
HAL Id: tel-01142046
https://theses.hal.science/tel-01142046

Submitted on 14 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient extreme classification
Mouhamadou Moustapha Cisse

To cite this version:
Mouhamadou Moustapha Cisse. Efficient extreme classification. Data Structures and Algorithms
[cs.DS]. Université Pierre et Marie Curie - Paris VI, 2014. English. �NNT : 2014PA066594�. �tel-
01142046�

https://theses.hal.science/tel-01142046
https://hal.archives-ouvertes.fr

1

0.30in

University Pierre et Marie Curie

Doctoral Thesis

Efficient Extreme Classification

Author:

Moustapha Cisse

Supervisor:

Thierry Artieres

Nicolas Usunier

Patrick Gallinari

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Machine Learning and Information Access team (MLIA)

Laboratoire Informatique Paris 6 (LIP6)

June 2014

http://www.university.com
Research Group Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Acknowledgements

The acknowledgements and the people to thank go here, don’t forget to include

your project advisor. . .

i

Contents

Acknowledgements i

Contents ii

List of Figures vi

List of Tables ix

Abbreviations xi

1 Introduction 1

1.1 Challenges in Extreme Classification 3

1.1.1 Class Imbalance/Data scarsity 4

1.1.2 High dimensionality/Large sample size 5

1.1.3 Structure and Label Dependence exploitation 6

1.1.4 Training/Inference Complexity reduction 7

1.2 Contributions . 8

1.3 Outline . 9

2 Extreme Single Label Classification 10

2.1 Introduction . 10

2.2 Flat approaches . 11

2.2.1 Machine Learning Reductions 12

2.2.1.1 Binary Classification 12

2.2.1.2 One-versus-Rest Classifier 14

2.2.1.3 Error Correcting Output Codes 15

2.2.1.4 Discussion . 18

2.2.2 Embedding approaches . 19

2.2.2.1 Sequence of Convex Problems 21

2.2.2.2 Joint Non Convex Embeding 21

ii

Contents iii

2.2.2.3 Discussion . 22

2.2.3 Conclusion . 23

2.3 Hierarchical Approaches . 23

2.3.1 Hierarchical Structure Learning 27

2.3.1.1 Spectral Clustering 28

2.3.1.2 Learning Class Hierarchies 31

Tree structured class hierarchies 31

DAG structured class hierarchies 31

2.3.1.3 Discussion . 32

2.3.2 Discriminative Models Learning 33

2.3.2.1 Independent Optimization of Models: Pachinko Ma-
chines . 33

2.3.2.2 Joint Optimization of Models 34

2.3.2.3 Regularization Based Approaches 39

Similarity based dependence modeling: 40

Dissimilarity based dependence modeling: 41

2.3.2.4 Sequential Learning of Models 43

Filter Trees . 43

Refinement . 44

Refined Experts . 45

2.3.3 Joint Learning of Models and Hierarchical Structure 47

2.3.3.1 Fast and Balanced Hierarchies (Deng et al., 2011) . 47

2.3.3.2 Relaxed Discriminant Hierarchies (Gao and Koller,
2011a) . 49

2.3.3.3 Discussion . 51

2.3.4 Conclusion . 52

3 Extreme Single Label Classification with Compact Ouput Coding 54

3.1 Introduction . 54

3.2 Learning Distributed Representation of Classes (LDR) 56

3.2.1 Principle . 56

3.2.2 Learning Compact Binary Class-codes 57

3.2.3 Relations to ECOC . 60

3.2.4 Training and inference complexity 61

3.3 Experiments . 62

3.3.1 Datasets . 62

3.3.2 Experimental setup . 63

3.3.3 Comparison of the methods 64

3.3.4 Zero-shot learning . 67

3.4 Conclusion . 69

Contents iv

4 Extreme Multilabel Classification 70

4.1 Introduction . 70

4.2 In defense of Hamming Loss . 72

4.3 On Binary Relevance . 74

4.4 Early approaches to MLC . 75

4.4.1 Stacking Binary Relevance 75

4.4.2 Classifier Chains (CC) . 76

4.4.3 Label Powerset and friends 77

4.5 Scalable approaches to Extreme MLC 77

4.5.1 Label Selection Methods . 79

4.5.1.1 Label Space Pruning 79

4.5.1.2 Column Subset Selection Method 80

4.5.2 Label Transformation Methods 80

4.5.2.1 Compressed Sensing 80

4.5.2.2 Principle Label Space Transformation 81

4.6 Conclusion . 82

5 Extreme Multilabel Classification with Bloom Filters 83

5.1 Introduction . 83

5.2 Background on Bloom Filters . 85

5.3 Standard Bloom Filters for Multilabel Classification 87

5.3.1 Encoding and Decoding . 88

5.3.2 Computational Complexity 90

Criterion under study 90

Asymptotic Behavior 91

Non-Asymptotic Considerations 91

Simulations on Real Datasets 92

5.4 Extreme MLC with Robust Bloom Filters 94

5.4.1 Label Clustering . 95

5.4.2 Encoding and decoding . 97

5.4.2.1 Encoding and Hash functions 98

5.4.2.2 Decoding and Robustness 99

Proof: . 100

5.5 Experiments . 101

5.5.1 Datasets . 102

RCV-Industries . 102

Wikipedia1k . 102

5.5.2 Evaluation metrics . 102

5.5.3 Baselines and experimental setup 103

5.5.4 Parameter selection for Standard Bloom Filters 105

5.5.5 Parameter selection for Robust Bloom Filters 106

Contents v

5.5.6 Correlation Decoding (CD) versus Standard Decoding (SD) 107

5.5.7 Comparative Results . 110

5.5.8 Runtime analysis . 111

5.6 Conclusion . 112

6 Conclusion and Perspectives 113

Bibliography 116

List of Figures

1.1 Distribution (in log2 scale) of the label set sizes on BioAsQ dataset
(left) and on Wikipedia dataset (right). 4

1.2 Landscape of research challenges in Extreme Classification
(Yiming Yang Talk at WSC workshop WSDM 2014) 5

1.3 Distribution of size of categories for the BioAsQ dataset. The dis-
tribution exhibits a power law phenomenon. 6

2.1 Surrogates loss functions for the zero-one loss 14

2.2 Row and column separability properties ensure good discrimination
and error correcting capabilities of the the ECOC model 16

2.3 Example of hierarchical classifier h. The structure of the hierarchy
T is a tree. Each node (besides the root node) is associated with
a local classifier fi. The set of classifiers is {fi}14i=1 and the allowed
classes are the leaves (in red) Y = L(T) = {c1, . . . , c8}. Also,
P(7) = {0, 9, 13} and children of node 9 are C(9) = {1, 2}. 26

2.4 Directed Acyclic Graph . 29

2.5 K-way Tree . 29

2.6 Binary Tree . 29

2.7 Illustrating the use of class attributes reflecting the hierarchical
structure. Class attribute vectors have the same dimension as the
number of nodes in the hierarchy except root node. For the class 2,
the components corresponding the nodes 6 and 2 are set to one since
they are on the path from the root to node 2. The class attribute
vectors for 2 and 1 have hamming distance of one from because they
are siblings. 36

3.1 Learning the autoencoder from pairs of input samples (here α and
β are considered equal to 1). See Algorithm 2 for details. 59

3.2 Comparing the mean accuracy of dichotomizers for binary problems
induced by the learned distributed representation and those induced
by random ECOCs on the 1K dataset with various code size. The
binary problems induced the learned representation are easier . . . 66

vi

List of Figures vii

3.3 Accuracy of our method (LDR), random ECOC (ECOC), Spec-
tral Embedding (SPE), and OVR as a function of code length on
datasets with 1 000 classes (top) and with 5 000 classes. 67

3.4 Accuracy of our method (LDR) and OVR on datasets with 1 000,
5 000 and 10 000 classes. Whatever the dataset LDR exploits class
codes of length l = 500. 68

5.1 Examples of a Bloom filter for a set L = {�1, ..., �8} with 8 elements,
using three hash functions (h1, h2, h3 and 6 bits). (left) The table
gives the hash values for each class. (middle) For each class, the
hash functions give the index of the bits that are set to 1 in the
6-bit boolean vector. The examples of the representative vectors
for �1 and �3 are given. Then, the subset {�1, �3} is built by taking
the bitwise OR of the vectors of �1 and �3. (right) Example of false
positive: the representation of the subset {�3, �4} is given ; all the
representative bits the class �8 are set to 1, so the standard decoding
algorithm considers that the vector encodes the set {�3, �4, �8} rather
than the intended {�3, �4}. 85

5.2 Examples of a Bloom filter for a set L = {�1, ..., �8} with 8 elements,
using 3 hash functions and 6 bits). (left) The table gives the hash
values for each label. (middle-left) For each label, the hash functions
give the index of the bits that are set to 1 in the 6-bit boolean vector.
The examples of the encodings for {�1} and {�4} are given. (middle-
right) Example of a false positive: the representation of the subset
{�1, �4} includes all the representative bits of label �3 so that is �3
would be decoded erroneously. (right) Example of propagation of
errors: a single erroneous bit in the label set encoding, together
with a false positive, leads to three label errors in the final prediction. 88

5.3 Distribution (in log2 scale) of the label set sizes on RCV1-Industries
(left) and on Wikipedia1k (right). pc is the probability of having
an instance whose label set size is equal to c. 93

5.4 Theoretical and real unrecoverable Hamming loss (i.e. false positive
rate) of the Bloom filter as a function of the size of the filter B
(optimal K) on RCV1-Industries (left) and Wikipedia1k (right).
Errors are printed in log2 scale relatively to the label density (the
y-axis corresponds to the parameter r of Eq. 5.1). 93

5.5 (a) . 96

5.6 (b) . 96

5.7 (c) . 96

5.8 (d) . 96

List of Figures viii

5.9 Illustration of the label clustering assumption in a practical sit-
uation: (a) The co-occurrence graph in which the labels are the
nodes and the edges represent co-occurrence relations between the
labels. In real world problems, the co-occurrence graph is a single
connected component. (b) Even though the graph is connected,
clusters of labels can be identified using a graph clustering algo-
rithm. (c) Using the identified clusters as a partition of the set
of labels results in unrecoverable loss represented by the edges in
red. labels represented by nodes linked with red edges will never
be predicted together. (d) The labels that are responsible for most
of the unrecoverable loss correspond to the nodes which have the
highest degree in the co-occurrence graph (nodes in red). We call
them hubs. Removing these labels and treating them separately
leaves the rest of labels approximately partitioned. 96

5.10 Representative bits for 30 labels partitioned into P = 15 mutually
exclusive label clusters of size R = 2, using K = 2 representative
bits per label and batches of Q = 6 bits. The table on the right
gives the label clustering. The injective mapping between labels and
subsets of bits is defined by g : � �→ {g1(�) = (1+ �)/6, g2(�) = 1+ �
mod 6} for � ∈ {1, ..., 15} and, for � ∈ {15, ..., 30}, it is defined by
� �→ {(6 + g1(�− 15), 6 + g1(�− 15)}. 99

5.11 (left) Hamming loss as a function of the BF’s size B for the In-
dustries dataset. The curves correspond to various values of the
number of hash function K. (right) Hamming loss as a function
of the number of hash function K for the Industries dataset. The
curves correspond to various values of BF’s size B. 106

5.12 Unrecoverable Hamming loss (UHL) due to label clustering as a
function of the code sizeB on RCV-Industries (left) and onWikipedia1k
dataset (right). The optimal curve represents the best UHL over
different settings (number of hubs,max cluster size) for a given code
size. UHL decreases when the number of hubs in increased. 107

5.13 Hamming loss comparison of the the proposed method to the base-
lines while varying the code size. The Robust bloom filter is better
than the other methods as the code size gets larger. 110

List of Tables

1.1 Examples of small scale and extreme classification datasets 3

2.1 Sequential models learning approaches. The key differences between
them is the local training set construction and the order in which the
models are learned. The pachinko machine is given for comparison. 46

3.1 Comparison of training and inference complexity for our method
and for standard methods, OVR and ECOC, as a function of the
number of classes L, the dimension of the data d, the size of the class
codes l, the learning complexity of a binary classifier with N training
samples CT (N), the inference complexity of a binary classifier CI ,
and the number of training iterations I of the autoencoder (LDR
method). 62

3.2 Statistics of the dataset used in the experiments 63

3.3 Comparative results of OVR, Random ECOC, Spectral Embedding,
and LDR, on datasets with 1000 and 5000 classes with respect to
accuracy, tree induced loss, and inference runtime. The runtimes
are given as speed-up factors compared to OVR (×2 means twice
as fast as OVR). Reported results are the best ones obtained on the
datasets whatever the class code length. For LDR, we also provide
the performance reached for a minimal B yielding performance at
least equal to that of OVR, denoted as LDR (first), to stress the
speed-up. LDR(best) is the best performance LDR based model
regardless of the speed. 68

3.4 Average accuracy (and standard deviation) of LDR (B = 200) for
zero-shot learning tasks. Results are averaged over 10 runs with
removal of different random sets of classes. 69

5.1 Summary Statistics of the Datasets Used in the Experiments. . . . 103

5.2 Comparison in (%) of Hamming Loss (HL), Precision (Prec.) and
Recall (Rec.) of the two BF methods as a function of K on the
Wikipedia dataset with filter size of 100. 106

ix

List of Tables x

5.3 Precision @k (%) (k ∈ {1, 5, 10}) of Bloom Filter with Correlation
Decoding (BF-CD), Compressed Sensing with Orthogonal Matching
Pursuit as decoding procedure (CS-OMP) and Binary Relevance
(BR) on the datasets. For each model, the number of regressors
used is given in parenthesis. 108

5.4 Test Hamming loss (HL, in %), micro (m-F1) and macro (M-F1)
F1-scores. B is code size. The results of the significance test for a
p-value less than 5% are denoted † to indicate the best performing
method using the same B and ∗ to indicate the best performing
method overall. 109

Abbreviations

LAH List Abbreviations Here

xi

For/Dedicated to/To my. . .

xii

Chapter 1

Introduction

The ability to categorize information is a fundamental aspect of human intelli-

gence. We naturally associate visual information or text data with semantic con-

cepts that allow us to organize knowledge. Endowing the machines with the same

ability is an important goal of artificial intelligence. This problem has attracted

lots of research effort over decades. As a result, systems exploiting machine learn-

ing methods to automate daily classification tasks are widely adopted. Document

recognition (LeCun et al., 1998) and spam filtering (Tretyakov, 2004) are exam-

ples of successful industrial applications of the classification tools developed in the

machine learning community.

Despite these success stories, an important gap has existed for a long time between

the scales and the complexity of the problems naturally tackled by Humans and

those solved by machines. Most of the classification problems solved by computers

using machine learning techniques involve at most few hundreds of classes (see

small scale datasets in Table 1.1) while Humans naturally discriminate between

several thousand of categories. This is intrinsically related to a basic fact of high

level human intelligence: the semantic space used by humans to describe the

world is extremely large. Indeed, psychologist have postulated that there are

around 30 thousands visual categories (Biederman, 1987). Similarly, we use a

large (potentially unbounded) number of semantic concepts to tell which are the

relevant topics for a given textual document. Therefore, bridging the gap between

1

Introduction 2

humans and the computers’ discriminative capabilities requires large amounts of

data in order to train accurate learning machines.

In the past few years, we have witnessed a spectacular increase of the amount of

data uploaded daily on the web thanks to the growing number of collaborative

and social websites such as Flickr1, Wikipedia2, Facebook3 or Instagram4. For

example, there are about one thousand new articles on the english Wikipedia

every day and a total of 4.6 millions of articles as of March 20145. Similarly, 60

millions photos are shared daily on Instagram and a total number of 20 billions of

photos have been shared by the 200 millions users as of April 20146. In most cases,

this textual or image data comes with a system of labels that describes it. For

instance, every wikipedia document is tagged with one of (roughly) the million

of labels of the Wikipedia hierarchy. In order to exploit this data and make it

available through user friendly applications such as search engines, it is critical to

have learning machines that can efficiently deal with a large number of categories.

This has remained an unchartered territory in research until recently and most of

the existing classifiers are not well suited for problems of this size because of their

large computational complexity. Indeed, training most machine learning based

classifiers require computational resources that grow much faster than the volume

of the data. Therefore, despite the exponential increase of computing power in the

past years as predicted by Moore’s law, less demanding classification algorithms

are needed.

This thesis proposes new approaches for efficiently solving classification problems

in presence of a large number of categories also termed extreme classification.

In this introductory chapter, we explain the particularities of this problem and

briefly discuss the approaches we propose. Section 1.1 explains the specificities of

extreme classification and the challenges that arise in this setting. In section 1.2

we summarize our main contributions before sketching the chapters of the thesis

in section 1.3.

1https://www.flickr.com
2http://www.wikipedia.org
3https://www.facebook.com
4http://instagram.com
5http://stats.wikimedia.org/EN/TablesWikipediaEN.htm
6http://blog.instagram.com/post/80721172292/200m

Introduction 3

Name #cat #features #docs cat/doc structure
news20 20 19,996 139217 1 Tree
rcv1 101 47236 806791 3.1 Tree
Yahoo! Directory 132,199 4,194,304 792,601 2.2 Tree
Ohsumed 14,321 72,076 233,445 12 Tree
DMOZ 2011 27,875 497,992 594,158 1.02 Tree
SWiki 2011 36,504 346,299 538,148 1.86 Graph
LWiki 2013 325,056 1,617,899 2,817,603 3.26 Graph
BioAsQ 26,563 1,617,899 10,876,004 12.55 Tree

Table 1.1: Examples of small scale and extreme classification datasets

1.1 Challenges in Extreme Classification

Extreme Classification is the emerging research field that tackles the task of classi-

fying in presence of a large number of categories (which we will also call classes or

labels throughout this thesis). It has gained popularity in the last few years and

has been the central topic of several workshops such as the ECML-PKDD Large

Scale Hierarchical Text Classification (LSHTC) workshop series 2010-2013 7, the

NIPS 2013 Extreme Classification workshop8 and more recently the WSDM 2014

Web-Scale Classification workshop 9. During the same period, contests such as

Pascal Large Scale Hierarchical Classification challenge organized in conjunction

with the LSHTC workshops, the Imagenet challenge10 and the BioAsQ challenge 11

have been organized. The workshops allowed the researchers to discuss the main

challenges arising in extreme classification problems while the contests have in-

troduced new benchmark datasets that help improving our understanding of the

specificities of the problem. Extreme classification problems are mainly of two

kinds: single label classification problems in which each instance belongs to only

one category and multilabel classification where every instance can be associated

to many categories. In the latter case however, the number of categories per in-

stance is generally very small compared to the number of labels involved in the

7http://lshtc.iit.demokritos.gr/
8http://research.microsoft.com/en-us/um/people/manik/events/XC13/index.html
9http://lshtc.iit.demokritos.gr/WSDM-WS

10http://image-net.org/challenges/LSVRC
11http://www.bioasq.org

Introduction 4

Figure 1.1: Distribution (in log2 scale) of the label set sizes on BioAsQ dataset
(left) and on Wikipedia dataset (right).

problem as shown in Figure 1.1. The analysis of extreme classification datasets ex-

hibits common features shared across classification problems whenever the number

of categories becomes very large. Some of these features, such as the existence of a

hierarchy that relates the categories, are specific to extreme classification problems.

Other features such as the imbalance between the classes and the presence of very

rare categories are more commonly encountered problems in traditional classifica-

tion tasks. However, their combination is more specific to extreme classification

problems. We discuss here the most salient specificities of extreme classification

problems and the challenges they induce.

1.1.1 Class Imbalance/Data scarsity

The average category size in extreme classification problems is tightly related to

the number of categories involved. The larger the number of categories, the smaller

the average category size. This has been observed on several datasets as depicted

on Figure 1.2 in which the average category size increases when the number of cat-

egories decreases for all datasets having a large number of categories (e.g. LSHTC

datasets and Wikipedia datasets). However, the same observation does not hold

for small size datasets such as CLEF and RCV datasets. It has also been observed

on many extreme classification problem that the size of the categories are power

law distributed. An instance of this phenomenon for the BioAsQ classification

Introduction 5

Figure 1.2: Landscape of research challenges in Extreme Classification
(Yiming Yang Talk at WSC workshop WSDM 2014)

problem which has about 25K categories is depicted in Figure 1.3. This power

law distribution of the size of categories implies a severe imbalance between the

categories which can make learning very difficult. The same phenomenon appears

on the Yahoo! dataset which has 246K labels. In this dataset, 76% of labels

have less that 5 instances. Even though solutions to the class imbalance prob-

lem have been proposed in previous research (Japkowicz and Stephen, 2002), the

scale of the problems for which these solutions were proposed is very different and

the distribution of the size of categories is not power law. Therefore, it is neces-

sary to take this phenomenon into account when building new models for extreme

classification.

1.1.2 High dimensionality/Large sample size

As shown in Table 1.1, the dimensionality of the input space (the number of fea-

tures) is very large in extreme classification problems. For the large Wikipedia

dataset which has about 325K labels for example, there are more than a million

Introduction 6

Figure 1.3: Distribution of size of categories for the BioAsQ dataset. The
distribution exhibits a power law phenomenon.

of features. This observation is valid for the several other datasets and can be

explained in a rather intuitive manner. Indeed, for textual data such as DMOZ

or Wikipedia, some words of the vocabulary are very specific to some categories.

Hence, the more categories we have, the larger the size of the vocabulary used. In

order to make learning feasible when the number of features is very large, several

feature selection and representation learning approaches have been proposed (Ben-

gio et al., 2013, Molina et al., 2002). However, they were not initially designed for

extreme classification problems. Similarly, when the number of categories is very

large, the number of examples is also very large since each category is represented

at least once. Learning with large amounts of data have been successfully achieved

through stochastic optimizations methods (Bottou and Bousquet, 2008, Fan et al.,

2008) even though these methods also must be improved in order to scale to the

extreme classification setting.

1.1.3 Structure and Label Dependence exploitation

Extreme classification problems generally come with a structure representing the

relationships between the labels. This structure carries some semantic about the

Introduction 7

labels and is often organized as a hierarchy or a graph. For example, the labels

of the Wikipedia dataset are structured as a graph while those of the DMOZ

dataset are organized in a hierarchy. Another kind of structure information is the

co-occurrence between the labels in extreme multilabel problems. Indeed, some

labels are positively correlated while many others never appear together. While

the classifiers can be trained independently in small scale problems, it has become

an opinio communis that the structure information between the labels can be

leveraged in order to improve classification performances. The larger the number

of labels, the more important is the structure between the labels as depicted in

Figure 1.2. Indeed, the datasets with a large number of categories (see Table 1.1)

all come with a structure between the labels while those with a small number of

labels rarely come with such structure. There have been successful attempts to

label structure exploitation in Extreme SLC (Gopal and Yang, 2013, Weinberger

and Chapelle, 2008). But only few approaches exist for MLC problems and most

of them do not scale to the classification extreme setting (Dembczynski et al.,

2010b, Hariharan et al., 2010)

1.1.4 Training/Inference Complexity reduction

As for most of the extreme classification problems presented in table 1.1, when the

number of categories is very large, both the sample size and the dimensionality of

the input space are very large. This results in both memory and computational

burden when most of the classical learning machines are used. For example, if

the one versus rest classifier that learns one classifier for each category (Rifkin

and Klautau, 2004b) is used to solve the classification problem having 325K cate-

gories12, more than a 1000 GB are necessary to store all the parameters. Moreover,

each of the 325K classifiers must be evaluated before the relevant categories of a

given test instance are recovered. The same observation holds for several other

methods such as single machine large margin classifiers (Weston and Watkins,

1998) and deep neural networks (Bengio, 2009). Also, these approaches cannot

be easily parallelized if one wants to exploit the structure that comes with these

problems as shown in Figure 1.2. Therefore, it is critical to come up with new

12http://lshtc.iit.demokritos.gr

Introduction 8

approaches having sublinear training and inference complexity in the number of

categories. This has recently been the main subject of several contributions in

both the single label and the multilabel setting. Most of these approaches focus

on reducing either training (Dekel and Shamir, 2010) or inference complexity (Ben-

gio et al., 2010, Deng et al., 2011). Therefore, a lot remains to be done in order

to make both learning and prediction fast and memory efficient.

1.2 Contributions

As stated in the previous section, the presence of a large number of categories

gives rise to several (sub-)problems that must be addressed in order to solve ex-

treme classification. However, we decide to focus in this thesis on training and

inference complexity reduction in extreme classification problems. Indeed, making

learning feasible and allowing fast inference is a pre-requisite to the use of machine

learning based techniques in real world applications dealing with a large number

of categories. We propose new approaches for efficiently classifying in this set-

ting while maintaining competitive classification performances. Our contribution

is twofold and is mainly built on learning low dimensional binary representation

of the classes.

The first method we propose deals with extreme single label classification. It uses

hierarchical information to learn compact binary codes for the categories. The

representation learning procedure uses an auto-encoder based architecture (Ben-

gio et al., 2013). The method bares similarities with Error Correcting Output

Codes (Dietterich and Bakiri, 1995) (ECOC). However, the induced binary prob-

lems are empirically shown to be easier than those induced by the randomly gen-

erated codes in ECOCs. Overall, this approach gives competitive performances

compared to classical one versus rest method and error correcting output codes.

Our second contribution deals with extreme multilabel classification. It is based

on the use of Bloom Filters (Bloom, 1970) for representing subsets of labels us-

ing low dimensional binary vectors. The first approach we propose uses standard

Bloom Filters to encode and decode the subsets. Even though this method gives

Introduction 9

competitive performances, it is not robust to individual mistakes of binary clas-

sifiers. To overcome this problem, a second approach that exploits the following

key property of extreme multilabel classification problems is proposed: when the

number of categories is very large, many labels never appear together. This new

method is provably robust and gives competitive performances.

1.3 Outline

This section outlines the core chapters of this thesis. The first two chapters are

dedicated to extreme single label classification and the last two’s focus is extreme

multilabel classification.

• Chapter 2 is a review of the main techniques that have been proposed in the

literature for extreme single label classification. This chapter is divided in

two main sections which are respectively about flat approaches and hierar-

chical methods for extreme single label classification.

• Chapter 3 presents our contribution to extreme single label classification.

The material presented in this chapter has been published at the European

Conference of Machine Learning (ECML-PKDD) in 2012 (Cissé et al., 2012).

• Chapter 4 reviews the several methods recently proposed in the blossoming

research field of extreme multilabel classification.

• Chapter 5 presents the Bloom Filter based approaches we proposed for ex-

treme multilabel classification. Part of the material presented in this chapter

has been published at the Neural Information Processing Systems conference

(NIPS) in 2013 (Cisse et al., 2013) and an extend version is in preparation

for the Machine Learning Journal.

Chapter 2

Extreme Single Label

Classification

2.1 Introduction

Single label classification is a well studied problem in machine learning for which

several effective solutions resulting from decades of research have been derived

and now widely applied to solve industrial problems (Bishop, 2006). However, the

rapid development of the internet and the increasingly large amount of available

labelled data (thanks to social and collaborative websites such as Wikipedia or

Flicker) have changed the nature of the problem and made the most of the tradi-

tional approaches to single label classification obsolete since they do not scale to

extreme classification. Single label classification has been initially tackled with flat

techniques. Recently, there has been an increased interest in hierarchical methods

because of their reduced complexity compared to flat approaches. In this chap-

ter, we present the main contributions in the literature from these two families of

approaches that can be applied to solve extreme single label classification.

10

Chapter 2. Extreme Single Label Classification 11

2.2 Flat approaches

Flat approaches to multiclass categorization approaches do not rely on a hierarchy

at inference to reduce their complexity (conversely to hierarchical approaches that

will be discussed in the next section) even though they can exploit existing seman-

tic information to increase their accuracy (Weinberger and Chapelle, 2008). This

family of method can be divided into two subgroups that are machine learning

reductions (Allwein et al., 2001, Dietterich and Bakiri, 1995) and single machine

classifiers (Weinberger and Chapelle, 2008, Weston and Watkins, 1999). These two

subgroups are rather different in the way they approach the multiclass classifica-

tion problem. On one hand machine, learning reductions rest on the predictions of

independently learned binary classifiers to produce the final prediction for a given

test instance. A notable examples of machine learning reductions is the infamous

one-versus-all classifier that will be discussed in more details next. One the other

hand single machine classifiers are either embedding based methods or extensions

of binary classifiers to the multiclass setting and hence generally require a joint

learning of all their parameters.

Extending classical binary classifiers such as support vector machines and logis-

tic regression to the multiclass case has been extensively studied and has re-

sulted in several effective methods such as multiclass support vector machines

(M-SVM) (Weston and Watkins, 1999), softmax regression and more recently

deep neural networks (Bengio, 2009). However, despite their proven accuracy,

these methods do not scale to extreme classification setting due to large their

computational burden at both training and inference even though there are recent

attempts to parallelize their training (Gopal and Yang). Therefore, we will only

focus in this study on methods that are scalable to extreme classification and refer

the interested reader to the following works and the references therein (Bengio,

2009, Bordes et al., 2007, Crammer and Singer, 2002, Gopal and Yang, Weston

and Watkins, 1999). We describe next machine learning reductions and embed-

ding based approaches to multiclass categorization and discuss how they fit in the

context of extreme classification.

Chapter 2. Extreme Single Label Classification 12

2.2.1 Machine Learning Reductions

Machine learning reductions of multiclass classification to binary classification have

been around for a long time (Dietterich and Bakiri, 1995, Schölkopf et al., 1995).

However, these works have only been unified recently in the same framework in-

cluding approaches such as Error Correcting Output Codes, One-versus-All, One-

versus-One, Filter Trees and many more1 (Allwein et al., 2001). The key idea in

all these methods is to use existing binary classifiers and combine them in order

to have a multiclass classifier. The difference between these methods is therefore

the way the binary classifiers are combined. This guides the choice of the right

method for a given task because it governs the final performance of the methods

and their complexity. For example, some widely used methods such as One-versus-

One classifier (which train a binary classifier for each pair of label and adopt a

voting scheme at inference) cannot be used be used in extreme classification prob-

lems (despite their proven performances) because their quadratic complexity in the

number of labels O(L2). Next we describe two popular and scalable approaches

that are One-versus-Rest (OVR) and Error Correcting Output Codes (ECOC).

