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Abstract

The present thesis is dedicated to the experiment and simulation

studies of vibro-fluidized granular gas dynamics. Granular gases are

characterized by dissipation due to inelastic collisions. To keep a

steady state, continuous energy is injected to balance dissipation by

vibration. This system provides a platform to study the physics of

non-linear, non-equilibrium and dissipative systems. This disserta-

tion insists on the necessity of understanding the local state in the

granular gases and building a new model for vibration-fluidized gran-

ular gases. Research approach includes experiments in micro-gravity,

event-driven molecular dynamic simulation and experiments in tilted

plane with various gravity.

Micro-gravity experiments were performed on Airbus A300(-0g) (Parabolic

flight) to avoid friction with the bottom and gravity field. A long range

boundary effect is found to exist in 2D vibration granular gases. Local

distributions of the velocity component in the vibration direction are

asymmetric in the whole cell except for the center bin. In the sys-

tem, energy equipartition breaks down. “Granular temperature” is

not efficient to describe such a system. We proposed a superposition

of two Gaussian profiles to fit the local asymmetric velocity profiles

along the vibration direction. We demonstrated the performance of

this model by the Airbus experimental data and others’ simulation

works.

Event-driven molecular dynamics simulation was utilized. Results

showed support for experiment results. Furthermore, this long range

boundary effect is related to the system dissipation. This effect be-

comes pronounced if the coefficient of restitution (e < 1) decreased



or the number of particles increased. For the elastic situation, there

is no such effect. This effect cannot be ignored and treated only as a

local boundary effect as in hydrodynamics.

We also studied a 2D vibration fluidized granular system in a tilted

plane systematically in the laboratory. The inclined angle is changed

from horizontal to vertical, which changing the “effective gravity”.

These results also showed asymmetric local velocity distributions.

Other than the number density profiles deviate from an exponential

form, the spatial profiles of the number density of particles moving

up and down are non-equal, and asymmetric from the cell center.

The above studies open a new view towards vibration-driven experi-

mental dissipative granular gases systems.



Résumé

La présente thèse est consacrée à l’étude expérimentale et la simulation de la dy-

namique des gaz granulaires vibro-fluidisés. Les gaz granulaires sont caractérisées

par une dissipation due aux collisions inélastiques. Pour maintenir cet état à

l’équilibre mécanique (stationarité), l’énergie est injectée en continu depuis les

bords vibrant pour équilibrer la dissipation des vibrations. Ce système fournit

une base d’étude de la physique des systèmes non-linéaires, hors équilibre ther-

modynamique et dissipatifs. Cette thèse insiste sur la nécessité d’intégrer, de

comprendre et de rendre compte de la situation inhomogène de la distribution

locale dans les gaz granulaires et permet la construction d’un nouveau modèle

de gaz granulaires fluidisés par des vibrations. Cette approche inclut (i) des

résultats expérimentaux 2d en micro-gravité dans l’Airbus A300 0-g de Noves-

pace, des expériences 2d avec des cellules (et des vibrations) horizontales, des

expériences 2d sur plan incliné (avec vibrations et cellules inclinées et avec une

gravité effective variable), ainsi que des simulations de dynamique moléculaire

par la méthode “event-driven” appliquée à chaque choc.

Ces résultats confortent les simulations 3d de Liu et al. Les expériences en

micro-gravité dans Airbus A300(-0g) (vol parabolique) permettent d’éviter les

frottements avec les parois planes et éliminent l’effet de gravité. Les distri-

butions locales de la vitesse dans la direction de vibrations sont asymétriques

partout (à l’exception de la zone centrale de la cellule par raison de symétrie). L’

équipartition de l’énergie n’est pas vérifiée dans la cellule, l’énergie est distribuée

de manière inhomogène, anisotrope et directionnelle. La “ température gran-

ulaire ”n’est plus une mesure efficace pour décrire un tel système. On rend

compte de ces résultats à l’aide d’une superposition de deux distributions gaussi-

ennes à 2 vitesses moyennes différentes pour décrire les profils locaux de vitesse

vi



asymétriques le long de la direction de vibration.

Les résultats des simulations de dynamique moléculaire 2D en gravité nulle

montrent les mêmes tendances et confortent les résultats l’expérimentaux (dissymétrie

des distributions de vitesse locales). Cette dissymétrie est un effet à longue portée

et est liée à la dissipation du système: Elle augmente si le coefficient de restitution

bille-bille diminue ou lorsque le nombre de particules augmente. La dissymétrie

disparâit lorsque les chocs billes-billes sont élastiques. Cet effet ne peut être

ignoré et doit être traité comme la frontière d’une “nouvelle hydrodynamique”.

Dans les expériences de vibrations sur cellule 2D et plan incliné parallèle aux

vibrations, l’angle d’inclinaison a étémodifié de facon systématique de l’horizontale

à la verticale, pour simuler différentes gravités effectives. Les résultats confirment

une dissymétrie des distributions locales de vitesse, à laquelle se rajoute une

dissymétrie supplémentaire liée à la gravité, provoquant une densité différente en

haut et en bas de la cellule.

Ces études sont les prémices, nous le pensons, d’une nouvelle vision de la

mécanique des gaz granulaires dissipatifs réels.
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Chapter 1

Introduction

1.1 Definition

Granular matter is defined as particle systems with a particle size larger than

one micron[14]. There is no upper limit for the size. In nature, granular mate-

rials are so widespread. There are many obvious examples, such as sand, snow,

coal, grains, industrial products, rice, nuts, the rings of planets, the solar sys-

tem.... From this definition, we find granular materials ignore the thermal agita-

tion, which exists in materials below one micron due to the environment (gas or

liquid...)[14]. In[15, 16], granular materials are classified according to interaction

type between particles:

i) powder: whose diameter of particles is smaller than 100 µm. Electrostatic

force exists between particles. The humidity of environment influences forcefully

on the granular materials property.

ii) granular solid: whose diameter of particles is between 100 µm and 3000

µm. Electrostatic force can be neglected. More, the humidity of environment

influences its properties.

iii) solid debris: whose diameter of particles is larger than 3000 µm. The

movements of particles are independent of electrostatic force and the humidity of

environment.

Granular media are the second largest manipulated materials[14]. In indus-

tries, most raw materials are granular media. How to mix, grind, transport,

1



1. Introduction

Figure 1.1: granular materials types is illustrated: rice, desert, cobblestone, the
rings of planets.

segregate, pack up and store are very important processes. In geology, disasters

like mud avalanche, snow avalanche, landslide, and earthquake are related to the

physics of granular materials. To avoid these disasters, it is necessary to study

granular fundamental problem. In brief, to explore the science of granular media

is important to solve the problem in the human daily life.

1.2 Property

In this section, we exemplify few important properties of granular materials

through four driven methods in granular dynamics process. Granular materi-

als are studied by engineers and physicists from different perspectives. At the

earliest, granular matter was studied widely by engineers on demand of practical

problems, such as Rock and Soil Rheology. Meanwhile, a lot of research work

on the granular media have been done by physicists, such as Coulomb, Bagnold,

Faraday, Hagen, Hertz, Huygens, Reynolds, and Terzaghi[17]. However, there is

still not a satisfying theory for granular matter like those one finds in classical

gases, liquids or solids. As De Gennes[18] said, granular materials have similar

complexity and flexibility as other soft matter; at present, the physical properties

2



1. Introduction

Figure 1.2: An example of statics problem. Scaled normal stress profiles (P/pgh)
as function of scaled radial distance r/R for a sandpile.(Up)The localized-source
procedure.(Down) The raining procedure[1].

of granular systems are still a great challenge for physicists.

Granular matter exhibits remarkable phenomena such as Rayleigh-Bénard

convection, cluster, Taylor-Couette flows, gravity waves, shear flows, pattern for-

mation, and Maxwell’s demon[19]. It is interesting and draw more attention. All

studies of granular behaviors are classified into statics and dynamics problems

(sometimes one more, quasi-statics).

For statics problems, the reference[14] gives a tentative view for granular mat-

ter. As discussed in [14], one can include in statics problems: compaction, the

packing volume fraction[20], boundary conditions(the free surface or at a solid

wall), a silo model, avalanches[21], a heap (sandpile)[1, 22–27], deformations,

force channels[28], and the local distribution of forces. Fig. 1.2 gives an example

of statics problem, i. e. a local pressure distribution for a sandpile, leading to

discussions [1, 22–27].

Difficulty about dynamics behavior is linked to the dissipative nature of gran-

3



1. Introduction

Figure 1.3: Examples of dynamics problem: Gravity driven(surface-wave)[2], Vi-
bration(localized oscillation)[3], Rotation(rotation drum)[4],shear[5].

ular systems, made of inelastic collisions or solid and “viscous” friction. However,

the difficulty would be worse without it, since it should introduce developed tur-

bulence directly. To study the dynamics behaviors of granular systems, one shall

inject energy to the systems through gravity, shear, rotation, vibration or other

means[29] (to balance the dissipation). Fig. 1.3 gives several examples for dif-

ferent methods of repulsing or injecting energy. Granular dynamics problems are

fundamental and provide a platform to study the “frontier of modern physics

”[30]. It relates to plasticity of solids, fracture, friction in a complex system.

Obvious examples contain vehicular traffic[31], patterns formation[3, 32], hop-

per flow, convection rolls, diffusion, free cooling, jamming(Fig. 1.4)[6–8], rapid

grain flow, granular gases, compartmentalized granular gases, rotating drum, size

segregation[33, 34], and granular mixture.

There are some review papers about granular materials dynamics[35–43].

In[39], granular materials are explored under three different conditions, i.e. gran-

ular solids, granular liquid and granular gases. These three conditions correspond

4



1. Introduction

Figure 1.4: Jamming phase diagram for attractive particles according to [6, 7]
and discussed in [8].

to classical solids, liquids and gases. Classical theories of solids, liquid and gases

are used to describe behaviors observed in granular materials. For instance, the-

ories of ideal gases are used for the granular gas, and hydrodynamics are adopted

for the granular flow. However, granular media are have some unique properties

which are different from classical ones. As said in[39], it needs to be emphasized

that “any seemingly fluid like behavior of granular matter is a purely dynamics

phenomenon”.

In next section, we discuss the unique features in vibration-driven granular

systems.

1.3 Vibro-fluidized granular materials: Phase

diagram

There are many cases where vibro-fluidized granular materials are used and stud-

ied, such as a single cell vs compartmentalized cell, a mono-type particle vs binary

mixture and so on. In this thesis, the dynamics behavior of a single 2d rectangular

5
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Figure 1.5: Snapshot of vibrated-fluidized granular system in three different vol-
ume fraction from[9]. From right to left, the volume fraction is reduced one by
one.(a) Maximum positive vibrational velocity. (b) Minimum negative vibrational
velocity.

cell containing a single type of particle is investigated, by using both the exper-

imental and simulation approaches. This is a simple and intuitive toy model,

of which phase diagram has been investigated by few teams[44]. However, most

have not been touched on the physics underlying this system, which will be found

in the following.

To begin and summarize all the content in vibro-fluidized granular materials,

it is a good choice to discuss the phase diagram. According to the presence or

absence of gravity field, the discussion on phase diagram can be found in[44]

(Microgravity) and[45](gravity) in particular.

(I),in microgravity. In[9], an experimental study of a vibro-fluidized gran-

ular system in Mini-Texux 5 microgravity is reported. Two kinetic regimes,

homogeneous and clusterized, are presented (shown in Fig. 1.5). Besides, in[44],

authors investigate granular gases in zero-gravity based on 3D molecular dynam-

ics simulation. Four dynamical regimes (Fig. 1.7) are found[10]: gaseous state,

partial clustering, complete clustering, and bouncing aggregates (shown in Fig.

1.7). Phase diagram (r, η) of this four regimes is drawn (Fig. 1.8). r = R/L,

where R is the radius of a particle, L is the box size, η = 4Nπr3/3 is the volume

fraction.

(II), under gravity. The phase diagram is divided into five regimes: bounc-

6



1. Introduction

Figure 1.6: Leidenfrost effect[10, 11].

ing bed, undulations, granular Leidenfrost effect (This special case [10] is shown

in Fig. 1.6 ), convection rolls and granular gases.

In this thesis, we are only interested on the gaseous state for vibrated-fluidized

granular system in micro-gravity (in the 3st and 4nd Chapter) and in various force

field (in 5th Chapter).

1.4 Granular gases (GG)

A highly fluidized granular system is referred as a granular gas[46]. Granular

gases are dilute granular systems. In[47], granular gas is named rapid granular

flow. In such system, most collisions between particles are binary. In the following

part, we discuss the previous studies on granular gases from the experiment and

simulation aspects. The granular gas theory will be discussed and described in

next Chapter.

7
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Figure 1.7: Four dynamics regimes of vibro-fluidized granular system in 3D simu-
lation are shown: (I)gaseous state, (II)partial clustering, (III)complete clustering,
and (IV)bouncing aggregates.

1.4.1 Experiments

There are many experimental methods to study granular gases. Most can be

found in [47]: two dimensions(2D) tracking such as NMR methods (Nuclear Mag-

netic Resonance Imaging)[48], positron emission particle tracking method[49],

video recording system; three dimensions (3D) tracking which can be found in[46].

2D tracking can only obtain the translational movement, while 3D tracking can

record the rotation of each particle[46]. Among all these 2D methods, video

recording system is widely used. Image frames[50] are used to observe two di-

mensional movements of particles. Firstly, particle positions are recorded by high

speed camera, and then movement is calculated by tracking algorithm. Many

tracking methods can be found, for example minimum distance or Kalman filter

algorithm. In the following part, we present some experimental results.

In[50, 51], vibro-fluidized granular system models were investigated at the

earliest. They used digital high speed camera and particle tracking technology

to obtain movements of particles. A Boltzmann distribution was observed in two

8



1. Introduction

components of the velocity: vx and vy. y is the vibration direction. However,

with the advance in technology, a Non-Gaussian distribution is found in many

experiments[52–55]. All those results show the GG velocity distribution is rather

exponential. But the power of exponential distribution is not the same in these

works, which ranges from 1 to 2 ( When the value is 2, it is Gaussian). Comparing

with Gaussian distribution, experimental distribution is higher near the tails

of the velocity profiles. What is remarkable, Gaussian and non-Gaussian are

observed at the same time in[56]; in this case, there are two particle layers confined

in the vertical plane; and the velocity distribution of the upper layer is Gaussian,

while the bottom one is non-Gaussian distribution. It should be stressed here

that most experiments consider that excitation is obtained by vibration, and

that boundary plays the part of a boundary heater; only few works are using

electrostatically driven excitation[57] by vibration.

Besides the study of the velocity distribution function, the studies of collisions

statistics[58], Molecular Chaos, dissipation of driven granular materials are also

investigated in the experiment. Granular system is found different from molec-

ular system since the effective coefficient of restitution is found to have a broad

distribution for the same impact angles. The distribution of the free path and

collision rules are found to deviate from elastic forms. This will be discussed in

detail in Chapter 3.

1.4.2 Simulation on GG

Granular gases are composed of discrete grains. To describe this system, Molec-

ular dynamics simulation, Direct Monte Carlo Simulation, Cellular Automate,

and Brownian Dynamics Simulation are common simulation methods. We will

describe them briefly.

Molecular dynamics simulation (MD simulation) is intuitive. There are the

hard and the soft sphere models. For the Hard sphere Model, a particle is con-

sidered as a rigid body which is not deformable during collision; collisions are

forecast by collision rules from trajectory parameters. For the soft sphere Model,

particles are deformable; Each particle is suffering different forces from surround-

ing particles leading to local deformation. Then one calculates the forces on each

9



1. Introduction

particle and obtain the particle movement. So the force model is critical for Soft

Sphere Mode; among them one can quote the Hooke Model(linear) and Hertz

Model is common force model.

Direct Simulation Monte Carlo (DSMC) method[59] is used to simulate dilute

granular gases. DSMC does not directly describe particle trajectories but lead to

determination the local time-dependent distribution function f(r⃗, v⃗, t) by means

of a quasi-particle simulation[17]. This method is efficient and can simulate much

larger system than Molecular dynamics simulation. But it is only used to simulate

the granular quasi-static state. So it can not be used widely.

Anyway, whatever the simulation method used, a collision model is necessary

to be used and its complexity discussed. In reality, during a collision few micro-

cracks can be generated on a particle that collide, or some attrition or erosion

can happen...; so the process can be quite complex. For sake of simplicity, one

can assume rather simple collision laws, as far as the law is complex enough one

shall expect results similar to real behavior. For instance, postcollision velocity

is calculated from the binary collision theory where the restitution coefficient is

constant. As told already, normal restitution coefficient e is supposed in most

theories and simulation; some others take into account a tangential restitution[60]

, or a random restitution coefficient e or a normal restitution coefficient e that

depends on the relative velocity[61].

For the simulation results, one also can get some exponential-like distributions[62,

63] for vibration-fluidized granular gases which are consistent with experimental

results. Some previous results have been done by R. Liu, whose results are consis-

tent to ours. But they were mainly alone; this is the reason why we undergo the

present PhD work. In [64, 65], Gaussian velocity distribution is found for uniform

thermal heating, and a non-Gaussian velocity distribution (or exponential-like)

or boundary heating. Except for velocity distribution, many simulation works

focus on an interpretation using Hydrodynamic studies[66, 67], but we will come

back to this topic a little further in the next chapter.

10



1. Introduction

Figure 1.8: Phase diagram(γ,η) of Four regimes in Fig. (1.7).

1.5 Study objective and method

If most GG studies concern single cell, others concern also compartmentalized

granular gases.

Experimentally, to obtain granular gases in steady state, it needs to inject

energy continuously to balance the energy dissipation due to inelastic collision.

In most experiments, energy is supplied by the boundary vibration.

To test the particle experimentally, one can try using Positron-Emission Par-

ticle Tracking. However this is a very slow method, which give little information

at each step. It is better then to use particle tracking with fast camera, and

possibly two cameras to get 3D tracking.

To simulate granular gas, there are two simulation methods: Molecular

dynamics and Monte Carlo simulation, which can be found in[17]. In this thesis,

we adopted the event-driven molecular dynamics algorithm, which is explained

in Chap. 4.

1.6 Structure of the dissertation

now the outline of the thesis is presented as following: In Chapter 2, the current

status of granular gases theories are recalled. In Chapter 3, we shall list exper-

11
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imental results of 2D molecular dynamics in micro-gravity environment. In

Chapter 4, the results of 2D molecular of event-driven algorithm are discussed.

In Chapter 5, the experiments of 2D vibrational granular gases in a tilted plane

are explored. In Chapter 6, we will give some open question, discussions and con-

clusions.

12



Chapter 2

Research Progress on Granular

Gases

2.1 Introduction

Because granular matter is characterized by local dissipation, still no satisfactory

theory exists. Most granular theories are obtained from the local equilibrium and

a modeling using continuum matter assumption. However, these ideas are not

valid for the granular matter[68]. So we should restrict our attention to a rigorous

scope of applications where the proposed theories can be valid. Such limits are

not so well-known. In this chapter, we shall brief introduce the kinetic theory

in non equilibrium system and the hydrodynamic equation applied to granular

media.

We start in Sec. 2.2 the solutions of Boltzmann-Enskog equation used for

the homogeneous cooling granular gas. In Sec. 2.3, the hydrodynamics theory

is recalled. Then, we also introduce the hydrodynamics theory used for granular

solids.

2.2 Boltzmann-Enskog Equation

Up to now, theoretical analysis of results [69–73] derived from Boltzmann equa-

tion for smooth inelastic hard spheres (IHS) is scarce. For instance, Wilkinson

13



2. non equilibrium kinetic theory

and Edwards[74] studied the velocity distribution function (Vt) in the steady

state of a Lorentz gas for an independent granular particle moving under grav-

ity in a random array of fixed inelastic hard spheres used as scatters, driven by

gravity[73]. These authors reduce the Boltzmann equation to a Fokker-Planck

equation by assuming the velocity change remains small after collision, or as-

suming little inelasticity. The VDF is obtained in the form, exp(−Av4) with

A ∼ ϵ/g2, where ϵ = (1 + α)(3 − β1)/6, β is empirical coefficients, α is the co-

efficient of restitution. Goldshtein and Shapiro[71] solved the Boltzmann-Enskog

equation for the free evolving IHS(inelastic hard spheres) gas in the homogeneous

cooling state assumption (HCS) by modifying the Chapman-Enskog method, us-

ing an expansion in Sonine polynomials. Esipov and Pöschel [72] obtained the

following expression Aexp(−Av/v0(t)) for VDF , showing the overpopulated tail

of the velocity distribution. Sela and Goldhirsch [75] obtained a perturbation

solution of the nonlinear Boltzmann equation by performing a (double) expan-

sion in the Knudsen number and in the degree of inelasticity, which is used to

explain the Burnett order. Noije and Ernst[73] studied the VDF in the free cool-

ing and the uniformly heated case of IHS by Sonine polynomials based on the

Enskog-Boltzmann equation. Ernst and Brito[76] obtained the solutions for the

homogeneous nonlinear Boltzmann equation applied to inelastic Maxwell models

under three different types of “thermostats” which are used to excite the granular

gas: Gaussian, White noise and gravity field for the non-equilibrium steady state,

So the theoretical results look numerous.

In this chapter, we shall look into the solution of the Boltzmann-Enskog Equa-

tion by an expansion of the case of HCS with a constant restitution coefficient ϵ.

The method of perturbation will not be discussed here.

2.2.1 Chapman-Enskog approach for non-uniform granu-

lar gases

The construction of the normal solution for the Boltzmann equation is based

on an expansion developed by Chapman and Enskog[77]. Its normal solution

is function of the thermodynamic variables which are used to relate the fluxes

to spatial derivatives of the thermodynamic variables. Let fL denote the local
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2. non equilibrium kinetic theory

equilibrium distribution function, i.e. locally Maxwellian:

fL = n(
m

2πκT
)3/2exp[− m

2κT
(v⃗ − u⃗)2] (2.1)

Here n is the number density, u⃗ is the mean flow velocity and T is the tempera-

ture. All the parameters, like the thermodynamic variables, are derived from the

velocity distribution fL. We can replace the velocity distribution f by fL, if these

parameters still can be derived from f by the same form equation. For example,

the number density

n =

∫
d3vfL =

∫
d3vf (2.2)

To get a better estimate of f, one can try to expend f as a function of fL, and

write as in the from:

f = fL(1 + Φ) (2.3)

When Φ = 0, it represents the equilibrium distribution function (so at the 0th

order). For the nonequilibrium case, Φ = Φ(1) + Φ(2) + Φ(2) + .... Then, for the

first approximation, the cooling coefficient ς, and the transport coefficients, η,

κ, µ can be obtained[69, 70, 77]. These parameters are in turn functions of the

temperature, density and the microscopic parameters such as the size and mass

of the particle and of the restitution coefficient. The hydrodynamic equations are

completed.

We go further through an other step which is described in the next subsection.

2.2.2 Boltzmann-Enskog Equation and Sonine polynomial

expansion for the homogeneous cooling gas

The Sonine polynomials is also called associated Laguerre polynomials. In the

literature it is a technique used to solve the Boltzmann-Ensog equation through

a set of approximations, which will be related now. This concerns the peculiar

case of the homogeneous cooling state(HCS); it is assumed that, the velocity

field vanishes after a long time, and the density n and the temperature T (t) are

spatially homogeneous, while the temperature decays in time[78].

