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Abstract

This thesis studies the Gaussian mixture model-based clustering approaches and the

criteria of model selection for binned data clustering. Fourteen binned-EM algorithms

and fourteen bin-EM-CEM algorithms of fourteen parsimonious Gaussian mixture mod-

els are developed. These new algorithms combine the advantages in computation time

reduction of binning data and the advantages in parameters estimation simplification

of parsimonious Gaussian mixture models. The complexities of the binned-EM and the

bin-EM-CEM algorithms are calculated and compared to the complexities of the EM and

the CEM algorithms respectively. In order to select the right model which fits well the

data and satisfies the clustering precision requirements with a reasonable computation

time, AIC, BIC, ICL, NEC, and AWE criteria, are adapted to binned data clustering

with the developed binned-EM and bin-EM-CEM algorithms. The advantages of the

proposed methods are illustrated through experimental studies.

Résumé

Cette thèse étudie les approches de classification automatique basées sur les modèles de

mélange gaussiens et les critères de choix de modèles pour la classification automatique

de données discrétisées. Quatorze algorithmes binned-EM et quatorze algorithmes bin-

EM-CEM sont développés pour quatorze modèles de mélange gaussiens parcimonieux.

Ces nouveaux algorithmes combinent les avantages des données discrétisées en termes

de réduction du temps d’exécution et les avantages des modèles de mélange gaussiens

parcimonieux en termes de simplification de l’estimation des paramètres. Les com-

plexités des algorithmes binned-EM et bin-EM-CEM sont calculées et comparées aux

complexités des algorithmes EM et CEM respectivement. Afin de choisir le bon modèle

qui s’adapte bien aux données et qui satisfait les exigences de précision en classification

avec un temps de calcul raisonnable, les critères AIC, BIC, ICL, NEC et AWE sont

étendus à la classification automatique de données discrétisées lorsque l’on utilise les al-

gorithmes binned-EM et bin-EM-CEM proposés. Les avantages des différentes méthodes

proposées sont illustrés par des études expérimentales.
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José and Elisabeth, I appreciate our short but interesting chats at lunch. Thank you,
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General introduction

Motivation

Clustering is the task of assigning a set of objects into several cohesive groups by measur-

ing the similarity between objects using different measurements. It is an unsupervised

learning process since that the number of groups and the forms of groups are unknown

in advance. Cluster analysis becomes an important task in data analysis in the last

decades. It can be used in many fields, including for example pattern recognition, image

analysis, machine learning and information retrieval. It also arouses importance in tech-

nology by being applied to a wide variety of domains, such as human genetic clustering,

medical imaging, market research and social networks.

In most cases, clustering done in practice is based largely on heuristic but intuitively

reasonable procedures [1]. Some famous approaches are hierarchical clustering [2], par-

titional clustering including for instance the K-means algorithm [3] and model-based

approach (see [4] [5] for instance). Among those approaches, model-based approach is

commonly used, in which the data are clustered using some assumed modeling struc-

ture. This process helps to understand the data distribution. It has also been shown

that some of the most popular heuristic clustering methods are in fact approximate es-

timation methods for some probability models [1]. For example, there are the k-means

algorithm and Ward’s method. This is one of the reasons why we focus on the model-

based clustering in this thesis.

Finite mixture models are a type of density model which comprises a number of prob-

ability distributions. When used in clustering, each component probability distribution

corresponds to a cluster. One prominent model is the Gaussian mixture model. A vari-

ety of approaches to the problem of mixture decomposition have been proposed. Many

of them focus on maximum likelihood methods. To obtain data partition using mix-

ture models, two main approaches are basically used: the mixture approach and the

classification approach [6]. The mixture approach aims to estimate the mixture model

parameters by maximizing the likelihood, and to deduce the data partition from the

1
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estimated parameters. This can be done by the Expectation-Maximization (EM) algo-

rithm [7]. The classification approach aims to estimate simultaneously the parameters

and the data partition by maximizing the complete likelihood, and this can be done

using the Classification Expectation-Maximization (CEM) algorithm [8].

The EM algorithm can be used to find the parameters of a statistical model in cases

where the likelihood equations cannot be solved directly. Typically, there are unobserved

data existing or assumed in the model. The EM algorithm is widely used due to its simple

concept and its easy implementation. The CEM algorithm is a classification version of

the EM algorithm. By inserting a classification step into the EM algorithm, the CEM

algorithm obtains a less precise result than the EM algorithm but takes less computation

time. However, if the data to be classified are well separated, both the EM and the CEM

algorithms provide similar results.

Along with the development of information technology, the amount of data has increased

explosively. The standard EM algorithm and the standard CEM algorithm become

inefficient in some situations. Many methods are proposed to deal with a vast amount

of data. For example, some variants seek to reduce the computational cost of the EM

algorithm by reducing the time spent in the E-step [9], [10]. There are also variants

known as Sparse EM (SpEM) and Lazy EM (LEM) [11]. One approach for reducing

and especially controlling the computation time is to introduce binned data into the EM

and CEM algorithms. The corresponding algorithms are called binned-EM [12] [13] and

bin-EM-CEM [14]. Binning data is the process of dividing the data space into small

regions called bins, then grouping the points (i.e. data) spatially in the bins according

to their locations. The idea is to reduce the amount of data (the data size): from the

number of points to the number of bins. Experimental results show that the binned-EM

and bin-EM-CEM algorithms are respectively faster than the EM and CEM algorithms.

So far, the binned-EM and bin-EM-CEM algorithms are developed basing on the most

general Gaussian mixture model, i.e. no restriction is placed on the variance matrices

[13] [14]. For the classical EM and CEM algorithms, a set of parsimonious Gaussian

mixture models were proposed by Celeux and Govaert [15], in order to fit different

datasets. These models are generated according to an eigenvalue decomposition of the

components’ variance matrices proposed by Banfield and Raftery [16]. By placing cer-

tain restrictions on the variance matrices, these parsimonious models have less freedom

degrees and thus are simpler. By developing the EM and CEM algorithms of these

parsimonious Gaussian mixture models, different data distributions can be adapted by

the corresponding parsimonious models which are more specific than the general one.

Moreover, due to the simplified estimation, the EM and CEM algorithms become more

efficient [15]. Same as in the binned data framework, using the most general model can
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sometimes cost loss of time. So in this thesis, to simplify the parameters estimation

so thus make the binned-EM and bin-EM-CEM algorithms more efficient, and also to

better adapt different data distribution so thus get a more precise result, binned-EM

algorithms and bin-EM-CEM algorithms of parsimonious Gaussian mixture models are

developed.

Since there are so many potential models to be considered, an important question is

raised by many researchers during study: which model should be applied while knowing

nothing about the distribution of the dataset? It is important for unsupervised model-

based clustering to choose the best model (including the number of clusters) which can

precisely represent the data distribution in a reasonable period of time. To answer this

question, in standard data framework, many criteria were proposed and studied. For

example, there are classical criteria such as information criteria: Akaike Information

Criterion (AIC) [17], AIC3 criterion [18] and ICOMP criterion [19]. Schwarz [20] has

proposed the famous Bayesian Information Criterion (BIC). Later, Biernacki et al. [21]

proposed the Integrated Completed Likelihood (ICL) criterion. Experimental results

show that these criteria can successfully choose a relatively simple model which under-

lines and fits the data distribution. So in this thesis, several criteria are adapted and

developed to select the best model for binned data clustering.

Objective and originality of the thesis

The first objective of our thesis is to develop new model-based clustering algorithms

which combine the advantages in time reduction of binning data and the advantages

in parameters estimation simplification of parsimonious Gaussian mixture models. The

binned-EM algorithms of fourteen parsimonious Gaussian mixture models are developed

[22] [23] [24]. By adapting EM algorithms of parsimonious Gaussian mixture models to

binned data, binned-EM algorithms spend less computation time when dealing with

big size datasets. The time complexities of the EM and binned-EM algorithms are

calculated and compared. This comparison of time complexity is to show when and how

binned-EM algorithm can be faster than the EM algorithm. At another side, the bin-EM-

CEM algorithms of fourteen parsimonious Gaussian mixture models are also developed

[25] [26]. These algorithms are supposed to be faster than the CEM algorithm. To

better study the conditions when the bin-EM-CEM algorithm is faster than the CEM

algorithm, the complexities of these two algorithms are calculated and compared. To

study and illustrate the performances of the fourteen binned-EM algorithms and the

fourteen bin-EM-CEM algorithms of parsimonious Gaussian mixture models, a variety

of experiments on simulated data and real data are presented.
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The second objective of this thesis is to select the right model for binned data clustering.

A right model must fit well the data and satisfy the clustering precision requirements

with a reasonable computation time. Several classic criteria are adapted to binned data

clustering: BIC, ICL, AIC, NEC, and AWE criteria. They aim to choose a parsimonious

model which optimizes the trade-off between the binned data fitting and the model

complexity. In this thesis, we focus on BIC and ICL criteria. We associate these two

criteria with the fourteen developed binned-EM algorithms and the fourteen developed

bin-EM-CEM algorithms, in order to choose the right model for different datasets [27]

[28]. Their choices of model and number of clusters are compared using simulated data

and real data.

Outline of the thesis

This thesis is structured as follows:

Chapter 1 will highlight the main concepts used in the development of our new algo-

rithms. The definition of clustering will be presented. Then some famous clustering

methods will be discussed: hierarchical clustering, k-means algorithm and model-based

approach. The Gaussian mixture model-based approach and the two most used model-

based clustering approaches with their corresponding EM and CEM algorithms will be

detailed. After, parsimonious Gaussian mixture models based on two different concepts

will be presented. The AIC, AIC3, BIC, ICL, ICOMP, NEC, and AWE criteria will

be described in standard data framework. The concept of binned data and how to ob-

tain binned data from standard data will be discussed. At the end of this chapter, the

concepts of the binned-EM algorithm and the bin-EM-CEM algorithm will be explained.

Chapters 2, 3, and 4 are the key chapters of the thesis.

In the Chapter 2, the fourteen binned-EM algorithms of fourteen parsimonious Gaus-

sian mixture models for binned data clustering will be developed. The derivation of

the binned-EM algorithm as well as the E-step and the M-step will be detailed. The

complexity of binned-EM algorithm will be calculated and compared to the one of the

EM algorithm. The parameter estimation by the binned-EM algorithm will be detailed

in each case of fourteen parsimonious Gaussian mixture models. To illustrate the per-

formances of these fourteen binned-EM algorithms, two experiments on simulated data

will be presented. One experiment is on the data of different structures, while another

one is on the data with different bin sizes. To show the practicality of binned-EM al-

gorithm, two experiments on real data, where include French city clustering and image

segmentation, will be shown and analysed.
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In the Chapter 3, the fourteen bin-EM-CEM algorithms of fourteen parsimonious Gaus-

sian mixture models for binned data clustering will be developed. The E-step, C-step,

and M-step will be detailed. The complexity of the bin-EM-CEM algorithm will be

calculated and compared to the one of the CEM algorithm. The parameters estimation,

especially the variance matrix estimates for fourteen parsimonious Gaussian mixture

models will be presented. To better study the performances of the fourteen bin-EM-

CEM algorithms, one experiment on simulated data of different structures and another

experiment on simulated data with different bin sizes will be shown. At the end of this

chapter, two experiments on real data will be presented.

In the Chapter 4, several criteria for model selection will be studied in binned data

clustering. The BIC and ICL criteria will be applied with both the fourteen binned-

EM and the fourteen bin-EM-CEM algorithms. Experiment on simulated data will be

shown in order to compare the model choices and choices of number of clusters obtained

by BIC and ICL criteria. The performances of BIC and ICL criteria associated with

the fourteen binned-EM and bin-EM-CEM algorithms will be studied on real data too.

In order to better compare the model choices of BIC and ICL criteria associated with

binned-EM and bin-EM-CEM algorithms, an additional experiment on simulated data

will be presented. At the end of this chapter, AIC, AWE, and NEC criteria, will be

adapted to binned data clustering. Experiments on simulated data of these three criteria

will be shown. Their performances will be compared to the ones of BIC and ICL criteria.

Finally, the general conclusion and the prospective will be presented in the Chapter 4.8.





Chapter 1

State of the art

1.1 Introduction

This chapter aims to go through some basic concepts and some important developed

methods in clustering before this thesis. The objective is to give an overview of the

existing approaches, so thus to help readers to better understand this thesis’ originality

which will be presented in the new chapters.

Some related definitions and essential concepts in the domain of cluster analysis will be

firstly presented in the Section 1.2. Classification will be distinguished from clustering

by its definition. The typical applications of clustering will be listed. In the Section

1.3, three most commonly used approaches for clustering will be reviewed. These ap-

proaches are the hierarchical clustering, k-means algorithm and model-based approach.

The advantages and the limitations of these approaches will be discussed. The Section

1.4 will present the Gaussian mixture model-based approach, which leads to the core

of our study. The mixture approach and the classification approach for data clustering

will be discussed. These two approaches are the most commonly used model-based clus-

tering approaches. Their corresponding EM and CEM algorithms will be presented in

the Section 1.5. The limitations of both algorithms will be discussed. EM algorithm’s

extensions will be briefly described.

During the study of model-based approach, some questions might be raised:

1. What are the potential models?

2. Which model is the best-fit for the data?

3. How many clusters?

7
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To answer the first question, the Section 1.6 will present two different kinds of parsimo-

nious Gaussian mixture models. These two kinds of models are based respectively on

variance matrix parametrization and on factor analysis model. To answer the second

and the third questions, the Section 1.7 will present various famous criteria for clustering

model choice, including in particular the choice of number of clusters. The criteria that

will be studied are AIC, BIC, ICL, ICOMP, NEC, and AWE criteria.

With the development of information technology, more and more data can be generated.

In this situation, the classic EM and CEM algorithms become very slow in dealing with

large size of data. The experimental results show that the computation time increases

fast along with the increase of data amount. To improve this problem, an approach

of extending classical algorithms to binned data was proposed. So in Section 1.8, the

definition of binned data will be presented. New algorithms of extending the EM and

CEM algorithms to binned data (Binned-EM and bin-EM-CEM) will be detailed. The

Section 1.9 will conclude this chapter and lead to the need of our study presented in the

Chapter 2.

1.2 What is clustering?

Assignment of a set of objects into several groups can be done through a supervised

learning or an unsupervised learning. The supervised learning is called classification.

Classification is the problem of identifying a set of observations into several categories,

basing on the training result of a subset of observations whose belonging category is

known. The unsupervised learning is defined as cluster analysis. It is also called clus-

tering. Clustering is a process of putting a set of observations into several reasonable

groups according to certain measure of similarity within each group.

Clustering is a principal technique for data analysis. It can be used in machine learning,

pattern recognition, image analysis and information retrieval. It is also an important

task in technology since it can be applied to many domains. For example:

• In computer science. Clustering is useful for image segmentation.

• In social network. It allows to recognize communities among large groups of people.

• In marketing. Clustering can put large number of clients into different groups

according to their consuming needs, in order to use different publicity strategy.

• In health care. Cluster analysis can be used for medical imaging and medical

resource decision making.
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• In biology. It helps to cluster different types of plants or different species of animal

according to their features.

Deal to its importance, many approaches were proposed to achieve the clustering pro-

pose. Different algorithm leads to different clustering result, depending on the definition

of what constitutes a cluster in the algorithm. In this next section, three prominent

approaches will be reviewed.

1.3 Common approaches for clustering

There are more than 100 published clustering algorithms. Three of the most well-known

approaches are hierarchical clustering, k-means algorithm and model-based approach.

Each of them bases on different idea of what makes a cluster. These three approaches are

widely used in clustering because of their simple adapting abilities and their encouraging

results. It is hard to tell which algorithm is the best. It depends on the dataset and the

requirement of the clustering result.

1.3.1 Hierarchical clustering

Hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy

of clusters. It connects objects to clusters by calculating their connectivity. This ap-

proach does not give a single partitioning for the data. It provides several clustering

results depending on the level at which the clusters merge. Hierarchical clustering can

be agglomerative or divisive. Hierarchical agglomerative clustering (i.e. HAC) starts

with individual observations and aggregates them into clusters. Hierarchical divisive

clustering (i.e. HDC) starts with the complete dataset and divides it into partitions. In

general, HAC is more often used than HDC. In this part, we will focus on the HAC.

Hierarchical clustering does not require us to pre-specify the number of clusters. The

process of an HAC clustering of n objects is described as follows [29]:

1. We assume that each object constitutes a cluster. We begin from n clusters cor-

responding to n objects respectively. We compute the distances between each two

clusters, which equals to the distances of each two objects.

2. Find out two most similar classes (A,B) and emerge them into one class C = A∪B.

3. Remove the clusters A and B. Calculate the dissimilarities between the new class

C and other classes.
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4. Repeat step 2 and step 3 until all the objects are emerged into only one class of n

objects.

Step 3 can be done by different methods. If we consider the shortest distance of any

member of one cluster to any member of another cluster to be the distance between

two clusters, this method is called single-linkage clustering. On the contrary, when

the distance between two clusters is based on the two least similar points in these two

clusters, the method is called complete-linkage clustering. The third method is called

average-linkage clustering, where the distance between two clusters is the average of

distances between members of these two clusters. In the Ward’s method [2], at each

step we find the pair of clusters that leads to a minimum increase in total within-cluster

variance after merging. This increase is a weighted squared distance between cluster

centers.

An HAC clustering is typically visualized as a dendrogram. Each object is represented

by a horizontal line. The y-coordinate of the horizontal line is the similarity of the two

clusters that were merged. A pre-specified number of clusters is not required in HAC.

Each step of HAC represents different level of clustering. The root represents the whole

dataset. An internal node represents a cluster at the present step. The height of the

internal node represents the distance between its two child nodes.

An example of an HAC clustering is shown in the Figure 1.1. It stars with a set of five

individual observations. At the beginning of the process, each observation is considered

as one cluster, which is stated in the x-coordinate. The y-coordinate indicates the

distance (or similarity) of the two clusters that are merged. After four steps (levels) of

clustering, five observations are finally aggregated into one cluster.
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Figure 1.1: An example of hierarchical agglomerative clustering. It stars with five
individual observations, goes through four levels of clustering to aggregates them into

one cluster.

Hierarchical clustering has some limitations. For example, there is no explicit clusters

and no optimal clusters can be defined. Despite of those limitations, many advantages

make hierarchical clustering a widely used method: the number of clusters is not required

in advance and there is no input parameter.

1.3.2 K-means algorithm

K-means [3] is one of the simplest and oldest unsupervised learning algorithms. It is

also called Lloyd’s algorithm [30], which is based on the centroid model. The objective

of K-means clustering is simply to partition a set of observations into K clusters. The

centroids of K clusters are defined in advance. The centroids are better to be well

separated to each other so as to obtain a good clustering result. The procedure of the

k-means algorithm can be summarized as follows:

1. Define K points in the whole space of the set of observations. These K points

represent the initial centroids of K clusters.

2. Calculate the distances between the observations and the centroids.

3. Move each observation to the closest cluster.
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4. After assigning all the observations, redefine the centroids of the K clusters.

5. Repeat steps 2, 3 and 4 until the positions of K centroids don’t move anymore.

Comparing to the hierarchical clustering, K-means clustering has some advantages. With

a large number of variables, K-Means may be computationally faster than hierarchical

clustering (if K is small). K-Means may produce tighter clusters than hierarchical clus-

tering, especially if the clusters are globular.

But at the same time, k-means clustering has several disadvantages too. For example,

it is difficult to calculate the quality of the clustering result. It is hard to know what

K should be. Different initial partitions can result in different final clusters. Sometimes

k-means clustering converges to local optimum. The clustering result can highly depend

on the initial centroids. Thus, several methods were proposed to improve this drawback.

For example, there are the k-medoids algorithm [31] and the k-medians clustering [32].

The k-medoids algorithm chooses data points as centers and the k-medians clustering

calculates the median instead of calculating the mean for each cluster to determine its

centroid. Sometimes the k-means++ algorithm [33] is used to choose the initial values.

In order to obtain the global optimum, it is common to run the K-means algorithm

multiple times with different starting conditions. But sometimes K-means can be very

slow to converge.

1.3.3 Model-based approach

The model-based approach aims to put the objects following the same distribution into

the same group. This method supposes that the data follows certain probability distribu-

tion model. It is achieved by estimating the mixture model parameters which maximize

the likelihood of potential model. This approach over-fits the dataset if there is no con-

straint on the complexity of the model. Despite its overfitting problem, model-based

approach is strong comparing to the hierarchical clustering and k-means algorithm, be-

cause it provides not only the clusters, but also the mixture model which helps us to

better understand the data distribution.

Two most commonly used model-based clustering approaches are mixture approach and

classification approach. In the next section, we will focus on the Gaussian mixture

model-based mixture approach and classification approach.



1.4. Model-based clustering approaches: mixture approach and classification approach13

1.4 Model-based clustering approaches: mixture approach

and classification approach

To obtain the model parameter estimation, we have two most well-established methods

via maximum likelihood, namely the mixture approach (also called Maximum Likeli-

hood estimation) and the classification approach (also called Classification Maximum

Likelihood estimation). These two approaches are studied and compared by many au-

thors. Generally speaking, the mixture approach is aimed to maximize the likelihood

over the mixture model parameters via Estimation Maximization (EM) algorithm, while

the classification approach is aimed to maximize the likelihood over the mixture model

parameters and the origin identifying labels of each observation via Classification Esti-

mation Maximization (CEM) algorithm.

The mixture approach was recommended and analyzed by R. A. Fisher between 1912 and

1922 [34]. Reviews of the development of maximum likelihood have been provided by a

number of authors. Mixture approach estimates the parameters by using the Expectation

Maximization (EM) algorithm and obtains the partition by using Maximum A Posteriori

probability (MAP) estimation.

In the mixture approach, we estimate the parameters πk and θk, in order to maximize

the log-likelihood:

L(Φ|x) =
n∑

i=1

log
K∑

k=1

πkfk(x; θk)

In the restricted case where the mixing proportions πk are considered to be equal, the

log-likelihood has the form:

L(Φ|x) =
n∑

i=1

log

K∑

k=1

fk(x; θk)

The parameters θk are generally obtained by using the EM algorithm.

The classification approach is also called Classification Maximization Likelihood (CML),

is proposed by Scott and Symons [6]. It aims to maximize the likelihood over the mixture

model parameters and over the identifying labels of the mixture origin for each data.

The mixture origin is denoted as zi = (zik, k = 1, . . . ,K), where zik = 1 when xi belongs

to the component k, otherwise zik = 0. Two different CML criteria were proposed: the

restricted CML criterion and the unrestricted one. In the restricted case, the mixing
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proportions πk are assumed to be equal. The CML criterion has the form [6]:

LCR =
K∑

k=1

∑

xi∈Pk

log f(xi, µk,Σk)

where P = (P1, . . . , PK) is a partition of x1, . . . ,xn where Pk = xi/zik = 1.

In the unrestricted case, the mixing proportions πk of components are different. The

CML criterion is [35]:

LCR =
K∑

k=1

∑

xi∈Pk

log(πkf(xi, µk,Σk))

CML approach is carried out basing on Classification Expectation Maximization (CEM)

algorithm.

In the same study of Scott and Symons [6], they suggested that with little information

of the size of clusters, the clustering procedures based on maximum likelihood may have

a tendency to partition the sample into groups of similar size. The maximum likelihood

estimates are discussed under two situations: equal covariance matrices and unequal

covariance matrices. When we assume covariance matrices equal, maximizing the log

likelihood function equals minimizing |Wy|, the determinant of the within-groups sum

of squares matrix. When the covariance matrices are very different among clusters,

maximizing the likelihood equals to minimizing tr(W−1
y By). The algorithm was tested

on the well-known Irish data [36]. The Wy criterion gave good results when the data is

composed of two groups of equal size. And it shows that the criterion prefers to partition

the sample into components of the nearly same size.

Usually, when studying these two approaches, the mixing proportion in the standard

classification approach is restricted as equal, while there is not restriction on the mixing

proportion in the mixture approach. Until 1981, Symons [35] proposed a general classi-

fication maximum likelihood criterion of free mixing proportions. In order to study the

performance of both approaches under the same conditions, Celeux and Govaert [37]

presented a comparison of the practical behaviors of the mixture and the classification

approaches for clustering by maximum likelihood. They compared both approaches in

two conditions of assuming the models respectively of equal mixing proportions and of

unknown mixing proportions. The result turns out that the classification approach is

favored in the case of small sample, and the mixture approach is preferred in dealing

with large sample. They also found out that the approaches assuming equal mixing

proportions are more reliable and stronger than un-restricted approaches in practical

applications.
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However, the CML approach has some limitations: firstly, it suggests the same features

for all the clusters; secondly, it only fits for Gaussian distributions; thirdly, noise is not

allowed in the hypothesis. To solve the first problem, parsimonious models were proposed

according to a parametrization of the variance matrices of the mixture components

proposed by Banfield and Raftery [16]. These parsimonious models will be emphasized

in the later part of this chapter.

For the distribution restriction, a framework for the Uniform-Normal case is introduced.

To deal with the noise, a Poisson process was discussed:

For a dataset, we should allow the possibility that some observations are not from any

cluster of the model. We can consider this kind of data as noise. To include such

observations, Banfield and Raftery [16] assume that the dataset arises from a Poisson

process with intensity ν. The likelihood

L(θ,γ) =

n∏

i=1

fγi(xi;θ)

is modified as:

L(θ, ν,γ) =
(νA)n0e−ν0A

n0!

∏

i∈E
fγi(xi;θ)

where E = ∪Gk=1Ek, n0 = n −∑G
k=1 nk and A is the hyper-volume of the region from

which the data have been drawn.

Also, to deal with the noise problem, Banfield and Raftery [16] has also proposed the

hierarchical clustering methods which require the shape parameter α to be defined before

clustering and Ak = diag{1, α}.

Bensmail and Meulman [38] assumed a mixture of a Gaussian distribution satisfying

and noise distributed as a homogeneous spatial Poisson process with constant rate π0.

The mixture distribution likelihood is:

p(θ1, . . . , θK ;π0, π1, . . . , πK |x) =

n∏

n=1

[
π0
Λ

+

K∑

k=1

πkfk(xi|θk)]

where Λ > 0 is the volume of the finite domain which is defined as:

Λ =

p∏

j=1

( max
i=1,...,n

{xij} − min
i=1,...,n

{xij})
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1.5 EM and CEM algorithms

1.5.1 EM algorithm

Estimation Maximization (EM) algorithm was first time officially proposed by Dempster

et al. [7]. Later Wu [39] has corrected a flawed convergence analysis in this paper. The

EM algorithm is widely used because of its simplicity and easy implementation. It is an

efficient iterative procedure to compute the Maximum Likelihood (ML) estimate in the

presence of missing (or unobserved) data.

Since it is not easy to maximize the log-likelihood directly, EM algorithm maximizes

the expectation of complete log-likelihood instead. The complete data in EM algorithm

are considered to be (x, z). z is the missing data indicating the mixture component

origin label of each observation. z = (z1, . . . , zn) where zi = k when xi belongs to the

component k. The complete log-likelihood takes the form:

CL(Φ, z|x) =
K∑

k=1

K∑

k=1

zik log
(
πkfk(x; θk)

)

EM algorithm starts from the initial parameters θ(0), then computes the Expectation

step (E step) and the Maximization step (M step) iteratively:

• E step: Calculate the expected value of the complete log-likelihood function, with

respect to the conditional distribution of z given x under the current estimate of

the parameters Φ:

Q(Φ|Φ(q)) = E[logCL(Φ, z|x)]

i.e. Calculate the posterior probabilities t
(q)
ik of xi belonging to the kth component:

t
(q)
ik =

π
(q)
k fk(x; θ

(q)
k )

∑
l π

(q)
l fl(x; θ

(q)
l )

• M step: Find the parameter Φ(q+1) that maximizes the expectation:

Φ(q+1) = argmax
Φ

Q(Φ|Φ(q))

EM algorithm is widely used thanks to its conceptual simplicity and easy implementa-

tion. But EM algorithm has several limitations which need to be improved. For example,

the fact that its result is highly dependant on the initial data. Sometimes it provides

only the local optima. It might require many iterations and long computation time.
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Large quantity of data and high dimensionality of data stress out this low execution

problem. To improve these limitations, EM algorithm’s extensions were proposed.

1.5.2 EM algorithm’s extensions

To solve the slow convergence problem of the EM algorithm, Moore [9] proposed a very

fast new algorithm basing on the multi-resolution kd-trees of Moore et al. [40]. This

new algorithm succeeds in reducing the computational cost of EM-based clustering.

It is reported that, apart from the slow convergence, the EM algorithm has another

limitation: the EM algorithm depends highly on the initial values. Bad initiation can

lead to local maximum likelihood, instead of the global maximum. For this problem,

several extension extensions of the EM algorithm were proposed.

One of the algorithms is called SEM algorithm which was proposed by Celeux and

Diebolt [41] in order to improve some limitations of EM algorithm. In fact, a S step is

inserted between the E and M steps of EM algorithm. In the S step, each observation

xi is assigned randomly to one of the clusters Pk by the posterior probabilities tmk (xi)

that xi belongs to Pk. It claims that the SEM algorithm has several improvements, with

respect to the EM algorithm:

• It is sufficient to know an upper bound on the number of clusters;

• The result is independent from the initial parameters;

• The speed of convergence is improved.

Another algorithm is based on the SEM algorithm and it is called CAEM algorithm

(Classification Annealing EM). Comparing to the SEM algorithm, it replaces the poste-

rior probabilities tmk (xi) by the scores smk (xi) which is defined as:

smk (xi) =
{pmk f(xi, amk )}1/τm

∑K
k′=1{pmk′f(xi, amk′)}1/τm

where τm (m ≥ 0)is a sequence of temperatures decreasing to zero when m tends to

infinity from τ0 = 1.

Dasgupta and Raftery [42] has extended the model-based clustering methodology of

Banfield and Raftery [16] mclust by refining the final partition using the EM algorithm

which is called mclust-em. The mclust-em algorithm has two steps, firstly it executes

mclust to obtain an initial partition of the data for each number of clusters. Secondly, it

then executes the EM algorithm to obtain the maximized mixture likelihood in order to
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make a model choice by BIC criterion. In mclust-em, the shape parameter α is estimated

by including α at the M step of the EM algorithm. It turns out that mclust-em procedure

outperforms the mclust procedure.

Fraley and Raftery [43] proposed a clustering methodology based on multivariate Gaus-

sian mixtures in which BIC is used for comparison of models. Within this new approach,

partitions of clusters are determined by a combination of hierarchical clustering and the

EM algorithm. The agglomerative hierarchical clustering is used to initialize the EM

algorithm. Noise and outliers are modeled by adding a Poisson process component. As

real data experiment, they applied this new approach on a three-dimensional dataset

used for diabetes diagnosis. The results showed that this approach gives much better

performance than existing methods although it has two limitations: it cannot be applied

to large datasets because of the big computation time problem; other models may be

more suitable than multivariate normal distribution models in some situations.

Biernacki et al. [44] discussed how to choose starting values for the EM algorithm to get

the highest likelihood in the framework of multivariate Gaussian mixture models. Their

method basically considered a three-step (search/run/select) strategy for maximizing the

likelihood. The idea is to firstly build a search method to generate p initial positions.

Then run the EM algorithm for certain number of iterations at each initial position. At

last select the result which provides the highest likelihood among the p results. The CEM

and SEM algorithms can be used in the search step for finding the initial points. In this

paper, a strategy of initiating EM algorithm by short runs of EM was also recommended.

This strategy is simple and has good performance in many cases where no particular

mixture model can be fitted to the data. But it is hard to define which strategy among

those proposed one is the best and it is also difficult to tell which particular strategy

should be used in each specific situation.

To solve the local optimum problem of EM algorithm, besides by choosing the start-

ing values, another solution was proposed by Celeux and Govaert [8]. By setting the

optimization-based clustering methods under the classification maximum likelihood ap-

proach, a general Classification EM algorithm was defined and studied by Celeux and

Govaert [8]. Two stochastic algorithms are also developed, deriving from this general

Classification EM algorithm. These two algorithms have less initial-position depen-

dence compared to the classical optimization clustering algorithms. They are supposed

to obtain the local optimum solutions from any initial position. However, both of the

algorithms need a large number of iterations to ensure the best result.
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1.5.3 CEM algorithm

CEM algorithm is considered as classification version of EM algorithm [8]. One sig-

nificant difference between CEM and EM algorithms is that CEM algorithm inserts a

classification step between Expectation step and Maximization step in order to acceler-

ate the execution. Thus CEM algorithm is theoretically supposed to execute faster than

EM algorithm. The procedure is described as follows:

• E-step (Expectation): Calculate the poster probabilities t
(q)
ik of xi belonging to the

kth component, same as in the EM algorithm;

• C-step (Classification): Obtain z
(q)
i which indicates the mixture origin of each xi:

z
(q)
ik = argmax

k
t
(q)
ik

The biggest t
(q)
ik (k=1,. . . ,K) is replaced by 1, others are replaced by 0.

• M-step (Maximization): Find the parameter Φ(q+1) that maximizes the expecta-

tion.

1.6 Parsimonious models

Parsimony is a ’less is better’ concept of frugality, economy, stinginess or caution in

arriving at a hypothesis or course of action. The word derives from Middle English

parcimony, from Latin parsimonia, from parsus, past participle of parcere: to spare.

In science, parsimony is preference for the least complex explanation for an observa-

tion. Parsimony is also a factor in statistics: in general, mathematical models with the

smallest number of parameters are preferred because each parameter introduced into the

model adds some uncertainty to it. Different kinds of parsimonious models were pro-

posed according to different theories. Here we will mention two groups of parsimonious

Gaussian mixture models. Before introducing these parsimonious models, let’s firstly

present the definition of Gaussian mixture model.

1.6.1 Definition of Gaussian mixture model

A Gaussian mixture model is represented as a probability density function in the form

of a weighted sum of Gaussian component densities. Equation 1.1 describes the distri-

bution of an independent sample x = (x1, . . . ,xn) issued from a K-component mixture
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distribution:

f(x;Φ) =

K∑

k=1

πkfk(x; θk) (1.1)

with Φ = (π1, . . . , πK , θ1, . . . , θK), where πk (k = 1, . . . ,K) denote the mixing propor-

tions of the mixtures (0 < πk < 1 and
∑K

k=1 πk = 1), and θk = (µk,Σk) (k = 1, . . . ,K)

are the parameters of Gaussian distribution functions fk of components: mean vectors

µk and variance matrices Σk. The Gaussian distribution function fk is defined in a

d-dimensional space:

fk(x;µk,Σk) =
1

(2π)d/2|Σk|1/2
exp(−1

2
(x− µk)

TΣ−1
k (x− µk))

Figure 1.2 gives an example of the density of a one-dimensional Gaussian mixture dis-

tribution with two components of equal proportions, while Figure 1.3 shows the density

of a two-dimensional Gaussian mixture distribution with two components of equal pro-

portions.
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Figure 1.2: Density of a one-dimensional Gaussian mixture distribution with two
components of equal proportions.

