*. Finally, u* and u_* are conjugate i.e. u* = u-F since ¢* = ¢ * m

Remark 52 There is an alternative:

1. If X% is a Bloch eigenvalue then Sews converges weakly to a solution w* such that
the partial function y — w* (.,y) is an internal Bloch mode.

2. Otherwise, \° is not a Bloch eigenvalue and there exists no solution of the above
problem and so the weak limit w* = 0.

4.3.2 Derivation of the boundary layer equation

The next lemma establishes the boundary layer equation (AI3]) where we introduce
the notation

wy (y) = w* (9, y) (4.34)
extended by quasi-periodicity to Y.

Lemma 53 For (A\°,w®) solution of the weak formulation {[.10) satisfying {{.9) and
(4-17), let ()\0, wk) be solution of the very weak formulation of {{-28), if the assumption
(4-14) is fulfilled for 9 € {0, a}, then the boundary layer term w}ik is a solution of the
very weak formulation of the boundary layer equation ({{-17),

— Z / (Z wy + w}ik> - (divy (avyv,’f) + )\Opv,’f) dy = 0.
9e{0.a} Y% \oer

for all v € H71+ (YZ) 0 H? (Y}E) such that aVyvgn, = 0 on vL .. Moreover, if

nd

w§ € H*(Y}) and wy, € H*(Y)) then it is a solution of the equation ([{.15).

In order to prove Lemma 53] we start by proving the next one stating the relation
between the

Lemma 54 For any w* in L* (w, x Y),

Sy (R ) (y) = wj (y) + O (e) in L* (V).
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Chapter 4. Homogenization of the spectral problem in a two dimensional strip

Proof. According to the definition (IL32]) of the boundary layer two-scale transform
S, we get
Sy (mkwk) () = (%kwk) (€Y) X(0,0/2) (Y1) -

Since (RFwk) (z) = wk (21,%), so

(g%szk) <€y) ::TUkt<€y17y)7
hence,
Sy (") (y) = w* (21, ¥) X(0.070) (W1) -

Moreover, w* (41, ) X(o,.a/¢) (41) = w* (0,y) xg+ (y1) in L? (Y3) when & — 0, then,
Sy (RFw) (y) = w* (0,y) + O () in the L* (V).

Similarly, the definition (L33) of the boundary layer two-scale transform S5 implies
that,

S (RPw?) (y) = (R*w®) (—eyr + @, 202) X(./0) (1) -

Since (RFwk) (z) = wk (21,%), so
(RFw*) (—eyr + o, ey) = w" <_5y1 + a, %ﬂa ?/2) ;

then,
——5y14+—a

Sy (%kwk) () = w (—€y1 + a, ,y2> X(0,a/e) (Y1) -

Since w" (—5?/1 +a, 7€y€1+a, yz) X(0,0/e) (Y1) = w* (a, y) Xg+ (y1) in L (Y) when e —

0, therefore,

Sy () (y) = w* (a,y) + O (e) in L (YS).

|
Assuming that for each o € I*, w7 is sufficiently regular so that

(P* =A%) w’ =0inY forall z; >0 (4.35)
implies the equality at the boundaries
(P?=Xp)w” =0inY at z; € {0,a}. (4.36)
Applying to Lemma [54],
(P* = Xp)w§ =0in Y} for o € I* and ¥ € {0, a} (4.37)

in the very weak sense with test functions such their value and their derivatives vanish
on the boundary. By periodicity, the boundary condition on the lateral boundary is

aVywg.n, =0 on vl 4, (4.38)

In addition, from (EI3)), the eigenmode w® is rewritten by

w'(z) = Y (R7w”) (z) + wiy (x) . (4.39)

ocIk
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4.3. Model derivation

According to the assumption (LI4)),
Sw® (y) = wl” (y) + wy (y) + O (¢) in the L? (YD) weak sense. (4.40)
oclk

Proof. [Proof of Lemma B3] For each ¢ € {0,a}, let v € Hb (Y))yn H*(Y))

oo,end
such that

aVyvp.n, =0 on v ., (4.41)
we choose v° = Y R’ € H!  (Q)N H?(Q) as a test function of the weak

9€{0,a}
formulation (LI0). Applying the Green formula so that to put all derivative terms on
the test functions,

— / w® - div, (a°V,0°) dx +/ w® - a*Vutn, dv = \° / pow - v° da.
Q a0 Q

Since w® = 0 on I',4, so,
— / w® - div, (a°V,0°) dx + / w® - atV utn, do = \° / P w - v° dx.
Q Flai& Q
Equivalently,

Z [/ w® - (PE — X p°) Rvy da +/ w - a*V,RYvy n, dx] = 0. (4.42)
9e{0,a} Q Diat

Since v is independent on =,
1
n..a°V,Ryvy =nyg—Ry (aV,vp.n,) (4.43)
€

with ny = —1 for ¥ = 0 and ny = 1 for ¥ = «. Applying (£43), (£9) and (L3]), so
in Equation (£42) yields,

Z {/ w - e PRy (PPv) — Apvy)) dx — / w® e AR (pv)) dx
9€{0,a} Q Q

— / w® - \2RY (pv}f) dz + / w® - nge RY (avyvbﬁ.ny) d:p} =0(e).
Q Tiat

According to Lemma [[3 stating the equality RY = S7*,

Z [/ w e 28 (PP — )\Opv,’f) dr — / w® - e IAL S (pv,’f) dx
Q

9e{0,a} Q
- / w® - NS (pv}f) dz + / w® - nge L SP (avyv,?.ny) d:p} =0 (e).
Q Fla,zt
Using the definition of the adjoint operator Sp*,

Z SPw® - (P?vy — Xpuy) dy =0 ().
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Chapter 4. Homogenization of the spectral problem in a two dimensional strip

Using (4.40) and passing to the limit,

Z / (Z wy + w}ik> : (P%g — )\Opvbﬂ) dy = 0,
YL oelk

9€{0,a} ¥ "

where w§ and wy, are defined in (@34) and [@I4). Or equivalently,

-5 [ (St v ) oty =0

9€{0,a} oelk

Assuming that w}ik € H? (Y]) and taking the integrations by parts,

Z [/+—divy (avy (Z wg—l—w}ik)) ~v) =A% (Z wg+ngk> v dy

¥e{0,a} oo oclk oclk
— w4+ w?, | -aV, 0l n,dy + aV wl + w? n, -vldy| =0
9 bk yUp Ty QY Y ) bk | Ty QY| = U
Y velk Y velk
However,