To begin, we consider nonlinear Boltzmann equation for inelastic hard spheres.
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2. non equilibrium kinetic theory

There exist many ways to derive the Boltzmann equation[70, 78–80]. Here, the

reference[70] is adopted. So the velocity distribution for an inelastic gas is:

∂

∂t
f(v⃗1, t) = σ2

∫
dv⃗2

∫
e⃗Θ(−v⃗12·e⃗)|v⃗12·e⃗|×[χf(v⃗1

”, t)f(v⃗2
”, t)−f(v⃗1, t)f(v⃗2, t)] ≡ I(f, f)

(2.4)

where f(v⃗1,t) is the velocity distribution of particles with velocity v⃗1, e⃗ is the unit

vector between the colliding pair of particles,v⃗12 is the particles relative velocity

(v⃗12 ≡ v⃗1 − v⃗2, σ is distance between the colliding pair of particles); χ = 1
ϵ2

for

the case the restitution coefficient ϵ = const. I(f, f) is the collision integral, f is

the velocity distribution function. Θ is the Heaviside step-function,

Θ(x) ≡
{

1 for x ≥ 0,

0 for x < 0.
(2.5)

Here, two approximations or hypothesis are used: (i) Binary collision is assumed.

Three-body collision or more-bodies effects are ignored. (ii) The two-particle

distribution function f(v⃗1, v⃗2, r⃗12, t) is replaced by the product of two one-particle

distribution f(v⃗1, t) and f(v⃗2, t), i.e; no correlation effect between particles. This

is called the hypothesis of molecular chaos or Stoβzahlansatz. Enskog[69] suggests

an approximation which accounts for a global homogeneous finite-volume effects;

then the Boltzmann equation (2.4) changes to Boltzmann-Enskog equation:

∂

∂t
f(v⃗1, t) = g2(σ)I(f, f) (2.6)

g2(σ) is the contact value of the equilibrium pair correlation function. In the

slightly inelastic ϵ . 1, the velocity distribution can be scaled by the following

form[72]:

f(v⃗1, t) =
n

v3T (t)
f̃(

v⃗

vT (t)
) =

n

v3T (t)
f̃(c⃗) (2.7)

with the scaled velocity c⃗ ≡ v⃗/vT (t). The thermal velocity vT (t) is defined by

T (t) = 1
2
mv2T (t).
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2. non equilibrium kinetic theory

With Eq.(2.7), ∂
∂t
f(v⃗1, t) can be expressed as:

∂

∂t
f(v⃗1, t) = (−3n

v4T
f̃(c⃗1) +

n

v3T

∂f̃

∂c⃗1

∂c⃗1
∂vT

)
dvT
dt

(2.8)

The collision integral may be written as

I(f, f) ≡ σ2n2vT Ĩ(f̃ , f̃) (2.9)

Using the time decay rate, f̃ satisfies the following equation:

µ2

3
(3 + c1

∂

∂c1
)f̃(c⃗1) = Ĩ(f̃ , f̃) (2.10)

In this situation, a closed Gaussian distribution for f̃(c⃗1) is expected. We

seek for the solution of Eq.(2.10) using the Sonine polynomials. A systematic

approximation of the isotropic function f̃(c⃗1) can be found by expanding in a set

of Sonine polynomials, i.e.

f̃(c⃗1) = ϕ(c)[1 +
∞∑

p=1

apSp(c
2)] (2.11)

where

ϕ(c) ≡ π−3/2exp(−c2) (2.12)

is the Gaussian distribution for the scaled velocity c⃗. The set of Sp satisfies the

orthogonality relations

∫
dcϕ(c)Sp(c

2)Sp
′ (c2) = δpp′Np (2.13)

δpp′ is the Kronecker delta and N is a normalization constant. The first few Sonine

polynomials are

S0 = 1 (2.14)

S1 = −x+
1

2
d (2.15)
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2. non equilibrium kinetic theory

S2 =
1

2
x2 − 1

2
(d+ 2)x+

1

8
d(d+ 2) (2.16)

where d is the space dimensionality. The coefficients ap are polynomial moments

of the scaling function:

ap =
1

Np

∫
dcSp′ (c

2)f̃(c) (2.17)

Now that the velocity distribution with small inelasticity is obtained, one can use

Eq. (2.11) when the distribution is essentially a Maxwell distribution (exp(−v2/v20))

and if the series of Sonine polynomials converges rapidly. This means also that

the whole set of approximations done to write Eq. 2.11 is correct.

An other question is to describe the tails of the distribution. This is described

in the next subsection.

2.2.3 High energy tail

In the previous section, the velocity distribution is assumed Maxwell distribution

(exp − [v/v0]
2). However, the velocity distribution in granular gas differs from

the Maxwell distribution in the low and high velocity part. In [72], an exponen-

tial velocity distribution function is predicted. For the large negative and large

positive velocity part, this is called a velocity tail which is overpopulated (or over-

populated velocity tail), because exp(−v/v0) decreases slower than exp− [v/v0]
2

at sufficiently large v. Hence, this needs to compare the asymptotic forms of the

velocity distribution function(VDF) with the corresponding form of the Gaussian

distribution, using a log-linear plot for instance.

For the low velocity part, the behavior of the kurtosis or some higher cumu-

lants have to be studied. Here, we recall the work in ref. [72], starting from Eq.

2.9. So, in (Eq.2.9), the collision integral is

Ĩ(f̃ , f̃) =

∫
dc⃗2

∫
de⃗(−c⃗12·e⃗)|c⃗12·e⃗|×[

1

ϵ2
f(v⃗1

”, t)f(v⃗2
”, t)−f(v⃗1, t)f(v⃗2, t)] (2.18)

=

∫
dc⃗2

∫
de⃗(−c⃗12·e⃗)|c⃗12·e⃗|×

1

ϵ2
f(v⃗1

”, t)f(v⃗2
”, t)−

∫
dc⃗2

∫
de⃗(−c⃗12·e⃗)|c⃗12·e⃗|×f(v⃗1, t)f(v⃗2, t)

(2.19)

So we have to evaluate when c1 >> 1, and c⃗12 ≈ c⃗1. Moreover, the contri-
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bution to the high velocity from the first term of (Eq.2.19) is small. So the first

term of (Eq.2.19) can be neglected. Using the normalization

∫
f̃(c⃗2)dc⃗2 = 1 (2.20)

and the integral

∫
de⃗Θ(−c⃗1 · e⃗)| − c⃗1 · e⃗| =

∫ 2π

0

dφ

∫ π

π/2

sinθcosθdθ = π (2.21)

The collision integral can be written:

Ĩ(f̃ , f̃) ≈ −πc1f̃(c⃗1) (2.22)

Then, with Eq (2.22), Eq (2.10) reduces to :

µ2f̃(c⃗1) +
1

3
µ2c1

d

dc1
f̃(c⃗1) = −πc1f̃(c⃗1) (2.23)

For c1 >> 1, we obtain
df̃

dc
= −3π

µ2

f̃ (2.24)

The velocity distribution becomes finally:

f̃(c) = Aexp(−3π

µ2

c) (2.25)

Comparing with the Maxwell distribution exp(−c2), the overpopulation of the

high velocity occurs when the coefficient of the exponentials i. e. (−3π
µ2
c) in Eq.

(2.25) is larger than −c2. Since µ2 introduces a factor 1− ϵ2, the overpopulation

takes place for c & 1/(1 − ϵ2). Brey et al.[81] find this theory agrees well with

the simulation results. They use it for the homogeneous cooling state theory.

In the case of experiments, one finds an exponential velocity distribution in

the case of dilute granular gas experiment in micro-gravity[82]. More, Losert[52]

presents the experimental velocity distributions described by exp(−|v/vc|1.5 for

a large range of parameters.

From experiments from our team, we found exp−v/vo distribution in the low
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2. Hydrodynamic theory

density regime[82, 83]. However, it is not needed to discuss further these tails ,

since we will have to discuss other more surprising results in this dissertation. So

we come now to the description using hydrodynamics modeling.

2.3 Hydrodynamic theory

The hydrodynamics equations for a gas of hard spheres with dissipative dynamics

can be derived from the Boltzmann equation. We follow [84].

Granular gas is treated as a continuum of matter[85]. Though there is a

great difference between granular systems and simple fluid, we can consider this

approximation as valid, at least in a first step, and find the statistical limit with

the condition of small spatial gradients of temperature and density everywhere.

Then, this allows to write the Granular Gas satisfies four conditions: (i).∇⃗T ∼ T
L
,

L ≫ l, where L is the characteristic lengths, l is the mean free path. This point

ensures the slightly spatial gradient of the temperature. (ii) The same as (i) for

the number density. ∇⃗N ∼ N
L
, L ≫ l. (iii) The velocity of macroscopic flow

u⃗ ≪
√
< v2 > ∼

√
T . (iv). The characteristic time τc ≪ L/u.

Since the system preserves the conservation of mass and momentum for the

granular matter, the balance equations for the mass and momentum still hold

on. We need another equation to close the problem. This one corresponds to the

energy (temperature) change. We need to add an energy sink term every where

in the sample to mimic the energy losses. Then the hydrodynamic equation for

the granular gas can be obtained:

∂n

∂t
+ ∇⃗ · (nu⃗) = 0 (2.26)

∂u⃗

∂t
+ u⃗ · ∇⃗u⃗+ (nm)−1∇⃗ · P̂ = 0 (2.27)

∂T

∂t
+ u⃗ · ∇⃗T +

2

3n
(P̂ : ∇⃗u⃗+ ∇⃗ · q⃗) + ζT = 0 (2.28)

Here, n(r⃗, t) is the local number density field , u⃗(r⃗, t) is the local average velocity

field, or the local flow velocity, T (r⃗, t) is the temperature field, P̂(r⃗, t) is the

pressure tensor, m is the mass, ζ(r⃗, t) is the cooling coefficient.
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2. Hydrodynamic theory

For the steady state, since u⃗(r⃗, t) = 0 and all parameters are not changing

with time(steady state), these equations can be written in the form

∇ · P̂ = 0

2

3n
∇⃗ · q⃗ + ζT = 0

This is the hydrodynamic model for granular gas. However, the question whether

this hydrodynamics modeling applies really to granular media or not is still the

center of current debate[12, 86].

2.3.1 The pressure

The kinetic definition of the pressure tensor[70] is:

P̂(r⃗, t) ≡
∫

m(v⃗ − u⃗)(v⃗ − u⃗)f(r⃗, v⃗, t)dv⃗ (2.29)

where u is the mean flow and v is the speed of gas particles. P is a scalar because

pressure is assumed isotropic. However P can be a diagonal stress tensor in an

adequate frame when the gas is anisotropic, with different values of the diagonal

terms. (It is isotropic only when diagonal terms are equal[12, 70].

Anyway, pressure is the transport of momentum since it is the flow of the

relative moment m(v − u).

If one considers the Navier-Stokes approximation, the pressure tensor can be

written

Pij = pδij − η(∇iuj +∇jui −
2

d
δij∇ · u⃗) (2.30)

where p = nkBT is the hydrostatic pressure, η is the shear viscosity. For the

steady state, the above equation reduces to the classical equation p = constant.

There are two mechanisms involved in the transport of momentum: (i) The

movements of free particles lead to the momentum transfer. Here, “free” means

that no collision happened in between the particles during the considered time

T . (ii) the collision process participate to the transport of momentum. For the

dilute granular gas, the frequency of collision can be neglected, assuming that

the time T is negligible. However, this is not true for non-dilute and inelastic
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Figure 2.1: Profiles of the diagonal components of the pressure tensor Pii in the
steady state for α = 0.95. The solid line is the calculated hydrodynamic pressure
p. Tw is the temperature of the wall in x direction with a periodic excitation
boundary condition in y direction[12].

granular gas, such as, when strong dissipation occurs in the dilute granular gas, or

when one considers slightly inelastic granular matter with intermediate density;

in such cases, the collision effect cannot be neglected.

Fig. 2.1 of [67] shows, the diagonal components of the pressure tensor Pii

in the steady state. Pii was expected to be isotropic and constant from the

hydrodynamics modeling; it is neither isotropic, nor constant, nor even linear.

Ref.[12]simulates a granular gas, which is generated using sawtooth driving..

But unlike [67], the collision process is added into the pressure tensor; in this

case one gets Fig. 2.2. Here, ρTx is Pxx, and σxx is calculated from two parts:(i)

one is the kinetic part which is the same with the Pii(Eq.2.29). (ii)The other is

interactions between the particles. This part gives

σint
ij (r, t) =

1

∆t

1

|Vr|
∑

tn

∑
knl

kn
i (tn)∆pknj (tn) (2.31)

where lki is the half distance between the colliding pairs (when masses are equal),

∆pknj (tn) is the jth component of the change of momentum of particle k during

this collision. Vr is the small volume element located at r = (x, y). ∆t is the

small time element [t−∆t, t]. This statistical method uses the method of coarse
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Figure 2.2: Spatial profiles of the stress tensor components σxx, σyy, ρTx, ρTy.
Here ρT is the “ hydrostatic pressure”, σxx is the stress tensor which is described
above. The restitution coefficient e = 0.9, the box size is 50 ∗ 25. N = 240,
particle diameter d = 1.

grain measurement[87]. We can observed from (Fig. 2.2), that the stress tensor

(the pressure tensor) in the vibrating direction is linear in a large part of the cell,

which makes the “ pressure tensor” satisfied (Eq. 2.30).

It seems Eq.2.27 still holds for strong dissipation when the second mechanism

is considered[12].

2.3.2 The temperature

For a homogeneous flow, the temperature is defined as:

∫
1

2
mv2f(v⃗, t)dv⃗ =

3

2
nT (2.32)

when mean of v is 0. However, the concept of temperature in granular matter

remains controversial[88–90]. This concept has been used since 1978 at least[91]

to measure the velocity fluctuations in the granular gas. Temperature is a concept

of equilibrium system. However, we know that granular system already deviate

from equilibrium thermodynamics state due to the dissipation of inelastic collision

and energy input, and due to memory effect. A typical example where the tem-

perature concept broken is found for mixture of two kinds of particles[92]. Also,
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2. Hydrodynamic theory

Evesque[88] question whether the vibrator is generating or not a “ thermal agita-

tion” but some “ velocity agitation”. In other words, does the exciting boundary

play the part of a “ velostat”[93]. In a simple approach, he demonstrates that

granular gases violate the classic laws of the kinetic theory of gas.

Baldassarri[89] discusses the thermodynamical concepts, especially the tem-

perature concept based on the fluctuation-dissipation theorem, in different cases:

dense, liquid-like and gas-like behaviors of granular media. However, the very

possibility of consistently constructing a thermodynamics is doubtful due to the

energy lost.

Some other papers also doubt about the granular temperature [40, 94]. Some

others try to avoid to use this concept in their theory[95].

Anyway, now we introduce the temperature of the granular gas. In a steady

state[12], the total kinetic energy fluctuates with space and time around a time-

independent mean value. Assuming the velocity distribution is f(r⃗, v⃗), two com-

ponents granular temperature(2D) are defined:

Ti=x,y(r⃗) =
m

ρ

∫

R

dvx

∫

R

dvyf(r⃗, v⃗)(vi − Ui(r⃗))
2 (2.33)

where R stands for the small cell volume located at r⃗, ρ is the particle density,

Ui(r⃗) is the mean velocity field:

U⃗(r⃗) =
1

ρ(r⃗)

∫

R

dvx

∫

R

dvyf(r⃗, v⃗)v⃗ (2.34)

Total temperature is T (r⃗) = [Tx(r⃗) + Ty(r⃗)]/2. Ui(r⃗) = 0 in the stationary

state, hence, the temperature is obtained succinctly, like Tx =<
∑

(v2x) >.

We shall note at this stage that time average of these variables has to be

defined, which may be difficult in the case discussed in the present dissertation

(see Chap. 3 and 4). But we shall stop here the discussion. Next focuses on the

hypotheses which are used for deriving the above equation.
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2. A stochastic model

2.4 A stochastic model

In this section we mention other modeling which looks easier, compared to the

previous ones for which correct description is questionable too, and whose so-

lutions are difficult to obtain, for instance as the exact solution of Boltzmann

equation. So in[96, 97], a solvable stochastic model of dissipative granular gases

was introduced with a granular gas heated by a bath from below. The papers

presume that each particle is only described by its energy and its momentum and

that spatial variables are eliminated. Using an inelastic collision, the stochastic

evolution of the particle energy is given. Finally, the papers find the high tail of

the energy distribution, which is exponential distribution.

Question remains: can we make such crude assumptions and hope still to be

correct and describe the real complexity.

2.5 Granular Solid Hydrodynamics

We turn now to an other attempt to a new description for granular system called

the Granular Solid Hydrodynamics (GSH). It has been developed by Mario Liu

and Yimin Jiang[98] starting from classical thermodynamics principle and tempt-

ing to generalise them to system out of thermal equilibrium, in the Prigogine

flavour. So, in this part, we recall main points of this GSH theory.

In classical thermodynamics, a system out of equilibrium but in local equilib-

rium, which flows J and the set of forces X satisfied the linear relationship of the

kind:

Jk =
∑

l

LklXl (2.35)

as shown by Onsager. Here Xl = −(∂∆S
∂α

), Jk = dα
dt
, S is the entropy and α is

the fluctuation. The proportionality coefficients between flows J and forces X

are denoted by L. For example, the Fourier Law expresses the linear relation

between heat flux and gradient of temperature. There are three limits for the

proportionality coefficients Lkl. Firstly, the second law of thermodynamics makes

Lkl to be a positive definite matrix. Secondly, Curie-Prigogine principle gives the

spacial limit for Lkl. Thirdly, Onsager[99] obtained the symmetry of the matrix,
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2. Granular Solid Hydrodynamics

Lkl = Llk based on the time reversibility of microscopic dynamics. To apply

Onsager reciprocity relation to granular media, it is not obvious. Paper[98] is

a model approximation[98] to be used for granular media. But, due to inelastic

collision, the dynamics is indeed irreversible. So the approximation is as crude

as the assumption of local equilibrium which is used in granular matter in the

all the above sections. This needs to be recalled as an advertisement before the

description of the model.

Here, we firstly discuss the strain field of granular matter. There are two

parts of strains according to classic mechanic point of view: ϵij = uij + pij, where

ϵij is the total strain, uij is the elastic strain and pij is plastic one. The elastic

one uij is reversible and pij is non reversible. We denote σij is the total stress,

πij is the stress part due to elastic strain. ∂t(ρvi) + ∇jπij = 0. The granular

system can reach a state ∂tϵij = 0 if running enough time, otherwise we shall

note ∂tϵij = ∂tuij +∂tpij. So we obtain ∂tpij = −∂tuij. In granular gas the elastic

part ∂uij shall relax due to dissipation after a long time, nd the stress shall go

to 0, according to some finite relaxation time. So ∂tuij = −uij/τ , and τ is a

constant and
∫
(uij/τ)dt ≈ 0.

2.5.1 Macroscopic relations:

In the second step, granular temperature, granular entropy and the free energy

shall be described.

i) Granular temperature is firstly introduced by[85]. It comes directly from

the analogy with a molecular gas, i. e. Tg = wkin. So we shall obtain Tg ≡
∂wkin/∂sg ∼ ∂Tg/∂sg, sg ∼ lnTg.

ii) It is assumed that the conserved energy density w is related to the entropy

s, to the mass ρ, and to the momentum gi, so w(s, ρ, gi). For simplicity, w can be

separated: w(s, ρ, gi) = w0(s, ρ)+g2i /(2ρ). Here, w0 is energy in the frame at rest.

For a granular medium, we shall assume that strain is independent to density. Or

in other words, density can change with the same deformation(uij).So we need to

add a new variable for w0, w0(s, ρ, uij). So w0(s, ρ, uij) = Tds+ µdρ− πijduij.

Looking from another way, all the microscopic is generally subsumed as a
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2. Granular Solid Hydrodynamics

global variable. Let us consider Tds, so dw0 = Td(s− sg) + Tgdsg = Tds+ (Tg −
T )dsg. The free energy is defined as f ≡ w0 − Ts. When sg = 0, the system

is in equilibrium and the free energy reaches a minimum. We can expand this

quantity using Taylor expansion at sg = 0, so

f = f0(T ) + s2g/(2bρ) (2.36)

where b is material parameter.

∂f/∂T = Tg − T = sg/(bρ) (2.37)

We also define T̄g = Tg − T , so,

f̃(T, T̄g) = f0(T )− bρT̄g
2
/2 (2.38)

Where f̃ is the potential obtained from Legendre transformation.

iii) granular entropy. we also introduce the granular entropy sg in the following

way. The movement of grains can be divided into two parts: the large-scaled

smooth velocity and small-scaled mesoscopic one. The first one is the so-called

“hydrodynamic variable” of , i.e. the “macroscopic” local velocity and the second

one corresponds to the stochastic motion of grains. We use a granular temperature

Tg to describe the second part. Tg is based on the transiently elastic granular

matter. From the granular temperature concept, a granular entropy should be

defined. The equation of variation for sg should contain a convective and a

diffusive term.

−∂sg = ∇i[sgvi − kg∇iT̄g] + γT̄g (2.39)

2.5.2 GSH set of equations:

The third step needs to complete GSH equations. There are three parts:

i)The motion equation of the state variable:

dtρ = −ρvkk (2.40)
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2. Granular Solid Hydrodynamics

dtϑ =
R

ρT
+

∇kfk
ρ

(2.41)

dtvi = gi −∇j
σij

ρ
(2.42)

dtuij = vij − uij∇jvk − ujk∇ivk −
∇jYi +∇iYj

2
+ Yij (2.43)

dtσg =
Rg

ρTg

+
∇kf

2
k

ρ
− I

ρ
(2.44)

This set of Eq. (2.40 to 2.44) contains the continuity equation, Newton equation,

the entropy law parts and the strain geometric equations with dissipation.

ii) Energetics identical equation and Onsager relations : stress, thermal en-

tropy and granular entropy production.

σij = ρ2µ1δij + πij − 2uikπkj − σ
(1)
ij − σ

(2)
ij (2.45)

R = fk∇kT + σ
(1)
ij vij + YI∇jπij + Yijπij + ITg (2.46)

Rg = f
(2)
k ∇kTk + σ

(2)
ij vij (2.47)

Elastic stress, chemical potential, two entropy energetics identical equations:

πij = −ρ
∂F

∂uij

, µ1 =
∂F

ρ
, ϑ =

∂F

T
, ϑg =

∂F

Tg

(2.48)

Onsager relation:

fi = κ∇iTg (2.49)

σ
(1)
ij = ηv∗ij + ζvkkδij + αsπ

∗
ij + αvπkkδij (2.50)

Yi = β∇kπik (2.51)

Yij = −αsv
∗
ij − αvvkkδij + λsπ

∗
ij + λvπkkδij (2.52)

I = γTg (2.53)

f 2
i = κ2∇iTg (2.54)

δ
(2)
ij = η2v

∗
ij + ζ2vkkδij (2.55)
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2. Granular Solid Hydrodynamics

iii) The free energy :

F = CT + B
∆

ρ
(
2

5
∆2 +

1

ξ
u2
s)−

b

2
T 2
g (2.56)

So, this is the way to introduce the granular entropy sg, based on the Onsager

relations, GSH equations. It contains three parts: the equation of motion of state

variables, Onsager relations, the material model.

