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périodique d’un problème spectral
et de l’équation d’onde

THI TRANG NGUYEN





�����������������

é c o l e  d o c t o r a l e s c i e n c e s  p o u r  l ’ i n g é n i e u r  e t  m i c r o t e c h n i q u e s

� 
 � � � �  � � � � � � � � � � 
 � � � � � � 	 � �
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SÉBASTIEN GUENNEAU Rapporteur Directeur de recherche CNRS,

Institut Fresnel, Université d’Aix

Marseille
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N◦ X X X
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ABSTRACT

In this dissertation, we present the periodi homogenization of a spetral prob-

lem and the wave equation with periodi rapidly varying oe�ients in a bounded

domain. The asymptoti behavior is addressed based on a method of Bloh wave ho-

mogenization. It allows modeling both the low and high frequeny waves. The low

frequeny part is well-known and it is not a new point here. In the opposite, the high

frequeny part of the model, whih represents osillations ourring at the mirosopi

and marosopi sales, was not well understood. Espeially, the boundary onditions

of the high-frequeny marosopi equation established in [36℄ were not known prior to

the ommenement of thesis. The latter brings three main ontributions. The �rst two

ontributions, are about the asymptoti behavior of the periodi homogenization of

the spetral problem and wave equation in one-dimension. They are derived starting

from a system of �rst order equation as in [36℄ but also from the usual seond order

equation. The two-sale models are only for high frequeny waves in the ase of the

spetral problem and for both high and low frequenies for the wave equation. The

high frequeny models inlude a mirosopi and a marosopi part, both inluding

boundary onditions, whih for the latter is a novelty. Numerial simulation results

are provided to orroborate the theory. The third ontribution onsists in an exten-

sion of the model for the spetral problem to a thin two-dimensional bounded strip

Ω = (0, α) × (0, ε) ⊂ R2
. The homogenization result inludes boundary layer e�ets

ourring in the boundary onditions of the high-frequeny marosopi equation.

Keywords: Homogenization, Bloh waves, Bloh wave deomposition, Spetral prob-

lem, Wave equation, Two-sale transform, Two-sale onvergene, Unfolding method,

Boundary layers, Boundary layer two-sale transform, Marosopi equation, Miro-

sopi equation, Boundary onditions.
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Résumé

Dans ette thèse, nous présentons des résultats d'homogénéisation périodique d'un

problème spetral et de l'équation d'ondes ave des oe�ients périodiques variant

rapidement dans un domaine borné. Le omportement asymptotique est étudié en se

basant sur une méthode d'homogénéisation par ondes de Bloh. Il permet de mod-

éliser les ondes à basse et haute fréquenes. La partie du modèle à basse fréquene

est bien onnu et n'est pas don abordée dans e travail. A ontrario, la partie à

haute fréquene du modèle, qui représente des osillations aux éhelles mirosopiques

et marosopiques, est un problème laissé ouvert. En partiulier, les onditions aux

limites de l'équation marosopique à hautes fréquenes établies dans [36℄ n'étaient

pas onnues avant le début de la thèse. Ce dernier travail apporte trois ontributions

prinipales. Les deux premières ontributions, portent sur le omportement asympto-

tique du problème d'homogénéisation périodique du problème spetral et de l'équation

des ondes en une dimension. Elles sont dérivées soit à partir d'un système d'équation

du premier ordre omme dans [36℄, soit à partir de l'équation du seond ordre. Les

modèles à deux éhelles sont obtenus pour des ondes à haute fréquene seulement pour

le problème spetral et pour les basses et hautes fréquenes pour l'équation des on-

des. Les modèles à haute fréquene omprennent à la fois une partie mirosopique

et une partie marosopique, ette dernière inluant des onditions au bord, e qui

est une nouveauté. Des résultats de simulations numériques orroborent la théorie.

La troisième ontribution onsiste en une extension du modèle du problème spetral

posé dans une bande mine bidimensionnelle et bornée. Le résultat d'homogénéisation

omprend des e�ets de ouhe limite qui se produisent dans les onditions aux limites

de l'équation marosopique à haute fréquene.

Mots-lés: Homogénéisation, Ondes de Bloh, Déomposition en ondes de Bloh,

Problème spetral, Equation des ondes, Transformée à deux-éhelles, Convergene à

deux éhelles, Méthode d'élatement périodique, Couhes limites, Transformation à

deux éhelles pour des ouhe limites.

ii



Aknowledgment

First of all, I would like to deeply thank to my advisor, Prof. Mihel LENCZNER,

for his kindheartedly advising. With honor, I would like to say �Thank you, Prof.

Mihel LENCZNER, for all of your help, guidane, dediation, enthusiasm, patiene

and instrutions. It was really luky for me to work with you�. Moreover, I owe a big

thank to my o-advisor, Prof. Matthieu BRASSART, who was always ready to guide,

help and enourage me throughout this thesis. I do appreiate all of your support,

enthusiasm, advie, and all mathematial disussions in this thesis.

I would like to send my appreiation to all the members of Jury, Prof. Carlos

CONCA, Prof. Sébastien GUENNEAU, Prof. Juan CASADO-DÍAZ and Prof. Mor-

van OUISSE for reviewing and examining my thesis.

I hereby express my gratitude to espeially thank to all sta� members at Institute

of FEMTO-ST and all my friends at University of Franhé-Comté for providing me

with a lot of kind assistanes during the time when I have worked at FEMTO-ST. In

partiular, I would like to sinerely thank to Dr. Philip Lutz, my PhD diretor, and

Dr. Vinent GIORDANO for all of their generous support. I am very grateful to get

the aid and kindness of Prof. Niolas RATIER, Prof. Emmanuel BIGLER and Prof.

Bernard DULMET. I am very thankful to the seretaries Mrs. Fabienne CORNU and

Mrs. Sarah DJAOUTI from Time frequeny department, Mrs. Isabelle GABET and

Mrs. Sandrine FRANCHI of our Lab for helping me in work ontrat issues. I am

also thankful to the seretaries of dotoral shool of University of Franhé-Comté for

helping me with registration and preparation of my defense.

I also express my gratitude to thank Prof. Du Trong DANG, Prof. Minh Du

DUONG and Prof. Pasal OMES for teahing me for the past several years, helping me

to develop my bakground knowledge in mathematis and enouraging me to pursue

my researh areer.

A huge thank is given to my olleagues, Hui HUI, Bin YANG, Raj Narayan

DHARA, Youssef YAKOUBI, Huu Quan DO, Duy Du NGUYEN, and Mohamed

ABAIDI for their kindly help and instrutions. A lot of thanks are sent to all of my

friends living in Vietnam and Frane for their kindness and sharing in my work and

my life.

Last but not least, a great thank goes to my parents who always wish me all the best

in life, to my younger brother and two younger sisters who always enourage and help

me whenever I need them. A speial thank is given to my husband for his invaluable

support, love, and understanding. He is always by my side to heer me up and stands

by me through the good times and bad. Many respetful thanks are expressed to my

parents-in-law, unle Duy Chinh LE, aunt Thi Minh Thanh NGUYEN, ousin Anh

Tuan LE and all of my family.

One more time, I am thankful to everyone who has ontributed to this dissertation.

iii



iv



To my parents

my younger sisters

my younger brother

my husband

my unle and aunt

v



vi



TABLE OF CONTENTS

List of Figures ix

List of Tables xi

Introdution 1

Chapter 1 Notations, assumptions and elementary properties 7

1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Bloh waves and two-sale transform . . . . . . . . . . . . . . . . . . . 8

1.2.1 In one dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 In a two-dimensional strip . . . . . . . . . . . . . . . . . . . . . 12

1.3 Assumption of sequene ε . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2 Homogenization of the spetral problem in one-dimension 17

2.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Homogenization of the high-frequeny eigenvalue problem . . . . . . . 19

2.3.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Modal deomposition on the Bloh modes . . . . . . . . . . . . 23

2.3.3 Derivation of the high-frequeny marosopi equation . . . . . 24

2.3.4 Analyti solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.5 Neumann boundary onditions . . . . . . . . . . . . . . . . . . . 30

2.4 Homogenization based on a �rst order formulation . . . . . . . . . . . 31

2.4.1 Reformulation of the spetral problem and the main result . . . 31

2.4.2 Model derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Numerial simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Simulation methods and onditions . . . . . . . . . . . . . . . . 36

2.5.2 Approximation of physial modes by two-sale modes . . . . . . 37

2.5.3 The modeling problem . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.4 Order of onvergene . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



TABLE OF CONTENTS

Chapter 3 Homogenization of the one-dimensional wave equation 43

3.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Statement of the results for the wave equation . . . . . . . . . . . . . . 45

3.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Approximation result . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.4 Analyti solutions for the homogeneous equation (f ε = 0) . . . . 51

3.3 Model derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Preliminary homogenization results and their proofs . . . . . . . 56

3.3.2 Proof of main Theorem . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Other ases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 Neumann boundary onditions . . . . . . . . . . . . . . . . . . . 72

3.4.2 Generalization of the wave equation . . . . . . . . . . . . . . . . 73

3.5 Homogenization based on a �rst order formulation . . . . . . . . . . . . 81

3.5.1 Reformulation of the wave equation under the �rst order formulation 82

3.5.2 Homogenized results and proofs . . . . . . . . . . . . . . . . . . 82

3.6 Numerial examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 4 Homogenization of the spetral problem in a two dimensional strip 91

4.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Statement of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.3 Two-sale asymptoti behaviour . . . . . . . . . . . . . . . . . . 95

4.3 Model derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.1 Derivation of the HF-mirosopi equation . . . . . . . . . . . . 97

4.3.2 Derivation of the boundary layer equation . . . . . . . . . . . . 99

4.3.3 Derivation of the marosopi equation . . . . . . . . . . . . . . 102

4.3.4 Proof of Theorem 46 . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 5 Conlusions and perspetives 113

Appendix 115

Bibliography 125

viii



List of Figures

1 Composite material has a marosopi shape and a mirostruture. . . 6

2.1 First ten eigenvalues of the Bloh wave spetral problem. . . . . . . . . 38

2.2 (a) Errors for p = 85 and k ∈ L∗+
125. (b) Errors for a seletion of k. . . . 38

2.3 (a) Bloh wave solution φk
n. (b) Marosopi solutions ukn,ℓ and u

−k
n,ℓ. . . 39

2.4 (a) Physial eigenmode wε
p. (b) Relative error between w

ε
p and ψ

ε,k
n,ℓ. . . 39

2.5 (a) Errors for p varying in J ε
0 . (b) Marosopi eigenvalues. . . . . . . 40

2.6 (a) Error of approximation for ∆k = 3.0e− 3. Ratios of error redution. 40

2.7 (a) Two-sale eigenmode ψε,k
n,ℓ. (b) Relative error vetor. . . . . . . . . . 41

2.8 (a) λ1,ℓ with respet to n. (b) γkn,ℓ with respet to n. . . . . . . . . . . 42

3.1 (a) Initial ondition uε0. (b) Initial onditions of HF-marosopi equation. 87

3.2 HF-marosopi solutions ukn and u−k
n at t = 0.466 and x = 0.699. . . . 88

3.3 (a) Physial solution at x = 0.699. (b) Relative error vetor. . . . . . . 88

3.4 (a) Physial solution at t = 0.466. (b) Relative error vetor. . . . . . . 88

3.5 (a) Physial solution at t = 0.466. (b) Relative error vetor. . . . . . . 89

3.6 (a) Physial solution at x = 0.699. (b) Relative error vetor. . . . . . . 89

ix



List of Figures

x



List of Tables

2.1 Errors for ∆k = 8.e− 3 and 3e− 3. . . . . . . . . . . . . . . . . . . . . 40

2.2 Results for the modeling problem. . . . . . . . . . . . . . . . . . . . . . 41

2.3 Errors for a dereasing subsequene εh. . . . . . . . . . . . . . . . . . . 42

xi



List of Tables

xii



Introdution

The homogenization theory was introdued in order to desribe the behaviour of om-

posite materials. Composite materials are haraterized by both a mirosopi and

marosopi sales desribing heterogeneities and the global behaviour of the ompos-

ite respetively, see Figure 1 as an example. The aim of homogenization is preisely to

give marosopi properties of the omposite by taking into aount properties of the

mirosopi struture. The name �homogenization� was introdued in 1974 by Babuska

in [14℄ and it beame an important subjet in Mathematis. In the mathematial lit-

erature, the homogenization of physial systems with a periodi mirostruture or

periodi media is alled "periodi homogenization". A vast literature exists where one

distinguishes between stohasti and deterministi homogenization orresponding to

stohasti and deterministi miro-strutures, the later being mostly onerned with

periodi homogenization. Nevertheless, there are also researh works on non-periodi

deterministi miro-strutures as in [91℄, [93℄, [92℄, [34℄. I reommend the introdu-

tory book by D. Cioranesu and P. Donato [44℄ whih is a good start to study the

homogenization theory of partial di�erential equations. I also reommend the books

[99℄, [19℄, [63℄, [109℄ to understand, not only the homogenization theory, but also its

motivation, historial development and larger view over various methods, see also two

thesis works [108℄ and [55℄ for a brief history.

This thesis falls within the area of deterministi homogenization and its aim is to

study the periodi homogenization of a spetral problem, at high frequeny, and of

the wave equation, simultaneously at high and low frequenies, in an open bounded

domain Ω ⊂ RN
with time-independent periodi oe�ients. Our omplete results are

presented for a one-dimensional geometry and also for a thin two-dimensional strip,

however a signi�ant part of our results extend trivially to multi-dimensional ases.

The model derivation method is based on the modulated-two-sale transform and the

Bloh wave deomposition. I reall that the two-sale transform or periodi unfolding

operator [77℄, [79℄, [78℄, [76℄, [45℄, [37℄ or [46℄, transforms a funtion of the variable in

the physial spae into a funtion of two variables, namely the marosopi variable

and the mirosopi variables. This is how the onept of two sale-onvergene turns

out to be a usual notion of onvergene of funtions that an be weak or strong. The

modulated-two-sale transform was de�ned in [36℄ by multiplying the usual two-sale

transform by a family of osillating exponential funtions whih e�et is to yield a

orresponding family of two-sale limits with all possible periodiities also refered as

quasi-periodiities. We also use its ounterpart de�ned from the two-sale onvergene

issued from [89℄, [90℄, [1℄, [2℄, [81℄.

The Bloh wave deomposition, also known as Floquet deomposition, was intro-

dued in the original work of F. Bloh [29℄, and is well exposed in [111℄, [99℄ and [102℄.
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Introdution

A Bloh wave deomposition of a funtion, onsists in an expansion over a family of

the eigenfuntions solution to the spetral problem

divy
(
a∇yφ

k
)
= −λkφk

posed in the referene ell Y ⊂ RN
equipped with k-quasi-periodi boundary onditions

for some k ∈ [−1/2, 1/2)N . We refer to [104℄, [99℄, [111℄ for an introdution to the Bloh

waves in spetral analysis. Suh a deomposition is used in the so-alled Bloh wave

homogenization method for spetral problems [7℄, [51℄, [8℄ and for ellipti problems

[48℄, [50℄. We notie that we all our approah with the same name "Bloh wave

homogenization" even if the tehniques di�er in some aspets but we think that they

yield similar results.

For a two-dimensional strip, a boundary orretor is required so that the asymp-

toti solution satis�es the nominal boundary ondition. It is solution to a boundary

layer problem posed in R+ × (0, 1). Its solution might dereases exponentially with

respet to the �rst variable. The derivation of this part of model is ahieved by a

two-sale transform dediated to boundary layers that an be related to the two-sale

onvergene for boundary layers as in [9℄.

In all this work, the homogenization proess starts with a very weak formulation of the

spetral or wave equation. Applying our method, provides two-sale models inluding

the expeted high frequeny parts but also a low frequeny part for the wave equation.

The latter is well known sine it has been found by various authors, so our work fouses

mainly on the high frequeny part. It omprises so-alled high-frequeny mirosopi

and marosopi equations, the �rst being a seond order partial di�erential equation

and the seond a system of �rst order partial di�erential equations. In the strip ase,

the boundary layer problem is a seond order partial di�erential equation.

The thesis inludes three main ontributions. In the �rst one, we onsider the

solution (wε, λε) of the spetral problem

−∂x (aε∂xwε) = λερεwε, (1)

posed in a one-dimensional open bounded domain Ω ⊂ R, with Dirihlet or Neu-

mann boundary onditions. An asymptoti analysis of this problem is arried out

where ε > 0 is a parameter tending to zero and the oe�ients are ε-periodi, namely

aε = a
(
x
ε

)
and ρε = ρ

(
x
ε

)
, a (y) and ρ (y) being 1-periodi in R. Homogenization

of spetral problems has been studied in various works providing the asymptoti be-

haviour of eigenvalues and eigenvetors. The low frequeny part of the spetrum has

been investigated in [69℄, [70℄, [110℄. Then, many on�gurations have been analyzed,

as [52℄ and [49℄ for a �uid-struture interation, [21℄, [5℄ for neutron transport, [86℄, [98℄

for ρ whih hanges sign or [6℄ for the �rst high frequeny eigenvalue and eigenvetor

for a one-dimensional non-self-adjoint problem with Neumann boundary onditions.

Higher order of asymptoti of the eigenvalues have been studied in [106℄ and [101℄. A

survey on reent spetral problems enountered in mathematial physis is available

in [71℄. In an important ontribution [8℄, G. Allaire and C. Cona studied the asymp-

toti behaviour of both the low and high frequeny spetrum. In order to analyze

the asymptoti behaviour of the high frequeny eigenvalues, they used the Bloh wave

homogenization method. They have shown that the limit of the set of renormalized

2



eigenvalues ε2λε is the union of the Bloh spetrum and the boundary layer spetrum,

when ε goes to 0. However, the asymptoti behaviour of the orresponding eigenve-

tors was not addressed for a bounded domain Ω. This is the goal of this ontribution.
We only fouses on the Bloh spetrum of the high frequeny part. By applying the

Bloh wave homogenization method, the two-sale model is derived inluding both

mirosopi and marosopi eigenmodes with boundary onditions. We derive the

homogenization model from both the seond order equation (2.1) and an equivalent

�rst order system of equations. We observe that the two models are equivalent. The

asymptoti behaviour of the eigenvalue λε and orresponding eigenvetor wε
are pro-

vided.

In the seond ontribution, we establish a homogenized model for the wave equa-

tion,

ρε∂ttu
ε − ∂x (a

ε∂xu
ε) = f ε,

uε (t = 0, x) = uε0 and ∂tu
ε (t = 0, x) = vε0,

(2)

posed in a �nite time interval I ⊂ R+
and in a one-dimensional open bounded domain

Ω ⊂ R with Dirihlet boundary onditions. The asymptoti analysis is arried out un-

der the same assumptions as for the spetral problem regarding ε and the oe�ients.

The homogenization of the wave equation has been studied in various works. The

onstrution of homogenization and orretor results for the low frequeny waves has

been published in [33℄, [60℄. These works were not taking into aount fast time osilla-

tions, so the models re�et only a part of the physial solution. Similar solutions have

been derived for the ase where the oe�ients depend on the time variable t in [47℄,

[38℄. In [35℄ and [36℄, an asymptoti analysis of the solution uε (t, x), that onserves
time and spae osillations ourring both at low and high frequenies in a bounded

domain, has been introdued. It is derived from a formulation of the wave equation

as a �rst order system and uses a deomposition over Bloh modes. It extends the

thesis work [65℄ ahieved in one-dimension. By using the Bloh wave homogenization

method, the resulting asymptoti model inludes separated parts for low and high

frequeny waves respetively. The latter is omprised with a mirosopi equation and

with a �rst order marosopi equation whih boundary onditions are missing. A

similar result has been obtained in [39℄, based on the seond order formulation of the

wave equation, whih homogenized solution is periodi in spae beause it does not

inlude a deomposition on Bloh modes. In the present ontribution, we synthesize

these ideas in a model, based on the seond order formulation of the wave equation,

using the Bloh wave deomposition of the solution and more importantly inluding

boundary onditions. The main result of this ontribution is the boundary onditions

of the high frequeny marosopi model. However, the high frequeny marosopi

model is also new sine it di�ers from this in [36℄ derived from a �rst order system

only. In addition, the proof has been simpli�ed. Moreover, for the sake of omparison,

the homogenization is also presented under the �rst order formulation as in [35℄ and

[36℄, then boundary onditions for the one-dimensional model of these works have been

announed. In onlusion, the physial solution uε is approximated by a sum of a low

frequeny term, the usual orretor in ellipti problems, using the solution of the ell

problem, and a sum of Bloh waves being the orretor for the high frequeny part.

The same result is also established for the Neumann boundary onditions and also for

a generalization of the wave equation taking into aount a zero order term as well as

�rst order time and spae derivatives.
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Introdution

We quote that in both ontributions, the models and proofs have been written

in one-dimension but they extend trivially to multi-dimensional ases, exept what

refers to the high frequeny marosopi boundary onditions whih remains an open

question in higher dimension. Hene, to do a step towards the possibility of taking

into aount a multi-dimensional geometry, we address the ase of a two-dimensional

bounded strip. This yields the third ontribution. Due to time limitation, only results

on the spetral problem are reported, but we expet that they extend to the wave

equation. We study the periodi homogenization of the spetral problem

−div (aε∇wε) = λερεwε

posed in an open bounded strip Ω = ω1 × (0, ε) ⊂ R2
with ω1 = (0, α) ⊂ R+

, with the

boundary onditions

wε = 0 on ∂ω1 × (0, ε) and aε∇xw
ε.nx = 0 on ω1 × {0, ε} ,

with the same assumptions regarding ε and the oe�ients exepted that the referene

ell Y ⊂ R2. The results of this part are an extension of those obtained in the �rst

one, and the main remaining di�ulty onsists in establishing the boundary ondi-

tions of the marosopi equation. The model derivation method is still based on the

Bloh wave homogenization method using the modulated-two-sale transform, how-

ever this tool is not enough. So, a boundary orretor is added, it is solution to a

boundary layer problem whih is an Helmholtz equation posed in R+× (0, 1) and with

a non-homogeneous boundary ondition at left. Its solution is expeted to derease

exponentially with respet to the �rst variable. The derivation of this part of model is

ahieved by a two-sale transform dediated to boundary layers that an be related to

the two-sale onvergene for boundary layers as in [9℄. The omplete asymptoti be-

haviour of the eigenvalue λε and orresponding eigenvetors wε
inluding the boundary

layer e�ets are provided. We observe that a similar problem was also investigated in

[53℄ but posed in the unbounded domain Ω = R2
and for k ∈

{
0, 1

2

}
only. The deriva-

tion uses the asymptoti expansion tehnique and the marosopi equation arises as

a ompatibility ondition. Higher order equations are also derived. Related works [26℄

and [27℄ fous on the homogenization in a viinity of a gap edge of the Bloh spetra.

We reently have been aware of the paper [40℄ whih provides the boundary ondition

for the high frequeny marosopi equation for the periodi ase (k = 0).

In our viewpoint, the asymptotis of eigenvalues, eigenvetors and wave propa-

gation are important problems. They have been widely studied in transport theory,

reation-di�usion equations and �uid dynamis, so we present more bibliographial

referenes. For general results on the spetral problem, we refer to [18℄, [24℄, [41℄,

[66℄, [69℄, [70℄, [84℄, [85℄, [86℄, [110℄ and the referenes therein. In a �xed domain, the

homogenization of spetral problems with point-wise positive density funtion goes

bak to [69℄, [70℄. In perforated domains, the �rst homogenization result is referred to

[110℄. Furthermore, many other authors have addressed similar problems onneted

with the homogenization of the wave equation for long-term approximation based on

onvergene methods or asymptoti expansions as [99℄, [32℄, [31℄, [42℄, [56℄, [57℄, [43℄,

[58℄, [20℄, [11℄, [13℄ to take into aount rapid spatial �utuations. They are valid in the

low frequeny range only. Most of these results involve more than the two usual terms

in the asymptoti expansion, so they involve higher order partial di�erential equations

in addition to the usual seond order marosopi and mirosopi equations, and
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thus additional regularity of the solutions is needed. Non linear ases have also been

onsidered as for instane in [59℄ and the bibliography herein. Similar problems have

been addressed with the perspetive of e�etive oe�ient derivation based on various

approahes, see for instane the reent works [87℄ or [12℄. They involve Bloh-mode

analysis but also refer to a long history of works as the self-onsistent shemes in dy-

nami homogenization by [103℄, [67℄ and [68℄ to ite only few. Other related problems

have been studied on the asymptoti regime of the singularly perturbed wave equation

for propagation in a periodi medium with volume mass ε2ρε as in [10℄ or with a large

potential as in [3℄. Another work in [73℄ studied the very long time behaviour of waves

in a strongly heterogeneous medium. In addition, other asymptoti results for the

wave equation an be found in [105℄, [75℄, [97℄ and [61℄. Another point of view refers

to the midfrequeny approah built upon the notions of e�etive energy density. One

of suh method was initiated in [22℄, [23℄ and has been pursued in the reent years

by several authors inluding [64℄, [74℄ and [30℄. Other numerial tehniques have been

developed in the reent years as [72℄ or those in the review paper [54℄.

We onlude this introdution by giving a few referenes to related works on bound-

ary layers in homogenization. Also related to the homogenization of eigenvalue prob-

lem, boundary layer has been studied in many works suh as [106℄, [82℄, [83℄, [96℄,

[101℄. In these publiations, boundary layer equations are ellipti equation posed in

the marosopi domain Ω, and they yields orretors for the low frequeny part. In [9℄

and [8℄, the boundary spetra is studied, it involved a spetral problem whih solution

is loalized along the boundary. Moreover, we refer to [88℄, [62℄, [100℄ for studies of

boundary layers for homogenization of highly osillating solution of ellipti equations.

These boundary layers are orretors to the formal the two-sale expansion. In addi-

tion, we refer to [19℄, [106℄, [28℄, [109℄ for other works and referenes about boundary

layers.

This dissertation is organized as follows. Chapter 1 introdues the notations, de�-

nitions and properties whih are used throughout the thesis. In Chapter 2, we present

the homogenization of the spetral problem in one dimension. This orresponds to the

published paper [95℄. Chapter 3 addresses the homogenization of the one-dimensional

wave equation. A �rst part is based on the seond order formulation, whih orrespond-

ing paper is in preparation. Its seond part is based on the �rst order formulation and

is to appear in the proeeding of the onferene ENUMATH 2013 held in Lausanne.

The results for the strip are presented in Chapter 4. We draw our onlusions in

Chapter 5 with some remarks on future researh work. Some mathematial proofs and

additional material are presented in Appendix.
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Introdution

Figure 1: Composite material has a marosopi shape and a mirostruture. The

ratio between the size of the mirostruture and the size of the material is ε.
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Chapter 1

Notations, assumptions and

elementary properties

Contents

1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Bloh waves and two-sale transform . . . . . . . . . . . . . 8

1.2.1 In one dimension . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 In a two-dimensional strip . . . . . . . . . . . . . . . . . . . 12

1.3 Assumption of sequene ε . . . . . . . . . . . . . . . . . . . 15

This hapter introdue the notations, de�nitions, elementary properties and as-

sumptions whih are used throughout the thesis.

1.1 Notations

For N ∈ N∗
and an open bounded domain Ω ⊂ RN

, the funtional spae L2 (Ω) of

square integrable funtions is over C. For m-dimensional omplex-valued funtions

u = (ui)i and v = (vi)i of L
2 (Ω)m, the dot produt is denoted by u.v :=

∑
i

uivi and

the hermitian inner produt by

∫

Ω

u · v dx =

∫

Ω

u(x).v(x) dx. (1.1)

The notation O (ε) refers to numbers or funtions tending to zero when ε → 0 in a

sense made preise in eah ase, ∂xu = ∂u
∂x

is the x−derivative of the funtion u in one

dimension and [u]z=α2

z=α1
is the integration of a funtion u on the boundary ∂X = {α1, α2}

of an interval X = (α1, α2) ⊂ R. The vetors nx and ny are the outer unit normals

to the boundaries ∂Ω and ∂Y of Ω and Y . For the sake of onveniene, we shall use

the abbreviation "LF" and "HF" to refer to "low frequeny" and "high frequeny"

respetively. Moreover, we introdue a harateristi funtion χ0 (k) = 1 if k = 0 and

= 0 otherwise.

In the following, we use the notations for Bloh wave deomposition de�ned in [36℄

where the dual ell or �rst Brillouin zone is Y ∗ = [−1/2, 1/2) and the subset of the

7



Chapter 1. Notations, assumptions and elementary properties

wave numbers used in the model is

L∗
K =

{
{− K

2K
, .., K

2K
− 1

K
} ⊂ L if K is even,

{−K−1
2K

, .., K−1
2K

} ⊂ L if K is odd,

(1.2)

forK ∈ N∗
. Note that L∗

K → Y ∗
when K → ∞. The super-ell YK = (0, K)×(0, 1)N−1

is made of K ells translated from Y = (0, 1)N . For r ∈ {1, ..., N}, the variable x is

written as

x = (xr, x̃r) with x̃r = (x1, ..., xr−1, xr+1, ..., xN ) .

For any k ∈ Y ∗
the spae of square integrable k−quasi-periodi funtions in xr dire-

tion is

L2
k = {u ∈ L2

loc(R
N) | u(xr + ℓ, x̃r) = u(x)e2iπkℓ a.e. in RN

for all ℓ ∈ Z},

or equivalently

L2
k = {u ∈ L2

loc(R
N) | ∃v ∈ L2

♯ suh that u(x) = v(x)e2iπkxr
a.e. in RN},

where L2
♯ is the traditional notation for L2

k in the periodi ase i.e. when k = 0.
Likewise, we set

H2
k := L2

k ∩H2
loc

(
RN
)

bearing in mind that the subsript ♯ would be more appropriate in the periodi ase

k = 0. In addition, the operator ̟k : L2 (Y ) → L2
k denotes the k−quasi-periodi

extension operator. Finally, we denote

Ik = {−k, k} if k ∈ Y ∗\
{
0,−1

2

}
and Ik = {k} otherwise. (1.3)

1.2 Bloh waves and two-sale transform

We distinguish between two ases: in one dimension and in a two-dimensional trip.

1.2.1 In one dimension

We onsider Ω = (0, α) ⊂ R+
an interval, whih boundary is denoted by ∂Ω, and two

funtions (aε, ρε) assumed to obey a presribed pro�le,

aε := a
(x
ε

)
and ρε := ρ

(x
ε

)
,

where ρ ∈ L∞ (R), a ∈ W 1,∞ (R) are both Y -periodi where Y = (0, 1). Moreover,

they are required to satisfy the standard uniform positivity and elliptiity onditions:

ρ0 ≤ ρ ≤ ρ1 and a0 ≤ a ≤ a1,

for some given stritly positive ρ0, ρ1, a0 and a1.
Two-sale operators For the sake of notation simpliity, we denote P ε = −∂x (aε∂x)
and Qε = ρε∂tt. For a funtion u (x, y) de�ned in Ω×R and a funtion v (t, τ) de�ned
in I × R, we introdue,

P 0u = −∂x (a∂xu) , P 1u = −∂x (a∂yu)− ∂y (a∂xu) and P 2u = −∂y (a∂yu) , (1.4)

Q0v = ρ∂ttv, Q
1v = 2ρ∂t∂τv and Q2v = ρ∂ττv.
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1.2. Bloh waves and two-sale transform

Bloh waves For a given k ∈ Y ∗
, the Bloh eigenelements (λkn, φ

k
n) indexed by n ∈ N

are solution to

P(k) : −∂y
(
a∂yφ

k
n

)
= λknρφ

k
n in Y with φk

n ∈ H2
k(Y ) and

∥∥φk
n

∥∥
L2(Y )

= 1, (1.5)

where the eigenvalues λkn onstitute a non-negative inreasing sequene. The zero

eigenvalue only for k = 0 is denoted by λ00. We state some properties of the Bloh

eigenelements

(
λkn, φ

k
n

)
solution to (1.5) whih are useful in studying the HF-waves.

For a given k ∈ Y ∗
, the operator P 2

k := −∂y (a∂y.) : D (P 2
k ) ⊂ L2

k(Y )/Ker(P 2
k ) →

L2
k(Y )/Ker(P 2

k ) with dense domain is positive self-adjoint and with ompat inverse,

so its spetrum is made with an inreasing sequene of positive real numbers tending

to in�nity. Moreover, the family

(
φk
n

)
n
onstitutes an orthonormal basis of the spae

L2 (Y ) for the hermitian inner produt. The only zero eigenvalue is λ00 orresponding

to a onstant eigenvetor, equal to one by normalization. Therefore, Ker (P 2
k ) = ∅ for

all k ∈ Y ∗
exept for k = 0. This is the same for the ase of a two-dimensional strip

in Setion 1.2.2.

Notation 1 For k 6= 0, n ∈ Mk, the onjugate φk
n of φk

n is solution of P(−k). We

hoose the numbering of the eigenvetors φ−k
n so that φ−k

n = φk
n whih implies that

λ−k
n = λkn.

Remark 2 For eah k ∈ Y ∗
, n ∈ N∗

, the seond order di�erential equation (1.5)

admits two independent solutions, whih aording to Notation 1, are φk
n and φ−k

n

when k 6∈ {0,−1
2
}. So, the eigenvalues λkn and λ−k

n are both simple while in the other

ase the eigenvetors are or periodi or anti-periodi and the eigenvalues are or simple

or double.

The L2−orthogonal projetor onto φkn is denoted by Πk
n and the assoiated time sale

is αk
n = 2π√

λk
n

, with α0
0 = ∞. Denote by Mk

the set of the indies n of all Bloh

eigenelements,

Mk = N for k = 0 and Mk = N∗
for k 6= 0. (1.6)

The spae-modulated-two-sale transform Let us assume from now on that the

domain Ω is the union of a �nite number of entire ells of size ε or equivalently

that ε belongs to a subsequene of εn = α
n
for n ∈ N∗

. The set of all ells of Ω is

C := {ωε = εl + εY | l ∈ Z, εl + εY ⊂ Ω}.

De�nition 3 For any k ∈ Y ∗
, the modulated-two-sale transform Sε

k : L2 (Ω) →
L2 (Ω× Y ) of a funtion u ∈ L2 (Ω) is de�ned by

Sε
ku (x, y) =

∑

ωε∈Cε

u (εlωε
+ εy)χωε

(x) e−2iπklωε , (1.7)

where εlωε
stands for the unique node in εL of ωε and χωε

is the harateristi funtion

of ωε.

From De�nition 3 of the modulated-two-sale transform, the three following properties

an be heked by using (1.7) and are admitted. For k ∈ Y ∗
and two funtions
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Chapter 1. Notations, assumptions and elementary properties

u, v ∈ L2 (Ω)

‖Sε
ku‖2L2(Ω×Y ) =

∫

Ω×Y

|Sε
ku|2 dxdy =

∑

ωε∈C

∫

ωε

|u|2 dx = ‖u‖2
L2(Ω)

, (1.8)

Sε
k(uv) = Sε

0(u)S
ε
k(v),

and Sε
k (∂xu) (x, y) =

1

ε
∂yS

ε
ku (x, y) for u ∈ H1 (Ω) . (1.9)

The adjoint Sε∗
k : L2 (Ω× Y ) → L2 (Ω) of Sε

k is de�ned by

∫

Ω

(Sε∗
k v) (x) · w (x) dx =

∫

Ω×Y

v (x, y) · (Sε
kw) (x, y) dxdy, (1.10)

for all w ∈ L2 (Ω) and v ∈ L2 (Ω× Y ). A diret omputation, see [95℄, shows that the

expliit expression of Sε∗
k v is

(Sε∗
k v) (x) =

∑

ωε∈C
ε−1

∫

ωε

v

(
z,
x− εlωε

ε

)
dzχωε

(x)e2iπklωε , (1.11)

it maps regular funtions in Ω× Y to a pieewise-onstant funtions in Ω.

Remark 4 Let k ∈ Y ∗
and a bounded sequene uε in L2 (Ω) suh that Sε

ku
ε
onverges

to uk in L2(Ω× Y ) weakly when ε→ 0, then Sε
−ku

ε
onverges to some u−k

in L2(Ω×
Y ) weakly. Moreover, sine Sε

ku
ε
and Sε

−ku
ε
are onjugate then uk and u−k

are also

onjugate.

Aording to (1.11), Sε∗
k v is not a regular funtion. For various reasons, we need a

regular approximation of Sε∗
k v that will denote by R

kv. The expression of R
kv depends

on the regularity of v with respet to its �rst variable. Prior to de�ning R
kv, it is

required to extend v (x, y) to y ∈ R by k−quasi-periodiity. Hene, we denote by R
k

the operator operating on funtions v(x, y) de�ned in Ω× R and k−quasi-periodi in

y,

(Rkv)(x) = v(x,
x

ε
). (1.12)

The next lemma shows that R
k
is an approximation of Sε∗

k for k−quasi-periodi fun-

tions.

Lemma 5 Let v ∈ C1 (Ω× Y ) be a k−quasi-periodi funtion in y then

Sε∗
k v = R

kv +O (ε) in the L2 (Ω) weak sense. (1.13)

Moreover, for v ∈ C2 (Ω× Y ) a k−quasi-periodi funtion in y then

R
kv = Sε∗

k

(
v + ε

(
y − 1

2

)
∂xv

)
+ εO (ε) in the L2 (I × Ω) weak sense. (1.14)

We refer to Lemma 3 in [95℄ and to [80℄ for the proof, see also the proof of forthom-

ing Lemma 8 in Appendix when the time variables are dismissed. In the proof, we

onstantly use the following onsequene.
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1.2. Bloh waves and two-sale transform

Corollary 6 Let v ∈ C1 (Ω× Y ) and k−quasi-periodi in y, for any bounded sequene

uε in L2 (Ω) suh that Sε
ku

ε
onverges to u in L2(Ω× Y ) weakly when ε→ 0 then

∫

Ω

uε ·Rkv dx→
∫

Ω×Y

u · v dxdy when ε→ 0.

Note that for k = 0, this orresponds to the de�nition of two-sale onvergene in [1℄

and [89℄.

The time-two-sale transform A two-sale transform is then introdued for the

time variable, let Z be as a anonial lattie and Λ = (0, 1) as a time unit ell, we set

D := {θε = εl + εΛ | l ∈ Z, εl + εΛ ⊂ I} the family of all εΛ−ells ontained in I.

De�nition 7 The time two-sale transform T ε : L2 (I) → L2 (I × Λ) of the funtion

u ∈ L2 (I) is de�ned by

T εu (t, τ) :=
∑

θε∈D
u (εlθε + ετ )χθε

(t) (1.15)

where εlθε ∈ εZ stands for the left end point of θε and χθε is the harateristi funtion

of θε.

Similarly, for u ∈ L2 (I) and v ∈ H1 (I) , the two following properties an be heked

by using (1.15),

‖T εu‖2L2(I×Λ) =

∫

I×Λ

|T εu|2 dtdτ =
∑

θε∈D

∫

θε

|u|2 dt = ‖u‖2L2(I) (1.16)

and T ε (∂tv) (t, τ ) =
1

ε
∂τ (T

εv) (t, τ ) . (1.17)

The adjoint T ε∗ : L2 (I × Λ) → L2 (I) of T ε
is de�ned by

∫

I

(T ε∗v) (t) · w (t) dt =

∫

I×Λ

v (t, τ) · (T εw) (t, τ ) dtdτ, (1.18)

for all w (t) ∈ L2 (I) and v (t, τ) ∈ L2 (I × Λ). The expliit expression of T ε∗v is

(T ε∗v) (t) =
∑

θε∈D
ε−1

∫

θε

v

(
z,
t− εlθε

ε

)
dzχθε (t), (1.19)

it maps regular funtions in I × Λ to a pieewise-onstant funtions in I.

The operator B
k
n, transforming two-sale funtions v(t, τ , x, y) de�ned in I×R×Ω×R

by funtions of the physial spae-time variables, is then

(Bk
nv)(t, x) = v(t,

t

εαk
n

, x,
x

ε
). (1.20)

Next Lemma presents the relation between B
k
nv and T εαk

n∗Sε∗
k v for a funtion v whih

is periodi in τ and k−quasi-periodi in y for any n ∈ N∗
.
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Chapter 1. Notations, assumptions and elementary properties

Lemma 8 For k ∈ Y ∗
and n ∈ N∗

, let v ∈ C1 (I × Λ× Ω× Y ) be a periodi funtion

in τ and k−quasi-periodi funtion in y, then

B
k
nv = T εαk

n∗Sε∗
k v +O (ε) in the L2 (I × Ω) weak sense. (1.21)

Moreover, if v ∈ C2 (I × Λ× Ω× Y ) is a periodi funtion in τ and k−quasi-

periodi funtion in y, then B
k
nv an be approximated at the �rst order by

B
k
nv = T εαk

n∗Sε∗
k

(
v + εαk

n

(
τ − 1

2

)
∂tv + ε

(
y − 1

2

)
∂xv

)
+ εO (ε) (1.22)

in the L2 (I × Ω) weak sense.

It would take long to present here the proof, based on Lemma 3 in [95℄ and [80℄, of

Lemma 8 in details, thus it is postponed in Appendix. Moreover, for a funtion u (x, y)
de�ned in Ω× R and a funtion v (t, τ) de�ned in I × R, we observe that,

P ε
R

ku =

2∑

n=0

ε−n
R

kP nu, P ε
(
B

k
nu
)
= B

k
n

(
P 0u+ ε−1P 1u+ ε−2P 2u

)
, (1.23)

and Qε
B

k
nv = B

k
n

(
Q0v +

(
εαk

n

)−1
Q1v +

(
εαk

n

)−2
Q2v

)
.

1.2.2 In a two-dimensional strip

We onsider an open bounded domain Ω = ω1 × ω2 with ω1 = (0, α) ⊂ R+
and

ω2 = (0, ε) with ends Γend = ∂ω1×ω2 and lateral boundary Γlat = ω1× ∂ω2. As usual

in homogenization papers, ε > 0 denotes a small parameter intended to go to zero. A

2× 2 matrix aε and a real funtion ρε are assumed to obey a presribed pro�le,

aε := a
(x
ε

)
and ρε := ρ

(x
ε

)
,

where ρ ∈ L∞ (R2) and a ∈ W 1,∞ (R2)
2×2

is symmetri. They are both Y−periodi

with respet to the referene ell Y ⊂ R2
. Moreover, they are required to satisfy the

standard uniform positivity and elliptiity onditions,

ρ0 ≤ ρ ≤ ρ1 and a0 ||ξ||2 ≤ ξTaξ ≤ a1 ||ξ||2 for all ξ ∈ R2
(1.24)

for some given stritly positive numbers ρ0, ρ1, a0 and a1. We note that variables x
and y an be written as,

x = (x1, x2) and y = (y1, y2) .

For Y1 = Y2 = (0, 1), let us de�ne the unit ell Y = Y1 × Y2 = (0, 1)2 whih, upon

resaling to size ε, beomes the period in Ω. The boundary ∂Y is deomposed into

∂Y = γend ∪ γlat where γend = ∂Y1 × Y2 and γlat = Y1 × ∂Y2. The ells

(
ωj
1ε

)
j∈N and

(ωj
ε)j∈N of size ε, and their indies

(
lωj

ε

)
j∈N

are deomposed aordingly

ωj
1ε = ε (j + Y1) , ω

j
ε = ωj

1ε × ω2 and lωj
ε
= (j, 0) for j ∈ N.
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1.2. Bloh waves and two-sale transform

With the same onvention, the boundary layer ell is in diretion y1 and is de�ned as,

Y +
∞ = R+ × Y2.

The boundary ∂Y +
∞ of Y +

∞ is deomposed into γ+∞,end = {0}×Y2 and γ+∞,lat = R+×∂Y2.
Two-sale operators Similarly to the one-dimensional ase, we denote P ε = − divx (a

ε∇x.)
and

P 0 = −∂x1 (a11∂x1 .) , P
1 = −∂x1 (a1.∇y.)− divy (a.1∂x1 .) , P

2 = − divy (a∇y.) .

