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d’oublier mes moments de stress. Muchas gracias.
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Résumé Détaillé

La conception des systèmes embarqués est une conception à la fois matérielle et logicielle.

Traditionnellement, les composants logiciels d’un système sont écrits dans un langage de pro-

grammation comme C ou C++, alors que la partie matérielle est écrite dans un langage

de description tels que VHDL ou Verilog. Cette approche a plusieurs inconvénients : tout

d’abord, le concepteur était obligé d’apprendre et de comprendre plusieurs langages de pro-

grammation. De plus, au début du processus de la conception , il est souvent difficile de savoir

laquelle des parties est à implémenter dans le matériel ou le logiciel. En outre, si la partition

de la conception du matériel et du logiciel doit être modifiée plus tard, des coûts et des délais

de conception s’ajoutent. Cela motive l’idée d’utiliser des langages uniformes de conception

des systèmes afin de fournir la clarté, l’exhaustivité et l’exactitude lors du processus de la

conception. Récemment, C et C++ ont été proposés comme base pour créer des spécifications

exécutables. Toutefois, ces langages sont conçus pour l’écriture des programmes des ordina-

teurs, pas pour décrire les ordinateurs ou d’autres composants matériels. Par conséquent, ils

ne possèdent pas des fonctionnalités et caractéristiques nécessaires pour décrire les horloges,

les signaux, la réactivité et le traitement en parallèle. SystemC explore la première option, il

a été récemment mis en place à partir de la librairie des classes C++ pour la conception de

la spécification exécutable et de la simulation cycle accurate du hardware en C ++. C’est un

support pour les données orientées hardware comme les modules, les ports et les signaux. En

réalité, il y avait deux objectifs majeurs dans la conception SystemC :



p Fournir un seul langage qui permet la vérification des différents systèmes à différents

niveaux d’abstraction.

p Permettre aux concepteurs des systèmes de décrire leurs modèles au niveau RTL, sans

les traduire en un langage HDL.

Aujourd’hui, il existe des outils de haut niveau de synthèse des modules SystemC. Ceci a

poussé l’industrie à adopter à grande échelle ce langage de conception matérielle-logicielle.

En raison de ces caractéristiques, SystemC offre les avantages suivants :

p La spécification exécutable : un modèle écrit en SystemC peut être compilé et exécuté

à la fois.

p Accélération de la simulation : SystemC est basé sur le langage C++, dont la vitesse

de la simulation est élevée par rapport à d’autres langages comme VHDL ou Verilog.

p Un haut niveau d’abstraction : par rapport à des langages de description matérielle,

C++ a la capacité de modéliser des concepts très abstraits de façon élégante. Cette

caractéristique est donc intègrée dans SystemC.

p Implémentation indépendente de l’architecture cible : un modèle présenté dans un lan-

gage de description matérielle est généralement spécifique pour une architecture bien

définie. Cependant, un modèle décrit en SystemC peut être implémenté soit dans une

partie matérielle soit logicielle.

En outre, le simulateur SystemC introduit la notion importante du delta-cycle comme étant

l’unité fondamentale de la simulation. L’ordonnanceur (Scheduler) SystemC peut être vu

comme un moteur d’évènements : les communications à travers les ports et les canaux, les

horloges et les actions des modules sont déclenchés par différents évènements. Le scheduler

qui détermine l’ordre d’exécution des processus au sein de l’architecture et ce selon la liste des

évènements de sensibilité des processus et les notifications d’événements qui se produisent.

La sémantique de ce scheduler a été définie en utilisant les règles des ASM et des sémantiques

dénotationnelles. L’unité de base de la simulation est le delta-cycle et une procédure de simu-

lation est donc une séquence de delta-cycles. L’ordonnanceur gère plusieurs tableaux, parmi

lesquels nous sommes particulièrement intéressés à la table des processus exécutables (run-

nable processes : processus qui sont prêts à être exécutés au cours du delta-cycle). Voici une



brève description d’un delta-cycle : un delta-cycle commence lorsque la table des processus

exécutables est non vide. L’ordonnanceur exécute ces processus un par un, dans un ordre

prédéfini. Chaque processus soit il s’exécute jusqu’à sa fin soit il est suspendu à nouveau

(par une commande wait par exemple). Dans le cas où un évènement immédiat est notifié au

cours de l’exécution d’un processus, l’ordonnanceur ajoute les processus qui sont actuellement

sensibles à cet événement dans la table des processus exécutables. Les delta évènements et

les évènements temporisés qui sont générés pendant l’exécution d’un processus seront stockés

dans d’autres tables. La table des processus est vidée lorsque tous les processus sont exécutés,

et la phase d’exécution de ces processus est appelée une phase d’évaluation. L’ordonnanceur

détecte les delta évènements notifiés pendant la phase d’évaluation : s’il ya des processus qui

sont sensibles à ces événements, alors il les ajoute à la table des processus. Cette procédure

est appelée phase de delta-notification. Si la table des processus est non-vide, l’ordonnanceur

entre au prochain delta-cycle et recommence la phase d’évaluation de nouveau. Autrement, il

cherche les évènements temporisés qui sont notifiés pendant la phase d’évaluation et ajoute

les processus qui sont sensibles à ces événements dans la table des procéssus. C’est ce qu’on

appelle la phase de timed-notification. L’ordonnanceur incrémente ensuite le temps de la

simulation et entre au prochain delta-cycle. Le processus de la simulation est affecté par l’ini-

tialisation des processus, leur exécution et leur ordre, l’activation des événements et les erreurs

rencontrées lors de la simulation. La figure ci-dessous montre un diagramme de processus de

la simulation en SystemC. En effet, une procédure de simulation peut être considérée comme

une succession de delta cycles. Toutes les interactions au sein d’un delta cycle sont abstraites

de la perspective de la modélisation. Une telle abstraction est censée fournir une garantie que

l’ensemble de ces interactions devrait fonctionner correctement. Autrement dit, les analyses

et les vérifications de plus haut niveau peuvent se faire sans prendre en considération ce qui

se passe entre les delta cycles. Toutefois, cela est probablement le grand inconvénient de Sys-

temC, comme l’espace du processus final à l’intérieur d’un delta cycle peut être très grand. Un

problème typique est le lien de causalité entre les cycles d’attente des processus, qui provoque

l’arrêt inattendu du système. En outre, l’accès aux ressources partagées peut mettre en cause

des liens de compétitivité entre les processus et, par conséquent, tomber dans un compor-

tement non-déterministe au niveau de delta-cycles. Néanmoins, ceci n’est certainement pas

souhaitable dans la conception du matériel.



Figure 1 – Algorithme de la simulation de l’ordonnanceur SystemC.



Pour résoudre ce problème, nous proposons une méthode de modélisation et de vérification

des systèmes en utilisant le modèle des SystemC Waiting-State Automata. Ceci est basé sur

le fait que la plupart des propriétés importantes dépend fortement de la manière dont les

processus passent d’un état d’attente à un autre, qui est en effet contrôlé par l’odonnanceur.

Nous proposons d’abord une manière de construire l’automate dit minimal de chaque pro-

cessus, par l’analyse de ses états d’attente. Ensuite nous définissons des algorithmes pour la

composition de l’automate du système global et des algorithmes de la réduction de manière

à définir l’abstraction au niveau des delta-cycles. Ces algorithmes sont conformes au simula-

teur SystemC, qui définit la sémantique de l’exécution du langage. Les vérifications peuvent

se faire à la fois au niveau de l’automate de chaque processus et au niveau de l’automate

composé du système. Nous discutons aussi quelques extensions basées sur ce modèle, comme

l’ajout de compteurs et de temps au niveau des transitions, de sorte que d’autres propriétés

peuvent aussi être vérifiées.

Notre approche de vérification a deux objectifs :

p Assurer que l’introduction d’un nouveau composant ne compromet pas la correction du

système initial (sans revérifier le système en entier).

p Détecter les problèmes liés à la composition des composants du système dont l’exécution

peut s’avérer conflictuelle.

Plusieurs tentatives ont été faites pour modéliser des composants SystemC d’une manière

formelle (un aperçu sur les travaux connexes est présenté au chapitre 6). Mais chacun d’eux a

des restrictions et des limites : soit le modèle proposé décrit SystemC à un niveau d’abstraction

plus bas (RTL ou cycle accurate) (par exemple le travail de Drechsler et Grosse [De02]

and [De03]). Donc leur modèle ne permet pas de traiter le niveau transactionnel (TLM). Soit,

ils ne supportent pas la notion de delta cycle : l’unité fondamentale de SystemC. En effet

ces modèles ne peuvent pas faire face à des proprietés telles que la concurrence entre des

composants parallèles et le temps continu (par exemple le travail de Kroening et Sharigina

[KS05]).

Le modèle du SystemC waiting state automata (WSA), comme présenté initialement par

Zhang, Vèdrine et Monsuez dans [YZM07], supprime les contraintes précédemment men-

tionnées. Nous proposons d’utiliser ce modèle dans une approche bottom-up pour décrire les



composants SystemC au niveau transactionnel et au niveau des delta cycles. Le modèle du

SystemC WSA est basé sur l’analyse des instructions wait/notify en SystemC : mécanisme

de base qui joue un rôle important dans la simulation en SystemC. Nous avons adopté la

modélisation des systèmes complexes en utilisant les automates parce qu’ils permettent de

modéliser le parallélisme entre différents composants. Ceci est essentiel surtout pour la descrip-

tion du matériel. Ce choix sera différent si nous modélisons des systèmes distribués composés

de quelques composants hétérogènes communiquant en parallèle ou dans le cas de compo-

sants séquentiels. Bien que, les réseaux de petris par exemple, sont considérés comme étant

plus appropriés pour gérer le parallélisme. Ils ont encore un problème considérable qui est

l’explosion combinatoire du nombre d’ états du système qui est significativement réduit dans

notre modèle. Par ailleurs, d’autres inconvénients des réseaux de petris sont : d’une part,

ils ne permettent pas la représentation du système à différents niveaux d’abstraction, plus

précisément le niveau des delta-cycles. D’autre part, les réseaux de petris ne permettent pas

d’exprimer des propriétés telles que le temps et les compteurs, qui permettent de représenter

l’évolution dynamique du système comme on le fait dans le modèle des SystemC WSA.

Dans cette thèse, nous adoptons une approche bottom-up interne basée sur le SystemC

WSA en opposition à l’approche top-down (Chapitre 3) : l’approche commence à partir d’une

description bas niveau des composants SystemC. Puis elle rassemble tous les composants afin

de construire un modèle global pour l’ensemble du système. Mais avant de composer tous

les composants ensemble, il est impératif de s’assurer que chaque composant vérifie bien les

contraintes spécifiques et qu’il est en mesure d’introduire progressivement les concepts de

qualité du service (Qos).

Il y a plusieurs motivations derrière l’utilisation des automates des SystemC WSA

pour représenter les composants SystemC : premièrement, il est essentiel de donner une

représentation interne de chaque composant du système en utilisant un système de transi-

tion d’état. Il est en effet plus facile de vérifier les propriétés sur les composants individuels

plutôt que sur l’ensemble du système. Deuxièmement, donner une représentation finie d’un

système infini est l’un des récents axes de recherche pour la modélisation des systèmes com-

plexes. En outre, comme mentionné dans [YZM07, HM09, HM12], le modèle de SystemC WSA

est conforme à la sémantique de simulation en SystemC car il représente le comportement des

composants du système au niveau du delta cycle. En plus le modèle permet de représenter



le système à différents niveaux d’abstraction du niveau système jusqu’au niveau des delta-

cycles. Le modèle permet aussi de séparer le comportement interne du comportement global

de chaque composant qui est essentiel lors de la modélisation des systèmes parallèles. Ainsi,

dans le modèle des SystemC WSA, on considère que les états où les composants sont en

communication avec l’environnement. En conséquence, les états internes qui représentent les

comportements locaux de chaque composant sont exclus lors de la représentation du système.

Contrairement à d’autres modèles formels utilisés pour vérifier les composants SystemC tels

que dans [AHT06, KS05, MFM06, KMS06], le modèle des SystemC WSA est différent car

il considère que les interactions et les communications entre les processus et la façon dont ils

sont gérés par le simulateur SystemC. Il suppose que le comportement d’un processus entre

deux états d’attente est abstrait dans le modèle final.Le modèle représente deux informations

principales :

p L’ensemble des conditions d’entrée qui activent et suspendent l’exécution d’un processus

et l’ensemble des conditions de sortie qui sont générés.

p Les points de synchronisation qui représentent les instructions wait en SystemC. Ils sont

utilisés pour synchroniser entre les processus communicants au niveau des delta-cycles.

L’idée principale derrière le SystemC WSA est de construire un automate pour chaque proces-

sus. l’automate est construit à partir de l’ensemble des états d’attente. Il est donc considéré

comme une abstraction ou une représentation minimale du programme initial. C’est pour

celà, on appelle chaque automate un automate minimal, nous allons utiliser cette notation

tout au long de cette thèse.

Le modèle des SystemC waiting-state automata (WSA) est un système de transitions A

défini sur un ensemble de variables globales V. C’est un triplet A = (S;E; T ), avec S est

l’ensemble des états, E est l’ensemble des évènements et T est l’ensemble des transitions.

Chaque tranistion est un 6-uplet (s; ein; p; eout; f ; s′) :

q s et s′ sont deux états dans S, ils représentent respectivement l’état initial et l’état

final ;

q ein et eout sont deux évènements tels que : ein ⊆ E; eout ⊆ E ;

q p est un prédicats défini sur les variables dans V, i.e., FV (p) ⊆ V, avec FV(p) représente

l’ensemble des variables libres dans p ;



q f est la fonction définie sur V ;

On note s
ein,p−−−−→
eout,f

s′ pour chaque transition (s; ein; p; eout; f ; s′). L’ensemble des fonctions

F(A) de l’automate A(V ) est défini à partir des fonctions dans A(V) : F(A) = {f |∃t ∈

T s.t. proj5
6(t) = f}, avec proj5

6 est la projection cinquième de la transition dans l’automate.

On note aussi proj1
6 , proj2

6 , proj3
6 , proj4

6 , proj6
6 qui représentent respectivement l’état initial

s, l’évènement d’entrée ein, le prédicat p, l’évènement de sortie eout et l’ ’etat de sortie s′.

Ensuite, nous proposons d’étendre le modèle avec des paramètres tels que les informations

temporelles et les compteurs. Les automates paramétrés sont utilisés pour étudier divers

problèmes de synthèse. Ils sont également utilisés pour modéliser des programmes, dont le

comportement dépendra des valeurs des entrées de l’environnement [RAV93]. Les paramètres

sont également utilisés pour modéliser les ressources du modèle (tels que le temps, la mémoire)

qui sont consommées par les transitions. Nous utilisons tout d’abord la première extension

du modèle en utilisant les compteurs comme présenté dans [YZM07]. Les automates avec

compteurs sont essentiellement utilisés pour modéliser les systèmes distribués et concurrents

et pour vérifier les propriétés comme le problème d’accessibilité, vivacité et le déterminisme.

Les auteurs dans [YZM07] utilisent les compteurs pour vérifier d’autres propriétés : déduire

les relations entre les conditions d’entrée et les conditions de sortie au niveau de chaque

transition du modèle. Dans cette thèse, nous reprenons la même définition des automates

avec compteurs comme dans [YZM07]. Mais, nous développons d’avantages l’utilisation des

compteurs sur l’automate, et nous spécifions quelques exemples par rapport l’utilisation du

paramètre. De plus, nous étendons le modèle avec d’autres paramètres : les informations

temporelles, ce qui n’a pas été fait dans le travail précédent. On note respectivement (δ), (t)

et (d) le compteur, le temps de début de la transition associée et sa durée. Chaque paramètre

est défini sur une transition : (δ) représente le nombre de fois que la transition a été franchie,

(t) est le temps de début d’exécution de la transition et (d) est la durée de la transition, une

fois déclenchée.

L’idée de notre approche est de définir d’abord un automate minimal pour chaque pro-

cessus, puis de composer l’ensemble des automates afin de construire un automate pour le

système global qui peut être finalement utilisé pour faire du model-checking. Nous procédons

tout d’abord à la composition symbolique qui consiste à composer l’ensemble des états d’at-

tente de tous les composants qui sont exécutés en parallèle afin de constuire l’automate du



système global dans une approche bottom-up. En d’autres termes, les composants doivent

synchroniser au niveau des états globaux et procéder de façon indépendante au niveau des

états locaux. Néanmoins, la composition parallèle des composants SystemC peut provoquer

des cycles de causalité entre les procéssus s’exécutant en parallèle . La vérification lors de

la composition nécessite en premier lieu de détecter les états dits unsafe qui représentent

les processus qui sont en attente mutuelle, dans le but d’avoir une analyse plus approfondie

basée sur les automates. En outre, la composition symbolique des automates minimaux est

récursive au sein de chaque module SystemC.

La composition symbolique des automates est aussi utilisée pour détecter le déterminisme

au niveau du module : d’abord, on construit l’automate minimal pour chaque composant. En-

suite, tous les automates sont composés ensemble. Si l’automate composé ne contient pas des

transitions non-déterministes, on peut confirmer que le modèle est déterministe. La détection

des transitions non-déterministes peut être effectuée sans faire la composition. On peut sim-

plement vérifier si f ◦ f ′ = f ′ ◦ f , où f ∈ F(A); f ′ ∈ F(A′) (A, A’ sont deux automates

composés). Cependant, une telle détection n’est pas toujours possible surtout dans le cas où

certaines transitions non-deterministes sont jamais déclenchées. En fait, de telles transitions

peuvent être supprimées après la composition dans le cadre du raffinement de l’automate

composé.

L’algorithme de la compostion symbolique est défini comme suit :

q (s1, s
′
1)

ein,p−−−−→
eout,f

(s2, s
′
1) ∈ T ” pour chaque état s1

ein,p−−−−→
eout,f

s2 ∈ T et s′1
e′in,p

′

−−−−→
e′out,f

′
s′2 ∈ T ′, ou

bien e′in 6⊆ ein ou p; p′.

q (s1, s
′
1)

e′in,p
′

−−−−→
e′out,f

′
(s1, s

′
2) ∈ T ” pour chaque état s1

ein,p−−−−→
eout,f

s2 ∈ T et s′1
e′in,p

′

−−−−→
e′out,f

′
s′2 ∈ T ′, ou

bien ein 6⊆ e′in ou p′ ; p.

q (s1, s
′
1)

ein∪e′in,p∧p′−−−−−−−−−→
eout∪e′out,f◦f ′

(s2, s
′
2) ∈ T ” pour chaque état s1

ein,p−−−−→
eout,f

s2 ∈ T et s′1
e′in,p

′

−−−−→
e′out,f

′
s′2 ∈

T ′.

On a défini aussi les algorithmes de composition pour les automates étendus avec les comp-

teurs et le temps. Ces algorithmes sont basés sur l’algorithme défini précédement mais qui

étend aussi l’utilisation des paramètres de l’automate. En effet, on définit des morphismes

qui définissent les relations entres les paramètres de l’automate composé en fonction des au-

tomates minimaux des composants. On représente ci-dessous les algorithmes de composition



des automates étendus après ajout des différents morphismes :

1. Automates avec compteurs :

q Π(s1, ein, p, eout, f, s2, δ) := {δ∗}
⋃

Π(s1, ein, p, eout, f, s2, δ) et (s1, s
′
1)

ein,Mc(p),δ∗−−−−−−−−→
eout,f

(s2, s
′
1) ∈ T ′′ pour chaque transition s1

ein,p,δ−−−−→
eout,f

s2 ∈ T pour chaque état s′1 ∈ S′ tel

que pour chaque transition s′1
e′in,p

′,δ′

−−−−−−→
e′out,f

′,s′2

s′2 ∈ T ′, soit e′in * ein ou p; p′,

q Π(s′1, e
′
in, p

′, e′out, f
′, s′2, δ

′) := {δ∗}
⋃

Π(s′1, e′in, p
′, e′out, f

′, s′2, δ
′)

et(s1, s
′
1)

e′in,Mc(p′),δ∗−−−−−−−−→
(e′out,f

′)
(s1, s

′
2) ∈ T ′′ pour chaque transition s′1

e′in,p
′,δ′

−−−−−→
e′out,f

′
s′2 ∈ T ′ et

pour chaque état s1 ∈ S tel que pour chaque transition s1
ein,p,δ−−−−→
eout,f

s2 ∈ T , soit

ein * e′in ou p
′ ; p,

q Π(s1, ein, p, eout, f, s2, δ) := {δ∗}
⋃

Π(s1, ein, p, eout, f, s2, δ) et

Π(s′1, e
′
in, p

′, e′out, f
′, s′2, δ

′) := {δ∗}
⋃

Π(s′1, e
′
in, p

′, e′out, f
′, s′2, δ

′) et

(s1, s
′
1)

ein
⋃
e′in,Mc(p∧p′),δ∗−−−−−−−−−−−−−→

eout
⋃
e′out,f◦f ′

(s2, s
′
2) ∈ T ′′, pour chaque pair de transitions

s1
ein,p,δ−−−−→
eout,f

s2 ∈ T et s
′
1

e′in,p
′,δ′

−−−−−→
e′out,f

′
s′2 ∈ T ′.

q En ce qui concerne la transition (s1, ein, p, eout, f, s2, δ
s2
s1 ), le morphisme Mc

mappe le compteur δ à la somme des compteurs des transitions dans

Π(s1, ein, p, eout, f, s2, δ)

M(δ)→
∑

δ∗∈Π(s1,ein,p,eout,f,s2,δ
s2
s1

)

δ∗.

