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accepté avec gentillesse de juger ce travail

Je voudrais en premier lieu remercier Yuxin Ge et Étienne Sandier pour avoir dirigé ma thèse et m'avoir soumis une série de problèmes très intéressants qui m'ont amené à apprendre de nombreuses techniques mathématiques fort utiles. Ils m'ont témoigné leur confiance et m'ont soutenu tout au long de cette thèse. Leurs remarques, toujours simples et claires, m'ont beaucoup aidé à trouver une solution aux questions posées.

Chapter 1 Introduction

Ce travail porte sur des équations aux dérivées partielles issues de la physique mathématique, plus particulièrement sur celles régissant la supraconductivité. Ainsi, la majorité du travail concerne le modèle de Ginzburg-Landau, qui est un modèle macroscopique de supraconducteurs de type-II. Ce travail est divisé en deux parties principales:

• La première partie se focalise sur l'analyse des vortex du modèle de Ginzburg-Landau en deux dimensions pour les supraconducteurs de type-II, modèle conduisant à une estimation de la variation du nombre de vortex et à l'optimalité du réseau d'Abrikosov parmi les réseaux de Bravais. Nous avons également étudié certains modèles de stuctures des matériaux comme ceux de Lennard-Jones et de Thomas-Fermi.

• La seconde partie est consacrée à la fonctionnelle de Ginzburg-Landau en dimension n. Deux résultats principaux sont obtenus. L'un porte sur l'énergie renormalisée pour les minimiseurs de la fonctionnelle de Ginzburg-Landau. L'autre concerne les limites des solutions de l'équation de Ginzburg-Landau. Ces deux résultats sont fortement reliés aux applications n-harmoniques.

Analyse des vortex

Pour un supraconducteur de type-II refroidi en deçà de la température critique, les vortex apparaissent quand le champs magnétique extérieur est supérieur à une première valeur dite critique. Le physicien russe Abrikosov a prédit l'apparition de réseaux de vortex parfaitement triangulaires, désormais appelés réseaux d'Abrikosov,à partir du modèle de Ginzburg-Landau en 1950. Celui-ci, destiné au départ à décrire les phénomènes de supraconductivité, a conduità de nombreux travaux en physique théorique. En revanche, il n'y avait pas réellement de preuve mathématique rigoureuse pour la transition de phase se produisant à la première valeur critique ni pour l'émergence des réseaux d'Abrikosov. Depuis 1990, de nombreux mathématiciens se sont intéressés au modèle de Ginzburg-Landau, dont par exemple Berger, Baumann, Chapman, Du, Schatzman, Phillips, etc( [START_REF] Du | Modeling and analysis of a periodic Ginzburg-Landau model for type-II superconductors[END_REF][49] [11][21]). Parmi eux, Bethuel-Brezis-Helein [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] ont fait un travail remarquable sur le modèle de Ginzburg-Landau sans champ magnétique, sous la contrainte d'un nombre fixé de vortex dans la limite où les vortex deviennent des points. Ensuite, Bethuel et Rivière ont étudié le modèle avec jauge et une autre condition au bord ( [START_REF] Bethuel | Vortices for a variational problem related to superconductivity[END_REF], [START_REF] Bethuel | Vorticité dans les modèles de Ginzburg-Landau pour la supraconductivité[END_REF]).

CHAPTER 1. INTRODUCTION

Concernant le modèle avec champ magnétique et avec un nombre de vortex devenant infini dans la limite où les vortex deviennent des points, c'est en particulier grÃćce aux outils dévelopés par Sandier [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF] et Jerrard [START_REF] Jerrard | Lower bounds for generalized Ginzburg-Landau functionals[END_REF], que l'on commenceà pouvoir résoudre ce problème. Etienne Sandier et Sylvia Serfaty ont beaucoup écrit, individuellement ou ensemble, sur le modèle complet( [START_REF] Sandier | Vortices in the magnetic Ginzburg-Landau model[END_REF]). Notre travail sur les analyses des vortex est fortement liéà leur démarche. Nous obtenons les résultats suivants :

1.1.1 Variation du Nombre de Vortex

Dans [START_REF] Zhang | On the variation of the vortex number of a periodic Ginzburg-Landau model[END_REF], nous étudions l'évolution du nombre de vortex dans un modèle de Ginzburg-Landau périodique. Il est conjecturé que le nombre de vortex pour un minimiseur de la fonctionnelle de Ginzburg-Landau varie par pas d'une unité lorsque le champ magnétique augmente. Par contre, il y a très peu de preuves mathématiques rigoureuses de cette conjecture. Nous avons étudié ce problème dans un cas particulier. Nous montrons que pour le modèle de Ginzburg-Landau doublement périodique, quand la cellule de périodicité dégénère en un segment, le nombre de vortex pour un minimiseur de la fonctionnelle de Ginzburg-Landau augmente un par un en fonction du champ magnétique appliqué. Ce travail s'appuie sur [START_REF] Aydi | Vortex analysis of the periodic Ginzburg-Landau model[END_REF]. Nous réduisons le problème à celui de l'étude des minimiseurs de l'énergie de Ginzburg-Landau renormalisée. Utilisant la Γ-convergence, nous parvenons à connecter le modèle en deux dimensions avec un modèle en une dimension. Nous montrons que pour l'énergie renormalisée en une dimension, le nombre de vortex du minimiseur augmente un par un en fonction du champ magnétique appliqué. Autrement dit, l'énergie renormalisée en deux dimensions et le modèle de Ginzburg-Landau périodique ont pour limite une énergie renormalisée en une dimension quand la hauteur de la cellule tend vers 0.

Optimalité des Réseaux d'Abrikosov

Nous avons plusieurs résultats pour ce problème. Dans [START_REF] Zhang | On the Minimizer of Renormalized Energy related to Ginzburg-Landau Model[END_REF], nous montrons que le réseau d'Abrikosov, modulo les rotations, est un minimiseur unique pour l'énergie renormalisée de Ginzburg-Landau parmi tous les réseaux de Bravais à densité fixée. Ceci décrit un supraconducteur dans un champ extérieur égal à H c 1 + C, pour lequel le réseau de vortex est dilué: dans ce cas les vortex interagissent par un potentiel de Bessel au lieu du potentiel log. Adaptant les méthodes de [START_REF] Sandier | From the Ginzburg-Landau model to vortex lattice problems[END_REF], nous pouvons réécrire l'énergie renormalisée grâce à une formule explicite utilisant les fonctions θ de Jacobi. Ensuite, le résultat de Montgomery [START_REF] Montgomery | Minimal theta functions[END_REF] sur les fonctions θ de Jacobi peut alors être appliqué pour obtenir notre résultat. En collaboration avec Laurent Bétermin, nous étudions l'optimalité des réseaux d'Abrikosov dans les modèles de Lennard-Jones et de Thomas-Fermi. Nous montrons dans [START_REF] Bétermin | Minimization of energy per particle among Bravais lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF] que le minimiseur de l'énergie par particule pour l'interaction de Lennard-Jones parmi les réseaux de Bravais est le réseau hexagonal pour de forte densité de particules, mais que cela est faux pour une densité suffisamment faible. Nous montrons également des résultats sur le minimiseur sans contrainte sur la densité. Dans cet article, nous prouvons également que le minimiseur de l'énergie par particule dans le modèle de Thomas-Fermi dans le plan parmi les réseaux de Bravais avec densité fixée est aussi le réseau hexagonal, et ceci fournit une autre preuve de l'optimalité des réseaux d'Abrikosov parmi les réseaux de Bravais dans le modèle de Ginzburg-Landau. 

Fonctionnelle de type Ginzburg-Landau en dimensions supérieures

Il y a beaucoup de travaux de recherche concernant le système de Ginzburg-Landau en deux dimensions. Dans cette partie, nous étudions une fonctionnelle de type Ginzburg-Landau en n dimensions. Dans [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], Bethuel-Brézis-Hélein, en dimension deux, définissent une énergie renormalisée W pour des applications harmoniques à valeurs dans S 1 ayant un nombre fini de singularités, et 1. Donnent une formule explicite de W;

2. Montrent que l'énergie de minimiseurs de l'énergie de Ginzburg-Landau a un développement asymptotique

E ε (u ε ) = πd|ln ε| + W(a 1 , • • • , a d ) + O ε (1) ( * )
où W est l'énergie renormalisée citée précédemment.

Pour la dimension n, l'asymptotique des minimiseurs de l'énergie de Ginzburg-Landau est étudiée par Han and Li [START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF] qui démontrent que, comme en 2D les minimiseurs convergent en dehors d'un nombre fini de points a 1 , • • • , a d vers une application n-harmonique ayant une singularité de degré 1 en chaque point.

Introduction

In this chapter, we focus on the two-dimensional periodic Ginzburg-Landau model for type-II superconductivity. We study the variations of the vortex number contained in the minimizer of a Ginzburg-Landau energy with periodic boundary conditions in the London limit. We firstly study the related renormalized energy W, and get that if the height of the lattice is small enough, then we get the variations of the number of points contained in the minimizer of W. By using Theorem 2.1.2 of [START_REF] Aydi | Vortex analysis of the periodic Ginzburg-Landau model[END_REF], we have the same result about the Ginzburg-Landau energy.

Background

Since the discovery of superconductivity in 1911 by Dutch physicist Kamerlingh Onnes, many scientists from various subjects such as physics, material, mathematics and so on have being abstracted by this magical phenomenon. There are a lot of excellent sources for introduction to superconductivity. For example [START_REF] Tinkham | Introduction to superconductivity[END_REF], [START_REF] De Gennes | Superconductivity Of Metals And Alloys. Advanced Books Classics Series[END_REF], [START_REF] Saint-James | Type II Superconductivity. International series of monographs in natural philosophy[END_REF], [START_REF] Bardeen | Theory of superconductivity[END_REF] and [START_REF] Kuper | An introduction to the theory of superconductivity[END_REF]. For the Type-II superconductor, when the applied magnetic field is above a certain value which is called the first critical applied magnetic field, vortices would appear. The number of vortices varies with the applied magnetic field.

An interesting question arising here is "How does the number of the vortices vary? " It grows one by one, or, for example, from 3 to 5 directly. The problem is complicated due to the fact that the sample has boundaries if we consider common sample. Thus we assume that the superconductor is large, and we are far from the boundary. In this case, the physically relevant variables are in some sense periodic. We will study the question in the periodic case. Periodic solutions of the Ginzburg-Landau energy were firstly studied by A. Abrikosov in [START_REF] Abrikosov | On the Magnetic properties of superconductors of the second group[END_REF]. And since then, it has been being studied by many mathematicians and physicists. For example the existence ( [START_REF] Almog | On the bifurcation and stability of periodic solutions of the Ginzburg-Landau equations in the plane[END_REF], [START_REF] Odeh | Existence and bifurcation theorems for the ginzburg-landau equations[END_REF]), regularity of solutions ( [START_REF] Du | Modeling and analysis of a periodic Ginzburg-Landau model for type-II superconductors[END_REF]), and numeric analysis ( [START_REF] Doria | Solving the ginzburg-landau equations by simulated annealing[END_REF]).

In the framework of periodic case, we solve this problem in a special case: when the height of the lattice is small, the number of vortices jumps one by one as the applied magnetic field grows. Our work will based on the work of [START_REF] Aydi | Vortex analysis of the periodic Ginzburg-Landau model[END_REF] which gave a fairly unified description of the vortices of minimizers of the periodic Ginzburg-Landau energy in the London limit.

The main result

The Model. Denote L be a parallelogram generated by two vectors ( u, v), and L be the group of translations generated by ( u, v). We say a function f (x) is periodic with respect to ( u, v), if

f (x + k u + m v) = f (x), ∀k, m ∈ Z, ∀x ∈ R 2 .
Here the function f (x) can be real, complex or vector valued.

We need the following function spaces

H m loc (R 2 ) = u : R 2 → C ℜ(u), ℑ(u) ∈ H m (D) for all bounded D ⊂ R 2 , H m loc (R 2 ) = A = (A 1 , A 2 ) : R 2 → R 2 A 1 , A 2 ∈ H m (D)
for all bounded D ⊂ R 2 . Definition 2.1.1 (Gauge Equivalent). We say that two configurations (u, A) and (v, B) are gauge equivalent if there exists a (smooth) function f : R 2 → R, such that v = ue i f , B = A + ∇ f

The transformation from (u, A) to (v, B) is called a gauge transformation. Definition 2.1.2 (Periodic Space). We define the space H per to be the set of all (u, A) ∈ H 1 loc (R 2 ) × H 1 loc (R 2 ) such that for any k, m ∈ Z, the configuration (u(• + k u + m v), A(• + k u + m v)) is gauge equivalent to (u, A).

For (u, A) ∈ H per , an ε > 0 and an applied magnetic field h ex (ε), we define the periodic Ginzburg-Landau energy as follows

GL ε (u, A) = 1 2 L |∇ A u| 2 + |curlA -h ex | 2 + 1 2ε 2 (1 -|u| 2 ) 2 .
Here ∇ A u :≡ ∇u -iAu, u is called "order parameter " in physics, which indicates the local state of the material(superconducting phase or normal phase), A is the vector potential of the magnetic field, curlA is the induced magnetic field, h ex is the applied magnetic field, and ε is the inverse of the Ginzburg-Landau parameter κ. In H per , ∇ A u and curlA are periodic with respect to ( u, v). The energy is invariant under the Gauge transformation. For this periodic model, when the area of L equals to 1, we have the following two propositions and one theorem in [START_REF] Aydi | Vortex analysis of the periodic Ginzburg-Landau model[END_REF]( See Proposition 2.1, Proposition 2.2 and Theorem 1 of [START_REF] Aydi | Vortex analysis of the periodic Ginzburg-Landau model[END_REF]). 

n i = 1 2π L curlA i .
Remark 1. For each ε > 0, the number of vortices contained in the minimizer of GL ε (u, A) in one lattice cell does not decrease as the applied magnetic field increases. Then there exist a well defined value H C 1 (ε) such that the minimizer of GL ε (u, A) with parameters ε and h ex satisfies n = 0 if h ex < H C 1 (ε), and n > 0 if h ex ≥ H C 1 (ε). We call this value "the first critical applied magnetic field ". The author in [START_REF] Aydi | Vorticité dans le modèle de Ginzburg-Landau de la supraconductivité[END_REF] proved that the regime of the

H C 1 (ε) is 1 2 | log ε|. We define ∆ ex :≡ h ex -1 2 | log ε|. Remark 2.
Note that when n = 0, the minimizers are gauge equivalent to Meissner solution (1, 0). In physics, it means that the material is in the superconducting state.

Theorem ( [START_REF] Aydi | Vortex analysis of the periodic Ginzburg-Landau model[END_REF]). Let (u ε , A ε ) be any minimizer of GL ε , h ε = curlA ε , and

n ε = 1 2π L curlA ε .
Then the following behaviors of h ε , n ε holds, according to the applied field h ex .

• If 1 ≪ ∆ ex ≪ 1/ε 2 , then as ε → 0, h ε 2πn ε → 1 in W 1,p (L) (∀p < 2), and n ε ≈ ∆ ex 2π .
• If |∆ ex | is bounded independently of ε, then so are h ε W 1,p , ∀p < 2 and n ε . If {ε} is a subsequence such that {h ε } ε converges to h * and {∆ ex } ε converges to a value ∆ * ex , then n ε → n * ∈ N, and in particular n ε = n * for small enough ε, then there are n * distinct points {a i } n * i=1 in L such that

-∆h * + h * = 2π n * i=1 δ a i .
Moreover, for p = (p 

|∇h p | 2 + h 2 p + n(γ -2π∆ * ex ),
where h p is the unique L-periodic solution of -∆h p +h p = 2π n i=1

δ p i . Then (a 1 , • • • , a n * )
minimizes W over P. The number γ is defined in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF][START_REF] Sandier | Vortices in the magnetic Ginzburg-Landau model[END_REF] as

γ = lim R→+∞ -π log R + 1 2 B(0,R) |∇u 0 | 2 + (1 -|u 0 | 2 ) 2 2 ,
where u 0 is the unique solution of -∆u 0 = u 0 (1 -|u 0 | 2 ) in R 2 of the form u 0 (r, θ) = f (r)e iθ , with f : R + → R + .

• There exists a possibly negative ∆ 1 ∈ R s.t. if ∆ ex < ∆ 1 and ε is small enough, then n * = 0. In this case (u ε , A ε ) is gauge equivalent to the Meissner solution(1, 0).

Remark 3. From Proposition 2.1.2 and the Theorem above, we could get that the number of the points contained in the minimizer of the renormalized energy W would not decrease as ∆ * ex increases. We give a short proof as follows. Proposition 2.1.3. The number of the points contained in the minimizer of the renormalized energy W defined over P would not decrease as ∆ * ex increases.

Proof. The proof is easy. Let (p 1 , ∆ 1 ) (respectively (p 2 , ∆ 2 )) minimizes the renormalized energy W with parameter ∆ 1 (respectively ∆ 2 and ∆ 1 < ∆ 2 ). Then we have

W(p 1 , ∆ 1 ) ≤ W(p 2 , ∆ 1 ), (2.1) W(p 1 , ∆ 2 ) ≥ W(p 2 , ∆ 2 ). (2.2) then apply (2.1) -(2.
2), we have

2πn 1 (∆ 2 -∆ 1 ) ≤ 2πn 2 (∆ 2 -∆ 1 ).
Then we have

n 1 ≤ n 2
In the left of the paper, we only consider a special case of the periodic model. We consider the small rectangles, i.e. u⊥ v.

Let L = [-1 2 , 1 2 ] × [0, l].
Note that now the area of the lattice cell is l, rather than 1. However the existence of the renormalized energy W is still true (see the proof in section 6 of [START_REF] Aydi | Vortex analysis of the periodic Ginzburg-Landau model[END_REF]). It would be interesting to verify the regime of the H C 1 (ε) if the area of the lattice cell is l. One can refer [START_REF] Kurzke | On the energy of superconductors in large and small domains[END_REF] for the regime of the H C 1 (ε) for a domain with size tending to 0 or infinity as ε tends to 0. Here we redefine

∆ ex :≡ h ex -H C 1 (ε).
We are interested in the variation of vortex number contained in the minimizer of periodic Ginzburg-Landau energy. We have a result in a special case.

Theorem 2.1.1. Let L be the lattice cell defined above. For every N ∈ N, there exists l N and if ε ≪ l ≤ l N ≪ 1, then there exists an exactly increasing sequence of N values

∆ 1 + o(1) < ∆ 2 + o(1) < • • • < ∆ N + o(1),
where ∆ i does not depend on ε and l, such that at h ex = H n = H C 1 (ε)+ ∆ n l +o( 1 l ), 1 ≤ n ≤ N, the number of vortices of the minimizer of GL ε jumps from n to n + 1.

The remainder of this chapter is organized as follows. Before studying the periodic Ginzburg-Landau energy, we first study the corresponding renormalized energy W. In Section 2.2.1, we prove that in dimension one, the number of the points contained in the minimizer of W 1D jumps one by one. In Section 2.2.2, we prove Γ-convergence of l 2 E to F, where E is the main part of W and F is the main part of W 1D , and both of them will be defined later. Then in Section 2.3, we give the proof of Theorem 2.1.1.

The Renormalized Energy

In this section, we study the renormalized energy W. First, we study the properties of a energy W 1D in one dimension. The motivation is in the case of two-dimension, when the height l of the lattice cell converges to 0, intuitively, the vortices would form lines, thus the two dimensional model would degenerate to a one dimensional model. Second, we prove the Γ-convergence of l 2 • E in two-dimension to F in one-dimension, where E is the main part of W and F is the main part of W 1D , and they will be defined later. In the proof, we use ball growth method which was introduced independently in [START_REF] Jerrard | Lower bounds for generalized Ginzburg-Landau functionals[END_REF] and [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF] to get the lower bound. And then by using a similar method in [START_REF] Sandier | S 1 -valued harmonic maps with high topological degree[END_REF] we get the upper bound. Combine the upper bound and lower one together, we finish the proof of Γ-convergence.

The Case of One Dimension

In this subsection, we consider the case of one dimension. Denote K be [-a/2, a/2] in R 1 for any a > 0. Denote still by P the family of sets of finite points over K and for p = {p 1 , ..., p n } ∈ P where n ∈ N, we define an energy

W 1D (p, ∆ ex ) = 1 2 K |∇h p | 2 + h 2 p dx -2πn∆ ex
where h p is the unique K-periodic solution of

-∆h p + h p = 2π n i=1 δ p i .
Theorem 2.2.1. There exists an increasing sequence of critical values {∆ k } k∈N , such that at each ∆ k , the number of points contained in the minimizer of W 1D jumps from k to k + 1.

That means the number of points contained in the minimizer of W 1D jumps one by one as the ∆ ex grows.

First, let us consider the case of one point in K, i.e.

               -h ′′ 0 (x) + h 0 (x) = 2πδ 0 in K h 0 (0 + ) = h 0 (0 -) h 0 (a/2) = h 0 (-a/2) h ′ 0 (a/2) = h ′ 0 (-a/2)
The solution has the form of

h 0 (x) = c 1 e x + c 2 e -x , x ≥ 0; c 3 e x + c 4 e -x ,
x < 0.

(2.1)

THE RENORMALIZED ENERGY

We can determine these constants by using the equation and boundary conditions(periodic boundary conditions).

               (c 3 -c 4 ) -(c 1 -c 2 ) = 2π c 1 + c 2 = c 3 + c 4 c 1 e a/2 + c 2 e -a/2 = c 3 e -a/2 + c 4 e a/2 c 1 e a/2 -c 2 e -a/2 = c 3 e -a/2 -c 4 e a/2 . (2.2)
Then we have the solution

                               c 1 = π e a -1 c 2 =
πe a e a -1

c 3 =
πe a e a -1 c 4 = π e a -1 .

(2.3)

For arbitrary p ∈ K, h p (x) = h 0 (xp) due to the periodicity. And what's more, in the case of only one point in K, all the solutions have the same energy.

W 1D ({0}, ∆ ex ) = 1 2 K |∇h 0 | 2 + h 2 0 dx -2π∆ ex = e a + 1 e a -1 π 2 -2π∆ ex .
Second, we consider the case of two points in K. From the linearity, we can easily get that for points p = {p 1 , p 2 }, the solution h p = h p 1 + h p 2 . Now we need to adjust the locations of these two points to minimize W 1D (p, ∆ ex ). Due to the periodicity, we can fix one point at 0 firstly, then adjust the other one, i.e. consider p = {0, s}, 0 < s ≤ a/2. Then

W 1D (p, ∆ ex ) = 1 2 K |∇h p | 2 + h 2 p dx -2 • 2π∆ ex = 2 • e a + 1 e a -1 π 2 -2 • 2π∆ ex + f 2 (0, s)
where

f 2 (0, s) = K ∇h 0 • ∇h s + h 0 • h s . Divide K into four parts f 2 (0, s) = s-a/2 -a/2 + 0 s-a/2 + s 0 + a/2 s = s-a/2 -a/2
2π 2 e a (e a -1) 2 e 2x-s+a + 2π 2 e a (e a -1) 2 e -(2x-s+a)

+ 0 s-a/2
2π 2 e 2a (e a -1) 2 e 2x-s + 2π 2 (e a -1) 

=

2π 2 e a (e a -1) 2 (e se -s )

+

π 2 e 2a (e a -1) 2 (e -se s-a ) + π 2 (e a -1) 2 (e a-se s )

+

2π 2 e a (e a -1) 2 (e se -s )

+

π 2 e 2a (e a -1) 2 (e -se s-a ) + π 2 (e a -1) 2 (e a-se s ) = 4

π 2 e a (e a -1) 2 (e se -s ) + 2 π 2 e 2a (e a -1) 2 (e -se s-a ) + π 2 (e a -1) 2 (e a-se s )

=

2π 2 e a -1 (e s + e a-s ).