Bloh waves For k ∈ Y ∗
, the Bloh eigenelements (λkn, φ

k
n) indexed by n ∈ N are

solution to

P(k) : − divy

(
a∇yφ

k
n

)
= λknρφ

k
n in Y with φkn ∈ H2 (Y ) ∩ L2

(
H2

k(Y1); Y2
)

(1.25)

suh that a∇yφ
k
n.ny = 0 on γlat and

∥∥φk
n

∥∥
L2(Y )

= 1,

where the eigenvalues λkn onstitute a non-negative inreasing sequene. The zero

eigenvalue only for k = 0 is denoted by λ00.
The modulated-two-sale transform In the statement of the results, the asymp-

toti behaviour of the solution is expressed by using the following de�nition of the

modulated-two-sale transform. Let us assume from now on that Ω is the union of

a �nite number of entire ells of size ε or equivalently that the sequene ε is exatly

εn = α
n
for n ∈ N∗

. We set,

J =
{
j ∈ N suh that ωj

ε ⊂ Ω
}
,

then J is the set of indies of �nite ells of size ε.

De�nition 9 For any k ∈ Y ∗
, the modulated-two-sale transform of the funtion

u ∈ L2 (Ω), Sε
k : L

2 (Ω) → L2 (ω1×Y ), is de�ned by

Sε
ku (x1, y) =

∑

j∈J
u (εj + εy1, εy2)χωj

1ε
(x1) e

−2iπkj
(1.26)

where χωj
ε
is the harateristi funtion on ωj

1ε.

From De�nition 9 of the modulated-two-sale transform, the three following properties

an be heked by using (1.26) and are admitted. For u, v ∈ L2 (Ω)

‖Sε
ku‖2L2(ω1×Y ) =

∫

ω1×Y

|Sε
ku|2dx1dy =

∑

j∈J

∫

ωj
1ε

(
1

ε2

∫

ωj
ε

|u|2 dx
)
χωj

1ε
(x1)dx1 =

1

ε
‖u‖2

L2(Ω)
,

(1.27)

Sε
k(uv) = Sε

0(u)S
ε
k(v),

and Sε
k (∇xu) (x1, y) =

1

ε
∇y (S

ε
ku) (x1, y) for u ∈ H1 (Ω) .

Then, the adjoint Sε∗
k : L2 (ω1 × Y ) → L2 (Ω) of Sε

k is de�ned by

1

ε

∫

Ω

(Sε∗
k v) (x) · w (x) dx =

∫

ω1×Y

v (x1, y) · (Sε
kw) (x1, y) dx1dy, (1.28)

13



Chapter 1. Notations, assumptions and elementary properties

for all w ∈ L2 (Ω) and v ∈ L2 (ω1 × Y ). A diret omputation shows that the expliit

expression of Sε∗
k v is

(Sε∗
k v) (x) =

∑

j∈J

∫

ωj
1ε

ε−1v

(
z,
x− εlωj

ε

ε

)
dz χωj

ε
(x)e2iπkj, (1.29)

it maps regular funtions in ω1 × Y to a pieewise-onstant funtion in Ω. Moreover,

the operator R
k
, transforming two-sale funtions v(x1, y) de�ned in ω1 × R2

and

k−quasi-periodi in y1 by funtions of the physial spae variables, is then

(Rkv)(x) = v(x1,
x

ε
). (1.30)

The next Lemma shows that R
k
is an approximation of Sε∗

k for k−quasi-periodi

funtions in y1, it is a simple extension of Lemma 5 also of [80℄. The proof is referred

in Appendix.

Lemma 10 Let v ∈ C1 (ω1 × Y ) a k−quasi-periodi funtion in y1 then

Sε∗
k v = R

kv +O (ε) in the L2 (Ω) weak sense. (1.31)

Moreover, for k ∈ Y ∗, the de�nition of the modulated-two-sale transform yield rela-

tions between Sε
ku

ε
and Sε

−ku
ε :

• Sε
ku

ε
and Sε

−ku
ε
are onjugate,

• if uε is a sequene suh that Sε
ku

ε
onverges weakly to uk in L2(ω1 × Y ) when

ε → 0, then Sε
−ku

ε
onverges weakly to u−k

in L2(ω1 × Y ) weakly; moreover uk

and u−k
are onjugate.

The boundary layer two-sale transform In order to study the osillations of

waves near the boundary, we introdue the boundary layer two-sale transform whih

will be de�ned by adapting the modulated-two-sale transform to the ase boundary

layers, that is, sequenes of funtions in Ω whih onentrate near the boundary {0}×
ω2 and {α} × ω2. It is also based on the motivation of two-sale onvergene for

boundary layers in [9℄.

De�nition 11 For ϑ ∈ {0, α}, the boundary layer two-sale transform Sϑ
b applies to

funtions u (x) ∈ L2 (Ω),
Sϑ
b : L2 (Ω) → L2

(
Y +
∞
)

is a simple ε−1−dilation and is de�ned by,

(
S0
bu
)
(y) = u (εy)χ(0,α/ε) (y1) , (1.32)

and

(Sα
b u) (y) = u (−εy1 + α, εy2)χ(0,α/ε) (y1) . (1.33)

For u ∈ L2 (Ω) , the boundness property of Sϑ
b u an be showed in the next lemma.

Lemma 12 For u ∈ L2 (Ω) suh that u is bounded in L2 (Ω), then

ε−2

∫

Ω

|u|2 (x) dx =

∫

Y +
∞

∣∣Sϑ
b u
∣∣2 (y) dy for ϑ ∈ {0, α} . (1.34)

14



1.3. Assumption of sequene ε

Moreover, the adjoint Sϑ∗
b : L2 (Y +

∞) → L2 (Ω) of Sϑ
b , is de�ned by

1

ε

∫

Ω

(
Sϑ
b

∗
v
)
(x) · w (x) dx = ε

∫

Y +
∞

v (y) ·
(
Sϑ
b w
)
(y) dy for any ϑ ∈ {0, α} (1.35)

for all w (x) ∈ L2 (Ω) and v (y) ∈ L2 (Y +
∞). Furthermore, for a funtion v (y) de�ned

in Y +
∞ , the operators R

0
b and R

α
b , transforming the funtions v(y) de�ned in Y +

∞ by

funtions of the physial variables, are introdued by

R
0
b (v) (x) = v

(x
ε

)
and R

α
b (v) (x) = v

(
α− x1
ε

,
x2
ε

)
for x ∈ Ω. (1.36)

The next lemma presents the relation between Sϑ
b
∗
and R

ϑ
b for a funtion v de�ned in

Y +
∞ .

Lemma 13 For v (y) ∈ C1 (Y +
∞) then

Sϑ∗
b v = R

ϑ
b v in L2 (Ω) for any ϑ ∈ {0, α} . (1.37)

The proofs of Lemma 12 and Lemma 13 are postponed in Appendix. For the funtions

v(x1, y) and w (y) de�ned respetively in ω1 × R2
and Y +

∞ , we observe that

P ε
R

kv =

2∑

n=0

ε−n
R

kP nv and P ε
R

ϑ
bw = ε−2

R
ϑ
bP

2w. (1.38)

Finally, from now on the notation P 2
is used instead of P 2

k for all ases.

1.3 Assumption of sequene ε

The following ondition on the sequene ε is made so that to be able to pass to the

limit the boundary onditions at x1 = α.

Assumption 14 For eah k ∈ Y ∗
, onsidering the deomposition in

αk

ε
= hkε + lkε , (1.39)

with the integer part hkε =
[
αk
ε

]
and the rest lkε ∈ [0, 1), we assume that the sequene ε

belongs to a set Ek ⊂ R+∗
suh that the sequene lkε is onvergent

lkε → lk when ε → 0. (1.40)

For k = 0, we observe that h0ε = 0, l0ε = 0 so l0 = 0 and E0 = R+∗
.
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Chapter 2

Homogenization of the spetral

problem in one-dimension
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Abstrat. In this hapter, the asymptoti behavior of a one-dimensional spetral

problem with periodi oe�ient is addressed for HF-modes by a method of Bloh

wave homogenization. The analysis leads to a spetral problem inluding both HF-

mirosopi and HF-marosopi eigenmodes. Numerial simulation results are pro-

vided to orroborate the theory. This work has been published in [95℄.

2.1 Introdution

We onsider the spetral problem

−∂x (aε∂xwε) = λερεwε
(2.1)
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Chapter 2. Homogenization of the spetral problem in one-dimension

posed in an one-dimensional open bounded domain Ω ⊂ R with Dirihlet boundary

onditions. An asymptoti analysis of this problem is arried out where ε > 0 is

a parameter tending to zero and the oe�ients are ε-periodi, namely aε = a
(
x
ε

)

and ρε = ρ
(
x
ε

)
where a (y) and ρ (y) are 1-periodi in R. In this hapter, we searh

eigenvalues λε satisfying the expansion

ε2λε = λ0 + ελ1 + εO (ε) . (2.2)

It omes that λ0 is equal to an eigenvalue λkn solution of the Bloh wave spetral

problem (1.5) for n ∈ N∗
and k ∈ Y ∗

, also alled the HF-mirosopi equation in

this work. To guarantee that Bloh waves are kept in the weak limit, we apply the

modulated two-sale transform Sε
k de�ned in (1.7). Passing to the limit in the weak

formulation, it is shown that

∑
σ∈Ik

Sε
σw

ε
is weakly onverging to two-sale modes

gk (x, y) =
∑

σ∈Ik

∑

m

uσm (x)φσm (y)

where the seond sum runs over all modes φσ
m with the same eigenvalue λkn. Here,

the modes φσ
m are alled Bloh modes. The fators (uσm)m are solution of the HF-

marosopi system of �rst order di�erential equation,

∑

m

c (σ, n,m) ∂xu
σ
m + λ1b (σ, n,m) uσm = 0 in Ω for eah σ ∈ Ik, (2.3)

whih boundary onditions and the onstant c (σ, n,m) are depending on the involved

Bloh modes and eigenvalues. The physial solution wε
is then approximated by two-

sale modes

wε (x) ≈
∑

σ∈Ik

∑

m

uσm (x)φσ
m

(x
ε

)
. (2.4)

These results are also established for Neumann boundary onditions.

In fat, the method introdued in this hapter is inspired from [36℄ dediated to

the wave equation, exept that in the latter work the two-sale transforms Sε
kw

ε
and

Sε
−kw

ε
were analyzed separately and the marosopi boundary onditions were lak-

ing. Moreover, the model derivation in [36℄ is starting from the wave equation written

as a �rst order system. So, for the sake of omparison, we derive the homogenized

spetral equation from a �rst order formulation. All presented results are straight-

forwardly extended to multiple spae dimensions exept the marosopi boundary

onditions satis�ed by the modulation oe�ient uσm (x) of the Bloh modes.

In addition, we report exploration results regarding approximations of physial

eigenmodes by two-sale modes. First, for a given ε and eah high frequeny physial

eigenelement (λε, wε), we show how to �nd quadruplets

(
λkn, λ1, φ

k
n, u

k
n

)
n,k

satisfying

the approximations (2.2) and (2.4). This shows that eah high frequeny eigenelement

an be approximated by a two-sale mode. Conversely, the high frequeny physial

eigenelements an be built from the two-sale eigenelements only. Namely, for a given

Bloh mode

(
λkn, φ

k
n

)
, a marosopi eigenelement

(
λ1, ukn

)
is minimizing the error on

the physial equation (2.1) where wε
and λε are replaed by their approximations (2.2)

and (2.4).

Remaining of this hapter is organized as follows. In Setion 3.5.1 we state the

physial spetral equation with Dirihlet boundary onditions. In Setion 2.3 and

2.4, the model homogenization is derived based on the seond order and �rst order

formulations respetively. Finally, the numerial results are reported in the last setion.
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2.2. Statement of the problem

2.2 Statement of the problem

We onsider Ω = (0, α) ⊂ R+
an interval, whih boundary is denoted by ∂Ω, and two

funtions (aε, ρε) assumed to obey a presribed pro�le,

aε := a
(x
ε

)
and ρε := ρ

(x
ε

)
, (2.5)

where ρ ∈ L∞ (R), a ∈ W 1,∞ (R) are both Y -periodi where Y is an open interval.

Moreover, they are required to satisfy the standard uniform positivity and elliptiity

onditions:

ρ0 ≤ ρ ≤ ρ1 and a0 ≤ a ≤ a1, (2.6)

for some given stritly positive ρ0, ρ1, a0 and a1.
With the operators P ε = −∂x (aε∂x.), the spetral problem with Dirihlet boundary

onditions is

P εwε = λερεwε
in Ω and wε = 0 on ∂Ω, (2.7)

where as usual ε > 0 denotes a small parameter intended to go to zero.

The eigenvetors wε ∈ H2 (Ω) ∩H1
0 (Ω) are normalized by

‖wε‖L2(Ω) =

(∫

Ω

|wε|2 dx
) 1

2

= 1, (2.8)

and we searh the eigenvalues suh that

ε2λε = λ0 + ελ1 + εO(ε), (2.9)

where λ0 is a non negative real number and O(ε) tends to zero with ε. The weak

formulation of the spetral problem (2.7) is: �nd wε ∈ H1
0 (Ω) suh that

∫

Ω

aε∂xw
ε∂xv dx = λε

∫

Ω

ρεwεv dx for all v ∈ H1
0 (Ω). (2.10)

Sine ε2λε is bounded, it results the uniform bound

||ε∂xwε||L2(Ω) ≤ N0. (2.11)

2.3 Homogenization of the high-frequeny eigenvalue

problem

Before starting the homogenized results, for any n,m ∈ N∗
, we introdue the HF-

marosopi model oe�ients

c(k, n,m) =

∫

Y

a∂yφ
k
m · φk

n − φk
m · a∂yφk

n dy and b(k, n,m) =

∫

Y

ρφk
m · φk

n dy (2.12)

and observe that the following properties hold,

c(k, n,m) = c(−k, n,m), c(k,m, n) = −c(k, n,m), c(k, n,m) = −c(−k,m, n)
and

b(k, n,m) = b(k,m, n), b(k, n,m) = b(−k,m, n), b (k, n, n) > 0.

In partiular for k = 0, if the eigenvetors are hosen as real funtions thus c (0, n, n) =
0. In the speial ase ρ = 1, b(k, n,m) = 1 for n = m and b(k, n,m) = 0 otherwise.

Here we study our problem with k ∈ Y ∗ =
(
−1

2
, 1
2

)
. The proess is similar to k = −1

2

but the detail is not reported.
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Chapter 2. Homogenization of the spetral problem in one-dimension

2.3.1 Main result

The HF-marosopi equation is stated for eah k ∈ Y ∗
and eah Bloh wave eigenvalue

λkn. For k 6= 0, we assume that c (σ, n, n) 6= 0 for eah σ ∈ Ik, so it is stated as an

eigenvalue problem

c (σ, n, n) ∂xu
σ
n + λ1b (σ, n, n)uσn = 0 in Ω (2.13)

for eah σ, with the boundary onditions

∑

σ∈Ik
uσn (x)φ

σ
n (0) e

sign(σ)2iπ lkx
α = 0 on x ∈ ∂Ω, (2.14)

where lk is de�ned in (1.40). We observe that the �rst order operator c (k, n, n)

(
∂x 0
0 −∂x

)

of this system is self-adjoint on the domain

Dk =
{
(un, vn) ∈ H1 (Ω)2 satisfying (2.14)

}

so λ1 is real.

For k = 0, assuming that λ0n is a double eigenvalue orresponding to two eigenve-

tors φ0n and φ0
m, and that c (0, n,m) 6= 0, the HF-marosopi system states

∑

q∈{n,m}
c (0, p, q)∂xu

0
q + λ

1
b (0, p, q)u0q = 0 in Ω for p ∈ {n,m} , (2.15)

with the boundary onditions

∑

q∈{n,m}
u0q (x)φ

0
q (0) = 0 on x ∈ ∂Ω. (2.16)

Again λ1 ∈ R sine c (0, n,m)

(
0 ∂x

−∂x 0

)
is self-adjoint on

D0 =
{
(un, um) ∈ H1 (Ω)2 satisfying (2.16)

}
.

Remark 15 (i) If c (k, n, n) = 0 for k 6= 0 or c (0, p, q) = 0 for all p, q varying in

{n,m} , the HF-marosopi equations (2.13) or (2.15) are λ1 = 0 or u = (uσn)n,σ = 0.

If λ1 = 0 then this model does not provide any equation for uσn.
(ii) For k 6= 0, if φkm (0) = 0 then φkm (1) = 0 and φkm is a periodi solution that is

a solution of k = 0. So, we onsider always that φk
m (0) 6= 0 for k 6= 0.

(iii) For k = 0, in ase where φn(0) = φm(0) = 0 the boundary onditions of the

HF-marosopi equation vanishes.

Remark 16 This work fouses on the Bloh spetrum. To avoid eigenmodes related

to the boundary spetrum, aording to Proposition 7.7 in [8℄, we shall assume that the

weak limit of Sε
kw

ε
in L2 (Ω;H1(Y )) is not vanishing.

The main Theorem states as follows.
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Theorem 17 For k ∈ Y ∗, let (λε, wε) be solution of (2.7) then

∑
σ∈Ik

Sε
σw

ε
is bounded in

L2 (Ω;H1(Y )). For ε ∈ Ek, as in (1.39, 1.40), assuming that the weak limit of Sε
kw

ε

in L2 (Ω;H1(Y )) is non-vanishing and the renormalized sequene ε2λε satis�es the

deomposition (2.9), there exists n ∈ N∗
suh that λ0 = λkn with λkn an eigenvalue of the

Bloh wave spetrum and the limit gk of any weakly onverging extrated subsequene

of

∑
σ∈Ik

Sε
σw

ε
in L2 (Ω;H1(Y )) an be deomposed on the Bloh modes

gk (x, y) =
∑

σ∈Ik
uσn (x)φ

σ
n (y) for k 6= 0 (2.17)

and g0 (x, y) =
∑

q∈{n,m}
u0q (x)φ

0
q (y) otherwise.

Moreover, uσm ∈ H1(Ω) and (uσm)m,σ are solutions of the HF-marosopi equations

(2.13, 2.14) and (2.15, 2.16). Finally, ukm and u−k
m are onjugate.

Thus, it follows from (2.17) that the physial solution wε
is approximated by two-

sale modes

wε (x) ≈
∑

σ∈Ik
uσn (x)φ

σ
n

(x
ε

)
for k 6= 0 (2.18)

and wε (x) ≈
∑

q∈{n,m}
u0q (x)φ

0
q

(x
ε

)
otherwise.

The boundary onditions (2.14) and (2.16) an be diretly derived by replaing wε
in

the physial boundary ondition by its approximations,

∑

σ∈Ik
uσn (x)φ

σ
n

(x
ε

)
= 0 for k 6= 0 (2.19)

and

∑

q∈{n,m}
u0q (x)φ

0
q

(x
ε

)
= 0 otherwise at x ∈ ∂Ω.

For k 6= 0, they result from

φσ
n

(x
ε

)
= φσ

n (0) e
2iπσ x

ε

= φσ
n (0) e

sign(σ)2iπx
hkε+lkε

α = φσ
n (0) e

sign(σ)2iπx
lkε
α
for x ∈ ∂Ω

and the assumption lkε → lk. For k = 0, the onditions follow from the periodiity

of φ0
n. Furthermore, we observe that gk (x, 0) and gk (x, 1) are generally not vanishing

exept for k = 0.

Proposition 18 For k ∈ Y ∗
, n ∈ N∗

, if the HF-marosopi solution ukn is a non-

vanishing onstant, then any two-sale mode (2.18) is a physial eigenmode i.e. a

solution to (2.7).

Proof. For k ∈ Y ∗
, n ∈ N∗

, if the HF-marosopi solution ukn is onstant then

λ1 = 0 and (uσm)m,σ are onstant for all σ ∈ Ik and m ∈ N∗
suh that λσm = λσn. Now,

we onsider ρ = 1 and the proof is similar for ρ 6= 1. Based on Remark 23 about
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the marosopi solutions in Setion 2.3.4, λ1 = 0 is equivalent to ℓ = 2kα
ε
. From the

σ−quasi-periodiity of φσn,

φσ
n

(α
ε

)
= φσ

n (0) e
sign(σ)2iπk α

ε = φσ
n (0) e

sign(σ)iπℓ = ±φσ
n (0) ,

then φσ
n is α−periodi or α−anti-periodi for σ ∈ Ik. Hene φσ

n

(
x
ε

)
is a solution of the

equation

∂x

(
a
(x
ε

)
∂xφ

σ
n

(x
ε

))
= −λ

σ
n

ε2
φσ
n

(x
ε

)
in Ω (2.20)

and φσn

(x
ε

)
is α− periodi or α− anti-periodi,

and uσmφ
σ
m

(
x
ε

)
is also a solution of (2.20). Denote by wε :=

∑
σ∈Ik

∑
m

uσmφ
σ
m

(
x
ε

)
and

observe that wε
is a solution of the equation

∂x (a
ε∂xw

ε) = −λεwε
in Ω

with the boundary onditions

wε (0) =
∑

σ∈Ik

∑

m

uσmφ
σ
m (0) = 0 and wε (α) =

∑

σ∈Ik

∑

m

uσmφ
σ
m

(x
ε

)
= ±wε (0) = 0.

Finally, Proposition 18 is onluded.

Remark 19 The onverse is probably true, and is numerially studied in Setion 2.5.2,

i.e. for any (λε, wε) solution to (2.7), there exist k ∈ Y ∗
, n ∈ N∗

and two omplex

numbers ξ1 and ξ2 suh that λε = λkn/ε
2
and

wε (x) = ξ1φ
k
n

(x
ε

)
+ ξ2φ

−k
n

(x
ε

)
if k 6= 0 (2.21)

and wε (x) = ξ1φ
0
n

(x
ε

)
+ ξ2φ

0
m

(x
ε

)
otherwise

for ξ1, ξ2 two numbers suh that the boundary onditions (2.16), respetively (2.14),

are satis�ed for k = 0, respetively for k 6= 0. In the later ase ξ1 and ξ2 are onjugate.

Remark 20 (i) The ase of non-onstant oe�ients ukn is used for approximations

of the solution to the homogenized wave equation that may be derived from [36℄. In

suh ase k belongs to a �nite subset L∗
K of Y ∗

made with values distant from 1/K
and inluding 0. We annot expet that there always exists a pair (k, n) suh that ukn
is a onstant.

(ii) The ase of non-onstant oe�ients ukn is also seen as a preparation to derive

homogenized spetral problems in higher dimension where the boundary onditions on-

stitute a more di�ult problem and may require a more general solution than onstant

ukn.

Proof. [Proof of Theorem 17℄ The proof is based on Lemma 21 in Setion 2.3.2 and

on the HF-marosopi model derivation in Setion 2.3.3. For a given k ∈ Y ∗
, let wε

be solution of (2.7) whih is bounded in L2(Ω), the property (1.8) yields the uniform

boundness of ‖Sε
σw

ε‖L2(Ω×Y ) for any σ ∈ Ik. So there exist wσ ∈ L2(Ω× Y ) suh that
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up the extration of a subsequene Sε
σw

ε → wσ
in L2 (Ω× Y ) weakly. Furthermore,

‖Sε
σ (ε∂xw

ε)‖L2(Ω×Y ) = ‖∂ySε
σw

ε‖L2(Ω×Y ) is uniformly bounded as ‖ε∂xwε‖L2(Ω), hene

lim
ε→0

∫

Ω×Y

∂yS
ε
σw

ε · vdxdy = lim
ε→0

∫

Ω×Y

−Sε
σw

ε · ∂yvdxdy = −
∫

Ω×Y

wσ · ∂yvdxdy

for all v ∈ L2(Ω;H1
0 (Y )). If w

σ ∈ L2(Ω;H1(Y )) then

lim
ε→0

∫

Ω×Y

∂yS
ε
σw

ε · vdxdy =

∫

Ω×Y

∂yw
σ · vdxdy.

Therefore Sε
σw

ε
tends weakly to wσ

also in L2(Ω;H1 (Y )). Hene,
∑
σ∈Ik

Sε
σw

ε
onverges

to

gk (x, y) =
∑

σ∈Ik
wσ (x, y) .

Using the deomposition (2.22) of wσ
in Lemma 21, for

(
φσ
p

)
σ,p

the Bloh wave eigen-

modes orresponding to λ0,





gk (x, y) =
∑
σ∈Ik

uσn (x)φ
σ
n (y) for k 6= 0,

g0 (x, y) =
∑

p∈{n,m}
u0p (x)φ

0
p (y) for k = 0.

Finally,

(
uσp
)
σ,p

is solution of the HF-marosopi problem as proved in Setion 2.3.3.

2.3.2 Modal deomposition on the Bloh modes

Lemma 21 For (λε, wε) solution of (2.7) and satisfying (2.9), for a �xed k ∈ Y ∗

there exists at least a subsequene of Sε
kw

ε
onverging weakly towards non-vanishing

funtion wk
in L2 (Ω× Y ) when ε tends to zero. If wk ∈ L2(Ω;H2(Y )) then

(
λ0, wk

)

is solution of the Bloh wave equation (1.5) and wk
admits the modal deomposition,

wk (x, y) =
∑

m

ukm (x)φkm (y) for ukm ∈ L2 (Ω) (2.22)

where the sum is over all Bloh modes φkm assoiated to λ0. Moreover for k 6= 0 the

two fators ukm and u−k
m are onjugate.

Proof. The test funtions of the weak formulation (2.10) are hosen as

vε := R
kv ∈ H1

0 (Ω) ∩H2(Ω), (2.23)

with

v ∈ H1
0 (Ω;L

2
k(Y )) ∩ L2(Ω;H2

k(Y )) ∩H2
(
Ω;L2

k (Y )
)
. (2.24)

Applying two integrations by parts and the boundary onditions satis�ed by wε
and

by R
kv, it remains ∫

Ω

wε · (P ε − λερε)vε dx = 0. (2.25)
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From (1.23) multiplied by ε2 and (2.9),

∫

Ω

wε ·Rk((P 2 − λ0ρ)v) dx = O(ε).

Sine (P 2−λ0ρ)v is k−quasi-periodi and Sε
kw

ε → wk
in L2(Ω×Y ) weakly, Corollary

6 allows to pass to the limit

∫

Ω×Y

wk · (P 2 − λ0ρ)v dxdy = 0,

or equivalently ∫

Ω×Y

wk · ∂y (a∂yv) + wk · λ0ρv dxdy = 0. (2.26)

Using the assumption wk ∈ L2(Ω;H2(Y )) and applying integrations by parts,

∫

Ω×Y

∂y
(
a∂yw

k
)
· v + wk · λ0ρv dxdy +

∫

Ω

[
awk · ∂yv − a∂yw

k · v
]y=1

y=0
dx = 0.

Then, hoosing test funtions v ∈ L2(Ω;H2
0 (Y )) omes the strong form

−∂y
(
a∂yw

k
)
= λ0ρwk

in Ω× Y. (2.27)

So, it remains ∫

Ω

[
awk · ∂yv − a∂yw

k · v
]y=1

y=0
dx = 0

for general test funtions (2.24), whih implies that wk
and ∂yw

k
are k−quasi-periodi

in the variable y.
As we know that λ0 is an eigenvalue λkn of the Bloh wave spetrum, then wk

is a

Bloh eigenvetor and is deomposed as

wk (x, y) =
∑

m

ukm (x)φkm (y) with ukm ∈ L2 (Ω)

the sum being over all Bloh modes φk
m assoiated to λ0 where ukm(x) =

∫
Y
wk(x, y) ·

φk
m(y) dy. For k 6= 0, φk

m =φ−k
m and from De�nition 3 of modulated two-sale transform,

Sε
kw

ε = Sε
−kw

ε
thus ukm and u−k

m are onjugate i.e. ukm = u−k
m .

2.3.3 Derivation of the high-frequeny marosopi equation

Before ontinuing with the derivation of the HF-marosopi equation, we establish

an auxiliary result for existene of speial test funtions. For k ∈ Y ∗\ {0}, n ∈ N∗
and

σ ∈ Ik, we onsider the two funtions ψk (x) , ψ−k (x) ∈ H2 (Ω) suh that

ψk (x)φk
n (0) e

2iπlk x
α + ψ−k (x)φ−k

n (0) e−2iπlk x
α = 0 on ∂Ω (2.28)

where lk is de�ned in (1.40).

Lemma 22 For k ∈ Y ∗\ {0}, let ε ∈ Ek, there exist ψk,ε, ψ−k,ε ∈ H2 (Ω) satisfying

i) the boundary onditions

ψk,ε (x)φk
n (0) e

2iπk x
ε + ψ−k,ε (x)φ−k

n (0) e−2iπk x
ε = 0 on ∂Ω, (2.29)

ii) and the strong onvergene

ψσ,ε → ψσ
in H2 (Ω) when ε→ 0 for σ ∈ Ik. (2.30)
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Proof. [Proof of Lemma 22℄ For any ε ∈ Ek and let the two funtions ψk (x) ,
ψ−k (x) ∈ H2 (Ω) satisfying (2.28), we prove that the following hoie satis�es the

onditions,

ψk,ε (x) = ψk (x) ∈ H2 (Ω) (2.31)

and ψ−k,ε (x) = ψ−k (x) + µε (x) where µε (x) ∈ H2 (Ω)

with

µε (x) = −
(
1− e4iπ(l

ε
k
−lk)
)
ψ−k (α)

x

α

where lkε and lk is de�ned in (1.39) and (1.40).

i) Replaing (2.31) in (2.29), the boundary onditions are

ψk (x)φk
n (0) e

2iπk x
ε +

(
ψ−k (x) + µε (x)

)
φ−k
n (0) e−2iπk x

ε = 0 on ∂Ω.

Using (1.39) and (1.40) with remarking that e2iπh
ε
k

x
α = 1 at x ∈ ∂Ω, so

ψk (x)φk
n (0) e

2iπlε
k

x
α +

(
ψ−k (x) + µε (x)

)
φ−k
n (0) e−2iπlε

k
x
α = 0 on ∂Ω.

Or equivalently,

ψk (x)φk
n (0) e

2iπ(lk+lkε−lk) x
α +

(
ψ−k (x) + µε (x)

)
φ−k
n (0) e−2iπ(lk+lkε−lk) x

α = 0

on ∂Ω. Or,

ψk (x)φkn (0) e
2iπlk x

α e2iπ(l
ε
k
−lk) x

α +
(
ψ−k (x) + µε (x)

)
φ−k
n (0) e−2iπlk x

α e−2iπ(lεk−lk) x
α = 0

on ∂Ω. From (2.28),

ψk (x)φk
n (0) e

2iπlk x
α = −ψ−k (x)φ−k

n (0) e−2iπlk x
α
on ∂Ω.

After replaement, the equation remains,

ψ−k (x)φ−k
n (0) e−2iπlk x

α

(
e−2iπ(lεk−lk) x

α − e2iπ(l
ε
k
−lk) x

α

)

+µε (x)φ−k
n (0) e−2iπlk x

α e−2iπ(lεk−lk) x
α = 0 on ∂Ω.

This equation is satis�ed with the above µε
.

ii) For σ = k, the strong onvergene is true sine ψk,ε
is independent on ε. For

σ = −k, the strong onvergene of µε (x) in H2 (Ω) is trivial, i.e. µε (x) → 0 in H2 (Ω)
strongly when ε→ 0. Therefore, ψ−k,ε → ψ−k

in H2 (Ω) strongly when ε→ 0.

In the HF-marosopi model derivation, we distinguish between the two ases

k 6= 0 and k = 0.

Case k 6= 0

We onsider λ0 = λkn and the two onjugate eigenvetors φkn and φ−k
n disussed in

Notation 1. We restart from the very weak formulation (2.25) with the test funtion

vε(x) := R
k(vk,ε + v−k,ε) ∈ H1

0 (Ω) ∩H2 (Ω) . (2.32)
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Furthermore, we pose vσ,ε(x, y) = ψσ,ε(x)φσ
n(y) with ψσ,ε ∈ H2(Ω) for σ ∈ Ik and

use the σ−quasi-periodiity of φσ
n, i.e. φ

σ
n

(
x
ε

)
= φσ

n (0) e
2iπk x

ε
at any x ∈ ∂Ω. So the

boundary ondition in (2.32) is equivalent to

ψk,ε (x)φk
n(0)e

2iπk x
ε + ψ−k,ε (x)φ−k

n (0)e−2iπk x
ε = 0 at any x ∈ ∂Ω.

Applying the relation (1.39),

ψk,ε(x)φk
n(0)e

2iπx
hkε+lkε

α + ψ−k,ε(x)φ−k
n (0)e−2iπx

hkε+lkε
α = 0.

Sine xhk
ε

α
= 0 at x = 0 and xhk

ε

α
= hkε at x = α with hkε ∈ Z then e±2iπx

hkε
α = 1. From

(1.40), e±2iπ
lkεx

α → e±2iπ lkx
α

when ε → 0. Using Lemma 22, passing to the limit, the

limit vσ of the test funtion vσ,ε is

vσ (x, y) = ψσ(x)φσ
n(y)

and the boundary onditions of the test funtion are

ψk(x)φk
n(0)e

2iπ lkx
α + ψ−k(x)φ−k

n (0)e−2iπ lkx
α = 0 on ∂Ω. (2.33)

From (1.23) multiplied by ε, (2.9) and P 2vσ − λ0ρvσ = 0,

∑

σ∈Ik

∫

Ω

wε ·Rk(−P 1vσ,ε + λ1ρvσ,ε) dx = O(ε). (2.34)

Extrating a subsequene of wε
so that Sε

kw
ε
and Sε

−kw
ε
are onverging to wk

and w−k

in L2(Ω× Y ) weak, sine −P 1vσ,ε + λ1ρvσ,ε is σ−quasi-periodi then Corollary 6 and

Lemma 22 infer that

∑

σ∈Ik

∫

Ω×Y

wσ · (−P 1vσ + λ1ρvσ) dxdy = 0,

i.e. ∑

σ∈Ik

∫

Ω×Y

wσ ·
(
∂x (a∂yv

σ) + ∂y (a∂xv
σ) + λ1ρvσ

)
dxdy = 0.

This is the very weak form of the HF-marosopi equation for all test funtions

vσ ∈ H1 (Ω;H1
k (Y )), reahed by density, satisfying (2.33). Now, we derive the strong

formulation. We assume that wσ ∈ H1(Ω;L2(Y )), sine wσ ∈ L2(Ω;H1(Y )) after two
integrations by parts,

∑

σ∈Ik

[∫

Ω×Y

∂y (a∂xw
σ) · vσ + ∂x (a∂yw

σ) · vσ + λ1ρwσ · vσ dxdy

+

∫

Y

[wσ · a∂yvσ − a∂yw
σ · vσ]x=α

x=0 dy

+

∫

Ω

[wσ · a∂xvσ − a∂xw
σ · vσ]y=1

y=0 dy

]
= 0.

From Lemma 21, wσ
is solution to the Bloh mode equation and is deomposed as

wσ(x, y) = uσ(x)φσ
n(y). (2.35)
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After replaement,

∑

σ

[∫

Y

∂y(aφ
σ
n) · φσn + a∂yφ

σ
n · φσ

n dy

∫

Ω

∂xu
σ · ψσdx (2.36)

+λ1
∫

Y

ρφσ
n · φσ

n dy

∫

Ω

uσ · ψσdx+

∫

Y

φσ
n · a∂yφσn − a∂yφ

σ
n · φσ

n dy [u
σ · ψσ]x=α

x=0

+ [φσ
n · aφσ

n]
y=1
y=0

∫

Ω

uσ · ∂xψσ − ∂xu
σ · ψσ dx

]
= 0.

Let us reall that b(., ., .) and c(., ., .) have been de�ned in (2.12). For the sake of

simpliity, we use c(σ, n) := c(σ, n, n) and b(σ, n) := b(σ, n, n) and observe that

∫

Y

∂y(aφ
σ
n) · φσ

n + a∂yφ
σ
n · φσn dy = c(σ, n),

whih results from integrations by parts and from the σ−quasi-periodiity of φσ
n. So,

using the σ-quasi-periodiity of φσ
n, (2.36) an be rewritten as

∑

σ

[∫

Ω

(c(σ, n)∂xu
σ + λ1b (σ, n) uσ) · ψσ dx− c(σ, n) [uσ · ψσ]x=α

x=0

]
= 0.

Choosing the test funtion ψσ = 0 on ∂Ω, the boundary ondition (2.33) is satis�ed

and by density of H1
0 (Ω) in L

2 (Ω) , the internal equation satis�ed by uσ follows,

c(σ, n)∂xu
σ + λ1b (σ, n) uσ = 0 in Ω for eah σ. (2.37)

Choosing general ψσ ∈ H1 (Ω) satisfying (2.33) yields the boundary onditions

∑

σ

c(σ, n)uσψσ = 0 on ∂Ω. (2.38)

We introdue the matries C1 = diag((c(σ, n))σ), C2 = diag((b(σ, n))σ) and the vetors

u = (uσ)σ, ψ = (ψσ)σ, ϕ =
(
φσ
n (0) e

sign(σ)2iπ lkx
α

)
σ
with σ ∈ Ik, so that (2.33, 2.37,

2.38) an be written on the matrix form

C1∂xu+ λ1C2u = 0 in Ω ,

and C1u(x).ψ(x) = 0 on ∂Ω for all ψ suh that ϕ(x, 0).ψ(x) = 0 on ∂Ω.

The boundary ondition is equivalent to

C1u(x) is ollinear with ϕ(x, 0) i.e. det(C1u(x), ϕ(x, 0)) = 0.

Equivalently

{
c(k, n)uk (0)φ−k (0)− c(−k, n)u−k (0)φk (0) = 0,

c(k, n)uk (α)φ−k (0) e−2iπlk − c(−k, n)u−k (α)φk (0) e2iπlk = 0.

Finally, sine c(k, n) = −c(−k, n) and c(k, n) is assumed to do not vanish, the bound-

ary onditions of HF-marosopi equation (2.37) are

uk (x)φk
n (0) e

2iπ lkx
α + u−k (x)φ−k

n (0) e−2iπ lkx
α = 0 at x ∈ ∂Ω.
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Case k = 0

In ase k = 0, to avoid any onfusion with λ0, the upper indies k = 0 are removed.

We denote by φn, φm the eigenvetors assoiated to λ0 = λn = λm, solutions to P(0)
in (1.5), and by

∑
p,
∑

q the sums over p or q varying in {n,m}. We restart with a

test funtion

vε(x) := R
0(
∑

p

vp) ∈ H1
0 (Ω) ∩H2 (Ω) (2.39)

for the very weak formulation (2.34). We pose vp(x, y) = ψp(x)φp(y) with ψp(x) ∈
H2 (Ω) for p ∈ {n,m} . Sine φp is periodi thus φp(

x
ε
) = φp(0) at x ∈ ∂Ω and the

boundary ondition in (2.39) is equivalent to

∑

p

ψp(x)φp(0) = 0 at x ∈ ∂Ω.

By setting c(p, q) := c(0, p, q) for p, q ∈ {n,m}, using the expression in Lemma 21 of

the weak limit w0
of Sε

0w
ε
,

w0 (x, y) =
∑

p

up (x)φp(y), (2.40)

using the periodiity of

(
φp

)
p
and onduting the same alulations as for k 6= 0, we

obtain

∑

p,q

[∫

Ω

(c(p, q)∂xuq + λ1b(p, q)uq) · ψp dx−
[
c(p, q)uq · ψp

]x=α

x=0

]
= 0.

With u = (up)p, ψ = (ψp)p, φ =
(
φp

)
p
and C1 = (c(p, q))p,q, C2 = (b(p, q))p,q, the

HF-marosopi problem turns to be

C1∂xu+ λ1C2u = 0 in Ω, (2.41)

with the boundary onditions

C1u(x).ψ(x) = 0 on ∂Ω for all ψ suh that ψ(x).φ(0) = 0 on ∂Ω.

Equivalently, C1u(x) is ollinear to φ(0) on ∂Ω or

det (C1u(x), φ(0)) = 0 on ∂Ω. (2.42)

But c(p, p) = 0, so (2.42) simpli�es to

{
c (n,m)um (0)φm (0)− c (m,n) un (0)φn (0) = 0,
c (n,m)um (α)φm (0)− c (m,n) un (α)φn (0) = 0.

Finally, sine c (n,m) = −c (m,n) and c (n,m) 6= 0, the boundary onditions are

un (x)φn (0) + um (x)φm (0) = 0 on ∂Ω.

2.3.4 Analyti solutions

For k ∈ Y ∗
and ρ = 1, we solve the HF-marosopi equations In Setion 2.3.4. These

solutions are used to validate the numerial results in the �nal Setion. Moreover, in

Setion 2.3.4.0, the exat formulations of the two-sale eigenmodes are found for ρ = 1
and a = 1.
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The ase ρ = 1

For k 6= 0 and b (n, n) = 1, the exat solutions of the HF-marosopi equation (2.13)

are

uσn (x) = dσe−λ1c(σ,n)−1x
for eah σ ∈ Ik

where dσ is any omplex number. Applying the boundary ondition (2.14) and assum-

ing that φk
n (0) 6= 0, the eigenvalue is

λ1 =
c(k, n)

α

(
2iπlk − iℓπ

)
for ℓ ∈ Z. (2.43)

Furthermore, ukn = u−k
n and φk

n (0) = φ−k
n (0) then Re

(
dkφkn (0)

)
= 0, or dkφk

n (0) = iδ
for any δ ∈ R. Thus,

dk =
iδ

φk
n (0)

and d−k = − iδ

φ−k
n (0)

for any δ ∈ R.

For k = 0, using the equalities c (n, n) = c (m,m) = 0, b (n,m) = b (m,n) = 0 and

b (n, n) = b (m,m) = 1, the HF-marosopi equation (2.15) is rewritten

{
c (n,m) ∂xu

0
m + λ

1
u0n = 0 in Ω,

c (m,n) ∂xu
0
n + λ

1
u0m = 0 in Ω.

(2.44)

If λ1 = 0, ∂xu
0
m = 0 and ∂xu

0
n = 0 in Ω, then u0m and u0n are independent on x,

equivalently, u0m and u0n are omplex numbers.

If λ1 6= 0, the �rst equation gives u0n = − c(n,m)∂xu0
m

λ1 in Ω and sine c(n,m) =
−c(m,n) then

∂xxu
0
m = −

(
λ1

c (n,m)

)2

u0m (2.45)

and

u0m (x) = d1 cos

(
λ1

c (n,m)
x

)
+ d2 sin

(
λ1

c (n,m)
x

)

for two onstants for d1, d2 ∈ C and u0n follows by its above expression. Applying the

boundary ondition (2.16), if φ0
m (0) 6= 0,

λ1 =
ℓπc (n,m)

α
for ℓ ∈ Z and d1 =− d2

φ0
n (0)

φ0m (0)
(2.46)

for any ℓ ∈ Z and d2 ∈ C. If φ0m (0) = 0 then φ0
n (0) = 0 or u0n (x) = 0 on ∂Ω. In

the ase φ0
n (0) = 0, the HF-marosopi equation is laking of boundary onditions

and their solutions are not unique, they depend on arbitrary oe�ients d1, d2 and λ
1
.

When u0n (x) = 0 at ∂Ω, there is an alternative, or u0n is the trivial solution or

det

(
0 1

− sin
(

λ1

c(n,m)
α
)

cos
(

λ1

c(n,m)
α
)
)

= 0

and then d2 = 0, λ1 = ℓπc(n,m)
α

for any ℓ ∈ Z and d1 ∈ C.

Remark 23 Aording to (3.44) and (2.46), λ1 = 0 i� ℓ = 2lk for k 6= 0 and i� ℓ = 0
otherwise. So, in any ase small values of λ1,ℓ orrespond to indies ℓ in a viinity of

2lk or to

2kα
ε

when ε > 0.
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Chapter 2. Homogenization of the spetral problem in one-dimension

The ase a = ρ = 1

We onsider the spetral problem

−∂2yyφk = λkφk
in Y

with the k−quasi-periodiity onditions.

For k 6= 0, for a mapping m 7→ n(m) from Z to N∗
not detailed here, λkn(m) =

4π2(m+k)2 and there are exatly two onjugated solutions φσ
n(m)(y) = esign(σ)2iπ(m+k)y

for any m ∈ Z and σ ∈ Ik. It follows that c(σ, n(m)) = sign (σ) 4iπ(m + k),
b (σ, n(m)) = 1 and λ1 = −4π2

α
(2lk − ℓ)(m+ k) for any ℓ ∈ Z, so

uσn(m)(x) = dσe
sign(σ)iπ

α
(2lk−ℓ)x

and the resulting two-sale eigenmode is

wσ(x, y) = dσe
sign(σ)iπ

α
(2lk−ℓ)xesign(σ)2iπ(n+k)y.

For k = 0, for eah λ0n(m) = (2πm)2 there are two eigenvetors φn(m)(y) = cos(2πmy)
and φn(m)+1(y) = sin(2πmy) so

C1 = 2mπ

(
0 1
−1 0

)
, C2 =

1

2

(
1 0
0 1

)
,

(
φn(m)(0)

φn(m)+1(0)

)
=

(
1
0

)
.