2.2.1.1 Binary Classification

The task of classification consist in learning, given a set of training examples

D = {(xi, yi)}1≤1≤n, a mapping (or hypothesis) from the d-dimensional feature

space to the label space : h : X d → Y . The simplest non-trivial classification

problem that can be considered is binary classification where the set of labels is

reduced to Y = {−1,+1}. This is arguably the most studied machine learning

problem because of its obvious practical interest on its own, and also because it is

a building block of more complicated machine learning systems such as multiclass

classifiers. From an empirical risk minimization (ERM) point of view, learning a

binary classifier reduces to finding the best hypothesis h from a hypothesis class

H that minimizes the average number of disagreements between the predictions

h(xi) and the actual labels yi on the finite training set D. This quantity, called

the empirical risk as it is an approximation of the classifier’s expected risk on

1http://hunch.net/ reductions-tutorial/

Chapter 2. Extreme Single Label Classification 13

the distribution P from which the data was drawn, is generally associated with a

regularization term to prevent overfitting (Vapnik, 1995). The final empirical risk

is expressed as:

RD(h) =
1

n

n∑
i=1

L(h(xi), yi) + λ||h|| (2.1)

where L is the loss function measuring the penalty of predicting h(xi) when the

actual label is yi for a given instance, λ is the weights the importance of the reg-

ularization term. The empirical risk minimizer is obtained when the minimum of

RD in the hypothesis class H is attained: h∗ = argminh∈H RD(h). Depending on

the difficulty of the problem at hand, various types of hypothesis classes such as

linear models, kernel machines or neural networks can be used (Bishop, 2006). For

instance, If the linear hypothesis class of functions is considered, each hypothesis

h is parameterized by a weight vector w such that for a given example its corre-

sponding prediction can be expressed as hw(x) = wTx+ b where b is a bias term.

Therefore, seeking for the best hypothesis h∗ in this case is equivalent to searching

for the best weight vector w∗ according to the chosen loss function L.

The natural classification loss function we would like to optimize for is the zero-

one loss : L0/1(h(xi), yi) = I(h(xi) �= yi). It counts the number of disagreements

between the prediction and the actual label. However this loss is not optimization

friendly because it is not convex. Therefore, convex surrogates of L0/1 are used

in practice hence resulting in various classifiers. Two notable examples of convex

surrogates for the zero-one loss are the Hinge loss and the Logistic loss whose

respective expressions are given below for an instance (x, y) and a hypothesis h

and figure 2.1 shows how they upper bound the zero-one loss function (Bishop,

2006) :

Lhinge(y, h(x)) = max(0, 1− y · h(x)) (2.2)

Llogistic(y, h(x)) = log(1 + exp(y · h(x))) (2.3)

Chapter 2. Extreme Single Label Classification 14

Figure 2.1: Surrogates loss functions for the zero-one loss

When the linear hypothesis class is considered, the Hinge loss and the Logistic

loss respectively give rise to the Support Vector Machine (SVM) and the Logistic

Regression (LR) classifiers. Several efficient solvers exist for these two problems23

mainly relying on stochastic gradient and dual coordinate descent algorithms (Bot-

tou and Bousquet, 2008, Yu et al., 2011). Both of SVMs and LR models have

demonstrated state of the art performances on several large scale binary classi-

fication benchmarks 4. They have become methods of choice for solving binary

problems but also as for building machine learning reduction based multiclass

classifiers. This has been successfully done with One-Versus-All (OVA) and Error

Correcting Output Code (ECOC) classifiers as will be discussed next.

2.2.1.2 One-versus-Rest Classifier

One-versus-Rest (OVR) also called One-versus-All (OVA) is the simplest approach

among multiclass machine learning reductions to binary. It consist in training

training a binary classifier for each category to distinguish its examples from those

of the other classes. At inference, all the classifiers are evaluated and the test ex-

ample is associated to the category whose classifier is the most confident (has

2http://www.csie.ntu.edu.tw/ cjlin/liblinear/
3http://leon.bottou.org/projects/sgd
4http://largescale.ml.tu-berlin.de/about/

Chapter 2. Extreme Single Label Classification 15

highest prediction). This a winner-takes-all principle. Early work using this strat-

egy dates back to (Schölkopf et al., 1995). However a more cited paper about

this method is (Rifkin and Klautau, 2004b). In this work, the authors empiri-

cally show that when the binary classifiers are correctly calibrated, this approach

outperforms other machine learning reductions (such as One-versus-One classifier

(which trains a binary classifier for each pair of category) and Error Correcting

Output Codes) and multiclass support vector machines (M-SVM) (Crammer and

Singer, 2002, Weston and Watkins, 1999). Moreover, OVA is readily paralleliz-

able since the binary classifiers can be trained and evaluated independently. This

makes it a good candidate for extreme classification despite the class imbalance

problem generally faced when training the binary classifiers.

2.2.1.3 Error Correcting Output Codes

Solving multiclass categorization problems with error correcting output codes

(ECOC) has been introduced in (Dietterich and Bakiri, 1995). In this early work,

the presented method consist in associating each of the L classes with a bit vector

also called binary codeword of fixed size de. The set of codewords are the rows

of a coding matrix M ∈ {−1,+1}L×de whose columns correspond to binary clas-

sification problems. For each column l, its corresponding binary induced problem

reduces to discriminate between the examples of the classes whose corresponding

codeword Mj are such that Mjl = +1 from those for which Mjl = −1. Therefore,

given a set of training examples {(xi, yi)}1≤n and a coding matrix M , the set of

positive and negative example examples of the binary problem induced by column

l respectively write Dl
+ = {(xi, yi) : Myil = +1} and Dl

− = {(xi, yi) : Myil = −1}.
Binary classifiers also called dichotomizers (hi)1≤i≤de (such as logistic regression

or support vector machines previously described) are learned to predict the bit

positions of a codeword. A given test instance x is associated to the class whose

binary codeword is the closest (according to some distance measure d) to the

predicted codeword for x. If we denote this decoding procedure D, we have:

D(x) = argminj d(Mj,h(x)) where h(x) = (h1(x), . . . , hde(x)) and Mj is the code-

word of class j. The decoding procedure generally uses the hamming distance dH

Chapter 2. Extreme Single Label Classification 16

y1 −1 +1 −1 +1

y2 +1 −1 +1 −1

y3 +1 +1 +1 +1

y4 −1 −1 −1 +1

y5 −1 +1 +1 −1

y6 +1 −1 −1 +1

+1

−1

+1

−1

−1

+1

+1

−1

+1−1 −1 −1

+1+1 +1 +1

column separability : dH(c2, c3) = 2

row separability : dH(y2, y3) = 2

y1 y2 y3 y4 y5 y6

y1 0 4 2 1 2 2

y2 4 0 2 3 2 2

y3 2 2 0 2 2 2

y4 1 3 2 0 2 1

y5 2 2 2 2 0 4

y6 2 2 2 1 4 0

average row separability : 1.83, (std = 1.12)

Figure 2.2: Row and column separability properties ensure good discrimina-
tion and error correcting capabilities of the the ECOC model

measure since it is simple and fast to compute thanks to existing procedures (Pap-

palardo et al., 2009). Subsequent studies such as (Allwein et al., 2001) proposed to

use ternary codes instead of binary codes to reduce the number of classes involved

in the binary induced problems.

Choosing a good coding matrix is a key factor in the success of an ECOC based

multiclass categorizer. Mainly, the two following properties (also depicted in fig-

ure 2.2) should be ensured:

Row separability : the codewords must be well separated to guarantee error

correction capabilities of the method. Indeed, if the smallest hamming dis-

tance between two codewords is δ, the ECOC procedure will be able to

correct up to δ/2 mistakes of the dichotomizers at inference (Allwein et al.,

2001)

Column separability: to avoid correlated errors between dichotomizers, it is

necessary that the problems are sufficiently different. This is guaranteed

when the columns of the matrix are well separated.

In general, these two properties are taken into account when generating the cod-

ing matrix by sampling several matrices such that P (Mij = +1) = 1/2 and

P (Mij = −1) = 1/2 and considering the one having the best error correcting

capabilities. Another approach is to choose the coding matrix to be a Hadamard

Chapter 2. Extreme Single Label Classification 17

matrix (Langford and Beygelzimer, 2005) which guarantees that the distance be-

tween any two codewords is L/2.

Another important element in the final performance of a ECOC based classifier is

the accuracy of the dichotomizers. Training accurate dichotomizers is a challenging

problem when the coding matrix is randomly generated. In this case there is

no other way of ensuring accurate dichotomizers than using powerful non linear

classifiers such as kernel machines or neural networks as suggested by (Dietterich

and Bakiri, 1995) because of the difficulty of the binary induced problems. To

overcome this limitation of randomly generated codewords, several authors have

proposed to learn the coding matrix (Allwein et al., 2001, Gao and Koller, 2011b,

Schapire, 1997). An important contribution in this line of work with applications

to extreme classification is the work by (Zhao and Xing, 2013). This approach

learns a coding matrix M with ”easy” binary induced problems while ensuring

well separated codewords to guarantee error correcting capabilities of the method

by solving the following problem.

max: Fb(M)− λrFr(M)− λc

de∑
i=1

||mi||22 (2.4)

s.t. M ∈ {−1, 0,+1}L×de (2.5)

L∑
i=1

I(Mil = +1) ≥ 1, l = 1, . . . , de (2.6)

L∑
i=1

I(Mil = −1) ≥ 1, l = 1, . . . , de (2.7)

de∑
i=1

I(Mil �= 0) ≥ 1, l = 1, . . . , L. (2.8)

where I is the indicator function. Fb(M) is a function that measures the separa-

bility of each binary partition problem associated with columns of M , and reflects

the expected accuracy of the dichotomizers. Fr(M) measures the correlation be-

tween the codewords, therefore minimizing it increases the error correcting ability

of the resulting matrix. The L2 −norm regularization of each column mi controls

Chapter 2. Extreme Single Label Classification 18

the complexity of the binary induced problems. The hyper-parameters λr and λb

control the relative importance of the competing objectives. The first integrity

constraint 2.5 imposes the solution to be a set of ternary codewords. It is the

main difficulty of the problem since it makes it NP-hard. The last two constraints

ensure respectively that (1) for each of the binary induced problems the sets D+

and D− are never empty so that trivial problems are avoided and (2) each label of

the original problem appears at least in one induced problem. The authors instan-

tiate the functions Fb(M) and Fr(M) and propose relaxation of the integer which

allow them to efficiently solve this problem despite its apparent difficulty. Even

though the final optimization problem requires sophisticated techniques because

of the non-convexity of the problem and results in an approximate solution, this

method achieves convincing performances compared to One-versus-All baseline

and randomly generated codewords.

Error Correcting Output Codes are an interesting option for extreme single label

classification for several reasons. First, they enjoy the main feature of reduction

based methods which is that the binary classifiers can be trained independently

in parallel. Second, the codeword size can be much smaller than the number of

labels when the latter is large ((Allwein et al., 2001) suggest to use codewords of

size O(10 logL) for binary coding matrices). Moreover, even the randomly gen-

erated codewords have demonstrated good performances specially on very under-

represented classes because of the way the binary problems are created (Dietterich

and Bakiri, 1995).

2.2.1.4 Discussion

Reducing multiclass to binary is an elegant and natural way of tackling classifi-

cation problems in that we do not need to reinvent the wheel. Indeed, efficient

solvers exist for binary classification and that resource can be leveraged to tackle

extreme classification provided efficient and tractable ways of combining binary

classifiers with theoretical guarantees on the final performance based on the binary

classifiers’ performances. This is an active research trend 5.

5http://hunch.net/ jl/projects/reductions/reductions.html

Chapter 2. Extreme Single Label Classification 19

2.2.2 Embedding approaches

Nearest Neighbor (NN) approaches are powerful non parametric methods that can

model complex non-linear decision surfaces (Bishop, 2006). They have achieved

state of the art performances when the distance metric used for nearest neighbor

search is learned as for large margin nearest neighbor classifiers (Weinberger and

Saul, 2009). However, because of their linear computational complexity in the

number of examples they do not scale to extreme classification problems unless

specialized data-structures are used. For example, kd-trees (Bentley, 1975) can

speed up the nearest neighbor search and reduce it to O(d logm) (where d is

the size of the input space and m is the number of examples) at the cost of

small performance drop. An improved version of this approach consist in learning

a distance metric together with a dimensionality reduction. This method was

championed by large margin component analysis (LCA) (Torresani and chih Lee,

2007) which projects the data in a lower dimensional space of size de (de <<

d) while learning the distance metric. Overall, this method results in a final

complexity of O(de(d + m)) (or O(de(d + logm)) when kd-trees are used) and

empirically gives better performances.

Another workaround for scaling nearest neighbor approaches to extreme clas-

sification is nearest centroid classifier (NC). Given a set of training examples

{(xi, yi)}1≤i≤m, this approach consist in computing class centroids µj = 1/cj
∑

i∈cj xi

(where cj is the set of examples belonging to class j). At inference each example

is assign to the class whose centroid is closest y = argminj ||uj − x||. This method

has been widely adopted in the text classification community where it is known as

the Rocchio classifier. It scales better than the Nearest Neighbor approach since

its complexity is O(dn) rather than O(dm). Despite this improved complexity,

NC classifiers remain costly in extreme classification setting where both the num-

ber of classes and the dimensionality of the data are large. Moreover, the high

dimensionality of the data generally leads to poor performances when euclidean

distance for example is used for nearest mean search (Aggarwal et al., 2001, Beyer

et al., 1999).

Chapter 2. Extreme Single Label Classification 20

The combination of distance metric learning with dimensionality reduction has

shown effective for to reduce the inference complexity of Nearest Neighbor clas-

sifiers while improving classification performances. On the other hand, Nearest

Centroid classifiers allow complexity reduction up to linear dependance with in

the number of labels rather than linear dependance in the number of examples as

is the case for NN classifiers. Embedding methods are designed to take the best of

both worlds. They project the data and the labels into a joint low dimensional

space of size de (de << d and de << n) where a distance can be computed between

the prototypes and the examples. The final complexity is O(de(d+n)) and can be

reduced to O(de(d+ log n)) by using kd-trees even though one has to trade some

performance to have the logarithmic dependence in the number of labels.

The label embedding procedure consist in learning two projection matrices W ∈
Rn×de and V ∈ Rd×de such that each example is close to its corresponding label

prototype in the latent space. If each label y is represented in the original label

space by a one-hot coded vector of size n composed of zeros at all positions except

at yth position: φ(y) = (0, . . . , 1, . . . , 0), the latent representation of the label y

is given by V φ(y). Similarly, the latent representation of each example x is given

by z = Wx. Classification is then achieved by assigning each transformed test

example to the label corresponding to its closest prototype:

fembed(x) = argmax
1,...,n

S(Wx, V φ(yi)) (2.9)

where S(·, ·) is some similarity measure generally chosen to be the negative eu-

clidean distance or the inner product. The two matrices can be learned either in-

dependently (in which case the corresponding problem can formulated as sequence

of convex problems) or jointly (where the corresponding optimization problem is

non-convex). The label embedding matrix V can also be constructed using prior

information such as the similarity between labels. In (Bengio et al., 2010) such

similarity information is obtained via the confusion matrix of a previously trained

one-versus-rest classifier while in (Weinberger and Chapelle, 2008) the similarity

matrix is calculated using the distance between the labels in a given hierarchy. We

detail next the two possibilities for learning the embedding matrices.

Chapter 2. Extreme Single Label Classification 21

2.2.2.1 Sequence of Convex Problems

Solving a sequence of convex problems is the first proposed approach to learning

label embeddings (Weinberger and Chapelle, 2008). It is a two step procedure

in which prior information is supposed available. To learn the V matrix given

a similarity matrix A in which Aij represents the similarity between the labels

yi and yj, a spectral embedding problem is solved in other to project similar

labels in neighboring regions of the new low dimensional space. This problem

corresponds to minimizing the following objective:
∑n

i,j=1 Aij||Vi − Vj||2 subject

to the constraints V TDV = I where Dii =
∑

j Aij. This is the same problem

solved by the laplacian eigenmaps (Belkin and Niyogi, 2003). Other equivalent

formulations such as spectral embedding or locally linear embedding can be used

as explained in (Bengio et al., 2004).

Given the matrix V , the second step is to learn the matrix W to project the

examples in the same space as the labels. To that end, the following large margin

problem is posed:

minimize: γ||W ||FRO +
1

m

m∑
i=1

ξi (2.10)

s.t. ||Wxi − V φ(i)||2 ≤ ||Wxi − V φ(j)||2 − 1 + ξi (∀j �= i) (2.11)

ξi ≥ 0, i = 1, . . . ,m. (2.12)

This problem convex since the constraints 2.21 are linear. At inference, the neg-

ative euclidean distance S(z, z′) = −||z − z′|| is used as similarity measure in

equation 2.9. This rather simple approach yields better performances than the

classical NC and NN classifiers.

2.2.2.2 Joint Non Convex Embeding

The second way of learning learning label embeddings is to jointly seek for the

matrices is V and W without using any prior information. Even though such

procedure poses an ”egg and chicken” problem as pointed out by (Weinberger and

Chapter 2. Extreme Single Label Classification 22

Chapelle, 2008), there is a simple joint optimization problem proposed in (Bengio

et al., 2010)

minimize: γ||W ||FRO +
1

m

m∑
i=1

ξi (2.13)

s.t. (Wxi)
TV φ(i) ≥ (Wxi)

TV φ(j) + 1− ξi (∀j �= i) (2.14)

||Vi|| ≤ 1, i = 1, . . . , n (2.15)

ξi ≥ 0, i = 1, . . . ,m. (2.16)

Here, no prior information is used and the problem is non-convex because of the

constraints 2.14. However, learning can be efficiently achieved by using stochastic

gradient descent with randomly initialized weights. Also, a different similarity

measure can be used at inference S(z, z′) = zT z′. Despite the apparent difficulty

of this problem, its solution has yielded better performances than the previous

convex one in real world extreme classification problems (Bengio et al., 2010)

presumably because the class of functions explored is larger and the stochastic

gradient descent algorithm used is effective.

2.2.2.3 Discussion

Label embedding is an appealing framework for accurate extreme classification. It

is both flexible, simple and allows the incorporation of prior knowledge as has been

demonstrated in (Weinberger and Chapelle, 2008). It can also be used as a building

block for designing more complex systems such as label embedding trees (Bengio

et al., 2010). Moreover, its use goes beyond classification as it has successfully

been applied to ranking problems throughout the WSABIE system (Weston et al.,

2011).

Chapter 2. Extreme Single Label Classification 23

2.2.3 Conclusion

Flat approaches to single label extreme classification achieve training/inference

complexity reduction by changing the representation of the labels. While embed-

ding methods project the labels and data in a joint low dimensional continuous

space where fast nearest neighbor operations can be computed, machine learning

reductions (mainly ECOC) though similar in spirit, use instead binary representa-

tion of the labels that allow independent training of the base classifiers and the use

of existing off-the-shelf solvers to tackle induced problems. In both cases, the final

inference complexity is O(de(d+L)) where de is the size of the new representation

of the labels, d is the dimensionality of the data and L is the number of labels.

Both approaches has achieved good performances in extreme single label classifi-

cation benchmarks. However, the gold standard among flat techniques to which

new extreme single label classification methods should be compared remains the

one-versus-all (OVA) approach because of its competitive performances despite its

simplicity.

2.3 Hierarchical Approaches

Given a test data x ∈ X = Rn, efficiently predicting its relevant class y ∈ Y
among many is an instance of a search problem. As such, it can be tackled by a

divide and conquer strategy. Hierarchical classifiers (Liu et al., 2005b, Silla and

Freitas, 2011) are an important instance of this widely used method in the context

of classification in presence of a large number of categories. The popularity of

these methods is due to both accuracy and efficiency reasons. Indeed, most of the

real world extreme classification problems come with an accompanying taxonomy

that carries semantic relationship between the classes. For example, DMOZ 6 is

a comprehensive directory of the web with a strong hierarchical backbone orga-

nization. Similarly, the MESH 7 directory is organized as a hierarchy of medical

topics used for indexing PubMed. Hence, exploiting the hierarchical information

can lead to important performance improvements in classification (Bennett and

6http://www.dmoz.org/
7http://www.ncbi.nlm.nih.gov/mesh

Chapter 2. Extreme Single Label Classification 24

Nguyen, 2009, Koller and Sahami, 1997, Weigend et al., 1999). Moreover, most

of the flat approaches are computationally prohibitive for real world applications:

”flat SVMs cannot be used in very large-scale real-world applications, due to their

high computational complexity (an average response time, with 10 powerful ma-

chines running in parallel, of 0.69s for one single document is not acceptable for

large-scale online classification)” (Liu et al., 2005b). This is in contrast with hi-

erarchical approaches which potentially allow logarithmic time prediction when

hierarchical structures such as balanced trees are used for example (Beygelzimer

et al., 2009b, Deng et al., 2011). This last feature is very desirable in extreme clas-

sification and justifies the increasingly large body of work devoted to hierarchical

structure learning for extreme classification (Bengio et al., 2010, Deng et al., 2011,

Griffin and Perona, 2008, Marszalek and Schmid, 2008).

A generic hierarchical classifier (also called label tree) is a function h : X → Y
where the classes Y are arranged in a rooted hierarchy T ∈ T associated with a

set of classifiers F chosen from a particular class of functions F . It can hence be

denoted as a tuple (T, F) ∈ T ×F . The set of allowed structures for the hierarchy

(defined by a set of nodes N and edges E) generally corresponds to trees, in which

a node has a single parent, or directed acyclic graphs (DAGs) where many parents

are allowed for a single node. For each node v ∈ N of the hierarchy, the following

notions are of importance:

• The set of its parents : A(v)

• The set of its siblings : S(i)

• The set of its children : C(v) = {u ∈ N,A(u) = v}

• The set of its ith level ancestors : A(i)(v) with A(0)(v) = v and A(i)(v) =

A(A(i−1)(v))

• The set of nodes on the path from the root to node v: P(v) =
{
u ∈ Y : ∃i, u = A(i)(v)

}

• The set of leaves of the sub-hierarchy rooted at v: L(Tv)

In extreme single label classification, the set of allowed classes at a given node v

of the hierarchy is often reduced to the leaves of the sub-hierarchy rooted at the

Chapter 2. Extreme Single Label Classification 25

node v, L(Tv). This setup is called mandatory leaf node classification (Silla and

Freitas, 2011) and reduces the class of functions to h : X → L(T). In this case,

each node v is associated with a local classifier fv trained to discriminate between

the classes corresponding to the leaves of the sub-hierarchy rooted at the current

node lv = L(Tv) and some other classes. We consider linear (or kernel) classifiers

of the form fi(x) = wT
i φ(x) and refer to the set of classifiers associated with the

nodes of the hierarchy as F = {fv}v∈N . Learning a hierarchical classifier then

equals to finding the optimal tuple h∗ = (T ∗, F ∗) ∈ T × F minimizing a specific

loss function.

Various types of loss functions have been used to learn and evaluate hierarchical

classifiers (Kosmopoulos et al., 2013, Sun and Lim, 2001). When the hierarchy

represents semantic relationships between the classes (as for ontologies), evalua-

tion measures such as the hierarchy induced loss are relevant. For any pair of

classes u, v ∈ Y , the hierarchy induced loss γ(u, v) counts the number of edges

along the shortest path from u to v in the hierarchy T . Hence, it quantitatively

answers the question ”how semantically related are the predicted class and the ac-

tual class ?” for a given test instance. However, when the hierarchy is learned

from the data for efficiency reasons, the relationship between its nodes can be

semantically meaningless. In this case, the evaluation measure of choice remains

the classical 0/1 loss which counts an error every time a wrong class is predicted.

Directly learning a hierarchical classifier optimizing either of these two losses can

be a difficult task (Bengio et al., 2010). In practice, easier to optimize proxies are

generally used to learn the classifiers which are also evaluated using other per-

formance measures such as hierarchical versions of the F-measure to gain more

insights in the behavior of the methods .

Given a learned hierarchical classifier h, prediction is achieved by applying Algo-

rithm 1. The process is a depth first search (DFS) based on the scores of the local

classifiers. It starts at the root node and selects at each round among the current

node’s children the one whose associated classifier has the largest score. The same

process is repeated until a leaf node is reached. The class corresponding to that

final leaf node is then predicted.

1em

Chapter 2. Extreme Single Label Classification 26

0

13

9

1 2

10

3 4

14

11

5 6

12

7 8

Figure 2.3: Example of hierarchical classifier h. The structure of the hierarchy
T is a tree. Each node (besides the root node) is associated with a local classifier
fi. The set of classifiers is {fi}14i=1 and the allowed classes are the leaves (in red)
Y = L(T) = {c1, . . . , c8}. Also, P(7) = {0, 9, 13} and children of node 9 are

C(9) = {1, 2}.

Algorithm 1: Hierarchical Prediction Algorithm

Input: test example x, h = (T, F)
Let s = 0 (root node)
repeat

Let s = argmaxv∈C(s)fv(x)

until |C(s)| = 0;
return ls

Learning accurate hierarchical classifiers poses a number of challenges relative to

the structure of the hierarchy T itself on one hand and to the local classifiers

associated to it, F , on the other (Bennett and Nguyen, 2009, Silla and Freitas,

2011, Yang et al., 2003). First, the data does not usually come with a hierarchical

structure of the classes and when a hierarchy is available, its shape usually makes

it computationally inefficient or the internal organization of the classes makes its

discriminative capabilities unsatisfactory. In either case, a new hierarchy is to

be learned from the data (Bengio et al., 2010, Beygelzimer et al., 2009a, Deng

et al., 2011, Gao and Koller, 2011a, Griffin and Perona, 2008, Marszalek and

Schmid, 2007). Second, to improve the discriminative capabilities of the models

associated to the internal nodes of the hierarchy, it is necessary to cope with the

error propagation problem which occurs when the actual distribution of examples a

classifier is predicting over changes from that used during training due to errors at

Chapter 2. Extreme Single Label Classification 27

higher levels of the hierarchy (Bennett and Nguyen, 2009, Gao and Koller, 2011a).

It is also equally important to deal with the requirement for complex decision

surfaces at the higher nodes of the hierarchy. In fact, the induced classification

problems solved at the higher levels of the hierarchy involve very generic sometimes

meaningless concepts. Solving these problems calls for powerful learning machines

and enriched representation of the data (Bengio et al., 2010, Bennett and Nguyen,

2009). A last concern to which many researchers attribute the poor performances

of hierarchical classifiers is the sparsity of labeled data mainly at the lower levels

of the hierarchy where many classes are not statistically enough represented to

allow learning accurate classifiers with classical methods (Bennett and Nguyen,

2009, Gopal et al., 2012, Japkowicz and Stephen, 2002, Liu et al., 2005b). For

example, 72% of the classes in the Open Directory Project has less than 4 positive

instances 8. Such severe data scarcity causes overfitting problems that lead to poor

local classifiers.

In the sequel, we describe the main methods proposed in the literature to tackle

the above mentioned problems. These methods can be divided into three main

categories. The first group proposes algorithms to learn discriminative hierarchies

from the data regardless of the classifiers to be associated with the internal nodes.

The second line of work is interested in learning accurate classifiers associated with

the internal nodes of a given hierarchy. The last and more recent family of methods

jointly learns the structure of the hierarchy and the local classifiers. The general

idea behind all these methods however boils down to the same goal of learning

efficient models while maintaining competitive performances in comparison to flat

methods.

2.3.1 Hierarchical Structure Learning

Most of the traditional approaches to classification such as flat single machine

SVMs (Weston and Watkins, 1998), one-versus-one and one-versus-rest reduc-

tions (Rifkin and Klautau, 2004a) to name a few, have linear or quadratic infer-

ence complexity in the number of classes. They therefore do not scale well to

8http://www.dmoz.org/

Chapter 2. Extreme Single Label Classification 28

extreme classification. For the sake of inference efficiency, several authors have

early proposed to learn discriminative class hierarchies (Chen et al., 2004, Liu

et al., 2005a,c, Vural and Dy, 2004, Zhang et al., 2010). While the validity of this

idea has become an opinio communis in the machine learning community (Bengio

et al., 2010, Griffin and Perona, 2008, Marszalek and Schmid, 2008), the methods

proposed to tackle the challenge of learning discriminative classifiers can be very

different. For example, (Marszalek and Schmid, 2007) learn a class hierarchy by

exploiting the semantics of the classes and some additional knowledge about inter-

class relationships such as Wordnet9. In another line of work (Griffin and Perona,

2008) have introduced an approach relying on a recursive top-down partitioning

of the set of classes to build hierarchies while (Liu et al., 2005c) use a bottom-

up agglomerative clustering. Similarly, (Liu et al., 2005a) use a method based

on K-means clustering conversely to (Zhang et al., 2010) who randomly sample

the structure of the class hierarchy by cross-validation. However, The superiority

of top-down approaches over bottom-up methods as well as that of learned hier-

archies over randomly created ones have been empirically demonstrated (Bengio

et al., 2010, Griffin and Perona, 2008). Therefore, we believe the most discrim-

inative feature between the best performing methods , as far as generalization

performance and inference speed are concerned, is the type of the learned class hi-

erarchy. The main competitors here are tree structured class hierarchies, in which

there is a single path from the root node to a given class node, and the directed

acyclic graph (DAG) which allows many paths from a root to a class node. Be-

cause, the best performing methods (irrespective of the type of hierarchy) use

spectral clustering (Luxburg, 2007, Ng et al., 2001) to partition the classes, we

first describe its formalism before discussing its use to build discriminative tree

and DAG structured class hierarchies.

2.3.1.1 Spectral Clustering

Clustering algorithms such as K-means distribute given items into different groups

such that items that are similar to each other are in the same group. The similarity

between the items is defined in terms of some distance measure. For K-means, the

9http://wordnet.princeton.edu/

Chapter 2. Extreme Single Label Classification 29

{1,2,3,4,5}

3

{3}
2

{2}
4

{4}
1

{1}
5

{5}

3,4 {3,4}1,2,3{1,2,3} 4,5 {4,5}

Figure 2.4: Directed Acyclic Graph

{1,2,3,4,5}

3

{3}
4

{4}
5

{5}
2

{2}
1

{1}

4,5 {4,5}1,2,3{1,2,3}

Figure 2.5: K-way Tree

{1,2,3,4,5}

{2} {4} {5}{1}

3

{3}

4,5 {4,5}1,2{1,2}

Figure 2.6: Binary Tree

overall process reduces to optimizing the within cluster sum of square distances

even though other distortion functions can be used. Despite its popularity, some

problems have been shown to be notably difficult for K-means (Luxburg, 2007, Ng

et al., 2001). Spectral clustering algorithms are powerful alternatives to K-means.

