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Abstract

Reproducing biological vision in a machine is a challenging problem for which

scientists have just scratched the surface. Living organisms are able to per-

form complex tasks in an awestruckly efficient manner. The stereovision is

one of these complex mechanisms that computer scientists try to replicate

with high resolution cameras. This thesis takes on the stereovision problem

in a neuromorphic way by mean of a new generation of vision sensors also

called ”silicon retinas”. These silicon retinas mimic biological retinas by cap-

turing the visual information into the form of asynchronous stream of events

that encode contrast change at high temporal precision.

These sensors are used to study the importance of the precise timing and the

scene temporal dynamics in solving the stereo correspondence problem. We

propose one of the first 3D reconstruction methods which is able to produce

3D models in a truly event-based and asynchronous manner, from event-based

visual information. Besides the novelty of proposing a truly temporal- based

asynchronous event-driven approach of 3D reconstructions, this work is also

able to preserve the native dynamic of the scene.

Time as information medium is proven to have a critical role in stereovision.

Time can supplement, compensate and even replace the usual luminance and

spatial information. This work lays strong foundations for future research

on high temporal and event-based dynamic stereo vision. It also opens new

promising perspectives for solving traditional machine vision problems thanks

to the use of the new asynchronous vision paradigm.



Abstract

L’implementation de la vision biologique sur machine est un problème majeur

que la recherche actuelle a à peine effleuré la surface. Les organismes vivants

sont capables de réaliser des tâches visuelles très complexes et de manière très

efficace. La stéréovision fait partie de ces mécanismes complexes que les sci-

entifiques tentent de reproduire à l’aide de caméras à haute résolution. Cette

thèse aborde le problème de la stéréovision d’une manière neuromorphique

par l’intermédiaire d’une nouvelle génération de capteurs de vision appelés

”rétines de silicium”. Ces rétines de silicium imitent les rétines biologiques en

capturant l’information visuelle sous forme de flux asynchrones d’événements

codant les changements de contraste avec une grande précision temporelle.

Ces capteurs sont utilisés pour étudier l’importance de la précision et de la

dynamique temporelle de la scène dans le problème de mise en correspondance

stéréo. Nous proposons une des premières méthodes de reconstruction 3D

capable de produire des modèles 3D d’une manière totalement asynchrone, á

partir de l’information visuelle. Cette approche, outre son originalité, permet

également de préserver la dynamique native de la scène.

Cette thèse montre que le temps en tant que medium d’information, joue un

rôle primordial dans la stéréovision. Le temps peut compléter, compenser,

voire remplacer l’information apportée habituellement par la luminance et

la géométrie. Ce travail établit également les fondations solides des futures

recherches en vision stéréo á haute vitesse et haute dynamique, basée sur les

événements. Il ouvre également de nouvelles perspectives prometteuses pour

la résolution de problèmes traditionels de vision artificielle grâce à l’apport

du nouveau paradigme de la vision asynchrone.
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Chapter 1

Introduction

“ The nervous system is certainly not a discrete state machine. A small

error in the information about the size of a nervous impulse impinging

on a neuron may make a large difference to the size of the outgoing

impulse. It may be argued that, this being so, one cannot expect to be

able to mimic the behaviour of the nervous system with a discrete state

system.

”
Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden

Braid, 1979

1.1 Depth perception and stereovision

While observing their surroundings, humans automatically extract a number of basic

critical information for understanding and interacting with the environment. Depth

is among the most important information allowing us to perceive the world in three

dimensions and determine distances to objects.

1



1.1 Depth perception and stereovision

We take advantage of several mechanisms which complement each others to achieve

depth perception. These can be either psychological or physiological, monocular or binoc-

ular. Monocular cues use information from one single eye and include accommodation,

motion parallax, retinal image size, linear perspective, texture gradient, overlapping,

aerial perspective, shades and shadows. Binocular cues require information from both

eyes and include convergence, stereopsis or shadow stereopsis (Howard and Rogers, 2008).

Figure 1.1: Principle of stereovision. Image courtesy of (Read, 2013)

Stereopsis or stereovision (see Fig. 1.1) is a mechanism which uses the fact that both

eyes observe the world from slightly different positions giving rise to slightly different

views. The magnitude of the difference between images of the same object from both

views allows the computation of depth information. Binocular disparity refers to this

difference between the views and directly reflects relative distance as closer objects result

in larger disparities than distant objects. Stereopsis is a very precise depth perception

mechanism and is by itself sufficient to guarantee depth perception even if other cues are

removed, as it was first shown by (Julesz, 1960) using random dot stereograms. The use

of multiple mechanisms allows removing ambiguities or errors in depth estimation. In

particular, vergence is closely coupled and of great importance to stereovision, as it allows
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1.2 Stereo matching problem

reducing large disparities by moving the eyes in opposite directions (Erkelens, 2001).

Stereovision has been acknowledged as a method for depth perception for centuries

with the first theories being proposed by Descartes and Newton (Gonzalez and Perez,

1998). The activity of cortical neurons responding to depth was however only recorded for

the first time in 1967 (Bergua and Skrandies, 2000). Since then, several studies aiming at

understanding the neurophysiological basis of stereopsis have been developed, successfully

showing the cortical response to binocular disparities (Gonzalez and Perez, 1998). To

extract depth from stereovision, our brain examines disparities on the two retinal output

of an object. To achieve this, it must first be able to determine correspondences between

points in both views. This is known as the stereo correspondence problem.

1.2 Stereo matching problem

The stereo correspondence problem is at the core of stereo vision but remains an open

issue. Identifying for each point on the left view, its correspondence on the right view is

performed effortlessly by humans. However, the solution is far from being trivial and it

is still not completely understood even after decades of research. Our brain uses complex

cues from the outside world and from knowledge gained through experience to impose

additional constraints (e.g. color, opacity, spatial and temporal coherence) in order to

solve the stereo matching problem (Read, 2002).

Several models explaining how the brain solves the stereo correspondence problem have

been proposed. Cooperative models solve stereo correspondences by combining excitation

and inhibition interactions. (Dev, 1975) and (Nelson, 1975) suggested that binocular cells

tuned at the same disparity at neighboring spatial locations and inhibits cells tuned to

different disparities for the same spatial position. A variant by (Marr and Poggio, 1976)

proposes that inhibition across disparities should run along the line of sight, meaning that

each monocular input can only give rise to a single binocular disparity. These models

3



1.2 Stereo matching problem

provided the still well-known and widely used smoothness and unicity contraints. (May-

hew and Frisby, 1981) proposed a multi-component algorithm which begins by extracting

local edges’ location and orientation from the monocular views. Disparity is obtained

from edges showing similar orientation and polarity. These cooperative stereo models

however fail in depth transparency and depth averaging.

Coarse-to-fine strategies link the disparity processing to the receptive field size. This was

originally observed by (Marr and Poggio, 1979), where authors propose a model com-

posed of multiple size spatial filters where small receptive fields process small disparities

and large receptive fields process larger disparities. In this model, large receptive fields

control vergence eye movements which then conduct to fine disparities. Other models

using this coarse-to-fine approach minimize the role of eye movement with large disparity

defining the relative position of features to the fixation plane (Quam, 1984) and (Nishi-

hara, 1984).

The most common computational model is the local correlation model proposed in (Cor-

mack et al., 1991) and (Banks et al., 2004). Under this model, disparities are chosen as

the ones producing maximal local cross-correlation between both retinal images.

Although these models propose different approaches to solve the stereo matching prob-

lem, they all rely on maximizing the interocular correlation i.e. the amount of matches

between the left and right view (Howard and Rogers, 2008).

The motivation for understanding the mechanisms behind stereo matching lies on

understanding how the brain is able to compute stereo vision so efficiently. If this process

is well understood it will then allow large advances in bio-inspired artificial stereo vision

systems with applications in robotics, medicine, engineering, or several fields.

In computer vision, several stereo vision algorithms have been developed throughout

the last decades in order to estimate depth maps from binocular systems.

Stereovision algorithms can be coarsely classified into two categories illustrated in

Fig. 1.2:
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1.2 Stereo matching problem

a)

b)

Figure 1.2: a)feature based matching b)area based matching. Image courtesy of (Bhatti,
2012)

• feature-based techniques which consist of matching feature points across images,

• area-based techniques which use image domain similarity metrics for the matching

operation.

In (Scharstein and Szeliski, 2002), a taxonomy for binocular stereo dense algorithms

is proposed. The authors decompose the stereo algorithms into four steps: matching

cost computation, cost (support) aggregation, disparity computation/optimization and

disparity refinement.

Significant improvements have been proposed over the last years. The most efficient

algorithms tackle the correspondence problem by using disparity optimization methods.

The aim is to enforce the smoothness assumption on both vertical and horizontal axes.

5



1.3 Epipolar geometry

Among the recently proposed optimization techniques, graph cut and belief propaga-

tion (Szeliski et al., 2008) seem to produce interesting results, but they (Davis et al.,

2005; Klaus et al., 2006; Taguchi et al., 2008; Wang and Zheng, 2008; Will and Pen-

nington, 1971; Xu and Jia, 2008; Yang et al., 2007, 2009) are computationally expensive

and resource demanding. Other techniques such as scanline optimization (Nayar et al.,

2006; Scharstein and Szeliski, 2002) and dynamic programming (Scharstein and Szeliski,

2002; Veksler, 2005; Wang et al., 2006) provide accurate results with reasonable per-

formance (Nayar et al., 2006; Scharstein and Szeliski, 2002; Veksler, 2005; Wang et al.,

2006; Young et al., 2007; Zickler et al., 2002). Other reliable techniques use projectors as

programmable light sources for active vision techniques using structured light range find-

ing (Curless and Levoy, 1995; Davis et al., 2005; Scharstein and Szeliski, 2003; Will and

Pennington, 1971; Young et al., 2007; Zhang et al., 2002), photometry-based reconstruc-

tion (Hertzmann and Seitz, 2003; Zickler et al., 2002), relighting (Wenger et al., 2005),

light transport analysis (Nayar et al., 2006; Sen et al., 2005) and depth from defocus

(Zhang and Nayar, 2006). The main advantage of projecting a set of coloured patterns

onto a scene is that it eases the problem of correspondences (Zhang et al., 2002), but the

method is inadequate for real-time processing. An evaluation of several algorithms can

be found in (Scharstein and Szeliski, 2002).

1.3 Epipolar geometry

Epipolar geometry, sometimes called the geometry of stereovision, studies the relation

between 3D points and their projection onto the image plane. Such relations allow

enforcing constraints between projected image points easing the search for matching

correspondences and are at the base of most computer stereo matching methods.

Let us consider a 3D point X projected onto the image planes of camera C at x and

6



1.3 Epipolar geometry

Figure 1.3: A 3D point X projects onto cameras C and C ′ as respectively x and x′. A
plane passing through both camera centers and the 3D point will intersect the image planes
in a line called epipolar line.

camera C ′ at x′ according to

x = PX (1.1)

where P = K

(
R −T

)
is the projection matrix of C with extrinsic parameters R,

T and intrinsic parameters K.

The plane passing through X and the camera centers C and C ′ is called epipolar

plane and intersects both image planes in a line. These lines are called epipolar lines (see

Fig. 1.3).

This geometrical relation allows us to define a matrix, called fundamental matrix,

which maps each point on one image to a line on the other image according to

x′Fx = 0 (1.2)

where F is the 3× 3 fundamental matrix. If F is known, the search for the correct point

7



1.4 3D reconstruction

x′ in camera C ′ which matches x in camera C is reduced to the search over the epipolar

line l defined by:

l′ = Fx. (1.3)

This map from points to epipolar lines allows us to reduce the stereo matching space

from the full frame of pixels to a line in an image. Once corresponding x and x′ have

been identified, the 3D point X they represent can be obtained by the relation expressed

in equation 1.1, by the intersection of the back-projected rays passing through the center

of the cameras and respective image points.

This section intended to provide a brief introduction to the elements of epipolar

geometry wich are used throughout this thesis. For a more detailed explanation on

epipolar geometry reader should refer to (Hartley and Zisserman, 2004).

1.4 3D reconstruction

Figure 1.4: 3D reconstruction from multiple views. Image courtesy of (Hernández, 2004)

A major interest of being able to compute depth is the possibility to recover the struc-

ture of the scene. While, in binocular stereo, the goal is to produce dense depth maps,

here the expected result is to build complete 3D models of the scene (see Fig. 1.4). The

8



1.4 3D reconstruction

ability to reconstruct an observed environment allows us to build virtual scenes which

are exact copies of the real world. This virtualized reality provides, as opposed to com-

puter generated virtual reality scenes, much richer and realistic 3D environments (Kanade

et al., 1995). Since the seminal work of creating multi-camera networks (Kanade et al.,

1998), tele-immersion became an important element for the next generation of live and

interactive 3DTV applications. The goal of these techniques is to allow people at different

physical locations to share a virtual environment.

Several methods for achieving 3D reconstruction from multiple views exist. Seitz et.

al (Seitz et al., 2006) categorize them into four classes: the first class, includes voxel

colouring algorithms which operate by extracting surfaces in a single sweep. A cost is

assigned to each voxel of a given volume which is reconstructed if this cost is under a

certain threshold (Seitz and Dyer, 1997; Treuille et al., 2004). Variants try to obtain

optimal surfaces by using Markov Random Fields and max-flow (Furukawa, 2008; Roy

and Cox, 1998; Sinha and Pollefeys, 2005; Vogiatzis et al., 2005) or multi-way graph

cut (Kolmogorov and Zabih, 2002). The second class of algorithms includes methods

which operate by iteratively refining surfaces through minimization of a cost function.

Examples are space carving (Fromherz and Bichsel, 1995; Kutulakos and Seitz, 2000) and

variants which progressively refine structures by adding or rejecting voxels to minimize an

energy function (Bhotika et al., 2002; Eisert et al., 1999; Kutulakos, 2000; Kutulakos and

Seitz, 2000; Saito and Kanade, 1999; Slabaugh et al., 2000, 2004; Yang et al., 2003; Zeng

et al., 2005). Level-set techniques start from a large volume which shrinks or expands by

minimizing a set of partial differential equations. The third class involves methods that

compute sets of depth maps. Image-space methods enforce consistency between depth

maps in order to recover a 3D reconstruction of the scene (Gargallo and Sturm, 2005;

Kolmogorov and Zabih, 2002; Narayanan et al., 1998; Szeliski, 1999; Zitnick et al., 2004).

Finally, the fourth class includes methods that rely on feature extraction. Features are

first extracted and matched between viewpoints and a surface fitting method is then

9



1.4 3D reconstruction

used to reconstruct the surfaces (Faugeras et al., 1990; Manessis et al., 2000; Morris and

Kanade, 2000; Taylor, 2003).

As shown, methods for achieving 3D reconstruction have been under intensive re-

search during the last decades. Although much progress has been made, 3D reconstruc-

tion and its core problem, stereo matching, still remain fundamental research problems

in computer vision. Proposed approaches lack temporal resolution and performance is

far from what is provided by the examples we can find in nature such as the 3D vision

humans are able to perceive. Classical frame-based cameras capture dynamic scenes as a

sequence of static image frames taken at a given frequency typically around 30Hz. The

precise temporal dynamic of the scene is therefore lost during the early acquisition phase

as the scene is sampled at discrete points in time. Current state-of-the-art methods ap-

proach the reconstruction of dynamic scenes as the reconstruction of sequences of static

scenes. Produced reconstructions are therefore limited to the low temporal resolutions

of the frame-based cameras where the fine temporal resolution of the scene is lost. Cur-

rently, real-time 3D reconstruction has been achieved using depth cameras (such as the

Microsoft Kinect or the Asus Xtion) however the results are noisy and can only operate

in specific lightning condition. Other state-of-the-art methods which are able to produce

real-time reconstructions need to find a compromise quality in order to gain in compu-

tation speed (Niesner et al., 2013).

In nature, stereovision and 3D reconstruction is achieved effortlessly and is not limited

to 30Hz as we perceive the world continuously and not as a sequence of images. Current

methods relying on classical cameras are computationally expensive even at low temporal

resolution. The reason for such computation difficulties of current methods might come

from the way visual information is encoded and the loss of the temporal precision. The

next section shows the importance of precise timing in depth perception both in biology

and computer vision.
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1.5 The importance of time in stereo correspondence

1.5 The importance of time in stereo correspondence

Several studies showed that the temporal information is not only used but is also critical

in the stereomatching process of the human visual system. Two temporal factors seem

to be particularly important: duration of the stimulus and interocular synchronization

(synchronization of images shown to the left and right eyes) (Howard and Rogers, 2008).

Although early studies showed that depth perception could be achieved when exposed

to a stimulus for less than 1ms (when eyes were previously converged) suggesting the stim-

ulus duration was not important, further research showed that in fact the stereo match-

ing requires time to solve ambiguities and is more demanding for more complex stimulus

such as dense random dot stereograms. A globally accepted idea is that correspondence

is achieved by an expensive process of interocular correlation maximization (Cormack

et al., 1991) (Howard and Rogers, 2008).

The synchronization between images received by left and right views has also been

shown to represent a critical role in stereo matching. Experiments have been conducted

where a stimulus presented to an observer had one of the views delayed either using

a filter or a computer generated stimulus. Results showed that the disparity-induced

depth was still perceived (Howard and Rogers, 2008). The tolerance for interocular delay,

representing the amount of tolerated delay between views while still perceiving depth,

has been largely studied and shown to be up to 50ms (Mitchell and O’Hagan, 1972)(Ross,

1974)(Howard and Rogers, 2008). Some authors suggest that interocular delay is not only

tolerated but can also by itself produce a sensation of depth, calling temporal disparity to

this purely temporal stereoscopic disparity as it was first described by Mach and Dvorak

(1872) and later by Max Wolf in 1920 (Howard and Rogers, 2008)(Ross, 1974). This effect

was called Pulfrich effect and was studied in detail by Carl Pulfrich in 1922 (Gonzalez

and Perez, 1998). However, although the claim for the existence of temporal disparities,

authors generally explain this phenomenon by assuming that the delay introduced in one
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1.6 Bio-inspired event-based vision

eye interferes with the signals from the other eye (Howard and Rogers, 2008).

