This thesis studies the Gaussian mixture model-based clustering approaches and the criteria of model selection for binned data clustering. Fourteen binned-EM algorithms and fourteen bin-EM-CEM algorithms of fourteen parsimonious Gaussian mixture models are developed. These new algorithms combine the advantages in computation time reduction of binning data and the advantages in parameters estimation simplification of parsimonious Gaussian mixture models. The complexities of the binned-EM and the bin-EM-CEM algorithms are calculated and compared to the complexities of the EM and the CEM algorithms respectively. In order to select the right model which fits well the data and satisfies the clustering precision requirements with a reasonable computation time, AIC, BIC, ICL, NEC, and AWE criteria, are adapted to binned data clustering with the developed binned-EM and bin-EM-CEM algorithms. The advantages of the proposed methods are illustrated through experimental studies. Résumé Cette thèse étudie les approches de classification automatique basées sur les modèles de mélange gaussiens et les critères de choix de modèles pour la classification automatique de données discrétisées. Quatorze algorithmes binned-EM et quatorze algorithmes bin-EM-CEM sont développés pour quatorze modèles de mélange gaussiens parcimonieux. Ces nouveaux algorithmes combinent les avantages des données discrétisées en termes de réduction du temps d'exécution et les avantages des modèles de mélange gaussiens parcimonieux en termes de simplification de l'estimation des paramètres. Les complexités des algorithmes binned-EM et bin-EM-CEM sont calculées et comparées aux complexités des algorithmes EM et CEM respectivement. Afin de choisir le bon modèle qui s'adapte bien aux données et qui satisfait les exigences de précision en classification avec un temps de calcul raisonnable, les critères AIC, BIC, ICL, NEC et AWE sont étendus à la classification automatique de données discrétisées lorsque l'on utilise les algorithmes binned-EM et bin-EM-CEM proposés. Les avantages des différentes méthodes proposées sont illustrés par des études expérimentales.
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General introduction Motivation

Clustering is the task of assigning a set of objects into several cohesive groups by measuring the similarity between objects using different measurements. It is an unsupervised learning process since that the number of groups and the forms of groups are unknown in advance. Cluster analysis becomes an important task in data analysis in the last decades. It can be used in many fields, including for example pattern recognition, image analysis, machine learning and information retrieval. It also arouses importance in technology by being applied to a wide variety of domains, such as human genetic clustering, medical imaging, market research and social networks.

In most cases, clustering done in practice is based largely on heuristic but intuitively reasonable procedures [START_REF] Fraley | Model-based clustering, discriminant analysis, and density estimation[END_REF]. Some famous approaches are hierarchical clustering [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF], partitional clustering including for instance the K-means algorithm [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] and model-based approach (see [START_REF] Bock | Probabilistic models in cluster analysis[END_REF] [START_REF] Kriegel | Density-based clustering[END_REF] for instance). Among those approaches, model-based approach is commonly used, in which the data are clustered using some assumed modeling structure. This process helps to understand the data distribution. It has also been shown that some of the most popular heuristic clustering methods are in fact approximate estimation methods for some probability models [START_REF] Fraley | Model-based clustering, discriminant analysis, and density estimation[END_REF]. For example, there are the k-means algorithm and Ward's method. This is one of the reasons why we focus on the modelbased clustering in this thesis.

Finite mixture models are a type of density model which comprises a number of probability distributions. When used in clustering, each component probability distribution corresponds to a cluster. One prominent model is the Gaussian mixture model. A variety of approaches to the problem of mixture decomposition have been proposed. Many of them focus on maximum likelihood methods. To obtain data partition using mixture models, two main approaches are basically used: the mixture approach and the classification approach [START_REF] Scott | Clustering methods based on likelihood ratio criteria[END_REF]. The mixture approach aims to estimate the mixture model parameters by maximizing the likelihood, and to deduce the data partition from the 2 General introduction estimated parameters. This can be done by the Expectation-Maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF]. The classification approach aims to estimate simultaneously the parameters and the data partition by maximizing the complete likelihood, and this can be done using the Classification Expectation-Maximization (CEM) algorithm [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF].

The EM algorithm can be used to find the parameters of a statistical model in cases where the likelihood equations cannot be solved directly. Typically, there are unobserved data existing or assumed in the model. The EM algorithm is widely used due to its simple concept and its easy implementation. The CEM algorithm is a classification version of the EM algorithm. By inserting a classification step into the EM algorithm, the CEM algorithm obtains a less precise result than the EM algorithm but takes less computation time. However, if the data to be classified are well separated, both the EM and the CEM algorithms provide similar results.

Along with the development of information technology, the amount of data has increased explosively. The standard EM algorithm and the standard CEM algorithm become inefficient in some situations. Many methods are proposed to deal with a vast amount of data. For example, some variants seek to reduce the computational cost of the EM algorithm by reducing the time spent in the E-step [START_REF] Moore | Very fast EM-based mixture model clustering using multiresolution kd-trees[END_REF], [START_REF] Mccallum | Efficient clustering of high-dimensional data sets with application to reference matching[END_REF]. There are also variants known as Sparse EM (SpEM) and Lazy EM (LEM) [START_REF] Jollois | Speed-up for the expectation-maximization algorithm for clustering categorical data[END_REF]. One approach for reducing and especially controlling the computation time is to introduce binned data into the EM and CEM algorithms. The corresponding algorithms are called binned-EM [12] [13] and bin-EM-CEM [START_REF] Samé | A classification EM algorithm for binned data[END_REF]. Binning data is the process of dividing the data space into small regions called bins, then grouping the points (i.e. data) spatially in the bins according to their locations. The idea is to reduce the amount of data (the data size): from the number of points to the number of bins. Experimental results show that the binned-EM and bin-EM-CEM algorithms are respectively faster than the EM and CEM algorithms.

So far, the binned-EM and bin-EM-CEM algorithms are developed basing on the most general Gaussian mixture model, i.e. no restriction is placed on the variance matrices [START_REF] Cadez | Maximum likelihood estimation of mixture densities for binned and truncated multivariate data[END_REF] [START_REF] Samé | A classification EM algorithm for binned data[END_REF]. For the classical EM and CEM algorithms, a set of parsimonious Gaussian mixture models were proposed by Celeux and Govaert [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF], in order to fit different datasets. These models are generated according to an eigenvalue decomposition of the components' variance matrices proposed by Banfield and Raftery [START_REF] Banfield | Model-based Gaussian and non-Gaussian clustering[END_REF]. By placing certain restrictions on the variance matrices, these parsimonious models have less freedom degrees and thus are simpler. By developing the EM and CEM algorithms of these parsimonious Gaussian mixture models, different data distributions can be adapted by the corresponding parsimonious models which are more specific than the general one.

Moreover, due to the simplified estimation, the EM and CEM algorithms become more efficient [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF]. Same as in the binned data framework, using the most general model can Objective and originality of the thesis 3 sometimes cost loss of time. So in this thesis, to simplify the parameters estimation so thus make the binned-EM and bin-EM-CEM algorithms more efficient, and also to better adapt different data distribution so thus get a more precise result, binned-EM algorithms and bin-EM-CEM algorithms of parsimonious Gaussian mixture models are developed.

Since there are so many potential models to be considered, an important question is raised by many researchers during study: which model should be applied while knowing nothing about the distribution of the dataset? It is important for unsupervised modelbased clustering to choose the best model (including the number of clusters) which can precisely represent the data distribution in a reasonable period of time. To answer this question, in standard data framework, many criteria were proposed and studied. For example, there are classical criteria such as information criteria: Akaike Information Criterion (AIC) [START_REF] Akaike | A new look at the statistical model identification[END_REF], AIC3 criterion [START_REF] Bozdogan | Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions[END_REF] and ICOMP criterion [START_REF] Bozdogan | On the information-based measure of covariance complexity and its application to the evaluation of multivariate linear models[END_REF]. Schwarz [START_REF] Schwarz | Estimating the dimension of a model[END_REF] has proposed the famous Bayesian Information Criterion (BIC). Later, Biernacki et al. [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF] proposed the Integrated Completed Likelihood (ICL) criterion. Experimental results

show that these criteria can successfully choose a relatively simple model which underlines and fits the data distribution. So in this thesis, several criteria are adapted and developed to select the best model for binned data clustering.

Objective and originality of the thesis

The first objective of our thesis is to develop new model-based clustering algorithms which combine the advantages in time reduction of binning data and the advantages in parameters estimation simplification of parsimonious Gaussian mixture models. The binned-EM algorithms of fourteen parsimonious Gaussian mixture models are developed [START_REF] Hamdan | EM algorithm of spherical models for binned data[END_REF] [23] [START_REF] Wu | Parsimonious Gaussian mixture models of general family for binned data clustering: mixture approach[END_REF]. By adapting EM algorithms of parsimonious Gaussian mixture models to binned data, binned-EM algorithms spend less computation time when dealing with big size datasets. The time complexities of the EM and binned-EM algorithms are calculated and compared. This comparison of time complexity is to show when and how binned-EM algorithm can be faster than the EM algorithm. At another side, the bin-EM-CEM algorithms of fourteen parsimonious Gaussian mixture models are also developed [START_REF] Hamdan | Bin-EM-CEM algorithms of spherical parsimonious Gaussian mixture models for binned data clustering[END_REF] [START_REF] Wu | Bin-EM-CEM algorithms of general parsimonious Gaussian mixture models for binned data clustering[END_REF]. These algorithms are supposed to be faster than the CEM algorithm. To better study the conditions when the bin-EM-CEM algorithm is faster than the CEM algorithm, the complexities of these two algorithms are calculated and compared. To study and illustrate the performances of the fourteen binned-EM algorithms and the fourteen bin-EM-CEM algorithms of parsimonious Gaussian mixture models, a variety of experiments on simulated data and real data are presented.

General introduction

The second objective of this thesis is to select the right model for binned data clustering.

A right model must fit well the data and satisfy the clustering precision requirements with a reasonable computation time. Several classic criteria are adapted to binned data clustering: BIC, ICL, AIC, NEC, and AWE criteria. They aim to choose a parsimonious model which optimizes the trade-off between the binned data fitting and the model complexity. In this thesis, we focus on BIC and ICL criteria. We associate these two criteria with the fourteen developed binned-EM algorithms and the fourteen developed bin-EM-CEM algorithms, in order to choose the right model for different datasets [27] [28]. Their choices of model and number of clusters are compared using simulated data and real data.

Outline of the thesis

This thesis is structured as follows: Chapter 1 will highlight the main concepts used in the development of our new algorithms. The definition of clustering will be presented. Then some famous clustering methods will be discussed: hierarchical clustering, k-means algorithm and model-based approach. The Gaussian mixture model-based approach and the two most used modelbased clustering approaches with their corresponding EM and CEM algorithms will be detailed. After, parsimonious Gaussian mixture models based on two different concepts will be presented. The AIC, AIC3, BIC, ICL, ICOMP, NEC, and AWE criteria will be described in standard data framework. The concept of binned data and how to obtain binned data from standard data will be discussed. At the end of this chapter, the concepts of the binned-EM algorithm and the bin-EM-CEM algorithm will be explained. Chapters 2, 3, and 4 are the key chapters of the thesis.

In the Chapter 2, the fourteen binned-EM algorithms of fourteen parsimonious Gaussian mixture models for binned data clustering will be developed. The derivation of the binned-EM algorithm as well as the E-step and the M-step will be detailed. The complexity of binned-EM algorithm will be calculated and compared to the one of the EM algorithm. The parameter estimation by the binned-EM algorithm will be detailed in each case of fourteen parsimonious Gaussian mixture models. To illustrate the performances of these fourteen binned-EM algorithms, two experiments on simulated data will be presented. One experiment is on the data of different structures, while another one is on the data with different bin sizes. To show the practicality of binned-EM algorithm, two experiments on real data, where include French city clustering and image segmentation, will be shown and analysed.

In the Chapter 3, the fourteen bin-EM-CEM algorithms of fourteen parsimonious Gaussian mixture models for binned data clustering will be developed. The E-step, C-step, and M-step will be detailed. The complexity of the bin-EM-CEM algorithm will be calculated and compared to the one of the CEM algorithm. The parameters estimation, especially the variance matrix estimates for fourteen parsimonious Gaussian mixture models will be presented. To better study the performances of the fourteen bin-EM-CEM algorithms, one experiment on simulated data of different structures and another experiment on simulated data with different bin sizes will be shown. At the end of this chapter, two experiments on real data will be presented.

In the Chapter 4, several criteria for model selection will be studied in binned data clustering. The BIC and ICL criteria will be applied with both the fourteen binned-EM and the fourteen bin-EM-CEM algorithms. Experiment on simulated data will be shown in order to compare the model choices and choices of number of clusters obtained by BIC and ICL criteria. The performances of BIC and ICL criteria associated with the fourteen binned-EM and bin-EM-CEM algorithms will be studied on real data too.

In order to better compare the model choices of BIC and ICL criteria associated with binned-EM and bin-EM-CEM algorithms, an additional experiment on simulated data will be presented. At the end of this chapter, AIC, AWE, and NEC criteria, will be adapted to binned data clustering. Experiments on simulated data of these three criteria will be shown. Their performances will be compared to the ones of BIC and ICL criteria.

Finally, the general conclusion and the prospective will be presented in the Chapter 4.8.

Chapter 1

State of the art 1.1 Introduction

This chapter aims to go through some basic concepts and some important developed methods in clustering before this thesis. The objective is to give an overview of the existing approaches, so thus to help readers to better understand this thesis' originality which will be presented in the new chapters. Some related definitions and essential concepts in the domain of cluster analysis will be firstly presented in the Section 1.2. Classification will be distinguished from clustering by its definition. The typical applications of clustering will be listed. In the Section 1.3, three most commonly used approaches for clustering will be reviewed. These approaches are the hierarchical clustering, k-means algorithm and model-based approach.

The advantages and the limitations of these approaches will be discussed. The Section 1.4 will present the Gaussian mixture model-based approach, which leads to the core of our study. The mixture approach and the classification approach for data clustering will be discussed. These two approaches are the most commonly used model-based clustering approaches. Their corresponding EM and CEM algorithms will be presented in the Section 1.5. The limitations of both algorithms will be discussed. EM algorithm's extensions will be briefly described.

During the study of model-based approach, some questions might be raised:

1. What are the potential models? 2. Which model is the best-fit for the data? 3. How many clusters? 8
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To answer the first question, the Section 1.6 will present two different kinds of parsimonious Gaussian mixture models. These two kinds of models are based respectively on variance matrix parametrization and on factor analysis model. To answer the second and the third questions, the Section 1.7 will present various famous criteria for clustering model choice, including in particular the choice of number of clusters. The criteria that will be studied are AIC, BIC, ICL, ICOMP, NEC, and AWE criteria.

With the development of information technology, more and more data can be generated.

In this situation, the classic EM and CEM algorithms become very slow in dealing with large size of data. The experimental results show that the computation time increases fast along with the increase of data amount. To improve this problem, an approach of extending classical algorithms to binned data was proposed. So in Section 1.8, the definition of binned data will be presented. New algorithms of extending the EM and CEM algorithms to binned data (Binned-EM and bin-EM-CEM) will be detailed. The Section 1.9 will conclude this chapter and lead to the need of our study presented in the Chapter 2.

What is clustering?

Assignment of a set of objects into several groups can be done through a supervised learning or an unsupervised learning. The supervised learning is called classification.

Classification is the problem of identifying a set of observations into several categories, basing on the training result of a subset of observations whose belonging category is known. The unsupervised learning is defined as cluster analysis. It is also called clustering. Clustering is a process of putting a set of observations into several reasonable groups according to certain measure of similarity within each group.

Clustering is a principal technique for data analysis. It can be used in machine learning, pattern recognition, image analysis and information retrieval. It is also an important task in technology since it can be applied to many domains. For example:

• In computer science. Clustering is useful for image segmentation.

• In social network. It allows to recognize communities among large groups of people.

• In marketing. Clustering can put large number of clients into different groups according to their consuming needs, in order to use different publicity strategy.

• In health care. Cluster analysis can be used for medical imaging and medical resource decision making.

Common approaches for clustering

• In biology. It helps to cluster different types of plants or different species of animal according to their features.

Deal to its importance, many approaches were proposed to achieve the clustering propose. Different algorithm leads to different clustering result, depending on the definition of what constitutes a cluster in the algorithm. In this next section, three prominent approaches will be reviewed.

Common approaches for clustering

There are more than 100 published clustering algorithms. Three of the most well-known approaches are hierarchical clustering, k-means algorithm and model-based approach.

Each of them bases on different idea of what makes a cluster. These three approaches are widely used in clustering because of their simple adapting abilities and their encouraging results. It is hard to tell which algorithm is the best. It depends on the dataset and the requirement of the clustering result.

Hierarchical clustering

Hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy of clusters. It connects objects to clusters by calculating their connectivity. This approach does not give a single partitioning for the data. It provides several clustering results depending on the level at which the clusters merge. Hierarchical clustering can be agglomerative or divisive. Hierarchical agglomerative clustering (i.e. HAC) starts with individual observations and aggregates them into clusters. Hierarchical divisive clustering (i.e. HDC) starts with the complete dataset and divides it into partitions. In general, HAC is more often used than HDC. In this part, we will focus on the HAC. Hierarchical clustering does not require us to pre-specify the number of clusters. The process of an HAC clustering of n objects is described as follows [START_REF] Johnson | Hierarchical clustering schemes[END_REF]:

1. We assume that each object constitutes a cluster. We begin from n clusters corresponding to n objects respectively. We compute the distances between each two clusters, which equals to the distances of each two objects.

2. Find out two most similar classes (A, B) and emerge them into one class C = A∪B. Step 3 can be done by different methods. If we consider the shortest distance of any member of one cluster to any member of another cluster to be the distance between two clusters, this method is called single-linkage clustering. On the contrary, when the distance between two clusters is based on the two least similar points in these two clusters, the method is called complete-linkage clustering. The third method is called average-linkage clustering, where the distance between two clusters is the average of distances between members of these two clusters. In the Ward's method [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF], at each step we find the pair of clusters that leads to a minimum increase in total within-cluster variance after merging. This increase is a weighted squared distance between cluster centers.

Remove the clusters

An HAC clustering is typically visualized as a dendrogram. Each object is represented by a horizontal line. The y-coordinate of the horizontal line is the similarity of the two clusters that were merged. A pre-specified number of clusters is not required in HAC. Hierarchical clustering has some limitations. For example, there is no explicit clusters and no optimal clusters can be defined. Despite of those limitations, many advantages make hierarchical clustering a widely used method: the number of clusters is not required in advance and there is no input parameter.

K-means algorithm

K-means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] is one of the simplest and oldest unsupervised learning algorithms. It is also called Lloyd's algorithm [START_REF] Lloyd | Least squares quantization in PCM[END_REF], which is based on the centroid model. The objective of K-means clustering is simply to partition a set of observations into K clusters. The centroids of K clusters are defined in advance. The centroids are better to be well separated to each other so as to obtain a good clustering result. The procedure of the k-means algorithm can be summarized as follows:

1. Define K points in the whole space of the set of observations. These K points represent the initial centroids of K clusters.

2. Calculate the distances between the observations and the centroids.

3. Move each observation to the closest cluster.

4. After assigning all the observations, redefine the centroids of the K clusters. For example, there are the k-medoids algorithm [START_REF] Dodge | Statistical Data Analysis Based on the L B1 S-norm and Related Methods[END_REF] and the k-medians clustering [START_REF] Jain | Algorithms for clustering data[END_REF].

The k-medoids algorithm chooses data points as centers and the k-medians clustering calculates the median instead of calculating the mean for each cluster to determine its centroid. Sometimes the k-means++ algorithm [START_REF] Arthur | k-means++: the advantages of careful seeding[END_REF] is used to choose the initial values.

In order to obtain the global optimum, it is common to run the K-means algorithm multiple times with different starting conditions. But sometimes K-means can be very slow to converge.

Model-based approach

The model-based approach aims to put the objects following the same distribution into the same group. This method supposes that the data follows certain probability distribution model. It is achieved by estimating the mixture model parameters which maximize the likelihood of potential model. This approach over-fits the dataset if there is no constraint on the complexity of the model. Despite its overfitting problem, model-based approach is strong comparing to the hierarchical clustering and k-means algorithm, because it provides not only the clusters, but also the mixture model which helps us to better understand the data distribution.

Two most commonly used model-based clustering approaches are mixture approach and classification approach. In the next section, we will focus on the Gaussian mixture model-based mixture approach and classification approach.

1.4. Model-based clustering approaches: mixture approach and classification approach 13

Model-based clustering approaches: mixture approach and classification approach

To obtain the model parameter estimation, we have two most well-established methods via maximum likelihood, namely the mixture approach (also called Maximum Likelihood estimation) and the classification approach (also called Classification Maximum Likelihood estimation). These two approaches are studied and compared by many authors. Generally speaking, the mixture approach is aimed to maximize the likelihood over the mixture model parameters via Estimation Maximization (EM) algorithm, while the classification approach is aimed to maximize the likelihood over the mixture model parameters and the origin identifying labels of each observation via Classification Estimation Maximization (CEM) algorithm.

The mixture approach was recommended and analyzed by R. A. Fisher between 1912 and 1922 [START_REF] Aldrich | Fisher and the making of maximum likelihood 1912-1922[END_REF]. Reviews of the development of maximum likelihood have been provided by a number of authors. Mixture approach estimates the parameters by using the Expectation Maximization (EM) algorithm and obtains the partition by using Maximum A Posteriori probability (MAP) estimation.

In the mixture approach, we estimate the parameters π k and θ k , in order to maximize the log-likelihood:

L(Φ|x) = n i=1 log K k=1 π k f k (x; θ k )
In the restricted case where the mixing proportions π k are considered to be equal, the log-likelihood has the form:

L(Φ|x) = n i=1 log K k=1 f k (x; θ k )
The parameters θ k are generally obtained by using the EM algorithm.

The classification approach is also called Classification Maximization Likelihood (CML), is proposed by Scott and Symons [START_REF] Scott | Clustering methods based on likelihood ratio criteria[END_REF]. It aims to maximize the likelihood over the mixture model parameters and over the identifying labels of the mixture origin for each data.

The mixture origin is denoted as z i = (z ik , k = 1, . . . , K), where z ik = 1 when x i belongs to the component k, otherwise z ik = 0. Two different CML criteria were proposed: the restricted CML criterion and the unrestricted one. In the restricted case, the mixing Chapter 1. State of the art proportions π k are assumed to be equal. The CML criterion has the form [START_REF] Scott | Clustering methods based on likelihood ratio criteria[END_REF]:

L CR = K k=1 x i ∈P k log f (x i , µ k , Σ k )
where P = (P 1 , . . . , P K ) is a partition of x 1 , . . . , x n where

P k = x i /z ik = 1.
In the unrestricted case, the mixing proportions π k of components are different. The CML criterion is [START_REF] Symons | Clustering criteria and multivariate normal mixture[END_REF]:

L CR = K k=1 x i ∈P k log(π k f (x i , µ k , Σ k ))
CML approach is carried out basing on Classification Expectation Maximization (CEM) algorithm.

In the same study of Scott and Symons [START_REF] Scott | Clustering methods based on likelihood ratio criteria[END_REF], they suggested that with little information of the size of clusters, the clustering procedures based on maximum likelihood may have a tendency to partition the sample into groups of similar size. The maximum likelihood estimates are discussed under two situations: equal covariance matrices and unequal covariance matrices. When we assume covariance matrices equal, maximizing the log likelihood function equals minimizing |W y |, the determinant of the within-groups sum of squares matrix. When the covariance matrices are very different among clusters, maximizing the likelihood equals to minimizing tr(W -1 y B y ). The algorithm was tested on the well-known Irish data [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF]. The W y criterion gave good results when the data is composed of two groups of equal size. And it shows that the criterion prefers to partition the sample into components of the nearly same size.

Usually, when studying these two approaches, the mixing proportion in the standard classification approach is restricted as equal, while there is not restriction on the mixing proportion in the mixture approach. Until 1981, Symons [START_REF] Symons | Clustering criteria and multivariate normal mixture[END_REF] proposed a general classification maximum likelihood criterion of free mixing proportions. In order to study the performance of both approaches under the same conditions, Celeux and Govaert [START_REF] Celeux | Comparison of the mixture and the classification maximum likelihood in cluster analysis[END_REF] presented a comparison of the practical behaviors of the mixture and the classification approaches for clustering by maximum likelihood. They compared both approaches in two conditions of assuming the models respectively of equal mixing proportions and of unknown mixing proportions. The result turns out that the classification approach is favored in the case of small sample, and the mixture approach is preferred in dealing with large sample. They also found out that the approaches assuming equal mixing proportions are more reliable and stronger than un-restricted approaches in practical applications.

1.4. Model-based clustering approaches: mixture approach and classification approach 15 However, the CML approach has some limitations: firstly, it suggests the same features for all the clusters; secondly, it only fits for Gaussian distributions; thirdly, noise is not allowed in the hypothesis. To solve the first problem, parsimonious models were proposed according to a parametrization of the variance matrices of the mixture components proposed by Banfield and Raftery [START_REF] Banfield | Model-based Gaussian and non-Gaussian clustering[END_REF]. These parsimonious models will be emphasized in the later part of this chapter.

For the distribution restriction, a framework for the Uniform-Normal case is introduced.

To deal with the noise, a Poisson process was discussed:

For a dataset, we should allow the possibility that some observations are not from any cluster of the model. We can consider this kind of data as noise. To include such observations, Banfield and Raftery [START_REF] Banfield | Model-based Gaussian and non-Gaussian clustering[END_REF] assume that the dataset arises from a Poisson process with intensity ν. The likelihood

L(θ, γ) = n i=1 f γ i (x i ; θ) is modified as: L(θ, ν, γ) = (νA) n 0 e -ν 0 A n 0 ! i∈E f γ i (x i ; θ)
where

E = ∪ G k=1 E k , n 0 = n -G k=1
n k and A is the hyper-volume of the region from which the data have been drawn. Also, to deal with the noise problem, Banfield and Raftery [START_REF] Banfield | Model-based Gaussian and non-Gaussian clustering[END_REF] has also proposed the hierarchical clustering methods which require the shape parameter α to be defined before clustering and A k = diag{1, α}. [START_REF] Bensmail | Model-based clustering with noise: Bayesian inference and estimation[END_REF] assumed a mixture of a Gaussian distribution satisfying and noise distributed as a homogeneous spatial Poisson process with constant rate π 0 . The mixture distribution likelihood is:

Bensmail and Meulman

p(θ 1 , . . . , θ K ; π 0 , π 1 , . . . , π K |x) = n n=1 [ π 0 Λ + K k=1 π k f k (x i |θ k )]
where Λ > 0 is the volume of the finite domain which is defined as: 

Λ = p j=1 ( max i=1 
CL(Φ, z|x) = K k=1 K k=1 z ik log π k f k (x; θ k )
EM algorithm starts from the initial parameters θ (0) , then computes the Expectation step (E step) and the Maximization step (M step) iteratively:

• E step: Calculate the expected value of the complete log-likelihood function, with respect to the conditional distribution of z given x under the current estimate of the parameters Φ:

Q(Φ|Φ (q) ) = E[log CL(Φ, z|x)]
i.e. Calculate the posterior probabilities t (q)

ik of x i belonging to the kth component:

t (q) ik = π (q) k f k (x; θ (q) k ) l π (q) l f l (x; θ (q) l )
• M step: Find the parameter Φ (q+1) that maximizes the expectation:

Φ (q+1) = arg max Φ Q(Φ|Φ (q) )
EM algorithm is widely used thanks to its conceptual simplicity and easy implementation. But EM algorithm has several limitations which need to be improved. For example, the fact that its result is highly dependant on the initial data. Sometimes it provides only the local optima. It might require many iterations and long computation time.

EM and CEM algorithms

Large quantity of data and high dimensionality of data stress out this low execution problem. To improve these limitations, EM algorithm's extensions were proposed.

EM algorithm's extensions

To solve the slow convergence problem of the EM algorithm, Moore [START_REF] Moore | Very fast EM-based mixture model clustering using multiresolution kd-trees[END_REF] proposed a very fast new algorithm basing on the multi-resolution kd-trees of Moore et al. [START_REF] Moore | Efficient locally weighted polynomial regression predictions[END_REF]. This new algorithm succeeds in reducing the computational cost of EM-based clustering.

It is reported that, apart from the slow convergence, the EM algorithm has another limitation: the EM algorithm depends highly on the initial values. Bad initiation can lead to local maximum likelihood, instead of the global maximum. For this problem, several extension extensions of the EM algorithm were proposed.

One of the algorithms is called SEM algorithm which was proposed by Celeux and Diebolt [START_REF] Celeux | The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem[END_REF] in order to improve some limitations of EM algorithm. In fact, a S step is inserted between the E and M steps of EM algorithm. In the S step, each observation

x i is assigned randomly to one of the clusters P k by the posterior probabilities t m k (x i ) that x i belongs to P k . It claims that the SEM algorithm has several improvements, with respect to the EM algorithm:

• It is sufficient to know an upper bound on the number of clusters;

• The result is independent from the initial parameters;

• The speed of convergence is improved.

Another algorithm is based on the SEM algorithm and it is called CAEM algorithm (Classification Annealing EM). Comparing to the SEM algorithm, it replaces the posterior probabilities t m k (x i ) by the scores s m k (x i ) which is defined as:

s m k (x i ) = {p m k f (x i , a m k )} 1/τm K k ′ =1 {p m k ′ f (x i , a m k ′ )} 1/τm
where τ m (m ≥ 0)is a sequence of temperatures decreasing to zero when m tends to infinity from τ 0 = 1.

Dasgupta and Raftery [START_REF] Dasgupta | Detecting features in spatial point processes with clutter via model-based clustering[END_REF] Then run the EM algorithm for certain number of iterations at each initial position. At last select the result which provides the highest likelihood among the p results. The CEM and SEM algorithms can be used in the search step for finding the initial points. In this paper, a strategy of initiating EM algorithm by short runs of EM was also recommended.