2.6 Discussion

In conclusion, there are still no satisfying theories which can describe granular

gases except for under conditions of near-elastic and low volume fraction. Gran-

ular gases are unique and need to be treated carefully. This is what we want

to demonstrate with this dissertation. The following Chapters will present our

results in micro-gravity; this will show that the granular gases characteristics do

not obey the classical theory, and that the pressure itself is not isotropic, nor

so simple to define. While in Chap. 5, experiments will be conducted in a 2D

horizontal experimental set-up. Their results will show up similar behaviors, con-

firming the discrepancy. The rest of this chapter 5 is dedicated to experiments

using 2D inclined setup study the changes linked to small gravity effect, and their

changes with the effective gravity. We report in Chapter 4, 2D simulations in 0g

which were undergone to conclude on the validity of these discrepancies; they will

show that normal gas behavior can be reproduced when dissipation by collision is

reduced to zero, but that the discrepancies appear as soon as dissipation increases

from (1 − e) = 0 to some small value. Moreover, we will demonstrate that our

experimental results in 0g can be reproduced by appropriate values of effective

collision losses, and that all these data depend on the real motion and excitation

at boundaries. This confirm previous 3D results from R.Liu simulations in his

stay at ECP.
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Chapter 3

Experimental results on vibrated

granular matter in micro-gravity

3.1 Introduction

3.1.1 Historical background

The advantages to study experimentally granular materials under microgravity

are liked to the removing of the effects of gravity, to void the concentration of

grains on the bottom side and then avoiding the friction between particles and

the baseboard. A model of 2D vibrating granular gases is perhaps simplified,

but microgravity condition is so hard to achieve, that it may be used as a first

step. As a matter this was not the first step for the French team (P. Evesque,

Y. Garrabos, E.Falcon and S.Fauve for which first flight was 1998)) nor for the

Chinese one (M.Hou, P.Evesque, satellite in 2006); but the topic is so hard to

understand. This topic is found necessary to restart with a simplified 2D devise.

There are only several methods to obtain a microgravity circumstance. They

all use free-fall concept, but the technique can be different: the easier and more

expensive, is to use rocket or satellite flight out of earth atmosphere, or free-fall

flight from a tower or in a mine. A third one is to use a plane as the A300-0g of

Novespace, and to undertake parabolic flight, where the pilot adjusting the engine

power to counter balance the aerodynamic forces. Here are some references, for

experiment in outerspace[9, 82] or in the Airbus parabolic flight experiment[13,
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3. Airbus experiment

100], a last one is the magnetic field[57] using diamagnetic materials to counter

balance gravitation, but this last method can not work on a whole volume, but

only on a small surface. So, the experimental results in microgravity are scarce.

Falcon[9] et al. firstly reported what the authors considered at that time as cluster

formation of a granular medium, fluidized by vibration in low gravity. In fact, it

took a long time to understand the real meaning of the results, since repeating

the experiments in such conditions is hard and asking the good questions is hard

too. This led the French team to perform a series of experiments using rockets

(MiniTexus 5, Maxus 5, Maxus 7) and parabolic flight (from 2000 to 2011).

At this stage it is worth mentioning also other pioneering space experiments

such as the series of triaxial test experiment made by NASA to characterize

the behavior of pile under low compression and “low” density conditions, which

required to use the space shuttle to generate constant, long time stability of

microgravity.

Coming back to granular gas physics, common spatial French-Chinese project

has allowed Hou and Leconte[82, 83] et al. investigated the velocity distribution

of vibration granular gas in Knudsen regime in micro-gravity. An exponential

distribution, i.e. exp(−v/vo), was found in directions parallel and perpendic-

ular to vibrating direction through few different studies[83]. An other group

Grasselli[100] et al. also studied the free cooling process in a vibrated granular

matter in micro-gravity with Airbus where it was found that the energy decay

was much faster than the theoretical predictions. In this chapter[13, 101, 102], we

present some small part of the experiments performed with Airbus. They concern

the 28/3/2006 Airbus flight of the ESA campaign, which was the first Chinese

French Airbus campaign on granular matter, starting the collaboration through

VIP-Gran ESA Topical team. This happened as following: At the end of 2005,

O. Minster (ESA) went and visited China, explaining ESA activities. This leads

Prof Hou to e-mail Dr Evesque late in December about some possible advice for

their next experiment on satellite (Sept.2006). After some discussion in between

Christmas and the new year, the idea of collaboration was set up with the filling

of few cells in “SJ-8”. Esa supported this idea inviting the Chinese team to its

next Airbus campaign.

It is then remarkable that this first collaborative experiment was so much
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fruitful, as we will discuss in this chapter 3. However, this appeared obvious

only on 2009, after the R.Liu’s simulations, which were found to be supported

by these Airbus experimental data. We shall remind also that it has not been

the only surprise we got during this investigation, among which we shall quote:

(i) the behaviour of dense systems in “SJ-8” which do not move (we thought

at the beginning it was an artefact, but it was not as discussed in the film “un

chercheur-une manip” at the Palais de la Découverte (February-April 2008, in

French); we have been surprised also by the exponential distribution we got in

Knudsen regime, and by the behaviour of 1 or 2 particles whose motion becomes

coherent with the cell motion (i.e. merely locked in phase) at large amplitude of

vibration; this shows a strong diminution of the phase space dimensionality.

3.1.2 Micro-gravity experiment

This Chapter reports on our experimental observations obtained in Airbus of

Novespace (2006 Campaign) in a 2D vibro-fluidized granular system. This ex-

periment was developed by CNES and performed in collaboration with Yves

Garrabos’ group. It was part of a larger series of experiments, starting with the

investigation of 1-ball behavior,..., to achieve correct definition for next experi-

ment to be flown under ISS or Chinese satellite. It turns out that we need to

focus on this special experiment made (in 2006) because it shows different and

important results, as detailed below. Indeed the understanding of the importance

of these experiments came much later than 2006, i.e. about 2010, after the PhD

long stay of R. Liu at ECP and after the results he obtained there.

In this experiment, the particle velocity distributions are obtained in both x

and y directions, globally and locally. It is found that the probability distributions

of velocities both along (vy) and perpendicular to (vx) the vibration direction are

exponential and symmetric, when taking into account all the particles. However,

when the particles are divided into different long bins, the length of which are

oriented perpendicular to the vibration direction, the local velocity distribution

of (vy) is found to deviate measurably from a symmetric one. Considering that

the distributions of local velocities are asymmetric, we measure the “hydrody-

namic” profiles for positive and negative components in accordance with the sign
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of velocity components. It is found these two components, positive and negative,

of py, ny and Ty differ not only at the boundary layer but also in the whole cell.

This demonstrates the long effect of the combination of boundary excitation and

of dissipation. But, besides the extensive boundary effect, particles are found to

be inhomogeneous distributed and the distribution of particles depends also on

the direction v of motion but also on the way (+v vs. −v). So we had to define

not only a granular temperature or a granular pressure, which depends on the

considered way (+ or −). It means in other word, that the granular tempera-

ture (pressure) is no more a symmetric tensor but a asymmetric one (with some

anisotropy between x and y)

The outline of this Chapter 3. is as follows: firstly, we present the experimental

method, we then show the local velocity distributions, which are asymmetric in

the y direction; finally, local hydrodynamic parameters are investigated. Table

3.1 reports the experimental vibration parameters, as a function of the time at

which each parabola happened. The micro gravity duration is 20s for each, with

some larger g-jitter at the beginning and at the end, so that we used only the

16 s of middle for which we can consider gravity = (0.00 ± 0.05)g about. We

repeated experiments twice, one to follow the grains during the whole parabolic

with 30 fps (frame per second), the other one using the fast camera at 1MPixels

resolution with 499 fps with a 1s interval recording. Only this last one was used

to extract speed and position information with time. The recorded time in the

fast mode was only 1s, that limited the number of the data series. The cell used

is made of 4 cells. Only the dynamics of the two top of these cells containing

either 47 or 63 bronze balls, were investigated. These cells are recombined like

in Fig. 3.1. Their dynamics were recorded at the same time, but were studied

independently.

3.2 Experimental Setup

In this section, the experimental method is presented. A quasi-2D quadrate cell

(side walls in aluminum, front and back walls in glass, V=10mm *10mm *1.4

mm) containing several bronze spheres is driven in y direction by a sinusoidal

oscillating shaker. A snapshot is shown in Fig.3.1. The diameter of the bronze
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Time f (Hz) A (mm) Γ (m/s2) Vω (m/s)
10H12 49 0.2275 21.6 0.07
10H21 97 0.07329 27.22 0.04
10H24 97 0.1111 41.28 0.07
10H27 49 0.1237 11.7 0.038
11H03 97 0.1443 53.60 0.087
11H20 97 0.0792 29.42 0.048
11H26 126 0.08386 52.56 0.066
11H44 39 0.18347 11.01 0.0449

Table 3.1: The driving parameters in the Airbus experiment (28/03/2006). Here,
notations (A, Vω,Γ, f) to represent amplitude, vibrating peak velocity, accelera-
tion and frequency, respectively.

spheres is 1.21mm ± 0.02mm. The spheres can rotate in three dimensions but

only have two dimensional translational motions.

The cell is fixed on a V455 LDS shaker, which vibrates in the y direction.

The vibration controller is the same as the one in previous works [82]. The

movement of the beads is recorded by a fast camera (499 fps). The LEDs are

mounted in the reverse side of the cell to increase the contrast between beads

and the background. The experiments are performed for 30 parabolic flights in

a 2-hour Campaign. Each parabolic flight has about 20s for micro-gravity (0.0

g± 0.05 g). Within the 20s of each parabolic flight only one second is recorded

by the fast camera. The resolution of the cell image is 288 pixel* 288 pixel,

i.e. 1 pixel= 0.035mm. In this dissertation, several sets of data with different

vibrating conditions were selected to be studied; they are listed in Table(3.1).

We use notations (A, Vω,Γ, f) to represent amplitude, vibrating peak velocity,

acceleration and frequency, respectively.

In the table all the parameters are determined by image analysis using the

software ImageJ. Images recorded by the fast camera are firstly processed to get

the positions of bead centers, which are calculated through the ultimate eroded

points(UEPs) in the Euclidean distance map(EDM). Afterwards, particles are

tracked using the program of minimum-distance algorithm. Since our system has

moderate number density, the spheres can not move extensively, the minimum-

distance algorithm can work well in our case. The accuracy obtained in this way
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Figure 3.1: Snapshot of the two top cell particles. The cell contains 47
and 63 bronze sphere particles, driven in the y direction at various vibration
parameters(A, Vω,Γ, f), which is listed in the table(3.1).

reaches 0.01mm. The particle velocities are obtained from 499 image sequences

within 1 second; it means also a speed accuracy of 5- 10mm/s.

3.3 Velocity distribution function

3.3.1 The global velocity distribution function

Warr et al.[103] first measured the velocity distribution function using a high

speed camera. Due to technical limitations, deviations from a Gaussian was not

shown. Over time and the development of the experimental technique, a stretched

exponential law was reported by other teams afterwards. That means:

P (v) ∝ exp(−|v/v0|ν) (3.1)

where ν is a parameter[54, 55], that depends on the author. In particular, ν is

found close to 3/2 in experiments[52, 53, 104].

As far as we know, there are several factors influencing the shape of the

velocity distribution which have been discussed in the previous works: the heating

mechanism, the number density (the area fraction), the restitution coefficient, the

granular temperature (the vibration parameter), the ratio between the average
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number of heating and the average number of collisions in the granular gas q =

NH/NC . Factors such as the number density and the restitution coefficient will

be discussed in the next chapter since it is easier to study them from simulations.

We shall discuss the other factors in the following part.

We first look at the heating mechanism[105, 106]. To describe a vibrating

granular system, the heating mechanism must be specified for several reasons.

Granular materials characterize kinetic-energy dissipation. This requires contin-

uous energy injection to sustain a steady state. Accordingly, heating mechanism

(energy input) is crucial for studying the granular system. Under different heat-

ing mechanisms, the systems yield different results[56, 64]. In [56], results of

two kinds of particle, segregated in two layers, and vibrated vertically are dis-

played for a wide variety of driving and density parameters. The heavier balls,

which lay on first layer, which are directly driven by the vibrator, shows non-

Gaussian velocity distribution, whereas in the second layer, lighter ball overlayed

on top of heavier-balls and are driven by the heavy-ball layer ; these lighter balls

exhibit more Gaussian statistics. In [64], they found Gaussian distribution for

the uniform heating and non-Gaussian velocity for boundary heating. In [12],

the velocity distributions of particles in the center area of the box seems more

Gaussian-like than the results of particles in the entire box.

In [53], the shape of the distribution does not change when varying the number

density from the average aerial density. Note that in these experiments, velocity

distribution is measured only in a rectangular window which is located in the

middle of the cell. The simulation results of [12] show a value of the exponent ν

which is independent of the global area fraction. However, in[107], the experimen-

tal results indicates that, the velocity distribution curves deviate from Gaussian

when increasing the number density of particles. Then, it seem conflicting results.

We believe this conflict derived from the boundary effect since reference [53] does

not consider the boundary area but the paper [107] does consider it.

In our work here, the local velocity distribution will be used to understand

the importance of the boundary layer.

The value of the exponent ν seems to depend on the restitution coefficient e,

and falls in the range 1.2 < ν < 1.6 [63]. In [108], a random restitution coeffi-

cient model is proposed. Rouyer et al.[53] found the distribution was determined
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Figure 3.2: The global velocity distributions of different components vx and vy.
Here, y is the vibration direction. vx is scaled by vxc (0.041m/s). vy is scaled by
vyc = 0.057m/s. N = 47. The area fraction are 0.536.

completely by a single parameter: the granular temperature. The form of the

velocity distribution is governed primarily by the restitution coefficient e and by

the ratio q between the average number of heating NH and the average number

of collisions NC in the granular gas, q = NH/NC .

A clear explanation of the conflict between experiments and theories seems

to be found in[109]. In the theory, velocity distribution is assumed to be locally

Gaussian[108, 110–114]. In particular, ν = 3/2 is obtained analytically[73, 76?

], which is based on a “Stochastic thermostat” homogeneously driven by white

noise. Though ν = 3/2 is deduced from theory, it is worth comparing the heating

mechanism between experiments and theories: it is not possible to confess the

agreement between theoretical analysis and experimental results reached.

Turning to our Airbus results, we studied two groups of particles, each group

in a cell (see Fig. 3.1) for which the velocity distributions for components vx

and vy are investigated and are reported in Figs. (3.2)(N = 47,ϕ = 0.536) and

(3.3)(N = 63, Area fraction ϕ = 0.7244 ). The vibration direction is always the
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y axis. The vibration parameters are in Table. 3.1. To show a complete analysis

of the data, we focus on the case of the parabola at #10h12, which in Figs. 3.2

to 3.8;). In these Figs, the velocities vx and vy are scaled by the characteristic

velocities vxc =
√
v̄2x =

√
Tx and vyc =

√
v̄2y =

√
Ty [52], respectively. Logarithmic

scale are also shown in the insets of these Figures. In the figures, the solid

lines are exponential fitting, i.e. A ∗ exp(−|B ∗ x|1.5)(ν = 1.5), the dot lines

are exponential fitting, i.e. C ∗ exp(−|D ∗ x|)(ν = 1), and the dash lines are

Gaussian fitting E ∗ exp(−(x/F )2)(ν = 2), where A, B, C, D, E and F are

fitting parameters.

As can be seen in Fig. 3.2, the Gaussian fitting underestimates the tails at low

and high velocities, and the exponential fitting ν = 1.5 is the best fitting glob-

ally, in agreement with previous reports[52, 53, 104]. The characteristic velocity

vyc (0.057m/s) is found larger than vxc (0.041m/s). So anisotropy exists. However,

for the denser situation of Fig. 3.3, the characteristic velocity vyc (0.0462m/s)

is almost equal to vxc (0.0465m/s) as given by Fig. 3.3; and the high velocities

tail exhibits an exponential fitting with ν = 1 which is the best fitting. These

two cases only differ from the number of particle. It is clear that the velocity

distribution depends on the number density, as supported by the reference[107].

All up, the foregoing factors influencing the shape of the velocity distribution

produce an inconclusive result: one gets two values (ν = 1 ∼ 1.5) to fit the

exponential tail. These results demonstrate that the velocity distribution of 2D

granular gases is not determined uniquely and depends on many factors. But

they can be also interpreted due to the system dissipation. If so, let assume that

we increase the density, the collision rate will rise, generating more dissipation,

and likely more non-Gaussian. Until now, one can not find a detailed expression

to describe dissipation of the granular system correctly, taking into account, the

multi-body system.

Before finding a global velocity distribution for the vibrating granular media

and before applying it to the local Maxwellian assumption, it is useful to know

the real local velocity distribution, and its variation with the position in the cell.

This might enlighten the true events. Only a few studies can be found using such

methodology. Methodologically, the local velocity distribution is more important

than the global one. In the next section, we shall examine the local velocity
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Figure 3.3: The global velocity distributions of the components vx and vy. Here,
y is the vibration direction. vx is scaled by vxc (0.041m/s). vy is scaled by
vyc = 0.057m/s. N = 63. The area fraction are 0.7244.

distribution.

3.3.2 Local velocity distribution

In this section, the local velocity distributions are investigated to understand bet-

ter the global behaviour. We shall discuss results coming from the two cells(N =

47 and N = 63) excited with the same vibration parameters. We report only Figs

from the parabola at 10h12 (in Table. (3.1)) for clarity and also to save time;

but similar trends have been obtained from other parabolas, which are reported

in appendix A.

Considering anisotropy of the vibration, we analyze x and y components of

velocity distributions, separately. To analyze the system correctly, we decided to

divide the cell into 7 bins either parallel to x or to y, to measure the variation

of the local distribution along y or along x. This allowed us making average on

a same thickness and a long side to get sufficient accurate results, which show

up distinct behavior depending on the direction of the bins. When the bins were
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Figure 3.4: Local distribution functions of (a) vy and (b) vx on log-linear
scales. There are 7 bins along the vibration direction y axis. The vibration
parameter(A=0.23mm, Vω=0.07m/s, Γ=21.56 m/s2, f = 49Hz). N = 47.

oriented along (parallel to) y axis, local distribution was rather independent of

the bin, while this was not more true in the other direction x.The study using the

bins with their length parallel to y did not show up any different trends. So we do

not consider such division profile in the following, and we concentrate only with

results using bins with length parallel to x, and located at different y ( where y

is the vibration direction).

After this discussion, we describe what was now done explicitly: The cell

is divided into 7 bins along the y axis, and distributions of velocity vx and vy

are averaged in each bin. Velocities are scaled by the maximum driving velocity

Vω(0.07m/s). Figs. (3.4) and (3.5) show the local velocity distribution f(vx) and

f(vy) in each bin, i.e. at different y, for each cells, i.e. Fig. 3.4 for N = 47 balls,

Fig. 3.5 for N = 63 balls. From these results we can conclude the following:

(I) For vy distributions, f(vy) at different y. f(vy)(y) is asymmetric in most

bins. Two peaks appear in local velocity distribution profiles of vy in bins near

the two heating boundaries ỹ = 0 or 1 (ỹ = y/L). One shall note this asymmetry

in local profiles can be observed. While moving away from the driving wall, asym-
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scales. There are 7 bins along the vibration direction y axis. The vibration
parameter(A=0.23mm, Vω=0.07m/s, Γ=21.56 m/s2, f = 49Hz).N = 63.
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metry of the profile of the local velocity distribution vy becomes less profound. In

the box center, the profile becomes symmetric, where the boundaries effect may

be balanced out.

(II) For vx distributions, f(vx) at different y. f(vx) is symmetric for all the 7

bins. However, the f(vx) is not-Gaussian.

Turning now to N = 63 case of Fig. 3.5, it provides the local velocity distri-

bution of the particle number N = 63. We conclude:

(i) vy distribution , f(vy), at different y. It seems more complex than Fig.

3.4. one observed in Fig. 3.5. (i), f(vy)(y) in the boundary bin(7) include this

two-peak: one locate in the vy > 0 area and the other locate in the vy < 0 area.

So this is different from what is happening in Fig. 3.4. Furthermore, we see also

that the amplitude of the two peaks are roughly equal to each other. Moreover,

the center bin still includes two peaks as shown in Fig. 3.5 and exemplified in

Fig. 3.6. So this distribution persists everywhere and is a new phenomenon. This

phenomenon demonstrates that the local state can not be conveniently overlooked

as a simple compressible gas anymore and that the local Maxwellian hypothesis

is not correct even in the middle of box. Coming back to Fig. 3.1, we observe the

packing of the second cell is rather dense and the motions of the different balls

are merely coherent, i.e. in phase with the other ones. the whole system looks

as a solid. This explain the two peaks structure because the second peak is due

to the collision of the other surface that collides half a period after on the other

side wall. The direct transmission of that force to the other side show the solid

structure of the system during the collision.

(ii) vx distributions, f(vx), at different y remains symmetric whatever the

bin, as for Fig. 3.4(N=47). To conclude, we think the two peaks effect which

is observed in the case of N=63-ball cell demonstrate it is due to a “solid-like”

transmission of stress the collision of the system with the vibrating wall at both

sides. This means the gas nature of the system is broken at least periodically

during these collisions. This is why we will no more consider this case in the rest

of the dissertation since it is far from the “gas-like” behaviour.
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Figure 3.8: The skewness profiles of vx and vy along the y axis for various vibrating
parameters . All the parameters are listed in the Table (3.1). N = 47.

3.3.3 Skewness

For a quantitative analysis of the asymmetry, momentum technique can be adopted

to measure quantitative difference between statistics. Skewness S is the third

standardized momentum of the sample point. The skewness S of variable q with

n sample points is defined as:

S =
1
n

∑i=1
n (qi − q̄)3

( 1
n

∑i=1
n (qi − q̄)2)3/2

(3.2)

where q̄ is the mean of all n sample points qi. This skewness, applied on velocity

distribution, shall be non zero if the velocity distribution is non symmetric. when

S becomes large, the asymmetry gets large.

Fig. 3.7 compares the skewness of profiles for vx and vy in different bins along

y axis for the case of 10h12 in the Table 3.1. The skewness S(vy) changes linearly

from positive to negative, and is around zero at the center of the box for vy

profiles, while skewness S(vx) seems flat and equals to 0 for local vx distribution

in these seven bins. Furthermore, over a wide range of Frequency and Amplitude

(in Table (3.1)), the skewness of the local velocity distribution yield the same rule

as shown in Fig. 3.8. All the results are consistent with our previous results[13].
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3.4 the phenomenological model

In this section, we focus only on the case for N=47 balls for which we shall give

some theoretical description to explain the above phenomena on vy distribution.

We first recall some previous works, then we present our phenomenological model.