2. Automates temporisés :

q Π(s1, ein, p, t, eout, f, d, s2) := {t∗, d∗}
⋃

Π(s1, ein, p, t, eout, f, d, s2) et

(s1, s
′
1)

ein,Mt(p),Md(p),t∗−−−−−−−−−−−−→
eout,f,d∗

(s2, s
′
1) ∈ T ′′ pour chaque transition s1

ein,p,t−−−−−→
eout,f,d

s2 ∈ T et

pour chaque état s
′
1 ∈ S′ tel que pour chaque transition s

′
1

e
′
in,p
′
,t
′

−−−−−−−→
e
′
out,f

′,d′,s
′
2

s
′
2 ∈ T ′,

soit e
′
in * ein ou p; p

′
,

q Π(s′1, e
′
in, p

′, t′, e′out, f
′, d′, s′2) := {t∗, d∗}

⋃
Π(s′1, e

′
in, p

′, t′, e′out, f
′, d′, s′2) et

(s1, s
′
1)

e′in,Mt(p′),Md(p′),t∗

−−−−−−−−−−−−−→
e′out,f

′,d∗
(s1, s

′
2) ∈ T ′′ pour chaque transition s

′
1

e′in,p
′,t′

−−−−−−→
e′out,f

′,d′
s
′
2 ∈ T ′

et pour chaque état s1 ∈ S tel que pour chaque transition s1
ein,p,t−−−−−→
eout,f,d

s2 ∈ T , soit

ein * e′in ou p
′ ; p,



q Π(s1, ein, p, t, eout, f, d, s2) := {t∗, d∗}
⋃

Π(s1, ein, p, t, eout, f, d, s2) et

Π(s′1, e
′
in, p

′, t′, e′out, f
′, d′, s′2) := {t∗, d∗}

⋃
Π(s′1, e

′
in, p

′, t′, e′out, f
′, d′, s′2)

et(s1, s
′
1)

ein
⋃
e′in,Mt(p∧p′),Md(p∧p′),t∗

−−−−−−−−−−−−−−−−−−−→
eout

⋃
e′out,f◦f

′ ,d∗
(s2, s

′
2) ∈ T ′′, pour chaque transition

s1
ein,p,t−−−−−→
eout,f,d

s2 ∈ T et s′1
e′in,p

′,t′

−−−−−−→
e
′
out,f

′,d′
s′2 ∈ T ′.

q Pour chaque transition (s1, ein, p, t
s2
s1 , eout, f, d

s2
s1 , s2), le morphisme Mt mappe

les temps de début t au min des temps de début des transitions dans

Π(s1, ein, p, t, eout, f, d, s2)

M(t)→ mint∗∈Π(s1,ein,p,t,eout,f,d,s2)t
∗

q Pour chaque transition (s1, ein, p, t
s2
s1 , eout, f, d

s2
s1 , s2), le morphisme Md mappe les

durées d à la somme des durées définies dans Π(s1, ein, p, t, eout, f, d, s2)

M(d)→ d ≥
∑

d∗∈Π(s1,ein,p,t,eout,f,d,s2)

d∗.

3. Automates avec temps et compteurs :

q Π(s1, ein, p, t, δ, eout, f, d, s2) := {t∗, d∗, δ∗}
⋃

Π(s1, ein, p, t, δ, eout, f, d, s2) et

(s1, s
′
1)

ein,Mt(p),Mc(p),Md(p),t∗,δ∗−−−−−−−−−−−−−−−−−−→
eout,f,d∗

(s2, s
′
1) ∈ T ′′ pour chaque transition s1

ein,p,t,δ−−−−−→
eout,f,d

s2 ∈ T et pour chaque état s
′
1 ∈ S′ tel que pour chaque transition s

′
1

e
′
in,p
′,t′,δ′

−−−−−−−→
e
′
out,f

′,d′,s
′
2

s
′
2 ∈ T ′, soit e

′
in * ein ou p; p

′
,

q Π(s′1, e
′
in, p

′, t′, δ′, e′out, f
′, d′, s′2) := {t∗, d∗, δ∗}

⋃
Π(s′1, e

′
in, p

′, t′, δ′, e′out, f
′, d′, s′2)

et (s1, s
′
1)

e′in,Mt(p′),Mc(p′),Md(p′),t∗,δ∗

−−−−−−−−−−−−−−−−−−−→
e′out,f

′,d∗
(s1, s

′
2) ∈ T ′′ pour chaque transition

s
′
1

e′in,p
′,t′,δ′

−−−−−−→
e′out,f

′,d′
s
′
2 ∈ T ′ et pour chaque état s1 ∈ S tel que pour chaque transition

s1
ein,p,t,δ−−−−−→
eout,f,d

s2 ∈ T , soit ein * e′in ou p′ ; p,

q Π(s1, ein, p, t, δ, eout, f, d, s2) := {t∗, d∗, δ∗}
⋃

Π(s1, ein, p, t, δ, eout, f, d, s2) et

Π(s′1, e
′
in, p

′, t′, δ′, e′out, f
′, d′, s′2) := {t∗, d∗, δ∗}

⋃
Π(s′1, e

′
in, p

′, t′, δ′, e′out, f
′, d′, s′2) et

(s1, s
′
1)

ein
⋃
e′in,Mt(p∧p′),Mc(p∧p′),Md(p∧p′),t∗,δ∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
eout

⋃
e′out,f◦f

′
,d∗

(s2, s
′
2) ∈ T ′′, pour chaque pair de

transitions s1
ein,p,t,δ−−−−−→
eout,f,d

s2 ∈ T et s′1
e′in,p

′,t′,δ′

−−−−−−→
e
′
out,f

′,d′
s′2 ∈ T ′.



q Pour chaque transition (s1, ein, p, t
s2
s1 , δ

s2
s1 , eout, f, d

s2
s1 , s2), le morphism Mt mappe

le temps de début de la transition t au min du temps de début défini dans

Π(s1, ein, p, t, eout, f, d, s2)

M(t)→ mint∗∈Π(s1,ein,p,t,δ,eout,f,d,s2)t
∗

q Le morphisme Md mappe la durée d à la somme des durées définies dans

Π(s1, ein, p, t, δ, eout, f, d, s2)

M(d)→ d ≥
∑

d∗∈Π(s1,ein,p,t,δ,eout,f,d,s2)

d∗.

q Le morphisme Mc mappe les compteurs δ à la somme des durées des transitions

définies dans Π(s1, ein, p, eout, f, s2, δ)

M(δ)→
∑

δ∗∈Pi(s1,ein,p,t,δ,eout,f,d,s2,δ
s2
s1

)

δ∗.

Au cours de la composition symbolique, toutes les transitions possibles entre les états sym-

boliques sont générées. Ces transitions contiennent les transitions sûres, les transitions im-

possibles, les transitions redondantes et les transitions réductibles. Définissons tout d’abord

chaque catégorie de transitions.

q Les transitions sûres : Elles représentent l’ensemble des transitions possibles générés

lors de l’exécution symbolique. Ces transitions sont généralement déclenchées à la fois

dans les automates minimaux et l’automate composé.

q Les transitions impossibles : Elles représentent l’ensemble des transitions qui ne peuvent

jamais être déclenchées dans l’automate composé. Elles sont impossibles, soit parce que

leurs conditions d’entrée ne peuvent jamais être vraies, ou parce qu’elles correspondent

à des états unsafe comme on a expliqué précédemment.

q Les transitions redondantes : Elles représentent l’ensemble des transitions qui ont les

mêmes conditions d’entrée et les conditions de sortie. Dans ce cas, il est préférable de

ne conserver qu’une seule transition.



q Les transitions réductibles : Elles représentent une séquence de transitions consécutives

qui sont inter-indépendantes,c’est à dire, les conditions de sortie d’une transition

représentent les conditions d’entrée dans la transition consécutive. Dans ce cas, toutes

les transitions sont fusionnées ensemble et transformées en une seule transition.

La réduction symbolique est une étape ultérieure qui consiste à garder seulement la trace

des transitions sûres. C’est une étape importante pour construire l’automate final. Ainsi,

au cours de cette étape on réduit toutes les transitions impossibles, on remplace les transi-

tions redondantes et on gère l’ensemble des transitions réductibles. On considère l’influence

de l’environnement sur l’exécution du système, à savoir, éliminer l’ensemble des compor-

tements qui ne peuvent pas se produire dans l’automate composé. En outre, la réduction

consiste en la concaténation des transitions, à savoir, l’incidence d’une certaine transition

peut immédiatement déclencher une autre transition. On peut donc remplacer les deux tran-

sitions par une nouvelle.

L’algorithme de la réduction symbolique est défini comme suit : Supposons un automate

A(V ) = (S;E; T ), telle que T contient des transitions réductiles, soit T0 := T , Tremove := {}

et Tnew := {}. On définit ci dessous les différentes étapes de la réduction symbolique définies

à partir de l’automate composé.

1. pour chaque pair de transitions réductibles (t1, t2) et son contractum t3, avec t1, t2 ∈ T0,

soit Tremove := Tremove ∪ t1, t2 etTnew := Tnew ∪ t3;

2. on répète les étapes précédentes pour toutes les transitions dans T0 ;

3. soit T0 := (T0/Tremove) ∪ Tnew, Tremove := {} et Tnew := {};

4. s’il ya d’autres transitions réductibles dans T0, on reprend l’étape 1 et on refait le même

scénario ; sinon, soit T ′ := T0.

L’automate réduit est donc (S,E, T ′).

Notons qu’ à ce stade, les évènements de l’automate final peuvent être divisés en deux en-

sembles : l’ensemble des événements provenant de l’environnement Ee et l’ensemble des

évènements internes Ei. Les événements de l’environnement sont des événements générés

par le simulateur SystemC, qui sont généralement des évènements temporels tels que les



événements liés aux horloges. En utilisant la dernière classification des événements, l’auto-

mate composé peut être réduit à nouveau en supprimant ces transitions dont les évènements

sont liés à l’environnement, c’est à dire, les transitions où ein /∈ Ee.

Les automates des SystemC WSA sont des systèmes de transition qui sont extraits manuel-

lement à partir des descriptions SystemC [YZM07]. Donc il faut définir un ensemble d’étapes

de construction automatique du modèle ; ceci est la principale contribution de cette thèse.

On a aussi prouvé que le modèle est conforme au système initial, puis on l’a validé durant

l’étape de la construction automatique. Pour construire les automates abstraits, nous suivons

Figure 2 – Les étapes de construction automatique des SystemC WSA

les différentes étapes comme indiqué dans la Figure 2 : (1) Nous avons besoin d’écrire correc-

tement la sémantique formelle du langage SystemC. Nous avons ainsi utilisé une sémantique

à petit pas appelée sémantique opérationnelle de Plotkin [Plo04]. Le but de développer une

telle sémantique est (i) de fournir une description complète et non ambigue du langage, (ii)

d’exécuter pas à pas le programme initial et (iii) de détecter l’effet de cette analyse sur le

comportement gloal du système. On distingue aussi entre le comportement interne et le com-

portement global de chaque module SystemC. Toutes ces informations sont présentées dans la

syntaxe de la sémantique opérationnelle du programme. Nos sémantiques capturent non seule-

ment la structure des composants SystemC, mais aussi le comportement de la composition

parallèle des composants communicants. Nous avons donc modélisé aussi le comportement

de l’ordonnanceur. Nous supposons que chaque module se comporte soit localement en uti-

lisant ses variables locales ou communique avec l’environnement à travers ce qu’on appelle



les variables d’environnement. Les variables locales sont des signaux de sortie, des variables

internes, des canaux de sortie, les événements de sortie, et le compteur de programme pour

les processus. Les variables d’environment sont des signaux d’entrée, les événements d’entrée,

les canaux d’entrée et les variables globales. En ce qui concerne la sémantique de la simu-

lation en SystemC[WRM01], il existe au plus un processus qui réagit avec l’environnement.

Nous pouvons visualiser localement les instants au cours desquels les réactions se produisent,

en observant l’état (les variables C de et les compteurs ordinaux pour chaque processus) du

procéssus, noté σ et son environnement (événements, les canaux, les signaux, les processus,

etc), noté E. Pour décrire comment une instruction modifie les configurations de l’environne-

ment, nous écrivons nos règles comme suit :

〈stmt, σ〉 E−→
Eo
〈stmt′, σ

où :

• stmt est une instrcution SystemC qui correspond à l’emplacement du compteur de

programme, avant la transition, et stmt’ est l’emplacement du compteur du programme

après la transition,

• σ et σ′ sont respectivement l’état initial et l’état final au cours de la réaction. Ils

représentent une fonction V ∪CH 7→ values, où V est l’ensemble des variables locales et

partagées et CH est l’ensemble des canaux.

• E est l’environnement (ensemble des événements et des variables qui activent le proces-

sus) dans lequel la transition s’est exécutée. Eo est l’environnement émis en sortie pen-

dant la transition. En général, un environnement est un 5-uplet E = (Ei, Eδ, ET ,V,RQ)

où :

q Ei est l’ensemble des événements immédiats,

q Eδ est l’ensemble des prochains delta événements,

q ET est l’ensemble des Timed événements,

q V est l’ensemble des delta mises à jour des variables.



q RQ est une séquence constituée des demandes en attente de mise à jour les canaux. Une

demande est une paire (ch, exp(σ)) où ch ∈ CH et exp(σ) représente la valeur attribuée

à ch.

Pour indiquer que l’environnement de sortie Eo ne change pas, on utilise la notation suivante

−. Soit, il y a pas d’événements émis au cours de la transition, soit les variables restent

inchangés ou bien les canaux ne sont pas modifiés. Notre sémantique est similaire à celle de

Shyamasundar[RSK07] où une sémantique complète du langage SystemC est proposée. Dans

notre approche, nous insistons particulièrement sur trois points principaux :

• capturer le comportement réactif lors de la simulation en SystemC.

• spécifier un réseau de composants synchrones et asynchrones qui communiquent soit à

un très haut niveau ou bien via les événements à un niveau plus bas.

• spécifier deux niveaux de temps : le cycle de delta et le temps de simulation.

En outre, au cours de notre formalisation et surtout pendant la composition parallèle, nous

distinguons entre les trois phases du processus de simulation (en réponse à l’algorithme de

simulation en SystemC (Figure 1) : C’est une principale contribution de notre sémantique.

Nous intègrons la simulation du scheduler dans une composition parallèle de processus concur-

rents. Cette composition est indépendante de l’ordonnanceur lui-même. L’ordonnanceur est

alors dispensé du processus de modélisation. Il est déjà présenté principalement dans la com-

position parallèle.

Nos sémantiques ont deux avantages principaux : d’abord, elles commencent à partir

d’une description de bas niveau du composant SystemC (au niveau du delta cycle), qui met

en évidence l’évolutivité de l’approche globale. Deuxièmement, nous ne devons pas modéliser

séparément l’ordonnancer. Ainsi, l’automate composé sera généré indépendant de la politique

d’ordonnancement ce qui nous permet de gagner en termes de coût de modélisation et de

vérification. Nous allons présenter la sémantique de certaines constructions séquentielles (y

compris les affectations, les instructions liées des canaux, les instructions liées aux événements,

les instructions conditionnelles, les instructions wait). Nous présentons aussi les sémantiques

de la composition parallèle où l’on distingue entre les trois étapes de la sémantique Sys-

temC qui est la principale contribution de notre travail par rapport aux travaux existants en

formalisation de la sémantique du SystemC utilisant les notations SOS.



assignment < var v, σ >
−−→
−
< ε, σ[v] >

if
<b,σ>→<true,σ> <p,σ>→<ε,σ′>
<if b then p else q,σ>

−−→
−
<ε,σ′>

<b,σ>→<false,σ> <q,σ>→<ε,σ′>
<if b then p else q,σ>

−−→
−
<ε,σ′>

while
<b,σ>→<true,σ> <p; while (b) do p,σ>→<ε,σ′>

<while (b) do p,σ>
−−→
−
<ε,σ′>

<b,σ>→<false,σ>
<while (b) do p,σ>

−−→
−
<ε,σ>

Les canaux
ch∈Channels∧σ(ch)6=exp(σ)

〈ch!!exp,σ〉
EI,Eδ,ET ,V,RQ−−−−−−−−−−−−−−−−−−→

EI,Eδ,ET ,V,RQ\(ch,exp(σ))
〈ε,σ[v/exp]〉

ch∈Channels,v∈V
〈ch??exp,σ〉

E−→
−
〈ε,σ[v/ch]〉

notify
〈e.notify(), σ〉 E−−−−−→

e,e,∅,∅,∅
〈ε, σ〉

〈e.notify δ(), σ〉 E−−−−−→
∅,e,e,∅,∅

〈ε, σ〉

〈e.notify t(), σ〉 E−−−−−→
∅,∅,e,∅,∅

〈ε, σ〉

wait
e/∈E

〈wait(e),σ〉
E−→
−
〈wait(e),σ〉

e∈E
〈wait(e),σ〉

E−→
−
〈ε,σ〉

Table 1 – Sémantiques opérationnelles de quelques instructions SystemC



(2) Nous procédons à des techniques d’exécution symbolique (SE) [Kin76] pour générer

le graphe de flot de contrôle du programme. Nous l’appelons exécution symbolique

conjointe car nous combinons à la fois l’exécution symbolique et la sémantique

opérationnelle. Les principaux objectifs de l’application de l’exécution symbolique sont :

générer premièrement les différentes traces d’exécution du système et deuxièmement expri-

mer le programme en utilisant des formules logiques à la place des expressions réelles. Cette

étape est une étape primordiale pour appliquer les techniques d’abstraction des prédicats

qui représentent l’étape suivante. L’exécution symbolique est une extension de l’exécution

réelle ayant pour paramètres d’entrée l’ensemble des opérateurs de base de langage exprimés

sous forme de prédicats et comme sortie un ensemble de formules symboliques définis sur ces

prédicats.

Prenons comme exemple un programme écrit dans un langage de programmation quelconque,

on suppose que les variables du programme sont de type entiers signés et que le programme

contient des instructions simples type IF ( avec des clauses THEN et ELSE), des instructions

GO-TO et des entrées ( paramètres de procédure, variables globales, operations read). On

prend comme expressions arithmétiques les opérateurs basiques pour les entiers comme l’addi-

tion (+), la soustraction (−) et la multiplication (x). On suppose qu’une expression booléenne

utilisée dans l’instruction IF est un simple test supposant que l’expression arithmétique est

non-négative (i.e.arith.expr ≥ 0). L’exécution symbolique de ce programme consiste à tran-

former cette description sous forme de symbôles mathématiques sans toucher ou changer la

sémantique du programme. On suppose qu’à chaque fois une nouvelle valeur est demandée, elle

sera fournie à partir de la liste des symbôles suivants : (a1, a2, . . . , an). Puis selon la nature de

l’instruction correspondante à chaque ligne du code, on associe une fontion algébrique définie

sur ces variables. Le paramètre état d’exécution d’un programme correspond aux valeurs des

variables et le PC (path condition). Il pointe sur l’instruction en cours d’exécution.

(3) Nous procédons à des techniques d’abstraction de prédicats (PA)[FQ02] pour

déterminer tout d’abord les relations entre les formules logiques générées pendant l’exécution

symbolique des automates parallèles. Ensuite, ces techniques permettent de fusionner les che-

mins entre chaque deux états d’attente dans le graphe de flot de contrôle. Le but final est de

construire l’automate du SystemC WSA à partir du graphe de flot de contrôle qui est annoté

avec des formules logiques définies à partir des variables globales et des informations sur les



événements de l’environnement.

Enfin, nous proposons d’utiliser le modèle des SystemC waiting state automata dans trois

applications diffèrentes. Tout d’abord, nous présentons une approche globale pour modéliser et

simuler symboliquement les systèmes embarqués logiciels et matériels en utilisant les SystemC

WSA (comme présenté dans la figure ci-dessous). Nous montrons que notre approche garantit

Figure 3 – La modélisation et la simulation symbolique des composants SystemC à l’aide des
SystemC WSA

une simulation rapide des systèmes embarqués. Ensuite, nous présentons notre méthodologie

pour calculer et estimer le pire temps d’exécution (WCET) en utilisant le modèle des Timed

SystemC WSA et comparer la méthodologie à des méthodologies existantes. Nous utilisons

le modèle des Timed SystemC WSA pour modéliser le matériel, puis nous exécutons symbo-

liquement le programme sur le modèle abstrait. Nous procédons à une technique de fusion

intelligente présenté dans des travaux éxistants dans notre équipe pour donner une estima-



tion précise du WCET. Cette application est un travail conjoint qui réunit deux domaines

de recherche à l’ENSTA ParisTech. Nous avons ensuite proposé d’utiliser des techniques de

vérification notamment les techniques du model checking pour vérifier d’autres propriétés sur

le modèle des SystemC waiting state automata. Nous énumérons aussi les principaux ano-

malies qui se produisent en raison de la concurrence et de l’accès aux ressources partagées

entre les composants s’exécutant en parallèle. Nous proposons une solution pour éviter ces

anomalies en utilisant les automates des SystemC WSA.



(La phase d’évaluation)

(1)

∀i∈{1..n},∃e∈EI ,waiting(Pi,e) ∧∀j∈{n+1..m},∀e∈EI ,¬waiting(Pj ,e)

〈P1‖···‖Pn‖···‖Pm,σ〉
E−−−−−−−−−−−→

(∅,Eδ,ET ,V δ,RQ)
〈P ′1‖...P ′n‖···‖Pm,σ′〉

(2)

∀i ∈ {1 . . . n}, waiting(Pi) ∀j ∈ {n+ 1 . . .m}, ready(Pj)

select p ∈ {n+ 1 . . .m}, 〈Pp, σ〉
E−−−−−−−−−−−−−→

(EIp ,E
δ
p,E

T
p ,V

δ
p ,RQp)

〈
P ′p, σ

′〉
add(〈Eδp,Eδ〉,〈ETp ,ET 〉,〈V δp ,V δ〉)

〈P1‖···‖Pn‖···‖Pp‖···‖Pm,σ〉
(EI,Eδ,ET ,V δ,RQ)−−−−−−−−−−−−−−−−−−−−−−−−−→

(EIp,E
δ
p∪Eδ,ETp ∪ET ,V δp ∪V δ,RQp∪RQ)

〈P ′1‖···‖P ′n‖···‖P ′p‖···‖Pm,σ′〉

(La phase de mise à jour)

∀(ch,v)∈RQ

〈P1‖···‖Pn,σ〉
(EI,Eδ,ET ,V δ,RQ)−−−−−−−−−−−−→
(EI,Eδ,ET ,V δ,∅)

〈P1‖···‖Pn,σ[v/ch]〉

(La phase des delta-cycles)

∀i∈{1..n},waiting(Pi)

〈P1‖···‖Pn,σ〉
(∅,Eδ,ET ,V δ,RQ)−−−−−−−−−−−→
(Eδ,∅,ET ,∅,RQ)

〈P1‖···‖Pn,σ[V δ/V ]〉

(La phase d’avancement du temps)

∀i∈{1..n},waiting(Pi)

〈P1‖···‖Pn,σ〉
(∅,∅,ET ,RQ)−−−−−−−−−→

(ET ,∅,∅,∅,RQ)
〈P1‖···‖Pn,σ[V δ/V ]〉

Table 2 – Semantiques Opérationnelles relatives à la Composition Parallèle
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CHAPTER 1

Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Nowadays, embedded systems are more and more integrated in critical applications such

as : automobile, avionics, satellites, telecommunications, medical equipments, etc. They are

usually composed of deeply integrated but heterogeneous hardware and software components.