The derivative of f 2 (0, s) with respect to s is

d f 2 (0, s) ds = 2π 2 e a -1
(e se a-s ).

And we can also get that f 2 is a strictly convex function by taking the second derivative of f 2 (0, s). Then s = a/2 minimizes f 2 (0, s), i.e. minimizes W 1D (p, ∆ ex ). We now know that in the case of two points

p = {p 1 , p 2 }, when |p 1 -p 2 | = a/2, the minimum of W 1D is achieved, min |p|=2 W 1D (p, ∆ ex ) = 2 • e a + 1 e a -1 π 2 -2 • 2π∆ ex + 4 • π 2 • e a/2 e a -1 . While min |p|=1 W 1D (p, ∆ ex ) = e a + 1 e a -1 π 2 -2π∆ ex if we want min |p|=2 W 1D (p, ∆ ex ) ≤ min |p|=1 W 1D (p, ∆ ex ), we need 2π∆ ex ≥ e a + 1 e a -1 π 2 + 4 • π 2 • e a/2 e a -1
At last, we consider the general case. In fact, we can get some clue from the case of three points. Let

p 3 = {p 1 , p 2 , p 3 }, and dist(p 1 , p 2 ) = s 1 , dist(p 2 , p 3 ) = s 2 , dist(p 1 , p 3 ) = s 3 = s 1 + s 2 . Then the energy W 1D (p 3 , ∆ ex ) = 3 • e a + 1 e a -1 π 2 -3 • 2π∆ ex + f 3 (p 3 )
where

f 3 (p 3 ) = f 2 (s 1 ) + f 2 (s 2 ) + f 2 (s 1 + s 2 ).
We need to minimize f 3 , which is in fact a function of s 1 , s 2 . Denote it as f 3 (s 1 , s 2 ). The minimizer of f 3 satisfies the equations as follows: i.e.        e s 1 -e a-s 1 + e s 1 +s 2 -e a-(s 1 +s 2 ) = 0 e s 2 -e a-s 2 + e s 1 +s 2 -e a-(s 1 +s 2 ) = 0.

               ∂ f 3 (s 1 ) ∂s 1 = 0 ∂ f 3 (s 2 ) ∂s 2 = 0 (2.4)
(2.5)

The solution is

s 1 = s 2 = a 3 , then min |p 3 |=3 f 3 (p 3 ) = 2 • π 2 e a -1 • 3
• (e a/3 + e 2a/3 ).

Lemma 2.2.1. For arbitrary n ∈ N, if there are n points in K, denote them as

p n = {p 1 , p 2 , • • • , p n }, and dist(p i , p i+1 ) = s i for i = 1, • • • , n -1, then the minimum of f n (p n ) is reached if and only if s 1 = s 2 = • • • = s n-1 = a n , and 
min |p n |=n f n (p n ) = 2π 2 e a -1 • n • (e a/n + e 2a/n + • • • + e (n-1)a/n ) = 2 • π 2 e a -1 • n • e a -e a/n e a/n -1 . Proof. In fact, f n is a function of s 1 , • • • , s n-1 . Denote is as f n (s 1 , • • • , s n-1
). We write f n as a sum of functions of f 2 (•), and the variable are

s 1 , s 2 , • • • , s n-1 , i.e. f n = f 2 (s 1 ) + f 2 (s 1 + s 2 ) + • • • + f 2 (s 1 + s 2 + • • • + s n-1 ) + f 2 (s 2 ) + f 2 (s 2 + s 3 ) + • • • + f 2 (s 2 + s 3 + • • • + s n-1 ) . . . + f 2 (s n-1 ). It is not difficult to certify that s 1 = s 2 = • • • = s n-1 = a n is a critical point, i.e. at the point ( a n , a n , • • • , a n ) ∈ R n-1 , we have                                  ∂ f n ∂s 1 = 0 ∂ f n ∂s 2 = 0 . . . ∂ f n ∂s n-1 = 0 
Since f n is a strictly convex function (it is the sum of convex functions f 2 (•), and there are f 2 (s i ) in the sum ) in R n-1 , it is the unique minimizer of f n . We substitute the value of s i into f n , and then get its expression as above.

Proof of Theorem 2.2.1. For x > 0, define function

g(x) = x • e a -e a/x e a/x -1 , then min f n = 2•π 2 e a -1 • g(n) and because g ′′ (x) > 0,
thus it is a strictly convex function. Now we prove that

g(x) is strictly convex =⇒ ∆ 1 < ∆ 2 < ∆ 3 < • • • .
i.e. the number of vortex jumps one by one. We prove the theorem by contradiction. If the number of points contained in the minimizer does not jump one by one, then there would exist m 1 < m 2 < m 3 and ∆ ex such that min

|p|=m 3 W 1D (p, ∆ ex ) ≤ min |p|=m 1 W 1D (p, ∆ ex ) ≤ min |p|=m 2 W 1D (p, ∆ ex )
Note that here

W 1D (p m , ∆ ex ) = m • e a + 1 e a -1 π 2 -m • 2π∆ ex + f m .
From the inequality above, we get min 

|p|=m 2 W 1D (p, ∆ ex ) -min |p|=m 1 W 1D (p, ∆ ex ) ≥ 0, ( 2 
f m 2 (p) ≥ m 2 -m 1 m 3 -m 1 min |p|=m 3 f m 3 (p) + m 3 -m 2 m 3 -m 1 min |p|=m 1 f m 1 (p).
This contradicts the fact that g(x) is strictly convex. That finishes the proof.

Γ-Convergence

Recall the definition of L = [-1 2 , 1 2 ] × [0, l], and the two dimensional Ginzburg-Landau renormalized energy

W(p, ∆ ex ) = lim ρ→0 πn log ρ + 1 2 L\∪ i B(p i ,ρ) |∇H l | 2 + H 2 l + n(γ -2π∆ * ex ),
where p = {p i } 1≤i≤n for n ∈ N are any n points in L, and H l is the unique L-periodic

solution of              -∆H l + H l = 2π n i δ p i in L
periodic boundary conditions on ∂L.

(2.8)

Denote S be the square [-1 2 , 1 2 ] × [-1 2 , 1 2 ]
. We want to relate this two dimensional renormalized energy W(p, ∆ ex ) with the one dimensional energy W 1D (p, ∆ ex ), because we have already had the result on the variation of vortex number in one dimension. For the solution h p in the case of one dimension, we can expend it in the direction of Y-axis to get a two dimensional function over the square S , i.e. h p (x, y) ≡ h p (x, 0), where h p (x, 0) is the solution of the one dimensional equation, thus h p (x, y) satisfies f ds for any f ∈ C 0,α (S ).

             -∆h p (x,
(2.10)

For the convenience of notation, we write h as h p if there is no confusion. By using the periodic boundary condition, we rewrite the function (2.8) as follows, it is the same as (2.8) because of the periodicity and uniqueness of the solution.

             -∆H l + H l = 2π 1/l j=1 n i=1 δ p i, j in S periodic boundary conditions on ∂S (2.11)
where the set of points {p i, j } with 1 ≤ i ≤ n, 1 ≤ j ≤ 1 l comes from the periodic extension of {p i } in L to the square S . For any i fixed the set of points {p i, j } 1 l j=1 lie on the same line [START_REF] Abrikosov | The Magnetic Properties of Superconducting Alloys[END_REF]. Then by the compact embedding of W 1,q (S ) into C 0,β (S ) for any q > 2, we extract a convergent subsequence in W -1,p (S ) for any p < 2. Then we have

L p i (in fact p i = p i, 1 2l +1 ). It is not difficult to prove that l 1 l j=1 n i=1 δ p i l→0 -→ n i=1 δ Lp i in (C 0,α (S )) * , ∀α ∈ [0,
lH l → h in W 1,p (S ), p < 2
We define two related energy E and F as follows

E = lim ρ→0 π n l log ρ + 1 2 S \∪ i, j B(p i, j ,ρ) |∇H l | 2 + |H l | 2 = 1 l lim ρ→0       πn log ρ + 1 2 L\∪ n i=1 B i (p i ,ρ) |∇H l | 2 + |H l | 2       (2.12) F = 1 2 S |∇h| 2 + h 2 dxdy
Theorem 2.2.2 (Γ convergence of l 2 E). For the energies E, F defined above, we have

l 2 E Γ -→ F as l → 0.
More precisely, ), where µ = n i=1 δ L i and independent of l, then we have • For every measure µ L = n i=1 δ L i in (C 0,α (S )) * , where δ L i is defined as (2.10), L i is a line which is parallel with Y-axis, then there exists a sequence of distribution μl := lµ l → µ L as l → 0, where µ l is in the form of µ l = 1 l j=1 n i=1 δ p i, j , such that

• If n i=1 δ Lp i l→0 -→ µ in (C 0,α (S )) * , ∀α ∈ [0, 1
lim sup l→0 l 2 E(H l ) ≤ F(h).

Lower bound

Ball growth method is a technical method to calculate energy on annuli which was introduced independently in [START_REF] Jerrard | Lower bounds for generalized Ginzburg-Landau functionals[END_REF] and [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF]. In this subsection, we use the frame of [START_REF] Sandier | Vortices in the magnetic Ginzburg-Landau model[END_REF]Chaper 4]. By using this method, we can merge two tangent or overlapped balls into a single ball that contains the original balls, and the radius of the new ball is equal to the sum of the radii of the original balls. We will write r(B) for the radius of a ball B, r(B) for the sum of the radii of the balls in the collection of balls B, and B ∩ U for the collection {B ∩ U|B ∈ B}. Lemma 2.2.2 (Ball growth). Let B 0 be a finite collection of disjoint closed balls. There exists a family {B(t)} t∈R + of collections of disjoint closed balls such that B(0) = B 0 and 1. For every s ≥ t ≥ 0,

B∈B(t) B ⊂ B∈B(s) B 2.
There exists a finite set T ⊂ R + such that if [t 0 , t 1 ] ⊂ R + \ T , then B(t 1 ) = e t 1 -t 0 B(t 0 ). 3. For every t ∈ R + , r(B(t)) = e t r(B(0)).

Refer to Theorem 4.2 of [START_REF] Sandier | Vortices in the magnetic Ginzburg-Landau model[END_REF] for the proof.

Lemma 2.2.3 (Merging). . Assume B 1 and B 2 are two closed balls in R n such that B 1 ∩ B 2 ∅, then there is a ball B such that r(B) = r(B 1 ) + r(B 2 ) and B 1 ∪ B 2 ⊂ B.

Refer to Lemma 4.1 of [START_REF] Sandier | Vortices in the magnetic Ginzburg-Landau model[END_REF] for the proof. Notation: We see function F (x, r) : R 2 × R + -→ R + be defined also for collections of balls. We write

F (B) = F (B(x, r)) := F (x, r)
and

F (B) = B∈B F (B).
Here we say that F is monotonic if F is continuous with respect to r and for any families of disjoint closed balls

B 1 , B 2 such that B∈B 1 B ⊂ B∈B 2 B F (B 1 ) ≤ F (B 2 ).
This implies that F is non-decreasing with respect to r.

THE RENORMALIZED ENERGY

Proposition 2.2.1. Let function F (x, r) : R 2 × R + -→ R + be monotonic in the above sense. Let B 0 be a finite collection of disjoint closed balls and by applying the ball growth method to B 0 we can get B(t). Then for every s ≥ 0,

F (B(s)) -F (B 0 ) ≥ s t=0 B(x,r)∈B(t) r ∂F ∂r (x, t)dt,
and for every B ∈ B(s), we have

F (B) -F (B 0 ∩ B) ≥ s t=0 B(x,r)∈B(t)∩B r ∂F ∂r (x, t)dt.
Refer Proposition 4.1 of [START_REF] Sandier | Vortices in the magnetic Ginzburg-Landau model[END_REF] for the proof.

If we denote the collection of original balls {B i (p i , ρ) ⊂ L} n i=1 as B(ρ), then by using the ball growth method we can get a new collection of balls B(l 2 ), i.e. 0 ≤ t ≤ T = log l 2 ρ . Let

E l 2 = 1 l        πn log l 2 + 1 2 L\∪ B∈B(l 2 ) B |∇H l | 2 + |H l | 2        , then lim l→0 l 2 E = lim l→0        lE l 2 + lim ρ→0        lπn log ρ l 2 + l 1 2 ∪ B∈B(l 2 ) B\∪ B∈B(ρ) B |∇H l | 2 + |H l | 2               . Let B(t) ∈ B(t), and 
B(t) ∩ B(0) = B(ρ) = {B 1 , • • • , B m }
, it means that these m balls grow to be one ball B(t) at time t.

From the function, we find for ρ ≤ r ≤ l 2 , i.e. 0 ≤ t ≤ T = log l 2 ρ that -

∂B(t) ∂H l ∂ν = - B(t) ∆H l = 2πm - B(t)
H l .

By using the Cauchy-Schwartz inequality, we get 2πm -

B(t) H l 2 ≤ 2πr ∂B(t) | ∂H l ∂ν | 2 ≤ 2πr ∂B(t) |∇H l | 2 . Since m 2 ≥ m, m ∈ N, we could get 4π 2 m -C B(t) H l ≤ 2πr ∂B(t) |∇H l | 2 .
We already have lH l → h in W 1,p , ∀p < 2, where h is bounded, so we have

lH l → h in L 2 .
For l small enough, we find

B(t) (lH l ) 2 ≤ B(l 2 ) (lH l ) 2 ≤ C B(l 2 ) h 2 ≤ Cl 4 ,
where C depends only on l and is independent of ρ. 

∪ B∈B(l 2 ) B\∪ B∈B(ρ) B |∇H l | 2 + |H l | 2 = T 0 r(t) ∪ B(t)∈B(t) ∂B(t) |∇H l | 2 + |H l | 2 dt ≥ T 0 2πn -Crdt ≥ 2πnT -C(l 2 -ρ) ≥ 2πn log l 2 ρ -C.

So we get

πn log ρ l 2 + 1 2 ∪ B∈B(l 2 ) B\∪ B∈B(ρ) B |∇H l | 2 + |H l | 2 ≥ C.
Combine the results above, we can get a lower bound of

l 2 E lim l→0 l 2 E(H l ) = lim l→0        lE l 2 + lim ρ→0        lπn log ρ l 2 + l 1 2 ∪ B∈B(l 2 ) B\∪ B∈B(ρ) B |∇H l | 2 + |H l | 2               ≥ lim l→0 (lE l 2 -lC) = lim l→0        lπn log l 2 + 1 2 S \∪ B∈B(l 2 ) B |l∇H l | 2 + |lH l | 2 -l • C        ≥ F(h) by Fatou's lemma.
This finishes the proof of the lower bound.

Upper bound

In this subsection, we prove the upper bound in the Γ convergence by using a similar method in [START_REF] Sandier | S 1 -valued harmonic maps with high topological degree[END_REF]. For every distribution µ L = n i=1 δ L i in (C 0,α (S )) * , where δ L i is Radon measure with support on line which is parallel with Y-axis, in lattice L = [- 1 2 , 1 2 ] × [0, l], we choose one point on each line L i . Note that if two lines coincide we could choose two different points on the same line. Denote these points as {p i } n i=1 , and by using the periodic boundary condition, we could get a set of points in square S , written as {p i, j } with 1 ≤ i ≤ n, 1 ≤ j ≤ 1 l and for any i the set of points {p i, j } 1/l j=1 lie on the same line L p i (in fact p i = p i, 1 2l +1 ). In fact, we can rewrite the function (2.8) as follows, it is the same as (2.8) because of the periodicity and uniqueness of the solution. G(x, y) has some properties as follows

• G(x, y) = G(y, x); • G(x, y) = G(x -y, 0); • G(x, y) = -log |x -y| + g(x, y)
, where g(x, y) is C 1 and bounded in the diagonal of S × S .

Then we have

H l (x) = i, j G(x, p i, j )
We rewrite it as follows for convenience

H l (x) = n l i=1 G(x, p i ).
Then

E = lim ρ→0       π n l log ρ + 1 2 S \∪ n l i=1 B(p i ,ρ) |∇H l | 2 + |H l | 2       .
For the second term on the right hand side, we have The last equality is because we have

1 2 S \∪ n l i=1 B(p i ,ρ) |∇H l | 2 + |H l | 2 = - 1 2 ∪ i ∂B(p i ,ρ) ∂H l ∂ν H l + 1 2 S \∪ i B(p i ,ρ) -∆H l • H l + |H l | 2 =0 by the equation = - 1 2 ∪ i ∂B(p i ,ρ) ∂ j G(x, p j ) ∂ν j G(x, p j ) = - 1 2 i ∂B(p i ,ρ) ∂G(x, p i ) ∂ν j i G(x, p j ) - 1 2 i ∂B(p i ,ρ) ∂G(x, p i ) ∂ν G(x, p i ) - 1 2 i ∂B(p i ,ρ) j i ∂G(x, p j ) ∂ν k G(x, p k ) = π i j G(p i , p j ) -π i log ρ + π i g(p i , p i ) + o(1).
G(x, p j ) = -log |x -p j | + g(x, p j ).
Thus when we take the limit of ρ → 0, we can get

E = π i j G(p i , p j ) + i g(p i , p i )
also we can rewrite it as

E = π S ×S \Γ G(x, y)dµ l dµ l + S g(x, x)dµ l
where Γ is the diagonal of S × S , µ l = i δ p i .

If denote μl := lµ l , then we have μl := lµ l → µ L in (C 0,α ) * , ∀α ∈ [0, 1). Now multiply l 2 to E we have

l 2 E = π S ×S \Γ G(x, y)d μl d μl + l S g(x, x)d μl
the second term at the right hand side is converge to 0 as l → 0, for g is bounded in a neighborhood of the diagonal.

Next we will study the first term. Let M > 0, Γ M is a neighborhood of the diagonal where G(x, y) is greater than M, and Γ ′ 2M is another neighborhood of the diagonal such that G(x, y) is less than 2M outside of it. What's more, we can construct the two neighborhoods such that

Γ ′ 2M ⊂ Γ M . Γ M and Γ ′ 2M satisfy • G(x, y) ≥ M when (x, y) ∈ Γ M ; • G(x, y) ≤ 2M when (x, y) Γ ′ 2M ; • Γ ′ 2M Γ M . Let G M (x, y) = min(2M, G(x, y)) in Γ M , then we have π S ×S \Γ G(x, y)d μl d μl =π S ×S G M (x, y)d μl d μl + π Γ M \Γ G(x, y) -G M (x, y)d μl d μl -πnl • 2M
where the term πnl • 2M comes from the diagonal. If we first take the limit of l → 0, and then M → ∞ we can use the weak convergence of the measure, and connect the two dimensional energy E with the one dimensional energy F. Now we prove that

π Γ M \Γ G(x, y) -G M (x, y)d μl d μl → 0 as firstly l → 0, secondly M → ∞.
Note that G(x, y) = -log |x -y| + g(x, y) where g is bounded near the diagonal and G M (x, y) is bounded by 2M, so we only need to prove

π Γ M \Γ -log |x -y|d μl d μl → 0 as firstly l → 0, secondly M → ∞.
Denote I i,l be the line segment of length l with p i its midpoint, and parallel with the Yaxis.

For i j, precisely only one of the following statement about I i,l and I j,l holds α :either I i,l and I j,l touch each other; β : or else I i,l and I j,l are separated.

The number of the pairs of segments in the first case is at most n l • 2n, and

i, j∈α I i,l ×I j,l -log |x -y|dlδ p i dlδ p j ≤ -2 n 2 l • l 2 log(θl)
where θ = min{θ i, j : |p i -p j | = θ i, j l, ∀i, j and i j}.

In the second case, if l is small enough, we could get for ∀(x, y)

∈ I i,l × I j,l |p i -p j | > 1 2 |x -y| so -log |p i -p j | < -log |x -y| + log 2
and then

I i,l ×I j,l -log |x -y| dlδ p i dlδ p j = -l 2 log |p i -p j | < I i,l ×I j,l -log |x -y| + log 2 dµ L dµ L Sum all pairs (i, j) ∈ β, we could get i, j∈β I i,l ×I j,l -log |x -y| dlδ p i dlδ p j < Γ M \Γ -log |x -y| + log 2 dµ L dµ L
Sum up the two case, and we could get what we want

π Γ M \Γ G(x, y) -G M (x, y)d μl d μl → 0 as firstly l → 0, secondly M → ∞.
While the term

π S ×S G M (x, y)d μl d μl ≤ π S ×S G(x, y)dµ L dµ L
The right hand side is exactly the energy F. In fact the measure µ L ∈ H -1 , because by using the Trace operator, we can define µ L , f for any f ∈ H 1 0 . Then let

u(x) = G(x, y)dµ L (y) 20 2.2. THE RENORMALIZED ENERGY CHAPTER 2.
VARIATIONS OF THE VORTEX NUMBER by using Theorem 1 of [START_REF] Brézis | A property of Sobolev spaces[END_REF] we get

u(x) H 1 = 2π G(x, y)dµ L dµ L .
That finishes the proof of the upper bound.

Proof of Theorem 2.1.1

We have proven that l 2 E Γ -→ F as l → 0. From Theorem 2.2.1, we know that the number of points contained in the minimizer of W 1D (p, ∆ ex ) jumps one by one as the ∆ ex grows. So for every N ∈ N, there exists l N , such that for any l < l N , the number of vortices contained in the minimizer of W(p, ∆ ex ) jumps one by one from 1 to N as the ∆ ex grows. For fixed l, we have the lattice

L = [-1 2 , 1 2 ] × [0, l].
If the Theorem 2.1.1 is not true. Then we could find a sequence {ε}, such that there exists a value ∆ m (ε) which is bounded independent of ε and at 1), the number of vortices contained in the minimizer of the Ginzburg-Landau energy GL ε jumps from m to m + k, for some m, k ∈ N and k ≥ 2. When we take the limit ε → 0, from Theorem 2.1.2, we have that the minimizers (u

h ex = H C 1 (ε) + ∆ m (ε) + o(
ε .A ε ) of GL ε satisfies h ε = curlA ε converge to h * and n ε = 1 2π L curlA converge to n * . And there are n * distinct points {a i } n * i=1 in L which minimizes W(p, ∆ ex ) over P. So at ∆ m = lim ε→0 ∆ m (ε)
, the number of points of the minimizer W(p, ∆ ex ) would jumps from m to m + k. This contradicts our conclusion about the renormalized energy. This finishes the proof.