An important conclusion should be retained, temporal consistency studies show that

higher synchronization between views leads to more accurate depth extraction, whereas

interocular delays give rise to non-existent depth and deformed shapes (Chang, 2009).

1.6 Bio-inspired event-based vision

Figure 1.5: Event-based representation of a rotating disk over time. Image courtesy of
(Delbruck and Lichtsteiner, 2006)

Biological retinas encode visual information differently from conventional cameras.

Frame-based cameras transmit full image frames at constant rates, where each frame

contains luminance information for all pixels of the visual sensor. However, biological

retinas encode information as a stream of spikes, where each photoreceptor independently

generates spikes that encode light intensity changes at millisecond precision (see Fig. 1.5).

Therefore, only the information on parts of the scene that change (e.g. luminosity) is

encoded, avoiding acquiring and transmitting redundant data while adding precise time

information.

In the late 1980s, the first neuromorphic vision sensor mimicking the various be-
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1.6 Bio-inspired event-based vision

haviours of the first three layers of the biological retina was proposed by Mahowald

(Mahowald, 1992). It introduced an analog photoreceptor that transforms the perceived

light intensity into an output voltage following a logarithmic mapping. Delbruck and

Mead improved the design by adding active adaptation (Delbrück and Mead, 1995) and

Kramer further added polarity encoding luminosity intensity change (Kramer, 2002).

In 2006, the Dynamic Vision Sensor was proposed by Lichtsteiner wich provided the

first generation of ready-to-use sensors for asynchronous event-based vision(Lichtsteiner

et al., 2006). In 2010 The sensor In 2011 Posch et al. (Posch et al., 2011) proposed a

QVGA resolution sensor. Besides increasing by more than four times the resolution of

the DVS(Lichtsteiner et al., 2008), the sensor also provides luminance information. Gray-

level information of events is encoded as two events representing beginning and end of

the exposure measurement. Another recent DVS development (Serrano-Gotarredona and

Linares-Barranco, 2013) improves on the contrast sensitivity, allowing for the inclusion

of more low-contrast visual information such as texture details. A review of some of the

history and recent developments in artificial retina sensors can be found in (Delbruck

et al., 2010).

These bio-inspired vision sensors encode the visual information differently from stan-

dard frame-based cameras. Their use in stereo vision and the computation of visual

tasks allows to study the computation of visual information using previously unexplored

temporal properties in a more bio-inspired and event-driven approach. Some examples

of recent publications which show the potential in applications of these neuromorphic vi-

sion sensors to computer vision tasks include shape tracking (Ni et al., 2012), optical flow

estimation (Benosman et al., 2013a) or gesture recognition (Lee et al., 2012b). Examples

of biological applications also exist where authors reproduce the spatial and temporal

properties of retinal ganglion cells using these bio-inspired sensors (Lorach et al., 2012).

13



1.7 Stereo-correspondence in neuromorphic engineering

1.7 Stereo-correspondence in neuromorphic engineering

Existing work on stereo vision with neuromorphic sensors is still poorly studied. Ma-

howald et al. (Mahowald and Delbrück, 1989) implemented cooperative stereovision in a

neuromorphic chip in 1989. The resulting sensor was composed of two 1D pixel arrays of

5 neuromorphic pixels each. The use of local inhibition driven along the line of sight im-

plemented the uniqueness constraint (one pixel from one view is associated to only one

pixel in the other, except during occlusions), while the lateral excitatory connectivity

gave more weight to coplanar solutions to discriminate false matches from correct ones.

This method requires a great amount of correlator units to deal with higher resolution

sensors.

In 2008, Shimonomura, Kushima and Yagi implemented the biologically inspired

disparity energy model to perform stereovision with two silicon retinas (Shimonomura

et al., 2008). They simulated elongated receptive fields to extract the disparity of the

scene and control the vergence of the cameras. The approach is frame-based and allows

to extract coarse disparity measurements to track object in 3D.

Kogler et al. (Kogler et al., 2009) have described a frame-based use of the event-based

DVS cameras in 2009. They designed an event-to-frame converter to reconstruct event

frames and then tested two conventional stereo vision algorithms: a window-based and

a feature-based using center-segment features (Shi and Tomasi, 1993).

Delbruck has implemented a real event-based stereo tracker that tracks the position of

a moving object in both views using an event-based median tracker and then reconstructs

the position of the object in 3D (Lee et al., 2012a). This efficient and fast method lacks

resolution on smaller features and is sensitive to noise when too many objects are present.

In 2011, Rogister et al. (Rogister et al., 2011) (see Fig. 1.6) proposed an asyn-

chronous event-based binocular stereo matching algorithm combining epipolar geometry

and timing information. Taking advantage of the high temporal resolution and the epipo-
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1.8 Motivation and contribution

Figure 1.6: Binocular stereo setup composed of two dvs sensors and principle of operation
of the asynchronous event-based binocular stereo matching method (courtesy of (Rogister
et al., 2011))

lar geometry constraint they provided a truly event-based approach for real-time stereo

matching. However the method is very prone to errors as enforced constraints are weak

and result in many ambiguities.

1.8 Motivation and contribution

Conventional mainstream computer vision methods rely on frame-based cameras to com-

pute stereovision. Conventional cameras sample scenes at low constant frequencies pro-

ducing sequences of images. Temporal dynamic and precision are lost while information

is encoded in an unnatural way. Computation in that case mainly relies on incomplete

representations of the visual information.
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The recent advent of asynchronous event-based neuromorphic vision sensors allow to

consider visual problem from a new perspective. Information is acquired asynchronously

in an event-based manner preserving temporal properties of natural scenes. As this thesis

will show, a high temporal resolution is a critical information for visual processing. There

are at least two clear direct advantages in using these sensors in visual computation: first

it may allow a deeper understanding of biological mechanisms behind visual processing

and secondly it provides a way for exploring the temporal dimension of dynamic scenes

and its implication in computer vision methods.

The presented work will study the relationship between binocular fusion and simul-

taneity of stimulation of the two eyes. As we will show, this relationship has considerable

theoretical importance as it allows to use time rather than luminance to match visual

information. This work also relies on the hypothesis that the simultaneity of arrival of

discharges at the cortex from the two retinas is a necessary condition for stereopsis. Ev-

idence supporting the validity of the assumption of simultaneity is now widely accepted

(OGLE, 1954a, 1954b). This work shows for the first time from a computational point of

view how a simultaneous stimulation of the two eyes is a sufficient condition for stereop-

sis. It emphasizes the idea that precise times discharges of retinal output resulting from

binocular stimulation are massively used in the cortex for binocular fusion.

The assumption of simultaneity will be explored in the context of multi-retina context

as well as in binocular systems when dealing with additional information such as motion

estimation and light consistency always in an asynchronous event-based framework. All

these results show that computationally the assumption that precise cortical arrival of

discharges is a necessary condition for the occurrence of stereopsis.

As outlined by biological research, time is a critical information for stereo vision

mechanism. With the recently available neuromorphic vision sensors, we have at our

disposal a promising tool for exploring and studying thoroughly the exact role played

by time in biological machine vision. This thesis aims at building the first theoretical
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foundation of an entirely time-based stereo vision system. Because event-based sensing

also implies a visual information processing paradigm shift, several scientific obstacles

must be solved. In this thesis we address the following questions:

• Time seems to play an important role in biological stereo vision, how can the tem-

poral precision of neuromorphic retinas be used to tackle the stereo correspondence

problem and recover 3D structures?

• What are the advantages in using asynchronous event-based encoding of the visual

information?

• What are the consequences and how to deal with the high event-rate of neuromorphic

silicon retinas?

• What can temporal dynamics of scenes add to 3D reconstruction?

This thesis is organized as follows. In chapter 2, a 3D reconstruction algorithm based

on asynchronous event-based sensors is presented. Motivated by several characteristics

of the event-based visual information such as sparsity of events, temporal accuracy, tem-

poral resolution or co-activation of events, we introduce a method that combines such

features with well-known geometrical properties commonly used in classical computer

vision. We show that despite the very low spatial resolution of 128×128 pixel sensors we

are able to produce 3D reconstructions, computer 3D models which accurately represent

the registered scene. However, the method is prone to errors due to low constraints of

matching. False matches and consequently noise exists in recovered reconstructions due

to the incapacity to disambiguate between correct and incorrect matches. Beyond using

higher resolution vision sensors the solution for achieving better reconstructions lies on

finding a more constrained formulation where more information could help in solving

existing ambiguities.

Knowing how points move in the scene can provide clues to identify and discard noise.

Observing if points are consistent with the expected motion can serve as an indicator

17
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as to whether they are correctly reconstructed. The method introduced in chapter 2

provides a stream of asynchronous 3D events containing a high temporal dynamic 3D

representation of the scene. We study the 3D scene flow estimation problem in chapter 3

and develop a method to easily extract motion from this stream of asynchronous 3D

events. Although explored in an event-based perspective we show that the method can

recover 3D motion flow from any sequence of 3D point clouds such as the ones recovered

from classical reconstruction methods or other depth sensors. The method relies solely

on the spatial-temporal location of 3D points meaning motion can be inferred even if

luminance information is not available.

In chapter 4, we use motion and luminance information to further improve asyn-

chronous event-based stereo matching methods. We present four individual constraints

(temporal, geometrical, luminance and motion) as independent matching cost functions

and formulate our approach as an energy minimization problem minimizing a modular

cost function. Penalties are imposed over the set of selected constraint modules compos-

ing the cost function. Independence of cost functions allows constraints to be selected

according to available information and/or scenario. Luminance information may not al-

ways be available depending on the chosen sensor or conditions (e.g. in low illuminated

scenes or fast movement the ATIS sensor may fail to provide gray-level information).

Under these conditions motion consistency is used and high quality reconstructions can

be obtained from the change events alone. However, under certain conditions, such as

motion perpendicular to the camera with object located between cameras, cameras see

different motions and matching cannot be achieved. When luminance is available photo-

consistency can and should be used as this constraint, as opposed to the previous, is

motion invariant. Furthermore, gray-level information allows building textured 3D mod-

els which provide much more realistic reconstructions of the scene as opposed to only

having 3D point clouds of reconstructed edges. In chapter 4, we describe motion and

luminance as functions of time. Therefore the minimized energy cost function has a
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formulation which is dependent of one single variable: time. This formulation which is

solely dependent on time answers several of the questions which motivated the research

presented in this thesis. Results using this extended approach show that achieved re-

constructions are at a much higher level than what was previously shown with better

accuracy and less noise due to its more constrained formulation.

Finally, the last chapter discusses achievements of this thesis and tries to answer the

set of questions that were previously raised. Contributions to the domain as well as

insights for future work are proposed.
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Chapter 2

Asynchronous Event-Based

N-Ocular Stereomatching

“ (At that moment, an event-or is "event" the word for it? –takes place

which cannot be described, and hence no attempt will be made to de-

scribe it.)

”
Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden

Braid, 1979

2.1 Introduction

State-of-the-art artificial vision systems rely on frame-based acquisition of the visual

information. This acquisition strategy is not able to convey the temporal dynamics

of most natural scenes and, additionally, produces large amounts of redundant data.

Due to these fundamental weaknesses of current visual data acquisition, even the latest

developments in stereo computer vision are still far from reaching the performance of

21
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comparatively “simple” and small biological vision systems.

Neuromorphic silicon retinas are vision sensors that mimic the behaviour of bio-

logical retinas, asynchronously encoding visual signals pixel-individually and usually at

high temporal resolution. The usage of these recently developed devices in stereovision

systems enables us to rethink the current approaches to the correspondence problem,

supporting the development of spike-based, bio-inspired vision algorithms closely related

to neurophysiological models.

In this chapter we present an event-based trinocular stereo matching and reconstruc-

tion algorithm for event-based vision data. We use the properties of silicon retina vision

sensors, such as high temporal resolution and response to relative light intensity changes,

to address the stereo matching problem. We produce accurate 3D reconstructions of vi-

sual scenes by applying well-known epipolar geometry in an event-based approach. Fur-

thermore, we show that the combination of trinocular stereo and temporal constraints

alone are insufficient to ensure a unique solution to the stereo correspondence problem.

We then provide a bayesian inference method for discarding incorrect matches.

Figure 2.1: Principle of operation of a DVS pixel. Image courtesy of (Lichtsteiner et al.,
2008)

The experiments reported in this chapter were conducted using the dynamic vision
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sensor (DVS) described in (Lichtsteiner et al., 2008). The DVS is a 128 × 128 pixel

resolution Address Event Representation (AER) silicon retina sensor that asynchronously

generates response to relative light intensity variations. Pixels operate autonomously and

encode temporal contrast, i.e. log intensity changes of a programmable magnitude, into

events carrying the active pixel’s array address and polarity of change (ON/OFF) (the

principle is illustrated in 2.1). The output channel is a parallel, continuous-time, digital

bus that asynchronously transmits the Address Events. The data volume of such a self-

timed, event-driven sensor depends essentially on the dynamic contents of the target

scene as pixels that are not visually stimulated do not produce output. Due to the

pixel-autonomous, asynchronous operation, the temporal resolution is not limited by an

externally imposed frame rate. However, the asynchronous stream of events carries only

change information and does not contain absolute intensity information; there are no

conventional image data in the sense of gray-levels.

Figure 2.2: Asynchronous event-based binocular stereo matching principle proposed by
Rogister et al (Rogister et al., 2011). Events are matched if they respect epipolar geometry
and temporal constraints. Image courtesy of (Rogister et al., 2011)

In 2011, Rogister et al. (Rogister et al., 2011) proposed an asynchronous event-based

binocular stereo matching algorithm combining epipolar geometry and timing informa-

tion. The method is illustrated on Fig. 2.2. The main idea is that two pixels observing

the same scene point will tend to fire at the same time. The stereo-matching is then

performed using temporal coincidences of pixels. Coincidence is not sufficient to pro-
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2.2 Asynchronous N-Ocular Stereo Vision

vide accurate matches, therefore the system relies on the epipolar geometry to discard

false matches. Other constraints are also added, such as order constraints, unicity of

matching...

Rogister’s method provided a truly event-based approach for real-time stereo match-

ing. However, the method is prone to errors meaning large amounts of noise exist in the

results. This is mainly due to its weak constrained formulation. This chapter extends

the previous work by generalizing it to multi-retina matching. The idea is to increase

the chances of detecting coincidences by increasing the number of retinas. Namely a

match is correct if it appears as a coincidence in more than two artificial retinas. In this

extension, at least three instead of two cameras are required to triangulate 3D points. In

the case of multi-retinas, epipolar geometry as we will show plays an important role as

it allows the propagation of matches in other artificial retinas.

2.2 Asynchronous N-Ocular Stereo Vision

2.2.1 Trinocular geometry

Adding more cameras in stereovision applications is a natural technique for solving the

depth recovery problem. Additional sensors not only reduce the occurrence of occlusions

but also reinforces the epipolar constraint linking pairs of cameras. If the number of

cameras is sufficient, the geometric constraint alone can be used to uniquely define a set

of points projected onto each camera.

Figure 2.3 depicts the typical geometric configuration for a set of three cameras. A 3D

point seen by the cameras Ri, Rj , Rk is projected onto their respective focal planes in

pi1,p
j
1,p

k
1. If pi1 is fixed, then the epipolar constraint states that pj1 (respectively pk1)

lies on an epipolar line in Rj (respectively in Rk). Technical details on the epipolar

properties can be found in (Hartley and Zisserman, 2004).

The same property is true if we consider pj1 or pk1 as fixed. Thus, pi1,p
j
1,p

k
1 are uniquely
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Figure 2.3: (a) Epipolar planes and lines illustrated for three cameras. A 3D point X is
projected onto the three focal planes in pi

1, pj
1 and pk

1 . Each of them is at the intersection
of two epipolar lines defined by the geometric configuration. (b) Events generated by X in
each camera at time t are usually not recorded with the same date t, but rather different
timestamps t1, t2, etc. due to a finite precision in synchronizing the cameras.

defined as intersections of two epipolar lines on each focal plane. The unicity of the

triplet is only true if the epipolar planes do not overlap. The overlapping happens when

all the focal points are coplanar or aligned (which is a special case of coplanarity). These

degenerate cases can be reduced by adding more cameras.

The geometrical constraint can be expressed by a homogeneous scalar equation built

from the following definitions:

• an event e occurring at time t, observed by the camera Ri at pixel piu = (x, y)T is

a function taking value in {−1; 1} (the subscript u indexes matched events across

the sensor focal planes). Its value is equal to 1 when the contrast increases and -1

when it decreases. The event is therefore defined as e(piu, t).

• a 3D point X generating events e(pi1, t), e(p
j
1, t) and e(pk1, t), is projected respec-

tively as pi1, pj1 and pk1 according to the relation :




pu1

1


 = Pu




X

1


 , u ∈ {i, j, k}. (2.1)
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Pu = Ku

(
Ru −Cu

)
is the projection matrix of Ru. Ru and Cu are the extrinsic

parameters and K the intrinsic ones (for more details on the projection matrix, the

reader can refer to (Hartley and Zisserman, 2004)).

The image point pi1 then satisfies the epipolar constraint:

(pj1 1)TFij




pi1

1


 = 0, (2.2)

Fij is the fundamental matrix establishing the geometric relation linking Ri to Rj .

Fij




pi1

1


 = lij(p

i
1) is the epipolar line on Rj , associated to pi1. pj1 belongs to lij(p

i
1).

Using a similar approach, all epipolar lines shown in Fig. 2.3 can be defined. If pi1 and

pj1 are known, and the cameras are calibrated, then pk1 can be found as the intersection

of the appropriate epipolar lines.

