
HAL Id: tel-01142164
https://theses.hal.science/tel-01142164

Submitted on 14 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint network and system performance for cloud
computing

Sonia Belhareth

To cite this version:
Sonia Belhareth. Joint network and system performance for cloud computing. Other [cs.OH]. Univer-
sité Nice Sophia Antipolis, 2014. English. �NNT : 2014NICE4146�. �tel-01142164�

https://theses.hal.science/tel-01142164
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC

SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

THÈSE

Pour obtenir le titre de

Docteur en Sciences

de l’Université de Nice-Sophia Antipolis

Mention : Informatique

Présentée et soutenue par

Sonia BELHARETH

Performances Réseaux et Système

pour le Cloud Computing

Directeur de thèse : Guillaume URVOY-KELLER

soutenue le 18 Décembre 2014

Jury :

Directeur de thèse M. Guillaume URVOY-KELLER Professeur, UNS, France

Co-directeur M. Denis COLLANGE Orange Labs, France

M. Dino LOPEZ-PACHECO UNS,France

Rapporteur et Président M. André-Luc BEYLOT ENSEEIHT, France

Rapporteur M. Martin HEUSSE ENSIMAG, France

Examinateur M. Matti SIEKKINEN Aalto University, Finland

Abstract

Cloud computing enables a flexible access to computation and storage services. This

requires, for the cloud service provider, mastering network and system issues. During

this PhD thesis, we focused on the performance of TCP Cubic, which is the default

version of TCP in Linux and thus widely used in today’s data centers.

Cloud environments feature low bandwidth-delay products (BPD) in the case of intra

data center communications and high BDP in the case of inter data center communica-

tions. We have developed analytical models to study the performance of a TCP Cubic

connection in isolation or a set of competing TCP Cubic connections. Our models turn

out to be precise in the low BDP case but fail at capturing the synchronization of losses

that NS-2 simulations reveal in the high BDP case.

We have complemented our simulations studies with tests in real environments: (i)

an experimental network at I3S and (ii) a cloud solution available internally at Orange:

Cube.

Studies performed in Cube have highlighted the high correlation that might exist

between network and system performance and the complexity to analyze the performance

of applications in a cloud context.

Studies in the controlled environment of I3S have confirmed the existence of synchro-

nization and enabled us to identify its condition of appearance. We further investigated

two types of solution to combat synchronization: client level solutions that entail mod-

ifications of TCP and network level solutions based on queue management solutions, in

particular PIE and Codel.

Résumé

Le cloud computing permet d’offrir un accès à la demande à des ressources de calcul

et de stockage. Le succès du cloud computing nécessite la matrise d’aspects système et

réseau. Dans cette thèse, nous nous sommes intéressés aux performances du protocole

TCP Cubic, qui est la version par défaut de TCP sous Linux et donc présent dans de

nombreux serveurs opérationnels dans les data centers actuels.

Afin de comprendre les performances d’un environnement cloud, qui offre un faible

produit bande passante-délai pour le cas intra-data center, et un fort produit dans le

cas inter-data center, nous avons développé des modèles analytiques pour les cas d’une

ou plusieurs connexions TCP Cubic. Nos modèles se sont révélés précis dans le cas

intra-datacenter, mais ne capturaient pas la synchronisation des pertes indiquée par les

simulations NS-2 dans le cas inter-datacenter.

Nous avons complété les simulations par des tests en environnements réels avec (i)

un réseau expérimental à l’I3S ; et (ii) une solution cloud interne à Orange : Cube.

Les études dans Cube nous ont démontré la forte corrélation qui pouvait exister

entre performances réseau et système, et la complexité d’analyser les performances des

applications dans des contextes cloud.

Les études dans l’environnement I3S ont confirmé la forte synchronisation qui peut ex-

ister entre connexions TCP Cubic et nous ont permis de définir les conditions d’apparition

de cette synchronisation. Nous avons étudié deux types de solution pour lutter contre

la synchronisation: des solutions niveau client, avec des modifications de TCP Cubic,

et des solutions réseau avec l’utilisation de politiques de gestion de tampon, notamment

PIE et Codel.

Acknowledgments

I express my gratitude to Prof. Guillaume Urvoy-Keller, for the time he spent with

me, for particularly enriching scientific exchanges, to the great cultural discussions, for

his support and sympathy. I also thank Dr. Dino Lopez-Pacheco with whom I took a

real pleasure to work with.

My thanks to Dr. Denis Collange for our daily trading during these three years, his

involvement, his wise and decisive in times of doubt advices.

A special thank to Dr. Lucile Sassatelli for her advices, help and excellent knowledge

on Mean-field theory.

I want to thank the members of my jury for agreeing to evaluate this thesis, including

M. André-Luc Beylot, M. Martin Heusse, and M. Matti Siekkinen. Their skills and

generosity have contributed to improving the manuscript.

I do not forget to thank my friends: Mariem, Hajer, Ameni, Olfa, Youssef, Neetya,

Imen, Wafa, Bryan, with whom I spent unforgettable moments.

A big thanks, I address to my dear family who trusted me, and always encouraged

me, and this has been my unwavering support during these three years.

Finally, I extend heartfelt thanks to my Love Zouhir, for his continued and unfailing

love, support and understanding that makes the completion of this thesis possible.

v

Contents

Abstract iii

Résumé iv

Acknowledgments v

List of Figures xi

List of Tables xv

Acronyms xvii

Introduction 2

1 State of the art 7

1.1 Introduction . 7

1.2 Performance of data centers . 7

1.2.1 Data Analysis . 7

1.2.2 Scalable Network-Application Profiler (SNAP) 8

1.2.3 Comparing Public Cloud Providers (CloudCmp) 9

1.2.4 The Incast Collapse problem . 9

1.2.5 Virtualization in cloud environments 10

1.3 TCP and congestion control . 11

1.3.1 A Protocol for Packet Network Intercommunication 11

1.3.2 Congestion problem . 12

1.3.3 Congestion control for TCP . 13

1.4 Other congestion control strategies . 14

1.4.1 Buffer sizing . 14

1.4.2 Active Queue Management mechanisms 15

1.4.3 Multipath TCP . 16

1.4.4 Transport protocol at the application layer 16

1.4.4.1 SPDY . 16

1.4.4.2 QUIC . 17

1.4.4.3 HTTP2.0 . 17

1.4.4.4 Aspera FASP . 17

vii

Contents viii

1.5 TCP Cubic evaluation : models, simulations and experiments 18

1.5.1 Evaluation through analytical models and simulations 18

1.5.2 Evaluation through experiments 20

1.6 Analytical models: Mean-field approach 21

1.7 Conclusion . 21

2 Analyzing a Single TCP Cubic flow 23

2.1 Introduction . 23

2.2 Background on TCP Cubic . 23

2.2.1 Window variation in TCP Cubic 23

2.2.2 TCP Cubic mode of operation . 25

2.3 TCP Cubic model . 26

2.3.1 Dynamical Analysis . 28

2.3.1.1 Different Phases of TCP Cubic 28

2.3.1.2 Combining Multiple Phases 31

2.3.2 RTT Analysis . 32

2.3.2.1 The upper bound for R(t) 32

2.3.2.2 The lower bound for R(t) 33

2.4 Numerical results . 34

2.4.1 Algorithm versus simulation . 34

2.4.1.1 Fast Convergence . 34

2.4.1.2 Delayed Acknowledgments 35

2.4.1.3 Entire packet . 36

2.4.2 Validation . 37

2.4.2.1 ADSL scenario . 37

2.4.2.2 FTTH scenarios . 38

2.5 Conclusion . 39

3 Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 40

3.1 Introduction . 40

3.2 Background . 40

3.2.1 TCP Cubic . 40

3.2.2 Mean-field models . 41

3.3 Performance analysis of TCP Cubic . 42

3.3.1 A fluid model for TCP Cubic . 42

3.3.2 Decreasing the computational intensity of the model 44

3.4 Numerical validation . 46

3.4.1 Network scenarios . 47

3.4.2 FTTH and intra-DC scenarios . 48

3.4.3 Inter-DC scenario . 48

3.4.4 FTTH scenario with New Reno . 50

3.5 Study of fairness and the impact of the buffer size 51

3.5.1 Fairness analysis . 52

3.5.2 Impact of the buffer size . 54

3.6 Conclusion . 54

Contents ix

4 Performance Analysis of Orange cloud solution: Cube 56

4.1 Introduction . 56

4.2 Cube Beta Infrastructure as a Service (IaaS) 56

4.2.1 Cube environment . 57

4.2.1.1 Sandbox Environment . 57

4.2.1.2 Service Description . 57

4.2.2 Orange Group Architecture . 58

4.3 Disk Benchmarking . 60

4.3.1 Motivation . 60

4.3.2 Reading and Writing from disks and through file systems 61

4.3.3 Results on Cube experiments . 63

4.3.3.1 I/O requirements: back of the envelope computation . . . 63

4.3.3.2 Cube instances and SND6 performance 64

4.3.4 Results obtained with the I3S testbed 67

4.3.4.1 Native performance . 68

4.3.4.2 Performance under Xen and VMware 68

4.3.4.3 Impact of block size . 69

4.4 Network Benchmarking . 71

4.4.1 Description of the tools: Iperf, Perl-data and Perl-file, and the
trace analysis tools . 71

4.4.1.1 Iperf . 71

4.4.1.2 Perl Socket . 72

4.4.1.3 Sniffing/analyzing tools 73

4.4.2 Methodology . 74

4.4.3 Sophia to Cube . 74

4.4.3.1 Calibration of Iperf . 74

4.4.3.2 Measurement results . 75

4.4.4 Cube to Sophia . 78

4.4.4.1 Silence during transfers 78

4.4.4.2 Measurement results for several transfers in parallel . . . 82

4.4.5 Conclusion . 85

5 Synchronization of TCP Cubic connections 86

5.1 Introduction . 86

5.2 Motivating examples . 86

5.3 Experimental set-up . 88

5.3.1 Testbed . 88

5.3.2 Scenarios . 88

5.4 Experimental results of cloud scenarios . 89

5.4.1 Cloud center scenarios . 89

5.4.2 Synchronization vs. background traffic 92

5.4.3 The impact of Fast Convergence 93

5.5 Root cause of synchronization . 94

5.5.1 Behavior of TCP Cubic around the equilibrium point 95

5.5.2 Tracking of cubic function in the actual implementation of TCP
Cubic . 97

5.5.3 Competition around the equilibrium point 97

Contents x

5.5.4 Discussion . 98

5.6 Alleviating Synchronization . 100

5.7 Conclusion . 103

6 Impact of queue management mechanisms on synchronization 104

6.1 Introduction . 104

6.2 Active Queue Management Mechanisms 104

6.2.1 RED . 105

6.2.2 ARED . 106

6.2.3 CoDel . 107

6.2.4 PIE . 108

6.3 Bibliographical comparison of AQMs . 109

6.4 Simulation results . 111

6.4.1 Target Delay . 112

6.4.2 Interval Time . 113

6.4.3 Base RTT . 114

6.5 Experimental results . 115

6.5.1 Experimental setup . 115

6.5.2 Ros comparison . 116

6.5.3 Experiments: Synchronization vs. AQMs 118

6.5.4 Combining LinCubic and AccuCubic with AQMs 120

6.5.5 Parameter Sensitivity . 122

6.6 Conclusion . 123

Conclusions and perspectives 124

A Computing parameters for a single TCP Cubic flow model 127

A.1 Transitions between states . 127

A.1.1 State (A), TCP mode, Q(t)=0 . 127

A.1.2 State (B), Cubic mode, Q(t)=0 . 128

A.1.3 State (C),TCP mode, Q(t)>0 . 129

A.1.4 State (D), Cubic mode, Q(t)>0 . 129

A.2 Sequence number . 130

A.3 Quality of Service metrics . 131

B Résumé de la thèse 133

B.1 Introduction . 133

B.1.1 Résumé par chapitre . 138

B.1.2 Chapitre 1 : État de l’art . 138

Bibliography 144

List of Figures

1.1 Congestion avoidance (AIMD) [ATRK10] 13

1.2 Effective TCP load versus offered load from TCP senders [ATRK10] . . . 13

2.1 TCP Cubic window growth function [HRX08] 23

2.2 Congestion window growth of TCP Cubic in Cubic and TCP modes. . . . 26

2.3 Model for a single TCP connection . 27

2.4 Transition diagram . 29

2.5 Trace of the sequence and acknowledgment numbers when there is no loss
[Col98] . 32

2.6 Fast Convergence phenomenon, C = 100Mbps, τ = 50ms, B=50 packets . 35

2.7 Delayed Acknowledgments phenomenon, C = 200Mbps, τ = 10ms, B=50
packets . 36

2.8 Entire packet phenomenon, C = 200Mbps, τ = 10ms, B=50 packets . . . 37

2.9 Time series of the window, ADSL, C = 10Mbps 37

2.10 Time series of the window, FTTH, C = 100Mbps 38

2.11 Time series of the window, FTTH, C = 200Mbps 38

2.12 Time series of the window, FTTH, C = 300Mbps 38

2.13 Time series of the window, FTTH, C = 400Mbps 38

3.1 The elapsed time until the last loss sloss(t) 44

3.2 Connections arriving in and leaving state < w,wmax > in the time interval
[t, t+ dt[. 44

3.3 Scaling factor α for New Reno . 46

3.4 Network scenario indicating the N flows, buffer and servicing link 47

3.5 Time series of queue size and average window size - FTTH scenario - TCP
Cubic . 48

3.6 Time series of queue size and average window size - Intra-DC scenario -
TCP Cubic . 49

3.7 Congestion window - FTTH scenario - TCP Cubic 49

3.8 Congestion window - Intra-DC scenario - TCP Cubic 49

3.9 Time series of queue size and average window size - Inter-DC scenario -
TCP Cubic . 50

3.10 Congestion window - Inter-DC scenario - TCP Cubic 51

3.11 Time series of utilization - FTTH scenario - New Reno 51

3.12 Congestion window - Intra-DC and FTTH - TCP Cubic and New Reno . 53

3.13 CoV of congestion window - Intra-DC and FTTH - TCP Cubic and New
Reno . 53

3.14 Utilization - Intra-DC and FTTH - TCP Cubic and New Reno 53

xi

List of Figures xii

3.15 Impact of buffer size - Intra-DC - TCP Cubic 54

3.16 Impact of buffer size - Intra-DC - New Reno 55

4.1 GIN Network and Platforms Relationships 58

4.2 Cube Platforms, GIN & Countries Connections 59

4.3 Sophia/Cube machines . 59

4.4 Writing speed, dd-tcpdump, small Linux VM in Cube 63

4.5 Reading speed without disk access (MB/s), Linux VMs in Cube 64

4.6 Reading speed with disk access(KB/s), Linux VMs in Cube 64

4.7 Disk performance using dd without conv option, small Linux VM in Cube,
Reading speed (GB/s) . 65

4.8 Disk performance using dd with conv option, small Linux VMs in Cube . 65

4.9 Disk performance using dd with conv option, medium Linux VMs in Cube 65

4.10 hdparm, Reading speed without disk access (KB/s), Windows VM in Cube 66

4.11 hdparm, Reading speed with disk access (KB/s), Windows VM in Cube . 66

4.12 Reading speed without disk access (MB/s), SND6/SDIP 67

4.13 Reading speed with disk access (MB/s), SND6/SDIP 67

4.14 Reading/Writing Speed (MB/s), Vsignet1 machine 68

4.15 Reading/Writing Speed (MB/s), Vsignet2 machine 68

4.16 dd write (MB/s), the three OS . 68

4.17 dd read (MB/s), the three OS . 68

4.18 dd raw (MB/s), the three OS . 69

4.19 hdparm with disk access(MB/s), the three OS 69

4.20 Disk performance using dd, different block sizes, writing speed (MB/s),
Vsignet . 69

4.21 Disk performance using dd, different block sizes, reading speed (MB/s),
Vsignet2 . 69

4.22 Disk performance using dd, reading speed from the raw device, Vsignet2 . 70

4.23 Disk performance (MB/s), one VM in Vsignet1, 128 1M blocks 70

4.24 Disk performance (MB/s), one VM in Vsignet1, 2000 64KB blocks 70

4.25 CDF Throughput(Mbps), Iperf l=8, 16, 32K bytes 75

4.26 Congestion window, Iperf Sophia to Cube, w = 40 k bytes 75

4.27 Congestion window (Kbytes), from Sophia to Cube, Iperf, Perl-File/Data 76

4.28 CDFs of congestion window from Sophia to Cube, Iperf, Perl-File/Data . 76

4.29 Throughput(Mbps), from Sophia to Cube, Iperf, Perl-File/Data 77

4.30 CDFs of throughput, from Sophia to Cube, Iperf, Perl-File/Data 77

4.31 Results from Sophia to Cube, CDFs of RTTs of the 10 tests 77

4.32 Congestion window(Kbytes), from Cube to Sophia, Iperf, Perl-File/Data . 78

4.33 CDFs of congestion window, from Cube to Sophia, Iperf, Perl-File/Data . 78

4.34 Throughput(Mbps), from Cube to Sophia, Iperf, Perl-File and Perl-Data . 79

4.35 CDFs of throughput(Mbps), Perl-Iperf, from Cube to Sophia 79

4.36 CDFs of RTTs (ms), Perl-Iperf, Cube to Sophia 80

4.37 Average throughput per flow (Mbps), Perl-Data, Parallel flows from Cube
to Sophia . 80

4.38 Average throughput per flow (Mbps), Perl-Data, 1 flow from Cube to
Sophia . 81

List of Figures xiii

4.39 Average throughput per flow (Mbps), Perl-Data, 1 among 10 flows Cube
to Sophia . 82

4.40 Time sequence graph, Perl-Data, 1 among 10 flows from Cube to Sophia . 82

4.41 Average throughput per flow (Mbps), Perl-Data, 1 among 17 flows from
Cube to Sophia . 83

4.42 Time sequence graph, Perl-Data, 1 among 17 flows from Cube to Sophia . 83

4.43 Average throughput per flow (Mbps), Perl-Data, 1 among 100 flow from
Cube to Sophia . 83

4.44 Time sequence graph, Perl-Data, 1 among 100 flow from Cube to Sophia . 83

4.45 CDFs of throughputs (Mbps), 1 flow . 84

4.46 CDFs of throughputs (Mbps), 10 flows among 50 84

4.47 CDFs of throughputs (Mbps), 10 flows among 100 parallel flows 84

4.48 Box plot throughputs (Mbps), {1, 10, 100, 200, 300} parallel flows 84

4.49 Box plot loss, {1, 10, 100, 200, 300} parallel flows 85

5.1 Total window size (NS-2): 10 TCP Cubic flows,sharing a common bottleneck 87

5.2 10 TCP Cubic transfers between France (I3S lab) and Amazon EC2 data
center of Oregon . 87

5.3 Experimental network setup . 88

5.4 Total window size (packets) . 90

5.5 Number of synchronized flow and lost packets at each congestion epoch,
TCP Cubic . 90

5.6 Number of synchronized flow and lost packets at each congestion epoch,
New Reno . 90

5.7 Total window size (packets) . 91

5.8 Number of synchronized flow and lost packets at each congestion epoch,
TCP Cubic, BS = 1000 packets . 91

5.9 Number of synchronized flow and lost packets at each congestion epoch,
New Reno, BS = 1000 packets . 91

5.10 Number of synchronized flow and lost packets at each congestion epoch,
Cubic, BS = 0.6 BDP . 92

5.11 Number of synchronized flow and lost packets at each congestion epoch,
New Reno, BS = 0.6 BDP . 92

5.12 Time series of window size (packets) with and without background traffic,
BS= 1 BDP . 93

5.13 Time series of total window size (packets) with and without FC, BS= 1
BDP . 94

5.14 Target Evolution . 95

5.15 Converge properties of the optimal congestion window (BDP +BS = 80). 96

5.16 More real Cubic congestion window evolution. 97

5.17 TCP Cubic leading to high synchronization 98

5.18 Intra data center transfers - 10 flows, individual Congestion Window, 10
flows . 99

5.19 Intra data center transfers - 10 flows, aggregate Congestion Window . . . 99

5.20 Individual Congestion Window, Intra data center transfers - 100 flows . . 100

5.21 NS-2 Simulations - A single flow, With FC 101

5.22 NS-2 Simulations - A single flow, Without FC 101

5.23 NS-2 Simulations -100 flows, RTT=500ms, With FC 102

List of Figures xiv

5.24 NS-2 Simulations -100 flows, RTT=500ms, Without FC 102

6.1 RED: drop probability function [HR09] 106

6.2 Simplified RED Algorithm Behavior [ed14] 106

6.3 Simplified CoDel Algorithm Behavior [Whi13] 107

6.4 Structure of the network . 111

6.5 RTT, NS-2 simulation results . 113

6.6 Goodput(Mbps), testbed experimental results 113

6.7 RTT (ms), Codel NS-2 simulation results 113

6.8 Goodput (Mbps), Codel NS-2 simulation results 113

6.9 RTT (ms), PIE NS-2 simulation results 114

6.10 Goodput (Mbps), PIE NS-2 simulation results 114

6.11 Queuing delay (ms), NS-2 simulation results 115

6.12 Goodput (Mbps), NS-2 simulation results 115

6.13 Experimental network setup . 116

6.14 RTT(ms), 10Mbps, RTT=100ms, BS=1000 packets 117

6.15 Goodput(Mbps) , 10Mbps, RTT=100ms, BS=1000 packets 117

6.16 Cwnd(packets), 100Mbps, RTT=350ms, BS=1BDP 118

6.17 CDFs of the congestion window, 100Mbps, RTT=350ms, BS=1BDP . . . 118

6.18 Buffer(packets) , 100Mbps, RTT=350ms, BS=1BDP 119

6.19 Goodput(Mbps), 100Mbps, RTT=350ms, BS=1BDP 119

6.20 Number of synchronized flows, 100Mbps, RTT=350ms, BS=1BDP 119

6.21 CDFs of the synchronized flows, 100Mbps, RTT=350ms, BS=1BDP . . . 119

6.22 Cwnd (packets), TCP New Reno 100Mbps, RTT=350ms, BS=1BDP . . . 120

6.23 Goodput(Mbps), TCP New Reno 100Mbps, RTT=350ms, BS=1BDP . . 120

6.24 Number of synchronized flows, TCP New Reno 100Mbps, RTT=350ms,
BS=1BDP . 120

6.25 Cwnd(packets), Codel, 100Mbps, RTT=350ms, BS=1BDP 121

6.26 Cwnd(packets) , PIE, 100Mbps, RTT=350ms, BS=1BDP 121

6.27 Cwnd(packets) , ARED, 100Mbps, RTT=350ms, BS=1BDP 121

6.28 RTT (ms) - 100Mbps, 350ms - Cubic . 122

6.29 Goodput (Mbps)- 100Mbps, 350ms - Cubic 122

6.30 RTT (ms) - 100Mbps, 350ms - Codel . 122

6.31 Goodput (Mbps)- 100Mbps, 350ms - Codel 122

6.32 RTT (ms) - 100Mbps, 350ms - PIE . 123

6.33 Goodput (Mbps)- 100Mbps, 350ms - PIE 123

B.1 Time series of the window, FTTH, C = 100Mbps 140

B.2 Time series of queue size and average window size - FTTH scenario - Cubic141

B.3 Ns2 Simulations -100 flows, RTT=500ms, With FC 143

B.4 Number of synchronized flows, 100Mbps, RTT=350ms, BS=1BDP 143

List of Tables

2.1 Notations for the system model . 27

2.2 State transitions and corresponding events 29

2.3 Window size at time t W(t) . 30

2.4 Window size when moving between states 30

2.5 The sojourn time since the beginning of the cycle until completion of the
state . 30

2.6 The number of packet sent during a transition 31

4.1 Characteristics of the Cube machines . 59

5.1 Cloud clients scenario . 89

5.2 Intra-DC scenario . 90

5.3 Inter-DC scenario . 92

6.1 Default parameter values . 112

xv

Acronyms

ACK Acknowledgment

ADSL Asymmetric Digital Subscriber Line

AIMD Additive Increase Multiplicative Decrease

API Application Programming Interface

AQM Active Queue Management

ARED Adaptive Random Early Discard

ASCII American Standard Code for Information Interchange

BDP Bandwidth Delay Product

CDF Cumulative Distribution Function

CPU Central Processing Unit

CoDel Controlled Delay

CoV Coefficient of Variation

DC Data Center

EBCDIC Extended Binary Coded Decimal Interchange Code

EC2 Elastic Compute Cloud

ECN Explicit Congestion Notification

FC Fast Convergence

FIFO First In First Out

FT France Telecom

GIN Group Intranet Network

HTTP HyperText Transfer Protocol

I3S Informatique, Signaux et Systémes

IaaS Infrastructure as a Service

IETF Internet Engineering Task Force

IP Internet Protocol

I/O Input/Ouput

xvii

MSS Maximum Segment Size

NS-2 Network Simulator version 2

ODE Ordinary Differential Equation

OLNC Orange Labs Networks and Carriers

OS Operating System

PDV Packet Delay Variation

PIE Proportional Integral controller Enhanced

QUIC Quick UDP Internet Connections

RAM Random Accsess Memory

RDP Remote Desktop Protocol

RED Random Early Discard

RTT Round-Trip Time

SSH Secure Shell

TCP Transmission Control Protocol

UDP User Datagram Protocol

US United States

VM Virtual Machine

I dedicate this THESIS to my family and my Love,

for their encouragement, their support,

their patience and their love.

Introduction

Context and Motivation

Transmission Control Protocol (TCP) [CK05] is the main protocol for exchange of

data in Internet Protocol (IP) network. TCP is involved especially in Web page down-

load, HTTP streaming and peer to peer traffic, which together account for a large volume

of transfers on the Internet. According to [JD04], more than 90% of the Internet traffic

is handled by the TCP protocol. Therefore, if one wants to assess the Quality of Service

(QoS) perceived by the cloud services customers, it is mandatory to study the perfor-

mance, stability and robustness of TCP in Data Center networks.

To meet the changing requirements of Internet networks, various strategies for con-

gestion control in TCP have been designed. Among them we can mention, Bic-TCP

[XHR04a], TCP Cubic [HRX08] and Compound TCP [TSZS06]. Bic-TCP and TCP

Cubic are designed specifically for high bandwidth delay products (BDP) links.

TCP Cubic is implemented and used by default in the Linux kernel since version

2.6.19, and it is the most widely used version of TCP nowadays [YLX+11]. It is char-

acterized by a cubic window growth function. The purpose of TCP Cubic is to achieve

fair bandwidth allocation among flows with different RTTs using a window growth rate

independent of the RTT. Instead, it uses a function of the time elapsed since the last

loss event. When it does not operate in a high-bandwidth product environments, TCP

Cubic features a TCP mode that mimics legacy TCP (TCP New Reno [PFTK00]) but

is not identical to it.

The kind of networks for which TCP Cubic (and other high-speed TCP flavors) has

been designed calls for analytical models to predict performance in general cases and

study the impact of various parameters. Indeed, using experimental testbeds does not

usually provide enough flexibility to explore a wide range of parameter values.

Massive data transfers are common in typical cloud scenarios, either within the data

center itself or between the data center and the customer premise. In such a scenario,

the transport layer, namely TCP, is put under pressure and might suffer performance

2

Introduction 3

problem, e.g., the TCP incast problem which is observed when a large number of storage

devices simultaneously send data chunks to a single machine leading to congestion at

the switch servicing the machine [VPS+09a].

Cloud environments are characterized by plenty of bandwidth. Modern versions of

TCP such as TCP Cubic, are designed to work efficiently in such situations as they

are able to probe for available bandwidth in a non linear fashion, unlike TCP New

Reno, which inflates its windows by one MSS per RTT in stationary regime. However,

there is a price to pay for being more aggressive: the fairness offered by TCP Cubic

and other high speed versions of TCP is not as high as legacy TCP versions [LLS07].

Several studies also pointed out the appearance of synchronization among competing

TCP Cubic flows [HR08]. The latter means that TCP Cubic flows, when competing for

a bottleneck, tend to loose packets at the same time instant and the resulting aggre-

gated throughput time series exhibit a clear Cubic behavior as if a single flow was active.

Some studies have linked the synchronization problem with the buffer sizing issue.

Buffer sizing is a key aspect for both router design and network performance. After 20

years of intense activity in the study of “buffer sizing”, no proposal seems completely

satisfactory. The empirical rule of the Bandwidth Delay Product (BDP) is still widely

used as it optimizes the load of the output link of a router. However, it does not guaran-

tee neither the loss rate nor the delay experienced by packets. Under certain conditions

of traffic, a buffer size equal to the BDP can lead to performance problems essentially

a very large time (i.e., the phenomenon of “bufferbloat”). Therefore, the scientific com-

munity has focused on the study of active mechanisms in the buffer in order to answer

the original question in the context of buffer sizing. Among these, there are proposals of

adaptive buffer and more frequently today Active Queue Management (AQM) mecha-

nisms in order to ensure a quality of service to individual flows. Random early detection

RED [FJ93a] is one of the early AQM disciplines. Given that it needs careful tuning

of its parameters for various network conditions, most network operators do not turn

RED on [Ada13]. The adaptive RED or active RED (ARED) algorithm [FGS01] infers

whether to make RED more or less aggressive based on the observation of the average

queue length. Recently, two new AQMs Codel [NJ12b] [NJ12a] and PIE [RPC+13] have

been proposed to control the latency in order to address bufferbloat problem.

In general, our work aim to study the performance of TCP Cubic, widely used in

today’s data centers, in cloud environment.

Introduction 4

Outline and Contributions

In Chapter 1, we review the basic concepts and motivations of works related to this

thesis. First, we present research efforts to analyze performance and failures in a data

center networks. Several research works have been done to: (i) explore the nature of

traffic in data centers; (ii) identify and resolve performance problems; and (iii) pro-

pose comparator of the performance and cost of cloud providers. Then, we review in

details TCP, the dominant transport protocol in cloud networks, and studies related

to congestion control, buffer sizing and active queue management (AQM) mechanisms.

Furthermore, we review studies that established a performance evaluation of TCP Cu-

bic, through simulations and experiments. Finally, we present analytical models for TCP.

In Chapter 2, we first present a detailed overview of TCP Cubic algorithm, then

we describe the analytical model that we have developed to study the performance of

an isolated long-lived TCP Cubic flow. Through this model, we reveal the differences

between the published TCP Cubic specifications and its implementation in NS-2. The

model was validated by comparison with NS-2 simulations.

In Chapter 3, we aim at developing an analytical model for TCP Cubic to analyze its

performance in typical cloud scenarios where a large number of long-lived TCP connec-

tions, e.g., HTTP streaming or back-up flows, share a bottleneck link. Specifically, we

consider three scenarios: (i) an intra data-center (DC) scenario with a lot of ongoing traf-

fic between physical servers (intra-DC scenario); (ii) an inter data-center scenario where

highly provisioned links are used to synchronize or back up data (inter DC scenario);

and (iii) a content distribution scenario where a large number of high speed clients, e.g.,

FTTH clients, simultaneously download content from the data center (FTTH scenario).

Our contributions are twofold:

• Based on a mean-field approximation, we derive a fluid model for TCP Cubic,

that allows to predict performance in terms of several metrics. We additionally

prove a scaling property of the fluid model, that allows to use it in a variety of

networking scenarios without prohibitive computational cost. We carefully validate

this analytical model against NS-2 simulations for our cloud scenarios.

• We provide an extensive comparison of TCP Cubic and New Reno for cloud sce-

narios, assessing their efficiency/fairness trade-off as well as the impact of the

buffer size on their performance. In particular, we demonstrate that TCP Cubic

outperforms TCP New Reno, even for cases where the BDP is low, which are often

encountered in cloud scenarios. This is interesting as TCP Cubic is mostly known

Introduction 5

for its behavior on high BDP paths ; not on low BDP paths.

In Chapter 4, we study the performance of TCP in real networks using two testbeds.

The first testbed, called “Cube”, is an experimental network used by Orange Lab in

order to test new services provided by the France Telecom (FT) company. The second

testbed consists of a few Linux machines in I3S Lab that can be booted either under

a native CentOS operating system or under VMware or Xen. This chapter comprises

two separate parts. In the first part, we present results obtained with benchmarking

tools for disk read and write operations. We use both the dd [Ubua] and hdparm [Ubub]

tools.

In the second part of Chapter 4, we report on the network measurements performed

from Cube machines. We generate traffic from or to one Cube machine to one host

located in Orange Labs in Sophia. Next, we report the measurements in the Sophia to

Cube and then on the Cube to Sophia direction. When increasing the number of par-

allel flows from Cube to Sophia, we encountered some factors limiting the performance

of these transfers: (i) the disk access; (ii) the virtualization layer; and (iii) a shaper.

The engineering issue in this chapter was an opportunity for us as it allowed us to rec-

ognize the interaction between the system and network issues in a typical cloud solution.

In Chapter 5, we investigate the issue of synchronization among TCP Cubic sources in

detail. We study the extent and the root causes of synchronization using an experimental

approach with a testbed hosted in I3S Lab combined with simulations. The former

enables to experiment with actual protocol implementation in a controlled environment,

while the latter permits to explore a wider set of network scenarios.

Our contribution to the study of the synchronization of TCP Cubic are as follows:

• We experimentally establish the relation between the existence and extent of syn-

chronization with key parameters like RTT and buffer size. We demonstrate the

resilience of synchronization to background traffic, and how the Fast Convergence

option, which aims at making TCP Cubic more fair to fresh connections, catalyzes

synchronization. For this point and the subsequent ones, we use New Reno as a

reference point.

• We demonstrate that several factors contribute to the appearance of synchroniza-

tion in TCP Cubic: (i) the rate of growth of the congestion window when a TCP

Cubic source reaches the capacity of the network and its relation to the RTT of

the connection; (ii) the way the congestion algorithm of TCP Cubic tracks the

ideal cubic curve in the kernel; and (iii) the competition among the TCP Cubic

sources and the aggressiveness of the sources that did not experience losses during

the last loss episode.

Introduction 6

• We propose and evaluate two approaches to reduce the level of synchronization and

hence the loss rate of TCP Cubic transfers. Perhaps more importantly, we provide

hints that synchronization is the price to pay to have a high-speed TCP version

that needs to explore the available bandwidth in the network in a super-linear

manner. It is probable that we can alleviate synchronization, as our modifications

of TCP Cubic do, but eliminating it out completely will be a complex task.

In Chapter 6, we evaluate the potential impact of the queue management algorithms

(i.e., CoDel [NJ12b] [NJ12a], PIE [RPC+13], and ARED [FGS01]) on synchronization.

Also, we explore how the two approaches that we proposed in Chapter 5 can be combined

with advanced queuing mechanisms to further reduce synchronization. We show that

through the use of active queue management (AQM) mechanisms we may have smaller

delays and reduce synchronization between flows, but there is a price to pay: a higher

packet loss and goodput degradation. Compared to our approaches, the use of AQMs

for reducing synchronization was more efficient.

Finally, the contents of this thesis are summarized and perspectives are provided in

Chapter 7.

Chapter 1

State of the art

1.1 Introduction

In this chapter, we present the research efforts related to the different parts of the

thesis. We revisit the most important related works and we highlight problems faced

when we revisited TCP performance in a cloud environment. We also provide a high

level overview of the challenges we address in this work.

1.2 Performance of data centers

In the context of this thesis, we aim at investigating some of the performance problems

raised by cloud computing architectures. Those problems are related to several elements:

• Computational/storage facility that generally consists of a bunch of high end

servers that are heavily virtualized.

• Interconnection network within the datacenter that connect the physical servers

to the Internet gateways (of the datacenter) with whom clients interfer.

• The paths between the gateway and the end users that is not under the control

of the entity which runs the cloud computing service, but is the major source of

delay and can constitute the bottleneck of the overall system.

Through a set of techniques and methods researchers can extract useful information

concerning the path taken by a transfer and the components involved, then by applying

data analysis they can overcome limitations of each variable (i.e., device, link), and draw

conclusions that lead to actions.

1.2.1 Data Analysis

[GJN11] presents the first large-scale analysis of network failure events in several of

Microsoft’s data centers, that was conducted by a team from the University of Toronto

7

Chapter 1. State of the art 8

and Microsoft Research. In this study, the authors focus on characterizing failures

of network links and devices, estimating their impact, and analyzing the effectiveness

of network redundancy in masking failures. They developed a methodology that cor-

relates network traffic logs with logs of actionable events, to filter a large volume of

non-impacting failures due to spurious notifications and errors in logging software. The

authors want to leverage lessons learned from this study to guide the design of future

data center networks.