It implies that λ1 = 4mℓπ2

α
for any ℓ ∈ Z and

un(m)(x) = d0 sin
(
ℓπ
x

α

)
and un(m)+1(x) = d0 cos(ℓπ

x

α
),

then the two-sale eigenmode is

w(x, y) = d0[sin
(
ℓπ
x

α

)
cos(2πmy) + cos(ℓπ

x

α
) sin(2πmy)] for ℓ,m ∈ Z.

2.3.5 Neumann boundary onditions

We onsider the spetral problem with Neumann boundary onditions

P εwε = λερεwε
in Ω and ∂xw

ε = 0 on ∂Ω.

The proess of homogenization and the results are similar to the ase of Dirihlet

boundary onditions. The HF-mirosopi problem and the internal HF-marosopi

equation are unhanged while the boundary onditions of the latter are

∑

σ∈Ik

∑

m

uσm (x) ∂yφ
σ
m (0) esign(σ)2iπ

lkx
α = 0 on ∂Ω

where the ases k 6= 0 and k = 0 are not separated so a general notation is adopted for

the sum over m and σ. Their derivation follows the same steps, so we only mention

the boundary ondition satis�ed by the test funtions. They are hosen to satisfy

∂xv
ε (x) = 0 on ∂Ω or equivalently,

∑

σ∈Ik

∑

m

∂xψ
σ,ε
m (x)φσ

m

(x
ε

)
+

1

ε
ψσ,ε

m (x) ∂yφ
σ
m

(x
ε

)
= 0 on ∂Ω.
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2.4. Homogenization based on a �rst order formulation

Multiplying by ε,

∑

σ∈Ik

∑

m

ψσ,ε
m (x) ∂yφ

σ
m

(x
ε

)
+O(ε) = 0 on ∂Ω, (2.47)

then using the σ−quasi-periodiity of φσ
m and passing to the limit

∑

σ∈Ik

∑

m

ψσ
m (x) ∂yφ

σ
m (0) esign(σ)2iπ

lkx
α = 0 on ∂Ω.

2.4 Homogenization based on a �rst order formula-

tion

In this setion, the homogenized model is derived based on a �rst order formulation.

The alulations are less detailed than in Setion 2.3, only the main results and the

proof priniples are given.

2.4.1 Reformulation of the spetral problem and the main re-

sult

We start by setting

Uε =

(√
aε∂xw

ε

i
√
λε

,
√
ρεwε

)
, µε =

√
λε,

Aε =

(
0

√
aε∂x

(
1√
ρε
.
)

1√
ρε
∂x
(√

aε.
)

0

)
, nAε =

1√
ρε

(
0

√
aεnΩ√

aεnΩ 0

)

with the domain of the operator Aε
,

D (Aε) :=
{
(ϕ, φ) ∈ L2 (Ω)× L2 (Ω)

∣∣∣
√
aεϕ ∈ H1 (Ω) , φ ∈ H1

0 (Ω)
}
⊂ L2(Ω)2,

so that iAε
is self-adjoint on L2(Ω)2 as proved in [36℄. The spetral equation (2.7) an

be reasted as a �rst-order system

AεUε = iµεUε
in Ω and Uε

2 = 0 on ∂Ω, (2.48)

where Uε
2 is the seond omponent of Uε

. We observe that ‖√ρεwε‖L2(Ω) ≤ ‖√ρε‖L∞(Ω)

and that

∥∥∥
√
aε∂xwε

i
√
λε

∥∥∥
L2(Ω)

≤ M0 an be dedued from the weak formulation (2.10),

therefore Uε
is uniformly bounded,

‖Uε‖2L2(Ω) ≤M1. (2.49)

We start our analysis from the system expressed in a distributional sense,

∫

Ω

Uε · (iµε − Aε)Ψ dx = 0, (2.50)
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Chapter 2. Homogenization of the spetral problem in one-dimension

for all admissible test funtions Ψ = (ϕ, ψ)∈ H1 (Ω)×H1
0 (Ω). We hoose µ0 =

√
λ0

and µ1 =
λ1

2µ0
, so µε

an be deomposed as

µε =
µ0

ε
+ µ1 +O (ε) . (2.51)

The asymptoti spetral problem (1.5) is also restated as a �rst order system by setting

Ak :=

(
0

√
a∂y

(
1√
ρ
.
)

1√
ρ
∂y (

√
a.) 0

)
and nAk

=
1√
ρ

(
0

√
anY√

anY 0

)
, (2.52)

and

ekn :=

(
−isign(n)√

λk
|n|

√
a∂y

(
φk
|n|
)

√
ρφk

|n|

)
and µk

n = sign(n)
√
λk|n| for all n ∈ Z∗. (2.53)

As proved in [36℄, iAk is self-adjoint on the domain

D (Ak) :=

{
(ϕ, φ) ∈ L2 (Y )2 |

√
aϕ ∈ H1

k (Y ) ,
φ√
ρ
∈ H1

k (Y )

}
⊂ L2 (Y )2 .

The Bloh wave spetral problem P(k) is equivalent to �nding pairs

(
µk
n, e

k
n

)
indexed

byn ∈ Z∗
solution to

Q(k) : Ake
k
n = iµk

ne
k
n in Y with ekn ∈ H1

k (Y )
2 . (2.54)

The orresponding weak formulation is

∫

Y

ekn ·
(
Ak − iµk

n

)
Ψ dy = 0 for all Ψ ∈ D (Ak) . (2.55)

The relation between the operator Aε
and the saled operator Ak is obtained by on-

sidering any regular vetor ψ = ψ (x, y) depending on both spae sales,

Aε
(
ψ
(
x,
x

ε

))
=

((
1

ε
Ak +B

)
ψ

)(
x,
x

ε

)
, (2.56)

where the operatorB is de�ned as the result of the formal substitution of x−derivatives

by y−derivatives in Ak, i.e.

B :=

(
0

√
a∂x

(
1√
ρ
.
)

1√
ρ
∂x (

√
a.) 0

)
. (2.57)

For any n ∈ Z∗
and k ∈ Y ∗

, Mk
n :=

{
i ∈ Z∗ | µk

i = µk
n

}
is the set of indies of

eigenvetors related to the same eigenvalue µk
n. For all k ∈ Y ∗� {0} , sine µk

n = µ−k
n

then Mk
n =M−k

n .

Remark 24 From now on, we shall assume that the weak limit of Sε
kU

ε
in L2 (Ω× Y )

is not vanishing to avoid eigenmodes related to the boundary spetrum (see Proposition

7.7 in [8℄).

32



2.4. Homogenization based on a �rst order formulation

Theorem 25 For k ∈ Y ∗
, let (µε, Uε) be solution of (2.48) then

∑
σ∈Ik

Sε
σU

ε
is bounded

in L2 (Ω× Y ). For ε ∈ Ek, assuming that the renormalized sequene εµε
satis�es the

deomposition (2.51) with µ0 = µk
n an eigenvalue of the Bloh wave spetrum, any weak

limit Gk of

∑
σ∈Ik

Sε
σU

ε
in L2 (Ω× Y ) has the form

Gk (x, y) =
∑

σ∈Ik,m∈Mσ
n

uσm (x) eσm (y), (2.58)

where (uσm)m,σ are the solutions of the HF-marosopi equations (2.13, 2.14) or (2.15,

2.16).

Therefore, the physial solution Uε
an be approximated by

Uε (x) ≈
∑

σ∈Ik,m∈Mσ
n

uσm (x) eσm

(x
ε

)
. (2.59)

Proof. For a given k ∈ Y ∗
, let Uε

be solution of (2.48) whih is bounded in

L2(Ω), the property (1.8) yields the boundness of ‖Sε
σU

ε‖L2(Ω×Y ). So there exist Uσ ∈
L2(Ω × Y )2 suh that, up the extration of a subsequene, Sε

σU
ε
tends weakly to Uσ

in L2(Ω× Y )2 and hene,

∑
σ∈Ik

Sε
σU

ε
onverges to Gk (x, y) =

∑
σ∈Ik

Uσ (x, y). Using the

deomposition (2.60) of Uσ
in the forthoming Lemma 26,

Gk (x, y) =
∑

σ∈Ik,m∈Mσ
n

uσm (x) eσm (y) .

The HF-marosopi problem solved by the oe�ients (uσm)σ,m is derived in Setion

2.4.2.

2.4.2 Model derivation

Modal deomposition on the Bloh modes

Lemma 26 Let a sequene (µε, Uε) be solution of (2.48) and satis�es (2.51) with

µ0 = µk
n for given n ∈ Z∗

and k ∈ Y ∗
, we extrat a subsequene of ε, still denoted by ε,

suh that Sε
kU

ε
onverges weakly to Uk

in L2 (Ω× Y )2. If Uk ∈ D (Ak) then

(
µk
n, U

k
)

is solution of the Bloh wave equation (2.54) and Uk
admits the modal deomposition

Uk (x, y) =
∑

m∈Mk
n

ukm (x) ekm (y) with ukm ∈ L2 (Ω) . (2.60)

Proof. For eah k ∈ Y ∗
, taking Ψ (x, y) := θ(x)φ(y) with θ(x) ∈ C∞

c (Ω) and

φ(y) ∈ C∞(Y )2 k−quasi-periodi in y, onsidering R
kΨ as a test funtions in (2.50),

and using (2.56,2.51),

∫

Ω

Uε ·Rk

(
i
µ0

ε
+ iµ1 −

Ak

ε
− B

)
Ψ dx+O (ε) = 0.

Multiplying by ε ∫

Ω

Uε ·Rk (iµ0 −Ak) Ψ dx+O (ε) = 0,
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Chapter 2. Homogenization of the spetral problem in one-dimension

and passing to the limit thanks to Corollary 6,

1

|Y |

∫

Ω×Y

Uk · (iµ0 − Ak) Ψ dxdy = 0

whih is the weak formulation of the Bloh wave equations. If in addition Uk ∈ D (Ak) ,
integrating by parts yields

1

|Y |

∫

Ω×Y

(Ak − iµ0)U
k ·Ψ dxdy − 1

|Y |

∫

Ω

[
Uk · nAk

Ψ
]y=1

y=0
dx = 0 (2.61)

providing in turn the strong formulation,

AkU
k = iµ0U

k
in Ω× Y. (2.62)

Sine the produt of a periodi funtion by a k−quasi-periodi funtion is k−quasi-

periodi then nAk
Ψ is k−quasi-periodi in y. Therefore, Uk

is k−quasi-periodi in y
and �nally is a Bloh eigenvetor in y. By projetion, it an be deomposed as

Uk (x, y) =
∑

m∈Mk
n

ukm (x) ekm (y) with ukm =
1

b (k,m,m)

∫

Y

Uk · ekm dy ∈ L2 (Ω) .

Derivation of the HF-marosopi equation

The HF-marosopi equation is stated for eah k ∈ Y ∗
and eah eigenvalue µk

n of the

Bloh wave spetral problem Q(k). We pose

κ (k, n,m) =
−ic (k, n,m)

2µ0

for m ∈Mk
n (2.63)

where c (k, n,m) is de�ned in (2.12) and notie that

κ (k, n,m) = −κ (−k,m, n) , κ (k, n,m) = −κ (−k, n,m),

κ (k, n,m) = −κ (k,m, n), and κ (0, n, n) = 0.

For the sake of simpliity, we do the proof for n ∈ Z∗+
only and denote by κ (k, n) =

κ (k, n, n) and κ (n,m) = κ (0, n,m). For general n, the proof is the same but φk
n is

replaed by φk
|n|.

Case k 6= 0 The pairs

(
µk
n, e

k
n

)
and

(
µ−k
n , e−k

n

)
are the eigenmodes of the spetral

equations Q(±k) in (2.54) orresponding to the eigenvalue µ0 = µk
n = µ−k

n . We pose

Ψε = R
k
(
Ψk,ε +Ψ−k,ε

)
∈ H1(Ω) ×H1

0 (Ω) as a test funtion in the weak formulation

(2.50), with eah Ψσ,ε (x, y) = ψσ,ε (x) eσn(y) where ψσ,ε ∈ H1(Ω) and satis�es the

boundary onditions, ∑

σ

ψσ,ε (x)φσ
n

(x
ε

)
= 0 on ∂Ω.

Notie that this ondition is related to the seond omponent of Ψε
only. Proeeding

as in Setion 2.3.3 yields (2.33). Sine (iµ0 − Aσ) Ψ
ε = 0 for all σ, applying (2.51,

2.56), then Equation (2.50) yields

∑

σ

∫

Ω

Uε ·Rk (iµ1 − B)Ψ
σ,ε
dx+O (ε) = 0. (2.64)
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2.4. Homogenization based on a �rst order formulation

But (iµ1 −B)Ψσ,ε
is σ−quasi-periodi so passing to the limit thanks to Corollary 6

and Lemma 22 where Ψσ
is limit of Ψσ,ε

,

1

|Y |
∑

σ

∫

Ω×Y

Uσ · (iµ1 −B)Ψσdxdy = 0. (2.65)

From Lemma 26, Uσ
is deomposed as

Uσ (x, y) = uσn (x) e
σ
n (y) .

After replaement,

∑

σ

∫

Ω

(−iµ1b (σ, n)u
σ
n · ψσ+κ (σ, n) uσn · ∂xψσ) dx = 0

for all ψσ ∈ H1 (Ω) ful�lling (2.33). Moreover, if uσn ∈ H1 (Ω) it satis�es the strong

form of the internal equations

κ (σ, n) ∂xu
σ
n − iµ1b (σ, n)u

σ
n = 0 in Ω for all σ ∈ Ik, (2.66)

and the boundary onditions

∑

σ

κ (σ, n)uσn·ψσ = 0 on ∂Ω.

Following the same alulations as in Setion 2.3.3, with the matries C1 = diag (κ (σ, n)),

C2 = diag (b (σ, n)) and the vetors u = (uσn)σ , ψ = (ψσ)σ , ϕ =
(
φσ (0) esign(σ)2iπx

lk

α

)
σ
,

(2.66) is written on the matrix form

C1∂xu = iµ1C2u in Ω ,

with boundary ondition

C1u (x) .ψ (x) = 0 on ∂Ω for all ψ suh that ϕ (x, 0) .ψ (x) = 0 on ∂Ω.

Equivalently, Cu (x) is ollinear with ϕ (x, 0) yielding the boundary onditions

ukn (x)φ
k
n (0) e

2iπ lkx
α + u−k

n (x)φ−k
n (0) e−2iπ lkx

α = 0 on ∂Ω (2.67)

after remarking that κ (σ, n) 6= 0. Finally, with (2.63) and λ1 = 2µ0µ1 the HF-

marosopi problem (2.13, 2.14) is reovered.

Case k = 0 We adopt the same simpli�ations of notations that for the ase of

k = 0 in Setion 2.3.3. Let en and em be the Bloh eigenmodes of Q(0) in (2.54)

regarding the double eigenvalue µ0 = µn = µm. In this ase M0
n = {n,m}. Taking

Ψε =
∑

p∈M0
n

R
0 (Ψp) ∈ H1 (Ω) ×H1

0 (Ω) as a test funtion with Ψp (x, y) = ψp (x) ep(y)

and ψp ∈ H1(Ω). Due to the periodiity of φp, the seond omponent of Ψε
satis�es

the boundary onditions

∑

p∈M0
n

ψp (x)φp (0) = 0 on ∂Ω. (2.68)
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Chapter 2. Homogenization of the spetral problem in one-dimension

Following similar alulations as for the ase k 6= 0, the weak limit U0
of Sε

0U
ε
in

L2(Ω× Y )2 is

U0 (x, y) =
∑

p∈M0
n

up (x) ep (y)

and up is solution to the weak formulation

∑

q∈M0
n

∫

Ω

−iµ1b (p, q)uq · ψp + κ (p, q)uq · ∂xψp dx = 0

for all ψp ∈ H1 (Ω) with p ∈ M0
n. If uq ∈ H1 (Ω) it is a solution to the internal

equations ∑

q∈M0
n

κ (p, q) ∂xuq − iµ1 b (p, q)uq = 0 in Ω for p ∈M0
n , (2.69)

and to the boundary onditions


 ∑

p,q∈M0
n

κ (p, q)uq·ψp




x=α

x=0

= 0.

Here, with C1 = ( κ (p, q))p,q, C2 = ( b (p, q))p,q, u = (up)p , ψ =
(
ψp

)
p
, φ =

(
φp

)
p
,

C1∂xu = iµ1C2u in Ω ,

and C1u (x) .ψ (x) = 0 on ∂Ω for all ψ suh that φ (0) .ψ (x) = 0 on ∂Ω.

But κ (p, p)= 0, therefore

un (x)φn (0) + um (x)φm (0) = 0 on ∂Ω. (2.70)

As for k 6= 0, these HF-marosopi equations are equivalent to (2.15, 2.16).

2.5 Numerial simulations

We report simulations regarding omparisons of physial eigenmodes and their ap-

proximation by two-sale modes for ρ = 1. In Subsetion 2.5.2, for eah given high

frequeny physial eigenelement, a two-sale eigenelement realizing a good approxi-

mation is identi�ed. This shows that the two-sale model an atually be used as an

approximation of the omplete high-frequeny spetra. Conversely, Subsetion 2.5.3

addresses the modeling problem i.e. it introdues a way to generate approximations

of high-frequeny spetra from the two-sale model only. Finally, in 2.5.4 the order

of onvergene with respet to ε is analyzed. The next setion desribes the main

simulation parameters.

2.5.1 Simulation methods and onditions

Both, the physial spetral problem and the Bloh wave spetral problem are dis-

retized by a quadrati �nite element method. The number of elements are respe-

tively denotedNphys andNbloch. The implementation of the k−quasi-periodi boundary

ondition is ahieved by elimination of the last degree of freedom. More preisely, for
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2.5. Numerial simulations

n ∈ {1, ..., 2Nbloch + 1} the node indies, φn a degree of freedom of φ a Bloh eigenmode

and ϕn the orresponding quadrati Lagrange interpolation funtion,

φ (y) ≃
2Nbloch∑

n=2

φnϕn + φ1ϕ1 + φ2Nbloch+1ϕ2Nbloch+1.

Using the relation φ (1) = e2iπkφ (0) and taking ϕ1 + e2iπkϕ2Nbloch+1 as the �rst base

funtion allows to eliminate φ2Nbloch+1,

φ (y) ≃
2Nbloch∑

n=2

φnϕn + φ1

(
ϕ1 + e2iπkϕ2Nbloch+1

)
.

The sets of indies onsidered in the simulations of high frequeny physial modes

and Bloh modes are denoted by J ε
and Jk

, the former being generally inluded in

(α/2ε,Nphys/2). The Bloh modes are alulated for k ≥ 0 only, and the other ases

an be dedued by onjugation. For eah Bloh eigenmode

(
λkn, φ

k
n

)
, the marosopi

solutions

(
λ1,ℓ, ukm,ℓ

)
m,ℓ

are given in Setion 2.3.4 with δ = 1 and d2 = φ0m (0) for

any m suh that λkm = λkn and ℓ ∈ Z. In fat, aording to Remark 23 the index ℓ
should vary in Jk

n =
[
2k
ε

]
+ {−r, ..., r} , for a small integer r, so that only the �rst

marosopi eigenmodes be taken into aount. In the next disussions, we use the

following notations for the two-sale approximations of the eigenvalues and eigenmodes

exhibiting learly their parameters ε, k, n and ℓ,

γε,kn,ℓ := λkn + ελ1,ℓ and ψε,k
n,ℓ (x) :=

∑

σ∈Ik

∑

m

uσm,ℓ (x)φ
σ
m

(x
ε

)
for ℓ ∈ Jk

n , n ∈ Jk. (2.71)

In the simulations reported in Setions 2.5.2 and 2.5.3 only one physial problem is

used, namely Ω = (0, 1), aε (x) = sin (2πx/ε) + 2, 50 ells (i.e. ε = 1/50), and Nphys =
2, 000. Other number of ells are used in Setion 2.5.4 for the onvergene analysis.

Consequently, the oe�ient of the Bloh wave spetral problem is a (y) = sin (2πy)+2.
The set Y ∗

of positive wave numbers in Y ∗
is disretized by L∗+

125 = {0, ..., 62/125} with
step ∆k = 1/125 and Nbloch = 50. The subset of marosopi eigenvalues is restrited

by r = 15.

The �rst ten graphs (k 7→ λkn)n=1,...,10 of Bloh eigenvalues are desribed in Figure

2.1. The graphs are symmetri about the axis k = 0 whih on�rms that λkn = λ−k
n as

remarked in Notation 1. Moreover, all eigenvalues λkn are simple for k 6= 0 and double

for k ∈
{
0,±1

2

}
.

2.5.2 Approximation of physial modes by two-sale modes

We disuss the approximation of a given solution

(
λεp, w

ε
p

)
of Equation (2.7) for a

given value of ε. From Remark 3.2.4 we expet to show numerially that there exists a

suitable pair (k, n) suh that the equality
(
λεp, w

ε
p

)
= (γε,kn,ℓ, ψ

ε,k
n,ℓ) is exat with (γε,kn,ℓ, ψ

ε,k
n,ℓ)

de�ned in (2.71) and λ1,ℓ = 0. Moreover, in the perspetive of Remark 20, k varies in

L∗+
125 only and approximations with λ1,ℓ 6= 0 are expeted. Whatever if λ1,ℓ vanishes

or not, we expet to searh approximations for both eigenvalues and eigenvetors

whih turns to be an multi-objetive optimization problem that might be solved by a
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Figure 2.1: First ten eigenvalues of the Bloh wave spetral problem.

dediated method. However, to redue the omputational ost, we propose an alternate

approah onsisting in minimizing the error on eigenvalues in the approximation (2.9),

ervalue (k) = min
n∈N, ℓ∈Jk

n

∣∣∣∣∣
ε2λεp − γε,kn,ℓ

ε2λεp

∣∣∣∣∣ , (2.72)

for eah k ∈ L∗+
125, and then in �nding whih one minimizes

ervector (k) =

∥∥∥wε
p − ψε,k

nk,ℓk

∥∥∥
L2(Ω)∥∥wε

p

∥∥
L∞(Ω)

the error on eigenvetors in the approximation (2.18) where ℓk, nk are the optimal

arguments in (2.72). The optimal error on eigenvetors is then

ervector = min
k∈L∗+

125

ervector (k) . (2.73)
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Figure 2.2: (a) Errors for p = 85 and k ∈ L∗+
125. (b) Errors for a seletion of k s.t.

ervector(k) ≤ 0.2.

Figure 2.2 (a) shows the distributions of errors ervalue(k) and ervector(k) in loga-

rithmi sale for the index p = 85 of physial eigenmode with respet to k varying

in L∗+
125. The minimal error is reahed for k = 0.16, n = 2, ℓ = 17, λkn = 51.1 and

λ1,ℓ = 58.9 yielding the errors ervalue = 10−4
and ervector = 4.10−3

. Figure 2.2 (b)
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Figure 2.3: (a) Bloh wave solution φk
n. (b) Marosopi solutions ukn,ℓ and u

−k
n,ℓ.

fouses on values of k suh that ervector(k) ≤ 0.2. In Figure 2.3 (a) the real (dashed

line) and the imaginary (solid line) parts of the Bloh wave φk
n are shown when Figure

2.3 (b) presents the real (solid line) and the imaginary (dashed-dotted line) parts of

ukn,ℓ and also the real (dotted line) and the imaginary (dashed line) parts of u−k
n,ℓ. In

addition, the physial eigenmode wε
p and the relative error vetor between wε

p and ψ
ε,k
n,ℓ

are plotted in Figure 2.4 (a) and (b).
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Figure 2.4: (a) Physial eigenmode wε
p. (b) Relative error between wε

p and ψε,k
n,ℓ.

After presenting a detailed study of the approximation of a given physial mode,

i.e. for a single physial mode index p, we report approximation results for the list

J ε
0 = {40, ..., 150} \ {50} of onseutive physial mode indies. The list starts at

p = 40 orresponding to an intermediary mode between the low frequeny modes

approximated by the lassial homogenized method and the high frequeny modes

onsidered in this hapter. The index p = 50 is exluded from the list sine the

orresponding eigenvetor is evanesent, and as suh orresponds to an element of the

boundary spetrum. The previous optimization has been applied to eah p yielding

errors plotted in logarithm sale in Figure 2.5 (a). The error bounds are ervalue ≤ 6.10−3

and ervector ≤ 8.10−2
.

Globally, the errors start by growing before to derease exept around p = 100
where they exhibit a peak that we do not explain. Figure 2.5 (b) reports the orre-

sponding marosopi eigenvalues λ1,ℓ. Some of them are lose to pairs (k, n) suh

that λ1,ℓ vanishes as disussed in Remark 3.2.4; their relative errors on eigenvalues are
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Figure 2.5: (a) Errors for p varying in J ε
0 . (b) Marosopi eigenvalues.

in the order of 10−5
. A way to answer the question in Remark 3.2.4 is to derease

the step ∆k and see if all error derease. A detailed presentation is made in Table 2.1

for two indies, namely p = 66 related to an eigenvalue in the beginning of the high

frequeny spetrum and p = 102 orresponding to one of the large errors. In both

ases, the error diminishes as the step ∆k is redued from 8e-3 to 3e-3.

Table 2.1: Errors for ∆k = 8.e− 3 and 3e− 3.

∆k p k n λ1,ℓ ervalue ervector
8.0e-3 66 2.16e-1 2 -92 1.2e-3 1.9e-2

3.0e-3 66 3.4e-1 2 21.7 9.0e-5 5.3e-3

8.0e-3 102 4.0e-2 3 -147 4.0e-4 5.8e-3

3.0e-3 102 1.5e-2 3 35.9 3.0e-5 1.4e-3

Figure 2.6 (a) is a global view of the errors in logarithm sale when ∆k = 8.e − 3 for

90 ≤ p ≤ 110. It shows that for this k-step a large part of the errors on eigenvalues is

in the range of 1.0e-5 i.e. almost the roundo� error. A measure of the error redution

is provided in Figure 2.6 (b) where the two ratios

Evalue =
er∆k=3.e−3

value

er∆k=8.e−3
value

and Evector =
er∆k=3.e−3

value

er∆k=8.e−3
vector

of error redution are represented in logarithmi sale.
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Figure 2.6: (a) Error of approximation for ∆k = 3.0e−3. (b) Ratios Evalue and Evector

of error redution.
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2.5. Numerial simulations

2.5.3 The modeling problem

The modeling problem is reiproal to the previous one. It onsists in �xing a period

ε as well as the parameters (k, n) of a Bloh mode and to searh if there exists ℓ ∈ Jk
n

suh that (γε,kn,ℓ, ψ
ε,k
n,ℓ) is lose from a physial mode or in other words if it is almost a

solution to the physial spetral problem i.e. if

ε2P εψε,k
n,ℓ − γε,kn,ℓψ

ε,k
n,ℓ = O(ε) in Ω. (2.74)

Posing for ℓ ∈ Jk
n ,

F ε,k
n (ℓ) =

∥∥∥ε2P εψε,k
n,ℓ − γε,kn,ℓψ

ε,k
n,ℓ

∥∥∥
L2(Ω)∥∥∥γε,kn,ℓψ

ε,k
n,ℓ

∥∥∥
L2(Ω)

(2.75)

the modeling problem relies to the minimization problem F ε,k
n (ℓ0) = min

ℓ∈Jk
n

F ε,k
n (ℓ). If

the minimum is small enough, (γε,kn,ℓ0
, ψε,k

n,ℓ0
) is lose from a physial eigenelement and

it is a solution to the modeling problem. A subsequent problem is to identify the

orresponding physial eigenelement. This is done be minimizing the errors ervalue
and ervector introdued in the previous setion but onsidered as depending on the

parameter p ∈ J ε
instead of k. Two illustrative examples are reported in Table 2.2,

one yielding λ1,ℓ = 0 and the other λ1,ℓ 6= 0. The solution ψε,k
n,ℓ and the relative error

between ψε,k
n,ℓ and w

ε
p are reported in Figures 2.7 (a) and (b).

Table 2.2: Results for the modeling problem.

k n λkn F ε,k
n (ℓ) λ1,ℓ p ervalue ervector

1.6e-1 2 5.11e1 8.9e-3 0 84 3.4e-5 2.1e-5

3.52e-1 2 3.14e1 4.5e-2 -8.55 65 1.5e-2 4.3e-3
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Figure 2.7: (a) Two-sale eigenmode ψε,k
n,ℓ. (b) Relative error vetor between ψε,k

n,ℓ and

wε
p.

Additional results for k = 3.52e − 1 with n = {1, ..., 15} are reported in Figures 2.8

(a) and (b) showing λ1,ℓ and γkn,ℓ respetively.
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Figure 2.8: (a) λ1,ℓ with respet to n. (b) γkn,ℓ with respet to n.

2.5.4 Order of onvergene

For a given pair k and n ∈ Jk
, we investigate the order of onvergene of the errors

ervalue and ervector when the number of ells inreases. To follow the onvergene result,

the sequene of periods ε is in fat a subsequene εh satisfying

1

εh
=
h+ l

k
∈ N∗

with l ∈ [0, 1) and for a sequene of h ∈ N∗
. Table 2.3 summarizes the results for

k = 0.3, l = 0.6 and h ∈ {3, 9, 15, 21}.

Table 2.3: Errors for a dereasing subsequene εh.

h εh erh,ℓvalue erh,lvector p
3 8.3e-2 4.3e-2 6.3e-3 17

9 3.1e-2 1.6e-2 2.4e-3 45

15 1.9e-2 1.0e-2 1.5e-3 73

21 1.4e-2 7.0e-3 1.0e-3 101

To evaluate the deay rate of the errors, we pose erh,ℓ

value = cvalue (εh)
qvalue

and erh,ℓ

vector =
cvector (εh)

qvector
, so the deay rates satisfy

qvalue =
log
(
erh,ℓ

value/er
h′,ℓ

value

)

log (εh/εh′)
and qvector =

log
(
erh,ℓ

vector/er
h′,ℓ

vector

)

log (εh/εh′)
.

Using suessive results for h and h′, yields

qvalue = {0.988, 0.995, 0.985} ≈ 1 and qvector = {0.985, 0.993, 0.994} ≈ 1

with oe�ients

cvalue = {0.504, 0.518, 0.497} ≈ 0.5 and cvector = {0.0734, 0.0755, 0.0757} ≈ 0.07.
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Abstrat In this hapter, we present a method for periodi homogenization of the

one-dimensional wave equation in a bounded domain. It allows modelling both the

low and high frequeny waves. The high frequeny model part inludes osillations

ourring at the mirosopi sale whih amplitudes are governed by a well posed

hyperboli system of marosopi equation. This model was already presented in [36℄

but for entire n-dimensional spaes, so the formulation of the boundary onditions

were left as an open problem.

43



Chapter 3. Homogenization of the one-dimensional wave equation

3.1 Introdution

We establish a homogenized model for the wave equation,

ρε∂ttu
ε − ∂x (a

ε∂xu
ε) = f ε,

uε (t = 0, x) = uε0 and ∂tu
ε (t = 0, x) = vε0,

(3.1)

posed in a �nite time interval I ⊂ R+
and in an one-dimensional open bounded domain

Ω ⊂ R with Dirihlet boundary onditions. An asymptoti analysis of this problem

is arried out where ε > 0 is a parameter tending to zero and the time-independent

oe�ients are ε−periodi, namely aε = a
(
x
ε

)
and ρε = ρ

(
x
ε

)
where a (y) and ρ (y)

are Y−periodi with respet to a lattie of referene ell Y ⊂ R.

In onlusion, the physial solution uε is approximated by a sum of a low fre-

queny term u0, the usual orretor in ellipti problems, using θ the solution of the

ell problem, and a sum of Bloh waves being the orretor for the high frequeny

part,

uε (t, x) ≈ u0 (t, x) + εθ
(x
ε

)
∂xu

0 (t, x) + ε
∑

k

∑

n∈Z∗

ukn (t, x) e
sign(n)i

√

λk
|n|t/εφk

|n|

(x
ε

)
.

The Bloh wave amplitudes (ukn)n∈Z∗
are solution of a �rst order system of di�erential

equations onstituting the high frequeny marosopi problem. In partiular, for

k ∈ Y ∗\
{
0,−1

2

}
and for eah n, the HF-marosopi model has the form

b (k, n, n) ∂tu
k
n + c (k, n, n) ∂xu

k
n = F k

n (3.2)

b (−k, n, n) ∂tuσn + c (−k, n, n) ∂xu−k
n = F−k

n in I × Ω,

with some initial onditions, and boundary onditions on the form

ukn (t, x)φ
k
|n| (0) e

2iπ lkx
α + u−k

n (t, x)φ−k
|n| (0) e

−2iπ lkx
α = 0 on I × ∂Ω. (3.3)

We observe that the two partial di�erential equations in (3.2) are not oupled, the

oupling being due to the boundary onditions only. For k ∈
{
0,−1

2

}
, in the ase

of double eigenvalue λk|n′| = λk|n|, the model is also a pair of equations indexed by

q ∈ {n, n′}, ∑

p∈{n,n′}
b (k, p, q) ∂tu

k
p + c (k, p, q) ∂xu

k
p = F k

q in I × Ω, (3.4)

with some initial onditions, and for k = 0 with the boundary onditions

u0n (t, x)φ
0
|n| (0) + u0n′ (t, x)φ0

|n′| (0) = 0 on I × ∂Ω, (3.5)

and otherwise for k = −1
2
,

(
c (k, n, n)φk

|n′| (0)− c (k, n′, n)φk
|n| (0)

)
ukn(t, x) (3.6)

+
(
c (k, n, n′)φk

|n′| (0)− c (k, n′, n′)φk
|n| (0)

)
ukn′ (t, x) = 0 on I × ∂Ω.

The main ontribution of this work is the boundary onditions of the HF-marosopi

model. However, the HF-marosopi model is also new sine it di�ers from this in [36℄

derived from a �rst order system. Moreover, the proof has been simpli�ed. We quote
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that all models and proofs have been written in one-dimension but they extend trivially

to the general ase, exept what refers to the HF-marosopi boundary onditions

whih remains an open question in higher dimension.

The same result is also established for the Neumann boundary onditions and also

for a generalization of the wave equation taking into aount a zero order term as well as

�rst order time and spae derivatives. Moreover, the homogenization is also presented

under the �rst order formulation as in [35℄ and [36℄, then boundary onditions for the

one-dimensional model of these works have been announed.

This hapter is organized as follows. Setion 3.2 is devoted to the statement of the

model and the main results. Setion 3.3 inludes the model derivation. These results

are then established for Neumann boundary onditions and for a generalization of the

wave equation in Setion 3.4. The homogenization is presented under the �rst order

formulation in Setion 3.5. Finally, numerial examples are provided for the �rst order

formulation in the last setion.

3.2 Statement of the results for the wave equation

We onsider I = (0, T ) ⊂ R+
a �nite time interval and Ω = (0, α) ⊂ R+

a spae

interval, whose boundary is denoted by ∂Ω. As usual in homogenization papers, ε > 0
denotes a small parameter intended to go to zero. Two funtions (aε, ρε) are assumed

to obey a presribed pro�le,

aε := a
(x
ε

)
and ρε := ρ

(x
ε

)
, (3.7)

where ρ ∈ L∞ (R) and a ∈ W 2,∞ (R) are both Y−periodi with respet to the referene

ell Y = (0, 1). Moreover, they are required to satisfy the standard uniform positivity

and elliptiity onditions,

0 < ρ0 ≤ ρ ≤ ρ1 and 0 < a0 ≤ a ≤ a1, (3.8)

for some given stritly positive numbers ρ0, ρ1, a0 and a1. In addition, a ∈ W 1,∞ (R)
is applied for the model based on the �rst order formulation in Setion 3.5. We

onsider uε(t, x) solution to the weak form of the wave equation with the soure term

f ε ∈ L2 (I × Ω), initial onditions uε0 ∈ H1 (Ω), vε0 ∈ L2 (Ω) and homogeneous Dirihlet

boundary onditions,

ρε∂ttu
ε − ∂x (a

ε∂xu
ε) = f ε

in I × Ω,
uε (t = 0, x) = uε0 and ∂tu

ε (t = 0, x) = vε0 in Ω,
uε = 0 on I × ∂Ω.

(3.9)

Assuming that the data are bounded,

‖vε0‖L2(Ω) + ‖uε0‖H1(Ω) + ‖f ε‖L2(I×Ω) ≤ c0, (3.10)

the uniform bound

‖∂tuε‖L2(I×Ω) , ‖∂xuε‖L2(I×Ω) ≤ c1 (3.11)

holds, see e.g. Theorem 3 in [36℄.

Remark 27 The optimal regularity of the oe�ient and of the solution is not in the

fous on this work, so the regularity imposed to the oe�ient a is not optimal. We

refer to the reent work [40℄ whih derives part of our results with a ∈ L∞(Y ) only,

by being more areful on the manner to ondut the derivations. We do not see any

obstale to get our results with the same regularity.
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Chapter 3. Homogenization of the one-dimensional wave equation

3.2.1 Assumptions

In the statement of the results, the assumptions on the data are expressed using the

following de�nitions of two-sale transform when the �rst order approximation of the

solution uses the operator B
k
n de�ned in (1.20). The reason is that the latter yields

approximations satisfying the periodiity or quasi-periodiity onditions, without fur-

ther transformation. Aording to de�nition (1.20) of the operator B
k
n, it allows for

the following de�nition of a generalization of the two-sale onvergene of [89℄, [90℄

and [1℄ of a sequene (uε)ε de�ned in I ×Ω to a limit u0,kn de�ned in I ×Λ×Ω×Y by

∫

I×Ω

uε (t, x) · (Bk
nϕ) (t, x) dtdx (3.12)

=

∫

I×Λ×Ω×Y

u0,kn (t, τ , x, y) · ϕ (t, τ , x, y) dtdτdxdy +O (ε)

for any ϕ ∈ C1(I × Λ × Ω × Y ) being k-quasi-periodi in y and periodi in τ . We

shall say that u0,kn is a (n, k)-mode two-sale approximation of uε, sine it relies to the

Bloh mode φkn, and denote it by

uε =WTS(n,k) u0,kn +O(ε). (3.13)

Similarly we de�ne the �rst order (n, k)-mode wave-two-sale approximation u0,kn (t, τ , x, y)+
εu1,kn (t, τ , x, y) of uε by

∫

I×Ω

uε (t, x) ·
(
B

k
nϕ
)
(t, x) dtdx (3.14)

=

∫

I×Λ×Ω×Y

(
u0,kn (t, τ , x, y) + εu1,kn (t, τ , x, y)

)
· ϕ (t, τ , x, y) dtdτdxdy + εO (ε)

for any ϕ ∈ C2 (Λ× Y ;C2 (I × Ω) ∩ C0
c (I × Ω)) being periodi in τ that we denote

(3.14)

uε =WTS(n,k) u0,kn + εu1,kn + εO(ε). (3.15)

We also require the so-alled wave-two-sale approximation of uε towards u0 by

∫

I×Ω

uε (t, x) ·
∑

k∈L∗
K

∑

n∈Mk

(
B

k
nΠ

k
nϕ
)
(t, x) dtdx (3.16)

=

∫

I×Λ×Ω×YK

u0 (t, τ , x, y) · ϕ (t, τ , x, y) dtdτdxdy +O (ε)

for any ϕ ∈ C1(I × Λ× Ω× Y ) being periodi in τ and denote it by

uε =WTS u0 +O(ε).

Finally, the �rst order wave-two-sale approximation of uε by u0 (t, τ , x, y)+εu1 (t, τ , x, y)
satis�es

∫

I×Ω

uε (t, x) ·
∑

k∈L∗
K

∑

n∈Mk

(
B

k
nΠ

k
nϕ
)
(t, x) dtdx (3.17)

=

∫

I×Λ×Ω×Y

(
u0 (t, τ , x, y) + εu1 (t, τ , x, y)

)
· ϕ (t, τ , x, y) dtdτdxdy + εO (ε)
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3.2. Statement of the results for the wave equation

for any ϕ ∈ C2 (Λ× Y ;C2 (I × Ω) ∩ C0
c (I × Ω)) being periodi in τ , and is denoted

by

uε =WTS u0 + εu1 + εO(ε).

Remark 28 Instead an assumption like (3.15), we ould arry on the proof with the

usual ansatz

uε (t, x) = u0
(
t,
t

ε
, x,

x

ε

)
+ εu1

(
t,
t

ε
, x,

x

ε

)
+ ε2u2

(
t,
t

ε
, x,

x

ε

)
+ ε2O(ε) (3.18)

or to use a usual weak onvergene approah. In this work, we adopt an intermediary

method based on a solution expansion, to simplify the derivation, but expressed as

an approximation in a weak sense keeping the essential idea lying in the onvergene

proof. Another reason for this hoie is that we expet to use the model derivation in

the ontext of automati model derivation as in [25℄ whih requires only omputational

steps and forbid abstrat reasoning.

We already have assumed that f ε, uε0 and vε0 are bounded in L2 (I × Ω), H1 (Ω)
and L2 (Ω) respetively, so aording to the two-sale onvergene theory in [77℄, [80℄

or [46℄ and the boundness property of Sε
0, there exist f

0 ∈ L2 (I × Ω× Y ), ĥ0 ∈ L2 (Ω)
and g0 ∈ L2 (Ω× Y ) suh that, up to a subsequene ε, the data onverge weakly

aording to

f 0 = lim
ε→0

Sε
0f

ε ∈ L2 (I × Ω× Y ) , ĥ0 = lim
ε→0

Sε
0u

ε
0 ∈ L2 (Ω) , (3.19)

g0 = lim
ε→0

Sε
0v

ε
0 ∈ L2 (Ω× Y ) ,

and the averages f̂ 0 =

∫

Y

f 0dy ∈ L2 (I × Ω) , ĝ0 =
1

ρ̂

∫

Y

g0 · ρ dy ∈ L2 (Ω) . (3.20)

These assumptions are the same as in [60℄, [33℄. Moreover, in order to desribe the

HF-homogenized model, we assume that the additional weak onvergenes hold

gkn = lim
ε→0

∫

Y

sign (n) i√
λkn

∂xS
ε
ku

ε
0·
(
a∂yφ

k
|n| + ∂y

(
aφk

|n|
))

+ Sε
kv

ε
0·ρφk

|n|dy ∈ L2 (Ω) , (3.21)

and F k
n = lim

ε→0

∫

Λ×Y

T εαk
nSε

kf
ε · esign(n)2iπτφk

|n|dτdy ∈ L2 (I × Ω) ,

for any n ∈ Z∗
. Finally, for eah k ∈ Y ∗

and n ∈ Mk, the sequene uε admits a �rst

order (n, k)-mode two-sale approximation (3.15).

3.2.2 The model

In order to desribe the LF-homogenized model, let us introdue the usual homogenized

oe�ients,

â =

∫

Y

a (1 + ∂yθ) (1 + ∂yθ) dy and ρ̂ =

∫

Y

ρdy (3.22)

where θ is a solution of the ell problem

∂y (a (∂yθ + 1)) = 0 in Y and θ is Y − periodi. (3.23)
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Chapter 3. Homogenization of the one-dimensional wave equation

Thus, the LF-homogenized equation states as in [36℄, [33℄,

ρ̂∂ttu
0 − ∂x

(
â∂xu

0
)
= f̂ 0

in I × Ω, (3.24)

u0 (t = 0) = ĥ0 and ∂tu
0 (t = 0) = ĝ0 in Ω,

u0 = 0 on I × ∂Ω.

For p, q ∈ Z∗
suh that λk|p| = λk|q|, we introdue the oe�ients

c (k, p, q) =

∫

Y

φk|p| · a∂yφk
|q| − a∂yφ

k
|p| · φk

|q|dy (3.25)

and b (k, p, q) = sign (p) 2i
√
λk|p|

∫

Y

ρφk
|p|·φk|q|dy

and observe that,

c (k, p, q) = c (−k, p, q), c (k, q, p) = −c (k, p, q), c (k, p, q) = −c (−k, q, p) .

In partiular, c (0, p, p) = 0. Before to state the main result, the HF-marosopi

model is stated in all possible ases of k and of multipliity of the Bloh eigenvalues.