1.6.2 Models based on variance matrix parametrization

To be more adaptable to datasets of different distributions, parsimonious Gaussian mix-

ture models were developed. They are achieved by applying a parametrization of the
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Figure 1.3: Density of a two-dimensional Gaussian mixture distribution with two
components of equal proportions.

variance matrix Σk [16]:

Σk = λkDkAkD
T
k

where λk = |Σk|1/d determines the volume of the kth cluster. Its orientation is de-

termined by Dk which is the matrix of eigenvectors of Σk. And Ak determines its

shape. Ak is a diagonal matrix with the normalized eigenvalues of Σk in a decreas-

ing order on the diagonal, and |Ak|=1. In the Figure 1.4, an example of a Gaussian

cluster in two dimensions is shown in the form of ellipse. The Gaussian cluster has

rotated an angle of α from the horizontal line. Thus the variance matrix of this cluster

is D =

(
cosα − sinα

sinα cosα

)
. The semi-major axis equals

√
λa while the semi-minor axis

equals
√

λ
a . The shape matrix A =

(
a 0

0 1/a

)
.

According to this variance matrix decomposition, eight general parsimonious mod-

els were proposed [15]. They are [λDADT ], [λkDADT ], [λDAkD
T ], [λkDAkD

T ],

[λDkADT
k ], [λkDkADT

k ], [λDkAkD
T
k ], [λkDkAkD

T
k ]. Diagonal family and spherical

family of parsimonious models were proposed by putting more restrictions on certain

parameters. If the angle α is defined to equal to 0 or π/2, the matrices Dk have only one

entry, neither 1 or −1 in each row and each column, 0 elsewhere. ThenDk andAk can be

be merged into one matrix: DkAkD
T
k = Bk. Thus, we have a simpler parametrization

of variance matrix Σk = λkBk. By doing this, we obtain four diagonal models: [λB],

[λkB], [λBk] and [λkBk]. To achieve a simpler family, the shapes of clusters are assumed
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Figure 1.4: Interpretation of Gaussian mixture model parameter.

as spherical. Ak = diag(1, 1) = I. There is no interest to consider the orientation in

this situation. Then we have Σk = λkI. Then two more spherical models are generated:

[λI] and [λkI].

1.6.3 Models based on factor analysis model

Lately, Mcnicholas and Murphy [45] have proposed new models basing on assuming a

latent Gaussian model which are closely related to the factor analysis model.

The factor analysis model assumes that a p-dimensional random vector X is modeled

using a q-dimensional (q < p) vector of latent factor (i.e. unobserved factors). It is

expressed in the form as follows [46]:

X = µ+ΛU + ǫ

where Λ is a p× q matrix of factor loadings, the factors U ∼ N(0, Iq) and ǫ ∼ N(0,Ψ),

where Ψ = diag(ψ1, . . . , ψp). The marginal distribution of X basing on this model is

N(µ,ΛΛ′ +Ψ).
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Later the factor analysis model was extended by developing the mixture of factor an-

alyzers model, which is assumed as a mixture of Gaussian distributions with a factor

analysis covariance structure [47]. The density function of factor analyzers model is:

f(xi) =

G∑

g=1

πg

(2π)p/2Ψ
1/2
g

exp
{
− 1

2
(xi − µg −Λgui)

TΨ−1
g (xi − µg −Λgui)

}

where πg denotes the proportion of the component g, µg the mean parameter, Λg the

loading matrix and Ψg the noise matrix. The mixtures of factor analyzers model differs

between the situations that the Ψg is constrained to be equal [47] or unequal [48]. Mc-

nicholas and Murphy [45] proposed to unify these Gaussian mixture models by applying

constraints on the Λg and Ψg matrices, and if Ψg are isotropic: Ψg = ψgIp [49]. Thus,

eight different parsimonious Gaussian mixture models were derived. These eight models

are presented in the Table 1.1.

Model ID Loading Matrix Λg Error Variance Ψg Isotropic

CCC Constrained Constrained Constrained
CCU Constrained Constrained Unconstrained
CUC Constrained Unconstrained Constrained
CUU Constrained Unconstrained Unconstrained
UCC Unconstrained Constrained Constrained
UCU Unconstrained Constrained Unconstrained
UUC Unconstrained Unconstrained Constrained
UUU Unconstrained Unconstrained Unconstrained

Table 1.1: Eight parsimonious Gaussian models with different covariance structures

The Alternating Expectation Conditional Maximization (AECM) algorithm [50], which

is an extension of EM algorithm, is used for fitting these parsimonious Gaussian mixture

models.

1.7 Criteria for model choice

Parsimonious Gaussian mixture models were proposed in order to better fit data of

different distributions. When data follows a simple distribution in a two dimensional

space, we could guess the potential model by observing. But if the data is of multi-

dimension, or if the components of data are well-mixed, it is not easy to observe the

right model which corresponds to the data. The experimental result of parsimonious

model has shown that the best result is generally obtained by the model representing

the data distribution [15]. Model choice becomes an essential subject in model-based
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clustering. The choice of model concludes two contents: the choice of model and the

choice of number of clusters.

In this thesis, model selection is restricted in choosing among the Gaussian mixture

models. Why the choice of model is important? An over complex model leads to a

complicate parameter estimation. An over simple model cannot represent correctly the

data distribution. The importance of defining the number of clusters is also obvious:

Too many clusters cannot provide a necessary clustering. For example, when the number

of clusters is equivalent to the number of points, the meaning of clustering is lost in this

case. But when there are too few clusters, some small clusters might be ignored or some

overlapped clusters might be merged as one.

Many criteria were proposed for clustering model choice. There are classical criteria such

as information criteria: Akaike Information criterion (AIC) [17], AIC3 criterion [18] and

ICOMP criterion [19]. Schwarz [20] has proposed the famous Bayesian Information

criterion (BIC). Later Biernacki et al. [21] proposed a BIC-like criterion: Integrated

Completed Likelihood (ICL) criterion. There is also classification criterion NEC [51].

Information criteria (AIC, AIC3 and BIC) are based on the maximum likelihood with

certain penalty of the number of parameters of the model. As the complexity of the

model increases, the model becomes more capable of adapting to the characteristics

of the data and the maximum likelihood is bigger. Thus, selecting the best fit model

by selecting the one that maximizes the likelihood certainly leads to choose the most

complex model. A balance between the data information represented by the model and

the complexity of the model needs to be defined.

1.7.1 Criteria based on maximum likelihood

It is said that the maximum likelihood is not a good criterion in choosing the right

model for clustering. Let’s review the definition of likelihood to understand why. In

mixture model, x = (x1, . . . ,xn) is assumed to be an independent sample issued from a

K-component mixture distribution defined on IRp:

f(x;Φ) =
K∑

k=1

πkfk(x; θk)

with Φ = (π1, . . . , πK , θ1, . . . , θK), where πk (k = 1, . . . ,K) denote the mixing propor-

tions of the mixtures (0 < πk < 1 and
∑K

k=1 πk = 1), and θk = (µk,Σk) (k = 1, . . . ,K)

are the parameters of Gaussian distribution functions fk of components: mean vectors
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µk and variance matrices Σk. The log-likelihood of the sample is defined:

L(M,K) =
n∑

i=1

ln(
K∑

k=1

πkfk(x; θk))

where M represents the mixture model which maximizes the likelihood.

From its definition, L(M,K) increases along with the complexity of the mixture model

M and the number of components K. Doing model choice by L(M,K) only results

in getting the most complex model with the most number of components. Thus, some

approximate maximum likelihood criteria were proposed.

There is the fuzzy classification likelihood:

C(M,K) = L(M,K)− E(M,K)

with the entropy term:

E(M,K) = −
K∑

k=1

n∑

i=1

tik log tik

where tik is the estimated conditional probability that xi arises from the kth mixture

component.

In the context of choosing the number of clusters in clustering approach, classification

likelihood (CL) method was studied. CL is a penalized term of the likelihood:

CL(θ,z) = L(θ)− LP (θ,z)

where LP (θ,z) = −∑n
i=1

∑K
k=1 zik ln(tik). And CL is also a penalization of the k-means

criterion tr(Wk). The relationship between CL and k-means criteria is:

CLK = −nd
2

ln(tr(WK))− n ln(K) + cst.

Since the classification likelihood is a penalized form of likelihood and K-means, it can

be considered as an approach to choosing the number of clusters. Several strategies are

suggested:

1. CL criterion. Maximize directly CL(θ,z)

2. CLM criterion. First estimate the parameters θ by maximum likelihood and then

penalize the maximum log-likelihood by the term LPK , where

LPK = minz LP (θ̂L(K),z).
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3. An extension of CL which is called CL2. It refuses all number of clusters K where

at least one of cluster contains points equal or less than free parameters.

4. An another strategy CLM2 extended from CLM in a similar way as CL2 from CL.

where CLM criterion is defined as follows:

CLM(M,K) = L(M,K)− EC(M,K)

where EC(M,K) is a kind of entropy term:

EC(M,K) = −
K∑

k=1

n∑

i=1

zik log tik

These four strategies of using classification likelihood are tested in experiment. The

result shows that the four strategies perform well on data of well-separated clusters of

equal mixing proportions .

1.7.2 AIC criterion

The Akaike Information criterion, proposed by Akaike [17] is a measure of the quality of

a model for the dataset. It is generally considered as the first model selection criterion:

AIC(M) = −2Lmax(M) + 2v(M)

where Lmax(M) is the maximum of log-likelihood for the estimated model M and v(M)

is the number of the free parameters in this model M .

Basing on AIC criterion, Bozdogan [18] proposed a modified AIC criterion AIC3 which

has the form:

AIC3(M,K) = −2L(M,K) + 3ν(M,K)

1.7.3 BIC criterion

The Bayesian Information criterion is another penalized criterion which is highly related

to the AIC criterion. In the Bayesian framework, choosing a better fit model is to choose

the model of the highest posterior probability. In the Bayes’ theorem, the posterior

probability of the model Ml for dataset x is:

P (Ml|x) =
f(x|Ml)P (Ml)∑
r f(x|Mr)P (Mr)
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where f(x|Ml)P (Ml) is the integral likelihood of the model Ml and P (Ml) is its prior

probability. So if all the prior probabilities of all the models are assumed to be the same,

choosing the model of the highest posterior probability leads to choosing the model with

the biggest integrated likelihood.

By adding the parameters to increase the likelihood usually leads to over-fitting problem.

Similar to the AIC criterion, to solve this problem, the BIC criterion introduces a penalty

term of the number of the model parameters into the maximum likelihood. The BIC

criterion is used to compare models with different parameters and with different number

of clusters.

The formula of the BIC criterion is:

BIC(M) = −2Lmax(M) + v(M) ln(n)

where n is the number of points contained in the dataset.

1.7.4 ICL criterion

If the suitable model is not considered in the clustering process, BIC criterion tends

to overestimate the number of clusters [52]. To deal with this problem, an Integrated

Completed Likelihood (ICL) criterion was proposed [21]. We know that BIC is an ap-

proximation of maximum log-likelihood. The completed log-likelihood can be considered

as a penalized log-likelihood where the penalty is a measure of the ability of a Gaussian

mixture model to provide a fitted partition to the data [21]:

CL(M) = L(M) +
K∑

k=1

n∑

i=1

zik log tik

︸ ︷︷ ︸
≤0

where

tik =
πkf(xi|ak)∑
l πlf(xi|al)

indicating the conditional probability that xi arises from the kth mixture component.

So ICL is defined as:

ICL(M) = −2LMmax(M) + v(M) ln(n)

It can also be written as:

log f(x, z|m,K) ≈ −2 log f(x, z|m,K, θ̂) + vm,K ln(n)
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where m indicates the form of a Gaussian mixture, K the number of clusters and

θ̂ = argmax
θ
f(x, z|m,K, θ)

But the unobserved data z is missing, thus θ̂ is replaced by:

θ̂ = argmax
θ
f(x|m,K, θ)

and z is replaced with ẑ =MAP (θ̂).

1.7.5 ICOMP, NEC and AWE criteria

Bozdogan [19] proposes to use a measure of non-linear complexity involving the Fisher

information matrix F−1
n and the number of parameters. The complexity of van Emden

is:

g(M) = v(M) ln[
tr(F−1

n )(M)

v(M)
]− ln |F−1

n (M)|

So Informational Complexity Criterion (i.e. ICOMP) criterion is :

ICOMP (M) = −2L(M) + v(M) ln[
tr(F−1

n (M))

v(M)
]− ln |F−1

n (M)|

Celeux and Soromenho [51] has proposed Normalized Entropy Criterion (NEC). The

NEC is in fact derived from a relation between the log-likelihood L(M) and the classi-

fication log-likelihood LC(M):

CL(M,K) = L(M,K)− E(M,K) (1.2)

where

E(M,K) = −
K∑

k=1

n∑

i=1

zik log tik

︸ ︷︷ ︸
≥0

and

tik =
πkf(xi|ak)∑
l πlf(xi|al)

The entropy E(M,K) cannot directly be a criterion for model choice because L(M,K)

increases along with the complexity of the model M . So E(M,K) needs to be normal-

ized. From Equation 2.14, we have:

1 =
L(M,K)− L(M, 1)

LM(M,K)− LM(M, 1)
+

E(M,K) − E(M, 1)

LM(M,K)− L(M, 1)
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when K > 1. With E(M, 1) = 0, we have the NEC criterion:

NEC(M,K) =
E(M,K)

LM(M,K)− L(M, 1)
(1.3)

From the Equation 2.14, NEC criterion cannot compare the situation between K > 1

and K = 1. To decide if K = 1 by NEC criterion, we need to apply an procedure which

was proposed by Celeux and Soromenho [51]:

• Estimate the parameters of the Gaussian mixture function by maximizing the

likelihood, with different value of K (2 ≤ K ≤ Ksup) where Ksup indicating a

upper bound of the number of components. NEC(M,K) is minimized with K∗:

NEC(M,K∗).

• Estimate the parameters of a K∗ components’ Gaussian mixture with equal means

µ1 = . . . = µK∗ = µ where µ is the sample mean of the data. L̃(1) and Ẽ(M, 1)

are respectively the corresponding log-likelihood and entropy. The result of NEC

criterion with K = 1 is:

NEC(M, 1) =
Ẽ(M, 1)

L̃(M, 1) − L(M, 1)

K = K∗ when NEC(M,K∗) ≤ NEC(M, 1), otherwise K = 1.

Another criterion of approximation of Bayes factor is called Approximate Weight of

Evidence (AWE) criterion:

AWE(K) = −2CL(K) + 2v(K)(
3

2
+ ln(n))

1.8 Binned data clustering

The EM and CEM algorithms become a useful tool for cluster analysis in many do-

mains. But along with the development of technology, the amount of observations keeps

increasing. In this case, both EM and CEM algorithms take a lot of computation time.

In order to increase the speed of the EM and CEM algorithms, people have proposed to

introduce binned data into clustering approaches.

1.8.1 What is binned data?

Binning is way to group a set of data into a smaller number of bins. It is a data pre-

processing technique used to reduce the effects of minor observation errors. It is also used
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to reduce the amount of data in order to accelerate the clustering process. Moreover,

many datasets can only be presented in the form of binned data deal to measure machine

of limited precision, such as red blood cell data [13]. Binned data clustering is useful in

dealing with this kind of data.

To get binned data, the idea is to divide the overall space IRp into v sub-spaces which

are also called bins with a partition (H1, . . . ,Hv). The amount of data within each

bin is calculated and is called the ’frequency’ of the bin. The Figure 1.5 explains the

transformation from standard data to binned data.

Figure 1.5: How to get binned data from standard data.

The locations of bins and their frequencies become the only information about data after

transformation. In this case, the number of observations is reduced to the number of

bins. Figures 1.6, 1.7 and 1.8 demonstrate an example showing how to obtain binned

data.
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Figure 1.6: Simulated data according to Gaussian mixture model with three clusters.
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Figure 1.7: Binned data in the view of 2d corresponding to the data in Figure 1.6.



32 Chapter 1. State of the art

5

10

15

20

25

30

0
5

10
15

20
25

30

0

5

10

15

20

25

30

Figure 1.8: Binned data in the view of frequencies corresponding to the data in Figure
1.6.

Figure 1.6 describes a set of standard data simulated according to Gaussian mixture

model with three clusters of different volumes. In Figure 1.7, the space is divided into

small bins of size = 0.5 · 0.5 (shown by grid). Only the non-empty-bins are shown in the

figure, which are much less than the data. Figure 1.8 presents the three-dimensional view

of binned data which are transformed from the standard data (individual observations)

in Figure 1.6. The two dimensional plane at the bottom indicates the space of the

standard data. The height of each bar in the two dimensional histogram represents the

frequency of each bin.

1.8.2 Binned-EM algorithm

The idea of applying EM algorithm to binned data (binned-EM) was first time mentioned

by Dempster et al. [7]. Then the one-dimensional binned-EM algorithm was developed by

McLachlan and Jones [12] and later Cadez et al. [13] extended it to the multi-dimensional

case.

In the paper of Cadez et al. [13], he proposed a general solution to the problem of fitting

a multivariate mixture density model to binned and truncated data. The overall sample

space H is divided into v disjoint subspaces Hj, which are also called bins. There are

only r non-empty bins. The likelihood is:

log(L) =
r∑

j=1

nj log(Pj)− n log(P )
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where n =
∑r

j=1 nj. And P and Pj indicates the integrals of the probability density

function (PDF) of bins:

Pj = Pj(Φ) =

∫

Hj

f(x; Φ)dx

P = P (Φ) =

r∑

j=1

Pj =

∫

H

f(x; Φ)dx

Since the implementation of binned-EM algorithm can be slow, in order to reduce the

execution time, several straightforward numerical techniques are also proposed in the

paper of Cadez et al. [13]: Romberg integration was used to select the order of integra-

tion, so as to converge faster; two special bins are defined to cover the truncated regions:

one covers the space from the last bin to ∞, another from −∞ to the first bin; an addi-

tional heuristic is added into the algorithm to make EM algorithm converge in less time.

Experimental results on simulated data suggest that the proposed methods can save

significant computation time with no loss in the accuracy of the parameter estimates.

And an application of the proposed approach to diagnosis of iron deficiency anemia

was briefly described, in the context of binned and truncated bivariate measurements of

volume and hemoglobin concentration from an individual’s red blood cells.

Similar as the EM algorithm, binned-EM algorithm aims to obtain the parameters esti-

mate which maximizes the likelihood. In binned data framework, each bin is assumed

to belong to one cluster. The log-likelihood of binned-EM algorithm takes the form:

L(Φ) =

v∑

r=1

nr log
( K∑

k=1

π
(q+1)
k

∫

Hr

fk(x; θ
(q)
k )dx

)
+ log(c)

In binned data clustering, maximizing the expectation of the complete likelihood equals

maximizing the likelihood. But the former method is easier. The complete likelihood

contains observed data and missing data. The missing data is the label vector zr (r =

1, . . . , v) which indicates the origin labels of the bins Hr. The complete log-likelihood

is:

L(Φ;a,z) = log(p(a,z;Φ))

=

v∑

r=1

nr log
(
πzr

∫

Hr

fzr(x; θzr)dx
)
+ log(c)

To maximize the expectation of the complete log-likelihood E(L(Φ;a,z)), similar as

the EM algorithm, the binned-EM algorithm executes the Expectation step and the

Maximization step iteratively. The derivation of binned-EM algorithm will be detailed

in the Chapter 2.
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1.8.3 Bin-EM-CEM algorithm

A classification EM algorithm for binned data (bin-EM-CEM, noted as binned-EM-CEM

Samé et al. [14]) was first time proposed by Samé et al. [14]. The derivation of bin-EM-

CEM algorithm is detailed in this paper. Numerical experiments are shown in order

to compare the bin-EM-CEM algorithm with the classical CEM algorithm. The result

shows that the bin-EM-CEM algorithm spends less CPUtime than CEM algorithm when

dealing with large number of data with a appropriate size of bins. From the aspect of

quality, bin-EM-CEM algorithm approaches to CEM algorithm when the bins become

small enough. They proposed an approximation of ICL for bin-EM-CEM algorithm to

select the best number of clusters:

ICLb(K) = (L(Φ̂; a, ẑ)− n log(S)− log(c)) − vK
2

log(n)

where Φ̂ and ẑ are estimations by bin-EM-CEM with K clusters, S is the surface of each

bin. And

vK = (2K) + 2K + (K − 1) = 5K − 1

A bin-EM-CEM application was presented to detect damaged sones on the surface of a

gas tank, by using acoustic emissions.

In 2004, Hamdan and Govaert [53] have addressed the problem of taking into account

data imprecision in the mixture model clustering of binned data by binned-EM algo-

rithm. An original method to fit the binning data procedure to imprecise data was

developed. The idea is to model imprecise data by multivariate uncertainty zones and

to assign each uncertainty zone to several bins with proportions proportional to its

overlapping volumes with the bins. To overcome the long computation time problem of

binned-EM algorithm, Hamdan [54] applied classification approach of binned data based

on bin-EM-CEM algorithm. The complete log-likelihood criterion is:

L(Φ;a,z) =
v∑

r=1

log(πzr

∫

Hr

fzr(x; θzr)dx) + log
n!∏v

r=1 nr!

where Φ = (π1, . . . , πK , θ1, . . . , θK), πk (k = 1, . . . ,K) are the proportions of the mix-

ture, θk (k = 1, . . . ,K) are the parameters of each component and zr (r = 1, . . . , v)

are the origin component of bin Hr. A flaw diagnosis application to acoustic emission

control was presented. The partitions obtained by the algorithms CEM, int-EM-CEM,

bin-EM-CEM and int-bin-EM-CEM are compared.

Later in 2009, another fast algorithm devoted to binned data clustering was proposed

by Samé [55]. The proposed approach is called bin-CEM algorithm, which is inspired
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by CEM algorithm. In the framework of grouped data, this approach estimates simulta-

neously the missing data x,z and the parameter vector Φ by maximizing the complete

data log-likelihood. And the complete data log-likelihood can be rewritten as followed:

Lc(Φ;a,z) =
v∑

r=1

nr∑

s=1

log
(
πzrsfzrs(xrs; θzrs)

)

The standard CEM, bin-CEM and bin-EM (EM applied to grouped data) algorithms

are compared in the experiment study. The experimental result shows that, under the

condition that the number of bins per dimension is 40, the execution time of the bin-

CEM and bin-EM algorithms stay almost constant along with the increase of sample

size, since they only depend on the number of bins. The proposed algorithm bin-CEM

outperforms the CEM and bin-CEM algorithms in terms of computation time.

In the Chapter 3, the derivation of bin-EM-CEM algorithm will be detailed.

1.9 Conclusion

This chapter presented the basic and important concepts which our following study bases

on.

In this chapter, firstly we presented the definition of cluster analysis. Three main clus-

tering approaches were reviewed. They are the hierarchical clustering, k-means algo-

rithm and model-based clustering. Then, we highlighted the model-based clustering

approaches basing on Gaussian mixture models. The mixture approach and the clas-

sification approaches were presented. We also studied their corresponding algorithms:

EM and CEM. In order to simplify the clustering process, two kinds of parsimonious

Gaussian mixture models were presented. One kind of parsimonious models is based on

variance matrix parametrization. And anther group of parsimonious models is based on

factor analysis model. Since the core of our thesis is model selection for data clustering,

commonly used criteria for model selection were presented in detail. The AIC, BIC,

ICL, ICOMP, NEC, and AWE criteria, for standard data, were detailed. Finally, a main

concept of this thesis was presented: binned data. The definition of binned data was

detailed. The concepts of the EM algorithm applied to binned data (binned-EM) and

the CEM algorithm applied to binned data (bin-EM-CEM) were explained.

After giving a comprehensive introduction on the main concepts we use in our study,

in the following three chapters, we will present the main contribution of our study. In

the next two chapters, we aim to combine the advantages of binning data with the

advantages of parsimonious models, so as to simplify the parameters estimation and to
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save some computation time. The binned-EM algorithms of fourteen Gaussian mixture

models will be developed in the Chapter 2, and the bin-EM-CEM algorithms of fourteen

Gaussian mixture models will be developed in the Chapter 3. The Chapter 4 shows how

to adapt AIC, BIC, ICL, ICOMP, NEC, and AWE criteria to binned data clustering.



Chapter 2

Parsimonious Gaussian mixture

models for binned data clustering

and the corresponding

binned-EM algorithms

2.1 Introduction

Mixture approach is one of the most commonly used model-based clustering approaches.

It aims to maximize the likelihood over the mixture model parameters. The mixture

model parameters estimates are obtained by maximizing the likelihood using Expec-

tation Maximization (EM) algorithm. And the partition is estimated by maximum a

posteriori (MAP) rule (see [15] for example). The EM algorithm was firstly introduced

by Dempster et al. [7], and corrected by Wu [39] on its flawed convergence analysis.

Because of its simple conception and easy implementation, the EM algorithm has been

widely used for maximum likelihood estimation specially when some variables are un-

observed. On the other side, the EM algorithm has some limitations. One limitation

is that the EM algorithm becomes very slow when dealing with large datasets. This

problem has been discussed and some suggestions to accelerate the EM algorithm have

been proposed [56].

With the increase of the number of mixture components and the dimensionality of data,

too many parameters to estimate is one of the reasons of slow computation. Simpli-

fying the model complexity can reduce the number of parameters. This approach can

be efficient in solving the long computation time problem. Banfield and Raftery [16]

37
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suggested a way of decomposition of the variance matrix of each component of a Gaus-

sian mixture model. Following this parametrization, fourteen parsimonious models were

proposed [15]. The experimental result showed that these models can detect many data

distributions, instead of using the most complex model.

Besides that, binned data was introduced into EM algorithm. This new approach has

two advantages: firstly, it accelerates the speed of the EM algorithm by reducing the

amount of data; secondly, it adapts to the binned data which exist naturally due to

the limited precision of the measuring equipment. Applying EM algorithm to binned

data was first time mentioned by Dempster et al. [7]. The one-dimensional binned-EM

algorithm was developed by McLachlan and Jones [12]. Then Cadez et al. [13] extended

binned-EM algorithm to the multi-dimensional case. The experimental results showed

that the binned-EM algorithm is faster than the EM algorithm without losing much

precision.

In order to combine the advantages of parsimonious models and binned data with EM

algorithm, this chapter will present the new EM algorithms of parsimonious Gaussian

mixture models applied to binned data (binned-EM algorithms). Firstly, the Section 2.2

will give an overview of the classic EM algorithm for standard data. The complexity

of the EM algorithm will be calculated. The Section 2.3 will describe the fourteen

parsimonious Gaussian mixture models. The Section 2.4 will present the derivation of

the binned-EM algorithm. The computational complexity of the binned-EM algorithm

will be calculated and compared to the one of the EM algorithm. Parameters estimations

corresponding to different parsimonious models will be detailed in the Section 2.5. In

the Section 2.6, experiments of binned-EM algorithms on simulated data and real data

will be shown and analyzed. Finally, we will summarize this chapter and lead to the

next chapter.

2.2 Mixture approach for standard data

In mixture model-based clustering, mixture approach aims to maximize the likelihood

over the mixture model parameters. The parameters are usually estimated by the EM

algorithm, and the data partition is obtained by the MAP rule. In this section, we will

review the classical EM algorithm and the MAP rule.

2.2.1 The EM algorithm

In this part, a general review of the Estimation Maximization (EM) algorithm will be

given. The EM algorithm is an iterative method which aims to maximize likelihood and
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estimate the corresponding model parameters. After being proposed several times in

special circumstances, the EM algorithm was formally defined by Dempster et al. [7].

But the convergence analysis of Dempster et al. [7] was flawed and Wu [39] corrected it

in 1983.

Assume that a set of observed data x = (x1, . . . ,xn) is generated according to a mixture

distribution. x is also called the incomplete data. The complete data includes x as well

as missing data z = (z1, . . . ,zn). If we assume that each xi is independent identically

distributed (i.i.d.), this model follows a distribution:

p(x|θ) =
n∑

i=1

p(xi|θ) = L(θ|x)

where θ is the unknown parameters, and L(θ|x) is called the likelihood function of θ

given x.

In the case of Gaussian mixture model, the model is composed by K components. Each

component follows respectively a Gaussian distribution. L(θ|x) takes the form:

P (x|θ) =
K∑

k=1

πkpk(x|θk)

where πk is the mixing proportion of the k component, pk(x|θk) is the distribution of the

k component with parameter θk = (µk,Σk), µk is the mean vector of the component

and Σk its variance matrix.

We want to find the maximum likelihood estimate (MLE) θ̂ such that L(θ̂|x) is a maxi-

mum. In order to estimate θ, log-likelihood function is introduced:

L(θ|x) = logP (x|θ)

Henceforth L(θ|x) is the notation of log-likelihood. Since log(x) strictly increases along

with x, the value θ maximizing P (x|θ) also maximizes log
(
P (x|θ)

)
. But maximum of

L(θ|x) is generally uneasy to obtain. The EM algorithm seeks to obtain the MLE by

maximizing the expectation of the complete log-likelihood L(θ|x, z) which bases on the

complete data (x, z). The EM algorithm repeats two steps iteratively until convergence:

• Expectation step (E-step): Calculate the expectation of the complete log-likelihood

Q(θ, θ(q)) = E(L(θ;x, z))
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For the case of Gaussian mixture model, this equals to computing the conditional

probabilities of each component k:

t
(q)
ik =

π
(q)
k fk(xi; θ

(q)
k )

t
(q)
i

where

t
(q)
i =

K∑

k=1

π
(q)
k fk(xi; θ

(q)
k )

• Maximization step (M-step): Find the parameters θ̂ which maximize Q(θ, θ(q)):

θ̂ = argmax
θ
Q(θ, θ(q))

We obtain the parameters of Gaussian mixture model:

π
(q+1)
k =

1

n

n∑

i=1

t
(q)
ik

µ
(q+1)
k =

1
∑n

i=1 t
(q)
ik

n∑

i=1

t
(q)
ik xi

The result of Σ in the M-step varies according to the parsimonious model [15].

For example, for the model [λDADT ], the estimate of Σ has the form:

Σ
(q+1)
k =

1
∑n

i=1 t
(q)
ik

n∑

i=1

t
(q)
ik (xi − µ

(q+1)
k )(xi − µ

(q+1)
k )T

2.2.2 The complexity of EM algorithm

The efficiency is one of the important characteristics of an algorithm. The CPUtime

that an algorithm consumes represents the efficiency of the algorithm. But this quantity

differs due to many factors. These factors are, for example, the way of programming, the

processor and the memory of the computer and the random result of one experiment.

Time complexity of an algorithm quantifies the amount of the time taken by the al-

gorithm. It is commonly expressed by a function of inputs, using the Big-O notation.

In order to better study the time consumption of the EM algorithm and to compare

with the other algorithms, in this part, we will calculate the time complexity of the EM

algorithm.

Three parameters affect the computation time of EM algorithm. They are the amount

of data n, the number of space dimension d and the number of clusters K. The EM
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algorithm based on different model takes different computation time. As our study

focus on the fourteen parsimonious Gaussian mixture models, we will calculate the time

complexity of the EM algorithm based on one of these models. Among these models,

we choose the model [λDADT ] because of its simplicity and generality.

The EM algorithm of the model [λDADT ] is presented in the Algorithm 1:

Algorithm 1 EM algorithm

q ← 0
Initialize π(0) and θ(0) = {µ(0),Σ(0)}.
repeat

for i = 1 : n do
t
(q)
i ←

∑K
k=1 π

(q)
k fk(xi; θ

(q)
k )

for k = 1 : K do

t
(q)
ik ←

π
(q)
k fk(xi;θ

(q)
k )

t
(q)
i

end for
end for
for k = 1 : K do

π
(q+1)
k ← 1

n

∑n
i=1 t

(q)
ik

µ
(q+1)
k ← 1∑n

i=1 t
(q)
ik

∑n
i=1 t

(q)
ik xi

Σ
(q+1)
k ←

∑K
k=1

∑n
i=1 t

(q)
ik (xi−µ

(q+1)
k )(xi−µ

(q+1)
k )T

n
end for
q ← q + 1

until L(q+1)−L(q)

L(q) < ε

π̂ ← π(q+1), θ̂ ← θ(q+1)

From the Algorithm 1, the EM algorithm follows an iterative process, and ends until
L(q+1)−L(q)

L(q) < ε. It is uneasy to know exactly when the EM algorithm stops. The speed

of the convergence depends on the dataset, the initiation and the threshold ε. In other

word, the computational complexity of EM algorithm approaches infinity. But in reality,

the EM algorithm usually stops in few seconds or more. To be able to calculate the time

complexity, we suppose that EM algorithm stops in N iterates. If we note the complexity

of each iterate as O(T ), then the complexity of the EM algorithm is about O(NT ).

To facilitate the calculation, each iterate is divided into three parts:

• Calculate n times t
(q)
i .

• Calculate n ∗K times t
(q)
ik .

• Calculate K times π
(q+1)
k , µ

(q+1)
k and Σ

(q+1)
k .
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To calculate t
(q)
i equals to calculate K times this equation:

π
(q)
k fk(xi; θ

(q)
k ) =

π
(q)
k

(2π)d/2|Σ(q)
k |1/2

exp(−1/2(xi − µ
(q)
k )Σ

(q)
k

−1
(xi − µ

(q)
k )T ) (2.1)

To calculate the complexity of the Equation 2.1, the difficult part is to calculate |Σ(q)
k |1/2,

exp(x) and Σ
(q)
k

−1
.

To calculate the determinant of one d × d matrix using LU decomposition costs O(d3)

complexity. To obtain the square root of S, we can use the Newton’s method. Because

finding
√
S is the same as solving the equation f(x) = x2 − S = 0. We can obtain the

approximate result by doing the equation 2.2 calculation iteratively:

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2n − S
2xn

=
1

2
(xn +

S

xn
) (2.2)

In the Equation 2.2, each iterate needs 4 basic operations. If the root being sought has

multiplicity greater than one, the convergence rate is merely linear (errors reduced by a

constant factor at each step) unless special steps are taken. The speed of convergence

depends on the defined threshold or how we want it to stop. It might take a long time

until convergence. To simplify, we suppose it stops in n1 iterates. Thus, the complexity

of obtaining the square root is approximately O(4n1). So the complexity of |Σ(q)
k |1/2 is

about O(d3 + 4n1).

To calculate exp(x), we use Taylor series:

ex =
∞∑

n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . . (2.3)

The condition to define when to stop the multiplication is flexible. So we use truncated

Taylor series. We suppose that the result of ex becomes stable until n = n2. Thus the

Equation 2.3 becomes:

ex =

n2∑

n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . .+

xn2

n2!
(2.4)

The complexity of the Equation 2.4 is O(n22).

To calculate the inversion of Σ
(q)
k , using Gaussian elimination takes complexity of O(d3).

After adding up all the operations, calculating the Equation 2.1 takes complexity of

T = O(2d3 + 2d2 + 5
2d + 4n1 + n22). According to the Big-O notation, T can be also

considered as T = O(d3 + 4n1 + n22).
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Since the complexity of t
(q)
i is calculated, the complexity of the rest of the EM algorithm

is easy to find out. The complexity of each part is listed in the Table 2.1.