Chapter 3 Optimality of Abrikosov Lattice in a Periodic Ginzburg-Landau Model

In this chapter, we study the configuration of vortices which minimizes a renormalized energy related to Ginzburg-Landau model. Among all the Bravais lattices, we prove that the triangular lattice minimizes this renormalized energy.

Introduction

For type-II superconductors, A. Abrikosov [START_REF] Abrikosov | On the Magnetic properties of superconductors of the second group[END_REF] predicted that the triangular lattice, now called "Abrikosov lattice", would appear. There are some rigorous mathematical results related to this phenomenon, for example [START_REF] Aftalion | Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates[END_REF], [START_REF] Aftalion | Lowest Landau level approach in superconductivity for the Abrikosov lattice close to H c 2[END_REF], [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], [START_REF] Sandier | From the Ginzburg-Landau model to vortex lattice problems[END_REF]. In [START_REF] Sandier | From the Ginzburg-Landau model to vortex lattice problems[END_REF], E. Sandier and S. Serfaty have proven that the vortices of minimizers of the Ginzburg-Landau energy, blownup at a suitable scale, converges to minimizers of a "Coulombian Renormalized Energy ", and in the periodic case, the triangular lattice minimizes this renormalized energy. In this paper, we consider another renormalized energy for a periodic Ginzburg-Landau energy introduced in [START_REF] Aydi | Vortex analysis of the periodic Ginzburg-Landau model[END_REF] and prove that the triangular lattice is the unique minimizer of this renormalized energy among all the Bravais lattices. One can refer to [START_REF] Chen | Periodicity and uniqueness of global minimizers of an energy functional containing a long-range interaction[END_REF] for a related work in one dimension.

Let

L = {Z u ⊕ Z v | det( u, v) = 1}. For Λ ∈ L, we define L = R 2 /Λ, hence |L| = 1.
We introduce the renormalized energy W which is defined in [START_REF] Aydi | Vortex analysis of the periodic Ginzburg-Landau model[END_REF] over L as follows

W(n, Λ) = lim ε→0       πn log ε + 1 2 L\∪ n i=1 B(p i ,ε) |∇h| 2 + h 2       ,
where {p i } n i=1 are n points in L, and h satisfies

             -∆h + h = 2π n i=1 δ p i in L periodic boundary conditions. (3.1)
In fact, this energy is a renormalized energy for the Ginzburg-Landau energy in the periodic setting. In the case of n = 1, i. e. among the Bravais lattices, we prove Theorem 3.1.1. The triangular lattice, modulo rotations, is the unique minimizer of W among all Bravais lattices.

In the proof of this theorem, we use a technique which has already been used in [START_REF] Sandier | From the Ginzburg-Landau model to vortex lattice problems[END_REF] to rewrite the renormalized energy W in an explicit formula related to Jacobi Theta Function, then by applying a result of H.L.Montgomery [START_REF] Montgomery | Minimal theta functions[END_REF], we complete the proof.

Proof of Theorem 3.1.1

We follow the idea of [START_REF] Sandier | From the Ginzburg-Landau model to vortex lattice problems[END_REF] to rewrite the renormalized energy W in an explicit formula. When n = 1,

W(Λ) = lim ε→0 π log ε + 1 2 L\B(0,ε) |∇h| 2 + h 2 ,
where h satisfies

-∆h + h = 2πδ 0 in L periodic boundary conditions. (3.1) Lemma 3.2.1. For any Λ ∈ L, we have W(Λ) = π lim x→0 (h(x) + log |x|).
Proof. We have

π log ε + 1 2 L\B(0,ε) |∇h| 2 + h 2 = π log ε - 1 2 ∂B(0,ε) ∂h ∂ν • h
where ν is the outer-pointing unit normal vector with respect to the corresponding boundary. In fact,

h(x) = -log |x| + g(x), where g(x) is C 1 near origin. So ∂h ∂ν ∂B(0,ε) = - 1 ε + ∂g ∂ν ∂B(0,ε) .
Therefore,

W(Λ) = lim x→0 π log |x| + πh(x) + O(|x| • log |x|) = π lim x→0 (h(x) + log |x|).
Next we prove an important lemma by following the same method in [START_REF] Sandier | From the Ginzburg-Landau model to vortex lattice problems[END_REF].

Lemma 3.2.2. There exists a constant C 0 ∈ R, such that for any Λ ∈ L, we have

W(Λ) = C 0 + π lim x→0 ζ Λ * (x) - R 2 2π 1 + 4π 2 |y| 2+x dy ,
where Λ * is the dual lattice of Λ, i.e. the set of vectors q such that q • p ∈ Z for every p ∈ Λ, and

ζ Λ * (x) = p∈Λ * 2π 1+4π 2 |p| 2+x . Proof. We already have W(Λ) = π lim x→0 (h(x) + log |x|).
We introduce the Green function 

G(x) ∈ L 2 (R 2 ) which is the solution of -∆G + G = 2πδ 0 in R 2 ,
Λ (x) + log |x| = G(x) + log |x| + u Λ (x), where u Λ (x) = h Λ (x)-G(x) and it depends on lattice Λ. It is well known that h Λ (x)+log |x|, G(x) + log |x| , u Λ (x) are C 1 near 0. Note that G(x) + log |x| is independent of lattice Λ, so W(Λ) = π lim x→0 (h Λ (x) + log |x|) = C 0 + π • u Λ (0),
where

C 0 = lim x→0 G(x) + log |x|. Denote by ϕ(x) = (2π) -1 e -|x| 2 /2 the Gaussian distribution in R 2 and ϕ n (x) = n 2 ϕ(nx) for any n ∈ N, so {ϕ n (x)} n is an approximation of the Dirac mass. Since u Λ (x) is C 1 near 0, we have u Λ (0) = lim n→∞ w(n, Λ),
where

w(n, Λ) = R 2 ϕ n (x)u Λ (x)dx = R 2 φn (ξ)û Λ (ξ)dξ.
We know that φn (ξ) = e -2π 2 |ξ| 2 /n 2 , and ûΛ (ξ) = ĥ(ξ) -Ĝ(ξ), where ĥ(ξ) =

2π p∈Λ * δ p (ξ) 4π 2 |ξ| 2 +1
(2π comes form the fact that |L| = 1) and Ĝ(ξ

) = 2π 4π 2 |ξ| 2 +1 . Hence w(n, Λ) = 2π         p∈Λ * e -2π 2 |p| 2 /n 2 4π 2 |p| 2 + 1 - R 2 e -2π 2 |y| 2 /n 2 4π 2 |y| 2 + 1 dy         .
We claim that lim

n→∞ w(n, Λ) = lim x→0 + v(x, Λ), where v(x, Λ) = 2π p∈Λ * 1 4π 2 |p| 2+x +1 -R 2 1 4π 2 |y| 2+x +1 dy , x > 0.
In fact, for any p ∈ Λ * , denote by K p the Voronoi cell centered at p, i.e. the region in R 2 consisting of all the points closer to p than to any other points in Λ * . Note that K p is periodic due to the periodicity of lattice Λ * and |K p | = 1. Denote by 1 K p the characteristic function with respect to K p , then we have

w(n, Λ) = 2π R 2 p∈Λ * 1 K p •       e -2π 2 |p| 2 /n 2 4π 2 |p| 2 + 1 - e -2π 2 |y| 2 /n 2 4π 2 |y| 2 + 1       dy.
By applying the mean value theorem to e

-2π 2 |p| 2 /n 2 4π 2 |p| 2 +1 -e -2π 2 |y| 2 /n 2 4π 2 |y| 2 +1
, we get a bound for the integrand function

p∈Λ * 1 K p •       e -2π 2 |p| 2 /n 2 4π 2 |p| 2 + 1 - e -2π 2 |y| 2 /n 2 4π 2 |y| 2 + 1       ≤ C 1 |y| 3 + 1 ,
where the constant C is independent of n. The function at the right hand side is an integrable function over the whole plane. The Lebesgueâ Ȃ Źs dominated convergence theorem implies that

lim n→∞ w(n, Λ) = 2π R 2 p∈Λ * 1 K p • 1 4π 2 |p| 2 + 1 - 1 4π 2 |y| 2 + 1 dy. CHAPTER 3. OPTIMALITY OF ABRIKOSOV LATTICE IN A PERIODIC GINZBURG-LANDAU MODEL
Similarly, we have

lim x→0 + v(x, Λ) = 2π R 2 p∈Λ * 1 K p • 1 4π 2 |p| 2 + 1 - 1 4π 2 |y| 2 + 1 dy.
By combining the results above, we prove the lemma. Now we consider the term

ζ Λ * (x) = p∈Λ * 2π 4π 2 |p| 2+x + 1 . Let ζ 0 Λ * (x) = p∈Λ * \{0} 2π 4π 2 |p| 2+x , we can split ζ Λ * (x) as follows, ζ Λ * (x) = 2π + ζ 0 Λ * (x) -2π p∈Λ * \{0} 1 4π 2 |p| 2+x • (4π 2 |p| 2+x + 1) = 2π + ζ 0 Λ * (x) -2π p∈Λ * \{0} 1 4π 2 |p| 2 • (4π 2 |p| 2 + 1)
+ o(1).

Note here o(1) means o(1) → 0 as x → 0 for any fixed Λ ∈ L, but the convergence is not uniform w.r.t. Λ. We will consider

ζ 0 Λ * (x) -2π p∈Λ * \{0} 1 4π 2 |p| 2 •(4π 2 |p| 2 +1) together. If 4π 2 |p| 2 > 1,
we can have a series expansion of the second term. We can do this at least in a neighborhood of the triangular lattice, because the length of the edge is

2/ √ 3 > 1. p∈Λ * \{0} 1 4π 2 |p| 2 • (4π 2 |p| 2 + 1) = p∈Λ * \{0} 1 (4π 2 |p| 2 ) 2 • (1 + (4π 2 |p| 2 ) -1 ) = p∈Λ * \{0} ∞ n=2 (-1) n (4π 2 |p| 2 ) n . Since the summation p∈Λ * \{0} ∞ n=2 (-1) n (4π 2 |p| 2 )
n converges absolutely, we can change the order of the summation.

p∈Λ * \{0} ∞ n=2 (-1) n (4π 2 |p| 2 ) n = ∞ n=2 p∈Λ * \{0} (-1) n (4π 2 |p| 2 ) n We write ∞ n=2 p∈Λ * \{0} (-1) n (4π 2 |p| 2 ) n = ∞ n=2 (-1) n g n,Λ * for convenience, where g n,Λ * = p∈Λ * \{0} 1 (4π 2 |p| 2 ) n . Let s = 1 + x 2 ,
x > 0, then by using a result in [START_REF] Montgomery | Minimal theta functions[END_REF], we have

1 2π • 4π 2 • ζ 0 Λ * (x) • 2 s • Γ(s) • (2π) -s = 1 s -1 - 1 s + +∞ 1 (θ Λ * (α) -1)(α s + α 1-s ) dα α where θ Λ * (α) = p∈Λ * e -πα|p| 2 .
Similarly, we have

(4π 2 ) n • g n,Λ * (x) • 2 n • Γ(n) • (2π) -n = 1 n -1 - 1 n + +∞ 1 (θ Λ * (α) -1)(α n + α 1-n ) dα α . CHAPTER 3. OPTIMALITY OF ABRIKOSOV LATTICE IN A PERIODIC GINZBURG-LANDAU MODEL
Therefore, we have

ζ Λ * (x) = 2π + ζ 0 Λ * (x) -2π p∈Λ * \{0} 1 4π 2 |p| 2 • (4π 2 |p| 2 + 1) + o(1) = 2π + π s-1 2Γ(s) ( 1 s -1 - 1 s ) + ∞ n=2 2π (-1) n-1 (4π) n Γ(n) ( 1 n -1 - 1 n ) +2π +∞ 1 (θ Λ * (α) -1) • π s-1 4πΓ(s) • (α s + α 1-s ) dα α + ∞ n=2 2π +∞ 1 (θ Λ * (α) -1) (-1) n-1 (4π) n Γ(n) (α n + α 1-n ) dα α + o(1) = 2π + f (x) + c 0 + 2π +∞ 1 (θ Λ * (α) -1) • I(x, α) dα α + o(1)
where

f (x) = π s-1 2Γ(s) ( 1 s-1 -1 s ), c 0 = ∞ n=2 2π (-1) n-1 (4π) n Γ(n) ( 1 n-1 -1 n ) and I(x, α) = π s-1 4πΓ(s) • (α s + α 1-s ) + ∞ n=2 (-1) n-1 (4π) n Γ(n) (α n + α 1-n ).
For any α fixed, we have

I(x, α) =        π s-1 4πΓ(s) • α s + ∞ n=2 (-1) n-1 (4π) n Γ(n) α n        +        π s-1 4πΓ(s) α 1-s + ∞ n=2 (-1) n-1 (4π) n Γ(n) α 1-n        = α 4π (πα) s-1 Γ(s) + e -α 4π -1 + 1 4π π s-1 Γ(s) α 1-s + e -1 4πα -1 Γ(s) is convex in [1, 2], and Γ(1) = Γ(2) = 1, so for s ∈ [1, 2], Γ(s) ≤ 1, while (πα) s-1 ≥ 1, for α ≥ 1, s ∈ [1, 2]. Hence (πα) s-1 Γ(s) -1 ≥ 0.
Similarly, we have π s-1 Γ(s) α 1-s ≥ α 1-s , and the fact that 1 -e

-1 4πα < 1 4πα implies that π s-1 Γ(s) α 1-s + e -1 4πα -1 > 0 for α ≥ 1, s ∈ [1, 2]
. By combining the results above, we have

I(x, α) > 0 for α ≥ 1, s ∈ [1, 2].
Next we will prove that

ζ Λ * (x) = 2π + f (x) + c 0 + 2π +∞ 1 (θ Λ * (α) -1)I(x, α) dα α + o(1)
is true not just for lattices in a neighborhood of triangular lattice but for all Bravais lattices with area 1. We claim that both

f 1 (Λ) = ζ 0 Λ * (x) -2π p∈Λ * \{0} 1 4π 2 |p| 2 • (4π 2 |p| 2 + 1)
and 

f 2 (Λ) = f (x) + c 0 + 2π +∞ 1 (θ Λ * (α) -1)I(x,
= m u + n v = (ma + nb, nc), then |p| 2 = (ma + nb) 2 + n 2 c 2 . For p∈Λ * \{0} 1 4π 2 |p| 2 •(4π 2 |p| 2 +1) , at (a 0 , b 0 , c 0 ), a 0 > 0, we have p∈Λ * \{0} 1 4π 2 |p| 2 • (4π 2 |p| 2 + 1) = (m,n)∈Z 2 \{0} 1 4π 2 [(ma + nb) 2 + n 2 c 2 ] • [4π 2 ((ma + nb) 2 + n 2 c 2 ) + 1)] = (m,n)∈Z 2 \{0} 1 4π 2 [(ma 0 +nb 0 ) 2 +n 2 c 2 0 +R(a-a 0 ,b-b 0 ,c-c 0 )] • 1 4π 2 [(ma 0 + nb 0 ) 2 + n 2 c 2 0 + R(a -a 0 , b -b 0 , c -c 0 )] + 1 = (m,n)∈Z 2 \{0} 1 [4π 2 (m 2 a 2 0 + 2a 0 b 0 mn + n 2 (b 2 0 + c 2 0 ))] • [4π 2 (m 2 a 2 0 + 2a 0 b 0 mn + n 2 (b 2 0 + c 2 0 )) + 1] • 1 1 + R(a-a 0 ,b-b 0 ,c-c 0 ) m 2 a 2 0 +2a 0 b 0 mn+n 2 (b 2 0 +c 2 0 ) • 1 1 + 4π 2 R(a-a 0 ,b-b 0 ,c-c 0 ) 4π 2 (m 2 a 2 0 +2a 0 b 0 mn+n 2 (b 2 0 +c 2 0 ))+1
We obtain a series expansion of the formula above by expanding the function 1 1+x at 0 and rearranging the terms since that the coefficients converge absolutely. Take a function composition with c = 1/a, we obtain that

p∈Λ * \{0} 1 4π 2 |p| 2 • (4π 2 |p| 2 + 1) is analytic w.r.t. lattice.
Similarly, the function ζ 0 Λ * (x) is analytic w.r.t. lattice. For the function f 2 (Λ), f (x) + c 0 is independent of lattice, so we only need to prove that 2π +∞ 1 (θ Λ * (α) -1)I(x, α) dα α is analytic w.r.t. lattice. The series is a positive series, it converges absolutely. The function θ Λ * (α) -1 is a positive series and converges absolutely for any α, and each term in the series is analytic, so we rewrite the function 2π

+∞ 1 (θ Λ * (α) -1)I(x, α) dα
α in the form of series w.r.t. lattice. Therefore, the function

f (x) + c 0 + 2π +∞ 1 (θ Λ * (α) -1)I(x, α) dα
α is analytic w.r.t. lattice. Now we know that the functions f 1 (Λ) and f 2 (Λ) are analytic, and f 1 = f 2 in a neighborhood of triangular lattice, so f 1 ≡ f 2 for all lattices with fixed area 1.

We use a result due to Montgomery,

Theorem 3.2.1 ([54]
). For any α > 0,

θ f (α) ≥ θ h (α), where f (u) = f (u 1 , u 2 ) = au 2 1 + bu 1 u 2 + cu 2
2 be a positive definite binary quadratic form with real coefficient and discriminant b 2 -4ac = -1, and h(u)

= 1 √ 3 (u 2 1 +u 1 u 2 +u 2 2 )
. If there is an α > 0 such that θ f (α) = θ h (α), then f and h are equivalent forms and θ f (α) ≡ θ h (α).

From the theorem above, we know that the minimum of the Jacobi Theta function θ over L (recall that L is the set of all Bravais lattices with area 1) is uniquely achieved by

Λ * 0 , Λ 0 = 2 √ 3 (Z(1, 0) ⊕ Z(1/2, √ 3/2)).
Denote by Λ a Bravais lattice, then apply Lebesgue's dominated convergence theorem, we have

W(Λ) -W(Λ 0 ) = π lim x→0 (ζ Λ * (x) -ζ Λ * 0 (x)) = π lim x→0 2π +∞ 1 (θ Λ * -θ Λ * 0 )I(x, α) dα α 28 3.2. PROOF OF THEOREM 3.1.1 CHAPTER 3. OPTIMALITY OF ABRIKOSOV LATTICE IN A PERIODIC GINZBURG-LANDAU MODEL = 2π 2 +∞ 1 (θ Λ * -θ Λ * 0 )I(0, α) dα α
By using Theorem 1 of [START_REF] Montgomery | Minimal theta functions[END_REF] and the fact that I(0, α) > 0, we have W(Λ) ≥ W(Λ 0 ) for all lattice Λ ∈ L, and the equality holds if and only if Λ = Λ 0 . Therefore the triangular lattice is the unique minimizer of energy W(Λ).

Introduction

Understanding the structure of matter at low temperature has been a challenge for many years. In this case, one of the simplest models is to consider identical points as particles interacting in a Lennard-Jones potential. This model is deterministic, therefore we do not consider either entropy nor other quantum effects. The problem is to find the configuration of the points which minimize the total interaction energy, called the Lennard-Jones energy. Radin, in [START_REF] Gardner | The Infinite-Volume Ground State of the Lennard-Jones Potential[END_REF], studied this problem in one dimension and showed that, in the case of infinite points, the minimizer is periodic. His method is not adaptable in higher dimensions and he studied, in [START_REF] Heitmann | The Ground State for Sticky Disks[END_REF][START_REF] Radin | The Ground State for Soft Disks[END_REF] the case of short range interactions and proved the first result of crystallization in two dimensions for a hard-sphere model. In the meantime, Ventevogel and Nijboer gave in [START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF][START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF][START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF] more general results in one dimension for Lennard-Jones energy per particle. Indeed, they showed that a unique lattice of the form a 0 N minimizes the Lennard-Jones energy and that all lattices aN with a ≤ a 0 minimize this energy when the density of points ρ = a -1 is fixed. Our paper gives some results in the spirit of the latter paper.

After a numerical investigation of Yedder, Blanc, Le Bris, in [START_REF] Blanc | A Numerical Investigation of the 2-Dimensional Crystal Problem[END_REF], about the minimization of the Lennard-Jones and the Thomas-Fermi energy in R 2 , it seemed that the triangular lattice, also called "hexagonal lattice" -which is composed of equilateral triangles -is the minimum configuration for Lennard-Jones energy among any lattices and for Thomas-Fermi energy with nuclei density fixed. Some time after, Theil, in [START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF], gave the first proof of crystallization in two dimensions for a "Lennard-Jones like" potential, with a minimum less than one but very close to one and long range interaction. He showed that the global minimizer of the total energy is triangular. His method was adapted by E and Li, in [START_REF] Li | On the Crystallization of 2D Hexagonal Lattices[END_REF],

for a three-body potential with long range interactions in order to obtain a honeycomb lattice as global minimizer -see also the works of Mainini, Piovano and Stefanelli in [START_REF] Mainini | Finite Crystallization in the Square Lattice[END_REF][START_REF] Mainini | Crystallization in Carbon Nanostructures[END_REF] about the crystallization in square and honeycomb lattices for three-body potentials with short range interactions -and by Theil and Flatley in three dimensions in [START_REF] Flatley | Face-Centred Cubic Crystallization of Atomistic Configurations[END_REF].

Furthermore Montgomery, in [START_REF] Montgomery | Minimal theta functions[END_REF], proved that the triangular lattice is the unique minimizer of theta functions among Bravais lattices with fixed density and hence the unique minimizer of the Epstein zeta function, thanks to the link between these two functions.

As the Lennard-Jones potential is a linear sum of Epstein zeta functions, it is natural to study the problem of minimization of the Lennard-Jones energy among Bravais lattices with and without fixed density. However, there are few results about minimization in the general case of periodic systems. For example, Cohn and Kumar described in [START_REF] Cohn | Universally Optimal Distribution of Points on Spheres[END_REF] a method and a conjecture for completely monotonic functions. It is interesting to observe that this kind of problem is connected with the theory of spherical design due to Delsarte, Goethals and Seidel in [START_REF] Delsarte | Spherical Codes and Designs[END_REF] and linked to the layers of a lattice, among others, by Venkov and Bachoc in [START_REF] Venkov | Réseaux et designs sphériques. Réseaux euclidiens, designs sphériques et formes modulaires[END_REF][START_REF] Bachoc | Modular Forms, Lattices and Spherical Designs. Réseaux euclidiens, designs sphériques et formes modulaires[END_REF] and by Coulangeon et al. in [START_REF] Coulangeon | Spherical Designs and Zeta Functions of Lattices[END_REF][START_REF] Coulangeon | Energy Minimization, Periodic Sets and Spherical Designs[END_REF][START_REF] Coulangeon | Spherical Designs and Heights of Euclidean Lattices[END_REF].