—div, aV, (w3) — \’pw§ = 0 in Y,

0, _ + 0 _ - 9
aVyvy.ny = 0on v ., vy =0o0n v .4 and vy — 0 as y; — oo,

S0,
Z [/ —div, (aVywy,) - vy — Xpwp . - vy dy
9e{0,a} 83
_/ (Z wy + w}ik> . avyvbﬁ.nydy +/ aVy (Z wy + w}ik> Ty - vidy] = 0.
’y;_o,end celk VL,Lat ocelk
So the internal equation of each w};”k follows,
—div, (aVywp,) = A’pwp,, =0 in Y} for any ¥ € {0,a}, (4.44)

as well as the boundary term,
o [V v 9 d V o [V ﬁd _
wy +wy . | - aVyuy .nydy — aV, wy +wy | Ny - vydy| = 0.
+ ) + )
9€{0,a} LY Voo,end \gerk Voo, lat oelk
9 o + o _ + 9 _
Therefore, wy, = — > wj onvyZ, .4 Moreover aV,w§.n, = 0on vy, soaV,wy,.n, =

oclk
0 on fyquat for each ¥. W

4.3.3 Derivation of the macroscopic equation

Before to study the HF-macroscopic equation, we provide some necessary calculations
~k, D)
and notations. For £k € Y* and n € N*, we pose m = }M,’f‘ and recall that ¢, =
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4.3. Model derivation

fy2 (0,15) dype®™*xa(?) where the characteristic function y, (¢) = 1 if ¥ = o and
=0 otherw1se. For k ¢ {0,—1}, we denote,

~k,9 ~k, 9 ~—k,9 ~
N O (T T ) and the vector FY — (1) &,

and [; are 2m x 2m diagonal matrices defined by (Ii)qq =1lifg=iorq=m+1iand
= 0 otherwise for i € {1,...,m}. The vector I}V can be rewritten as,

" ~k9 ~— ke,
F’i < O ¢q ) 7 "’07 ¢q1 70’ "'70> b

and {F } generate the subspace L” of the vector space C*™,

€{l,..,m
LY = span {Flﬁ, . Fﬁ}

Since dim (L?) = m then dim (L"*) = m and the orthogonal vector space L'+ c C*™
with a basis denoted by {Xﬁ}ze{1 € C*™. Now we ehall find a basis {Xiﬁ}ie{l,..,m}
of the orthogonal vector space L“. We denote =; = (éﬁ)je{l om) the canonical basis
of C*™ ie with & = 0 for i # j and = 1 otherwise for i € {1,...,2m}. Let Z € L’ so
7 = Z?Z 2=, and satisfies <Z, F;9> =0 for all € {1,..,m} . Equivalently,

o~y

ke, ~—k,D

L2 for any i € {1,..,m}.

qi

Thus,
N ~k.9 ~k,
— bq,
Z = ( (b_lk gum-i-l + Hl) 21t t _,\_q]Z“g‘—‘m—H +Zi |zt Tt (b_k 19\—‘2m +Zm | Zm.
1 qi m
So the family
;gk,ﬂ ~E0 \ 2
X = (B + B/ |1+ | e | forie{1,.,m}
P, Pq;
k9 ) M
_ (0,...,0,% 0,..,0,—0,",0,...,0 )/\/ bs "2 (4.45)

constitutes an orthornormal basis of L. The HF-macroscopic equation (£22)-(Z24)
is built for each k£ and n in the next lemma.

Lemma 55 For k € Y* n € N*, let (\°,w®) be solution of the weak formulation
(Z10), and be satisfying ({-9) and ({f-11)), so there exists at least a subsequence of
Sew® converging weakly towards a non-vanishing function w* in L? (wy X Y) when
e tends to zero such that \° = )\fl and ()\O,wk) 15 solution of the HF-microscopic
equation (f.28). For ¢ € Ej, as in Assumption[I], o € I¥ and p € MF, if w’ and
w}ik are sufficiently regular solution and uj € H' (w) then (Al,ug) 15 a solution of
the HF-macroscopic equation ({{-22)-(4-24)
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Chapter 4. Homogenization of the spectral problem in a two dimensional strip

Proof. [Proof of Lemma [B5] The proof distinguishes between the two cases k ¢
{0,—%} and k € {0, -1} .

i) Case k ¢ {0,—1}. We take v7< € H*(w; x Y) o—quasi-periodic functions in
y1 such that they are decomposed as a linear combination of Bloch modes

0 () = 3 g (1) 65 (9). (4.46)

qeEMS

satisfying the conditions v?* = 0 on 7,,, and the end conditions in average,

Z Vg (1) (/ ¢g (y1 =0) dyg) ¥ = () at 21 € Ow; for all ¢ € M?.  (4.47)
Yo

oclk

We also choose functions a boundary layer test function vy € H*(Y}) for 9 € {0,a}
such that
aV, (e‘"ylv}f) .ny, =0 on ’Y;Lo,zat

with n > 0. We pose

v () = Y (R07) (2), o () = 7VE (RP]) () + e O (Re0p) ()
ocIk

(4.48)
and choose
we —f 4 Ub,z—:’

which satisfies the boundary conditions ) = 0 at the ends ie

Z (R7°) (z) + e /e (Ryvy) (z) + e~MemT)/E (RO () = 0 on Depg.  (4.49)

ocIk

In addition,

UF e HY ,(Q)N H? (Q) such that n,.a°V,¥° =0 on [y, (4.50)

end

as test functions of the weak formulation (ZLI0) of the spectral problem. From (4]
and (£49), the boundary conditions on I',,4 of test functions ¢° are equivalent to,

o,E o ﬁ O( ﬁ) —naje, o <2 ﬁ) _ t _ 4.51
Yo (0)¢q<0,6>+vb 0,2 ) +e o (2,2) =0ata =0, (451)
oelk geMg
og,e a o x2 —noaj/e Q x2 [e% ZEQ
and Z vy ® () q(—,—>+e"/v2(;,?)+vb (0,;)20&’53:1:04,

oelk geMg

for all 7y € wy. Using the o—quasi-periodicity of ¢; in the variable y;, the second
condition becomes,

x o a x x
Z ,U;T,e (a) ¢Z (O, _2) Q2T | efna/svl()) (_’ _2> + g (0’ _2) =0at z; = a.
5 e € 5
o€lk qeMg
(4.52)
For ¢ € By, according to Assumption [4 with remarking that es9n(?)2imhe < — 1 for all

r1 € Ow; we build the test function vg© as in the case of the wave equation so that
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4.3. Model derivation

v7° — v in H? (wy). Passing to the limit, then (@46), (£47), {51) and 352) imply

the form of v7 as
V7 (21,y) = Z UZ (371)¢Z (v) (4.53)

qeEMS

and satisfying the boundary conditions

Z vy (1) (/ o7 (0,92) dy2) esin(@2inlt e/ g ot 11 € Gy, (4.54)
oelk Y2
> 07 (0)67 (0, y2) + v} (0,92) = 0 at xy =0, (4.55)
oelk geMg
and Z vy (@) ¢ (0,92) S92t | g () o) = 0 at 7, = .
oelk ge Mg