Nowadays, data centers house a large number of inter-connected servers. It is thus

necessary to explore how to better design and manage the data center networks. Existing

proposals collect the flow traces by deploying additional modules on either switches or

servers in small scale data center networks. In [KSG+09], the authors investigate the

nature of data center network traffic on a single MapReduce data center and investigate

whether traffic matrices can be inferred from link counters by tomographic methods.

They capture several characteristics of traffic flows within data center networks (i.e., the

real traffic characteristics): which server is talking to which other servers, when and for

what reasons, the flow durations, the inter-arrival times.

1.2.2 Scalable Network-Application Profiler (SNAP)

In [YGM+11], the authors present SNAP, a scalable network-application profiler that

guides developers to identify and resolve performance problems. They aim to reduce

the demand for developer time by automatically identifying performance issues and

narrowing them down to specific times and places (e.g., send buffer, delayed ACK, or

network congestion).

The SNAP’s features are :

• It has full knowledge of the network topology, and the mapping of applications to

servers. This allows it to identify applications with frequent problems, as well as

congested resources that affect multiple applications.

• It can instrument the network stack to observe the evolution of TCP connections

directly, rather than trying to infer TCP behavior from packet traces.

• It can collect finer-grain information, compared to conventional SNMP statistics,

without resorting to packet monitoring.

SNAP collects TCP statistics and socket-level logs in real time, classifies and cor-

relates the data to pinpoint performance problems. The profiler quickly identifies the

right location (end host, link, or switch), the right layer (application, network stack, or

network), at the right time.

Chapter 1. State of the art 9

To validate the design of SNAP, the authors take two approaches: they inject a few

known problems in the production data center and check if SNAP correctly catches

these problems (SNAP correctly pinpointed all the labeled problems), or they evaluate

the accuracy of identifying delayed ACK in SNAP by comparing its results with the

packet trace.

1.2.3 Comparing Public Cloud Providers (CloudCmp)

In [LYKZ10], the authors present CloudCmp, a comparator of the performance and

cost of cloud providers. They apply CloudCmp to the four most known cloud providers

today, and they show that it can guide customers in selecting the best-performing

provider for their applications.

CloudCmp measures the elastic computing, persistent storage, and networking ser-

vices offered by a cloud along metrics that directly reflect their impact on the perfor-

mance of customer applications.

The authors use three indicators to compare the performance of the compute clusters:

benchmark finishing time, cost per benchmark, and scaling latency. These quantities

reflect how quickly an instance can run, how profitable it is, and how quickly it can

scale.

CloudCmp compares the performance and cost of cloud providers along dimensions

that matter to customers. The authors consider three types of metrics :

• Computation metrics : The authors modified a set of Java-based benchmark tasks,

a standard benchmark suite for Java virtual machines.

• Storage metrics: The authors wrote their Java-based client based on the reference

implementations from the providers.

• Network metrics: standard tools (Iperf and ping) .

From the comparison results, the authors find that the performance and price of the

four providers vary significantly with no one provider standing out.

1.2.4 The Incast Collapse problem

With the incast problem application throughput decreases when multiple senders

communicate with a single receiver in high bandwidth, low delay networks using TCP. In

[VPS+09b], the authors present a solution to eliminate TCP incast collapse in datacenter

environment. They propose the use of high-resolution timers to enable microsecond-

granularity TCP timeouts.

The authors present and evaluate a set of system extensions to enable microsecond-

granularity retransmission timeouts (RTO). They proceeded by modifying the Linux

Chapter 1. State of the art 10

TCP implementation to use high-resolution kernel timers. They show that for both

simulation and real cluster, and for all configurations, goodput drops with increasing

RTOmin above 1ms. Through a wide-area evaluation, the authors showed that these

modifications remain safe for use in the wide-area, providing a general and effective

improvement for TCP-based cluster communication.

1.2.5 Virtualization in cloud environments

Virtualization is the new trend of modern private and public cloud solutions. Several

virtualization solutions exist on the market and rely on different principles: (1) para-

virtualization; (2) full virtualization; and (3) container-based solutions. A key point

for those solutions in a datacenter context, is the technique used to share the physical

network interfaces among the virtual machines (VMs) [TIIN10].

Whatever the solution is, one ends up in a situation where a lot of VMs share the

physical resources of the physical host. Virtualization is being used by an increasing

number of organizations to: (i) reduce power consumption and air conditioning needs;

(ii) reduce space savings resulting from decreasing the number of servers as one physical

server can host many virtual machines; and (iii) create a more efficient system adminis-

tration through a centralized and flexible management.

Virtualization also provides high availability for critical applications, streamlines ap-

plication deployment and migrations. By simplifying operations, it allows IT organiza-

tions to respond faster to quick changes in the business demands. Two examples are

Amazon EC2 1 and Windows Azure 2.

Several studies have investigated the impact of virtualization on performance in cloud

environments. In [APU12], the authors created a testbed (hosted in the I3S lab France)

and used it to evaluate three operating systems (OS) CentOS Vanilla, VMware ESX

and Xen in terms of User Datagram Protocol (UDP) performance with a brief glance

at TCP. They considered the Packet Delay Variation (PDV) as a metric to assess the

performance of these 3 OSs. Under UDP, the authors noticed better performance of

native CentOS than the virtualized machines, while the TCP performance showed that

the virtualized machines behave better than the native OS in terms of fairness between

the virtual machines.

In [WN10], the authors present a measurement study to characterize the impact of

virtualization on the networking performance of the Amazon Elastic Cloud Computing

(EC2) data center. They measure a set of properties in their experiments: the processor

sharing, packet delay, throughput and packet loss among Amazon EC2 virtual machines.

1http://aws.amazon.com/ec2/
2http://www.windowsazure.com/en-us/

Chapter 1. State of the art 11

They consider mainly Amazon EC2 small instances and high CPU medium instances.

Small instances provide a small amount of CPU resources, while medium instances offer

a balanced set of CPU resources, memory, and network 3. The authors set up 2 types of

experiments: (i) a spatial experiment to evaluate how the network performance varies

on instances at different network locations; and (ii) a temporal experiment to evaluate

how the network performance varies on a given instance over a long time period.

Experiments show an unstable network characteristics that are caused by virtualiza-

tion and processor sharing on server hosts. First, Amazon EC2 small instance virtual

machines typically receive only a 40% to 50% share of the processor. Also, processor

sharing can cause very unstable throughput among Amazon EC2 small instances. Even

though the data center network is not heavily congested, there are abnormally large

packet delay variations among Amazon EC2 instances. And, the delay variations can

be a hundred times larger than the propagation delay between two end hosts.

1.3 TCP and congestion control

1.3.1 A Protocol for Packet Network Intercommunication

The proposal of TCP laid the basis for the development of Internet. The TCP

congestion control mechanism enables the sender to adjust the transmission rate and

the congestion window size according to the network conditions. This protocol shows a

great improvement in the utilization of the network.

In [CK05], the authors provide one of many important studies on the Internet de-

velopment. In May 1974, when the paper was published, there existed many kinds of

networks, that implemented packet switching in different ways. Hence the necessity of a

common protocol to share resources among these networks (inter-networking protocol).

Cerf and Kahn [CK05] are sometimes referred to as the “fathers of the Internet”

for implementing the common protocol TCP/IP. They present a protocol design and

philosophy that supports the sharing of resources existing in different packet switching

networks.

Some fundamental tasks of the TCP protocol were described in this paper:

• GATEWAY, a network node that acts as an interface between networks.

• Mutliplexing and demultiplexing of segments among processes.

• Sequencing used for the reconstruction of messages at the TCP receiver.

• Timeout and positive acknowledgment mechanism.

3https://aws.amazon.com/ec2/instance-types/

Chapter 1. State of the art 12

• Flow control mechanism used to manage the rate of data transmission between

two nodes, and to prevent a fast sender to overwhelm a slow receiver.

1.3.2 Congestion problem

The huge growth of computer networks has produced major congestion problems.

The authors in [Jac88] speculate that much of the cause lies in transport protocol im-

plementations (not in the protocols themselves). In October 1986, the Internet had the

first of what became a series of “congestion collapses” that were caused by congestion

control in the implementation of TCP. In control system theory, this is expected since

the system in that time reaches capacity exponentially but does not reduce the input

by a comparable rate.

One key to prevent congestion collapse is to ensure that senders do not over-utilize

links at the beginning of the transmission. Thus, to solve this problem, the authors

looked for pieces of a TCP implementation that violate the conservation principle. The

packet conservation principle states that a packet should only be injected into the net-

work after one has been removed . If the network accomplishes this principle, it should

be robust in face of congestion.

They reported three ways to violate the principle : either (1) the connection does

not get to equilibrium; or (2) a sender injects a new packet before and old packet left;

or (3) the equilibrium can not be reached because of resource limits along the path. To

achieve the required equilibrium, the authors developed an algorithm that increases the

packets that a sender sends with several rules. They add a congestion window (cwnd)

for each connection at the sender, when starting or restarting after a loss, set cwnd to

one packet. On each acknowledgment the cwnd is increased by one packet, and when

sending, send the minimum of the receiver’s advertised window and cwnd.

To resolve the second problem of “Conservation at equilibrium”, the authors set a

RTT estimator.

Finally, to solve the resource limits problem, the authors developed a congestion

avoidance algorithm that decreases the cwnd to half its current value (this is the mul-

tiplicative decrease), and for each ACK for new data, increases cwnd by 1 (this is the

additive increase).

The principle of congestion avoidance (Additive Increase Multiplicative Decrease

AIMD) is illustrated in Figure 1.1. Paths x0x1, . . . , x2nx2n+1 represent the additive

increase part where both flows have the same increase rate of their congestion win-

dows. While paths x1x2, . . . , x2n+1x2n+2 represent the multiplicative decrease for which

a flow with the larger congestion window decreases more than a flow with the smaller

congestion window.

Chapter 1. State of the art 13

In the flow-control world if the offered load in an uncontrolled distributed sharing

system (e.g., road traffic) exceeds the total system capacity, the effective load will go to

zero (collapses) as load increases, see Figure 1.2.

Figure 1.1: Congestion
avoidance (AIMD)

[ATRK10]

Figure 1.2: Effective TCP load
versus offered load from TCP

senders [ATRK10]

1.3.3 Congestion control for TCP

In the last few years, through the development and evolution of the Internet, the

focus of research has changed from the fundamental problem of removing the congestion

collapse phenomenon to problems of the efficient use of network resources in variety of

environments.

In [ATRK10], the authors presented a study of different approaches to TCP conges-

tion control that do not rely on any explicit notification from the network. They focus

on a variety of problems that TCP tried to optimize.

They devoted the first part of their study to classify and to discuss proposals that

build a foundation for host-to-host congestion control principles. The first proposal is

Tahoe [Jac88], the first version of TCP with congestion control, proposed by Jacobson in

1988. Tahoe introduces the basic technique of probing progressively network resources

and relying on packet loss to detect that the network limit has been reached. Although

this technique resolves the problem of congestion collapse, it creates a great deal of inef-

ficient use of the network by straining the network with high-amplitude periodic phases.

This behavior induces periodic changes in sending rate, round-trip time, and network

buffer utilization, leading to variability in packet losses. To resolve the efficiency prob-

lem, the authors propose algorithms that refine the core congestion control principle by

making more optimistic assumptions about the network and using prediction parameters

of the network congestion state (e.g., three duplicate acknowledgment (ACK), timeout).

Chapter 1. State of the art 14

Two proposals, BIC TCP [XHR04b] and TCP Cubic [HRX08], use packet loss to

establish an approximated network resource limit, which is used as a secondary criterion

to estimate the current network state. TCP Cubic uses time elapsed since last congestion

to update its window size via a cubic function. Another proposal is Compound TCP

[TSZS06] that relies on the estimation of queueing delay as a measure of congestion. If

the queueing delay is low, Compound TCP supposes that there is no congestion and

increases the rate. Compound TCP is deployed in the Windows-world, and the Linux-

based OSs use TCP Cubic.

1.4 Other congestion control strategies

1.4.1 Buffer sizing

In recent years, several studies addressed the problem of how to adequately dimension

router buffers for large bandwidth delay product (BDP) networks. So, to compute the

“right” amount of buffering, several rules derived from these studies which are conflicting

with each other.

Router buffers are sized today based on a rule-of-thumb commonly attributed to a

1994 paper by Villamizar and Song [VS94]. The authors used experimental measure-

ments of at most eight TCP flows on a 40Mb/s link. Their results show that a router

needs an amount of buffering equal to the average RTT per flow that passes through

the router, multiplied by the capacity of the router’s network interfaces C, see Equation

1.1 .

B = C ×RTT (1.1)

But, it is not easy to build routers with larger capacity. That is why other studies have

derived other rules for determining an adequate buffer size B.

In [AKM04], the authors argue that with the rule-of-thumb queuing delays can be

long, have high variance, may destabilize the congestion control algorithms, that make

it inappropriate for backbone routers. So, they have proposed a new rule 1.2 that can

be applied for both N long-lived and short-lived TCP flows. To validate this rule, the

authors used two validation methods: simulation using NS-2, and a network of real

Internet routers.

B = C ∗RTT/
√
N (1.2)

In [WM05], the authors recommend using buffer sizes equal to Equation 1.3

B = 0.63 ∗ C ∗RTT/
√
N (1.3)

Chapter 1. State of the art 15

By means of NS-2 simulations, the authors in [HR09] and [CB07] assert that an

adequately dimensioning router buffers for links should be in the order of 10%BDP and

B=20%BDP, respectively.

Other papers [Rai05] [EGG+05] claim the use of buffers of the order of a few dozen

of packets.

According to what we have read above there is no consensus yet on what is a “good”

dimensioning rule that allows to always achieve high utilization.

1.4.2 Active Queue Management mechanisms

Active Queue Management (AQM) mechanism is a congestion control mechanism at

a router for controlling the number of packets in the router’s buffer by actively discard-

ing some arriving packets. It can shorten the average delays in the router’s buffer and

can also achieve higher throughput.

Random Early Detection (RED) [FJ93b] is one of the AQM disciplines. It controls

the queue length which would affect delay implicitly. RED requires careful tuning of

their parameters in order to provide good performance.

Several modern and self-tuning AQM disciplines have been proposed, and can be

run with their default parameters in most circumstances. The adaptive RED or active

RED (ARED) [FGS01] algorithm infers whether to make RED more or less aggressive

based on the observation of the average queue length. It changes the drop probability

according to how aggressively it senses it has been discarding traffic.

More recently, some researchers designed and implemented new AQMs: (i) Con-

trolled Delay (CoDel) developed by Van Jacobson [NJ12b]; and (ii) Proportional Inte-

gral controller Enhanced (PIE) [RPC+13]. These AQMs control the latency to address

bufferbloat problem.

There have been some comparisons of these AQMs: in [RPC+13] the authors show

that compared to Codel and ARED, PIE can achieve better latency and higher link

utilization.

In [NK13], the authors conducted a comparison of Adaptive RED, Codel and PIE

through experiments in both wired and wireless networks. They show that ARED

achieves better queuing delay for all RTTs, but it loses in terms of goodput for RTTs

larger than 100ms.

In [HR09], the authors present an evaluation of the potential impact of the Random

Early Detection queue management algorithm on loss synchronization. Their results

show that for large buffers, RED strongly reduces the synchronization rate, compared

Chapter 1. State of the art 16

to DropTail. With medium to small buffers, the loss synchronization is roughly similar

with both types of queue management strategies.

More details about active queue mechanisms will be given in chapter 6.

1.4.3 Multipath TCP

Multipath TCP protocol is a replacement for TCP. It allows creating simultaneous

multiple sub-flows amongst two end hosts through multiple network interfaces where

each sub-flow maintains sending data packets over a path. The coordinated congestion

control moves more traffic on the less-congested paths as a load balancing mechanism.

In [WRGH11], the authors describe and evaluate the design of a multipath congestion

control algorithm for multihomed servers, data centers and mobile clients. They show

that their algorithm works across a wide range of scenarios and that it can be used as a

drop-in replacement for TCP.

1.4.4 Transport protocol at the application layer

Google has proposed 2 new protocols to replace HTTP, SPDY [MBT12] and then

QUIC (Quick UDP Internet Connections) [qui13]. These protocols require to be deployed

both at the sender and the server sides. No other cloud operator than Google has

claimed to use these new protocols. Facebook has proposed to launch the working group

“httpbis” within the IETF to standardize the next version of HTTP, the HTTP2.0

[MB13]. HTTP2.0 aims to improve the performance of HTTP transfer using more

efficiently TCP.

1.4.4.1 SPDY

In [MBT12], the authors describe SPDY (pronounced “SPeeDY”) a protocol con-

ceived for the transport of contents with low latency on the World Wide Web. The

most frequent browsers (Internet Explorer, Firefox, Chrome, Opera and Safari) already

implement SPDY.

SPDY adds a session layer atop SSL that allows multiple concurrent, interleaved

streams over a single TCP connection. Amongst the objectives of SPDY we mention:

• Target a 50% reduction in page load time.

• Minimize deployment complexity as it requires no changes to existing networking

infrastructure.

• Avoid the need for any changes to content by website authors. The only changes

required to support SPDY are in the client user agent and web server applications.

Chapter 1. State of the art 17

It should be noticed that some papers express doubts about the actual efficiency of

SPDY. Microsoft have proposed a new HTTP, “Speed+Mobility” [Pao12].

1.4.4.2 QUIC

QUIC [qui13] is a network protocol that supports a set multiplexed connections over

UDP, and was designed to provide security protection equivalent to TLS/SSL, along with

reduced connection and transport latency. It combines a carefully selected collection of

techniques to reduce the number of round trips needed to surf the Internet.

QUIC employs bandwidth estimation in each direction for congestion avoidance, and

then pace packet transmissions evenly to reduce packet loss. It also use packet-level error

correction codes to reduce the need to retransmit lost packet data. QUIC is currently

only implemented in Chrome.

1.4.4.3 HTTP2.0

HTTP2.0 [MB13] is an optimized expression of the syntax of the Hypertext Transfer

Protocol (HTTP). The HTTP2.0 encapsulation enables more efficient use of network

resources and reduced perception of latency by allowing header field compression and

multiple concurrent messages on the same connection.

1.4.4.4 Aspera FASP

In [Comb], the authors present Aspera FASP a data transport technology built to

supply an optimal alternative to traditional technologies of transport based on TCP to

transfer files over public and private IP networks. It represents a service proposed by

Amazon 4.

Aspera is implemented at the application layer, as an endpoint application protocol,

avoiding change of network standard. It is designed to provide an efficient data transport

over an IP network independent of network delay and packet loss.

Aspera has several major improvements:

• Bandwidth discovery : Automatically discovers the path MTU size, which may

avoid packet fragmentation and improves performance.

• Optimization for small files : Introduce a file streamlining technique which elimi-

nates the performance bottleneck when transferring several small files.

• Improved adaptive transfer rate : Enable users to utilize all available bandwidth

along the transfer path, while fairly sharing the network capacity with other traffic.

4http://cloud.asperasoft.com/aspera-on-demand/aspera-on-demand-for-amazon-web-services/

Chapter 1. State of the art 18

• Parallel transfer : Introduces parallel transfer for server clusters or multi-core

machines, enabling full leverage of computing power.

• Aggregate bandwidth management : Include the management of the aggregate

bandwidth to keep the total transfer rate of all transfers below a pre-configured

bandwidth.

1.5 TCP Cubic evaluation : models, simulations and ex-

periments

The focus of this thesis was on TCP Cubic [HRX08], implemented and used by default

in Linux kernels since version 2.6.19. This protocol achieves some improvements on BIC

TCP [XHR04b]. It performs well in wired networks with large bandwidth-delay product.

TCP Cubic simplifies the BIC TCP window control and improves TCP-friendliness.

We made a thorough study about models as well as experimentations that have been

elaborated in the literature about TCP Cubic protocol. We report in the next section

several important works related to TCP Cubic.

TCP Cubic is a TCP-friendly high-speed variant, in which the window size is a cubic

function of time since the last loss event. More details about the window evolution will

be given in the next chapter.

Several studies have evaluated the performance of TCP Cubic through simulations

and experiments. Analytical models for TCP Cubic with a large number of flows sharing

a common bottleneck link are few. We classified these works in 2 categories: models

and experimentations.

1.5.1 Evaluation through analytical models and simulations

In [BWL10], the authors propose an analytical model to analyze the performance of

a single TCP Cubic connection in wireless networks. This model aims to determine the

steady state throughput of TCP Cubic. It considers both congestion loss and random

packet loss. Congestion loss occurs when the transmission rate reaches the maximum

capacity C of the bottleneck link. However random packet loss is caused by fading, or

interference on the wireless link (random poisson process with rate λ).

In order to validate the accuracy of the proposed analytical model, the authors de-

velop a discrete-event simulator. They consider the root mean square (RMS) error as

a performance metric. The RMS error reflects the gap between the analytical results

and the simulation results. Results show that (1) as the simulation time is increased

the RMS error decreases. (2) The random packet loss reduces the normalized average

throughput more for end-to-end flow with large bandwidth-delay product.

Chapter 1. State of the art 19

In [PS11], the authors build an analytical model for TCP Cubic with random packet

drops and constant RTT. They investigate two cases: (i) three TCP Cubic connections;

and (ii) two TCP connections, one TCP Cubic and the other one TCP New Reno. The

authors consider the case of random packet losses, each packet of connection i gets lost

in transmission with probability pi ≥ 0 independently of each other. (This can corre-

sponds to wireless links). They use the M/GI/1 approximation to evaluate the sojourn

time in the queue at the router. All connections sharing the same link are subject to the

same loss rate and same propagation delay �. Through comparison with NS-2 simula-
tions, the authors show that the model captures the dynamics of TCP Cubic fairly well.

The results using the model closely match the results obtained through NS-2 simulations.

The authors in [BAC09] compare the performance of TCP Cubic, Compound TCP,

HighSpeed TCP and Reno under a simple loss model, where each packet is dropped

with probability p. They model the evolution of the congestion window with a Markov

chain, and use efficient numerical algorithms to compute the average window size, the

Coefficient of Variation (CoV) of the window and the average throughput. They find

that, for smaller bandwidth delay products (i.e., 150 packets), TCP Cubic can have a

similar throughput to Reno while for larger values (i.e., between 5000 and 7000 packets)

the throughput of all new versions is similar and larger than Reno.

Also in [ARFK10], the authors compare the performance of TCP New Reno, TCP

Cubic and Compound using NS-2 simulations. They consider 3 scenarios: (1) a single

connection; (2) a single bottleneck with N sources sharing a 10Gbps link; and (3) wire-

less link. They investigate the goodput, intra and inter-protocol fairness of these two

protocols. Results show that TCP Cubic outperforms the other two variants in terms of

goodput and intra-protocol fairness in high speed wired networks. In wireless networks

all protocols are unable to reach a high goodput in the presence of reverse traffic. Also,

the intra-protocol fairness is almost equal to 1 for all of them.

In [LGBP10], the authors proposed a new method to predict TCP throughput’s vari-

ations. This method is based on the theorem of large-deviations that has been applied

to a Markov-chain model of the evolution of TCP Reno’s congestion window. They used

the loss probabilities imposed by the network conditions for calculating a theoretical pre-

diction of the so-called large-deviations spectrum which contains detailed information

on TCP performance. The resulting prediction remains perfectly accurate in complex

environments and also on real Internet. This method was applied on other TCP variants:

BIC TCP, HighSpeed and TCP Cubic, and the obtained results show that it permits

fine performance characterization of these TCP variants.

Chapter 1. State of the art 20

In [LHHL12], the authors introduce an extended version of TCP Cubic, TCP multiple

paths (MPCubic). MPCubic moves traffic away from congested paths to uncongested

paths, and fairly share the capacity with standard TCP at common bottleneck. This

protocol can achieve stability, throughput improvement, fairness, and load-balancing.

Through simulation results, the authors found that the proposed protocol can outper-

form MPTCP, improve throughput performance, and can improve its traffic away from

congested link, while it can preserve fairness with single-path TCP Cubic, regular TCP

and MPTCP (with short RTTs). Moreover, MPCubic can quickly recover its data rate

after restoration of failed links.

The goal in [CEH+09] is to compare the protocol growth functions, especially in

terms of the second or higher-order stochastic behaviors of the protocols that employ

these functions. They indicate that protocols having a concave-convex window growth

function and using the maximum window size in the last congestion event as an inflection

point, have most of the time a concave window growth profile in the steady state. These

results were confirmed for both BIC TCP and TCP Cubic protocols that have this

property, through NS-2 simulation and experimentation.

1.5.2 Evaluation through experiments

In [JR11], the authors present an experimental evaluation of TCP Cubic in a small

buffer regime (i.e., buffers of the order of a few tens of packets). The experiments are

carried out using the NetFPGA platform 5.

They focus on the interaction of long-lived flows, over a variety of bandwidth-delay

product environments. This work shows the following effects: (1) for small link capac-

ities, there is a distinctive impact on utilization as the number of users, and the round

trip times vary; and (2) for large link capacities, small buffers can induce synchronization

effects.

The authors conducted experiments with two sets of capacities: 123Mbps and 946Mbps.

In each of these cases, they used two sets of buffer sizes: 16, and 128 packets. The num-

ber of flows is equal to 10, 100 and 200 flows.

For scenario with 123Mbps, a buffer size of 16 packets, and for a fixed population of

users, as the RTT gets larger, the utilization drops. Also, for a fixed RTT, as the number

of users increase, there is a visible increase in the utilization. While, with a buffer size of

128 packets, varying the number of users or the RTT did not produce a visible reduction

in the utilization. For scenario with 946Mbps and a buffer size equal 128 packets, authors

noted the appearance of synchronization between flows, which means that all flows loose

packets simultaneously.

5http://netfpga.org/main.html

Chapter 1. State of the art 21

1.6 Analytical models: Mean-field approach

Analytical models are mathematical models which have a closed form solution. The

solution of the equations used to describe the changes in a system can be expressed as

a mathematical analytical function.

The initial motivation of mean-field models was to analyze the behavior of computer

networks. It can be used to analyze systems with large number of objects; where each

object is defined by a stochastic model while the global model can be approximated by

a fluid limit.

The authors in [BtLB08] have given a results for a model of N interacting objects.

They consider that the ordinary differential equation (ODE) is a good approximation

of the occupancy measure of the stochastic system. The paper comprises two separate

parts: a first part is devoted to the analysis of the mean field limits of a general system

of interacting objects that are also interacting with a random environment. In the sec-

ond part, the authors demonstrate that this approach can be applied to understand the

behavior of computer networks with a large number of objects sharing resources.

In [BMM07], the authors present a generic result that allows a reduction of a large

Markov chain model of interacting objects to a dynamical system whose state is the

occupancy measure (i.e. the distribution of states of all objects), or, more generally, a

function of the history of the occupancy measure. The resulting dynamical system is

deterministic, but it can be used to study a stochastic system (with considerably smaller

dimension) that reflects the state of one or several tagged objects.

There have been several mean-field models of TCP in the literature such as [BMR02].

In this paper, the authors introduced a mean-field model for a large number N of TCP

Reno connections. All connections share a bottleneck queue in a router implementing

RED (Random Early Discard) active queue management mechanism. The model con-

verges, when the number of connections N tends to infinity, to a deterministic transport

equation.

1.7 Conclusion

In this chapter, we presented an overview of the main research works in correlation

with our scopes of TCP Cubic performance analysis. We have reported brief history of

some TCP protocols. We also present a survey of some congestion control algorithms.

We further report relevant works in (i) Mean-field theory; (ii) buffer sizing; and (iii)

virtualization. And finally, we briefly review studies on AQMs mechanisms.

Chapter 1. State of the art 22

In the next Chapter, we focus on TCP Cubic protocol as it is used by default since

2004 in the Linux Kernel, and we summarized its main characteristics. Then we present

our analytical model for a single long-lived connection.

Chapter 2

Analyzing a Single TCP Cubic

flow

2.1 Introduction

In this chapter, we first present a detailed overview of TCP Cubic algorithm, then

we describe the analytical model that we have developed to study the performance of an

isolated long-lived TCP Cubic flow. We highlight the differences between the published

specifications of TCP Cubic and its implementation in NS-2. The model is validated by

comparison with NS-2 simulations.

2.2 Background on TCP Cubic

2.2.1 Window variation in TCP Cubic

Figure 2.1: TCP Cubic window growth function [HRX08]

TCP Cubic [HRX08] is the next version of BIC TCP [XHR04b]. It modifies the

linear window growth function of existing TCP Standards with a cubic function in order

to improve the scalability of TCP over fast and long distance networks.

23

Chapter 2. Analyzing a Single TCP Cubic flow 24

Another major difference between TCP Cubic and previous TCP versions is that the

congestion window increases is not correlated to the RTT. Indeed the amount of packets

by which the congestion window must be increased depends only on the time elapsed

since the last congestion event. In contrast, with standard TCP, flows with very short

RTTs increase their congestion windows faster than flows with longer RTTs.

We report in Figure 2.1 the growth function of TCP Cubic with the origin at Wmax,

which contains both a concave and a convex part.

At a loss event, TCP Cubic registers Wmax to be the window size where the last loss

event occurred and performed a multiplicative decrease of congestion window by a factor

of β (Typically β = 0.2). After it enters into congestion avoidance from fast recovery,

the window starts to increase using the concave profile of the cubic function. The cubic

function is set to have its plateau at Wmax so the concave growth continues until the

window size becomes Wmax.

As the window size gets closer to Wmax the growth rate slows down and the cubic

function turns into a convex profile and the convex window growth begins. This style of

window adjustment (concave and then convex) aims at improving protocol and network

stability while maintaining high network utilization. This is because the window size

remains almost constant, forming a plateau around Wmax which is likely to be the

available bandwidth of the network. Under steady state, most window size samples

of TCP Cubic are close to Wmax, thus enabling high network utilization and protocol

stability.

When in congestion avoidance, TCP Cubic features two modes of operations, the

so-called TCP and Cubic modes. The TCP mode is to be used in low bandwidth

delay products (BDPs), while the Cubic mode is triggered for high BDPs. Each mode

corresponds to a specific way of increasing the window size and is determined by the

following pair of equations:

wc(t) = Ccubic(t− Vcubic)
3 + wmax (2.1)

wtcp(t) = wmax(1− β) +
3β

(2− β)

t

R(t)
(2.2)

where wmax is the congestion window prior to the last loss event1, R(t) is the estimated

RTT of the connection, β and Ccubic are constant values usually set to 0.2 and 0.4,

respectively, and Vcubic =
3

�
βwmax

Ccubic
. The quantity t in Equation 2.1 is the elapsed time

since the last loss event.

The congestion window size cwnd(t) is set to max(wc(t), wtcp(t)) upon each ACK

reception. TCP Cubic is thus said to operate in Cubic mode (resp. TCP mode) if the

maximum is wc(t) (resp. wtcp(t)).

1Note that wmax is varying over time but is constant between two loss events. This is also the case
for Vcubic.

Chapter 2. Analyzing a Single TCP Cubic flow 25

The equation of wc(t) is designed in such a way that when a TCP Cubic connection

is operating in the Cubic mode, it converges quickly to wmax. Then it plateaus for a

while, before increasing again to probe the link to sense whether more bandwidth is

available in the path (see Figure 2.1).

Concerning the TCP mode, we can note that wtcp(t) depends both on the RTT of

the connection and the time elapsed since the last loss event. Thus, in practice, when

the RTT is low, wtcp(t) ensures that the window increase of TCP Cubic is not slower

than the one of New Reno.

TCP Cubic possesses an optional mechanism called Fast Convergence (FC). This

mechanism is designed to make TCP Cubic fairer. When a new flow joins the network,

existing flows in the network must give up their share of bandwidth to allow the new

flow to grab some bandwidth.

Upon detection of a loss, wmax is set to the last congestion window cwnd(t), before

the congestion window be reduced by 20%. In case the last wmax was larger than the

congestion window when the loss is detected, and if the Fast Convergence mechanism is

applied, wmax is set to (1− β
2) ∗ cwnd(t) (more details in the Section 2.4.1.1).

2.2.2 TCP Cubic mode of operation

From Equations (2.1) and (2.2), it appears that for fixed network set-up (the physical

path between the sender and the receiver) and stationary load conditions, TCP Cubic

operates (in stationary regime) in either Cubic or TCP modes but not both.

The Cubic mode depends on the bandwidth delay product of the path, through the

value of wmax, while the TCP mode depends on the RTT.

We can observe an alternation of modes if RTTmin is below the threshold that triggers

TCP Cubic while it is above when the buffer starts filling up and the RTT increases.

At 100Mb/s, the latency of the path that ensures that TCP is always in Cubic mode is

39ms, while at 1Gb/s, it is 18ms.

To find those values, one needs to consider the difference D(t, RTT,wmax) = wc(t)−
wtcp(t) :

D(t, RTT,wmax) = wc(t)− wtcp(t)

= Ccubic(t− Vcubic)
3 + βwmax −

3β

(2− β)

t

R(t)

We can see in Figure 2.2 that this difference first increases with t, then decreases and

increases again. Finding the first value t0(RTT,wmax) > 0 for which the derivative of

D(t, RTT,wmax) with respect to t is zero allows to express the minimum value of the

difference. This value D(t0, RTT,wmax) is obtained for:

Chapter 2. Analyzing a Single TCP Cubic flow 26

t0(RTT,wmax) =

�
β

Ccubic(2− β)RTT

� 1
2

+ Vcubic .

Then it can be seen that D(t0, RTT,wmax) is increasing in RTT and in wmax. In the

steady state, the value of wmax is BDP + B, where B denotes the buffer size available

for a TCP connection, and the RTT is lower-bounded by the end-to-end path latency

denoted by baseRTT . Hence, for a given network setting of baseRTT , B and BDP ,

the sign of F (baseRTT,B,BDP) = D(t0(baseRTT,B + BDP), baseRTT,B + BDP)

allows to determine the mode of operation of TCP Cubic.

Figure 2.2: Congestion window growth of TCP Cubic in Cubic and TCP modes.

2.3 TCP Cubic model

TCP Cubic uses the cubic function (Equation 2.1) of the elapsed time since the last

congestion event which usually contains concave and convex parts (the window growth

is independent of RTTs). Compared to Standard TCP (New Reno), TCP Cubic aims

to improve the scalability of TCP over fast and long distance networks. The state of a

TCP Cubic connection is described by the congestion window wc and wmax. We assume

that time is slotted and events (e.g. losses) can be detected at those discrete time slots

only.

We present a simplified analytical model of TCP Cubic, to analyze in details its

behavior for an isolated long-lived flow. Consider the model shown in Figure 2.3. It

consists of two nodes (the source and the destination) that are connected through a

finite capacity link, with rate C and buffer size B (i.e., FIFO queue). For simplicity, we

Chapter 2. Analyzing a Single TCP Cubic flow 27

Notation Description

β The window reduction factor after a loss, equal to 0.2
Ccubic Cubic parameter, equal to 0.4
τ The propagation delay
C The capacity of the link in packets per second
m The packet size (constant)
b The number of received packets after which the TCP destination

sends an acknowledgment (The default value is 2)
B The buffer capacity in packets
tx The starting time of phase x
txy The time since the start of the cycle until the completion of stage x

and the beginning of phase y
W(t) The congestion window at time t
S(t) The sequence number sent at time t
Q(t) The buffer occupancy for packets sent at time t
R(t) The round trip time for packets sent at time t
A(t) The last received acknowledgment at time t
wmax The maximum window size at the last loss event
Vcubic Time period required to increase wc(t) to wmax when there is loss

Table 2.1: Notations for the system model

assume that the sender has an unlimited amount of data to send. Table 2.1 lists the

parameters of the system.

Figure 2.3: Model for a single TCP connection

The Round Trip Time RTT and the queue are given by :

R(t) = τ +
Q(t)

C
(2.3)

Q(t) =

0 , if W (t) < Cτ

W (t)− Cτ , if W (t)− Cτ < B

B , otherwise

(2.4)

In the literature, few analytical models have been proposed to analyze the perfor-

mance of TCP Cubic. The authors of [CEH+07], [BWL10], [BAC09] consider a single

long-lived flow, while in [PS11] the authors consider 3 TCP Cubic flows.