Parameter Times Complexity

t
(q)
i n O(d3K + 4n1K + n22K)

t
(q)
ik n ∗K O(1)

π
(q+1)
k K O(n)

µ
(q+1)
k K O(nd+ 2n)

Σ
(q+1)
k K O(3dnK)

Table 2.1: Decomposition of complexity of the EM algorithm.

From the Table 2.1, we can conclude that the complexity of the EM algorithm is approx-

imately O(d3KnN + 3K2ndN + 4n1KnN + n22KnN + 4nKN + dnKN). According to

the definition of the Big-O notation, the complexity of EM algorithm can also be noted

as O(d3KnN + 3K2ndN + 4n1KnN + n22KnN)

2.3 Parsimonious models

In general, the greater the number of simplifying assumptions made about the essential

structure of the real world, the simpler the model. One goal of the science is to create

simple models that have a great deal of explanatory power. Such models are called

parsimonious models. Parsimonious models provide a simpler and clearer image of the

structure of data. They simplify the process of parameter estimation of the model and

save the computation time.

In order to obtain parsimonious Gaussian mixture models, a way of decomposition of

the variance matrix Σk was proposed by Banfield and Raftery [16]: Σk = λkDkAkD
T
k ,

where λk = |Σk|1/d determining the volume of the kth cluster, Dk which is the ma-

trix of eigenvectors of Σk determining its orientation, and a diagonal matrix Ak de-

termining its shape. Ak has the normalized eigenvalues of Σk in a decreasing order

on the diagonal, and |Ak|=1. Eight general parsimonious Gaussian mixture mod-

els were generated by allowing none, some or all of the parameters to vary among

clusters: [λDADT ], [λkDADT ], [λDAkD
T ], [λkDAkD

T ], [λDkADT
k ], [λkDkADT

k ],

[λDkAkD
T
k ], [λkDkAkD

T
k ]. Besides, by putting certain restrictions on the orientation

matrices Dk and the shape matrices Ak respectively, we can obtain two other more sim-

plified families of parsimonious Gaussian mixture models. By assuming the orientation

of clusters as horizontal or vertical, the orientation matrices Dk have exactly one entry
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1 or −1 in each row and each column and 0 elsewhere. In this case, there is no interest

of studying the variations on the orientation matrices. We can simplify a part of the

variance matrices as: DkAkD
T
k = Bk, where Bk is a diagonal matrix with |Bk| = 1.

As the variance matrices Σk become Σk = λkBk, we have four diagonal models: [λB],

[λkB], [λBk] and [λkBk]. In another case, we assume the shape of clusters are spherical.

The shape matrices are always diag(1,1), and the variations on the orientation matrices

are not necessary. Then we have two most simple models in the spherical family: [λI]

and [λkI] [15].

In order to show the difference among fourteen models, samples of these fourteen parsi-

monious Gaussian mixture models are presented in Figures 2.1, 2.2, 2.3. For simplicity,

these simulated data are generated in a two-dimensional space, and contain two compo-

nents of the same proportions.
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Figure 2.1: Eight general models: 1.[λDADT ], 2.[λkDADT ], 3.[λDAkD
T ],

4.[λkDAkD
T ], 5.[λDkADT

k
], 6.[λkDkADT

k
], 7.[λDkAkD

T

k
], 8.[λkDkAkD

T

k
].
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Figure 2.2: Four diagonal models: 9.[λB], 10.[λkB], 11.[λBk], 12.[λkBk].
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Figure 2.3: Two spherical models: 13.[λI], 14.[λkI].

In the Figure 2.1, samples of eight general models are presented. The general family

has the highest freedom degree of the parameters comparing to the other families. For

the models of the general family, orientation, shape and volume can be different among

clusters. The model [λDADT ] is the simplest and the most restrictive model in the

general family since all the components in this model have the same characteristics

(same volume, shape and orientation). Conversely, the model [λDkAkD
T
k ] has all the

freedoms of the components. Thus it is more flexible as well as more complex than the

other models in this family.
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To obtain the diagonal models, a restriction on the orientation is added. From the

Figure 2.2, we can see that for this kind of model, the orientation of the components are

defined to be vertical or horizontal. This added restriction simplifies the model but also

limits the model choice.

The simplest parsimonious models are spherical models. In this kind of models, all the

components are supposed to be of spherical shape. Only one parameters to estimate in

this model: the volume.

These fourteen models have a hierarchical relationship which is shown in the Figure 2.4,

from the most complex model to the simplest model:

Depending on the model complexity, each model has different combination of free pa-

rameters. The more complex model has more parameters. The Table 2.2 presents the

number of parameters for these fourteen models:

Family Model Number of parameters

General

[λDADT ] α+ β

[λkDADT ] α+ β +K − 1

[λDAkD
T ] α+ β + (K − 1)(d − 1)

[λkDAkD
T ] α+ β + (K − 1)d

[λDkADT
k ] α+Kβ − (K − 1)d

[λkDkADT
k ] α+Kβ − (K − 1)(d − 1)

[λDkAkD
T
k ] α+Kβ − (K − 1)

[λkDkAkD
T
k ] α+Kβ

Diagonal

[λB] α+ d

[λkB] α+ d+K − 1

[λBk] α+Kd−K + 1

[λkBk] α+Kd

Spherical
[λI] α+ 1

[λkI] α+ d

Table 2.2: Number of free parameters of fourteen models. Where α = Kd +K − 1
for the unrestricted case, α = Kd for the restricted case. And β = (d(d+ 1)/2).

We cannot tell which model is the best among these fourteen models. It depends on

the practical needs and the distribution of the data. EM algorithms of these fourteen

models were developed [15]. In the next section, we will present how to develop the

binned-EM algorithms of these fourteen models.
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[λkBk] [λkDkADT
k ] [λkDAkD

T ] [λDkAkD
T
k ]

[λkDkAkD
T
k ]

[λkDADT ] [λDAkD
T ] [λDkADT

k ]

[λkB] [λBk] [λDADT ]

[λkI] [λI]

Figure 2.4: Hierarchical relationship of fourteen parsimonious Gaussian mixture mod-
els.



2.4. Binned-EM algorithm 49

2.4 Binned-EM algorithm

2.4.1 The likelihood

We suppose that x = (x1, . . . ,xn) is a sample issued from a K-component mixture

distribution defined on a d-dimensional space (IRd):

f(x;Φ) =

K∑

k=1

πkfk(x; θk)

with Φ = (π1, . . . , πK , θ1, . . . , θK), where πk (k = 1, . . . ,K) are the mixing proportions

(0 < πk < 1 and
∑K

k=1 πk = 1), and θk = (µk,Σk) (k = 1, . . . ,K) are the parameters

of Gaussian distribution functions fk of components: mean vectors µk and variance

matrices Σk.

Similar as the EM algorithm for standard data, the EM algorithm for binned data

i.e. the binned-EM algorithm, also provides a theoretical framework that enables us to

iteratively maximize the observed likelihood (the one which includes only the observed

data) by maximizing the expectation of the complete likelihood (the one which includes

both the missing data and the observed data). Firstly, before applying the binned-EM

algorithm, standard data are transformed into binned data. The overall sample space IRd

is divided into v bins with a subspace partition (H1, . . . ,Hv). We assume that the only

observed data is a set of frequencies nr (r = 1, . . . , v) where each frequency nr indicates

the number of xi belonging to the bin Hr. The vector a = (n1, . . . , nv) is the vector of

frequencies, with
∑v

r=1 nr = n. In order to maximize the likelihood L(Φ), the binned-

EM algorithm maximizes the expectation of complete likelihood LC(Φ) which is built on

the concept of the complete data (x, z) =
(
(x1,z1), . . . , (xn,zn)

)
. The label vectors zi

(i = 1, . . . , n) have the form zi = (zi1, . . . , ziK), where each zik (k ∈ {1, . . . ,K}) values
1 if xi arises from the mixture component k and values 0 otherwise. The complete

log-likelihood can be written as follows:

LC(Φ) = L(Φ;x, z)

=

n∑

i=1

K∑

k=1

zik log
(
πkfk(xi; θk)

)
+ log(c)

where c is a constant and does not depend on Φ.

Since there is no information about the exact location of the data in each bin, we assume

that all the data in the same bin belong to the same cluster. Thus, the label vectors

zi (i = 1, . . . , n) can be transformed into zr (r = 1, . . . , v) where zr ∈ {1, . . . ,K}
(r ∈ {1, . . . , v}) is the label of the bin Hr i.e. the mixture component to which Hr
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belongs; the label vectors zr (r = 1, . . . , v) may have the form zr = (zr1, . . . , zrK),

where each zrk (k ∈ {1, . . . ,K}) values 1 if Hr is assumed as belonging to the mixture

component k and values 0 otherwise.

The expectation of complete log-likelihood Q(Φ,Φ(q)) is expressed as follows.

Q(Φ,Φ(q)) = E(LC(Φ))

=
K∑

k=1

v∑

r=1

nr

(
ln(πk)p

(q)
k/r

(2.5)

+
π
(q)
k

p
(q)
r

∫

Hr

ln
(
fk(x; θk)

)
fk(x; θ

(q)
k )dx

)

where

p(q)r = P (x ∈Hr|Φ(q)) =

K∑

k=1

π
(q)
k

∫

Hr

fk

(
x; θ

(q)
k

)
dx

and

p
(q)
k/r = P

(
zk = 1|x ∈Hr,Φ

(q)
)

=
π
(q)
k

∫
Hr

fk(x; θ
(q)
k )dx

p
(q)
r

2.4.2 The E-step and the M-step

Binned-EM algorithm executes two steps iteratively until convergence: the E-step (Ex-

pectation) and the M-step (Maximization). At the E-step, the p
(q)
k/r and p

(q)
r are calcu-

lated for all the k and r:

p(q)r =

K∑

k=1

π
(q)
k

∫

Hr

fk

(
x; θ

(q)
k

)
dx

and

p
(q)
k/r =

π
(q)
k

∫
Hr

fk(x; θ
(q)
k )dx

p
(q)
r

At the M-step, the parameters Φ = (πk,µk,Σk) maximizing Q(Φ,Φ(q)) are estimated:

π
(q+1)
k =

∑v
r=1 nrp

(q)
k/r

n
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µ
(q+1)
k =

∑v
r=1

nr

p
(q)
r

∫
Hr

xfk(x; θ
(q)
k )dx

∑v
r=1

nr

p
(q)
r

∫
Hr

fk(x; θ
(q)
k )dx

To find the model parameters Σ
(q+1)
k maximizing Q(Φ,Φ(q)), firstly, we select a part of

Q(Φ,Φ(q)) which includes Σk:

F (Σk) =

K∑

k=1

v∑

r=1

nr
π
(q)
k

p
(q)
r

∫

Hr

ln
(
fk(x; θk)

)
fk
(
x; θ

(q)
k

)
dx

=
K∑

k=1

v∑

r=1

nr
π
(q)
k

p
(q)
r

∫

Hr

−1

2

(
ln |Σk| (2.6)

+(x− µk)
TΣ−1

k (x− µk)
)
fk
(
x; θ

(q)
k

)
dx+ C

where C is a constant.

To maximize the Q(Φ,Φ(q)) (Equation 2.5) leads to minimizing B(Σk) which is trans-

formed from F (Σk):

B(Σk) =

K∑

k=1

v∑

r=1

π
(q)
k

nr

p
(q)
r

∫

Hr

(
ln |Σk|+

(
x− µ

(q+1)
k

)T

·Σ−1
k

(
x− µ

(q+1)
k

))
fk

(
x; θ

(q)
k

)
dx

=
K∑

k=1

π
(q)
k ln |Σk|

v∑

r=1

(
nr

p
(q)
r

∫

Hr

fk

(
x; θ

(q)
k

)
dx

)

+

K∑

k=1

π
(q)
k tr

(
Σ−1

k G
(q+1)
k

)
(2.7)

where

G
(q+1)
k =

v∑

r=1

nr

p
(q)
r

∫

Hr

(
x− µ

(q+1)
k

)(
x− µ

(q+1)
k

)T

·fk
(
x; θ

(q)
k

)
dx

(tr(X) : the trace of the matrix X which is defined as the sum of the elements on the

main diagonal of X).

Minimizing the Equation (2.7) leads to the estimating result of the variance matrix

Σ
(q+1)
k , which is different depending on each parsimonious Gaussian mixture model.

The variance matrix estimate for fourteen models will be detailed in the Section 2.5.
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2.4.3 The complexity of binned-EM algorithm

In the sub-Section 2.2.2, we have calculated the complexity of the EM algorithm of

the model [λDADT ]. In this part, we will calculate the complexity of the binned-EM

algorithm of the same model, in order to compare with the EM algorithm.

Firstly, in the Algorithm 2, the binned-EM algorithm of model [λDADT ] is shown:

Algorithm 2 Binned-EM algorithm

q ← 0

Initialize π(0) and θ(0) = {µ(0),Σ(0)}.
repeat

for r = 1 : v do

p
(q)
r ←

∑K
k=1 π

(q)
k

∫
Hr
fk(x; θ

(q)
k )dx

for k = 1 : K do

p
(q)
k/r ←

π
(q)
k

∫
Hr

fk(x;θ
(q)
k )dx

p
(q)
r

end for

end for

for k = 1 : K do

π
(q+1)
k ←

∑v
r=1 nrp

(q)
k/r

n

µ
(q+1)
k ←

∑v
r=1

nr

p
(q)
r

∫
Hr

xfk(x;θ
(q)
k )dx

∑v
r=1

nr

p
(q)
r

∫
Hr

fk(x;θ
(q)
k )dx

Σ
(q+1)
k ←

∑K
k=1 π

(q)
k

∑v
r=1

nr

p
(q)
r

∫
Hr

(x−µ
(q+1)
k )(x−µ

(q+1)
k )T fk(x;θ

(q)
k )dx

n

end for

q ← q + 1

until L(q+1)−L(q)

L(q) < ε

π̂ ← π(q+1), θ̂ ← θ(q+1)

Same as the EM algorithm, the binned-EM algorithm also executes the iterates until it

converges. The stopping moment for binned-EM algorithm is flexible depending on the

condition, more precisely, the ε. Same as what we did to EM algorithm, we suppose

that the binned-EM algorithm stops in N iterates.

In order to facilitate the calculation, each iterate is divided into three parts:

• Calculate v times p
(q)
r .

• Calculate v ∗K times p
(q)
k/r.

• Calculate K times π
(q+1)
k , µ

(q+1)
k and Σ

(q+1)
k .
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In the Section 2.2, we calculated the complexity of

fk(xi; θ
(q)
k ) =

1

(2π)d/2|Σ(q)
k |1/2

exp(−1/2(xi − µ
(q)
k )Σ

(q)
k

−1
(xi − µ

(q)
k )T ) (2.8)

which is approximately O(d3 + 4n1 + n22).

In the binned-EM algorithm, to calculate p
(q)
r , we need to calculate:

∫

Hr

fk(x; θ
(q)
k )dx =

∫

Hr

1

(2π)d/2|Σ(q)
k |1/2

(2.9)

exp(−1/2((x − µ
(q)
k )Σ

(q)
k

−1
(x− µ

(q)
k )T )dx (2.10)

To calculate one dimensional numerical integral, we use the trapezoidal rule:

∫ a

b
f(x)dx ≈ (b− a)f(a) + f(b)

2
(2.11)

To obtain a more accurate approximation, we can divide the interval [a, b] into n subin-

tervals. We add up all the approximations of the subintervals. This method is called

the composite trapezoidal rule. So the Equation 2.11 can be extended into:

∫ a

b
f(x)d ≈ b− a

n
(
f(a)

2
+

n−1∑

k=1

(f(a+ k
b− a
n

)) +
f(b)

2
) (2.12)

To compute integrals in multiple dimensions, one approach is to phrase the multiple

integral as repeated one-dimensional integrals by appealing to Fubini’s theorem:

∫

A×B
f(x, y)d(x, y) =

∫

A
(

∫

B
f(x, y)dy)dx =

∫

B
(

∫

A
f(x, y)dxdx)dy

This approach requires the function evaluations to grow exponentially as the number of

dimensions increases.

So to calculate
∫
Hr
fk(x; θ

(q)
k )dx, we suppose that we divide the interval on each dimen-

sion into ll (l = 1, . . . , d) subintervals. This means that, we execute fk(x; θ
(q)
k ) function

(l1+1)(l2+1) · · · (ld+1) times. The complexity of calculating the Equation 2.9 is about

O((l1 + 1)(l2 + 1) · · · (ld + 1)(d3 + 4n1 + n22)).

For the rest of the binned-EM algorithm, we apply the same methods we mentioned

before and in the Section 2.2. We list the complexity of each part of binned-EM algorithm

in the Table 2.3:
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Parameter Times Complexity

p
(q)
r v O((l1 + 1)(l2 + 1) · · · (ld + 1)(d3K + 4n1K + n22K))

p
(q)
k/r v ∗K O(1)

π
(q+1)
k K O(2v)

µ
(q+1)
k K O((l1 + 1)(l2 + 1) · · · (ld + 1)v)

Σ
(q+1)
k K O((l1 + 1)(l2 + 1) · · · (ld + 1)3dvK)

Table 2.3: Decomposition of complexity of the binned-EM algorithm.

From the Table 2.3, we can conclude that the complexity of the binned-EM algorithm is

approximately O((l1 + 1)(l2 +1) · · · (ld +1)(d3KvN +4n1KvN + n22KvN + 3dvK2N)).

Comparing the complexity of the EM algorithm and the complexity of the binned-EM

algorithm, if we suppose that the binned-EM algorithm is faster than the EM algorithm,

we have the inequality function:

O(d3KnN + 3K2dnN + 4n1KnN + n22KnN) >

O((l1 + 1)(l2 + 1) · · · (ld + 1)(d3KvN + 4n1KvN + n22KvN + 3dvK2N))

Thus we obtain the condition that binned-EM algorithm is faster than the EM algorithm:

n > (l1 + 1)(l2 + 1) · · · (ld + 1)v (2.13)

If the amount of data n meets the condition n > (l1 + 1)(l2 + 1) · · · (ld + 1)v, using the

binned-EM algorithm is faster than using the EM algorithm.

2.5 Parsimonious models for binned-EM algorithm

In this section, we will present the derivation of variance matrix estimate of fourteen

parsimonious models.

2.5.1 The general models

In the general family, there are eight models. They are: [λDADT ], [λkDADT ], [λDAkD
T ],

[λkDAkD
T ], [λDkADT

k ], [λkDkADT
k ], [λDkAkD

T
k ], [λkDkAkD

T
k ].



2.5. Parsimonious models for binned-EM algorithm 55

Model [λDADT ]. After equation simplification, minimizing Equation (2.7) equals to

minimization of

M1(Σ) = n ln |Σ|+ tr
(
Σ−1G(q+1)

)

where

G(q+1) =
K∑

k=1

π
(q)
k G

(q+1)
k

and the obtained estimated variance matrix Σ is then

Σ(q+1) =
G(q+1)

n

Model [λkDADT ]. In this situation, it is easier to express it as Σk = λkC with C =

DADT . Minimizing Equation (2.7) equals to minimizing

M2(λk,C) =

K∑

k=1

d ln(λk)

v∑

r=1

π
(q)
k

nr

p
(q)
r

∫

Hr

fk

(
x; θ

(q)
k

)
dx

+

K∑

k+1

π
(q)
k

1

λk
tr
(
G

(q+1)
k C−1

)

We obtain λk and C minimizing M2 by the following iterative process:

• Keep C fixed, the λk’s minimizing M2(λk,C) are

λ
(q+1)
k =

tr(G
(q+1)
k C−1)

d
∑v

r=1
nr

p
(q)
r

∫
Hr

fk

(
x; θ

(q)
k

)
dx

• keep λk’s fixed, the matrix C minimizing M2(λk,C) is

C(q+1) =

∑K
k=1 π

(q)
k

1
λk
G

(q+1)
k

|∑K
k=1 π

(q)
k

1
λk
G

(q+1)
k |1/d

Model [λDAkD
T ]. For this model, firstly is to minimize:

M3(λ,D,Ak) = d ln(λ)

K∑

k=1

v∑

r=1

nr
π
(q)
k

p
(q)
r

∫

Hr

fk(x; θ
(q)
k )dx

+
1

λ

K∑

k=1

π
(q)
k tr(G

(q+1)
k DA−1

k DT )
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Minimizing M3 leads to minimizing
∑K

k=1 π
(q)
k tr(GkDA−1

k DT ) and calculation of λ. λ

can be calculated directly:

λ(q+1) =

∑K
k=1 π

(q)
k tr(G

(q+1)
k DA−1

k DT )

nd
(2.14)

We minimize
∑K

k=1 π
(q)
k tr(G

(q+1)
k DA−1

k DT ) using the following iterative method:

• Keeping D fixed, from Corollary A.5 of the Appendix A, we get

A
(q+1)
k =

diag(DT π
(q)
k G

(q+1)
k D)

|diag(DT π
(q)
k G

(q+1)
k D)|1/d

(2.15)

• Keeping A
(q+1)
1 , . . . ,A

(q+1)
K fixed, we adapt an algorithm of Flury aiming to minimize

f(D) =
∑K

k=1 π
(q)
k tr(G

(q+1)
k DA−1

k DT ): First initial a solution D = (d1, . . . ,dd). For

any couple (l,m)(l(6=)m) ∈ 1, . . . , d, we find a corresponding couple (δl, δm) which are

orthogonal vectors, linear combination of dl and dm, minimizing the criterion f(D). We

have

K∑

k=1

tr(Dπ
(q)
k A−1

k DTG
(k+1)
k ) =

K∑

k=1

d∑

j=1

dT
j G

(q+1)
k π

(q)
k dj

ajk

=

K∑

k=1

dT
l G

(q+1)
k π

(q)
k dl

alk
+

K∑

k=1

dT
mG

(q+1)
k π

(q)
k dm

amk

+

K∑

k=1

∑

j 6=l,m

dT
j G

(q+1)
k π

(q)
k dj

ajk

= S(dl,dm) +

K∑

k=1

∑

j 6=l,m

dT
j G

(q+1)
k π

(q)
k dj

ajk

Thus, it equals to find (δl, δm) minimizing S(dl,dm). We can write

δl = (dl,dm)q1

δm = (dl,dm)q2
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where q1 and q2 are two orthogonal vectors of R2. We have

S(δl, δm) =
K∑

k=1

qT
1 (dl,dm)TG

(q+1)
k π

(q)
k (dl,dm)q1

alk

+

K∑

k=1

qT
2 (dl,dm)TG

(q+1)
k π

(q)
k (dl,dm)q2

amk

=

K∑

k=1

qT
1 Zkq1

alk
+

K∑

k=1

qT
2 Zkq2

amk

where

Zk = (dl,dm)TG
(q+1)
k π

(q)
k (dl,dm)

Denoting Q = (q1, q2), we get

qT
1 Zkq1 + qT2 Zkq2 = tr(QTZkQ) = tr(Zk)

And the problem reduces to the optimization of

S(dl,dm) =

K∑

k=1

qT1 Zkq1

alk
+

K∑

k=1

tr(Zk − qT
1 Zkq1)

amk

which is equivalent to the minimization of

qT
1 {

K∑

k=1

(
1

alk
− 1

amk
)Zk}q1

Hence, q1 is the second eigenvector of the matrix
∑K

k=1(
1
alk
− 1

amk
)Zk. Repeat the proce-

dure above until f(D) converges.

Model [λkDAkD
T ]. Writing Σk = DAkD

T where |Ak| = |Σk| is more efficient. Mini-

mizing equation (2.7) leads to the minimization of

M4(λk,D,Ak) =

K∑

k=1

ln(|Ak|)
v∑

r=1

nr
π
(q)
k

p
(q)
r

∫

Hr

fk(x; θ
(q)
k )dx

+

K∑

k=1

π
(q)
k tr(G

(q+1)
k DA−1

k DT )

As previously presented, the minimization of M4 can be achieved in the similar way:

• Keeping D fixed, from Corollary A.7 of the Appendix A, we get
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A
(q+1)
k =

diag(DG
(q+1)
k DT )

∑v
r=1 nr

π
(q)
k

p
(q)
r

∫
Hr
fk(x; θ

(q)
k )dx

• Keeping fixed A1, . . . ,AK , it can be making use of the same algorithm described above

by minimizing
∑K

k=1 π
(q)
k tr(DA−1

k DTGk).

Model [λDkADT
k ]. Minimizing Equation (2.7) equals to minimizing

M5(λ,Dk,A) = d ln(λ)
K∑

k=1

v∑

r=1

nr
π
(q)
k

p
(q)
r

∫

Hr

fk

(
x; θ

(q)
k

)
dx

+
1

λ

K∑

k=1

π
(q)
k tr

(
G

(q+1)
k DkA

−1D−1
k

)

Considering the eigenvalue decomposition G
(q+1)
k = L

(q+1)
k Ω

(q+1)
k L

−1(q+1)
k , k = 1, . . . ,K,

of the symmetric definite positive matrix Gk with the eigenvalues in the diagonal matrix

Ωk in decreasing order,we have

M5(λ,Dk,A) =
1

λ

K∑

k=1

π
(q)
k tr

(
D−1

k L
(q+1)
k Ω

(q+1)
k L

−1(q+1)
k DkA

−1
)

+d ln(λ)

K∑

k=1

v∑

r=1

nr
π
(q)
k

p
(q)
r

∫

Hr

fk

(
x; θ

(q)
k

)
dx

From Theorem A.1 of Appendix A, we get Dk = Lk, and we have

M5(λ,Lk,A) =
1

λ

K∑

k=1

π
(q)
k tr

(
Ω

(q+1)
k A−1

)

+d ln(λ)

K∑

k=1

v∑

r=1

nr
π
(q)
k

p
(q)
r

∫

Hr

fk

(
x; θ

(q)
k

)
dx

From this, we deduce A and λ:

A(q+1) =

∑K
k=1 π

(q)
k Ω

(q+1)
k

|∑K
k=1 π

(q)
k Ω

(q+1)
k |1/d

λ(q+1) =
|∑K

k=1 π
(q)
k Ω

(q+1)
k |1/d

n
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Model [λkDkADT
k ]. Minimizing Equation (2.7) equals to minimizing

M6(λk,Dk,A) = d

K∑

k=1

π
(q)
k ln(λk)

v∑

r=1

nr

p
(q)
r

∫

Hr

fk

(
x; θ

(q)
k

)
dx

+

K∑

k=1

π
(q)
k

1

λk
tr
(
G

(k+1)
k DkA

−1D−1
k

)

Use again the eigenvalue decomposition G
(q+1)
k = L

(q+1)
k Ω

(q+1)
k L

−1(q+1)
k . The minimiza-

tion of M6 is achieved iteratively:

λ
(q+1)
k =

tr
(
Ω

(q+1)
k A−1

)

d
∑v

r=1
nr

p
(q)
r

∫
Hr

fk

(
x; θ

(q)
k

)
dx

Dk = Lk

and

A(q+1) =

∑K
k=1 π

(q)
k

1

λk
Ω

(q+1)
k

|∑K
k=1 π

(q)
k

1

λk
Ω

(q+1)
k |1/d

Model [λDkAkD
T
k ]. We consider the variance matrix as Σk = λCk where Ck =

DkAkD
T
k . Then, minimizing Equation (2.7) equals to minimizing

M7(λ,Ck) = dn ln(λ) +
1

λ

K∑

k=1

π
(q)
k tr

(
C−1

K G
(q+1)
k

)

Simple calculation give us:

C
(q+1)
k =

G
(q+1)
k

|G(q+1)
k |1/d

and

λ(q+1) =

∑K
k=1 π

(q)
k |G

(q+1)
k |1/d

n

Model [λkDkAkD
T
k ]. This is the most general parsimonious model. Minimizing Equa-

tion (2.7) equals to minimizing

M8(Σk) =

K∑

k=1

π
(q)
k ln |Σk|

v∑

r=1

nr

p
(q)
r

∫

Hr

fk

(
x; θ

(q)
k

)
dx

+
K∑

k=1

π
(q)
k tr

(
Σ−1

k G
(q+1)
k

)
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and the variance matrices Σ
(q+1)
k are

Σ
(q+1)
k =

G
(q+1)
k∑v

r=1
nr

p
(q)
r

∫
Hr

fk(x; θ
(q)
k )dx

2.5.2 The diagonal models

In the diagonal family, there are four models: [λB], [λkB], [λBk] and [λkBk].

Model [λB]. Minimizing Equation (2.7) leads to the minimization of

M9(λ,B) = d ln(λ)

K∑

k=1

π
(q)
k

v∑

r=1

nr

p
(q)
r

∫

Hr

fk(x; θ
(q)
k )dx

+
1

λ

K∑

k=1

π
(q)
k tr(B−1G

(q+1)
k )

To estimate the result, we used Corollary A.5 of the Appendix A. We get:

B(q+1) =
diag(

∑K
k=1 π

(q)
k G

(q+1)
k )

|diag(∑K
k=1 π

(q)
k G

(q+1)
k )|1/d

and

λ(q+1) =
|diag(∑K

k=1 π
(q)
k G

(q+1)
k )|1/d

n

Model [λkB]. In this situation, minimizing Equation (2.7) leads to the minimization of

M10(λk,B) = d

K∑

k=1

π
(q)
k ln(λk)

v∑

r=1

nr

p
(q)
r

∫

Hr

fk(x; θ
(q)
k )dx

+

K∑

k=1

π
(q)
k

1

λk
tr(B−1G

(q+1)
k )

The minimization of the function M10 has to be performed iteratively.

• Keep B fixed, the λk’s minimizing M10 are

λ
(q+1)
k =

tr(B−1G
(q+1)
k )

d
∑v

r=1
nr

p
(q)
r

∫
Hr

fk(x; θ
(q)
k )dx
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• Keep the volumes λk’s fixed, the matrix B minimizing M10 is minimizing
∑K

k=1
π
(q)
k
λk

tr(B−1G
(q+1)
k ), thus, we have

B(q+1) =
diag(

∑K
k=1

π
(q)
k
λk

G
(q+1)
k )

|diag(∑K
k=1

π
(q)
k
λk

G
(q+1)
k )|1/d

Model [λBk]. In this situation, minimizing Equation (2.7) leads to the minimization of

M11(λ,Bk) = d ln(λ)
K∑

k=1

π
(q)
k

v∑

r=1

nr

p
(q)
r

∫

Hr

fk(x; θ
(q)
k )dx

+

K∑

k=1

π
(q)
k

1

λ
tr(B−1

k G
(q+1)
k ) (2.16)

It can be deduced directly from Equation (2.16) that:

B
(q+1)
k =

diag(G
(q+1)
k )

|diag(G(q+1)
k )|1/d

and

λ(q+1) =

∑K
k=1 π

(q)
k |diag(G

(q+1)
k )|1/d

n

Model [λkBk]. In this situation, minimizing Equation (2.7) leads to the minimization of

M12(λk,Bk) = d

K∑

k=1

π
(q)
k ln(λk)

v∑

r=1

nr

p
(q)
r

∫

Hr

fk(x; θ
(q)
k )dx

+
K∑

k=1

π
(q)
k

1

λk
tr(B−1

k G
(q+1)
k ) (2.17)

It can be deduced directly from Equation (2.17) that:

B
(q+1)
k =

diag(G
(q+1)
k )

|diag(G(q+1)
k )|1/d

and

λ
(q+1)
k =

|diag(G(q+1)
k )|1/d

∑v
r=1

nr

p
(q)
r

∫
Hr

fk(x; θ
(q)
k )dx



62
Chapter 2. Parsimonious Gaussian mixture models for binned data clustering and the

corresponding binned-EM algorithms

2.5.3 The spherical models

There are two models in the spherical family: [λI], [λkI].

Model [λI]. In this situation, minimizing Equation (2.7) leads to the minimization of

M13(λ) = d ln λ

K∑

k=1

v∑

r=1

π
(q)
k

nr

p
(q)
r

∫

Hr

fk
(
x; θ

(q)
k

)
dx

+

K∑

k=1

π
(q)
k

λ
tr
(
G

(q+1)
k

)

= nd ln(λ) +
1

λ
tr
(
G(q+1)

)

and

G(q+1) =
K∑

k=1

π
(q)
k G

(q+1)
k

so we get

λ(q+1) =
tr
(
G(q+1)

)

nd

Model [λkI]. In this situation, minimizing Equation (2.7) leads to the search of volume

vector λ = (λ1, . . . , λK) minimizing

M14(λk) = d

K∑

k=1

π
(q)
k ln(λk)

v∑

r=1

nr

p
(q)
r

∫

Hr

fk
(
x; θ

(q)
k

)
dx

+

K∑

k=1

π
(q)
k

1

λk
tr
(
G

(q+1)
k

)

and we get

λ
(q+1)
k =

tr
(
G

(q+1)
k

)

d
∑v

r=1
nr

p
(q)
r

∫
Hr

fk
(
x; θ

(q)
k

)
dx

2.6 Experiments on simulated data

The numerical experiment is divided into three parts. The first part aims to compare

the performances of the binned-EM algorithms of fourteen models on simulated data of

different distributions. In the second part, we will study how the size of bin affects the

result of binned-EM algorithm by changing the bin size. In the last part, we will test

binned-EM algorithm on real applications: French cities clustering and image segmen-

tation. To simplify the experiment and in order to be able to show the results in this

paper visually, the simulated data are all defined in a two-dimensional space (IR2).
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2.6.1 Experiment on simulated data of different structures

The first experiment is to study the performances of different parsimonious models

applied to data of different structures. According to fourteen parsimonious models, we

simulate fourteen samples of different structure. Each sample size is of 3000. Fourteen

versions of EM algorithm (each version associates to one parsimonious model) are applied

to each sample for 30 times with random initiations. The best result among 30 results

of each algorithm model is considered as the final result. The process of the experiment

is explained in the Figure 2.5:

Model Mx

Standard
data with
labels

Standard
data

without
labels

Binned
data

without
labels

(θ̂Mx , LMx)

Clustering
result of
binned
data

Clustering
result of
standard
data

Accuracy

Best model

Simulate Remove labels Bin

Binned-EM of M1, . . . ,M14

MAP

Unbin

Compare labels

Accuracymax

Figure 2.5: Experiment process of binned-EM algorithms of fourteen parsimonious
models applying to simulated data.

Since the volumes, shapes and orientations are different among fourteen models, the

separation of clusters within each model is controlled and defined by the distance value,

which indicates the distance between two mixture components:

δ =

√
(µ1 − µ2)

T (
Σ1 +Σ2

2
)−1(µ1 − µ2)

To obtain binned data, we divide the space into small bins of square shape with length=

0.5. Because of the different volumes and different centers of clusters in each data

structure, the space is cut into different numbers of bins depending on the volumes of

samples, which will be detailed in the description of the characteristics of dataset.

The simulated data contains two components of equal mixing portions in two-dimensional

space. Characteristics of each structure of data are described as follows:
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• Data structure 1 is generated according to the model [λDADT ] with λ = 1,

D =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, A = Diag(3, 1/3), µ1 = (−1.1, 0), µ2 = (1.2, 0), δ = 2.97,

Number of bins= 23× 17.