In this paper, our main results are :

Theorem:

• Let V LJ (r) = r -12 -2r -6
be the Lennard-Jones potential, then the minimizer of the energy E LJ (L) = x∈L\{0} V LJ ( x ) among all Bravais lattices of R 2 with fixed density sufficiently large is triangular and unique, up to rotation.

• A minimizer of E LJ among all Bravais lattices with fixed density sufficiently small cannot be triangular.

• Let W T F : R * + → R be the solution of -∆h + πh = δ 0 which goes to 0 at infinity, then the minimizer of the Thomas-Fermi energy E T F (L) = This paper is structured as follows : in Section 2, we introduce the notations; in Section 3, we show that the minimizer of the Lennard-Jones energy per particle among Bravais lattices with fixed density, if the density is sufficiently large, it is triangular and unique. Moreover we give numerical results and a conjecture for the minimization with density fixed and we have arguments in order to explain why the global minimizer, among Bravais lattices without fixed density, is triangular; in Section 4, we use proof of Blanc in [START_REF] Blanc | Lower Bound for the Interatomic Distance in Lennard-Jones Clusters[END_REF] to find a lower bound for the interparticle distance of the global minimizer, and finally in Section 5 we study the same kind of problem for the Thomas-Fermi model only when the density is fixed and we prove that the triangular lattice is the unique minimizer of the Thomas-Fermi energy per particle in R 2 .

Preliminaries

A Bravais lattice (also called a "simple lattice") of R 2 is given by L = Zu ⊕ Zv where (u, v) is a basis of R 2 . By Engel's theorem (see [START_REF] Engel | Geometric Crystallography. An Axiomatic Introduction to Crystallography[END_REF]), we can choose u and v so that

u ≤ v and ( u, v) ∈ π 3 , π 2 
in order to obtain the unicity of the lattice, up to a rotation.

We note |L| = u ∧ v = u v sin( u, v) the area of L which is in fact the area of the lattice primitive cell and L * := L\{0}. The positive definite quadratic form associated with the Bravais lattice

L is, for (m, n) ∈ Z 2 , Q L (m, n) = mu + nv 2 = u 2 m 2 + v 2 n 2 + 2 u v cos( u, v)mn.
For a positive definite quadratic form q(m, n) = am 2 +bmn+cn 2 , we define its discriminant D = 4ac -b 2 ≥ 0. Hence for Q L , we obtain :

D = 4 u 2 v 2 -4 u 2 v 2 cos 2 ( u, v) = 4 u 2 v 2 sin 2 ( u, v) = 4|L| 2 .
In this paper, the term "lattice" will mean a "Bravais lattice", and we define, for s > 2, the Epstein zeta function of the lattice L by

ζ L (s) := x∈L * 1 x s = (m,n) (0,0) 1 Q L (m, n) s/2 . Let Λ A = 2A √ 3 Z(1, 0) ⊕ Z(1/2, √ 3 
/2) be the triangular lattice of area A, also called the hexagonal lattice. Its length is the norm of its vector u, i.e. the minimum distance strictly positive of Λ A , u = 2A/ √ 3. We notice, for any s > 2, that

ζ Λ A (s) = ζ Λ 1 (s) A s/2 (4.1)
and this relation of scaling is true for any lattice L of area A.

We recall the result of Montgomery about theta functions : where Θ L is the Jacobi theta function of the lattice L defined for Im(z) > 0. Then, for any α > 0, Λ A is the unique minimizer of L → θ L (α) among lattices of area A, up to rotation.

Remark 4. The same kind of results were obtained by Nonnenmacher and Voros in [START_REF] Nonnenmacher | Chaotic Eigenfunctions in Phase Space[END_REF].

The previous theorem implies that the triangular lattice is the unique minimizer, up to rotation, of L → ζ L (s) among lattices with density fixed for any s > 2 which is also proved by Rankin (in [START_REF] Rankin | A Minimum Problem for the Epstein Zeta-Function[END_REF]).

We consider the classical Lennard-Jones potential

V LJ (r) = 1 r 12 - 2 r 6
whose minimum is obtained at r = 1, and for L = Zu ⊕ Zv a Bravais lattice of R 2 , we let

E LJ (L) := x∈L * V LJ ( x ) = ζ L (12) -2ζ L (6)
be the Lennard-Jones energy of lattice L. By (4.1) this energy among lattices of area A can be viewed as energy L → E LJ ( √ AL) over lattices of area 1 and we parametrize L with its length u and v by

Q L (m, n) = u 2 m 2 + v 2 n 2 + 2mn u 2 v 2 -1.
It follows that we can write Lennard-Jones energy among lattices of area A as 

( u , v ) → (m,n) (0,0) V LJ √ A u 2 m 2 + v 2 n 2 + 2mn u 2 v 2 -1 . (4.2) 
= (m,n) (0,0) 1 (x 2 m 2 + y 2 n 2 + 2xymn cos θ) 6 - 2 (x 2 m 2 + y 2 n 2 + 2xymn cos θ) 3 .
First case : minimization without fixed area. If L is the solution of (P) then x and y cannot be too small, otherwise the energy is too large and a proof of a lower bound for x is given in Section 4. Moreover y ≤ 1 because if y > 1 then a contraction of the line Rv gives smaller energy. Therefore we have x, y ∈ [m, M] and θ ∈

[π/3, π/2]. The function (x, y, θ) → f (x, y, θ) is continuous on [m, M] × [m, M] × [π/3, π/2]
hence its minimum is achieved. Second case : minimization with fixed area. We can parametrize L with only two variables x and y -as in (4.2) -such that when x → 0 then y → +∞. As L should be a Bravais lattice, it is clear that the minimum of f is achieved.

Minimization among lattices with fixed area 4.3.1 A sufficient condition

Our idea is to write E LJ in terms of θ L and to use Theorem 4.2.1 in order to find a sufficient condition for the minimality of the triangular lattice among Bravais lattices with a fixed area.

Theorem 4.3.1. If A 3 ≤ π 3 120
, then Λ A is the unique solution of (P A ).

Proof. As it is explained in [START_REF] Montgomery | Minimal theta functions[END_REF] or [START_REF] Terras | Harmonic Analysis on Symmetric Spaces and Applications[END_REF], we can write the Epstein zeta function in terms of a theta function. Indeed, we have the following identity, where the discriminant of

Q L is D = 1 : for Re(s) > 1, ζ L (2s)Γ(s)(2π) -s = 1 s -1 - 1 s + ∞ 1 (θ L (α) -1)(α s + α 1-s ) dα α . (4.1) 
Thus, for |L| = A, we write

E LJ (L) = ζ L (12)-2ζ L (6) as an integral +∞ 1 g A (α) θ L α 2A -1 dα α ,
up to a constant independent of L and we find A so that g A (α) ≥ 0 for any α ≥ 1. As Λ A is the unique minimizer of θ L (α) for any α > 0, we have for any L such that |L| = A :

E LJ (L) -E LJ (Λ A ) = +∞ 1 θ L α 2A -θ Λ A α 2A g A (α) dα α ≥ 0
and Λ A is the unique solution of (P A ).

In fact (4.1) it is the classic "Riemann's trick" and here we will briefly recall its proof : as

Γ(s)(2π) -s Q L (m, n) -s = ∞ 0 t s-1 e -t (2π) -s Q L (m, n) -s dt
for Re(s) > 1, and by putting t = 2πQ L (m, n)y, we obtain

Γ(s)(2π) -s Q L (m, n) -s = ∞ 0
e -2πyQ L (m,n) y s-1 dy.

MINIMIZATION AMONG LATTICES WITH FIXED AREA

Summing over (m, n) (0, 0) and using the identity θ L (1/α) = αθ L (α) for any α > 0, proved by Montgomery in [START_REF] Montgomery | Minimal theta functions[END_REF], we obtain 2 there are two identities :

Γ(s)(2π) -s ζ L (2s) = ∞ 0 (θ L (y) -1)y s-1 dy = 1 0 (θ L (y) -1)y s-1 dy + ∞ 1 (θ L (y) -1)y s-1 dy = ∞ 1 (θ L (1/α) -1)α -1-s dα + ∞ 1 (θ L (α) -1)α s-1 dα = ∞ 1 (αθ L (α) -1)α -1-s dα + ∞ 1 (θ L (α) -1)α s-1 dα = ∞ 1 θ L (α)α -s dα - ∞ 1 α -1-s dα + ∞ 1 (θ L (α) -1)α s-1 dα = ∞ 1 (θ L (α) -1)α -s dα + ∞ 1 (θ L (α) -1)α s-1 dα + ∞ 1 α -s dα - ∞ 1 α -1-s dα = ∞ 1 (θ L (α) -1)α -s dα + ∞ 1 (θ L (α) -1)α s-1 dα + 1 s -1 - 1 s = ∞ 1 (θ L (α) -1)(α s + α 1-s ) dα α + 1 s -1 - 1 s . Now if |L| = A, by the equality D = (2A)
(2π) -6 (2A) 6 Γ(6)ζ L (12) = 1 5 - 1 6 + +∞ 1 θ L α 2A -1 (α 6 + α 1-6 ) dα α (2π) -3 (2A) 3 Γ(3)ζ L (6) = 1 2 - 1 3 + +∞ 1 θ L α 2A -1 (α 3 + α 1-3
) dα α and we find ζ L (12) = (2π) 6 30(2A) 6 

5! + +∞ 1 θ L α 2A -1 (2π) 6 (2A) 6 5! (α 6 + α -5 ) dα α ζ L (6) = (2π) 3 6(2A) 3 2! + +∞ 1 θ L α 2A -1 (2π) 3 (2A) 3 2! (α 3 + α -2 ) dα α .
Therefore, for any L of area A, andC A is a constant depending on A but independent of L. Now we want to prove that if π 3 ≥ 120A 3 then g A (α) ≥ 0 for any α ≥ 1. First, we remark that

E LJ (L) = C A + π 3 A 3 +∞ 1 θ L α 2A -1 g A (α) dα α where g A (α) := π 3 A 3 5! (α 6 + α -5 ) -(α 3 + α -2 ),
g A (1) ≥ 0 ⇐⇒ π 3 A 3 5! -1 ≥ 0 ⇐⇒ π 3 ≥ 120A 3 .
Secondly, we compute g ′ A (α) =

π 3 A 3 5! (6α 5 -5α -6 ) -(3α 2 -2α -3
), and if π 3 ≥ 120A 3 then Finally, we compute g ′′ A (α) =

g ′ A (1) = π 3 A 3 5! -1 ≥ 0.
π 3 A 3 5! (30α 4 + 30α -7 ) -(6α + 6α -4 ). As π 3 A 3 5! ≥ 1 and α ≥ 1, π 3 A 3 5! (30α 4 + 30α -7 ) -(6α + 6α -4 ) ≥ 30α 4 + 30α -7 -6α -6α -4 ≥ 24α + 30α -7 -6α -4 ≥ 0.
Thus, we have shown that, for any A so that π 3 ≥ 120A 3 , g ′′ A (α) ≥ 0 for any α ≥ 1, g ′ A (1) ≥ 0 and g A (1) ≥ 0. Hence g A (α) ≥ 0 for any α ≥ 1 if π 3 ≥ 120A 3 .

Remark 5. We have π 3 120 1/3 ≈ 0.63693, hence for A ≤ 0.63692, Λ A is the unique solution of (P A ).

Remark 6. We prove below (see Proposition 4.3.1) that when A is sufficiently large then Λ A is no longer a solution of (P A ). However, our bound π 3 ≥ 120A 3 is likely not to be optimal. If it were, by the Proposition 4.4.2 and its remark, then the triangular lattice is not the solution to (P).

This result explains that the behavior of the potential is important for the interaction between the first neighbors because in this case the reverse power part r -12 is the strongest interaction. This method can be adapted to any potential of the form V(r) = K 1 r n -K 2 r p with n > p > 2 to obtain similar results in two dimensions.

Remark 7. The three-dimensional case is an open problem. Indeed, there is no result related to the minimization of theta and Epstein functions among Bravais lattices of R 3 with fixed volume. Sarnak and Strömbergsson recalled in [START_REF] Sarnak | Minima of Epstein's Zeta Function and Heights of Flat Tori[END_REF] that Ennola had shown in [START_REF] Ennola | On a Problem about the Epstein Zeta-Function[END_REF] the local minimality of the face centered cubic lattice for ζ L (s) and for any s > 0. They also prove that the face centered cubic lattice cannot be the minimizer of ζ L (s) for all s > 0. Hence the problem of minimization of Lennard-Jones energy among lattices of R 3 , and of course in higher dimensions, seems to be very difficult.

A necessary condition

Proposition 4.3.1. Λ A is a solution of (P A ) if and only if A ≤ inf |L|=1 L Λ 1 ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3
. Hence if A is sufficiently large, Λ A is not a solution of (P A ).

Proof. We have the following equivalences 

E LJ (Λ A ) ≤ E LJ (L) for any L such that |L| = A ⇐⇒ ζ Λ A (12) -2ζ Λ A (6) ≤ ζ L (12) -2ζ L (6) for any L such that |L| = A ⇐⇒ 2(ζ L (6) -ζ Λ A (6)) ≤ ζ L (12) -ζ Λ A (12) for any L such that |L| = A ⇐⇒ 2(ζ L (6) -ζ Λ 1 (6)) A 3 ≤ ζ L (12) -ζ Λ 1 (
⇐⇒ A ≤ inf |L|=1 L Λ 1 ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3 . It is difficult to study the minimum of function L → ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3
among lattices

L Λ 1 such that |L| = 1. However, we can numerically look for a lower bound. This function can be parametrized with two variables -here the lengths u and v of the lattice L as in (4.2) -and we can plot the level sets of it. We notice that the large differences between the values of the function only give a domain where the function is minimum. ). In fact it is clear that the point associated with the triangular lattice is a critical point of this energy, because the triangular lattice is the unique minimizer of Epstein zeta function among lattices of area A. Moreover we can prove that the square lattice is also a critical point, by using an other parametrization as ( u , θ). We numerically obtain :

• For A = 1, Λ 1 seems to be its minimizer and Z 2 is a local maximizer.

• For A = 1.13, Λ 1 seems to be its minimizer but Z 2 seems to be not a local maximizer.

• For A = 1.14, Z 2 seems to be its minimizer because we estimate E LJ ( √ 1.14Λ 1 ) ≈ -4.435 is larger than E LJ ( √ 1.14Z 2 ) ≈ -4.437

• For A = 1.16, Z 2 seems to be its minimizer.

• For A = 1.2, Z 2 seems to be its minimizer and Λ 1 is a local maximizer.

• For A = 2 (and more), Z 2 seems to be its minimizer and Λ 1 is a local maximizer.

Hence, we can write the following conjecture based on our numerical study of L → E LJ ( √ AL) among all lattices with area 1 :

Conjecture : If A is sufficiently large, the square lattice is the unique solution of (P A ). 

Global minimization of E LJ among lattices

Now we study the problem (P). We give high properties for the global minimizer among lattices and some indications of its shape.

Characterization of the global minimizer

Proposition 4.4.1.

If L 0 = Zu ⊕ Zv is a solution of (P) then i) E LJ (L 0 ) = -ζ L 0 (6) = -ζ L 0 (12) < 0, ii) u < 1 and v ≤ 1, iii) ζ L 0 (6) = max{ζ L (6); L such that ζ L (12) ≤ ζ L (6)}. Proof. i) We consider the function f (r) = E LJ (rL 0 ) = r -12 ζ L 0 (12) -2r -6 ζ L 0 (6). As L 0 is a global minimizer of E LJ , r = 1 is the critical point of f and f ′ (r) = -12r -13 ζ L 0 (12) + 12r -7 ζ L 0 (6), hence f ′ (1) = 0 ⇐⇒ ζ L 0 (12) = ζ L 0 (6)
and

E LJ (L 0 ) = ζ L 0 (12) -2ζ L 0 (6) = -ζ L 0 (6) = -ζ L 0 (12). ii) As ζ L 0 (12) = ζ L 0 (6), it is clear that u < 1 because if r > 1 then r -12 < r -6 . If v > 1, a little contraction of Rv yields a new lattice L 1 such that E LJ (L 1 ) < E LJ (L 0 )
because some of the distances of the lattice decrease while u is constant, therefore the energy decreases.

iii

) -ζ L 0 (6) = E LJ (L 0 ) ≤ E LJ (L) ⇐⇒ ζ L (6) -ζ L 0 (6) ≤ ζ L (12) -ζ L (6) and if L is a lattice such that ζ L (12) ≤ ζ L (6), we get ζ L (6) ≤ ζ L 0 (6).
Corollary 1. The triangular lattice of length 1 cannot be the solution of (P) though the minimum of the potential V LJ is achieved for r = 1. 

A 0 = ζ Λ 1 (12) ζ Λ 1 (6) 1/3 .
Proof. As in the above proof, we define the function f (r) = E LJ (rΛ 1 ) and we compute its first derivative f ′ (r) = -12r -13 ζ Λ 1 (12) + 12r -7 ζ Λ 1 [START_REF] Almeida | Regularity of positive solutions of p-Laplace equations on manifolds and its applications[END_REF]. It follows that :

f ′ (r) ≥ 0 ⇐⇒ r ≥ ζ Λ 1 (12) ζ Λ 1 (6) 1/6 =: r 0 hence Λ A 0 = r 0 Λ 1 , with A 0 = r 2 0 = ζ Λ 1 (12) ζ Λ 1 (6) 1/3
, is the minimizer of E LJ among all triangular lattices.

Remark 8. We compute A 0 ≈ 0.84912, therefore the length of this lattice is u ≈ 0.99019. Moreover we notice that E LJ (Λ A 0 ) = -ζ Λ A 0 (6) ≈ -6.76425 (it will be useful for the next part). Because A 0 > 0.63692, Theorem 4.3.1 is not sufficient to prove that Λ A 0 is the solution of (P) but a numerical investigation of L → E LJ ( √ A 0 L) among all lattices of area 1 seems to indicate that the solution of (P A 0 ) is triangular and unique.

Fig. 4 :

Level sets of ( u , v ) → E( √ A 0 L) (black = minimum, white = maximum)
Moreover it is not difficult to prove numerically that Λ A 0 is a local minimizer among all lattices. Hence we can write the following conjecture for this problem :

Conjecture : The triangular lattice Λ A 0 is the unique solution of (P).

Minimum length of the global minimizer

Because our method does not show that the triangular lattice of area A 0 is the global minimizer of the Lennard-Jones energy among lattices, we use Blanc's proof, from [START_REF] Blanc | Lower Bound for the Interatomic Distance in Lennard-Jones Clusters[END_REF], in order to find a lower bound for the minimal distance in the globally minimizing lattice.

His result was for the Lennard-Jones interaction of N points in R 2 and R 3 . Xue in [START_REF] Xue | Minimum Inter-Particle Distance at Global Minimizers of Lennard-Jones Clusters[END_REF] and Schachinger, Addis, Bomze and Schoen in [START_REF] Addis | New Results for Molecular Formation under Pairwise Potential Minimization[END_REF] improved this. We use Blanc's method because it is well suited to our problem.

Proposition 4.4.3. If L 0 = Zu ⊕ Zv is a solution of (P), then the minimal distance is greater than an explicit constant c. Furthermore, we have c > 0.74035.

Proof. In [START_REF] Blanc | Lower Bound for the Interatomic Distance in Lennard-Jones Clusters[END_REF], Blanc proved that

E LJ (L 0 ) ≥ V LJ ( u ) -23 + 1 u 12 k≥2 16k + 8 k 12 - 1 u 6 k≥2 32k + 16 k 6 .
As we have

E LJ (L 0 ) ≤ E LJ (Λ A 0 ) = -ζ Λ A 0 (6) we obtain 23 -ζ Λ A 0 (6) ≥ P + 1 u 12 - Q + 2 u 6 .
with

P := k≥2 16k + 8 k 12 and Q := k≥2 32k + 16 k 6 .
Now, setting t = u -6 , we have (P

+ 1)t 2 -(Q + 2)t -23 + ζ Λ A 0 (6) ≤ 0 which implies t ≤ Q + 2 + (Q + 2) 2 + 4(23 -ζ Λ A 0 (6))(P + 1) 2(P + 1)
and we obtain

u ≥             2(P + 1) Q + 2 + (Q + 2) 2 + 4 23 -ζ Λ A 0 (6) (P + 1)             1/6
=: c.

Since P ≈ 0.00988, Q ≈ 1.45918 and ζ Λ A 0 (6) ≈ 6.76425 we get c > 0.74035.

Remark 9. As we think that Λ A 0 is the unique solution of (P), this lower bound is the best that we can find with this method. Moreover, this bound and the second point of Proposition 4.4.1 imply that 0.47468 < |L 0 | < 1.

The Thomas-Fermi model in R 2

In Thomas-Fermi's model for interactions in a solid, we consider N nuclei at positions X N = (x 1 , ..., x N ), with for any 1 ≤ i ≤ N, x i ∈ R 2 , associated with N electrons with total density ρ ≥ 0. Then the Thomas-Fermi energy is given by

E T F (ρ, X N ) = R 2 ρ 2 (x)dx - 1 2 R 2 ×R 2 log x -y ρ(x)ρ(y)dxdy + N j=1 R 2 log x -x j ρ(x)dx - 1 2 j k log x j -x k .
To introduce this kind of model property in quantum chemistry, refer to [START_REF] Cances | Méthodes Mathématiques en Chimie Quantique. Une introduction[END_REF]. Because the system is neutral, the number of electrons is exactly N and we study the minimization problem

I T F N = inf X N {E T F (X N )} where E T F (X N ) := inf ρ E T F (ρ, X N ), ρ ≥ 0, ρ ∈ L 1 (R 2 ) ∩ L 2 (R 2 ), R 2 ρ = N .
By the Euler-Lagrange equations for this minimization problem, we find -as it is explained in Section 2 of [START_REF] Blanc | A Numerical Investigation of the 2-Dimensional Crystal Problem[END_REF] and Section 4 of [START_REF] Blanc | From Molecular Models to Continuum Mechanics[END_REF] -that the minimizer ρ is the solution of

-∆ ρ + π ρ = π N j=1 δ x j .
It is known that the fundamental solution of the modified Helmholtz equation -∆h + h = δ 0 -also called "screened Poisson equation" -which goes to 0 at infinity, is the radial modified Bessel function of the second kind, also called the Yukawa potential, defined in [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF] and [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF], by

K 0 ( x ) = +∞ 0 e -x cosh t dt.
Therefore we obtain ρ

(x) = π N j=1 W T F ( x -x j ) where W T F ( x ) = 1 2 K 0 ( √ π x ) and finally E T F (X N ) = i j W T F ( x i -x j ) + NC
where C is a constant independent of N and X N . Now, if we consider that the nuclei are in lattice L, we can study, by taking the mean value of the total energy, the following energy per point

E T F (L) = x∈L * W T F ( x ).
A simple idea enables us to use theta functions and we have the following result :

Theorem 4.5.1. Λ A is the unique minimizer of E T F among all lattices of fixed area A.