In [CEH+07], the authors present a stochastic tool, called convex ordering, that provides

Chapter 2. Analyzing a Single TCP Cubic flow 28

an ordering of any convex function of transmission rates of two protocols and valuable

insights into high order behaviors of protocols. With their tool, the authors show that

a protocol with a growth function composed of a concave function that switches to a

convex function around the maximum window size in the previous loss epoch, gives the

smallest rate variation under a variety of network conditions. This tool was tested with

BIC and TCP Cubic that have this window growth function, with experimentations and

simulation results.

In [BWL10], authors propose a Markovian model to determine the steady state

throughput of one single long-lived TCP Cubic flow in a wireless environment. The

proposed analytical model is validated via simulations. The authors show that random

packet loss reduces the normalized average throughput more for end-to-end flow with

large bandwidth-delay product.

In [BAC09], Blanc et al. compare the performance of TCP Cubic, Compound TCP,

HighSpeed TCP and New Reno under a simple loss model, where each packet can be

randomly dropped with probability p. They model the evolution of the congestion

window with a Markov chain to compute the average window size, its coefficient of vari-

ation (CoV) and the average throughput. They find that, for small bandwidth delay

products, TCP Cubic can have a similar throughput to New Reno while for larger val-

ues the throughput of all new TCP versions behave similarly and outperform New Reno.

In [PS11], Poojary and Sharma investigate the cases of three TCP Cubic connections

as well as the competition between a TCP Cubic and New Reno connection.

As our interest was to study single TCP Cubic connection, we were motivated to

develop our own model. We proceeded by detailing some TCP Cubic metrics, then we

distinguish the different phases of a TCP Cubic connection from the beginning of the

cycle until the detection of a loss. Finally, we model the sending window which is the

state variable TCP Cubic and we validate the numerical results of our model with NS-2

simulations.

2.3.1 Dynamical Analysis

2.3.1.1 Different Phases of TCP Cubic

We considered different states corresponding to different phases in the evolution of

the window size. TCP Cubic window goes through five states according to the window

size W (t) and the buffer occupancy Q(t):

• State A: TCP mode with empty buffer

Chapter 2. Analyzing a Single TCP Cubic flow 29

No State transition Description

1 �A → B�, �E → B� The queue is empty (Q(t) = 0), Wc(t) > Wtcp(t)
2 �A → C�, �D → C�, �E → C� The queue is non-empty (Q(t) > 0), Wc(t) < Wtcp(t)
3 �B → A�, �E → A� The queue is empty (Q(t) = 0), Wc(t) < Wtcp(t)
4 �B → D�, �C → D�, �E → D� The queue is non-empty (Q(t) > 0), Wc(t) > Wtcp(t)
5 �C → E�, �D → E� A loss occurs

Table 2.2: State transitions and corresponding events

• State B: Cubic mode with empty buffer

• State C: TCP mode with a non empty buffer

• State D: Cubic mode with a non empty buffer

• State E: Loss recovery

We report in Figure 2.4, the transitions that can occur between them (i.e., twelve possible

transitions).

For each state X, we compute several metrics: (i) the expression of the congestion

window; (ii) the number of packets sent during this phase nx; (iii) the sojourn time

since the beginning of the cycle until completion of this state tx; and (iv) the different

transitions to other states.

Figure 2.4: Transition diagram

Table 2.2 lists the permitted state transitions and the description of the events that

trigger the state change. In each of these states the evolution of the window will be

different (i.e. the TCP Cubic mode, the buffer occupancy). Thus, we report the window

size expression for the four states {A, B, C, D} in Table 2.3.
We also present the expression of window sizes for all transitions between states in

Table 2.4. Wij represent the window size when a flow move from State i to State j.

Chapter 2. Analyzing a Single TCP Cubic flow 30

States Window size W(t)

State A wmax(1− β) + 3β
b(2−β)

t
τ (Equation 2.5)

State B C(t− Vcubic)
3 + wmax (Equation 2.1)

State C
(wmax(1−β)+ 3β

b(2−β)
)

2 + 1
2 × ((3β

b(2−β) + wmax(1− β))2 + 4(3βCt
b(2−β) −

3βwmax(1−β)
b(2−β)))

1
2

(Equation 2.11)

State D C(t− Vcubic)
3 + wmax (Equation 2.1)

Table 2.3: Window size at time t W(t)

Transition Window size According to

< A → B > WAB = wmax(1− β) + 3β
b(2−β)

tAB
τ Equation 2.5

< A → C > WAC = wmax(1− β) + 3β
b(2−β)

tAC
τ Equation 2.5

< B → D > WBD = C(tBD − Vcubic)
3 + wmax Equation 2.1

< B → A > WBA = C(tBA − Vcubic)
3 + wmax Equation 2.1

< C → D > WCD =
(wmax(1−β)+ 3β

b(2−β)
)

2 + 1
2 × ((3β

b(2−β) + wmax(1− β))2 Equation 2.11

+4(3βCtCD

b(2−β) − 3βwmax(1−β)
b(2−β)))

1
2

< C → E > WCE = Cτ +B + 1 X

< D → C > WDC = C(tDC − Vcubic)
3 + wmax Equation 2.1

< D → E > WDE = Cτ +B + 1 X

Table 2.4: Window size when moving between states

The sojourn time in one state can be used in several criteria calculation, such as

the calculating the length of a cycle. This criterion gives an indication of the stability

of the behavior of each connection. We report in Table 2.5 the sojourn time since the

beginning of the cycle until completion of each state. For more details regarding the

calculation of these times, see Appendix A.

Transition Residence time

< A → B > tAB = 3
2Vcubic + /−√

σ

< A → C > tAC = (2−β)bτ
3β (τC − (1− β)wmax)

< B → D > tBD = 3

�
(Cτ−wmax)

Ccubic
+ Vcubic

< B <→ A > tBA = 3
2Vcubic + /−√

σ

< C → D > tCD = 3
2Vcubic + /−√

σ

< C → E > tCE = b(2−β)
3βC (14(

b(2−βC)
3βC × 4(Cτ +B + 1− (wmax(1−β)+ 3β

b(2−β)
)2

2)2

−((wmax(1− β) + 3β
3βC)

2) + 3βwmax(1−β)
b(2−β))

< D → B > tDB =

< D → E > tDE = 3

�
Cτ+B+1−wmax

C + Vcubic

Table 2.5: The sojourn time since the beginning of the cycle until completion of the
state

Chapter 2. Analyzing a Single TCP Cubic flow 31

There is another important criteria which is the number of packets sent in one cycle,

see Table 2.6. To find this quantity of packets between two epochs t1 and t2 we integrate

the window size W(t) between these two times: nt1t2 =
� t2
t1

W (t)dt.

Transition Number of packets

< A → B > nAB = wmax(1− β)tAB + 3β
2b(2−β)

t2AB
τ

< A → C > nAC = wmax(1− β)tAC + 3β
2b(2−β)

t2AC
τ

< B → D > nBD = C
4 (tBD − Vcubic)

4 + wmaxtBD

< B → A > nBA = C
4 (tBA − Vcubic)

4 + wmaxtBA

< C → D > nCD = C(tCD − tAC)

< C → E > nCE = C(tCE − tAC)

< D → C > nDC = C(tDC − tAD)

< D → E > nDE = C(tDE − tAD)

Table 2.6: The number of packet sent during a transition

2.3.1.2 Combining Multiple Phases

As we said before that the evolution of the TCP Cubic window is characterized by

five different states, it is possible to identify 11 different ways of combining these states.

Each particular realization will take a different path, depending on the specific values

of all the parameters involved (i.e., the BDP and on the buffer size B).

- Case 1 : States (A)-(B)-(D)-(E)

- Case 2 : States (A)-(C)-(E)

- Case 3 : States (A)-(C)-(D)-(E)

- Case 4 : States (C)-(D)-(E)

- Case 5 : States (C)-(E)

- Case 6 : States (B)-(D)-(E)

- Case 7 : States (B)-(D)-(C)-(E)

- Case 8 : States (B)-(A)-(C)-(E)

- Case 9 : States (B)-(A)-(C)-(D)-(E)

- Case 10 : States (D)-(C)-(E)

- Case 11 : States (D)-(E)

Chapter 2. Analyzing a Single TCP Cubic flow 32

2.3.2 RTT Analysis

According to Equation 2.3, the Round Trip Time depends on three parameters: the

capacity C; the delay τ ; and the buffer Q(t) which depends on the state variable. We

identify two cases, depending on the buffer occupancy:

• Empty buffer, Q(t)=0

If Q(t)=0, then the window size W (t) at time t is smaller than Cτ , so in this case

R(t) = τ (Equation 2.3). According to Equation 2.2, the expression of the congestion

window in TCP mode will be as follows:

Wtcp(t) = wmax(1− β) +
3β

b(2− β)

t

τ
(2.5)

• Non empty buffer, Q(t)>0

Figure 2.5: Trace of the sequence and acknowledgment numbers when there is no loss
[Col98]

Figure 2.5 provides a graphical description of the window size as function of the

sequence and acknowledgment numbers. The window size at time t W(t) is a function

of the value at the previous time (t-R(t)). According to Equations (2.3) and (2.4), where

W(t) ≥ Cτ

R(t) =
W (t−R(t))

C
(2.6)

To simplify the calculation, we derive both a lower and an upper bound.

2.3.2.1 The upper bound for R(t)

The upper bound for R(t) according to Equation 2.6 and without considering delay

(i.e., lower bound for W(t)) is as follows :

R(t) =
W (t)

C

Chapter 2. Analyzing a Single TCP Cubic flow 33

Where R(t) is expressed in seconds, W(t) in packets and C is expressed in packets per

second. Consider the TCP mode of TCP Cubic, where W (t) = Wtcp. If we change RTT

by its value in Equation 2.2, we obtain :

W (t) = wmax(1− β) +
3βC

b(2− β)

t

W (t)
(2.7)

Thus, we have:

W 2(t)− wmax(1− β)W (t)− 3βC

b(2− β)
t = 0

The solutions to this quadratic equation are:

� = (wmax(1− β))2 + 4 3βC
b(2−β) t

The roots are given by:

W (t) =
(wmax(1− β))±√�

2
(2.8)

The positive solution is the only possible one, compatible with W(t) that increases, so

W(t) is given by:

Wtcp(t) =
(wmax(1− β))

2
+
1

2
× ((wmax(1− β)2 +

12βC

b(2− β)
× t)

1
2 (2.9)

2.3.2.2 The lower bound for R(t)

The lower bound for R(t) according to Equation 2.6 and considering delay (upper

bound for W(t)) is as follows :

W (t) = wmax(1− β) +
3βC

b(2− β)

t

(W (t)− 3β
b(2−β))

(2.10)

When applying the same calculation as in the previous section, we obtain:

Wtcp(t) =
(wmax(1− β) + 3β

b(2−β))

2
+
1

2
×((3β

b(2− β)
+wmax(1−β))2+4(

3βCt

b(2− β)
−3βwmax(1− β)

b(2− β)
))

1
2

(2.11)

When building our analytical model, we have a problem to estimate the R(t), so we

considered the lower bound of R(t), Equation 2.11.

Chapter 2. Analyzing a Single TCP Cubic flow 34

2.4 Numerical results

2.4.1 Algorithm versus simulation

Through the implementation of the model for a TCP Cubic, we identified slight dif-

ferences between the specifications mentioned in the Cubic paper and its implementation

in TCP Linux from NS-2 which is supposed to be the same as the one in some Linux

kernels. Some of these details were not well explained in the TCP Cubic paper [HRX08].

2.4.1.1 Fast Convergence

Fast Convergence is an optional mechanism that allows the flow to accommodate the

change in the available bandwidth, its principle is as follows : when a loss occurs, the

value of the congestion window is saved in a parameter lastmax. If the current cwnd is

smaller than lastmax, this indicates that the saturation point experienced by this flow

is getting reduced. So, we allow this flow to free more bandwidth by further reducing

wmax and then set lastmax to cwnd ∗ (1− β
2). The slow start threshold ssthresh, which

is called when the given TCP detects a loss, is always set to cwnd(1− β).

An important parameter is Vcubic, which represents the time period required by an

isolated TCP Cubic connection to increase wc(t) from (1− β)wmax to wmax when there

is no further loss event. This quantity is calculated by using the following equation:

Vcubic =
3

�
βwmax

Ccubic

But when we look to the specification of the algorithm in [HRX08], we found that

Vcubic =
3

�
lastmax−W (t)

C , where W(t) is the current window size. And as the lastmax

value depends on the Fast Convergence mechanism, this quantity will have 2 different

expressions.

Assume that the convergence window at a loss event is equal to wmax and window

size after a loss is W (t).

• Case 1 : There is no Fast Convergence

For this scenario W (t) = (1− β)wmax and lastmax = wmax so :

Vcubic =
3

�
βwmax

Ccubic
(2.12)

• Case 2 : There is Fast Convergence

Chapter 2. Analyzing a Single TCP Cubic flow 35

The window size w(t) will be equal to (1 − β)wmax and lastmax=(1 − β
2)wmax. If we

consider Vcubic =
3

�
lastmax−w(t)

Ccubic
, we get:

Vcubic =
3

�
βWmax

2Ccubic
(2.13)

To verify the accuracy of Vcubic expressions we build our analytical model using C++,

we thus performed simulations with both the model and NS-2 simulator.

Consider the scenario shown in Figure 2.3 in which a client is connected to a server by

a 100Mbps link with a 50ms propagation delay and a buffer of 50 packets and a BDP is

equal to 416 packets.

We report in Figure 2.6 the time series for the window size for the model and NS-2

simulations. The blue curve (blue triangles) presents the model behavior when consid-

ering only the first expression of Vcubic in Equation 2.12 , while the red curve (red stars)

represents the NS-2 results.

We observe that TCP Cubic operates in the Cubic mode. This is consistent with

the calculation that was done in the Section 2.2.2, were the RTTmin ensuring that TCP

Cubic is in Cubic mode for 100Mbps is equal to 39ms.

We note that without the Fast Convergence the loss is not always detected at the

same level. And the matching between the model and the simulation is less good. We

conclude from these results that it is more correct to consider both Fast Convergence

expressions.

Figure 2.6: Fast Convergence phenomenon, C = 100Mbps, τ = 50ms, B=50 packets

2.4.1.2 Delayed Acknowledgments

To avoid overloading the network with acknowledgments (ACKs), the destination

does not return an acknowledgment for each packet received, several ACK responses

Chapter 2. Analyzing a Single TCP Cubic flow 36

may be combined together into a single response.

Consider the TCP window in Equation 2.2, the proper expression should be as follow:

Wtcp(t) = wmax(1− β) +
3β

b(2− β)

t

R(t)
(2.14)

Where b is the number of received packets after which the TCP destination sends

an acknowledgment. We consider b=1 (the recommended value is 2). It is usually more

in high speed networks with recent OS (typically 6). The parameter b is not marked in

the original paper of TCP Cubic, but we realized that it is taken into account by NS-2.

We considered a scenario where TCP Cubic operates in the TCP mode, the streaming

online, with a link capacity equal to 200Mbps, a latency equal to 10ms and a buffer size

equal 50 packets.

We report in Figure 2.7 the time series for the window size for the model as well

as the NS-2 simulation for b=2. We notice that the model and the simulation slopes

are different. So, simulation results show that the delayed ACK misbehaves with TCP

Cubic, so we disable it for the next simulations (i.e., b=1).

Figure 2.7: Delayed Acknowledgments phenomenon, C = 200Mbps, τ = 10ms, B=50
packets

2.4.1.3 Entire packet

We considered the same scenario as in the Section 2.4.1.2. We report in Figure 2.8

the time series for the window sizes. We notice that the loss is not always detected at

the same level (a difference in fractions of packet) which triggers the Fast Convergence

phenomenon. With simulations, we do not see the same behavior since they consider

whole packets. So we set also this quantity to be an integer for the remaining tests.

Chapter 2. Analyzing a Single TCP Cubic flow 37

Figure 2.8: Entire packet phenomenon, C = 200Mbps, τ = 10ms, B=50 packets

2.4.2 Validation

In this section, we present validation results based on a set of scenarios. Our approach

for validation is to compare the analytical model results against NS-2 simulations, that

last 500 seconds. The TCP packet size is set to 1500 bytes.

We considered one metric to perform this comparison, which is the time series evo-

lution of the congestion window.

2.4.2.1 ADSL scenario

As a first scenario, we consider C = 10Mbps, τ = 50ms and the queue B=10 packets.

The BDP is equal to 42 packets. We report in Figure 2.9 the time series of window size

for model and simulations. We note that the model behavior is close to the NS-2 results.

But, NS-2 results are sometimes faster compared to the model.

Figure 2.9: Time series of the window, ADSL, C = 10Mbps

Chapter 2. Analyzing a Single TCP Cubic flow 38

2.4.2.2 FTTH scenarios

We consider 2 FTTH scenarios with a capacity equal to C = 100Mbps (resp. C =

200Mbps), a latency equal to τ = 50ms (resp. τ = 10ms), and a same buffer size of

B=50 packets. So a BDP=417 packets. TCP Cubic operates in the Cubic mode for the

first scenario, while it is in the TCP mode for the second one.

We present in Figures 2.10 and 2.11 the time series of window sizes for the two

scenarios. We observe a very good temporal match both in terms of the amplitude

variations and in the frequency of oscillations of the this metric.

Figure 2.10: Time series of the
window, FTTH, C = 100Mbps

Figure 2.11: Time series of the
window, FTTH, C = 200Mbps

Figure 2.12: Time series of the
window, FTTH, C = 300Mbps

Figure 2.13: Time series of the
window, FTTH, C = 400Mbps

We considered 2 other FTTH scenarios with 300Mbps and 400Mbps. A latency of

20ms (resp. 8ms) and a buffer size equal to 50 packets (resp. 43 packets). The model

behavior is similar to NS-2, the difference is that the model takes a little more time to

reach the loss value.

Chapter 2. Analyzing a Single TCP Cubic flow 39

From the above results, we can see that while the model does not always match the

simulations with great precision, it does accurately predict the overall evolution of the

window and it allowed us to identify the different states of TCP Cubic.

2.5 Conclusion

The focus of this chapter was on analytical models for a single-long lived TCP con-

nection. We have highlighted some details about the algorithm of TCP Cubic that were

not well explained in TCP Cubic paper. Then, we proposed our own model for one TCP

Cubic connection. Using this model, we have analyzed the window size, showing how

this metric depends on the different modes of TCP Cubic and the buffer size.

While this is a simple model, it allows us to identify the different TCP Cubic be-

haviors. It is actually used by one of the Orange Labs team for troubleshooting TCP

connections.

Recently, there has been a growing interest in large-scale modeling of TCP flows.

Especially in cloud environments, where the number of flows sharing a bottleneck link

is huge. So, in the next chapter, we introduce an analytical model which allows us to

analyze the scaling behavior of large number of TCP Cubic.

Chapter 3

Understanding TCP Cubic

Performance in the Cloud: a

Mean-field Approach

3.1 Introduction

In this chapter, we aim at developing an analytical model for TCP Cubic to ana-

lyze its performance in typical cloud scenarios where a large number of long-lived TCP

connections, e.g., HTTP streaming or back-up flows, share a bottleneck link.

We rely on a Mean-field approach leading to a fluid model to analyze the performance

of TCP Cubic. After a careful validation of the model through comparisons with NS-2,

we evaluate the efficiency and fairness of TCP Cubic as compared to that of New Reno

for a set of typical cloud networking scenarios.

3.2 Background

3.2.1 TCP Cubic

Several analytical models have been proposed in the literature to analyze the per-

formance of legacy TCP versions, but there are fewer for TCP Cubic. The authors of

[CEH+07], [BWL10], [BAC09] consider a single long-lived flow. In [PS11], Poojary and

Sharma investigate the cases of three TCP Cubic connections as well as the competition

between a TCP Cubic and New Reno connection. In [BAC09], Blanc et al. compare

the performance of TCP Cubic, Compound TCP, HighSpeed TCP and New Reno under

a simple loss model, where each packet can be randomly dropped with probability p.

They model the evolution of the congestion window with a Markov chain to compute

the average window size, its coefficient of variation (CoV) and the average throughput.

They find that, for small bandwidth delay products, TCP Cubic can have a similar

40

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 41

throughput to New Reno while for larger values the throughput of all new TCP versions

behave similarly and outperform New Reno.

A few studies have investigated TCP Cubic in vivo using experimental testbeds. In

[JR11], Jain and Raina observed that at smaller link capacities, there is a detrimental

impact on utilization as the number of users gets smaller or the round trip times gets

higher. At larger link capacities, small buffers can readily induce synchronization effects.

In [LSM07], Leith et al. observed in their testbed that at higher speeds, for buffer sizes

below 30% of the BDP, the link utilization achieved by TCP Cubic collapses to around

50% and is significantly lower than the link utilization achieved by standard TCP. We

revisit this question in Section 3.5.

3.2.2 Mean-field models

Mean field approximations, or equivalently mean-field limits, date back to the seven-

ties [Kur70] and are used to analyze the limit behavior of systems made of N objects,

as N tends to infinity. As the limit process is the solution of a deterministic ordinary

differential equation (ODE), it is referred to as a fluid limit, or fluid model, as well.

Depending on the underlying interaction process between the objects, articles such as

[BLB08, BW09, BMP10] have refined the results of [Kur70] and exemplified with various

applications in computer science.

Baccelli et al. introduced a mean-field model for a set of N TCP Reno connections in

[BMR02]. In this paper, the authors consider a bottleneck router implementing the RED

(Random Early Discard) active queue management policy, and they assume that the

connections have reached equilibrium, i.e., TCP operates in congestion avoidance mode

and does not experience time-outs. The model is derived, but the focus is then put on

the fixed points of the mean field equations. We build on this work to obtain a mean field

model of TCP Cubic. The model for TCP Cubic is an extension of [BMR02] in that it is

more complex: two parameters instead of one now define the state of an object, and the

time of the last loss is an additional quantity that must be approximated. Furthermore,

as our purpose is to investigate the performance in cloud networking scenarios, we prove

a scaling property of the model that allows us to run the model equations for any network

scenario, without increasing the computational cost that may arise from state explosion.

Finally, we validate extensively our model on cloud networking scenarios, trying to assess

its domain of validity by identifying simulation behavior that it cannot capture. The

model is used to investigate the performance of both TCP Cubic and TCP New Reno.

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 42

3.3 Performance analysis of TCP Cubic

3.3.1 A fluid model for TCP Cubic

We build on [BMR02] and consider N TCP Cubic connections routed through a

bottleneck link whose aggregate capacity is N × L packets per second. The queue size

at the sending buffer of the bottleneck link router is denoted by Q(N)(t) = Nq(N)(t), the

buffer size being N × B. Let S
(N)
n (t) =< w(n)(t), w

(n)
max(t) > be the state of connection

n, for n = 1, . . . , N at time t. All connections have the same latency (i.e., the same

baseRTT). We assume without loss of generality, that the RTT measured at the sender

side is the same for all connections, and is denoted by R(N)(t). Hence R(N)(t) can be

expressed recursively by

R(N)(t) = baseRTT +
q(N)

�
t−R(N)(t)

�

L
(3.1)

In order to express all quantities governing the connection states in terms of an absolute

time variable, t is changed to t − s
(n)
loss(t) in Equations (2.1) and (2.2), where s

(n)
loss(t)

denotes the elapsed time since the last loss seen by the n-th TCP sender.

Our goal is to predict the performance of the system of N TCP Cubic connections

thanks to a fluid model, stemming from a mean-field approximation. Let’s consider the

limit behavior of the system when N tends to infinity, so as to get fluid model of the

performance. Considering Y(N)(t) = (S
(N)
1 (t), . . . , S

(N)
N (t)) as the state of the system

of interest with N connections. Y(N)(t) is an homogeneous Markov chain that can be

shown to be a mean-field interaction model with N objects, as defined in [BLB08]. We

define the occupancy measure as the fraction of connections in each state at each time

t, and denote it by p(N)(t, w, wmax) for time t and state < w,wmax >. Theorem 3.1 of

[Kur70] ensures that, as N → ∞, for any t > 0 and < w,wmax >∈ E, p(N)(t, w, wmax)

converges uniformly almost surely to the solution p(t, w, wmax) of the coupled Ordinary

Differential Equations (ODE) below, with initial condition p(0, (1−β)x, x) = 1 (x is set

to 5 in the experiments of Section 3.4). Additionally, the other quantities of interest,

namely q(N)(t), R(N)(t) and s
(n)
loss(t) can be expressed thanks to their deterministic fluid

limits q(t), r(t) and sloss(t), respectively. In particular, q
(N)(t) is approximated by q(t)

given in Equation (3.3). It is worth noting that the convergence to the fluid limit holds

in the presence of q(N)(t) that can be considered as a resource, as defined and proven

in [BLB08]. The equations below are ODE expressed in the case w and wmax take in-

teger values. These equations can be easily adapted to the continuous case such as in

[BMR02]. Note however that the time remains continuous.

dp(t, w, wmax)

dt
=

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 43

� w

(1− β)

1

r(t)
δ

�
wmax,

w

(1− β)

� W�

v=1

p

�
t,

w

(1− β)
, v

�

− w

r(t)
p (t, w,wmax)

�
k(t− r(t))

+
�
−Ap(t, w, wmax)

+A
(w − 1)

r(t)
p (t, (w − 1), wmax)

�
(1− k(t− r(t)) (3.2)

dq(t)

dt
=

(1− k(t))
W�

v,w=1

w
r(t)p(t, w, v)− L , if q(t) > 0

0 , otherwise

(3.3)

r(t) = baseRTT +
q(t)

L
(3.4)

All the equations describing the system involve per-connection quantities. In the above

equations, W denotes the maximum possible value of w and wmax. Note that the term
W�

v,w=1

w
r(t)p(t, w, v) corresponds to the mean rate injected into the network per connection.

The probability that a packet be dropped by the bottleneck buffer at time t is denoted

by k(t). As we consider the droptail policy as buffer management, we have:

k(t) =

0, if q(t) ≤ B or
W�

v,w=1

w
r(t)p(t, w, v) < L

1− L
W�

v,w=1

w
r(t)

p(t,w,v)

, otherwise
(3.5)

The parameter sloss(t) denotes the average absolute time of the last loss before time t.

It is estimated thanks to the intensity i(t) of the loss process, assumed to be Poisson as

in [BMR02]:

di(t)

dt
= k(t− r(t))

W�

v,w=1

w

r(t)
p(t, w, v) .

Then we take

sloss(t) =

�
0 , if i(t) < 1

t− t
i(t) , otherwise

(3.6)

We assume losses to be uniformly distributed over time, see Figure 3.1.

Parameter A in Equation (3.2) denotes the increase of the congestion window w(t)

between t and t + dt. Depending on the mode of operation (either Cubic or TCP),

A is hence the time derivative of wc(t) or wtcp(t) given in Equations (2.1) and (2.2):

A = 3C(t − sloss(t) − Vcubic)
2 or A = 3β

2−β
1

r(t) . Note also that taking A = 1
r(t) readily

gives back the results of [BMR02] for TCP New Reno. Each of the four terms in Equation

(3.2) corresponds, in order of appearance, to connections arriving in and leaving state

< w,wmax > in the time interval [t, t + dt[because a loss is detected, and connections

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 44

Figure 3.1: The elapsed time until the last loss sloss(t)

leaving and arriving in state < w,wmax > because of window increase in case no loss is

detected. Figure 3.2 show the 4 possible transitions from end to a state wc, wmax.

Eventually, obtaining the above quantities (the distribution of the connection states,

the queue size, the RTT and the loss probability) allows us to predict all performance

metrics of interest, such as throughput, goodput, buffer occupancy, mean window size

and the distribution of windows. These performance metrics are discussed in Sections

3.4 and 3.5.

Figure 3.2: Connections arriving in and leaving state < w,wmax > in the time interval
[t, t+ dt[

3.3.2 Decreasing the computational intensity of the model

Our model builds on the work of Baccelli et al. in [BMR02], but is more computation-

ally complex as the window size evolution in TCP Cubic is governed by two parameters

(w(t) and wmax(t)). Therefore, the number of states for a connection is W 2. When

implementing the model, e.g., in matlab as explained in the next section, the size of

the occupancy vector is hence the square of that with TCP New Reno. This leads to

problems when we intend to use the model in high BDP scenarios, which are common

in cloud networking, that is when a high value of W is required. In order to overcome

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 45

this issue, we exploit a scaling property of the model, that allows to run the model for

a down-scaled scenario and extrapolate the results to an up-scaled scenario.

Let us consider a scenario, that we call Scenario 2, characterized by L2, B2 and

baseRTT . The quantities p2(t2, w2, wmax2), q2(t2), r2(t2) and k2(t2) can be deduced from

p1(t1, w1, wmax1), q1(t1), r1(t1) and k1(t1), the quantities of Scenario 1 with features L1 =

1/αL2, B1 = 1/αB2 and baseRTT , with α > 1. Let us sketch how this can be achieved

and why. We look for a function f(., ., .) such that (t2, w2, wmax2) = f(t1, w1, wmax1).

As the BDP is scaled by α, we set w2 = αw1 and wmax2 = αwmax1. We then look for t2

as a function of t1 such that the following condition be fulfilled:

p2(t2, w2, wmax2) =
1

α
p1(t1, w1, wmax1) . (3.7)

This condition comes from the mass conservation (i.e., the distribution function must

sum up to 1). We re-write condition 3.7 as

∂p2(t2, w2, wmax2)

∂t2
=
1

α

∂p1(t1, w1, wmax1)

∂t2

and unfold the right-hand side by making appear a partial derivative with respect to t1:

1

α

∂p1(t1, w1, wmax1)

∂t2
=
1

α

∂p1(t1, w1, wmax1)

∂t1

dt1
dt2

.

Substituting the middle term with Equation (3.2) allows to get back the left-hand side

of condition 3.7 assuming that:

• t2 = αt1 in TCP mode, t2 = α1/3t1 in Cubic mode (as it depends on the value of

A),

• k2(t2) = k1(t1) and r2(t2) = r1(t1),

• q2(t2) = αq1(t1),

• the probability of loss (k1(t1)) is low. This last assumption comes from the fact

that the term in front of k(t− r(t)) in Equation (3.2) needs to be neglected so as

to retrieve condition 3.7 with the above mentioned scaling in t. It is important

to note that such assumption makes sense because we consider the steady phase

(congestion avoidance) of a TCP connection, where by definition the TCP sender

strives to avoid loss events. Furthermore, the relevance of this assumption is

verified in the simulations below which are obtained using the scaling property.

It is also worth noting that the scaling for the TCP mode also applies to the model for

New Reno. We report in Figure 3.3 a simple example of the scaling factor α for New

Reno. After a loss event the window decreases by 50%. Suppose we have the scenario1,

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 46

When we apply the scaling factor α to the it, the maximum window D1 and the time T1

for the first scenario are multiplied by a factor α, and we got D2 = αD1 and T2 = αT1.

Figure 3.3: Scaling factor α for New Reno

Regarding the mode of operation of TCP Cubic, the model allows to choose it on

the fly, as it is done in real-world implementations. However, in order to be able to

use the scaling property and reduce the computational intensity of the model for high

BDP scenarios, we need to force the mode of operation of the down-scaled scenario (here

above named Scenario 1) so as to make it similar to that of the up-scaled scenario of

interest. The latter is determined based on L2, B2 and baseRTT thanks to the condition

presented in Section 2.2.2. Forcing the mode is done by imposing the right expression

to A, and then the time scaling is chosen in accordance to the preset mode.

3.4 Numerical validation

In this section, we present validation results based on the three scenarios. Our

approach for validation is to compare the fluid model results against NS-2 simulations.

The former are obtained using a numerical ODE solver of matlab. The TCP packet size

is set to 1480 bytes. We set the number of connections in NS-2 to N = 10. We consider

several metrics to perform this comparison:

(i) The time-series of average window size and instantaneous queue size. The former

is obtained by computing the average window over all connections at each given time

instant, while the former is obtained from Equation (3.3).

(ii) The marginal distribution of the window size. It is obtained by considering a large

time interval where the model has apparently reached equilibrium, gathering the samples

of window sizes at each time instant to form the corresponding cumulative distribution

function (CDF).

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 47

(iii) The time-series of the goodput. The goodput is simply the throughput multi-

plied by the packet loss probability and thus relates to the traffic that the server could

effectively service over a given time period.

We present results by dividing them into three parts. First, the intra-DC and FTTH

scenarios for TCP Cubic. Then, the inter-DC scenario. Eventually, we present results

for New Reno in the FTTH scenario.

3.4.1 Network scenarios

Figure 3.4: Network scenario indicating the N flows, buffer and servicing link

In this chapter, we assume the network is in steady state, i.e., the TCP Cubic sender

has reached equilibrium and operates in the congestion avoidance mode. Thus, we

neglect, in line with the approach in [BMR02], the slow start phase of TCP. However, it

is worth noting that our model could be extended to encompass the transient behaviors.

We further assume that losses are recovered using fast-retransmit and not time-out

We consider a classical dumbbell topology with N TCP senders, N TCP receivers

and a shared bottleneck with fixed capacity N × L and fixed buffer size N × B, shown

in Figure 3.4. The latency of the path between each pair of sender and receiver is fixed

and equal to baseRTT . L and B can thus be seen as the allocated server and buffer

capacities per flow. We assume FIFO/droptail as server/queue management policy at

the bottleneck, as it is the prevalent policy in todays network, including data-centers.

The three scenarios we focus on correspond to the following choices of L, baseRTT and

B:

Scenario A - FTTH-client: this scenario models the case of high-speed clients,

with FTTH access, that are simultaneously downloading from a DC. We thus consider

L = 100Mb/s and baseRTT = 20ms, and take the buffer size BS = 50 packets. The

value of baseRTT corresponds to typical RTTs observed for FTTH clients [HUKC+11],

especially when they access well-provisioned servers. This is in contrast with DSL access

where the latency on the last mile typical represents around 50 ms of the total RTT.

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 48

Scenario B - Intra-DC: we consider B = 1Gb/s and baseRTT = 1ms, as servers

in a typical DC are equipped with 1 Gb/s NICs and the end-to-end delay observed in

DC are in the order of a ms [BAM10]. We also take B = 50 packets

Scenario C - Inter-DC: we consider a dedicated link connecting two DCs that are

far apart. Hence, we take B = 1Gb/s (remember that it corresponds to the average

bandwidth per flow), baseRTT = 50ms and B = 500 packets.

3.4.2 FTTH and intra-DC scenarios

We have grouped the FTTH and intra-DC scenarios together as TCP Cubic operates

in the same TCP mode in both cases. We present in Figures 3.5 and 3.6 the time series of

average window size and queue sizes for the two scenarios. Once the simulation and the

model have reached equilibrium (which takes a longer time for the simulation as we do

not account for the slow-start phase of TCP in the fluid model), we observe a very good

temporal match both in terms of the variation of amplitudes and in the frequency of

oscillations of the two metrics. This is further confirmed by the distributions of window

sizes in Figures 3.7 and 3.8.

0 10 20 30 40 50
0

50

100

150

200

250

Time (seconds)

U
n
i
t
=
p
a
c
k
e
t
s

Queue size − analysis
Mean window size − analysis
Mean window size − simulation
Queue size −simulation

Figure 3.5: Time series of queue size and average window size - FTTH scenario -
TCP Cubic

3.4.3 Inter-DC scenario

In the Inter-DC scenario, owing to the large bandwidth delay product of the path and

the high RTT, TCP Cubic operates in the Cubic mode. The matching between the model

and the simulation is less good in this scenario, as it can be observed from Figure 3.9. Our

fluid model tends to over-estimate the average window as compared to the simulation.

This is confirmed by Figure 3.10, which presents the marginal distribution of window

sizes. What our model does not capture is in fact the loss synchronization effect among

the sources that occurs in the simulation. Indeed, the shape of the average window time

series in Figure 3.9 indicates that almost all connections experience loss simultaneously

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 49

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Time (seconds)
U
n
i
t
=
p
a
c
k
e
t
s Queue size − analysis

Mean window size − analysis
Mean window size − simulation
Queue size −simulation

Figure 3.6: Time series of queue size and average window size - Intra-DC scenario -
TCP Cubic

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Cwnd (packets)

C
D

F

CDF of cwnd − simulation
CDF of cwnd − analysis

Figure 3.7: Congestion window - FTTH scenario - TCP Cubic

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Cwnd (packets)

C
D

F

CDF of cwnd − simulation
CDF of cwnd − analysis

Figure 3.8: Congestion window - Intra-DC scenario - TCP Cubic

and repeatedly. Indeed, the pattern of Figure 2.1 that corresponds to the case of a single

connection is observed on the mean value here. This is possible only if all connections

experience losses simultaneously. A further confirmation of the synchronization of the

TCP sources is that the average window decreases by a factor (1 − β) after a loss,

which is possible only if all sources loose packet simultaneously. We have checked in the

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 50

NS-2 simulations that all the 10 connections have indeed synchronized loss events. We

tried to work around this issue by applying various techniques to avoid synchronization

of sources. Especially, we tried to increase the buffer size or the level of multiplexing

(number of active connections). However, the synchronization pattern of Figure 2.1

appears at each attempt. It seems to be a fundamental feature of TCP Cubic to exhibit

this loss event synchronization as already observed by Hassayoun and Ros in [HR09].