2.2.2 Trinocular spatio-temporal match

Estimating 3D from the cameras requires matching each triplet {pi1,pj1,pk1} produced by

X at time t. Since the silicon retina sensors do not provide intensity information, only

the geometric property presented in the previous section can be used in conjunction with

the highly accurate timing of the events. Let us define the set of events occurring within

a time window around time t :

Si(t) =

{
e(pi, t′)|pi ∈ R2 and t, t′ ∈ R+, |t′ − t| < δt

2

}
. (2.3)

Si defines a temporal neighbourhood of events captured by Ri that occur around t. Such

sets are defined for each camera. Because of non-perfect synchronization of the cameras,

it is unlikely that matched events are timestamped with the same t (see Fig. 2.3).
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In a similar way, we define the set of events geometrically close to lij(p
i):

M j(e(pi, t)) =
{
e(pj , t′) ∈ Sj(t)|d(pj , lij(p

i)) < ∆p

}
, (2.4)

where d(pj , lij) is the euclidean distance of pj to lij . The image points pj1,p
k
1, elements

of sets M j(pi1, t) and Mk(pi1, t) respectively, are matched to pi1 if they minimize both

|t− t′| and d(pi1, lij) defined in Eq. (2.3) and (2.4).

Due to the finite precision of the visual acquisition in space and time, the matching pro-

cess is prone to produce erroneous matches because of additional ambiguities beside the

ones induced by degenerate cases. The motivation to use more than just two cameras is

also given by (Maas, 1992). The authors show that the use of a third camera reduces the

number of ambiguities by a factor of 10 when only geometric constraints can be used.

For event-based sensors, the accurate timing adds decisive complementary constraints.

Based on the previous definitions, we design the general trinocular point matching

algorithm using temporal and spatial constraint as shown in algorithm 1. This matching

algorithm requires a calibrated camera setup. Appropriate calibration can be achieved

with the techniques presented in (Benosman et al., 2012) if only the fundamental is

needed, or the one from (Svoboda et al., 2005) if the projection matrix is also required.

The algorithm can be extended to n cameras with minimal changes.

2.2.3 Stereo match selection using bayesian inference

A triplet of matched eventsmn = {e(pin, t), e(pjn, t), e(pkn, t)} is a true match if the events

are generated in response to a same stimulus, at the same time. The triplet is mismatched

otherwise. For each mn, a corresponding 3D point X̂n = (x, y, z)T can be estimated as
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Algorithm 1 Trinocular event-based stereo matching algorithm
Require: Three cameras Ri, Rj , Rk
Require: Fij , Fik, Fjk, estimations of the fundamental matrix for each pair of cameras

1: for all events e(pin, t) in sensor Ri do
2: Determine the set of events Sj(t) from sensor Rj
3: Determine the set of events Sk(t) from sensor Rk
4: Compute the epipolar line lij = Fij

(
pi
n
1

)

5: Compute the epipolar line lik = Fik
(
pi
n
1

)

6: Determine the subset of possible matches M j(e(pin, t)) ⊂ Sj(t)
7: for all events e(pjk, t) ∈M j(e(pin, t)) do

8: Compute the epipolar line ljk = Fjk
(pj

k
1

)

9: Compute intersection between ljk and lik
10: if e(pin, t) ∈ Si(t), e(pjn, t) ∈ Sj(t), e(pkn, t) ∈ Sk(t) complies to the trinocular

constraint then
11: Create match mn = {e(pin, t), e(pjn, t), e(pkn, t)} and add it to the list of found

matches T (Ri,Rj ,Rk)
12: end if
13: end for
14: end for
15: return T (Ri,Rj ,Rk)

the intersection of the back-projected rays by ”inverting” Eq. 2.1:

X̂n =
⋂

u∈{i,j,k}

λuR
−1
u K−1u




pn

1


+ Cu, (2.5)

where λu is a scalar.

If a given match m1 is a wrong match then e(pi1, t1), e(p
j
1, t2) and e(p

k
1, t4) are not events

induced by the same stimulus in the scene. The set m1 yields a 3D point which either

does not physically exist at time t, or at the location of X̂n in the real scene.

The probability for a set m1 = {pi1,pj1,pk1} at time t, to be a correct match is related

to the spatio-temporal neighbourhood of X̂1. Because scenes are usually composed by

geometric structures which generate edges in the sensors’ focal planes, it is unlikely that

an isolated 3D point X̂1 exists in the scene. We add a statistical constraint using bayesian
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inference to sort outliers from correct matches. We first define the set of potential matches

contained in a spatio-temporal neighbourhood of m1:

W (m1) =
{
mn ∈ T (Ri,Rj ,Rk)|ds(m1,mn) ≤ δs, d̄t(m1,mn) ≤ δt

}
, (2.6)

with

• ds(m1,m2) = ||X̂1 − X̂2||,

• d̄t(m1,m2), the mean duration between the 6 events defined in m1 and m2.

δs and δt are the spatial and the temporal radii of the neighbourhood (see Fig. 2.4). The

two components are decoupled to allow a fine adjustment of the neighbourhood.

Given W (m1), the probability of m1 being a correct match is deduced from Bayes’ rule

:

P (m1|W (m1)) =
P (W (m1)|m1)P (m1)

P (W (m1))
. (2.7)

2.2.3.1 Prior

Prior probability is established from the matching algorithm presented in section 2.2.1.

The reliability of each match mn is defined according to how well they comply with the

spatio-temporal constraint i.e. how far temporally and spatially the events are from the

epipolar intersections given a time t. Typically a gaussian distribution is fitted on the

matching results.

2.2.3.2 Likelihood

The Likelihood of having a correctly matched triplet mn is assumed to increase inversely

with its distance to a triplet of matched events that is labelled as correct. Following this

hypothesis, the conditional probability of mn according to its spatio-temporal neighbour
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Figure 2.4: Probability of matches in the spatio-temporal neighbourhood of m1 limited
by δt and δs. m2 is in the spatio-temporal neighbourhood of m1 therefore has high proba-
bility of being correct. m3 is in the temporal neighbourhood of m1 but outside the spatial
neighbourhood being therefore probably an incorrect match.

m1 is defined as:

P (mn = 1|m1) =





N(0,
∑

) if m1 = 1

k if m1 = 0

, (2.8)

where N(µ,
∑

) is a bivariate gaussian distribution of mean value µ and covariance ma-

trix
∑

. The probability of having a correct match when its neighbour is not correct

(P (mn = 1|m1 = 0)) is usually small, as isolated 3D points are unlikely to exist in real

scenes. k is established based on observations from experimental results.

If we assume that the probability for a given mn ∈ W (m1) to be a correct match,

depends only on m1 (i.e. 2 triplets of events mi, mj in W (m1) are independent), then
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2.2 Asynchronous N-Ocular Stereo Vision

the joint probability P (W (m1)|m1) is given by:

P (W (m1)|m1) =
∏

mn∈W (m1)

P (mn|m1), (2.9)

2.2.3.3 Posterior

The posterior P (m1|W (m1)) is computed continuously over time according to Eq. (2.7) in

order to update the 3D reconstruction model. The 3D structure is therefore progressively

reconstructed. During initial stages few sparse matches are observed and the model is

poor. As more matches are found in further iterations, matches belonging to edges are

given higher probability and the model is progressively refined.

2.2.4 Synchronization

The spatio-temporal matching requires the accurate synchronization of all cameras since

matched events result from a common stimulus at time t. The synchronization is achieved

using an external trigger signal. However the synchronization accuracy is limited due to

several factors:

• non-isotropic stimuli or non identical pixel sensitivities induce different event record-

ing times,

• varying transmission latencies of the sensor output buses due to event collisions.

When multiple photoreceptors fire at the same time the sensor’s bus arbiters seri-

alize event output, thus delaying the real occurrence and potentially shuffling the

firing order of events.

This synchronization uncertainty is referred to as event jitter and can be measured ex-

perimentally. We have placed an LED blinking at 10Hz in front of the 6-cameras system.

The measured response is shown in Fig. 2.5: all cameras responded within a maximum

delay of 631µs throughout the experiment. In average all cameras responded within a
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Figure 2.5: Jitter between cameras’ response to a blinking led. The curves show the
minimum and maximum jitter found between the responses of the cameras to the same
stimulus.

382µs window.

The variable relative delays between sensors limit the time accuracy at which events are

matched. Moreover, the delays are also scene dependent, making the task even more

difficult. To achieve correct spatio-temporal matches, prior assumptions about the scene

should be made in order to establish the upper bound of the timing accuracy.

2.2.5 N-ocular stereo matching

The trinocular configuration provides the minimal geometric constraint to uniquely iden-

tify the set of matched events. However, the matching algorithm presented in section 2.2.1

provides a method which can be extended to any number of cameras.

The purpose of 3D reconstruction methods is to be able to recover the 3D shape of real

objects. Increasing the number of different views of a given scene will naturally increase

the amount of known information about the objects and decrease the amount of occlu-

sions and will allow to produce more complete and richer reconstructions.

We propose two variations on how the method presented in section 2.2.1 can be applied

to n-ocular camera systems which result in different advantages:
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2.2 Asynchronous N-Ocular Stereo Vision

• Each camera contributes to enforce the epipolar constraint and the time consis-

tency: matched points at time t are on intersections of a set of epipolar lines. The

reliability of matched points increases with the number of used cameras.

• Events are matched by grouping exhaustively all subset of three cameras. For N

cameras,



N

3


 unique trinocular configurations exist.

We have shown, in the previous section, that the system has finite temporal precision

meaning that sensors may respond differently to the same stimulus not producing corre-

sponding events at the same time. The number of matched events using the first variant

decreases with the number of cameras as increasing this number increases the tempo-

ral and geometrical constraints. Obtained reconstructions are therefore more reliable as

these higher constraints result in fewer incorrectly matched events. However, ensuring

that corresponding events are produced by all cameras at the same time becomes in-

creasingly difficult with the increase of the amount of cameras. Therefore the resulting

3D reconstructions often contain too little successfully matched events and are not suffi-

cient to provide complete representations of 3D shapes. In addition, the computational

effort increases drastically with the number of cameras as the epipolar lines, respective

intersections and geometrical distance errors must be computed for all event candidates

of each sensor.

The second variant delivers more matched events resulting in denser reconstructions,

including however more errors obtained from incorrect matches. In this case, as all

combinations of triplets of cameras are considered, increasing the amount of sensors

also increases the probability that matching events are found on at least three sensors.

Increasing the number of sensors will therefore result in increasing the amount of re-

constructed points and in denser reconstructions. The computational cost however also

increases with the number of cameras as more combinations of triplets exist and need to

be matched. Nevertheless, in this variant, for each 3D point to be produced only events
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2.3 Experimental results

from three cameras need to match.

Considering these observations, we chose the second variant combined with the bayesian

inference filtering as the best strategy for the event-based 3D reconstruction as it provides

the best compromise in terms of reconstruction density and computation cost.

2.3 Experimental results
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Figure 2.6: Example of reconstructions obtained using the event-based trinocular algo-
rithm presented in section 2.2.5: (left) wireframe cube, (center) hand , (right) human face.
The colors encode the polarity of the events producing the reconstructed 3D points. They
give a hint to the motion’s direction.

Examples of reconstructions are shown in Fig. 2.6 for three objects moving in front of

the cameras. The time windows used for matching the events are defined in accordance

with the jitter problem presented in section 2.2.4: 500µs is used for a swinging cube,

1000µs for a waving hand and 2000µs for a moving human face.
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2.3.1 Experimental Setup

A setup of six DVS sensors (providing 128 × 128 pixel resolution and 15µs latency re-

sponse) (Lichtsteiner et al., 2008) (see Fig. 2.7) has been used to evaluate the spatio-

temporal 3D reconstructions principle. The six DVS cameras are synchronized using an

external clock. The sensors are also geometrically calibrated using the method given

in (Svoboda et al., 2005). The achieved calibration accuracy is sub-pixelic. Due to the

low resolution of the sensors, cameras are placed facing inwards and the scene is limited

to a 50cm3 volume. All experiments were conducted using high illumination provided by

a 1000watts halogen lamp. This heavy illumination allows minimizing response time of

the DVS sensors. As the sensors respond faster this illumination setup guarantees lower

jitters between the sensors’ responses and allows minimizing the temporal distance error

between matching events.

Figure 2.7: Experimental setup composed of 6 DVS cameras.
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2.3.2 Reconstruction Evaluation

Two techniques are proposed to measure reconstruction errors:

• if the ground truth is available, we measure the differences between the recon-

structed shapes and the original,

• if the ground truth does not exist, we project the reconstructed shape onto the

cameras that were not part of the actual triplet used for reconstruction.

For the wireframe cube, the geometric ground truth is perfectly known and is compared

with the reconstructions at each new incoming event. The ground truth’s 3D points

are first fitted to the reconstructed points using a 3D points set registration algorithm

(ICP) (Chetverikov et al., 2005). Then the mean distance, normalized by the edge length

c, of all the reconstructed points to the ground truth is computed:

ε =

∑n
i=1 e

2
i

n.c2
. (2.10)

(see Fig. 2.8 for an illustration of distances ei of reconstructed points (circles) to the

ei

ek

c

Figure 2.8: Distance of reconstructed points to the ground truth model.

ground truth model (plain curve)).
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Figure 2.9 summarizes the normalized reconstruction errors of the moving wireframe

cube using all camera combination triplets out of a set of 3 to 6 cameras. The error

is computed for the entire sequence with and without Bayesian inference. Using Bayes’

rule to filter erroneous matches successfully decreases the relative error by a factor of

two. One can see that increasing the number of sensors also increases the number of

reconstructed 3D points. We can notice a variability in the amount of obtained points

which is related to the movement of the object. When the object moves slower the

amount of events generated by the sensors is lower and therefore lower number of points

will be reconstructed. Furthermore, as the object enters or leaves the field of view of

one or more sensors the number of reconstructed points will also naturally increase or

decrease.

The relative mean error gives an idea of how reliable is the reconstructed shape. In

this case, the mean error is around 2.5% for a set of 5 sensors using the trinocular

algorithm alone. The same error is reduced to 1.5% if the Bayesian inference is applied.

For a 6 cameras system, these values are reduced to 1.5% and 0.5% respectively. The

reconstruction errors for 2 sensors using the method from (Rogister et al., 2011) are

also plotted in order to show the performance of the trinocular algorithm since relative

errors never exceed 1% while with the technique given in (Rogister et al., 2011) can reach

400%. 3D reconstruction results shown in Fig. 2.10 give a quick visual assessment of the

reconstructions performance: the reconstructed points of the cube (b) is more scattered

than the ones using 3 or more cameras.

With regard to this preliminary result, we state that the wireframe cube is usually

reconstructed with acceptable accuracy. Any other quality assessment giving scores sim-

ilar to the cube reconstruction are therefore assumed to correspond to reconstructions of

sufficient quality.
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Figure 2.9: Reconstruction errors of the wireframe cube: the first column curves show the
number of reconstructed points while in the second column, curves are showing reconstruc-
tion’s errors. For comparison purpose, we put in the top row, the results achieved by the
method explained in (Rogister et al., 2011). Rows 2 to 5 are the results produced by the
method we have introduced in this chapter, with the number of cameras increasing from
3 to 6. Reconstructions quality is also measured with (dashed curves) and without (plain
curves) Bayesian inference.

Reconstructions for which the ground truth is unavailable require another technique

for evaluating their accuracy. We apply a variation of the method presented in (Sinha
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Figure 2.10: Reconstructed cube using the trinocular constrained algorithm (a) and using
the initial work of Rogister et al (Rogister et al., 2011) using the event-based coincidence
match for two cameras (b). In the second case, the reconstruction result is visibly less
accurate.

et al., 2004). Assuming that a set of the 3D object is built from three cameras Rj ,Rk,Rl

and given another camera Ri with i /∈ {j, k, l}, the reconstructed objects are evaluated

as follows:

• the objects are projected onto Ri.All events arriving in a time window are merged

to provide a frame.

• A frame is also built by integrating the events captured by Ri over the time window

defined for the matching algorithm (e.g. 500µs for the cube).

• The ratio of pixel differences given by subtracting both frames produces the pro-

jection error.

Figures (2.11, 2.12, 2.13) show the reconstruction errors for the three sequences.

The estimated error is low for the cube on all cameras: around 3% of error for each

sensor. Since the cube reconstruction has already been shown to be accurate, an error of
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this magnitude is considered as a good indicator of a reliable reconstruction. For both

the hand and the face sequences, the estimated errors have the same order of magnitude

( 3% for the hand and 5% for the face). We can therefore deduce that the trinocular

algorithm is providing sufficiently accurate 3D reconstructions.

2.3.3 Processing time

The processing time is a critical issue especially for real-time applications. In Fig. 2.14,

the processing time with respect to the number of reconstructed points for the three

sequences are shown for sets of 3 to 6 cameras. The computational effort of the proposed

method unsurprisingly increases with the number of used cameras. For each event, pos-

sible candidates in all combinations of triplets of cameras are tested resulting in the

visible increase in the computation time. In this chapter we proposed a new approach

for achieving 3D relying on precise timing and events instead of frame and luminance.

The method is visibly much simpler than how classical methods achieve 3D reconstruc-

tion. The theoretical framework was proposed but we did not work on achieving high

performing implementations (such as compiled languages such as C/C++ or hardware

implementations) of our method. However, a remarkable observation is the linearity of

the processing time for whatever number of cameras illustrating the linear complexity of

the global reconstruction process.

2.4 Conclusion and Discussion

The Event-based matching approach shows the possibility to recover 3D from time and

inter-camera geometric consideration only. Two variants of the matching algorithm have

been tested for 3D reconstructions: the first method uses all possible combination of
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Figure 2.11: Reprojection errors on each of the 6 cameras. For each camera Ri that is
tested, 3D cubes built from any combination of 3 other cameras Rj,k,l are projected onto Ri.
The obtained frame is then compared to the frame built by integration. Mean projection
errors are around 3%.

three sensors to compute 3D points from events while the second method uses all sensors

to enforce the epipolar constraint.

