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materials on quantum information and taught me so much knowledge on musics, and

provided me information for exciting Brazil musical shows and dancing shows; Roman

SCHMEISSNER, who helped everything, even provided me the interesting information

for opera; Valerian THIEL and Clement JACQUARD, who can also make us feel happy

at any time at any place; Olivier MORIN, for his easy understanding introduction to the

preparation of the cat state; Hanna LE JEANNIC, who told us lots of funny things; and

Vanessa CHILLE, a kind-hearted girl, encouraged me when I was in bad mood; Arzani

FRANCESCO, who has a very strong interest in Physics and has a good taste of alcohol.

I wish all of them can lead their own happy lives. I would also like to thank Jianli LIU,

Yin CAI, and Kun HUANG. During my stay, we went visiting in Paris together, we went

restaurants to find some delicious food together. I wish Jianli LIU, who now works in

Shanxi university, can get promotion soon. I wish Yin CAI and Kun HUANG enjoy their

studies and lives in Paris, and then have good jobs after graduations.

On ECNU side, my first thanks go to Prof. Guoxiang HUANG. He taught me patiently

when I was a master student under his supervision. He is a kind advisor, not only because

he shows the paradigms to his students to find meaningful research results, but also because

he knows how to teach his students to say words and to behave properly as well as to have

good, cooperative relationships with others. I should also thank Prof Zhiyi BI, who gave

some introduction to the optical clock, and Prof. Yanyi JIANG, who came Paris to visit

me and cared about my study in Paris. Many thanks to Chao HANG, who is a physicist

and a literature writer. He often provided me useful information when I need help. During

my return in Shanghai, I owe lots of thanks to Su FANG, Haiqin CHEN, Deheng YANG,

Chaoqun MA, etc.

A fourth acknowledgements go to all my friends, from here and there, and to my

parents and relatives who always trusted and encouraged me. My last acknowledgements

go to the policies of the two universities and l’ecole normale superieure as well as the

financial supports from the Chinese Council Scholarship and the fund form l’equipe optique

quantique of LKB. Whithout any of these, I cannot make my study and living in Paris.



Contents

1 Toolbox from Quantum Optics 9

A Field quantization and correlation functions . . . . . . . . . . . . . . . . . . 10

A.1 Global field description . . . . . . . . . . . . . . . . . . . . . . . . . 10

A.2 Local field description . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A.3 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B Some photon sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.1 Cascade two-photon state . . . . . . . . . . . . . . . . . . . . . . . . 14

B.2 Spontaneous parametric down-converted two-photon states . . . . . 16

C ”Quantumness” of light states . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.1 Separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.1.1 Schmidt decomposition of a pure entangled state . . . . . . 18

C.1.2 Simon’s criterion and Mandel matrix . . . . . . . . . . . . 19

C.2 Quantum discord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D Single/Multi-mode criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.1 Mode transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.2 Intrinsic single-mode quantum light . . . . . . . . . . . . . . . . . . 22

D.3 Multi-mode quantum light . . . . . . . . . . . . . . . . . . . . . . . . 23

D.4 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Two-photon quantum optics in one atom 27

A Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

B Two-photon absorption in ladder configuration . . . . . . . . . . . . . . . . 31

B.1 Dark pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B.2 Two-photon transparency . . . . . . . . . . . . . . . . . . . . . . . . 35

B.2.1 Entanglement induced transparency . . . . . . . . . . . . . 37

C Enhanced two-photon transition probability . . . . . . . . . . . . . . . . . . 37

3 Two-photon two-atom interaction: Model 39

A Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.1 Two-atom system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.2 Atomic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.3 Free quantum electric field . . . . . . . . . . . . . . . . . . . . . . . 45

B.4 Interaction between atoms and light . . . . . . . . . . . . . . . . . . 46

B.5 Evolution and transition probability . . . . . . . . . . . . . . . . . . 46

iii



iv Contents

B.6 Perturbative result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.6.1 Coupling strength . . . . . . . . . . . . . . . . . . . . . . . 49

C Case of infinite lifetimes of the excited detecting atoms . . . . . . . . . . . . 50

D An analytical solution in the case of two degenerate atoms with infinite

lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

D.1 Monochromatic field interacting with two-atom system . . . . . . . . 51

D.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 51

D.1.2 Evolution at the perfect resonance . . . . . . . . . . . . . . 54

D.1.3 Comparison with the perturbation theory . . . . . . . . . . 56

D.2 Quasi mono-chromatic pure field . . . . . . . . . . . . . . . . . . . . 57

E Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Two-photon–two-atom transition without atomic interaction 61

A Do entangled photons induce 2P2A transitions more e�ciently than other

states of light ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 Entangled, correlated-separable and factorized two-photon states . . 66

A.3 2P2A induced by di↵erent two-photon quantum field states . . . . . 67

A.3.1 Two quasi-monochromatic uncorrelated photons . . . . . . 67

A.3.2 Double resonance . . . . . . . . . . . . . . . . . . . . . . . 67

A.3.3 Two-photon two-atom resonance . . . . . . . . . . . . . . . 68

A.3.4 Two photons produced by an atomic cascade . . . . . . . . 68

A.3.5 Double resonance . . . . . . . . . . . . . . . . . . . . . . . 69

A.3.6 Two-photon two-atom resonance . . . . . . . . . . . . . . . 69

A.4 Correlated and factorized states analogous to the atomic cascade . . 70

A.5 Two-photon state produced by parametric down conversion . . . . . 71

A.5.1 Double resonance . . . . . . . . . . . . . . . . . . . . . . . 72

A.5.2 Two-photon two-atom resonance . . . . . . . . . . . . . . . 72

A.6 Enhancement of 2P2A resonance for more general classes of light

states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.6.1 Light pulses starting at a given time . . . . . . . . . . . . . 73

A.6.2 Coherent states . . . . . . . . . . . . . . . . . . . . . . . . 74

A.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B The optimization of the transition probability with a given photon spectrum 76

B.1 Optimization of a diagonal density matrix . . . . . . . . . . . . . . . 76

B.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C A remark on the length of quantization box . . . . . . . . . . . . . . . . . . 80

C.1 Single-atom–single-photon transition probability . . . . . . . . . . . 80

D 2P2A transition with long-lived detecting atoms . . . . . . . . . . . . . . . 82

E Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Two-photon–two-atom transition with an atomic interaction 89

A Two-photon absorption with monochromatic sources . . . . . . . . . . . . . 90

A.1 Transition profile R . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1.1 A general response shape at long time . . . . . . . . . . . . 91

A.1.2 Strong decoherence-suppression case . . . . . . . . . . . . . 93



Contents v

A.2 Various photon states . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2.1 A two-photon state whose coe�cients are related to Rie-

mann ⇣(s) function . . . . . . . . . . . . . . . . . . . . . . 95

B Two-photon absorption with a bipartite frequency anti-correlated source . . 97

C Two-photon absorption with a parametrically generated pulse of light . . . 100

C.1 Type II SPDC two-photon source . . . . . . . . . . . . . . . . . . . . 100

C.2 Transition behaviors at a long time t � ��1 . . . . . . . . . . . . . . 101

C.3 Transition probability of some diagonal matrices that have the same

spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

D Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Is the enhancement of 2P2A transition a quantum e↵ect ? 107

A What kind of correlation is required to enhance the 2P2A transition prob-

ability ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.1 Temporal correlation e↵ect . . . . . . . . . . . . . . . . . . . . . . . 108

A.2 Frequency correlation e↵ect . . . . . . . . . . . . . . . . . . . . . . . 109

B Characterization of bipartite correlations . . . . . . . . . . . . . . . . . . . . 112

B.1 Separability and purity . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.1.1 Schmidt coe�cients . . . . . . . . . . . . . . . . . . . . . . 113

B.2 Simon’s criterion on multimode states . . . . . . . . . . . . . . . . . 115

B.3 Quantum discord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.3.1 Quantum discord of a bipartite diagonal density matrix . . 118

B.3.2 Pure states . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

C Characterization using the time-frequency Wigner-Ville distribution of a

quantum system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.1 Quantum Wigner-Ville distribution . . . . . . . . . . . . . . . . . . . 122

C.1.1 A variant: chronocyclic Wigner distribution W . . . . . . . 122

C.2 Bipartite Wigner distributions in continuous variable regime . . . . 123

C.2.1 Apparent ”violation” of the Heisenberg inequality . . . . . 127

Appendix 131

A When can (exp(�i!t) � 1)/(2i⇡!) be a good approximation of the delta

function? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B Why do we take t = L/c in the comparison of transition probabilities ? . . . 131

C Superposed coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C.1 States that give rise to large field amplitudes . . . . . . . . . . . . . 133

C.2 Positiveness of the Wigner distribution of the state |QMCi . . . . . 133

D Possible physical realization of QMC states . . . . . . . . . . . . . . . . . . 135

D.1 Micro-macro coupling via two-atom interaction . . . . . . . . . . . . 135

D.2 Micro-macro coupling via optical beam splitter . . . . . . . . . . . . 139

D.3 Some remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 143



vi Contents



Résumé

Deux photons - deux atomes (2P2A) excitation s’avère être un banc de test important

de propriétés optiques quantiques. Depuis 1980, on sait que la probabilité de transition

2P2A peut être grandement améliorée en utilisant la source monochromatique cohérente

avec la présence d’interactions atomiques qui induisent un pic de résonance de 2P2A. En

2004 , Muthukrishnan et al. sont trouvés une grande amélioration de la transition ainsi

que d’une résonance de 2P2A, quand une source de deux photons intriqués, provenant de

la radiation d’un atome cascade à trois niveaux, interagit avec les deux atomes di↵érents

de l’ interaction. Leur conclusion est que : dans certaines situations, l’intrication peut

remplacer un vrai hamiltonien d’interaction, qui est une déclaration de grande portée et

une propriété importante liée à l’intrication. Ce phénomène mérite plus d’attention et de

favoriser la compréhension.

Dans cette thèse, nous étudions en détail l’e�cacité des di↵érents états multimodes à

deux photons de lumière pour provoquer l’excitation simultanée de deux atomes de dif-

férents types sous condition de résonance 2P2A. Nous constatons que les etats séparables,

corrélées, produites soit par une cascade atomique ou conversion paramétrique, ou même

des combinaisons appropriées des etats cohérentes, ont des e�cacités comparables comme

l’état de photons produit par une cascade atomique. Nous concluons que la véritable orig-

ine physique de l’amélioration est les anti-corrélations des fréquencees, ni les corrélations

temporelles, ni le temps de génération chronologique, ni l’intrication. Pour présenter, nous

ne sommes pas sûrs si oui ou non l’amélioration est un e↵et quantique.

Nous avons également étudié : 1. la 2P2A probabilité de transition optimisé pour un

spectre de photons donné; 2. l’influence venant de la durée de vie finie des atomes excités;

3. la 2P2A probabilité de transition en présence d’ interaction atomique.

Mots-clefs : optique quantique, excitation 2P2A, amélioration de la transition, intri-

cation, corrélation, nonclassicality



2 Contents

Abstract

Two-photon–two-atom (2P2A) excitation turns out to be an important test bench of quan-

tum optical properties. Since 1980s, it is known that the 2P2A transition probability can

be greatly enhanced by using monochromatic coherent source with the presence of atomic

interactions which induce a 2P2A resonance peak. In 2004, Muthukrishnan et al. found

a great enhancement of the transition as well as a 2P2A resonance, when an entangled

two-photon source, coming from the radiation of a cascade three-level atom, interacts with

two non-interacting atoms. Their conclusion is that: in some situations, entanglement can

replace a real interaction Hamiltonian, which is a far reaching statement and an important

property related to entanglement. This phenomenon deserves more attention and further

comprehension.

In this thesis, We study in detail the e�ciency of various multimode two-photon states

of light to induce the simultaneous excitation of two atoms of di↵erent kinds under 2P2A

resonance condition. We find that several separable, correlated states, produced either by

an atomic cascade or parametric down-conversion, or even appropriate combinations of

coherent states, have comparable e�ciencies as the photon state produced by an atomic

cascade. We conclude that the true physical origin of the enhancement is the frequency

anti-correlations, neither the temporal correlations, time ordering, nor entanglement. To

present, we are not sure whether or not the enhancement is a quantum e↵ect. We also

studied: 1. the optimized 2P2A transition probability for a given photon spectrum; 2.

the influence coming from finite lifetimes of the excited detecting atoms; 3. the 2P2A

transition probability in the presence of atomic interaction.

Keywords : quantum optics, two-photon–two-atom excitation, enhancement of tran-

sition probability, entanglement, correlation, nonclassicality
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Introduction

R

elativity and quantum mechanics are the two foundations of modern physics. Both

theories were firstly linked to the strange properties of light, such the light speed c

being the velocity upper bound to transmit a signal in vacuum [EinsteinSR1905],

discrete energy distribution [Planck1901] in blackbody radiation [Kirchho↵1859,1860] and

particle property of light quanta [EinsteinPE1905] in photoelectric e↵ect [EinsteinPE1905].

Together with the researches of spectroscopy on exploring the internal structures of atoms

from absorption lines or radiation spectrum, they paved the road to the discovery of Bohr’s

quantum theory on atoms. Though the quantum properties of the field were highlighted

before the ones of atoms, later researches were focussed more on matter corpuscles. On

the way to the foundation of a complete quantum mechanics, the most important ideas,

such like Heisenberg’s matrices, Schrödinger’s stationary wave-function explanation to de

Broglie’s hypothesis, Pauli’s exclusion principle, were inspired by spectroscopy data. A

full quantum theory on atom-light interaction, Quantum Electrodynamics (QED), was

developed till [Dirac1927, Fermi1932]. With the advent of Dirac equation and the suc-

cessful explanation of the Lamb shift and radiative corrections to the anomalous magnetic

moment, it is believed that everything in light-matter interaction can be explained within

the frame of QED .

In those early days, it was known that optical field should be treated as an ensemble

of photons which have the same mathematical representation as quantum harmonic oscil-

lators, but because of the lack of quantum sources, exhibiting the quantum nature of light

was quite di�cult. For example the light scattering in the name of Raman e↵ect was ob-

served by means of sunlight [Raman1928]. On the other hand, though phenomena such like

blackbody radiation could be rigorously derived from QED theory [Dirac1927], there was

no evident practical superiority of using QED theory instead of the semi-classical theory of

light-matter interaction, and in particular of the phenomenological description developed

by Einstein [Einstein1917] by introducing the simple and intuitive concepts of stimulated

emission and spontaneous emission induced by classical light and acting on atoms having

quantized energy levels. On the contrary, thanks to these two concepts, the former atomic

molecule and optical physics (AMO) was brought forth to a height of development with

the help of statistical methods, culminating in the invention and development of the maser

and the laser.

Due to this lack of appropriate light sources, basic quantum conceptions, like the wave

function collapse, could only be discussed via thought experiments. This situation was

not improved until the invention of maser and laser. Owing to the coherence of fields

from both, one became able to perform more and more precise control on atom and light
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quantum states. Nowadays, one can control and manipulate photons and atoms at single

particle level and the quantum fluctuations down to the vacuum fluctuation level. It has

then been possible to test some thought experiments of the pioneers of Quantum Mechanics

with a high precision.

In classical wave optics, coherence of light is of special importance, since the perfor-

mance of imaging, resolution abilities of interferometers are determined by it. Logically,

the coherence of a quantum light is also important. Experiments on optical correlations

were made and some of them, like the experiments on photon bunching and antibunch-

ing initiated by Hanbury Brown and Twiss (HBT), showed the importance of photon

statistics [Purcell1956]. To understand these results and also inspired by the success of

QED theory, a quantum theory of optical coherence (in fact correlations) was developed

[Glauber1963, Mandel1965].

The concept of coherence in quantum optics is built on all orders of correlation func-

tions. The n-order correlation function Gn or gn can provide rich information about the

photon state and possible quantum interference phenomena. They also play an important

role in nonlinear processes, such as n-photon absorption in a two-level atom: in these pro-

cesses, the n-photon absorption rate is mainly determined by the normalized correlation

function gn [Teich1966]. It has been showed that the value of absorption rate correspond-

ing to a thermal photon state exceeds the one corresponding to a coherent state by a factor

n! [Mandel1965, Lambropoulos1966] due to phenomenon of photon bunching. In addition,

in a two-photon absorption [Göpert-Mayer1931] process induced by an entangled photon

state, it has been shown that there is a linear dependence of absorption rate on photon

flux density [Friberg1985, Javanainen1990] instead of a quadratic one. N-photon lithogra-

phy performed with a NOON state |NOONi = (eiN'|N0i + |0Ni)/
p

2, for instance, has

been theoretically shown to produce a remarkable improvement to the di↵raction limit

from classical light [Boto2000]. More generally, using a quantum light source may provide

an appreciable improvement in absorption rates by matter, either in quantity or in its

variation with the relevant parameters.

Quantum light sources are needed to produce highly non-classical correlation functions

required to strongly modify multi-photon absorption rates. Various new light sources are

available now, generating single photons, entangled two-photon states, squeezed states,

Schrödinger’s cat states, entangled coherent states, twin-beam states, NOON states ...,

that exhibit genuine quantum properties such as photon anti-bunching, reduced quantum

fluctuations, strong quantum correlations, negativity in quasi-probability distribution and

violation of Bell inequality. The completeness of quantum mechanics, the upper bound of

the wave function collapse duration, etc. have been experimentally checked. These sources

are also widely used in quantum optical information science and quantum metrology.

On the other hand, coherent control of atomic processes by light shaping is a very

important subject that has attracted a lot of interest from spectroscopists. For exam-

ple, in ultrashort pulse spectroscopy, the use of so-called bright pulses and dark pulses

[Meshulach1998] in two-photon absorption by a two-level atom with a given power spec-

trum has been shown to change significantly the transition probabilities.

Coherent quantum control is actually the extension of the same techniques to the

quantum domain: one plays now not only with light mode shapes, but with quantum states

which have more detailed characteristics than the power spectrum and phase distribution
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of field. As a result, quantum assisted processes can benefit from the optimization of

more features than in regular coherent control and be more e�cient in the enhancement of

processes. For example, the discovery of entanglement-induced two-photon transparency

[Fei1997] phenomenon gave rise to entangled-photon virtual-state spectroscopy [Saleh1998]

by entangled photon pairs.

Among all the light-matter systems, two-level atoms interacting with light are simple

and of great interest, in particular because they implement systems of qubits, a basic tool

of quantum computation. The global interaction between two di↵erent two-level atoms

and light is in this respect important, especially in conditions where the photons are not

resonant with each atom taken individually but when the sum of the energies of two

photons matches the sum of the energies of the two atoms (a situation called 2-Photon

2-Atom absorption, or 2P2A absorption). Such a simultaneous two-photon absorption

by two atoms of di↵erent species was observed in a mixture of Ba/Ti [White1981]. The

detailed scheme of this process was considered in a theoretical article [RiosLeite1980]

and then in [Andrews1983]. Their results show that a resonance can be found in the

2P2A configuration when there exists a physical interaction between the two atoms. This

phenomena was verified by [Hettich2002, P-Penãfiel2012]. Because each atom is far o↵

resonance with light, there is no overlap between the wings of the individual single photon

transitions, and the height of the induced 2P2A peak depends on the strength of the

inter-atomic interaction. Such a feature can be used to study cold collisions in cold atoms,

or the quantum interference e↵ects like cooperative emissions, etc. In addition to the

case of a direct potential interaction between the atoms, like the dipole-dipole coupling, a

cooperative 2P2A e↵ect has also been predicted for pairs of atoms inside an optical cavity

[Kim1998]. In this case the physical interaction is mediated by the radiation background

surrounding the atoms.

In 2004, a theoretical paper was published [Muthukrishnan2004], addressing the case

of 2P2A absorption in absence of interaction between the two atoms, but using some

particular entangled two-photon state of light. It showed that a particular entangled state

was able to e�ciently induce the 2P2A transition, whereas factorized states could not

induce it. The conclusion of the authors of [Muthukrishnan2004] is that in some situations

entanglement can replace a real physical interaction, which is a far reaching statement and

an important physical property attributed to entanglement. The same subject was also

considered, but in the context of spin entanglement in Electron Paramagnetic Resonance

by K. Salikhov [Salikhov2003]. Surprisingly, this question did not attract much attention

during several years. It was only recently that the related problem of interaction with

pairs of broadband spectrum photons [Richter2011, Dayan2007] has been discussed.

We have estimated that the physical problem of 2P2A absorption studied in this paper

was a good test bench to examine in detail the role of entanglement, of correlations not

related to entanglement, and of interactions in a simple situation. Our aim is to examine

the two-photon two-atom excitation process in various configurations in order to find out

the true physical origin to the remarkable enhancement of 2P2A transition probability

announced in [Muthukrishnan2004].

More precisely, in this thesis, we will calculate the two-photon transition probability

in two di↵erent two-level systems with various of quantum light source as well as the

physical origins to these transitions. In chapter 1, we will recall briefly some fundamentals
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of quantum mechanics and quantum optics as well as some measures of entanglement in

a bipartite system. We start the discussion of two-photon transition in chapter 2 in the

case of the interaction with a single e↵ective two-level atom and highlight the dark pulse

and entanglement-induced transparency phenomena. They are two important examples to

the coherent control of atom-field interaction. In chapter 3, we will introduce a complete

model to the interaction between light and an expression for two-photon transition. With

these results, we discuss the physical origin of the enhancement of transition probability

with two non-interacting two-level atoms in Chapter 4. In a following chapter, we also

consider a case that both two atoms that have finite lifetime. In chapter 5, we focus our

attention on the transition in the case of two interacting two-level atoms. Chapter 6 is

designed to discuss the possible genuine quantum aspects of the light sources that we have

used in the previous chapters.
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I

n this chapter, we will give some introductions to basic knowledge of quantum optics.

They are necessary for our later discussions. These concepts are quantized field, multi-

modal photon states, the statistical properties of a photon state such like photon

spacing, entanglement and correlations. In this chapter, we also give a brief introduction

to two quantum two-photon state: 1. that emitted from an excited cascade three-level

atom, and 2. that generated by nonlinear optical parameter down conversion process.
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A Field quantization and correlation functions

A.1 Global field description

It is widely accepted that a light system should be described by a universal quantum field

Â(r) where r is a 3 dimensional spatial parameter and its corresponding quantum state ⇢.

The universal quantum field is usually expressed as a sum of a quantum analytical signal

Â(+)(r) and its Hermitian conjugate Â(+)†(r),

Â(r) = Â(+)(r) + Â(+)†(r). (1.1)

Quantum analytical signal Â(+)(r) follows an integral form,

Â(+)(r) =
2X

�=1

Z
dk

s
~

2(2⇡)3✏
0

!k
ek,�â�(k)eik·r. (1.2)

The point k = 0 is excluded, otherwise it will pose some problems. In this expression,

â�(k), â†�(k) are the annihilation operator and the creation operator linked to wave-vector

k and polarization �, they yield canonical Bosonic commutation relation:

[â�(k), â†�0(k
0)] = ���0�(k � k0). (1.3)

The polarization can have only two independent components since the EM field is a trans-

verse field. The Hamiltonian of such a field is given by

Ĥ =
2X

�=1

Z
dk!kâ†�(k)â�(k). (1.4)

The frequency !k is a function of k, when there is no transverse current, for example a

free field in vacuum, the relation between them is simple,

!k = ckkk, (1.5)

where k · k is the length of a vector. For any quantum state of light | i, the mean value

of the Hamiltonian is

h |Ĥ| i =
2X

�=1

Z
dk!kkâ�(k)| ik2 � 0. (1.6)

The Hamiltonian is a positive operator. The state that gives rise to vanishing mean value

of Hamiltonian is the vacuum state, denoted by |0i, it yields â�(k)|0i = 0 for any k. Owing

to the canonical commutation relation Eq.(1.3), the mean value of an operator â�(k)â†�(k)

of any given polarization � and wave-vector k on vacuum state is h0|â�(k)â†�(k)|0i = 1
which implies that â†�(k)|0i is not normalizable, therefore it is not a vector in Hilbert

space. A physical state should of course be normalized, and the conventional way to make

the previous unnormalized state physical is to introduce a weight function, and define the

state as

|I : ui =
2X

�=1

Z
dku�(k)â†�(k)|0i,

2X
�=1

Z
dk|u�(k)|2 = 1. (1.7)
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Now the state satisfying hI : u|I : ui = 1 is indeed a physical one. In view of this, a physical

light state should be assigned to some special function like u�(k). Since u�(k) can be an

arbitrary usual (complex) function, it is convenient to find a basis {u�,n(k)}1n=0

, whose

orthonormal completeness relations followZ
d3ku⇤

�,m(k)u�0,n(k) = ���0�mn, (1.8)X
n

u⇤
�,n(k)u�,n(k0) = �(k � k0), (1.9)

to describe them all. Let’s introduce some new annihilation operators as

b̂�,m =

Z
dku⇤

�,m(k)â�(k), m = 0, 1, 2, · · · . (1.10)

Then the non-vanishing commutators are

[b̂�,m, b̂†�0,n] =

ZZ
d3kd3k0u⇤

�,m(k)u�0,n(k0)[â�(k), â†�0(k
0)] = ���0�mn. (1.11)

They are indeed equivalent to usual canonical commutation relations with respect to har-

monic oscillators. Following a same procedure, a Fock state, defined as

|N : u�,mi =
b̂†N�,mp

N !
|0i, N 2 N, (1.12)

describes a state with N photons in basis mode u�,m. In last equation, we have tacitly used

a symbol like an integer or a complex number before ”:” to signify the photon statistics of

a state while the symbol after ”:” stands for the corresponding mode in our semiotics. The

total number operator is defined as a sum of number operators for all the modes in any

basis

N̂ =
X
�,m

b̂†�,mb̂�,m. (1.13)

Accoording to Eqs.(1.9,1.10), this total number operator is exactly equal to

N̂ =
2X

�=1

Z
dkâ†�(k)â�(k). (1.14)

Now, we can conclude that the number operator is universal as it is independent of the

choices of bases.

Operator â�(k) can also be expressed in terms of b̂�,ms, according to Eq.(1.10), such

reads

â�(k) =
X
m

b̂�,mu�,m(k), (1.15)

correspondingly, the quantum field can also written as

Â(+)(r) =
2X

�=1

X
m

b̂�,m

Z
dk

s
~

2(2⇡)3✏
0

!k
ek,�u�,m(k)eik·r. (1.16)

This quantum field permits of a description of ploy-chromatic many-body system.
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Let’s note that the concepts of modes and mode basis are not quantum at all, because

both two are pure mathematical concepts related to linearity of Maxwell equations, a clas-

sical electromagnetic field also admits a basis. If the creation and annihilation operators

are replaced by a pair of conjugate complex numbers, then the field amplitude is regarded

as a linear combination of the all the mode-functions in the basis. By using di↵erent bases,

one should have di↵erent sets of coe�cients. However, if one chooses the field amplitude

as the first unnormalized mode function, then it is of no use to introduce the other mode-

functions in classical electromagnetic field theory. In other words, any non-fluctuating

classical electromagnetic field is indeed a single-mode field. In a quantum world, it is not

true in most cases because of the high-dimensionality and the complexity of Hilbert space

(photon states) as well as the fundamental importance of canonical commutation relations

(field operators). We will detail the related fundamental concepts in the last section of

this chapter.

A.2 Local field description

For some practical reasons, sometimes it is more convenient to use a local field than to

use the field introduced in previous section to discuss the quantum optical phenomena,

since most quantum optical experiments are carried out in a finite volume of space. For

example, a plane wave field which propagates along z direction can be treat as

Â(+)(r) =
2X

�=1

X
m

e�b̂�,m

Z
d!c�1

s
~

2(2⇡)3✏
0

!
u�,m(!/c)eiz!/c, (1.17)

where u�,m(!/c) is taken as a piecewise function,

u�,m(!/c) = (!/!m)1/2u�,m(!m/c)eiz(!m

�!)/c, ! 2 (!m,!m+1

];

otherwise u�,m(!/c) = 0. We denote the annihilation operator with this mode by â�,m,

then the field can be expressed as

Â(+)(z) =
2X

�=1

X
m

e�â�,mc�1

s
~

2(2⇡)3✏
0

!m
eiz!m

/c, (1.18)

where the annihilation operator and creation operator satisfies the usual canonical com-

mutation relation [â�,m, â†�0,n] = �mn���0 . The electric field Correspondingly, the electric

field is then

Ê(+)(z) =
X
�

e�Ê
(+)

� (z), Ê(+)

� (z) =
X
m

iEmâ�,mei!m

z/c, (1.19)

where Em is the field unit of the monochromatic frequency !m. For any integer m, if

!m+1

� !m = L/2⇡c, then one regards L as a spatial periodicity of a field, and such

corresponding quantization of field can be derived from the method of quantization in a

box.

Here-to-after, we will hide the polarization index for simplicity.
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A.3 Correlation functions

Correlation plays a fundamental role in the theory of optical coherence. A key ingredient

of field correlation comes from the scalar part of field operator

Ê(+)(z, t) = ei
P

m

!
m

â†
m

â
m

tÊ(+)(z)e�i
P

n

!
n

â†
n

â
n

t

=
X
m

iEmâmei!m

(z/c�t), (1.20)

which can take a photon away from a given state. An n-th order field correlation function

is then defined as

G(n) = hÊ(+)†(z
1

, t
1

) · · · Ê(+)†(zn, tn)Ê(+)(zn+1

, tn+1

) · · · Ê(+)(z
2n, t

2n)i, (1.21)

where the angle-bracket ensemble average is evaluated with the use of the density operator

of a light beam. This function describes a process destroying n photons at the positions

and times (zn+1

, tn+1

), · · · ,(z
2n, t

2n) and creating n photons at (z
1

, t
1

), · · · , (zn, tn). The

amplitude correlation is represented by the first order correlation function

G(1)(z
1

, t
1

; z
2

, t
2

) = hÊ(+)†(z
1

, t
1

)Ê(+)(z
2

, t
2

)i. (1.22)

To describe the optical coherence, it is convenient to introduce normalized form of the

correlation functions. Correspondingly, it is defined as

g(n)(z, t) =
hÊ(+)†(z

1

, t
1

) · · · Ê(+)†(zn, tn)Ê(+)(zn+1

, tn+1

) · · · Ê(+)(z
2n, t

2n)i
⇧2n

j=1

[G(1)(zj , tj ; zj , tj)]1/2
. (1.23)

For example, an interesting second order correlation functions follows [LoudonQTL]

g(2)(z, t) =
hÊ(+)†(z

1

, t
1

)Ê(+)†(z
2

, t
2

)Ê(+)(z
2

, t
2

)Ê(+)(z
1

, t
1

)i
hÊ(+)†(z

1

, t
1

)Ê(+)(z
1

, t
1

)ihÊ(+)†(z
2

, t
2

)Ê(+)(z
2

, t
2

)i
, (1.24)

In a bipartite system, it is also quite interesting to know the details of the correlations

between parts with the help of the following cross temporal correlation function

g(2)⇥ (z, t) =
hÊ(+)†

↵ (z
1

, t
1

)Ê(+)†
� (z

2

, t
2

)Ê(+)

� (z
2

, t
2

)Ê(+)

↵ (z
1

, t
1

)i
hÊ(+)†

↵ (z
1

, t
1

)Ê(+)

↵ (z
1

, t
1

)ihÊ(+)†
� (z

2

, t
2

)Ê(+)

� (z
2

, t
2

)i
, (1.25)

or with the help of cross frequency correlation function

g(2)⇥ (z,!!!) =
h ˆ̃E(+)†

↵ (z
1

,!
1

) ˆ̃E(+)†
� (z

2

,!
2

) ˆ̃E(+)

� (z
2

,!
2

) ˆ̃E(+)

↵ (z
1

,!
1

)i

h ˆ̃E(+)†
↵ (z

1

,!
1

) ˆ̃E(+)

↵ (z
1

,!
1

)ih ˆ̃E(+)†
� (z

2

,!
2

) ˆ̃E(+)

� (z
2

,!
2

)i
, (1.26)

where ˆ̃E(!) is Fourier transformed from Ê(t). If for any frequencies !
1

,!
2

, one has

g(2)⇥ (z,!!!) = 1, then the bipartite light beam is factorable; otherwise, the light beam has

some frequency correlations between parts. Frequancy anti-correlation is a special corre-

lation. In bipartite two-photon states whose total energy is ~!
2photon

, such a correlation

can be understood in the following way : for majority of photons in !
1

-frequency mode

in the first partite, it has a higher probability to find the other photon in !
2photon

� !
1

frequency mode in the second partite.
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B Some photon sources

In quantum optics, there are many interesting quantum light sources. The bipartite

frequency-anticorrelated photon sources will be extremely used in this thesis.

A quantum state, mixed or pure, can always be represented by a density matrix ⇢. For

example, a general bipartite two-photon state can be described by

⇢ =
X
jkmn

p(!j ,!k,!m,!n)|1 : !j ,↵; 1 : !k,�ih1 : !m,↵; 1 : !n,�|. (1.27)

The symbol |1 : !j ,↵; 1 : !k,�i is an abbreviation of a tensor product |1 : !j ,↵i⌦|1 : !k,�i
of two single photon states in frequency mode !j of ↵ subsystem and in frequency mode !k

of � subsystem respectively. This density matrix can show some quantum interferences or

optical coherence between di↵erent frequency modes because of the o↵-diagonal elements.

If all these o↵-diagonal elements are averaged to zero by noises, that is, the state becomes

completely dephased, then the corresponding density matrix turns out to be a diagonal

one. Such a state is named as a completely dephased state in this thesis. For a bipartite

two-photon source, its completely dephased state reads

⇢ =
X
mn

p(!m,!n,!m,!n)|1 : !m,↵; 1 : !n,�ih1 : !m,↵; 1 : !n,�|. (1.28)

For sake of simplicity, sometimes p(!m,!n,!m,!n) will be abbreviated as p(!m,!n) or

pmn which should not cause any confusions.

A pure bi-partite two-photon state can also be described by a ket vector in Hilbert

space, its the general form follows

|II : sourcei =
X
m,n

c(!m,!n)|1 : !m,↵; 1 : !n,�i. (1.29)

The normalized coe�cients c(!m,!n) will be abbreviated as cmn if need be.

Let’s note that the dephased state represents a stationary field whereas the pure state

gives rise to a time-dependent field.

In this section, we will introduce two pure states, namely, the cascade two-photon

state |II : casi which describes a photon pair generated from the decay of a three-level

atom excited in its top level and cascading down to ground state through its intermediate

state, as well as the two-photon state |II : pdci generated by spontaneous parametric down

conversion process.

B.1 Cascade two-photon state

A three-level atom contains a top excited level |topi with its Bohr frequency !↵ + !� and

width �↵, an intermediate level |medi with its Bohr frequency !� and width �� , and also

a ground state |gi whose Bohr frequency is set to be 0. See the configuration in Figure

1.1.

The atom is initially excited at t = 0 to the top level |topi. It can stay on this state

for a duration of ��1

↵ . A first photon is radiated on the transition |gi to |medi, at time t.

This process is described by

�
X
k

g↵
ei(!k

�!
↵

)t��
↵

t � e���t

!k � !↵ + i(�↵ � ��)
|medi ⌦ |1 : !k,↵i. (1.30)
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|gi

|topi

|medi

fast decay

slow decay

Figure 1.1: The generation scheme of a two-photon state from the excited cascade three-level atom. The

atom was initially occupied in the state |topi, hence via successional radiations, a photon pair is generated

with frequency anti-correlation because of energy conservation

The both terms in numerator are decaying at rates of �↵, �� . The emitted single photon

has a Lorentzian distribution in frequency and its width is equal to |�� � �↵|. If �↵ > �� ,

then there will be some population accumulation, but if �↵ ⌧ �� , then the state can not

stay for a long time. As the excited state |topi has a lifetime, another photon is emitted

soon, and at a given time t, the generated state is given by [ScullyQO]

X
kq

g↵g� |1 : !k,↵; 1 : !q,�i
!k � !↵ + i(�↵ � ��)

"
1 � e���t+i(!

q

�!�!
�

)t

!q � !� + i��
� 1 � e��↵t+i(!

k

+!
q

�!
↵

�!
�

)t

!k + !q � !↵ � !� + i�↵

#
|gi.

By projecting the atomic state on the ground state, one obtains a two-photon state ⇢ =

|II : casihII : cas|, where

|II : casi=
X
kq

N|1 : !k,↵; 1 : !q,�i
!k � !↵ + i(�↵ � ��)

"
1 � e���t+i(!

q

�!�!
�

)t

!q � !� + i��
� 1 � e��↵t+i(!

k

+!
q

�!
↵

�!
�

)t

!k + !q � !↵ � !� + i�↵

#
,

(1.31)

with N being a constant number for normalization. This state can not be factorized

into two separable parts, therefore it is an entangled state. The first term in the square

bracket stands for a usual single photon emission process while the second term represents

frequency anti-correlated emission. This (anti-)correlation comes from the energy conser-

vation, because the total energy ~(!k +!q) of a photon pair should be close to ~(!↵+!�).

