
HAL Id: tel-01142209
https://theses.hal.science/tel-01142209v1

Submitted on 14 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Détection et diagnostic de défauts naissants en utilisant
la divergence de Kullback-Leibler : De la théorie aux

applications
Jinane Harmouche

To cite this version:
Jinane Harmouche. Détection et diagnostic de défauts naissants en utilisant la divergence de Kullback-
Leibler : De la théorie aux applications. Other. Supélec, 2014. English. �NNT : 2014SUPL0022�.
�tel-01142209�

https://theses.hal.science/tel-01142209v1
https://hal.archives-ouvertes.fr


 

 

                

                        

                            

                
 

ÉCOLE DOCTORALE : STITS  
Laboratoire des Signaux et Systèmes (L2S, UMR 8506) 

Laboratoire de Génie Electrique de Paris (LGEP, UMR 8507) 
 

DISCIPLINE PHYSIQUE 
Spécialité  

Traitement de signal 
 

 

 
 

THÈSE DE DOCTORAT 
 

soutenue le 20/11/2014 
 

 
 

par 
 

 
 

Jinane HARMOUCHE 
 
 
 
 

Statistical Incipient Fault Detection and Diagnosis 
with Kullback-Leibler Divergence : From Theory to 

Applications 
 
 
 
 
 

Directeur de thèse : 
Co-directeur de thèse : 
Composition du jury : 

Claude DELPHA 
Demba DIALLO 

Maître de Conférences HDR (L2S, Univ. Paris-Sud) 
Professeur des univ. (LGEP, Univ. Paris-Sud) 

 

Président du jury : 
Rapporteurs : 

 
Examinateurs : 

 

Nadine MARTIN 
François AUGER 
Guy CLERC 
Mohamed BENBOUZID 
Stéphane FONT 

Directeur de Recherche (Gipsa-Lab, Grenoble INP) 
Professeur des univ. (IREENA, Univ. de Nantes) 
Professeur des univ. (Ampère, Univ. Claude Bernard) 
Professeur des univ. (LBMS, Univ. de Brest) 
Professeur (E3S, Supélec) 

 





i

Résumé

Les travaux de cette thèse portent sur la détection et le diagnostic des défauts nais-
sants dans les systèmes d’ingénierie et industriels, par des approches statistiques
non-paramétriques. Un défaut naissant est censé provoquer comme tout défaut un
changement anormal dans les mesures des variables du système. Ce changement est
cependant imperceptible mais aussi imprévisible dû à l’important rapport signal-sur-
défaut, et le faible rapport défaut-sur-bruit caractérisant le défaut naissant. La dé-
tection et l’identification d’un changement général nécessite une approche globale qui
prend en compte la totalité de la signature des défauts. En plus, le défaut naissant a
une faible signature et sa détection fait appel aux indicateurs ayant une haute sen-
sibilité aux petites distorsions. Dans ce cadre, la divergence de Kullback-Leibler est
proposée comme indicateur général de défauts, sensible aux petites variations anor-
males cachées dans les variations du bruit. Une approche d’analyse spectrale globale
est également proposée pour le diagnostic de défauts ayant une signature fréquen-
tielle. L’application de l’approche statistique globale est illustrée sur deux études
différentes. La première concerne la détection et la caractérisation, par courants
de Foucault, des fissures dans les structures conductrices. L’approche basée sur la
divergence est appliquée à des mesures expérimentales d’impédance d’une plaque
conductrice présentant plusieurs fissures de petites tailles. La deuxième application
concerne le diagnostic des défauts de roulements dans les machines électriques tour-
nantes. L’approche basée sur une analyse globale du spectre est appliquée sur des
signaux vibratoires générés, à plusieurs niveaux de charge, pour différents types et
tailles de défauts de roulements. En outre, ce travail traite le problème d’estimation
de l’amplitude des défauts naissants. Une analyse théorique menée dans le cadre
d’une modélisation par analyse en composantes principales, conduit à un modèle
analytique de la divergence ne dépendant que des paramètres du défaut. Un esti-
mateur de l’amplitude du défaut est ainsi obtenu. Les performances de détection
(au travers des probabilités de non détection et de fausse alarme) et la précision de
l’estimation des défauts naissants sont évaluées sur des exemples numériques.
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Abstract

This phD dissertation deals with the detection and diagnosis of incipient faults in
engineering and industrial systems by non-parametric statistical approaches. An
incipient fault is supposed to provoke an abnormal change in the measurements of
the system variables. However, this change is imperceptible and also unpredictable
due to the large signal-to-fault ratio and the low fault-to-noise ratio characterising
the incipient fault. The detection and identification of a global change require a
’global’ approach that takes into account the total faults signature. In addition,
incipient faults have a weak signature that requires detection indicators that have
high sensitivity to small distortions. In this context, the Kullback-Leibler diver-
gence is considered to be a ’global’ fault indicator, which is recommended sensitive
to abnormal small variations hidden in noise. A ’global’ spectral analysis approach
is also proposed for the diagnosis of faults with a frequency signature. The ’global’
statistical approach is proved on two application studies. The first one concerns the
detection and characterization of minor cracks in conductive structures. The ap-
proach based on the divergence is applied to experimental impedance signals from
the eddy-current testing of a conductive plate that has a plurality of small-sized
cracks. The second application concerns the diagnosis of bearing faults in electrical
rotating machines. The ’global’ spectral analysis approach is applied to experimen-
tal vibration signals generated by different types and sizes of bearing faults, for
different operating points. In addition, the fault estimation problem is addressed in
this work. A theoretical study is conducted to obtain an analytical model of the KL
divergence, from which an estimate of the amplitude of the incipient fault is derived.
The fault detection performances (false alarm and missed detection probabilities) of
the divergence and the fault estimation accuracy are evaluated on numerical models
through intensive simulations.
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General introduction

Context of the study

The last three decades have shown an increased demand for improving the economy
and safety of processes. Health monitoring of processes has been widely developed
with studies of fault detection and diagnosis. Initially seen as an application area of
signal processing, filter, and control theory, the fault detection and diagnosis field
continues to be the focus of most researches. In a wide variety of industrial and
on-board applications, the detection and diagnosis of faults are considered essential
to ensure high performance level of the plant operation, to reduce economic losses
and to enhance the security of a plant operating in a controllable region. Aerospace
systems, automotive applications, power systems and industrial production systems
are popular examples of these applications.

A plant or system consists roughly of three main subsystems, actuators, main
process and sensors. Either of the system’s components is vulnerable to faults due
to its interaction with the environment, ageing, manufacturing defects, harsh opera-
tion conditions, misuse, human errors, etc. A ’fault’ denotes a tolerable malfunction
which potentially may develop into a failure if it has not been detected and isolated
early enough so that appropriate corrective actions can be taken [1]. The fault
detection consists of deciding whether the system operation has deviated from the
normal standard conditions due to an undesired behaviour of one of the system
components. The fault isolation follows the fault detection task and consists of
determining the location of the fault, or which sensor, actuator or process compo-
nent has become faulty. In some applications, it is also important to determine the
time occurrence of the fault and to assess its severity. This task is defined by fault
identification. Monitoring a physical system requires continuously observing its
behaviour to detect, isolate and identify faults. A procedure including the three
mentioned tasks is called a fault detection and diagnosis (FDD) system.

There are extensive theoretical and practical studies that investigate various
approaches for FDD. Whatever the approach, the FDD system primarily relies
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upon two elements: availability of process measurements and prior knowledge of
the potential faults. Process measurements are a basic representation of the pro-
cess behaviour. They however carry information about the faults, usually called the
signature or symptoms of faults. The objective of a FDD system is to extract the
fault-related information from the process measurements by conducting appropriate
transformations on the process data. These transformations lead to some useful
features that help assessing the operating health state and reflecting the potential
faults. The features can be in the form of changes in spectral properties, in statisti-
cal parameters, in some functional relationships among the process variables (states,
inputs and outputs), qualitative rules, etc. They can be obtained using either quan-
titative physical models (input/output models, state/space models, first-principles
models, frequency response models, etc.), qualitative models (expert systems based
on if-then-else rules, fault trees, cause-effect models, etc.) or data-driven implicit
models (process history based) [2, 3].

What is the suitable transformation/modelling to be done? In fact, the FDD
system design and specifically the structure of the model to be built are imposed by
the dedicated application. The application usually specifies the type and amount
of knowledge provided for its users and the desirable FDD characteristics. The
FDD system uses this a priori process knowledge to transform the process data
into features that achieve the desired FDD characteristics or properties. For exam-
ple, to develop an accurate quantitative model for the system under consideration
a sufficient amount of information about the process physics including all forms
of interactions with the environment should be available. Aerospace and electro-
mechanical engineering processes are application examples. However, when dealing
with complex, large scaled, time varying or nonlinear processes, a comprehensive
model becomes unfeasible and expensive to develop and to be effective. This is the
case of process industries and chemical plants for instance. Introducing simplifica-
tion hypothesis or assumptions to models limits their generalisation capabilities to
certain chosen operation modes and induces modelling errors that reduce greatly
the effectiveness of the FDD system. These problems are likewise encountered in
some emerging technologies, like the fuel cells that are embedded in transport ap-
plications. If the information available about the operation modes is qualitative
rather than quantitative, the model to be developed will be also qualitative. For
the qualitative model to be complete and effective, abundance of experience on the
process under normal and faulty operating conditions is required. However, if a lit-
tle amount of information on the process mechanisms is available and measurement
signals are the only valuable resource for process monitoring, data-driven implicit
models would be the best candidates.



General introduction 3

Data-driven models are implicit empirical models derived from analysis of avail-
able data. Their derivation requires a minimal a priori knowledge about process
physics, but a significant amount of historical process data which may contain faults
and their symptoms. It is mainly based on computational intelligence and machine-
learning methods, which are referred to as data-driven methods. These include
multivariate statistical projection methods such as Principal Component Analysis
(PCA), Independent Component Analysis (ICA) and Linear Discriminant Analysis
(LDA), Artificial Neural Networks (ANN) and Support Vector Machines (SVM).
PCA and Projection to Latent Structure (PLS) are among the data-driven meth-
ods, which have gained a remarkable acceptance in industry for statistical monitor-
ing and control of multivariate processes [4]. They model the correlation structure
existing among the process variables. They are especially useful when the number
of variables is large enough so that their variation is likely due to a small number of
underlying relevant variables.

The multivariate statistical methods attempt to analyse high dimensional data
in order to capture the underlying structure formed with some Latent Variables
(LV) that reveal some statistical characteristics. The latent variables are gener-
ally decomposed into dominant and residual ones, therefore reducing the dimension
of the original variable space. The process statistical monitoring based on these
methods relies on statistics that detect deviation of a new observation from the
LV control region. The Hotelling T2 and the Squared Prediction Error (SPE) are
typical distance-based statistics commonly applied for the on-line monitoring. The
SPE, computed over residual LV, is sensitive to atypical observations having ab-
normal high magnitude. The T2, computed over dominant LV, is less sensitive to
abnormal observations, but is able to detect moderate to large shifts in the mean or
the variance of variables. The multivariate control charts [5, 6], such as the Multi-
variate Exponentially Weighted Moving Average (MEWMA) and the Multivariate
Cumulative Sum (MCUSUM) can be used to detect mean shifts, and they also show
a higher sensitivity to small shifts than T2.

It is worth mentioning that the statistical analysis of process data may be per-
formed in any informative domain, including the time and/or the frequency domains.
At first, time-series data are transformed into appropriate quantities like frequen-
cies, amplitude, time-scale features and phase characteristics, using advanced signal
processing tools [7]. This can lead to univariate or multivariate features. Then, the
multivariate statistical projection methods can be applied to the potential multi-
variate features vector in order to depict the underlying relevant variability among
redundant features. This is called a feature extraction task. The extracted fea-
tures are generally provided to a classification system for on-line monitoring. The
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choice of features is very influential on the performance and complexity of the FDD
system because depending on their relevance, the classification algorithm can be
either very complex or quite simple. Having an important differentiation power,
informative features, also called high-level features, are always in need, and they
usually involve sophisticated signal processing techniques such as time-scale analy-
sis, time-frequency analysis and advanced denoising. This is particularly the case
with condition monitoring and fault diagnosis in rotating machinery [8, 9]. Electri-
cal machine fault diagnosis relies primarily on the analysis of available signals into
different representation domains in order to extract useful features for classification.
Vibration analysis, despite being expensive, is asserted to provide the most effective
features to diagnose mechanical problems [10]. Motor Current Signature Analysis
(MCSA) is powerful at detecting and diagnosing electrical faults [11]. However, since
a rotating machine is an interconnected electromechanical system, mechanical and
electrical signals are often analysed simultaneously to accurately assess the machine
health and identify the fault’s origin.

Objectives

Statistically formulating the process, the probability distributions of observations
related to the process variables summarize the statistical characteristics of the pro-
cess. When a process operates under normal mode, its variables will have probability
distributions corresponding to the fault-free operating conditions. Most statistics
for fault detection are designed to detect shifts in the distribution parameters, such
as mean and variance, of the process variables.

Real faults, at early stage of development, can nevertheless affect the probabil-
ity distributions in an unpredictable (random) manner causing slight changes and
distortions along the distributions rather than a certain change in one of its pa-
rameters. This can be encountered with an intermittent fault, for example, that
appears randomly and irregularly for short time intervals. An incipient fault caus-
ing a slowly varying small-amplitude change can likewise have such impact on the
process distribution. Obviously, a ’local’ parameter reflecting a distribution prop-
erty, i.e. mean, variance or kurtosis, is able to capture only a part of the change
induced by these faults. It may fail to detect the fault presence unless the change
is quite significant. Instead of monitoring ’local’ parameters of probability distribu-
tions, it becomes more meaningful to monitor the overall shape of distributions in
order to capture ’global’ disparities and distortions. This makes call to informational
measures defined between probability distributions. Comparing actual probability
distributions against their healthy references using divergence measures allows to
reveal the disparities caused by the faults onset.
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The application of Kullback-Leibler (KL) divergence, as an informational mea-
sure, to detect and estimate small faults in multivariate processes, is investigated in
this thesis. The sensitivity of KL divergence with respect to small changes is com-
pared to other commonly used statistics for fault detection, namely T2 and SPE.
The fault detection performance of the divergence is evaluated under the constraint
of noisy environments, while referring to the Fault-to-Noise Ratio (FNR) as com-
parative criterion between the fault and noise levels.

As a first application, a ’global’ time-domain analysis based on KL divergence
and PCA is applied to eddy-currents testing (ECT) signals in order to reveal the
signature of minor cracks and characterise their severity. The experimental data are
acquired using an impedance sensor that scans several areas of a conductive plate
having several thin cracks. Compared to the local statistical parameter, namely the
mean statistic, the divergence is going to show a higher sensitivity to the impercep-
tible changes caused by the cracks presence.

A second application has been studied in this work to highlight the important
role of the ’global’ approach in FDD. Electrical machine faults with frequency signa-
tures are studied, and validation is carried out on bearing faults. A global statistical
analysis of the spectra of machine variables will be proved to lead to efficient fea-
tures that are able to differentiate between different bearing faults according to the
fault location and severity. Thanks to its ’global’ character, the proposed method
overcomes the a priori knowledge requirement of the characteristic fault frequen-
cies. A particular attention is given to the ball-type faults since the corresponding
frequency signature is very weak, which makes the discrimination among different
severities of faults in bearing’s balls challenging.

Contributions and outline

The principal contributions of this work are:

I- The application of KL divergence to the principal component variables in order
to detect small faults in multivariate processes

• Comparison of the divergence sensitivity with respect to small changes
with the sensitivity of commonly used fault indicators

• Evaluation, through detection error probabilities, of the detection perfor-
mance in noisy environments
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• Application of the divergence to the detection and characterisation of mi-
nor surface cracks in conductive plates, using experimental ECT signals

II- The estimation of the fault magnitude through an analytical model of the di-
vergence

• Derivation, under some assumptions, of an analytical model of KL diver-
gence that depends explicitly on the fault magnitude

• Model validation through simulation

• Evaluation of the estimation accuracy, for small faults and low fault-to-
noise ratios (FNR), through the calculation of estimation errors

• Comparison with another estimation method

III- The exposition of a ’global’ spectral analysis procedure for fault diagnosis in
electrical rotating machines

• Extraction of efficient spectral features for discrimination among machine
faults

• Validation on bearing faults using vibration signals

• Classification of bearing faults according to the fault location and severity

The present document is structured in 4 chapters.
In chapter 1, the literature related to the fault detection and diagnosis framework

is reviewed and summarised. The main modelling approaches are briefly explained
and discussed, showing their capabilities and limitations. A particular attention is
paid to the data-driven approach due to its strong connection to the present work.
The major data-driven methods are exposed in relatively more details.

Chapter 2, entitled KL divergence for fault detection, comprises the fault detec-
tion part of this work. The problem statement is described. The KL divergence is
introduced along with its application to the principal components variables. Vali-
dation is carried out on simulated signals.

Chapter 3 is dedicated to the fault estimation. A theoretical study is conducted
to obtain an analytical model of the divergence. An estimate of the fault amplitude
is derived. Validation is carried out on a simulated AR process.

Chapter 4 comprises two parts. The first one concerns the application of KL
divergence along with PCA to the detection and characterisation of minor surface
cracks using experimental ECT data. The second one is dedicated to the application
of a ’global’ spectral analysis procedure for diagnosing faults in bearings of electrical
machines.
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Chapter 1

Fault Detection and Diagnosis:
State of the art

1.1 Introduction

The term ’fault’ is commonly used to denote any unexpected behaviour (malfunc-
tion) of one of the system parts. A fault causes a small process plant deviation rather
than a serious failure so it can be handled by fault tolerant control, of which fault
diagnosis is a main function, to prevent undesired consequences. Typical examples
of such faults are [1]:

• Actuator faults: faulty pumps, partial closing of valves, blocking of actuated
joints or pipes, bearing faults, gear faults

• Sensor faults: biased measurements, drift, calibration errors, high percentage
noise, dead zone

• Process (component, structural) faults: abnormal parameter changes, hard-
ware defects like ruptures, cracks, loose parts

Faults, characterised with amplitude a, can also be classified according to the
time-varying behaviour, as shown in Fig.1.1, into abrupt, intermittent and incipient
(slowly varying) changes. According to the form the fault takes, it is sometimes
useful to distinguish between discrete and distributed faults. In electromechanical
systems, faults can either be mechanical or electrical.

The fault detection task requires that information about the normal (fault-free)
behaviour of the plant/system is available. Information about the faulty behaviour
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Figure 1.1: Fault types according to the time-varying behaviour

have also to be known if the fault diagnosis is of concern. This information can be
of several forms:

• If the FDD scheme relies on an analytical model of the fault-free behaviour,
then the faulty behaviour should likewise be modelled. Sensor faults for exam-
ple affect the system outputs in an additive or multiplicative manner. Com-
ponent faults are modelled as changes in the model parameters, and affect the
process transfer function in a multiplicative manner if the system is linear.

• If the normal behaviour is described by a set of qualitative facts and rules
compiled by the operator’s expertise, then the information about the faults
would likewise be in form of qualitative symptoms or qualitative states.

• Some faults can be recognised from characteristic features they introduce into
measurements like spectral features, statistical moments, etc. One typical ex-
ample is the case of faults (gear faults, bearing faults, short-circuit faults,
broken rotor bars) in electromechanical systems.

Faults in plant equipment (actuators), instrumentation (sensors) and within the
process itself are unavoidable due to age, misuse, harsh operating conditions and
many other causes. They are responsible for the unwarranted change in the be-
haviour of the plant/system with respect to the nominal fault-free behaviour. Re-
sults could be at least reduction in performance and availability of processes, and
at worst threats to the environment and human safety. It is extremely important
to detect the early occurrence of a fault and to identify its severity and location
to avoid the failing of the overall process by taking corrective control actions. In
addition to actuator, sensor and process faults, other inputs to the plant can cause
changes to the process behaviour without being harmful. Therefore, they could be
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misleading to the fault detection task. These include noises, parameter variations,
unknown disturbances and non-stationary conditions, commonly described as un-
known inputs. The challenge for any FDD system is to achieve high sensitivity with
respect to incipient faults while being robust against the unknown inputs.

The last three decades have testified the development of many advanced meth-
ods for early detection and diagnosis of incipient faults. The main principle behind
is to compare system’s actual behaviour against its nominal one to check for con-
sistency. This can be achieved using a replication, ’redundancy’, of the nominal
behaviour of the system under monitoring. There are two major approaches to
create redundancy [1]: either using a replication of hardware in order to compare
outputs of identical components (hardware redundancy-based approach), or using a
reconstruction/model of the system that estimates its nominal behaviour based on
some a priori knowledge about the system (analytical redundancy-based approach).
The hardware redundancy-based approach is extremely reliable but expensive and
cumbersome and, therefore, its application is restricted to safety-critical processes
as nuclear reactors, aeroplanes, etc. The analytical redundancy-based approach has
been a major area of research since three decades or more. The methods developed
in this framework can be classified into three main categories [2, 3]: quantitative
model-based, qualitative model-based and process history based or so-called data-
driven methods.

A comprehensive survey of fault detection and diagnosis methods is given in
[4, 5]. Some review papers and books focus on analytical and qualitative model-
based methods, see [6, 7, 8, 9] to cite a few of them. Data-driven methods are
reviewed in [10, 11] among others. See [12, 13] for comparison of various methods.

This thesis revolves around signal processing employing data-driven methods for
FDD. Three aspects of a fault diagnosis problem are addressed: the incipient fault
detection, the fault magnitude estimation and the fault isolation. Attention is paid
to the methodology which can subsequently be applied to a wide range of applica-
tions. Topics covered by the thesis are diverse in terms of tools and applications.
This chapter briefly reviews the state of the art related to the context, describes the
problems to be solved, states the contribution of this work and describes finally the
outline of the remainder of the document.

1.2 Diagnosis process

The objective of fault diagnosis comprises three main tasks [4]:
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• Fault detection, this is performed by designing fault indicators for which ma-
jor goals are fast detection, sensitivity to incipient faults and robustness to
various uncertainties.

• Fault isolation, it is the ability to distinguish between different faults. The
problem is twofold. The simplest is to isolate faults occurring separately. The
hardest is to be able to identify multiple faults occurring simultaneously.

• Fault identification, this is the determination of the time occurrence, the sever-
ity and the cause of a fault. This analysis is essential to predict the fault evolu-
tion (prognosis) and subsequently prescribes appropriate maintenance actions.

The realisation of these tasks depends decisively upon the information (amount,
quality and nature) available about the system being monitored. Though the chal-
lenge for any diagnosis design is to achieve the desired objectives using minimum
information and a priori knowledge. The available information is generally processed
through the following diagnosis stages [6, 11]:

1. Residual/features generation/extraction. Residuals are signals designed to be
sensitive exclusively to faults. They are ideally zero in fault-free conditions
and minimally sensitive to various noises and disturbances. Features can be
qualitative or quantitative in nature and they carry symptoms characterising
the faults. For fault isolation, properly structured residuals or discriminative
features are needed.

2. Residual/features evaluation/classification. The evaluation basically consists in
a logical threshold testing. Furthermore, it can be viewed as a classification
problem. This stage plays an important role in meeting the desired balance
between performance (quick detection and isolation, low probability of missed
detection) and robustness (low probability of false alarms, low classification
error).

These two stages are root bases of fault diagnosis concept. The overall pro-
cess is illustrated in Fig.1.2. A lot of researches have been carried out to propose
different techniques to solve the residual/features generation/extraction and eval-
uation/classification problems. The techniques are guided by the prior knowledge
or assumptions on the system being monitored. Most review and survey works
classify the approaches of residual/features generation/extraction into three main
categories, namely qualitative model-based, quantitative model-based and process



1.2. Diagnosis process 13

Figure 1.2: General Diagnosis Process

history-based. The quantitative and qualitative model-based methods use the con-
cept of residual generation to perform fault detection and isolation. Process history
based methods rely on feature extraction procedure. Statistical tools such as sta-
tistical classifiers, as well as non-statistical classifiers are proposed in the evaluation
stage.
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In the sequel, we briefly describe the basic principle of the model-based fault
diagnosis using quantitative and qualitative models. We will then focus on the
process history-based approach, which we have adopted for our work.

1.3 Quantitative and qualitative model-based ap-

proaches

From a model-based approach viewpoint, a fault can be detected if a reference or
model of the nominal behaviour of the system being monitored is available. A
model is commonly a knowledge representation. The knowledge can be quantita-
tive (numerical) or qualitative (symbolic) in nature. Accordingly, the model can
be mathematical, empirical, graphical, symbolic, explicit or implicit, etc. The vari-
ables observed from the system, consisting of sensor outputs, actuator inputs and
process data, are basic representations of the system state. Modelling the fault-free
system behaviour comprises the extraction of relationships among the observed vari-
ables, which are valid in normal operating conditions and change following a fault
occurrence. The quantitative model-based approach expresses the relationships de-
scribing the system behaviour in terms of mathematical functions. The qualitative
model in contrast expresses these relationships in terms of qualitative functions and
heuristic symptoms. The quantitative approach uses analytical information to build
the model, while the qualitative approach exploits as much knowledge about the
process as possible and can easily handle qualitative information [6].