Those components are developed under severe resource limitations (i.e, small processors,

tiny memory and low power) and under high quality requirements (i.e, speed, real-time

constraints, accuracy, consumption and an operational long life-cycle). As a consequence, the

job of design engineers has become more tricky and challenging, due to the intensive increasing

gap between the cost, the embedded functions, and the performance of those systems.

To meet the high quality standards in nowadays embedded systems and to satisfy the

rising industrial demands, the automatization of the developing process of those systems is

gaining more and more importance. A major challenge is to develop an automated approach
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that can be used for the integrated verification and validation of complex and heterogeneous

HW/SW systems.

1.1 Context

Traditionally, embedded systems were developed by separating the hardware part from

the software part. It takes several iterations in the design process to reach an implementation

that is functionally correct and that satisfies the performance requirements. Those iterations

consume large amounts of costly development time, especially because they occur in a phase

where the design is already implemented with a lot of details involved. Yet, this technique

is no long appropriate for nowadays embedded system design due to market pressure that

require quick, valid, efficient and safe systems.

Thus, due to the design trends mentioned above, new modeling languages that support

both hardware and software co-design have emerged. Among others, we mention the SystemC

language[sys], which is a system level design language that supports design space exploration

and performance evaluation efficiently throughout the whole design process even for large

and complex HW/SW systems. SystemC is a C++ based modeling framework that supports

system-level modeling, architectural exploration, performance modeling, software develop-

ment, functional verification, and high-level synthesis.

SystemC allows the description of both hardware and software parts. Besides, it allows

to execute designs at different levels of abstraction. As a consequence, co-simulation, which

can be defined as the simultaneous execution of hardware and software, is used to verify and

validate the embedded system throughout the whole design process. However, co-simulation

is necessary because it ensure that models are stepwise refined throughout the conceptual

design, but still be not sufficient : First, because it cannot cover all possible execution sce-

narios in particular for real-time, non deterministic and non-terminating systems. Second,

it is very difficult to ensure the consistency between different abstraction levels, or to reuse

verification results in later development stages. Finally, and more precisely, the evaluation of

the simulation results should be done manually by the designer, which needs to be compu-

ted automatically. Due to the previous limitations, we need to exploit new methodologies for

program analysis and verification, to help designers detect and correct errors in early stages

of the conceptual design before proceeding to implementation.

32
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Several attempts have been made to model SystemC designs in a formal way (an overview

about related works is presented in Chapter 6). But each of them has some restrictions

and limitations : either the model they propose describe SystemC designs at a low level

(RTL or cycle accurate) (e.g work of Drechsler and Grosse [De02] and [De03]) and does not

treat the transactional level (TLM) ; or, they don’t support the notion of delta-cycle : the

fundamental unit of SystemC scheduler and so they can’t deal with properties like concurrency

and continuous time (e.g work of Kroening and Sharigina [KS05]).

The SystemC waiting-state automaton (WSA), as first presented by Zhang, Védrine and

Monsuez in [YZM07], removes these constraints. We propose to use this model in a composi-

tional bottom-up approach for describing SystemC designs at the transaction level within a

delta-cycle. In this thesis, we also propose to develop and extend the model as presented in

different works [HM09, HM12]. The proposed model succinctly captures the reactive features

of SystemC components communicating through either high level transactions or low-level

signal and event communications. It also elucidates the anomalies that are introduced by the

simulation kernel of SystemC due to concurrency between components and stresses on the

observable behavior of processes that influence the simulation procedure due to the SystemC

wait/notify mechanism. The proposed approach is basically a bottom-up approach which

requires refinement during composition. We define first several steps to build and apply the

approach and we illustrate that on several examples. We then propose different applications of

the approach towards the verification of functional and non-functional properties of SystemC

designs.

1.2 Summary of Contributions

During the thesis, we present the past and the latest works on the formal verification and

modeling of embedded systems especially those written in system languages like SystemC.

We also present the limitations of those works compared to our approach. Those works address

the same class of problems that we do in this thesis. But we propose here a new, complete and

efficient solution to study embedded systems and critical problems related to the execution

time and concurrent access to shared resources. In particular, we propose a new abstract model

that is used to represent any architecture independently from its internal implementation and

that is extended with further parameters in order to verify further properties.

33
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1.2.1 Research Questions

This thesis has a single main research challenge. To achieve this main challenge,we break

it down in three sub-challenges that we will highlight throughout this thesis. The context for

those challenges is to propose a stepwise approach to automatically build an abstract repre-

sentation (model) of hardware/software systems that is used to verify not only the functional

properties but also non-functional properties of those systems. We also propose to use this

abstract representation in a global approach in order to model and analyze the behavior of

embedded complex systems written in a system level modeling language.

+ Main-challenge : How to accurately describe both the functional and the temporal

behavior of complex embedded systems ?

- Sub-challenge 1 : What kind of abstract model should be used to represent the be-

havior of the embedded system ? and at which level of abstraction regarding to the

properties we want to verify ? These two constraints are closely coupled and form a

basic trade-off.

- Sub-challenge 2 : What methods are suitable to extract and build the abstract model

from a complex embedded system containing both the hardware and the software ?

- Sub-challenge 3 : What methods are suitable for validating models describing the

temporal and functional behavior of complex embedded systems ?

1.2.2 Contributions

The main contributions of this thesis compared to existing works are as follows :

o Modeling the behavior of the embedded system using automata. The thesis

represents a bottom-up approach based on the SystemC waiting-state automaton : an

abstract automaton used to model both the hardware and the software. The particularity

of this model is that it substantially reduces the state space of the system under study. It

is also consistent with the simulation semantics SystemC language. Besides, it is capable

to handle both functional and non-functional properties of the system under study.

o Validating the model. In order for a model to be useful, it must be assured that the

model is valid, i.e. we prove that it is an accurate description of the intended system at

34
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the appropriate level of abstraction. Validation is ensured stepwise during the process of

building the abstract automaton of each component. In fact, we define first a complete

and an accurate definition of the semantics of a subset of the system-level language under

study, we then proceed to techniques like symbolic execution and predicate abstraction

to automatically build the abstract model.

o Determining non-functional properties. In a Real-Time Systems, designers must

ensure that the results of the computations are logically correct with respect to the

physical instant at which those results are produced : this is what we call hard real

time constraints. Thus, a missed deadline in hard real-time systems is catastrophic and

in soft real-time systems it can lead to a significant loss. Hence, an exact estimation

of the system timing behavior is the most important concern in these systems. Timing

analysis is in general performed from two levels : Worst-case execution time (WCET)

analysis and the Higher-level/system-level analysis. In both levels we must ensure that

our formal analysis gives an exact approximation of the system execution time without

loss of precision.

1.3 Outline

This thesis is structured as follows : In Chapter 2, we study the concept of System-On-

Chip design process including different steps of the conceptual design, SoC bottlenecks and

we briefly compare the traditional and the new methodology for the hardware SoC design. In

Chapter 3, we discuss two alternative design approaches adapted for systems modeling and

validation. We present the top-down approach and the bottom-up approach, we present their

advantages and drawbacks and we compare them to our approach. Chapter 4 is devoted to

the abstraction levels in the conceptual design, we present different levels of abstraction and

their degree of granularity compared to the initial system. We stress on the need to raise the

level of abstraction in order to give an abstract representation of the system without giving

more details about its implementation.

In Part I, we first introduce the transaction level modeling (TLM). Next, in Chapter 5,

we introduce the SystemC language : its syntax, its structure and basically the simulation

semantics of its scheduler. We specifically stress on its ability to model high-scaled complex
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systems and to handle different levels of abstraction including the TLM.

In Part II, we present the SystemC waiting state automata (WSA) as a new abstract

representation for SystemC modeling, that is conform to the simulation semantics of SystemC

at both the TLM and the delta-cycle level. This model was first proposed in [YZM07]. The

main drawback of this paper, as mentioned in [PHG08], is that the model has to be build

manually. In this thesis, we first propose to extend the model with further parameters and

to express more in details the usefulness and the idea behind the model. Second, we propose

a stepwise approach on how to extract and build automatically the model from SystemC

designs. To do so, we give a detailed description of the terminology of the abstract model,

we compare it to existing approaches for SystemC modeling and we enumerate our main

contributions compared to them. Later, we present the possible extensions of the SystemC

WSA, among others we mention the time and counters parameters and we present how to use

each parameter in our analysis process. We also present algorithms to symbolically compose

and reduce automata in order to build the automaton for the global system. In the end of this

part, we propose how to generate the abstract model by separating threads from methods,

we define the algorithm for each process and we illustrate that on some examples.

In Part III, we proceed to the automatic generation of the abstract automata from Sys-

temC designs. We start by defining a clear and detailed description of the semantics of a

subset of SystemC using the structural operational semantics (SOS) of Plotkin. The parti-

cularity of our semantics is that we distinguish between the three phases of the simulation

semantics of SystemC scheduler : the evaluation phase, the delta-cycle advancing phase

and the simulation time advancing phase. Our semantics capture not only the structure

of SystemC components but also the compositional and reactive behavior of the commu-

nicating components. Next, we proceed to the symbolic execution to generate the control flow

graph (CFG) of the program, we define a particular symbolic execution that we call conjoint

symbolic execution that generates not only the CFG but also small step semantics of the

program using the SOS. Finally, we resort to predicate abstraction to reduce and abstract

the control flow graph and consider only specific states, i.e, only states where a process is

visible to (or communicating with) its environment. This final step is essential to build the

final SystemC waiting-state automaton.

Part IV is dedicated to real applications of the SystemC waiting-state automata. First, we

36



1.3. OUTLINE 37

present a global framework to model and symbolically simulate software/hardware embedded

systems using the SystemC waiting-state automata. We prove that our framework garantee

a fast simulation of the embedded system. Next, we present our methodology to compute

and estimate the worst-case execution time (WCET) using the Timed SystemC WSA model

and compare it to existing methodologies. We use the Timed SystemC WSA to model the

hardware and then we symbolically execute the program on it, we proceed to a smart fusion

technique presented in previous work in our team to give an accurate estimation of the

WCET. This application is a joint work that brings together two areas of research at ENSTA

ParisTech. We then, propose a framework on how to use verification techniques notably model

checking techniques to verify further properties on the SystemC waiting-state automata. We

also enumerate the main anomalous behaviors that occur due to the concurrency and the

access to shared resources between SystemC components. We propose a solution how to avoid

those anomalies using The SystemC waiting-state automata.

In Part V, we resume the main contributions of this thesis and we give an outlook on

further research topics.
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2.1 Introduction

Systems-on-chips (SoCs) are simply electronic systems that are implemented on a single

chip. This technology, despite its little size, reduces the time to market constraints and the

developing process of real time applications but also increases the performance of the whole

system. With the appearance of the CMOS (complementary metal oxide semiconductor)

technologies, hardware and software applications can be embedded on the same chip. Despite

this and due to Moore’s law [Lei05], that have significantly influenced the evolution of system

design, designers of System-on-Chips are facing an increasing productivity gap between the

technology used and the tools supported to verify the SOC.
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A lot of efforts have been made to raise the level of abstraction in the design process. The

aim is to represent the system with less and enough details so that to improve the accuracy

and the efficiency of the simulation speed. We often talk about the SOC flow design ; it

is a methodology to represent a hardware/software system at different levels of abstraction

starting from the specification of the application toward the implementation of the software

on the platform. The flow design consistency is dependent on the complexity of the SOC itself.

This complexity may lead to several bottlenecks that designers are trying to avoid [ed05b].

2.2 SoC Bottlenecks

The system design (Figure 2.1) starts from a set of requirements and constraints used

to identify and describe different parts of the system. Requirements are then expressed as

specifications. As shown in Figure 2.1, the design is split into two parts : (a) express the

specification of the computational part into a set of processors or components and (b) express

the specifications of the communication part into the set of buses. During different steps of

the design flow, we first allocate components, then we partition specifications between the

components and finally we schedule the execution of different components. Later, components

are implemented by hardware/software synthesis.

Figure 2.1 – System design tasks [ed05b]

Challenges in the design of embedded systems must satisfy the following constraints :(i)

increasing application complexity ; (ii) increasing target system complexity and (iii) finding
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the right balance between different constraints resulting from this complexity : cost, power

consumption, timing constraints, dependability.

Figure 2.2 shows the potential gap that exists between improvements made in design pro-

ductivity and devices integration. The design productivity gap is defined by the International

Technology Road map for Semiconductors (ITRS) [ITR] as the difference between what is

possible to manufacture and what is possible to design. Thus, while transistors are growing

in a logarithmic rent due to Moore’s Law [Lei05], productivity is less growing due to the lack

of adequate tools that support this growth.

Figure 2.2 – Design Productivity Gap (source : SEMATECH)

We resume now the three major bottlenecks in SoC design as mentioned in [ed05b].

2.2.1 Explosive Complexity

Complexity is one of the most remarkable bottleneck of nowadays embedded systems since

we are integrating more functions that perform more tasks in one and small system. Hence,

a typical SoC integrates many blocks including peripheral IPs, multiple processors, memory

cuts, buses, complex interconnects, etc. We don’t have only to manage the integration of these

components in the same chip but also manage the interactions and communications between

them. For all of these reasons, designers are trying to reduce system complexity at different

levels of system design. But, this is unfortunately a very tough and time-consuming job to

cope with.Hence, the traditional design flow is no longer used for nowadays embedded systems

since it doesn’t deal with the complexity issue.
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2.2.2 Time-to-Market Pressure

Time-to-Market is the amount of time required to find a solution for the initial requi-

rements and implement it on a final product that is functionally correct. Nevertheless, the

increasing complexity of current SoC products usually necessitates time-consuming develop-

ment phases. Besides, the classic design flow is unfortunately affecting the time to market

since we have to wait too long to have an available prototype.

2.2.3 Cost

The ever-increasing cost of SoC development and production is also one of most intricate

problem in the SoC industry. This is why, errors in the design functionality is no more tolera-

ted. Costs cover the design process, the technology used for that and the set of tools used for

the verification and the manufacturing of the SoC itself. The traditional design flow is also

not able to solve the problem of the cost rise.

2.3 Traditional vs New SoC Design Flow

In this section, we study the evolution of the methodologies used in the conceptual design

of complex systems : the traditional design process and the new design process [ed05b].

In a traditional design process, the system specification is directly followed by hardware

and software development. This is why, it is not easy to reach an implementation that is

functionally correct and that respects the initial specifications. We may need to follow several

steps and iterations to produce a final SoC that is conform to the specifications. As a result,

the traditional design flow is a time consuming and an inefficient process since it is not usually

easy to add any transformations to the design after prototype. The traditional design flow

is illustrated in Figure 2.3. As shown in this figure, the system specification is split into two

distinct parts : (1) system hardware development and (2) system software development. Note

that there is no communication between these two parts. Each part is developed independently

until we generate a prototype of the system under design. Thus, no transformations can be

added once the hardware and the software are designed. The traditional hardware design

process relies classically on three different levels of abstraction. A general classification of the

design process is available through the Y-Chart [GK83, AG02](Figure 2.4). It defines system
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Figure 2.3 – Traditional SoC Design Flow [ed05b]

level, register-transfer (RT) level, gate level, and transistor level. Each level represents a

specific model. We distinguish between the behavioral and the structural model : a behavioral

model describes the functionality of the component with different scenarios ; i.e. a graph with

different states and the transitions between them. The structural model describes different

components of the system and the connections between them.

Figure 2.4 – The Y-chart approach for system design [AG02]

Later, a new methodology for SoC design emerged as presented in Figure2.5. It consists
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in hardware/software co-design : first we start from a specification of the system under-

study, then the specification is partitioned into the hardware and the software exactly as in

the traditional flow design. The main difference with the traditional design process is that

both parts are developed and simulated in parallel, which allows the designers to verify the

consistency of both parts before final implementation on the SoC. As consequence, designers

avoid a long time in the design process.

Figure 2.5 – New SoC Design Flow [ed05b]
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Two alternative approaches for the conceptual design were adopted by designers : the

top-down and the bottom-up approaches([VC08, JTB98]). In the top-down approach, we start

from the functional description of the design toward solution alternatives, it is also based on

the definition of the set of system components from the set of functionalities. Although this

approach respects functional requirements of the application but it is not guaranteed that

the proposed physical solution is realizable. This is why, this approach is less adopted by

engineers since it is time consuming and not efficient in some cases. In contrast, using the

bottom-up approach, we start from a pre-defined set of components that we compose together

to build the whole system design. Those components are supposed to be functionally correct.

In this approach, we ensure that physical realization of components is guaranteed but not the

functional requirements. Another problem of this approach is the combinatorial explosion of

the design especially in the case of complex systems.

In summary, the top-down design defines a set of physical solutions of the application,
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Figure 3.1 – The Top-Down vs the Bottom-Up design cycle[VC08]

those solutions must respect the functional requirements defined in the beginning of the

design process. The bottom-up design starts from a description of individual behaviors of the

set of the pre-defined components and generates the global behavior of the system under

study.

This work describes an integrated conceptual modeling framework that supports the

bottom-up approach to give a high level description of SystemC designs using the SystemC

waiting-state automata. During this thesis, we take into consideration the limitations of this

approach and propose solutions for that.

3.1 The Top-Down Approach

As shown in Figure 3.2, in the top-down approach, we start first by identifying system

components with respect to the functional requirements defined in the beginning of the design

process. Then, we study the local and global behavior of each component in order to synthesize

the functionality of each component. We obtain then a description of a set of communicating

processes. This approach requires analysis and refinement during construction of components.
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Figure 3.2 – The Top-down approach

3.2 The Bottom-Up Approach

The bottom-up design methodology is very popular for producing autonomous, salable

and adaptable systems often requiring minimal (or no) communication. It has been used to

control robotic systems, embedded systems, and sensor networks.

In the bottom-up methodology, components and their environment are modeled in an

ad hoc manner. We start from a pre-definition of system components and we study the

possible interactions between them : we proceed to composition of individual behaviors of

components to build the global behavior of the system. Thus, in this approach, we consider two

parameters : individual behaviors of components and the interactions between the components

and their environment.

Figure 3.3 – The Bottom-up Approach
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To model the components, we use an automaton for example, which is a transition system

where states represent an action that the component is executing. We can resort to different

modeling techniques to capture further information about the environment. One can use

for example finite state machine (FSM)[AHT06]. Then, we need to define a mathematical

representation of the automata in order to validate and analyze the abstract model.

3.3 Conclusion

In this chapter, we studied the importance of SoCs that facilitates the emergence of new

technologies but also increases the QoS of new products. Those systems are with a small

size but with a bigger performance. Despite this, SoCs become more and more complex due

to their embedded heterogeneous components that claim extra and tough work in order to

validate the system before implementation. Therefore, the job of engineer designers becomes

intricate.

Hence, new methodologies for system design have emerged : we explained here two tech-

niques for system design : the bottom-up and the top-down approaches, we enumerate the

advantages and drawbacks of those approaches and we compare them to our approach. We

also introduced the traditional and the new systems design approaches and we stressed on the

importance of the new design approach for system validation before implementation on the

chip. In the next chapter, we present the SystemC language and different levels of abstraction

in system design. We stress on the importance of the transaction level (TLM) to reduce the

complexity of system verification and validation. We also mention the importance of formal

methods to study but also to validate the semantics of SystemC at the TLM.
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Part I

System Level Modeling with

SystemC

This Part is composed of two Chapters ; the first one introduces the

transaction-level modeling and the second one describes in details the struc-

tural and the syntax of SystemC language.
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4.1 Introduction

With the ever-increasing complexity of nowadays hardware systems, the job of the desi-

gners for the simulation and the validation of those systems has become a tough job : First,

simulation is becoming very slow because we need to simulate separately the hardware and the

software. Second, it is very difficult to execute different scenarios of simulation and especially

detect all errors corners generated during simulation.

Simulation is efficient, in the sense that we can simulate both the hardware and the

software but it still be too slow. Engineers have to wait for the final chip to write and
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execute the program. Consequently, this doesn’t respect the time to market pressure nor the

development cycle requirements of the design.

Another technique uses the emulators, which are hardware programmable devices, to

emulate the behavior of the system on chip. This technique is efficient in term of speed but

it still needs an RTL model for the hardware. Later, designers decide to raise the level of

abstraction of the design under study in order to model the application with fewer details

and to provide an appropriate platform for hardware/software co-simulation. Thus, many

attempts to raise the level of abstraction above the RTL have emerged [ed05b].

4.2 Attempts at Raising Abstraction Level

Many attempts were made to raise the abstraction level in order to gain in speed during

simulation without loss of accuracy [ed05b]. Thus, the high level model must first simulate

the application during a millions of cycles within a reasonable duration of time. Second, the

model must be as accurate as possible to give reliable simulation results ; i.e, it must contains

enough details about the hardware in order to run the embedded software. Besides, in order

to optimize the SOC project cost, the high level model should be developed in a considerable

low effort.

