C. Charu, A. Aggarwal, D. A. Hinneburg, and . Keim, On the surprising behavior of distance metrics in high dimensional space, In Lecture Notes in Computer Science, pp.420-434, 2001.

R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma, Multi-label learning with millions of labels, Proceedings of the 22nd international conference on World Wide Web, WWW '13, pp.13-24, 2013.
DOI : 10.1145/2488388.2488391

E. L. Allwein, R. E. Schapire, and Y. Singer, Reducing multiclass to binary: A unifying approach for margin classifiers, J. Mach. Learn. Res, vol.1, pp.113-141, 2001.

A. Argyriou, T. Evgeniou, and M. Pontil, Convex multi-task feature learning, Machine Learning, vol.8, issue.7, pp.243-272, 2008.
DOI : 10.1007/s10994-007-5040-8

K. Balasubramanian and G. Lebanon, The landmark selection method for multiple output prediction, Proceedings of the 29th International Conference on Machine Learning (ICML-12), ICML '12, pp.983-990, 2012.

M. Belkin and P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Computation, vol.15, issue.6, pp.1373-1396, 2003.
DOI : 10.1126/science.290.5500.2319

S. Bengio, J. Weston, and D. Grangier, Label embedding trees for large multi-class tasks, Advances in Neural Information Processing Systems 23, pp.163-171, 2010.

Y. Bengio, Learning Deep Architectures for AI, Foundations and Trends?? in Machine Learning, vol.2, issue.1, pp.1-127, 2009.
DOI : 10.1561/2200000006

Y. Bengio, O. Delalleau, N. L. Roux, J. Paiement, P. Vincent et al., Learning Eigenfunctions Links Spectral Embedding and Kernel PCA, Neural Computation, vol.16, issue.10, pp.2197-2219, 2004.
DOI : 10.1126/science.290.5500.2319

Y. Bengio, A. Courville, and P. Vincent, Representation Learning: A Review and New Perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, 2013.
DOI : 10.1109/TPAMI.2013.50

N. Paul, N. Bennett, and . Nguyen, Refined experts: improving classification in large taxonomies, Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '09, pp.11-18, 2009.

N. Paul, S. T. Bennett, E. Dumais, and . Horvitz, Probabilistic combination of text classifiers using reliability indicators: models and results, Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '02, pp.207-214, 2002.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When Is ???Nearest Neighbor??? Meaningful?, Int. Conf. on Database Theory, pp.217-235, 1999.
DOI : 10.1007/3-540-49257-7_15

A. Beygelzimer, J. Langford, Y. Lifshits, G. B. Sorkin, and A. L. Strehl, Conditional probability tree estimation analysis and algorithms

A. Beygelzimer, J. Langford, and P. D. Ravikumar, Error-correcting tournaments. CoRR, abs/0902, p.3176, 2009.

W. Bi and J. Kwok, Efficient multi-label classification with many labels, Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp.405-413

I. Biederman, Recognition-by-components: A theory of human image understanding., Psychological Review, vol.94, issue.2, pp.115-147, 1987.
DOI : 10.1037/0033-295X.94.2.115

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), 2006.

D. Vincent, J. Blondel, R. Guillaume, E. Lambiotte, and . Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, vol.10, 2008.

H. Burton and . Bloom, Space/time trade-offs in hash coding with allowable errors

A. Bordes, L. Bottou, P. Gallinari, and J. Weston, Solving multiclass support vector machines with LaRank, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.89-96, 2007.
DOI : 10.1145/1273496.1273508

URL : https://hal.archives-ouvertes.fr/hal-00750277

L. Bottou and O. Bousquet, The tradeoffs of large scale learning, Advances in Neural Information Processing Systems, pp.161-168, 2008.

S. Boyd and L. Vandenberghe, Convex Optimization, 2004.

A. Broder, M. Mitzenmacher, A. Broder, and I. Michael-mitzenmacher, Network Applications of Bloom Filters: A Survey, Internet Mathematics, vol.1, issue.4, pp.636-646, 2002.
DOI : 10.1080/15427951.2004.10129096

J. Bromley, W. James, L. Bentz, I. Bottou, Y. Guyon et al., SIGNATURE VERIFICATION USING A ???SIAMESE??? TIME DELAY NEURAL NETWORK, International Journal of Pattern Recognition and Artificial Intelligence, vol.07, issue.04, pp.669-688, 1993.
DOI : 10.1142/S0218001493000339

L. Cai and T. Hofmann, Hierarchical document categorization with support vector machines, Proceedings of the Thirteenth ACM conference on Information and knowledge management , CIKM '04, pp.78-87
DOI : 10.1145/1031171.1031186

L. Carter, R. Floyd, J. Gill, G. Markowsky, and M. Wegman, Exact and approximate membership testers, Proceedings of the tenth annual ACM symposium on Theory of computing , STOC '78, pp.59-65, 1978.
DOI : 10.1145/800133.804332

C. Nicoì-o-cesa-bianchi, L. Gentile, and . Zaniboni, Incremental algorithms for hierarchical classification, J. Mach. Learn. Res, vol.7, pp.31-54, 2006.