Applying the Green formula so that to put all derivative terms on the test functions,

— / w® -V, (a°V, %) doe = \° / p w® - ¢ dx.
0 Q

Equivalently,
/ w® - (P° — \°p%) ((Z 9{"0(”6> e E (Ryy) + e/ (%gv,‘f)> dx =0,
@ oelk
or

/ w® - (P°— \°p%) ((Z %av”’€> + Ry (e ™vy) + Ry (e"ylvg‘)> dx = 0.
0

oIk

Using the decomposition (L38]) of P<,

2
Z / we - MR <Z el (Pl _ )\2*lp) va,s) dx + Z L_l? / we - 9{5 (P2 _ )\Op) (e—nylvg)
oelk Q =0 9e{0,a} &

1
—gwa Ry (Alpe_"ylv,?) —w® Ry ()\zpe_"ylv}f) d:p} =0 (e).

From the special form (Z40) of the test function v™¢ then P?v7¢ — \°pv®* = 0,

1
—g)\lw8 Ry (pe_"ylv,?) — Nw R (pe_"ylvg) dz| =0 (e).
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Multiplying by €%, using the approximations (L3I)) and (L3T) of R by S&* and RY =
Spx,

Z |:E/ we - Sg* (Plva,a o Alpva,a) + we - Sg* (POUG,E o )\vaa,e) dx
Q

oelk
+ Z [/ w - SP* (P2 = A\) (e7™y)
9e{0,a} Q

—eMwf - SP (pe_”ylv}f) — &\t - S (pe_”ylv}f) dz] =0 (e).

From the definitions (LI0) and (L35) of the adjoint operators S¢* and SP*, the bound-
ness of Scw® and SYw?, and dividing by &2,

Z / Sew® - (Plv"’6 — )\lpv"’e) dxidy
w1 XY
+ Z / Spw® - (P* = Xp) (e7™y) dy = O (e).

Since v”¢ converges to v° strongly in H? (wy), SSw? converges to w’ weakly in L? (w; x Y)
and the convergence [LA0) of SYw®,

Z / w’ - (Plv" — Alpv") dzdy
w1 xY

oelk
+ Z / <Z w§ + w,ﬁk> (P = Xp) (e™y) dy = 0.
9e{0.a} 7 Yo \gert

If w? and w}ik are sufficiently regular, applying the Green formula,

2 2
Z [/ — Zﬁyj (@105, w7) - 07 — Oy, (Z aﬂ@yiw”> 07 = Mpw? -7 drydy
UJ1><Y

oelk j=1 i=1
2 2 =
+/ —w’ - E ay;0,,v7 + E a; Oy, w’ - v7 dy
Y — i
7j=1 =1 £1=0

2 2
—i—/ Opw” - E ayjv°.my, — w’ - E ;10,07 Ny, dx1dy
w1><8Y i=1

ij=1

+ Z [ N Z (— div, (aV,wg) — )\Opwg) . (e_”ylvg)

9e{0,a} VYo sk

+ (— div, (avngk) — )\Opw}ik) . (e_"ylv}f) dy

+ /aY;g — (Z wy + w}ik> ~aV, (e’"ylvbﬁ) My

ocIk

+aV, (Z wg + w}ik> ny - (e7™) dy) = 0.

oclk

106



4.3. Model derivation

From the o—quasi-periodicity of w? and v7, so,

/ E a,rlw" “apjviny, —w’ - aﬂ&vlv"nyi) dxidy = 0.
w

1 XYend @] 1

: o __ o _ —ny1,,0 _ +
Moreover, since v° = 0 on v,,,, aV,wg.n, = 0 and aV, (e vb) ny = 0on~y, ,, and
using (L37) and (I5), thus the equation reads,

2
[/ Z (83/]. (@105, w7) - V7 — Oy, (a;10y,w7) ~v") — M pw® v daqdy
oelk wixy

1,j=1

(4.56)

2,7=1

+ Z / Vy (Z wy + w}ik> Ny - (e’”ylvbﬁ) dy = 0.

9€{0,a} q/<><> end oelk

+ Z / aljaijo + aﬂ@yiwv . UU} zizg dy]

From (I3) and ([@I6), we get that wy, (y) is the linear function of — > wg (0,y2),

oclk
it means that,

wiy (y) = L (— > wi (0, y2)> . (4.57)

oclk

Hence, in Equation (£350) it is equivalent to,

[/ . By, (a1;05,w7) - v7 = Oy, (a1 Oyw”) - 07) — Mpw? -7 daydy
ocelk WXy 5= 1

+ Z / aljaijo + aﬂ@yiwv . UU} zizg dy]

i,j=1

n Z/ y(zwg+£< Zwﬁ». (™) dy = 0,

9e{0,a} Voo end oelk oelk
Thanks to (£34), the decompositions ([@L29) and [@53]) of w’ and v7, as well as the

linearity of £, we get

wp ) =L— D> w00 | == D ul(0)L(65(0.3)).

o€l peMg oIk peMg

wp ) =L = D wl(a)el(0.m) | == D ul(a)L(6](0,1)),

o€l peMg oelk peMg

107



Chapter 4. Homogenization of the spectral problem in a two dimensional strip

and the equation yields,

2

S [ (w5 - antus ) dng g ass)
oelk pgeMg 9t ig=1 Y
= ( / p¢;-¢gdy) u? v day

+ZK/ —07 - a1;0,,67 + 110y, ¢ ¢dy) } :

i,7=1 z1=0

/YaV 0) ¢ — uS (0) £ (¢ (0,12))) - v (31 = 0)

oelk peMg
+aVy (up (@) 67 —up (@) £ (67 (0,92))) - v (1 = 0)] dyz = 0.
We observe that,

3 [ =0 (a67) - 65— 0t ; =3 | 45 05— a5 - o

i,7=1 ,7=1

Using (£T19) the definition of coefficients c(.,.,.) and b(.,.,.), the equation (L5

becomes,

> { / c(0,p,9) O uf ] = b(o,p,q) N'ug - v] day — [c(o,p,q)uf - v7] " o
w1

o€lk p,geMg

- /Yav u (0) 95 — uf (0) £ (67 (0,92))) - vf (31 = 0)

oelk peMg
+aVy (uy (@) ¢ —uf (@) L (¢5 (0,2))) - vy (y1 = 0)] dyo = 0.
Choosing the test functions v° € L? (Hy (w1);Y)NL? (Q; Hy (Y)) proves the equations
of uy:
Z c(o,p,q) Op,uy; —b(o,p,q ))\lu; =0 for each ¢ € M7 and o € I*.
pEMY
Thus, the boundary term remains,