A. k /∈
{
0,−1

2

}
and

c (k, n, n) 6= 0 and φk
|n| (0) 6= 0 for all n ∈ Z∗. (3.26)

The solutions of the HF-marosopi model are the family of pairs (ukn, u
−k
n )n∈Z∗

solu-

tion to the system of equations where σ ∈ {−k, k},

b (σ, n, n) ∂tu
σ
n + c (σ, n, n) ∂xu

σ
n = F σ

n in I × Ω (3.27)

with the initial ondition

b (σ, n, n) uσn (t = 0) = gσn in Ω, (3.28)

and the boundary ondition,

ukn (t, x)φ
k
|n| (0) e

2iπ lkx
α + u−k

n (t, x)φ−k
|n| (0) e

−2iπ lkx
α = 0 on I × ∂Ω. (3.29)

We observe that the ouple of partial di�erential equations (3.27) are not oupled, the

oupling being due to the boundary onditions only.

If c (k, n, n) = 0 then whatever the value of φk
|n| (0), the HF-marosopi equation

(3.27) is replaed by

b (σ, n, n) ∂tu
σ
n = F σ

n in I × Ω for σ ∈ {−k, k} (3.30)

whih does not require any boundary ondition.

If φk
|n| (0) = 0 then whatever the value of c (k, n, n), the k-quasi-periodiity implies

that φk
|n| (1) = 0 whih says that φk

|n| is periodi. This ase is overed by the ase k = 0
and an be ignored when k 6= 0.

B. k ∈
{
0,−1

2

}
, eah eigenvalue λkn is double, and (3.26), (3.31)

c (0, n, n′) 6= 0 and φk
|n| (0) 6= 0 or φk

|n′| (0) 6= 0 (3.31)
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3.2. Statement of the results for the wave equation

where n′
is the index of the seond eigenvalue λk|n′| = λk|n|. Eah pair of the family

(ukn, u
k
n′)n∈Z∗

is solution to the system of �rst order boundary value problems where

q ∈ {n, n′}, ∑

p∈{n,n′}
b (k, p, q) ∂tu

k
p + c (k, p, q) ∂xu

k
p = F k

q in I × Ω, (3.32)

with initial ondition

∑

p∈{n,n′}
b (k, p, q)ukp (t = 0) = gkq in Ω. (3.33)

The boundary ondition is for k = 0,

−
∑

p∈{n,n′}
u0p (t, x)φ

0
|p| (0) = 0 on I × ∂Ω. (3.34)

and for k = −1
2
,

(
c (k, n, n)φk

|n′| (0)− c (k, n′, n)φk
|n| (0)

)
ukn(t, x) (3.35)

+
(
c (k, n, n′)φk

|n′| (0)− c (k, n′, n′)φk
|n| (0)

)
ukn′ (t, x) = 0 on I × ∂Ω.

For k = 0, if c (0, n, n′) = 0, whatever the values of φ0
|n| (0) and φ0

|n′| (0), then the

HF-marosopi model (3.32) is replaed by

∑

p∈{n,n′}
b (k, p, q) ∂tu

0
p = F 0

q in I × Ω for q ∈ {n, n′} (3.36)

and the boundary ondition (3.34) does not apply.

Still for k = 0, if φ0|n|(0) = φ0
|n′|(0) = 0, whatever the values of c (0, n, n′), the boundary

ondition (3.34) does not apply.

Finally, for k ∈
{
0,−1

2

}
but if the eigenvalue λk|n| is simple, then the ondition (3.31)

does not apply and for k = 0 the HF-marosopi equation (3.32) is replaed by

b (0, n, n) ∂tu
0
n = F 0

n in I × Ω with b (0, n, n)u0n (t = 0) = g0n in Ω (3.37)

without boundary ondition, when for k = −1
2
,

b (k, n, n) ∂tu
k
n + c (k, n, n) ∂xu

k
n = F k

n in I × Ω, (3.38)

with b (k, n, n)ukn (t = 0) = gkn in Ω,

and without boundary ondition if c (k, n, n) = 0 whatever the values of φk
|n| (0) or

ukn = 0 on I × ∂Ω if φk
|n| (0) = 0 whatever the values of c (k, n, n) .

3.2.3 Approximation result

Theorem 29 For any �xed K ∈ N∗
and any bounded data as in (3.10), let uε be

solution of the weak formulation of the wave equation (3.9) satisfying the uniform

bound (3.11) and the assumption (3.15), then there exists u0 in H1 (I × Ω) and a

family (ukn)k∈L∗
K
,n∈Z∗

in L2 (I × Ω) suh that

uε (t, τ , x, y) =WTS u0 (t, x) + εθ (y) ∂xu
0 (t, x) (3.39)

+ε
∑

k∈L∗
K
,n∈Z∗

ukn (t, x) e
sign(n)2iπτφk

|n| (y) + εO(ε).
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Chapter 3. Homogenization of the one-dimensional wave equation

Moreover, if (3.19) satis�es then u0 is the solution of the weak formulation of the

LF-homogenized equation (3.24).

Finally, if ε ∈ E1/K and if for any k ∈ L∗
K (3.21) is ful�lled and ukn ∈ H1 (I × Ω)

then the latter is the solution of the HF-marosopi model (3.27)-(3.30), (3.32)-

(3.38).

As a onsequene, the two-sale struture of the solution uε inluding the orretors

is

uε (t, x) ≈ u0 (t, x) + εθ
(x
ε

)
∂xu

0 (t, x) + ε
∑

k∈L∗
K
,n∈Z∗

ukn (t, x) e
sign(n)i

√

λk
|n|t/εφk|n|

(x
ε

)
.

(3.40)

Remark 30 To improve the asymptoti expansion (3.40) of uε near the boundary of

Ω, we usually introdue a boundary layer term to ompensate the lak of zero boundary

ondition of the LF-term θ
(
x
ε

)
∂xu

0 (t, x), see e.g. [17℄, [16℄, [15℄, [107℄, [82℄, [4℄, [62℄

for ellipti problems, but the same equation holds for the wave equation. Furthermore,

the boundary onditions (3.29) and (3.34) of the HF-model an be built independently.

They an be derived diretly by retaining only the eigenmodes orresponding to a same

eigenvalue in the HF-deomposition of (3.40), by using the ondition uε = 0 at ∂Ω and

by simplifying the time-dependent term:

∑

σ∈{k,−k}
uσn (t, x)φ

σ
|n|

(x
ε

)
= 0 for k /∈

{
0,−1

2

}
,

∑

p∈{n,n′}
ukp (t, x)φ

k
|p|

(x
ε

)
= 0 for k =

{
−1

2
, 0

}
.

Using the equalities

φσ
|m|

(x
ε

)
= φσ|m| (0) e

2iπσ x
ε

= φσ
|m| (0) e

sign(σ)2iπx
hkε+lkε

α = φσ
|m| (0) e

sign(σ)2iπx
lkε
α

for x ∈ ∂Ω, the onvergene lkε → lk as in Assumption 14 for k 6= 0, and the periodiity

of φk|m| for k = 0 yields the HF-marosopi boundary ondition of the model.

Remark 31 The solution (3.39) is Λ−periodi in τ but the physial solution (3.40)

is εαk
n-periodi whih is due to the hoie of the time-saling in B

k
n.

Remark 32 Assumptions (3.12) and (3.14) an be replaed by approximations

(
T εαk

nSε
ku

ε
)
(t, τ , x, y) = u0,kn (t, τ , x, y) +O (ε)

and (
T εαk

nSε
ku

ε
)
(t, τ , x, y) = u0,kn (t, τ , x, y) + εu1,kn (t, τ , x, y) + εO (ε)

in L2 (I × Λ× Ω× Y ) weakly as proved in Lemma 33.
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3.2. Statement of the results for the wave equation

3.2.4 Analyti solutions for the homogeneous equation (f ε = 0)

For k ∈ Y ∗, n ∈ Z∗
and ρ = 1, we solve the HF-marosopi equation with non degen-

erate boundary onditions. We solve the HF-marosopi equations by distinguishing

two ases k /∈
{
0,−1

2

}
and k = 0. Here we solve the HF-marosopi equation under

the matrix form (3.116) as in proof of Lemma 36 in Subsetion 3.3.1. For the present,

we onsider n > 0, then another ase is similar.

Case k /∈
{
0,−1

2

}

For eah σ ∈ Ik, we observe that

c (σ, n, n) =

∫

Y

φσna∂yφ
σ
n − a∂yφ

σ
nφ

σ
n dy

=

∫

Y

φσna∂yφ
σ
n − a∂yφ

σ
nφ

σ
n dy

= 2i Im

(∫

Y

φσna∂yφ
σ
n dy

)
,

and introdue the matries C = diag (c (σ, n, n))σ, B = diag (b (σ, n, n))σ, hene, the
operator C∂x (.) with domain

D =
{
w ∈ L2 (Ω)2 suh that w · φ = 0 at x ∈ ∂Ω

}

is self-adjoint on L2 (Ω)2. Thus the solution U of (3.116) an be deomposed by

U (t, x) =
∑

l∈N∗

rl (t) Vl (x)

where

(
λ1l , Vl

)
are solution of the eigenvalue problem

C∂xVl + λ1lBVl = 0 in Ω, (3.41)

and rl are solution of the equation

∂trl + λ1l rl = 0 in I. (3.42)

We pose Vl =

(
v1l
v2l

)
and from the assumption c (k, n, n) 6= 0, then the equation

(3.41) is equivalent to

{
∂xv

1
l + λ1l b (k, n, n) /c (k, n, n) v

1
l = 0

∂xv
2
l + λ1l b (−k, n, n) /c (−k, n, n) v2l = 0.

(3.43)

The exat solutions of the equations (3.42) and (3.43) are,

rl (t) = rl (0) e
−λ1

l t,

v1l (x) = v1l (0) e
−[λ1

l b(k,n,n)/c(k,n,n)]x
and v2l (x) = v2l (0) e

−[λ1
l b(−k,n,n)/c(−k,n,n)]x.

The boundary ondition (3.29) is equivalent to,

v1l (0)φ
k
|n| (0) + v2l (0)φ

−k
|n| (0) = 0

and v1l (0) e
−λ1

l αb(k,n,n)/c(k,n,n)+2iπlkφk|n| (0) + v2l (0) e
−λ1

l αb(−k,n,n)/c(−k,n,n)−2iπlkφ−k
|n| (0) = 0.

51



Chapter 3. Homogenization of the one-dimensional wave equation

Sine b (k, n, n) = b (−k, n, n), c (k, n, n) = −c (−k, n, n) and from the �rst boundary

ondition, −v1l (0)φk|n| (0) = v2l (0)φ
−k
|n| (0), so

e−λ1
l αb(k,n,n)/c(k,n,n)+2iπlk = eλ

1
l αb(k,n,n)/c(k,n,n)−2iπlk

or e−2λ1
l αb(k,n,n)/c(k,n,n)+4iπlk = 1.

Therefore, the eigenvalues of (3.41) are

λ1l =
c(k, n, n)

αb (k, n, n)

(
2iπlk − ilπ

)
for l ∈ Z. (3.44)

Furthermore, −v1l (0)φk
|n| (0) = v2l (0)φ

−k
|n| (0) then

v1
l
(0)

v2
l
(0)

= −φ−k
|n|

(0)

φk
|n|(0)

. Thus,

v1l (0) = −
φ−k
|n| (0)

φk
|n| (0)

v2l (0) for any v2l (0) ∈ C.

Using the orthogonality of the eigenvetors Vl, the initial ondition is equivalent to,

rl (0)

∫

Ω

v1l · v1l + v2l · v2l dx =
1

b (k, n, n)

∫

Ω

gkn · v1l + g−k
n · v2l dx.

Finally,

rl (0) =
1

b (k, n, n)

∫
Ω
gkn · v1l + g−k

n · v2l dx∫
Ω
v1l · v1l + v2l · v2l dx

or rl (0) =
1

b (k, n, n)

∫
Ω
gkn · v1l + g−k

n · v2l dx
‖Vl‖2L2(Ω)

.

Case k = 0

In this ase, λ0n = λ0m denote the double eigenvalue and b (0, n,m) = sign (n) 2i
√
λ0n

if n = m and = 0 otherwise. By posing C = (c (0, p, q))p,q and B = (b (0, p, q))p,q, we

know that iC∂x (.) with domain D is self-adjoint on L2 (Ω)2. Thus, the solution U of

(3.116) an be deomposed by

U (t, x) =
∑

l∈N∗

rl (t) Vl (x)

where

(
λ1l , Vl

)
are solution of the eigenvalue problem

iC∂xVl + λ1l iBVl = 0 in Ω, (3.45)

and rl are solution of the equation

∂trl + λ1l rl = 0 in I. (3.46)

We pose Vl =

(
v1l
v2l

)
and remark that b (0, n, n) = b (0, m,m) , c (0, n,m) = −c (0, m, n) ,

the equation (3.41) is equivalent to

c (0, n,m) ∂xv
2
l + λ1l b (0, n, n) v

1
l = 0 and − c (0, n,m) ∂xv

1
l + λ1l b (0, n, n) v

2
l = 0.

From the �rst equation v1l = − c(0,n,m)∂xv2l (x)

λ1
l b(0,n,n)

, the seond equation beomes,

∂xxv
2
l = −

(
λ1l b (0, n, n)

c (0, n,m)

)2

v2l .
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3.2. Statement of the results for the wave equation

Thus, the exat solutions are,

v2l (x) = d1 cos

(
λ1l b (0, n, n)

c (0, n,m)
x

)
+ d2 sin

(
λ1l b (0, n, n)

c (0, n,m)
x

)

for all d1, d2 are omplex numbers. Therefore,

v1l (x) =
λ1l b (0, n, n)

c (0, n,m)

(
−d1 sin

(
λ1l b (0, n, n)

c (0, n,m)
x

)
+ d2 cos

(
λ1l b (0, n, n)

c (0, n,m)
x

))
.

Applying the boundary ondition (3.29),

λ1l b (0, n, n) d2
c (0, n,m)

φ0
n (0) + d1φ

0
m (0) = 0

and

λ1l b (0, n, n)

c (0, n,m)

(
−d1 sin

(
λ1l b (0, n, n)

c (0, n,m)
α

)
+ d2 cos

(
λ1l b (0, n, n)

c (0, n,m)
α

))
φ0
n (0)

+d1 cos

(
λ1l b (0, n, n)

c (0, n,m)
α

)
+ d2 sin

(
λ1l b (0, n, n)

c (0, n,m)
α

)
φ0
m (0) = 0.

Aording to the �rst ondition, the seond ondition remains

sin

(
λ1l b (0, n, n)

c (0, n,m)
α

)(−d1φ0n (0)λ1l b (0, n, n)
c (0, n,m)

+ d2φ
0
m (0)

)
= 0.

Hene,

sin

(
λ1l b (0, n, n)

c (0, n,m)
α

)
= 0 or

λ1l b (0, n, n)

c (0, n,m)
α = π+lπ or λ1l =

c (0, n,m) (π + lπ)

αb (0, n, n)
for l ∈ Z

and

d1 = −(π + lπ)φ0
n (0) d2

αφ0
m (0)

for any d2 ∈ C, l ∈ Z.

Moreover, the exat solution of (3.46) is,

rl (t) = rl (0) e
−λ1

l t

Using the orthogonality of the eigenvetor Vl, the initial ondition is equivalent to,

rl (0)

∫

Ω

v1l · v1l + v2l · v2l dx =
1

b (0, n, n)

∫

Ω

g0n · v1l + g0m · v2l dx.

Finally,

r1l (0) =
1

b (0, n, n)

∫
Ω
g0n · v1l + g0m · v2l dx∫

Ω
v1l · v1l + v2l · v2l dx

or r1l (0) =
1

b (0, n, n)

∫
Ω
g0n · v1l + g0m · v2l dx

‖Vl‖2L2(Ω)

.
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Chapter 3. Homogenization of the one-dimensional wave equation

3.3 Model derivation

Aording to Remark 31, for eah (k, n), a two-sale transform in time is de�ned from

the time ells

D :=
{
θε = εαk

nl + εαk
nΛ | l ∈ Z,εαk

nl + εαk
nΛ ⊂ I

}

together with a saling of the time variable t 7→ t
εαk

n
. This yields a mirosopi time

variable τ always belonging to Λ. This plays an important role in the derivation of

forthoming Lemma 35 and justi�es the use of the operator T εαk
n
instead of T ε

with

the onsistent onvention T εαk
n := 1 when αk

n = ∞.

The deomposition of the time-spae-two-sale funtion T εαk
nSε

ku
ε
is provided in

the next lemma, whih justify Remak 32.

Lemma 33 For any k ∈ Y ∗
, n ∈Mk

, for a sequene uε uniformly bounded in L2(I ×
Ω) satisfying (3.13) then

(
T εαk

nSε
ku

ε
)
(t, τ , x, y) = u0,kn (t, τ , x, y) +O (ε) (3.47)

in L2 (I × Λ× Ω× Y ) weakly. Moreover, if a sequene uε uniformly bounded in L2(I×
Ω) satis�es (3.15) then

(
T εαk

nSε
ku

ε
)
(t, τ , x, y) = u0,kn (t, τ , x, y) + εu1,kn (t, τ , x, y) + εO (ε) (3.48)

in L2 (I × Λ× Ω× Y ) weakly with the relation

u1,kn (t, τ , x, y) := ε

(
y − 1

2

)
∂xu

0,k
n (t, x) + εαk

n

(
τ − 1

2

)
∂tu

0,k
n (t, x) + εu1,kn (t, τ , x, y)

(3.49)

provided that u0,kn is su�iently regular.

Proof. [Proof of Lemma 33℄ For any k ∈ Y ∗
, n ∈ Mk

, and a sequene uε uniformly

bounded in L2(I×Ω), let ϕ ∈ C1 (I × Λ× Ω× Y ) a periodi funtion in τ and k-quasi-
periodi funtion in y, aording to (1.13) and (1.18) the de�nitions of the operators

T εαk
n∗

and Sε∗
k ,

∫

I×Λ×Ω×Y

T εαk
nSε

ku
ε · ϕdtdτdxdy =

∫

I×Ω

uε · T εαk
n∗Sε∗

k ϕdtdx.

Using the relation (1.21) between B
k
n and T εαk

n∗Sε∗
k ,

=

∫

I×Ω

uε ·Bk
nϕdtdx+O (ε) .

From (3.13), uε =TSW (n,k) u0,kn +O(ε),

=

∫

I×Λ×Ω×Y

u0,kn · ϕdtdτdxdy +O (ε) .

Therefore, the deomposition (3.47) follows.
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3.3. Model derivation

Moreover, for ϕ ∈ C2 (Λ× Y ;C2 (I × Ω) ∩ C0
c (I × Ω)) a periodi funtion in τ

and k−quasi-periodi funtion in y, aording to (1.22) the �rst order approximation

between B
k
n and T εαk

n∗Sε∗
k , we get

∫

I×Ω

uε ·Bk
nϕdtdx (3.50)

=

∫

I×Ω

uε · T εαk
n∗Sε∗

k

(
ϕ+ εαk

n

(
τ − 1

2

)
∂tϕ+ ε

(
y − 1

2

)
∂xϕ

)
dtdx

=

∫

I×Λ×Ω×Y

T εαk
nSε

ku
ε ·
(
ϕ+ εαk

n

(
τ − 1

2

)
∂tϕ+ ε

(
y − 1

2

)
∂xϕ

)
dtdτdxdy + εO (ε) .

From (3.47), we an deompose T εαk
nSε

ku
ε
as

(
T εαk

nSε
ku

ε
)
(t, τ , x, y) = u0,kn (t, τ , x, y) + εu1,kn (t, τ , x, y) + εO (ε)

in L2 (I × Λ× Ω× Y ) weakly. Furthermore, from (3.15), uε =TSW (n,k) u0,kn + εu1,kn +
εO(ε), thus (3.50) yields

∫

I×Λ×Ω×Y

(
u0,kn + εu1,kn

)
· ϕdtdτdxdy

=

∫

I×Λ×Ω×Y

(
u0,kn + εu1,kn

)
·
(
ϕ+ εαk

n

(
τ − 1

2

)
∂tϕ + ε

(
y − 1

2

)
∂xϕ

)
dtdτdxdy + εO (ε) .

Assuming that u0,kn ∈ H1 (I × Ω), taking the integration by parts and applying the

onditions of ϕ on ∂I and ∂Ω,
∫

I×Λ×Ω×Y

(
u0,kn + εu1,kn

)
· ϕdtdτdxdy

=

∫

I×Λ×Ω×Y

(
u0,kn + εu1,kn − εαk

n

(
τ − 1

2

)
∂tu

0,k
n − ε

(
y − 1

2

)
∂xu

0,k
n

)
· ϕdtdτdxdy + εO (ε) .

Or equivalently,

∫

I×Λ×Ω×Y

(
εu1,kn − εαk

n

(
τ − 1

2

)
∂tu

0,k
n − ε

(
y − 1

2

)
∂xu

0,k
n − εu1,kn

)
·ϕdtdτdxdy = εO (ε) .

Finally, the deomposition (3.48) and the relation (3.49) follow.

For any k ∈ Y ∗
and for eah n ∈ Mk

, let uε ∈ L2 (I × Ω) satisfying the uni-

form bound (3.11), then the time-spae-two-sale funtions T εαk
nSε

ku
ε
are bounded in

L2 (I × Λ× Ω× Y ). Aording to (1.9) and (1.17),

T εαk
nSε

k∂xu
ε =

1

ε
∂y

(
T εαk

nSε
ku

ε
)

and T εαk
nSε

k∂tu
ε =

1

εαk
n

∂τ

(
T εαk

nSε
ku

ε
)

where

∥∥∥T εαk
nSε

k∂xu
ε
∥∥∥
L2(I×Λ×Ω×Y )

and

∥∥∥T εαk
nSε

k∂tu
ε
∥∥∥
L2(I×Λ×Ω×Y )

are bounded thanks to

(3.11) and the boundness of the two-sale operators Sε
k and T εαk

n
. Hene,

∥∥∥∂y
(
T εαk

nSε
ku

ε
)∥∥∥

L2(I×Λ×Ω×Y )
= ε

∥∥∥T εαk
nSε

k∂xu
ε
∥∥∥
L2(I×Λ×Ω×Y )

(3.51)

and

∥∥∥∂τ
(
T εαk

nSε
ku

ε
)∥∥∥

L2(I×Λ×Ω×Y )
= εαk

n

∥∥∥T εαk
nSε

k∂tu
ε
∥∥∥
L2(I×Λ×Ω×Y )
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Chapter 3. Homogenization of the one-dimensional wave equation

tend to 0 when ε goes to 0. Thus, u0,kn is independent on (τ , y), u0,kn := u0,kn (t, x).
Therefore, the deomposition (3.48) reads,

(
T εαk

nSε
ku

ε
)
(t, τ , x, y) = u0,kn (t, x) + εu1,kn (t, τ , x, y) + εO (ε) (3.52)

in the L2 (I × Λ× Ω× Y ) weak sense. In partiular, for k = 0 and for any n ∈ N, we

know that u0,0n is independent on n, see e.g. [46℄. Then, there exists u0 (t, x) suh that

lim
ε→0

T εα0
nSε

0u
ε = u0 in L2 (I × Λ× Ω× Y ) weakly (3.53)

for all n ∈M0.
Finally, for k = 0 and n = 0, T εα0

0 ≡ 1 so the �rst order (0, 0)-mode wave-two-sale

approximation of uε is independent on τ . Thus, u1,00 (t, x, y) = u1,00 (t, τ , x, y) and (3.14)

is rewritten by

∫

I×Ω

uε (t, x) ·
(
R

0ϕ
)
(t, x) dtdx (3.54)

=

∫

I×Ω×Y

(
u0 (t, x) + εu1,00 (t, x, y)

)
· ϕ (t, x, y) dtdxdy + εO (ε)

for any ϕ ∈ C2 (I × Y ;C2 (Ω) ∩ C0
c (Ω)).

In order to prove the main result, we introdue some preliminary homogenized

results inluding their proofs in Setion 3.3.1 . Then, Theorem 29 is proved in Setion

3.3.2.

3.3.1 Preliminary homogenization results and their proofs

Before to state the preliminary homogenized results, for k ∈ Y ∗
and n ∈ N∗

, we pose

Mk
n,± = {±n,±n′} suh that λkn′ = λkn for k ∈ {0,−1

2
} (3.55)

and Mk
n,± = {±n} otherwise,

Mk
n,int =



m ∈ Z∗

suh that

√
λk|m|

λkn
∈ N∗



 , (3.56)

In order to apply the assumptions (3.13), (3.15) of (n, k)-mode two-sale approximation

of the wave solution uε, the proofs are always restarted with the very weak form of

the wave equation (3.9).

The next lemma states the LF-part of the model from the (n, k)-modal two-sale

approximations. Doing so, we reover the model of [33℄. This was already done in [36℄

but in a di�erent form sine the alulation are done on a �rst order formulation of

the wave equation.

Lemma 34 For k ∈ Y ∗
, n ∈Mk

and any bounded data as in (3.10), let uε be solution

of the weak formulation of the wave equation (3.9) satisfying the uniform bound (3.11)

and the assumption (3.14). Then,

u0,kn = χ0 (k) u
0
, (3.57)

and u0 is the unique solution of the LF-homogenized model (3.24) and

u1,00 (t, x, y) = ∂xu
0 (t, x) θ (y) . (3.58)
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3.3. Model derivation

Proof. [Proof of Lemma 34℄ The proof is arried out in three steps. First, we prove

that u0,kn = 0 if k 6= 0. Seond, the two-sale model involving u0 and u1,00 is established.

Then, the model (3.24) is derived thanks to (3.58).

i) For any k ∈ Y ∗
and for eah n ∈ Mk

, we restart with the weak formulation of

the wave equation (3.9) by hoosing w deomposed as

w (t, τ , x, y) = w0 (t, x) + εw1 (t, τ , x, y) , (3.59)

with w0 ∈ C∞ (I × Ω) ∩ L2
(
I;H1

0 (Ω)
)
and w1 ∈ C∞ (I × Λ× Ω× Y ) (3.60)

∩L2
(
I × Λ× Ω;H1

k (Y )
)
∩ L2

(
I × Λ;H1

0

(
Ω;L2 (Y )

))
∩ L2(L2

(
I;H1

# (Λ)
)
; Ω× Y )

suh that w0 (t = T ) = w1 (t = T ) = 0 and ∂tw0 (t = T ) = ∂tw1 (t = T ) = 0.

Choosing wε = B
k
nw as a test funtion,

wε ∈ H2 (I × Ω) ∩ L2
(
I;H1

0 (Ω)
)
, wε (t = T ) = 0 and ∂tw

ε (t = T ) = 0. (3.61)

Applying two integrations by parts and the boundary onditions satis�ed by uε and

by B
k
nw, it remains,

∫

I×Ω

uε·
(
Qε
(
B

k
nw
)
+ P ε

(
B

k
nw
))

− f ε ·Bk
nw dtdx (3.62)

+

∫

Ω

uε0·ρε∂t
(
B

k
nw
)
(t = 0)− vε0 · ρεBk

nw (t = 0) dx = 0.

Aording to (1.23),

∫

I×Ω

uε ·Bk
n

(
2∑

l=0

((
εαk

n

)−l
Qlw + ε−lP lw

))
− f ε ·Bk

nw dtdx (3.63)

+

∫

Ω

uε0·Bk
nρ

(
∂tw +

1

εαk
n

∂τw

)
(t = 0)− vε0 ·Bk

nρw (t = 0) dx = 0.

Moreover, from (1.4), (3.59), ∂τw0 = ∂yw0 = 0 and

2∑

l=0

((
εαk

n

)−l
Qlw + ε−lP lw

)
= ρ

(
∂ttw0+

2

αk
n

∂tτw1 +
1

ε (αk
n)

2∂ττw1

)
(3.64)

−
(
∂x (a∂xw0) + ∂x (a∂yw1) +

1

ε
∂y (a∂xw0) + ∂y (a∂xw1) +

1

ε
∂y (a∂yw1)

)
,

so, Equation (3.63) reads,

∫

I×Ω

[uε ·Bk
n[ρ(∂ttw0+

2

αk
n

∂tτw1 +
1

ε (αk
n)

2∂ττw1)−∂x (a∂xw0)− ∂x (a∂yw1) (3.65)

−1

ε
∂y (a∂xw0)− ∂y (a∂xw1)−

1

ε
∂y (a∂yw1)]− f ε ·Bk

nw0 ]dtdx

+

∫

Ω

(
uε0·Bk

n

(
ρ

(
∂tw0 +

1

αk
n

∂τw1

))
− vε0 ·Bk

n (ρw0)

)
(t = 0, τ = 0) dxdy = 0.
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Multiplying by ε, then using (3.12) and passing to the limit,

∫

I×Λ×Ω×Y

u0,kn ·
(
ρ

1

(αk
n)

2∂ττw1 − ∂y (a∂xw0)− ∂y (a∂yw1)

)
dtdτdxdy = 0. (3.66)

Sine u0,kn is independent on (τ , y) , w1 is periodi in τ and a is periodi in y, so
∫

Λ

u0,kn ·ρ 1

(αk
n)

2∂ττw1dτ = 0 and

∫

Y

u0,kn ·∂y (a∂xw0) dy = 0.

In equation (3.66), it remains,

∫

I×Λ×Ω×Y

u0,kn · ∂y (a∂yw1) dtdτdxdy = 0. (3.67)

Or equivalently,

∫

I×Ω

u0,kn ·
(∫

Λ

[a∂yw1]
y=1
y=0 dτ

)
dtdx = 0 for all w1 satisfying (3.60).

Therefore w1 is a periodi funtion in y or u0,kn = 0 in I × Ω. It means that

u0,kn = 0 in I × Ω if k 6= 0 or u0,kn = χ0 (k) u
0

where u0 is introdued in (3.53).

ii) We restart with the very weak formulation (3.62) by hoosing w deomposed as

w (t, x, y) = w0 (t, x) + εw1,0 (t, x, y) (3.68)

with

w0 ∈ C∞ (I × Ω) ∩ L2
(
I;H1

0 (Ω)
)
suh that w0 (t = T ) = ∂tw0 (t = T ) = 0 (3.69)

and w1,0 ∈ C∞ (I × Y ;C∞ (Ω) ∩H1
0 (Ω)

)
∩ L2

(
I × Ω;H1

# (Y )
)

suh that w1,0 (t = T ) = ∂tw1,0 (t = T ) = 0.

Choosing wε = R
0w as a test funtion,

wε = R
0w ∈ H2 (I × Ω) ∩ L2

(
I;H1

0 (Ω)
)

(3.70)

suh that wε (t = T ) = 0 and ∂tw
ε (t = T ) = 0.

The very weak formulation (3.62) yields,

∫

I×Ω

uε·
(
Qε
(
R

0w
)
+ P ε

(
R

0w
))

− f ε ·R0w dtdx

+

∫

Ω

uε0·ρε∂t
(
R

0w
)
(t = 0)− vε0 · ρεR0w (t = 0) dx = 0.

From (1.23), (1.4), (3.68) and ∂τw = 0,
∫

I×Ω

[uε ·R0[ρ∂ttw0 − ∂x (a∂xw0)− ∂x (a∂yw1,0)−
1

ε
∂y (a∂xw0)− ∂y (a∂xw1,0) (3.71)

−1

ε
∂y (a∂yw1,0)]− f ε ·R0w0]dtdx+

∫

Ω

uε0 ·R0ρ∂tw0 (t = 0)− vε0 ·R0ρw0 (t = 0) dx = 0.
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Choosing w0 = 0, multiplying by ε and using (3.54), Equation (3.71) beomes

∫

I×Ω×Y

(
u0 + εu1,00

)
· (−ε∂x (a∂yw1,0)− ε∂y (a∂xw1,0)− ∂y (a∂yw1,0)) dtdxdy = εO (ε) .

Observing that,

∫

Y

u0·∂y (a∂yw1,0) dy = 0 and

∫

Y

u0·∂y (a∂xw1,0) dy = 0,

hene, the equation yields,

∫

I×Ω×Y

−εu0·∂x (a∂yw1,0)− εu1,00 ·∂y (a∂yw1,0) dtdxdy = εO (ε) .

Dividing by ε and passing to the limit,

∫

I×Ω×Y

u0 · ∂x (a∂yw1,0) + u1,00 · ∂y (a∂yw1,0) dtdxdy = 0. (3.72)

Assuming that u0 ∈ L2 (I;H1 (Ω)), u1,00 ∈ L2 (I × Ω;H2 (Y )), taking integrations by

parts, using the boundary onditions w1,0 = 0 at x ∈ ∂Ω and the periodiity of w1,0 in

y, Equation (3.72) yields,

∫

I×Ω×Y

(
∂y
(
a∂xu

0
)
+ ∂y

(
a∂yu

1,0
0

))
· w1,0dtdxdy

+

∫

I×Ω

[
u1,00 · a∂yw1,0 − a∂yu

1,0
0 · w1,0

]y=1

y=0
dtdx = 0.

By hoosing the test funtion suh that w1,0 (t, x, .) ∈ H2
0 (Y ) for all (t, x) ∈ I×Ω, the

internal equation is stated as,

∂y
(
a∂xu

0
)
+ ∂y

(
a∂yu

1,0
0

)
= 0 in I × Ω× Y. (3.73)

Thus, the boundary term remains,

∫

I×Ω

[
u1,00 · a∂yw1,0 − a∂yu

1,0
0 · w1,0

]y=1

y=0
dtdx = 0.

Sine w1,0 is periodi in y so ∂yw1,0 is periodi in y. Therefore, u
1,0
0 and ∂yu

1,0
0 are also

periodi in y.
Moreover, by hoosing w1,0 = 0 and multiplying by ε then Equation (3.71) is

equivalent to

∫

I×Ω

uε ·R0 [ερ∂ttw0 − ε∂x (a∂xw0)− ∂y (a∂xw0)]− εf ε ·R0w0dtdx

+

∫

Ω

εuε0·R0 (ρ∂tw0) (t = 0)− εvε0 ·R0 (ρw0) (t = 0) dx = 0.

Using (3.54) and the data (3.19),

∫

I×Ω×Y

(
u0 + εu1,00

)
· [ερ∂ttw0 − ε∂x (a∂xw0)− ∂y (a∂xw0)]− εf 0 · w0dtdxdy

+

∫

Ω×Y

εĥ0·ρ∂tw0 (t = 0)− εg0 · ρw0 (t = 0) dxdy = εO (ε) .
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Remarking that

∫
Y
u0 · ∂y (a∂xw0) dy = 0, dividing by ε and passing to the limit,

∫

I×Ω×Y

u0 · ρ∂ttw0 − u0 · ∂x (a∂xw0)− u1,00 · ∂y (a∂xw0)− f 0 · w0dtdxdy

+

∫

Ω×Y

ĥ0·ρ∂tw0 (t = 0)− g0 · ρw0 (t = 0) dxdy = 0.

Assuming that u0 ∈ H2 (I × Ω) and u1,00 ∈ L2 (I;H1 (Ω× Y )), taking integrations

by parts, using w0 ∈ L2 (I;H1
0 (Ω)) with w0 (t = T ) = 0 and ∂tw0 (t = T ) = 0, and

periodiity of u1,00 , it remains,

∫

I×Ω

((

∫

Y

ρdy)∂ttu
0 − ∂x((

∫

Y

ady)∂xu
0)− ∂x(

∫

Y

a∂yu
1,0
0 dy)−

∫

Y

f 0dy) · w0dtdx

(3.74)

+

∫

Y

ρdy

∫

Ω

−u0 · ∂tw0 (t = 0) + ∂tu
0 · w0 (t = 0) dx−

∫

I

[(∫

Y

ady

)
u0 · ∂xw0

]x=α

x=0

dt

+

∫

Ω

(∫

Y

ρdy

)
ĥ0·∂tw0 (t = 0)−

(∫

Y

g0·ρdy
)
· w0 (t = 0) dx = 0.

Choosing test funtions w0 ∈ H1
0 (I × Ω), then the strong form omes

(∫

Y

ρdy

)
∂ttu

0 − ∂x

((∫

Y

ady

)
∂xu

0

)
− ∂x

(∫

Y

a∂yu
1,0
0 dy

)
= f̂0 in I × Ω, (3.75)

So, Equation (3.74) remains,

(∫

Y

ρdy

)∫

Ω

−u0 · ∂tw0 (t = 0) + ∂tu
0 · w0 (t = 0) dx−

∫

Y

ady

∫

I

[
u0 · ∂xw0

]x=α

x=0
dt

+

∫

Ω

((∫

Y

ρdy

)
ĥ0·∂tw0 −

(∫

Y

g0·ρdy
)
· w0

)
(t = 0) dx = 0.

Aording to (3.20), the initial onditions are,

u0 (t = 0) = ĥ0 and ∂tu
0 = ĝ0 in Ω

and the boundary onditions are

u0 = 0 on I × ∂Ω.

iii) From (3.73), u1,00 an be deomposed as

u1,00 (t, x, y) = ∂xu
0 (t, x) θ (y) with θ ∈ H2

# (Y ) . (3.76)

After replaement, Equation (3.73) is equivalent to

(∂y (a∂yθ) + ∂ya) ∂xu
0 = 0 in I × Ω× Y.

Without loss of generality, we onsider ∂xu
0 6= 0. Therefore, θ is a solution of the ell

equation (3.23). In addition, sine (3.76) and

∫

Y

a (1+∂yθ) dy =

∫

Y

a (1+∂yθ) · (1+∂yθ) dy−
∫

Y

a (1+∂yθ) · ∂yθdy

=

∫

Y

a (1+∂yθ) · (1+∂yθ) dy−
∫

Y

∂y (a (1+∂yθ)) · θdy+[a (1+∂yθ) · θ]y=1
y=0

=

∫

Y

a (1+∂yθ) · (1+∂yθ) dy = â,
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3.3. Model derivation

so,

∂x

((∫

Y

ady

)
∂xu

0

)
+ ∂x

(∫

Y

a∂yu
1,0
0 dy

)
= ∂x

(
â∂xu

0
)
.

Thus, Equation (3.75) is equivalent to,

ρ̂∂ttu
0 − ∂x

(
â∂xu

0
)
= f̂ 0

in I × Ω.

This result shows that the LF-waves are related to u0,00 only whih is therefore not

belonging to the HF-model. Therefore, the HF-waves are searhed for k ∈ Y ∗
and

n ∈ N∗
. Let us de�ne

û1,kn (t, τ , x, y) := u1,kn (t, τ , x, y)− χ0 (k) u
1,0
0 (t, x, y) , (3.77)

thus,

u1,kn (t, τ , x, y) = χ0 (k) u
1,0
0 (t, x, y) + û1,kn (t, τ , x, y) . (3.78)

Lemma 35 For k ∈ Y ∗
, n ∈ N∗

and any bounded data as in (3.10), let uε be the

solution of the weak formulation of the wave equation (3.9) satisfying the uniform

bound (3.11) and the assumption (3.14). Then û1,kn (t, τ , x, y) is solution of the HF-

mirosopi equation

(
αk
n

)−2
ρ∂ττ û

1,k
n − ∂y

(
a∂yû

1,k
n

)
= 0 in I × Λ× Ω× Y (3.79)

where û1,kn is periodi in τ and k − quasi-periodi in y

in the very weak sense (i.e., it is solution of the very weak formulation (3.83)). More-

over, if û1,kn ∈ L2(I×Ω;H2(Λ×Y )) then û1,kn is solution of the HF-mirosopi equation

(3.79) and admits the modal deomposition,

û1,kn (t, τ , x, y) =
∑

m∈Mk
n,int

ukm (t, x) e
sign(m)2iπ

√

λk
|m|

λkn
τ
φk
|m| (y) (3.80)

with ukm (t, x) ∈ L2 (I × Ω).

Proof. [Proof of Lemma 35℄ For a given k ∈ Y ∗
and n ∈ N∗

, we restart with the

very weak formulation (3.62) in the proof of Lemma 34 by hoosing test funtions as

in (3.59), (3.60), (3.61) but suh that w0 = 0 in I × Ω and

w1 ∈ C∞(I × Ω× Λ× Y ) ∩ L2
(
Λ× Y ;H1

0 (I × Ω)
)
.

Multiplying by ε, Equation (3.65) beomes,

∫

I×Ω

uε ·Bk
n[ρ(ε

2

αk
n

∂tτw1 +
1

(αk
n)

2∂ττw1)− ε∂x (a∂yw1) (3.81)

−ε∂y (a∂xw1)− ∂y (a∂yw1)] dtdx = 0.

Using (3.14) with u0,kn = χ0 (k) u
0
as in Lemma 34 and remarking that,

∫

Λ

χ0 (k) u
0 · ∂tτw1dτ = 0,

∫

Λ

χ0 (k)u
0 · ∂ττw1dτ = 0 (3.82)

and

∫

Y

χ0 (k) u
0 · (∂y (a∂yw1) + ε∂y (a∂xw1)) dy = 0,
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then dividing by ε and passing to the limit, Equation (3.81) yields,

∫

I×Λ×Ω×Y

u1,kn ·
(

1

(αk
n)

2ρ∂ττw1 − ∂y (a∂yw1)

)
− χ0 (k) u

0 · ∂x (a∂yw1) dtdτdxdy = 0.

Using the deomposition (3.78) of u1,kn ,

∫

I×Λ×Ω×Y

(
χ0 (k)u

1,0
0 + û1,kn

)
·
(

1

(αk
n)

2ρ∂ττw1 − ∂y (a∂yw1)

)

−χ0 (k) u
0 · ∂x (a∂yw1) dtdτdxdy = 0.

From (3.72), and beause that u1,00 is independent on τ and w1 is periodi in τ ,

∫

I×Ω×Y

u0 · ∂x
(
a∂y

∫

Λ

w1dτ

)
+ u1,00 ·∂y

(
a∂y

∫

Λ

w1dτ

)
dtdxdy = 0

and

∫

Λ

u1,00 · 1

(α0
n)

2ρ∂ττw1dτ = 0.

Thus, û1,kn is a solution of the very weak formulation

∫

I×Λ×Ω×Y

û1,kn ·
(

1

(αk
n)

2ρ∂ττw1 − ∂y (a∂yw1)

)
dtdτdxdy = 0. (3.83)

In addition, assuming that û1,kn ∈ L2 (I × Ω;H2 (Λ× Y )) and applying integrations by

parts,

∫

I×Λ×Ω×Y

(
1

(αk
n)

2ρ∂ττ û
1,k
n − ∂y

(
a∂yû

1,k
n

))
· w1 dtdτdxdy (3.84)

+
1

(αk
n)

2

∫

I×Ω×Y

[
−ρû1,kn ·∂τw1 + ρ∂τ û

1,k
n ·w1

]τ=1

τ=0
dtdxdy

+

∫

I×Λ×Ω

[
û1,kn · a∂yw1 − a∂yû

1,k
n · w1

]y=1

y=0
dtdτdx = 0.

By hoosing test funtion w1 ∈ L2 (I × Ω× Y ;C∞
c (Λ))∩L2 (I × Λ× Y ;C∞

c (Y )), the
HF-mirosopi equation assoiated to a value αk

n is stated as,

(
αk
n

)−2
ρ∂ττ û

1,k
n − ∂y

(
a∂yû

1,k
n

)
= 0 in I × Λ× Ω× Y. (3.85)

In Equation (3.84), it remains,

1

(αk
n)

2

∫

I×Ω×Y

[
−ρû1,kn ·∂τw1 + ρ∂τ û

1,k
n ·w1

]τ=1

τ=0
dtdxdy

+

∫

I×Λ×Ω

[
û1,kn · a∂yw1 − a∂yû

1,k
n · w1

]y=1

y=0
dtdτdx = 0.

Sine w1 is periodi in τ and k−quasi-periodi in y, û1,kn and ∂τ û
1,k
n are periodi in τ

and û1,kn and ∂yû
1,k
n are k−quasi-periodi in y.

Next, we notie that û1,kn an be deomposed as

û1,kn (t, τ , x, y) =
∑

m∈N∗

vkm (t, τ , x)φk
m (y) (3.86)
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3.3. Model derivation

where vkm ∈ L2 (I × Λ× Ω) and φk
m is a solution of (1.5). Replaing (3.86) in (3.85)

and sine ρ > 0, ∑

m∈N∗

((
αk
n

)−2
∂ττv

k
m + λkmv

k
m

)
φkm = 0. (3.87)

Form andm′ ∈ N∗
, applying the orthogonality in L2 (Y ) of φkm and φk

m′ to the equation

(3.87) with

∫
Y
φk
m · φkm′dy = 0 if m′ 6= m and

∫
Y
φkm · φk

m′dy = 1 if m′ = m, so

(
αk
n

)−2
∂ττv

k
m (t, τ , x) + λkmv

k
m (t, τ , x) = 0 in I × Λ× Ω for all m ∈ N∗.