1.3.1 The quantitative approach

1.3.1.1 Quantitative model types

The behaviour of processes is governed by laws of physics. The quantitative ap-
proach aims at describing either the system’s governing laws or the overall process
behaviour (dynamics) using mathematical equations and functions over the observed
variables. The challenge is to build a model as accurate, robust and complete as
possible with a minimum modelling effort. According to the amount of information
available to build such a mathematical model, it is possible to distinguish between
three classes of mathematical models [5]:

• White-box models: They correspond to physical models based on a deep
and concise understanding of the process physics. Sufficient information about
the relationships among process variables and the functions describing their
variations is available, yielding a comprehensive model for the system being
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monitored. First principles models use established laws of physics to write
equations relating the process variables without worrying about fitting the
model to experimental data. A state-space model with known dynamics in-
cluding real physical parameters is an example.

Figure 1.3: White-box model

Advantages: All the dynamics are known accurately.

Shortcomings: They may yield to complex models as systems are mainly
multi-physics with coupled and non-linear phenomena.

• Black-box (experimental) models: This is the case of systems with un-
known dynamics, providing hence little prior knowledge. A general input-
output model aiming to only reproduce the system’s output response to changes
in its inputs can be used. Special structures for a linear input-output model are
FIR model, ARX model, ARMAX model. Neural Network models are nonlin-
ear black-box models which in real situations may achieve more accuracy than
linear models. Black-box models have flexible structures whose parameters do
not necessarily reflect physical meanings. The model is identified via system
identification methods. A least square algorithm for example can be used to
identify an ARX model, using observed data and the potential knowledge of
the approximate orders and pure time-delay.

Advantages: The identification step can be tuned to have simple models that
fit in the objectives (control, diagnosis, optimisation, etc.)

Shortcomings: They require the availability of experimental bench test, and
the capability of injecting different excitation signals to cover all the sys-
tem dynamics. Usually, the black-box models will have a limited domain
of validity.
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Figure 1.4: Black-box model

• Grey-box (semi-physical or hybrid) models: Such models are able to
combine advantages from white-box and black-box models and overcome some
of the problems of using either of them solely. This is the case when some
physical grounds are available but not enough to construct a white-box model.
The structure of the model can be partially identified from physical insights
and some parameters should however be estimated from the observed data.
The combination of a mathematical model representing the behaviour of the
process and a neural network that compensates the model error is a grey-box
model.

Figure 1.5: Grey-box model

⇒ They combine the advantages but also the drawbacks of white-box and
black-box models.
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1.3.1.2 Residual generation

Relying on the obtained fault-free quantitative model of the monitored system, the
analytical methods that can be used for residual generation can be classified into
three main categories:

• Parity space approach: Proposed in [14], it is especially suitable for actua-
tor and sensor faults having an abrupt additive effect on the residual signal or
vector. The basic idea consists in rearranging the input-output or state-space
system equations to yield parity equations allowing for decoupling the residual
from the system states and decoupling among different faults to make fault
isolation. The robustness of residuals with respect to noises and unmodelled
uncertainties is achieved by restricting the parity equations to those which
are independent or at least weakly dependent upon them. This approach
however can hardly cope with significant uncertainties, particularly the para-
metric multiplicative ones and the unknown disturbances. More details and
improvements of the basic methods can be found in [15, 16, 17]. Examples of
recent applications can be obtained in [18, 19].

• Analytical observer-based approach: It is based on application of output
estimators designed as filters or observers and the use of resulting estimation
error or a function of it as the residual [20, 21, 22, 23]. In fault-free conditions,
the observer containing the model and an appropriate feedback will track the
process so that the residual will only depend on the unknown inputs. When
a fault occurs, the observer will model the system with less accuracy, thus
increasing the magnitude of the residual. The main drawback is that incipient
faults are difficult to detect. The fault isolation consists in using a bank of
observers or filters each designed to be sensitive to a specific fault and robust
with respect to the other faults and the unknown inputs. Such observers pro-
duce structured (enhanced) or directed residuals having total or approximate
decoupling properties [24, 25, 26].

• Parameter estimation approach: It is mainly suitable for structural faults
modelled as abrupt or slowly developing multiplicative changes in the model
parameters. Residuals are generated by comparing the parametric model es-
timated on-line from acquired measurements against the reference model ini-
tially obtained in fault-free conditions [27, 28, 29, 30]. Changes in the model
parameters which are potentially related to certain physical parameters are
detected, providing a deep fault analysis. Parameter estimation methods such
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as least squares and instrumental variables methods are used on-line; the ap-
proach becomes relatively intensive for large processes. Another disadvantage
is that an input excitation is required in order to estimate the process param-
eters, causing problems for steady state operating plants.

These approaches are designed on the basis of an accurate and precise mathe-
matical model of the system in its nominal operating mode. Therefore, the difficulty
arises when dealing with complex, high-dimensional and nonlinear processes: on one
hand developing a comprehensive model, if it is feasible, is costly, and on the other
hand the more complex the system model is, the more tricky the robustness issue
becomes. The application of the fault diagnosis approaches to a general non-linear
system requires a model linearisation around the operating point, which can prove
to be poor especially with systems that have severe non-linearities. Non-linear ob-
servers are designed for a restricted class of nonlinear systems [31, 32, 33, 34]. They
work well for slowly varying faults, but fail to identify abrupt changes. Most of
the techniques assume system linearity. Some works use black-box identification of
some specific time-varying and/or nonlinear systems, with the aid of artificial neural
networks (ANN) and adaptive ARX models for example [35, 36]. The development
and validation of the black-box models need sufficient good experimental data, and
thus abundance of experiments to be carried out. This might be impractical in real
industrial processes.

As it has been mentioned before, the issue is to choose an accurate model for
the system which is tractable and relevant for diagnosis. A lot of research has
been carried out concerning the issue of complexity vs performance in quantitative
model-based approaches. Important works are reviewed in [37, 38]. In large in-
dustrial systems for example, sometimes the best model would not be the detailed
physical model (a white-box model) even if all system dynamics are known because
this will yield a high-dimensional model which is heavy and complex from the diag-
nosis point of view. A small black-box parametric model identified from available
data can however be useful for detection purposes. The problem here is whether it
is still possible to infer diagnosis insights from the black-box model; parameters of
a black-box model may lack of physical meanings. The robustness with respect to
significant modelling uncertainties occurring due to parameter drifts poses a chal-
lenging problem for all the analytical model-based approaches [39, 40, 41].

1.3.1.3 Residual evaluation

The overall FDD quantitative model-based approach is illustrated in Fig.1.6. With
the residual generation process, the complex problem of detecting and diagnosing
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faults on a system turns into the problem of monitoring statistical properties of
generated residuals. The goal is to decide whether the change as reflected by the
residuals is significant indicating a fault occurrence or not. Afterwards, it would be
interesting to estimate the change time and magnitude. This can be achieved using
threshold logic [42], statistical decision theory [28, 43], pattern recognition [44, 45],
fuzzy-decision making [46], or neural networks [47]. Threshold testing is the basic
method and all the others can come down to a threshold test. A threshold should
be suitably chosen so the false alarm’s rate is minimised and the sensitivity to small
faults is maximised. Time-variant adaptive thresholds have proven to be effective
for a robust residual evaluation [48, 49].

Figure 1.6: FDD quantitative model-based approach

To monitor the changes in the mean value or the spectral properties of the resid-
uals, sophisticated statistical tools, namely sufficient statistics, have been derived
from the likelihood ratio approach and/or the statistical local approach see, e.g.
[28, 50, 51, 52]. Theoretical and practical studies have investigated the application
of Cumulative sum (CUSUM) type algorithms, generalized likelihood ratio (GLR)
test and modified version of them to change detection and to change time and mag-
nitude estimation [53, 54]. When several residuals are generated so that each one
reflects the occurrence of certain faults, using a bank of observers for example, de-
cision can be made by feeding the set of residuals to a pattern recognition classifier.
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1.3.2 The qualitative approach

1.3.2.1 Qualitative modelling

When the quantitative information available about the process dynamics in its nom-
inal operating conditions is insufficient to build a high- fidelity mathematical model,
the analytical fault diagnosis approaches described above would no longer be effec-
tive. Robust solutions can overcome this deficiency only to a certain extent and with
great effort. The qualitative model-based approach, however, allows for exploiting
as much knowledge about the process as possible and can easily handle qualitative
information. A physical model of Fuel Cell systems for example is very complex
because of coupling multiple physical domains (electrochemical, electrical, thermo-
dynamics,...) [55]. Instead, a behavioral model describing the relationship among
the qualitative variables is a good alternative/complement because it depends less
on precise and detailed quantitative information [56, 57, 58]. In chemical industries
[59, 60], the effect of a fault can be more easily described with qualitative means
(heuristic symptoms represented as clauses or intervals) than quantitative ones such
as a leakage of a pipe,... Besides, the qualitative modelling treats homogeneously lin-
ear and non-linear systems. The mathematically unmodelled dynamics (high order
dynamics, high frequency oscillations, etc.) and non-linearities exhibited by some
systems can be modelled using a behavioural description, see e.g. [56, 61, 62, 63].

Basically, qualitative information can be generated from process observations
and previous experiences with abnormalities (faults) in a system. This leads to
capturing the empirical relations between symptoms of faults and the faults them-
selves. A tree of if-then-else rules can be used to compactly represent (model) such
relations. The acquired knowledge, referred to as ’shallow knowledge’, is unfortu-
nately uncertain and lacks process generality. It may fail if a novel condition not
included in the knowledge base is encountered. It can however be useful for diagnos-
ing small scale processes with limited knowledge. Otherwise, the diagnosis can be
performed reliably by deriving ’deep knowledge’ about the system behaviour using
qualitative physics [6, 64, 65]. Accordingly, a set of qualitative equations termed
as confluences, can be obtained from abstraction of the numerical values and the
quantitative equations (differential equations), though the latter can be incomplete
and imprecise. Confluence equations are able to describe qualitatively both the
steady state and dynamic behaviour of a system. Causality graphical models, such
as signed digraph (SDG), cause-effect graph (CE), constraint models developed from
qualitative simulation (QSIM) algorithm are used to represent the cause-effect rela-
tionships expressed by the confluences [1, 66]. Compared to the quantitative model,
the qualitative model is in general simpler, since some parameters in the quantitative
model may not appear in the qualitative one. The qualitative model will therefore
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Figure 1.7: FDD qualitative model-based approach

be more robust to the uncertainties in these parameters.

The qualitative modelling starts with a qualitative description of signals in terms
of global characteristics. Accordingly, the value of a signal at a given time is likely to
satisfy a given condition such as to belong to a specific interval, or to be ’too high’ or
’too low’, etc. A set of similar conditions, referred to as symptoms, is defined for the
system inputs, state variables and system outputs. This conversion of the numerical
values to qualitative ones is responsible for the ambiguity problem inherent to the
purely qualitative modelling approaches. Wrong diagnosis and false alarms could
result from an unappropriated ambiguous symptoms setup. There are however sev-
eral approaches able to reduce the ambiguity in purely qualitative reasoning, like
the orders of magnitude reasoning approach [67], the semi-quantitative approach
[68], the fuzzy quantity space approach[69], etc. The modelling thereafter proceeds
by determining all possible changes in symptoms or qualitative values permitted
to each variable and system parameter. The potentially incomplete quantitative
model can be used to get the cause-effect relations among symptoms. Logic opera-
tors (AND, OR, XOR) like in fault trees, directed arcs like in SDG and algebra like
in constraint models are used to represent the revealed changes and relations. The
qualitative model normally grows rapidly with the behavioral complexity of the sys-
tem, though there is no formal method to verify the accuracy of the model developed.
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1.3.2.2 Diagnosis strategies

The different strategies for diagnosing the faults in a system with a qualitative model
can be fundamentally classified into two broad categories [70]:

• Fault model-based, also referred to as symptomatic search strategy. It assumes
that all fault modes and related symptoms are known a priori and modelled.
The actual behaviour of the system is compared to the fault models. The
predicted faulty behaviour matching the observed behaviour determines the
fault or the set of faults that are present in the system. Such approach is
advantageous for the fault identification and analysis, provided that all possi-
ble faults, even multiple faults and disturbances, are covered by the library of
fault models.

• Nominal model-based, also referred to as topographic search strategy. Only
nominal operating conditions of the system to be diagnosed are modelled. Any
inconsistency between the observed behaviour and the reference behaviour re-
veals the presence of faults. No assumption on fault models are made, which
means unpredictable faults can be detected. This approach is particularly
useful when the system is decomposed into several subsystems for which the
nominal behaviour is modelled in order to check their functionality.

Fig.1.7 displays the general FDD qualitative model-based approach. For details,
the interested reader can refer to [64].

1.4 Data-driven approach

1.4.1 Background

In recent years, there has been an increasing interest in signal processing employing
data-driven approaches in the context of condition monitoring, fault detection and
diagnosis. The methods/tools proposed concern the analysis of process data in order
to extract information for system health assessment and fault detection. They do
not assume any form of model for the process under monitoring. They are especially
useful when it comes to complex, large-scale and nonlinear processes, for which an
accurate explicit model is unfeasible or expensive to develop or a tedious job, or the
established model-based techniques are unsuitable. We also resort to these methods
when the a priori knowledge about the process fundamentals and its behaviour is
minimal and the only valuable resource is formed with historical process data. In
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Figure 1.8: FDD data-driven approach

such cases, signals which can be of different types (mechanical, electrical, thermal
measures and so on, input and output signals) are analysed in one or more informa-
tive domains (time, frequency, time-frequency and/or time-scale) to extract features
sensitive to the fault presence, the fault severity and type.

The feature extraction process is mainly based on computational intelligence
and machine-learning methods. These can be broadly classified into statistical
and non-statistical feature extraction methods, see Fig.1.8. Multivariate statisti-
cal projection methods, including Principal Component Analysis (PCA), Partial
Least Square (PLS), Independent Component Analysis (ICA), Linear Discriminant
Analysis (LDA), and statistical pattern classifiers are major components of statis-
tical feature extraction methods. Neural Networks, K-means and fuzzy clustering
approaches are non-statistical feature extraction methods. These are model-free
powerful tools that can be used without being exhaustive for fault detection, fault
visualisation, fault classification, identification, denoising, and therefore any FDD
scheme makes use of these methods in a certain way. Application fields of these
methods cover chemical, electrical, mechanical, aerospace, nuclear engineering pro-
cesses.

The multivariate statistical projection methods are the most welcomed in in-
dustries compared to their data-driven alternatives, thanks to the satisfying perfor-
mance to complexity ratio they achieve. A significant amount of researches have
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been carried out on these methods in order to extend their capabilities to non-linear
and dynamic processes, through many variants [71]. Recently, they have received
a remarkable attention in the framework of electrical machine fault diagnosis. The
detection and diagnosis results produced were similar or of better quality than those
obtained with more complex methods, like neural networks or Support Vector Ma-
chines (SVM) for example. The main idea of these methods is to build low di-
mensional implicit models or spaces that capture intrinsic information from process
data. This is achieved by finding linear combinations of variables (projections) that
satisfy certain statistical properties. PCA, PLS and ICA extract geometric infor-
mation which is generally useful for detection purposes. Other methods, namely
statistical discriminant analysis [72], extract discriminative information useful for
diagnosis and classification purposes. Whatever, the FDD scheme comprises two
phases:

1. offline training: The main general tasks are construction of subspace model
(feature extraction) from the process history data, threshold setup for detec-
tion, choice of discriminant function (boundaries) for classification, validation
on test data.

2. on-line monitoring: The main general tasks are projection of the new mea-
surements into the subspace model, calculation of test statistics (commonly
T2 and SPE statistics) for detection and of discriminant function for diagnosis,
comparison with threshold for making decision.

The main multivariate statistical projection methods are reviewed in the follow-
ing, and an overview of their recent applications is given.

1.4.2 Subspace projection methods for feature extraction

1.4.2.1 Principal Component Analysis

Principal Component Analysis (PCA) refers to the problem of fitting a low di-
mensional linear subspace to a given set of measurements contained into a higher
dimensional space. The data consist of measurements at N different times of some
physical variables, for example temperature, voltage, vibration, etc, or artificial cal-
culated variables (features) for example statistical moments. The time points play
the role of observations. To solve this problem PCA uses linear correlations among
variables. Statistically formulating the PCA problem, it consists in estimating the
first principal components of a vector of random variables. The first principal com-
ponents are defined to be uncorrelated linear combinations of the original variables
that successively maximise the total variance of data projection [73]. From a geomet-
rical viewpoint, this is equivalent to minimising the sum of squared error (euclidian
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distance) between the observations and their projections. Both the geometrical and
statistical formulation lead to the eigenvalue decomposition (EVD) as a solution,
such that the first principal components are given by the dominant eigenvectors of
the data covariance matrix, i.e. eigenvectors associated with the highest eigenval-
ues. PCA performs hence an orthogonal partition of the original variable/feature
space into two complementary lower dimensional subspaces: the principal subspace,
also called the signal or the representation subspace, which contains the most sig-
nificant variations present in the data set and the residual subspace, also called the
null subspace, which represents noises, redundancy, outliers (atypical observations,
small-probability instances) and significant errors.

Such as it is defined above, PCA operates well for data which are at least ap-
proximately multivariate normal. It is for a multivariate normal distribution that
the empirical sample covariance matrix is asymptotically an unbiased estimate of
the true covariance matrix. Therefore if the normality condition is satisfied, the
principal components, which are estimated as the eigenvectors of the sample covari-
ance matrix, will be also unbiased estimate of the true principal components. Under
this assumption, statistical inferences about the underlying population of principal
components can be derived analytically [74]. However the numerous applications
of PCA, especially in data compression and dimensionality reduction, show that
the multivariate normality of data is not a strict assumption and PCA still can be
applied as descriptive tool even if the statistical nature of the data is unclear. Some
works have even gone toward reducing the effect of atypical data observations which
do not belong to the main structure of data but can influence the result of PCA.
Robust estimation methods of principal components either directly from data or via
a robust estimation of the covariance matrix are proposed in order to tolerate the
presence of such extreme observations. These methods require a careful examination
of any observations that have been omitted or significantly down-weighted by the
analysis, and they can be time consuming. See [75, 76] for a detailed discussion on
these attempts.

PCA can be applied in many situations where the form of probability distri-
bution of data slightly deviates from normal. It may unfortunately fail when the
second-order statistics (the mean and the variance) do not reflect the data informa-
tion because the normality assumption is severely violated. In Probabilistic PCA
(PPCA), the noise is assumed to be drawn from an unknown distribution, and it
is found that a non-gaussian noise leads to a principal subspace which is no longer
affine. Another extension of PCA is the kernel PCA (KPCA), which tackles the
problem of identifying a nonlinear manifold from sample data [77, 78]. The main
difficulty with this approach is the choice of a good kernel. The kernel should be
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chosen according to the structure of the nonlinear manifold to be identified, though
the exact structure is not available. The state of the art however reviews numerous
applications of KPCA to the fault detection and diagnosis of various systems and
to process monitoring; this primarily owes to the fact that KPCA can handle a
wide range of non-linearities and it is simpler than its alternatives based on neural
networks or genetic programming [79].

Another limitation of classical PCA is the assumption of minimal auto-correlation
in each variable (data are independently distributed). This assumption can be vio-
lated in chemical processes for example where the measurements are correlated over
time (time series data), and in many other cases due to process dynamics and high
sampling frequency as instance. The PCA in its classical form does not account
for the non-zero auto-correlation at high time lag, and this generally causes too
many false alarms and wrong decisions in the used PCA-based detection control
charts. Therefore, variants to PCA like dynamic PCA (DPCA) have been proposed
to tackle the dynamic issues [80, 81]. The idea of DPCA is to perform PCA on a
time-lagged data matrix, thus identifying both the linear static and dynamic rela-
tionships among variables. On the other hand, the computed principal components
are time-invariant and the process generating data is considered to run under sta-
tionary operating conditions. If the process is non-stationary, the data statistics
will be time-varying and PCA should be updated to learn the time-varying princi-
pal components [82, 83].

1.4.2.2 Partial Least Squares

Partial Least Squares (PLS), or projection to latent structures, and PCA are the ba-
sic multivariate projection methods used in multivariate statistic process monitoring.
PCA analyses the overall correlation structure of the process variables and monitors
all the variations. PLS divides the process variables into observed (input or mea-
surement) and unobserved (output or quality) ones and attempts to extract from the
observed variables latent variables which are the most correlated and relevant to the
unobserved variables. Therefore, by analysing the inputs-outputs correlation, PLS
allows monitoring among all the variations in process variables only those which
affect the output variables. There are several algorithms to calculate PLS-based
latent variables, the most instructive method is known as NIPALS for Non-linear
iterative partial least squares algorithm. We refer the reader to the chemometrics
literature [84, 85] for details on PLS algorithms and applications.

Data-driven models from PLS have been mainly applied in multivariate statisti-
cal quality control to monitor output quality variables by monitoring input process
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variables. Beside monitoring, they are used for quality prediction and optimisation.
In this framework, several PLS variants have been proposed to overcome some short-
comings of the classical PLS, the most recent ones are total projection to latent struc-
tures (TPLS) [86, 87] and concurrent PLS (CPLS) [88, 89]. Kernel PLS (KPLS) was
proposed, similarly to KPCA, to handle non-linear processes [90]. Applications are
mainly in industrial manufacturing and production processes, including chemicals,
polymers, and microelectronics. In situations where it is meaningless to consider
the separation between variables, i.e. there is no quality variables and all variables
are treated homogeneously, PCA should be used as being conceptually equivalent to
PLS. However, we still can find some applications of PLS in conjunction with other
techniques to make faults classification and diagnosis [91, 92, 93].

1.4.2.3 Independent Component Analysis

Independent Component Analysis (ICA) is, like PCA, a statistical method for cap-
turing the essential information from data sets of random variables, measurements
or features. PCA, by looking for uncorrelated linear combinations of the observed
variables, accounts for only the second-order statistics of data. ICA however reveals
information on higher-order statistics, and looks for linear combinations which are
not only uncorrelated but also independent. Data from m variables are assumed
to be a mixing of l independent latent (unobserved) components ICs (the source).
The ICs are random variables with unknown non-gaussian distribution. Such case
is encountered, for example, in mechanical systems where several sensors are placed
in different positions so that each sensor measures a mixture of stochastic vibration
signals emitted by different parts of the system. This phenomenon is described by
the equation x = As, where x is the random (m × 1)-vector whose elements are the
sensor measurements, s is the random (l × 1)-vector whose elements are the original
independent vibration components, generally unmeasurable, and A is the mixing
(m× l)-matrix which is also unknown. The literature provides various algorithms of
ICA that attempt to estimate A and s based on the general assumption of statistical
independence. The interested reader can refer to [94, 95] for more details.

ICA, by extracting the directions that are as statistically independent as possible
and projecting the process data onto the associated basis vectors, can be used for
dimensionality reduction, data compression, denoising and the extraction of non-
redundant relevant features enhancing the fault diagnostics routine. It has been
applied in dynamic chemical complex processes in order to capture non-gaussian
features that proved to be effective for fault detection and diagnosis [96, 97, 98]. In
addition, ICA finds numerous applications in electrical machine fault diagnosis and
monitoring of power system. It has been employed to identify signatures of different
faults in induction motors (broken rotor bars, bearing faults) using stator current
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signals and vibration measurements [99, 100, 101]. The ICA-based signatures have
been used therein to monitor the motor condition and perform online fault detection
through the integration of a classification system, neural network or SVM. It has
also been applied to gearbox condition monitoring, particularly to remove the noise
from vibration signals and detect the signal transients [102, 103]. ICA has been
used in [104] to separate the transient oscillations from the steady-state variations
in the voltage and current signals in power system, allowing the classification of
disturbances and monitoring the power quality. See also, [105]. In [106], independent
components of currents have served to derive detection index of power system faults.