This strategy is simple and has good performance in many cases where no particular mixture model can be fitted to the data. But it is hard to define which strategy among those proposed one is the best and it is also difficult to tell which particular strategy should be used in each specific situation.

To solve the local optimum problem of EM algorithm, besides by choosing the starting values, another solution was proposed by Celeux and Govaert [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF]. By setting the optimization-based clustering methods under the classification maximum likelihood approach, a general Classification EM algorithm was defined and studied by Celeux and

Govaert [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF]. Two stochastic algorithms are also developed, deriving from this general Classification EM algorithm. These two algorithms have less initial-position dependence compared to the classical optimization clustering algorithms. They are supposed to obtain the local optimum solutions from any initial position. However, both of the algorithms need a large number of iterations to ensure the best result.

CEM algorithm

CEM algorithm is considered as classification version of EM algorithm [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF]. One significant difference between CEM and EM algorithms is that CEM algorithm inserts a classification step between Expectation step and Maximization step in order to accelerate the execution. Thus CEM algorithm is theoretically supposed to execute faster than EM algorithm. The procedure is described as follows:

• E-step (Expectation): Calculate the poster probabilities t (q)

ik of x i belonging to the kth component, same as in the EM algorithm;

• C-step (Classification): Obtain z (q) i which indicates the mixture origin of each x i :

z (q) ik = arg max k t (q) ik
The biggest t (q) ik (k=1,. . . ,K) is replaced by 1, others are replaced by 0.

• M-step (Maximization): Find the parameter Φ (q+1) that maximizes the expectation.

Parsimonious models

Parsimony is a 'less is better' concept of frugality, economy, stinginess or caution in arriving at a hypothesis or course of action. The word derives from Middle English parcimony, from Latin parsimonia, from parsus, past participle of parcere: to spare.

In science, parsimony is preference for the least complex explanation for an observation. Parsimony is also a factor in statistics: in general, mathematical models with the smallest number of parameters are preferred because each parameter introduced into the model adds some uncertainty to it. Different kinds of parsimonious models were proposed according to different theories. Here we will mention two groups of parsimonious Gaussian mixture models. Before introducing these parsimonious models, let's firstly present the definition of Gaussian mixture model. 

Definition of Gaussian mixture model

f (x; Φ) = K k=1 π k f k (x; θ k ) (1.1)
with Φ = (π 1 , . . . , π K , θ 1 , . . . , θ K ), where π k (k = 1, . . . , K) denote the mixing proportions of the mixtures (0 < π k < 1 and K k=1 π k = 1), and θ k = (µ k , Σ k ) (k = 1, . . . , K) are the parameters of Gaussian distribution functions f k of components: mean vectors µ k and variance matrices Σ k . The Gaussian distribution function f k is defined in a d-dimensional space: 

f k (x; µ k , Σ k ) = 1 (2π) d/2 |Σ k | 1/2 exp(- 1 2 (x -µ k ) T Σ -1 k (x -µ k ))

Models based on variance matrix parametrization

To be more adaptable to datasets of different distributions, parsimonious Gaussian mixture models were developed. They are achieved by applying a parametrization of the variance matrix Σ k [START_REF] Banfield | Model-based Gaussian and non-Gaussian clustering[END_REF]: According to this variance matrix decomposition, eight general parsimonious models were proposed [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF]. They are 

Σ k = λ k D k A k D T
[λDAD T ], [λ k DAD T ], [λDA k D T ], [λ k DA k D T ], [λD k AD T k ], [λ k D k AD T k ], [λD k A k D T k ], [λ k D k A k D T k ]. Diagonal

Models based on factor analysis model

Lately, Mcnicholas and Murphy [45] have proposed new models basing on assuming a latent Gaussian model which are closely related to the factor analysis model.

The factor analysis model assumes that a p-dimensional random vector X is modeled using a q-dimensional (q < p) vector of latent factor (i.e. unobserved factors). It is expressed in the form as follows [START_REF] Bartholomew | Latent Variable Models and Factor Analysis (Kendall's Library of Statistics[END_REF]:

X = µ + ΛU + ǫ
where Λ is a p × q matrix of factor loadings, the factors U ∼ N (0, I q ) and ǫ ∼ N (0, Ψ), where Ψ = diag(ψ 1 , . . . , ψ p ). The marginal distribution of X basing on this model is

N (µ, ΛΛ ′ + Ψ).
Later the factor analysis model was extended by developing the mixture of factor analyzers model, which is assumed as a mixture of Gaussian distributions with a factor analysis covariance structure [START_REF] Ghahramani | The EM algorithm for mixtures of factor analyzers[END_REF]. The density function of factor analyzers model is:

f (x i ) = G g=1 π g (2π) p/2 Ψ 1/2 g exp - 1 2 (x i -µ g -Λ g u i ) T Ψ -1 g (x i -µ g -Λ g u i )
where π g denotes the proportion of the component g, µ g the mean parameter, Λ g the loading matrix and Ψ g the noise matrix. The mixtures of factor analyzers model differs between the situations that the Ψ g is constrained to be equal [START_REF] Ghahramani | The EM algorithm for mixtures of factor analyzers[END_REF] or unequal [START_REF] Mclachlan | Finite Mixture Models[END_REF]. Mcnicholas and Murphy [START_REF] Mcnicholas | Parsimonious Gaussian mixture models[END_REF] proposed to unify these Gaussian mixture models by applying constraints on the Λ g and Ψ g matrices, and if Ψ g are isotropic: Ψ g = ψ g I p [START_REF] Tipping | Mixtures of probabilistic principal component analyzers[END_REF]. Thus, eight different parsimonious Gaussian mixture models were derived. These eight models are presented in the The Alternating Expectation Conditional Maximization (AECM) algorithm [START_REF] Meng | The EM algorithm-an old folk-song sung to a fast new tune[END_REF], which is an extension of EM algorithm, is used for fitting these parsimonious Gaussian mixture models. Too many clusters cannot provide a necessary clustering. For example, when the number of clusters is equivalent to the number of points, the meaning of clustering is lost in this case. But when there are too few clusters, some small clusters might be ignored or some overlapped clusters might be merged as one.

Criteria for model choice

Many criteria were proposed for clustering model choice. There are classical criteria such as information criteria: Akaike Information criterion (AIC) [START_REF] Akaike | A new look at the statistical model identification[END_REF], AIC3 criterion [START_REF] Bozdogan | Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions[END_REF] and ICOMP criterion [START_REF] Bozdogan | On the information-based measure of covariance complexity and its application to the evaluation of multivariate linear models[END_REF]. Schwarz [START_REF] Schwarz | Estimating the dimension of a model[END_REF] has proposed the famous Bayesian Information criterion (BIC). Later Biernacki et al. [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF] proposed a BIC-like criterion: Integrated Completed Likelihood (ICL) criterion. There is also classification criterion NEC [START_REF] Celeux | An entropy criterion for assessing the number of clusters in a mixture model[END_REF].

Information criteria (AIC, AIC3 and BIC) are based on the maximum likelihood with certain penalty of the number of parameters of the model. As the complexity of the model increases, the model becomes more capable of adapting to the characteristics of the data and the maximum likelihood is bigger. Thus, selecting the best fit model by selecting the one that maximizes the likelihood certainly leads to choose the most complex model. A balance between the data information represented by the model and the complexity of the model needs to be defined.

Criteria based on maximum likelihood

It is said that the maximum likelihood is not a good criterion in choosing the right model for clustering. Let's review the definition of likelihood to understand why. In mixture model, x = (x 1 , . . . , x n ) is assumed to be an independent sample issued from a K-component mixture distribution defined on IR p :

f (x; Φ) = K k=1 π k f k (x; θ k )
with Φ = (π 1 , . . . , π K , θ 1 , . . . , θ K ), where π k (k = 1, . . . , K) denote the mixing proportions of the mixtures (0 < π k < 1 and K k=1 π k = 1), and θ k = (µ k , Σ k ) (k = 1, . . . , K) are the parameters of Gaussian distribution functions f k of components: mean vectors µ k and variance matrices Σ k . The log-likelihood of the sample is defined:

L(M, K) = n i=1 ln( K k=1 π k f k (x; θ k ))
where M represents the mixture model which maximizes the likelihood.

From its definition, L(M, K) increases along with the complexity of the mixture model M and the number of components K. Doing model choice by L(M, K) only results in getting the most complex model with the most number of components. Thus, some approximate maximum likelihood criteria were proposed.

There is the fuzzy classification likelihood:

C(M, K) = L(M, K) -E(M, K)
with the entropy term:

E(M, K) = - K k=1 n i=1 t ik log t ik
where t ik is the estimated conditional probability that x i arises from the kth mixture component.

In the context of choosing the number of clusters in clustering approach, classification likelihood (CL) method was studied. CL is a penalized term of the likelihood:

CL(θ, z) = L(θ) -LP (θ, z)
where LP (θ, z) = -n i=1 K k=1 z ik ln(t ik ). And CL is also a penalization of the k-means criterion tr(W k ). The relationship between CL and k-means criteria is:

CL K = - nd 2 ln(tr(W K )) -n ln(K) + cst.
Since the classification likelihood is a penalized form of likelihood and K-means, it can be considered as an approach to choosing the number of clusters. Several strategies are suggested:

1. CL criterion. Maximize directly CL(θ, z)

2. CLM criterion. First estimate the parameters θ by maximum likelihood and then penalize the maximum log-likelihood by the term LP K , where

LP K = min z LP ( θL (K), z).
3. An extension of CL which is called CL2. It refuses all number of clusters K where at least one of cluster contains points equal or less than free parameters.

4. An another strategy CLM2 extended from CLM in a similar way as CL2 from CL.

where CLM criterion is defined as follows:

CLM (M, K) = L(M, K) -EC(M, K)
where EC(M, K) is a kind of entropy term:

EC(M, K) = - K k=1 n i=1 z ik log t ik
These four strategies of using classification likelihood are tested in experiment. The result shows that the four strategies perform well on data of well-separated clusters of equal mixing proportions .

AIC criterion

The Akaike Information criterion, proposed by Akaike [START_REF] Akaike | A new look at the statistical model identification[END_REF] is a measure of the quality of a model for the dataset. It is generally considered as the first model selection criterion:

AIC(M ) = -2L max (M ) + 2v(M )
where L max (M ) is the maximum of log-likelihood for the estimated model M and v(M ) is the number of the free parameters in this model M .

Basing on AIC criterion, Bozdogan [START_REF] Bozdogan | Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions[END_REF] proposed a modified AIC criterion AIC3 which has the form:

AIC3(M, K) = -2L(M, K) + 3ν(M, K) 1.7.

BIC criterion

The Bayesian Information criterion is another penalized criterion which is highly related to the AIC criterion. In the Bayesian framework, choosing a better fit model is to choose the model of the highest posterior probability. In the Bayes' theorem, the posterior probability of the model M l for dataset x is:

P (M l |x) = f (x|M l )P (M l ) r f (x|M r )P (M r ) 1.7. Criteria for model choice 27
where f (x|M l )P (M l ) is the integral likelihood of the model M l and P (M l ) is its prior probability. So if all the prior probabilities of all the models are assumed to be the same, choosing the model of the highest posterior probability leads to choosing the model with the biggest integrated likelihood.

By adding the parameters to increase the likelihood usually leads to over-fitting problem.

Similar to the AIC criterion, to solve this problem, the BIC criterion introduces a penalty term of the number of the model parameters into the maximum likelihood. The BIC criterion is used to compare models with different parameters and with different number of clusters.

The formula of the BIC criterion is:

BIC(M ) = -2L max (M ) + v(M ) ln(n)
where n is the number of points contained in the dataset.

ICL criterion

If the suitable model is not considered in the clustering process, BIC criterion tends to overestimate the number of clusters [START_REF] Biernacki | Using the classification likelihood to choose the number of clusters[END_REF]. To deal with this problem, an Integrated Completed Likelihood (ICL) criterion was proposed [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]. We know that BIC is an approximation of maximum log-likelihood. The completed log-likelihood can be considered as a penalized log-likelihood where the penalty is a measure of the ability of a Gaussian mixture model to provide a fitted partition to the data [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]:

CL(M ) = L(M ) + K k=1 n i=1 z ik log t ik ≤0
where

t ik = π k f (x i |a k ) l π l f (x i |a l )
indicating the conditional probability that x i arises from the kth mixture component.

So ICL is defined as:

ICL(M ) = -2LM max (M ) + v(M ) ln(n)
It can also be written as:

log f (x, z|m, K) ≈ -2 log f (x, z|m, K, θ) + v m,K ln(n)
where m indicates the form of a Gaussian mixture, K the number of clusters and

θ = arg max θ f (x, z|m, K, θ)
But the unobserved data z is missing, thus θ is replaced by:

θ = arg max θ f (x|m, K, θ)
and z is replaced with ẑ = M AP ( θ).

ICOMP, NEC and AWE criteria

Bozdogan [START_REF] Bozdogan | On the information-based measure of covariance complexity and its application to the evaluation of multivariate linear models[END_REF] proposes to use a measure of non-linear complexity involving the Fisher

information matrix F -1
n and the number of parameters. The complexity of van Emden is:

g(M ) = v(M ) ln[ tr(F -1 n )(M ) v(M ) ] -ln |F -1 n (M )|
So Informational Complexity Criterion (i.e. ICOMP) criterion is :

ICOM P (M ) = -2L(M ) + v(M ) ln[ tr(F -1 n (M )) v(M ) ] -ln |F -1 n (M )|
Celeux and Soromenho [START_REF] Celeux | An entropy criterion for assessing the number of clusters in a mixture model[END_REF] has proposed Normalized Entropy Criterion (NEC). The NEC is in fact derived from a relation between the log-likelihood L(M ) and the classification log-likelihood LC(M ):

CL(M, K) = L(M, K) -E(M, K) (1.2) 
where

E(M, K) = - K k=1 n i=1 z ik log t ik ≥0 and t ik = π k f (x i |a k ) l π l f (x i |a l )
The entropy E(M, K) cannot directly be a criterion for model choice because L(M, K) increases along with the complexity of the model M . So E(M, K) needs to be normalized. From Equation 2.14, we have:

1 = L(M, K) -L(M, 1) LM (M, K) -LM (M, 1) + E(M, K) -E(M, 1) LM (M, K) -L(M, 1)
1.8. Binned data clustering 29 when K > 1. With E(M, 1) = 0, we have the NEC criterion:

N EC(M, K) = E(M, K) LM (M, K) -L(M, 1) (1.3)
From the Equation 2.14, NEC criterion cannot compare the situation between K > 1 and K = 1. To decide if K = 1 by NEC criterion, we need to apply an procedure which was proposed by Celeux and Soromenho [START_REF] Celeux | An entropy criterion for assessing the number of clusters in a mixture model[END_REF]:

• Estimate the parameters of the Gaussian mixture function by maximizing the likelihood, with different value of K (2 ≤ K ≤ K sup ) where K sup indicating a upper bound of the number of components. N EC(M, K) is minimized with K * :

N EC(M, K * ).

• Estimate the parameters of a K * components' Gaussian mixture with equal means

µ 1 = . . . = µ K * = µ
where µ is the sample mean of the data. L( 1) and E(M, 1)

are respectively the corresponding log-likelihood and entropy. The result of NEC criterion with K = 1 is:

N EC(M, 1) = E(M, 1) L(M, 1) -L(M, 1) K = K * when N EC(M, K * ) ≤ N EC(M, 1), otherwise K = 1.
Another criterion of approximation of Bayes factor is called Approximate Weight of Evidence (AWE) criterion:

AW E(K) = -2CL(K) + 2v(K)( 3 2 + ln(n))

Binned data clustering

The EM and CEM algorithms become a useful tool for cluster analysis in many domains. But along with the development of technology, the amount of observations keeps increasing. In this case, both EM and CEM algorithms take a lot of computation time.

In order to increase the speed of the EM and CEM algorithms, people have proposed to introduce binned data into clustering approaches.

What is binned data?

Binning is way to group a set of data into a smaller number of bins. It is a data preprocessing technique used to reduce the effects of minor observation errors. It is also used
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to reduce the amount of data in order to accelerate the clustering process. Moreover, many datasets can only be presented in the form of binned data deal to measure machine of limited precision, such as red blood cell data [START_REF] Cadez | Maximum likelihood estimation of mixture densities for binned and truncated multivariate data[END_REF]. Binned data clustering is useful in dealing with this kind of data.

To get binned data, the idea is to divide the overall space IR p into v sub-spaces which are also called bins with a partition (H 1 , . . . , H v ). The amount of data within each bin is calculated and is called the 'frequency' of the bin. The Figure 1.5 explains the transformation from standard data to binned data. 

Binned-EM algorithm

The idea of applying EM algorithm to binned data (binned-EM) was first time mentioned by Dempster et al. [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF]. Then the one-dimensional binned-EM algorithm was developed by

McLachlan and Jones [12] and later Cadez et al. [START_REF] Cadez | Maximum likelihood estimation of mixture densities for binned and truncated multivariate data[END_REF] extended it to the multi-dimensional case.

In the paper of Cadez et al. [START_REF] Cadez | Maximum likelihood estimation of mixture densities for binned and truncated multivariate data[END_REF], he proposed a general solution to the problem of fitting a multivariate mixture density model to binned and truncated data. The overall sample space H is divided into v disjoint subspaces H j , which are also called bins. There are only r non-empty bins. The likelihood is:

log(L) = r j=1 n j log(P j ) -n log(P )
where n = r j=1 n j . And P and P j indicates the integrals of the probability density function (PDF) of bins:

P j = P j (Φ) = H j f (x; Φ)dx P = P (Φ) = r j=1 P j = H f (x; Φ)dx
Since the implementation of binned-EM algorithm can be slow, in order to reduce the execution time, several straightforward numerical techniques are also proposed in the paper of Cadez et al. [START_REF] Cadez | Maximum likelihood estimation of mixture densities for binned and truncated multivariate data[END_REF]: Romberg integration was used to select the order of integration, so as to converge faster; two special bins are defined to cover the truncated regions: one covers the space from the last bin to ∞, another from -∞ to the first bin; an additional heuristic is added into the algorithm to make EM algorithm converge in less time.

Experimental results on simulated data suggest that the proposed methods can save significant computation time with no loss in the accuracy of the parameter estimates.

And an application of the proposed approach to diagnosis of iron deficiency anemia was briefly described, in the context of binned and truncated bivariate measurements of volume and hemoglobin concentration from an individual's red blood cells.

Similar as the EM algorithm, binned-EM algorithm aims to obtain the parameters estimate which maximizes the likelihood. In binned data framework, each bin is assumed to belong to one cluster. The log-likelihood of binned-EM algorithm takes the form:

L(Φ) = v r=1 n r log K k=1 π (q+1) k H r f k (x; θ (q) k )dx + log(c)
In binned data clustering, maximizing the expectation of the complete likelihood equals maximizing the likelihood. But the former method is easier. The complete likelihood contains observed data and missing data. The missing data is the label vector z r (r = 1, . . . , v) which indicates the origin labels of the bins H r . The complete log-likelihood is:

L(Φ; a, z) = log(p(a, z; Φ)) = v r=1 n r log π zr Hr f zr (x; θ zr )dx + log(c)
To maximize the expectation of the complete log-likelihood E(L(Φ; a, z)), similar as the EM algorithm, the binned-EM algorithm executes the Expectation step and the Maximization step iteratively. The derivation of binned-EM algorithm will be detailed in the Chapter 2.

Bin-EM-CEM algorithm

A classification EM algorithm for binned data (bin-EM-CEM, noted as binned-EM-CEM Samé et al. [START_REF] Samé | A classification EM algorithm for binned data[END_REF]) was first time proposed by Samé et al. [START_REF] Samé | A classification EM algorithm for binned data[END_REF]. The derivation of bin-EM-CEM algorithm is detailed in this paper. Numerical experiments are shown in order to compare the bin-EM-CEM algorithm with the classical CEM algorithm. The result shows that the bin-EM-CEM algorithm spends less CPUtime than CEM algorithm when dealing with large number of data with a appropriate size of bins. From the aspect of quality, bin-EM-CEM algorithm approaches to CEM algorithm when the bins become small enough. They proposed an approximation of ICL for bin-EM-CEM algorithm to select the best number of clusters:

ICL b (K) = (L( Φ; a, ẑ) -n log(S) -log(c)) - v K 2 log(n)
where Φ and ẑ are estimations by bin-EM-CEM with K clusters, S is the surface of each bin. And

v K = (2K) + 2K + (K -1) = 5K -1
A bin-EM-CEM application was presented to detect damaged sones on the surface of a gas tank, by using acoustic emissions.

In 2004, Hamdan and Govaert [START_REF] Hamdan | The fitting of binned data clustering to imprecise data[END_REF] have addressed the problem of taking into account data imprecision in the mixture model clustering of binned data by binned-EM algo-

rithm. An original method to fit the binning data procedure to imprecise data was developed. The idea is to model imprecise data by multivariate uncertainty zones and to assign each uncertainty zone to several bins with proportions proportional to its overlapping volumes with the bins. To overcome the long computation time problem of binned-EM algorithm, Hamdan [START_REF] Hamdan | Mixture model clustering of binned uncertain data: the classification approach[END_REF] applied classification approach of binned data based on bin-EM-CEM algorithm. The complete log-likelihood criterion is: Later in 2009, another fast algorithm devoted to binned data clustering was proposed by Samé [START_REF] Samé | Grouped data clustering using a fast mixture-model-based algorithm[END_REF]. The proposed approach is called bin-CEM algorithm, which is inspired by CEM algorithm. In the framework of grouped data, this approach estimates simultaneously the missing data x, z and the parameter vector Φ by maximizing the complete data log-likelihood. And the complete data log-likelihood can be rewritten as followed: In the Chapter 3, the derivation of bin-EM-CEM algorithm will be detailed.

L(Φ; a, z) = v r=1 log(π zr Hr f zr (x; θ zr )dx) + log n! v r=1 n r ! where Φ = (π 1 , . . . , π K , θ 1 , . . . , θ K ), π k (k = 1, . . . , K)
L c (Φ; a, z) =

Conclusion

This chapter presented the basic and important concepts which our following study bases on.

In this chapter, firstly we presented the definition of cluster analysis. Three main clustering approaches were reviewed. They are the hierarchical clustering, k-means algorithm and model-based clustering. Then, we highlighted the model-based clustering approaches basing on Gaussian mixture models. The mixture approach and the classification approaches were presented. We also studied their corresponding algorithms:

EM and CEM. In order to simplify the clustering process, two kinds of parsimonious Gaussian mixture models were presented. One kind of parsimonious models is based on variance matrix parametrization. And anther group of parsimonious models is based on factor analysis model. Since the core of our thesis is model selection for data clustering, commonly used criteria for model selection were presented in detail. The AIC, BIC, ICL, ICOMP, NEC, and AWE criteria, for standard data, were detailed. Finally, a main concept of this thesis was presented: binned data. The definition of binned data was detailed. The concepts of the EM algorithm applied to binned data (binned-EM) and the CEM algorithm applied to binned data (bin-EM-CEM) were explained.

After giving a comprehensive introduction on the main concepts we use in our study, in the following three chapters, we will present the main contribution of our study. In the next two chapters, we aim to combine the advantages of binning data with the advantages of parsimonious models, so as to simplify the parameters estimation and to save some computation time. The binned-EM algorithms of fourteen Gaussian mixture models will be developed in the Chapter 2, and the bin-EM-CEM algorithms of fourteen Gaussian mixture models will be developed in the Chapter 3. The Chapter 4 shows how to adapt AIC, BIC, ICL, ICOMP, NEC, and AWE criteria to binned data clustering.

Chapter 2

Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms

Introduction

Mixture approach is one of the most commonly used model-based clustering approaches.

It aims to maximize the likelihood over the mixture model parameters. The mixture model parameters estimates are obtained by maximizing the likelihood using Expectation Maximization (EM) algorithm. And the partition is estimated by maximum a posteriori (MAP) rule (see [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF] for example). The EM algorithm was firstly introduced by Dempster et al. [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF], and corrected by Wu [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF] on its flawed convergence analysis.

Because of its simple conception and easy implementation, the EM algorithm has been widely used for maximum likelihood estimation specially when some variables are unobserved. On the other side, the EM algorithm has some limitations. One limitation is that the EM algorithm becomes very slow when dealing with large datasets. This problem has been discussed and some suggestions to accelerate the EM algorithm have been proposed [START_REF] Mclachlan | The EM algorithm and extensions[END_REF].

With the increase of the number of mixture components and the dimensionality of data, too many parameters to estimate is one of the reasons of slow computation. Simplifying the model complexity can reduce the number of parameters. This approach can be efficient in solving the long computation time problem. Banfield and Raftery [START_REF] Banfield | Model-based Gaussian and non-Gaussian clustering[END_REF] 38

Chapter 2. Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms suggested a way of decomposition of the variance matrix of each component of a Gaussian mixture model. Following this parametrization, fourteen parsimonious models were proposed [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF]. The experimental result showed that these models can detect many data distributions, instead of using the most complex model.

Besides that, binned data was introduced into EM algorithm. This new approach has two advantages: firstly, it accelerates the speed of the EM algorithm by reducing the amount of data; secondly, it adapts to the binned data which exist naturally due to the limited precision of the measuring equipment. Applying EM algorithm to binned data was first time mentioned by Dempster et al. [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF]. The one-dimensional binned-EM algorithm was developed by McLachlan and Jones [12]. Then Cadez et al. [START_REF] Cadez | Maximum likelihood estimation of mixture densities for binned and truncated multivariate data[END_REF] extended binned-EM algorithm to the multi-dimensional case. The experimental results showed that the binned-EM algorithm is faster than the EM algorithm without losing much precision.

In order to combine the advantages of parsimonious models and binned data with EM algorithm, this chapter will present the new EM algorithms of parsimonious Gaussian mixture models applied to binned data (binned-EM algorithms). Firstly, the Section 2.2

will give an overview of the classic EM algorithm for standard data. The complexity of the EM algorithm will be calculated. The Section 2.3 will describe the fourteen parsimonious Gaussian mixture models. The Section 2.4 will present the derivation of the binned-EM algorithm. The computational complexity of the binned-EM algorithm will be calculated and compared to the one of the EM algorithm. Parameters estimations corresponding to different parsimonious models will be detailed in the Section 2.5. In the Section 2.6, experiments of binned-EM algorithms on simulated data and real data will be shown and analyzed. Finally, we will summarize this chapter and lead to the next chapter.

Mixture approach for standard data

In mixture model-based clustering, mixture approach aims to maximize the likelihood over the mixture model parameters. The parameters are usually estimated by the EM algorithm, and the data partition is obtained by the MAP rule. In this section, we will review the classical EM algorithm and the MAP rule.

The EM algorithm

In this part, a general review of the Estimation Maximization (EM) algorithm will be given. The EM algorithm is an iterative method which aims to maximize likelihood and estimate the corresponding model parameters. After being proposed several times in special circumstances, the EM algorithm was formally defined by Dempster et al. [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF].

But the convergence analysis of Dempster et al. [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF] was flawed and Wu [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF] corrected it in 1983.

Assume that a set of observed data x = (x 1 , . . . , x n ) is generated according to a mixture distribution.

x is also called the incomplete data. The complete data includes x as well as missing data z = (z 1 , . . . , z n ). If we assume that each x i is independent identically distributed (i.i.d.), this model follows a distribution:

p(x|θ) = n i=1 p(x i |θ) = L(θ|x)
where θ is the unknown parameters, and L(θ|x) is called the likelihood function of θ given x.

In the case of Gaussian mixture model, the model is composed by K components. Each component follows respectively a Gaussian distribution. L(θ|x) takes the form:

P (x|θ) = K k=1 π k p k (x|θ k )
where π k is the mixing proportion of the k component, p k (x|θ k ) is the distribution of the k component with parameter θ k = (µ k , Σ k ), µ k is the mean vector of the component and Σ k its variance matrix.

We want to find the maximum likelihood estimate (MLE) θ such that L( θ|x) is a maximum. In order to estimate θ, log-likelihood function is introduced:

L(θ|x) = log P (x|θ)
Henceforth L(θ|x) is the notation of log-likelihood. Since log(x) strictly increases along with x, the value θ maximizing P (x|θ) also maximizes log P (x|θ) . But maximum of L(θ|x) is generally uneasy to obtain. The EM algorithm seeks to obtain the MLE by maximizing the expectation of the complete log-likelihood L(θ|x, z) which bases on the complete data (x, z). The EM algorithm repeats two steps iteratively until convergence:

• Expectation step (E-step): Calculate the expectation of the complete log-likelihood

Q(θ, θ (q) ) = E(L(θ; x, z))
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For the case of Gaussian mixture model, this equals to computing the conditional probabilities of each component k:

t (q) ik = π (q) k f k (x i ; θ (q) k ) t (q) i where t (q) i = K k=1 π (q) k f k (x i ; θ (q) k )
• Maximization step (M-step): Find the parameters θ which maximize Q(θ, θ (q) ):

θ = arg max θ Q(θ, θ (q) )
We obtain the parameters of Gaussian mixture model:

π (q+1) k = 1 n n i=1 t (q) ik µ (q+1) k = 1 n i=1 t (q) ik n i=1 t (q) ik x i
The result of Σ in the M-step varies according to the parsimonious model [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF].

For example, for the model [λDAD T ], the estimate of Σ has the form:

Σ (q+1) k = 1 n i=1 t (q) ik n i=1 t (q) ik (x i -µ (q+1) k )(x i -µ (q+1) k ) T

The complexity of EM algorithm

The efficiency is one of the important characteristics of an algorithm. The CPUtime that an algorithm consumes represents the efficiency of the algorithm. But this quantity differs due to many factors. These factors are, for example, the way of programming, the processor and the memory of the computer and the random result of one experiment.

Time complexity of an algorithm quantifies the amount of the time taken by the algorithm. It is commonly expressed by a function of inputs, using the Big-O notation.