• Data structure 2 is generated according to the model [λkDADT ] with λ1 = 1,

λ2 = 3, D =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, A = Diag(3, 1/3), µ1 = (−1.5, 0), µ2 = (1.5, 0),

δ = 2.74, Number of bins= 29× 28.

• Data structure 3 is generated according to the model [λDAkD
T ] with λ = 1, D =( √

2
2

√
2
2

−
√
2
2

√
2
2

)
, A1 = Diag(1, 1), A2 = Diag(2, 1/2), µ1 = (−1.5, 0), µ2 = (1.5, 0),

δ = 3.0, Number of bins= 21× 15.

• Data structure 4 is generated according to the model [λkDAkD
T ] with λ1 = 1,

λ2 = 2, D =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, A1 = Diag(1, 1), A2 = Diag(2, 1/2), µ1 = (−1.5, 0),

µ2 = (2, 0), δ = 2.93, Number of bins= 22× 20.

• Data structure 5 is generated according to the model [λDkADT
k ] with λ = 1, D1 =(

1
2

√
3
2

−
√
3
2

1
2

)
, D2 =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, A = Diag(3, 1/3), µ1 = (−2, 0), µ2 = (1.5, 0),

δ = 3.04, Number of bins= 23× 24.

• Data structure 6 is generated according to the model [λkDkADT
k ] with λ1 = 3,

λ2 = 1, D1 =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, D2 = Diag(1, 1), A = Diag(3, 1/3), µ1 = (−5, 0),

µ2 = (5, 0), δ = 3.79, Number of bins= 47× 29.

• Data structure 7 is generated according to the model [λDkAkD
T
k ] with λ = 1,

D1 =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, D2 =

(
1
2

√
3
2

−
√
3
2

1
2

)
, A1 = Diag(3, 1/3), A2 = Diag(2, 1/2),

µ1 = (−1.4, 1), µ2 = (1.5,−1), δ = 3.09, Number of bins= 19× 20.

• Data structure 8 is generated according to the model [λkDkAkD
T
k ] with λ1 =

2, λ2 = 1, D1 =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, D2 =

(
1
2

√
3
2

−
√
3
2

1
2

)
, A1 = Diag(2, 1/2), A2 =

Diag(3, 1/3), µ1 = (−1.8, 1) µ2=(1.7,-1), δ = 3.05, Number of bins= 24× 27.

• Data structure 9 is generated according to the model [λB] with λ = 1, B =

Diag(1/2, 2), µ1 = (−1, 0), µ2 = (1.1, 0), δ = 2.97, Number of bins= 13× 20.

• Data structure 10 is generated according to the model [λkB] with λ1 = 1, λ2 = 3,

B = Diag(1/3, 3), µ1 = (−4, 0), µ2 = (4, 0), δ = 3.27, Number of bins= 48× 12.
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• Data structure 11 is generated according to the model [λBk] with λ = 1, B1 =

Diag(1/2, 2), B2 = Diag(1/3, 3), µ1 = (−1, 0), µ2 = (1, 0), δ = 3.09, Number of

bins= 18× 24.

• Data structure 12 is generated according to the model [λkBk] with λ1 = 1, λ2 = 3,

B1 = Diag(2, 1/2), B2 = Diag(4, 1/4), µ1 = (−3, 0), µ2 = (3, 0), δ = 3.03,

Number of bins= 42× 11.

• Data structure 13 is generated according to the model [λI] with λ1 = 1, µ1 =

(−1.5, 0), µ2 = (1.5, 0), δ = 2.97, Number of bins= 27× 18.

• Data structure 14 is generated according to the model [λkI] with λ1 = 1, λ2 = 3,

µ1 = (−2.1, 0), µ2 = (2.1, 0), δ = 2.97, Number of bins= 28× 22.

We evaluate the performance of each model by the accuracy, the CPU time and the

standard deviation of accuracy. Accuracy indicates the percentage of the data which

are correctly classified, while the CPU time is the amount of time for which a central

processing unit (CPU) was used for our algorithm computation. The result is displayed

in Tables 2.4, 2.5 and 2.6. The result in bold is the best result for the corresponding

dataset.

According to the result, we can analyze in detail as follows: For data of structure

[λDADT ], the models in general family provide accuracies over 0.900, much higher than

diagonal and spherical families. The best result is obtained by the model [λkDADT ] as

well as the model [λkDkADT
k ], instead of the model [λDADT ] which underlies the data

structure. These two models allow more freedom in the cluster parameters (different

volumes, different volumes and orientation) than the model [λDADT ]. We want to

mention that the right model [λDADT ] provides a slightly better model result than the

most general model [λkDkAkD
T
k ]. This outcome shows the suitability of parsimonious

models for different datasets.

The highest accuracy for data structure [λkDADT ] is obtained by its own feature model

[λkDADT ], as what is expected. Besides, the model [λkDkADT
k ] and the most general

model [λkDkAkD
T
k ] also provide high accuracies with low computation time. Not sur-

prisingly the diagonal and spherical models perform disappointingly.

For data structure [λDAkD
T ], it is of interest to see that all the models which allow

different shapes in clusters provides good results: [λDAkD
T ], [λkDAkD

T ], [λDkAkD
T
k ],

[λkDkAkD
T
k ]. Among these models, the corresponding model [λDAkD

T ] has the highest

accuracy.

When clustering data of structure [λkDAkD
T ], the right model [λkDAkD

T ] has the

highest accuracy and the least CPUtime. All the other models are able to provide a
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❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
Model Structure

Data Structure
[λDADT ] [λkDADT ] [λDAkD

T ] [λkDAkD
T ] [λDkADT

k
]

[λDADT ]
Accuracy(σ) 0.926(0.0052) 0.914(0.0051) 0.918(0.0071) 0.921(0.0034) 0.925(0.0050)
CPUtime 27.2 26.5 26.1 35.4 51.7

[λkDADT ]
Accuracy(σ) 0.959(0.0042) 0.928(0.0019) 0.902(0.0122) 0.903(0.0072) 0.927(0.0222)
CPUtime 23.4 26.6 25.9 38.7 73.2

[λDAkD
T ]

Accuracy(σ) 0.960(0.0052) 0.906(0.0072) 0.929(0.0080) 0.897(0.0093) 0.935(0.0145)
CPUtime 23.3 48.0 28.2 38.8 57.3

[λkDAkD
T ]

Accuracy(σ) 0.913(0.0250) 0.812(0.0113) 0.927(0.0087) 0.922(0.0080) 0.826(0.0411)
CPUtime 55.2 69.4 49.5 21.6 53.7

[λDkADT

k
]

Accuracy(σ) 0.925(0.0050) 0.892(0.0055) 0.897(0.0142) 0.913(0.0065) 0.960(0.0067)
CPUtime 51.7 111.2 38.8 39.5 33.2

[λkDkADT

k
]

Accuracy(σ) 0.960(0.0052) 0.927(0.0022) 0.895(0.0112) 0.909(0.0048) 0.950(0.0132)
CPUtime 24.2 26.2 26.9 39.9 99.7

[λDkAkD
T

k
]

Accuracy(σ) 0.925(0.0051) 0.893(0.0065) 0.928(0.0070) 0.917(0.0093) 0.886(0.0430)
CPUtime 50.4 90.0 49.4 80.7 45.3

[λkDkAkD
T

k
]

Accuracy(σ) 0.925(0.0052) 0.923(0.0085) 0.922(0.0067) 0.917(0.0053) 0.953(0.0026)
CPUtime 27.2 26.4 26.1 38.7 27.8

[λB]
Accuracy(σ) 0.725(0.0232) 0.627(0.0046) 0.916(0.0128) 0.901(0.0065) 0.923(0.0095)
CPUtime 45.0 64.3 55.9 38.8 43.1

[λkB]
Accuracy(σ) 0.718(0.0007) 0.691(0.0189) 0.921(0.0056) 0.909(0.0086) 0.846(0.0094)
CPUtime 53.8 149.3 53.8 55.9 76.0

[λBk]
Accuracy(σ) 0.728(0.0227) 0.746(0.0228) 0.915(0.0061) 0.897(0.0085) 0.864(0.0081)
CPUtime 44.1 85.3 55.9 38.7 31.1

[λkBk]
Accuracy(σ) 0.7175(0.0007) 0.721(0.0094) 0.912(0.0107) 0.910(0.0095) 0.850(0.0077)
CPUtime 54.5 159.2 69.7 55.7 77.8

[λI]
Accuracy(σ) 0.734(0.0209) 0.746(0.172) 0.913(0.0153) 0.869(0.0106) 0.928(0.0065)
CPUtime 39.9 71.6 69.7 132.6 53.5

[λkI]
Accuracy(σ) 0.724(0.0140) 0.758(0.0098) 0.918(0.0064) 0.916(0.0112) 0.930(0.0070)
CPUtime 39.9 68.8 37.4 42.1 52.0

Table 2.4: Accuracy, CPUtime and Standard deviation of accuracy (in parentheses) of binned-EM algorithm on simulated data 1
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❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
Model Structure

Data structure
[λkDkADT

k
] [λDkAkD

T

k
] [λkDkAkD

T

k
] [λB] [λkB]

[λDADT ]
Accuracy(σ) 0.941(0.0057) 0.925(0.0051) 0.925(0.0052) 0.725(0.0232) 0.948(0.0062)
CPUtime 29.3 50.4 27.2 45.0 26.8

[λkDADT ]
Accuracy(σ) 0.925(0.0039) 0.817(0.0122) 0.988(0.0019) 0.908(0.0159) 0.959(0.0019)
CPUtime 52.7 34.0 64.7 37.7 48.5

[λDAkD
T ]

Accuracy(σ) 0.887(0.0215) 0.824(0.0087) 0.976(0.0065) 0.900(0.0131) 0.948(0.0063)
CPUtime 53.2 34.8 69.1 26.1 26.5

[λkDAkD
T ]

Accuracy(σ) 0.933(0.0053) 0.787(0.0142) 0.966(0.0062) 0.783(0.0243) 0.946(0.0075)
CPUtime 29.2 34.5 45.5 25.9 40.8

[λDkADT

k
]

Accuracy(σ) 0.950(0.0031) 0.980(0.0027) 0.967(0.0184) 0.896(0.0084) 0.948(0.0063)
CPUtime 79.4 64.0 107.0 47.9 26.7

[λkDkADT

k
]

Accuracy(σ) 0.958(0.0045) 0.787(0.0115) 0.991(0.0083) 0.907(0.0142) 0.959(0.0022)
CPUtime 71.5 34.8 66.6 26.6 48.7

[λDkAkD
T

k
]

Accuracy(σ) 0.948(0.0055) 0.983(0.0013) 0.917(0.0110) 0.919(0.0111) 0.948(0.0059)
CPUtime 69.5 88.5 43.7 34.2 26.6

[λkDkAkD
T

k
]

Accuracy(σ) 0.957(0.0056) 0.983(0.0036) 0.992(0.0014) 0.921(0.0079) 0.960(0.0030)
CPUtime 61.0 40.7 67.7 86.9 48.5

[λB]
Accuracy(σ) 0.817(0.0072) 0.917(0.0151) 0.906(0.0211) 0.923(0.0096) 0.949(0.0066)
CPUtime 124.7 26.2 26.5 41.2 26.6

[λkB]
Accuracy(σ) 0.910(0.0065) 0.913(0.0072) 0.945(0.0081) 0.916(0.0158) 0.960(0.0032)
CPUtime 204.9 64.4 64.5 72.5 69.7

[λBk]
Accuracy(σ) 0.829(0.0050) 0.865(0.0070) 0.863(0.0080) 0.836(0.0159) 0.948(0.0064)
CPUtime 149.4 35.4 40.4 18.3 26.5

[λkBk]
Accuracy(σ) 0.952(0.0014) 0.923(0.0117) 0.969(0.0053) 0.900(0.0155) 0.960(0.0035)
CPUtime 93.3 66.0 64.8 50.3 69.7

[λI]
Accuracy(σ) 0.857(0.0076) 0.928(0.0072) 0.926(0.0068) 0.920(0.0055) 0.939(0.0066)
CPUtime 133.0 28.5 48.1 54.2 69.4

[λkI]
Accuracy(σ) 0.919(0.0096) 0.911(0.0060) 0.945(0.0048) 0.920(0.0076) 0.956(0.0046)
CPUtime 45.5 36.7 51.0 50.9 48.3

Table 2.5: Accuracy, CPUtime and Standard deviation of accuracy (in parentheses) of binned-EM algorithm on simulated data 2
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❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
Model Structure

Data structure
[λBk] [λkBk] [λI] [λkI]

[λDADT ]
Accuracy(σ) 0.828(0.0194) 0.903(0.0073) 0.934(0.0209) 0.924(0.0140)
CPUtime 15.1 37.9 39.9 39.3

[λkDADT ]
Accuracy(σ) 0.834(0.0186) 0.930(0.0072) 0.931(0.0062) 0.945(0.0038)
CPUtime 17.3 38.1 26.7 48.6

[λDAkD
T ]

Accuracy(σ) 0.823(0.0152) 0.926(0.0060) 0.931(0.0062) 0.9334(0.0071)
CPUtime 16.0 37.7 26.5 48.7

[λkDAkD
T ]

Accuracy(σ) 0.821(0.0203) 0.911(0.0108) 0.929(0.0066) 0.942(0.0060)
CPUtime 14.9 45.9 58.9 29.0

[λDkADT

k
]

Accuracy(σ) 0.865(0.0071) 0.908(0.0076) 0.885(0.0099) 0.862(0.0105)
CPUtime 35.2 73.4 47.8 47.9

[λkDkADT

k
]

Accuracy(σ) 0.865(0.0084) 0.916(0.0084) 0.931(0.0062) 0.945(0.0036)
CPUtime 39.9 38.1 26.7 50.2

[λDkAkD
T

k
]

Accuracy(σ) 0.865(0.0060) 0.922(0.0048) 0.982(0.0136) 0.952(0.0099)
CPUtime 32.1 54.5 51.3 34.3

[λkDkAkD
T

k
]

Accuracy(σ) 0.864(0.0048) 0.934(0.0070) 0.973(0.0090) 0.969(0.0099)
CPUtime 39.3 37.6 66.3 45.7

[λB]
Accuracy(σ) 0.838(0.0187) 0.921(0.0058) 0.920(0.0102) 0.837(0.0263)
CPUtime 17.4 71.1 38.3 37.0

[λkB]
Accuracy(σ) 0.763(0.0197) 0.893(0.0130) 0.931(0.0062) 0.945(0.0040)
CPUtime 35.0 163.0 41.6 70.4

[λBk]
Accuracy(σ) 0.861(0.0058) 0.927(0.0060) 0.819(0.0151) 0.805(0.0216)
CPUtime 27.1 64.6 26.1 27.8

[λkBk]
Accuracy(σ) 0.870(0.0057) 0.942(0.0053) 0.931(0.0062) 0.945(0.0037)
CPUtime 65.4 64.4 41.7 70.7

[λI]
Accuracy(σ) 0.819(0.0169) 0.907(0.0097) 0.928(0.0071) 0.928(0.0066)
CPUtime 27.0 30.8 28.6 47.8

[λkI]
Accuracy(σ) 0.792(0.0237) 0.924(0.0068) 0.913(0.0079) 0.945(0.0048)
CPUtime 27.2 37.4 91.2 42.8

Table 2.6: Accuracy, CPUtime and Standard deviation of accuracy (in parentheses) of binned-EM algorithm on simulated data 3
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good result. This is because the difference between two clusters doesn’t show a strong

character in the dataset.

Data of structure [λDkADT
k ] contains clusters of different orientations. The models

which contain clusters of different orientations obtain good result (accuracy more than

0.950): [λDkADT
k ], [λkDkADT

k ], [λkDkAkD
T
k ]. And the best result is still obtained by

the right model [λDkADT
k ].

The best result of cluster analysis of data of structure [λkDkADT
k ] is obtained by its

own feature model. The most general model [λkDkAkD
T
k ] provides the second best

result. The other general models give a better result than the diagonal and spherical

models. Surprisingly the model [λkBk] provides high accuracy too because the samples

we generated has the structure closed to [λkBk] and two clusters in the data are well

separated.

For the data of structure [λDkAkD
T
k ], models [λDkAkD

T
k ] and [λkDkAkD

T
k ] have very

high accuracy 0.983, yet the model [λkDkAkD
T
k ] spends less computation time than the

model [λDkAkD
T
k ].

The data contains clusters with different volumes, orientations and shapes ([λkDkAkD
T
k ])

is the most difficult case to deal with. In this situation, undoubtedly the most complex

model obtains the highest accuracy because it is the only model which can represent

correctly the structure of the data.

And it is interesting to notice that among the general family, the models allowing dif-

ferent volumes have worse performances than the models restricting the same volumes.

Some parsimonious models which are simpler than the structure of data can still obtain

good results because those models can be closed to the structure of the simulated data.

And this is also because the two clusters are well separated in our simulated dataset.

For example, data simulated according to the model [λkDAkD
T ] are very close to the

structure of the model [λkDAkD
T ].

For diagonal data structure [λB], we notice that as the other general models, its own

feature model [λB] provides the best result, even the other models who is more complex

than [λB] cannot obtain better result.

The two clusters in the data simulated according to model [λkB] are well separated,

which leads to all the results of fourteen models are almost the same. The models

[λkB], [λkBk] and [λkDkAkD
T
k ] which have the closest structure to the data, provide

the highest accuracy.

The model [λBk] is not the model obtaining the highest accuracy for the data structured

of [λBk]. But it obtains a good result when taking less CPUtime. The model [λkBk]
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appears to be the best model for data structured [λkBk]. The diagonal family and

spherical family show equivalent performances as the general family in this case.

When data is simulated according to the spherical models [λI] and [λkI], models [λDkAkD
T
k ]

and [λkDkAkD
T
k ] provide the highest precision respectively. Models [λI] and [λkI] are

very simple, but they still can do a good cluster analysis with high accuracy and less

computation time than the general models. Generally speaking, the general models pro-

vide good result on the data simulated according to the diagonal models and spherical

models. Because each diagonal and spherical model can be described by several general

models, but in a more complicated form.

After all the analysis above, we can conclude as follows:

In most of the case, the result shows that the model which can represent the data

structure obtains the best highest accuracy. Generally speaking, the general models

provide better results than the diagonal and spherical models when the data is simulated

according to the general model. And naturally, when the the data generated according to

diagonal models, diagonal models offer the best result. It explains that it’s not necessary

to use the most general model for all the data clustering. When the clusters are well

separated, the difference among fourteen models could be reduced. When the clusters

are well-mixed, choosing the right model plays a more important role in achieving a

good clustering result. We notice that in general the standard deviation of a model is

lower when this model provides higher accuracy. It means that when the model is more

suitable for the data, the result is even more stable and more reliable. In this paper, we

need to compare the fourteen models at the same levels, so we program all the models at

the same manner which contains certain numerical multidimensional integration. Due

to the methods in programming and the capability of calculators, the CPUtime in this

paper cannot be compared to the experimental results of EM algorithm and binned-

EM algorithm in previous papers. As indicated and proved in the papers of Cadez

et al. [13], Samé et al. [14], Samé [55], binning data in the mixture and classification

approach helps in reducing computation time. Also, in the previous section, we have

calculated and compared the computational complexities of EM algorithm and binned-

EM algorithm. Thus here in this section, the CPUtime is only to give a reference among

fourteen models and to show the difference of computation time of different models.

This experiment shows that if we are able to choose the right parsimonious model for

the data, we can receive higher accuracy and spend less computation time.



2.6. Experiments on simulated data 71

2.6.2 Experiment on simulated data with different bin sizes

As we know, in binned-EM algorithm, we assume that the only information of the data

is the frequencies of bins. The change in bin size can directly affect on the frequencies

of bins. It plays an inevitably important role in binned-EM algorithm.

Logically speaking, smaller bins lead to higher accuracy but more computation time.

The situation reaches to extreme when all the frequencies of non-empty bins equal 1.

In this case, the number of non-empty bins equals the number of observations. On the

contrary, bigger bins lead to worse accuracy but less CPUtime. From this experiment,

we will see how the accuracy and computation time of binned-EM algorithm vary with

the bin size.

All the samples are simulated according to the model [λDADT ], with λ = 1, D =( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, A = diag(3, 1/3), µ1 = (−1.3, 0) and µ2 = (1.5, 0). To obtain the

binned data, we divide the space into small bins of square form. 11 sizes of bins will be

considered. The side-length of bins varies from 0.2 to 0.7 with interval of 0.05. So the

numbers of bins are 56× 45, 48× 34, 35× 32, 32× 25, 29× 21, 26× 20, 24× 18, 21× 15,

19 × 15, 17 × 14, 16 × 13. For each bin size, we simulate a sample of size = 3000. On

each sample we apply binned-EM algorithm of model [λDADT ] 30 times with random

initiation. We evaluate each performance by accuracy and CPUtime. The best result

from the 30 results of each size of bins is considered as the final result.

The results are shown in the Table 2.7 and the Figures 2.6 and 2.7.

Bin size Accuracy CPUtime bin num. non-empty-bin num.

0.2 · 0.2 0.9637 70 2976 751
0.25 · 0.25 0.9632 50 1518 517
0.3 · 0.3 0.9630 38 1189 401

0.35 · 0.35 0.9615 30 744 304
0.4 · 0.4 0.9611 24 660 253

0.45 · 0.45 0.9593 19 535 210
0.5 · 0.5 0.9603 16 428 174

0.55 · 0.55 0.9582 14 349 149
0.6 · 0.6 0.9576 12 286 132

0.65 · 0.65 0.9557 11 234 114
0.7 · 0.7 0.9549 10 213 103

Table 2.7: Result of binned-EM algorithm with different size of bins on simulated
data.

From the Table 2.7 and the Figure 2.6, we can see the accuracy of binned-EM algorithm

keeps steady at a high level while slightly reducing from 0.9637 to 0.9549 with the

increasing of bin size from 0.2 · 0.2 to 0.7 · 0.7. From Figure 2.7, it is shown that

CPUtime decreases when the bins become bigger. Because our algorithm only depends

on the bins which are not empty. When the bins are bigger, there are less bins as

well as non-empty-bins and surely it costs less computation time. By comparing the
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Figure 2.6: Accuracy and bin number of binned-EM algorithm applied on simulated
data with different size of bins.
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two small figures in Figure 2.7, we notice that the decrease of CPUtime trends to the

similar tendency as the decrease of non-empty-bin number. So we can conclude that the

computation time of binned-EM algorithm can be reduced by enlarging the size of bins,

with certain loss of precision.

2.7 Experiments on real data

2.7.1 French city clustering

Experiment on real data can test the algorithm’s practical ability in real application.

To test our algorithm, as the real dataset, we have the population and population

density (population/surface) of 1193 cities from three departments in France: Meuse,

Nord and Val-de-Marne. These cities have different characteristic in population and

population density due to different locations. Meuse is a rural department with a small

population and low population density. In the opposite, Val-de-Marne, situated to

southeast of Paris, is a department of high population density and Nord is the most

populous department in France. We assume that we only have the information about

the population and density of these 1193 cities and we need to group them into three

clusters by binned-EM algorithm. The result of binned-EM algorithm will be compared

to the actually clusters in reality. Accuracy will be calculated and CPUtime will be

recorded.

Figure 2.8 displays 1193 observations concerning the log-population and log-density of

cities from Meuse (500 observations), Nord (652 observations) and Val-de-Marne (47

observations). From the figure, we can tell that there are three clusters. It is obvious

that the structure of each cluster is neither spherical nor diagonal. Thus there is no need

to test also the binned-EM algorithms of diagonal models and spherical models. We only

apply eight general models on this real dataset: [λDADT ], [λkDADT ], [λDAkD
T ],

[λkDAkD
T ], [λDkADT

k ], [λkDkADT
k ], [λDkAkD

T
k ] and [λkDkAkD

T
k ]. Each model is

applied on the real data for 30 times. We pick up the best accuracy from 30 results as

the final result of the model.

The result is displayed in Table 2.8 and Figures 2.9 and 2.10.

From Figure 2.9, three departments are basically correctly clustered. From Figure

2.10, the observations which are incorrectly clustered mostly locate in the intersection

of two departments. For the point of accuracy, both model [λkDAkD
T ] and model

[λkDkAkD
T
k ] obtain the highest accuracy: 0.813. For the point of computation time,

model [λkDAkD
T ] consumes the least CPUtime among the eight models: 33.7, while
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model [λkDkAkD
T
k ] takes the second least CPUtime: 58.42. Thus, we can consider the

best model in clustering the French cities by its population and population density is

model [λkDAkD
T ]. It proves the practical application ability of binned-EM algorithm

and the advantage of parsimonious models in saving computation time.

Model Accuracy Time

[λDADT ] 0.780 58.72

[λkDADT ] 0.801 110.78

[λDAkD
T ] 0.789 85.60

[λkDAkD
T ] 0.813 33.07

[λDkADT
k ] 0.755 59.80

[λkDkADT
k ] 0.791 60.11

[λDkAkD
T
k ] 0.752 221.65

[λkDkAkD
T
k ] 0.813 58.42

Table 2.8: Accuracy, CPUtime of binned-EM algorithm on French cities clustering.
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Figure 2.8: Log-population and log-density of 1193 cities from three departments in
France.

2.7.2 Image segmentation

Image segmentation, feature extraction and object recognition constitute three main

objectives in computer vision theory. The feature extraction and object recognition are

based on image segmentation. The result of image segmentation will directly affect the

subsequent feature extraction and object recognition. Image segmentation is a process

of extracting meaningful features or regions from image. These features can be the
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Figure 2.9: Binned-EM algorithm result on real data on French cities.
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Figure 2.10: Incorrectly clustered points of binned-EM algorithm result on real data
on French cities.
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original image features, such as the gray value of the pixel, the object contour, the color

and reflection characteristics. The purpose of image segmentation is to divide the image

into several disjoint regions so that each region has the consistency and adjacent areas

have significant difference in property. This helps to better understand and analyze the

image.

Image segmentation is widely used in all the areas of image processing. For example,

it can be used in medical imaging including locating tumors and other pathologies. It

can also be used in face detection, fingerprint recognition, etc. Many methods of image

segmentation were proposed. Image segmentation techniques can be classified into two

broad families: region-based, and contour-based approaches. Region-based approaches

try to find partitions of the image pixels into sets corresponding to coherent image

properties such as brightness, color and texture. Contour-based approaches detects the

places where the gray level or structure has a mutation, where indicating the end of a

region, but also the place to start another region.

Many other methods for image segmentation were proposed. One of them is called

clustering method. Feature space clustering method for image segmentation is to express

the pixels by corresponding points in the feature space. Partition the feature space

according to the accumulation of the points in the feature space. Then map them back

to the original image space, to obtain the segmentation result. Where, K-means, Fuzzy

C-means clustering (FCM) algorithm are the most commonly used clustering algorithms.

In this part, we will apply binned-EM algorithm to image segmentation. As we know,

all the color can be represented in RGB Color space. In this experiment, we will convert

image from RGB color space to L ∗ a ∗ b∗ color space. Thus, colors will be segmented

in an automated fashion using the L ∗ a ∗ b∗ color space. The L ∗ a ∗ b∗ color space

(also known as CIELAB or CIE L ∗ a ∗ b∗) enables you to quantify the visual differences

among colors. The L∗a∗b∗ color space is derived from the CIE XYZ tristimulus values.

The L ∗a ∗ b∗ space consists of a luminosity layer ′L∗′, chromaticity-layer ′a∗′ indicating
where color falls along the red-green axis, and chromaticity-layer ′b∗′ indicating where

the color falls along the blue-yellow axis. All of the color information is in the ′a∗′ and
′b∗′ layers.

We are going to do image segmentation of the image in the Figure 2.11:
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Figure 2.11: Original image.

From the image, we can tell that there are four main colors: year(the sleds), white(the

sky and the snow), gray(the mountain and the shadow) and black(the trees). Thus in

the following process, we will cluster the image pixels into four clusters basing on the

color.

After converting the image into L ∗ a ∗ b∗ color space. Since the color information exists

in the ′a ∗ b∗′ space, the data become pixels with ′a∗′ and ′b∗′ values. The Figure 2.12

shows the 154401 image pixels:
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Figure 2.12: Image pixel represented in the ′a ∗ b∗′ space.

From the Figure 2.12, it is hard to tell which model it corresponds to. We try the general

model [λDADT ]. Figure 2.13 shows the clustering result by binned-EM algorithm of

model [λDADT ] with 20 ∗ 20 bins.
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Figure 2.13: Clustering result by binned-EM algorithm of model [λDADT ] with
20 ∗ 20 bins.

2.7.2.1 With different sizes of bin

In the Figures 2.14 and 2.15 shows the image segmentation result by binned-EM algo-

rithm of model [λDADT ] with different size of bins. The bin size changes among 5, 10,

20, 30, 40 and 50 bins per dimension. This aims to see how size of bins affects the result

of image segmentation.
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5 ∗ 5bins 10 ∗ 10bins

20 ∗ 20bins 30 ∗ 30bins

Figure 2.14: Result of image segmentation by binned-EM algorithm of model
[λDADT ] with different bin size(1).
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40 ∗ 40bins 50 ∗ 50bins

Figure 2.15: Result of image segmentation by binned-EM algorithm of model
[λDADT ] with different bin size(2).

From these two figures, we can have some conclusion on the comparison among six

results. We can see that when bin size if of 5 bins per dimension, the segmentation

result is very general. Some details are missing. For example, we cannot see the cushion

and the weave pattern in the sleds. The result of 10 bins per dimension provides more

details than 5 bins. The weave pattern in the sleds is clearer. The snow between two

sleds is separated from the trees. Snow points on the trees are identified. The result

with 20 bins per dimension is close to the one with 10 bins. The separation line between

the trees and the mountain is cleaner. More snow spots are detected. The shadow part

gets smaller. The results with 30 and 40 bins per dimension are almost the same with

each other. The shadows of the sleds in these two figures are almost disappear. The

snow ground between two sleds is detected.

From the result, we can see that image segmentation result is more detailed and more

correct with smaller bins. But binned-EM algorithm with big bins can also obtain a

general image segmentation result which is good enough. Why? As we can see in the

Figure 2.12, many pixels which have the same color are overlapped. And the pixels

which have similar color are centralized. In this case, grouping the pixels into bins helps

largely in reducing the amount of data and the computation time. Some information
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about the image segmentation by binned-EM algorithm with different size of bins are

shown in the Table 2.9:

P
P
P
P
P
P
P
P
P
P
P

Bin size

Info.
LM CPUtime(s) Num. of non-empty bins

5 bins/dimension −5.43 × 103 30 20

10 bins/dimension −3.47 × 104 50 67

20 bins/dimension −6.88 × 104 149 234

30 bins/dimension −8.67 × 104 203 480

40 bins/dimension −1.43 × 105 258 610

50 bins/dimension −1.64 × 105 316 746

Table 2.9: Information of the image segmentation by binned-EM algorithm with
different size of bins.

The Table 2.9 shows that, bigger bins result in bigger maximum likelihood. We know

that there are 154401 pixels in the image. If we use classical EM algorithm, we have

154401 data to deal with. But by applying binned-EM algorithm, the number of bins

can be changed according to the bin size. In the Table 2.9, when the size of bins is 5 bins

per dimension, we only have 20 non-empty bins to deal with. Reducing 154401 points

to 20 bins, helps a lot in computation time saving. Along with the increase of number

of bins, of course the computation time increases too.

Considering the computation time, let’s look back to the image segmentation quality.

We can say that 20 bins per dimension is a good size of bin for image segmentation of

this image basing on color.

2.7.2.2 With different models

In this part, we will compare the performance of binned-EM algorithm of parsimonious

models on image segmentation. From the Figure 2.12, we cannot tell the distribution

of the data corresponds to which model. We suppose that the general models are more

suitable for this dataset according to the Figure 2.12. Thus we only choose the eight

general models to cluster the pixels of this image. According to the experimental result

of the first experiment, binned-EM algorithm with 20 bins per dimension can obtain a

good image segmentation result with less computation time. So in this experiment, the

bin size is fixed at 20 bins along each dimension. We suppose that there are four main

colors in this image. By applying the binned-EM algorithm of eight general models to

the pixels clustering, we obtain the image segmentation results which are shown in the

Figures 2.16 and 2.17 :
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1 2

3 4

Figure 2.16: Result of image segmentation by binned-EM algorithm of four general
models: 1. [λDADT ], 2. [λkDADT ], 3. [λDAkD

T ], 4.[λkDAkD
T ]
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5 6

7 8

Figure 2.17: Result of image segmentation by binned-EM algorithm of four general
models: 5. [λDkADT

k
], 6. [λkDkADT

k
], 7. [λDkAkD

T

k
], 8. [λkDkAkD

T

k
]

From the Figures 2.16 and 2.17, we would say that the model [λDAkD
T ] and the model

[λDkADT
k ] are two best models for the image segmentation of this image. In these
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two image segmentation result, there is a clear separation between the sky and the

mountain, between the mountain and the trees, between the trees and the snow ground.

The shadow is detected. The snow between two sleds is separated from the trees. The

weave pattern in the sleds is clear. All the main subjects are clearly shown. The other

models give a general idea about the image. Different faults are shown in the result of

different models. The model [λkDAkD
T ] is the worst one among these eight general

models. We can only see two sleds in the result.

2.7.2.3 Comparison with classical EM algorithm and k-means algorithm

Binned-EM algorithm is developed by applying EM algorithm to binned data. Binned-

EM algorithm aims to save some computation time by grouping data in bins. An

experiment on real data is important to show this point. The goal of this experiment is

to show the binned-EM algorithm is faster than the classical EM algorithm when applied

to image segmentation.

EM binned− EM

Figure 2.18: comparison between the result by EM algorithm and the result by
binned-EM algorithm

From the Figure 2.18, the result of classical EM algorithm and the result of the binned-

EM algorithm of the model [λkDkAkD
T
k ] are very similar to each other. We can say that,
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binned-EM algorithm doesn’t lose obvious precision comparing to the EM algorithm in

image segmentation. But, the binned-EM algorithm takes only 119 seconds comparing

to 347 seconds for the EM algorithm. This result highlights the advantage of binned-

EM algorithm in saving computation time without much loss of precision of clustering,

comparing to the EM algorithm.

At the end, we would like to show also the image segmentation result by k-means algo-

rithm. This aims to compare the clustering quality between k-means algorithm and the

binned-EM algorithm for image segmentation. The Figure 2.19 shows the comparison

between the result by k-means algorithm and the result by binned-EM algorithm of

model [λDkADT
k ]:

k −means binned− EM

Figure 2.19: comparison between the result by k-means algorithm and the result by
binned-EM algorithm

From the Figure 2.19, two results of two algorithms are similar to each other. The result

of binned-EM algorithm of model [λDkADT
k ] is slightly better than the result of k-means

algorithm, according to some details. The snow between two sleds is better detected by

binned-EM algorithm. The weave pattern in the sleds is clearer in the result of binned-

EM algorithm. And the mistake on the right-top corner is smaller in the binned-EM

algorithm result. We should notice that, in binned-EM algorithm, all the 154401 pixels

are grouped into 234 non-empty bins. Even the k-means algorithm deals with 154401
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pixels one by one, binned-EM algorithm provides a higher precision only by dealing with

234 bins.