3.5 The phenomenological model and GSH

We come to the description of the two peaks observed in the local velocity dis-

tribution function and we give a phenomenological model[115]. To account for a

two-peak fluid, it seems obvious that one should employ as variable two differ-

ent sets of T , ρ, ρv, for the (+) and (−) particles, along with formulas for the

pressures, P+ and P−[116]. In addition, one would need two additional sets of

T , ρ, ρv for ŷ and ẑ. We are afraid this opens a Pandora box of state variables,

neither conserved nor truly independent, rendering the theory quite arbitrary and

unable to widen efficiently. One should instead, we believe, retain the conserved

variables ρ and ρv, also T as the average width of all peaks in the system[116]. It

should sufficient, for a minimal, surgical modification, to introduce two additional

variables.

To describe these two peaks velocity distributions, we first think how many

variables to consider. For a normal Gaussian distribution(since the mean of the

speed distribution is zero, here due to steady state), one parameter is enough to

describe, the width of the distribution( for Maxwell distribution, the width is T ),

can describe all the information of the distribution. Our experiment results show

that one peak of two-peak distribution is located in positive and the other in the

negative area.

So two parameters should be considered. The first is the distance between

the two peaks, which is the crucial second scale of a two peaks distribution,

much more relevant than the difference between the two widths. To present the

velocity difference between two distribution, we add a new variable ∆i, which

is used to assist original variable Tx. ∆i should be described the positive and

negative velocity difference. As being a velocity difference, the new variable ∆i

is odd under time reversal and a vector.
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As above experiment results discussed, this difference only exists in vibration

direction, on our case, only ∆x ̸= 0. Second is ,the anisotropy, difference between

Tx and Ty, between the average width along ŷ. More generally, we have δTi ≡
Ti − T , i = x, y, z, with

∑
i δTi = 0. These are similar to the order parameter

of nematic liquid crystal[117]. The diagonal elements of a symmetric, traceless

tensor. (They do not form a vector, because Tx does not distinguish between

x̂ and −x̂.) So a tensor, even under time reversal, needs to be added. Instead

of δTij, however, we employ tij, the deviation of the granular temperature Tg as

considered below, see Eqs(1.5). In our case, only txx = −tyy ̸= 0.

Granular solid hydrodynamics(GSH)[98, 118] was derived employing the hy-

drodynamic procedure. GSH is based on general principles which are independent

of the system density. GSH obtains equations that include collisions and enduring

contact, which are valid in the dense, elastic-plastic limit, and the rarefied one.

For instance, GSH is capable of accounting for the relaxation of the temperature

until it is zero.

Although the present system deviated from rarefied gas in the opposite di-

rection, towards ballistical, the hydrodynamic procedure still works, if we add

variables that characterize the deviation from local equilibrium. The reason is

the hierarchy of equilibria: Although the two peaks three widths are not in equi-

librium with one another, the elements within each are well thermalized.

In deriving GSH, a granular heat w is introduced with sg the granular entropy,

and Tg ≡ ∂w/∂sg the associated temperature. It quantifies the energy contained

in the mesoscopic, intergranular degrees of freedom, especially the strongly fluc-

tuating part of the grains’ kinetic and elastic energy. Expanding w in sg, we

have

w = s2g/(2bρ) = bρT 2
g /2, b ∼ (ρcp − ρ)a1 (3.3)

with a1 = const. The lowest order term is quadratic because equilibrium, or

minimal energy w = 0, is given for sg = bρTg = 0. (This is quite the same

idea as with any Ginzburg-Laudau energy functional, just without the fourth

order term, or a phase transition.) The density dependence of b(ρ), with ρcp

the random close density, is chosen such that the associate pressure[98, 119],
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P ≡ (ρ ∂
∂ρ
)(w − Tgsg) = −1

2
ρ2T 2

g ∂b/∂ρ, given as

P =
a1ρw

ρcp − ρ
=

1
2
a1ρ

2T 2
g

ρcp − ρ
(3.4)

is appropriate for all densities[120].

For a rarefied system, in which the elastic contribution to the energy is neg-

ligible, we may identify the energy w = 1
2
bρT 2

g with the kinetic energy per unit

volume ρT (for a 2D system), implying bT 2
g ∼ 2T , especially in the above expres-

sion for the pressure. Clearly, taking Tg ∼
√
T , Haff’s granular hydrodynamics is

retrieved.

If the temperature is maintained by vibrating walls, we need(as discussed

above) ∆i and tij as additional variables. They also contribute to the energy

which, in an expansion in all three variables, becomes

w = (bρT 2
g + cρ∆2

i + eρt2ij)/2 (3.5)

These variables relax, specifically because they possess energy that may be redis-

tributed among microscopic, inner-granular degrees of freedom(such as photons).

The energy being quadratic, the relaxation stops when the variables are zero, and

the energy vanishes.

Taking c, e = const, independent of the density, the pressure is not changed

by introducing the new variables, and remains as given in Eq. 3.4, (Same with

P ∼ ∂/∂ρ), additional pressure contributions would have resulted from ∂c/∂ρ and

∂e/∂ρ) We assume this for simplicity, as we are more interested in an anisotropic

stress, less in modifying a given pressure.

Next we relate ∆x, txx to parameters of f(vx) and f(vy), the velocity dis-

tributions, as the latter is indenpently measurable. Denoting the norm as N ≡√
πTx(1 + α) and 2kB = 1, we take

f(vx) =
1

N
(αexp

(vx − ξ)2

−Tx

+ exp
(vx + αξ)2

−Tx

) (3.6)

and f(vy) = f(vx → vy, Tx → Ty, ξ = 0, with ⟨vx⟩, ⟨vy⟩ = 0, see Fig 1. The

energies along x̂, ŷ are then wx = 1
2
ρTx + ραξ2 and wy =

1
2
ρTy, implying, first of
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Figure 3.9: Velocity distribution as simulated in [12], measured in [13], and pa-
rameterized by Eq (3.6). Fig (a) and (b) show f(vx), for the velocity perpendic-
ular to the vibrating walss, with (a) showing f close to the wall, and (b) showing
f in the middle. Fig(c) shows f(vy), while Fig (d) again shows f(vx). Symbols
are measurements, dotted lines simulation, and full curves are Eq(3.6). For the
two peaks distributions, we have Tx = 10 and 1, ξ = 2.2 and −1, 37, and α = 2.3
and 3, for Fig (a) and (d), respectively.

all, α → c, ξ → △x.

Taking Tx = 1
2
(T + δTxx), Ty = 1

2
(T + δTyy), with δTxx + δTyy = 0, we find

that the energy, wx + wy =
1
2
ρT , does not depend on δTxx. But taking

Tx = b(Tg + txx)
2/4, Ty = b(Tg − txx)

2/4 (3.7)

we obtain wx + wy = 1
2
ρb(T 2

g + t2xx), as in Eq(3.5). This discrepancy may be

surprising at first, but results from ρT being the energy of an ideal gas, or the

kinetic energy of a rarefied gas, with no collision contributions. Yet collisions are

what equalize Tx and Ty. On the other hand, w = 1
2
ρbT 2

g is the total energy of an

interacting system. Increasing Tg by txx in one population, and decreasing it by

txx in another, must lead to an energy increase, as txx would nor relax otherwise.

Still, we should not take the equality of b and e seriously, as it hinges on the

previous assumption that wx, wy remain sensible quantities in an interacting

system. In contrast, expanding w in tij leading to Eq(3.5) is generally valid
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approach.

Having specified the additional variables and their contributions to the energy,

we may employ the same hydrodynamic procedure as used for GSH[98, 118], to

set up their equations of motion. The generalized hydrodynamics consists of

continuity equations for momentum, ∂t(ρvi) + ▽j(δij + ρvivj) = 0, and mass,

∂tρ+▽i(ρvi) = 0, in addition to the balance equations,

Tg[∂tsg +▽i(sgvi − κg ▽i Tg)] = ηgv
∗
ijv

∗
ij − γgT

2
g (3.8)

∂t △i +▽j (△ivj − κ△ ▽j △j) = α△j v
∗
ij − γ△△i (3.9)

∂ttij +▽κ(tijvκ − κt ▽κ tij = βv∗ij − γttij) (3.10)

with

σij = Pδij − ηv∗ij − cρα△i △j − eρβtij (3.11)

The first equation is the same as in GSH. It reports a convective, a diffusive (∼ κg)

and a relaxative term(∼ γg, in addition to viscous heating, with ηg the viscosity,

and v∗ij the shear rate −v∗ij being the traceless part of vij ≡ 1
2
(▽ivj +▽jvi). Em-

ploying Tg ∼
√
T , one sees that Eq (3.8) is the same as Haff’s energy balance[121].

Eqs(3.9,3.10) are new, but quite similar to (3.8). They also each report a convec-

tive, diffusive, and relaxative term. Instead of viscous heating, however, there is

a linear, offdiagonal Onsager term: with v∗ij as the thermodynamic force, △i as

the preferred direction, and α an Onsager coefficient in Eq(3.9).

The stress σij consists of pressure, viscous stress (with bulk viscosity ne-

glected), and the two counter Onsager terms. The signs of α, β in the three

equations obey Onsager reciprocity relation; and because both △i ▽j v
∗
ij and

v∗ijtij are odd under time inversion, their respective contribution to the produc-

tion of true entropy (not displayed) vanishes. There is no constraint on the sign

or magnitude of α, β; both are functions of the density.

To solve Eq(3.8, 3.9, 3.10, 3.11), we first note that for the above discussed

Herbst geometry, setting vi, vij = 0, and assuming dependence only x̂, we have
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Figure 3.10: variation of stress and kinetic energy along x̂. We employ σxx =
const as the unit of stress and energy density. Full curves are hydrodynamic
results, taking wx = ρbT 2

g /4 + ρet2xx + ρc△2
x /2, and wy = ρbT 2

g /4 + ρet2yy, with
b0, c, e = 1, and lg = 1, 1.1, 1.2, 1, lt = 0.8, 0.9, 1, 0.5, l△ = 0.18, 0.28, 0.55, 0.3,
a1 = 1.38, 1.2, 0.33, 0.9, ρcp = 0.7, 0.7, 0.7, 0.8745, −α = 13, 1.49, 0.772, 0.5, −β =
3.68, 2.14, 2.18, 3.5 for (a), (b), (c), (d), respectively. Symbols are from micro-
gravity measurements[13], and dotted lines from simulations of [12].
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Figure 3.11: Variation of the packing fraction for the four cases in Fig. 3.10.
Symbols are from micro-gravity measurements of [13] and dotted lines from sim-
ulations of [12].

σxy = 0,

σxx = P − cρα△2
x −eρβtxx.σyy = P (x) + eρβtxx (3.12)

Force balance ▽jσij = 0 requires σxx = const, but leaves σyy undetermined.

Denoting l2g ≡ κg

2γg
, l2△ ≡ κ△

2γ△
, l2t ≡ kt

2γt
, with 2L the distance between the two

vibrating walls, and employing the boundary conditions: Tg = T0, △x = △0,

txx = t0 at x = 0, and Tg = T0, △x = −△0 at x = 2L, the stationary solution,

for ∂tsg, ∂t△i, ∂ttij = 0, is

Tg

T0

=
coshx−L

lg

cosh−L
lg

,
txx
t0

=
coshx−L

lt

cosh−L
lt

,
△x

△0

=
sinhx−L

l△

sinh−L
l△

, (3.13)

Note we have taken all transport coefficients, generally functions of ρ, Tg,

△i, as constant. (Although κg, γg ∼ Tg), see [98, 121], this does not change

the solution if included, since the equation contains only the ratio l2g ≡ κg

2γg
.

Searching for an understanding at present, we are unabashedly qualitative. Given

the scarcity of experimental and simulation data, there is too much arbitrariness

for more quantitative considerations. For a comparison of theory, experiment,

and simulation, see Fig. 3.10 and 3.11.
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3.6 Hydrodynamic description

3.6.1 the hydrodynamic model

In the steady state, the conservation of momentum requires[122]:

∫ +∞

0

vf(v)dv = −
∫ 0

−∞
vf(v)dv. (3.14)

In turn, near the boundary y = 0 , the number of particles moving towards

the wall and leaving the wall shall be conserved, that is, the number of particles

leaving the vibrating wall shall be equal to the number of particles moving towards

the vibrating wall in a sawtooth excitation:

f−
y (vy)vy = f+

y (2Vω − vy)(vy − 2Vω) (3.15)

Here, f+
y (f−

y ) is the velocity distribution function for the vy > 0 ( vy < 0 ).

The number density n near the boundary y = 0 can therefore be obtained from

particle-number conservation mentioned above[122]:

ny = 2n−
y + 2Vω

∫
dvy

f−
y

vy − 2Vω

(3.16)

It implies at the boundary y = 0, n+
y is smaller than n−

y . The discrepancies

between n+ and n− are confirmed in our experimental results shown below (Fig.

3.12).

To measure the hydrodynamic field, the box is subdivided into strips along

the vibrating direction.

3.6.2 The number density

The four components of the number density n+
x (y), n

−
x (y), n

+
y (y), n

−
y (y) are shown

in Fig. ?? (a) and (b). Here, the notation used is: n+
x (y) means the spatial profile

of the number density of particles with velocity vx > 0 along the y direction.

It is observed that n+
x (y) and n−

x (y) overlap and their peaks occur at the cell

center as in Fig. ??(a). The curves in Fig. 3.12 (b) confirm the difference
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(a) (b)

Figure 3.12: (a) The number of particles in each bin with velocity v±x . (b)
The number of particles in each bin with velocity v±y . (△) Vω=0.07m/s. (◦)
Vω=0.067m/s. (•) Vω=0.087m/s. (�) Vω=0.038m/s. Solid curves are for the
positive components, and the dashed curves for the negative ones.

of behaviour between n+
y (y) and n−

y (y) near the boundaries, predicted in Eq.

(3.16). Moreover, n+
y and n−

y do not overlap. The components n+
y (y) and n−

y (y)

are mirror symmetric to each other as shown in Fig. 3.12(b). It is apparent that

n+
y (y) ̸= n−

y (y). This has often been ignored in previous works when calculating

the transport parameters in granular system[66, 70].

3.6.3 The Temperature

Here, as Fig. 3.13 exhibits it, one shall define two different temperatures Tx

and Ty, one for each x or y direction, in the case of Airbus experiment with

the cell containing 47 balls. It can be seen that the difference between two

temperature components Tx and Ty. The anisotropy is quite real and Ty > Tx.

This is because the heating mechanism (vibration) is in the ŷ direction only,

generating the anisotropy in our case. In [123], smooth granular material is

fluidized by vertically shaking of a container in gravity. The authors also find

that the temperature in the direction of the energy input always exceeds the

temperature in the other direction. Our results agree well with theirs (Ty > Tx,

ŷ is the energy input direction).
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Figure 3.13: The Tx and Ty variation in the y direction, scaled by Tdriven, where
Tdriven = mv2driven. There are 7 bins along the vibration direction y axis. The
vibration parameter(A=0.23mm, Vω=0.07m/s, Γ=21.56 m/s2, f = 49Hz). N =
47.

Another question is the shape of the temperature profile, which is normal

constant in Fig. 3.13. However, some explanation exists; for instance, in[122], a

hydrodynamic model is adopted to explain the shape of the temperature profiles.

We want to discuss now why and how the velocity distribution is asymmetric,

and why and how it influences the temperature profiles. It is of interest to examine

the positive and negative components of the temperatures Tx and Ty. In other

words, Tx is divided into two components, T+
x and T−

x according to the sign of the

velocity vx. Fig. 3.14 exhibits a typical variation of T+
x , T−

x , T+
y and T−

y profiles

in our micro-gravity experiment. It can be seen that T+
x ≈ T−

x , and T+
y ̸= T−

y .

T+
y and T−

y are symmetric from each other through the central axis of the cell.

The value of T+
y gets its maximum in the boundary(y = 0), while the maximum

of T−
y located in the boundary (y = L).

We note that T+
y ̸= T−

y is a very surprising result. T+
y ̸= T−

y means the energy

equipartition is broken into the energy input direction even in pure granular-gas

system. In fact, the non-equipartition of the energy was first found in the binary

mixture in the experiment[124] and simulation[125]. Here, this result shows that
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Vω=0.07m/s, Γ=21.56 m/s2, f = 49Hz). N = 47.

the profiles of Ty can not reflect the total information of the granular velocity

fluctuation. This proves that the granular temperature definition needs to be

modified.

3.7 The mean free path

Mean free path is a basic concept in the kinetic theory. It is defined as the average

distance that the particle travels between two successive collisions. A zig-zag path

of a molecule is illustrated in Fig. 3.17. (a)[126]. This path is straightened out

as shown in Fig. 3.17 (b). The number of molecules in the straight cylindrical

volume surrounding the straight line trajectory, which is the effective volume

explored by the molecule per unit of time, can be written:

Θ = πd2C̄n (3.17)

where C̄ is the uniform speed, n denotes the number of molecules per unit volume

of gas, d is the diameter of molecules. Here, the straight cylindrical volume is

πd2C̄. Θ represents the number of particles in such cylindrical volume and also

denotes the number of collisions per unit time for one molecule z (Fig. 3.17).
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The mean free path for three dimension turns out to be

λ =
1√

2πd2n
(3.18)

The factor
√
2 is the ratio between the mean relative speed and the uniform

speed.

More importantly, the mean free path is often used to be a parameter to

judge the suitable scope of the kinetic theories and hydrodynamics for granu-

lar medium[66]. The concept of mean free path is based on the assumption of

particles being in random distribution, i.e., Maxwell-Boltzmann distribution is

valid. However, in our system, the velocity distribution is no longer the Maxwell-

Boltzmann distribution. Moreover, the local velocity distribution is asymmetric

and anisotropic. This indicates the breakdown of kinetic models based on the

concept of the mean free path.

Let us consider the mean free path in the granular system. According to the

equation (l = 1√
8nd

) for two dimensional situation, the mean free path of our

Airbus data is 6E − 4 for N = 47 and 4.6E − 4 for N = 63. Due to the local

velocity distribution asymmetry, it is not possible to make a simple average, but

we have to consider the collisions between the different kinds of particles. At the

cell wall, for instance, while the asymmetry of velocity vy is the largest, one has
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Figure 3.16: Sketch of the breakdown of the mean free path. On the right and
left sides of the cell, the vy distribution is asymmetric, contrary to what occurs
in the cell center. As there is no net flow, it means the density number n+

and n− are different. So this imposes to define two mean free paths through
n−dl+c =n+dl−c = 1.

to define two mean free paths, l+c and l−c , for the two ”kinds” of particles with

v+ and v−. In Fig. 3.4, on the right and left side of the cell, the vy distribution

is asymmetric, contrary to what occurs in the cell center. As the average flow

is zero, it means the density number n+ and n− are different. So this imposes

the need to define two mean free paths that n−dl+c =n+dl−c = 1 (d is the particle

diameter).

In our experiments, all the particles can be tracked. Because of the micro-

gravity, the particle trajectory(a line) changes directions if and only if it is hap-

pened a collision. So if a trajectory direction changes more than 20 degree, we

suppose that a collision happens. The spatial profile of the local collision times is

illustrated in Fig. 3.17. The collision time are largest in the box center due to the

highest density in the box center. Since we know the local collision frequencies

(N+/N−) and the mean velocities (c̄+/ c̄−), then, two mean free path are given

by the expression:

l+ =
c̄+

N+
c

(3.19)

Fig. 3.18 show the spatial profiles of l+ and l− calculated by Eq. 3.19. l+ and

l− are different with each other as expected except for the center point. l+ and

l− is smaller than the 6E − 4 but still have the same magnitude. It is difficult

to obtain the mean free path precisely from the tracking. In the next Chapter

about the simulation, the local mean free path will be discussed in detail.
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Figure 3.17: The spacial profiles of the collision times(Lx = Ly = 300, N = 47,
the vibration parameters A=0.23mm, Vω=0.07m/s, Γ=21.56 m/s2, f = 49Hz).
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3.8 Summary

In this chapter, the aim has been to investigate a vibrated granular gas confined

by a rectangle box in micro-gravity. The study focuses on the steady state with

the zero velocity field. The major results could be summarized as follows: (i)

The global velocity distribution is isotropic. The mean value of the velocity com-

ponent in vibration direction vy is larger than non-vibration component vx; (ii)

The spatial profiles of the local velocity distributions f(vy) is asymmetric, while

f(vx) is still symmetric everywhere. Moreover, f(vy) in the boundary layer even

appears two peaks, then two peaks melts into one peak gradually when mov-

ing from the boundary to the box center. Double-Gaussian distribution model

is used to describe the local velocity distribution f(vy); (iii) Granular hydrody-

namic solid theory is adopted to explain the stress profiles, and agrees well with

our experiment results and others’ simulation results; (iv) The two temperature

components T+ and T− are not equal to each other as expected. It proves that

the energy equipartition breaks in a vibrated granular gas; (vi) The local mean

free path of l+ and l− are different with each other, too.

All prove that the vibrated granular gas is different with the classical molecular

gas. The steady state of granular gases is just a dynamic process. Even with zero

the velocity field, the granular gases still show plenty of surprising phenomena,

for example, energy equipartition breaks down. From a more practical point of

view, double-Gaussian distribution model is simple but is closer to the reality of

a vibrated granular gas, which is strongly affected by two vibrated wall. Maybe

one argues that our box is not large enough to avoid the boundary effect. We will

lengthen the box size and prove that the boundary effect is a long range effect

for a vibrated granular gas by simulation in the next chapter.
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Chapter 4

Event-Driven Molecular

Dynamics simulation Results

4.1 Introduction

As mention in Chapter 3, we have found that dilute granular media, or granular

gases, behave very differently from molecular gases[12, 52, 56, 66, 88, 127]. Due to

inelastic collisions, energy injection is needed to maintain a steady state. In most

experimental case, energy is injected through boundary shaking. This kind of

boundary heating mechanism introduces anisotropy to the granular gas system.

In our previous microgravity experiment[13], the distribution profiles of the two

velocity components, vy (vibrating direction) and vx (perpendicular direction),

are found different. While the local distribution of vx is symmetric, the local

distribution of vy is found asymmetric. This asymmetry is generated by the

boundary heating , (at least it is consistent with the boundary excitation and

with dissipation), but it has a long range effect, which modifies the distribution

in the whole cell (see chapter 3).

A similar effect can be also found in a bi-disperse granular system. For two

species of particles, energy equipartition doesn’t persist[124] and segregation ap-

pears, modifying the energy input. Hence, this energy equipartition is found to

be affected by the “heating” mechanism(we write here “heating” in between quo-

tation marks, because boundaries deliver a “constant” speed to each ball rather
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4. The simulation results

than a real constant ”heat”. This is why we need to speak of “velostat” [128]) .

Different kinds of particles are unequally heated at the boundaries, and this

heating effect at the boundary is found to influence the level of non-equipartition

even in the bulk of the system. The boundary effect can never be forgotten even

in the limit where heating events are rare compared to collisions[125].

Such long range effects do not exist in elastic system even with the boundary

heating , or at least this is what we are thinking. Hence, the long range boundary

effect results from a combination of inelasticity of the dissipation in granular

media and of the boundary condition, which is not used as a heater but better

as a mechanical excitator, since it is no more a thermal energy which is given

in our case, but a transfer of momentum. To study this long range boundary

heating effect may help understanding the real dissipative macroscopic laws of

the granular system. Most of previous works [12, 122, 129–131] assume this effect

only exists in the boundary layer and try to avoid it. For example, some papers

only study the velocity distribution of particles in the central area of the box.