In order to better study the time consumption of the EM algorithm and to compare with the other algorithms, in this part, we will calculate the time complexity of the EM algorithm.

Three parameters affect the computation time of EM algorithm. They are the amount of data n, the number of space dimension d and the number of clusters K. The EM algorithm based on different model takes different computation time. As our study focus on the fourteen parsimonious Gaussian mixture models, we will calculate the time complexity of the EM algorithm based on one of these models. Among these models, we choose the model [λDAD T ] because of its simplicity and generality.

The EM algorithm of the model [λDAD T ] is presented in the Algorithm 1:

Algorithm 1 EM algorithm q ← 0 Initialize π (0) and θ (0) = {µ (0) , Σ (0) }. repeat for i = 1 : n do t (q) i ← K k=1 π (q) k f k (x i ; θ (q) k ) for k = 1 : K do t (q) ik ← π (q) k f k (x i ;θ (q) k ) t (q) i end for end for for k = 1 : K do π (q+1) k ← 1 n n i=1 t (q) ik µ (q+1) k ← 1 n i=1 t (q) ik n i=1 t (q) ik x i Σ (q+1) k ← K k=1 n i=1 t (q) ik (x i -µ (q+1) k )(x i -µ (q+1) k ) T n end for q ← q + 1 until L (q+1) -L (q) L (q) < ε π ← π (q+1) , θ ← θ (q+1)
From the Algorithm 1, the EM algorithm follows an iterative process, and ends until

L (q+1) -L (q) L (q)
< ε. It is uneasy to know exactly when the EM algorithm stops. The speed of the convergence depends on the dataset, the initiation and the threshold ε. In other word, the computational complexity of EM algorithm approaches infinity. But in reality, the EM algorithm usually stops in few seconds or more. To be able to calculate the time complexity, we suppose that EM algorithm stops in N iterates. If we note the complexity of each iterate as O(T ), then the complexity of the EM algorithm is about O(N T ).

To facilitate the calculation, each iterate is divided into three parts:

• Calculate n times t (q) i . • Calculate n * K times t (q)
ik .

• Calculate K times π i equals to calculate K times this equation:

(q+1) k , µ (q+1) 
π (q) k f k (x i ; θ (q) k ) = π (q) k (2π) d/2 |Σ (q) k | 1/2 exp(-1/2(x i -µ (q) k )Σ (q) k -1 (x i -µ (q) k ) T ) (2.1)
To calculate the complexity of the Equation 2.1, the difficult part is to calculate

|Σ (q) k | 1/2 , exp(x) and Σ (q) k -1
.

To calculate the determinant of one d × d matrix using LU decomposition costs O(d 3 ) complexity. To obtain the square root of S, we can use the Newton's method. Because finding √ S is the same as solving the equation f (x) = x 2 -S = 0. We can obtain the approximate result by doing the equation 2.2 calculation iteratively:

x n+1 = x n - f (x n ) f ′ (x n ) = x n - x 2 n -S 2x n = 1 2 (x n + S x n ) (2.2)
In the Equation 2.2, each iterate needs 4 basic operations. If the root being sought has multiplicity greater than one, the convergence rate is merely linear (errors reduced by a constant factor at each step) unless special steps are taken. The speed of convergence depends on the defined threshold or how we want it to stop. It might take a long time until convergence. To simplify, we suppose it stops in n 1 iterates. Thus, the complexity of obtaining the square root is approximately O(4n 1 ). So the complexity of

|Σ (q) k | 1/2 is about O(d 3 + 4n 1 ).
To calculate exp(x), we use Taylor series:

e x = ∞ n=0 x n n! = 1 + x + x 2 2! + x 3 3! + . . . (2.3) 
The condition to define when to stop the multiplication is flexible. So we use truncated Taylor series. We suppose that the result of e x becomes stable until n = n 2 . Thus the Equation 2.3 becomes:

e x = n 2 n=0 x n n! = 1 + x + x 2 2! + x 3 3! + . . . + x n 2 n 2 ! (2.4)
The complexity of the Equation 2.4 is O(n 2 2 ).

To calculate the inversion of Σ (q)

k , using Gaussian elimination takes complexity of O(d 3 ).

After adding up all the operations, calculating the Equation 2.1 takes complexity of

T = O(2d 3 + 2d 2 + 5 2 d + 4n 1 + n 2 2
). According to the Big-O notation, T can be also considered as

T = O(d 3 + 4n 1 + n 2 2 ).
Since the complexity of t (q)

i is calculated, the complexity of the rest of the EM algorithm is easy to find out. The complexity of each part is listed in the Table 2.1. 

Parameter Times Complexity

t (q) i n O(d 3 K + 4n 1 K + n 2 2 K) t (q) ik n * K O(1) π (q+1) k K O(n) µ (q+1) k K O(nd + 2n) Σ (q+1) k K O(3dnK)

Parsimonious models

In general, the greater the number of simplifying assumptions made about the essential structure of the real world, the simpler the model. One goal of the science is to create simple models that have a great deal of explanatory power. Such models are called parsimonious models. Parsimonious models provide a simpler and clearer image of the structure of data. They simplify the process of parameter estimation of the model and save the computation time.

In order to obtain parsimonious Gaussian mixture models, a way of decomposition of the variance matrix Σ k was proposed by Banfield and Raftery [START_REF] Banfield | Model-based Gaussian and non-Gaussian clustering[END_REF]:

Σ k = λ k D k A k D T k , where λ k = |Σ k | 1/d
determining the volume of the kth cluster, D k which is the matrix of eigenvectors of Σ k determining its orientation, and a diagonal matrix A k determining its shape. A k has the normalized eigenvalues of Σ k in a decreasing order on the diagonal, and |A k |=1. Eight general parsimonious Gaussian mixture models were generated by allowing none, some or all of the parameters to vary among clusters:

[λDAD T ], [λ k DAD T ], [λDA k D T ], [λ k DA k D T ], [λD k AD T k ], [λ k D k AD T k ], [λD k A k D T k ], [λ k D k A k D T k ]
. Besides, by putting certain restrictions on the orientation matrices D k and the shape matrices A k respectively, we can obtain two other more simplified families of parsimonious Gaussian mixture models. By assuming the orientation of clusters as horizontal or vertical, the orientation matrices D k have exactly one entry Chapter 2. Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms 1 or -1 in each row and each column and 0 elsewhere. In this case, there is no interest of studying the variations on the orientation matrices. We can simplify a part of the variance matrices as: 

D k A k D T k = B k ,
.[λDAD T ], 2.[λ k DAD T ], 3.[λDA k D T ], 4.[λ k DA k D T ], 5.[λD k AD T k ], 6.[λ k D k AD T k ], 7.[λD k A k D T k ], 8.[λ k D k A k D T k ].
Chapter 2. Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms ] has all the freedoms of the components. Thus it is more flexible as well as more complex than the other models in this family.

To obtain the diagonal models, a restriction on the orientation is added. From the Figure 2.2, we can see that for this kind of model, the orientation of the components are defined to be vertical or horizontal. This added restriction simplifies the model but also limits the model choice.

The simplest parsimonious models are spherical models. In this kind of models, all the components are supposed to be of spherical shape. Only one parameters to estimate in this model: the volume.

These fourteen models have a hierarchical relationship which is shown in the Figure 2.4, from the most complex model to the simplest model: Depending on the model complexity, each model has different combination of free parameters. The more complex model has more parameters. The Table 2.2 presents the number of parameters for these fourteen models: We cannot tell which model is the best among these fourteen models. It depends on the practical needs and the distribution of the data. EM algorithms of these fourteen models were developed [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF]. In the next section, we will present how to develop the binned-EM algorithms of these fourteen models.

Family Model Number of parameters General [λDAD T ] α + β [λ k DAD T ] α + β + K -1 [λDA k D T ] α + β + (K -1)(d -1) [λ k DA k D T ] α + β + (K -1)d [λD k AD T k ] α + Kβ -(K -1)d [λ k D k AD T k ] α + Kβ -(K -1)(d -1) [λD k A k D T k ] α + Kβ -(K -1) [λ k D k A k D T k ] α + Kβ Diagonal [λB] α + d [λ k B] α + d + K -1 [λB k ] α + Kd -K + 1 [λ k B k ] α + Kd Spherical [λI] α + 1 [λ k I] α + d Table 2.
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[λ k B k ] [λ k D k AD T k ] [λ k DA k D T ] [λD k A k D T k ] [λ k D k A k D T k ] [λ k DAD T ] [λDA k D T ] [λD k AD T k ] [λ k B] [λB k ] [λDAD T ] [λ k I] [λI]

Binned-EM algorithm 2.4.1 The likelihood

We suppose that x = (x 1 , . . . , x n ) is a sample issued from a K-component mixture distribution defined on a d-dimensional space (IR d ): Similar as the EM algorithm for standard data, the EM algorithm for binned data i.e. the binned-EM algorithm, also provides a theoretical framework that enables us to iteratively maximize the observed likelihood (the one which includes only the observed data) by maximizing the expectation of the complete likelihood (the one which includes both the missing data and the observed data). Firstly, before applying the binned-EM algorithm, standard data are transformed into binned data. The overall sample space IR d is divided into v bins with a subspace partition (H 1 , . . . , H v ). We assume that the only observed data is a set of frequencies n r (r = 1, . . . , v) where each frequency n r indicates the number of x i belonging to the bin H r . The vector a = (n 1 , . . . , n v ) is the vector of frequencies, with v r=1 n r = n. In order to maximize the likelihood L(Φ), the binned-EM algorithm maximizes the expectation of complete likelihood L C (Φ) which is built on the concept of the complete data (x, z) = (x 1 , z 1 ), . . . , (x n , z n ) . The label vectors z i (i = 1, . . . , n) have the form z i = (z i1 , . . . , z iK ), where each z ik (k ∈ {1, . . . , K}) values 1 if x i arises from the mixture component k and values 0 otherwise. The complete log-likelihood can be written as follows:

f (x; Φ) = K k=1 π k f k (x; θ k ) with Φ = (π 1 , . . . , π K , θ 1 , . . . , θ K ),
L C (Φ) = L(Φ; x, z) = n i=1 K k=1 z ik log π k f k (x i ; θ k ) + log(c)
where c is a constant and does not depend on Φ.

Since there is no information about the exact location of the data in each bin, we assume that all the data in the same bin belong to the same cluster. Thus, the label vectors The expectation of complete log-likelihood Q(Φ, Φ (q) ) is expressed as follows.

z i (i = 1, . . . , n) can
Q(Φ, Φ (q) ) = E(L C (Φ)) = K k=1 v r=1 n r ln(π k )p (q) k/r (2.5) + π (q) k p (q) r Hr ln f k (x; θ k ) f k (x; θ (q) k )dx
where

p (q) r = P (x ∈ H r |Φ (q) ) = K k=1 π (q) k Hr f k x; θ (q) k dx and p (q) k/r = P z k = 1|x ∈ H r , Φ (q) = π (q) k Hr f k (x; θ (q) k )dx p (q) r

The E-step and the M-step

Binned-EM algorithm executes two steps iteratively until convergence: the E-step (Expectation) and the M-step (Maximization). At the E-step, the p (q) k/r and p (q) r are calculated for all the k and r:

p (q) r = K k=1 π (q) k Hr f k x; θ (q) k dx and p (q) k/r = π (q) k Hr f k (x; θ (q) k )dx p (q) r At the M-step, the parameters Φ = (π k , µ k , Σ k ) maximizing Q(Φ, Φ (q) ) are estimated: π (q+1) k = v r=1 n r p (q) k/r n 2.4. Binned-EM algorithm 51 µ (q+1) k = v r=1 nr p (q) r H r xf k (x; θ (q) k )dx v r=1 nr p (q) r Hr f k (x; θ (q) k )dx
To find the model parameters

Σ (q+1) k maximizing Q(Φ, Φ (q)
), firstly, we select a part of Q(Φ, Φ (q) ) which includes Σ k :

F (Σ k ) = K k=1 v r=1 n r π (q) k p (q) r Hr ln f k (x; θ k ) f k x; θ (q) k dx = K k=1 v r=1 n r π (q) k p (q) r Hr - 1 2 ln |Σ k | (2.6) +(x -µ k ) T Σ -1 k (x -µ k ) f k x; θ (q) k dx + C
where C is a constant.

To maximize the Q(Φ, Φ (q) ) (Equation 2.5) leads to minimizing B(Σ k ) which is trans-

formed from F (Σ k ): B(Σ k ) = K k=1 v r=1 π (q) k n r p (q) r H r ln |Σ k | + x -µ (q+1) k T •Σ -1 k x -µ (q+1) k f k x; θ (q) k dx = K k=1 π (q) k ln |Σ k | v r=1 n r p (q) r Hr f k x; θ (q) k dx + K k=1 π (q) k tr Σ -1 k G (q+1) k (2.7)
where

G (q+1) k = v r=1 n r p (q) r H r x -µ (q+1) k x -µ (q+1) k T •f k x; θ (q) k dx
(tr(X) : the trace of the matrix X which is defined as the sum of the elements on the main diagonal of X).

Minimizing the Equation (2.7) leads to the estimating result of the variance matrix

Σ (q+1) k
, which is different depending on each parsimonious Gaussian mixture model.

The variance matrix estimate for fourteen models will be detailed in the Section 2.5.
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The complexity of binned-EM algorithm

In the sub-Section 2.2.2, we have calculated the complexity of the EM algorithm of the model [λDAD T ]. In this part, we will calculate the complexity of the binned-EM algorithm of the same model, in order to compare with the EM algorithm.

Firstly, in the Algorithm 2, the binned-EM algorithm of model [λDAD T ] is shown:

Algorithm 2 Binned-EM algorithm q ← 0 Initialize π (0) and θ (0) = {µ (0) , Σ (0) }. repeat for r = 1 : v do p (q) r ← K k=1 π (q) k Hr f k (x; θ (q) k )dx for k = 1 : K do p (q) k/r ← π (q) k Hr f k (x;θ (q) k )dx p (q) r end for end for for k = 1 : K do π (q+1) k ← v r=1 nrp (q) k/r n µ (q+1) k ← v r=1 nr p (q) r Hr xf k (x;θ (q) k )dx v r=1 nr p (q) r Hr f k (x;θ (q) k )dx Σ (q+1) k ← K k=1 π (q) k v r=1 nr p (q) r Hr (x-µ (q+1) k )(x-µ (q+1) k ) T f k (x;θ (q) k )dx n end for q ← q + 1 until L (q+1) -L (q) L (q) < ε π ← π (q+1) , θ ← θ (q+1)
Same as the EM algorithm, the binned-EM algorithm also executes the iterates until it converges. The stopping moment for binned-EM algorithm is flexible depending on the condition, more precisely, the ε. Same as what we did to EM algorithm, we suppose that the binned-EM algorithm stops in N iterates.

In order to facilitate the calculation, each iterate is divided into three parts:

• Calculate v times p (q) r . • Calculate v * K times p (q) k/r . • Calculate K times π (q+1) k , µ (q+1) k and Σ (q+1) k .
In the Section 2.2, we calculated the complexity of

f k (x i ; θ (q) k ) = 1 (2π) d/2 |Σ (q) k | 1/2 exp(-1/2(x i -µ (q) k )Σ (q) k -1 (x i -µ (q) k ) T ) (2.8) which is approximately O(d 3 + 4n 1 + n 2 2 ).
In the binned-EM algorithm, to calculate p

(q)
r , we need to calculate:

Hr f k (x; θ (q) k )dx = Hr 1 (2π) d/2 |Σ (q) k | 1/2 (2.9) exp(-1/2((x -µ (q) k )Σ (q) k -1 (x -µ (q) k ) T )dx (2.10)
To calculate one dimensional numerical integral, we use the trapezoidal rule:

a b f (x)dx ≈ (b -a) f (a) + f (b) 2 (2.11)
To obtain a more accurate approximation, we can divide the interval [a, b] into n subintervals. We add up all the approximations of the subintervals. This method is called the composite trapezoidal rule. So the Equation 2.11 can be extended into:

a b f (x)d ≈ b -a n ( f (a) 2 + n-1 k=1 (f (a + k b -a n )) + f (b) 2 ) (2.12)
To compute integrals in multiple dimensions, one approach is to phrase the multiple integral as repeated one-dimensional integrals by appealing to Fubini's theorem:

A×B f (x, y)d(x, y) = A ( B f (x, y)dy)dx = B ( A f (x, y)dxdx)dy
This approach requires the function evaluations to grow exponentially as the number of dimensions increases.

So to calculate

Hr f k (x; θ (q)
k )dx, we suppose that we divide the interval on each dimension into l l (l = 1, . . . , d) subintervals. This means that, we execute f k (x; θ

(q) k ) function (l 1 + 1)(l 2 + 1) • • • (l d + 1)
times. The complexity of calculating the Equation 2.9 is about

O((l 1 + 1)(l 2 + 1) • • • (l d + 1)(d 3 + 4n 1 + n 2 2 )).
For the rest of the binned-EM algorithm, we apply the same methods we mentioned before and in the Section 2.2. We list the complexity of each part of binned-EM algorithm in the From the Table 2.3, we can conclude that the complexity of the binned-EM algorithm is

p (q) r v O((l 1 + 1)(l 2 + 1) • • • (l d + 1)(d 3 K + 4n 1 K + n 2 2 K)) p (q) k/r v * K O(1) π (q+1) k K O(2v) µ (q+1) k K O((l 1 + 1)(l 2 + 1) • • • (l d + 1)v) Σ (q+1) k K O((l 1 + 1)(l 2 + 1) • • • (l d + 1)3dvK)
approximately O((l 1 + 1)(l 2 + 1) • • • (l d + 1)(d 3 KvN + 4n 1 KvN + n 2 2 KvN + 3dvK 2 N )).
Comparing the complexity of the EM algorithm and the complexity of the binned-EM algorithm, if we suppose that the binned-EM algorithm is faster than the EM algorithm, we have the inequality function:

O(d 3 KnN + 3K 2 dnN + 4n 1 KnN + n 2 2 KnN ) > O((l 1 + 1)(l 2 + 1) • • • (l d + 1)(d 3 KvN + 4n 1 KvN + n 2 2 KvN + 3dvK 2 N ))
Thus we obtain the condition that binned-EM algorithm is faster than the EM algorithm:

n > (l 1 + 1)(l 2 + 1) • • • (l d + 1)v (2.13)
If the amount of data n meets the condition n > (l 1 + 1)(l 2 + 1) • • • (l d + 1)v, using the binned-EM algorithm is faster than using the EM algorithm.

Parsimonious models for binned-EM algorithm

In this section, we will present the derivation of variance matrix estimate of fourteen parsimonious models.

The general models

In the general family, there are eight models. They are: 

[λDAD T ], [λ k DAD T ], [λDA k D T ], [λ k DA k D T ], [λD k AD T k ], [λ k D k AD T k ], [λD k A k D T k ], [λ k D k A k D T k ].
M 1 (Σ) = n ln |Σ| + tr Σ -1 G (q+1)
where

G (q+1) = K k=1 π (q) k G (q+1) k
and the obtained estimated variance matrix Σ is then

Σ (q+1) = G (q+1) n Model [λ k DAD T ].
In this situation, it is easier to express it as

Σ k = λ k C with C = DAD T . Minimizing Equation (2.7) equals to minimizing M 2 (λ k , C) = K k=1 d ln(λ k ) v r=1 π (q) k n r p (q) r H r f k x; θ (q) k dx + K k+1 π (q) k 1 λ k tr G (q+1) k C -1
We obtain λ k and C minimizing M 2 by the following iterative process:

• Keep C fixed, the λ k 's minimizing M 2 (λ k , C) are λ (q+1) k = tr(G (q+1) k C -1 ) d v r=1 nr p (q) r Hr f k x; θ (q) k dx • keep λ k 's fixed, the matrix C minimizing M 2 (λ k , C) is C (q+1) = K k=1 π (q) k 1 λ k G (q+1) k | K k=1 π (q) k 1 λ k G (q+1) k | 1/d Model [λDA k D T ]
. For this model, firstly is to minimize:

M 3 (λ, D, A k ) = d ln(λ) K k=1 v r=1 n r π (q) k p (q) r Hr f k (x; θ (q) k )dx + 1 λ K k=1 π (q) k tr(G (q+1) k DA -1 k D T )
Chapter 2. Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms

Minimizing M 3 leads to minimizing K k=1 π (q) k tr(G k DA -1 k D T
) and calculation of λ. λ can be calculated directly:

λ (q+1) = K k=1 π (q) k tr(G (q+1) k DA -1 k D T ) nd (2.14) We minimize K k=1 π (q) k tr(G (q+1) k 
DA -1 k D T ) using the following iterative method:

• Keeping D fixed, from Corollary A.5 of the Appendix A, we get

A (q+1) k = diag(D T π (q) k G (q+1) k D) |diag(D T π (q) k G (q+1) k D)| 1/d (2.15) • Keeping A (q+1) 1 , . . . , A (q+1) 
K fixed, we adapt an algorithm of Flury aiming to minimize 

f (D) = K k=1 π (q) k tr(G ( 
(q) k A -1 k D T G (k+1) k ) = K k=1 d j=1 d T j G (q+1) k π (q) k d j a j k = K k=1 d T l G (q+1) k π (q) k d l a l k + K k=1 d T m G (q+1) k π (q) k d m a m k + K k=1 j =l,m d T j G (q+1) k π (q) k d j a j k = S(d l , d m ) + K k=1 j =l,m d T j G (q+1) k π (q) k d j a j k
Thus, it equals to find (δ l , δ m ) minimizing S(d l , d m ). We can write

δ l = (d l , d m )q 1 δ m = (d l , d m )q 2
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S(δ l , δ m ) = K k=1 q T 1 (d l , d m ) T G (q+1) k π (q) k (d l , d m )q 1 a l k + K k=1 q T 2 (d l , d m ) T G (q+1) k π (q) k (d l , d m )q 2 a m k = K k=1 q T 1 Z k q 1 a l k + K k=1 q T 2 Z k q 2 a m k
where

Z k = (d l , d m ) T G (q+1) k π (q) k (d l , d m )
Denoting Q = (q 1 , q 2 ), we get

q T 1 Z k q 1 + q T 2 Z k q 2 = tr(Q T Z k Q) = tr(Z k )
And the problem reduces to the optimization of

S(d l , dm) = K k=1 q T 1 Z k q 1 a l k + K k=1 tr(Z k -q T 1 Z k q 1 ) a m k which is equivalent to the minimization of q T 1 { K k=1 ( 1 a l k - 1 a m k )Z k }q 1
Hence, q 1 is the second eigenvector of the matrix K k=1 ( 1

a l k -1 a m k )Z k . Repeat the proce- dure above until f (D) converges. Model [λ k DA k D T ]. Writing Σ k = DA k D T where |A k | = |Σ k | is more efficient. Mini- mizing equation (2.7) leads to the minimization of M 4 (λ k , D, A k ) = K k=1 ln(|A k |) v r=1 n r π (q) k p (q) r Hr f k (x; θ (q) k )dx + K k=1 π (q) k tr(G (q+1) k DA -1 k D T )
As previously presented, the minimization of M 4 can be achieved in the similar way:

• Keeping D fixed, from Corollary A.7 of the Appendix A, we get

(q+1) k = diag(DG (q+1) k D T ) v r=1 n r π (q) k p (q) r Hr f k (x; θ (q) k )dx
• Keeping fixed A 1 , . . . , A K , it can be making use of the same algorithm described above by minimizing K k=1 π

(q) k tr(DA -1 k D T G k ).
Model [λD k AD T k ]. Minimizing Equation (2.7) equals to minimizing

M 5 (λ, D k , A) = d ln(λ) K k=1 v r=1 n r π (q) k p (q) r Hr f k x; θ (q) k dx + 1 λ K k=1 π (q) k tr G (q+1) k D k A -1 D -1 k Considering the eigenvalue decomposition G (q+1) k = L (q+1) k Ω (q+1) k L -1(q+1) k , k = 1, . . . , K,
of the symmetric definite positive matrix G k with the eigenvalues in the diagonal matrix Ω k in decreasing order,we have

M 5 (λ, D k , A) = 1 λ K k=1 π (q) k tr D -1 k L (q+1) k Ω (q+1) k L -1(q+1) k D k A -1 +d ln(λ) K k=1 v r=1 n r π (q) k p (q) r Hr f k x; θ (q) k dx
From Theorem A.1 of Appendix A, we get D k = L k , and we have

M 5 (λ, L k , A) = 1 λ K k=1 π (q) k tr Ω (q+1) k A -1 +d ln(λ) K k=1 v r=1 n r π (q) k p (q) r H r f k x; θ (q) k dx
From this, we deduce A and λ: 

A (q+1) = K k=1 π (q) k Ω (q+1) k | K k=1 π (q) k Ω (q+1) k | 1/d λ (q+1) = | K k=1 π (q) k Ω (q+1) k | 1/
M 6 (λ k , D k , A) = d K k=1 π (q) k ln(λ k ) v r=1 n r p (q) r H r f k x; θ (q) k dx + K k=1 π (q) k 1 λ k tr G (k+1) k D k A -1 D -1 k
Use again the eigenvalue decomposition

G (q+1) k = L (q+1) k Ω (q+1) k L -1(q+1) k
. The minimization of M 6 is achieved iteratively:

λ (q+1) k = tr Ω (q+1) k A -1 d v r=1 nr p (q) r H r f k x; θ (q) k dx D k = L k and 
A (q+1) = K k=1 π (q) k 1 λ k Ω (q+1) k | K k=1 π (q) k 1 λ k Ω (q+1) k | 1/d Model [λD k A k D T k ]
. We consider the variance matrix as

Σ k = λC k where C k = D k A k D T k .
Then, minimizing Equation (2.7) equals to minimizing

M 7 (λ, C k ) = dn ln(λ) + 1 λ K k=1 π (q) k tr C -1 K G (q+1) k
Simple calculation give us:

C (q+1) k = G (q+1) k |G (q+1) k | 1/d and λ (q+1) = K k=1 π (q) k |G (q+1) k | 1/d n Model [λ k D k A k D T k ]
. This is the most general parsimonious model. Minimizing Equation (2.7) equals to minimizing

M 8 (Σ k ) = K k=1 π (q) k ln |Σ k | v r=1 n r p (q) r Hr f k x; θ (q) k dx + K k=1 π (q) k tr Σ -1 k G (q+1) k
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Σ (q+1) k are Σ (q+1) k = G (q+1) k v r=1 nr p (q) r H r f k (x; θ (q) k )dx

The diagonal models

In the diagonal family, there are four models:

[λB], [λ k B], [λB k ] and [λ k B k ].
Model [λB]. Minimizing Equation (2.7) leads to the minimization of

M 9 (λ, B) = d ln(λ) K k=1 π (q) k v r=1 n r p (q) r Hr f k (x; θ (q) k )dx + 1 λ K k=1 π (q) k tr(B -1 G (q+1) k )
To estimate the result, we used Corollary A.5 of the Appendix A. We get:

B (q+1) = diag( K k=1 π (q) k G (q+1) k ) |diag( K k=1 π (q) k G (q+1) k )| 1/d and λ (q+1) = |diag( K k=1 π (q) k G (q+1) k )| 1/d n Model [λ k B].
In this situation, minimizing Equation (2.7) leads to the minimization of

M 10 (λ k , B) = d K k=1 π (q) k ln(λ k ) v r=1 n r p (q) r H r f k (x; θ (q) k )dx + K k=1 π (q) k 1 λ k tr(B -1 G (q+1) k )
The minimization of the function M 10 has to be performed iteratively.

• Keep B fixed, the λ k 's minimizing M 10 are

λ (q+1) k = tr(B -1 G (q+1) k ) d v r=1 nr p (q) r Hr f k (x; θ (q) k )dx
• Keep the volumes λ k 's fixed, the matrix B minimizing M 10 is minimizing

K k=1 π (q) k λ k tr(B -1 G (q+1) k
), thus, we have

B (q+1) = diag( K k=1 π (q) k λ k G (q+1) k ) |diag( K k=1 π (q) k λ k G (q+1) k )| 1/d Model [λB k ].
In this situation, minimizing Equation (2.7) leads to the minimization of

M 11 (λ, B k ) = d ln(λ) K k=1 π (q) k v r=1 n r p (q) r Hr f k (x; θ (q) k )dx + K k=1 π (q) k 1 λ tr(B -1 k G (q+1) k ) (2.16)
It can be deduced directly from Equation (2.16) that:

B (q+1) k = diag(G (q+1) k ) |diag(G (q+1) k 
)| 1/d and

λ (q+1) = K k=1 π (q) k |diag(G (q+1) k )| 1/d n Model [λ k B k ].
In this situation, minimizing Equation (2.7) leads to the minimization of

M 12 (λ k , B k ) = d K k=1 π (q) k ln(λ k ) v r=1 n r p (q) r Hr f k (x; θ (q) k )dx + K k=1 π (q) k 1 λ k tr(B -1 k G (q+1) k ) (2.17)
It can be deduced directly from Equation (2.17) that:

B (q+1) k = diag(G (q+1) k ) |diag(G (q+1) k )| 1/d and λ (q+1) k = |diag(G (q+1) k )| 1/d v r=1 nr p (q) r Hr f k (x; θ (q) k )dx
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The spherical models

There are two models in the spherical family:

[λI], [λ k I].
Model [λI]. In this situation, minimizing Equation (2.7) leads to the minimization of

M 13 (λ) = d ln λ K k=1 v r=1 π (q) k n r p (q) r H r f k x; θ (q) k dx + K k=1 π (q) k λ tr G (q+1) k = nd ln(λ) + 1 λ tr G (q+1)
and

G (q+1) = K k=1 π (q) k G (q+1) k so we get λ (q+1) = tr G (q+1) nd Model [λ k I].
In this situation, minimizing Equation (2.7) leads to the search of volume

vector λ = (λ 1 , . . . , λ K ) minimizing M 14 (λ k ) = d K k=1 π (q) k ln(λ k ) v r=1 n r p (q) r H r f k x; θ (q) k dx + K k=1 π (q) k 1 λ k tr G (q+1) k
and we get

λ (q+1) k = tr G (q+1) k d v r=1 nr p (q) r Hr f k x; θ (q) k dx

Experiments on simulated data

The numerical experiment is divided into three parts. The first part aims to compare the performances of the binned-EM algorithms of fourteen models on simulated data of different distributions. In the second part, we will study how the size of bin affects the result of binned-EM algorithm by changing the bin size. In the last part, we will test binned-EM algorithm on real applications: French cities clustering and image segmentation. To simplify the experiment and in order to be able to show the results in this paper visually, the simulated data are all defined in a two-dimensional space (IR 2 ). Since the volumes, shapes and orientations are different among fourteen models, the separation of clusters within each model is controlled and defined by the distance value, which indicates the distance between two mixture components:

δ = (µ 1 -µ 2 ) T ( Σ 1 + Σ 2 2 ) -1 (µ 1 -µ 2 )
To obtain binned data, we divide the space into small bins of square shape with length= 0.5. Because of the different volumes and different centers of clusters in each data structure, the space is cut into different numbers of bins depending on the volumes of samples, which will be detailed in the description of the characteristics of dataset.