The first step of spectral clustering consist in representing the set of items to

cluster as a graph in which the vertices N are the items and the edges E represents

the similarity between them. We denote the similarity matrix W . Various types

Chapter 2. Extreme Single Label Classification 30

of similarity measures can be used and result in different types of graph. For

example, when only the k nearest neighbors (according to some distance measure)

of a given item are considered similar, all the nodes of the graph are of degree k

and the edges are not weighted (wij = 1, ∀(i, j) ∈ E). Conversely, dense graphs

are obtained when for every two items (u, v) ∈ E ×E, the gaussian kernel is used

as a similarity measure: wij = exp(||u− v||2/2σ2).

The second step is to find a non-trivial partitioning of the items such that the sum

of the weights of edges linking vertices belonging to different clusters is minimized

(in the basic form of the algorithm). For two clusters A and B, this quantity is

called the cut : cut(A,B) =
∑

i∈A,j∈B wij. (Ng et al., 2001) propose to minimize

instead the normalized cut which leads to more balanced clusters. The correspond-

ing objective function is:

JN =
cut(A,B)

V ol(A)
+

cut(A,B)

V ol(B)
(2.17)

where V ol(A) =
∑

i∈A,j∈N wij and is the volume of the cluster A. It can be proven

that the above problem can equivalently be written as a generalized eigenvalue

problem: (D − W)y = λDy where D is the diagonal matrix with dii =
∑

j wij

and y is the indicator vector of vertices belonging to clusters A (y = 1) and B

(y = −1). This problem is known to be NP-hard. However, when relaxing from

binary to continuous values, the solution is obtained by the second eigenvector of

the normalized laplacian L = D−1/2(D −W)D−1/2.

The last step of the process is to infer a clustering from the solution of the previous

eigenvalue problem. If the second eigenvector p∗ is considered, a clustering is

obtained by a simple thresholding rule: A = {i : p∗i > 0} and B = {i : p∗i < 0}.
However, if the top-l eigenvectors are considered (l ≥ 2) as recommended by (Ng

et al., 2001), a clustering is obtained by using a K-means algorithm on the spectral

representation of the items (in this case, if we have s items, p∗ is a (s× k) matrix

whose rows are the new representations of the items).

Chapter 2. Extreme Single Label Classification 31

2.3.1.2 Learning Class Hierarchies

Among the recently proposed class hierarchy building algorithms, the most suc-

cessful ones are based on a recursive partitioning of the set of classes using spec-

tral clustering (Bengio et al., 2010, Chen et al., 2004, Griffin and Perona, 2008,

Marszalek and Schmid, 2008). However, while the power of spectral clustering

partly justifies this success, the structure of the learned hierarchy has shown to be

equally as important.

Tree structured class hierarchies When using spectral clustering to build

discriminative tree structured class hierarchies, the items (the nodes of the graph)

correspond to the classes. Since the goal is to partition the classes into easily

separable clusters, the affinity matrix used is the symmetrized confusion matrix

between the classes (Godbole et al., 2002). The underlying idea is that two class

are similar if one’s test instances are often classified as belonging to the other

class. The confusion matrix can be obtained from a previously trained surrogate

classifier such as One-vs-Rest. A common practice is to average different confu-

sion matrices using k-fold cross validation to guarantee more stability. Given a

fixed depth and branching factor for the hierarchy, (Bengio et al., 2010) recur-

sively solve graph cut problems (with a previously built affinity matrix) until the

desired shape is obtained. A slightly different variant is proposed by (Griffin and

Perona, 2008) who, instead of fixing the branching factor, use self-tuning spectral

clustering (Zelnik-manor and Perona, 2004) to automatically find the number of

clusters at each step.

DAG structured class hierarchies Conversely to trees, the nodes in the di-

rected acyclic graph based approaches correspond to the instances of the classes

rather than the classes themselves (Marszalek and Schmid, 2008). The affinity ma-

trix is computed using some adequate similarity measure between the instances

depending on the problem of interest. As with trees, the hierarchy is built recur-

sively. At each step, the examples S = {(xi, yi)}1≤i≤m are then partitioned into

two clusters R and L. Further, whenever a class c has one of its instances belonging

to a cluster (cluster R for example), it is considered as belonging to that cluster’s

Chapter 2. Extreme Single Label Classification 32

set of classes. We denote the set of classes belonging to clusters R (respectively

L) as R (respectively L) and define them formally as R = {y : ∃(x, y) ∈ R}
(respectively L = {y : ∃(x, y) ∈ L}). This way of grouping the classes necessarily

results in overlapping clusters of classes (R∩ L �= ∅) since it is very unlikely that

every class has all its instances belonging to a single cluster. In practice, (Marsza-

lek and Schmid, 2008) propose to relax the the partitioning rule in order to have

shallower hierarchies. This is done by allowing a class to exclusively belong to a

cluster even when a small number of its instances are in another cluster and to

belong to two clusters only if many of its instances are both clusters. Moreover,

since the instances are used rather than the classes, the resulting graph is much

larger and the complexity of finding the solution of the eigenvalue problem via

the eigenvectors of the normalized laplacian is cubic in the number of instances

involved O(m3). Nonetheless, if only the second eigenvector of the laplacian is

used, optimized algorithms can be used to reduce the overall complexity.

2.3.1.3 Discussion

Empirically, DAGs structured class hierarchies have proven to be more accurate

than tree structured ones (Marszalek and Schmid, 2008). The main reason for this

is the existence of several paths from the root node to a given leaf node in the

hierarchy. Choosing DAG structured class hierarchy is a natural way of fighting the

early confusion problem. Indeed, binary problems induced by the partitions at the

higher levels of the hierarchy are easier with DAGs since they only involve classes

that are likely to be separable because the most confusing classes are allowed to

belong to either of the two clusters. This illustrates the fact that even a simple

design choice (type of hierarchy used) can be an important part in solving one of

the fundamental problems of hierarchical classification (error propagation problem

for instance). However, choosing DAGs instead of trees is always done at the

cost of some computational efficiency: balanced trees guarantee logarithmic time

prediction conversely to DAGs. The choice of the best hierarchical structure for

a specific problem is therefore equivalent to finding an optimal tradeoff between

accuracy and efficiency.

Chapter 2. Extreme Single Label Classification 33

2.3.2 Discriminative Models Learning

2.3.2.1 Independent Optimization of Models: Pachinko Machines

Early work in hierarchical classification has focused on learning recursive classifiers

trained independently at each node of a given hierarchy. The so called pachinko

machines (Liu et al., 2005b, Yang et al., 2003) are very simple since the hierarchy is

only used to partition the training data for learning local classifiers. At each node

v, the the positive data consist of the training data labelled as belonging to the set

of leaf nodes L(Tv) and the negative data is all the the data belonging to the current

node’s parents that do not belong to the current node. The overall training set at

node v writes Sv = {(xi, yi) : yi ∈ lA(v)}. Slight variations of this idea have been

proposed. For example, (Koller and Sahami, 1997) use a small subset of relevant

features at each node based on the observation that set of most discriminative

features varies across the nodes of the hierarchy while (Dumais and Chen, 2000)

propose to use different slack variables at different levels of the hierarchy (assuming

large margin classifiers are used). However, modest performance improvements

have been reported as resulting from the application of these methods.

Recently, (Bengio et al., 2010) showed that the optimization problem solved by

the pachinko machines is a poor approximation of the 0/1 loss if a tree structured

hierarchy is used. Indeed, observing that any misclassification in the hierarchy

leads to a final wrong prediction and denoting bj(x) the index of the best node in

the hierarchy at depth h, we have:

Remp(h) =
1

m

m∑
i=1

max
j∈B(x)

I(yi �∈ lj) ≤ Gh =
1

m

m∑
i=1

n∑
j=1

I(sgn(fj(xi)) = Cj(yi))

where B(x) = {b1(x), . . . , bD(x)(x)} and D(x) is the depth in the tree of the final

prediction for x. Here, because the max is approximated by a sum in Gh, this

surrogate can be much larger than the actual loss of interest (0/1 loss) since it adds

all the wrong predictions in the tree. By further replacing the indicator function

in Gh with hinge loss, they end up with the following optimization problem:

Chapter 2. Extreme Single Label Classification 34

n∑
j=1

(
γ||wj||2 +

1

m

m∑
i=1

ξij

)
s.t. ∀i, j,

{
Cj(yi)fj(xi) ≥ 1− ξij

ξij ≥ 0
(2.18)

where Cj(y) = 1 if y ∈ lj and −1 otherwise. The final optimization problem is

fully decomposable since the parameters of the local classifiers do not interact in

the objective function. Therefore, the local classifiers can be trained in parallel.

This is a very desirable property in a large scale setting and has been the main

reason for the success of these models at the early stages of hierarchical classifica-

tion. However, with the many recently introduced large scale optimization tools

and frameworks, exploiting the hierarchical information by jointly training the

local classifiers has become feasible and yields superior performances to pachinko

machines as reported in (Bengio et al., 2010, Gopal and Yang, 2013) for example.

2.3.2.2 Joint Optimization of Models

Conversely to the pachinko machines, many authors have recently proposed to

consider the hierarchical classifier as a whole and jointly learn all its parameters.

Learning the local classifiers jointly would make individual errors impact the up-

dates of all the parameters. The interaction through the updates is expected to

avoid the error propagation problem and also to improve classification performance

on small classes thanks to the transferred information during the learning process.

Indeed, the process can be understood as learning multiple tasks jointly which has

been proven to be a promising solution to the data scarcity problem (Argyriou

et al., 2008, Caruana, 1997, Widmer et al., 2010). Moreover, jointly learning the

parameters of a hierarchical classifier allows to optimize tighter upper bounds of

the actual losses of interest (0/1 loss or hierarchical loss) than the general graphical

loss Gh optimized by most of the pachinko machines. When learning an arbitrary

hierarchical classifier, the set of parameters w = (wi)i≤n of the model is the solu-

tion of the generic problem:

argmin
w

R(w) +C× Lemp(w) (2.19)

Chapter 2. Extreme Single Label Classification 35

where Lemp is the empirical loss on the training dataset, R(w) is the regularization

term and C is a constant hyper-parameter controlling the trade-off between the two

terms. For the pachinko machine, both the regularization term and the empirical

loss are fully decomposable and no interaction exists between the parameters of

the local classifiers. However, dependence between the local classifiers can be

enforced through the regularization term or through the empirical loss term in

equation 2.19. We present in this section approaches modeling the dependence

via the empirical loss term and defer the regularization based methods to the next

section.

The first jointly learned hierarchical classifier has arguably been introduced by (Cai

and Hofmann, 2004) as a generalization of the classical multiclass support vector

machine formulation to hierarchical tasks. In their framework, the M-SVM prob-

lem is reformulated as:

minimize: γ

n∑
j=1

||wj||2 +
1

m

m∑
i=1

ξi (2.20)

s.t. F (xi, yi;wyi)− F (xi, yj;wyj) ≥ 1− ξi (∀j �= i) (2.21)

ξi ≥ 0, i = 1, . . . ,m. (2.22)

where F (x, yi;wi) is the linear discriminant function corresponding to the class y

usually reduced simple dot product 〈wi, x〉. The authors first observe that if the

classes are characterized by attribute vectors rather than just arbitrary numbers,

the linear discriminant functions can more generally be expressed as:

F (x, y;w) = 〈w,Φ(x, y)〉 =
n∑

r=1

λr(y)〈wr, x〉 (2.23)

Here, Φ(x, y) = Λ(y) ⊗ x and ⊗ is the tensor dot product. If λr(y) = δyr, each

class is interpreted as a binary attribute (one hot coding scheme) and the classical

formulation is recovered. It is possible to use instead class attributes reflecting the

hierarchical nature of the problem. In (Cai and Hofmann, 2004), for each node v

Chapter 2. Extreme Single Label Classification 36

0

6

1 2

5

3 4

Λ(2) =

0
1
0
0
0
1

,Φ(x, 2) =

0
x
0
0
0
x

Figure 2.7: Illustrating the use of class attributes reflecting the hierarchical
structure. Class attribute vectors have the same dimension as the number of
nodes in the hierarchy except root node. For the class 2, the components corre-
sponding the nodes 6 and 2 are set to one since they are on the path from the
root to node 2. The class attribute vectors for 2 and 1 have hamming distance

of one from because they are siblings.

of a DAG structured hierarchy authors proposed to use class attributes composed

of ones for every component whose corresponding node is in a path from the root

to node v and zeros everywhere else. This can be summarized as follows:

λr(y) =

{
1 if r ∈ P(y)

0 otherwise
Φ(x, y) = Λ(y)⊗ x =

λ1(y) · x
λ2(y) · x
· · ·

λn(y) · x

As depicted in figure 2.7, the use of class attributes helps capturing the semantics

of the hierarchy. The siblings 1 and 2 for example will have closer attribute vectors

than 1 and 3 which are far away from each other in the hierarchy. This clearly has

an impact in the constraints because they are less likely to be violated when the

classes being compared have close attribute vectors. The resulting discriminant

functions are structure aware and decompose into contributions from different

levels of the hierarchy. The same idea has first been coined in (Dumais and Chen,

2000) even though the parameters of the hierarchical classifier proposed in that

earlier work are not jointly learned

Another benefit of this way of formulating the hierarchical classification problem

is that it can be straightforwardly turned into a hierarchical loss optimization

Chapter 2. Extreme Single Label Classification 37

problem. To understand this, it just suffices to penalize the margin violations

involving an incorrect class with high loss more severely. This can be done by

scaling the margin violation penalties proportionally to the hierarchical loss. In

the optimization problem above, it is equivalent to replacing the slack variables in

the margin violation constraints ξi by
ξi

γ(i,j)
. The final problem is a good proxy of

the actual hierarchical loss as stated by the following proposition.

Proposition 2.1. (Cai and Hofmann, 2004) Denote by (ŵ, ξ̂) a feasible solution

of the quadratic program in equation then 1
m

∑m
i=1 ξ̂i is an upper bound on the

empirical loss γ̂ ≡ 1
m

∑m
i=1 γ(yi, h(xi)).

In the realm of extreme classification, very large taxonomies with hundreds of

thousands of nodes are ubiquitous. The class attributes vectors are both very

high dimensional and extremely sparse and the number of active constraints is

potentially very large. which can be a serious computational bottleneck for solving

the above quadratic programs. This is the main criticism faced by the hierarchical

classifier proposed (Cai and Hofmann, 2004) despite the efficient variable-selection

strategy based algorithm for solving this problem and the significant performance

improvements reported over flat classifiers and pachinko machines. Moreover,

in case of mandatory leaf node classification problem, as far as the 0/1 loss is

concerned, satisfying all the constraints (2.21) is not a requirement. Indeed, at

inference, we would just count one mistake every time the path followed by the

prediction algorithm 1 does not lead to the relevant leaf node. The following

remark by (Cesa-Bianchi et al., 2006) explains this intuition: ”If an algorithm fails

to label a document with the class SPORTS, then it should not be charged more

loss because it also failed to label the same document with the subclass SOCCER10

and the subclass CHAMPIONS LEAGUE”. For a given hierarchy, a data point

to predict {x, y} and a predicted class ŷ, this can be written as the following loss

function :

lH(y, ŷ) = max({|{i �∈ P(y)}|∀i ∈ P(ŷ)}) (2.24)

10the name of this game is actually FOOTBALL even though some dumb ass persist in calling
it soccer

Chapter 2. Extreme Single Label Classification 38

When learning the Pachinko machines, the optimized proxy was the loss which

counts the errors at all the nodes of the hierarchy (denoted lG). The previously

described hierarchical SVM (Cai and Hofmann, 2004) optimizes a surrogate of the

hierarchy induced loss l∆ although it can be used for the 0/1 loss. Compared to

these losses, The hierarchical loss lh 2.24 is a tighter surrogate since it can be easily

shown that l0/1 ≤ lH ≤ l∆ ≤ lG. Therefore, using path-wise constraints would be

more suitable for optimizing the 0/1 loss than the graph-wise contraints 2.21 used

so far. Following this idea, (Bengio et al., 2010) proposed to solve this problem:

minimize γ
n∑

j=1

||wj||2 +
1

m

m∑
i=1

ξαi (2.25)

s.t. fr(xi) ≥ fs(xi)− ξi, ∀r, s : (yi ∈ lr ∧ yi �∈ ls), r ∈ S(s) (2.26)

ξi ≥ 0, i = 1, . . . ,m. (2.27)

The constraints 2.26 in this problem express that at each level of the hierarchy,

we examine all the siblings of the relevant node (the one at this level which is on

the path from the root to the relevant label) and count an error if any of these

has a higher score. Therefore, the number of counted error is an upper bound

of the the final 0/1 loss since it is 0 when the correct label is predicted but can

be as large as the length of the path from the root to the relevant node in the

worst case multiplied by the branching factor of the tree. Also, because path-wise

constraints are used (with only one slack variable per example), there is at most

one active constraint. This results in an important computational complexity

advantage compared to the approach by (Cai and Hofmann, 2004) where the

number of active constraints is potentially as large as the number of nodes the

hierarchy. Moreover, This method also gives competitive performances compared

to flat approaches and is superior to pachinko machines.

Although the method by (Bengio et al., 2010) is both accurate and computation-

ally appealing, it is (in its original form) limited to tree structured hierarchies.

For directed acyclic graphs, (Cesa-Bianchi et al., 2006) propose a theoretically

grounded algorithm that incrementally learns a linear threshold classifier at each

Chapter 2. Extreme Single Label Classification 39

node of the hierarchy. More importantly, their approach is not restricted to the

mandatory leaf node classification setup and allows partial-path labeling. Overall,

enforcing hierarchical dependences between local classifiers through the empirical

loss function has been shown to be an effective way of improving classification

performances compared to pachinko machines (Bengio et al., 2010, Cai and Hof-

mann, 2004, Cesa-Bianchi et al., 2006) presumably because it fights both error

propagation problem and the labelled data scarcity problem through the inter-

action between local classifiers during learning. However, as previously seen, the

right method to chose among the many proposed in the literature depends on the

final evaluation measure of the hierarchical classifier and the computational bud-

get. For the hierarchy induced loss, the algorithm by (Cai and Hofmann, 2004)

is a good candidate while the label tree (Bengio et al., 2010) should be preferred

to it when the evaluation measure of interest is the 0/1 loss (mainly for compu-

tational reasons). Moreover, it is important pointing out that the loss function

used depends on whether the hierarchies carries semantic information, as it is for

ontologies, or it is just built for efficiency reasons.

2.3.2.3 Regularization Based Approaches

Modeling local classifiers’ dependence through constraints has successfully been

achieved by the methods described in the previous section. However, another way

of modeling these dependences is through regularization. This is an active area

of research which has generated lots of new solutions that can be divided in two

subgroups at the light of the type of dependence being modelled:

1. The first line of work originates from the multi-task and transfer learning

community (Argyriou et al., 2008, Caruana, 1997, Evgeniou and Pontil,

2004). It aims at enforcing similarity between the classifiers of adjacent

nodes of the hierarchy to avoid error propagation and overfitting (Dekel

et al., 2004, Gopal and Yang, 2013, Gopal et al., 2012).

2. The second line of work introduces regularization terms inducing dissimi-

larity between each internal node’s local classifier and its children’s local

Chapter 2. Extreme Single Label Classification 40

classifiers (Hwang et al., 2011, Xiao et al., 2011). This enhances discrimina-

tive features detection to improve classification of closely related classes.

Next, we elaborate on the similarity based recursive classification regularization

and the orthogonal transfer regularization which are respectively representative of

the above two subgroups. We give more details on the underlying ideas of these

approaches and discuss their specificities.

Similarity based dependence modeling: Enforcing local classifiers of neigh-

boring nodes of a given hierarchy to be similar is an intuitive idea first applied

through careful design of class attributes reflecting the hierarchical structure (Cai

and Hofmann, 2004). Recently, some studies have introduced new approaches

based on the regularization (Dekel et al., 2004, Gopal and Yang, 2013, Gopal

et al., 2012). The main argument of the proponents of these approaches is to help

classes leverage information from nearby classes while estimating local classifiers’

parameters. For small classes, this transferred information prevents over-fitting

problems that may be faced otherwise. In this line of work, (Dekel et al., 2004)

first proposed a principled approach tailored for hierarchy induced loss optimiza-

tion. They also proposed an efficient online dual based algorithm to solve the

problem and confirm the effectivity of their approach with experiments on large

scale real world datasets. (Gopal et al., 2012) introduced a hierarchical bayesian

method modeling dependencies among nodes using multivariate logistic regression.

They model parent-child relationships by placing a hierarchical prior over the chil-

dren nodes centered around the parameters of their parents; thereby encouraging

classes nearby in the hierarchy to share similar local classifiers. The main bot-

tleneck of their approach is the inference tractability issues generally arising in

bayesian methods despite the proposed parallel variational inference algorithm.

More recently, (Gopal and Yang, 2013) proposed a recursive regularization frame-

work that can be applied to model arbitrary graphical dependencies. In the context

of hierarchical classification, they formulate their approach as follows:

minimize:
1

2

n∑
j=1

||wj − wA(n)||+ γ
∑

j∈L(T)

m∑
i=1

L(yij, xi, wj) (2.28)

Chapter 2. Extreme Single Label Classification 41

L(yij, xj, wi) =

{
[1− yijw

T
j xi]+ support vector machine

log(1 + exp(−yijw
T
j xi)) logistic regression loss

(2.29)

The loss function used depends on local classifiers being logistic regression or

support vector machines (see equation 2.29). The empirical part of the objective

function 2.28 is fully decomposable since it only involves the leaves of the hierarchy

and there is no interaction between them. However, the interactions through the

regularization term obliges to jointly learn the parameters. Moreover, since the

interactions between local classifiers are only through parents and children, the

optimization of 2.28 can be parallelized. Indeed for a given node of the hierarchy,

when the parameters of its children and parents are fixed, the local classifier can

be optimized independently of the rest of the parameters. For large hierarchies

whose parameters may not fit in memory, this is an attractive feature. This,

with the state of the art performances reported by the authors on large scale real

world datasets, makes this method very appealing for solving extreme classification

problems.

Dissimilarity based dependence modeling: While the similarity based reg-

ularization leverages the transferred semantic relatedness information to improve

classification, dissimilarity based approaches rely on exploiting specificities of each

class to improve local classifiers hence ameliorating the overall accuracy of the hier-

archical classifier. An important contribution following this idea is the orthogonal

regularization framework by (Xiao et al., 2011). At the heart of their work is the

observation that the type of relationships conveyed in a hierarchical structure are

generally of the type generalization/specialization. This suggests that classes can

be better distinguished from their ancestors by their particularities. This obser-

vation is in line with a previous remark by (Koller and Sahami, 1997) who point

of that when classifying between documents on sports and computer science, the

word computer is a very discriminative feature while in contrast, the two sub-

classes system and compiler can be more accurately differenciated by the feature

parsing.

Chapter 2. Extreme Single Label Classification 42

To account for this fact, (Xiao et al., 2011) propose to add to the classical hinge

loss a regularization term encouraging the weight vector of each local classifier fi

to be as much different as possible to those of its ancestors {fj : yj ∈ A(yi)}. For
a set of training examples {(xi, yi), . . . , (xm, ym)} and a tree structured hierarchy,

the final hierarchical classification problem can then be formulated as follows:

minimize:
1

2

n∑
i=1

Kii||wi||+
n∑

i=1

∑
j∈P(i)

Kij|wT
i wj|+

C

m

m∑
k=1

ξk (2.30)

s.t. 〈wi, xi〉 − 〈wj, xi〉 ≥ 1− ξi (∀j ∈ S(i), ∀i ∈ P(yk), ∀k = 1, . . . ,m) (2.31)

ξi ≥ 0, i = 1, . . . ,m. (2.32)

where P(yk) is set of nodes on the path from the root of the hierarchy to the

node representing the label yk. The new elements in this optimization problem

(in comparison with the classical multiclass SVM formulation by (Crammer and

Singer, 2002)) are shown in the second term of the objective function and the first

constraints. The terms Kij|wT
i wj| encourage orthogonality among weight vectors

of local classifiers that are on the same path from the root the relevant class by

penalizing the absolute values of their inner products. The terms Kij are non-

negative entries of a symmetric matrix K the authors suggest to choose as in

equation 2.33.

Kij =

|C(i)|+ 1 if i = j

α if i ∈ A(j)

0 else

(2.33)

where C(i) is the set of children of node i and α is a positive parameter that can

be set to 1 to make the problem convex (Xiao et al., 2011). However, although

convex, the problem cannot be directly cast in any known standard conic program

optimization (Boyd and Vandenberghe, 2004). Nonetheless, the authors propose

Chapter 2. Extreme Single Label Classification 43

an efficient regularized dual averaging based method (Nesterov, 2009) for tractably

solving this problem.

2.3.2.4 Sequential Learning of Models

Pachinko machines are computationally appealing because they allow paralleliza-

tion without much effort since the local classifiers are totally independent (Bengio

et al., 2010, Yang et al., 2003). However, not modeling the dependences at all

narrows down the capacity of a hierarchical classifier to reach state of the art per-

formances (Liu et al., 2005b, McCallum et al., 1998). On the other hand, jointly

learned models have achieved record breaking performances in many studies (Ben-

gio et al., 2010, Cai and Hofmann, 2004, Gopal and Yang, 2013). However, training

them efficiently is challenging because of the number of dependences to account

for in an extreme classification context and the difficulty to parallelize the learning

process. An intermediate approach is to leverage the available hierarchical infor-

mation by training local classifiers sequentially. This makes training more feasible

and allows parallelization since all the local classifiers at a given level of the hi-

erarchy are independent. There are three main contributions in this line of work:

Filter trees (Beygelzimer et al., 2009b) and the refinement procedure (Bennett and

Nguyen, 2009) are based on using biased training distributions to learn local clas-

sifiers while refined experts (Bennett and Nguyen, 2009) use expert information

as additional features. We elaborate more on these methods in the sequel.

Filter Trees (Beygelzimer et al., 2009b) introduced a hierarchical classifier

trained in a bottom-up procedure that reduces a given multiclass classification

problem into a set of binary problems sequentially. The structure of the hierarchy

is a binary tree that can either be learned or randomly generated. The main

trick in this algorithm is the bottom up learning process of the local classifiers

at internal nodes of the tree. Starting from the leaf nodes, at each internal node

v, the local classifier is learned with a training data formed conditionally to the

predictions of the local classifiers of the current node’s children. Indeed, Only

relevant examples that have been correctly classified at all the previous rounds of

the subtree rooted at v are involved in the training data used at the node v. In

Chapter 2. Extreme Single Label Classification 44

case of a leaf node, all the relevant data is used. The local training set can then

be summarized as: SFT
v = {(xi, yi) : ∃k ∈ C(v) : yi ∈ SFT

k ∧ fk(xi) > 0}. Hence,

the training distribution at each node is said to be filtered by the local classifiers

of the node’s children. Therefore, the Filter Tree is a way of solving the error

propagation problem by preventing false positives mainly at the upper levels since

the constraint is harder as one goes upper in the hierarchy. Moreover, it comes

with an accompanying regret bound showing that it is a consistent reduction.

Although it has theoretically and empirically been shown to be an effective re-

duction, the Filter Tree has several drawbacks. First, the binary structure of the

hierarchy which guarantees logarithmic time inference may not be discriminative

enough as shown in (Griffin and Perona, 2008). Moreover, the rule governing the

local training set creation can lead to data scarcity problems. Indeed, the set of

examples correctly classified by all the local classifiers from the current node to

the relevant leaf nodes can be very small. Even worse is when the hierarchy is

randomly generated since in this case, the learnability issues at most of the nodes

would result in difficult induced problems at internal nodes implying poor local

classifiers.

Refinement (Bennett and Nguyen, 2009) has proposed an approach, called

refinement, also based on biasing the training distribution of local classifiers con-

ditionally to the neighboring nodes’ local predictions. Like Filter Trees, their

method aims at improving the generalization ability of the hierarchical classifier by

reducing the probability of false positive. However, the two approaches are rather

different in practice. While the the Filter Trees training procedure is bottom-up,

Refinement rests on a top down strategy that employs cross validation to obtain

predictions for the examples of the training data. The predicted labels are then

used to filter the training data. At a node v, all the examples that have been

predicted as belonging to this node by the ancestor’s local classifier are involved

in the local training set: SR
v = {(xi, yi) : fA(v)(xi) > 0}. This training data can

further be decomposed into positive and negative examples. The former are the

examples in SR
v whose actual labels correspond to a leaves of the subtree rooted

at v: SR
v+ = {(xi, yi) ∈ SR

v : yi ∈ lv}. The latter are the complementary of the

Chapter 2. Extreme Single Label Classification 45

positive examples in SR
v , S

R
v− = {(xi, yi) ∈ SR

v : yi �∈ lv}. Using the ancestors’ local

classifiers to build the training sets at every node aligns the training distribution

with what will likely happen at test time. The resulting local classifiers are ex-

pected to better distinguish positive examples to propagate down from negatives

examples that may arrive at the current node (due to errors in the upper levels)

therefore halting their progression.

Due to potential false negative errors at the upper levels of the hierarchy, the

local classifiers are prone to overfitting when the refinement procedure is applied

in its basic form. Indeed, positive data scarcity (Japkowicz and Stephen, 2002)

is an important problem that is here exacerbated by the hierarchical nature of

the problem as in Filter Trees. To overcome this difficulty, (Bennett and Nguyen,

2009) propose a slight modification to the original refinement procedure which

consist in using as training data at each node v, the union of the distribution

created with the ancestor’s predictions and the actual distribution. The resulting

local training set at a node v writes SR+
v = {(xi, yi) : (fA(v)(xi) > 0) ∨ (yi ∈ lv)}.

This new refinement procedure has been empirically shown to be better than both

the refinement approach and the classical Pachinko machines.

Refined Experts Filter Trees and refinement tackle the error propagation

problem by learning local linear classifiers which are robust to false positive er-

rors. However, hierarchical classifiers also suffer from false negative errors occur-

ring (mainly) at the upper level internal nodes. Solving this problem requires

complex non linear decision surfaces. Although the literature on this latter topic

is rich, most of the existing methods (kernel machines, neural networks, etc) are

computationally prohibitive in an extreme classification context. In (Bennett and

Nguyen, 2009) an approach inspired from meta-classification and combination of

classifiers (Bennett et al., 2002) is proposed to create non linear local classifiers.