Proof. This problem is equivalent to finding the minimizer of

x∈L * K 0 ( x ) among lattices
with a fixed area. We put y = 1 2 x e t for x 0 in the integral formula for K 0 ( x ) :

K 0 ( x ) = 1 2 +∞ -∞ e -x cosh t dt = 1 2
+∞ 0 e -x cosh(ln(2y/ x )) dy y Hence, for any L of a fixed area A :

E T F (Λ A ) = x∈Λ * A W T F ( x ) ≤ x∈L * W T F ( x ) = E T F (L).
Remark 10. The Yukawa potential appears in many vortex interaction models, as the αmodel in fluid mechanics and in superconductivity (see for example [START_REF] Abrikosov | The Magnetic Properties of Superconducting Alloys[END_REF] and [START_REF] Sow | Measurement of the Vortex Pair Interaction Potential in a Type-II Superconductor[END_REF]). Indeed, the second author recently studied, in [START_REF] Zhang | On the Minimizer of Renormalized Energy related to Ginzburg-Landau Model[END_REF], Ginzburg-Landau's model for the interactions between vortices in superconductors. He proved, by using a more general method -that it can certainly be used for other potentials -the same result was obtained for minimality of the triangular lattice among all lattices with fixed density. The use of results from Number Theory in Ginzburg-Landau's models for vortices can also be seen in [START_REF] Sandier | From the Ginzburg-Landau model to vortex lattice problems[END_REF].

Remark 11. The potential W T F decreases. We notice that W T F ( √ .) is completely monotonic on R * + , i.e. (-1) n (W T F ( √ .)) (n) (r) is positive for any n ≥ 0 and any r > 0(see Corollary 1 of [START_REF] Miller | Completely monotonic functions[END_REF]). It is explained in [START_REF] Cohn | Universally Optimal Distribution of Points on Spheres[END_REF], by using Bernstein's Theorem (see Theorem 12b of [START_REF] Widder | The Laplace Transform[END_REF]) about the following representation of a completely monotonic function f

f (r) = +∞ 0 e -rt dα(t)
where α is a non decreasing function, and Montgomery's Theorem 4.2.1 for theta functions, that the triangular lattice is the unique minimizer among lattices of E f (L) := x∈L * f ( x 2 ), provided we have the correct assumptions of convergence, for instance f (r) = O(r -1-η ) at infinity for some η > 0. This is another proof of our theorem.

Chapter 5

Limits of Solutions to n-dimensional Ginzburg-Landau Equations

This is joint work with Yuxin Ge and Etienne Sandier.

Introduction

Suppose that Ω ⊂ R n is a bounded smooth domain, g : ∂Ω → S n-1 is a smooth prescribed map, and d = deg(g, ∂Ω, S n-1 ) is the degree of g. We consider the functional

E ε (u, Ω) = Ω |∇u| n n + 1 4ε n 1 -|u| 2 2 dx (5.1) for u ∈ W 1,n g (Ω, R n ) = w ∈ W 1,n (Ω, R n ) : w| ∂Ω = g . It is easy to see that W 1,n g (Ω, R n ) is not empty.
In the case of n = 2, the functional defined above is the classical Ginzburg-Landau functional. A minimizer

u ε ∈ W 1,2 g Ω, R 2 of E ε (u, Ω) satisfies the so called Ginzburg- Landau system -∆u ε = 1 ε 2 1 -|u ε | 2 u ε in Ω u ε = g on ∂Ω .
(5.2)

Bethuel, Brézis, Hélein did notable contribution on this model, and eventually their work leaded to the publication of the book [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. In [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], they proved, among the others, the following theorems.

Theorem (BBH1). Assume that Ω is star-shaped, and that d 0, then there exists a subsequence of ε k → 0, exactly |d| distinct points a 1 , a 2 , • • • , a |d| , and a harmonic map

u * ∈ C ∞ (Ω \ a 1 , a 2 , • • • , a |d| ) with boundary value g such that u ε n → u * in C k loc (Ω \ ∪ i {a i }) for ∀k and in C 1,α loc ( Ω \ ∪ i {a i }) for ∀α < 1.
In addition, each singularity has degree sign(d).

For non-star shaped domain, see [START_REF] Struwe | On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions[END_REF] for references. Also, in their paper, they introduced a renormalized energy which is defined on configurations of points. For any given configuration b

= (b 1 , b 2 , • • • , b |d| ) of distinct points in Ω, the renormalized energy W(b, d, g) := -π i j ln b i -b j + 1 2 ∂Ω Φ(g × g τ ) -π |d| i=1 R(b i )
where Φ is the solution of the linear Neumann problem

                 ∆Φ = 2π |d| i=1 δ b i in Ω, ∂Φ ∂ν = g × g τ on ∂Ω (5.3)
where ν is the unit outward normal to ∂Ω, τ is a unit tangent vector to ∂Ω and

R(x) = Φ(x) - |d| i=1 ln |x -b i | .
For this renormalized energy, they proved Theorem (BBH2 ). Let ∪ i {a i } be the limit singular points of Theorem(BBH1), then the configuration ∪ i {a i } minimizes W(b, d, g).

Near the singularity, they had a vanishing gradient property Theorem (BBH3 ). Near each singularity a j , u * (z) = za j za j e iH j (z) , (5.4) where H j is a real harmonic function such that H j (z) = H j (a j ) + O( za j 2 ), as z → a j .

(5.5)

In other words, ∇H j (a j ) = 0.

(5.6)

As for the case of n ≥ 3, the infimum of the Ginzburg-Landau type functional E ε (u, Ω) is attained. We have the higher dimension analogue of (5.2) for any minimizer

u ε of E ε (u, Ω) -div |∇u ε | n-2 ∇u ε = 1 ε n 1 -|u ε | 2 u ε in Ω u ε = g on ∂Ω .
(5.7)

We are interested in the case of d 0, therefore we assume throughout the rest of the paper, for notational convenience, that d = deg(g, ∂Ω, S n-1 ) > 0. For convenience, we define a constant

κ n = 1 n (n -1) n 2 ω n
where

ω n = |S n-1 |.
In [START_REF] Strzelecki | Asymptotics for the minimization of a ginzburg-landau energy in n dimensions[END_REF], Strzelecki proved minimizers u ε ∈ W 1,n g (Ω, R n ) of the n-dimensional functional E ε (u, Ω), which satisfy the Dirichlet boundary condition u ε = g with zero topological degree, converge in W 1,n (Ω) and C α loc (Ω) for any α < 1 -upon passing to a subsequence 46 ε k → 0 -to some minimizing n-harmonic map. For the case d = deg g 0, Hong [START_REF] Hong | Asymptotic behavior for minimizers of a ginzburg-landau-type functional in higher dimensions associated with n-harmonic maps[END_REF] established a weak convergence away from the singularities for a sequence of selected minimizers. In [START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF], Han and Li proved, among other things, the corresponding results on the singular limits of minimizers of n-dimensional Ginzburg-Landau type functional. This can be regarded as the higher dimensional analogue of Theorem(BBH1).

Theorem (HL ). Assume d 0, n ≥ 3. For any sequence ε k → 0, let {u k } ⊂ W 1,n g (Ω, R n ) be the corresponding sequence of minimizer for E ε k . Then there exists a subsequence {u k ′ }, a collection of |d| distinct points {a 1 , a 2 , • • • , a |d| } ⊂ Ω, and an n-harmonic map u * :

Ω \ ∪ i {a i } → S n-1 such that u k ′ → u * strongly in W 1,n loc ( Ω \ ∪ i {a i } ; R n ), (5.8) u k ′ → u * in C 0 loc ( Ω \ ∪ i {a i } ; R n ), (5.9) u k ′ → u * strongly in W 1,p (Ω; R n ) for all 1 ≤ p < n.
(5.10)

Furthermore, deg(u * , ∂B σ , S n-1 ) = sign(d) for all 1 ≤ j ≤ |d| and σ > 0 small enough.

In our paper, we shall prove an analogue of Theorem(BBH2), i.e. the existence of renormalized energy for the higher dimensional Ginzburg-Landau functional. We shall prove that it coincides with the renormalized energy for n-harmonic map introduced by Hardt, Lin and Wang in the paper [START_REF] Hardt | Singularities of p-energy minimizing maps[END_REF]. In [START_REF] Hardt | Singularities of p-energy minimizing maps[END_REF], for an arbitrary subset A of Ω consisting of d distinct points {a 1 , a 2 , • • • , a d } that are separated from each other and from the boundary ∂Ω by at least 2σ 0 , they introduced a renormalized energy W g defined on the configuration of singular points of n-harmonic maps in Ω as follows. For 0 < δ < σ 0 , let

Ω A,δ = Ω \ ∪ d i=1 B δ (a i ). Define E A,δ (w) := Ω A,δ |∇w| n n dx
where w is in the family

W A,δ = w ∈ W 1,n (Ω A,δ ; S n-1 ) : w|∂Ω = g, deg(w, ∂B δ (a i )) = 1 for all i . Suppose that w A,δ minimizes E A,δ . Then E A,δ (w A,δ ) -dκ n | ln δ|
is increasing with respect to δ and bounded from below for any δ > 0.

So W g (a 1 , a 2 , • • • , a d ) := lim δ→0 E A,δ (w A,δ ) -dκ n | ln δ| (5.11)
makes sense. For this renormalized energy W g of n-harmonic maps, we will prove that it is the renormalized energy for n-dimensional Ginzburg-Landau type functional E ε (u, Ω). When there is no possibility of confusion, we will write W as W g . We have the following result.

Theorem 5.1.1. Let a = {a i } d i=1 be the limit singular points as in Theorem (HL), then

E ε (u ε , Ω) = dκ n | ln ε| + W g (a) + dγ + o(1) as ε → 0,
where γ is a constant which will be defined in Section 5.2.1 later, and the configuration {a i } d i=1 minimizes W g . The proof of this theorem can be divided into the following two lemmas.

Lemma 5.1.1. Let ā = {ā 1 , ā2 , • • • , ād } be any configuration of d points in Ω. Then for every ε > 0 small enough, we have

E ε (u ε , Ω) ≤ dκ n | ln ε| + W g (ā) + dγ + o(1). Lemma 5.1.2. Let a = {a 1 , a 2 , • • • , a d }
be the singular points of u * as in theorem(HL), then there is an integer N = N(g, Ω) such that for every k > N,

E ε k (u ε k , Ω) ≥ dκ n | ln ε k | + W g (a) + dγ -o(1).
Most of the results above deal only with the sequences of energy-minimizers. In our paper, we shall study the limits of solutions to Ginzburg-Landau equations in ndimensions.

Suppose u ε is a critical point of E ε (u, Ω), which satisfies (5.7)

-div |∇u ε | n-2 ∇u ε = 1 ε n 1 -|u ε | 2 u ε in Ω , u ε = g on ∂Ω .
and has an energy upper bound

E ε (u ε , Ω) ≤ dκ n |ln ε| + M (5.12)
where M is a constant. We have Theorem 5.1.2. Suppose that {u ε k }, ε k ց 0 is a sequence of critical points of E ε k and satisfies the upper bound condition (5.12). Then there exists a subsequence {u ε k ′ }, a collection of exactly d distinct points {a 1 , a 2 , • • • , a d } ⊂ Ω, a finite subset S of Ω, and an n-harmonic map u 0 :

Ω 0 := Ω \ ({a 1 , a 2 , • • • , a d } ∪ S ) → S n-1 , such that u ε k ′ → u 0 in W 1,n loc (Ω 0 , R n ). Furthermore, deg(u 0 , ∂B σ (a j ), S n-1 ) = 1, for 1 ≤ j ≤ d and σ > 0 small.
For a sequence of functions which satisfy only the upper bound condition (5.12), R. Jerrard proved in [START_REF] Jerrard | Lower bounds for generalized Ginzburg-Landau functionals[END_REF] that there exists a weakly convergence subsequence. In our work, we prove the strong convergence, but this depends on the fact that the sequence of functions solve the Ginzburg-Landau equations.

We also give a higher dimensional "vanishing gradient property" analogous to the one in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. Let u : Ω 0 → S n-1 be an n-harmonic map. We say u is a stationary n-harmonic map if its stress tensor is divergence free in Ω 0 , that is

i ∂ i T i, j = 0 where T i, j := |∇u| n-2 ∂ i u, ∂ j u - 1 n |∇u| n δ i, j
and satisfies where (e 1 , • • • , e n ) is the canonical basis in R n . Moreover, we can write

∂B ρ i T i, j ν i = 0 (5.13) for ∂B ρ ⊂ Ω 0 , ν = (ν 1 , • • • , ν n ).
u(x) = x -a i |x -a i | + Q(x -a i ) |x -a i | + O(|x -a i | 2 )
where Q(x) is some harmonic polynomial of degree 2. In particular, when n = 2, we have

B(x) = O(|x -a i | 2 ).
At the end of the paper, we give an example of non-minimizing sequence of critical points.

Theorem 5.1.3. In three dimensions, there exists a domain Ω and a boundary value g, such that a sequence of critical values u ε of the 3-dimensional Ginzburg-Landau type functional E ε (u, Ω) satisfies the upper bound condition (5.12) and is not the minimizer.

Renormalized Energy

In this section, we study the renormalized energy for minimizers of n-dimensional Ginzburg-Landau type functional. We show that it coincides with the renormalized energy for nharmonic maps.

Estimates when

Ω = B R and g(x) = g 0 = x |x|
In this subsection, we introduce some quantities similar with [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. The quantities in this section will play an important role in the proof of Lemma 5.1.1 and Lemma 5.1.2. For convenience, denote

E ε,R = E ε (u, B R ), I(ε, R) = min u∈W R,g 0 E ε,R . where W R,g 0 = {v | v ∈ W 1,n (B R , R n ), u| ∂B R = g 0 = x |x| }
. By scaling it is easy to see that

I(ε, R) = I(1, R/ε) = I(ε/R, 1).
Denote I(t) = I(t, 1) for notational convenience. Let u t be the minimizer of I(1, 1 t ). Lemma 5.2.1. For 0 < t 1 < t 2 < 1, we have

I(t 1 ) + κ n ln(t 1 ) ≤ I(t 2 ) + κ n ln(t 2 )
i.e. the function t → I(t) + κ n ln(t) is increasing.

5.2. RENORMALIZED ENERGY Proof. Set v(x) = u t 2 |x| < 1 t 2 , x |x| 1 t 2 ≤ |x| ≤ 1 t 1 .
(5.1)

Then by the definition of I(t), we have

I(t 1 ) = I(1, t -1 1 ) ≤ E 1,t -1 1 (v) = I(t 2 ) + B t -1 1 \B t -1 2 ∇ x |x| n n d x = I(t 2 ) + t -1 1 t -1 2 (n -1) n 2 n • r • ω n d r = I(t 2 ) + (n -1) n 2 n ω n • ln t 2 t 1 (5.2)
This implies the conclusion.

By using Theorem 1.1 of [START_REF] Jerrard | Lower bounds for generalized Ginzburg-Landau functionals[END_REF], we have a lower bound of I(t) + κ n ln(t).

Theorem.

If u ∈ W 1,n g (Ω, R n ), then E ε (u, Ω) ≥ dκ n |ln(ε)| + C(Ω, g).
This leads to the definition of constant

γ := lim t→0 I(t) + κ n ln(t).
If we apply a rotation θ on the boundary value g 0 , i.e. if the boundary value is θ • g 0 , we can get the same constant γ, that is because rotation on u does not change the energy.

Proof of Lemma 5.1.1

In this subsection, we prove Lemma 5.1.1. We will construct a comparison map which is in W 1,n g (Ω, R n ) to get the upper bound. For the construction, we need an important lemma (Lemma 9.1 in [START_REF] Hardt | Singularities of p-energy minimizing maps[END_REF]) on the behavior of w A,δ near the singularities. In [START_REF] Hardt | Singularities of p-energy minimizing maps[END_REF], they proved that near a i , one of the singularities, w A,δ will be, at each sufficiently small scale, close to some rotation. We will state the lemma without proof. Let ā = {ā 1 , ā2 , • • • , ād } be any configuration of d points of Ω that are separated from each other and from the boundary ∂Ω by at least 2σ 0 . Then Lemma 5.2.2 ( [START_REF] Hardt | Singularities of p-energy minimizing maps[END_REF]). For any µ > 0, there exists a positive τ 0 < σ 0 so that if δ > 0, s ∈ [4δ, τ 0 ] , and i ∈ {1, . . . , d}, then

w ā,δ (ā i + s(•)) -θ δ,s,i C 1 (B\B 1/2 ) < µ/3d
for some orthogonal rotation θ δ,s,i of R n . Now we prove Lemma 5.1.1. For any µ > 0, from (5.11), we may choose a positive constant δ 0 < τ 0 such that E ā,δ (w ā,δ ) ≤ W g (ā) + dκ n |ln δ| + µ/3

(5.3) whenever δ < δ 0 . We now fix such a δ < δ 0 /4, and fix an s ∈ [4δ, τ 0 ] as in Lemma 5.2.2, then we have the comparison map u 0 (x) ∈ W 1,n g (Ω, R n ) defined by 50

5.2. RENORMALIZED ENERGY CHAPTER 5. LIMITS OF SOLUTIONS TO N-DIMENSIONAL GINZBURG-LANDAU EQUATIONS u 0 (x) =          w ā,δ if x ∈ Ω ā,δ \ ∪ d i=1 B s (ā i ), v i (x) if x ∈ B s (ā i ) \ B s/2 (ā i ), u s/2,g i if x ∈ B s/2 (ā i ).
(5.4)

where g i (x) = θ δ,s,i ( x-ā i |x-ā i |
) is defined on ∂B s/2 (ā i ), and u s/2,g i is the corresponding minimizer of E ε,s/2 in Section 5.2.1. The map v i (x) is the interpolation map

v i (x) = v * i v * i where v * i (x) = (2 -2 |x -āi | /s)θ δ,s,i x -āi |x -āi | + (2 |x -āi | /s -1)w ā,δ ,
and from Lemma 5.2.2(also see section 7 of [START_REF] Hardt | Singularities for p-energy minimizing unit vectorfields on planar domains[END_REF]), it satisfies the energy estimate

B s (ā i )\B s/2 (ā i ) |∇v i | n n d x ≤ κ n ln 2 + µ/3d. (5.5) 
We need an energy lower bound estimate of S n-1 valued function on annulus.

Lemma 5.2.3 (Annulus estimate). If 0 < r < s < ∞, u ∈ W 1,n (B s (a) \ B r (a), S n-1 ), and deg u|∂B(ρ) = 1 for almost all ρ ∈ (r, s), then B s (a)\B r (a) |∇u| n n d x ≥ κ n ln s r .

Proof.

B s (a)\B r (a)

|∇u| n n d x ≥ s r ∂B ρ |∇ tan u| n /n dH n-1 d ρ ≥ s r 1 nρ S n-1 |∇ tan u| n-1 dH n-1 n n-1 ω 1-n n-1 n d ρ ≥ s r 1 nρ (n -1) n-1 2 S n-1 Jac u dH n-1 n n-1 ω 1-n n-1 n dρ ≥ κ n ln s r .
(

The third inequality comes from the inequality of arithmetic and geometric means.

Lemma 5.2.3 gives the lower bound on annulus,

∪(B s (a i )\B δ (a i )) |∇u 0 | n n d x ≥ dκ n ln s δ .
Combining this with (5.3) we have the estimate

E ā,s (u 0 ) = Ω ā,s |∇u 0 | n n d x = Ω ā,δ |∇u 0 | n n d x - ∪(B s (a i )\B δ (a i )) |∇u 0 | n n d x ≤ W g (ā) + dκ n |ln s| + µ/3.
(5.7)

RENORMALIZED ENERGY

In the balls B s/2 (ā i ), there exists a constant ε 0 such that

E ε (u s/2,g i , B s/2 ) = I(ε, s/2) = I(2ε/s, 1) ≤ γ + κ n |ln(2ε/s)| + µ/3d (5.8) 
whenever ε < ε 0 . Combining (5.5),(5.7) and (5.8) we have the desired upper bound

E ε (u ε , Ω) ≤ E ε (u 0 , Ω) = E ā,s (u 0 ) + d i=1 B s (ā i )\B s/2 (ā i ) |∇v i | n n d x + d i=1 E ε (u s/2,g i , B s/2 ) ≤ W g (ā) + dκ n |ln ε| + dγ + µ.
(5.9)

That finishes the proof of Lemma 5.1.1.

Proof of Lemma 5.1.2

In this section, we will give a proof of Lemma 5.1.2. Let a = {a 1 , a 2 , • • • , a d } be the singularities of u * in Theorem(HL). Suppose these points are separated from each other and from the boundary by at least 2σ 0 . On the one hand, from the convergence of the u ε → u * , we can have a lower bound E a,ρ (w a,δ )-o(1) of the functional E ε away from these singularities. On the other hand, we need to prove that, near a i , one of the singularities, for ε small enough,

E ε (u ε , B ρ (a i )) ≥ I(ε, ρ) + o(1). (5.10) 
In order to prove (5.10), we need to prove an important lemma which is similar with Lemma 5.2.2. It says that, near each singularities, at sufficiently small scale, the minimizer is close to some rotation on sphere. Define u i,r (x) := u * (a i + rx) in B 1 . Then we have Lemma 5.2.4. For any µ > 0, there exists a sequence σ k → 0, and an integer N(µ), such

that if k > N, then u i,σ k (•) -θ i W 1,n (S n-1 , R n ) < µ (5.11) 
for some orthogonal rotation θ i of R n .

Proof. If the lemma were false, then for any sequence σ k → 0,

u i,σ k (x) θ x |x| in W 1,n (S n-1 , R n )
for any orthogonal rotation θ . Then there exists δ, σ > 0, such that for σ < σ, all i = 1, 2, • • • , d, we have

B σ(a i ) \B σ (a i ) |∇u * | n n d x ≥ (κ n + δ) ln σ σ .
(5.12)

In the balls B σ (a i ), by using a conclusion on the lower bound of E ε (u ε , B σ (a i )) (see theorem 1.2 of [START_REF] Jerrard | Lower bounds for generalized Ginzburg-Landau functionals[END_REF]), we have where C(n) is a constant which depends only on n.

E ε (u ε , B σ (a i )) ≥ κ n ln σ ε -C(n) (5.
Then for ε small enough, say ε < ε 1 , (5.12) and (5.13 ) imply

E ε (u ε , ∪B σ(a i )) ≥ dκ n ln σ ε + δ ln σ σ -C(n). (5.14) 
With fixed σ, the lower bound contradicts the upper bound (5.9) in Section 5.2.2 as σ → 0. This completes the proof of the lemma.