The simulated data contains two components of equal mixing portions in two-dimensional space. Characteristics of each structure of data are described as follows:
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• Data structure 1 is generated according to the model [λDAD T ] with λ = 1,

D = √ 2 2 √ 2 2 - √ 2 2 √ 2 2 , A = Diag(3, 1/3), µ 1 = (-1.1, 0), µ 2 = (1.2, 0), δ = 2.97, Number of bins= 23 × 17.
• Data structure 2 is generated according to the model [λ k DAD T ] with λ 1 = 1,

λ 2 = 3, D = √ 2 2 √ 2 2 - √ 2 2 √ 2 2
, A = Diag(3, 1/3), µ 1 = (-1.5, 0), µ 2 = (1.5, 0), δ = 2.74, Number of bins= 29 × 28.

• Data structure 3 is generated according to the model [

λDA k D T ] with λ = 1, D = √ 2 2 √ 2 2 - √ 2 2 √ 2 2
,

A 1 = Diag(1, 1), A 2 = Diag(2, 1/2), µ 1 = (-1.5, 0), µ 2 = (1.5, 0), δ = 3.0, Number of bins= 21 × 15.
• Data structure 4 is generated according to the model [

λ k DA k D T ] with λ 1 = 1, λ 2 = 2, D = √ 2 2 √ 2 2 - √ 2 2 √ 2 2 , A 1 = Diag(1, 1), A 2 = Diag(2, 1/2), µ 1 = (-1.5, 0), µ 2 = (2, 0), δ = 2.93, Number of bins= 22 × 20.
• Data structure 5 is generated according to the model • Data structure 6 is generated according to the model [λ k D k AD T k ] with λ 1 = 3, • Data structure 7 is generated according to the model [λD k A k D T k ] with λ = 1,

[λD k AD T k ] with λ = 1, D 1 = 1 2 √ 3 2 - √ 3 2 1 2 , D 2 = √ 2 2 √ 2 2 - √ 2 2 √ 2 2 , A = Diag(3, 1/3), µ 1 = (-2, 0), µ 2 = (1.
λ 2 = 1, D 1 = √ 2 2 √ 2 2 - √ 2 
D 1 = √ 2 2 √ 2 2 - √ 2 2 √ 2 2 , D 2 = 1 2 √ 3 2 - √ 3 2 1 2 , A 1 = Diag(3, 1/3), A 2 = Diag(2, 1/2), µ 1 = (-1.4, 1), µ 2 = (1.5, -1), δ = 3.09, Number of bins= 19 × 20.
• Data structure 8 is generated according to the model [ 

λ k D k A k D T k ] with λ 1 = 2, λ 2 = 1, D 1 = √ 2 2 √ 2 2 - √ 2 2 √ 2 2 , D 2 = 1 2 √ 3 2 - √ 3 2 1 2 , A 1 = Diag(2, 1/2), A 2 = Diag(3, 1/3), µ 1 = (-1.8, 1) µ 2 =(1.7,- 1 
❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ Model Structure Data Structure [λDAD T ] [λ k DAD T ] [λDA k D T ] [λ k DA k D T ] [λD k AD T k ] [λDAD
❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ Model Structure Data structure [λ k D k AD T k ] [λD k A k D T k ] [λ k D k A k D T k ] [λB] [λ k B] [λDAD
❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ Model Structure Data structure [λB k ] [λ k B k ] [λI] [λ k I] [λDAD
AD T k ], [λ k D k AD T k ], [λ k D k A k D T k ].

For the data of structure [λD

k A k D T k ], models [λD k A k D T k ] and [λ k D k A k D T k ] have very high accuracy 0.983, yet the model [λ k D k A k D T k ] spends less computation time than the model [λD k A k D T k ].
The data contains clusters with different volumes, orientations and shapes ([

λ k D k A k D T k ]
) is the most difficult case to deal with. In this situation, undoubtedly the most complex model obtains the highest accuracy because it is the only model which can represent correctly the structure of the data.

And it is interesting to notice that among the general family, the models allowing different volumes have worse performances than the models restricting the same volumes. Some parsimonious models which are simpler than the structure of data can still obtain good results because those models can be closed to the structure of the simulated data.

And this is also because the two clusters are well separated in our simulated dataset. When data is simulated according to the spherical models [λI] and [

λ k I], models [λD k A k D T k ] and [λ k D k A k D T k
] provide the highest precision respectively. Models [λI] and [λ k I] are very simple, but they still can do a good cluster analysis with high accuracy and less computation time than the general models. Generally speaking, the general models provide good result on the data simulated according to the diagonal models and spherical models. Because each diagonal and spherical model can be described by several general models, but in a more complicated form.

After all the analysis above, we can conclude as follows:

In most of the case, the result shows that the model which can represent the data structure obtains the best highest accuracy. Generally speaking, the general models provide better results than the diagonal and spherical models when the data is simulated according to the general model. And naturally, when the the data generated according to diagonal models, diagonal models offer the best result. It explains that it's not necessary to use the most general model for all the data clustering. When the clusters are well separated, the difference among fourteen models could be reduced. When the clusters are well-mixed, choosing the right model plays a more important role in achieving a good clustering result. We notice that in general the standard deviation of a model is lower when this model provides higher accuracy. It means that when the model is more suitable for the data, the result is even more stable and more reliable. In this paper, we need to compare the fourteen models at the same levels, so we program all the models at the same manner which contains certain numerical multidimensional integration. Due to the methods in programming and the capability of calculators, the CPUtime in this paper cannot be compared to the experimental results of EM algorithm and binned-EM algorithm in previous papers. As indicated and proved in the papers of Cadez et al. [START_REF] Cadez | Maximum likelihood estimation of mixture densities for binned and truncated multivariate data[END_REF], Samé et al. [START_REF] Samé | A classification EM algorithm for binned data[END_REF], Samé [START_REF] Samé | Grouped data clustering using a fast mixture-model-based algorithm[END_REF], binning data in the mixture and classification approach helps in reducing computation time. Also, in the previous section, we have calculated and compared the computational complexities of EM algorithm and binned-EM algorithm. Thus here in this section, the CPUtime is only to give a reference among fourteen models and to show the difference of computation time of different models.

This experiment shows that if we are able to choose the right parsimonious model for the data, we can receive higher accuracy and spend less computation time.

Experiment on simulated data with different bin sizes

As we know, in binned-EM algorithm, we assume that the only information of the data is the frequencies of bins. The change in bin size can directly affect on the frequencies of bins. It plays an inevitably important role in binned-EM algorithm.

Logically speaking, smaller bins lead to higher accuracy but more computation time.

The situation reaches to extreme when all the frequencies of non-empty bins equal 1.

In this case, the number of non-empty bins equals the number of observations. On the contrary, bigger bins lead to worse accuracy but less CPUtime. From this experiment, we will see how the accuracy and computation time of binned-EM algorithm vary with the bin size.

All the samples are simulated according to the model

[λDAD T ], with λ = 1, D = √ 2 2 √ 2 2 - √ 2 2 √ 2 2
, A = diag(3, 1/3), µ 1 = (-1.3, 0) and µ 2 = (1.5, 0). To obtain the binned data, we divide the space into small bins of square form. 11 sizes of bins will be considered. The side-length of bins varies from 0. From the image, we can tell that there are four main colors: year(the sleds), white(the sky and the snow), gray(the mountain and the shadow) and black(the trees). Thus in the following process, we will cluster the image pixels into four clusters basing on the color.

After 

With different sizes of bin

In the Figures 2. From these two figures, we can have some conclusion on the comparison among six results. We can see that when bin size if of 5 bins per dimension, the segmentation result is very general. Some details are missing. For example, we cannot see the cushion From the result, we can see that image segmentation result is more detailed and more correct with smaller bins. But binned-EM algorithm with big bins can also obtain a general image segmentation result which is good enough. Why? As we can see in the The Table 2.9 shows that, bigger bins result in bigger maximum likelihood. We know that there are 154401 pixels in the image. If we use classical EM algorithm, we have 154401 data to deal with. But by applying binned-EM algorithm, the number of bins can be changed according to the bin size. In the Table 2.9, when the size of bins is 5 bins per dimension, we only have 20 non-empty bins to deal with. Reducing 154401 points to 20 bins, helps a lot in computation time saving. Along with the increase of number of bins, of course the computation time increases too.

Considering the computation time, let's look back to the image segmentation quality.

We can say that 20 bins per dimension is a good size of bin for image segmentation of this image basing on color.

With different models

In this part, we will compare the performance of binned-EM algorithm of parsimonious models on image segmentation. From the Figure 2.12, we cannot tell the distribution of the data corresponds to which model. We suppose that the general models are more suitable for this dataset according to the 

k AD T k ], 6. [λ k D k AD T k ], 7. [λD k A k D T k ], 8. [λ k D k A k D T k ]
From the Figures 2.16 

Conclusion

This chapter focused on the application of the EM algorithms of parsimonious models to binned data clustering, which led to fourteen binned-EM algorithms. At the beginning, we reviewed the EM algorithm for standard data. The complexity of the EM algorithm was calculated. Then the fourteen parsimonious Gaussian mixture model were presented.

Examples of these models were illustrated. After, we developed binned-EM algorithms of fourteen parsimonious Gaussian mixture models. The derivation of binned-EM algorithm of each model was detailed. The complexity of the binned-EM algorithm is calculated and compared with the one of the EM algorithm. We obtained a condition when binned-EM algorithm is faster than the EM algorithm. This result not only shows that the binned-EM algorithm is faster than the EM algorithm when the data amount is big enough, it also helps us to know in which situation binned-EM algorithm should be applied instead of the EM algorithm. The maximum likelihood estimates of model parameters for fourteen parsimonious models were discussed. We compared and studied the performances of these new algorithms by numerical experiments on simulated data and real data. We can conclude the result as follows: In the next chapter, we will develop the bin-EM-CEM algorithms of fourteen parsimonious Gaussian mixture models.

Chapter 3

Parsimonious Gaussian mixture models for binned data clustering and the corresponding bin-EM-CEM algorithms

Introduction

Another common model-based clustering approach is the classification approach, which was proposed by Symons [START_REF] Symons | Clustering criteria and multivariate normal mixture[END_REF]. It aims to maximize the complete likelihood by the Classification Estimation Maximization (CEM) algorithm over the mixture parameters and over the origin labels indicating the component that each observation comes from.

The CEM algorithm is regarded as the classification version of the EM algorithm while maximizing the complete likelihood. In the CEM algorithm, a classification step is inserted between the E-step and the M-step of the EM algorithm using a maximum a posteriori (MAP) principle. Each step of the CEM algorithm will be detailed in this chapter. Thanks to this classification step, the CEM algorithm is faster than the EM algorithm. But this advantage in computation time is not enough when facing to data of big quantity. The execution time of the CEM algorithm still increases significantly along with the data size. To resolve this problem, a classification EM algorithm for binned data (bin-EM-CEM) was developed by Samé et al. [START_REF] Samé | A classification EM algorithm for binned data[END_REF].

At another side, the fourteen parsimonious Gaussian mixture models can contribute to offer a good solution for this computation time problem. These models are more simplified than the most general model. By using these models, the clustering process can 88 Chapter 3. Parsimonious Gaussian mixture models for binned data clustering and the corresponding bin-EM-CEM algorithms be accelerated. The CEM algorithms of fourteen parsimonious models were developed by Celeux and Govaert [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF]. The result turned out to be encouraging. The parsimonious models adapt to different datasets. And until now, the bin-EM-CEM algorithms of parsimonious models are missing.

Thus, the objective of this chapter is to introduce and develop the CEM algorithms for binned data clustering (bin-EM-CEM algorithms)of fourteen parsimonious Gaussian mixture models.

This chapter is organized as follows:

In the Section 3.2, we will review the classification approach for standard data and its corresponding algorithm: the CEM algorithm. The computation complexity of the CEM algorithm will be calculated in this part. Then in the Section 3.3, the derivation of the bin-EM-CEM algorithm will be detailed. The computation complexity of the bin-EM-CEM algorithm will be calculated and compared with the one of the CEM algorithm.

The Section 3.4 will present the estimation of variance matrices of fourteen parsimonious models, which varies according to different models. In the Section 3. 

Classification approach for standard data

In the classification maximum likelihood (CML) approach, the indicators z i identifying the origin of x i are considered as missing parameters. Different from the mixture maximum likelihood (ML) approach, CML approach maximizes the likelihood basing on the mixture model parameters and the data labels.

In standard data framework, the classification approach assumed that the mixing proportions are equal in the mixture model. In 1981, Symons [START_REF] Symons | Clustering criteria and multivariate normal mixture[END_REF] has proposed a general classification approach which imposes no restriction on the mixing proportions. Theoretically, this unrestricted approach is expected to outperform the restricted one. But some numerical experiments in Symons [START_REF] Symons | Clustering criteria and multivariate normal mixture[END_REF] show that the unrestricted classification approach has a tendency to overstate the size of the larger clusters. This tendency is also proved in the paper of Bryant [START_REF] Bryant | Large-sample results for optimization based clustering methods[END_REF] on the subject of clustering of large sample. Bryant showed that asymptotically the unrestricted classification approach did not classify at all when the components are badly separated or when there is huge difference among the mixing proportions. Celeux and Govaert [START_REF] Celeux | Comparison of the mixture and the classification maximum likelihood in cluster analysis[END_REF] has compared the classification approaches with equal mixing proportions and with free mixing proportions. The result showed that the restricted classification approach is preferable to the unrestricted one.

The likelihood

In the classification maximum likelihood approach, the complete data is composed by (x, z) = {(x 1 , z 1 ), . . . , (x n , z n )} where the unknown parameter z i indicates the origin component where the individual x i comes from. z i = k if x i comes from the kth component. In the restricted version of CML approach, the proportions π k 's are assumed to be equal. Thus we have the form of restricted CML approach as follows:

L CR = K k=1 x i ∈P k log f (x i , θ k )
where P = (P 1 , . . . , P K ) is a partition of the sample x i , . . . , x n , and The unrestricted CML approach with free proportions π k 's is presented as follows:

P k = {x i |z i = k}. θ k = (µ k , Σ k )
L C = K k=1 x i ∈P k log π k f (x i , θ k )
It is proved [START_REF] Scott | Clustering methods based on likelihood ratio criteria[END_REF] that maximizing the restricted CML criterion is to minimizing the withingroup scatter matrix |W|:

W = K k=1 x i ∈P k (x i -x k )(x i -x k ) ′
where

x k = 1 #P k x i ∈P k x i
It can also be proved that maximizing the unrestricted CML criterion is to minimizing:

n log(|W|) -2 K k=1 #P k log{#P k }

The CEM algorithm

To obtain the model parameters which optimizes the CML criteria, we can apply the CEM algorithm. In this part, we give out an example of the unrestricted CML criterion.

Beginning with an initial partition, CEM algorithm computes the following three steps iteratively:

• E step. Compute the posterior probabilities t

(q) ik (1 ≤ i ≤ n; 1 ≤ k ≤ K): t (q) ik = π (q) k f k (x; θ (q) k ) l π (q) l f l (x; θ (q) l )
for the unrestricted criterion.

• C step. Assign each x i to the cluster which provides the maximum posterior probability t k (x i ). This equals obtaining z (q) i which indicates the mixture origin of each x i :

z (q) i = arg max k t (q) ik
• M-step (Maximization): Find the parameter Φ (q+1) that maximizes the expectation.

We can obtain the mixture model parameters:

π (q+1) k = 1 n n i=1 z (q) ik µ (q+1) k = 1 n i=1 z (q) ik n i=1 z (q) ik x i
The result of variance matrix Σ (q+1) k differs according to the chosen parsimonious model.

We will detail the variance matrix estimate later. For example, for the CEM algorithm of model [λDAD T ], we have: 

Σ (q+1) k = K k=1 n i=1 z (q) ik (x i -µ (q+1) k )(x i -µ (q+1) k ) T n

The complexity of CEM algorithm

Algorithm 3 CEM algorithm q ← 0
Initialize π (0) and θ (0) = {µ (0) , Σ (0) }.

repeat for i = 1 : n do t (q) i ← K k=1 π (q) k f k (x i ; θ (q) k ) for k = 1 : K do t (q) ik ← π (q) k f k (x i ;θ (q) k ) t (q) i end for end for for i = 1 : n do z (q) i ← arg max k t (q) ik end for for k = 1 : K do π (q+1) k ← 1 n n i=1 z (q) ik µ (q+1) k ← 1 n i=1 z (q) ik n i=1 z (q) ik x i Σ (q+1) k ← K k=1 n i=1 z (q) ik (x i -µ (q+1) k )(x i -µ (q+1) k ) T n end for q ← q + 1 until L (q+1) (x,z)-L (q) (x,z) L (q) (x,z) < ε z ← z (q) , π ← π (q+1) , θ ← θ (q+1)
Same as the EM algorithm, the CEM algorithm repeats several calculations until one condition is satisfied: L (q+1) (x,z)-L (q) (x,z) L (q) (x,z) < ε. It is hard to define the moment when the CEM algorithm stops. It depends on the data distribution, the initiation and the threshold ε. To simplify the complexity calculation, let's suppose that the CEM algorithm stops in N iterates. Each iterate can be seen as four parts:

• Calculate n times t (q) i . • Calculate n * K times t (q) ik . • Calculate n times z (q) i • Calculate K times π (q+1) k , µ (q+1) k and Σ (q+1) k .
The first part and the second part is exactly the same as in the EM algorithm. Details of the complexity calculation of these two parts can be seen in the Chapter 2. According to the result, the complexity of calculation of t

(q) i is T = O(d 3 + 4n 1 + n 2 2 ). Since π (q) k f k (x i ; θ (q)
k ) and t (q) i are already known, the complexity of computation of t (q) ik is only O(1). To obtain z (q) i , is to find out the maximum of t (q) ik . The worst case is that the maximum locates at the last position. To check all the data and then assign the origin to each x i , it needs O(2K) complexity.

We suppose that there are n k data belong to the cluster k. When obtaining the parameters π (q+1) k

, we need to calculate only n k -1 times the addition of z (q) ik instead of n -1 times. Because the rest z (q) ik equal zero. The same situation can be applied to the calculation of µ . That is also the reason why the CEM algorithm is faster then the EM algorithm.

The complexities of each part of the CEM algorithm are summarized in the Table 3.1: Parameter Times Complexity From the Table 3.1, we can conclude that the complexity of the CEM algorithm of model

t (q) i n O(d 3 K + 4n 1 K + n 2 2 K) t (q) ik n * K O(1) z (q) i n O(2K) π (q+1) k K O(n k ) µ (q+1) k K O(n k d + 2n k ) Σ (q+1) k K O(3dn k K)
[λDAD T ] is approximately O(d 3 KnN + 4n 1 KnN + n 2 2 KnN + 3dK 2 n k N + 3KnN + dKn k N + 3Kn k K).
According to the definition of the Big-O notation, the complexity of the CEM algorithm can also be noted as O(d 3 KnN + 4n 1 KnN + n 2 2 KnN + 3dK 2 n k N ). Comparing to the EM algorithm, CEM algorithm has smaller complexity. This result corresponds to the reality that the CEM algorithm is faster than the EM algorithm.
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The bin-EM-CEM algorithm 3.3.1 The likelihood

We assume that x = (x 1 , . . . , x n ) is an independent sample issued from a K-component mixture distribution defined on IR d : The whole sample space IR d is divided into v bins with a partition (H 1 , . . . , H v ) and we assume that the only observed information is a set of frequencies n r (r = 1, . . . , v)

f (x; Φ) = K k=1 π k f k (x; θ k ) with Φ = (π 1 , . . . , π K , θ 1 , . . . , θ K ),
where each frequency n r indicates the number of x i belonging to the bin H r . The set of frequencies is denoted by vector a = (n 1 , . . . , n v ), with v r=1 n r = n.

The probability that x belongs to bin H r is denoted by:

p r (Φ) = P (x ∈ H r |Φ) = K k=1 π k Hr f k x; θ k dx
and the probability that x belonging to the bin H r comes from component k of the mixture is denoted by:

p k/r (Φ) = π k Hr f k (x; θ k )dx p r (Φ)
The only observed information vector a follows a multinomial distribution

p(a, Φ) = c v r=1 (p r (Φ)) nr where c = n!/ v r=1 n r !.
According to the space division with a partition (H 1 , . . . , H v ), the complete information of the data can be denoted as (x, z) = ((x r1 , z r1 ), . . . , (x rnr , z rnr )) for r = Since there is no information about the exact location of the data within each bin, we assume that all the data comes from the same component within each bin. So p r (Φ) can be expressed as:

p r (Φ) = π z r Hr f z r x; θ z r dx
Then we have the joint density function as follows:

p(a, z; Φ) = c v r=1 (π z r H r f z r (x; θ z r )dx) nr
and the complete log-likelihood can be expressed as:

L(Φ; a, z) = v r=1 n r log π zr H r f z r (x; θ z r ) + log(c)

The E-step, C-step, and M-step

The bin-EM-CEM algorithm aims to maximize L(Φ; a, z) and starts from a random initialization Φ (0) . It follows two steps iteratively until it convergence.

Step 1 (Expectation and Classification): calculate

z (q+1) = arg max z L(Φ (q) ; a, z)
we have

z (q+1) r = arg max 1≤k≤K (log(π (q) k Hr f k (x; θ (q) k )dx)) = arg max 1≤k≤K P k/r (Φ (q) ) (3.1)
From Equation (3.1), step 1 can be divided into step E (Expectation) and step C (Classification) [START_REF] Hamdan | Développement de méthodes de classification pour le contrôle par émission acoustique d'appareils à pression[END_REF]:
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At the E step, we calculate p (q) k/r for all the k, r;

At the C step, we obtain the partition z (q+1) by maximizing p

(q) k/r : z (q+1) r = arg max k P (q)
k/r , which means for each r, we replace the biggest p (q) k/r by 1, and 0 for the others.

Step 2 (Maximization): calculate

Φ (q+1) = arg max Φ L(Φ; a, z (q+1) )
Because it is not easy to maximize L(Φ; a, z) directly, thus we apply an internal EM algorithm to obtain this maximization. As the EM algorithm, we maximize the expectation of the complete log-likelihood instead of log-likelihood:

Q(Φ, Φ (q) ) = E(L(Φ; a, x, z)|a, z (q+1) ; Φ (q) ) = E( K k=1 v r=1 nr s=1 z krs log π k f k (x rs ; θ k ) + log(c)|z (q+1) ; Φ (q) )
In the cycle of the inner EM algorithm, let's denote:

Q(Φ, Φ * ) = E(L(Φ; a, x, z)|a, z (q+1) ; Φ * )
where

Φ * = Φ (q)
Then we have:

Q(Φ, Φ * ) = K k=1 v r=1 z (q) kr n r (log(π k ) + 1 Hr f k (x; θ * k )dx • Hr log(f k (x; θ * k ))f k (x; θ * )dx) + log(c) (3.2)
Maximizing Equation (3.2) equals maximizing:

A = K k=1 v r=1 z (q) kr n r 1 Hr f k (x; θ * k )dx Hr log(f k (x; θ * k ))f k (x; θ * k )dx = K k=1 v r=1 z (q) kr n r 1 Hr f k (x; θ * k )dx Hr (-log(2π) n/2 -log |Σ k | 1/2 - 1 2 (x -µ k ) ′ Σ k -1 (x -µ k ))f k (x; θ * k )

dx corresponding bin-EM-CEM algorithms

And finally it leads to the minimization of

B = K k=1 v r=1 z (q) kr n r 1 Hr f k (x; θ * k )dx Hr (log |Σ k | +(x -µ k ) ′ Σ -1 k (x -µ k ))f k (x; θ * k )dx = K k=1 tr(Σ -1 k G * * k ) + K k=1 v r=1 z (q) kr n r log(Σ k ) (3.3) 
where

G * * k = v r=1 z (q) kr n r p * r/k Hr (x -µ * * k ) ′ (x -µ * * k )f k (x; θ * k )dx and p * r/k = Hr f k (x; θ * k )dx
We get

π * * k = v r=1 n r z (q) rk n and µ * * k = v r=1 nrz (q) rk p * r/k Hr f k (x; θ * k )dx v v=1 n r z (q) rk
where

Φ * * = Φ (q+1)
The result of Σ * * k depends on the parsimonious models.

The complexity of bin-EM-CEM algorithm

In order to compare with the complexity of the CEM algorithm, we will calculate the computation complexity of bin-EM-CEM algorithm in this part. The bin-EM-CEM algorithm of model [λDAD T ] is presented in the Algorithm 4:

Algorithm 4 Bin-EM-CEM algorithm q ← 0 Initialize π (0) and θ (0) = {µ (0) , Σ (0) }.

repeat for r = 1 : v do p (q) r ← K k=1 π (q) k Hr f k (x; θ (q) k )dx for k = 1 : K do p (q) k/r ← π (q) k Hr f k (x;θ (q) k )dx p (q) r end for end for for r = 1 : v do z (q) r ← arg max k p (q) k/r end for π * = π (q) , θ * = θ (q) repeat for r = 1 : v do p * r/k ← Hr f k (x; θ (q) k )dx end for for k = 1 : K do π * * k ← v r=1 nrz (q) kr n µ * * k ← v r=1 nr z kr p * r/k Hr xf k (x;θ * k )dx v r=1 nrz (q) kr Σ * * k ← K k=1 v r=1 nr z (q) kr p * r/k Hr (x-µ * * k )(x-µ * * k ) T f k (x;θ * k )dx K k=1 v r=1 z (q)
kr nr * ← * * end for until L * * (a,z (q) )-L * (a,z (q) ) L * (a,z (q) ) < ε

π (q+1) = π * * , θ (q+1) = θ * * q ← q + 1 until z (q) = z (q-1) z ← z (q) , π ← π (q+1) , θ ← θ (q+1)
From the Algorithm 4, similar as the CEM algorithm, bin-EM-CEM algorithm executes a big loop until the result doesn't change anymore. This iterate can take a very long time. It is difficult to know when exactly it will stop. To be able to compare with the EM, CEM, binned-EM algorithms, we also define that the bin-EM-CEM algorithm stops in N iterates.

Each iterate can be considered as five small parts:

• Calculate v times p (q) r . • Calculate v * K times p (q) k/r . • Calculate v times z (q)
r .

• Calculate once π * and θ * .

• Execute an inner EM algorithm. We suppose that the inner EM algorithm stops in N 2 iterates. For each iterate, we execute:

-Calculate v times p * r/k . -Calculate K times π * * k , µ * * k and Σ * * k .
From the sub-Section 2.4.3, we obtained the complexity to calculate p

(q) r is O((l 1 +1)(l 2 + 1) • • • (l d + 1)(d 3 K + 4n 1 K + n 2 2 K)). Since the π (q) k Hr f k (x; θ (q) 
k )dx and p

(q)
r are already known, to obtain p (q) k/r only takes complexity of O(1). To get z (q) r is to scan over p (q) k/r and choose the maximum. Then assign 1 to z

(q) kmr if p (q)
km/r is the maximum. Assign 0 to the rest. This process takes O(2k) complexity. Assigning π (q) to π * and θ (q) to θ * needs

O(K + dK + d 2 K) complexity.
We suppose that the inner EM algorithm stops in N 2 iterates. The calculation of the complexity of obtaining π * * k , µ * * k and Σ * * k is very similar as the corresponding one of binned-EM algorithm. Details can refer in the sub-Section 2.4.3.

The complexity of each part of bin-EM-CEM algorithm for each iterate is listed in the From the Table 3.2, the complexity of bin-EM-CEM algorithm is approximately O((

p (q) r v O((l 1 + 1)(l 2 + 1) • • • (l d + 1)(d 3 K + 4n 1 K + n 2 2 K)) p (q) k/r v * K O (1) z 
(q) r v O(2k) π * , θ * 1 O(K + dK + d 2 K) p * r/k N 2 v O (1) π 
(q+1) k N 2 K O(2v k ) µ (q+1) k N 2 K O((l 1 + 1)(l 2 + 1) • • • (l d + 1)v k ) Σ (q+1) k N 2 K O((l 1 + 1)(l 2 + 1) • • • (l d + 1)3dv k K)
l 1 + 1)(l 2 + 1) • • • (l d + 1)(d 3 KvN + 4n 1 KvN + n 2 2 KvN + 3dv k K 2 N N 2 )).
Comparing to the CEM algorithm, if n satisfies the condition:

n > (l 1 + 1)(l 2 + 1) • • • (l d + 1)v (3.4)
then bin-EM-CEM algorithm is faster than the CEM algorithm. 