The first method gives the best compromise between the reconstruction accuracy, density
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Figure 2.12: Reprojection errors estimated for the hand, using the same method as for
the cube. Mean projection errors do not exceed 4%. For the first four cameras (left column
and the top right curves), the error curves are showing constant increase/decrease. This is
due to the hand leaving/entering the field of view of the cameras.

and computation time. Since the reconstruction complexity is likely linear as suggested

in section2.3.3, we expect the algorithm being largely optimizable. The algorithm’s run-

time is large on non compiled programming languages such as Matlab, however it is very
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Figure 2.13: Difference between an image frame of events and reprojection of the recon-
structed face on each of the 6 cameras. The mean projection errors in this sequence is not
exceeding 5%.

likely that processing time can largely be reduced and meet real-time constraints when

using a compiled programming language such as C.

Few event-based depth estimation techniques have been proposed in the literature. Ex-
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# reconstructed points # reconstructed points

# reconstructed points # reconstructed points

Figure 2.14: Processing time as function of the number of reconstructed points, for 3 to 6
cameras. The mean processing time is represented by the plain curves.

isting ones are still far from being able to achieve similar depth estimation accuracy and

real-time 3D models computation. However, it has been shown in this chapter, that

although 3D reconstructions can be produced, results are still prone to ambiguities giv-

ing rise to noisy 3D point clouds. This hints that both higher spatial resolution sensors

and the addition of further constraints to the proposed spatio-temporal error constraint

should conduct to higher accuracy and cleaner 3D reconstructions.

This work shows that asynchronous event-based stereo algorithm applied to multi-

cameras systems of neuromorphic artificial retina sensors opens new perspectives for

recovering 3D information from sparse and asynchronous spatio-temporal signals. The

achieved reconstructions are accurate despite the relatively low spatial resolution of the

used sensor (128 × 128 pixels). The precise event timing provides a mean to overcome

this limitation, it shows that an event-based vision sensor is the ideal device to capture

dynamic scenes. We provide a method which is able to provide reconstructions of dynamic
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scenes at 1MHz relying on very simple computation operations. This work extends

and pushes to a much higher level the neuromorphic stereo vision formulation initiated

in (Rogister et al., 2011).

A major difficulty in establishing spatio-temporal stereo vision is the variable tem-

poral precision of the acquired visual information. Since time constitutes critical in-

formation, highly precise event timing is required, hence there is a need to establish

that precision at the sensor’s level. Effective timing accuracy is limited by physical con-

straints of the sensor and system hardware such as e.g. CMOS device mismatch leading to

intra-chip and inter-chip variations of contrast sensitivity and event latencies, event bus

congestions, and timestamping quantization errors (Lichtsteiner et al., 2008). Increasing

the number of cameras did as expected lower the number of false matches generating

reliable 3D reconstruction. Nevertheless, there are still several false matches that are

not removed by the approach, this is due to the low amount of information carried by a

single event. An event carries only its location and time of arrival. As we will show in

chapter 4, it is compulsory to use additional information. The context of an event must

be added, namely what is the background and local activity around it? This additional

information seems inevitable and must take into account dynamical information such as

the relative timing between neighbouring events, their velocity and when possible even

their gray-levels.

We will first inquire how the 3D point clouds generated by the method can be used to

refine the stereo matching algorithm. In the next chapter, we will introduce a smoothing

approach of generated data based on the local dynamics of reconstructed 3D point clouds.

We will explore scene flow estimation which provides information of how 3D points move

in the scene and, in a feedback loop, can be used to iteratively refine reconstructed

structures.
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Chapter 3

Scene flow from 3D point clouds

“ Achilles: The flag is moving.

Tortoise: The wind is moving. (...)

Zeno: (...)Not the wind, not the flag-neither one is moving, nor is any-

thing moving at all. For I have discovered a Great Theorem, which

states: "Motion Is Inherently Impossible." And from this Theorem fol-

lows an even greater Theorem-Zeno’s Theorem: "Motion Unexists."

”
Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden

Braid, 1979

3.1 Introduction

In this chapter, we study the use of asynchronous event-based 3D reconstruction point

clouds to refine focal plane’s stereomatching. The approach introduced in the previous

chapter is not sufficiently constrained to be robust to wrong matches. We will then

introduce a new constraint based on the consistency of motion of reconstructed 3D points.
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The recent advent of new sensors such as the RGB-D cameras (Khoshelham and El-

berink, 2012) or Time-Of-Flight Range-Imaging sensors (Hansard et al., 2012) allows to

directly produce computationally inexpensive 3D information. A 3D scene flow refers to

the vector field that maps each 3D scene point to its corresponding instantaneous veloc-

ity vector (Vedula et al., 1999). Existing methods conventionally rely on a combined use

of luminance and depth information to estimate 3D motion flow (Herbst et al., 2013).

This chapter introduces a method to estimate 3D motion flow directly from point clouds

without the need of luminance information. We show that a robust estimation of the

3D flow can be decoupled from luminance. Thus, this approach allows to estimate 3D

motion flow not only from the event-based cameras system shown in chapter 2 but from

all types of sensors that provide depth data such as high definition LiDAR sensors. The

minimal requirements are the 3D spatio-temporal coordinates of the reconstructed points

namely when and where a 3D point occurred. Points’ brightness is not mandatory since

only the scene’s structure matters. In this chapter, we only assume the non-deformability

of local spatio-temporal surfaces. These are used to estimate 3D flow from their local

planar orientation. The velocity estimation is reduced to a one-dimensional search over

R and the dense estimation is directly achieved using local spatio-temporal planes. An

additional advantage is its ability to determine velocities collinear to moving edges as-

suming it is possible to identify local 3D structures across the trajectory.

Scene flow is closely related to scenes’ structure, estimating one usually implies estimat-

ing the other as well. The Structure From Motion (SFM) is one of the classical computer

vision problems that was largely researched during the past few decades by the machine

vision community (Maybank, 1993). However, SFM’s high vulnerability to images’ noise

and to camera calibration errors raised questions regarding its applicability in real-world

scenarios (Tomasi and Zhang, 1995). Currently, with the increasing demand for realistic

and high definition 3D content, many ready-to-use sensors are now able to build dense 3D

points clouds in real-time, such as laser range-finders, structured light devices, etc. These
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devices allow to decouple the structure reconstruction from the motion estimation and

to focus the effort on motion extraction and its characterization. To achieve dense scene

flow estimation, state-of-the-art techniques consist in building depth maps and comput-

ing optical flows for each camera separately and combining them to consistently estimate

the 3D flow. This approach parametrizes the motion problem on the image plane i.e. in

2D and is the most commonly found in the existing literature (Isard and MacCormick,

2006; Vedula et al., 1999; Wedel et al., 2011; Zhang et al., 2001). 2D parametrization

is however argued being more prone to discontinuities since a smooth 3D signal may be

projected into a discontinuous 2D one due to occlusions. 3D parametrization has there-

fore been employed to bypass this limitation. In (Basha et al., 2013), the depth map and

the optical flow are solved simultaneously rather than in a sequential manner, as authors

argue, for a better coupling between spatial and temporal information. In (Hadfield and

Bowden, 2011; Park et al., 2012), the motion flow is extracted and refined directly from

the 3D point clouds by using particle filtering or tensor voting techniques. Optical flows

are only estimated for comparison purposes or for initial scene flow estimation. A second

requirement for obtaining dense flow estimation is to introduce some form of regulariza-

tion. For that purpose, one recurrent hypothesis is to assume local rigid body motion

and therefore inducing local constant velocity i.e. points on a non-deformable surface

will have the same velocity. Regularization is performed often by minimizing an energy

function with variational formulation (Huguet and Devernay, 2007; Min and Sohn, 2006;

Zhang et al., 2001). Energy minimization has proven to often be a successful technique

for both 2D and 3D flow parametrization, however it is also resource and time consuming

thus making it difficult to achieve real-time estimation without embedding a dedicated

powerful computation unit (e.g. GPU). Scene flow can also be computed from local de-

scriptors of reconstructed surfaces such as the surfel that encodes the local geometry and

the reflectance information of reconstructed surfaces (Carceroni and Kutulakos, 2002).

Motion is then estimated in an integrative approach by matching descriptors over time.
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3.2 Scene flow parametrization

Scenes made of rigid mobile objects provide an important constraint for the motion flow

estimation: as objects are non-deformable, the motion flow of points on their surface

have identical velocity. This assumption is reasonable for simple objects but it does not

well-define more complex objects such as a human body. The same hypothesis is however

reasonable if it is applied as a local property. We suggest to subdivide the mobile objects

into small non deformable surfaces and points of a same given surface will have the same

velocity. The previous assumption is certainly not true for rotations, but under the as-

sumption that infinitesimally small patches can be defined, we assume that rotations can

be approximated to small translations, which will later be confirmed by our empirical

results. The smaller these surfaces are, the better the proposed technique estimates the

velocity and this spatial resolution is only limited by the sensor’s accuracy.

C

S

�p

p + tv

YX

Z

n

Figure 3.1: The non-deformable surface hypothesis allows to assume the velocity v is
locally constant. The surface S swept by the edge C in the direction v is a ruled surface
whose tangent plane τp at p allows recovering v if sufficient geometric constraints can be
derived.

Let us consider a smooth edge C which can be assumed planar within a small enough

spatial neighbourhood. If the velocity of C is constant, then as time increases, the
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edge generates a ruled surface S in the direction of the velocity v. The surface can be

algebraically defined by the equation:

S : R3 × R+ → R

(x, y, z, t) 7→ S(p + tv) = 0
(3.1)

where p ∈ C. Figure 3.1 shows an illustration of such ruled surface.

The velocity vector is according to Eq.3.1 the directrix of the ruled surface swept by

the edge, hence the estimation of v is equivalent to determine the surface’s directrix. In

addition to Eq.3.1, if the surface is smooth (i.e. of class C1 at least), we get a second

equation satisfied by v:

(∇S)Tv = 0, (3.2)

because the directrix v is contained in the tangent plane Tp (Sommerville, 1934). ∇S

refers to the gradient of S. Only the direction of v can be deduced from the two scalar

equations since v has 3 components. Its norm can be for example set arbitrarily to 1 (e.g.

a unit vector). To determine the correct amplitude, additional constraints are required

and one possible way to find them is to operate for example a shape registration technique.

The velocity estimation will be achieved in two steps:

• a local fitting of a smooth surface to the 3D point clouds is operated to derive as

much equations similar to Eq. 3.1 and 3.2 as possible,

• v is estimated from the constraint established by the set of equations.

The necessity to have more equations comes from, as mentioned before, the fact that

we are short of one equation for recovering v. To solve this problem, we propose to

study three surfaces derived from S. Let S1, S2 and S3 be respectively the surfaces built
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C

C1

C2

C3

YX

Z

(a)
Cu(p, 0)

vu

Cu(p, t) = Cu(p, 0) + tvu

nu

(b)

T

i j

Figure 3.2: (a) A 3D edge C moving at constant velocity v is projected as 2D curves
in each of the three planes (O,X, Y ), (O, Y, Z) and (O,Z,X). (b) Each of the projected
curve Cu for 1 ≤ u ≤ 3 is also moving at constant speed vu = (vi, vj , 1)

T in the coordinate
frames (ijT ) ((i, j) being any element in the set {(x, y), (y, z), (z, x)}) and is sweeping a
ruled surface as t increases.

from Eq. 3.1 in each coordinate frame (X,Y, T ), (Y, Z, T ) and (Z,X, T ). Because of the

constant velocity hypothesis, we get three surfaces with implicit equations of the form:

Sk(i, j, t) = Sk







pi

pj

0




+ t




vi

vj

1







= 0, (3.3)

where (i, j) is any pair of elements in {(x, y), (y, z), (z, x)} and k indexes the kth element

of this list e.g. if k = 1, (i, j) = (x, y). This means we are working with the x, y and t

components of S.

These surfaces are also ruled surfaces of respective directrices (vx, vy, 1)
T , (vy, vz, 1)

T

and (vz, vx, 1)
T and their generatrices are the restrictions of C to (X,Y, T ), (Y, Z, T ) and

(Z,X, T ). Following Eq. 3.2 we can establish for each Sk the equation:

(∇Sk)
T




vi

vj

1




=
∂Sk
∂i

vi +
∂Sk
∂j

vj +
∂Sk
∂t

= 0. (3.4)
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3.2 Scene flow parametrization

As illustrated by Fig. 3.2, we now have three geometric constraints, which can be rear-

ranged into a matrix form:




S1,x S1,y 0

0 S2,y S2,z

S3,x 0 S3,z




︸ ︷︷ ︸
M

v = −




∂S1/∂t

∂S2/∂t

∂S3/∂t



, (3.5)

with the convention that Sk,x (respectively y, z) is the partial derivative with respect to

x (respectively y,z). To determine v, the ideal case would be to have M invertible i.e.

it is full ranked. There is no obvious way to tell from the general expression of M .

3.2.1 Plane approximation

Solving Eq. 3.5 for v cannot be done without knowing the analytic equations of Sk. We

propose to apply a local plane fitting to establish the matrix M . The choice of a plane

instead of a more complex surface is motivated by the fitting simplicity and its computa-

tional cost even though planes give rise to rank-2 matricesM , as it will be shown further.

Let Π1, Π2 and Π3 be the planes that are fitted locally to the surfaces S1, S2 and S3

respectively. They then can be locally expressed using the plane’s implicit equation as:

Sk(i, j, t) = Π1
T




i

j

t

1




= 0, (3.6)

where Πk
T = (ak, bk, ck, dk), for 1 ≤ k ≤ 3.

If we derive Eq. 3.6 with respect to each of the spatial and temporal components and for
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3.2 Scene flow parametrization

each Sk, then Eq 3.5 becomes




a1 b1 0

0 a2 b2

b3 0 a3




v = −




c1

c2

c3




. (3.7)

3.2.2 Rank of M

C

C1

C2

C3 p0

u

p0 + �u + tvS

�
�

ux

0
uz

�
� = u3

�
�

ux

uy

0

�
� = u1

u2 =

�
�

0
uy

uz

�
�

v

YX

Z

Figure 3.3: The local fitting of a plane to the point cloud allows approximating the plane
tangent to the surface swept by an edge as it moves. If the velocity is constant, the so built
surface is called ruled surface and the velocity vector v is its directrix. To estimate v, it is,
up to approximation errors, equivalent to work on the tangent plane.

Under the local plane hypothesis we previously made, it is possible to determine the

rank of M . For that purpose, we assume the hypothesis that the edge C is a straight line

segment defined by a point p0, a direction vector u, and parametrized by a real α:

p ∈ C ⇒ p = p0 + αu, (3.8)

and the equation of S is changed into:

S(p,v, t) = S(p0 + αu+ tv) = 0. (3.9)

Figure 3.3 depicts the case where C is a line and the resulting ruled surface S, obtained by
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3.2 Scene flow parametrization

sweeping lines in the direction of v is a plane. The vector (ui, uj , 0)T is by construction

parallel to Πk, then:

nTk




ui

uj

0




= 0, (3.10)

where nk = (ak, bk, ck)
T is the normal to Πk. The three similar equations for the three

possible k lead to:

Mu = 0. (3.11)

This shows u as an element of the kernel of M . u is not the null vector because C is

not reduced to a point, thus M is non-invertible and the rank of M is not larger than 2.

The rank deficiency of M means we only have two linearly independent scalar equations

from Eq. 3.7, however we can still express two of the velocity components as functions

of the last one, e.g. vx:

v =




vx

−a1vx+c1
b1

−b3vx+c3
a3




= vx




1

−a1
b1

− b3
a3




︸ ︷︷ ︸
q

+




0

c1
b1

c3
a3




︸ ︷︷ ︸
r

, (3.12)

where Mq =




0

det(M)
a3b1

0




=




0

0

0



.

This last equation shows that q is collinear to u if rank of M is two, hence we deduce

from Eq. 3.7 that Mr = (c1, c2, c3)
T .

Remark 1 Expressing v as a one parameter vector fails if and only if the rank of M

is less than 2 i.e. if edges do not generate planes. However some plane configurations
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3.3 Velocity estimation

require larger effort to achieve the closed form of v such as the case where the plane is

perpendicular to one of spatial frame axis. For example, when the X-axis is normal to

the plane, Eq 3.12 is not valid as b1 and a3 are equal to zero. This problem can be solved

by expressing v either as a function of vy or vz. In that case, we can see that vx = −c3/b3
and vz is a function of vy. The problem of finding v is again reduced to the search for

the correct value of one of its component.

3.3 Velocity estimation

As shown in the previous section, from Eq. 3.12, the assumption of local constant velocity

motion of straight edges allows to establish a simple linear relation between the veloc-

ity vector and the surface swept by the edge points. Estimating the velocity becomes

equivalent to identifying the correct real value vx. To achieve the estimation, we first

define the point cloud within a spatio-temporal neighbourhood as a given structure. We

then translate it according to vectors v, parametrized by vx. A matching operation is

then performed for several sampled values of vx. The correct vx is the one producing

the smallest matching error at the time and location given by the velocity vector (see

Fig. 3.4).

3.3.1 Error cost function

A point cloud centred on p1 with luminance I is assumed to be locally non-deformable.

Let us recall the luminance constancy constraint first introduced by Horn and Schunck in

(Horn and Schunck, 1981), basis of most optical flow estimation methods, that expresses

the invariance of I of structures across time. We can therefore state that when the

considered point cloud translates from p1 to p2, both the local geometric structure

and the luminance should be preserved. In that sense, we can formalize the structure
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3.3 Velocity estimation

�u + r

v = vxu + r

p

Figure 3.4: The velocity is to be determined locally along a line spanned by u and passing
by p + r. This is achieved by matching local structure defined by a set of 3D points (gray
cubes in the figure).

matching step as an energy minimization problem. Let us define the global energy term

E as:

E = EI + ES , (3.13)

where EI is the luminance error which is minimal if the brightness constancy is satisfied

and ES is the geometric error which is minimal if the structure is not deformed when

translating from p1 to p2. With the convention that pi is the 3D point occurring at time

ti, we define the set S(pi) as:

S(pi) = {pj ∈ R3| ||pj − pi|| ≤ ∆s, tj − ti ≤ ∆t and tj > ti}. (3.14)

This set contains all 3D points spatio-temporally close to pi i.e. points within a neigh-

bourhood of pi of radius ∆s in space and length ∆t in time. The energy cost associated

to each sampled velocity vector for a given point p0 is thus computed as follows:

In short, EI is the sum of the smallest luminance difference between all pairs of

(qi,pj) and ES is the mean value of the smallest distances of each pi to each qj . It
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3.3 Velocity estimation

Algorithm 2 Energy cost computation
Require: p0, the set S(p0), vx.