First, designers resort to hardware/software co-verification [ed05b]. In SW/HW co-

verification, they simulate the software on an RTL model of the hardware and they use a

faster processor model that is called Instruction Set Simulator (ISS). It is an instruction-

accurate model developed in C language at a higher level of abstraction. The main advantage

of that technique is that we can integrate, verify and debug the SOC in an early phase of

the design cycle before the implementation of the hardware. The simulation speed of the

application is considerably higher in the co-verification of hardware/software. Moreover, any

modification on the hardware or the software will be both time and cost efficient since the

chip is not manufactured yet. Despite the efficiency of the co-verification in term of time and

cost compared to logic simulation, it still lack performance. Thus, it takes a long time to

develop the RTL hardware model that is used to simulate the software.

Later, due to the emergence of new modeling languages such as object-oriented languages

like C++, Java and later SpecC [DGZ00], in addition to hardware HDLs such as VHDL

[vhd02] or Verilog [ver91], designers propose to develop several models. Among them, we
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study the cycle-accurate (CA) (Figure 4.1) C or C++ models that provide a simulation rate

higher than the RTL models in VHDL or Verilog. At this level of abstraction, the model

provides an accurate description of both the traditional event-driven simulation and the high

level transactions (like bus transactions). It helps software engineers have a vision about what

is happening within a clock cycle which is abstracted from system design according to them.

It soon becomes obvious that cycle-accurate (CA) modeling has several drawbacks : First,

modeling at the cycle accurate level is as complex as the RTL level since the RTL is still

a reference for the CA level. The only advantage of CA models is that designers have no

constraints about synthesis. Second, there is no gain of speed simulation compared to that at

the RTL level ; it was ten times below the original estimations. Third, due to tight scheduling,

it is not possible to modify or update the CA model once the RTL model is updated. Thus,

the CA model is considered as not fully compatible with the RTL model which is not desired

by the modeling engineers.

For all the previous reasons, it is better to model the system at a higher level of abstraction

that would allow much quicker modeling than cycle-accurate. This high level model must be

precise and fast enough for software developers to test the real embedded software using a

standard language enabling reuse of models with a variety of simulator suppliers.

4.3 The Transaction Level Modeling

Transaction-Level Models fill the gap between purely functional descriptions of embedded

systems and the RTL description (Figure 4.1). They are created after hardware/software par-

titioning. TLM is also a transaction-based modeling approach founded on high-level program-

ming languages such as SystemC [sys]. It highlights the concept of separating communication

from computation within a system. It also serves as a virtual platform on which the embed-

ded software is executed. The main idea of TLM is to abstract away communication on the

buses by so-called transactions : we consider only reading and writing operations on buses. In

contrary to the RTL, where everything is synchronized on one or more clocks (synchronous

description), TL models do not use clocks. They are asynchronous, they only synchronize

through transactions shared between different components. This higher abstraction allows

the simulations to be faster than RTL. Figure 4.2 shows an example of compared simulation

times for encoding and decoding a picture at the MPEG 4 format [ed05b]. The other advan-
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Figure 4.1 – Different abstraction levels for describing the hardware [ed05b].

Figure 4.2 – Example MPEG-4 codec (encoder) : Speed in different levels of abstraction (s)
[ed05b].
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tage of TL models is that they require far less modeling efforts than RTL or Cycle Accurate

models since they are less complex and with less details. Besides, the TL model is completely

compatible with the RTL model so we can use it for the hardware validation even after the

RTL is created.

4.3.1 Description of TLM

Figure 4.3 shows an example of a TLM platform (model of a TLM Bus). The platform

is composed of several components connected through the ports. TLM models each of these

components as a module. Some of these components may play the role of the communication

support such as channels : this is the case of the bus model in our example. Components

are communicating via transactions, a transaction is an atomic data exchange between an

initiator (or master) and a target (or slave). The initiator has the initiative to do the

transaction whereas the target is considered as always able to receive it. This corresponds

to classical concepts in bus protocols. The initiator issues transactions through an initiator

port, respectively a target receives them by a target port. Some components only have ini-

tiator ports, for instance micro-processors, some have only targets ports (memories). Also,

some components contain both initiator and target ports : this is the case for our example

(Figure 4.3). Masters receive and send signals via their initiator/target ports.

Synchronization between parallel components is an explicit action between at least

two modules (potentially test-benches) that need to coordinate or manage some behavior

distributed over them. Such co-operation of different modules is vital to assure the predictable

system behavior. TLM is considered as efficient as enough since it provides :

• Early software development ;

• Architecture analysis ;

• Functional verification.

In the perspective of durable progress, TLM leads SoC developers to a number of benefits

towards productivity and time-to-market progress.
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Figure 4.3 – TLM Bus Model (simplified).

4.3.2 The Modeling Approach with TLM

As discussed earlier, a SoC component is modeled as a module in TLM. A TLM module is

a set of hardware blocks or IPs. Each block is represented through its internal functionality,

its inputs/outputs and how it is synchronized with other blocks. No details about the archi-

tecture or internal pipelines are implemented. A complete SoC TLM platform is constructed

by instantiating and binding different modules and channels together. Once the platform is

integrated, SoC simulation is performed by executing the related embedded software.

The system synchronization could be modeled by specific means such as events, signals,

and interrupts or by data-exchanges. If any of these potential system synchronizations cause

a call to the simulation kernel, it enables the scheduler to activate other modules.

We may consider two fundamental classes of TLM[ed05b] :

• Untimed TLM.

• Timed TLM.

On one hand, the untimed TLM is an architectural model targeted specifically at early func-

tional software development and functional verification where timing annotations are not

considered or are abstracted from the system description. This model is used to perform

simulation speed. It is also called programmer’s view (PV). On the other hand, the timed
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TLM is a micro-architectural model that is annotated with time about the behavioral and

communication specifications. The main purpose of timed TLM is to ensure the simulation ac-

curacy that must be respected in real-time embedded software development and architecture

analysis. It is also called programmer’s view plus timing (PVT).

Figure 4.4 describes the difference between the untimed and timed TLM with respect

to other conventional models in the SoC design flow, which includes register transfer level

(RTL), bus cycle accurate (BCA), and cycle accurate (CA) models.

Figure 4.4 – Modeling Accuracy of Various Approaches [ed05b].

4.3.3 The Novel Design Flow with TLM

Figure 4.5 represents the new methodology for the design flow. It is based on the partitio-

ning of systems into two parts : the hardware and the software. It also describes the position

of the TLM in the design flow. It is defined just before the partitioning. Referring to the

same figure, a design flow generally starts from user specifications where system requirements

are well identified. Based on these specifications, the system is then partitioned into hard-

ware/software parts. But before partitioning, we define the TLM platform that helps both

software developers and architectures to develop and simulate their applications. It also helps

verification engineers to verify and test the compliance of the RTL platform with the intended

performance. They can also verify the hardware and low-level integration of the software part
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with the hardware. Once verification is achieved, the chip is finally manufactured.

Figure 4.5 – New SoC Design Flow with TLM [ed05b].

4.4 Conclusion

In this chapter, we define different levels for system design as presented in Figure4.1. We

describe the advantages but also the drawbacks of each level. We mention that the job of

software designers become easier when using a higher description of the hardware, where the

system is described with less and enough details. We then introduce the TLM level and we

define its different terminologies and how it improves the new design process.
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5.1 Introduction

SystemC [sys] becomes nowadays a popular language for modeling complex hardware sys-

tems. Compared with other hardware description languages, SystemC is more feasible for

designing large-scaled complex systems and modeling high level behaviors. It also provides

a bridge between hardware and software design and thus, provides a unifying framework for

hardware/software design. SystemC consists of C++ libraries and a simulation kernel for
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creating behavioral and register-transfer level (RTL) designs. It provides a common develop-

ment environment needed to support software engineers working in C/C++, and hardware

engineers working in HDLs such as VHDL [vhd02], Verilog [ver91], etc., particularly system-

on-a-chip designs.

In Figure 5.1, we show the use of SystemC language compared to other programming

languages and the reason is clear : increasing design complexity requires very fast executable

specifications to validate system concepts, and only C/C++ offers adequate levels of abs-

traction, hardware/software integration and performance. Besides, nowadays system design

demands a single common modeling language that makes the use of new design tools, services

and IPs possible.

In response to these needs, SystemC has been developed as a standardized modeling

language intended to enable system level design and IP exchange at multiple abstraction

levels, for systems containing both hardware and software components.

Figure 5.1 – Levels cover by different programming languages.

5.2 Structure of a SystemC Model

The SystemC is a System-Level Modeling language based on C++ that is intended to

enable system level design in response to the need of a very fast executable specification to

validate and verify system concepts.

Using the SystemC library, a system can be specified at various levels of abstraction.

For hardware implementation, models can be written either in a functional style or in a
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register-transfer level style. The software part of a system can be naturally described in C or

C++. SystemC uses the object-oriented (OO) approach to achieve abstraction, modularity,

compositionality, and reuse. The OO paradigm in SystemC is not incidental but central.

It distinguish SystemC from other modeling languages, such as SpecC. The base layer of

SystemC provides an event-driven simulation kernel. This kernel operates at the event level

and switches execution between processes.

5.2.1 Syntax

For simplicity, we omit the syntactic elements for representing the architecture of a Sys-

temC program as mentioned in Table 5.1. It adopts a C-like syntax :

Program {modules, channels, signals, events, variables}
Module {ports, variables, process-decl, process-body, methods}
Process-decl < processname >< sensitivity >< reset− condition >
Process-body < event− comm|signal − comm|chan− comm|control − flow

|arithmetic >
Event-comm wait(event), wait(event, time), wait(time), wait(eventlist),

notify(event), notify − delayed(event)

Signal-comm signal.read|signal.write
Chan-comm tlm port→ put(value)|tlm port→ get(var)|

tlm port→ method(parameters)

Control-flow < C + +controlflow >

Arithmetic < C + +arithmetic >

Table 5.1 – Simplified abstract syntax for SystemC.

Syntactically, a SystemC program consists of a set of modules(Figure 5.2), a module

contains one or more processes to describe the parallel aspect of the design. a module can

also contain other modules, representing the hierarchical nature of the design. Processes inside

a module are communicating via signals. Modules communicate via channels. Channels are

abstract and are accessed via their interface methods. The simulation kernel, together with

modules, ports, processes, events, channels, and interfaces constitute core language of C++.

That is accompagned by a collection of data types. Over this core, SystemC provides many

library-defined elementary channels, such as signals, FIFOs, semaphore, and Mutex. On top

of this are defined more sophisticated libraries, including master/slave library, and process

networks. A transaction-level modeling library (TLM 1.0) was announced in 2005. SystemC

has been developed with heavy intermodule communication in mind. SystemC 1.0 [sys] pro-

61



62 CHAPTER 5. SYSTEMC LANGUAGE

Figure 5.2 – Modeling in SystemC.

vides structural description features including modules and ports that can be used in systems

design. In addition, there exist different data types to enable modeling hardware systems and

processes to express concurrency. SystemC 2.0 [sys02, sys05] introduces channels, interfaces,

and events to enable communication and synchronization between modules or processes. An

interface specifies a set of access methods to be implemented within a channel, where chan-

nels provide the implementation for these interfaces. An event is a flexible synchronization

primitive that is used to construct other forms of synchronization. Different channel types

are defined with respect to some rules. SystemC imposes rules on channels and the way they

communicate. Those rules include how many ports are connected and what the interface types

that these ports require. On the other hand, dynamic design rules checking is needed to ensure

that channels do not violate these rules during simulation time.

Most HDLs, VHDL for example, use a simulation kernel. The purpose of the kernel is

to ensure that parallel activities (concurrency) are modeled correctly. The behavior of the

simulation should not depend on the order in which the processes are executed at each step

in simulation time. The SystemC simulation kernel supports the concept of delta cycles. A

delta cycle consists of an evaluation phase and an update phase. This is typically used for

modeling primitive channels that cannot change instantaneously. By separating the two phases

of evaluation and update, it is possible to guarantee deterministic behaviors.

To conclude, SystemC semantics combine then the semantics of C++ with the simulation
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semantics of the kernel. The simulation semantics are event driven rather than cycle driven.

But at the same time, SystemC has a discrete model of time, which means that it has also

cycle-level semantics.

5.2.2 Processes

Processes (Figure 5.3) inside a module are of three types : Method, Thread and Clocked

Thread. However, methods and clocked threads can be modeled as threads without loss of

generality. Similar to VHDL or Verilog, a process has a list of events that activate it. This list

of events is called the sensitivity list of the process. As soon as the event occurs, the process

is activated and executes until the process terminates or suspends its execution by means of

the wait() statement. The SystemC methods are special cases of processes that do not call

wait(). Events may either be generated explicitly by a thread (using the notify() statement

or method), or implicitly by changing signal values. SystemC specification distinguishes three

states of a thread : running, waiting and runnable (as mentioned in Figure 5.4). A running

thread may generate events that activate other threads sensitive to those events and change

their states to runnable. A single event may trigger the execution of multiple threads. A

running thread may become a waiting thread by executing the wait statement. The scheduler

chooses a thread among the runnable threads to resume execution. As in Verilog, the ordering

in which the runnable threads are activated is chosen non-deterministically. It is important to

note that no interleavings are done between the threads unless a wait() statement is executed.

It is important to note that the synchronization does not happen upon the generation of the

event, but only upon calling wait().

5.2.3 Channels

Communication between processes can also be accomplished through channels. A channel

can be regarded as that it consists of two buffers, one for storing its current value and the other

for storing its new value. Each execution of a channel output statement generates a request

to update the channel if the value of the expression is different from the current value of the

channel. The pending requests will be carried out in the following update phase. If more than

one channel output statement to the same channel occur during a particular evaluation phase,

the last one executed determines the new value of the channel in the following update phase.
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SC_MODULE(my_module) {

// input port

// output port

void my_process ( );

void my_thread( );

...

SC_CTOR(my_module) { // Constructor

SC_THREAD(my_thread); // Thread Process

// make thread sensitive to change of input

sensitive << .. << .. ;

SC_METHOD(my_method); // Method Process

// make thread sensitive to change of input

sensitive << .. << .. ;

}

\\Structure of the Method and the Thread processes

SC_METHOD : simulation engine call them repeatedly

void my_method ( ){ // run to completion scheme

// treatment

}

SC_THREAD :

void my_thread( ){ // infinite loop scheme

while (1){

// treatment

wait(); // static event

}

}

Figure 5.3 – Structure of a module.

Figure 5.4 – Transitions between the states of a thread.
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Either in simulation or in the real world, hardware signals do not immediately change their

output value when they are assigned a new value. The concept of delayed channel assignments

plus delta-cycle provides the ability to properly model hardware signals. A delta-cycle can be

thought of as a very small step of time within the simulation, which does not increase the

user-visible time.

5.2.4 Events

Despite of the diversity in syntax, SystemC is essentially an event-driven model and all

communications in SystemC models are implemented using events and the associated wait/-

notify mechanism. An event is a flexible, lowlevel synchronization primitive that is used to

construct other forms of communication.

Events can be used only with certain constructs such as wait and notify :

• The wait statement suspends the execution of the current thread waiting for one or

more events to occur.

• The notify statement generates the events specified as arguments for some threads. The

execution for all threads that are waiting for these events is resumed.

The occurrence of an event may activate processes that are waiting for it. According to the way

events are notified, there are three kinds of event notifications : immediate notifications, delta-

cycle delayed notifications and timed notifications. Delayed event notifications are widely used

in modeling hardware behaviors and software systems while immediate event notifications are

useful for modeling software systems and operating systems, which lack the concept of delta-

cycle.

SystemC events can be roughly classified into the following three sorts :

• User-defined events : These are events defined by SystemC programmers in source code.

Such events are usually triggered by the command notify ;

• Channel events : These are pre-defined SystemC events and they are triggered when

something occurs on channels. For instance, an event denoting the arrival of a new value

will be triggered whenever some value is written to a sc buffer channel. Channel events

at different types of channels have different semantics ;
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• Clock events : Clock signals are also seen as events and they are usually defined as

sc clock in the SystemC main program. SystemC core engine is in charge of generating

sc clock events at proper time. We never notify a clock event in the program.

We shall not distinguish between the first two sorts of events since both of them can be

dynamically notified. Clock events are rather seen as the input events of SystemC models. In

fact, we prefer not considering any pre-defined channels or signals in our modeling, but rather

taking into account their event-driven implementation.

According to the way events are notified, there are three kinds of event notifications :

immediate notifications, delta-cycle delayed notifications and timed notifications. Delayed

event (delta-cycle, timed) notifications are widely used in modeling hardware behaviors and

software systems while immediate event notifications are useful for modeling software systems

and operating systems, which lack the concept of delta-cycle.

• Immediate notification of an event e : it is achieved with e.notify() which means that

event e is triggered in the current evaluation phase of the current delta-cycle. Any

processes that are waiting for the event e will be made ready to run. Immediate event

notifications cannot be canceled since their effect occurs immediately.

• Delta-cycle delayed notification of an event e : it is achieved with e.notify(∆) which

means that event e will be triggered after the current delta-cycle. This delayed notifi-

cation can be canceled by executing statement cancel(e) before it is triggered.

• Timed notification : it is achieved with e.notify(t) which means that event e will be

triggered after a period of specified simulation time t. This delayed notification can be

canceled by executing statement cancel(e) before it is triggered.

The effect of statement cancel(e) is to cancel all the delayed notifications on event e. For any

given event, at most one pending notification can exist and statement cancel only cancels

pending notifications. An event has only one pending notification. More than one notification

on the same event are resolved according to the following rule : an earlier notification will

always override the one scheduled to occur later. An immediate notification is taken to occur

earlier than a delta-cycle delayed notification while a delta-cycle delayed notification occurs

earlier than a timed notification. This is irrespective of the execution order of statement

notify.
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5.2.5 Time in SystemC

Besides events, a process may wait for a period of time, either a delta-cycle or a period

of specified simulation time. In these cases, we say the process waits for a timeout. There are

two kinds of timeouts. Delta-cycle timeout stands for delta-cycle advancing and simulation

time timeout stands for simulation time advancing. A process may also wait for some events

and a simulation time timeout simultaneously, where any occurrence of the two parts resumes

the process.

5.3 SystemC Scheduler

The simulation of SystemC models is managed by the SystemC scheduler, which can be

seen as a total event-driven model : communications through ports and channels, clocks, and

actions of modules, are all triggered by (different types of) events. The basic unit of the si-

mulation is the so-called delta-cycle and a complete simulation procedure is just a sequence

of delta-cycles. The scheduler maintains several tables, among which we are particularly in-

terested in the table of runnable processes (processes that are ready to execute at the current

delta-cycle). Here is a brief description of a delta-cycle : a delta-cycle starts with a non-empty

runnable process table. The scheduler executes these processes one by one, in a pre-defined

order ; every runnable process executes until it ends or it is pended again (by a wait com-

mand for instance) ; if any immediate event is notified during the execution of a runnable

processes, it will add processes that are currently sensitive to this event into the runnable

process table ; delta-events and timed events that are generated during the execution of a

process are stored in other tables. The process table is emptied when all runnable processes

are executed and the procedure of executing all the runnable processes is called a evaluation

phase. The scheduler then checks those delta-events notified in the evaluation phase : if there

are processes that are sensitive to these events, then add them into the process table. This

procedure is called a delta notification phase. If the process table is non-empty, the scheduler

enters the next delta-cycle and executes the evaluation phase again ; otherwise, it checks the

timed events notified in the evaluation phase and adds processes that sensitive to these timed

events into the process table. This is called a timed notification phase. The scheduler then

advances the simulation clock and enters the next delta-cycle. A detailed explanation and

67



68 CHAPTER 5. SYSTEMC LANGUAGE

implementation of delta-cycles can be found in SystemC documents [sys]. However, for the

sake of clarification, we prefer regarding a delta-cycle as starting from a delta notification

phase or a timed notification phase. In other words, a delta-cycle in this paper will start with

a set of events which add all sensitive processes into the process table, then continue with an

evaluation phase.
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Figure 5.5 – Execution semantics of SystemC
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5.4 The TLM Library

In the transaction modeling (Figure 5.6), the system is divided into two parts : the com-

munication part and the computation part. In this definition, TLM is considered as modeling

the communication part of a system at a high level of abstraction (e.g., by functions). While,

the computation part (modules) of a design can be at various levels of abstraction. It is ob-

vious that at the higher level the modules are designed, the faster their simulation process

and the easier their connection with the communication part are. The TLM library defines

Figure 5.6 – TLM Mechanisms

several abstract, transaction-level interfaces and the ports and exports that facilitate their

use. Each TLM interface consists of one or more methods used to transport data, typically

whole transactions (objects) at a time. Component designs that use TLM ports and exports

to communicate are inherently more reusable, interoperable, and modular. Processes in TLM

interface can be declared blocking when they suspend their execution by calling wait() for

example or non-blocking like SC METHODs that can not be suspended during execution

until they achieve.

Transactions between modules can be bidirectional, for example a read across a bus. they

can be also unidirectional, as it is the case for most packet based communication mechanisms.

Where there is a more complicated protocol, it is always possible to break it down into a

sequence of bidirectional or unidirectional transfers. For example, a complex bus with address,

control and data phases may look like a simple bidirectional read/write bus at a high level of

abstraction, but more like a sequence of pipelined unidirectional transfers at a more detailed

level. Any TLM standard must have both bidirectional and unidirectional interfaces. The

standard should have a common look for bidirectional and unidirectional interfaces, and it

should be clearly shown how to relate both of them.
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Part II

Modeling with SystemC Waiting

State Automata (WSA)

This Part is composed of five Chapters ; it represents a detailed description

of the SystemC waiting-state automaton model.
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In Part I, we presented the SystemC language as a system-level language used to model

complex systems. The hardware and the software parts are represented at different levels of

abstraction : the software can be naturally described in C or C++ language, the hardware

is described either using the transaction level or the register-transfer level (RTL) models.

Information about the functional as well as the non-functional properties of the sytem can

be added to the description of the system in order to refine the final model. Hence, SystemC

provides a complete framework to help developers to easily model complex hardware systems

at different levels of abstraction.

We also presented the transaction-level (TLM) as an early level for hardware design on

which the embedded software can be run. We stressed on the advantages of this level in the

conceptual design : first, because it fills the gap between the purely functional description

of the system and the RTL description since it allows hardware/software co-design. Second,

because it separates the communication part from the computation part within a system,
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which makes the job of the conceptual designers more easier. It also abstracts away the

communication on buses by transactions : i.e, reading and writing operations. Besides, models

in TLM are supposed to be asynchronous because they don’t synchronize through clocks like

in RTL but rather through transactions.