2.8 Conclusion

This chapter focused on the application of the EM algorithms of parsimonious models to

binned data clustering, which led to fourteen binned-EM algorithms. At the beginning,

we reviewed the EM algorithm for standard data. The complexity of the EM algorithm

was calculated. Then the fourteen parsimonious Gaussian mixture model were presented.

Examples of these models were illustrated. After, we developed binned-EM algorithms

of fourteen parsimonious Gaussian mixture models. The derivation of binned-EM al-

gorithm of each model was detailed. The complexity of the binned-EM algorithm is

calculated and compared with the one of the EM algorithm. We obtained a condition

when binned-EM algorithm is faster than the EM algorithm. This result not only shows

that the binned-EM algorithm is faster than the EM algorithm when the data amount

is big enough, it also helps us to know in which situation binned-EM algorithm should

be applied instead of the EM algorithm. The maximum likelihood estimates of model

parameters for fourteen parsimonious models were discussed. We compared and studied

the performances of these new algorithms by numerical experiments on simulated data

and real data. We can conclude the result as follows:

Firstly, the parsimonious Gaussian mixture model which represents the data structure

obtains the best result. It shows that even if the parsimonious models are simpler than

the most complex model, they are able to well fit different datasets. And because the

binned-EM algorithms of parsimonious Gaussian mixture models are more precise and

strict in model parameters estimation, they are able to obtain better result than the

one with the most complex model. Secondly, by simplifying the parameter estimation,

the parsimonious models help in saving computation time. Thirdly, at another side, the

computation time depends also on the size of bins. So by enlarging the bin size, we can

reduce and control the computation time of clustering. But it risks in losing certain

precision. Finally, by running our new algorithms on French department dataset and on

image segmentation, it shows that binned-EM algorithms of parsimonious models have

a good performance in practice and takes less computation time than the classic EM

algorithm.

In the next chapter, we will develop the bin-EM-CEM algorithms of fourteen parsimo-

nious Gaussian mixture models.



Chapter 3

Parsimonious Gaussian mixture

models for binned data clustering

and the corresponding

bin-EM-CEM algorithms

3.1 Introduction

Another common model-based clustering approach is the classification approach, which

was proposed by Symons [35]. It aims to maximize the complete likelihood by the

Classification Estimation Maximization (CEM) algorithm over the mixture parameters

and over the origin labels indicating the component that each observation comes from.

The CEM algorithm is regarded as the classification version of the EM algorithm while

maximizing the complete likelihood. In the CEM algorithm, a classification step is

inserted between the E-step and the M-step of the EM algorithm using a maximum a

posteriori (MAP) principle. Each step of the CEM algorithm will be detailed in this

chapter. Thanks to this classification step, the CEM algorithm is faster than the EM

algorithm. But this advantage in computation time is not enough when facing to data

of big quantity. The execution time of the CEM algorithm still increases significantly

along with the data size. To resolve this problem, a classification EM algorithm for

binned data (bin-EM-CEM) was developed by Samé et al. [14].

At another side, the fourteen parsimonious Gaussian mixture models can contribute to

offer a good solution for this computation time problem. These models are more sim-

plified than the most general model. By using these models, the clustering process can

87
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be accelerated. The CEM algorithms of fourteen parsimonious models were developed

by Celeux and Govaert [15]. The result turned out to be encouraging. The parsimo-

nious models adapt to different datasets. And until now, the bin-EM-CEM algorithms

of parsimonious models are missing.

Thus, the objective of this chapter is to introduce and develop the CEM algorithms

for binned data clustering (bin-EM-CEM algorithms)of fourteen parsimonious Gaussian

mixture models.

This chapter is organized as follows:

In the Section 3.2, we will review the classification approach for standard data and its

corresponding algorithm: the CEM algorithm. The computation complexity of the CEM

algorithm will be calculated in this part. Then in the Section 3.3, the derivation of the

bin-EM-CEM algorithm will be detailed. The computation complexity of the bin-EM-

CEM algorithm will be calculated and compared with the one of the CEM algorithm.

The Section 3.4 will present the estimation of variance matrices of fourteen parsimonious

models, which varies according to different models. In the Section 3.5, we will show two

experiments on simulated data. The first experiment is to compare the performances

of bin-EM-CEM algorithms of fourteen models on different simulated data. The second

experiment aims to study how the bin-EM-CEM algorithm behaves differently when the

size of bins changes. The Section 3.6 will show two experiments on real datasets. The

first experiment is French city clustering and in the second experiment the bin-EM-CEM

algorithms is applied to the image segmentation. The last Section 3.7 will conclude this

chapter and open the discussion of the next chapter.

3.2 Classification approach for standard data

In the classification maximum likelihood (CML) approach, the indicators zi identifying

the origin of xi are considered as missing parameters. Different from the mixture maxi-

mum likelihood (ML) approach, CML approach maximizes the likelihood basing on the

mixture model parameters and the data labels.

In standard data framework, the classification approach assumed that the mixing pro-

portions are equal in the mixture model. In 1981, Symons [35] has proposed a general

classification approach which imposes no restriction on the mixing proportions. Theoret-

ically, this unrestricted approach is expected to outperform the restricted one. But some

numerical experiments in Symons [35] show that the unrestricted classification approach

has a tendency to overstate the size of the larger clusters. This tendency is also proved

in the paper of Bryant [57] on the subject of clustering of large sample. Bryant showed
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that asymptotically the unrestricted classification approach did not classify at all when

the components are badly separated or when there is huge difference among the mixing

proportions. Celeux and Govaert [37] has compared the classification approaches with

equal mixing proportions and with free mixing proportions. The result showed that the

restricted classification approach is preferable to the unrestricted one.

3.2.1 The likelihood

In the classification maximum likelihood approach, the complete data is composed by

(x,z) = {(x1, z1), . . . , (xn, zn)} where the unknown parameter zi indicates the origin

component where the individual xi comes from. zi = k if xi comes from the kth

component. In the restricted version of CML approach, the proportions πk’s are assumed

to be equal. Thus we have the form of restricted CML approach as follows:

LCR =

K∑

k=1

∑

xi∈Pk

log
((
f(xi, θk)

))

where P = (P1, . . . , PK) is a partition of the sample xi, . . . ,xn, and Pk = {xi|zi = k}.
θk = (µk,Σk) are the parameters of the Gaussian distribution function f , where µk’s

are the mean and Σk’s are the variance matrices.

The unrestricted CML approach with free proportions πk’s is presented as follows:

LC =

K∑

k=1

∑

xi∈Pk

log
(
πkf(xi, θk)

)

It is proved [6] that maximizing the restricted CML criterion is to minimizing the within-

group scatter matrix |W|:

W =
K∑

k=1

∑

xi∈Pk

(xi − xk)(xi − xk)
′

where

xk =
1

#Pk

∑

xi∈Pk

xi

It can also be proved that maximizing the unrestricted CML criterion is to minimizing:

n log(|W|)− 2
K∑

k=1

#Pk log{#Pk}
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3.2.2 The CEM algorithm

To obtain the model parameters which optimizes the CML criteria, we can apply the

CEM algorithm. In this part, we give out an example of the unrestricted CML criterion.

Beginning with an initial partition, CEM algorithm computes the following three steps

iteratively:

• E step. Compute the posterior probabilities t
(q)
ik (1 ≤ i ≤ n; 1 ≤ k ≤ K):

t
(q)
ik =

π
(q)
k fk(x; θ

(q)
k )

∑
l π

(q)
l fl(x; θ

(q)
l )

for the unrestricted criterion.

• C step. Assign each xi to the cluster which provides the maximum posterior

probability tk(xi). This equals obtaining z
(q)
i which indicates the mixture origin

of each xi:

z
(q)
i = argmax

k
t
(q)
ik

• M-step (Maximization): Find the parameter Φ(q+1) that maximizes the expecta-

tion.

We can obtain the mixture model parameters:

π
(q+1)
k =

1

n

n∑

i=1

z
(q)
ik

µ
(q+1)
k =

1
∑n

i=1 z
(q)
ik

n∑

i=1

z
(q)
ik xi

The result of variance matrix Σ
(q+1)
k differs according to the chosen parsimonious model.

We will detail the variance matrix estimate later. For example, for the CEM algorithm

of model [λDADT ], we have:

Σ
(q+1)
k =

∑K
k=1

∑n
i=1 z

(q)
ik (xi − µ

(q+1)
k )(xi − µ

(q+1)
k )T

n

3.2.3 The complexity of CEM algorithm

Complexity calculation of CEM algorithm helps us to study the efficiency of the al-

gorithm. Instead of running many experiments under different conditions, complexity
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calculation also leads to easier comparison of the time consumption with other algo-

rithms.

Celeux and Govaert [15] have developed CEM algorithms of fourteen parsimonious Gaus-

sian mixture models. Since the calculations of these algorithms are similar, in this part

we only study the complexity of one general model [λDADT ]. The CEM algorithm of

model [λDADT ] is presented in the Algorithm 3:

Algorithm 3 CEM algorithm

q ← 0

Initialize π(0) and θ(0) = {µ(0),Σ(0)}.
repeat

for i = 1 : n do

t
(q)
i ←

∑K
k=1 π

(q)
k fk(xi; θ

(q)
k )

for k = 1 : K do

t
(q)
ik ←

π
(q)
k fk(xi;θ

(q)
k )

t
(q)
i

end for

end for

for i = 1 : n do

z
(q)
i ← argmaxkt

(q)
ik

end for

for k = 1 : K do

π
(q+1)
k ← 1

n

∑n
i=1 z

(q)
ik

µ
(q+1)
k ← 1∑n

i=1 z
(q)
ik

∑n
i=1 z

(q)
ik xi

Σ
(q+1)
k ←

∑K
k=1

∑n
i=1 z

(q)
ik (xi−µ

(q+1)
k )(xi−µ

(q+1)
k )T

n

end for

q ← q + 1

until L(q+1)(x,z)−L(q)(x,z)

L(q)(x,z)
< ε

ẑ ← z(q), π̂ ← π(q+1), θ̂ ← θ(q+1)

Same as the EM algorithm, the CEM algorithm repeats several calculations until one

condition is satisfied: L(q+1)(x,z)−L(q)(x,z)

L(q)(x,z)
< ε. It is hard to define the moment when

the CEM algorithm stops. It depends on the data distribution, the initiation and the

threshold ε. To simplify the complexity calculation, let’s suppose that the CEM algo-

rithm stops in N iterates. Each iterate can be seen as four parts:

• Calculate n times t
(q)
i .

• Calculate n ∗K times t
(q)
ik .
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• Calculate n times z
(q)
i

• Calculate K times π
(q+1)
k , µ

(q+1)
k and Σ

(q+1)
k .

The first part and the second part is exactly the same as in the EM algorithm. Details of

the complexity calculation of these two parts can be seen in the Chapter 2. According

to the result, the complexity of calculation of t
(q)
i is T = O(d3 + 4n1 + n22). Since

π
(q)
k fk(xi; θ

(q)
k ) and t

(q)
i are already known, the complexity of computation of t

(q)
ik is only

O(1). To obtain z
(q)
i , is to find out the maximum of t

(q)
ik . The worst case is that the

maximum locates at the last position. To check all the data and then assign the origin

to each xi , it needs O(2K) complexity.

We suppose that there are nk data belong to the cluster k. When obtaining the pa-

rameters π
(q+1)
k , we need to calculate only nk − 1 times the addition of z

(q)
ik instead of

n− 1 times. Because the rest z
(q)
ik equal zero. The same situation can be applied to the

calculation of µ
(q+1)
k and Σ

(q+1)
k . That is also the reason why the CEM algorithm is

faster then the EM algorithm.

The complexities of each part of the CEM algorithm are summarized in the Table 3.1:

Parameter Times Complexity

t
(q)
i n O(d3K + 4n1K + n22K)

t
(q)
ik n ∗K O(1)

z
(q)
i n O(2K)

π
(q+1)
k K O(nk)

µ
(q+1)
k K O(nkd+ 2nk)

Σ
(q+1)
k K O(3dnkK)

Table 3.1: Decomposition of complexity of the CEM algorithm.

From the Table 3.1, we can conclude that the complexity of the CEM algorithm of model

[λDADT ] is approximately O(d3KnN + 4n1KnN + n22KnN + 3dK2nkN + 3KnN +

dKnkN+3KnkK). According to the definition of the Big-O notation, the complexity of

the CEM algorithm can also be noted as O(d3KnN +4n1KnN +n22KnN +3dK2nkN).

Comparing to the EM algorithm, CEM algorithm has smaller complexity. This result

corresponds to the reality that the CEM algorithm is faster than the EM algorithm.
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3.3 The bin-EM-CEM algorithm

3.3.1 The likelihood

We assume that x = (x1, . . . ,xn) is an independent sample issued from a K-component

mixture distribution defined on IRd:

f(x;Φ) =
K∑

k=1

πkfk(x; θk)

with Φ = (π1, . . . , πK , θ1, . . . , θK), where πk (k = 1, . . . ,K) denote the mixing propor-

tions of the mixtures (0 < πk < 1 and
∑K

k=1 πk = 1), and θk = (µk,Σk) (k = 1, . . . ,K)

are the parameters of Gaussian distribution functions fk of components: mean vectors

µk and variance matrices Σk. Vector z = (z1, . . . , zn) is the class label of x, where

zi = 1, . . . ,K for i = 1, . . . , n. zi = k when xi comes from the kth component.

The whole sample space IRd is divided into v bins with a partition (H1, . . . ,Hv) and

we assume that the only observed information is a set of frequencies nr (r = 1, . . . , v)

where each frequency nr indicates the number of xi belonging to the bin Hr. The set

of frequencies is denoted by vector a = (n1, . . . , nv), with
∑v

r=1 nr = n.

The probability that x belongs to bin Hr is denoted by:

pr(Φ) = P (x ∈Hr|Φ) =
K∑

k=1

πk

∫

Hr

fk

(
x; θk

)
dx

and the probability that x belonging to the bin Hr comes from component k of the

mixture is denoted by:

pk/r(Φ) =
πk
∫
Hr

fk(x; θk)dx

pr(Φ)

The only observed information vector a follows a multinomial distribution

p(a,Φ) = c

v∏

r=1

(pr(Φ))nr

where c = n!/
∏v

r=1 nr!.

According to the space division with a partition (H1, . . . ,Hv), the complete infor-

mation of the data can be denoted as (x, z) = ((xr1, zr1), . . . , (xrnr , zrnr)) for r =

1, . . . , v, where xrs points to the sth data in bin Hr. The density of each point xrs is
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πzrsfzrs(xrs; θzrs)/pr(Φ) and the complete data probability function is

p(a,x,z;Φ) = c

v∏

r=1

nr∏

s=1

πzrsfzrs(xrs; θzrs)

The complete log-likelihood is:

L(Φ;a,x,z) =

K∑

k=1

v∑

r=1

nr∑

s=1

zkrs log
(
πfk(xrs; θk)

)
+ log(c)

where zkrs = 1 if zrs = k and 0 otherwise.

Since there is no information about the exact location of the data within each bin, we

assume that all the data comes from the same component within each bin. So pr(Φ)

can be expressed as:

pr(Φ) = πzr

∫

Hr

fzr
(
x; θzr

)
dx

Then we have the joint density function as follows:

p(a,z;Φ) = c

v∏

r=1

(πzr

∫

Hr

fzr(x; θzr)dx)
nr

and the complete log-likelihood can be expressed as:

L(Φ;a,z) =

v∑

r=1

nr log
(
πzr

∫

Hr

fzr(x; θzr)
)
+ log(c)

3.3.2 The E-step, C-step, and M-step

The bin-EM-CEM algorithm aims to maximize L(Φ;a,z) and starts from a random

initialization Φ(0). It follows two steps iteratively until it convergence.

Step 1 (Expectation and Classification): calculate

z(q+1) = argmax
z

L(Φ(q);a,z)

we have

z(q+1)
r = arg max

1≤k≤K
(log(π

(q)
k

∫

Hr

fk(x; θ
(q)
k )dx))

= arg max
1≤k≤K

Pk/r(Φ
(q)) (3.1)

From Equation (3.1), step 1 can be divided into step E (Expectation) and step C (Clas-

sification) [58]:
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At the E step, we calculate p
(q)
k/r for all the k, r;

At the C step, we obtain the partition z(q+1) by maximizing p
(q)
k/r: z

(q+1)
r = argmaxk P

(q)
k/r,

which means for each r, we replace the biggest p
(q)
k/r by 1, and 0 for the others.

Step 2 (Maximization): calculate

Φ(q+1) = argmax
Φ

L(Φ;a,z(q+1))

Because it is not easy to maximize L(Φ;a,z) directly, thus we apply an internal EM

algorithm to obtain this maximization. As the EM algorithm, we maximize the expec-

tation of the complete log-likelihood instead of log-likelihood:

Q(Φ,Φ(q)) = E(L(Φ;a,x,z)|a,z(q+1);Φ(q))

= E(
K∑

k=1

v∑

r=1

nr∑

s=1

zkrs log
(
πkfk(xrs; θk)

)
+ log(c)|z(q+1);Φ(q))

In the cycle of the inner EM algorithm, let’s denote:

Q(Φ,Φ∗) = E(L(Φ;a,x,z)|a,z(q+1);Φ∗)

where

Φ∗ = Φ(q)

Then we have:

Q(Φ,Φ∗) =

K∑

k=1

v∑

r=1

z
(q)
kr nr(log(πk) +

1∫
Hr
fk(x; θ

∗
k)dx

·
∫

Hr

log(fk(x; θ
∗
k))fk(x; θ

∗)dx) + log(c) (3.2)

Maximizing Equation (3.2) equals maximizing:

A =
K∑

k=1

v∑

r=1

z
(q)
kr nr

1∫
Hr
fk(x; θ

∗
k)dx

∫

Hr

log(fk(x; θ
∗
k))fk(x; θ

∗
k)dx

=

K∑

k=1

v∑

r=1

z
(q)
kr nr

1∫
Hr
fk(x; θ

∗
k)dx

∫

Hr

(− log(2π)n/2 − log |Σk|1/2

−1

2
(x− µk)

′

Σk
−1(x− µk))fk(x; θ

∗
k)dx
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And finally it leads to the minimization of

B =

K∑

k=1

v∑

r=1

z
(q)
kr nr

1∫
Hr
fk(x; θ

∗
k)dx

∫

Hr

(log |Σk|

+(x− µk)
′

Σ−1
k (x− µk))fk(x; θ

∗
k)dx

=

K∑

k=1

tr(Σ−1
k G∗∗

k ) +

K∑

k=1

v∑

r=1

z
(q)
kr nr log(Σk) (3.3)

where

G∗∗
k =

v∑

r=1

z
(q)
kr nr
p∗r/k

∫

Hr

(x− µ∗∗
k )

′

(x− µ∗∗
k )fk(x; θ

∗
k)dx

and

p∗r/k =

∫

Hr

fk(x; θ
∗
k)dx

We get

π∗∗k =

∑v
r=1 nrz

(q)
rk

n

and

µ∗∗
k =

∑v
r=1

nrz
(q)
rk

p∗
r/k

∫
Hr
fk(x; θ

∗
k)dx

∑v
v=1 nrz

(q)
rk

where

Φ∗∗ = Φ(q+1)

The result of Σ∗∗
k depends on the parsimonious models.

3.3.3 The complexity of bin-EM-CEM algorithm

In order to compare with the complexity of the CEM algorithm, we will calculate the

computation complexity of bin-EM-CEM algorithm in this part. The bin-EM-CEM

algorithm of model [λDADT ] is presented in the Algorithm 4:
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Algorithm 4 Bin-EM-CEM algorithm

q ← 0

Initialize π(0) and θ(0) = {µ(0),Σ(0)}.
repeat

for r = 1 : v do

p
(q)
r ←

∑K
k=1 π

(q)
k

∫
Hr
fk(x; θ

(q)
k )dx

for k = 1 : K do

p
(q)
k/r ←

π
(q)
k

∫
Hr

fk(x;θ
(q)
k )dx

p
(q)
r

end for

end for

for r = 1 : v do

z
(q)
r ← argmaxkp

(q)
k/r

end for

π∗ = π(q), θ∗ = θ(q)

repeat

for r = 1 : v do

p∗r/k ←
∫
Hr
fk(x; θ

(q)
k )dx

end for

for k = 1 : K do

π∗∗k ←
∑v

r=1 nrz
(q)
kr

n

µ∗∗
k ←

∑v
r=1

nrzkr
p∗
r/k

∫
Hr

xfk(x;θ
∗

k)dx

∑v
r=1 nrz

(q)
kr

Σ∗∗
k ←

∑K
k=1

∑v
r=1

nrz
(q)
kr

p∗
r/k

∫
Hr

(x−µ
∗∗

k )(x−µ
∗∗

k )T fk(x;θ
∗

k)dx

∑K
k=1

∑v
r=1 z

(q)
kr nr

∗ ← ∗∗
end for

until L∗∗(a,z(q))−L∗(a,z(q))

L∗(a,z(q))
< ε

π(q+1) = π∗∗, θ(q+1) = θ∗∗

q ← q + 1

until z(q) = z(q−1)

ẑ ← z(q), π̂ ← π(q+1), θ̂ ← θ(q+1)

From the Algorithm 4, similar as the CEM algorithm, bin-EM-CEM algorithm executes

a big loop until the result doesn’t change anymore. This iterate can take a very long

time. It is difficult to know when exactly it will stop. To be able to compare with the

EM, CEM, binned-EM algorithms, we also define that the bin-EM-CEM algorithm stops

in N iterates.

Each iterate can be considered as five small parts:
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• Calculate v times p
(q)
r .

• Calculate v ∗K times p
(q)
k/r.

• Calculate v times z
(q)
r .

• Calculate once π∗ and θ∗.

• Execute an inner EM algorithm. We suppose that the inner EM algorithm stops

in N2 iterates. For each iterate, we execute:

– Calculate v times p∗r/k.

– Calculate K times π∗∗k , µ∗∗
k and Σ∗∗

k .

From the sub-Section 2.4.3, we obtained the complexity to calculate p
(q)
r is O((l1+1)(l2+

1) · · · (ld +1)(d3K+4n1K +n22K)). Since the π
(q)
k

∫
Hr
fk(x; θ

(q)
k )dx and p

(q)
r are already

known, to obtain p
(q)
k/r only takes complexity of O(1). To get z

(q)
r is to scan over p

(q)
k/r

and choose the maximum. Then assign 1 to z
(q)
kmr if p

(q)
km/r is the maximum. Assign 0 to

the rest. This process takes O(2k) complexity. Assigning π(q) to π∗ and θ(q) to θ∗ needs

O(K + dK + d2K) complexity.

We suppose that the inner EM algorithm stops in N2 iterates. The calculation of the

complexity of obtaining π∗∗k , µ∗∗
k and Σ∗∗

k is very similar as the corresponding one of

binned-EM algorithm. Details can refer in the sub-Section 2.4.3.

The complexity of each part of bin-EM-CEM algorithm for each iterate is listed in the

Table 3.2:

Parameter Times Complexity

p
(q)
r v O((l1 + 1)(l2 + 1) · · · (ld + 1)(d3K + 4n1K + n22K))

p
(q)
k/r v ∗K O(1)

z
(q)
r v O(2k)

π∗, θ∗ 1 O(K + dK + d2K)

p∗r/k N2v O(1)

π
(q+1)
k N2K O(2vk)

µ
(q+1)
k N2K O((l1 + 1)(l2 + 1) · · · (ld + 1)vk)

Σ
(q+1)
k N2K O((l1 + 1)(l2 + 1) · · · (ld + 1)3dvkK)

Table 3.2: Decomposition of complexity of the bin-EM-CEM algorithm.

From the Table 3.2, the complexity of bin-EM-CEM algorithm is approximately O((l1+

1)(l2 + 1) · · · (ld + 1)(d3KvN + 4n1KvN + n22KvN + 3dvkK
2NN2)). Comparing to the



3.4. Bin-EM-CEM algorithms of parsimonious models 99

CEM algorithm, if n satisfies the condition:

n > (l1 + 1)(l2 + 1) · · · (ld + 1)v (3.4)

then bin-EM-CEM algorithm is faster than the CEM algorithm.

3.4 Bin-EM-CEM algorithms of parsimonious models

3.4.1 The general models

Model [λDADT ]. For this most common model, maximizing equation (3.2) equals the

minimization of

M1(Σ) =
K∑

k=1

tr(Σ−1G∗∗
k ) +

K∑

k=1

v∑

r=1

z
(q)
kr nr log(Σ)

variance matrix Σ is estimated by

Σ∗∗ =

∑K
k=1G

∗∗
k∑K

k=1

∑v
r=1 z

(q)
kr nr

Model [λkDADT ]. In this situation, we put Σk = λkC with C = DADT . Maximizing

equation (3.2) equals to the minimization of

M2(λk,C) =

K∑

k=1

1

λk
tr(C−1G∗∗

k ) + d

K∑

k=1

v∑

r=1

z
(q)
kr nr log |λk|

To find λ∗∗k and C, an iteration has to be performed:

• Keep C fixed, the λ∗∗k are

λ∗∗k =
tr(G∗∗

k C−1)

d
∑v

r=1 z
(q)
kr nr

• keep λ∗∗k fixed, the matrix C is

C∗∗ =

∑K
k=1

1
λk
G∗∗

k

|∑K
k=1

1
λk
G∗∗

k |1/d

Model [λDAkD
T ]. Maximizing equation (3.2) leads to the minimization of

M3(λ,D,Ak) =
1

λ

K∑

k=1

tr(G∗∗
k DA−1

k DT ) + d

K∑

k=1

v∑

r=1

z
(q)
kr nr log(λ)
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To minimizeM3 is to calculate λ and minimize
∑K

k=1 tr(G
∗∗
k DA−1

k DT ) using an iterative

method as following. First step for λ

λ∗∗ =

∑K
k=1 tr(G

∗∗
k DA−1

k DT )

d
∑K

k=1

∑v
r=1 z

(q)
kr nr

(3.5)

The second step is to minimize
∑K

k=1 tr(G
∗∗
k DA−1

k DT ):

• Keeping D fixed, from Corollary A.5 of the Appendix A, we get

A∗∗
k =

diag(DTG∗∗
k D)

|diag(DTG∗∗
k D)|1/d

• Keeping A
(q+1)
1 , . . . ,A

(q+1)
K fixed, we adapt an algorithm of Flury aiming to minimize

f(D) =
∑K

k=1 π
(q)
k tr(G

(q+1)
k DA−1

k DT ): First initial a solution D = (d1, . . . ,dd). For

any couple (l,m)(l(6=)m) ∈ 1, . . . , d, we find a corresponding couple (δl, δm) which are

orthogonal vectors, linear combination of dl and dm, minimizing the criterion f(D). We

have

K∑

k=1

tr(Dπ
(q)
k A−1

k DTG
(k+1)
k ) =

K∑

k=1

d∑

j=1

dT
j G

(q+1)
k π

(q)
k dj

ajk

=
K∑

k=1

dT
l G

(q+1)
k π

(q)
k dl

alk
+

K∑

k=1

dT
mG

(q+1)
k π

(q)
k dm

amk
+

K∑

k=1

∑

j 6=l,m

dT
j G

(q+1)
k π

(q)
k dj

ajk

= S(dl,dm) +
K∑

k=1

∑

j 6=l,m

dT
j G

(q+1)
k π

(q)
k dj

ajk

Thus, it equals to find (δl, δm) minimizing S(dl,dm). We can write

δl = (dl,dm)q1

δm = (dl,dm)q2

where q1 and q2 are two orthogonal vectors of R2. We have

S(δl, δm) =

K∑

k=1

qT
1 (dl,dm)TG

(q+1)
k π

(q)
k (dl,dm)q1

alk

+

K∑

k=1

qT
2 (dl,dm)TG

(q+1)
k π

(q)
k (dl,dm)q2

amk

=
K∑

k=1

qT
1 Zkq1

alk
+

K∑

k=1

qT
2 Zkq2

amk
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where

Zk = (dl,dm)TG
(q+1)
k π

(q)
k (dl,dm)

Denoting Q = (q1, q2), we get

qT
1 Zkq1 + qT2 Zkq2 = tr(QTZkQ) = tr(Zk)

And the problem reduces to the optimization of

S(dl,dm) =

K∑

k=1

qT1 Zkq1

alk
+

K∑

k=1

tr(Zk − qT
1 Zkq1)

amk

which is equivalent to the minimization of

qT
1 {

K∑

k=1

(
1

alk
− 1

amk
)Zk}q1

Hence, q1 is the second eigenvector of the matrix
∑K

k=1(
1
alk
− 1

amk
)Zk. Repeat the proce-

dure above until f(D) converge.

Model [λkDAkD
T ]. For this case, writing Σk = DAkD

T where |Ak| = |Σk| is more

convenient. Maximizing equation (3.2) equals the minimization of

M4(D,Ak) =
K∑

k=1

tr(DA−1
k DTG∗∗

k ) +
K∑

k=1

v∑

r=1

z
(q)
kr nr log |Ak|

As previously presented, the minimization of M4 can be achieved in the similar way:

• Keeping D fixed, from Corollary A.7 of the Appendix A, we get

A∗∗
k =

diag(DG∗∗
k DT )

∑v
r=1 z

(q)
kr nr

• For fixed A∗∗
1 , . . . ,A

∗∗
K , it can be making use of the same algorithm described above

since minimizing M4 is equivalent to minimize
∑K

k=1 tr(DA−1
k DTG∗∗

k ).

Model [λDkADT
k ]. Maximizing equation (3.2) equals the minimization of

M5(λ,Dk,A) =
1

λ

K∑

k=1

tr(DkA
−1DT

kG
∗∗
k ) + d

K∑

k=1

v∑

r=1

z
(q)
kr nr log |λ|
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Considering for k = 1, . . . ,K the eigenvalue decomposition G∗∗
k = L∗∗

k Ω∗∗
k L

T∗∗
k of the

symmetric definite positive matrix Gk with the eigenvalues in the diagonal matrix Ωk

in decreasing order, we have

M5(λ,Dk,A) =
1

λ

K∑

k=1

tr(DT
kL

∗∗
k Ω∗∗

k LT∗∗
k DkA

−1)

+d
K∑

k=1

v∑

r=1

z
(q)
kr nr log |λ|

From Theorem A.1 of Appendix A, we get Dk = Lk, and we have

M5(λ,Dk,A) =
1

λ

K∑

k=1

tr(Ω∗∗
k A−1) + d

K∑

k=1

v∑

r=1

z
(q)
kr nr log |λ| (3.6)

From which, we deduce the optimal A and λ

A∗∗ =

∑K
k=1Ω

∗∗
k

|∑K
k=1Ω

∗∗
k |1/d

λ∗∗ =
|∑K

k=1Ω
∗∗
k |1/d∑K

k=1

∑v
r=1 z

(q)
kr nr

Model [λkDkADT
k ]. Use again the eigenvalue decompositionG

(q+1)
k = L

(q+1)
k Ω

(q+1)
k L

T (q+1)
k .

Maximizing equation (3.2) leads to the minimization of

M6(λk,Dk,A) =

K∑

k=1

1

λk
tr(Ω∗∗

k A−1) + d

K∑

k=1

v∑

r=1

z
(q)
kr nr log |λk|

The minimization of M6 has to be achieved iteratively:

A∗∗ =

∑K
k=1

1

λk
Ω∗∗

k

|∑K
k=1

1

λk
Ω∗∗

k |1/d

and

λ∗∗k =
tr(Ω∗∗

k A−1)

d
∑v

r=1 z
(q)
kr nr

Model [λDkAkD
T
k ]. We write Σk = λCk where Ck = DkAkD

−1
k . Then, maximizing

equation (3.2) equals to minimize
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M7(λ,Ck) =
1

λ

K∑

k=1

tr(C−1
k G∗∗

k ) + d

K∑

k=1

v∑

r=1

z
(q)
kr nr log |λ|

Simple calculation give us:

C∗∗
k =

G∗∗
k

|G∗∗
k |1/d

and

λ∗∗ =

∑K
k+1 |G∗∗

k |1/d∑K
k=1

∑v
r=1 z

(q)
kr nr

Model [λkDkAkD
T
k ]. This is the most general situation. Maximizing equation (3.2)

leads to the minimization of

M8(Σk) =

K∑

k=1

tr(Σ−1
k G∗∗

k ) +

K∑

k=1

v∑

r=1

z
(q)
kr nr logΣk

and the variance matrices Σ
(q+1)
k are estimated by

Σ∗∗
k =

G∗∗
k∑v

r=1 z
(q)
kr nr

3.4.2 The diagonal models

For the diagonal family, the orientation is assumed to be horizontal or vertical. So the

orientation matrices are either Dk =

(
1 0

0 1

)
or Dk =

(
0 1

−1 0

)
, then Σk = λkAk or

Σk = λkA
T
k . We write Σk = λkBk where Bk is a diagonal matrix with |Bk| = 1. Then

the four diagonal models are [λB], [λkB], [λBk] and [λkBk].

Model [λB]. In this situation, maximizing equation (3.2) leads to the minimization of

M9(λ,B) =
1

λ

K∑

k=1

tr(B−1G∗∗
k ) + d

K∑

k=1

v∑

r=1

z
(q)
kr nr log |λ| (3.7)

To estimate the result, we used Corollary A.5 of the Appendix A

B∗∗ =
diag(

∑K
k=1G

∗∗
k )

|diag(∑K
k=1G

∗∗
k )|1/d

and

λ∗∗ =
|diag(∑K

k=1G
∗∗
k )|1/d

∑K
k=1

∑v
r=1 z

(q)
kr nr
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Model [λkB]. In this situation, maximizing equation (3.2) leads to the minimization of

M10(λk,B) =

K∑

k=1

1

λk
tr(B−1G∗∗

k ) + d

K∑

k=1

v∑

r=1

z
(q)
kr nr log |λk|

The minimization of the function M10 has to be performed iteratively. • Keep the

volumes λk’s fixed, the matrix B minimizing M10 is minimizing
∑K

k=1
1
λk
tr(B−1G∗∗

k ),

thus, we have

B∗∗ =
diag(

∑K
k=1

1
λk
G∗∗

k )

|diag(∑K
k=1

1
λk
G∗∗

k )|1/d

• When the matrix B is kept fixed, the λk’s minimizing B10 are

λ∗∗k =
tr(B−1G∗∗

k )

d
∑v

r=1 z
(q)
kr nr

Model [λBk]. In this situation, maximizing equation (3.2) leads to the minimization of

M11(λ,Bk) =
1

λ

K∑

k=1

tr(B−1
k G∗∗

k ) + d

K∑

k=1

v∑

r=1

z
(q)
kr nr log |λ|

From which it follows that

B∗∗
k =

diag(G∗∗
k )

|diag(G∗∗
k )|1/d

and

λ∗∗ =

∑K
k=1 |diag(G∗∗

k )|1/d
∑K

k=1

∑v
r=1 z

(q)
kr nr

Model [λkBk]. In this situation, maximizing equation (3.2) leads to the minimization of

M12(λk,Bk) =
K∑

k=1

1

λk
tr(B−1

k G∗∗
k ) + d

K∑

k=1

v∑

r=1

z
(q)
kr nr log |λk|

From which it follows that

B∗∗
k =

diag(G∗∗
k )

|diag(G∗∗
k )|1/d

and

λ∗∗k =
|diag(G∗∗

k )|1/d
∑v

r=1 z
(q)
kr nr
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3.4.3 The spherical models

In spherical family, we assume that the shape of clusters are spherical. Thus the shape

matrices are always diag(1, 1). Then the variations on the orientation matrices are not

necessary. In this case, we have two spherical parsimonious models: Σk = λI and

Σk = λkI, where I denotes the identity matrix.

