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L’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité
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M. Rafael BRAVO DE LA PARRA Rapporteur
M. Bernard CAZELLES Examinateur
M. Mohamed KHALADI Examinateur
M. Huu Du NGUYEN Co-directeur de thèse
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Vous représentez pour moi plus que mes ”simples” directeurs de thèse.
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à l’Université Pierre et Marie Curie, respectivement ancien directeur et actuelle di-
rectrice de l’école doctorale 393 Pierre Louis de Santé Publique de m’avoir accepté
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laborateurs. Grâce à vous, nous avons pu obtenir des résultats qui sont publiés et
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Résumé

Résumé: Dans ce travail de thèse, nous étudions des modèles mathématiques
de la dynamique des populations en environnements déterministe et stochastique.
Pour les environnements déterministes, nous considérons trois modèles. Le premier
est un modèle intra-guilde prenant en compte des e↵ets d’un environnement spa-
tial hétérogène avec une migration rapide des individus entre les di↵érents sites.
Le deuxième est un modèle de pêche dans une zone constituée d’une aire marine
protégée où la pêche est interdite et d’une zone où la population de poissons est
pêchée. Enfin le troisième est un modèle prédateur-proie considérant une proie et
deux prédateurs avec des réponses fonctionnelles de Beddington-DeAngelis. Pour
les environnements stochastiques, nous étudions un modèle épidémique SIRS et un
modèle prédateur-proie en prenant en compte un bruit télégraphique. Nous étudions
le comportement dynamique de ces modèles et nous recherchons les conditions de
maintien ou de disparition des espéces modélisées.

Mots clés: Prédation intra-guilde, migration rapide, bancs de poisson, zone
de protection marine, système à trois niveaux, équation de Lotka-Volterra, système
prédateur-proie, modèle SIRS, bruit télégraphique.
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Abstract

Abstract: In this thesis, we consider mathematical population dynamics mod-
els in deterministic and stochastic environments. For deterministic environments,
we study three models: an intraguild model with the e↵ects of spatial heteroge-
neous environment and fast migration of individuals; a fishery model with Marine
Protected Area where fishing is prohibited and an area where the fish population
is harvested; a predator-prey model which has one prey and two predators with
Beddington-DeAngelis functional responses. For stochastic environments, we study
SIRS epidemic model and predator-prey models under telegraph noise. We try to
present the dynamical behavior of these models and show out the existence or van-
ishing of species in the models.

Keywords: Intraguild predation, fast migration, fish school, marine protected
area, three level system, Lotka-Volterra equation, predator-prey system, SIRS
model, telegraph noise.
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Chapter 1

Introduction

1.1 Population dynamics

1.1.1 Single species growth

The exponential growth model

In 1798 Malthus published a book entitled An Essay on the Principle of Pop-
ulation [94]. In this book he investigated the simplest population model of single
species

dx

dt
= bx� dx, (1.1.1)

in which b and d are per capita birth and death rate, x(t) is the population size of
the species at time t. The equation (1.1.1) can be written more succinctly as

dx

dt
= rx, (1.1.2)

where r = b � d is known as the intrinsic growth rate of species or the Malthusian
parameter. If x(0) = x

0

is the size of population at the initial time, the equation
(1.1.1) has solution x(t) = x

0

ert. The growth rate r is positive only if birth rate is
higher than death rate and then x(t) = x

0

ert ! 1 as t ! 1. The model (1.1.1)
is suitable for the growth of species, like bacteria in a nutrient-unlimited supplied
environment.

The Logistic model

The fact that many resources are available only in limited quantities, it is im-
possible to have unlimited exponential growth of any population over the long run.
Moreover, a large population implies fewer resources for each individual. This reason
leads to logistic model which is first introduced by Verhulst [143] and later studied
further by R. Pearl and L. J. Reed [114]

dx

dt
= rx(1� x

K
), r,K > 0. (1.1.3)
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It is observer that ẋ ⇡ rx if x small, and ẋ ⇡ 0 when x is near K. It means that for
small x the population dynamics is just the exponential growth, when x is near K
the size of population hardly changes. Simultaneously, if x is large, the individuals
of the species compete with each other for fewer resources.

By solving equation ẋ = 0, we see that the equation (1.1.3) has two steady states
(also called equilibrium or rest point) x⇤ = 0 and x⇤ = K. With population size at
time t = 0 is x

0

, the solution of model (1.1.3) is obtained as follows

x(t) =
Kx(0)ert

K + x(0)(ert � 1)
. (1.1.4)

From the equation (1.1.3) and solution (1.1.4), we see that if 0 < x < K then ẋ > 0
and x(t) increases asymptotically to K, if x > K, ẋ < 0 and x(t) decreases asymp-
totically to K as t ! 1. Hence K is called carrying capacity of the environment
and it is the population size of species that available resources can support.

Figure 1.1: Solutions of logistic model

Other single species models have been used by many ecologist, for example:

ẋ = x(b+
a� x

1 + cx
x) (Pianka 1972)[117],

ẋ = rx(1� (
x

K
)✓) (Gilpin and Ayala 1973)[61],

ẋ = rx(
I

x
� C � bx) (Schoener 1973)[129],

ẋ = �axlog(
x

K
) Gompertz’s model (Swann and Vincent 1977)[135],

where a, b, c, r, ✓, K, I, C are positive constants.
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Table 1.1: Organizing ecological interactions.
E↵ect on species 1 E↵ect on species 2 Type of interaction

0 0 Neutralism

� � Competition

+ � Predation

+ + Mutualism

+ 0 Commensalism

0 � Amensalism

1.1.2 Biological interaction

In ecology, biological interactions can involve individuals of the same species
(intraspecific interactions) or individuals of di↵erent species (interspecific interac-
tions). Here we concentrate the interaction between species (interspecific interac-
tions), they are categorized as either neutralism, competition, predation/parasitism,
mutualism/symbiosis, commensalism or amensalism (see Table 1.1). In this section,
we are interested in competition, predation and mutualism.

Competition is a negative interaction that occurs when organisms of di↵erent
species use the same resource(s) at the same time and the growth rate of each species
is decreased. Examples of competition are Asterionella formosa and Synedra ulna
[141], ants and rodents near Portal, Arizona [142].

Predation is most commonly considered to be an interaction where an organism
(predator) consumes all or part of another living organism (its prey) thereby ben-
efiting itself, but reducing the growth of the prey. For examples, lynx prey upon
hares [105], cheetahs and wild dogs kill gazelles [142].

Mutualism is the positive interaction that species provide resources or services to
each other and each species’s growth rate is enhanced. One example of mutualism
is the relationship between Labroides dimidiatus (cleaner fish) and Hemigymnus
melapterus (client fish) [142].
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1.1.3 Lotka-Volterra systems

The general Lotka-Volterra equation

The classical Lotka-Volterra model is a pioneering work of Lotka and Volterra
in the beginning of twentieth century [25, 105, 137]. The general Lotka-Volterra
equation for n population is of the form

ẋ
i

= x
i

(r
i

+
n

X

j=1

a
ij

x
j

) i = 1, ..., n. (1.1.5)

The x
i

denote densities of i-th species, the growth rate r
i

are intrinsic growth (or
decay) rates and a

ij

present the e↵ect of the j-th species upon the i-th species. The
matrix A = (a

ij

), of which the elements are the interaction coe�cients, is called the
interaction matrix. Since populations can not be negative, the state space is the
nonnegative orthant Rn

+

= {x = (x
1

, ..., x
n

) 2 Rn : x
i

� 0 for i = 1, ..., n}.
In this model, the sign pattern of (a

ij

, a
ji

) describes the interaction between the
i-th species and the j-th species. If the sign is (�,�) or (+,+), then the relationship
is competition or mutualism respectively. For predator-prey, it is (+,�) or (�,+).
Some models of these relationship will be introduced in the next section.

The competition model

Let us consider a model of two competing species. They compete for the same
limited resource or in some way inhibit each other’s growth. This model is described
by basic 2-species Lotka-Volterra competition equation with each species 1 and 2
having logistic growth in the absence of the other. It is of the form

(

ẋ = x(a� bx� cy)

ẏ = y(d� ex� fy),
(1.1.6)

in which x,y denote densities of species 1 and 2 respectively; a, b, c, d, e and f are all
positive constants [25, 52] . The relative sizes of c, e determine the competitiveness
of each species.

The system (1.1.6) has 4 equilibria (0, 0), (0, d

f

), (a
b

, 0) and (x⇤, y⇤) =

(af�cd

bf�ce

, bd�ae

bf�ce

). Figure 1.2 shows the all possibilities of solutions of (1.1.6). We
summarize the result of the model (1.1.6) as follows:

• af � cd > 0, bd � ac > 0. In this case there is a positive steady state (x⇤, y⇤)
in the first quadrant and it is asymptotically stable. All positive solutions of
(1.1.6) tend to (x⇤, y⇤) (Figure 1.2(a)). The competition between two species
is not too strong, two species can coexist.

• cd�af > 0, ac�bd < 0. (x⇤, y⇤) is a positive steady state but it is saddle point.
A separatrix divides the first quadrant into two regions, one containing initial
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points for which orbits tend to (a
b

, 0), and the other containing initial points
for which orbits tend to (0, d

f

). The survival of species depends on initial state
(Figure 1.2(b)).

• af � cd > 0, ac � bd > 0. There is no positive steady state. (a
b

, 0) is an
asymptotically stable and all solutions tend to it (Figure 1.2(c)). The species
1 wins and the species 2 will be extinct when t ! 1.

• cd�af > 0, bd�ac > 0. In this case there is no interior steady state, all orbits
tend to (0, d

f

) (Figure 1.2(d)). Interspecific competition of species 2 dominates
the species 1. Species 2 wins and drives the species 1 to extinction.

Figure 1.2: Orbits of model (1.1.6) in four cases of coe�cients

The mutualism model

We study a model in which the two species benefit from the presence of the other.
We incorporate limited carrying capacities for both species. A simple two-species
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mutualism model is given by the next system

(

ẋ = x(a� bx+ cy)

ẏ = y(d+ ex� fy),
(1.1.7)

where a, b, c, d, e and f are all positive constants. x,y are densities of species 1 and
2 respectively [25, 105]. The constants c and e denote the coe�cients interaction
between the two species that increase the densities of species 1 and 2 respectively.

Depending on the relationship between bf and ce, dynamical behavior of solu-
tions have two possibilities.

• If bf > ce then (1.1.7) has one positive steady state (x⇤, y⇤) = (af+cd

bf�ce

, ae+bd

bf�ce

)
and all interior orbits converge to (x⇤, y⇤) (Figure 1.3(a)). Moreover the in-
equalities x⇤ > a

b

and y⇤ > d

f

mean that the species converge to populations
exceeding their carrying capacities.

• When bf < ce, the mutualistic e↵ects are greater than the self-limiting terms in
the per capita growth rates. In this case (1.1.7) has no positive steady state,
unbounded growth occurs and all interior orbits diverge to infinity (Figure
1.3(b)).

Figure 1.3: Orbits of model (1.1.7)

The Predator-prey model

In 1926 Vito Volterra wrote a paper, entitled ”Fluctuations in the abundance of
a species considered mathematically” [16], to explain the change of the amount of
fish in the Adriatic. He denoted by x the density of the prey fishes, also by y that
of predators. He assumed that the growth rate of prey is a positive constant a in
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the absence of the predator and the predators will decay to zero exponentially with
Malthusian parameter c if there exists no prey. This gives the equations

(

ẋ = x(a� by)

ẏ = y(�c+ dx),
(1.1.8)

where the parameter b represents the attack rate of predators, the rate d

b

represents
the conversion e�ciency [52, 105]. At the same time this model was also constructed
by Lotka in the context of chemical kinetics, so it is called Lotka-Volterra model.

(1.1.8) is rewritten as

ẏ(a� by)

y
=

ẋ(�c+ dx)

x
.

This equation can be integrated directly. Then any solution (x, y) of the equation
(1.1.8) satisfies the identity

V (x, y) = �c ln x� a ln y + dx+ by = h,

where the constant h = V (x
0

, y
0

) = �c ln x
0

� a ln y
0

+ dx
0

+ by
0

is determined
by initial conditions (x

0

, y
0

) and system parameters. Thus every orbit of (1.1.8) is
given implicitly by an equation V (x, y) = h. They are periodic orbits with period

T , in which time averages of x(t) and y(t) are constant and satisfy 1

T

R

T

0

x(t)dt =
c

d

, 1

T

R

T

0

y(t)dt = a

b

.

Figure 1.4: Orbits of Lotka-Volterra predator-prey model (1.1.8).

In (1.1.8) the growth rate of prey decreases linearly as a function of the predator
density. In many model the term bxy is replaced by some explicit forms for the
predator functional response

↵y(1� e�x) (Ivlev (1961))[72],
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↵xy

x+ �
(Holling (1965))[68],

↵yx� (1 � � > 0) (Rosenzweig (1971))[125],

✓xy

↵ + �x+ �y
(Beddington (1975), DeAngelis (1975), independently)[23, 48],

where ↵, �, � and ✓ are positive constants.

There are many attempts to apply the Lotka-Volterra predator-prey model to
real-world oscillatory phenomena. Figure 1.5 show the data of the population size of
lynx and snow hare. The data is collected by The Hudson Bay Company [86, 105].
The orbit in Figure 1.5(a) is a more or less closed curve and the oscillation of
population size of two species are presented by Figure 1.5(b).

Figure 1.5: Realistic data of lynx-hare population. (a) Phase plane plot of the data.
(b) Oscillation of population size.

1.2 Mathematical modelling of infectious disease

Infectious diseases can be classified into two broad categories: those caused
by viruses and bacteria are microparasitic diseases, and those due to worms are
macroparasitic. In this section we concentrate on infectious diseases where individ-
uals are infected by pathogen microorganisms (like, for instance, viruses, bacteria,
fungi or other microparasites). Some well known examples of such infectious diseases
are: Influenza, SARS, Reublla, AIDS, Ebola ...(Viral infectious diseases); Cholera,
Plague, Typhus, Leprosy...(Bacterial infectious diseases); Malaria, Taeniasis... (Par-
asitic infectious diseases);...

Mathematical modelling of infectious diseases is a tool to provides understanding
of the underlying mechanisms that influence the spread of disease, explains epidemi-
ological phenomena, and predict the future course in order to control an epidemic.
Here, we summarize some of the simple classical models for microparasitic infections.
In these models we assume the population has no births, deaths, migration and the
total population size is a constant N . We also assume that every individual has an
equal chance to meet any other member of the population and these interactions
are random.
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The SI model

S
�SI��! I

We consider the spread of a disease in a population. We assume that the size
of population is N and fixed. The population has only two class of individuals:
susceptible S and infected class I. � is the disease transmission (infection) rate. So
we have the model

İ = �SI. (1.2.1)

The SI model is the simplest model of an infectious disease. By S + I = N , then
(1.2.1) can be written as follows

İ = �NI(1� I

N
)

This is a logistic equation with carrying capacity N . Hence, with initial value I(0) >
0, I approaches to N . It means that no matter how small the initial population of
infectives, all individuals of population will become infected.

The SIR model

S
�SI��! I

�I�! R

The first paper about the SIR model was published by Kermack and McKendrick
in 1927. Here, the population is divided into three classes: the susceptibles, S, who
can catch the disease; the infectives, I, who have the disease and can transmit it;
and the removed class, R, namely, those who have either had the disease, or are
recovered, immune or isolated until recovered [105]. Transitions between classes
describe the course of transmission and recovery with rate constants � and �. The
model is then

8

>

<

>

:

Ṡ = ��SI

İ = �SI � �I

Ṙ = �I.

(1.2.2)

Adding three equations of (1.2.2), we have Ṡ + İ + Ṙ = 0. Thus, S + I +R = N =
const, where N is the total size of the population. We see that R is determined
once S and I are known, and we can drop the R equation from (1.2.2), leaving the
system of two equations

(

Ṡ = ��SI

İ = �SI � �I.
(1.2.3)

Let us consider an epidemic problem in a population where only a few individuals
are infected at the initial time. The initial conditions are S(0) = S

0

⇡ N, I(0) =
I
0

= N � S(0) ⇡ 0, R(0) = R
0

= 0. From (1.2.3) we have
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Ṡ

İ
=

��SI

(�S � �)I
.

It follows I + S � �

�

lnS = const = I
0

+ S
0

� �

�

lnS
0

. Since equation İ = (�S � �)I,

it shows that İ > 0 if and only if S > �

�

. Hence I increases so long as S > �

�

,
but since S always decreases, I ultimately decreases and tend to 0. I gets I

max

=
N � �

�

+ �

�

ln ( �

�S

0

) (Figure 1.6). If S
0

< �

�

, I decreases to 0 and this is no epidemic
case. While if S

0

> �

�

, I firstly increases to I
max

and then decreases to 0, this is
epidemic case.

Figure 1.6: An epidemic trajectory of model (1.2.3).

The quantity S
0

�

�

⇡ N �

�

=: R
0

is a threshold quantity. R
0

is called the basic
reproduction number. The definition of the basic reproduction number R

0

is that it
is the number of secondary infections caused by a single infective introduced into a
wholly susceptible population of size N ⇡ S

0

over the course of the infection of this
single infective [25]. If R

0

> 1, an epidemic occurs, while if R
0

< 1, the infection
dies out.

In [105] Murray presented an interesting application of the SIR model. It is the
basis of influenza epidemic data in an English boarding school published in 1978
by The British Medical Journal. The epidemic happened from 22nd January to 4th
February 1978. The size of population N = 763 boys in the school were infected and
are represented by dots in Figure 1.7. The curves in the figure represent trajectory
of the SIR model fitted to the data.

The SIRS model

S
�SI��! I

�I�! R
↵R�! S
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Figure 1.7: An influenza epidemic in an English boarding school in 1978. It is a
realistic example of the SIR model.

Let us again consider the SIR model. We assume that individuals of the removed
class to be free of infection and become susceptible again. The parameter ↵ repre-
sents the specific rate of immunity loss of population in R class and rejoin S class.
Then the SIRS model is given by the next system [86]

8

>

<

>

:

Ṡ = ��SI + ↵R

İ = �SI � �I

Ṙ = �I � ↵R.

(1.2.4)

The system (1.2.5) have two equilibria: disease free equilibrium (0, 0, 0) and endemic

equilibrium (S⇤, I⇤, R⇤) = ( �
�

,
N � �

�

1 + �

↵

,
N � �

�

1 + ↵

�

). In order to exist the positive endemic

equilibrium, the following condition must hold:

R
0

= N
�

�
> 1

In further studying the SIRS model, we note that Ṡ + İ + Ṙ = 0, the sum
S + I + R = N and it is a constant of population size. So that for convenience the
removed class R can always be eliminated. The reduction of the equation (1.2.4) is
then

(

Ṡ = ��SI + ↵(N � S � I)

İ = �SI � �I.
(1.2.5)

Depending on the value of basic reproduction number, we have two cases. If

R
0

= N
�

�
< 1, (1.2.5) has no positive endemic equilibrium, I decreases and all

orbits tend to (N, 0) (Figure 1.8(a)). If R
0

= N
�

�
> 1, all orbits of (1.2.5) approach

to endemic equilibrium (Figure 1.8(b)). It means that epidemic case will happen
when basic reproduction number R

0

> 1. It is in agreement with the condition for
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an epidemic to occur in the SIR model. In epidemic case, I of the SIR model tend
to 0 but I of the SIRS model tend to I⇤ > 0, the SIRS model always have infected
individuals.

Figure 1.8: Orbits of the SIRS model (1.2.5)

In this section we assume that the models have no demography. Nowadays
many kinds of epidemic models, with or without demography, have been proposed
and studied. We can found some of them in [21, 25, 39, 105].