— Z [c (o,p,q)ug - vﬂ zig (4.59)

oelk1 p, qeMg

- Y [ 06 -5 0L 0m) B =)

oelk peMg
+aVy (ug (@) 67 — u (a) L (7 (0,12))) - vy (y1 = 0) dy2 = 0.
From the relation (L353) between v” and v at y; = 0,

v (0,52) = =D 07 (0,0,5) == > 07 (0)¢5(0,12)

oelk o€k qe Mg
k ; 1k
and off (0,42) = — Y _ 07 (a,0,90) ™2™ = — N 47 (a) ¢7 (0, yo) €70MH
ocIk oelk geMg
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vg (0)

hence, the expression (L59) reads
KC (0,p,q) — /Y aVy (¢5 — L (¢y (0,12))) - ¢7 (11 = 0) dy2) uy (0)

oel® p,gqeMg

Using (4.20) and (£.21]) the definition of coefficients ¢y and e,, the boundary conditions
¢a (0, P,9) uy (@) v7 (@) = 0.

v 2

are
eo (7, q)ug (0) 27 (0) = 0 and
oe€lk p,ge Mg
— UO'

oel® p,qeMg
- C(Uapa Q)a ng - b(o-apa Q)a P
9
¢, leads to the matrix form

Introducing the matrices C7)
= (0, for each o and g,

Egz;(’ = ey (0,p,q) and @g’(’ =
o o 1o rro
Cy,0:.U] + N BoU;

>
~(etma+ | 0%, (6~ £ 0.m)) 0 (0 =0 ) g ()77 ()] =0

— 5,0 o _ 0
_up"/;z = Yg»

and EY =

with the boundary conditions
Z (V)T E?UT =0 at 2, =,
— (VO)U

ocIk

or in short with block vectors and matrices U = (U?),, V

EvFk 0
( 0 Eﬁ,—k )7
VIE'U =0 at 2, = ¢

for all V' such that,

where the matrix /;, defined in the beginning of the section, is considered here as a
2 x 2 block matrix of m x m submatrices. The boundary conditions are equivalent to

V(zy=19) L E'U(z, =) for all V

(L)' @ =0 at 2y = o for all j € {1,...,m}

such that V (0) L (I;)" @ at 9 € {0,a} and with j € {1,...,m}

Since V (z; =) L (I;)" " at 9 € {0,a}forall j € {1,...,m}, therefore, V (z; =) €

L%+, Moreover, since E'U (z; =9) L V (z; = 1), so
(E°U, X)) =0 for all ¥ € {0,a} and j € {1,...,m},

where X7 is defined in (@L45). It is equivalent to
Lk R X
—ey (—k,p,q)u," (s)p, =0forallqge M,

k9
> en(kp,g)ug (9) 6,
peMk
Finally, the boundary conditions of the macroscopic equation are
~E,0 -~ ~—Fk,0
5 (0)¢, — e (=k,p,@)u,* (0)p, ~ = 0,

Z €o (kapa q) Up
peMk
(@), = e (—k, p,q) us* () B,

and > eq (k,p,q)uf

peMk
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for all ¢ € MP”.

ii) Case k € {0, —%} The process is similar to the case of k ¢ {O,—%} but
the final boundary condition for HF-macroscopic model are not found. We choose
v* € H% (w; x Y) a k-quasi-periodic function in y; such that it is decomposed by

V() = ) ol (21) 65 (y) (4.60)

qeMk

and is satisfied the condition

Z v(’; (xl)/y qb'; (0,92) dys = 0 at zy € Owy. (4.61)

qeMk
We also take a function vi € H? (Y}) where ¥ € {0, a} and 1 > 0 such that,
aVy (e7™ ) .y =0 on 7L 4,
and
(Ro*) () + e /e (R%0) (z) + e~ MemT/E (R (1) = 0 on Teng. (4.62)
We pose
vF (z) = (RF) (), 0" (z) = e 7% (RO)) () 4+ e Mo ™)/E (Ro0g) (v),  (4.63)
and choose ¢° = v¢ + v>¢ with
U e HY ,(Q) N H?(Q) such that a°V,1%.n, =0 on [y, (4.64)

as a test function of the weak formulation (EI0) of the spectral problem. According to
(£60) and (£62), the boundary conditions on T',,4 of test functions ¢° are rewritten

by,

Z vk (0) gi)]; (O, %) + vp (O, %) + e /ey (g, %) =0at x; =0,

5
qeMk
a x a T x
and Z v('; (o) gb’; <—, —2) + e7ne/Eg) (—, —2) + vy <0, —2> =0at x; = q,
S e € e’ € 5

for all x5 € ws. Using the periodicity or anti - periodicity of gbs in the variable y;, the
second condition becomes,

Z US,‘ (O{) ¢Zt (O, ﬁ) 62’i7rk20£/5 + 6_770!/5,02 (g’ ﬁ) + ,UI()X (0’ ﬁ) p— 0 at T = Q.
Py 3 g £ g

Since a/e € N*, e?™e/s = 1 if k = 0 and = e~'" otherwise. Passing to the limit, the
boundary conditions of the test function are,

> vE(0) 6k (0.42) +0f (0,42) = 0 at 2y =0, (4.65)
qeMk
and Z oF (@) ¢ (0, y2) €™ + 05 (0,42) = 0 at 1 = a.
qeM}
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4.3. Model derivation

The procedure of proof is the same in case k ¢ {0, —%} and we get the final equation
as,

Z / (k,p,q) k -V, bk, p,q )Alu];-v(’; dr, — Z [C(O,p,q)ug-vg]z:g

p,gEME p,gEME

—d (kyp. g) uf (0) - vk (0) — d (k,p, )k (@) - o (@) = 0.

Choosing the test functions such that v* € L? (H} (wy);Y) N L*(Q; HL (Y)), the in-
ternal equations are stated for each ¢ € M” by

> ek, p,q) Onyuf — b(k,p,q) Nub = 0.

peME

So, the boundary term remains,

> (clkpq) = d(k,p,q) uy (0)vf (0) = 0at . =0,

P.qEM;
and Z (k,p,q) — d(k,p,q)) uy (a)@(a) = Oatz =
p,qEM}
Or,
k ok — k k _
Z eo (k,p,q) u, (0) vk (0) = 0 and Z o (k,p,q) u, (@) vk (a) =0.  (4.66)
p.gEM) p.aeME

We introduce the matrices C' = (¢ (k, p, )) , B = (b(k,p,q)),,, U = (u’;)p, V =
< ) EY = (ey (k,p,q)), 4 © (fy o (0, 2 dyg) , then the matrix form is,
q

Co,U + \'BU =0,

with VIE'U =0 at 21 = 0 and VI E°U = 0 at 2, = a, (4.67)
for all V such that V7' (z; = ) Y = 0.