In other words, it is with higher probability to find a photon at frequency !↵ + !� � !k

when a photon at frequency !k is given in the pair. With a small width �↵ but a large

width �� , one obtains significant frequency anti-correlations between the emitted photons.

When the time t is large, t � ��1

� , ��1

↵ , this state is equal to

|II : casi =
X
kq

ckq|1 : !k,↵; 1 : !q,�i, (1.32)

ckq =
N

(!q � !� + i��)(!k + !q � !↵ � !� + i�↵)
. (1.33)

The central frequencies of photon pair in this state are !↵,!� with corresponding widths

�↵ + �� , �� .
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For full demonstration, see [ScullyQO].

If the atom excitation occurs no longer at a precise time t = 0, but at random times,

the state is completely dephased, and all the o↵-diagonal elements of the density matrix

are averaged to 0. Then the density matrix becomes

⇤cas =
X
kq

N 2|1 : !k,↵; 1 : !q,�ih1 : !k,↵; 1 : !q,�|
[(!q � !�)2 + �2� ][(!k + !q � !↵ � !�)2 + �2↵]

. (1.34)

This is a diagonal density matrix which describes a separable state, without any entangle-

ment. The quantum correlations of such a state will be discussed in chapter 6.

B.2 Spontaneous parametric down-converted two-photon states

Parametric down-conversion (PDC) is a coherent three-photon process in a nonlinear crys-

tal. The crystal is illuminated by a pump laser with central frequency !p and an envelope

of arbitrary shape A(z, t). The Fourier transform of shape function A gives rise to its

frequency spectrum S(⌫). Signal and idler beams with central frequencies at !↵,!� , de-

generate or not, are generated by the nonlinear process of spontaneous down conversion. If

the photon pairs are generated in same polarization, then the process belongs to type I ; if

they are generated in orthogonal basis, then the process belongs to type II. The two beams

can propagate either in di↵erent directions or collinearlly [Pittman1996]. This process is

described by an interaction Hamiltonian [Rubin1994, Keller1997, MandelOCQO]

ĤI =

Z
V

dV ✏
0

�Ae�i!
p

tÊ↵Ê� , (1.35)

When A is time-independent, this process is called optical parametric down-conversion,

and each converted photon pair has perfect frequency anti-correlations. If the pump field

consists of pulses, then the corresponding process is usually called spontaneous parametric

down-conversion (SPDC).

For example, in the collinear case, in the perturbation theory, the first two terms of

the state is

| i = |0i +
X
m,n

F(k↵(!m), k�(!n))a†↵(!m)a†�(!n)|0i, (1.36)

where F(k↵(!m), k�(!n)) is the shape factor. Via second order nonlinear process, a photon

at frequency ⌫ splits into two photons at frequencies !m and !n on the condition that

⌫ = !m + !n. If it is a type II collinear SPDC process, the perfect phase matching

conditions follow

!↵ + !� = !p, (1.37a)

n↵!↵/c + n�!�/c = np!p/c, (1.37b)

where nµ, µ = ↵,�, p; are the refractive indices of the three fields. The wave-vector kµ can

be assessed at

kµ(! + !µ) = nµ
!µ

c
+

!

uµ(!µ)
, µ = ↵,�; (1.38)

where uµ are the group velocities. Usually, the two-photon profile F(k↵(!m), k�(!n))

can be expressed as a product of source part S(!m + !n) and material response part

M(!m,!n),

F(k↵(!m), k�(!n)) = S(!m + !n)M(!m,!n). (1.39)
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The material response functions M(!m,!n) can be very di↵erent from one crystal to

another, as they are strongly dependent on the crystal parameters. Typically, the response

functions of the interaction between crystal and light are related to the sine cardinal

function because of the calculus of exponential functions over the domain of spatial and

temporal variables. For simplicity, it is convenient to use Gaussian functions to replace

the response functions. As an example, the two-photon state can be approximated by

[Wang2006]

|II : pdci /
X
m,n

S(!m + !n)
h
e�(!

m

�!
↵

)

2/2�2
↵

�(!
n

�!
�

)

2/2�2
�

+ei✓e�(!
n

�!
↵

)

2/2�2
↵

�(!
m

�!
�

)

2/2�2
�

i
a†↵(!m)a†�(!n)|0i, (1.40)

where �↵,�� are two widths of peaks at ! = !↵,!� ; ✓ is a total phase di↵erence between

two beams.

When the two beams propagate collinearly, the common material response M(!m,!n)

reads

M(!m,!n) = sinc{[k↵(!m) + k�(!n) � kp(!m + !n)]l/2}, (1.41)

where l is the length of the �(2) crystal and k↵,�,p represent three wave-numbers of the cor-

responding fields. In most cases, the bands of the photons are quite small, it is convenient

to make Taylor’s expansions at the central frequencies to them:

k↵(!m) ' ks(!↵) + (!m � !↵)/u↵, u↵ = 1/(@!k↵(!))|!
↵

; (1.42a)

k�(!m) ' k�(!�) + (!m � !�)/u� , u� = 1/(@!k�(!))|!
�

; (1.42b)

If the pump field has a very narrow band, one can treat it as a monochromatic source, then

it is not necessary to make an expansion to the wave-number kp; otherwise, for example,

the pump field consists of a train of short pulses, the band can be very large, therefore,

one obtains

kp(!) ' kp(!p) + (! � !p)/up, up = 1/(@kp(!)@!)|!
p

. (1.43)

So in the sinc function, one can define two e↵ective coherent times:

T = (1/4u↵ + 1/4u� � 1/2up)l, Tc = (1/4u↵ � 1/4u�)l. (1.44)

In most cases, Tc ⌧ T . Subsequently, the response function M(!m,!n) which repre-

sents phase mismatch can be expressed as

M(!m,!n) = sinc[(!m + !n � !p)T � (!m � !n � !↵�)Tc], (1.45)

where !↵� = !↵ � !� .
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C ”Quantumness” of light states

In 1935, Einstein, Podolsky and Rosen wrote a paper in questioning the completeness of

quantum mechanics [Einstein1935]. The state introduced in their paper is named as EPR

state, with which, intuitively speaking, a measurement on one part can instantly have

an influence on the other regardless the spatial separation. This novel and mysterious

property, in the name of (quantum) entanglement, inspired Schrödinger to the idea of cat

state which was aiming at the classical-quantum boundary. Now it is commonly known

that such property comes from inseparable quantum states, and an inseparable state is

called an entangled state. The questions on separability as well as the quantumness are

two main concerns to have a deeper knowledge of such states.

In a bipartite system, a separable state is defined as

⇢sep =
X
k

pk⇢↵,k ⌦ ⇢�,k, pk 2 R+, (1.46)

where ↵,� are indices for two di↵erent parts. The density matrix of this separable state

is a convex combination of some factorable density matrices pairs. To determine whether

a state being entangled or not is a NP hard problem. There are some criteria for entan-

gled state, for example, the Peres-Herodecki criterion and its variant–Simon’s criterion,

geometric measure [Simon2000]. We will detail it in chapter 6.

On the other hand, the data from local measurements on an entangled state usually

have some correlations. The quantumness of correlations between parts is a key concept

to the quantumness of entangled state. A popular measure of such quantum correlations

is called quantum discord which is the mismatch of two mutual information, because of

the statistical nature of quantum states. There are some other alternative measures, such

like measurement induced disturbance, quantum deficits. In multimode quantum optics,

the criteria of interests see [Treps2005, FabreQO].

C.1 Separability

Di↵erent separability criteria have been proposed. A simple situation for the bipartite

separability problem is the pure state case, in which one can take advantage of the Schmidt

decomposition.

C.1.1 Schmidt decomposition of a pure entangled state

Di↵erent separability criteria have been proposed. A simple situation for the bipartite

separability problem is the pure state case, in which one can take advantage of the Schmidt

decomposition. Any given pure state |�i in Hilbert space H↵ ⌦ H� with two sets of

othonormal bases {|�↵,mi}dimH
↵

m=1

and {|��,mi}dimH
�

m=1

can be expressed as

|�i =
X
mn

cmn|�↵,mi ⌦ |��,ni. (1.47)

Here, dim H↵, dim H� are the dimensions of subspaces H↵, H� , their value can be infinitely

large. For a discussion of the entanglement, it is helpful to make use of the Schmidt

decomposition. Mathematically, it is always possible to decompose the state in a simplest
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way:

|�i =
X
m

p
�m|f↵mi ⌦ |f�mi, hfµ

m|fµ
n i = �mn, µ = ↵,�, (1.48)

in which {
p
�m} are called Schmidt coe�cients and the minimum value of the dimensions,

min{dim H↵, dim H�}, is defined as the Schmidt rank or Schmidt number. The normal-

ization condition imposes
P

m �m = 1. Because of this constraint, one can know the main

terms in the decomposition form from the Schmidt coe�cients. A quantity, which is called

Schmidt number sometimes or cooperativity parameter  is introduced as

 =
1P
m �

2

m

. (1.49)

To avoid the confusions of the names, in this thesis,  is only called cooperativity param-

eter. The cooperativity parameter can also be introduced as

 = [Trb(Tra⇢)
2]�1. (1.50)

Schmidt rank and cooperativity parameter are two important complementary quan-

tities for describing the complexity of entanglement. The Schmidt rank describes the

abundance of modes that are in correlation while the cooperativity parameter reflects the

homogeneity in the distribution of coe�cients
p
�m.

It is also worth mentioning that some entangled states may not be genuinely entangled

in bosonic system. The concept of entanglement sometimes relies on the choice of bases.

For example, a single photon state |singlei = (|1 : !
1

i ⌦ |0 : !
2

i ⌦ |0 : !
3

i ⌦ |0 : · · · i + |0 :

!
1

i ⌦ |1 : !
2

i ⌦ |0 : !
3

i ⌦ |0 : · · · i)/
p

2, according to the definition, we know the Schmidt

rank of this state is 2, the cooperativity parameter reads  = 2 > 1. One may conclude

that such a state is an entangled state. However, if one introduces two new annihilation

operators: â
+

= [â(!
1

) + â(!
2

)]/
p

2, â� = [â(!
1

) � â(!
2

)]/
p

2, then in the new bases, the

state |singlei = |1 : +i ⌦ |0 : �i ⌦ |0 : !
3

i ⌦ |0 : · · · i is a factorable state, accordingly, the

Schmidt rank is 1, which is equal to the cooperativity parameter. We conclude that both

the magnitudes of Schmidt rank and of the cooperativity parameter are not unique in a

bosonic system, they are strongly related to the choice of modes. So, in order to make 

be a good measure, one need define precisely the set of photon modes.

C.1.2 Simon’s criterion and Mandel matrix

In quantum physics, a state is described by an abstract element in a Hilbert space. What

one measures are its coe�cients by projecting the state on all possible elements of a

orthonormal basis rather than the abstract state itself which should not be observed by any

type of apparatus. However, by performing measurements on the system, one can obtains

enough data of its coe�cients with a given representation of the state to reconstruct the

abstract state. Then, one can apply some criteria to check whether the state is classical,

non-classical or highly non-classical. In some simple systems, for example a two qubits

system, this paradigm works quite well. In multimode quantum optics, in which each state

usually contains many modes, to reconstruct an abstract state, in general, is very di�cult.

Even when one knows the exact expression of the state, it is still not so convenient to use

the criteria such as the PPT criterion or its variant in quantum optics, the Simon’s version

of PPT criterion [Simon2000]. Some alternative criteria directly based on measurements
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can be helpful to show some nonclassicality properties. Among them all, the other Simon

criterion is one of the widely-used one. The basic idea is to introduce a covariance matrix

of the field quadratures p̂m = i
p

~/2(â†m � âm), q̂m =
p

~/2(â†m + âm). The simplest form

of the covariance matrix which is of 2 ⇥ 2 dimension, coming from the single mode state,

reads  
(�q̂)2 �(p̂, q̂)

�(q̂, p̂) (�p̂)2

!
(1.51)

A bipartite two-photon pure state can be regarded as a post-selection from the state

which is obtained from an evolution operator that is determined by a quadratic Hamil-

tonian acting on the vacuum state. Before selection, it should be a multimode squeezing

state. If the interaction strength is weak, then the two-photon part is the key component,

which implies the squeezing properties of the state before selection can be shown in the

covariance matrix of the two-photon state.

The variances of field quadratures of a coherent state is ~/2. Therefore a state is

squeezed, when either of its field quadrature variances is smaller than this value (of course

not both). It can be extended to multimode states, see details of the invariant squeezing

criterion in [Arvind1995].

The quantum optical nonclassicality of multimode state is represented by the non-

positive diagonal weight function in Glauder-Sudarshan representation [Ivan2011]. In

general, the Mandel-type nonclassicality [Mandel1979], which is weaker than the general

notation of nonclassicality, is a simpler to be formulated in light of the Mandel matrix.

For example, with a bi-partite two-mode state ⇢, there are two annihilation operators â, b̂

and two corresponding creation operators. One can introduce two operator-value vectors

as

Ĉ =

 
â†

b̂†

!
⌦
 

â

b̂

!
=

0BBB@
â†â
â†b̂
b̂†â
b̂†b̂

1CCCA ; (1.52)

Ĉ† = (â†â, b̂†â, â†b̂, b̂†b̂), (1.53)

then the Mandel matrix is defined as

M = Tr

"
⇢

 
1 Ĉ†

Ĉ : Ĉ†Ĉ :

!#
, (1.54)

where the two : symbols impose all the creation and annihilation operators in between

should be normally ordered. According to [Ivan2011], one has the following conclusions:

⇢ is quantum optical classical ) M � 0; (1.55a)

M ↵ 0 , ⇢ is quantum optical nonclassical. (1.55b)

The Mandel nonclassicality can be regarded as the photon statistics e↵ect. This method

can be extended and then applied to multimode states, see [Ivan2011].

C.2 Quantum discord

In classical information theory, there are two equivalent definitions of the mutual infor-

mation. In quantum theory, the mutual information of a bipartite state ⇢↵� is defined
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as

I(↵ : �) = S↵ + S� � S↵� , (1.56)

where S↵, S� , S↵� are von Neumann entropies of reduced density matrices ⇢↵, ⇢� and

the total density matrix ⇢↵� . The classical correlation is defined as the maximal gained

information of one subsystem by performing a POVM measurements E↵
m = M †

↵,mM↵,m

on the other. Its mathematical formula reads

J(�|↵) = S� � S�|↵, (1.57)

where the conditional entropy S�|↵ is the minimum of an average on all the entropies of

all possible POVMs

S�|↵ = min
{E↵

m

}
S�|{E↵

m

}. (1.58)

In quantum physics, the two definitions of mutual information give rise to di↵erent results.

This mismatch,

D↵� = I(↵ : �) � J(�|↵), (1.59)

is called quantum discord. This quantity is always positive, since the quantum mutual

information I(↵ : �) represents the total one while J(�|↵) is an information based on mea-

surements and therefore a reduction of information from an increase of entropy originated

in measurements. In classical physics, this di↵erence is definitely vanishing, therefore, a

non-vanishing quantum discord indeed reveals some genuine quantumness of a state. It

has also been shown that some separable states can have non-vanishing discord, that is,

classical communication can give rise to quantum correlation. In this sense, we conclude

that 1. quantum discord is a measure of quantum correlation rather than entanglement;

and 2. separability does not imply the absence of quantum e↵ect.
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D Single/Multi-mode criterion

The concept of photon depends on the choice a mode-function, and a mode-function is an

element in a linear space. As a result, for a given light system, the state can be regarded

as a description of a collective behaviors which can be discussed in the contents of mode

transformation.

D.1 Mode transformation

The concept of photon is strongly related to the mode function, this function can be

expanded in a basis. A state with complicated superposition of several modes may be

written in a simpler form by choosing proper basis. From one mode basis to another,

it always permits a linear transformation. Let {a†m} and {b†m} be two complete sets

of creation operators that are concomitant with the bases. So, in general, one has the

transformation relations

b̂†m =
X
`

Um`â
†
`. (1.60)

However, the statistical nature of bosonic system is inherent, should not be changed by

the representations and mode transformations. Such transformation is symplectic. The

canonical commutation relations follow

[b̂m, b̂†n] =
X
`,`0

(Um`)
⇤Un`0 [â`, â

†
`0 ] =

X
`

Un`(U
†)`m = �mn. (1.61)

All these relations are equivalent to

UU † = I. (1.62)

Therefore, any such transformation is unitary symplectic.

Because of this transformation relations, a multimode state in one basis may be a single

mode state in another basis. The non-fluctuating classical field can be described by only

one mode-function, while for some quantum light states and therefore the quantum field,

there exist some photon state that cannot be fully described by only one mode-function,

see examples in the intrinsic multimode states. That is, the multi-modality of a non-

fluctuating light field is a property of non-classicality. To find minimum basis to describe

an optical state is not only fundamentally important for the classification of the state

therefore the complexity of the structure of a state, but also convenient for analysis and

calculations. The following introduction to intrinsic single/multi- mode state will follow

[Treps2005].

D.2 Intrinsic single-mode quantum light

In order to give a proper definition of a single mode state, let us firstly consider a state

that has already written in a single mode um form

|single modei = · · · |0i ⌦ | : umi ⌦ |0i · · · . (1.63)

We denote the annihilation operator that is in mode um by Âm and other annihilation

operators corresponding to other orthogonal vector in the basis by Â?,n. So, we know

Âm|single modei 6= 0; Â?,n|single modei = 0. (1.64)
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From the previous representation theory, we know that any annihilation operator can be

expressed in terms of Âm and other Â?,n. So any operator acting on the single mode state

|single modei gives rise to a same final state. One concludes that [Treps2005]:

A quantum state of the field is single mode if and only if the action on it of all the

annihilation operators of a given basis gives proportional vectors.

D.3 Multi-mode quantum light

A state of light is said multi-mode, if it is not single mode. So, not all the vectors generated

from the action on a multi-mode state of all the annihilation operators are proportional

to each other. We characterize such a state by the rank of these induced vectors, say

degree n, (the rank of a single mode light is equal to 1) and call it an n-mode state. If,

by coincidence, {u
1

, u
2

, · · · , un} are n modes that are su�cient to describe the state, then

these modes are called minimum basis.

Though the single/multi mode state is introduced in the case of pure state, these ideas

can be generalized to mixed states.

D.4 Some examples

In this part, we will first consider two examples from [FabreQO]. Let’s consider two

annihilation operators â
1

, â
2

of frequencies !
1

,!
2

respectively. A first example is a state

defined as

|IIi = (|2 : !
1

, 0 : !
2

i + |0 : !
1

, 2 : !
2

i)/2 + |1 : !
1

, 1 : !
2

i/
p

2. (1.65)

It is a two-mode entangled state in common sense. However, one can verify directly that

â
1

|IIi = â
2

|IIi = (|1 : !
1

, 0 : !
2

i + |0 : !
1

, 1 : !
2

i)/
p

2, thus the rank of the state is 1. We

can construct two new annihilation operators: Â± = (â
1

± â
2

)/
p

2, so the state

|IIi = (â†2
1

+ 2â†
1

â†
2

+ â†2
2

)|0i/2
p

2 =
Â†2

+p
2

|0i

= |2 : +i ⌦ |0, �i. (1.66)

The only non-vanishing induced vector is Â
+

|IIi =
p

2|1 : +i ⌦ |0, �i, therefore state

|IIi is an intrinsic single-mode state. From this example, we conclude that 1. a two-mode

entangled state at the first sight can be an intrinsic single-mode state and 2. entanglement

is not a genuine property in some bosonic system.

Consider another state that is a tensor product of two single-photon states at fre-

quencies !
1

and !
2

respectively, |11i = |1 : !
1

, 1 : !
2

i. The action of both annihilation

operators â
1

, â
2

gives rise to

â
1

|11i = |0 : !
1

, 1 : !
2

i, â
2

|11i = |1 : !
1

, 0 : !
2

i. (1.67)

The above states are orthogonal to each other and the two states together span a 2D space.

So the rank of induced vectors is 2, and state |11i is a 2-mode state.

Now let’s consider a general bipartite pure two-photon state IIi =
P

mn c(!m,!n)|1 :

!m,↵i⌦ |1 : !n,�i where the coe�cients c(!m,!n) are normalized as
P

mn |c(!m,!n)|2 =
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1. By performing any annihilation operation â↵,k or â�,q(k, q 2 Z) on a subsystem, we

have

â↵,k|IIi = |0 : ↵i ⌦
 X

n

c(!k,!n)|1 : !n,�i
!

; (1.68)

â�,q|IIi =

 X
m

c(!m,!q)|1 : !m,↵i
!

⌦ |0 : �i. (1.69)

Both the two vectors, in general, are not equal to 0. The inner product of the two vectors

in Eqs. (1.68-1.69) yields

(hII|â†↵,k)(â�,q|IIi) = 0. (1.70)

That is, the two vectors are independent, and such a two-photon state has at least 2

modes. The orthogonality of the two vectors are valid for any integer k, q, therefore, the

intrinsic mode number of the photon states should be equal to the minimum of the number

of modes in both subsystems. Note that the matrix c whose element at position (m, n)

being c(!m,!n), admits the following Schmidt decomposition

c(!m,!n) =
N

schX
k=1

p
�k�k(!m) ⇤

k(!n), (1.71)

where Nsch is the Schmidt rank. Then one finds possible bases are

{|1 : �k,↵i =
X
m

�k(!m)|1 : !m,↵i}Nsch

k=1

; {|1 :  ⇤
k,�i =

X
n

 ⇤
k(!n)|1 : !n,�i}Nsch

k=1

,

(1.72)

and the intrinsic number of modes of a two-photon multimode state is twice large than

the Schmidt number, that is the two-photon state |IIi is an intrinsic (2Nsch)-mode states.

For example, in cascade two-photon state or type II SPDC two-photon state discussed

in the last chapter, we see in both cases the Schmidt numbers are infinitely large, so, the

two two-photon states has infinitely many intrinsic mode.

However, it is not universally true that the intrinsic mode number is twice larger than

the Schmidt number of the state. For example, consider a similar quantum superposed

coherent state

|QMCi =
X
mn

c(!m,!n)|z : !m,↵i ⌦ |z : !n,�i, |z| � 1. (1.73)

Though the orthogonality of the counterparts can still be valid, these vectors such asP
m �k(!m)|z : !m,↵i, (1.74a)P
m  

⇤
k(!m)|z : !m,�i, (1.74b)

cannot represent single-mode vectors unless both functions �k(!m) and  ⇤
k(!m) attain non-

zero value only at single-frequencies. For example, a product coherent state |z : !
1

,↵i⌦|z :

!
2

,�i is an intrinsic single-mode state, the rank of mode is less than 2Nsch = 2.

When we consider a general |QMCi state such that the value of the function �k(!m)

or  ⇤
k(!m) is non-zero almost everywhere, then the ranks of modes of the vectors in (1.74)

are really large. For example, consider a state 
MX

m=1

�
1

(!m)|z : !m,↵i
!

⌦
 

NX
n=1

 ⇤
1

(!n)|z : !n,�i
!

, (1.75)
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whose Schmidt rank is 1, but its rank of modes can be as large as M ⇥ N , which is much

larger than 2 in general.

We stress that the relation

rank of modes = 2Nsch, (1.76)

is valid for bipartite pure two-photon states, and the cascade two-photon state as well

as the type II SPDC two-photon state are intrinsic infinitely-many-mode states because

Nsch = 1 which will be shown in the last chapter of this thesis.
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CHAPTER 2

Two-photon quantum optics in one atom
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T

here are fundamental quantum statistical properties in a bipartite quantum system,

such as entanglement or non-locality, but even in a system like an atom which

is not bipartite, genuine quantum correlations play important role, such as the

quantum correlation in a divisible system [Lapkiewicz2011]. In quantum optics, nowadays,

scientists can produce various quantum light sources with complex correlation structures.

A basic way to characterize these correlations is to use the correlation function g(n) which

is also an important factor in n-photon transition process. With these quantum light

sources, it is then also possible to take advantage of quantum coherent control to the

atom-light interaction process to give rise to strongly constructive as well as destructive

quantum interference in the probability of various processes such as the excitation of a

target atom. These processes can then be helpful in spectroscopy.

27
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|gi

|ei

{|ui}

{|mi}

Ê : ! ' !e/2

Figure 2.1: The interaction configuration. In this model, any single-photons are far away

from resonance to all energy levels. Possible two-photon resonances occurs only between

the ground state |gi and an excited state |ei. In this figure, {|ui}, {|mi} represent two

collections of other levels

A Model

Let’s consider the interaction between an one-dimensional quantum field and a single atom

that is located at position z = 0 (see the configuration in Figure 2.1). The quantum field is

defined in Eq.(1.19). Under long wavelength approximation, the Hamiltonian of field-atom

dipole interaction [GAFIQO] reads

V̂ = �d̂ · (Ê(+) + Ê(+)†), (2.1)

where we have removed the z-dependence in field operators and d̂ is atomic dipole operator.

Combined with total free Hamiltonian Ĥfree of atom and field, the evolution of the system

is described by

Û(t) = exp[�i(Ĥfree + V̂ )t/~]. (2.2)

The atom is initially in the ground state |gi and photons at time t = 0 are described by den-

sity matrix ⇢. The density matrix at a later time t is determined by Û(t)(|gihg|⌦ ⇢)Û †(t).
The physics of on resonance interaction between a two-level atom and a monochromatic

field has been throughly investigated [AllenORTLA], in particular in the context of Jaynes-

Cummings model [Jaynes1963].

In this chapter, we consider two-photon excitation phenomena with a single atom in

which noticeable two photon excitations only occur between ground state and an excited

state |ei. Single photon excitations are forbidden between this energy level pair because

of selection rules. The probability to find the atom in state |ei is therefore equal to the

one of two-photon excitation. It reads

P = Tr[he|Û(t)(|gihg| ⌦ ⇢)Û †(t)|ei] = Tr[hg|Û †(t)|eihe|Û(t)|gi⇢]. (2.3)

It most cases, it is really hard to find an analytical solution for the evolution operator

Û(t). The di�culties come from the fact that Ĥfree, V̂ are not commutating with each
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other, even in an ideal two-level atom model. Conventionally, the evolution operator Û(t)

is usually expansed as Dyson series

Û(t) = e�i ˆH
free

t/~

I � i~�1

Z t

0

d⌧ ˆ̃V (⌧) � ~�2

Z t

0

d⌧

Z ⌧1

0

d⌧
1

ˆ̃V (⌧) ˆ̃V (⌧
1

) + · · ·
�

, (2.4)

All perturbative terms in Dyson series have a same form

ˆ̃V (⌧) = ei
ˆH
free

⌧/~V̂ e�i ˆH
free

⌧/~ = �ei
ˆH
free

⌧/~d̂ · (Ê(+) + Ê(+)†)e�i ˆH
free

⌧/~. (2.5)

According to Baker-Compel-Hausdor↵ formula, one has

ei
ˆH
free

⌧/~(Ê(+) + Ê(+)†)e�i ˆH
free

⌧/~ = e
0

Ê(+)(⌧) + h.c., (2.6)

which gives rise to time-dependent quantum field,

Ê(+)(t) = i
X
m

Emâme�i!
m

t. (2.7)

Now let’s consider a two-photon excitation process. The leading e↵ect of such process

is described by the second term U (2) in Dyson series,

he|U (2)|gi = he|e�i ˆH
free

t/~|ei
Z t

0

d⌧

Z ⌧

0

d⌧
1

Feg(⌧, ⌧1)[Ê
(+)(⌧)+h.c.][Ê(+)(⌧

1

)+h.c.], (2.8)

where the factor of atomic part reads

Feg(⌧, ⌧1) = �~�2

X
m

ei!e

⌧ei!m

(⌧1�⌧)he|d̂ · e
0

|mihm|d̂ · e
0

|gi. (2.9)

If we take atomic decoherence into account, and the width of atomic state |mi is denoted

by �m, then

F�eg(⌧, ⌧1) = �~�2

X
m

e�e(⌧�t)ei!e

⌧e(�m+i!
m

)(⌧1�⌧)he|d̂ · e
0

|mihm|d̂ · e
0

|gi. (2.10)

As the transition dipole elements he|d̂ · e
0

|mihm|d̂ · e
0

|gi are largely independent of

frequency, we then remove the atomic projector |mihm| in it and rewrite the Feg(⌧, ⌧1) as

Feg(⌧, ⌧1) = �~�2ei!e

⌧

 X
m

ei!m

(⌧1�⌧)
!

he|d̂ · e
0

d̂ · e
0

|gi. (2.11)

In a real atomic system, usually it contains lots of (in fact infinitely many) energy levels,

therefore, we have infinitely many terms of phases to make temporal interferences since the

index m in the sum runs over all positive integer. when ⌧ 6= ⌧
1

, the sum gives a vanishing

net value, because such interference-induced decoherence [Zurek1991, Dürr1998] originates

in the fact that lots of phase functions ei!m

(⌧1�⌧) are oscillating with small periods at high

frequencies. When ⌧ = ⌧
1

, the sum diverges. In general, we approximate the sum asX
m

ei!m

(⌧1�⌧) ' L

2⇡c

Z
R+

d!mei!m

(⌧1�⌧) =
L

2c
�(⌧

1

� ⌧). (2.12)

The factor 2 in the denominator comes from the fact that frequency must be positive.

Now we get

he|U (2)|gi = �Le�i ˆH
free

t/~

4c~2

he|d̂ · e
0

d̂ · e
0

|gi
Z t

0

d⌧ei!e

⌧ [Ê(+)(⌧) + h.c.]2. (2.13)
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where we have used the following identityZ t

�1
d⌧�(t � ⌧) = 1/2. (2.14)

As a result, the transition probability is

P = Peg

ZZ t

0

d⌧d⌧
1

ei!e

(⌧�⌧1)G(2)(⌧
1

, ⌧), Peg ⌘ L2

16c2~4

|he|d̂ · e
0

d̂ · e
0

|gi|2; (2.15)

where the kernel reads

G(2)(⌧
1

, ⌧) = h[Ê(+)(⌧
1

) + h.c.][Ê(+)(⌧
1

) + h.c.][Ê(+)(⌧) + h.c.][Ê(+)(⌧) + h.c.]i. (2.16)

In the case of two photon absorption, the leading transition probability rate is described

by G(2)

Ladder function

G(2)

Ladder(t1, t2) = hÊ(+)†(t
1

)Ê(+)†(t
1

)Ê(+)(t
2

)Ê(+)(t
2

)i, (2.17)

One can take into account the atomic decay rate � of the excited state |ei in the following

way [Mollow1968, Gea-Banacloche1989]

w
2

= 2|g|2
Z

R
d⌧e2i!e

t��|⌧ |G(2)(�⌧, �⌧, ⌧, ⌧). (2.18)

In Raman type two-photon transitions, the key kernel is

G(2)

Raman(t
1

, t
2

) = hÊ(+)†(t
1

)Ê(+)(t
1

)Ê(+)†(t
2

)Ê(+)(t
2

)i, (2.19)

Though the two-photon transition processes with Raman type configuration (Quantum

Raman spectroscopy) are quite di↵erent from the one with Ladder type configuration, we

will not consider this interesting topic in this thesis which is not central in the present

discussion. In the following of this chapter, we will give a brief introduction to two-photon

absorption process in a two-level atom in the context of quantum coherent control.
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B Two-photon absorption in ladder configuration

In this part, we will give a brief introduction to quantum two-photon absorption phenom-

ena such like dark pulse, entanglement-induced transparency with continuous frequency

modes.

If photons are initially in a mixed state, then the transition probability is a sum of the

weighted contributions from all pure density matrices parts. Since any those contributions

are positive, the minimum transition probability from mixed state should be not less than

the one from pure states. So, a pure state which gives rise to the minimum two-photon

excitation probability is what we are interested in here.

The correlation function G(2) of a generic pure quantum state | i can be expanded as

a sum of 16 terms. With an interaction of ladder configuration, only one term gives rise

to two-photon absorption. It reads

G(2)

L (⌧
1

, ⌧) = h |Ê(+)†(⌧
1

)Ê(+)†(⌧
1

)Ê(+)(⌧)Ê(+)(⌧)| i, (2.20)

Here we will consider two kinds of quantum states: 1. a class of most classical states,

multimode coherent states, |↵↵↵i = [⌦mD̂(↵fm, am)]|0i where fm ⌘ f(!m) is a normal-

ized coe�cient of a generic mode distribution
P

m |fm|2 = 1; 2. two-photon states

|IIi =
P

mn cmn|1 : !m; 1 : !ni where coe�cients cmn ⌘ c(!m,!n) are also normalizedP
mn |cmn|2 = 1. The multimode coherent state |↵↵↵i is an intrinsic single-mode state.

B.1 Dark pulse

By sending a general pulse into an atomic system, in general, the atoms will be excited

more or less if the transition is allowed, then one can observe such transition phenomena

via some widely used techniques. Interestingly, for a given pulse spectrum, the previously

allowed transition can be sharply suppressed by adjusting the phase distributions. As a

result, one may even find no transitions during a very long time owing to a very small

transition probability. Such a corresponding pulse is called dark pulse [Meshulach1998].

Let’s consider the minimum transition probability of multimode coherent state |↵↵↵i in

this part. The correlation function G(2)

L can be factorized as

G(2)

L,|↵↵↵i(⌧1, ⌧) = E4|↵|4
0@X

jk

f⇤
j f⇤

kei(!j

+!
k

)⌧1

1A X
mn

fmfne�i(!
m

+!
n

)⌧

!
, (2.21)

which leads to

P (t) = PegE4|↵|4
�����X
mn

fmfn

Z t

0

d⌧ exp[�i(!m + !n � !e)⌧ ]

�����
2

. (2.22)

We notice the varying phase in the integral�����X
mn

fmfn

Z t

0

d⌧e�i(!
m

+!
n

�!
e

)⌧

�����
2

=

�����X
mn

fmfn
sin[(!m + !n � !e)t/2]

(!m + !n � !e)/2

�����
2

,

reveals the fact that when time t is large, the two-photon transition can only occur in a

cooperative way !m + !n = !e. The stationary two-photon transition can then occur by
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destroying two photons at a pairwise anti-correlated frequencies. Replacing the double

sums by double integrals and making Dirac delta function approximation, we have a

following convolution function [Meshulach1998]:

P1 =
PegE4|↵|4L4

16⇡2c4

����Z !
e

0

d!mf(!m)f(!e � !m)

����2 . (2.23)

f(!) is a complex number which can be rewritten in the polar form f(!) = Af (!)ei�f (!).

If the amplitude is a slowly varying function in contrast to the phase function and if

�f (!) 6= ��f (!e�!), then the integral is vanishing in general. This is because if a photon

at a frequency is ready to excite the atom, then a photon at a close neighboring frequency

is prone to de-excite back to ground state, which in general gives rise to no net excitation

accumulation. Let’s consider here a special class of distribution, for any frequency !, f(!)

is symmetric about the line ! = !e/2, f(!) = f(!e � !), the convolution function is now

simplified to Z !
e

0

d!mf(!m)f(!e � !m) = 2

Z !
e

/2

0

d!mA2

f (!m)e2i�(!m

). (2.24)

For a given power spectrum Af (!m), the variation principle imposes that the extrema

of functionals of �f (!m) satisfies

e4i�(!m

) =

R !
e

/2
0

d!A2

f (!)e2i�(!)R !
e

/2
0

d!A2

f (!)e�2i�(!)
. (2.25)

On the right hand side, the expression is frequency !m independent. This shows that the

extrema of functionals is

P1 =
PegE4|↵|4L4

16⇡2c4

✓Z !
e

0

d!mA2

f (!m)

◆
2

' PegE4|↵|4L2

4c2
. (2.26)

However, it is the maximum, not a minimum. We hence conclude from the variation

principle that there does not exist a minimum of this functionals.

To illustrate the dark pulse phenomena, let’s consider a special case:

f(!) / e�(!�!
e

/2)2/2�2
+i(a/2) sin[2b(!�!

e

/2)+'], �⇡ < '  ⇡. (2.27)

which is a Gaussian distribution modulated by a sinusoidal phase (a/2) sin[2b(!�!e/2)+

']. Such modulation brings sidebands to the original one as

f2(!) / e�(!�!
e

/2)2/�2
1X

n=�1
Jn(a)ein[2b(!�!e

/2)+']. (2.28)

In a case of small a, J
0

(a) ' 1 but the values of Jn 6=0

(a) are small and hence the sidebands

are not noticeable. When a becomes larger, all the Jn(a) are small and therefore inter-

ferences between sidebands now are significant. Since every frequency in original mode

has a set of sidebands, these frequency lines coincide with the ones from other bands, but

their linked phases ein' are di↵erent providing that ' 6= 0. These terms, which are out of

phase, induce decoherence in superposition.
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The photon source has a narrow band, whose value is much less than !e. We will

extend the integral interval 0 < !  !e to whole real axis at the cost of introducing some

tiny errors. According to the following formulae,Z 1

�1
dxe�p2x2

+qx = exp(
q2

4p2
)

p
⇡

p
, Re p2 > 0. (2.29)

the transition probability

P1 / �2

�����
1X

m=�1
Jm(a)e��

2b2m2
eim'

�����
2

. (2.30)

One can verify that for any ', the transition probability is invariant after a ⇡ phase shift

'+ ⇡.