1.3 Models and obtained results

In this thesis we give out some ecosystem models and concentrate on dynami-
cal behavior of these models. So we can see the existence or vanishing of species
of ecological systems, and when they are dissipative, persistent, permanent. A
species with population size x(t) with respect to time t is said to be dissipa-
tive if lim sup

t!1 x(t) < � where � = const > 0 and to be (weak) persistent if
lim sup

t!1 x(t) > 0. Persistence, however, does not ensure survival of a species in a
biological sense. Permanence implies the survival of all species which exist initially.
A ecological system is said to be permanent if there exist a compact set K in the
interior of the state space such as all orbits in the interior end up in K, i.e. there
exist �

1

, �
2

> 0 such that �
1

< lim inf
t!1 x(t) < lim sup

t!1 x(t) < �
2

[25, 67, 137].

In chapter 2 we investigate e↵ects of spatial heterogeneous environment and fast
migration of individuals on coexistence of the intraguild predation (IGP) dynamics.
We present a two-patch model. We assume that on one patch two species compete
for a common resource, and on the other patch one species can capture the other one
for the maintenance. We also assume IGP individuals are able to migrate between
two patches and the migration process acts on a fast time scale in comparison with
demography, predation and competition processes. This chapter show that under
certain conditions the heterogeneous environment and fast migration can lead to
coexistence of the two species.
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In chapter 3 we consider a fishery model with two sites: (1) a Marine Protected
Area (MPA) where fishing is prohibited and (2) an area where the fish population
is harvested. We assume that fish can migrate from MPA to fishing area at a very
fast time scale and fish spatial organisation can change from small to large clusters
of school at a fast time scale. The growth of the fish population and the catch
are assumed to occur at a slow time scale. The complete model is a system of 5
ordinary di↵erential equations with three time scales. We take advantage of the time
scales using aggregation of variables methods to derive a reduced model governing
the total fish density and fishing e↵ort at the slow time scale. We analyze this
aggregated model and show that under some conditions, there exists an equilibrium
corresponding to a sustainable fishery. Our results suggest that in small pelagic
fisheries the yield is maximum for a fish population distributed among both small
and large clusters of school.

We study a predator-prey model which has one prey and two predators with
Beddington-DeAngelis functional responses in chapter 4. Firstly, we establish a set
of su�cient conditions for the permanence and extinction of species. Secondly, the
periodicity of positive solutions is studied. Thirdly, by using Liapunov functions
and the continuation theorem in coincidence degree theory, we show the global
asymptotic stability of such solutions. Finally, we give some numerical examples to
illustrate the behavior of model.

Some population models with the e↵ect of random environment were studied in
chapter 5. It is structured into two sections. In the first section we present the
Kernack - MacKendrick model under telegraph noise. The telegraph noise switches
at random between two SIRS models. We give out conditions for the persistence
of the disease and the stability of a disease free equilibrium. We show that the
asymptotic behavior highly depends on the value of a threshold � which is calculated
from the intensities of switching between environmental states, the total size of the
population as well as the parameters of both SIRS systems. According to the value
of �, the system can globally tend towards an endemic case or a disease free case.
The aim of this chapter is also to describe completely the omega-limit set of all
positive solutions to the model. Moreover, the attraction of the omega-limit set and
the stationary distribution of solutions will be pointed out.

In the second section of chapter 5, we consider Lotka-Volterra predator-prey
systems with the e↵ect of telegraph noise. For predator-prey system with carrying
capacity of environment, we focus on persistence of the predator and thus we look
for conditions that allow persistence of the predator and prey community. We also
determine the subset of omega-limit set of this system. For predator-prey model with
the absence of carrying capacity, it is proved that under the influence of telegraph
noise, all positive trajectories of such a system always exile from any compact set
of intR2

+

with probability one if two rest points of the two systems do not coincide.
In case where they have the rest point in common, the trajectory either leaves from
any compact set of intR2

+

or converges to the rest point. The exile of the trajectories
from any compact set means that the system is neither permanent nor dissipative.
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Chapter 2

Spatial heterogeneity, fast
migration and coexistence of
Intraguild Predation Dynamics

2.1 Introduction

In this chapter we present paper [112]. It is well-known that interactions between
species are usually categorized as either competition (negative e↵ects on each other),
predation/parasitism (one got positive e↵ect and the other got negative e↵ect),
mutualism (positive e↵ects on each other), commensalism (one got positive e↵ect
and the other got no e↵ect) or amensalism (one got negative e↵ect and the other
got no e↵ect). Intraguild predation (IGP) is a combination of the first two, that is,
the killing and eating species that use similar resources and are therefore potential
competitors [124]. Thus, broadly speaking, cannibalism is considered as a form of
IGP unless there is a distinct ontogenetic niche shift that di↵erentiates the resource
profile of cannibals and their victims [146]. For example, most spiders are generalist
predators that feed on a variety of prey items such as mosquitoes and flies, making
them members of the same guild. However, spiders also eat other spiders, we count
this cannibalism as intraguild predation. IGP commonly involves larger individuals
feeding on smaller individuals [122]. We call the victim intraguild prey (IGprey)
and the predator intraguild predator (IGpredator). IGP is common in nature and is
found in a variety of taxa [121, 122, 123, 124, 145]. It di↵ers from classical predation
because the act reduces potential exploitation competition. Thus, its impact on
population dynamics is much more complex than either competition or predation
alone. One characteristic of IGP is the simultaneous existence of competitive and
trophic interactions between the same species.

Theoretical models predict that coexistence of IGpredator and IGprey is di�-
cult, because IGprey experience the combined negative e↵ects of competition and
predation [69]. In systems with competition only, IGprey su↵ers no predation. In
standard predator-prey interactions without competition, IGprey su↵er no exploita-
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tive competition from the IGpredator. Thus, IGP is more stressful for the interme-
diate consumer (IGprey) than either exploitative competition or trophic interaction
alone.

The theoretical di�culty in explaining IGP persistence and its observed ubiquity
have identified IGP as an ecological puzzle [69]. This led to a series of studies in order
to resolve the puzzle. These studies have considered factors such as top predators
(food web topology) [149], size structure [24, 93, 106], habitat segregation [93],
metacommunity dynamics [101], intraspecific predation [49], and adaptive behavior
[80, 81, 82].

Here, we investigate an IGP model in a two-patch environment. We assume that
on one patch is pure exploitation competition, and on the other one IGpredator
can capture IGprey for its maintenance. This considered scenario can potentially
occur in some ecological systems. For instance, on a given patch with an abundant
resource the interaction of species is more likely to be exploitation competition, while
on another patch with a limit of resource one species is more likely to reduce the risk
for shared resource by feeding on its competitors [45]. Aquatic invertebrates and
fishes tend to prey on eggs and larvae of their resource competitors (see examples
in [124]). In some populations [122], larger individuals feed on smaller individuals.
Therefore, one can imagine complexity of environment may lead to the fact that
individuals can (or cannot) encounter eggs, larvae and juveniles of their resource
competitors (example includes niche and refuges), the predation can (or cannot)
happen. The authors in [75] showed that habitat structure could reduce encounter
rates between IGpredator and IGprey.

In the current contribution, we assume a non-coexistence of species locally. In
the competition patch, we suppose that IGpredator is the superior exploitation com-
petitor, i.e. without migration IGpredator out-competes IGprey. In the predation
patch, we suppose that IGpredator is the inferior one so that IGpredator mainly
capture IGprey in order to maintain. Moreover IGprey has a good tactics to ex-
ploit resource as well as to avoid the risk of IGpredator. This leads to the fact that
without migration IGprey drives IGpredator out. Both patches are connected by
density-independent migration of individuals of both IGpredator and IGprey. It is
assumed that migration is fast in comparison with competition and predation in the
local patches. In this work, we are going to investigate whether spatial heteroge-
neous environment and fast migration between patches lead to coexistence of IGP
system.

We consider a fast migration in comparison with demography and interaction
of species. In fact, many ecological systems highlight that migration occurs on
a fast time scale relative to competition. For instance, in long lived organisms
such as trees gene flow through pollination or migration can take place at a much
faster time scale than selection process [58]. In host-parasite systems (in which the
individual host is the patch), the interplay between within-patch and among-patch
evolutionary dynamics drives the evolution of intermediate levels of virulence [88].
The authors in [103] proposed a mathematical model of zooplankton moving in the
water column with food-mediated fast vertical migrations. This work showed that
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fast vertical migration could enhance ecosystems stability and regulation of algal
blooms. Another example can be found in [104] where authors study a model of
fast-moving zooplankton capable of quick adjustment of grazing load in the water
column and argue that it could be a generic self-regulation process in nature. Yet
the author in [4] investigated the case where migration, demography and interaction
of species act on the same time scale in an IGP model. It is shown that this
migration mode can allow IGP species to coexist. We therefore consider the IGP
model including the two time scales.

Taking advantage of these two time scales, we are able to use aggregation meth-
ods that allow us to reduce the dimension of the complete model and to derive a
global model at the slow time scale governing the total species densities [10, 11, 15].
For aggregation of variables methods, we also refer to some investigations [73, 74].
Some applications of the aggregation method to population dynamics can be found
in [13, 99, 108] and [120].

This chapter is organized as follows. Section 2.2 shows the mathematical model.
In Section 2.3, we present reduction of the model. It is structured into two sub-
sections. Subsection 2.3.1 presents the study of fast equilibrium. Subsection 2.3.2
is devoted to aggregated model. The results are discussed in Section 2.4. The last
section 2.5 is about conclusion and perspectives.

2.2 Model

Figure 2.1: IGpredation on two patches. IGpredator compete with IGprey on patch
1 or else competition patch. The system is predation on patch 2 or else predation
patch.

We consider an IGP model in a two-patch environment. We assume there is
an abundant resource on patch 1 therefore IGpredator and IGprey compete with
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each other for the common resource. A classical Lotka-Volterra competition model
is used in order to represent this competition dynamics. In patch 2, it is assumed
that IGpredator is the inferior exploitation competitor so that IGpredator mainly
capture IGprey to maintain [45, 122, 124]. A classical predator-prey model is used
to represent this predation dynamics. Both patches are connected by migration of
IGP individuals (see Figure 2.1). We further assume the migration process acts on
a fast time scale than the demography, the competition and predation processes in
the two local patches. According to these assumptions, the complete system reads
as follows:
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(2.2.1)

where x
i

and y
i

are the densities of IGprey and IGpredator in patch i, i 2 {1, 2}. r
11

and r
21

represent the growth rates of IGprey and IGpredator in patch 1. K
11

and
K

21

are the carrying capacities in the competition patch of IGprey and IGpredator,
respectively. a

12

and a
21

represent the competition coe�cients showing the e↵ect of
IGpredator on IGprey and of IGprey on IGpredator. r

12

andK
12

are respectively the
intrinsic growth rate and the carrying capacity of IGprey in patch 2. b is predation
capture rate, e is the parameter related to predator recruitment as a consequence
of predator-prey interaction. d is natural mortality rate of the IGpredator on the
predation patch. For the IGprey, parameter m

1

is the per capita migration rate
from the predation patch to the competition patch, and m

1

, from the competition
patch to the predation patch. For the IGpredator, parameter m

2

is the per capita
migration rate from the predation patch to the competition patch, and m

2

, from the
competition patch to the predation patch. Parameter " represents the ratio between
two time scales t = "⌧ , t is the slow time scale and ⌧ is the fast one. In this chapter,
we are interested in an asymmetric interaction i.e. without migration IGpredator is
the superior exploitation competitor on the competition patch, but is the inferior
one on the predation patch so that IGPredator mainly capture IGprey to maintain
[45, 122, 124]. In the predation patch, it is further assumed that IGprey is able to
avoid the risk of IGpredator leading to the fact that IGprey drives IGpredator out.
Assuming the asymmetric interaction implies the next inequalities hold [105]:
- in the competition patch

a
12

K
21

K
11

> 1 and a
21

K
11

K
21

< 1, (2.2.2)

- in the predation patch
d

eb
> K

12

. (2.2.3)

We investigate the complete model (2.2.1) in the next section.
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2.3 Model reduction

Taking advantage of the two time scales, we now use aggregation of variables
method in order to derive a reduced model [10, 11, 15, 107]. The first step is to
look for existence of a stable and fast equilibrium. The fast equilibrium is the
solution of the system (1) while only considering the fast part, i.e. when " = 0.
The fast part corresponds to dispersal, so the fast equilibrium corresponds to the
stable distribution corresponding to the dispersal process. We then consider that for
the complete model, the system is always at the fast equilibrium, i.e. at any time
the distribution of individuals among patches corresponds to the stable distribution.
We obtain a model with two equations on which we can perform a mathematical
analysis.

2.3.1 Fast equilibrium

Over the fast time scale ⌧ , the total IGprey population (x(t) = x
1

(t) + x
2

(t))
and IGpredator population (y(t) = y

1

(t)+y
2

(t)) are constant. After straightforward
calculation, there exists a single fast and stable equilibrium that reads as follows:
- for IGprey:
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- for IGpredator:
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(2.3.2)

Therefore, the proportions of individuals of IGP in each patch rapidly tend toward
to constant values which are proportional to migration rates to the patches.

2.3.2 Aggregated model

Coming back to the complete initial system (2.2.1), we substitute the fast equi-
libria (2.3.1), (2.3.2) and add the two equations of the local IGprey and IGpredator
population densities, leading to the following aggregated system when using the slow
time scale t:
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2.4 Results and discussions

Let’s analyse the aggregated model. One can see that system (2.3.3) has
four equilibria P

1

(0, 0), P
2

(0, D/E), P
3

(A/B, 0), P
4

((CD�AE)/(CF �BE), (AF �
BD)/(CF �BE)). A full stability analyses of these equilibria is given in Table 2.1.

In summary, the outcome of the dynamics of the aggregated model depends on
the signs of D,F,CD�AE and AF�BD. These expressions depend on parameters
such as the migration parameters (µ and ⌫), the competition parameters (a

12

and
a
21

), the predation parameters (b and e), the carrying capacity (K) and so on. Here,
we are interested in e↵ects of the migration parameters, the competition parameters
and the predation ones. To avoid dealing with complex expressions, we assume the
two patches are similar for population growth r

11

= r
12

= r
21

= r and K
11

= K
12

=
K

21

= K. This yields the following simplified expressions:
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Now we are going to investigate the dynamics in term of the proportion of IG-
prey on patch 1 (⌫⇤

1

) which is re-denote by X and of the proportion of IGpredator
(µ⇤

1

) which is re-denote by Y . Since the model is a combination of competition
and predation models, one could expect that the outcome of the model is also a
combination of the outcomes of the two. In fact, the outcome of the model can be
all possibilities of the two species, i.e. coexistence and one of the two wins. Figure
2.2a shows an example where the two species coexist. Figure 2.2b illustrates the
case where IGpredator wins, while Figure 2.2c illustrates the situation IGprey wins.
Figure 2.2d shows the separatrix case where IGpredator or IGprey wins depending
on the initial conditions. For these figures, we chose the same values of the following
parameters r

11

= r
12

= r
21

= r
22

= r = 0.6, K
11

= K
12

= K
21

= K = 10, a
12

=
1.5, a

21

= 0.7, b = 0.3, d = 0.6 and e = 0.1. Then we changed the values of X and
Y which correspond to the proportions of IGprey and IGpredator, respectively, on
the competition patch. We chose parameters values according to existing litera-
tures. The growth rates are equal to 0.6, the carrying capacities are equal to 10
which are the same magnitude as those found in [64] (r = 0.44, K = 15) and in [59]
(r = 0.21827, K = 13). The competition coe�cients, the predation coe�cient and
the mortality were chosen the same magnitude as those found in [38, 59, 64, 113]
(the competition coe�cients are between 0.02 to 3.15, the predation coe�cients are
between 0.02 to 3 and the mortalities are between 0.055 to 0.52).
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Table 2.1: Global outcome of the aggregated model.
D F CD � AE AF � BD Equilibria and Stability

+ + � + P
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Next we study in detail the dynamics of the aggregated model in term of the
migration parameters (i.e. X and Y ). Figure 2.3 shows the domains corresponding
to the dynamical outcomes of IGpredator and IGprey. We denote by domain I where
IGpredator and IGprey coexist. Domain II represents the case where IGpredator
wins. Domain III is the domain where IGprey wins. And the domain IV is related
to the case where IGpredator or IGprey wins depending on the initial condition.
One can see that domain I is related to an interesting result: migration can lead to
the coexistence of the two species.

Domain I on top of Figure 2.3 is related to the case in which IGprey individu-
als are not mainly on the competition patch then they can invade in the predation
patch, and IGpredator individuals are almost there on the competition patch where
they can invade. On the competition patch, IGprey individuals are able to move
very fast to the predation patch so that they can avoid competition with IGPredator
individuals. On the predation patch, due to the fast migration IGpredator individ-
uals are able to come to the competition patch rapidly to maintain. Coexistence of
the two species is therefore can be possible.

Domain II corresponds to the two situations. The first situation is both species
distribute almost on the competition patch where IGpredator can invade. The
second situation is IGpredator still distributes mainly on the competition patch,
IGprey distributes mainly on the predation patch, but IGpredator distributes well
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Figure 2.2: Phase portraits of the outcome. Figure 2a is related to coexistence
case (X = 0.2 and Y = 0.9), Figure 2b describes the case where IGpredator wins
(X = 0.4 and Y = 0.7), Figure 2c shows the win of IGprey (X = 0.8 and Y = 0.2),
Figure 2d is the separatrix case (X = 0.7 and Y = 0.7).

enough on the predation patch in order to gain advantage over IGprey. In both
situations, IGpredator wins globally.

Domain III is related to the two cases. The first case is IGpredator individuals
are few on the competition patch so that it decreases IGpredation’s invasion on this
patch. This leads to the fact IGprey is able to invade and to win globally. The
second case is IGpredator has comparable distributions on the two patches, but
IGprey distributes well enough on the competition patch in order to gain advantage
over IGpredator. Therefore, IGprey still wins eventually.

Domain I below of Figure 2.3 links to the the following situation. IGpredator
has comparable distributions on the two patches and IGprey distributes mainly on
the predation patch. Therefore, the e↵ect of IGprey on IGpredator on the compe-
tition patch is not strong yet the abundance of IGprey is better for maintenance of
IGpredator on the predation patch. Thus, coexistence can be possible.
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Figure 2.3: Outcomes of the dynamics in term of migration parameters X and Y .
The black dash line is about AE�CD = 0, the grey dash line is about AF�BD = 0.
Domain I: coexistence; domain II: IGpredator wins; domain III: IGprey wins; domain
IV: separatrix case. Parameters values are chosen as follows: r

11

= r
12

= r
21

= r
22

=
r = 0.6, K

11

= K
12

= K
21

= K = 10, a
12

= 1.5, a
21

= 0.7, b = 0.3, d = 0.6 and e =
0.1.

Domain IV corresponds to the case where individuals of the two species are
mainly on the competition patch. Too many individuals on the competition patch
has negative e↵ects on the resource exploitation. Yet a few IGprey individuals on
the predation patch not only has negative e↵ects on the maintenance of IGpredator
but also decreases its invasion. Globally, this case is disadvantage for both species
then species wins depending on the initial condition.

Now, we study e↵ects of competition and predation parameters on the areas of
the four domains. Keeping the same values of parameters as in Figure 3, we are
going to change the value of one of the three parameters a

12

, a
21

and b. According
to the conditions (2.2) and (2.3) we have a

12

is greater than 1, a
21

is smaller than 1
and b is smaller than d/(eK) = 0.6.

Figure 2.4: The change of the four domains in term of a
12

.

Figure 2.4 shows three cases from the left to the right where we changed the value
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Figure 2.5: The change of the four domains in term of a
21

.