At a given node n, their method uses predictions (optionally passed through a

calibrated sigmoid) of the children’s local classifiers as additional features to the

representation of examples for training the current nodes local classifier. The lo-

cal training set at node v using bottom-up expert information can be written as

: SE
v = {(zi, yi) : (yi ∈ A(v)); zi = [xi; (fk(xi))k∈C(v)]}. This idea stems from

Chapter 2. Extreme Single Label Classification 46

Table 2.1: Sequential models learning approaches. The key differences be-
tween them is the local training set construction and the order in which the

models are learned. The pachinko machine is given for comparison.

Algorithms Local Distribution Training order
Pachinko SP

v = {(xi, yi) : yi ∈ lA(v)} Independent
Filter Tree SFT

v = {(xi, yi) : ∃k ∈ C(v) : yi ∈ SFT
k ∧ fk(xi) > 0} Bottom up

Refinement SR
v = {(xi, yi) : fA(v)(xi) > 0} Top down

Refinement+ SR+
v = {(xi, yi) : (fA(v)(xi) > 0) ∨ (yi ∈ lv)} Top down

Expert Information SE
v = {(zi, yi) : (yi ∈ A(v)); zi = [xi; (fk(xi))k∈C(v)]} Bottom up

the observation that the union of linear surfaces generally results in a non linear

surface (Klivans and Sherstov, 2006). As in refinement, the predictions on the

training examples are obtained using cross validation. However, the process starts

here from the leaves and is repeated until the root node is reached. At each round,

the bottom-up propagated expert information is a strong signal for the upper clas-

sifier to pull a given test instance down the correct subtree hence avoiding false

negative errors. Combining refinement with the use of expert information results

in a two step procedure which consist in a bottom-up procedure aiming at reducing

false negatives at test time, followed by a top-down pass refinement that prevents

false positive. The overall process, called refined experts (Bennett and Nguyen,

2009), yields state of the art performances compared to classical approaches such

as hierarchical SVMs (HSVM) and flat One Versus Rest (OVR).

Table 2.1 summarizes the sequential approaches to learning local classifiers given

a hierarchical structure. All these methods build on the same idea of biasing the

local training distribution at the different nodes of the hierarchy to fight the error

propagation problem. Even though refinement and refined experts can arguably

be more accurate than Filter Tree, the additional training time required for cross

validation is a potential bottleneck. Nonetheless, all these methods are interesting

alternatives to jointly learned models in case one has limited resources for training.

Chapter 2. Extreme Single Label Classification 47

2.3.3 Joint Learning of Models and Hierarchical Structure

To achieve the goal of efficient and accurate classification using hierarchical meth-

ods, one needs both a discriminative class hierarchy (T ∗) and accurate local classi-

fiers (F ∗). Various methods have proposed to satisfy these two requirements inde-

pendently. In general, a global solution (T ∗, F ∗) can be obtained by first learning a

class hierarchy (for example using the method (Bengio et al., 2010) or (Marszalek

and Schmid, 2008)) before learning its associated local classifiers (Bengio et al.,

2010, Bennett and Nguyen, 2009, Gopal and Yang, 2013). While this sequential

strategy has yielded good performances in previous studies (Bengio et al., 2010),

it can be suboptimal. Indeed, the difficulty of the classification problems locally

induced at the nodes of the hierarchy governs the accuracy of the local classifiers

which is the key factor of the hierarchical classifier’s global performance. There-

fore, jointly learning the class hierarchy and its associated local classifiers would

result in a better solution since it deals with the interplay between the two com-

ponents of the hierarchical classifier. This idea has arguably first been proposed

in (Beygelzimer et al., 2009a) where the authors learn online a hierarchical struc-

ture with local probability estimators. Even though their approach can be used

for classification purposes (by greedily traversing the tree), it is first intended for

conditional probability estimation. More recently, two successful approaches have

been proposed (almost simultaneously) to tackle the joint hierarchical classifier

learning challenge (Deng et al., 2011, Gao and Koller, 2011a). In the rest of this

section, we present the respective formulation of these approaches before discussing

their similarities and specificities.

2.3.3.1 Fast and Balanced Hierarchies (Deng et al., 2011)

The fast and balanced hierarchical classifier is learned by processing one node at

a time. At each node s the learning algorithm searches for a an optimal split of

the local set of classes ls together with the parameters of the local classifiers fs.

This process can be formulated as local classifier’s accuracy maximization subject

to efficiency constraints. Therefore, the feasible set of parameters of the classifier

fs are required to satisfy the efficiency constraints. For a given example x, The

Chapter 2. Extreme Single Label Classification 48

efficiency measure considered here at node s is called ambiguity and is defined as

the size of the label set of the child c ∈ C(s) that the example follows relative to

its parent’s size |ls|.

Formally, at the current node s, let Q be the specified branching factor (number

of children per node) and K = |ls|. The splits at this node can be represented by

a partition matrix P ∈ {0, 1}Q×K in which Pqk = 1 if class k appears in the label

set corresponding to child q lq, and Ppk = 0 otherwise. To each child q ∈ C(s)
corresponds a binary classifier. At node s, the set of parameters of the children’s

binary classifiers is represented by a matrix w whose columns represent the weight

vectors (wi)1≤i≤Q.

At node s, for a given example (x, y) with y ∈ ls, let q̂ = argmaxq∈C(s) fq(x) be

the winning child. Given the parameters w and P , the loss at the current node s

is L(w, x, y, P) = 1− Pq̂y. When the set of partitions is held fixed, optimizing for

w reduces to a multiclass classification problem. Therefore, the following convex

relaxation to L is proposed:

L̃(w, xi, yi, P) = max{0, 1 + max
q∈Ai,r∈Bi

{wT
r xi − wT

q xi}} (2.34)

Solving this problem encourages the local classifier to give a higher scores to the

children whose set of labels contain yi (q ∈ Ai) compared to those whose that do

not contain it (r ∈ Bi). Regarding the efficiency of the hierarchy, it is enforced

through ambiguity constraints i.e the average proportion of classes pruned away

at every step when traversing the hierarchy top-down for classification. If the

partitions are balanced, (Q−1)·(K/Q) classes are pruned every time a classification

decision is made at a node of the hierarchy. For a given example (x, y) and the

parameters (P,w), ambiguity is formulated as:

A(w, x, P) =
1

K

K∑
k=1

P (q̃, k) (2.35)

Chapter 2. Extreme Single Label Classification 49

The final global optimization problem consisting into local accuracy maximization

subject to efficiency constraints summarized below:

minimize
w,P

λ||w||2 + 1

m

m∑
i=1

L(w, xi, yi, P)

subject to
1

m

m∑
i=1

A(w, xi, P) ≤ ε

P ∈ {0, 1}Q×K

(2.36)

This algorithm proposed by the authors to solve this problem alternatively min-

imizes the classification error and the ambiguity at each node of the hierarchy.

The integrity constraints of the partition matrix’s entries make this problem NP-

hard. Nonetheless, solving the continuous relaxation and rounding the resulting

solution is theoretically proven to yield good performances. Overall, the fast and

balanced hierarchy is proven to be superior to the hierarchical classifiers learned

independently from the local classifiers (Bengio et al., 2010) and One-versus-Rest

flat classifiers.

2.3.3.2 Relaxed Discriminant Hierarchies (Gao and Koller, 2011a)

The relaxed discriminative hierarchical classifier is another recent approach that

learns the hierarchical structure and the local classifiers jointly. The general learn-

ing strategy also consists in processing one node of the hierarchy at a time by

splitting the local label set and learning a local classifier. As for the fast and

balanced hierarchy (Deng et al., 2011), the structure is a directed acyclic graph

(DAG) to fight the error propagation problem (Bennett and Nguyen, 2009). The

two main ingredients in this approach are the way the local induced problems are

created and the the way efficiency is enforced during learning.

To achieve low classification error at each node s, the locally induced problems are

binary. Moreover, they are relaxed to avoid the requirement for complex decision

surfaces at the top of the hierarchy. That is, at a given node s, not all the classes of

ls are involved in the binary induced problem. Indeed, the more classes involved in

the binary induced problem at node s, the more difficult the problem is. Therefore,

Chapter 2. Extreme Single Label Classification 50

the authors propose to consider only a subset of classes that can be discriminated

easily (the set of positive classes is denote S+
y and the set of negative ones is S−

y)

and ignore the other classes S0
y . Hence, given a training data {(xi, yi)}mi=1 where

yi ∈ Y = {1, . . . , n}, the local training set is split into S+
x = {xi : yi ∈ S+

y }
and S−

x = {xi : yi ∈ S−
y }. To identify the group each class belongs to, coloring

variables µk taking their values from {−1, 0,+1} are introduced.

Trivial solutions such as considering a very large set of classes as belonging to

S0
y can give good solutions since the induced problems become very simple (the

extreme case is when |S+
y | = |S−

y | = 1). However, the number of pruned classes

at every step is very small and classification complexity becomes almost linear.

Moreover, the height of the hierarchy is minimized when the partitions S+
y and

S−
y are balanced at each node. Therefore it is necessary maintain non-trivial and

balanced partitions at every node of the hierarchy. To achieve these goals, the

following optimization problem is solved at each node:

minimize
w,b,{µk},{ξj}

1

2
||w||2 + C

m∑
i=1

|µyi |ξi − A
m∑
i=1

|µyi |

subject to µi ∈ {−1, 0,+1}, ∀k ∈ Y

µyi(w
Txi + b) ≥ 1− ξi, ∀i

ξi ≥ 0, ∀i

− B ≤
|Y|∑
k=1

µk ≤ B

|Y|∑
k=1

1{µk > 0} ≥ 1 and

|Y|∑
k=1

1{µk < 0} ≥ 1

(2.37)

The first components of the objective function, 1/2||w||2 + C
∑m

k=1 |µyk |ξk corre-

spond to a classical binary SVM problem. The third component, −A
∑m

k=1 |µyk |,
prevents trivial solutions by encouraging most classes to be involved in the binary

problem (|µk| = 1). Compared to a classical binary SVM formulation, the last two

constraints are unusual. The third constraint is intended to enforce balance splits

while the last one requires each split contain at least one positive class and one

negative class (non-triviality). Given a fixed partition, the problem reduces to a

Chapter 2. Extreme Single Label Classification 51

binary SVM while given a parameter vector w, finding a good partition is done

by solving a coloring problem. An alternating method is hence proposed to solve

the global optimization problem. The authors also provide theoretical guarantees

regarding the generalization performance of the algorithm. In practice, convinc-

ing results are presented among which improvements compared to the hierarchy

learning approaches by (Marszalek and Schmid, 2008) and the One-versus-Rest

flat baseline.

2.3.3.3 Discussion

The two approaches presented above are very similar in spirit. They draw from

a set of intuitions and best practices resulting from previous studies (Bennett

and Nguyen, 2009, Griffin and Perona, 2008, Marszalek and Schmid, 2008). In

hierarchical classification, efficiency (speed) mainly depends on the type of hier-

archy chosen which is generally either a tree or a DAG. However, DAGs provide

better discriminative capabilities since they suffer less from the error propagation

problem (Marszalek and Schmid, 2008). Moreover, the efficiency loss compared to

trees can be rather small (Gao and Koller, 2011a). Therefore, both of the methods

are designed to produce DAG structured class hierarchies. Regarding the accu-

racy of hierarchical classifier, it has been shown that it can be greatly improved

when the dependencies between the local classifiers are modeled (Bengio et al.,

2010, Bennett and Nguyen, 2009, Cai and Hofmann, 2004, Gopal and Yang, 2013)

since it helps solving problems such as the scarcity of labelled data at the leaf

nodes. Even though the local classifiers are not jointly learned in these methods

conversely to (Bengio et al., 2010, Cai and Hofmann, 2004), the training data at

each node is filtered by the local classifiers of its ancestors. As shown in (Ben-

nett and Nguyen, 2009, Beygelzimer et al., 2009b), this is a good way of encoding

dependencies between the local classifiers of a given hierarchy.

Despite all their similarities, there are fundamental differences between the re-

laxed discriminant hierarchies (Gao and Koller, 2011a) and the balanced hierar-

chies by (Deng et al., 2011). First, (Deng et al., 2011) allow the k-way (k ≥ 2)

DAG structured class hierarchies while the formulation of (Gao and Koller, 2011a)

restrict the branching factor of the internal nodes to 2. While the former may lead

Chapter 2. Extreme Single Label Classification 52

to more efficient structures because at each step a larger subset of candidate classes

can be pruned away, we believe the latter is a better option in terms of accuracy

because only one binary classification problem is solved at each node. Moreover, in

relaxed discriminant hierachies (Gao and Koller, 2011a), all the classes are guar-

anteed to have a corresponding leaf node in the class hierarchy. Such bijection

does not exist in (Deng et al., 2011) where at each step of the hierarchy build-

ing process, it is legal to have a class that is not associated to any sub-cluster.

When the final performance evaluation measure is the 0/1 loss, this does not have

much impact since most of the classes that are forgotten will correspond to small

classes. However, it can be dramatic if measures such as the Macro-F1 are used

because this type of performance evaluation measure considers all the class equally

regardless of their size.

2.3.4 Conclusion

The rationale underlying the best among the presented solutions for improving

hierarchical classification is to accommodate with the semantics imposed by a

given hierarchy (Cai and Hofmann, 2004) or to encode the dependencies between

the nodes of a learned hierarchy (Bengio et al., 2010). To that end, learning

is generally achieved with various types of constraints aiming at modeling the

dependences between the local classifiers of the hierarchy. All these methods are

empirically proven to give good performances but the reason of this success is not

fully understood. As previously stated, authors generally agree on the four main

problems to solve in hierarchical classification (Bennett and Nguyen, 2009) : (1)

the need for an efficient hierarchical structure, (2) the error propagation problem,

(3) the requirement for complex decision surfaces at the top the hierarchy and (4)

the labelled data scarcity at the leaf nodes. There is clearly an interplay between

these problems. For instance, when a hierarchy is learned such that the problems

induced at its nodes are more natural (hence more easily solvable), the need for

complex decision surfaces at the top of the hierarchy is attenuated (Griffin and

Perona, 2008, Marszalek and Schmid, 2008). Similarly if an efficient structure such

as a DAG is chosen it also improves the accuracy since it contributes in solving

the error propagation problem (Deng et al., 2011, Gao and Koller, 2011a).

Chapter 2. Extreme Single Label Classification 53

Unfortunately, even though the authors usually mention the specific problem they

intend to solve at first to improve hierarchical classification performances, the

proposed methods are rarely accompanied with an analysis of how it impacts the

other three problems of hierarchical classification. In such situation, performance

improvements can rapidly be acknowledged to the wrong facts as the impact of

the side effects on the final performances measure can be superior to that of

solving solely the initially considered problem. Thus, we believe more ablation

studies as in (Bennett and Nguyen, 2009) would be of great help towards a better

understanding of the nature of the hierarchical classification problem and also for

classification of the solutions proposed so far according to the specific problem

they solve and their potential side effects.

Chapter 3

Extreme Single Label

Classification with Compact

Ouput Coding

3.1 Introduction

Scalable approaches to extreme single label classification are divided into flat and

hierarchical methods as discussed in the previous chapter. Hierarchical approaches

have demonstrated their ability to reduce inference complexity up to O(logL) (L

being the number of labels) while maintaining competitive performances compared

to the traditional one-versus-rest classifier (Bengio et al., 2010, Deng et al., 2011,

Gao and Koller, 2011b). This is achieved by either learning a hierarchy or by using

an existing one as it is case in most extreme classification problems. However, hier-

archical approaches require training and storing as many classifiers as the number

of nodes in the given hierarchy. This can result in a computational and memory

burden specially when the input space in very high dimensional which is common

in extreme classification problems (the wikipedia dataset used in the LSHTC chal-

lenges1 has more than 300K features). Alternatively, some flat approaches such

as Embedding methods (Bengio et al., 2010, Weinberger and Chapelle, 2008) and

1http://lshtc.iit.demokritos.gr
54

Chapter 3. Extreme SLC with COC 55

Error Correcting Output Codes (Dietterich and Bakiri, 1995) have better training

and inference complexity than OVR. While Embedding methods can exploit ex-

isting hierarchical information to improve classification performance (Weinberger

and Chapelle, 2008), they are slower at inference (for a same code size) than bi-

nary ECOCs which can be speed up thanks to existing fast hamming distance

computing procedures (Pappalardo et al., 2009). Unfortunately, binary codes in

ECOCs are generally randomly chosen and hence do not leverage existing hierar-

chical information to improve performances. Moreover, large code size are often

required in order to reach competitive performances.

In this chapter, we present an approach that takes the best of both worlds. It

exploits existing hierarchical information to learn compact binary codes. Exploit-

ing the hierarchical information improves performances while the use of compact

binary codes allows fast inference as with Error Correcting Output Codes. The

approach we develop relies on first learning binary class codes using a similarity

information between classes, a class will then be represented as a l-dimensional bi-

nary code with values in {−1,+1}, and second in training l binary classifiers, each

will predict one bit of the class code. The dichotomizer for the jth bit of the code

will be trained to distinguish between the samples of all classes whose jth bit is 1

and those whose jth bit is -1. A test example will then be categorized according to

a simple nearest neighbour rule between the code computed for this example and

class learned codes. The novelty of this two step strategy is an efficient procedure

for learning compact binary class codes of size l such that B << L where L stands

for the number of classes. The size of the learned distributed representation of

the classes may be set so as to achieve a compromise between complexity and

accuracy.

We first present the method used to learned the distributed representation of the

classes in section 3.2. We discuss its relationship to Error Correcting Output Codes

and propose a study of the method’s complexity. The experimental section 3.3 fol-

lows. There, We show that the code size required for reaching OVR performance

scales sub-linearly with the number of classes and that increasing the complexity of

the method (i.e. B) allows outperforming OVR. We also provide an experimental

Chapter 3. Extreme SLC with COC 56

comparison, with respect to performance and runtimes, of our method with base-

lines, including OVR, on datasets up to 10 000 classes built from the 2010 Large

Scale Hierarchical Text Classification challenge datasets2. Moreover, we investi-

gate the ability of the proposed approach for zeroshot learning (Palatucci et al.,

2009) which is the problem of discriminating between classes labels for which no

examples were encountered during training. We show that providing the similarity

information for new classes allows recognizing samples from theses classes even in

the case when no training samples are available.

3.2 Learning Distributed Representation of Classes

(LDR)

3.2.1 Principle

We aim here at building a method that allows, both fast inference and high ac-

curacy. To reach this goal we propose a method called Learned Distributed Rep-

resentation (LDR) that first learns binary low dimensional class codes, then uses

binary classifiers to learn each bit of the codes, as in ECOC.

A key issue is to take into account the available relationships between classes (e.g.

a hierarchical or a graph organization of classes). We propose to compute low

dimensional binary class codes that reflect these relationships. In order to do that

we first represent a class as a vector of similarities between the class and all other

classes, si = [s(Ci, C1), ..., s(Ci, CL)] (see section 3.3 for an example). Different

similarity measures may be used. It may be computed from a hierarchy of classes

or from a similarity between samples of the two classes. Then, we learn short

class codes that reflect these relationships between classes, by transforming these

high k-dimensional representations of classes (si) into lower l-dimensional codes

(hi) via a dimension reduction algorithm. This step is explained in details in

section 3.2.2. Once low dimensional (say B-dimensional, with B << L) binary

class representations are learned, we train l binary classifiers, one for every bit.

2http://lshtc.iit.demokritos.gr

Chapter 3. Extreme SLC with COC 57

The binary classifier for the jth bit is a dichotomizer that is learned to separate

samples of all classes whose class code has the jth bit set to 1 from the samples

of all classes whose class code has the jth bit set to -1. All these binary classifiers

are then learned with all training samples from all classes.

Finally at test time, when one wants to decide the class of an input sample x, we

use the B classifiers on x to compute a B-length binary word m = (m1, ...,mB)

which is compared to the L class codes {hi, i = 1..L} to find the nearest neighbor.

3.2.2 Learning Compact Binary Class-codes

We propose to learn compact class codes with autoencoders which have been

widely used for feature extraction and dimensionality reduction (Vincent et al.,

2008). Among many existing dimension reduction methods the advantage of au-

toencoders lies in the flexibility of the optimization criterion that allows us includ-

ing additional terms related to class codes separation. An autoencoder is trained

by minimizing a squared reconstruction error between the input (here a class rep-

resentation si) and its reconstruction at the output of the autoencoder, ŝi. It may

be viewed as an encoder (input → hidden layer) followed by a decoder (hidden →
output layer). Usually it is required that encoding and decoding weights are tied

(Vincent et al., 2008), both for linear and non linear encoders, so that if w is the

coding matrix, wT is the decoding matrix. We used this strategy here. Training

an autoencoder writes (omitting bias terms):

argmin
W

L∑
i=1

||si −wT × f(w × si)||2 (3.1)

where ||.|| is the euclidean distance. The activation function in hidden units f

may be a linear function, then the projection learned by the autoencoder is similar

to the one learned by a principal component analysis. One can expect to learn

more interesting features by using nonlinearities on hidden units, using sigmoid or

hyperbolic tangent activation functions (in our implementation, we use hyperbolic

tangent activation function hidden units). To perform dimensionality reduction

Chapter 3. Extreme SLC with COC 58

one uses a narrow hidden layer which forces to learn non trivial regularities from

the inputs, hence interesting and compact codes on the hidden layer. The vector

of activation of hidden units is the learned encoding function. Here the new class

code for class Ci is then hi = f(w × si).

Ideally, new class codes should satisfy two properties. First, similar classes (ac-

cording to the cost-sensitive information and/or to similar examples) should have

close codes hi. Second, class codes for any pair of classes should be significantly

different to ensure accurate classification at the end. The first property is nat-

urally satisfied since an autoencoder actually learns hidden codes that preserve

distances in the original space. Next, to ensure minimal separation between class

codes we propose to look for a solution of the following constrained problem:

argmin
w

L∑
i=1

||si −wT × f(w × si)||2 (3.2)

s.t. ∀(i, j), i �= j : ||f(w × si)− f(w × sj)|| ≥ b

The constraints are inspired from margin based learning and yield to maximize

the distance between any pair of class codes up to a given threshold b. We solve

this optimization problem by stochastic gradient descent using the unconstrained

regularized form:

argmin
w

α
L∑
i=1

||si −wT × f(w × si)||2

+ β
k∑

i,j=1

max(0, b− ||f(w × si)− f(w × sj)||)

+
λ

2
||w||2 (3.3)

where α and β weight the respective importance of the reconstruction error term

and of the margin terms, and ||w||2 is a regularization term. Note that α, β, and

b (which tunes the margin between two class codes) are set by cross validation.

Chapter 3. Extreme SLC with COC 59

We learn the autoencoder using stochastic gradient descent by iteratively picking

two training samples i and j at random and making a gradient step. Figure 3.1

illustrates the training process which recalls somehow Siamese architectures used

in the past for vision tasks (Bromley et al., 1993). At the end, in order to get

Figure 3.1: Learning the autoencoder from pairs of input samples (here α and
β are considered equal to 1). See Algorithm 2 for details.

binary class codes, we threshold the learned real valued class codes. This means

that the jth component of all class codes hi are set to hi(j) = −1 if hi(j) < θj,

and hi(j) = +1 otherwise. The threshold value θj is chosen so that the prior

probability of the jth bit of a class code be +1 is equal to 0.5, and this is done

by setting θj to the median of {hi(j)|i = 1 . . . B}. Although this cut-off it is not

learned to optimize classification accuracy, it should be noted that it is defined

according to the usual property in ECOC (firing with probability 0.5). Also since

similar classes should have close class codes, it is expected that the obtained two

class classification problem (i.e. for the jth bit of class codes, separating samples

of all classes with hi(j) = +1 from the samples of all classes with hi(j) = −1)

should be easier to solve than any random two class problem as those defined in

traditional ECOC. We will come back to this point in the next section. Algorithm

2 describes the whole algorithm.

Chapter 3. Extreme SLC with COC 60

Algorithm 2: Learning Compact Binary Class Codes

Input : similarity vectors {si};
Hyper parameters α, λ, β, b;
repeat

Pick randomly two samples (si, sj);
Make a gradient step : w = w − ε∂Lw(si, sj)/∂w;
with: Lw(si, sj) =

1
2

∑
k∈{i,j} α||sk −wT × f(w × sk)||2 + λ||w||2 +

βmax(0, b− ||f(w × si)− f(w × sj)||)
until convergence criterion is met ;

3.2.3 Relations to ECOC

Because each element in the class codes has probability 1/2 of being either +1 or

−1, our method bares some similarities with the standard dense random ECOC.

However, there are two fundamental differences.

The first difference is that by construction, our learned distributed representation

is intended to have a reduced tree induced loss compared to randomly generated

methods because the autoencoder projects classes that are close in the hierarchy

in the same area of the latent space. The second difference, which is somehow

related to the first one, is that the binary classification problems induced by the

learned class codes should be easier than in random ECOC. Indeed, since similar

classes should have close class codes, it is likely that for similar classes most bits

are equal. This means that a particular dichotomizer is trained with samples for

class +1 and for class -1 that are more homogeneous than if the partitioning of

classes was random, as in traditional ECOCs. At the end, if dichotomizers reach

higher accuracy, the overall accuracy of the multiclass classifier should also be

higher.

An ECOC coding scheme closer to our method is the discriminative ECOC (DE-

COC) which learns a discriminative coding matrix by hierarchically partitioning

the classes according to a discriminative criteria (Escalera et al., 2010). The hier-

archy is built so as to maximize the mutual information between the data in each

partition and the corresponding labels. Our method differs from this in that we

are seeking codewords having a sub-linear dependency on the number of classes L

while the DECOC method creates codewords of length L− 1.

Chapter 3. Extreme SLC with COC 61

3.2.4 Training and inference complexity

We focus here on complexity issues with respect to the number of classes L, the

number of training samples N , the dimension of samples d, and the length of the

learned class codes B. Let us denote by CT (N) the complexity of training one

binary classifier with N training samples, and by CI the complexity of inference

for a binary classifier. All complexities in the following will be expressed as a

function of CT and CI .

We start with our method. Training consists in learning the class codes of length

B, then in learning B classifiers. Learning class codes is done by gradient descent

whose complexity depends on the number of iterations. Yet since class codes are

binarized at the end, one can expect that the method will not be very sensitive to

accurate convergence of the autoencoder and one can reasonably assume a fixed

and limited number of iterations I so that learning the autoencoder requires O(I×
L2×B) (B iterations with L samples every iteration whose forward and backward

pass costs roughly O(L × B)). Next, learning the B binary classifiers requires

O(B×CT (N)). At the end training complexity is in O(I ×L2×B+B×CT (N)).

Inference consists in finding the class code which is most similar (wrt. Hamming

distance) to the output code computed for this input sample. Computing the

output code requires using the l classifiers, hence O(l × CI). Next, using fast

nearest neighbour search methods such as ball trees or kd-trees for finding the

closest class code may be done (in practice) in O(logL) comparisons (Bentley,

1975), where each comparison costs O(B). Overall, the inference complexity is

then O(B × (logL+ CI)).

We compare these costs to those of the OVR method which is the most accurate

technique for large scale classification (Bengio et al., 2010) (see Table 3.1). Train-

ing in OVR method requires O(L×CT (N)) since one uses k classifiers that are all

trained with all training samples, while inference requires O(L× CI).

It clearly appears from this discussion that OVR does not extend easily to VLC

due to its inference complexity that scales linearly with the number of classes.

Compared to these baselines, our method exhibits interesting features. As we will

argue from experimental results, it may outperform OVR for B << L and the

Chapter 3. Extreme SLC with COC 62

Table 3.1: Comparison of training and inference complexity for our method
and for standard methods, OVR and ECOC, as a function of the number of
classes L, the dimension of the data d, the size of the class codes l, the learning
complexity of a binary classifier with N training samples CT (N), the inference
complexity of a binary classifier CI , and the number of training iterations I of

the autoencoder (LDR method).

Training Inference
OVR O(LCT (N)) O(LCI)

ECOC(B) O(BCT (N)) O (BCI +B logL))
LDR(B) O

(
BIL2 +BCT (N)

)
O (BCI +B logL)

minimal length B for such a behavior seems to scale strongly sublinearly with L.

Furthermore although the training complexity includes a term in O(L2), it must

be clear that in experimental settings such as the ones we investigate in this paper

(large number of samples and high dimensionality), the overall training complexity

in O (BIL2 + BCT (N)) is dominated by the second term O(BCT (N)).

3.3 Experiments

We performed experiments on three large scale multi-class single label datasets.

The proposed method (LDR) is compared to two coding methods, spectral em-

bedding (SPE) and traditional error correcting output coding (ECOC), and to

a standard OVR baseline. We first present the datasets, then we explain our

experimental setup and finally we present results and analysis.

3.3.1 Datasets

We used datasets with respectively 1000, 5000 and 10000 classes. Each dataset

was created by randomly selecting the corresponding classes from a large scale

dataset released for the first PASCAL large scale hierarchical text classification

challenge3. This dataset was extracted from the open Mozilla directory DMOZ

(www.dmoz.org). The classes are organized in a tree hierarchy, classes being at

3http://lshtc.iit.demokritos.gr

Chapter 3. Extreme SLC with COC 63

the leaves of the hierarchy and internal nodes being not instantiated classes. Hi-

erarchies are of depth 5.

The documents were provided as word counts, and then transformed into normal-

ized TF/IDF feature vectors. Considering that for large multi-class text classifica-

tion every new class is likely to bring specific new words, we did not performed any

feature selection although all datasets have very high dimensional feature spaces.

Statistics of the datasets are detailed in Table 3.2. Each dataset is split into

training, validation and testing sets (see Table 3.2).

We exploited a similarity measure between classes i and j, which is defined as a

function of the distance di,j between the two classes in the hierarchy measured

by the length of the shortest path in the tree between the two classes: si(j) =

s(Ci, Cj) = exp(−d2i,j/2σ
2). The tree path distance between two classes is also used

in the tree loss used as a classification measure in section 3.3.3. We systematically

used σ = 1 in our experiments.

Table 3.2: Statistics of the dataset used in the experiments

Statistics 1K classes 5K classes 10K classes
Nb. training docs 8119 36926 76417
Nb. validation docs 3005 13855 28443
Nb. testing docs 3006 13771 28387
Nb. features 347 255 347 255 347 255

3.3.2 Experimental setup

Three strategies were used as baselines: OVR, random ECOC and a Spectral

Embedding technique.

Besides ECOC classifiers, we also compared our method to a spectral embedding

technique (SPE) which can be used for learning class codes from a similarity matrix

and is an alternative to our auto-associator method. Spectral embedding is widely

used as a preprocessing step before applying k-means in clustering applications.