Taking no account of the boundary effect, it is clearly misleading the boundary “

heating ” process of the granular system (as already told the boundary plays the

part of generator of impulse so that the boundary is not a thermostat, but shall

be better called “velostat” , or “speed injector” in one direction)..

In this chapter we investigate the role of the coefficient of restitution of parti-

cles in determining the extent of the “heating” in the whole medium. So, we use

event-driven molecular dynamic (MD) simulation to study the macroscopic and

microscopic transfer laws in the system.

As it will be demonstrated in the section 4.2, the simulations we performed

show and confirm that there exist anisotropic temperature Tx and Ty (Tx diff Ty)

in the two different direction; but also that the behaviour is more intricate and

that we can find two different temperatures T+
y and T−

y depending on the way

the particle fly (towards +y or toward −y). It shows different temperature com-

ponents depending on the way in the y (i.e. excitation) direction T+
y (y) (temper-

ature of particles moving in positive y direction) differs from T−
y (y) (temperature

of particles moving in the opposite direction). So the energy equipartition is bro-

ken down in many ways. This agrees with the previous experimental observation

of the Chapter 3[13] and simulation results[129]. We also find that the ratio of
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4. The simulation results

these two components of temperature T+
y (y) and T−

y (y) drops exponentially along

the y direction Fig. ??. All results confirm that the long range boundary effect

depends on the dissipation properties of the granular gas.

In this Chapter 4, our goals are studying the local steady state at a local scale

using 2D driven granular gas excited by boundary. In other words, the analyses

is based on the assumption that one needs to separate positive and negative

speed, because the positive and negative parts of the velocity component in the

vibration direction are different, their energy coming from different boundary,

and their dissipation “from the other side”.

The event-driven molecular dynamic simulation is adopted. Section 4.2 il-

lustrates the model rules of our simulation. In section 4.3, data are presented,

which exemplify the system local velocity distribution and the skewness is defined,

which quantifies the asymmetry of the distributions. We give their dependence

at various number of the particles and the restitution coefficient. By considering

the local velocity distribution asymmetry, we also show the difference between

the positive and negative mean-free-path and their difference from the classical

expression. Similarity, the dissipation of the granular matter is presented from

the four parts of the gas, which are defined by the four different direction of ve-

locities the sign of the velocity components( v+x , v
−
x , v

+
y , and v+y ). Section 4.4

shall list and display the “hydrodynamic” parameter p+x , p
−
x ,p

+
y , p

−
y , T

+
x , T+

x , T+
y

, T+
y in accordance with the sign of velocity components. Results will provide

their distribution in the gas as functions of excitation parameters and dissipation

(restitution coefficient or number of particles.)

4.2 The model

We consider a 2D driven granular gas of N inelastic hard spheres with diameter

d = 2 and mass m = 1 in a square box (L = 300) (shown in Fig. 4.1). An event-

driven molecular dynamic algorithm is adopted[17]. No friction and rotation are

considered in the model. The vibrating boundary varies as a triangular vibration

in the y-axis direction; its peak-peak motion is D = 5r, and velocity vω = ±5r,

where r = 1 is the particle radius; this implies 2πω = 1 in the system of units
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4. The simulation results

Figure 4.1: The snapshot of a granular gas N = 360.

used. The particle velocities of post-collision with wall are given by:

v′x = −ew ∗ vx

v′y = −ew ∗ vy + (1 + ew) ∗ vdriven

Where ew is the coefficient of restitution between the particle and the wall. The

post-collision velocities of colliding spheres i and j are determined by:

v⃗′i = v⃗i − (1 + ep)[(v⃗i − v⃗i) · n⃗]n⃗

v⃗′j = v⃗j + (1 + ep)[(v⃗j − v⃗j) · n⃗]n⃗

Where ep represents the coefficient of restitution between the particles, n⃗ is

the unit vector between the two particles mass centers. ep and ew range between

[0, 1]. Gaussian random number is given for initial velocities and positions of

particles. Here, we focus on the “ steady” state of the granular system. So, all

the particle velocities and positions are recorded after the system go through ten

thousand collisions and reach a steady state.

We want to study a steady state, this implies that the means of local quanti-
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Figure 4.2: Spatial profiles of vx (left) and vy (right) (semi-logarithmic) are plot-
ted along the y direction. The particle radius r is set to be 1. The size of the
cell is (300r× 300r ). The number N of particles is N = 360, the area fraction is
ϕ = 0.0126 , and the restitution coefficient ep = 0.75 .

ties averaged over short times remains constant with time (within some average

fluctuations). Local equilibrium means the system is spatially and temporally

divided into “cells” or “Micro-phases” in small size, in which the classical quanti-

ties remain steady with a good approximation. In this section, we study the local

equilibrium by dividing the cell into several bins along the vibrating direction

y-axis and similarly into the x-axis, to evaluate anisotropic effect..... Each bin is

treated as a local unit and we will examine the local equilibrium state in each

bin. In this work the cell is divided into 60 bins.

4.3 Velocity distribution and its skewness

In this section, we investigate the dependencies of the local velocity distribution

as functions of various coefficient of restitution and of the number of particle.

The spatial profiles of the local velocity distribution of vx and vy are obtained

from our simulation. They are shown in Fig. 4.2. All of the local velocity

distribution functions f(vx) are found symmetric, while f(vy) are asymmetric in

the side bins. We also investigate the spatial profiles of the skewness as functions

of the coefficient of restitution and of the number of particles.

Skewness, when it is non zero, demonstrates the asymmetry of the distribu-
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Figure 4.3: Variation of skewness in the cell, as a function of the restitution
coefficient and of the particle number N . Here, y axis is the vibration direction.

tion. We recall that skewness of variable p with n sample points is its third

standardized moment, defined as

skewness =
1
n

∑i=1
n (pi − p̄)3

( 1
n

∑i=1
n (pi − p̄)2)3/2

(4.1)

Here pi is the variable value of sample point i, p̄ is the mean of all n sample

points pi, n is the number of the sample points . A negative skewness indicates

the distribution has a left-side tail, while a positive one indicates a right-side tail.

Fig. 4.3 illustrates the skewness of the vy spatial profile as a function of either

the restitution coefficient or of the number of particles. For simulations with a

restitution coefficient which is merely one and the number of particles N which

is small (so that dissipation of the sample is small, we found that ep = 0.999,

skewness is approaching a constant value, zero. This means for an elastic granular

gas the long range boundary effect does not exist even under boundary heating.

For coefficient of restitution smaller than 1 (inelastic particle cases), skewness S

along y-axis fails to be a constant. Especially, S is most pronounced near the

boundary, and is zero at the center of the cell. Also skewness is positive for the

left boundary layer of the cell and negative for the right boundary layer of the

cell. Moving towards the box center, the value of skewness decreases slowly, and

linearly near the box center. At the box center, skewness becomes zero (due to
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symmetry). It shows that the boundary effect is not only at the layer of particles

next to the boundary, it extends into the cell, and therefore it is a bulk effect,

or a long range effect. The amplitude of effect depends on the inelasticity of the

particles. It is more profound as the system is more dissipative or the restitution

coefficient of the particles is smaller.

Previous studies only consider central region of the box. So they could ignore

the boundary. But here we show that except at the center the skewness is non

zero. This approach obviously reduces this boundary effect because the skewness

in central area is smaller than the boundary area. It is reasonable that the velocity

distribution in the central area is different from the velocity distribution near the

wall[127]. It is also obvious the velocity distribution in the central area is close to

be symmetric in the central part; this is imposed by symmetry[127]. However, it

is not correct to restrict the description to this state, since skewness is only zero

at the center as it is shown here (Fig. 4.3).

We study the role of the coefficient of restitution in the skewness S value(this

one is shown in Fig. 4.3(left)). So, Fig. 4.3 demonstrates that the higher the

inelasticity becomes, the higher the change of the skewness amplitude gets. The

effect is not only shown at the boundary bin, but also it extends into the whole

cell(except at the center), since all skewness curves at different coefficients of

restitution meets in the centre of the box where they pass zero. This result is

completely different from previous hydrodynamic treatment. In previous hydro-

dynamic considerations, the boundary layer effect only exists in a thin layer [122].

But here, we find that from the spatial profiles of skewness this boundary effect

in vibro-fluidized granular gas can be a bulk effect. This shows that the hydro-

dynamic description for the granular system needs further consideration since it

never includes this in the described facts. Comparing with our previous experi-

mental results of Chapter 3[13],we find that the skewness dependence , which is

non zero does not always vary linearly when it is obtained from simulations, as we

see from Fig. 4.3 (left). This is different to what we did observed in experiments

(Fig. 3.7). A possible explanation is that the aspect ratio of the length of the cell

to the particle diameter L/d in simulation is much larger than in the experiment:

the ratio is 9 in the Airbus experiment[13] , while it is 150 in our simulation here.

Fig. 4.3reports also the variation of S at the left boundary bin in terms of the
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coefficient of restitution. These values exhibits a bijective relation, which shows

the strict ordering between Smax and e. It seems that S varies nonlinearly with

the coefficient of restitution.

For the sake of simplicity, we use a phenomenological model to describe this

asymmetric distribution [115] of f(vy, y). It is assumed to be the superposition

of two Gaussian functions:

f(vy) =
1

N
(αexp

(vy − ξ)2

−T
+ exp

(vy + αξ)2

−T
) (4.2)

where the factor N ≡
√
πT (1+α), 2kB = 1, T = b(Tg+tyy)

2/4[115], Tg is entropy

temperature. An important assumption is that the parameters(N , ξ, α)in this

expression are calculated to make sure the mean velocity is zero,
∫
vf(vy) = 0.

The local velocity distribution is well fitted by this function, as is done in[115].

By using the above local velocity distribution function (the superposition of

two Gaussian functions) and the definition of the skewness, we can obtain the

skewness S equation:

S =
−αξ3(α− 1)

(1
2
)3/2

√
πT (1 + α)(T + 2αξ2)3/2

(4.3)

We find that the S is related with parameters α, T and ξ. In the cell center,

the two Gaussian functions merge into one, ξ = 0 . Therefore skewness is equal

to zero, S = 0, in the center. Except for this center point, all other points have

non-zero S with a value depending on parameters α, T and ξ. The advantage of

using a probability distribution function is that S can be obtained with known

values of parameters α, T and ξ. However, the “heating” wall model[17] is such

as the velocity of a particle which touch the wall gains a speed which pertains

to Maxwell distribution exp− (v2/v20) given by the wall temperature T . We find

that the local distribution f(vy) in the boundary layer only is made of a broad

tail with some maximum on one side of v, says v+, and a high narrow peak at

v = 0 on the other side of v, says v−, rather than a clear two peaks. This is

normal, and it is included in the hypothesis.

The fat tail of the local velocity profile near the boundary can be explained

as follows: at the left boundary, for instance, the mean velocity v+y of particles
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Figure 4.4: Skewness in the boundary layer in term of restitution coefficient.

moving away from the wall, has gained some velocity (or some energy) from the

wall. So V +
y has to be is larger than that of v−y since these ones have passed

through the center of the gas where they have loosed energy by collisions (i.e.

particles moving toward the wall, lose energy through particle-particle collisions).

Since there is no mean flow in a steady state, the mean velocity (< vy >) shall

be zero, the particle number with v+y is therefore smaller than the number of v−y

as observed in Fig. 4.3(right), and the skewness at the boundary layer is greater

than layers away from the boundary.

Next we have to fit the variations of a (α) with y. This is done in Fig. 4.5.

4.4 Anisotropy of the mean free path

Mean free path is an important and fundamental concept. In general, it is defined

as the average distance that a particle travels between two successive collisions.

In the dilute classical gas, it is expressed as:

l =
1√
8ρd

(4.4)
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Figure 4.5: The values of the fitted parameters, α.
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where ρ is the number density. But this definition requires that all particles

are identical, have similar speed and the system is homogeneous. Here most

of these assumptions are not satisfied: The area fraction in our simulation is

small, it ranges from 3.49 ∗ 10−4 to 0.0126, and varies with position. It seems

that this mean free path expression should work, however, let us consider the

situation described above. The local velocity distribution is far from the classical

ones, though the global velocity distribution seems near the classical ones(one is

Gaussian, the other is the exponential distribution). The boundary long range

effect make the mean free path concept breakdown[13]. It is necessary to modify

the definition and to define new categories of mean-free-path according to the

sign of the velocity vy component in the vibration direction. For the experiment,

it may be difficult. But for the simulation, this is quite easy. In fig. 4.6, the

statistical results of the mean-free-path l+ for the v+y and l− for v−y are presented.

It agrees well with our expectation. l+ and l− are different and varies as a function

of y. In the box left side, the l+ is larger than the l−. Similarly, the l− is larger

than the l+ in the cell right side. It is obvious that the previous mean-free-path

expression Eq. 4.4 can not show the Fig. 4.6.

4.5 Energy Sink

Since our system dissipates, it is instructive to measure the effective energy loss.

In the forgoing, the energy loss is described in the hydrodynamics modelling of the

granular gas with the hard sphere by the following expression −ζ(1− e2)nkBT ;

this is a mean field theory, where ζ = Cn(r, t)T (r, t)1/2, n(r, t) is the local number

density, C is a constant depending on the dimension[122]. This is equivalent

to have sinks of heat randomly distributed in the gas. Based on asymmetric

distribution, we believe that the energy loss also should be examined by the

velocity sign.

We count all the collision pairs in our simulation including the particles that

collide with the wall. These collisions are grouped according to the direction

and sign of the velocities. Then the energy loss can be collected directly from

collisions. It means the energy loss ∆Ei|j is divided into four parts: ∆Ev+x
i|j ,∆Ev−x

i|j ,

∆E
v+y
i|j and ∆E

v−y
i|j . ∆Ev+x

i|j =
∑

((v′x)
2 − v2x)/2Ncv

2
driven at (vx > 0), where v′x is
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the velocity component in x axis after a collision and vx before a collision. Each

energy loss is scaled by the Ncv
2
driven, where Nc is the total collision times, vdriven

is the driven velocity. Fig. 4.7 gives a typical result of our simulation. It can be

seen from the figure, the energy loss is anisotropic since curve with vx is different

from curve with vy. Further more it depends on the way in v−y , since v− gains

energy in the left part of the cell, but looses energy in the right part one; and

it is reversed for v+y which looses. ∆Evx
i|j and ∆E

vy
i|j are different totally. The

two components of ∆Evx
i|j , ∆Ev+x

i|j and ∆Ev−x
i|j , are almost equal to each other. On

the contrary, ∆E
v+y
i|j and ∆E

v−y
i|j show great difference. In left side of the box, the

particle of vy > 0 losses the most part of energy, while the particle of vy < 0

seems to get energy at first and to loose energy increasing as moving from the

boundary to the center. This results is totally different from our expectation

which is ∆E
v+y
i|j (y) = ∆E

v−y
i|j (y) .

4.6 Hydrodynamic field

One can try to extend hydrodynamics formulation to extend it to include dissi-

pation by collisions in a low density gas. We start on the basis of a one-particle
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distribution function f

∂f

∂t
+ v⃗ · ∇f = −ζ(f − f0)

The granular gas field is then described by the following 3 equations[122]:

∂tn+∇ · (nu⃗) = 0

∂tu⃗+ u⃗ · ∇u⃗+ (mn)−1∇ ·P = 0

∂tT + u⃗ · ∇T + 2(dnkB)
−1(P : ∇u⃗+∇ · q) + Tζ = 0

where P is the pressure tensor, q is the heat flux and ζ is the cooling rate

associated to the energy dissipation. Furthermore paper[122] proposes a local

Maxwellian distribution for (f = exp(−v2/kT ). It is also said that a hydrody-

namic description exists for Navier-Stokes till a development at second order in

ϵ, i.e. at order ϵ2 if ϵ2 > 1/2, where ϵ is the coefficient of restitution.

Obviously, it is not right in our system. Furthermore, since the real local

velocity distribution is far from the Maxwellian distribution, it is not known

whether these equations hold or not. In the other hand, we should also discuss

the shape of the energy loss; it is written as

ζ(r) = cn(r)T 1/2

In fact, there are many works already which try to discuss the local equation of

state for a granular gas[12].

Here, we wish to study “ hydrodynamic” laws to which the granular gas obey

from the basis: we need to introduce a statistical description before introduc-

ing the mean effects we had to observe and understand better the system. This

means that we need to introduce statistic of some parameters. Considering the

anisotropy, parameters we had studied vx, vy statistics, and show they have to

split into independent values for the local mean in x and y directions. Further-

more, to gain insight into the local velocity; asymmetry of vy distribution has to

be introduced too. It means that we need four hydrodynamic parameters or four

components, such as the pressure components: p+x (y) =
∑

(v+x (y))
2, p−x (y), p

+
y (y),
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p−y (y). Similarly, temperature and the number density are divided into T+
x (y),

T−
x (y), T+

y (y), T−
y (y), n+

x (y), n
−
x (y), n

+
y (y), n

−
y (y).

So, as for the x direction, all the distributions of the velocity components vx are

the symmetric, so, p+x (y) = p−x (y), T
+
x (y) = T−

x (y), n+
x (y) = n−

x (y). This agrees

well with the classical view. However, for the y direction the velocity distribution

of vy, are no more symmetric, and the complete description fails. Fig. 4.8, 4.9

and 4.11 show pressure, temperature of the y components for different number of

grains and for different restitution coefficients. We will describe their variations

before describing the evolution of the number densities.

4.6.1 Pressure

Typical results obtained by simulations of the variations of the p+y (y) and p−y (y)

as a function of the restitution coefficient are shown in Fig. 4.8 (left). All curves

show a great difference between p+y (y) and p−y (y). p
+
y (y) is the largest in the left

boundary wall and decreases linearly with y, while p−y (y) is axis symmetrical with

p+y (y). So the sum py(y) of p
+
y (y) and p−y (y) still is constant. This result has been

proved by J. Villain [93]in the case of dilute systems.

This is the main reason why most work misunderstand the real nature of

this problem: In classical gas theory, the p+y (y) should be equivalent to p−y (y)

everywhere. Here, p+y (y) ̸= p−y (y) prove that the granular gas differs from the

classical molecular gas. The value of py(y) is decreasing with the coefficient

restitution, however, the slope of p+y (y) of the same particle number and at various

restitution coefficient seem close, see Fig. 4.8 (left).

Further more the difference between P+ and P− shows that the system is not

in static equilibrium: it shows that if we separate the box by a plane perpendicular

to vibration, the solution will break at once, except when the plane is chosen to

pass through the middle of the box.

4.6.2 Temperature

The granular temperature is defined as T (x) = [Tx(x) + Ty(x)]/2, where Ti(x) =
¯(vi − Ui)2, i = x, y, Ui is the mean velocity and Ui = 0 for the steady state.

Anyhow, this notion is perhaps difficult to use here: Firstly, we know that the
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Figure 4.8: Variations of pressure p+y (y) and p−y (y) for different coefficient resti-
tution ep (left) and different total number of particle N. ew = 0.95. The box is
300 ∗ 300. N = 360.

analogy with temperature definition coming from molecular gas theory is not so

certain[88–90]; secondly, we need to define here two Temperature T depending on

the directions (x and y) of motion; thirdly, due to the local velocity asymmetric

distribution, we need to calculate the temperature components according to the

sign of vi, T
+
i ≡< v2i >[13], i = x, y. In [13], we shew that energy equipartition

law does not persist. The temperatures T+
y (y) and T−

y (y) are not equal to each

other along y direction, although T+
x (y) is about equal to T−

x (y). Fig. 4.9 shows

the spatial profiles in our simulation. These results also agree with our experi-

ment results. Except for the cell center, for which T+
y = T−

y , we find T+
y ̸= T−

y

everywhere, as in the experiments. This also agrees with our experiment results

[13] (see Chap 3). Because of the dissipation in the system and since energy

is injected from the side, the temperature falls down from the boundary to the

center in the case of excited particles.

Furthermore, one observes the more the dissipation, the larger the difference

between T+
y (y) and T−

y (y), while T+
x (y) is almost equal to T−

x (y). Here we intro-

duce a parameter q(y) = T+
y (y)/T−

y (y), which is the ratio of the two temperatures

T+
y (y) and T−

y (y). The spatial profile of q(y) is shown in Fig. 4.10. q(y) is merely

constant at large e:q(y) ≈ 1, when e = 0.999. Furthermore, variations of q(y) vs

y is linear in log-linear scale of Fig. 4.10; this tells ln(q) = −ky. So, assuming
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Figure 4.9: Variations of temperature T+
y (y) and T−

y (y) for different coefficient
restitution ep(left) and for different number of particle N(right). ew = 0.95. The
box is 300 ∗ 300. N = 360.

ln(q) = −ky, we obtain
T+
y (y)

T−
y (y)

= e−ky (4.5)

The ratio of T+
y (y) and T−

y (y) drops exponentially. k can be measured for

the different restitution coefficient from Fig. 4.9. So we plot its value as a

function of e in Fig. 4.11. This shows that k depends on coefficient of restitution

monotonically with a negative slope in fig. 4.11.

4.6.3 The number density

The number density n+
y (y) and n−

y (y) in each way (+y and −y) are shown in Fig.

4.12 for different ball numbers. The larger the number of particles is, the sharper

the peak of n±
y (y) is. Furthermore, n+

y (y) and n−
y (y) are different from each other

except at the center of the box. This fact demonstrates there is no micro “static”

state in the granular system which corresponds to a real local equilibrium, for

which one should have (n+
y (y) = n−

y (y)) everywhere and P+ = P− every where.

At equipartition, n+ = n− ; it is obtained when n+ = n− = n/2. So the

equipartition is reached when n+/(n+ + n−) = n−/(n+ + n−) = 0.5. Fig. 4.13

shows that the equipartition occurs at the same point, whatever the ball number,

when we use the same excitation. This is linked to symmetry of excitation.
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Figure 4.12: The number density spacial profiles n+
y (y) and n−

y (y) with various
coefficient restitution ep. ew = 0.95. The box is 300∗300. N = 360 for left figure.

Elsewhere the distribution is different since n+ different n−. Furthermore the

distribution of n = n+ + n− depends on y and is maximum at the cell centre.

This makes more intricate the problem of calculating the local mean-free-path

with the number density, as discussed in preceding section 4.4. It is clear that

the mean free path does depend not only on n(y) but also on the set n+
y (y), n

−
y (y),

v+y (y) and v−y (y); so it varies with the particle velocity.

4.6.4 Velocity field

In most study, the velocity field is a stationary-state[12]; and such a stationary

state shall get constant pressure along y axis [68] according to hydrodynamics

flow. the pressure shall be constant[67] along y axis. Here we show in Fig. 4.14,

that the mean velocity is also zero. However, we also detected the v̄+y and v̄−y .

They are different locally. This is shown also in Fig. 4.14, where v̄+y (y) and

v̄−y (y) is not constant in the value but their mean flow is zero. In other words,

we can say the system is in global steady (or stationary) state; but this state is

in complex dynamics where two fields exists one in +y direction and the other

in −y direction. These two fields are interacting together to ensure stability of

the solution. So we have two velocity fields. This is not strange. Because the

stationary state is different from equilibrium state.
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4.6.5 The heat flux

Turning now the Fourier law of heat, we can use the classic description for a gas;

then we may test this description and see whether it is satisfying or not.