1.4.2.4 Linear Dicriminant Analysis

Linear Dicriminant Analysis (LDA), also known as FDA for Fisher Discriminant
Analysis, is a popular multivariate statistical method for solving pattern recogni-
tion problems. However, it is only recently that LDA has been applied to electrical
machine fault diagnosis [107, 108]. LDA shares a common character with PCA: they
analyse and capture second-order statistics, and thus they produce optimal results
for normally distributed data. Healthy (faultless) data are generally processed with
PCA to identify region of normal operation and perform fault detection. LDA pro-
cesses healthy and faulty data simultaneously and aims at extracting discriminative
directions from overlapping data. It is therefore meaningful in fault diagnosis. The
database for each fault class to be considered can be acquired from the real pro-
cess during the corresponding faulty conditions, or generated from a simulation of
the process in healthy and faulty operating modes. The fault diagnosis based on
statistical discriminant analysis comprises two tasks :

1. Extraction of discriminative directions leading to maximum separation be-
tween known fault classes,

2. Choosing a discriminant function leading to minimum classification errors.

LDA defines optimal discriminative directions as linear combinations of the origi-
nal variables which maximise the ratio between the inter-class dispersion and the
intra-class dispersion. Lagrange multipliers lead to the eigenvalue decomposition
(EVD) of a given symmetric matrix as a solution. The eigenvectors associated with
the non-zero eigenvalues define discriminative axes which generate the LDA space
that will be used for classification. For any c class problem we would always have
c − 1 non-zero eigenvalues. Subsequently, the dimension of the original space can be
largely reduced using LDA, since the new dimension depends only upon the number
of classes. Thus, the projection of the original data onto the LDA space allows the
separability and also visualisation of classes . Afterwards, a discriminant function
must be expressed in terms of the discriminant variables, i.e. the original variables
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after projection, in order to classify and diagnose a new observation. LDA uses
linear function, a line or a plane. Non-linear functions that help reducing miss-
classifications can also be obtained using non-linear discriminant analysis.

Several variants to LDA have been investigated to overcome the drawbacks of the
classical method. One major drawback is rather computational; the intra-class scat-
ter should be nonsingular and some approaches have been presented to address this
problem [109]. Another shortcoming is that samples in a class are supposed to be
unimodal, i.e. they form one cluster. In situations where the data to be processed
have complex distributions so that samples in one class are separated in several
clusters, LDA gives poor results. Local Fisher Discriminant Analysis (LFDA) has
been proposed to address the issue of intra-class multimodality [110]. Besides, the
sensitivity of LDA to outliers and extreme samples has been addressed, and a lin-
early optimized discriminant analysis (LODA) was proposed to obtain robust LDA
results [111]. Nonlinear extension of FDA, namely kernel FDA (KFDA), has been
also proposed and applied to nonlinear classification [112].

Despite being old, originally developed by Fisher in 1936, it is only recently
that LDA has been applied to electrical machine fault diagnosis. In [113] LDA has
been used along with PCA to detect and classify broken rotor bars in induction
machines. M. Sahni and al. present in [114] the application of LDA to classify the
severity of the coil arcing fault in low-voltage motor. The authors in [115] use LDA
classification to detect the type of fault in permanent magnet synchronous machine,
particularly static eccentricity, inter-turn short circuit and demagnetization faults,
and to identify the severity of eccentricity fault. Authors in [116] show the detection
of gearbox faults. The trace ratio linear discriminant analysis (TR-LDA) has been
lately proposed for classification of high dimensional non-gaussian fault data [117].
The method was applied for visualisation and classification of bearing fault data
using features extracted from vibration signals. The faulty data include data from
single point defects, surface roughness, and from inner race faults, outer race faults
and ball faults. The results showed superiority of TR-LDA over other methods,
especially PCA, canonical variate analysis (CVA) and classical LDA.

1.4.2.5 Other subspace methods

Other subspace methods that were applied to process monitoring are singular spec-
trum analysis (SSA) whose idea is similar to dynamic PCA, canonical variate analy-
sis (CVA) [118, 119] which is similar to PLS, canonical discriminant analysis (CDA)
[120] which is related to PCA and CVA. Many high-resolution parametric spectral
estimation techniques that have been used in electrical machine FDD are based on
the subspace decomposition between signal and noise. These include SSA, MUSIC
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(multiple signal classification) and ESPRIT methods (estimation of signal parame-
ters via rotational invariance technique). These methods are powerful at extracting
the true spectral information from signals with low signal-to-noise ratios, thus im-
proving the detection of harmonic components associated with motor faults. This
is rendered possible by converting the fault detection problem into a generalised
eigenvalue decomposition problem. Applications cover detection of rotor broken bar
fault [121], identification of multiple faults [122] and tool wear monitoring [123].
Very recently, the MUSIC has been applied to grid diagnostics [124], the ESPRIT
to broken rotor bar fault detection [125] and SSA to rolling element bearing fault
diagnosis [126].

1.5 Synthesis

This chapter is an overview of the state-of-the-art for FDD approaches. It explains
the principles of the different methods and shows their capabilities and limitations.
The general problem of FDD is resolved through three main stages: the modelling

Figure 1.9: A three-stage FDD process

(problem formulation), the features extraction and the features evaluation. A pre-
processing intermediary stage precedes the features extraction and can performs
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tasks like features selection, signals filtering or shaping, signals transformation into
informative domains (frequency,etc.), ... Fig.1.9 summarizes the different possible
approaches in the 3-stage process. It points out the main criteria that differ the
different approaches, and that should be considered by a neophyte, who is looking
for the FDD procedure that is suitable for his application.

1.6 Problem statement

Except the intermittent faults, faults are classified into two categories: abrupt and
incipient faults. Abrupt faults are manifest changes in the measured data like step
or impulse faults. They normally lead to pronounced mean or variance shifts. To
the best of our knowledge, there is no strict definition for incipient faults. However,
an incipient fault is usually shown as a slowly varying drift change since it is not
abrupt. A small intermittent change of short duration is also incipient. Incipient
faults can be caused for example by material premature ageing due to harsh oper-
ating conditions or misuse. A sensor gain drift of some percent (≃ 1% to 10%) and
a pitch of 0.18 mm on a ball bearing with a diameter of 8 mm (thus corresponding
to a 0.18/8 = 2% fault) are some practical examples. However, if not detected, such
faults can lead in the short or medium-term to an abrupt fault inducing the system
failure.

We may consequently consider incipient any imperceptible fault whose signature
is likely masked by normal process variations and noises. Unfortunately, such fault
might not result in a mean or variance shift. It however certainly induces distortions
and some change in the probability distribution of observations of process variables.
Probability distributions are commonly used to represent graphically the behaviour
of parameters and variables in a process, through histograms and probability plots.
Parameters of probability distributions, particularly the mean, the variance and
sometimes the higher order moments can be computed to numerically monitor the
process behaviour. Most statistics for faults detection are designed to detect shifts
of mean or variance in the process variables. Nevertheless, it seems relevant to assess
the overall shape of probability distributions for the detection of incipient faults, and
without assuming a specific form or model for the distribution. Toward this end,
Kullback-Leibler (KL) divergence is proposed as a fault indicator taken from infor-
mational theory. This measure has been previously applied for anomaly detection
and pattern recognition problems in many fields. The present study investigates
the detection and estimation of small faults in multivariate processes using the KL
divergence measure. So the divergence will be compared to statistic tests usually
used for fault detection with the subspace projection methods, namely the Hotelling
T2 and SPE.
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The detection of incipient faults is particularly challenging in the framework of
structural health monitoring that uses non-destructive inspection techniques. Many
engineering systems are subject to faults that start with minor material cracks, but
can rapidly develop into a serious damage leading to a catastrophic failure. Ensuring
the integrity of structures is critical for applications like aeroplanes, ships, subma-
rine, nuclear reactors, etc. The Eddy-Current Testing (ECT) is the most commonly
used nondestructive evaluation technique thanks to the benefits it provides, in terms
of the fast and simple testing, the sensor portability and the suitability to complex
geometrical structures. The difficulty to detect minor cracks with the ECT is due
to the fact that eddy currents are responsive to the presence of cracks, but also to
many other noise sources that may obscure the weak signature of cracks. These
noise sources include the environmental perturbations like temperature variations,
the lift-off variations, the surface roughness, etc. In this context, a global time-
domain analysis based on KL divergence and PCA will be applied to ECT signals
with low SNR in order to reveal the signature of minor cracks and characterise their
severity.

Beside the fault detection and estimation problems, some problems related to
fault diagnosis, particularly in electrical rotating machines, are also tackled in this
study. Mechanical faults, such as rotor eccentricity, bearing faults, shaft misalign-
ment and load faults are common failures in motors. They must be detected at their
inception to avoid down time and even damage to other related machinery. They are
known to have characteristic frequency signature. The magnitude of some harmonic
components associated to the fault type increases with the fault presence. There-
fore, the detection of a particular fault is based on monitoring the energy level at the
associated characteristic frequencies or into some bands related to them. Usually
the characteristic fault frequencies must be known, or estimated, in advance. Bear-
ing faults in particular are the most frequently encountered in rotating machines.
The incipient bearing faults are in form of minor dents, spalls or a crack which may
appear in either one of the bearing elements, namely the inner race, the outer race,
the balls or the cage. Identifying the spall’s location is important because it gives
insights about the fault causes. The characteristic frequency associated with each
bearing element can be estimated through theoretical kinematic expressions using
the specifications of the bearing and the rotational speed of the motor.

The difficulty of fault diagnosis in motors arises when the actual characteristic
fault frequencies differ from the theoretical estimated ones due to various factors
such as ageing, unexpected rotor slip, excessive friction, fluctuations of rotor speed,
etc. In addition, in real situations and under some conditions of load distribution
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and rotor speed, the fundamental characteristic frequencies may not be present into
the signal spectrum although the fault is quite serious. They can be weak, or even
masked by the noise and other stronger machine frequencies. Instead, usually several
multiple harmonics of these frequencies and sidebands related to their modulations
by the rotational frequencies are almost always pronounced. Therefore, although
the ability to detect the characteristic fault frequencies is necessary, this approach
neglects a large part of the total signature lying throughout the spectra of machine
variables. The difficulty with the overall frequency signature is that the occurrence
of a particular harmonic or a sideband is a random process and its level depends
on the fault itself and likewise other unpredictable causes such as the operating
load condition and the presence of other machine problems like load imbalance,
shaft misalignment, looseness, etc. In consequence, we propose a ’global’ spectral
analysis procedure able to capture the entire spectral signature of faults. An impor-
tant advantage of the procedure is that it overcomes the usual a priori knowledge
requirement of the characteristic fault frequencies.

1.7 Conclusion

This chapter has covered the main FDD approaches. The data-driven fault diagno-
sis has an important advantage over the model-based one: it can handle the data
noises and the non-stationary features easily with advanced signal processing and
data analysis techniques. The ability to detect and diagnose faults at early stage of
development is still an issue for all approaches. In the presence of high-level noise
and non-stationary features like the process parameter variations for examples, this
issue is more tricky because these unknown inputs can mask the fault signature,
or also affect the decision making task. A PCA-based KL divergence approach for
incipient fault detection will be discussed is the next chapter.
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Chapter 2

Kullback-Leibler Divergence for
Fault Detection

2.1 Introduction

Measurements are basic representations of process behaviour, and faults in general
manifest themselves as changes in their properties. Detecting the particular fault
that occurs in a system is based on checking whether the current measurements are
statistically different from the a priori known faultless measurements. Detection in-
dicators with adequate thresholds are designed to this end. They may operate either
directly on the measurements acquired from the process, or on their transformations
(residuals, features, components, etc.) obtained with the modelling approaches dis-
cussed in chapter 1. There are two main approaches for designing appropriate fault
indicators, the statistical hypothesis testing approach and the norm-based approach,
see [1] and the references therein. The statistical hypothesis testing approach is con-
cerned with detecting a change in the probability distribution of a process. It results
in three main types of statistical control charts, namely the Shewhart [2], the cumu-
lative sum (CUSUM) [3] and the exponentially weighted moving average (EWMA)
[4]. The norm-based approach uses a varying or constant threshold on some norm
of the measurements (residuals or components).

The statistical literature reports two classes of control charts: the distribution-
based (parametric) [5, 6, 7] and the distribution-free (nonparametric) [8, 9, 10] con-
trol charts. The distribution-based control charts assume a priori known probabil-
ity distribution (usually normal for continuous measurements) and aim at detecting
shifts in one of its parameters (mean, scale, kurtosis, etc.). The distribution-free
control charts make no assumption for the form of the process distribution, but re-
quire the availability of a training sample of observations from which the reference
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(fault-free) empirical probability distribution can be calculated. Their advantage
over the distribution-based is that a general rather than a one-parameter change in
the process distribution can be monitored [11]. Despite this fact, most attention in
both theoretical and practical studies has been paid to the parametric techniques,
which definitely become the traditional statistical techniques applied to process mon-
itoring.

Kullback-Leibler (KL) divergence is a measure of dissimilarity between two prob-
ability distributions and plays a key role in solving information theory and change
detection problems. The literature on change detection and FDD reports interesting
theoretical findings about the contribution of the divergence properties to deriving
fault detection and estimation indices [12, 13, 14]. To the best of our knowledge,
these studies are notably developed in a parametric model-based framework, whose
main concern is to detect a particular change in model parameters of a process
or signal. This chapter seeks to answer these questions: Does the KL divergence
itself can be used as a fault indicator, into rather a general, distribution-free and
non-parametric framework? Is it sensitive to incipient faults? How does the fault
detection with KL divergence perform in noisy environments?

So, this chapter addresses the problem of detecting incipient faults which cause
unpredictable changes, near the noise level, in the process data. More details on the
proposal motivations are given in the sequel.

2.2 Motivations and Outline

Providing that assumptions regarding the properties (form and parameters) of the
process probability distribution, and the properties of the faults to be detected in-
cluding how they may affect the monitored system, can be made, the conventional
parametric statistical control charts are very effective in identifying the considered
faults and statistically monitoring the system [15, 16, 17]. This prior knowledge may
however not be available in practice. The process probability distribution may have
an arbitrary form which is far from being normal. The fault may affect several pa-
rameters, or the information about its impact on the measurements may be lacking.
If the fault is serious enough, it causes a large change easily detectable with the usual
parametric techniques even if the underlying assumptions are not respected. How-
ever, the critical case is when the abnormal change following the fault occurrence
is unpredictable and maybe concealed by other sources (normal variations, noises,
etc.), typically because the fault is incipient, or the noise level is high enough so as
to corrupt the detection of the incipient deviation. The conventional control charts
are less efficient in this case. To cope with such situations, a non-parametric fault
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indicator requiring little a priori knowledge and aiming at detecting global changes
is needed.

Assuming that the process probability distribution is stationary, i.e. time-
independent, Kullback-Leibler divergence, also called relative entropy, is proposed
in this work to globally monitor the statistical process behaviour. As a distribution-
free fault indicator, the divergence quantifies explicitly the general discrepancy or
difference between the current distribution calculated using the current observation
set and the reference one calculated from a training observation set. The KL di-
vergence is an instance of f -divergence family which has been used in many signal
processing applications including anomaly and change detection [18, 19], pattern
recognition [20, 21], classification and coding [22, 23]. It however has a particu-
lar place in the model-based FDD framework compared to the other f -divergence
criteria. It has been used to derive discrimination indices between parametric sys-
tem/signal models for fault detection purposes, see [12]. Theoretical studies in the
context of abrupt change detection had led to the KL divergence as a measure of
detectability of abrupt changes in parameters of system/signal models [24, 13]. As-
suming normality distribution of model-based residuals allowed designing statistical
control charts for change detection. For fault estimation, the divergence between
AR/ARMA models and between state space models before and after abrupt changes
was expressed in function of the generated residuals (innovations).

The KL divergence between arbitrary probability distributions has no closed
form. Its use in model-based FDD is based on the assumption of normal probability
distribution leading to a closed divergence expression. Here we intend to evaluate
the ability to detect faults without considering a specific distribution, but by using
a numerical estimation of the divergence. Besides, it is generally always useful to
reduce the dimensionality of the process data that involve several related variables.
This is achievable by decorrelating the variables and extracting data components
with high variability. PCA provides these features and asks no particular infor-
mation about the process. It is optimal in terms of capturing variability in the
data, and constitutes a general framework for data representation and modelling.
It has been used for monitoring in a wide range of applications, including chemical
processes, water treatement [25], manufacturing, aerospace [26, 27], electronics [28],
automotive [29], semi-conductors [30], and many others. Therefore, it seems mean-
ingful to adopt rather a PCA-based Kullback Leibler divergence technique for the
statistical process monitoring.

The divergence will be applied, without restriction, to the data principal com-
ponents. Its efficiency in detecting incipient faults will be compared with that of
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usual statistics, namely the Hotelling T2 and the squared prediction error (SPE).
An incipient fault is often defined as a change or a degradation that develops slowly.
The fault model adopted here assumes that during the first stage of the incipient
fault development, the fault amplitude (size or severity) is constant, see Fig.2.1.
Obviously, the difficulty is to detect the incipient fault in this stage where a signif-

Figure 2.1: Incipient fault model

icant loss of process operation performance can occur without being noticed. The
detection error rates will be calculated in order to evaluate the detection performance
of the divergence in real-world noisy environments. We refer to the Fault-to-Noise
Ratio (FNR) as a comparative criterion between the fault and noise levels. The
region around 0 dB of FNR is particularly of interest, since it refers to a critical
situation for fault detection: the change following the fault occurrence is submerged
in noise. Note that with the assumption of incipient fault detection, the fault level
is very small compared to the original signal level.

In the following, our proposal concerning a PCA-based KL divergence for fault
detection will be detailed. Section 3 is devoted to the KL divergence definition, esti-
mation and role in model-based FDD. Section 3 describes the procedure of detection
performance evaluation using detection error probabilities. Section 4 is dedicated
to PCA modelling and fault detection. Section 5 is concerned with the validation,
through simulation, of our proposal.

2.3 Kullback-Leibler divergence

2.3.1 Definition

The Kullback-Leibler divergence, or the relative entropy, is a widely used proba-
bilistic tool in telecommunications and multimedia security. It plays a key role in
machine learning and neuroscience. It was successfully applied for pattern recogni-
tion [31, 32], anomaly detection [33, 34, 35], and classification [36, 37]. It also has a
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particular place in model-based FDD.

For computing dissimilarity between two probability density functions (pdfs)
h(z) and q(z) of a continuous random variable z, Kullback and Leibler define the
Kullback-Leibler Information from h to q as [38]

I(h‖q) =
∫

h(z) log
h(z)

q(z)
dz (2.1)

= Eh{log
h(z)

q(z)
} (2.2)

where Eh means the expectation over the distribution h. The divergence is then
defined as the symmetric version of the Information and is given by

D(h, q) = I(h‖q) + I(q‖h). (2.3)

It is non-negative and null if and only if the two distributions are strictly equal. It
is not a true metric (does not satisfy the triangular inegality) and is only defined if∫

hdz = 1,
∫

qdz = 1 and if the two distributions share the same support set.

2.3.2 KL divergence in model-based change detection

The KL divergence has a particular place in model-based FDD, due to its strong con-
nection with the logarithm of the likelihood ratio. The log-likelihood ratio is itself a
key concept in mathematical statistics and is the basis theory in designing statisti-
cal decision functions between ’no-fault’ and ’fault’ hypotheses. Statistical decision
techniques, commonly Schewhart and Moving average control charts, CUSUM and
GLR (Generalised Likelihood Ratio) algorithms, were designed to detect abrupt
changes in signal characteristics based on log-likelihood ratio properties. The basic
types of changes are deviation from the reference mean value and scale increase in
the observed signals laws.

Let’s assume given a finite observation set z1,z2,...,zN , and two possible models
H0 and H1 which refer to the null hypothesis ’No-fault (without changes)’ and the
alternative hypothesis ’Fault (with changes)’ respectively. Suppose afterwards that
the sample has a probability density or a mass function hθ parametrised with θ,
such that θ = θ0 under H0, and θ = θ1 under H1. Then the log-likelihood ratio is:

L(z) = log
hθ1

(z1, z2, ..., zN )

hθ0
(z1, z2, ..., zN )

(2.4)

The joint distribution is equal to the product of marginal distributions if the obser-
vations are independently distributed. In this case L(z) is:
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L(z) =
N∑

i=1

log
hθ1

(zi)

hθ0
(zi)

(2.5)

The larger L(z) is, more evidence exists in favour of the alternative hypothesis.
Given θ0, the change from θ0 to θ1 is defined by θ1 that maximises L(z). Intuitively,
it follows that

Ehθ1
(L(z)) > Ehθ0

(L(z)). (2.6)

where Eθ1
{L(z)} is the expectation of L(z) if the ’fault (with change)’ hypothesis

is true, and Eθ0
{L(z)} is the expectation of L(z) if the ’no-fault (without change)’

hypothesis is true. This corresponds to the statistical detectability definition: a
change is said to be statistically detectable if the mean value of the log-likelihood
ratio is higher after change than before change. In terms of KL divergence, this is
equivalent to:

D(hθ1
, hθ0

) = Ehθ1
(L(z)) − Ehθ0

(L(z)) > 0 (2.7)

The divergence value is subsequently a measure of detectability of an abrupt
change. Since the detectability increases with the change magnitude as well as the
signal-to-noise ratio (SNR), it follows that the divergence can likewise be viewed as
a measure of the change magnitude. These intuitive concepts are developed in [13],
in a more formal theoretical study.

2.3.3 Estimation

We assume no specific parametric model for observed signals or system. For fault
detection purposes, we suppose that little information about the change’s type and
the fault model is available. We intend to evaluating in these conditions the ability
of the divergence to detect small changes due to fault occurrence.

As the divergence between two arbitrary probability distributions has no closed
form, the integral function given by Eq.(2.3) should be numerically approximated.
The common method to estimate the divergence value uses the interpretation of the
Information in term of the likelihood ratio: the KL information from probability
distribution h to q is the expected log-likelihood ratio log(h/q) under the distribution
h. This induces two assumptions:

1. an observation set composed of N independent and identically distributed (i.i.d.)
observations {zi}N

1 drawn from h is supposed available.

2. q(zi) can be calculated, and thus q is supposed to be known.
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Under these assumptions, the Monte Carlo approximation consists in computing:

IMC(h‖q) =
1

N

N∑

i=1

log
h(zi)

q(zi)
(2.8)

The law of large numbers asserts that the variable
√

N(IMC(h‖q) − I(h‖q)) is ap-
proximately normal with zero mean and variance σ2

MC = V arh [log(h/q)] as N → ∞.
In our application, the probability distributions are not known a priori and for de-
tection, we do not assume any specific form. However, two observation sets are
available, the current and the reference, from which empirical probability density
functions can be calculated using kernel density estimators for example.

An intuitive and fast way to approximate the divergence between two unknown
probability distributions consists in the discrete form of the divergence that uses em-
pirical probability density functions. Kernel density estimators are non-parametric
estimators whose parameters depend on the data. The Gaussian kernel is often used
due to its mathematical properties and to the law of large numbers that makes distri-
butions converge to normal as the sample size grows. Consider a partition of the ref-
erence observation set into nI disjoint intervals {[s0, s0 + ∆s), ..., [s0 + (nI − 1)∆s, snI

)}
where s0 and snI

are the min and max observation values. The probabilities {ζ1,ζ2,...,ζnI
}

of the reference observation values are estimated by applying a Gaussian kernel
function to each interval centre. The probabilities {ν1, ν2, ..., νnI

} of the current
observation values are calculated similarly for the same set of intervals. Then the
divergence is approximated by:

D̂ =
nI∑

i=1

(ζi − νi) log
ζi

νi

(2.9)

Theoretically if the current pdf is equal to the reference one, the divergence
will be null. Otherwise, a fault or an abnormal process event causes some change
that appears as a disparity between current and reference pdfs. This disparity is
measured by D̂. Subsequently, the divergence value is likely to represent the fault
severity: the more severe the fault is, the greater the distance from the distribution
to its reference. In practice however, there is always a low non-zero divergence
caused by random noise from real data and numerical errors. Therefore, there is
no guarantee for the divergence to take a null value in no-fault condition. So the
decision whether the system has entered into abnormal operating conditions must
be made with respect to a threshold that we refer to as ǫsafe. The no-fault condition
becomes:

D̂ ≤ ǫsafe. (2.10)

ǫsafe is the nominal value of D̂ calculated from training data that are recorded
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under normal operating conditions. Constant threshold requires that the probability
distributions are stationary. This is plausible in three ways:

• The data used to estimate the probability distributions don’t exhibit non-
stationary features, such as non-stationary harmonics and time-dependent
noise.

• The data size is sufficiently large so as to mitigate the effect of non-stationary
features.

• The data can be preprocessed to remove the non-stationary features based on
the prior knowledge of these features.

2.4 Detection performance evaluation

The fault detection that uses the divergence as a decision function relies on the
estimation of the divergence value (Eq.2.9). This value is compared to a predeter-
mined threshold ǫsafe to make decision. The threshold should be set for a particular
application according to the performance specifications required. False alarm and
missed alarm rates are the most important detection performance criteria, from a
practical point of view.