On the condition that there’s no phase modulation, a = 0, the corresponding proba-

bility attains the maximum value. Accordingly, the sum in the modulus is equal to 1. For

given b and ', the value of transition probability decreases as the value of a increases. See

the upper graph in Figure 2.2. If we take a as an n-th root xn of Bessel function J
0

(x),

P1 / �2

24�����
1X

m=1

J
2m(xn)e�4�2b2m2

cos(2m')

�����
2

+

�����
1X

m=1

J
2m�1

(xn)e��
2b2(2m�1)

2
sin(2m � 1)'

�����
2

35 . (2.31)

Intuitively, because the factor exp(��2b2m2) decreases radically with increase of integer

m, the crucial terms are those with small integer numbers, and therefore, the probability

attains its minima around ' = 0,⇡ and attains its maxima around ' = ±⇡/2, see the

middle graph in Figure 2.2.

We are quite interested in the relation between transition probability and parameter

b around ' = 0, since it shows a radical reduction of transition probability. The relation

follows

P1 / �2

�����
1X

m=1

J
2m(xn)e�4�2b2m2

�����
2

. (2.32)

The transition probability decreases fast as the value of �b increases and with larger root

xn of J
0

(x) = 0, the transition probability decreases more sharply. See the bottom graph

in Figure 2.2. Roughly, the pulse duration can be assessed at ��1. Under the condition

that the lifetime of the excited state is su�ciently large, even after elapsing a long time, the

transmitted population accumulates. When there is a strong phase modulation (b � ��1),

the reduction of transition probability at long time can be extremely suppressed in contrast

to the case b = 0. Such a reduction is genuine. In this case, the two-photon transition

should be very weak, and such light source, can hardly be absorbed by the energy level

pair |gi � |ei, hence the name dark pulse. Since essentially no photon pairs in such state

will be absorbed by this atom, it is indeed a kind of transparency induced by interference.
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Figure 2.2: Graphs of transition probability P . The middle graph shows the phase ' dependence of P1

in which the curves attain their maxima around ±⇡/2 and attain their minima around 0, ⇡. In this graph,

we set �b = 0.2. The bottom graph shows the relation between transition probability and parameter b

at phase ' = 0. In both graphs, we find that transition probability decreases by choosing larger root of

J0(x) = 0 for parameter a, see the curves in the upper graph.
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B.2 Two-photon transparency

Now let’s consider a transition process with two-photon source |IIi =
P

mn c(!m,!n)|1 :

!m,↵; 1 : !n,�i. The correlation function G(2)

L can be factorized as

G(2)

L,|IIi(⌧1, ⌧) /

0@X
jk

c⇤jke
i(!

j

+!
k

)⌧1

1A X
mn

cmne�i(!
m

+!
n

)⌧

!
, (2.33)

which leads to

P (t) /
����ZZ

R+⇥R+
d!md!nc(!m,!n)

Z t

0

d⌧ exp[�i(!m + !n � !e)⌧ ]

����2 . (2.34)

For large time t, by applying the Dirac delta function approximation,

P (t) /
����Z !

e

0

d!c(!,!e � !)

����2 . (2.35)

If we take c(!,!e � !0) = c0(!)c00(!0), c0(!) / c00(!) / f(!) where f(!) is the distribution

defined in multimode coherent state in B.1, that is, the state is factorable, we once again

find the transparency phenomenon.

We therefore conclude that entanglement is not a necessary condition for transparency

in two-photon absorption with two-photon state. In a paper [Fei1997], the authors found

that when the central frequencies of a type II SPDC two-photon attain some special value,

the no two-photon absorptions will be found, though it is expected to excite the atom

and the curves should be quite flat in common sense. This counter-intuition result, should

come from quantum origin and therefore the name: entanglement induced transparency.

However, they did not show that any other states with no entanglement can not induce the

transparency. However, we are more interested in possible cancellation for the excitation

probability due to quantum entanglement. For simplicity, let’s rewrite c(!m,!n) as C(⌦ =

!m + !n, ⌫ = !m � !n). Then according to Eq.(2.35), the transition probability can be

changed to

P (t) /
����Z !

e

�!
e

d!C(!e,!)

����2 . (2.36)

One can rewrite the coe�cient c(!m,!n) of the type II SPDC two-photon state as

C(⌦, ⌫) / e�(⌦�!
p

)

2/2�2
sinc

(⌦� !p)T + ⌫Tc � �
�

2⇡
. (2.37)

In this case, the transition probability P / |A|2,

A = e��
2/2�2

Z
1

�1

sinc
!eTc

2⇡
(! � �

�

+ T �

!eTc
)d!, � = !p � !e. (2.38)

or equivalently in terms of sine integral function Si(x) =
R x
0

sinctdt,

A =
2⇡

!eTc
e��

2/2�2


Si(

�
�

+ T � + !eTc

2⇡
) � Si(

�
�

+ T � � !eTc

2⇡
)

�
. (2.39)

In a quantum optical system, the typical value of frequency !e/2⇡ is 1014 Hz, the dif-

ference |(1/u
1

�1/u
2

)| between the inverses of group velocities is about 10�9 ⇠ 10�10sm�1,
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Figure 2.3: Figures of induced transparency in transition probability. As one can see in these figures,

the zeros in the transition amplitude is induced by the large ratio T/T

c

.

the common crystal length can be at the order of 1µm ⇠ 1mm. Here we take !e/2⇡ = 1014

Hz, l = 2mm, |(1/u
1

�1/u
2

)| = 10�9sm�1, (1/u
1

+1/u
2

) = 10�6sm�1 and �
�

= 0 therefore

!eTc/2⇡ = 100, T = 1000Tc. In Figure 2.3, we see that when |�
�

+ T �| � !eTc, there ex-

ists points for vanishing amplitude A, therefore for vanishing transition probability. These

point with vanishing transition probability are of great interest.

Recalling that !eTc/2⇡(⇠ 100) is a large parameter, and those points are out of the

interval �!eTc/2⇡  !  !eTc/2⇡. Let’s denote x = (�
�

+ T �)/2⇡, y = !eTc/2⇡. Owing

to the asymptotic expression of sine integral function for large argument x,Z x

0

dt
sin t

t
' ⇡

2
� cos x

x
, (2.40)

the asymptotic expression of amplitude A follows

Aasym =
8⇡2

!eTc
e��

2/2�2

"
(�
�

+ T �) sin ��+T �
2⇡ sin !

e

T
c

2⇡ + !eT cos ��+T �
2⇡ cos !e

T
c

2⇡ )

(�
�

+ T �)2 � (!eTc)2

#
. (2.41)

One can verify directly for N
1

2 N, Z 2 Z when

!eTc = (2N
1

+ 1)⇡2, �
�

+ T � = 2Z⇡2; or (2.42a)

!eTc = 2N
1

⇡2, �
�

+ T � = (2Z + 1)⇡2; (2.42b)

the value of asymptotic expression of A is

Aasym = 0. (2.43)

Roots from asymptotic expression are in good conformity with real ones, see the deviations

of the n-th root from the right graph in Figure 2.4.
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Figure 2.4: Comparison between the numerical result and the asymptotic result. The figure on the

left hand side shows that the two results are well matched. The figure on the right hand side shows the

deviations of the roots between the ones from numerical calculations and the ones from the asymptotic

expression.

We have shown in the case of multimode coherent state source or factorable two-

photon source, the two-photon absorption probability can be infinitely small, but never

attains zero. In a real situation, one cannot tell the di↵erences between a truly vanishing

transition probability and a very small one. However, we observe noticeable consecutive

hills and dales of the transition curve with growing two-photon transition detuning � from

the left graph in Figure 2.4 in contrast to the previous case. Such extra structure comes

from 2 facts: 1. the factor T/Tc which stands for coherent quantum interferences ; 2. the

detuning � which represents frequency anti-correlations between photon pairs. This pure

two-photon state with frequency anti-correlations between pairs are more likely entangled.

B.2.1 Entanglement induced transparency

Now consider a real atom and pick up a level pair that admits perfect two-photon resonance

at frequency !e by shining a type II two-photon source and between which there exists

other intermediate levels. From the second order perturbation theory, the transition cross

section is proportional to

�e|j=s / T�1

c [!s � !p/2]�2�(!e � !p) sin2[(!s � !p/2)Tc/2], (2.44)

where !s is the Bohr frequency of s intermediate level. See more details in [Fei1997] where

their notations "s�"i, Te were replaced by !e, Tc respectively. When !s�!p/2 = 2m⇡/Tc,

then the transition cross section will be exactly zero. In general, every intermediate level

should contribute to the transition cross section, and one should find some extra dips in

the spectrum while in ordinary case, the spectrum is quite flat in these zones.

C Enhanced two-photon transition probability

By sending a pure photon source to an atom, the transition amplitude consists of di↵erent

excitation contributions from the photons in di↵erent frequency modes. This superposi-

tion in transition amplitude can lead to transition enhancement or reduction by coherent

control method. The reduction phenomena has been discussed in the previous sections in

this Chapter. The enhancement of the transition is another aspect. It has been widely
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studied during the past several decades, see [LoudonQTL]. In general, such phenomena

are strongly related to the second order temporal correlation g(2)(0). With larger value

of g(2), the transition probability is higher. It implies why a chaotic light source can give

rise to higher transition probability than the coherent laser source. The interpretation

is straightforward: because the two-photon transition takes place in a single atom, the

absorbed photons should come at the same time.

With a multimode light state, especially with a continuous frequency-mode state, the

field should show some temporal correlations but also some frequency anti-correlations

because of the two-photon resonance condition. One concludes that an ideal condition to

enhance the two-photon transition probability is to add both temporal correlations and

frequency anti-correlations to the photon state. However, large value of g(2)(⌧ = 0) (� 1,

that is, photon-bunching e↵ect) can be explained by wave statistics from classical language.

It is therefore regarded as a classical character if without any other details. Recently,

some researches on the improvement of signal/noise ratio of a two-photon process on the

quantum origins are studied, for example quantum illumination [Lloyd2008].
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I

nterference between quantum states rooted in the superposition principle is a funda-

mental phenomenon in quantum physics. In comparison with the interference be-

tween classical waves, the quantum interference relies on a quantized field as well as

the state itself rather than its mean field. When it comes to optical system, the richness

of internal structure of photon states provides many kinds of non-classical properties such

as squeezing, bunching and anti-bunching statistics, negativity, entanglement, contextual

correlations. These non-classical properties give rise to numerous interference phenomena

and subsequently some missions impossible in classical world such like teleportation.

In order to fully display these extraordinary and fantastic beauties in the quantum

world, some kind of coupling between the light and matter is a necessity.

It is expected that with denser atomic ensemble, the field-matter coupling is stronger

and therefore the interface is more e�cient. However, when atoms get closer, their in-

teraction will modify the properties of each individual atom, such as frequency shift and

change of spontaneous emission rate [FicekQIC], etc.

39
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There are two simple classes of systems that may exhibit nonclassical properties in-

duced by various photon states, namely, three-level atom systems and two two-level atom

systems. We have studied the first class in the previous chapter. In the present one, we

will focus our attention on the latter class.

First we will precise the model for two two-level atoms interacting with a quantized

field, then by using perturbation theory, we derive an expression for transition probability.

This expression is a base for subsequent chapters. An exactly solvable model is also

introduced and discussed in the remaining part.
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A Introduction

The system consisting of two two-level atoms, either identical or di↵erent, is a good one

to perform a joint measurement on a light state and assess its correlation properties. In

this way, novel spectroscopic and interferometric properties of specific photon states can

be put in evidence. It is in this sense that studies of light interacting with two two-level

atoms are of importance and interest both theoretically and experimentally.

From the study of the two-atom excitation by a photon state, interesting properties of

pairs of atoms can be inferred from experimental data. For example common processes

for a pair of atoms to absorb a single photon are a key ingredient [P-Penãfiel2012] to the

development of the understanding of cold collisions [Weiner1999] and the determination

of scattering length values [Weiner1999] in laser cooling of atoms [CohenTannoudjiAAP].

The excitation of two atoms of di↵erent species by two-photon was first considered in

a theoretical article [RiosLeite1980] and then in [Andrews1983]. They considered tunable

monochromatic classical light of frequency ! and showed that, in presence of interatomic

interaction, a new resonance appears when ! is equal to the half sum of the two Bohr

frequencies of the excited states of the atoms. Such e↵ect was first observed in a mixture

of Ba/Ti [White1981], then in neutral molecules [Hettich2002] and in cold Na atoms

[P-Penãfiel2012].

It is indeed true that the interaction with entangled photons can induce in some cases

correlations and entanglement of otherwise uncorrelated atoms [Richter2011]. In the year

2004, an insightful theoretical article [Muthukrishnan2004] reported that two photon res-

onance can be induced by using some particular entangled state of light and in absence

of interaction between the two atoms. The same subject was also considered, but in

the context of spin entanglement in Electron Paramagnetic Resonance by K. Salikhov

[Salikhov2003]. More recently, [Richter2011, Salazar2012, Dayan2007] the related problem

of interaction with pairs of broadband spectrum photons has been discussed.

It has also been widely studied that atomic interference can dramatically change the

decoherence of the two atoms [Ficek2002]. With these backgrounds, one can now develop a

theory to investigate the optical response to all kinds of quantum light states theoretically.

However, even without considering atomic interaction and atomic decoherence as well as

only concerning with monochromatic field, it is in general di�cult to find an analytical

solution. Under such simple conditions, the evolution of system is usually described by

SU(8) Lie group or the corresponding Lie algebra [Khaneja2001]. However, it is still

too complicated to play with. In this thesis, we will give an analytical solution in a

really special system that can be described by two-photon Lie algebra h
6

[Ballesteros1998,

Ballesteros2001]. In more general cases, we will apply perturbation theory since it is a

good approximation that meets most of our most needs.
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Figure 3.1: the transition spectra on the two-photon–two-atom detunings with a

monochromatic field. On the left side, the spectrum only has two peaks at each single-

photon–single-atom resonances in the absence of atomic interaction; On the right side,

the spectrum shows an extra structure in the middle of two peaks that represent single-

photon–single-atom resonance because of the presence of the atomic interaction. This new

structure comes from a Fano type interference. The graph comes from [Hettich2002].
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energy-levels are represented by new eigenstates in a single system, because of the atomic

interaction. Two new eigenstates, labeled by |±i, have Bohr frequencies !± respectively.

For sake of simplicity, we take !
2

> !
1

,!
+

> !�.

B Model

B.1 Two-atom system

The precise control of the spatial arrangement of two two-level systems is experimentally

di�cult. Historically speaking, two-atom experiment to show collective damping e↵ect was

first carried out with an atom before a reflecting surface in the late of 1960s by Drexhage

[DrexhagePO]. Then techniques for ion trapping were developed. However, in order to

perform a strong interaction between the two atoms, one needs to put the both objects at

a distance that is smaller than the wavelength �
0

(�
0

' 1µm) of radiation from the excited

states [FicekQIC]. If the separation of the two atoms are not less than 10�
0

, the interaction

between atoms can be neglected. Because of the repulsive interactions between ions, it is

really hard to keep both ions strongly interacting with each other while maintaining in a

stable location. It is the development of laser cooling techniques that made it possible to

push molecules to su�ciently close distance [Hettich2002, Weisenburger2013].

B.2 Atomic Hamiltonian

In this part, both atoms, which are di↵erent and labeled (1) and (2), are taken as two-level

systems. If there is no interaction between them, the two atoms have ground and excited

states |gii and |eii(i = 1, 2). For each excited state, we denote its atomic frequency by !i
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and its decay constant by �i. The Hamiltonian of such a two-atom system is a sum of

the two single-atom Hamiltonians,

Ha,bare = ~[!
1

|e
1

ihe
1

| ⌦ I
2

+ !
2

I
1

⌦ |e
1

ihe
1

|], (3.1)

where we have taken the energy of the ground state to be zero. In the matrix representa-

tion, the atomic Hamiltonian can be written in a diagonal form,

Ha,bare = ~

0BBB@
0

0!
2

0

!
1

!
1

+ !
2

1CCCA . (3.2)

In this expression, the symbol of huge zero represents a 2 ⇥ 2 null matrix. The eigen-

states of such a system are |gi = |g
1

i ⌦ |g
2

i, |g
1

i ⌦ |e
2

i, |e
1

i ⌦ |g
2

i, |ei = |e
1

i ⌦ |e
2

i, which

correspond to atomic frequencies 0,!
2

,!
1

,!
1

+ !
2

respectively.

If there exists an interaction between the two atoms, for example, a dipole-dipole

interaction Vaa(r1, r2) that depending on their relative locations, then the two atoms are

now a compound system.

Though the precise form of this Hamiltonian is complicated, in most cases, the domi-

nant part is of the form

V = ~v|e
1

g
2

ihg
1

e
2

| + h.c., (3.3)

which describes an interaction between the two two-level atoms only when one atom is

excited and the other in the ground state. For sake of simplicity, we neglect all the small

terms and regard V as the interaction Hamiltonian. The total atomic Hamiltonian then

reads Ha = ~!
1

|e
1

ihe
1

|+~!
2

|e
2

ihe
2

|+~v(|e
1

g
2

ihg
1

e
2

|+h.c.), or equivalently in the matrix

representation,

Ha = ~

0BBB@
0

!
2

v

v !
1

!
1

+ !
2

1CCCA . (3.4)

Because the interaction happens only when one atom is in the ground state while the

other is excited, the global ground state |gi and the co-excited state |ei, which are out

of the interaction, are eigenstates of the new total Hamiltonian. However, the other two

eigenstates are di↵erent from the previous ones. The new eigenstates are |±i with atomic

frequencies !± respectively, and the explicit solutions are

!± =
!
1

+ !
2

2
±
r

(
!
1

� !
2

2
)2 + |v|2; (3.5)

|+i =
v|g

1

e
2

i + (!
+

� !
2

)|e
1

g
2

ip
|v|2 + (!

+

� !
2

)2
, (3.6)

|�i =
(!

+

� !
2

)|g
1

e
2

i � v|e
1

g
2

ip
|v|2 + (!

+

� !
2

)2
. (3.7)

One verifies that |±i are two orthonormal states. Note that the two new eigenstates are

entangled states. The strength of the entanglement of the two states is determined by

the ratio between the interaction parameter v and atomic frequency-di↵erence !
2

� !
1

.
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The two factors appear naturally in the discriminant of the quadratic equation from the

eigenvalue problem of the total Hamiltonian. According to the solutions (3.5,3.6,3.7), if v

is much greater than !
1

,!
2

, then both eigenstates are maximally entangled. Physically,

the parameter v cannot be so large in general, however, it is still true that both states are

more entangled with a larger v, since the cooperative Schmidt numbers that are the same

in both states, are described by a monotonic increasing function of variable v, according

to the explicit expression

 =
[v2 + (!

+

� !
2

)2]2

v4 + (!
+

� !
2

)4
= 2 � (!

1

� !
2

)2

(!
1

� !
2

)2 + 2v2
. (3.8)

The range of  is 1   < 2.

In the above expressions, one finds the sum of the two eigenfrequencies, is the same as

the previous one,

!
+

+ !� = !
1

+ !
2

⌘ !e. (3.9)

And therefore !
+

� !
2

= �(!� � !
1

). That is, the two new frequencies are shifted with

a same amount in opposite directions.

Now let’s move to the new basis {|gi, |�i, |+i, |ei}. The completeness relation reads

|gihg| + |�ih�| + |+ih+| + |eihe| = I
4

, (3.10)

and the total Hamiltonian is written in a diagonal form

Ha = ~(!�|�ih�| + !
+

|+ih+| + !e|eihe|). (3.11)

Atomic transitions are described by the raising and lowering operators, denoted by

b†j = |ejihgj | and bj (j = 1, 2). b†j , for example, makes the electron in the ground state to

jump to the excited state |eji. The excitation of one atom may partially be transferred to

the other atom because of the coupling. b†j has the following expression in the new basis

b†j = I
4

b†jI4 = Aj |eih+| + Bj |eih�| + Cj |+ihg| + Dj |�ihg|, j = 1, 2. (3.12)

The components of the four vectors A,B,C,D with subscripts j = 1, 2 are

Aj = ↵�j2 + ��j1, Bj = ↵�j1 � ��j2, (3.13a)

Cj = ↵�j1 + ��j2, Dj = ↵�j2 � ��j1, (3.13b)

↵ = !+�!2p
(!+�!2)

2
+v2

, � = vp
(!+�!2)

2
+v2

. (3.13c)

where �jk is the Kronecker � function. We can rewrite Eq.(3.12) as

(b†
1

, b†
2

)T = A|eih+| + B|eih�| + C|+ihg| + D|�ihg|. (3.14)

B.3 Free quantum electric field

A free quantum electric field Ê propagating in the z direction can be decomposed as

positive frequency part Ê(+) and its conjugate part (Ê(+))†, where

Ê(+)(z, t) = i
X
m

Emame�i!
m

(t�z/c) (3.15)
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Em is the unit of the single photon electric field at frequency !m, and the bosonic operator

obeys the non-vanishing commutator [am, a†n] = �mn. The frequency di↵erence between

neighboring components is 2⇡c/L where L is the length of a quantized box along the z

direction. The length of a quantized box can be chosen su�ciently long at will.

The total field Hamiltonian reads

Hf = ~
X
m

!ma†mam (3.16)

The annihilation operators am are time independent.

B.4 Interaction between atoms and light

Here we consider the dipole interaction. At the rotating wave approximation, the interac-

tion Hamiltonian is given by :

V = ~b†
1

X
`

f
1

(!`)a` + ~b†
2

X
`

f
2

(!`)a` + h.c., (3.17)

where fk(!`) = �ihek|p · ✏`|gki
p
!`/2~"

0

SLei!`

(z
i

/c�t) = fi`ei!`

(z
i

/c�t), fi` being a slowly

varying function of the photon frequency. S is the transverse section of the beam which

is focused on the atoms, zi the position of atom i and L the length of the quantization

box, the mode density in terms of frequencies !` being 2⇡c/L. For simplicity, we will set

z
1

= z
2

= 0 and hence will not consider propagation e↵ects and take fi(!`) as a constant

fi ⌘ fi(!i).

Let f = (f
1

, f
2

)T , F (t) =
P

` e
�i!

`

ta`. Recalling the expression (3.14), the interaction

Hamiltonian in the coupling basIs reads

V = ~eiHa

t/~(b†
1

f
1

F + b†
2

f
2

F + h.c.)e�iH
a

t/~

= ~FeiHa

t/~(AT f |eih+| + BT f |eih�| + CT f |+ihg| + DT f |�ihg|)e�iH
a

t/~ + h.c.

= ~(At|eih+| + Bt|eih�| + Ct|+ihg| + Dt|�ihg|) + h.c. (3.18)

where

At = AT fFei!�t, Bt = BT fFei!+t, Ct = CT fFei!+t, Dt = DT fFei!�t. (3.19)

B.5 Evolution and transition probability

The whole system at time t can be described by a density matrix ⇢̃. Because of the fi-

nite lifetime of the excited detecting atoms, the evolution of system is non-unitary. For

simplicity, we assume our system is Markovian, that is, the dynamics of the total sys-

tem are governed by a master equation when the atomic interaction, atomic decoherence

and multimode field are all incorporated. The governing master equation can be derived

from the treatments of Louisell [LouisellSPR], Lehmberg [Lehmberg1970] and Agarwal

[AgarwalQSTSE], etc. Here, we will use super-operator method to derive a general ex-

pression for 2P2A transition probability. In the following model, we also neglect the

photon exchange during the interaction process where cooperative e↵ect can occur in the

nonlinear response.



B. Model 47

In interaction picture, the master equation for density matrix can be formally written

as:

i@t⇢̃ = Lt⇢̃� iR⇢̃ (3.20)

where Lt⇢̃ = [V/~, ⇢̃] is a commutator describing the field-atom interaction and R⇢̃ is

decoherence operator. All the properties of the entire system are determined by the initial

state |g
1

g
2

ihg
1

g
2

|⌦⇢
0

and a non-unitary evolution super operator U(t), with which notation

the density matrix of the whole system at any time t yields ⇢̃ = U |g
1

g
2

ihg
1

g
2

| ⌦ ⇢
0

. The

two-atom excitation probability is related to the projection measurement |e
1

e
2

ihe
1

e
2

| on

the atomic part according to Born’s rule, consequently

P = Trhe
1

e
2

|(U |g
1

g
2

ihg
1

g
2

|⇢
0

)|e
1

e
2

i (3.21)

B.6 Perturbative result

In principle, if one has the precise expression of the evolution operator U(t), one has a

maximum information about the entire system. However, even without decoherence terms,

it is very di�cult to find out the precise expression of U(t). On the other hand, we are more

interested in the two-atom resonances while keeping any of the both atoms su�ciently far

away from single-atom single-photon resonances. In such two-atom excitation processes,

the leading e↵ects can be accurately described by the lowest order perturbative results.

As mentioned before, the commutator between the interaction Hamiltonian and density

matrix [~�1V, ⇢̃] is labeled as a operator function Lt⇢̃ with subscript t to signify the time

dependence. For example,

Lt|gihg| ⌦ ⇢
0

= (Ct|+ihg| + Dt|�ihg|)⇢
0

� h.c.

The explicit form of the super operator is

Lt⇢̃ = [At|eih+| + Bt|eih�| + Ct|+ihg| + Dt|�ihg| + h.c., ⇢̃]. (3.22)

The operator

L̃t ⌘ At|eih+| + Bt|eih�| + Ct|+ihg| + Dt|�ihg| (3.23)

is able to raise the atomic ket state vector and lower the bra state vector, therefore, the

two terms ⇢̃L̃t, L̃
†
t ⇢̃ do not contribute to the two-atom excitation probability in the lowest

order perturbation theory provided that the initial atomic system in the ground state.

This leads us to simplify the super operator as

Lt⇢̃ = L̃t⇢̃� ⇢̃L̃†
t . (3.24)

Notice that now L̃t is an operator, not a super operator.

During the interaction process, noises from the environment always disturb the whole

system, and make the evolution of the atoms and field non-unitary. We will use the a

Markovian super operator R⇢̃ to describe this phenomena. In the perturbation calcula-

tions, we take R|gihg| = 0 and R|µih⌫| = (�µ + �⌫)|µih⌫| for other density matrix element

|µih⌫|.
Notice that the decay rates �± of |+i are di↵erent in general sense, they come from

the re-partition of the �
1,2 and also the interaction induced de-phasing rate �

12

which
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is typically related to the 1/rn(n > 2) interaction. In most situations, we neglect the

di↵erence between �
+

and �� and then take them both as � = �e/2. That is, we assume the

two atoms are not so close such that the decay rate originates from the interaction between

the two atoms are negligible since the value is proportional to the inverse cubic power of

the distance and therefore is very sensitive. In a real experimental situation[Science 2002],

this value can be 2 orders of magnitude smaller than the spontaneous emission rate of the

bare atoms.

The transition probability given by the 4-th order perturbation theory

P = Trhe|
✓Z

d4teR(⌧�t)L⌧e
R(⌧1�⌧)L⌧1e

R(⌧2�⌧1)L⌧2e
R(⌧3�⌧2)L⌧3e

�R⌧3 |gihg| ⌦ ⇢
0

◆
|ei,

includes 4! = 24 terms. For simplicity, we introduce new notations Ãt = Ate��t, B̃t =

Bte�+t, C̃t = Cte�+t, D̃t = Dte��t and consequently, their hermitian conjugates read

Ã†
t = A†

te
��t, B̃†

t = B†
t e
�+t, C̃†

t = C†
t e
�+t, D̃†

t = D†
te
��t.

The transition probability can be written in a more compact form

P =e�2�
e

t

Z t

0

d⌧

Z ⌧

0

d⌧
1

Z ⌧1

0

d⌧
2
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3
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†
⌧1Ã

†
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†
⌧3Ã

†
⌧2 + D̃†

⌧3B̃
†
⌧2) + (Ã⌧ C̃⌧3 + B̃⌧ D̃⌧3)⇢0(C̃

†
⌧2Ã
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†
⌧ + D̃†

⌧3B̃
†
⌧ )].

If we define ut = (Ãt, B̃t),ut = (C̃t, D̃t) and its hermitian transpose u†
t = (Ã†

t , B̃
†
t ) and

a binary product � between ut and v⌧ as

ut � v⌧ = ÃtC̃⌧ + B̃tD̃⌧ ,

therefore,

v†
⌧ � u†

t = C̃†
⌧ Ã

†
t + D̃†

⌧ B̃
†
t .

Now the transition probability can be expressed as

P (t) = e�2�
e

t

Z t

0
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Z t
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Z t

0
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2

� ⌧
3

),

(3.25)

where u(✓) is the Heaviside function whose value is equal to 1 when ✓ � 0 and otherwise is

zero. The product of the four Heaviside functions provides a time ordering to all the terms

in square bracket. A possible way to simplify the expression is to change all the temporal

arguments for di↵erent terms in the square bracket in a same order, say, u⌧3�v⌧2⇢0v
†
⌧1�u†

⌧ .

By doing so, it gives rise to the following combination of Heaviside functions:

U{⌧} = u(t � ⌧)u(⌧ � ⌧
3

)u(⌧
3

� ⌧
1

)u(⌧
1

� ⌧
2

) + u(t � ⌧)u(⌧ � ⌧
1

)u(⌧
1

� ⌧
3

)u(⌧
3

� ⌧
2

)

+ u(t � ⌧
3

)u(⌧
3

� ⌧)u(⌧ � ⌧
1

)u(⌧
1

� ⌧
2

) + u(t � ⌧)u(⌧ � ⌧
3

)u(⌧
3

� ⌧
2

)u(⌧
2

� ⌧
1

)

+ u(t � ⌧
3

)u(⌧
3

� ⌧
2

)u(⌧
2

� ⌧)u(⌧ � ⌧
1

) + u(t � ⌧
3

)u(⌧
3

� ⌧)u(⌧ � ⌧
2

)u(⌧
2

� ⌧
1

)].

(3.26)
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Observe that the time ordering of t � ⌧, ⌧ � ⌧
1

, t � ⌧
3

, ⌧
3

� ⌧
2

can be found in all the

terms, therefore u(t� ⌧)u(⌧ � ⌧
1

)u(t� ⌧
3

)u(⌧
3

� ⌧
2

) is a common term and can be written

outside the square bracket, subsequently,
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� ⌧
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), (3.27)

which separates the temporal arguments into two sets and brings light to a simple expres-

sion of the 4-th order perturbation transition probability

P = Tr(K⇢
0

K†), K = e��et
Z t

0

d⌧

Z ⌧

0

d⌧
1

[A⌧C⌧1e
��⌧e�+⌧1 + B⌧D⌧1e

�+⌧e��⌧1 ]. (3.28)

We notice that a double integral in the expression of K, which di↵ers from the product

form of two integrals in the case with absence of the atomic interaction. This is because

the two atoms are di↵erent and photons can choose whichever atoms to excite if the atoms

are without interaction in contrast to the case with interaction, in which the two-atom

system should be excited firstly to their mutual state |+i or |�i which can be ”felt” by

both atoms because they interchange electronic energies.

Combined with Eqs.(3.13,3.19),

K = �
X
mn

amanKmn, (3.29)

Kmn =
AT fCT f
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!
. (3.30)

In the two brackets, one can find 2 terms that are oscillating at the two-photon detuning

frequency !m+!n�!e and the other 6 terms are exponentially decaying. Therefore, when

t � ��1

+

, ��1

� , these terms are swept away, and Kmn becomes

K1
mn =


AT fCT f

!m � !
+

+ i�
+

+
BT fDT f

!m � !� + i��

�
ei(!e

�!
m

�!
n

)t

!m + !n � !e + i�e
. (3.31)

B.6.1 Coupling strength

Since v2 = (!
+

�!�)2/4� (!
1

�!
2

)2/4 = (!
+

�!
2

)(!
+

�!
1

), we have (!
+

�!
2

)2 + v2 =

(!
+

� !
2

)(!
+

� !�). From Eqs.(3.13), one has

AT fCT f = f
1

f
2

+ v(f2

1

+ f2

2

)/(!
+

� !�), (3.32a)

BT fDT f = f
1

f
2

� v(f2

1

+ f2

2

)/(!
+

� !�). (3.32b)

We notice a sign di↵erence between the two lines. This di↵erence, induced by the v

parameter, is crucially important in some cases. From the two expressions, we also notice

that when the interaction parameter v is small, v/(!� � !�) ⇡ v/|!
1

� !
2

|.
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C Case of infinite lifetimes of the excited detecting atoms

When both excited states of the detecting atoms have infinite lifetime, the decoherence

e↵ect is then not considered in the process, therefore, the evolution is reversible. In this

case, the transition probability is determined by

K = �
X
mn

amanKmn, (3.33)

Kmn =
AT fCT f
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+

!
. (3.34)

The last terms in brackets are far o↵ resonance and quite small, and therefore sometimes

can be neglected. The photons of frequencies !m and !n, both of which are far away

from the atomic frequencies but the sum might be close to !e, can lead to a noticeable

transition. This transition at 2P2A resonance !m + !n = !e = !
1

+ !
2

is described by

Kmn '
✓
AT fCT f
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+

+
BT fDT f

!m � !�

◆
ei(!e

�!
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)t � 1

!m + !n � !e
. (3.35)

If we use the explicit form the inner products, we then find the exact expression Kmn

Kmn = f2
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)(!n � !�)
. (3.36)

Consider finally the limit case of a two-atom excitation without atomic interaction.

Then !± degrade into !
1

,!
2

and therefore the response function is a product of two

individual single-photon–single-atom response functions

Kmn = f
1

f
2

ei(!1�!m

)t � 1

!m � !
1

ei(!2�!n

)t � 1

!n � !
2

. (3.37)

The response kernel Kmn has been written in a product form of two terms, each of which

represents a response of single-photon–single-atom process. At a single-photon–single-

atom resonance, one has

lim
!!!

a

h(! � !a, t) = lim
!!!

a

ei(!a

�!)t � 1

! � !a
= �it, !a = !

1

,!
2

; (3.38)

that is, a linearly t-dependent factor. When time t is su�ciently large, the single-photon–

single-atom response h(!� !a, t) is a fast oscillating function except at the point ! = !a,

so the transition probability should be mainly determined by the numeric properties of

the coe�cients of a multimode photon state at ! = !a from the asymptotic analysis point

of view.
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D An analytical solution in the case of two degenerate atoms

with infinite lifetime

As we have mentioned, it is not simple to find an exact solution to the evolution of a system

in which a quantized field interacts with two two-level atoms, even in a simple situation

where the atoms are initially in the ground state and that no noise enters during the

interaction process and no interaction occurs between the two atoms which have di↵erent

atomic frequencies. By using a perturbation theory, at its leading order, one finds the

probability in two-photon absorption is, generally speaking, expressed as a product of

a factor dependency on photon statistics and a dependency of spectrum which has t2

dependence for stationary photon states [Mollow1968]. This is also true in two-atom

cases.

In both cases, the expression shows that each photon in the field interacts with atoms

individually. Consequently, some special photon states of a give frequency mode are able to

make dramatically enhancement or reductions of the transition probability. If we disregard

the common response function and only focus on our attention on the photon statistics,

in fact it is a double slit type experiment in quantum optics.

By manipulation of the photon state, one can have dark pulses [Meshulach1998] and

bright pulses. An interesting and important question is how bright the transition signal

can be. To get a full answer to this question, we need to go further than the leading term

in the perturbation theory.

On the other hand, as mentioned above, the transition probability of a completely

dephased state (as defined in Eq. (1.28) represented by a diagonal density matrix) is

accumulated from time to time since the photon flux is fixed and the atomic decays

are negligible. For these states, the transition probabilities are expected to be (ct/L)2

dependent. Time can be su�ciently large even though t  L/c in a quantized box and

hence does not violate the upper bound 1 of the probability, but the transition probability

still somehow depends on the way of choosing the length of quantization box, is not

physical. This problem in this expression has perhaps its origin from the cut-o↵ of the

high order perturbation terms. Therefore, an analytical solution to the model is of great

desire even it is an approximate one.

We will consider now an exactly solvable model in which a monochromatic field inter-

acts with two interacting two-level atoms that are frequency degenerate and initially in the

ground state. After doing so, we will modify the model by going to a quasi-monochromatic

field.

D.1 Monochromatic field interacting with two-atom system

D.1.1 Introduction

In this part, we only focus our attention on the interaction with the narrow band photon

source. For sake of simplicity, we will take the light field as the monochromatic one. Then

the Hamiltonian of the free field and of field atoms interactions are:

H0

f = ~!a†a, [a, a†] = 1;

V = ~(f
1

|e
1

ihg
1

| + f
2

|e
2

ihg
2

|)a + h.c.. (3.39)



52 Chapter 3. Two-photon two-atom interaction: Model

The coupling strength are given previously in Eq. (3.17).