Y. Chen, M. M. Crawford, and J. Ghosh, Integrating support vector machines in a hierarchical output decomposition framework, 2004.

Y. Chen and H. Lin, Feature-aware label space dimension reduction for multi-label classification, NIPS, pp.1538-1546, 2012.

K. Christensen, A. Roginsky, and M. Jimeno, A new analysis of the false positive rate of a Bloom filter, Information Processing Letters, vol.110, issue.21, pp.944-949, 2010.
DOI : 10.1016/j.ipl.2010.07.024

M. Cissé, T. Artì, and P. Gallinari, Learning Compact Class Codes for Fast Inference in Large Multi Class Classification, Proceedings of the 2012 European Conference on Machine Learning and Knowledge Discovery in Databases -Volume Part I, ECML PKDD'12, pp.506-520, 2012.
DOI : 10.1007/978-3-642-33460-3_38

M. Moustapha, N. Cisse, . Usunier, P. Thierryartì, and . Gallinari, Robust bloom filters for large multilabel classification tasks

K. Crammer and Y. Singer, On the algorithmic implementation of multiclass kernel-based vector machines, J. Mach. Learn. Res, vol.2, pp.265-292, 2002.

O. Dekel and O. Shamir, Multiclass-multilabel classification with more classes than examples, pp.137-144, 2010.

O. Dekel, J. Keshet, and Y. Singer, Large margin hierarchical classification, Twenty-first international conference on Machine learning , ICML '04, p.27, 2004.
DOI : 10.1145/1015330.1015374

K. Dembczynski, W. Cheng, and E. Hüllermeier, Bayes optimal multilabel classification via probabilistic classifier chains, ICML, pp.279-286, 2010.

K. Dembczynski, W. Cheng, and E. Hüllermeier, Bayes optimal multilabel classification via probabilistic classifier chains, ICML, pp.279-286, 2010.

K. Dembczynski, W. Waegeman, W. Cheng, and E. Hüllermeier, On label dependence and loss minimization in multi-label classification, Machine Learning, pp.5-45, 2012.
DOI : 10.1007/s10994-012-5285-8

J. Deng, S. Satheesh, A. C. Berg, F. Fei, and F. Li, Fast and balanced: Efficient label tree learning for large scale object recognition, Advances in Neural Information Processing Systems 24, pp.567-575

G. Thomas, G. Dietterich, and . Bakiri, Solving multiclass learning problems via error-correcting output codes, J. Artif. Intell. Res. (JAIR), vol.2, pp.263-286, 1995.

S. Dumais and H. Chen, Hierarchical classification of Web content, Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '00, pp.256-263, 2000.
DOI : 10.1145/345508.345593

S. Escalera, O. Pujol, and P. Radeva, Error-correcting ouput codes library, The Journal of Machine Learning Research, vol.11, pp.661-664, 2010.

T. Evgeniou and M. Pontil, Regularized multi--task learning, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, pp.109-117, 2004.
DOI : 10.1145/1014052.1014067

K. Rong-en-fan, C. Chang, X. Hsieh, C. Wang, and . Lin, Liblinear: A library for large linear classification, J. Mach. Learn. Res, vol.9, pp.1871-1874, 2008.

T. Gao and D. Koller, Discriminative learning of relaxed hierarchy for large-scale visual recognition, Proceedings of the International Conference on Computer Vision (ICCV), 2011.

T. Gao and D. Koller, Multiclass boosting with hinge loss based on output coding, ICML, pp.569-576, 2011.

S. Godbole and S. Sarawagi, Discriminative Methods for Multi-labeled Classification, Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.22-30, 2004.
DOI : 10.1007/978-3-540-24775-3_5

S. Godbole, S. Sarawagi, and S. Chakrabarti, Scaling multiclass support vector machines using inter-class confusion, Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.513-518, 2002.

S. Gopal and Y. Yang, Distributed training of large-scale logistic models, JMLR Proceedings, pp.289-297

S. Gopal and Y. Yang, Recursive regularization for large-scale classification with hierarchical and graphical dependencies, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '13, pp.257-265
DOI : 10.1145/2487575.2487644

G. Griffin and P. Perona, Learning and using taxonomies for fast visual categorization, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587410

S. V. Bharath-hariharan, M. Vishwanathan, and . Varma, Large Scale Max- Margin Multi-Label Classification with Prior Knowledge about Densely Correlated Labels, Proceedings of International Conference on Machine Learning, 2010.