The fault detection is then based on the following hypothesis test:

H1

D̂ ≷ ǫsafe

H0

(2.11)

where H0 is the ’no-fault’ hypothesis and H1 is the ’fault’ hypothesis. The perfor-
mance of the test is characterised with probabilities of false alarm (PF A) and missed
detection (PMD):

PF A = P (D̂ > ǫsafe|H0)

PMD = P (D̂ < ǫsafe|H1).
(2.12)

The divergence D̂ calculated under specific conditions of noise and fault can be
assumed as a random variable that has a specific distribution with a parameter
vector θ. Consequently, the error probabilities become:

PF A = P (D̂ > ǫsafe|θ0)

PMD = P (D̂ < ǫsafe|θ1).
(2.13)
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For a given value of PF A, the probability of missed detection allows evaluating
the sensitivity of the divergence to small faults in the presence of noise. So let’s
introduce the fault-to-noise ratio (FNR) as a comparative criterion between the
noise and fault levels. It is given by:

FNR = 10 ∗ log10

σ2
f

σ2
v

(2.14)

where σ2
f is the power of the change following the fault occurrence, and σ2

v is the
noise power. In practice, one should have prior knowledge on the noise and the
profile of the fault in order to calculate the experimental FNR. Incipient faults
correspond to high values of signal-to-fault ratio (SFR). Their detection becomes
challenging when the fault level ranges close to the noise level, inducing near-zero
FNR values. SFR and FNR are linked to the SNR by the following equation:

SNR = SFR + FNR (2.15)

It stems from Eq.2.15 that dealing with incipient faults (high SFR) that are masked
by noise (near-zero FNR) means that the SNR is positive. In other words, having
both a low SNR and a low FNR induces a low SFR which means that the fault is
no longer incipient: the change caused by the fault is not small with respect to the
signal.

A noisy reference probability distribution corrupts the sensitivity of the fault
indicator, here the divergence, with respect to incipient faults. This can be overcome
by several means, including the following:

• The noise effect can be notably reduced by estimating the probability distri-
butions on large observation sets (theoretically N → ∞).

• The noise can be filtered out assuming that a priori knowledge about its nature
and its main characteristics are available.

• In worst case, a noisy reference will result in a higher threshold value ǫsafe for
the divergence, thus reducing the sensitivity to small faults.

The sensitivity of KL divergence with respect to incipient faults that are masked
by noise will be evaluated in this chapter on a numerical example. Before going
through the results, the fault detection using PCA will be briefly reviewed, and
then the proposed divergence application will be described.
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2.5 PCA for fault detection and diagnosis

The fault detection and diagnosis using PCA has received considerable attention in
the last two decades. The advantage of PCA over other fault diagnosis approaches
(chapter 1) is that the development of the reference model to which the operating
process will be compared to generate decision functions about the system health
state, requires no complicated physical knowledge on the process, neither detailed
theoretical studies to be available. The only information needed is a good historical
database describing the normal process operation. The basic idea of PCA has been
explained in Chapter 1, section 1.3.2. We also reviewed some of the most interesting
PCA variants that were proposed in the literature to cope with the limitations of
the classical linear version. We consider here, without restriction, the application
of the KL divergence to the principal components generated with the classical PCA
technique.

2.5.1 PCA’s model identification

Let us consider N measurements/observations of m correlated variables x1, x2, ...,
xm that are collected at different sampling instants i from the process. They are

arranged into columns of a matrix X[N×m], X =
[

x(1), · · · , x(i), · · · , x(N)
]

′

,

where x(i) ∈ R
m is the ith measurement of the m variables. The data are recorded

when the process is in state of control (healthy operating mode) so that the PCA’s
model that will be built acts as a reference of the normal process behaviour. The
analysis can be made on either the covariance or the correlation data matrix [39].
Although, it is often wise to work with a correlation matrix which normalizes the
variances of the variables before applying PCA. So the different underlying rela-
tionships between variables could be extracted. The covariance matrix has however
advantages over the correlation, especially in cases where PCA is used as an inferen-
tial and not only descriptive tool. Statistical inferences about principal components
population are easier to derive for the covariance matrix than for the correlation
one [40]. So, let X̄ denote the autoscaled matrix of X. The columns of X̄ are
either centred or centred and reduced, depending on whether the covariance or the
correlation matrix is used. PCA transforms the data matrix X̄ into a new matrix
T[N×m] of uncorrelated variables t1, t2, ..., tm termed principal component scores,

T =
[

t(1), · · · , t(i), · · · , t(N)
]

′

, where t(i) ∈ R
m. The new variables are lin-

ear combinations of the original ones and they successively maximise the total data
variance. T is obtained from X̄ by an orthogonal transformation whose vectors
correspond to the eigenvectors of the covariance/correlation matrix. These vectors,
termed the loading vectors, are arranged as columns of a matrix P[m×m] in the de-
scendent order of their corresponding eigenvalues.
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According to these elements, the solution to the PCA problem given by the
eigenvector decomposition of the covariance/correlation matrix is:

S =
1

N
X̄ ′X̄ = PΛP ′ with PP ′ = P ′P = Im (2.16)

where Λ = diag(λ1, ..., λm) is a diagonal matrix containing the eigenvalues of S
in a descendent order, Im is the identity matrix, and prime denotes the transpose
operator. The scores matrix and the original data matrix are then:

T[N×m] = X̄[N×m]P[m×m] (2.17)

X̄[N×m] = T[N×m]P
′

[m×m] (2.18)

The data dimensionality reduction is achieved by splitting P − Λ into two parts,
P̂[m×l] − Λ̂l and P̃[m×(m−l)] − Λ̃m−l spanning respectively the principal and the resid-

ual subspaces. P̂[m×l] contains the first l loading vectors associated with the largest

eigenvalues Λ̂l , and P̃[m×(m−l)] contains the last vectors. Accordingly, the first l
columns t1, t2, ..., tl of the scores matrix T represent the important variability of
data, and the last (m − l) ones, tl+1, ..., tm, represent all forms of residues includ-
ing noise and redundancy. The residual principal components identify quasi-linear
constant relationships between the original variables.

l is subsequently the new data dimension. X̄ can be approximated by its pro-
jection into the principal subspace as:

X̂ = X̄P̂ P̂ ′ (2.19)

with an approximation error given by

X̃ = X̄ − X̂ = X̄(I − P̂ P̂ ′). (2.20)

X̃ is effectively the residual of the data, that is its projection into the residual space.

The [m × m] matrix Ĉ = P̂ P̂ ′ can be thus considered as an explicit PCA model.
It only depends on l which is the parameter to be identified. Several studies have
been conducted to show the relationship between the fault detection ability and the
number of principal components retained in the PCA model, see for example [41, 42].
Many criteria have been proposed in the literature to get the best choice l, such as
the cumulative percentage of total variation [43] and the cross-validatory criterion
[44]. Furthermore, some more interesting criteria are devoted for fault detection
and identification purposes such as minimizing the Variance of Reconstruction Error
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(VRE) [45]. The reconstruction consists in estimating each variable using the PCA
model that is a function of l and the remaining variables. The optimal l is the
number minimising the reconstruction error, which is the difference between the
variable and its reconstruction. Authors in [46] compared 11 methods to determine
l and concluded that the VRE criterion is preferable.

2.5.2 PCA-based fault detection

2.5.2.1 Distance-based statistics

Typical detection indices are distance-based, aiming at evaluating how much a new
observation is away from each of the subspaces [47]. The fault detection is based on a
PCA model that has been built from fault-free training data. Each new observation
vector x(i) taken at time instant i is decomposed using the model into two orthogonal
parts, approximate vector x̂(i) and residual vector x̃(i),

x̂(i) = x̄(i)′Ĉ and x̃(i) = x̄(i)′(I − Ĉ). (2.21)

Both parts are monitored using detection indices. The approximate part identifies
outliers in the majority of data. The residual part allows monitoring the data corre-
lation structure. Hotelling T2 and SPE statistics are commonly applied for this pur-
pose. Sensor faults are particularly concerned by this monitoring approach. Given
that the scores vector of x(i) is t(i) = x̄(i)′P such that t(i) = [ti1, ..., til, ..., tim],
the T2 and the SPE at instant i are:

T2(i) = x̂(i)′P̂ Λ̂P̂ ′x̂(i) (2.22)

=
l∑

k=1

t2
ik

λk

(2.23)

SPE(i) = ‖x̃(i)‖ (2.24)

=
m∑

k=l+1

t2
ik (2.25)

x(i) is declared out-of-control (faulty) if

T2(i) > T2
l,α and/or SPE(i) > δ2

α (2.26)

where T2
l,α and δ2

α are the control limits or the thresholds at significance level α.
The distance-based fault detection is summarised in Fig.2.2.
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Figure 2.2: Distance-based fault detection

Theoretical thresholds are developed for large sample size N and independent
multivariate normally distributed data. The thresholds calculated directly from
training data are however often more effective in practice. Box [48] gives a theoret-
ical threshold for SPE, assuming the data have multivariate normal distribution.
Suppose γc =

∑m
k=l+1 λc

k where λc
k is the kth eigenvalue to the cth power. The

theoretical threshold of SPE at significance level α is:

δ2
α = gχ2

h,α (2.27)

where g = γ2/γ1, h = integer(γ2
1/γ2), integer(o) is the integer value of o and χ2

h,α

is the Chi- square distribution with h degrees of freedom.
A threshold for T2 can be approximated by:

T2
l,α =

l(N2 − 1)

N(N − l)
Fl,N−l,α (2.28)

where Fl,N−l,α is the Fisher distribution with two degrees of freedom, l and N − l.
The sensitivity of SPE and T2 to the faults depends on the chosen l. Variants

of SPE, such as the squared weighted error SWE, were proposed to reduce the
effect of l setting on the detection performance [49]. The SWE is:

SWE(i) =
m+1∑

k=l

t2
ik

λk

(2.29)

Some combined statistics were also proposed, as for instance [50]:

φ(i) =
SPE(i)

δ2
α

+
T2(i)

T2
l,α

(2.30)

Theoretical thresholds have likewise been proposed for these statistics, see [25].
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2.5.2.2 Angular-based statistics

The second main approach to fault detection using principal components variables
consists in monitoring the direction of the principal subspace through angular-based
indices [51, 52]. A fault, particularly a structural one, in a system modifies the
process dynamic behaviour which is characterised by the principal subspace. So
if we consider that the principal subspace estimated from the reference fault-free
observation set is denoted Ŝr and the one estimated from the current observation
set is denoted Ŝc, a structural fault may be detected by comparing the direction of
Ŝc against Ŝr. A monitoring index based on the inner product of loading vectors, i.e.
the angle Ω between principal component directions can be used for this purpose, see
Fig.2.3. The principal components in such case may be updated recursively [53, 54]
for example.

Figure 2.3: Angular-based fault detection

Even if this approach is successful when the distance-based statistics fail, a fault
will not be detected by the angular index, unless it makes a meaningful change
in the correlation structure so that it captures one or more principal directions.
In [51], this methodology is illustrated on multivariate autoregressive (AR) models
where the fault is considered as a mean step change in one monitored variable, or
a parameter change in the model. The range of the fault is always above 10%.
It has been shown that detecting small shifts requires monitoring directions of the
last principal components rather than the first ones. The superiority of dynamic
monitoring with this approach over the static monitoring was proved. However, the
detection results of small changes were not satisfactory. Moreover, the detection
performance depends strongly on the choice of the sample-window size and the
number of retained principal components.
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2.5.3 Application of KL divergence to the principal compo-
nents

The main shortcoming of the statistical indices used for fault detection with PCA,
is that they treat each observation individually and don’t include information from
past data. That makes them insensitive to small shifts in the process variables
especially for small fault-to-noise ratio (close to 0 dB), and causes many false alarms.
This is in general the disadvantage of Schewhart control charts, including T2 and
SPE. EWMA, CUSUM and GLR-based control charts address this problem by
accumulating information from acquired last observations [55, 56, 57]. They are

Figure 2.4: Divergence-based fault detection

commonly used in model-based FDD framework, where they operate on generated
residuals to detect a fault change with a known profile. Here we propose to detect
slight changes caused by faults, using KL divergence estimated through Eq.2.9 and
applied to the latent principal component scores. The probability distribution of the
first principal components will be monitored, without worrying about the change
profile to be detected and the probability distributions form.

The block diagram in Fig.2.4 shows the main steps to make decision about the
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fault occurrence. The PCA model should be identified from a training observation
set obtained when the process is operating under fault-free conditions. The principal
subspace extracted with classical PCA assumes that the first two statistical moments
of data are time-independent. This means that the process generating the data is
supposed stationary. Therefore, for non-stationary systems with several operating
points, the principal subspace will be associated with only one operating point. One
can imagine, however, that a bank of principal subspaces may be constructed for a set
of operating points. The fault detection, then, uses the reference principal subspace
associated with the current operating point. Afterwards, the latent principal scores
are calculated by projecting the fault-free observations into the principal subspace,
and their empirical pdfs are estimated. For each new observation set, the latent
scores are calculated using the PCA model, and the new pdfs are estimated. D̂ is
calculated between the reference and the current pdfs according to Eq.2.9. Decision
is made by comparing D̂ to an appropriate threshold.

2.6 Evaluation on a numerical example

2.6.1 Fault detection procedure description

The KL divergence has been applied to monitor a multivariate process from which
are collected measurements of 8 correlated variables inspired from [58] and defined
at instant i as follows :





x1(i) = 1 + sin(0.1i)
x2(i) = 2 cos(i/4)3 exp(−i/N)
x3(i) = log(x2(i)

2)
x4(i) = x1(i) + x2(i)
x5(i) = x1(i) − x2(i)
x6(i) = 2x1(i) + x2(i)
x7(i) = x1(i) + x3(i)
x8(i) ∝ N (0, 1)

The equations above show linear and non-linear relationships between variables,
and also an independent variable. N observations are generated for each variable,
to which a zero mean random noise drawn from normal distribution is added to sim-
ulate measurement noises and errors. Each variable is autoscaled to have zero mean
and unit variance, and the X̄ matrix is formed. The eigenvector decomposition of
the data correlation matrix gives a principal subspace spanned by four principal
components. The principal subspace dimension can be directly identified from the
equations above showing 4 linear relationships that lead to a 4-dimension residual
subspace.
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Figure 2.5: Procedure description

To test the divergence capability for detecting faults upon this process, the fol-
lowing procedure which is illustrated in Fig.2.5 is adopted:

1. The PCA model is established and 4 principal components are retained to
span the principal subspace.

2. The scores matrix is obtained from the data matrix X̄ and the loading matrix
P using T = X̄P . The first 4 columns of T are the latent scores while the
remaining ones are the residual.

3. The probability density of each of the 4 latent scores is estimated using a
normal kernel estimator. The obtained pdfs are set as references of the normal
operating conditions of the process.

4. Another X̄ matrix is generated with a different added noise. The correspond-
ing latent scores and their pdfs are calculated.
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5. The divergence is then calculated between these pdfs and their references.
Steps 4-5 are repeated for several generated matrices, while introducing a
fault into some matrices.

We will analyse the detection results for different SNR, data sizes N and fault
amplitudes, and then we will illustrate the effect of different SNR and N values on
the fault detectability. A general fault model is considered: the change due to the
fault is assumed as a bias that depends on the signal amplitude. The ith observation
from the variable xj is written as:

xij = x∗

ij + a × x∗

ij (2.31)

where the star (*) mark denotes the fault-free and noiseless observations. a is the
fault amplitude: a 6= 0 at instant i if xj is faulty. As the fault is considered
incipient, only the few last observations generated are considered faulty, see Fig.2.6.
In the following, detection results are shown for a proportion of faulty observations
(N − b)/N equal to 10%. Then different proportions will be considered in the
evaluation of the divergence detection performance. As we are particularly interested

Figure 2.6: Fault description

in incipient faults that cause small changes with respect to the signal variations, the
range [0,10%] for the fault parameters a and (N−b)/N is our concern. The generated
observations are corrupted with an additive white Gaussian noise (AWGN). The
noisy observation of the faulty variable xj at instant i is xij = x∗

ij + a × x∗

ij + vij,
where vij is the noise sample drawn from the distribution N (0, σ2

v). For a specific

SNR, the FNR can be calculated from Eq.2.14, knowing that σ2
f =

a

N

N∑

i=b

(x∗

ij −µj)
2

where µj is the sample mean of xj .
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2.6.2 Detection results

2.6.2.1 Detection with common statistics

Let’s consider that N = 1000 samples are generated for each variable and cor-
rupted by a random noise that provides a SNR= 35 dB. Fig.2.7 shows the different
variables. Applying PCA to these variables yields 8 new variables, the principal
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Figure 2.7: Process variables

component scores, shown in Fig.2.8. The first scores t1, t2, t3 and t4 constitute the
principal subspace, which represent 99% of data variations. To test the Hotelling
T2 capability for detecting faults in this process, we corrupt the last 100 observa-
tions of the variable x1 by a large bias fault equal to 150% of observation amplitude
(a = 1.5). The T2 test does not provide any indication of the fault presence, as
shown in Fig.2.9. The detection is made with respect to two different thresholds.
The horizontal dashed line represents the practical threshold computed as the maxi-
mal 99% of the nominal T2, and the other horizontal line is the theoretical threshold
calculated at significance level 0.05. The latter is regularly crossed inducing a high
false alarm rate. Besides, most of the T2 values in the sampling interval [900:1000]
delimited by the dashed rectangle are relatively weak, that makes the fault detec-
tion unreliable. This result explains the general tendency in the literature to use the
residual subspace rather than the principal one in order to detect faults. The T2
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Figure 2.8: Principal component scores
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Figure 2.9: Fault detection result of a large bias (150%) on x1 using T2 statistic

fails to detect the faults because of the large amount of variability naturally present
in the principal subspace [59].
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Fig.2.10 depicts the behaviour of SPE when a 10% bias of amplitude, i.e.
a = 0.1, affects the last 100 observations of x1. The horizontal line represents
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Figure 2.10: Fault detection result of a bias of 10% on x1 using SPE statistic

the maximal 99% of the nominal SPE value. The fault is readily detectable by the
SPE, even though some observations in the faulty interval do not exceed the SPE
threshold. This is due to the fact that the SPE is very sensitive to the observation
magnitude. The fault should be serious enough so that the SPE increases value
and crosses the given threshold. Moreover, we show in Fig.2.11 the detection of a
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Figure 2.11: Fault detection result of a bias of 3% on x1 using SPE statistic

3% bias that affects x1 (a = 0.03). Only 9 out of 100 faulty observations exceed the
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SPE threshold, while a lower threshold will cause numerous false alarms.
As shown by these results, the common statistics (T2 and SPE) exhibit low

capability for incipient fault detection. In fact, using these features leads to poor
performance in terms of false alarms and missed detections. In the next paragraph,
we will evaluate the KL divergence capability.

2.6.2.2 Detection with KL divergence

Using the Kullback-Leibler divergence, we expect to enhance the fault detection effi-
ciency in the principal subspace. It allows evaluating the distributional dissimilarity
of principal scores before and after the fault. It assumes that the two distribu-
tions share the same support, and the probability distributions are stationary, i.e.
time-independent. The single fault case is considered to show the fault detection
capability of the divergence for each variable. The last 100 out of N = 1000 obser-
vations generated from variables are considered faulty. The SNR is still set to 35 dB.

Fig.2.12 displays the probability density of the latent score t1 before and after
a large bias fault (150%) affecting x1. One can notice the difference between the
two pdfs. The difference will be slighter for a smaller fault, but the divergence
will emphasize it. To illustrate this fact, 100 realizations of the data matrix X are
made, among them we introduce a fault bias of 10% into one of the variables. The
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Figure 2.12: Probability density of t1 before and after a 150% bias fault on x1

divergence is calculated for each of the latent scores according to Eq.2.9. A fault
on x1 has been introduced into some realisations of the data matrix, precisely into
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the 20th-25th realisations, the 60th, 75th and the 95th-100th realisations. Fig.2.13
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Figure 2.13: Fault detection result of a 10% bias fault on x1 using KL divergence
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Figure 2.14: Fault detection result of a 10% bias fault on x3 using KL divergence
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shows that the fault that affects x1 is detected by the divergence computed for t1,
while t2, t3 and t4 are still not sensitive. The first plot shows 14 high D̂ values,
which cross the corresponding threshold. This complies with the expected result,
because these points correspond to faulty realisations. If the variable x3 is faulty,
the fault impact would be shown on the D̂ value computed for t2 and t3, as displayed
in Fig.2.14.

Similar results, summarised in Table 2.1, are obtained for the faults on the other
variables. Grey cells indicate the successful detections. We show for example that
the divergence computed for t1 detects the faults that affect x1, x4, and x6. Faults
on all variables can be detected by the divergence computed on the latent scores.

Table 2.1: Faults discrimination capability of the KL divergence [60]

δx1 δx2 δx3 δx4 δx5 δx6 δx7 δx8

t1

t2

t3

t4

The KL divergence value D̂ is also able to characterise the fault severity: the
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Figure 2.15: Divergence sensitivity to the fault amplitude

higher the fault level, the higher the disparity between the current pdf and the
reference one. As we are interested in detecting small faults, we introduce into some
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data matrices different low bias that affect the last observations of x1: a bias of 3%
into the 15th-20th matrices/realisations, 5% for the 30th-35th, 6% for the 45th-50th,
7% for the 60th-65th matrices, 8% for the 75th-80th and 9% for the 90th-95th. The
result is depicted in Fig.2.15. It clearly shows that D̂ is an effective image of the
fault severity. D̂ is sensitive to the fault level, and therefore, one may refer to the
divergence computed for the latent scores to follow the evolution of an abnormal
event and make appropriate decisions.

2.6.3 Detection performance evaluation with respect to small
faults

2.6.3.1 The evaluation procedure

The fault described in Fig.2.6 is used in the evaluation. As we are particularly inter-
ested in incipient faults that cause small changes with respect to the signal variations,
the range [0,10%] for the fault parameters a and (N − b)/N is our concern. The

FNR can hence be calculated from Eq.2.14, knowing that σ2
f =

a

N

N∑

i=b

(x∗

ij − µj)
2

where µj is the sample mean of xj . Fig.2.16 displays the region of FNR associated
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Figure 2.16: FNR range associated to small faults

with such faults, here j = 1, a ∈ [0, 10%], (N − b)/N = 0.1 and N = 1000. It is
shown that for such faults, the FNR lies in the interval ] − ∞, 10] dB.

We intend in this part of the work to evaluate the detection error probabili-
ties to prove the efficiency of the proposed technique. In order to evaluate the
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detection error rates, D̂ has been shown to approximately fit a Gamma distribution
with shape and scale parameters that are specific to the noise and fault conditions.
Fig.2.17 shows the histogram of D̂ in fault-free case for SNR = 35 dB. The Statis-
tics/Probability Distributions toolbox of Matlab is used to compute the threshold
required for a specific false alarm rate PF A, by first estimating Gamma distribution
parameters from divergence data, and then obtaining the gamma inverse cumulative
distribution at the 1 − PF A value.
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Figure 2.17: Gamma distribution fitting to divergence histogram

Usually, the threshold for detection is chosen in such a way to achieve a balance
between false alarm and missed detection rates. As we aim here to evaluate the fault
detection capabilities of the divergence, we will evaluate the missed detection rate
that can be achieved given a low or trivial false alarm rate. Results will be shown
for the variable x1 affected by the fault, in function of the fault amplitude as well
as the FNR, for different SNR and different sample sizes N .

2.6.3.2 Evaluation results

PF A is set to 0.05 which is a low and practical rate of false alarm. The fault is charac-
terised with two parameters, namely the proportion of the faulty sample (N − b)/N
and the fault amplitude a. The detection performance will therefore depend upon
these two parameters. Fig.2.18 depicts, for SNR= 35 dB and N= 1000, the PMD

evaluated with respect to a for three sizes of the faulty sample. In the most tedious
case, where (N − b)/N= 0.05, the divergence is able to detect a fault which ampli-
tude is equal to 6% of the signal magnitude with negligible error probabilities. The
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Figure 2.18: PMD versus the fault amplitude a, SNR= 35 dB, N= 1000

sensitivity to smaller a (3%) rises when (N − b)/N increases because the latter re-
flects the fault impact. Fig.2.19 illustrates the same PMD variation but with respect
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Figure 2.19: PMD versus FNR, SNR= 35 dB, N= 1000

to FNR. It is shown that the null PMD is obtained for FNR around 0 dB.