Sine û1,kn is periodi in τ , so vkm is also periodi in τ for any m ∈ N∗
. It implies that

√
λkmα

k
n = 2π

√
λkm
λkn

= 2πl for any l ∈ N∗. (3.88)

For a given m ∈ N∗
satisfying (3.88), vkm an be deomposed as

vkm (t, τ , x) = ukm (t, x) e
2iπ

√

λkm

λkn
τ
+ uk−m (t, x) e

−2iπ

√

λkm

λkn
τ

where

(
ukm, u

k
−m

)
∈ L2 (I × Ω)2 . Finally,

û1,kn (t, τ , x, y) =
∑

m∈Mk
n,int

ukm (t, x) e
sign(m)2iπ

√

λk
|m|

λkn
τ
φk
|m| (y)

with ukm (t, x) ∈ L2 (I × Ω) .
The next lemma fouses on the HF-marosopi model (3.26)-(3.38) for eah k ∈ Y ∗

and n ∈ N∗
.

Lemma 36 For k ∈ Y ∗
, n ∈ N∗

and any bounded data as in (3.10), let uε be solution

of the weak formulation of the wave equation (3.9) satisfying the uniform bound (3.11)

and the assumption (3.14). For ε ∈ Ek as in Assumption 14, if uσm ∈ H1 (I × Ω) for

σ ∈ Ik, s ∈ {+,−} and m ∈ Mσ
n,s, then uσm is solution of the HF-marosopi model

(3.26)-(3.38).

Before ontinuing with the proof of Lemma 36, we establish an auxiliary result

for existene of speial test funtions. For k ∈ Y ∗\
{
0,−1

2

}
, n ∈ N∗

and σ ∈ Ik, we
onsider the two funtions ϕk

n (t, x) , ϕ
−k
n (t, x) ∈ H2 (I × Ω) suh that

ϕk
n (t, x)φ

k
n (0) e

2iπlk x
α + ϕ−k

n (t, x)φ−k
n (0) e−2iπlk x

α = 0 on I × ∂Ω (3.89)

where lk is de�ned in (1.40).

Lemma 37 For k ∈ Y ∗\
{
0,−1

2

}
, let ε ∈ Ek, there exist ϕk,ε

n , ϕ−k,ε
n ∈ H2 (I × Ω)

satisfying

i) the boundary onditions

ϕk,ε
n (t, x)φk

n (0) e
2iπk x

ε + ϕ−k,ε
n (t, x)φ−k

n (0) e−2iπk x
ε = 0 on I × ∂Ω, (3.90)

ii) and the strong onvergene

ϕσ,ε
n → ϕσ

n in H2 (I × Ω) when ε → 0 for σ ∈ Ik. (3.91)
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Proof. [Proof of Lemma 37℄ For any ε ∈ Ek and let the two funtions ϕk
n (t, x) ,

ϕ−k
n (t, x) ∈ H2 (I × Ω) satisfying (3.89), we prove that the following hoie satis�es

the onditions,

ϕk,ε
n (t, x) = ϕk

n (t, x) ∈ H2 (I × Ω) (3.92)

and ϕ−k,ε
n (t, x) = ϕ−k

n (t, x) + µε (t, x) where µε (t, x) ∈ H2 (I × Ω)

with

µε (t, x) = −
(
1− e4iπ(l

ε
k
−lk)
)
ϕ−k
n (t, α)

x

α

where lkε and lk is de�ned in (1.39) and (1.40).

i) Replaing (3.92) in (3.90), the boundary onditions are

ϕk
n (t, x)φ

k
n (0) e

2iπk x
ε +

(
ϕ−k
n (t, x) + µε (t, x)

)
φ−k
n (0) e−2iπk x

ε = 0 on I × ∂Ω.

Using (1.39) and (1.40) with remarking that e2iπh
ε
k

x
α = 1 at x ∈ ∂Ω, so

ϕk
n (t, x)φ

k
n (0) e

2iπlε
k

x
α +

(
ϕ−k
n (t, x) + µε (t, x)

)
φ−k
n (0) e−2iπlε

k
x
α = 0 on I × ∂Ω.

Or equivalently,

ϕk
n (t, x)φ

k
n (0) e

2iπ(lk+lkε−lk) x
α +

(
ϕ−k
n (t, x) + µε (t, x)

)
φ−k
n (0) e−2iπ(lk+lkε−lk) x

α = 0

on I × ∂Ω. Or,

ϕk
n (t, x)φ

k
n (0) e

2iπlk x
α e2iπ(l

ε
k
−lk) x

α

+
(
ϕ−k
n (t, x) + µε (t, x)

)
φ−k
n (0) e−2iπlk x

α e−2iπ(lεk−lk) x
α = 0

on I × ∂Ω. From (3.89),

ϕk
n (t, x)φ

k
n (0) e

2iπlk x
α = −ϕ−k

n (t, x)φ−k
n (0) e−2iπlk x

α
on I × ∂Ω.

After replaement, the equation remains,

ϕ−k
n (t, x)φ−k

n (0) e−2iπlk x
α

(
e−2iπ(lεk−lk) x

α − e2iπ(l
ε
k
−lk) x

α

)

+µε (t, x)φ−k
n (0) e−2iπlk x

α e−2iπ(lεk−lk) x
α = 0 on I × ∂Ω.

This equation is satis�ed with the above µε
.

ii) For σ = k, the strong onvergene is true sine ϕk,ε
n is independent on ε. For

σ = −k, the strong onvergene of µε (t, x) in H2 (I × Ω) is trivial, i.e. µε (t, x) → 0
in H2 (I × Ω) strongly when ε → 0. Therefore, ϕ−k,ε

n → ϕ−k
n in H2 (I × Ω) strongly

when ε→ 0.
Proof. [Proof of Lemma 36℄ Let k ∈ Y ∗

, s ∈ {−,+} and n ∈ N∗
, we onsider(

φσ|q|
)
q∈Mσ

n,s,σ∈Ik
the Bloh eigenmodes assoiated to the eigenvalue λkn of the Bloh

modes equation. We restart with the weak formulation of the wave equation (3.9) by

hoosing wσ,ε
q deomposed as

wσ,ε
q (t, τ , x, y) = ϕσ,ε

q (t, x) esign(q)2iπτφσ
|q| (y) (3.93)
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for any q ∈Mσ
n,s, σ ∈ Ik and ϕσ,ε

q ∈ C∞ (I × Ω) satisfying

∂tϕ
σ,ε
q (t = 0) = 0, ϕσ,ε

q (t = T ) = 0 and ∂tϕ
σ,ε
q (t = T ) = 0. (3.94)

The boundary ondition wε = 0 at x ∈ ∂Ω is equivalent to

∑

σ∈Ik,q∈Mσ
n,s

ϕσ,ε
q (t, x) e

sign(q) 2iπt
εασ

|q| φσ
|q|

(x
ε

)
= 0 on I × ∂Ω. (3.95)

Sine ασ
|q| = αk

n for all q ∈ Mσ
n,s and σ ∈ Ik, so e

sign(q) 2iπt
εασ

|q| 6= 0 an be eliminated. In

the ase of k ∈
{
0,−1

2

}
, thanks to the periodiity or anti-periodiity of φσ

|q|, (3.95) is
equivalent to ∑

q∈Mk
n,s

ϕk,ε
q (t, x)φk|q| (0) = 0 on I × ∂Ω.

Taking ϕk,ε
q = ϕk

q ∈ C∞ (I × Ω) independent on ε, the boundary onditions of the test

funtion are ∑

q∈Mk
n,s

ϕk
q (t, x)φ

k
|q| (0) = 0 on I × ∂Ω. (3.96)

In the ase of k ∈ Y ∗\
{
0,−1

2

}
, using the σ−quasi-periodiity of φσ

|q|, (3.95) is equiva-
lent to ∑

σ∈Ik,q∈Mσ
n,s

ϕσ,ε
q (t, x)φσ|q| (0) e

2iπσ x
ε = 0 on I × ∂Ω. (3.97)

For ε ∈ Ek and σ ∈ Ik, using Lemma 37, there exists a sequene ϕσ,ε
q ∈ C∞ (I × Ω)

suh that (3.97) is satis�ed and

ϕσ,ε
q → ϕσ

q in C∞ (I × Ω) strongly when ε→ 0 (3.98)

where

(
ϕσ
q

)
σ
satisfy (3.89). Thus, the limit wσ

q of the test funtion wσ,ε
q is

wσ
q (t, τ , x, y) = ϕσ

q (t, x) e
sign(q)2iπτφσ

|q| (y) (3.99)

and the boundary onditions satis�ed by the test funtion are

∑

σ∈Ik,q∈Mσ
n,s

ϕσ
q (t, x)φ

σ
|q| (0) e

sign(σ)2iπlk x
α = 0 on I × ∂Ω. (3.100)

Moreover, aording to (3.94), (3.98) and (3.99), the test funtion ϕσ
q satis�es

∂tϕ
σ
q (t = 0) = ϕσ

q (t = T ) = ∂tϕ
σ
q (t = T ) = 0. (3.101)

We hoose wε =
∑

σ∈Ik,q∈Mσ
n,s

B
σ
qw

σ,ε
q as a test funtions,

wε =
∑

σ∈Ik,q∈Mσ
n,s

B
σ
qw

σ,ε
q ∈ H2 (I × Ω) ∩ L2

(
I;H1

0 (Ω)
)

(3.102)

Hene, wε
reads as

wε (t, x) =
∑

σ∈Ik,q∈Mσ
n,s

ϕσ,ε
q (t, x) e

sign(q) 2iπt
εασ

|q| φσ
|q|

(x
ε

)
(3.103)
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and satis�es

wε (t = T ) = 0 and ∂tw
ε (t = T ) = 0. (3.104)

From the boundary and the initial onditions of the test funtions, and sine

(
α0
|q|

)−2

Q2wσ,ε
q +

P 2wσ,ε
q = 0, the very weak formulation (3.63) yields,

∑

σ∈Ik,q∈Mσ
n,s

∫

I×Ω

uε ·Bσ
q

(
1∑

l=0

((
εασ

|q|
)−l

Qlwσ,ε
q − ε−lP lwσ,ε

q

))
− f ε ·Bσ

qw
σ,ε
q dtdx

(3.105)

+

∫

Ω

uε0 · ∂tBσ
q

(
ρwσ,ε

q

)
(t = 0)− vε0·Rσ

(
ρwσ,ε

q

)
(t = 0) dx = 0.

For eah σ ∈ Ik and q ∈ Mσ
n,s, thanks to (1.21) and (1.13) the relations between B

σ
n

and T εασ
n∗Sε∗

σ , R
σ
and Sε∗

σ , the seond and the third term in (3.105) are approximated

by,

∫

I×Ω

f ε ·Bk
nw

σ,ε
q dtdx =

∫

I×Ω

f ε · T εασ
n∗Sε∗

σ w
σ,ε
q dtdx+O (ε) (3.106)

=

∫

I×Λ×Ω×Y

T εασ
nSε

σf
ε · wσ,ε

q dtdτdxdy +O (ε) ,

and

∫

Ω

vε0·Rσ
(
ρwσ,ε

q

)
(t = 0) dx =

∫

Ω

vε0·Sε∗
σ

(
ρwσ,ε

q

)
(t = 0) dx+ O (ε) (3.107)

=

∫

Ω×Y

Sε
σv

ε
0·ρwσ,ε

q (t = 0, τ = 0) dxdy +O (ε)

=

∫

Ω×Y

Sε
σv

ε
0·ρφσ|q|ϕσ,ε

q (t = 0) dxdy +O (ε) .

Moreover, the third term in (3.105) yields,

∫

Ω

uε0 · ∂tBσ
q

(
ρwσ,ε

q

)
(t = 0) dx

=

∫

Ω

uε0·Bσ
q

(
∂t
(
ρϕσ,ε

q esign(q)2iπτφσ
|q|
)
+

1

εασ
|q|
∂τ
(
ρϕσ,ε

q esign(q)2iπτφσ|q|
)
)
(t = 0) dx

=

∫

Ω

uε0·Bσ
q

(
ρ∂tϕ

σ,ε
q esign(q)2iπτφσ

|q| +
sign (q) 2iπ

εασ
|q|

ρϕσ,ε
q esign(q)2iπτφσ

|q|

)
(t = 0) dx.

Sine ∂tϕ
σ,ε
q (0, x) = 0, τ = 0, ασ

|q| =
2π√
λk
n

, φσ
|q| is solution of Bloh wave equation (1.5),

and B
σ
q := R

σ
at t = 0,

=
sign (q) i

ε
√
λkn

∫

Ω

uε0·Rσ
(
P 2
(
ϕσ,ε
q (t = 0)φσ

|q|
))
dx.

Thanks to the deomposition (1.23), we have

R
σP 2 (.) = ε2P ε

R
σ (.)− ε2RσP 0 (.)− εRσP 1 (.) ,
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so,

= −sign (q) i√
λkn

∫

Ω

uε0·Rσ
[
P 1
(
ϕσ,ε
q (t = 0)φσ

|q|
)]
dx+O (ε) .

Or equivalently,

= −sign (q) i√
λkn

∫

Ω×Y

Sε
σu

ε
0·∂xϕσ,ε

q (t = 0)
(
a∂yφ

σ
|q| + ∂y

(
aφσ

|q|
))
dxdy +O (ε) .

Taking the integration by part and remarking that the boundary ondition Sε
σu

ε
0 = 0

on ∂Ω × Y based on uε0 = 0 on ∂Ω,

= −sign (q) i√
λkn

∫

Ω×Y

∂xS
ε
σu

ε
0·
(
a∂yφ

σ
|q| + ∂y

(
aφσ

|q|
))
ϕσ,ε
q (t = 0) dxdy +O (ε) . (3.108)

Multiplying by ε, using (3.14), (3.106) and (3.107), and remarking that u0,σn = χ0 (σ) u
0
,

Equation (3.105) beomes,

∑

σ∈Ik,q∈Mσ
n,s

[

∫

I×Λ×Ω×Y

[
(
χ0 (σ)u

0 + εu1,σn

)
·
((
αk
|q|
)−1

Q1wσ,ε
q − P 1wσ,ε

q + εQ0wσ,ε
q − εP 0wσ,ε

q

)

−εT εασ
nSε

σf
ε · wσ,ε

q ]dtdτdxdy − ε

∫

Ω×Y

[Sε
σv

ε
0·ρφσ

|q|ϕ
σ,ε
q (t = 0)

+
sign (q) i√

λkn

∂xS
ε
σu

ε
0·
(
a∂yφ

σ
|q| + ∂y

(
aφσ

|q|
))
ϕσ,ε
q (t = 0) dxdy] = εO (ε) .

Sine Q1u0 = 0 and due to the speial form of wσ,ε
q in τ so,

∫

Λ

χ0 (σ) u
0 · P 0wσ,ε

q dτ = 0 and

∫

Λ

χ0 (σ)u
0 ·Q0wσ,ε

q dτ = 0, (3.109)

∫

Λ

χ0 (σ) u
0 ·Q1wσ,ε

q dτ = 0 and

∫

Λ

χ0 (σ)u
0 · P 1wσ,ε

q dτ = 0,

hene, dividing by ε, the equation reads

∑

σ∈Ik,q∈Mσ
n,s

[

∫

I×Λ×Ω×Y

[u1,σn ·
((
αk
|q|
)−1

Q1wσ,ε
q − P 1wσ,ε

q

)
− T εασ

nSε
σf

ε · wσ,ε
q ]dtdτdxdy

−
∫

Ω×Y

[
sign (q) i√

λσn
∂xS

ε
σu

ε
0·
(
a∂yφ

σ
|q| + ∂y

(
aφσ|q|

))
ϕσ,ε
q + Sε

σv
ε
0·ρφσ

|q|ϕ
σ,ε
q ] (t = 0) dxdy] = O (ε) .

Moreover, aording to (3.21), (3.98) and (3.99), and passing to the limit, the equation

remains,

∑

σ∈Ik,q∈Mσ
n,s

[∫

I×Λ×Ω×Y

u1,σn ·
(
ασ
|q|
)−1

Q1wσ
q + u1,σn · P 1wσ

q dtdτdxdy

−
∫

I×Ω

F σ
q · ϕσ

q dtdx−
∫

Ω

gσq ·ϕσ
q (t = 0) dx

]
= 0.
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Using the deomposition (3.78) of u1,kn and the de�nition (1.4),

∑

σ∈Ik,q∈Mσ
n,s

[

∫

I×Λ×Ω×Y

(
χ0 (σ)u

1,0
0 + û1,σn

)
·[
(
ασ
|q|
)−1

2ρ∂tτw
σ
q − ∂x

(
a∂yw

σ
q

)

−∂y
(
a∂xw

σ
q

)
]dtdτdxdy −

∫

I×Ω

F σ
q · ϕσ

q dtdx−
∫

Ω

gσq ·ϕσ
q (t = 0) dx] = 0.

Sine wσ
q is periodi in τ , u1,00 is independent in τ and due to the speial form of wσ

q in

τ ,
∫
Λ
wσ

q dτ = 0, so
∫

Λ

χ0 (σ) u
1,0
0 ·
((
ασ
|q|
)−1

2ρ∂tτw
σ
q − ∂x

(
a∂yw

σ
q

)
− ∂y

(
a∂xw

σ
q

))
dτ = 0. (3.110)

Moreover, using the deompositions (3.80) and (3.99) of û1,σq and wσ
q with remarking

that the index m in (3.80) is hanged by p and

∫

Λ

e
sign(p)2iπ

√

λσ
|p|
λσn

τ · esign(q)2iπτdτ = 0 if sign (p)

√
λσ|p|
λσn

6= sign (q) and = 1 otherwise,

(3.111)

so the equation is equivalent to,

∑

σ∈Ik,p∈Mσ
n,s,q∈Mσ

n,s

∫

I×Ω

[
−sign (q) 4iπ

(
ασ
|q|
)−1
(∫

Y

ρφσ
|p|φ

σ
|q|dy

)
uσp · ∂tϕσ

q

−
(∫

Y

φσ
|p|

(
a∂yφ

σ
|q| + ∂y

(
aφσ

|q|

))
dy

)
uσp · ∂xϕσ

q

]
dtdx

−
∑

σ∈Ik,q∈Mσ
n,s

[∫

Ω

gσq ·ϕσ
q (t = 0) dx+

∫

I×Ω

F σ
q · ϕσ

q dtdx

]
= 0.

We observe that,

[
aφσ

|p|φ
σ
|q|

]y=1

y=0
= 0 and

∫

Y

φσ
|p|

(
a∂yφ

σ
|q| + ∂y

(
aφσ

|q|

))
dy =

∫

Y

φσ
|p|a∂yφ

σ
|q| − a∂yφ

σ
|p|φ

σ
|q|dy.

(3.112)

Therefore,

∑

σ∈Ik,p∈Mσ
n,s,q∈Mσ

n,s

∫

I×Ω

−b (σ, p, q)uσp ·∂tϕσ
q − c (σ, p, q)uσp · ∂xϕσ

q dtdx

−
∑

σ∈Ik,q∈Mσ
n,s

[∫

Ω

gσq ·ϕσ
q (t = 0) dx+

∫

I×Ω

F σ
q · ϕσ

q dtdx

]
= 0

where b (σ, p, q) and c (σ, p, q) are de�ned in (3.25). Assuming that uσp ∈ H1 (I × Ω) ,
using (3.101) and applying integrations by parts,

∑

σ∈Ik,p∈Mσ
n,s,q∈Mσ

n,s

[∫

I×Ω

b (σ, p, q) ∂tu
σ
p ·ϕσ

q + c (σ, p, q) ∂xu
σ
p · ϕσ

q dtdx

+

∫

Ω

b (σ, p, q)uσp ·ϕσ
q (t = 0) dx−

∫

I

[
c (σ, p, q)uσp · ϕσ

q

]x=α

x=0
dt

]

−
∑

σ∈Ik,q∈Mσ
n,s

[∫

Ω

gσq ·ϕσ
q (t = 0) dx+

∫

I×Ω

F σ
q · ϕσ

q dtdx

]
= 0.
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For eah σ ∈ Ik and q ∈ Mσ
n,s, by hoosing test funtions ϕσ

q ∈ H1
0 (I × Ω) the strong

form omes

∑

p∈Mσ
n,s

b (σ, p, q) ∂tu
σ
p +

∑

p∈Mσ
n,s

c (σ, p, q) ∂xu
σ
p = F σ

q in I × Ω.

It remains,

∑

σ∈Ik,q∈Mσ
n,s



∫

Ω


 ∑

p∈Mσ
n,s

b (σ, p, q)uσp − gσq


 ·ϕσ

q (t = 0) dx (3.113)

−
∫

I

∑

p∈Mσ
n,s

[
c (σ, p, q)uσp · ϕσ

q

]x=α

x=0
dt


 = 0.

The initial ondition is dedued,

∑

p∈Mσ
n,s

b (σ, p, q)uσp (t = 0) = gσq on Ω for eah q ∈Mσ
n (3.114)

and the boundary term is,

∑

σ∈Ik,p,q∈Mσ
n,s

∫

I

[
c (σ, p, q)uσp · ϕσ

q

]x=α

x=0
dt = 0 for ϕσ

q satisfying (3.100). (3.115)

The remaining of this proof fouses on �nding the boundary onditions of

(
uσp
)
p
the

marosopi solutions. We distinguish between the three ases k = 0, k = −1
2
and

k 6=
{
0,−1

2

}
. For notational onveniene, we here understand n := sn and n′ := sn′

for both two ases s = − and s = +.
(i)Case k = 0 with λ0n be a double eigenvalue and the ondition (3.31). Introduing

the matries C = (c (0, p, q))p,q, B = (b (0, p, q))p,q and the vetors U =
(
u0p
)
p
, F =(

F 0
p

)
p
, G =

(
g0p
)
p
, ϕ =

(
ϕ0
p

)
p
, φ =

(
φ0
|p|
)
p
, we get the matrix form,

B∂tU + C∂xU = F in I × Ω, (3.116)

BU (0, x) = G in Ω,

and CU(t, x).ϕ(t, x) = 0 on I × ∂Ω for all ϕ suh that φ(0).ϕ(t, x) = 0 on I × ∂Ω.

The boundary ondition is equivalent to the fat that CU(t, x) is ollinear to φ(0) on
∂Ω for t ∈ I. It means that,

det
(
CU(t, x), φ(0)

)
= 0 on I × ∂Ω. (3.117)

But c (0, p, p) = 0 for p ∈M0
n , the equation (3.117) yields,

c (0, n, n′)u0n′ (t, x)φ0|n′| (0)− c (0, n′, n)u0n (t, x)φ
0
|n| (0) = 0 on I × ∂Ω.

Therefore, sine c (0, n, n′) = −c (0, n′, n) and assume that c (0, n, n′) 6= 0, the bound-

ary onditions of the HF-marosopi equation are

u0n (t, x)φ
0
|n| (0) + u0n′ (t, x)φ0

|n′| (0) = 0 on I × ∂Ω. (3.118)
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Moreover, if c (0, n, n′) = 0 then the matrix form (3.116) yields,

B∂tU = F in I × Ω and BU (0, x) = G in Ω

where the boundary ondition has disappeared,

Still for k = 0 with φ0
|n|(0) = φ0

|n′|(0) = 0 and whatever the values of c (0, n, n′), the
matrix form is similar to (3.116) but without boundary ondition.

Finally, if the eigenvalue λ0n is simple, then the matrix C = 0 and the HF-

marosopi equation is stated as

b (0, n, n) ∂tu
0
n = F 0

n in I × Ω with b (0, n, n)u0n (t = 0) = g0n in Ω

without boundary onditions.

(ii) Case k = −1
2
with λkn be a double eigenvalue. Introduing the matries C =

(c (k, p, q))p,q, B = (b (k, p, q))p,q and the vetors U =
(
ukp
)
p
, F =

(
F k
p

)
p
, G =

(
gkp
)
p
,

ϕ =
(
ϕk
p

)
p
, φ =

(
φk|p|e

2iπx lk

α

)
p
, we get the same matrix form as (3.116). The boundary

onditions are equivalent to the fat that CU(t, x) is ollinear to φ(0) on ∂Ω for t ∈ I,
or equivalently,

det
(
CU(t, x), φ(0)

)
= 0 on I × ∂Ω.

Therefore,

[
c (k, n, n)φk|n′| (0)u

k
n (t, x) + c (k, n, n′)φk|n′| (0) u

k
n′ (t, x)

−c (k, n′, n)φk
|n| (0) u

k
n (t, x)− c (k, n′, n′)φk

|n| (0)u
k
n′ (t, x)

]
e2iπx

lk

α = 0 on I × ∂Ω.

Sine e2iπx
lk

α 6= 0 for all x ∈ ∂Ω, the boundary ondition of the HF-marosopi

equation is,

(
c (k, n, n)φk

|n′| (0)− c (k, n′, n)φk
|n| (0)

)
ukn (t, x)

+
(
c (k, n, n′)φk

|n′| (0)− c (k, n′, n′)φk
|n| (0)

)
ukn′ (t, x) = 0 on I × ∂Ω.

For k = −1
2
with a simple eigenvalue λ0n, the HF-marosopi equation is

b (k, n, n) ∂tu
k
n + c (k, n, n) ∂xu

k
n = F k

n in I × Ω,

with b (k, n, n)ukn (t = 0) = gkn in Ω,

and c (k, n, n)ukn.ϕ
k
n = 0 on I × ∂Ω for all ϕk

n suh that φk
n(0).ϕ

k
n = 0 on I × ∂Ω.

If c (k, n, n) = 0 or ϕk
n = 0 on I × ∂Ω then the boundary ondition is vanished.

Otherwise, φk
n(0) = 0 and ukn = 0 on I × ∂Ω.

(iii) Case k /∈
{
0,−1

2

}
. Aording to Remark 2, the Bloh eigenvalue λkn is simple.

Similarly to the ase k = 0, by introduing the matries C = diag (c (σ, n, n))σ, B =
diag (b (σ, n, n))σ and the vetors U = (uσn)σ, F = (F σ

n )σ, G = (gσn)σ, ϕ = (ϕσ
n)σ,

φ =
(
φσ
|n|e

sign(σ)2iπx lk

α

)
σ
, we get the same matrix form as (3.116). The boundary

onditions are equivalent to the fat that CU(t, x) is ollinear to φ(0) on ∂Ω for all

t ∈ I, or equivalently,

det
(
CU(t, x), φ(0)

)
= 0 on I × ∂Ω.
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Thus,

c (k, n, n)ukn (t, x)φ
k
|n| (0) e

2iπx lk

α − c (−k, n, n) u−k
n (t, x)φ−k

|n| (0) e
−2iπx lk

α = 0 on I × ∂Ω.

Therefore, from the assumption c (k, n, n) 6= 0 and from c (k, n, n) = −c (−k, n, n), the
boundary onditions turn to be

ukn (t, x)φ
k
|n| (0) e

2iπx lk

α + u−k
n (t, x)φ−k

|n| (0) e
−2iπx lk

α = 0 on I × ∂Ω.

Finally, if c (k, n, n) = 0 then whatever the value of φk
|n| (0), the matrix form of HF-

marosopi equation is stated by

B∂tU = F in I × Ω and BU (0, x) = G in Ω

whih does not require any boundary ondition.

3.3.2 Proof of main Theorem

For any K ∈ N∗
and any test funtion ϕ ∈ C2 (Λ× Y ;Cc (I × Ω) ∩ C0

c (I × Ω)) being
periodi in τ , let a bounded sequene uε be solution of the weak formulation of the

wave equation (3.9). For k ∈ L∗
K and n ∈Mk

, we already have shown the (n, k)-mode

wave-two-sale approximations

uε =TSW (k,n) χ
0(k)u

0 + ε(χ
0(k)θ∂xu

0 +
∑

m∈Mk
n,int

ukme
sign(m)2iπτφk

|m|) + εO(ε) (3.119)

and it remains to hek that this approximation holds in the wave-two-sale sense,

∫

I×Ω

uε (t, x) ·
∑

k∈L∗
K
,n∈Mk

(Bk
nΠ

k
nϕ) (t, x) dtdx

=

∫

I×Λ×Ω×Y

(u0 + ε[θ∂xu
0 +

∑

k∈L∗
K
,n∈Z∗

∫

I×Λ×Ω×Y

ukne
sign(n)2iπτφk

|n|]) · ϕ dtdτdxdy + εO (ε) .

But

∫

I×Ω

uε (t, x)·
∑

k∈L∗
K
,n∈Mk

B
k
nΠ

k
nϕ (t, x) dtdx =

∑

k∈L∗
K
,n∈Mk

∫

I×Ω

uε (t, x)·Bk
nΠ

k
nϕ (t, x) dtdx

with Πk
nϕ a periodi funtion in τ and k-quasi-periodi funtion in y. Using the

deomposition (3.119), the fat that the projetions are self-adjoint operators, and

∑

n∈N
Π0

nu
0 = u0,

∑

n∈N
Π0

nθ = θ,

Πk
n

∑

m∈Mk
n,int

ukm (t, x) esign(m)2iπτφk
|m| (y) =

∑

m∈{n,−n}
ukme

sign(m)2iπτφk
|m|

yield the expeted result.

Furthermore, if (3.19) is satis�ed then u0 is the solution of the weak formulation

of the LF-homogenized equation (3.24) as proved in Lemma 34.

71



Chapter 3. Homogenization of the one-dimensional wave equation

For any k ∈ L∗
K , we pose k = p

K
for p ∈ KL∗

K . For ε ∈ E1/K as in (1.39) and (1.40),

it implies that

αp

εK
= p

[ αp
εK

]
+ pl1/Kε and pl1/Kε → lk := pl1/K when ε→ 0

and the data (3.21) is satis�ed for all k ∈ L∗
K with the same sequene ε ∈ E1/K . If

ukn ∈ H1 (I × Ω) then ukn is solution of the HF-marosopi equation for all k ∈ L∗
K

based on the proof of Lemma 36.

3.4 Other ases

In this Setion, we study the homogenization of the wave equation in two other ases.

1. The wave equation with Neumann boundary onditions in Setion 3.4.1.

2. The wave equation with additional zero and �rst order time and spae derivatives

in Setion 3.4.2.

The proess of homogenization is similar to Setion 3.2 and 3.3. The �nal results

state similarly as in Theorem 29 but with di�erent homogenized models. The di�er-

enes are in the detail of some homogenized terms. Here we fous on disussing the

di�erenes in the homogenization of eah pair of �bers.

3.4.1 Neumann boundary onditions

We onsider the wave equation with Neumann boundary onditions,

ρε∂ttu
ε − ∂x (a

ε∂xu
ε) = f ε

in I × Ω,
uε (t = 0, x) = uε0 and ∂tu

ε (t = 0, x) = vε0 in Ω,
∂xu

ε = 0 on I × ∂Ω.

Here the test funtion wε
satis�es ∂xw

ε = 0 at x ∈ ∂Ω. The LF-homogenized equation

with initial onditions, the HF-mirosopi equation and the internal HF-marosopi

equation are unhanged, while the boundary onditions of the LF-homogenized equa-

tion are replaed by

∂xu
0 = 0 on I × ∂Ω. (3.120)

Moreover, the boundary onditions of the HF-marosopi equation are,

∑

σ∈Ik,p∈Mσ
n,s

uσp (t, x) ∂yφ
σ
|p| (0) e

sign(σ)2iπ lkx
α = 0 on I × ∂Ω if k 6= −1

2

and

(
c (k, n, n) ∂yφ

k
|n′| (0)− c (k, n′, n) ∂yφ

k
|n| (0)

)
ukn (t, x) +

(
c (k, n, n′) ∂yφ

k
|n′| (0)

−c (k, n′, n′) ∂yφ
k
|n| (0) u

k
n′ (t, x)

)
= 0 on I × ∂Ω otherwise

for any n ∈ N∗
and s ∈ {+,−}. Their derivation follows the same steps, so we only

mention the boundary ondition satis�ed by the test funtions. They are hosen to

satisfy ∂xw
ε (t, x) = 0 on I × ∂Ω or equivalently,

∑

σ∈Ik,q∈Mσ
n,s

(
∂xϕ

σ,ε
q (t, x)φσ

|q|

(x
ε

)
+

1

ε
ϕσ,ε
q (t, x) ∂yφ

σ
|q|

(x
ε

))
e
sign(q) 2iπt

εασ
q = 0 on I × ∂Ω.
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Sine ασ
q = αk

n for all q ∈Mσ
n,s and σ ∈ Ik, so e

sign(q) 2iπt
εασ

q 6= 0 an be eliminated. More-

over, φσ
|q| is σ−quasi-periodi in y, so ∂yφσ

|q| is also σ−quasi-periodi in y. Multiplying

by ε and using the σ−quasi-periodiity of ∂yφ
σ
|q|

∑

σ∈Ik,q∈Mσ
n,s

ϕσ,ε
q (t, x) ∂yφ

σ
|q| (0) e

2iπ σx
ε +O(ε) = 0 on I × ∂Ω. (3.121)

Choosing a sequene ε ∈ Ek, using (1.39, 1.40), taking ϕσ,ε
q = ϕσ

q for k ∈
{
−1

2
, 0
}

and onsidering the strong onvergene of ϕσ,ε
q in H2 (I × Ω) similar to Lemma 37 for

k /∈
{
−1

2
, 0
}
but φσ|q| (0) being replaed by ∂yφ

σ
|q| (0), see also in Lemma 58 in Appendix,

the boundary onditions of the test funtion are,

∑

σ∈Ik,q∈Mσ
n,s

ϕσ
q (t, x) ∂yφ

σ
|q| (0) e

sign(σ)2iπ lkx
α = 0 on I × ∂Ω.

3.4.2 Generalization of the wave equation

We onsider the wave equation with a damping term, a onvetion term and a potential

term with homogeneous Dirihlet boundary onditions,

ρε∂ttu
ε − ∂x (a

ε∂xu
ε) + γε∂tu

ε + ζε∂xu
ε + ξεuε = f ε

in I × Ω,
uε (t = 0, x) = uε0 and ∂tu

ε (t = 0, x) = vε0 in Ω,
uε = 0 on I × ∂Ω.

(3.122)

Here three funtions (γε, ζε, ξε) are assumed to obey a presribed pro�le

γε := γ
(x
ε

)
, ζε (x) := ζ

(x
ε

)
and ξε := ξ

(x
ε

)

where γ, ζ and ξ are Y−periodi and bounded in L∞ (R). The equation (3.122) is also

taken in the weak sense,

∫

I×Ω

ρε∂ttu
ε · wε + aε∂xu

ε · ∂xwε + ∂tu
ε · wε + ∂xu

ε · wε + uε · wεdtdx (3.123)

=

∫

I×Ω

f ε · wεdtdx

with uε (t = 0, x) = uε0 and ∂tu
ε (t = 0, x) = vε0 in Ω,

for all the admissible test funtions

wε ∈ L2
(
I;H1

0 (Ω)
)
. (3.124)

From the assumption (3.10), the uniform bounds (3.11) an be derived.

Statement of the models

The proess of homogenization is also similar to the ase in Setion 3.2. The HF-

mirosopi equation is unhanged while the LF-homogenized equation and the HF-

marosopi equations inlude other terms related to the �rst and zero order terms.

After extration of a subsequene, similarly to (3.21), we introdue

hkn = lim
ε→0

∫

Y

Sε
ku

ε
0·γφk

|n|dy ∈ L2 (Ω) . (3.125)
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Moreover, we de�ne the oe�ients

γ̂ =

∫

Y

γdy, ζ̂ =

∫

Y

ζ (1 + ∂yθ) dy and ξ̂ =

∫

Y

ξdy, (3.126)

and

d (k, n,m) = −
(
−sign (n) 2iπ

(
αk
n

)−1
∫

Y

γφk
|n| · φk

|m|dy +

∫

Y

φk
|n| · ∂y

(
ζφk

|m|

)
dy

)
.

(3.127)

Thus, the LF-homogenized equation states

ρ̂∂ttu
0 − ∂x

(
â∂xu

0
)
+ γ̂∂tu

0 + ζ̂∂xu
0 + ξ̂u0 = f̂ 0

in I × Ω, (3.128)

u0 (t = 0) = ĥ0 and ∂tu
0 = ĝ0 in Ω,

u0 = 0 on I × ∂Ω,

where â, ρ̂, f̂ 0
, ĥ0 and ĝ0 are de�ned in (3.22) and (3.20) in Setion 3.2.2.

Before to state the HF-marosopi model, we remarking that it is stated under

the assumptions (3.26) and (3.31). For eah k ∈ Y ∗
, σ ∈ Ik, s ∈ {+,−} and q ∈Mσ

n,s,

the marosopi system is stated by,

∑

p∈Mσ
n,s

(
b (σ, p, q) ∂tu

σ
p + c (σ, p, q) ∂xu

σ
p + d (σ, p, q)uσp

)
= F σ

q in I × Ω, (3.129)

∑

p∈Mσ
n,s

b (σ, p, q)uσp (t = 0) = gσq + hσq in Ω,

with the boundary onditions as in (3.29), (3.34), and (3.35) in Setion 3.3.

Homogenization results and their proofs

We only state the LF-homogenized equation and HF-marosopi equation sine the

others parts of the model remain unhanged. We observe that the HF-mirosopi

equation relies to the seond order part only, thus it is unhanged in this ase, see also

Remark 39 after the proof of Lemma 38 regarding its derivation.

Lemma 38 For k ∈ Y ∗, n ∈Mk
and any bounded data as in (3.10), let uε be solution

of the wave equation (3.123) satisfying the uniform bound (3.11) and the assumption

(3.12). Then,

u0,kn =χ0 (k) u
0
in L2 (I × Ω) weakly,

where u0 is the unique solution of the LF - homogenized equation (3.128).

Proof. [Proof of Lemma 38℄ For any k ∈ Y ∗
and for eah n ∈Mk

, the test funtions

wε
of the weak formulation (3.123) are hosen as in (3.61, 3.59, 3.60) in Subsetion

3.3.2. Applying two integrations by parts and the boundary onditions satis�ed by uε

and by B
k
nw, it remains,

∫

I×Ω

uε·
(
ρε∂ttB

k
nw − ∂x

(
aε∂xB

k
nw
)
− γε∂tB

k
nw − uε · ∂x

(
ζεBk

nw
)
+ ξεBk

nw
)
dtdx

+

∫

Ω

−vε0·ρε
(
B

k
nw
)
(t = 0) + uε0 · ρε∂t

(
B

k
nw
)
(t = 0)

−uε0 · γεBk
nw (t = 0) dx =

∫

I×Ω

f ε ·Bk
nwdtdx.
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Using the deomposition (1.23) of the two-sale operators with remarking that

(
B

k
nw
)
(t = 0) =(

R
kw
)
(t = 0) ,

∫

I×Ω

uε· Bk
n

(
2∑

l=0

((
εαk

n

)−l
Qlw + ε−lP lw

))
− f ε ·Bk

nw dtdx (3.130)

−
∫

I×Ω

uε ·Bk
n

(
γ∂tw +

1

εαk
n

γ∂τw + ζ∂xw +
1

ε
∂y (ζw)− ξw

)
dtdx

+

∫

Ω

(
uε0· Rkρ

(
∂tw +

1

εαk
n

∂τw

)
− vε0 ·Rkρw − uε0 ·Rkγw

)
(t = 0, τ = 0) dtdx = 0.

Moreover, from (1.4), (3.59) and ∂τw0 = ∂yw0 = 0 so

∫

I×Ω

[uε ·Bk
n[ρ

(
∂ttw0+

2

αk
n

∂tτw1 +
1

ε (αk
n)

2∂ττw1

)
− ∂x (a∂xw0) (3.131)

−∂x (a∂yw1)−
1

ε
∂y (a∂xw0)− ∂y (a∂xw1)−

1

ε
∂y (a∂yw1)]− f ε ·Bk

nw0] dtdx

−
∫

I×Ω

uε ·Bk
n

(
γ∂tw0 +

1

αk
n

γ∂τw1 + ζ∂xw0 +
1

ε
∂y (ζw0) + ∂y (ζw1)− ξw0

)
dtdx

+

∫

Ω

(
uε0·Rkρ

(
∂tw0 +

1

αk
n

∂τw1

)
− vε0 ·Rkρw0 − uε0 ·Rkγw0

)
(t = 0, τ = 0) dtdx = 0.

Multiplying by ε, then using the assumption (3.12), Equation (3.131) yields,

∫

I×Λ×Ω×Y

u0,kn ·[ ρ

(αk
n)

2∂ττw1 − ∂y (a∂xw0)− ∂y (a∂yw1)− ∂y (ζw0)] dtdτdxdy = O (ε) .

(3.132)

Passing to the limit and observing that

∫

Λ×Y

u0,kn ·
(
ρ

(
1

(αk
n)

2∂ττw1

)
− ∂y (a∂xw0)− ∂y (ζw0)

)
dτdy = 0,

so, Equation (3.132) is equivalent to (3.67) in the proof i) of Lemma 34,

∫

I×Λ×Ω×Y

u0,kn ·∂y (a∂yw1) dtdτdxdy = 0.

Thus, we also obtain u0,kn = 0 in I × Ω if k 6= 0 and u0,kn = χ0 (k)u
0.

In order to �nd the LF-homogenized equation, we also onsider k = 0 and n = 0
as in Setion 3.3. We restart with the weak formulation (3.123) by hoosing the test

funtions as in (3.70, 3.68, 3.69) in the proof ii) of Lemma 34. So the very weak

formulation (3.131) is equivalent to,

∫

I×Ω

[uε ·R0[ρ∂ttw0 − ∂x (a∂xw0)− ∂x (a∂yw1,0) (3.133)

−1

ε
∂y (a∂xw0)− ∂y (a∂xw1,0)−

1

ε
∂y (a∂yw1,0)]− f ε ·R0w0] dtdx

−
∫

I×Ω

uε ·R0

(
γ∂tw0 + ζ∂xw0 +

1

ε
∂y (ζw0) + ∂y (ζw1,0)− ξw0

)
dtdx

+

∫

Ω

(
uε0·R0ρ∂tw0 − vε0 ·R0ρw0 − uε0 ·R0γw0

)
(t = 0) dx = 0.
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Choosing w0 = 0 and multiplying by ε,
∫

I×Ω

uε ·R0 (−ε∂x (a∂yw1,0)− ε∂y (a∂xw1,0)− ∂y (a∂yw1,0)− ε∂y (ζw1,0)) dtdx = 0.

Using (3.54) the (0, 0)-mode two-sale approximation of uε and observing that

∫

Y

u0· (ε∂y (a∂xw1,0)− ∂y (a∂yw1,0)− ε∂yw1,0) dy = 0,

the equation remains,

∫

I×Ω×Y

−εu0 · ∂x (a∂yw1,0)− εu1,00 ·∂y (a∂yw1,0) dtdxdy = εO (ε) .

Dividing by ε and passing to the limit, the equation beomes (3.72) in the proof ii) of

Lemma 34,

∫

I×Ω×Y

u0 · ∂x (a∂yw1,0) + u1,00 · ∂y (a∂yw1,0) dtdxdy = 0.

Therefore, the equation (3.73) is obtained in this ase also.

Furthermore, by hoosing w1,0 = 0 and multiplying by ε, Equation (3.133) beomes

∫

I×Ω

[uε ·R0[ερ∂ttw0 − ε∂x (a∂xw0)− ∂y (a∂xw0)]− εf ε ·R0w0] dtdx

−ε
∫

I×Ω

uε ·R0 (γ∂tw0 + ζ∂xw0 + ∂y (ζw0)− ξw0) dtdx

+ε

∫

Ω

(
uε0·R0ρ∂tw0 − vε0 ·R0ρw0 − uε0 ·R0γw0

)
(t = 0) dx = 0.

Aording to (3.54), the data (3.19) and remarking that

∫

Y

u0 · (∂y (a∂xw0) + ∂y (ζw0)) dy = 0,

so,

∫

I×Ω×Y

[εu0· (ρ∂ttw0 − ∂x (a∂xw0))− εu1,00 · (∂y (a∂xw0) + ∂y (ζw0))

−εf 0 · w0dtdxdy]−
∫

I×Ω×Y

εu0 · (γ∂tw0 + ζ∂xw0 − ξw0) dtdxdy

+ε

∫

Ω×Y

(
ĥ0·ρ∂tw0 − g0 · ρw0 − ĥ0 · γw0

)
(t = 0) dt dx = εO (ε) .