So, the heat flux q is given by q = −κ∇T , where κ is the heat conductivity, T is

the temperature. It needs to be emphasized that the heat flux here only contains

the kinetic part. For an inelastic system [132], it is expected generally the heat

flux is predicted by Chapman-Enskog expansions of Boltzmann kinetic equation,

q = −κ∇T − µ∇n, where µ is a transport coefficient, n is the number density.

There are relations between these transport coefficient as shown by Einstein.

The heat flux, q[127, 132], contains two parts, the free streaming of the particles

qkin and the translational energy changes due to collisions qint. qkin, qint in the

vibrating direction. However, the sum of qkin and qint is found linear. More, qkin

is of the same order of magnitude as the kinetic contribution, qkin. This means

the collision part is important. Article[127] proposes some generalized-Fourier

modeling, which seems to work well as a constructive law for each flux when the

restitution is larger than ep > 0.99. So, it seems to hold as a constitutive relation

for the heat flux. However, for stronger inelasticity (i.e. when the coefficient

ep < 0.99) [127], their modeling fails; the law q = −κ∇T − µ∇n fails, too.

Now considering simulation at low density ( ϕ = 0.012) and high inelasticity

ep = 0.75, we have to consider what we found previously, i.e. the existence of

two temperatures. So, we can measure the heat flux qkin, dividing it into four

parts: q+x , q
−
x , q

+
y , q

−
y , such as q+x =

∑N
i=1

m(v+x )2

2
v+x , depending of the surface

from where it merges. This is shown in Fig. 4.15 (right side). Our system is

far from equilibrium but still in a dynamics steady state. In this case, we know

that even the temperatures in + and − directions are different in the vibration

direction. Even the temperature looks different from the classical temperature,

which is discussed in the above section.

Indeed from the right part of Fig. 4.15, one can see. So, we suggest introducing

a new method to calculate the heat flux from four parts and examine the heat

flux in a dissipative granular gas.

The spatial profiles of Fig. 4.15 are rescaled by the vibrating velocity vω to

the third power v3ω. One sees:
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Figure 4.15: The spatial profiles of the four components of the rescaled heat flux
qkin in e = 0.99 (left) and e = 0.75(right),q+x , q

−
x , q

+
y , q

−
y . The number of particles

is N = 360, the area fraction ϕ = 0.0126.

1. For near elastic situation, absolute values of q+x = q−x , q
+
y = q−y .

2. For inelastic situation, absolute values of q+x , q
−
x are equal and symmetric

about the middle of the system, but q+y and q−y are asymmetric, and absolute

values of q+y and q−y are not equal to each other.

3. For the same number of particles and vibration velocity, the values of flux in

elastic and inelastic systems are quite different. It is clear that the reason of

the difference between q+y and q−y for inelastic situation is not only limited

to boundary, but also system inelasticity.

4. In the case of inelastic system, the spatial profiles of number density vary,

which is also leading to a second heat flux term (the factor ∇n in the

equation q = −κ∇T − µ∇n). So we need to discuss the number density

spatial profiles in our simulation. In[13], n+
x and n−

x are equal to each other,

while the two components of the number density, n+
y and n−

y are not equal to

each other except at the box center point ( y axis is the vibration direction).

In 1-phase hydrodynamics, the spatial profiles of n+
y and n−

y is expected to

be equal everywhere. Our simulation results confirm the spatial profiles of

n+
y differ from n+

y in various coefficients of restitution(shown in Fig. 4.12).
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5. Furthermore, we find that the more the dissipation is, the thinner the den-

sity peaks are. So, the larger the difference between n+
y and n−

y are, the

larger the heat flux exchange. This is consistent with the difference between

the temperature T+
y and T−

y . All these results demonstrate the necessity

to analyze the heat flux in details and especially the contribution of both

the positive and the negative parts. This point should be considered in

the inelastic heat flux theory and need to be explored in the future work.

This result highlights the difference of heating function between the two

boundary walls.

4.7 The mean free path

The mean free path involved in granular gases is an essential concept, which is

defined as the average distance that a particle travels between two successive

collisions. It is characterized the particle collisions and also bridges the micro-

structure inhomogeneity to macroscopic physical length scale even though lack

of scale separation between macroscopic scales and microscopic ones for granular

gases[90, 133].

The mean free path is widely applied in the granular media physics. For

instance, It is a criteria that determines whether granular dynamics can be de-

scribed by the hydrodynamic or not[70] for granular gases. If the mean free path

of a granular system is lower than a value, we supposed the hydrodynamic de-

scription could be applied in such granular gases system. Besides, the mean free

path is used to calculate the transport property for the granular media, such as

viscosity[126] of the granular flow in many literture[122]. So how to calculate the

mean free path in the granular gases is a fundamental question.

Grossman et al.[66] gave mean free path expressions in the low and the high

density limits for the inelastic granular gases. The low density expression is the

same with the mean free path in the molecular gases, while the high density one is

based on the close-packing density. These expressions work well when the system

is near elastic condition. J. Javier Brey et al.[122] masterly used the local mean

free path replacing the coordinate to obtain the temperature spatial profiles for

a granular gas fluidized by a vibrating wall and a reflecting one. The local mean
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free path could characterize the local inhomogeneity which generally exists in

inelastic granular gases.

However, Tan and Goldhirsch[133–135] study the mean free path in an uniform

shear flow, elucidating the dimensional shear rate is not small for the strong

dissipation and the ‘true’ mean free path is larger than the equilibrium mean

free path. If we analogize the local mean free path from the uniform shear flow

to granular gases fluidized by the boundary heating, the local mean free path

is supposed to be larger than the Grossman’s [66] low density equilibrium-based

expression.

In another point of view, the mean free path itself is a concept based on

the equilibrium state. One[47] cannot assume a prior ‘fast local equilibration’ or

use local equilibrium as a zeroth order distribution function unless the system

is nearly elastic. If its distribution is Maxwell-Boltzmann distribution, the local

mean free path in the granular gases could be likened to be the classical calculation

in the molecular gas. Whereas the velocity distribution of granular gases vibrated

by the boundary is exponential, demonstrated by many experiments[52, 55, 136]

and simulations[81]. Furthermore, for the local velocity distribution, two peaks

of local velocity distribution were found in the simulation[122]. This phenomenon

was confirmed in the micro-gravity experiment[13]. A gradual transition of the

local velocity distribution from the boundary to the bulk in the box center are

found. The local velocity component distribution, f(vy) (the vibration direction

is y axis), appears two peaks in the marginal layer, melting into one peak in the

box center gradually, which could be demonstrated by the skewness of f(vy)s.

Skewness is a measure of asymmetry of a distribution, which could be positive,

zero and negative that indicates that strength contrast between the distribution

tail on the right side and the left side. The skewness of f(vy) in the experiment

reduces linearly from one side of box to the other, passing the zero in the box

center. Asymmetric velocity distribution is everywhere, except for the box center

point. All these prove that the granular gas is far from the local equilibrium.

Local equilibration also need to be scrutinized in granular gases. That is why it

is necessary to investigate the local free path in vibro-fluidized granular gases.

Given all of that, what is ‘true’ local mean free path for granular gases heated

by boundary? We need to begin from checking the local velocity distribution in
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our simulation. In this paper, we do a detailed investigation into the free path in

our simulation results. The local mean free path is investigated directly from the

tracking particles in the simulation. Our results show the local mean free path for

granular gases is larger than the equilibrium expression given by Grossman, which

is consistent with the uniform granular shear system. Moreover, considering the

velocity distribution asymmetric, we find the local mean free path also have the

direction. Two local mean free path l+ and l− are defined according to the sign of

the velocity component in the vibration direction. Our results demonstrate l+ and

l− are different with each other. With double-Maxwellian velocity distribution

model, an analytic formula of local mean free path is deduced. The quantitative

predictions of the theory are compared with event-driven simulation results. A

good agreement is achieved for both l+ and l−.

The outline of this section is as follows. In Sec. I Event driven molecular

simulation method is introduced. In Sec. II The local free path under various

conditions are presented, compared with the present theory prediction. In Sec.

III The local velocity distributions are investigated. In addition, the major peaks

are fitted by a Gaussian function. The spatial profiles of the fitting results of

the parameter will presented to confirmed the double Maxwellian model. In Sec.

IV The analytical resolution of the local free path are given. The comparative

results between our theory and the simulation are discussed. We will draw our

conclusions in V.

4.7.1 Simulation Model and analyse method

A granular gas consisted of N inelastic disks with diameter d = 1 and mass m is

studied in a rectangular box. The idealized sawtooth manners presented in[12]

are adopted in y direction. If the velocities of the particles before collision are v1

and v2 and after collision v′
1 and v′

2, let v12 and v′
12 be the relative velocity of

the particle before collision and after collision, then an inelastic collision satisfy

that

k · v′
12 = −e(k · v12) (4.6)

where k denotes the unit vector directed from the center of the first sphere to
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that of the second one, e is the restitution coefficient with the range [0, 1].

For the diving wall, we adopt the driving way which is used in the work[12], a

sawtooth driving wall with vanishing amplitude A and diverging frequency ν in x

direction. So each particle colliding with the wall has the post-collision velocity:

v′ = v+∆vpw (4.7)

where

∆vpw = (−2vx ± vdrive)kx (4.8)

To obtained the asymptotic dynamics of these fitting parameters, we use a

coarse graining method[87]. The coarse graining function, Φ( R), defines spatial

“windows” with width δx = Ly/270 ( 270 strips are fixed in all simulations, so

the δx are changed according to the Ly) along x direction and length δy = Ly

along y direction. The “window” moves step-by-step along y direction(here,the

step size is 1), which means “windows” overlapping one with another. All the

particles appearing in one “window ” count towards the total amount. In our

case, there are 270 windows in x axis. For instance, When Lx = 300, Φ( R)

begins form x ⊆ [0 30], then [1 31], ..., until [270 300] .

It needs to be emphasized that our results are obtained from the simulation.

When one particle collide with another, their positions are stored. Then the next

collision happen, the free path can be calculated directly from the last collision

position.

4.7.2 The local mean free path

In work[66], the mean free path is expressed in terms of the density and the

diameter. In the low density limit, it is

l =
1√
8ρd

(4.9)

on the other hand, in the high density limit, one has

l =
ρc − ρ

2ρc
d (4.10)
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Figure 4.16: The spatial profiles of local free path l, l1 is the Eq.4.9 and l2
Eq.4.10.(Lx = Ly = 300, e = 0.99, N = 1000, Vdriven = 5).

where ρc is the close packing density, ρ is the local number density and d is the

diameter of the particle, ρc = 2/(
√
3d2).

In Fig.4.16, measurements of local free path l reveal that the quantitative

value of l is larger than approximation of the molecular gases, especially in the

boundary layer. Here, the area fraction is ϕ = πd2N/4LxLy = 0.034, and the

global mean free path calculated from the molecular gases is lg = 1/
√
8ρd = 31.8.

So granular gas is dilute and near elastic(e = 0.99), whose parameters are almost

the same with papers[66]. l in the boundary is nearly equal to the half of the box

length, which means that particles could fly free till arriving at the box center.

Then l falls down when leaving the boundary, and reach a plateau finally. We

compare our strong dilute and nearly elastic simulation results with the theory

predictions of Eq. 4.9 and Eq. 4.10. It is clearly that the most of local free path

l are twice time of lg. The simulation results of l are higher than the lg, even for

the low density limits prediction, Eq. 4.9.

The most expected explanation for this is that it has a nonzero mean velocity,

then it would be similar with the uniform shear system[133]. In shear granular

system[133], the particle velocity −→u equals −→u =
√
u2 + T , with the mean speed

u. So the local mean free path is larger than the the low density limits prediction.

But the mean velocity in the vibro-fluidized granular gases media is zero, which is
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Figure 4.17: The spatial profiles of the mean velocity , vx, v
+
x and v−x (Lx = Ly =

300,e = 0.9,N = 1000,Vdriven = 10).

also demonstrated in the works[12]. We also do not detect any significant nonzero

local velocity field in our simulated system, which is illustrated in Fig. 4.17.

Even so, if we measure two mean velocities v+x and v−x according to their ve-

locity vx sign, then we shall obtain |v+x | ̸= |v−x |, also shown in Fig. 4.17. v+x is

supposed to equal the v−x under the steady state with zero velocity field every-

where for the classical hydrodynamic. It means there is the local velocity field

even with the total mean velocity zero. We strongly believe that it is reason-

able because this system is far from the equilibrium. So now, we can understand

why the local mean free path is larger than the dilute prediction based on the

molecular gas by understanding on the uniform shear granular system[133]. In

the vibration granular system, though the mean velocity in vibration direction is

zero, the mean velocity < v+x > and < v−x > are not zero field. This is why the

local free path profiles are much larger than the molecular gas prediction.

Moreover, we measure the local free path also depending their sign, l+ and l−.

All the particles are separated according their moving direction vy, then when the

next collision happens, their free paths are collected, separately. l+ and l− are

different with each other as shown in Fig. 4.18, beyond our expectations. The

local free path of the l+ and l− all have a same lowest point in the box centre, as
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Figure 4.18: The spatial profiles of local free path l+ and l−.

it is the densest in the box center. The biggest gap between l+ and l− appears

in the boundary layer, then reduces gradually till the box center point. These

will bring many problems when treating the granular gases to the molecular gas

approximately.

Fig. 4.19 provides the spatial profiles of the local free path under various

box sizes. The box size varies from the Lx = 600 to the Lx = 4200, where the

area fraction 0.0044 to 0.000623. The free path is found larger than the dilute

gases theory prediction. For example, the maximum scaled mean free path of

the condition Lx = 4200 is about 0.35 but not 0.13 predicted by the dilute gas

theory. Furthermore, The gap between l+ and l− reduces but still exists when Lx

increasing, as we expected. The boundary effect reduces when the system length

increasing. Moreover, the free path seems to be linear on one side of the box.

4.7.3 Local Velocity Distribution

To explain above results, we need to conduct a detailed investigation about fac-

tors exerting influence over the free path. Let’s recall the derivation of the mean

free path. A particle moves in a irregular, zigzag path. Then a collision occurs

whenever another particle center approaches the distance d from this particle
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center. So the collision region will be a one cylinder swept out by this particle

movement. In deriving the expression for the mean free path, four factors are in-

volved, the diameter of the particle, the number density, the particle velocity, the

relative velocity with other particles. To avoid supposing all the prior knowledge

of the equilibrium, we need to study the local velocity distribution firstly.

We examine the local velocity distribution as the paper[13]. As mentioned

above, we measure the local velocity distribution in each window which is moved

from the left side of the box to the right side of the box. The three-dimension

plot of the local velocity distributions are illustrated in Fig. 4.20. Our simulation

results are consistent with the experiments in the papers[12, 13]and simulation

results[12, 122]. Two peaks appear in the boundary layer, then melt to one

peak when moving to the box center. The superposition of two Maxwellian

distributions is supposed to describe this local velocity distribution in such system

in [115]. To study Laws for the LVD Development, we use the Gaussian velocity

distribution(Eq. 4.11) to fit the major peak of each LVD. It is difficult to obtain

the suitable fitting results for the second peak which vanishes gradually. It is
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Figure 4.20: 3D probality disitrbution of the velocity.(Lx = Ly = 300,e = 0.9,N =
1000,Vdriven = 10).

convenient to study the major peak other than the second one. All the velocities

are scaled by the vdriven.

fm(vy) = a× exp[−(
x− ξ√
2Ty

)2] (4.11)

Fig. 4.21, Fig. 4.22 and Fig. 4.23 show fitting results of the major peak by Eq.4.11

under various vibration velocity, when fixing the rest parameters. Fig. 4.21 gives

the
√
Ty profiles in Eq. 4.11. Excluded the marginal layer, the

√
Ty values reduce

from the boundary to the box center. This could be understood: the boundary

heating rises the local temperature. With the dissipation of the inelastic collision,

the temperature goes down moving far away from the boundary. Increasing the

vibration velocity,
√
Ty increases little. In Figs.4.22, α is the largest in the box

center, reducing when leaving the center, since α is related to the local density

which is sensitive to the vibration strength. Fig. 4.23 gives the fitting results

of ξ, the expect value of the distribution under various vibration velocities. ξ

increases gradually from left of the cell to the right. ξ of various vdriven overlap
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Figure 4.21: The spatial profiles of the fitting parameters Ty(Lx = Ly = 300,e =
0.9,N = 1000,Vdriven = 10).

with each other shown in the Fig. 4.23. It is surprising that the value ξ is almost

the same with each in the various driven velocities. This means the mean of the

major peak is not influenced by the boundary vibration.

Another thing needs to be mentioned here is that the difference between the

Fig. 4.17 and Fig. 4.23. I need to emphasis the Fig. 4.23 shows the mean

velocity of the major peak, while the Fig. 4.17 illustrates the mean value of vx

when the vx > 0 or vx < 0. General opinion starts to make out that the value of

ξ should equal < v+x > or < v−x >. However, the region of integration between

two variables is different. That is why the ξ passes the zero in the box center but

not for < v+x > or < v−x >. The above result about Fig. 4.23 is reasonable. The

major peak presents the particle free movements which is not directly heated by

the driven velocity but other particle collisions, like the number of particles and

the restitution coefficients. This result also proves that ξ depends on the particle

nature, not on the boundary heating.

The skewness S of LVD is also shown in Fig. 4.24. Sx denotes the skewness

of f(vx) as Sy for f(vy). Sx and Sy in various vibration conditions are almost

overlapping. Sy are mostly near zero, while Sx appears varying from positive

to negative. These profiles of Sx are almost the same under different driven

velocities.
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Figure 4.24: The spatial profiles of the fitting parameters S (Lx = Ly = 300,e =
0.9,N = 1000,Vdriven = 10).

Fig. 4.21, Fig. 4.22, Fig. (4.23 and Fig. 4.24 gives a brief profile for the

local velocity distribution in two dimensional granular gases. It demonstrates

our assumption about the two peaks of the local velocity distributions. These

results prove that the vibration only varies the number distribution but almost

not change the value of the ξ or Ty. In the following, we will use the kinetic

theory to give an analysis resolution for the local free path with the local velocity

distributions.

4.7.4 The kinetic expression

In this part, we treat particles from two opposite directions in x axis to two species

particles. Positive particle and negative particle are treated as two different type

particles, and each is assumed to be Maxwellian distribution, separately. Then

with the assumptions made for a vibrated granular gas discussed in [115], the

colliding pairs of particles could be obtained analytically[69]. Each one has the

Maxwellian distribution[137, 138]:

fi(ri, v) = ni(
1

2πti
)exp[−(v − ξi)

2

2ti
] (4.12)

where ξi denotes the mean velocity, ti is the temperature, ni is the number density.

Each direction has its own temperature, the mean value and the number density.
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To keep the mean velocity is zero, their parameters should satisfy:

n1 + n2 = n (4.13)

n1ξ1 = −n2ξ2 (4.14)

Where the note 1 and 2 represent the positive and negative components of vx,

n means the local number density. For the two dimensional situation here, n =

N/A, N is the particle number, A is the area.

So the frequencies of the binary collisions can be expressed as

Nij =

∫ ∫ ∫
f
(2)
ij (ri,vi, rj,vj)dijdkdvidvj (4.15)

Here, i,j could be either direction ( positive and negative direction in x axis). In

order to simplify our discussion, molecular chaos assumption are used. So, the

pair distribution, f
(2)
ij , could be written as,

f
(2)
ij (ri,vi, rj,vj) = f(ri,vi)f(rj,vj) (4.16)

The pair distribution could be obtained by assuming chaos:

f
(2)
ij (ri,vi, rj,vj) =

ninj

(2π)2titj
exp[−(vi − ξi)

2

2ti
− (vj − ξj)

2

2tj
] (4.17)

where, i and j could be source-like or unlike particles, that is, the binary collisions

could happen between particle with positive velocity and one with negative ve-

locity, and positive one, positive one and negative one, and negative and negative

one.

Firstly of all, the collision frequency:

Nik =

∫ ∫ ∫
f
(2)
ij (ri,vi, rj,vj)(cji · k)d2dkdcidcj (4.18)

Let the relative velocity of the particle is

cji = cj − ci (4.19)
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Gji =
1

2
(cj + ci) (4.20)

k is the unit vector directed from the center of the first sphere to the second one

during the collision. Considering the particle move is two dimension, so

∫
cji · kdk = 2cji (4.21)

where cji · k > 0 is to make sure a collision will happen.

Using vi and vj substituted by G and cji, frequencies of collision per unit

time is expressed as

Nik =

∫ ∫
ninj8dijπ

2

(2π)2titj
(4.22)

×exp[−(G+ (1/2)cji − ξi)
2

2ti
− (G− (1/2)cji − ξj)

2

2tj
]

×c2jiGdcjidG

Then expanding it by Taylor series and ignoring all the high order terms, the

solution of Eq. 4.22 is

Nik =
8dijninj

√
2π(titj)

3/2

(ti + tj)5/2
e
− 1

2
(
ξ2i
ti

+
ξ2j

tj
)

(4.23)

When ti = tj and ξi = ξj = 0 , the expression reduces to the molecular gases

mixture in the[69] for two dimension gas. The mean speed of two dimensional

Maxwellian gases is v̄ =
√

πkT
2m

. Then we can calculate the mean free path for

two components of the local free path basing on the Eq.4.23. The local mean free

path for the positive direction is

l1 = n1c1/(N11 +N12) (4.24)

where the subscript 1 denotes the positive component, while 2 represents the

negative one. So the negative mean free path will be

l2 = n2c2/(N22 +N12) (4.25)
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Figure 4.25: Parametric plots of Eq.4.24 l+ (�) and Eq. (4.25) l−(•), compared
with the free path l+ (�)and l− (◦) the simulation results with parameters Lx =
Ly = 600,e = 0.9,N = 1000,Vdriven = 5.

To compare our simulation results and the equation (4.23), the definitions of

parameters are:

t1 =
∑

(v+x )
2 (4.26)

ξ1 =< v+x > (4.27)

Fig. 4.25 shows parametric plots of Eq. (4.24) and Eq. (4.25), compared

with our simulation results. Our theory prediction works quite well with the

simulation results. The trends of Eq. (4.24) and Eq. (4.25) are almost the same

with simulation results. The qualitative value of our theory prediction is much

larger than the dilute theory Eq.4.9. These demonstration Eq. (4.24) and Eq.

(4.25) are effective representations of l+ and l− in the simulation. It means the

free path are related with the local temperature and the number density with

positive and negative components. Eq. (4.23) is much larger than the classical

Grossman’s Eq (4.9). It also describes the difference between the positive and

negative free path feature which exists generally in the granular gases heated by

the boundary.

In this section we investigate the local mean free path of granular gases, driven

by vibrated walls. Each free path is obtained directly from particles tracking
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in our simulation. We firstly compare our results of the dilute and near elastic

situation, and the local free path is much larger than the classical molecular gases

theory predicted which means that the local mean free path is underestimated for

the vibrated granular gases. After increasing the length of the box in the vibration

direction, we observe different local mean free path in various the area fraction.