Chapter 3. Extreme SLC with COC 64

It has also been used recently for hashing and we exploit a similar idea here. In

(Weiss et al., 2008) the authors propose to embed the data for fast retrieval by

binarizing the components of the eigenvectors of the similarity matrix Laplacian.

This process aims at mapping similar examples in the same regions of a target

space. The training complexity of the method is O(L3 + BCT (N)), which is

much larger than LDR or ECOC, and is due to the high complexity of the eigen-

decomposition. This method is similar in spirit to LDR and ECOC and is a

natural candidate for comparison. The classes here play the same role as data do

in spectral hashing.

We use logistic regression as a base classifier (dichotomizers) for all methods, but

any other binary classifier could be used as well. The binary classifiers were trained

with a regularization parameter selected from λ ∈ {0.001, 0.0005, ..., 10−6} using

the validation set.

To train random ECOC classifiers, for a given code length B and a number of

class L, we generated several L×B matrices and discarded those having equal or

complementary rows. We then used the coding matrices with best error correcting

property (the top 25 matrices for 103 classes and the top 10 for 5 ∗ 103 and 104

classes) to train an ECOC classifier. Then we kept the model that reached the

best performance on the validation set for evaluation on the test set.

We compare the methods using accuracy and tree induced loss which is defined as

the average of the length of the shortest path in the hierarchy between the correct

class and the predicted class. The tree induced loss measures the ability of the

classifier to take into account the hierarchical nature of the classification problem,

and the class proximity according to this metric. A low tree loss means that

confusions are made between neighboring classes, while a high tree loss signifies

that confusions occur among distant classes.

3.3.3 Comparison of the methods

We investigate here the behavior of the different methods on the three datasets

and explore how the performance evolves with respect to the class code length.

Chapter 3. Extreme SLC with COC 65

Comparisons with all methods are performed on the 1K and 5K classes corpora,

while on the larger 10K classes dataset, only OVR vs LDR were tested. Figure

3.3 reports accuracies on the first two datasets for code length in {200, 300, 400,
500, 600}. First it can be seen that LDR outperforms systematically the two other

coding methods (SPE and ECOC) whatever the dataset, and whatever the class

code length. Second, the performance of the three coding methods (LDR, SPE

and ECOC) increases, with some fluctuation, with the code length. A higher code

is needed when the number of classes increases. This behavior is intuitive. Finally

one can see that LDR reaches and even exceeds the performance of OVR on these

two datasets, while ECOC and SPE stay under the performance of OVR, even

when increasing the code length B.

Table 3.3 compares the different methods using their best accuracy score4, and

the corresponding tree induced loss on the same two datasets. It can be seen

that the best performance of the different methods are quite close, LDR being

systematically higher and providing a clear speedup wrt OVR. For example, for 1

000 classes, with a code length of 200 LDR achieves an accuracy of 67.49% while

OVR’s accuracy is 66.50%. In this case, the number of classifiers used by the OVR

method is 5 times that of LDR.

We come back to our previous observation that LDR is consistently better than

random error correcting output coding (ECOC) (Figure 3.3), which holds what-

ever the code length. Our main explanation of this phenomenon is that the binary

problems are probably easier to solve with LDR. It has been observed since the

early use of ECOCs (Dietterich and Bakiri, 1995) that the dichotomies induced by

the codes where more difficult to solve than the initial OVR dichotomies. Here,

neighbour classes in the tree, are forced to have similar codes. The data for these

classes are often closer one to the other than that of distant classes, so that similar

inputs will most often be required to be classified similarly. On the opposite, clas-

sical ECOCs where codes are designed at random do not share this property. To

investigate this, we compared the mean accuracy of the binary classifiers induced

by our method to the mean accuracy of classifiers in a random ECOC scheme 3.3.

The mean accuracy remains between 72% and 75% for LDR while it is almost

4For each method, one uses the parameterization, including the value of l, leading to the best
score.

Chapter 3. Extreme SLC with COC 66

constant at about 69% for ECOC when the code size varies between 64 and 1024.

This confirms the hypothesis that learned dichotomizers induce easier problems

as depicted in figure. Also we think that the learning criteria of the autoencoder

helps creating better class codes than those produced by the spectral embedding

method.

Figure 3.2: Comparing the mean accuracy of dichotomizers for binary prob-
lems induced by the learned distributed representation and those induced by
random ECOCs on the 1K dataset with various code size. The binary prob-

lems induced the learned representation are easier

At last we compare LDR and OVR on classification tasks with up to 10 000 classes.

Figure 3.4 shows the performance of LDR vs OVR for the three datasets (1K, 5K

and 10K classes) for a code length of size 500. LDR outperforms OVR whatever

the number of classes. Speedup are more and more important as the number of

classes increases. For 10K classes LDR achieves an accuracy of 36.81% (with a

code length of 500) while the OVR’s performance is 35.20%. This performance

is achieved while using 20 times less classifiers than the number of classes. This

corresponds to a speedup of 46 wrt OVR (measured by runtimes). Such a speedup

is not only due to the smaller number of classifiers used by LDR, but also to

fast bitcounts routines that exploit the binary representation of codes for nearest

neighbour search.

Chapter 3. Extreme SLC with COC 67

Figure 3.3: Accuracy of our method (LDR), random ECOC (ECOC), Spectral
Embedding (SPE), and OVR as a function of code length on datasets with 1

000 classes (top) and with 5 000 classes.

3.3.4 Zero-shot learning

A few approaches have been proposed in the literature to answer the zero-shot

learning problem (Larochelle et al., 2008, Palatucci et al., 2009), i.e. designing

a classifier that is able to discriminate between classes for which we do not have

instances in the training set. One particular approach proposes the use of a rich

semantic encoding of the classes (Palatucci et al., 2009). Our approach is close

to this idea since the codes of classes (computed by the autoencoder) are vectors

that encode some semantic information on classes.

To explore empirically how our model is able to achieve zero-shot learning, we

performed the following experiment on the 1000 classes dataset. We learned the

class codes on the 1000 class representations (similarity vectors) computed from

the hierarchy, si. Then we selected randomly a number of classes (10 to 50)

and removed all training samples of these classes from the training set. The

dichotomizers were then trained with this reduced training set. At test time,

Chapter 3. Extreme SLC with COC 68

Figure 3.4: Accuracy of our method (LDR) and OVR on datasets with 1 000,
5 000 and 10 000 classes. Whatever the dataset LDR exploits class codes of

length l = 500.

Classifiers 1K classes 5K classes
Accuracy T.I.L Speed Accuracy T.I.L Speed

One-vs-rest 66.50% 2.63 ×1 44.76% 3.98 ×1
Random ECOC 65.10% 2.74 ×2 44.41% 4.12 ×12
SPE 67.73% 2.51 ×2 43.75% 4.30 ×12
LDR (first) 67.49% 2.54 ×5 44.88% 3.98 ×17
LDR(best) 68.40% 2.46 ×2 45.44% 3.93 ×12

Table 3.3: Comparative results of OVR, Random ECOC, Spectral Embedding,
and LDR, on datasets with 1000 and 5000 classes with respect to accuracy, tree
induced loss, and inference runtime. The runtimes are given as speed-up factors
compared to OVR (×2 means twice as fast as OVR). Reported results are the
best ones obtained on the datasets whatever the class code length. For LDR,
we also provide the performance reached for a minimal B yielding performance
at least equal to that of OVR, denoted as LDR (first), to stress the speed-up.
LDR(best) is the best performance LDR based model regardless of the speed.

following the approach in (Larochelle et al., 2008), we use the learned classifier

to discriminate between the classes whose training samples were not present in

the training set. Results are given in Table 3.4 for a class code length equal to

200. One can see that the accuracy achieved by LDR on classes that have not

been learned is significantly greater than a random guess although it is naturally

Chapter 3. Extreme SLC with COC 69

Table 3.4: Average accuracy (and standard deviation) of LDR (B = 200)
for zero-shot learning tasks. Results are averaged over 10 runs with removal of

different random sets of classes.

classes removed 10 20 30 40 50
Accuracy (std) 25.64(12.20) 24.45(6.34) 16.76(4.24) 14.31(3.18) 12.76(2.48)

lower than the accuracy obtained on classes that were actually represented in the

training set as reported in previous section.

Note also that one could go one step further than the zero-shot paradigm and try

to recognize samples from a new class which was even not used for learning the

class codes, provided one gets its similarity with all classes in the training stage.

This would fit with many large multi-class problems where the set of classes is

not closed (for instance new classes appear periodically in the DMOZ repository).

Preliminary results show a similar performance as above provided the number of

new classes remains small. This is a perspective of our work.

3.4 Conclusion

Learning compact distributed representation of classes combines the accuracy of

flat methods and the fast inference of hierarchical methods. It relies on building

distributed compact binary class codes that preserve class similarities. The main

features of the method lies in its inference complexity that scales sub-linearly with

the number of classes while outperforming the standard OVR and Error Correcting

Output Codes techniques on problems up to 10 000 classes. Interestingly it also

allows, to some extent, considering the addition of new classes in the hierarchy

without providing training samples, an instance of the zero-shot learning problem.

Zeroshot classification is a plausible scenario in extreme classification and deserves

a closer look. Also, in order to improve the classification performances, binary class

codes can be learned jointly with the binary dichotomizers. This would result in a

more complex training procedure but can yield better representations than those

learned separately.

Chapter 4

Extreme Multilabel Classification

4.1 Introduction

The largest part of the extreme classification literature is devoted to the single

label case where each instance only belongs to one class (Bengio et al., 2010,

Rifkin and Klautau, 2004b). However, the multilabel setting in which many labels

can be associated to a given instance is receiving increasing attention in many

domains such as text categorization1, image classification2 and genomics3. For

example, a wikipedia document about the soccer world cup can be considered

relevant for sports as well as for economics. Similarly, many objects of interest

may appear in a single image. Also, a specific gene can potentially belong to

many different functional groups. In MLC, sets of labels are generally represented

as binary vectors y of length L (L is the number of labels) in which each position yi

is set to 1 if its corresponding label belongs to the set of relevant labels. The task

of multilabel classification (MLC) is to a learn from a dataset D = {xi,yi}ni=1 a

classifier that predicts for a given instance the set relevant labels h : X → {0, 1}L.

MLC is not an overlooked topic in machine learning (Tsoumakas and Katakis,

2007). However, it has received an increased interest because of the large number

1http://lshtc.iit.demokritos.gr/
2http://www.imageclef.org
3http://bioasq.org/

70

Chapter 4. Extreme Multilabel Classification 71

of labels in many real world applications4. For example, there are about 20K

labels in the current version of imagenet and about +300K labels in Wikipedia

dataset used in the pascal LSTHC challenge. The number of labels can even

grow up to millions in the context of bid phrase prediction for computational

advertising (Agrawal et al., 2013). Predicting multiple labels in such large output

spaces is called extreme MLC in contrast to traditional MLC problems where the

size of the output space rarely exceeds 100 (e.g. there are only 14 labels in the

widely used yeast dataset5).

Predicting multiple labels when the number of labels is large calls for scalable

approaches taking into account the specific features inherent to problems of this

size. For example in extreme MLC, the label cardinality, defined as the average

number of labels per instance is typically very small compared to the number of

labels available. Hence the magnitude of the label density (label cardinality divided

by the number of labels) is also very small in extreme MLC compared to small

scale problems: for the yeast dataset which has only 14 labels, the label density is

0.3 while it is about 10−5 for the large Wikipedia dataset (+300K labels).

The large number of labels and the small label density have consequences on the

evaluation measures used to assess the validity of the proposed methods and also

algorithmic implications on the design of efficient extreme MLC methods. Indeed,

multilabel classification algorithms are tailored for specific loss functions some

which are less relevant when the number of labels is very large. We discuss in

section 4.2 the main loss functions used in MLC and their relevance in the extreme

setting.

As in extreme single label classification, many labels are very underrepresented.

This emphasizes the need for multitask/transfer learning approaches (Hariharan

et al., 2010) or the use of additional information in order to achieve good perfor-

mances (Godbole and Sarawagi, 2004). In MLC, the main available additional in-

formation is the label dependence (Dembczynski et al., 2012). It has been exploited

4http://research.microsoft.com/en-us/um/people/manik/events/xc13/index.html
5http://mulan.sourceforge.net/datasets.html

Chapter 4. Extreme Multilabel Classification 72

in various ways to improve classification performances by early approaches (Dem-

bczynski et al., 2010a, Godbole and Sarawagi, 2004, Read et al., 2009). After pre-

senting the classical one versus all approach called Binary Relevance when used

for MLC in section 4.3, we describe the main approaches designed to exploit label

dependence in section 4.4. Most of these early attempts to exploit label depen-

dence do not scale to the extreme classification setting. Therefore, new scalable

methods have to be derived to solve extreme MLC. We present the most important

contributions in this last line of work in section 4.5 before concluding the chapter.

4.2 In defense of Hamming Loss

Choosing the right loss function is an important yet overlooked step in solving

MLC problems (Dembczynski et al., 2010a, 2012). Depending on the problem

considered, one may be interested in learning a multilabel classifier that minimizes

the number of disagreements between the predicted label set and the target one.

The loss function corresponding to this setup is called the Hamming Loss LH and

is formally defined for a given classifier h and instance (x,y) as :

LH(y,h(x)) =
1

L

L∑
i=1

I{yi �= hi(x)} (4.1)

where I(·) is the indicator function and hi is the prediction corresponding to the

i-th position in the vector h(x). The Hamming Loss is very intuitive since in prac-

tice, for a document whose exact set of relevant labels is {ball, beach, soccer, tournament},
it appears reasonable to penalize more severely a system predicting the set of labels

{ball, karate, politics, soccer} than another one that predicts {ball, beach, soccer}
since the latter’s prediction is closer to the actual label set. Nonetheless, in some

MLC applications people find interesting to penalize equally all the predicted la-

bel sets that do not exactly match the target label set. The corresponding loss

function, called the subset 0/1 loss L0/1, is different from the Hamming loss even

though they are known to coincide in some situations according the following

result:

Chapter 4. Extreme Multilabel Classification 73

Proposition 4.1. (Dembczynski et al., 2012) The Hamming loss and the subset

0/1 loss have the same risk minimizer, i.e h∗
H(x) = h∗

0/1(x), for any x if one of

the following conditions holds:

1. labels y1, . . . , yn are conditionally independent, i.e P(y|x) = ΠL
i=1P(yi|x).

2. the probability of the mode of the joint probability distribution is greater than

or equal to 0.5, i.e P(h∗
0/1(x)|x) ≥ 0.5.

In extreme classification, it is unlikely that any of the two conditions of the previ-

ous proposition hold. First, labels are necessarily dependent in real world appli-

cations (Hariharan et al., 2010). For instance, odds are high that the labels sun

and boat are relevant for a given image if the label beach is relevant for the same

image. Conversely, it is unlikely to find human babies and lions on the same real

picture. Therefore, labels cannot reasonably be considered independent in real

world applications. Also, because ground truth is often obtained from a collab-

orative labelling process, target label sets can suffer from the presence of noise.

Hence, only rarely there will be a clear winner (with probability greater than 0.5)

between them. Therefore, one has to choose the specific criteria of interest when

designing an algorithm to solve MLC problems as suggested by (Dembczynski

et al., 2012).

In the context of extreme MLC, we argue that the subset zero-one loss is not a

good performance measure. Many arguments support this claim among which the

size of the output space that can cause noisy labelling. Indeed there are potentially

O(2L) label sets for a problem with L labels even though in practice, the number

of label sets present in the dataset is generally much smaller but remain larger

than the number of labels (Tsoumakas et al., 2010). For example the Wiki1K

dataset (which will be later used in our experiments) has 1K labels and +40K sets

of labels. Similarly, the RCV-industries dataset 6 has 303 labels and 4470 label

sets. In these situations, missing labels can correspond to relevant labels that was

not considered as such during the labelling procedure due to the large size of the

output space.

6http://lshtc.iit.demokritos.gr/

Chapter 4. Extreme Multilabel Classification 74

Learning is also very difficult because most of the label sets are not enough repre-

sented. Moreover, in most real world MLC applications (mainly in document/im-

age classification tasks), we are more interested into predicting a set of relevant

labels in a reasonable time than predicting the exact set of labels. Therefore,

algorithmic contributions to extreme MLC are more oriented towards optimizing

Hamming loss (Dekel and Shamir, 2010, Hsu et al., 2009, Tai and Lin, 2012) rather

than zero-one subset loss or other losses from information retrieval such as the F-

measures. Nonetheless, these losses are used in addition to Hamming loss to have

a better understanding of the methods’ behaviour.

4.3 On Binary Relevance

A straightforward approach to MLC is to decompose the initial problem into many

binary classification problems. One binary classifier is trained for each label and

used to predict whether for a given instance this label is relevant or not. This

one-versus-all method (Rifkin and Klautau, 2004b) called Binary Relevance (BR)

in the context of MLC can be directly applied even when the number of labels is

large thanks to several desirable properties. First it is simple and consistent with

the hamming loss because the optimal classifier is obtained when the individual

binary classifiers are optimal: h∗(x) = (h∗
1(x), . . . ,h

∗
L(x)) (Dembczynski et al.,

2012). Secondly, it is readily parallelizable since the binary problems can be

trained independently. Finally it has achieved state of the art performances on

several benchmarks (Dembczynski et al., 2012, Tsoumakas and Katakis, 2007).

However, it ignores the dependences that naturally exist between the labels in

MLC problems and has linear training and inference complexity. These are strong

limitations since label dependence can be leveraged to improve classification per-

formances and linear time training and inference complexity can be prohibitive in

extreme MLC problems (unless some effort is put into parallelizing training and

inference) if the number of labels grows linearly with the number of examples (i.e

L ≥ Ω(n)) as shown in (Dekel and Shamir, 2010). Most of the methods proposed

to efficiently solve extreme MLC tackle these two limitations.

Chapter 4. Extreme Multilabel Classification 75

4.4 Early approaches to MLC

It is a common belief that multilabel classifiers’ performances can be improved

when the label dependence information is exploited. Most of the early works on

MLC have focused on this challenge (Dembczynski et al., 2010a, Godbole and

Sarawagi, 2004, Read et al., 2009). The main contributions in this line of work

have demonstrated performance improvements over Binary Relevance on many

classical small scale benchmark datasets (both on Hamming loss and subset 0/1

loss). However, in most cases the improvement is obtained at the expense of in-

creased inference complexity leading to scalabitlity issues when applied to extreme

multilabel classification. Nonetheless, these early approaches remain important

contributions to MLC because they laid the foundations of label dependence ex-

ploitation and inspired several recently introduced approaches. We describe next

the main methods that have been proposed in this line of work.

4.4.1 Stacking Binary Relevance

While the classical Binary Relevance approach completely ignores the poten-

tial correlations between the labels (Rifkin and Klautau, 2004b, Tsoumakas and

Katakis, 2007), it is possible to exploit the binary classifiers predictions as addi-

tional information to learn improved classifiers in a second step. This is the main

idea behind Stacking (Godbole and Sarawagi, 2004) which replaces the original

features by the predictions, obtained after learning every label separately in a first

step. There are various ways of using the initial predictions even though none

of them has proven to be consistently superior to others. For example, binary

classifiers used in the first step can provide probabilities. Therefore, it is possible

to use either hard 0/1 predictions or probability estimations. One can also use

the predictions as additional features combined with the original ones as new in-

put to the second levels classifiers (Dembczynski et al., 2012). In the first case,

stacking can be interpreted as a regularization procedure while in the latter it can

be seen as feature expansion. Both methods have contributed to improve Binary

Relevance in terms of 0/1 subset loss L0/1 and Hamming Loss LH (Dembczynski

et al., 2012).

Chapter 4. Extreme Multilabel Classification 76

4.4.2 Classifier Chains (CC)

Classifier Chains were first introduced in (Read et al., 2009) as an improved version

of Binary Relevance exploiting the correlation between the labels by learning as

many classifiers as labels in augmented input spaces. However, conversely to

Stacking (Godbole and Sarawagi, 2004) the classifiers are trained sequentially and

each one hi(·) only uses the predictions of the classifiers trained before it (hj)1:i−1

as additional features therefore having:

hi : X × {0, 1}i−1 → [0, 1]

(x, y1, . . . , yi−1) → [0, 1]

In case the base learners are probabilistic classifiers such as logistic regression, (Dem-

bczynski et al., 2010a) have interpreted the approach described in (Read et al.,

2009) as being a simplified inference procedure of a more general approach called

Probabilistic Classifier Chains (PCC) whose inference procedure would produce a

probability for each label combination using the product rule of probability, and

hence cause an exponential complexity. PCC is a consistent method for optimizing

the zero-one subset loss L0/1. The inference procedure of PCC consist in finding

the mode of the joint distribution of the labels which is intractable unless when

the number of labels is very small. Different heuristics using beam search (Ku-

mar et al., 2012) or monte carlo sampling (Read et al., 2014) have been proposed

to reduce the complexity of PCC’s inference process. However, these methods

are still more costly than the original CC method even though they improve the

performances. Moreover, the order in which the classifiers are trained can have

an important impact on the final performances. Therefore, both (Dembczynski

et al., 2010a, Read et al., 2009) recommend to use ensemble of classifier chains

to achieve good performances and to be less sensitive to permutation considered

when training the classifiers.

Chapter 4. Extreme Multilabel Classification 77

4.4.3 Label Powerset and friends

The Label Powerset (LP) appoach (Tsoumakas and Katakis, 2007) reduces the

multilabel classification to a multiclass single label classification problem in which

the meta-classes to predict are combination of labels. The number of combination

of labels can be as large as O(2L) even though only the combinations of labels

that are present in the dataset are usually considered. The remaining number of

meta-classes is still larger than the number of labels in general. In (Dembczynski

et al., 2012), it is shown that LP is tailored for the subset zero-one loss L0/1

since predicting the optimal meta-class corresponds to predicting the mode of

the joint label distribution. Despite its good performances (mainly on the L0/1

loss), LP is not a feasible option in an extreme classification context because of its

computational burden. Several attempts such as the Rakel approach (Tsoumakas

et al., 2010) have been proposed to make LP applicable to large scale settings.

This latter ensemble method trains an LP-like classifier on several meta-classes

defined on random subsets of labels. The method is parameterized by the number

label subsets to consider and the size of these subsets. Despite Rakel’s good

performances on several benchmark datasets (Tsoumakas et al., 2010) with a lower

complexity compared to LP, its complexity is still high and does not allow its use

in an extreme classification setting.

4.5 Scalable approaches to Extreme MLC

The increasingly large output spaces in MLC problems have shifted the focus of re-

search in this topic from performance improvement via label dependence exploita-

tion (Dembczynski et al., 2012, Read et al., 2009) to the challenge of improving

the scalability of the proposed methods (Hsu et al., 2009, Tai and Lin, 2012).

More precisely, most of the recent work in extreme MLC is about deriving new

methods with reduced inference complexity while maintaining competitive perfor-

mances compared to BR, which is the classical baseline. Indeed when the number

of labels is very large, it is often reasonable to trade some accuracy for better

scalability because speed is an important factor in many real world problems.

Chapter 4. Extreme Multilabel Classification 78

The underlying idea of the most important contributions in this line of work is to

first embed the label sets into a low dimensional representation. Then, a function

is learned to predict for every instance the latent representation corresponding to

its relevant set of labels. Finally, a mapping designed according to the encoding

function is used to recover the original sets of labels from the previously predicted

low dimensional representation. This three steps procedure can be formally unified

into the general framework of learning the following composition of functions:

H : D(ê(·))

e : Y → F p

ê : X d → F p

D : F p → Y

The embedding function e is used only at training time to encode sets of labels.

At inference time, for each instance, the function H(·) is applied. That is, the

latent representation is inferred using ê and the set of relevant labels is recovered

with the decoding function D. Compared to linear time approaches such as Binary

Relevance, the complexity gains at inference can be very important because the size

of the embedding space p can be as small as O(logL). Combining the prediction

of the latent representation from the data (whose complexity is O(d logL)) with

the decoding step (O(L logL)) yields an overall inference complexity of O((L +

d) logL).

The main approaches in this line of work can be divided into two subgroups. The

methods of the first group, which we call label selection approaches, are based

on selecting F p to be a subset of Y such that p << L. The methods of the sec-

ond group, the label transformation approaches, use non trivial transformations

to project the label sets into a lower dimensional space. Conversely to the label

space pruning approaches, the components of this embedding space are not nec-

essarily interpretable. Next we describe in more details the most representative

contributions in each of these groups.

Chapter 4. Extreme Multilabel Classification 79

4.5.1 Label Selection Methods

4.5.1.1 Label Space Pruning

In extreme classification, most classes are very rare because the label distribution

usually follows power law as has been previously observed in several dataset such

as Wikipedia7. This causes sample complexity problems since for some classes,

there is not enough data to learn accurate classifiers. This observation inspires

the pruning procedure proposed in (Dekel and Shamir, 2010). The authors of this

study argue that when the number of classes grows linearly with the number of

examples (i.e L ≥ Ω(n)), and when the final loss of interest is the Hamming Loss,

then it is possible to improve the performances of the Binary Relevance classifier

by identifying and removing a set of labels that act as distractors. These labels

are identified offline using a very simple rule. In a first round, BR classifiers are

learned on a training set and their false positive (FP) and true positive (TP) rates

are evaluated on a separate validation set. Then, every classifier for which the

ratio FP/TP > (1 − γ)/γ (where γ is a parameter controlling the importance

of false positives versus false negatives and equals 1/2 for the Hamming loss)

is removed and will not be evaluated at inference time. The authors give both

theoretical and empirical evidence supporting the validity of this approach. To

cast this strategy into the previously defined framework, it suffices to consider

the pruning step as the encoding function and the decoding function to be the

identity. It is also possible to control the number of labels to remove by ranking the

classifiers according to their ratio FP/TP and considering the k smallest labels.

This approach can be applied as a first step to reduce the number of classifiers

to evaluate at inference time. If the number of labels removed in this first step

does not result in important complexity gains, more sophisticated methods such as

Principal Label Space Transformation (Tai and Lin, 2012) can be used to further

reduce the complexity.

7http://lshtc.iit.demokritos.gr/

Chapter 4. Extreme Multilabel Classification 80

4.5.1.2 Column Subset Selection Method

While (Dekel and Shamir, 2010) propose to select a subset of labels that will

be predicted at inference hence removing the other labels which are considered as

distractors, the authors of (Bi and Kwok, 2013) propose to select a subset of labels

from which the rest of labels can be reconstructed. To that end, they propose a

theoretically grounded method based on randomized sampling and building on

previous work on Column Subset Selection by (Balasubramanian and Lebanon,

2012). Given the label matrix Y ∈ {0, 1}n×L and a positive integer k, the Column

Subset Selection Problem (CSSP) consist in finding exactly k columns of Y that

span Y as much as possible. This problem is equivalent to finding an index C

with cardinality k such that ||Y −YCY
†
CY ||F is minimized (where Y † is the Moore-

Penrose pseudo-inverse of matrix Y). To solve this problem, (Bi and Kwok, 2013)

propose an efficient approximate algorithm. Given a selected subset of labels,

their corresponding binary classifiers are trained as in BR. At inference, the latent

representation h of each example is inferred (that is, the predictions of the subset of

labels previously selected) and the actual label set is recovered using the mapping

hTY †
CY . Therefore, the whole process follows the general function composition

framework we defined. The CSSP method has yielded competitive performances

on several benchmark datasets (Bi and Kwok, 2013).

4.5.2 Label Transformation Methods

4.5.2.1 Compressed Sensing

The Compressed Sensing (CS) approach to extreme MLC (Hsu et al., 2009) is

based on the assumption that one can learn to predict compressed label sets instead

of the actual labels and recover the labels accurately when the output space is

sparse. The compression is achieved by multiplying the original label matrix with

a random projection matrix satisfying the restricted isometry property (RIP) such

as gaussian or Hadamard matrices. The code size (dimensionality of the latent

space) can be as small as O(logL) in theory even though in practice, larger sizes

of the latent space are needed to achieve competitive performances. According to

Chapter 4. Extreme Multilabel Classification 81

the previously described framework, linear regressors (ê)i are learned to predict

the low dimensional representation of the data. To recover the original labels, a

non-trivial pre-image problem has to be solved using a sparse recovery algorithm

such as Orthogonal Matching Pursuit (OMP) or Lasso (Pati et al., 1993). In the

best case (when correlation decoding procedure (Hsu et al., 2009) is used), the

reconstruction’s complexity is Ω(LC logL) where C is the label cardinality. CS

is a precursor among the embedding approach and has been widely adopted as a

classical baseline. However, almost all the label transformation methods that have

been proposed recently such as principled label space transformation (Tai and Lin,

2012) achieve better performances while having a lower inference complexity for a

fixed code size. A bayesian compressed sensing method (Kapoor et al., 2012) has

been proposed recently to improve the classical compressed sensing and also to

handle missing labels. However, this method also suffers from the computational

burden of its variational inference procedure in an extreme classification setting.

4.5.2.2 Principle Label Space Transformation

Rather than using a random projection matrix for embedding the label sets into a

lower dimensional space, (Tai and Lin, 2012) use a singular value decomposition

on the label matrix (Y = UΣV ∗). This has two main benefits: first it allows

to exploit the correlations between the labels and more importantly, it naturally

yields simple reconstruction procedure conversely to compressed sensing. Indeed

the reconstruction step of the principle label space transformation (PLST) is re-

duced to simple matrix multiplication by UT projecting the embedded inputs back

to the original label space. The encoding function used by PLST results in easier

regression problems compared to random embedding of CS (Tai and Lin, 2012). It

has also been proven useful to jointly learn the regressors and the encoding of the

labels as in Canonical Correlation Analysis (CCA) (Zhang and Schneider, 2011)

and the Conditional Principle Label Space Transformation (CPLST) (Chen and

Lin, 2012). However, the improvements resulting from this latter approach are

modest and its training complexity is higher.

Chapter 4. Extreme Multilabel Classification 82

4.6 Conclusion

From the initial goal of performance improvement regardless of the methods’ infer-

ence complexity (Godbole and Sarawagi, 2004, Read et al., 2009, Tsoumakas and

Katakis, 2007)(as shown in early approaches description), the focus of research in

MLC is blossoming into inference complexity reduction through label dependence

exploitation (Chen and Lin, 2012, Dekel and Shamir, 2010, Hsu et al., 2009, Tai

and Lin, 2012) to name a few. Overall, there is no empirical evidence to decide

a clear winner between the label transformation and label selection methods. For

instance, the results presented in the recent study (Bi and Kwok, 2013) suggest

a tie between CSSP and PLST. Additionally to the embedding based approaches

previously presented, there are recent hierarchical attempts to extreme MLC. The

most notable of method in this new trend is arguably the random forest approach

presented in (Agrawal et al., 2013). In this paper the authors present a promis-

ing approach to extreme MLC with sublinear inference complexity. Their method

achieve very good performance on a bid recommendation problem and opens a

new directions in hierarchical extreme MLC.