M 1 (Σ) = K k=1 tr(Σ -1 G * * k ) + K k=1 v r=1 z (q)
kr n r log(Σ) variance matrix Σ is estimated by 

Σ * * = K k=1 G * * k K k=1 v r=1 z (q) kr n r
M 2 (λ k , C) = K k=1 1 λ k tr(C -1 G * * k ) + d K k=1 v r=1 z (q) kr n r log |λ k |
To find λ * * k and C, an iteration has to be performed:

• Keep C fixed, the λ * * k are λ * * k = tr(G * * k C -1 ) d v r=1 z (q) kr n r • keep λ * * k fixed, the matrix C is C * * = K k=1 1 
λ k G * * k | K k=1 1 λ k G * * k | 1/d Model [λDA k D T ]. Maximizing equation (3.
2) leads to the minimization of

M 3 (λ, D, A k ) = 1 λ K k=1 tr(G * * k DA -1 k D T ) + d K k=1 v r=1 z (q) kr n r log(λ)
To minimize M 3 is to calculate λ and minimize K k=1 tr(G * * k DA -1 k D T ) using an iterative method as following. First step for λ

λ * * = K k=1 tr(G * * k DA -1 k D T ) d K k=1 v r=1 z (q) kr n r (3.5)
The second step is to minimize K k=1 tr(G * * k DA -1 k D T ):

• Keeping D fixed, from Corollary A.5 of the Appendix A, we get

A * * k = diag(D T G * * k D) |diag(D T G * * k D)| 1/d • Keeping A (q+1) 1 , . . . , A (q+1) 
K fixed, we adapt an algorithm of Flury aiming to minimize

f (D) = K k=1 π (q) k tr(G (q+1) k DA -1 k D T ): First initial a solution D = (d 1 , . . . , d d ).
For any couple (l, m)(l( =)m) ∈ 1, . . . , d, we find a corresponding couple (δ l , δ m ) which are orthogonal vectors, linear combination of d l and d m , minimizing the criterion f (D). We have

K k=1 tr(Dπ (q) k A -1 k D T G (k+1) k ) = K k=1 d j=1 d T j G (q+1) k π (q) 
k d j a j k = K k=1 d T l G (q+1) k π (q) k d l a l k + K k=1 d T m G (q+1) k π (q) k d m a m k + K k=1 j =l,m d T j G (q+1) k π (q) k d j a j k = S(d l , d m ) + K k=1 j =l,m d T j G (q+1) k π (q) 
k d j a j k Thus, it equals to find (δ l , δ m ) minimizing S(d l , d m ). We can write

δ l = (d l , d m )q 1 δ m = (d l , d m )q 2
where q 1 and q 2 are two orthogonal vectors of R 2 . We have

S(δ l , δ m ) = K k=1 q T 1 (d l , d m ) T G (q+1) k π (q) k (d l , d m )q 1 a l k + K k=1 q T 2 (d l , d m ) T G (q+1) k π (q) k (d l , d m )q 2 a m k = K k=1 q T 1 Z k q 1 a l k + K k=1 q T 2 Z k q 2 a m k

Bin-EM-CEM algorithms of parsimonious models

101
where

Z k = (d l , d m ) T G (q+1) k π (q) k (d l , d m )
Denoting Q = (q 1 , q 2 ), we get

q T 1 Z k q 1 + q T 2 Z k q 2 = tr(Q T Z k Q) = tr(Z k )
And the problem reduces to the optimization of

S(d l , d m ) = K k=1 q T 1 Z k q 1 a l k + K k=1 tr(Z k -q T 1 Z k q 1 ) a m k which is equivalent to the minimization of q T 1 { K k=1 ( 1 a l k - 1 a m k )Z k }q 1
Hence, q 1 is the second eigenvector of the matrix K k=1 ( 1

a l k -1 a m k )Z k . Repeat the proce- dure above until f (D) converge. Model [λ k DA k D T ]. For this case, writing Σ k = DA k D T where |A k | = |Σ k | is more convenient. Maximizing equation (3.
2) equals the minimization of

M 4 (D, A k ) = K k=1 tr(DA -1 k D T G * * k ) + K k=1 v r=1 z (q) kr n r log |A k |
As previously presented, the minimization of M 4 can be achieved in the similar way:

• Keeping D fixed, from Corollary A.7 of the Appendix A, we get

A * * k = diag(DG * * k D T ) v r=1 z (q)
kr n r

• For fixed A * * 1 , . . . , A * * K , it can be making use of the same algorithm described above since minimizing M 4 is equivalent to minimize

K k=1 tr(DA -1 k D T G * * k ).
Model [λD k AD T k ]. Maximizing equation (3.2) equals the minimization of

M 5 (λ, D k , A) = 1 λ K k=1 tr(D k A -1 D T k G * * k ) + d K k=1 v r=1 z (q)
kr n r log |λ|

Considering for k = 1, . . . , K the eigenvalue decomposition G * * k = L * * k Ω * * k L T * * k
of the symmetric definite positive matrix G k with the eigenvalues in the diagonal matrix Ω k in decreasing order, we have

M 5 (λ, D k , A) = 1 λ K k=1 tr(D T k L * * k Ω * * k L T * * k D k A -1 ) +d K k=1 v r=1 z (q)
kr n r log |λ| From Theorem A.1 of Appendix A, we get D k = L k , and we have

M 5 (λ, D k , A) = 1 λ K k=1 tr(Ω * * k A -1 ) + d K k=1 v r=1 z (q) kr n r log |λ| (3.6) 
From which, we deduce the optimal A and λ

A * * = K k=1 Ω * * k | K k=1 Ω * * k | 1/d λ * * = | K k=1 Ω * * k | 1/d K k=1 v r=1 z (q) kr n r Model [λ k D k AD T k ]. Use again the eigenvalue decomposition G (q+1) k = L (q+1) k Ω (q+1) k L T (q+1) k . 
Maximizing equation (3.2) leads to the minimization of

M 6 (λ k , D k , A) = K k=1 1 λ k tr(Ω * * k A -1 ) + d K k=1 v r=1 z (q) kr n r log |λ k |
The minimization of M 6 has to be achieved iteratively:

A * * = K k=1 1 λ k Ω * * k | K k=1 1 λ k Ω * * k | 1/d and λ * * k = tr(Ω * * k A -1 ) d v r=1 z (q) kr n r Model [λD k A k D T k ]. We write Σ k = λC k where C k = D k A k D -1 k .
Then, maximizing equation (3.2) equals to minimize

M 7 (λ, C k ) = 1 λ K k=1 tr(C -1 k G * * k ) + d K k=1 v r=1 z (q)
kr n r log |λ| Simple calculation give us:

C * * k = G * * k |G * * k | 1/d and λ * * = K k+1 |G * * k | 1/d K k=1 v r=1 z (q) kr n r Model [λ k D k A k D T k ]
. This is the most general situation. Maximizing equation (3.2) leads to the minimization of

M 8 (Σ k ) = K k=1 tr(Σ -1 k G * * k ) + K k=1 v r=1 z (q)
kr n r log Σ k and the variance matrices

Σ (q+1) k
are estimated by

Σ * * k = G * * k v r=1 z (q)
kr n r

The diagonal models

For the diagonal family, the orientation is assumed to be horizontal or vertical. So the orientation matrices are either

D k = 1 0 0 1 or D k = 0 1 -1 0 , then Σ k = λ k A k or Σ k = λ k A T k . We write Σ k = λ k B k where B k is a diagonal matrix with |B k | = 1. Then the four diagonal models are [λB], [λ k B], [λB k ] and [λ k B k ].
Model [λB]. In this situation, maximizing equation (3.2) leads to the minimization of

M 9 (λ, B) = 1 λ K k=1 tr(B -1 G * * k ) + d K k=1 v r=1 z (q) kr n r log |λ| (3.7) 
To estimate the result, we used Corollary A.5 of the Appendix A

B * * = diag( K k=1 G * * k ) |diag( K k=1 G * * k )| 1/d and λ * * = |diag( K k=1 G * * k )| 1/d K k=1 v r=1 z (q) kr n r Model [λ k B].
In this situation, maximizing equation (3.2) leads to the minimization of

M 10 (λ k , B) = K k=1 1 λ k tr(B -1 G * * k ) + d K k=1 v r=1 z (q) kr n r log |λ k |
The minimization of the function M 10 has to be performed iteratively. • Keep the volumes λ k 's fixed, the matrix B minimizing M 10 is minimizing K k=1 1

λ k tr(B -1 G * * k )
, thus, we have

B * * = diag( K k=1 1 λ k G * * k ) |diag( K k=1 1 λ k G * * k )| 1/d
• When the matrix B is kept fixed, the λ k 's minimizing B 10 are

λ * * k = tr(B -1 G * * k ) d v r=1 z (q) kr n r Model [λB k ].
In this situation, maximizing equation (3.2) leads to the minimization of

M 11 (λ, B k ) = 1 λ K k=1 tr(B -1 k G * * k ) + d K k=1 v r=1 z (q) 
kr n r log |λ|

From which it follows that

B * * k = diag(G * * k ) |diag(G * * k )| 1/d and λ * * = K k=1 |diag(G * * k )| 1/d K k=1 v r=1 z (q) kr n r Model [λ k B k ].
In this situation, maximizing equation (3.2) leads to the minimization of

M 12 (λ k , B k ) = K k=1 1 λ k tr(B -1 k G * * k ) + d K k=1 v r=1 z (q) kr n r log |λ k |
From which it follows that

B * * k = diag(G * * k ) |diag(G * * k )| 1/d and λ * * k = |diag(G * * k )| 1/d v r=1 z (q)
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The spherical models

In spherical family, we assume that the shape of clusters are spherical. Thus the shape matrices are always diag(1, 1). Then the variations on the orientation matrices are not necessary. In this case, we have two spherical parsimonious models: Σ k = λI and

Σ k = λ k I
, where I denotes the identity matrix.

Model [λI]. In this situation, maximizing equation (3.2) leads to the minimization of

M 13 (λ) = 1 λ K k=1 tr(G * * k ) + d K k=1 v r=1 z (q) kr n r log |λ| (3.8) 
where

G * * k = v r=1 z (q) kr n r p * r/k Hr (x -µ * * k ) ′ (x -µ * * k )f k (x; θ * k )dx
So we get

λ * * = K k=1 tr(G * * k ) d K k=1 v r=1 z (q) kr n r Model [λ k I].
In this situation, maximizing equation (3.2) leads to the minimization of

M 14 (λ k ) = K k=1 1 λ k tr(G * * k ) + d K k=1 v r=1 z (q) kr n r log |λ k | (3.9) 
And we get

λ * * k = tr(G * * k ) d v r=1 z (q) 
kr n r 3.5 Experiments on simulated data

Experiment of bin-EM-CEM algorithms of fourteen models

In this experiment, we study how these fourteen models perform differently on data of different distributions. According to fourteen parsimonious models, data of fourteen distributions are simulated. To simplify the experiment and display the main comparison, the simulated data are generated in a two-dimensional space (in IR 2 ) with two components of equal mixing proportions. According to each model, 30 samples of size = 5000 are generated. Fourteen versions of bin-EM-CEM algorithm (each version associates to one parsimonious models) are applied on each sample. The average of the results of 30 samples is considered as the final result of the model. We define the size of each bin as Chapter 3. Parsimonious Gaussian mixture models for binned data clustering and the corresponding bin-EM-CEM algorithms 0.5 • 0.5. Thus, all the space for each sample are cut into subspaces of same size. The number of bins depends on the volume of clusters in each sample, which will be detailed in the description of sample distribution. Since each model has different attribute, to define distance between two mixture components, we use distance value δ:

δ = (µ 1 -µ 2 ) T ( Σ 1 + Σ 2 2 ) -1 (µ 1 -µ 2 )
The parameters of each structure of data are described in the Tables 3.3 and 3.4.

We evaluate the performance of each model by the accuracy and the standard deviation of accuracy. Accuracy is achieved by comparing the cluster result with the correct clustering, indicating the percentage of the data which are correctly clustered. The results are displayed in Tables 3.5 and 3.6.

According to the result, we can analyze as follows:

For the data generated according to the model [λDAD T ], all the general models obtain the similar good results (around 0.9688), while the diagonal and spherical models can only obtain accuracies from 0.8109 to 0.8197. Because all the general models can adapt to this simplest general model distribution, and the models in the diagonal and spherical following are obtained by the general models suggesting different shapes of clusters:

[λ k DA k D T ], [λD k A k D T k ] and [λ k D k A k D T k ]. For the data of distributions [λ k DA k D T ], [λ k D k AD T k ] and [λD k A k D T k ]
, the best results are obtained respectively by their own feature model. The second best results of these three types of data are provided by the most general model [λ k D k A k D T k ]. The reason is: except for the feature models, which are exactly the same as the data distribution, only the most general model is able to estimate the model parameters correctly. But when a data distribution is very similar to another model (with slight difference among

Parameters [λDAD T ] [λ k DAD T ] [λDA k D T ] [λ k DA k D T ] [λD k AD T k ] [λ k D k AD T k ] [λ k I] λ λ = 1 λ 1 = 1 λ = 1 λ 1 = 1 λ = 1 λ 1 = 3 λ 1 = 1 λ 2 = 5 λ 2 = 2 λ 2 = 1 λ 2 = 3 D D = √ 2 2 √ 2 2 - √ 2 2 √ 2 2 D = √ 2 2 √ 2 2 - √ 2 2 √ 2 2 D = √ 2 2 √ 2 2 - √ 2 2 √ 2 2 D = √ 2 2 √ 2 2 - √ 2 2 √ 2 2 D 1 = √ 2 2 √ 2 2 - √ 2 2 √ 2 2 D 1 = √ 2 2 √ 2 2
Chapter 3. Parsimonious Gaussian mixture models for binned data clustering and the corresponding bin-EM-CEM algorithms the volumes or orientations or shape), this model which cannot exactly represent the sample distribution can still obtain a good result.

Parameters [λD k A k D T k ] [λ k D k A k D T k ] [λB] [λ k B] [λB k ] [λ k B k ] [λI] λ λ = 1 λ 1 = 3 λ = 1 λ 1 = 1 λ = 1 λ 1 = 1 λ = 2 λ 2 = 1 λ 2 = 3 λ 2 = 2 D D 1 = √ 2 2 √ 2 2 - √ 2 2 √ 2 2 ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ Algorithm Data Structure [λDAD T ] [λ k DAD T ] [λDA k D T ] [λ k DA k D T ] [λD k AD T k ] [λ k D k AD T k ] [λD k A k D T k ] [λDAD
❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ Algorithm Data Structure [λ k D k A k D T k ] [λB] [λ k B] [λB k ] [λ k B k ] [λI] [λ k I] [λDAD
For data generated according to model [λD k AD T k ], the three highest accuracies are given by the models allowing different orientations among clusters: among fourteen models are diminished. We notice that in general the standard deviation of the accuracy of a model is low when the accuracy is high. The result of diagonal family proves again the fact that the model which is exactly the same as the data distribution can give the best result for the data. The good performance of spherical family indicates that parsimonious models are capable of finding reasonable groups of data instead of using the complex models.

[λD k AD T k ], [λD k A k D T k ] and [λ k D k A k D T k ].

Experiment of bin-EM-CEM algorithm with different sizes of bin

The essential of bin-EM-CEM algorithm is to estimate the parameters maximizing the likelihood for binned data. Thus the size of bin is a very important information which affects directly the clustering result. This experiment shows how the accuracy and CPUtime will change when the size of bin is different.

For example, in the Figure 3 we can notice that, along with the increase of the number of bins, the binned data is closer to the real distribution of the underlying model. When the bin size is bigger, the data distribution shown in the figure is more general.

We define the size of bins by the number of bins per dimension. We consider the number of bins from 10 to 100 with an interval of 10. For each bin size, 30 samples of size= 5000 are generated according to the model [λD From the result and the Figure 3.3, the accuracy increases significantly along with the number of bins per dimension. When the number of bins changes from 10 to 20, there is a relatively big increase in the accuracy: from 0.9299 to 0.9389. The speed of the increasing trend slows down until that the number of bins is 40, then the accuracy increases stably.

k AD T k ] with λ = 1, D 1 = √ 2 2 √ 2 2 - √ 2 
Even when we divide the space only in 10 bins per dimension, the result is still satisfying with accuracy of 0.9299 and only 5 seconds. The CPUtime increase at a stable pace along with the number of non-empty-bins deal to our programming considering only the nonempty-bins. When the number of bins per dimension is 100, the CPUtime increase up to 353 seconds. But deal to the methods in programming and the type of calculators, the CPUtime in this paper cannot be compared to the experimental results of CEM algorithm and binn-EM-CEM algorithm in previous papers. As indicated and proved in the papers of Hamdan and Samé [START_REF] Hamdan | The fitting of binned data clustering to imprecise data[END_REF], [START_REF] Hamdan | Mixture model clustering of binned uncertain data: the classification approach[END_REF], [START_REF] Samé | A classification EM algorithm for binned data[END_REF], [START_REF] Samé | Grouped data clustering using a fast mixture-model-based algorithm[END_REF], binning data in the classification approach helps in reducing computation time. Despite this, presenting the CPUtime in this paper is helpful in comparing and studying how the computation change when we modify the size of bins. distribution than the other two families in this case. Model [λ k D k AD T k ] obtains the highest accuracy: 0.8374, but it also takes the longest computation time. Model [λB] takes the least CPUtime but it provides the lowest accuracy. It is hard to define which model is the best one for the real dataset. It depends on the practical needs in reality: high precision or fast computation process. In this case, we could try to find out the best model by some criterion. This would be studied in our following research.

Image segmentation

In the experiment part of the Chapter 2, we introduced applying binned-EM algorithm to image segmentation. In this part, we will apply bin-EM-CEM algorithm of parsimonious models to image segmentation. The goal is to compare the performance of the bin-EM-CEM algorithm of parsimonious models on real application. The Figure 3.6 shows the image to be processed: the bunch of blue light is not detected. Except for this model, all the results are similar.

The differences only exist in the small details. For example, the center of a small lantern is detected in the models [λDAD T ] and [λ k DAD T ], but not in the other models. But these details are not very important for the result. We can say that, except for the model [λDA k D T ], the other seven general models are suitable for image segmentation of this image.

To define the best model, we consider also the maximum complete likelihood and the computation time. Since the size of bin is the same among eight bin-EM-CEM algorithms of eight models, the 426400 pixels are grouped into 215 non empty bins for all the models.

The Table 3.9 shows these information of eight models: From the Table 3.9, the more complex the model is, the higher maximum complete likelihood it obtains. The most complex model [λ k D k A k D T k ] provides the highest maximum complete likelihood. But it takes 22 seconds, which is much longer than 14 seconds, which is the time for the model [λD k AD T k ]. To conclude, if the objective is to segmenting the image in the shortest time, the model [λD k AD T k ] is the best model. If the objective is to obtain the best image segmentation result, the model [λ k D k A k D T k ] should be chosen.

The Figure 3.9 shows the clustering result of the dataset by the bin-EM-CEM algorithm of the model [λD k AD T k ] with 20 bins per dimension: Let's see in the Table 3.10 some data about the experiment: The maximum complete likelihood increases along with the decrease of the number of non-empty bins. This is easy to proved and understand. Thus the highest maximum complete likelihood doesn't represent the best bin size. The CPUtime increases along with the increase of the number of non-empty bins. This is naturel. There is not a lot to explain here.

Considering that the image segmentation result is good enough when the space is divided into 10 bins per dimension, we can say that the best bin size is 10 bins per dimension, because it takes very little time to obtain a satisfying result. 

Conclusion

In this chapter, we developed fourteen bin-EM-CEM algorithms of parsimonious Gaussian mixture models. The classic CEM algorithm for the standard data was first reviewed. In order to compare the computation times of the CEM and the bin-EM-CEM algorithms, we calculated the computation complexities of these two algorithms for the simplest general model. The comparison shows that the bin-EM-CEM algorithm takes less computation time than the CEM algorithm if the amount of data is large enough.

An inequality is given out to define the condition when the bin-EM-CEM algorithm is faster than the CEM algorithm. Derivation of the bin-EM-CEM algorithm and the parameter estimates for fourteen models were detailed. The estimations of the variance matrices of the mixture components differ among fourteen models. At the end of this chapter, we studied and compared the performances of the bin-EM-CEM algorithms of different models in several experiments on simulated data and real data. Some important remarks can be outlined as follows:

• The best clustering result is most of the time obtained by the right model which has the same distribution as the data. This result highlights that the parsimonious models help in improving the clustering precision.

• The execution time of the bin-EM-CEM algorithm can be reduced by enlarging the size of bins. But this might lead to certain loss of accuracy, it will be convenient to have a good trade-off between the reduction of size of bins and the accuracy requirements.

• The bin-EM-CEM algorithms of parsimonious Gaussian mixture models perform well on French department data and on image segmentation. In image segmentation, even with big bin size, the bin-EM-CEM algorithms provide a good result.

And the bin-EM-CEM algorithms have evident advantages in computation comparing to the CEM algorithms when applying to image segmentation.

• A criterion is needed to choose the best model which fits well the data and satisfy the clustering accuracy requirements with a reasonable computation time.

To answer the last remark, in the next chapter, we will discuss some commonly used criteria to choose the model for data clustering and adapt them to binned data framework.

Chapter 4

Criteria for binned data model-based clustering

Introduction

As we introduced in the previous chapters, model-based clustering becomes a common approach in cluster analysis. Without any information on the data structure, choosing the right model is decidedly an important step. Various criteria have been proposed to measure a model's suitability to the dataset. They are often supposed to find a balance between the suitability and the model complexity.

Bayesian Information Criterion (BIC), introduced by Schwarz [START_REF] Schwarz | Estimating the dimension of a model[END_REF], is a common-used criterion for model selection basing on likelihood function. In the Bayesian framework, under the condition that the models have the same prior probabilities, selecting the model of the highest posterior probability is equivalent to selecting the model of the largest integrated likelihood [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]. But when fitting mixture models, the likelihood tends to increase along with the model complexity i.e. by adding mixture components and mixture model parameters, and it finally results in over-fitting. To solve this problem, BIC introduces a penalty term for the model complexity to the integrated likelihood of the model. Thus, the choice gets more reasonable and more close to the data structure.

But BIC criterion has one limitation: because it was not designed for clustering purpose when doing the model selection, if the right model is not considered as the potential model, BIC criterion will tend to overestimate the correct size [START_REF] Biernacki | Choix de modèles en classification[END_REF]. For this reason, an Integrated Completed Likelihood (ICL) criterion was proposed by Biernacki et al. [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF] Other common criteria such as AIC, AWE, and NEC criteria, are also commonly used in this domain. They are frequently mentioned for assessing mixture models and compared with BIC and ICL criteria.

We developed binned-EM and bin-EM-CEM algorithms of different parsimonious Gaussian mixture models in the Chapters 2 and 3, but no criterion is applied to model selection for binned data clustering. In this chapter, we adapt several common criteria to binned data so as to select the model and the number of mixture components for binned data clustering.

We mainly focus on BIC and ICL criteria applied to binned data clustering. In the Section 4.2, BIC and ICL criteria will be adapted to binned data clustering using binned-EM algorithm. The Section 4.3 will present the corresponding experimental results on simulated data and real data. And in the Section 4.4, we will adapt BIC and ICL criteria to cluster analysis of binned data using bin-EM-CEM algorithm. Related experiments will be presented in the Section 4.5. Then, comparison among BIC and ICL criteria applied to binned-EM and bin-EM-CEM algorithms will be presented in the Section 4.6. AIC, AWE, and NEC criteria, will be adapted to binned data clustering in the Section 4.7. A conclusion summarizing the main results will be given in the Section 4.8.

BIC and ICL criteria for binned data clustering by binned-EM algorithm

The manner to choose the best model for clustering the data in framework of binned data is the same as in the standard data framework: to choose the model which maximizes the integrated likelihood. As the likelihood increases by adding parameters, the most general model gives the biggest likelihood but it is also the most complicated model with the most parameters. In some cases it is not necessary to use a complex model when dealing with simple data structure. BIC and ICL criteria provide a penalty term of model complexity. In this section, we review the BIC and ICL criteria and adapt BIC and ICL criteria to binned data clustering. where L(Φ; a) is the log-likelihood which has the form:

L(Φ; a) = log(p(a; Φ)) = v r=1 n r log( K k=1 π k Hr f k (x; θ k )dx) + log(c)
and Φ is the maximum likelihood estimate of Φ:

Φ = arg max Φ L(Φ; a)
which is obtained by binned-EM algorithm [START_REF] Hamdan | EM algorithm of spherical models for binned data[END_REF], [START_REF] Wu | Parsimonious Gaussian mixture models of diagonal family for binned data clustering: mixture approach[END_REF], [START_REF] Wu | Parsimonious Gaussian mixture models of general family for binned data clustering: mixture approach[END_REF]. And v m,K is the number of parameters to estimate in the model m with K components, which is listed in detail in the paper of Celeux and Govaert [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF].

Integrated completed likelihood criterion (ICL)

ICL criterion was proposed by considering the integrated likelihood of the complete data [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]:

L(Φ; a, z) ≈ L( Φ; a, z) - v m,K 2 log(n) 
where L(Φ; a, z) is the complete log-likelihood:

L(Φ; a, z) = log(p(a, z; Φ)) = v r=1 n r log π zr H r f zr (x; θ zr )dx + log(c)
But in this paper, we apply ICL on binned-EM algorithm instead of bin-EM-CEM

algorithm. An important detail in this paper is that: Φ isn't obtained by bin-EM-CEM algorithm, but the same as in BIC, which is obtained by binned-EM algorithm:

Φ = arg max Φ L(Φ; a)
Since z is unknown, we replace z by ẑ = MAP( θ). 

= (µ 1 -µ 2 ) T ( Σ 1 + Σ 2 2 ) -1 (µ 1 -µ 2 )
To obtain binned data, we divide the space into small bins of size = 0.5 • 0.5. Because of the different volumes and different centers of clusters in each data structure, the space is cut into different numbers of bins per dimension depending on the volumes of samples, which we will detail in the description of the characteristics of data.

The data simulated contains two components of equal mixing portions in two-dimensional space. Characteristics of each structure of data are described as follows: For the result of maximum completed log-likelihood, the most complex model [λ k D k A k D T k ] gives the biggest completed log-likelihood for six types of data: From the result, when the number of clusters is assumed to be 2, both BIC and ICL criteria can select the right model. But when the number of clusters are 1 or 3, BIC 

❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ Data type criteria BIC ML [λDAD T ] [λDAD T ]* [λ k D k A k D T k ] [λ k DAD T ] [λ k DAD T ]* [λ k D k A k D T k ] [λDA k D T ] [λDA k D T ]* [λDA k D T ]* [λ k DA k D T ] [λ k D k A k D T k ] [λ k D k A k D T k ] [λD k AD T k ] [λ k D k AD T k ] [λ k D k AD T k ] [λ k D k AD T k ] [λ k D k AD T k ]* [λ k D k A k D T k ] [λD k A k D T k ] [λ k B k ] [λ k B k ] [λ k D k A k D T k ] [λ k D k A k D T k ]* [λ k D k A k D T k ]* [λB] [λ k B k ] [λ k D k A k D T k ] [λ k B] [λ k B]* [λ k D k A k D T k ] [λB k ] [λ k B k ] [λ k D k A k D T k ] [λ k B k ] [λ k B k ]* [λ k B k ]* [λI] [λ k I] [λ k D k A k D T k ] [λ k I] [λ k I]* [λ k D k A k D T k ]
❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ ❤ Model Structure criteria ICL CML [λDAD T ] [λDAD T ]* [λ k D k A k D T k ] [λ k DAD T ] [λ k DAD T ]* [λ k D k AD T k ] [λDA k D T ] [λDA k D T ]* [λDA k D T ]* [λ k DA k D T ] [λ k D k A k D T k ] [λ k D k A k D T k ] [λD k AD T k ] [λ k D k AD T k ] [λ k D k AD T k ] [λ k D k AD T k ] [λ k D k AD T k ]* [λ k D k AD T k ]* [λD k A k D T k ] [λ k B k ] [λ k B k ] [λ k D k A k D T k ] [λ k D k A k D T k ]* [λ k D k A k D T k ]* [λB] [λ k B] [λ k D k AD T k ] [λ k B] [λ k B]* [λ k D k A k D T k ] [λB k ] [λ k B k ] [λ k D k A k D T k ] [λ k B k ] [λ k B k ]* [λ k B k ]* [λI] [λ k I] [λ k I] [λ k I] [λ k I]* [λ k I]*
[λDAD T ], [λ k DAD T ], [λ k DA k D T ], [λ k D k A k D T k ], [λ k B]
= √ 2 2 √ 2 2 - √ 2 2 √ 2 2 , A 1 = Diag(1, 1), A 2 = Diag(2, 1/2), µ 1 = (-1.5, 0), µ 2 = (1.
[λ k D k A k D T k ] [λ k D k A k D T k ] Result -5.97 × 10 4 -7.13 × 10 4 4 Model [λ k D k AD T k ] [λ k D k AD T k ] Result -5.75 × 10 4 -6.79 × 10 4 5 Model [λ k D k A k D T k ] [λ k D k A k D T k ] Result -4.16 × 10 4 -5.62 × 10 4 6 Model [λ k D k A k D T k ] [λ k D k A k D T k ] Result -3.97 × 10 4 -5.61 × 10 4 7 Model [λ k D k A k D T k ] [λ k D k A k D T k ] Result -3.18 × 10 4 -5.15 × 10 4 8 Model [λ k D k A k D T k ] [λ k D k A k D T k ] Result -3.03 ×
AD T k ](3) [λ k D k A k D T k ](2) 13.3s 2000 [λ k D k A k D T k ](2) [λ k D k A k D T k ](2) 16.4s 3600 [λ k D k A k D T k ](2) [λ k D k A k D T k ](2)
19.6s Considering the aspect of computation time, the CPU time increases slower than the size of data. With the increase of number of data from 400, to 2000 until 3600, there is only about 3s more of computation time at each increase. We can say that data binning has slow down the increasing tendency of time along with the increase of data.

Different sizes of bin

The size of bins is a very important factor in binned data clustering which can affect the result of clustering as well as model selection. In this part, except for the size of bins and the amount of data, other parameters of simulated data are the same as the seconde experiment. The size of bins changes from 30 to 40 and 50 bins per dimension.