The spatial profiles of the local mean path become more and more linear with

increasing the box length Lx. Moreover, the positive and negative components of

the local mean free path is different with each other. The gap between the l+ and

l− reduce when the Lx is elongated. Even the area fraction reduced to the 10−4,

the local mean free path is still larger than the classical theory prediction. By

assuming the double Maxwellian velocity distribution, we obtain the local mean

free analysis solution. Our theory agrees well with the simulation results.

4.8 Summary

In this Chapter, we have demonstrated, confirmed and discussed the asymmetry

of the local velocity distribution in the vibrating direction using simulations. So,

this is a real feature, which is also confirmed by simulation. Its variation with

dissipation is demonstrated using different values of the restitution coefficient (e <

1) and different number of particles in the cell. Furthermore, we measured the

skewness of the local velocity distribution as functions of the restitution coefficient

(0.999 < ep < 0.65) and of the number of particle (the area fraction 3.49∗10−4 <

ϕ < 0.0126). For the elastic system, the skewness is nearly uniform and S = 0

everywhere. For inelastic system, the skewness is non-zero except at the cell

center. In the left side of the box, the skewness is positive and decreases ( to 0)

with the increase of the distance from the left boundary. In the right side of the

box, the skewness is negative, and increases (to 0) with the distance to the right

boundary. Skewness is 0 in the center of the cell due to the symmetry of the

excitation we chose. The spatial profiles of the skewness (which is non zero most

everywhere) indicates that this asymmetry is a bulk effect. Furthermore, we have

shown that the value of skewness module increases when the restitution coefficient

is decreased; this demonstrates this long range boundary effect is related to the

system dissipation.
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4. The simulation results

By using a simplified phenomenological model (superposition of two Gaussian

functions), an expression of the skewness can be derived, which is consistent with

our simulation data and consistent with our previous Airbus experimental results

(see Chap 3), as soon as the modeling reaches a steady state. This confirms

that boundary excitation and the dissipation property of the system lead to this

long range boundary effect. The temperature evolution is also studied using the

simulation. Study needs to define two different temperatures along x and y, and

also two temperatures in +y and −y.

The mean free path l+ (of particles with vy > 0) and l− (of particles with

vy < 0) are different in the box, and varies in the opposite ways as a function of

y.

Furthermore, one shall split the temperature problem in the y direction (vi-

bration direction) to introduce two different temperatures T+
y and T−

y . We

calculate the two temperatures from the two components: the positive and nega-

tive temperatures. We find the energy equipartition does no longer persist in our

simulation. Moreover, the ratio of two temperatures drops exponentially.

Finally, we discuss the heat flux and find the difference between a classical

system and the granular system. These results imply that a new point of view is

defined for exploring and explaining the properties of a granular system.

It is worth noting that we cannot explain the non Gaussian tail of the distri-

bution of speeds, that remains to be understood clearly.
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Chapter 5

The experiment results with the

various gravity

In this Chapter, we consider the case of a vibrated-fluidized granular system in

presence of various gravity field, such as an experiment reported by Kudrolli[54],

where the granular gases are excited in an inclined plane. For the velocity com-

ponent in the direction perpendicular to the motion of the oscillating wall, the

distribution is found strongly non-Gaussian. For velocity component in the direc-

tion parallel to the vibrating wall, the distribution is even asymmetric. Moreover,

This asymmetry becomes weaker if the tilting angle increases, and the velocity

distribution becomes more Gaussian. This is due to the gravity which increases

the ratio between the heating rate and the collision rate. And Baldassarri[62]

simulated this experiment and get consistent results. If the force field increases

to 100g (g is the acceleration of earth gravity), the velocity distribution becomes

more Gaussian.

Brey et al. [139] investigated a similar system by simulation method and using

an hydrodynamic description. The granular density profile exhibits a maximum.

But the temperature profile exhibits a minimum at high altitude; this does not

agree with the results in[140]. Further, in[141], the local velocity distribution are

measured in a 1-or-2-layer system, and it was found that the shapes of the velocity

distribution depend on the height of the layer (i.e. 1 or 2), on the coefficient of

restitution and the measured location. This point implies that the local state of
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5. The experiment results with the various gravity

a granular system is necessary to be investigated carefully, in the case of vertical

vibration, too.

But, current studies of the local state of the granular system using experiment

are scarce and they are connected mainly to data from the simulation. In this

Chapter, we present our experimental results on 2D granular systems confined in

an inclined 2-D cell and fluidized by vibration in the direction of the inclined cell.

To study the variations of the different fields and distributions on gravity field,

we changed the tilted angle from 0◦ to 85.5◦ by means of 5◦ step. It means we

checked the dependence of granular system upon the parameters of vibration and

upon the ball number from horizontal vibration to near vertical vibration at each

step. Several hundreds of experimental data groups are obtained. The details of

the experimental apparatus and the most important results can be found in this

chapter; but other data are reported in Appendices C & D.

5.1 Experimental setup

The experiment are conducted in a quasi-2D rectangle cell (whose side walls

were in aluminum, and front and back walls in glass, Lx, Ly, depth=70mm ∗
50mm∗10mm). The depth of the box is 10mm at largest (the width of side wall,

Max(10mm)), but is adjustable by using added glass widows to cover bottom to

fit the ball diameter and to make sure the cell to be quasi-2D. The box is fixed on a

vibrator(LDS). The vibrator is mounted on a rotary table (accuracy ,1 round=4◦;

and 240 grad/round). This table can circumrotate by 180◦ . The sketch of the

experiment setup is shown in Fig. 5.1. There are two kinds of particles we used:

one is made of bronze with diameter d = 3mm and the other one is made of delrin

with diameter 6mm. In this thesis, due to space limitations, we only show the

results of the bronze ball with d = 3mm. The movements of beads are recorded

by a fast camera (500fps). Because image recording images are 2D, the particle

rotation is not considered. An other thing to be noted is that one needs to rotate

the camera to face the box windows, when rotating the angle of vibration. A

2D set of LEDs is mounted on the back side of the cell to increase the contrast

between beads and the background. The box is divided into 15 layers along the

vibration x direction (the size Lx is 70mm). For inclined situation, particles
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5. The experiment results with the various gravity

Figure 5.1: the experimental setup.

may not reach the top bins (depending on the vibrating parameters and on the

inclination angle); for such bins, all the parameters are set to zero. Each group

(for a single inclination) include 9000 frames.

The experiments in gravity field is more complex than those in micro-gravity.

There are two reasons: A) Some friction exists between a particle and the bottom

board of the cell, however, the friction between the bronze ball and the glass

window is small. More, this friction can be ignored when the vibration intensity

increases. B) there is a gravity field, so that each particle suffers gravity, which

movement is parabola when it is free. The collisions are also influenced by gravity.

The images recorded by the fast camera are firstly processed to get the

positions of bead centers, which are calculated through the ultimate eroded

points(UEPs) in the Euclidian distance map(EDM). Afterwards, the particles

are tracked by using the program of minimum-distance algorithm as described in

Chapter. 3.

We did a series of experiments. Firstly, we tilted the angle and changed

the inclination from near horizontal to near vertical each 5◦. Then, the number

of monolayer is changed per layer. So several hundred of groups of images are

analyzed and processed.

The next sections of this chapter has the following structure. In Sec. 2.1 we

present the experimental results in nearly horizontal vibration. Two cases are

considered consecutively: in the first part of sub-section 5.2.1 vibration strength
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5. The experiment results with the various gravity

Figure 5.2: Snapshot of the cell and particles. The cell (Lx∗Ly = 70mm∗50mm)
contains 256 bronze sphere particles, driven in the x direction at various vibration
parameters(A, Vω,Γ, f).

is changed, which means comparing results in different parameters of vibration;

in the second part of 5.2.1, the number of layers is then changed. In Sec. 2.2, we

show results at various inclined angles. For brevity, we confine our attention on

the velocity distribution and on the hydrodynamics profiles, although the other

properties can be found if required. In section 5.3, dependence of the behaviors

with gravity will be described.

5.2 Experiment results for slightly tilted vibra-

tion

In this section, we consider the properties of granular gases under a slight incli-

nation (diameter D = 3mm, Bronze, tilt angle q(θ) < 1◦). Parts of the objective

are to study the micro-gravity effect, and the slightly dependence about small-g

effect; for instance, in parabolic flight, sometimes, the gravity is not equal to zero.

Its gravity field fluctuates around zero. This experiment will study this kind of

quasi-static micro-gravity effect. We are interested in two variational parameters:

vibration parameters and the number of monolayer.
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5. The experiment results with the various gravity

5.2.1 Various vibration intensity

Our experimental parameters are shown in Table.5.1. In this part of experiment

the number of particles is kept constant N = 256, the number of monolayer is 16

and the area fraction ϕ = 0.52. For such a system, the number density is quite

large, so the system have to get energy from two boundary walls, and dissipate a

lot through ball-ball collisions.

Table 5.1: The vibration parameters used in Fig. 5.3, Fig. 5.5 and Fig. 5.6.

Item N Freq(Hz) Acc(m/s2) Vω(m/s) Amp (mm)
1 256 50 70 0.22 0.14
2 256 50 80 0.25 0.16
3 256 50 90 0.29 0.18
4 256 50 100 0.31 0.20
5 256 50 110 0.35 0.22

5.2.1.1 The velocity distribution

Firstly, we take Item 5 data of Table 5.1 as an example to analyze the global

and local velocity distributions f(vx) and f(vy), in log-linear scale. The global

velocity distribution are displayed in Fig. 5.3. It is clearly that both velocity

components are non-Gaussian. But the value of the exponent in the exponential

law seems not clear. Here, x is the vibrational direction.

The local distributions of vx and vy are displayed in Fig. 5.4 and 5.5. Compar-

ing these results with the experiment in micro-gravity and the simulation results,

we do not see anymore the structure with two peaks in vx; instead, we see a slight

displacement of the peak towards positive velocities. There is no two-peak veloc-

ity distribution for f(vx) near the boundary layer. Instead, the center of f(vx)

near the boundary layer is offset. Moreover, f(vx) bias goes to right in the left

side of the box and bias goes to left in the right side of the box. Moving towards

the center of the cell, the local distributions f(vx) become more symmetry and

more Gaussian. This asymmetry around zero is consistent with the experiments

in micro-gravity and simulation results. On the contrary, local distribution f(vy)

looks symmetric everywhere in Fig. 5.5. Moreover, in Bin 1 and Bin 15 the shape
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Figure 5.3: The global velocity distributions of the components vx and vy. Here,
x is the vibration direction. vx and vy is scaled by their mean squared. The
vibration parameters are listed in Item 5 in Table. 5.1).

of f(vy) is exponential, while in Bin 7, f(vy) become more Gaussian. It is obvious

that the shapes of f(vx) and f(vy) are dependent on the position of the cell.

For various vibrational parameters function, we observe the skewness of the

local f(vx) and f(vy) (shown in Fig. 5.6). It is also clear that skewness of f(vy)

are 0 for y direction, while Skewness is positive on the negative vx side and

negative on the positive vx side. Skewness passes through 0 at vx = 0 linearly

decreasing. It is clear f(vy) skewness remains near zero, while the profiles of the

local f(vx) skewness is smaller when increasing the vibration parameters. One

possible explanation for these findings is that: when increasing vibration strength,

the dissipation increase, then the skewness of the local f(vx) become larger. This

increasing dissipation leads the skewness larger; this has been demonstrated also

in Chapter. 4. It is worth noting that the maximum of the skewness is not in the

boundary layer as in microgravity result, but closer to the center of the box (see

Fig. 5.6).

It is clear that the shape of the velocity distribution is affected by the vibration

parameter. It seems that the stronger the vibration is, the skewer the local f(vx)

is. Reasons for this looks obvious. Vibration velocity vω can decide energy a
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Table 5.2: The vibration parameters used to display results with different number
of particles.

Item Freq(Hz) Acc(m/s2) Vω(m/s) Amp (mm)
1 60 134 0.36 0.18

particle obtained from the boundary wall. The larger the boundary effect is, the

skewer the local velocity distribution f(vx) is.

5.2.1.2 The spatial profiles of Hydrodynamics

The number density profiles n+
y & n−

y are shown in Fig. 16 (bottom left) of

Appendix C. It is found n±
x also are not equal, while n±

y are equal, whatever

the vibration parameters. This point is consistent with our results in the micro-

gravity and with those from simulation. In Fig. 16 (of the bottom right corner)

of Appendix C, n+
x and n−

x are rather symmetric like the results ahead. However,

one sees the maximum of n+
y and n−

y not to be on the center of the box, but

slightly on the right side, the position of n+
x = n−

x are not in the center of the

box. This is probably because our system is slightly tilted, leading to an effective

small gravity. However, n seems not sensitive to the vibration parameter. So it

needs to be studied in more details in future work.

The spatial profiles of the pressure and of the temperature at various vibration

strength are shown in Fig. 16 of Appendix C. Top left of Fig. 16 shows T+
x ̸= T−

x

while Top right one displays P+
x ̸= P−

x . Such behaviors can also be found in our

experimental results, which are consistent with these ones.

5.2.2 The number of layers

Let us describe the results obtained form a vibrated granular system, slightly

tilted, containing various filling ratio. The number of layers is changed by step

of 1 layer at a time; (1 layer=16 balls) till 16 layer (=256 balls) is achieved.

Vibration parameters are not varied here but remains equal to those in Table.

5.2. Parts of results are listed in the Appendix C.

Firstly, we compare global velocity distributions f(x) for various number of
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Figure 5.7: The Probability distribution f(vx) versus the number of particle. The
solid line in red Gaussian fitting for N = 160. The vibration parameters are listed
in the Table. 5.2.

monolayer in radius unit vω in Fig. 5.7. The differences between f(vx) does not

appear after rescaling. All the distributions looks not Gaussian, a larger negative

velocity tail. This is due to our cell which is slightly inclined. Secondly, in Fig.

19 of Appendix C, the hydrodynamics profiles are displayed.

As N increases, the system looks to become more and more inhomogeneous.

For instance, the maximum of the number density looks to become larger than

in Fig. 5.7. So, in order to investigate this point, we study the variation of this

maximum; it is displayed in Fig. 5.8, where it looks increasing linearly in the

present case.

5.2.3 The local equation of state

The work[12] presented the local equation of state for the simulation. We exper-

imentally measure the local equation of state for our system[142] in this section.

Local equation of state can be seen as a local constitutive equation of tempera-
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Figure 5.8: The maximum of the number density profiles versus total particle
number N. The size of box is 70mm ∗ 50mm, the diameter of a particle is 3mm.
The particle change from one layer to 14 layers(16 particles per layer). The
vibration parameters are listed in the Table. 5.2.

ture, pressure and the number density. The kinetic part is calculate by

σkin
ij = −m

∫

ℜ
dvx

∫

ℜ
fstat(r, vx, vy)× [vi − Ui(r)][vj − Uj(r)] (5.1)

Except for the kinetic parts, the collision parts of the stress tensor are included.

The detail calculation is Eq. 2.31 in the Chapter 2. Fig. 5.9 gives stress composed

of the kinetic parts and the collision parts in our experiment. We could find that

the stress σkin
xx and σkin

yy decrease moving from the boundary to the center, while

the σint
xx and σint

yy increase. So the diagonal components of the stress tensor,

σxx and σyy, are almost constant, which is consistent with the results from the

simulation[12] and hydrodynamic theory.

Now, let us turn to the local equations of state predicted by theory[12] is:

p(x)

ρ(x)T (x)
= G(ϕ(x)) = 1 + (1 + α)ϕχ (5.2)
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where χ = 1−7ϕ/16
(1−ϕ)2

, ϕ is the are fraction, α is the restitution coefficient.

Based on above stress tensor, we could calculated G in our experiments by

G = p(ϕ)/nT (ϕ). Fig. 5.10 compare 8 group experiment results G with var-

ious area fractions. The G is global underestimated by theory. It seems that

when ϕ > 0.3, the local equation seems agree well with the theory perdition.

However, ϕ < 0.3, the G are shown great difference between the experiment and

simulation.

The possible reason maybe 1) The errors are introduced by tracking particles.

2) The above theory is based on the idea dense gas, but maybe not suitable

for granular media. 3) The friction between particles and the box bottom is

important factor. We also vary the value of α , but it has a little effect on the

fitting results.

5.3 Experiments for various degree

In this section, we present experimental results as function of the inclination.

The number of particles are varied at each angle. Some results are listed in the
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Appendix D. Here, we only give the trends and the most important results. It

is obvious that each particle is now subject to a gravitation effect ge = gsinθ

pointing downward, where θ is the inclined angle.

5.3.1 The velocity distribution

We first start with the velocity distributions. Here, we display the global velocity

distribution f(vx) and f(vy) at various degrees. f(vy) is still symmetric, but f(vx)

is asymmetric from 5.5◦ to 85.5◦ (shown in Fig. 5.11). This results are consistent

with the experiment results in [58]; it does not show up strong dependence with

angle of gravity.

The velocity distribution perpendicular to the vibration direction can be fitted

by an f(vy) = Ae−B|vy |−1.5

; it means that the velocity distributions along vy is are

still non-Gaussian even when gravity is increased.

Fig. 5.12 display the f(vx) distribution, for different gravity field. All the

distributions look asymmetric and quite similar in the top, while they may diverge

in the far tails. The the velocity probability distribution turn to be never Gaussian

109



5. The experiment results with the various gravity

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

PDF of Vx

exp(−Vx
2
)

exp(−|Vx|)

exp(−|Vx|
1.5

)

−4 −2 0 2 4
10

−4

10
−3

10
−2

10
−1

 

 

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

PDF of Vy

exp(−Vy
2
)

exp(−|Vy|)

exp(−|Vy|
1.5

)

−4 −2 0 2 4
10

−3

10
−2

10
−1

 

 

Figure 5.11: The global velocity distributions of different components vx and vy.
Here, x is the vibration direction. vx and vy are scaled by their mean squared.
The vibration parameters are listed in Table 22). Degree is 30◦.

and seems reach a steady shape, merely independent of the angle as soon as

the angle of inclination are raised up above 5.5◦. This means that most of the

asymmetry happens below 0.1g within our vibration parameter. This is different

from experiments in [54, 62]. They assumed this is a effect of the increase of the

heating rate. However, our results show that the heating rate reaches a steady

value even if the inclined angle increasing continuously. Another explanation

might be that the heating rate has already reached its maximum and can not be

able to increase continuously.

Results for the local velocity distributions are displayed in Appendix D at

various inclinations. Here we describe a single example: the one corresponding

to Fig. 35 and 36, obtained at 35.5◦. The f(vy) in each bin is displayed in Fig.

35 in Appendix C, which shows a symmetric distribution in each bin. But the

f(vx) in Fig. 36, display different shape, depending on the bins, and the nearer

the bins from the boundary, the more asymmetric the distribution as usual. The

more central the bin the more regular the shape of f(vx). This situation always

exists, i.e. whatever the inclination. It is clear the boundary plays a part in the

asymmetry of the distribution, and hence plays also a part in the non Gaussian

shape.
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5.3.2 Spatial profiles of the number density n±
x,y

We turn now to the study of mean ball numbers n+
x , n

−
x , n

+
y , n

−
y at different

inclinations; this is sketched in Fig. 5.13. One observes, (i) the larger the dis-

tribution the smaller the inclination, at least for 5.5◦ and n+
x is larger than n−

x .

While n+
y and n−

y are of same order for the same inclination. So, n+
y = n−

y and

n+
x ̸= n−

x exists in various tilted degrees; furthermore, one can tell also that

n+
y + n−

y = n+
x + n−

x . However this relation is not precise. From these figures

we can tell that starting from level 0, the number of grains first increases, passes

through a maximum, then decreases. The mean height (where n = 4 ∼ 6 is

always about the same except for 5.5◦ inclination, the height of which is slightly

larger (y/L = 0.5 or 0.6, while the other are 0.4). The lower the maximum of

density the large the gravity (or the inclination); this looks also quite normal,

since the heap is dense by gravity.

For a molecular gas, the number density of in the atmosphere is scaling as

n = n0e
−mgh

kT (5.3)

Indeed, our experimental results demonstrate the spatial profiles of granular gases
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Figure 5.13: Spatial profiles of the number particles n±
x and n±

y . Here, x is the
vibration direction. The vibration parameter is listed in Table. D.22), Label #1
corresponds to 5.5◦ inclination, #2 to 20.5◦, #3 to 50.5◦, #4 to 65.5◦ , and #5
to 85.5◦.The number of particles is 112 and the area fraction is 0.23.

are not exponential forms. Furthermore, n+
x is not equal to n−

x . This demonstrates

that vibration-fluidized granular gases are a dynamics process and total different

from the classical situation.

To keep the momentum conservation, it can be deduced that the v̄+x ̸= v̄−x .

In different inclined angle, mean of velocity components v̄+x and v̄−x are shown in

Fig. 5.14. For the degree 5.5◦, the mean velocity is similar with our molecular

simulation in the previous chapter. When the degree increase to 35.5◦ , the spatial

profiles of the mean velocity change a lot. Even the spatial profiles ofv+x and v−x

are no long axis symmetric, but influenced by gravity.