D. Hsu, S. Kakade, J. Langford, and T. Zhang, Multi-label prediction via compressed sensing, NIPS, pp.772-780, 2009.

S. Ju, J. Hwang, K. Grauman, and F. Sha, Learning a tree of metrics with disjoint visual features, Advances in Neural Information Processing Systems 24, pp.621-629, 2011.

N. Japkowicz and S. Stephen, The class imbalance problem: A systematic study, Intell. Data Anal, vol.6, issue.5, pp.429-449, 2002.

A. Kapoor, R. Viswanathan, and P. Jain, Multilabel classification using bayesian compressed sensing, NIPS, pp.2654-2662, 2012.

R. Adam, A. A. Klivans, and . Sherstov, Improved lower bounds for learning intersections of halfspaces, Proceedings of the 19th annual conference on Learning Theory, COLT'06, pp.335-349, 2006.

D. Koller and M. Sahami, Hierarchically classifying documents using very few words, Proceedings of the Fourteenth International Conference on Machine Learning, ICML '97, pp.170-178, 1997.

. Androutsopoulos, Evaluation measures for hierarchical classification: a unified view and novel approaches
URL : https://hal.archives-ouvertes.fr/hal-01071749

A. Kumar, S. Vembu, A. K. Menon, and C. Elkan, Learning and Inference in Probabilistic Classifier Chains with Beam Search
DOI : 10.1007/978-3-642-33460-3_48

J. Langford and A. Beygelzimer, Sensitive Error Correcting Output Codes
DOI : 10.1007/11503415_11

H. Larochelle, D. Erhan, and Y. Bengio, Zero-data learning of new tasks, AAAI, pp.646-651, 2008.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

S. Liu, H. Yi, L. Chia, and D. Rajan, Adaptive hierarchical multi-class svm classifier for texture-based image classification, ICME, pp.1190-1193

Y. Ma, Support vector machines classification with a very large-scale taxonomy, SIGKDD Explor. Newsl, vol.7, issue.1, pp.36-43, 2005.

Z. Liu, W. Shi, Q. Qin, X. Li, and D. Xie, Hierarchical support vector machines, IGARSS, page 4. IEEE, 2005.

U. Luxburg, A tutorial on spectral clustering, Statistics and Computing, vol.21, issue.1, pp.395-416, 2007.
DOI : 10.1007/s11222-007-9033-z

M. Marszalek and C. Schmid, Semantic Hierarchies for Visual Object Recognition, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383272

URL : https://hal.archives-ouvertes.fr/inria-00548680

M. Marszalek and C. Schmid, Constructing Category Hierarchies for Visual Recognition, ECCV08 pages IV, p.47991, 2008.
DOI : 10.1007/978-3-540-88693-8_35

URL : https://hal.archives-ouvertes.fr/inria-00548656

A. Mccallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng, Improving text classification by shrinkage in a hierarchy of classes, Proceedings of the Fifteenth International Conference on Machine Learning, ICML '98, pp.359-367, 1998.

L. C. Molina, L. Belanche, and A. Nebot, Feature selection algorithms: a survey and experimental evaluation, 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp.306-313
DOI : 10.1109/ICDM.2002.1183917

Y. Nesterov, Primal-dual subgradient methods for convex problems, Mathematical Programming, vol.8, issue.1, pp.221-259, 2009.
DOI : 10.1007/s10107-007-0149-x

Y. Andrew, M. I. Ng, Y. Jordan, and . Weiss, On spectral clustering: Analysis and an algorithm, ADVANCES IN NEURAL INFORMATION PROCESS- ING SYSTEMS, pp.849-856, 2001.

M. Palatucci, D. Pomerleau, E. Geoffrey, . Hinton, M. Tom et al., Zeroshot learning with semantic output codes, NIPS, pp.5-7, 2009.

F. Pappalardo, C. Calonaci, M. Pennisi, E. Mastriani, and S. Motta, HAMFAST: Fast Hamming Distance Computation, 2009 WRI World Congress on Computer Science and Information Engineering, pp.569-572, 2009.
DOI : 10.1109/CSIE.2009.223

Y. C. Pati, R. Rezaiifar, Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp.40-44, 1993.
DOI : 10.1109/ACSSC.1993.342465

J. Read, B. Pfahringer, G. Holmes, and E. Frank, Classifier chains for multi-label classification, Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: Part II, ECML PKDD '09, pp.254-269, 2009.

J. Read, L. Martino, and D. Luengo, Efficient monte carlo methods for multi-dimensional learning with classifier chains, Pattern Recognition, vol.47, issue.3, pp.1535-1546, 2014.
DOI : 10.1016/j.patcog.2013.10.006

R. Rifkin and A. Klautau, In defense of one-vs-all classification, J

M. Ryan, A. Rifkin, and . Klautau, In defense of one-vs-all classification, Journal of Machine Learning Research, vol.5, pp.101-141, 2004.