A lower SNR will certainly reduce the sensitivity of the divergence to small fault



74 Chapter 2. Kullback-Leibler Divergence for Fault Detection

amplitude. However, a high N can notably mitigate the impact of a high noise level.
We illustrate in Fig.2.20 the PMD obtained with SNR= 25 dB and (N − b)/N= 0.1
while considering different N . The result is likewise depicted, in Fig.2.21, in func-
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Figure 2.20: PMD versus the fault amplitude a, SNR= 25 dB, (N − b)/N=0.1

tion of FNR. It is shown that very small a (2%) to which is associated a negative
FNR (-15 dB) can be detected (PMD=0.001) in this case while N is sufficiently
large, equal to 5 ∗ 105. For lower N , 104 observations, the divergence is still able to
detect 9% change of the signal magnitude with zero missed detection probability.

On the other hand, Fig.2.22 displays the missed detection rate obtained with the
SPE criterion for the same prefixed false alarm rate (PF A = 0.05). The result shown
in the plot is independent from N and this is normal because the SPE treats each
observation individually. The SPE detects small faults whose amplitude a < 0.1
with a PMD > 0.3. The divergence has shown better performance. Obviously,
the detection of small amplitude shifts with the divergence is effective as much as
the noise and data conditions are favorable (low noise level, high SNR, large N).
The impact of a low SNR on the divergence detection performance can however
be mitigated by using a large data size, thanks to its global character. Incipient
faults with negative FNR can so be successfully detected with low detection error
probabilities.
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Figure 2.21: PMD versus FNR, SNR= 25 dB, (N − b)/N=0.1
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Figure 2.22: PMD obtained with the SPE, SNR= 25 dB

2.7 Conclusion

The evaluation of the common statistics used in the PCA framework (T2 and SPE)
has shown poor detection capability in the presence of incipient faults. Therefore,
the KL divergence has been proposed to be a general distribution-free fault indi-
cator, characterised by high sensitivity with respect to incipient faults (the short
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duration change (10% of sample size) whose amplitude is less than 10% of the signal
magnitude). In the presence of high-level noise (SNR ≤ 25 dB), the divergence
needs to be computed on a sample size large enough (N > 104) so that high fault
detection performance (PF A = 5% and PMD = 0.1%) can be achieved. Beside fault
detection capability, the divergence has also shown its capability to reflect the fault
severity (amplitude).

The next chapter is concerned with proving this statement through a theoretical
study that aims at developing an analytical model that explicitly expresses the
divergence in function of the fault parameters.
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Chapter 3

Kullback-Leibler Divergence for
Fault Estimation

3.1 Introduction

The fault estimation problem has gained considerable attention in recent years. If a
fault in the process measurements has been detected, and the information contained
into the data is important, it is necessary to retrieve the fault-free measurements
from the faulty ones [1, 2, 3]. Sensor validation and correction is concerned with the
problem of identifying the fault magnitude in order to retrieve the sensor response
from faulty sensor data [4, 5]. In a system under fault tolerant control (FTC), when-
ever a fault is detected, the fault amplitude is estimated in order to compensate its
effect through an appropriate reconfiguration of the controller module [6, 7, 8]. The
performance of the FTC system depends mainly on the estimation accuracy of the
fault magnitude. As for fault detection, it is desirable that the fault estimation is
robust with respect to noises and unexpected uncertainties and perturbations.

Most fault estimation approaches are optimisation-based, and thus optimisation
techniques are used to solve the fault estimation problem. The interested reader is
referred to [9]. This chapter looks into the problem of estimating faults using the
proposed PCA-based KL divergence approach. The fault estimation accuracy will
be defined in a probabilistic framework. There are two main objectives: first, derive
an analytical model of KL divergence, which is specifically aimed at estimating
incipient faults amplitude; second, evaluate the estimation accuracy of incipient
faults in noisy environments. The next section presents assumptions made to the
data and fault modelling in order to obtain the divergence model. Section 3 is
dedicated to the analytical model derivation. In section 4, the fault amplitude will
be expressed as function of the divergence and the PCA’s parameters. Section 5 is
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devoted to the validation of the obtained model and the evaluation of the theoretical
fault estimation using a simulated AR process. In section 6, the divergence-based
fault estimation using PCA to model multivariate data will be compared to the
maximum likelihood estimate using minimum mean square estimation. The same
AR process will be used to this end.

3.2 Assumptions

3.2.1 Data modelling

The divergence may be reduced to a simple and closed expression, when prior knowl-
edge or assumptions about the characteristics of pdfs are available. Under the PCA
framework the distributions along the original axes can be assumed as normal, be-
cause basically PCA yields an optimal representation for multivariate data which are
at least approximately normal [10]. For these data, the principal subspace is spanned
by the first l eigenvectors of the sample covariance/correlation matrix. Then the
principal component scores, which are linear combinations of the original variables,
can be assumed as being normally distributed along their axes. The first latent
scores have, contrary to the residual ones, large variances so that their distributions
are far from being degenerated. Therefore, the divergence is strongly related to the
principal subspace, and the first latent principal scores will be considered to have
normal distributions.

The process variables are affected with independent and identically distributed
(i.i.d) Gaussian noise representing measurement errors. So the noise samples are
considered to be drawn from a normal distribution with zero mean and variance
σ2

v . The noise added to each observation of m variables is denoted v, such that
v ∼ N (0, σ2

vIm) where Im is the (m × m) identity matrix. Let V [N×1] be a noise
vector of N samples drawn from the distribution N (0, σ2

v).

3.2.2 Fault modelling

The simple fault case is considered, that is when xj is faulty, xr with r 6= j is
fault-free. The fault that affects xj is modelled such that its signature is incipient
according to the signal properties. It is characterised with a multiplicative factor
with amplitude a that affects the last (N −b)/N observations of a signal acquisition.
As it is shown in Fig.3.1, this fault model approaches an incipient fault, provided
that (N − b)/N and a are sufficiently low. It assumes that during the first stage of
the incipient fault development, the fault amplitude (size or severity) is constant.
Such a fault will not modify the centre and direction of the principal subspace, which
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Figure 3.1: Incipient fault model

is thus supposed unchanged after the fault occurrence. The difficulty however is to
detect the incipient fault in this stage where a significant loss of process operation
performance can occur without being noticed. We may write for N measurements
collected from the variable xj :

xj =




x1j

x2j

...
xbj

...
xNj




=




x∗

1j

x∗

2j
...
x∗

bj
...
x∗

Nj




+ a ×




0
0
...
x∗

bj
...
x∗

Nj




+ V = x∗

j
+ Fj + V (3.1)

where Fj = a × [ 0 0 . . . x∗

bj . . . x∗

Nj ]′.

3.2.3 Assumptions’s consequence

As a consequence, the covariance/correlation matrix S estimated from X is:

S = P ∗ΛP ∗′ + σ2
vIm (3.2)

where
Λ = Λ∗ + ∆Λ (3.3)

Λ∗ = diag(λ∗

1, ..., λ∗

l , 0, .., 0) is the (m×m) matrix of eigenvalues associated to eigen-
vectors p∗

1
, ..., p∗

l
, p∗

l+1
, ..., p∗

m
.

∆Λ = diag(∆λ1, ..., ∆λm) is the change due to the fault occurrence. So, ∆Λ = 0
when a = 0. The last (m − l) eigenvalues correspond to the residual subspace. As
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the corresponding distributions may vanish (λ∗

k = 0 for k > l), the divergence is
concerned with only the first l principal scores for which λ∗

k 6= 0 (k = 1, ..., l).

Besides, given two normal densities h and q such that h ∼ N (µ1, σ2
1) and q ∼

N (µ2, σ2
2), where µ1, µ2 are the means and σ2

1, σ2
2 are the variances for h and q

respectively, the KL divergence between h and q may be written as

DAn(h, q) =
1

2
[
σ2

2

σ2
1

+
σ2

1

σ2
2

+ (µ1 − µ2)
2(

1

σ2
1

+
1

σ2
2

) − 2]. (3.4)

In the following, this expression will be used for computing the analytical PCA-based
KL divergence model.

3.3 Analytical model derivation

3.3.1 KL divergence expression

From the normality assumption, it follows that each of the first l principal component
scores tk, k = 1, 2, ..., l, has a pdf which we denote fk such that fk ∼ N (0, λk + σ2

v).
λk is hence the variance of tk and the eigenvalue associated to the kth principal com-
ponent as well. We propose to compare fk against its reference, which corresponds
to the fault-free operating mode. The reference is denoted f rf

k , f rf
k ∼ N (0, λ∗

k +σ2
v).

The mean of the distribution is supposed unchanged (zero) after the occurrence of
a fault, because it has been assumed that a fault, particularly an incipient one, will
not move the centre of the PCA’s model. So it follows from Eq.3.3 that

λk = λ∗

k + ∆λk (3.5)

where ∆λk is the eigenvalue bias caused by the fault occurrence. By specialising
Eq.3.4 to the case considered, the divergence between fk and f rf

k becomes:

DAn(fk, f rf
k ) =

1

2
[

∆λ2
k

(λ∗

k + σ2
v)(λ∗

k + σ2
v + ∆λk)

]. (3.6)

The next step is to write ∆λk in function of the fault amplitude a. λ∗

k refers to
the case a = 0. Suppose λk is a function of a and is infinitely differentiable in the
neighborhood of a ≈ 0, the Taylor development of λk gives

λk = λ∗

k +
∂λk

∂a
(0)a +

1

2

∂2λk

∂a2
(0)a2 +

1

3!

∂3λk

∂a3
(0)a3 + ... (3.7)

Subsequently, in order to obtain the divergence expression depending on a, the
eigenvalue-derivatives with respect to this parameter must be computed. Suppose
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PCA is computed with the covariance/correlation matrix S, it is shown in [11] that
writing S in function of a gives the nth-order eigenvalue derivative as

∂nλk

∂an
= p∗

k

′
∂nS

∂an
p∗

k
(3.8)

where p∗

k
is the kth loading vector/eigenvector associated to λ∗

k. Similarly to λ∗

k, p∗

k

refers to the fault-free PCA’s model.
Thus, each element of S will be differentiated n times with respect to the fault

parameter a. Both of the PCA cases, where it is applied to the covariance matrix
and the correlation matrix of data, will be considered in the sequel.

3.3.2 Covariance matrix case

S is given by

S =
1

N
X̄ ′X̄. (3.9)

which is an unbiased estimate of the true covariance matrix in case of multinormally
distributed data. Thus,

S =
1

N




x̄′

1
x̄1 . . . x̄′

1
x̄j . . . x̄′

1
x̄m

...
...

...
x̄′

j
x̄1 . . . x̄′

j
x̄j . . . x̄′

j
x̄m

...
...

...
x̄′

m
x̄1 . . . x̄′

m
x̄j . . . x̄′

m
x̄m




. (3.10)

It follows from the fault model in Eq.3.1 that

x̄j = xj − µj1

= (x∗

j
− µ∗

j1) + (Fj − a × 1
N

∑N
i=b x∗

ij1) + V

= x̄∗

j
+ F̄j + V

(3.11)

where F̄j = Fj − a × 1
N

∑N
i=b x∗

ij1, 1 is a column vector of N ones and µj is the
sample mean of xj . Based on Eq.3.2, the derivation of S with respect to a can be
made while considering V = 0. Substituting x̄j in S by its expression (3.11) gives
after all calculations:

∂x̄′

r
x̄q

∂a
= 0, ∀r, q 6= j (3.12)

∂x̄′

r
(x̄∗

j
+ F̄j)

∂a
=

∂(x̄∗

j
+ F̄j)′x̄r

∂a
= δr ∀r 6= j (3.13)
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∂(x̄∗

j
+ F̄j)′(x̄∗

j
+ F̄j)

∂a
= 2δj + 2aτ. (3.14)

where δr, δj and τ are constants independent of the fault amplitude. They are given
by:

δr =
N∑

i=b

(x∗

ir − µ∗

r)x
∗

ij ∀r (3.15)

τ =
N∑

q=b

(
x∗

qj − 1

N

N∑

i=b

x∗

ij

)2

(3.16)

They are functions of the original variables and can be computed from healthy data
once for all. The first-order derivative of the covariance matrix is then given by:

∂S

∂a
=

1

N




0 . . . δ1 . . . 0
...

...
...

δ1 . . . 2δj + 2aτ . . . δm

...
...

...
0 . . . δm . . . 0




(3.17)

The second-order sensitivity of S with respect to the fault amplitude a is obtained
by differentiating (3.17). It gives:

∂2S

∂a2
=

1

N




0 . . . 0
...

... . . . 2τ . . .
...

...
0 . . . 0




(3.18)

The higher-order sensitivities of S (n > 2) are all null, as for the eigenvalue deriva-
tives.

Writing the loading vector p∗

k
as p∗

k
=
[

p1k · · · pmk

]
′

it follows that





∂λk

∂a
= p∗

k

′
∂S

∂a
p∗

k
=

2

N

(
pjk

m∑

r=1

prkδr + p2
jkτ × a

)

∂2λk

∂a2
= p∗

k

′
∂2S

∂a2
p∗

k
=

2

N
p2

jkτ

and from Eq.3.7,

∆λk = λk − λ∗

k =
2

N
pjk

m∑

r=1

prkδr × a +
1

N
p2

jkτ × a2. (3.19)
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Based on Eq.3.6 and Eq.3.19, the analytical expression of the divergence between
the pdf of the kth principal score and its reference is:

DAn(fk, f rf
k ) =

2

N2

(
pjk

∑m
r=1 prkδr × a + 1/2p2

jkτ × a2
)2

(λ∗

k + σ2
v)
(
λ∗

k + σ2
v + 2

N
(pjk

∑m
r=1 prkδr) × a + 1

N
p2

jkτ × a2
) .

(3.20)
This is a closed form expression that explicitly depends on the PCA’s model pa-
rameters, the fault amplitude and other constant values calculated from fault-free
measurements.

3.3.3 Correlation matrix case

The correlation coefficient between the rth and jth original variable/feature is given
by

Corr(xr, xj) =
Cov(xr, xj)√

V ar(xr)
√

V ar(xj)

=
x̄′

r
x̄j√

x̄′

r
x̄r

√
x̄′

j
x̄j

(3.21)

where Cov is the covariance coefficient, and V ar denotes the variance. Making its
derivative and using 




∂x̄r
′x̄j

∂a
= δr

∂x̄j
′x̄j

∂a
= 2(δj + aτ)

give
∂Corr(xr, xj)

∂a
=

δrV ar(xj) − (δj + aσ) Cov(xr, xj)
√

V ar(xr)
√

(V ar(xj))3
. (3.22)

The calculation of the second-order derivative gives

∂2Corr(xr, xj)

∂a2
=

1

N

[δr(δj + aσ) − NσCov(xr, xj)] V ar(xj)
√

V ar(xr)
√

(V ar(xj))5
−

3

N

[δrV ar(xj) − (δj + aσ)Cov(xr, xj)] (δj + aσ)
√

V ar(xr)
√

(V ar(xj))5
. (3.23)
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As it is can be seen from the above equations, correlation coefficients are non-

rational functions of the fault amplitude due to the variance term
√

(V ar(xj))3

in the denominator. The derivative expressions are more complicated than those
obtained with the covariance matrix case, and also allow only an approximation of
the eigenvalue bias because the non-zero derivatives make Taylor series infinite. We
may write for the kth eigenvalue of the data correlation matrix:

λk = λ∗

k +
∂λk

∂a
(0)a +

1

2

∂2λk

∂a2
(0)a2 + ... (3.24)

with
∂nλk

∂an
= 2

m∑

r=1

pjkprk

∂nCorr(xr, xj)

∂an
. (3.25)

Then taking the first h eigenvalue derivatives, the divergence expression becomes

DAn(fk, f rf
k ) =

(
h∑

n=1

1

n!

∂nλk

∂an
an

)2

λ∗

k(λ∗

k +
h∑

n=1

1

n!

∂nλk

∂an
an)

. (3.26)

The correlation matrix gives a complex divergence expression. Taking only the
first h derivatives supposes that the remaining terms are negligible. (3.26) is not a

rational function of the fault amplitude a due to the function
√

(V ar(xj))3 in (3.22).

3.4 Fault estimation

3.4.1 Fault amplitude estimator

(3.20) and (3.26) are the analytical expressions of the divergence applied to the prin-
cipal components of the covariance matrix and the correlation matrix respectively.
The covariance matrix however yields a divergence model, which is a closed and ra-
tional function of the fault amplitude. (3.20) is suitable to derive a fault amplitude
estimate that depends on the divergence value.

Let α1 = pjk

∑m
r=1 prkδr and α2 = 1/2p2

jkτ . (3.20) gives the theoretical estimation
of the fault amplitude [12] as:

â =
−α1 +

√
α2

1 + 2α2N(λ∗

k + σ2
v)(D̂ +

√
(D̂2 + 2D̂))

2α2

(3.27)

In practice, D̂ is the divergence value computed using (2.9). Since (2.9) is just an
approximation of the true value, the accuracy of estimating a through (3.27) should
be evaluated.
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3.4.2 Probabilistic model for the fault amplitude estimate

If a known distribution fits to the variable D̂ computed through (2.9), the distribu-
tion of â can be obtained from the following theorem [13]:
Let X have pdf fX(x) and let Y = g(X), where g is a monotone function. Let
X = {x : fX(x) > 0} and Y = {y : y = g(x) for some x ∈ X }. Suppose that fX(x)
is continuous on X and that g−1(y) has a continuous derivation on Y , then the pdf
of Y is given by:

fY (y) =





fX(g−1(y)) | d

dy
g−1(y) | y ∈ Y

0 otherwise.
(3.28)

So, Consider

g(x) =
−α1 +

√
α2

1 + Nα2(λ∗

k + σ2
v)(x +

√
(x2 + 2x))

α2

(3.29)

where the variable x refers to D̂. The calculation of g′(x) proves that g is monotone
(g′(x) > 0 ∀ x ≥ 0). The inverse function of g is:

g−1(y) =
1

2

(β1y + β2y
2)2

β(β + β1y + β2y2)
, (3.30)

where the variable y refers to â, β = λ∗

k + σ2
v , β1 = 2α1/N and β2 = α2/N .

The derivation of g−1(y) is:

(
g−1(y)

)
′

=
4β1β

2
2y4 + 2(β2

1β2 + ββ2
2)y3 + 3ββ1β2y

2 + 2ββ2
1y

β(β + β1y + β2y2)2
. (3.31)

Numerical simulations yield that the probability density fX(D̂) fits with Gamma
distributions defined with two parameters, known as shape α and scale θ parameters.
It follows that

fX(D̂) ≈ D̂α−1

Γ(α)θα
exp(−D̂/θ). (3.32)

where Γ(α) is the gamma function evaluated at α. According to (3.28) the pdf of â
is:

fY (â) =
1

Γ(α)θα

(
g−1(â)

)
′
(
g−1(â)

)α−1
exp

(
−g−1(â)

θ

)
(3.33)

α and θ are estimated from D̂ computed on many realisations (see Fig.2.5).
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3.5 Simulation results and discussions

3.5.1 Procedure description

The numerical example in chapter 2 is used for its nonlinear functions that make the
probability distributions of generated signals arbitrary. This is relevant for proving
the detection capability of the divergence. For estimation purposes, a distribution
assumption has to be made to obtain an analytical model, and then followed in the
evaluation stage. Therefore, we here opt for a multivariate AR system, in which the
generated signals are approximately normally distributed. It is inspired from [14]
and defined as follows:

x(i) =

[
0.118 −0.191
0.847 0.264

]
x(i − 1) +

[
1 2
3 −4

]
u(i − 1)

y(i) = x(i) + v(i) (3.34)

where u is the correlated input,

u(i) =

[
0.811 −0.226
0.477 0.415

]
u(i − 1) +

[
0.193 0.689

−0.320 −0.749

]
w(i − 1). (3.35)

w is a vector of 2 inputs w = [w1 w2]
′ , which are uncorrelated Gaussian signals

with zero mean and unit variance. u = [u1 u2]
′ is the vector of measured inputs,

and y = [y1 y2]
′ is the vector of outputs corrupted by uncorrelated Gaussian

errors v = [v1 v2]
′ with zero mean and variance σ2

v .
The vector of process variables will be formed with the measured inputs and

outputs of the process at instant i, i.e. [y1(i) y2(i) u1(i) u2(i)]
′ . A data matrix

X of N measurements/rows is formed with these variables. PCA is applied on
the corresponding covariance matrix; it gives 4 principal components with variances
λk = {40.26, 4.9, 1.14, 0.17}, k = 1, 2, 3, 4. The first principal component accounts
for 86.6% of variation, along with the second principal component they account for
97% of variation. The divergence will be evaluated on tk = X̄p∗

k
, k = 1, 2, for

various SNR (various σ2
v).

Let f̂ rf
k and f̂k be the normalised Gaussian kernel estimate of probability densities

of tk before and after the fault respectively. The divergence between f̂ rf
k and f̂k is

approximated as:

D̂tk
= D̂(f̂k, f̂ rf

k ) =
∑

tk

(f̂k − f̂ rf
k ) log


 f̂k

f̂ rf
k


 . (3.36)

A fault can affect one of the variables or a matrix coefficient. As to be consistent
with the fault modelling adopted here, we consider the fault that affects the outputs
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and can be seen as sensor fault. So the output vector is

[
y1(i)
y2(i)

]
=

[
1 + a1 0

0 1 + a2

] [
x1(i)
x2(i)

]
+

[
v1(i)
v2(i)

]
(3.37)

where a1 and a2 are the fault amplitudes on y1 and y2 respectively. y1 is supposed
to be affected by the fault, and thus a1 6= 0 in the sampling interval [b, N ]. The
simple fault case is considered and thus a2 = 0 ∀i.

In the following, model validation results are shown. The numerical divergence
(3.36) is compared to the analytical model (3.20), and then the probabilistic model
of the estimated fault amplitude is depicted. Afterwards, the accuracy of the the-
oretical estimated fault amplitude is evaluated by computing the relative error on
the estimation of the faulty variable. The relative errors are computed in different
conditions showing the impact of the noise level (SNR), the proportion of the faulty
sample ((N − b)/N), and the sample size (N) on the estimation accuracy.

3.5.2 Model validation

3.5.2.1 Divergence model

In the model validation, a large sample generated from the process is considered in
order to minimize the error due to the divergence approximation [15]. We propose
here to consider N = 106, which can be obtained in practice with, for example, a
10 kHz sampling frequency during 1mn 40 sec. To illustrate the divergence evolu-
tion with respect to the fault amplitude we consider the variation range [0, 0.3] for
a1, meaning [0, 30]% variation of y1’s amplitude. The last 10% of the considered
observations for y1 are supposed affected by the fault. The proportion of the faulty
interval to the total sample size is thus (N − b)/N = 0.1. The divergence is eval-
uated on the first and the second principal component t1 and t2 for various values
of signal-to-noise ratio (SNR). The constants δr (r = 1, ..., 4) and τ are calculated
once for all from healthy data.

The analytical model will not be sensitive to the SNR value because it is ob-
tained on the basis of the same noise added to the reference and healthy data.
Accordingly, the theoretical divergence will only depend on the fault amplitude
whatever the noise variance. Fig.3.2 and Fig.3.3 display D̂ computed on t1 and t2

versus the fault amplitude a1. DAn(fk, f rf
k ) refers to the analytical model (3.20) and

the other lines are obtained from the divergence approximation (3.36). In Fig.3.2,
the theoretical model evaluated on t1 (DAn(f1, f rf

1 )) shows an important gap with
the approximated divergence especially at low values of a1. Low noise levels, high
SNR, are considered yet. However, the model once calculated on t2 (DAn(f2, f rf

2 )),
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Figure 3.2: Evolution of KL divergence computed on t1
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Figure 3.3: Evolution of the KL divergence computed on t2

fits better with the approximated divergence (D̂t2
) as shown in Fig.3.3. The gap

increases with decreasing SNR, but it is still relatively negligible especially for high
fault amplitudes, a1 > 0.1. To explain these results we must refer to the loading
vector p∗

k
that spans each of the principal component variable [12].

The coefficients of loading vectors displayed in Table 3.1 show the rate of the
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process variables (y1, y2, u1 and u2) contribution to each of the principal compo-
nent. The faulty variable y1 contributes with a high rate to t2 (0.93) compared

Table 3.1: Loading vectors coefficients

p1 p2

p1k -0.12 0.93
p2k 0.97 0.08
p3k 0.16 0.11
p4k 0.04 0.324

to its contribution to t1 (0.12). The divergence computed on t2 will be thus more
sensitive than t1 to the small amplitude shifts that affect y1. Accordingly, a better
result of model fit will be obtained on t1 if the fault affects y2 (p21=0.97) or u1

(p31=0.16) instead of y1. Whatever the case, the error between the analytical and
the approximated divergence normally decreases with increasing SNR.

It stems from the previous results that detecting and estimating a fault that
affects the output y1 will be based on the divergence computed on t2. The results
of estimation will therefore be shown for this case. The worst case, when the fault
estimation is carried out on the unfavourable principal component, was studied in
[12].