Figure 2.6: The change of the four domains in term of b.

of a
12

by 1.5, 5 and 8.5, respectively. According to mathematical point of view, the
black dash line (AE � CD = 0) changes while the grey dash line (AF � BD = 0)
does not change. According to ecological point of view, increase of a

12

means that
the e↵ect of IGpredator on IGprey on the competition patch increases. Thus, it
increases the areas of the domains which are disadvantage for IGprey. In fact, one
can observe that part of domain I (both on top and below) now turns into domain
II, domain I is therefore gets smaller while domain II gets bigger, and part of domain
III now turns into domain IV, domain III is therefore gets smaller while domain IV
gets bigger.

Figure 2.5 shows three cases from the left to the right where we changed the
value of a

21

by 0.7, 0.4 and 0.1, respectively. In this case the grey dash line changes
while the black dash line does not change. We decrease the value of a

21

meaning
that the e↵ect of IGprey on IGpredator on the competition patch decreases too.
So, it decreases the areas of the domains which are disadvantage for IGpredator.
One can observe that domain IV turns into domain II, part of domain III turns into
domain I below. Therefore, domain III gets smaller, domain IV disappears, domain
II and domain I below get bigger.

Figure 2.6 shows three cases from the left to the right where we changed the
value of b by 0.5, 0.3 and 0.1, respectively. In this case, both the black dash and
grey dash lines change. For instance, when the value of b increases from 0.3 to 0.5
it implies that IGpredator’s predation ability increases. So, it increases the areas of
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the domains which are advantage for IGpredator and it decreases the areas of the
domains which are not harmful for IGPrey. One can observe that part of domain I
turns into domain II, part of domain III turns into domain I below and domain IV.
Thus domain II, domain I below and domain IV get bigger and domain I on top and
domain III get smaller. Now, when the value of b decreases from 0.3 to 0.1 it follows
that IGpredator’s predation ability decreases. Therefore, it decreases the areas of
the domains which are advantage for IGpredator and it increases the areas of the
domains which are not harmful for IGPrey. In fact, one can observe that domain
I below and part of domain IV turn into domain III, part of domain II turns into
domain I. Hence domain I and domain III get bigger, domain II and domain IV get
smaller.

2.5 Conclusion and perspectives

We have presented an IGP model in a two-patch environment: the interaction
on a given patch is pure competition and that on the other patch is predation. We
focus in particular on an asymmetric interaction i.e. without migration IGpredator
is the superior exploitation competitor on the competition patch, but is the inferior
one on the predation patch so that IGPredator mainly capture IGprey to maintain.
We concentrated on the case where the predation is weak leading to the fact that
IGprey wins on the predation patch.

The model is a coupling a classical competition model on a given patch and a
classical predation model on the other patch. The two patches are connected by a
fast migration of individuals. This assumption allows us to obtain the aggregated
model which can be investigated analytically. As a first result, we showed that the
IGP dynamics can be either competition or predation depending on the parame-
ters. Figure 2.2 showed that all outcomes of the interaction of the two species can
be achieved: coexistence, IGpredator wins, IGprey wins, species wins depending
on the initial condition. Here we focus on migration, competition and predation
parameters. When we fix competition and predation parameters, outcome of the
dynamics depends migration parameters. We obtain four domains corresponding to
the outcomes (Figure 2.3). When we respectively changed competition and preda-
tion parameters, the four domains changed (Figure 2.4, 2.5 and 2.6).

In our model, IGprey and IGpredator cannot coexist locally in the sense that
each species is able to out-compete the other without migration: IGpredator wins
on the competition patch and IGprey wins on the predation patch. Coexistence
of the two species can be achieved under certain conditions. When each species
individuals are almost there on the patch where they can invade, coexistence can be
possible. The two species can also coexist when IGpredator has comparable distri-
butions on the two patches and IGprey distributes mainly on the predation patch.
In this situation, IGprey is abundant on the patch where it can invade and it sur-
vives globally. IGpredator individuals can capture more IGprey individuals on the
predation patch, yet they compete with few IGprey individuals on the competition
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patch, hence IGpredator can also survive globally.

The current contribution is the first attempt to investigate the e↵ects of hetero-
geneous environment on IGP dynamics. In this study, we do not take into account
density-dependent migration, di↵erent predation types such as Holling type II, III
and so on. It would be also interesting to consider these factors in the near future.



Chapter 3

E↵ect of small versus large clusters
of fish school on the yield of a
purse-seine small pelagic fishery
including a marine protected area

3.1 Introduction

This chapter shows paper [110]. There was an increasing interest in modelling
the dynamics of a fishery, we refer to review and classical contributions dealing
with mathematical approaches [41, 85, 132, 133], and more ecological ones [32, 56,
97, 147]. Spatio-temporal distribution is a major factor a↵ecting fish catchability,
particularly for small pelagic fish [8]. Small pelagic fish species are the most exploited
fish species at the world level and play a major role in world food security [136].
However, theses populations are threatened by both climate change [31, 54] and
over-fishing [119]. Thus, there is a need of research to feed future management
plans for these species.

Here, we present a mathematical model of a fishery targeting a small pelagic
fish population distributed over two sites, a MPA and a fishing area where the fish
population can be captured by purse-seine fishing boats. Following the literature
[29, 116] we assume that small pelagic fish can either be distributed in few large
clusters of fish school (hereafter referred as ”cluster”) or in a greater number of
smaller clusters [116]. There is evidence that large clusters are generally more easily
located by fishing boats than smaller ones [30]. Industrial fishing fleets use electronic
devices such as sonar to detect school and the e�ciency is better for large school [28]
which may occur more often in large clusters [116]. Fishermen of artisanal fleets can
even simply detect fish school by visual observation when the school is close to the
surface (upper part of the water column). Thus, once fishermen detected a school
that belongs to a large cluster, they access easily the other fish schools that belong
to this cluster. Furthermore, purse-seine fisheries generally operate in collaborative
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fleets of several boats and join their e↵orts on large clusters. As a consequence, fish
in large clusters are more exposed to fishing pressure due to increased accessibility.

The aim of the present model is to investigate the e↵ects of fish clustering on
the total catch of a small pelagic purse seine fishery. What are the e↵ects of large or
small clusters on the global dynamics of the fishery? Is there a proportion of small
and large clusters which is optimal in terms of total catch on the long term for a
given fishery and fishing e↵ort?

The complete model is a set of 5 coupled ordinary di↵erential equations (ODEs)
with four variables representing fish populations divided into large or small clusters
and located in MPA or in fishing area, and one variable representing a single fishing
e↵ort in the fishing area whatever the cluster size. We further assume that there are
three time scales: fish can migrate from MPA to the fishing area at a very fast time
scale, fish can change state from small to large clusters at a fast time scale and fish
growth and catch occur at a slow time scale.

To our knowledge, aggregation methods were not used to aggregate a system
involving three time scales. This contribution thus shows an example of aggregation
of variables in a three level system. This aggregation of a three level system requires
a two-step aggregation, aggregating firstly from very fast to fast dynamics and sec-
ondly from fast to slow dynamics. Here, we simply proceed to aggregation in order
to derive the slow aggregated model. We numerically show that the aggregation
method is valid as soon as there exists (for the present case) an order of magnitude
between two consecutive time scales (fast/very fast) or (slow/fast). Under these
conditions, numerical simulations show that the dynamics of the complete and the
aggregated models are very similar, i.e. the trajectories of both systems starting at
the same initial conditions remain close to each other.

This chapter is organized as follows. Section 3.2 presents the complete fishery
model. Section 3.3 and 3.4 present the aggregation method in order to derive a
global model at the slow time scale with two consecutive steps. Section 3.5 studies
the e↵ects of exploited fish population structuration in small vs. large clusters on
the total catch of the fishery. The chapter ends with a discussion according to our
theoretical results on the yield of a given fishery and opens some perspectives.

3.2 Complete Model

We consider a population of fish that is harvested. The model takes into account
fish densities and the fishing e↵ort. The model is a two sites model: a Marine
Protected Area or MPA (index M) where fishing is prohibited and a Fishing area
(index F ) where the fish population is harvested. We assume that fish can migrate
from MPA to fishing area F and inversely. Furthermore, fish school can belong
to Small clusters (index S) or to Large clusters (index L). We assume that fish
can change state from S to L and inversely. Therefore, fish school can leave large
clusters to form small clusters and inversely (see figure 3.1). Fish population grows
logistically with a total carrying capacity K with a fraction h in MPA and (1� h)
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Figure 3.1: Diagram of the model used in this study showing the interactions be-
tween aggregative dynamics (small to large clusters and vis versa) and the migration
between fishing and marine protected areas (MPA). See table 3.1 for parameters de-
scription.

in the fishing area. Fish are captured in the fishing area according to a Schaefer
function [128]. As a consequence, there are 4 fish sub-populations in the model:

• n
SM

: density of fish in small clusters in MPA;

• n
LM

: density of fish in large clusters in MPA;

• n
SF

: density of fish in small clusters in fishing area;

• n
LF

: density of fish in large clusters in fishing area.

There is a single fishing e↵ort in the fishing area noted E. The model reads as
follows:
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Table 3.1: Description of all parameters for the complete model.

K total carrying capacity of MPA and fishing area
h proportion of MPA, 0 < h < 1
k rate of change of fish state from large clusters to small clusters
k rate of change of fish state from small clusters to large clusters
m

L

rate of migration from fishing area to MPA for fish in large clusters
m

L

rate of migration from MPA to fishing area for fish in large clusters
m

S

rate of migration from fishing area to MPA for fish in small clusters
m

S

rate of migration from MPA to fishing area for fish in small clusters
r growth rate of fish
q
S

catchability for fish in small clusters
q
L

catchability for fish in large clusters
c average cost per unit of fishing e↵ort
p constant market price

where all parameters are defined in Table 3.1.

We suppose that q
S

< q
L

, i.e. fishermen catch much better fish in large clusters
than in small ones. We further assume that there exist three time scales:

• Migration (MPA/fishing area) is a very fast process;

• State change (Small clusters/Large clusters) is a fast process;

• Catch and growth are slow processes.

Therefore, we assume that there exist two dimensionless parameters " ⌧ 1 and
µ ⌧ 1 being of the same order. Consequently, the model takes into account three
time scales:

• a very fast time: ⌧ ;

• a fast time: t = "⌧ ;

• a slow time: T = µt = µ"⌧ ;

leading to the next relation for any time dependent variable X:

dX

d⌧
= "

dX

dt
= µ"

dX

dT
.

The MPA is assumed to be ⇠10 km diameter, roughly the maximum size for a
cluster [116], so that time scale for fish movement from MPA to fishing area (and
inversely) is approximately a day. The model could be applied to any exploited
aggregative small pelagic fish which forms large clusters that remain coherent at least
⇠10 days. In West Africa, one could think about the Sardinella aurita population



3.3 Building the aggregated model 31

as an example. We assume in this work that the small clusters work as a refuge,
i.e. their catchability is inferior to large clusters’ one, considering the case study of
purse-seine fishery because of reduced accessibility as explained in the introduction.
Finally, to be consistent with the mechanisms and behaviours associated to the three
times scales, theses must correspond to ⇠ 1 day (very fast), ⇠ 10 days (fast) and
⇠ 100 days (slow). This respects the empirical condition for aggregation methods
to work, i.e. one order of magnitude between the time scales as we show in the next
section.

3.3 Building the aggregated model

Now, we shall take advantage of the three time scales to build a reduced model
governing the total fish density and the total fishing e↵ort. Aggregation methods
were introduced in ecology by Iwasa et al [73, 74]. Here, we use time scale separation
methods based on the central manifold theory and we refer to the following articles
for aggregation methods [10, 11, 14]. Usually, the complete system involves only
two time scales. Under this condition, the aggregation is realized by calculating
the fast equilibrium and the aggregated model is obtained by substituting the fast
equilibrium into the complete model.

In our present case, three time scales are considered. As a consequence, the
aggregation is going to require two steps. In a first step, we shall look for the
existence of a very fast equilibrium and we shall substitute it into the complete
model. This will lead to an ”intermediate” model at the fast time scale. The second
and last step will consist in looking for the existence of a fast equilibrium whose
substitution in the intermediate model will lead to the aggregated and final slow
model.

3.3.1 First step of aggregation: very fast fish movements

Let us set " = µ = 0 leading to the very fast model that describes the patch
change from MPA to fishing area and inversely:
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At the very fast time scale, the sub-populations small and large clusters are constant,
i.e. the next variables are first integrals:

n
S
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SM

+ n
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,

n
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= n
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+ n
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.
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A simple calculation leads to the next very fast equilibrium for small clusters:
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where ⌫⇤
SF

is the proportion of small clusters in the fishing area and ⌫⇤
SM

in MPA.
Similarly for fish in large clusters we get the very fast equilibrium as follows:
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where ⌫⇤
LF

is the proportion of large fish clusters in the fishing area and ⌫⇤
LM

in
MPA. After substitution of this very fast equilibrium into the complete model, we
get the ”intermediate” model, i.e. the fast model (or first aggregated model) which
reads:
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3.3.2 Second step of aggregation: fast changes in clusters
size

Let set µ = 0 in the previous first aggregated model leading to the next fast
model:
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At the fast time scale, the total fish population is constant: n = n
S

+ n
L

. A simple
calculation leads to the next fast equilibrium for small clusters and large clusters:
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Substitution of the fast equilibrium into the ”intermediate” model leads to the final
aggregated model (at the slow time scale) governing the total fish density and the
fishing e↵ort:
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By setting
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Model (3.3.3) is classic Lotka-Volterra predator-prey model with logistics growth
for prey (see [22, 86]). We see that it has two trivial equilibria: (0, 0), (, 0) and a

non-trivial equilibrium point (n⇤, E⇤) = (
c

p�
,
r

�
(1� c

p�
)). The global dynamics of

model (3.3.3) depend on the sign of (n⇤, E⇤):

• If p� > c, (n⇤, E⇤) is globally asymptotically stable;

• If p� < c, (, 0) is globally asymptotically stable.

Figure 3.2 shows comparison of the trajectories of complete and aggregated mod-
els in the same case and initial conditions for di↵erent values of the small parameters,
(a) " = µ = 1, (b) " = 1 and µ = 0.1, (c) " = 0.1 and µ = 1, (d) " = µ = 0.1.
Grey trajectory corresponds to the complete model and the black one the aggregated
model. The solutions of both models (3.2.1) and (3.3.3) have the same dynamical
behaviour. However, to have trajectories close enough of each other we need to
chose " and µ at least smaller than 0.1 as shown on figure 3.2(d). Figure 3.3 shows
a similar result in the case of fleet e↵ort extinction. This means that aggregation
methods in this three level system can be successfully used when there exists at
least an order of magnitude between two consecutive time scales. In the case of
smaller values such as " = µ = 0.01, the approximation would be improved such
that trajectories of aggregated and complete models would become extremely close
and would appear confounded.
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Figure 3.2: Orbit of complete (grey) and aggregated (black) models in case of
a sustainable fishery. E⇤ > 0 when: (a) " = µ = 1, (b) " = 1, µ = 0.1, (c)
" = 0.1, µ = 1, (d) " = µ = 0.1 and m
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= 0.8,m
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= 0.3,m
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= 0.6,m
L

= 0.5, k =
0.7, k = 0.4, r = 0.9, h = 0.4, K = 100, c = 0.6, p = 1, q

S

= 0.07, q
L

= 0.1, with
initial values n

SM

(0) = 20, n
LM

(0) = 15, n
SF

(0) = 10, n
LF

(0) = 20, E(0) = 35.

3.4 Comparison with one-step aggregation

It would have been possible to decide to perform only a one-step aggregation.
The first possibility is to assume that " = 0 in order to study the very fast dynamics,
and then not assuming that µ = 0. This corresponds to the first step of the previous
aggregation and leads to a three equation system, which is more di�cult to analyse
than the previous aggregated model. The other possibility is to assume that µ = 0
in order to study the fast dynamics, without assuming at any moment that " = 0.
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Figure 3.3: Orbit of complete (grey) and aggregated (black) models in case of
a stable fishery free equilibrium. E⇤ < 0 when " = µ = 0.1,m
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= 0.4,m
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=
0.7,m

L

= 0.5,m
L

= 0.5, k = 0.3, k = 0.6, r = 0.7, h = 0.3, K = 50, c = 0.9, p =
1, q

S

= 0.02, q
L

= 0.04, with initial values n
SM

(0) = 15, n
LM

(0) = 10, n
SF

(0) =
12, n

LF

(0) = 8, E(0) = 30.

Fast dynamics is then governed by the following set of equations:
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Solving dn
SM

/d⌧ = dn
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/d⌧ = dn
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/d⌧ = 0 is equivalent to solving a
linear system. We obtain:
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It is easy to verify that:
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The system obtained after a two-step aggregation appears as an approximation
for " = 0 of the one-step aggregation. The dynamics obtained is a slightly better
approximation of the complete dynamics than the one obtained with the two-step
aggregation method. Indeed, substituting the frequencies at the fast equilibrium
which are solutions of equations (3.4.1) would lead to another one-step aggregated
model that could be developed as a Taylor expansion with respect to ". The zero
order term of this Taylor expansion would exactly correspond to the aggregated
model (3.3.3) obtained by the two-step method but, with the advantage that the
first order term would give a correction term of the order of " leading to a better
approximation of the complete model. However, determining the frequencies at
fast equilibrium is more di�cult than with the two-step aggregation methods: it
requires solving a four-dimension system of equations in order to determine the fast
equilibrium (first four equations of system (3.4.1)). The two-step method requires
solving more (three) systems of equations, but with a lower number of equations
(only two equations).

To summarize, two aggregation methods have been proposed:

• The two-step method leads to an aggregated model with less approximation
but in most cases, it could be easier to handle it as it can be switched into
several systems of equations, very fast and fast.

• The one-step method allows to calculate some correction terms leading to a
better approximation but, we need to deal with a single system of equations
to get the fast equilibrium. The later system may be more di�cult to handle
analytically.

3.5 Harvest Optimization

Now, we shall study the e↵ect of clusters size distribution on the total catch of
the fishery at equilibrium. The catch per unit of time at equilibrium of the slow
aggregated model reads as follows:

Y = �n⇤E⇤ =
rc

p�
(1� c

p�
). (3.5.1)
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We shall study the e↵ect of the proportion of fish in small clusters on the total
catch. Thus, let us write the catch Y as a function of the proportion of fish in small
clusters at fast equilibrium, i.e. function of ⌫⇤

S

. For simplicity we denote by X this
proportion. According to that notation, we obtain:
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(3.5.3)

We will find out condition for the existence of a local maximum of Y with respect
to X 2 (0, 1). We see that equation Y 0(X) = 0 has unique solution:
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The second order derivative of Y at X⇤ is:
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Hence, all conditions for the existence of local maximum of Y with X 2 (0, 1) can
reduce as follows:
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Under condition (3.5.6) and (3.5.7), we obtain the maximum of Y :
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In our model, fish that form small clusters act as a refuge. A fishery can be
considered as a predator-prey system, the prey being the fish and the predator, the
fishing fleet. Such classical prey-predator (Lotka-Volterra and Holling type II) as
well as inter-specific competition models with a refuge have already been investigated
[47, 62, 83, 109].

Figure 3.4 shows that there exists a maximum of the total catch at equilibrium
with respect to the proportion of small clusters. Indeed, since we consider small
pelagic fish species and purse-seine fisheries, the catchability is inferior for small
clusters than for large one, and captured fish mainly belong to large clusters.
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Figure 3.4: Total catch as a function of the proportion of small clusters showing a
maximum corresponding to maximum sustainable yield. The coe�cients are m

S

=
0.8,m

S

= 0.2,m
L

= 0.7,m
L

= 0.3, r = 0.9, h = 0.4, K = 100, c = 0.6, p = 1, q
S

=
0.07, q

L

= 0.1.

Starting from a fish population organized only in large clusters, increasing the
proportion of small clusters firstly reduce the overall population catchability, since
we assumed a lower catchability for small clusters. Such catchability reduction can
be seen as a refuge e↵ect that benefit population growth, and once the equilibrium
is reached it allows to increase the total catch (because the population density is
higher). Globally, this is favorable to the growth of the fish population and it allows
to increase the total catch at equilibrium.