R. E. Schapire, Using output codes to boost multiclass learning problems, Proceedings of the Fourteenth International Conference on Machine Learning, ICML '97, pp.313-321, 1997.

B. Schölkopf, C. Burges, and V. Vapnik, Extracting support data for a given task, KDD, pp.252-257, 1995.

C. N. Silla, J. , and A. A. Freitas, A survey of hierarchical classification across different application domains, Data Mining and Knowledge Discovery, vol.1, issue.487, pp.31-72, 2011.
DOI : 10.1007/s10618-010-0175-9

A. Sun and E. Lim, Hierarchical text classification and evaluation, Proceedings of the 2001 IEEE International Conference on Data Mining, ICDM '01, pp.521-528, 2001.

F. Tai and H. Lin, Multilabel Classification with Principal Label Space Transformation, Neural Computation, vol.6, issue.9, pp.2508-2542, 2012.
DOI : 10.1016/j.patcog.2006.12.019

L. Torresani, . Kuang, and . Lee, Large margin component analysis, Advances in Neural Information Processing Systems 19, pp.1385-1392, 2007.

K. Tretyakov, Machine learning techniques in spam filtering, 2004.

G. Tsoumakas and I. Katakis, Multi-label classification: An overview, IJDWM, vol.3, issue.3, pp.1-13, 2007.

G. Tsoumakas, I. Katakis, and I. Vlahavas, Random k-labelsets for multi-label classification, IEEE Transactions on Knowledge and Data Engineering, 2010.

N. Vladimir and . Vapnik, The Nature of Statistical Learning Theory, 1995.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.1096-1103, 2008.
DOI : 10.1145/1390156.1390294

V. Vural and J. G. Dy, A hierarchical method for multi-class support vector machines, Twenty-first international conference on Machine learning , ICML '04, p.105, 2004.
DOI : 10.1145/1015330.1015427

A. S. Weigend, E. D. Wiener, and J. O. Pedersen, Exploiting hierarchy in text categorization, Information Retrieval, vol.1, issue.3, pp.193-216, 1999.
DOI : 10.1023/A:1009983522080

Q. Kilian, O. Weinberger, and . Chapelle, Large margin taxonomy embedding for document categorization, NIPS, pp.1737-1744, 2008.

Q. Kilian, L. K. Weinberger, and . Saul, Distance metric learning for large margin nearest neighbor classification, pp.207-244, 2009.

Y. Weiss, A. Torralba, and R. Fergus, Spectral hashing, NIPS, p.6, 2008.

J. Weston and C. Watkins, Multi-class support vector machines, 1998.

J. Weston and C. Watkins, Support vector machines for multiclass pattern recognition, Proceedings of the Seventh European Symposium On Artificial Neural Networks, 1999.

J. Weston, S. Bengio, and N. Usunier, Wsabie: Scaling up to large vocabulary image annotation, Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence -Volume Volume Three, pp.2764-2770, 2011.

C. Widmer, J. Leiva, Y. Altun, and G. Rätsch, Leveraging Sequence Classification by Taxonomy-Based Multitask Learning, Proceedings of the 14th Annual international conference on Research in Computational Molecular Biology, RECOMB'10, pp.522-534, 2010.
DOI : 10.1007/978-3-642-12683-3_34

L. Xiao, D. Zhou, and M. Wu, Hierarchical classification via orthogonal transfer, Lise Getoor and Tobias Scheffer Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML '11, pp.801-808, 2011.

Y. Yang, J. Zhang, and B. Kisiel, A scalability analysis of classifiers in text categorization, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval , SIGIR '03, pp.96-103, 2003.
DOI : 10.1145/860435.860455

H. Yu, F. Huang, and C. Lin, Dual coordinate descent methods for logistic regression and maximum entropy models, Machine Learning, vol.46, issue.1???3
DOI : 10.1007/s10994-010-5221-8

L. Zelnik-manor and P. Perona, Self-tuning spectral clustering, Advances in Neural Information Processing Systems 17, pp.1601-1608, 2004.

N. Zhang, L. Duan, Q. Huang, L. Li, W. Gao et al., Automatic video genre categorization and event detection techniques on large-scale sports data, Proceedings of the 2010 Conference of the Center for Advanced Studies on Collaborative Research, CASCON '10
DOI : 10.1145/1923947.1923977

Y. Zhang and J. Schneider, Multi-label output codes using canonical correlation analysis, AISTATS 2011, 2011.

B. Zhao and E. P. Xing, Sparse Output Coding for Large-Scale Visual Recognition, 2013 IEEE Conference on Computer Vision and Pattern Recognition
DOI : 10.1109/CVPR.2013.430