The result is shown in Table 4.7 From the result, when the size of bins is too big(30 The size of bin cannot be defined by BIC and ICL criteria. So defining the bin size is not our objective in this experiment. We suppose that the space is always divided into 20 bins per dimension. The fourteen bin-EM-CEM algorithms of parsimonious models will be applied to the dataset which represents the color of the image pixels. In the bin-EM-CEM algorithm, the number of clusters are supposed to be 4, 5, 6, 7, 8 and 9.

Size of bins BIC choice ICL choice

CPUtime 30 [λ k D k A k D T k ](2) [λ k D k A k D T k ](2) 21.1s 40 [λ k D k A k D T k ](2) [λ k D k A k D T k ](2) 16.4s 50 [λD k AD T k ](3) [λD k AD T k ](3) 19.6s
So BIC and ICL criteria will choose the model with the number of cluster which suppose to be the best for the dataset. The result is shown in the Table 4.8: From the Table 4. We can analyze this result as follows. There are many colors in the Figure 4.2. Many colors are similar, but they are still different colors. From the result, 9 clusters seem not to be enough to represent the colors in the image. That's why the maximum likelihood, the BIC and the maximum complete likelihood increase along with the increase of the number of clusters. More clusters lead to a more precise clustering, which might be closer to the reality. But in some situations, we don't need to separate the colors in such details. According to the result of ICL criterion, 8 is an acceptable number of clusters for this dataset. 8 color clusters are enough to express the information of this image. In this case, maybe we can say that the BIC criterion overestimates the number of clusters.

Clusters Num. BIC ICL L CL CPUtime 4 Model [λ k D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] 20 
Model [λ k D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] 5 
D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] 26 
D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] 31 
D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] 35 
D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] [λ k D k A k D T k ] 40 
Or maybe the ICL criterion simplifies the clustering result. Which criterion is better depending on our needs and goals.

Among those 6 results with different bin size, we will show four of them in the Figure 4.8 to give an example. The distance between two clusters is defined by value δ:

δ = (µ 1 -µ 2 ) T ( Σ 1 + Σ 2 2 ) -1 (µ 1 -µ 2 )
For the first situation, two clusters are well mixed together: δ = 1, µ 5 = (10, 5)

In the second situation, the distance between the two clusters is greater than in the first situation: δ = 1.5, µ 5 = (10.5, 5)

We have the best-separated mixture in the third situation: In all the simulated datasets of three situations, there are three well-separated clusters and two another clusters well-mixed. We denote these two clusters as C 1 and C 2 . When distance = 1, C 1 and C 2 are too mixed that it seems they are only one cluster. This is also shown in the Figure 4.10. In this case, it is not easy to tell the number of clusters. The index takes into account both the statistical fitting and the number of parameters that have to be estimated to achieve this particular degree of fit, by imposing a penalty for decreasing the number of parameters. We will review the derivation of AIC criterion hereafter.

AIC is based on a simple information theory. We suppose that the data is generated following an unknown model f . To represent f , we consider two candidate models: g 1 and g 2 . Suppose that we know the model f , we can get the information lost when using g 1 or g 2 to represent f by calculating the kullback-Leiber divergence [START_REF] Kullback | On information and sufficiency[END_REF]. The best model is the one who leads to less information loss. But in fact, we don't know the true model f , [START_REF] Akaike | A new look at the statistical model identification[END_REF] showed that by AIC criterion, we can estimate how much more information is lost by g 1 than g 2 .

To measure the distance between the potential model g and the true model f , we use the where G is the collection of potential models, θ is the Maximum Likelihood Estimation 

L(M ) -v M,K
AICc is AIC with a correction for finite sample sizes. It is used when the sample size n and the number of parameters v M,K has the relation: n v M,K < 40. It takes the form:

AICc = AIC + 2v M,K (v M,K + 1) n -v M,K -1
where n is the sample size and K is the number of free parameters.

Compared to the BIC criterion, the AIC penalizes the number of parameters less strongly.

A comparison of AIC/AICc and BIC is given by Burnham and Anderson [START_REF] Burnham | Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach[END_REF].

AWE criterion

Approximate Weight of Evidence (AWE) is an approximation of Bayes factor. Bayes factor, which is noted as B 0 , indicates the relation between the integrated likelihood of two models M and M 0 . In order to adapt NEC criterion to binned data framework, we adjust some parameters: From the definition of the NEC criterion, L(K) cannot be L(1). So we cannot compare the cases when K = 1 with when K > 1 by the NEC criterion. To deal with this problem, Celeux and Soromenho [START_REF] Celeux | An entropy criterion for assessing the number of clusters in a mixture model[END_REF] has proposed a procedure which is reviewed in the Chapter 1. But this method is restricted to Gaussian mixtures and shows a disadvantage [START_REF] Biernacki | Using the classification likelihood to choose the number of clusters[END_REF]. Biernacki et al. [START_REF] Biernacki | An improvement of the NEC criterion for assessing the number of clusters in a mixture model[END_REF] proposed a simpler and general procedure to deal with this problem.

E(K) = -

Numerical Experiments

In this part, we propose to study and compare the performances of all the criteria we mentioned above: likelihood L, complete likelihood CL, BIC, ICL, AIC, AWE, and NEC criteria. The experiments are divided into two parts. In the first part, we focus on the choice of number of clusters. In this case, the model is considered as already known and follows a simple model. In the second part, the model is considered as unknown but the number of clusters is fixed. This part aims to study the ability of model choice of all the criteria.

Choice of number of clusters

The simulated data is generated according to a model which we used in the Subsec- [λI]. For each group of dataset, we simulate 30 datasets. For each dataset, we apply binned-EM and bin-EM-CEM algorithms, so as to get the maximum likelihood and the maximum complete likelihood. Then we use the criteria to choose the number of cluster.

The number which is chosen the most is considered as the choice of the corresponding criterion. The bin size is still fixed at 40bins × 40bins.

The result is shown in the [λD k A k D T k ]. If we have to measure the performance of these criteria, we would give out this order: AWE, (BIC, ICL, NEC), AIC, CML, ML, from the best criterion to the worst one.

Conclusion

This chapter studied the model selection for binned data clustering. Our aim was to know which model one should use to get a good clustering result, without knowing the data structure. To reach this goal, in this chapter, several classical criteria were adapted to binned data clustering. These criteria aim to select the right model among fourteen parsimonious Gaussian mixture models, as well as the number of clusters. A right model must fit well the data and meet the clustering precision requirements with a reasonable computation time.

First of all, we focused on the BIC and ICL criteria. Basing on the BIC and ICL criteria for standard data, we proposed four new associations for model selection in binned data 162

General conclusion and prospective

So in this thesis, we developed fourteen binned-EM algorithms and fourteen bin-EM-CEM algorithms of fourteen parsimonious Gaussian mixture models. These new algorithms combine the advantages of binning data in time reduction and the advantages of parsimonious Gaussian mixture models in simplifying the parameters estimation. The complexities of EM and binned-EM algorithms were calculated and compared. The comparison result showed that the binned-EM algorithm is faster than the EM algorithm when the data size is big enough. The complexities of CEM and bin-EM-CEM algorithms were also calculated and compared. The bin-EM-CEM algorithm is faster than the CEM algorithm when the data size increases and satisfies a condition. This condition is defined by an inequality which is given out in this thesis.

While using binned-EM algorithms and bin-EM-CEM algorithms, different parsimonious Gaussian mixture models lead to different variance matrices estimations. Due to this specific and precise estimation, parsimonious models can better-fit different datasets than the most complex model. Also, by applying these parsimonious Gaussian mixture models, the parameter estimations are simplified. Thus, while combining the advantages of binned data and parsimonious models, binned-EM and bin-EM-CEM algorithms of parsimonious Gaussian mixture models can fit well the data within a reasonable computation time.

Numerical experiments of the fourteen binned-EM and the fourteen bin-EM-CEM algorithms of parsimonious Gaussian mixture models applied to different datasets were performed and analyzed. The result showed that the parsimonious model representing exactly the data structure obtained the highest accuracy and spent less computation time. This result implies that the parsimonious models simplify the parameters estimation and then they are also able to adapt to datasets of different structures and provide a good clustering result. We also studied an experiment of binned-EM and bin-EM-CEM algorithms with different bin sizes. The result showed that bigger bins lead to less computation time with acceptable loss of precision. The applications of binned-EM and bin-EM-CEM algorithms of parsimonious Gaussian mixture models to image segmentation were analysed. Our algorithms obtained a good image segmentation result in little 

Prospective

In the continuation of this work, we can see the perspectives in three directions:

• Adapt other parsimonious mixture models basing on other criteria to binned data.

For example, the models based on factor analysis model were mentioned in the Chapter 1. These models can be adapted to binned data.

• Develop new criterion which is better adapted to binned data clustering. Many criteria were developed for standard data clustering and they perform very well.

In this thesis, we didn't adapt all the possible criteria to binned data clustering. It would be interesting to adapt other criteria to binned data clustering and to have a deep comparison.

• Study the ways of binning data in order to obtain a better clustering result and less computation time. It remains interesting works to do in improving the speed of binned data clustering. The ways of how to bin data are essential in this subject.

d + 1 -k. As a consequence G = F k E ⊥ k-1 = ∅.
Let y be a normed vector in G. Let z 1 , . . . , z k-1 , v be an orthonormal basis of F . Applying Equation (A.1), we have k j=1 q(y j ) = k-1 j=1 q(z j ) + q(v) (A.3) Since Equation (A.2) is true for k -1, we have

k-1 j=1 q(z j ) k-1 j=1 q(x j ) Since v ∈ E ⊥ k-1 , it is possible to write v = d j=k v j x j q(v) = d j=k (v j ) 2 q(x j ) ( d j=k (v j ) 2 )λ k = λ k = q(x k )
Then, from Equation (A.3), we have 
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  A and B. Calculate the dissimilarities between the new class C and other classes.Chapter 1. State of the art 4. Repeat step 2 and step 3 until all the objects are emerged into only one class of n objects.

  Each step of HAC represents different level of clustering. The root represents the whole dataset. An internal node represents a cluster at the present step. The height of the internal node represents the distance between its two child nodes. An example of an HAC clustering is shown in the Figure 1.1. It stars with a set of five individual observations. At the beginning of the process, each observation is considered as one cluster, which is stated in the x-coordinate. The y-coordinate indicates the distance (or similarity) of the two clusters that are merged. After four steps (levels) of clustering, five observations are finally aggregated into one cluster.

Figure 1 . 1 :

 11 Figure 1.1: An example of hierarchical agglomerative clustering. It stars with five individual observations, goes through four levels of clustering to aggregates them into one cluster.

A

  Gaussian mixture model is represented as a probability density function in the form of a weighted sum of Gaussian component densities. Equation 1.1 describes the distribution of an independent sample x = (x 1 , . . . , x n ) issued from a K-component mixture Chapter 1. State of the art distribution:

Figure 1 .Figure 1 . 2 :

 112 Figure 1.2 gives an example of the density of a one-dimensional Gaussian mixture distribution with two components of equal proportions, while Figure 1.3 shows the density of a two-dimensional Gaussian mixture distribution with two components of equal proportions.

k where λ k =

 k |Σ k | 1/d determines the volume of the kth cluster. Its orientation is determined by D k which is the matrix of eigenvectors of Σ k . And A k determines its shape. A k is a diagonal matrix with the normalized eigenvalues of Σ k in a decreasing order on the diagonal, and |A k |=1. In the Figure 1.4, an example of a Gaussian cluster in two dimensions is shown in the form of ellipse. The Gaussian cluster has rotated an angle of α from the horizontal line. Thus the variance matrix of this cluster is D = cos αsin α sin α cos α . The semi-major axis equals √ λa while the semi-minor axis equals λ a . The shape matrix A =

  family and spherical family of parsimonious models were proposed by putting more restrictions on certain parameters. If the angle α is defined to equal to 0 or π/2, the matrices D k have only one entry, neither 1 or -1 in each row and each column, 0 elsewhere. Then D k and A k can be be merged into one matrix: D k A k D T k = B k . Thus, we have a simpler parametrization of variance matrix Σ k = λ k B k . By doing this, we obtain four diagonal models: [λB], [λ k B], [λB k ] and [λ k B k ]. To achieve a simpler family, the shapes of clusters are assumed
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 14 Figure 1.4: Interpretation of Gaussian mixture model parameter.
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 151617 Figure 1.5: How to get binned data from standard data.

Figure 1 . 8 :

 18 Figure 1.8: Binned data in the view of frequencies corresponding to the data in Figure 1.6.

Figure 1 .

 1 Figure 1.6 describes a set of standard data simulated according to Gaussian mixture model with three clusters of different volumes. In Figure 1.7, the space is divided into small bins of size = 0.5 • 0.5 (shown by grid). Only the non-empty-bins are shown in the figure, which are much less than the data. Figure 1.8 presents the three-dimensional view of binned data which are transformed from the standard data (individual observations) in Figure 1.6. The two dimensional plane at the bottom indicates the space of the standard data. The height of each bar in the two dimensional histogram represents the frequency of each bin.

  are the proportions of the mixture, θ k (k = 1, . . . , K) are the parameters of each component and z r (r = 1, . . . , v) are the origin component of bin H r . A flaw diagnosis application to acoustic emission control was presented. The partitions obtained by the algorithms CEM, int-EM-CEM, bin-EM-CEM and int-bin-EM-CEM are compared.

  f zrs (x rs ; θ zrs ) The standard CEM, bin-CEM and bin-EM (EM applied to grouped data) algorithms are compared in the experiment study. The experimental result shows that, under the condition that the number of bins per dimension is 40, the execution time of the bin-CEM and bin-EM algorithms stay almost constant along with the increase of sample size, since they only depend on the number of bins. The proposed algorithm bin-CEM outperforms the CEM and bin-CEM algorithms in terms of computation time.

  where B k is a diagonal matrix with |B k | = 1. As the variance matrices Σ k become Σ k = λ k B k , we have four diagonal models: [λB], [λ k B], [λB k ] and [λ k B k ]. In another case, we assume the shape of clusters are spherical. The shape matrices are always diag(1,1), and the variations on the orientation matrices are not necessary. Then we have two most simple models in the spherical family: [λI] and [λ k I] [15]. In order to show the difference among fourteen models, samples of these fourteen parsimonious Gaussian mixture models are presented in Figures 2.1

  , 2.2, 2.3. For simplicity, these simulated data are generated in a two-dimensional space, and contain two components of the same proportions.

Figure 2 . 1 :

 21 Figure 2.1: Eight general models: 1.[λDAD T ], 2.[λ k DAD T ], 3.[λDA k D T ], 4.[λ k DA k D T ], 5.[λD k AD T k ], 6.[λ k D k AD T k ], 7.[λD k A k D T k ], 8.[λ k D k A k D T k ].

Figure 2 . 2 :

 22 Figure 2.2: Four diagonal models: 9.[λB], 10.[λ k B], 11.[λB k ], 12.[λ k B k ].

Figure 2 . 3 :

 23 Figure 2.3: Two spherical models: 13.[λI], 14.[λ k I].

2 :

 2 Number of free parameters of fourteen models. Where α = Kd + K -1 for the unrestricted case, α = Kd for the restricted case. And β = (d(d + 1)/2).

Figure 2 . 4 :

 24 Figure 2.4: Hierarchical relationship of fourteen parsimonious Gaussian mixture models.

  where π k (k = 1, . . . , K) are the mixing proportions (0 < π k < 1 and K k=1 π k = 1), and θ k = (µ k , Σ k ) (k = 1, . . . , K) are the parameters of Gaussian distribution functions f k of components: mean vectors µ k and variance matrices Σ k .

  be transformed into z r (r = 1, . . . , v) where z r ∈ {1, . . . , K} (r ∈ {1, . . . , v}) is the label of the bin H r i.e. the mixture component to which H r Chapter 2. Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms belongs; the label vectors z r (r = 1, . . . , v) may have the form z r = (z r1 , . . . , z rK ), where each z rk (k ∈ {1, . . . , K}) values 1 if H r is assumed as belonging to the mixture component k and values 0 otherwise.

2. 5 .

 5 Parsimonious models for binned-EM algorithm 55 Model [λDAD T ]. After equation simplification, minimizing Equation (2.7) equals to minimization of

  q+1) k DA -1 k D T ): First initial a solution D = (d 1 , . . . , d d ). For any couple (l, m)(l( =)m) ∈ 1, . . . , d, we find a corresponding couple (δ l , δ m ) which are orthogonal vectors, linear combination of d l and d m , minimizing the criterion f (D). We have

Figure 2 . 5 :

 25 Figure 2.5: Experiment process of binned-EM algorithms of fourteen parsimonious models applying to simulated data.

  5, 0), δ = 3.04, Number of bins= 23 × 24.

2 √ 2 2 , D 2 =

 2222 Diag(1, 1), A = Diag(3, 1/3), µ 1 = (-5, 0), µ 2 = (5, 0), δ = 3.79, Number of bins= 47 × 29.

•••B 1 =••

 1 ), δ = 3.05, Number of bins= 24 × 27. Data structure 9 is generated according to the model [λB] with λ = 1, B = Diag(1/2, 2), µ 1 = (-1, 0), µ 2 = (1.1, 0), δ = 2.97, Number of bins= 13 × 20. • Data structure 10 is generated according to the model [λ k B] with λ 1 = 1, λ 2 = 3, B = Diag(1/3, 3), µ 1 = (-4, 0), µ 2 = (4, 0), δ = 3.27, Number of bins= 48 × 12. Data structure 11 is generated according to the model [λB k ] with λ = 1, B 1 = Diag(1/2, 2), B 2 = Diag(1/3, 3), µ 1 = (-1, 0), µ 2 = (1, 0), δ = 3.09, Number of bins= 18 × 24. Data structure 12 is generated according to the model [λ k B k ] with λ 1 = 1, λ 2 = 3, Diag(2, 1/2), B 2 = Diag(4, 1/4), µ 1 = (-3, 0), µ 2 = (3, 0), δ = 3.03, Number of bins= 42 × 11. Data structure 13 is generated according to the model [λI] with λ 1 = 1, µ 1 = (-1.5, 0), µ 2 = (1.5, 0), δ = 2.97, Number of bins= 27 × 18. Data structure 14 is generated according to the model [λ k I] with λ 1 = 1, λ 2 = 3,µ 1 = (-2.1, 0), µ 2 = (2.1, 0), δ = 2.97, Number of bins= 28 × 22.We evaluate the performance of each model by the accuracy, the CPU time and the standard deviation of accuracy. Accuracy indicates the percentage of the data which are correctly classified, while the CPU time is the amount of time for which a central processing unit (CPU) was used for our algorithm computation. The result is displayed in Tables 2.4, 2.5 and 2.6. The result in bold is the best result for the corresponding dataset.According to the result, we can analyze in detail as follows: For data of structure [λDAD T ], the models in general family provide accuracies over 0.900, much higher than diagonal and spherical families. The best result is obtained by the model [λ k DAD T ] as well as the model [λ k D k AD T k ], instead of the model [λDAD T ] which underlies the data structure. These two models allow more freedom in the cluster parameters (different volumes, different volumes and orientation) than the model [λDAD T ]. We want to mention that the right model [λDAD T ] provides a slightly better model result than the most general model [λ k D k A k D T k ]. This outcome shows the suitability of parsimonious models for different datasets. The highest accuracy for data structure [λ k DAD T ] is obtained by its own feature model [λ k DAD T ], as what is expected. Besides, the model [λ k D k AD T k ] and the most general model [λ k D k A k D T k ] also provide high accuracies with low computation time. Not surprisingly the diagonal and spherical models perform disappointingly. For data structure [λDA k D T ], it is of interest to see that all the models which allow different shapes in clusters provides good results: [λDA k D T ], [λ k DA k D T ], [λD k A k D T k ], [λ k D k A k D T k ]. Among these models, the corresponding model [λDA k D T ] has the highest accuracy. When clustering data of structure [λ k DA k D T ], the right model [λ k DA k D T ] has the highest accuracy and the least CPUtime. All the other models are able to provide a Chapter 2. Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms

  And the best result is still obtained by the right model [λD k AD T k ]. The best result of cluster analysis of data of structure [λ k D k AD T k ] is obtained by its own feature model. The most general model [λ k D k A k D T k ] provides the second best result. The other general models give a better result than the diagonal and spherical models. Surprisingly the model [λ k B k ] provides high accuracy too because the samples we generated has the structure closed to [λ k B k ] and two clusters in the data are well separated.

  For example, data simulated according to the model [λ k DA k D T ] are very close to the structure of the model [λ k DA k D T ]. For diagonal data structure [λB], we notice that as the other general models, its own feature model [λB] provides the best result, even the other models who is more complex than [λB] cannot obtain better result. The two clusters in the data simulated according to model [λ k B] are well separated, which leads to all the results of fourteen models are almost the same. The models [λ k B], [λ k B k ] and [λ k D k A k D T k ] which have the closest structure to the data, provide the highest accuracy. The model [λB k ] is not the model obtaining the highest accuracy for the data structured of [λB k ]. But it obtains a good result when taking less CPUtime. The model [λ k B k ] Chapter 2. Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms appears to be the best model for data structured [λ k B k ]. The diagonal family and spherical family show equivalent performances as the general family in this case.
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 210 Figure 2.10: Incorrectly clustered points of binned-EM algorithm result on real data on French cities.
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 2 Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms original image features, such as the gray value of the pixel, the object contour, the color and reflection characteristics. The purpose of image segmentation is to divide the image into several disjoint regions so that each region has the consistency and adjacent areas have significant difference in property. This helps to better understand and analyze the image.Image segmentation is widely used in all the areas of image processing. For example, it can be used in medical imaging including locating tumors and other pathologies. It can also be used in face detection, fingerprint recognition, etc. Many methods of image segmentation were proposed. Image segmentation techniques can be classified into two broad families: region-based, and contour-based approaches. Region-based approaches try to find partitions of the image pixels into sets corresponding to coherent image properties such as brightness, color and texture. Contour-based approaches detects the places where the gray level or structure has a mutation, where indicating the end of a region, but also the place to start another region. Many other methods for image segmentation were proposed. One of them is called clustering method. Feature space clustering method for image segmentation is to express the pixels by corresponding points in the feature space. Partition the feature space according to the accumulation of the points in the feature space. Then map them back to the original image space, to obtain the segmentation result. Where, K-means, Fuzzy C-means clustering (FCM) algorithm are the most commonly used clustering algorithms.In this part, we will apply binned-EM algorithm to image segmentation. As we know, all the color can be represented in RGB Color space. In this experiment, we will convert image from RGB color space to L * a * b * color space. Thus, colors will be segmented in an automated fashion using the L * a * b * color space. The L * a * b * color space (also known as CIELAB or CIE L * a * b * ) enables you to quantify the visual differences among colors. The L * a * b * color space is derived from the CIE XYZ tristimulus values. The L * a * b * space consists of a luminosity layer ′ L * ′ , chromaticity-layer ′ a * ′ indicating where color falls along the red-green axis, and chromaticity-layer ′ b * ′ indicating where the color falls along the blue-yellow axis. All of the color information is in the ′ a * ′ and ′ b * ′ layers.We are going to do image segmentation of the image in the Figure2.11:
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 211 Figure 2.11: Original image.
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 212 Figure 2.12: Image pixel represented in the ′ a * b * ′ space.

Figure 2 .

 2 13 shows the clustering result by binned-EM algorithm of model [λDAD T ] with 20 * 20 bins.

Figure 2 . 13 :

 213 Figure 2.13: Clustering result by binned-EM algorithm of model [λDAD T ] with 20 * 20 bins.
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and 2 .

 2 15 shows the image segmentation result by binned-EM algorithm of model [λDAD T ] with different size of bins. The bin size changes among 5, 10, 20, 30, 40 and 50 bins per dimension. This aims to see how size of bins affects the result of image segmentation.

Chapter 2 .

 2 Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms 40 * 40bins 50 * 50bins

Figure 2 . 15 :

 215 Figure 2.15: Result of image segmentation by binned-EM algorithm of model [λDAD T ] with different bin size(2).

  and the weave pattern in the sleds. The result of 10 bins per dimension provides more details than 5 bins. The weave pattern in the sleds is clearer. The snow between two sleds is separated from the trees. Snow points on the trees are identified. The result with 20 bins per dimension is close to the one with 10 bins. The separation line between the trees and the mountain is cleaner. More snow spots are detected. The shadow part gets smaller. The results with 30 and 40 bins per dimension are almost the same with each other. The shadows of the sleds in these two figures are almost disappear. The snow ground between two sleds is detected.

Figure 2 .

 2 Figure 2.12, many pixels which have the same color are overlapped. And the pixels which have similar color are centralized. In this case, grouping the pixels into bins helps largely in reducing the amount of data and the computation time. Some information
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 212 Figures 2.16and 2.17:

  Figures 2.16and 2.17:
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 216 Figure 2.16: Result of image segmentation by binned-EM algorithm of four general models: 1. [λDAD T ], 2. [λ k DAD T ], 3. [λDA k D T ], 4.[λ k DA k D T ]

Figure 2 . 17 :

 217 Figure 2.17: Result of image segmentation by binned-EM algorithm of four general models: 5. [λD k AD T k ], 6. [λ k D k AD T k ], 7. [λD k A k D T k ], 8. [λ k D k A k D T k ]

  and 2.17, we would say that the model [λDA k D T ] and the model [λD k ADT k ] are two best models for the image segmentation of this image. In these Chapter 2. Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms two image segmentation result, there is a clear separation between the sky and the mountain, between the mountain and the trees, between the trees and the snow ground.The shadow is detected. The snow between two sleds is separated from the trees. The weave pattern in the sleds is clear. All the main subjects are clearly shown. The other models give a general idea about the image. Different faults are shown in the result of different models. The model [λ k DA k D T ] is the worst one among these eight general models. We can only see two sleds in the result. 2.7.2.3 Comparison with classical EM algorithm and k-means algorithm Binned-EM algorithm is developed by applying EM algorithm to binned data. Binned-EM algorithm aims to save some computation time by grouping data in bins. An experiment on real data is important to show this point. The goal of this experiment is to show the binned-EM algorithm is faster than the classical EM algorithm when applied to image segmentation. EM binned -EM
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 218219 Figure 2.18: comparison between the result by EM algorithm and the result by binned-EM algorithm

Firstly, the

  parsimonious Gaussian mixture model which represents the data structure obtains the best result. It shows that even if the parsimonious models are simpler than the most complex model, they are able to well fit different datasets. And because the binned-EM algorithms of parsimonious Gaussian mixture models are more precise and strict in model parameters estimation, they are able to obtain better result than the one with the most complex model. Secondly, by simplifying the parameter estimation, the parsimonious models help in saving computation time. Thirdly, at another side, the computation time depends also on the size of bins. So by enlarging the bin size, we can reduce and control the computation time of clustering. But it risks in losing certain precision. Finally, by running our new algorithms on French department dataset and on image segmentation, it shows that binned-EM algorithms of parsimonious models have a good performance in practice and takes less computation time than the classic EM algorithm.

5 ,

 5 we will show two experiments on simulated data. The first experiment is to compare the performances of bin-EM-CEM algorithms of fourteen models on different simulated data. The second experiment aims to study how the bin-EM-CEM algorithm behaves differently when the size of bins changes. The Section 3.6 will show two experiments on real datasets. The first experiment is French city clustering and in the second experiment the bin-EM-CEM algorithms is applied to the image segmentation. The last Section 3.7 will conclude this chapter and open the discussion of the next chapter.

  are the parameters of the Gaussian distribution function f , where µ k 's are the mean and Σ k 's are the variance matrices.

  Complexity calculation of CEM algorithm helps us to study the efficiency of the algorithm. Instead of running many experiments under different conditions, complexity 3.2. Classification approach for standard data 91 calculation also leads to easier comparison of the time consumption with other algorithms. Celeux and Govaert [15] have developed CEM algorithms of fourteen parsimonious Gaussian mixture models. Since the calculations of these algorithms are similar, in this part we only study the complexity of one general model [λDAD T ]. The CEM algorithm of model [λDAD T ] is presented in the Algorithm 3:

  where π k (k = 1, . . . , K) denote the mixing proportions of the mixtures (0 < π k < 1 and K k=1 π k = 1), and θ k = (µ k , Σ k ) (k = 1, . . . , K) are the parameters of Gaussian distribution functions f k of components: mean vectors µ k and variance matrices Σ k . Vector z = (z 1 , . . . , z n ) is the class label of x, where z i = 1, . . . , K for i = 1, . . . , n. z i = k when x i comes from the kth component.