Besides, if a too large proportion of fish is structured in small clusters, the
reduction in catchability is not anymore compensated by the growth of biomass due
to the refuge e↵ect described before, and as a result the yield decrease. Consequently,
there is a proportion of small fish clusters in between that maximizes the total catch
at equilibrium as shown on figure 3.4.

3.6 Discussion and perspectives

Our model has shown that for small pelagic fish, there exists a maximum of
the total catch with respect to the size distribution of the clusters. Another aspect
regarding optimal spatial distribution of a fishing fleet in a patchy fishery was also
investigated in [100].

As a result of our model, over-fishing would progressively give advantage to fish
populations that are able to change rapidly from small clusters to large clusters and
inversely. Being part of small clusters works as a kind of refuge for fish because the
catch is less, considering that large clusters can be more easily detected by fishermen
and thus exploited than small ones.
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Our model does consider only two cluster sizes, large and small. In a further
contribution, it would be interesting to consider a more continuous size spectrum
for clusters. Does small pelagic fish species display di↵erent levels of exposure to
over fishing following their specific clustering behavior?

The theoretical results obtained in this work, if they are validated on a particular
fishery, could be translated in near real time management policy. Indeed, even if
we do not yet understand well the determinism of small pelagic fish aggregative dy-
namics [29], we know that it is possible to control the harvesting process in near real
time (e.g. as it is the case in Peru; Pers. Comm. Arnaud Bertrand). Nevertheless
observation methodologies of cluster size have been already developed, particularly
using acoustics devices [92], in continuous monitoring [30] and near real time [27].
Thus, a near real time management could be encouraged, on the basis of this work,
to control harvesting in order to produce an optimal value for ⌫⇤

S

. Such supervision
should allow adaptive management measures, according to the variation of biotic
and abiotic factors, to target the maximum sustainable yield of a fishery. However
this require to improve our understanding of the e↵ect of the environment on the
aggregative dynamics of exploited small pelagic fish as well as the processes a↵ecting
their biomass variability and fluctuation.

The present chapter allowed us to extend aggregation of variables methods to
a three level dynamical system. Aggregation in a two level system is rather usual.
Here, we extended the method for a system involving three time scales and we
present an aggregation method with double steps. In the present work, we simply
proceed to aggregation and show by numerical simulations of a particular case that
the method works quite well when there is at least an order of magnitude between
two consecutive time scales.

In the future, it would be useful to present aggregation methods of three (or more)
level systems in a general context and to show that the center manifold theory can
be extended to the case of a system of ODEs with several time scales. The two-
step methods o↵er the same benefits than well-known divide-and-conquer algorithms
which aim at dividing a problem into several sub-problems that are simpler to solver.
This method could prove to be of particular interest for larger dimension problems,
or for problems for which fast equilibria have to be determined from non-linear
systems of equations.
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Chapter 4

Dynamics of species in a model
with two predators and one prey

4.1 Introduction

Paper [140] is presented in this chapter. The dynamical relationship between
predators and prey has been studied by several authors for a long time. In those
researches, to represent the average number of prey killed per individual predator per
unit of time, a functional, called functional response, was introduced. One functional
response can depend on only the prey’s density or both the prey’s and the predator’s
densities. However, some biologists have argued that in many situation, especially
when predators have to search for food, the functional response should depend on
both prey’s and predator’s densities [5, 6, 50, 77, 78, 130]. One of the most popular
functional responses is the fractional one as in the following prey-predator model.
It is called Beddington-DeAngelis functional response.

(

x0
1

= x
1

(a
1

� b
1

x
1

)� c

1

x

1

x

2

↵+�x

1

+�x

2

,

x0
2

= �a
2

x
2

+ c

2

x

1

x

2

↵+�x

1

+�x

2

.

In this model, x
i

(t) represents the population density of species X
i

at time t (i � 1);
X

1

is the prey and X
2

is the predator. At time t, a
1

(t) is the intrinsic growth rate of
X

1

and a
i

(t) is the death rate of X
2

; b
1

(t) measures the inhibiting e↵ect of environ-
ment on X

1

. This model was originally proposed by Beddington [23] and DeAngelis
et al. [48], independently. After the appearance of these two investigations, there
are many other ones for analogous systems with di↵usion in a constant environment
[35, 36, 37, 43, 70, 71]. However, the constant environment is rarely the case in real
life. Most natural environments are physically highly variable, i.e., the coe�cients in
those models should depend on time [46, 53, 139, 150]. In order to continue studying
such models, in this chapter, we consider a predator-prey model of one prey and two
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predators with Beddington-DeAngelis functional responses
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(4.1.1)

Here x
i

(t) represents the population density of species X
i

at time t (i � 1), X
1

is the
prey and X

2

, X
3

are the predators. Two predators share one prey and it is assumed
that there are two types of competition between two predators. The first type is
direct interference where individuals of each predator species act with aggression
against individuals of the other predator species. In our model, this type of compe-
tition is described by the coe�cients b

2

(t) and b
3

(t). The second type of competition
is interference competition that occurs during hunting because predators spend time
interacting with each other rather than seeking prey. Here we assume that there
is no competition of that type between individuals of the two di↵erent predator
species. Therefore, the Beddington-DeAngelis functional responses are of the form

di(t)x1

↵(t)+�(t)x

1

+�(t)xi
(i = 2, 3). We use the same coe�cients ↵, �, � in the functional re-

sponses of both predators, since it is assumed that both predators take the same
time to handle a prey once they encounter it and that individuals of each predator
species interfere with each other when hunting by exactly the same amount in both
species. This assumption is somewhat restrictive from the biological viewpoint, but
it could be removed without greatly changing the analysis of system (4.1.1).

Throughout this chapter, it is assumed that the functions a
i

(t), b
ij

(t), c
i

(t), d
i

(t),
↵(t), �(t), �(t)(1  i, j  3) are continuous on R and bounded above and below by
some positive constants.

This chapter is organized as follows. Section 4.2 provides some definitions and
notation. In Section 4.3, we state some results on invariant set, the permanence and
extinction of system (4.1.1). Then, the asymptotic stability of solution is proved
by using a Liapunov function. In Section 4.4, we continue using other Liapunov
functions and the continuation theorem in coincidence degree theory to show the
existence and global stability of a positive periodic solution. The final section 4.5
illustrates the behavior of system (4.1.1) by some computational results and gives
our conclusion.

4.2 Definitions and notation

In this section we introduce some basic definitions and facts which will be used
throughout this chapter. Let R3

+
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2

, x
3

) 2 R3 | x
i

> 0 (i � 1)}. Denote
by x(t) = (x
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(t), x
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(t)) the solution of system (4.1.1) with initial condition
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) = (x
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0

)), t
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� 0. For biological reasons, through
out this chapter, we only consider the solutions x(t) with positive initial values, i.e.,
x0 2 R3

+

. Let g(t) be a continuous function, for a brevity, instead of writing g(t) we
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write g. If g is bounded on R, we denote

gu = sup
t2R

g(t), gl = inf
t2R

g(t),

and ĝ = 1

!

R

!

0

g(t)dt, if g is a periodic function with period !. The global existence
and uniqueness of solution of system (4.1.1) are guaranteed by the properties of the
map defined by the right hand of system (4.1.1)[19]. We have the following lemma

Lemma 4.1. Both the non-negative and positive cones of R3 are positively invariant
for (4.1.1).

Proof. The solution x(t) of (4.1.1) with initial value x0 satisfies
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The conclusion follows immediately for all t 2 [t
0

,1). The proof is complete.

Definition 4.2. System (4.1.1) is said to be permanent if there exist some positive
�
j

(j = 1, 2) such that
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for all solutions of (4.1.1).

Definition 4.3. A set A ⇢ R3

+

is called an ultimately bounded region of system
(4.1.1) if for any solution x(t) of (4.1.1) with positive initial values, there exists
T
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> 0 such that x(t) 2 A for all t � t
0

+ T
1

.

Definition 4.4. A bounded non-negative solution x⇤(t) of (4.1.1) is said to be
globally asymptotically stable (or globally attractive) if any other solution x(t) of
(4.1.1) with positive initial values satisfies lim

t!1
P
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(t)� x⇤
i

(t)| = 0.

Remark 4.5. It is easy to see that if a solution of (4.1.1) is globally asymptotically
stable, then so are all solutions. In this case, system (4.1.1) is also said to be globally
asymptotically stable.

4.3 The model with general coe�cients
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then M ✏

i

> m✏

i

(i � 1). We will show that max{m0

i

, 0} (i � 1) are the lower bounds
for the limiting bounds of species X

i

as time t tends to infinity. This is obvious
when m0

i

 0. Therefore, it is assumed that m0
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Hypothesis 4.6. m0
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> 0 (i � 1).

Theorem 4.7. Under Hypothesis 4.6, for any su�cient small ✏ > 0 such that
m✏

i

> 0 (i � 1), a set �
✏

defined by �
✏

= {(x
1

, x
2

, x
3

) 2 R3 | m✏

i

< x
i

< M ✏

i

(i � 1)}
is positively invariant with respect to system (4.1.1).

Proof. Through out this proof, we use the facts that the solution to the equation

X 0(t) = A(t,X)X(t)[B �X(t)] (B 6= 0)

is given by

X(t) =
BX0 exp
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t
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R

t
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BA(s,X(s))ds
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+ B
,

where t
0

� 0 and X0 = X(t
0

). Consider the solution of system (4.1.1) with an initial
value x0 2 �

✏

. From Lemma 4.1 and from the first equation of (4.1.1), we have
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1

� bl
1

x
1

(t)]

= bl
1

x
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Using the comparison theorem gives

x
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(4.3.2)

It follows from the third equation of (4.1.1) and from (4.3.2) that
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x
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Putting

C
2

(t) =
al
2

�l

↵l + �lx
2

(t)
, (4.3.3)
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and using the comparison theorem again yield

x
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. (4.3.4)

Similarly, x
3

(t) < M ✏

3

for every t � t
0

.

Now by the first equation of (4.1.1), it implies that
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Since x0
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> m✏
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, by the comparison theorem, we obtain
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Similarly, for i, j � 2 (i 6= j),
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from which follows that x
i

(t) > m✏

i

for all t � t
0

. We complete the proof.

In the next theorem, the permanence of system (4.1.1) is shown. A treatment
called practical persistence to prove the permanence of models and its application
to various types of models can be seen in [34, 35, 42].

Theorem 4.8. Under Hypothesis 4.6, for any su�cient small ✏ > 0 such that
m✏
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> 0,
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Consequently, system (4.1.1) is permanent.

Proof. According to the proof of Theorem 4.7 we have

x
1

(t)  x0

1

M0

1

exp{au
1

(t� t
0

)}
x0

1

[exp{au
1

(t� t
0

)}� 1] +M0

1

·
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, i.e., there exists t
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such that x
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. By the same arguments of making (4.3.4), it follows that
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, (4.3.5)
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from which implies 0 < x
2

(t)  max{M ✏

2

, x1

2

} for all t � t
1

, where x1

2

= x
2

(t
1

). Then
from (4.3.3), inf

t�t

1

C
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(s) > 0. By using (4.3.5), we have lim sup
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.
Similarly, lim sup

t!1 x
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(t)  M ✏

3

and lim inf
t!1 x
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(t) � m✏

i

(i � 1). The perma-
nence follows from Definition 4.2. The proof is complete.

Theorem 4.9. Let i 2 {2, 3}. If M0

i

< 0 then lim
t!1

x
i

(t) = 0, i.e., the ith - predator

goes to extinction.

Proof. It follows from M0

i

< 0 that M ✏

i

< 0 with a su�ciently small ✏. Similarly to
the proof of Theorem 4.7 we have
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Thus, there exists C � 0 such that lim
t!1

x
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(t) = C and C  x
i

(t)  x0

i

for all t � t
0

.

If C > 0 then from (4.3.6), there exists µ > 0 such that x0
i

(t) < �µ for all t � t
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. We
therefore have x
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(t) < �µ(t� t
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(t) = �1, which contradicts

x
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(t) > 0 for all t � t
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. Hence, lim
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x
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(t) = 0.

In order to consider the global asymptotic stability of system (4.1.1), we need
the following result called Barbalat’s lemma.

Lemma 4.10. (see [20].) Let h be a real number and f be a non-negative function
defined on [h,+1) such that f is integrable and uniformly continuous on [h,+1).
Then lim

t!1 f(t) = 0.

Theorem 4.11. Suppose that Hypothesis 4.6 holds and let ✏ > 0 be su�cient small
such that m✏
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(4.3.7)

where u
i

(a, b) = (↵ + �x⇤
1

+ �x⇤
i

)(↵ + �a + �b) (i, j � 2, i 6= j). Then x⇤ is globally
asymptotically stable.

Proof. Let x be other solution of (4.1.1). From Corollary 4.8, �
✏

is an ultimately
bounded region of (4.1.1). Then there exists T
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> 0 such that x, x⇤ 2 �
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. Consider a Liapunov function defined by V (t) =
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.
A direct calculation of the right derivative D+V (t) of V (t) along the solution of
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(4.1.1) gives
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(4.3.8)

Combining (4.3.7) and (4.3.8) gives the existence of a positive number µ > 0 and of
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Integrating both sides of (4.3.9) from T
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to t yields
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On the other hand, it follows from x, x⇤ 2 �
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and from equations
of (4.1.1) that the derivatives of x
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(t), x⇤
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(t)(i � 1) are bounded on [T
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,1). As a
consequence
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| is uniformly continuous on [T
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,1). By Lemma 4.10 we
have lim
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| = 0, which completes the proof.

4.4 The model with periodic coe�cients

In this section, we assume that the coe�cients in system (4.1.1) are ! - periodic in
t and bounded above and below by some positive constants. We study the existence
and stability of a periodic solution of this system. To do this, we will employ the
alternative approach to establish some criteria in terms of the average of the related
functions over an interval of the common period. That is continuation theorem in
coincidence degree theory, which has been successfully used to establish criteria for
the existence of positive periodic solutions of some mathematical models of predator-
prey type, we refer the reader to [89, 90, 91, 126]. To this end, we shall summarize in
the following a few concepts and results from [57] that will be basic for this section.

Let X and Y be two Banach spaces, let L : DomL ⇢ X ! Y be a linear mapping,
and let N :X ! Y be a continuous mapping. The mapping L will be called a
Fredholm mapping of index zero if the following conditions hold

(i) ImL is closed.

(ii) dimKerL = codim ImL < 1.

If L is a Fredholm mapping of index zero and there exist continuous projections
P :X ! X and Q :Y ! Y such that ImP = KerL, ImL = KerQ = Im(I � Q), it
follows that

L
p

= L|
DomL\KerP

: (I � P )X ! ImL

is invertible. We denote by K
p

the inverse of that map. If ⌦ is an open bounded
subset of X, the mapping N will be called L - compact on ⌦̄ if the mapping QN :
⌦̄ ! Y is continuous and bounded, and K

p

(I �Q)N : ⌦̄ ! X is compact, i.e., it is
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continuous and K
p

(I �Q)N(⌦̄) is relatively compact. Since ImQ is isomorphic to
KerL, there exists an isomorphism J : ImQ ! KerL. The following continuation
theorem is from [57].

Lemma 4.12. (Continuation theorem) Let X and Y be two Banach spaces and L a
Fredholm mapping of index zero. Assume that N : ⌦̄ ! Y is L - compact on ⌦̄ with
⌦ is open and bounded in X. Furthermore, assume that

(a) for each � 2 (0, 1), x 2 @⌦ \DomL, Lx 6= �Nx;

(b) for each x 2 @⌦ \KerL, QNx 6= 0;

(c) deg{QNx,⌦ \KerL,0} 6= 0;

then the operator equation Lx = Nx has at least one solution in DomL \ ⌦̄.
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i

�l) exp{2â
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The convention here is that lnx = �1 if x  0. In the next theorem, a su�cient
condition for existence of an ! - periodic solution of (4.1.1) is presented.

Theorem 4.13. If L
i2

> �1 (i � 1) then system (4.1.1) has at least one positive
! - periodic solution.

Proof. Put x
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(4.4.1)
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Then KerL = {u 2 X |u = (h
1

, h
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, h
3

)T 2 R3}, ImL = {u 2 Y |
R
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u
i

(t)dt = 0 (i �
1)}, and dimKerL = 3 = codimImL. Since ImL is closed in Y, L is a Fredholm
mapping of index zero. It is easy to show that P,Q are continuous projections such
that ImP = KerL, ImL = KerQ = Im(I �Q). Furthermore, the generalized inverse
(to L) K
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: ImL ! DomL \KerP exists and is given by
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Obviously, QN and K
P

(I � Q)N are continuous. It is easy to see that N is L -
compact on ⌦̄ with any open bounded set ⌦ ⇢ X.

Now we will find an appropriate open, bounded subset ⌦ for application of the
continuation theorem. Corresponding to the operator equation Lu = �Nu,� 2
(0, 1), we have
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Suppose that (u
1

, u
2

, u
3

) 2 X is an arbitrary solution of system (4.4.2) for a certain
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� 2 (0, 1). Integrating both sides of (4.4.2) over the interval [0,!], we obtain
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From the first equation of (4.4.3) and (4.4.4), we obtain â
1

! �
R

!

0

b
1

exp{u
1

(⇠
1

)}dt =
b̂
1

! exp{u
1

(⇠
1

)}, from which follows u
1

(⇠
1

) < L
11

. Hence

u
1

(t)  u
1

(⇠
1

) +

Z

!

0

|u0
1

(t)|dt < L
11

+ 2â
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From the arguments above, we have H
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Put B
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â
1

� b̂
1

exp{u
1

}
�â
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By carrying out similar arguments as above, one can easily show that any solution
u⇤ of the equation H
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i1

 u⇤
i

 L
i2

(i � 1).
Thus, 0 /2 H

µ

(@⌦ \ KerL) for µ 2 [0, 1], and then QN(@⌦ \ KerL) 6= 0. Note
that the isomorphism J can be the identity mapping I, since ImP = KerL, by the
invariance property of homotopy, we have

deg(JQN,⌦ \KerL,0)

= deg(QN,⌦ \KerL,0)

= deg(QN,⌦ \ R3,0)

= deg(G,⌦ \ R3,0)

= sgn

8

>

<

>

:

det

2

6

4

�b̂
1

exp{u
1

} 0 0
@f

2

(u

1

,u

2

)

@u

1

@f

2

(u

1

,u

2

)

@u

2

�b̂
2

exp{u
3

}
@f

3

(u

1

,u

3

)

@u

1

�b̂
3

exp{u
2

} @f

3

(u

1

,u

3

)

@u

3

3

7

5

9

>

=

>

;

= �sgn

⇢

b̂
1

exp{u
1

}
✓

@f
2

(u
1

, u
2

)

@u
2

@f
3

(u
1

, u
3

)

@u
3

+ b̂
2

b̂
3

exp{u
2

+ u
3

}
◆�

,

(4.4.5)

where deg(·, ·, ·) is the Brouwer degree [79] and
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Combining (4.4.5) and (4.4.6) gives deg(JQN,⌦ \ KerL,0) = �1 6= 0. By now we
have proved that ⌦ verifies all requirements of Lemma 4.12, then Lu = Nu has at
least one solution in DomL\ ⌦̄, i.e., (4.4.1) has at least one ! - periodic solution u⇤

in DomL\ ⌦̄. Set x⇤
i

= exp{u⇤
i

}(i � 1), then x⇤ is an ! - periodic solution of system
(4.1.1) with strictly positive components. We complete the proof.

Corollary 4.14. If the ! - periodic solution x⇤ in Theorems 4.13 satisfies the as-
sumptions in Theorems 4.11, then x⇤ is globally asymptotically stable.

Proof. The proof of this corollary are derived directly from Theorems 4.11 and
4.13.