Since the interaction strength v between the two degenerate atoms is not vanishing,

there should not be resonant peaks at frequency !a for excitations when a monochromatic

classical field is applied. This is because the interaction has shifted the eigen-frequencies

of singly excited state. In this sense, to observe the co-excitation phenomena, it is not nec-

essary to use the non-degenerate atoms in the presence of the interaction between atoms.

In a real situation, especially when the interaction between atoms is quite weak, there

should be a strong peak which represents the double single-photon–single-atom resonance,

and therefore might hide the e↵ects originated from the parameter v. However, when v is

small, it is also weak to observe such a resonance in non-identical two atoms system, and

typically, v is about 1 GHz, and the laser width is about 1 MHz, therefore, two identical

atoms should also deserve a place to show such a striking e↵ect.

Because of the symmetry of the two degenerate two-level atoms, a theoretical group way

to describe the dynamics of the system will be helpful. Here we take K
0

=
P

2

i=1

(|eiihei|�
|giihgi|)/2, K� =

P
2

i=1

|giihei|/
p

2, and K
+

= K†
�, which thus yields the commutation

relation

[K
0

, K±] = ±K±, [K
+

, K�] = K
0

; (3.40)

which are the typical relations in su(2) Lie algebra. From these relations, one also obtains

[K
0

, K
+

K�] = 0, [a†a + K
0

, a†K� + aK
+

] = 0. The total Hamiltonian is now can be

summed by two commutating parts: H
0

= ~!(a†a + K
0

+ 1) and HI = H � H
0

, more

explicitly,

HI = ~[(!a � ! � v)(1 + K
0

) + 2vK
+

K� +
p

2f(a†K� + aK
+

)]. (3.41)

The evolution operator U(t) = e�iHt/~ can be disentangled as U(t) = e�iH0t/~e�iH
I

t/~.

Both the two parts have compact forms of the generators, therefore, it would be convenient

to use the four eigenstates of the operator K
0

as bases:

|�i = |g
1

g
2

i, |0i = K
+

|�i, |+i = K2

+

|�i; |00i = (|g
1

e
2

i � |e
1

g
2

i)/
p

2, (3.42)

correspondingly, K
0

|±i = ±|±i, K
0

|0i = K
0

|00i = 0.

Notice that, whichever operator K
0

, K± acting on state |00i, the result is zero and the

other states form a complete set under the three operations as well as identity operation.

That is, the dynamical behavior of atomic part can be described by U(1) � SO(3). We

have also the completeness relationship

|�ih�| + |+ih+| + |0ih0| = I
3

, I
3

+ |00ih00| = I
4

.

When the evolution operator acts on |00ih00|, it gives rise to a trivial result:

e�iHt/~|00ih00| = e�i!ta†a|00ih00|. (3.43)

The non-trivial evolution of the states now is restricted in the 3-dimensional Hilbert

space spanned by the bases {|±i, |0i}. In the new matrix representation, we have K� =

|0ih+| + |�ih0|, K
0

= |+ih+| � |�ih�| and K
+

K� = I
3

� |�ih�|. The interaction Hamil-

tonian now becomes

HI = ~

0B@ 0
p

2fa† 0p
2fa 2v + w

p
2fa†

0
p

2fa 2(v + w)

1CA , (3.44)
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where

w = !a � ! � v. (3.45)

The evolution of the entire system is governed by its initial state |g
1

g
2

ihg
1

g
2

| ⌦ ⇢
0

and

a unitary evolution operator U(t) = e�iH0t/~e�iH
I

t/~. The density matrix of the whole

system at time t is ⇢̃ = U |g
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g
2

ihg
1

g
2

| ⌦ ⇢
0

U †. According to Born’s rule, the two-atom

excitation probability is related to the projection measurement |e
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e
2

ihe
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e
2

| on the atomic

part, yielding P = Tr[|e
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ihe
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|⇢̃(t)], or equivalently

P = TrF (⇢
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i). (3.46)

The TrF stands for the trace operation over the field variable. Without causing any

confusion, we will drop the subscript hereafter.

Now let’s focus our attention on how to solve the evolution operator UI(t) ⌘ e�iH
I

t/~.

The evolution operator is exactly solvable by following the procedures [PuriMMQO] in

the three-level atom model. However, The expression is very complicated. What we need

is the exact expression of UI |�i, obeying

i~@tUI |�i = HIUI |�i. (3.47)

In this matrix representation, one can always write ÛI(t) =
P

jk  ̂jk|jihk|, then ÛI |�ih�| =P
j  ̂j�|jih�|, the equations of interest are

i@t ̂�� =
p

2fa† 
0�; (3.48a)

(i@t � 2v � 2w) ̂
+� =

p
2fa ̂

0�; (3.48b)

(i@t � w � 2v) ̂
0� =

p
2fa ̂�� +

p
2fa† 

+�. (3.48c)

To solve this equation, it is convenient to take �̂��(t) = (a† 
+�,  ̂

0

, a ̂��)T as unknown

operator-valued functions,

i@t�̂�� =

0B@ 2(v + w)
p

2fa†a 0p
2f 2v + w

p
2f

0
p

2faa† 0

1CA �̂��, �̂��(0) = (0, 0, a)T . (3.49)

All the elements in the time independent coe�cient matrix are commutating with each

other, so that one can treat the operator-valued elements as common numbers. Let p̂±, p̂
0

are three operator-valued eigenvalues of the coe�cient matrix, by following a routine

eigenvalue decomposition procedure of a square matrix, formally, the solution to the above

equation reads

�̂��(t) = e�ip̂�t�̂��� + e�ip̂0t�̂��
0

+ e�ip̂+t�̂��
+

, �̂��� + �̂��
0

+ �̂��
+

= �̂��(t = 0). (3.50)

The eigenvalue decomposition of the coe�cient indeed shows the peculiar structure of

the transition behaviors. The simple solution is determined in the characteristic cubic

equation,

p̂3 � (4v + 3w)p̂2 � 2[f2(2aa† � 1) � (v + w)(2v + w)]p̂ + 4(v + w)f2aa† = 0, (3.51)
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whose coe�cients commute and which can be solved as an algebraic one and gives solutions

p̂±, p̂
0

. The exact solution of  ̂
+� = 2f2a ̂aa†a is expressed as

 ̂aa† =
e�ip̂�t

(p̂� � p̂
0

)(p̂� � p̂
+

)
+

e�ip̂0t

(p̂
0

� p̂�)(p̂
0

� p̂
+

)
+

e�ip̂+t

(p̂
+

� p̂
0

)(p̂
+

� p̂�)
. (3.52)

The transition probability now reads P = TrF (⇢
0

 ̂†
+� ̂+�). Function  ̂aa† depends on

aa† and therefore  ̂aa†a = a ̂a†a. Thus the transition probability now becomes

P = TrF (⇢
0

 ̂†
+� ̂+�) = 4f4TrF (⇢

0

a†2a ̂†
aa†
 ̂aa†a) = 4f4TrF (⇢

0

a†2a2 ̂†
a†a
 ̂a†a). (3.53)

As we can see from the above expression, the response function  ̂†
a†a
 ̂a†a also depends

on the photon number operator a†a, and in general h ̂†
a†a
 ̂a†ai 6=  ̂†

ha†ai ̂ha†ai unless

the photon state is a number state |ni. In this sense, the photon number statistics are

important to the excitation probability, not only the intensity.

Because of completeness relationship
P

n |nihn| = I in the Fock space, we have

a†2a2 ̂†
a†a
 ̂a†a =

X
n

(n2 � n)| n|2|nihn|, (3.54)

and thus the transition probability is the sum of contributions from all the diagonal ele-

ments of the state,

P = 4f4Tr(⇢
0

 ̂†
a†a

a†2a2 ̂a†a) = 4f4

X
n�2

(n2 � n)| n|2hn|⇢
0

|ni. (3.55)

We see that the coherence or the interference between di↵erent Fock state do not play a

role in the probability.

D.1.2 Evolution at the perfect resonance

The phenomena of resonances in Physics are of great interest since they are the witnesses

of the strongest correlations or couplings between subsystems. In most quantum optical

systems, even for some ultrafast pulses, phase is the fastest varying quantity, the per-

fect resonance condition in fact manifests an o↵set to bring the whole system to a more

stationary situation with respect to the fastest varying factors. Now let’s have a closer

look at the behaviors under perfect 2P2A condition 2! = !
+

+ !� which is equivalent to

v + w = 0.

The solution of the cubic characteristic equation (3.51) is

p
0

= 0, p̂± = v/2 ±
q

v2/4 + 2f2(2aa† � 1). (3.56)

Correspondingly,

 ̂rsn
aa† =

1

p̂
+

� p̂�


1 � e�ip̂�t

p̂�
� 1 � e�ip̂+t

p̂
+

�
. (3.57)

When the photon number is large n � (v/f)2i, the dominant term in the solution for p in

(3.56) comes from the photon number, approximate values to p̂± are ±2f
p

n, as a result

2f2a2 ̂rsn
a†a|ni ' � sin2(f

p
nt)|n � 2i. (3.58)
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Figure 3.3: Figures of the response function | 
n

|2 (hence P|ni) for di↵erent monochromatic Fock states.

From the top graph, one finds some wrinkles which are induced by interferences between photons in a Fock

state. These wrinkles can dramatically change the time dependence of the transition probability. With the

increase of the photon number, the quantum collapse phenomenon become more noticeable, for example,

the peaks become much narrower, see the case in which n = 105. The bottom two graphs are the 3d

visualization for the transition probability with respect to the arguments of time ft and 2P2A detuning

�/2f . One sees clearly the quantum collapses and revivals in this two graphs.
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Note that f
p

n /
p

n/L is related to the square root of the photon linear density in the

1D quantized box. We stress that this linear density should fixed even when the length

along z-direction becomes infinitely large.

The transition probability with a Fock state |ni yields

P = (n � 1)n sin4(f
p

nt). (3.59)

D.1.3 Comparison with the perturbation theory

The final result from perturbation theory in a case of monochromatic field and two fre-

quency degenerate atoms at perfect resonance is

K = 2f2

✓
1 � e�ivt � ivt

v2

◆
a2. (3.60)

When the response operator Eq.(3.57) is applied to a Fock state |ni,

�2f2a2 ̂rsn
a†a|ni =a2

2f2

p
+

� p�


1 � e�ip+t

p
+

� 1 � e�ip�t

p�

�
|ni, (3.61)

where p± = v/2 ±
p

v2/4 + 4f2(n � 1/2). It is only when

n ⌧ v2

16f2

+
1

2
, (3.62)

therefore, p� ' 0, p
+

' v and

|p�T | ' 2Tf2(2n � 1)/v ⌧ 1 , T ⌧ v/2f2(2n � 1), (3.63)

that �2f2a2 ̂rsn
a†a

|ni for any time t 2 [0, T ] degrades itself into K|ni.

Figure 3.4: The transition probability for di↵erent Fock states. Here we take v/f = 40.

One finds for the Fock state with small photon number, the mismatch between the exact

result and the approximate result is small. For large-number Fock state, the mismatch

becomes noticeable even at a short time. This figure shows the perturbation result is valid

for short times. For longer times, one needs consider higher order corrections.
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With a monochromatic field, in the most general case, noticing that the varying phase

functions are in terms of ! � !± in perturbation theory while those factors are in terms

of p
0,±(n) = hn|p̂

0,±(a†a)|ni which are n-dependent in the exact solution, p
0,±(n) are in

fact the three roots of P
3

(p, f2) = 0,

P
3

(p, f2) = p3 � (4v + 3w)p2 � 2[f2(2n � 1) � (v + w)(2v + w)]p + 4(v + w)f2n. (3.64)

If there are only few photons in the total system, the field intensity is then weak and

p
0,±(n) are approximately p

0,±(n) ' p̃
0,± +�p

0,±, where p̃
0,± = p

0,±|f=0

p̃
0

= 0, p̃� = w + 2v; p̃
+

= 2(v + w); (3.65)

are three roots of P
3

(p̃, 0) = 0 and hence

P
3

(pj , f
2) '@P

3

(p̃j , 0)

@p
�pj +

@P
3

(p̃j , 0)

@f2

f2 + · · · (3.66)

if all the derivatives exist. Such expansion holds on the condition that higher order cor-

rections of pj are much less than the lower order ones. The above analyses do not apply

when one of p̃± is by accident equal to 0, which represents a resonance of single-photon or

two-photon where often exists singularity.

Function hn�2| ̂
+�|ni degrades into hn�2|K|ni during the whole period [0, T ] provided

that |T�pj | ⌧ 1, or more explicitly,

|T�pj | = 2f2T

����� 2n(v + w) � (2n � 1)p̃j
3p̃2j � 2p̃j(4v + 3w) + 2(v + w)(2v + w)

�����⌧ 1. (3.67)

Therefore the upper bound T for the validation of the perturbation theory with respect

to time should satisfy

T ⌧ min

⇢
v

2(n � 1)f2

,
v

2(2n � 1)f2

,
v

2nf2

�
=

v

2(2n � 1)f2

. (3.68)

when it is close to two-photon resonance.

D.2 Quasi mono-chromatic pure field

In this section, we will try to extend our conclusion to the case of a quasi-monochromatic

field case which contains M frequency modes. Such a model is suitable for description of

the interaction between two frequency-degenerate atoms and frequency comb field (or a

pulse train), providing that the bandwidth of the whole comb is much less than its central

frequency.

The total Hamiltonian now changes to two commuting parts: H
0

= ~!
P

(a†mam +

K
0

+ 1) and HI = H � H
0

, more explicitly,

HI = ~[(!a � ! � v)(1 + K
0

) + 2vK
+

K� +
p

2Mf(a†K� + aK
+

)], (3.69)

where a = M�1/2
P

m am. Because of the Bosonic commutation relations, one finds the

non vanishing commutation relation [a, a†] = 1. Because of the normalized factor M�1/2,

the previous coupling constant f scales as
p

Mf . The evolution operator U(t) = e�iHt/~
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can also be disentangled as U(t) = e�iH0t/~e�iH
I

t/~. Following the same procedures, we

once again have

P = 4M2f4TrF (⇢
0

a†2a2 ̂†
a†a
 ̂a†a). (3.70)

but with p̂±,0 now being the solutions of a new cubic equation

p3 � (4v + 3w)p2 � 2[Mf2(2aa† � 1) � (v + w)(2v + w)]p + 4M(v + w)f2aa† = 0. (3.71)

Though from direct calculation, one finds [
P

m a†mam, a†a] = 0, a Fock state |2ki of

k-th frequency mode is an eigenstate of
P

m a†mam but not an eigenstate of a†a. This kind

of facts reveals the importance of the di↵usion during the interaction process.

For M discrete frequency modes, one can choose the discrete Fourier series as basis:

Fn = M�1/2(· · · , e2i⇡nm/M , · · · )T . The completeness relation for the mode distribution

reads

I =
X
n

FnF
H
n . (3.72)

Let â be a column vector with (â)m = am and Am = FH
mâ or the inverse transformation

an = M�1/2
P

m e�2i⇡nm/MAm, then a = M�1/2
P

m am = FH
0

â = A
0

. One can also have

the non vanishing commutation relation:

[Am, A†
n] = [FH

mâ, (FH
n â)†] = M�1

X
jk

e2i⇡(nj�mk)/M [ak, a
†
j ] = �mn. (3.73)

These relations combined with Eq.(3.72) imply the invariability of the total photon number

operator under mode transformations:

N̂tot =
X
m

a†mam =
X
m

A†
mAm. (3.74)

We will use the notation |·,Fni to represent whatever state of the Fn mode. Notice

that, for any states | ,F?
0

i which do not contain any photons in the F
0

mode, one has

a†a| ,F?
0

i = A†
0

A
0

| ,F?
0

i = 0. Subsequently, the transition probability is simplified to

P = 4M2f4Tr(⇢
0,F0a

†2a2 ̂†
a†a
 ̂a†a). (3.75)

The reduced density matrix ⇢
0,F0 is traced over all the modes which are perpendicular to

the mode F
0

. At the first sight, for any states with given photon spectra (· · · , Tr(a†mam⇢0), · · · ),
because of the partial trace operation, it seems that the entanglement or even correlations

between modes are irrelevant to the enhancement of the co-excitation. However, this con-

jecture may not true, at least, is not obviously true. The formula for transition probability

can be re-expressed as

P = 4M2f4

X
n�2

(n2 � n)| n|2hn,F
0

|⇢
0,F0 |n,F

0

i, (3.76)

from which we know that if there is no possibility to have more than one photon in the F
0

mode even though there may exist a very large number of photons in the total state, the

phenomenon of the co-excitation of the both atoms will not happen. Note that, the scale

factor n2 � n is di↵erent for di↵erent Fock states |n � 2,F
0

i, not for those Fock states

|n,!mi of a specific frequency mode !m. The value of the transition probability is highly

related to the mean photon number of the mode F
0

and the all order correlation functions
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g(n)F0
. This is a good hint of the elements to prepare a photon state that manipulates the

excitation of the atoms: a proper mode and its corresponding photon statistics.

One may notice a factor M2f4 that is before the sum operation in Eq.(3.76). This M2

term will be removed by the explicit expressions of | n|2.

E Conclusion

In this chapter, we have presented in detail the model of two-photon–two-atom interac-

tion. By using perturbation theory, we have derived a general expression for the leading

transition probability depending on the quantum state which is used for the excitation. In

a special exactly solvable model, we obtained an exact solution to the evolution and found

the breakdown conditions to the perturbation theory with respect to long time and large

photon number therefore strong coupling between field and atoms. We then considered

the quasi-monochromatic or pulsed field case, in the same section and found that what

really matters is the photon statistics in a special mode in which the photons of di↵erent

frequency components are in phase, rather than the total photon number.
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T

wo-photon–two-atom excitation is a most fundamental process in quantum optics.

When there is no interaction between the two atoms, each atom can be excited

independently. However, the total transition probability is not a simple prod-

uct of two transition probabilities with respect to both atoms even the photon source is

monochromatic. This is because a photon can be firstly absorbed either by one atom or

by the other one, therefore, a which-way excitation is naturally embedded in the 2P2A

transition. Besides, the quantum interferences from photon pairs in the source should also

61
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be embedded. Though a two-atom system without an atomic interaction is a simplest

situation for 2P2A transition, it is able to show some complicated quantum interferences

from a photon source.

In this chapter, we focus our attention on a simplest situation: a two-atom system

without any atomic interactions and the mean frequencies of the photons and the proper

frequencies corresponding to the atomic Bohr energy being far apart from each other. Un-

der this condition, the which-way interferences are not important, so the 2P2A excitation

is determined by the properties of photons. At a first step, we will consider a model that

without atomic decoherence which means if an atom is excited, it can stay in that state

forever and the physical origins of an enhancement of transition probability. This work

is published [Zheng2013]. Then we will try to find which kind of photon source are

optimized to the maxima transition probability with a given photon spectra. In the third

part, we will discuss the best time for observation of the transition probability in the case

of small decay rates of the excited atoms.
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A Do entangled photons induce 2P2A transitions more ef-

ficiently than other states of light ?

Quantum entanglement and its inherent non local properties are among the most fasci-

nating and challenging features of the quantum world. In addition, entanglement plays a

central role in quantum information [Plenio2007, Gerardo2007, Reid2009, Horodecki2009,

Pan2012]. Since its first description in the 1930’s [Schrödinger1935], and in spite of

the decisive contribution of J. Bell [Bell1964] and the subsequent experimental studies

[Aspect1982], entanglement appears as a rather mysterious and puzzling property even

for bipartite systems. In particular distinguishing between e↵ects related to genuine en-

tanglement and those related to the quantum correlations measured on a single quantum

observable is a di�cult task [Treps2005], as can be seen for example by the great num-

ber of papers about quantum discord [Ollivier2001, Modi2012]. Some time ago, a paper

was published [Muthukrishnan2004] which showed that some entangled states are able to

induce transitions in quantum systems that factorized states cannot excite. The physical

problem studied in that paper is therefore a good test bench to examine in detail in a

simple situation the role of entanglement and of correlations not related to entanglement.

This is the purpose of the present subject.

The problem under consideration is the probability of two-photon two-atom (2P2A)

excitation, in the situation where the two atoms are of di↵erent species and have di↵erent

transition frequencies and the light to which the atoms are submitted is in general non-

resonant for each one, but resonant for the system of two atoms. Two photon absorption by

single atoms or molecules have been studied since 1931 [Göpert-Mayer1931] and remains

a current subject of theoretical and experimental research [Mollow1968, Bjorkholm1974,

Fei1997, Lloyd2008, Kastella2011]. When the atoms have more than one intermediate

state, many important features, including cross section cancellation and enhancement, are

observed [Bjorkholm1974]. These features have recently been shown to be applicable in

characterizing the two-photon quantum states [Kastella2011].

It has also been known for a long time that the two photons resonant excitation of two

di↵erent atoms is indeed possible when the two atoms are interacting [RiosLeite1980]. A

nearly monochromatic light beam will have a resonant two photon absorption peak when

tuned across the average frequency of the two atoms. Di↵erent experiments have since

then confirmed this theoretical prediction [White1981, Hettich2002, P-Penãfiel2012]. In

addition to a direct potential interaction between the atoms, like the dipole-dipole, coop-

erative 2P2A has also been predicted for pairs of atoms inside an optical cavity [Kim1998].

In this case the physical interaction is mediated by the radiation background surrounding

the atoms. Ref [Muthukrishnan2004] addresses the case of two photon absorption in ab-

sence of interaction between the two atoms, with the excitation made using some particular

entangled state of light. The conclusion of the authors of [Muthukrishnan2004] is that in

some situations entanglement can replace a real physical interaction, which is a far reach-

ing statement and an important physical property related to entanglement. Surprisingly,

this question did not attract much attention for several years. The same subject was also

considered, but in the context of spin entanglement in electron paramagnetic resonance

by Salikhov [Salikhov2003]. More recently [Richter2011, Dayan2007], the related problem

of interaction with pairs of broadband spectrum photons has been discussed.
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A Realistic Setup: Transition Configuration:

conditions of interest: 

D1

D2

~!�

~!�

!1 + !2 |e1e2i

|g1g2i

!�

!�

|e1g2i!1

|g1e2i !2

Figure 4.1: A sketch of the two-atom–two-photon interaction model. The two atoms here

are without atomic interactions between each other, and the Bohr frequencies of excited

states are !
1

, !
2

respectively. Both the two central frequencies of the two incident beams

!↵ and !� are far from resonances with single-atoms but their sum is almost equal to the

sum of the two Bohr frequencies (� = !↵ + !� � !
1

� !
2

' 0). For sake of simplicity, we

will take � = |!
1

�!↵|(' |!
2

�!� |) as the minimum single-photon–single-atom detuning.

In this section, we consider in more detail the problem of two-atom excitation in order

to determine the exact role of entanglement in the process. More precisely, we determine

the probability of 2P2A excitation by di↵erent multi-modal states of light. From these

results we draw conclusions on the respective role of entanglement and of correlations not

related to entanglement in such a process. Sec. A.1 gives the general framework in which

the problem is treated and the expression of relevant transition probability from a second

order perturbation theory . Results for various di↵erent two photon states, introduced in

Sec. A.2, are given in sections from A.3 to A.6. Finally, in Sec. A we discuss di↵erent

hypotheses for the physical origin of the enhancement of the 2P2A process.

A.1 Model

We consider here the model used in Chap. 3 that two di↵erent two-level atoms labeled

(1) and (2), having ground and excited states |gii and |eii (i = 1, 2), corresponding Bohr

frequencies !i, and spontaneous emission rates �i , interacting with a quantized field. We

assume that the mean atomic excitation time is much shorter than the lifetimes of the two

excited atoms so that we can consider that the two excited states have infinite lifetimes

(�
1,2 ' 0 ) and keep for ever their excitation. For the sake of simplicity we will assume that

the light source is far from the atoms, so that the only non-empty modes are plane-wave

modes having a single propagation direction Oz and a single polarization. Thus one can

use annihilation operators depending only on the frequency a(!`) = a`. For simplicity,

we will set the locations of atoms z
1

= z
2

= 0 and hence will not consider propagation

e↵ects. In this case, we may approximate the coupling strength defined in Chapter 3 as
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fi(!`) ' fi(!i).

The evolution of the whole system is described by a unitary operator U , and the input

light ⇢
0

can be either a pure two-photon state | µi =
P

kq cµkq|1k, 1qi or a mixed state in

its spectral decomposition form ⇢
0

=
P

µ pµ| µih µ|. The probability of 2P2A excitation

is given in this case by

P (t) =
X
µ

pµh µ, g
1

, g
2

|U †(t)|0, e
1

, e
2

ih0, e
1

, e
2

|U(t)| µ, g
1

, g
2

i. (4.1)

Due to the weak coupling between the light field and the two atoms, the leading term in

the evolution is determined by

P (t) '
X
jkmn

K⇤
jkKmnTr(a†ja

†
kaman⇢0). (4.2)

according to the results in Chapter 3. The explicit expression of the response function

without atomic decoherence, which has been derived in Eq. (3.37), reads

Kmn = f
1

(!m)f
2

(!n)
1 � ei(!1�!m

)t

!m � !
1

1 � ei(!2�!n

)t

!n � !
2

. (4.3)

Note that !m = !
1

and !n = !
2

are not singular points of the function Kmn. In fact,

when the two variables take their magnitudes that are equal to the atomic frequencies

respectively, the response function Kmn gives rise to a simple result

Kmn|!m

=!1
!
n

=!2
= �f

1

(!
1

)f
2

(!
2

)t2, (4.4)

which shows the t2 dependence. Such a dependence is common by using perturbation

method in dealing with short-time behaviors of an interacting system. In the case of a

continuous frequency distribution of photons in a pure two-photon state | µi, it is also

convenient to introduce the transition probability amplitude:

Aµ =
L2

4⇡2c2

ZZ
d!md!nKmn(cµmn + cµnm). (4.5)

From this equation, we see there are two terms in the bracket. The sum which implies a

quantum interference between two paths to excite the atoms, is invariant by exchanging

their subscripts of the two terms.

Note that the coe�cient Kmn is the product of two factors which represent the re-

sponse of each atom to the field. When time t goes to infinity these two factors behave

roughly like two independent Dirac delta functions centered on the atom resonances (we

will detail this argument in Sec. A.6). The 2P2A excitation probability is indeed induced

by the individual wings of the incident light spectrum which are resonant with the atoms.

Consequently, if one photon is absorbed by one atom, there is no reason why the second

photon should be absorbed by the second atom in a way correlated to the absorption of

the first photon. In other words, the 2P2A excitation phenomenon has no reason a priori

to have a resonant behavior when the 2P2A resonance condition !
1

+ !
2

= !m + !n is

fulfilled.

However, as the process is non-linear and involves two atoms, it can be enhanced by

taking advantage of correlation e↵ects between the atoms or between the photons :



66 Chapter 4. Two-photon–two-atom transition without atomic interaction

• A first possibility consists in introducing an interaction between the two atoms. Let

!u ' !
1

+!
2

be the maximal Bohr frequency of the two-atom system. If one photon

with frequency !k is absorbed, then the two atoms will be more likely to absorb an-

other photon with frequency !u�!k in a resonant two-photon process [RiosLeite1980,

Andrews1983]. This was experimentally demonstrated in [White1981, Hettich2002,

P-Penãfiel2012] using nearly degenerate photon pairs.

• A second possibility is to use correlated photons to interact with the two atoms. Let

us consider a source that emits correlated photons. If a photon is absorbed by one

atom, then the remaining atom will interact with its correlated photon with a higher

probability, leading to enhanced 2P2A resonance (we will detail this argument and

the kind of correlation needed in Sec. A).

We will now discuss the ideas by having a closer look at di↵erent possible light states

likely to induce such a 2P2A transition.

A.2 Entangled, correlated-separable and factorized two-photon states

Before we go further, let us discuss the di↵erent kinds of two-photon states that we will

consider in the following. Starting from entangled pure quantum state | i, having a density

matrix ⇢
0

= | ih | of matrix elements ⇢
0;kk0qq0 = h1k, 1q|⇢0|1k0 , 1q0i, one can construct

others that have the same mean energy and the same single photon spectrum, and hence

that would give the same transition probabilities for a single photon resonance. We choose

two special cases that will allow a quantitative evaluation of the role of correlations :

• The first one is defined as

⇢
1

=
X
k,q

⇢
1

(!k,!q)|1k, 1qih1k, 1q|, ⇢
1

(!k,!q) = ⇢
0;kkqq. (4.6)

It is the diagonal part of ⇢
0

. It has lost any temporal field coherence and is time

independent. It is actually a correlated-separable state [Duan2000], which results

from the ”disentanglement”of the previous one. It gives rise, however, to correlations

between its two parties.

• The second one is defined as

⇢
2

=

0@X
k,q0

⇢
1

(!k,!q0)|1kih1k|

1AO0@X
k0,q

⇢
1

(!k0 ,!q)|1qih1q|

1A . (4.7)

This is a fully factorized state, which does not give rise to any correlation whatsoever.

The diagonal element at |1k, 1qih1k, 1q| is ⇢
2

(!k,!q) =
P

m,n ⇢1(!k,!m)⇢
1

(!n,!q).

These states will induce 2P2A excitation with respective probabilities P
1

(t) and P
2

(t).

The two diagonal density matrices (⇢
1

, ⇢
2

) describe two cw fields while the entangled

pure state ⇢
0

describes a pulse. As a result, at a time t, the flow of energy having interacted

with atoms in each state is di↵erent. However, as shown in Appendix B, this quantity is

quite the same in each state when t = L/c. For comparison, we will take t = L/c through

the whole section.
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We are of course interested in cases where an increase in the excitation probability is ex-

pected. When this happens with P (L/c) � P
2

(L/c) and P (L/c) � P
1

(L/c), then entan-

glement is indeed the key to e�cient 2P2A transition, whereas if P (L/c) ' P
1

(L/c) � P
2

(L/c),

correlations, of quantum or classical origin, are more important than entanglement in the

present problem.

A.3 2P2A induced by di↵erent two-photon quantum field states

We will now examine the e�ciency of various multimode light states for the simultaneous

excitation of the two atoms.

A.3.1 Two quasi-monochromatic uncorrelated photons

Let us begin by the simplest case : two uncorrelated photon wavepackets of mean frequen-

cies !↵ (much closer to !
1

) and !� , and respective spectral widths �↵ and �� much bigger

than the detecting atom spectral widths �
1

and �
2

, emitted by two uncorrelated atoms

excited at the same time in the past and arriving at the detecting atoms position at t = 0,

described therefore by the two-photon state | 11i with

| 11i =
X
k

g↵(!k)

!k � !↵ + i�↵
|1ki ⌦

X
q

g�(!q)

!q � !� + i��
|1qi. (4.8)

It is the tensor product of two single-photon wave packets [GAFIQO] of duration ��1

↵

and ��1

� . In the calculation of the probability amplitude in Eq.(4.5), we will replace the

sum over modes in Eq.(4.8) by the double integral (L2/4⇡2c2)
RR1

0

d!kd!q, extend each

integration domain to the whole real axis and use the residue theorem [ScullyQO]. When

�↵t � 1 and ��t � 1 while keeping �
1

t ⌧ 1 and �
2

t ⌧ 1, the transition probability

amplitude is

A11 ' L2f
1

(!
1

)f
2

(!
2

)g↵(!
1

)g�(!2

)

c2(!
1

� !↵ + i�↵)(!
2

� !� + i��)
. (4.9)

The coe�cients gµ(!`) can be taken as constant and the normalization of the two-photon

state imposes

g↵g� =
2c

p
�↵��
L

, (4.10)

so that the transition probability P 11 is

P 11 =
P
0

�↵��
[(!

1

� !↵)2 + �2↵][(!
2

� !�)2 + �2� ]
, (4.11)

where P
0

= d2
1

d2
2

!
1

!
2

/~2"2
0

c2S2 = 36⇡2�
1

�
2

c4/!2

1

!2

2

S2, in which we have used the ex-

pression for the spontaneous emission rate �i = 2�i, �i = d2i!
3

i /(3⇡✏
0

~c3) [GAFIQO,

ScullyQO].

A.3.2 Double resonance

According to (4.11), the best transition probability will be achieved when the photons

are separately resonant with the two atoms !↵ = !
1

and !� = !
2

, namely, the double-

resonance (DR) condition, under which the transition probability is then equal to

P 11

DR =
P
0

�↵��
, (4.12)
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which can be written in a more general way

P 11

DR =
P
0

Sfr
, (4.13)

where Sfr is the e↵ective area of frequency distribution |ckq|2 in the (!k,!q) plane (see

Fig. 6.2). This result turns out to be general and implies that all pure states having the

same e↵ective areas Sfr, entangled or not, will produce the same doubly resonant transi-

tion probability. Thus we regard (4.12) as a universal result under the double resonance

condition, and its value will serve as a reference for all subsequent transition probabilities.

A.3.3 Two-photon two-atom resonance

When none of the two photons are resonant with the two atoms, but where the sum of

their two energies almost matches the sum of the two atomic energies !↵ + !� ' !
1

+ !
2

,

the transition probability (4.11) has in this case no resonant variation as a function of the

2P2A detuning

� = !↵ + !� � !
1

� !
2

. (4.14)

When � = 0 the transition probability is :

P 11

2P2A =
P
0

�↵��
�4

= P 11

DR

�2↵�
2

�

�4

, (4.15)

where � is the smallest frequency mismatch between the emitting atom frequencies, and

the detecting atom frequencies are supposed to be much larger than the atomic widths.

Without loss of generality, we have taken � = |!↵ � !
1

| = |!
2

� !� |.
We then conclude that the special case of 2P2A excitation probability by uncorrelated

photons is also non zero for any couple of frequencies !↵,!� ; thus such a two-photon

transition turns out not to be disallowed but simply induced by the wings of the two

single photon frequency resonances. It is therefore very weak, as witnessed by the ��4

variation of probability.

A.3.4 Two photons produced by an atomic cascade

Let us now envision the case considered in [Muthukrishnan2004] of a two-photon light state

produced by a three-level atom excited at a given time in the upper state that cascades

down to the ground state on two successive transitions of Bohr frequencies successively

equal to !↵ and !� . The corresponding spontaneous emission rates are �↵ and �� . We

assume that the emitted light is wholly directed in the Oz direction of atoms (1) and

(2) (by means of a parabolic mirror for example) and can only arrive after t = 0. It

is described by a two-photon wave-packet with a coe�cient ccaskq equal, at a time t long

compared to the lifetimes of the two transitions, to [Muthukrishnan2004, ScullyQO]:

ccaskq =
g↵(!k)g�(!q)

[!k + !q � !↵ � !� + i�↵][!q � !� + i�� ]
. (4.16)

Here this entangled non stationary state is produced by a cascade, so that the photon

of frequency !q always arrives just after the photon of frequency !k. In addition, the

probability to have photons of frequency sum !k + !q close to !↵ + !� is high. We
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have therefore an entangled state which is not only correlated in time but also anti-

correlated in frequency. It is the time-energy analog of the position-momentum entangled

state introduced by EPR, or of the field quadrature entangled state [ScullyQO, Reid2009,

Khan2006].

Using the residue theorem to integrate over the frequencies !k and !q, the transition

probability amplitude reads exactly as follows

Acas =
L2

c2
g↵(!

1

)g�(!2

)f
1

(!
1

)f
2

(!
2

)

!�2 � � � i(�� � �↵)

"
1 � e�(�

�

+i!
�2)t

!�2 � i��
� 1 � e�(�

↵

+i�)t

� � i�↵

#
+ (1 $ 2).

(4.17)

When ��1

1,2 � t � ��1

↵,� , the four decaying terms in Eq. (4.17) are negligible, leading to a

compact expression

Acas = �L2

c2
f
1

(!
1

)f
2

(!
2

)

� � i�↵


g↵(!

1

)g�(!2

)

!�2 � i��
+

g↵(!
2

)g�(!1

)

!�1 � i��

�
, (4.18)

where !µ⌫ = !µ � !⌫ is the frequency di↵erence between frequency !µ and frequency

!⌫ ; µ = ↵,�, k, q; ⌫ = 1, 2.

A.3.5 Double resonance

Starting from (4.18) and keeping only the largest term, one obtains in this case for the

probability amplitude,

Acas
DR ' L2f

1

(!
1

)f
2

(!
2

)g↵(!
1

)g�(!2

)

c2�↵��
. (4.19)

Using the same assumption as in the previous calculation, one finds for the probability

P cas
DR =

P
0

�↵��
= P 11

DR. (4.20)

It is time independent because we are considering times much longer than the two-photon

pulse of duration ��1

↵ + ��1

� . As it is equal to the probability obtained with uncorrelated

photons, we conclude that entanglement does not help in the fully resonant case, but does

not harm either.

A.3.6 Two-photon two-atom resonance

Let us now turn to the 2P2A resonance case. One obtains in this case for the probability :

P cas
2P2A ' L2

4c2
P
0

�2 + �2↵


g↵(!