Chapter 5

Extreme Multilabel Classification

with Bloom Filters

5.1 Introduction

In multi label classification most of the available approaches were not designed

to scale to the extreme setting. To bridge the gap between the lack of scalable

approaches and the ubiquity of extreme MLC problems some authors have pro-

posed to learn an intermediate low dimensional representation of the labels (Chen

and Lin, 2012, Hsu et al., 2009) as described in the previous chapter. Following

that line of work, we propose to encode individual labels on K-sparse bit vectors

of dimension B, where B L, and use a disjunctive encoding of label sets (i.e.

bitwise-OR of the codes of the labels that appear in the label set). Then, we learn

one binary classifier for each of the B bits of the coding vector, similarly to BR

(which corresponds to the special case K = 1 and B = L). By setting K > 1,

one can encode individual labels on far less than L bits while keeping the disjunc-

tive encoding unambiguous for a large number of label sets of small cardinality.

Compared to BR, our scheme learns only B binary classifiers instead of L, while

conserving the desirable property that the classifiers can be trained independently

and thus in parallel, making our approach suitable for large-scale problems.

83

Chapter 5. Extreme MLC with Bloom Filters 84

We propose two approaches that were inspired and motivated by Bloom filters (Bloom,

1970), a well-known space-efficient randomized data structure designed for ap-

proximate membership testing. Bloom filters use exactly the principle of encoding

objects (in our case, labels) with K-sparse vectors and encode a set with the dis-

junctive encoding of its members. The filter can be queried in order to know

whether or not a given item is present and the answer is correct up to a small

error probability. Bloom Filters have been extensively used in database manage-

ment systems and networking applications 1. The data structure is randomized

because the representative bits of each object are obtained by random hash func-

tions; under uniform probability assumptions for the encoded set and the queries,

the encoding size B of the Bloom filter is close to the information theoretic limit

for the predefined error rate.

The first method we propose (Standard Bloom Filters) is a direct application of

Bloom Filters to extreme MLC by randomly encoding the labels using a uniform

sampling procedure to chose the representative bits (non-zero bit positions) of

each label. It builds on the sparsity of the output space when the number of

labels is very large similarly to (Hsu et al., 2009). We analyze the power of

the proposed approach to reduce the complexity compared to Binary Relevance

and the potential weaknesses inherent to the decoding process of Bloom Filters.

Then we propose two decoding algorithms for this first approach. While the first

one is simple because it is the standard application of the querying procedure of

Bloom Filters, it is not robust to the potential mistakes of binary classifiers. The

second decoding procedure aims at fixing this problem by exploiting predicted

probabilities given by probabilistic binary classifiers (e.g logistic regression) in a

softer way.

The second approach, which we call Robust Bloom Filters, also aims at building

binary codes that are robust to mistakes of binary classifiers. It exploits a key

structural property of extreme MLC problems: many labels never appear together.

This property is called label clustering and is responsible for the improvements

compared to the standard approach. These improvements are twofold. First, the

encoding of “relevant” label sets are unambiguous with the disjunctive encoding.

1http://en.wikipedia.org/wiki/Bloomfilter

Chapter 5. Extreme MLC with Bloom Filters 85

label h1 h2 h3 label h1 h2 h3

�1 2 3 5 �5 1 4 6
�2 2 4 5 �6 3 5 6
�3 1 2 5 �7 3 4 5
�4 1 5 6 �8 2 5 6

{�1}
0
1
1
0
1
0

h1(�1)
h2(�1)

h3(�1)

{�3}
1
1
0
0
1
0

{�1, �3}
1
1
1
0
1
0

{�3, �4}
1
1
0
0
1
1

�8

Figure 5.1: Examples of a Bloom filter for a set L = {�1, ..., �8} with 8 ele-
ments, using three hash functions (h1, h2, h3 and 6 bits). (left) The table gives
the hash values for each class. (middle) For each class, the hash functions give
the index of the bits that are set to 1 in the 6-bit boolean vector. The examples
of the representative vectors for �1 and �3 are given. Then, the subset {�1, �3}
is built by taking the bitwise OR of the vectors of �1 and �3. (right) Example
of false positive: the representation of the subset {�3, �4} is given ; all the rep-
resentative bits the class �8 are set to 1, so the standard decoding algorithm
considers that the vector encodes the set {�3, �4, �8} rather than the intended

{�3, �4}.

Secondly, the decoding step, which recovers a label set from an encoding vector,

is robust to prediction errors in the encoding vector; for instance, for K = 2, we

prove that the number of incorrectly predicted labels is no more than twice the

number of incorrectly predicted bits.

After presenting the main features of Bloom Filters, we present the proposed

approaches to extreme MLC using Bloom Filters. Theoretical and empirical argu-

ments are provided supporting the assumptions underlying these approaches. The

chapter is concluded with experiments comparing the Bloom Filter based methods

with state of the art methods.

5.2 Background on Bloom Filters

Bloom filters (Bloom, 1970) are compact data structures for probabilistic repre-

sentation of a set in order to support membership queries (i.e. queries that ask:

Chapter 5. Extreme MLC with Bloom Filters 86

”Is element X in the set”). They have been extensively used in many domain such

as networks monitoring and database management systems. Since their inception,

various types of Bloom Filters such as counting Bloom Filters and Attenuated

Bloom Filters have been introduced for specific applications. Here we restrict our

study to classical Bloom Filters and refer the interested reader to the comprehen-

sive survey (Broder et al., 2002) and the references therein.

Let L be a set of L elements (in our case, L is the set of L possible labels). A

Bloom filter of size B uses K hash functions from L to {1, ..., B}, which we denote

hk : L → {1, ..., B} for k ∈ {1, ..., K}. These hash functions are used to represent

each � ∈ L by a bit vector of size B with at most K non-zero bits, where each hash

function gives the index of a nonzero bit in the bit vector (all other bits are set

to zero). Then, the Bloom filter encodes a subset y ⊆ L by a bit vector of size B,

defined by the bitwise OR of the bit vectors of the elements of y. Figure 5.2 (left

and middle) gives an example of a Bloom filter and of the encoding step, where

subsets of a set of 8 elements are represented on 6 bits, using 3 hash functions.

Given a bit vector of size B that encodes an (unknown) subset y′ ⊆ L, the Bloom
filter can be queried to know if a specific element � ∈ L belongs to y′: the answer

is positive if all the indexes hk(�) are set to 1 in the bit vector of y′, and negative

otherwise. When queried, a Bloom filter always answers positively if � ∈ y′.

However, the encoding of the subsets of L by Bloom filters is not injective, since it

encodes 2L elements on B < L bits; it is thus a lossy compression scheme. The loss

of information translates into a possibility of false positive answers: when queried

with an element �, the Bloom filter may answer positively even though � �∈ y′.

Figure 5.2 (right) gives an example of this situation.

Assuming random subsets of fixed size C, random query elements and perfect

hash functions, the false positive rate of a Bloom filter behaves asymmptotically

like (1/2)K when the number of hash functions K is equal to B
C
ln 2 (see e.g.

(Christensen et al., 2010)). This error rate is, up to a multiplicative factor of

1/ ln(2), the information theoretic limit for a lossy compression scheme using B

bits for encoding subsets of size C of a set of size L � C (Carter et al., 1978).

Since the error rate is independent of L and increases exponentially fast with C

for fixed B, the asymptotic rate suggests that Bloom filters are most efficient for

Chapter 5. Extreme MLC with Bloom Filters 87

encoding small subsets of a large set. For MLC, they should then be a method

of choice for datasets when L is large and the label cardinality is relatively small,

which is the usual situation in MLC datasets with a large number of labels. A

detailed discussion on the achievable compression ratio in the context of MLC is

presented in subsection 5.3.2.

5.3 Standard Bloom Filters for Multilabel Clas-

sification

As a reminder, the problem of multilabel classification can be described as follows:

given a set of labels L, one has to learn a prediction function g which, to each

possible input x, predicts a subset g(x) = ŷ of L. Learning is carried out on

a training set ((x1, y1), ..., (xn, yn)) of inputs for which the desired label sets are

known. The basic principle of our approach is to encode each label set y on a bit

vector of size B, which we denote by e(y) = (e1(y) , ..., eB(y)) ∈ {0, 1}B. Learning
is carried out by (independently) training B binary classifiers ê1, ..., êB, where

each êj is trained on ((x1, ej(y1)), ..., (xn, ej(yn))), so that given a test input x, we

can predict the encoding of its label set by ê(x) = (ê1(x) , ..., êB(x)). The final

prediction g(x) is obtained by decoding ê(x).

The basic principle described above is fairly common in MLC, since it takes Binary

Relevance as a special case: BR consists in a disjunctive encoding of label sets (thus

using B = L bits), and the decoder is the inverse of the encoder since the latter is

one-to-one. Our approach is intended to encode the label sets on B L bits, so

that the computational cost of training and testing are L/B times lower for our

approach than for BR. To that end, we use the encoding/decoding procedures of

Bloom filters for label sets, which are at the same time simple and computationally

efficient. In the next subsection 5.3.1, we describe the encoding and decoding steps

of the standard Bloom Filter approach to MLC, before discussing the complexity

properties (relatively to the features of the problem at hand such as number of

labels, label cardinality, etc) of the proposed method in the subsection 5.3.2

Chapter 5. Extreme MLC with Bloom Filters 88

label h1 h2 h3 label h1 h2 h3

�1 2 3 5 �5 1 4 6
�2 2 4 5 �6 3 5 6
�3 1 2 5 �7 3 4 5
�4 1 5 6 �8 2 5 6

e({�1})
0
1
1
0
1
0

h1(�1)
h2(�1)

h3(�1)

e({�4})
1
0
1
0
1
0

e({�1, �3, �4})
= e({�1, �4})

1
1
1
0
1
0

�3

example: (x, {�1, �4})
c(x) = d(ê(x)) = {�3}

1
1
0
0
1
0

ê1(x)
ê2(x)
ê3(x)
ê4(x)
ê5(x)
ê6(x)

Figure 5.2: Examples of a Bloom filter for a set L = {�1, ..., �8} with 8 el-
ements, using 3 hash functions and 6 bits). (left) The table gives the hash
values for each label. (middle-left) For each label, the hash functions give the
index of the bits that are set to 1 in the 6-bit boolean vector. The examples
of the encodings for {�1} and {�4} are given. (middle-right) Example of a false
positive: the representation of the subset {�1, �4} includes all the representative
bits of label �3 so that is �3 would be decoded erroneously. (right) Example of
propagation of errors: a single erroneous bit in the label set encoding, together

with a false positive, leads to three label errors in the final prediction.

Algorithm 3: Standard decoding algorithm.

Input : Test sample x;
Hash functions h1, ..., hK ;
Binary classifiers (êj)

B
j=1;

Output: Label set ŷ ⊂ L;
begin

ŷ ← ∅;
for � ∈ L do

s ←
∑K

k=1 êhk(�)(x);
if s = K then

ŷ ← ŷ ∪ {�}

5.3.1 Encoding and Decoding

The basic principle of Bloom filters leads to an immediate training and inference

algorithm for MLC. Indeed, the querying principle of the Bloom filter makes it

possible to query any bit vector of size B, even if it is not a valid encoding of a

Chapter 5. Extreme MLC with Bloom Filters 89

Algorithm 4: Correlation decoding algorithm.

Input : Test sample x;
Hash functions h1, ..., hK ;
Probability estimators (êj)

B
j=1;

Thresholds (t�)�∈L;
Output: Label set ŷ ⊂ L;
begin

ŷ ← ∅;
for � ∈ L do

s ←
∑K

k=1 êhk(�)(x);
if s > t� then

ŷ ← ŷ ∪ {�}

subset of L. Thus, training can be performed by learning a binary classifier for each

bit of the filter, and decoding can be performed by querying the predicted Bloom

filter for each possible label. The standard decoding is described in Algorithm 3.

This way of decoding may have the undesirable behavior that among the (at most)

K bits that should be set to 1 for one class, a single error in ê(x) may result in

the class not being predicted. Of course, this behavior allows to control the false

positive rate of the Bloom filter, and is thus mostly intended. However, to get a

better control on the final precision/recall of our approach, we propose a “soft”

decoding method inspired from the loss based decoding proposed in (Allwein et al.,

2001), which we call correlation decoding : instead of learning binary classifiers, we

learn probability estimators for each bit of the Bloom filter (e.g. using logistic

regression) and assign to each label the sum of the predicted posterior probabil-

ities of its bit vector, instead of the sum of the binary decisions. Then, a label

is added to the label set if this sum is greater than a threshold that is tuned (on

the validation set, with the other hyperparameters) for each label. Note that the

additional computational complexity of tuning a per-label decision threshold is

negligible compared to learning the classifiers/probability estimators. This pro-

cedure is described in Algorithm4 Learning probability estimators also has the

advantage of providing a ranking of the labels; even though our approach is not

designed for ranking, we use this property in the experimental section to provide

comparisons to the compressed sensing approach.

Chapter 5. Extreme MLC with Bloom Filters 90

5.3.2 Computational Complexity

The overall computational cost of training is the sum of the costs of (1: preprocess-

ing) encoding the label sets and (2: training) learning B binary classifiers. The

preprocessing cost for n examples is in O(nLK) with a small hidden constant.

This is usually negligible compared to the training cost, which is at least O(ndB)

(with large hidden constants) for learning linear classifiers in dimension d, even

if B LK. For testing on a single input, the computational cost is the sum

of (1) computing the predictions (O(dB) for linear classifiers) and (2) decoding

(O(LK)), which once again is usually negligible compared to the cost of the first

step.

Thus, compared to Binary Relevance whose training and inference complexity are

in O(ndL) and O(dL), the computational gain of our approach both for train-

ing and for testing is roughly a multiplicative factor of B/L. Compared to the

compressed sensing approach of (Hsu et al., 2009), for which the training cost

for linear functions is about O(ndC lnL) (with unknown hidden constant) and

testing is at least in O(dC lnL) for predicting the encoding vector and at least

Ω(LC lnL) for decoding 2. The relative complexity of training and testing be-

tween their approach and ours depends on how B compares to C lnL (up to a

multiplicative factor), leaving aside that the decoding step is dramatically faster

in our approach. We now give some theoretical and practical arguments that B

indeed grows as O(C lnL).

Criterion under study As any lossy compression scheme, the parameters

(B and K) should be chosen such that the loss of information, which we call

unrecoverable error (the Hamming loss incurred by the false positive rate of the

Bloom filter), is negligible compared to other sources of errors. Thus, given a

probability measure P on the possible label sets (e.g. the marginal distribution of

the label sets), the admissible region for B and K is such that the false positive

2This is the complexity of their simplest “correlation decoding”, which consists in a multipli-
cation of an L×O(C lnL) matrix (the transpose of the coding matrix) and a vector of dimension
O(C lnL) (the predicted encoding). The complexity is much higher with more sophisticated de-
coding algorithms such as orthogonal matching pursuit.

Chapter 5. Extreme MLC with Bloom Filters 91

(FP) rate fp(B,P, K) of the Bloom filter is negligible compared to the overall

prediction error. In practice, the optimal Hamming loss is usually roughly equal

to some fraction of the label density C/L. This observation can easily be explained,

since (1) the label density is the “baseline” Hamming loss, i.e. the Hamming loss

obtained for the trivial classifier that never predicts any label, and (2) a Hamming

loss of ≈ 10% of the label density already corresponds to very high precision/recall

values because the vast majority of labels appear very rarely. The admissible values

for B and K of our approach should then follow

fp(B,P, K) < 2r
C

L
(5.1)

for some r < 0 which defines how much the FP rate should be small compared to

the label density.

Asymptotic Behavior If we assume that all label sets have the same size

(equal to the label cardinality C) and denoting UC the uniform probability over

label sets of size C, the asymptotic FP rate (i.e. when B � 1 and B � C) of

Bloom filters is achieved for K = B
N
ln 2 and is given by (see e.g. (Carter et al.,

1978, Christensen et al., 2010)):

fp0(B,UC , K =
B

N
ln 2) = (1/2)K . (5.2)

According to this equation, criterion (5.1) is satisfied when B > C∗
(

r
ln(2)

+
ln L

C

ln(2)2

)
.

We can thus expect the asymptotic behavior of our method to accept values of

B in O(C ln L
C
) in favorable cases, and to lead to exponential gains in terms of

computational resources compared to binary relevance, matching the encoding size

of the compressed sensing approach (Hsu et al., 2009).

Non-Asymptotic Considerations On real datasets, such as the RCV1-industry

dataset on which we perform experiments in the next section (C = 1.3 and

C = 303, see Table 5.1 for more details), Equation (5.2) gives B ≈ 24 for r = −5

(meaning that we want the FP rate to be about 2−5 ≈ 3% of the label density).

This is a wide underestimation of the reasonable values of B on that dataset,

Chapter 5. Extreme MLC with Bloom Filters 92

mainly for two reasons: First, the formula for the FP rates for such a small B

is overoptimistic. Second (and more importantly) the size of the label sets are

somewhat “heavy tailed”: a non-negligible proportion of the examples have label

sets of size > 10, so the asymptotic assumption B � C is far from true on a large

portion of the dataset.

In order to give a more realistic theoretical approximation and avoid the two

drawbacks above, we consider another formula for the probability of the FP rate,

using the exact formula (for fixed B, C and K) given in (Christensen et al., 2010,

Equation 17):

fp1(B,C,K) =
L∑

p=1

Q(KC,B, p)
(p

B

)K

(5.3)

where Q(a, b, c) =
∑c

q=1(−1)c−q(q
b
)a
(
b

c

)(
c

q

)
. To account for the full distribution

in the label set sizes, we can then use probabilities pc (estimated on the training

set) that the label set of a random example has cardinality c on a particular

dataset:

fp(B,P, K) =
L∑

c=1

pcfp1(B, c,K) , where P =
L∑

c=1

pcUc . (5.4)

Equation (5.4) gives a distribution-dependent formula for the theoretical FP rate,

assuming that label sets of a given size are drawn uniformly at random. When P is

concentrated around its average and B is large enough, (5.4) is well approximated

by (5.2) because the asymptotic formula is itself a good approximation of (5.3)

(Christensen et al., 2010); more generally, numerical calculations easily show that

for fixed P and optimal K, the FP rate given by (5.3) decreases exponentially fast

with B for natural distributions P (e.g. power laws). This refined version still

allows us to argue that B ∈ O(C lnL) is the correct order of magnitude for large

L and small C.

Simulations on Real Datasets In order to assess that the theoretical calcu-

lations are meaningful in practice, we performed simulations on the two datasets

used in our experiments: RCV1-Industries (C = 1.3, L = 303) and Wikipedia1k

(C = 1.11, L = 1000). These datasets are detailed in the next section. Figure

5.3 shows the distributions on these two datasets of the label set size. One can

Chapter 5. Extreme MLC with Bloom Filters 93

0 5 10 15 20 25 30

0

5

10

15

c =label set size

lo
g
2
(1

+
p c

∗
#
ex

a
m
pl
es
)

0 2 4 6 8

0

5

10

15

c =label set size

Figure 5.3: Distribution (in log2 scale) of the label set sizes on RCV1-
Industries (left) and on Wikipedia1k (right). pc is the probability of having

an instance whose label set size is equal to c.

20 40 60 80 100
−6

−4

−2

0

2

B

lo
g
2
(
L C
m
in

K
f
p(
B
,P

,K
))

Eq. 5.2 (P = UC)
Eq. 5.4 (pc given by Figure 5.3)

real

10 20 30 40 50
−8

−6

−4

−2

0

2

4

B

Eq. 5.2
Eq. 5.4
real

Figure 5.4: Theoretical and real unrecoverable Hamming loss (i.e. false posi-
tive rate) of the Bloom filter as a function of the size of the filter B (optimal K)
on RCV1-Industries (left) and Wikipedia1k (right). Errors are printed in log2
scale relatively to the label density (the y-axis corresponds to the parameter r

of Eq. 5.1).

see that while the label set size decreases exponentially fast on Wikipedia1k, the

distribution on RCV1-Industries is much more heavy tailed.

Figure 5.4 shows the unrecoverable Hamming loss (i.e. the FP rate) of the Bloom

filters on these datasets, as a function of B (the optimal value of K has been

chosen for each B), both according to our theoretical approximations, and through

direct simulation. We can first observe that while the asymptotic formula (5.2)

dramatically underestimates the real FP rate, the refined formula (5.4) is very

close to the real value (the difference between the two is because label sets of a

given size are far from sampled uniformly in reality, which actually seems beneficial

Chapter 5. Extreme MLC with Bloom Filters 94

on average in terms of FP rate). In the end, we can clearly observe that both the

real and theoretical FP rates decrease exponentially fast with B, but also see that

the RCV1-Industries dataset may actually need a Bloom filter as large (or maybe

even larger) than Wikipedia1k. The reason is that the value of B in our approach

has a logarithmic dependency in the number of labels , but a linear dependency

with respect to the label set sizes, which tend to be larger on RCV1-Industries

than on Wikipedia1k.

5.4 Extreme MLC with Robust Bloom Filters

The encoding and decoding schemes of BFs are appealing to define the encoder

e and the decoder D in a reduction of MLC to binary classification, because as

shown in section 5.5 the use of Bloom filters with random hash functions for MLC

(denoted S-BF for Standard BF hereafter) leads to rather good results in practice.

Nonetheless, there is much room for improvement with respect to the standard

approach above. The distribution of label sets in usual MLC datasets is far from

uniform. This is an opportunity to make sure that false positive answers only

occur in cases that are detectable from the observed distribution of label sets: if

y is a label set and � �∈ y is a false positive given e(y), � can be detected as a

false positive if we know that � never (or rarely) appears together with the labels

in y. Second and more importantly, the decoding approach of BFs is far from

robust to errors in the predicted representation. Indeed, BFs are able to encode

subsets on B L bits because each bit is representative for several labels. In the

context of MLC, the consequence is that any single bit incorrectly predicted may

include in (or exclude from) the predicted label set all the labels for which it is

representative. Figure 5.2 (right) gives an example of the situation, where a single

error in the predicted encoding, added with a false positive, results in 3 errors in

the final prediction. Our main contribution, which we detail in the next section,

is to use the non-uniform distribution of label sets to design the hash functions

and a decoding algorithm to make sure that any incorrectly predicted bit has a

limited impact on the predicted label set.

Chapter 5. Extreme MLC with Bloom Filters 95

We present a new method that we call Robust Bloom Filters (R-BF). It improves

over random hash functions by relying on a structural feature of the label sets in

MLC datasets: many labels are never observed in the same target set, or co-occur

with a probability that is small enough to be neglected. We first formalize the

structural feature we use, which is a notion of mutually exclusive clusters of labels,

then we describe the hash functions and the robust decoding algorithm that we

propose.

5.4.1 Label Clustering

The strict formal property on which our approach is based is the following: given

a partition of L composed of P subsets L1, ...,LP of L, we say that (L1, ...,LP) are

mutually exclusive clusters if no target label set contains labels from more than

one of each Lp, p = 1..P , or, equivalently, if the following condition holds:

∀p ∈ {1, ..., P},Py∼DY

((
y ∩ Lp �= ∅

)
and

(
y ∩

⋃
p′ =p

Lp′ �= ∅
))

= 0 . (5.5)

where DY is the marginal distribution over label sets. For the disjunctive encoding

of Bloom filters, this assumption implies that if we design the hash functions such

that the false positives for a label set y belong to a cluster that is mutually exclusive

with (at least one) label in y, then the decoding step can detect and correct it. To

that end, it is sufficient to ensure that for each bit of the Bloom filter, all the labels

for which this bit is representative belong to mutually exclusive clusters. This will

lead us to a simple two-step decoding algorithm (1) cluster identification, (2) label

set prediction in the cluster. In terms of compression ratio B
L
, we can directly see

that the more mutually exclusive clusters, the more labels can share a single bit

of the Bloom filter. Thus, more (balanced) mutually exclusive clusters will result

in smaller encoding vectors B, making our method more efficient overall.

This notion of mutually exclusive clusters is much stronger than our basic obser-

vation that some pair of labels rarely or never co-occur with each other, and in

practice it may be difficult to find a partition of L into mutually exclusive clusters

because the co-occurrence graph of labels is connected. However, after removing

Chapter 5. Extreme MLC with Bloom Filters 96

Figure 5.5: (a)

Figure 5.6: (b)

Figure 5.7: (c) Figure 5.8: (d)

Figure 5.9: Illustration of the label clustering assumption in a practical sit-
uation: (a) The co-occurrence graph in which the labels are the nodes and
the edges represent co-occurrence relations between the labels. In real world
problems, the co-occurrence graph is a single connected component. (b) Even
though the graph is connected, clusters of labels can be identified using a graph
clustering algorithm. (c) Using the identified clusters as a partition of the set
of labels results in unrecoverable loss represented by the edges in red. labels
represented by nodes linked with red edges will never be predicted together. (d)
The labels that are responsible for most of the unrecoverable loss correspond to
the nodes which have the highest degree in the co-occurrence graph (nodes in
red). We call them hubs. Removing these labels and treating them separately

leaves the rest of labels approximately partitioned.

Chapter 5. Extreme MLC with Bloom Filters 97

the few most central labels (which we call hubs, and in practice roughly correspond

to the most frequent labels), the labels can be clustered into (almost) mutually

exclusive labels using a standard clustering algorithm for weighted graphs. This

process is illustrated in Figure 5.9.

In our approach, the hubs are dealt with outside the Bloom filter, with a standard

binary relevance scheme. The prediction for the remaining labels is then con-

strained to predict labels from at most one of the clusters. From the point of view

of prediction performance, we loose the possibility of predicting arbitrary label

sets, but gain the possibility of correcting a non-negligible part of the incorrectly

predicted bits. As we shall see in the experiments, the trade-off is very favorable.

We would like to note at this point that dealing with the hubs or the most frequent

labels with binary relevance may not particularly be a drawback of our approach:

the occurrence probabilities of the labels is long-tailed, and the first few labels

may be sufficiently important to deserve a special treatment. What really needs

to be compressed is the large set of labels that occur rarely.

To find the label clustering, we first build the co-occurrence graph and remove

the hubs using the degree centrality measure. The remaining labels are then clus-

tered using Louvain algorithm (Blondel et al., 2008) which is a popular community

detection algorithm widely used for social network analysis because of its scala-

bility. It allows to find communities in graphs with thousands of nodes in only

few seconds. To control the number of clusters, a maximum size is fixed and

larger clusters are recursively clustered until they reach the desired size. Finally,

to obtain (almost) balanced clusters, the smallest clusters are merged. Both the

number of hubs and the cluster size are parameters of the algorithm, and, in the

experiments, we show it is possible to choose them before training at negligible

computational cost.

5.4.2 Encoding and decoding

From now on, we assume that we have access to a partition of L into mutually

exclusive clusters (in practice, this corresponds to the labels that remain after

removal of the hubs).

Chapter 5. Extreme MLC with Bloom Filters 98

5.4.2.1 Encoding and Hash functions

Given the parameter K, constructing K-sparse encodings follows two conditions

that allow cluster-wise unambiguity encoding and uniqueness assignment of binary

codes:

1. two labels from the same cluster cannot share any representative bit;

2. two labels from different clusters can share at most K−1 representative bits.

Finding an encoding that satisfies the conditions above is not difficult if we con-

sider, for each label, the set of its representative bits. In the rest of the paragraph,

we say that a bit of the Bloom filter “is used for the encoding of a label” when

this bit is a representative bit of the label. If the bit “is not used for the encoding

of a label”, then it cannot be a representative bit of the label.

Let us consider the P mutually exclusive label clusters, and denote by R the size

of the largest cluster. To satisfy Condition 1., we find an encoding on B = R.Q

bits for Q ≥ K and P ≤
(
Q
K

)
as follows. For a given r ∈ {1, ..., R}, the r-th batch

of Q successive bits (i.e. the bits of index (r − 1)Q + 1, (r − 1)Q + 2, ..., rQ) is

used only for the encoding of the r-th label of each cluster. That way, each batch

of Q bits is used for the encoding of a single label per cluster (enforcing the first

condition) but can be used for the encoding of P labels overall. For the Condition

2., we notice that given a batch of Q bits, there are
(
Q
K

)
different subsets of K

bits. We then injectively map the (at most) P labels to the subsets of size K to

define the K representative bits of these labels. In the end, with a Bloom filter of

size B = R.Q, we have K-sparse encodings that satisfy the two conditions above

for L ≤ R.
(
Q
K

)
labels partitioned into P ≤

(
Q
K

)
mutually exclusive clusters of size

at most R.

Figure 5.10 gives an example of such an encoding. In the end, the scheme is most

efficient (in terms of the compression ratio B/L) when the clusters are perfectly

balanced and when P is exactly equal to
(
Q
K

)
for some Q. For instance, for K = 2

that we use in our experiments, if P = Q(Q+1)
2

for some integer Q, and if the

Chapter 5. Extreme MLC with Bloom Filters 99

bit representative bit representative
index for labels index for labels

1 {1, 2, 3, 4, 5} 7 {16, 17, 18, 19, 20}
2 {1, 6, 7, 8, 9} 8 {16, 21, 22, 23, 24}
3 {2, 6, 10, 11, 12} 9 {17, 21, 25, 26, 27}
4 {3, 7, 10, 13, 14} 10 {18, 22, 25, 28, 29}
5 {4, 8, 11, 13, 15} 11 {19, 23, 26, 28, 30}
6 {5, 9, 12, 14, 15} 12 {20, 24, 27, 29, 30}

cluster labels in cluster labels in
index cluster index cluster
1 {1, 15} 9 {9, 23}
2 {2, 16} 10 {10, 24}
3 {3, 17} 11 {11, 25}
4 {4, 18} 12 {12, 26}
5 {5, 19} 13 {13, 27}
6 {6, 20} 14 {14, 28}
7 {7, 21} 15 {15, 29}
8 {8, 22}

Figure 5.10: Representative bits for 30 labels partitioned into P = 15 mutually
exclusive label clusters of size R = 2, using K = 2 representative bits per label
and batches of Q = 6 bits. The table on the right gives the label clustering.
The injective mapping between labels and subsets of bits is defined by g :
� �→ {g1(�) = (1 + �)/6, g2(�) = 1 + � mod 6} for � ∈ {1, ..., 15} and, for

� ∈ {15, ..., 30}, it is defined by � �→ {(6 + g1(�− 15), 6 + g1(�− 15)}.

clusters are almost perfectly balanced, then B/L ≈
√

2/P . The ratio becomes

more and more favorable as both Q increases and K increases up to Q/2, but

the number of clusters P must also be large. Thus, the method should be most

efficient on datasets with a very large number of labels, assuming that P increases

with L in practice.