For any µ > 0, from the definition of W g , there exists τ 0 < σ 0 , such that for any δ < τ 0 , we have

E a,δ (w a,δ , Ω a,δ ) ≥ W g (a) + dκ n |ln δ| -µ/6. (5.15) 
From Lemma 5.2.4, choose σ k < τ 0 /2 small enough, such that

u i,σ k (•) -θ i W 1,n (S n-1 ,R n ) < µ/6d. (5.16) 
Now fix σ k , and let ρ

= σ k 3 , in ball B 4ρ (a i ) define a function ũε (x) = min {(1 + f (|x -a i |)) |u ε | , 1} • u ε |u ε | where f (r) =            0 if |x -a i | ≤ ρ, |x-a i | ρ -1 δ 0 if ρ < |x -a i | ≤ 2ρ, δ 0 if 2ρ < |x -a i | ≤ 4ρ.
(5.17)

We will choose δ 0 later. Recall firstly from Theorem (HL) that

u ε → u * in C 0 loc ( Ω \ ∪ i {a i } ; R n ).
Then there exists an ε 1 (σ k , δ 0 ), such that

|u ε | ≥ 1 1 + δ 0 on B 4ρ \ B 2ρ whenever ε < ε 1 . It is clear that ũε = u ε |u ε | on B 4ρ \ B 2ρ . Recall that ρ is fixed, and we have |ũ ε | ≥ |u ε | in B 4ρ (a i ), thus we can choose δ 0 small enough, and ε < ε 2 (σ k , δ 0 , µ) such that E ε (u ε , B 4ρ (a i )) ≥ E ε (ũ ε , B 4ρ (a i )) -µ/6d. (5.18) 
To prove Lemma 5.1.2, we construct another function

ūε =          ũε if |x -a i | ≤ 2ρ, vi if 2ρ < |x -a i | ≤ 3ρ, wi if 3ρ < |x -a i | ≤ 4ρ. (5.19) 
where both vi and wi are interpolation maps defined by

vi = v i |v i | 5.2. RENORMALIZED ENERGY where v i = (3 -|x -a i | /ρ)ũ ε + (|x -a i | /ρ -2)u * . And wi = w i |w i |
where

w i = (4 -|x -a i | /ρ) • u * (3ρ • x-a i |x-a i | ) + (|x -a i | /ρ -3) • θ i ( x-a i |x-a i |
). The fact of the convergence of u ε to u * implies that

E ε (ũ ε , B 3ρ (a i ) \ B 2ρ (a i )) ≥ E ε (ū ε , B 3ρ (a i ) \ B 2ρ (a i )) -µ/6d.
(5.20)

From the Lemma 5.2.4, we have

E ε (ũ ε , B 4ρ (a i ) \ B 3ρ (a i )) ≥ κ n ln 4 3 = E ε (θ i ( x -a i |x -a i | ), B 4ρ (a i ) \ B 3ρ (a i )) ≥ E ε (ū ε (a i ), B 4ρ (a i ) \ B 3ρ (a i )) -µ/6d. (5.21) 
Combining (5.18), (5.20) and (5.21) gives

E ε (u ε , B 4ρ (a i )) ≥ E ε (ū ε , B 4ρ (a i )) -µ/2d ≥ I(ε, 4ρ) -µ/2d. (5.22) 
Now we choose δ = 4ρ. From the convergence of u ε in the domain Ω a,δ , choose ε small enough, such that

E ε (u ε , Ω a,δ ) ≥ E ε (u * , Ω a,δ ) -µ/6 ≥ E ε (w a,δ , Ω a,δ ) -µ/6 ≥ W g (a) + dκ n |ln δ| -µ/3.
(5.23) Combining (5.22) and (5.23), for ε small enough, we have

E ε (u ε , Ω) ≥ dI(ε, 4ρ) + W g (a) + dκ n |ln δ| -5µ/6 ≥ W g (a) + dκ n |ln ε| + dγ -µ. (5.24)
This completes the proof of Lemma 5.1.2.

Limits of Solutions to Ginzburg-Landau equations

In this section, we start to study a sequence of critical points of n-dimensional Ginzburg-Landau type functional which have proper upper bounds. Suppose u ε is a critical point of E ε (u, Ω), which satisfies (5.7)

-div |∇u ε | n-2 ∇u ε = 1 ε n 1 -|u ε | 2 u ε in Ω , u ε = g on ∂Ω .
and has an energy upper bound

E ε (u ε , Ω) ≤ dκ n |ln ε| + M (5.1)
where M is a constant. Note that these points are not necessarily the minimizers of the functional. We study the compactness and other properties of this sequence of critical points. 

The Divergence Free Stress-Energy Tensor

Pohozaev identity plays a crucial role in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] and [START_REF] Struwe | On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions[END_REF] in two dimensions, and in [START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF] in n dimensions. There are two methods to derive the Pohozaev identity. The first method is to multiply both sides of the equations by appropriate multipliers. And the other one is by using the fact that the stress-energy tensor is divergence free. These two methods use only the equations. While the proof of [START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF] in n dimensions depends on the minimality of the functions. In our paper, we will use the divergence free of stress tensor to get the Pohozaev type identity. To do this, we need to discuss the regularity.

Maximum Principle

Lemma 5.3.1. Let u ε ∈ W 1,n g (Ω, R n ) be a solution of equations (5.7), then we have

|u ε | ≤ 1. Proof. Let M = {x | |u ε (x)| ≥ 1}, then on M, we have 1 2 div |∇u ε | n-2 ∇ |u ε | 2 = div |∇u ε | n-2 ∇u ε , u ε + |∇u ε | n = 1 ε n |u ε | 2 -1 u ε , u ε + |∇u ε | n = 1 ε n |u ε | 2 -1 |u ε | 2 + |∇u ε | n ≥ 0. (5.2) Therefore M -div |∇u ε | n-2 ∇ |u ε | 2 |u ε | 2 -1 |u ε | 2 = M |∇u ε | n-2 ∇ |u ε | 2 2 • 1 |u ε | 4 ≤ 0.
(5.3) Thus either

• |M| = 0 ⇒ |u ε | ≤ 1 ;
or

• |∇u ε | = 0 on M ⇒ |u ε | = 1 on M.
That finishes the proof.

An Auxiliary Problem

In this part, we shall discuss the regularity of the solutions, and prove Lemma 5.3.2. Let u ε ∈ W 1,n g (Ω, R n ) be a solution of equations (5.7), then

|∇u ε | n-2 ∂u ε ∂x l ∈ H 1 loc (Ω)
for all l = 1, • • • , n.

LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS

Now we prove the Lemma 5.3.2. We follow the same method in the proof of Lemma 2.2 in [START_REF] Almeida | Regularity of positive solutions of p-Laplace equations on manifolds and its applications[END_REF].

For simplicity, in this part we suppose that l = 1. We consider the auxiliary problem below. In ball B(a, r) ⊂ Ω, consider the energy functional

F δ (w) := 1 n B(a,r) (|∇w| 2 + δ 2 ) n/2 dx - B(a,r) f (u ε )w dx for w ∈ W 1,n u ε (B(a, r), R n ) = w ∈ W 1,n (B(a, r), R n ) , w = u ε on ∂B(a, r) . The corresponding Euler-Lagrange equation of functional F δ is          L δ w δ = f (u ε ) = 1 ε n 1 -|u ε | 2 u ε in B(a, r) w δ = u ε on ∂B(a, r) (5.4) 
where

L δ w δ := -div (|∇w δ | 2 + δ 2 ) n-2 2 ∇w δ . Note that f (u ε ) ∈ W 1,n ∩ L ∞ if ε is fixed.
Differentiate the equation above(here we assume w δ ∈ W 2,n , if not we can use the difference quotients to get the same conclusion), then we have

∂ ∂x 1 L δ w δ = ∂ ∂x 1 ( f (u ε )).
The corresponding variational equality is 

B(a,r) (|∇w δ | 2 + δ 2 ) n-2 2 ∇ ∂w δ ∂x 1 , ∇v + (n -2) B(a,r) ∇w δ , ∇v (|∇w δ | 2 + δ 2 ) n-4 2 ∇w δ , ∇ ∂w δ ∂x 1 = B(a,r) ∂ ∂x 1 1 ε n (1 -|u ε | 2 )u ε • v (5.5) for v ∈ W 1,n 0 (B(a, r)). Choose ϕ = ψ 2 , where ψ =          1, in B(a, r 2 
(|∇w δ | 2 + δ 2 ) n-2 2 ∇ ∂w δ ∂x 1 , ∇v = B(a,r) ϕ ∇ ∂w δ ∂x 1 2 (|∇w δ | 2 + δ 2 ) n-2 2 + (|∇w δ | 2 + δ 2 ) n-2 2 ∇ ∂w δ ∂x 1 , ∂w δ ∂x 1 • (∇ϕ) T .
(5. 

(|∇w δ | 2 + δ 2 ) n-2 2 ∇ ∂w δ ∂x 1 , ∂w δ ∂x 1 • (∇ϕ) T ≤θ B(a,r) ϕ ∇ ∂w δ ∂x 1 2 (|∇w δ | 2 + δ 2 ) n-2 2 + C(θ, r) B(a,r) (|∇w δ | 2 + δ 2 ) n 2 .
(5.8)

While

(n -2)

B(a,r) ∇w δ , ∇v (|∇w δ | 2 + δ 2 ) n-4 2 ∇w δ , ∇ ∂w δ ∂x 1 =(n -2) B(a,r) ϕ ∇w δ , ∇ ∂w δ ∂x 1 2 (|∇w δ | 2 + δ 2 ) n-4 2 + 2(n -2) B(a,r) ∇w δ , ∂w δ ∂x 1 • (∇ψ) T (|∇w δ | 2 + δ 2 ) n-4 2 ∇w δ , ψ • ∇ ∂w δ ∂x 1 .
(5.9)

We can estimate the second term on the right hand side by using Young's Inequality again.

(n -2)

B(a,r) ∇w δ , ∂w δ ∂x 1 • (∇ψ) T (|∇w δ | 2 + δ 2 ) n-4 2 ∇w δ , ψ • ∇ ∂w δ ∂x 1 ≤θ B(a,r) ϕ ∇ ∂w δ ∂x 1 2 (|∇w δ | 2 + δ 2 ) n-2 2 + C(θ, r) B(a,r) (|∇w δ | 2 + δ 2 ) n 2 .
(5.10)

Combine the inequalities above, we have

B(a,r/2) ∇ ∂w δ ∂x 1 2 (|∇w δ | 2 + δ 2 ) n-2 2 ≤C(r, ε) B(a,r) 1 + |∇w δ | n + ∂u ε ∂x 1 ∂w δ ∂x 1 (5.11) Therefore, (|∇w δ | 2 + δ 2 ) n-2 4 • ∂w δ ∂x 1 is bounded in H 1 loc (Ω). Recall that F δ is coercive, we have w δ is bounded in W 1,n u ε (B(a, r), R n ).
Then

w δ ⇀w 0 in W 1,n ; w δ →w 0 in L s , ∀1 ≤ s < ∞.
(5.12)

From the lower semi-continuity, we have

B(a,r) |∇w 0 | n ≤ lim inf δ→0 B(a,r) |∇w δ | n .
And from the convergence of w δ , we have

B(a,r) f (u ε ) • w 0 = lim δ→0 B(a,r) f (u ε ) • w δ .

LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS

Thus w 0 is a minimizer of F 0 . From the uniqueness of minimizer of F 0 (in fact, F 0 is convex), we have w 0 = u ε . By the minimality of w 0 , we have lim δ→0 B(a,r)

|∇w δ | n ≤ B(a,r) |∇u ε | n . Hence w δ → u ε in W 1,n . Then (|∇w δ | 2 + δ 2 ) n-2 4 • ∂w δ ∂x 1 → |∇u ε | n-2 2 ∂u ε ∂x 1 in L 2 .
Therefore

|∇u ε | n-2 2 ∂u ε ∂x 1 ∈ H 1 loc (Ω).
From [START_REF] Duzaar | Local lipschitz regularity for degenerate elliptic systems[END_REF], we know that ∇u ε ∈ L ∞ , then we have

|∇u ε | n-2 ∂u ε ∂x 1 ∈ H 1 loc (Ω).

Divergence Free of Stress-Energy Tensor

The stress-energy tensor associated to a critical point u ε of the Ginzburg-Landau functional is

T i, j = |∇u ε | n-2 ∂ i u ε , ∂ j u ε -( 1 n |∇u ε | n + 1 4ε n (1 -|u ε | 2 ) 2 )δ i, j . Then divT ., j = div(|∇u ε | n-2 ∇u ε ), ∂ j u ε + |∇u ε | n-2 ∂ i u ε , ∂ i ∂ j u ε -|∇u ε | n-2 ∂ i u ε , ∂ i ∂ j u ε + 1 ε n (1 -|u ε | 2 )u ε , ∂ j u ε = div(|∇u ε | n-2 ∇u ε ), ∂ j u ε + 1 ε n (1 -|u ε | 2 )u ε , ∂ j u ε = 0.
(5.13)

Lemma 5.3.3. For any vector X = (x 1 , • • • , x n ), we have ∂Ω i, j x j ν i T i, j = Ω i, j (∂ i x j )T i, j .
Proof. By using the Divergence theorem directly, we have

∂Ω i, j x j ν i T i, j = Ω j div(T •, j x j ) = Ω j (divT •, j )x j + i, j T i, j ∂ i (x j ) = Ω i, j
(∂ i x j )T i, j .

(5. 

Covering of Bad Sets

We call the sets where |u ε | is near 0 "Bad Sets". In this part, we cover these "Bad Sets" by a finite collection of small balls. This covering also provide a finite singular set of the limit map.

Pohozaev Inequality

Pohozaev Inequality plays a crucial rule to cover the bad sets. We use the divergence free of the stress-energy tensor to prove this inequality. On the boundary ∂D of a domain D, let ν be the outward pointing unit normal to ∂D, and τ k , k = 1, • • • , n -1 be the orthogonal unit tangent vectors to ∂D, then for every vector field

X = (x 1 , • • • , x n ), Lemma 5.3.4. We have n i, j=1 x j ν i T i, j = X ν T ν,ν + n-1 k=1 X τ k T ν,τ k .
Proof. For fixed i, j, by expanding the notations, we have

n s=1 x s ν s ν i T i, j ν j + n-1 k=1 n s=1 x s τ k s ν i T i, j τ k j = x j ν 2 j ν i T i, j + n-1 k=1 x j (τ k j ) 2 ν i T i, j + n-1 k=1 s j (x s ν s ν j ν i T i, j + n-1 k=1 x s τ k s τ k j ν i T i, j ) = x j ν i T i, j .
(

The last equality comes from the fact that (ν s , τ

1 s , • • • , τ n-1 s )⊥(ν j , τ 1 j , • • • , τ n-1 j ) if s j.
In a bounded strictly star-shaped domain, by taking the particular choice of the vector field X, we have the following Pohozaev Inequality Proposition 5.3.1. Let D ⊂ R n be a bounded strictly star-shaped domain with respect to x 0 ∈ D, such that (xx 0 ) • ν ≥ αdiam(D) for all x ∈ ∂Ω, and u ε is solution of equation (5.7). Then there exists a constant C depending only on n, α, such that

D 1 4ε n 1 -|u ε | 2 2 + αdiam(D) ∂D |∇u ε | n-2 |∂ ν u ε | 2 ≤ C(n, α)diam(D) ∂D |∇u ε | n-2 |∂ τ u ε | 2 + 1 4ε n 1 -|u ε | 2 2 .
(5.16)

Proof. We take a particular choice of X(x) = xx 0 , then ∂ i (X j ) = δ i, j . From Lemma 5.3.3 and Lemma 5.3.4, we have

∂D X ν T ν,ν + n-1 k=1 X τ k T ν,τ k = ∂D i, j X j ν i T i, j = D i, j (∂ i x j )T i, j = D i T i,i = D - n 4ε n 1 -|u ε | 2 2 .
(5.17 Also on the boundary ∂Ω, we have

∂D X ν T ν,ν + n-1 k=1 X τ k T ν,τ k = ∂D X • ν |∇u ε | n-2 |∂ ν u ε | 2 - 1 n |∇u ε | n - 1 4ε n 1 -|u ε | 2 2 + ∂D n-1 k=1 X • τ τ k |∇u ε | n-2 ∂ ν u ε , ∂ τ k u ε (5.18)
Combine (5.17) and (5.18) above, and by using Cauchy-Schwarz inequality and Young inequality, we have

D n 4ε n 1 -|u ε | 2 2 ≤ diam(D) ∂D 1 n |∇u ε | n-2 |∂ τ u ε | 2 + 1 4ε n 1 -|u ε | 2 2 -αdiam(D) ∂D n -1 n |∇u ε | n-2 |∂ ν u ε | 2 + α 2 diam(D) ∂D |∇u ε | n-2 |∂ ν u ε | 2 + C(n, α)diam(D) ∂D |∇u ε | n-2 |∂ τ u ε | 2 .
(5. [START_REF] Brézis | A property of Sobolev spaces[END_REF] This implies the conclusion of the proposition.

Covering of Bad Sets

Next we follow the methods of [START_REF] Struwe | On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions[END_REF] and [START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF] to cover the bad sets. For any x 0 ∈ Ω, ρ > 0, we introduce

f (x 0 , ρ) = ρ ∂B ρ (x 0 ) Ω |∇u ε | n n + 1 4ε n 1 -|u ε | 2 2 .
The following is related to the "Courant-Lebesgue lemma"; see Lemma 2.3 in [START_REF] Struwe | On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions[END_REF] and Lemma3.5 in [START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF].

Lemma 5.3.5. (i). If we have an upper bound for the energy of critical points u ε , i.e.

E ε (u ε , Ω) ≤ dκ n |ln ε| + M, then for any point x 0 ∈ Ω, and 0 < ε ≤ e -1 , we have

inf ε 1/2 ≤ρ≤ε 1/4 f (x 0 , ρ) ≤ 4E ε (u ε , Ω) |ln ε| ≤ C 1 and inf 5ε 1/4 ≤ρ≤5ε 1/8 f (x 0 , ρ) ≤ 8E ε (u ε , Ω) |ln ε| ≤ 2C 1 .
(ii). There are constants γ and ε 0 depending on Ω, g, such that for 0 < ε < ε 0 , inf

B ρ Ω |u ε | ≥ 1/2.
whenever ε 1/2 ≤ ρ ≤ ε 1/4 and f (x 0 , ρ) ≤ γ. Proof. (i). For 0 < ε ≤ e -1 , we have

E ε (u ε , Ω) ≥ E ε (u ε , Ω ∩ B ε 1/4 (x 0 )) ≥ ε 1/4 ε 1/2 f (x 0 , ρ) 1 ρ dρ ≥ 1 4 |ln ε| inf ε 1/2 ≤ρ≤ε 1/4
f (x 0 , ρ).

(5.20)

Thus we have the first part of (i) if we have an upper bound of the energy. The second part of (i) follows the same idea.

(ii). From the regularity result in Proposition 3.3 of [START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF] for solutions of equations (5.7), we have the Hölder continuity of u ε

[u ε ] C α ( Ω) ≤ C 2 ε -α .
Choose 0 < ρ < ρ 0 (Ω) small, s.t. D = B ρ (x 0 ) Ω is strongly star-shaped w.r.t.

y 0 ∈ D and (x -y 0 ) • ν ≥ 1 4 ρ for ∀x ∈ ∂D. If there is a y ∈ D such that |u ε (y)| ≤ 1 2 , then |u ε (x)| ≤ 3 4 for |x -y| ≤ ε (4C 2 ) 1 α . and therefore D 1 4ε n 1 -|u ε | 2 2 ≥ D B ε (4C 2 ) 1/α (y) 1 4ε n 1 -|u ε | 2 2 ≥ C 3 > 0.
(5.21) However, by the Pohozaev inequality,

D 1 4ε n 1 -|u ε | 2 2 + ρ 4 ∂D |∇u ε | n-2 |∂ ν u ε | 2 ≤ C(n) f (x 0 , ρ) + ρ B ρ (x 0 ) ∂Ω |∇u ε | n-2 |∂ τ g| 2 n . (5.22) 
Recall that g is smooth, thus we have

D 1 4ε n 1 -|u ε | 2 2 + ρ 4 ∂D |∇u ε | n-2 |∂ ν u ε | 2 -C(n, g)ρ B ρ (x 0 ) ∂Ω |∂ ν u ε | n-2 n ≤ C(n) f (x 0 , ρ) + ρ B ρ (x 0 ) ∂Ω |∂ τ g| n n ≤ C(n) ( f (x 0 , ρ) + C(g)ρ n ) .
(5.23)

While 1 4 ∂D |∇u ε | n-2 |∂ ν u ε | 2 -C(n, g) B ρ (x 0 ) ∂Ω |∂ ν u ε | n-2 n ≥ -C 4 (n, g)
uniformly, therefore we can choose ρ small enough such that ρ • C 4 ≤ C 3 2 . Then (5.23) contradicts (5.21) if we choose γ and ρ small enough.

LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS

For 0 < ε ≤ ε 0 and critical point u ε of energy E ε , denote

S ε := x ∈ Ω : |u ε | < 1 2 .
Let {B ε 1/4 (x)} x∈S ε be a covering of S ε . Then by lemma 5.3.5, we have for x ∈ S ε , there exits a ρ 0 ∈ (ε 1/2 , ε 1/4 ), such that

γ ≤ f (x, ρ 0 ) ≤ C 1 .
By Vitali's covering lemma, we can find a finite collection of disjoint balls B ε

1 4 (x i ), x i ∈ S ε , 1 ≤ i ≤ I ε , such that (Ω ∩ ∪ x∈S ε B ε 1/4 (x)) ⊂ ∪ 1≤i≤I ε B 5ε 1/4 (x i ).
(5.24)

Thus we have an uniform upper bound for the number of the bad balls B ε 1/4 (x i ).

I ε ≤ I ε i=1 4E ε γ |ln ε| ≤ C 1 γ ≤ I 0 .
We refine the initial choice. For 1 ≤ i ≤ I ε , choose ρ i ∈ 5ε 1/4 , 5ε 1/8 , such that

f (x i , ρ i ) ≤ 2C 1 and let D i = Ω ∩ B ρ i (x i ).
From the Pohozaev inequality, we have Lemma 5.3.6. There exists a constant C 4 = C 4 (Ω, g) > 0 such that

D i 1 4ε n 1 -|u ε | 2 2 ≤ C 4 uniformly for 0 < ε ≤ ε 0 , 1 ≤ i ≤ I ε .
Lemma 5.3.7. There exists a number J 0 = J 0 (Ω, g) ∈ N such that for any disjoint collection of balls B ε/5 (x j ), x j ∈ S ε , 1 ≤ j ≤ J ε , there holds J ε ≤ J 0 .

Proof. From the definition of D i and (5.24),

        Ω ∩ j B ε/5 (x j )         ⊂ 1≤i≤I ε D i .
Then by (5.21),

J ε C 3 ≤ j B ε/5 (x j ) 1 4ε n 1 -|u ε | 2 2 ≤ i D i 1 4ε n 1 -|u ε | 2 2 ≤ C 4 I 0 .
Now consider the covering B ε/5 (x) x∈S ε . By Vitali's covering lemma again, we can find a disjoint collection of balls B ε/5 (x j ), x j ∈ S ε , 1 ≤ j ≤ J ε , such that

S ε ⊂ j B ε (x j ).
And moreover, by Lemma 5.3.7, J ε ≤ J 0 independent of ε.