1

)g�(!2

)

!
2

� !�
+

g↵(!
2

)g�(!1

)

!
1

� !�

�
2

. (4.21)

This expression, already obtained in [ScullyQO], shows that for this state the proba-

bility has indeed a resonant character around the 2P2A resonance � = 0. The transition

probability P cas
2P2A at the exact 2P2A resonance is then

P cas
2P2A ' P

0

�↵��

�2�
�2

= P 11

DR

�2�
�2

. (4.22)

One therefore finds that the transition probability is in the present case smaller than

P 11

DR by a factor (��/�)2 at exact 2P2A resonance, as expected because one is now less
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resonant than in the double-resonance case. One finds more importantly that P casc
2P2A is

larger than P 11

2P2A, i.e. than in the two-uncorrelated-photon case, by a factor (�/�↵)2,

which can be very large. This enhancement of the 2P2A transition probability is the

main result of [Muthukrishnan2004]. Entanglement may indeed significantly enhance the

two-photon–two-atom process. To the best of our knowledge no experiment has been

undertaken to show such a striking e↵ect.

It must be emphasized that the present considerations do not imply that the atom

cascade entangled state is the only one likely to produce such a significant increase in the

transition probability. This is the reason why we will now consider other light quantum

states which may also be of interest in the present problem.

A.4 Correlated and factorized states analogous to the atomic cascade

Let us now consider the two states that have the same energy and the same spectrum that

we have introduced in Sec. A.2 , namely, the correlated-separable state,

⇢
1

=

✓
2c

L

◆
2X

kq

��
(!2

q� + �2�)

�↵
[(!q� + !k↵)2 + �2↵]

|1k, 1qih1k, 1q|, (4.23)

and the factorized state,

⇢
2

=

✓
2c

L

◆
2

 X
k

�↵ + ��
!2

k↵ + (�↵ + ��)2
|1kih1k|

!
⌦
 X

q

��
!2

q� + �2�
|1qih1q|

!
. (4.24)

The first one corresponds to an atomic cascade for which the starting time is random,

thereby averaging to zero all the o↵-diagonal time-dependent terms in the density matrix;

the second one characterizes a mixed state with two uncorrelated photons having the same

spectrum as the initial cascade state. They give rise to the following transition probabilities

P
1

' P
0

�↵��
�2 + �2↵

✓
1

(!
1

� !�)2
+

1

(!
2

� !�)2

◆
t2

(L/c)2
, (4.25)

P
2

' P
0

��(�↵ + ��)

✓
1

(!
1

� !�)4
+

1

(!
2

� !�)4

◆
t2

(L/c)2
. (4.26)

At exact 2P2A resonance, we have P
1

' P 11

DR�
2

�c
2t2/(�2L2) and P

2

' P 11

DR�↵�
2

�(�↵ +

��)c2t2/(�4L2). At any time t, one finds P
1

� P
2

, since the spectral widths are much

smaller than single-photon detunings. This fact shows that correlations indeed play an

important role in the e�ciency of the excitation.

Note that P
1

and P
2

depend on time, as can be expected in a situation where the

detecting atoms, which have an infinite lifetime, are submitted to a stationary quantum

state, and therefore to cw light. In order to compare P
1

and P
2

to P cas
2P2A [Eq. (4.21)],

which is induced by a pulse of light, we need to fix an interaction time t. It is shown in

appendix B that the two atoms are submitted to the same energy flow at time t = L/c.

One then obtains at this time and at exact resonance

P
1

' P 11

DR

�2�
�2

' P cas
2P2A. (4.27)
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We thus find the result that a correlated-separable state like ⇢
1

can induce the 2P2A

transition as e�ciently as the entangled cascade state. This statement constitutes the

main result of the present section.

Let us stress that ⇢
1

, though not entangled, indeed has genuine quantum properties,

being a mixture of single-photon states which are highly nonclassical. It exhibits strong

correlations that we will study in more detail in Sec. A.6.

A.5 Two-photon state produced by parametric down conversion

The two-photon state | pdci produced by non-degenerate spontaneous parametric down-

conversion (SPDC), which has been under wide and in-depth investigation for many years

is another important photon source in quantum optics. Because of its �(2) nonlinearity,

a non-linear crystal submitted to a pulsed pump field of central frequency !↵ + !� and

narrow bandwidth �↵ emits a signal field (central frequency !↵) and an idler field (central

frequency !�). Let �� be the frequency width of the phase matching curve. For the

sake of computational simplicity we will use a Gaussian approximation for both the laser

lineshape and the phase matching curve. The crystal generates in such a case an entangled

state which is described by a wavepacket with a coe�cient cpdckq
1 [Wang2006] given by

cpdckq = N e
� (!

k↵

+!

q�

)2

2�2
↵

+i(!
k↵

+!
q�

)t0

0@e
�!

2
k↵

+!

2
q�

2�2
� + ie

�!

2
k�

+!

2
q↵

2�2
�

1A , (4.29)

where N is the normalized coe�cient, satisfying✓
L

2⇡c

◆
2

N 2

2⇡�↵�2�q
�2↵ + 2�2�

= 1.

In expression (4.29), we have assumed that the pump laser pulse had a Gaussian temporal

shape centered at time t
0

� ��1

↵ +��1

� to provide most of the photons a chance to interact

with the two detecting atoms. The factor i in the second term originates from a relative

phase (depending on the birefringence) which is set to be ⇡/2 for the sake of simplicity in

our case.

Here we will also extend the double integral to the whole plane and find, when t is

su�cient large[GradshteynTISP], the transition probability

P pdc = ⇡P
0

q
�2↵ + 2�2�

�↵�2�
e
� �

2

�

2
↵

0@e
�!

2
1↵+!

2
2�

2�2
� + e

�!

2
2↵+!

2
1�

2�2
�

1A2

. (4.30)

1In fact, when the coe�cient is given as

c

pdc

kq

/ e

�
(!k↵+!q�)2

2�2
↵

+i(!k↵+!q�)t0
e

�
!2
q�

2�2
�
, (4.28)

one will obtain similar results by following the same procedures. Because the expression of the coe�cients

of type II two-photon state in this chapter are complicated, it is not easy to find the analytical expressions

to write the state in Schmidt decomposition form. In Chapter 6, we will consider the SPDC state given in

this footnote rather than the one discussed in this section.
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The two mixed two-photon states (⇢pdc
1

, ⇢pdc
2

), defined in Sec. A.2 and pertaining to

the pure SPDC two-photon state (4.29), are

⇢pdc
1

= N 2

X
kq

e
� (!

k↵

+!

q�

)2

�

2
↵

0@e
�!

2
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2
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�

2
� + e

�!

2
k�

+!

2
q↵

�

2
�

1A |1k, 1qih1k, 1q|, (4.31)
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24X
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1A |1qih1q|

35 , (4.32)

where ⇣ = 1 + �2�/(�2↵ + �2�). The first one corresponds to an SPDC process in which

all the o↵-diagonal time-dependent terms in the density matrix are averaged to zero by

random processes, while the second one characterizes a mixed state with two uncorrelated

photons having the same spectrum than the initial SPDC state. When t is su�cient large,

their corresponding transition probabilities read

P pdc
1

= ⇡P
0

q
�2↵ + 2�2�

�↵�2�
e
� �

2

�

2
↵

0@e
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2
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, (4.33)

P pdc
2

= ⇡
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We will once again take t = L/c to be able to compare in a fair way the pulsed and cw

excitations through the rest of the following discussions.

A.5.1 Double resonance

Taking !↵ = !
1

,!� = !
2

and keeping the largest term, one finds the probability

P pdc
DR = P pdc

1,DR ' ⇡P
0

q
�2↵ + 2�2�

�↵�2�
, (4.35)

which once again implies that entanglement is not active in enhancing the transition

probability in the double resonance case.

One also finds P pdc
DR ' P 11

DR when �↵ = �↵,�� = �� . In the following we will take

this correspondences of spectral widths for comparisons. Henceforth, P pdc
DR or P 11

DR will be

regarded as a reference in the discussions related to SPDC two-photon states.

A.5.2 Two-photon two-atom resonance

The transition probability P pdc has indeed a resonant character around � = 0 according

to (4.30). At the exact 2P2A resonance, its value is assessed at

P pdc
2P2A ' P 11

DRe�2�

2/�2
� , (4.36)

which is much smaller than for the atom cascade state because the factor �2/�2� enters

now as an exponent in a Gaussian function and the detuning � is much greater than the

spectral widths.
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For the factorized, uncorrelated state ⇢pdc
2

, the transition probability in this case reads

P pdc
2,2P2A ' P 11

DR(1 + 2�2�/�
2

↵)�1/2e�2⇣�2/�2
� . e�2�

2/(�2
↵

+�2
�

)P pdc
2P2A. (4.37)

Thus P pdc
2P2A is much greater than the probability given by the factorized state because of

the scale factor e2�
2/(�2

↵

+�2
�

). So we obtain in the parametric down-conversion configura-

tion the same conclusion as the one drawn in [Muthukrishnan2004] for the atomic cascade

: the entangled state | pdci is much more e�cient for inducing a 2P2A resonance than

the factorized, uncorrelated state.

For the correlated-separable state ⇢pdc
1

, the transition probability reads

P pdc
1,2P2A ' P 11

DRe�2�

2/�2
� ' P pdc

2P2A, (4.38)

Thus, one has P pdc
1,2P2A � P pdc

2,2P2A. The same conclusion is found as in the cascade case

: the correlated-separable state is as e�cient as the entangled state to boost the 2P2A

resonance. The fact that P pdc
1,2P2A is much larger than P pdc

2,2P2A, and P pdc
1,2P2A ' P pdc

2P2A, once

again shows that correlations, which are not necessarily related to entanglement, indeed

play a crucial role in the e�ciency of the excitation.

A.6 Enhancement of 2P2A resonance for more general classes of light
states

We have so far studied interesting but specific states of light and showed an enhancement

e↵ect for some of them, entangled or correlated-separable. It would be interesting to

consider now more general classes of light states.

A.6.1 Light pulses starting at a given time

Let us go back to the initial equations (4.3) and (4.2). They contain functions such

as [1 � exp(i!
1mt)]/!

1m. When t ! 1, as explained in the Appendix A, even though

this function does not act as a Dirac function when it is applied to integrations with any

function, it indeed tends to 2i⇡�(!
1

�!m) if applied to functions of !m that have a Fourier

transform which is strictly zero for t < 0. Such will be the case here.

The initial two-photon light state | i is the pure state,

| i =
X
kq

ckq|1k, 1qi, (4.39)

that describes a ”switched-on” light which is not vacuum only after time t = 0. One can

then use the delta function approximation. The probability that the two atoms are found

in the excited state at long times compared to the pulse duration is now

P ' P
0

4

L2

c2
|c(!

1

,!
2

) + c(!
2

,!
1

)|2. (4.40)

Mathematically, if |c(!
1

,!
2

)| ⇠ |c(!
2

,!
1

)|, this interference, which has been studied in

the literature [Fei1997], may lead to strong variations according to the relative phase.

According to the Cauchy-Schwartz inequality, one has

0  P  2

✓
P
0

4

L2

c2
(|c(!

1

,!
2

)|2 + |c(!
2

,!
1

)|2)
◆

. (4.41)
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However, physically speaking, only one component between c(!
1

,!
2

) and c(!
2

,!
1

) dom-

inates in the expression (4.40). This is because we have assumed that the quantities

!
1

,!
2

,!↵,!� are su�ciently separated from each other but with a small 2P2A detuning

� ' 0; as a result, !
1

should be closer to one of the central frequencies of the fields than

to the other ones. Under this condition, one has

P ' P
0

4

L2

c2
(|c(!

1

,!
2

)|2 + |c(!
2

,!
1

)|2). (4.42)

The correlated and factorized states ⇢
1

, ⇢
2

analogous to the initial state | ih |, give rise

to the following 2P2A transition probabilities :

P
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=
P
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4
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, (4.43)
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The enhancement of the 2P2A transition probability is characterized by the quotient

Gp between P and P
1

at t = L/c,

Gp =
P

P
1

����
t=L/c

=
|c(!

1
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) + c(!
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,!
1

)|2
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)|2 . (4.45)

Thus, one finds 0  Gp  2. The maximum value of 2 is achieved when c(!
1

,!
2

) =

c(!
2

,!
1

).

One has Gp ' 1 under the physical conditions we stated before. That is, the entangled

and the correlated-separable state yield almost equal transition probabilities. This implies

that the conclusion that we had drawn in the special previous cases is valid for a large

class of two-photon states : correlated states are as e�cient as entangled states in 2P2A

co-excitation when they have delivered the same amount of energy to the two atoms.

Another important discriminability index is the ratio between the two transition rates

P
1

and P
2

:

G
12

=
|c(!

1

,!
2

)|2 + |c(!
2

,!
1

)|2P
mn (|c(!

1

,!n)c(!m,!
2

)|2 + |c(!
2

,!n)c(!m,!
1

)|2) . (4.46)

The value of the enhancement factor G
12

can be used as a witness for the correlation

needed in such a problem.

Note in addition that, while P is sensitive to possible destructive interference e↵ects

between c(!
1

,!
2

) and c(!
2

,!
1

), P
1

is not. Therefore, the enhancement e↵ect as indicated

by G, and due to correlations not related to entanglement, turns out to be more ”robust”

than the one related to it.

A.6.2 Coherent states

So far we have only considered two-photon states of di↵erent shapes, which are all strongly

non-classical objects, as they are produced by spontaneous emission or parametric fluores-

cence which are specifically quantum processes with no classical equivalent. But one can

also envision superpositions of two-mode coherent states of the form
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| cohi =
X
kq

ckq|z : !k,↵i ⌦ |z : !q,�i, (4.47)

or its corresponding dephased state (which is classically mixed coherent state),

⇢CMC =
X
kq

|ckq|2|z : !k,↵ih; z : !k,↵| ⌦ |z : !q,�ihz : !q,�|, (4.48)

where |z : !, µi is the coherent state |zi in the mode of frequency ! of µ subsystem, z

being the same complex number for all modes.

By using the approximation h↵|0i ⇡ 0 valid for |↵| � 1, one finds that the probability

of 2P2A excitation is given by:

Pcoh(t) = |z|4P (t), (4.49)

where P (t) is the probability (4.2) obtained for two-photon states. Apart from the energy

scaling factor |z|4, the conclusions of the previous paragraphs hold in the present case.

These states are interesting for experimental demonstration, for example, the classically

mixed coherent states can be produced by classical means. See further details in Appendix

C and Appendix D.

A.7 Conclusion

In the previous sections of this chapter, we have shown that the transition probability

by using specific entangled photon sources are approximately equal to the ones by using

their corresponding completely dephased states which do not have any entanglement. We

can now answer the question raised in the Introduction of this chapter about the role of

entanglement in the two-photon excitation process considered in this chapter. We have

shown that what is necessary for the enhancement of the transition probability is not

quantum entanglement. However, the real physical origins are not clear at this stage.

Candidates are correlations, temporal ones or frequency ones, or some other non-classical

properties that related to the states that have been discussed. These are main topics in

Chap. 6, in which we will find possible physical origin is not temporal correlation, but

rather frequency anticorrelation, which can be due to the presence of entanglement in the

state, but also to correlations that are not related to entanglement. This result brings

new light to the problem of assessing the exact role of quantum correlations and quantum

entanglement in physical processes.

As for any nonlinear process, such as two-photon absorption in a single atom [LoudonQTL],

2P2A transition probability can be modified by changing the quantum state of light, and

therefore the enhancement e↵ect that we have studied in this chapter is due to the partial

optimization of the quantum state. The absorption of two photons by the two atoms oc-

curs when each photon is resonant with the atomic transition of the atom that absorbs it.

This has a greater probability to happen in frequency-anticorrelated photon states than

in uncorrelated states.

We have not treated the important question of the full optimization of the quantum

state with respect to the 2P2A probability maximization, given some constant spectral

energy distributions. It will be addressed in the next section.
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B The optimization of the transition probability with a given

photon spectrum

In previous part of this chapter, we came to the conclusion that a state with entanglement

does not induce a two-photon–two-atom transition more e�ciently than its corresponding

correlated-separable state. In fact, the two states have the same transition probability

when both the photons are absorbed at the time L/c in asymptotical sense. For a general

pure two-photon state |IIi =
P

mn c(!m,!n)|1 : !m,↵; 1 : !n,�i, its photon spectrum

follows

S(!) =
X
m

[|c(!m,!)|2 + |(!,!m)|2], (4.50)

which is only determined by the diagonal elements of the corresponding density matrix.

This fact suggests that the photon spectrum of a pure two-photon state is the same as

the one of the corresponding diagonal density matrix. Furthermore, any convex linear

combination of the two density matrices sharing such spectrum should also yield the same

spectrum. In addition to these states, there should exist more photon states, pure or

mixed, having the same photon spectrum.

The following question then arises: among all these states, which state is likely to

attain the maximum (at least, in an asymptotical sense) transition probability, for a given

photon spectrum and energy content ?

The photon spectrum is obtained by performing photon number measurement of spe-

cific mode on a given state. Here, we only consider the frequency modes since we are

interested in the frequency-correlations. For a given two-photon state ⇢, its spectrum is

given by:

S(!) = Tr[â†(!)â(!)⇢]. (4.51)

For any two-photon state, the total number of photons should be equal to 2 which is

exactly the total photon number of the state,X
!

S(!) = 2. (4.52)

On the contrary, for any given shape of the spectrum, it is always possible to find some

density matrices according to the functional definition of a density matrix [PetzQITQS].

Thanks to it, we can discuss this optimization problem directly without the knowledge of

a possible state in advance.

Assuming that we are in the same physical situation as in Sec. A, we know that the

quantum interference from di↵erent excitation paths is not important. In other words, if

the states, pure or mixed, have a same diagonal distribution, their corresponding transition

probability are asymptotically equivalent. In view of this, we can restrict our discussion

to diagonal density matrices.

B.1 Optimization of a diagonal density matrix

The density matrix of a generic bipartite two-photon state can be written as

⇤ =
X
kq

pkq|1 : !k, 1 : !qih1 : !k, 1 : !q|,
X
kq

pkq = 1, 8k, q; pkq � 0. (4.53)
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For a given spectrum S(!), we denote all the diagonal density matrices that give rise to

the spectrum, by

⇤ =
X
kq

|ckq|2|1 : !k, 1 : !qih1 : !k, 1 : !q|,
X
kq

|ckq|2 = 1. (4.54)

Accordingly, the coe�cients yield

S(!) =
X
m

�
|c(!,!m)|2 + |c(!m,!)|2

�
. (4.55)

A first solution to this equation will be

|c(!m,!n)|2 = �mnS(!m)/2. (4.56)

In principle, if the coe�cients satisfy

|c(!m,!n)|2 = �mnS(!m)/2 + f(!m � !n), (4.57)

where f(x) is a bounded odd function,

f(!m � !n) = �f(!n � !m); S(!m) � 2|f(!m � !n)|, (4.58)

then one can verify that they are also a solution of the spectrum function S(!). From this

second example, we also conclude that there should be infinitely many solutions of Eq.

(4.55).

Now let’s revisit the transition probability with a two photon source that has an arrival

time or a two-photon state whose majority of photon pairs arrive at the two detecting

atoms after time t = 0. Asymptotically, the transition probability follows

P = P
0

(L/2c)2�P , �P = |c(!
1

,!
2

)|2 + |c(!
2

,!
1

)|2, (4.59)

at the time t = L/c which is su�ciently large. This transition probability is determined

by point-wise property of the diagonal elements (|c(!m,!n)|2; m, n 2 N) of a state at

frequencies (!m,!n) = (!
1

,!
2

) and (!
2

,!
1

).

Because of the positivity of the absolute value, according to Eq. (4.55), we come to

the following two inequalities:

S(!
1

) =
P

m

�
|c(!

1

,!m)|2 + |c(!m,!
1

)|2
�

� |c(!
1

,!
2

)|2 + |c(!
2

,!
1

)|2 = �P , (4.60a)

S(!
2

) =
P

m

�
|c(!

2

,!m)|2 + |c(!m,!
2

)|2
�

� |c(!
1

,!
2

)|2 + |c(!
2

,!
1

)|2 = �P . (4.60b)

The two inequalities set an upper bound to the parameter �P ,

�P  B�, B� ⌘ S(!
1

) + S(!
2

)

2
� |S(!

1

) � S(!
2

)|
2

. (4.61)

For sake of simplicity, let’s assume S(!
1

) � S(!
2

). The parameter �P saturates when

|c(!
1

,!
2

)|2 6= 0, |c(!
2

,!
1

)|2 6= 0; (4.62a)

|c(!
2

,!m)|2 = |c(!m,!
2

)|2 = 0,!m 6= !
2

. (4.62b)
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Then all the density matrices whose diagonal elements satisfy the Eqs. (4.55,4.62) can

attain the maximum transition probability at the value of

P = P
0

(L/2c)2S(!
2

). (4.63)

One possible state to give rise such a transition probability is a diagonal mixed-state which

reads

⇤ =
S(!

2

)

2
[|1 : !

1

, 1 : !
2

ih1 : !
1

, 1 : !
2

| + |1 : !
2

, 1 : !
1

ih1 : !
2

, 1 : !
1

|]

+
S(!

1

) � S(!
2

)

2
|1 : !

1

, 1 : !
1

ih1 : !
1

, 1 : !
1

|

+
X

!
m

6=!1,!2

S(!m)

2
|1 : !m, 1 : !mih1 : !m, 1 : !m|. (4.64)

B.2 An example

Now let’s apply our results to a concrete example: the same spectrum as the one of the

cascade two-photon state (1.32). It follows

Scas(!) =
2c

L

"
�↵ + ��

(! � !↵)2 + (�↵ + ��)2
+

��
(! � !�)2 + �2�

#
. (4.65)

This spectrum is a combination of two Lorentzian functions with central frequencies !↵,!� ,

and widths �↵ + �� , �� respectively. So at frequencies ! = !
1

,!
2

, we have

Scas(!1

) ' 2c

L


�↵ + ��

(!
1

� !↵)2
+

��
(!

1

� !�)2

�
, (4.66)

Scas(!2

) ' 2c

L


�↵ + ��

(!
1

� !�)2
+

��
(!

1

� !↵)2

�
. (4.67)

The di↵erence between the two terms is

Scas(!2

) � Scas(!1

) ' �↵
2c

L


1

(!
1

� !�)2
� 1

(!
1

� !↵)2

�
< 0. (4.68)

When �↵ is much smaller than �� , the di↵erence can be regarded as 0. The transition

probability saturates at the value of

Popt = P
0

L

2c


�↵ + ��

(!
1

� !�)2
+

��
(!

1

� !↵)2

�
. (4.69)

One possible density matrix is

⇤ =
S(!

2

)

2
|1 : !

1

, 1 : !
2

ih1 : !
1

, 1 : !
2

| +
S(!

2

)

2
|1 : !

2

, 1 : !
1

ih1 : !
2

, 1 : !
1

|

+
X

!
m

6=!1,!2

S(!m)

2
|1 : !m, 1 : !mih1 : !m, 1 : !m|. (4.70)

At perfect 2P2A resonance, the single photon detuning between atomic frequency !
1

and

optical central frequency !↵ is the smallest one, and � = |!
1

�!↵| ⌧ |!
1

�!� |, therefore

the optimized transition probability can be approximate as

Popt ' �↵L

2c
P 11

DR

�2�
�2

=
�↵L

2c
P cas
2P2A. (4.71)
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This problematic increase should be perhaps corrected by taking into consideration

the higher order perturbation results. The exact physical value of the optimal transition

probability is therefore a problem which remains to be solved.
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C A remark on the length of quantization box

In Sec. A, we have derived formulae of the 2P2A transition probability with a generic

class of two-photon states. From these formulae, we know the dominant elements to give a

net 2P2A transition probability are those around |c(!
1

,!
2

)|2|1 : !
1

, 1 : !
2

ih1 : !
1

, 1 : !
2

|,
|c(!

2

,!
1

)|2|1 : !
2

, 1 : !
1

ih1 : !
2

, 1 : !
1

|. What’s more, the two elements are the components

which are on perfect resonance with the two atoms. The perfect resonance gives rise to

a contribution of probability that has a t4 dependence, and at time L/c, it will cause

some problems in some situation, such as the optimized states we considered in Sec. B.

Therefore, we should take into account the higher order terms in the perturbation series

for the two components that are on prefect resonance.

For sake of simplicity, we only consider the element |c(!m,!n)|2|1 : !m, 1 : !nih1 :

!m, 1 : !n|. It is a two-monochromatic-mode state. The transition probability is domi-

nated by a product of transition probabilities that represent the perfect resonances of both

atoms. In this sense, we can only consider the transition probability of a two-level atom

interacting with a monochromatic field.

C.1 Single-atom–single-photon transition probability

Here we only consider the transition probability of atom 1 by shining a monochromatic

light of single-photon state |1 : !mi. According to [PuriMMQO], the evolution operator

on light part is

he
1

|ÛI(t)|g1i = �2if
1

sin[t
q

(!m � !
1

)2 + 4f2

1

âmâ†m/2]q
(!m � !

1

)2 + 4f2

1

âmâ†m
âm. (4.72)

The transition probability amplitude is

A = h0|he
1

|ÛI(t)|g1i|1 : !mi = �2if
1

sin[t
p

(!m � !
1

)2/4 + f2

1

]p
(!m � !

1

)2 + 4f2

1

, (4.73)

which is sinusoidal function with its period 4⇡/
p

4f2

1

+ (!m � !
1

)2. This result shows the

quantum Rabi oscillation in which f
1

is named as single photon Rabi frequency[GAFIQO].

Accordingly, the transition probability is

P
1

(!m) =
4f2

1

(!m � !
1

)2 + 4f2

1

sin2[t
q

(!m � !
1

)2/4 + f2

1

]. (4.74)

The single-photon–single-atom transition probability of atom 2 and photon state |1 : !ni
has the same expression by changing !m and subscript 1 to !n and subscript 2. Therefore

the corresponding 2P2A transition probability is

P '
X
mn

|c(!m,!n)|2[P
1

(!m)P
2

(!n) + P
1

(!n)P
2

(!m)]. (4.75)

where we have neglected the cross terms which are not important in our model introduced

in Sec. A. Only when 2⇡c/L � 2f
1

, one can use the following approximation at a long

time t2,

Pj(!m) ' f2

j t2sinc2[t(!m � !j)/2] ' 2⇡f2

j t�(!m � !j). (4.76)

2In fact, time t is much smaller than f

�1
1 . The approximation can be derived in more rigorous way by

using the techniques from asymptote analysis.
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By some direct calculations, once again, we derived the same expression in Eq.(4.43)

which was previously obtained from second order perturbation theory. We then conclude:

the expression of the 2P2A transition probability in Eq. (4.43) is correct only when

L ⌧ ⇡cf�1

1

.

If f
1

is expressed in terms of the spontaneous emission rate � which is introduced in

Sec. A, then the inequality can also be written as

L ⌧⇡2

3
c��1 ' ⇡c��1. (4.77)

Since ��1 is regarded as the typical lifetime of both excited detecting atoms and the value

of � is small, the detecting atoms can stay in the excited state for very long time. The

inequality claims that during the whole time interval, 0  t  L/c, if atom 1 is excited,

its decay is extremely small and can be neglected. This condition is a necessity to our

assumption on infinite life of excited detecting atoms in Sec. A.

Now the optimized transition probability of the spectra given by Eq. (4.66) and Eq.

(4.67) satisfying

Popt ⌧ ⇡

2

�↵
�

P cas
2P2A. (4.78)

If �↵ are several thousands times larger than �, one takes c/L as hundreds times larger

than �, then the optimized transition probability can be several tens times larger than the

previous one P cas
2P2A.

At first sight, one may say that the magnitude of the term on the right side of inequality

(4.78), can also exceed the value of 1 by decreasing �. However, P
0

, therefore P cas
2P2A, is

proportional to �2, to decrease the decay constant � is to weaken the interaction strengths

between atoms and light, hence is to give rise to a smaller transition probability.
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D 2P2A transition with long-lived detecting atoms

In the previous sections, the two-photon–two-atom transition with di↵erent kinds of pho-

tons are discussed when both detecting atoms are of infinite lifetimes. We find that after

sending a same amount energy of photon state of frequency-entangled kind or its cor-

responding separable-correlated kind, the transition probabilities for comparison at time

L/c are the same.

For any real detecting atoms, their lifetime, though, can be su�ciently long, are still

finite. It imposes an inequality to the length of quantization box along z direction for our

detecting atoms in last section. However, in principle, the length of a quantization box

can be su�ciently large at will, and an astronomical size of the box indeed breaks down

our assumption on the infinite lifetime of the excited detecting atoms. In this case, one

should consider the influences from atomic decays.

Owing to the atomic decays, a portion of the population in the excited state may

transfer back to the ground state. Such de-excitations are more evident for the pulsed

light sources in contrast to the cw sources. So when is the best time to observe the

excitations for di↵erent light sources if the atoms are excited is a question we should

answer.

For sake of simplicity, in this section, we will take the decay constants of both excited

detecting atoms as a same �. The magnitude of � is small in comparison with the width

of frequency bands of photon sources. We will also restrict ourselves in discussing the

transition probability with photon sources which are related to the cascade two-photon

state, rather than taking consideration of some generic states.

As introduced in Chap. 3 Sec. B, the response from the two detecting atoms is given

by

Kmn = f
1

f
2

[ei(!1�!n

)t � e��t][ei(!2�!m

)t � e��t]
(!n � !

1

+ i�)(!m � !
2

+ i�)
, (4.79)

when two photons at frequencies !m,!n are injected. This is a product of two single-

photon–single-atom responses, from which we know that atom 1 (2) destroys a photon at

frequency !m (!n). As we can see from Eq. (4.79), the kernel Kmn varies slowly around

!m = !
1

and !n = !
2

. So if the photon source has a slowly varying distribution, then the

transition probability is determined by its components of the photon distribution around

!m = !
1

and !n = !
2

, in the view of asymptotic analyses.

Consider the cascade two-photon source introduced in Chap. 1, its coe�cients cmn are

of the following form,

ccasmn =
2c

L

p
�↵��

[!m + !n � !↵ � !� + i�↵][!n � !� + i�� ]
. (4.80)

It takes a time as long as ��1

↵ to generate two photons from a cascade three-level source

atom, and the population in the co-excited state |ei = |e
1

e
2

i decays at a rate 2�. If

�↵ < 2�, then there won’t be any noticeable population accumulation in the state |ei after

both photons arrived at the detecting atoms. So we assume �↵ � 2�.

By applying the residue integral theorem, we obtain

P cas
pure ' 4

L2

c2
�↵��

✓
f
1

f
2

!↵ � !
2

+
f
1

f
2

!↵ � !
1

◆
2 e�2�

↵

t + e�4�t � 2e�(�
↵

+2�)t cos(�t)

�2 + (2� � �↵)2
. (4.81)
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It shows a resonance of 2P2A transition at � = 0, and the width �↵ � 2� of peak is

modified by atomic decays. Though there exists frequency anti-correlations in the light

source promising an enhancement of the 2P2A transition, because of the atomic decays,

the population in the excited state vanishes gradually.

Figure 4.2: The plotting of the transition probability of two-photon–two-atom detuning

� and time t. Quantities here are reexpressed by taking the coherence length �↵ of the

two-photon state as unit. In this plotting, we set 2�/�↵ = 0.1.

When the 2P2A detuning � = 0, the transition probability is proportional to following

function

p(t) ⌘
✓

e��↵t � e�2�t

2� � �↵

◆
2

. (4.82)

It attains its maximum of

pmax =

✓
2�

�↵

◆ 4�
�

↵

�2�

��2

↵ , at t =
ln �↵ � ln 2�

�↵ � 2�
. (4.83)

The expression of pmax can be re-expressed as

pmax = ��2

↵

h
(1 + x)

1
x

i�2

, x =
�↵ � 2�

2�
. (4.84)

The maximum pmax is a monotonic decreasing function of the parameter �. This is

because with smaller �, the detecting atoms have longer time to accumulate the excitation

population, so larger transition probability. It is of course reasonable if the detecting
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atoms have no decays, then all the population transferred to the excited state can stay

there forever.

If �↵ � �, then the maximum of

pmax =

✓
2�

�↵

◆ 4�
�

↵

�2�

��2

↵ ! ��2

↵ , (4.85)

can be attained at a very long time

t ' ln(�↵/2�)

�↵
. (4.86)

At this time, the transition probability yields

P cas
pure ' 4

L2

c2
��1

↵ ��

✓
f
1

f
2

!↵ � !
2

+
f
1

f
2

!↵ � !
1

◆
2

. (4.87)

This is a result we have known from Sec. A. When �↵ = 2�, the function p(t) degrades

to (te��↵t)2 which attains a maximum of (e�↵)�2 where e ' 2.71828 at t = 1/�↵. This

result is incorporated in the previous one since

lim
2�!�

↵

ln �↵ � ln 2�

�↵ � 2�
=

1

�↵
, (4.88)

lim
2�!�

↵

✓
2�

�↵

◆ 2�
�

↵

�2�

=

"
lim

2�!�
↵

✓
1 +

�↵ � 2�

2�

◆ 2�
�

↵

�2�

#�1

= e�1. (4.89)

This is the worst case for 2P2A transition for any �  �↵/2. The results are in good agree-

ment with our intuition because after passing a time ��1

↵ , the two photons are absorbed

by the detecting atoms, then we see the pure decays leading to atomic de-excitations.

For the pure two-photon state, the best time for observation of 2P2A transition is at

t =
ln �↵ � ln 2�

�↵ � 2�
. (4.90)

Since at time t = L/c, the photons are completely absorbed by the atoms, we can set

L = c
ln �↵ � ln 2�

�↵ � 2�
. (4.91)

However, for the correlated-separable photon state, all the transition probability are

accumulated separately from each local state, and the energy supply at any time is the

same. It suggests: if the total atomic decay rate is less than the energy flux, then the

transition probability should be monotonic increasing with time.

By applying the residue theorem to the mixed cascade two-photon source,

|ccasmn|2 =
4c2

L2

�↵��
[(!m + !n � !↵ � !�)2 + �2↵][(!n � !�)2 + �2� ]

,

we then have the transition probability
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. (4.92)
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Figure 4.3: The plotting of the transition probability of two-photon–two-atom detuning

� and time t. Quantities here are reexpressed by taking the coherence length �↵ of the

two-photon state as unit. In this plotting, we set �/�↵ = 0.01.

The time and the 2P2A dependence of the transition probability, see Figure 4.3.

There are some decaying terms which are originated in the imperfect correlations of

the photon source (non vanishing value of the parameter �↵) in the Eq. (4.92). These

terms vanishes in a duration of ��1

↵ . We are more interested in the case �↵ � �. Under

this condition, at a time much longer than ��1

↵ , the remaining long-lived terms dominate

in the transition probability
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(4.93)

Though there are three Lorentzian peaks around � = 0, in view of � ⌧ �↵, the modification

of width in a graphic representation is not noticeable. By taking �↵ ± 2� as �↵, the long-

lived transition probability can be simplified as

P ' �↵��
�2 + �2↵

✓
f
1

f
2

!↵ � !
2

+
f
1

f
2

!↵ � !
1

◆
2

✓
1 � e�2�t

�

◆
2

. (4.94)

This is a monotonic increasing function of time t and the transition probability attains its

maximum at time t = L/c,

Pmax /
 

1 � e�2�L/c

�

!
2

. (4.95)

And it is a monotonic decreasing function of �. When �L/c is much greater than 1, we

have

Pmax / 1

�2
. (4.96)
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Figure 4.4: The relationship between the 2P2A transition probability and time t. Quan-

tities here are reexpressed by taking the coherence length �↵ of the two-photon state as

unit. The decay rate of the excited state of the detecting atoms are much smaller than

the frequency coherence length �↵ (here we set �/�↵ = 0.01). From this figure, one find

the transition probability for a pulsed light state can attains its peak value at a small time

while the transition probability induced by a completely dephased state increase with time

developments and gradually saturates at a constant value.

When � = 0 and � ⌧ �↵, at time t = L/c where L is optimized as L = c(ln �↵ �
ln 2�)/(�↵ � 2�), the ratio between the two transition probability At two-photon–two-

atom resonance, the ratio between the two probability is

P

P cas
pure

' 1. (4.97)

This result shows, when the atomic decays are smaller than the correlation length �↵, by

choosing the proper L, we still have the same conclusion as in Sec. A. Also, this length L

satisfies

L = c
ln �↵ � ln 2�

�↵ � 2�
' c

ln(�↵/2�)

�↵
⌧ c

2�
< ⇡c��1, (4.98)

which do not contradict the restriction in Sec. C.

We then conclude that: in consideration of small atomic decays, the best length of

quantization box along z direction is L = c(ln �↵� ln 2�)/(�↵�2�), and consequently, the

best time for observation is at t = (ln �↵ � ln 2�)/(�↵ � 2�).