In this paper, the authors studied several high speed version of TCP and observed,

through simulation, the existence of synchronization among sources even when using

several counter-measures like RED policy, traffic on the backward path or time-varying

RTT. They also observed that while a lot of sources experience losses simultaneously, the

utilization of the link remain close to the maximum. This is confirmed by our simulations

and somewhat captured by our model. A last remark regarding Figure 3.9 relates to

the frequency of oscillations that is higher with our model than in the simulations. In

the fluid model, only a fraction of the sources experience losses when the buffer gets

full. The other sources therefore keep on increasing their window, leading to losses at

a higher rate than for simulations where the pressure on the buffer decreases for a long

period of time when all sources simultaneously lose packets. A deeper analysis will be

performed in the next chapter on the origin of synchronization in TCP Cubic.

0 50 100 150
0

1000

2000

3000

4000

Time (seconds)

U
n
i
t
=
p
a
c
k
e
t
s

Queue size − analysis
Mean window size − analysis
Mean window size − simulation
Queue size − simulation

Figure 3.9: Time series of queue size and average window size - Inter-DC scenario -
TCP Cubic

3.4.4 FTTH scenario with New Reno

For the case of New Reno, we obtained a good match between the simulations and the

model. To present a metric different from the ones presented in the previous scenarios,

we consider here the time series of goodput. As it can be seen from Figure 3.11, the

frequency as well as the amplitude of the utilization time series match between the

simulation and the model, once the stationary regime is reached.

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 51

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Cwnd (packets)
C

D
F

CDF of cwnd − simulation
CDF of cwnd − analysis

Figure 3.10: Congestion window - Inter-DC scenario - TCP Cubic

0 1 2 3 4
0

1

2

3

4

5

6

7

8
x 104

Time (seconds)

G
o
o
d
p
u
t

(
p
a
c
k
e
t
/
s
)

Goodput − analysis
Goodput − simulation

Figure 3.11: Time series of utilization - FTTH scenario - New Reno

3.5 Study of fairness and the impact of the buffer size

In this section, we use our fluid models to investigate two key problems. The first

one is the fairness of TCP Cubic as compared to that of TCP New Reno. While TCP

Cubic is able to take advantage of paths with larger BDPs, one can question its ability

to share the bandwidth evenly between flows. We use New Reno as a reference, as it is

known to achieve a good level of fairness when the flows share the same path.

The second issue that we investigate is the impact of the buffer size on the efficiency

of TCP Cubic (and also New Reno). The question of buffer sizing has received a lot of

attention, e.g., [WM05, HR09, CB07]. In [HR09] (respectively [CB07]), they advocate

using a buffer size equal to 10% of BDP (respectively 20% of BDP). In [WM05], authors

have a more complex rule of a buffer size equal to 0.63 × C × RTT
√
N . In our study,

we investigate buffer sizes whose range is between 10% and 60% of the bandwidth delay

product of the path. However, some measurements studies focusing specifically on TCP

Cubic, lead to observing a detrimental effect of small buffer [LSM07]. However, the

authors in [LSM07] pinpointed that the jury was still out concerning the root cause of

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 52

the inefficiency that they observed as it could be an intrinsic feature of TCP Cubic or

an artifact of their testbed.

We restrict ourselves to the intra-DC and FTTH scenarios, as we obtained good

match with simulations for those cases. While TCP Cubic operates in TCP mode in

these scenarios, note that the algorithms that govern TCP Cubic in TCP mode and

TCP New Reno are not the same.

3.5.1 Fairness analysis

Fairness relates to the ability of a mechanism to share the available resources among

a set of competing tasks. However, fairness needs to be studied jointly with an efficiency

metric. Indeed, consider the scheduler of a 1 Gb/s access link with two competing flows.

If the scheduler attributes the full link capacity to one flow and nothing to the other, it

is efficient (the link is fully utilized) but unfair. On the contrary, if each flow receives

1 Mb/s, the scheduler is fair but inefficient. We obviously want to have efficiency and

fairness simultaneously.

For the case of TCP Cubic and New Reno, we assess the fairness of the protocol by

two metrics. First, the distribution of the congestion window, which is computed by

considering a large time interval when the model has reached equilibrium, gathering all

samples and reporting its cdf. However, the marginal distribution of congestion window

is not sufficient as one loses the notion of time when computing this metric. To explain

that, let us consider the following toy example with two TCP flows and a 1 Gb/s link:

at time t1, each flow received 0.5 Gb/s, and time t1 + δ, each flow has 0.1 Gb/s. In this

scenario, we have fairness, even though we are not efficient. Now consider the alternative

case where at times t1 and t1 + δ, one flow receives 0.5 Gb/s while the other receives

0.1 Gb/s. The marginal distribution of rates (and thus windows) is the same in both

scenarios. However, the level of fairness is not the same. To capture the time variation of

the distribution of congestion windows, we compute, at each time instant the coefficient

of variation1 (CoV) of the window size distribution and we report its cdf over a large

time period.

We report in Figures 3.12 and 3.13 the marginal distribution of congestion window

(we normalized the results of the second scenario by the mean window of the first one

to ease presentation) and of the CoV over time of the congestion window distribution.

It is clear that TCP Cubic achieves a better level of fairness than TCP New Reno over

the two scenarios of interest, as (i) the marginal cdfs span over a smaller set of values

for TCP Cubic and (ii) the CoVs for TCP Cubic are both smaller and span also over a

smaller set of values.

1The CoV is the ratio of the standard deviation to the mean of a distribution. It can be seen as a
normalized measure of its variability.

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 53

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Normalized cwnd (packets)

C
D

F

Scenario A − Cubic

Scenario B − Cubic

Scenario A − New Reno

Scenario B − New Reno

Figure 3.12: Congestion window - Intra-DC and FTTH - TCP Cubic and New Reno

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

0.2

0.4

0.6

0.8

1

CoV of cwnd

C
D

F

Scenario A − Cubic

Scenario B − Cubic

Scenario A − New Reno

Scenario B − New Reno

Figure 3.13: CoV of congestion window - Intra-DC and FTTH - TCP Cubic and New
Reno

As stated earlier, fairness and efficiency have to be assessed jointly. We report in

Figures 3.14 the distribution of utilization for the FTTH and intra-DC scenarios for

both TCP Cubic and New Reno. We can now conclude that the better fairness of TCP

Cubic is not achieved at the expense of a lower link utilization.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

Utilization

C
D

F

Scenario B − Cubic
Scenario A − Cubic
Scenario C − Cubic
Scenario B − New Reno
Scenario C − New Reno

Figure 3.14: Utilization - Intra-DC and FTTH - TCP Cubic and New Reno

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 54

3.5.2 Impact of the buffer size

In this section, we investigate the impact of the buffer size on the utilization of the

queue (and consequently of the server). We report results only for the intra-DC scenario.

We vary the buffer size at the bottleneck from 10% of the BDP to 100% of the BPD

for both TCP Cubic and New Reno - see Figures 3.15 and 3.16, where we present the

normalized occupancy of the queue. Several conclusions can be drawn from these figures.

First, both TCP Cubic and New Reno are greedy in the sense that the larger the

buffer size, the larger the queue occupancy. It is not necessarily a good news as larger

queue occupancy means larger set-up latency for new incoming flows and larger jitter

for time sensitive traffic, e.g., Web searches in a DC [VHV12]. Second, TCP Cubic is

more greedy than New Reno. Third, TCP New Reno is clearly less efficient than TCP

Cubic for buffer sizes smaller than 60% of the BDP as we observe a significant fraction

of mass at zero, meaning that the buffer is often empty, hence the server is likely to be

underutilized.

Overall, for the case of TCP Cubic, our model suggests that this version of TCP is

able to survive with buffer sizes as small as 30% of the BDP. The experimental results

obtained in [LSM07] are thus not pathological behaviors of TCP Cubic, but are likely

to be due to another cause, e.g., a bad implementation (the author in [LSM07] used

an early implementation of TCP Cubic in the Linux kernel). Note however that when

the buffer size becomes very low, other technical problems might appear in real network

appliances (such as competition between reading and writing into buffers). Hence, while

the behavior observed in [LSM07] does not seem to be due to TCP Cubic itself, it is

likely to be observed with other real experimental networks.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized queue size (packets)

C
D

F

Scenario B − Cubic, BS=BDP
Scenario B − Cubic, BS=0.6 BDP
Scenario B − Cubic, BS=0.3 BDP
Scenario B − Cubic, BS=0.1 BDP

Figure 3.15: Impact of buffer size - Intra-DC - TCP Cubic

3.6 Conclusion

In this chapter, we have derived a fluid model for TCP Cubic, that allowed to predict

the values of various metrics such as distribution of the window sizes of N connections,

Chapter 3. Understanding TCP Cubic Performance in the Cloud: a Mean-field
Approach 55

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized queue size (packets)

C
D

F

Scenario B − New Reno, BS=BDP
Scenario B − New Reno, BS=0.6 BDP
Scenario B − New Reno, BS=0.3 BDP
Scenario B − New Reno, BS=0.1 BDP

Figure 3.16: Impact of buffer size - Intra-DC - New Reno

throughput, RTT, loss rate and queue size. We proved a scaling property that allowed

us to run the model for cloud networking scenarios of interest, without entailing a state

explosion and hence a prohibitive computational cost. The model is validated against

NS-2 simulations in these scenarios. We exhibit that the fit is very good for the intra-

DC and FTTH scenarios, while it is less good for the inter-DC scenario. In this last

mode, TCP Cubic operates in Cubic mode and causes loss synchronization amongst the

connections. We further investigate this issue in Chapter 5 to understand if it comes

from the simulator or can be observed in a real network.

We finally assess the fairness and buffer size impact for TCP Cubic and TCP New

Reno. TCP Cubic is at once more efficient and fair than TCP New Reno, in particular

in the case of low buffer sizes. Our results show that, in contrast to TCP New Reno,

TCP Cubic is able to survive with buffer sizes as small as 30% of the BDP, thereby

shedding some light on the possible cause of bad utilization observed in experimental

works for such buffer sizes.

Chapter 4

Performance Analysis of Orange

cloud solution: Cube

4.1 Introduction

In the previous chapter, we have analyzed the stability of TCP in scenarios that rep-

resent the environment where Cloud customers evolve (latency of 20ms and bandwidth

equal to 100 Mbps, assuming a client with FTTH connection) and intra Data Center

environments (latency of 1ms and bandwidth equal to 1Gbps and 10Gbps), by means

of an analytical model employing the Mean Field theory [BW09] . Thanks to the Mean

Field based model, we could study the performance of TCP Cubic using a fluid model

that was based on mean-field approach. The results of the proposed analytical model

have been validated by mean of the NS-2 network simulator.

We wanted to go one step further and we decided to study and compare the behavior

of real TCP flows in a Data Center environments with the ones obtained with our model.

We have then decided to carry out several experiments in real networks.

In this chapter, we will show in details the topology and characteristics of equipments

used in our experiments. We will describe the challenges that we have faced in order

to execute our campaign of experiments and the methodology used to understand the

obtained results.

4.2 Cube Beta Infrastructure as a Service (IaaS)

We have studied TCP performance in real networks by means of two testbeds. The

first testbed, called Cube, is an experimental network used by Orange Lab in order to

test the new services provided by the France Telecom (FT) company. Since this testbed

uses the real network infrastructure of FT, we do not have administrative rights on the

56

Chapter 4. Performance Analysis of Orange cloud solution: Cube 57

network equipments but only on the end hosts, which are Virtual Machines deployed

over different servers where we do not have administrative rights also.

The purpose of this section is to present one of Orange clouds solution: Cube. Orange

Business Service offer “Cube” as an IaaS (Infrastructure as a service). Cube is part of

Montsouris datacenter. Four virtual machines were tested in Cube to transfer data to

4 others virtual machine in Sophia. These tests were conducted with various tools, in

particular “Iperf” (https://iperf.fr) and perl scripts which we devised specifically for

either read data from the disc, or generate data in memory.

4.2.1 Cube environment

The objective of the Cube program [Gro13] is to build an internal private cloud IaaS

capability for Orange group entities, using technologies and processes consistent with

the Orange Business Services offer to the external market. The service will be delivered

from selected tier 1 group data centers, operated by internal IT operations teams and

accessible to all group entities via the Group Intranet Network (GIN).

4.2.1.1 Sandbox Environment

The Cube Beta offer is an on-demand or personal IaaS service providing hands on

experience to application architects, developers and infrastructure teams. Subscribers

can request virtual machines from a catalog and use it for experimentation in developing

and deploying applications in a cloud environment. The objective is to enable greater

understanding of how cloud technologies and services can be across the group to trans-

form Orange IT supply chain and to validate assumptions on potential transformation

scenarios.

The Sandbox service is accessed via a simple self-service portal called E2C developed

within Orange Labs Networks and Carriers OLNC. The standard VMware application

programming interfaces (APIs), is also available for use in custom projects.

Two data centers host the service, Lodz (Poland) and Montsouris (France) and with

an initial capacity of approximately two hundred virtual machines at each center.

The service is open to all group affiliates via the Group Intranet Network (GIN). As

this is a prototype, a single “zone” or organization is created in each center shared by

all users.

4.2.1.2 Service Description

Services that a cloud subscriber (user) can consume are commonly referred to as

a service catalog, where a set of pre defined options can be selected via a web-based

portal (subject to appropriate authorization, and initial set up), and will be provisioned

in the majority of case automatically. The subscriber can then create infrastructure

Chapter 4. Performance Analysis of Orange cloud solution: Cube 58

environments or projects which can be used to support application development and

test production.

Each subscriber can create a cloud project, which can have a maximum of 10 virtual

machines from a given list. A selection of standard (x86, Windows and Linux) images

from the common bundle catalog is available to configure the machines. Users can

request to upload custom images which will be assessed on a case by case basis.

Sandbox service users access the service via a portal called E2C. This portal leverages

vCloud API and E2C Engine API for a restricted set of functionalities. The portal

presents a tab called “catalog” where users can find, browse, and deploy templates from

the catalog. Those templates represent containers provisioned with one VM, called

vApps.

Sandbox Service users can deploy and manage Load Balancers in their Cloud Projects.

Users can select the VMs to be load balanced and on which port. The load balancer can

have three behaviors: load balance TCP, HTTP or HTTP with session tracking.

4.2.2 Orange Group Architecture

Figure 4.1 shows the relationship between the platforms and the GIN network.

Figure 4.1: GIN Network and Platforms Relationships

Figure 4.2 shows the connection between the Cube platforms, the GIN, and the

countries. Countries need to configure local firewall access to the Cube services.

In Figure 4.3 we report all machines we used in testing. We created four virtual

machines in Cube Montsouris (two Linux machines and two Windows machines). On

Sophia side, we have four test machines, too.

Outgoing traffic for Sophia to the outside are allowed only through one of the following

ports:

Chapter 4. Performance Analysis of Orange cloud solution: Cube 59

Figure 4.2: Cube Platforms, GIN & Countries Connections

Figure 4.3: Sophia/Cube machines

Table 4.1: Characteristics of the Cube machines

Power Memory Storage tcp congestion control protocol

VMwindows-1 (small) 1vCPU 2GB 32 GB Compound TCP

VMwindows-2 (small) 1vCPU 2GB 32 GB Compound TCP

VMlinux-132 (small) 1vCPU 2GB 20 GB TCP Cubic

VMlinux-125 (medium) 2vCPU 4GB 25 GB Bic TCP

• HTTP (80)

• HTTPs (443)

• SSH (22)

• RDP (3389)

Characteristics of Cube machines are given in table 4.1.

Chapter 4. Performance Analysis of Orange cloud solution: Cube 60

4.3 Disk Benchmarking

4.3.1 Motivation

In this section, we present results obtained with benchmarking tools for disk read

and write operations. The starting point of this analysis was a problem observed during

traffic captures on some Cube instances. We indeed observed large periods of silence

(no packet captured) in the tcpdump files when dumping traffic on our Cube machines.

In addition, tcpdump reported a number of “packets dropped by kernel” events. The

latter type of events might be to a too loaded CPU or a too slow disk. As the CPU of

the instances were apparently not excessively used, we decided to further investigate in

details the read and write performance of our Cube instances.

Benchmarking disk performance requires an a priori idea of the type of I/O workload

generated by the application we want to use. Fortunately, in our case the I/O workload

we want to test is a simple one as the tcpdump process is writing all frames of all TCP

transfers in a single file.

Before talking further about disk performance, we can note that disk I/O performance

is not the only suspect in our investigation. In particular the transport layer is a possible

suspect as TCP might decide to stop sending for a period of time. Also, the vitualization

layer, VMware in the case of the Cube, might be responsible for the capture problem

we face. Virtualization might be responsible either directly if the system administrator

can cap the access to resources (disk, memory, CPU) of the instances or indirectly if

the load imposed on the disk by all the VMs on the physical server is too high. Last

but not least, the hardware itself can the root cause behind I/O performance. It turned

out, as we will see later in this section, that the blame can not be put on the transport

layer, but on the virtualization layer itself. However, we deem that the study of disk

I/O performance is a worth investigating problem per se and we decided to address the

following questions:

• What is the actual difference between raw and legacy (through the file system)

operations?

• What is the pure impact of the hypervisor, i.e., when a single VM is accessing a

local disk?

• What is the impact of the request size? Indeed, to write 128 MB of data, a process

can issue 103 requests of 128 KB or 128 requests of 1 MB.

The rest of our study on the I/O performance in a cloud environment is a follows.

First, we recall the different software (file system, scheduler) and hardware components

(mainly controller) involved in I/O operations. We also present the state of the art tools

Chapter 4. Performance Analysis of Orange cloud solution: Cube 61

that we use, namely dd and hdparm. Next, we investigate the I/O performance of the

hosts involved in the TCP transfers we performed in Cube. Last, we report results of

application of dd and hdparm in a small tested available at I3S, where a server can be

booted either under a native CentOS operating system or under VMware or Xen. The

flexibility offered by this testbed enables to study the minimal impact of virtualization

as we test the same hardware with or without virtualization.

4.3.2 Reading and Writing from disks and through file systems

I/O devices are by far the slowest memory components of a computer. To compensate

for the speed discrepancy with the CPU and RAM, a number of strategies are put in

place to improve performance, which results in delaying as much as possible disk.

• Components involved in optimizing write operations:

– Caches of the file systems are the primary components involved in improving,

from the application viewpoint.

– The scheduler of I/O requests then seeks to aggregate requests as much as

possible, which it does by delaying the sending of write operations to the disk

controller.

– The disk controller seeks to minimize the moves of the disk heads (for mag-

netic disks) by appropriately shuffling the order in which requests are sub-

mitted to the disk itself.

• Components involved in optimizing read operations:

– The is mostly the operating system that seeks to optimize read performance

by asking more data than was actually requested by the application. It is

based on the assumption of data locality, i.e., that an application which asked

to read a block of a file is likely to read the following blocks in the near

future. The effectiveness of this strategy depends on the exact behavior of

the application.

dd and hdparm

hdparm [Ubub] is a performance and benchmarking tool for hard disks. It is primarily

used to tune and optimize disk parameters, but also has a switch to use it as a simple

benchmark tool. hdparm can perform two benchmarks:

• The speed of reading through the buffer cache to the disk without any prior caching

of data. (Timing buffered disk reads, -t option).

Chapter 4. Performance Analysis of Orange cloud solution: Cube 62

• The speed of reading directly from the Linux buffer cache without disk access.

(Timing cached reads, -T option).

The first option gives an indication of the throughput of the processor, cache, and

memory of the system under test. The second one measures how fast the drive can

sustain sequential data reads, without any filesystem overhead. It is also usual to run

these tests couple of times to get accurate results. The command to use is:

hdparm -Tt /dev/sda

The second tool used to assess disk and memory performance is dd [Ubua] [jlo08]

[Rom10], it is a command on Unix and Unix-like operating systems whose primary

purpose is to convert and copy a file. On Unix, device drivers for hardware (such as

hard disks) and special device files (such as /dev/zero and /dev/random) appear in the

file system just like normal files; dd can also read from (and in some cases write to)

these files.

As a result, dd can be used for tasks such as backing up the boot sector of a hard

drive, and obtaining fixed amount of random data. The dd program can also perform

conversions on the data as it is copied, including byte order swapping and conversion to

and from the ASCII and EBCDIC text encoding.

Read/write tests can be performed on Raw disk and also a Filesystem. For example

the writing test on a filesystem is done by creating a “woueb” file consisting of 256,000

4KB blocks:

time sh -c “dd if=/dev/zero of=/home/woueb bs=4096 count=256000 conv=fdatasync

&& sync”

Where :

- bs : is the block size, it is a unit measuring the number of bytes that are read,

written, or converted at one time

- count : is the number of blocks to be copied.

- conv=fdatasync : it tells dd to require a complete “sync” once, right before it

exits. So it commits the whole data, then tells the operating system: “OK, now

ensure this is completely on disk”, only then measures the total time it took to do

all that and calculates the benchmark result. It avoid being fooled by the OS that

would cache the data before pushing them to the disk.

For the reading test from the filesystem, it is the opposite: we read “woueb” file that

was previously created:

time sh -c “dd if=/home/woueb of=/dev/zero bs=4096 count=256000 && sync”

Chapter 4. Performance Analysis of Orange cloud solution: Cube 63

To make dd tests against a raw device instead of a filesystem, we use the following

command line:

dd if=/dev/sda of=/dev/zero bs=4096 count=256000

4.3.3 Results on Cube experiments

4.3.3.1 I/O requirements: back of the envelope computation

In this section, we compute a trivial upper bound on the I/O requirement of the

tcpdump process we run in Cube. As we will see later, the network path between the

Cube datacenter in which we performed experiments and the Sophia Orange Lab is not

managed in a symmetric manner. There is apparently no restrictions in the up direction,

from Sophia to Cube, with apparently 300 Mb/s. In contrast, in the down direction,

we are limited to around 3 to 4 Mb/s per connection. The total capacity is however

apparently symmetric. We thus assume that our tcpdump process has to write on the

disk at a speed of 300
8

96
1500 = 2.4 MB/s as we capture only the first 96 bytes of the full

MSS packets sent over the network interface1. In contrast, if tcpdump has to write on

the disk for a network speed around 3Mb/s, it needs a modest 2.4KB/s.

We report in Figure 4.4 the average writing speed over several experiments made

with tcpdump. To compute this speed, we divided the size of the file by the difference

of the first and the last timestamps of the captured frames. Note that these values are

upper bounds as the operating systems might tell the tcpdump process that the writing

is completed while the write operation is still in progress but absorbed by the writing

buffers.

300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Speed (KB/s)

Small Linux VM in Cube

dd writing speed
writing speed for tcpdump

Figure 4.4: Writing speed, dd-tcpdump, small Linux VM in Cube

1We discovered during our experiments that the default snaplen value of TCP, i.e., the default
maximum size of a captured was not 96 but 1500 bytes in some OS.

Chapter 4. Performance Analysis of Orange cloud solution: Cube 64

4.3.3.2 Cube instances and SND6 performance

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

C
D

F

Reading speed without disk access (MB/s)

hdparm, VMs in Cube

Small Linux VM
Medium Linux VM

Figure 4.5: Reading speed with-
out disk access (MB/s), Linux

VMs in Cube

300 400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

C
D

F

Reading speed with disk access (KB/s)

hdparm, VMs in Cube

Small Linux VM
Medium Linux VM

Figure 4.6: Reading speed with
disk access(KB/s), Linux VMs in

Cube

We performed several hdparm tests for both Linux VMs in Cube. Figure 4.5 rep-

resents the CDFs of the reading speed without disk access, for different tests made on

both Linux VMs. This figure represents the results of the hdparm option “-T”. The blue

curve represents the results for the small Linux VM. The red curve is for tests performed

on the medium Linux VM. Each time, 10 tests were carried out, then we plot the CDFs

to see the variability of results.

When comparing the results of both VMs, we find that medium Linux VM perfor-

mance is far better than those obtained by the small Linux VM when reading directly

from the buffer cache. Its is reasonable to believe that this result is dependent on the

hardware (CPU, memory) of the physical server of this medium VM that must be more

powerful.

Results of the “-t” hdparm option are presented in Figure 4.6, where we plotted the

CDFs for reading speed with disk access. We note also that performance is similar on

both instances and not very high. This suggest a limitation imposed by the hypervisor

and the way disks are exposed to the virtual machines.

In our early tests, we did not consider the “conv = fdatasync” option. We report

the speed results in Figure 4.7. Note that in this case the speed was of the order of

Gb/s, such speed values correspond to memory access speed and not disk speed. So, it

was necessary to add the “conv = fdatasync” option, and also to empty the read/write

cache each time to avoid measuring the speed of the memory, using the command line :

echo 3� /proc/sys/vm/drop caches
The results presented in the rest of this section make use of this option to measure

performance related to the disk and not to the operating system.

We report in Figure 4.8 the CDFs for reading/writing speeds results from and to a

filesystem, and also the reading speed from the raw device, performed on the small Linux

VM. We also plotted on the same figure, the hdparm results with disk access in order

to compare them with the dd reading speeds from the raw device. Note that the four

Chapter 4. Performance Analysis of Orange cloud solution: Cube 65

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (GB/s)

Small Linux VM in Cube

dd read
dd raw

Figure 4.7: Disk performance using dd without conv option, small Linux VM in Cube,
Reading speed (GB/s)

curves possess the same speed unit KB/s. We observe that dd results are very closer on

both filesystem and raw device even though we would have normally expect that raw

results should be better than read through the filesystem. Additionally, hdparm results

look fairly consistent with the raw device results.

300 400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (KB/s)

Small Linux VM in Cube

hdparm read
dd write
dd read
dd raw

Figure 4.8: Disk performance
using dd with conv option, small

Linux VMs in Cube

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (KB/s)

Medium Linux VM in Cube

hdparm read
dd write
dd read
dd raw

Figure 4.9: Disk performance
using dd with conv option,
medium Linux VMs in Cube

We report in Figure 4.9 dd and hdparm results for the medium Linux VM. We

can notice that the disk performance given by dd, on both filesystem and raw device,

decrease for the medium VM compared to the small one, were values vary between 100

and 500KB/s rather than 800 to 1000KB/s. But hdparm results still closer to small

Linux VM results. In fact, this difference among hdparm and dd results may be caused

by the load of physical servers that host both VMs.

We further performed hdparm tests on one Windows VMs in Cube. We report results

with and without disk access in Figures 4.11 and 4.10, respectively. We observe through

these results that the reading tests for the Windows VM are higher in the morning,

which may be caused by the fact that the physical server of this VM is more loaded in

the afternoon. We observe also, that the reading speed values given by the hdparm tool

have the same range and are similar to Linux VMs results with disk access.

Chapter 4. Performance Analysis of Orange cloud solution: Cube 66

400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1
hdparm, Windows VM in Cube

Reading speed without disk access (KB/s)

C
D

F

Morning
Afternoon

Figure 4.10: hdparm, Reading
speed without disk access (KB/s),

Windows VM in Cube

700 800 900 1000 1100 1200 1300
0

0.2

0.4

0.6

0.8

1
hdparm, Windows VM in Cube

Reading speed with disk access (KB/s)

C
D

F

Morning
Afternoon

Figure 4.11: hdparm, Reading
speed with disk access (KB/s),

Windows VM in Cube

Intermediate conclusion: the above results of disk benchmarking are difficult to

interpret as we are not expert in disk benchmarking. Let us first recall that the reason

why we did these tests was to find the root cause of the silence periods in the tcpdump

traces during the network transfers. We can still draw general conclusions:

- the disk performance is apparently low.

- it depends on the type of VM we asked for but with no logic, e.g., small instance

can have better performance than intermediate instances. This might be due the

fact that these VMs we’re running in different physical servers and apparently the

physical server for the small instance is newer than the one of the larger instance.

- results depend on the time of the day. This was more to be expected in a cloud

context.

To move forward, we decided to:

1. perform the same tests with the machine used in Sophia that feature different

hardware and are shared among people.

2. perform tests in a controlled environment with servers that could be virtualized or

run in native mode. These servers are fully under our control and should enable

to assess the impact of virtualization on observed disk performance.

Performance of machines at Sophia

We made some tests using hdparm tool to evaluate the 2 local machines in Sophia,

SND6 and SDIP. These machines will be used to carry out tests in both directions i.e.,

from Sophia to Cube and from Cube to Sophia. We report hdparm results in Figures

4.12 and 4.13.

Chapter 4. Performance Analysis of Orange cloud solution: Cube 67

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

C
D

F

Reading speed without disk access (MB/s)

hdparm, Sophia machines

SND6
SDIP

Figure 4.12: Reading speed
without disk access (MB/s),

SND6/SDIP

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

C
D

F

Reading speed with disk access (MB/s)

hdparm,Sophia machines

SND6
SDIP

Figure 4.13: Reading speed
with disk access (MB/s),

SND6/SDIP

From the results presented in Figures 4.12, it is clear that SND6 performance is

better compared to SDIP performance. We observe a correlation between performance

and physical hardware characteristic as SND6 is newer than SDIP. Indeed, it is known

that newer machines tend to have simultaneously better hard driver as well as CPU and

memory chips and buses.

We can conclude from these tests that the performance of the machines in Sophia are

clearly higher than the ones of the VMs in Cube. We however still observe performance

variation that we attribute to the fact that the machines are shared among many users.

This is why, in the next section, we move to the study of machines in isolation with or

without virtualization in place.

4.3.4 Results obtained with the I3S testbed

In order to evaluate the impact of virtualization on disk performance, we performed a

series of measurements using 2 Linux machines in I3S, Vsignet1 and Vsignet2. Vsignet1

is a physical server, booted alternatively from different hard drives containing the three

operating systems analyzed : a native (non virtualized) CentOS, VMware and Xen. The

2 DELL servers vsignet1 and vsignet2 have the following characteristics:

• Model: Dell PowerEdge R410 and R510

• Processors: 8 cores - 2 * quad-core Intel Xeon processor 5600 series

• System speed: 2.13GHz, Bus speed: 4.80GT/s

• Memory: 12GB of DDR3 1067MHz

• RAID Controller: PERC H200 (6Gb/s)

• Network interfaces: Embedded Dual-port Broadcom NetXtreme II 5716

Chapter 4. Performance Analysis of Orange cloud solution: Cube 68

4.3.4.1 Native performance

We report in Figures 4.14 and 4.15 the disk performance obtained by dd and hdparm

tools for both I3S machines. Results show that both machines possess stable and similar

performance : Writing speeds of around 80MB/s, reading speed from the filesystem of

about 100MB/s. We can observe also that the reading speed results from the raw device

are more consistent with hdparm results.

80 90 100 110 120 130
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (MB/s)

Vsignet1 I3S

hdparm read
dd write
dd read
dd raw

Figure 4.14: Reading/Writing
Speed (MB/s), Vsignet1 machine

60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (MB/s)

Vsignet2 I3S

hdparm read
dd write
dd read
dd raw

Figure 4.15: Reading/Writing
Speed (MB/s), Vsignet2 machine

4.3.4.2 Performance under Xen and VMware

We want to study the behavior of hdparm and dd when it comes to virtual machines.

We consider the 2 virtualized environments Xen and VMware, and we report the results

in Figures 4.16, 4.17, 4.18 and 4.19. We observe that in a virtualized environment, dd

and hdparm tools speeds achieve better performance compared to the native case.

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (MB/s)

dd write, VMs in Vsignet1

CentOS
VMware
Xen

Figure 4.16: dd write (MB/s),
the three OS

80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (MB/s)

dd read, VMs in Vsignet1

CentOS
VMware
Xen

Figure 4.17: dd read (MB/s), the
three OS

We believe that the root cause behind this observation is that dd and hdparm do

not interact directly with the actual disk controller which is under the control of the

hypervisor, but with the hypervisor itself through what is called the front end driver.

It is likely that the front end reports that a write operation as completed before it is

actually completed by the real driver. Hence the overestimation of performance that we

observe.

Chapter 4. Performance Analysis of Orange cloud solution: Cube 69

This holds for disk write but does not hold for disk read. Wet further observe different

performance between Xen and VMware. It seems that Xen and VMware do not use the

same driver or,more likely, have a different way of parametrizing it.

120 140 160 180 200 220 240 260
0

0.2

0.4

0.6

0.8

1
C

D
F

Speed (MB/s)

dd raw, VMs in Vsignet1

CentOS
VMware
Xen

Figure 4.18: dd raw (MB/s), the
three OS

100 120 140 160 180 200 220 240 260
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (MB/s)

hdparm, VMs in Vsignet1

CentOS
VMware
Xen

Figure 4.19: hdparm with disk
access(MB/s), the three OS

4.3.4.3 Impact of block size

References on the dd command say that for some uses of the dd command, block

size may have an effect on performance. For example, when recovering data from a hard

disk, a small block size will generally cause the most bytes to be recovered. Issuing many

small reads is an overhead and may be non-beneficial to execution performance.

For greater speed during copy operations, a larger block size may be used. When

dd is used for network transfers, the block size may have also an impact on packet size,

depending on the network protocol used.

So as to evaluate the impact of the block size on performance, we performed various

tests with different block sizes on Vsignet2. For the various tests, the file size is always

equal to 134MB. We then report the different curves obtained by dd, the write/read from

a filesystem and also from the raw device in Figures 4.20, 4.21 and 4.22, respectively.

106 108 110 112 114 116 118 120 122
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (MB/s)

dd write, Vsignet2 I3S

bs=64K
bs=128K
bs=512K
bs=1M
bs=4M
bs=16M

Figure 4.20: Disk performance
using dd, different block sizes, writ-

ing speed (MB/s), Vsignet

136 138 140 142 144 146 148 150 152 154 156
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (MB/s)

dd read, Vsignet2 I3S

bs=64K
bs=128K
bs=512K
bs=1M
bs=4M
bs=16M

Figure 4.21: Disk performance
using dd, different block sizes,
reading speed (MB/s), Vsignet2

Chapter 4. Performance Analysis of Orange cloud solution: Cube 70

132 134 136 138 140 142 144 146 148 150
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (MB/s)

dd raw, Vsignet2 I3S

bs=64K
bs=128K
bs=512K
bs=1M
bs=4M
bs=16M

Figure 4.22: Disk performance using dd, reading speed from the raw device, Vsignet2

From the results of writing/reading from a filesystem and the raw device, we observe

that varying the block size introduced a slight variation in the speeds values on the order

of a few MB/s.

Then, in order to check the previous assumptions for the block size effect on a virtu-

alized environment, we reboot Vsignet1 on VMware and we performed a set of tests on

the same virtual machine with 128MB file size, with 2 block sizes 100MB and 64KB.

When comparing the results of Figure 4.23 with the native case in Figure 4.14, we

find that the read/write speeds from/to a filesystem are comparable with the native

case. While hdparm and raw device results are almost doubled, which may be due to

virtualization. We can observe also that the results with two block sizes provide corre-

lated performances, so the block size parameter does not introduce serious performance

degradation’s as it was mentioned in the literature. Thanks to hdparm and dd tools

60 80 100 120 140 160 180 200 220 240 260
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (MB/s)

VM in Vsignet1, I3S

hdparm read
dd write
dd read
dd raw

Figure 4.23: Disk performance
(MB/s), one VM in Vsignet1, 128

1M blocks

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

C
D

F

Speed (MB/s)

VM in Vsignet1, I3S

hdparm read
dd write
dd read
dd raw

Figure 4.24: Disk performance
(MB/s), one VM in Vsignet1, 2000

64KB blocks

, we have had an idea about the performances of VMs in Cube, machines in Sophia,

and machines in I3S. These results show that the disk performance on a virtualization

environment depend on several factors :

• virtualization configuration

Chapter 4. Performance Analysis of Orange cloud solution: Cube 71

• the server load

• physical Hardware ...