For any σ > 0, denote Ω σ ε = Ω \ ∪ j B σ (x ε j ). We have the following estimate To prove Proposition 5.3.2, we need an estimate on the annulus, which is stated in Lemma 3.9 of [START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF].

Lemma 5.3.8 (Lemma 3.9 of [START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF] ). Fix an R 1 > 0, and any x

0 ∈ Ω. Let ε < R 0 < R ≤ R 1 and suppose u ∈ W 1,n g (Ω; R n ) satisfies |u| ≤ 1 in Ω, and |u| ≥ 1 2 in A R,R 0 = Ω ∩ (B R (x 0 ) \ B R 0 (x 0 )) and the estimates Ω∩B ε 1/4 (x 0 ) 1 ε n 1 -|u ε | 2 2 ≤ K, as well as E ε (u) ≤ K |ln ε| + K. Then there holds A R,R 0 |∇u| n dx ≥ d n n-1 (n -1) n/2 S n-1 ln R R 0 -C(n, d, Ω, g), (5.25) 
where d is the degree of u, restricted to ∂(Ω ∩ B R (x 0 )).

Proof. The proof is as the same as in [START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF].

Proof of Proposition 5.3.2 We have already an upper bound for the energy of the critical points u ε , i.e. E ε (u ε , Ω) ≤ dκ n |ln ε| + M By applying the Lemma 5.3.8 and a ball grow method in the proof of Proposition 3.3 of [START_REF] Struwe | On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions[END_REF], we have a lower bound of the energy.

E(u ε , Ω σ ε ) ≥ dκ n ln σ ε -C(n, d, Ω, g).
The proposition follows immediately from the upper bound and lower bound above.

For any sequence ε k → 0, consider the corresponding sequence of critical points u k = u ε k . By Lemma 5.3.7, we have a bounded number of sequences of centers {x k j }, 1 ≤ j ≤ J k ≤ J 0 , of "bad balls". Passing to a subsequence, we have Ĵ independent of ε k , such that x k j → x j ∈ Ω as k → +∞ for each j = 1, 2, • • • , Ĵ.

(5.26)

Note that here x j may be the same, however, we can choose a collection of distinct points {a j } J j=1 in {x j }. Now we give more discussion on the number J, and prove that J = d. Let σ 0 = 1 6 min i j a i -a j , then for ρ < σ 0 , there exists ε 0 and j

′ such that x k j ′ -a j ≤ ρ if ε k < ε 0 . We have 5.3. LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS 1. If d j = deg(u ε , B(a j , 2ρ)) = 0, then in B(x k j ′ , ε 1/4 k ) ⊂ B(a j , 2ρ 
), by using Lemma 5.3.5, we have

E(u ε k , B(a j , 2ρ)) ≥ E(u ε k , B(x k j ′ , ε 1/4 k )) ≥ γ 4 |ln ε| . (5.27) 2. If d j = deg(u ε , B(a j , 2ρ 
)) 0, then by using Lemma 5.3.8 and Proposition 3.3 of [START_REF] Struwe | On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions[END_REF], we have

E(u ε k , B(a j , σ 0 ) \ ∪ j ′ B(x j ′ , 5ε)) ≥ d j |ln ε| + ( d j n n-1 -d j ) |ln ρ| -C(n, d j , Ω, g, σ 0 ).
(5.28)

While we have j d j = d and the upper bound condition of (5.1), therefore 1. There is no point a j such that

d j = deg(u ε , B(a j , 2ρ)) = 0 if ε < ε 0 .
2. There are only d points a j such that d j = deg(u ε , B(a j , 2ρ)) 0, and d j = 1.

Now we can say we choose the limit collection of distinct points {a j } d j=1 .

ε-Regularity

We rewrite

u ε = ρ ε • θ ε , where ρ ε = |u ε | and θ ε = u ε |u ε | .
In this part, we prove ε-regularity of θ ε .

Denote

Ω σ := Ω \ ∪ j B σ (a j ), thus we have |u ε | ≥ 1 2 in Ω σ if ε is small enough. Then ∇u ε = ρ ε ∇θ ε + θ ε • (∇ρ ε ) ⊤ .
By substituting u ε in the function, we have

-div(|∇u ε | n-2 (ρ ε ∇θ ε + θ ε ∇ρ ⊤ ε )) = 1 ε n (1 -|u ε | 2 )u ε , i.e. -div(|∇u ε | n-2 ∇ρ ε ) θ ε -2 |∇u ε | n-2 ∇θ ε • ∇ρ ⊤ ε -div(| ∇u ε | n-2 ∇θ ε )ρ ε = 1 ε n (1 -ρ 2 ε )u ε
Then multiply both sides by θ ε , we have

-div(|∇u ε | n-2 ∇ρ ε ) -0 -div(|∇u ε | n-2 ∇θ ε )ρ ε • θ ε = 1 ε n (1 -ρ 2 ε )ρ ε . Therefore, -div(|∇u ε | n-2 ∇θ ε )θ ε = |∇u ε | n-2 |∇θ ε | 2 (that is because of the fact θ ε • ∇θ ε = 0) implies that -div(|∇u ε | n-2 ∇ρ ε ) + |∇u ε | n-2 |∇θ ε | 2 • ρ ε = 1 ε n (1 -ρ 2 ε )ρ ε . 64 5.3. LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS CHAPTER 5. LIMITS OF SOLUTIONS TO N-DIMENSIONAL GINZBURG-LANDAU EQUATIONS Recall that θ ε = u ε |u ε | , thus ∇θ ε = - u ε |u ε | 2 • ∇ |u ε | + ∇u ε ρ ε , then -div(|∇u ε | n-2 ρ 2 ε ∇θ ε ) =div[|∇u ε | n-2 (u ε • (∇ρ ε ) ⊤ -ρ ε • ∇u ε )] =div(|∇u ε | n-2 ∇ρ ε ) • u ε + |∇u ε | n-2 • ∇u ε • (∇ρ ε ) ⊤ -div(|∇u ε | n-2 ∇u ε )ρ ε -|∇u ε | n-2 ∇u ε (∇ρ ε ) ⊤ = | ∇u ε | n-2 ρ 2 ε | ∇θ ε | 2 θ ε - 1 ε n (1 -ρ 2 ε )ρ 2 ε θ ε + 1 ε n (1 -ρ 2 ε )ρ 2 ε θ ε = |∇u ε | n-2 ρ 2 ε |∇θ ε | 2 θ ε . (5.29) So we have          -div(| ∇u ε | n-2 ∇ρ ε )+ | ∇u ε | n-2 | ∇θ ε | 2 ρ ε = 1 ε n (1 -ρ 2 ε )ρ ε , (5.30) 
-div(| ∇u ε | n-2 ρ 2 ε ∇θ ε )-| ∇u ε | n-2 ρ 2 ε | ∇θ ε | 2 θ ε = 0. (5.31) Lemma 5.3.9. For any K ⊂⊂ Ω \ {a 1 , • • • , a d }, we have (a). ρ ε -→ 1 uniformly in K, as ε -→ 0 ; (b). 1 ε n K 1-| u ε | 2 2 + K | ∇u ε | n-2 |∇ρ ε | 2 -→ 0, as ε -→ 0 ; (c). (1 -|u ε | 2 )u ε ε n ∈ L 1 (K)
with the norm bounded independent of ε.

Proof.

(a).

We claim that ρ ε -→ 1 uniformly in K, as ε -→ 0. If it is not true, then there exist δ > 0, ε i -→ 0 and {y

i } ∈ K, s.t. | u ε i (y i ) |≤ 1 -δ. In B ε 1/4 i (y i ), there exists ρ i ∈ [ε 1/2 , ε 1/4 ], such that f (y i , ρ i ) ≤ C E(u ε i , B ε 1/4 i (y i ) \ B ε 1/2 i (y i )) | ln ε i | ≤ C(n, Ω, g, σ) | ln ε i | .
By applying Pohozaev's inequality, we have

B ρ i (x i ) 1 ε n i (1-| ρ | 2 ) 2 ≤ C(n) f (y i , ρ i ) ≤ C(n, Ω, g, σ) | ln ε i | (5.32)
while From the regularity result in Proposition 3.3 of [START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF] for solutions of equations (5.7) again, we have the Hölder continuous of u ε

[u ε ] C α ( Ω) ≤ C(n)ε -α , then u ε i (x) ≤ 1 - δ 2 for | x -y i |≤ δ 1/α ε i (2C(n)) 1/α , therefore B δε i 2C(n) (1-| ρ | 2 ) 2 ε n i ≥ C(n)δ 2 ,
this contradicts with the upper bound (5.32).

LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS (b).

Because K is compact, we can find a finite collection of open set

K ⊂ ∪ I k i=1 B r i (b i ) ⊂ ∪ I k i=1 B 2r i (b i ) ⊂ Ω σ . For any i fixed, in A r i (b i ) := B 2r i (b i )\B r i (b i ), we have the estimate A r i (b i ) |∇u ε | n-2 ∇ρ ε (1 -ρ ε ) ≤       A r i (b i ) |∇u ε | n       n-1 n       A r i (b i ) (1 -ρ ε ) n       1 n ≤ C(σ)ε (5.33)
Then Fubini theorem implies that there exists ri (ε) ≥ r i , s.t.

∂B ri (ε) (b i ) | ∇u ε | n-2 | ∇ρ ε || 1 -ρ ε |≤ C(σ)ε r i .
Multiply both sides of (5.30) by (1 -ρ ε ) and integrate over B ri (ε) (ε), then we have

- ∂B ri (ε) (b i ) | ∇u ε | n-2 ∇ρ ε ν(1-ρ ε )- B ri (ε) | ∇u ε | n-2 | ∇ρ ε | 2 + B ri (ε) | ∇u ε | n-2 | ∇θ ε | 2 ρ ε (1-ρ ε ) = 1 ε n B ri (ε) (1 -ρ 2 ε )ρ ε (1 -ρ ε ), thus 1 ε n B ri (ε) (1 -ρ 2 ε )ρ ε (1 -ρ ε ) + B ri (ε) | ∇u ε | n-2 | ∇ρ ε | 2 = - ∂B ri (ε) | ∇u ε | n-2 ∇ρ ε ν(1 -ρ ε ) + B ri (ε) | ∇u ε | n-2 | ∇θ ε | 2 ρ ε (1 -ρ ε ) ≤ C(K)ε + B ri (ε) | ∇u ε | n-2 | ∇θ ε | 2 ρ ε (1 -ρ ε ) ≤ C(K)ε + max K | 1 -ρ ε | • B ri (ε) | ∇u ε | n -→ 0 as ε → 0. (5.34) therefore B r i (b i ) 1 ε n (1 -ρ 2 ε )ρ ε (1 -ρ ε ) + B r i (b i ) | ∇u ε | n-2 |∇ρ ε | 2 -→ 0 as ε → 0. By the covering of K, K 1 ε n (1 -ρ 2 ε )ρ ε (1 -ρ ε ) + K | ∇u ε | n-2 |∇ρ ε | 2 -→ 0 as ε → 0.
Then the conclusion follows immediately.

(c).

In fact, we only need to prove that (1-|u 

ε | 2 )|u ε | 2 ε n
∈ L 1 (K) with norm bounded independent of ε. We use the same method in the proof of (b) above. We take the same covering balls, and by Fubini theorem and Hölder inequality we choose ri (ε) ∈ [r i , 2r i ], such that Multiply both sides of Equation (5.7) with u ε , in each ball B r i we have

∂B ri (ε) (b i ) | ∇u ε | n-2 ∇u ε • ν • u ε ≤ C(σ).
B r i (b i ) (1 -|u ε | 2 ) |u ε | 2 ε n ≤ - ∂B ri (ε) (b i ) | ∇u ε | n-2 ∇u ε • ν • u ε + B ri (ε) (b i ) |∇u ε | n . (5.35) This implies that (1-|u ε | 2 )|u ε | 2 ε n ∈ L 1 (K).
Now, we prove the weak convergence of a subsequence of {u ε k }. Recall that σ 0 = 1 6 min i j a i -a j , then for fixed σ < σ 0 , there exists ε 0 , such that

Ω σ ⊂ Ω σ/2 ε if ε < ε 0 . Then Propositoin 5.3.2 implies that Ω σ ∇u ε k n n ≤ E ε k (ε k , Ω σ ) ≤ E ε k (ε k , Ω σ/2 ε ) ≤ dκ n |ln σ| + C(n, d, Ω, g) (5.36) Then {u ε k } is bounded in W 1,n (Ω σ , R n ).
By a diagonal process, we find a subsequence, still denoted by u ε k , such that

u ε k ⇀ u 0 weakly in W 1,n loc (Ω \ {a 1 , • • • a d }, R n ). From the Euler-Lagrange equation 5.7 of u ε k , we have div( ∇u ε k n-2 ∇u ε k ) ∧ u ε k = 0 weakly.
By using the conclusion of [START_REF] Hardt | Strong convergence of p-harmonic mappings[END_REF] and (c) of Lemma 5.3.9, we have

u ε k → u 0 strongly in W 1,p loc (Ω \ {a 1 , • • • a d }, R n ) for p < n.
Then by passing to the limit, we have div(|∇u 0 | n-2 ∇u 0 ∧ u 0 ) = 0 weakly.

In fact, by applying a similar argument of the Lemma 2.2 in [START_REF] Chen | The weak solutions to the evolution problems of harmonic maps[END_REF], a map u ∈ W 1,n (Ω, S n-1 ) is a n-harmonic map if and only if it satisfies the equation above. Similar arguments can also be found in [START_REF] Rubinstein | Reaction-diffusion processes and evolution to harmonic maps[END_REF] and [START_REF] Shatah | Weak solutions and development of singularities of the SU(2) σ-model[END_REF]. While Lemma 5.3.9 implies that |u

0 | = 1, i.e. u 0 ∈ W 1,n (Ω \ {a 1 , • • • a d }, S n-1
), thus u 0 is a n-harmonic map. Here, we give a short argument. The fact div

(|∇u 0 | n-2 ∇u 0 ∧ u 0 ) = 0 weakly implies that div(|∇u 0 | n-2 ∇u 0 ) = λ(x)u 0 .
Then multiplies both sides by φ(x)u 0 where φ(x) is a test function, and we get λ = |∇u 0 | n , which means that u 0 is a n-harmonic map.

Later we need some properties of Hardy space H 1 and the space BMO(R n ). We shall use the following famous theorem of Fefferman and Stein in [START_REF] Fefferman | H p spaces of several variables[END_REF].

Theorem 5.3.1. H 1 (R n ) * = BMO(R n ). In, particular, the integral R n f • g is well defined for f ∈ H 1 (R n ) C ∞ and g ∈ BMO(R n ),
and it can be extend to any f ∈ H 1 (R n ), and there is a constant C

= C(n) such that R n f • g ≤ C || f || H 1 ||g|| BMO .

LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS

In our paper, functions are defined on Ω. When we say a function f ∈ H 1 (Ω), we mean that in each U ⊂⊂ Ω, f agrees with a function in H 1 (R n ). And we define

|| f || H 1 (U) = inf{||g|| H 1 (R n ) : f | U = g| U }.
From (5.31), we have

-div(|∇u ε | n-2 ρ 2 ε ∇θ ε ) = |∇u ε | n-2 ρ 2 ε |∇θ ε | 2 θ ε = |∇u ε | n-2 ρ 2 ε |∇θ ε | 2 θ ε = |u ε | n-2 ρ 2 ε ( i, j ∂ i θ j ε ∂ i θ j ε θ k ε ) = |u ε | n-2 ρ 2 ε [ i, j ∂ i θ j ε (∂ i θ j ε θ k ε -∂ i θ k ε θ j ε )] (5.37) Next, we shall prove that |u ε | n-2 ρ 2 ε [ i, j ∂ i θ j ε (∂ i θ j ε θ k ε -∂ i θ k ε θ j ε )] is in H 1 (Ω). Let B j = ∇θ j ε , and E j = |∇u ε | n-2 ρ 2 ε (∇θ j ε •θ k ε -∇θ k ε •θ j ε ). Then E j ∈ L n n-1 , B j ∈ L n .
We have curlB j = 0, because of curl∇ = 0. And divE j = 0, in fact, for any

Ω ′ ⊂ Ω \ {a 1 , • • • , a d }, and φ ∈ W 1,n 0 (Ω ′ , R), we have Ω ′ divE j • φ = - Ω ′ |∇u ε | n-2 ρ 2 ε (∇θ j ε • θ k ε ) • ∇φ + Ω ′ |∇u ε | n-2 ρ 2 ε (∇θ k ε • θ j ε ) • ∇φ = - Ω ′ |∇u ε | n-2 ρ 2 ε |∇θ ε | 2 θ j ε • φ • θ k ε + Ω ′ |∇u ε | n-2 ρ 2 ε |∇θ ε | 2 θ k ε • φ • θ j ε =0.
(5.38)

The second equality follows from the equation (5.31). From a conclusion in [START_REF] Coifman | Compensated compactness and Hardy spaces[END_REF], we have E j • B j ∈ H 1 , and Proof. If the conclusion is not true, then for any τ ∈ (0, 1 8 ) fixed, there exist B r i (x i ) ⊂⊂ Ω σ and ε i ց 0 s.t.

E j • B j H 1 ≤ C(n) E j L n n-1 B j L n . Therefore |∇u ε | n-2 ρ 2 ε |∇θ ε | 2 θ ε ∈ H 1 and |∇u ε | n-2 ρ 2 ε |∇θ ε | 2 θ ε H 1 ≤C(n) ||∇θ|| L n • |∇u ε | n-2 ρ 2 ε • (∇θ ε • θ k ε -∇θ k ε • θ ε ) L n n-1 ≤C(n) |∇u ε | n =C(n) ||∇u ε || n L n
B r i (x i ) ∇θ ε i n = λ n i ց 0, but e(x i , τr i , ε i ) ≥ 1 2 λ n i .
From Lemma 5.3.9, for any K ⊂⊂ Ω \ {a 1 , ...a d }, we have K |∇u ε | n-2 |∇ρ ε | 2 -→ 0 as ε -→ 0 and ρ ε -→ 1 uniformly in K, as ε -→ 0. We can choose a sub-sequence {ε k i } of {ε i }, for the convenience of notations we still denote {ε k i } as {ε i }, s.t.

B r i (x i ) ∇u ε i n ≤ B r i (x i ) (|∇ρ ε | 2 + |ρ ε • ∇θ ε | 2 ) n 2 ≤λ n i + o(λ n i ) (5.40) 
Define U i (z) = λ -1 i u ε i (x i + r i z), and V i (z) = λ -1 i (θ ε i (x i + r i z) -θε i ,x i ,r i ), where θε i ,x i ,r i = B r i (x i )

θ ε i (x) dx
Then we have

B 1 |∇V i (z)| n = 1,
and Poincare Inequality implies that

B 1 |V i | n ≤ C(n).
And also from the condition we have

B τ |∇V i | n ≥ 1 2 .
From the embedding theorem, we have 5.3. LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS

V i → V 0 in L n (B 1 , R n ) ∇V i ⇀ ∇V 0 in L n (B 1 , R nn )
for some V 0 ∈ W 1,n (B 1 , R n ).

We claim that V k -→ V 0 in W (5.42)

Thus we have 1)

B 1 ξ |∇V k -∇V l | n ≤C(n) B 1 [|∇V k | n-2 ∇V k -|∇V l | n-2 ∇V l ] • ∇[V k -V l ] • ξ =C(n) B 1 (|∇V k | n-2 ∇V k -|∇V l | n-2 ∇V l ) • [∇((V k -V l )ξ) -(V k -V l )∇ξ]
|∇V k | n-2 ∇V k • ∇((V k -V l )ξ) dz ≤ B 1 |∇U k | n-2 ρ 2 ε k (x k + r k z)∇V k • ∇((V k -V l )ξ) + B 1 (|∇V k | n-2 -|∇U k | n-2 )∇V k • ∇((V k -V l )ξ) + B 1 |∇U k | n-2 (1 -ρ 2 ε k (x k + r k z))∇V k • ∇((V k -V l )ξ) ≤ B r k (x k ) 1 λ n-1 k ∇u ε k n-2 ρ 2 ε k ∇θ ε k ∇φ + o(1) ≤ 1 λ n-1 k C(n) || f || H 1 • ||φ|| BMO + o(
≤C(n) ||φ|| BMO • λ k -→ 0. (5.45) where f =| ∇u ε k | n-2 ρ 2 ε k | ∇θ ε k | 2 θ ε k . Similarly, we have B 1 |∇V l | n-2 ∇V l • ∇((V k -V l )ξ) ≤ C(n) ||φ|| BMO • λ l -→ 0. Also we have B 1 (|∇V k | n-2 ∇V k -|∇V l | n-2 ∇V l ) • (V k -V l )∇ξ ≤ C(n) ||V k -V l || L n -→ 0.
These estimates imply that V k -→ V 0 in W 1,n (B 1/4 , R n ). This implies that B 1/4

|∇V 0 | n ≤ 1, B 1/4 |V 0 | n ≤ C(n). For any φ ∈ C 1 0 (B 1/4 , R n ),

B 1/4 |∇V 0 | n-2 • ∇V 0 • ∇φ = lim k-→∞ B 1/4 |∇V k | n-2 • ∇V k • ∇φ ≤ C(n) ||φ|| BMO • λ k -→ 0.
Thus

B 1/4
|∇V 0 | n-2 ∇V 0 ∇φ = 0.

V 0 is n-harmonic in B 1/4 . For the n-harmonic map, we have the theorem as follows, which is Theorem 2.4 in [START_REF] Mou | Regularity for n-harmonic maps[END_REF], Theorem 5.3.2. If u ∈ W 1,n (B r (x), R n ) is n-harmonic, then u ∈ C 1,α (B r (x), R n ) for some α ∈ (0, 1), and for some constant C(n), Then by using the theorem above, we have sup

B 1/8 |∇V 0 | n ≤ C(n) B 1/4 |∇V 0 | n ≤ C(n) 4 n
ω n .
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Then let ε → 0, by using Lemma 5.3.9 and Theorem 5.1.2, we have B R \B r i

x i -y i |x -y| • T i, j (u 0 ) = 0.

Therefore, for almost every ρ, we get ∂B ρ i T i, j ν i = 0 (5.57)

This gives the sense of divergence free condition around each singularity. We will understand now such condition. where Q(x) is some harmonic polynomial of degree 2. In particular, when n = 2, we have B(x) = O(|x -a i | 2 ).

Proof. Without loss of generality, we assume a i = 0. We have 

g(x) = 1 1 + h 2 (x ′ , -h),
where h > 0 to be fixed later.