E Conclusions

In this chapter, we have discussed the 2P2A transition with various two-photon states

interacting two atoms that have no atomic interaction between each other and have infinite

lifetimes. We further show the transition probability can be optimized from the original
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states given in Sec. A. We also discussed the validation condition on the assumption of

the infinite lifetime of excited detecting atoms, and found a restriction on the length of

quantization box along the field propagation direction. Finally, we consider a more real

condition that the detecting atoms have long-lived lifetimes rather than infinite ones and

we found a optimized length of quantization box as well as a best time for observation of

the 2P2A transition probability.
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I

n the last chapter, we have shown that the 2P2A transition probability can be greatly

enhanced by frequency anti-correlated two-photon pairs. This is because the photon

pairs share a correlation between themselves, and the atoms have a higher priority to

destroy the more correlated photons. Intuitively, it is quite similar to the case when the

atoms are interacting: in this case they share in some way the frequency information on

the firstly absorbed photon and ”know” which frequency of another photon to be taken.

In this chapter, we will focus our attention on the 2P2A transition process with an

atomic interaction. In its first part, we will discuss the 2P2A transition by taking two

photons from a monochromatic field, because it is an alternative situation as the one in

previous chapter. In the second part, we will consider the case that the absorbed two

photons came from a bipartite frequency anti-correlated two-photon source, since now

one has both atomic interaction and frequency anti-correlations of photon source in the

transition process and a competition or cooperation between the two physical origins can

be discussed.

89
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A Two-photon absorption with monochromatic sources

Consider a system with two two-level atoms that are coupled by an interaction as intro-

duced in 3. By shining a monochromatic light of frequency ! on them, the two atoms can

be excited by destroying two photons from the light. The leading e↵ect of such a tran-

sition is described by a 2nd order optical process, a general expression for the transition

probability of which has been derived in Chap. 3.

Let’s denote the frequency of field by ! and the corresponding annihilation operator

by â, then the transition probability reads

P (t) ' R(!, t)Tr(a†2a2⇢
0

), R(!, t) = |A(!, t) + B(!, t)|2. (5.1)

The function R(!, t) is independent of the photon number, hence the name transition

profile.

In view of the monochromaticity, the above expression can be rewritten as

P (t) = R(!, t)hN̂i2g(2)(0). (5.2)

For those light sources with given mean energy hN̂i, the one with stronger photon bunching

will cause a higher transition probability. Super bunching and anti-bunching of photon

spacing will give rise to two completely di↵erent excitations.

The explicit expressions of A and B, that come from the Eq.(3.30) in Chap. 3, follow

A(!, t) = f
1

f
2

e��+t � ei(!+�!)t

! � !
+

+ i�
+

e���t � ei(!��!)t

! � !� + i��
, (5.3)

B(!, t) = 2vf
1

f
2

1 + i(�� � �
+

)/(!
+

� !�)

(! � !
+

+ i�
+

)(! � !� + i��)

⇥
"

ei(!++!��2!)t � e�2�t

2! � !
+

� !� + 2i�
+

ei(!+�!)t���t � ei(!��!)t��+t

!
+

� !� + i(�� � �
+

)

#
, (5.4)

where 2� = �
+

+ ��. From both expressions, one knows: 1. A represents a process that

the states |±i absorb photons independently, leading to a product of two independent

responses; 2. B stands for a cooperative absorption process, since without interactions

(v = 0), it does not appear. Moreover, the first term in square bracket implies a two

photon resonance at ! = (!
+

+ !�)/2. We denote this value by !
0

.

From Eqs.(5.2-5.4), we know that the statistics of photons can only change the transi-

tion strength, and the shape of a transition profile R(!, t) is only determined by frequency

relations at a very-long time. In other words, such transition profile is independent of

whichever photon sources, therefore is unique.

A.1 Transition profile R

We have seen in chapter 3 that the interaction between two atoms gives rise to a new set

of stationary states, of the form

|+i = a(v)|e
1

g
2

i + b(v)|g
1

e
2

i, (5.5a)

|�i = a(v)|g
1

e
2

i � b(v)|e
1

g
2

i, (5.5b)

a2(v) + b2(v) = 1, (5.5c)
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where |e
1

g
2

i and |g
1

e
2

i are the excited states of the two two-level atoms while there is no

atomic interaction. The coe�cients a(v), b(v) are dependent on the interaction strength

v, therefore the newly defined states in Eqs.(5.5) are mixed from |e
1

g
2

i and |g
1

e
2

i by v.

When this parameter is equal to 0, the state mixing disappears and states |±i turn out

to be |e
1

g
2

i and |g
1

e
2

i. It is also worth noting, the atomic interaction also gives rise to

cooperative emissions with a factor �
12

. According to [Hettich2002], the decay rates of

|±i yield

�
+

= a2�
1

+ b2�
2

+ 2ab�
12

, (5.6a)

�� = a2�
2

+ b2�
1

� 2ab�
12

, (5.6b)

where �
1

, �
2

are the dephasing rates of |e
1

g
2

i and |g
1

e
2

i respectively in absence of intera-

tion. The contribution of cooperation term 2ab�
12

indeed brings about the super-radiation

and sub-radiation phenomena to state |+i and |�i respectively. It is also worth mention-

ing that the value of � is fixed because � = (�
+

+ ��)/2 = (�
1

+ �
2

)/2. We then conclude

that the super-radiation and sub-radiation phenomena are sticked together when both

two-level atoms are excited.

A.1.1 A general response shape at long time

At a su�ciently large time t which is much greater than both ��1

± , the time dependence

in transition profile becomes very weak, thus R(t) ' R1,

R1 =
f2

1

f2

2

[(! � !
+

)2 + �2
+

][(! � !�)2 + �2�]

����1 + v
1 � i(�

+

� ��)/(!
+

� !�)

! � !
0

+ i�

����2 , (5.7)

where we have used the fact that !
+

+ !� = !
1

+ !
2

and the sum is defined as 2!
0

.

In between the sign of absolute value, �
+

� �� = 4ab�
12

is a factor that represents the

cooperation emission while |!
+

� !�| is the energy di↵erence which is much greater than

�
+

� ��. As a result, the transition profile can be further simplified as

R1 =
f2

1

f2

2

[(! � !
+

)2 + �2
+

][(! � !�)2 + �2�]

����1 +
v

! � !
0

+ i�

����2 . (5.8)

In this expression, one finds the new structure induced by two-atom cooperative absorption

is strongly dependent on the parameter v. If v is much larger than �, which is half of the

dephasing rate of the state |e
1

e
2

i, then a notable peak at ! = !
0

should be observed.

With an increase of v, it is possible to make the super-radiation and sub-radiation

phenomena more noticeable, because the width of the two peaks are strongly dependent

on the interaction parameter v, see the relationship of the width di↵erence between two

peaks around ! = !± on v in the bottom right graph in Figure 5.1. We also notice that

the width � = (�
1

+ �
2

)/2 of the peak in the middle is fixed whichever the value of the

parameter v. What’s more, the peak in the center is asymmetric because of the constant

term 1 in the absolute sign. It is an important factor, since the transition profile will be

greatly modified by increasing the interaction strength v. As we know, the energies ~!±
are shifted from ~!

1

, ~!
2

by an equal amount in opposite directions, so when �
1

= �
2

,

there is no reason to show for monochromatic two-photons whose frequency is less than

!
0

= (!
1

+ !
2

)/2 should have a higher average transition probability than the one of a
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Figure 5.1: Graphs giving the properties of transition profiles at a su�ciently long time. In all the plots,

!0 = (!+ + !�)/2 is a fixed quantity and R(t) is in a unit of f2
1 f

2
2 . When there is no atomic interaction

between atoms, there are two peaks at ! = !1 and ! = !2 which are !± at v = 0 respectively. When

there is an interaction between atoms, a peak in the window center of the transition profile R(t) appears,

see the lines in the upper graph. Though the peak value is small, with a increase of interaction strength v,

asymptoticly, it grows as a parabolic function. Because of the constant term 1 in the sign of absolute value,

such a transition profile is asymmetric, see the lines in the bottom left graph. Owing to the cooperative

absorption, the (HMFW) width of the peaks around ! = !� is small in contrast with the width around

! = !+. The di↵erence between the two width is positive and monotonic increasing function of v, see the

bottom right graph. In it, we abbreviate !2 � !1 as !21.

pair whose frequency is on the other side, and vice verse. Then we regard the integral of

response function R1 over the two parts are equal. However, since the peak in the center

is asymmetric about ! = !
0

and a sharply slope appears on the side of ! = !�, see the

bottom left graph in Figure 5.1, it is quite natural that the peak value around ! = !�
should be larger than the one around ! = !

+

(see the upper graph in Figure 5.1). Such a

phenomenon will be more remarkable with a larger v.

According to Eq.(5.8), the response function R1 attains two local maxima around

! = !±. In principle, ! = !± are not the element where the function attains extrema,

however, from the expression we know that the maxima are quite far separated and ! =

!±,! = !
0

are indeed good approximations to the solutions of local maxima where the

Half-Maximum-Full-Widths (HMFWs) of corresponding peaks are assessed at 2�±, 2�.

The ratio between the values of R1 at !± is

R1(! = !
+

)

R1(! = !�)
' �2�
�2
+

(!
+

� !
0

+ v)2 + �2

(!
+

� !
0

� v)2 + �2
. (5.9)

When �
1

= �
2

= �, this ratio can be re-expressed as

R1(! = !
+

)

R1(! = !�)
' !4

21

1 + 4�2/[(!2

21

+ 4v2)1/2 + 2v]2

!4

21

+ 4�2[(!2

21

+ 4v2)1/2 + 2v]2
, (5.10)

from which one finds the ratio is a monotonic decreasing function of v (v � 0). When
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Figure 5.3: Graph of experimental data from [P-Penãfiel2012] in cold Na atom system. In their experi-

ments, they observed an evident peak in the window center. The shoulders in the peaks on both sides are

coming from the interference between atomic states.

v = 0, this ratio is exactly equal to 1, and the two peaks have an equal height. So, when

there is an atomic interaction, the peak around ! = !� is always higher than the one

around ! = !
+

, see Figure 5.2.

In [Hettich2002], it was shown in experiment that the width of the peak on one side

was always larger than the one on the other side. In [P-Penãfiel2012], the asymmetric

peak in center was clearly shown in their data from experiments on two sodium atoms.

See Figure 5.3. In both experiments, because the atomic interaction strength is weak,

there is no evident height di↵erence between the two peaks around ! = !±.

A.1.2 Strong decoherence-suppression case

With the growth of v, the decay rate �� becomes small, and is possible even to be vanishing

when �
1

= �
2

. In this case, when t � ��1

+

and t . ��1

� , the response function R(t) turns

out to be

R(t) =
f2

1

f2

2

[(! � !
+

)2 + �2
+

][(! � !�)2 + �2�]

⇥
����1 � v

! � !
0

+ i�
� !

+

� !� + 2v

!
+

� !�
e���t�i(!��!)t

����2 . (5.11)
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Figure 5.4: Graphs of transition profile. In both graphs, we take v = 2|!2 �!1|. The width of transition

profiles in upper graph is �+ = 1.9� and the one in bottom graph is �� = 0.1�. With the increase of

time, the shapes of lines R(t) in upper graph become fixed while those lines in bottom graph become very

attenuate. However, its value is still much larger.

As we can see from this expression that peak around ! = !
0

is almost unchanged because

v ⇠ !
+

�!� � �, the dominant term in the sign of absolute value is the one of Lorentzian

type. We conclude that the shape of the induced peak around center is the same as R1
even when �� becomes quite small where v is comparative to !

+

� !�.

The possible changes in the transition profile will be the global profile and the most

noticeable ones are the profile around ! = !±. See Figure 5.4.

A.2 Various photon states

The perturbation theory gives rise to Eq.(5.2), which implies that the transition probability

is described by a universal response part and g(2) function of light field at a vanishing delay

time, and this factor is indeed introduced as

g(2) = hâ†2â2i/hâ†âi2. (5.12)

When g(2) = 1, the photon spacing is equidistant, hence the statistics yield Poissonian

distribution. If g(2) > 1, the photon statistics is super-Poissonian as it is bunched photon

spacing while if g(2) < 1, the photon statistics is sub-Poissonian as its photon spacing

is anti-bunched. The photon bunching e↵ect is well known from the wave statistics, but

the anti-bunching e↵ect is a genuine quantumness that is strongly dependent on the not

commuting relation between operator â, â†. For example, for any given pure number state

|Ni, the g(2) function reads g(2) = 1�N�1 which claims that any Fock state yield photon

anti-bunching. So such a state |Ni is highly quantum. We can construct a diagonal state

as following

⇢ = (1 � ✏)|NihN | + ✏
X
m 6=N

pm|mihm|,
X
m 6=N

pm = 1, (5.13)
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whose g(2) function follows

g(2) =
(1 � ✏)N2 + ✏

P
m 6=N pmm2

[(1 � ✏)N + ✏
P

m 6=N mpm]2
� 1

(1 � ✏)N + ✏
P

m 6=N mpm
. (5.14)

When the parameter ✏ is su�ciently small, g(2) ' (N � 1)/N . We conclude that the diag-

onal density matrix is highly quantum. This is quite surprising since intuitively speaking,

a diagonal density matrix should be most classical one, because it does not possess any

quantum interferences.

For any given density matrix ⇢, we have

hN̂ni = Tr[⇢N̂n] =
X
m

hm|⇢|mimn. (5.15)

This equation suggests that the photon statistics only relies on the diagonal elements

as the non-diagonal elements have nothing to do with it. Therefore, for any pure state

| i =
P

m cm|mi, its photon statistics is exactly equal to a diagonal density matrix,

⇢ =
X
m

|cm|2|mihm|. (5.16)

This property leads to a conclusion that the corresponding diagonal density matrix can

attains a same transition probability as the pure state and as any other states that imply

a same photon spectra.

According to Eq.(5.2), if the photon state is a monochromatic coherent state |↵,!
0

i
which has a Poissonian photon statistic, then the transition probability is P|↵i(t) =

|↵|2R(!, t), and if it is a Fock state |n,!
0

i whose photon spacing is anti-bunched, then

the probability is exactly equal to

P|ni(t) = n(n � 1)R(!, t). (5.17)

Let’s consider a thermal state ⇢ = (1 � �)
P

n�0

�n|nihn|, 0 6= � < 1 as the photon source.

Such a parameter is sometimes named as Boltzmann factor, because the parameter � is

related to the temperature of the atoms in thermal motions, and it is larger with higher

temperature in thermal equilibrium statistics. The corresponding value of correlation

function is g(2) = 2 hence the photon spacing is bunched. Its corresponding transition

probability is

Pthermal(t) = 2
�2

(1 � �)2
R(t). (5.18)

Of course, there are other states with high photon bunching, for example, in a semi-

conductor, photon extra-bunching (g(2) = 3) was found in a twin beams [Boitier2011].

A.2.1 A two-photon state whose coe�cients are related to Riemann ⇣(s) func-

tion

Let’s consider here a special mixed state, defined as

⇤ =

✓
1 � n̄

⇣(s + 2)

⇣(s + 1)

◆
|0ih0| +

X
n�1

n̄

⇣(s + 1)
n�(2+s)|nihn|, (5.19)
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where ⇣(x) =
P

m 1/mx is the Riemann function1 and n̄ is mean photon number which

is quite small because of the positivity of the coe�cient 1 � n̄⇣(s + 2)/⇣(s + 1), or n̄ <

⇣(s + 1)/⇣(s + 2). One can verify that this density matrix is normalized to 1. By direct

calculations, this value

g(2)(s, n̄) =
1

n̄

✓
⇣(s)

⇣(s + 1)
� 1

◆
, (5.20)

from which we see clearly that when the mean photon number n̄ is fixed, and s ! 1, the

value of g(2) can can be very large. This is because the photon spectrum is really flat

and the part of many-photon mixture is indeed the key part in which the photon number

fluctuations are really large. The transition probability is then

P
⇤

(t) = n̄

✓
⇣(s)

⇣(s + 1)
� 1

◆
R(t). (5.21)

As we know, the key ingredient to enhance the transition probability is the photon

number fluctuations from large photon number components, even though the mean photon

number of this state is smaller than ⇣(s + 1)/⇣(s + 2), it is possible to enlarge the mean

photon number by consider similar density matrices, such as

⇤0 = [⇣(s + 2) �
N�1X
n=1

n�(2+s)]�1

X
n�N

n�(2+s)|nihn|. (5.22)

These states keep the flatness of photon spectrum and the essential photon fluctuations.

One will find a ⇣(s) term in the expression of g(2), which is the dominant term when s

goes to 0. That is, one recovers a large transition probability in this new state.

Because all these density matrices are diagonal, they are much easier to produce than

their corresponding pure states.

1This is an important function in both Mathematics and Physics. For example, ⇣(3/2) ' 2.612 is

employed in calculating the critical temperature of a Bose-Einstein condensate in a box, and ⇣(4) = ⇡

4
/90

is used to derive the Stefan-Boltzmann law in the study of blackbody radiations. Other common numbers

are ⇣(2) = ⇡

2
/6, ⇣(3) ' 1.202. The Riemann function diverges at x = 1, ⇣(1) = 1.
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B Two-photon absorption with a bipartite frequency anti-

correlated source

In Chapter 3, we have derived a general expression of transition probability according to

Eqs. (3.29,3.31), at any time t. Here we consider the influence of atomic interaction in

the process of two-photon–two-atom transition.

Let’s consider the cascade two-photon state defined in Eq. (1.32), the transition prob-

ability follows P (t) = |
P

mn Kmn(cmn + cnm)|2, where cmn is the coe�cient of the photon

pair in which one photon of frequency !m is in the first part and a second photon of

frequency !n is in the other part in the two-photon state. We assume that in the cascade

two-photon state, �↵ ⌧ �� , so the decaying terms related to e���t vanish at a short time

t ⇠ ��1

� , then the remaining terms are those long-lived ones.

P (t) '4�↵��
L2

c2
|ei�t��↵t � e�2�t|2
�2 + (2� � �↵)2

⇥
���� AT fCT f

!� � !� + i(�� + �
+

� �↵)
+

BT fDT f

!
+

� !� + i(�� + �� � �↵)

����2 . (5.23)

where � is the two-photon–two-atom detuning !↵ + !� � !
1

� !
2

. From Eq.(5.23), we

observe a 2P2A resonance at � = 0 whose width is equal to 2|�↵�2�|. The 2P2A transition

profile at � = 0 is the same as the one in Eq.(4.81) in Chapter 4. This is universally true

in our model, because the atomic interaction yields the equalities !
+

+ !� = !
1

+ !
2

,

�
+

+ �� = �
1

+ �
2

. Intuitively, we set !̃± = !± � i�±, we conclude that for any photon

sources, the profile of induced two-photon–two-atom peak is independent of the interaction

strength v and this parameter can only enhance or reduce the transition probability.

For simplicity, let’s take f
1

= f
2

= f and |�↵ � �±| � �� , then we neglect �↵ � �± in

the denominator and get

P (t) '4f4�↵��
L2

c2
|ei�t��↵t � e�2�t|2
�2 + (2� � �↵)2

(!↵ � !� � � + 2v)2 + 4�2�
[�2� + !↵!� + v2 � !

1

!
2

]2 + �2�(!↵ � !�)2
. (5.24)

If we take x = !↵ � (!
1

+ !
2

)/2, then the shape

(!↵ � !� � � + 2v)2 + 4�2�
[�2� + !↵!� + v2 � !

1

!
2

]2 + �2�(!↵ � !�)2

can be expressed as

F (x, v) = 4
(x � v)2 + �2�

(�2� + !2

21

/4 � x2 + v2)2 + 4�2�x
2

. (5.25)

If x2 � �2� � !2

21

/4 > 0, then for fixed x, the transition probability can be greatly

enhanced at v2 = x2 � �2� � !2

21

/4. It happens only when max{!↵,!�} > max{!
1

,!
2

}.

The emergence of enhancement is originated in the fact that !
+

eventually attains its

value which is equal to !↵ or !� by increasing v. That is, the mean photons are resonant

with the new eigenstates of |±i.
In a degenerate situation, !↵ = !� , then we find that � = 2x and in this case, we have

F (�/2, v) = 16
(� � 2v)2 + 4�2�

(4�2� + !2

21

� �2 + 4v2)2 + 16�2��
2

. (5.26)
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Figure 5.5: The 3D graph of transition probability function of x and interaction parameter v. In both

graphs, we set |!21| = 200�
�

, �

�

= 100�
↵

. In the upper graph, one sees the 3D distribution on variables

x = !

↵

� (!1 +!2)/2 and atomic interaction parameter v. In this graph, we find two ranges at ! = !±(v).

In the bottom one, the graph is obtained at a large time t � �

�1
↵

. We observe clearly in this graph that

there are three local maxima of transition probabilities at !±,!0. The discontinuities in both graphs come

from a poor numerical precision
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At a long time t � ��1

↵ , one observes three peaks where two of them are at ! = !±
respectively and a third peak in the center. When !↵ = (!

1

+ !
2

)/2, the transition

probability reads

P (t) =16f4�↵��
L2

c2
|e��↵t � e�2�t|2

(2� � �↵)2
v2 + �2�

[�2� + !2

21

/4 + v2]2
. (5.27)

The ratio between the transition probability at v 6= 0 and the one at v = 0 is

P |v 6=0

P |v=0

=
[!2

21

+ 4�2� ]
2

[!2

21

+ 4�2� + 4v2]2
�2� + v2

�2�
. (5.28)

In general, the interaction strength v is not so strong, it should not exceed the magnitude

of |!
21

|/2, roughly speaking, this ratio is assessed at

P |v 6=0

P |v=0

'1 + v2/�2� . (5.29)

The interaction parameter can be much larger than the decay rate �� , therefore the tran-

sition probability can be greatly enhanced.

Recalling the case of the 2P2A transition by taking two photons from a monochromatic

field, the peak induced in the center is notably asymmetrical. However in this case, one

observes a is symmetrical peak in the center .

The absence of asymmetry of the peak in the center is because in the latter case, there

are infinitely many possible photon pairs in the source and the interference of photon pairs

killed this asymmetry. We then conclude that the 2P2A transition shape is mainly deter-

mined by the properties of frequency anti-correlated photon pairs while in the transition

strength part, the interaction parameter is a crucial factor.
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C Two-photon absorption with a parametrically generated

pulse of light

C.1 Type II SPDC two-photon source

A common way to generate two-photon states is via parametric down-conversion process

in which three fields (pump (p), signal (s), and idler (i)) are involved because of �(2)

nonlinearity. The frequency modes of newly generated two-photon state of the signal field

and idler field can be continuous or discrete. It is well known that [?] by shining a train of

periodic pulses on a parametric crystal, the generated photon state whose field is indeed a

frequency comb with quantum properties whereas a single pump pulse generates a single

down-converted pulse having a continuous spectrum.

Here we will focus our attention on a specific and concrete example: an SPDC two-

photon collinear state generated from 1-dimensional photonic crystal, whose length can

be very long, and pumped by a train of Tr-periodic pulses.Such two-photon state can be

expressed as [Corona2007]

|IIi =
X
`mnjk

f`,m,n(!j ,!k)|1s : K(m)

s (!j); 1i : K(n)
i (!k)i, (5.30)

where K(m)

µ (!) = m2⇡/⇤ + K̃(m)

µ (!), 0  K̃(m)

µ (!) < 2⇡/⇤, µ = s, i; m = 0, 1, 2, · · · are

the Bloch wave-numbers and ⇤ is the length of the first Brillouin zone of the 1-dimensional

crystal. The dispersion relations follow

K(m)

µ (!) = m
⇡

⇤
±
q

(�(m)

µ )2 � |(m)

µ |2, �(m)

µ = n̄µ!/c � m⇡/⇤. (5.31)

as well as

(m)

µ = i[1 � cos(m⇡)]↵n̄µ!/(4mc⇡), (5.32)

where n̄µ is the mean refractive index. For simplicity, we assume the value of all three

mean refractive indices are the same, hence denoted by n̄. In general, there should be

gaps between di↵erent bands if (m)

µ 6= 0, for frequencies whose corresponding momenta

are close to the band gaps, the dispersion curves will dramatically changed in contrast to

the optical branches and therefore the group velocities can be greatly reduced. The band

width ⇡c/n̄⇤ is typically at the order of 1015 Hz if the length ⇤ ' 300 nm. We assume

that the central frequency of the signal (idler) field ! is very close to a gap

!̄ = ! mod ⇡c/n̄⇤, !̄ ⌧ ⇡c/n̄⇤; (5.33)

and the spectral width of all three fields are much smaller than the band width. The

group velocities us, ui of both signal field and idler field respectively become quite small.

Under these conditions, due to the phase matching conditions, a common joint spectral

amplitude f`,m,n is usually given as

f`,m,n(!j ,!k) = C
0

�m,n�`,2m�m,m0EpEsEie�(!
j

+!
k

�!
p

)

2!2
r

/2�2
sinc(�m0)e

i�
m0 . (5.34)

The waist � of the pump field which is assumed to be a Gaussian beam, is large and

therefore the photon pairs have a broad distribution band whose central frequency is at
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2!. The contributions of the mismatched phase �m0 are coming from the the di↵erences

among those momenta of the three modes

�m0 = L[K(m0)
s (!j + !↵) + K(m0)

i (!k + !�) � K(2m0)
p (!j + !k � !p)]/2, (5.35)

where L is the length of the photonic crystal. Let’s make the Tylor’s expansion to the

three Bloch wave numbers,

Kµ(!` + !µ) = Kµ(!µ) + !`/uµ + · · · ; µ = s, i, p, (5.36)

under perfect phase matching condition K(m0)
s (!↵) + K(m0)

i (!�) = K(2m0)
p (!↵ + !�), the

phase becomes

�m0(!j ,!k) = (!j + !k � !p)T + (!j � !k � !↵�)Tc, (5.37a)

T = L(u�1

s + u�1

i � 2u�1

p )L/4, Tc = L(u�1

s � u�1

i )L/4. (5.37b)

It is worth mentioning that up can be quite large. Now these states can be expressed as

|IIi =
X
mn

cm,n|1s : !m,↵; 1i : !n,�i, (5.38)

where

cm,n = C
0

e�(!
m

+!
n

�!
p

)

2/2�2
sinc[�m0(!m,!n)]ei�m0 (!m

,!
n

). (5.39)

If we make a selection such that the final state can only have two photons, then C
0

should

be normalized, reads

C2

0

=

 X
mn

e�
(!

m

+!

n

�!

p

)2

�

2 sinc2[(!m + !n � !p)T + (!m � !n � !↵�)Tc]

!�1

' 2
Tc!2

r

�⇡3/2
.

(5.40)

We have replaced the double sum by double integral as well as have extended the integral

domain to the whole real plane to get the approximate result. When Tc is quite small,

that is, the group velocities between two newly-generated beams in the crystal are close,

two beams are well matched, the coe�cients are small.

C.2 Transition behaviors at a long time t � �

�1

The energy di↵erence between two atoms is quite large, its magnitude is usually at several

GHz, while the atomic decay rate is much smaller (� ⇠ 10 MHz). As we have mentioned,

when the frequencies of photons are close to the band gap in the crystal in which they

were generated, their group velocities have great reductions, accordingly, the coherence

time T and Tc (T � Tc) can be very large. If the coherence time is quite large, it satisfies

T � ��1,��1, then the transition probability amplitude follows

A ' � 2⇡iC
0

e�2�T
c

t/T f2

!2

rT24✓1 +
2v

!
+

� !�

◆✓
1 � � + 2i�

!
+

� !�

◆
e�

2T2
c

�

2
T

2 (!+�!
�

)

2�2i(!+�!
�

)(t�t0)Tc

/T

� + 2(!
+

� !�)Tc/T + 2i�

+

✓
1 � 2v

!
+

� !�

◆✓
1 +

� + 2i�

!
+

� !�

◆
e�

2T2
c

�

2
T

2 (!��!
�

)

2�2i(!��!
�

)(t�t0)Tc

/T

� + 2(!� � !�)Tc/T + 2i�

35 . (5.41)
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This transition probability amplitude has a relatively fast oscillating term, hence the

transition probability. The transition probability over a period ⇡T/(!
+

� !�)Tc during

which the decay is not noticeable, is a stable quantity. This slowly varying transition

probability follows

P '8
p
⇡f4Tc

�!2

rT
2

e�4�T
c

t/T

24(!
+

� !� + 2v)2

(!
+

� !�)4
(!

+

� !� � �)2e�
4T2

c

�

2
T

2 (!+�!
�

)

2

[� � 2(!� � !
+

)Tc/T ]2 + 4�2

+
(!

+

� !� � 2v)2

(!
+

� !�)4
(!

+

� !� + �)2e�
4T2

c

�

2
T

2 (!��!
�

)

2

[� � 2(!� � !�)Tc/T ]2 + 4�2

35 . (5.42)

One can find 2P2A resonance peaks around � = 2(!��!
+

)Tc/T and � = 2(!��!�)Tc/T .

The distant between the two peaks can be assessed at �peaks = 2(!
+

� !�)Tc/T . If the

two peaks are fairly separated, the widths of peaks are about 2�. See Fig. 5.6.

Because of the smallness of Tc/T , the large single photon detunings become sensitive

to the 2P2A resonance spectrum. We stress that this phenomenon mainly originates in

the phase interferences rather than a pure frequency anti-correlations. This can be seen

from the absence of the peak-splitting in the bottom graph of Fig. 5.6 or from the Eq.

(5.42) when Tc ! 0.

C.3 Transition probability of some diagonal matrices that have the same
spectra

Consider the completely dephased state corresponding to the state discussed in last sub-

sections,

⇤ =
X
m,n

|cm,n|2|1 : !m, s; 1 : !n, iih1 : !m, s; 1 : !n, i|. (5.43)

Consequently, when Tc ⌧ T , the transition probability follows

P ' 4f4

Tc⇡1/2

��T


1 +

4v2

(!
+

� !�)2

� 
e�4!2

��T 2
c

/�2T 2

[� � 2!��Tc/T ]2 + 4�2
+

e�4!2
�+T 2

c

/�2T 2

[� � 2!�+Tc/T ]2 + 4�2

!
.

(5.44)

When |!��|Tc/T ⇠ �, one can find the two peaks around the center. If the two peaks

are found, then the magnitude of Tc/T is assessed at �/|!� �!�|, therefore the transition

probability

P ' f4

⇡1/2

���2
, � = {|!��|, |!�+|}. (5.45)

In fact this transition probability is much larger than the one of the factorized completely

dephased state

⇤
)(

=
X
mn

(
X
j

|cm,j |2) ⇥ (
X
k

|ck,n|2)|1 : !m, s; 1 : !n, iih1 : !m, s; 1 : !n, i|, (5.46)

that has the same spectra.

From this expression (5.44), we see that the two two-photon–two-atom resonance peaks

around the center can also induced by using a correlated state without any entanglement.
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Figure 5.6: 2P2A resonance with the type II SPDC two-photon states. Here we set !
+

�
!
0

= 200�,!� � !
0

= �200�,� = 100�,!� � !
0

= 100�. One finds the ratio Tc/T

between the group velocities of the new beams, therefore Tc, and the mismatch between

three beams, thus T , is quite important. When this ratio is small, one finds a weak single

peak in the middle; when the ratio becomes larger, the single peak splits into two peaks.

The distance between two peaks is monotonely increasing with Tc/T .
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The atomic interaction parameter v enhances the total transition probability but does not

modify the shape of the transition spectrum.

One then concludes that the entanglement is not a necessity for inducing such two

peaks. It is a special spectrum distribution of photon states.
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D Conclusion

In this chapter, we have discussed the two-photon transition in two-atom system that has

an atomic interaction. In the first case, the two photons are from a same monochromatic

field. When any photon in the pair is far o↵ resonance with both atoms, but the two

photons are resonant with both atoms, a peak at frequency ! = !
0

= (!
1

+ !
2

)/2 is

induced by atomic interaction. The width of this peak is independent of the interaction

parameter v. However, this parameter gives rise to an absorption suppression at frequency

!
+

and an absorption enhancement at frequency !�. Another important feature in this

2P2A transition is that the probability is independent of the pureness of a state, the real

physical factor is g(2) which represents the photon spacing. A large transition probability

is attained by using the states with large photon fluctuations.

In a case of 2P2A transition with a bipartite continuous two-photon state whose fre-

quencies are anti-correlated, we find the transition profile is determined by the photon

source and the shape of peak is symmetrical in contrast to the previous monochromatic

filed case. At the perfect 2P2A resonance condition, � = 0, we find a remarkable enhance-

ment of the transition probability by the emergence of interaction parameter v in both

cases.
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CHAPTER 6

Is the enhancement of 2P2A transition a
quantum e↵ect ?
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I

n previous chapters, we have shown that transition probabilities of various processes

crucially depend on the quantum state which is used. In this chapter we address

the issue of the physical origin of such a behavior. In particular, is the enhancement

e↵ect of 2P2A transition due to some kind of quantum e↵ect or not ? Its answer is

obviously linked to the precise meaning attributed to the words ”quantum e↵ect”, and

more precisely to the definition of a ”quantum correlation”. This is what we will consider

in the first section of this chapter. We then identify the type of conclution which is used

to enhance 2P2A probability and discuss its properties using the time/frequency Wigner

representation of the state.

107
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A What kind of correlation is required to enhance the 2P2A

transition probability ?

We have found in Chap. 4 that the 2P2A transition probability depends crucially on the

specific state of light used for the excitation, even when all the considered states have

the same energy spectrum. The question we address now is the physical origin of an

enhanced transition probability. We have seen that entangled and unentangled states may

give comparable results, so a first answer to the question is obviously that entanglement is

not at the origin of the e↵ect but rather is some kind of correlation e↵ect which is shared

by entangled and unentangled states.

Candidates likely to play a role in the present problem are time correlation and fre-

quency correlation. We will now examine them successively

A.1 Temporal correlation e↵ect

It is well characterized by the cross-second-order correlation function g(2)⇥ (t, ⌧)

g(2)⇥ (t, ⌧) =
Tr[⇢

0

Ê(�)

↵ (⌧)Ê(�)

� (t)Ê(+)

� (t)Ê(+)

↵ (⌧)]

Tr[⇢
0

Ê(�)

↵ (t)Ê(+)

↵ (t)]Tr[⇢
0

Ê(�)

� (t)Ê(+)

� (t)]
. (6.1)

Assuming that the amplitude of the single-photon electric field is a smooth function of !k,

one gets the following for the pure state | i =
P

kq ckq|1 : !k,↵; 1 : !q,�i:

G(2)

⇥ (t, ⌧) =

������
X
kq

ckqe
�i!

k

⌧�i!
q

t

������
2

. (6.2)

It is the modulus square of two-time Fourier transform of the two-photon state.

1. In the case of the cascade state (4.16),

g(2)⇥ (t, ⌧) =

✓
��
�↵

� 1

◆
�↵��
⇡2

✓(⌧)✓(t � ⌧)e2�↵t�2�
�

(t�⌧), (6.3)

✓(t) being the step function. We notice here a time asymmetry between t and ⌧ ,

expected in the case of a cascade in which the !↵ photon is always emitted before

the !� photon.

2. For the SPDC state (4.29),

g(2)⇥ (t, ⌧) =
2

N 2

[1 + sin!↵�(t � ⌧)] exp

"
�
�2�(t � ⌧)2

2
�

2�2↵�
2

�

�2↵ + 2�2�

✓
t
0

� t + ⌧

2

◆
2

#
.

(6.4)

As can be seen in Figure (6.1), g(2)⇥ (t, ⌧) is in both cases significant only very close

to the diagonal, which implies that both states exhibit strong temporal correlations, as

expected. The width of the diagonal, which gives the characteristic time of this correlation,

is equal to ��1

� (��1

� ) in both the cascade and SPDC cases.

It is easy to see that for the correlated-separable states (4.23) and (4.31), there is no

time dependence for g(2)⇥ (t, ⌧) (g(2)⇥ (t, ⌧)|sep.cor = 1), and hence no temporal correlation, as
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Figure 6.1: Plots of the cross temporal correlation function g

(2)
⇥ (t, ⌧). The left one is for the atom cascade

two-photon state, with �

↵

= 0.05MHz and �

�

= 0.5MHz; the right plot is for the SPDC two-photon state,

in which the pulse takes place around t0 = 30µs, and with �

↵

= 0.05MHz, �
�

= 0.5MHz,!
�↵

= 2MHz.

Note the (t, ⌧) asymmetry in the first figure, and fringes in the second one are due to interferences from

two temporal processes. In both plots, one finds significant temporal correlations along the diagonal line.

In a real condition, the value of !
�↵

should be much greater, leading to a poorer graphic representation

for interference patterns.

expected from a c.w. time averaged state in which the photons arrive at any time. It is also

the case for the coherent states (4.47). As these states give 2P2A transition probabilities

comparable to the entangled state, we must conclude that the temporal correlation is not

the physical origin of the enhancement e↵ect, nor is the time ordering of the photons

present in the cascade state. The physical reason is that, as we have neglected their

spontaneous emission, the two detecting atoms have an infinite memory time, and hence

they can be excited separately at any time.