3.5.2.2 Fault amplitude estimation model

The divergence calculated in particular conditions of fault and noise through (2.9),
is a random variable whose probability distribution can be estimated on a sample of
D̂t2

obtained through many realisations (Fig.2.5). Fig.3.4 shows the Gamma distri-
bution fitting points that overlap the estimated distribution of D̂t2

computed in case
SNR= 35 dB, and for several fault amplitudes. (N − b)/N is still set equal to 0.1.
The Gamma distribution is a two-parameter distribution, which in special cases of
these parameters, known as shape α and scale θ parameters, gives the exponential
and chi-squared distributions. In particular, the distribution converges to a normal
one for large shape parameter (as α → ∞).

Using the Gamma distribution parameters estimated from D̂ samples, the prob-
ability distribution model obtained in (3.33) can be computed. Fig.3.5 depicts the
(3.33) result corresponding to Fig.3.4. The estimated amplitude is still non-zero
in fault-free condition (a1 = 0), since the divergence value is non-zero in this case.
Fig.3.5 shows that the estimator (3.27) gives an overestimation of the actual fault
amplitude.
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The estimation precision can be evaluated as being the reciprocal of the estimator
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Figure 3.5: Probability distribution (3.33) of â1

standard deviation. Here, the precision order is about 103, meaning a high estima-
tion accuracy. By taking the means of pdfs and considering a wide fault amplitude
range that goes from 0.001 (0.1%) to 0.3 (30%), we obtain Fig.3.6 that plots the ac-
tual fault amplitude and the corresponding estimation mean. The error between the
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two curves will be assessed for different noise levels, data sizes and fault severities.

3.5.3 Estimation error

The objective of the fault estimation is often being able to recover the valuable
information contained into the fault-free signal. Therefore, it seems relevant to
assess the relative error on the estimation of the faulty signal, here y1. We can write
for the estimation of the faulty observation y1(i) :

ŷ1(i) = (1 + â1)x1(i) + v1(i) (3.38)

The relative error, denoted Er, on the estimation of y1 is:

Er =
ŷ1(i) − y1(i)

y1(i)
∼= â1 − a1

1 + a1

. (3.39)

Er will be evaluated in function of the fault amplitude, under different noise levels
and different sizes of data and faulty sample.

3.5.3.1 Impact of faulty sample length

Fig.3.7, 3.8 and 3.9 show the relative error on the estimation of y1 obtained at differ-
ent SNR for a1 ranging from 0.001 (0.1%) to 0.3 (30%). N is still set equal to 106.
For particular a1 and (N − b)/N values, the error clearly increases with decreasing
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Figure 3.7: Estimation relative error Er, (N − b)/N = 0.1
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Figure 3.8: Estimation relative error Er, (N − b)/N = 0.15
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Figure 3.9: Estimation relative error Er, (N − b)/N = 0.2
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SNR. The figures show a zoom in the range of small amplitudes a1 < 0.1. The
relative error Er is relatively high in this range. It decreases however with increasing
proportion (N − b)/N of faulty sample. It follows that in favourable conditions of
noise and fault, say in case the SNR= 35 dB, the fault amplitude a1 > 0.1(10%)
and the proportion of faulty sample (N − b)/N > 0.2, the relative estimation er-
ror Er < 0.005 (0.5%). In worst conditions, characterised with a high noise level
(SNR= 15 dB) and incipient fault amplitude (a1 < 0.1, (N − b)/N = 0.1), Er

reaches 0.06 (6%). Er has nevertheless a positive value, which means an overesti-
mation. In process monitoring, the overestimation of the fault amplitude/severity
provides a safety margin for the process being monitored.

3.5.3.2 Impact of the data size

The results shown beforehand are obtained for a data size N= 106 observations.
It is important however, from a practical point of view, to evaluate the estimation
accuracy for smaller data sizes. Fig.3.10 illustrates the estimation error in the range
of incipient fault amplitude for different data sizes N , SNR= 25 dB and (N −b)/N=
0.1. It shows that the accuracy of estimating the incipient fault amplitude using
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Figure 3.10: Estimation relative error Er, (N − b)/N = 0.1, SNR = 25 dB

(3.27) depends strongly on the data size N , such that Er readily increases with
decreasing N . Fig.3.11 shows the same result for more favourable fault conditions,
the proportion of faulty sample being set equal to 0.2. Er is relatively lower than
those obtained previously and can still be reduced by using a larger data sample.
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Figure 3.11: Estimation relative error Er, (N − b)/N = 0.2, SNR = 25 dB

3.6 Comparison to another estimation method

The divergence-based fault estimation using PCA to model multivariate data, will
be compared to the maximum likelihood estimate using minimum mean square
estimation (MMSE). Assuming that the process variables are redundant and are
simultaneously sampled, the MMSE allows estimating each variable using the others.
The process variables are arranged into a vector x :

x =

{
u
w

}
(3.40)

where u is the faulty variable xj, and w are the other observed variables. The
covariance matrix Σ of y, estimated using the training data, can be partitioned as:

Σ =

[
Σuu Σuw

Σwu Σww

]
(3.41)

The linear MMSE estimator û for u|w (u given w) is obtained by minimising the
mean-square error [16] ǫMS = E((u − û)′(u − û)). The optimal estimator that min-
imises ǫMS is:

û ≡ E(u|w) = ΣuwΣ−1
www (3.42)

If xj, here u, is not faulty, the ith sample of u is modelled as:

u(i) = û(i) + v(i) (3.43)

where û is given by (3.42) and v is the Gaussian noise with variance σ2
v . A gain

fault is modelled as:
u(i) = Gû(i) + v(i) (3.44)
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where G = 1 + a. Assuming a Gaussian noise with zero-mean gives the conditional
probability density function of u|w as:

p(u|w) = p(u(i)) =
1√

2πσ2
v

exp

[
− 1

2σ2
v

(u(i) − Gû(i))2

]
(3.45)

in which σ2
v is obtained using the training data by

σ2
v =

1

N

N∑

i=1

(u(i) − û(i))2. (3.46)

The maximum likelihood estimate (MLE) of G is obtained by maximising the log-
likelihood [1]

log p(u; G) = −N

2
log(2πσ2

v) − 1

2σ2
v

N∑

i=1

(u(i) − Gû(i))2 (3.47)

Taking the derivative of the log-likelihood function with respect to G and setting
the result equal to zero, produces

Ĝ =

∑N
i=1 û(i)u(i)
∑N

i=1 û(i)2
(3.48)

This estimator assumes that the fault exists during the whole measurement. So the
comparison with the divergence-based estimator will be done under this assumption,
i.e. for (N − b)/N = 100%. We evaluate the accuracy of both estimators using the
following procedure.

1. N training samples are generated from the above AR process. The covariance
matrix of [y1, y2, u1, u2] is estimated.

i. PCA is applied on the training covariance matrix to obtain the principal
components parameters. δr and τ are also calculated.

ii. Σuw and Σww are extracted from the covariance matrix.

2. N samples of the data vector [y1, y2, u1, u2] are generated with faulty y1.
y1(i) = (1 + a)y∗

1(i) + v1(i), where (1 + a) = G and i = 1, ..., N .

i. The divergence-based estimation is applied. a is estimated according to
(3.27).

ii. The maximum likelihood estimate of G is calculated according to (3.48).

3. The relative error of estimation is evaluated for both estimators:
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Figure 3.12: Estimation relative error

i. Ea
r = (â − a)/(1 + a).

ii. EG
r = (Ĝ − G)/(G).

Step 1. is done once for all on training data. Step 2. and 3. are done for each
gain fault value. The results will be shown for N=1000, SNR=15 dB and fault
amplitude a ranging from 0 to 30%. Fig.3.12 shows the relative estimation error
obtained while following the above procedure. It can be remarked that the standard
deviation of EG

r , for the estimator Ĝ, is greater than that of Ea
r , for the estimator

â. Also, EG
r is regularly negative, meaning that Ĝ may underestimate the true

fault amplitude. In this figure, it is also shown that Ea
r exceeds EG

r in the small
amplitude range (a < 5%). In order to fairly compare the two estimators, we have
to show the interval of variation of the relative error for each one. Consequently, the
steps 2. and 3. are performed R = 1000 times at each fault value, and the variation
intervals are calculated as [µ − 3σ, µ + 3σ] where µ and σ are the average and the
standard deviation of the obtained (1000×1) vectors of relative error. For example,
at a = 0.1, equivalently G=1.1, Fig.3.13 displays the histograms of Ea

r and EG
r . The

histograms fit with normal distribution, which is the reason for using the mentioned
interval. The result is shown in Fig.3.14, which displays the variation interval of the
estimation error associated to each estimator. Dashed line is the calculated average.
However, simulation showed that in unfavourable conditions of data size and noise
(small data size N=1000, high noise level SNR=15 dB), the result of the MLE
is not exactly reproducible. A slightly different MLE result can be obtained when
using another training data generated at step. 1. There is some shift in the average
of EG

r but its standard deviation is still the same. An example is shown in Fig.3.15.
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Figure 3.13: Relative error histograms
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Figure 3.14: Estimation relative error interval

However, the divergence-based estimation using PCA is more robust to step 1 than
the MLE using MMSE, since the associated result is quite reproducible. Moreover,
Ea

r has a narrower variation range, which is mostly in the EG
r range. It is mainly

positive, meaning an overestimation of the fault amplitude.
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Figure 3.15: Estimation relative error interval

3.7 Conclusion

In PCA-based data representation, KL divergence has been proposed to estimate the
incipient fault amplitude. A theoretical fault amplitude estimate that depends on
the divergence value has been obtained. With numerically approximated divergence,
the accuracy of the fault estimate has been evaluated while showing the impact of
critical conditions of noise and data (high noise levels and low data sizes).

The divergence-based fault estimation using PCA to model multivariate data,
has been compared to the maximum likelihood estimate using minimum mean square
estimation. Our estimator is more robust to noisy data and has a lower standard
deviation. The divergence-based estimator proved to be an overestimation ( estima-
tion error Er > 0) of the actual fault amplitude, guaranteeing a safety margin for
the monitored process.

The next chapter will focus on the application of the proposed tools on exper-
imental data. Experimental data generated by real incipient faults will be used to
show the effectiveness of the KL divergence and data-driven tools in the detection
and diagnosis of small faults, whose signature is weak and concealed by the noise.
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Chapter 4

Application to non-destructive
inspection-based damage detection

4.1 Introduction

This chapter is concerned with the application of the proposed data-driven tools
to the detection, estimation and diagnosis of mechanical damages in engineering
systems. A damage is here meant to denote a material crack which can be due
to an external load (pressure, temperature, etc.), inevitable ageing, manufacturing
imperfection, bad mounting, fatigue, and so on. The ability to rapidly assess the
structural health of a system, without having to proceed to the disassembly of its
elements is an important economic issue. This in-situ diagnostic capability would
allow to decreasing maintenance costs while ensuring a sufficient security degree and
a satisfactory operational level. The ability to identify small imperceptible cracks
in a structure without altering its properties is possible by means of non-destructive
inspection (NDI) or testing (NDT) techniques [1]. Several NDI methods have been
applied to detect mechanical damages, including ultrasonics, acoustic emission, eddy
current, x-ray, vibrations [2].

The damage detection is essentially concerned with four main functions [2]: (i)
the early detection of imperceptible damages, (ii) the localisation, (iii) the severity
assessment, and (iv) the residual lifetime evaluation (prognosis). These tasks have
been addressed using both model-based and data-driven approaches. Finite Element
Model (FEM) [3] and vibration-based damage identification techniques [4] are two
commonly used model-based approaches. Generally speaking, model-based methods
are feasible in the case of simple geometry structures and invariant environmental
parameters. For large-scale and complex structures, the data-driven methods are
effective in the extraction of informative multidimensional features from sensor mea-
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surements, which are sensitive to damages and robust to environmental changes and
noise [5, 6, 7]. With data-driven methods, the damage detection turns into a pattern
recognition problem which is often based on statistical and neural approaches [8, 9].

The damage detection techniques use sensor(s) information in order to evaluate
the condition and performance of a structure. The evaluation can be either local,
i.e. based on the inspection of the defective area, or global, i.e. based on the inspec-
tion of the overall structure. Most NDT techniques are local and require scanning
when large areas need to be monitored. Ultrasonic inspection and eddy-current test-
ing (ECT) are well-established techniques for local nondestructive crack detection
[10, 11]. Vibration-based techniques have potential to evaluate the entire structural
performance, and thus they are global [12, 13]. A global technique allows a contin-
uous monitoring of the structure health state, while a local one is usually carried
out offline. Graphical processors, thanks to their high computational capability for
repetitive tasks, are now used for on-line local NDE [14, 15].

We will study the application of statistical feature extraction methods, namely
PCA and LDA, along with the KL divergence to perform primarily tasks (i), (ii)
and (iii). Small cracks will be detected, localised and characterised under two frame-
works: eddy-current testing and vibration monitoring. ECT is widely used in many
industrial fields, like aeronautic, to detect small surface cracks in conductive struc-
ture. A ’global’ time-domain analysis based on KL divergence and PCA will be
applied to ECT signals with low SNR in order to reveal the signature of minor
cracks and characterise their severity.

Vibration monitoring (through accelerometers) is widely used in electrical rotat-
ing machines in order to monitor mechanical faults in the machines. Bearing faults
are particularly of concern in this study. A ’global’ frequency-domain analysis based
on an adequate preprocessing and PCA/LDA will lead to high-level discriminative
features extracted from vibration signals of faulty bearings. The bearing faults will
be classified according to their different types and sizes, allowing thus for their di-
agnosis.

4.2 Motivation and outline

The present studies are motivated by the fact that many industrial and onboard sys-
tems structures are threatened by material cracks which start imperceptible but can
develop rapidly, leading to catastrophic failures. Minor cracks should be detected
and localised as soon as possible for economic and safety considerations. These
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structures are generally equipped with sensors and instrumentation which provide
the diagnostic information. However, the detection of minor cracks is still a chal-
lenging issue: the incipient fault signature can not be detected by visual inspection
or simple processing of sensor information. It is usually weak (high SFR), concealed
by environmental disturbances, uncertainties, and noise (low FNR).

The ECT technique measures the change in the sensor impedance, and links its
increasing amplitude to the presence of a crack into the tested material. However,
the sensor impedance is subject to many sources of noise that have the same effect as
cracks. These include the surface roughness of the material, the temperature varia-
tion, the lift-off [16, 17]. Some denoising techniques have been proposed to improve
the SNR [18, 19, 20], but in practice, the measured ECT signals are complex and
the origin of the background noise remain unidentified.

Vibration signals in rotating machines are likewise combinations of vibration
components from several electromechanical sources. The detection of a particular
mechanical fault consists in looking for its spectral signature, i.e. the characteris-
tic frequencies, in the vibration spectrum [21, 22]. These characteristic frequencies
should be known in advance. They should be also dominant with respect to the
background noise and the numerous frequency components that form the machine
vibration spectrum.

The two applications will be investigated separately. Section 3 is devoted to
the detection and characterisation of minor cracks based on ECT approach. The
divergence is used to reveal the hidden signature of minor cracks in the ECT sensor
impedance. The statistical analysis of ECT signals using PCA leads to characterising
the cracks dimensions. Section 4 is dedicated to the detection and discrimination
of incipient bearing faults based on vibration monitoring approach. An approach
for ’global’ statistical spectral analysis is proposed in order to detect and identify
small bearing faults. The main advantages of this approach is that prior knowledge
of the characteristic frequencies is not necessary and besides, few PCA/LDA-based
features, specifically only two, will be sufficient to differentiate among different types
of bearing faults and different fault severities.

4.3 Application to ECT-based damage detection

4.3.1 Eddy-current testing principle

This method applies to all conductive materials. It is based on Faraday’s electro-
magnetic induction law, stating that a time-varying magnetic induction flux density
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induces currents in an electrical conductor [23, 16]. Fig.4.1 illustrates the ECT
principle.

Figure 4.1: ECT principle [16]

The electrical conductor that needs to be tested is placed in a time-varying
magnetic field (primary magnetic field) generated by an alternating energized coil.
Following the Faraday’s law, continuous and circular eddy currents will be generated
within the test material. These currents generate a secondary magnetic field that
tends to oppose the primary one, thus modifying the electromotive force of the
probe coil. The presence of a surface crack in the test material will change the eddy
currents flow as shown in Fig.4.2. The secondary magnetic field will consequently
change, inducing a change in the electromotive force.

Figure 4.2: Change of the eddy current flow in the presence of a crack

Surface cracks are thus detected by measuring the coil electromotive force vari-
ation, or equally the coil impedance variation ∆Z. The coil impedance changes are
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the following:

The energized coil taken separately has an impedance
Z0 = R0 + jX0 = R0 + j2πfexcL0,

The set (coil + test material) has an impedance
Zc = Rc + jXc = Rc + j2πfexcLc

The set (coil + test material + crack) has an impedance
Zd = Zc + ∆Z = Rd + jXd = Rd + j2πfexcLd

where the indexed R and X are the real and imaginary parts of the indexed
impedance Z, fexc is the excitation frequency, i.e. the frequency of the supply-
ing alternative current, and L is the induction coefficient. So, the ECT inspection
consists in measuring the impedance changes ∆Z that occur in the coil sensor while
scanning several points in the tested area. The measurements are taken without any
direct physical contact between the sensor and the inspected material, thus permit-
ting a fast surface testing compared to other NDI techniques [24, 25].

The ECT measurements are sensitive to the presence of faults, but likewise to
other parameters which should be controlled or taken into account in results inter-
pretation [26, 27, 28]. The distance between the sensor and the inspected material
(the lift-off variations), environmental perturbations (temperature variation, elec-
tromagnetic fields from external sources, noise, etc.), internal disturbances to the
sensor and the inspected material (temperature variation, calibration, internal noise,
geometrical changes in the material, etc.) are all factors of the probe coil impedance
change. The interpretation of ECT signals may therefore be complex, requiring
some skills. The material properties, mainly its electrical conductivity and mag-
netic permeability, and the excitation frequency driving the probe coil have a direct
effect on ECT sensitivity and penetration. The coil type and size also affect the
test capability. Therefore, the sensor is usually chosen according to the dedicated
application and the required test performance.

4.3.2 Experimental test bed description

The probe-specimen configuration is shown in Fig. 4.3. It was provided by the jet
engine manufacturer Snecma [29]. The ECT probe is axisymmetric and constituted
of a coil regularly wound around a ferrite core. The diameter and height of the core
are 0.8 mm and 4 mm, respectively. Its relative permeability is 1100 and it has a
negligible conductivity. The coil has a rectangular cross-section with an external
diameter of 1.2 mm and a height of 1.4 mm. It is composed of 110 turns of 40-µm-
diameter copper wire. The distance between the bottom of the coil and the bottom
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of the ferrite core is 100 µm. The conductive specimen, i.e. the inspected material,
is a rectangular shape nickel-base superalloy plate. The thickness of the considered
specimen is 3 mm, its conductivity is 0.76 MS/m and its magnetic permeability is
almost 1.

Figure 4.3: Probe-specimen configuration [29]

Several rectangular notches of small sizes were realised in the conductive plate
using Electro Discharge-Machining (EDM) in order to simulate thin cracks [30].
Each notch has an opening of 0.1 mm. The considered notches are distributed into
4 lengths: 0.6 mm, 0.4 mm, 0.2 mm, 0.1 mm and 3 depths: 0.4 mm, 0.2 mm, 0.1
mm. The lengths and depths have a 0.02 mm margin. Table 4.2 summarizes the
notches dimensions. These notch sizes are representative of the typical size of slight

Table 4.1: Surface, length (lc) and depth (dc) of cracks

Area (mm2) 0.01 0.02 0.04 0.06 0.08 0.12 0.16 0.24

lc , dc (mm)

0.1 0.1 0.1 , 0.2 0.1 , 0.4 0.6 , 0.1 0.2 , 0.4 0.6 , 0.2 0.4 , 0.4 0.6 , 0.4
0.2 , 0.1 0.4 , 0.1 0.4 , 0.2

0.2 , 0.2

cracks which have to be detected in many industries.

The probe was moved over the plate with a three axis computer-controlled robot.
The probe impedance was measured using an Agilent 4294A Precision Impedance
Analyser at the operating frequency of 2 MHz. The experimentation system is shown
in Fig.4.4. The probe scanned the different notches in steps of 0.1 mm in both the
x and y directions.
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Figure 4.4: Experimentation system

The probe coil is driven by a sinusoidal excitation current with a frequency
fexc ranging from 0.8 MHz to 6 MHz. Using a single excitation frequency limits
the eddy currents penetration depth, and consequently the eddy currents damage
detection capability. Low frequency tests allow for a high penetration depth and
are suitable for detecting subsurface cracks. High frequencies increase eddy current
flow at the surface and are suitable to detect small surface cracks [16]. The low
limit frequency (0.8 MHz) is due to the decrease of the probe sensitivity when the
frequency decreases, whereas the high limit (6 MHz) is due to the coil resonance
frequency.

4.3.3 Data structure and preprocessing

In the ECT data acquisition, the probe is going all over the flawed areas with a spa-
tial step of 0.1 mm in both the x and y directions. Impedance signals are acquired
for each crack considered separately. The ECT data, constituted of the real and
imaginary impedance parts, are acquired with 7 excitation frequencies fexc = {0.8,
1, 1.5, 2, 3, 4, 5, 6} MHz. So for each crack, 7-frequency 2D impedance map
centred on the crack is obtained. The map is 40-points long along the direction
(y) and 32-points long along the direction (x). The points are 0.1 mm spaced.
Fig.4.5 illustrates the maps of imaginary impedance part acquired for serious cracks
with a 2 MHz excitation frequency. The impedance variation showing two obvi-
ous high-amplitude lobes readily indicates the presence of the cracks with sizes
(lc=0.4mm, dc=0.4mm) and (lc=0.4mm, dc=0.6mm). Nevertheless the detection of
smaller cracks is much more tedious. Fig.4.6 shows the impedance variation maps
obtained for the smallest cracks, namely the cracks of sizes (lc=0.1mm, dc=0.1mm)
and (lc=0.2mm, dc=0.1mm).

The maps do not show any particular change in the impedance for these minor
cracks, making the detection of such faults unobvious. The signature of the fault
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Figure 4.5: ECT map of imaginary impedance for serious cracks
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Figure 4.6: ECT map of imaginary impedance for minor cracks

(crack), however, could be masked by the healthy variations. The KL divergence
will be used for revealing this signature.

It has been noticed that ECT maps acquired for the same areas at different times
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can have slightly different reference impedance which is specified by their respec-
tive edges. This is due to changes in environmental conditions to which the eddy
currents are known to be responsive. Therefore, all ECT maps are normalised with
respect to their reference impedance specified by the edges. Then, the values of each
normalised ECT map are arranged into an impedance vector of 1280 (40*32) length.
A reference impedance signal is formed with the impedance values of the edges of
the normalised maps, since the cracks are at the centre of the maps and the edges
are not affected by their presence. This can be shown even with the serious cracks
in Fig .4.5.

The ECT technique is usually used for diagnosing specifically large surface struc-
ture, since it is a relatively high speed testing technique. Accordingly, we artificially
enlarge, to 500*100 points, each normalised ECT map by three steps:

1. Arranging the impedance imaginary part of the ECT map edges into a vector
with Additive White Gaussian Noise (AWGN).

2. Concatenating several vectors that have been obtained in such manner.

3. Concatenating the resulting vector with the impedance vector of the ECT
map.

The AWGN simulates the potential measurement errors that may occur during
scanning large areas. It is chosen with a SNR equal to 20 dB. The SNR could be
much smaller (<10 dB) in some cases, for example when inspecting a rough surface.
The plate under inspection is nearly smooth and the measurement bench is isolated
from the environmental perturbations. For such a case, a SNR of 20 dB seems
reasonable. A vector/signal of normalised imaginary impedance, of size 5 ∗ 104, is
created as has just been described for each acquired ECT map.

4.3.4 Detection and diagnosis results

4.3.4.1 Crack detection results

For each crack, several signals of the normalised impedance imaginary part are cre-
ated according to the three previous steps. The detection with the KL divergence
D̂ computed as Eq.(2.9), consists in (1) estimating the probability distributions of
the normalised impedance signals and then (2) comparing them to the probability
distribution of the normalised reference signal. Fig.4.7 shows the pdfs estimated
for the reference signal and the faulty signal with the crack of sizes (lc=0.4mm,
dc=0.4mm). The probability distributions are far from normal and using the di-
vergence, the disparities between the two pdfs along their shape will be quantified
and amplified. The sample mean, denoted µ, will be calculated in parallel for each
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Figure 4.7: Probability distribution of ECT normalised impedance signals

signal. The following procedure is adopted to test the detection capability of D̂ and
µ:

• 50 realisations (R) of faut-free impedance signals are created. µ is calculated
for each fault-free signal. D̂ is calculated between the corresponding pdf and
the pdf of the reference signal.