Finally, the internal of the HF-macroscopic equation (£24) allows with unknown the
boundary condition. W

4.3.4 Proof of Theorem

For k € Y*, let (A°, w®) be solution of the weak formulation ({.I0]) and satisfies the uni-
form bound (&IT]), the property (L8) yields the uniform bound of S¢w® in L? (w; x Y)
for any o € I*. So there exist w’ € L?(w; x Y) such that up the extraction of a sub-

sequence SEw® — w? in L? (w; x Y) weakly. Hence, Y SSw® converges to
oelk

xla E w’ xl)

oclk

111



Chapter 4. Homogenization of the spectral problem in a two dimensional strip

According to Lemma [51] there exist n € N* such that \” = A" and w? is decomposed
as in ({.29) based on ((bg)a ) the Bloch wave eigenmodes corresponding to Bloch eigen-

value \°, so

ge(zy) = > ul (1) ()

ocelk meMg

for u?, € L? (wy). Moreover, as in proof of Lemma (3] w}ik is solution of the boundary
layer equation ([LIH) for ¥ € {0,a}. Finally, for ¢ € E, as in Assumption [[4] if
ug € H' (wi) then uJ is a solution of the HF-macroscopic models ([Z.22)-(#24) as in
the proof of Lemma G35l
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Chapter 5

Conclusions and perspectives

The periodic homogenization has been studied for the spectral problem and the wave
equation with periodic coefficients in a one-dimensional bounded domain. It has also
been done for the spectral problem posed in a two-dimensional thin bounded strip.
Applying our method, so-called Bloch wave homogenization, provides two-scale models
including the expected high frequency parts and also a low frequency part for the wave
equation. Our work focuses mainly on the high frequency part. It comprises so-called
high-frequency microscopic and macroscopic equations, the first being a second order
partial differential equation and the second a system of first order partial differential
equations. In the strip case, a boundary layer occurs under the form of a second order
partial differential equation. The boundary conditions have been found for the high
frequency macroscopic equation. For the spectral problem, the asymptotic behaviors
were addressed for both the eigenvalues and the corresponding eigenvectors. Numerical
simulations are provided to corroborate the theory in the one-dimensional cases.

The same method might be extended to other cases. The homogenization of the
wave equation posed in a bounded strip should be obtained by a combination of the
results obtained in one-dimension to the boundary layer result of the spectral problem.
However, the boundary layer equation should be a time-space wave equation posed in
an infinite strip that might be using a time two-scale transform together with the
boundary layer two-scale transform. In addition, the homogenization for both the
spectral problem and the wave equation should be done also in the two dimensional
open bounded domain by extending the approach. The boundary layers should be
considered in both y; and ys directions with a specific problem to take into account a
boundary layer effect at the corners.

Finally, we mention possible short-term research works.

1. Numerical simulation for the strip case.

2. Homogenization of the spectral and wave equations in two-dimensions or higher
dimension including the boundary conditions.

3. Cases with non-homogeneous boundary conditions.

4. Extension to the system of elasticity equations.

4. Applications in optics or in mechanics to photonic crystals, phononic devices or
other waveguides.
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Appendix

In this Appendix, we report some mathematical proofs, supplementary results and
remarks.

Proof. [Proof of Lemma B] The proof is carried out in two steps. First the explicit
expression of T°*n*Se*y is derived, then the approximations ([2I) and (L22) are
deduced.

(i) Let us prove that

(T2 S5%0) (t, x)
1 t—eakly,  x—cel,, -
= (e T ) dadn, (), (e

«
O-€D,weeC n

From the definitions of the two-scale transforms 7°%n and S¢ with r, = (eak) Iy, +
(504 )7' €6.and r, =¢l,, + ey € we,

/ v(t,T,x,y) - (TEO‘]’CLS,‘iw) (t,7,x,y) dtdrdzdy
IXAXQXY

k
1 ri— (eak) lo.  ro—el,, i
i v |t - Ty tdx - w (e, r2)
IXQegeDwgeC n O Xwe n

Xo. (Tt) Xw. (Tz)e_%ﬂklws] d?‘tdrx.

Changing the variable names and using the definitions of S;* and Teem*,

/ <Tmﬁ*5§*v> (t,x) - w(t,z) dtdx
IxQ
1 t— (eak) 1 — el
B / Z / v Zs (gan) b y Ry & S dztdzz
o e Jo xw eak £

IxQ 9.€Dw
GQMklwg "w (t7 l‘) Xo. (t) Xw. (ZL‘)] dtdz.

This establishes the explicit expression of TEO‘?L*SE*.

(ii) Let us derive the expected approximation for v € C' (I x A x Q x Y) a peri-
odic function in 7 and k—quasi-periodic function in y. The first order Taylor formula
expresses (z, z,) in terms of (¢,z) as,

’U(Zt7’7'7 Zz,y) = 'U(t,T,.’L‘,y) + 8151} (.’,U,y) (’Zt - t) —l—@zv (.’,U,y) (Zil? - ZZ') _'_80 (8)
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in L?(f. x w.) for a.e. 7 € A and y € Y. Hence,

(T=*S5"0) ((2ak) I+ (eak) 7, el,,. + ey)

1

— [ ey o) (-
O Xwe

- ake?
+0,v (t,7,2,y) (2 — ) + €0 (£)]dzydz, ™

for a.e. (1,y) € AxY and all . € D, w. € C. Remarking that
z—t = (n—eally) + (eakly. — t) and z, — x = (z,—¢ly,_) + (. — )
with

! 1
/95 (Zt_&?()zﬁlgs) dzy =3 (eafl)Q and /w (zp—¢l,.) dz, = 552'

For a.e. (1,y) € AxY, (t,z) € 0. x w. and all §, € D, w, € C, since |0.| = ea* and
lwe| =€, so

(ng*sli*v) ((eaf) g+ (cab) 7, elo. +ey)
t—eakly, 1

= [v (t,7,2,y) —ca® (7 — 5) O (t,7,7,y)

k
eay

— <l 1 .
. ({L‘ ;: we 5) amv (t, T, X, y>:| eerkle + 0 (8) )

From the explicit expressions of 7°%+* and Sg*, also refer to Remark b6

t—eagly, B 1 _ 1 (% _ %) dz = (Tm'fb* (7— - %)) (saﬁ) lo.+ (8&';) T,

k T ok k
ey 2 ea) Jo. eay

r—el, 1 1 x—el, 1 - 1
and R T /w ( - 5) dz, = (50 (y—é)) (lo. +€y),
S0,

1 1
= <v (t,7,2,y) — 5afLT€aﬁ* (7’ — 5) o (t,7,2,y) —eS5” (y—§> Oy (t, 7, x, y))

Xo. (1) Xo, () €™ 420 (¢)

in the L?(. x A X w. x Y') weak sense. Therefore,

t x
(Tsaﬁ*sli*’v) (t, .I‘) = Z |:'U (t, ﬁ — 1957 xZ, g — le)

f-€D w.eC n

1 t
—eafleﬁ* T—= 0w (t,— — g, x, L lo,.
2 cak €

n

1 t T 4
o5 () (1 g oo T ) o 0, @1 40

n

Using the periodicity in 7 and k—quasi-periodicity in y of function v,

t T ke rmeak 1 t T
= v (t, @,ZL‘, g) — EO[nT€ " <T — 5) 8t’U <t, @,l’, g) (].)