A.2 Frequency correlation e↵ect

It is well characterized by the cross second order frequency correlation function g(2)⇥ (!,!0),

g(2)⇥ (!,!0) =
Tr[⇢

0

Ê(�)

↵ (!0)Ê(�)

� (!)Ê(+)

� (!)Ê(+)

↵ (!0)]

Tr[⇢
0

Ê(�)

↵ (!0)Ê(+)

↵ (!0)]Tr[⇢
0

Ê(�)

� (!)Ê(+)

� (!)]
, (6.5)

equal in the pure state case to |c(!,!0)|2 and to p(!,!0) in the diagonal mixed-state case.

This quantity is plotted in Figure 6.2 for the cascade and SPDC states, either entangled,

correlated-separable, or factorized. One observes that the frequency correlation functions

take significant values only on the anti-diagonal for the left-side plots, which implies that

the corresponding states exhibit strong frequency anticorrelations. This is not the case for

the right side plots. The width of the anti-diagonal, which gives the characteristic width of

the frequency anticorrelation, is equal to �↵(�↵) in both the cascade and SPDC entangled

and correlated-separable cases.

The important point to notice is that such a frequency anticorrelation exists for all

the states which exhibit 2P2A resonance enhancement, and is not present for the states
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Figure 6.2: Plots of the cross frequency correlation function g(2)⇥ (!k,!q): (a) entangled,

correlated-separable, and coherent cascade states; (b) factorized cascade state; (c) entan-

gled, correlated-separable, and coherent SPDC states; and (d) factorized SPDC state. In

all plots �↵ = �↵ = 0.05MHz, �� = �� = 0.5 MHz, !↵ = 1.5 MHz, and !� = 3.5 MHz.

The color codes, in the unit of c2/L2, on the top left (right) are shared by (a) and (c)

(b and d). The left-side plots exhibit strong frequency anticorrelations along the line

!k + !q = !↵ + !� , while in the right-side plots, one finds no such a correlation. The

SPDC two-photon source is nondegenerate and each photon has two distribution peaks;

thus one sees two bright spots in the left side bottom plot and four bright spots in the

factorized case in the right-side bottom plot. In a real condition, the distances of the peaks

in the bottom plots are much greater, and the sizes of spots are much smaller.
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which do not give rise to this e↵ect. We are therefore led to the conclusion that the

property needed to enhance the 2P2A excitation is precisely the presence of strong frequency

anticorrelations in the quantum state. We will characterize more precisely the quantum

aspects of frequency correlations in the next sections.

This conclusion, that we have demonstrated for the two specific examples considered

in chapter 4, is far more general, as can be seen in the expression of the probability written

for any switched-on two-photon state.

Equations (37), (38), and (39) indeed show that the probability of 2P2A excitation is

proportional to the component of the density matrix of the two-photon state corresponding

to the existence of one photon with frequency !
1

and one photon with frequency !
2

.

This gives a simple interpretation of the e↵ect: there is 2P2A excitation only when each

photon of the two-photon state is resonant with the atomic transition of the atom it

excites. This is expected, since we are considering that the atomic excited states have

a very long lifetime, and therefore very narrow linewidths. Since the spectrum of each

photon of the source has a much larger bandwidth, the probability of excitation is small.

If the photons are not correlated in frequency, the probability of double excitation is

proportional to the product of the probabilities that each photon has the corresponding

transition frequency, and this yields a very small transition probability. But when the

photons are anti-correlated in frequency such that the sum of their frequencies is equal

to the sum of the transition frequencies of the atoms, when one photon is resonant with

one atomic transition, the correlated photon will be automatically resonant with the other

transition, and the probability of 2P2A transition will in general be much higher than in

the non-correlated case.

We can say that the 2P2A transition occurs with a higher probability when the sum of

the photon frequencies is found inside a small interval around the sum of the atomic tran-

sition frequencies, so that the enhancement is associated with the inverse of the variance

of the |c(!k,!q)|2 distribution in the direction of the diagonal.

The question which arises now is whether this strong frequency anti-correlation re-

sponsible for the enhancement can be found only in non-classical states. This sould be the

sign of a pure quantum e↵ect. This is what we examine in the following.
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B Characterization of bipartite correlations

We have considered in this thesis various bipartite light sources, microscopic or macro-

scopic, pure or mixed. What still remains to be clarified are the characterization of the

correlations that exist in such states.

Correlations in quantum context are fascinating and sometimes mysterious. For exam-

ple, in classical physics, correlations can only exist in composite system while in quantum

systems, correlations such like contextual correlations can even exist in an indivisible

system [Lapkiewicz2011]. Interestingly, on one hand, there are some quantum entangled

states that generate outcomes perfectly in accord with local-realism [Werner1989]. In other

words, the correlations in such states are regarded as classical. On the other hand, the

correlations in a separable mixed state can have a strong non-classical character, which can

be assessed for example by a non-vanishing value of the quantum discord [Ollivier2001],

which may contradict our intuition. It is important to distinguish which kinds of correla-

tions are genuinely quantum. This question is still far from being totally solved, in spite

of lots of e↵orts that have been devoted to address it.

Nowadays, there are some kinds of widely used measures [Modi2012] of quantum cor-

relations, such as gemellity, quantum discord, quantum deficit, measurement induced dis-

turbance (MID). The relations between various criteria in multimode quantum state are

discussed in [Treps2005]. In this section, we will apply these concepts to our photon states.

B.1 Separability and purity

A bipartite diagonal density matrix

⇤↵� =
X
kq

|ckq|2|�↵ : !k,�� : !qih�↵ : !k,�� : !q|, (6.6)

where � stands for the photon state, for example � = ↵ stands for the coherent state while

� = 1, represents the single photon Fock state, can be regrouped as

⇤↵� =
X
k

(
X
n

|ckn|2)|�↵ : !kih�↵ : !k| ⌦ ⇢�k, ⇢�k =
X
q

|ckq|2P
m |ckm|2 |� : !qih� : !q|.

(6.7)

Therefore, the density matrix ⇤↵� is separable, do not have any entanglement.

It is always possible to write a pure bipartite state

| ,↵�i =
X
kq

ckq|�↵ : !k,�� : !qi (6.8)

into the Schmidt decomposition form,

| ,↵�i =
X
m

p
�m|f↵m; f�mi; hf↵m|f↵n i = �mn, hf�m|f�n i = �mn. (6.9)

Here if symbol  represents two-photon state, then we will use II explicitly; if  represents

a coherent state, we replace  by symbol z.

According to the formula (1.50), the cooperativity parameter of bipartite two photon

state |II,↵�i can then be calculated with the following formula,

 =
1P

mn |
P

k ckmc⇤kn|2 . (6.10)
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This formula also applies (approximately) when dealing with a corresponding state |z,↵�i
on the condition of large |z|. Therefore, when we are dealing with quantities that are

related to this number, we will never try to distinguish the two states.

Take ckq as the coe�cient of a cascade two-photon state [see Eq. (1.32)] for example,

the cooperativity parameter is found to be:

cascade = 1 + ��/�↵. (6.11)

It has a lower bound 1 when �↵ is infinitely large than �� . In this case, the population

on the top state of cascade three-level source atom will de-excited to the mediate state

within a very short duration, and then from the mediate level to the ground state. As

a result, the total energy fluctuations of the two-photon state will be quite large and it

gives rise to poorer frequency anti-correlations. When �↵ is extremely large, then the de-

excitation from the top state finishes instantaneously after it is excited, one should hardly

to observe such an emission. What one observes is that a photon is emitted from the de-

excitation. The behavior of such a two-photon state is just as a combination of behaviors of

uncorrelated photons. On the contrary, if �↵ is very small in contrast to �� , then a second

photon will be emitted soon after the photon created from the transition from the top level

of the intermediate level, and the total energy fluctuations of the two-photon state can be

very small, that is, the two photons are in good frequency anti-correlations. In an extreme

case where �↵ ! 0, then the photon pairs are perfectly frequency-anticorrelated, and the

expression of ckq will degrade into c(!k, we � !k), and the state is indeed in the form of

Schmidt decomposition. Surely, there are incredibly many terms (the Schmidt rank then

is infinity) in the expression. Due to the flatness of the Schmidt coe�cients distribution,

the corresponding cooperativity parameter can be very large.

It is also worth mentioning, a larger ratio of ��/�↵ gives rise to both better frequency

correlations and stronger entanglement of the total state. It is still not clear that whether

the enhancement of correlations is mainly determined by the quantum entanglement. How-

ever, if one dephases the state completely, then one has a correlated-separable state which

does not have any entanglement. The distribution coe�cients have indeed frequency

anti-correlations. By increasing the ratio, once again, one find the state have better cor-

relations. Then we conclude: the cooperativity parameter is a good measure of frequency

anti-correlations and entanglement; the frequency anti-correlations are, at least, not mainly

determined by entanglement.

At this stage, it is still not clear whether the correlations are classical or quantum.

We will come to a similar situation by considering a coe�cient as the one in parametric

down conversion two-photon state | pdci =
P

kq ckq|1 : !k,↵; 1 : !q,�i,

ckq = 2⇡cL�1(⇡��)�1/2e�(!
k

+!
q

�!0
p

)

2/2�2�(!
q

�!
�

)

2/2�2+i(!
k

+!
q

�!0
p

)t0 , (6.12)

where �,� are widths of pump field whose central frequency is !0

p and of idle field with

central frequency !� ; t
0

is the delay time. The cooperativity parameter in this case turns

out to be

pdc =
p

1 + �2/�2. (6.13)

B.1.1 Schmidt coe�cients

It is quite di�cult to find an analytical expression of the Schmidt decomposition of a

pure bipartite state. However, in some situations, there exists such exact expressions, or
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approximate analytical expressions.

Let’s first consider the coe�cients (6.12) of a type II SPDC two-photon state. One can

deform it as

ckqe
�i(!

k

+!
q

�!0
p

)t0 =
2⇡cL�1

(⇡��)1/2
exp

✓
�1 � u

1 + u

(x + y)2

4
� 1 + u

1 � u

(x � y)2

4

◆
, (6.14)

which admits the following expansion

ckqe
�i(!

k

+!
q

�!0
p

)t0 =
2⇡c

L

r
1 � u2

��

1X
n=0

un n(x) n(y), (6.15)

 n(x) = (2nn!
p
⇡)�1/2e�x2/2Hn(x). (6.16)

with the parameters

u = �
s

1 � 2

pdc + 1
; x =

!k + !� � !0

p

�
p
pdc

; y =
p
pdc

!q � !�
�

, (6.17)

and Hn(x) is the Hermite polynomial of degree n. As expected, the cooperativity param-

eter pdc which is an important measure of correlation, now enters the decomposition. In

this new orthonormal basis

| n : ↵i = in
s

2⇡c

L�
p
pdc

X
k

 n(
!k + !� � !0

p

�
p
pdc

)ei!k

t0 |1 : !k,↵i, (6.18)

| n : �i = in
r

p
pdc

2⇡c

L�

X
q

 n(
p
pdc

!q � !�
�

)ei!q

t0 |1 : !q,�i, (6.19)

the cooperativity parameter rescales the distributions to make their frequency widths quite

comparable. It is in agreement with the distribution function of |ckq|2. Thanks to these

results, the state now has a simple decomposition form:

| pdci =
p

1 � u2

1X
n=0

|u|n| n : ↵i| n : �i. (6.20)

By tracing the total density matrix over one part, one has the reduced density matrices:

⇢↵ = (1 � u2)
P

n u2n| n : ↵ih n : ↵|, (6.21a)

⇢� = (1 � u2)
P

n u2n| n : �ih n : �|. (6.21b)

Both of them are in the spectral decomposition form.

Now let’s consider the Schmidt decomposition of the cascade two-photon state whose

coe�cients ckq are defined in Eq. (1.32). One of its reduced density matrices is given by

⇢casreduced =
X
k

 X
m

cmk|1 : !mi
! X

n

cnk|1 : !ni
!†

. (6.22)

For simplicity, let us introduce normalized state |ki as

|ki /
X
m

cmk|1 : !mi. (6.23)
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We have the following inner product

hj|ki /
X
m

cmkc
⇤
mj =

2c��/L

(!k � !� + i��)(!j � !� � i��)

2i�↵
!k � !j + 2i�↵

. (6.24)

When �↵ ⌧ �� , if |!j � !k| � 2�↵, then hj|ki ' 0; if |!j � !k| ⌧ 2�↵, then we have

hj|ki / 2c��/[(!k � !�)2 + �2� ]L. We then approximate |ji as a piecewise state |Nji,

|Nji =

s
⇡

��

4N2

j �
2

↵ + �2�
4�2↵

Z
(N

j

+1)·2�
↵

N
j

·2�
↵

X
m

c(!m,!)d!|1 : !mi. (6.25)

where Nj is the integer part of !j/2�↵. The orthonormal relations read

hNj |Nki ' �jk. (6.26)

Then the reduced density matrix approximates at

⇢casreduced =
X
N

k

��
⇡

2�↵
(2Nk�↵ � !�)2 + �2�

|NkihNk|. (6.27)

The Schmidt coe�cients defined in Eq. (1.48) are approximately equal to

p
�k '

s
��
⇡

2�↵
(2Nk�↵ � !�)2 + �2�

. (6.28)

By using this result, one finds the cooperativity parameter

̃cas = ⇡��/�↵, (6.29)

which is 3 times larger than the exact value (6.11). Therefore, the approximation we have

made is rather rough.

Anyway, we will still use the results in (6.28) for qualitative analyses, due to the

di�culty to obtain an analytical expression of the Schmidt decomposition of the cascade

two-photon state. We should bear in mind that the related results are not accurate. An

alternative is using Gaussian distributions to replace those Lorentzian ones. Then the final

expressions are the same as those of the type II SPDC two-photon state. This alternative

is not so good, owing to the the di↵erent convergence rates for frequencies far away from

the peak centers.

B.2 Simon’s criterion on multimode states

In this part, two type of completely dephased states:

⇤
II

=
P

m,n |c(!m,!n)|2|1 : !m,↵; 1 : !n,�ih1 : !m,↵; 1 : !n,�|; (6.30a)

⇤c =
P

m,n |c(!m,!n)|2|z : !m,↵; z : !n,�ihz : !m,↵; z : !n,�|; (6.30b)

where z 2 C, |z| � 1, are of special interest. The two states are just convex combination

of single-frequency-mode product state, the nonclassical properties of the two states can

only exist in those elements ⇤
(mn) = |1 : !m,↵ih1 : !m,↵| ⌦ |1 : !n,�ih1 : !n,�| and

⇤c,(mn) = |z : !m,↵ihz : !m,↵| ⌦ |z : !n,�ihz : !n,�|.
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The Mandel matrix, which is introduced in the first chapter, of the state ⇤
(mn) is

M
II,(mn) =

0BBBBB@
1 1 0 0 1

1 0 0 0 1

0 0 1 0 0

0 0 0 1 0

1 1 0 0 0

1CCCCCA . (6.31)

The eigenvalues of the Mandel matrices of these elements are

{1, 1, 1 +
p

2, 1 �
p

2, �1}. (6.32)

Because the latter 2 eigenvalues are negative, one concludes any local element ⇤
(mn) is a

quantum optical nonclassical state. This conclusion is well known since any single photon

state cannot be produced by classical means. Therefore the dephased state is quantum

optical non-classical state.

However, consider a coherent state,

⇤c,(kq) = |z : !k,↵ihz : !k,↵| ⌦ |z : !q,�ihz : !q,�|. (6.33)

The Mandel matrix reads

Mc,(mn) =

0BBBBB@
1 |z|2 |z|2 |z|2 |z|2

|z|2 |z|4 |z|4 |z|4 |z|4
|z|2 |z|4 |z|4 |z|4 |z|4
|z|2 |z|4 |z|4 |z|4 |z|4
|z|2 |z|4 |z|4 |z|4 |z|4

1CCCCCA . (6.34)

Follow the same procedures, the eigenvalues of the Mandel matrix of state |z : !k,↵ihz :

!k,↵| ⌦ |z : !q,�ihz : !q,�| are

{0, 0, 0, 0, 4|z|4 + 1}. (6.35)

All the five eigenvalues are positive. So, the classically mixed coherent state ⇤c is a

quantum optical classical state.

Follow the procedures in [Ivan2011], the Mandel matrix of a generic bipartite two-

photon state defined there can be rearranged as

M =

0B@ 1 h: (â ⌦ â
+

)T :i h: (b̂ ⌦ b̂
+

)T :i
h: â

+

⌦ â :i 0 h: â
+

⌦ â(b̂ ⌦ b̂
+

)T :i
h: b̂

+

⌦ b̂ :i h: b̂
+

⌦ b̂(â ⌦ â
+

)T :i 0

1CA
M 

h: â
+

âT ⌦ b̂b̂T
+

:i 0

0 h: b̂
+

b̂T ⌦ ââT
+

:i

!
, (6.36)

in which the notations ĉ = (· · · , ĉk, · · · )T , ĉ
+

= (· · · , ĉ†k, · · · )T , c = a, b. It is a block

matrix, and the majority of the blocks are zeros. The eigenvalues can be solved from the

following equations

|h: b̂
+

⌦ â(b̂ ⌦ â
+

)T :i � �| = 0; (6.37)

|h: â
+

⌦ b̂(â ⌦ b̂
+

)T :i � �| = 0; (6.38)�������
1 � � h: (â ⌦ â

+

)T :i h: (b̂ ⌦ b̂
+

)T :i
h: â

+

⌦ â :i �� h: â
+

⌦ â(b̂ ⌦ b̂
+

)T :i
h: b̂

+

⌦ b̂ :i h: b̂
+

⌦ b̂(â ⌦ â
+

)T :i ��

������� = 0. (6.39)
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Now let’s consider a pure bipartite two-photon state

|IIi =
X
mn

c(!m,!n)|1 : !m,↵; 1 : !n,�i, (6.40)

which can also be rewritten in the Schmidt decomposition form

|IIi =
X
m

p
pmâ†�

m

b̂† 
m

|0,↵; 0,�i, (6.41)

Now the annihilation and creation operators â, b̂, â
+

, b̂
+

are corresponding to the mode

functions that are in the Schmidt basis, then the matrix

M = h: â
+

âT ⌦ b̂b̂T
+

:i =

0B@ A
11

· · · A
1N

...
. . .

...

AN1

· · · ANN

1CA , (6.42)

whose element satisfies (Aij)mn =
p

pmpn�in�jm and the
p

pm,
p

pn are Schmidt coe�-

cients. The determinant of the matrix M reads

detM = (�1)N(N�1)/2(
Y
j

pj)
N , (6.43)

which can be negative for some integer number N . By direct calculations, the eigenvalues

are

{p
1

, p
2

, . . . , pN ; ±p
p
1

p
2

, . . . , ±p
p
1

pN ; . . . ; ±p
pN�1

pN .} (6.44)

That is, one explicitly finds some negative eigenvalues which shows that the state have sub-

Poissonian photon distribution. So such two-photon states are classical. In the first part

of this section, we have found that the Schmidt coe�cients are increasing functions of the

cooperativity parameter, hence, if the state is more entangled, one has larger cooperativity

parameter, and larger Schmidt coe�cients, then smaller negative eigenvalue of the Mandel

matrix. Consequently, the state itself is certainly much more nonclassical.

This conclusion also applies when one considers a counterpart

|z : ↵�i =
X
mn

c(!m,!n)|z : !m,↵; z : !n,�i, (6.45)

which is superposed by coherent states, providing the field amplitude z is large, |z| � 1.
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B.3 Quantum discord

Quantum discord is a well-known measure for quantum correlations. It has some variants,

such as the measurements induced disturbance (MID). The quantity of quantum discord

comes from the di↵erent value of two definitions of mutual information which are equivalent

in classical statistics.

B.3.1 Quantum discord of a bipartite diagonal density matrix

Let’s first consider a generic diagonal density matrix ⇤↵� of a two-photon state, whose

elements come from a normalized bivariate distribution,

⇤↵� =
X
kq

pkq|1 : !k,↵; 1 : !q,�ih1 : !k,↵; 1 : !q,�|. (6.46)

The two reduced density matrices of subsystems are

⇤↵ =
X
k

⌘k|1 : !k,↵ih1 : !k,↵|; ⇤� =
X
q

⇣q|1 : !q,�ih1 : !q,�|, (6.47)

with ⌘k =
P

q pkq, ⇣q =
P

k pkq. Since all the three density matrices are diagonal, von

Neumann entropies can be calculated by their distribution coe�cients as

S↵� = �
X
kq

pkq log pkq; S↵ = �
X
k

⌘k log ⌘k; S� = �
X
q

⇣q log ⇣q. (6.48)

where we have hidden the base ”2” in the logarithm function. The total mutual information

I(↵ : �) is known because of Eq. (1.56).

Now let’s consider a special POVM on the subsystem ↵ :

Eµ
m = |1 : !m, µih1 : !m, µ|, m 2 N; µ = ↵,�. (6.49)

According to Born’s rule, the probability to have a non-vanishing outcome of measurement

E↵
m is then given by

xm = Tr(|1 : !m,↵ih1 : !m,↵|⇤↵�) =
X
q

pmq = ⌘m, (6.50)

and after the measurement, the final state now becomes

⇤�|m = Tr↵[E↵
m⇤↵� ]/xm =

X
q

pmqP
n pmn

|1 : !q,�ih1 : !q,�|. (6.51)

The von Neumann entropy of such a conditional state is indeed a Shannon entropy,

S�|m = �
X
q

pmq

xm
log

pmq

xm
= log xm �

X
q

pmq

xm
log pmq, (6.52)

and therefore the conditional entropy which is an average over all the conditional states

⇤�|m, yields

S�|{E↵

m

} =
X
m

xmS�|m = S↵� � S↵. (6.53)



B. Characterization of bipartite correlations 119

The above equation suggests that the classical information in this state is not less than

the total information since

J�|↵ � S� � S�|{E↵

m

} = S↵ + S� � S↵� = I(↵ : �). (6.54)

That is, the quantum discord defined as D↵� = I↵��J�|↵ is no greater than 0. On the other

hand, it is universally true that quantum discord is non-negative, D↵� � 0 [Modi2012].

Then the only possibility is

D↵� = 0, I↵� = J�|↵. (6.55)

That is, the quantum discord is zero and the amount of classical correlations are equal to

the total correlations in such diagonal state.

Bearing in mind that the relation between total correlations, quantum correlations Q
and classical correlations is sub-additive [Groisman2005] in general,

Q + J�|↵ � I(↵ : �) , Q � D↵� . (6.56)

That is, even if a state has vanishing discord, it can still have quantum correlations.

We also noticed that the diagonal density matrix can be expressed as

⇤ =
X
kq

pkqE
↵
k ⌦ E�

q , (6.57)

so it is a classical state [Luo2008, Li2008](only with respect to the statistics on the bivari-

ate distribution), and the mutual information J�|↵ is regarded as a measure of classical

correlations.

B.3.2 Pure states

The von Neumann entropy of a pure state is 0, therefore the total mutual information is

I(↵ : �) = S� + S↵ = 2S� , (6.58)

The classical mutual information J�|↵,

J�|↵ = S� , (6.59)

is achieved when a POVM with its element E↵
m = |f↵mihf↵m| is performed. The quantum

discord is just the entropy of a subsystem

D↵� = J�|↵ = �
X
n

�n log �n. (6.60)

where �n are the square of the Schmidt coe�cients in (1.48). We conclude that the measure

of quantum correlations is equal to the measure of classical correlation in a generic pure

state. So, if the there are more bipartite quantum correlations in a pure state, there

should be more classical correlations and vice versa. Together with the vanishing discord

of diagonal density matrices, when the conclusions are applied to our results in Chap. 4,

from the point of view of information scientists, we have:

The enhancement of 2P2A transition probability does not rely on the quantum corre-

lations of a state.
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Anyway, we are still interested in the classical correlations in the pure state in which

its measure is exactly equal to the quantum discord.

In the case of type II SPDC two-photon state,

D|pdci
↵� = �

X
n

[(1 � u2)u2n] log[(1 � u2)u2n]

= � u2

1 � u2

log u2 � log(1 � u2). (6.61)

According to the definition of u in Eq. (6.17), the measure of classical correlations reads

D|pdci
↵� =

1

2
[(pdc + 1) log(pdc + 1) � (pdc � 1) log(pdc � 1)] � 1. (6.62)

When the cooperativity parameter becomes large, the discord has a simpler expression

D|pdci
↵� ' log(epdc/2). (6.63)

It is a monotonic increasing function of the cooperativity parameter pdc. See Fig 6.3 the

two curves.

In any pure state, this discord is also a measure of the classical frequency anti-

correlations because it reveals the classical correlations and pdc represents the frequency

anti-correlations. So the enhancement of 2P2A transition probability is determined by

the classical frequency anti-correlations, from the viewpoint of the quantum information

scientists.

B.3.3 Conclusions

In the whole section, we have discussed some quantumness of the states that may be

relevant to the physical origins of the enhancement of 2P2A transition probabilities in

Chap. 4. We found that the quantumness of a state that is related to entanglement,

separability, negativity, geometric quantum discod as well as quantum correlations, is

irrelevant to the enhancement of transition probability. However, whether the physical

origins are related to the quantumness that breaks down the PPT criterion or Simon’s

criterion is still not clear. That is, though it seems that the enhancement of 2P2A transition

probability does not have a quantum origin, it is still not completely verified. Therefore,

some measurement-based criteria will be discussed in the frame frequency-time Wigner

distribution in the following section.

From the discussions on quantum discord (quantum correlations), we found that in

any pure state, the amount of classical correlations is equal to the one of quantum correla-

tions, while in its completely dephased state, all the correlations are classical, no quantum

correlations can be found. The common correlations in both pure or mixed states is of

course of interest to be explored.
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Figure 6.3: The relation between quantum discord (or the amount of classical correlations)

and cooperativity parameter in the parametric down converted two-photon state. The

quantities of pdc log e in x-axis is given in logarithm form. One can see from the curve

that with the increasing of cooperativity parameter pdc, Dpdc
↵� eventually turns out to be

its asymptote, a logarithm function

C Characterization using the time-frequency Wigner-Ville

distribution of a quantum system

An alternative way to describe a quantum state of a system is to use its quasi-probability

distribution, so-called Wigner function, in the corresponding phase space. Such a way of

description, which was originally introduced in quantum mechanical context for statistical

equilibrium by Wigner in 1932 [Wigner1932] and which is really intuitive as it provides

a quite similar way to calculate the statistical quantities of the operators that act on the

state, has then been developed as a new and popular formulation of quantum mechanics

which is equivalent to other formulations [Styer2002] such like matrix mechanics, wave

mechanics and path-integral functional theory.

The quadrature arguments are induced by the field observables which are pairwise

conjugate operators. Therefore, the conventional Wigner function is defined by the gen-

eralized canonical coordinates. Though the Wigner function was firstly introduced in

quantum physics, its first triumph was in signal analysis since Ville’s work [Ville1948]

in 1948 on time-dependent signal field E(t). Consequently, such a function with respect

to the time and frequency arguments is sometimes named as Wigner-Ville distribution
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of classical signals. When dealing with a running signal which contains both frequency

and time information, Ville proposed to use a characteristic two variable kernel function,

then followed by Moyal [Moyal1949] with non-commutative property between time and

frequency. In ultrafast optics, such distribution was introduced for classical pulses with

another name chronocyclic Wigner function [Paye1992] to highlight the di↵erent arguments

from the conventional ones.

C.1 Quantum Wigner-Ville distribution

The quantum Wigner-Ville distribution of a quantum state of the electromagnetic field is

introduced as

V(t,!) = (2⇡)�1

Z
ds ei!shÊ(+)†(t � s/2)Ê(+)(t + s/2)i, (6.64)

where h·i represents the quantum mechanical average. This function describes the time

and frequency dependence of the distribution of a photon detected at a same point.

When we consider a bipartite state, sometimes the corresponding field can be separated

because of di↵erent polarizations or central frequencies by polarized beam splitters or

dichroic mirrors. We denote the two separated fields Ê↵, Ê� with subscripts ↵,�. Then

we can introduce 2 ⇥ 2 dimensional Wigner-Ville distribution

V
2

(t,!!!) = (2⇡)�2

Z
d2s ei!!!

T shÔ(t, s)i, (6.65)

with 2 dimensional vectors t = (ta, tb)T , s = (sa, sb)T ,!!! = (!a,!b)T as well as the kernel

Ô(t, s) ⌘ Ê(+)†
↵ (ta � sa/2)Ê(+)

↵ (ta + sa/2)Ê(+)†
� (tb � sb/2)Ê(+)

� (tb + sb/2), (6.66)

that describes the temporal behaviors of photons detected at two di↵erent points. Here

we have hidden the dependence of the 2 locations in a same z-plane where we detect the

photons.

A Wigner-Ville distribution with higher dimensions can be introduced in a similar way.

C.1.1 A variant: chronocyclic Wigner distribution W

In Heisenberg picture, the field operator Êµ(t), µ = ↵,�, can be written in following form,

Ê(+)

µ (t) / i

Z
d!µE!

µ

âµ(!µ)e�i!
µ

t, (6.67)

with nonvanishing commutation relations [âµ(!), â†⌫(!0)] = c�µ⌫�(! � !0) where c is the

velocity of light in vacuum. The monochromatic field units E!
µ

is a slowly varying quantity

with respect to frequency and we treat it as a constant number Eµ. The expectation value

in Eq.(6.66) is

hÔ(t, s)i =h⌦µ[

ZZ
d!µd!0

µE2

µâ†µ(!0
µ)âµ(!µ)e�i(!

µ

+!0
µ

)s
µ

/2ei(!
0
µ

�!
µ

)⌧
µ ]i. (6.68)

According to the definition of the Dirac � function, one has

V
2

(⌧⌧⌧ ,!!!) = 22
Z

d2!!!0h⇧µE2

µ[â†µ(2!µ � !0
µ)âµ(!0

µ)]ie2i(!!!�!!!0
)

T⌧⌧⌧ . (6.69)
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Now let’s consider a special photon state that has only one photon in each subsystem, its

density matrix reads

⇢ =
R

d2!!!0d2!!!00p(!!!0,!!!00)|1 : !!!0ih1 : !!!00|, (6.70a)

|1 : !!!i = |1 : !a,↵i ⌦ |1 : !b,�i. (6.70b)

Only when all the annihilation operator acting on the correct frequency modes, the

average in Eq. (6.69) has non-vanishing contribution, and after such operation, the output

state turn out to be vacuum: [⇧µâµ(!0
µ)]|1 : !!!0i = |0i.

V
2

(⌧⌧⌧ ,!!!) =22(⇧⌫E2

⌫ )

Z
d2!!!0p(!!!0, 2!!! �!!!0)

e2i(!!!�!!!
0
)

T⌧⌧⌧ h1 : 2!!! �!!!0|
Y
µ

â†µ(2!µ � !0
µ)âµ(!0

µ)|1 : !!!0i

=22(⇧⌫E2

⌫ )

Z
d2!!!0p(!!!0, 2!!! �!!!0)e2i(!!!�!!!

0
)

T⌧⌧⌧ . (6.71)

The two frequency vectors in the inner product on the last line of the above equation can

be rewritten as 2!!! � !!!0 = !!! + (!!! � !!!0) and !!!0 = !!! � (!!! � !!!0), by changing the integral

variables ⌫⌫⌫ = 2(!!! �!!!0), one has

V
2

(⌧⌧⌧ ,!!!) = E2

↵E2

�

Z
d2⌫⌫⌫p(!!! � ⌫⌫⌫/2,!!! + ⌫⌫⌫/2)ei⌫⌫⌫

T⌧⌧⌧ , (6.72)

= E2

↵E2

�

Z
d2⌫⌫⌫h1 : !!! � ⌫⌫⌫/2|⇢|1 : !!! + ⌫⌫⌫/2iei⌫⌫⌫T⌧⌧⌧ . (6.73)

The normalized Wigner-Ville distribution is

W(⌧⌧⌧ ,!!!) = (2⇡)�2

Z
h1 : !!! � ⌫⌫⌫/2|⇢|1 : !!! + ⌫⌫⌫/2iei⌫⌫⌫T⌧⌧⌧d2⌫⌫⌫. (6.74)

It is usually called: chronocyclic Wigner distribution. This expression has the same form

as the definition of the conventional Wigner function, but it comes from the quantum

Wigner-Ville distribution. For any other states, to introduce a time-frequency Wigner

function by analogy with the conventional one can be problematic mainly because: 1.

there is no definition of time operator; 2. there exists states, for example the completely

dephased states (the statistical mixture), that are time-independent and therefore the

Fourier integral transform does not apply.

It is worth mentioning that the quantum Wigner-Ville distribution of a state, that is

an tensor product of two monochromatic coherent states which are Gaussian states in the

phase-space that describes the quadratures, has some negative-value-zones [Cohen1989].

That is, the negative value of the quantum Wigner-Ville function is not an intrinsic charac-

ter of non-classicality. Owing to this fact, I will only consider the variances of frequencies

and times.

C.2 Bipartite Wigner distributions in continuous variable regime

Now let’s consider bipartite two-photon states which have infinitely many frequency modes.

Two types of states of our interest here are: 1. pure states | ↵�i =
P

kq ckq|1 : !k; 1 : !qi,
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and 2. a second type of the mixed type ⇤ =
P

kq |ckq|2|1;!k; 1 : !qih1 : !k; 1 : !q|. We will

treat them as bivariate continuous frequency functions.

We explicitly denote !!!,⌧⌧⌧ in Eq. (6.74) as (!a,!b)T , (⌧a, ⌧b)T where subscripts a, b are

related to the parts ↵ and � respectively.

The key elements of Wigner-Ville distribution or chronocyclic Wigner distribution are

the following expectation:

h1 : !m; 1 : !n|â†a,pâa,qâ
†
b,râb,s|1 : !j ; 1 : !ki = �mp�qj�nr�sk, (6.75)

according to formula (6.66). It imposes four constraints of the states and leads to a generic

expression of chronocyclic Wigner distribution,

W(⌧⌧⌧ ,!!!) /
ZZ

R
d!md!nh1:!a�!m; 1 :!b�!n|⇢|1:!a+!m; 1 :!b+!nie2i!m

⌧
a

+2i!
n

⌧
b . (6.76)

We will first take a closer look at the shapes of diagonal mixed states and pure states.

• diagonal density matrices.

If ⇢ is a diagonal matrix ⇤,

⇤ =

ZZ
R

d!md!n|c(!m,!n)|2|1:!m; 1 :!nih1:!m; 1 :!n|,

then Eq. (6.75) imposes that !a � !m = !a + !m and !b � !n = !b + !n. The two

equalities imply that !m = !n = 0 and reveal the fact that there is no quantum in-

terference between any frequency modes. Therefore the time-dependence introduced

via the exponential function e2i!m

⌧
a

+2i!
n

⌧
b disappears, resulting in the following

frequency-dependent distribution

W⇤(!!!) / |c(!a,!b)|2. (6.77)

So, for any diagonal density matrix, the chronocyclic Wigner distribution is posi-

tive and time-independent, and the temporal standard deviations are regarded as

infinitely large. So, any time-frequency deviation-product of a poly-chromatic state

should be infinitely large.

• pure states.

The density matrix ⇢ of a pure two-photon state is given by |IIihII|, where

|IIi =

ZZ
R

d!md!nc(!m,!n)|1 : !m; 1 : !ni.

Accordingly, the chronocyclic Wigner distribution follows

W |IIi(⌧⌧⌧ ,!!!) /
ZZ

R
d!md!nc(!a�!m,!b�!n)c⇤(!a+!m,!b+!n)e2i!m

⌧
a

+2i!
n

⌧
b . (6.78)

Such a distribution admits both time and frequency dependence.

Consider two concrete examples: 1. the chronocyclic Wigner distribution of cascade

two-photon state, and 2. the chronocyclic Wigner distribution of a type II two-photon

state.
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For cascade two-photon state, its coe�cients c(!m,!n) are defined in Eq. (4.16),

according to the formula (6.78), the chronocyclic Wigner distribution yields

W |casi(⌧⌧⌧ ,!!!) =
4

⇡2
�↵�� u(⌧a)u(⌧b � ⌧a)e

�2�
↵

⌧
a

�2�
�

(⌧
b

�⌧
a

)

⇥ sin 2(!a + !b � !↵ � !�)⌧a
!a + !b � !↵ � !�

sin 2(!b � !�)(⌧b � ⌧a)

!b � !�
. (6.79)

where u(t) is the Heaviside function which attains the value of 1 when t � 0, and the value

of 0 else-wise.

Let us stress that, owing to the sinusoidal functions, these Wigner distributions take

negative values, which is an attribute of a non-classical state, as expected from a two-

photon pure state.