Model [λI]. In this situation, maximizing equation (3.2) leads to the minimization of

M13(λ) =
1

λ

K∑

k=1

tr(G∗∗
k ) + d

K∑

k=1

v∑

r=1

z
(q)
kr nr log |λ| (3.8)

where

G∗∗
k =

v∑

r=1

z
(q)
kr nr
p∗r/k

∫

Hr

(x− µ∗∗
k )

′

(x− µ∗∗
k )fk(x; θ

∗
k)dx

So we get

λ∗∗ =

∑K
k=1 tr(G

∗∗
k )

d
∑K

k=1

∑v
r=1 z

(q)
kr nr

Model [λkI]. In this situation, maximizing equation (3.2) leads to the minimization of

M14(λk) =
K∑

k=1

1

λk
tr(G∗∗

k ) + d
K∑

k=1

v∑

r=1

z
(q)
kr nr log |λk| (3.9)

And we get

λ∗∗k =
tr(G∗∗

k )

d
∑v

r=1 z
(q)
kr nr

3.5 Experiments on simulated data

3.5.1 Experiment of bin-EM-CEM algorithms of fourteen models

In this experiment, we study how these fourteen models perform differently on data of

different distributions. According to fourteen parsimonious models, data of fourteen dis-

tributions are simulated. To simplify the experiment and display the main comparison,

the simulated data are generated in a two-dimensional space (in IR2) with two compo-

nents of equal mixing proportions. According to each model, 30 samples of size = 5000

are generated. Fourteen versions of bin-EM-CEM algorithm (each version associates to

one parsimonious models) are applied on each sample. The average of the results of 30

samples is considered as the final result of the model. We define the size of each bin as
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0.5 · 0.5. Thus, all the space for each sample are cut into subspaces of same size. The

number of bins depends on the volume of clusters in each sample, which will be detailed

in the description of sample distribution. Since each model has different attribute, to

define distance between two mixture components, we use distance value δ:

δ =

√
(µ1 − µ2)T (

Σ1 +Σ2

2
)−1(µ1 − µ2)

The parameters of each structure of data are described in the Tables 3.3 and 3.4.

We evaluate the performance of each model by the accuracy and the standard deviation

of accuracy. Accuracy is achieved by comparing the cluster result with the correct

clustering, indicating the percentage of the data which are correctly clustered. The

results are displayed in Tables 3.5 and 3.6.

According to the result, we can analyze as follows:

For the data generated according to the model [λDADT ], all the general models obtain

the similar good results (around 0.9688), while the diagonal and spherical models can

only obtain accuracies from 0.8109 to 0.8197. Because all the general models can adapt

to this simplest general model distribution, and the models in the diagonal and spherical

families are too simple to provide a good clustering result.

Generally speaking, general models have better performance than the diagonal and

spherical models on clustering the data of distribution [λkDADT ]. Not surprisingly

the model [λkDADT ] provides the highest accuracy. At the same time, we notice that

generally all the general models allowing different volumes obtain a better result than

the other general models which require the same volumes of all the components. This

situation also happens to the diagonal and spherical families: [λkB], [λkBk] and [λkI]

have a higher accuracy than [λB], [λBk] and [λI].

For the data containing clusters of different shapes, of distribution [λDAkD
T ], undoubt-

edly its own feature model [λDAkD
T ] provides the best result. The other good results

following are obtained by the general models suggesting different shapes of clusters:

[λkDAkD
T ], [λDkAkD

T
k ] and [λkDkAkD

T
k ].

For the data of distributions [λkDAkD
T ], [λkDkADT

k ] and [λDkAkD
T
k ], the best results

are obtained respectively by their own feature model. The second best results of these

three types of data are provided by the most general model [λkDkAkD
T
k ]. The reason

is: except for the feature models, which are exactly the same as the data distribution,

only the most general model is able to estimate the model parameters correctly. But

when a data distribution is very similar to another model (with slight difference among



3
.5
.
E
x
p
erim

en
ts

o
n
sim

u
la
ted

d
a
ta

107

Parameters [λDADT ] [λkDADT ] [λDAkD
T ] [λkDAkD

T ] [λDkADT

k
] [λkDkADT

k
] [λkI]

λ λ = 1
λ1 = 1

λ = 1
λ1 = 1

λ = 1
λ1 = 3 λ1 = 1

λ2 = 5 λ2 = 2 λ2 = 1 λ2 = 3

D D =

( √
2

2

√
2

2

−
√
2

2

√
2

2

)
D =

( √
2

2

√
2

2

−
√
2

2

√
2

2

)
D =

( √
2

2

√
2

2

−
√
2

2

√
2

2

)
D =

( √
2

2

√
2

2

−
√
2

2

√
2

2

)
D1 =

( √
2

2

√
2

2

−
√
2

2

√
2

2

)
D1 =

( √
2

2

√
2

2

−
√
2

2

√
2

2

)

D2 = Diag(1, 1) D2 = Diag(1, 1)

A A = Diag(3, 1/3) A = Diag(3, 1/3)
A1 = Diag(1, 1) A1 = Diag(1, 1)

A = Diag(3, 1/3) A = Diag(3, 1/3)
A2 = Diag(2, 1/2) A2 = Diag(2, 1/2)

µ
µ

1
= (−1.5, 0) µ

1
= (−2, 0) µ

1
= (−1.5, 0) µ

1
= (−1.5, 0) µ

1
= (−2, 1) µ

1
= (−2, 1) µ

1
= (−2, 0)

µ
2
= (1.5, 0) µ

2
= (2, 0) µ

2
= (1.5, 0) µ

2
= (2, 0) µ

2
= (1, 0) µ

2
= (2, 0) µ

2
= (2, 0)

δ δ = 3.80 δ = 2.98 δ = 3.00 δ = 2.93 δ = 3.19 δ = 3.07 δ = 2.83
Bin num. 26× 19 39× 41 22× 16 24× 24 27× 16 37× 33 28× 23

Table 3.3: Parameters of structures of simulated data 1.
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Parameters [λDkAkD
T

k
] [λkDkAkD

T

k
] [λB] [λkB] [λBk] [λkBk] [λI]

λ λ = 1
λ1 = 3

λ = 1
λ1 = 1

λ = 1
λ1 = 1

λ = 2
λ2 = 1 λ2 = 3 λ2 = 2

D
D1 =

( √
2

2

√
2

2

−
√
2

2

√
2

2

)
D1 =

( √
2

2

√
2

2

−
√
2

2

√
2

2

)

D2 = Diag(1, 1) D2 = Diag(1, 1)

A
A1 = Diag(3, 1/3) A1 = Diag(3, 1/3)
A2 = Diag(1, 1) A2 = Diag(1, 1)

B B = Diag(3, 1/3) B = Diag(3, 1/3)
B1 = Diag(2, 1/2) B1 = Diag(2, 1/2)
B2 = Diag(4, 1/4) B2 = Diag(4, 1/4)

µ
µ

1
= (−2, 0) µ

1
= (−2, 0) µ

1
= (−2.8, 2.8) µ

1
= (−4, 0) µ

1
= (−2.5, 0) µ

1
= (−3.6, 0) µ

1
= (−2.1, 0)

µ
2
= (1, 0) µ

2
= (2, 0) µ

2
= (2.8, 0) µ

2
= (4, 0) µ

2
= (3, 0) µ

2
= (−3.6, 0) µ

2
= (2.1, 0)

δ δ = 3.00 δ = 3.10 δ = 3.23 δ = 3.27 δ = 3.18 δ = 3.22 δ = 2.90
Bin num. 22× 18 30× 31 35× 9 52× 14 34× 10 42× 9 27× 22

Table 3.4: Parameters of structures of simulated data 2.
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❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
Algorithm

Data Structure
[λDADT ] [λkDADT ] [λDAkD

T ] [λkDAkD
T ] [λDkADT

k
] [λkDkADT

k
] [λDkAkD

T

k
]

[λDADT ] 0.9687(.0025) 0.8900(.0058) 0.8997(.0073) 0.9154(.0058) 0.8013(.0522) 0.7017(.0170) 0.8367(.0269)
[λkDADT ] 0.9686(.0021) 0.9532(.0030) 0.8979(.0095) 0.9069(.0085) 0.8708(.0142) 0.9320(.0084) 0.8540(.0287)
[λDAkD

T ] 0.9689(.0027) 0.8906(.0073) 0.9252(.0032) 0.8692(.0114) 0.8870(.0109) 0.8218(.0197) 0.8847(.0091)
[λkDAkD

T ] 0.9689(.0027) 0.9528(.0035) 0.9194(.0056) 0.9402(.0056) 0.8737(.0141) 0.9490(.0049) 0.8946(.0099)
[λDkADT

k
] 0.8966(.0064) 0.9134(.0053) 0.9103(.0074) 0.9268(.0048) 0.9527(.0043) 0.9087(.0086) 0.9243(.0230)

[λkDkADT

k
] 0.9689(.0025) 0.9528(.0027) 0.9096(.0056) 0.9120(.0059) 0.9378(.0061) 0.9608(.0028) 0.9037(.0106)

[λDkAkD
T

k
] 0.9688(.0024) 0.8876(.0062) 0.9181(.0084) 0.9164(.0085) 0.9402(.0056) 0.9506(.0032) 0.9259(.0052)

[λkDkAkD
T

k
] 0.9689(.0026) 0.9521(.0033) 0.9141(.0065) 0.9204(.0059) 0.9386(.0067) 0.9606(.0027) 0.9223(.0060)

[λB] 0.8197(.0058) 0.7747(.0039) 0.9140(.0081) 0.9034(.0105) 0.8614(.0105) 0.8957(.0112) 0.9016(.0106)
[λkB] 0.8192(.0071) 0.8712(.0066) 0.9073(.0120) 0.9172(.0064) 0.8591(.0064) 0.9051(.0081) 0.9071(.0054)
[λBk] 0.8182(.0053) 0.7820(.0053) 0.9057(.0123) 0.9060(.0072) 0.8971(.0081) 0.8918(.0118) 0.8979(.0121)
[λkBk] 0.8211(.0087) 0.8713(.0068) 0.9057(.0121) 0.9069(.0104) 0.9041(.0108) 0.9020(.0073) 0.9015(.0090)
[λI] 0.8124(.0081) 0.7180(.0141) 0.9134(.0105) 0.8539(.0087) 0.8424(.0083) 0.8524(.0085) 0.8652(.0175)
[λkI] 0.8109(.0076) 0.8674(.0075) 0.9099(.0082) 0.9193(.0059) 0.8306(.0112) 0.9239(.0065) 0.8953(.0139)

Table 3.5: Accuracy and standard deviation of accuracy of bin-EM-CEM algorithms on simulated data.
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❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
Algorithm

Data Structure
[λkDkAkD

T

k
] [λB] [λkB] [λBk] [λkBk] [λI] [λkI]

[λDADT ] 0.7507(.0162) 0.9439(.0037) 0.9343(.0083) 0.9393(.0048) 0.9371(.0076) 0.9238(.0055) 0.8999(.0091)
[λkDADT ] 0.9144(.0201) 0.9439(.0038) 0.9577(.0019) 0.9322(.0057) 0.9261(.0072) 0.9236(.0055) 0.9306(.0054)
[λDAkD

T ] 0.7863(.0101) 0.9438(.0037) 0.9292(.0057) 0.9471(.0053) 0.9488(.0035) 0.9237(.0054) 0.9021(.0108)
[λkDAkD

T ] 0.8631(.0124) 0.9429(.0024) 0.9573(.0026) 0.9471(.0053) 0.9487(.0035) 0.9238(.0055) 0.9313(.0051)
[λDkADT

k
] 0.9688(.0024) 0.9440(.0037) 0.9363(.0056) 0.9389(.0045) 0.9391(.0068) 0.9241(.0053) 0.9064(.0079)

[λkDkADT

k
] 0.9351(.0064) 0.9439(.0038) 0.9579(.0019) 0.9393(.0048) 0.9382(.0073) 0.9236(.0055) 0.9312(.0051)

[λDkAkD
T

k
] 0.9197(.0067) 0.9434(.0026) 0.9306(.0057) 0.9470(.0054) 0.9488(.0035) 0.9239(.0053) 0.9014(.0083)

[λkDkAkD
T

k
] 0.9495(.0029) 0.9429(.0024) 0.9574(.0026) 0.9471(.0054) 0.9487(.0035) 0.9236(.0055) 0.9311(.0051)

[λB] 0.8222(.0057) 0.9440(.0038) 0.9400(.0040) 0.9393(.0048) 0.9401(.0075) 0.9236(.0055) 0.9131(.0082)
[λkB] 0.9364(.0049) 0.9439(.0038) 0.9581(.0017) 0.9394(.0048) 0.9401(.0074) 0.9236(.0055) 0.9328(.0041)
[λBk] 0.8298(.0068) 0.9438(.0037) 0.9424(.0064) 0.9471(.0053) 0.9487(.0035) 0.9236(.0054) 0.9097(.0082)
[λkBk] 0.9370(.0058) 0.9429(.0024) 0.9575(.0025) 0.9471(.0053) 0.9488(.0035) 0.9236(.0055) 0.9333(.0037)
[λI] 0.7717(.0114) 0.9433(.0034) 0.9380(.0061) 0.9402(.0039) 0.9420(.0052) 0.9236(.0055) 0.9045(.0064)
[λkI] 0.9350(.0058) 0.9436(.0037) 0.9569(.0031) 0.9446(.0047) 0.9439(.0063) 0.9236(.0055) 0.9336(.0055)

Table 3.6: Accuracy and standard deviation of accuracy of bin-EM-CEM algorithms on simulated data.



3.5. Experiments on simulated data 111

the volumes or orientations or shape), this model which cannot exactly represent the

sample distribution can still obtain a good result.

For data generated according to model [λDkADT
k ], the three highest accuracies are given

by the models allowing different orientations among clusters: [λDkADT
k ], [λDkAkD

T
k ]

and [λkDkAkD
T
k ].

When dealing with the data composed of the clusters of different volumes, different

orientations and different shapes, model [λkDkAkD
T
k ] is the best model.

The data simulated according to the model [λB] is two identical diagonal elliptical

clusters. All the general and diagonal models are capable in finding clusters in this

type of data. Hence, the results are almost the same. This proves that when the data

distribution is not complicated, we can use simple model instead of complex model with

many parameters.

The data of model [λkB] contains clusters of different volumes. In this case, all the

models which suggest different volumes provide better results than the models which

don’t. Because the data is in the shape of ellipse which is closed to spherical shape too,

thus even the spherical models can have high accuracies: 0.9380 and 0.9569.

The data of model [λBk] that we simulated are two different diagonal clusters of same

volumes. It can also be considered as two clusters of same volumes, same vertical or

horizontal orientations and different shapes, which is proved by the fact that all the

general models which allow different shapes have good results. This theory also can

be applied on the data of model [λkBk] to explain why other models can provide good

results.

When the data distribution is very simple, such as [λI], there is small difference among

the results of the fourteen models.

The model of [λkI] is giving the best accuracy for the data simulated according to the

model [λkI]. This shows again the clustering ability of parsimonious models.

After the analysis above, we can conclude as follows: The best results are always obtained

by the models which can perfectly represent the distribution of data. The models which

are more complex than the data distribution but contain the data distribution can

also provide good clustering results. For instance, models [λkDADT ], [λkDkADT
k ]

and [λkDkAkD
T
k ] perform well on dealing with the data of distribution [λkDADT ].

Generally speaking, when dealing with data structured according to general models,

diagonal and spherical families have worse performance than general family. Because

diagonal and spherical models are too simple to meet the requirement in estimating the

parameters of a more complex model. In the cases where the model is simpler than the
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data distribution but closed to the data distribution, the model can still provide a good

result. Specially when the clusters of data are well separated, differences of the results

among fourteen models are diminished. We notice that in general the standard deviation

of the accuracy of a model is low when the accuracy is high. The result of diagonal family

proves again the fact that the model which is exactly the same as the data distribution

can give the best result for the data. The good performance of spherical family indicates

that parsimonious models are capable of finding reasonable groups of data instead of

using the complex models.

3.5.2 Experiment of bin-EM-CEM algorithm with different sizes of bin

The essential of bin-EM-CEM algorithm is to estimate the parameters maximizing the

likelihood for binned data. Thus the size of bin is a very important information which

affects directly the clustering result. This experiment shows how the accuracy and

CPUtime will change when the size of bin is different.

For example, in the Figure 3.1 there is four samples with different bin size in a view of

3d. These samples are generated according to the same model of two clusters in a two

dimensional space.

Comparing to the model distribution in the Figure 3.2,
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Figure 3.2: Density of a Gaussian mixture distribution of two clusters in a two
dimensional space.
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Figure 3.1: Four samples generated according to the same model with different bin
size.

we can notice that, along with the increase of the number of bins, the binned data is

closer to the real distribution of the underlying model. When the bin size is bigger, the

data distribution shown in the figure is more general.

We define the size of bins by the number of bins per dimension. We consider the number

of bins from 10 to 100 with an interval of 10. For each bin size, 30 samples of size= 5000

are generated according to the model [λDkADT
k ] with λ = 1, D1 =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
,

D2 = Diag(1, 1), A = Diag(3, 1/3), µ1 = (−2, 1), µ2 = (1, 0) and δ = 3.1. Bin-EM-

CEM algorithm of model [λDkADT
k ] is applied on each sample. The average of 30

samples is considered as the final result of each bin size. The accuracy and CPUtime

will be two evaluation factors. Accuracy indicates the percentage of the data which

are correctly classified, while the CPU time is the amount of time for which a central

processing unit (CPU) was used for our algorithm computation.

The results are displayed in Table 3.7 and Figure 3.3.
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Bins num. Accuracy CPUtime Bin num. Non-empty-bin num. Bin size

100 0.9439 353 10000 1827 0.13 · 0.09
90 0.9435 305 8100 1453 0.15 · 0.10
80 0.9430 259 6400 1186 0.17 · 0.12
70 0.9427 217 4900 1129 0.19 · 0.13
60 0.9424 176 3600 914 0.22 · 0.15
50 0.9420 137 2500 769 0.28 · 0.18
40 0.9412 115 1600 476 0.33 · 0.23
30 0.9407 84 900 319 0.46 · 0.30
20 0.9389 45 400 160 0.68 · 0.45
10 0.9299 5 100 53 0.36 · 0.89

Table 3.7: Result of bin-EM-CEM algorithm with different size of bins on simulated
data.
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Figure 3.3: Result of bin-EM-CEM algorithm on simulated data with different size
of bins.

From the result and the Figure 3.3, the accuracy increases significantly along with the

number of bins per dimension. When the number of bins changes from 10 to 20, there is a

relatively big increase in the accuracy: from 0.9299 to 0.9389. The speed of the increasing

trend slows down until that the number of bins is 40, then the accuracy increases stably.

Even when we divide the space only in 10 bins per dimension, the result is still satisfying

with accuracy of 0.9299 and only 5 seconds. The CPUtime increase at a stable pace along

with the number of non-empty-bins deal to our programming considering only the non-

empty-bins. When the number of bins per dimension is 100, the CPUtime increase up

to 353 seconds. But deal to the methods in programming and the type of calculators,

the CPUtime in this paper cannot be compared to the experimental results of CEM

algorithm and binn-EM-CEM algorithm in previous papers. As indicated and proved in

the papers of Hamdan and Samé [53], [54], [14], [55], binning data in the classification

approach helps in reducing computation time. Despite this, presenting the CPUtime in

this paper is helpful in comparing and studying how the computation change when we

modify the size of bins.
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We can conclude that the computation time of bin-EM-CEM algorithm can be reduced

by modifying the size of bins with certain loss of accuracy. It is important to find

the balance between gaining the computation time and losing precision of the result

according to the real situation.

3.6 Experiments on real data

3.6.1 French city clustering

The characteristic of bin-EM-CEM algorithms of fourteen parsimonious models were

studied and presented in the two previous experiments, by applying on simulated data.

And we can’t neglect the importance of the performance of these algorithms in real

life. In this experiment, we will test the practical application ability of these fourteen

bin-EM-CEM algorithms on real dataset. As real dataset, we have the population and

the population density (population/surface) of 1193 French cities. They are respectively

from three different departments: Meuse (500 cities), Nord (652 cities) and Val-de-Marne

(47 cities). Meuse is a rural department with a small population and low population

density. In the opposite, Val-de-Marne, situated to southeast of Paris, is a department

of high population density and Nord is the most populous department in France. We

try to cluster these 1193 cities by bin-EM-CEM algorithms, with the only information of

population and population density. As we already know the origin department of each

city, we compare it with the clustering result in order to obtain the accuracy. At the

same time, the computation time is noted down for comparison among the algorithms.

Figure 3.4 displays 1193 observations concerning the log-population and log-density of

cities from Meuse (500 observations), Nord (652 observations) and Val-de-Marne (47

observations). The space is divided into 50 · 50 bins. Each model is applied on the data

for 30 times. The average of 30 results as the final result of the model.

The result is displayed in Table 3.8 and Figure 3.5.

Figure 3.5 shows the one of the clustering results of bin-EM-CEM algorithms. Compare

Figure 3.4 and Figure 3.5, three departments are basically correctly clustered. Red stars

between every two clusters are the points which were incorrectly clustered. It shows the

difficulty of clustering the data which locates in the mixing area of two clusters.

From Table 3.8, the accuracies of fourteen algorithms are all above 0.7913. We can say

that all the algorithms of different models are capable of putting these French cities in

the right group. We notice that the general models perform better than the diagonal

models and spherical models. It means that general family is more suitable for the data
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Figure 3.4: Log-population and log-density of 1193 cities from three departments in
France.
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Figure 3.5: Incorrectly clustered points of bin-EM-CEM algorithm result on real data
on French cities.
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Model Accuracy Time

[λDADT ] 0.8047 64.0

[λkDADT ] 0.8022 64.0

[λDAkD
T ] 0.7913 85.4

[λkDAkD
T ] 0.7888 85.6

[λDkADT
k ] 0.8189 65.4

[λkDkADT
k ] 0.8374 89.0

[λDkAkD
T
k ] 0.8256 64.2

[λkDkAkD
T
k ] 0.8215 64.2

[λB] 0.7913 42.4

[λkB] 0.7913 42.6

[λBk] 0.7913 42.5

[λkBk] 0.7913 42.5

[λI] 0.7988 57.3

[λkI] 0.8005 57.3

Table 3.8: Accuracy, CPUtime of bin-EM-CEM algorithm on French cities clustering.

distribution than the other two families in this case. Model [λkDkADT
k ] obtains the

highest accuracy: 0.8374, but it also takes the longest computation time. Model [λB]

takes the least CPUtime but it provides the lowest accuracy. It is hard to define which

model is the best one for the real dataset. It depends on the practical needs in reality:

high precision or fast computation process. In this case, we could try to find out the

best model by some criterion. This would be studied in our following research.

3.6.2 Image segmentation

In the experiment part of the Chapter 2, we introduced applying binned-EM algorithm to

image segmentation. In this part, we will apply bin-EM-CEM algorithm of parsimonious

models to image segmentation. The goal is to compare the performance of the bin-EM-

CEM algorithm of parsimonious models on real application.

The Figure 3.6 shows the image to be processed:
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Figure 3.6: Original image.

This is an image of colorful lanterns for Chinese Mid-Autumn festival. There are three

main colors of lanterns in the image. The background is black, with several blurred

silhouettes. On the right up corner ornaments some blue lights.

The image is converted from RGB color space to L∗a∗b∗ color space, where a luminosity

layer ′L∗′, chromaticity-layer ′a∗′ indicating where color falls along the red-green axis,

and chromaticity-layer ′b∗′ indicating where the color falls along the blue-yellow axis.

After this, we can represent the image in a two dimensional ′a ∗ b∗′ space, as shown in

the Figure 3.7:

Figure 3.7: Image pixel represented in the ′a ∗ b∗′ space.

There are totally 426400 pixels in the image, so 426400 points in the Figure 3.7. As

we analyzed, there are mainly five colors in the image. but it is difficult to find out
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five clusters in the Figure 3.7. We will apply bin-EM-CEM algorithms of parsimonious

models to discovered these clusters.

3.6.2.1 With different models

From the Figure 3.7, the distribution model for this dataset is not evident. We can

assume that the data don’t follow the diagonal models, either the spherical models.

Thus, we will apply bin-EM-CEM algorithms of eight general models to the dataset, in

order to find out the most suitable model.

To obtain binned data, the space is divided into 20 bins per dimension. We suppose

that the number of clusters is known as 5. The image segmentation result is shown in

the Figure 3.8:
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Figure 3.8: Result of image segmentation of Figure 3.6 by bin-EM-CEM algorithm
of eight general models: 1. [λDADT ], 2. [λkDADT ], 3. [λDAkD

T ], 4. [λkDAkD
T ],

5. [λDkADT

k
], 6. [λkDkADT

k
], 7. [λDkAkD

T

k
], 8. [λkDkAkD

T

k
]
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In the Figure 3.8, all the eight models succeeded in separating the main colors. The

worse result is obtained by the model [λDAkD
T ]. In the result of the model [λDAkD

T ],

the bunch of blue light is not detected. Except for this model, all the results are similar.

The differences only exist in the small details. For example, the center of a small lantern

is detected in the models [λDADT ] and [λkDADT ], but not in the other models. But

these details are not very important for the result. We can say that, except for the

model [λDAkD
T ], the other seven general models are suitable for image segmentation

of this image.

To define the best model, we consider also the maximum complete likelihood and the

computation time. Since the size of bin is the same among eight bin-EM-CEM algorithms

of eight models, the 426400 pixels are grouped into 215 non empty bins for all the models.

The Table 3.9 shows these information of eight models:

P
P
P
P
P
P
P
P
P
P
P

Model

Info.
LMmax CPUtime(s)

[λDADT ] −5.45 × 105 23

[λkDADT ] −4.65 × 105 15

[λDAkD
T ] −3.85 × 105 22

[λkDAkD
T ] −4.75 × 105 29

[λDkADT
k ] −3.15 × 105 14

[λkDkADT
k ] −3.15 × 105 15

[λDkAkD
T
k ] −2.92 × 108 23

[λkDkAkD
T
k ] −2.85 × 105 22

Table 3.9: Information of the image segmentation of Figure 3.6 by bin-EM-CEM
algorithms of eight general models.

From the Table 3.9, the more complex the model is, the higher maximum complete likeli-

hood it obtains. The most complex model [λkDkAkD
T
k ] provides the highest maximum

complete likelihood. But it takes 22 seconds, which is much longer than 14 seconds,

which is the time for the model [λDkADT
k ]. To conclude, if the objective is to seg-

menting the image in the shortest time, the model [λDkADT
k ] is the best model. If

the objective is to obtain the best image segmentation result, the model [λkDkAkD
T
k ]

should be chosen.

The Figure 3.9 shows the clustering result of the dataset by the bin-EM-CEM algorithm

of the model [λDkADT
k ] with 20 bins per dimension:
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Figure 3.9: The clustering result of the dataset by the bin-EM-CEM algorithm of the
model [λDkADT

k
] with 20 bins per dimension.

3.6.2.2 With different bin sizes

Different size of bins in bin-EM-CEM algorithm leads to different clustering result. We

don’t have a method to define the best bin size for dataset. In this part, we will study

the influence of the bin size on the image segmentation result. We will process the same

image as in the Figure 3.6. According to the comparison and analysis in the previous

part, the model [λDkADT
k ] is chosen as the objective model. We will apply the bin-

EM-CEM algorithms of model [λDkADT
k ] to the dataset. The only change is the size

of bins. It changes among 5, 10, 15, 20, 25, 30, 35 and 40 bins per dimension.

The Figure 3.10 shows the image segmentation results of the Figure 3.6 by the bin-EM-

CEM algorithms with different bin size:
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5*5bins 10*10bins

15*15bins 20*20bins

25*25bins 30*30bins

35*35bins 40*40bins

Figure 3.10: Image segmentation results of the Figure 3.6 by the bin-EM-CEM algo-
rithms of the model [λDkADT

k
] with different bin size
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From the Figure 3.10, the image segmentation results are very similar to each other

among these eight situations. We can see that when the bin size is 5 bins per dimension,

some details are missing. When the space is divided into 10 bins per dimension, we

already obtain a very good image segmentation result by bin-EM-CEM algorithm. There

are not obvious difference among the results with 10, 15, 20, 25, 30, 35 and 40 bins per

dimension.

Let’s see in the Table 3.10 some data about the experiment:

P
P
P
P
P
P
P
P
P
P
P

Bin size

Info.
LM CPUtime(s) Num. of non-empty bins

5 bins/dimension −7.20 × 104 4 19

10 bins/dimension −1.69 × 105 10 63

15 bins/dimension −2.26 × 105 13 128

20 bins/dimension −3.15 × 105 14 215

25 bins/dimension −3.60 × 105 24 326

30 bins/dimension −3.80 × 105 31 433

35 bins/dimension −3.99 × 105 41 575

40 bins/dimension −4.02 × 105 51 723

Table 3.10: Information of the image segmentation by bin-EM-CEM algorithm of the
model [λDkADT

k
] with different size of bins.

The maximum complete likelihood increases along with the decrease of the number of

non-empty bins. This is easy to proved and understand. Thus the highest maximum

complete likelihood doesn’t represent the best bin size. The CPUtime increases along

with the increase of the number of non-empty bins. This is naturel. There is not a lot

to explain here.

Considering that the image segmentation result is good enough when the space is divided

into 10 bins per dimension, we can say that the best bin size is 10 bins per dimension,

because it takes very little time to obtain a satisfying result.

3.6.2.3 Comparison with classical CEM algorithm

This part will compare the results of bin-EM-CEM algorithm and CEM algorithm. The

CEM algorithm is of the model [λDkADT
k ]. The bin-EM-CEM algorithm is of the same

model with 10 bins per dimension. The comparison is shown in the Figure 3.11:
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bin− EM − CEM CEM

Figure 3.11: comparison between the result by CEM algorithm and the result by
bin-EM-CEM algorithm

The result of the bin-EM-CEM algorithm is almost the same as the one of CEM al-

gorithm. It shows that even the 426400 pixels are grouped into only 63 bins for the

bin-EM-CEM algorithm, the quality of image segmentation is not affected. And the

bin-EM-CEM algorithm has bigger advantage than the CEM algorithm in computation

time. The CEM algorithm takes 38 seconds, while the bin-EM-CEM algorithm takes

only 10 seconds.

3.7 Conclusion

In this chapter, we developed fourteen bin-EM-CEM algorithms of parsimonious Gaus-

sian mixture models. The classic CEM algorithm for the standard data was first re-

viewed. In order to compare the computation times of the CEM and the bin-EM-CEM

algorithms, we calculated the computation complexities of these two algorithms for the

simplest general model. The comparison shows that the bin-EM-CEM algorithm takes

less computation time than the CEM algorithm if the amount of data is large enough.

An inequality is given out to define the condition when the bin-EM-CEM algorithm

is faster than the CEM algorithm. Derivation of the bin-EM-CEM algorithm and the

parameter estimates for fourteen models were detailed. The estimations of the variance

matrices of the mixture components differ among fourteen models. At the end of this

chapter, we studied and compared the performances of the bin-EM-CEM algorithms of

different models in several experiments on simulated data and real data. Some important

remarks can be outlined as follows:

• The best clustering result is most of the time obtained by the right model which

has the same distribution as the data. This result highlights that the parsimonious

models help in improving the clustering precision.
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• The execution time of the bin-EM-CEM algorithm can be reduced by enlarging the

size of bins. But this might lead to certain loss of accuracy, it will be convenient

to have a good trade-off between the reduction of size of bins and the accuracy

requirements.

• The bin-EM-CEM algorithms of parsimonious Gaussian mixture models perform

well on French department data and on image segmentation. In image segmenta-

tion, even with big bin size, the bin-EM-CEM algorithms provide a good result.

And the bin-EM-CEM algorithms have evident advantages in computation com-

paring to the CEM algorithms when applying to image segmentation.

• A criterion is needed to choose the best model which fits well the data and satisfy

the clustering accuracy requirements with a reasonable computation time.

To answer the last remark, in the next chapter, we will discuss some commonly used

criteria to choose the model for data clustering and adapt them to binned data frame-

work.



Chapter 4

Criteria for binned data

model-based clustering

4.1 Introduction

As we introduced in the previous chapters, model-based clustering becomes a common

approach in cluster analysis. Without any information on the data structure, choosing

the right model is decidedly an important step. Various criteria have been proposed to

measure a model’s suitability to the dataset. They are often supposed to find a balance

between the suitability and the model complexity.

Bayesian Information Criterion (BIC), introduced by Schwarz [20], is a common-used

criterion for model selection basing on likelihood function. In the Bayesian framework,

under the condition that the models have the same prior probabilities, selecting the

model of the highest posterior probability is equivalent to selecting the model of the

largest integrated likelihood [21]. But when fitting mixture models, the likelihood tends

to increase along with the model complexity i.e. by adding mixture components and

mixture model parameters, and it finally results in over-fitting. To solve this problem,

BIC introduces a penalty term for the model complexity to the integrated likelihood of

the model. Thus, the choice gets more reasonable and more close to the data structure.

But BIC criterion has one limitation: because it was not designed for clustering purpose

when doing the model selection, if the right model is not considered as the potential

model, BIC criterion will tend to overestimate the correct size [59]. For this reason,

an Integrated Completed Likelihood (ICL) criterion was proposed by Biernacki et al.

[21] to compensate this limitation. ICL criterion in fact is a BIC approximation of the

integrated complete likelihood. The difference between BIC and ICL criteria is that

127
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ICL criterion is based on complete likelihood and contains an additional penalty term,

thus ICL prefers well-separated clusters. The corresponding consequence is that BIC

criterion might over-estimate the number of mixture components whilst ICL criterion

under-estimates the number of mixture components. Generally speaking, for standard

data clustering, both BIC and ICL criteria are proved to be useful in choosing the model

and consequently the number of the components.

Other common criteria such as AIC, AWE, and NEC criteria, are also commonly used in

this domain. They are frequently mentioned for assessing mixture models and compared

with BIC and ICL criteria.

We developed binned-EM and bin-EM-CEM algorithms of different parsimonious Gaus-

sian mixture models in the Chapters 2 and 3, but no criterion is applied to model

selection for binned data clustering. In this chapter, we adapt several common criteria

to binned data so as to select the model and the number of mixture components for

binned data clustering.