Let S : R 3 → R 3 be a symmetry map by S (x ′ , x 3 ) = (x ′ , -x 3 ) and R θ the rotation of angle equal to θ in x 1 x 2 plane. We can extend it to be a C 1 by piece and equivariant map, that is , g • S = S • g. We define Similarly, we consider W 1,3 g (Ω, R 3 ) and W(Ω, R 3 ). Let D be the unit disc, A be the part of the sphere {|x| = 1, x 3 ≥ -h √ 1+h 2 }, and B = S 2 \A. Let E ε be the Ginzburg-Landau functional. We define two constants In fact, for the first inequality above, we put the blow up point at the point (0, 0, L) to get the result. We construct a map in W 1,3 g (Ω, R 3 ). In the ball B ε ((0, 0, L)), we define 78 5.3. LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS CHAPTER 5. LIMITS OF SOLUTIONS TO N-DIMENSIONAL GINZBURG-LANDAU EQUATIONS u(x) = 1 ε (x -(0, 0, L)). On the slice {x 3 = Constant, x 3 ∈ (1, L -1)}, u is a map from the disc to B whose 3-energy is close to b and on the slice {x 3 = Constant, x 3 ∈ (-L + 1, -1)}, u is a map from the disc to A whose 3-energy is close to a. Then min W 1,3 g (Ω,R 3 )

E ε ≤ 2 3/2 3 • 4π |ln ε| + L • (a + b) + O(1)
The second lower bound of the energy comes from the equivariant setting and the fact that u ε converge strongly to 3-harmonic map far from the singularity. From the equivariant setting and symmetry of the functions in W(Ω, R 3 ), we get that the singularity of the critical point u ε is at 0. And also we can construct a function in W(Ω, R 3 ), and its energy satisfies the upper bound condition (5.12). Thus u ε is a sequence of critical points of the functional E ε (u) and satisfy the upper bound condition (5.12). By using Lemma 5.3.8 we have a lower bound of the energy near the singularity

E ε (u ε , B R (0)) ≥ 2 3/2 3 • 4π |ln ε| -C(R),
here note that the constant C(R) depends only on R if B R ∩ Ω = ∅. Theorem 5.1.2 implies that u ε → u 0 in W 1,n . On the slice {x 3 = Constant, x 3 ∈ (1, L -1)} and the slice {x 3 = Constant, x 3 ∈ (-L + 1, -1)}, u 0 is a map from the disc to A whose 3-energy is greater than a. Then we have the energy The 3-energy of this map is O(θ 3 ). Therefore min

W 1,3 g (Ω,R 3 ) E ε < min W(Ω,R 3 ) E ε
if L large enough.
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  in (C 0,α (S )) * , ∀α ∈ [0, 1), and lim inf l→0 l 2 E(H l ) ≥ F(h).

18 2. 2 .
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  α) dα α are analytic w.r.t. lattice. It means that if we denote by u = (a, 0), a > 0, v = (b, c) = (b, 1/a) the vectors which generate the lattice Λ * , the two functions are analytic w.r.t. 3.2. PROOF OF THEOREM 3.1.1 CHAPTER 3. OPTIMALITY OF ABRIKOSOV LATTICE IN A PERIODIC GINZBURG-LANDAU MODEL u, v, i.e. a, b. If p

  x∈L\{0}W T F ( x ) among all Bravais lattices of R 2 with density fixed is triangular and unique, up to rotation.

  THE LENNARD-JONES MODEL AND THOMAS-FERMI MODEL

Theorem 4 . 2 . 1 .

 421 (Montgomery,[START_REF] Montgomery | Minimal theta functions[END_REF]) For any real number α > 0 and a Bravais lattice L, let θ L (α) := Θ L (iα) = m,n∈Z e -2παQ L (m,n) ,

Fig. 1 :

 1 Fig. 1: Graph of the Lennard-Jones potential V LJ The aim of this paper is to study the following two minimization problems, up to rotation : (P A ) : Find the minimizer of E LJ among lattices L with fixed |L| = A; (P) : Find the minimizer of E LJ among lattices. Proposition 4.2.1. The minimum of E LJ among lattices is achieved. Proof. We parametrize a lattice L by x = u , y = v and θ = ( u, v), therefore f (x, y, θ) := E LJ (L)

36 4. 3 .

 363 MINIMIZATION AMONG LATTICES WITH FIXED AREA CHAPTER 4. THE LENNARD-JONES MODEL AND THOMAS-FERMI MODEL

Fig. 2 : 3 ( 3 ≈ 1 .√ 3 ≈

 23313 Fig. 2 : Level sets of ( u , v ) → ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3

Fig. 3 :

 3 Fig. 3 : Level sets of ( u , v ) → E LJ ( √ AL) for some interesting values of A (black = minimum , white = maximum)

40 4. 4 .Proposition 4 . 4 . 2 .

 404442 GLOBAL MINIMIZATION OF E LJ AMONG LATTICES CHAPTER 4. THE LENNARD-JONES MODEL AND THOMAS-FERMI MODEL The minimizer of E LJ among triangular lattices is Λ A 0 such that

2 CHAPTER 4 .

 24 Now, for any y > 0 and any lattice L of area A, we obtain x∈L * e -x 2 4y = θ L 1 8πy -1. Hence, by Montgomery's theorem, the triangular lattice Λ A minimizes θ L (α) for any α > 0, and 4.5. THE THOMAS-FERMI MODEL IN R THE LENNARD-JONES MODEL AND THOMAS-FERMI MODEL it is the unique minimizer of L → θ L (α) among all Bravais lattices with a fixed area A. Therefore, for any y > 0, Λ A is the unique minimizer of the energy E y (L) := x∈L * e -x 2 4yamong lattices with a fixed area A. Now it is clear, because E y (Λ A ) ≤ E y (L) for any y > 0 and for any lattice L with area A,
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 5511 LIMITS OF SOLUTIONS TO N-DIMENSIONAL GINZBURG-LANDAU EQUATIONS Assume u : Ω 0 ⊂ R n → S n-1 is a stationary n-harmonic map whereΩ 0 := Ω \ ({a 1 , • • • , a d } ∪ S )in the above sense, and deg(u, a i ) = 1 . Assume around each singular point a i , one has the asymptotic expansion u(x) = e B(x) xa i |x -a i | where B(x) ∈ so(n) is antisymmetric matrix satisfying B(0) = 0 such that B is C 1 in a neighborhood of x. Then n k=1 ∂ k B(0)e k = 0

5 .
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 7563 LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS CHAPTER 5. LIMITS OF SOLUTIONS TO N-DIMENSIONAL GINZBURG-LANDAU EQUATIONS By using Young's Inequality, we can estimate the second term on the right hand side, B(a,r)
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 623532 LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS CHAPTER 5. LIMITS OF SOLUTIONS TO N-DIMENSIONAL GINZBURG-LANDAU EQUATIONS There exist C = C(Ω, g) > 0, such that for any σ > 0, E(u ε ; Ω σ ε ) ≤ dκ n |ln σ| + C uniformly for 0 < ε < ε 0 .
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( 5 . 39 )

 539 Recall that |u ε | > 1/2 in Ω σ . In Ω σ , we have the following lemma 68 5.3. LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS CHAPTER 5. LIMITS OF SOLUTIONS TO N-DIMENSIONAL GINZBURG-LANDAU EQUATIONS Lemma 5.3.10. There exist δ, τ ∈ (0, 1) depending only on n, ε 0 ∈ (0, 1) depending only on n and σ, so that if ε < ε 0 , and B r (x) ⊂⊂ Ω σ , then e(x, r, ε) :=B r (x) |∇θ ε | n ≤ 2 n B r (x) |∇u ε | n ≤ δimplies e(x, τr, ε) ≤ 1 2 e(x, r, ε).

  For a, b ∈ R n and any p ≥ 2, we have|a -b| p ≤ 2 p-2 (|a| p-2 + |b| p-2 ) |a -b| 2 ≤ 2 p-1 (|a| p-2 a -|b| p-2 b) • (ab).

(5. 43 )

 43 Let ψ = (V k -V l )ξ, φ(y) = ψ( yx k r k). We claim that ψ, φ ∈ BMO. In fact we onlyneed to prove that w = ξV k ∈ BMO, because ||φ|| BMO = ||ψ|| BMO . B r (z) wwz,r ≤C(n)r 1-n B r (z) |∇w| ≤C(n)( B r (z) |∇w| n ) 1/n ≤C(n)( B r (z) |∇V k | n + B r (z) |V k | n ) 1/n ≤C(n).

(5. 44 ) 70 5. 3 .

 44703 LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS CHAPTER 5. LIMITS OF SOLUTIONS TO N-DIMENSIONAL GINZBURG-LANDAU EQUATIONS Thus B 1

  sup B r/2 (x) |∇u| n ≤ C(n) B r (x) | ∇u | n .
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 533 Assume u : Ω 0 ⊂ R n → S n-1 is a stationary n-harmonic map whereΩ 0 := Ω \ ({a 1 , • • • , a d } ∪ S )in the above sense, and deg(u, a i ) = 1 . Assume that around each singular point a i , one has the asymptotic expansionu(x) = e B(x-a i ) xa i |x -a i | where B(x) ∈ so(n) is antisymmetric matrix satisfying B(0) = 0 such that B is C 1 in a neighborhood of x. Then n k=1 ∂ k B(0)e k = 0(5.58)where (e 1 , • • • , e n ) is the canonical basis in R n . Moreover, we can writeu(x) = xa i |x -a i | + Q(xa i ) |x -a i | + O(|x -a i | 2 )

∂Therefore, we can write |∇u| 2 = n - 1 |x| 2 2 = n - 1 |x| 2 n/ 2 76 5. 3 .= 2 k |x| 2 ∂ 2 j |x| 2 ∂=2∂B|x| 2 ∂x j • x l |x| 2 kRemark 12 .

 212212276322222212 j u(x) = e B(x) ∂ j B(x) x |x| + e B(x) ( e j |x| -e j , ν ν |x| ) and ∂ ν u(x) = e B(x) ∂ ν B • ν. j B(0) • ν + O(1),and|∇u| n = (|∇u| 2 ) n/        1 + n • r nν ν |x| ), ∂ j B(0) • ν         + O(|x| 2-n ). (5.59) LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS CHAPTER 5. LIMITS OF SOLUTIONS TO N-DIMENSIONAL GINZBURG-LANDAU EQUATIONSRecall the divergence free condition around the singularity a i for all index j 0 = ∂B(0,r)|∇u| n-2 ∂ ν u, ∂ j u -1 n |∇u| n ν, e j , (0) • ν, (e j -e j , ν ν) -n k=1 (e k -e k , ν ν), ∂ k B(0) • ν ν, e j + O(r).Now using the fact that the matrices ∂ k B(0) and ∂ ν B 0 are antisymmetric and the symmetry of the integrand, we have∂B(0,r) ∂ ν B(0) • ν, (e j -e j , ν ν) -n k=1 (e k -e k , ν ν), ∂ k B(0) • ν ν, e j = ∂B(0,r) ∂ ν B(0) • ν, e j -n k=1 e k , ∂ k B(0) • ν ν, e j = ∂B(0,r) ∂ ν B(0) • ν, e j + n k=1 ∂ k B(0) • e k , ν ν, e j k B(0) • e k , e j +x k B(0) • e k , e j k B(0) • e k , e j .(5.60)The third equality comes from the fact that∂B(0,r) k l x k • x l |x| 2 ∂ k B(0) • e l , e j + l j ∂ k B(0) • e k , e j = 0. (5.61) Therefore, we get n k=1 ∂ k B(0) • e k = 0.Then we make the expansionu(x) = x |x| + |x| ∂ ν B(0) • ν + O(|x| 2 ).By using the above condition∆ |x| 2 ∂ ν B(0) • ν = 0. When n = 2, we write B(x) = 0 α(x) -α(x) 0 (5.62)The above condition (5.58) is equivalent to ∇α(0) = 0.5.3. LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS5.3.6 Construction of non-minimizing sequence of critical pointsIn this part, we prove Theorem 5.1.3. Let n = 3 and x = (x ′ , x 3 ) with x ′ ∈ R 2 . We considerΩ = {x ∈ R 3 | |x ′ | ≤ 1, |x 3 | ≤ L} {x ∈ R 3 | |x -(0, 0, L)| ≤ 1, x 3 ≥ L} {x ∈ R 3 | |x -(0, 0, -L)| ≤ 1, x3≤ -L} for some large L > 0 to be fixed later. We define a boundary map g : ∂Ω → S 2 of degree one as follows:On the set {x ∈ R 3 | |x -(0, 0, L)| = 1, x 3 ≥ L}, g(x) = x -(0, 0, L) |x -(0, 0, L)| ; On the set {x ∈ R 3 | |x -(0, 0, -L)| = 1, x 3 ≤ -L}, g(x) = x -(0, 0, -L) |x -(0, 0, -L)| ; On the set {x ∈ R 3 | |x ′ | = 1, 1 < x 3 < L -1},

W 1, 3 g

 3 (Ω, S 2 ) := {u : Ω → S 2 |u ∈ W 1,3 , u(x) ∈ S 2 a.e., u| ∂Ω = g} and a closed subspace W(Ω, S 2 ) of W1,3 g (Ω, S 2 ), W(Ω, S 2 ) := {u ∈ W 1,3 g (Ω, S 2 ), u• S = S • u, u • R θ = R θ • u, ∀θ}.

a := min{ 1 3 D|∇u| 3 | 3 •

 333 |∇u| 3 | u : D → A, u| ∂D = g A }, u : D → B, u| ∂D = g B }, (5.64) where g A (x) = g B (x) = ( 4π |ln ε| + L • (a + b) + O(1) and min W(Ω,R 3 ) E ε ≥ 2 3/2 3 • 4π |ln ε| + 2L • a + O(1).

3 •

 3 4π |ln ε| + 2L • a + O(1). If h is large enough, B is almost flat, then we can choose an almost constant map such that b < a. In fact, let θ = arccos h √ 1+h 2 , then we define a map u : D → B as followsu : D → B (x, y) →               sin(θ x 2 + y 2 ) x x 2 + y 2 sin(θ x 2 + y 2 ) y x 2 + y 2 cos(θ x 2 + y 2 )               (5.65)

  The minimum of GL ε (u, A) over H per is achieved. Moreover, if (u 1 , A 1 ) minimizes the Ginzburg-Landau energy with parameters ε and h ex = h 1 , and if (u 2 , A 2 ) minimizes the Ginzburg-Landau energy with parameters ε and h ex = h 2 > h 1 , then n 2 ≥ n 1 , where for i = 1, 2,

	Proposition 2.1.2. Given any (u, A) ∈ H per , then
	1 2π L	curlA ∈ Z

6 2.1. INTRODUCTION CHAPTER 2. VARIATIONS OF THE VORTEX NUMBER Proposition 2.1.1.

  [START_REF] Abrikosov | The Magnetic Properties of Superconducting Alloys[END_REF] 

  2 

  Lp i is the line in R 2 passing p i and parallel with Y-axis, and δ Lp i ∈ (C 0,α (S )) * for any α ∈ [0, 1) such that δ Lp i , f :≡

	where Lp i		
	n		
	i=1	δ Lp i in S	(2.9)
	periodic boundary conditions on ∂S	
	2.2. THE RENORMALIZED ENERGY		

y) + h p (x, y) = 2π

  1,n (B 1 , R n ). In fact, let ξ(x) ∈ C 1 0 (B 1/2 , [0, 1]), and satisfy

	ξ(z) =	1 in 0 on	B 1/4 ; ∂B 1/2 .	(5.41)
	and |∇ξ| ≤ 5.			

Par ailleurs, Hardt-Lin-Wang[START_REF] Hardt | Singularities of p-energy minimizing maps[END_REF] définissent une énergie renormalisée pour les applications n-harmoniques avec un nombre fini de singularités de degré 1, de Ω ⊂ R n à valeurs dans S n-1 . Ils démontrent également que les applications p-harmoniques minimisantes convergent quand p ր n vers une telle application n-harmonique qui minimise l'énergie renormalisée.En collaboration avec Y.X. Ge et E. Sandier[START_REF] Ge | Limits of solutions to Ginzburg-Landau equations in n-dimension[END_REF], nous montrons des résultats suivants:1. L'application n-harmonique limite des minimiseurs de Ginzburg-Landau de Han-Li[START_REF] Han | Degenerate elliptic systems and applications to Ginzburg-Landau type equations[END_REF] minimise l'énergie renormalisée.2. Nous avons l'équivalent du développement asymptotique ( * ) pour les minimiseurs de Ginzburg-Landau en dimension n.3. Nous étudions la limite de points critiques non nécessairement minimisants pour l'énergie de Ginzburg-Landau en dimension n, et montrons un équivalent de la "vanishing gradient property" de Bethuel-Brézis-Hélein[START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] dans ce cadre. Contrairement au cas bidimensionnel, ou au cas des minimiseurs en dimension n, des singularités d'énergie finie ne peuvent pas être exclues a priori dans notre étude.4. Nous montrons également l'existence de telles suites de points critiques non minimisants pour l'énergie de Ginzburg-Landau en dimension trois. 1.2. FONCTIONNELLE DE TYPE GINZBURG-LANDAU EN DIMENSIONS SUPÉRIEURES
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Remerciements

Chapter 4

The Lennard-Jones Model and Thomas-Fermi Model EQUATIONS Therefore, for 0 < τ < 1 8 ,

for τ chosen small enough. It contradicts with the condition of the lower bound.

Lemma 5.3.11. In B(x, 2r) ⊂⊂ Ω σ , if e(x, 2r, ε) ≤ δ where δ is the constant in Lemma 5.3.10, then θ ε is C α for some α ∈ [0, 1], and ||θ ε || C α ≤ C(n) independent of ε.

Proof. We follow the proof of [START_REF] Mou | Regularity for n-harmonic maps[END_REF]. Take ε ≤ ε 0 . If B 2ρ (x) ⊂⊂ Ω \ {a 1 , ...a d }, and e(x, 2ρ) ≤ δ, then for ∀y ∈ B ρ (x), r ∈ (0, ρ), we have e(y, r) ≤ e(y, ρ) ≤ e(x, 2ρ) ≤ δ.

From the lemma, we have for some τ ∈ [0, 1], and all r ∈ (0, ρ), e(y, τr) ≤ 1 2 e(y, r).

for ∀r ∈ (0, ρ) fixed, there exists k,

where

Morrey's lemma 3.2.5 implies that ||θ ε || C β/n ≤ C(n, τ, ρ) independent of ε.

Proof of Theorem 5.1.2

Proof of Theorem 5.1.2

Step 1.

where δ is the constant in Lemma 5.3.10. Then for any x ∈ K, by the definition of Ω 0 and S , there exists r, s.t. lim inf

Thus there is an ε < ε 0 (recall that ε 0 is the value in Lemma 5.3.10 ), and a subsequence u ε k ′ , s.t.

Therefore Arzela-Ascoli theorem implies that there is a subsequence {θ ε k ′′ }, s.t. where θ 0 ∈ C 0,α (B r ). In fact θ 0 is u 0 in the theorem.

Step 2.

By abuse of notation, we write θ k for θ ε k ′′ . Let

and |∇η| ≤ 5 r . Then we have

(5.48)

By the equation (5.31 ) and Holder inequality, we have

→0.

(5.49) Therefore we have the strong convergence

Then by the convergence of ρ k , we get the convergence of u k in W 1,n (B r ). By the finite covering theorem, we get the convergence

Step 3.

Let ρ 0 = min j k 1 6 a j -a k . By using Proposition 5.3.2 and the strong convergence of u ε , for ρ 1 < ρ 0 , we have

On the other hand, by using (5.25) of Lemma 5.3.8, we have

where d j is the degree of u 0 , restricted to ∂(Ω ∩ B ρ 1 (a j )).

LIMITS OF SOLUTIONS TO GINZBURG-LANDAU EQUATIONS EQUATIONS

Therefore, (5.50) and (5.51) imply that for a

u 0 0 where ρ < ρ 0 , then d a = 1. This implies that there are exactly d singularities of degree one.

Step 4.

In this step, we prove the set S is finite. If this is not true, then we have infinitely many points in S . By Proposition 5.3.2, there are only finitely many points in Ω ρ for ρ ≤ ρ 0 . Therefore, there exists a sequence of points in S which converges to some singularity a i . Then there exists ρ 2 ≤ ρ 0 , such that in Ω ρ 2 , there are M points of S denoted {b j } M j=1 and M • δ > 2(C(n, g) + C(n, d, Ω, g, ρ 0 )) where C(n, g) and C(n, d, Ω, g, ρ 0 )) are the constants in (5.50) and (5.51).

For u 0 , we have a lower bound

if we choose r small enough. Then by the strong convergence of u ε , there is an

By the definition of S , we have

for ε small enough. This contradicts the upper bound of u ε proved in Proposition 5.3.2.

Step 5.

From all the proof before, we only have the information that a i ∈ Ω. In this step, we shall exclude the possibility that a i ∈ ∂Ω for some i. For convenience, suppose a 1 ∈ ∂Ω.

Then we enlarge a little the domain Ω, as done in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. Fix a smooth, bounded and simply connected domain Ω such that Ω ⊂⊂ Ω. Also fix an arbitrarily smooth map ĝ : Ω \ Ω → S n-1 , such that ĝ = g on ∂Ω. Then we extend the map u 0 to a larger domain Ω such that u 0 = ĝ on Ω \ Ω. We have a higher dimensional analogue of Lemma VI.1 in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF].

Lemma 5.3.12. Let a ∈ ∂Ω. For every map u that belongs to W

We have

where C depends only on ĝ and R.

We postpone the proof of Lemma 5.3.12. Proof of Step 5. In Ωρ = Ω \ ∪ n i=1 B ρ (a i ), we also have an upper bound of the energy E(u 0 ; Ωρ ) ≤ dκ n |ln ρ| + C(n, Ω, ĝ), while from the Lemma 5.3.12 and Lemma 5.3.8, if a 1 is on the boundary, we have a lower bound of the energy E(u 0 ; Ωρ ) ≥ dκ n |ln ρ| + (2 1/(n-1) -1)κ n |ln ρ| -C(n, Ω, ĝ). This contradicts the upper bound above.

Proof of Lemma 5.3.12. By a conformal change of variables, we may assume that locally, Ω is the half-space {x ∈ R n |x n > 0}, and that a = 0. In this transformation, B R (a) \ B ρ (a) is transformed into a domain B R ′ (0) \ B ρ ′ (0) with R ′ ≃ R and ρ ′ ≃ ρ. Thus in B r (0) with ρ ≤ r ≤ R, we have

Integral this inequality over [ρ, R], we finished the proof of the lemma.

The Divergence Free Condition

Let u : Ω 0 → S n-1 be an n-harmonic map. We say u is a stationary n-harmonic map if its stress tensor is divergence free in Ω 0 , that is for ∂B ρ ⊂ Ω 0 , ν = (ν 1 , • • • , ν n ). We claim that the n-harmonic map u 0 in Theorem 5.1.2 is stationary. In fact, from (5.13) the divergence free of the energy tensor for T i, j (u ε ), we have for any ball in Ω,

Then on any annulus B R (y) \ B r (y) ⊂ Ω 0 , we have