Theories about the vibrational granular gases under gravity include(a) hydro-

dynamic model[62]. (b) statistics model[58]. However, these model often take the

assumptions based on the classical thermodynamics and hydrodynamics. From

our above experiments, due to great dissipation, the deviation with the theory is

not surprising.
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5. The experiment results with the various gravity
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5.4 The Hydrodynamic model

In presence of a uniform external force f, for a dilute granular gas[139], the hy-

drodynamic equations are:

∂n

∂t
+ ∇⃗ · (nu⃗) = 0 (5.4)

∂ui

∂t
+u ·∇ui+(nm)−1∇ip−(nm)−1∇j× [η(∇iuj+∇jui−

2

d
δij∇⃗ · u⃗)]−m−1fi = 0

(5.5)
∂T

∂t
+2(dnkB)

−1P∇iuj×[η(∇iuj+∇jui)−
2

d
δij∇·u⃗)]−2(dnkB)

−1∇·(κ∇T+µ∇n)+Tξ(0) = 0

(5.6)

f = −mgêz (5.7)

Here, n(r⃗, t) is the local number density field , u⃗(r⃗, t) is local average velocity field,

or local flow velocity, T (r⃗, t) is the temperature field, P̂(r⃗, t) is the pressure tensor,

m is the mass, ζ(r⃗, t) is the cooling coefficient, kB is the Boltzmann constant, µ

is the granular transport efficient, η is the shear viscosity, κ is the heat transport
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5. The experiment results with the various gravity

efficient. Their expressions are as follows:

η = η∗(α)η0(T ) = η∗(α)
2 + d

8
Γ(d/2)π−(d−1)/2(mkBT )

1/2σ−(d−1) (5.8)

η∗(α) = [ν∗
1 −

ζ∗(α)

2
]−1 (5.9)

κ = κ∗(α)η0(T ) = κ∗(α)
d(2 + d)2

16(d− 1)
Γ(d/2)π−(d−1)/2(

kBT

2
)1/2σ−(d−1) (5.10)

κ∗(α) = [ν∗
2 −

2dζ∗(α)

d− 1
]−1[1 + c∗(α)] (5.11)

µ = µ∗(α)µ0(T ) (5.12)

µ∗(α) = 2ζ∗(α)[κ∗(α) +
(d− 1)c∗(α)

2dζ∗(α)
]× [

2(d− 1)

d
ν∗
2(α)− 3ζ∗(α)]−1 (5.13)

ζ(0) = ζ∗(α)
p

ζ0
(5.14)

ζ∗(α) =
2 + d

4d
(1− α2)[1 +

3

32
c∗(α)] (5.15)

ν∗
1(α) =

(3− 3α + 2d)(1 + α)

4d
[1− 1

64
c∗(α)] (5.16)

ν∗
2(α) =

1 + α

d− 1
[
d− 1

2
+

3(d+ 8)(1 + α)

16
+

4 + 5d− 3(4− d)α

1024
c∗(α)] (5.17)

c∗(α) =
32(1− α)(1− 2α(2))

9 + 24d+ (8d− 41)α + 30α2(1− α)
(5.18)

For the steady state, the above equations reduce to:

∂p

∂z
= −nmg (5.19)
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5. The experiment results with the various gravity

2

dnkB

∂

∂z
(κ

∂T

∂z
+ µ

∂n

∂z
)− Tζ(0) = 0 (5.20)

By introducing the local mean free path scale l:

l =

∫ L

z

dz′
1

λ(z′)
(5.21)

Then detail derivation could be found in the work[139]. The general solution of

the temperature will be :

T 1/2(ξ) = Aξ−νIν(ξ) + Bξ−νKν(ξ) (5.22)

ν(α) =
µ∗(α)

4[κ∗(α)− µ∗(α)]
> 0 (5.23)

Iν and Kν are modified Bessel functions of the first and second kind.

p(ξ) =
mgξ

Cσd−1
√
a(α)

(5.24)

dξ

n(ξ)
= −

√
a(α)Cσd−1dz (5.25)

Our system is not an open vibrated system, it is difficult to obtain the solution of

Eq. 5.20 appropriately. Though our experimental box is closed, the particles do

not collide on the other wall when the inclination is small. So we could compare

our large inclination results with the simulations in the above open vibrated

system ( Our experiment results could be found in the Appendix D). Comparing

with above simulation and theory, we could conclude the follow points in our

experiments:

(i) The trends of the number density profiles in the experiments are similar

with simulation. The number density have a maximum at ξ = ξn. The height of

the location ξn increases with the inclination degree growing up, which is shown

in the Fig. 5.13. However, the height of the location ξn does not seems to be

sensitive with the vibration strength, which is almost the same under various

vibration strengths shown in the Fig. 25. This Figure also demonstrates that the

value of the maximum of number density is increase with vibration strength when

the inclination degree is small. When we increasing the inclination, we could find
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5. The experiment results with the various gravity

the maximum of the number density varies not only the value but also the height

in the box.

(ii) Besides similar points above, we also find that two components of the

number density according to the vibration direction, n+
x and n−

x . They are differ-

ent with each other but the number densities n+
y and n+

y overlap with each other.

All these findings are consistent with our previous results.

(iii) The overall trend of the granular temperature is also similar with the

open system, where the temperature could be described approximately by :

T 1/2(ξ) ≃ Aξ−νIν(ξ)− Bξ−νlnξ (5.26)

The maximum of the granular temperature also appears in the low altitude, which

is consistent with the simulation in[139]. With the inclination degree increasing,

the scaled temperature becomes smaller and smaller. The gap between the T+
x

and T−
x reach its maximum in the box bottom (near the vibrator), then slowly

narrows toward the box center.

(iv)The pressure could be directly expressed by the Eq. 5.24. With the

effective gravity increasing(the inclination degree increasing), the scaled pressure

gradually increases, which is shown in the Fig. 24 to 52.

5.5 Summary

The objective of this work is to study the steady state of a vibrated granular

gas in various gravity. It has been shown the following major results: (i) For

the horizontal vibration, the global velocity distributions f(vx) and f(vy) are

exponential fitted with the coefficient 1.5. Here, the vibration direction is x axis.

f(vx) is asymmetric which is consistent with our experiment in micro-gravity or

simulation in previous chapters. However, there are no two peaks appearing in the

boundary layer for f(vx) like the results in micro-gravity, replacing by the peak

overall shift. Comparing with the results in micro-gravity, the bottom friction

maybe the important factor. (ii) The skewness of f(vx) is strongly affected by

the vibration strength. The skewness becomes larger with increasing vibration

strength. (iii) there exists a maximum for the number density along x axis. Height
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5. The experiment results with the various gravity

corresponding the maximum point is increasing with the inclination degree. n+
x

and n−
x are different with each other, more, n+

x > n−
x . It means the number of

upward particle is larger than the down wards flows. The biggest gap between

n+
x and n−

x appear in the height corresponding the maximum point. (iv) The

positive and negative components of the temperature, pressure and the number

density in x direction are also show difference in presentation of gravity.
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Chapter 6

Conclusions

In this thesis, we have explored the physical properties of dissipative granular

gases in steady state driven by vibrating boundaries. The great research pro-

gresses are obtained in the granular physics in the last score years. The classical

molecular gas theories and hydrodynamics was applied to describe the granular

gases. Plenty of agreements between the classical theory and the granular media

are obtained. However, a growing body of research is raising questions whether

the classical theories can run efficiently on the physics of granular gases. Most

focus on questions,take a example, the local equilibrium exists or not, Breakdown

of molecular chaos and boundary layers. In particular, the boundary condition is

one more difficult and open subject of investigation in the granular physics[143].

In this thesis, we are considering the boundary effect on vibrated granular gases.

The boundary condition is crucial because of the granular dissipation. The

dissipation characters the granular media. To maintain a steady state, the energy

is injected continuously to balance the energy loss. In the most experiment cases,

energy usually is injected from the boundary. However, the theory usually omit

the boundary effect. Is that reasonable or not? We need to find the answer.

In this thesis, we focus on the vibrated granular gas in a steady state. Three

study methods are adopted in this thesis: micro-gravity experiments, event-driven

molecular dynamic simulations and the experiments in various gravity. Remark-

ably, this work introduces a new innovative view to observe granular gases by

employing local measurement of speed and density at different directions. This

allows to show that local velocity distributions deviate measurably from a sym-
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metric distribution for the velocity component in the vibrating direction. By

separating statistics on positive and negative components of velocity at each

point of the cell, we could demonstrate a long range effect which is generated by

the vibrating boundary. The energy equipartition is found to break down in 2D

boundary driven granular gases, in all directions and in different ways. We also

find the mean free path and energy sink are anisotropic, and the mean free path

is much larger than the classical gas theory prediction. By using simulation, we

found this effect to be related to the system dissipation, since the asymmetry is

getting larger when this dissipation increases, i.e. either diminishing the restitu-

tion coefficient e (e < 1) or increasing the particle number N. On the contrary,

no speed asymmetry is found in the elastic case, i.e. when using e = 1 for the

restitution coefficient, there is no such effect.

We propose a superposition of two Gaussian distributions to describe the local

velocity distributions for the velocity component in the vibrating direction. The

results of the experiment and the simulation show a good agreement. Further-

more, Double-Gaussian model are also used to calculate the mean free path, the

results is closer to the true mean free path. We argue that this model is simple

but can be captured the nature of the vibrated granular gas, which is strongly

affected by two boundary wall.

We extend these results to vibrating geometries such as those with inclined

planes and cells, that mimic various gravity field, where we find asymmetry of

speeds, but with some modification about the local densities and speeds, espe-

cially on the upper part of the heap, when the heap is not efficiently excited.

This result brings an additional piece of evidence that the problem we are facing

couples gravity and boundary effects.

These results allow shedding light on the reason why the classical theories

can not describe effectively on granular gases. It is clear now that the local

equilibrium does not exist in granular gases. Future work will focus on theoretical

development combining experiment and simulation results to understand the real

unique nature of granular gases, which looks quite unique and strange at this

research stage.
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Appendix A: Airbus data

This Appendix A presents the Airbus experimental results of granular gases in

Chapter2. All the experiment parameter are list in the Table. 3.1.
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Figure 1: Experimental results of
scaled pressure p±x profiles in y direc-
tion, N = 47, and vibration parame-
ters labelled Item 1 ∼ 4 in Table. 3.1).
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Figure 2: Experimental results of
scaled pressure p±y profiles in y direc-
tion, N = 47, and vibration parame-
ters labelled Item 1 ∼ 4 in Table. 3.1).
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tion, N = 47, and vibration parame-
ters labelled Item 5 ∼ 6 in Table. 3.1).
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Figure 4: Experimental results of
scaled pressure p±y profiles in y direc-
tion, N = 47, and vibration parame-
ters labelled Item 5 ∼ 6 in Table. 3.1).
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rection, N = 47, and vibration param-
eters labelled Item 1 ∼ 4 in Table. 3.1).
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eters labelled Item 1 ∼ 4 in Table. 3.1).

121



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

y/L
y

re
s
c
a
le

d
 T

e
m

p
e
ra

tu
re

 T
/(

T 0
) 

 

 

5
T

+

x

5
T

−

x

6
T

+

x

6
T

−

x

7
T

+

x

7
T

−

x

8
T

+

x

8
T

−

x

Figure 7: Experimental results of
scaled temperature T±

x profiles in y di-
rection, N = 47, and vibration param-
eters labelled Item 5 ∼ 6 in Table. 3.1).
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Figure 8: Experimental results of
scaled temperature T±

y profiles in y di-
rection, N = 47, and vibration param-
eters labelled Item 5 ∼ 6 in Table. 3.1).
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Figure 9: Experimental results of num-
ber of particle N±

x profiles in y direc-
tion, N = 47, and vibration parame-
ters labelled Item 1 ∼ 4 in Table. 3.1).
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number of particle N±

y profiles in y di-
rection, N = 47, and vibration param-
eters labelled Item 1 ∼ 4 in Table. 3.1).
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number of particle N±

x profiles in y di-
rection, N = 47, and vibration param-
eters labelled Item 5 ∼ 6 in Table. 3.1).
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number of particle N±

y profiles in y di-
rection, N = 47, and vibration param-
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Appendix B: simulation Results

This Appendix B presents The simulation results for various coefficient of resti-

tution.
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y for various coefficient of restitution. The

particle radius r is set to be 1. The size of the cell is (300r× 300r ). The number
N of particles is N = 360, the area fraction is ϕ = 0.0126.
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Appendix C: experimental

results on slightly tilted 2D cell

This Appendix C presents the experimental results of 2D granular gases excited

in a slightly tilted plane(< 2◦) with incilined vibration. The details experimental

setup and method can be found in Chapter. 5. By adjusting the vibration

parameter and number of particles, we investigated the local state of granular

gases. There are two parts in this appendix: the first one is the results of local

state as a function of vibration parameters for each st (item); the second one is

the results of local state as a function of the number N of particles.

A-1) Local state as a function of vibration pa-

rameters for Angle = 2◦

Table 1: The vibration parameters are displayed in fig.20, 21 and 16.

Item N Freq(Hz) Acc(m/s2) Vω(m/s) Amp (mm)
1 256 50 70 0.22 0.14
2 256 50 80 0.25 0.16
3 256 50 90 0.29 0.18
4 256 50 100 0.31 0.20
5 256 50 110 0.35 0.22
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Figure 16: (upper left) The scaled temperature T pm
x with velocity v±x .. (upper

right) Pressure. (low left) Number of particle with v±x . (low right) Number of
particle with v±y . Parameters are in Table. 1.
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Table 2: The vibration parameters are displayed in fig.17, 18 and 19.

Item N Freq(Hz) Acc(m/s2) Vω(m/s) Amp (mm)
1 112 60 134 0.36 0.18
2 128 60 134 0.36 0.18
3 160 60 134 0.36 0.18
4 192 60 134 0.36 0.18
5 224 60 134 0.36 0.18
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Figure 17: Local vx distribution f(vx)
on log-linear scales for vibration pa-
rameters Item 1 and in units of Item
1, as the bin number (in Table. 2).
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Figure 18: Local vy distribution f(vy)
on log-linearscales of vibration param-
eters Item 1 (in Table. 2).

A-2) Local state as a function of number of par-

ticles
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Figure 19: (upper left) Temperature in each bin as a function of the bin number,
and rescaled by v2ω . (upper right) Pressure with v±x . (low left) Number of particle
with v±x . (low right) Number of particle with v±y . Parameters are in Table. 2.
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Appendix D:experimental results

on various inclination angle(from

5 to 85)

This Appendix D presents the experimental results of granular gases excited in

a tilted plane. The tilted degree is varied from 5.5◦ to 90.5◦ by step of 5◦.

Furthermore, the number of particles are also varied in each angle. Here, we

present parts of the experimental results.

Table 3: The vibration parameters are displayed in fig.20, 21 and 16.

Item Freq(Hz) Acc(m/s2) Vω(m/s) Amp (mm)
1 60 124 0.36 0.18

Degree 5.5◦

The local state obtained with a tilted angle of 5.5◦ are presented. The virational

parameters are in Table.22. The number of particle isN = 64 (labelled 1), N = 96

(labelled 2), N = 128 (labelled 3), N = 160 (labelled 4),N = 192 (labelled 5),

corresponding area fraction:0.129, 0.94, 0.259, 0.32 and 0.388, respectively.
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Figure 20: Local vy distribution f(vy)
on log-linearscales of vibration param-
eters ( D = 5.5◦ and N = 64 labelled 1
in Table. 22).
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Figure 21: Local vx distribution f(vx)
on log-linearscales of vibration param-
eters ( D = 5.5◦ and N = 64 labelled 1
in Table. 22).
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Figure 22: (upper left) The scaled temperature T±
x with velocity v±x . (upper right)

The scaled pressure p±x with velocity v±x . (low left) Number of particle with v±x .
(low right) Number of particle with v±y . D = 5.5◦ and vibrational parameters are
in Table. 22.
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Degree 10.5◦

The local state obtained with a tilted angle of 10.5◦ are presented. The virational

parameters are in Table.22. The number of particle isN = 64 (labelled 1), N = 96

(labelled 2), N = 128 (labelled 3), N = 160 (labelled 4),N = 192 (labelled 5),

corresponding area fraction:0.129, 0.94, 0.259, 0.32 and 0.388, respectively.
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Figure 23: Local vy distribution f(vy)
on log-linearscales of vibration param-
eters ( D = 10.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 24: Local vx distribution f(vx)
on log-linearscales of vibration param-
eters ( D = 10.5◦ and N = 64 labelled
1 in Table. 22).

Degree 15.5◦

The local state obtained with a tilted angle of 15.5◦ are presented. The virational

parameters are in Table.22. The number of particle isN = 64 (labelled 1), N = 96

(labelled 2), N = 128 (labelled 3), N = 160 (labelled 4),N = 192 (labelled 5),

corresponding area fraction:0.129, 0.94, 0.259, 0.32 and 0.388, respectively.

Degree 20.5◦

The local state obtained with a tilted angle of 20.5◦ are presented. The virational

parameters are in Table.22. The number of particle isN = 64 (labelled 1), N = 96

(labelled 2), N = 128 (labelled 3), N = 160 (labelled 4),N = 192 (labelled 5),

corresponding area fraction:0.129, 0.94, 0.259, 0.32 and 0.388, respectively.
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Figure 25: (upper left) The scaled temperature T±
x with velocity v±x . (upper

right) The scaled pressure p±x with velocity v±x . (low left) Number of particle
with v±x . (low right) Number of particle with v±y . D = 10.5◦ and vibrational
parameters are in Table. 22.
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Figure 26: Local vy distribution f(vy)
on log-linearscales of vibration param-
eters ( D = 15.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 27: Local vx distribution f(vx)
on log-linearscales of vibration param-
eters ( D = 15.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 28: (upper left) The scaled temperature T±
x with velocity v±x . (upper

right) The scaled pressure p±x with velocity v±x . (low left) Number of particle
with v±x . (low right) Number of particle with v±y . D = 15.5◦ and vibrational
parameters are in Table. 22.
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Figure 29: Local vy distribution f(vy)
on log-linearscales of vibration param-
eters ( D = 20.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 30: Local vx distribution f(vx)
on log-linearscales of vibration param-
eters ( D = 20.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 31: (upper left) The scaled temperature T±
x with velocity v±x . (upper

right) The scaled pressure p±x with velocity v±x . (low left) Number of particle
with v±x . (low right) Number of particle with v±y . D = 20.5◦ and vibrational
parameters are in Table. 22.
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Degree 25.5◦

The local state obtained with a tilted angle of 20.5◦ are presented. The virational

parameters are in Table.22. The number of particle isN = 64 (labelled 1), N = 96

(labelled 2), N = 128 (labelled 3), N = 160 (labelled 4),N = 192 (labelled 5),

corresponding area fraction:0.129, 0.94, 0.259, 0.32 and 0.388, respectively.
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Figure 32: Local vy distribution f(vy)
on log-linearscales of vibration param-
eters ( D = 25.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 33: Local vx distribution f(vx)
on log-linearscales of vibration param-
eters ( D = 25.5◦ and N = 64 labelled
1 in Table. 22).

Degree 35.5◦

The local state obtained with a tilted angle of 35.5◦ are presented. The virational

parameters are in Table.22. The number of particle isN = 64 (labelled 1), N = 96

(labelled 2), N = 128 (labelled 3), N = 160 (labelled 4),N = 192 (labelled 5),

corresponding area fraction:0.129, 0.94, 0.259, 0.32 and 0.388, respectively.

Degree 45.5◦

The local state obtained with a tilted angle of 45.5◦ are presented. The virational

parameters are in Table.22. The number of particle isN = 64 (labelled 1), N = 96

(labelled 2), N = 128 (labelled 3), N = 160 (labelled 4),N = 192 (labelled 5),

corresponding area fraction:0.129, 0.94, 0.259, 0.32 and 0.388, respectively.
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Figure 34: (upper left) The scaled temperature T±
x with velocity v±x . (upper

right) The scaled pressure p±x with velocity v±x . (low left) Number of particle
with v±x . (low right) Number of particle with v±y . D = 25.5◦ and vibrational
parameters are in Table. 22.
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Figure 35: Local vy distribution f(vy)
on log-linearscales of vibration param-
eters ( D = 35.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 36: Local vx distribution f(vx)
on log-linearscales of vibration param-
eters ( D = 35.5◦ and N = 64 labelled
1 in Table. 22).

Degree 55.5◦

The local state obtained with a tilted angle of 55.5◦ are presented. The virational

parameters are in Table.22. The number of particle isN = 64 (labelled 1), N = 96

(labelled 2), N = 128 (labelled 3), N = 160 (labelled 4),N = 192 (labelled 5),

corresponding area fraction:0.129, 0.94, 0.259, 0.32 and 0.388, respectively.

Degree 65.5◦

The local state obtained with a tilted angle of 65.5◦ are presented. The virational

parameters are in Table.22. The number of particle isN = 64 (labelled 1), N = 96

(labelled 2), N = 128 (labelled 3), N = 160 (labelled 4),N = 192 (labelled 5),

corresponding area fraction:0.129, 0.94, 0.259, 0.32 and 0.388, respectively.

Degree 75.5◦

The local state obtained with a tilted angle of 55.5◦ are presented. The virational

parameters are in Table.22. The number of particle isN = 32 (labelled 1), N = 64

(labelled 2), N = 96 (labelled 3), N = 128 (labelled 4), N = 160 (labelled 5),

corresponding area fraction:0.065, 0.129, 0.94, 0.259 and 0.32.
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Figure 37: (upper left) The scaled temperature T±
x with velocity v±x . (upper

right) The scaled pressure p±x with velocity v±x . (low left) Number of particle
with v±x . (low right) Number of particle with v±y . D = 35.5◦ and vibrational
parameters are in Table. 22.
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Figure 38: Local vy distribution f(vy)
on log-linearscales of vibration param-
eters ( D = 45.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 39: Local vx distribution f(vx)
on log-linearscales of vibration param-
eters ( D = 45.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 40: (upper left) The scaled temperature T±
x with velocity v±x . (upper

right) The scaled pressure p±x with velocity v±x . (low left) Number of particle
with v±x . (low right) Number of particle with v±y . D = 45.5◦ and vibrational
parameters are in Table. 22.
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Figure 41: Local vy distribution f(vy)
on log-linearscales of vibration param-
eters ( D = 55.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 42: Local vx distribution f(vx)
on log-linearscales of vibration param-
eters ( D = 55.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 43: (upper left) The scaled temperature T±
x with velocity v±x . (upper

right) The scaled pressure p±x with velocity v±x . (low left) Number of particle
with v±x . (low right) Number of particle with v±y . D = 55.5◦ and vibrational
parameters are in Table. 22.
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Figure 44: Local vy distribution f(vy)
on log-linearscales of vibration param-
eters ( D = 65.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 45: Local vx distribution f(vx)
on log-linearscales of vibration param-
eters ( D = 65.5◦ and N = 64 labelled
1 in Table. 22).

141



0 0.5 1
0

0.5

1

1.5

2

2.5

x/L
x

re
s
c
a

le
d

 T
e

m
p

e
ra

tu
re

 T
/V

d
ri
v
e

n
2
 

 

 

1
T

+

x

1
T

−

x

2
T

+

x

2
T

−

x

3
T

+

x

3
T

−

x

4
T

+

x

4
T

−

x

5
T

+

x

5
T

−

x
0 0.5 1

0

0.2

0.4

0.6

0.8

x/L
x

re
s
c
a

le
d

 P
re

s
s
u

re
 P

/(
P

0
) 

 

 

1
P

+

x

1
P

−

x

2
P

+

x

2
P

−

x

3
P

+

x

3
P

−

x

4
P

+

x

4
P

−

x

5
P

+

x

5
P

−

x

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

x/L
x

N
u

m
b

e
r 

o
f 

p
a

rt
ic

le
 

 

 

1
n

+

x

1
n

−

x

2
n

+

x

2
n

−

x

3
n

+

x

3
n

−

x

4
n

+

x

4
n

−

x

5
n

+

x

5
n

−

x
0 0.5 1

0

5

10

15

20

y/L
y

N
u

m
b

e
r 

o
f 

p
a

rt
ic

le
 

 

 

1
n

+

y

1
n

−

y

2
n

+

y

2
n

−

y

3
n

+

y

3
n

−

y

4
n

+

y

4
n

−

y

5
n

+

y

5
n

−

y

Figure 46: (upper left) The scaled temperature T±
x with velocity v±x . (upper

right) The scaled pressure p±x with velocity v±x . (low left) Number of particle
with v±x . (low right) Number of particle with v±y . D = 65.5◦ and vibrational
parameters are in Table. 22.
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Figure 47: Local vy distribution f(vy)
on log-linearscales of vibration param-
eters ( D = 75.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 48: Local vx distribution f(vx)
on log-linearscales of vibration param-
eters ( D = 75.5◦ and N = 64 labelled
1 in Table. 22).
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Figure 49: (upper left) The scaled temperature T±
x with velocity v±x . (upper

right) The scaled pressure p±x with velocity v±x . (low left) Number of particle
with v±x . (low right) Number of particle with v±y . D = 75.5◦ and vibrational
parameters are in Table. 22.

143



Degree 85.5◦

The local state obtained with a tilted angle of 85.5◦ are presented. The virational

parameters are in Table.22. The number of particle isN = 64 (labelled 1), N = 96

(labelled 2), N = 128 (labelled 3), N = 160 (labelled 4),N = 192 (labelled 5),

corresponding area fraction:0.129, 0.94, 0.259, 0.32 and 0.388, respectively.
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