We mainly focus on BIC and ICL criteria applied to binned data clustering. In the

Section 4.2, BIC and ICL criteria will be adapted to binned data clustering using binned-

EM algorithm. The Section 4.3 will present the corresponding experimental results on

simulated data and real data. And in the Section 4.4, we will adapt BIC and ICL criteria

to cluster analysis of binned data using bin-EM-CEM algorithm. Related experiments

will be presented in the Section 4.5. Then, comparison among BIC and ICL criteria

applied to binned-EM and bin-EM-CEM algorithms will be presented in the Section

4.6. AIC, AWE, and NEC criteria, will be adapted to binned data clustering in the

Section 4.7. A conclusion summarizing the main results will be given in the Section 4.8.

4.2 BIC and ICL criteria for binned data clustering by

binned-EM algorithm

The manner to choose the best model for clustering the data in framework of binned data

is the same as in the standard data framework: to choose the model which maximizes

the integrated likelihood. As the likelihood increases by adding parameters, the most

general model gives the biggest likelihood but it is also the most complicated model

with the most parameters. In some cases it is not necessary to use a complex model

when dealing with simple data structure. BIC and ICL criteria provide a penalty term

of model complexity. In this section, we review the BIC and ICL criteria and adapt BIC

and ICL criteria to binned data clustering.
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4.2.1 Bayesian information criterion (BIC)

L(Φ;a) ≈ L(Φ̂;a)− vm,K

2
log(n)

where L(Φ;a) is the log-likelihood which has the form:

L(Φ;a) = log(p(a;Φ))

=

v∑

r=1

nr log(

K∑

k=1

πk

∫

Hr

fk(x; θk)dx) + log(c)

and Φ̂ is the maximum likelihood estimate of Φ:

Φ̂ = argmax
Φ

L(Φ;a)

which is obtained by binned-EM algorithm [22], [23], [24]. And vm,K is the number of

parameters to estimate in the model m with K components, which is listed in detail in

the paper of Celeux and Govaert [15].

4.2.2 Integrated completed likelihood criterion (ICL)

ICL criterion was proposed by considering the integrated likelihood of the complete data

[21]:

L(Φ;a,z) ≈ L(Φ̂;a,z)− vm,K

2
log(n)

where L(Φ;a,z) is the complete log-likelihood:

L(Φ;a,z) = log(p(a,z;Φ))

=

v∑

r=1

nr log
(
πzr

∫

Hr

fzr(x; θzr)dx
)
+ log(c)

But in this paper, we apply ICL on binned-EM algorithm instead of bin-EM-CEM

algorithm. An important detail in this paper is that: Φ̂ isn’t obtained by bin-EM-CEM

algorithm, but the same as in BIC, which is obtained by binned-EM algorithm:

Φ̂ = argmax
Φ

L(Φ;a)

Since z is unknown, we replace z by ẑ = MAP(θ̂).
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4.3 Experiments of BIC and ICL criteria with binned-EM

algorithm

4.3.1 Experiments on simulated data

4.3.1.1 Choice of model

In this part, we compare the performance of BIC and ICL criteria in choosing the model

for binned data clustering. The number of clusters is considered to be known, BIC and

ICL criteria make a model choice among the fourteen parsimonious models.

As simulated data, we generate fourteen types of data according to fourteen parsimonious

Gaussian mixture models with two clusters. For each type of simulated data, we generate

30 samples of size= 3000. Fourteen binned-EM algorithms of parsimonious models are

applied to each sample once. The result which appears the most among 30 results will

be considered as the final result for the corresponding data type. We compare the result

of maximum log-likelihood estimation, maximum completed log-likelihood estimation,

BIC and ICL criteria.

The process of the experiment is shown in the following flow chart:

Mx
Standard

data
Binned data

(θ1, L1),. . . ,

(θ14, L14)

MBIC

MML

MICL

MCML

similate binning binned-EM

BIC

ML

ICL

CML

Since the volumes, shapes and orientations are different among fourteen models, the

separation level of clusters within each model is controlled and defined by the distance
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value, which indicates the distance between two mixture components:

δ =

√
(µ1 − µ2)T (

Σ1 +Σ2

2
)−1(µ1 − µ2)

To obtain binned data, we divide the space into small bins of size = 0.5 ·0.5. Because of
the different volumes and different centers of clusters in each data structure, the space is

cut into different numbers of bins per dimension depending on the volumes of samples,

which we will detail in the description of the characteristics of data.

The data simulated contains two components of equal mixing portions in two-dimensional

space. Characteristics of each structure of data are described as follows:

• Data structure 1 is generated according to the model [λDADT ] with λ = 1,

D =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, A = Diag(3, 1/3), µ1 = (−1.1, 0), µ2 = (1.2, 0), δ = 2.97,

Number of bins= 23× 17.

• Data structure 2 is generated according to the model [λkDADT ] with λ1 = 1,

λ2 = 3, D =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, A = Diag(3, 1/3), µ1 = (−1.5, 0), µ2 = (1.5, 0),

δ = 2.74, Number of bins= 29× 28.

• Data structure 3 is generated according to the model [λDAkD
T ] with λ = 1, D =( √

2
2

√
2
2

−
√
2
2

√
2
2

)
, A1 = Diag(1, 1), A2 = Diag(2, 1/2), µ1 = (−1.5, 0), µ2 = (1.5, 0),

δ = 3.0, Number of bins= 21× 15.

• Data structure 4 is generated according to the model [λkDAkD
T ] with λ1 = 1,

λ2 = 2, D =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, A1 = Diag(1, 1), A2 = Diag(2, 1/2), µ1 = (−1.5, 0),

µ2 = (2, 0), δ = 2.93, Number of bins= 22× 20.

• Data structure 5 is generated according to the model [λDkADT
k ] with λ = 1, D1 =(

1
2

√
3
2

−
√
3
2

1
2

)
, D2 =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, A = Diag(3, 1/3), µ1 = (−2, 0), µ2 = (1.5, 0),

δ = 3.04, Number of bins= 23× 24.

• Data structure 6 is generated according to the model [λkDkADT
k ] with λ1 = 3,

λ2 = 1, D1 =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, D2 = Diag(1, 1), A = Diag(3, 1/3), µ1 = (−5, 0),

µ2 = (5, 0), δ = 3.79, Number of bins= 47× 29.



132 Chapter 4. Criteria for binned data model-based clustering

• Data structure 7 is generated according to the model [λDkAkD
T
k ] with λ = 1,

D1 =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, D2 =

(
1
2

√
3
2

−
√
3
2

1
2

)
, A1 = Diag(3, 1/3), A2 = Diag(2, 1/2),

µ1 = (−1.4, 1), µ2 = (1.5,−1), δ = 3.09, Number of bins= 19× 20.

• Data structure 8 is generated according to the model [λkDkAkD
T
k ] with λ1 =

2, λ2 = 1, D1 =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, D2 =

(
1
2

√
3
2

−
√
3
2

1
2

)
, A1 = Diag(2, 1/2), A2 =

Diag(3, 1/3), µ1 = (−1.8, 1) µ2=(1.7,-1), δ = 3.05, Number of bins= 24× 27.

• Data structure 9 is generated according to the model [λB] with λ = 1, B =

Diag(1/2, 2), µ1 = (−1, 0), µ2 = (1.1, 0), δ = 2.97, Number of bins= 13× 20.

• Data structure 10 is generated according to the model [λkB] with λ1 = 1, λ2 = 3,

B = Diag(1/3, 3), µ1 = (−4, 0), µ2 = (4, 0), δ = 3.27, Number of bins= 48× 12.

• Data structure 11 is generated according to the model [λBk] with λ = 1, B1 =

Diag(1/2, 2), B2 = Diag(1/3, 3), µ1 = (−1, 0), µ2 = (1, 0), δ = 3.09, Number of

bins= 18× 24.

• Data structure 12 is generated according to the model [λkBk] with λ1 = 1, λ2 = 3,

B1 = Diag(2, 1/2), B2 = Diag(4, 1/4), µ1 = (−3, 0), µ2 = (3, 0), δ = 3.03,

Number of bins= 42× 11.

• Data structure 13 is generated according to the model [λI] with λ1 = 1, µ1 =

(−1.5, 0), µ2 = (1.5, 0), δ = 2.97, Number of bins= 27× 18.

• Data structure 14 is generated according to the model [λkI] with λ1 = 1, λ2 = 3,

µ1 = (−2.1, 0), µ2 = (2.1, 0), δ = 2.97, Number of bins= 28× 22.

The model choice result is shown in the Tables 4.1 and 4.2.

According to the result of maximum log-likelihood, the most complex model [λkDkAkD
T
k ]

is the best model for 10 data types: [λDADT ], [λkDADT ], [λkDAkD
T ], [λkDkADT

k ],

[λkDkAkD
T
k ], [λB], [λkB], [λBk], [λI], [λkI]. This result accords to the theory that

the most complex model gives the highest likelihood. For the data type of [λDAkD
T ]

and [λkBk], the biggest likelihood is obtained by its own feature model [λDAkD
T ]

and [λkBk] respectively. For the data type of [λDAkD
T ], the biggest likelihood comes

from the result of model [λDAkD
T ], which is a little more complicated than the data

structure.

Comparing to the maximum log-likelihood, BIC criterion succeeds in choosing the right

model which is exactly the same as the data structure for eight data types: [λDADT ],

[λkDADT ], [λDAkD
T ], [λkDkADT

k ], [λkDkAkD
T
k ], [λkB], [λkBk] and [λkI]. For data
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❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Data type
criteria

BIC ML

[λDADT ] [λDADT ]* [λkDkAkD
T
k ]

[λkDADT ] [λkDADT ]* [λkDkAkD
T
k ]

[λDAkD
T ] [λDAkD

T ]* [λDAkD
T ]*

[λkDAkD
T ] [λkDkAkD

T
k ] [λkDkAkD

T
k ]

[λDkADT
k ] [λkDkADT

k ] [λkDkADT
k ]

[λkDkADT
k ] [λkDkADT

k ]* [λkDkAkD
T
k ]

[λDkAkD
T
k ] [λkBk] [λkBk]

[λkDkAkD
T
k ] [λkDkAkD

T
k ]* [λkDkAkD

T
k ]*

[λB] [λkBk] [λkDkAkD
T
k ]

[λkB] [λkB]* [λkDkAkD
T
k ]

[λBk] [λkBk] [λkDkAkD
T
k ]

[λkBk] [λkBk]* [λkBk]*

[λI] [λkI] [λkDkAkD
T
k ]

[λkI] [λkI]* [λkDkAkD
T
k ]

Table 4.1: Result of BIC criterion and maximum log-likelihood estimation with
binned-EM algorithm. (* indicates the correct model)

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
Model Structure

criteria
ICL CML

[λDADT ] [λDADT ]* [λkDkAkD
T
k ]

[λkDADT ] [λkDADT ]* [λkDkADT
k ]

[λDAkD
T ] [λDAkD

T ]* [λDAkD
T ]*

[λkDAkD
T ] [λkDkAkD

T
k ] [λkDkAkD

T
k ]

[λDkADT
k ] [λkDkADT

k ] [λkDkADT
k ]

[λkDkADT
k ] [λkDkADT

k ]* [λkDkADT
k ]*

[λDkAkD
T
k ] [λkBk] [λkBk]

[λkDkAkD
T
k ] [λkDkAkD

T
k ]* [λkDkAkD

T
k ]*

[λB] [λkB] [λkDkADT
k ]

[λkB] [λkB]* [λkDkAkD
T
k ]

[λBk] [λkBk] [λkDkAkD
T
k ]

[λkBk] [λkBk]* [λkBk]*

[λI] [λkI] [λkI]

[λkI] [λkI]* [λkI]*

Table 4.2: Result of ICL criterion and complete maximum log-likelihood estimation
with binned-EM algorithm. (* indicates the correct model)
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type of [λkDAkD
T ], [λDkADT

k ] and [λDkAkD
T
k ], BIC has the same choice as the

maximum log-likelihood. BIC tends to choose the most complex model of diagonal

family [λkBk] for two data type of diagonal family: [λB], [λBk]. For the simplest data

structure of [λI], BIC prefers model [λkI].

For the result of maximum completed log-likelihood, the most complex model [λkDkAkD
T
k ]

gives the biggest completed log-likelihood for six types of data: [λDADT ], [λkDADT ],

[λkDAkD
T ], [λkDkAkD

T
k ], [λkB] and [λBk]. The biggest completed log-likelihood is

obtained by the right model for the following four data types: [λDAkD
T ], [λkDkADT

k ],

[λkBk] and [λkI]. For the data type of [λDkADT
k ], [λB] and [λI], the highest completed

log-likelihood is given by a model which is more complex than the data structure.

ICL criterion has the almost same result as BIC criterion except that it chooses the

model [λkB] for the data type of [λB].

We can conclude as follows: Both BIC and ICL are able to choose the right model for

most of the types of data. The result also shows that BIC and ICL are helpful in selecting

a more model which can obtain a good clustering result and more simplified compared

to the most complex model [λkDkAkD
T
k ]. Generally speaking, for the data generated

according to the general family, BIC and ICL criteria favor the models from general

family. And it happens the same to diagonal family and spherical family. The result

also shows that BIC and ICL criteria have almost the same behaviors in the context

that the number of clusters is defined in advance. It is logical since the main difference

between BIC and ICL criteria is that BIC criterion temps to over-estimate the number

of clusters. Meanwhile ICL temps to select reasonably less number of clusters for the

clustering objective.

4.3.1.2 Choice of number of clusters

This part of experiment aims to study how BIC and ICL choose the model especially

the number of clusters. 30 datasets are simulated according the model [λDAkD
T ] with

two clusters. The parameters are defined as: D =

( √
2
2

√
2
2

−
√
2
2

√
2
2

)
, A1 = Diag(1, 1),

A2 = Diag(2, 1/2), µ1 = (−1.5, 0), µ2 = (1.5, 0). 14 binned-EM algorithms of 14

models are applied on each dataset. The size of bins is defined as 50 · 50. The potential
number of data are 1, 2 and 3. The model selected is the model with a number of clusters

which leads to the highest BIC and ICL result. Table 4.3 presents the model choice of

BIC and ICL criteria, their corresponding approximation and CPUtime.

From the result, when the number of clusters is assumed to be 2, both BIC and ICL

criteria can select the right model. But when the number of clusters are 1 or 3, BIC
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Clusters Num. BIC ICL Time

1
Model [λkDkADT

k ] [λkDkADT
k ] 12s

Result -736.6 -736.6

2
Model [λDAkD

T ] [λDAkD
T ]

13s
Result -465.1 -681.93

3
Model [λkDkAkD

T
k ] [λkDkADT

k ] 28s
Result -533.7 -1063.2

Table 4.3: Model choice and choice of number of clusters of BIC and ICL criteria.

and ICL criteria cannot make the right choice. They either choose a wrong model

[λkDkADT
k ], either choose the most complex model [λkDkAkD

T
k ] which is much more

complex than the right model [λDAkD
T ]. Since the model [λDAkD

T ] with 2 clusters

provides the highest BIC and ICL approximation, we can say that if the number of

clusters is unknown, BIC and ICL criteria are able to choose the right model with the

correct number of clusters.

4.3.2 Experiments on real data

4.3.2.1 French city clustering

BIC and ICL criteria adapted to binned data clustering seem to perform well on sim-

ulated data. To further test these two criteria on real dataset, we consider a set of

population and population density of 1199 French cities. These French cities belong

to three departments: Meuse (500 observations), Nord (652 observations) and Val-de-

Marne (47 observations). According to different location of three departments, these

cities have different characteristic of population, as what is shown in Figure 4.1. Meuse

is a rural department with a small population and low population density; in the oppo-

site, Val-de-Marne, situated to southeast of Paris, is a department in France; Nord is the

most populous department in France. Fourteen binned-EM algorithms of parsimonious

Gaussian mixture models with different number of clusters (2, 3 and 4) are applied to

the real data. BIC and ICL choose the right model as well as the number of clusters.

Each algorithm are executed 30 times. The most selected model and number of clusters

are considered as the final choice. The result of BIC and ICL criteria are compared with

the result of maximum log-likelihood and maximum complete log-likelihood. The result

is shown in Table 4.4.

From the result, BIC and ML criteria have chosen three as the number of cluster, while

ICL and CML criteria have preferred two clusters. BIC criterion chooses the combination

of model [λkDkADT
k ] with 3 clusters. And ML obtains the best result with the most

complex model [λkDkAkD
T
k ]. ICL criterion has a different choice from BIC criterion. It
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Figure 4.1: Log-population and log-density of 1199 cities from three departments in
France.

Clusters Num. 2 3 4

BIC
Model [λkDkAkD

T

k
] [λkDkAD

T

k
]* [λDAD

T ]
Result -677.9 -672.6 -692.3

ML
Model [λkDkAkD

T

k
] [λkDkAkD

T

k
]* [λkDkAkD

T

k
]

Result -638.9 -612.9 -628.6

ICL
Model [λkDkAkD

T

k
]* [λkDkAD

T

k
] [λkDkAkD

T

k
]

Result -818.2 -883.9 -968.7

CML
Model [λkDkAkD

T

k
]* [λkDkAkD

T

k
] [λDAD

T ]
Result -779.3 -823.7 -948.4

Table 4.4: Model choice and choice of number of clusters of BIC and ICL criteria for
real dataset.

selects the most complex model also [λkDkAkD
T
k ] with only 2 clusters. CML provides

the same choice. From the accuracy point of view, BIC has made a good choice. It

has selected a model which represents the data structure as well as a correct number of

clusters. But from the clustering point of view, ICL performs properly.

4.3.2.2 Image segmentation

In this part, we will apply BIC and ICL criteria to image segmentation by binned-EM

algorithms of parsimonious Gaussian mixture models. This experiment aims to study if

BIC and ICL criteria can provide the right number of colors and find out the distribution

of the colors of the image.

The image to be processed is the same as the one in the experiment part of Chapter 2,

which is shown in the Figure 4.2:
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Figure 4.2: Original image.

After converting the image into L ∗ a ∗ b∗ color space. Since the color information exists

in the ′a ∗ b∗′ space, the data become pixels with ′a∗′ and ′b∗′ values. The Figure 4.3

shows the 154401 image pixels:

105 110 115 120 125 130 135
110

120

130

140

150

160

170

a*

b*

Figure 4.3: Image pixel represented in the ′a ∗ b∗′ space.
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From the Figure 4.3, it is difficult to tell the number of clusters and the distribution

of the clusters. Thus we apply the binned-EM algorithms of fourteen parsimonious

Gaussian mixture models to this dataset. The potential numbers of clusters are among

3, 4 and 5. The BIC and ICL criteria are applied to choose the model and the number

of clusters. To obtain binned data, the space is divided into 20 bins per dimension.

Clusters Num. BIC ICL

3
Model [λkDkAkD

T
k ] [λkDkAkD

T
k ]

Result −5.97 × 104 −7.13× 104

4
Model [λkDkADT

k ] [λkDkADT
k ]

Result −5.75 × 104 −6.79× 104

5
Model [λkDkAkD

T
k ] [λkDkAkD

T
k ]

Result −4.16 × 104 −5.62× 104

6
Model [λkDkAkD

T
k ] [λkDkAkD

T
k ]

Result −3.97 × 104 −5.61× 104

7
Model [λkDkAkD

T
k ] [λkDkAkD

T
k ]

Result −3.18 × 104 −5.15× 104

8
Model [λkDkAkD

T
k ] [λkDkAkD

T
k ]

Result −3.03 × 104 −5.25× 104

Table 4.5: The choice of model and number of clusters of BIC and ICL criteria with
binned-EM algorithm for image segmentation of Figure 4.2.

From the Table 4.5, the result of BIC criterion increases when the number of clusters

increases. The result of ICL criterion increases when the number of clusters increases

until 7. There are many colors in the image (more than 7 colors). These colors look the

similar but actually different. More clusters means a finer grouping of colors. Thus more

clusters approaches closer the real clustering of colors, so as a better image segmentation.

when the number of clusters is 4, both of BIC and ICL criteria have chosen the model

[λkDkADT
k ]. Except for this case, both of BIC and ICL criteria have chosen the model

[λkDkAkD
T
k ] for the other numbers of clusters. The image segmentation with different

number of cluster is shown in the Figure 4.4:
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3clusters 4clusters

5clusters 6clusters

Figure 4.4: Result of image segmentation by binned-EM algorithm with different
number of clusters.
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4.4 BIC and ICL criteria for binned data clustering by

bin-EM-CEM algorithm

4.4.1 Bayesian information criterion (BIC)

BIC criterion is to introduce a penalty term depending on the model complexity to

maximum value of the log-likelihood, so as to find the best model which provide high

integrated likelihood with respectively reasonable parameters.

L(Φ;a) ≈ L(Φ̂,a)− vm,K

2
log(n)

where Φ̂ is the maximum likelihood estimate of Φ, which is usually obtained by binned-

EM algorithm, but in this article, Φ̂ is obtained by bin-EM-CEM algorithm:

Φ̂ = argmax
Φ

L(Φ;a,z)

vm,K is the number of parameters to estimate in the model m with K components. The

corresponding information can be found in the paper of Celeux and Govaert [15].

4.4.2 Integrated completed likelihood criterion (ICL)

ICL criterion was proposed by considering the integrated likelihood of the complete data

[21]:

L(Φ;a,z) ≈ L(Φ̂;a,z)− vm,K

2
log(n)

where Φ̂ is obtained by bin-EM-CEM algorithm:

Φ̂ = argmax
Φ

L(Φ;a,z)

4.5 Experiments of BIC and ICL criteria with bin-EM-

CEM algorithm

4.5.1 Experiments on simulated data

In this section, we compare the behavior of BIC and ICL criteria in three parts. The first

part, we apply BIC and ICL criteria to two simulated data with different overlapping

rates. This experiment is very similar to the first experiment of the article of Biernacki
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[21] in order to have a comparison with BIC and ICL applied to standard data clustering

model selection. In the second experiment, we increase the data size from 400 to 2000

and 3600. Decision of BIC and ICL criteria on different amounts of data will be studied.

In the third part, we will study how the performances of BIC and ICL criteria change

following with different size of bins.

4.5.1.1 Different overlappings

In the first part, we will compare the choice of BIC and ICL in model selection of binned

data clustering. In order to compare with the BIC and ICL behaviors on standard

data, we generate two types of data similar to the simulated data in the experiment of

Biernacki’s paper [21].

The first type of data consists of three Gaussian components in a two dimensional space.

Three components have the same volumes and the same shapes. The orientations of the

first component and the third component are the same. The orientation of the seconde

component is different. The parameters of the Gaussian mixture are:

n = 400, p1 = 0.25, p2 = 0.25, p3 = 0.5

µ1 = µ2 = (0, 0), µ3 = (8, 0)

λ1 = λ2 = λ3 = 1

A1 = A2 = A3 = diag(10, 1/10)

D1 = D3 =

(
cos(π/2) sin(π/2)

− sin(π/2) cos(π/2)

)
=

(
0 1

−1 0

)

D2 =

(
cos( 5

12π) sin( 5
12π)

− sin( 5
12π) cos( 5

12π)

)
=

(
0.9659 0.2588

−0.2588 0.9659

)

So the angle between the orientations of the first component and the seconde component

is 15 degrees.

The seconde type of data have the same parameters as the first type data except for the

orientation of the seconde cluster:

D2 =

(
cos(π/3) sin(π/3)

− sin(π/3) cos(π/3)

)
=

(
0.5 0.866

−0.866 0.5

)

In this case, the angle between the orientations of the first component and the seconde

component is 30 degrees.
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For each type of data, we generate 30 samples. Fourteen bin-EM-CEM algorithms of

fourteen parsimonious models are applied on each samples with random initial param-

eters. The potential models are fourteen parsimonious mixture models with 2, 3 or 4

components. The best result of BIC and ICL among 30 samples is considered as the

final result of each data type respectively.

For the first type of data, the BIC criterion has chosen the right model [λDkADT
k ] with

3 clusters. And the ICL criterion prefer the most complex model [λkDkAkD
T
k ] with 2

clusters.

For the seconde type of data, both the BIC and ICL criteria chose the right model

[λDkADT
k ] with 3 clusters.

BIC and ICL are able to detect the right model for binned data clustering. ICL tends

to choose fewer number of components in order to obtain a more reasonable clustering

result. BIC and ICL criteria applied to binned data perform similarly as applying to

standard data.

4.5.1.2 Different amounts of data

The seconde experiment aims to study how would the result of BIC and ICL criteria

would change when the amount of data gets bigger. Besides the result from the first

experiment, in this experiment, we consider two more data amounts: 2000 and 3600.

The data are simulated according to the parameters same of the first type of data in the

first experiment. The size of bin is still fixed at 40 bins per dimension. For each amount

of data, we simulate 30 samples. Then fourteen parsimonious models are applied on each

sample. The one with the best BIC and ICL result among the 30 samples is considered

as the final result. The result of BIC and ICL criteria (including the model choice and

the choice of number of clusters) and the CPU time of the whole clustering process are

shown in the Table 4.6. The CPU time indicates the amount of time for which a central

processing unit (CPU) was used for processing instructions of a computer program.

Data amount BIC choice ICL choice CPUtime

400 [λDkADT
k ](3) [λkDkAkD

T
k ](2) 13.3s

2000 [λkDkAkD
T
k ](2) [λkDkAkD

T
k ](2) 16.4s

3600 [λkDkAkD
T
k ](2) [λkDkAkD

T
k ](2) 19.6s

Table 4.6: Model choice(number of clusters in the parenthesis) by BIC and ICL and
CPU time of binned data clustering on different amount of dataset.
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As mentioned earlier in the paper, when dealing with data of 400 observations, the

BIC criterion succeeds in choosing the right model [λDkADT
k ] with the right number

of clusters 3 while the ICL prefers a more complex model [λkDkAkD
T
k ] with only 2

clusters. When the amount of data increases to 2000 or 3600, both the BIC and the

ICL criteria have chosen the most complex model [λkDkAkD
T
k ] with 2 clusters as the

first choice. It seems that with the same size of bins, the increase of the number of

observations doesn’t help in choosing the right model for binned data clustering. We

should mention that except for the model [λkDkAkD
T
k ] with 2 clusters, both BIC and

ICL criteria consider the right model [λDkADT
k ] with 3 clusters as seconde choice.

Considering the aspect of computation time, the CPU time increases slower than the

size of data. With the increase of number of data from 400, to 2000 until 3600, there is

only about 3s more of computation time at each increase. We can say that data binning

has slow down the increasing tendency of time along with the increase of data.

4.5.1.3 Different sizes of bin

The size of bins is a very important factor in binned data clustering which can affect

the result of clustering as well as model selection. In this part, except for the size of

bins and the amount of data, other parameters of simulated data are the same as the

seconde experiment. The size of bins changes from 30 to 40 and 50 bins per dimension.

The result is shown in Table 4.7 From the result, when the size of bins is too big(30

Size of bins BIC choice ICL choice CPUtime

30 [λkDkAkD
T
k ](2) [λkDkAkD

T
k ](2) 21.1s

40 [λkDkAkD
T
k ](2) [λkDkAkD

T
k ](2) 16.4s

50 [λDkADT
k ](3) [λDkADT

k ](3) 19.6s

Table 4.7: Model choice(number of clusters in the parenthesis) by BIC and ICL and
CPU time of binned data clustering with different size of bins.

bins per dimension), BIC and ICL criteria cannot succeed in detecting the right data

structure. And moreover, it takes more computation time than the case of 40 bins per

dimension. Because bigger bins lead to more difficulties for bin-EM-CEM algorithm to

obtain model parameters. When the bin is smaller(50 bins per dimension), BIC and ICL

criteria are able to choose the right model for dataset. It is normal that it takes more

time than 40 bins per dimension, because smaller bins means more bins to deal with.
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4.5.2 Experiments on real data

4.5.2.1 French city clustering

As real dataset, we have the population and the population density (population/surface)

of 1199 French cities. They are respectively from three different departments: Meuse

(500 cities), Nord (652 cities) and Val-de-Marne (47 cities). Meuse is a rural department

with a small population and low population density. In the opposite, Val-de-Marne,

situated to southeast of Paris, is a department of high population density and Nord

is the most populous department in France. The true partition of these French city

is displayed in the Figure 4.5. On this dataset, fourteen parsimonious models with

K = 2, 3, 4 are considered as potential models. The biggest value of BIC and ICL

among all the potential models is considered as the result of BIC and ICL criteria. The

clustering result is displayed in the Figure 4.6. BIC criterion has chosen the model
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Figure 4.5: True clustering of 1199 cities from three departments in France.

[λkDADT ] with 3 clusters, and ICL criterion favors a simpler model [λkDADT ] with 2

clusters. It makes sense from the structure of the dataset. From the Figure 4.5, three

clusters have the similar orientations and shapes. The volumes are different, especially

the population of Val-de-Marne is much smaller than the other two departments. So ICL

criterion has the tendency to put the Nord and Val-de-Marne together as one cluster.
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Figure 4.6: Result of bin-EM-CEM algorithm with BIC of 1199 cities from three
departments in France.

4.5.2.2 Image segmentation

The goal of this experiment is to study how the BIC and ICL criteria perform on the

application of image segmentation by bin-EM-CEM algorithm. We still use the lantern

image which was used in the Chapter 3. This image is shown again in the Figure 4.7:

Figure 4.7: Original image.

The size of bin cannot be defined by BIC and ICL criteria. So defining the bin size is

not our objective in this experiment. We suppose that the space is always divided into

20 bins per dimension. The fourteen bin-EM-CEM algorithms of parsimonious models

will be applied to the dataset which represents the color of the image pixels. In the
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bin-EM-CEM algorithm, the number of clusters are supposed to be 4, 5, 6, 7, 8 and 9.

So BIC and ICL criteria will choose the model with the number of cluster which suppose

to be the best for the dataset. The result is shown in the Table 4.8:

Clusters Num. BIC ICL L CL CPUtime

4
Model [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ]

20
Result −3.36× 105 −3.50× 105 −3.49× 105 −3.36× 105

5
Model [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ]

22
Result −2.92× 105 −3.02× 105 −2.78× 105 −2.92× 105

6
Model [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ]

26
Result −5.91× 104 −7.13× 104 −5.88× 104 −7.11× 104

7
Model [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ]

31
Result −5.16× 104 −6.65× 104 −5.13× 104 −6.63× 104

8
Model [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ]

35
Result −4.07× 104 −5.59× 104 −4.04× 104 −5.56× 104

9
Model [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ] [λkDkAkD

T
k ]

40
Result −4.01× 104 −5.65× 104 −3.55× 104 −5.44× 104

Table 4.8: The choice of model and number of clusters of BIC and ICL criteria with
bin-EM-CEM algorithm for image segmentation of Figure 4.2.

From the Table 4.8, the result of BIC and maximum likelihood increase along with

the increase of the number of clusters. So the choice of BIC criterion so far is the

model [λkDkAkD
T
k ] with 9 clusters. At another side, the maximum complete likelihood

increases when the number of clusters gets bigger. But ICL criterion prefers the model

[λkDkAkD
T
k ] with 8 clusters instead of 9 clusters. And the CPUtime increases when

more clusters are considered.

We can analyze this result as follows. There are many colors in the Figure 4.2. Many

colors are similar, but they are still different colors. From the result, 9 clusters seem not

to be enough to represent the colors in the image. That’s why the maximum likelihood,

the BIC and the maximum complete likelihood increase along with the increase of the

number of clusters. More clusters lead to a more precise clustering, which might be

closer to the reality. But in some situations, we don’t need to separate the colors in such

details. According to the result of ICL criterion, 8 is an acceptable number of clusters

for this dataset. 8 color clusters are enough to express the information of this image. In

this case, maybe we can say that the BIC criterion overestimates the number of clusters.

Or maybe the ICL criterion simplifies the clustering result. Which criterion is better

depending on our needs and goals.

Among those 6 results with different bin size, we will show four of them in the Figure

4.8 to give an example.
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6clusters 7clusters

8clusters 9clusters

Figure 4.8: Result of image segmentation of Figure 4.7 by bin-EM-CEM algorithm
with different number of clusters.

Comparing the four image segmentation results in the Figure 4.8, we can see that more

details are shown when the number of clusters is higher. For example, the frame of each

lantern is clearly shown in the last sub-figure with 9 clusters. And of course, when we

suppose less number of clusters, some small information are lost. For example, when the

number of clusters is 6, the blue lights at the right-up corner of the image is not shown

in the result. Less number of clusters leads to a clearer image segmentation result, while

higher number of clusters leads to a more complex result.

To analyze the model choice of BIC and ICL criteria, the clustering results by bin-EM-

CEM algorithm of model [λkDkAkD
T
k ] with 6, 7, 8 and 9 clusters are shown in the

Figure 4.9:
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6clusters 7clusters

8clusters 9clusters

Figure 4.9: Clustering result of the pixels color by bin-EM-CEM algorithm with
different number of clusters.

From the first sub-figure in the Figure 4.9, we can see that each cluster has different

volume. Some clusters have diagonal orientation and some of them are of general orien-

tation. Different shapes exist, where includes spherical and general shapes. The model

[λkDkAkD
T
k ] can be considered as the best model for this dataset. When the number of

cluster increases, some clusters are divided into two clusters. Thus the volumes of some

clusters tend to be similar and the shapes of some clusters tend to be spherical. For

this reason, the result of bin-EM-CEM algorithm of model [λkI] is very similar to the

result of model [λkDkAkD
T
k ]. But BIC and ICL criteria prefer the model [λkDkAkD

T
k ]

because this model can express the clustering result more precisely.

4.6 Comparison among BIC and ICL criteria of binned-

EM and bin-EM-CEM algorithms

In this chapter, by adapting BIC and ICL criteria to the binned-EM and bin-EM-CEM

algorithms, we developed four new criteria: BIC criterion with binned-EM algorithm,
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ICL criterion with binned-EM algorithm, BIC criterion with bin-EM-CEM algorithm

and ICL criterion with bin-EM-CEM algorithm. It is of interest to make a comparison

among these four criteria.

In this experiment, we simulate three different datasets. Each time we simulate a Gaus-

sian mixture with five components. The objective is to observe the ability of finding

the number of clusters of the four criteria. Thus each component follows the simplest

spherical model. The difference among three datasets is the location of the one com-

ponent which leads to different distance between two components. It aims to see if our

four criteria can correctly tell the number of clusters with different mixed levels. Here

we give out the common model parameters of the three simulated datasets:

n = 5000,K = 5, p1 = p2 = p3 = p4 = p5 = 0.2

µ1 = (0, 5), µ2 = (5, 0), µ3 = (5, 10), µ4 = (9, 5),

Σ1 = Σ2 = Σ3 = Σ4 = Σ5 = diag(1, 1)

The distance between two clusters is defined by value δ:

δ =

√
(µ1 − µ2)T (

Σ1 +Σ2

2
)−1(µ1 − µ2)

For the first situation, two clusters are well mixed together:

δ = 1, µ5 = (10, 5)

In the second situation, the distance between the two clusters is greater than in the first

situation:

δ = 1.5, µ5 = (10.5, 5)

We have the best-separated mixture in the third situation:

δ = 2, µ5 = (11, 5)

These three situations of datasets are shown in the Figures 4.10, 4.11 and 4.12.