• 50 another realisations (R) are created for each crack. µ is calculated for
each faulty signal. D̂ is calculated between the faulty pdfs and the pdf of the
reference signal.

• In order to compare the detection sensitivity of µ and D̂, we propose to evalu-
ate, for each criterion, the ratio between the amplitude of the average step due
to the fault, and the maximum peak to average value of the criterion. This
ratio is given by the following index:

Sensitivity =
< Cr >R>50 − < Cr >R<50

maxCr

(4.1)

where Cr is the considered criterion, i.e. µ or D̂. The symbol <> denotes the
average value, and maxCr is the maximum peak to average value before the
fault, see Fig.4.8.

This sensitivity index means that by considering a criterion threshold that pro-
vides zero false alarm probability, i.e. a threshold equal to the peak amplitude
before the fault as seen in Fig.4.8, we impose zero missed detection probability to
be achieved for a sensitivity at least equal to 2. Another particular value of this
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Figure 4.8: Sensibility index

index is 1. We can infer from Fig.4.8 that for a sensitivity = 1, PMD=0.5. Then,
0 < PMD < 0.5 if 1 < sensitivity < 2.

The detection results are shown especially for the smallest cracks, for which the
visual inspection of the ECT maps fails to detect faults (Fig.4.6). By applying con-
sequently the procedure, Fig.4.9 has been obtained. The dashed lines are the thresh-
olds calculated for µ and D̂ at the 99% of their maximum values. Obviously, the
sample mean fails to detect the cracks with (lc=0.1mm, dc=0.1mm) and (lc=0.2mm,
dc=0.1mm), whereas the divergence is well sensitive to their presence and shows a
significant step variation, that is indicated by the arrow. The sensitivity of µ and
D̂ to the four considered cracks is evaluated and results are given in Table 4.2. The
divergence shows better sensitivity than the sample mean to the presence of these
small cracks. µ clearly fails to detect the smallest cracks that have (lc= 0.1mm,

Table 4.2: Sensitivity to minor cracks

`
`
`

`
`
`
`

`
`
`

`
`
`
`̀

(lc, dc) mm
Sensitivity < D̂ >R>50 − < D̂ >R<50

maxD̂

< µ >R>50 − < µ >R<50

maxµ

0.1, 0.1 5.31 0.26
0.2, 0.1 5.73 0.47
0.1, 0.2 7.37 1.12
0.2, 0.2 23.8 3.64

dc=0.1mm) and (lc= 0.2mm, dc=0.1mm) because the sensitivity < 1 which means
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Figure 4.9: Detection of minor cracks with the divergence and the sample mean

the PMD > 0.5. µ can only detect the most serious crack that has (lc= 0.2mm,
dc=0.2mm) successfully and without any missed detection error. This crack is how-
ever easily detectable visually on the corresponding ECT map in Fig.4.5. D̂ in
contrast successfully detects all faults, with zero PMD as high values of sensitivity
(sensitivity > 2) are achieved.

4.3.4.2 Crack characterisation results

Once a crack is detected, it is important to assess its severity by identifying its size.
In the state-of-the-art ECT, the inverse problem of inferring the crack length, depth
and size from the probe measurements is resolved using mainly numerical tools that
aim at reconstructing the profiles of the cracks, given a mathematical crack model.
Here, we attempt to show that given a sufficient training data set, the statistical
analysis of the probe measurements lead to assess the cracks severity. The method
relies on the fact that the eddy current response to a particular crack depends of
the excitation frequency [16]:

• With low excitation frequencies, the eddy currents have an important pene-
tration depth. Thus the eddy current response would be sensitive to the crack
surface in z-direction (Fig.4.3).
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• With high excitation frequencies, current flow is stronger at the surface and
decreases rapidly in z-direction. So the current response would be sensitive
mainly to the crack length (in y-direction) as they all have the same width.

The statistical analysis uses information from both low and high excitation fre-
quencies. The procedure consists in the following:

1. Statistical parameters, namely the divergence, the mean, the variance and the
maximum value are chosen to statistically describe ECT signals

2. Several ECT signals are generated as described in section 4.3.3 for each crack,
and for the low and the high excitation frequency, namely for fexc = {1, 6}
MHz.

3. The chosen statistical parameters are evaluated for each ECT signal.

4. Two information matrices, Xlf and Xhf , are formed with the chosen statistical
parameters as variables/columns. The rows contain the obtained values for
each crack.

5. PCA is applied on each matrix. It results in one latent principal component
per matrix summarizing the majority of information (> 95% of total variance).

6. The projection subspace for cracks characterisation is spanned by the two
retained principal components (one for the low frequency and one for the high
frequency).

7. Data in Xlf and Xhf associated with each crack are projected into this sub-
space.

Before going through the result, it stems relevant to show how the excitation
frequency can influence the response of eddy currents to the crack sizes. To this
end, the procedure described above is applied to only the three cracks with the
same surface 0.04 mm2 and for all fexc = {0.8, 1, 1.5, 2, 3, 4, 5, 6} MHz, instead of
the low and the highest one. The first principal component PC1 summarizes 97% of
information. Fig.4.10 depicts PC1 versus fexc. One can notice that the PC1 values
obtained with the low excitation frequencies, namely with 0.8 MHz and 1 MHz, are
the same for the three cracks. In other words, PC1 in the low frequencies is only
sensitive to the crack surface which is the same for the three cracks. The discrimi-
nation between the 3 cracks according to their length increases with fexc. The PC1

value is the highest for the crack with the most important length.
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Figure 4.10: The excitation frequency effect

Afterwards, the procedure is applied to 11 cracks at our disposal, for fexc = {1, 6}
MHz. 40 ECT signals are created for each crack, 20 per excitation frequency, to fill
each of the matrices with the evaluated statistical parameters. The different cracks
are labeled according to their areas (color label) and dimensions (number label),
as described in Table 4.3. The projection of the matrices into the characterisation

Table 4.3: Labeled surface (mm2) and dimensions (mm) of cracks

Area
0.02 0.04 0.06 0.08 0.12 0.16 0.24
green black cyan red purple yellow blue

lc , dc

0.1 , 0.2 (i) 0.1 , 0.4 (iii) 0.6 , 0.1 0.2 , 0.4 (vii) 0.6 , 0.2 0.4 , 0.4 0.6 , 0.4
0.2 , 0.1 (ii) 0.4 , 0.1 (iv) (vi) 0.4 , 0.2 (viii) (ix) (x) (xi)

0.2 , 0.2 (v)

subspace gives the data scatter shown in Fig.4.11. The principal component PC1,
summarizing the information carried by Xlf , is sensitive to the crack surface. Some
particular observations are worth to be mentioned:

• Encircled data refer to cracks that have the same surface/area. They have
identical PC1-Xlf values.
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Figure 4.11: Characterisation subspace

• PC1-Xlf increases with the crack surface.

• PC1-Xhf discriminates among cracks that have identical areas, and increases
with the crack length.

In real diagnosis, this subspace can be used for the characterisation of new data,
by evaluating how the new data are located with respect to classes obtained during
the learning process. Therefore, the subspace is supposed to be built for all fault
scenarios it is expected to diagnose.

PCA was used to characterise small surface cracks in [30]. Two methods were
presented: the first one applies PCA to a matrix containing the maximum of the
impedance variation (real and imaginary part), and the second one applies PCA to
a matrix that contains the whole cartography. In both cases, the basis matrix of
PCA includes the different excitation frequencies and the cracks to be characterised.
It was found out that only the first principal component was relevant for the crack
charaterisation, as being responsible for 98-99% of the total information. So the
projection on the first principal component was correlated to the crack area. The
crack dimensions (length and depth) were not characterised. The second principal
component highlights some interesting behaviour in the numerical results, but which
was not found in the experimentation. In our proposed approach, the obtained
principal components are proved to be linked to both the area and length of the
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cracks. In future work, it would be interesting to validate, similarly to [30], the
present experimental results by conducting the approach on numerical database
cartographies.

4.4 Application to vibration-based damage detec-

tion

4.4.1 Overview of bearings FDD

The prompt detection and accurate diagnosis of faults in electrical machines has
become a main requirement for many industrial and on-board applications. When
faults do occur and the machine fails in service, the result could, at best, be the loss
of production and income, or, at worst, damage to the industrial process and po-
tentially to the operators and/or the environment. Therefore, the FDD of electrical
machines has received increasing attention since the last two decades [31, 32, 33].
The detection of machine faults at an early stage, identifying their locations and the
analysis of their causes are essential to ensure the safety, reliability and performance
of applications involving electrical machines.

Electrical rotating machines usually operate by means of bearings which are
among the most critical components. The quality of the motor system operation is
closely related to the performance of bearing assembly. So there are many types of
bearings conceived to perform under specific operating conditions defined primarily
by the load to support (radial/thrust, small/heavy), the rotational speed (low/high)
and the operating cycle length [34]. However bearing faults may account for 42%-
50% of all motor failures, as reported in an EPRI (Electric Power Research Institute)
publication [35] in 1982 and by Thorson and Dalva [36] in 1999. In fact, bearings,
even though properly designed, are sensitive components and their failure is often
due to inadequate operating conditions or failures in the maintenance, such as exces-
sive loading, shaft misalignment, wrong mounting, improper lubrication, etc. [37].
In general, one can infer the state of the machine from the state of its bearings.

At very early stage, bearing failure often manifests as small discrete faults on
bearing elements, taking various forms such as indentations, spalls, pits or debris.
Another type of damage is the case of fatigue, which prematurely results in some
surface crack. The typical fault sequence is as follows: spalling on the races, the
balls, and finally the cage. Each fault type exhibits characteristic signatures in the
time and frequency domains of the machine variables. Among the state-of-the-art,
vibration monitoring and motor current analysis are asserted to be the most effective
and practical techniques to diagnose bearing faults [32, 38, 39]. Although bearing
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vibration signals, which cover displacement, velocity and acceleration signals, are
rarely straightforward and may contain vibration components generated by various
mechanical and electromagnetic forces, they provide the most salient information
for the early detection of bearing faults [40, 41].

Time-domain vibration analysis has the advantage over the frequency-domain
analysis, of providing quick, simple and low cost faults detection methods [42, 43].
However, bearing faults as well as other problems including mass imbalance, shaft
misalignment, airgap eccentricity and gear failures normally affect the statistical
properties of vibrations. Monitoring time-domain fault indicators can only separate
healthy from faulty conditions, but has no isolating capability. The investigation
of the frequency domain allows to identify the bearing fault type, i.e. its location
[44, 45], leading to the cause of failure [34].

Hence, bearing faults, as most of mechanical and electrical faults, have distin-
guishing spectral features. When spalls or surface crack, appear on a particular
bearing element, metal-to-metal contacts occur between rotating bearing elements
and the faulty surface. Consequently, the vibration signal will show transient im-
pulses generated almost periodically at a repetition rate characterizing the faulty
bearing element [46]. So, different characteristic frequencies can be generated by the
bearing depending on which surface is affected by the fault: there is one character-
istic fault frequency associated with each of the four bearing elements. Accordingly,
there are four types of faults: outer race fault, inner race fault, ball and cage fault.
The characteristic frequencies can be computed from the following theoretical ex-
pressions [34]:
Ball pass frequency of inner race:

finf = BPFI =
nbfr

2

{
1 +

d

D
cos φ

}
(4.2)

Ball pass frequency of outer race:

fouf = BPFO =
nbfr

2

{
1 − db

Db

cos φ

}
(4.3)

Ball spin frequency:

fbf = BSF =
frDb

2db
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Db
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 (4.4)

Fundamental train frequency (cage speed):

fc = FTF =
frDb

2

{
1 − db

Db

cos φ

}
(4.5)
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where fr is the shaft rotational frequency, nb is the number of bearing balls, φ is
the contact angle i.e. the angle of the load from the radial plane, Db is the pitch
diameter and db is the ball diameter, see Fig.4.12. For normal speeds the character-

Figure 4.12: Bearings geometrical specifications

istic frequencies lie in the low-frequency range (less than 500 Hz). Also, the train
of pulses excites high natural modes in the bearing and the machine, so that an
increase in the energy level of the natural frequencies and their sidebands occurs.
The resulting time signal typically contains a high frequency component amplitude-
modulated at the ball pass frequency [47].

Most of diagnostic methods that use vibration analysis can be roughly classi-
fied between classification approaches and vibration measurements. Classification
approaches include mainly the use of statistical classifiers, neural networks, sup-
port vector machines and fuzzy logic. Detailed discussion of these methods can be
found in [48]. Several critical steps are generally involved within faults classifica-
tion systems. Each one requires considerable attention in order to get successful
classification results. The primary step is the feature extraction. It can render
the classification algorithm either very complex or quite simple depending on the
choice of features. Informative features that have important discriminant power,
also called high-level features, are always in need. However, a tradeoff is to be made
here with the computational complexity of the pre-processing required to obtain
effective features. They involve the use of sophisticated signal analysis techniques
such as time-scale analysis [49], time-frequency analysis [50, 51] and denoising tech-
niques [52, 53] which are computationally intensive. Refer to [40] for comparison
of the computation complexities among some advanced signal processing methods
used for the diagnosis of bearing faults.
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Vibration measurement techniques focus on trending the energy level at the ball
pass frequencies or in frequency bands related to the ball pass frequencies in order
to identify bearing faults. The envelope analysis has been considered as the bench-
mark method for bearing diagnostics [54, 55, 56, 57]. It consists in demodulating
the vibration signal into the region of natural frequencies in order to recover the
impulsive signal, indicative of the bearing fault presence. The envelope signal is
given as the modulus of the analytic signal obtained using Hilbert Transform [58].
It is then processed into Fourier Transform to identify ball pass frequencies. Lots
of works found in the literature propose to combine this method to advanced signal
processing techniques in order to further enhance the quality of bearing vibrations.
Some useful techniques are reviewed in [46]. However, these works are almost all
based on the assumption that the characteristic fault frequencies are known or esti-
mated in advance, in order to elaborate spectral features and fault indicators. The
effectiveness of those techniques depends on the accuracy of the ball pass frequen-
cies estimation. These frequencies are either given by the manufacturer for a new
bearing, or theoretically estimated using the geometric dimensions of the bearing
and the rotational speed as given in (4.2)-(4.5).

4.4.2 Problem statement and contribution

The diagnosis of bearing faults usually requires the prior knowledge or estimation of
the characteristic fault frequencies. Unfortunately, the geometric dimensions of bear-
ings from which the characteristic fault frequencies are calculated, can be in practice
unknown, for pre-installed bearings for example. Besides, the difficulty arises when
the actual characteristic frequencies differ from the theoretical estimated ones due to
various factors such as ageing, unexpected rotor slip and excessive friction, change
in the ball contact angle and fluctuations of rotor speed [59]. In addition, in real
situations and under some conditions of load distribution and rotor speed, the fun-
damental characteristic frequencies may not be present into the signal spectrum
although the fault is quite serious [60]. Instead, several multiple harmonics of these
frequencies and sidebands linked to modulations by the rotational frequencies (shaft
speed and cage speed) are always pronounced [61]. The global spectral signature of
a bearing fault with a characteristic frequency ffa is:

nffa ± ηfc ± κfr (4.6)

where n, η and κ are integers often ∈ {0, ±1, ±2, ±3}, fc is the rotational frequency
of the cage and fr is the rotational frequency of the machine. However, the oc-
currence of a particular harmonic or a sideband is a random process and its level
depends on the fault itself and likewise other unpredictable causes [60, 34] such as
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the operating load condition and the presence of other machine problems like load
imbalance, shaft misalignment, looseness, etc.

Although the ability to detect the characteristic fault frequencies is necessary,
this approach neglects a large part of the global signature lying throughout the sig-
nal spectrum. Some exceptions to these works can still be found. For example, in
[62, 63] some discriminating frequencies are extracted, and then they are used to
recognize bearing faults. Complex classifiers are required to make bearing faults
classification on the basis of large amounts of vibration data related to each fault
condition. Trajin et al. define in [40] a spectral energy indicator for bearing faults
based on the energies extracted from the spectra of vibration signals and contained
into specific frequency ranges related to the theoretical characteristic frequencies.
The ranges include basically multiple harmonics of ball pass frequencies and modu-
lations linked to the mechanical speed and cage frequencies. The detector however
requires accurate estimation of the ball pass frequencies for a given rotational fre-
quency. Moreover, it is not able to discriminate between inner race faults and outer
race faults because the associated frequency ranges exhibit overlaps.

So, it can be argued that, in practice, characterising each fault type with a single
frequency component to make the diagnosis can be misleading. On one hand the
occurrence of the fault characteristic frequency is not guaranteed in real situations,
and on the other hand there is a high probability for this frequency to be concealed
by other stronger frequencies. Furthermore, the characteristic fault frequencies can
be known or accurately estimated only for a new perfect bearing. Moreover, a large
part of the global spectral signature produced by the fault is neglected by trend-
ing only the energy at the characteristic fault frequencies. The global signature is
theoretically formed with several multiple harmonics of the fault frequencies and
sidebands related to their modulations by the rotational frequencies. Nevertheless,
these frequencies are actually unpredictable, since the occurrence of a particular
harmonic or a sideband is actually a random process.

For the above reasons, we propose a fault classification scheme, which overcomes
the usual prior knowledge of the characteristic frequencies. Attention will be paid
to the salient information revealed by features related to the global signature that a
natural bearing fault may exhibit into the vibration spectrum: spectral lines at ball
pass frequencies, their multiple harmonics and their modulations by other frequen-
cies. These spectral lines can not be extracted from the direct spectrum without
the knowledge of their exact position, because the vibration spectrum is usually
very complex, as being a continuous row of many frequency components from mul-
tiple sources. However, the spectrum of the envelope vibration signal, that can be
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recovered using the envelope demodulation technique, is exempt from most of the
useless frequencies. The frequency components related to bearing damage are quite
prominent in the envelope spectrum and most of them could be obtained by picking
out spectral lines with the highest amplitudes.

So we here deal with the discrimination between the conditions of bearing faults
based on a global spectral analysis. This global spectral analysis allows to obtain
spectral features with significant discriminatory power. These features are extracted
from the envelope spectra of vibration signals without prior knowledge of the bear-
ings specific parameters and the characteristic frequencies. The extracted spectral
features form the global spectral signature produced by the bearing faults. The
global analysis method combines performances of the envelope analysis, the slid-
ing FFT and the principal component analysis to establish the faults classification
space. No complex statistical classifiers are involved in the classification.

Usually, the signature of faults in the bearing balls is very weak and hard to
be detected and identified. Moreover, the diagnosis of faults in the bearing balls is
less broached in the literature compared to the other bearing faults types. This is
due to the fact that introducing an artificial defect into the races is easier than into
the balls, and besides, the ball faults signature is always very weak because of the
double rotating motion of the balls. Therefore, this work proposes to enhance the
diagnosis of ball faults, using the Linear Discriminant Analysis as part of the global
spectral analysis method. The method will be applied to experimental vibration
data acquired from bearings containing different types of faults with different small
sizes. The Bhattacharya distance and the classification error rates will be evaluated
in order to confirm the efficiency of the obtained results.

4.4.3 Method description

4.4.3.1 The global spectral analysis description

The feature vector, of dimension m, will be formed with the absolute amplitude of
spectral lines at the ball pass frequencies, their multiple harmonics and the side-
bands related to their modulations by other frequencies including mainly the ro-
tational frequency and the cage frequency. These spectral lines are automatically
extracted from the spectrum of the envelope vibration signal corresponding to each
fault condition, by selecting the dominant frequency components with respect to a
specified threshold. The formed vector contributes, using the Fast Fourier Trans-
form (FFT) technique, to construct an amplitude matrix X carrying information
from the different fault conditions of interest. To fill the matrix X, there is no need
to have a huge amount of data corresponding to each fault condition. Besides, each
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envelope signal is decomposed into several data segments using a sliding window
of samples. The FFT is computed on the different segments to get the amplitudes
of retained spectral features. Afterwards, Principal component Analysis (PCA) is
applied on the spectral matrix of information to get a lower dimensional principal
subspace highlighting the differences and the similarities contained into X. This
subspace represents the output space for classification and diagnosis.

Fig.4.13 summarizes the global approach. It comprises of four main steps:

Figure 4.13: The global spectral analysis description

• Step 1: Measurements space. It contains vibration signals corresponding to
all conditions of interest: the healthy and all faulty conditions of the bearings.
Signals acquired from several operating points of the machine can be included
in order to get a general behaviour space for diagnosis.

• Step 2: Data pre-processing. It consists mainly in the envelope analysis. The
vibration signal corresponding to each fault condition is first band-pass fil-
tered around the region of natural frequencies. The spectral kurtosis, the
kurtogram or its recent improvements [64, 65] can be used to select the bear-
ing resonant frequency bands. However, the difference in dB-spectra compared
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to the kurtogram has been shown effective enough to identify the frequency
region of interest [66, 46]. It represents the difference between the dB-spectra
of a healthy vibration signal and a faulty one, and it just requires historical
data to be available. The envelope signal is then given as the modulus of
the analytic signal obtained using Hilbert Transform. FFT is applied to each
envelope signal in order to extract the spectral features from its spectrum.

• Step 3: Spectral features selection. The line spectrum of each envelope signal is
scanned to pick out only the frequencies of highest amplitude. The set of dom-
inant frequencies associated with each fault condition is supposed to include
the specific fault frequencies, i.e. the ball pass frequency, several harmonics
and sidebands related to their modulations by the rotational frequencies. The
rotational frequencies and their multiple harmonics can be selected during the
extraction. However, all the common frequencies are withdrawn from the to-
tal set of features in order to keep only the distinguishing components. The
scanned frequency range can be reduced, since for normal speeds the charac-
teristic fault frequencies are usually less than 500 Hz.

Figure 4.14: Matrix design for analysis

• Step 4: Fault diagnosis space. The X matrix is formed as shown in Fig.4.14
with m retained frequencies fi, i = {1, ..., m}, considered as variables or fea-
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tures. It contains several (k in Fig.4.14) sub-matrices each referring to an
operating point of the machine, i.e. a particular fault type with a particular
severity level. Each envelope signal is decomposed into several data segments
using a sliding window of samples in order to construct the associated sub-
matrix in X. At each position of the window, the FFT is computed on the
corresponding data segment and the absolute amplitudes of the retained vari-
ables are acquired and arranged into X as a row sample. The size of the
window is chosen with reference to a trade-off between the frequency resolu-
tion and the number of samples in the sub-matrices. PCA is then applied to
the covariance matrix of X to get the output PCA space for classification.

4.4.3.2 Discrimination of faults in the bearing balls using LDA

PCA and LDA are linear transformations that can be used to perform dimensional-
ity reduction. However, theoretically, LDA leads to better data classification than
PCA: PCA performs dimensionality reduction while preserving as much of the total
variance in the high dimensional space as possible whereas LDA performs dimen-
sionality reduction while preserving as much of the class discriminatory information
as possible. This analysis technique considers maximising the following objective,
also called Fisher criterion [67]:

J(u) =
uT SBu

uT Swu
(4.7)

where SB is the between classes scatter matrix and Sw is the within classes scatter
matrix. If the number of classes to be discriminated is c, the LDA projects the space
of the original variables onto a (c−1) - dimensional space which axes u are obtained
by maximising (4.7). Intuitively, this operation is a compromise between maximis-
ing the distance between the projected centers of classes, and the minimisation of
their variances, thereby facilitating classification. By using Lagrange multipliers, the
solution to this problem yields u as the eigenvector of S−1

w SB associated with the
largest eigenvalue. The eigenvectors associated with the largest eigenvalues define
discriminating axes which span the LDA space for classification. For any c - class
problem we would always have c − 1 non-zero eigenvalues.

In the global spectral analysis method, LDA will substitute PCA in order to
improve the discrimination among different sizes of ball faults [68]. So, LDA will
be applied to the data set excluding data of races’s faults. As shown in Fig.4.15,
only the samples corresponding to the healthy and the ball faults (BF) conditions
(including all operating points) are considered to build the LDA transformed space.
The original space is still formed with the specific frequencies fi for i = {1, ..., m},
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Figure 4.15: Data set design for LDA

that were extracted according to the diagram given in Fig.4.13.