6.1 Introduction

As we mentioned in the previous chapter, SystemC provides an efficient framework to

model and co-simulate hardware/software systems before the final implementation on the

chip. Throughout the conceptual design, designers can verify in parallel the hardware as well

as the software description of the system and any modification on the hardware or the software

can be detected and easily applied in earlier stages of the conceptual design. Despite this, it is

not usually easy to detect most errors in the conceptual design particularly in critical parts of

the system implementation. Therefore, there is a need to resort to formal techniques that help

the designers to detect errors in the early stages of the software development. Over the last

years, research activities were mainly focused on exploiting modeling flexibility and exploring

different levels of communication and behavior abstraction. More recent works concentrate

on the formalization and the verification of SystemC. In this chapter, we enumerate the main

and recent approaches in SystemC modeling.

6.2 Existing Static Approaches in SystemC Modeling and Verifi-

cation

Große and Drechsler [De02, De03] focused on the verification of SystemC at the gate level.

Their work consists in verifying properties of synchronous sequential circuits using the LTL

(Linear Temporal Logic) [Pnu77]) which is a modal temporal logic with modalities referring

to time. In LTL, one can encode formula about the future of paths, e.g., a condition will

eventually be true, a condition will be true until another fact becomes true, etc. The formula

LTL is then translated into a decision problem (SAT) using the Binary Decision Diagram

(BDD)[Ran92]. The main drawback of this approach is that it was somehow limited to the gate

level and doesn’t support the transaction level. For example, if we want to verify some critical

properties like vivacity, this may lead to prohibitive computation. But later in [DGeD10],
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they propose a fully automatic approach to verify SystemC properties at the transaction level

using C assertions and finite state machines.

Mueller et al. [WMR03] translate SystemC program simulation using Abstract State Ma-

chines (ASMs)[BS03]. The ASMs have been extensively used in the definition of different

hardware modeling and description languages, but it is still not efficient since it does not cap-

ture the synchronization between processes at the waiting states. Besides, their model is not

adapted for new techniques for programs analysis like model checking or abstract interpre-

tation. Later Gawanmeh et al. [AGT04], use also ASM to model SystemC designs. They use

AsmL modeling language of ASM to define the semantics of SystemC language at the transac-

tion level. They define the semantics of the SystemC simulator as well as non-trivial SystemC

components including FIFO channels, MUTEX channels, message queuing, request-grant pro-

tocol and SystemC FIFO hierarchical channels with handshake protocol. Their approach is

also interesting but not efficient, first because it doesn’t capture all SystemC components

and second, because it doesn’t stress on the synchronization between concurrent processes.

Besides, in their semantics they need to model separately the behavior of SystemC scheduler

and thus they have to define in advance the scheduling policy.

Kroening et al. [KS05], they represent SystemC models using the Labeled Kripke Structures

(LKSs) [MCBG88]. In fact, the labeled kripke structure model is based on the state/event

analysis and it makes use of the formalization of labeled Kripke structures. Having separated

labels on states and transitions in the model provides a syntactic way of partitioning a Sys-

temC model into a hardware and a software part. States in their model include all possible

intermediate states within a process, they also make a classification of processes as runnable

processes, waiting processes, etc., which is basically the implementation idea of SystemC sche-

duler. On the other side, their labels on states allow effective manipulation of program data. In

conclusion, their approach proposes a system level representation of systems by automatically

partitioning the uniform system description into synchronous (hardware) and asynchronous

(software) parts.

Habibi et Tahar [AHT06], they translate the logic properties and the UML behavior of Sys-

temC codes into Abstract State Machines using the AsmL language (a specification executable
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language developed by Microsoft). This model is then used to generate Finite State Machines

(FSMs), they propose two algorithms to generate finite state machines from SystemC models.

These generation algorithms are used for traditional model checking adapted for SystemC.

Their model generates the states for the whole system from the very beginning. Then the

algorithms focus on solving the state exploration problem using the grouping technique. the

FSM serves as a precise model of the observable behavior of the system used to validate lower

abstraction levels of the design ( the register transfer level (RTL)).

Karlsson et al. [K06], their approach is similar to the work of [LACP04]. They propose a

formal representation of SystemC models at a high level of abstraction (TLM) using Petri-

nets that can be used for model checking of properties expressed in a timed temporal logic.

Although this approach is efficient to represent SystemC parallel designs in a formal and

efficient way but it still be inadequate for complex systems where interactions are intricate.

In fact, modeling complex systems with petri-nets require to consider and represent all pos-

sible interactions between concurrent components and communication between them. This

may lead to state explosion of the final model of the system, which should be avoided while

modeling embedded complex systems. To understand the modeling process using petri-nets

representation, we consider the following petrinet example which models the program above.

Authors in [K06] use a design representation called Petri-net based Representation for Em-

bedded Systems (PRES+). Each SystemC statement is represented by one place and one

transition. The transition performs the actual statement, whereas a token in the place en-

ables the execution of the statement. Variables are also represented by places.

In this example, we need 8 places to just represent a 4 lines program. If we consider a program

with hundreds of lines and variables, the representation becomes more and more complica-

ted to manage. This is the main drawback of this approach. Another disadvantage of this

approach is that it does not support verification of properties like concurrency and interac-

tions between processes at the delta-cycle level which is one of the main features to study in

SystemC language, since it represents the simulation policy of SystemC scheduler.

Moy et al. [MFM06], they use the LusSy tool to extract information about the system ar-

chitecture and behavior in the transaction level. They also use abstraction on their design

to build an intermediate model, that they call HPIOM (Heterogeneous Parallel Input/Output
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Figure 6.1 – A example of petri net representation (source [K06]).

Machines). They can apply model checking techniques to verify the HPIOM models (SMV

[smv] and spin [spi] for example). Their global approach consists in extracting an automaton

for each process and an automaton for each TLM SystemC component. They use abstraction

techniques to avoid state explosion on HPIOM automata. Their approach captures most Sys-

temC semantics, also it is amenable for new model checking techniques. The main drawback

of this approach is first the state explosion problem since they have to model all components

states which should be avoided in systems modeling. Besides, they need to model separately

the behavior of the scheduler using a HPIOM automaton. Moreover, their approach doesn’t

benefit of powerful software verification techniques like predicate abstraction [GS97].

Blanc et al. [NB08], authors propose a new tool called SCOOT which help extract and

optimize a formal representation of SystemC programs at low levels. Authors also suggest

the possibility to re-synthesize C++ code from the model built using the SCOOT tool which

may performs simulation results. They propose to use model checking techniques to verify

the resulted model like in [KS05]. To guarantee accurate results during verification, authors

partition the system into two parts : the software part and the hardware part. They distinguish
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between three types of processes :

v Combinatorial Processes : their activation depends on the entries and not the clock,

they don’t have a wait statement and no unlimited loops ;

v Processes with clocks : they depend on clocks and they have no unlimited loops ;

v Processes with restrictions : they represent the software part.

The combinatorial process is transformed into mathematical expression and then reduced

from the model. Processes without restrictions are unchanged. Only processes with clocks

represent the hardware part, they are modeled using state machines by using the Kripke

structure [ECS04]. Each component is then presented by a state machine.

6.3 Summary

In the following table, we study a comparison between the previous approaches : we resume

briefly the description of each approach. Then, we precise the abstraction level handled by

the approach and finally we conclude by the limitations of each approach.
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In this chapter, we will introduce a formal model for SystemC modeling : the SystemC

waiting-state automata. The SystemC WSA is based on the analysis of the wait/notify

mechanism of SystemC which plays an important role in the SystemC scheduler. Modeling

SystemC designs using automata can be suitable to model parallelism between different com-

ponents which is essential for hardware description. This choice will be different if we have

distributed systems where a few heterogeneous components communicate in parallel or for se-

quential processes. Although, Petri-nets for example are considered to be more appropriate to

handle parallelism, they still have a considerable problem that is the combinatorial explosion

of the system states which is significantly reduced in the SystemC waiting-state automata.

Besides, other drawbacks of peti-nets are : first, they don’t handle the representation of Sys-

temC designs at different levels of abstraction, more precisely the delta-cycle level, although,
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they are efficient to represent SystemC designs at the system-level. Second, petri-nets do not

allow expressing timing properties and counters, that represent the system evolution, like in

the SystemC waiting-state automata.

The original model was first proposed by Zhang, Védrine and Monsuez in [YZM07] and

later was extended and developed by Harrath and Monsuez in [HM09, HM12]. In the original

paper [YZM07], authors reveal the main idea behind the abstract model. They also define

its formal syntax and illustrate it on the FIFO example. Later in [HM09, HM12], we extend

the model with timing parameters and we illustrate how to use the timed model to verify

temporal properties of SystemC designs. It was proved in [HM09, HM12] that this model is

compositional since it guarantees that possible interactions between the SystemC process and

its environment is already taken into account. In [HM12], it was mentioned that the model

is conform to the low-level simulation semantics of SystemC. Besides, it detects anomalous

behaviors generated due to concurrent access to shared resources. In [HM12], the model is

compared to existing approaches that study and model the SystemC language, which was not

expressed in [YZM07].

As for applying model checking techniques [ECP99a] in later stages of system verification,

it is essential to define an internal finite representation for SystemC designs using state-

transition systems. This representation is amenable to verify additional properties of modules :

structural properties (liveness and determinism), properties related to the QoS (quality of

service), as well as functional and non-functional properties of embedded systems.

7.1 Motivations and General Approach

In this thesis, we adopt an internal bottom-up approach based on SystemC waiting-state

automata (WSA) as presented in [YZM07]. In opposition to the top-down approach (Chapter

3) : the approach starts from a low level representation of SystemC components and then it

assembles all components in order to build a global model for the whole system. But before

assembling all components together, it is mandatory to ensure that each component satisfies

specific constraints and that it is able to gradually introduce the concepts of quality of service

from more functional concepts.

There are many motivations behind the idea of using the SystemC waiting-state automata

to represent SystemC components : first, it is essential to give an internal representation of
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each system component using a state-transition system since it is easier to verify properties

on single components rather than on the whole system. Second, giving a finite representation

of an infinte system, which is the purpose of the SystemC WSA, is one of the main goals

of most researches for nowadays system modeling. Thus, some existing works try to apply

new abstract techniques to give a finite representation of embedded systems, which is already

applied on the SystemC WSA semantics. Besides and more particularly, it was mentioned

and proved in [YZM07, HM09, HM12] that SystemC WSA is conform to SystemC simulation

semantics since it represents the behavior of the system components within a delta cycle : the

smallest simulation unit of time of SystemC scheduler. In addition to that the model represents

the system at different levels of abstraction, as we will prove later, starting from system

level modeling to the delta-cycle level modeling. Another important point is to separate the

internal behavior from the global behavior of each component which is essential when modeling

parallel systems. Thus, in SystemC WSA, authors consider only states where components are

communicating with the environment waiting for the notification of some events in order

to resume execution. Accordingly, the internal states that represent local behaviors of each

component are abstracted from the system representation.

Unlike other formal models used to verify SystemC designs such as in [AHT06, KS05,

MFM06, KMS06], the SystemC waiting-state automaton is different since it considers only

interactions and communications between processes and the way they are managed by the

SystemC scheduler. It supposes that the behavior of a process between two wait states is

abstracted in the resulted model. The SystemC waiting-state automaton stresses on two

main concepts :

p The set of the entry-conditions which activate and suspend the execution of a process

and the set of the exit-conditions that are generated.

p The synchronizing points in the SystemC program used to synchronize between the

communicating processes within a delta cycle.

The idea behind the SystemC WSA is to build an automaton for each process. The

automaton is build from the set of the waiting-states, so it is considered as an abstraction or

a minimal representation of the initial program. This is why, we call each automaton as the

minimal-step automaton, we will use this notation throughout this thesis.
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Figure 7.1 – The execution semantics of SystemC.

Let’s start from a brief description of the execution semantics of SystemC (Figure 7.1) :

at the start of each time step, inputs to the program are obtained from the environment, all

computation is viewed as instantaneous (i.e., occurring in zero time). There is one special

statement wait(), that affects time advancement. When a wait statement is encountered, any

changes to the program’s outputs become visible to the environment, this is the step when

time obviously progresses. Thus, computation proceeds as follows : Obtain inputs, compute

(in zero time) until a wait is encountered, make output changes visible, obtain new inputs,

etc. The wait statements represent the control points in the program, i.e, processes can only

suspend and resume execution when they call wait() statements. So SystemC models can be

written without concern that a process may be pre-empted involuntarily. Specially, the code

within a process delimited by two wait() statements can safely assume that no other processes

have modified any variables which are also accessible to other processes and the execution of

the code occurs instantaneously.

7.2 Example

Let us start by a simple SystemC model : an implementation of FIFO with clocks. The

structure of the model is shown in Figure 7.2.

The implementation of the modules in SystemC is given in Figure 7.3 and the main

program is given in Figure 7.4.
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Figure 7.2 – The FiFo example.

class fifo_if : virtual public sc_interface{

public:

virtual int write(char) = 0;

virtual int read(char &) = 0;

virtual int num_available() = 0;

};

class fifo :

public sc_channel, public fifo_if {

private:

enum e { max = 2 };

char buffer[max];

int num_elem;

public:

sc_event w_event, r_event;

fifo(sc_module_name name) :

sc_channel(name), num_elem(0) {}

void write(char c) {

if (num_elem == max)

wait(r_event);

put_in_buffer(c);

num_elem = num_elem + 1;

w_event.notify();

}

void read(char &c){

if (num_elem == 0)

wait(w_event);

c = get_from_buffer();

num_elem = num_elem - 1;

r_event.notify();

}

int num_available() { return num_elem;}

};

class producer : public sc_module {

public:

sc_port<fifo_if> fifo;

sc_in_clk p_clock;

SC_HAS_PROCESS(producer);

SC_MODULE(producer) {

SC_THREAD(main);

sensitive_pos << p_clock;

}

void main() {

while(true) {

wait();

produce(c);

fifo->write(c);

}}};

class consumer : public sc_module {

public:

sc_port<fifo_if> fifo;

sc_in_clk c_clock;

SC_HAS_PROCESS(consumer);

SC_MODULE(consumer){

SC_THREAD(main);

sensitive_pos << c_clock;

}

void main() {

while(true) {

wait();

fifo->read(c);

consume(c);

} } };

Figure 7.3 – The FIFO modules : buffer, producer and consumer [sys].
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int sc_main (int argc , char *argv[]) {

fifo *fifo_inst;

producer *prod_inst;

consumer *cons_inst;

sc_clock p_clock("ProducerClock", 10);

sc_clock c_clock("ConsumerClock", 15);

fifo_inst = new fifo("Fifo");

prod_inst = new producer("Producer");

prod_inst->fifo(*fifo_inst);

prod_inst->p_clock(p_clock);

cons_inst = new consumer("Consumer");

cons_inst->fifo(*fifo_inst);

cons_inst->c_clock(c_clock);

sc_start(-1);

return 0;

}

Figure 7.4 – The FIFO main program [sys].

The structure of the model is shown in Figure 7.2. The model contains a First-In-First-

Out buffer and two modules cooperating through the buffer : a producer module which conti-

nuously puts data into the buffer and a consumer module which continuously retrieves data

from the buffer. The two processes are triggered by two individual clocks : p clock (to denote

the producer clock) and c clock (to denote the consumer clock). When a p clock signal arrives,

the producer starts producing and tries to write the product into the buffer. Similarly, the

c clock signal controls the consumer. The two clocks are independent, hence the producing

and the consuming can be at different paces. It is certainly possible that the producer fills all

the slots of the buffer and continues writing, or the consumer retrieves all the elements and

still tries to consume. In this case, the producer (resp. consumer) must wait for the other to

release (resp. fill) the buffer and this is done by the SystemC events mechanism.

Let us start by an informal analysis of the producer process as shown in Figure 7.5 :

the producer is waiting for two main events : the clock event (p clock) notified at each clock

edge and the r event (an event notified when the consumer reads an element from the buffer

and we write r event to designate a read event). The two wait statements define the two
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waiting states of the automaton, and they divide the program into three pieces (P1;P2;P3

in Figure 7.5) according to the execution trace. Each piece of P1, P2 and P3 executes in an

instant, and are seen actually as transitions between the waiting states. The objective is then

Figure 7.5 – WSA generation of the producer.

Figure 7.6 – The WSA of the producer and the consumer.

to represent formally how a process controls the transitions between the waiting-states : as

shown in Figure 7.5, we calculate, for every waiting-state, the entry-conditions and the exit-

conditions. The WSA of the producer, is composed of two waiting states s1 and s2. In s1, the

producer is waiting for the clock event to start execution, in s2 it is waiting for an r event : it

is a special event triggered when the consumer read an element from the buffer. We define for

each transition the entry and the exit conditions : set of conditions that respectively activates

and is triggered when executing a transition. Intuitively, the events (p clock, r event) and

the predicates over variables p1 = (num elem < max) and p2 = (num elem = max) act as

guard conditions : e.g the transition from s1 to s2 is triggered if and only if the event p clock
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is present and the predicate p1 holds. The event w event and the function inc represent an

effect : the transition will generate the event w event and inc will be applied to the current

instantiation of the variable num elem.

7.3 Syntax

The SystemC waiting-state automata (WSA) is defined as a transition system A over a

set V of variables. It is a tuple A = (S;E; T ), where S is a finite set of states, E a finite set of

events and T a finite set of transitions where every transition is a 6-tuple (s; ein; p; eout; f ; s′) :

q s and s′ are two states in S, representing respectively the initial state and the final

state ;

q ein and eout are two sets of events : ein ⊆ E; eout ⊆ E ;

q p is a predicate defined over variables in V, i.e., FV (p) ⊆ V, where FV(p) denotes the

set of free variables in the predicate p ;

q f is an effect function over V ;

We write s
ein,p−−−−→
eout,f

s′ for the transition (s; ein; p; eout; f ; s′). The effect function set F(A) of the

automatonA(V ) is the set of all effect functions inA(V) : F(A) = {f |∃t ∈ T s.t. proj5
6(t) = f},

where proj5
6 denotes the fifth projection of a 6-tuple in the transition expression. We also write

proj1
6 , proj2

6 , proj3
6 , proj4

6 , proj6
6 to denote respectively the initial state s, the input event

ein, the predicate p, the output event eout and the final state s′.

In the producer automaton, s and s′ are respectively p wait clk and p wait c, the

transition from s to s′ is possible iff : the event p clock is triggered and the variable

num elem = max. As a consequence no events are triggered and the variable num elem

remains unchanged.

Definition 1 (The effect function) : The effect function is a first order logic formula that

modifies the predicate p. We will define here the syntax of the function. But let’s consider

first the following notations :

• Variables (x, y, z, ...)
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• Constants (a, b, c, ...)

• Predicates (p, q, r, ...)

Each fonction is a compostion of formulas defined over the predicates. Each predicate is com-

posed of a combination of terms (variables and/or constants). The grammar of the function

f is defined as below :

Term = Constants|V ariables

Atom = Predicats

Formula = Atom| Formula connector Formula

Connector = +| − | ∗ | ∧ |∨

In the FIFO example we have two operations on predicates : either to increment the predicate

defined over the buffer elements or to decrement it. For ease of notation, we write the functions

inc and dec to respectively increment and decrement the predicate num elem. The effect

functions inc and dec in the FIFO example are defined as follows :

• inc(num elem) = num elem + 1 ;

• dec(num elem) = num elem - 1.

We use the notation id to designate the identity function and true to designate the empty

predicate.

We also use T (s) to denote the set of transitions from a given state s, i.e, T (s) = {t|t ∈

T and proj1
6 = s}.

Definition 2 (Faithfulness of the automata) : In the SystemC WSA, the transition from a

waiting state to another is only triggered by the events and the predicates determine which

state the process will enter after being woken up, which means that transition from the same

state must have the same set of incoming events ein. Accordingly, we say that the SystemC

waiting-state automaton A = (S,E, T ) is faithful to the initial process iff for every two

transitions t and t′ and for every state s ∈ S we have :


proj1

6(t) = proj1
6(t′)⇒ proj2

6(t) = proj2
6(t′)

for every states ∈ S,
∨
t∈T (s) proj

3
6(t) always holds.
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Definition 3 (minimal-step automata) : In fact, since the automata are derived by ana-

lyzing the waiting states of processes, as we have seen in the beginning of this section, a

transition actually represents the execution within a minimal cycle, i.e., the execution of a

process between two continuous wait. We call such an automaton a minimal-step waiting-state

automata. We assume that every minimal-step automaton is total, i.e., every state has some

successor. Otherwise, it means that the single process itself may cause a deadlock, which is

not the case we study here.

7.4 Model Properties

The SystemC waiting-state automaton is an abstract composional model used to represent

SystemC components. It is used to describe the functional behavior of SystemC processes at

both the transaction level and the delta-cycle level. It is also used to verify non-functional

behavior of SystemC constructs mainly the temporal behavior of critical real time systems.

• Abstraction of SystemC semantics : In order to make our verification methodology

more efficient when dealing with SystemC designs, we give an abstract representation

of SystemC designs that only includes the process related information (execution and

activation events). To do so, we use an approach based on predicate abstraction [GS97].

• Compositionality : Components in a concurrent system interact with each other, and

the correct functioning of different components is often mutually dependent. Therefore,

achieving compositionality in the presence of concurrency is much more difficult than in

sequential programming. Three different styles of verification methods with different de-

grees of compositionality are discussed in [WPdRP94]. They are named global, modular

and compositional respectively : In a global method a concurrent system is modeled by

a sequential one directly. A modular method typically consists of two steps : firstly, the

processes are shown to be locally correct, and secondly, the local proofs are shown to

be interference free with each other. In a compositional method, a component is deve-

loped in a way that the possible interference from its environment is already taken into

account, so components are guaranteed to be interference free. Our model is supposed

to verify the composionality property, we will verify this property in coming sections.
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• Functional and non-functional properties : In formal verification techniques, it is ne-

cessary to verify functional properties of hardware/software systems to prove that the

system is operating normally. But, non functional properties are also of fundamental

relevance and imply a number of design decisions. The most important non-functional

properties in this context are synchronization, sharing, interaction, time properties and

resources consumption.