The marginal distributions on frequencies and times are

W |casi
freq (!a,!b) =

�↵��/⇡2

[(!a + !b � !↵ � !�)2 + �2↵][(!b � !�)2 + �2� ]
, (6.80)

W |casi
time (⌧a, ⌧b) = 4�↵��u(⌧a)u(⌧b � ⌧a) exp [�2�↵⌧a � 2��(⌧b � ⌧a)] . (6.81)

Recalling the chronocyclic Wigner distribution of the diagonal density matrices, we find

that the marginal distribution on frequency is exactly equal to the chronocyclic Wigner

distribution of the corresponding diagonal density matrix. The two marginal distributions

display the frequency anticorrelations and temporal correlations respectively. See Figure

6.4.

��1
� (!k � !�)

�
�

1
�
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�
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�
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��⌧a

� �
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Figure 6.4: The marginal distribution distribution of the Wigner function of the cascade

two-photon state. The left (right) graphic represents the reduced frequency (time) Wigner

function W |casi
freq (!a,!b)(W |casi

time (⌧a, ⌧b)). In both graphics, we set � = 10�.

Now let’s consider the type II SPDC two-photon state with coe�cients

ckq / e�
(!

k

+!

q

�!

p

)2

2�2 +i(!
k

+!
q

�!
p

)t0� (!
q

�!

�

)2

2�2 , (6.82)

where !p is the total energy of the two-photon state and �,� are two frequency widths of

the pump field and newly generated field. Its chronocyclic Wigner distribution which can
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be calculated via Gaussian integral, reads

W |pdci = ⇡�2e�
(!

a

+!

b

�!

p

)2

�

2 ��2(⌧
b

�⌧
a

)

2

e�
(!

b

�!

�

)2

�2 ��2
(⌧

a

�t0)2 . (6.83)

This distribution is a product of four Gaussian distributions, and its value is positive

everywhere. The two marginal distributions on frequencies and times are

W |pdci
freq (!a,!b) = ⇡�1e�

(!
a

+!

b

�!

p

)2

�

2 e�
(!

b

�!

�

)2

�2 ; (6.84)

W |pdci
time (⌧a, ⌧b) = ⇡�1e��

2
(⌧

b

�⌧
a

)

2
e��

2
(⌧

a

�t0)2 ; (6.85)

W |pdci
tf (!a, ⌧a) =

�

⇡
p
�2 + �2

e
� (!

a

�!

↵

)2

�

2+�2 e��
2
(⌧

a

�t0)2 . (6.86)

See the marginal distributions of the type II SPDC two-photon state in Figure 6.5.
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Figure 6.5: The marginal distributions of the Wigner function of the SPDC two pho-

ton state. The graphic on the left side, in the middle, and on the right side represent

the reduced Wigner function W |pdci
freq (!k,!q), W |pdci

time (⌧a, ⌧b), W |pdci
tf (!k, ⌧b). In all the three

graphics, we set � = 10� and �t
0

= 1.

Once again, we find the marginal distribution W |pdci
freq (!a,!b) is the same as the chrono-

cyclic Wigner distribution of the corresponding diagonal density matrix.

This conclusion turns out to be correct in any case, because if one integrates the

temporal variables in Eq. (6.78), one obtains two Dirac � functions. They impose the

expression of the marginal distribution as the chronocyclic Wigner distribution of the

respective diagonal density matrix.

From the marginal distribution of frequencies both in Figure 6.4 and Figure 6.5,

one sees obvious band-like frequency distributions. Intuitively, correlations is sometimes

roughly represented by a ratio between the maximum diameter and the minimum one in

an (e↵ective) area. The larger the ratio is, the stronger the correlations are. In the two

figures, the minimum diameters are found along the direction of line !a �!b = 0 and their

magnitudes are at the order of �↵ or � respectively; the maximum ones are found along

the direction of line !a + !b = !p and the magnitude are at several �� or � respectively.

Since ��/� � 1, ��/�↵ � 1, the frequency (anti-) correlations shown in both figures are

quite strong.
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C.2.1 Apparent ”violation” of the Heisenberg inequality

The famous EPR paper [Einstein1935] showed that there exist states with strong correla-

tions which ”violate” the Heisenberg inequality. They can be characterized by conditional

variances the product of which can be smaller than the limit ascertained by Heisenberg

[Reid2009]. Let us apply such an analysis to the correlated states considered here.

Consider a type II two-photon state |IIi =
P

kq ckq|1 : !k,↵; 1 : !q,�i where the

coe�cients ckq reads

ckq / e�
(!

k

+!

q

�!

p

)2

2�2 +i(!
k

+!
q

�!
p

)t0� (!
q

�!

�

)2

2�2 . (6.87)

where !p is the central frequency of the pump field whose bandwidth is �, � is the band-

width caused by phase mismatch, t
0

is the typical arrival time. The corresponding chrono-

cyclic Wigner function follows

W |pdci = ⇡�2e�
(!

a

+!

b

�!

p

)2

�

2 ��2(⌧
b

�⌧
a

)

2

e�
(!

b

�!

�

)2

�2 ��2
(⌧

a

�t0)2 . (6.88)

Then one can calculate the conditioned mean value and momentum of a variable A(!a, ⌧a)

by

A
cond

=
RR

d⌧ad!aA(!a, ⌧a)W |pdci(!a, ⌧a,!b, ⌧b); (6.89a)

A2

cond

=
RR

d⌧ad!aA2(!a, ⌧a)W |pdci(!a, ⌧a,!b, ⌧b); (6.89b)

and the variance of (�A)
cond

=
q

A2

cond

� A
2

cond

according to the definition. The uncon-

ditioned value quantities are given by the integration on the other part,

A
uncond

=
RR

d2⌧⌧⌧d2!!!A(!a, ⌧a)W |pdci(!a, ⌧a,!b, ⌧b); (6.90a)

A2

uncond

=
RR

d2⌧⌧⌧d2!!!A2(!a, ⌧a)W |pdci(!a, ⌧a,!b, ⌧b); (6.90b)

hence the unconditioned variance (�A)
uncond

=
q

A2

uncond

� A
2

uncond

.

By direct calculations, the unconditioned product of the variances reads (�!a�⌧a)
uncond

=

pdc/2 � 1/2, which does not show any violation of Heisenberg inequality, as expected.

But the conditioned quantities follow

(!a)
cond

= (!p � !b)f(!b, ⌧b); (⌧a)
cond

=
�2⌧b + �2t

0

�2 + �2
f(!b, ⌧b); (6.91)

(!2

a)cond = [(!p � !b)
2 + �2/2]f(!b, ⌧b); (6.92)

(⌧2a )
cond

=

"✓
�2⌧b + �2t

0

�2 + �2

◆
2

+
1

2

1

�2 + �2

#
f(!b, ⌧b); (6.93)

f(!b, ⌧b) =
1

⇡

�p
�2 + �2

e
��2

�

2 (⌧
b

�t0)
2

�2+�

2 e�
(!

b

�!

�

)2

�2 . (6.94)

In fact, f(!b, ⌧b) is a marginal Wigner function that represents the time-frequency distri-

bution of the � subsystem. As a result, we have the following two variances

(�!a)
cond

=
q

[(!p � !b)2 + �2/2]f(!b, ⌧b) � (!p � !b)2f2(!b, ⌧b); (6.95)

(�⌧a)
cond

=

vuut"✓�2⌧b + �2t
0

�2 + �2

◆
2

+
1

2

1

�2 + �2

#
f(!b, ⌧b) �

✓
�2⌧b + �2t

0

�2 + �2

◆
2

f2(!b, ⌧b).

(6.96)
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Therefore, when |!p � !b| � �,��|⌧b � t
0

| �
p
�2 + �2, the value of the product

(�!a�⌧a)
cond

' f(!b, ⌧b)

vuut"✓�2⌧b + �2t
0

�2 + �2

◆
2

+
1

2

1

�2 + �2

#
[(!p � !b)2 +

�2

2
]. (6.97)

is much less than 1. When �/� ⌧ 1, once again, the product reveals the EPR entanglement

of the state according to the Duan-Mancini criterion [Duan2000, Mancini2002].
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Figure 6.6: The distribution of conditioned value of the product of deviations. The pa-

rameters are set as !� � !↵ = 100�, � = 10� and �t
0

= 50. The value in most parts of

the top and the bottom graphes is much less than 1, which reveals the entanglement of

the state.

Therefore, in such a type II SPDC two-photon state, those photons, whose frequencies

are far away from their central frequencies, in the pulse are EPR correlated.



Conclusion

T

wo-photon–two-atom excitation turns out to be an important test bench of quan-

tum optical properties. In this thesis, this subject has been discussed in two

cases: 2P2A transition probability with and without atomic interaction. In the

absence of atomic interaction, the 2P2A transition probability can be dramatically en-

hanced by using cascade two-photon state. The cascade two-photon state is a typical

intrinsic multimode entangled state. It is a pulsed source which is characterized by fre-

quency anti-correlations. To find out the physical origin of transition enhancement is one

of key ingredients of the work in this thesis. The possible candidates such as entanglement,

time ordering, temporal correlation have been excluded. We have found that actually the

physical origin of enhancement is the frequency anti-correlation. However, the negative

eigenvalues of the Mandel matrices of the two-photon states, pure multimode states and

their corresponding completely dephased mixed states, exhibit the sub-Poissonian char-

acter of photon statistics, which are nonclassical. The classically mixed coherent state,

which is regarded as a most classical state (according to all aspects like quantum optical

nonclassicality, separability, quantum discord. etc), has a |z|4 scale factor when |z| � 1,

in comparison with the transition probability that is caused by the two-photon dephased

state of the same form. Unlike the completely dephased state that can be obtained by

averaging from noises, the classically mixed coherent state cannot. Therefore, it is very

likely that the anti-correlations necessary for the enhancement of the transition probability

are classical.

The 2P2A transition probability can also be greatly enhanced by atomic interaction

even when a monochromatic coherent field is applied on the condition that the atomic

interaction strength is much larger than atomic linewidths of the excited state of the two

atoms. We have found when the monochromatic photon state is highly bunched, the

transition probability can also be enhanced. This is very evident for those photon states

that have very flat distribution, like a sequence that takes its terms from Riemann ⇣(x)

function. By using the SPDC two-photon state, the transition spectrum exhibits a new

structure of 2P2A resonance.

The subjects presented in the second chapter are taken from the existing literatures.

The contents in later chapters, from chapter 3 to chapter 6, are original to my best of

knowledge. The findings on the transition enhancement by various two-photon states in

chapter 4 have been published on Physical Review A [Zheng2013]. Another publication

on the case with interaction is in preparation.
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Appendix

A When can (exp(�i!t)�1)/(2i⇡!) be a good approximation

of the delta function?

Let us note st(!) the function (exp(�i!t) � 1)/(2i⇡!). One can also write it as st(!) =

� sin!t/(2⇡!) + i(1 � cos!t)/(2⇡!). Whereas the real part of st(!) is a sinc function

which tends indeed to a delta function when t ! 1, the imaginary part, being not a

peaked function whose area is constant, is not an approximation of the delta function.

So, in general, st(!) does not tend to the delta distribution when it acts on the general

set of integrable functions; however, it can be so on a smaller set of functions. This set

includes, for example, all the odd functions in !, a subset which is not relevant for the

present paper. We show in this appendix that st(!) behaves also as a � function when it

acts on functions which have a Fourier transform which is strictly zero before t = 0.

Let us consider a function F (t) that is zero for t < 0 and admits a well-behaved Fourier

transform f(!). Then

f(!) =
1

2⇡

Z 1

�1
dtF (t)ei!t =

1

2⇡

Z 1

0

dtF (t)ei!t, (A-1)

F (t) =

Z 1

�1
d!f(!)e�i!t, (A-2)

where f(!) is absolutely integrable, which excludes functions such as 1/(!+ i�) from the

present discussion. Let us now calculate the integral:

I =

Z 1

�1
d!

exp(�i!t) � 1

!
f(!) = i

Z t

0

d⌧

Z 1

�1
d!f(!) exp(�i!⌧) = i

Z t

0

d⌧✓(⌧)F (⌧)

(A-3)

Then I ! i
R1
0

d⌧F (⌧) = 2⇡if(0) when t ! 1. This proves that st(!) acts as a delta

function for the set of functions that have a Fourier transform strictly null for t < 0.

B Why do we take t = L/c in the comparison of transition

probabilities ?

In order to compare the probabilities of transitions induced by pulsed and cw light in a fair

way, we must be careful to take the same amount of energy flow F(t) on the detecting atoms

in both cases. This quantity is nothing else than the integral over time and transverse
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section S of the Poynting vector. It is equal to, at a given time t and for a state ⇢,

F(t) = 2"
0

cS

Z t

0

Tr[⇢Ê+†(⌧)Ê+(⌧)]d⌧ ' ~! c

L

Z t

0

Tr[⇢b̂†(⌧)b̂(⌧)]d⌧, (B-1)

where b̂(⌧) =
P

m âm exp(�i!m⌧) and ! is the mean frequency of the state under consid-

eration.

For any diagonal density matrix ⇤, since Tr[⇤b̂†(⌧)b̂(⌧)] = 2 is time independent, one

finds a linear relationship between the energy flow and time t,

F
⇤

(t) = 2~! ct

L
. (B-2)

For any entangled pure state | i =
P

kq ckq|1k, 1qi,

Tr[| ih |b̂†(⌧)b̂(⌧)] =
X
k

|
X
q

ckqe
�i!

q

⌧ |2 +
X
q

|
X
k

ckqe
�i!

k

⌧ |2. (B-3)

The energy flow at time t is

F
 

(t) =

Z t

0

d⌧Tr[| ih |b̂†(⌧)b̂(⌧)] ⇡
Z t

�1
d⌧Tr[| ih |b̂†(⌧)b̂(⌧)], (B-4)

when most photons arrive at the detecting atoms after t = 0. One assumes that at

su�ciently large time t (much greater than the temporal coherence length of the field),

the photons in state | i have fully interacted with the detecting atoms; therefore one

extends t to +1 without introducing notable error. By using the Parseval identity, one

has

F
 

(t) ⇡ ~! c

L

Z 1

�1
d⌧Tr[| ih |b̂†(⌧)b̂(⌧)]

= ~! c

L

Z 1

�1
d⌧

"X
k

|
X
q

ck,qe
�i!

q

⌧ |2 +
X
q

|
X
k

ck,qe
�i!

k

⌧ |2
#

= ~!

24X
kq

|ckq|2 +
X
kq

|ckq|2
35 = 2~!, (B-5)

as expected. By comparison with Eq. (B-2), one finds that at time t = L/c, the energies

supplied by the cw field and by the pulse are equal. Under this situation, one can make

legitimate comparisons between the corresponding transition probabilities.
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C Superposed coherent states

C.1 States that give rise to large field amplitudes

So far we have only considered two-photon states of di↵erent shapes, which are all strongly

non-classical objects, as they are produced by spontaneous emission or parametric fluores-

cence which are specifically quantum processes with no classical equivalent. But one can

also envision superpositions of two-mode coherent states of the form

|QMCi =
X
kq

ckq|z : !ki ⌦ |z : !qi, (C-1)

or mixed states of the form

⇢CMC =
X
kq

|ckq|2|z : !kih; z : !k| ⌦ |z : !qihz : !q|, (C-2)

where |z : !ki is the coherent state |zi in the mode of frequency !k, z being the same

complex number for all modes. Because both the two macroscopic states whose compo-

nents are of a product form with two coherent states from di↵erent subsystems are either

quantum superposed or classically combined, we give names QMC and CMC.

By using the approximation hz|0i ' 0 valid for |z| � 1, one has the following relations

for transition probability:

PQMC = |z|4P ' PCMC (C-3)

where P is the probability (4.2) obtained for two-photon states at time t = L/c. Apart

from the energy scaling factor |z|4, the states seem much more classical than the previously

studied ones in Chap. 4, as the states of ⇢CMC can be produced by classical means.

If we restrict ourselves to the case of large |z|, then we interpret QMC as ”quantum

mixed coherent states”; CMC as ”classical mixed coherent states”.

Even with large |z|, It is not clear at this stage whether the pure state |QMCi can be

produced in classical means or not. Before we go further, let first check its multi-modality.

For frequency modes of any two frequencies !k,!q, the product coherent state |z :

!k; z : !qi is indeed an intrinsic single mode state [Treps2005, FabreQO]. Now let’s

consider a superposition of two states with intrinsic single-modes  
1

, 
2

,

|0 :  
1

; z :  
2

i + |z :  
1

; 0 :  
2

i). (C-4)

We find the rank of induced vectors from the action of the annihilation operators is 2,

according to the definition in Chap. 1, this is an intrinsic 2-mode state. Similarly, one can

show the state |QMCi is an intrinsic infinitely-many-mode state for a generic expression

ckq.

C.2 Positiveness of the Wigner distribution of the state |QMCi

If any |QMCi can be produced in classical means, then the quantum state related to the

unnormalized state |z : !
1

; z : !qi+ |z : !
2

; z : !qi can also be produced in classical means.

The coherent state in frequency mode of !q can be displaced to the origin of phase space

by a displacement operator, then we have the following unnormalized state

|cooci = (|z : !
1

, 0 : !
2

i + |0 : !
1

, z : !
2

i) ⌦ |0 : !qi. (C-5)
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For simplicity, we will hide the vacuum state in the frequency mode of !q.

Let (xj , kj) be the two field quadratures related to the coherent state in the frequency

mode of !j , j = 1, 2. In phase space, the Wigner function is a tetra-variate function. If the

state |cooci can be produced in classical means, then the Wigner distribution should be

positive. So are the marginal distributions. Otherwise, the state |cooci is really quantum,

cannot be produced in any classical means.

A single frequency mode coherent state is a Gaussian state which is completely deter-

mined by its first and second momenta. Its projection on the x quadrature[HarocheETQ]

hx|zi = ⇡�1/4e�x2/2+
p
2zx�(z2+|z|2)/2, (C-6)

is a Gaussian function. Subsequently, the kernel of our tetra-variate Wigner function is

hx
1

+ ⇠
1

/2 : !
1

, x
2

+ ⇠
2

/2 : !
2

|coocihcooc|x
1

� ⇠
1

/2 : !
1

, x
2

� ⇠
2

/2 : !
2

i

=⇡�1e�|z|2�(z2+z⇤2)/2�(x2
1+x2

2)�(⇠21+⇠
2
2)/4

⇥ [e
p
2z(x1+⇠1/2) + e

p
2z(x2+⇠2/2)][e

p
2z⇤(x1�⇠1/2) + e

p
2z⇤(x2�⇠2/2)]. (C-7)

Making Fourier transform to it, we have

W (x
1

, k
1

; x
2

, k
2

) /e�(|z1|2+|z2|2)e�|z|2
h
e
p
2(zz⇤2+z⇤z1)+

e
p
2(zz⇤1+z⇤z2) + e�|z|2(e

p
2(zz⇤1+z⇤z1) + e

p
2(zz⇤2+z⇤z2))

i
, (C-8)

where zj = xj + ikj . One finds the two complex exponential terms in the square bracket.

The sum of the two terms give rise to sinusoidal function, which may lead to a negative

value of the tetra-variate Wigner function. For simplicity, let’s take z as a real number

and then consider the marginal distribution Wmrg(x1

, k
1

) =
RR

dx
2

dk
2

W (x
1

, k
1

; x
2

, k
2

) of

variables x
1

, k
1

. It reads,

Wmrg(x1

, k
1

) / e�(x2
1+k21+z2)

h
1 + e�z2e2

p
2zx1 + 2e

p
2zx1 cos(

p
2zk

1

)
i
. (C-9)

At the point (x
1

= 0, k
1

= ⇡/
p

2z), the value of Wigner function

Wmrg(0,⇡/
p

2z) / e�z2�⇡2/2z2 [e�z2 � 1] (C-10)

is negative since 1 � e�z2 > 0 for any nonvanishing z. We then conclude that such state,

therefore a generic QMC states, cannot be produced in classical means.

The negative value of Wmrg(0,⇡/
p

2z), see Figure 7.1. One finds when the value of

z becomes very large, the negative value becomes very small, owing to the term in front

of the square bracket in Eq. (C-10). In fact, it is also true for the tetra-variate Wigner

distribution that all the negative value will be very small with a large z. It is possible to

construct a similar shape of the Wigner function whose value is positive everywhere. But

we are still not sure whether such an alternative can be produced in classical means or

not, because the fact that a positive-everywhere Wigner distribution does not mean that

the corresponding state should be classical.
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Figure 7.1: Plot of the value of the marginal Wigner function W

mrg

(0,⇡/
p
2z) with di↵erent value of

field amplitude z. The function attains its minimum (' �1.1 ⇥ 10�2) around z = 1.6. When z becomes

very large or very small, the negativeness is not noticeable.

D Possible physical realization of QMC states

To produce a CMC state as defined above is not so di�cult. In principle, one can

use classical random number generator and two local systems to generate the coherent

states[Glauber1963] with classical communications[Werner1989]. But to produce a QMC

state, a pure macroscopic state, is not so easy.

D.1 Micro-macro coupling via two-atom interaction

Consider two individual three-level atoms (a) and (b) which are initially occupied on the

found states interacting with a bipartite EM field, see fig. 7.4. A bipartite two-photon

state | ↵�i is prepared in advance in other system and the central frequencies of subparts

can be adjustable. In atom a (b), photon in its own subsystem a(b) optically connects to

the ground state and upper state with a large detuning � which is greater than the width

of photon energy spectrum, photons in a superposition of coherent state

|mac : a(b)i = dim�1/2
X
k

|↵(�) : !ki (D-1)

in which we signify symbol ↵(�) as a complex number, connect to the metastable state

|ma(b)i and the upper state with a same detuning �. The Bohr frequency !m;a(b) usually

is di↵erent from the ground state, in other words, the central frequencies of the micro-

and macro-scopic states are di↵erent. For a desired central frequency of the macroscopic

state, one can always adjust the central frequency of the microscopic state in advance. For

sake of simplicity, we will assume the central frequencies of both are identical, so as to the

Bohr frequencies of metastable state and ground state.

Furthermore, we also assume that the atomic frequency di↵erence between the excited

states are large, and photon in subsystem a(b) only sensitive to atom a (b). In this sense,

we split the quantized field at origin into several e↵ective fields for practical reason,

Êµ = iEµ
P

m âj,me�i!
m

t � h.c., µ = a, b; (D-2a)

Êu = iEu
P

m b̂j,me�i!
m

t � h.c., u = a, b. (D-2b)

The extra subscript j signify which atom a frequency component couples. A photon
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Figure 7.2: Figures of the Wigner function of the state |0, zi + |z, 0i. From the two figures, one finds

zones whose value is negative. The negative value of the Wigner function is a witness of non-classicality

that reveals the fact that such state cannot be produced in any classical means.
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Figure 7.3: A schematic sketch for transferring the correlations in the microscopic state

to macroscopic one by performing an atomic measurement. Each subsystem of a bipartite

microscopic state is coupling to a three level atom in which the other energy level pair

allowed for dipole transition is coupled by a macroscopic state that is superposed by equal

wighted coherent states. Stationary coupling between two fields connected to the ground

state and metastable state in an atom impose that a frequency mode in one field can

only interacts with its corresponding frequency mode in another. If the populations which

initially occupied on the ground states are measured on both metastable states, then the

macroscopic state is prepared

in subsystem a does not have a direct impact on the interaction between a photon in

subsystem b and the other atom, and hence we consider the whole process as two individual

but similar subprocesses. Take the process related to atom (i) for detail consideration. At

the rotating wave approximation the hamiltonian of the system is then given by :

H = ~!i|eiihei| +
P

` ~!(â†i,`âi,` + b̂†i,`b̂i,`) + Vi; (D-3a)

V = ~|eiihgi|
P

` feigi âi,` + ~|eiihmi|
P

` feimi

b̂i,` + h.c., (D-3b)

[âi,`, â
†
j,`0 ] = [b̂i,`, b̂

†
j,`0 ] = �ij�`,`0 , [âi,`, b̂

†
j,`0 ] = [âi,`, b̂j,`0 ] = 0; (D-3c)

where fe
i

g
i

and fe
i

m
i

are two vacuum Rabi frequencies. For simplicity, we will set the

location of the two atoms are at origin and hence will not consider propagation e↵ects

in the phase factor. The vacuum Rabi frequencies are largely frequency independent, we

then take them as constant numbers.

In each subsystems, whichever the microscopic state or the macro-superposed state,

one can extract one photon from one frequency mode but never two photons from two

di↵erent frequency modes. This model can be exactly described by the method of disen-

tangling an operator (time ordered) exponential function[PuriMMQO] with the absence
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of decoherence. In the case here, it is logical to neglect these decoherence e↵ects in the

light of large single photon detuning �.

Via the optical connections to a mutual upper state, the photons in both states estab-

lish a stable coherence. Since only one photon in the subsystem of the microscopic state,

if one observes a population transferring to the metastable state |mii, then the photon in

microscopic state should have been destroyed and its correlation with the other photon in

another party should be transferred to the respective macroscopic state. Therefore the de-

sired state, according to Born’s rule, is the one after performing a projection measurement

|mambihmamb| on atomic part of the total density matrix,

⇢ =
Tratoms[⇢̃(t)|mambihmamb|]

Tr[⇢̃(t)|mambihmamb|]
=

hmamb|⇢̃(t)|mambi
Tr[⇢̃(t)|mambihmamb|]

(D-4)

where the total density matrix ⇢̃ at time t is developed from the initial state |gagbihgagb|⌦
⇢↵� by a given set-up characterized by a function V̂, therefore, can be expressed as ⇢̃(t) =

V̂(|gagbihgagb| ⌦ ⇢↵�).

To simplify the discussion, we will use lowest order perturbation theory in which we

needn’t consider the correlations induced by the interaction with photons between atoms a

and b. The leading term which describes a population transferring from ground state |gji
to the metastable state |mji certainly stands for a process V

(2)

j that destroy one photon

in the microscopic state and create another one in the macroscopic state. So, the second

order perturbation theory meets the need and formally

hmamb|⇢̃(t)|mambi ' hmamb|V(2)

a V
(2)

b |gagbi⇢0hgagb|V(2)†
a V

(2)†
b |mambi, (D-5)

By direct calculations, one finds

hmj |V(2)

j |gji = �fm
j

e
j

fe
j

g
j

X
nl

b̂†j,nâj,l
e��jt�iH0

j,f

t/~

i!e
j

l + �j

"
1 � e�i!

nl

t

i!nl
+

e�i!
nl

t � e�(i!
e

j

l

+�
j

)t

i!ne
j

� �j

#

where b̂†j,n is the creation operator of n-th frequency mode and H0

j,f is a free field Hamil-

tonian. The last term in the square bracket is at a magnitude of ��1 and therefore can

be neglected. We also noticed that !e
i

l ± i�i ' �. As a result,

hmj |V(2)

j |gji ' �fm
j

e
j

fe
j

g
j

X
nl

b̂†j,nâj,l

i�

1 � e�i!
nl

t

i!nl
e��jt�iH0

j,f

t/~ (D-6)

By using an approximation to a limit representation of the Dirac � function, [1�e�i!
nl

t]/i!nl '
2⇡�(!nl), we have

hmj |V(2)

j |gji ' fm
j

e
j

fe
j

g
j

iL

c

e��jt

�

Z
d!l

X
n

b̂†j,nâj,l�(!nl)e
�iH0

j,f

t/~

= fm
j

e
j

fe
j

g
j

iL

c

e��jt

�

X
n

b̂†j,nâj,ne�iH0
j,f

t/~

= e�iH0
j,f

t/~fm
j

e
j

fe
j

g
j

iL

c

e��jt

�

X
n

b̂†j,nâj,n (D-7)

To obtain the last equality we have used the assumption that the central frequencies of

both fields are the same. However, it is safe to use the last equality even in a real situation
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when there is a di↵erence between both field. Recalling the formula in Eq.(D-5), any

global (pure) phase function in the expression of hmj |V(2)

j |gji does imply a product to its

complex conjugate.

The final photon state, according to Eq.(D-4), is indeed a pure state ⇢ = | ih |, where

| i =e�iH0
f

t/~
P

mn b̂†a,mb̂†b,nâa,mâb,n| abi ⌦ |mac : ai ⌦ |mac; bi
k
P

mn b̂†a,mb̂†b,nâa,mâb,n| abi ⌦ |mac : ai ⌦ |mac; bik

=e�iH0
f

t/~
P

mn cmnb̂†a,mb̂†b,n|mac : ai ⌦ |mac : bi
k
P

mn cmnb̂†a,mb̂†b,n|mac : ai ⌦ |mac : bik
(D-8)

In a macroscopic coherent state |zµ : !ni whose complex amplitude is large, approximately,

we can take

b̂†µ,m|zµ : !ni ' �mnz⇤µ|zµ : !ni. (D-9)

Then the remarkable terms are only those with same subscript indices,P
mn cmnb̂†a,mb̂†b,n|mac : ai ⌦ |mac; bi ' (↵�)⇤

P
mn cmn|↵ : !mi ⌦ |� : !ni (D-10a)

k
P

mn cmnb̂†a,mb̂†b,n|mac : ai ⌦ |mac; bik ' |↵�| (D-10b)

Therefore, | i is indeed the macroscopic state |QMCi by setting ↵ = �,

| i = e�iH0
f

t/~e�2i arg↵|QMCi. (D-11)

D.2 Micro-macro coupling via optical beam splitter

As we have seen in the previous treatment, the key ingredient to produce the QMC state is

to create an one-one coupling between frequency modes. Such an interaction indeed can be

found in a beam splitter. In general, a beam splitter is a physical realization of a unitary

Figure 7.4: A schematic sketch for transferring correlations in a microscopic state to

a macroscopic one by performing a measurement on the output light. Each subsystem

of the bipartite microscopic state together with a state |mac : a(b)i that is superposed

by equal wighted coherent states, is sent to couple each other in a beam splitter a(b).

The one-one correspondence of frequency coupling between a single photon state and a

coherent state gives rise to a displacement operation only on the microscopic part. It is

thus expected that the output light should include a new coherent state.

operation acting on the state who passing through it, such operation is characterized by

a unitary evolution operator

B̂s = exp[i
X
j

�j(âj b̂
†
j + â†j b̂j)], (D-12)

where âj , b̂j are two annihilation operators of di↵erent modes but corresponding to a same

frequency !j , �j is set real and stands for the ”interaction” strength. This interaction

is also not a real one in the standard sense, since any photons do not have interaction

between each other, it is an e↵ective one by averaging the microscopic details. The fact
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of a vanishing commutator between the e↵ective action ~�j(âj b̂†j + â†j b̂j) and the true

Hamiltonian of free fields ~
P

j !j(â
†
j âj + b̂†j b̂j) suggests such transform is energy preserved

in quantum sense.

Let’s first consider a most simple case: a beam splitter only working on two modes of

a same frequency !j ,

B̂s,j = exp[i�j(âj b̂
†
j + â†j b̂j)]. (D-13)

This is an exponential function of elements in su(2) algebra because of the commutative

relations:

[Kj
+

, Kj
�] = 2Kj

0

, [Kj
0

, Kj
±] = ±Kj

±, (D-14)

where Kj
+

= â†j b̂j , K
j
� = âj b̂

†
j , K

j
0

= (â†j âj � b̂†j b̂j)/2. Such an exponential function can be

disentangled as [PuriMMQO]

B̂s,j = exp(iKj
+

tan�j) exp(�2Kj
0

ln cos�j) exp(iKj
� tan�j) (D-15)

Such disentanglement has a clear physical picture: the equipement works in a wav by

firstly taking away photons in one part and add them to another then assessing the photon

number di↵erences and lastly putting some photons back according to the ”policies” from

the previous judgements.

Note that the beam splitter operator B̂s,j is not a displacement operator D̂(i↵�j , âj) =

exp[i↵�j â
†
j � h.c.] in general, except by taking (b̂j , b̂

†
j) = (↵j ,↵⇤

j ) as well as weak coupling

strength �j . This is universally true since a beam splitter operator is energy-preserving

while a displacement operator should add energy to or take energy away from the original

state in most cases.

Consider an input state |1 : !ki⌦ |↵ : !qi where ↵ is a large complex number therefore

one can apply the approximation (D-9) for creation operator b̂†j . The output state is then

B̂s,j |1 : !ki ⌦ |↵ : !qi ' �jk�jq(cos�j)
|↵|2ei(↵ tan�

j

)â†
j [|1 : !ji + i↵⇤|0i] ⌦ |↵ : !ji. (D-16)

The microscopic state (cos�j)|↵|
2
ei(↵ tan�

j

)â†
j [|1 : !ji + i↵⇤|0i] = D̂(i↵�j , âj)|1 : !ji is a

single photon state of frequency !j displaced by i↵�j in phase space, then we rewrite the

output as

B̂s,j |1 : !ki ⌦ |↵ : !qi ' �jk�jq[D̂(i↵�j , âj)|1 : !ji] ⌦ |↵ : !ji. (D-17)

The e↵ective actions of di↵erent frequencies are irrelevant, as one can see from the

result of any the commutation operation

8i, j; [�i(âib̂
†
i + â†i b̂i),�j(âj b̂

†
j + â†j b̂j)] = 0,

as a result, the beam splitter operator B̂s can be regarded as a product combination of

those single frequency beam splitter operators which works individually,

B̂s = ⌦jB̂s,j . (D-18)

Then the whole output state can be expressed as

| i = B̂a
sB̂

b
s| ↵�i ⌦ |mac : ai ⌦ |mac : bi (D-19)

=
X
mn

cmn ⌦jk B̂
a
s,jB̂

b
s,k|1 : !a

m; 1 : !b
ni ⌦ |mac : ai ⌦ |mac : bi

'
X
mn

cmnB̂
a
s,mB̂b

s,n|1 : !a
m; 1 : !b

ni ⌦ |mac : ai ⌦ |mac : bi (D-20)
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The superscript a(b) signify a process related to beam splitter a(b). Let’s take all the �js

to be identical, denoted by � as well as take |↵| � 1, then the total output state reads

| i = dim�1

X
mn

cmnD̂
a(i↵�, âm)D̂b(i↵�, ân)|1 : !a

m; 1 : !b
ni ⌦ |↵ : !a

mi ⌦ |↵ : !b
ni. (D-21)

Now the macroscopic coherent states are well-coupled at the cost of the presence of some

newly induced microscopic displaced Fock states D̂a(i↵�, âm)D̂b(i↵�, ân)|1 : !a
m; 1 : !b

ni.
Unfortunately, it is really di�cult (or impossible) to partially displace all these states back

to Fock state while keep other joint macroscopic coherent states unchanged.

Recalling the Eq.(D-16), because of the ratio between the vacuum state and single

photon state in its square bracket, the large portion of the superposition is vacuum state

when with large |↵|, therefore, the displaced single photon state D̂(i↵�j , âj)|1 : !ji behaves

like a coherent state

D̂(i↵�j , âj)|1 : !ji ' i↵⇤�jk�jq(cos�j)
|↵|2e(|↵| tan�j)

2/2|i↵ tan�j : !ji, (D-22)

and then the total output state approximates

| i ' N
0

X
mn

cmn|i↵ tan� : !a
m; i↵ tan� : !b

ni ⌦ |↵ : !a
mi ⌦ |↵ : !b

ni (D-23)

where N
0

= � dim�1 ↵⇤2(cos�)2|↵|2e|↵|2 tan2 � is a constant number.

In order to get the desired output state, now we should make these microscopic coherent

states disappear in the expression. We notice that the weakness of coupling strength � can

give rise to a universal single photon detection to all the frequency modes in each part,

M̂j = |IjihIj |, |Iji = dim�1/2
X
m

âj†m|0i. (D-24)

|Iji is an intrinsic single mode state according to the criteria in [Treps2005]. After per-

forming such measurement on both microscopic parts, the final state reads

⇢f =
Trmicro[M̂1

M̂
2

| ih |]
Tr[M̂

1

M̂
2

| ih |]
(D-25)

or alternatively,

| if =
X
mn

cmn|↵ : !a
mi ⌦ |↵ : !b

ni = |QMCi. (D-26)

D.3 Some remarks

We have demonstrated two ways to produce the QMC state. To make both proposals

work, one has to prepare two macroscopic superposition states |mac : a, bi. If either is

replaced by mixed states or multimode coherent state, then they fail to give the desired

result. The two states are necessities, but, such superposition states are very di�cult to

produce experimentally and we should find a way to produce them in future.
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[Corona2007] Maŕıa Corona, and Alfred B. U’Ren, Parametric down-conversion

with optimized spectral properties in nonlinear photonic crystals,

Phys. Rev. A 76, 043829 (2007). Quoted p. 100
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Zeilinger, and M. Żukowski, Multiphoton entanglement and inter-

ferometry, Rev. Mod. Phys. 84, 777 (2012). Quoted p. 63

[Pauli1933] W. Pauli, ’Die allgemeine Prinzipien der Wellenmechanik’, in Hand-

buch der Physik, Springer, (1933). Quoted p.

[Paye1992] J. Paye, The chronocyclic representation of ultrashort light pulses,

IEEE J. Quantum Electron. 28, 2262 (1992). Quoted p. 122
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