For each situation, we estimate 30 samples. We apply binned-EM algorithm and bin-

EM-CEM algorithm on each sample and then decide the model choice (including the

number clusters) by BIC and ICL criteria. The size of bins in binned-EM and bin-EM-

CEM algorithms is unified in the whole experiment. The space is divided into 40 × 40

bins. For each criterion, the model which is chosen the most is considered as the final

choice of the criterion. The result is presented in the Table.
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Figure 4.10: An sample simulated according to Gaussian mixture model with five
clusters. The distance between two overlapping components δ = 1.

−4 −2 0 2 4 6 8 10 12 14
−4

−2

0

2

4

6

8

10

12

14

Figure 4.11: An sample simulated according to Gaussian mixture model with five
clusters. The distance between two overlapping components δ = 1.5.
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Figure 4.12: An sample simulated according to Gaussian mixture model with five
clusters. The distance between two overlapping components δ = 2.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Criterion
Distance

δ = 1 δ = 1.5 δ = 2

Model Num. Model Num. Model Num.

BICbinned−EM [λkI] 5 [λkBk] 4 [λI] 5

ICLbinned−EM [λkI] 4 [λkBk] 4 [λI] 5

BICbin−EM−CEM [λkI] 4 [λkBk] 4 [λI] 5

ICLbin−EM−CEM [λkI] 4 [λkBk] 4 [λI] 5

Table 4.9: Comparison of model choice of four criteria.

In all the simulated datasets of three situations, there are three well-separated clusters

and two another clusters well-mixed. We denote these two clusters as C1 and C2. When

distance = 1, C1 and C2 are too mixed that it seems they are only one cluster. This is

also shown in the Figure 4.10. In this case, it is not easy to tell the number of clusters.

BICbinned−EM has chosen the right cluster number 5 and the model [λkI], which is

slightly more complex than the real model [λI]. ICLbinned−EM chose the same model

as BICbinned−EM , [λkI]. But ICLbinned−EM prefers to consider clusters C1 and C1 as

one cluster.

When distance = 1.5, clusters C1 and C2 are less overlapped. From the Figure 4.11,

since two clusters are half overlapped, thet are combined as one diagonal cluster. In

this case, both of BICbinned−EM and ICLbinned−EM criteria chose the most complex

diagonal model [λkBk] and 4 clusters. It is reasonable because without any information
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of dataset, it is easy to suppose that there are three spherical clusters and one diagonal

cluster. The diagonal cluster has twice volume as the spherical clusters.

Finally when distance = 2, C1 and C2 are better separated. In this case, both of

BICbinned−EM and ICLbinned−EM criteria can tell the right model and the correct num-

ber of clusters.

4.7 AIC, AWE, and NEC criteria applied to binned data

clustering

4.7.1 AIC criterion and its derivation

The Akaike information criterion (AIC), proposed by Akaike [17], is generally regarded

as the first model selection criterion. It is another measure of a model’s suitability to

the dataset. It takes the form as follows:

AIC(M,K) = 2vM,K − 2L(M)

where vm,K is the number of the free parameters of the model M , and L(M) indicates

the maximum log-likelihood of the model M .

The index takes into account both the statistical fitting and the number of parameters

that have to be estimated to achieve this particular degree of fit, by imposing a penalty

for decreasing the number of parameters. We will review the derivation of AIC criterion

hereafter.

AIC is based on a simple information theory. We suppose that the data is generated

following an unknown model f . To represent f , we consider two candidate models: g1

and g2. Suppose that we know the model f , we can get the information lost when

using g1 or g2 to represent f by calculating the kullback-Leiber divergence [60]. The

best model is the one who leads to less information loss. But in fact, we don’t know

the true model f , [17] showed that by AIC criterion, we can estimate how much more

information is lost by g1 than g2.

To measure the distance between the potential model g and the true model f , we use the

expected Kullback-Leiber information Ey[I(f, g(·|θ̂(y)))], which is aimed to minimize:

min
g∈G

Ey[I(f, g(·|θ̂(y)))]
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We have:

Ey[I(f, g(·|θ̂(y)))] =
∫

Ω
f(x) log(f(x))dx−

∫

Ω
f(y)[

∫

Ω
f(x) log(g(x|θ̂(y)))dx]dy

︸ ︷︷ ︸
EyEx[log(g(x|θ̂(y)))]

where G is the collection of potential models, θ̂ is the Maximum Likelihood Estimation

(MLE) based on model g and data y, and y is a random sample from the density function

f(x).

Minimizing Ey[I(f, g(·|θ̂(y)))] leads to maximize EyEx[log(g(x|θ̂(y)))]. An approxi-

mately unbiased estimate of EyEx[log(g(x|θ̂(y)))] for large sample and the best-fit model

is:

L(M)− vM,K

AICc is AIC with a correction for finite sample sizes. It is used when the sample size n

and the number of parameters vM,K has the relation: n
vM,K

< 40. It takes the form:

AICc = AIC +
2vM,K(vM,K + 1)

n− vM,K − 1

where n is the sample size and K is the number of free parameters.

Compared to the BIC criterion, the AIC penalizes the number of parameters less strongly.

A comparison of AIC/AICc and BIC is given by Burnham and Anderson [61].

4.7.2 AWE criterion

Approximate Weight of Evidence (AWE) is an approximation of Bayes factor. Bayes

factor, which is noted as B0, indicates the relation between the integrated likelihood of

two models M and M0.

B0 =
P (X|M)

P (X|M0)

where the likelihood

P (X/M) =

∫
P (θ|M)P (X|θ,M)dθ

with θ the model parameter vector.

To calculate the Bayes factor, we use the Schwarz criterion [20]:

S = 2L(M) − 2L(M0)− (v(M) − v(M0)) log(n) (4.1)
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where L(M) is the maximum likelihood of the model M and v(M) is the number of

free parameters in this model. S is a rough approximation of 2 log(B0). Under certain

conditions, we have:
S − 2 log(B0)

2 log(B0)
−→ 0

Here let’s remember that, to obtain BIC criterion, we remove the constants in the

Equation 4.1 and takes −S as criterion:

BIC(M) = −2L(M) + v(M) log(n)

To obtain another criterion, Banfield and Raftery [16] have given another approximation

of Bayes factor B0. Contrary with BIC criterion, this approximation limits the choice

of number of class. The integrated likelihood P (x/K), corresponding to a K-component

model, has the form as follows:

P (x/K) =
∑

z

∫
f(x,z|θ,K)π(θ|K)dθ

with f(x,z|θ,K) the complete likelihood of (θ,z) for K classes, and π(θ|K) the prior of

θ for K classes. Being within the framework of hierarchical clustering, it uses the fact

that K classes is the result from the agglomeration of two classes among K + 1 classes.

The proportions of classes are required to be equal. Using the asymptotic approximation

[62], we obtain:

− 2 log(B0) ≈ −2CL(K) + 2CL(1) + 2(v(K) − v(1))(3
2
+ log(n)) (4.2)

where B0 is the Bayes factor of a model of K classes against a model of only one class.

CL(K) is the maximum complete likelihood for K classes. By removing the constants

in the Equation 4.2, we obtain the AWE criterion:

AWE(K) = −2CL(K) + 2v(K)(
3

2
+ log(n))

4.7.3 NEC criterion

NEC criterion’s full name is Normalized Entropy Criterion. It was proposed by [51] to

estimate the number of clusters arising from a mixture model.
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In the mixture model, a dataset x = (x1, . . . ,xn) is assumed to follow a probability

distribution of K-component:

f(x;Φ) =

K∑

k=1

πkfk(x; θk)

with Φ = (π1, . . . , πK , θ1, . . . , θK), where πk (k = 1, . . . ,K) denote the mixing propor-

tions of the mixtures (0 < πk < 1 and
∑K

k=1 πk = 1), and θk = (µk,Σk) (k = 1, . . . ,K)

are the parameters of Gaussian distribution functions fk of components: mean vectors

µk and variance matrices Σk.

The maximized log-likelihood of the dataset x is

L(K) =

n∑

i=1

log[

K∑

k=1

π̂kfk(xi; θ̂k)]

where π̂k and θ̂k denote the maximum likelihood estimates of πk and θk respectively.

The NEC criterion is derived from a relation between the log-likelihood L(K) and a

classification type log-likelihood C(K):

L(K) = C(K) + E(K) (4.3)

where

C(K) =

K∑

k=1

n∑

i=1

tik log[π̂kfk(xi; θ̂k)]

with

tik =
π̂kfk(xi; θ̂k)∑K
j=1 π̂jfj(xi; θ̂j)

denoting the conditional probability that xi arises from the kth mixture component.

In the Equation 4.3, the entropy E(K) has the form

E(K) = −
K∑

k=1

n∑

i=1

tik log(tik) ≥ 0

which measures the overlap of the mixture components. The entropy E(K) cannot

be used directly as a criterion to obtain the number of clusters, because L(K) is an

increasing function of K and should be normalized. Thus we have

1 =
C(K − C(1))

L(K)− L(1) +
E(K)−E(1)

L(K)− L(1) ,K > 1 (4.4)
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From the Equation 4.4, we can get the NEC criterion:

NEC(K) =
E(K)

L(K)− L(1)

In order to adapt NEC criterion to binned data framework, we adjust some parameters:

E(K) = −
K∑

k=1

v∑

r=1

pr/k(Φ) log(pr/k(Φ))

where

pr/k(Φ) =
π̂k
∫
Hr
fk(x; θ̂k)dx

∑K
k=1 π̂k

∫
Hr
fk(x; θ̂k)dx

From the definition of the NEC criterion, L(K) cannot be L(1). So we cannot compare

the cases when K = 1 with when K > 1 by the NEC criterion. To deal with this

problem, Celeux and Soromenho [51] has proposed a procedure which is reviewed in the

Chapter 1. But this method is restricted to Gaussian mixtures and shows a disadvantage

[52]. Biernacki et al. [63] proposed a simpler and general procedure to deal with this

problem.

4.7.4 Numerical Experiments

In this part, we propose to study and compare the performances of all the criteria we

mentioned above: likelihood L, complete likelihood CL, BIC, ICL, AIC, AWE, and NEC

criteria. The experiments are divided into two parts. In the first part, we focus on the

choice of number of clusters. In this case, the model is considered as already known and

follows a simple model. In the second part, the model is considered as unknown but the

number of clusters is fixed. This part aims to study the ability of model choice of all

the criteria.

4.7.4.1 Choice of number of clusters

The simulated data is generated according to a model which we used in the Subsec-

tion 4.6: a Gaussian mixture model with five components. Each component has the

same structure: the simplest spherical model [λI]. Three of the components are well

separated with each other. The other two components are overlapped to certain level.

Three groups of sample we simulated correspond to three levels of overlapping of the-

ses two components. The level of overlapping is referred to the distance between two
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components:

δ =

√
(µ1 − µ2)T (

Σ1 +Σ2

2
)−1(µ1 − µ2)

So the model parameters of these three groups of simulated data are detailed in the

Table 4.10: In the algorithm, the potential model is fixed. It is same as the real model

Common parameters
n = 5000,K = 5, p1 = p2 = p3 = p4 = p5 = 0.2
µ1 = (0, 5), µ2 = (5, 0), µ3 = (5, 10), µ4 = (9, 5),

Σ1 = Σ2 = Σ3 = Σ4 = Σ5 = diag(1, 1)

Different parameters
Group 1 δ = 1, µ5 = (10, 5)
Group 2 δ = 1.5, µ5 = (10.5, 5)
Group 3 δ = 2, µ5 = (11, 5)

Table 4.10: Model parameters of simulated data.

[λI]. For each group of dataset, we simulate 30 datasets. For each dataset, we apply

binned-EM and bin-EM-CEM algorithms, so as to get the maximum likelihood and the

maximum complete likelihood. Then we use the criteria to choose the number of cluster.

The number which is chosen the most is considered as the choice of the corresponding

criterion. The bin size is still fixed at 40bins× 40bins.

The result is shown in the Table 4.11:

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Criteria
Dataset

Group 1 Group 2 Group 3

L 4 5 5

LM 4 4 5

BIC 4 5 5

ICL 4 4 5

AIC 4 4 5

AWE 4 4 4

NEC 4 5 5

Table 4.11: Result of choice of number of clusters by L, LM, BIC, ICL, AIC, AWE,
and NEC criteria.

From the result, when the two components are too overlapped (distance δ = 1), all the

criteria consider that there are only four criteria. When the distance δ = 1.5, L, BIC

and NEC criteria succeeded to point out the right number of clusters. The CL, ICL,

AIC and AWE criteria favor 5 clusters. We notice that L has the same behavior as BIC,

and CL has the same behavior as ICL. Same as in the standard framework, in binned

data clustering, L and BIC criteria still perform better than CL and ICL criteria. Under
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the condition that the model is fixed as [λI], AIC and AWE criteria couldn’t make the

right choice. In the third group of simulated dataset, the two connected clusters are well

separated. In this case, all the criteria are able to detect five clusters.

4.7.4.2 Choice of model

In this part, we study the model choice for binned data clustering of all the criteria

introduced in this chapter. Under the condition that the number of clusters is known,

the difference of choice of different criteria is the model selection. For the experiment,

we simulate data according to fourteen parsimonious Gaussian mixture models. Follow

each model, we generate 30 datasets of size= 3000. To apply binned-EM algorithm,

the whole space is divided into 40bins×40bins. Details of model parameters see in the

Section 4.3. The model which has been chosen by the most times is selected as the final

choice of corresponding criterion. The result is shown in the Table 4.12.

From the result, we can see that BIC, ICL and NEC criteria have exactly the same result

in this experiment. They are able to choose the right model for 8 different data structure.

Compared to BIC, ICL and NEC criteria, AIC criterion behaves less outstanding. It

favors the most complex model [λkDkAkD
T
k ] for the dataset simulated according to

the models [λDkAkD
T
k ], [λkB] and [λkB]. Among all these criteria, AWE criterion

gives the best result. It give 9 correct answers out of 14 (maximum 8 right answers for

other criteria). AWE succeeded detect one data structure that other criteria can detect:

[λDkAkD
T
k ]. If we have to measure the performance of these criteria, we would give

out this order: AWE, (BIC, ICL, NEC), AIC, CML, ML, from the best criterion to the

worst one.

4.8 Conclusion

This chapter studied the model selection for binned data clustering. Our aim was to

know which model one should use to get a good clustering result, without knowing the

data structure. To reach this goal, in this chapter, several classical criteria were adapted

to binned data clustering. These criteria aim to select the right model among fourteen

parsimonious Gaussian mixture models, as well as the number of clusters. A right model

must fit well the data and meet the clustering precision requirements with a reasonable

computation time.

First of all, we focused on the BIC and ICL criteria. Basing on the BIC and ICL criteria

for standard data, we proposed four new associations for model selection in binned data
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❵
❵
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❵
❵
❵
❵
❵
❵
❵
❵

Data Model
Criteria

ML BIC CML ICL AIC AWE NEC
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T

k
] [λkBk] [λkBk] [λkBk] [λkBk]

[λkBk] [λkBk]∗ [λkBk]∗ [λkBk]∗ [λkBk]∗ [λkBk]∗ [λkBk]∗ [λkBk]∗
[λI] [λkDkAkD

T

k
] [λkI] [λkI] [λkI] [λkI] [λkI] [λkI]

[λkI] [λkDkAkD
T

k
] [λkI]∗ [λkI]∗ [λkI]∗ [λkI]∗ [λkI]∗ [λkI]∗

Table 4.12: Model choice of ML, CML, BIC, ICL, AIC, AWE, and NEC criteria.
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clustering using the binned-EM algorithms and bin-EM-CEM algorithms. In fact, each

of the criteria BIC and ICL was associated with either fourteen binned-EM algorithms

or fourteen bin-EM-CEM algorithms. Experiments on simulated data and real data were

presented to compare the results in model choice, including the choice of the number of

clusters, of these four criteria. The experimental results showed that:

Generally speaking, all these four new associations are able to choose the best-fit model

for different datasets. Compared to the BIC criterion when applied to binned data, the

ICL criterion prefers to choose less number of clusters with a more complex model. This

behavior remains the same as in the standard data framework. The size of bins affects

the model choice of BIC and ICL criteria. Smaller bins lead to a better-fit model, but

cost more consumption of computation time.

In this chapter, we also adapted AIC, AWE, and NEC criteria, to model selection in

binned data clustering. To test the performance of these criteria, we divided the experi-

ments into two parts: the first part was to study the choice of number of clusters and the

second part was to study the choice of model. The results showed that when the model

is provided, the BIC and NEC criteria perform slightly better than the other criteria

(ICL, AIC, and AWE) in choosing the number of clusters. And when the number of

clusters is known, the BIC, ICL, AIC, AWE, and NEC criteria, can choose the right

model in most of the cases. More precisely, the AWE criterion outperforms the other

criteria. The BIC, ICL, and NEC criteria, have almost the same behaviors in model

choice. The AIC criterion has a slightly less outstanding performance compared to the

other criteria in our experiments.



General conclusion and

prospective

General conclusion

In this thesis, we studied the application of EM and CEM algorithms of parsimonious

Gaussian mixture models to binned data clustering, and its associated model selection.

In cluster analysis, mixture-model-based clustering approach is one of the most impor-

tant approaches. It helps to discover and understand the data structure by assuming

potential models. The two most commonly used mixture-model-based clustering ap-

proaches are the mixture approach and the classification approach. The mixture ap-

proach aims to maximize the likelihood of mixture model parameters, using the EM

algorithm, and to deduce the data partition from the estimated mixture model param-

eters. The classification approach aims to maximize the complete likelihood i.e. the

likelihood of the mixture model parameters and the data labels, using the CEM al-

gorithm. Along with the development of information technology, the amount of data

increased explosively. In this case, the EM and CEM algorithms suffer from a long

computation time problem, while dealing with data of large size. Thus, one of the main

objectives of this thesis was to find a solution to obtain a good data clustering result

within a reasonable computation time.

In standard data framework, fourteen parsimonious Gaussian mixture models were pro-

posed according to a parametrization of variance matrices of clusters. These models

have less free parameters comparing to the most general one. They can adapt efficiently

to different data structures and obtain a good clustering result. At another side, binned

data was introduced into clustering in order to reduce the amount of data (the data

size): from the number of points to the number of bins. Moreover, the size of bins can

be modified according to our actual needs. Thus, the computation time can be reduced

and especially controlled by defining intelligently the size of bins.
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So in this thesis, we developed fourteen binned-EM algorithms and fourteen bin-EM-

CEM algorithms of fourteen parsimonious Gaussian mixture models. These new algo-

rithms combine the advantages of binning data in time reduction and the advantages of

parsimonious Gaussian mixture models in simplifying the parameters estimation. The

complexities of EM and binned-EM algorithms were calculated and compared. The

comparison result showed that the binned-EM algorithm is faster than the EM algo-

rithm when the data size is big enough. The complexities of CEM and bin-EM-CEM

algorithms were also calculated and compared. The bin-EM-CEM algorithm is faster

than the CEM algorithm when the data size increases and satisfies a condition. This

condition is defined by an inequality which is given out in this thesis.

While using binned-EM algorithms and bin-EM-CEM algorithms, different parsimonious

Gaussian mixture models lead to different variance matrices estimations. Due to this

specific and precise estimation, parsimonious models can better-fit different datasets

than the most complex model. Also, by applying these parsimonious Gaussian mixture

models, the parameter estimations are simplified. Thus, while combining the advantages

of binned data and parsimonious models, binned-EM and bin-EM-CEM algorithms of

parsimonious Gaussian mixture models can fit well the data within a reasonable com-

putation time.

Numerical experiments of the fourteen binned-EM and the fourteen bin-EM-CEM al-

gorithms of parsimonious Gaussian mixture models applied to different datasets were

performed and analyzed. The result showed that the parsimonious model representing

exactly the data structure obtained the highest accuracy and spent less computation

time. This result implies that the parsimonious models simplify the parameters estima-

tion and then they are also able to adapt to datasets of different structures and provide

a good clustering result. We also studied an experiment of binned-EM and bin-EM-

CEM algorithms with different bin sizes. The result showed that bigger bins lead to less

computation time with acceptable loss of precision. The applications of binned-EM and

bin-EM-CEM algorithms of parsimonious Gaussian mixture models to image segmenta-

tion were analysed. Our algorithms obtained a good image segmentation result in little

computation time. Specially compared to the EM and CEM algorithms, our algorithms

have evident advantage in computation time while obtaining almost the same image

segmentation result.

The BIC and ICL criteria are two well-known criteria for clustering model choice. The

idea is to introduce a penalty term for the model complexity to the maximum value of

the likelihood (for BIC) and to the maximum value of the complete likelihood (for ICL).

Since the right model can obtain the best clustering result, the model selection is an

important step. Thus, in this thesis, to select the best model, we have extended the BIC
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and ICL criteria to binned data clustering and we associated them with binned-EM and

bin-EM-CEM algorithms. These four associations (either BIC or ICL criteria associated

to either binned-EM or bin-EM-CEM algorithms) are able to choose the right model.

The ICL criterion prefers to choose less number of clusters with a more complex model

comparing to the BIC criterion.

Besides this, we also adapted the AIC, NEC, and AWE criteria, to binned data cluster-

ing. The experimental results showed that these criteria can choose the right model and

the correct number of clusters. The AWE criterion outperforms the other criteria. The

BIC, ICL, and NEC criteria, have almost the same behaviors in model choice.

Prospective

In the continuation of this work, we can see the perspectives in three directions:

• Adapt other parsimonious mixture models basing on other criteria to binned data.

For example, the models based on factor analysis model were mentioned in the

Chapter 1. These models can be adapted to binned data.

• Develop new criterion which is better adapted to binned data clustering. Many

criteria were developed for standard data clustering and they perform very well.

In this thesis, we didn’t adapt all the possible criteria to binned data clustering. It

would be interesting to adapt other criteria to binned data clustering and to have

a deep comparison.

• Study the ways of binning data in order to obtain a better clustering result and

less computation time. It remains interesting works to do in improving the speed

of binned data clustering. The ways of how to bin data are essential in this subject.





Appendix A

Theorem proving

Theorem A.1. The orthogonal matrix Q minimizing tr
(
QAQ−1B

)
where A and B are

diagonal matrices, with general diagonal term αj and βj such that α1 > α2 > . . . > αd

and β1 6 β2 6 . . . 6 βd, is the identity matrix and the minimized value is tr
(
AB

)
=

∑d
j=1 αjβj .

Proof. Let α′
1, . . . , α

′
d be the general terms of the diagonal of the matrix QAQ−1. Since

Q is orthogonal the matrix QAQ−1 is symmetric and we have from Lemma A.2 below

α′
1 + . . .+ α′

c 6 α1 + . . . + αc (1 6 c < d)

α′
1 + . . .+ α′

d 6 α1 + . . . + αd.

Now, tr
(
QAQ−1B

)
=
∑d

j=1 α
′
jβj (B diagonal). Thus

tr
(
AB

)
=

d−1∑

j=1

α′
jβj +

( d∑

j=1

αj −
d−1∑

j=1

α′
j

)
βd

=

d−1∑

j=1

α′
jβj +

d−1∑

j=1

(αj − α′
j)βd + αdβd

>

d−1∑

j=1

α′
jβj +

d−1∑

j=1

(αj − α′
jβd−1) + αdβd

Since
∑d−1

j=1(αj − α′
j) > 0 and βd > βd−1. Repeating the same argument, we get

tr
(
AB

)
=

d−2∑

j=1

α′
jβj +

d−2∑

j=1

(αj − α′
j)βd−2

+αd−1βd−1 + αdβd

165



166 Appendix A. Theorem proving

and finally,

tr
(
AB

)
>

d∑

j=1

αjβj

Hence
∑d

j=1 αjβj is a lower bound of tr
(
QAQ−1B

)
. Since this bound is reached as

Q = I, the proof is complete.

Lemma A.2. Let A be a real, d-dimensional, symmetric, positive matrix and let q be

the associated quadratic form. Let λ1 > . . . > λd and x1, . . . ,xd be respectively the

eigenvalues and the eigenvectors of A. For any orthonormal basis y1, . . . ,yd of IRd, we

have
d∑

j=1

q(yj) =

d∑

j=1

q(xj) (=

d∑

j=1

λj) (A.1)

∀k = 1, . . . , d
k∑

j=1

q(yj) 6
k∑

j=1

q(xj) (=
k∑

j=1

λj) (A.2)

Proof. Equation (A.1) follows from the decomposition of the vectors yj(1 6 i 6 d) on

the basis of the eigenvectors of A

∀i = 1, . . . , d yi =
d∑

j=1

yjixj .

Then, we have

∀i = 1, . . . , d q(yi) =
d∑

j=1

(yji )
2q(xj)

d∑

i=1

q(yi) =

d∑

i=1

d∑

j=1

(yji )
2q(xj) =

d∑

j=1

(

d∑

i=1

(yji )
2)q(xj)

And, Equation (A.1) is derived from the fact that the yji ’s are the coordinates, in a an

orthonormal basis of vectors, of a vector with norm 1.

The Equation (A.2) can be proved by induction on k.

q(y1) = q(

d∑

j=1

yjixj) =

d∑

j=1

(yj1)
2q(xj) =

d∑

j=1

(yj1)
2λj

6

d∑

j=1

(yj1)
2λ1 = λ1

Assume that Equation (A.2) is true for k−1. Let Fk be the space generated by y1, . . . ,yk

and let Ek−1 be the space generated by x1, . . . ,xk−1. dim Fk = k and dim E⊥
k−1 =
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d + 1 − k. As a consequence G = Fk
⋂
E⊥

k−1 6= ∅. Let y be a normed vector in G. Let

z1, . . . ,zk−1, v be an orthonormal basis of F . Applying Equation (A.1), we have

k∑

j=1

q(yj) =

k−1∑

j=1

q(zj) + q(v) (A.3)

Since Equation (A.2) is true for k − 1, we have

k−1∑

j=1

q(zj) 6

k−1∑

j=1

q(xj)

Since v ∈ E⊥
k−1, it is possible to write

v =
d∑

j=k

vjxj

q(v) =
d∑

j=k

(vj)
2q(xj) 6 (

d∑

j=k

(vj)
2)λk = λk = q(xk)

Then, from Equation (A.3), we have

k∑

j=1

q(yj) 6

k∑

j=1

q(xj)

and the proof of the lemma is complete.

Theorem A.3. The symmetric positive matrix M of dimension d × d and |M| = 1

minimizing tr(M) is identity matrix I, and the minimized value is d.

Proof. If we note λ1, . . . , λd as the eigenvalues of the symmetric matrix M , the problem

reduces to minimizing
∑

i λi under the constrain of
∏

i λi = 1. Knowing that all of the

eigenvalues are positive, we apply the method of Lagrange multipliers. So the problem

equals the minimization of

g(λ1, . . . , λd) =
∑

i

λi − λ(
∏

i

λi − 1)

partially deducing by derivative

g
′

λj
(λ1, . . . , λp) = 1− λ

∏
i λi
λj

= 0 ∀j
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remember

λj = λ
∏

i

λi ∀j

and using the constrain
∏

j λj = 1, we have λ = 1∏
i λi

, so λi = 1 ∀i. Finally we get

the result.

Corollary A.4. The symmetric positive matrix M of dimension d × d and |M| = 1

minimizing tr(QM−1) where Q is a symmetric positive definite matrix is

M =
Q

|Q|1/d

and the minimized value is d|Q|1/d.

Proof. Make N = |Q|−(1/d)QM−1, so |N| = 1. The problem equals to the minimiza-

tion of tr(N). As the result of Theorem A.3, we have the solution N = I, that is

|Q|−(1/d)QM−1 = I. The result can be deduced easily.

Corollary A.5. The diagonal matrix M of dimension d × d and |M| = 1 minimizing

tr(QM−1) where Q is a symmetric positive definite matrix is

M =
diag(Q)

|diag(Q)|1/d

and the minimized value is d|diag(Q)|1/d.

Proof. IfM is diagonal matrix, M−1 is also a diagonal matrix, then we have tr(QM−1) =

tr(diag(Q)M−1). From the proof of Corollary A.4, we have M = diag(Q)

|diag(Q)|1/d .

Theorem A.6. To minimize tr(QM−1) + α ln |M| where Q is a symmetric positive

definite matrix and α is a positive real number, the result of the d× d symmetric matrix

M is M = (1/α)Q.

Proof. Considering M = |M|1/dN with N = 1, we have

tr(QM−1) + α ln |M| =
1

|M| tr(QN−1) + α ln |M|

From Corollary A.4, we have

N = |Q| − (1/d)Q
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Thus,

tr(QM−1) + α ln |M| =
d|Q|1/d
|M|1/d + α ln |M|

We set:

d|Q|1/d
|M|1/d + α ln |M| = 0 (A.4)

The result of derivative of function (A.4) with respect to |M| is |M| = ( 1
α(d)

)|Q|, so the

final result is M = ( 1α )Q

Corollary A.7. To minimize tr(QM−1) + α ln |M| where Q is a symmetric positive

definite matrix and α is a positive real number, the result of the d × d diagonal matrix

M is M = (1/αd)diag(Q).

Proof. IfM is diagonal matrix,M−1 is also a diagonal matrix, then we have tr(QM−1)+

α ln |M| = tr(diag(Q)M−1) + alpha ln |M|. From the proof of Corollary A.6, we have

M = 1
αd diag(Q).
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[60] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist.,

22(1):79–86, 1951.

[61] K. P. Burnham and D. R. Anderson. Model Selection and Multimodel Inference: A

Practical Information-Theoretic Approach. Springer-Verlag, second edition, 2002.

[62] J.H. Wolfe. Pattern clustering by multivariate mixture analysis. Multivariate Be-

havioral Research, 5:329–350, 1970.



176 BIBLIOGRAPHY

[63] C. Biernacki, G. Celeux, and G. Govaert. An improvement of the NEC criterion for

assessing the number of clusters in a mixture model. Pattern Recognition Letters,

20(3):267–272, 1999.


	Acknowledgements
	List of Figures
	List of Tables
	General introduction
	Motivation
	Objective and originality of the thesis
	Outline of the thesis

	1 State of the art
	1.1 Introduction
	1.2 What is clustering?
	1.3 Common approaches for clustering
	1.3.1 Hierarchical clustering
	1.3.2 K-means algorithm
	1.3.3 Model-based approach

	1.4 Model-based clustering approaches: mixture approach and classification approach
	1.5 EM and CEM algorithms
	1.5.1 EM algorithm
	1.5.2 EM algorithm's extensions
	1.5.3 CEM algorithm

	1.6 Parsimonious models
	1.6.1 Definition of Gaussian mixture model
	1.6.2 Models based on variance matrix parametrization 
	1.6.3 Models based on factor analysis model

	1.7 Criteria for model choice
	1.7.1 Criteria based on maximum likelihood
	1.7.2 AIC criterion
	1.7.3 BIC criterion
	1.7.4 ICL criterion
	1.7.5 ICOMP, NEC and AWE criteria

	1.8 Binned data clustering
	1.8.1 What is binned data?
	1.8.2 Binned-EM algorithm
	1.8.3 Bin-EM-CEM algorithm

	1.9 Conclusion

	2 Parsimonious Gaussian mixture models for binned data clustering and the corresponding binned-EM algorithms
	2.1 Introduction
	2.2 Mixture approach for standard data
	2.2.1 The EM algorithm
	2.2.2 The complexity of EM algorithm

	2.3 Parsimonious models
	2.4 Binned-EM algorithm
	2.4.1 The likelihood
	2.4.2 The E-step and the M-step
	2.4.3 The complexity of binned-EM algorithm

	2.5 Parsimonious models for binned-EM algorithm
	2.5.1 The general models
	2.5.2 The diagonal models
	2.5.3 The spherical models

	2.6 Experiments on simulated data
	2.6.1 Experiment on simulated data of different structures
	2.6.2 Experiment on simulated data with different bin sizes

	2.7 Experiments on real data
	2.7.1 French city clustering
	2.7.2 Image segmentation
	2.7.2.1 With different sizes of bin
	2.7.2.2 With different models
	2.7.2.3 Comparison with classical EM algorithm and k-means algorithm


	2.8 Conclusion

	3 Parsimonious Gaussian mixture models for binned data clustering and the corresponding bin-EM-CEM algorithms
	3.1 Introduction
	3.2 Classification approach for standard data
	3.2.1 The likelihood
	3.2.2 The CEM algorithm
	3.2.3 The complexity of CEM algorithm

	3.3 The bin-EM-CEM algorithm
	3.3.1 The likelihood
	3.3.2 The E-step, C-step, and M-step
	3.3.3 The complexity of bin-EM-CEM algorithm

	3.4 Bin-EM-CEM algorithms of parsimonious models
	3.4.1 The general models
	3.4.2 The diagonal models
	3.4.3 The spherical models

	3.5 Experiments on simulated data
	3.5.1 Experiment of bin-EM-CEM algorithms of fourteen models
	3.5.2 Experiment of bin-EM-CEM algorithm with different sizes of bin

	3.6 Experiments on real data
	3.6.1 French city clustering
	3.6.2 Image segmentation
	3.6.2.1 With different models
	3.6.2.2 With different bin sizes
	3.6.2.3 Comparison with classical CEM algorithm


	3.7 Conclusion

	4 Criteria for binned data model-based clustering
	4.1 Introduction
	4.2 BIC and ICL criteria for binned data clustering by binned-EM algorithm
	4.2.1 Bayesian information criterion (BIC)
	4.2.2 Integrated completed likelihood criterion (ICL)

	4.3 Experiments of BIC and ICL criteria with binned-EM algorithm
	4.3.1 Experiments on simulated data
	4.3.1.1 Choice of model
	4.3.1.2 Choice of number of clusters

	4.3.2 Experiments on real data
	4.3.2.1 French city clustering
	4.3.2.2 Image segmentation


	4.4 BIC and ICL criteria for binned data clustering by bin-EM-CEM algorithm
	4.4.1 Bayesian information criterion (BIC)
	4.4.2 Integrated completed likelihood criterion (ICL)

	4.5 Experiments of BIC and ICL criteria with bin-EM-CEM algorithm
	4.5.1 Experiments on simulated data
	4.5.1.1 Different overlappings
	4.5.1.2 Different amounts of data
	4.5.1.3 Different sizes of bin

	4.5.2 Experiments on real data
	4.5.2.1 French city clustering
	4.5.2.2 Image segmentation


	4.6 Comparison among BIC and ICL criteria of binned-EM and bin-EM-CEM algorithms
	4.7 AIC, AWE, and NEC criteria applied to binned data clustering
	4.7.1 AIC criterion and its derivation
	4.7.2 AWE criterion
	4.7.3 NEC criterion
	4.7.4 Numerical Experiments
	4.7.4.1 Choice of number of clusters
	4.7.4.2 Choice of model


	4.8 Conclusion

	General conclusion and prospective
	General conclusion
	Prospective

	A Theorem proving
	Bibliography