7.5 Conclusion

In this chapter, we presented the SystemC waiting-state automaton that we adopt to model

SystemC designs at both the delta-level cycle and the transaction level. As we previously

mentioned, the idea behind the model is first presented in [YZM07], where authors need to

manually build the automata from SystemC programs. In this thesis, we extend the work

of [YZM07] first to add more information about the time properties (Chapter 9) of parallel

SystemC designs and second to propose an automatic approach to build, validate and verify a

global framework modeled with the SystemC waiting-state automata (Part III and Part IV).

Later, we resume different algorithms to symbolically compose parallel automata and

the algorithms to symbolically reduce the composed automaton. Then, we describe different

extensions of the abstract model notably extensions using the parameters counter and time.

We illustrate the use of each parameter on the Fifo example and we enumerate the properties

that we can verify using each parameter.
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The global strategy of verifying SystemC models using the SystemC waiting-state au-

tomata is to define first a minimal-step automaton for every process, and then to compose

them together so as to achieve a bigger automaton for the whole SystemC model which can

be finally passed to the model-checking procedure. The symbolic composition follows the pa-

rallel composition of labeled Kripke structure as defined in [ECS04]. However, the symbolic

composition applied in the SystemC WSA is followed by a reduction procedure, which enables

more aggressive abstractions on the result model. Other typical abstractions include, for ins-

tance, replacing internal events of the composition with more abstract notions like counters,

constraints on counters, time and constraints on time. With respect to the hiding of variables

[KS05], such replacements keep functionality properties after the abstraction and introduce

progressively QoS properties.

The SystemC waiting-state automaton are built separately for each SystemC process. The

advantage of this approach is that the individual processes are much more smaller than the
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overall program and verifying automata with less states is much more easier.

After building the automaton for each process separately, it is essential to apply parallel

composition to minimal automata in order to build the abstract WSA for the whole system.

The following formalizes steps for symbolic composition and reduction of the modular abs-

traction approach. We resume algorithms for the symbolic composition and reduction as first

presented in [YZM07].

8.1 The Symbolic Composition of the SystemC WSA

The symbolic composition step consists in building a large automaton for the whole pro-

gram, where minimal SystemC waiting-state automata for the processes are composed toge-

ther in a bottom-up approach. Below is defined the algorithm for the symbolic composition

where all the combinations of process states are considered. The symbolic composition is

followed by a reduction procedure, which enables more aggressive abstractions on the result

model.

Algorithm Let’s consider two SystemC waiting-state automata A = (S,E, T ) and A′ =

(S′, E′, T ′) over the same set V of variables, the resulting automaton is a tuple (S × S′, E ∪

E′, T ”) defined as below :

q (s1, s
′
1)

ein,p−−−−→
eout,f

(s2, s
′
1) ∈ T ” for every state s1

ein,p−−−−→
eout,f

s2 ∈ T and s′1
e′in,p

′

−−−−→
e′out,f

′
s′2 ∈ T ′,

either e′in 6⊆ ein or p; p′.

q (s1, s
′
1)

e′in,p
′

−−−−→
e′out,f

′
(s1, s

′
2) ∈ T ” for every state s1

ein,p−−−−→
eout,f

s2 ∈ T and s′1
e′in,p

′

−−−−→
e′out,f

′
s′2 ∈ T ′,

either ein 6⊆ e′in or p′ ; p.

q (s1, s
′
1)

ein∪e′in,p∧p′−−−−−−−−−→
eout∪e′out,f◦f ′

(s2, s
′
2) ∈ T ” for every state s1

ein,p−−−−→
eout,f

s2 ∈ T and s′1
e′in,p

′

−−−−→
e′out,f

′
s′2 ∈

T ′.

In other words, components must synchronize on shared actions and proceed independently on

local actions. Nevertheless, SystemC processes running in parallel may cause causality waiting

cycles and it is also represented in the composition of SystemC waiting-state automata. The

verification requires in the first place to detect the unsafe states that contain mutually waiting

processes, for further analysis based on the automata. Besides, the symbolic composition of

the minimal-step automata is guaranteed to be recursive within each SystemC module.
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Definition 1 (unsafe states) : We say that a state (s1, s
′
1) in the composed automaton is a

potential unsafe state if ein(s1) ∩ eout(s′1) 6= ∅ and ein(s′1) ∩ eout(s1) 6= ∅. For instance, in the

FiFo example, the composition of the producer automaton and the consumer automaton as

shown in Figure 8.1 gives rise to a potential unsafe state (p wait c; c wait p). Indeed, it is an

unsafe state where the two processes are waiting for each other.

Definition 2 (non-deterministic transitions) : During symbolic composition, it is possible

to replace the effect function f ◦f ′ of the new transition by f ′◦f , but the composed automaton

might not be equivalent since f ◦f ′ and f ′ ◦f are not always equal. This is the case where the

composition will result in potential non-deterministic behavior. The transition defined with

an effect function f ◦ f ′ such that f ◦ f ′ 6= f ′ ◦ f is called a non-deterministic transition.

Let’s take the following example where we consider two functions f and f’ defined over the

same variable x such as : f=x+1 and f’=x-1

f ◦ f ′ = f(f ′) = (x− 1) + 1 = x and f ′ ◦ f = f(f ′) = (x+ 1)− 1 = x.

In Figure 8.1, the transition (p wait clk, c wait p)
{p clk,w event},(num elem<max)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

{r event,w event},num elem++&num elem−−
(p wait clk, c wait clk) is a deterministic transition since (num elem++)◦(num elem−−) =

(num elem−−) ◦ (num elem+ +.

The symbolic composition of SystemC automata can be used to check the determinism

of a SystemC model : First, the corresponding minimal-step automaton for every process

is defined. Next, all automaton are composed together ; if the composed automaton does

not contain any non-deterministic transition, one can assert that the model is deterministic.

Detecting non-deterministic transitions can be done without doing the composition. Because

the above definition includes all composes of effect functions of the two component automata.

One can simply check whether f ◦ f ′ = f ′ ◦ f , where f ∈ F(A); f ′ ∈ F(A′) (A, A’ are two

component automata). However, such a detection might be too strict in the sense that some

non-deterministic transitions may never be triggered and does not change the deterministic

behavior of the model. This is often because the guard condition of these impossible transitions

will never be true, e.g., p and p′ in the above definition are not true. Actually, such transitions

can be removed after the composition as a refinement, and clearly, checking the non-existence

of non-deterministic transitions based on the refined composition will increase the precision
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Figure 8.1 – The composed SystemC waiting-state automaton for the FIFO example
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of the detection of the non-determinism of SystemC models.

8.2 The Symbolic Reduction of the SystemC WSA

During symbolic composition, all possible transitions between symbolic states are gene-

rated. Transitions include safe transitions, impossible transitions, redundant transitions and

reducible transitions. Let’s define first each category of transitions.

• The safe transitions : They represent the set of possible transitions generated during

symbolic execution. Those transitions are usually triggered in both the minimal-step

automata and the composed automaton.

• The impossible transitions : They represent the set of transitions that can never be

triggered in the composed automata. They are impossible either because their corres-

ponding entry-conditions can never hold, or because they correspond to unsafe states

as previously explained.

• The redundant transitions :They represent the set of transitions that have the same

entry and exit conditions. In this case, it is better to keep only one of these redundant

transitions.

• The reducible transitions : They represent a sequence of consecutive transitions that

are inter-independent ; i.e, the exit-conditions of one transition represent the entry-

conditions for the consecutive transition. In this case, all transitions are merged together

and transformed into only one transition.

Symbolic reduction is a later stage that consists in keeping track of only safe transitions.

It is a major step to build the final automaton. Thus, it reduces all impossible transitions,

replaces redundant transitions and manages the set of reducible transitions. It considers the

environment influence on the system execution, i.e, set of behaviors that may not happen in

the composed automata. Besides, reduction consists in the concatenation of transitions, i.e,

the affect of a certain transition will immediately trigger another transition, we may replace

both transitions by a new one. For example we consider the following two transitions :

s1
ein,p−−−−→
eout,f

s2
e′in,p

′

−−−−→
e′out,f

′
s3
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Where e′in ⊆ eout and p ⇒ f(p). In this case, we may replace the two transitions (called

reducible transitions) with a new transition s1
ein∪ein,p−−−−−−→
e′out,f

′◦f
s2 (which is called the contractum of

them).

In the FIFO example, we can find examples of such reducible transitions, e.g., in the

composed automaton of the two minimal-step automata (see Figure 8.1), the transition :

(p wait clk, c wait clk)
{p clk,c clk},(0=num elem<max)−−−−−−−−−−−−−−−−−−−−−→

{w event},inc
(p wait clk, c wait p) will immediately

trigger the transition (p wait clk, c wait p)
{w event},()−−−−−−−−→
{r event},dec

(p wait clk, c wait clk) so we can

replace both of them by a new transition (p wait clk, c wait clk)
{p clk,c clk},(0=num elem<max)−−−−−−−−−−−−−−−−−−−−−→

{r event},inc◦ded
(p wait clk, c wait clk).

Besides, in both Figure 8.2 and Figure 8.1, we have other examples of reducible

transitions such as : (p wait clk, c wait p)
{p clk},(num elem<max)−−−−−−−−−−−−−−−−→

{w event},inc
(p wait clk, c wait p)

that immediately triggers the transition (p wait clk, c wait p)
{w event},()−−−−−−−−→
{r event},dec

(p wait clk, c wait clk). Both of them, can be replaced by the following transition :

(p wait clk, c wait p)
{p clk},(num elem<max)−−−−−−−−−−−−−−−−→
{r event},dec◦inc

(p wait clk, c wait clk). Besides, the transition

(p wait c, c wait clk)
{c clk},(0<num elem)−−−−−−−−−−−−−−→

{r event},dec
(p wait c, c wait clk) can immediately trigger

the transition (p wait c, c wait clk)
{r event},()−−−−−−−−→
{w event},inc

(p wait clk, c wait clk) and both of

them can be concatenated into the transition (p wait c, c wait clk)
{c clk},(0<num elem)−−−−−−−−−−−−−−→
{w event},dec◦inc

(p wait clk, c wait clk).

In general, a minimal-step waiting-state Automaton does not contain any reducible tran-

sitions. During the verification strategy, reductions are usually required when composing all

the minimal-step automata together. As its is intend to define a model that represents the be-

havior at the level of delta-cycles and hides all interactions within a delta-cycle, the reduction

algorithm should be consistent with the SystemC scheduler and it must shows all possible

interactions between the two processes within a single delta-cycle.

Algorithm Given a SystemC minimal-step waiting-state automaton A(V ) = (S;E; T ),

where T has reducible transitions, let T0 := T , Tremove := {} and Tnew := {}. The following

steps define the algorithm to build the reduced automaton from the automaton generated

during symbolic execution :

1. for every reducible pair (t1, t2) and its contractum t3, where t1, t2 ∈ T0, let Tremove :=
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Figure 8.2 – The reduced SystemC waiting-state automaton for the FIFO.
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Tremove ∪ t1, t2 and Tnew := Tnew ∪ t3;

2. repeat the above step until all reducible pairs in T0 has been manipulated ;

3. let T0 := (T0/Tremove) ∪ Tnew, Tremove := {} and Tnew := {};

4. if there are still reducible pairs in T0, go to the step 1 and repeat the above procedure ;

otherwise, let T ′ := T0.

The reduced automaton is (S,E, T ′).

If we consider n processes (P1, . . . , Pn) and (W1, . . . ,Wn) their corresponding SystemC

waiting-state automata respectively. Let W be the reduced automaton of (W1×, . . . ,×Wn)

using the algorithm for symbolic reduction, then every transition in W represents a whole

execution of the SystemC model within a delta cycle. Otherwise, for every transition such

that : s1
ein,p−−−−→
eout,f

s2, if at the beginning of a delta cycle the model is in a state s1 and the

predicate p holds, and if all events in ein are provided by the environment, then at the end

of a delta cycle, the model will be in the state s2.

A formal modeling of SystemC processes is done up to the level of delta cycles, using

the SystemC waiting-state automata, together with the composition and the reduction algo-

rithms. Note that at this stage, events of the final automaton can be devided into two sets : the

set of environment events Ee and the set of internal events Ei. The environment events are

events generated by the SystemC engine, which are typically time events such as clock events.

Using the latter classification of events, the SystemC waiting-state automaton can be reduced

again by removing those transitions depending on non environment events, i.e., transitions

where ein /∈ Ee. For instance, the reduced automaton in Figure 8.2 can be again reduced to the

one in Figure 8.3. We take for example, the transition : t1 = (p wait c, c wait p)
{w event},()−−−−−−−−→
{r event},dec

(p wait c, c wait clk), that depends on w event which presents the entry condition for this

transition. Since, the generation of the event w event depends on the previous transi-

tions that immediately trigger t1, i.e, w event must figure in the set of exit conditions of

these transitions. We conclude that t1 must be reduced from the automaton in Figure 8.2,

the same applies to transitions : (p wait c, c wait p)
{r event},()−−−−−−−−→
{w event},inc

(p wait clk, c wait p),

(p wait clk, c wait p)
{p clk,w event},(num elem<max)−−−−−−−−−−−−−−−−−−−−−→
{r event,w event},dec◦inc

(p wait clk, c wait clk) and finally the

transition (p wait c, c wait clk)
{c clk,r event},(num elem>0)−−−−−−−−−−−−−−−−−−−→
{r event,w event},inc◦dec

(p wait clk, c wait clk).
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Interestingly, we can conclude easily from the new automaton that the state

(p wait c, c wait p) is an unsafe state since there is no transition getting out of it. Indeed,

this state is exactly the deadlock state where the producer and the consumer are waiting for

each other.

8.3 Conclusion

The main idea behind the use of a bottom-up approach for system modeling is to build

a global automaton by composing a set of parallel automata : this was the main goal of

this chapter. Indeed, we resume the definition of the symbolic composition and reduction

of the SystemC waiting-state automata as first presented in [YZM07]. The goal behind the

symbolic composition is first to compose different states of different components. Then, we

generate different transitions between the composed states. Finally, we determine the set of

unsafe states and we reduce them, we also eliminate non-deterministic transitions using the

definitions we mentioned before.

During the symbolic reduction step, we eliminate the set of unfaisable transitions and we

reduce the set of the reducible and the redundant transitions. We also consider the effect of

the environment events. We define different steps for the symbolic composition and reduction

and we illustrate that on the Fifo example.

In the next chapter, we define possible extensions of the SystemC WSA using parameters

counter and time. We also define how to enhance the previous algorithms for the symbolic

composition and reduction using the extended automata.
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Figure 8.3 – The environment-sensitive SystemC waiting-state automaton for the FIFO.
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Parametric automata are used in various synthesis problems. They are also used to model

programs, whose behavior depend on inputs values from the environment [RAV93]. Parame-

ters are also used to model resources (e.g., time, memory) consumed by transitions.

In this chapter, we start from the previous extension of the SystemC waiting-state auto-

mata as presented in [YZM07], the automata are extended with counters. Counter automata

are basically used to model concurrent distributed systems and to verify properties like the

reachability problem, liveness and determinism. Authors in [YZM07] use counters to verify

further properties on the SystemC waiting-state automata ; one of these properties is to infer

the relations between the entry and the exit conditions. In this thesis, we resume the same

definition of counter automata as in [YZM07]. But we do more, first we develop further the

use of counters on the automata and we specify on some examples the use of the parameter.

Second, we extend the model with further parameters ; i.e, we annotate the model with tem-

poral information, which was not done in the previous work. We denote respectively by (δ),

(t) and (d) the counter, the starting time and the duration of the associated transition. Each

parameter is defined on a transition : (δ) represents the number of time the transition was

triggered, (t) is the time when the transition starts and (d) is the duration of the transition

once triggered. We present later the use of each parameter separately and then the use of all

the parameters together.

9.1 Extending the SystemC WSA with Counters

Counter automata are widely used formalisms to model concurrent distributed systems.

Basically, a counter automaton is a finite-state automaton annotated with counters that hold

positive integer values. We apply arithmetic operations on counters. Counter automata are

naturally infinite-state systems since the counters are unbounded numbers. They are used to

model some desired properties on systems. Among these properties, we may mention safety

properties : these properties may often be expressed by reachability properties on the model.

Reachability properties are algorithmically checkable for finite-state systems, however this

situation is more complex for infinite-state systems.

In the SystemC waiting-state automata, each transition is annotated with a counter,

which is a global variable that is incremented by 1 each time the transition is triggered. This
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parameter is used first to infer the relations between system transitions and second to verify

properties about behavioral relations between processes and about processes themselves :

v If we take each process independently : δ counts how many times the predicate p is true,

how many times the event eout was triggered and changes the affect of the function f(p).

All these information will be used later to decide for example which transition is safe

and accordingly decide whether a state is reachable or not.

v If we take the composed automaton (for the whole system) : δ is used to reduce tran-

sitions that don’t satisfy conditions on counters. We can also use counters to detect

deadlocks on the composed automata, decide about safe states, reduce impossible and

redundant transitions.

We resume the example of the FIFO, where we have two main processes : the producer

that is writing an element to the buffer at each p clock and the consumer which is reading an

element from the buffer at each c clock. We take each automaton separately and we extend it

with counters : a counter for each transition. Figure 9.1 shows the automata of the producer

and the consumer extended with counters. If we take for example the parameter δ1
w : it counts

Figure 9.1 – The automata for the consumer and the producer extended with counters.

the number of times the producer entered the wait state p wait clk, i.e, how many times it

was activated. Besides, a read event can only occur if a write occurs before it. In other words,

if we want to verify the relation between the notified events r event, w event and the variable

num elem which determine the number of elements in the buffer, we have to verify the relation

below : the number of elements read from the buffer must be less or equal to the number of
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elements written to the buffer. Formally, it should always hold that :


δ1
w + δ2

w ≥ δ1
r + δ2

r

(δ1
w + δ2

w)− (δ1
r + δ2

r ) ≤ num elem

(9.1)

We may add condition on counters to verify entry and exit conditions, e.g, the condition to

exit the state p wait clk is the presence of the signal p clk and the condition δ1
w = δ3

w − 1.

Such relations on counters can be inferred during the construction stage of the WSA

using for instance techniques based on abstract interpretation [CC77, Bal02, Moy05] like in

[Ven98, Ven97].

9.1.1 Syntax

An extended SystemC waiting-state automaton over a set V of variables, is a quadruple

A = (S,E, T , C), where S is a finite set of states, E is a finite set of events, C is a fi-

nite set of counters and T is a finite set of transitions where every transition is a 7-tuples

(s, ein, p, eout, f, s
′, δ) :

q s and s′ are two states in S, representing respectively the initial state and the final state

of the transition,

q ein and eout are two sets of events : ein ⊆ E, eout ⊆ E,

q p is a predicate defined over variables in V and counters C, i.e, FV (p) ⊆ V
⋃
C,

q f is an effect function over V,

q δ ∈ C is the counter associated to the transition that increments each time it is executed.

The strategy of modeling SystemC designs using the extended SystemC waiting-state auto-

mata is similar as before : it requires first to build a minimal-step automaton for each process,

annotate the transitions with counters. The counters are used to specify conditions about the

number of time a transition can be activated during the execution of the model. Once condi-

tions on counters are well defined (one can resort to abstract techniques to approve those

conditions), we proceed to the symbolic composition of the minimal-step automata genera-

ted for each process. A later stage is to reduce the composed automaton using the symbolic

reduction algorithm. The automaton can then be passed to a model-checking procedure.
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9.1.2 The Symbolic Composition

The symbolic composition of two automata A and A′ over the same set of variables V works

similarly as in the case of standard waiting-state automata. What makes the composition more

complicated is that parameters of the automata A and A′ do not correspond to the parameters

of the composed automaton A×A′. A transition τ of the automata A may be composed with

many transitions {τ ′1, . . . , τ ′n} of the automaton A′, and the values of counters of the transition

τ in A should be represented in the values of counters for (τ × τ ′0), . . . , (τ × τ ′n).

If δ
τ ′k
τ denote the counter associated to the transition (τ × τ ′k) in the composed automata,

then δτ =
∑

k δ
τ ′k
τ .

As the transition predicates (i.e., guard conditions) in the extended automata are defined

over counters and system variables, the composition should ensure that these predicates of

component automata are properly translated in the composed automaton. In particular, we

must replace all the occurrence of a transition counter from the component automata, with

the value δτ recently presented.

Algorithm Given two extended SystemC waiting-state automata A = (S,E, T , C) and

A = (S′, E′, T ′, C′), over the same set V of variables. The combination of the two SystemC

waiting-state automata is still a SystemC waiting-state automaton (S × S′, E
⋃
E′, T ′′, C′′)

written as A × A′ where T ′′ is the smallest set of transitions and C′′ is the associated set

of counters.Π(s, ein, p, eout, f, s
′, δ) is the set of counters of C′′ associated to a transition in

T × T ′. Mc a morphism that maps counters in C × C′ to C′′, such that :

q Π(s1, ein, p, eout, f, s2, δ) := {δ∗}
⋃

Π(s1, ein, p, eout, f, s2, δ) and (s1, s
′
1)

ein,Mc(p),δ∗−−−−−−−−→
eout,f

(s2, s
′
1) ∈ T ′′ for every transition s1

ein,p,δ−−−−→
eout,f

s2 ∈ T and for every state s′1 ∈ S′ such that

for every transition s′1
e′in,p

′,δ′

−−−−−−→
e′out,f

′,s′2

s′2 ∈ T ′, either e′in * ein or p; p′,

q Π(s′1, e
′
in, p

′, e′out, f
′, s′2, δ

′) := {δ∗}
⋃

Π(s′1, e
′
in, p

′, e′out, f
′, s′2, δ

′) and (s1, s
′
1)

e′in,Mc(p′),δ∗−−−−−−−−→
(e′out,f

′)

(s1, s
′
2) ∈ T ′′ for every transition s′1

e′in,p
′,δ′

−−−−−→
e′out,f

′
s′2 ∈ T ′ and for every state s1 ∈ S such

that for every transition s1
ein,p,δ−−−−→
eout,f

s2 ∈ T , either ein * e′in or p
′ ; p,

q Π(s1, ein, p, eout, f, s2, δ) := {δ∗}
⋃

Π(s1, ein, p, eout, f, s2, δ) and

Π(s′1, e
′
in, p

′, e′out, f
′, s′2, δ

′) := {δ∗}
⋃

Π(s′1, e
′
in, p

′, e′out, f
′, s′2, δ

′) and
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(s1, s
′
1)

ein
⋃
e′in,Mc(p∧p′),δ∗−−−−−−−−−−−−−→

eout
⋃
e′out,f◦f ′

(s2, s
′
2) ∈ T ′′, for every pair of transitions s1

ein,p,δ−−−−→
eout,f

s2 ∈ T

and s
′
1

e′in,p
′,δ′

−−−−−→
e′out,f

′
s′2 ∈ T ′.

q According to the transition (s1, ein, p, eout, f, s2, δ
s2
s1 ), the morphismMc maps the counter

δ to the sum of transition counters defined in Π(s1, ein, p, eout, f, s2, δ)

M(δ)→
∑

δ∗∈Π(s1,ein,p,eout,f,s2,δ
s2
s1

)

δ∗.