Dividing by ε and passing to the limit,

∫

I×Ω×Y

[u0· (ρ∂ttw0 − ∂x (a∂xw0))− u1,00 · (∂y (a∂xw0) + ∂y (ζw0))

−f 0 · w0dtdxdy]−
∫

I×Ω×Y

u0 · (γ∂tw0 + ζ∂xw0 − ξw0) dtdxdy

+

∫

Ω×Y

(
ĥ0·ρ∂tw0 − g0 · ρw0 − ĥ0 · γw0

)
(t = 0) dt dx = 0.
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Assuming that u0 ∈ H2 (I × Ω) and u1,00 ∈ L2 (I;H1 (Ω× Y )), taking integrations by

parts, using (3.20), w0 ∈ L2 (I;H1
0 (Ω)) and periodiity of u1,00 , it remains,

∫

I×Ω

(
ρ̂∂ttu

0 − ∂x

((∫

Y

ady

)
∂xu

0

)
− ∂x

(∫

Y

a∂yu
1,0
0 dy

)
− f̂ 0

)
· w0dtdx (3.134)

+

∫

I×Ω

(
γ̂∂tu

0 +

(∫

Y

ζdy

)
∂xu

0 +

∫

Y

ζ∂yu
1,0
0 dy + ξ̂u0

)
· w0dtdx

−
∫

I

[(∫

Y

ady

)
u0 · ∂xw0

]x=α

x=0

dt+

∫

Ω

[
ρ̂
(
−u0 · ∂tw0 (t = 0) + ∂tu

0 · w0 (t = 0)
)

+γ̂u0 · w0]dx+

∫

Ω

(
ρ̂ĥ0·∂tw0 − ρ̂ĝ0 · w0 − γ̂ĥ0 · w0

)
(t = 0) dx = 0.

Aording to the proof iii) of Lemma 34,

∂x

((∫

Y

ady

)
∂xu

0

)
+∂x

(∫

Y

a∂yu
1,0
0 dy

)
= ∂x

((∫

Y

a (1+∂yθ) · (1+∂yθ) dy
)
∂xu

0

)
,

and (∫

Y

ζdy

)
∂xu

0 +

∫

Y

ζ∂yu
1,0
0 dy =

∫

Y

(ζ + ζ∂yθ) dy∂xu
0 = ζ̂∂xu

0.

Therefore, (3.134) is equivalent to,

∫

I×Ω

(
ρ̂∂ttu

0 − ∂x
(
â∂xu

0
)
− f̂ 0

)
· w0 +

(
γ̂∂tu

0 + ζ̂∂xu
0 + ξ̂u0

)
· w0dtdx (3.135)

−
∫

I

[
âu0 · ∂xw0

]x=α

x=0
dt+

∫

Ω

−u0 · (ρ̂∂tw0 − γ̂w0) (t = 0) + ρ̂∂tu
0 · w0 (t = 0) dx

+

∫

Ω

ĥ0· (ρ̂∂tw0 − γ̂w0) (t = 0)− ρ̂ĝ0 · w0 (t = 0) dx = 0.

Choosing test funtions w0 ∈ H1
0 (I × Ω), then the strong form of the homogenized

equation is

ρ̂∂ttu
0 − ∂x

(
â∂xu

0
)
+ γ̂∂tu

0 + ζ̂∂xu
0 + ξ̂u0 = f̂ 0

in I × Ω.

So, in (3.135) it remains,

−
∫

I

[
âu0 · ∂xw0

]x=α

x=0
dt+

∫

Ω

−u0 · (ρ̂∂tw0 − γ̂w0) (t = 0) + ρ̂∂tu
0 · w0 (t = 0) dx

+

∫

Ω

ĥ0· (ρ̂∂tw0 − γ̂w0) (t = 0)− ρ̂ĝ0 · w0 (t = 0) dx = 0.

Then, the initial onditions and the boundary onditions of the LF-homogenized equa-

tion follow.

Remark 39 The derivation of the HF-mirosopi equation is done for a given k ∈ Y ∗

by restarting from the weak formulation (3.123) and by following the proof of Lemma

38. Choosing test funtions as (3.61, 3.59, 3.60) with w0 = 0 in I × Ω and w1 ∈
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L2 (C∞
c (I × Ω) ; Λ× Y ), the very weak formulation (3.131) beomes,

∫

I×Ω

uε ·Bk
n[ρ

(
2

αk
n

∂tτw1 +
1

ε (αk
n)

2∂ττw1

)
− ∂x (a∂yw1)

−∂y (a∂xw1)−
1

ε
∂y (a∂yw1)]dtdx

−
∫

I×Ω

uε ·Bk
n

(
1

αk
n

γ∂τw1 + ∂y (ζw1)

)
dtdx = O (ε) .

Multiplying by ε, observing that

ε

∫

I×Ω

uε ·Bk
n

(
1

αk
n

γ∂τw1 + ∂y (ζw1)

)
dtdτdxdy

= ε

∫

I×Λ×Ω×Y

(
χ0 (k)u

0 + εu1,kn

)
·
(

1

αk
n

γ∂τw1 + ∂y (ζw1)

)
= εO (ε) ,

the equation is reovered to (3.81) in the proof of Lemma 35. Therefore, the HF -

mirosopi equation is then the same as in Setion 3.3.1.

In order to be easier to follow the next lemma, we reall the modal deomposition

(3.80) of the HF-marosopi solution û1,kn

û1,kn (t, τ , x, y) =
∑

p∈Mk
n,int

ukp (t, x) e
sign(p)2iπ

√

λk
|p|

λkn
τ
φk
|p| (y) with ukp (t, x) ∈ L2 (I × Ω) .

(3.136)

Lemma 40 For eah k ∈ Y ∗
, n ∈ N∗

and any bounded data as in (3.10), let uε

be solution of the wave equation (3.123) satisfying the uniform bound (3.11) and the

assumption (3.12). For ε ∈ Ek as in Assumption 14, if uσp ∈ H1 (I × Ω) for eah

σ ∈ Ik, s ∈ {+,−} and q ∈Mσ
n,s with (3.26) and (3.31) satisfying, then uσp is solution

of the HF-marosopi model (3.129) inluding the boundary onditions.

Proof. [Proof of Lemma 40℄ Let k ∈ Y ∗
, n ∈ N∗

and s ∈ {−,+}, we onsider(
φσ|q|
)
q∈Mσ

n,s,σ∈Ik
the Bloh eigenmodes orresponding to the eigenvalue λkn of the Bloh

mode equation. We restart with the very weak formulation (3.130) by hoosing test

funtions as in (3.102, 3.93, 3.94, 3.103, 3.104, 3.95, 3.96, 3.98, 3.99, 3.100) in the

proof of Lemma 36. Using (ασ
n)

−2Q2wσ,ε
q +P 2wσ,ε

q = 0, multiplying by ε and applying

the deomposition (1.4), so the very weak formulation (3.130) yields,

∑

σ∈Ik,q∈Mσ
n,s

∫

I×Ω

uε ·Bσ
n[

2

αk
n

ρ∂tτw
σ,ε
q + ερ∂ttw

σ,ε
q − ∂x

(
a∂yw

σ,ε
q

)
(3.137)

−∂y
(
a∂xw

σ,ε
q

)
− ε∂x

(
a∂xw

σ,ε
q

)
]− εf ε ·Bσ

qw
σ,ε
q −

uε ·Bσ
n

(
εγ∂tw

σ,ε
q +

1

αk
n

γ∂τw
σ,ε
q + εζ∂xw

σ,ε
q + ∂y

(
ζwσ,ε

q

)
− εξwσ,ε

q

)
dtdx

+ε

∫

Ω

(
uε0 · ρε∂t

(
B

k
nw
)
− vε0 ·Rσ

(
ρwσ,ε

q

)
− uε0 ·Rσ

(
γwσ,ε

q

))
(t = 0) dx = 0.
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Thanks to (1.21) and (1.13) the relation between B
σ
n and T εασ

n∗Sε∗
σ , R

σ
and Sε∗

σ , we

observe that∫

I×Ω

f ε ·Bk
nw

σ,ε
q dtdx =

∫

I×Ω

f ε · T εασ
n∗Sε∗

σ w
σ,ε
q dtdx+O (ε) (3.138)

=

∫

I×Λ×Ω×Y

T εασ
nSε

σf
ε · wσ,ε

q dtdτdxdy +O (ε) ,

∫

Ω

vε0· Rσ
(
ρwσ,ε

q

)
dx =

∫

Ω

vε0·Sε∗
σ

(
ρwσ,ε

q

)
dx+O (ε) (3.139)

=

∫

Ω×Y

Sε
σv

ε
0·ρwσ,ε

q dxdy +O (ε)

=

∫

Ω×Y

Sε
σv

ε
0·ρφσ

|q|ϕ
σ,ε
q (t = 0) dxdy +O (ε) ,

∫

Ω

uε0 · ∂tBσ
q

(
ρwσ,ε

q

)
(t = 0) dx

= −sign (q) i√
λkn

∫

Ω×Y

∂xS
ε
σu

ε
0·
(
a∂yφ

σ
|q| + ∂y

(
aφσ

|q|
))
ϕσ,ε
q (t = 0) dxdy +O (ε) ,

and ∫

Ω

uε0· Rσ
(
γwσ,ε

q

)
dx =

∫

Ω

uε0·Sε∗
σ

(
γwσ,ε

q

)
dx+O (ε) (3.140)

=

∫

Ω×Y

Sε
σu

ε
0·γwσ,ε

q dxdy +O (ε)

=

∫

Ω×Y

Sε
σu

ε
0·γφσ

|q|ϕ
σ,ε
q (t = 0) dxdy +O (ε) .

Using the assumption (3.12), the deompositions (3.138)-(3.140), (3.77) and (3.78),

and remarking that u0,σn = χ0 (σ)u
0
, Equation (3.137) is rewritten by

∑

σ∈Ik,q∈Mσ
n,s

∫

I×Λ×Ω×Y

(
χ0 (σ)u

0 + εχ0 (σ) u
1,0
0 + εû1,σn

)
·[ 2
αk
n

ρ∂tτw
σ,ε
q

+ερ∂ttw
σ,ε
q − ∂x

(
a∂yw

σ,ε
q

)
− ∂y

(
a∂xw

σ,ε
q

)
− ε∂x

(
a∂xw

σ,ε
q

)
]

−εT εασ
nSε

σf
ε · wσ,ε

q −
(
χ0 (σ) u

0 + εχ0 (σ)u
1,0
0 + εû1,σn

)
· [εγ∂twσ,ε

q

+
1

αk
n

γ∂τw
σ,ε
q + εζ∂xw

σ,ε
q + ∂y

(
ζwσ,ε

q

)
− εξwσ,ε

q ]dtdτdxdy

−ε
∫

Ω

[
sign (q) i√

λkn

∂xS
ε
σu

ε
0·
(
a∂yφ

σ
|q| + ∂y

(
aφσ

|q|
))
ϕσ,ε
q (t = 0)

+
(
Sε
σv

ε
0·ρφσ

|q|ϕ
σ,ε
q + Sε

σu
ε
0·γφσ

|q|ϕ
σ,ε
q

)
(t = 0) dxdy = 0.

Moreover, sine

∫
Λ
wσ,ε

q dτ = 0,
∫
Λ
∂τw

σ,ε
q dτ = 0, wσ,ε

q is periodi in τ , u0 and u1,00 are

independent on τ , so
∫

Λ

χ0 (σ)
(
u0 + εu1,00

)
· ( 2

αk
n

ρ∂tτw
σ,ε
q + ερ∂ttw

σ,ε
q − ∂x

(
a∂yw

σ,ε
q

)
− ∂y

(
a∂xw

σ,ε
q

)

−ε∂x
(
a∂xw

σ,ε
q

)
+ ε∂tw

σ,ε
q +

1

αk
n

∂τw
σ,ε
q + ε∂xw

σ,ε
q + ∂yw

σ,ε
q − εwσ,ε

q )dτ = 0.
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Moreover, aording to (3.98), (3.21) and (3.125)

lim
ε→0

∫

I×Λ×Ω×Y

T εασ
nSε

σf
ε · wσ,ε

q dtdτdxdy =

∫

I×Ω

F σ
q · ϕσ

q dtdx,

lim
ε→0

∫

Ω×Y

sign (q) i√
λkn

∂xS
ε
σu

ε
0·
(
a∂yφ

σ
|q| + ∂y

(
aφσ

|q|
))
ϕσ,ε
q (t = 0)

+Sε
σv

ε
0·ρφσ

|q|ϕ
σ,ε
q + Sε

σu
ε
0·γφσ

|q|ϕ
σ,ε
q (t = 0, τ = 0) dxdy =

∫

Ω

(
gσq + hσq

)
· ϕσ

q (t = 0) dx.

Dividing by ε and passing to the limit, the equation (3.137) reads,

∑

σ∈Ik,q∈Mσ
n,s

∫

I×Λ×Ω×Y

û1,σn ·[ 2
αk
n

ρ∂tτw
σ
q − ∂x

(
a∂yw

σ
q

)
− ∂y

(
a∂xw

σ
q

)
] dtdτdxdy

−
∫

I×Ω

F σ
q · ϕσ

q dtdx−
∫

I×Λ×Ω×Y

û1,σn ·
(

1

αk
n

γ∂τw
σ
q + ∂y

(
ζwσ

q

))
dtdτdxdy

−
∫

Ω

(
gσq + hσq

)
· ϕσ

q (t = 0) dx = 0.

From the deomposition (3.136) of û1,σn and (3.111),

∑

σ∈Ik,p∈Mσ
n,s,q∈Mσ

n,s

∫

I×Ω

[
−sign (q) 4iπ

(
ασ
q

)−1
(∫

Y

ρφσ
|p|φ

σ
|q|dy

)
uσp ·∂tϕσ

q

−
(∫

Y

φσ
p

(
a∂yφ

σ
|q| + ∂y

(
aφσ

|q|

))
dy

)
uσp · ∂xϕσ

q

−
(
−sign (q) 2iπ

(
ασ
q

)−1
∫

Y

γφσ
|p|φ

σ
|q|dy +

∫

Y

φσ
|p|∂y

(
ζφσ

|q|

)
dy

)
uσp · ϕσ

q

]
dtdx

−
∑

σ∈Ik,q∈Mσ
n,s

[∫

Ω

(
gσq + hσq

)
· ϕσ

q (t = 0) dx+

∫

I×Ω

F σ
q · ϕσ

q dtdx

]
= 0.

From (3.112) and (3.127), so

∑

σ∈Ik,p∈Mσ
n,s,q∈Mσ

n,s

∫

I×Ω

−b (σ, p, q)uσp ·∂tϕσ
q − c (σ, p, q)uσp · ∂xϕσ

q + d (σ, p, q)uσp · ϕσ
q dtdx

−
∑

σ∈Ik,q∈Mσ
n,s

[∫

Ω

(
gσq + hσq

)
· ϕσ

q (t = 0) dx+

∫

I×Ω

F σ
q · ϕσ

q dtdx

]
= 0.

Assuming that uσp ∈ H1 (I × Ω) and taking integrations by parts,

∑

σ∈Ik,p∈Mσ
n,s,q∈Mσ

n,s

[∫

I×Ω

b (σ, p, q) ∂tu
σ
p ·ϕσ

q + c (σ, p, q) ∂xu
σ
p · ϕσ

q

+d (σ, p, q)uσp · ϕσ
q dtdx+

∫

Ω

b (σ, p, q)uσp ·ϕσ
q (t = 0) dx −

∫

I

[
c (σ, p, q)uσp · ϕσ

q

]x=α

x=0
dtdx

]

−
∑

σ∈Ik,q∈Mσ
n,s

[∫

Ω

(
gσq + hσq

)
· ϕσ

q (t = 0) dx+

∫

I×Ω

F σ
q · ϕσ

q dtdx

]
= 0.

80



3.5. Homogenization based on a �rst order formulation

For eah σ ∈ Ik and q ∈ Mσ
n,s, by hoosing test funtions ϕσ

q ∈ H1
0 (I × Ω) the strong

form omes

∑

p∈Mσ
n,s

b (σ, p, q) ∂tu
σ
p + c (σ, p, q) ∂xu

σ
p + d (σ, p, q)uσp = F σ

q in I × Ω.

It remains,

∑

σ∈Ik,q∈Mσ
n,s



∫

Ω


 ∑

p∈Mσ
n,s

b (σ, p, q)uσp − gσq − hσq


 ·ϕσ

q (t = 0) dx (3.141)

−
∫

I

∑

p∈Mσ
n,s

[
c (σ, p, q)uσp · ϕσ

q

]x=α

x=0
dt


 = 0.

Therefore, the initial ondition is dedued,

∑

p∈Mσ
n,s

b (σ, p, q)uσp (t = 0) = gσq + hσq in Ω, (3.142)

and the boundary term is,

∑

σ∈Ik,p∈Mσ
n,s,q∈Mσ

n,s

∫

I

[
c (σ, p, q)uσp · ϕσ

q

]x=α

x=0
dt = 0 for ϕσ

q satis�es (3.100). (3.143)

This formula is the same as in the proof of Lemma 36. Finally, the boundary onditions

are found exatly on the same way.

3.5 Homogenization based on a �rst order formula-

tion

In this setion, the homogenization is studied based on the �rst order formulation of

the wave equation (3.9). This result has already been published in [94℄ and is to appear

in proeeding of ENUMATH 2013.

In fat, the method introdued here is inspired from in [35℄, exept that in the

present work the two-sale transform T εαk
nSε

k and T εαk
nSε

−k are analyzed separately. In

[35℄, the homogenization is studied based on the �rst order, but the boundary ondi-

tions of the homogenized model was not found. Therefore, establishing the boundary

onditions of the homogenized model is ritial and is the goal of this setion whih

also extends [65℄.

To this end, the wave equation is written under the form of a �rst order formulation

and the modulated two-sale transform W ε
k , whih is de�ned as in [35℄, is applied to

the solution Uε
. Similarly to the homogenization based on the seond order formu-

lation, the homogenized model is also derived for a set of pairs of �bers Ik de�ned

in (1.3) whih allows to derive the expeted boundary onditions. The weak limit of∑
σ∈Ik

W ε
σU

ε
inludes low and high frequeny waves, the former being solution of the

homogenized model derived in [33℄, [60℄ and the latter are assoiated to Bloh wave

expansions. Numerial results omparing solutions of the wave equation with solution

of the two-sale model for �xed ε and k are reported in the forthoming Setion 3.6.

The alulations are less detailed than the model in Setion 3.2 only the main results

and the proof priniples are given.
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Chapter 3. Homogenization of the one-dimensional wave equation

3.5.1 Reformulation of the wave equation under the �rst order

formulation

Similar to Setion 2.4 in Chapter 2 for the ase of the spetral problem, we start by

setting,

Uε := (
√
aε∂xu

ε,
√
ρε∂tu

ε), Aε =

(
0

√
aε∂x

(
1√
ρε
.
)

1√
ρε
∂x
(√

aε.
)

0

)
,

Uε
0 := (

√
aε∂xu

ε
0,
√
ρεvε0) and F

ε := (0, f ε/
√
ρε).

We reformulate the wave equation (3.9) as an equivalent system,

(∂t −Aε)Uε = F ε
in I × Ω, Uε (t = 0) = Uε

0 in Ω and Uε
2 = 0 on I × ∂Ω,

where Uε
2 is the seond omponent of Uε

. From now on, this system will be referred

to as the physial problem and taken in the distributional sense,

∫

I×Ω

F ε ·Ψ + Uε · (∂t − Aε) Ψdtdx+

∫

Ω

Uε
0 ·Ψ (t = 0) dx = 0, (3.144)

for all the admissible test funtions Ψ ∈ H1(I × Ω)2 suh that Ψ (t, .) ∈ D (Aε) for a.e.
t ∈ I where the domain

D(Aε) := {(ϕ, φ) ∈ L2 (Ω)
2|
√
aεϕ ∈ H1 (Ω) , φ/ρ ∈ H1

0 (Ω)}.

As proved in [35℄, the operator iAε
with the domain D(Aε) is self-adjoint on L2(Ω)2.

Aording to the assumption (3.10), Uε
is uniformly bounded in L2 (I × Ω), see detail

of proof of Theorem 3 in [35℄.

3.5.2 Homogenized results and proofs

The Bloh wave spetral problem P(k) in (1.5) is also reformulated under the �rst

order formulation as in (2.54) in Setion 2.4 in Chapter 2. For eah k ∈ Y ∗
, n ∈ Z∗

,

we also pose

Mk
n := {m ∈ Z∗|λk|m|=λ

k
|n| and sign (m) = sign (n)}

and introdue the HF-marosopi model oe�ients

c(k, p, q) = i
sign (n)

2
√
λk|p|

∫

Y

φk
|p| · a∂yφk

|q| − a∂yφ
k
|p| · φk

|q|dy and b(k, p, q) =

∫

Y

ρφk
|p| · φk

|q|dy

for any p, q ∈ Mk
n . For any k ∈ Y ∗

, we introdue the operator W ε
k : L2 (I × Ω)2 →

L2 (I × Λ× Ω× Y )2 ating in all time and spae variables,

W ε
k := χ0 (k)

(
1−

∑

n∈Z∗

Π0
n

)
Sε
0 +

∑

σ∈Ik,n∈Z∗

T εασ
|n|Π

σ

nS
ε
σ (3.145)

where ασ
|n|, the time and spae two-sale transforms T εασ

|n|
and Sε

σ are de�ned in (1.7)

and (1.15), the one-dimensional L2−orthogonal projetor Πσ
n onto eσn are de�ned in

[35℄. Thanks to the boundness of T εαk
|n|

and Sε
k, it is proved that,

‖W ε
ku‖2L2(I×Λ×Ω×Y ) = ‖u‖2L2(I×Ω) . (3.146)
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3.5. Homogenization based on a �rst order formulation

For a funtion v (t, τ , x, y) de�ned in I × Λ× Ω× Y, we observe that

Aε
B

k
nv = B

k
n

((
Ak

ε
+B

)
v

)
and ∂t

(
B

k
nv
)
= B

k
n

((
∂τ
εαk

|n|
+ ∂t

)
v

)
, (3.147)

where the operators Ak and B are de�ned in (2.52) and (2.57).

After extration of a subsequene, we introdue the weak limits of the relevant

projetions along ekn for any n ∈ Z∗
,

F k
n := lim

ε→0

∫

Λ×Y

T εαk
|n|Sε

kF
ε · esign(n)2iπτekndydτ and Uk

0,n := lim
ε→0

∫

Y

Sε
kU

ε
0 · ekndy.

(3.148)

The low frequeny part U0
H relates to the weak limit in L2 (I × Ω× Y )2 of the kernel

part of Sε
k in 3.145. It has been treated ompletely, in [33, 35℄. Here, we fous on

the non-kernel part of Sε
k, it relates to the high frequeny waves and mirosopi and

marosopi sales. In order to obtain the solution of the model, we analyze the

asymptoti behaviour of eah mode through T εαk
|n|Sε

k as in Lemma 42 and Lemma 43

stated below. Then the full solution is the sum of all modes. The main Theorem states

as follows.

Theorem 41 For a given k ∈ Y ∗
, let Uε

be a solution of (3.144) bounded in L2 (I × Ω),
for ε ∈ Ek, as in (1.39, 1.40), the limit Gk of any weakly onverging extrated subse-

quene of

∑
σ∈Ik

W ε
σU

ε
in L2 (I × Λ× Ω× Y )2 an be deomposed as

Gk (t, τ , x, y) = χ0 (k)U
0
H (t, x, y) +

∑

σ∈Ik,n∈Z∗

uσn (t, x) e
sign(n)2iπτeσn (y) (3.149)

where (uσn)n,σ are solutions of the HF-marosopi equation (3.153)-(3.155) stated in

Lemma 43.

Thus, it follows from (3.149) that the physial solution Uε
is approximated by

two-sale modes

Uε (t, x) ≃ χ0 (k)U
0
H

(
t, x,

x

ε

)
+

∑

σ∈Ik,n∈Z∗

uσn (t, x) e
sign(n)i

√
λσ
|n|t/εeσn

(x
ε

)
. (3.150)

Proof. [Proof of Theorem 41℄ For a given k ∈ Y ∗
, let Uε

be solution of (3.144) whih is

bounded in L2(I×Ω), the property (3.146) yields the boundness of ‖W ε
σU

ε‖L2(I×Λ×Ω×Y )

for σ ∈ Ik. So there exists Gk ∈ L2 (I × Λ× Ω× Y )2 suh that, up to the extration

of a subsequene,

∑
σ∈Ik

W ε
σU

ε
tends weakly to

Gk = χ0 (k)U
0
H +

∑

σ∈Ik,n∈Z∗

Uσ
n in L2 (I × Λ× Ω× Y )2 .

The high frequeny part is based on the below deomposition (3.152) and Lemma 43.

The next lemmas state the HF-mirosopi equation for eah mode and the orre-

sponding HF-marosopi equation.
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Chapter 3. Homogenization of the one-dimensional wave equation

Lemma 42 For k ∈ Y ∗
and n ∈ Z∗

, let Uε
be a bounded solution of (3.144), there

exists at least a subsequene of T εαk
|n|Sε

kU
ε
onverging weakly towards a limit Uk

n in

L2(I×Λ×Ω×Y )2 when ε tends to zero. Then Uk
n is a solution of the weak formulation

of the HF-mirosopi equation

(
∂τ
αk
|n|
−Ak

)
Uk
n = 0 in I × Λ× Ω× Y (3.151)

and is periodi in τ and k−quasi-periodi in y. Moreover, it an be deomposed as

Uk
n (t, τ , x, y) =

∑

p∈Mk
n

ukp (t, x) e
sign(p)2iπτekp (y) with ukp ∈ L2 (I × Ω) . (3.152)

Proof. [Proof of Lemma 42℄ The test funtions of the weak formulation (3.144) are

hosen as Ψε = B
k
nΨ (t, x) for k ∈ Y ∗

, n ∈ Z∗
where Ψ ∈ C∞ (I × Λ×Ω× Y )2 is peri-

odi in τ and k−quasi-periodi in y. From (3.147) multiplied by ε, sine

(
∂τ
αk
|n|

− Ak

)
Ψ

is periodi in τ and k−quasi-periodi in y and T εαk
|n|Sε

kU
ε → U

k

n in L2 (I × Λ× Ω× Y )2

weakly, Lemma 8 allows to pass to the limit in the weak formulation,

∫

I×Λ×Ω×Y

Uk
n ·
(
∂τ
αk
|n|
−Ak

)
Ψdtdτdxdy = 0.

Using the assumption Uk
n ∈ D (Ak)∩L2 (I × Ω× Y ;H1 (Λ)) and applying an integra-

tion by parts,

∫

I×Λ×Ω×Y

(
− ∂τ
αk
|n|

+ Ak

)
Uk
n ·Ψdtdτdxdy+

∫

I×∂Λ×Ω×Y

Uk
n ·Ψdtdτdxdy

−
∫

I×Λ×Ω×∂Y

Uk
n · nAk

Ψdtdτdxdy = 0.

Then, hoosing Ψ ∈ L2 (I × Ω;H1
0 (Λ× Y )) omes the strong form (3.151). Sine the

produt of a periodi funtion by a k−quasi-periodi funtion is k−quasi-periodi then

nAk
Ψ is k−quasi-periodi in y. Therefore, Uk

n is periodi in τ and k−quasi-periodi in

y. Moreover, (3.152) is obtained, by projetion.

Lemma 43 For k ∈ Y ∗
, n ∈ Z∗

and ε ∈ Ek as in Assumption 14, let Uε
be a bounded

solution of (3.144) suh that the weak limit Uσ
n of T εασ

|n|Sε
kU

ε
satis�es (3.152). For

eah σ ∈ Ik and q ∈Mσ
n , if u

σ
p ∈ H1 (I × Ω) then uσp is solution of the HF-marosopi

equation stated by

∑
p∈Mσ

n

b (σ, p, q)∂tu
σ
p −

∑
p∈Mσ

n

c (σ, p, q)∂xu
σ
p = F σ

q in I × Ω,
∑

p∈Mσ
n

b (σ, p, q)uσp (t = 0) = Uσ
0,q in Ω,

(3.153)

with the boundary onditions in the ase of k 6= −1
2
where there exist p ∈Mk

n suh that

c (k, p, q) 6= 0 and φk
|p|(0) 6= 0

∑

σ∈Ik,p∈Mσ
n

uσpφ
σ
|p| (0) e

sign(σ)2iπ lkx
α = 0 on I × ∂Ω (3.154)
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3.5. Homogenization based on a �rst order formulation

and in the ase of k = −1
2
where Mk

n = {n, n′}
(
c (k, n, n)φk

|n′| (0)− c (k, n′, n)φk
|n| (0)

)
ukn (3.155)

+
(
c (k, n, n′)φk

|n′| (0)− c (k, n′, n′)φk
|n| (0)

)
ukn′ = 0 on I × ∂Ω.

Proof. [Proof of Lemma 43℄ For k ∈ Y ∗
, let

(
λσ|p|, e

σ
p

)
p∈Mσ

n ,σ∈Ik be the Bloh eigen-

modes of the spetral equation Q (σ) orresponding to the eigenvalue λk|n|. We pose

Ψε (t, x) =
∑

σ∈Ik
B

σ
nΨ

σ
ε ∈ H1 (I × Ω)2

as a test funtion in the weak formulation (3.144) with eah

Ψσ
ε (t, τ , x, y) =

∑

q∈Mk
n

ϕσ,ε
q (t, x) esign(q)2iπτeσq (y)

where ϕσ,ε
q ∈ H1 (I × Ω) and satis�es the boundary onditions

∑

σ∈Ik,q∈Mσ
n

esign(q)2iπt/(εα
σ
|q|

)ϕσ,ε
q (t, x)φσ

|q|

(x
ε

)
= O (ε) on I × ∂Ω.

Note that this ondition is related to the seond omponent of Ψε
only. Sine ασ

|q| = αk
|n|

and sign (q) = sign(n) for all q ∈ Mσ
n and σ ∈ Ik, so e

sign(q)2iπt/(εασ
|q|

) 6= 0 an be

eliminated. Extrating a subsequene ε ∈ Ek, using the σ−quasi-periodiity of φσ|q|
and (1.39,1.40), ϕσ,ε

q onverges strongly to some ϕσ
q in H1 (I × Ω) as in Lemma 37,

then the boundary onditions are

∑

σ∈Ik,q∈Mσ
n

ϕσ
q (t, x)φ

σ
|q| (0) e

sign(σ)2iπ lkx
α = 0 on I × ∂Ω. (3.156)

Applying (3.147) and sine

(
∂τ
ασ
|n|

− Aσ

)
Ψσ = 0 for any σ ∈ Ik, then in the weak

formulation it remains,

∑

σ∈Ik

∫

I×Ω

F ε ·Bσ
nΨ

σ
ε + Uε ·Bσ

n(∂t − B)Ψσ
εdtdx−

∫

Ω

Uε
0 ·Bσ

nΨ
σ
ε (t = 0) dx = 0.

Sine (∂t − B)Ψσ
ε is σ−quasi-periodi, so passing to the limit thanks to Lemma 8,

after using (3.148) and replaing the deomposition of Uσ
n ,

∑

σ∈Ik,{p,q}∈Mσ
n

(∫

I×Ω

b (σ, p, q)uσp · ∂tϕσ
q − c (σ, p, q)uσp · ∂xϕσ

q − F σ
q · ϕσ

q dtdx

−
∫

Ω

Uσ
0,q·ϕσ

q (t = 0) dx

)
= 0 for all ϕσ

q ∈H1 (I × Ω) ful�lling (3.156).

Moreover, if uσq∈H1 (I × Ω) then it satis�es the strong form of the internal equations

(3.27) for eah σ ∈ Ik, q ∈Mσ
n and the boundary onditions

∑

σ,p,q

c (σ, p, q)uσpϕ
σ
q = 0 on I × ∂Ω for ϕσ

q satis�es (3.156). (3.157)
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In order to �nd the boundary onditions of

(
uσp
)
σ,p
, we distinguish between the three

ases k 6= 0, k = 0 and k = −1
2
.

First, for k 6= 0, λk|n| is simple so Mk
n = {n}. Introduing C = diag (c (σ, n, n))σ,

B = diag (b (σ, n, n))σ, U = (uσn)σ, F = (F σ
n )σ, U0 =

(
Uσ
0,n

)
σ
, Ψ = (ϕσ

n)σ, Φ =(
φσ|n| (0) e

sign(σ)2iπlkx/α
)
σ
, Equation (3.27) states under matrix form

B∂tU + C∂xU = F in I × Ω and BU (t = 0) = U0 in Ω, (3.158)

whih boundary ondition (3.157) is rewritten as

CU (t, x) .Ψ(t, x) = 0 on I × ∂Ω for all Ψ suh that Φ(x).Ψ(t, x) = 0 on I × ∂Ω.

Equivalently, CU (t, x) is ollinear with Φ(x) yielding the boundary ondition

uknφ
k
|n| (0) e

2iπ lkx
α +u−k

n φ−k
|n| (0) e

−2iπ lkx
α = 0 on I × ∂Ω

after remarking that c (k, n, n) 6= 0 and c (k, n, n) = −c (−k, n, n).
Seond, for k = 0, λ0|n| is double λ0|n| = λ0|m| so Mk

n = {n,m}. With C =

(c (0, p, q))p,q, B = (b (0, p, q))p,q, U =
(
u0p
)
p
, F =

(
F 0
q

)
q
, U0 =

(
U0
0,q

)
q
, Ψ =

(
ϕ0
q

)
q
,

Φ =
(
φ0
|q| (0)

)
q
, the matrix form is still stated as (3.158). Here, the eigenvetors are

hosen as real funtions then c (0, p, p) = 0. Sine c (0, n,m) 6= 0, so the boundary

ondition is

u0nφ
0
|n| (0)+u

0
mφ

0
|m| (0) = 0 on I × ∂Ω.

Finally, for k = −1
2
, λk|n| is double λ

k
|n| = λk|m| so M

k
n = {n,m}. By using the same

way for k = 0, the boundary ondition (3.155) is obtained.

Remark 44 This method allows to omplete the homogenized model of the wave equa-

tion in [35℄ for the one-dimensional ase for any K ∈ N∗
by hoosing a sequene

ε ∈ E1/K as in Assumption 14. For any k ∈ L∗
K , de�ned in (1.2), we denote

pk = kK ∈ N, so

αpk
εK

= pk
[

α
εK

]
+ pkl

1
ε and pkl

1
ε → lk := pkl

1
when ε → 0 with

the same sequene of ε ∈ E1/K .

3.6 Numerial examples

We report simulations regarding omparison of physial solution and its approximation

for the homogenized model under the �rst order formulation for I = (0, 1) , Ω = (0, 1),
ρ = 1, a = 1

3
(sin (2πy) + 2), f ε = 0, vε0 = 0, ε = 1

10
and k = 0.16. Sine k 6= 0, so the

approximation (3.150) omes

Uε (t, x) ≃
∑

σ∈Ik,n∈Z∗

uσn (t, x) e
isign(n)

√
λσ
|n|t/εeσn

(x
ε

)
. (3.159)

The validation of the approximation is based on the modal deomposition of any

solution Uε =
∑
l∈Z∗

Rε
l (t) V

ε
l (x) where the modes V ε

l are built from the solutions vεl

of the spetral problem ∂x (a
ε∂xv

ε
l ) = λεl v

ε
l in Ω with vεl = 0 on ∂Ω. Moreover, in

Chapter 2, two-sale approximations of modes have been derived on the form of linear
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ombinations

∑
σ∈Ik

θσn (x)φ
σ
|n|
(
x
ε

)
of Bloh modes, so the initial onditions of the physial

problem are taken on the form

uε0 (x) =
∑

n∈N∗,σ∈Ik
θσn (x)φ

σ
n

(x
ε

)
. (3.160)

Two simulations are reported, one for an initial ondition uε0 spanned by the pair

of Bloh modes orresponding to n = 2 when the other is spanned by three pairs

n ∈ {2, 3, 4}. In the �rst ase, the �rst omponent of Uε
0 approximates the �rst

omponent of a single eigenvetor V ε
l approximated by (3.159) where all oe�ients

uσn = 0 for n 6= ±2. Figure 3.1 (a) shows the initial ondition uε0, when Figure

3.1 (b) presents the real (dash line) and imaginary (dashed-dotted line) part of the

initial ondition uk0,n, and the real (dot line) and imaginary (solid line) part of the

initial ondition u−k
0,n of HF-marosopi equation. Figure 3.2 (a, b) report the HF-

marosopi solutions

(
ukn, u

−k
n

)
at t = 0.466 and x = 0.699 respetively for the real

(dash line) and imaginary (dashed-dotted line) part of ukn, and the real (dot line)

and imaginary (solid line) part of u−k
n . In Figure 3.3 (a, b) the �rst omponent Uε

1 of

physial solution and the relative error vetor of Uε
1 with its approximation are plotted

whih L2(I)−norm is equal to 8e-3 at x = 0.699. Moreover, Figure 3.4 (a, b) fous on
the real part of the �rst omponent Uε

1 of physial solution and the relative error vetor

of Uε
1 with its approximation whih L2(Ω)−norm is equal to 7e-3 at t = 0.466. For

the seond ase where uσn = 0 for n /∈ {±2,±3,±4}, the �rst omponent Uε
1 and the

relative error vetor of Uε
1 with its approximation at t = 0.466 whih L2(Ω)-norm is

3.8e-3 are plotted in Figure 3.5 (a, b). Finally, the �rst omponent Uε
1 and the relative

error vetor of Uε
1 with its approximation are provided in Figure 3.6 (a, b) whih the

L2(I) -relative errors at x = 0.699 on the �rst omponent is 3.5e-3.
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Figure 3.1: (a) Initial ondition uε0. (b) Initial onditions of HF-marosopi equation

uk0,n and u−k
0,n.
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Figure 3.2: (a) HF-marosopi solutions ukn and u
−k
n at t = 0.466. (b) HF-Marosopi

solutions ukn and u−k
n at x = 0.699.
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Figure 3.3: (a) Physial solution Uε
1 at x = 0.699. (b) Relative error vetor between

Uε
1 and its approximation in L2(I)-norm is 8e-3.
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Figure 3.4: (a) Physial solution Uε
1 at t = 0.466. (b) Relative error vetor between

Uε
1 and its approximation in L2(Ω)-norm is 7e-3.
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Figure 3.5: (a) Physial solution Uε
1 at t = 0.466. (b) Relative error vetor between

Uε
1 and its approximation in L2(Ω)-norm is 3.8e-3.
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Figure 3.6: (a) Physial solution Uε
1 at x = 0.699. (b) Relative error vetor between

Uε
1 and its approximation in L2(I)-norm is 3.5e-3.

89



Chapter 3. Homogenization of the one-dimensional wave equation

90



Chapter 4

Homogenization of the spetral

problem in a two dimensional strip

inluding boundary layer e�ets
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Abstrat In this hapter, we present a result for periodi homogenization of the

spetral problem in an open bounded strip Ω = (0, α)× (0, ε) ⊂ R2
. The results fous

on the high frequeny part of the spetrum and orresponding eigenvetors, whih

is addressed by a method of Bloh wave homogenization, inluding boundary layer

e�ets. The osillations are ourring at the mirosopi sale and their amplitudes

are governed by a system of �rst order boundary value problems and by a boundary

layer equation.

4.1 Introdution

This hapter is onerned with the study of periodi homogenization of the spetral

problem

−div (aε∇wε) = λερεwε

posed in an open bounded strip Ω = ω1 × (0, ε) ⊂ R2
with ω1 = (0, α) ⊂ R+

and the

boundary onditions

wε = 0 on ∂ω1 × (0, ε) and aε∇xw
ε.nx = 0 on ω1 × {0, ε} .
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An asymptoti analysis of this problem is arried out where ε > 0 is a parameter

tending to zero and the oe�ients are ε−periodi, namely aε (x) = a
(
x
ε

)
and ρε (x) =

ρ
(
x
ε

)
where a (y) and ρ (y) are Y−periodi with respet to a lattie of referene ell

Y ⊂ R2.
In this work, we searh eigenvalues λε satisfying the expansion

ε2λε = λ0 + ελ1 + εO (ε) . (4.1)

It omes that λ0 is equal to an eigenvalue λkn solution of the Bloh wave spetral

problem (1.25) for k ∈ Y ∗ = [−1
2
, 1
2
) and n ∈ N∗

.

The physial eigenvetor wε
is approximated by a sum of Bloh waves and boundary

layer terms,

wε (x) ≈
∑

σ∈{−k,k}

∑

m

uσm (x1)φ
σ
m

(x
ε

)
+ w0

b,k

(x
ε

)
+ wα

b,k

(
α− x

ε

)
if k /∈

{
0,−1

2

}

(4.2)

and wε (x) ≈
∑

m

ukm (x1)φ
k
m

(x
ε

)
+ w0

b,k

(x
ε

)
+ wα

b,k

(
α− x

ε

)
otherwise

where the sum

∑
m

runs over all modes φσ
m with the same eigenvalue λkn. The Bloh

wave amplitudes (ukm)m are solution of a �rst order system of di�erential equations

onstituting the high frequeny marosopi problem. In partiular, for k /∈
{
0,−1

2

}

and for eah n, the high frequeny marosopi model has the following form, where

σ ∈ {−k, k} and l ∈ N∗
suh that λσl = λkn,

∑

m

c (σ,m, l) ∂x1u
σ
m − λ1b (σ,m, l) uσm = 0 in ω1, (4.3)

with boundary onditions

∑

σ∈{k,−k},m
sign (σ) e0 (σ,m, l)u

σ
m (0) φ̂

σ,0

l = 0 (4.4)

and

∑

σ∈{k,−k},m
sign (σ) eα (σ,m, l)u

σ
m (α) φ̂

σ,α

l = 0.

We observe that the two partial di�erential equations in (4.3) are not oupled by k
and −k, the oupling is due to the boundary onditions only. Moreover, w0

b,k and wα
b,k

are solution to the boundary layer equation stated as

− divy

(
a∇yw

x1

b,k

)
− λ0ρwx1

b,k = 0 in R+ × (0, 1) , (4.5)

wx1
b,k = −

∑

σ∈{−k,k}

∑

m

uσm (x1)φ
σ
m in {0} × (0, 1) and a∇yw

x1
b,k.ny = 0 on R+ × {0, 1}

and wx1
b,k is exponentially deaying when y1 → ∞.

for x1 ∈ {0, α}.
This hapter is organized as follows. Setion 4.2 is devoted to the statements of

the models and of the main result. Setion 4.3 inludes the model derivation.
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4.2 Statement of the results

We onsider an open bounded domain Ω = ω1 × ω2 with ω1 = (0, α) ⊂ R+
and

ω2 = (0, ε) with ends Γend = ∂ω1×ω2 and lateral boundary Γlat = ω1× ∂ω2. As usual

in homogenization papers, ε > 0 denotes a small parameter intended to go to zero. A

2× 2 matrix aε and a real funtion ρε are assumed to obey a presribed pro�le,

aε := a
(x
ε

)
and ρε := ρ

(x
ε

)
, (4.6)

where ρ ∈ L∞ (R2) and a ∈ W 1,∞ (R2)
2×2

is symmetri. They are both Y−periodi

with respet to the referene ell Y ⊂ R2
. Moreover, they are required to satisfy the

standard uniform positivity and elliptiity onditions,

ρ0 ≤ ρ ≤ ρ1 and a0 ||ξ||2 ≤ ξTaξ ≤ a1 ||ξ||2 for all ξ ∈ R2
(4.7)

for some given stritly positive numbers ρ0, ρ1, a0 and a1. We onsider (λε, wε) solution
to the spetral problem

− divx (a
ε∇xw

ε) = λερεwε
in Ω with wε = 0 on Γend, (4.8)

aε∇xw
ε.nx = 0 on Γlat and ‖wε‖L2(Ω) =

√
ε.

We set H1
Γ (Ω) = H1

end (Ω) ∩H1
lat (Ω) where

H1
end (Ω) :=

{
v ∈ H1 (Ω) | v = 0 on Γend

}
,

and H1
lat (Ω) :=

{
v ∈ H1 (Ω) | aε∇xv.nx = 0 on Γlat

}
.