1 I
eS8 (y - 5) Byv (t, —.3, g) +20 (2)

n
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in the L?(I x ) weak sense. Hence the formula (I21]) follows.
From (20), Equation () is equivalent to

k k 1 1
(Tsan*sz*v) (t, SL’) _ %ﬁv_gaﬁTsan* (7_ o 5) %Z (8151))—558* <y _ 5) %Z (611)) +e0 (8) .

Applying the approximation (L2I) to d,v and 9,v with any function v € C*(I x A x
QxY),

k 1 k 1 Kk
= BFy — ealhTem (7’ — 5) Ten* S (Ow) — S5 (y - 5) T Sp* (0,v) +€0 (e) .

Thanks to the explicit expression of T' 50‘51*5;2*2;, also refer to Remark Bfl, we get

1 1
afLTmﬁ* (7‘ — §)Tmﬁ*5,i* (Op) = Tmﬁ*S,i* (ozfl (7‘ — 5) 8tv) , (2)

1\ o . 1
and S&* (y - 5) Te0h* S2* (D,v) = To0h* §¢* ((y - 5) &Bv) .

We see more detail for [2)) in (3, @) and (@) of Remark (6l Hence,

k 1 k 1
= BFy — eTon* S5 (afl (7’ - 5) 8tv) — T Sp* ((y - 5) 8xv) +e0 (e) .

Finally,

1 1
By = T Gy 4 T+ 5 (afl (7‘ - 5) O+ (y—§) 8351)) +e0 (e) .
|

Remark 56 For any k € Y* andn € N*, let v € L* (I x A x Q xY) be a periodic
function in T and k—quasi-periodic function in y, then

Tk (7) (TR st) = (TS5 ) (7o), (3)

and . .
S6* () (TS5 (v)) = T4 ¢ (y) (4)

Consequently, for any p, € R*,
(72555 (v) ) (1.2) = pg (T8 S"0) (1.2). (5)
Indeed, from the explicit expression of Tealfl*S,i*,
((T=55) (70) (t.)
1 t —eakly, t—eakly,  x—el, S~
N Z ke’ /65 Xwe ( Eaﬁ ) ‘ (Z257 cak ' 2 5 dthszHE (t) Xowe (:L’)e :

O-€D,w:.eC n

t —eakly 1 t —eakly r — el ,
= n e v |z, n = 2, Y ) dzdz, t )2l
> ()l (o o) e O )

0-€D,w.cC

117



Appendix

We observe that

t—eakl 1 t —eakl *
— X, (1) = a/ ( e ) dzixg, (1) =T (7) ((cak) lo.+ (k) 7).

Therefore,
(15557 (7)) (t,2) = (T8 (7)) (1) (T4 S0 (2, ). (6)
Similarly, we apply to the function yv the adjoint operator Tmlfb*S,i*

((=555) (v (t.)

1 r — el t —eakly r — ¢l ,
— Y= )| 2, = ., Y ) dzdz, t )2l
S s () Y e, () e, 0

0-€Dw.cC T n

1 x — el 1 t —eakl x — el
— Z [—/ =) dz, / v z, n b s 2 = | dzdz,
€ Jo. € ake? Jo . eak 5

0:€D,weC
Xo. (1), (2)e2™0] = (85" (1) (@) (T8 S50) (8, 2). (7)

Moreover, for any p, € R*, we get
* ok«
56 Ho = to and Ty = pig.
Finally, ({3) is obtained thank to (@) and (7).

Proof. [Proof of Lemma [I0] The proof is carried out in two steps. First the explicit
expression of S;*v is derived, then the approximation is deduced.
(i) Let us prove that

l‘—El j L
Sex — -1 We d ; 2z7rk].
s =3 | - o255 oy e

jeJ

From the definition of the modulated-two-scale transform with r = ¢l ; +ey € w! and
dr = dy,

| v (i) ) dody

r—el ; o
= Z/ e (xl’ € wi) w (1) X (x1)e” ™ drydr

j le
]EJ w1 Xwg

or equivalently,

r—el ; .y
- / 25_2/ v (:pl, wg) dry-w (r)x,i (r)e= 2™k dy.
Q w{s € c

jed

Changing the variable names z = 1, = r and using the definition of S,

1/ . / _2/ ( x—z—:le) 2inkj
- Siv) () - w(z) doe = € vz, —— | dze”™ - w(x)x i (7) dz.
)@ e a= [ 37 [ ; () ()
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This establishes the explicit expression of S;*.
(ii) Let us derive the expected approximation for v € C' (wy X Y) and k—quasi-
periodic in y;. Since |w,| = ¢ and

v(z,y) =v(21,y) + 0pv(z1,y). (2 — 21) + €0 (g) in L*(w) for ae. y €,

then

(Spv) (5lwg + gy) = <51 / v(z1,y) + Opv(x1,y). (2 — 21) dz) ™+ 0 (e),

le

for a.e. y € Y and all j € J. Remarking that z — z; = (2 —¢j) + (¢j — x;) and

/wg (z—ej)dz:%eO(a).

So for all w]_ and y € Y,

. } 1
ce 2RI (SE) <elwg + ey) = |wl.| v (z1,y) + (550 (&) + (£%y)).0uv (z1,y) +£0 (¢).