1: Apply Eq.3.12 with the given vx to build vector v.
2: Define S(p0) + v, the translated local structure S(p0) by v. Define S(p0 + v) the

set of points that occur in the neighbourhood of p0 + v at ti + dt.
3: With the convention that pi ∈ S(p0) + v, and qj ∈ S(p0 + v), we compute the

energy function E(v) = EI + ES with:

EI =
n∑

i=1

min
qj

|I(pi)− I(qj)|, (3.15)

and

ES =
1

n

n∑

i=1

min
qj

||pi − qj ||. (3.16)

4: Return E.

is also called the mean closest point between both point clouds and is a dissimilarity

measure largely used for example in the Iterative Closest Point (ICP) problem (Besl

and McKay, 1992). The correct v is given by the value vx which minimizes the energy

function E:

ṽx = argmin
vx∈R

E. (3.17)

In order to minimize E with respect to vx, a coarse to fine strategy is applied to sample

possible values of vx and match local 3D structure accordingly. Let R = [R1, Rr] be

a real interval that is set large enough at the beginning of the search to make sure it

contains ṽx. To determine precisely ṽx, R is subdivided into r equal length intervals and

the centres of all intervals give a set of possible values for vx. The error cost function is

computed for each vx and the interval producing the smallest E is used to update R (see

Algorithm 3). This operation is iterated until E is below a preset (usually experimen-

tally defined) threshold and after a minimum number of iterations. r is usually set to 5,

however it can be larger. Estimation accuracy increases with r but at the cost of longer

processing time.
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3.4 Results

3.3.2 Optimal spatio-temporal neighbourhood

The correct estimation of the velocity is conditioned by the spatio-temporal neighbour-

hood, defined as the spatio-temporal volume of dimensions (∆x×∆y×∆z×∆t), in which

the 3D point cloud has moved from time t to t+ dt. A large neighbourhood will allow to

find the correct match, but at the cost of processing a large set of data, on the contrary,

a too small one will not allow to match the local structures. The spatio-temporal neigh-

bourhood must also be resized automatically and dynamically in accordance to the 3D

points’ velocity. In our implementation, we deal with the problem by adjusting a linear

function on the neighbourhood size e.g. sk = (∆x,∆y,∆z,∆t)
T is a linear combination

of the m previous values sk−1, ..., sk−m:

sk =
m∑

i=1

aisk−i, (3.18)

where the coefficients ai are estimated with a standard linear prediction coding scheme (Durbin,

1959). The value of m is usually set to 5 according to experimental results while the

initial value s0 is deduced from the rough estimation of the initial velocity i.e. the mean

translation between the first two frames. Thus we have s0 = (v0dt, dt)
T , assuming v0 is

the initial estimate of the velocity.

The method for 3D flow extraction from point clouds is summarized in the algo-

rithm 3.
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Algorithm 3 3D flow algorithm
Require: Stream of 3D points cloud obtained from third-party device/algorithm

1: for all 3D point p, at t do
2: Determine the spatio-temporal neighbourhood of 3D points close to p.
3: Fit 3 planes Π1 = (a1, b1, c1, d1)

T ,Π2 = (a2, b2, c2, d2)
T ,Π3 = (a3, b3, c3, d3)

T

using a least-square technique to minimize the three scalars:

|(px, py, t, 1)TΠ1| , |(px, pz, t, 1)TΠ2| , |(py, pz, t, 1)TΠ3|

4: Initialize a large enough interval R = [R1, Rr] of length L such that ṽx ∈ R. Set
n=1.

5: while E(v) > threshold and n < max-iteration do
6: Divide R into r intervals Rk of size L

r and define the set {vk} such that vk is the
center of Rk.

7: for each vk do
8: Compute E(vk) according to Algorithm 2,
9: Update L← L(r − 1)/r,

10: Update R according to the Rk giving the lowest E such that:
R← [Rk − L

2 , Rk + L
2 ].

11: Compute v:

v =
(
vk,−a1vk+c1

b1
,− b3vk+c3

a3

)T

12: Update n← n+ 1.
13: end for
14: end while
15: return v
16: end for

3.4 Results

3.4.1 Simulated scene

The experiments are divided in two parts where we assess the estimation technique by

means of ready-to-use 3D point clouds. The first set of experiments are performed on

synthetic 3D structures moving at predefined velocity and trajectory. Estimated velocity

amplitude and direction can be both compared to ground-truth data. Figure 3.5 is a

case of smooth translation at constant amplitude for a wire cube. The velocity flow has
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Figure 3.5: (top) Scene flow of a wire cube. The color codes the time as the cube moves
from right to left. (center and bottom) Angular and end point errors of the estimated
velocity field using local planes fitting for a curved trajectory. The patches of planes are
underlined to show the locally constant velocity assumption. For visibility purpose, velocity
is only shown for two edges. All axes are expressed in length unit except for the angle color
scale.

been computed according to the presented technique with only the geometric structure

information: only 3D points’ positions and timestamps are given in the simulation. The

energy cost function in Algorithm 2 is reduced to Es. The flow performance is measured

by two quantities commonly used in optical flow, the first one is the angular error, which

is the angle defined by the estimated normalized velocity vector ṽ and the ground-truth
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v. The angle is given by the inverse cosine of the scalar product of 2 vectors:

arccos
(
ṽTv/|ṽ||v|

)
. (3.19)

This measure has been introduced by Fleet and Jepson in (Fleet and Jepson, 1990) and

it assesses the accuracy of the flow direction. The second performance measure is the

endpoint error which is proposed by Otte and Nagel in (Otte and Nagel, 1994) to not

favour large displacements over smaller ones. This end point error is the norm of the

difference between the estimated velocity and the real one:

|v − ṽ|. (3.20)

Both estimated angular error and end point error are represented with a color scaled

representation (see Fig. 3.5). The maximal error occurs at the beginning of the motion

and is due to the fitting spatio-temporal neighbourhood, chosen as the best compromise

for the entire motion.

These results on synthetic data show the ability for the algorithm to estimate accu-

rately the velocity vectors in a dense and smooth manner. The velocity is estimated with

high accuracy since the direction has a maximal angular error of 0.1rad (∼ 5.7◦) and the

end point error’s maximal value is equal to 1.2 × 10−5 length unit (i.e. at most 12% of

the ground-truth value).

3.4.2 Natural scene

The second set of results is obtained from real scenes showing a person as a moving object

in the scene. The 3D point clouds are provided by a Kinect sensor that also measures

the RGB intensity. In these sequences, the person is a nice example of a deformable

target with limbs moving at different non-constant velocities. However, as the results

will show, the local constant speed hypothesis holds and is sufficient to allow a smooth
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estimation of the scene flow. Scene flows estimations are given as two sets of results. One

consists in using only geometric constraints, when the scene luminance is not available for

the structure registration operation. The second set exploits the additional information

brought by the luminance in addition to the geometry.

The flow estimation for each sequence is assessed in two ways:

1. A reference speed is established using the man’s head to compute speed across

frames. The head’s position at time t is annotated manually to build a reference

motion scene. This is then used as ground-truth to evaluate the plane fitting

method.

2. If S(t) designates an arbitrary point cloud in the scene at time t then S(t) + vdt is

the morphing of S(t) by translating it by vdt. This morphed point cloud S(t)+vdt

is compared to the corresponding point cloud data S(t+ dt). S(t+ dt) is obtained

directly from the 3D point stream providing a ground-truth to measure the distor-

tion in S(t)+vdt. The shape dissimilarity error is measured using the mean closest

point distance between S(t) + vdt and S(t+ dt).

In the first sequence, shown in Fig. 3.6(a), a person walks in front of the cameras at

a constant pace. The velocities’ amplitudes, and the directions are shown respectively

at rows (b) and (d) for an estimation without using luminance information. Rows (c)

and (e) are showing the results when luminance is included in the matching operation.

For readability reasons, amplitude and direction of the flow are plotted in two separate

representations. More importantly, these figures show how well the algorithm behaves in

the presence of a deformable object. The limbs, in particular, the legs and the fingertips

which are subject to the largest velocity changes show clear phases of acceleration: when

the legs reach the end of the step, the speed is close to zero (1st and 3rd images) while it
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Figure 3.6: (a) Sequence of a person walking at constant speed across the scene. (b and
c) The amplitude of each 3D point is color coded and shows that the plane fitting technique
is able to estimate non rigid object velocity without (b) and with (c) luminance. (d and
e) Colour coded flow directions. One can see the person going from the right to the left as
confirmed by the color (green in the color scale i.e. an angle of 180o). Again, we can observe
that directions can be accurately estimated by using only time and geometry (d) and that
the inclusion of the luminance is giving slight estimation improvements (e).

reaches a maximal value when the legs are in the middle of the step (5th image). These

velocity changes are also visible in the color coded motion directions: the silhouettes are

not all green as the hands swing. The floor, as it is scanned by the Kinect sensor, was

also processed by the algorithm. The estimated speeds are largely coherent with what
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it is expected: they are close to zero, thus negligible with respect to the moving person.

The measured velocity variation (in amplitude and direction) from the floor are mainly

due to several noise factors coming from the sensor itself, the lighting change induced by

the motion, etc. One can also point out the absence of the velocity estimation on the

wall due to the shadow. The reason is simply because the wall has been priorly removed

before the scene flow estimation was applied.

In this experiment, the man walks across the scene, in front of the cameras at a constant

speed of 1.1m/s. This reference speed is measured by manually segmenting the head’s

point cloud for each frame. The speed is also extracted for the head from the estimated

3D flow with Algorithm 3. The top row of Fig. 3.8 shows both speed curves, plot together.

Square markers represent the reference speed, circle markers show the speed estimated

without luminance information while the diamond markers represent the result achieved

with the luminance. The speed estimated from the geometric constraint has a mean

value of 0.99m.s−1 and the one using luminance is around 1.2m.s−1. The relative mean

difference between the two estimations is around 0.17%, thus this results show how both

estimations are reasonably similar.

The small fluctuations of the estimated speed are not surprising as the trajectory of the

head is not a straight translation: body weight transfer happens at each step and it

modifies subsequently the head velocity in amplitude and direction. Finally, the color

coded flow directions are particularly consistent. The figures show that the flow is point-

ing at 180◦, i.e. from right to left for most of the body except for the person’s hands.

Floor’s directions however have a random distribution but estimated velocities reflect the

scanned 3D data accuracy more than the limit of the algorithm itself.

In the second sequence (see Fig. 3.7), a much more complex motion has been tested

for the flow estimation. The person jumps in front of the camera and falls back on the

ground. The velocity amplitude changes several times throughout the sequence: it in-

creases at the beginning and reaches a maximum, then decreases to 0 when the person
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(a)

(b)

(c)

(d)

(e)

Figure 3.7: (a) Sequence of a jumping person. The target undergoes a complex motion
which comprises several rapid changes of the velocity in direction and amplitude. (b and c)
Colour-coded amplitude plot of the velocity for each 3D points. Parts of the body can be
segmented according to the the speed e.g. the arms, the legs and rest of the body which
have distinctive speed amplitude. (b) Amplitude of the velocity estimated from time and
geometry only. (c) shows amplitude estimation when luminance is added. (d and e) The
color coded flow direction (expressed in degree) are remarkably well estimated as we can see
for the whole body, the direction is pointing up (i.e. angle close to 90o) and pointing to the
bottom when the person is falling (i.e. angle around −90o).

is at the top of its trajectory. Then the amplitude increases again during the fall until

he reaches the ground. This sequence of speed change can be seen at the bottom row of
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Figure 3.8: Mean velocity curves computed for the head in the walking (top) and the
jumping (bottom) sequences. The circle curves are estimations achieved by time and geo-
metric information only. The diamond curves are results one gets when luminance is used for
the structure registration. Finally, the square curve represents the velocity of the manually
segmented head’s 3D points.

Fig. 3.8. Similarly to the walking sequence, both reference speed curves and estimation

are shown together. However, in this experiment, it is more difficult to assess the accu-

racy of the estimation since the reference speed itself is built with a low accuracy. This

is due to the difficulty to manually segment the head’s 3D point since the speed changes

too quickly.

The jumping sequence is an ideal example of a non-rigid body moving at a totally un-

constrained speed. Here the amplitude and the direction curves show even more what

we have already outlined for the walking sequence: the limbs and the body have their

own velocity. The arms, in particular, show the largest velocity changes since the person

swings them to gather momentum from the first half of the jump and he folds them back

once the body begins to fall. In this sequence one can also observe the velocity estimated
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for the floor which is again mostly equal to zero, except right under the jumping point

because of the moving shadow of the person. The flow direction is even more interesting,

as we can clearly see both the opposite directions: the velocities are pointing mainly up

(i.e. angle of 90◦) during the ascending phase and pointing down when he is falling (i.e.

angle of −90◦).

For both walking and jumping sequences, a slightly higher accuracy is achieved in esti-

mating the velocity when luminance is used. Rows (c) and (e) of Figure 3.6 and 3.7 show

smoother results when luminance is taking into account.

Morph error (%)
Walking Jumping

Frame Without I With I Without I With I

1 0.0542 0.0214 0.0250 0.0131
2 0.0695 0.0277 0.0635 0.0270
3 0.0786 0.0221 0.0698 0.0414
4 0.0863 0.0424 0.0510 0.0128
5 0.0433 0.0278 0.0481 0.0143
mean 0.0664 0.0283 0.0515 0.0217

Table 3.1: Morphed point cloud error.

The second performance assessment consists in measuring the morphing error and is

summarized in Table 3.1 for the five frames shown in the sequences. The mean morphing

error is below 3% for the walking sequence and slightly higher than 2% for the jumping

one when luminance information is used. The estimation performance is slightly lower

when the luminance is removed. In these cases, the morphing errors increase respectively

to 5% and 7%. Two main observations should be retained from these results: first,

morphed point clouds still consist of well defined objects. This shows computed motion

is consistent for the full scene as morphing objects do not produce incoherent shapes.

Secondly, the estimated scene flow is shown being consistent with the real motion since

S(t)+dt, the morphed point cloud, matches correctly S(t+dt), the point cloud at t+dt.
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3.5 Discussion

Several aspects should be outlined from the work we present here. The first is the local

regularization achieved by fitting a plane on the 3D points. The choice of a plane implies

that the ruled surfaces are being swept by local straight edges. This hypothesis is not

satisfied at edges’ intersections where the edges have large curvatures. A better fitting

strategy would be to extend the plane to a more general smooth surface. Spline curves

parametrization is a good generic method to produce a smooth and accurate surface

parametrization. Its main defect is the difficulty to properly set the sampling grid. Be-

sides this requirement, the spline curves fitting off the 3D points is expected to produce

better estimations since the tangent plane mentioned in section 3.2 is more accurately

computed. By replacing the plane fitting by the spline curve fitting, the algorithm will

be more expensive in computation. This issue requires a closer analysis.

A secondary aspect of the presented technique is the energy formulation we used for

the shape registration operation. The idea was to cumulate both a geometric similarity,

measured by the term ES and a photometric similarity given by the term EI . However

sometimes only the geometric similarity can be estimated e.g. the 3D points measured

by a laser range finder provide only geometric information and scene illuminance is not

available. In that case, the similarity measure seems prone to ambiguities and allows

only a limited mean in achieving shape registration. However if the points are sampled

densely enough in time, we could see this technique managed to estimate the velocity

with acceptable accuracy. We obtained such results both with the synthetic and natural

data where only spatio-temporal information of the 3D points clouds were used. The

use of more constraints brings more discriminating criterion in solving registration am-

biguities. As it is experimentally shown, geometry and time carry sufficient cue for the

velocity estimation. In contrast with most of vision based techniques found in literature,
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luminance is no more a mandatory information.

Finally, a last concern may be raised in the case where stereovision rig is used instead

of a 3D sensor. In that case, we can argue that it is possible to apply the similar

scheme commonly used in scene flow estimation problem which consists in solving the

velocity field and the 3D reconstruction problems simultaneously. In the worst case,

we are designing a scene flow estimation technique based on local plane fitting which is

expected to behave roughly similarly to the state-of-the-art techniques.

3.6 Conclusions

In computer vision, motion inference and 3D reconstruction from multiple cameras are

usually coupled tasks. They are solved by stereovision mechanisms which require highly

accurate calibration operation. Conventionally, the dense scene flow is estimated and

refined from the dense optical flow which represents its projection on the focal plane in

an iterative feedback loop scheme. The scene flow computation is therefore a complex

problem which basically is an optimization problem under several conflicting constraints.

However, with the widespread use of cheap vision sensors able to captured good quality

3D information, it is now possible to decouple the 3D reconstruction problem from the

motion estimation itself. In that context, we developed a technique to estimate scene

flows from 3D point clouds captured by such a depth sensor (e.g. the Kinect). The

proposed technique is based on the local constant motion of the 3D point clouds and

on their locally non deformable geometry. These hypotheses, when satisfied, tell us

that an object moving in space, locally generates ruled surfaces from which the velocity

vectors can be easily extracted. The solution we proposed is simple as it constraints

the 3D velocity estimation to a search for a parametrization value over the set of real

numbers. To achieve this search, we developed a local 3D structure matching strategy
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consisting of using the geometric consistency and when it is available, luminance as an

additional constraint to identify structures across time. Experimental results obtained

from synthetic and natural images prove the technique to be particularly suitable in

estimating the velocity vectors of deformable objects, undergoing arbitrary unconstrained

motions. An important result from this method is its ability to accurately estimate 3D

scene flow only from point clouds even if luminance information is missing. This approach

allows flow estimation from data obtained by sensors that capture the spatio-temporal

information but not the luminance. Some examples of such sensors are the range finders

(e.g. the LiDAR) or the event-based stereo vision system which provide only 3D point

clouds position in space and in time.