Definition 1 A morphism M is an abstraction structure that maps between two mathema-

tical structures (called objects). Much of the terminology of morphisms comes from concrete

categories, where objects are simply sets with some additional structure, and morphisms are

functions preserving this structure.

A morphism is often thought of as an arrow linking an object called the domain to

another object called the codomain. In set theory, morphisms are functions ; in topology,

morphisms are continuous functions ; in universal algebra, they are called homomorphisms ;

in group theory, we call them group homomorphisms.

Definition 2 There are two operations defined on every morphism, the domain (or source)

and the codomain (or target). If a morphism f has domain X and codomain Y, we write

f : X → Y . Thus a morphism is an arrow from its domain to its codomain. The set of all

morphisms from X to Y is denoted homC(X,Y ) or simply hom(X,Y ) and called the hom-set

between X and Y.

For every three objects X, Y, and Z, there exists a binary operation hom(X,Y )×hom(Y,Z)→

hom(X,Z) called composition. The composition of morphisms is often represented by a com-

mutative diagram. For example, Morphisms satisfy two axioms :

v Identity : for every object X, there exists a morphism idX : X → X called the identity

morphism on X, such that for every morphism we have idB ◦ f = f = f ◦ idA.

v Associativity : h ◦ (g ◦ f) = (h ◦ g) ◦ f whenever the operations are defined.

Figure 9.2 shows the composed automaton for the FIFO example annotated with counters.

The automaton is similar to the automaton in Figure 8.1 to which are added relations between
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Figure 9.2 – The composed extended automaton for the FIFO example.
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counters of minimal automata.

9.1.3 The Symbolic Reduction

The process of symbolic reduction of WSA extended with counters is similar to that

of normal WSA, since reduction eliminates impossible transitions. In fact, if the effect

of a certain transition will immediately trigger another transition, we may replace both

transitions by a new one ; we call that the concatenation of two transitions. But, in this case

we have counters or conditions over counters that impact the reduction process.

If we resume the FIFO example and take the example above of reduced transitions presented

in the previous section such that : t1 = (p wait clk, c wait clk)
{p clk,c clk},(0=num elem<max)−−−−−−−−−−−−−−−−−−−−−→

{w event},inc
(p wait clk, c wait p) that will immediately trigger the transition t2 =

(p wait clk, c wait p)
{w event},()−−−−−−−−→
{r event},dec

(p wait clk, c wait clk) so we can replace both of

them by a new transition t3 = (p wait clk, c wait clk)
{p clk,c clk},(0=num elem<max)−−−−−−−−−−−−−−−−−−−−−→

{r event},inc◦ded
(p wait clk, c wait clk) We suppose that δ1, δ2 and δ3 are respectively the counters associa-

ted to t1, t2 and t3. In the reduced automata, δ3 must verify : δ3 = δ1 + δ2. Besides, in the

reduced automaton mentioned in Figure 8.3 we add another condition over counters, i.e, the

sum of counters representing a w event must be superior or equal to the sum of counters

representing a r event in the reduced automaton. Moreover, the sum of counters presenting

a w event and those presenting a r event must be less or equal to the number of elements in

the buffer (similar to equation (1)).

Algorithm Given a SystemC minimal-step waiting-state automaton A = (S,E, T , C), where

T has reducible transitions, let T0 := T , C0 := C, let Tremove, Tnew, Cremove, Cnew := {}. The

following steps define an algorithm of removing the reducible transitions :

1. For every reducible pair (t1, t2) and its contractum t3, where t1, t2 ∈ T0, let : Tremove :=

Tremove
⋃
{t1, t2} and Tnew := Tnew

⋃
{t3}, Cremove = Cremove

⋃
{ the counters associated

to t1 and t2},Cnew = Cnew
⋃
{ the counter associated to t3},

replace the counters associated to the removed transitions t1 and t2 that appear in all

the pre-conditions and post-conditions defined in T0 with the the counter associated to

the transition t3.

2. Repeat the above step until all reducible pairs in T0 have been manipulated,
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Figure 9.3 – The reduced extended automaton for the FIFO example.
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3. Let T0 := (T0/Tremove) ∪ Tnew, let C0 := (C0/Cremove)
⋃
Cnew and let

Tremove, Cremove, Tnew, Cnew := {}.

4. If there are still reducible pairs in T0, go to the step 1 and repeat the above procedure,

otherwise, let T ′ := T0, and C′ := C0.

The reduced automaton is (S,E, T ′, C′).

In the FIFO example, the reduced automaton is presented in Figure 9.3. Figure 9.3 shows

a reduced automaton compared to the automaton in Figure 9.2. But it do more, in fact

conditions on counters require further reductions of transitions : this is the main idea behind

using the counters. In the next subsection, we introduce another extension of the SystemC

waiting-state automata using time annotations.

9.2 Extending the SystemC WSA with Time

The SystemC waiting-state automata, as presented in [YZM07], have the notion of global

state where information about the system evolution is expressed on transitions. The model

expresses also concurrency and synchronization between parallel processes. The SystemC

WSA, as presented in the previous section, is also extended with counters that allows to

check further properties about the system under study. Indeed, it will be interesting if we

add additional information about the dynamic behavior of such models which is missing

in [YZM07] where all information about time properties get lost. We need to express time

information on the SystemC WSA because refining SystemC code with respect to the delta-

cycle semantics abstract delta-cycles to untimed atomic transitions. Besides, during SystemC

simulation, precise information about execution time are not available.

Time information include the evolution of states and state transitions as well as timing

constraints like deadlines, the periodic execution of processes and external event recognition

based on time of occurrence. That is why, we propose in this section to extend the work of

[YZM07] with time information about the system which is essential for real-time applications

that should guarantee correct system behavior. We call the extended automata : the Timed

SystemC waiting-state automata (Timed SystemC WSA) [HM09].

This is the main contribution to the work in [YZM07] where all information about time

properties are not expressed. We propose to annotate each transition with additional infor-
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Figure 9.4 – Timed WSA for the producer and the consumer.

mation about time constraints. More precisely, transitions are timed, i.e. a transition can only

be activated if a given time condition is verified and it also defines how long a transition takes

to be executed. Verifying temporal properties on a reduced model like the SystemC waiting-

state automata is much more easier than on a complex one, since the state space become

reduced. Besides, in the SystemC WSA model, transitions represent an abstraction of a set

of intermediate internal transitions of each SystemC component within a delta cycle ; i.e, it

is mandatory to verify the correctness of the model with respect to strict time constraints at

each delta cycle. Moreover, one of the critical problems in hardware designs is the determina-

tion of the WCET (worst-case execution time), which is the duration the task could take to

execute on a specific hardware platform. Many approaches [CFW01] were developed in this

field. We will prove in a next chapter that modeling the hardware using the Timed SystemC

waiting state automata gives an exact and an accurate approximation of the WCET. Indeed,

we model the processor behavior using the Timed SystemC WSA as presented in [VPM11]

and we proceed to an intelligent state fusion as presented in [Ben11].

In this approach, we consider waiting states as instantaneous and eager, i.e. time progress

in states is neglectable compared to time in transitions. This allows to express maximal bounds

on time progress in transitions. The Timed SystemC WSA is then used to verify the following

properties :

v Time progression and system progression evolve concurrently, waiting states denote the

system progression but are timeless.

v The system can restrict time progress in transitions (by means of delta events and

conditional variables).
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v System transitions can be enabled or disabled by time progress.

In this study, we also consider two types of system communications. Actually timing

constraints depend not only on inputs but also on the support of the communication. The

support of the communication (the channel in this case) can be either instantaneous, i.e com-

munication between processes occurs at 0 time or with certain latency. Indeed we distinguish :

q Immediate channels, where communication occurs at 0 time

q Channels with latency, where communication occurs with certain latency.

9.2.1 Syntax

A Timed SystemC waiting-state automaton over a set V of variables, is a 5-tuples A =

(S,E, T , T,D), where S is a finite set of states, E is a finite set of events, T is a finite set

of transition starting times, D is a finite set of transition durations and T is a finite set of

transitions where every transition is a 8-tuples (s, ein, p, t, eout, f, d, s
′) :

q s and s′ are two states in S, representing respectively the initial state and the end state

of the transition,

q ein and eout are two sets of events : ein ⊆ E, eout ⊆ E,

q p is a predicate defined over variables in V, T and D, i.e., FV (p) ⊆ V
⋃
T
⋃
D, where

FV(p) denotes the set of free variables in the predicate p,

q t is the starting time associated to the transition,

q f is an effect function over V,

q d is the duration of the transition.

Indeed, a transition in the Timed SystemC WSA is characterized by :

+ Its functional triggering conditions we are talking about entry and exit conditions p and

f .

+ Input and output events ein and eout.
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+ A time dependent enabling conditions, expressing at which time the transition is pos-

sible.

+ An attribute delay, giving information about the duration that may take each process

to change its state.

Let us illustrate this on the FIFO example. Figure 9.4 represents the Timed SystemC waiting-

state automata for the producer and the consumer. For instance,t1r represents the time when

the transition from c wait p state to c wait clk state starts, it is actually the time when the

consumer is hung up waiting for the producer to write into the buffer. Besides, d1
r presents

the period of time during which the consumer reads from the buffer. These two values provide

meaningful information about the execution time and the behavior of the whole system. For

instance, a read can only occur if a write occurs before it, this property can be represented

using durations, i.e., the starting time of transition representing an r event after a w event is

always more or equal to the sum of the starting times and durations representing a w event.

Formally, it should always hold that :


t1r ≥ t1w + d1

w

t1r ≥ t2w + d2
w

And it is the same for a starting time of transition representing a w event.


t1w ≥ t1r + d1

r

t1w ≥ t2r + d2
r

The previous results are true in the case of immediate channels where communications are

instantaneous. These results will be different if we use channels with latency, i.e. we add time

constraints due to data transfert in the channel. Indeed, we obtain the following relations :


t′r

1 ≥ t′w1 + d′w
1

t′r
1 ≥ t′w2 + d′w

2


t′w

1 ≥ t′r1 + d′r
1

t′w
1 ≥ t′r2 + d′r

2
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9.2.2 Symbolic Composition

The symbolic composition of two automata A and A′ works similarly as in the case of

standard WSA and the last extended WSA.

Our strategy of verifying the SystemC models using the Timed SystemC waiting-state auto-

mata requires : (i) to build a minimal-step automaton for every process, (ii) to infer relations

over transitions timers (starting time and duration) and (iii) to compose them together to

build a larger automaton that can be passed to a model-checker. The symbolic composition

of two automata A(V ) and A′(V ) works similarly as in the case of standard waiting-state

automata. What makes the composition a bit more complicated is that values of times of

the automata A(V ) and A′(V ) do not correspond to the values of times of the composed

automaton A(V )×A′(V ).

If we consider a transition τ of the automata A : τ may be composed with many tran-

sitions {τ ′1, . . . , τ ′n} of the automaton A′. The values of t and d of the transition τ should

be represented in the values of times for (τ × τ ′0),. . ., (τ × τ ′n). We suppose that tkτ and dkτ

denote respectively the starting and the duration associated to the transition (τ × τk) in the

composed automata, then t = minkt
k
τ and d >

∑
k d

k
τ .

We consider a timed automaton as deterministic when it does not contain any non-

deterministic transition. In the untimed case a deterministic transition has a single start

state and from each state, given the next sc event, the next state is uniquely determined. We

want similar criterion for determinism for the timed automata : given an extended state and

the next input sc event along with its time of occurrence, the extended state after the next

transition should be uniquely determined.

Algorithm Given two Timed SystemC waiting-state automata A = (S,E, T , T,D) and

A′ = (S′, E′, T ′, T ′, D′), over a set V of variables. The combination of the two Ti-

med SystemC waiting-state automata is still a timed SystemC waiting-state automaton

(S × S′, E
⋃
E′, T ′′, T ′′, D′′) written as A × A′ where T ′′ is the smallest set of transitions,

T ′′ the associated set of the starting times and D′′ is the corresponding set of durations.

Π(s, ein, p, t, eout, f, d, s
′) is the set of times of T ′′ and D′′ associated to a transition in T ×T ′.

Mt a morphism that maps starting times in T × T ′ to T ′′ and Md a morphism that maps

durations in D ×D′ to D′′ such that :
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q Π(s1, ein, p, t, eout, f, d, s2) := {t∗, d∗}
⋃

Π(s1, ein, p, t, eout, f, d, s2) and

(s1, s
′
1)

ein,Mt(p),Md(p),t∗−−−−−−−−−−−−→
eout,f,d∗

(s2, s
′
1) ∈ T ′′ for every transition s1

ein,p,t−−−−−→
eout,f,d

s2 ∈ T

and for every state s
′
1 ∈ S′ such that for every transition s

′
1

e
′
in,p
′
,t
′

−−−−−−−→
e
′
out,f

′,d′,s
′
2

s
′
2 ∈ T ′, either

e
′
in * ein or p; p

′
,

q Π(s′1, e
′
in, p

′, t′, e′out, f
′, d′, s′2) := {t∗, d∗}

⋃
Π(s′1, e

′
in, p

′, t′, e′out, f
′, d′, s′2) and

(s1, s
′
1)

e′in,Mt(p′),Md(p′),t∗

−−−−−−−−−−−−−→
e′out,f

′,d∗
(s1, s

′
2) ∈ T ′′ for every transition s

′
1

e′in,p
′,t′

−−−−−−→
e′out,f

′,d′
s
′
2 ∈ T ′

and for every state s1 ∈ S such that for every transition s1
ein,p,t−−−−−→
eout,f,d

s2 ∈ T , either

ein * e′in or p
′ ; p,

q Π(s1, ein, p, t, eout, f, d, s2) := {t∗, d∗}
⋃

Π(s1, ein, p, t, eout, f, d, s2) and

Π(s′1, e
′
in, p

′, t′, e′out, f
′, d′, s′2) := {t∗, d∗}

⋃
Π(s′1, e

′
in, p

′, t′, e′out, f
′, d′, s′2) and

(s1, s
′
1)

ein
⋃
e′in,Mt(p∧p′),Md(p∧p′),t∗

−−−−−−−−−−−−−−−−−−−→
eout

⋃
e′out,f◦f

′ ,d∗
(s2, s

′
2) ∈ T ′′, for every pair of transitions

s1
ein,p,t−−−−−→
eout,f,d

s2 ∈ T and s′1
e′in,p

′,t′

−−−−−−→
e
′
out,f

′,d′
s′2 ∈ T ′.

q According to the transition (s1, ein, p, t
s2
s1 , eout, f, d

s2
s1 , s2), the morphism Mt maps the

starting t to the min of transitions starting times defined in Π(s1, ein, p, t, eout, f, d, s2)

M(t)→ mint∗∈Π(s1,ein,p,t,eout,f,d,s2)t
∗

q According to the transition (s1, ein, p, t
s2
s1 , eout, f, d

s2
s1 , s2), the morphism Md maps the

the duration d to the sum of durations defined in Π(s1, ein, p, t, eout, f, d, s2)

M(d)→ d ≥
∑

d∗∈Π(s1,ein,p,t,eout,f,d,s2)

d∗.

The algorithm for the symbolic composition of a set of Timed SystemC waiting-state automata

is roughly syntactically similar to the algorithm used in Section 9.1. The algorithm used for

the SystemC WSA extended with counters is simple : it infers only the relations between

the counters used in the minimal-step automata generated for each process and the resulting

counters defined for the composed automaton. Thus, it doesn’t use further constraints to

infer the relations between both sets ; for example constraints defined on the input and the

output conditions of the transition. Although, in the case of the Timed SystemC waiting-

117



118
CHAPTER 9. EXTENDING THE SYSTEMC WAITING STATE AUTOMATA WITH

COUNTERS AND WITH TIME

Figure 9.5 – The composed timed WSA for the producer and the consumer.
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state automata, the symbolic composition of the the parallel automata is more intricate

since the relations between timing information on the single automata and the composed

automaton depend not only on both sets of time parameters but also on the global system

time properties. So, in order to decide which transition to keep in the final automaton, we

add more constraints on the timing properties of each transition. Each transition, whose time

parameters don’t respect constraints defined on the global execution time of the system, are

automatically removed. Although, in the case of automata extended with counters, those

transitions are sometimes preserved.

In conclusion, the algorithm for the symbolic execution of Timed SystemC WSA is more

difficult compared to the algorithm used in SystemC WSA extended with counters, because

it is based on constraints defined on the time and not only on the functional constraints.

9.2.3 Symbolic Reduction

The process of the symbolic reduction of the Timed SystemC waiting-state automata is

similar to that in the previous sections, where the automata were first not annotated with

parameters and then they were annotated with counters. In the case of the non-annotated

SystemC WSA, the symbolic reduction reduces the set of unfaisable and reducible transitions.

Besides, it reduces transitions depending on non environment events as mentioned in Chapter

8. In the case of automata annotated with counters, we use the counters to reduce further

transitions (resulting from non-annotated automata) that don’t respect the formulas defined

over counters as defined in Section 9.1. And now, timing information about transitions, es-

pecially the starting time of each transition as well as the duration during which an event is

notified, will further enhance the symbolic reduction algorithm.

In fact, we reduce first the subset of time parameters that corresponds to the reduced

transitions. The main difference here, is that constraints over time properties help to reduce

extra transitions ; i.e, in addition to the reductions that we have applied on non-annotated

automata, constraints over time properties requires further reductions. For example, if a

transition starts execution at t time, but at least one of the entry conditions (ein and p)

is not available at t, then this transition can not be triggered and then removed from the

composed automata.

The algorithm for the symbolic reduction of the Timed SystemC waiting-state automata is
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different compared to the algorithm used for the symbolic reduction of the automata extended

with counters. Hence, in the case of the automata extended with counters, the concatenation

of the reducible transitions can be done the same way as in the case of the non-annotated

automata. Later, we can add constraints on counters defined on the reducible transitions. But,

in the case of the Timed automata, we can not reduce the set of transitions before verifying the

time constraints ; i.e, reduction of automata and inferring relations between time constraints

are done simultaneously. Thus, the symbolic reduction of the Timed SystemC waiting-state

automata is not obvious compared to the symbolic reduction of the automata extended with

counters. It requires the joint verification of the constraints defined on the starting time of

each transition and its duration, in addition to the detection of the reducible transitions

themselves, which requires more refinement of the algorithm used in Section 9.1.

Algorithm Given a Timed SystemC minimal-step waiting state automaton A =

(S,E, T , T,D), where T has reducible transitions, let T0 := T , T0 := T, D0 := D, let Tremove,

Tnew := {}, Tremove ,Tnew, Dremove , Dnew := {}.

The following steps define an algorithm to remove all the reducible transitions :

1. for every reducible pair (t1, t2) and its contractum t3, where t1, t2 ∈ T0, let :

Tremove := Tremove
⋃
{t1} and Tnew := Tnew

⋃
{t3}, Tremove := Tremove

⋃
{ the starting

times associated to t1 and t2}, Tnew := Tnew
⋃
{ the starting time associated to t3},

Dremove := Dremove
⋃
{ the durations associated to t1 and t2}, Dnew := Dnew

⋃
{ the

durations associated to t3},

replaces the starting time and the duration associated to the removed transitions t1 and

t2 that appear in all the pre-conditions and post-conditions defined in T0 with the new

couple of time associated to the transition t3.

2. repeat the above step until all reducible pairs in T0 have been manipulated,

3. Let T0 := (T0/Tremove)∪ Tnew , T0 := (T0/Tremove)
⋃
Tnew, D0 := (D0/Dremove)

⋃
Dnew

and let Tremove, Tremove, Dremove, Tnew, Tnew, Dnew := {}.

4. if there are still reducible pairs in T0, go to the step 1 and repeat the above procedure,

otherwise, let T ′ := T0 , T ′ := T0 , D′ := D0.

The reduced automaton is (S,E, T ′, T ′, D′).
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Figure 9.6 – The reduced timed WSA for the producer and the consumer.
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We resume now the reduced automaton in Figure 9.6. As you see, it is si-

milar to the automaton in Figure 8.2, but we add different relations between

time parameters defined in the minimal-step automata. For instance, the transition

t = (c wait p, p wait clk)
{w event,p clk},(num elem<max)−−−−−−−−−−−−−−−−−−−−−→
{w event,r event},inc◦dec

(c wait clk, p wait clk) com-

bines the two transitions : t1 = (c wait p)
{p clk},()−−−−−−−−→
{r event},dec

(c wait clk) and t2 =

(p wait clk)
{p clk},(num elem<max)−−−−−−−−−−−−−−−−→

{w event},inc
(p wait clk). Time parameters of t must be defined over

those of t1 and t2. Using our definition of symbolic composition in Section 9.3.2, the starting

time of t is the minimum of the starting times of t1 and t2. But the duration of the transition

t is the sum of these of t1 and t2. We apply the same approach to other transitions to build

the automaton in Figure 9.6.