By comparing the results of two VMs, we find that the read/write speeds for the small

Linux VM are higher than those for the medium VM. So, to make tests from Cube to

Sophia, we chose the small VM as it is more powerful than the medium one, and also

because it possesses TCP Cubic as congestion control protocol.

The tests we did in I3S suggest that virtualization does not degrade performance in

terms of disk access. Hence the bad performance observed with Cube is a configuration

problem and the blame can not be put directly on the virtualization layers to be fair,

we have to mention that Cube was a first prototype inside Orange. It has now been

upgrading. However we did not have the possibility to redo experiments on this new

IaaS service due to lack of time.

Regarding tests from Sophia to Cube, SND6 machine seems to be more powerful, so

it is better suited for tests from Sophia to Cube.

4.4 Network Benchmarking

In this section, we report on the network measurements performed from Cube ma-

chines. The scenario we focus on is a simple one: we generate traffic from or to one

Cube machine to one host located in Orange Labs in Sophia. The network connection

between the two sites is provided by the Group Intranet Network (GIN). As we will see,

the path is not managed in a symmetric manner: a single connection can obtain far

more bandwidth in the up (outside to Cube) than down (Cube to outside) direction.

Hence, we will separate in this section the analysis of the two directions.

We present hereafter the tools we used, namely Iperf, perl-file and perl-data, followed

by our methodology. Next, we report the measurements in the Sophia to Cube and then

on the Cube to Sophia direction. We use this specific ordering as the firewalls setup in

the direction Sophia to Cube direction enables to use Iperf natively (without any SSH

tunnel) as well as perl-file and perl-data, which allows to calibrate the tools against each

other. In the reverse direction, we resort on comparing the performance of our tools

with Iperf in a SSH tunnel.

4.4.1 Description of the tools: Iperf, Perl-data and Perl-file, and the

trace analysis tools

4.4.1.1 Iperf

Iperf [fANR] is a commonly used network testing tool that can create TCP and UDP

data streams and measure the throughput of a network that is carrying them. It is a

Chapter 4. Performance Analysis of Orange cloud solution: Cube 72

tool for network performance measurement written in C.

Iperf was developed by the Distributed Applications Support Team (DAST) at the

National Laboratory for Applied Network Research (NLANR), a research lab that

merged with the University of California San Diego’s CAIDA group, but which was

shut down on December 31, 2006.

This tool allows the user to set various parameters that can be used for testing a net-

work, or alternatively for optimizing or tuning a network. Iperf has a client and server

functionality, and can measure the throughput between the two ends, either unidirec-

tionally or bi-directionally. It is an open source software and runs on various platforms

including Linux, Unix and Windows.

Iperf options that we use during the tests are :

• -i : Sets the interval time in seconds between periodic bandwidth, jitter, and loss

reports

• -l : The length of buffers to read or write

• -s : Run Iperf in server mode

• -c : Run Iperf in client mode, connecting to an Iperf server running on host

• -t : The time in seconds to transmit for. Default is 10 seconds

• -p : The server port for the server to listen on and the client to connect to

• -w : Sets the socket buffer sizes to the specified value. For TCP, this sets the TCP

window size

Example : iperf -c 10.114.7.132 -p 80 -t 100 -i 1 -l 10K

4.4.1.2 Perl Socket

We created the following Perl [Wal87] files :

• serv file.pl and client file.pl are files to execute when sending a file.

• serv data.pl and client data.pl are files to transfer data generated in memory .

For reasons of port management, communications are tolerated in the direction Sophia

outward, so we set up the server on VM132 in Cube. Iperf does not offer this feature,

which is why we devised thoses tools. Once the socket [Uni80] is created, the transfer

can be done in one of the two directions. So, it remains to indicate at the client side

the direction of data transfer. The principle of sending data generated in the memory

is as follows: we created a string of fixed size (16K bytes) at the VM132 in Cube, and

we keep sending the data for 100 seconds. Whereas to transfer a file, after generating

Chapter 4. Performance Analysis of Orange cloud solution: Cube 73

the file using the dd command, we send (in the direction of transfer it into blocks of

16K-byte size).

We use in conjunction with these perl files a packet capture tool tcpdump to de-

termine the TCP statistics (stats and distributions). Also, we changed the setting

tcp no metrics save = 1. This prevent TCP to remember some characteristics of the

last connection. Therefore the results of different successive tests will be independent.

4.4.1.3 Sniffing/analyzing tools

To capture and analyze the traffic performance, it was necessary to use software tools.

We used various public tools and an internal tool developed at Orange Labs.

• Dipcp : DIP (Datawarehouse IP) is a traffic analysis tool developed at Orange

Labs. It is a tool that allows traffic analysis following two modes:

– A real-time mode: DIP reads a snapshot of IP segments from one interface

Ethernet and calculated performance indicators.

– A stored-capture mode : analysis method of stored capture. This is the mode

that we used.

Example of the used command :

dipcp -C hm -T hum -S up=eth:00:14:5e:19:36:24 -g 0 -r File1.cap

After applying the “dipcp” command to a capture file, a new file “.Csv” is gener-

ated. This file contains the computed statistical indicators.

• Tcpdump : Tcpdump [Mar10] is a command-line packet analyzer. It allows the

user to intercept and display TCP/IP and other packets being transmitted or

received over a network to which the computer is attached. Tcpdump is free

software and works on most Unix-like operating systems. It uses the libpcap

library to capture packets.

• Tcptrace : Tcptrace [Ost94] is a tool written by Shawn Ostermann, for analysis

of TCP dump files. It can take as input the files produced by several popular

packet-capture programs, including tcpdump, snoop, etherpeek, HP Net Metrix,

and WinDump. This tool can produce several different types of output containing

information on each connection seen, such as elapsed time, bytes and segments sent

and received, retransmissions, round trip times, window advertisements, through-

put, and more. It can also produce a number of graphs for further analysis.

• Wireshark : Wireshark [Coma] is a free and open-source packet analyzer. It is

used for network troubleshooting, analysis, software and communications protocol

Chapter 4. Performance Analysis of Orange cloud solution: Cube 74

development, and education. Originally named Ethereal, in May 2006 the project

was renamed Wireshark due to trademark issues.

4.4.2 Methodology

Cube being a cloud solution that relies on virtualization, a challenge we face when

measuring the network performance is to understand the impact of the path as compared

to the impact of the virtualization and especially the sharing of the server resources. Note

that with the current setup of Cube, we have no direct way to assess the activity of the

other VMs sharing the server. We hence apply a simple strategy to assess the stability

and representativity of our data:

• We perform and compare measurements at different times of the day; we perform

10 separate measures.

• We analyze jointly the time series of the transfers and the corresponding CDFs

for the metrics of interest. The two are mandatory as while CDFs offer a compact

representation of data, they obscure the time behavior. Hence, our joint analysis.

The metrics we focus on are; the throughput, the congestion window of TCP and the

RTT measured by TCP.

4.4.3 Sophia to Cube

We dump traffic on the sender side, which, in the case of this direction, is the machine

in Sophia. We have no capture problem, i.e., silence periods in the tcpdump. Hence, we

can focus on network measurement only.

Initially, before evaluating the behavior of each tool and its benefits, we first calibrate

Iperf by selecting the most appropriate parameters for the read/write buffer and the

socket size.

4.4.3.1 Calibration of Iperf

• Read/write buffers length “-l”

The first parameter that we tested is “-l”, which represents the number of bytes that Iperf

uses when read/write, the default value is equal to 8K bytes. We vary this parameter

between 8 and 32K bytes. Different tests have been performed on the night from Sophia

to Cube, while there is less traffic in those schedules.

We report in Figure 4.25 the 3 CDFs of throughputs for the 3 buffer sizes, 8, 16 and

32K bytes. We observe a high similarity between results when the buffers are equal to

8 and 16K bytes, but they are different from tests with 32K bytes. We note also that

increasing the buffer size to 32K bytes decreases throughput. So we set the buffer size

to 16K bytes for the remaining tests.

Chapter 4. Performance Analysis of Orange cloud solution: Cube 75

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

C
D

F
Throughput (Mbps)

Iperf, Sophia to Cube

l=8K bytes
l=16K bytes
l=32K bytes

Figure 4.25: CDF Throughput(Mbps), Iperf l=8, 16, 32K bytes

• TCP window size “-w”

The second parameter to test is the “-w” parameter, which gives the TCP window. For

this case, we have considered the default value of the “-l” parameter, i.e.,8K bytes. We

performed several Iperf tests from Sophia to Cube with “-w” equal to 40K bytes on both

sides. In Figure 4.26, we report the time evolution of the congestion window, we can

observe that the window values exceed 40K bytes, and reaches up to 70 K bytes.

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

t (seconds)

C
on

ge
st

io
n

w
in

do
w

 (K
 b

yt
es

)

Iperf, Sophia to Cube, w=40K bytes

Figure 4.26: Congestion window, Iperf Sophia to Cube, w = 40 k bytes

Clearly, the “-w” option does not fill its purpose. It is better to change the Operating

System parameters to adjust TCP windows rather than making it through Iperf. So,

for the rest of Iperf tests, we will no longer consider this parameter.

4.4.3.2 Measurement results

One should run several tests for an accurate evaluation of the TCP metrics, we

observe that there is consistency between the various tests. With the read/write buffer

size is set to 16K bytes, we report the results for the congestion windows, throughputs

and RTTs.

Chapter 4. Performance Analysis of Orange cloud solution: Cube 76

• Congestion window

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

t (seconds)

C
on

ge
st

io
n

w
in

do
w

 (K
by

te
s)

Transfer from Sophia to Cube

Iperf
Perl−File
Perl−Data

Figure 4.27: Congestion window
(Kbytes), from Sophia to Cube,

Iperf, Perl-File/Data

400 450 500 550 600 650
0

0.2

0.4

0.6

0.8

1

C
D

F

Congestion window (Kbytes)

Transfer from Sophia to Cube

Perl−Data
Perl−File
Iperf

Figure 4.28: CDFs of conges-
tion window from Sophia to Cube,

Iperf, Perl-File/Data

We used 3 methods to send data from Sophia to Cube:

- Iperf tool.

- Perl-File: it is used to transfer data by reading a file on disk. We created a file of

size 600M bytes using the dd command. Then we sent it into blocks of size 16K

bytes, with the same read/write buffers size of Iperf.

- Perl-Data : data is generated in memory in the form of a character string of size

equal to 16 K bytes (as the case of Iperf). Then this string is sent continuously

for a period of 100 seconds.

We present in Figure 4.27 the time evolution of the congestion window for the 3

transfer methods, Iperf, Perl-File and Perl-Data. We provide in this figure a zoom on a

specific moment in time of one simulation per transfer method that we performed. We

observe that all curves have similar behavior, and the congestion windows vary between

200 and 1000 Kbytes.

To compare the various transfer types, we drew the CDFs of the average congestion

windows resulting from all 10 tests, for each type of transfer (Iperf, Perl-File, Perl-Data).

There are three curves on Figure 4.28 for the three transfer types. Each curve consists

of 10 points, which are the values of the average congestion windows of 10 tests.

Iperf and Perl-Data CDFs are similar while the CDF of Perl-file reaches higher con-

gestion window values than the other two cases.

• Throughput

Figure 4.29 presents the time evolution for throughputs of 3 the transfer methods, where

the rates vary between 50Mbps and 450Mbps.

Chapter 4. Performance Analysis of Orange cloud solution: Cube 77

0 5 10 15 20 25 30
0

100

200

300

400

500

600

t (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

Transfer from Sophia to Cube

Iperf
Perl−File
Perl−Data

Figure 4.29: Throughput(Mbps),
from Sophia to Cube, Iperf, Perl-

File/Data

180 200 220 240 260 280 300
0

0.2

0.4

0.6

0.8

1

C
D

F

Throughput (Mbps)

Transfer from Sophia to Cube

Perl−Data
Perl−File
Iperf

Figure 4.30: CDFs of through-
put, from Sophia to Cube, Iperf,

Perl-File/Data

Also, by comparing the CDFs of throughputs for the three transfer types , Figure

4.30, we find that Perl-Data is closer to Iperf than Perl-File.

If we go back to SND6 reading speed results obtained by hdparm in Figure 4.13,

we find that these values are in the range of 80MBps, which is equal to 640Mbps. The

reading speed values are very high compared to the throughput values obtained in Figure

4.29 , so for SND6 machine the File transfer is not limited by disk performance.

• RTT

Similarly, for the RTTs of these tests, we have plotted the CDFs, in Figure 4.31.

Average RTTs values vary between 17.4ms and 18.5, and again, Iperf is close to Perl

file and both are somewhat outperformed by Perl data. We have no clear explanation

for this phenomenon. The thirty experiments were interleaved with each other, hence it

is a priori excluded that network conditions for Perl file were better than for the other

tools. We decided to leave aside the investigation of this problem and focus on the other

side if the transfer, from Cube to Sophia.

17 17.5 18 18.5 19
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RTT (ms)

C
D

F

Transfer from Sophia to Cube

Perl−Data
Perl−File
Iperf

Figure 4.31: Results from Sophia to Cube, CDFs of RTTs of the 10 tests

Chapter 4. Performance Analysis of Orange cloud solution: Cube 78

4.4.4 Cube to Sophia

4.4.4.1 Silence during transfers

To make tests from Cube to Sophia, we chose the virtual machine that features TCP

Cubic as congestion control protocol i.e., the VM132. We performed the different tests

with the same parameters as the direction Sophia to Cube i.e., “-l”= 16K bytes and Perl

buffer size is equal to 16K bytes.

Tests with Iperf from Cube to Sophia were made using an SSH Tunnel [wik] [Val10]

because of firewall configuration.

• Congestion window

We report in Figure 4.32 the time evolution of the congestion windows for Iperf and

Perl transfer tests.

We note that these congestion window values in this direction are lower compared to

the Sophia to Cube direction. We also observe some silent periods during the transfer.

0 20 40 60 80 100
0

20

40

60

80

100

120

t (seconds)

C
on

ge
st

io
n

w
nd

ow
 (K

 b
yt

es
)

Transfer from Cube to Sophia

Perl−Data
Perl−File
Iperf

Figure 4.32: Congestion win-
dow(Kbytes), from Cube to

Sophia, Iperf, Perl-File/Data

0 10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

Congestion window (K bytes)

Transfer Cube to Sophia

Perl−Data
Perl−File
Iperf

Figure 4.33: CDFs of conges-
tion window, from Cube to Sophia,

Iperf, Perl-File/Data

To compare the two transfer types, we report CDFs of average congestion windows

in Figure 4.33. We observe again a great similarity of Perl-Data and Iperf results.

• Throughput

All throughput values vary between 3 and 25Mbps against about 250 Mbps in the

direction towards Sophia Cube, see Figure 4.34. Hence the link is not symmetric or,

more probably, it was not engineered similarly in the two directions. We observe that

Perl throughput values are comparable with those resulting of Iperf transfers. We note

also the existence of silent periods.

In order to check the impact of disk performance on the file transfer results, from Cube

to sophia, we compare the disk performance with throughput on the small Linux VM.

Chapter 4. Performance Analysis of Orange cloud solution: Cube 79

0 20 40 60 80 100
0

10

20

30

40

50

60

70

t (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

Transfer from Cube to Sophia

Perl−Data
Perl−File
Iperf

Figure 4.34: Throughput(Mbps),
from Cube to Sophia, Iperf, Perl-

File and Perl-Data

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

C
D

F

Throughput (Mbps)

Transfer Cube to Sophia

Perl−Data
Perl−File
Iperf

Figure 4.35: CDFs of through-
put(Mbps), Perl-Iperf, from Cube

to Sophia

Figure 4.6 shows that the reading speed values vary between 600KB/s and 1000KB/s,

i.e., 4.8Mb/s to 8Mb/s. This is low as compared to the throughput results in Figures

4.34 and 4.35. So disk performance on the small Linux VM limits the throughput values.

The astute reader may think there is a contradiction between what we say here and

what we said in the disk section before where we stated that while disk performance of

VMs were not in par with the ones of typical physical machine, it would be enough for

our needs. However, in the present experiments, we discovered that tcpdump default

value on red had systems was to dump the full frames. Hence, our needs of disk speed

was equal to the throughput achieved by the flow. For the next set of experiments, we

have modified this setting to capture only the headers.

• RTT

We plotted the CDFs of RTTs for different tests in Figure 4.36. Medians are around

16.6ms. Figure 4.36 shows that RTTs for Iperf transfers i.e. using SSH tunnel, are larger

than Perl-transfer RTTs. This is caused by the the additional encryption used by SSH

tunnel that adds latency.

From the results presented above, it is clear that when sending data from Cube to

Sophia, we are facing a problem of silence periods in the traces. Note that the silence

periods are observed when capturing traffic both at the sender and the receiver side.

It is thus not only a problem of performance when writing on the disk of the Cube

machine. On the other hand, there is a performance issue on the Cube machine as we

have “packets dropped by kernel” events on the machine.

We can thus suspect that we are facing several problems :

• A disk performance issue

• An issue either at the virtualisation layer or at the transport layer if, e.g., the loss

rate is too high and TCP stops emitting data

Chapter 4. Performance Analysis of Orange cloud solution: Cube 80

16 16.5 17 17.5 18 18.5 19
0

0.2

0.4

0.6

0.8

1

C
D

F

RTT (ms)

Transfer from Cube to Sophia

Perl−Data transfer
Perl−File transfer
Iperf transfer

Figure 4.36: CDFs of RTTs (ms), Perl-Iperf, Cube to Sophia

To investigate these issues, we:

- Analyzed the tcpdump files and especially the sequence numbers before and after

some silence periods

- Performed several transfers in parallel. Indeed, TCP transfers are independent

from each other and it is very unlikely that silence periods could affect all TCP

transfers simultaneously if the root of the problem is the congestion algorithm of

TCP.

- Ran a simple time measurement script in the virtual machines that is writing the

current time every second. If ever the machine is stopped for a while, then this is

the indication that the root of the problem is the hypervisor.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

Th
ro

ug
hp

ut
 (M

bp
s)

t(seconds)

Perl−Data, Parallel Flows, Cube to Sophia

1 flow
10 flows
100 flows

Figure 4.37: Average throughput per flow (Mbps), Perl-Data, Parallel flows from
Cube to Sophia

Chapter 4. Performance Analysis of Orange cloud solution: Cube 81

We report in Figure 4.37 the time series for the average throughput per flow when

we have 1, 10 and 100 parallel flows. We note that as the number of flows increases,

silent periods increases, but the average throughput per flow remains at around 4Mbps.

The first step that we have undertaken is to reduce the number of bytes to retrieve

using tpdump, to alleviate the problem of disk performance. So, for the remaining set

of parallel tests, we used the tcpdump option “-s 96” to capture the set of bytes needed

to determine TCP metrics.

At the end of each capture we recovered the information returned by tcpdump; cap-

tured packets, packets received by filter and packets dropped by kernel. If the number

of packets discarded by the kernel is equal to 0, tcpdump has therefore captured all the

packets.

We also used a “tcp.analysis.ack lost segment” filter provided by Wireshark. This allows

to identify the acknowledgments for which Wireshark can not see the segment sent. If

such segment are observed , this means that the capture tool missed some packets.

10 20 30 40 50 60 70 80 90
0

5

10

15

t (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

Perl−Data, 1 flow, Cube to Sophia

Throughput, 1 flow

Figure 4.38: Average throughput per flow (Mbps), Perl-Data, 1 flow from Cube to
Sophia

For example, with a single flow, we have :

• 27908 packets captured

• 27908 packets received by filter

• 0 packets dropped by kernel

• tcp.analysis.ack lost segment gives 0

So, there is no packets rejected by the kernel and the packets are sent continuously,

where the average rate is at around 3.6Mbps, see Figure 4.38.

Chapter 4. Performance Analysis of Orange cloud solution: Cube 82

4.4.4.2 Measurement results for several transfers in parallel

• Ten flows

10 20 30 40 50 60 70 80 90
0

5

10

15

Perl−Data, 10 flows, Cube to Sophia
Th

ro
ug

hp
ut

 (M
bp

s)

t (seconds)

Throughput, 1 flow among 10

Figure 4.39: Average through-
put per flow (Mbps), Perl-Data, 1
among 10 flows Cube to Sophia

Figure 4.40: Time sequence
graph, Perl-Data, 1 among 10

flows from Cube to Sophia

For 10 parallel flows, we got 0 packets dropped by kernel, which means that tcpdump

was capturing all packets. But we still observe small silence periods, which must be

caused by another problem.

We report in Figure 4.40 the sequence numbers for 1 of the 10 tests. By zooming

in on silent periods, we find that there is an interruption of transmission, and then the

transfer is resumed from the last sequence numbers. When checking the throughput

evolution in Cube side (Figure 4.39), we found the same silent periods seen from two

sides, so there was no packets exchange.

• Seventeen flows

We further tested the scenario of seventeen flows. In this case the average throughput

per flow remains at around 4Mbps, and we have several problems :

- The kernel starts dropping packets

- There are no silence periods with no packet sent from Cube to Sophia,

“tcp.analysis.ack lost segment” returns a set of segments whose acknowledgments

have not been captured by tcpdump

The results with option “-s 96” were better than before, but from 17 parallel flows,

the kernel starts dropping packets. Also, we have again silent periods with no packet

sent from Cube to Sophia. To check the status of the small virtual machine in Cube

when sending packets from Cube to Sophia, we created a script that is executed in

parallel with the transfer. This script records the system time every second.

Time history results recovered show that there is time jumps, ie, there are time

periods which have not been stored, these time intervals correspond to the missing

Chapter 4. Performance Analysis of Orange cloud solution: Cube 83

0 20 40 60 80 100
0

5

10

15

Perl−Data, 17 flows, Cube to Sophia

Th
ro

ug
hp

ut
 (M

bp
s)

t (seconds)

Throughput, 1 flow among 17

Figure 4.41: Average through-
put per flow (Mbps), Perl-Data,
1 among 17 flows from Cube to

Sophia

Figure 4.42: Time sequence
graph, Perl-Data, 1 among 17

flows from Cube to Sophia

silent period observed in throughput curves. This means that the virtual machine have

been stopped during these periods.

• One hundred flows

In the case of 100 parallel flows, the overall flow rate can reach 300Mbps. But we observe

more silent periods.

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

Perl−Data, 100 flows, Cube to Sophia

Th
ro

ug
hp

ut
 (M

bp
s)

t (seconds)

Throughput, 1 flow among 100

Figure 4.43: Average through-
put per flow (Mbps), Perl-Data,
1 among 100 flow from Cube to

Sophia

Figure 4.44: Time sequence
graph, Perl-Data, 1 among 100 flow

from Cube to Sophia

Figure 4.44 shows the sequence numbers of a selected flow. 4 silent periods are

observed. The green circles represent periods where no packet has been sent to SND6

because there is a continuation in sequence numbers. While blue circles represent packets

sent by the VM but not captured by tcpdump because of disk performance. Sequence

numbers are larger than those observed at the beginning of silent periods values.

We can see that regardless of the number of parallel flows, the writing speed for

tcpdump files remains consistent with dd writing speed.

For each set of parallel flows (1, 50 and 100), We plotted the CDFs of throughput for

some flows picked at random in Figures 4.45, 4.46 and 4.47. The average throughput is

Chapter 4. Performance Analysis of Orange cloud solution: Cube 84

equal to 3.5Mbps, 3.8Mbps and 3.4Mbps for 1, 50 and 100 parallel flows, respectively.

Therefore, increasing the number of parallel flows, increases the global throughput. We

report in Figure 4.48 the mean throughputs for various number of parallel flows, using

boxplots format. We observe that the mean throughput by flow vary between 3 and 4

Mbps.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Throughput (Mbps)

C
D

F

Perl−Data, Cube to Sophia, 1 flow

CDF Throughput, 1 flow

Figure 4.45: CDFs of through-
puts (Mbps), 1 flow

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Throughput (Mbps)

C
D

F

Perl−Data, Cube to Sophia, 50 flows

flow 1
flow 2
flow 3
flow 4
flow 5
flow 6
flow 7
flow 8
flow 9
flow 10

Figure 4.46: CDFs of through-
puts (Mbps), 10 flows among 50

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Throughput (Mbps)

C
D

F

Perl−Data, Cube to Sophia, 100 flows

flow 1
flow 2
flow 3
flow 4
flow 5
flow 6
flow 7
flow 8
flow 9
flow 10

Figure 4.47: CDFs of through-
puts (Mbps), 10 flows among 100

parallel flows

 1 flow 10 flows 100 flows 200 flows 300 flows

2

3

4

5

6

7

8
Th

ro
ug

hp
ut

 (M
bp

s)
Perl−Data, Cube to Sophia

Figure 4.48: Box plot through-
puts (Mbps), {1, 10, 100, 200, 300}

parallel flows

Through these results we can deduce that from Sophia to Cube a shaper limits the

average throughput per flow to 4Mbps.

• Packet loss rate

In Figure 4.49 we report the loss probability for different parallel flows, due to the

shaper, excluding silence periods due to the virtualization/disk issues. During silent

periods with no packet sent from Cube to Sophia, 0 packets were exchanged, so we

recovered the trace part before tcpdump starts to drop packets. Then we use these

new traces to calculate the loss rate with more precision than the whole trace. We

observe that the packet loss rates for 1 to 100 flows are close and vary between 4% and

6%. For these flows the average throughput per flow was about 4Mbps. For 200 and

300 parallel flows, packet loss rate evolve to 10% and the average throughput per flow

becomes smaller, because it has reached the threshold capacity for all flows.

Chapter 4. Performance Analysis of Orange cloud solution: Cube 85

 1 flow 10 flows 100 flows 200 flows 300 flows

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Lo
ss

 ra
te

Perl−Data, Cube to Sophia, Parallel flows

Figure 4.49: Box plot loss, {1, 10, 100, 200, 300} parallel flows

4.4.5 Conclusion

In this chapter we have analyzed measurement from/to Cube data center. Several

tests have been made between Sophia and Cube, in both directions. Thanks to the

various scenarios made, we could distinguish the different characteristics of connections

to/from Cube, where the network path between the Cube datacenter and the Sophia

Orange Lab is not managed in a symmetric manner. From Sophia to Cube, we can reach

apparently 300 Mb/s. In contrast, in the down direction, we are limited to around 3 to

4 Mb/s per connection.

When increasing the number of parallel flows from Cube to Sophia, we encountered

some factors limiting the performance of these transfers. All results indicated that

there were several roots to the problem: the disk access, the virtualization layer and

a shaper. Through different types of experiments, we were able to provide evidences

of the existence of these different issues. The initial objective of this chapter was to

investigate the competition of several TCP Cubic flows in parallel. We however modified

this initial goal into troubleshooting the observed performance issued and delineating

between system (disk and hypervisor) and network (shaper) issues. As stated at the

beginning of the chapter, Cube was an experimental network that was apparently not

optimally engineered but has been turned off and replace by another cloud solution

inside Orange. However, this engineering issue was a chance for us as it enabled us to

underscore the interplay between system and network issues in a typical cloud solution.

Chapter 5

Synchronization of TCP Cubic

connections

5.1 Introduction

In this chapter, we investigate the issue of synchronization among TCP Cubic sources

in detail through experimentations in a controlled testbed, measurements with Amazon

EC2s servers located in the US and NS-2 simulations. We demonstrate that several

factors contribute to the appearance of synchronization in TCP Cubic. We also propose

and evaluate two propositions to the TCP Cubic algorithm to alleviate the amount of

packets lost during the synchronization episodes.

5.2 Motivating examples

As a motivating example of the synchronization problem, consider the time series of

a total congestion window of 10 TCP Cubic flows established between the same pair of

sender/receiver that compete for a shared bottleneck, obtained with NS-2, in Figure 5.1.

The clear Cubic shape that appears regularly indicates that the flows are synchronized.

Note that the code of TCP Cubic in NS-2 is a fork of the one in the Linux kernel. One

can obviously argue that the simulations set-up does not catch the complexity of a real

operational IP network, and thus synchronization might be the result of ideal simulation

conditions. This is why we present in Figure 5.2 the congestion window evolution of 10

transfers in parallel between a server in an Amazon data center of Oregon and a server

in our lab. We have obviously no control on the path, but we can clearly observe some

periods of high synchronization (two of them highlighted here by red rectangles for an

easier reading).

86

Chapter 5. Synchronization of TCP Cubic connections 87

0 50 100 150
500

1000

1500

2000

2500

3000

3500

4000

4500

Time (seconds)

C
o
n
g
e
s
t
i
o
n

w
i
n
d
o
w

(
p
a
c
k
e
t
s
)

Figure 5.1: Total window size (NS-2): 10 TCP Cubic flows,sharing a common bot-
tleneck

20 30 40 50 60 70 80 90
0

50

100

150

200

250

Time (seconds)

C
on

ge
st

io
n

w
in

do
w

 (p
ac

ke
ts

)

Figure 5.2: 10 TCP Cubic transfers between France (I3S lab) and Amazon EC2 data
center of Oregon

In [HR08], Hassayoun and Ros found that high-speed versions of TCP may be prone

to strong packet-loss synchronization between flows. The authors studied several high-

speed versions of TCP and observed, through simulation, the existence of synchroniza-

tion among sources for all flavors of them.

In [HR09], the same authors evaluate the potential impact of the Random Early

Detection (RED) [FJ93b] queue management algorithm on high-speed TCP versions.

They study the relation between buffer size, active queue management and loss syn-

chronization. Their study focuses on several metrics: loss synchronization, goodput,

link utilization, packet loss rate, and convergence to fairness for high-speed flows. For

large buffers, RED strongly reduces the synchronization rate as expected, whereas with

droptail, the fraction of synchronized sources is often close to 100%. In contrast, with

medium to small buffers, the loss synchronization is roughly similar with both types of

queue management strategy.

Chapter 5. Synchronization of TCP Cubic connections 88

5.3 Experimental set-up

5.3.1 Testbed

We have created a set of experimental scenarios in our laboratory using the testbed

presented in Figure 5.3. It consists of 3 multi-core Dell servers, 2 acting as TCP client or

server and one as router. All links are 1 Gb/s links. The router uses netem 1 to control

the path latency and capacity, and also the buffer size at layer 3. We use the default

FIFO/droptail as server scheduling/queue management policy at the bottleneck.

Various scenarios are created by varying the latency and buffer size. We set the

buffer size at the router to {10%, 30%, 50%, 100%} of the bandwidth delay product

BDP (i.e., the product of the minimum latency and the capacity of the path). For each

scenario, we compare the performance of Cubic with the ones of TCP New Reno. TCP

New Reno is used here as a baseline for comparison as it is known to be less sensitive

to synchronization than any high speed TCP version [HR08].

Figure 5.3: Experimental network setup

5.3.2 Scenarios

We consider, similarly to [BSC+13], several typical cloud networking scenarios:

• Scenario A - Cloud-clients. We consider here a set of clients that simultaneously

download content from a data center (DC). We assume that they share the 1 Gbps

access link of the DC and that they have a low path latency to the DC, 20 ms (a

typical latency for FTTH clients in France).

• Scenario B - Intra-DC. We consider a set of transfers within a data center (DC)

where the path capacity is set to 1 Gbps while the latency is low, 1 ms, reflecting

the small physical distance between the servers.

• Scenario C - Inter-DC. This scenario is similar to the previous one, except that

the path latency is one order of magnitude higher. We consider 50 ms of latency.

1http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

Chapter 5. Synchronization of TCP Cubic connections 89

Links between machines in our testbed are at 1Gbps. However, we cannot operate

netem at such a high speed when controlling both the capacity and the buffer size. We

thus constrain the capacity to 100 Mb/s and we inflate the latency of the path in such

a manner that the bandwidth-delay product of the path be the same or similar to the

consider scenario.

5.4 Experimental results of cloud scenarios

5.4.1 Cloud center scenarios

Scenario A (Cloud-clients)

Table 5.1 contains the targeted (ideal) parameters of the scenario, as well as the

ones used in our testbed due to our technical constraints. Note that we define hereafter

the bandwidth-delay product of a path (BDP) as the product of the capacity of the

bottleneck and the minimum latency of the path.

Ideal parameter Testbed parameter

Throughput 1 Gbps 100Mbps

RTT (ms) 20 200

Buffer size (packets) 50 [0.1, 0.3, 0.6, 1]* BDP

BDP (packets) 1667 1667

Table 5.1: Cloud clients scenario

We vary the buffer size (BS) at the bottleneck from 10% of the BDP to 100% of the

BDP for both TCP Cubic and New Reno.

Time series of the total window size of one of our experiments taken at random (which

were all quantitatively and qualitatively similar), summed over all the connections, is

presented in Figure 5.4, for both TCP Cubic and TCP New Reno. From this figure, we

note that:

• The congestion window for TCP Cubic reaches larger values compared to New

Reno. This means that the number of packets above BDP +BS is larger in TCP

Cubic than in New Reno, which causes more losses with TCP Cubic.

• TCP Cubic flows are more synchronized than New Reno. This is indicated by

the window reduction during loss episodes closes to 20%. Indeed, a reduction of

20% of the aggregated congestion window is only possible if all sources experience

packet loses simultaneously. In contrast, in the New Reno case, flows are less

synchronized giving an overall window decrease after loss clearly smaller than 50%

(TCP New Reno decreases its congestion window by 50% upon loss detection).

Chapter 5. Synchronization of TCP Cubic connections 90

0 5 10 15 20 25 30 35 40 45 50
2000

2500

3000

3500

4000
100Mbps, RTT=200ms, BS = 1 BDP

Time (seconds)

To
ta

l c
on

ge
st

io
n

w
in

do
w

 (p
ac

ke
ts

)

Cubic
New Reno

Figure 5.4: Total window size (packets)

We report in Figures 5.5 and 5.6 the number of losses and number of synchronized

flows per congestion event, of both TCP Cubic and New Reno. We notice that these

two criteria are proportional, with higher values for TCP Cubic compared to New Reno,

which means a higher synchronization of TCP Cubic connections.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

Time (seconds)

100Mbps, RTT=200ms, BS=1 BDP, TCP Cubic

Number of synchronized flows
Number of lost packets at every loss event

Figure 5.5: Number of synchro-
nized flow and lost packets at each
congestion epoch, TCP Cubic

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Time (seconds)

100Mbps, RTT=200ms, BS=1 BDP, TCP New−Reno

Number of synchronized flows
Number of lost packets at every loss event

Figure 5.6: Number of synchro-
nized flow and lost packets at each
congestion epoch, New Reno

Scenario B (Intra-DC)

Table 5.2 contains the targeted parameters of the scenario, as well as the ones used

in our testbed.

Ideal parameter Testbed parameter

Throughput 1Gbps 100Mbp

RTT (ms) 1 10

Buffer 50 1000

BDP 84 84

Table 5.2: Intra-DC scenario

The BDP for this scenario is equal to 84 packets. If one adds to it a buffer size equal

to the BDP, it gives an average of 1 packet per flow which is low for our 100 flows in

parallel. In such a scenario, the Linux kernel reduces automatically the MTU to values

Chapter 5. Synchronization of TCP Cubic connections 91

as low as 40 bytes. This phenomenon leads to different congestion window sizes to obtain

a fixed bandwidth, making the analysis of results more complex. To work around this

issue, we used a larger buffer of 1000 packets.

0 2 4 6 8 10 12 14 16

900

1000

1100

1200

1300

1400

Time (seconds)

100Mbps, RTT=10ms, BS= 1000 packets

To
ta

l C
on

ge
st

io
n

w
in

do
w

 (p
ac

ke
ts

)

Cubic
New Reno

Figure 5.7: Total window size (packets)

We report in Figure 5.7 the time series of the total congestion window of both TCP

Cubic and New Reno. Note that in this case, TCP Cubic operates in the TCP mode,

and therefore, a smaller synchronization is detected. Indeed, the reduction of the total

congestion window is less than 20%. Figures 5.8 and 5.9 show clearly that the number

of losses per congestion event and synchronized flows approaches the one of TCP New

Reno.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Time (seconds)

100Mbps, RTT=10ms, BS=1000 packets, Cubic

Number of synchronized flows
Number of lost packets at every loss event

Figure 5.8: Number of synchro-
nized flow and lost packets at each
congestion epoch, TCP Cubic, BS

= 1000 packets

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Time (seconds)

100Mbps, RTT=10ms, BS=1000 packets, New−Reno

Number of synchronized flows
Number of lost packets at every loss event

Figure 5.9: Number of synchro-
nized flow and lost packets at each
congestion epoch, New Reno, BS =

1000 packets

Scenario C (Inter-DC)

Table 5.3 contains the targeted parameters of the scenario, as well as the ones used

in our testbed.