A second important result is its ability to provide a dense estimation of the velocity

field as an alternative method to using a variational formulation (a very powerful but

also highly time consuming technique) for flow estimation. Since the plane fitting we

applied for the flow regularization is a computationally cheap operation, the resources

are mainly consumed by the structure matching process. This is the main bottleneck

of the introduced method that needs an efficient implementation optimization if we are

aiming for real-time scene flow computation.

Beyond being applicable to any ready-to-use point cloud representation sequence

obtained by systems such as RGBD sensors, the method is particularly interesting in

asynchronous event-based 3D vision. Neuromorphic silicon retinas only encode the con-

trast changing parts of the scene which represent in general the moving objects. The

algorithm proposed in the previous chapter outputs a stream of 3D events progressively

reconstructed as they appear in the neuromorphic silicon retinas. Only moving points

are reconstructed and thus point clouds only exist for structures which express motion.

The advantage is clear, the computation of flow is only interesting for moving points and

as the 3D event stream only contains moving points, the computation for static objects

or background is avoided. Computation is also only performed when motion exists. Fur-
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thermore as neuromorphic silicon retinas have high temporal resolution a more accurate

and almost continuous 3D scene flow estimation can be recovered.
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Chapter 4

It’s (all) about time

“ Hofstadter’s Law: It always takes longer than you expect, even when

you take into account Hofstadter’s Law

”
Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden

Braid, 1979

4.1 Introduction

In chapter 3 we introduced a method to estimate scene flow from 3D point clouds. Our

main motivation for estimating 3D motion was its application in refining the recon-

structed structures from the method introduced in chapter 2. The idea was to improve

reconstructions by using the 3D scene flow as a spatio-temporal predictor enforcing struc-

ture consistency across time. Although simple, the proposed method is computationally

expensive mainly due to the structure matching step. However, Benosman et al (Benos-

man et al., 2013a) show a simple method for estimating the optical flow from neuromor-

phic vision sensors. Optical flow is by definition the projection of the 3D scene flow on
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the image plane of the cameras. The paper shows how motion is intrinsically encoded

in the local spatio-temporal activity of pixels. Authors show how to extract the optical

flow from a simple plane fitting in a spatio-temporal region. We can therefore introduce

less computationally expensive motion estimation in the 3D reconstruction method. We

show how we can use motion consistency across cameras to further constrain the stereo

matching method introduced in chapter 2.

Luminance, through photo-consistency, is also presented as an improvement to 3D

asynchronous event-based reconstruction. In (Posch et al., 2011), the author introduces

the ATIS, a novel neuromorphic silicon retina which encodes both contrast changes (in

the same way as the DVS (Lichtsteiner et al., 2008)) and luminance information as

the temporal difference of two exposure measurement events. We assume the scene to

be lambertian, this allows us to use the luminance consistency between sensors as an

additional constraint to the stereo correspondence problem. As luminance is encoded by

time differences, we define a photo-consistency temporal constraint in order to improve

the formulation presented in chapter 2.

In this chapter, we introduce two temporal constraints motion and luminance con-

sistency, which can be used to further improve the asynchronous event-based stereo

matching. We explore luminance and motion alone and their combination to solve stereo

matching ambiguities and decrease the number of false matches thus producing more

accurate 3D reconstructions. We define luminance and motion as functions of time and

formulate the asynchronous event-based 3D reconstruction method as a minimization

problem which is dependent on the single variable t.

To our knowledge this is the first event-based 3D reconstruction method able to

recover 3D models of complex shapes. The use of gray-level information allows for the

first time to produce textured 3D reconstructions from event-based data.

We present a method to solve 3D reconstruction in a modular approach where se-

lected constraints are used in a minimization function. We first perform stereo matching
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4.2 Intensity and motion based stereo matching

purely based on epipolar geometry and time information as introduced in chapter 2. Cost

for conflicting candidates can be obtained from existing luminance and/or motion con-

sistency. We then solve it as an energy minimization function that penalizes geometric,

temporal, luminance and motion errors. Results show reconstruction errors decrease by

50% from temporal-geometry minimization alone while decreasing noise as well.

4.2 Intensity and motion based stereo matching

Photo-consistency is a typically enforced constraint when matching corresponding pix-

els. It consists of evaluating how well pixels in one image match another set of pixels

in a second image using luminance. A matching cost between possible correspondences

is given by a function which evaluates the similarity between regions around the pixels.

The most commonly used functions include squared intensity differences, absolute inten-

sity differences or normalized cross correlation. However, other more robust techniques

which limit the influence of mismatches have been proposed, examples are the truncated

quadratics or contaminated Gaussians. Reader may refer to (Scharstein and Szeliski,

2002) for more details on photo-consistency pixel matching methods.

Motion has also been used to solve depth estimation. Different approaches to solving

stereo correspondence problem using optical flow have been proposed: (Hatzitheodorou

et al., 2000) proposes computing optical flow between different views and use it to deter-

mine corresponding points between images. (Kunii and Chikatsu, 2000) uses the optical

flow from the sequence of frames to track lines on each view. Lines are then matched

and 3D respective coordinates obtained. In (Nasrabadi et al., 1989) authors propose

combining optical flow and intensity information in an energy function modelled using

Markov random fields to solve stereo correspondence. A detailed description of several

methods using motion as a cue for depth estimation can be found in (Lee et al., 2012c).
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4.3 Time encoded imaging

Biomimetic, event-based cameras are a novel type of vision devices that - like their

biological role models - are driven by "events" happening within the scene, and not like

conventional image sensors by artificially created timing and control signals (e.g. frame

clock) that have no relation whatsoever to the source of the visual information (Delbruck

et al., 2010). Over the past few years, a variety of these event-based devices have been

implemented, including temporal contrast vision sensors that are sensitive to relative

light intensity change, gradient-based sensors sensitive to static edges, edge-orientation

sensitive devices and optical-flow sensors. Most of these vision sensors output visual

information about the scene in the form of asynchronous address events (AER) (Boahen,

2000) and encode the visual information in the dimension of time and not as voltage,

charge or current. The presented pattern tracking method is designed to work on the

data delivered by such a time-encoding sensors and takes full advantage of the superior

characteristics, most importantly the ultra-high temporal resolution and the sparse data

representation.

The ATIS ("Asynchronous Time-based Image Sensor") used in this work is a time-

domain encoding image sensors with QVGA resolution. (Posch et al., 2011)(Posch et al.,

2008). The sensor contains an array of fully autonomous pixels that combine an illumi-

nance change detector circuit and a conditional exposure measurement block.

As shown in the functional diagram of the ATIS pixel in Fig. 4.1, the change detec-

tor individually and asynchronously initiates the measurement of an exposure/gray scale

value only if - and immediately after - a brightness change of a certain magnitude has

been detected in the field-of-view of the respective pixel. The exposure measurement

circuit in each pixel individually encodes the absolute instantaneous pixel illuminance

into the timing of asynchronous event pulses, more precisely into inter-event intervals.
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3.3 The A T IS sensor 

Besides limited temporal resolution, data redundancy is another major drawback of 

conventional frame-based image sensors where each frame carries the information from all 

pixels, regardless of whether or not this information has changed since the last frame had been 

acquired. This approach obviously results, depending on the dynamic contents of the scene, in a 

more or less high degree of redundancy in the recorded image data, unnecessarily inflating data 

rate and volume. The adverse effects of this data redundancy, common to all frame-based image 

acquisition techniques, can be tackled in several different ways. The biggest conceivable gain 

however is achieved by simply not recording the redundant data in the first place, thus reducing 

energy, bandwidth/memory requirements, and computing power in data acquisition, 

transmission and processing.  

Again biology is leading the way to a more efficient style of image acquisition. In addition 

to a 3-layer model of the Magno-cellular pathway like in the DVS, a simplified functional 

Parvo-cellular pathway model is built into the pixel circuit. ATIS (Asynchronous, Time-based 

Image Sensor) is the first image and vision sensor that combines several functionalities of the 

biological "where" and "what" systems with multiple bio-inspired approaches such as event-

based time-domain imaging, temporal contrast dynamic vision and asynchronous, event-based 

information encoding and data communication [27]-[29]. 

 

F ig. 3  Functional diagram of an AT"#$%&'()*$+,-$./%(0$-1$20/3456-3-70$80%&9(:$(;(3.0<$(34-=&3>$4523>($

and brightness information, are generated and transmitted individually by each pixel in the imaging array.  

 

The sensor is based on an array of fully autonomous pixels that combine a change detector 
and a conditional exposure measurement device. The change detector individually and 

asynchronously initiates the measurement of a new exposure/grayscale value only if ! and 

immediately after ! a brightness change of a certain magnitude has been detected in the field-of-

view of the respective pixel. The exposure measurement circuit in each pixel encodes the 

absolute instantaneous pixel illuminance into the timing of asynchronous spike pulses, more 

precisely into inter-spike intervals (Fig. 3). This principle, sometimes referred to as 

asynchronous pulse-width-modulation (PWM) imaging [32], is based on direct photocurrent 

integration and employs a newly developed time-domain correlated double sampling technique 

for noise and offset suppression [33]. The pixel does not rely on external timing signals and 

autonomously requests access to an asynchronous and arbitrated output channel only when it 

Figure 4.1: Functional diagram of an ATIS pixel (Posch et al., 2011). Two types of asyn-
chronous events, encoding change and brightness information, are generated and transmitted
individually by each pixel in the imaging array.

Since the ATIS is not clocked like conventional cameras, the timing of events can be

conveyed with a very accurate temporal resolution at the order of microseconds. The

time-domain encoding of the intensity information automatically optimizes the exposure

time separately for each pixel instead of imposing a fixed integration time for the entire

array, resulting in an exceptionally high dynamic range and improved signal to noise

ratio. The pixel-individual change detector driven operation yields almost ideal temporal

redundancy suppression, resulting in a maximally sparse encoding of the image data.

Figure 4.2 shows the general principle of asynchronous imaging spaces. Frames are

absent from this acquisition process. They can however be reconstructed, when needed,

at frequencies limited only by the temporal resolution of the pixel circuits (up to hundreds

of kiloframes per second) (see Fig. 4.2 top). Static objects and background information, if

required, can be recorded as a snapshot at the start of an acquisition henceforward moving

objects in the visual scene describe a spatio-temporal surface at very high temporal

resolution (see Fig. 4.2 bottom).

Let us consider the output of a neuromorphic vision sensor such as the ATIS (Posch

et al., 2011). Visual information is encoded as a stream of events where each event is
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4.3 Time encoded imaging

Figure 4.2: (Lower part) The spatio-temporal space of imaging events: Static objects
and scene background are acquired first. Then, dynamic objects trigger pixel-individual,
asynchronous gray-level events after each change. Frames are absent from this acquisition
process. Samples of generated images from the presented spatio-temporal space are shown
in the upper part of the figure.

defined by its (x,y) image coordinates, time, polarity and luminance information. Events

provide a two-dimensional representation of the perceived luminance variation of the

scene on the sensor’s image plane. A light intensity variation at a given 3D point X will

be projected on to the image plane Ru of sensor u at position p according to:




pu

1


 = Pu




X

1


 . (4.1)
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If we ignore the existing latency between the stimulus and sensor’s response time

then the stimulus (X(t)) at time t produces an event e(pu, t) in retina Ru. Latency is

variable and dependent on several environmental aspects such as scene’s illumination,

sensor’s bias settings or induced contrast change. Reader may refer to (Rogister et al.,

2011) and chapter 2 for more information on the neuromorphic vision sensor’s latency

and particularly its implications in event-time based stereo matching. Furthermore, if

several pixels are simultaneously activated, arbitration will output events with random

order and variable timestamp delay thus introducing jitter between cameras. If sensor u

perceives a change of the 3D scene point X(t), an event e(pu, t) at t is produced. The

event e(pu, t) characterizes the nature of the stimulus in terms of:

• polarity - representing the direction of the induced luminance change from its pre-

vious value. Events can therefore assume a single value 1 or −1 if they represent

respectively an increase or decrease in luminance change.

• luminance - corresponding to the gray-level perceived by the retina at pixel p. As

described in (Posch et al., 2011), ATIS sensors encode luminance information in

terms of exposure time. A contrast change triggers the luminance measurement

generating events at the beginning and at the end of the measurement. The differ-

ence between these exposure events gives a duration which is inversely proportional

to the absolute luminance of the scene.

An event e(pu, t) can be defined as

e(pu, t) =





pu = (x, y)T

pol = sign(I(e(pu, t− 1))− I(e(pu, t)))

I(e(pu, t)) = te+ − te−

(4.2)

where (x, y)T is the sensor coordinate where the event occurred and pol is the polarity
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representing the direction of the contrast change assuming values −1 or 1. I(e(pu, t))

represents the inverse luminance of pixel pu at time t and is encoded as the time difference

between exposure measurement events I(e(pu, t)) = te+ − te− , where te− represents the

starting and te+ the finishing timestamp of the integration.

4.4 Event-based stereo matching

We develop our approach using the spatio-temporal stereo correspondence method for-

mulated in chapter 2 and illustrated in Fig. 4.3.

4.4.1 Geometrical error

The matching of events between cameras is based on the combination of the epipolar

geometry and temporal matching exploring the sparsity and precise timing of events

provided by the sensors. Lets consider Fuv as the fundamental matrix that maps events

between cameras u and v, lv(pu) is the epipolar line on the image plane Rv defined as:

R2 → R2

pu 7→ luv(pu) = Fuv




pu

1




(4.3)

.

m the triple of matching events produced by three sensors is geometrically defined as

the triple {e1 = e(pu, tu), e2 = e(pv, tv), e3 = e(pw, tw)}, that represent points lying on

the intersection of the epipolar lines on respectively image planes Ru, Rv and Rw, such
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Figure 4.3: (a,c) Epipolar illustrated for two and three cameras. A 3D point X is projected
onto the focal planes as pu

1 , pv
1 and pw

1 . Each of them is close to the epipolar line (binocular
case) or the intersection of two epipolar lines (trinocular case) defined by the geometric
configuration. (b) Events generated by X in each camera at time t are usually not recorded
with the same date t, but rather different timestamps t1, t2, etc. due to a finite precision in
synchronizing the cameras.

that

∀m(e1, e2, e3),





p̂u = lvu(pv) ∩ lwu(pw)

p̂v = luv(pu) ∩ lwv(pw)

p̂w = luw(pu) ∩ lvw(pv)

(4.4)
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where due to geometrical errors p̂i ≈ pi with i ∈ {u, v, w}.

The geometrical error for a given match is given as the average distance between the

intersection of epipolar lines and the matched point at each retina and it reflects how

well a match respects the epipolar constraints:

EG(m) =
1

3εg

∑

i∈{u,v,w}

||pi − p̂i|| (4.5)

εg is a normalizing scalar which represents the maximum allowed geometric distance. This

maximum allowed distance defines which events are considered as potential candidates

and therefore if ||pi−p̂i|| > εg, the match is discarded automatically. When the binocular

method is used, the geometrical error is given from the distance from candidate points

to epipolar lines such and therefore in this case:

EG(m) =
d(pv, luv(pu)) + d(pu, lvu(pv))

2εg
(4.6)

d(p, l) is the perpendicular distance from point p to the epipolar line l.

4.4.2 Temporal error

On the time domain, matching is achieved by identifying events which occur at the same

time on all sensors. If a given stimulus X(t) is detected by sensors u, v and w, events

e(pu, tu), e(pu, tv) and e(pu, tw) will be generated but due to variable sensor latency,

t 6= tu 6= tv 6= tw. However, we can define matching events as the ones generated at the

closest temporal distance by minimizing the temporal matching error

ET (m) =

∑
i∈{v,w}

|tu − ti|

2εt
(4.7)
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where εt is a normalizing scalar which represents the maximum temporal distance error.

Similarly, in the binocular case we have:

ET (m) =
|tu − tv|

εt
(4.8)

4.4.3 Time-coded intensity matching
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Figure 4.4: Exposure measurement of different gray level targets by three sensors repre-
sented respectively in red, green and blue.

We previously defined I(e(pu, t)) as the inverse luminance value of pixel pu when the

measurement is triggered by e(pu, t). At any given time t, I(pu, t) gives the value of the

last luminance measurement of pixel pu = (x, y)T .

Lets take the assumption that scenes are composed by lambertian surfaces. Lumi-

nance does not change with the view angle and all corresponding pixels have the same in-

tensity. If a 3D point X(t) generates events eu(pu, t), ev(pv, t) and ew(pw, t) respectively
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4.4 Event-based stereo matching

on Ru, Rv and Rw, we can assume that I(pu, t) = I(pv, t) = I(pw, t). Photo-consistency

allows us to further constrain the stereo matching method by assigning a matching score

according to the luminance disparity between corresponding pixels. Figure 4.4 shows

three ATIS sensors’ exposure measurement for eight different gray levels. Values are

obtained as the average measurement over each level and show that measurements are

consistent across cameras and may be used as a matching constraint.

The ATIS sensor provides luminance measurements for pixels where changes were

Figure 4.5: Matching of two events using the time-coded intensity. Matching is achieved
throuh the temporal coincidence of the three generated timestamps (corresponding to change
and exposure measurements events).

detected. This luminance is given as a pair of events representing beginning and end-

ing of exposure measurement. We extend the even-based matching method to include

luminance information and ensure temporal consistency of both change and exposure

measurement events. Matching a given event consists therefore in matching 3 coincident

events as shown in Fig. 4.5.

As briefly explained in section 4.2, intensity based pixel matching is achieved by

operating a matching cost function over a neighbourhood support region. Aggregation

and matching cost functions have been largely studied for decades and several have

been proposed with different advantages. Reader may refer to (Tombari et al., 2008)

and (Scharstein and Szeliski, 2002) for more information and evaluations.
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We use the normalized cross correlation (NCC) as similarity measure operating it

over luminance information of the support regions of matching pixels. Although slower

and more complex than other functions such as the sum of absolute differences, NCC has

been chosen experimentally as it produced good results. For simplicity we chose a fixed

square support region of size δs × δs.