4.5 Numerical examples and conclusion

In this section, we present some numerical examples. At the first example, we
consider the case a

1

= 4.7+sin(⇡t), b
1

= 2.4�cos(2.7t), c
2

= 10.1+2.2 sin(1.4t), c
3

=
9.3+cos(2.8t), a

2

= (1.1� cos(2⇡t))/2.5, b
2

= 1.4+sin(0.8t), d
2

= 9.9�0.4 sin(0.6t),
a
3

= (2.2 � cos(1.7t))/6, b
3

= (2.3 + 1.3 sin(3.2t))/2, d
3

= 8.5 + sin(0.9⇡t),↵ =
(1.2 � cos(2t))/4, � = (2.3 + cos(1.2t))/5, � = 5.5 � 0.5 sin(t). By (4.3.1), M0

i

>
0,m0

i

> 0 (i � 1) then Hypothesis 4.6 holds and system (4.1.1) has invariant set.
Figure 4.1 is the orbit of solution with initial value x0 = (1.3, 1.4, 1.1), it seems
to be very chaotic but it is permanent. According to theorem 4.11, it is not only
permanent but also globally asymptotically stable. In spite of di↵erent initial value,
ex0 = (1.3, 1.4, 1.1) and x̄0 = (0.6, 1, 1.5), solution ex

i

and x̄
i

(i � 1) still tend to one
trajectory (see Figures 4.2-4.4).

x1 x2

x3

Figure 4.1: Orbit of globally asymptotically stable system

In next example, Theorem 4.9 will be illustrated by system (4.1.1) with coe�-
cients a

1

= 3+ 1.2 sin(2.4t), b
1

= 2.4 + 2 cos(⇡t), c
2

= 5.1� 0.9 sin(1.7⇡t), c
3

= 4.4�
1.2 cos(⇡t), a

2

= 1.1�cos(1.9t), b
2

= (2.6+sin(3⇡t))/4, d
2

= 4.3�1.7 sin(0.5⇡t), a
3

=
2.1 � 2.5 cos(1.4⇡t), b

3

= 0.8 � 1.3 sin(1.6t), d
3

= 2.9 + 2.3 sin(0.4t),↵ = (1.8 �
cos(5.7t))/3, � = 1 � 0.2 cos(0.2⇡t), � = 3.4 � 1.6 sin(1.8t) and initial condition
x0 = (1.3, 2.1, 2.4). Since M0

3

< 0 then the density of species X
3

goes extinct (see
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Figure 4.3: Population sizes X
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with respect to time
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Figure 4.4: Population sizes X
3

with respect to time

Figures 4.5-4.6). Therefore, the predator X
3

vanishes and system (4.1.1) is not
permanent.

For the model with periodic coe�cients, we consider the last example concern-
ing the numerical solutions of system (4.1.1) where a

1

= 3 + 1.3 sin(2t), b
1

= 2.2 +
1.9 cos(2t), c

2

= 2.8(2.2� sin(2t)), c
3

= (3.5� 2 cos(2t))/2, a
2

= 1� 0.6 cos(2t), b
2

=
1.2+0.5 sin(2t), d

2

= 4+1.8 sin(2t), a
3

= (1.2�cos(2t))/3, b
3

= 1.4+1.1 sin(2t), d
3

=
3.1� 2.3 sin(2t),↵ = 0.1(3.2� 2 cos(2t)), � = (2.1 + 1.8 cos(2t))/5, � = 3.3� sin(2t)
and initial value x0 = (1.1, 1.9, 1.4). Under ⇡ - periodic perturbation satisfying The-
orem 4.13, system (4.1.1) has positive ⇡ - periodic solution (see Figures 4.7-4.8).
Moreover, the hypothesis of Theorem 4.11 also holds then it is globally asymptoti-
cally stable.

In conclusion, this work provides some results about the asymptotic behavior
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x1 x2

x3

Figure 4.5: Orbit of non permanent system
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Figure 4.6: Orbit of non permanent system with respect to time

x1 x2

x3

Figure 4.7: Orbit of periodic system

of a model of one prey and two predators with Beddington -DeAngelis functional
responses. The mathematical analysis presented in this model shows that according
to the value of the coe�cients, one can make suitable predictions about the asymp-
totic behavior of the overall predator - prey system including the permanence, the
periodicity, the global asymptotic stability and specially the extinction of species.
Those conclusions warn us to have a timely decision to protect species in our ecolog-
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Figure 4.8: Orbit of periodic system with respect to time

ical system. Further, the given conditions on coe�cients can be easily numerically
computed.



58 4. Dynamics of species in a model with two predators and one prey



Chapter 5

Population dynamics in random
environments

5.1 Dynamical behavior of a stochastic SIRS epi-
demic model

5.1.1 Introduction

This section details paper [111]. The dynamics of disease spreading among a
population have been investigated very widely in the frame of deterministic mod-
els e.g. [25], [39], [86], [105]. In such deterministic models, the environment is
assumed to be constant. However, in most real situations, it is necessary to take
into account random change of environmental conditions and their e↵ects on the
spread of the disease. For instance, the disease can be more likely to spread in wet
(cold) condition rather than in dry (hot) condition or any other characteristics of
the environment that may change randomly. Therefore, it is important to consider
the disease dynamics under the impact of randomness of environmental conditions.
There are many papers about this topic in recent years e.g. [9], [63], [76], [84].

The basic simplest epidemic model that we consider is the classical SIRS model
introduced by Kernack-McKendrick of the form (see [86] for details)

8

>

<

>

:

Ṡ = �aSI + cR

İ = aSI � bI

Ṙ = bI � cR,

(5.1.1)

where the susceptible (S), infective (I) and removed (R) classes are three com-
partments of the total population N . Transitions between these compartments are
denoted respectively by a, b, and c. They describe the course of the transmission,
recovery and loss of immunity.
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Figure 5.1: SIRS diagram.

In further studying the SIRS model, we note that the sum S+ I +R = N and it
is a constant of population size. So that for convenience the removed class (R) can
always be eliminated. The reduction of the equation (5.1.1) is then

(

Ṡ = �aSI + c(N � S � I)

İ = aSI � bI.
(5.1.2)

It is easy to analyze the previous simple system (5.1.2) and to show that two situa-
tions can occur (see [66], [86], [98]):

- If the basic reproduction number R
0

= Na

b

> 1 the disease spreads among the
population and a positive equilibrium (s⇤, i⇤) is globally asymptotically stable. It is
therefore an endemic situation.

- If R
0

= Na

b

< 1 the disease is eradicated as a disease free equilibrium (N, 0),
which is asymptotically stable. This situation is the eradication of the disease among
the population.

In this work, we shall concentrate on the switching two classical Kernack and
MacKendrick SIRS model, which will be chosen as the basic models for the epi-
demics. We shall assume that there are two environmental states in each of which
the system evolves according to a deterministic di↵erential equation and that the
system switches randomly between these two states. Thus, we can suppose there is a
telegraph noise a↵ecting on the model in the form of switching between two-element
set, E = {+,�}. With di↵erent states, the disease dynamics are di↵erent. The
stochastic displacement of environmental conditions provokes model to change from
the system in state + to the system in state � and vice versa.

Several questions naturally arise. For instance, in the case where the disease
spreads in an environmental condition, while it is vanished in the other one, what will
be the global and asymptotic behavior of the system? Using the basic reproduction
number R

0

of both models and the switching intensities, can we make predictions
about the asymptotic behavior of the global system, i.e., the existence of a global
endemic state or a disease free state?

This section has 5 subsections. Subsection 5.1.2 details the model and gives
some properties of the boundary equations. In Subsection 5.1.3, dynamic behavior
of the solutions is studied and the !-limit sets are completely described for each
case. It is shown that the threshold � which will be given later plays an important
role to determine whether the disease will vanish or be persistent. In Subsection
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5.1.4, we study stability in distribution of the system. In the last subsection 5.1.5,
some simulation results illustrate the behavior of the SIRS model under telegraph
noise. The conclusion presents a summary of the results and some perspectives of
the work.

5.1.2 Preliminary

Let us consider a continuous-time Markov process ⇠
t

, t 2 R
+

, defined on the
probability space (⌦,F ,P), with values in the set of two elements, say E = {+,�}.
Suppose that (⇠

t

) has the transition intensities +
↵! � and � �! + with ↵ > 0, � >

0. The process (⇠
t

), say ”telegraph noise”, has a unique stationary distribution

p = lim
t!1

P{⇠
t

= +} =
�

↵ + �
; q = lim

t!1
P{⇠

t

= �} =
↵

↵ + �
.

The trajectory of (⇠
t

) is piecewise constant, cadlag functions. Suppose that

0 = ⌧
0

< ⌧
1

< ⌧
2

< ... < ⌧
n

< ...

are its jump times. Put

�
1

= ⌧
1

� ⌧
0

, �
2

= ⌧
2

� ⌧
1

, ..., �
n

= ⌧
n

� ⌧
n�1

...

It is known that, if ⇠
0

is given, (�
n

) is a sequence of independent random variables.
Moreover, if ⇠

0

= + then �
2n+1

has the exponential density ↵1
[0,1)

exp(�↵t) and �
2n

has the density �1
[0,1)

exp(��t). Conversely, if ⇠
0

= � then �
2n

has the exponential
density ↵1

[0,1)

exp(�↵t) and �
2n+1

has the density �1
[0,1)

exp(��t) (see [60, vol. 2,
pp. 217]). Here 1

[0,1)

= 1 for t � 0 (= 0 for t < 0).

In this section, we consider the Kernack-MacKendrick model under the telegraph
noise ⇠

t

of the form:
(

Ṡ = �a(⇠
t

)SI + c(⇠
t

)(N � S � I)

İ = a(⇠
t

)SI � b(⇠
t

)I
, (5.1.3)

where g : E = {+,�} ! R
+

for g = a, b, c. The noise (⇠
t

) carries out a switching
between two deterministic systems

(

Ṡ = �a(+)SI + c(+)(N � S � I)

İ = a(+)SI � b(+)I,
(5.1.4)

and
(

Ṡ = �a(�)SI + c(�)(N � S � I)

İ = a(�)SI � b(�)I.
(5.1.5)

Since (⇠
t

) takes values in a two-element set E, if the solution of (5.1.3) satisfies
equation (5.1.4) on the interval (⌧

n�1

, ⌧
n

), then it must satisfy equation (5.1.5) on
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the interval (⌧
n

, ⌧
n+1

) and vice versa. Therefore, (S(⌧
n

), I(⌧
n

)) is the switching point,
that is the terminal point of one state and simultaneously the initial condition of
the other. It is known that with positive initial values, solutions to both (5.1.4) and
(5.1.5) remain nonnegative for all t � 0. Thus, any solution to (5.1.3) starting in
intR2

+

exists for all t � 0 and remain nonnegative.

It is easily verified that the systems (5.1.4) and (5.1.5) respectively have the
equilibrium points

(s±⇤ , i
±
⇤ ) =

⇣ b(±)

a(±)
,
c(±)(N � b(±)

a(±)

)

b(±) + c(±)

⌘

, (5.1.6)

and their global dynamics depend on these equilibriums. Concretely, if i±⇤ > 0
then these positive equilibriums are asymptotically stable, i.e., when N > b(±)

a(±)

,

lim
t!1(S±(t), I±(t)) = (s±⇤ , i

±
⇤ ). This is the endemic case, both susceptible

and infective classes are together present. On the contrary, if N  b(±)

a(±)

then

lim
t!1(S±(t), I±(t)) = (N, 0) and the infective class will disappear. It is called the

free case

Figure 5.2: An example of endemic
case

Figure 5.3: An example of disease
free case.

5.1.3 Dynamical behavior of solutions

For any (s
0

, i
0

) 2 intR2

+

with s
0

+i
0

 N , we denote by (S(t, s
0

, i
0

), I(t, s
0

, i
0

)) the
solution of (5.1.3) satisfying the initial condition (S(0, s

0

, i
0

), I(0, s
0

, i
0

)) = (s
0

, i
0

).
For the sake of simplicity, we write (S(t), I(t)) for (S(t, s

0

, i
0

), I(t, s
0

, i
0

)) if there is
no confusion. A function f defined on [0,1) is said to be ultimately bounded above
(respectively, ultimately bounded below) by m if lim sup

t!1 f(t) < m (respectively,
lim inf

t!1 f(t) > m).
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It is easy to see that the triangle r := {(s, i) : s � 0, i � 0; s + i  N} is
invariant for the system (5.1.3). In the future, without loss of generality, suppose
that b(+)

a(+)

 b(�)

a(�)

.

Define
� = p

�

a(+)N � b(+)
�

+ q
�

a(�)N � b(�)
�

. (5.1.7)

Proposition 5.1.1.

a) If � > 0 then there is a �
1

> 0 such that lim sup
t!1 I(t) > �

1

.

b) If � < 0 then lim
t!1 I(t) = 0 and lim

t!1 S(t) = N .

Proof. a) The second equation of the system (5.1.3) follows

ln I(t)� ln I(0)

t
=

1

t

Z

t

0

(a(⇠
¯

t

)S(t̄)� b(⇠
¯

t

))dt̄.

Since I(t)  N , lim sup
t!1

ln I(t)�ln I(0)

t

 0. Therefore,

lim sup
t!1

⇣1

t

Z

t

0

(a(⇠
¯

t

)N � b(⇠
¯

t

))dt̄� 1

t

Z

t

0

a(⇠
¯

t

)(N � S(t̄))dt̄
⌘

=

lim sup
t!1

1

t

Z

t

0

(a(⇠
¯

t

)S(t̄)� b(⇠
¯

t

))dt̄  0.

Thus,

lim inf
t!1

1

t

Z

t

0

(a(⇠
¯

t

)N � b(⇠
¯

t

))dt̄  lim inf
t!1

1

t

Z

t

0

a(⇠
¯

t

)(N � S(t̄))dt̄.

Because the process (⇠
t

) has a unique stationary distribution lim
t!1 P{⇠

t

= +} = p
and lim

t!1 P{⇠
t

= �} = q, then by the law of large numbers

lim
t!1

1

t

Z

t

0

(a(⇠
¯

t

)N � b(⇠
¯

t

))dt̄ = p
�

a(+)N � b(+)
�

+ q
�

a(�)N � b(�)
�

= �.

Denote g
min

= min(g(+), g(�)), g
max

= max(g(+), g(�)) for g = a, b, c. We have

lim inf
t!1

1

t

Z

t

0

a
max

(N � S(t̄))dt̄ � lim inf
t!1

1

t

Z

t

0

a(⇠
¯

t

)(N � S(t̄))dt̄

� lim inf
t!1

1

t

Z

t

0

a(⇠
¯

t

)(N � b(⇠
¯

t

))dt̄ = �.

(5.1.8)

On the other hand, from

Ṡ(t) = �(a(⇠
t

)S(t)+c(⇠
t

))I(t)+c(⇠
t

)(N�S(t)) � �(a(⇠
t

)N+c(⇠
t

))I(t)+c(⇠
t

)(N�S(t)),
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it follows

S(t)� S(0)

t
� 1

t

Z

t

0

�(a(⇠
¯

t

)N + c(⇠
¯

t

))I(t̄)dt̄+
1

t

Z

t

0

c(⇠
¯

t

)(N � S(t̄))dt̄.

Since lim
t!1

S(t)�S(0)

t

= 0,

lim sup
t!1

⇣1

t

Z

t

0

�(a(⇠
¯

t

)N + c(⇠
¯

t

))I(t̄)dt̄+
1

t

Z

t

0

c(⇠
¯

t

)(N � S(t̄))dt̄
⌘

 0.

Hence,

lim inf
t!1

1

t

Z

t

0

(a
max

N + c
max

)I(t̄)dt̄ � lim inf
t!1

1

t

Z

t

0

(a(⇠
¯

t

)N + c(⇠
¯

t

))I(t̄)dt̄

� lim inf
t!1

1

t

Z

t

0

c(⇠
¯

t

)(N � S(t̄))dt̄ � lim inf
t!1

1

t

Z

t

0

c
min

(N � S(t̄))dt̄.

(5.1.9)

Combining (5.1.8) and (5.1.9), we obtain

lim inf
t!1

1

t

Z

t

0

I(t̄)dt̄ � lim inf
t!1

1

t

Z

t

0

c
min

a
max

N + c
max

(N � S(t̄))dt̄

� c
min

(a
max

N + c
max

)a
max

� > 0.

This inequality implies that there exists �
1

> 0 such that lim sup
t!1 I(t) > �

1

.

b) From the inequality

İ(t)

I(t)
= a(⇠

t

)S(t)� b(⇠
t

)  a(⇠
t

)N � b(⇠
t

),

we have

lim sup
t!1

ln I(t)� ln I(0)

t
 lim sup

t!1

1

t

Z

t

0

(a(⇠
¯

t

)S(t̄)� b(⇠
¯

t

))dt̄  � < 0,

which implies that lim
t!1

I(t) = 0. On the other hand,

Ṡ(t) = �a(⇠
t

)S(t)I(t)+c(⇠
t

)(N�S(t)�I(t)) � �a
max

NI(t)+c
min

(N�S(t)�I(t)).

Thus,

S(t) �
Z

t

0

e�c

min

(t�¯

t)(�a
max

N + c
min

)I(t̄)dt̄+ S(0)e�c

min

t + c
min

N

Z

t

0

e�c

min

(t�¯

t)dt̄.

We see that lim
t!1

R

t

0

e�c

min

(t�¯

t)dt̄ = 1

c

min

. Further, by paying attention that lim
t!1

I(t) =

0 we also obtain

lim
t!1

Z

t

0

e�c

min

(t�¯

t)(�a
max

N + c
min

)I(t̄)dt̄ = 0.

Hence, lim inf
t!1 S(t) � N . Combining S(t)  N for all t > 0 gets lim

t!1 S(t) =
N. The proof is complete.
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By definition of � in (5.1.7) we have the following corollary.

Corollary 5.1.2. If b(+)

a(+)

� N then lim
t!1 I(t) = 0 and lim

t!1 S(t) = N .

In view of this corollary, in the following we suppose that b(+)

a(+)

< N .

Proposition 5.1.3. S(t) is ultimately bounded below by S
min

> 0 and there is an
invariant set for the system (5.1.3), which absorbs all positive solutions.

Proof. Let S
min

be chosen such that

�Na(±)S
min

+ c(±)
⇣ b(+)

2a(+)
� S

min

⌘

> m > 0, (5.1.10)

and let A = (S
min

, 0), B = (S
min

, N � b(+)

2a(+)

), C = ( b(+)

2a(+)

, N � b(+)

2a(+)

), D = (N, 0). In

the interior of the triangle r we have İ(t) = a(⇠
t

)(S(t) � b(⇠t)

a(⇠t)
)I(t)  a(⇠

t

)(S(t) �
b(+)

a(+)

)I(t)  a(⇠
t

)( b(+)

2a(+)

� b(+)

a(+)

)I(t) = �a(⇠
t

) b(+)

2a(+)

I(t) < 0 for all points lying above

the line BC, whereas Ṡ > m for all points that are below the line BC and on the
left of AB by (5.1.10) (see the figure 5.4). Therefore, it is easy to see that the
the quadrangle ABCD is invariant under system (5.1.3) and all positive solutions
ultimately go there.

Figure 5.4: An example of invariant
set. The invariant set is defined by
4 dash dot lines.

Figure 5.5: An example of existence
of I

min

when b(+)

a(+)

< b(�)

a(�)

< N .

Definition 5.1.4.

1) System (5.1.3) is said to be persistent if lim sup
t!1 S(t) >

0, lim sup
t!1 I(t) > 0 for all solutions of (5.1.3).
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2) In case there exists a positive ✏ such that

✏  lim inf
t!1

S(t)  lim sup
t!1

S(t)  1/✏,

✏  lim inf
t!1

I(t)  lim sup
t!1

I(t)  1/✏,

we call the system (5.1.3) is permanent.