Mathematically formulating the transformation, consider N samples {x1, x2, ..., xN }
of dimension m where Ni of the samples belongs to class Ci, i = 1, 2, ..., c. Let µi

be the mean of class Ci and µ be the mean of entire data given by:

µi =
1

Ni

∑

xn∈Ci

xn, µ =
1

N

N∑

n=1

xn. (4.8)

The between classes scatter matrix can be estimated as:

SB =
c∑

i=1

(µi − µ)T (µi − µ) (4.9)

The within classes scatter matrix is estimated as:

Sw =
c∑

i=1

Si where Si =
∑

xn∈Ci

(xn − µi)
T (xn − µi) (4.10)

The eigenvector decomposition of S−1
w SB yields the transformed LDA space as

spanned by the eigenvectors corresponding to non-zero eigenvalues. Projecting the
original data set {x1, x2, ..., xN } onto this space allows the classes separability.
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4.4.4 Experimental data

4.4.4.1 Experimental test bed description

The proposed methodology has been proved on experimental data. As an example,
we present here the results obtained using the Case Western Reserve University
(CWRU, Bearing Data Center) vibration data [69]. According to the description

Figure 4.16: Test-bench of Case Western Reserve University

given by the provider of the test data, the test stand, shown in Fig.4.16, consists of a
3hp motor (left), a torque transducer/encoder (centre), and a dynamometer (right).
The test bearings, including drive end and fan end bearings, support the motor
shaft. Vibration data were collected using 3 accelerometers, which were attached to
the housing with magnetic bases at 3, 6 and 12 o’clock positions. 6 o’clock position
is located in the load zone, 3 o’clock is orthogonal to load zone, and 12 o’clock is in
the bearing clearance zone. Results are shown here for vibration signals from the
orthogonal accelerometer.

Single point faults are introduced separately at the inner raceway, the balls and
the outer raceway using electro-discharge machining (EDM). SKF 6205 series deep
groove ball bearings are used in the experiments. The geometrical specifications of
the bearing are: ball diameter db= 7.94 mm; pitch diameter Db= 39.04 mm; number
of balls nb= 9; and contact angle φ= 0.

Vibration signals are acquired, at a sampling frequency of 12 kHz during 10
sec, using an accelerometer mounted on the housing of an induction motor system
coupled to a load that determines the motor speed (step 1). A 2 Hp Reliance Electric
motor is used, and experiments are repeated for the motor being unloaded (0%),
50% loaded and full loaded (100%).

Three types of faults, i.e. outer race fault ORF, inner race fault IRF and ball
fault BF, and two sizes (180 µm and 530 µm) for each fault are considered, so that
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the dataset can be divided into 7 classes including one class for healthy bearings
and one class for each fault condition. For each class, there are three 10-second
vibration signals each associated with an operating point. For the LDA application,
three classes are considered including the healthy class and the two classes for two
sizes of faults in bearing balls. The faults created can be considered incipient: the
smallest hole (0.18 mm) represents 1/44 of the ball diameter (db= 7.94 mm) and
the more serious one (0.53 mm) is of 1/15.

4.4.4.2 Time-domain detection

Even a perfect bearing produces vibrations when loaded, due to the rotation of its
elements [60]. They are called varying compliance vibrations. The healthy vibra-
tion signal however can be assumed as stationary random process and simulated as
Gaussian noise. When metal-to-metal contacts occur between rotating elements and
the faulty surface, the vibration signal shows transient impulses. Variance analysis
(Root-Mean Square (RMS) level), crest factor which is the ratio of peak-value to
RMS, Peak-to-Peak analysis, kurtosis and skewness analysis, are commonly used to
detect the non-Gaussian components of vibration signals [70, 71]. They are either
used to detect faults on the basis of a threshold that corresponds to Gaussian distri-
bution, or fed to a pattern recognition-based classification system in order to make
faults diagnosis.

The KL divergence can likewise be used to detect the deviation of the vibrations
distribution from its Gaussian reference. Healthy vibrations, from which the refer-
ence distribution can be calculated, must be available. The probability distributions
should share the same support, for being able to compute the divergence. This is
plausible in case of faults that have weak signature, which introduces distortions
along the distribution shape without changing its form or shifting it. Otherwise,
the KL information has to be computed instead of the divergence. Fig.4.17 shows
the vibration signals at the nominal load acquired from a healthy bearing and a
bearing with a 0.007-inch ball fault. The ball fault produces high amplitude vibra-
tions. The IR and OR faults produce vibrations with greater amplitude, due to the
shorter transmission path between the shock position and the transducer. Fig.4.18
displays the probability density functions estimated for the healthy, 0.007-inch BF
and 0.007-inch IRF vibrations acquired at the nominal load level. Scalars, such as
the variance or the peak-to-peak value, are able to detect such faults. KL informa-
tion can likewise be used, although it involves a higher computational cost. The
healthy pdf (continuous pdf line) is normal and it is set as reference for computing
the information. Each vibration signal is decomposed into 20 segments, and the
KL information is computed on the pdf estimated for each segment. Fig.4.19 shows
the results obtained for the 3 BF and 3 healthy vibration signals at our disposal.
The KLI computed on successive vibration data segments gives near-zero values
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for healthy vibration signals, and relatively large values for faulty vibration signals.
However, as it has been mentioned, the difficulty is rather to localise than to detect
the bearing fault. In the sequel, the vibration signals will be processed according to
the global approach we propose in order to make the diagnosis.
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4.4.4.3 Data preprocessing

The pre-processing (step 2) consists mainly in the envelope analysis. This technique
has been considered as the benchmark method for bearing diagnosis because it aims
at recovering the impulsive signal indicative of the bearing fault presence. The
fault characteristic frequencies, if they are already known, should show up into
the envelope spectra. The ball fault characteristic frequency, so called ball spin
frequency (BSF), is theoretically given by:

BSF =
frDb

2db



1 −

(
db

Db

cosφ

)2


 (4.11)

where fr is the shaft speed. Fig.4.20 depicts the envelope spectra corresponding to
ball faults, the motor being 100% loaded and rotating at 1750 rpm. The BSF cal-
culated using the specifications of the bearings and the considered rotational speed
gives 68.88 Hz. Conventionally, the BSF or the even harmonics (2BSF ) should be
dominant in the envelope spectra, which is not exactly satisfied in this case as shown
in Fig.4.20. For a fault size of 180µm, some frequency components close to BSF
(69.95 Hz) and 2BSF (139.8 Hz) show up instead of the fault frequencies and they
are not even dominant. The fault frequencies are barely noticed in the spectrum
associated to 530 µm fault size.

Therefore, the diagnosis of faults in the bearing balls can not simply rely on
the occurrence of the fault characteristic frequencies. However, the application of
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Figure 4.20: Envelope spectra corresponding to BF of size - a : 180µm,- b : 530 µm

the proposed method along with the Linear Discriminant Analysis will be able to
discriminate the faultless against the faulty bearings and to distinguish between the
two fault sizes without even the estimation of the fault frequencies.

4.4.5 Results with PCA

One of the advantages of the proposed method is that it can easily include multiple
operating points. The data available here concern the motor being unloaded (0%),
50% loaded and full loaded (100%). 45 dominant frequencies are extracted from the
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available data (step 2), 15 frequencies per operating point. The window of samples
slides along each envelope signal with 30% overlap between two successive positions,
so that 140 data segments are obtained from each signal. The data segment repre-
sents 5 motor rotation cycles (step 3). For each data segment, the FFT is computed
and the absolute amplitudes of the retained 45 features constitute a row sample into
the X matrix (steps 4). As a result, the spectral matrix X consists of 7 sub-matrices
each containing 140*3 samples which represent a fault condition, i.e. a fault type
and size.

PCA reduces the 45 - dimensional space into a 2 - dimensional principal sub-
space spanned by 2 principal components which preserve 89% of the total variance.
Projecting the data into the PCA space gives the classification displayed in Fig.4.21.
Seven classes are obtained and separated with reference to the fault type and size
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Figure 4.21: Discrimination of bearing faults

whatever the operating point. The classes related to ORF, IRF and BF are well
separated and discerned from the healthy class. The classification differentiates be-
tween the two sizes of the faults in the races. However, the classes related to ball
faults overlap and the discrimination between the two fault sizes is poor.

Fig.4.22 represents a zoom into the PCA space on healthy and BF data. The
2-D probability density function (pdf) for each of the BF classes is estimated and
the contours of the obtained pdfs are displayed in Fig.4.23. The 2-D pdfs exhibit an
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Figure 4.23: Contour of pdfs estimated for the BF classes into the PCA space

important region of intersection which implicitly induces a high rate of classification
error. Table 4.4 displays the leave-one-out cross validation rates associated to the
classification of ball faults into the PCA space using a linear discriminant boundary
between the two classes. The linear boundary is applied to the BF classes projected
into the PCA space, where there is a loss of 11% of information. Surely, a quadratic
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Table 4.4: Confusion matrix (PCA space)

C1-Healthy C2-BF180 C3-BF530
C1-Healthy 420 (100%) 0 0
C2-BF180 0 326 (77.6%) 94 (22.4%)
C3-BF530 0 58 (13.8 %) 362 (86.2%)

or any kernel function can likewise be used to separate between the PCA classes.
However, a linear boundary is chosen to be compared to the result that will be
obtained with the LDA.

4.4.6 Results with LDA

The data set designed as described in Fig.4.15, contains here 3 classes: C1 that
gathers data from healthy bearings, C2 and C3 that represent BF with 2 sizes, 180
µm and 530 µm respectively. Data from the three considered operating points are
included into each class. The information into the classes is formed with the same 45
spectral features already used to perform PCA. Each class contains 140*3=420 sam-
ples representing the absolute amplitudes of the specific frequencies, for the three
conditions of motor load.

The LDA reduces the original 45 - dimensional space into a 2 - dimensional
space which, contrary to the PCA space, does not induce any loss of information.
Two discriminant axes, also called Fisher axes, are obtained. Fig. 4.24 shows the
projection of the data set into the LDA space, and their estimated 2-D pdfs. The
eigenvalue associated with each of the discriminant axis indicates its discriminatory
power; the first discriminant axis is responsible for 95 % of discrimination between
the classes, and the second one for 5%. Compared to those obtained previously, the
contours of the pdfs depicted in Fig.4.25 are better separated and show a narrower
intersection. Table 4.5 displays the leave-one-out cross validation rates estimated
into the LDA space. The cross validation errors decrease from 22.4% to 9% and

Table 4.5: Confusion matrix (LDA space) [72]

C1-Healthy C2-BF180 C3-BF530
C1-Healthy 420 (100%) 0 0
C2-BF180 0 382 (91%) 38 (9%)
C3-BF530 0 23 (5.5%) 397 (94.5%)

from 13.8% to 5.5%, thus confirming the contribution of the discriminant variables
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to the classification of ball faults.

Beside the cross validation errors, a measure of class separability can be used
to quantify the improvement achieved in the discrimination between BF sizes. A
well-known class separability measure is the Bhattacharyya distance. It has been
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used for pattern recognition and feature selection [73], and for the estimation of the
classification error [74]. For two normally distributed classes, the Bhattacharyya
distance is defined as follows:

B =
1

8
(µ2 − µ1)

T

[
S1 + S2

2

]−1

(µ2 − µ1) +
1

2
ln

| (S1 + S2)/2 |
| S1 | 1

2 | S2 | 1

2

(4.12)

where µi and Si are the mean vector and covariance matrix for class Ci. Normally,
this distance evaluates the separation of the classes and the higher its value is, the
more the classes are separated.

Eq. (4.12) is used to quantify the separation between the BF classes after their
projection into the PCA and LDA spaces. This assumes that the projected classes
are normally distributed, which could be inaccurate, since the distributions are not
perfectly normal as shown in the figures above. However, it gives a simple and
straightforward tool to make conclusion. In addition, each class contains here only
420 samples. For a larger size, the distributions would be closer to normal.

The Bhattacharyya distance, calculated between the two BF classes, gives:

• into the PCA space: B = 0.39

• into the LDA space: B = 1.1

The Bhattacharyya distance between the classes in the LDA space is 3 times greater
than the value obtained in the PCA space. Therefore, these values confirm that the
discrimination of ball faults according to the fault size has been improved using
LDA. The LDA extracts from the original spectral features a few discriminating
features more adequate than the principal components to make the discrimination
between different sizes of faults in the bearing balls.

Many works that propose fault diagnosis approaches use the same experimen-
tal data as used in this work to validate their methods. The most recent work
uses a combination of singular spectrum analysis (SSA) and artificial neural net-
work (ANN) to classify bearing faults according to their types and sizes [75]. The
authors therein compare their method with the recent published works. SSA is
applied to vibration signals from each bearing condition. Features that are fed to
a feed-forward back propagation neural network, are empirically chosen as being
the singular values that distinguish the best the different bearing conditions. The
classification accuracy varies from 95% to 100%. The presence of noise contributes
to more accurate classification, which seems somehow a strange finding and still not
justified in the study. Neural network model development, beside being empirical,
is a computationally intensive procedure that requires a great computational time.
In our work, the frequency features that are selected as the dominant components
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into the envelope vibration spectra are discriminative enough so to avoid resorting to
complex classifiers. Equivalent classification accuracy has been obtained while using
simple multivariate statistical methods that helps reducing the data dimensionality.

4.5 Conclusion

In engineering systems, the incipient material damages have a weak signature in the
sensor measurements. A global analysis approach, that detects broad changes in the
generated data, is needed to reveal the incipient fault signature, which is masked
by noise. It requires historical data generated by the process in healthy and faulty
conditions to be available.

A global time-domain analysis approach applied to ECT signals has proven its
efficiency in the detection and characterisation of minor cracks in conductive plates.
It is based on KL divergence, which is used as a global fault indicator showing
high sensitivity to the small changes in sensor impedance caused by the presence of
cracks. The PCA applied to the statistical parameters of the ECT signals allows to
obtain a characterisation subspace with a trivial modelling effort.

A global frequency-domain approach has been shown effective to differentiate
among different types and sizes of electrical machine faults, specifically bearing
faults. The approach overcomes the prior knowledge of characteristic faults fre-
quencies. High-level features have been extracted using the PCA applied to the
overall spectral signature of faults. The LDA allows for improving the discrimi-
nation results of faults in bearing balls. The two techniques lead to classification
subspaces that perform faults discrimination according to the faults types and sizes
irrespectively to the machine operating point.
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Conclusions and perspectives

The fault detection and diagnosis is a basis function of condition-based monitor-
ing system. An efficient FDD algorithm that provides early warnings of faults and
identifies the fault type/location and severity is essential to make the appropriate
maintenance and control measures. The result is an increase in the availability, re-
liability and safety of industrial processes.

The sensor(s) data which can be of different types, i.e. electrical, mechanical,
acoustic, thermography, etc. are generally processed through transformations that
reveal the faults signature in form of artificial signals, i.e. ’residuals’, or features.
These transformations can be either quantitative and/or qualitative model-based, or
data-driven using advanced signal processing techniques and multivariate analysis.
Data-driven approaches which do not require any form of signal/process model are
especially useful when it comes to large-scale and complex multi-physics systems
with coupled and non-linear phenomena. This is the case of most processes involved
in industry and transportation, where the a priori knowledge available about the
process dynamics is usually not sufficient for building an accurate explicit model.
Data-driven approaches require a minimum of prior knowledge and modelling effort.
They allow for an efficient fault detection and diagnosis, providing that a good his-
torical database, which covers all operating points and fault scenarios, is available.
In the context of data-driven approaches, the problem of FDD was addressed for
the special case of incipient faults, and for the particular case where they are buried
in noise.

Real faults at incipient stage cause imperceptible changes that range near the
noise level (FNR ≤ 0 dB) in the process measurements. The statistical process
monitoring uses statistical control charts that are basically designed to detect shifts
in parameters of the process probability distribution. The detection of incipient
faults, however, requires the fault indicator to be sensitive to small general changes:
in real applications, the process data can have nondescript probability distributions
and the incipient fault signature is weak and unpredictable. In this distribution-free
and non-parametric framework, the Kullback-Leibler divergence was proposed in
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the second part of the study to detect the global change caused by incipient faults.
Using numeral examples, the divergence proved to have a better detection perfor-
mance than the one obtained with the T2 and the SPE. The latter statistics are
usually used for fault detection with the multivariate subspace projection methods,
but compared to the divergence they showed poor capability to detect the short
duration change (10% of sample size) whose amplitude is less than 10% of the signal
magnitude. For such faults and favourable conditions of noise (SNR = 35 dB), the
divergence achieved zero probabilities of detection errors. In noisy environments
(SNR ≤ 25 dB), the divergence sensitivity with respect to incipient faults can be
readily enhanced by computing the divergence on large data samples.

In the third part of this work, the fault amplitude estimation using the KL
divergence was addressed. In PCA-based data representation and under some as-
sumptions of data and fault modelling, a theoretical study was conducted to build
an analytical model of the divergence that is a function of the PCA’s parameters
and the fault amplitude. A theoretical fault amplitude estimator that depends on
the divergence value was obtained. The estimator, when evaluated on numerical ex-
amples, gave an overestimation of the actual fault amplitude, guaranteeing a safety
margin for the monitored process. The estimation accuracy was evaluated for incip-
ient faults in both favourable and worst conditions of noise level and data size. In
worst case, the relative error obtained on the estimation of the faulty variable did
not exceed 1%.

As an alternative to the ’global’ monitoring of probability distributions in time-
domain signals, a ’global’ analysis of the signals spectra was shown to be relevant
in diagnosing incipient faults having a spectral signature. The ’global’ approach
was validated by application to non-destructive inspection-based damage detection.
Many engineering systems are subject to faults that start with small material cracks,
but can rapidly develop into a serious damage leading to a catastrophic failure. En-
suring the integrity of structures is crucial for safety-critical applications like aero-
planes, ships, submarine, nuclear reactors, etc.

A first application study was dedicated to the detection and characterisation
of small surface cracks in conductive structure using experimental ECT data. The
detection of the smallest cracks, typically the cracks with length={0.1 mm,0.2 mm}
and depth=0.1 mm, was challenging: the change in the probe impedance due to the
crack presence was very weak and concealed by the noise. The disparity between the
pdfs of the reference ECT signal and the faulty one was small enough so that the first
statistical moments failed to detect the difference. The KL divergence, in contrast,
was able to reveal the dissimilarity, making small cracks detection successful. In
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addition, a characterisation subspace for crack severity assessment was built based on
the statistical analysis of the ECT signals. PCA when applied to several statistical
features, including the divergence, gave two principal components which are sensitive
to the length and surface of cracks.

In a second study, the detection and diagnosis of bearing faults in electrical
rotating machines using vibration signals was of concern. A 2-dimensional PCA
subspace for fault classification was obtained based on the analysis of the ’global’
spectral signature of faults. Except for the discrimination among ball fault sizes, the
PCA subspace was shown able to discriminate among different types (BF, ORF and
IRF) and sizes (2 small sizes for each fault) of bearing faults. The detection of ball
faults is known to be the most critical and difficult compared to the other bearing
fault types, since the associated signature is usually very weak and masked by the
high noise level of vibration signals. However, the LDA when it was applied to the
dominant spectral features of the vibration spectra, contributed to improving the
discrimination results of faults in bearing balls. The two multivariate techniques led
to classification subspaces that allow the discrimination among the faults types and
sizes without being related to the machine operating point. In addition, the ’global’
frequency-domain analysis is less dependent on the characteristic fault frequencies,
their exact positions and prior knowledge.

Concerning future works, both theoretical issues and applications could be ad-
dressed.

Despite the promising results for fault detection and identification in ECT, there
is still an issue for very small cracks with surfaces less than 100 mm2. The introduc-
tion of analytical knowledge in the classification step would improve the character-
isation capability. Moreover, it would be useful to develop an analytical model for
the fault identification or characterisation from the experimental data. The method
will then be easier to implement for real-time embedded applications.

Furthermore, data driven methods have proven to be efficient for large dis-
tributed systems. KL divergence should be evaluated for fault diagnosis in micro-
grids, in offshore networks where access to all measurements is tedious or impossible
and in transportation applications. To enhance the theoretical contributions, one
can:

• improve the performance (e.g. missed detection and false alarm probabilities)
of the fault detection by the optimisation of the detection threshold

• enhance the evaluation of the influence of the different parameters (data size,
detection threshold, SNR, ...) on the KL divergence fault detection capability
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• extend the analytical model for fault severity estimation to other types of
probability distribution

• extend the KL divergence capability to prognosis with the use of dynamic
multi-dimensional data representation

• develop a hybrid approach based on the judicious combination of data-driven
and analytical fault diagnosis problem formulations
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A1. MATLAB functions

% X: reference data matrix [m × N ]
% Xf: faulty data matrix [m × N ]
% S: covariance matrix [m × m]
[m,N]=size(X)
aveX=mean(X);
Xst=X-aveX;
S=Xst’*Xst/N;
P, eigen = eigs(S,m);
T=Xst*P;
———————————————————
% normalised reference pdf of the kth principal component T(:,k):
[h,u]=ksdensity(T(:,k));
h = h./sum(h);
———————————————————
% normalised faulty pdf of the kth principal component Tf(:,k):
Xfst=(Xf-aveX);
Tf=Xfst*P;
q=ksdensity(Tf(:,k),u);
q = q./sum(q);
———————————————————
% KL divergence approximation:
D̂=sum((h-q).*log(h./q));
———————————————————
% The divergence threshold for a particular probability of false alarm
The divergence threshold is calculated irrespectively of the fault characteristics, but
from training (fault-free) data, according to the procedure described in Fig.4.26.
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Figure 4.26: Divergence threshold ǫsafe calculation for a particular PF A

A2. Setting parameters of the divergence measure

Three parameters are needed to approximate the divergence measure using the em-
pirical probabilities:

• the number nI of the disjoint intervals or bins or equally spaced points

• the type of the applied kernel function

• the bandwidth of the kernel window

The statistics toolbox of MATLAB provides the user with the function ksdensity(x)
that estimates the probability density for a vector x at nI equally spaced points us-
ing a kernel smoothing function, that can be normal, box, epanechnikov or triangle.
The function hist(x) calculates the histogram of x, from which the probability dis-
tribution histogram can be estimated. The latter corresponds to the application of a
rectangle kernel in the kernel density estimation. The calculation of the divergence
through probability distribution histograms is faster than via kernel density esti-
mates, but the kernel density estimate is more robust with respect to noise, which
is important for the detection purpose. To illustrate the effect of the kernel type
on the detection performance, we evaluate the missed detection probability PMD



Appendix 157

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

 a

P
M

D

 

 

normal,  n
I
=100

box,  n
I
=100

epanechnikov,  n
I
=100

triangle,  n
I
=100

rectangle,  n
I
=100

rectangle, n
I
=10

rectangle, n
I
=20

rectangle, n
I
=5

Figure 4.27: PMD versus the fault amplitude a, different kernels

on the numerical process used in chapter 1 (reminder: the variable x1 is faulty, the
divergence is calculated on the first principal component t1). The evaluation is car-
ried out in the following conditions: the data length N = 1000, the SNR = 15dB
and the N observations are supposed faulty. Fig.4.27 is obtained. The divergence
calculated via histograms has poor detection performance compared to its counter-
part that uses kernel density estimates. The other kernels have similar detection
performance. This result can be interpreted by the fact that the divergence per-
forms a relative comparison between probability distributions, and thus an accurate
representation of the underlying distributions is not necessary for the purpose of
fault detection. The PMD is also evaluated for different number of disjoint bins
(nI), in case of normal kernel density estimation. Fig.4.28 is obtained, and it shows
that a too low number of bins (nI=10 when N=1000) can degrade the detection
performance. Otherwise, any reasonable number of bins can be used. The results
that were presented are obtained with a normal kernel and nI = 100 .

The kernel bandwidth is the smoothness factor of the probability density es-
timate. The optimal bandwidth depends on the true underlying density, and the
common method to choose the optimal bandwidth is to use the bandwidth that
minimises the AMISE (Asymptotic Mean Integrated Squared Error) criterion. The
default bandwidth h0 used by ksdensity is optimal for estimating normal densities.
The function allows however choosing another value. It is worth reminding that
the problem of fault detection using KL divergence is not related to the problem of
accurately estimating the underlying probability densities. The setting parameter
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Figure 4.28: PMD versus the fault amplitude a, normal kernel

values that maximise the sensitivity of the divergence to small faults and its robust-
ness to noise are not necessarily those which accurately estimate the pdf. Fig.4.29
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Figure 4.29: PMD versus the fault amplitude a, different normal kernel bandwidths

shows the probability of missed detection, for different values of the normal kernel
bandwidth. In general, small kernel bandwidth values lead to undersmoothed esti-
mates, while large values lead to oversmoothing. With increasing bandwidth, the
pdfs get less sensitive to the random variation in the random data, thus increasing
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the sensitivity to the small deterministic variation due to faults. That is how we in-
terpret the behaviour shown in Fig.4.29. So high values of the kernel bandwidth are
recommended for the purpose of fault detection. However, all the results presented
in this dissertation were obtained with the default bandwidth h0 : the detection
and estimation performance were satisfactory even with a non-optimal parameters
setting.