If A(pu, t) is the array of luminance values for pixels which are part of the support

region around pu, we can define it as:

A(pu, t) = {I(pui,j , t)|pui,j = (x+ i, y + j)T , |i− x| ≤ δs, |j − y| ≤ δs}. (4.9)

We can define an energy cost function expressing how well pixels are correlated as:

EI(m) = 1− 1

2

∑

c∈{v,w}

∑
i

∑
j

((I(puij , t)− Ā(pu, t))(I(pcij , t)− Ā(pc, t))

√
(
∑
i

∑
j

(I(puij , t)− Ā(pu, t)2)(
∑
i

∑
j

(I(pcij , t)− Ā(pc, t)2)
(4.10)

where

Ā(pu, t) =
1

δ2s

∑

i

∑

j

I(puij , t) (4.11)

with pij neighbourhood pixels of pu such that p = (x, y)T , |i− x| ≤ δs
2 and |j − y| ≤ δs

2 .

I(pu
i,j) is the last known intensity value of pixel p = (x+ i, y+ j)T in camera u. Ā(pu, t)

represents the mean luminance of the support region. The error is given as the average

correlation of support regions in pairs of cameras and gives values in 0 ≤ EI(m) ≤ 2.

Figure 4.6 shows the matching principle used in the photo-consistency constraint.

Support regions around matching events are correlated in order to evaluate how well

events match. Two matching regions are underlined representing an example which

produces high correlation value and low luminance disparity error.
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Figure 4.6: Luminance based matching between two sensors. Left image shows luminance
information of waving hand across time. Right image shows luminance of the support regions
of matching pixels in two sensors.

4.4.4 Motion matching

Motion information is directly encoded by the time of occurrence of events. In (Benosman

et al., 2013a) authors propose an event-based visual flow estimation method where optical

flow is estimated directly from the time of occurrence of events.
∑

e is defined as the

function that maps to p the time t:

∑
e : N → R

p → ∑
e(p) = t

(4.12)

and authors show its gradient ∇∑e(p) is the vector that measures the rate and direction

of change of time with respect to space and is related to velocity vectors as:

∇∑e(p) = (
1

vx
,

1

vy
)T . (4.13)

Evaluating the occurrence of events for each pixel provides a way to recover motion

information. Figure 4.7 shows the temporal information for events generated by a waving

hand showing the relation of motion and time. Events occurring at the same time show

similar color. We assume that if two sensors are close to each other, a moving object
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Figure 4.7: Motion matching principle of a waving hand. Figures represent images of time
at a given instant in time, obtained by the pixel activity at small temporal regions on two
cameras.

will generate similar optical flows in respective focal planes. This is not valid for all

scenarios, namely objects located in the center and moving perpendicularly to the stereo

rig produce uncorrelated optical flows. However, when verified it provides a powerful

method to select matches even when luminance information is not available (e.g. when

using the DVS sensor).

Temporal activity region provides a spatio-temporal feature for each event as it en-

codes spatial direction and rate of the temporal change. Figure 4.7 shows two matching

regions of a waving hand. Let us define the spatio-temporal region A(
∑

e(p
u)) of size

δs × δs around
∑

e(p
u):

A(
∑

e(p
u)) = {∑e(p

u
i,j)|pu

i,j = (x+ i, y + j)T , |i− x| ≤ δs, |j − y| ≤ δs}. (4.14)

We verify motion consistency between matched events by correlating their correspond-

ing surrounding regions. An energy cost function can be defined imposing penalties on
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motion disparity such that:

EM (m) = 1− 1

2

∑

c∈{v,w}

∑
i

∑
j

((T (puij)− Ā(T (pu))))(T (pcij)− Ā(T (pu))))

√
(
∑
i

∑
j

(T (puij)− Ā(T (pu)))2)(
∑
i

∑
j

(T (pcij)− Ā(T (pu)))2)

(4.15)

for visibility
∑

e(p
u) = T (pu) and

Ā(T (pu)))) =
1

δ2s

∑

i

∑

j

T (puij) (4.16)

with pij neighbourhood pixels of pu such that p = (x, y), |i−x| ≤ δs and |j−y| ≤ δs. EM
reflects how well points match based on their motion consistency. Motion flow defined as

the local activity of pixels in a given spatio-temporal region provides a spatio-temporal

which allows better characterizing individual events. Matching temporal activity neigh-

bourhoods ensures temporal consistency and intrinsically motion consistency as well.

4.4.5 Error minimization

We presented four independent cost functions (equations 4.5,4.7,4.10,4.15) which can be

seen as individual modules for evaluating stereo matches. Each function expresses the

matching cost by penalizing errors on its respective constraint geometry (EG), time (ET ),

luminance (EI) or motion (EM ). Geometry and time costs are normalized to give values

between 0, best match, and 1, maximum error. Luminance and motion cost functions

give values between 0, maximum correlation of support regions and best match, and 2,

completely anti-correlated regions and therefore maximum error.

We can now present the asynchronous event-based stereo matching method as a mod-

ular energy cost function composed by any combination of the four cost functions. The

basic asynchronous event-based method proposed in chapter 2 (or (Rogister et al., 2011)

for the binocular case) based on the spatio-temporal errors can therefore be formulated
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as an energy cost function composed by the normalized geometrical and temporal er-

rors. Events are selected among matching candidates as the n-tuples minimizing the

temporal-geometrical cost function:

m(eu) = argmin
mi∈M

(EG(mi) + ET (mi)) (4.17)

where M is the set containing all match candidates to a given event eu.

This modular approach allows us to complete the previous formulation with combi-

nations of motion and when available luminance matching cost. An energy cost function

with all four constraints is given by:

E(m) = EG(m) + ET (m) + EM (m) + EI(m). (4.18)

It is important to notice that while geometrical and temporal costs vary between 0

and 1, motion and intensity costs assume values between 0 and 2. Costs larger than 1

represent anti-correlated regions. This choice of giving a higher impact of anti-correlated

regions on the global matching cost allows to robustly impose a higher cost and thus reject

anti-correlated matches. Motion and luminance are matched based on their support

region of surrounding neighbourhood providing much richer and robust information than

the information of single pixels.

Let us recall EG defined in equations 4.5 and 4.6, where εg defines the maximum

matching pixel error for any candidate. When the matching method is operated εg is

typically set to 1 if subpixelic calibration is achieved. Let us now consider the case where

we fix εg = α (matches up to α pixels distance are considered plausible candidates) but

ignore the value of EG. Under this situation, geometrical error is only considered in

the matching process where the threshold εg = α exists but EG has no influence in the
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minimization step. This allows us defining an energy cost function:

Ẽ(m) = ET (m) + EM (m) + EI(m) with ∀EG(m), εg = α, (4.19)

meaning we accept matches with any pixel distance smaller than εg which minimize all

other constraints, such that

m(eu) = argmin
mi∈M

(ET (mi) + EM (mi) + EI(mi)). (4.20)

The main purpose of excluding the geometrical error from the energy minimization

formulation is being able to separate the spatial and temporal variables. Doing so, allows

us to define the stereo-correspondence method as a purely temporal dependent minimiza-

tion problem. The minimized function is therefore dependent on a single variable: time.

The four time-dependent energy cost minimizations which can be built from the

proposed set of cost functions are:

• temporal:

m(eu) = argmin
mi∈M

ET (mi) (4.21)

• temporal and motion:

m(eu) = argmin
mi∈M

(ET (mi) + EM (mi)) (4.22)

• temporal and luminance:

m(eu) = argmin
mi∈M

(ET (mi) + EI(mi)) (4.23)
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• temporal, motion and luminance

m(eu) = argmin
mi∈M

(ET (mi) + EM (mi) + EI(mi)). (4.24)

The three last minimizations, as it will be shown, produce the best results with

however, those including motion being vulnerable to possible different optical flows on

different cameras (as previously explained in section 4.4.4). The complete asynchronous

event-based trinocular stereo matching method is summarized in algorithm 4:

Algorithm 4 Trinocular event-based stereo matching algorithm with motion and lumi-
nance minimization
Require: Three cameras Ru, Rv, Rw
Require: Fuv, Fuw, Fvw, estimations of the fundamental matrix for each pair of cameras

1: for all events e(pu, t) in sensor Ru do
2: Determine the set of events Sv(t),Sw(t) from respectively sensors Rv,Rw occurring

at maximum temporal distance εt
3: Determine the subset of possible matches

M = {mn = {e(pun, t), e(pvn, t), e(pwn , t)}|e(pvn, t) ∈ Sv(t), e(pwn , t) ∈ Sw(t)}

which comply to the trinocular constraint with maximum pixel distance εg
4: for all match candidate mn ∈M do
5: Select match m which minimizes temporal, motion and luminance errors

m(eu) = argmin
mi∈M

(ET (mi) + EM (mi) + EI(mi))

6: end for
7: end for

4.5 Results

A moving box, a waving hand and a moving face were captured using our multi-camera

system. Figure 4.8 shows 3D reconstructions of the three scenes. Results were obtained

by operating the asynchronous event-based trinocular stereo matching algorithm pre-
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Figure 4.8: 3D reconstruction of a face and box. a,d,g)point cloud b,e,h)alpha volume
(α < 35) (Edelsbrunner et al., 2006) c,f,i)textured reconstruction

sented in chapter 2 with luminance minimization. All three objects (box, hand and face)

were successfully reconstructed. Estimated 3D shapes provide recognizable representa-

tions of the object they represent. Figure 4.8 shows examples of reconstructions as well

as corresponding computed alpha shape and textured shape. An alpha shape is a collec-

tion of piecewise linear simple curves in the Euclidean plane associated with the shape
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of a finite set of points as first defined by Edelsbrunner in (Edelsbrunner et al., 2006).

The alpha shape is therefore obtained by triangulating clusters of points at a maximum

radius alpha.

The ATIS sensor provides gray-level information for generated contrast change events.

If we consider an object passing in front of the sensor, the front edge - triggered by the

contrast change from the background to the object luminance - will give gray-levels cor-

responding to the interior of the object, while the back edge - triggered when going from

the object surface to background luminance - will give gray values for the background

of the scene. Therefore, if an object passes by the sensor (stimulating all pixels) and

last gray-level measurements are kept, we are left with a full frame of pixels containing

the background of the scene. At any point in time, the gray-level information for any

pixel is therefore given by the last luminance measurement at that pixel (if it exists). We

map each triangle of the alpha shape to the corresponding image plane pixels obtaining

gray-level information. Each triangle of the alpha shape is individually textured with

its corresponding gray-level luminance information resulting in the realistic 3D models

shown in Fig. 4.8c)f) and i).

4.5.1 Experimental setup

The experimental setup consists of a multi-camera rig composed by 4 ATIS cameras

and a Microsoft Kinect sensor. Cameras are synchronized and calibrated with subpixel

precision using Yves Bouguet’s (Bouguet, 2008) toolbox. The Microsoft Kinect sensor is

also calibrated with the multi-camera system and provides ground-truth 3D information

of the scene. Synchronization between ATIS and Kinect is achieved by software. In

order to maximize the quality of the results with the resolution provided by the QVGA

(304× 240 pixel resolution) ATIS sensor, cameras are turned inwards such that the total

observed scene is limited to a 1m3 volume. Illuminating the scene with a 1000watts

halogen lamp ensures minimal jitter between the cameras’ response.
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Figure 4.9: Multicamera setup composed of three ATIS sensors and a Microsoft Kinect
sensor for ground-truth.

4.5.2 Method evaluation

A scene of a bouncing human head is captured by all sensors. Both asynchronous event-

based matching algorithms (binocular (Rogister et al., 2011) and trinocular) are operated

and 3D reconstructions obtained. We evaluate the accuracy of 3D reconstructions ob-

tained when minimizing proposed energy cost functions.

In event-based binocular (Rogister et al., 2011) and trinocular stereo matching method

proposed in chapter 2, two input parameters exist and required critical tuning for achiev-

ing acceptable 3D reconstructions: matching time-window and geometrical error (dis-

tance of matching pixels to epipolar lines). We test the influence of these parameters

independently and present 3D reconstruction results for temporal matching windows be-

tween 1ms and 7ms and matching pixel errors of 1px to 4px. Relaxation of temporal and
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geometrical constraints allows observing the robustness and sensitivity of the algorithm

to parameters’ choice.

3D reconstructions are recovered and evaluated in terms of accuracy for four different

energy cost minimizations (1 ≤ εt ≤ 7 and 1 ≤ εg ≤ 4):

• spatio-temporal E = EG + ET

• motion E = EM

• luminance E = EI

• motion and luminance E = EM + EI
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Figure 4.10: 3D reconstruction accuracy evaluation method. Computed 3D points shown
in a) are compared to corresponding kinect’s depth data in c). By superposing a) to c) we
can measure existing closest points for each reconstructed point in order to evaluate the
reconstructed shape’s accuracy.

In order to evaluate the accuracy of results, 3D reconstructions are compared against

the 3D point clouds recovered by the Microsoft kinect sensor (see Fig. 4.10). Pairs of

closest point between 3D reconstructions and kinect’s point clouds are identified. Two

measures quantify the accuracy of the computed reconstructions:

• The reconstruction error is given by the mean distance between the pairs of closest

points and is normalized by the maximum width of the object. This value tells

how close the computed reconstruction is from the kinect’s shape.
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• The number of false matches is given by the total number of points whose distance

to its corresponding closest point in the kinect’s point cloud is larger than 10%.

This measure evaluates the amount of noise surrounding the recovered shape.

Last subsection of results shows performance evaluation for a C++ implementation

of the asynchronous event-based stereo algorithm running on an Intel(R) Core(TM) i7-

2630QM CPU @ 2.00GHz laptop with 8GB DDR3 RAM.

4.5.3 Binocular matching
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Figure 4.11: Comparison of reconstruction accuracy and errors with each matching cost
function and variable matching time window applied to the asynchronous event-based binoc-
ular stereo matching (Rogister et al., 2011). Red line (triangle) represents geometrical and
temporal minimization (EG+ET ), green line (square) represents motion minimization (EM ),
blue line (circle) represents luminance minimization (EL) and black (diamond) represents
motion and luminance minimization (EM +EL). a)Accuracy of 3D reconstruction b)Amount
of incorrect points c)Total amount of reconstructed points with different matching time win-
dows.

3D reconstruction is obtained from operating the asynchronous event-based binocular

stereo matching algorithm over the sequence encoding a moving human face. The max-

imum matching geometrical distance is fixed such that εg = 1px while the matching

time-window parameter is tested for values ranging 1ms ≤ εt ≤ 7ms at fixed intervals

of 2ms. 3D reconstructions are obtained with minimization of each of the four proposed

energy cost functions EG+ET , EM , EL and EM +EL. Results are presented in Fig. 4.11

showing the influence of the matching time window size when using the binocular match-
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ing and each of the proposed matching costs.

Figure 4.11 a) shows that reconstruction accuracy remains almost constant with time

window variations for all energy costs. Minimization of EG + ET (shown by the red

curve) corresponds to the method introduced by Rogister et al in (Rogister et al., 2011),

achieves very poor results with reconstruction accuracy around 50%. Furthermore b)

shows us that 75% of recovered 3D points are wrong matches meaning that this method

produces very noisy and inaccurate point clouds.

The use of any of the other proposed cost functions shows far better results. EM or

EL minimization gives similar results in terms of accuracy with average reconstruction

error around 25% but however EM seems to produce slightly more wrong matches than

EL with respectively 57% average amount of wrong matches against 53% given by the

second function. Energy minimization combining motion and flow EM + EL shows the

best results with an average 20% reconstruction error and under 50% of wrong matches.

Although showing better results than other matching functions, EM + EL still shows

large amounts of noise with half of the reconstructed points being wrong matches.

The increase of the time-window does not seem to have an influence on the accuracy

or the percentage of wrong matches as both are shown constant. However, the number

of reconstructed points increases with time window due to relaxation of this maximum

temporal distance error. As the number of reconstructed points increases but proportion

of wrong matches remains constant, noise in the form of scattered points also accumulates

in the area surrounding the object. If the amount of noise is too high the reconstruction

becomes unrecognisable even if correct points also exist in the reconstruction.
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Figure 4.12: Comparison of reconstruction accuracy with each constraint and variable picel
geometrical distances with asynchronous event-based binocular stereo matching. Red line
(triangle) represents geometrical and temporal minimization (EG +ET ), green line (square)
represents motion minimization (EM ), blue line (circle) represents luminance minimiza-
tion (EL) and black (diamond) represents motion and luminance minimization (EM +EL).
a)Accuracy of 3D reconstruction b)Amount of incorrect points c)Total amount of recon-
structed points

Very similar results are obtained while testing the matching pixel distance error. In

this case, the maximum matching temporal distance is fixed such that εt = 1ms while

the matching pixel error parameter is tested for values ranging 1px ≤ εg ≤ 4ms. Results

are shown in Fig. 4.12. Reconstruction accuracy and amount of false matches remains

constant with variable maximum pixel distance error. The amount of reconstructed

points increases with the relaxation of the geometrical error, and the same conclusions

on the effects of noise are applicable.

Pixel and temporal matching distances do not seem to have an effect on the accuracy

of the reconstruction. However, as these constraints are relaxed the number of recon-

structed points and amount of produced noise increases. If the density of noise in the

reconstructed scene is high identifying the 3D model becomes difficult. Noise can how-

ever be filtered up to some level by imposing a threshold on the maximum accepted cost,

keeping in mind that if the limit is too tight correct points will be discarded as well.

97



4.5 Results

εt(ms) EG + ET EM EI EM + EI

1

3

5

7

Table 4.1: Influence of matching timewindow on reconstruction results using the trinocular
event-based method. Reconstruction was achieved with geometrical stereo matching of 1px
and figures were created from 50ms of 3D events.
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Figure 4.13: Comparison of reconstruction accuracy and errors with each constraint and
variable matching time window size with asynchronous event-based trinocular stereo match-
ing. Red line (triangle) represents geometrical and temporal minimization (EG+ET ), green
line (square) represents motion minimization (EM ), blue line (circle) represents luminance
minimization (EL) and black (diamond) represents motion and luminance minimization
(EM +EL). a)Accuracy of 3D reconstruction b)Amount of incorrect points c)Total amount
of reconstructed points
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4.5.4 Trinocular matching

The same evaluation is performed for the proposed energy cost functions (EG + ET ,

EM , EL and EM + EL) and independently varying εt time-window and εg pixel error.