For large BDP, the congestion window growth for New Reno is much slower compared

to TCP Cubic, so we double the simulation time for New Reno to 200 seconds instead

of 100.

Chapter 5. Synchronization of TCP Cubic connections 92

Ideal parameter Testbed parameter

Throughput 1Gbps 100Mbp

RTT (ms) 50 500

Buffer 500 [0.1, 0.3, 0.6, 1]* BDP

BDP 4167 4167

Table 5.3: Inter-DC scenario

With the larger BDP of this scenario, TCP Cubic operated in its cubic mode and

we observe again a high synchronization of TCP Cubic sources, see Figure 5.10, where

the number of synchronized flows for TCP Cubic is close to 100 while it is below 30 for

TCP New Reno.

Figure 5.10: Number of syn-
chronized flow and lost packets at
each congestion epoch, Cubic, BS

= 0.6 BDP

Figure 5.11: Number of syn-
chronized flow and lost packets at
each congestion epoch, New Reno,

BS = 0.6 BDP

5.4.2 Synchronization vs. background traffic

A well-known mechanism to combat synchronization consists in introducing random-

ness into the network. This can be done by introducing background traffic or inducing

random drops through an appropriate buffer management mechanism such as RED

[LHB05].

It is known that RED can indeed break synchronization among TCP Cubic sources

[HR09], even though the results in [HR09] where obtained purely through simulation.

We tested in our tesbed the resilience of synchronization to background traffic. We

thus performed again experiments with Scenario C, where synchronization was highly

pronounced, adding 100 short flows during the experiment. These flows are short scp

transfer. They form a Poisson process with mean inter-arrival time of 1s. The files sent

through scp have a size equal to 2MB.

Background traffic starts at time t = 200 seconds in Figure 5.12. We can notice that

the overall window is reduced and reaches a value lower than 2BDP, but the TCP Cubic

shape of the total window persists, meaning that all flows are still synchronized.

Chapter 5. Synchronization of TCP Cubic connections 93

0 50 100 150 200 250 300
2000

4000

6000

8000

10000

12000
100Mbps, RTT=500ms, 100 flows

C
on

ge
st

io
n

w
in

do
w

 (p
ac

ke
ts

)

Time (seconds)

Without Background traffic
With Background traffic

Figure 5.12: Time series of window size (packets) with and without background
traffic, BS= 1 BDP

We did not test the case of flows with heterogeneous RTTs. Moreover, experiments

carried out in [Lei07] show that two flows having different RTTs get synchronized. In-

deed, even though flows gets different amount of bandwidth, when congestion events

occurs, both flows suffer from packet losses. Such results suggest that even if flows have

different RTTs, synchronization occurs. This is also a consequence of the fact that the

window growth of TCP Cubic in its cubic mode is independent from the RTT but only

from the time since the last loss.

5.4.3 The impact of Fast Convergence

Fast convergence (FC) is designed to make TCP Cubic more fair as it leaves a chance

to fresh flows to grab some bandwidth. It is thus not advisable to unset this option

in the general case. Still, when focusing on the issue of synchronization, FC becomes

a potential suspect of synchronization. Indeed, when performing FC, a source sets its

wmax to a value lower than the estimated available bandwidth (the congestion window at

the moment where loss occurs). As a consequence, when the number of flows is constant,

as it is the case in our experiments, a source that performs FC will reach the available

throughout (its share of BS + BDP) in an aggressive manner, see for instance Figure

5.1. This aggressive behavior around the equilibrium point can make all sources (even

the ones that would plateau at this level) loose some packets and thus enforce their

synchronization.

To test the relation between FC and synchronization, we performed again experiments

with Scenario C with and without FC for a typical run. We report in Figure 5.13 the

total window time series with and without FC. As the extent of window oscillations

remains similar, we can conclude that FC is not the only factor behind synchronization.

Chapter 5. Synchronization of TCP Cubic connections 94

0 20 40 60 80 100
4000

5000

6000

7000

8000

9000

10000

11000

12000
Cubic, 100Mbp, RTT=500ms, Buffer=1BDP

Time (seconds)

C
on

ge
st

io
n

w
in

do
w

 (p
ac

ke
ts

) With Fast−Convergence
Without Fast−Convergence

Figure 5.13: Time series of total window size (packets) with and without FC, BS= 1
BDP

5.5 Root cause of synchronization

As observed in Section 5.4, TCP Cubic experiences more losses than Standard TCP

per congestion event. Therefore, TCP Cubic senders have a higher probability to be

synchronized.

Intuitively, high speed TCP variants are more aggressive and therefore, lead to a

higher drop rate as compared to the legacy New Reno approach, where the congestion

window grows linearly. While this is true for other high speed TCP protocols, like High

Speed TCP, in the case of TCP Cubic, if the flat part of the cubic function matches the

optimal network capacity, then we can expect to have (at least for this optimal scenario)

a low drop rate. Indeed, TCP Cubic is supposed to slowly enter and exit the flat part.

Reality is unfortunately more complex, in fact, several key reasons explain why TCP

Cubic flows synchronize each other:

• First, the way TCP Cubic reaches the capacity of the network, which might cor-

respond to its equilibrium point (when the cubic curve becomes flat) or not, de-

pending on the accuracy of the estimate made.

• Second, the way the congestion window actually tracks the cubic curve in the

actual implementation can worsen the synchronization phenomenon by letting the

source remains a smaller amount of time on its plateau.

• Third, the competition among TCP Cubic flows where the aggressive nature of

their probing process far from the equilibrium point can lead to losses for all

competing flows.

We discuss each of these points in details in the remainder of this section.

Chapter 5. Synchronization of TCP Cubic connections 95

5.5.1 Behavior of TCP Cubic around the equilibrium point

Let epochstart be the time right after a congestion event (i.e. t0 = epochstart).

Hence, at t0, the Cubic window will be equal to 0.8 ∗ last cwnd. Using Eq. (2.1), we

can see that theoretically, whatever the value of wmax and the experienced RTT are,

wc(t) will reach wmax at tmax = epochstart + VCubic. Furthermore wc(t) will reach

wmax+1, wmax+2, wmax+3 and wmax+4 at tmax+1.35s, tmax+1.7s, tmax+1.95 and

tmax + 2.15, respectively. These consigns values are just the consequence of the design

of TCP Cubic whose window growth was made independent from the RTT. Therefore,

while there is 0.35s between wmax+1 and wmax+2, there is only 0.2s between wmax+3

and wmax + 4 respectively. Indeed, as wc(t) moves away from wmax, it increases faster.

Figure 5.14 provides a graphical description of the period length between 2 successive

expected increases of the congestion window.

Figure 5.14: Target Evolution

Consequently, three different scenarios can be drawn, based on the relative positions

of the flat region and the total network available capacity, i.e. BDP+BS. We seek to

understand when a source is going to send more than one packet in an RTT when

reaching the network capacity. Indeed, if each source adds a single packet, like in New

Reno, synchronization should be mild. If they send two packets or more, synchronization

will be high.

First scenario: wmax = BDP +BS. If cwnd = wmax +1 leads to a congestion, since

between wmax+1 and wmax+2 there is a period equal to 0.35s, flows with a total RTT

(i.e. propagation delay plus buffering time) smaller than 0.35s will detect the congestion

at wmax + 1. Flows with RTTs larger than 0.35s can potentially detect the congestion

only when at wmax+2 (i.e., in a single RTT, such a TCP Cubic flow will increase twice

its congestion window). Note that whatever the RTT experienced by New Reno TCP,

this last protocol is able to detect a congestion when the congestion window exceeds the

Chapter 5. Synchronization of TCP Cubic connections 96

total network capacity by only 1 packet, since it increases its window by at most one

MSS per RTT.

Second scenario: wmax = BDP +BS−1. When wc(t) = wmax+2, congestion occurs

but since between wmax + 2 and wmax + 3 there is a period equal to 0.25s, if the total

RTT is larger than 0.25s, the connection will potentially increase its congestion window

twice (or more depending on the experienced RTT) ending with a congestion window

equal to wmax + 2 or more.

Third scenario: wmax = BDP + BS + 1. If wc(t) = wmax already exceeds the total

network capacity by one packet, since between wmax and wmax+1 there is a period equal

to 1.35s, theoretically, only flows with an RTT larger than 1.35s will increase twice their

congestion windows before detecting a congestion. Hence, after a congestion event, wmax

will be set again to wmax = BDP +BS+1 and the number of losses will be small. Note

that the theoretical TCP Cubic target is able to converge to a wmax = BDP +BS + 1

from any wmax value, like shown in Figure 5.15.

Optimal Congestion Window Convergence

P
a
c
k
e
ts

60

65

70

75

80

85

90

Time (s)
0 10 20 30 40

cwnd

Target
Wmax

Figure 5.15: Converge properties of the optimal congestion window (BDP + BS =
80).

To sum up the three above scenarios: (i) overestimating the bottleneck is not a big

issue as there is little chance that the sources increases several times its congestion

window when entering the flat region (it should have a RTT larger than 1.35s); (ii)

precisely estimating the bottleneck precisely means that the source will be too aggressive

if the RTT is larger than 0.35 s and (iii) if the source underestimates the capacity, the

RTT for which it becomes too aggressive is 0.25s. The latter scenario is thus the more

dramatic one. We can note that Fast Convergence, that forces to set its wmax equal to

0.9 ∗wc(t) upon a loss leads exactly to the latter scenario. FC is thus a net contributor

to the too high aggressiveness of a TCP Cubic source.

As an illustrative example, the Amazon EC2 experiment presented in Figure 5.2 was

a case where the base RTT (measured by ping) was 190 ms. Hence, when adding the

Chapter 5. Synchronization of TCP Cubic connections 97

buffer size along the path (which we do not know), there is a high probability that

the RTT will be above 250 ms. This RTT combined with the use of Fast Convergence

explains why we observe episodes of synchronization.

The above analysis assumes a perfect source in isolation. In practice, the actual

implementation as well as the competition among TCP Cubic flows worsen the situation

as we discuss below.

5.5.2 Tracking of cubic function in the actual implementation of TCP

Cubic

In the real life, the tracking of the target window is not perfect. We have extracted

the algorithm used by TCP Linux from NS-2, which is supposed to be the same as the

one in some Linux kernels, to build our own simulator and be able to trace the several

variables used inside. We have found that, assuming a constant reception of ACKs and

a total RTT of one second, when the congestion window reaches wmax, it will stay in the

flat region for period shorter to 1.35s (around 0.8s as we can see in Figure 5.16). Such a

result was confirmed by NS-2 assuming the same RTT. Staying a shorter period on the

plateau can lead to have too many losses when getting above the network capacity.

Cong Window and Target Evolution

P
a
c
k
e
ts

60

65

70

75

80

85

90

Time (s)

-1 0 1 2 3 4 5 6 7

Congestion Window
Targeted Window

Figure 5.16: More real Cubic congestion window evolution.

5.5.3 Competition around the equilibrium point

Let us suppose that during a given congestion event, the total capacity was exceeded

by n packets only (where n is equal to the number of flows) as the legacy New Reno

version of TCP does, and that the congestion window of each TCP Cubic flow was equal

to the actual share that each connection deserves. In this scenario, it is highly likely

that not every flow would experience a packet loss. Put differently, the synchronization

Chapter 5. Synchronization of TCP Cubic connections 98

between flows would be low. However, those TCP Cubic flows that did not experience

losses will enter their convex region, and thus their congestion window will grow faster

and during the next congestion event, the number of dropped packets will increase. This

will finally lead to a high synchronization between flows.

Figure 5.17 illustrates graphically our arguments provided in this paragraph by zoom-

ing on a specific moment in time of one simulation we performed. We observed a first

loss event where only two flows are affected. We next observe that the flows that expe-

rience losses will soon again plateau around the equilibrium point. In contrast, the ones

that did not lose enter the aggressive probing part of the cubic curve. Even, if they are

just leaving their plateau as it is the case here, the number of losses that they induce in

the buffer is such that all four sources losse packets at the same time instant, i.e., they

become synchronized.

24 26 28 30 32

40

60

80

100

Time (seconds)

C
on

ge
st

io
n

w
in

do
w

 (p
ac

ke
ts

)

100Mbps, RTT=500ms, BS= 0.1 BDP
Flow 1
Flow 2
Flow 3
Flow 4

Figure 5.17: TCP Cubic leading to high synchronization

5.5.4 Discussion

From the analysis presented above, it is clear that the RTT of the connection plays

a key role to determine the level of synchronization we might expect. Referring back to

the methodology presented in Section 5.4, it becomes clear, in light of what we discussed

in this section, that increasing the RTT to obtain the same BDP as in the ideal cloud

scenarios that we devised, was introducing a bias towards more synchronization. For the

intra data-center scenario (scenario B) where the ideal RTT was 1ms, synchronization

is likely not to occur. This is confirmed by our experimental results (see Figure 5.8)

because the RTT in the experimental testbed is still low (10ms). It should be the

same in the inter data-center case (scenario C) where the ideal RTT is 50 ms, while

we observed synchronization by working at 500 ms. It is even highly possible that

TCP Cubic operates in the TCP mode and not the Cubic mode in such a scenario, in

which case the means-field model that we proposed in [BSC+13] demonstrated that no

synchronization should be present.

Chapter 5. Synchronization of TCP Cubic connections 99

As illustrative examples of the above points, we report in Figure 5.18 a typical exper-

iment made between a pair of servers in the Oregon data center of Amazon where the

RTT was in the order of a ms. We never observed any synchronization in this case (out

of the numerous trials we made). While Figure 5.18 reports the congestion window of

each individual flow, Figure 5.19 reports the aggregate congestion window and we can

observe that it never decreases by 20% (as 80% of 1200 is 960 and we are always above

this line).

0 20 40 60 80 100
0

100

200

300

400

500

Time (seconds)

C
on

ge
st

io
n

w
in

do
w

 (p
ac

ke
ts

)

Figure 5.18: Intra data center transfers - 10 flows, individual Congestion Window,
10 flows

0 20 40 60 80 100
700

800

900

1000

1100

1200

1300

C
on

ge
st

io
n

w
in

do
w

 (p
ac

ke
ts

)

Time (seconds)

Total cwnd
wmax
80% wmax

Figure 5.19: Intra data center transfers - 10 flows, aggregate Congestion Window

The previous experiment was obtained with 10 flows. With 100 flows between the

pair of servers, we observe in Figure 5.20 that the flows now operate in the TCP mode

of Cubic with no synchronization.

However for the case of a remote client or distant data centers transfers, synchroniza-

tion is likely to pop up. The Amazon EC2 experiment in Figure 5.2, where 10 flows were

created between France and the Amazon EC2 DC located in US, is a good illustration of

this point. Additionally, since flow synchronization leads to a reduction of around 20%

of the total traffic, buffer sizes smaller than 20% of the expected average BDP can lead

Chapter 5. Synchronization of TCP Cubic connections 100

30 35 40 45 50 55 60
0

5

10

15

20

25

30

Time (seconds)

C
on

ge
st

io
n

w
in

do
w

 (p
ac

ke
ts

)

Figure 5.20: Individual Congestion Window, Intra data center transfers - 100 flows

to an under utilization of the available bandwidth, specially if the maximum experienced

RTT of the traffic exceeds 250ms.

5.6 Alleviating Synchronization

In this section, we aim at investigating solutions to work around the problem of

synchronization faced by TCP Cubic. As the root of the problem lies in behavior of

TCP around the equilibrium point, we investigated the two following approaches:

• First, we linearize TCP Cubic when it operates close to its plateau. More precisely,

we enforce TCP to increase by one MSS per RTT in the range [wmax−2, wmax+2].

We call this modification LinCubic.

• Second, as we observed that the actual implementation was not accurately tracking

the cubic curve, we devised a version that fulfills this goal. We call this modification

AccuCubic.

To evaluate the impact of those different modifications, we implemented them in

NS-2 and started observing their behavior in the case of a single flow. We consider a

link capacity equal to 1Mbps, a latency equal to 500ms and a buffer size equal to one

BDP (41 packets). The network capacity is thus wmaxideal
= BDP + BS = 82 packets.

In Figures 5.21 and 5.22, we report the evolution of the congestion window.

We can observe that FC indeed plays a significant role. It globally worsens the situa-

tion for TCP Cubic. We observe that LinCubic performs very well by precisely tracking

the network capacity with or without FC. We have observed also that AccuCubic prefers

that FC be turned off, but we do not have a clear explanation for this phenomenon.

Chapter 5. Synchronization of TCP Cubic connections 101

Figure 5.21: NS-2 Simulations - A single flow, With FC

Figure 5.22: NS-2 Simulations - A single flow, Without FC

Chapter 5. Synchronization of TCP Cubic connections 102

We further tested the potential benefit of those modifications in the case of 100 flows

competing for the bottleneck. We consider various scenarios by varying the RTT from

100 to 500 ms and considering different buffer sizes from 0.1×BDP to 1 BDP. For each

scenario, we performed 10 runs. We report the number of synchronized flows in the case

of 500ms and a buffer size equal to one BDP in Figures 5.23 and 5.24 for a typical run.

Results are consistent with the case of a single flow: LinCubic noticeably decreases the

number of synchronized flows as well as AccuCubic when FC is turned on. When FC is

turned off, only LinCubic performs better than TCP Cubic.

At this stage, we believe that even if the behavior of TCP Cubic can be improved, as

exemplified by LinCubic and AccuCubic, the solution to combat synchronization might

not be only sought in the TCP implementation itself. Indeed, those improvements

might always be partly mitigated by the competition among TCP Cubic flows outlined

in Section 5.5.3. Solutions to the problem of synchronization should thus also be looked

for outside TCP itself, e.g., through the use of buffer management mechanisms like RED

or Codel [NJ12b]. We further investigate this issue in chapter 6.

50 100 150 200 250
30

40

50

60

70

80

90

100

Time (seconds)

N
um

be
r o

f s
yn

ch
ro

ni
ze

d
flo

w
s

100Mbps, RTT=500ms, 100 flows, WITH FC

Cubic
LinCubic
AccuCubic

Figure 5.23: NS-2 Simulations -100 flows, RTT=500ms, With FC

50 100 150 200 250
30

40

50

60

70

80

90

100

Time (seconds)

N
um

be
r o

f s
yn

ch
ro

ni
ze

d
flo

w
s

100Mbps, RTT=500ms, 100 flows, NO FC

Cubic
LinCubic
AccuCubic

Figure 5.24: NS-2 Simulations -100 flows, RTT=500ms, Without FC

Chapter 5. Synchronization of TCP Cubic connections 103

5.7 Conclusion

In this chapter, we have explored in detail the root causes behind the synchronization

of TCP Cubic flows that can be easily observed through simulations for instance. We

made use of a combination of experiments in a testbed, simulations and some experi-

ments in the wild to analyze the extent of the phenomenon.

The controlled nature of our testbed enabled us to precisely analyze the phenomenon

of synchronization and discover its root causes. Simple experiments in the wild (with a

distant EC2 datacenter) confirmed that the phenomenon can affect real world transfers.

We discovered that while TCP Cubic is known to provide a form of fairness by making

the window growth independent of the RTT of the connection (which TCP New Reno

is unable to do as the window growth is tightly coupled to the RTT of each connection),

synchronization is a subtle result of the interaction between: (i) the way TCP Cubic

reaches the capacity of the network, (ii) the relation between the RTT of the connection

and (iii) the window growth of the cubic function that occurs at specific time instant. In

addition, Fast Convergence, that biases the estimate of the capacity made by TCP Cubic

to give a chance to other connections to grab some bandwidth, significantly increases

the synchronization phenomenon. Last but not least, even with a perfect estimation

of the bottleneck capacity, synchronization can occur starting from an unsynchronized

situation where some flows loose while some others do not. Indeed, the sources that did

not loose are likely to start probing aggressively (due to the shape of the cubic function)

which can result in massive losses for all flows later on. This can be observed especially if

the RTT is large. When the RTT is low for all connection, TCP Cubic is quite immune

to synchronization.

We proposed and evaluated two modifications to the TCP Cubic algorithm that

aim at combating synchronization. They improved noticeably the situation and we

intend to explore in the next chapter how they can be combined with advanced queuing

mechanisms like CoDel, to further reduce synchronization.

Acknowledgment

This work was partly supported by AWS in Education Grant award.

Chapter 6

Impact of queue management

mechanisms on synchronization

6.1 Introduction

In the previous chapter, we proposed and evaluated two modifications to the TCP

Cubic algorithm LinCubic and AccuCubic, that aim at combating synchronization.

The solution to fight against the problem of synchronization might also be looked for

outside TCP itself, e.g., through the use of buffer management mechanisms.

In this chapter, we intend to evaluate the potential impact of the queue management

algorithms on synchronization. Also, we explore how LinCubic and AccuCubic can be

combined with advanced queuing mechanisms like CoDel, PIE and ARED to further

reduce synchronization.

6.2 Active Queue Management Mechanisms

Buffers was initially designed to avoid packet drops, but they can lead to highly

elevated queuing latency and jitter. This phenomenon is called ’bufferbloat’ and was in-

troduced by Jim Gettys in late 2010 [GN11]. Bufferbloat may worsen the user-perceived

Internet performance, most specifically for latency-sensitive applications such as real-

time interactive multimedia, online gaming and even web browsing, especially when they

share the bottleneck queue with long-lived TCP connections.

A popular counter measure is the adoption of active queue management (AQM)

schemes in the network to improve the performance of the Internet. AQM mechanism is

a congestion control mechanism at a router for controlling the number of packets in the

router’s buffer by actively discarding some arriving packets. It can shorter the average

delays in the router’s buffer and can also achieve higher throughput.

The primary goals of any AQM mechanism are:

104

Chapter 6. Impact of queue management mechanisms on synchronization 105

1. Let the buffer absorb packet bursts while preventing it from sustaining long stand-

ing queues;

2. Break any synchronization between flows.

If possible, AQM mechanisms should also be able to protect flows from being starved by

other more aggressive or misbehaving flows, as well as to support Explicit Congestion

Notification (ECN) [Flo94].

Several surveys have been conducted in the literature to capitalize the extensive

existing AQM research. Among them, we cite [Ada13] which is an AQM taxonomy

published in 2013 where authors discuss the general attributes of AQM schemes, and

the design approaches taken such as heuristic, control-theoretic and deterministic opti-

mization. They revisit AQM research from 1993 with the first algorithm, Random Early

Detection (RED), to 2011. They used a set of criteria to classify and compare AQMs:

(i) mechanisms of operation; (ii) context of use; and (iii) performance criteria.

We present, in the remainder of this section, the AQM policies that we consider:

ARED, Codel and PIE. Where CoDel and PIE are two AQM mechanisms that have

recently been presented and discussed in the IRTF and the IETF as solutions for keeping

latency low.

6.2.1 RED

Random early detection (RED), also known as random early discard or random early

drop was introduced by Floyd and Jacobson [FJ93a], for controlling the average queue

size two decades ago.

RED monitors the average queue size and drops (or marks when used in conjunction

with ECN) packets based on some probability function. If the buffer is almost empty,

all incoming packets are accepted. As the queue grows, the probability for dropping an

incoming packet grows too. When the buffer is full, the probability reaches 1 and all

incoming packets are dropped.

More precisely, the decision of dropping (or tagging) a packet is based on a running

estimate of the average queue q at the buffer. This average value is updated with every

incoming packet. A piecewise-linear drop probability function p(q) is used to select

the packets that will be “marked” with a congestion signal(i.e., discarded or tagged).

When q gets above a given threshold qmin, incoming packets are marked with probability

p(q) > 0 up to a maximum value of pmax which is typically � 1. If q becomes greater

than a threshold qmax, then p = 1. In the so-called “gentle RED” variant, p gradually

increases from pmax to 1 when q is in the [qmax; 2qmax] range, see Figure 6.1 .

Given that RED needs careful tuning of its parameters for various network conditions,

most network operators do not turn RED on. In addition, RED is designed to control

Chapter 6. Impact of queue management mechanisms on synchronization 106

Figure 6.1: RED: drop probability function [HR09]

the queue length which would affect delay implicitly. It does not control latency directly.

We provide in Figure 6.2 a simplified RED algorithm chart.

Figure 6.2: Simplified RED Algorithm Behavior [ed14]

6.2.2 ARED

Adaptive RED (ARED) [FGS01] dynamically adjusts RED’s maximum drop prob-

ability (pmax). It observes the average queue length (q) to infer whether to make

RED more or less aggressive. Similar to RED, ARED keeps two thresholds (qmin and

qmax) which, to correlate with a single target queuing value, are set to 0.5∗ targetqueuing
and 1.5 ∗ targetqueuing in accordance with the rules in [FGS01]. If q oscillates below

qmin, early detection is too aggressive. On the other hand, if q oscillates above qmax,

early detection is too conservative. Using an Additive Increase /Multiplicative Decrease

Chapter 6. Impact of queue management mechanisms on synchronization 107

(AIMD) policy, ARED adaptively changes pmax so that the average queue length os-

cillates around (qmax + qmin)/2. ARED updates pmax periodically after every interval

(500 ms by default), and adaptively sets most of RED’s parameters based on a target

average queue as an input parameter.

6.2.3 CoDel

CoDel [NJ12b] [NJ12a] was first published in May of 2012 by Kathy Nichols and Van

Jacobson. It was proposed to control the latency directly to address the bufferbloat

problem [GN11]. CoDel requires per packet timestamps, and packets are dropped at the

dequeue function after they have been enqueued for a while.

It assumes that a small target queue delay is tolerable so as to achieve good link

utilization. CoDel uses additional logic to avoid re-entering the dropping state too early

after exiting it. CoDel only enters the dropping state when the minimum queuing delay

has exceeded target delay for an interval long enough to absorb normal packet bursts.

This ensures that a burst of packets will not experience packet drops as long as the

burst can be cleared from the queue within a reasonable period. Figure 6.3 presents a

simplified algorithm behavior for CoDel.

Figure 6.3: Simplified CoDel Algorithm Behavior [Whi13]

A new version of Codel is the Fair Queuing Controlled Delay FQ Codel. It is queuing

discipline that combines Fair Queuing with the CoDel AQM scheme. FQ Codel uses a

Chapter 6. Impact of queue management mechanisms on synchronization 108

stochastic model to classify incoming packets into different flows and is used to provide

a fair share of the bandwidth to all the flows using the queue1.

6.2.4 PIE

PIE (Proportional Integral controller Enhanced) [RPC+13] is being developed by

Cisco and was first presented in the October 2012 IETF meeting. It is based on the

theory of linear feedback control.

In [RPC+13], the authors describe in detail the design of PIE and its operations. PIE

directly controls latency like CoDel. Similar to RED, PIE randomly drops packets at the

onset of the congestion. The congestion detection, however, is based on the queueing

latency like CoDel instead of the queue length like conventional AQM schemes such

as RED. Furthermore, PIE also uses the latency moving trends: latency increasing or

decreasing, to help determine congestion levels.

PIE attempts to control the queue depth via linear-feedback control, It monitors

the queue depth, and adjusts drop-probability via linear control-theory mechanisms. It

establishes three operating points for its linear controller, and switching between them

in an attempt to select the mode that results in the best behavior.

The core of the algorithm consists in the prediction of the queuing latency for the

packet that is currently at the tail of the queue, based on the current queue depth and

an estimate of the egress data rate.

Authors in [NK13] have identified two key parameters that are common to RED,

CoDel and PIE mechanisms:

• Target delay : CoDel starts dropping packets when the queuing delay has been

above the target delay for a certain amount of time, while PIE continuously updates

its dropping probability based on the difference between the current queuing delay

and target delay. Although ARED does not explicitly maintain a target delay

value, when ARED is used in a fixed bandwidth scenario, it is possible to derive

its corresponding target delay from a given target queuing.

• Interval: Most AQMs require a certain time interval to update their dropping/-

marking probability or decide whether to discard the incoming/outgoing packets.

The use of this interval differs from one AQM to another. CoDel uses it to de-

cide how long the queuing latency can stay above target delay before switching to

dropping mode. On the other hand, PIE and ARED use this quantity to update

the dropping/marking probability.

1http://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-00

Chapter 6. Impact of queue management mechanisms on synchronization 109

6.3 Bibliographical comparison of AQMs

[RPC+13] is the first paper that present PIE, where authors evaluate the perfor-

mance of the PIE scheme in both NS-2 simulations and testbed experiment using Linux

machines. They compare PIEs performance against RED in simulations and against

CoDel in testbed evaluations.

Compared to RED, PIE quickly adjusts the dropping probability in a couple of

seconds, and restore the control of the queuing latency to be around equilibrium value.

With experimental results, authors of PIE show that for TCP traffic, PIE and CoDel

are able to control the queuing delay reasonably well. Under the mixture of TCP and

UDP traffic, CoDel cannot control the latency under the target values of 5ms and 20ms

respectively.

In [Whi13], the authors compare CoDel, PIE and Stochastic Flow Queue-CoDel

(SFQ-CoDel). They tested 17 different user traffic scenarios that comprise different

mixes four applications, e.g., VoIP/Gaming, Web browsing, File upload (either FTP or

BitTorrent) and Constant bit rate UDP traffic.

The 17 scenarios are grouped into three groups; Light traffic, Moderate traffic and

Heavy traffic.

Results show that :

• CoDel provides some attractive benefits relative to Buffer Control. The main

benefits being improvements in gaming latency, page load time and short term TCP

performance, as well as improvements in VoIP performance in certain conditions.

• SFQ-Codel shows extremely good performance in the majority of the tested sce-

narios, except BitTorrent.

• The PIE algorithm outperforms buffer control, and in most cases outperforms

CoDel. Another concern is that PIE may require more elaborate tuning based on

the network technology and conditions. One potential improvement in PIE that

has been discussed by Cisco is to pair it with the SFQ concept. While this may

give even further improvements in some scenarios, it would introduce the same

issue that SFQ-CoDel has with BitTorrent.

In summary, SFQ-CoDel outperforms all other approaches in the majority of cases.

In [NK13], the authors perform an experimental evaluation of ARED, PIE and CoDel

using real-world implementations, in both wired and wireless testbeds. This was the first

study to compare these 3 AQMs through experiments. To better understand the basic

behavior of CoDel, PIE and ARED, they conducted a first set of experiments using

Chapter 6. Impact of queue management mechanisms on synchronization 110

only a single TCP flow and observed the trade-off between RTT and goodput in a given

period. Results show that:

• CoDel and PIE produce higher maximum and longer distribution tail of queuing

delay than Adaptive RED.

• CoDel achieves the best goodput among the three AQMs, while ARED suffers from

low link utilization for lower target delay values of ≤ 10ms when only a single TCP

flow is present at the bottleneck.

Authors further evaluate the three AQM mechanisms under different network condi-

tions, and investigate how they behave in scenarios with different number of flows and

different parameter settings (RTT, target delay and the interval).

When varying Target delay, under high congestion, PIE and CoDel show longer

queuing delay distribution tails, meaning more fluctuations in RTTs.

For the Interval variation, as CoDel and PIE use an update interval time that can be

adjusted from user-space and ARED uses a static fixed interval time of 500 ms, authors

only study CoDel and PIE.

For CoDel, smaller interval value than the default one could be recommendable.

PIE achieves better queuing delays with fine-grained intervals and better goodput with

coarse-grained intervals.

Finally, for short RTTs, ARED is able to achieve significantly better queuing delay

than CoDel and PIE with almost exactly the same goodput level. For intermediate (100

ms) and longer (500 ms) RTT ARED performs significantly better than CoDel and PIE

in terms of queuing delay while loosing little goodput.

In [GKF13], the authors compared PIE and CoDel using Adaptive RED as a refer-

ence. Through simulations, they show that to achieve a small queuing delay PIE and

CoDel both increase packet loss. Also, they found that PIE performs better than CoDel

in terms of packet loss rates affecting video quality. And the performance of ARED is

comparable to that of PIE and CoDel in constant capacity links. Simulations results

show that ARED, PIE and CoDel can increase loss that may negatively impact some

applications like unreliable video. So, to compare these AQMs, several results derived

from these studies were conflicting.

Active queue management versus loss synchronization

In [HR09], the authors evaluate the potential impact of the Random Early Detection

(RED) queue management algorithm on high-speed TCP versions : High Speed TCP

(HSTCP), Hamilton TCP (H-TCP), BIC, TCP Cubic and Compound TCP (CTCP).

Chapter 6. Impact of queue management mechanisms on synchronization 111

They focus on several metrics: loss synchronization, goodput, link utilization, packet

loss rate, and convergence to fairness for high-speed flows.

The simulation setup in [HR09] is as follow: for every long-lived flow there are one

or more background flows sharing the corresponding access links. And each background

flow is modeled as an on-off process, with exponentially-distributed “off” (thinking time)

periods of mean 4s alternating with “on” (activity) periods. The version of TCP used

for background traffic is TCP New Reno.

The authors observe that RED tends to“break” loss synchronization between TCP

flows. More precisely, it avoids causing global synchronization as much as possible. It

strongly reduces the synchronization rate for large buffers (i.e., Buffer=C × RTT and

Buffer=0.63×C ×RTT/
√
N , where N is the number of flows), whereas with droptail,

the synchronization between sources is very high. In contrast, with medium (i.e., 2000

packets, or 2% of the BDP) to small buffers (i.e., 100 packets), RED and droptail give

similar loss synchronization level.

6.4 Simulation results

In order to evaluate the potential benefit of AQMs for solving the synchronization

issue of TCP Cubic, we started with a simulation study of the three active queue man-

agement algorithm Codel, PIE and ARED. This study is similar to Ros study where

authors performed an experimental evaluation of these three AQMs using real-world

implementations, in both wired and wireless testbeds.

Figure 6.4: Structure of the network

The network topology used for NS-2 simulations is a dumbbell with one bottleneck

link as shown in Figure 6.4. There are N long-lived flows sharing the bottleneck link

with the capacity C.

We proceeded as in the paper [NK13] and compared the 3 AQMs in terms of delays

and goodput, while varying certain parameters (delay, interval, RTT) through NS-2

simulations.

Chapter 6. Impact of queue management mechanisms on synchronization 112

We considered the same parameter than in Ros study; the base RTT is equal to

100ms, the queue size is set to 1000 packets and the bottleneck link capacity is set to

10Mbps. 64 TCP flows are sharing the bottleneck link (heavy congestion), where the

congestion control algorithm for this scenario was TCP New Reno.

These AQMs have two key parameters “Target Delay” and “Interval” that affect

their performance. The defaults values of these AQMs parameters based on the Linux

implementation are shown in Table 6.1. And we kept the default values for the remaining

adjustable parameters.

❳❳❳❳❳❳❳❳❳❳❳Parameter
AQM

RED Codel PIE

Tdelay 5ms 5ms 20ms

Interval 500ms 100ms 30ms

Table 6.1: Default parameter values

We conducted a first set of NS-2 simulations and observed how the regarded mecha-

nisms behave when varying their parameter settings.

6.4.1 Target Delay

We considered five target delay values (1, 5, 10, 20 and 30ms), where this range

includes the default value for PIE and CoDel (20ms and 5ms, respectively). For these

tests, we kept for each AQM the default value of the interval parameter.

In Figure 6.5 , we report the boxplots of RTTs for the 3 AQMs for each target delay

value. The black boxplots are results for “ARED+Gentle-RED”. For each value of the

x-axis, the order of AQMs boxplots is that of the legend. As the base RTT is set to

100ms, the difference between values on boxplots and 100ms correspond to queuing delay

at the bottleneck.

A first observation is that there is no difference between ARED and “ARED+Gentle-

RED” results.

We observe that median and percentiles of queuing delay decrease proportionally to

the decrease of target delay for all AQMs. This correlation was less for Ros results.

It is also observable that CoDel and ARED show longer queuing delay distribution

tail, meaning larger fluctuations in RTTs. In contrast, Ros experiments show that ARED

exhibits much shorter distribution tails, meaning more controlled queuing delay.

The last thing is that the queuing delays of NS-2 simulations are smaller than the

Ros experimental results.

Chapter 6. Impact of queue management mechanisms on synchronization 113

100

150

200

250

R
TT

 (m
s)

Target delay (ms)
1 10 20 305

Figure 6.5: RTT, NS-2 simula-
tion results

8.5

9

9.5

10

G
oo

dp
ut

 (M
bp

s)

Target delay (ms)
5 10 20 301

Figure 6.6: Goodput(Mbps),
testbed experimental results

Figure 6.6 shows the achieved goodput of AQMs for different Target Delay values. We

observe that the goodput values for all AQMs are always above 9Mbps, but compared

to Ros results, there is more variation for Codel values.