Then the eigenvetors wε
belong to H2 (Ω) ∩ H1

Γ (Ω) and we searh the eigenvalues

suh that,

ε2λε = λ0 + ελ1 + ε2λ2 + ε2O(ε). (4.9)

The weak formulation of the spetral problem (4.8) is: �nd wε ∈ H1
Γ(Ω) suh that

∫

Ω

aε∇xw
ε · ∇xv dx = λε

∫

Ω

ρεwε · v dx for all v ∈ H1
end(Ω). (4.10)

Posing v = wε,

ε−1

∫

Ω

aε |ε∇xw
ε|2 dx = ε2λε ‖ρε‖L∞(Ω) ε

−1 ‖wε‖2L2(Ω) .

Sine ε2λε is bounded, then

ε−1

∫

Ω

aε |ε∇xw
ε|2 dx ≤ ε2λε ‖ρε‖L∞(Ω) ≤ c,

so the uniform estimates

1√
ε
||ε∇xw

ε||L2(Ω) ≤ c and
1√
ε
‖wε‖L2(Ω) ≤ c (4.11)

hold.
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4.2.1 Assumptions

For k ∈ Y ∗, let wε
be a sequene satisfying the uniform bound (4.11), we onsider a

subsequene Sε
kw

ε
onverging weakly to wk

in L2 (ω1 × Y ), i.e,

Sε
kw

ε (x1, y) = wk (x1, y) +O (ε) in the L2 (ω1 × Y ) weak sense. (4.12)

Then, we pose

wε
b,k (x) := wε (x)−

∑

σ∈Ik
(Rσwσ) (x) , (4.13)

and assume that there exists at least a subsequene of Sϑ
bw

ε
b,k onverging weakly to-

wards a funtion wϑ
b,k in L2 (Y +

∞) when ε tends to zero for any ϑ ∈ {0, α}, i.e,
(
Sϑ
b w

ε
b,k

)
(y) = wϑ

b,k (y) +O (ε) in the L2
(
Y +
∞
)
weak sense. (4.14)

4.2.2 The model

For k ∈ Y ∗
, n ∈ N∗

, a given Bloh eigenvalue λ0 = λkn and ϑ ∈ {0, α}, the boundary

layer equation is stated as an Helmholtz equation

− divy
(
a∇yw

ϑ
b,k

)
− λ0ρwϑ

b,k = 0 in Y +
∞ , (4.15)

wϑ
b,k = −

∑

σ∈Ik
wσ (x1 = ϑ) on γ+∞,end and a∇yw

ϑ
b,k.ny = 0 on γ+∞,lat,

and wϑ
b,k is exponentially deaying when y1 → ∞.

Remark 45 For the moment the Helmholtz equation with an exponentially deay has

not been analyzed for time reason.

The solution wϑ
b,k is alled the boundary layer term. In the sope of this work, we

assume that this solution is unique. Hene, we an de�ne the linear operator

L : H1/2
(
γ+end

)
→ H1 (Y +

∞)
g 7→ v = L (g)

(4.16)

suh that v is the solution of (4.15) with v (0, y2) = g (y2) in Y2. We introdue

φ̂
k,0

n =

∫

Y2

φkn (0, y2) dy2 and φ̂
k,α

n = esign(k)2iπl
k

∫

Y2

φk
n (0, y2) dy2, (4.17)

and de�ne the set

Mk
n =

{
m ∈ N∗

suh that λkm = λkn
}
. (4.18)

For p, q ∈Mk
n , the HF-marosopi model oe�ients are

c(k, p, q) =

∫

Y

a∇yφ
k
q · φk

p − φkq · a∇yφ
k
p dy, b(k, p, q) =

∫

Y

ρφkp · φk
q dy, (4.19)

d (k, p, q) =

∫

Y2

a∇y

(
φk
p −L

(
φk
p (0, y2)

))
.ny · φk

q (y1 = 0) dy2, (4.20)

e0 (k, p, q) = c (k, p, q)− d (k, p, q) , eα (k, p, q) = −c (k, p, q)− d (k, p, q) ,(4.21)
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and observe that,

c (k, p, q) = c (−k, p, q), c (k, q, p) = −c (k, p, q), c (k, p, q) = −c (−k, q, p) ,

b(k, p, q) = b(k, q, p), b(k, p, q) = b(−k, p, q), b (k, p, p) > 0,

d (k, p, q) = d (−k, p, q), e0 (k, p, q) = e0 (−k, p, q) and eα (k, p, q) = eα (−k, p, q).
In partiular, for k = 0, for the real eigenvetor, c (0, p, p) = 0.

For any k ∈ Y ∗
and n ∈ N∗

, the HF-marosopi model is introdued orresponding

to a Bloh eigenvalue λ0. For k ∈ Y ∗\
{
0,−1

2

}
, the solutions of the HF-marosopi

model are the family of pairs

(
ukp, u

−k
p

)
p∈Mσ

n ,n∈N∗ solution to the system of equations

where σ ∈ Ik and q ∈Mσ
n ,

∑

p∈Mσ
n

c (σ, p, q)∂x1u
σ
p − λ1b (σ, p, q)uσp = 0 in ω1, (4.22)

with the boundary onditions

∑

σ∈Ik,p∈Mσ
n

sign (σ) e0 (σ, p, q)u
σ
p (0) φ̂

σ,0

q = 0 (4.23)

and

∑

σ∈Ik,p∈Mσ
n

sign (σ) eα (σ, p, q)u
σ
p (α) φ̂

σ,α

q = 0.

For k ∈
{
0,−1

2

}
, the family

(
ukp
)
p∈Mk

n,n∈N∗ is solution to the system of �rst order

problems where q ∈Mk
n ,

∑

p∈Mσ
n

c (k, p, q) ∂x1u
k
p − λ1b (k, p, q)ukp = 0 in ω1. (4.24)

4.2.3 Two-sale asymptoti behaviour

Theorem 46 For a given k ∈ Y ∗, let (λε, wε) be a solution of the weak formulation

(4.10) satisfying the uniform bound (4.11) then Sε
kw

ε
is bounded in L2 (ω1 × Y ). Take

a subsequene of wε
that the weak limit of Sε

kw
ε
in L2 (ω1 × Y ) is non-vanishing and

that the renormalized sequene ε2λε satis�es a deomposition as (4.9), there exists

n ∈ N∗
suh that λ0 = λkn with λkn an eigenvalue in the Bloh wave spetrum and the

limit gk of the weakly onverging extrated subsequene of

∑
σ∈Ik

Sε
σw

ε
in L2 (ω1 × Y ) an

be deomposed on the Bloh modes,

gk =
∑

σ∈Ik,p∈Mσ
n

uσp (x1)φ
σ
p (y) (4.25)

where ukp ∈ L2 (ω1). Moreover, for σ ∈ Ik and ϑ ∈ {0, α}, we assume that the

assumption (4.14) is satis�ed, and that wσ
and wϑ

b,k are su�iently regular solution to

get the strong form then wϑ
b,k is solution of the boundary layer equation (4.15). Finally,

for ε ∈ Ek as in Assumption 14, if ukp ∈ H1 (ω1) then
(
λ1, ukp

)
is a solution of the HF-

marosopi models (4.22), (4.24) with boundary ondition (4.23) for k /∈
{
0,−1

2

}
.
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From Theorem 46 and the expansion (4.13), wε
an be approximated by two-sale

modes

wε (x) ≈
∑

σ∈Ik,p∈Mσ
n

uσp (x1)φ
σ
p

(x
ε

)
+ w0

b,k

(x
ε

)
+ wα

b,k

(
α− x

ε

)
. (4.26)

Remark 47 (i) If c (k, p, q) = 0 for all p, q varying in Mk
n , the marosopi equations

(4.22) and (4.24) are λ1 = 0 or u =
(
uσp
)
p,σ

= 0 with the boundary ondition at

x1 ∈ {0, α} for all q ∈Mk
n

∑

σ∈Ik,p∈Mσ
n

sign (σ) d (σ, p, q)uσp (x1) φ̂
σ,x1

q = 0 for k /∈
{
0,−1

2

}
, (4.27)

If λ1 = 0 then this model does not provide any equation for uσp satisfying (4.27).

(ii) For k 6= 0, if φk
m (0, y2) = 0 then φk

m (1, y2) = 0 and φkm is a periodi solution in

y1 that is a solution of k = 0. So, we onsider always that φk
m (0, y2) 6= 0 for the ase

k 6= 0. Moreover, for all q ∈ Mk
n , if

∫
Y2
φk
q (0, y2) dy = 0 then the boundary onditions

of the marosopi equation vanishes.

iii) For k /∈
{
0,−1

2

}
, we observe that the matrix

C =

(
(c (k, p, q))p,q 0

0 (c (−k, p, q))p,q

)

is skew-symmetri with even-dimension, as we know that its eigenvalues always ome

in pairs ±λ. From the spetral theorem, for a real skew-symmetri matrix C, the

nonzero eigenvalues are all pure imaginary and thus are of the form iλ1, −iλ1, iλ2,
−iλ2, iλ3, −iλ3,.... where eah of the λn are real. Hene, the boundary ondition

(4.23) is found based on the properties of anti-symmetri matrix iC and the relation

between eigenelements

(
λkn, φ

k
n

)
and

(
λ−k
n , φ−k

n

)
. However, this does not apply in the

ases k = 0 and k = −1
2
sine the size of matrix C = (c (k, p, q))p,q an be even or odd.

Remark 48 Here we fous on the Bloh spetrum while the boundary layer spetrum

is not mentioned. To avoid eigenmodes related to the boundary spetrum, aording to

Proposition 7.7 in [8℄ we assume that the weak limit of Sε
kw

ε
in L2 (Ω;H1(Y )) is not

vanishing. Moreover, we observe that the weak limit gk of subsequene of

∑
σ∈Ik

Sε
σw

ε
in

L2 (ω1 × Y ) has the same form in one dimension in [95℄. In fat, the proesses and

methods are extended trivially from the one-dimensional ase, exept what refers to the

HF-marosopi boundary onditions whih need to applied the boundary layer term.

However, this boundary layer term is not related to boundary layer spetrum and also

not to the HF-mirosopi equation. It plays a role as a orretor in the asymptoti

behaviour of the marosopi eigenvetors.

Remark 49 The analysis of the Helmholtz equation (4.15) for the boundary layer

problem has not yet been arried out. In partiular, it remains to exhibit a family of

exponentially deaying solutions.

Remark 50 The ase λ0 = λkn = λk
′

n′ is not onsidered as a speial ase, two di�erent

models orresponding to k and k′.
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4.3 Model derivation

In order to prove the main result, we introdue some preliminary homogenized results

and their proofs are reported in Setion 4.3.1, 4.3.2 and 4.3.3. Finally, Theorem 46 is

proved in Setion 4.3.4.

4.3.1 Derivation of the HF-mirosopi equation

The next lemma states the HF-mirosopi equation for eah k ∈ Y ∗
and n ∈ N∗

.

Lemma 51 For a �xed k ∈ Y ∗
, let (λε, wε) be solution of the weak formulation (4.10),

and satisfy (4.9) and (4.11), there exists at least a subsequene of Sε
kw

ε
onverging

weakly towards a non-vanishing funtion wk
in L2 (ω1 × Y ), when ε tends to zero,

whih is a solution of the very weak formulation of the HF-mirosopi boundary value

problem where λ0 = λkn for an n ∈ N∗,

− divy
(
a∇yw

k
)
= λ0ρwk

in ω1 × Y , (4.28)

wk
is k-quasi-periodi in y1, (a∇yw

k).ny is k-anti-quasi-periodi in y1,

and a∇yw
k.ny = 0 on ω1 × γlat.

Moroever, assuming that wk
is su�iently regular solution then it admits the modal

deomposition,

wk (x1, y) =
∑

m∈Mk
n

ukm (x1)φ
k
m (y) for ukm ∈ L2 (ω1) (4.29)

with onjugate ukm and u−k
m .

Proof. [Proof of Lemma 51℄

For a given k ∈ Y ∗
, for v (x1, y) a k−quasi-periodi funtion in y1 suh that

a∇yv.ny = 0 on ω1 × γlat, (4.30)

we hoose test funtions as

vε =
(
R

kv
)
(x) ∈ H1

end (Ω) ∩H2 (Ω) (4.31)

in the weak formulation (4.10) of the spetral problem. Applying the Green formula

so that to put all derivative terms on test funtions,

−
∫

Ω

wε · divx (aε∇xv
ε) dx+

∫

∂Ω

wε · aε∇xv
ε.nx dx = λε

∫

Ω

ρεwε · vε dx.

Using the de�nition P ε = −divx (a
ε∇x.) and sine wε = 0 on Γend, so

∫

Ω

wε · (P ε − λερε)Rkv dx+

∫

Γlat

wε · aε∇xR
kv.nx dx = 0. (4.32)

Observing that,

nx.a
ε∇xR

kv = R
k (a∂x1v.ny) +

1

ε
R

k (a∇yv.ny)
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and using the ondition (4.30), it remains,

nx.a
ε∇xR

kv = R
k (a∂x1v.ny) . (4.33)

Applying (4.33), (4.9) and (1.38), so in Equation (4.32) it yields,

∫

Ω

wε ·
2∑

n=0

ε−n
R

k
(
P nv − λ2−nρv

)
dx+

∫

Γlat

wε ·Rk (a∂x1v.ny) dx = O (ε) .

Multiply by ε2,

∫

Ω

wε ·Rk
(
P 2v − λ0ρv

)
dx+ ε

∫

Ω

wε ·Rk
(
P 1v − λ1ρv

)
dx = εO (ε) .

Sine P 2v − λ0ρv is k−quasi-periodi in y1, from the approximation (1.31) of R
k
by

Sε∗
k ,

∫

Ω

wε · Sε∗
k

(
P 2v − λ0ρv

)
dx+ ε

∫

Ω

wε · Sε∗
k

(
P 1v − λ1ρv

)
dx = εO (ε) .

Or equivalently, ∫

ω1×Y

Sε
kw

ε ·
(
P 2v − λ0ρv

)
dx1dy = O (ε) .

Sine Sε
kw

ε → wk
in L2 (ω1 × Y ) weakly when ε tends to 0, passing to the limit,

∫

ω1×Y

wk ·
(
P 2v − λ0ρv

)
dx1dy = 0,

or equivalently,

−
∫

ω1×Y

wk · divy (a∇yv) + wk · λ0ρv dx1dy = 0.

Assume that wk ∈ L2 (ω1;H
2 (Y )) and take the integrations by parts,

∫

ω1×Y

− divy

(
a∇yw

k
)
·v−λ0wk·ρv dx1dy+

∫

ω1×∂Y

−wk·a∇yv.ny+a∇yw
k.ny·v dx1dy = 0.

Hene, hoosing test funtions v ∈ L2 (ω1;H
2
0 (Y )) yields the strong form,

− divy
(
a∇yw

k
)
− λ0ρwk = 0 in ω1 × Y.

So, the boundary term remains,

∫

ω1×∂Y

wk · a∇yv.ny − a∇yw
k · v.ny dx1dy = 0

for general test funtions v a k−quasi-periodi funtion in y1 satisfying (4.30). Equiv-

alently,

∫

ω1×γend

wk·a∇yv.ny−a∇yw
k.ny·v dx1dy+

∫

ω1×γlat

wk·a∇yv.ny−a∇yw
k.ny·v dx1dy = 0.
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This implies that wk
and a∇yw

k.ny are respetively k−quasi-periodi and k−anti-

quasi-periodi in the variable y1. Furthermore, sine a∇yv.ny = 0 on ω1 × γlat, then

a∇yw
k.ny = 0 on ω1 × γlat.

From the positive self-adjoint of operator P 2
k (P 2

), we know that λ0 is an eigenvalue

λkn of the Bloh wave spetrum, then wk
is a Bloh eigenvetor and is deomposed as

wk (x, y) =
∑

m∈Mk
n

ukm (x1)φ
k
m (y) with ukm ∈ L2 (ω1)

where

ukm(x) =

∫

Y

wk(x1, y) · φk
m(y)dy.

Moreover, for k 6= 0, the property Sε
kw

ε = Sε
−kw

ε
for any positive ε is onserved to the

limit wk = w−k
. Finally, ukm and u−k

m are onjugate i.e. ukm = u−k
m sine φk

m = φ−k
m .

Remark 52 There is an alternative:

1. If λ0 is a Bloh eigenvalue then Sε
kw

ε
onverges weakly to a solution wk

suh that

the partial funtion y 7→ wk (., y) is an internal Bloh mode.

2. Otherwise, λ0 is not a Bloh eigenvalue and there exists no solution of the above

problem and so the weak limit wk = 0.

4.3.2 Derivation of the boundary layer equation

The next lemma establishes the boundary layer equation (4.15) where we introdue

the notation

wk
ϑ (y) := wk (ϑ, y) (4.34)

extended by quasi-periodiity to Y +
∞ .

Lemma 53 For (λε, wε) solution of the weak formulation (4.10) satisfying (4.9) and

(4.11), let

(
λ0, wk

)
be solution of the very weak formulation of (4.28), if the assumption

(4.14) is ful�lled for ϑ ∈ {0, α}, then the boundary layer term wϑ
b,k is a solution of the

very weak formulation of the boundary layer equation (4.15),

−
∑

ϑ∈{0,α}

∫

Y +
∞

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
·
(
divy

(
a∇yv

ϑ
b

)
+ λ0ρvϑb

)
dy = 0.

for all vϑb ∈ H1
γ+
∞,end

(Y +
∞) ∩ H2 (Y +

∞) suh that a∇yv
s
b .ny = 0 on γ+∞,lat. Moreover, if

wσ
ϑ ∈ H2(Y +

∞) and wϑ
b,k ∈ H2(Y +

∞) then it is a solution of the equation (4.15).

In order to prove Lemma 53, we start by proving the next one stating the relation

between the

Lemma 54 For any wk
in L2 (ω1 × Y ),

Sϑ
b

(
R

kwk
)
(y) = wk

ϑ (y) +O (ε) in L2
(
Y +
∞
)
.
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Proof. Aording to the de�nition (1.32) of the boundary layer two-sale transform

S0
b , we get

S0
b

(
R

kwk
)
(y) =

(
R

kwk
)
(εy)χ(0,α/ε) (y1) .

Sine

(
R

kwk
)
(x) = wk

(
x1,

x
ε

)
, so

(
R

kwk
)
(εy) = wk (εy1, y) ,

hene,

S0
b

(
R

kwk
)
(y) = wk (εy1, y)χ(0,α/ε) (y1) .

Moreover, wk (εy1, y)χ(0,α/ε) (y1) → wk (0, y)χR+ (y1) in L
2 (Y +

∞) when ε→ 0, then,

S0
b

(
R

kwk
)
(y) = wk (0, y) +O (ε) in the L2

(
Y +
∞
)
.

Similarly, the de�nition (1.33) of the boundary layer two-sale transform Sα
b implies

that,

Sα
b

(
R

kwk
)
(y) =

(
R

kwk
)
(−εy1 + α, εy2)χ(0,α/ε) (y1) .

Sine

(
R

kwk
)
(x) = wk

(
x1,

x
ε

)
, so

(
R

kwk
)
(−εy1 + α, εy2) = wk

(
−εy1 + α,

−εy1 + α

ε
, y2

)
,

then,

Sα
b

(
R

kwk
)
(y) = wk

(
−εy1 + α,

−εy1 + α

ε
, y2

)
χ(0,α/ε) (y1) .

Sine wk
(
−εy1 + α, −εy1+α

ε
, y2
)
χ(0,α/ε) (y1) → wk (α, y)χR+ (y1) in L

2 (Y +
∞) when ε →

0, therefore,
Sα
b

(
R

kwk
)
(y) = wk (α, y) +O (ε) in L2

(
Y +
∞
)
.

Assuming that for eah σ ∈ Ik, wσ
is su�iently regular so that

(
P 2 − λ0ρ

)
wσ = 0 in Y for all x1 > 0 (4.35)

implies the equality at the boundaries

(
P 2 − λ0ρ

)
wσ = 0 in Y at x1 ∈ {0, α} . (4.36)

Applying to Lemma 54,

(
P 2 − λ0ρ

)
wσ

ϑ = 0 in Y +
∞ for σ ∈ Ik and ϑ ∈ {0, α} (4.37)

in the very weak sense with test funtions suh their value and their derivatives vanish

on the boundary. By periodiity, the boundary ondition on the lateral boundary is

a∇yw
σ
ϑ.ny = 0 on γ+∞,lat. (4.38)

In addition, from (4.13), the eigenmode wε
is rewritten by

wε (x) =
∑

σ∈Ik
(Rσwσ) (x) + wε

b,k (x) . (4.39)
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Aording to the assumption (4.14),

Sϑ
b w

ε (y) =
∑

σ∈Ik
wσ,ϑ

b (y) + wϑ
b (y) +O (ε) in the L2

(
Y +
∞
)
weak sense. (4.40)

Proof. [Proof of Lemma 53℄ For eah ϑ ∈ {0, α}, let vϑb ∈ H1
γ+
∞,end

(Y +
∞) ∩ H2 (Y +

∞)

suh that

a∇yv
s
b .ny = 0 on γ+∞,lat, (4.41)

we hoose vε :=
∑

ϑ∈{0,α}
R

ϑ
b v

ϑ
b ∈ H1

end (Ω) ∩ H2 (Ω) as a test funtion of the weak

formulation (4.10). Applying the Green formula so that to put all derivative terms on

the test funtions,

−
∫

Ω

wε · divx (aε∇xv
ε) dx+

∫

∂Ω

wε · aε∇xv
ε.nx dx = λε

∫

Ω

ρεwε · vε dx.

Sine wε = 0 on Γend, so,

−
∫

Ω

wε · divx (aε∇xv
ε) dx+

∫

Γlat

wε · aε∇xv
ε.nx dx = λε

∫

Ω

ρεwε · vε dx.

Equivalently,

∑

ϑ∈{0,α}

[∫

Ω

wε · (P ε − λερε)Rϑ
b v

ϑ
b dx+

∫

Γlat

wε · aε∇xR
ϑ
b v

ϑ
b .nx dx

]
= 0. (4.42)

Sine v is independent on x,

nx.a
ε∇xR

ϑ
b v

ϑ
b = nϑ

1

ε
R

ϑ
b

(
a∇yv

ϑ
b .ny

)
(4.43)

with nϑ = −1 for ϑ = 0 and nϑ = 1 for ϑ = α. Applying (4.43), (4.9) and (1.38), so

in Equation (4.42) yields,

∑

ϑ∈{0,α}

[∫

Ω

wε · ε−2
R

ϑ
b

(
P 2vϑb − λ0ρvϑb

)
dx−

∫

Ω

wε · ε−1λ1Rϑ
b

(
ρvϑb
)
dx

−
∫

Ω

wε · λ2Rϑ
b

(
ρvϑb
)
dx+

∫

Γlat

wε · nϑε
−1
R

ϑ
b

(
a∇yv

ϑ
b .ny

)
dx

]
= O (ε) .

Aording to Lemma 13 stating the equality R
ϑ
b = Sϑ∗

b ,

∑

ϑ∈{0,α}

[∫

Ω

wε · ε−2Sϑ∗
b

(
P 2vϑb − λ0ρvϑb

)
dx−

∫

Ω

wε · ε−1λ1Sϑ∗
b

(
ρvϑb
)
dx

−
∫

Ω

wε · λ2Sϑ∗
b

(
ρvϑb
)
dx+

∫

Γlat

wε · nϑε
−1Sϑ∗

b

(
a∇yv

ϑ
b .ny

)
dx

]
= O (ε) .

Using the de�nition of the adjoint operator Sϑ∗
b ,

∑

ϑ∈{0,α}

∫

Y +
∞

Sϑ
b w

ε ·
(
P 2vϑb − λ0ρvϑb

)
dy = O (ε) .
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Using (4.40) and passing to the limit,

∑

ϑ∈{0,α}

∫

Y +
∞

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
·
(
P 2vϑb − λ0ρvϑb

)
dy = 0,

where wσ
ϑ and wϑ

b,k are de�ned in (4.34) and (4.14). Or equivalently,

−
∑

ϑ∈{0,α}

∫

Y +
∞

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
·
(
divy

(
a∇yv

ϑ
b

)
+ λ0ρvϑb

)
dy = 0.

Assuming that wϑ
b,k ∈ H2 (Y +

∞) and taking the integrations by parts,

∑

ϑ∈{0,α}

[∫

Y +
∞

− divy

(
a∇y

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

))
· vϑb − λ0ρ

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
· vϑb dy

−
∫

∂Y +
∞

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
· a∇yv

ϑ
b .nydy +

∫

∂Y +
∞

a∇y

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
.ny · vϑb dy

]
= 0.

However,

− divy a∇y (w
σ
ϑ)− λ0ρwσ

ϑ = 0 in Y +
∞ ,

a∇yv
ϑ
b .ny = 0 on γ+∞,lat, v

ϑ
b = 0 on γ+∞,end, and v

ϑ
b → 0 as y1 → ∞,

so,

∑

ϑ∈{0,α}
[

∫

Y +
∞

− divy

(
a∇yw

ϑ
b,k

)
· vϑb − λ0ρwϑ

b,k · vϑb dy

−
∫

γ+
∞,end

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
· a∇yv

ϑ
b .nydy +

∫

γ+
∞,lat

a∇y

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
.ny · vϑb dy] = 0.

So the internal equation of eah wϑ
b,k follows,

− divy
(
a∇yw

ϑ
b,k

)
− λ0ρwϑ

b,k = 0 in Y +
∞ for any ϑ ∈ {0, α} , (4.44)

as well as the boundary term,

∑

ϑ∈{0,α}

[∫

γ+
∞,end

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
· a∇yv

ϑ
b .nydy −

∫

γ+
∞,lat

a∇y

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
.ny · vϑb dy

]
= 0.

Therefore, wϑ
b,k = − ∑

σ∈Ik
wσ

ϑ on γ
+
∞,end. Moreover a∇yw

σ
ϑ.ny = 0 on γ+∞,lat, so a∇yw

ϑ
b,k.ny =

0 on γ+∞,lat for eah ϑ.

4.3.3 Derivation of the marosopi equation

Before to study the HF-marosopi equation, we provide some neessary alulations

and notations. For k ∈ Y ∗
and n ∈ N∗

, we pose m =
∣∣Mk

n

∣∣
and reall that φ̂

k,ϑ

q =
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∫
Y2
φk
q (0, y2) dy2e

2iπlkχα(ϑ)
where the harateristi funtion χα (ϑ) = 1 if ϑ = α and

= 0 otherwise. For k /∈
{
0,−1

2

}
, we denote,

Mσ
n = {q1, .., qm} , Φϑ =

(
φ̂
k,ϑ

q1 , ..., φ̂
k,ϑ

qm , φ̂
−k,ϑ

q1 , ..., φ̂
−k,ϑ

qm

)
and the vetor F ϑ

i = (Ii)
T Φϑ,

and Ii are 2m× 2m diagonal matries de�ned by (Ii)qq = 1 if q = i or q = m+ i and

= 0 otherwise for i ∈ {1, ..., m}. The vetor F ϑ
i an be rewritten as,

F ϑ
i =

(
0, ..., 0, φ̂

k,ϑ

qi
, 0, ..., 0, φ̂

−k,ϑ

qi
, 0, ..., 0

)
,

and

{
F ϑ
i

}
i∈{1,..,m} generate the subspae L

ϑ
of the vetor spae C2m

,

Lϑ = span
{
F ϑ
1 , ..., F

ϑ
m

}
.

Sine dim
(
Lϑ
)
= m then dim

(
Lϑ⊥) = m and the orthogonal vetor spae Lϑ⊥ ⊂ C2m

with a basis denoted by

{
Xϑ

i

}
i∈{1,..,m} ∈ C2m

. Now we shall �nd a basis

{
Xϑ

i

}
i∈{1,..,m}

of the orthogonal vetor spae Lϑ⊥
. We denote Ξi =

(
ξji
)
j∈{1,...,2m} the anonial basis

of C2m
ie with ξji = 0 for i 6= j and = 1 otherwise for i ∈ {1, ..., 2m}. Let Z ∈ Lϑ⊥

so

Z =
∑2m

ℓ=1 zℓΞℓ and satis�es

〈
Z, F ϑ

i

〉
= 0 for all i ∈ {1, .., m} . Equivalently,

ziφ̂
k,ϑ

qi
+ zm+iφ̂

−k,ϑ

qi
= 0 or zm+i = −

φ̂
k,ϑ

qi

φ̂
−k,ϑ

qi

zi for any i ∈ {1, .., m} .

Thus,

Z =

(
− φ̂

k,ϑ

1

φ̂
−k,ϑ

1

Ξm+1 + Ξ1

)
z1+...+


−

φ̂
k,ϑ

qi

φ̂
−k,ϑ

qi

Ξm+i + Ξi


 zi+...+

(
− φ̂

k,ϑ

m

φ̂
−k,ϑ

m

Ξ2m + Ξm

)
zm.

So the family

Xϑ
i : = (−

φ̂
k,ϑ

qi

φ̂
−k,ϑ

qi

Ξm+i + Ξi)/

√√√√√1 +


 φ̂

k,ϑ

qi

φ̂
−k,ϑ

qi




2

for i ∈ {1, .., m}

=
(
0, ..., 0, φ̂

−k,ϑ

qi
, 0, ..., 0,−φ̂k,ϑqi

, 0, ..., 0
)
/

√
(φ̂

−k,ϑ

qi
)2 + (φ̂

k,ϑ

qi
)2 (4.45)

onstitutes an orthornormal basis of Lϑ⊥
. The HF-marosopi equation (4.22)-(4.24)

is built for eah k and n in the next lemma.

Lemma 55 For k ∈ Y ∗, n ∈ N∗
, let (λε, wε) be solution of the weak formulation

(4.10), and be satisfying (4.9) and (4.11), so there exists at least a subsequene of

Sε
kw

ε
onverging weakly towards a non-vanishing funtion wk

in L2 (ω1 × Y ) when

ε tends to zero suh that λ0 = λkn and

(
λ0, wk

)
is solution of the HF-mirosopi

equation (4.28). For ε ∈ Ek as in Assumption 14, σ ∈ Ik and p ∈ Mk
n , if wσ

and

wϑ
b,k are su�iently regular solution and uσp ∈ H1 (ω1) then

(
λ1, uσp

)
is a solution of

the HF-marosopi equation (4.22)-(4.24).
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Chapter 4. Homogenization of the spetral problem in a two dimensional strip

Proof. [Proof of Lemma 55℄ The proof distinguishes between the two ases k /∈{
0,−1

2

}
and k ∈

{
0,−1

2

}
.

i) Case k /∈
{
0,−1

2

}
. We take vσ,ε ∈ H2 (ω1 × Y ) σ−quasi-periodi funtions in

y1 suh that they are deomposed as a linear ombination of Bloh modes

vσ,ε (x1, y) =
∑

q∈Mσ
n

vσ,εq (x1)φ
σ
q (y) , (4.46)

satisfying the onditions vσ,ε = 0 on γlat and the end onditions in average,

∑

σ∈Ik
vσ,εq (x1)

(∫

Y2

φσ
q (y1 = 0) dy2

)
e2iπσ

x
ε = 0 at x1 ∈ ∂ω1 for all q ∈Mσ

n . (4.47)

We also hoose funtions a boundary layer test funtion vϑb ∈ H2 (Y +
∞) for ϑ ∈ {0, α}

suh that

a∇y

(
e−ηy1vϑb

)
.ny = 0 on γ+∞,lat

with η > 0. We pose

vε (x) =
∑

σ∈Ik

(
R

kvσ,ε
)
(x) , vb,ε (x) = e−ηx1/ε

(
R

0
bv

0
b

)
(x) + e−η(α−x1)/ε (Rα

b v
α
b ) (x) ,

(4.48)

and hoose

ψε = vε + vb,ε,

whih satis�es the boundary onditions ψε = 0 at the ends ie

∑

σ∈Ik

(
R

kvσ,ε
)
(x) + e−ηx1/ε

(
R

0
bv

0
b

)
(x) + e−η(α−x1)/ε (Rα

b v
α
b ) (x) = 0 on Γend. (4.49)

In addition,

ψε ∈ H1
end (Ω) ∩H2 (Ω) suh that nx.a

ε∇xψ
ε = 0 on Γlat, (4.50)

as test funtions of the weak formulation (4.10) of the spetral problem. From (4.46)

and (4.49), the boundary onditions on Γend of test funtions ψε
are equivalent to,

∑

σ∈Ik,q∈Mσ
n

vσ,εq (0)φσ
q

(
0,
x2
ε

)
+ v0b

(
0,
x2
ε

)
+ e−ηα/εvαb

(α
ε
,
x2
ε

)
= 0 at x1 = 0, (4.51)

and

∑

σ∈Ik,q∈Mσ
n

vσ,εq (α)φσq

(α
ε
,
x2
ε

)
+ e−ηα/εv0b

(α
ε
,
x2
ε

)
+ vαb

(
0,
x2
ε

)
= 0 at x1 = α,

for all x2 ∈ ω2. Using the σ−quasi-periodiity of φσq in the variable y1, the seond

ondition beomes,

∑

σ∈Ik,q∈Mσ
n

vσ,εq (α)φσ
q

(
0,
x2
ε

)
e2iπσ

α
ε + e−ηα/εv0b

(α
ε
,
x2
ε

)
+ vαb

(
0,
x2
ε

)
= 0 at x1 = α.

(4.52)

For ε ∈ Ek, aording to Assumption 14 with remarking that esign(σ)2iπh
k
ε
x1
α = 1 for all

x1 ∈ ∂ω1 we build the test funtion vσ,εq as in the ase of the wave equation so that
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4.3. Model derivation

vσ,εq → vσq in H2 (ω1). Passing to the limit, then (4.46), (4.47), (4.51) and (4.52) imply

the form of vσ as

vσ (x1, y) =
∑

q∈Mσ
n

vσq (x1)φ
σ
q (y) (4.53)

and satisfying the boundary onditions

∑

σ∈Ik
vσq (x1)

(∫

Y2

φσ
q (0, y2) dy2

)
esign(σ)2iπl

kx1/α = 0 at x1 ∈ ∂ω1, (4.54)

∑

σ∈Ik,q∈Mσ
n

vσq (0)φ
σ
q (0, y2) + v0b (0, y2) = 0 at x1 = 0, (4.55)

and

∑

σ∈Ik,q∈Mσ
n

vσq (α)φ
σ
q (0, y2) e

sign(σ)2iπlk + vαb (0, y2) = 0 at x1 = α.

Applying the Green formula so that to put all derivative terms on the test funtions,

−
∫

Ω

wε · ∇x (a
ε∇xψ

ε) dx = λε
∫

Ω

ρεwε · ψε dx.

Equivalently,

∫

Ω

wε · (P ε − λερε)

((
∑

σ∈Ik
R

σvσ,ε

)
+e−ηx1/ε

(
R

0
bv

0
b

)
+ e−η(α−x1)/ε (Rα

b v
α
b )

)
dx = 0,

or

∫

Ω

wε · (P ε − λερε)

((
∑

σ∈Ik
R

σvσ,ε

)
+R

0
b

(
e−ηy1v0b

)
+R

α
b

(
e−ηy1vαb

)
)

dx = 0.

Using the deomposition (1.38) of P ε,

∑

σ∈Ik

∫

Ω

wε ·Rσ

(
2∑

l=0

ε−l
(
P l − λ2−lρ

)
vσ,ε

)
dx+

∑

ϑ∈{0,α}

[
1

ε2

∫

Ω

wε ·Rϑ
b

(
P 2 − λ0ρ

) (
e−ηy1vϑb

)

−1

ε
wε ·Rϑ

b

(
λ1ρe−ηy1vϑb

)
− wε ·Rϑ

b

(
λ2ρe−ηy1vϑb

)
dx

]
= O (ε) .

From the speial form (4.46) of the test funtion vσ,ε then P 2vσ,ε − λ0ρvσ,ε = 0,

∑

σ∈Ik

∫

Ω

wε · 1
ε
R

σ
(
P 1vσ,ε − λ1ρvσ,ε

)
+ wε ·Rσ

(
P 0vσ,ε − λ2ρvσ,ε

)
dx

+
∑

ϑ∈{0,α}

[
1

ε2

∫

Ω

wε ·Rϑ
b

(
P 2 − λ0ρ

) (
e−ηy1vϑb

)

−1

ε
λ1wε ·Rϑ

b

(
ρe−ηy1vϑb

)
− λ2wε ·Rϑ

b

(
ρe−ηy1vϑb

)
dx

]
= O (ε) .
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Multiplying by ε2, using the approximations (1.31) and (1.37) of R
σ
by Sε∗

σ and R
ϑ
b =

Sϑ∗
b ,

∑

σ∈Ik

[
ε

∫

Ω

wε · Sε∗
σ

(
P 1vσ,ε − λ1ρvσ,ε

)
+ wε · Sε∗

σ

(
P 0vσ,ε − λ2ρvσ,ε

)
dx

]

+
∑

ϑ∈{0,α}
[

∫

Ω

wε · Sϑ∗
b

(
P 2 − λ0ρ

) (
e−ηy1vϑb

)

−ελ1wε · Sϑ∗
b

(
ρe−ηy1vϑb

)
− ε2λ2wε · Sϑ∗

b

(
ρe−ηy1vϑb

)
dx
]
= ε2O (ε) .

From the de�nitions (1.10) and (1.35) of the adjoint operators Sε∗
σ and Sϑ∗

b , the bound-

ness of Sε
σw

ε
and Sϑ

b w
ε
, and dividing by ε2,

∑

σ∈Ik

∫

ω1×Y

Sε
σw

ε ·
(
P 1vσ,ε − λ1ρvσ,ε

)
dx1dy

+
∑

ϑ∈{0,α}

∫

Y +
∞

Sϑ
b w

ε ·
(
P 2 − λ0ρ

) (
e−ηy1vϑb

)
dy = O (ε) .

Sine vσ,ε onverges to vσ strongly inH2 (ω1), S
ε
σw

ε
onverges to wσ

weakly in L2 (ω1 × Y )
and the onvergene (4.40) of Sϑ

bw
ε
,

∑

σ∈Ik

∫

ω1×Y

wσ ·
(
P 1vσ − λ1ρvσ

)
dx1dy

+
∑

ϑ∈{0,α}

∫

Y +
∞

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
·
(
P 2 − λ0ρ

) (
e−ηy1vϑb

)
dy = 0.

If wσ
and wϑ

b,k are su�iently regular, applying the Green formula,

∑

σ∈Ik

[∫

ω1×Y

−
2∑

j=1

∂yj (a1j∂x1w
σ) · vσ − ∂x1

(
2∑

i=1

ai1∂yiw
σ

)
· vσ − λ1ρwσ · vσ dx1dy

+

∫

Y

[
−wσ ·

2∑

j=1

a1j∂yjv
σ +

2∑

i=1

ai1∂yiw
σ · vσ

]x1=α

x1=0

dy

+

∫

ω1×∂Y

∂x1w
σ ·

2∑

i,j=1

a1jv
σ.nyj − wσ ·

2∑

i=1

ai1∂x1v
σ.nyidx1dy

]

+
∑

ϑ∈{0,α}
[

∫

Y +
∞

∑

σ∈Ik

(
− divy (a∇yw

σ
ϑ)− λ0ρwσ

ϑ

)
·
(
e−ηy1vϑb

)

+
(
− divy

(
a∇yw

ϑ
b,k

)
− λ0ρwϑ

b,k

)
·
(
e−ηy1vϑb

)
dy

+

∫

∂Y +
∞

−
(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
· a∇y

(
e−ηy1vϑb

)
.ny

+a∇y

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
.ny ·

(
e−ηy1vϑb

)
dy] = 0.
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From the σ−quasi-periodiity of wσ
and vσ, so,

∫

ω1×γend

2∑

i,j=1

(
∂x1w

σ · a1jvσnyj − wσ · ai1∂x1v
σnyi

)
dx1dy = 0.

Moreover, sine vσ = 0 on γlat, a∇yw
σ
ϑ.ny = 0 and a∇y

(
e−ηy1vϑb

)
.ny = 0 on γ+∞,lat and

using (4.37) and (4.15), thus the equation reads,

∑

σ∈Ik

[∫

ω1×Y

−
2∑

i,j=1

(
∂yj (a1j∂x1w

σ) · vσ − ∂x1 (ai1∂yiw
σ) · vσ

)
− λ1ρwσ · vσ dx1dy

(4.56)

+
2∑

i,j=1

∫

Y

[
−wσ · a1j∂yjvσ + ai1∂yiw

σ · vσ
]x1=α

x1=0
dy

]

+
∑

ϑ∈{0,α}

∫

γ+
∞,end

a∇y

(
∑

σ∈Ik
wσ

ϑ + wϑ
b,k

)
.ny ·

(
e−ηy1vϑb

)
dy = 0.

From (4.15) and (4.16), we get that wϑ
b,k (y) is the linear funtion of − ∑

σ∈Ik
wσ

ϑ (0, y2) ,

it means that,

wϑ
b,k (y) = L

(
−
∑

σ∈Ik
wσ

ϑ (0, y2)

)
. (4.57)

Hene, in Equation (4.56) it is equivalent to,

∑

σ∈Ik

[∫

ω1×Y

2∑

i,j=1

(
−∂yj (a1j∂x1w

σ) · vσ − ∂x1 (ai1∂yiw
σ) · vσ

)
− λ1ρwσ · vσ dx1dy

+
2∑

i,j=1

∫

Y

[
−wσ · a1j∂yjvσ + ai1∂yiw

σ · vσ
]x1=α

x1=0
dy

]

+
∑

ϑ∈{0,α}

∫

γ+
∞,end

a∇y

(
∑

σ∈Ik
wσ

ϑ + L
(
−
∑

σ∈Ik
wσ

ϑ

))
.ny ·

(
e−ηy1vϑb

)
dy = 0.

Thanks to (4.34), the deompositions (4.29) and (4.53) of wσ
and vσ, as well as the

linearity of L, we get

w0
b (y) = L


−

∑

σ∈Ik,p∈Mσ
n

uσp (0)φ
σ
p (0, y2)


 = −

∑

σ∈Ik,p∈Mσ
n

uσp (0)L
(
φσ
p (0, y2)

)
,

wα
b (y) = L


−

∑

σ∈Ik,p∈Mσ
n

uσp (α)φ
σ
p (0, y2)


 = −

∑

σ∈Ik,p∈Mσ
n

uσp (α)L
(
φσ
p (0, y2)

)
,
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and the equation yields,

∑

σ∈Ik,p,q∈Mσ
n

∫

ω1

2∑

i,j=1

(∫

Y

−∂yj
(
a1jφ

σ
p

)
· φσ

q − ai1∂yiφ
σ
p · φσ

qdy

)
∂x1u

σ
p · vσq (4.58)

−λ1

(∫

Y

ρφσ
p · φσ

qdy

)
uσp · vσq dx1

+
2∑

i,j=1

[(∫

Y

−φσ
p · a1j∂yjφσ

q + ai1∂yiφ
σ
p · φσ

q dy

)
uσp · vσq

]x1=α

x1=0

−
∑

σ∈Ik,p∈Mσ
n

∫

Y2

[a∇y

(
uσp (0)φ

σ
p − uσp (0)L

(
φσ
p (0, y2)

))
· v0b (y1 = 0)

+a∇y

(
uσp (α)φ

σ
p − uσp (α)L

(
φσ
p (0, y2)

))
· vαb (y1 = 0)] dy2 = 0.

We observe that,

2∑

i,j=1

∫

Y

−∂yj
(
a1jφ

σ
p

)
· φσ

q − ai1∂yiφ
σ
p · φσ

q dy =
2∑

i,j=1

∫

Y

φσp · a1j∂yjφσ
q − ai1∂yiφ

σ
p · φσq dy.

Using (4.19) the de�nition of oe�ients c (., ., .) and b (., ., .), the equation (4.58)

beomes,

∑

σ∈Ik,p,q∈Mσ
n

[∫

ω1

c (σ, p, q) ∂x1u
σ
p · vσq − b (σ, p, q)λ1uσp · vσq dx1 −

[
c (σ, p, q)uσp · vσq

]x1=α

x1=0

]

−
∑

σ∈Ik,p∈Mσ
n

∫

Y2

[a∇y

(
uσp (0)φ

σ
p − uσp (0)L

(
φσ
p (0, y2)

))
· v0b (y1 = 0)

+a∇y

(
uσp (α)φ

σ
p − uσp (α)L

(
φσ
p (0, y2)

))
· vαb (y1 = 0)] dy2 = 0.

Choosing the test funtions vσ ∈ L2 (H1
0 (ω1) ; Y )∩L2 (Ω;H1

0 (Y )) proves the equations
of uσp :

∑

p∈Mσ
n

c (σ, p, q) ∂x1u
σ
p − b (σ, p, q)λ1uσp = 0 for eah q ∈Mσ

n and σ ∈ Ik.