Table 4.1 shows reconstruction of the human face sequence with matching time-windows

1ms ≤ εt ≤ 7ms at fixed intervals of 2ms and fixed εg = 1px. Quantitative evaluation is

resumed in Fig. 4.13.

Enlarging the matching time-window increases the amount of reconstructed points.

The result is visible in two ways: the density of the point cloud with more well-defined

shapes but also in the amount of generated noise.

Comparing to the results obtained from the binocular case we can see that the accu-

racy of 3D reconstructions almost doubles with the trinocular method, with reconstruc-

tion errors decreasing from 50% to 25-30% for EG + ET minimization and decreasing

from 20-25% to 10% for the remaining energy functions. The amount of noise also de-

creases in the trinocular case with 65% of false matches for the original method EG+ET

as proposed in chapter 2 and around 35-40% for the improve formulation with any of

the additional constraints. An improvement obtained with the trinocular formulation

was already expected as the approach consists of a much more constrained geometrical

algorithm, however this also largely reduces the amount of reconstructed points as the

method enforces the existence of corresponding events in three sensors. Under these cir-

cumstances we should recall the solution of increasing the number of sensors as suggested

in chapter 2 with the double benefit of increasing the density of 3D reconstructions and

minimizing occlusions by providing more viewpoints.

Finally, table 4.2 presents reconstructions using the asynchronous event-based trinoc-

ular stereo matching algorithm with varying maximal geometrical distance 1px ≤ εg ≤

4px and fixed time window εt = 1ms for each energy cost minimization.

Identically to previous experiments, relaxing the maximum matching pixel error εg

results in noisier reconstructions particularly noticeable in EG + ET . Figure 4.14 shows
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εg(px) EG + ET EM EI EM + EI

1

2
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4

Table 4.2: Influence of matching pixel error on reconstruction results using the trinocular
event-based method. Reconstruction was achieved with maximal temporal error 1ms for the
stereo matching and figures were created from 50ms of 3D events.
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Figure 4.14: Comparison of reconstruction accuracy with each constraint and variable
geometrical distances with asynchronous event-based trinocular stereo matching. Red line
(triangle) represents geometrical and temporal minimization (EG+ET ), green line (square)
represents motion minimization (EM ), blue line (circle) represents luminance minimiza-
tion (EL) and black (diamond) represents motion and luminance minimization (EM +EL).
a)Accuracy of 3D reconstruction b)Amount of incorrect points c)Total amount of recon-
structed points
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the evaluation of obtained 3D point clouds against kinect’s depth data. The results show

the same expectable increase in accuracy as what was shown for variable matching time-

window with larger errors for EG + ET and double accuracy and less noise for EM , EL

and EM +EL. However it is interesting to notice that the reconstruction error and noise

seems to increase with the pixel distance suggesting the trinocular algorithm is more

sensitive to the relaxation of the geometrical constraint than to the temporal distance

constraint.

Finally, we should highlight the most important observed result from all binocular

and trinocular experiments: the use of any of the proposed additional energy minimiza-

tion functions at least doubles the accuracy of the reconstruction when compared to

the corresponding basic spatio-temporal stereo matching method (for both binocular

and trinocular methods). Furthermore the noise of reconstructions introduced by false

matches is also reduced by 20% to 50% meaning cleaner reconstructions are obtained.

4.5.5 Performance evaluation

Depending on its application purpose, computation performance of 3D reconstruction

can be critical. In robot navigation or tele-immersion real-time is a requirement but

however in post processing of 3D scenes computation time becomes less critical.
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Figure 4.15: Performance evaluation of the 3D reconstruction algorithm. Binocular match-
ing is shown in red (triangle) and trinocular in blue (circle). a)Mean computation time per
candidate b)Mean computation time per 1 second of data c)Mean number of candidates per
event.
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Increasing the matching time-window results in an increase of potential match candi-

dates and reconstructed 3D points as it was shown in the previous sections. Computation

time is however not related to the event rate of the input streams alone but to the event

rate of matching events. Performance is therefore conditioned by the amount of candidate

matches. Figure 4.15 shows computation time for binocular (red curves) and trinocular

(blue curves) matching. Processing time is shown per 3D match candidate a) and for

per second of data b) with several different time windows. Mean computation time per

candidate remains constant at 20µs for binocular and 21µs for trinocular regardless of

the matching time-window size. The total computation time increases for larger time

windows due to larger amounts of candidate matches. Moreover, for the same reasons

the 3D reconstruction for a given sequence becomes longer using the binocular matching

method than with the trinocular method.

According to these results, current implementation of the proposed algorithm is able

to compute in real-time if the number of event match candidates per second remains under

47000. Taking into account the curve shown in Fig. 4.15c), which shows the mean number

of candidates per event with different matching time windows we can estimate the event

rates at which real-time computation is possible. Let us assume as example a 4ms time-

window, where 10 candidates are found per event. In this case real-time is possible only

if the event-rate remains under 4700 events per sensor. Event-rate is higly dependant

on the scene, light conditions and bias settings, but however for reference, the three

reconstructions shown in Fig. 4.8 have average event rates of 452 kevents/second(face),

235 kevents/second(box) and 229 kevents/second(hand). This shows that although a

noticeable performance increase was obtained, the algorithm is still far from achieving

real-time reconstruction in real scenes.

Another interesting result which should be highlighted is that classically, going from

a binocular to a trinocular setup has been reported to increase the computation time

by 25% while decreasing ambiguities by 50% (Dhond and Aggarwal, 1990). However, in
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our event-based implementation we obtain a decrease of ambiguities (for a 4ms match-

ing time window) of 50% while also seeing a decrease in computation time around 50%.

This can be easily explained by the amount of generated match candidates in the binoc-

ular or trinocular case. The binocular case, generates more than double of 3D points

(see fig 4.11,4.12,4.13,4.14) and about double the amount of match candidates (for time

window of 4ms), meaning more processing is needed due to both higher number of cor-

relations (due to the larger number of candidates per 3D point) and higher number of

minimizations to perform (due to larger number of reconstructed points).

4.6 Discussion

The use of the ATIS camera, a much higher resolution (≈ 4.5 times than the 128 × 128

pixel resolution DVS) sensor, leads by itself to incomparably better results from what

was seen in chapter 2 and other previous work using the DVS sensor. This increase in

pixel resolution means better accuracy in geometrical matching as smaller pixels map

fewer 3D points and thus fewer match candidates exist.

Results with both binocular and trinocular asynchronous event-based stereo matching

are able to provide acceptable 3D reconstruction of complex shapes when using motion

or luminance minimization. Results with the trinocular method provide cleaner and

more accurate reconstructions than binocular solution while requiring lower computation

cost. Motion and luminance minimization seem to provide similar results in terms of

reconstruction accuracy and may be used according to circumstances. Motion consistency

is sensitive to the motion of the scene meaning that scenes where objects move at the

center of the stereo rig and with a movement perpendicular to the baseline will result

in divergent optical flows and thus matching will be unsuccessful. Luminance is in this

case better as it is motion invariant. However, in situations where luminance information

is not available, best reconstruction is achieved by minimizing the motion consistency
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error.

The accuracy of reconstructed shapes does not seem to be radically affected by varia-

tions of maximal temporal or geometrical errors. However, as the number of reconstructed

events increases and the percentage of wrong matches remains constant, the noise in the

reconstruction will increase. Furthermore as larger temporal and geometrical distances

are allowed in the stereo matching process, more matching candidates will exist and

computation cost quickly grows.

4.6.1 3D Structure refinement using point cloud prediction

The event-based trinocular stereo correspondence problem was solved as the minimization

of an energy cost function with penalties on geometrical, temporal, motion and intensity

errors. The result of operating the proposed algorithm over the event streams of a multi-

camera system is a 3D event stream containing 3D reconstructed points observed by

the cameras over time. However, matching errors occur and the 3D event stream may

contain incorrectly reconstructed events.

In chapter 3 we proposed a method for 3D scene flow estimation from point clouds

where motion is directly extracted from position and time information of 3D points.

The main motivation behind this method was its application to an iterative refinement

of 3D structures. Although not explicitly explored throughout this chapter (where its

projection, the optical flow, was used instead), we will anyhow present how the 3D scene

flow could be applied and provide a formulation to be used in future work. We make

use of this motion information to predict future location of 3D structures. 3D events are

compared to predictions as to where the point cloud exists. Motion and reconstruction are

used in a closed feedback loop where reconstructed points are used for motion estimation

and motion information is used to validate new 3D events.

Information about the 3D motion flow of points in a scene provides valuable informa-

tion that may be added to further increase the quality and robustness of 3D structures.

104



4.6 Discussion

While estimating velocity vectors, a shape registration method allows to match struc-

tures across time and to formulate an energy minimization solution for motion estimation.

Here we use the same principle of moving point clouds according to estimated velocities

to predict the position of new events. Reconstructed events which match the predicted

structure can be given higher credibility.

The formulation of the asynchronous event-based scene flow presented in the pre-

vious chapter provides a way to extract motion from a spatio-temporal neighbourhood

N(e(P, t)), containing the 3D events spatially defined around P and temporally de-

fined after t. We now intend to use the motion flow information to predict the loca-

tion of events in the future where e(P+1, t+1) = e(P + v(e(P, t)), t). In fact, motion

v(e(P, t)) is estimated from N(e(P, t)) defined in the future of t. Here, we use instead

v̂(e(P, t)) = v(e(P−1, t−1)) an approximation of velocity v(e(P, t)). As structures do not

appear abruptly across time we know that all events consist of temporal evolution of pre-

vious events at a different location (exceptions for occlusions or objects entering/leaving

the scene):

∀e(P+1, t+1)∃e(P, t) : P+1 = P + v(e(P−1, t−1)) (4.25)

We can therefore evaluate new events according to their consistency to shape and

motion of the scene according to:

P+1 = P + v(e(P−1, t−1)) + εv (4.26)

where ||εv|| is the inconsistency error which inversely reflects the credibility of a given

event.

However identifying corresponding P+1 and P is difficult and we cannot guarantee

that both will exist respectively at t+ 1 and t. Moreover a single 3D point distance does

not provide a robust measurement. We therefore instead use εv as the mean closest point
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distance between the existing structures surrounding P+1 and P, similarly to what is

done in the previous chapter for motion estimation. If N(P) is the set of points spatially

located around P then

εv =
1

n

n∑

i=1

min ||Pi −Pj|| with Pi ∈ N(P),Pj ∈ N(P+1). (4.27)

4.7 Conclusion

3D reconstruction from multiple views is one of the most important problems in computer

vision as it allows recovering tridimensional structures from multiple two-dimensional

views of a given scene. Its importance and numerous applications have motivated re-

searchers to continuously propose new methods throughout the last decades. Tradition-

ally, 3D reconstruction from multiple views is achieved through a process of pixel match-

ing between different views. Finding correspondences in different views is a complex

problem which can easily conduct to ambiguities. Computer vision methods typically

solve these ambiguities by adding spatial constraints (such as photo-constancy). The

temporal dimension is still largely unexplored even though the important role of time in

3D estimation has been shown both in biological and computer stereo vision. Researchers

reported incorrect depth perception occurs from temporal disparities between views but

however most existing computer methods, relying on low temporal dynamic frame-based

acquisition, cannot take this property into account.

The introduction of neuromorphic silicon retinas, bio-inspired vision sensors which

encode visual information as a stream of events provides a new way to address the stereo

correspondence problem. Early solutions such as (Rogister et al., 2011) and the method

we proposed in chapter 2 used classical epipolar geometry and the precise timing of

these sensors to match events and recover depth in an asynchronous event-based fashion.

However, these methods were prone to errors as ambiguities could not be solved from
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co-activation and geometry alone.

We studied temporal-based constraints with luminance and motion information ex-

pressed in terms of time. We proposed independent energy cost functions for each of

the four constraints geometry, time, motion and luminance. We introduced a modular

formulation of an energy cost function composed by any combination of the available

matching cost functions. This modular approach has the advantage of allowing to chose

energy cost functions according to available information or performance concerns. Fur-

thermore proposed constraints (luminance and motion) were defined as functions of time

allowing the asynchronous event-based stereo correspondence problem to be described as

the minimization of an energy cost function solely dependent of the variable time.

We show that the added luminance constancy and motion consistency cost functions

greatly increase accuracy of reconstructions while reducing the amount of false matches

and noise in both binocular and trinocular versions. Results prove that complex shapes

can be reconstructed with high accuracy when luminance or motion minimization are

used.

In this chapter we presented the first asynchronous event-based 3D reconstruction

method able to recover the 3D structure of complex shapes from neuromorphic vision

sensors. The method is able to produce realistic representations of the scene in the form

of textured 3D models. Furthermore, due to the high temporal resolution of the neuro-

morphic vision sensors, our method is also a pioneer in high frequency 3D reconstruction

being able to recover shapes at up to 1MHz with current sensor. The method is therefore

ideal for recovering 3D from fast moving scenes where frame-based cameras are not able

to cope with the dynamics of the scene.
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Chapter 5

Discussion

“ Sometimes it seems as though each new step towards AI, rather than

producing something which everyone agrees is real intelligence, merely

reveals what real intelligence is not.

”
Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden

Braid, 1979

Neuromorphic vision sensors introduce a new way of encoding visual information

where scenes are no longer represented as frames but as a continuous stream of asyn-

chronous events. This high temporal resolution and precise timing of events allows keep-

ing the temporal dynamic of visual scenes usually lost in conventional computer vision.

This new representation of visual information introduces a paradigm shift in computer

vision. Visual computation can be based only on the occurrence of single asynchronous

events. Event-based visual computation opens new way for innovative research and new

methodology to solve computer vision problems. In this thesis we explored the potential

of using time as a computation feature in depth estimation and 3D reconstruction and

studied its properties.
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Stereo vision has been chosen as a research topic because it is still an important and

not totally solved problem in computer vision. Currently real-time dense methods are

computationally expensive and do not exceed 60Hz. Several frame-based methods for 3D

reconstruction have been developed, however the temporal dimension is never used nor

seen as a critical variable.

Time seems to play an important role in biological stereo vision, how can the temporal

precision of neuromorphic retinas be used to tackle the stereo correspondence problem and

recover 3D structures? Previous event-based work approached the problem using single

event matching and binocular epipolar geometry. The formulation showed an innovative

approach but depth estimation was coarse and prone to errors. To solve this question

we introduced a more geometrically constrained method by adding the implications of

adding a third sensor. The approach relied on single event matching based on temporal

consistency and trinocular epipolar geometry. The method is scalable to any number

of cameras and showed innovative results in asynchronous event-based 3D vision. It is

the first and only method able to produce reliable 3D reconstructions using time. In

our approach the role of precise timing is critical as events are matched based on their

co-activation. We can arguably say that high temporal precision is an essential feature

of 3D processing.

We may then wonder what are the advantages in using asynchronous event-based en-

coding of the visual information? Neuromorphic silicon retinas encode visual information

as events that represent relative contrast changes of the scene. If only changing infor-

mation (such as moving objects) is transmitted, the amount of data to be computed

is substantially smaller. Asynchronous event-based information allows matching single

events using coactivation of pixels. The task of finding correspondences between cameras

is then obviously far more efficient than searching for correspondences in the whole array

of pixels.

What are the consequences and how to deal with the high event-rate of neuromorphic
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silicon retinas? The methods proposed in this thesis were formulated in an event-based

methodology in order to take advantage of the temporal properties provided by the

event-based encoding format of neuromorphic silicon retinas. However, these approaches

were developed and implemented using conventional Von-Neumann computer proces-

sors which are inadequate to process event-based information. Promising neuromorphic

neural network chips exist, they are able to process event-based data in a highly paral-

lel way. A neuromorphic hardware implementation of asynchronous event-based stereo

matching methods is out of the scope of this thesis, its use would lead to a more natural

computation without the need to time-stamp events and serialize them.

The high temporal resolution of the sensor cannot be efficiently processed by classical

computer but how can the temporal dynamics of scenes contribute to 3D reconstruction?

This temporal dynamics provided by the neuromorphic visual sensor allows neuromorphic

computer vision methods to produce a high amount of temporal accurate results. The

result has a much higher dynamic 3D representation of the scene. As motion is estimated

from the position of an object in time this continuous information can be used to help

solving ambiguities in stereo-matching methods. We showed that using event-based in-

formation allows to create spatial-temporal features that highly improve the event-based

matching.

We may then wonder how is asynchronous event-based stereo matching related to

biological stereo vision? Although we can not derive direct assumptions about the use of

precise timing to solve stereo correspondence. We can for sure emphasize that without

time processing disparity would be more computationally expensive. Neurons are known

to be coincidence detectors. In this context our approach fully matches this property.

However if direct matching is performed only on event coincidence between two views,

we have shown that this approach produces a high number of false matches that lead to

a poor estimated shape. The combined use of higher level information such as motion

and grey-level appears to be essential to estimate correct shapes. We can then conjecture
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that 3D is a hierarchical process. At a low level in V1 simple coincidence detector are

computed, this information is then sent in a second stage sent to higher cortical areas

such as MT where they are refined. Even though we have not shown how these structure

interact, it is most probable that a feedback loop exists to lower areas of the visual system

in order to inhibit neurons generating wrong matches. Other smoothing constraints must

also play an important role, such as local disparity differences. It is interesting to notice

that different time scales operate at the same time. A direct immediate inaccurate

computation and more long term accurate information.

The presented work provides the basis for further research providing clues for other event-

based stereo matching studies form a computational and physiological point of view.

Event-based acquisition allows to fulfil David Marr’s dream to merge computational and

biological studies of the visual system into a unified framework. Current developments

at the lab are exploring this path. They have started using brain imaging techniques

and psychophysics tests to study the hypothesis derived from our work to produce more

realistic and computationally efficient algorithms to estimate depth.
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