6.4.2 Interval Time

The default interval value for Codel, PIE and ARED, are 100ms, 30ms and 500ms,

respectively. We only change CoDel and PIE interval value, like in Ros study. We

consider 3 Interval values: small (5ms), medium (30ms) and large (100ms) relative to

the base RTT of 100ms. This range of values incorporates CoDel’s and PIE’s default

Interval values (100 ms and 30ms, respectively).

Figure 6.7 shows the variation of delays for Codel, when varying Interval parameter.

We observe that smaller values than the default one for Codel (100ms) leads to an

improvement in queuing delays. These results are consistent with those presented by

Ros. But simulation values remain low compared to their experimental results.

100

120

140

160

180

R
TT

 (m
s)

Interval (ms)
30 1005

Figure 6.7: RTT (ms), Codel
NS-2 simulation results

8

8.5

9

9.5

10

Interval (ms)

G
oo

dp
ut

 (M
bp

s)

5 30 100

Figure 6.8: Goodput (Mbps),
Codel NS-2 simulation results

Chapter 6. Impact of queue management mechanisms on synchronization 114

We present in Figure 6.8 Codel achieved goodput. We can see that the variation of

the interval value does not impact the goodput for Codel, that is always close to 9.6

Mbps.

Figure 6.9 shows that PIE achieves better queuing delays with smaller interval values.

When comparing with Ros results we found that for simulations the delays remain lower

than 120ms, while these values reach 150ms for Ros experiments. But the achieved

goodput for PIE increases slightly with high interval values for both simulations and

experiments, see Figure 6.10.

110

120

130

140

150

160

170

180

Interval (ms)

R
TT

 (m
s)

5 30 100

Figure 6.9: RTT (ms), PIE NS-
2 simulation results

8

8.5

9

9.5

10

Interval (ms)
G

oo
dp

ut
 (M

bp
s)

100305

Figure 6.10: Goodput (Mbps),
PIE NS-2 simulation results

6.4.3 Base RTT

The third parameter we tested is the base RTT. The default Interval value for CoDel

in these experiments is equal to 100ms, which allows it to absorb a burst size of an

interval worth of data, making it suitable for scenarios when RTT is reasonably close to

100ms.

We provide evaluation results for three values of RTTs:

• Short RTTs 5ms (intra-city/state transfers).

• Medium RTTs 100ms (continental and most inter-continental internet paths).

• Long RTTs 500ms (for few inter-continental paths, some developing countries and

satellite links).

We report in Figures 6.11 and 6.12 the per-packet queuing delay and the achieved

goodput for different RTT values.

We observe that with most AQMs, better queuing delay were achieved when RTT

is medium while the goodput level deteriorates slightly. PIE is able to achieve better

queuing delay than CoDel and ARED with almost the same goodput level when RTT is

equal to 100ms. PIE undergoes small degradation in terms of goodput for larger RTTs.

We note that even if ARED does not manage well the delays, it offers significantly better

Chapter 6. Impact of queue management mechanisms on synchronization 115

goodput values in all cases.

The goal of the previous tests was to first compare the performance of these AQMs

before assessing their impact on synchronization. The above results of NS-2 simulations

are slightly different from the ones obtained by Ros using experimentation in a testbed.

0

20

40

60

80

100

RTT (ms)

Q
ue

ui
ng

 d
el

ay
 (m

s)

1005 500

Figure 6.11: Queuing delay
(ms), NS-2 simulation results

6.5

7

7.5

8

8.5

9

9.5

10

G
oo

dp
ut

 (M
bp

s)
 RTT (ms)

5005 100

Figure 6.12: Goodput (Mbps),
NS-2 simulation results

The reason behind this difference between NS-2 and experimental results may be

caused by: (i) the implementation of some Active Queue Management (AQM) algo-

rithms in the NS-2 simulator that is different from the one used in the netem modules

implemented in the Linux kernel; and (ii) the configuration of the simulations does not

catch the complexity of an operational IP network.

To move forward, we decided to :

1. Perform the same tests with experiments, in our testbed.

2. Implement LinCubic and AccuCubic as modules in Linux kernel

3. Explore how AQMs can be merged with LinCubic and AccuCubic

6.5 Experimental results

The only study that compares Codel, PIE and ARED against each other through

experimentation is the one by Ros [NK13]. We observe differences between the NS-2

results that we found and Ros experimentation results. We thus conducted an evaluation

of these AQMs through experimentations in a testbed in our laboratory.

6.5.1 Experimental setup

In order to perform tests of realistic network scenarios in a controlled manner, we

need real network devices as well as network emulation capabilities. One of the most

Chapter 6. Impact of queue management mechanisms on synchronization 116

Figure 6.13: Experimental network setup

popular network emulators in the research world is NetEm [Fou09]. This free open

source tool is widely used in different kinds of testbeds. The current version of Netem

emulates variable delay, loss, duplication and re-ordering.

Based on [HJ13] and [NK13], if using Netem to introduce latency, we should use

a separate middlebox. In particular, Netem does not work in combination with other

queuing disciplines qdiscs 2, also called network schedulers that are commonly used as

attempts to compensate for various networking conditions. We considered the same

testbed that we used in the previous chapter, with a slight modification that allows us

to use Netem and AQMs, separately.

Our wired testbed comprises 3 multi-core Dell servers, 2 acting as TCP client or

server and one as bottleneck node, see Figure 6.13. We created 2 virtual machines VM1

and VM2 in the intermediate machine. The first VM uses Netem to control the path

latency and the capacity, and the second VM uses the AQM to manage the buffer size.

We use the default FIFO/droptail as server scheduling/queue management policy at

VM1.

6.5.2 Ros comparison

We performed some of Ros experimentations using our testbed, where the base RTT

is equal to 100ms, the queue size is set to 1000 packets, the bottleneck link capacity is

set to 10Mbps and the number of long-lived flows sharing the bottleneck is equal to 16

instead of 64.

As a first step, we considered the same target delay values (1, 5, 10, 20 and 30ms).

We report in Figure 6.14 the boxplots of RTTs for the 3 AQMs.

2http://en.wikipedia.org/wiki/Network_scheduler

Chapter 6. Impact of queue management mechanisms on synchronization 117

100

105

110

115

120

125

130

135

140

R
TT

(m
s)

1 5 10 20 30
Target Delay (ms)

Figure 6.14: RTT(ms), 10Mbps,
RTT=100ms, BS=1000 packets

8.5

9

9.5

10

G
oo

dp
ut

 (M
bp

s)

1 10 20 305
Target Delay (ms)

Figure 6.15: Goodput(Mbps) ,
10Mbps, RTT=100ms, BS=1000

packets

We observe that with experimental results all queuing delays increase with target

delay. ARED offers smaller queuing delay than Codel and PIE. It better controls the

latency like in Ros results. As for the achieved goodput, it always stays above 9Mbps

for all AQMs. We observe that ARED achieves larger goodput value for all target delay

values compared to Codel and PIE.

We can see that compared to AQMs simulation results, the results of our experi-

mentations seem qualitatively closer to Ros results, but quantitatively there is a slight

difference. This may be due to :

• The use of virtualization in our testbed.

• The differences between our topology and the one in [NK13], are :

– Dumbbell topology with 4 sender-receiver pairs.

– Two sets of Dell OptiPlex GX620 machines acting as senders and receivers.

– The senders and receivers are connected via two routers; the first router is

acting as an AQM router implementing AQM on its bottleneck (egress) inter-

face. The second router is acting as a delay node on both forward and reverse

traffic, using the ipfw dummynet module (http://info.iet.unipi.it/ luigi/dum-

mynet/).

In our testbed, we have 3 machines, one sender, one receiver and a router on which

we have 2 VMs.

The above results comparing the AQMs performance show that ARED better controls

the latency. As next step, we will proceed to study the AQMs performance for high BDP

scenarios, where synchronization was highly pronounced.

Chapter 6. Impact of queue management mechanisms on synchronization 118

6.5.3 Experiments: Synchronization vs. AQMs

As synchronization was high for TCP Cubic flows, we tested the potential benefit of

AQMs with scenarios where a large number of TCP Cubic flows share the bottleneck

link. Then, we implemented LinCubic and AccuCubic as kernel modules and we compare

AQMs performance with the potential benefit of these modifications that we proposed

and detailed in the previous chapter. We considered the case of 100 flows competing for

the bottleneck, where Fast Convergence is turned ON.

We consider a link capacity equal to 100Mbps, a latency equal to 350ms and a buffer

size equal to one 1 BDP (i.e., 2916 packets). For each scenario, we performed 10 runs.

We report the time series of the congestion window and buffer, the goodput and the

number of synchronized flows.

Figures 6.16 and 6.17 show the time series of the congestion windows for our ap-

proches and the 3 AQMs and their CDFs. We first observe that the congestion window

for Cubic, LinCubic and AccuCubic reaches the value of BDP + BS (2916 × 2) when the

buffer management is Drop Tail (DT). In contrast, with AQMs, the congestion windows

remain near 1 BDP, which means that the number of packets in the buffer is small, see

Figure 6.18. So AQMs mechanisms inteligently manage the queue of packets to have

low delays.

0 20 40 60 80 100
0

2000

4000

6000

8000

Time (seconds)

C
w

nd
 (p

ac
ke

ts
)

Cubic − DT
LinCubic − DT
AccCubic − DT
Cubic − Codel
Cubic − PIE
Cubic − ARED

Figure 6.16: Cwnd(packets),
100Mbps, RTT=350ms,

BS=1BDP

1000 2000 3000 4000 5000 6000 7000
0

0.2

0.4

0.6

0.8

1

Cwnd (packets)

C
D

F

Cubic − DT
LinCubic − DT
ACCCubic − DT
Cubic − Codel
Cubic − PIE
Cubic ARED

Figure 6.17: CDFs of the
congestion window, 100Mbps,

RTT=350ms, BS=1BDP

We report in Figure 6.19 the goodput results. Since there are 6 quantities (approaches

+ AQMs), we use one boxplot per quantity. We can observe that through the use of

buffer management mechanisms like Codel, PIE and ARED, we can reduce delays while

loosing little goodput.

We further report the number of synchronized flows in Figure 6.20, and their CDFs

in Figure 6.21. Experimental results are consistent with simulation results : LinCubic

decreases the number of synchronized flows as well as AccuCubic when FC is turned on.

But, we can see that those improvements are mitigated by the competition among TCP

Cubic flows.

Chapter 6. Impact of queue management mechanisms on synchronization 119

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

Time (seconds)

B
uf

fe
r (

pa
ck

et
s)

Cubic − DT
LinCubic − DT
AccCubic − DT
Cubic − Codel
Cubic − PIE
Cubic − ARED

Figure 6.18: Buffer(packets)
, 100Mbps, RTT=350ms,

BS=1BDP

0 1 2 3 4 5 6 7
60

65

70

75

80

85

90

95

100

Time (seconds)

G
oo

dp
ut

 (M
bp

s)

Figure 6.19: Goodput(Mbps),
100Mbps, RTT=350ms,

BS=1BDP

When comparing the number of synchronized flows for the AQMs, we observe that

ARED seems to be the most effective to reduce the level of synchronization between TCP

Cubic flows. These results are consistent with the simulation results in [HR09] where

the authors have shown that for large buffers, ARED is able to reduce significantly the

synchronization between flows. Also, compared to Cubic, we manage to reduce this

amount of synchronized flows to 41 flows for ARED instead of 81 flows for Cubic.

0 20 40 60 80 100
0

20

40

60

80

100

Time (seconds)

N
um

be
r o

f s
yn

ch
ro

ni
ze

d
flo

w
s

Cubic − DT
LinCubic − DT
AccCubic − DT
Cubic − Codel
Cubic − PIE
Cubic − ARED

Figure 6.20: Number of
synchronized flows, 100Mbps,

RTT=350ms, BS=1BDP

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of synchronized flows

C
D

F

Cubic − DT
LinCubic − DT
AccuCubic − DT
Cubic − Codel
Cubic − PIE
Cubic − ARED

Figure 6.21: CDFs of the
synchronized flows, 100Mbps,

RTT=350ms, BS=1BDP

High synchronization between TCP Cubic flows when we apply AQMs on the router

can be explained by the concurrency between TCP Cubic flows (more details in the

previous chapter). So we proceeded to do the same test but with TCP New Reno for

which synchronization was less important. We investigated whether with AQMs we still

have lower rates.

We report in Figure 6.22, the time series for the window size for TCP New Reno

whith Droptail, Codel, PIE and ARED queue management algorithms. With the use of

AQMs, delays decrease but also the goodput undergoes degradation, see Figure 6.23.

Figure 6.24, presents the number of synchronized flows. We note that with AQMs,

synchronization is higher compared to the case of droptail. The increase of the number

of synchronized flows increases the packets loss rate. This increase in packet loss was

Chapter 6. Impact of queue management mechanisms on synchronization 120

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

Time (seconds)

C
w

nd
 (p

ac
ke

ts
)

DropTail
Codel
PIE
ARED

Figure 6.22: Cwnd (pack-
ets), TCP New Reno 100Mbps,

RTT=350ms, BS=1BDP

0.5 1 1.5 2 2.5 3 3.5 4 4.5

10

20

30

40

50

60

70

80

90

100

Time (seconds)

G
oo

dp
ut

 (M
bp

s)

Figure 6.23: Goodput(Mbps),
TCP New Reno 100Mbps,

RTT=350ms, BS=1BDP

noticed in [GKF13], where authors show that through simulations PIE and CoDel both

increase packet loss.

20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Time (seconds)

N
um

be
r o

f s
yn

ch
ro

ni
ze

d
flo

w
s

Droptail
Codel
PIE
ARED

Figure 6.24: Number of synchronized flows, TCP New Reno 100Mbps, RTT=350ms,
BS=1BDP

6.5.4 Combining LinCubic and AccuCubic with AQMs

To evaluate the impact of those different modifications when combined with AQMs,

we considered scenarios where LinCubic and Accucubic are combined with AQMs and

we started observing their behavior. We report in Figures 6.25, 6.26 and 6.27 the time

series evolution of the window size for Cubic, LinCubic and AccuCubic when combined

with Codel, PIE and ARED, respectively.

We observe that the Cubic shape of the total windows persists, meaning that all

flows are still synchronized. So, through this combination we can improve the situation

partially. We can see also that with default parameters of AQMs, the delays are reduced,

but this causes often empty buffers, so an under-utilization of the link.

Chapter 6. Impact of queue management mechanisms on synchronization 121

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

Time (seconds)
C

w
nd

 (p
ac

ke
ts

)

Cubic − Codel
LinCubic − Codel
AccCubic − Codel

Figure 6.25: Cwnd(packets), Codel, 100Mbps, RTT=350ms, BS=1BDP

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Time (seconds)

C
w

nd
 (p

ac
ke

ts
)

Cubic − Pie
LinCubic − Pie
AccCubic − Pie

Figure 6.26: Cwnd(packets) , PIE, 100Mbps, RTT=350ms, BS=1BDP

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Time (seconds)

C
w

nd
 (p

ac
ke

ts
)

Cubic − ARED
LinCubic − ARED
AccCubic − ARED

Figure 6.27: Cwnd(packets) , ARED, 100Mbps, RTT=350ms, BS=1BDP

So, given these results and also given that the default parameters of AQMs are small

compared to the base RTT (350ms) that we have considered for these experiments, we

proceeded by changing the Target delay and Interval parameters and see their impact

on the link utilization and the goodput.

Chapter 6. Impact of queue management mechanisms on synchronization 122

6.5.5 Parameter Sensitivity

We now want to assess how the AQMs mechanisms behave under varying the target

delay and the interval parameters. We considered various target delay values ranging

from 20 to 150ms and we reverted to use only TCP Cubic in these experiments. From

Figure 6.28 we can make several observations: All AQMs’s median stay around 350ms

except the case of Codel with Target delay value equal to 150ms. But we still observe a

set of values which are far from the median.

Figure 6.29 shows the achieved goodput of AQMs for Target delay values. We note

that the rate is slightly increased with the increase of Target delay values, which is

consistent with the fact that the larger the target values are, the better both the goodput

and the utilization are.

350

400

450

500

550

600

650

700

R
TT

 (m
s)

20 50 100 150
Target delay (ms)

Figure 6.28: RTT (ms) -
100Mbps, 350ms - Cubic

40

50

60

70

80

90

100

Target delay (ms)

G
oo

dp
ut

 (M
bp

s)

20 100 15050

Figure 6.29: Goodput (Mbps)-
100Mbps, 350ms - Cubic

The second important parameter for the AQMs is the Interval. We consider three

time-granularities at which AQMs might perform : 100ms, 200ms and 300ms. Figures

6.30 and 6.32 show Codel’s and PIE’s performance when interval is set to the above

values.

350

400

450

500

550

600

650

700

Interval (ms)

R
TT

 (m
s)

200 300100

Figure 6.30: RTT (ms) -
100Mbps, 350ms - Codel

20

40

60

80

100

Interval (ms)

G
oo

dp
ut

 (M
bp

s)

100 300200

Figure 6.31: Goodput (Mbps)-
100Mbps, 350ms - Codel

Chapter 6. Impact of queue management mechanisms on synchronization 123

These two AQMs achieve better queuing delays with fine-grained intervals (100ms)

and slightly better goodput with the large intervals (300ms).

350

400

450

500

550

600

650

700

Interval (ms)

R
TT

 (m
s)

100 200 300

Figure 6.32: RTT (ms) -
100Mbps, 350ms - PIE

20

40

60

80

100

Interval (ms)

G
oo

dp
ut

 (M
bp

s)

100 200 300

Figure 6.33: Goodput (Mbps)-
100Mbps, 350ms - PIE

6.6 Conclusion

In this chapter, we investigated how can we reduce the synchronization level through

network level solutions based on several popular queue management mechanisms, PIE,

Codel and ARED. Then we provided results when combining these AQMs with our

approaches LinCubic and AccuCubic. AQM algorithms require setting Target delay

and Interval parameters but can significantly reduce the level of synchronization, while

ensuring small delays and a high link utilization. This is true for Cubic, but not for New

Reno where AQMs can in fact slightly increase the level of congestion.

We provide hints that through the use of AQMs we may have smaller delays and

reduce synchronization between flows, but there is a price to pay : a higher packet loss

and goodput degradation.

We also observed that using AQMs for reducing synchronization was more efficient

than the end host solutions that we proposed, namely AccuCubic and LinCubic. This is

not a surprise per se, and it was one of the main objective of this study to quantify the

efficiency of these two approaches to reduce the level of synchronization in TCP Cubic.

Conclusions and perspectives

Cloud computing enables a flexible access to computation and storage services. This

requires, for the cloud service provider, mastering network and system issues.

The success of the Internet can be attributed in part to the congestion control mecha-

nisms implemented in TCP. TCP has evolved to monitor network conditions and trends

to be robust and scalable. However, the performance of TCP in data center networks

has been a major concern recently because it was observed to lead to problems. It thus

becomes important to investigate the performance of TCP in typical cloud environment.

In order to master network and system issues in cloud environments, we focused in

this thesis on the performance of TCP Cubic, the default version of TCP in Linux and

the most widely used in today’s data centers.

Conclusions

In Chapter 1, we motivated our work by briefly reviewing some impairments in

Data Center Networks and the variants proposed so far to overcome these impairments.

Then, we made a brief history of some TCP protocols, a survey of some congestion

control algorithms, and relevant works related to the topic of this thesis. Afterwards,

in Chapter 2, we proposed an analytical model for a single-long lived TCP Cubic con-

nection. Using this model, we have analyzed the window size, showing how this metric

depends on the different modes of TCP Cubic and the buffer size. This model is actually

used by people from Orange Labs for troubleshooting TCP connections.

A cloud computing environment, is characterized by an increasing number of com-

peting flows for a single bottleneck link. We have derived in Chapter 3 a fluid model

for TCP Cubic that allows to predict the values of various metrics when a large number

of connections are sharing a common bottleneck link, such as: (1) distribution of the

window sizes; (2) throughput; (3) RTT; (4) loss rate; and (5) queue size. We exhibit

that the fit is very good for the intra-DC and FTTH scenarios, while it is less good for

the inter-DC scenario. In this last mode, TCP Cubic operates in Cubic mode and causes

loss synchronization amongst the connections.

124

Conclusions and perspectives 125

In Chapter 4, we have analyzed measurement from/to a cloud solution available

internally at Orange, Cube. Several tests have been made between Sophia and Cube,

in both directions. Thanks to the various scenarios made, we could distinguish the

different characteristics of connections to/from Cube. All results indicated that there

were several roots to the problem: the disk access, the virtualization layer and a shaper.

These different issues enabled us to underscore the interplay between system and net-

work issues in a typical cloud solution.

In Chapter 5, we have explored in detail the root causes behind the synchroniza-

tion of TCP Cubic flows that can be easily observed through simulations for instance.

Through the combination of experiments in a testbed, simulations and some experiments

in the wild (with Amazon EC2 datacenter), we analyzed the extent of the phenomenon.

The controlled nature of our testbed enabled us to precisely analyze the phenomenon

of synchronization and discover its root causes. Simple experiments with a distant EC2

datacenter confirmed that the phenomenon can affect real world transfers. We proposed

and evaluated two modifications to the TCP Cubic algorithm that aim at combating

synchronization. These two approaches improved noticeably the situation. We further

investigated in Chapter 6, how to combat the synchronization through network level

solutions based on several popular queue management mechanisms like PIE, Codel and

ARED. AQM algorithms require setting Target delay and Interval parameters but can

significantly reduce the level of synchronization, while ensuring small delays and a high

link utilization. Through the use of AQMs we may have smaller delays and reduce syn-

chronization between flows, but there is a price to pay : a higher packet loss and goodput

degradation. We have also shown that using AQMs for reducing synchronization was

more efficient than the end host solutions that we proposed, namely AccuCubic and

LinCubic.

Finally, we highlight several interesting perspectives and future research of our work.

Perspectives

As perspectives, it would be of first interest to consider the extension of the analytical

model to have a more general model, encompassing the slow-start phase, and mixing

TCP New Reno and TCP Cubic connections, to assess more general scenarios about

these TCP versions.

Second, it would be interesting to extend this model by adding active queue manage-

ment mechanisms like RED instead of DropTail. This would enable us to investigate

the interaction between Transmission Control Protocol (TCP) and Active Queue Man-

agement (AQM) mechanism.

Third, in our work, we only considered flows with the same RTTs, but in reality, multiple

Conclusions and perspectives 126

flows with various RTTs exist, and they are dynamically generated and terminated. It

is anticipated that these factors strongly influence the dynamics, so it would meaningful

to investigate these scenarios with our model by adding these details where multiple

flows with different RTTs compete the bottleneck link.

Furthermore, we want to make public releases of the two approaches LinCubic and Ac-

cuCubic.

We also want to explore data center scenarios with a high dynamics in the number of

flows and especially a competition between short and long flows. Due to the noise in-

duced by short flows, long flows are likely to underestimate the network capacity, which,

as we have seen, can lead to too many packets sent when reaching the actual capacity,

and thus possibly, synchronization.

Through simulations and experiments that we performed for AQM mechanisms for the

same scenario performed in [NK13], we observe that the results of experimentations in

I3S testbed and NS-2 simulations seem qualitatively and quantitatively different. So,

another perspective consists in the study of the specifications of these AQMs in NS-2

and the one implemented for the Kernel. Once simulations and implementations would

be reconcile, it would allow us to assess with more accuracy the interplay between TCP

Cubic and AQMs.

Appendix A

Computing parameters for a

single TCP Cubic flow model

A.1 Transitions between states

A.1.1 State (A), TCP mode, Q(t)=0

The state (A) may be the initial state of the system. In this case W(t) is as follows

(from Equation 2.5):

W (t) = wmax(1− β) +
3β

b(2− β)

t

τ

The system leaves this state to state (B) (Cubic mode) when Q(t)=0, and the congestion

window wc > Wtcp. Or, to state (C) (TCP mode) if Q(t)> 0, wc < Wtcp, and tAB < tAC .

• Transition from state (A) to state (B)

We need to consider the difference F (t) = wc(t)− wtcp(t) :

Wtcp(t)−Wcubic(t) = wmax(1− β) +
3β

b(2− β)

t

τ
− Ccubic(t− Vcubic)

3 − wmax

The transition occurs when:

Wtcp(t)−Wcubic(t) = 0

−Ccubic(t− Vcubic)
3 − βwmax +

3β

b(2− β)

t

τ
= 0

−Ccubict
3 + CcubicV

3
cubic + 3Ccubict

2Vcubic − 3CcubictV
2
cubic − βwmax +

3βt

b(2− β)τ
= 0

127

Appendix A. Computing parameters for a single TCP Cubic flow model 128

Consider,

−Ccubict((t−
3

2
Vcubic)

2 − σ) = 0

Where σ = −3
4V

2
cubic +

3β
b(2−β)Ccubicτ

- if σ < 0, there is only one solution t=0

- if σ > 0,

Wtcp(t)−Wcubic(t) = −Ccubict(t− 3
2Vcubic −

√
σ)× (t− 3

2Vcubic +
√
σ)

There are three solutions: t0 = 0, t1 =
3
2Vcubic +

√
σ, and t2 =

3
2Vcubic −

√
σ

Since t2 < t1 so if t2 < 0 , choose t1, else choose t2

• Transition from state (A) to case (C)

At t = tAC , Wtcp(tAC) = Cτ

wmax(1− β) +
3β

b(2− β)

tAC

τ
= Cτ

So tAC = (2−β)bτ
3β (τC − (1− β)wmax)

A.1.2 State (B), Cubic mode, Q(t)=0

The window size is :

W (t) = Ccubic(t− Vcubic)
3 + wmax

• Transition from state (B) to state (D)

At t = tBD Wcubic(tBD) = Cτ

Ccubic(tBD − Vcubic)
3 + wmax = Cτ

So :tBD = 3

�
(Cτ−wmax)

Ccubic
+ Vcubic

• Transition from state (B) to state (A)

At t = tBA, Wcubic(tBA) = Wtcp(tBA)

Wcubic(tBA)−Wtcp(tBA) = 0

Ccubic(tBA − Vcubic)
3 + wmax − wmax(1− β) +

3β

b(2− β)

tBA

τ
= 0

So, to find tBA value we use the same reasoning than section A.1.1

Appendix A. Computing parameters for a single TCP Cubic flow model 129

A.1.3 State (C),TCP mode, Q(t)>0

According to Equation 2.11, the window size Wtcp is:

Wtcp(t) =
(wmax(1− β) + 3β

b(2−β))

2
+
1

2
×((3β

b(2− β)
+wmax(1−β))2+4(

3βCt

b(2− β)
−3βwmax(1− β)

b(2− β)
))

1
2

The system leaves this state to state (D) (Cubic Mode) if wc > Wtcp, or to state (E)

(Loss recovery) if the connection observes a loss.

• Transition from state (C) to state (D)

At t = tCD , Wtcp(tCD) = Wcubic(tCD) So, to find tCD value we use the simple expression

of wtcp and we considered the same reasoning than section A.1.1

• Transition from state (C) to state (E)

At t = tBE , wc(tBE) = Cτ +B + 1

(wmax(1− β) + 3β
b(2−β))

2
+
1

2
×((3β

b(2− β)
+wmax(1−β))2+4(

3βCtCD

b(2− β)
−3βwmax(1− β)

b(2− β)
))

1
2 = Cτ+B+1

So tCE = b(2−β)
3βC (14(

b(2−βC)
3βC × 4(Cτ +B+1− (wmax(1−β)+ 3β

b(2−β)
)2

2)2 − ((wmax(1− β) +
3β
3βC)

2) + 3βwmax(1−β)
b(2−β))

A.1.4 State (D), Cubic mode, Q(t)>0

The window size is:

Wcubic(t) = Ccubic(t− Vcubic)
3 + wmax

• Transition from state (D) to state (C)

At t = tDC , Wcubic(tDC) = Wtcp(tDC)

Ccubic(tDC−Vcubic)
3+wmax =

(wmax(1− β))2

2
+
1

2
×((wmax(1−β))2+

12βC

b(2− β)
× tDC)

1
2

So, to find tDC value we use the simple expression of wtcp and we considered the

same reasoning than section A.1.1

• Transition from state (D) to state (E)

Appendix A. Computing parameters for a single TCP Cubic flow model 130

At t = tDE , wc(tDE) = Cτ +B + 1

So: tDE = 3

�
Cτ+B+1−wmax

Ccubic
+ Vcubic

A.2 Sequence number

S(tk) and A(tk) are the sequence number and the acknowledgment number at time

tk. Assume t0 is the starting time of a phase (more details about phases are given in

the Section 2.3.1.1), and tk+1 = tk +R(tk). We differentiate two cases according to the

occupation of the buffer:

• Empty buffer Q(t)=0

The window size W(t)≤ Cτ , so : tk+1 = tk + τ and

tk = kτ + t0 (A.1)

• Nom empty buffer Q(t)>0

The window size W(t)> Cτ , so : tk+1 = tk +
W (tk+1)

C and tk = t0 +
1
C

�k
i=1 W (ti)

We consider a greedy source (a TCP source that sends data as soon as it has the op-

portunity, i.e., as soon as an ACK is received or the window increases), where W(t)=S(t)-

A(t)

W (tk+1) = S(tk+1)−A(tk+1)

= S(tk+1)− S(tk)

So

S(tk)− S(t0) =

k�

i=1

W (ti)

and ∀k, t ∈ {tk, tk+1}
W (tk) ≤ W (t) ≤ W (tk+1)

We integrate the above equation between tk−1 and tk :

� tk

tk−1

W (tk)dt ≤
� tk

tk−1

W (t)dt ≤
� tk

tk−1

W (tk+1)dt ≤
� tk+1

tk

W (t)dt

� tk

tk−1

W (t)dt ≤ (tk − tk−1)W (tk) ≤
� tk+1

tk

W (t)dt (A.2)

Appendix A. Computing parameters for a single TCP Cubic flow model 131

• if Q(t)=0 (i.e., empty buffer): tk − tk−1 = τ , and Equation A.2 becomes:

� tk

t0

W (t)dt ≤ τ

k�

i=1

W (ti) ≤
� tk+1

1
W (t)dt

� tk

0

W (t)

τ
dt ≤ S(tk)− S(t0) ≤

� tk+1

1

W (t)

τ
dt

C(tk − t0) ≤ S(tk)− S(t0) ≤ C(tk+1 − t1)

C(tk − t0) ≤ S(tk)− S(t0) ≤ C(tk+1 − t1) (A.3)

• if Q(t)> 0 (i.e., non empty buffer): tk − tk−1 =
W (tk)

C

S(tk)− S(t0) = C(tk − t0)

Given that the system is conservative: ∀ t

S(t) = S(t0) + C(t− t0) (A.4)

A.3 Quality of Service metrics

Based on nx, tx quantities, we calculate some metrics that can be used in an evalua-

tion of the developed model for TCP Cubic [Flo08].

• Packet loss rate: The total number of packets transmitted by a source during one

cycle tc is ntc . Knowing that a single packet is lost per cycle, the loss rate will be

as follows :

εp =
1

ntc

(A.5)

• Throughput: The average throughput during one cycle is as follows :

th =
ntc

tc
(A.6)

• Mean buffer occupancy: The mean buffer occupancy is equal to the number of

packets in the buffer during a cycle.

Q(tc) =

� tc

0
(W (t)− Cτ)+dt (A.7)

• Average packet delay at the bottleneck link:

D =
Q(tc)

C
(A.8)

Appendix A. Computing parameters for a single TCP Cubic flow model 132

• Average RTT

R(tc) = τ +
Q(tc)

C
(A.9)

Appendix B

Résumé de la thèse

B.1 Introduction

Contexte et motivation

Le protocole de contrôle de transmissions (TCP) [CK05] est le principal protocole

utilisé dans les réseaux Internet Protocol (IP). TCP est particulièrement utilisé dans le

téléchargement de page WEB, le HTTP streaming et le peer to peer ce qui représente

un large volume de transfert. D’après [JD04] plus que 90% du trafic internet utilise

le protocole TCP. La qualité du service (QoS) du point de vue du consommateur (du

service) reflète les performances, la stabilité et la robustesse de TCP dans les réseaux de

centre de données. Ce dernier peut être utilisé comme métrique pour évaluer la qualité

du service (QoS) du point de vue du consommateur.

Pour répondre aux exigences changeantes des applications dans Internet, diverses

stratégies de contrôle de congestion TCP ont été conçues. Parmi elles on peut citer,

Bic-TCP [XHR04a], TCP Cubic [HRX08] et Compound TCP [TSZS06]. Bic-TCP et

TCP Cubic ont été conçus spécifiquement pour les larges produits délai bande passante.

Le noyaux de Linux implémente et utilise par défaut TCP Cubic depuis la version 2.6.19,

et c’est la version la plus utilisée de TCP de nos jours [YLX+11]. Il se caractérise par

une fonction de croissance cubique de la fenêtre.

Le but de TCP Cubic est de parvenir à une répartition équitable de la bande pas-

sante entre les flux avec différents RTT en utilisant un taux de croissance de fenêtre

indépendant du RTT. Au lieu de cela, il utilise une fonction du temps écoulé depuis le

dernier événement de perte.

Quand il n’est pas utilisé dans un environement de production à large bande pas-

sante, TCP Cubic dispose d’un mode qui imite TCP New Reno [PFTK00], sans lui être

identique.

133

Résumé de la thèse 134

L’étude de TCP Cubic (et d’autres version TCP haut débit) se prête bien á l’utilisent

de modèles analytiques qui permettent la prédiction des performances et l’étude de

l’impact de différents paramètres.

En effet, l’utilisation d’environnement expérimental ne permet pas assez de flexibilité.

On est limité par une plage de possibilité plus restreinte. Un transfert massif de données

est commun dans l’univers du cloud, que ce soit entre les différents serveurs du centre

de données ou entre le centre de données et le consommateur du service. Dans ce

cas de figure la couche de transport (TCP) est fortement sollicitèe et peut souffrir de

problèmes de performance. A titre d’exemple TCP incast est un problème observé

lorsque plusieurs périphériques de stockage envoient une grande quantité de donnée à un

unique serveur causant la congestion de données au niveau du switch du serveur recevant

ses informations [VPS+09a].

Les environnements Cloud sont caractérisés par une large bande passante. Les ver-

sions modernes de TCP (TCP Cubic), sont conçues pour fonctionner efficacement dans

ces situations. Elles sont en mesure de sonder la bande passante disponible de manière

non linéaire, contrairement à TCP New Reno, qui augmente ses fenêtres d’un MSS par

RTT en régime stationnaire. Cependant, cette réactivité agressive a un prix. L’équité

offerte par les versions modernes de TCP (TCP Cubic) n’est pas aussi élevée que les

anciènnes versions TCP [LLS07]. Plusieurs études ont également souligné l’apparition

de synchronisation entre les flux TCP Cubic concurrents [HR08]. Cela veut dire que

les flux TCP Cubic concurrents pour un goulot d’étranglement tendent à perdre des

paquets au même moment et la série temporelle de débit agrégé résultante présente un

comportement cubique clair comme si un seul flux était actif.

Certaines études ont lié le problème de synchronisation avec le problème de dimen-

sionnement du tampon. Le dimensionnement du tampon est un aspect clé pour la con-

ception des routeurs et les performances du réseau. Après 20 ans de recherche, aucune

étude ne propose une solution complétement satisfaisante au problème de dimension-

nement du tampon. La régle empirique du produit bande passante délai (BDP) est

encore largement utilisée car elle optimise la charge de la liaison de sortie d’un routeur.

Cependant elle ne garantit pas ni le taux de perte, ni le retard subi par les paquets.

Sous certaines conditions de trafic, une taille de tampon égale au BDP peut entrâıner

des problèmes de performance essentiellement liés à un temps très large (à savoir le

phénomène de “ bufferbloat”). Par conséquent, la communauté scientifique s’est con-

centrée sur l’étude des mécanismes actifs du tampon afin de résoudre le problème relatif

au dimensionnement du tampon. Parmi ceux-ci, il y a des propositions de tampon adap-

tive et plus fréquemment aujourd’hui les mécanismes de gestion adaptative du tampon

(AQM) afin d’assurer une qualité de service aux flux individuels. La détection précoce

aléatoire RED [FJ93a] est l’une des premières disciplines AQM. Étant donné qu’il y a

Résumé de la thèse 135

besoin du réglage prudent de ses paramètres pour diverses conditions du réseau pour ces

AQMs, la plupart des opérateurs de réseaux ont abondonné l’utilisation du RED [Ada13].