1 ,πz

 1 . . . , v, where x rs points to the sth data in bin H r . The density of each point x rs is Chapter 3. Parsimonious Gaussian mixture models for binned data clustering and the corresponding bin-EM-CEM algorithms π zrs f zrs (x rs ; θ zrs )/p r (Φ) and the complete data probability function is p(a, x, z; Φ) = c zrs f zrs (x rs ; θ zrs )The complete log-likelihood is:L(Φ; a, x, z) = krs log πf k (x rs ; θ k ) + log(c)where z krs = 1 if z rs = k and 0 otherwise.
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 4 Bin-EM-CEM algorithms of parsimonious models 3.4.1 The general models Model [λDAD T ]. For this most common model, maximizing equation (3.2) equals the minimization of

Model [λ k

 k DAD T ]. In this situation, we put Σ k = λ k C with C = DAD T . Maximizing equation (3.2) equals to the minimization of

  families are too simple to provide a good clustering result. Generally speaking, general models have better performance than the diagonal and spherical models on clustering the data of distribution [λ k DAD T ]. Not surprisingly the model [λ k DAD T ] provides the highest accuracy. At the same time, we notice that generally all the general models allowing different volumes obtain a better result than the other general models which require the same volumes of all the components. This situation also happens to the diagonal and spherical families: [λ k B], [λ k B k ] and [λ k I] have a higher accuracy than [λB], [λB k ] and [λI]. For the data containing clusters of different shapes, of distribution [λDA k D T ], undoubtedly its own feature model [λDA k D T ] provides the best result. The other good results

  When dealing with the data composed of the clusters of different volumes, different orientations and different shapes, model [λ k D k A k D T k ] is the best model. The data simulated according to the model [λB] is two identical diagonal elliptical clusters. All the general and diagonal models are capable in finding clusters in this type of data. Hence, the results are almost the same. This proves that when the data distribution is not complicated, we can use simple model instead of complex model with many parameters. The data of model [λ k B] contains clusters of different volumes. In this case, all the models which suggest different volumes provide better results than the models which don't. Because the data is in the shape of ellipse which is closed to spherical shape too, thus even the spherical models can have high accuracies: 0.9380 and 0.9569. The data of model [λB k ] that we simulated are two different diagonal clusters of same volumes. It can also be considered as two clusters of same volumes, same vertical or horizontal orientations and different shapes, which is proved by the fact that all the general models which allow different shapes have good results. This theory also can be applied on the data of model [λ k B k ] to explain why other models can provide good results. When the data distribution is very simple, such as [λI], there is small difference among the results of the fourteen models. The model of [λ k I] is giving the best accuracy for the data simulated according to the model [λ k I]. This shows again the clustering ability of parsimonious models. After the analysis above, we can conclude as follows: The best results are always obtained by the models which can perfectly represent the distribution of data. The models which are more complex than the data distribution but contain the data distribution can also provide good clustering results. For instance, models [λ k DAD T ], [λ k D k AD T k ] and [λ k D k A k D T k ] perform well on dealing with the data of distribution [λ k DAD T ]. Generally speaking, when dealing with data structured according to general models, diagonal and spherical families have worse performance than general family. Because diagonal and spherical models are too simple to meet the requirement in estimating the parameters of a more complex model. In the cases where the model is simpler than the Chapter 3. Parsimonious Gaussian mixture models for binned data clustering and the corresponding bin-EM-CEM algorithms data distribution but closed to the data distribution, the model can still provide a good result. Specially when the clusters of data are well separated, differences of the results
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 32 Figure 3.2: Density of a Gaussian mixture distribution of two clusters in a two dimensional space.

Figure 3 . 1 :

 31 Figure 3.1: Four samples generated according to the same model with different bin size.
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 222 Diag(1, 1), A = Diag(3, 1/3), µ 1 = (-2, 1), µ 2 = (1, 0) and δ = 3.1. Bin-EM-CEM algorithm of model [λD k AD T k ] is applied on each sample. The average of 30 samples is considered as the final result of each bin size. The accuracy and CPUtime will be two evaluation factors. Accuracy indicates the percentage of the data which are correctly classified, while the CPU time is the amount of time for which a central processing unit (CPU) was used for our algorithm computation. The results are displayed in
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 33 Figure 3.3: Result of bin-EM-CEM algorithm on simulated data with different size of bins.
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 3435 Figure 3.4: Log-population and log-density of 1193 cities from three departments in France.
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 38 Figure 3.8: Result of image segmentation of Figure 3.6 by bin-EM-CEM algorithm of eight general models: 1. [λDAD T ], 2. [λ k DAD T ], 3. [λDA k D T ], 4. [λ k DA k D T ], 5. [λD k AD T k ], 6. [λ k D k AD T k ], 7. [λD k A k D T k ], 8. [λ k D k A k D T k ]
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 39 Figure 3.9: The clustering result of the dataset by the bin-EM-CEM algorithm of the model [λD k AD T k ] with 20 bins per dimension.
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 310 Figure 3.10: Image segmentation results of the Figure 3.6 by the bin-EM-CEM algorithms of the model [λD k AD T k ] with different bin size
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 623311 Figure 3.11: comparison between the result by CEM algorithm and the result by bin-EM-CEM algorithm
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 2421 BIC and ICL criteria for binned data clustering by binned-EM algorithm 129 Bayesian information criterion (BIC) L(Φ; a) ≈ L( Φ; a) -v m,K 2 log(n)

  and [λB k ]. The biggest completed log-likelihood is obtained by the right model for the following four data types: [λDA k D T ], [λ k D k AD T k ], [λ k B k ] and [λ k I]. For the data type of [λD k AD T k ], [λB] and [λI], the highest completed log-likelihood is given by a model which is more complex than the data structure. ICL criterion has the almost same result as BIC criterion except that it chooses the model [λ k B] for the data type of [λB]. We can conclude as follows: Both BIC and ICL are able to choose the right model for most of the types of data. The result also shows that BIC and ICL are helpful in selecting a more model which can obtain a good clustering result and more simplified compared to the most complex model [λ k D k A k D T k ]. Generally speaking, for the data generated according to the general family, BIC and ICL criteria favor the models from general family. And it happens the same to diagonal family and spherical family. The result also shows that BIC and ICL criteria have almost the same behaviors in the context that the number of clusters is defined in advance. It is logical since the main difference between BIC and ICL criteria is that BIC criterion temps to over-estimate the number of clusters. Meanwhile ICL temps to select reasonably less number of clusters for the clustering objective. 4.3.1.2 Choice of number of clusters This part of experiment aims to study how BIC and ICL choose the model especially the number of clusters. 30 datasets are simulated according the model [λDA k D T ] with two clusters. The parameters are defined as: D
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 4243 Figure 4.2: Original image.

From the Figure 4 . 3 ,

 43 it is difficult to tell the number of clusters and the distribution of the clusters. Thus we apply the binned-EM algorithms of fourteen parsimonious Gaussian mixture models to this dataset. The potential numbers of clusters are among 3, 4 and 5. The BIC and ICL criteria are applied to choose the model and the number of clusters. To obtain binned data, the space is divided into 20 bins per dimension.

10 4 - 5 . 25 × 10 4 Table 4 . 5 :

 4525445 The choice of model and number of clusters of BIC and ICL criteria with binned-EM algorithm for image segmentation of Figure 4.2.From the Table4.5, the result of BIC criterion increases when the number of clusters increases. The result of ICL criterion increases when the number of clusters increases until 7. There are many colors in the image (more than 7 colors). These colors look the similar but actually different. More clusters means a finer grouping of colors. Thus more clusters approaches closer the real clustering of colors, so as a better image segmentation. when the number of clusters is 4, both of BIC and ICL criteria have chosen the model[λ k D k ADT k ]. Except for this case, both of BIC and ICL criteria have chosen the model[λ k D k A k D T k ]for the other numbers of clusters. The image segmentation with different number of cluster is shown in the Figure4

Figure 4 . 4 :

 44 Figure 4.4: Result of image segmentation by binned-EM algorithm with different number of clusters.

  As mentioned earlier in the paper, when dealing with data of 400 observations, the BIC criterion succeeds in choosing the right model [λD k ADT k ] with the right number of clusters 3 while the ICL prefers a more complex model[λ k D k A k D T k ]with only 2 clusters. When the amount of data increases to 2000 or 3600, both the BIC and the ICL criteria have chosen the most complex model [λ k D k A k D T k ] with 2 clusters as the first choice. It seems that with the same size of bins, the increase of the number of observations doesn't help in choosing the right model for binned data clustering. We should mention that except for the model [λ k D k A k D T k ] with 2 clusters, both BIC and ICL criteria consider the right model [λD k AD T k ] with 3 clusters as seconde choice.
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 52 Experiments on real data 4.5.2.1 French city clustering As real dataset, we have the population and the population density (population/surface) of 1199 French cities. They are respectively from three different departments: Meuse (500 cities), Nord (652 cities) and Val-de-Marne (47 cities). Meuse is a rural department with a small population and low population density. In the opposite, Val-de-Marne, situated to southeast of Paris, is a department of high population density and Nord is the most populous department in France. The true partition of these French city is displayed in the Figure 4.5. On this dataset, fourteen parsimonious models with K = 2, 3, 4 are considered as potential models. The biggest value of BIC and ICL among all the potential models is considered as the result of BIC and ICL criteria. The clustering result is displayed in the Figure 4.6. BIC criterion has chosen the model
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 45 Figure 4.5: True clustering of 1199 cities from three departments in France.

Figure 4 . 6 :

 46 Figure 4.6: Result of bin-EM-CEM algorithm with BIC of 1199 cities from three departments in France.
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 522 Image segmentationThe goal of this experiment is to study how the BIC and ICL criteria perform on the application of image segmentation by bin-EM-CEM algorithm. We still use the lantern image which was used in the Chapter 3. This image is shown again in the Figure4.7:
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 47 Figure 4.7: Original image.
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 8 the result of BIC and maximum likelihood increase along with the increase of the number of clusters. So the choice of BIC criterion so far is the model [λ k D k A k D T k ] with 9 clusters. At another side, the maximum complete likelihood increases when the number of clusters gets bigger. But ICL criterion prefers the model [λ k D k A k D T k ] with 8 clusters instead of 9 clusters. And the CPUtime increases when more clusters are considered.
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 484 Figure 4.8: Result of image segmentation of Figure 4.7 by bin-EM-CEM algorithm with different number of clusters.
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 49 Figure 4.9: Clustering result of the pixels color by bin-EM-CEM algorithm with different number of clusters.
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 6 Comparison among BIC and ICL criteria of binned-EM and bin-EM-CEM algorithmsIn this chapter, by adapting BIC and ICL criteria to the binned-EM and bin-EM-CEM algorithms, we developed four new criteria: BIC criterion with binned-EM algorithm, 4.6. Comparison among BIC and ICL criteria of binned-EM and bin-EM-CEM algorithms 149 ICL criterion with binned-EM algorithm, BIC criterion with bin-EM-CEM algorithm and ICL criterion with bin-EM-CEM algorithm. It is of interest to make a comparison among these four criteria. In this experiment, we simulate three different datasets. Each time we simulate a Gaussian mixture with five components. The objective is to observe the ability of finding the number of clusters of the four criteria. Thus each component follows the simplest spherical model. The difference among three datasets is the location of the one component which leads to different distance between two components. It aims to see if our four criteria can correctly tell the number of clusters with different mixed levels. Here we give out the common model parameters of the three simulated datasets: n = 5000, K = 5, p 1 = p 2 = p 3 = p 4 = p 5 = 0.2 µ 1 = (0, 5), µ 2 = (5, 0), µ 3 = (5, 10), µ 4 = (9, 5), Σ 1 = Σ 2 = Σ 3 = Σ 4 = Σ 5 = diag(1, 1)

δ = 2 , µ 5 = ( 11 , 5 )

 25115 These three situations of datasets are shown in the Figures 4.10

, 4 .

 4 11 and 4.12.For each situation, we estimate 30 samples. We apply binned-EM algorithm and bin-EM-CEM algorithm on each sample and then decide the model choice (including the number clusters) by BIC and ICL criteria. The size of bins in binned-EM and bin-EM-CEM algorithms is unified in the whole experiment. The space is divided into 40 × 40 bins. For each criterion, the model which is chosen the most is considered as the final choice of the criterion. The result is presented in the Table.

Figure 4 . 10 :

 410 Figure 4.10: An sample simulated according to Gaussian mixture model with five clusters. The distance between two overlapping components δ = 1.

Figure 4 . 11 :

 411 Figure 4.11: An sample simulated according to Gaussian mixture model with five clusters. The distance between two overlapping components δ = 1.5.
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 6412 Figure 4.12: An sample simulated according to Gaussian mixture model with five clusters. The distance between two overlapping components δ = 2.❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ Criterion Distance δ = 1 δ = 1.5 δ = 2 Model Num. Model Num. Model Num. BIC binned-EM [λ k I] 5 [λ k B k ] 4 [λI] 5 ICL binned-EM [λ k I] 4 [λ k B k ] 4 [λI] 5 BIC bin-EM -CEM [λ k I] 4 [λ k B k ] 4 [λI] 5 ICL bin-EM -CEM [λ k I] 4 [λ k B k ] 4 [λI] 5

BIC

  binned-EM has chosen the right cluster number 5 and the model [λ k I], which is slightly more complex than the real model [λI]. ICL binned-EM chose the same model as BIC binned-EM , [λ k I]. But ICL binned-EM prefers to consider clusters C 1 and C 1 as one cluster. When distance = 1.5, clusters C 1 and C 2 are less overlapped. From the Figure 4.11, since two clusters are half overlapped, thet are combined as one diagonal cluster. In this case, both of BIC binned-EM and ICL binned-EM criteria chose the most complex diagonal model [λ k B k ] and 4 clusters. It is reasonable because without any information of dataset, it is easy to suppose that there are three spherical clusters and one diagonal cluster. The diagonal cluster has twice volume as the spherical clusters. Finally when distance = 2, C 1 and C 2 are better separated. In this case, both of BIC binned-EM and ICL binned-EM criteria can tell the right model and the correct number of clusters.
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 7 AIC, AWE, and NEC criteria applied to binned data clustering 4.7.1 AIC criterion and its derivation The Akaike information criterion (AIC), proposed by Akaike [17], is generally regarded as the first model selection criterion. It is another measure of a model's suitability to the dataset. It takes the form as follows:AIC(M, K) = 2v M,K -2L(M )where v m,K is the number of the free parameters of the model M , and L(M ) indicates the maximum log-likelihood of the model M .

expected Kullback -

 Kullback Leiber information E y [I(f, g(•| θ(y)))], which is aimed to minimize: min g∈G E y [I(f, g(•| θ(y)))] 4.7. AIC, AWE, and NEC criteria applied to binned data clustering 153 We have:E y [I(f, g(•| θ(y)))] = Ω f (x) log(f (x))dx -Ω f (y)[ Ω f (x) log(g(x| θ(y)))dx]dyEyEx[log(g(x| θ(y)))]

(

  MLE) based on model g and data y, and y is a random sample from the density function f (x). Minimizing E y [I(f, g(•| θ(y)))] leads to maximize E y E x [log(g(x| θ(y)))]. An approximately unbiased estimate of E y E x [log(g(x| θ(y)))] for large sample and the best-fit model is:
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 0 (X/M ) = P (θ|M )P (X|θ, M )dθ with θ the model parameter vector.To calculate the Bayes factor, we use the Schwarz criterion[START_REF] Schwarz | Estimating the dimension of a model[END_REF]:S = 2L(M ) -2L(M 0 ) -(v(M )v(M 0 )) log(n) (4.1)where L(M ) is the maximum likelihood of the model M and v(M ) is the number of free parameters in this model. S is a rough approximation of 2 log(B 0 ). Under certain conditions, we have:S -2 log(B 0 ) 2 log(B 0 ) -→ 0Here let's remember that, to obtain BIC criterion, we remove the constants in the Equation4.1 and takes -S as criterion:BIC(M ) = -2L(M ) + v(M ) log(n)To obtain another criterion, Banfield and Raftery[START_REF] Banfield | Model-based Gaussian and non-Gaussian clustering[END_REF] have given another approximation of Bayes factor B 0 . Contrary with BIC criterion, this approximation limits the choice of number of class. The integrated likelihood P (x/K), corresponding to a K-component model, has the form as follows:P (x/K) = z f (x, z|θ, K)π(θ|K)dθwith f (x, z|θ, K) the complete likelihood of (θ, z) for K classes, and π(θ|K) the prior of θ for K classes. Being within the framework of hierarchical clustering, it uses the fact that K classes is the result from the agglomeration of two classes among K + 1 classes.The proportions of classes are required to be equal. Using the asymptotic approximation[START_REF] Wolfe | Pattern clustering by multivariate mixture analysis[END_REF], we obtain:-2 log(B 0 ) ≈ -2CL(K) + 2CL(1) + 2(v(K)v(1))( is the Bayes factor of a model of K classes against a model of only one class.CL(K) is the maximum complete likelihood for K classes. By removing the constants in the Equation4.2, we obtain the AWE criterion:AW E(K) = -2CL(K) + 2v(NEC criterion's full name is Normalized Entropy Criterion. It was proposed by[START_REF] Celeux | An entropy criterion for assessing the number of clusters in a mixture model[END_REF] to estimate the number of clusters arising from a mixture model.4.7. AIC, AWE, and NEC criteria applied to binned data clustering 155In the mixture model, a dataset x = (x 1 , . . . , x n ) is assumed to follow a probability distribution of K-component:f (x; Φ) = K k=1 π k f k (x; θ k ) with Φ = (π 1 , . . . , π K , θ 1 , . . . , θ K ),where π k (k = 1, . . . , K) denote the mixing proportions of the mixtures (0 < π k < 1 and K k=1 π k = 1), and θ k = (µ k , Σ k ) (k = 1, . . . , K) are the parameters of Gaussian distribution functions f k of components: mean vectors µ k and variance matrices Σ k .The maximized log-likelihood of the dataset x isL(K) = n i=1 log[ K k=1 π k f k (x i ; θ k )]where π k and θ k denote the maximum likelihood estimates of π k and θ k respectively.The NEC criterion is derived from a relation between the log-likelihood L(K) and a classification type log-likelihood C(K):L(K) = C(K) + E(K) ik log[ π k f k (x i ; θ k )] with t ik = π k f k (x i ; θ k )K j=1 π j f j (x i ; θ j ) denoting the conditional probability that x i arises from the kth mixture component.In the Equation4.3, the entropy E(K) has the formE(K) =ik log(t ik ) ≥ 0which measures the overlap of the mixture components. The entropy E(K) cannot be used directly as a criterion to obtain the number of clusters, because L(K) is an increasing function of K and should be normalized. Thus we have 1 = C(K -C(1)) L(K) -L(1) + E(K) -E(1) L(K) -L(1) , K > 1 (4.4) From the Equation 4.4, we can get the NEC criterion: N EC(K) = E(K) L(K) -L(1)

  k (Φ) log(p r/k (Φ))wherep r/k (Φ) = π k Hr f k (x; θ k )dx K k=1 π k Hr f k (x; θ k )dx

tion 4 . 6 : 2 ) - 1 (µ 1 -µ 2 )

 462112 a Gaussian mixture model with five components. Each component has the same structure: the simplest spherical model [λI]. Three of the components are well separated with each other. The other two components are overlapped to certain level. Three groups of sample we simulated correspond to three levels of overlapping of theses two components. The level of overlapping is referred to the distance between two 4.7. AIC, AWE, and NEC criteria applied to binned data clustering 157 components: δ = (µ 1µ 2 ) T ( Σ 1 + Σ 2 So the model parameters of these three groups of simulated data are detailed in the Table 4.10: In the algorithm, the potential model is fixed. It is same as the real model Common parameters n = 5000, K = 5, p 1 = p 2 = p 3 = p 4 = p 5 = 0.2 µ 1 = (0, 5), µ 2 = (5, 0), µ 3 = (5, 10), µ 4 = (9, 5), Σ 1 = Σ 2 = Σ 3 = Σ 4 = Σ 5 = diag(1,

From

  the result, when the two components are too overlapped (distance δ = 1), all the criteria consider that there are only four criteria. When the distance δ = 1.5, L, BIC and NEC criteria succeeded to point out the right number of clusters. The CL, ICL, AIC and AWE criteria favor 5 clusters. We notice that L has the same behavior as BIC, and CL has the same behavior as ICL. Same as in the standard framework, in binned data clustering, L and BIC criteria still perform better than CL and ICL criteria. Under the condition that the model is fixed as [λI], AIC and AWE criteria couldn't make the right choice. In the third group of simulated dataset, the two connected clusters are well separated. In this case, all the criteria are able to detect five clusters.4.7.4.2 Choice of modelIn this part, we study the model choice for binned data clustering of all the criteria introduced in this chapter. Under the condition that the number of clusters is known, the difference of choice of different criteria is the model selection. For the experiment, we simulate data according to fourteen parsimonious Gaussian mixture models. Follow each model, we generate 30 datasets of size= 3000. To apply binned-EM algorithm, the whole space is divided into 40bins×40bins. Details of model parameters see in the Section 4.3. The model which has been chosen by the most times is selected as the final choice of corresponding criterion. The result is shown in the Table4.12.From the result, we can see that BIC, ICL and NEC criteria have exactly the same result in this experiment. They are able to choose the right model for 8 different data structure.Compared to BIC, ICL and NEC criteria, AIC criterion behaves less outstanding. Itfavors the most complex model [λ k D k A k D T k ] for the dataset simulated according to the models [λD k A k D T k ], [λ k B] and [λ k B]. Among all these criteria, AWE criterion gives the best result. It give 9 correct answers out of 14 (maximum 8 right answers for other criteria). AWE succeeded detect one data structure that other criteria can detect:

  computation time. Specially compared to the EM and CEM algorithms, our algorithms have evident advantage in computation time while obtaining almost the same image segmentation result. The BIC and ICL criteria are two well-known criteria for clustering model choice. The idea is to introduce a penalty term for the model complexity to the maximum value of the likelihood (for BIC) and to the maximum value of the complete likelihood (for ICL). Since the right model can obtain the best clustering result, the model selection is an important step. Thus, in this thesis, to select the best model, we have extended the BIC Prospective 163 and ICL criteria to binned data clustering and we associated them with binned-EM and bin-EM-CEM algorithms. These four associations (either BIC or ICL criteria associated to either binned-EM or bin-EM-CEM algorithms) are able to choose the right model. The ICL criterion prefers to choose less number of clusters with a more complex model comparing to the BIC criterion.Besides this, we also adapted the AIC, NEC, and AWE criteria, to binned data clustering. The experimental results showed that these criteria can choose the right model and the correct number of clusters. The AWE criterion outperforms the other criteria. The BIC, ICL, and NEC criteria, have almost the same behaviors in model choice.

  of the lemma is complete. Theorem A.3. The symmetric positive matrix M of dimension d × d and |M| = 1 minimizing tr(M) is identity matrix I, and the minimized value is d.Proof. If we note λ 1 , . . . , λ d as the eigenvalues of the symmetric matrix M , the problem reduces to minimizing i λ i under the constrain of i λ i = 1. Knowing that all of the eigenvalues are positive, we apply the method of Lagrange multipliers. So the problem equals the minimization ofg(λ 1 , . . . , λ d ) = i λ iλ( i λ i -1)partially deducing by derivative g ′ λ j (λ 1 , . . . , λ p ) = 1λ i λ i λ j = 0 ∀j

  5. Repeat steps 2, 3 and 4 until the positions of K centroids don't move anymore. But at the same time, k-means clustering has several disadvantages too. For example, it is difficult to calculate the quality of the clustering result. It is hard to know what K should be. Different initial partitions can result in different final clusters. Sometimes k-means clustering converges to local optimum. The clustering result can highly depend on the initial centroids. Thus, several methods were proposed to improve this drawback.

	Comparing to the hierarchical clustering, K-means clustering has some advantages. With
	a large number of variables, K-Means may be computationally faster than hierarchical
	clustering (if K is small). K-Means may produce tighter clusters than hierarchical clus-
	tering, especially if the clusters are globular.

  , . . . , z n ) where z i = k when x i belongs to the component k. The complete log-likelihood takes the form:

	Chapter 1. State of the art
	1.5 EM and CEM algorithms
	1.5.1 EM algorithm
	Estimation Maximization (EM) algorithm was first time officially proposed by Dempster
	et al. [7]. Later Wu [39] has corrected a flawed convergence analysis in this paper. The
	EM algorithm is widely used because of its simplicity and easy implementation. It is an
	efficient iterative procedure to compute the Maximum Likelihood (ML) estimate in the
	presence of missing (or unobserved) data.
	Since it is not easy to maximize the log-likelihood directly, EM algorithm maximizes
	the expectation of complete log-likelihood instead. The complete data in EM algorithm
	are considered to be (x, z). z is the missing data indicating the mixture component
	origin label of each observation. z = (z 1
	,...,n {x ij } -min i=1,...,n {x ij })

Table 1

 1 

		.1.		
	Model ID Loading Matrix Λ g Error Variance Ψ g	Isotropic
	CCC	Constrained	Constrained	Constrained
	CCU	Constrained	Constrained	Unconstrained
	CUC	Constrained	Unconstrained	Constrained
	CUU	Constrained	Unconstrained	Unconstrained
	UCC	Unconstrained	Constrained	Constrained
	UCU	Unconstrained	Constrained	Unconstrained
	UUC	Unconstrained	Unconstrained	Constrained
	UUU	Unconstrained	Unconstrained	Unconstrained

Table 1 . 1 :

 11 Eight parsimonious Gaussian models with different covariance structures

Table 2 . 1 :

 21 Decomposition of complexity of the EM algorithm.From the Table 2.1, we can conclude that the complexity of the EM algorithm is approximately O(d 3 KnN + 3K 2 ndN + 4n 1 KnN + n 2 2 KnN + 4nKN + dnKN ). According to the definition of the Big-O notation, the complexity of EM algorithm can also be noted as O(d 3 KnN + 3K 2 ndN + 4n 1 KnN + n 2 2 KnN )
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	.3:

Table 2 . 3 :

 23 Decomposition of complexity of the binned-EM algorithm.

  d n 2.5. Parsimonious models for binned-EM algorithm 59 Model [λ k D k AD T k ]. Minimizing Equation (2.7) equals to minimizing

  Experiment on simulated data of different structuresThe first experiment is to study the performances of different parsimonious models applied to data of different structures. According to fourteen parsimonious models, we simulate fourteen samples of different structure. Each sample size is of 3000. Fourteen versions of EM algorithm (each version associates to one parsimonious model) are applied to each sample for 30 times with random initiations. The best result among 30 results of each algorithm model is considered as the final result. The process of the experiment is explained in the Figure2.5:

	2.6. Experiments on simulated data				63
	2.6.1 Model M x	Simulate	Standard labels data with	Remove labels	Standard labels without data	Bin	Binned labels without data
				Binned-EM of M 1 , . . . , M 14
	Accuracy		Compare labels			( θ Mx , L Mx )
	Accuracy max					MAP
			Clustering				Clustering
	Best model		result of standard	Unbin		result of binned
			data				data

Table 2 .
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	T ]	Accuracy(σ) CPUtime	0.926(0.0052) 27.2	0.914(0.0051) 26.5	0.918(0.0071) 26.1	0.921(0.0034) 35.4	0.925(0.0050) 51.7
	[λ k DAD T ]	Accuracy(σ) CPUtime	0.959(0.0042) 23.4	0.928(0.0019) 26.6	0.902(0.0122) 25.9	0.903(0.0072) 38.7	0.927(0.0222) 73.2
	[λDA k D T ]	Accuracy(σ) 0.960(0.0052) CPUtime 23.3	0.906(0.0072) 48.0	0.929(0.0080) 28.2	0.897(0.0093) 38.8	0.935(0.0145) 57.3
	[λ k DA k D T ]	Accuracy(σ) CPUtime	0.913(0.0250) 55.2	0.812(0.0113) 69.4	0.927(0.0087) 49.5	0.922(0.0080) 21.6	0.826(0.0411) 53.7
	[λD k AD T k ]	Accuracy(σ) CPUtime	0.925(0.0050) 51.7	0.892(0.0055) 111.2	0.897(0.0142) 38.8	0.913(0.0065) 39.5	0.960(0.0067) 33.2
	[λ k D k AD T k ]	Accuracy(σ) 0.960(0.0052) CPUtime 24.2	0.927(0.0022) 26.2	0.895(0.0112) 26.9	0.909(0.0048) 39.9	0.950(0.0132) 99.7
	[λD k A k D T k ]	Accuracy(σ) CPUtime	0.925(0.0051) 50.4	0.893(0.0065) 90.0	0.928(0.0070) 49.4	0.917(0.0093) 80.7	0.886(0.0430) 45.3
	[λ k D k A k D T k ]	Accuracy(σ) CPUtime	0.925(0.0052) 27.2	0.923(0.0085) 26.4	0.922(0.0067) 26.1	0.917(0.0053) 38.7	0.953(0.0026) 27.8
	[λB]	Accuracy(σ) CPUtime	0.725(0.0232) 45.0	0.627(0.0046) 64.3	0.916(0.0128) 55.9	0.901(0.0065) 38.8	0.923(0.0095) 43.1
	[λ k B]	Accuracy(σ) CPUtime	0.718(0.0007) 53.8	0.691(0.0189) 149.3	0.921(0.0056) 53.8	0.909(0.0086) 55.9	0.846(0.0094) 76.0
	[λB k ]	Accuracy(σ) CPUtime	0.728(0.0227) 44.1	0.746(0.0228) 85.3	0.915(0.0061) 55.9	0.897(0.0085) 38.7	0.864(0.0081) 31.1
	[λ k B k ]	Accuracy(σ) 0.7175(0.0007) CPUtime 54.5	0.721(0.0094) 159.2	0.912(0.0107) 69.7	0.910(0.0095) 55.7	0.850(0.0077) 77.8
	[λI]	Accuracy(σ) CPUtime	0.734(0.0209) 39.9	0.746(0.172) 71.6	0.913(0.0153) 69.7	0.869(0.0106) 132.6	0.928(0.0065) 53.5
	[λ k I]	Accuracy(σ) CPUtime	0.724(0.0140) 39.9	0.758(0.0098) 68.8	0.918(0.0064) 37.4	0.916(0.0112) 42.1	0.930(0.0070) 52.0