5.4.2.2 Decoding and Robustness

We now present the decoding algorithm, followed by a theoretical guarantee that

each incorrectly predicted bit in the Bloom filter cannot imply more than 2 incor-

rectly predicted labels.

Chapter 5. Extreme MLC with Bloom Filters 100

Given an example x and its predicted encoding ê(x), the predicted label set d(ê(x))

is computed with the following two-step process, in which we say that a bit is

“representative of one cluster” if it is a representative bit of one label in the

cluster:

a. (Cluster Identification) For each cluster Lp, compute its cluster score sp

defined as the number of its representative bits that are set to 1 in ê(x).

Choose Lp̂ for p̂ ∈ argmax
p∈{1,...,P}

sp;

b. (Label Set Prediction) For each label � ∈ Lp̂, let s
′
� be the number of repre-

sentative bits of � set to 1 in ê(x); add � to d(ê(x)) with probability
s′�
K
.

In case of ties in the cluster identification, the tie-breaking rule can be arbitrary.

For instance, in our experiments, we use logistic regression as base learners for

binary classifiers, so we have access to posterior probabilities of being 1 for each

bit of the Bloom filter. In case of ties in the cluster identification, we restrict our

attention to the clusters that maximize the cluster score, and we recompute their

cluster scores using the posterior probabilities instead of the binary decision. The

cluster which maximizes the new cluster score is chosen. The choice of a random-

ized prediction for the labels avoids a single incorrectly predicted bit to result in

too many incorrectly predicted labels. The robustness of the encoding/decoding

scheme is proved below:

Theorem 5.1. Let the label set L , and let (L1, ...,LP) be a partition of L satisfying

(5.5). Assume that the encoding function satisfies Conditions 1. and 2., and that

decoding is performed in the two-step process a.-b. Then, using the definitions of

HL and HB, we have:

HL(d ◦ ê) ≤ 2B

L
HB(ê)

for a K-sparse encoding, where the expectation in HL is also taken over the ran-

domized predictions.

Proof: Let (x, y) be an example. We compare the expected number of in-

correctly predicted labels HL(y, d(ê(x))) = E
[
|d(ê(x))∆ y|

]
(expectation taken

Chapter 5. Extreme MLC with Bloom Filters 101

over the randomized prediction) and the number of incorrectly predicted bits

HB(ê(x) , e(y)) =
∑B

j=1 1{êj(x)=ej(y)}. Let us denote by p∗ the index of the cluster

in which y is included, and p̂ the index of the cluster chosen in step a. We consider

the two following cases:

Case 1 p̂ = p∗: if the cluster is correctly identified then each incorrectly predicted bit that

is representative for the cluster costs 1
K

in HL(y, d(ê(x))). All other bits do

not matter. We thus have HL(y, d(ê(x))) ≤ 1
K
HB(ê(x) , e(y)).

Case 2 p̂ �= p∗: If the cluster is not correctly identified, then HL(y, d(ê(x))) is the sum of

(1) the number of labels that should be predicted but are not (|y|), and

(2) the labels that are in the predicted label set but that should not. To

bound the ratio HL(y,d(ê(x)))
HB(ê(x),e(y))

, we first notice that there are at least as much

representative bits predicted as 1 for Lp̂ than for Lp∗ . Since each label of

Lp̂ shares at most K − 1 representative bits with a label of Lp∗ , there are at

least |y| incorrect bits. Moreover, the maximum contribution to labels pre-

dicted in the incorrect cluster by correctly predicted bits is at most K−1
K

|y|.
Each additional contribution of 1

K
in HL(y, d(ê(x))) comes from a bit that is

incorrectly predicted to 1 instead of 0 (and is representative for Lp̂). Let us

denote by k the number of such contributions. Then, the most defavorable

ratio HL(y,d(ê(x)))
HB(ê(x),e(y))

is smaller than max
k≥0

k
K
+|y|(1+K−1

K
)

max(|y|,k) =
|y|
K

+|y|(1+K−1
K

)

|y| = 2.

Taking the expectation over (x, y) completes the proof (B
L
comes from normaliza-

tion factors). �

5.5 Experiments

We first describe the datasets and the baselines to which we compare our work,

then we investigate the behaviour of BF methods. Finally we report comparative

results with state of the art baselines.

Chapter 5. Extreme MLC with Bloom Filters 102

5.5.1 Datasets

We conducted experiments on the two following large scale real world datasets.

RCV-Industries is a subset of the widely used RCV dataset which only con-

siders the industry categories. We used the first testing set file from the RCV1

site instead of the original training set since it is larger. The original RCV labels

are organized as a hierarchy, here we consider leaf categories for prediction and

hence reduce the number of labels to 303. We use TF/IDF features and normalize

the vectors to have unity norm. This procedure has been proven to work well on

text classification.

Wikipedia1k is a subsample of the wikipedia dataset release of the 2012 large

scale hierarchical text classification challenge3. In the original dataset, roughly

10% of labels represent more than 60% of the samples and most the labels are not

enough represented to allow learning accurate classifiers. We built a new dataset

by retaining 1000 of the most represented labels. The features are originally word

counts, again we converted the data to TF/IDF representation and normalized

each data to have unity norm.

For both datasets, the testing and the validation sets have the same size while the

training set is twice the size of the test set. Detailed statistics describing the main

features of the datasets are presented in Table 5.1. Both datasets are publicly

available online4.

5.5.2 Evaluation metrics

We define here our few evaluation metrics using notations of section 5.3. We

consider a dataset D = {(x1, y1), ..., (xn, yn)}m where ∀n, yn ⊂ L. We note g(x) ⊂
L the output of the multilabel classifier g for an input sample x. The metrics are

then defined according to (∆ is to the symmetric difference between sets):

3http://lshtc.iit.demokritos.gr/
4http://mulan.sourceforge.net/datasets.html

Chapter 5. Extreme MLC with Bloom Filters 103

Table 5.1: Summary Statistics of the Datasets Used in the Experiments.

Statistics RCV-Industries Wikipedia-1K
Nb. Training examples 36167 55265
Nb. Testing examples 18084 27627
Nb. Validation examples 18084 27626
Nb. features 47236 346299
Nb. label sets 4470 47687
Nb. labels 303 1000
Label cardinality 1.3 1.11

HammingLoss(D, g) =
1

n

n∑
i=1

|g(xi)∆yi|
L

Precision(D, g) =

∑n
i=1 |g(xi) ∩ yi|∑n

i=1 |g(xi)|

Recall(D, g) =

∑n
i=1 |g(xi) ∩ yi|∑n

i=1 |yi|

In addition we use F measures. The micro F measure (m-F1) is defined as:

microF (D, g) =
2× Precision(D, g)×Recall(D, g)

Precision(D, g) +Recall(D, g)

At last the macro F-measure (M-F1) is defined as the mean of the standard F

measure of binary classifiers for all labels.

5.5.3 Baselines and experimental setup

We compared the three bloom filter (BF) strategies (standard Bloom Filter, stan-

dard Bloom Filter with correlation decoding and Robust Bloom Filters) to binary

relevance (BR) and to three of the most notable approaches for dealing with large

scale problems. The standard Bloom Filters strategies are trained similarly, but a

different decoding method (and possibly different hyperparameters) is used. For

BF-SD (standard decoding), Algorithm 3 is used to decode the predicted Bloom

filter. Algorithm 4 is used in BF-CD (correlation decoding).

Chapter 5. Extreme MLC with Bloom Filters 104

We remind the baselines used in this experimental study and previously described

in the previous chapter. The first approach, which we name BR-Dekel, has been

proposed by Dekel et al. in Dekel and Shamir (2010) to account for the fact that

when the number of labels is very large many labels cannot be predicted accurately

because there are not enough positive samples. BR-Dekel consists in first training

a BR classifier, and then in applying a post-processing procedure that prunes out

these noisy labels after having identified them using a validation set. Pruning

means here to take the decision of never predicting a label, and thus to remove the

corresponding classifier at testing time. In case one is interested in optimizing the

hamming loss, the pruning rule is to eliminate any label for which the probability

of a false positive (PFP) is smaller than the probability of a true positive (PTP).

To fairly compare this approach to BF we operate as follows. Given a BF filter size

equal to B we rank the labels based on the the ratio PTP/PFP and choose the

top B labels only at inference. We use BR-Dekel as a baseline for hamming loss

performance. Note that while reducing the inference complexity, this approach

still has a linear complexity with respect to the number of labels in training.

The second baseline is the Compressed Sensing method (CS)(Hsu et al., 2009)

which reduces the computational complexity by projecting the sets of labels on

a low dimensional space using random matrix such as a Hadamard matrix. Af-

ter learning regressors to predict the low dimensional representation, inference

consists in solving a pre-image problem for each input, using a sparse recovery

algorithm such as orthogonal matching pursuit (OMP) or Lasso. However, a pa-

rameter representing the number of non-zero elements to be recovered has to be

passed to that algorithm, which makes this method unsuitable for Hamming loss

optimization. It can however be evaluated in terms of precision-at-k, using the

ranked list of outputs of the sparse recovery algorithm. In our experiments, we

use OMP for decoding in our experiments and call this method CS-OMP.

As a third baseline we use the Principle Label Space Transformation method

(PLST) which is based on SVD for dimensionality reduction rather than a random

projection. Also, their is no pre-image problem to solve for recovering the original

labels after predicting the low dimensional representation. PLST can exploit cor-

relations between labels, and take classification decisions. However, this approach

Chapter 5. Extreme MLC with Bloom Filters 105

is purely heuristic, and no theoretical guarantee is given.

All the methods under investigation here involve training binary classifiers or re-

gression functions. We used the Liblinear5 implementation of logistic regression

as base binary classifier. The hyperparameters for all methods were tuned on the

validation set. This corresponds to regularization parameters for each classifier

in BR and our method, the number of hash functions for all BF approaches, the

thresholds for BF-CD, the regularization factor and the computation of TP/FP

rates for BR-Dekel, and the (L2-)regularization factor of the ridge regressor for

CS-OMP. Hyperparameters were selected to optimize the Hamming loss for all

methods, except for CS-OMP for which precision@10 was used (the OMP sparsity

parameter was set accordingly).

5.5.4 Parameter selection for Standard Bloom Filters

We first provide preliminary results that give some insights on the behaviour of

the standard BF methods and allow to understand how the method behaves with

repect to the number of hash functions K and to the size of Bloom filters B.

First we compare the behaviour of BF-SD and of BF-CD on the Wikipdia dataset.

Table 5.2 reports the Hamming loss, Precision and Recall as a function of the

number of hash functions K, for B fixed to 100. These results suggest that, B

remaining fixed, there is an optimal tradeoff of K. As may be seen when K is

small BF-SD gets a lower precision together with a higher recall. As K increases,

the probability for predicting a label mechanically descreases (because the label is

not predicted as soon as at least one of the corresponding K classifier incorrectly

predicts 0), which makes the recall decrease and the precision increase. For BF-CD,

the decoding strategy (i.e. the per-label thresholds) is optimized for minimizing

the Hamming loss, and there are possibly several ways to achieve the objective.

As a result precision does not steadily increase with K nor does the recall steadily

decrease with K. Yet, tuning the decoding process as in BF-CD makes it possible

to reach much better overall in most cases. A similar behavior of BF-CD/BF-SD

with respect to K has been observed with all values of B.

5http://www.csie.ntu.edu.tw/ cjlin/liblinear/

Chapter 5. Extreme MLC with Bloom Filters 106

Table 5.2: Comparison in (%) of Hamming Loss (HL), Precision (Prec.) and
Recall (Rec.) of the two BF methods as a function of K on the Wikipedia

dataset with filter size of 100.

K 2 3 4 6 8 9 10

BF-SD
HL 0.0848 0.0802 0.0818 0.0852 0.0877 0.0886 0.0889
Prec. 75.17 91.04 92.73 93.26 93.85 93.88 94.10
Rec. 35.24 30.80 28.58 25.00 22.48 21.61 21.23

BF-CD
HL 0.0980 0.0809 0.0797 0.0790 0.0791 0.0779 0.0784
Prec. 61.79 89.75 81.70 82.49 82.32 86.53 82.95
Rec. 30.04 30.35 36.09 36.29 36.30 35.12 36.67

50 100 150 200
0.2

0.25

0.3

0.35

0.4

0.45

B

H
am

m
in
g
L
os
s

K = 2
K = 3
K = 5

2 3 4 5 6
0.2

0.25

0.3

0.35

0.4

0.45

K

B = 60
B = 75
B = 200

Figure 5.11: (left) Hamming loss as a function of the BF’s size B for the
Industries dataset. The curves correspond to various values of the number of
hash function K. (right) Hamming loss as a function of the number of hash
function K for the Industries dataset. The curves correspond to various values

of BF’s size B.

Next we show in figure 5.11 the joint influence of the number of hash functions

K and of the size of BFs B in the performance of the system. These plots have

been obtained with the BF-CD method for the Industries dataset. One sees that

for small values (below 5), increasing K steadily increases performance whatever

B (Figure 5.11 left). Yet as said above there is an optimal tradeoff (Figure 5.11

right).

5.5.5 Parameter selection for Robust Bloom Filters

The code size B can be freely set for all methods except for Robust BF, where

different settings of the maximum cluster size and the number of hubs may lead

Chapter 5. Extreme MLC with Bloom Filters 107

100 150 200 250
0

1

2

3

4

5

B

u
n
co
ve
ra
b
le

lo
ss
×
10

4

hubs = 0
hubs = 20
Optimal

200 300 400 500
0

2

4

6

B

u
n
co
ve
ra
b
le

lo
ss
×
10

5

hubs = 0
hubs = 50
Optimal

Figure 5.12: Unrecoverable Hamming loss (UHL) due to label clustering as
a function of the code size B on RCV-Industries (left) and on Wikipedia1k
dataset (right). The optimal curve represents the best UHL over different set-
tings (number of hubs,max cluster size) for a given code size. UHL decreases

when the number of hubs in increased.

to the same code size. Since the use of a label clustering in R-BF leads to un-

recoverable errors even if the classifiers perform perfectly well (because labels of

different clusters cannot be predicted together), we chose the max cluster size

among {10, 20, . . . , 50} and the number of hubs (among {0, 10, 20, 30, . . . , 100} for

RCV-Industries and {0, 50, 100, . . . , 300} for Wikipedia1k) that minimize the re-

sulting unrecoverable Hamming loss (UHL), computed on the train set. Figure 5.12

shows how the UHL naturally decreases when the number of hubs increases since

then the method becomes closer to BR, but at the same time the overall code

size B increases because it is the sum of the filter’s size and the number of hubs.

Nonetheless, we can observe on the figure that the UHL rapidly reaches a very low

value, confirming that the label clustering assumption is reasonable in practice.

5.5.6 Correlation Decoding (CD) versus Standard Decod-

ing (SD)

Tables 5.3 and 5.4 report comparative results with state of the art methods. Table

5.3 compares BF methods with BR and CS for the ranking loss optimized by CS,

precision@k, while Table 5.4 compares BF methods to BR and BR-Dekel with

respect to classification criterion, Hamming loss, micro and macro F-measures.

The main comments that main be drawn from these results are the following.

Chapter 5. Extreme MLC with Bloom Filters 108

Table 5.3: Precision @k (%) (k ∈ {1, 5, 10}) of Bloom Filter with Correlation
Decoding (BF-CD), Compressed Sensing with Orthogonal Matching Pursuit as
decoding procedure (CS-OMP) and Binary Relevance (BR) on the datasets. For

each model, the number of regressors used is given in parenthesis.

Classifier
NC p@1 p@5 p@10 NC p@1 p@5 p@10

RCV-Industries Wikipedia1K
BR 303 78.43 22.51 11.87 1000 66.82 17.78 09.40

CS-OMP
30 41.10 16.15 08.15 100 42.23 14.15 07.28
60 54.78 17.49 09.07 200 57.09 15.95 08.42
150 76.14 22.23 11.54 500 57.54 16.50 08.87

BF-CD
30 68.17 17.00 09.10 100 60.43 14.35 07.49
60 76.41 18.73 09.91 200 62.21 14.41 07.43
150 79.28 20.48 10.67 500 66.00 15.66 08.08

First, high precision can be achieved by BF-CD with low complexity. Indeed,

it can be seen from table 5.3 that with only 100 classifiers BF-CD achieves 60%

precision@1 when BR is 10% better with 1000 classifiers. For the same computa-

tional complexity (relatively to BR) of 10%, the performance of CS-OMP is 41.10%

which is more than 30% less than the performance of BF-CD. In fact, in the high

compression regime, the superiority of BF-CD over CS-OMP is consistent on both

of the datasets for precision@k, k ∈ {1, 5, 10} even though CS-OMP has been spe-

cially optimized for these values while the BF-CD were tuned to perform well in

terms of hamming loss even though the two criteria can be correlated. This makes

BF-CD an interesting alternative if one wants to trade some precision for much

less computational complexity. It is even possible to achieve performances simi-

lar to or larger than that Binary Relevance with 50% computational complexity

less. On RCV-Industries for example, BF-CD’s precision@1 is 79.28% when that

of BR is 78.43%. For precision@5 and precision@10, the performance of BF-CD

is roughly only 2% lower than that of BR.

Correlation Decoding (CD) outperforms Standard Decoding (SD) when using

Bloom Filters for multilabel classification. This appears clearly in Table 5.4 what-

ever the criteria and the dataset. This is particularly true in high compression

settings. For example, with a hamming loss of 0.08 , BF-SD-(100)’s performance

is about 13% worst than that of BR (0.0711) while BF-CD-(100)’s performance

Chapter 5. Extreme MLC with Bloom Filters 109

Table 5.4: Test Hamming loss (HL, in %), micro (m-F1) and macro (M-F1)
F1-scores. B is code size. The results of the significance test for a p-value less
than 5% are denoted † to indicate the best performing method using the same

B and ∗ to indicate the best performing method overall.

Classifier
B HL m-F1 M-F1 B HL m-F1 M-F1

RCV-Industries Wikipedia1K

BR 303 0.200∗ 72.43∗ 47.82∗ 1000 0.0711 55.96 34.7

BR-Dekel
150 0.308 46.98 30.14 250 0.0984 22.18 12.16
200 0.233 65.78 40.09 500 0.0868 38.33 24.52

BF-SD
150 0.223 67.45 40.29 250 0.0742 53.02 31.41
200 0.217 68.32 40.95 500 0.0734 53.90 32.57

BF-CD
150 0.218 68.42 42.20 250 0.0726† 54.79 32.35
200 0.212 70.07 43.37 500 0.0713 55.79 34.23

R-BF
150 0.210† 71.31† 43.44 240 0.0728† 55.85 34.65
200 0.205† 71.86† 44.57 500 0.0705†∗ 57.31 36.85

CS-OMP
150 0.246 67.59 45.22† 250 0.0886 57.96† 41.84†

200 0.245 67.71 45.82† 500 0.0875 58.46†∗ 42.52†∗

PLST
150 0.226 68.87 32.36 250 0.0854 42.45 09.53
200 0.221 70.35 40.78 500 0.0828 45.95 16.73

is 9% worst. We believe that as the the number of labels gets larger, the output

space gets more sparse so that it is easer to reduce the computational complex-

ity without hurting the performance. Moreover, as discussed previsouly although

the performance of BF-CD and BF-SD may look similar their actual behavior is

different. The restrictive decision rule of BF-SD makes its recision higher and its

recall lower than that of BF-CD. Overall, BF-CD appears as a better compromise

which in addition may be tuned for a particular target measure if needed.

At last it appears that removing labels does not allow as much complexity re-

duction as Bloom Filters. In all the experiments the performances achieved when

removing labels are uniformly worst than that of BF methods. This can be explain

by the fact that such variants of BR as BR-Dekel have been originally proposed to

remove noisy labels. And determining the number of labels to remove in advance

can result in pruning important labels (well represented) because of the criteria

used to rank the labels.

Chapter 5. Extreme MLC with Bloom Filters 110

60 80 100 120 140 160 180 200 220
2

2.2

2.4

2.6

2.8

B

H
am

m
in
g
lo
ss
×
10

3

BF-SD
PLST

CS-OMP
BF-ECC

Figure 5.13: Hamming loss comparison of the the proposed method to the
baselines while varying the code size. The Robust bloom filter is better than

the other methods as the code size gets larger.

5.5.7 Comparative Results

Table 5.4 gives the test performances of all the methods on both datasets for differ-

ent code sizes. We are mostly interested in the Hamming loss but we also provide

the micro and macro F-measure. The results are averaged over 10 random splits

of train/validation/test of the datasets, respectively containing 50%/25%/25% of

the data. The standard deviations of the values are negligible (smaller than 10−3

times the value of the performance measure). Our Robust Bloom FIlter method

seem to clearly outperform all other methods and yields significant improvements

over Standard Bloom FIlter approaches. On Wikipedia1k, with 500 classifiers, the

Hamming loss (in %) of R-BF is only 0.0705. This performance is similar to that

of BR’s (0.0711) which uses twice as many classifiers. The closer runner-up is con-

sistently the standard Bloom FIlter approach with correlation decoding (BF-CD).

The simple pruning strategy BR-Dekel is the worst baseline on both datasets,

confirming that considering all classes is necessary on these datasets.

CS-OMP reaches a much higher Hamming loss (about 23% worst than BR on both

datasets when using 50% less classifiers). CS-OMP achieves the best performance

on the macro-F measure though. This is because the size of the predicted label sets

Chapter 5. Extreme MLC with Bloom Filters 111

is fixed for CS, which increases recall but leads to poor precision. We used OMP

as decoding procedure for CS since it seemed to perform better than Lasso and

Correlation decoding (CD)(Hsu et al., 2009)(for instance, on RCV-Industries with

a code size of 500, OMP achieves a Hamming loss of 0.0875 while the Hamming

loss is 0.0894 for Lasso and 0.1005 for CD). PLST improves over CS-OMP but

its performances are lower than those of S-BF (about 3.5% on RCV-industries

and 13% and Wikipedia when using 50% less classifiers than BR). The macro F-

measure indicates that PLST likely suffers from class imbalance (only the most

frequent labels are predicted), probably because the label set matrix on which

SVD is performed is dominated by the most frequent labels.

Figure 5.13 gives the general picture of the Hamming loss of the methods on

a larger range of code sizes on the RCV-Industries dataset. Overall, R-BF has

the best performances except for very small code sizes because the Unrecoverable

Hamming Loss (UHL) becomes too high.

5.5.8 Runtime analysis

Experiments were performed on a computer with 24 intel Xeon 2.6 GHz CPUs. For

all methods, the overall training time is dominated by the time to train the binary

classifiers or regressors, which depends linearly on the code size. For test, the time

is also dominated by the classifiers’ predictions, and the decoding algorithm of R-

BF is the fastest. For instance, on Wikipedia1k, training one binary classifier takes

12.35s on average, and inference with one classifier (for the whole test dataset)

takes 3.18s. Thus, BR requires about 206 minutes (1000 × 12.35s) for training

and 53m for testing on the whole test set. With B = 500, R-BF requires about

half that time, including the selection of the number of hubs and the max. cluster

size at training time, which is small (computing the UHL of a R-BF configuration

takes 9.85s, including the label clustering step, and we try less than 50 of them).

For the same B, encoding for CS takes 6.24s and the SVD in PSLT takes 81.03s,

while decoding takes 24.39s at test time for CS and 7.86s for PSLT.

Chapter 5. Extreme MLC with Bloom Filters 112

5.6 Conclusion

Standard Bloom Filters (with standard and correlation decoding) are a simple and

efficient way of doing extreme MLC. Even though they do not come with perfor-

mance guarantees and they can suffer from the mistakes of binary classifiers, their

empirical performances are competitive to the main baselines proposed in extreme

MLC literature. Robust Bloom Filters improve the standard Bloom Filters by

exploiting the label correlation information. They provide a more robust encod-

ing/decoding procedure together with performance guarantees. Moreover, their

empirical performances compare favourably to those of the baselines and also to

the performances of Binary Relevance.

In summary, Bloom Filters offer a nice a framework for Extreme MLC. They share

the desirable properties of Binary Relevance such as simplicity, accuracy and ease

of parallelization with the important additional property of scalability which is

a main requirement in extreme classification. Hence they allow to take the best

of both worlds. Still, there is room for many improvements. For example, some

MLC problems with many labels have large label cardinality. This is the case of

the Delicious dataset6. For this type of problem, the label clustering assumption

does not hold because the label density is large (the label density is about 0.019 for

Delicious which has 1000 labels while while it is about 10−4 for the wikipedia1K

dataset which has the same number of labels). Other kinds of Bloom Filters such

as counting Bloom Filters (Broder et al., 2002) could be better alternative for

such.

6http://mulan.sourceforge.net/datasets.html

Chapter 6

Conclusion and Perspectives

In this thesis we have tackled the extreme classification problem. The presence

of a large number of labels gives rise to a vast spectrum of challenging problems,

however we have mainly been interested into reducing training and inference com-

plexity. This is important as it makes learning feasible and allows fast inference

hence making the models exploitable in real world applications. We have studied

existing methods and proposed solutions for reducing training and inference com-

plexity in both single label and multi label settings. For each of these two settings

a review of the main approaches that have been proposed in the literature is pre-

sented (respectively in chapter 2 and chapter 4). These approaches are mainly

of two kinds. On one hand, the embedding based methods rely on learning a low

dimensional representation of the labels. Regressors are then learned to predict

this new representation. At inference, for a given new example, original labels are

recovered once its corresponding low dimensional representation is predicted. On

the other hand, the hierarchical approaches learn hierarchical classifiers using a

learned hierarchical structure or an existing one. Inference is then achieved by

evaluating the classifiers using a depth first search procedure until a leaf node is

reached.

Hierarchical classifiers are most popular in extreme single label classification. They

yield competitive performances (Bengio et al., 2010, Bennett and Nguyen, 2009,

Deng et al., 2011, Gao and Koller, 2011a) and allow logarithmic complexity (in

113

Conclusion 114

the number of labels) at prediction time when the hierarchy is a balanced tree.

However, they suffer from training complexity burden because the number of clas-

sifiers to train (and store) equals the number of nodes in the hierarchy which can

be very large for taxonomies such as the Wikipedia graph1. Moreover, they are

less naturally suited for multi label classification.

Embedding based methods allow complexity reduction at both training and pre-

diction time because the number of classifiers to train and to evaluate at prediction

can be much smaller than the number of labels. Moreover, there are embedding

based approaches for solving both single label (Langford and Beygelzimer, 2005,

Weinberger and Chapelle, 2008) and multilabel (Hsu et al., 2009, Tai and Lin,

2012) extreme classification. They also allow the use of prior knowledge such as

hierarchical information in single label setting and label dependence information

in the multilabel setting. Therefore, they are a good compromise for complexity

reduction in extreme classification problems.

We have first dealt with extreme single label classification by proposing to learn

compact class codes that allow fast inference. Our approach leverages hierarchi-

cal information and learns low dimensional binary representation of the labels

that were empirically proven to yield easier binary induced problem compared to

randomly generated error correcting output codes. Overall, it results in competi-

tive classification performances compared to classical baselines such as One versus

Rest approach on large scale experiments. This work has been published at the

European Conference of Machine Learning (ECML-PKDD) in 2012 (Cissé et al.,

2012).

We have then tackled extreme multilabel classification by introducing a new frame-

work based on Bloom Filters. Our contribution here is two fold. First, we used

Standard Bloom Filters as a way to encode sets of labels hence ending with a sparse

low dimensional binary representation of the labels and the sets of labels. As with

previously presented approaches, regressors are learned to predict this low dimen-

sional representation and two algorithms are presented for mapping a predicted

binary vector to a set of relevant labels. The first approach gives promising results

but suffers from its frailty to individual errors of binary classifiers. To overcome

1http://lshtc.iit.demokritos.gr

Conclusion 115

this problem, a second approach is proposed that exploits an important feature of

extreme classification problems: many labels never appear together when the num-

ber of labels is very large. We termed this feature label clustering and exploited

it to build new theoretically grounded encoding and decoding schemes for Bloom

Filters that are robust to individual errors of binary classifiers. The resulting

method, called robust Bloom Filter, compares favourably with other embedding

based approaches such as Compressed Sensing (Hsu et al., 2009) and is competitive

in comparison with the classical binary relevance method. Several experiments are

also presented to gain more insight in the behaviour of the proposed approaches.

Part of this work has been published at Neural Information Processing Systems

conference (NIPS) 2013 (Cisse et al., 2013) and an extend version is in preparation

for the Machine Leaning Journal.

Reducing training and inference complexity in extreme classification is of funda-

mental importance and has witnessed significant progress in the past few years.

Several hierarchical and embedding based methods have been introduced that re-

duce the complexity and increase classification performances in both the single

label and the multilabel setting. However, there are several other problems of

importance that must be addressed in order to solve extreme classification. Dis-

criminative representation learning, class imbalance and data scarcity and label

synonymy are few examples of such problems. However, we have identified two

problems that deserve more attention in our opinion. The first one is the design

of new methods for efficiently harvesting labels for extreme classification datasets.

Indeed, the generalization performance of the algorithms proposed depend heavily

on the quality of the labelling process. Currently, these labels are mainly obtained

from collaborative websites such as Wikipedia. While this process is cheaper than

using mechanical turk2 (AMT) for example it is prone to noisy labelling. The

second problem is the analysis of existing performance measures and the design

of new ones that are better suited for extreme classification problems. There have

been some work in this direction (Kosmopoulos et al., 2013). However, this needs

to be pushed further and will be the subject of our future research.

2https://www.mturk.com/mturk/welcome

Bibliography

Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the surprising

behavior of distance metrics in high dimensional space. In Lecture Notes in

Computer Science, pages 420–434. Springer, 2001.

Rahul Agrawal, Archit Gupta, Yashoteja Prabhu, and Manik Varma. Multi-label

learning with millions of labels: Recommending advertiser bid phrases for web

pages. In Proceedings of the 22Nd International Conference on World Wide Web,

WWW ’13, pages 13–24. International World Wide Web Conferences Steering

Committee, 2013.

Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to

binary: A unifying approach for margin classifiers. J. Mach. Learn. Res., 1:

113–141, September 2001. ISSN 1532-4435. doi: 10.1162/15324430152733133.

URL http://dx.doi.org/10.1162/15324430152733133.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-

task feature learning. Mach. Learn., 73(3):243–272, December 2008. ISSN 0885-

6125. doi: 10.1007/s10994-007-5040-8. URL http://dx.doi.org/10.1007/

s10994-007-5040-8.

Krishnakumar Balasubramanian and Guy Lebanon. The landmark selection

method for multiple output prediction. In John Langford and Joelle Pineau,

editors, Proceedings of the 29th International Conference on Machine Learn-

ing (ICML-12), ICML ’12, pages 983–990, New York, NY, USA, July 2012.

Omnipress. ISBN 978-1-4503-1285-1.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality re-

duction and data representation. Neural Comput., 15(6):1373–1396, June 2003.
116

http://dx.doi.org/10.1162/15324430152733133
http://dx.doi.org/10.1007/s10994-007-5040-8
http://dx.doi.org/10.1007/s10994-007-5040-8

Bibliography 117

ISSN 0899-7667. doi: 10.1162/089976603321780317. URL http://dx.doi.org/

10.1162/089976603321780317.

Samy Bengio, Jason Weston, and David Grangier. Label embedding trees for large

multi-class tasks. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel,

and A. Culotta, editors, Advances in Neural Information Processing Systems

23, pages 163–171. 2010.

Yoshua Bengio. Learning deep architectures for ai. Found. Trends Mach. Learn.,

2(1):1–127, January 2009. ISSN 1935-8237.

Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux, Jean-François Paiement, Pas-

cal Vincent, and Marie Ouimet. Learning eigenfunctions links spectral embed-

ding and kernel pca. Neural Comput., 16(10):2197–2219, October 2004. ISSN

0899-7667. doi: 10.1162/0899766041732396. URL http://dx.doi.org/10.

1162/0899766041732396.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. 2013.

Paul N. Bennett and Nam Nguyen. Refined experts: improving classification in

large taxonomies. In Proceedings of the 32nd international ACM SIGIR confer-

ence on Research and development in information retrieval, SIGIR ’09, pages

11–18, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-483-6. doi: 10.1145/

1571941.1571946. URL http://doi.acm.org/10.1145/1571941.1571946.

Paul N. Bennett, Susan T. Dumais, and Eric Horvitz. Probabilistic combination

of text classifiers using reliability indicators: models and results. In Proceedings

of the 25th annual international ACM SIGIR conference on Research and de-

velopment in information retrieval, SIGIR ’02, pages 207–214, New York, NY,

USA, 2002. ACM. ISBN 1-58113-561-0. doi: 10.1145/564376.564413. URL

http://doi.acm.org/10.1145/564376.564413.

Jon Louis Bentley. Multidimensional binary search trees used for associative

searching. volume 18, pages 509–517. ACM, September 1975.

http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1162/0899766041732396
http://dx.doi.org/10.1162/0899766041732396
http://doi.acm.org/10.1145/1571941.1571946
http://doi.acm.org/10.1145/564376.564413

Bibliography 118

Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When

is ”nearest neighbor” meaningful? In In Int. Conf. on Database Theory, pages

217–235, 1999.

Alina Beygelzimer, John Langford, Yury Lifshits, Gregory B. Sorkin, and Alexan-

der L. Strehl. Conditional probability tree estimation analysis and algorithms.

CoRR, abs/0903.4217, 2009a.

Alina Beygelzimer, John Langford, and Pradeep D. Ravikumar. Error-correcting

tournaments. CoRR, abs/0902.3176, 2009b.

Wei Bi and James Kwok. Efficient multi-label classification with many labels. In

Sanjoy Dasgupta and David Mcallester, editors, Proceedings of the 30th Interna-

tional Conference on Machine Learning (ICML-13), volume 28, pages 405–413.

JMLR Workshop and Conference Proceedings, May 2013.

Irving Biederman. Recognition-by-components: A theory of human image under-

standing. Psychological Review, 94:115–147, 1987.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2006. ISBN 0387310738.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of Statistical

Mechanics: Theory and Experiment., 10, 2008.

Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, 1970.

Antoine Bordes, Léon Bottou, Patrick Gallinari, and Jason Weston. Solving mul-

ticlass support vector machines with larank. In Proceedings of the 24th Inter-

national Conference on Machine Learning, ICML ’07, pages 89–96, New York,

NY, USA, 2007. ACM. ISBN 978-1-59593-793-3.

Bibliography 119

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In

J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neu-

ral Information Processing Systems, volume 20, pages 161–168. NIPS Foun-

dation (http://books.nips.cc), 2008. URL http://leon.bottou.org/papers/

bottou-bousquet-2008.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-

versity Press, New York, NY, USA, 2004. ISBN 0521833787.

Andrei Broder, Michael Mitzenmacher, and Andrei Broder I Michael Mitzen-

macher. Network applications of bloom filters: A survey. In Internet Math-

ematics, pages 636–646, 2002.

Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff

Moore, Eduard Säckinger, and Roopak Shah. Signature verification using a

?siamese? time delay neural network. International Journal of Pattern Recog-

nition and Artificial Intelligence, 7(04):669–688, 1993.

Lijuan Cai and Thomas Hofmann. Hierarchical document categorization with

support vector machines. In Proceedings of the thirteenth ACM international

conference on Information and knowledge management, CIKM ’04, pages 78–87.

ACM, 2004.

Larry Carter, Robert Floyd, John Gill, George Markowsky, and Mark Wegman.

Exact and approximate membership testers. In Proceedings of the tenth annual

ACM symposium on Theory of computing, STOC ’78, pages 59–65, New York,

NY, USA, 1978. ACM.

Rich Caruana. Multitask learning. Mach. Learn., 28(1):41–75, July 1997. ISSN

0885-6125. doi: 10.1023/A:1007379606734. URL http://dx.doi.org/10.

1023/A:1007379606734.

Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Incremental algo-

rithms for hierarchical classification. J. Mach. Learn. Res., 7:31–54, December

2006. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1248547.

1248549.

http://leon.bottou.org/papers/bottou-bousquet-2008
http://leon.bottou.org/papers/bottou-bousquet-2008
http://dx.doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.1023/A:1007379606734
http://dl.acm.org/citation.cfm?id=1248547.1248549
http://dl.acm.org/citation.cfm?id=1248547.1248549

Bibliography 120

Yangchi Chen, Melba M. Crawford, and Joydeep Ghosh. Integrating support

vector machines in a hierarchical output decomposition framework. In In 2004

International Geosci. and Remote Sens. Symposium, pages 949–953, 2004.

Yao-Nan Chen and Hsuan-Tien Lin. Feature-aware label space dimension reduc-

tion for multi-label classification. In NIPS, pages 1538–1546, 2012.

Ken Christensen, Allen Roginsky, and Miguel Jimeno. A new analysis of the false

positive rate of a bloom filter. Inf. Process. Lett., 110(21):944–949, October

2010. ISSN 0020-0190.

M. Cissé, T. Artières, and Patrick Gallinari. Learning compact class codes for fast

inference in large multi class classification. In Proceedings of the 2012 Euro-

pean Conference on Machine Learning and Knowledge Discovery in Databases

- Volume Part I, ECML PKDD’12, pages 506–520, Berlin, Heidelberg, 2012.

Springer-Verlag. ISBN 978-3-642-33459-7. doi: 10.1007/978-3-642-33460-3 38.

URL http://dx.doi.org/10.1007/978-3-642-33460-3_38.

Moustapha M Cisse, Nicolas Usunier, Thierry Artières, and Patrick Gallinari.

Robust bloom filters for large multilabel classification tasks. In C.J.C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger,

editors, Advances in Neural Information Processing Systems 26, pages 1851–

1859. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/

5083-robust-bloom-filters-for-large-multilabel-classification-tasks.

pdf.

Koby Crammer and Yoram Singer. On the algorithmic implementation of mul-

ticlass kernel-based vector machines. J. Mach. Learn. Res., 2:265–292, March

2002. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=944790.

944813.

Ofer Dekel and Ohad Shamir. Multiclass-multilabel classification with more classes

than examples. volume 9, pages 137–144, 2010.

Ofer Dekel, Joseph Keshet, and Yoram Singer. Large margin hierarchical classifi-

cation. In Proceedings of the Twenty-first International Conference on Machine

http://dx.doi.org/10.1007/978-3-642-33460-3_38
http://papers.nips.cc/paper/5083-robust-bloom-filters-for-large-multilabel-classification-tasks.pdf
http://papers.nips.cc/paper/5083-robust-bloom-filters-for-large-multilabel-classification-tasks.pdf
http://papers.nips.cc/paper/5083-robust-bloom-filters-for-large-multilabel-classification-tasks.pdf
http://dl.acm.org/citation.cfm?id=944790.944813
http://dl.acm.org/citation.cfm?id=944790.944813

Bibliography 121

Learning, ICML ’04, pages 27–, New York, NY, USA, 2004. ACM. ISBN 1-

58113-838-5. doi: 10.1145/1015330.1015374. URL http://doi.acm.org/10.

1145/1015330.1015374.

Krzysztof Dembczynski, Weiwei Cheng, and Eyke Hüllermeier. Bayes optimal

multilabel classification via probabilistic classifier chains. In ICML, pages 279–

286, 2010a.

Krzysztof Dembczynski, Weiwei Cheng, and Eyke Hüllermeier. Bayes optimal

multilabel classification via probabilistic classifier chains. In ICML, pages 279–

286, 2010b.

Krzysztof Dembczynski, WillemWaegeman, Weiwei Cheng, and Eyke Hüllermeier.

On label dependence and loss minimization in multi-label classification. Machine

Learning, 88(1-2):5–45, 2012.

Jia Deng, Sanjeev Satheesh, Alexander C. Berg, and Fei Fei F. Li. Fast and

balanced: Efficient label tree learning for large scale object recognition. In

J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q. Weinberger,

editors, Advances in Neural Information Processing Systems 24, pages 567–575.

2011.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems

via error-correcting output codes. J. Artif. Intell. Res. (JAIR), 2:263–286, 1995.

Susan Dumais and Hao Chen. Hierarchical classification of web content. In Pro-

ceedings of the 23rd annual international ACM SIGIR conference on Research

and development in information retrieval, SIGIR ’00, pages 256–263, New York,

NY, USA, 2000. ACM. ISBN 1-58113-226-3. doi: 10.1145/345508.345593. URL

http://doi.acm.org/10.1145/345508.345593.

Sergio Escalera, Oriol Pujol, and Petia Radeva. Error-correcting ouput codes

library. The Journal of Machine Learning Research, 11:661–664, 2010.

Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task learning. In

Proceedings of the tenth ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’04, pages 109–117, New York, NY, USA,

http://doi.acm.org/10.1145/1015330.1015374
http://doi.acm.org/10.1145/1015330.1015374
http://doi.acm.org/10.1145/345508.345593

Bibliography 122

2004. ACM. ISBN 1-58113-888-1. doi: 10.1145/1014052.1014067. URL http:

//doi.acm.org/10.1145/1014052.1014067.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen

Lin. Liblinear: A library for large linear classification. J. Mach. Learn. Res., 9:

1871–1874, June 2008. ISSN 1532-4435. URL http://dl.acm.org/citation.

cfm?id=1390681.1442794.

T. Gao and D. Koller. Discriminative learning of relaxed hierarchy for large-scale

visual recognition. In Proceedings of the International Conference on Computer

Vision (ICCV), 2011a.

Tianshi Gao and Daphne Koller. Multiclass boosting with hinge loss based on

output coding. In ICML, pages 569–576, 2011b.

Shantanu Godbole and Sunita Sarawagi. Discriminative methods for multi-labeled

classification. In In Proceedings of the 8th Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pages 22–30. Springer, 2004.

Shantanu Godbole, Sunita Sarawagi, and Soumen Chakrabarti. Scaling multi-

class support vector machines using inter-class confusion. In Proceedings of the

Eighth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’02, pages 513–518, New York, NY, USA, 2002. ACM. ISBN

1-58113-567-X. doi: 10.1145/775047.775122. URL http://doi.acm.org/10.

1145/775047.775122.

Siddharth Gopal and Yiming Yang. Distributed training of large-scale logistic

models. In ICML (2), JMLR Proceedings, pages 289–297. JMLR.org.

Siddharth Gopal and Yiming Yang. Recursive regularization for large-scale clas-

sification with hierarchical and graphical dependencies. In Proceedings of the

19th ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’13, pages 257–265, New York, NY, USA, 2013. ACM. ISBN 978-

1-4503-2174-7. doi: 10.1145/2487575.2487644. URL http://doi.acm.org/10.

1145/2487575.2487644.

Siddharth Gopal, Yiming Yang, Bing Bai, and Alexandru Niculescu-Mizil.

Bayesian models for large-scale hierarchical classification. In P. Bartlett, F.C.N.

http://doi.acm.org/10.1145/1014052.1014067
http://doi.acm.org/10.1145/1014052.1014067
http://dl.acm.org/citation.cfm?id=1390681.1442794
http://dl.acm.org/citation.cfm?id=1390681.1442794
http://doi.acm.org/10.1145/775047.775122
http://doi.acm.org/10.1145/775047.775122
http://doi.acm.org/10.1145/2487575.2487644
http://doi.acm.org/10.1145/2487575.2487644

Bibliography 123

Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in

Neural Information Processing Systems 25, pages 2420–2428. 2012.

Gregory Griffin and Pietro Perona. Learning and using taxonomies for fast visual

categorization. In CVPR. IEEE Computer Society, 2008. URL http://dblp.

uni-trier.de/db/conf/cvpr/cvpr2008.html#GriffinP08.

Bharath Hariharan, S. V. N. Vishwanathan, and Manik Varma. Large Scale Max-

Margin Multi-Label Classification with Prior Knowledge about Densely Corre-

lated Labels. In Proceedings of International Conference on Machine Learning,

2010.

Daniel Hsu, Sham Kakade, John Langford, and Tong Zhang. Multi-label prediction

via compressed sensing. In NIPS, pages 772–780, 2009.

Sung Ju J. Hwang, Kristen Grauman, and Fei Sha. Learning a tree of met-

rics with disjoint visual features. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett,

F.C.N. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information

Processing Systems 24, pages 621–629. 2011.

Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A system-

atic study. Intell. Data Anal., 6(5):429–449, October 2002. ISSN 1088-467X.

URL http://dl.acm.org/citation.cfm?id=1293951.1293954.

Ashish Kapoor, Raajay Viswanathan, and Prateek Jain. Multilabel classification

using bayesian compressed sensing. In Peter L. Bartlett, Fernando C. N. Pereira,

Christopher J. C. Burges, Leon Bottou, and Kilian Q. Weinberger, editors,

NIPS, pages 2654–2662, 2012.

Adam R. Klivans and Alexander A. Sherstov. Improved lower bounds for learning

intersections of halfspaces. In Proceedings of the 19th annual conference on

Learning Theory, COLT’06, pages 335–349, Berlin, Heidelberg, 2006. Springer-

Verlag. ISBN 3-540-35294-5, 978-3-540-35294-5. doi: 10.1007/11776420 26.

URL http://dx.doi.org/10.1007/11776420_26.

Daphne Koller and Mehran Sahami. Hierarchically classifying documents using

very few words. In Proceedings of the Fourteenth International Conference on

http://dblp.uni-trier.de/db/conf/cvpr/cvpr2008.html#GriffinP08
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2008.html#GriffinP08
http://dl.acm.org/citation.cfm?id=1293951.1293954
http://dx.doi.org/10.1007/11776420_26

Bibliography 124

Machine Learning, ICML ’97, pages 170–178, San Francisco, CA, USA, 1997.

Morgan Kaufmann Publishers Inc. ISBN 1-55860-486-3. URL http://dl.acm.

org/citation.cfm?id=645526.657130.

Aris Kosmopoulos, Ioannis Partalas, Éric Gaussier, Georgios Paliouras, and Ion

Androutsopoulos. Evaluation measures for hierarchical classification: a unified

view and novel approaches. CoRR, abs/1306.6802, 2013. URL http://arxiv.

org/abs/1306.6802.

Abhishek Kumar, Shankar Vembu, Aditya Krishna Menon, and Charles Elkan.

Learning and inference in probabilistic classifier chains with beam search.

In Proceedings of the 2012 European Conference on Machine Learning and

Knowledge Discovery in Databases - Volume Part I, ECML PKDD’12, pages

665–680, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-33459-

7. doi: 10.1007/978-3-642-33460-3 48. URL http://dx.doi.org/10.1007/

978-3-642-33460-3_48.

John Langford and Alina Beygelzimer. Sensitive error correcting output codes.

In Peter Auer and Ron Meir, editors, Learning Theory, volume 3559 of Lecture

Notes in Computer Science, pages 158–172. Springer Berlin Heidelberg, 2005.

ISBN 978-3-540-26556-6. doi: 10.1007/11503415 11. URL http://dx.doi.org/

10.1007/11503415_11.

Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new

tasks. In AAAI, volume 8, pages 646–651, 2008.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. volume 86, pages 2278–2324. IEEE,

1998.

Song Liu, Haoran Yi, Liang-Tien Chia, and Deepu Rajan. Adaptive hierarchical

multi-class svm classifier for texture-based image classification. In ICME, pages

1190–1193. IEEE, 2005a. URL http://dblp.uni-trier.de/db/conf/icmcs/

icme2005.html#LiuYCR05.

http://dl.acm.org/citation.cfm?id=645526.657130
http://dl.acm.org/citation.cfm?id=645526.657130
http://arxiv.org/abs/1306.6802
http://arxiv.org/abs/1306.6802
http://dx.doi.org/10.1007/978-3-642-33460-3_48
http://dx.doi.org/10.1007/978-3-642-33460-3_48
http://dx.doi.org/10.1007/11503415_11
http://dx.doi.org/10.1007/11503415_11
http://dblp.uni-trier.de/db/conf/icmcs/icme2005.html#LiuYCR05
http://dblp.uni-trier.de/db/conf/icmcs/icme2005.html#LiuYCR05

Bibliography 125

Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng Chen, and Wei-

Ying Ma. Support vector machines classification with a very large-scale tax-

onomy. SIGKDD Explor. Newsl., 7(1):36–43, June 2005b. ISSN 1931-0145.

doi: 10.1145/1089815.1089821. URL http://doi.acm.org/10.1145/1089815.

1089821.

Zhigang Liu, Wenzhong Shi, Qianqing Qin, Xiaowen Li, and Donghui Xie.

Hierarchical support vector machines. In IGARSS, page 4. IEEE, 2005c.

ISBN 0-7803-9050-4. URL http://dblp.uni-trier.de/db/conf/igarss/

igarss2005.html#LiuSQLX05.

Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17

(4):395–416, December 2007. ISSN 0960-3174. doi: 10.1007/s11222-007-9033-z.

URL http://dx.doi.org/10.1007/s11222-007-9033-z.

Marcin Marszalek and Cordelia Schmid. Semantic Hierarchies for Visual Ob-

ject Recognition. In IEEE Conference on Computer Vision & Pattern Recog-

nition (CVPR ’07), page 1, Minneapolis, United States, 2007. IEEE Com-

puter Society. doi: 10.1109/CVPR.2007.383272. URL http://hal.inria.fr/

inria-00548680.

Marcin Marszalek and Cordelia Schmid. Constructing category hierarchies for

visual recognition. In In ECCV08 pages IV: 47991, 2008.

Andrew McCallum, Ronald Rosenfeld, Tom M. Mitchell, and Andrew Y. Ng.

Improving text classification by shrinkage in a hierarchy of classes. In Pro-

ceedings of the Fifteenth International Conference on Machine Learning, ICML

’98, pages 359–367, San Francisco, CA, USA, 1998. Morgan Kaufmann Publish-

ers Inc. ISBN 1-55860-556-8. URL http://dl.acm.org/citation.cfm?id=

645527.657461.

Luis Carlos Molina, Llúıs Belanche, and Àngela Nebot. Feature selection algo-

rithms: A survey and experimental evaluation. In Data Mining, 2002. ICDM

2003. Proceedings. 2002 IEEE International Conference on, pages 306–313.

IEEE, 2002.

http://doi.acm.org/10.1145/1089815.1089821
http://doi.acm.org/10.1145/1089815.1089821
http://dblp.uni-trier.de/db/conf/igarss/igarss2005.html#LiuSQLX05
http://dblp.uni-trier.de/db/conf/igarss/igarss2005.html#LiuSQLX05
http://dx.doi.org/10.1007/s11222-007-9033-z
http://hal.inria.fr/inria-00548680
http://hal.inria.fr/inria-00548680
http://dl.acm.org/citation.cfm?id=645527.657461
http://dl.acm.org/citation.cfm?id=645527.657461

Bibliography 126

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Math.

Program., 120(1):221–259, April 2009. ISSN 0025-5610. doi: 10.1007/

s10107-007-0149-x. URL http://dx.doi.org/10.1007/s10107-007-0149-x.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis

and an algorithm. In ADVANCES IN NEURAL INFORMATION PROCESS-

ING SYSTEMS, pages 849–856. MIT Press, 2001.

Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton, and Tom M Mitchell. Zero-

shot learning with semantic output codes. In NIPS, volume 3, pages 5–2, 2009.

Francesco Pappalardo, Cristiano Calonaci, Marzio Pennisi, Emilio Mastriani, and

Santo Motta. Hamfast: Fast hamming distance computation. In Proceedings

of the 2009 WRI World Congress on Computer Science and Information Engi-

neering - Volume 01, CSIE ’09, pages 569–572, Washington, DC, USA, 2009.

IEEE Computer Society. ISBN 978-0-7695-3507-4.

Y. C. Pati, R. Rezaiifar, Y. C. Pati R. Rezaiifar, and P. S. Krishnaprasad. Orthog-

onal matching pursuit: Recursive function approximation with applications to

wavelet decomposition. In Proceedings of the 27 th Annual Asilomar Conference

on Signals, Systems, and Computers, pages 40–44, 1993.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier

chains for multi-label classification. In Proceedings of the European Confer-

ence on Machine Learning and Knowledge Discovery in Databases: Part II,

ECML PKDD ’09, pages 254–269, Berlin, Heidelberg, 2009. Springer-Verlag.

ISBN 978-3-642-04173-0. doi: 10.1007/978-3-642-04174-7 17. URL http:

//dx.doi.org/10.1007/978-3-642-04174-7_17.

Jesse Read, Luca Martino, and David Luengo. Efficient monte carlo methods for

multi-dimensional learning with classifier chains. Pattern Recognition, 47(3):

1535–1546, 2014.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. J.

Mach. Learn. Res., 5:101–141, December 2004a. ISSN 1532-4435. URL http:

//dl.acm.org/citation.cfm?id=1005332.1005336.

http://dx.doi.org/10.1007/s10107-007-0149-x
http://dx.doi.org/10.1007/978-3-642-04174-7_17
http://dx.doi.org/10.1007/978-3-642-04174-7_17
http://dl.acm.org/citation.cfm?id=1005332.1005336
http://dl.acm.org/citation.cfm?id=1005332.1005336

Bibliography 127

Ryan M. Rifkin and Aldebaro Klautau. In defense of one-vs-all classification.

Journal of Machine Learning Research, 5:101–141, 2004b.

Robert E. Schapire. Using output codes to boost multiclass learning problems. In

Proceedings of the Fourteenth International Conference on Machine Learning,

ICML ’97, pages 313–321, San Francisco, CA, USA, 1997. Morgan Kaufmann

Publishers Inc. ISBN 1-55860-486-3. URL http://dl.acm.org/citation.cfm?

id=645526.657134.

Bernhard Schölkopf, Chris Burges, and Vladimir Vapnik. Extracting support data

for a given task. In KDD, pages 252–257, 1995.

Carlos N. Silla, Jr. and Alex A. Freitas. A survey of hierarchical classification

across different application domains. Data Min. Knowl. Discov., 22(1-2):31–

72, January 2011. ISSN 1384-5810. doi: 10.1007/s10618-010-0175-9. URL

http://dx.doi.org/10.1007/s10618-010-0175-9.

Aixin Sun and Ee-Peng Lim. Hierarchical text classification and evaluation. In

Proceedings of the 2001 IEEE International Conference on Data Mining, ICDM

’01, pages 521–528, Washington, DC, USA, 2001. IEEE Computer Society. ISBN

0-7695-1119-8. URL http://dl.acm.org/citation.cfm?id=645496.657884.

Farbound Tai and Hsuan-Tien Lin. Multilabel classification with principal label

space transformation. Neural Computation, 24(9):2508–2542, 2012.

Lorenzo Torresani and Kuang chih Lee. Large margin component analysis. In

B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information

Processing Systems 19, pages 1385–1392. MIT Press, Cambridge, MA, 2007.

Konstantin Tretyakov. Machine learning techniques in spam filtering. 2004.

Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview.

IJDWM, 3(3):1–13, 2007.

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Random k-labelsets

for multi-label classification. IEEE Transactions on Knowledge and Data Engi-

neering, 2010. ISSN 1041-4347. doi: 10.1109/TKDE.2010.164.

http://dl.acm.org/citation.cfm?id=645526.657134
http://dl.acm.org/citation.cfm?id=645526.657134
http://dx.doi.org/10.1007/s10618-010-0175-9
http://dl.acm.org/citation.cfm?id=645496.657884

Bibliography 128

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag

New York, Inc., New York, NY, USA, 1995. ISBN 0-387-94559-8.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

Extracting and composing robust features with denoising autoencoders. In Pro-

ceedings of the 25th international conference on Machine learning, pages 1096–

1103. ACM, 2008.

Volkan Vural and Jennifer G. Dy. A hierarchical method for multi-class support

vector machines. In Proceedings of the Twenty-first International Conference on

Machine Learning, ICML ’04, pages 105–, New York, NY, USA, 2004. ACM.

ISBN 1-58113-838-5. doi: 10.1145/1015330.1015427. URL http://doi.acm.

org/10.1145/1015330.1015427.

Andreas S. Weigend, Erik D. Wiener, and Jan O. Pedersen. Exploiting hierarchy

in text categorization. Inf. Retr., 1(3):193–216, October 1999. ISSN 1386-

4564. doi: 10.1023/A:1009983522080. URL http://dx.doi.org/10.1023/A:

1009983522080.

Kilian Q. Weinberger and Olivier Chapelle. Large margin taxonomy embedding

for document categorization. In NIPS, pages 1737–1744, 2008.

Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large

margin nearest neighbor classification. volume 10, pages 207–244. JMLR.org,

2009.

Yair Weiss, Antonio Torralba, and Robert Fergus. Spectral hashing. In NIPS,

volume 9, page 6, 2008.

J. Weston and C. Watkins. Multi-class support vector machines, 1998. URL

citeseer.nj.nec.com/8884.html.

J. Weston and C. Watkins. Support vector machines for multiclass pattern recog-

nition. In Proceedings of the Seventh European Symposium On Artificial Neural

Networks, 1999.

Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to large vo-

cabulary image annotation. In Proceedings of the Twenty-Second International

http://doi.acm.org/10.1145/1015330.1015427
http://doi.acm.org/10.1145/1015330.1015427
http://dx.doi.org/10.1023/A:1009983522080
http://dx.doi.org/10.1023/A:1009983522080
citeseer.nj.nec.com/8884.html

Bibliography 129

Joint Conference on Artificial Intelligence - Volume Volume Three, IJCAI’11,

pages 2764–2770. AAAI Press, 2011. ISBN 978-1-57735-515-1.

Christian Widmer, Jose Leiva, Yasemin Altun, and Gunnar Rätsch. Leverag-

ing sequence classification by taxonomy-based multitask learning. In Pro-

ceedings of the 14th Annual international conference on Research in Com-

putational Molecular Biology, RECOMB’10, pages 522–534, Berlin, Hei-

delberg, 2010. Springer-Verlag. ISBN 3-642-12682-0, 978-3-642-12682-6.

doi: 10.1007/978-3-642-12683-3 34. URL http://dx.doi.org/10.1007/

978-3-642-12683-3_34.

Lin Xiao, Dengyong Zhou, and Mingrui Wu. Hierarchical classification via or-

thogonal transfer. In Lise Getoor and Tobias Scheffer, editors, Proceedings of

the 28th International Conference on Machine Learning (ICML-11), ICML ’11,

pages 801–808, New York, NY, USA, June 2011. ACM. ISBN 978-1-4503-0619-5.

Yiming Yang, Jian Zhang, and Bryan Kisiel. A scalability analysis of classifiers

in text categorization. In Proceedings of the 26th annual international ACM

SIGIR conference on Research and development in informaion retrieval, SIGIR

’03, pages 96–103, New York, NY, USA, 2003. ACM. ISBN 1-58113-646-3. doi:

10.1145/860435.860455. URL http://doi.acm.org/10.1145/860435.860455.

Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin. Dual coordinate descent meth-

ods for logistic regression and maximum entropy models. Mach. Learn., 85(1-2):

41–75, October 2011. ISSN 0885-6125.

Lihi Zelnik-manor and Pietro Perona. Self-tuning spectral clustering. In Advances

in Neural Information Processing Systems 17, pages 1601–1608. MIT Press,

2004.

Ning Zhang, Ling-Yu Duan, Qingming Huang, Lingfang Li, Wen Gao, and Ling

Guan. Automatic video genre categorization and event detection techniques

on large-scale sports data. In Joanna W. Ng, Christian Couturier, Hausi A.

Muller, and Arthur G. Ryman, editors, CASCON, pages 283–297. ACM,

2010. URL http://dblp.uni-trier.de/db/conf/cascon/cascon2010.html#

ZhangDHLGG10.

http://dx.doi.org/10.1007/978-3-642-12683-3_34
http://dx.doi.org/10.1007/978-3-642-12683-3_34
http://doi.acm.org/10.1145/860435.860455
http://dblp.uni-trier.de/db/conf/cascon/cascon2010.html#ZhangDHLGG10
http://dblp.uni-trier.de/db/conf/cascon/cascon2010.html#ZhangDHLGG10

Bibliography 130

Yi Zhang and Jeff Schneider. Multi-label output codes using canonical correlation

analysis. In AISTATS 2011, 2011.

Bin Zhao and Eric P. Xing. Sparse output coding for large-scale visual recognition.

In CVPR, pages 3350–3357. IEEE, 2013. URL http://dblp.uni-trier.de/

db/conf/cvpr/cvpr2013.html#ZhaoX13.

http://dblp.uni-trier.de/db/conf/cvpr/cvpr2013.html#ZhaoX13
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2013.html#ZhaoX13