Thus, the boundary term remains,

−
∑

σ∈Ik1 ,p,q∈Mσ
n

[
c (σ, p, q)uσp · vσq

]x1=α

x1=0
(4.59)

−
∑

σ∈Ik,p∈Mσ
n

∫

Y2

a∇y

(
uσp (0)φ

σ
p − uσp (0)L

(
φσp (0, y2)

))
· v0b (y1 = 0)

+a∇y

(
uσp (α)φ

σ
p − uσp (α)L

(
φσp (0, y2)

))
· vαb (y1 = 0) dy2 = 0.

From the relation (4.55) between vσ and vϑb at y1 = 0,

v0b (0, y2) = −
∑

σ∈Ik
vσ (0, 0, y2) = −

∑

σ∈Ik,q∈Mσ
n

vσq (0)φ
σ
q (0, y2)

and vαb (0, y2) = −
∑

σ∈Ik
vσ (α, 0, y2) e

sign(σ)2iπlk = −
∑

σ∈Ik,q∈Mσ
n

vσq (α)φ
σ
q (0, y2) e

sign(σ)2iπlk ,
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hene, the expression (4.59) reads

∑

σ∈Ik,p,q∈Mσ
n

[(
c (σ, p, q)−

∫

Y2

a∇y

(
φσ
p − L

(
φσp (0, y2)

))
· φσ

q (y1 = 0) dy2

)
uσp (0) v

σ
q (0)

−
(
c (σ, p, q) +

∫

Y2

a∇y

(
φσ
p − L

(
φσ
p (0, y2)

))
· φσ

q (y1 = 0) dy2

)
uσp (α) v

σ
q (α)

]
= 0.

Using (4.20) and (4.21) the de�nition of oe�ients e0 and eα, the boundary onditions

are

∑

σ∈Ik,p,q∈Mσ
n

e0 (σ, p, q)u
σ
p (0) v

σ
q (0) = 0 and

∑

σ∈Ik,p,q∈Mσ
n

eα (σ, p, q)u
σ
p (α) v

σ
q (α) = 0.

Introduing the matries Cσ
qp = c (σ, p, q), Bσ

qp = b (σ, p, q), Uσ
p = uσp , V

σ
q = vσq ,

Eϑ,σ
qp = eϑ (σ, p, q) and Φϑ,σ

q = φ̂
σ,ϑ

q leads to the matrix form

Cσ
qp∂xU

σ
p + λ1Bσ

qpU
σ
p = 0q for eah σ and q,

with the boundary onditions

∑

σ∈Ik
(V σ)T Eϑ,σUσ = 0 at x1 = ϑ,

or in short with blok vetors and matries U = (Uσ)σ, V = (V σ)σ and Eϑ =(
Eϑ,k 0
0 Eϑ,−k

)
,

V TEϑU = 0 at x1 = ϑ

for all V suh that,

(IjV )
T Φϑ = 0 at x1 = ϑ for all j ∈ {1, ..., m}

where the matrix Ij , de�ned in the beginning of the setion, is onsidered here as a

2× 2 blok matrix of m×m submatries. The boundary onditions are equivalent to

V (x1 = ϑ) ⊥ EϑU (x1 = ϑ) for all V

suh that V (ϑ) ⊥ (Ij)
T Φϑ

at ϑ ∈ {0, α} and with j ∈ {1, ..., m} .

Sine V (x1 = ϑ) ⊥ (Ij)
T Φϑ

at ϑ ∈ {0, α} for all j ∈ {1, ..., m} , therefore, V (x1 = ϑ) ∈
Lϑ⊥

. Moreover, sine EϑU (x1 = ϑ) ⊥ V (x1 = ϑ), so
〈
EϑU,Xϑ

j

〉
= 0 for all ϑ ∈ {0, α} and j ∈ {1, ..., m} ,

where Xϑ
j is de�ned in (4.45). It is equivalent to

∑

p∈Mk
n

eϑ (k, p, q)u
k
p (ϑ) φ̂

−k,ϑ

q − eϑ (−k, p, q)u−k
p (s) φ̂

k,ϑ

q = 0 for all q ∈Mk
n .

Finally, the boundary onditions of the marosopi equation are

∑

p∈Mk
n

e0 (k, p, q)u
k
p (0) φ̂

k,0

q − e0 (−k, p, q)u−k
p (0) φ̂

−k,0

q = 0,

and

∑

p∈Mk
n

eα (k, p, q)u
k
p (α) φ̂

k,α

q − eα (−k, p, q)u−k
p (α) φ̂

−k,α

q = 0,
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for all q ∈Mk
n .

ii) Case k ∈
{
0,−1

2

}
. The proess is similar to the ase of k /∈

{
0,−1

2

}
but

the �nal boundary ondition for HF-marosopi model are not found. We hoose

vk ∈ H2 (ω1 × Y ) a k-quasi-periodi funtion in y1 suh that it is deomposed by

vk (x1, y) =
∑

q∈Mk
n

vkq (x1)φ
k
q (y) (4.60)

and is satis�ed the ondition

∑

q∈Mk
n

vkq (x1)

∫

Y2

φkq (0, y2) dy2 = 0 at x1 ∈ ∂ω1. (4.61)

We also take a funtion vsb ∈ H2 (Y +
∞) where ϑ ∈ {0, α} and η > 0 suh that,

a∇y

(
e−ηy1vϑb

)
.ny = 0 on γ+∞,lat,

and

(
Rvk

)
(x) + e−ηx1/ε

(
R

0v0b
)
(x) + e−η(α−x1)/ε (Rαvαb ) (x) = 0 on Γend. (4.62)

We pose

vε (x) =
(
Rvk

)
(x) , vb,ε (x) = e−ηx1/ε

(
R

0v0b
)
(x) + e−η(α−x1)/ε (Rαvαb ) (x) , (4.63)

and hoose ψε = vε + vb,ε with

ψε ∈ H1
end (Ω) ∩H2 (Ω) suh that aε∇xψ

ε.nx = 0 on Γlat, (4.64)

as a test funtion of the weak formulation (4.10) of the spetral problem. Aording to

(4.60) and (4.62), the boundary onditions on Γend of test funtions ψε
are rewritten

by,

∑

q∈Mk
n

vkq (0)φ
k
q

(
0,
x2
ε

)
+ vkb

(
0,
x2
ε

)
+ e−ηα/εvαb

(α
ε
,
x2
ε

)
= 0 at x1 = 0,

and

∑

q∈Mk
n

vkq (α)φ
k
q

(α
ε
,
x2
ε

)
+ e−ηα/εv0b

(α
ε
,
x2
ε

)
+ vαb

(
0,
x2
ε

)
= 0 at x1 = α,

for all x2 ∈ ω2. Using the periodiity or anti - periodiity of φkq in the variable y1, the
seond ondition beomes,

∑

q∈Mk
n

vkq (α)φ
k
q

(
0,
x2
ε

)
e2iπkα/ε + e−ηα/εv0b

(α
ε
,
x2
ε

)
+ vαb

(
0,
x2
ε

)
= 0 at x1 = α.

Sine α/ε ∈ N∗
, e2iπkα/ε = 1 if k = 0 and = e−iπ

otherwise. Passing to the limit, the

boundary onditions of the test funtion are,

∑

q∈Mk
n

vkq (0)φ
k
q (0, y2) + v0b (0, y2) = 0 at x1 = 0, (4.65)

and

∑

q∈Mk
n

vkq (α)φ
k
q (0, y2) e

2iπk + vαb (0, y2) = 0 at x1 = α.
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4.3. Model derivation

The proedure of proof is the same in ase k /∈
{
0,−1

2

}
and we get the �nal equation

as,

∑

p,q∈Mk
n

∫

ω1

c (k, p, q) ∂x1u
k
p · vkq − b (k, p, q)λ1ukp · vkq dx1 −

∑

p,q∈Mk
n

[
c (0, p, q)u0p · v0q

]x1=α

x1=0

−d (k, p, q)ukp (0) · vkq (0)− d (k, p, q)ukp (α) · vkq (α) = 0.

Choosing the test funtions suh that vk ∈ L2 (H1
0 (ω1) ; Y ) ∩ L2 (Ω;H1

0 (Y )) , the in-

ternal equations are stated for eah q ∈Mk
n by

∑

p∈Mk
n

c (k, p, q) ∂x1u
k
p − b (k, p, q)λ1ukp = 0.

So, the boundary term remains,

∑

p,q∈Mk
n

(c (k, p, q)− d (k, p, q)) ukp (0) v
k
q (0) = 0 at x1 = 0,

and

∑

p,q∈Mk
n

(c (k, p, q)− d (k, p, q)) ukp (α) v
k
q (α) = 0 at x1 = α.

Or,

∑

p,q∈Mk
n

e0 (k, p, q)u
k
p (0) v

k
q (0) = 0 and

∑

p,q∈Mk
n

eα (k, p, q)u
k
p (α) v

k
q (α) = 0. (4.66)

We introdue the matries C = (c (k, p, q))p,q, B = (b (k, p, q))p,q , U =
(
ukp
)
p
, V =(

vkp

)
p
, Eϑ = (eϑ (k, p, q))p,q, Φ

ϑ =
(∫

Y2
φ̂
k,ϑ

q (0, y2) dy2

)
q
, then the matrix form is,

C∂xU + λ1BU = 0,

with V TE0U = 0 at x1 = 0 and V TEαU = 0 at x1 = α, (4.67)

for all V suh that V T (x1 = ϑ) Φϑ = 0.

Finally, the internal of the HF-marosopi equation (4.24) allows with unknown the

boundary ondition.

4.3.4 Proof of Theorem 46

For k ∈ Y ∗, let (λε, wε) be solution of the weak formulation (4.10) and satis�es the uni-

form bound (4.11), the property (1.8) yields the uniform bound of Sε
σw

ε
in L2 (ω1 × Y )

for any σ ∈ Ik. So there exist wσ ∈ L2(ω1 × Y ) suh that up the extration of a sub-

sequene Sε
σw

ε → wσ
in L2 (ω1 × Y ) weakly. Hene,

∑
σ∈Ik

Sε
σw

ε
onverges to

gk (x1, y) =
∑

σ∈Ik
wσ (x1, y) .
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Chapter 4. Homogenization of the spetral problem in a two dimensional strip

Aording to Lemma 51, there exist n ∈ N∗
suh that λ0 = λkn and wσ

is deomposed

as in (4.29) based on

(
φσp
)
σ,p

the Bloh wave eigenmodes orresponding to Bloh eigen-

value λ0, so

gk (x, y) =
∑

σ∈Ik,m∈Mσ
n

uσm (x1)φ
σ
m (y)

for uσm ∈ L2 (ω1). Moreover, as in proof of Lemma 53, wϑ
b,k is solution of the boundary

layer equation (4.15) for ϑ ∈ {0, α}. Finally, for ε ∈ Ek as in Assumption 14, if

uσp ∈ H1 (ω1) then uσp is a solution of the HF-marosopi models (4.22)-(4.24) as in

the proof of Lemma 55.
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Chapter 5

Conlusions and perspetives

The periodi homogenization has been studied for the spetral problem and the wave

equation with periodi oe�ients in a one-dimensional bounded domain. It has also

been done for the spetral problem posed in a two-dimensional thin bounded strip.

Applying our method, so-alled Bloh wave homogenization, provides two-sale models

inluding the expeted high frequeny parts and also a low frequeny part for the wave

equation. Our work fouses mainly on the high frequeny part. It omprises so-alled

high-frequeny mirosopi and marosopi equations, the �rst being a seond order

partial di�erential equation and the seond a system of �rst order partial di�erential

equations. In the strip ase, a boundary layer ours under the form of a seond order

partial di�erential equation. The boundary onditions have been found for the high

frequeny marosopi equation. For the spetral problem, the asymptoti behaviors

were addressed for both the eigenvalues and the orresponding eigenvetors. Numerial

simulations are provided to orroborate the theory in the one-dimensional ases.

The same method might be extended to other ases. The homogenization of the

wave equation posed in a bounded strip should be obtained by a ombination of the

results obtained in one-dimension to the boundary layer result of the spetral problem.

However, the boundary layer equation should be a time-spae wave equation posed in

an in�nite strip that might be using a time two-sale transform together with the

boundary layer two-sale transform. In addition, the homogenization for both the

spetral problem and the wave equation should be done also in the two dimensional

open bounded domain by extending the approah. The boundary layers should be

onsidered in both y1 and y2 diretions with a spei� problem to take into aount a

boundary layer e�et at the orners.

Finally, we mention possible short-term researh works.

1. Numerial simulation for the strip ase.

2. Homogenization of the spetral and wave equations in two-dimensions or higher

dimension inluding the boundary onditions.

3. Cases with non-homogeneous boundary onditions.

4. Extension to the system of elastiity equations.

4. Appliations in optis or in mehanis to photoni rystals, phononi devies or

other waveguides.
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Appendix

In this Appendix, we report some mathematial proofs, supplementary results and

remarks.

Proof. [Proof of Lemma 8℄ The proof is arried out in two steps. First the expliit

expression of T εαk
n∗Sε∗

k v is derived, then the approximations (1.21) and (1.22) are

dedued.

(i) Let us prove that

(T εαk
n∗Sε∗

k v) (t, x)

=
∑

θε∈D,ωε∈C

1

αk
nε

2

∫

θε×ωε

v

(
zt,

t− εαk
nlθε

εαk
n

, zx,
x− εlωε

ε

)
dztdzxχθε (t)χωε

(x)e2iπklωε .

From the de�nitions of the two-sale transforms T εαk
n
and Sε

k with rt =
(
εαk

n

)
lθε +(

εαk
n

)
τ ∈ θε and rx = εlωε

+ εy ∈ ωε,

∫

I×Λ×Ω×Y

v (t, τ , x, y) ·
(
T εαk

nSε
kw
)
(t, τ , x, y) dtdτdxdy

=

∫

I×Ω

∑

θε∈D,ωε∈C
[

1

αk
nε

2

∫

θε×ωε

v

(
t,
rt−

(
εαk

n

)
lθε

εαk
n

, x,
rx−εlωε

ε

)
dtdx · w (rt, rx)

χθε (rt)χωε
(rx)e

−2iπklωε ] drtdrx.

Changing the variable names and using the de�nitions of Sε∗
k and T εαk

n∗
,

∫

I×Ω

(
T εαk

n∗Sε∗
k v
)
(t, x) · w (t, x) dtdx

=

∫

I×Ω

[
∑

θε∈D,ωε∈C

1

αk
nε

2

∫

θε×ωε

v

(
zt,

t−
(
εαk

n

)
lθε

εαk
n

, zx,
x− εlωε

ε

)
dztdzx

e2iπklωε · w (t, x)χθε (t)χωε
(x)] dtdx.

This establishes the expliit expression of T εαk
n∗Sε∗

k .

(ii) Let us derive the expeted approximation for v ∈ C1 (I × Λ× Ω× Y ) a peri-

odi funtion in τ and k−quasi-periodi funtion in y. The �rst order Taylor formula

expresses (zt, zx) in terms of (t, x) as,

v (zt, τ , zx, y) = v (t, τ , x, y) + ∂tv (x, y) (zt − t) + ∂xv (x, y) (zx − x) + εO (ε)
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in L2(θε × ωε) for a.e. τ ∈ Λ and y ∈ Y . Hene,

(T εαk
n∗Sε∗

k v)
((
εαk

n

)
lθε+

(
εαk

n

)
τ , εlωε

+ εy
)

=
1

αk
nε

2

∫

θε×ωε

[v (t, τ , x, y) + ∂tv (t, τ , x, y) (zt − t)

+∂xv (t, τ , x, y) (zx − x) + εO (ε)]dztdzx e
2iπklωε

for a.e. (τ , y) ∈ Λ× Y and all θε ∈ D, ωε ∈ C. Remarking that

zt − t =
(
zt−εαk

nlθε
)
+
(
εαk

nlθε − t
)
and zx − x = (zx−εlωε

) + (εlωε
− x)

with ∫

θε

(
zt−εαk

nlθε
)
dzt =

1

2

(
εαk

n

)2
and

∫

ωε

(zx−εlωε
) dzx =

1

2
ε2.

For a.e. (τ , y) ∈ Λ× Y , (t, x) ∈ θε × ωε and all θε ∈ D, ωε ∈ C, sine |θε| = εαk
n and

|ωε| = ε, so

(T εαk
n∗Sε∗

k v)
((
εαk

n

)
lθε+

(
εαk

n

)
τ , εlωε

+ εy
)

=

[
v (t, τ , x, y)− εαk

n

(
t− εαk

nlθε
εαk

n

− 1

2

)
∂tv (t, τ , x, y)

−ε
(
x− εlωε

ε
− 1

2

)
∂xv (t, τ , x, y)

]
e2iπklωε + εO (ε) .

From the expliit expressions of T εαk
n∗

and Sε∗
0 , also refer to Remark 56,

t− εαk
nlθε

εαk
n

− 1

2
=

1

εαk
n

∫

θε

(
t− εαk

nlθε
εαk

n

− 1

2

)
dzt =

(
T εαk

n∗
(
τ − 1

2

))(
εαk

n

)
lθε+

(
εαk

n

)
τ ,

and

x− εlωε

ε
− 1

2
=

1

ε

∫

ωε

(
x− εlωε

ε
− 1

2

)
dzx =

(
Sε∗
0

(
y−1

2

))
(εlωε

+ εy) ,

so,

=

(
v (t, τ , x, y)− εαk

nT
εαk

n∗
(
τ − 1

2

)
∂tv (t, τ , x, y)− εSε∗

0

(
y−1

2

)
∂xv (t, τ , x, y)

)

χθε (t)χωε
(x) e2iπklωε + εO (ε)

in the L2(θε × Λ× ωε × Y ) weak sense. Therefore,

(T εαk
n∗Sε∗

k v) (t, x) =
∑

θε∈D,ωε∈C

[
v

(
t,

t

εαk
n

− lθε , x,
x

ε
− lωε

)

−εαk
nT

εαk
n∗
(
τ − 1

2

)
∂tv

(
t,

t

εαk
n

− lθε, x,
x

ε
− lωε

)

−εSε∗
0

(
y−1

2

)
∂xv

(
t,

t

εαk
n

− lθε , x,
x

ε
− lωε

)]
χθε (t)χωε

(x) e2iπklωε + εO (ε) .

Using the periodiity in τ and k−quasi-periodiity in y of funtion v,

= v

(
t,

t

εαk
n

, x,
x

ε

)
− εαk

nT
εαk

n∗
(
τ − 1

2

)
∂tv

(
t,

t

εαk
n

, x,
x

ε

)
(1)

−εSε∗
0

(
y − 1

2

)
∂xv

(
t,

t

εαk
n

, x,
x

ε

)
+εO (ε)
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in the L2(I × Ω) weak sense. Hene the formula (1.21) follows.

From (1.20), Equation (1) is equivalent to

(T εαk
n∗Sε∗

k v) (t, x) = B
k
nv−εαk

nT
εαk

n∗
(
τ − 1

2

)
B

k
n (∂tv)−εSε∗

0

(
y − 1

2

)
B

k
n (∂xv)+εO (ε) .

Applying the approximation (1.21) to ∂tv and ∂xv with any funtion v ∈ C2(I × Λ×
Ω× Y ),

= B
k
nv − εαk

nT
εαk

n∗
(
τ − 1

2

)
T εαk

n∗Sε∗
k (∂tv)− εSε∗

0

(
y − 1

2

)
T εαk

n∗Sε∗
k (∂xv) +εO (ε) .

Thanks to the expliit expression of T εαk
n∗Sε∗

k v, also refer to Remark 56, we get

αk
nT

εαk
n∗
(
τ − 1

2

)
T εαk

n∗Sε∗
k (∂tv) = T εαk

n∗Sε∗
k

(
αk
n

(
τ − 1

2

)
∂tv

)
, (2)

and Sε∗
0

(
y − 1

2

)
T εαk

n∗Sε∗
k (∂xv) = T εαk

n∗Sε∗
k

((
y − 1

2

)
∂xv

)
.

We see more detail for (2) in (3), (4) and (5) of Remark 56. Hene,

= B
k
nv − εT εαk

n∗Sε∗
k

(
αk
n

(
τ − 1

2

)
∂tv

)
− εT εαk

n∗Sε∗
k

((
y − 1

2

)
∂xv

)
+εO (ε) .

Finally,

B
k
nv = T εαk

n∗Sε∗
k v + εT εαk

n∗Sε∗
k

(
αk
n

(
τ − 1

2

)
∂tv+

(
y−1

2

)
∂xv

)
+εO (ε) .

Remark 56 For any k ∈ Y ∗
and n ∈ N∗, let v ∈ L2 (I × Λ× Ω× Y ) be a periodi

funtion in τ and k−quasi-periodi funtion in y, then

T εαk
n∗ (τ )

(
T εαk

n∗Sε∗
k v
)
=
(
T εαk

n∗Sε∗
k

)
(τv) , (3)

and

Sε∗
0 (y)

(
T εαk

n∗Sε∗
k (v)

)
= T εαk

n∗Sε∗
k (yv) . (4)

Consequently, for any µ0 ∈ R∗,

((
T εαk

n∗Sε∗
k

)
(µ0v)

)
(t, x) = µ0

(
T εαk

n∗Sε∗
k v
)
(t, x) . (5)

Indeed, from the expliit expression of T εαk
n∗Sε∗

k ,

((
T εαk

n∗Sε∗
k

)
(τv)

)
(t, x)

=
∑

θε∈D,ωε∈C

1

αk
nε

2

∫

θε×ωε

(
t− εαk

nlθε
εαk

n

)
v

(
zt,

t− εαk
nlθε

εαk
n

, zx,
x− εlωε

ε

)
dztdzxχθε (t)χωε

(x)e2iπklωε

=
∑

θε∈D,ωε∈C

(
t− εαk

nlθε
εαk

n

)
1

αk
nε

2

∫

θε×ωε

v

(
zt,

t− εαk
nlθε

εαk
n

, zx,
x− εlωε

ε

)
dztdzxχθε (t)χωε

(x)e2iπklωε .
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We observe that

t− εαk
nlθε

εαk
n

χθε (t) =
1

αk
nε

∫

θε

(
t− εαk

nlθε
εαk

n

)
dztχθε (t) =T

εαk
n∗ (τ)

((
εαk

n

)
lθε+

(
εαk

n

)
τ
)
.

Therefore,

((
T εαk

n∗Sε∗
k

)
(τv)

)
(t, x) =

(
T εαk

n∗ (τ )
)
(t)
(
T εαk

n∗Sε∗
k v
)
(t, x) . (6)

Similarly, we apply to the funtion yv the adjoint operator T εαk
n∗Sε∗

k

((
T εαk

n∗Sε∗
k

)
(yv)

)
(t, x)

=
∑

θε∈D,ωε∈C

1

αk
nε

2

∫

θε×ωε

(
x− εlωε

ε

)
v

(
zt,

t− εαk
nlθε

εαk
n

, zx,
x− εlωε

ε

)
dztdzxχθε (t)χωε

(x)e2iπklωε

=
∑

θε∈D,ωε∈C
[
1

ε

∫

ωε

(
x− εlωε

ε

)
dzx

1

αk
nε

2

∫

θε×ωε

v

(
zt,

t− εαk
nlθε

εαk
n

, zx,
x− εlωε

ε

)
dztdzx

χθε (t)χωε
(x)e2iπklωε ] = (Sε∗

0 (y)) (x)
(
T εαk

n∗Sε∗
k v
)
(t, x) . (7)

Moreover, for any µ0 ∈ R∗, we get

Sε∗
0 µ0 = µ0 and T εαk

n∗µ0 = µ0.

Finally, (5) is obtained thank to (6) and (7).

Proof. [Proof of Lemma 10℄ The proof is arried out in two steps. First the expliit

expression of Sε∗
k v is derived, then the approximation is dedued.

(i) Let us prove that

(Sε∗
k v) (x) =

∑

j∈J

∫

ωj
1ε

ε−1v

(
z,
x− εlωj

ε

ε

)
dz χωj

ε
(x)e2iπkj.

From the de�nition of the modulated-two-sale transform with r = εlωj
ε
+ εy ∈ ωj

ε and

dr = ε2dy,
∫

ω1×Y

v (x1, y) · (Sε
kw) (x1, y) dx1dy

=
∑

j∈J

∫

ω1×ωj
ε

ε−2v

(
x1,

r − εlωj
ε

ε

)
· w (r)χωj

1ε
(x1)e

−2iπkj dx1dr

or equivalently,

=

∫

Ω

∑

j∈J
ε−2

∫

ωj
1ε

v

(
x1,

r − εlωj
ε

ε

)
dx1·w (r)χωj

ε
(r)e−2iπkj dr.

Changing the variable names z = x1, x = r and using the de�nition of Sε∗
k ,

1

ε

∫

Ω

(Sε∗
k v) (x) · w (x) dx =

∫

Ω

∑

j

ε−2

∫

ωj
1ε

v

(
z,
x− εlωj

ε

ε

)
dze2iπkj · w (x)χωj

ε
(x) dx.
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This establishes the expliit expression of Sε∗
k .

(ii) Let us derive the expeted approximation for v ∈ C1 (ω1 × Y ) and k−quasi-

periodi in y1. Sine
∣∣ωj

1ε

∣∣ = ε and

v (z, y) = v (x1, y) + ∂x1v (x1, y) . (z − x1) + εO (ε) in L2(ω1) for a.e. y ∈ Y,

then

(Sε∗
k v)

(
εlωj

ε
+ εy

)
=

(
ε−1

∫

ωj
1ε

v (x1, y) + ∂x1v (x1, y) . (z − x1) dz

)
e2iπkj +O (ε) ,

for a.e. y ∈ Y and all j ∈ J . Remarking that z − x1 = (z − εj) + (εj − x1) and
∫

ωj
1ε

(z − εj) dz =
1

2
εO (ε) .

So for all ωj
1ε and y ∈ Y ,

εe−2iπkj(Sε∗
k v)

(
εlωj

ε
+ εy

)
=
∣∣ωj

1ε

∣∣ v (x1, y) + (
1

2
εO (ε) +

(
ε2y
)
).∂x1v (x1, y) + εO (ε) .

Therefore,

(Sε∗
k v) (x) =

∑

j∈J
v
(
x1,

x

ε
− lωj

ε

)
χωj

ε
(x) e2iπkj + εO (ε) .

Using the k−quasi-periodi of v in y1,

(Sε∗
k v) (x) =

∑

j∈J
v
(
x1,

x

ε

)
χωj

ε
(x) + εO (ε) ,

in L2(Ω), hene the formula (1.31) follows.

Proof. [Proof of Lemma 12℄ For u ∈ L2 (Ω) suh that u is bounded in L2 (Ω), for
ϑ = 0, the de�nition (1.32) of S0

bu gives

∫

Y +
∞

∣∣S0
bu
∣∣2 (y)dy =

∫

Y +
∞

|u|2 (εy)χ(0,1/ε) (y1) dy =

∫

Y2

∫

(0,α/ε)

|u|2 (εy1, εy2) dy1dy2

By hanging variable x = εy, so dy = dx/ε2 and

= ε−2

∫

ω2

∫

ω1

|u|2 (x1, x2) dx1dx2 = ε−2

∫

Ω

|u|2 (x) dx.

Similarly, for x1 = α, the de�nition (1.33) of Sα
b u implies that

∫

Y +
∞

|Sα
b u|2 (y)dy =

∫

Y +
∞

|u|2 (−εy1 + α, εy2)χ(0,α/ε) (y1) dy1dy2

=

∫

Y2

∫

(0,α/ε)

|u|2 (−εy1 + α, εy2) dy1dy2

By hanging variables x1 = −εy1 + α and x2 = εy2, so dy = −dx/ε2 and

= −ε−2

∫

ω2

∫ 0

α

|u|2 (x1, x2) dx1dx2

= ε−2

∫

ω2

∫

ω1

|u|2 (x1, x2) dx1dx2 = ε−2

∫

Ω

|u|2 (x) dx.
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Proof. [Proof of Lemma 13℄ For v (y) ∈ C1 (Y +
∞), we prove that

(
S0
b
∗
v
)
(x) = v

(x
ε

)
and (Sα

b
∗v) (x) = v

(
α− x1
ε

,
x2
ε

)
. (8)

First, for ϑ = 0, let w ∈ L2 (Ω), from the de�nition (1.32) of S0
b ,

∫

Y +
∞

v (y) ·
(
S0
bw
)
(y) dy =

∫

Y +
∞

v (y) ·w (εy)χ(0,α/ε) (y1) dy

=

∫

Y2

∫

(0,α/ε)

v (y1, y2) ·w (εy1, εy2) dy1dy2

Using the de�nition (1.35) of the adjoint operator S0∗
b ,

1

ε

∫

Ω

(
S0
b
∗
v
)
(x) · w (x) dx = ε

∫

Y2

∫

(0,α/ε)

v (y1, y2) ·w (εy1, εy2)dy1dy2

and hanging the variable names x1 = εy1 and x2 = εy2,

= ε−1

∫

ω2

∫

ω1

v
(x1
ε
,
x2
ε

)
·w (x1, x2) dx1dx2.

Therefore, ∫

Ω

(
S0
b
∗
v
)
(x) · w (x) dx =

∫

Ω

v
(x
ε

)
·w (x) dx. (9)

Seond, at ϑ = α, let w ∈ L2 (Ω), similarly to the ase of ϑ = 0, we get

∫

Y +
∞

v (y) · (Sα
b w) (y) dy =

∫

Y +
∞

v (y) ·w (−εy1 + α, εy2)χ(0,α/ε) (y1) dy

=

∫

Y2

∫

(0,α/ε)

v (y1, y2) ·w (−εy1 + α, εy2) dy1dy2.

So, the de�nition (1.35) of the adjoint operator Sα∗
b implies,

1

ε

∫

Ω

(Sα
b
∗v) (x) · w (x) dx = ε

∫

Y2

∫

(0,α/ε)

v (y1, y2) ·w (−εy1 + α, εy2) dy1dy2.

By hanging the variable names x1 = −εy1 + α and x2 = εy2, it remains,

= ε−1

∫

ω2

∫

ω1

v

(
α− x1
ε

,
x2
ε

)
·w (x1, x2) dx1dx2.

Therefore,

∫

Ω

(Sα
b
∗v) (x) · w (x) dx =

∫

Ω

v

(
α− x1
ε

,
x2
ε

)
·w (x1, x2) dx1dx2. (10)

Then, from (9) and (10), the formula (8) follows. Finally, (1.37) is dedued from (8)

and (1.36).
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Remark 57 Here we explain the the reason why we de�ned the (n, k)-model two-sale

approximation (3.14) of uε instead of using T εαk
nSε

k diretly as in [36℄ and [94℄. For

a given k ∈ Y ∗
and n ∈ N∗

, we restart with the very weak formulation (3.62) in the

proof of Lemma 34 by hoosing test funtions as in (3.61, 3.59, 3.60) but suh that

w0 = 0 in I × Ω and w1 ∈ L2 (C∞
c (I × Ω) ; Λ× Y ). Multiplying by ε2, the equation

(3.63) is equivalent to,

∫

I×Ω

[uε ·Bk
n

(
ε

(
1

αk
n

)2

Q2w1 − εP 2w1 + ε2
1

αk
n

Q1w1 − ε2P 1w1 + ε3Q0w1 − ε3P 0w1

)

−ε3f ε ·Bk
nw1 ]dtdx = 0.

Equivalently,

∫

I×Ω

uε ·Bk
n

(
ε

(
1

αk
n

)2

Q2w1 − εP 2w1 + ε2
1

αk
n

Q1w1 − ε2P 1w1

)
dtdx = ε2O (ε) .

Aording to the relation between B
k
n and T εαk

n∗Sε∗
k in Lemma 8, it remains,

∫

I×Ω

uε·
(
T εαk

n∗Sε∗
k +O (ε)

)(
ε

(
1

αk
n

)2

Q2w1 − εP 2w1 + ε2
1

αk
n

Q1w1 − ε2P 1w1

)
dtdx = ε2O (ε)

Or equivalently,

∫

I×Ω

uε · T εαk
n∗Sε∗

k

(
ε

(
1

αk
n

)2

Q2w1 − εP 2w1 + ε2
1

αk
n

Q1w1 − ε2P 1w1

)
dtdx = εO (ε) .

Then,

∫

I×Λ×Ω×Y

T εαk
nSε

ku
ε·
(
ε

(
1

αk
n

)2

Q2w1 − εP 2w1 + ε2
1

αk
n

Q1w1 − ε2P 1w1

)
dtdτdxdy = εO (ε) .

Using the deomposition (3.52) of T εαk
nSε

ku
ε
, the equation beomes,

∫

I×Λ×Ω×Y

(
χ0 (k)u

0,k
n + εu1,kn

)
·(ε
(

1

αk
n

)2

Q2w1 − εP 2w1

+ε2
1

αk
n

Q1w1 − ε2P 1w1) dtdτdxdy = εO (ε) .

Using (3.82), the equation yields

∫

I×Λ×Ω×Y

χ0 (k) u
0,k
n · ε2P 1w1 + εu1,kn ·

(
ε

(
1

αk
n

)2

Q2w1 − εP 2w1

)
dtdx = εO (ε) .

Finally, dividing by ε2, we get the equation

∫

I×Λ×Ω×Y

χ0 (k) u
0,k
n · P 1w1 + u1,kn ·

((
1

αk
n

)2

Q2w1 − P 2w1

)
dtdx =

O (ε)

ε

but we an not pass to the limit of

O(ε)
ε

when ε→ 0. Therefore, we an not obtain the

HF-mirosopi equation by applying T εαk
nSε

k to uε diretly.
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Appendix

Here we also bring the similar result to Lemma 37 about the strong onvergene

of test funtion in the ase of Neumann Boundary ondition. For k ∈ Y ∗/
{
0,−1

2

}
,

n ∈ N∗
and σ ∈ Ik, we onsider the two funtions ϕk

n (t, x) , ϕ
−k
n (t, x) ∈ H2 (I × Ω)

suh that

ϕk
n (t, x) ∂yφ

k
n (0) e

2iπlk x
α + ϕ−k

n (t, x) ∂yφ
−k
n (0) e−2iπlk x

α = 0 on I × ∂Ω (11)

where lk is de�ned in (1.40).

Lemma 58 For k ∈ Y ∗/
{
0,−1

2

}
, let ε ∈ Ek, there exist ϕk,ε

n , ϕ−k,ε
n ∈ H2 (I × Ω)

satisfying

i) the boundary onditions

∑

σ∈Ik
∂xϕ

σ,ε
n (t, x)φσ

n (0) e
2iπσ x

ε +
1

ε
ϕσ,ε
n (t, x) ∂yφ

σ
n (0) e

2iπσ x
ε = 0 on I × ∂Ω, (12)

ii) and the strong onvergene

ϕσ,ε
n → ϕσ

n in H2 (I × Ω) when ε → 0 for σ ∈ Ik. (13)

Before starting the proof, we denote

ζε (t, x) = −ε
∑

σ∈Ik
∂xϕ

σ,ε
n (t, x)φσn

(x
ε

)
on I × ∂Ω

and remark that ζε (t, x) onverges to 0 in H2 (I) when ε tends to 0 at x ∈ ∂Ω.
Similarly to the ase of Dirihlet boundary ondition, to avoid the ase that boundary

onditions are vanishing, we assume that ∂yφ
−k
n (0) 6= 0.

Proof. For any ε ∈ Ek and let the two funtions ϕk
n (t, x) , ϕ

−k
n (t, x) ∈ H2 (I × Ω)

satisfy (11), we hoose

ϕk,ε
n (t, x) = ϕk

n (t, x) ∈ H2 (I × Ω) (14)

and ϕ−k,ε
n (t, x) = ϕ−k

n (t, x) + µε (t, x) where µε (t, x) ∈ H2 (I × Ω) .

i) Let us prove that

µε (t, x) = −
(
ϕ−k
n (t, α)

(
1− e4iπ(l

ε
k
−lk)
)
+
ζε (t, α) e2iπl

ε
k

∂yφ
−k
n (0)

)
x

α
+

ζε (t, 0)

∂yφ
−k
n (0)

where lkε and lk is de�ned in (1.39) and (1.40).

Replaing (14) in (12), the boundary onditions are

ϕk
n (t, x) ∂yφ

k
n (0) e

2iπk x
ε +
(
ϕ−k
n (t, x) + µε (t, x)

)
∂yφ

−k
n (0) e−2iπk x

ε = ζε (t, x) on I×∂Ω.

Using (1.39) and (1.40) with remarking that e2iπh
ε
k

x
α = 1 at x ∈ ∂Ω,

ϕk
n (t, x) ∂yφ

k
n (0) e

2iπlε
k

x
α+
(
ϕ−k
n (t, x) + µε (t, x)

)
∂yφ

−k
n (0) e−2iπlε

k
x
α = ζε (t, x) on I×∂Ω.

Or equivalently,

ϕk
n (t, x) ∂yφ

k
n (0) e

2iπ(lk+lkε−lk) x
α+
(
ϕ−k
n (t, x) + µε (t, x)

)
∂yφ

−k
n (0) e−2iπ(lk+lkε−lk) x

α = ζε (t, x)
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on I × ∂Ω. From (11),

ϕk
n (t, x) ∂yφ

k
n (0) e

2iπlk x
α = −ϕ−k

n (t, x) ∂yφ
−k
n (0) e−2iπlk x

α
on I × ∂Ω.

After replaement, the equation remains,

ϕ−k
n (t, x) ∂yφ

−k
n (0) e−2iπlk x

α

(
e−2iπ(lεk−lk) x

α − e2iπ(l
ε
k
−lk) x

α

)

+µε (t, x) ∂yφ
−k
n (0) e−2iπlk x

α e−2iπ(lεk−lk) x
α = ζε (t, x) on I × ∂Ω.

Sine ∂yφ
−k
n (0) 6= 0 and e−2iπlk x

α 6= 0 at x ∈ ∂Ω, then the funtion µε
is de�ned at

x ∈ ∂Ω as,

µε (t, x) = −ϕ−k
n (t, x)

(
e−2iπ(lεk−lk) x

α − e2iπ(l
ε
k
−lk) x

α

)
e2iπ(l

ε
k
−lk) x

α

+
ζε (t, x)

∂yφ
−k
n (0) e−2iπlk x

α e−2iπ(lεk−lk) x
α

on I × ∂Ω,

i.e.,

µε (t, 0) =
ζε (t, 0)

∂yφ
−k
n (0)

and µε (t, α) = −ϕ−k
n (t, α)

(
1− e4iπ(l

ε
k
−lk)
)
+
ζε (t, α) e2iπl

ε
k

∂yφ
−k
n (0)

.

Finally, we hoose the funtion µε ∈ H2 (I × Ω) by

µε (t, x) = −
(
ϕ−k
n (t, α)

(
1− e4iπ(l

ε
k
−lk)
)
+
ζε (t, α) e2iπl

ε
k

∂yφ
−k
n (0)

)
x

α
+

ζε (t, 0)

∂yφ
−k
n (0)

.

ii) For σ = k, the strong onvergene is true sine ϕk,ε
n is independent on ε. For

σ = −k, the strong onvergene of µε (t, x) in H2 (I × Ω) is trivial, i.e. µε (t, x) → 0
in H2 (I × Ω) strongly when ε → 0. Therefore, ϕ−k,ε

n → ϕ−k
n in H2 (I × Ω) strongly

when ε→ 0.
Finally, an example is provided of a sequene ε orresponding to Assumption 14.

Example 59 i) For a given ε0 ∈ R+
, aording to (1.39),

αk
ε0

is deomposed as,

αk

ε0
= hkε0 + lkε0 with hkε0 =

[
αk

ε0

]
and lkε0 ∈ [0, 1) . (15)

For a subsequene εn, we an deompose

αk

εn
= hkεn + lkεn

Here we need to hoose a subsequene εn suh that lkεn = lkε0 + O (εn) . Choosing a

subsequene εn = ε0
n

for n ∈ N∗,

αk

εn
=
αk
ε0
n

= nhkε0 + nlkε0 ,

hene, a sequene n satis�es

nlkε0 = n′ + lkε0 +O (ε0) or (n− 1) lkε0 = n′ +O (ε0) with n′ ∈ N.
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We approximate lkε0 by a fration

r
s
∈ Q,

r
s
≥ 0, i.e. lkε0 = r

s
+ O (ε0). It is equivalent

to,

(n− 1)
(r
s
+O (ε0)

)
= n′ +O (ε0) with n′ ∈ N.

If lkε0 =
r
s
then

(n− 1)
r

s
= n′ +O (ε0) with n′ ∈ N,

therefore,

n = n′ s

r
+ 1 +

s

r
O (ε0) with n′ ∈ N.

Sine n ∈ N∗
so n′ s

r
+ 1 + s

r
O (ε0) ∈ N∗

then n′ s
r
≈ n0 ∈ N.

If lkε0 =
r
s
+O (ε0) then

n =
n′ +O (ε0)
r
s
+ O (ε0)

+ 1 =
n′

r
s
+O (ε0)

+ 1 +O (ε0) with n′ ∈ N.

Sine n ∈ N∗
so

n′

r
s
+O(ε0)

+ 1 ≈ n0 ∈ N with n′ ∈ N.

ii) For a given ε0, a given k ∈ Y ∗
and

αk

ε0
= p (ε0) + l (ε0) with p (ε0) =

[
αk

ε0

]
and l (ε0) = 0.2 =

1

5
,

then a sequene n is hosen suh that

n = 5n′ + 1 + 5O (ε0) and 5n′ ≈ n0 ∈ N with n′ ∈ N.

So,

n′ = 0 so n = 1.

n′ = 1 so n = 6.

n′ = 2 so n = 11.

....

Finally, the sequene εn an be hosen by εn = ε0
n

with n = 1 + 5n′
for n′ ∈ N.
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Résumé :

Dans cette thèse, nous présentons des résultats d’homogénéisation périodique d’un problème

spectral et de l’équation d’ondes avec des coefficients périodiques variant rapidement dans

un domaine borné. Le comportement asymptotique est étudié en se basant sur une méthode

d’homogénéisation par ondes de Bloch. Il permet de modéliser les ondes à basse et haute

fréquences. La partie du modèle à basse fréquence est bien connu et n’est pas donc abordée

dans ce travail. A contrario, la partie à haute fréquence du modèle, qui représente des oscillations

aux échelles microscopiques et macroscopiques, est un problème laissé ouvert. En particulier,

les conditions aux limites de l’équation macroscopique à hautes fréquences établies dans [36]

n’étaient pas connues avant le début de la thèse. Ce dernier travail apporte trois contributions

principales. Les deux premières contributions, portent sur le comportement asymptotique du

problème d’homogénéisation périodique du problème spectral et de l’équation des ondes en une

dimension. La troisième contribution consiste en une extension du modèle du problème spectral posé

dans une bande mince bidimensionnelle et bornée. Le résultat d’homogénéisation comprend des

effets de couche limite qui se produisent dans les conditions aux limites de l’équation macroscopique

à haute fréquence.

Mots-clés : Homogénéisation, Ondes de Bloch, Décomposition en ondes de Bloch, Problème spectral,

Equation des ondes, Transformée à deux-échelles, Convergence à deux échelles, Méthode

d’éclatement périodique, Couches limites, Transformation à deux échelles pour des couche li-

mites.

Abstract:

In this dissertation, we present the periodic homogenization of a spectral problem and the wave

equation with periodic rapidly varying coefficients in a bounded domain. The asymptotic behavior

is addressed based on a method of Bloch wave homogenization. It allows modeling both the low

and high frequency waves. The low frequency part is well-known and it is not a new point here.

In the opposite, the high frequency part of the model, which represents oscillations occurring

at the microscopic and macroscopic scales, was not well understood. Especially, the boundary

conditions of the high-frequency macroscopic equation established in [36] were not known prior to the

commencement of thesis. The latter brings three main contributions. The first two contributions, are

about the asymptotic behavior of the periodic homogenization of the spectral problem and wave

equation in one-dimension. The third contribution consists in an extension of the model for the

spectral problem to a thin two-dimensional bounded strip Ω = (0, α)× (0, ε) ⊂ R2. The homogenization

result includes boundary layer effects occurring in the boundary conditions of the high-frequency

macroscopic equation.

Keywords: Homogenization, Bloch waves, Bloch wave decomposition, Spectral problem, Wave equation,

Two-scale transform, Two-scale convergence, Unfolding method, Boundary layers, Boundary

layer two-scale transform, Macroscopic equation, Microscopic equation, Boundary conditions.