Corollary 5.1.5. If � > 0 then the system (5.1.3) is persistent.

Proof. This result follows immediately from Propositions 5.1.1 and 5.1.3.

Proposition 5.1.6. I(t) is ultimately bounded below by I
min

> 0 if b(�)

a(�)

< N .

Proof. Since b(�)

a(�)

< N , we can find an 0 < "
0

< �
1

such that min
�

� a(±)si +

c(±)(N � s � i) > 0 : 0 < s  b(�)

a(�)

, 0 < i  "
0

 

> 0. Then, while I(t)  "
0

and S(t)  b(�)

a(�)

we have Ṡ > 0 and
İ

Ṡ
=

(a(⇠
t

)S � b(⇠
t

))I

�a(⇠
t

)SI + c(⇠
t

)(N � S � I)
> �kI

where k is some positive number. Denote by � the piece of the solution curve to

the equation
dI

dS
= �kI starting at (S

min

, "
0

) and ending at the intersection point

( b(�)

a(�)

, "
1

) of this solution curve with the line s = b(�)

a(�)

(see the figure 5.5). Let G be

the subdomain of quadrangle ABCD consisting of all (s, i) 2 ABCD lying above
the curve � if s  b(�)

a(�)

and lying above the line i = "
1

if b(�)

a(�)

 s  N . Obviously,

G is invariant domain because
İ

Ṡ
> �kI, Ṡ > 0 on � and İ > 0 on the segment

I = "
1

, b(�)

a(�)

 S  N . Since lim sup
t!1

I(t) > �
1

> "
0

and (S(t), I(t)) must eventually

enter the quadrangle ABCD, (S(t), I(t)) also eventually enters G which implies that
I(t) ultimately bounded below by I

min

= "
1

.

Corollary 5.1.7. If b(�)

a(�)

< N then the system (5.1.3) is permanent.

Adapted from the concept in [33], we define the (random) !�limit set of the
trajectory starting from an initial value (s

0

, i
0

) by

⌦(s
0

, i
0

,!) =
\

T>0

¯[

t>T

�

S(t, s
0

, i
0

,!), I(t, s
0

, i
0

,!)
�

.

This concept is di↵erent from the one in [44] but it is closest to that of an
!�limit set for a deterministic dynamical system. In the case where ⌦(s

0

, i
0

,!)
is a.s constant, it is similar to the concept of weak attractor and attractor given
in [95, 148]. Although, in general, the !-limit set in this sense does not have the
invariant property, this concept is appropriate for our purpose of describing the
pathwise asymptotic behavior of the solution with a given initial value.
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Our task in the next part is to describe the !-limit sets of the system (5.1.3).
Let ⇡+

t

(s, i) = (S+(t, s, i), I+(t, s, i)), (resp. ⇡�
t

(s, i) = (S�(t, s, i), I�(t, s, i))) be the
solution of (5.1.4) (resp. (5.1.5)) starting in the point (s, i) 2 R2

+

.

From now on, let us fix an (s
0

, i
0

) 2 R2

+

and suppose � > 0. This implies that at
least one of the systems (5.1.4), (5.1.5) has a globally asymptotically stable positive
equilibrium. Without loss of generality, we assume the equilibrium point of the
system (5.1.4) has this property, i.e., lim

t!1 ⇡+

t

(s, i) = (s+⇤ , i
+

⇤ ) 2 intR2

+

for any
(s, i) 2 intR2

+

. Also, suppose that ⇠
0

= + with probability 1.

For " > 0 small enough, denote by U
"

(s, i) the "-neighborhood of (s, i) and by
H

"

⇢ R2

+

the compact set surrounded by AB,BC,CD and the line i = ". Set

S
n

= S(⌧
n

, s
0

, i
0

); I
n

= I(⌧
n

, s
0

, i
0

), Fn

0

= �(⌧
k

: k  n); F1
n

= �(⌧
k

� ⌧
n

: k > n).

We see that (S
n

, I
n

) is Fn

0

� adapted. Moreover, given ⇠
0

, then Fn

0

is independent
of F1

n

.

Lemma 5.1.8. Let J  r be a compact set and (s+⇤ , i
+

⇤ ) 2 J . Then, for any �
2

> 0,
there is a T

1

= T
1

(�
2

) > 0 such that ⇡+

t

(s, i) 2 U
�

2

(s+⇤ , i
+

⇤ ) for any t � T
1

and
(s, i) 2 J .

Proof. Consider the system (5.1.4). Since (s+⇤ , i
+

⇤ ) is asymptotically stable, we can
find a �̄

2

= �̄
2

(�
2

) > 0 such that

⇡+

t

�

U
¯

�

2

(s+⇤ , i
+

⇤ )
�

⇢ U
�

2

(s+⇤ , i
+

⇤ ) 8t � 0.

On the one hand, for (s, i) 2 J , lim
t!1 ⇡+

t

(s, i) = (s+⇤ , i
+

⇤ ) which implies that there
exists a T

si

satisfying

⇡+

t

(s, i) 2 U
¯

�

2

/2

(s+⇤ , i
+

⇤ ) for all t � T
si

.

By the continuous dependence of the solutions on the initial conditions, there is a
neighborhood U

si

of (s, i) such that for any (u, v) 2 U
si

we have

⇡+

Tsi
(u, v) 2 U

¯

�

2

(s+⇤ , i
+

⇤ ).

As a result,

⇡+

t

(u, v) 2 ⇡+

t�Tsi

�

U
¯

�

2

(s+⇤ , i
+

⇤ )
�

⇢ U
�

2

(s+⇤ , i
+

⇤ ) 8t � T
si

.

Since J is compact and the family {U
si

: (s, i) 2 J} is an open covering of J , by
Heine-Borel lemma, there is a finite subfamily, namely {U

siii , i = 1, 2, ..., n}, which
covers J . Let T

1

= max
1in

{T
siii}. We see that if (s, i) 2 J then ⇡+

t

(s, i) 2
U
�

2

(s+⇤ , i
+

⇤ ) for any t � T
1

.

Lemma 5.1.9. There is a compact set K 2 intR2

+

such that, with probability 1,
there are infinitely many k = k(!) 2 N satisfying (S

2k+1

, I
2k+1

) 2 K.
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Proof. In the case b(�)

a(�)

< N , we can choose K ⌘ G, that was established in Propo-

sition 5.1.6 and see that (S
2k+1

, I
2k+1

) 2 K for every k > k
0

.

Suppose that b(+)

a(+)

< N < b(�)

a(�)

. With �
1

is shown in Proposition 5.1.1, by
a similar way to the construction of the set G in the proof of Proposition 5.1.6,
we construct a curve �+ for the system (5.1.4), with the initial point (S

min

, �
1

)
and the end point ( b(+)

a(+)

, I+
min

); then define the subdomain K of quadrangle ABCD

consisting of every (s, i) 2 ABCD lying above the curve �+ if s  b(+)

a(+)

and lying

above the line i = I+
min

if b(+)

a(+)

 s  N . It is seen that K is an invariant set for

the system (5.1.4). By Proposition 5.1.1, there is a sequence (µ
n

) " 1 such that
I(µ

n

) � �
1

for all n 2 N. Further, since I(t) is decreasing whenever S(t)  b(+)

a(+)

,

we can chose (µ
n

) such that S(µ
n

) > b(+)

a(+)

. If ⌧
2k

 µ
n

< ⌧
2k+1

, i.e. ⇠
µn = +, we

have (S
2k+1

, I
2k+1

) 2 K because (S(µ
n

), T (µ
n

)) 2 K and K is invariant set for the
system (5.1.4). For ⌧

2k�1

 µ
n

< ⌧
2k

, if sup
⌧

2kt<⌧

2k+1

I(t) � �
1

we return to the
above case. Otherwise, I(t) < �

1

for any ⌧
2k

 t < ⌧
2k+2

since I(t) is decreasing on
[⌧

2k+1

, ⌧
2k+2

)... Continuing this process, we can either find an odd number 2m+1 > k
such that (S

2m+1

, I
2m+1

) 2 K or see that I(t) < �
1

8t > ⌧
2k

. The latter contradicts
to Proposition 5.1.1. The proof is complete.

Lemma 5.1.10. Let T
2

> 0 and (s̄, ī) = ⇡�
T

2

(s+⇤ , i
+

⇤ ). For any �
4

> 0, there exist

�
3

> 0 and T
2

> 0 such that ⇡�
t

(u, v) 2 U
�

4

(s̄, ī) for all T
2

� T
2

 t  T
2

+ T
2

provided (u, v) 2 U
�

3

(s+⇤ , i
+

⇤ ).

Proof. This result is a consequence of Lemma 5.1.8 and the continuous dependence
of the solutions on the initial values.

Lemma 5.1.11. For any �
6

> 0 and (s, i) 2 H
"

, there exists a �
5

> 0 such that
⇡+

t

(u, v) 2 U
�

6

(⇡+

t

(s, i)) 8t > 0 (resp. ⇡�
t

(u, v) 2 U
�

6

(⇡�
t

(s, i)) 8t > 0), where
(u, v) 2 U

�

5

(s, i) \H
"

.

Proof. The conclusion follows straightforward from the continuous dependence of
the solutions on the initial values.

To describe the pathwise dynamic behavior of the solutions of the system (5.1.3).
Put

� =
n

(s, i) = ⇡
%(n)

tn
· · · ⇡+

t

2

⇡�
t

1

(s+⇤ , i
+

⇤ ) : 0  t
1

, t
2

, · · · , t
n

; n 2 N
o

. (5.1.11)

where %(k) = (�1)k.

Theorem 5.1.12. If � > 0 then for almost all !, the closure � of � is a subset of
⌦(s

0

, i
0

,!).
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Proof. With K is mentioned in Lemma 5.1.9, we construct a sequence

⌘
1

= inf{2k + 1 : (S
2k+1

, I
2k+1

) 2 K}
⌘
2

= inf{2k + 1 > ⌘
1

: (S
2k+1

, I
2k+1

) 2 K}
· · ·
⌘
n

= inf{2k + 1 > ⌘
n�1

: (S
2k+1

, I
2k+1

) 2 K} . . .

It is easy to see that {⌘
k

= n} 2 Fn

0

for any k, n. Thus the event {⌘
k

= n} is
independent of F1

n

if ⇠
0

is given. By Lemma 5.1.9, ⌘
n

< 1 a.s for all n.

Let T
3

> 0, T
3

> 0. For any k 2 N, put A
k

= {�
⌘k+1

< T
3

, �
⌘k+2

> T
3

}. We
have

P(A
k

) = P{�
⌘k+1

< T
3

, �
⌘k+2

> T
3

}

=
1
X

n=0

P{�
⌘k+1

< T
3

, �
⌘k+2

> T
3

| ⌘
k

= 2n+ 1}P{⌘
k

= 2n+ 1}

=
1
X

n=0

P{�
2n+2
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3

, �
2n+3

> T
3

| ⌘
k

= 2n+ 1}P{⌘
k

= 2n+ 1}

=
1
X

n=0

P{�
2n+2
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3

, �
2n+3

> T
3

}P{⌘
k

= 2n+ 1}

=
1
X

n=0

P{�
2

< T
3

, �
3

> T
3

}P{⌘
k

= 2n+ 1} = P{�
2

< T
3

, �
3

> T
3

} > 0.

Similarly,

P(A
k

\ A
k+1

) = P{�
⌘k+1

< T
3

, �
⌘k+2

> T
3

, �
⌘k+1

+1

< T
3

, �
⌘k+1

+2

> T
3

}

=
X

0l<n<1

P{�
⌘k+1

< T
3

, �
⌘k+2

> T
3

, �
⌘k+1

+1

< T
3

, �
⌘k+1

+2

> T
3

|

⌘
k

= 2l + 1, ⌘
k+1

= 2n+ 1}P{⌘
k

= 2l + 1, ⌘
k+1

= 2n+ 1}

=
X

0l<n<1

P{�
2l+2

< T
3

, �
2l+3

> T
3

, �
2n+2

< T
3

, �
2n+3

> T
3

| ⌘
k

= 2l + 1,

⌘
k+1

= 2n+ 1}⇥ P{⌘
k

= 2l + 1, ⌘
k+1

= 2n+ 1}

=
X

0l<n<1

P{�
2n+2

< T
3

, �
2n+3

> T
3

}P{�
2l+2

< T
3

, �
2l+3

> T
3

|

⌘
k

= 2l + 1, ⌘
k+1

= 2n+ 1}⇥ P{⌘
k

= 2l + 1, ⌘
k+1

= 2n+ 1}

=
X

0l<n<1

P{�
2

< T
3

, �
3

> T
3

}P{�
2l+2

< T
3

, �
2l+3

> T
3

|

⌘
k

= 2l + 1, ⌘
k+1

= 2n+ 1}⇥ P{⌘ = 2l + 1, ⌘
k+1

= 2n+ 1}

= P{�
2

< T
3

, �
3

> T
3

}
X

0l<n<1

P{�
2l+2

< T
3

, �
2l+3

> T
3

|

⌘
k

= 2l + 1, ⌘
k+1

= 2n+ 1}⇥ P{⌘
k

= 2l + 1, ⌘
k+1

= 2n+ 1}
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= P{�
2

< T
3

, �
3

> T
3

}
1
X

l=0

P{�
2l+2

< T
3

, �
2l+3

> T
3

| ⌘
k

= 2l + 1}P{⌘
k

= 2l + 1}

= P{�
2

< T
3

, �
3

> T
3

}2.

Therefore,
P(A

k

[ A
k+1

) = 1� (1� P{�
2

< T
3

, �
3

> T
3

})2.
Continuing this way we obtain

P
✓

n

[

i=k

A
i

◆

= 1� (1� P{�
2

< T
3

, �
3

> T
3

})n�k+1.

Hence,

P
✓ 1
\

k=1

1
[

i=k

A
i

◆

= P{! : �
⌘n+1

< T
3

, �
⌘n+2

> T
3

i.o. of n} = 1. (5.1.12)

Fix T
3

> 0. From İ(t) = a(⇠
t

)S(t)I(t) � b(⇠
t

)I(t) � �b
max

I(t) and I(⌧
⌘k
) � I

min

,
it follows that I(t + ⌧

⌘k
) � I

min

e�b

max

t for all t > 0. As a result, with �
⌘k+1

< T
3

,
I
⌘k+1

> � := I
min

e�b

max

T

3 .

Let �
2

> 0, we choose T̄
3

= T
1

(�
2

) as in Lemma 5.1.8 for the set J = H
�

.
Because I

⌘k
� �

1

, it follows I
⌘k+1

2 H
�

and (S
⌘k+2

, I
⌘k+2

) 2 U
�

2

(s+⇤ , i
+

⇤ ) provided
�
⌘k+1

< T
3

, �
⌘k+2

> T̄
3

. From (5.1.12)we see that (S
⌘k+2

, I
⌘k+2

) 2 U
�

2

(s+⇤ , i
+

⇤ ) for
infinitely many k. This means that (s+⇤ , i

+

⇤ ) 2 ⌦(s
0

, i
0

,!) for almost all !.

Next, we show that {⇡�
t

(s+⇤ , i
+

⇤ ) : t � 0} ⇢ ⌦(s
0

, i
0

,!) a.s. Consider a point
(s̄, ī) = ⇡�

T

2

(s+⇤ , i
+

⇤ ). By virtue of Lemma 5.1.10, for any �
4

> 0, there are �
3

, T
2

such

that if (u, v) 2 U
�

3

(s+⇤ , i
+

⇤ ) then ⇡�
t

(u, v) 2 U
�

4

(s̄, ī) for all T
2

� T
2

< t < T
2

+ T
2

.
We now construct the sequence of stopping times

⇣
1

= inf{2k + 1 : (S
2k+1

, I
2k+1

) 2 U
�

3

(s+⇤ , i
+

⇤ )},
⇣
2

= inf{2k + 1 > ⇣
1

: (S
2k+1

, I
2k+1

) 2 U
�

3

(s+⇤ , i
+

⇤ )},
· · ·
⇣
n

= inf{2k + 1 > ⇣
n�1

: (S
2k+1

, I
2k+1

) 2 U
�

3

(s+⇤ , i
+

⇤ )} . . .

For (s+⇤ , i
+

⇤ ) 2 ⌦(s
0

, i
0

,!), it follows that ⇣
n

< 1 and lim
n!1

⇣
n

= 1 a.s.. Since

{⇣
k

= n} 2 Fn

0

, {⇣
k

} is independent of F1
n

. Put

B
k

= {�
⇣k+1

2 [T
2

� T
2

, T
2

+ T
2

]}, k = 1, 2, ...

By the same argument as above we obtain P{! : �
⇣n+1

2 [T
2

� T
2

, T
2

+
T

2

] i.o. of n} = 1. This implies (S
⇣k+1

, I
⇣k+1

) 2 U
�

4

(s̄, ī) for infinitely many times
and (s̄, ī) 2 ⌦(s

0

, i
0

,!) a.s. Thus, {⇡�
t

(s+⇤ , i
+

⇤ ) : t � 0} ⇢ ⌦(s
0

, i
0

,!).

Based on Lemmas 5.1.10, 5.1.11 and using a similar argument, we see that
{⇡+

t

2

⇡�
t

1

(s+⇤ , i
+

⇤ ) : t
1

� 0, t
2

� 0} ⇢ ⌦(s
0

, i
0

,!). By induction, we conclude
� ⇢ ⌦(s

0

, i
0

,!). Moreover, � ⇢ ⌦(s
0

, i
0

,!) since ⌦(s
0

, i
0

,!) is a closed set.
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Theorem 5.1.13. Suppose � > 0,

a) If
a(+)

a(�)
=

b(+)

b(�)
=

c(+)

c(�)
, (5.1.13)

the systems (5.1.4) and (5.1.5) have the same equilibrium. Moreover, all posi-
tive solutions to the system (5.1.3) converge to this equilibrium with probability
1.

b) If (5.1.13) is not satisfied then, with probability 1, the � = ⌦(s
0

, i
0

,!). More-
over, � absorbs all positive solutions in the sense that for any initial value
(s

0

, i
0

) 2 intR2

+

, the value �(!) = inf{t > 0 : (S(t̄, s
0

, i
0

,!), I(t̄, s
0

, i
0

,!)) 2
�̄ 8 t̄ > t} is finite outside a P-null set.

Proof. a) It is easy to see that the systems (5.1.4) and (5.1.5) have the same equilib-
rium, (s+⇤ , i

+

⇤ ) = (s�⇤ , i
�
⇤ ) =: (s⇤, i⇤) if and only if the condition (5.1.13) is satisfied.

Let " > 0 be arbitrary. Since (s⇤, i⇤) is globally asymptotically stable, there is a
neighborhood V

"

⇢ U
✏

(s⇤, i⇤), invariant under the system (5.1.4) (see The Stable
Manifold Theorem, [115, pp 107]). Under the condition (5.1.13), the vector fields of
both systems (5.1.4) and (5.1.5) have the same direction at every point (s, i). As a
result, V

"

is also invariant under the system (5.1.5), which implies that V
"

is invari-
ant under the system (5.1.3). By Theorem 5.1.12, (s⇤, i⇤) 2 ⌦(s

0

, i
0

,!) for almost
all !. Therefore, T

V" = inf
�

t > 0 : (S(t), I(t)) 2 V
"

 

< 1 a.s. Consequently,
(S(t), I(t)) 2 V

"

8t > T
V" . This property says that (S(t), I(t)) converges to (s⇤, i⇤)

with probability 1 if S(0) > 0, I(0) > 0.

b) We will show that if there exists a t
0

> 0 such that the point (s̄
0

, ī
0

) =
⇡�
t

0

(s+⇤ , i
+

⇤ ) satisfies the following condition

det

✓

Ṡ+(s̄
0

, ī
0

) Ṡ�(s̄
0

, ī
0

)
İ+(s̄

0

, ī
0

) İ�(s̄
0

, ī
0

)

◆

6= 0, (5.1.14)

then, with probability 1, the closure � of � coincides ⌦(s
0

, i
0

,!) and � absorbs all
positive solutions.