Therefore,

(Spv) (x) = Zv (xl, g — lwg) X, () ™ 120 (g).
jeJ
Using the k—quasi-periodic of v in yq,
. x
(S5) @) = D v (21, 2) xos (@) +20 (&),

jedJ

in L?(€2), hence the formula (L31) follows. W
Proof. [Proof of Lemma [[2] For u € L?(Q) such that u is bounded in L? (Q2), for
¥ = 0, the definition (L32) of Su gives

2
/ 5%l (y) dy = / ul? (&) X(0.17e) (81) dy = / / (291, 29) dyrdys
vt Y Ys J(0,a/¢)

By changing variable z = ey, so dy = dz/&? and

= 82/ ul® (21, 25) deyday = 82/ lul? (z) da.
wo Jwq Q

Similarly, for z; = «, the definition (L33) of S;'u implies that

/Y+ ‘S?UF (y)dy = /+ ‘U‘Q (—ey1 + a, ey) X(0,a/¢) (1) dy:dys

5 vE
= / / ul® (—ey1 + o, ey2) dyrdys
Y> J(0,a/¢)
By changing variables 71 = —ey; + « and 2y = eys, so dy = —dx/e* and

0
= —52/ / ‘U‘Q(l’l,l’g)dl’ldl’g

= 82/ lu|® (21, 75) daydas :52/ lul® (x) da.
wo Jwq Q
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|
Proof. [Proof of Lemma [[3] For v (y) € C* (Y), we prove that

g g 9

(S,?*v) (r) =w (E) and (5;"v) (x) = v (Q — xl, ﬂ) (8)

First, for ¥ = 0, let w € L? (Q), from the definition (L32)) of Sp,

vt () = [ o)) v (o)

(oo} oo

= / / v (Y1, y2) w (Y1, €y2) dyrdy;
Y2 J(0,a/¢)

Using the definition (I33) of the adjoint operator Sp*,

1 *
)@ v = [ [ v v e cmdnd
Q Y2 J(0,a/e)

£

and changing the variable names x; = cy; and x5 = €y,

_ Ty T2
=c 1/ / v <—, —) w (21, ) dridxs.
wo Jor e’ €

/Q (Sl?*v) () w(x) de = /Qv (£> w () dz. 9)

€

Therefore,

Second, at ¥ = a, let w € L? (2), similarly to the case of ¥ = 0, we get

/Y LU () (Sgw) (y) dy = / V() w(=eyn + asey) Xoase) (1) dy

Y.

= / / v (y17 ?/2) “w (_Eyl + «, 592) dyldyZ
Y J(0,a/¢)

So, the definition (L35]) of the adjoint operator S§* implies,

1

—/ (Syv) (x) - w (x) doe = 5/ / v (Y1, y2) ‘w (—ey1 + «, eys) dy1dys.
€ Ja Ya J(0,0/¢)

By changing the variable names x; = —ey; + a and x5 = €y, it remains,

_ a— X T
=¢ 1/ / v ( ,—) w (21, ) dridxs.
wo Jor € €

Therefore,

9 9

/Q(Sl?*v) (z) - w(r) dv = /ﬂv (a — :c17 ﬂ) w (x1, x2) dridxs. (10)

Then, from (@) and (I0), the formula (&) follows. Finally, (L37) is deduced from ()
and (L36). &
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Remark 57 Here we explain the the reason why we defined the (n, k)-model two-scale
approzimation (3.17) of u® instead of using TmlfLS,i directly as in [36] and [9])]. For
a given k € Y* and n € N*, we restart with the very weak formulation (Z63) in the
proof of Lemma by choosing test functions as in (61, [3.59, [3.60) but such that
wo=01inIxQ and w; € L* (C(I x Q); A xY). Multiplying by €%, the equation
(2.63) is equivalent to,

n

1)’ 1
/ [Ua . %Z 3 (_k) Q2w1 — 5P2w1 -+ ez—lewl — 52P1w1 + 53Q0w1 — €3P0w1
Ix8 ap a
—e?f¢ - BFw, dtdr = 0.

Equivalently,

ok
an n

1)? 1
/ u® - ‘BfL (5 ( ) Q*w; — eP%wy + 52—kQ1w1 — 52P1w1> dtdx = 20 (e).
IxQ) Q

According to the relation between BE and Tmlfl*S,i* in Lemmal8, it remains,

n n

1)? 1
/ us- (T”‘ﬁ*S,i* + O (5)) (s (—k) Q*wy — eP*wy 4 *—Q'wy — 52P1w1> dtdr = £°0 (¢)
IxQ «Q [0}
Or equivalently,
i 17 1
/ u® - T S <8 (—k) Q*wy — eP*wq + 82—kQ1w1 — 52P1w1> dtdx = €0 (e) .
IxQ o, Qp
Then,

1)° 1
/ Teozﬁsliua‘ c <_k) Q2w1 — EP2w1 —+ 52—kQ1w1 — €2P1U}1 dthde‘dy =c0 (5) .
IXAXQXY Q Q

n n

Using the decomposition [(333) of T°*»Stus, the equation becomes,

1 2
[ ot eat) e () QP
IXAXQXY Oék

n

1
+€2JQ1U}1 — 2Py dtdrdzdy = €O (¢).

n

Using (3.83), the equation yields

1\?2
/ Xo (k) ul* - &2 Plw, 4 eubF (5 (—) Q*w; — 5P2w1> dtdx = €0 (e) .
IXAXQXY

k
an

Finally, dividing by €%, we get the equation

1\’ O (e)
/ Xo (k) u2* - Plw, 4+ bk (—k) Q*w, — P*w, | dtdr =
IxAxQxY an €

but we can not pass to the limit of @ when ¢ — 0. Therefore, we can not obtain the

HF-microscopic equation by applying Tm'be,i to u® directly.
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Here we also bring the similar result to Lemma [37 about the strong convergence
of test function in the case of Neumann Boundary condition. For k € Y*/ {0, —%},
n € N* and o € I*, we consider the two functions ©f (t,z), o % (t,x) € H*(I x Q)
such that

oF () 0,08 (0) X ™" s 4+ o % (t,2) 0,0, (0)e 2™ e =0on I xdQ  (11)
where [* is defined in ([C40).

Lemma 58 For k € Y*/{0,—1}, let ¢ € Ey, there exist o=, o, € H? (I x Q)
satisfying
i) the boundary conditions

S 007 (1) 67, (0) 277 4 2 (1,2) 0,6 (0) #77E =0 on T x 00, (12)
oelk
ii) and the strong convergence
07— % in H* (I x Q) when ¢ — 0 for o € I*. (13)
Before starting the proof, we denote
o o (T
T) = —e;c&v(pn (t,x) Py (g) on I x 0f)

and remark that (°(f,7) converges to 0 in H?(I) when € tends to 0 at z € 9.
Similarly to the case of Dirichlet boundary condition, to avoid the case that boundary
conditions are vanishing, we assume that d,¢, " (0) # 0.