L’algorithme RED adaptif ou RED actif (ARED) [FGS01] se base sur l’observation de

la longueur de la file d’attente moyenne afin de décider d’être plus ou moins agressif.

Récemment, deux nouveaux AQMs Codel [NJ12b] [NJ12a] et PIE [RPC+13] ont été

proposés pour contrôler la latence dans le but de résoudre le problème du “bufferbloat”.

Notre travail vise à étudier la performance de TCP Cubic, largement utilisé de nos

jours dans les data centres et plus précisément dans un environnement de cloud.

Plan et Contributions

Dans le chapitre 1, nous présentons les concepts et les motivations des travaux liés

à cette thèse. Tout d’abord, nous présentons les efforts de recherche afin d’analyser

les performances et les problèmes dans les réseaux de centres de données. Plusieurs

travaux de recherche ont été faits pour: (i) étudier la nature du trafic dans les centres

de données; (ii) identifier et résoudre les problèmes de performance; et (iii) proposer

des comparateurs de performance et de coût des fournisseurs de cloud. Ensuite, nous

examinons en détail TCP, le protocole de transport dominant dans les réseaux cloud, et

les études liées au contrôle de la congestion, le dimensionnement de la mémoire tampon

et les mécanismes de gestion de file d’attente active (AQM). En outre, nous présentons

les études qui ont permis une évaluation des performances de TCP Cubic, par des sim-

ulations et des expériences. Enfin, nous présentons des modèles analytiques pour TCP.

Dans le chapitre 2, nous présentons d’abord un aperçu détaillé de l’algorithme TCP

Cubic, puis nous décrivons le modèle analytique que nous avons développé pour étudier

les performances d’un long flux TCP Cubic isolé. Grâce à ce modèle, nous révélons les

différences entre les spécifications publiées de TCP Cubic et son implementation dans

NS-2. Le modèle a été validé par comparaison avec des simulations NS-2.

Dans le chapitre 3, nous visons à développer un modéle analytique pour TCP Cubic

afin d’analyser ses performances pour des scénarios cloud où un grand nombre de longs

connexions TCP, par exemple, HTTP streaming ou flux de back-up, partagent un lien

de goulot d’étranglement. Plus précisément, nous considérons trois scénarios: (i) un

scénario au sein du centre de données (DC) avec beaucoup de trafic entre les serveurs

physiques (intra-DC scenario); (ii) un scénario entre centres de données où les liens

sont utilisés pour synchroniser ou sauvegarder des données (inter DC scenario); et (iii)

un scénario de distribution de contenu où un grand nombre de clients haut débit, par

Résumé de la thèse 136

exemple, les clients FTTH, téléchargent simultanément le contenu du centre de données

(FTTH scenario). Nos contributions sont les suivants:

• Sur la base d’une approximation de champ moyen, nous dérivons un modèle fluide

pour TCP Cubic, qui permet de prédire les performances en termes de plusieurs

paramètres. Nous montrons en outre une propriété de passage à l’échelle du modèle

fluide, qui permet de l’utiliser pour une variété de scénarios réseau sans coût de

calcul prohibitif. Nous validons ce modèle analytique grâce à des simulations NS-2

pour nos scénarios de cloud.

• Nous fournissons une comparaison étendue de TCP Cubic et New Reno pour

les scénarios de cloud, l’évaluation de leur compromis efficacité/équité ainsi que

l’impact de la taille du tampon sur leurs performances. En particulier, nous

démontrons que TCP Cubic surpasse TCP New Reno, même pour les cas où le

BDP est faible, ce qui est souvent le cas dans les scénarios de cloud. Ceci est

intéressant car TCP Cubic est surtout connu pour son comportement pour des

réseaux à larges BDP; et non pas pour les réseaux de petits BDP.

Dans le chapitre 4, nous étudions les performances de TCP dans les réseaux réels

en utilisant deux bancs d’essai. Le premier banc d’essai, appelé Cube, est un réseau

expérimental utilisé par Orange Labs pour tester de nouveaux services fournis par la

société France Télécom (FT). Le deuxième banc d’essai se compose de quelques ma-

chines Linux dans le laboratoire I3S qui peuvent être démarrées soit sous un système

d’exploitation natif CentOS ou sous VMware ou Xen. Ce chapitre comprend deux par-

ties distinctes. Dans la première partie, nous présentons les résultats obtenus avec des

outils d’analyse pour la lecture et d’écriture du disque. Nous utilisons deux outils dd

[Ubua] et hdparm [Ubub].

Dans la deuxième partie du chapitre 4, nous présentons les mesures effectuées à partir

du réseau de machines Cube. Nous générons du trafic en provenance ou vers l’une des

machines sur Cube à un hôte situé dans Orange Labs à Sophia.

Ensuite, nous présentons les mesures de Sophia vers Cube, puis de Cube vers Sophia.

En augmentant le nombre de flux parallèles de Cube vers Sophia, nous avons rencontré

quelques facteurs limitant les performances de ces transferts: (i) l’accès au disque; (ii) la

couche de virtualisation; et (iii) un shaper. La question de l’ingénierie dans ce chapitre

a été une occasion pour nous qui nous a permis de reconnâıtre l’interaction entre les

problèmes de système et de réseau dans une solution typique de cloud.

Dans le chapitre 5, nous étudions la question de la synchronisation entre les sources

TCP Cubic en détail. Nous étudions l’ampleur et les causes profondes de la synchronisa-

tion en utilisant une approche expérimentale avec un banc d’essai hébergé au laboratoire

I3S combinée avec des simulations.

Résumé de la thèse 137

La première permet d’expérimenter la mise en œuvre réelle de protocole dans un

environnement contrôlé, tandis que le second permet d’explorer un ensemble plus large

de scénarios de réseau.

Nos contributions à l’étude de la synchronisation de TCP Cubic sont les suivantes:

• Nous établissons expérimentalement la relation entre l’existence et l’étendue de la

synchronisation avec des paramètres clés comme RTT et la taille de la mémoire

tampon. Nous démontrons la résilience de la synchronisation au trafic de fond, et

comment l’option Convergence rapide (Fast Convergence), qui vise à rendre TCP

Cubic plus équitable pour les nouvelles connexions, renforce la synchronisation.

Nous utilisons New Reno comme point de référence.

• Nous démontrons que plusieurs facteurs contribuent à l’apparition de synchro-

nisation dans TCP Cubic: (i) le taux de croissance de la fenêtre de congestion

lorsqu’une source TCP Cubic atteint la capacité du réseau et de son rapport avec

le RTT de la connexion; (ii) la façon dont l’algorithme de congestion de TCP Cu-

bic suit la courbe cubique idéale dans le noyau; et (iii) la concurrence entre les

sources TCP Cubic et l’agressivité des sources qui n’ont pas connu de perte durant

la dernière épisode de perte.

• Nous proposons et évaluons deux approches pour réduire le niveau de la synchro-

nisation et donc le taux de perte des transferts TCP Cubic. Nous suggérons que

la synchronisation est le prix à payer pour avoir une version TCP haut débit qui

doit explorer la bande passante disponible dans le réseau d’une manière super-

linéaire. Il est probable que nous puissions soulager la synchronisation, comme le

fait nos modifications de TCP Cubic, mais l’éliminer complètement va être une

tâche complexe.

Dans le chapitre 6, nous évaluons l’impact potentiel des algorithmes de gestion de file

d’attente (CoDel [NJ12b] [NJ12a], PIE [RPC+13], et ARED [FGS01]D) sur la synchro-

nisation. Aussi, nous explorons comment les deux approches que nous avons proposées

dans le chapitre 5 peuvent être combinées avec des mécanismes de files d’attente avancés

pour réduire davantage la synchronisation. Nous montrons que, grâce à l’utilisation des

mécanismes AQM, nous pouvons avoir de plus petits retards et réduire la synchronisa-

tion entre les flux, mais il y a un prix à payer: une perte de paquets supérieure et une

dégradation de débit utile. Par rapport à nos approches, l’utilisation des AQMs pour

réduire la synchronisation est plus efficace.

Enfin, le contenu de cette thèse est résumé et les perspectives sont présentées au

chapitre 7.

Résumé de la thèse 138

B.1.1 Résumé par chapitre

B.1.2 Chapitre 1 : État de l’art

L’objectif de travaux de thèse est de prévoir les performances TCP des centres de

données (Data Centers) et d’évaluer l’impact des différents protocoles de transport et

de contrôle de congestion les plus fréquents sur les plateformes de Cloud Computing, et

les méthodes necessaires pour les détecter et les corriger.

Nous avons commencé par une étude bibliographique sur les travaux de recherche

liés aux différentes parties de la thèse:

• Tout d’abord, nous avons étudié les problèmes de performance des services de

Cloud computing et les solutions proposées, i.e., SNAP (Scalable Network-Application

Profiler) qui permet d’identifer et de résoudre les problèmes de performances dans

les datacenters.

• Ensuite, nous avons détaillé le protocole TCP qui est le protocole de transport

dominant dans les réseaux de Cloud. Nous avons aussi présenté quelques études

relatives au (i) probléme de congestion, (ii) les algorithmes de contrôle de conges-

tion (i.e, BIC, TCP Cubic, HSTCP, Compound TCP, Reno, New Reno), (iii) de

dimensionnement de la mémoire tampon et (iv) les mécanismes de gestion de file

d’attente actives (AQMs).

• Nous avons présenté quelques études qui ont établi une évaluation de la perfor-

mance de TCP Cubic, par des simulations ainsi que des expériences.

• Finalement, nous avons cité les méthodes que nous avons utilisées pour l’analyse

de données dans cette thèse (i.e. les techniques mathématiques de champ moyen

Mean field)

Résumé de la thèse 139

Chapitre 2 : Un flux TCP Cubic simple

Au niveau de ce chapitre, nous avons développé un modèle analytique détaillé pour

une connexion TCP Cubic isolée.

Nous avons commencé par une analyse approfondie du protocole TCP Cubic qui est

actuellement utilisé par défaut dans les noyaux Linux, depuis la version 2.6.19.

Parmi les critères de TCP CUBIC, (1) la fenêtre de congestion suit une fonction

cubique, ce qui lui permet d’atteindre plus rapidement la taille optimale que dans le cas

de TCP Standard (New Reno), (2) Le temps de convergence est indépendant du RTT, ce

qui rend TCP Cubic plus équitable que les autres versions de TCP à haut débit dans les

réseaux avec des RTT hétérogènes. Aussi, cette caractéristique de TCP Cubic le rend

plus “Friendly” par rapport à d’autres protocoles à haut débit. TCP Cubic posséde

deux modes de fonctionnement, le mode TCP et le mode Cubic. Le mode TCP doit être

utilisé dans le cas des réseaux à faibles BDPs, tandis que le mode Cubic est déclenché

pour les réseaux à larges BDPs. Chaque mode correspond à une façon spécifique de

l’augmentation de la fenêtre de congestion:

wc(t) = Ccubic(t− Vcubic)
3 + wmax (B.1)

wtcp(t) = wmax(1− β) +
3β

(2− β)

t

R(t)
(B.2)

Ccubic et Vcubic sont des paramétres TCP Cubic, t est le temps écoulé depuis la

dernière perte.

Dans la deuxième partie de chapitre, nous avons développé un modèle analytique

pour une connexion TCP Cubic isolée. Pour valider ce modéle, nous avons utilisé des

simulations NS-2, pour différents scenarios (ADSL, FTTH).

Parmi les scénarios, nous avons considéré le cas de FTTH avec débit de 100Mbps, un

RTT de 50ms et une file d’attente égale à 50 paquets. Le BDP est égal à 417 paquets et

TCP Cubic fonctionne en mode Cubic. Nous avons présenté au niveau de la Figure B.1

les séries temporelles de la fenêtre de congestion pour le modèle et les simulations NS-2.

Nous observons une bonne correspondance temporelle à la fois en terme de variations

d’amplitude et de la fréquence des oscillations de ce paramétre.

Résumé de la thèse 140

Figure B.1: Time series of the window, FTTH, C = 100Mbps

Chapitre 3 :Le modèle de champ moyen

Au niveau de ce chapitre, nous avons proposé un modèle analytique basé sur les

châınes de Markov et sur la méthode de champ moyen (Mean-field), pour comprendre les

performances des centres de données, utilisés par de nombreux flux TCP qui partagent

un même goulot d’étranglement. La validation du modèle a été faite par le biais de

simulations NS-2.

Au niveau de chapitre nous visons à développer un modéle analytique pour TCP

Cubic où un grand nombre de flux longs TCP Cubic partagent un goulot d’étranglement.

Nous avons utilisé une approche de champ moyen (Mean-field) conduisant à un modèle

fluide. La validation du modèle a été faite par une comparaison avec NS-2.

Nous avons consideré 3 scenarios: client FTTH, transfert au sein des centre de

données, transfert entre les centres de données.

Dans le cas de scénario FTTH TCP Cubic opère dans le mode Cubic. Nous présentons

dans la Figure B.2 la série de temps de taille de la fenêtre de congestion ainsi que la file

d’attente pour le modèle et les simulations. Une fois que les simulations et le modèle

ont atteint l’équilibre, nous observons une bonne correspondance temporelle à la fois en

termes de variation des amplitudes et de fréquence des oscillations des deux métriques.

Néamoins, la correspondance entre le modèle et les simulations est moins bon dans

le cas du scénario de transfert entre les centres de données. Dans le modèle fluide,

seulement une fraction des sources subissent des pertes lorsque le tampon est plein.

Les autres sources continuent d’augmenter leurs fenêtres, ce qui conduit à des pertes à

une vitesse plus élevée que pour les simulations. Dans le cas des simulations toutes les

Résumé de la thèse 141

0 10 20 30 40 50
0

50

100

150

200

250

Time (seconds)
U
n
i
t
=
p
a
c
k
e
t
s

Queue size − analysis
Mean window size − analysis
Mean window size − simulation
Queue size −simulation

Figure B.2: Time series of queue size and average window size - FTTH scenario -
Cubic

sources perdent simultanément des paquets. Une analyse plus approfondie sera effectuée

dans le chapitre suivant sur l’origine de la synchronisation des flux TCP Cubic.

Ensuite, nous avons évalué l’efficacité et l’équité de TCP Cubic par rapport à celle

de New Reno pour un ensemble de scénarios de réseau cloud.

Nous avons enfin étudié l’équité et l’impact de la taille du tampon de TCP Cubic

et TCP New Reno. TCP Cubic est à la fois plus efficace et plus juste que TCP New

Reno, en particulier dans le cas de faibles tailles de tampon. Nos résultats montrent que,

contrairement à TCP New Reno, TCP Cubic est capable de survivre avec un tampon

de taille aussi petite que 30% de la BDP.

Chapitre 4 : Cube

Nous avons fait plusieurs tests d’analyse comparative des performances disque et

réseau du centre de données Cube d’Orange.

Nous avons comparé les résultats sur Cube avec ceux d’une plateforme de test au

laboratoire I3S. Nous avons utilisé deux outils (hdparm et dd) pour vérifier les débits

de lecture et d’écriture des disques. La question posée était de savoir si les accès disques

dans un environnement virtualisé, peuvent limiter les débits des transferts réseaux. Une

comparaison entre tous ces résultats nous a permis d’identifier les principaux facteurs

limitant les performances sur ce Cloud.

Nous avons ensuite effectué plusieurs tests à l’aide de différentes méthodes de trans-

fert de données (“Iperf et Socket Perl”). Ceci nous a permis d’identifier les différentes

caractéristiques des connexions TCP vers / depuis Cube. Les tests de Sophia vers Cube

avec un seul flux montrent un débit qui varie entre 100 et 400 Mbps. En variant le

nombre de flux de 1 à 300 nous remarquons la dégradation des performances.

Les facteurs qui limitent les performances de ces transferts sont: (i) l’accès au disque;

(ii) la couche de virtualisation; et (iii) un shaper. La question de l’ingénierie dans ce

Résumé de la thèse 142

chapitre a été une occasion pour nous de reconnâıtre l’interaction entre les problèmes

de système et de réseau dans une solution typique de cloud

Chapitre 5 : Synchronisation des connexions TCP Cubic

L’objectif de cette partie était de mieux comprendre le comportement de TCP Cubic

(version de TCP par défaut pour les noyaux Linux actuels) dans des environnements de

Cloud Computing pour des scénarios avec un grand nombre de longs flux TCP. Dans de

telles situations, les connexions Cubic ont tendance à se synchroniser les unes avec les

autres et cette synchronisation est plus élevée que pour des connexions TCP standard.

Ce phénomène dégrade les performances car toutes les sources TCP perdent des paquets

au même moment et diminuent leur débit et le réseau peut se retrouver sous-utilisé.

Nous avons étudié ce phénomène en détail par des expérimentations sur un banc

d’essai (testbed) contrôlé, des mesures avec les serveurs d’Amazon EC2, situé aux États-

Unis et des simulations NS-2.

Nous avons démontré que plusieurs facteurs contribuent à l’apparition de cette syn-

chronisation des connexions Cubic: (i) le taux de croissance de la fenêtre de congestion à

son point d’inflexion, (ii) la façon dont la fenêtre de congestion Cubic suit la courbe cu-

bique idéale dans le noyau, (iii) la concurrence entre les sources Cubic et (iv) l’agressivité

des sources qui n’ont pas observé de pertes au cours de la période de saturation du

tompon. Nous avons proposé et évalué deux modifications de l’algorithme TCP Cubic

(LinCubic, AccuCubic), pour réduire cette synchronisation.

Pour évaluer l’impact de ces différentes modifications, nous les avons implémenté

dans NS-2 et nous avons observé leur comportement dans le cas d’un seul flux TCP

Cubic. Nous avons également testé le bénéfice potentiel de ces modifications dans le cas

des 100 flux concurrents pour le goulot d’étranglement.

Les résultats montrent que LinCubic diminue le nombre de flux synchronisés ainsi

que AccuCubic lorsque FC est utilisé. Lorsque FC est éteint, seul LinCubic performe

mieux que TCP Cubic.

Dans le cas de 100 flux, nous considérons un scénario avec un RTT égal à 500ms

et une taille du tampon égal à 1 BDP. Nous présentons le nombre de flux synchronisés

dans la Figure B.3 pour une execution parmi les 10 effectuées. Les résultats montrent

que LinCubic et AccuCubic diminuent le nombre de flux synchronisés.

Chapitre 6 : L’impact des mécanismes de gestion de file d’attente sur

la synchronisation

L’objectif de cette partie est d’étudier et d’évaluer les performances de divers mécanismes

de contrôle de files d’attente (AQM - Active Queue Management) pour savoir s’ils per-

mettent de réduire la synchronisation des connexions TCP Cubic, et de comparer leur

Résumé de la thèse 143

50 100 150 200 250
30

40

50

60

70

80

90

100

Time (seconds)
N

um
be

r o
f s

yn
ch

ro
ni

ze
d

flo
w

s

100Mbps, RTT=500ms, 100 flows, WITH FC

Cubic
LinCubic
AccuCubic

Figure B.3: Ns2 Simulations -100 flows, RTT=500ms, With FC

efficacité avec les deux approches LinCubic et AccuCubic.

Nous avons plus précisément considéré les mécanismes CoDel (Controlled Delay) et

PIE (Proportional Integral Enhanced) en cours de normalisation par l’IETF et RED

(Random Early Discard) qui est le plus ancien et présent dans la plupart des routeurs

actuels. Après une première comparaison de ces mécanismes par simulations NS-2, nous

avons étudié leur comportement et leurs performances sur des expérimentations.

La Figure B.4 représente le nombre de flux synchronisés pour chaque événement de

congestion. On remarque que RED arrive à réduire la synchronisation entre les flux

TCP Cubic. Donc, l’utilisation des AQMs pour réduire la synchronisation était plus

efficace que les solutions que nous avons proposé, à savoir AccuCubic et LinCubic.

0 20 40 60 80 100
0

20

40

60

80

100

Time (seconds)

N
um

be
r o

f s
yn

ch
ro

ni
ze

d
flo

w
s

Cubic − DT
LinCubic − DT
AccCubic − DT
Cubic − Codel
Cubic − PIE
Cubic − ARED

Figure B.4: Number of synchronized flows, 100Mbps, RTT=350ms, BS=1BDP

Bibliography

[Ada13] Richelle Adams. Active Queue Management: A Survey. IEEE Communi-

cations surveys & Tutorials, 15(3), 2013.

[AKM04] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing Router

Buffers. SIGCOMM Comput. Commun. Rev., 34(4):281–292, aug 2004.

[APU12] Adrian Arsene, Dino Lopez Pacheco, and Guillaume Urvoy-Keller. Under-

standing the network level performance of virtualization solutions. In 1st

IEEE International Conference on Cloud Networking, CLOUDNET 2012,

Paris, France, November 28-30, 2012, pages 1–5, 2012.

[ARFK10] I Abdeljaouad, H Rachidi, S Fernandes, and A Karmouch. Performance

analysis of modern TCP variants: A comparison of Cubic, Compound and

New Reno. In Communications (QBSC), 2010 25th Biennial Symposium

on, pages 80–83. IEEE, 2010.

[ATRK10] Alexander Afanasyev, N. Tilley, Peter L. Reiher, and Leonard Kleinrock.

Host-to-Host Congestion Control for TCP. IEEE Communications Surveys

and Tutorials, 12(3):304–342, 2010.

[BAC09] A. Blanc, K. Avrachenkov, and D. Collange. Comparing Some High Speed

TCP Versions under Bernoulli Losses. In PFLDNet, 2009.

[BAM10] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic

characteristics of data centers in the wild. In ACM IMC, 2010.

[BLB08] M. Benäım and J.-Y. Le Boudec. A Class Of Mean Field Interaction Mod-

els for Computer and Communication Systems. Performance Evaluation,

65(11-12), 2008.

[BMM07] Jean-Yves Le Boudec, David McDonald, and Jochen Mundinger. A generic

mean field convergence result for systems of interacting objects. In QEST,

2007.

145

Bibliography 146

[BMP10] Charles Bordenave, David McDonald, and Alexandre Proutière. A particle

system in interaction with a rapidly varying environment: Mean field limits

and applications. Networks and Heterogeneous Media, 5(1), jul 2010.

[BMR02] F. Baccelli, D. R. McDonald, and J. Reynier. A mean-field model for

multiple TCP connections through a buffer implementing RED. Perform.

Eval., 49(1-4), sep 2002.

[BSC+13] Sonia Belhareth, Lucile Sassatelli, Denis Collange, Dino Lopez Pacheco,

and Guillaume Urvoy-Keller. Understanding TCP Cubic performance in

the cloud: A mean-field approach. In CLOUDNET, pages 190–194, 2013.

[BtLB08] Michel Benäım and Jean Yves Le Boudec. A class of mean field interaction

models for computer and communication systems. Perform. Eval, pages

11–12, 2008.

[BW09] Michel Benäım and Jörgen Weibull. Mean-field approximation of stochastic

population processes in games. Working Papers hal-00435515, HAL, 2009.

[BWL10] Wei Bao, Vincent W. S. Wong, and Victor C. M. Leung. A Model for

Steady State Throughput of TCP CUBIC. In GLOBECOM, pages 1–6.

IEEE, 2010.

[CB07] Shan Chen and Brahim Bensaou. Can high-speed networks survive with

Droptail queues management? Elsevier Comput. Netw., 51(7), may 2007.

[CCB10] Jacopo Chicco, Denis Collange, and Alberto Blanc. Simulation Study of

New TCP Variants. In IEEE symposium on Computers and Communica-

tions (ISCC), Riccione, Italie, Jun 2010.

[CEH+07] Han Cai, Do Young Eun, Sangtae Ha, Injong Rhee, and Lisong Xu. Stochas-

tic Ordering for Internet Congestion Control and its Applications. In IEEE

Infocom, 2007.

[CEH+09] Han Cai, Do Young Eun, Sangtae Ha, Injong Rhee, and Lisong Xu. Stochas-

tic convex ordering for multiplicative decrease internet congestion control.

Comput. Netw., 53(3):365–381, feb 2009.

[CK05] Vinton G. Cerf and Robert E. Kahn. A protocol for packet network in-

tercommunication. SIGCOMM Comput. Commun. Rev., 35(2):71–82, apr

2005.

[Col98] Denis Collange. Analyse dynamique de plusieurs connexions TCP synchro-

nisées. Technical report, Orange Labs, October 1998.

Bibliography 147

[Coma] Gerald Combs. Wireshark. http://www.wireshark.org/.

[Comb] IBM Company. Aspera FASP High Speed Transport.

[ed14] Random early detection. Random early detection — Wikipedia, the free

encyclopedia, 2014. Online; accessed 06-October-2014.

[EGG+05] Mihaela Enachescu, Yashar Ganjali, Ashish Goel, Nick McKeown, and Tim

Roughgarden. Part III: routers with very small buffers. Computer Com-

munication Review, 35(3):83–90, 2005.

[fANR] National Laboratory for Applied Network Research. Iperf. http://iperf.

fr/.

[FGS01] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker. Adaptive RED:

An Algorithm for Increasing the Robustness of RED’s Active Queue Man-

agement. Technical report, 2001.

[FJ93a] Sally Floyd and Van Jacobson. Random Early Detection Gateways for

Congestion Avoidance. IEEE/ACM Trans. Netw., 1(4):397–413, aug 1993.

[FJ93b] Sally Floyd and Van Jacobson. Random Early Detection Gateways for

Congestion Avoidance. IEEE/ACM Trans. Netw., 1(4):397–413, August

1993.

[Flo94] Sally Floyd. Tcp and Explicit Congestion Notification. SIGCOMM Com-

put. Commun. Rev., 24(5):8–23, oct 1994.

[Flo08] S. Floyd. Metrics for the Evaluation of Congestion Control Mechanisms.

RFC 5166 (Informational), March 2008.

[Fou09] Linux Foundation. netem, 2009.

[GJN11] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding

Network Failures in Data Centers: Measurement, Analysis, and Implica-

tions. SIGCOMM Comput. Commun. Rev., 41(4):350–361, August 2011.

[GKF13] Eduard Grigorescu, Chamil Kulatunga, and Gorry Fairhurst. Evaluation

of the impact of packet drops due to AQM over capacity limited paths.

In 2013 21st IEEE International Conference on Network Protocols, ICNP

2013, Göttingen, Germany, October 7-10, 2013, pages 1–6, 2013.

[GN11] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark Buffers in the Internet.

Queue, 9(11):40:40–40:54, nov 2011.

Bibliography 148

[Gro13] Orange Groupe. Cloud computing et entreprise : Orange et le cloud

computing. http://fr.wikiversity.org/wiki/Cloud_computing_et_

entreprise/Orange_et_le_cloud_computing, 2013.

[HJ13] Toke Hiland-Jrgensen. The state of the Art in Bufferbloat Testing and

Reduction on linux. 12th March 2013.

[HR08] S. Hassayoun and D. Ros. Loss synchronization and router buffer sizing

with high-speed versions of TCP. In IEEE Infocom Workshops, pages 1–6,

2008.

[HR09] Sofiane Hassayoun and David Ros. Loss synchronization, router buffer

sizing and high-speed TCP versions: Adding RED to the mix. In IEEE

LCN, pages 569–576, 2009.

[HRX08] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-Friendly

High-Speed TCP Variant. SIGOPS Oper. Syst. Rev., 42(5), jul 2008.

[HUKC+11] Aymen Hafsaoui, Guillaume Urvoy-Keller, Denis Collange, Matti Siekki-

nen, and Taoufik En-Najjary. Understanding the impact of the access

technology: the case of web search services. In TMA, 2011.

[Jac88] V. Jacobson. Congestion avoidance and control. In Symposium proceedings

on Communications architectures and protocols, SIGCOMM ’88, pages 314–

329, New York, NY, USA, 1988. ACM.

[JD04] Hao Jiang and Constantinos Dovrolis. The origin of TCP traffic burstiness

in some time scales. Technical report, in IEEE INFOCOM, 2004.

[jlo08] jlothian. Intro to benchmarking part 1: Disks/storage. https://lopsa.

org/node/1711, 2008.

[JR11] S. Jain and G. Raina. An experimental evaluation of CUBIC TCP in a

small buffer regime. In NCC, 2011.

[KSG+09] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel,

and Ronnie Chaiken. The Nature of Data Center Traffic: Measurements

& Analysis. In Proceedings of the 9th ACM SIGCOMM Conference on

Internet Measurement Conference, IMC ’09, pages 202–208, New York,

NY, USA, 2009. ACM.

[Kur70] T. G. Kurtz. Solutions of Ordinary Differential Equations as Limits of Pure

Jump Markov Processes. Journal of Applied Probability, 7(1), 1970.

Bibliography 149

[Lei07] Shorten R.N. McCullagh G. Leith, D.J. Experimental Evaluation of Cubic

TCP. Protocols for Fast Long Distance Networks 2007, Los Angeles, 2007.

[LGBP10] Patrick Loiseau, Paulo Gonçalves, Julien Barral, and Pascale Vicat-Blanc

Primet. Modeling TCP throughput: An elaborated large-deviations-based

model and its empirical validation. Perform. Eval., pages 1030–1043, 2010.

[LHB05] Junsoo Lee, Joao P. Hespanha, and Stephan Bohacek. A study of TCP

fairness in high-speed networks. Technical report, 2005.

[LHHL12] Tuan Anh Le, Rim Haw, Choong Seon Hong, and Sungwon Lee. A

Multipath Cubic TCP Congestion Control with Multipath Fast Recov-

ery over High Bandwidth-Delay Product Networks. IEICE Transactions,

95-B(7):2232–2244, 2012.

[LLS07] Yee-Ting Li, D. Leith, and R.N. Shorten. Experimental Evaluation of TCP

Protocols for High-Speed Networks. Networking, IEEE/ACM Transactions

on, 15(5):1109–1122, Oct 2007.

[LSM07] D. Leith, R. Shorten, and G. McCullagh. Experimental evaluation of Cubic-

TCP. PFLDNet, 2007.

[LYKZ10] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. CloudCmp:

Comparing Public Cloud Providers. In Proceedings of the 10th ACM SIG-

COMM Conference on Internet Measurement, IMC ’10, pages 1–14, New

York, NY, USA, 2010. ACM.

[Mar10] Luis MartinGarcia. TCPDUMP& LIBPCAP. http://www.tcpdump.org/,

2010.

[MB13] M. Thomson (ed.) A. Melnikov (ed.) M. Belshe, R. Peon. Hypertext Trans-

fer Protocol version 2.0. IETF draft draft-ietf-httpbis-http2-09, July 2013.

[MBT12] R. Peon M. Belshe Twist. SPDY: An experimental protocol for a faster

web. RFC 2012, August 2012.

[NJ12a] Kathleen Nichols and Van Jacobson. A Modern AQM is just one piece of

the solution to bufferbloat. Queue, 10(5):20:20–20:34, may 2012.

[NJ12b] Kathleen M. Nichols and Van Jacobson. Controlling Queue Delay. Com-

mun. ACM, 55(7):42–50, 2012.

[NK13] M. Welzl N. Khademi, D. Ros. The New AQM Kids on the Block: Much

Ado About Nothing? Technical report, University of Oslo, 2013.

[Ost94] Shawn Ostermann. tcptrace. http://www.tcptrace.org/, 1994.

Bibliography 150

[Pao12] Jean Paoli. Speed and Mobility: An Approach for HTTP 2.0 to Make

Mobile Apps and the Web Faster. MSDN blog Interoperability @ Microsoft,

March 2012.

[PFTK00] Jitendra Padhye, Victor Firoiu, Donald F. Towsley, and James F. Kurose.

Modeling TCP Reno performance: a simple model and its empirical vali-

dation. IEEE/ACM Trans. on Netw., 8(2), 2000.

[PS11] S. Poojary and V. Sharma. Analytical model for congestion control and

throughput with tcp CUBIC connections. In IEEE Globecom, 2011.

[qui13] Experimenting with QUIC. http://blog.chromium.org/2013/06/

experimenting-with-quic.html, June 2013. Chromium Official Blog.

[Rai05] Buffer sizes for large multiplexers: TCP queuing theory and instability anal-

ysis, Rome, Italy, April 2005.

[Rom10] Roman. How to use ’dd’ to benchmark your disk or CPU? https://

romanrm.net/dd-benchmark, 2010.

[RPC+13] R.Pan, P.Natarajan, C.Piglione, M.S.Prabhu, V.Subramanian, F.Baker,

and B.VerSteeg. PIE: A lightweight control scheme to address the

bufferbloat problem. In High Performance Switching and Routing, pages

148–155, July 2013.

[TIIN10] Omesh Tickoo, Ravi Iyer, Ramesh Illikkal, and Don Newell. Modeling

Virtual Machine Performance: Challenges and Approaches. SIGMETRICS

Perform. Eval. Rev., 37(3):55–60, January 2010.

[TSZS06] Kun Tan, Jingmin Song, Qian Zhang, and M. Sridharan. A Compound

TCP Approach for High-Speed and Long Distance Networks. In IEEE

Infocom, 2006.

[Ubua] Ubuntu. dd. http://doc.ubuntu-fr.org/dd.

[Ubub] Ubuntu. hdparm. http://doc.ubuntu-fr.org/hdparm.

[Uni80] Unix. Socket. http://fr.wikipedia.org/wiki/Socket, 1980.

[Val10] Juan Valencia. How to create a reverse SSH tunnel. http://www.jveweb.

net/en/archives/2010/09/how-to-create-a-reverse-ssh-tunnel.

html, 2010.

[VHV12] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. Deadline-aware

datacenter TCP (D2TCP). In ACM Sigcomm, 2012.

Bibliography 151

[VPS+09a] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G.

Andersen, Gregory R. Ganger, Garth A. Gibson, and Brian Mueller. Safe

and Effective Fine-grained TCP Retransmissions for Datacenter Commu-

nication. SIGCOMM Comput. Commun. Rev., 39(4):303–314, aug 2009.

[VPS+09b] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G.

Andersen, Gregory R. Ganger, Garth A. Gibson, and Brian Mueller. Safe

and Effective Fine-grained TCP Retransmissions for Datacenter Commu-

nication. In Proc. ACM SIGCOMM, Barcelona, Spain, aug 2009.

[VS94] Curtis Villamizar and Cheng Song. High Performance TCP in ANSNET.

SIGCOMM Comput. Commun. Rev., 24(5):45–60, oct 1994.

[Wal87] Larry Wall. The Perl Programming Language. http://fr.wikipedia.

org/wiki/Socket, 1987.

[Whi13] G. White. A Simulation Study of Codel, SFQ-CoDel and PIE in DOCSIS

3.0 Networks. Technical report, CableLabs Technical Report, 2013.

[wik] wikipedia. Tunneling protocol. http://en.wikipedia.org/wiki/

Tunneling_protocol.

[WM05] Damon Wischik and Nick McKeown. Part I: buffer sizes for core routers.

SIGCOMM Comput. Commun. Rev., 35(3), jul 2005.

[WN10] Guohui Wang and T. S. Eugene Ng. The Impact of Virtualization on

Network Performance of Amazon EC2 Data Center. In Proceedings of the

29th Conference on Information Communications, INFOCOM’10, pages

1163–1171, Piscataway, NJ, USA, 2010. IEEE Press.

[WRGH11] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. De-

sign, Implementation and Evaluation of Congestion Control for Multipath

tcp. In Proceedings of the 8th USENIX Conference on Networked Systems

Design and Implementation, NSDI’11, pages 99–112, Berkeley, CA, USA,

2011. USENIX Association.

[XHR04a] Lisong Xu, K. Harfoush, and Injong Rhee. Binary increase congestion

control (bic) for fast long-distance networks. In IEEE Infocom, 2004.

[XHR04b] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary Increase Congestion

Control (BIC) for Fast Long-Distance Networks. In INFOCOM, 2004.

[YGM+11] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rexford, Lihua Yuan,

Srikanth Kandula, and Changhoon Kim. Profiling Network Performance

Bibliography 152

for Multi-tier Data Center Applications. In Proceedings of the 8th USENIX

Conference on Networked Systems Design and Implementation, NSDI’11,

pages 57–70, Berkeley, CA, USA, 2011. USENIX Association.

[YLX+11] Peng Yang, Wen Luo, Lisong Xu, Jitender Deogun, and Ying Lu. TCP

congestion avoidance algorithm identification. In ICDCS, 2011.