Indeed, let (s̄
0

, ī
0

) = ⇡�
t

0

(s+⇤ , i
+

⇤ ) be a point in intR2

+

satisfying the condition
(5.1.14). By the existence and continuous dependence on the initial values of the
solutions, there exist two numbers d > 0 and e > 0 such that the function '(t

1

, t
2

) =
⇡+

t

2

⇡�
t

1

(s̄
0

, ī
0

) is defined and continuously di↵erentiable in (�d, d)⇥ (�e, e). We note
that

det

✓

@'

@t
1

,
@'

@t
2

◆

�

�

�

(0,0)

=

det

✓

�a(+)s̄
0

ī
0

+ c(+)(N � s̄
0

� ī
0

) �a(�)s̄
0

ī
0

+ c(�)(N � s̄
0

� ī
0

)
a(+)s̄

0

ī
0

� b(+)̄i
0

a(�)s̄
0

ī
0

� b(�)̄i
0

◆

6= 0.

Therefore, by the Inverse Function Theorem, there exist 0 < d
1

< d, 0 < e
1

< e such
that '(t

1

, t
2

) is a di↵eomorphism between V = (0, d
1

)⇥ (0, e
1

) and U = '(V ). As a
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consequence, U is an open set. Moreover, for every (s, i) 2 U , there exists a (t⇤
1

, t⇤
2

) 2
(0, d

1

) ⇥ (0, e
1

) such that (s, i) = ⇡+

t

⇤
2

⇡�
t

⇤
1

(s̄
0

, ī
0

) 2 S. Hence, U ⇢ � ⇢ ⌦(s
0

, i
0

,!).
Thus, there is a stopping time � < 1 a.s. such that (S(�), I(�)) 2 U . Since �
is a forward invariant set and U ⇢ �, it follows that (S(t), I(t)) 2 � 8t > � with
probability 1. The fact (S(t), I(t)) 2 � for all t > � implies that ⌦(s

0

, i
0

,!) ⇢ �.
By combining with Theorem 5.1.12 we get � = ⌦(s

0

, i
0

,!) a.s..

Moreover, we see that when condition (5.1.13) does not happen, it ensures the
existence of t

0

satisfying (5.1.14). Indeed, consider the set of all (s, i) 2 intR2

+

satisfying

det

✓

Ṡ+(s, i) Ṡ�(s, i)
İ+(s, i) İ�(s, i)

◆

= 0, (5.1.15)

or

⇥

�a(+)si+c(+)(N�s�i)
⇤⇥

a(�)s�b(�)
⇤

�[�a(�)si+c(�)(N�s�i)
⇤⇥

a(+)s�b(+)
⇤

= 0.
(5.1.16)

The equation (5.1.16) describes a quadratic curve (5.1.16). However, it is easy to
prove that any quadratic curve is not the integral curve of the system (5.1.5). This
means that we can find a t

0

such that the point (s̄
0

, ī
0

) = ⇡�
t

0

(s+⇤ , i
+

⇤ ) satisfies the
condition (5.1.14). The proof is complete.

5.1.4 The semigroup and the stability in distribution

It is well-known that the pair (⇠
t

, S(t), I(t)) is a homogeneous Markov process
with the state space V := E ⇥ intR2

+

. Let B(V) be the Borel ��algebra on V and �
be the Lebesgue measure on intR2

+

. Denote by m the product measure on (V,B(V))
defined by m(+, A) = p�(A) and m(�, A) = q�(A).

As shown in [51, Lemma 3.1], if the distribution of (⇠
0

, S(0), I(0)) is absolutely
continuous with respect to the measure m, so is the distribution of (⇠

t

, S(t), I(t)).
We can therefore define P (t)f to be the density function of (⇠

t

, S(t), I(t)) given that
(⇠

0

, S(0), I(0)) has the density f .

If � > 0 and (5.1.13) holds, all positive solutions converge almost surely to the
equilibrium (s+⇤ , i

+

⇤ ) = (s�⇤ , i
�
⇤ ). Otherwise, we have

Theorem 5.1.14. If � > 0 and (5.1.13) does not hold, then (⇠
t

, S(t), I(t)) has a
stationary distribution ⌫⇤, concentrated on E ⇥ (r\ intR2

+

). In addition, ⌫⇤ is the
unique stationary distribution having the density f ⇤, and lim

t!1
kP (t)f � f ⇤k = 0 for

any f 2 D.

Proof. We firstly point out the existence of a stationary distribution of the process
(⇠

t

, S(t, )I(t)). From the proof of Proposition 5.1.1, we have

lim inf
t!1

1

t

Z

t

0

I(t̄)dt̄ � c
min

(a
max

N + c
max

)a
max

� =: ⇢ > 0.
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Denote by 1
A

the indicator function of the set A. By using the relations

1

t

Z

t

0

I(t̄)dt̄ =
1

t

Z

t

0

I(t̄)1{I(¯t)< ⇢
2

}dt̄+
1

t

Z

t

0

I(t̄)1{I(¯t)� ⇢
2

}dt̄

⇢

2
+

N

t

Z

t

0

1{I(¯t)� ⇢
2

}dt̄,

it follows, with probability 1, that

lim inf
t!1

1

t

Z

t

0

1{I(¯t)� ⇢
2

}dt̄ �
⇢

2N
.

Applying Fatou lemma yields

lim inf
t!1

1

t

Z

t

0

P
�

I(t̄) � ⇢

2

 

dt̄ � ⇢

2N
. (5.1.17)

Consider the process (⇠
t

, S(t), I(t)) on a larger state space E⇥
�

r\{(s, i) : s = 0, 0 
i  N}

�

. it is easy to prove that (⇠
t

, S(t), I(t)) is a Feller process. Therefore, by
using [102, Theorem 4.5] (or [134]) the above estimate (5.1.17) implies the existence
of an invariant probability measure ⌫ for the process (⇠

t

, S(t), I(t)) on E ⇥
�

r \
{(s, i) : s = 0, 0  i  N}

�

. Since {(s, i) : i = 0, 0  s  N} is invariant and
lim

t!1 I(t) = 0 if S(0) = 0, it follows that ⌫({(s, i) : i = 0, 0  s  N}) = 0. Thus,
⌫(E ⇥ (r\ intR2

+

)) > 0. By virtue of invariant property of E⇥intR2

+

, the measure

⌫⇤ defined by ⌫⇤(A) =
⌫
�

A \ E ⇥ (r\ intR2

+

)
�

⌫(E ⇥ (r\ intR2

+

)
for any measurable A 2 B(V) is a

stationary distribution on E ⇥ (r\ intR2

+

) of the process (⇠
t

, S(t), I(t)).

The asymptotic stability of f⇤ can be proved by using (5.1.14); the arguments
analogous to [51, Proposition 3.1] and then applying [118, Proposition 2]. The proof
is complete.

5.1.5 Simulation and discussion

We illustrate the above model by following numerical examples.

Example I: � > 0 and the endemic is present in both states (see figure 5.6).
It corresponds to ↵ = 15, � = 18, a(+) = 1.2, b(+) = 432, c(+) = 265, a(�) =
1.5, b(�) = 139, c(�) = 428, N = 500, the initial condition (S(0), I(0)) = (250, 10)
and number of switches n = 500. In this example, � ⇡ 369.36, the solution of (5.1.3)
switches between two asymptotically stable positive equilibriums of the systems
(5.1.4) and (5.1.5).

Example II: � > 0 and one state is endemic, the other is disease free.
The system (5.1.4) with coe�cients a(+) = 1.6, b(+) = 169, c(+) = 486 has a
asymptotically stable positive equilibrium and the system (5.1.5) with coe�cients
a(�) = 0.7, b(�) = 375, c(�) = 328 tends to the quantity of population N = 500,
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the number of switches n = 700, transition intensities ↵ = 8� = 15 and initial con-
dition (S(0), I(0)) = (104, 336). Since � ⇡ 402.83, the system (5.1.3) is persistent
(see figure 5.9).

Example III: � < 0 and a system has positive equilibrium, the other has
disease free equilibrium (figure 5.12). The parameters of the model are ↵ = 20, � =
5, a(+) = 1.9, b(+) = 176, c(+) = 465, a(�) = 0.5, b(�) = 455, c(�) = 347, N =
500, (S(0), I(0)) = (64, 362), n = 100. Although the positive equilibrium of the
system (5.1.4) is asymptotically stable, the system (5.1.3) is not persistent because
� = �9.2.

Figure 5.6: Orbit of the system (5.1.3) in example I.

Figure 5.7: Trajectory S(t) in ex-
ample I

Figure 5.8: Trajectory I(t) in ex-
ample I.
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Figure 5.9: Orbit of the system (5.1.3) in example II.

Figure 5.10: Trajectory S(t) in ex-
ample II

Figure 5.11: Trajectory I(t) in ex-
ample II.

The basic reproduction number R
0

is an important concept in epidemiology. R
0

is the threshold parameter for many epidemiological models, it informs whether the
disease becomes extinct or whether the disease is endemic. For example, there are
many recent papers about periodic epidemic models that concentrate on defining and
computing R

0

(see [17], [18], [55], [144] [151]). In the classic SIRS model (5.1.1), R
0

is valued by ratio Na

b

, it represents the rate of increase of new infections generated
by a single infectious individual in a total sane population. Based on this R

0

, we
give out the key parameter � for our stochastic SIRS model. � reads as follows:

� = p
�

a(+)N � b(+)
�

+ q
�

a(�)N � b(�)
�

.

This is the average of two terms associated with each system + or � weighted by the
switching intensities. Therefore, in the stochastic model, � can be interpreted as the
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Figure 5.12: Orbit of the system (5.1.3) in example III.

Figure 5.13: Trajectory S(t) in ex-
ample III

Figure 5.14: Trajectory I(t) in ex-
ample III.

average number of infective individuals generated by a single infectious individual
in a totally sane population for the total system with random switches. We can,
therefore, understand that when � is positive, it signifies that asymptotically the
total system will go towards an endemic state while the disease will vanish provided
that it is negative. Hence, for the stochastic model, � is a very important parameter
that enables us to obtain important informations about the asymptotic behavior of
the total system.

We illustrate di↵erent situations in the following numerical simulations. Exam-
ples I and II show cases where � is positive, the first one illustrates the switching
between two endemic systems + and �, whilst the second one depicts a system com-
posed of an endemic case + and a case � for which the disease free equilibrium is
stable. In both examples, the simulations show that asymptotically the total system
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persists leading to an endemic situation.

The last example III considers the case of � < 0, with an endemic system + and
for the other one � a stable disease free equilibrium. As expected, the simulation
shows that after several switches, the disease is globally eradicated.

Examples II and III are interesting because they illustrate a similar case, i.e.
when systems + and � have opposite trends, system + being endemic and system
� being disease free. In those examples, it is thus questionable to predict what will
be the global evolution of the complete system switching at random between these
two di↵erent situations. The answer is given by looking at the sign of parameter
� which allow us to predict if the disease will globally invade or vanish in the long
term.

Global changes may have important consequences on the spreading of emergent
diseases and epidemics. Therefore, it is important to provide pertinent tools that
allow us to make suitable predictions about the possibility of emergence of a disease
in a changing environment undergoing climatic and environmental changes. The
aim of this chapter was to provide such e�cient tools.

As a perspective, the system would be extended to the case of a system switching
randomly between n states, n > 2. It would also be interesting to test the model
on real situations, like malaria, switching between wet and dry periods. Otherwise,
for further study on the epidemic models under the e↵ect of random environmental
conditions, we could add some more other stochastic factors as in [26] to this SIRS
model.

5.2 Evolution of Lotka-Volterra predator-prey
systems under telegraph noise

5.2.1 Model

The dynamics of predator-prey systems have been investigated very largely in the
frame of deterministic models, Edelstein-Keshet (1998) [52], Murray (2002) [105]. In
Bazykin (1998) [22], one can find a review of most classical deterministic predator-
prey models. The two variables are the prey x(t) and predator y(t) densities at time
t. The classical form of a predator-prey model is the following one:

⇢

dx

dt

= f(x)� h(x, y)y
dy

dt

= eeh(x, y)y � µy,

where the function f(x) is the natural growth function of the prey, h(x, y)y is the
capture term; ee is a positive prey biomass into predator biomass conversion param-
eter. µ is the natural mortality rate for predators. h(x, y) is the so-called functional
response, i.e., the prey density captured per unit of time and per unit of predator
density. In the classical Lotka-Volterra model, it is assumed that the functional re-
sponse is type I, i.e., depending only on the prey density and linear, i.e., h(x) = qx
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where q is a positive constant which is called the catch-ability. It is also usual to
assume that prey grows logistically leading to the model:

⇢

dx

dt

= x
�

r
�

1� x

K

�

� qy
�

= x (a� bx� cy)
dy

dt

= (eeqx� µ) y = (�d+ ex) y.

Where r is the growth rate of the prey and K its carrying capacity. For the sake of
simplification, in the next sections, we use the model under the form involving the
parameter set (a, b, c, d, e) and the links with ecological parameters (r,K, q, µ, ee) is
not given here because it is obvious.

This classical Lotka-Volterra model assumes that species live in a constant envi-
ronment. However, it is clear that it is not the case in reality and that it is important
to take into account the variability of the environment which may have important
consequences on the dynamics and persistence of a predator-prey community. The
variability of the environment may be expressed under the stochastic factors. For
the stochastic Lotka-Volterra equation, there is not too much in mathematical lit-
erature, and almost nothing in statistical inference. Here, we mention one of the
first attempts in this direction, the very interesting paper of Arnold et al. [7] in
which the authors used the theory of Brownian motion processes and the related
white noise models to study the sample paths of the equation. For the branching
models in a varying environment, we can refer to [2, 3, 127]. A systematic review
has been given in [1]. In the simplest case, one might consider that environmental
conditions can switch between two states, a hot and cold one, a dry state and wet
one. Thus, we can suppose there is a telegraph noise a↵ecting on the model in the
form of switching between two-element set, E = {1, 2}. With di↵erent states, the
coe�cients of model are di↵erent. The stochastic displacement of environmental
conditions provokes model to change from the system in state one to the system in
state two and vice versa.

Let’s consider again process (⇠
t

) mentioned in section 5.1.2. (⇠
t

)
t�0

is a Markov
process, defined on the probability space (⌦,F ,P), taking values in the set of two

elements, say E = {1, 2}. (⇠
t

) has the transition intensities 1
↵! 2 and 2

�! 1 with
↵ > 0, � > 0. The process (⇠

t

) has a unique stationary distribution

p = lim
t!1

P{⇠
t

= 1} =
�

↵ + �
; q = lim

t!1
P{⇠

t

= 2} =
↵

↵ + �
.

Lotka-Volterra predator-prey system with telegraph noise (⇠
t

) is described by equa-
tion

(

ẋ = x (a(⇠
t

)� b(⇠
t

)x� c(⇠
t

)y) ,

ẏ = y (�d(⇠
t

) + e(⇠
t

)x) ,
(5.2.1)

where g : E ! (0,1) for g = a, b, c, d, e.

This section studies the dynamical behavior of system under telegraph noise. It
is structured into four subsections. In subsection 5.2.2, we summarize our paper
[12]. Paper [12] presents this model with carrying capacity of environment (K < 1
i.e. b 6= 0) where the dynamics of the system is quite di↵erent. The predator may be
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extinct when one deterministic system has only non positive rest point. However, if
two deterministic systems have positive rest points, it is proved that the model will
be permanent with probability 1. Moreover, we show the existence of stationary
distribution of solution in this case. When the carrying capacity of environment is
absent (K = 1 i.e. b = 0), the telegraph noise does the model chaotically. It can
not be permanent if the positive rest points of two deterministic systems do not
coincide [138]. This case is shown in our paper [138] and summarized in subsection
5.2.3. Last subsection is discussion and conclusion.

5.2.2 Predator-prey system with carrying capacity

The following subsection presents main results of paper [12]. We consider Lotka-
Volterra predator-prey system (5.2.1) in case b(⇠

t

) 6= 0
(

ẋ = x (a(⇠
t

)� b(⇠
t

)x� c(⇠
t

)y) ,

ẏ = y (�d(⇠
t

) + e(⇠
t

)x) ,
(5.2.2)

where g : E ! (0,1) for g = a, b, c, d, e. The noise (⇠
t

) intervenes virtually into the
equation (5.2.2), it makes a switching between the deterministic system

(

ẋ
1

(t) = x
1

(t)(a
1

� b
1

x
1

(t)� c
1

y
1

(t)),

ẏ
1

(t) = y
1

(t)(�d
1

+ e
1

x
1

(t)),
(5.2.3)

and the deterministic one
(

ẋ
2

(t) = x
2

(t)(a
2

� b
2

x
2

(t)� c
2

y
2

(t)),

ẏ
2

(t) = y
2

(t)(�d
2

+ e
2

x
2

(t)),
(5.2.4)

where g
i

= g(i) for i = 1, 2 and g = a, b, c, d, e.

It is well-known that the systems (5.2.3) and (5.2.4) respectively have the rest
points

x⇤
i

=
d
i

e
i

, y⇤
i

=
a
i

e
i

� b
i

d
i

c
i

e
i

, i = 1, 2, (5.2.5)

and their global dynamics depend on these rest points (see [22]). Concretely, if y⇤
i

> 0
then the ith-rest point is asymptotically stable, i.e., lim

t!1
(x

i

(t), y
i

(t)) = (x⇤
i

, y⇤
i

) when

x
i

(0) > 0, y
i

(0) > 0. If y⇤
i

 0 then lim
t!1

(x
i

(t), y
i

(t)) =
�

ai
bi
, 0
�

for i = 1, 2.

The behavior of two boundary equations is easy to be studied. In the case
where the prey is absent, the quantity v(t) of predator at the time t satisfies the
equation v̇ = �d(⇠

t

)v. Thus, v(t) decreases exponentially to 0. Similarly, without
the predator, the quantity u(t) of the prey at the time t satisfies the logistic equation

u̇ = u
�

a(⇠
t

)� b(⇠
t

)u
�

, u(0) > 0. (5.2.6)

Let (x
0

, y
0

) 2 R2

+

. Denote by (x(t, x
0

, y
0

), y(t, x
0

, y
0

)) the solution of (5.2.2)
satisfying the initial condition (x(0, x

0

, y
0

), y(0, x
0

, y
0

)) = (x
0

, y
0

). For the sake of
simplification, we write (x(t), y(t)) for (x(t, x

0

, y
0

), y(t, x
0

, y
0

)) The following propo-
sitions will give the conditions for the persistence of system (5.2.2)
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Proposition 5.2.1. There exists a positive number x
min

, independent from the
choice of (x

0

, y
0

) 2 R2

+

, such that x(t) is ultimately bounded below by x
min

. This
means that there is t

0

> 0 such that x(t) � x
min

for all t � t
0

.

Denote

� :=

Z

I

�

p(�d
1

+ e
1

u)µ
1

(u) + q(�d
2

+ e
2

u)µ
2

(u)
�

du. (5.2.7)

Proposition 5.2.2.

a) If � > 0 then there is a positive number � such that lim sup
t!1 y(t, x

0

, y
0

) > �
with probability 1.

b) If � < 0 we have lim
t!1 y(t, x

0

, y
0

) = 0 with probability 1.

By combining the propositions 5.2.1 and 5.2.2 we have corollary

Corollary 5.2.3. If � > 0 then (5.2.2) is persistent with probability 1.