Proof. For any € € Ej and let the two functions ©f (¢, 2), ¢ % (t,x) € H*> (I x Q)
satisfy (1), we choose

O (tr) = ¢ (t,x) € H* (I x Q) (14)
and @ " (t,x) = @ " (t,x) + u° (t,2) where p° (t,2) € H* (I x Q).

i) Let us prove that

)= — (0o (1 a _ lim(ig-1) ¢° (t, ) e2i”li) T ¢° (t,0)
JiE (t, ) (son (t0) (1 >+—ay¢;k o) aatw

where [* and [* is defined in (L39) and (C40).
Replacing (I4)) in (I2), the boundary conditions are

©F (t,2) 0,0F (0) *™ = + (" (t,2) + pf (t,2)) 0y, % (0) e 2™ = (= (¢, x) on I x 0N
Using (L39) and (LZ40) with remarking that ™o = 1 at 2 € 09,

o (t,2) 0,0 (0) € ™hat- (0" (1, ) + 1 (8, 2)) 9y, " (0) ™2™ ha = ¢* (t,x) on IxI.
Or equivalently,

o (1,2) 9,61 (0) U (o (1) o+ 47 (1,2) 0,0, (0) e #UHE)E = ¢ (1, )
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on I x 99Q. From (IIJ),
oF (t,2) 9,0k (0) ™S =~k (t,2) 9,0, (0) ™2™ on T x 9.
After replacement, the equation remains,
ok (t,2) 0,62 (0) o2l L (e—m(z;—zk)g _ ezm(l;—lk)§>
i (t, @) 0,0, % (0) e 2 &2 () = ¢= (¢, 2) on I x ON.

Since 9,¢,% (0) # 0 and e ™S £ 0 at 2 € 99, then the function p° is defined at
x € 0f) as,

1 (L) = —p k(@) (672“([;711“)% B 62i7r(lzflk)§> i (1 —14) 2

¢ (t,7)
Oy (0) 2 &7 2m(li=1)

on I x 0L,

ie.,

e (,0) = =50 and i (10) = — g% (1,0) (1 - e4i”<li_lk)> +

Dy (0)
Finally, we choose the function u® € H? (I x Q) by

€ R e _ i (ig =) ¢ (ta) 62m’§) x ¢ (%,0)
W (t, ) (gpn (t, ) (1 e ) + —ay¢;k 0) - + r(ﬁ;k )

ii) For o = k, the strong convergence is true since ¢®¢ is independent on . For
o = —k, the strong convergence of p° (t,z) in H? (I x §) is trivial, i.e. p°(t,z) — 0
in H%(I x Q) strongly when € — 0. Therefore, o, "¢ — o % in H? (I x Q) strongly
when e — 0. W

Finally, an example is provided of a sequence ¢ corresponding to Assumption [I4

Example 59 i) For a given g9 € RT, according to (L.39), ‘;‘—f is decomposed as,
k k

S nE S IE with BE, = {O‘—] and I¥, € [0,1). (15)
€0 €0

For a subsequence €,, we can decompose
ak
— =hf +1
n n
En

Here we need to choose a subsequence &, such that I¥ =15 + O (e,). Choosing a
subsequence €, = <2 for n € N*,

ok _

_ o pk k
=nh +nl,

£

T

En
hence, a sequence n satisfies

nlf =n'+15 +0 () or (n—1)15 =n'+ 0 (o) withn' € N.

123



Appendix

We approzimate IE by a fraction teQ, >0, e Ik = T4 O (o). It is equivalent
to,

(n—1) (g +0 (go)) — ' + O (&) withn' €N.
IfIF =< then .
(n — 1); =n"+0(g0) withn' €N,
therefore,
n=n'>4+1+ fO(EO) with n' € N.
r r
Sincen € N* son’2 +1+4 20 (g9) € N* then n'? = ng € N.
IfIF, =2+ O (o) then

!/ O !/
'+ (80)+1 n

_— =——4+14+0 ith n’ € N.
GENGIEN §+O(€o)+ + O (g9) with n’ €

Since n € N* 30587/(60)+1%n0€Nwithn’6N.

ii) For a given eq, a given k € Y* and

(Z—f =p(eo) + (o) with p(eg) = [i—k] and l(g9) =02 = —

then a sequence n 1s chosen such that
n=>5n"+1+50 (g0) and 5n’ ~ny € N with n’ € N.

So,

n=0son=1.
n=1s0on=056.

n=2son=11.

Finally, the sequence €, can be chosen by e, = ¢ with n =1+ 5n’ for n’ € N.
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Dans cette thése, nous présentons des résultats d’homogénéisation périodique d’'un probleme
spectral et de I'équation d’ondes avec des coefficients périodiques variant rapidement dans
un domaine borné. Le comportement asymptotique est étudié en se basant sur une méthode
d’homogénéisation par ondes de Bloch. Il permet de modéliser les ondes a basse et haute
fréequences. La partie du modele a basse fréquence est bien connu et n'est pas donc abordée
dans ce travail. A contrario, la partie a haute fréquence du modele, qui représente des oscillations
aux échelles microscopiques et macroscopiques, est un probleme laissé ouvert. En particulier,
les conditions aux limites de I'équation macroscopique a hautes fréquences établies dans [36]
n’étaient pas connues avant le début de la thése. Ce dernier travail apporte trois contributions
principales. Les deux premieres contributions, portent sur le comportement asymptotique du
probleme d’homogénéisation périodique du probleme spectral et de I'équation des ondes en une
dimension. La troisieme contribution consiste en une extension du modele du probleme spectral posé
dans une bande mince bidimensionnelle et bornée. Le résultat d’homogénéisation comprend des
effets de couche limite qui se produisent dans les conditions aux limites de I'équation macroscopique
a haute fréquence.

Homogénéisation, Ondes de Bloch, Décomposition en ondes de Bloch, Probleme spectral,

Equation des ondes, Transformée a deux-échelles, Convergence a deux échelles, Méthode

d’éclatement périodique, Couches limites, Transformation a deux échelles pour des couche li-
mites.

In this dissertation, we present the periodic homogenization of a spectral problem and the wave
equation with periodic rapidly varying coefficients in a bounded domain. The asymptotic behavior
is addressed based on a method of Bloch wave homogenization. It allows modeling both the low
and high frequency waves. The low frequency part is well-known and it is not a new point here.
In the opposite, the high frequency part of the model, which represents oscillations occurring
at the microscopic and macroscopic scales, was not well understood. Especially, the boundary
conditions of the high-frequency macroscopic equation established in [36] were not known prior to the
commencement of thesis. The latter brings three main contributions. The first two contributions, are
about the asymptotic behavior of the periodic homogenization of the spectral problem and wave
equation in one-dimension. The third contribution consists in an extension of the model for the
spectral problem to a thin two-dimensional bounded strip Q = (0, a) x (0, &) c R2. The homogenization
result includes boundary layer effects occurring in the boundary conditions of the high-frequency
macroscopic equation.

Homogenization, Bloch waves, Bloch wave decomposition, Spectral problem, Wave equation,

Two-scale transform, Two-scale convergence, Unfolding method, Boundary layers, Boundary
layer two-scale transform, Macroscopic equation, Microscopic equation, Boundary conditions.
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