4: Accuracy, CPUtime and Standard deviation of accuracy (in parentheses) of binned-EM algorithm on simulated data 1
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	T ]	Accuracy(σ) CPUtime	0.941(0.0057) 29.3	0.925(0.0051) 50.4	0.925(0.0052) 27.2	0.725(0.0232) 45.0	0.948(0.0062) 26.8
	[λ k DAD T ]	Accuracy(σ) CPUtime	0.925(0.0039) 52.7	0.817(0.0122) 34.0	0.988(0.0019) 64.7	0.908(0.0159) 37.7	0.959(0.0019) 48.5
	[λDA k D T ]	Accuracy(σ) CPUtime	0.887(0.0215) 53.2	0.824(0.0087) 34.8	0.976(0.0065) 69.1	0.900(0.0131) 26.1	0.948(0.0063) 26.5
	[λ k DA k D T ]	Accuracy(σ) CPUtime	0.933(0.0053) 29.2	0.787(0.0142) 34.5	0.966(0.0062) 45.5	0.783(0.0243) 25.9	0.946(0.0075) 40.8
	[λD k AD T k ]	Accuracy(σ) CPUtime	0.950(0.0031) 79.4	0.980(0.0027) 64.0	0.967(0.0184) 107.0	0.896(0.0084) 47.9	0.948(0.0063) 26.7
	[λ k D k AD T k ]	Accuracy(σ) 0.958(0.0045) CPUtime 71.5	0.787(0.0115) 34.8	0.991(0.0083) 66.6	0.907(0.0142) 26.6	0.959(0.0022) 48.7
	[λD k A k D T k ]	Accuracy(σ) CPUtime	0.948(0.0055) 69.5	0.983(0.0013) 88.5	0.917(0.0110) 43.7	0.919(0.0111) 34.2	0.948(0.0059) 26.6
	[λ k D k A k D T k ]	Accuracy(σ) CPUtime	0.957(0.0056) 61.0	0.983(0.0036) 40.7	0.992(0.0014) 67.7	0.921(0.0079) 86.9	0.960(0.0030) 48.5
	[λB]	Accuracy(σ) CPUtime	0.817(0.0072) 124.7	0.917(0.0151) 26.2	0.906(0.0211) 26.5	0.923(0.0096) 41.2	0.949(0.0066) 26.6
	[λ k B]	Accuracy(σ) CPUtime	0.910(0.0065) 204.9	0.913(0.0072) 64.4	0.945(0.0081) 64.5	0.916(0.0158) 72.5	0.960(0.0032) 69.7
	[λB k ]	Accuracy(σ) CPUtime	0.829(0.0050) 149.4	0.865(0.0070) 35.4	0.863(0.0080) 40.4	0.836(0.0159) 18.3	0.948(0.0064) 26.5
	[λ k B k ]	Accuracy(σ) CPUtime	0.952(0.0014) 93.3	0.923(0.0117) 66.0	0.969(0.0053) 64.8	0.900(0.0155) 50.3	0.960(0.0035) 69.7
	[λI]	Accuracy(σ) CPUtime	0.857(0.0076) 133.0	0.928(0.0072) 28.5	0.926(0.0068) 48.1	0.920(0.0055) 54.2	0.939(0.0066) 69.4
	[λ k I]	Accuracy(σ) CPUtime	0.919(0.0096) 45.5	0.911(0.0060) 36.7	0.945(0.0048) 51.0	0.920(0.0076) 50.9	0.956(0.0046) 48.3

5: Accuracy, CPUtime and Standard deviation of accuracy (in parentheses) of binned-EM algorithm on simulated data 2 Chapter 2. Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms
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	T ]	Accuracy(σ) CPUtime	0.828(0.0194) 15.1	0.903(0.0073) 37.9	0.934(0.0209) 39.9	0.924(0.0140) 39.3
	[λ k DAD T ]	Accuracy(σ) CPUtime	0.834(0.0186) 17.3	0.930(0.0072) 38.1	0.931(0.0062) 26.7	0.945(0.0038) 48.6
	[λDA k D T ]	Accuracy(σ) CPUtime	0.823(0.0152) 16.0	0.926(0.0060) 37.7	0.931(0.0062) 26.5	0.9334(0.0071) 48.7
	[λ k DA k D T ]	Accuracy(σ) CPUtime	0.821(0.0203) 14.9	0.911(0.0108) 45.9	0.929(0.0066) 58.9	0.942(0.0060) 29.0
	[λD k AD T k ]	Accuracy(σ) CPUtime	0.865(0.0071) 35.2	0.908(0.0076) 73.4	0.885(0.0099) 47.8	0.862(0.0105) 47.9
	[λ k D k AD T k ]	Accuracy(σ) CPUtime	0.865(0.0084) 39.9	0.916(0.0084) 38.1	0.931(0.0062) 26.7	0.945(0.0036) 50.2
	[λD k A k D T k ]	Accuracy(σ) CPUtime	0.865(0.0060) 32.1	0.922(0.0048) 54.5	0.982(0.0136) 51.3	0.952(0.0099) 34.3
	[λ k D k A k D T k ]	Accuracy(σ) CPUtime	0.864(0.0048) 39.3	0.934(0.0070) 37.6	0.973(0.0090) 66.3	0.969(0.0099) 45.7
	[λB]	Accuracy(σ) CPUtime	0.838(0.0187) 17.4	0.921(0.0058) 71.1	0.920(0.0102) 38.3	0.837(0.0263) 37.0
	[λ k B]	Accuracy(σ) CPUtime	0.763(0.0197) 35.0	0.893(0.0130) 163.0	0.931(0.0062) 41.6	0.945(0.0040) 70.4
	[λB k ]	Accuracy(σ) CPUtime	0.861(0.0058) 27.1	0.927(0.0060) 64.6	0.819(0.0151) 26.1	0.805(0.0216) 27.8
	[λ k B k ]	Accuracy(σ) 0.870(0.0057) 0.942(0.0053) CPUtime 65.4 64.4	0.931(0.0062) 41.7	0.945(0.0037) 70.7
	[λI]	Accuracy(σ) CPUtime	0.819(0.0169) 27.0	0.907(0.0097) 30.8	0.928(0.0071) 28.6	0.928(0.0066) 47.8
	[λ k I]	Accuracy(σ) CPUtime	0.792(0.0237) 27.2	0.924(0.0068) 37.4	0.913(0.0079) 91.2	0.945(0.0048) 42.8

6: Accuracy, CPUtime and Standard deviation of accuracy (in parentheses) of binned-EM algorithm on simulated data 3
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 27 Result of binned-EM algorithm with different size of bins on simulated data. Accuracy and bin number of binned-EM algorithm applied on simulated data with different size of bins. CPUtime and non-empty-bin number of binned-EM algorithm applied on simulated data with different size of bins. D k A k D T k ] takes the second least CPUtime: 58.42. Thus, we can consider the best model in clustering the French cities by its population and population density is model [λ k DA k D T ]. It proves the practical application ability of binned-EM algorithm and the advantage of parsimonious models in saving computation time.

	Bin size	Accuracy	CPUtime	bin num.	non-empty-bin num.
	0.2 • 0.2 0.25 • 0.25 0.3 • 0.3 0.35 • 0.35 0.4 • 0.4 0.45 • 0.45 0.5 • 0.5 0.55 • 0.55 0.6 • 0.6 0.65 • 0.65 0.7 • 0.7	0.9637 0.9632 0.9630 0.9615 0.9611 0.9593 0.9603 0.9582 0.9576 0.9557 0.9549	70 50 38 30 24 19 16 14 12 11 10	2976 1518 1189 744 660 535 428 349 286 234 213	751 517 401 304 253 210 174 149 132 114 103
	From the Table 2.7 and the Figure 2.6, we can see the accuracy of binned-EM algorithm
	keeps steady at a high level while slightly reducing from 0.9637 to 0.9549 with the

2 to 0.7 with interval of 0.05. So the numbers of bins are 56 × 45, 48 × 34, 35 × 32, 32 × 25, 29 × 21, 26 × 20, 24 × 18, 21 × 15, 19 × 15, 17 × 14, 16 × 13. For each bin size, we simulate a sample of size = 3000. On each sample we apply binned-EM algorithm of model [λDAD T ] 30 times with random initiation. We evaluate each performance by accuracy and CPUtime. The best result from the 30 results of each size of bins is considered as the final result. The results are shown in the Table 2.7 and the Figures 2.6

and 2.7. increasing of bin size from 0.2 • 0.2 to 0.7 • 0.7. From Figure 2.7, it is shown that CPUtime decreases when the bins become bigger. Because our algorithm only depends on the bins which are not empty. When the bins are bigger, there are less bins as well as non-empty-bins and surely it costs less computation time. By comparing the

Table 2 . 8 :

 28 Accuracy, CPUtime of binned-EM algorithm on French cities clustering.
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	Figure 2.8: Log-population and log-density of 1193 cities from three departments in
						France.			
	2.7.2 Image segmentation				

Image segmentation, feature extraction and object recognition constitute three main objectives in computer vision theory. The feature extraction and object recognition are based on image segmentation. The result of image segmentation will directly affect the subsequent feature extraction and object recognition. Image segmentation is a process of extracting meaningful features or regions from image. These features can be the

Table 2
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	.9:		
	P P P P P P P P P P P Bin size Info.	L M	CPUtime(s) Num. of non-empty bins
	5 bins/dimension 10 bins/dimension -3.47 × 10 4 -5.43 × 10 3 20 bins/dimension -6.88 × 10 4 30 bins/dimension -8.67 × 10 4 40 bins/dimension -1.43 × 10 5 50 bins/dimension -1.64 × 10 5	30 50 149 203 258 316	20 67 234 480 610 746

Table 2 . 9 :

 29 Information of the image segmentation by binned-EM algorithm with different size of bins.
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1: Decomposition of complexity of the CEM algorithm.
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	2:	
	Parameter Times	Complexity
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 32 Decomposition of complexity of the bin-EM-CEM algorithm.
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 35 Accuracy and standard deviation of accuracy of bin-EM-CEM algorithms on simulated data. Chapter 3. Parsimonious Gaussian mixture models for binned data clustering and the corresponding bin-EM-CEM algorithms

	T ]	0.9687(.0025)	0.8900(.0058)	0.8997(.0073)	0.9154(.0058)	0.8013(.0522)	0.7017(.0170)	0.8367(.0269)
	[λ k DAD T ]	0.9686(.0021) 0.9532(.0030)	0.8979(.0095)	0.9069(.0085)	0.8708(.0142)	0.9320(.0084)	0.8540(.0287)
	[λDA k D T ]	0.9689(.0027)	0.8906(.0073)	0.9252(.0032)	0.8692(.0114)	0.8870(.0109)	0.8218(.0197)	0.8847(.0091)
	[λ k DA k D T ]	0.9689(.0027)	0.9528(.0035)	0.9194(.0056)	0.9402(.0056)	0.8737(.0141)	0.9490(.0049)	0.8946(.0099)
	[λD k AD T k ]	0.8966(.0064)	0.9134(.0053)	0.9103(.0074)	0.9268(.0048)	0.9527(.0043)	0.9087(.0086)	0.9243(.0230)
	[λ k D k AD T k ]	0.9689(.0025)	0.9528(.0027)	0.9096(.0056)	0.9120(.0059)	0.9378(.0061)	0.9608(.0028)	0.9037(.0106)
	[λD k A k D T k ]	0.9688(.0024)	0.8876(.0062)	0.9181(.0084)	0.9164(.0085)	0.9402(.0056)	0.9506(.0032)	0.9259(.0052)
	[λ k D k A k D T k ]	0.9689(.0026)	0.9521(.0033)	0.9141(.0065)	0.9204(.0059)	0.9386(.0067)	0.9606(.0027)	0.9223(.0060)
	[λB]	0.8197(.0058)	0.7747(.0039)	0.9140(.0081)	0.9034(.0105)	0.8614(.0105)	0.8957(.0112)	0.9016(.0106)
	[λ k B]	0.8192(.0071)	0.8712(.0066)	0.9073(.0120)	0.9172(.0064)	0.8591(.0064)	0.9051(.0081)	0.9071(.0054)
	[λB k ]	0.8182(.0053)	0.7820(.0053)	0.9057(.0123)	0.9060(.0072)	0.8971(.0081)	0.8918(.0118)	0.8979(.0121)
	[λ k B k ]	0.8211(.0087)	0.8713(.0068)	0.9057(.0121)	0.9069(.0104)	0.9041(.0108)	0.9020(.0073)	0.9015(.0090)
	[λI]	0.8124(.0081)	0.7180(.0141)	0.9134(.0105)	0.8539(.0087)	0.8424(.0083)	0.8524(.0085)	0.8652(.0175)
	[λ k I]	0.8109(.0076)	0.8674(.0075)	0.9099(.0082)	0.9193(.0059)	0.8306(.0112)	0.9239(.0065)	0.8953(.0139)

Table 3 . 6 :

 36 Accuracy and standard deviation of accuracy of bin-EM-CEM algorithms on simulated data.

	T ]	0.7507(.0162)	0.9439(.0037)	0.9343(.0083)	0.9393(.0048)	0.9371(.0076)	0.9238(.0055)	0.8999(.0091)
	[λ k DAD T ]	0.9144(.0201)	0.9439(.0038)	0.9577(.0019)	0.9322(.0057)	0.9261(.0072)	0.9236(.0055)	0.9306(.0054)
	[λDA k D T ]	0.7863(.0101)	0.9438(.0037)	0.9292(.0057)	0.9471(.0053)	0.9488(.0035)	0.9237(.0054)	0.9021(.0108)
	[λ k DA k D T ]	0.8631(.0124)	0.9429(.0024)	0.9573(.0026)	0.9471(.0053)	0.9487(.0035)	0.9238(.0055)	0.9313(.0051)
	[λD k AD T k ]	0.9688(.0024)	0.9440(.0037)	0.9363(.0056)	0.9389(.0045)	0.9391(.0068)	0.9241(.0053)	0.9064(.0079)
	[λ k D k AD T k ]	0.9351(.0064)	0.9439(.0038)	0.9579(.0019)	0.9393(.0048)	0.9382(.0073)	0.9236(.0055)	0.9312(.0051)
	[λD k A k D T k ]	0.9197(.0067)	0.9434(.0026)	0.9306(.0057)	0.9470(.0054)	0.9488(.0035)	0.9239(.0053)	0.9014(.0083)
	[λ k D k A k D T k ]	0.9495(.0029)	0.9429(.0024)	0.9574(.0026)	0.9471(.0054)	0.9487(.0035)	0.9236(.0055)	0.9311(.0051)
	[λB]	0.8222(.0057)	0.9440(.0038)	0.9400(.0040)	0.9393(.0048)	0.9401(.0075)	0.9236(.0055)	0.9131(.0082)
	[λ k B]	0.9364(.0049)	0.9439(.0038)	0.9581(.0017)	0.9394(.0048)	0.9401(.0074)	0.9236(.0055)	0.9328(.0041)
	[λB k ]	0.8298(.0068)	0.9438(.0037)	0.9424(.0064)	0.9471(.0053)	0.9487(.0035)	0.9236(.0054)	0.9097(.0082)
	[λ k B k ]	0.9370(.0058)	0.9429(.0024)	0.9575(.0025)	0.9471(.0053)	0.9488(.0035)	0.9236(.0055)	0.9333(.0037)
	[λI]	0.7717(.0114)	0.9433(.0034)	0.9380(.0061)	0.9402(.0039)	0.9420(.0052)	0.9236(.0055)	0.9045(.0064)
	[λ k I]	0.9350(.0058)	0.9436(.0037)	0.9569(.0031)	0.9446(.0047)	0.9439(.0063)	0.9236(.0055)	0.9336(.0055)

Table 3 .

 3 7 and Figure 3.3.

	Bins num.	Accuracy	CPUtime	Bin num.	Non-empty-bin num.	Bin size
	100	0.9439	353	10000	1827	0.13 • 0.09
	90	0.9435	305	8100	1453	0.15 • 0.10
	80	0.9430	259	6400	1186	0.17 • 0.12
	70	0.9427	217	4900	1129	0.19 • 0.13
	60	0.9424	176	3600	914	0.22 • 0.15
	50	0.9420	137	2500	769	0.28 • 0.18
	40	0.9412	115	1600	476	0.33 • 0.23
	30	0.9407	84	900	319	0.46 • 0.30
	20	0.9389	45	400	160	0.68 • 0.45
	10	0.9299	5	100	53	0.36 • 0.89

Table 3 . 7 :

 37 Result of bin-EM-CEM algorithm with different size of bins on simulated data.

Table 3 . 8 :

 38 Accuracy, CPUtime of bin-EM-CEM algorithm on French cities clustering.

	Model	Accuracy Time
	[λDAD T ]	0.8047	64.0
	[λ k DAD T ]	0.8022	64.0
	[λDA k D T ]	0.7913	85.4
	[λ k DA k D T ]	0.7888	85.6
	[λD k AD T k ] [λ k D k AD T k ] [λD k A k D T k ] [λ k D k A k D T k ]	0.8189 0.8374 0.8256 0.8215	65.4 89.0 64.2 64.2
	[λB]	0.7913	42.4
	[λ k B]	0.7913	42.6
	[λB k ]	0.7913	42.5
	[λ k B k ]	0.7913	42.5
	[λI]	0.7988	57.3
	[λ k I]	0.8005	57.3

Table 3 . 9 :

 39 Information of the image segmentation of Figure 3.6 by bin-EM-CEM algorithms of eight general models.

	P P P P P P P P P P P Model Info.	LM max	CPUtime(s)
	[λDAD T ] [λ k DAD T ] [λDA k D T ] [λ k DA k D T ] [λD k AD T k ] [λ k D k AD T k ] [λD k A k D T k ] [λ k D k A k D T k ]	-5.45 × 10 5 -4.65 × 10 5 -3.85 × 10 5 -4.75 × 10 5 -3.15 × 10 5 -3.15 × 10 5 -2.92 × 10 8 -2.85 × 10 5	23 15 22 29 14 15 23 22

Table 3 . 10 :

 310 Information of the image segmentation by bin-EM-CEM algorithm of the model [λD k ADT k ] with different size of bins.

	P P P P P P P P P P P Bin size Info.	L M	CPUtime(s) Num. of non-empty bins
	5 bins/dimension 10 bins/dimension -1.69 × 10 5 -7.20 × 10 4 15 bins/dimension -2.26 × 10 5 20 bins/dimension -3.15 × 10 5 25 bins/dimension -3.60 × 10 5 30 bins/dimension -3.80 × 10 5 35 bins/dimension -3.99 × 10 5 40 bins/dimension -4.02 × 10 5	4 10 13 14 24 31 41 51	19 63 128 215 326 433 575 723

  to compensate this limitation. ICL criterion in fact is a BIC approximation of the integrated complete likelihood. The difference between BIC and ICL criteria is that 128 Chapter 4. Criteria for binned data model-based clustering ICL criterion is based on complete likelihood and contains an additional penalty term, thus ICL prefers well-separated clusters. The corresponding consequence is that BIC criterion might over-estimate the number of mixture components whilst ICL criterion under-estimates the number of mixture components. Generally speaking, for standard data clustering, both BIC and ICL criteria are proved to be useful in choosing the model and consequently the number of the components.

  In this part, we compare the performance of BIC and ICL criteria in choosing the model for binned data clustering. The number of clusters is considered to be known, BIC and ICL criteria make a model choice among the fourteen parsimonious models.As simulated data, we generate fourteen types of data according to fourteen parsimonious Gaussian mixture models with two clusters. For each type of simulated data, we generate 30 samples of size= 3000. Fourteen binned-EM algorithms of parsimonious models are applied to each sample once. The result which appears the most among 30 results will be considered as the final result for the corresponding data type. We compare the result of maximum log-likelihood estimation, maximum completed log-likelihood estimation, BIC and ICL criteria.The process of the experiment is shown in the following flow chart:

		4.3. Experiments of BIC and ICL criteria with binned-EM algorithm	131
	4.3 Experiments of BIC and ICL criteria with binned-EM value, which indicates the distance between two mixture components:
		algorithm					
			δ				
	4.3.1 Experiments on simulated data		
	4.3.1.1 Choice of model				
	M x	similate	Standard data	binning	Binned data	binned-EM	(θ 14 , L 14 ) (θ 1 , L 1 ),. . . ,
					BIC		
			M BIC				
					ML		
					ICL		
			M M L		CML		
			M ICL				
			M CM L				
	Since the volumes, shapes and orientations are different among fourteen models, the
	separation level of clusters within each model is controlled and defined by the distance

Table 4 .

 4 

1: Result of BIC criterion and maximum log-likelihood estimation with binned-EM algorithm. (* indicates the correct model)

Table 4 . 2 :

 42 Result of ICL criterion and complete maximum log-likelihood estimation with binned-EM algorithm. (* indicates the correct model) type of [λ k DA k D T ], [λD k AD T k ] and [λD k A k D T k ], BIC has the same choice as the maximum log-likelihood. BIC tends to choose the most complex model of diagonal family [λ k B k ] for two data type of diagonal family: [λB], [λB k ]. For the simplest data structure of [λI], BIC prefers model [λ k I].

  5, 0). 14 binned-EM algorithms of 14 models are applied on each dataset. The size of bins is defined as 50 • 50. The potential number of data are 1, 2 and 3. The model selected is the model with a number of clusters which leads to the highest BIC and ICL result. Table4.3 presents the model choice of BIC and ICL criteria, their corresponding approximation and CPUtime.

Table 4 .

 4 [START_REF] Scott | Clustering methods based on likelihood ratio criteria[END_REF]. The CPU time indicates the amount of time for which a central processing unit (CPU) was used for processing instructions of a computer program.

	Data amount	BIC choice	ICL choice	CPUtime
	400	[λD k		

Table 4 . 6 :

 46 Model choice(number of clusters in the parenthesis) by BIC and ICL and CPU time of binned data clustering on different amount of dataset.

Table 4 . 7 :

 47 Model choice(number of clusters in the parenthesis) by BIC and ICL and CPU time of binned data clustering with different size of bins. bins per dimension), BIC and ICL criteria cannot succeed in detecting the right data structure. And moreover, it takes more computation time than the case of 40 bins per dimension. Because bigger bins lead to more difficulties for bin-EM-CEM algorithm to obtain model parameters. When the bin is smaller(50 bins per dimension), BIC and ICL criteria are able to choose the right model for dataset. It is normal that it takes more time than 40 bins per dimension, because smaller bins means more bins to deal with.

Table 4 . 8 :

 48 The choice of model and number of clusters of BIC and ICL criteria with bin-EM-CEM algorithm for image segmentation of Figure4.2.

	Result	-4.01 × 10 4	-5.65 × 10 4	-3.55 × 10 4	-5.44 × 10 4

Table 4 . 9 :

 49 Comparison of model choice of four criteria.

Table 4 .

 4 10: Model parameters of simulated data.

Table 4 .

 4 11: 

	❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ ❳ Criteria Dataset Group 1 Group 2 Group 3
	L	4	5	5
	LM	4	4	5
	BIC	4	5	5
	ICL	4	4	5
	AIC	4	4	5
	AWE	4	4	4
	NEC	4	5	5

Table 4 .

 4 11: Result of choice of number of clusters by L, LM, BIC, ICL, AIC, AWE, and NEC criteria.

* 5bins 10 * 10bins 20 * 20bins 30 * 30binsFigure 2.14: Result of image segmentation by binned-EM algorithm of model [λDAD T ] with different bin size(1).
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Figure 3.6: Original image. This is an image of colorful lanterns for Chinese Mid-Autumn festival. There are three main colors of lanterns in the image. The background is black, with several blurred silhouettes. On the right up corner ornaments some blue lights. The image is converted from RGB color space to L * a * b * color space, where a luminosity layer ′ L * ′ , chromaticity-layer ′ a * ′ indicating where color falls along the red-green axis, and chromaticity-layer ′ b * ′ indicating where the color falls along the blue-yellow axis.

two small figures in Figure 2.7, we notice that the decrease of CPUtime trends to the similar tendency as the decrease of non-empty-bin number. So we can conclude that the computation time of binned-EM algorithm can be reduced by enlarging the size of bins, with certain loss of precision.

Experiments on real data 2.7.1 French city clustering

Experiment on real data can test the algorithm's practical ability in real application.

To test our algorithm, as the real dataset, we have the population and population density (population/surface) of 1193 cities from three departments in France: Meuse, Nord and Val-de-Marne. These cities have different characteristic in population and population density due to different locations. Meuse is a rural department with a small population and low population density. In the opposite, Val-de-Marne, situated to southeast of Paris, is a department of high population density and Nord is the most populous department in France. We assume that we only have the information about the population and density of these 1193 cities and we need to group them into three clusters by binned-EM algorithm. The result of binned-EM algorithm will be compared to the actually clusters in reality. Accuracy will be calculated and CPUtime will be recorded.

Figure 2.8 displays 1193 observations concerning the log-population and log-density of cities from Meuse (500 observations), Nord (652 observations) and Val-de-Marne (47 observations). From the figure, we can tell that there are three clusters. It is obvious that the structure of each cluster is neither spherical nor diagonal. Thus there is no need to test also the binned-EM algorithms of diagonal models and spherical models. We only apply eight general models on this real dataset:

. Each model is applied on the real data for 30 times. We pick up the best accuracy from 30 results as the final result of the model.

The result is displayed in Table 2.8 and Figures 2.9 We can conclude that the computation time of bin-EM-CEM algorithm can be reduced by modifying the size of bins with certain loss of accuracy. It is important to find the balance between gaining the computation time and losing precision of the result according to the real situation.

3.6 Experiments on real data

French city clustering

The characteristic of bin-EM-CEM algorithms of fourteen parsimonious models were studied and presented in the two previous experiments, by applying on simulated data.

And we can't neglect the importance of the performance of these algorithms in real life. In this experiment, we will test the practical application ability of these fourteen bin-EM-CEM algorithms on real dataset. As real dataset, we have the population and the population density (population/surface) of 1193 French cities. They are respectively from three different departments: Meuse (500 cities), Nord (652 cities) and Val-de-Marne (47 cities). Meuse is a rural department with a small population and low population density. In the opposite, Val-de-Marne, situated to southeast of Paris, is a department of high population density and Nord is the most populous department in France. We try to cluster these 1193 cities by bin-EM-CEM algorithms, with the only information of population and population density. As we already know the origin department of each city, we compare it with the clustering result in order to obtain the accuracy. At the same time, the computation time is noted down for comparison among the algorithms. From Table 3.8, the accuracies of fourteen algorithms are all above 0.7913. We can say that all the algorithms of different models are capable of putting these French cities in the right group. We notice that the general models perform better than the diagonal models and spherical models. It means that general family is more suitable for the data There are totally 426400 pixels in the image, so 426400 points in the Figure 3.7. As we analyzed, there are mainly five colors in the image. but it is difficult to find out 3.6. Experiments on real data 119 five clusters in the Figure 3.7. We will apply bin-EM-CEM algorithms of parsimonious models to discovered these clusters.

With different models

From the Figure 3.7, the distribution model for this dataset is not evident. We can assume that the data don't follow the diagonal models, either the spherical models.

Thus, we will apply bin-EM-CEM algorithms of eight general models to the dataset, in order to find out the most suitable model.

To obtain binned data, the space is divided into 20 bins per dimension. We suppose that the number of clusters is known as 5. The image segmentation result is shown in the Figure 3.8:

• Data structure 9 is generated according to the model

• Data structure 10 is generated according to the model [

• Data structure 11 is generated according to the model

• Data structure 12 is generated according to the model [ • Data structure 14 is generated according to the model [

The model choice result is shown in the Tables 4.1 and 4.2.

According to the result of maximum log-likelihood, the most complex model [

This result accords to the theory that the most complex model gives the highest likelihood. Comparing to the maximum log-likelihood, BIC criterion succeeds in choosing the right model which is exactly the same as the data structure for eight data types: Clusters Num. selects the most complex model also [

with only 2 clusters. CML provides the same choice. From the accuracy point of view, BIC has made a good choice. It has selected a model which represents the data structure as well as a correct number of clusters. But from the clustering point of view, ICL performs properly.

Image segmentation

In this part, we will apply BIC and ICL criteria to image segmentation by binned-EM algorithms of parsimonious Gaussian mixture models. This experiment aims to study if BIC and ICL criteria can provide the right number of colors and find out the distribution of the colors of the image.

The image to be processed is the same as the one in the experiment part of Chapter 2, which is shown in the BIC criterion is to introduce a penalty term depending on the model complexity to maximum value of the log-likelihood, so as to find the best model which provide high integrated likelihood with respectively reasonable parameters.

where Φ is the maximum likelihood estimate of Φ, which is usually obtained by binned-EM algorithm, but in this article, Φ is obtained by bin-EM-CEM algorithm:

v m,K is the number of parameters to estimate in the model m with K components. The corresponding information can be found in the paper of Celeux and Govaert [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF].

Integrated completed likelihood criterion (ICL)

ICL criterion was proposed by considering the integrated likelihood of the complete data [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]:

where Φ is obtained by bin-EM-CEM algorithm:

4.5 Experiments of BIC and ICL criteria with bin-EM-CEM algorithm

Experiments on simulated data

In this section, we compare the behavior of BIC and ICL criteria in three parts. The first part, we apply BIC and ICL criteria to two simulated data with different overlapping rates. This experiment is very similar to the first experiment of the article of Biernacki

Experiments of BIC and ICL criteria with bin-EM-CEM algorithm

141 [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF] in order to have a comparison with BIC and ICL applied to standard data clustering model selection. In the second experiment, we increase the data size from 400 to 2000 and 3600. Decision of BIC and ICL criteria on different amounts of data will be studied.

In the third part, we will study how the performances of BIC and ICL criteria change following with different size of bins.

Different overlappings

In the first part, we will compare the choice of BIC and ICL in model selection of binned data clustering. In order to compare with the BIC and ICL behaviors on standard data, we generate two types of data similar to the simulated data in the experiment of Biernacki's paper [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF].

The first type of data consists of three Gaussian components in a two dimensional space. 

π) sin( 512 π) sin( 512 π) cos( 

General conclusion and prospective

General conclusion

In this thesis, we studied the application of EM and CEM algorithms of parsimonious Gaussian mixture models to binned data clustering, and its associated model selection.

In cluster analysis, mixture-model-based clustering approach is one of the most impor- Proof. Let α ′ 1 , . . . , α ′ d be the general terms of the diagonal of the matrix QAQ -1 . Since Q is orthogonal the matrix QAQ -1 is symmetric and we have from Lemma A.2 below 

And, Equation (A.1) is derived from the fact that the y j i 's are the coordinates, in a an orthonormal basis of vectors, of a vector with norm 1.

The Equation (A.2) can be proved by induction on k. q(y 1 ) = q( d j=1

Assume that Equation (A. 

Proof. If M is diagonal matrix, M -1 is also a diagonal matrix, then we have tr(QM -1 )+ α ln |M| = tr(diag(Q)M -1 ) + alpha ln |M|. From the proof of Corollary A.6, we have