Let !(x
0

, y
0

) be the !-limit set of the solution (x(t, x
0

, y
0

), y(t, x
0

, y
0

)) of the
system (5.2.2). We have

Theorem 5.2.4.

a) Suppose that � > 0

1. If y⇤
1

> 0 and y⇤
2

> 0, both the positive orbit �
1

of the solution
(x

1

(t, x⇤
2

, y⇤
2

), y
1

(t, x⇤
2

, y⇤
2

)) of the system (5.2.3) and �
2

of the solution
(x

2

(t, x⇤
1

, y⇤
1

), y
2

(t, x⇤
1

, y⇤
1

)) of system (5.2.4) are subsets of !(x
0

, y
0

). Moreover,

2. Any positive orbit �̄
2

of the solution (x
2

(t, x̄, ȳ), y
2

(t, x̄, ȳ)) of the system
(5.2.4), starting in a point (x̄, ȳ) 2 �

1

at t = 0, is a subset of !(x
0

, y
0

).
Similarly, any positive orbit e�

1

of the solution (x
1

(t, ex, ey), y
1

(t, ex, ey)) of the
system (5.2.3), starting in a point (ex, ey) 2 �

2

at t = 0, is a subset of !(x
0

, y
0

).

3. If y⇤
1

> 0 and y⇤
2

< 0, then we have a similar result as in 1.; provided that
(x⇤

2

, y⇤
2

) is replaced by (a2
b

2

, 0) and �
1

is replaced by closure of e�
1

- says b�
1

.
Concurrently, �u ⇢ !(x

0

, y
0

) with �u to be the !-limit set of (u(t), 0), here
u(t) is the solution of the system (5.2.6).

b) If � < 0, y⇤
1

< 0 and y⇤
2

< 0 then �u ⌘ !(x
0

, y
0

).

Theorem 5.2.4 describes the subsets of !-limit set of solution for each case. It
is shown that the !-limit sets include every orbit starting at a point on the curves
linking two rest points of the subsystems.

The last theorem proves the existence of invariant measures

Theorem 5.2.5. If y⇤
1

> 0, y⇤
2

> 0,� > 0, the system (5.2.2) is permanent. More-
over, for the Markov process (x(t), y(t), ⇠

t

)
t�0

, there exists a stationary distribution.
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Next, we present some numerical simulations. As the first example, we consider
the case a

1

= 4.2, b
1

= 1, c
1

= 1.1, d
1

= 5, e
1

= 1.8, a
2

= 6, b
2

= 0.8, c
2

= 1.3, d
2

=
9.4, e

2

= 2.5, x(0) = 4, y(0) = 4.3,↵ = 0.6, � = 0.8, where y⇤
1

> 0, y⇤
2

> 0. The
number of switching is n = 300. The individual sample paths in the figure 5.15
illustrate the !�limit set in the theorem 5.2.4. The figure 5.16 shows the oscillations
of the population sizes x(t) and y(t).

Figure 5.15: Orbit of system in case y⇤
1

> 0, y⇤
2

> 0. The solution moves between
the two rest points (2.77, 1.29) and (3.76, 2.30) as switching occurs.

Figure 5.16: The oscillations of x(t) and y(t) in case y⇤
1

> 0, y⇤
2

> 0.

The next examples concern with the numerical solutions of systems where y⇤
1

>
0, y⇤

2

< 0. On the case A of the figure 5.17, we compute with a
1

= 7.2, b
1

=
2.1, c

1

= 0.8, d
1

= 3.2, e
1

= 1.6, a
2

= 6.3, b
2

= 1.1, c
2

= 2.5, d
2

= 5.8, e
2

= 0.9, x(0) =
0.8, y(0) = 3.3,↵ = 0.5, � = 0.4 and the number of switching n=500. In this case
� ⇡ 0.66 > 0. As is seen lim sup

t!1 y(t) > 0 but lim inf
t!1 y(t) = 0.

For the case B, the parameters are a
1

= 4.2, b
1

= 0.9, c
1

= 0.4, d
1

= 6.5, e
1

=
1.8, a

2

= 5.8, b
2

= 2, c
2

= 1.5, d
2

= 7.3, e
2

= 1.1, x(0) = 4.5, y(0) = 2.6,↵ =
0.3, � = 0.6, number of switching n = 300. Since � ⇡ �0.1 < 0, it is seen that
lim

t!1 y(t) = 0 (according to the proposition 5.2.2). Thus the !-limit set of all
solutions starting in int R2

+

is the segment [(4.7, 0); (2.9, 0)] (see the theorem 5.2.4).

We sketch the oscillations of x(t) and y(t) in these cases in the figure 5.18 and
5.19.
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Figure 5.17: Orbit of system in case y⇤
1

> 0, y⇤
2

< 0.

Figure 5.18: The oscillations of x(t) and y(t) in case A.

Figure 5.19: The oscillations of x(t) and y(t) in case B.
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5.2.3 Predator-prey system with the absence of carrying ca-
pacity

This subsection is summarization of paper [138]. We study Lotka-Volterra
predator-prey system (5.2.1) in case b(⇠

t

) = 0
(

ẋ = x (a(⇠
t

)� c(⇠
t

)y) ,

ẏ = y (�d(⇠
t

) + e(⇠
t

)x) ,
(5.2.8)

where g : E ! R
+

\ {0} for g = a, c, d, e. In the case where the noise (⇠
t

) inter-
venes virtually into Equation (5.2.8), it makes a switching between the deterministic
system

(

ẋ
1

(t) = x
1

(t)(a
1

� c
1

y
1

(t)),

ẏ
1

(t) = y
1

(t)(�d
1

+ e
1

x
1

(t)),
(5.2.9)

and a deterministic one
(

ẋ
2

(t) = x
2

(t)(a
2

� c
2

y
2

(t)),

ẏ
2

(t) = y
2

(t)(�d
2

+ e
2

x
2

(t)).
(5.2.10)

[105] and [137] show that system (5.2.9) (resp. (5.2.10)) has a rest point (x⇤
1

, y⇤
1

) =
(a1
c

1

, d1
e

1

) (resp. (x⇤
2

, y⇤
2

) = (a2
c

2

, d2
e

2

)) and its solutions are periodic orbits.

Theorem 5.2.6. Suppose that (5.2.9) and (5.2.10) have di↵erent rest points. For
any initial point (x

0

, y
0

) 2 intR2

+

,we have with probability 1,

lim sup
t!1

x(t, x
0

, y
0

) = 1, lim inf
t!1

x(t, x
0

, y
0

) = 0,

lim sup
t!1

y(t, x
0

, y
0

) = 1, lim inf
t!1

y(t, x
0

, y
0

) = 0.

Theorem 5.2.7. Suppose that (5.2.9) and (5.2.10) have a common rest point. For
any initial point (x

0

, y
0

) 2 intR2

+

,we have with probability 1, either

lim
t!1

(x(t, x
0

, y
0

), y(t, x
0

, y
0

)) = (x⇤
1

, y⇤
1

) = (x⇤
2

, y⇤
2

), (5.2.11)

or,

lim sup
t!1

x(t, x
0

, y
0

) = 1, lim inf
t!1

x(t, x
0

, y
0

) = 0, (5.2.12)

lim sup
t!1

y(t, x
0

, y
0

) = 1, lim inf
t!1

y(t, x
0

, y
0

) = 0. (5.2.13)

Theorem 5.2.6 and 5.2.7 mean that if the rest points of two systems do not
coincide, all trajectories of the system perturbed by telegraph noise always leave
from any compact set in intR2

+

. In case two systems have the rest point in common,
either the trajectory of a random predator-prey system converges to the common
rest point or it leaves from any rectangle in intR2

+

. These properties imply that such
a system is neither permanent nor dissipative.
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We illustrate our result by simulations. Figure 5.20 and 5.21 shows the behavior
of the trajectory of the systems (5.2.8).

Case A corresponds to a(1) = 2, b(1) = 2, c(1) = 3, d(1) = 2 and a(2) =
3, b(2) = 3, c(2) = 6, d(2) = 4 with the initial condition (2, 1.5). In this case, two
systems have the rest point in common, the solution of (5.2.8) turns around the rest
point for a while, and then leaves from any compact set.

Case B is related to a(1) = 2, b(1) = 1, c(1) = 6, d(1) = 3 and a(2) = 2, b(2) =
2, c(2) = 3, d(2) = 2, the initial condition is (1, 2). In this case, two rest points are
di↵erent, the solution leaves quickly from any compact set.
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enough rectangle, containing the rest point, such that every trajectory, passing through a point H̃1,
is contained in H1 = H1(ε). We see that the number of the switching points in H̃ \ H̃1 must be
finite. Otherwise, the orbit of z(t) has to leave from H̃ by Theorem 4.3. Therefore, there is k > 0
such that zn ∈ H1 for any n > k which implies that limt→∞(x(t, x, y), y(t, x, y)) = (p, q). Thus,
we have (4.5). ✷

5. Conclusion

Up to now various dynamical models in ecology have been proposed under the environmen-
tal fluctuations corresponding to seasonality. The deterministic switching between two different
predator–prey systems exhibits more complex dynamics including stable equilibrium point, limit
cycle, and also chaos [7]. The possibilities or the conditions for the coexistence of tempo-
rally segregated competitors in a cyclic environment [10] or two competing species following

Case A

Case B

Fig. 5.

Figure 5.20: Orbits of system (5.2.8) for Case A
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5. Conclusion

Up to now various dynamical models in ecology have been proposed under the environmen-
tal fluctuations corresponding to seasonality. The deterministic switching between two different
predator–prey systems exhibits more complex dynamics including stable equilibrium point, limit
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rally segregated competitors in a cyclic environment [10] or two competing species following

Case A

Case B

Fig. 5.Figure 5.21: Orbits of system (5.2.8) for Case B

In both cases, the green line shows the trajectory of (5.2.8) subjecting to System
(5.2.9) and the red line shows the trajectory of (5.2.8) subjecting to System (5.2.10).

Figure 5.22 (or 5.23) shows the time evolution of x(t) and y(t) corresponding to
Case A (or B), respectively.
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Fig. 6. (a) Time evolution of x(t) for Case A. (b) Time evolution of y(t) for Case A.

Lotka–Volterra competition system in a seasonally fluctuating environment [12] are studied.
The stochastic change of environment gives the similar effect on population dynamics with sea-
sonality [2]. Most of such models are formulated by deterministic dynamics, but some kind of
stochasticity reflecting complexity of biological or environmental factors should be introduced
in population dynamics. Slatkin [15] introduced and analyzed a class of general models of sin-
gle population which grows under the telegraph noise exactly same in this paper. Du et al. [3,4]
analyzed two-species Lotka–Volterra competition systems under telegraph noises. In this paper
we obtained the results, stated in Theorem 4.5, for two-species Lotka–Volterra predator–prey
systems under telegraph noises. We believe the necessity to collect the results for various types
of two-species dynamical systems including the asymptotically stable Lotka–Volterra predator–
prey systems, and to proceed to obtain the general conditions for the behaviors of the systems.

In view of practice, when the amount of a species is smaller than a threshold, we consider this
species disappears in our system. Theorem 4.5 tells us that although the environment condition
changes constantly (since the Markov switching process is stationary), species may vanish from
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Lotka–Volterra competition system in a seasonally fluctuating environment [12] are studied.
The stochastic change of environment gives the similar effect on population dynamics with sea-
sonality [2]. Most of such models are formulated by deterministic dynamics, but some kind of
stochasticity reflecting complexity of biological or environmental factors should be introduced
in population dynamics. Slatkin [15] introduced and analyzed a class of general models of sin-
gle population which grows under the telegraph noise exactly same in this paper. Du et al. [3,4]
analyzed two-species Lotka–Volterra competition systems under telegraph noises. In this paper
we obtained the results, stated in Theorem 4.5, for two-species Lotka–Volterra predator–prey
systems under telegraph noises. We believe the necessity to collect the results for various types
of two-species dynamical systems including the asymptotically stable Lotka–Volterra predator–
prey systems, and to proceed to obtain the general conditions for the behaviors of the systems.

In view of practice, when the amount of a species is smaller than a threshold, we consider this
species disappears in our system. Theorem 4.5 tells us that although the environment condition
changes constantly (since the Markov switching process is stationary), species may vanish from

Figure 5.22: (a) Time evolution of x(t) for Case A. (b) Time evolution of y(t) for
Case A956 Y. Takeuchi et al. / J. Math. Anal. Appl. 323 (2006) 938–957
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Fig. 7. (a) Time evolution of x(t) for Case B. (b) Time evolution of y(t) for Case B.

eco-system. This conclusion warns us to have a timely decision to protect species in our eco-
system.

Remark 5.1. By simulation results, we observe that (4.5) does not occur. However, so far we are
unable to prove this conjecture. This is still an open problem.

We illustrate our result by simulations. Figure 5 shows the behavior of the trajectory of the
systems

{
ẋ = x(a(ξt ) − b(ξt )y),

ẏ = y(−c(ξt ) + d(ξt )x).
(5.1)

Case A corresponds to a(1) = 2, b(1) = 2, c(1) = 3, d(1) = 2 and a(2) = 3, b(2) = 3,
c(2) = 6, d(2) = 4 with the initial condition (2,1.5). In this case, two systems have the rest
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eco-system. This conclusion warns us to have a timely decision to protect species in our eco-
system.

Remark 5.1. By simulation results, we observe that (4.5) does not occur. However, so far we are
unable to prove this conjecture. This is still an open problem.

We illustrate our result by simulations. Figure 5 shows the behavior of the trajectory of the
systems

{
ẋ = x(a(ξt ) − b(ξt )y),

ẏ = y(−c(ξt ) + d(ξt )x).
(5.1)

Case A corresponds to a(1) = 2, b(1) = 2, c(1) = 3, d(1) = 2 and a(2) = 3, b(2) = 3,
c(2) = 6, d(2) = 4 with the initial condition (2,1.5). In this case, two systems have the rest

Figure 5.23: (a) Time evolution of x(t) for Case B. (b) Time evolution of y(t) for
Case B

Remark 5.2.8. By simulation results, we observe that (5.2.11) does not occur. How-
ever, so far we are unable to prove this conjecture. This is still an open problem.

5.2.4 Discussion and conclusion

Up to now there have been proposed various dynamical models in ecology un-
der the environmental fluctuations corresponding to seasonality. The deterministic
switching between two di↵erent predator-prey systems exhibits more complex dy-
namics including stable equilibrium point, limit cycle, and also chaos [65]. The
possibilities or the conditions for the coexistence of temporally segregated competi-
tors in a cyclic environment [87] or two competing species following Lotka-Volterra
competition system in a seasonally fluctuating environment [96] are studied. The
stochastic change of environment gives the similar e↵ect on population dynamics
with seasonality [40]. Most of such models are formulated by deterministic dynam-
ics, but some kind of stochasticity reflecting complexity of biological or environmen-
tal factors should be introduced in population dynamics. Slatkin [131] introduced
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and analyzed a class of general models of single population which grows under the
telegraph noise exactly same in this paper. In section 5.2 we obtained the results
for two-species Lotka-Volterra predator-prey systems under telegraph noises. We
believe the necessity to collect the results for various types of two-species dynamical
systems, and to proceed to obtain the general conditions for the behaviors of the
systems.

In subsection 5.2.2 we consider an ecology system where there are two species
related by predator-prey relation and environment has a finite carrying capacity. The
mathematical analysis presented in this model shows that according to the value of
some number �, one can make suitable predictions about the asymptotic behavior
of the overall predator-prey system. Suppose that the evolution of every species
depends on the quantity of rainfall for every period. If the rainfall is su�cient (good
state), the catch ability of the predator is good and the quantity of every species
asymptotes to the positive values (the prey and predator co-exist). Whenever the
rainfall is small (bad state), the hunting potential of the predator becomes very
weak and the amount of predator gets smaller with increasing of time (the predator
vanishes). Suppose that the rainfall is in a stationary regime (switching stationarily
between dry season and rainfall one). If the two states are good, i.e., both y⇤

1

> 0
and y⇤

2

> 0, although the quantity of two species is chaotic, but the system is still
permanent. Consequently, none of species is extinct. When there is at least a system
having the bad state, i.e., either y⇤

1

< 0 or y⇤
2

< 0 we see that lim inf
t!1 y(t) = 0.

Depending on the sign of the value �, the quantity of the predator y(t) can be
recovered or not. In case � > 0 we have lim sup

t!1 y(t) > 0, i.e., the amount
of the predator is recovered (of course in the rainfall season). If � < 0 we have
lim

t!1 y(t) = 0, i.e., the predator vanishes.

The model of predator-prey with the absence of carrying capacity is studied in
subsection 5.2.3. We obtain an interesting result. In the deterministic environment,
this model has periodic solutions and two species are permanent. However, with the
e↵ect of the random switching of environment, the orbits of predator-prey model
are very chaos and could be not permanent.

In view of practice, when the amount of a species is smaller than a threshold,
we consider this species disappears in our system. The obtained results tell us that
although the environment condition changes constantly (since the Markov switching
process is stationary), species may vanish from ecology system. This warns us to
have a timely decision to protect species in our ecology system.



Chapter 6

Conclusion

In this thesis we consider some ecosystem models. We try to show the dynamical
behavior and the condition for existence of these models. The obtained results could
be useful to explain some phenomena and give us some recommendations for the
ecosystems.

Intraguild predation (IGP) occurs when one species prey upon another species
with which it competes for a shared resource. IGP is common in nature, for examples
lion and lynx, wolf and coyote, insects and arachnids, shark and other predator in
marine ecosystems... In chapter 2 we study the e↵ects of spatial heterogeneous
environment and fast migration of individuals on coexistence of the IGP dynamics.
We concentrate on a two-patch model including two species with IGP interaction.
The interaction of two species is competition in one patch and in the other patch
it is predation. We also assume two species are not coexistence in each patch.
However, we have a interesting results that by the heterogeneous environment and
fast migration between two patch, two species can be coexistence in some situation.
In addition we are also interested in the e↵ects of the migration parameters, the
competition parameters and the predation ones on this coexistence. In fact, the
shared resource of two species is hidden in this model. Hence, to describe IGP
interaction in more detail, in a further work we will investigate a model with three
species where two species have IGP interaction and they prey upon the third species.
In the other hand, we can change functional response of predation to other type.
We hope the model will have limit cycle if functional response is Holling type 2.

Chapter 3 presents a mathematical model of a fishery targeting a small pelagic
fish population distributed over two sites, a marine protected area (MPA) and a
fishing area where the fish population can be captured by purse-seine fishing boats.
An aggregated model is obtained from complete model by using aggregation meth-
ods. Hence we describe the condition for the stableness of aggregation model and
show that there is a proportion of small clusters which is maximum in terms of total
catch on the long term for a given fishery and fishing e↵ort. These results should
allow adaptive management measures not only for the maintenance of model but
also for the maximum of total catch. In this model we only investigate the e↵ects
of fish clustering on the total catch of a small pelagic purse seine fishery. In future
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work, we will study the e↵ects of both proportion of small cluster and proportion of
MPA on this catch, then it can propose a suitable MPA.

In chapter 4 we study the dynamical relationship between three species in a
nonautonomous model of one prey and two predators, in which the functional re-
sponses are of the form Beddington-DeAngelis functional response. We consider
the model with general coe�cients and periodic coe�cients. The results show us
when the model has globally asymptotically stable solution and the condition for
the coexistence or extinction of species.

Randomness or stochasticity play a vital role in the dynamics of an ecological
system and the variation of random factors can cause sharp changes in it. Chapter
5 shows some ecosystem models under random environment. This random factor is
described by telegraph noise and it can do the models chaotically. We try to show
the dynamics, persistence and permanence of the models. In some conditions, the
models is persistent, permanent or not. The persistence is “not good” for epidemic
model, it means the disease will globally invade in the long term. However, the
permanence is “good” for predator-prey models, it ensures the species coexistence.
We only investigate the models with the e↵ect of telegraph noise in this chapter,
then, for future work we can mention seasonality of environment characteristics to
describe the models in more detail. How will the dynamical behavior of the models
be if they have more than the two states of environment or if they have the fast
migration of individuals as in chapter 2 and 3? They are the problems to work on
after.
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