9.3 Extending the SystemC WSA with Counters and Time

In the previous subsections, transitions were first annotated with counters that count the

number of times a transition has been activated. Then they were annotated with time in-

formation (the starting time and the duration), which make the automaton a well-adapted

framework for the verification of reactive hardware/software systems. We have also discussed

the effect of that on system properties such as the reduction of state space and the determi-

nation of the execution time.

It will be more efficient if we combine both parameters (counters and time) in the same

automata. Combining the both information, the time at which a transition is activated, the

execution of the transition as well as the number of time a transition has been activated

allow to infer precise information about the system time execution ; i.e if we take each process

separately and we study how many times it gets into a waiting state and for how much

duration, we can compute the lower bound of its execution time. When we compose processes

automata together to get a bigger one using the same parameters time and counters, we

obtain more information about the model and its execution time and consequently, we are

able to verify additional relevant properties and infer new time constraints.
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9.3.1 Syntax

An extended Timed SystemC waiting-state automaton over a set V of variables, is a 5-

tuples A = (S,E, T , C, T,D), where S is a finite set of states, E is a finite set of events, C is a fi-

nite set of counters, T is a set of transition starting times, D is a set of transition durations and

T is a finite set of transitions where every transition is a 9-tuples (s, ein, p, t, eout, f, d, s
′, δ) :

q s and s′ are two states in S, representing respectively the initial state and the final state

of the transition ;

q ein and eout are two sets of events : ein ⊆ E; eout ⊆ E,

q p is a predicate defined over variables in V , T and D, i.e, FV (p) ⊆ V
⋃
T
⋃
D
⋃
C,

q t is the starting time associated to the transition that increments each time it is executed,

q f is an effect function over V ,

q d is the duration of the transition,

q δ ∈ C is the counter associated to the transition that increments each time it is executed.

The automaton of the producer and the consumer annotated with counters and time is shown

in Figure 9.7. we will define now the new relations between both times and counters consi-

Figure 9.7 – The WSA extended with counter and time.

dering in addition to that the total execution time. We have usually the same definitions for

our parameters, e.g δ3
w counts the number of times the transition from state p wait clk to the

state p wait c is triggered, and t1r represents the time the consumer starts reading. Usually

123



124
CHAPTER 9. EXTENDING THE SYSTEMC WAITING STATE AUTOMATA WITH

COUNTERS AND WITH TIME

we have this relation : a read can only occur if a write occurs before it, so when we talk about

counters we have these relations :
δ1
w + δ2

w ≥ δ1
r + δ2

r

(δ1
w + δ2

w)− (δ1
r + δ2

r ) ≤ num elem

Our strategy of verifying temporal constraints in SystemC waiting-state automata is similar

as before, we have also these properties that are mentioned before : We can furthermore

formulate some properties that may require more precise information, considering both times

and counters, i.e we have to verify that the whole reading and writing duration is less than

all time execution, so we have the following property :

{
t0 + (δ1

w ∗ d1
w + δ2

w ∗ d2
w) + (δ1

r ∗ d1
r + δ2

r ∗ d2
r) ≤ Texec tot

Besides, we consider :


t1r ≥ t1w + d1

w

t1r ≥ t2w + d2
w


t1w ≥ t1r + d1

r

t1w ≥ t2r + d2
r

Where, t0 is the starting time for simulation and Texec tot is the total execution time.

As we know the first step for verifying SystemC models is to define the minimal step-

automaton for every process, and then compose them together so as to get a big automaton

for the whole system that will be followed by a reduction procedure. Algorithms for composing

and reducing automata , but we consider three essential sets : the set of starting times, the

set of durations and the set of counters.

9.3.2 Symbolic Composition

A transition τ of an automaton A may be composed with transitions {τ ′1, . . . , τ ′n} of the

automaton A′, and the values of t, d and δ of the transition τ in A should be represented in

the values of times and counters for (τ × τ ′0),. . ., (τ × τ ′n). If tkτ , dkτ and δkτ denote respectively

the starting time, the duration and the counter associated to the transition (τ × τk) in the

composed automata, then t = minkt
k
τ , d >

∑
k d

k
τ and δ =

∑
k δ

k
τ . As the transition predicates

(i.e., guard conditions) in the extended timed waiting-state automaton are defined over the
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times, counters and system variables, the composition should ensure that these predicates

of component automata are properly translated in the composed automaton. In particular,

we must replace all the occurrence of a transition starting time, duration and counter from

component automata, with the values t, d and δ recently presented.

Algorithm Given two Timed SystemC waiting-state automata extended with counters A =

(S,E, T , C, T,D) and A′ = (S′, E′, T ′, C′, T ′, D′), over a set V of variables. The combination

of the two Timed SystemC waiting-state automata is still a Timed SystemC waiting-state

automaton (S × S′, E
⋃
E′, T ′′, C′′, T ′′, D′′) written as A×A′ where T ′′ is the smallest set of

transitions, C′′ is the associated set of counters, T ′′ the associated set of the starting times

and D′′ is the corresponding set of durations, Π(s, ein, p, t, δ, eout, f, d, s
′) is the set of times of

T ′′ and D′′ associated to a transition in T ×T ′, Mc a morphism that maps counters in C ×C′

to C′′, Mt a morphism that maps starting times in T × T ′ to T ′′ and Md a morphism that

maps durations in D ×D′ to D′′ such that :

q Π(s1, ein, p, t, δ, eout, f, d, s2) := {t∗, d∗, δ∗}
⋃

Π(s1, ein, p, t, δ, eout, f, d, s2) and

(s1, s
′
1)

ein,Mt(p),Mc(p),Md(p),t∗,δ∗−−−−−−−−−−−−−−−−−−→
eout,f,d∗

(s2, s
′
1) ∈ T ′′ for every transition s1

ein,p,t,δ−−−−−→
eout,f,d

s2 ∈ T

and for every state s
′
1 ∈ S′ such that for every transition s

′
1

e
′
in,p
′,t′,δ′

−−−−−−−→
e
′
out,f

′,d′,s
′
2

s
′
2 ∈ T ′, either

e
′
in * ein or p; p

′
,

q Π(s′1, e
′
in, p

′, t′, δ′, e′out, f
′, d′, s′2) := {t∗, d∗, δ∗}

⋃
Π(s′1, e

′
in, p

′, t′, δ′, e′out, f
′, d′, s′2) and

(s1, s
′
1)

e′in,Mt(p′),Mc(p′),Md(p′),t∗,δ∗

−−−−−−−−−−−−−−−−−−−→
e′out,f

′,d∗
(s1, s

′
2) ∈ T ′′ for every transition s

′
1

e′in,p
′,t′,δ′

−−−−−−→
e′out,f

′,d′
s
′
2 ∈ T ′

and for every state s1 ∈ S such that for every transition s1
ein,p,t,δ−−−−−→
eout,f,d

s2 ∈ T , either

ein * e′in or p′ ; p,

q Π(s1, ein, p, t, δ, eout, f, d, s2) := {t∗, d∗, δ∗}
⋃

Π(s1, ein, p, t, δ, eout, f, d, s2) and

Π(s′1, e
′
in, p

′, t′, δ′, e′out, f
′, d′, s′2) := {t∗, d∗, δ∗}

⋃
Π(s′1, e

′
in, p

′, t′, δ′, e′out, f
′, d′, s′2) and

(s1, s
′
1)

ein
⋃
e′in,Mt(p∧p′),Mc(p∧p′),Md(p∧p′),t∗,δ∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
eout

⋃
e′out,f◦f

′
,d∗

(s2, s
′
2) ∈ T ′′, for every pair of transitions

s1
ein,p,t,δ−−−−−→
eout,f,d

s2 ∈ T and s′1
e′in,p

′,t′,δ′

−−−−−−→
e
′
out,f

′,d′
s′2 ∈ T ′.

q According to the transition (s1, ein, p, t
s2
s1 , δ

s2
s1 , eout, f, d

s2
s1 , s2), the morphism Mt maps the
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starting t to the min of transitions starting times defined in Π(s1, ein, p, t, eout, f, d, s2)

M(t)→ mint∗∈Π(s1,ein,p,t,δ,eout,f,d,s2)t
∗

q The morphism Md maps the the duration d to the sum of durations defined in

Π(s1, ein, p, t, δ, eout, f, d, s2)

M(d)→ d ≥
∑

d∗∈Π(s1,ein,p,t,δ,eout,f,d,s2)

d∗.

q The morphism Mc maps the counter δ to the sum of transition counters defined in

Pi(s1, ein, p, eout, f, s2, δ)

M(δ)→
∑

δ∗∈Pi(s1,ein,p,t,δ,eout,f,d,s2,δ
s2
s1

)

δ∗.

The composed automaton of the FIFo example annotated with both counters and time is

shown in Figure 9.8

9.3.3 Symbolic Reduction

The algorithm for symbolic reduction of the composed automata becomes more complica-

ted if we add both time and counters. But the approach is still the same : we define first the

set of pairs of reducible transitions and then we replace each pair with only one transition

(the contractum of both transitions). During the execution of this algorithm, we first reduce

unfaisable transitions like in Chapter 8 where automata are not annotated, so we don’t have

yet conditions about the order of the execution of the transitions neither the number of times

a transition can be executed. Next, we need to consider not just the entry-conditions of each

transition and its environment events but also the time of occurrence of events and the du-

ration after which the event become visible in the environment. Also, counters inform about

variables or events should be modified. Those parameters are important especially in the case

of infinite systems where having a finite representation of the system is a major issue.

1. For every reducible pair (t1, t2) and its contractum t3, where t1, t2 ∈ T0, let : Tremove :=

Tremove
⋃
{t1} and Tnew := Tnew

⋃
{t3} ; Cremove = Cremove

⋃
{ the counters associated
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Figure 9.8 – The composed extended automaton.

127



128
CHAPTER 9. EXTENDING THE SYSTEMC WAITING STATE AUTOMATA WITH

COUNTERS AND WITH TIME

to t1 and t2} ;Cnew = Cnew
⋃
{ the counter associated to t3} ; Tremove = Tremove

⋃
{ the

starting times associated to t1 and t2} ; Tnew = Tnew
⋃
{ the starting time associated to

t3} ; Dremove = Dremove
⋃
{the durations associated to t1 and t2} ; Dnew = Dnew

⋃
{ the

duration associated to t3}, replaces the starting times, the durations and the counters

associated to the removed transitions t1 and t2 that appear in all the pre-conditions and

post-conditions defined in T0 with the new values associated to starting time, duration

and the counter associated to the transition t3.

2. Repeat the above step until all reducible pairs in T0 have been manipulated ;

3. Let T0 := (T0/Tremove) ∪ Tnew, C0 := (C0/Cremove)
⋃
Cnew, T0 := (T0/Tremove)

⋃
Tnew,

D0 := (D0/Dremove)
⋃
Dnew and Tremove, Cremove, Tremove, Dremove, Tnew, Cnew, Tnew,

Dnew := {}.

4. If there are still reducible pairs in T0, go to the step 1 and repeat the above procedure ;

otherwise, let T ′ := T0, C′ := C0, T
′ := T0 and D′ := D0.

The reduced automaton is then (S,E, T ′, C′, T ′, D′).

The reduced automaton of the consumer and the producer composed together is shown

in Figure 9.9.

9.4 Conclusion

In this chapter, we conclude about the global representation of the SystemC waiting-state

automata. In fact, we present here different extensions of the model : first, it was extended

with counters that are basically used to verify concurrent and distributed systems. Counter

automata are used to prove some properties about system behavior such as the reachability

property which is difficult to verify in the case of infinite systems. Next, we extend the auto-

mata (as an important contribution to the work of [YZM07]) with time annotations [HM09].

We define two parameters : (i) the starting time of the transition and (ii) the duration of

the transition. Then we combine the three parameters on the same automata and we prove

that we can verify further efficient properties using all the parameters together. We also infer

relations between different parameters and we prove that we can enhance both algorithms
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Figure 9.9 – The reduced automaton.
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CHAPTER 9. EXTENDING THE SYSTEMC WAITING STATE AUTOMATA WITH

COUNTERS AND WITH TIME

for the symbolic composition and the symbolic reduction of the global automata and how to

make them more efficient.
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CHAPTER 10

Summary

In Part II, we presented a detailed description of the SystemC waiting-state model as

previously presented in papers [YZM07, HM12, NHD11] : First in Chapter 7, we introduced

the idea behind the model as it was mentioned by authors in [YZM07]. Indeed, the model

gives an abstract representation of the system by reducing its state space modulo the waiting

states and with respect to the semantics of the SystemC scheduler at both the delta-cycle

level and the system-level.

Next, in Chapter 8, we presented different extensions of the automata using coun-

ters [YZM07] and timing properties [HM09]. Extension with counters was the contribu-

tion of work in [YZM07]. But the idea was extended and developed in future work [HM12] :

In [HM12], it was mentioned that counters are used basically to verify and avoid unsafe be-

havior of embedded systems such as the reachability problem and the determinism. Another

contribution to work of [YZM07] is to add timing information and constraints on the Sys-

temC waiting-state automata. Timing constraints are essential to verify real-time applications

where strict and well-defined deadlines should be respected. So, adding temporal information

in addition to counters parameters makes the use of the SystemC WSA model ideal to verify

both functional and non-functional properties of real-time systems. The approach was also

compared to existing approaches that model and analyze the SystemC language at different
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levels of abstractions (another contribution to the work of [YZM07]). It was mentioned that

those existing approaches are also modeling SystemC language at well-defined abstraction

levels, but they are either restricted to a specific level or they are not usually faithfull to

SystemC semantics which was the different case in the approach using the SystemC WSA.

In parallel, we described different algorithms to compose parallel minimal-automata for

different components of the whole system and then algorithms how to reduce the composed

automaton. These algorithms, as presented first in [YZM07], are also extended in later

works [HM12, NHD11]. Those algorithms specify how to generate the set of states and trans

itions between them from the initial automata. They also infer the relations between the

predicates, the functions associated to each subset of predicates and the relations between

different parameters (time and counters).

In the next chapter, we start the first step of the automatic generation of the SystemC

waiting-state automata. Indeed, we define how to build automata by separating methods from

threads and we illustrate that on some examples.
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CHAPTER 11

Mapping SystemC Designs to SystemC WSA

In our approach, we get the description of a system in SystemC. Then we distinguish the

constituent components of the system and their communication relation. The processes in

a SystemC design, either SC METHOD or SC THREAD, build up the components of the

system. Each process is modeled as a SystemC waiting-state automaton. The communication

and coordination between processes is also mentioned in the operational semantics of Sys-

temC. The behavior of the whole system is compositionally obtained by joining the automata

of the processes and their communication scenarios. What we present in this section is also

an additional contribution to the work of [YZM07].

11.1 Determining Constituent Components

Each process of a SystemC design (SC METHOD or SC THREAD) is considered as a

component of the system. The SC METHOD is an uninterruptible process and has no wait

statements. Its automaton must have only one state which is the initial state and the transi-

tions are triggered iff one or more event in the sensitivity list of the process occur or change

value. However, the SC THREAD synchronizes with the environment only through the wait

statements and each wait statement represents a state in the abstract model of the process.

Transitions are built from the control flow graph of the process.
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//FlipFlop.h

#include <systemc.h>

SC_MODULE(FlipFlop) {

sc_in<bool> Clk, Reset, DIn;

sc_out<bool> DOut;

void DoFF();

SC_CTOR(FlipFlop) {

SC_METHOD (DoFF);

sensitive (Reset);

sensitive_pos(Clk);

// or sensitive_pos<< Clk;

}

};

//FlipFlop.cpp

#include "FlipFlop.h"

void FlipFlop::DoFF()

{

if (Reset)

{

Dout= false;

} else

if (Clk.event())

{

Dout=Din;

}

}

};

Figure 11.1 – An example of SC METHOD : a simple FlipFlop Design in SystemC [sys].

11.2 SystemC WSA of the Components

After determining the components of the system, an abstract automaton is derived for

each component. These automata are captured through the wait statements in the control

flow graph of the related processes. In the following, we show how the automata of the

SC METHOD processes and the automata of SC THREAD processes are derived respectively.

11.2.1 SystemC WSA of SC METHOD Processes

The module presented in Figure 11.1 describes a flip-flop with asynchronous reset. When

a rising edge occurs on the Clk input, Din is assigned to Dout. Process DoFF is a method

process, and is called whenever a positive edge occurs on port Clk or a transition happens on

the input Reset, which is an asynchronous reset.

Algorithm

Figure 11.3 shows the algorithm to construct the waiting-state automata of SC METHOD

processes. The waiting-state automaton of an SC METHOD process has only one state which

is the initial state. The transitions are added to the abstract automaton of the process using

the paths from and to the initial state of the control flow graph. The occurrence of events on
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Figure 11.2 – Paths of the Flip Flop SC METHOD.

Begin

create initial state: S0

For each path in the control flow graph

For each combination in the sensitivity list

Add a transition: S0 --> S0

Condition= condition set of the path

Action= action set of the path

EndFor

EndFor

END

Figure 11.3 – Algorithm to construct the SystemC waiting-state automata of SC METHOD
Processes.

each combination of the signals in the sensitivity list of the process, can activate the process

independently. Therefore, for each path, at most 2N − 1 transitions will be added ; where N

is the number of the signals in the sensitivity list of the process. The entry-conditions and

the exit-conditions sets of the transitions of the waiting state automaton are equal to the

condition set and the action set of the path, respectively.

11.2.2 SystemC WSA of SC THREAD Processes

The example in Figure 11.4 shows the timer example. The timer process is sensitive to

the positive edge of the clock Clock, but also depends on the input signal Start. The process

has just one wait statement, a wait for a positive edge on Clock.
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//Timer.h

#include <systemc.h>

SC_MODULE(Timer) {

sc_in<bool> Clock, Start;

sc_out<bool> Timeout;

int count;

void RunTimer();

SC_CTOR(Timer) {

SC_THREAD (RunTimer);

sensitive_pos<< Clock;

count=10;

}

};

//Timer.cpp

#include "Timer.h"

void Timer::RunTimer() {

while (true) {

wait();

if (start.read()) {

count=10;

Timeout.write(false);

}

else {

if (Count>0) {

count--;

Timeout.write(false);}

else {

Timeout.write(true);

}

}

{

};

Figure 11.4 – An example of SC THREAD : Timer process written in SystemC [sys].

Figure 11.5 – Paths of the Timer-Thread.
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BEGIN

create initial state: S0

State: current_state

FOR each path in the control flow graph

current_state=S0

FOR each path from current_state to next wait statement

IF there exists wait statement after that first wait statement

create a new state: S

Add a transition: current_state --> S

Condition= condition set of the path from current_state to S

Action= action set of the path from current_state to S

ELSE

Add a transition: current_state --> S0

Condition= condition set of the path from current_state to S0

Action= action set of the path from current_state to S0

EndIF

EndFor

EndFor

END

Figure 11.6 – Algorithm to Construct the SystemC waiting-state automata of SC THREAD
Processes.

Algorithm

Figure 11.6 shows the algorithm to construct the waiting-state automata of SC THREAD

processes. For each path from one waiting state to the next waiting state, there exists a

transition. The entry-conditions and the exit-conditions sets of the these transition are equal

to the condition and action sets of the corresponding path, respectively. The first transition of

the waiting state automaton starts from the first waiting state. For each subsequent waiting

state, a state is added from which the second transition in the waiting-state automaton starts.

Here, loops are treated like the loops in SC METHOD processes with a little bit difference,

considering wait statements in them. The waiting-state automaton of the Timer Thread is

shown in Figure 11.7.
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Figure 11.7 – The waiting-state automaton for the Timer Thread
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Part III

Automatic Generation of SystemC

Waiting State Automata from

SystemC Codes

This Part is composed of Three Chapters ; it describes an automatic ap-

proach to build the SystemC waiting-state automata from SystemC codes

using different techniques for programs analysis.
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Introduction (Global Approach)

12.1 Formal Semantics of the Programming Language . . . . . . . . . 120
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In Part II, we presented a detailed description of the SystemC waiting-state model and

different extension of it. We also defined how to generate automata for both threads and

methods processes. We globally defined in Chapter 11 algorithms to generate the wait states

for both processes and we illustrate that on some examples.

The SystemC-waiting state automata are transition systems that are manually extracted

from SystemC designs[YZM07], so they need first to be automatically generated from the

SystemC code and then they should be faithfully conform to the initial system. This is the
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main contributions of this thesis : first we have to define an automatic framework to generate

the abstract model and next, we should prove the correctness of the model and validate it.

To build the abstract automata, we follow different steps as specified in Figure12.1 : (1)

We need to properly write the formal semantics of the SystemC language, we use a small

step semantics based on the structural operational semantics of Plotkin [Plo04]. The goal

of developing such semantics is (i) to provide a complete and unambiguous specification of

the language, (ii) to execute stepwise the program statement and (iii) to detect the effect of

that on the global system behavior. We also distinguish between the internal and the global

behavior of each SystemC module. All these information are presented in the syntax of the

operational semantics of the program. Our semantics capture not only the structure of Sys-

temC components but also the compositional behavior of the communicating components and

to do so, we modeled also the behavior of the SystemC scheduler. (2) We proceed to symbolic

execution techniques (SE) [Kin76] to generate the control flow graph of the program. We call

it a conjoint symbolic execution because it combines both symbolic execution and the

operational semantics. The main purposes of applying symbolic execution are : first generate

different execution traces of the system and second express the program using logic formulas

instead of real expressions. This step is a preparatory stage to apply predicate abstraction

techniques which represent the next step. (3) We proceed to abstraction techniques, more

particularly predicate abstraction (PA)[FQ02] first to infer the relations between the logic

formulas generated during the symbolic execution of the parallel automata and second to

merge the paths between each two waiting states in the control flow graph. The ultimate goal

is to build the SystemC waiting-state automaton from the control flow graph which is annota-

ted with logic formulas defined over global variables and information about the environment

events.

Below, we present different steps to automatically generate the SystemC waiting-state

automaton from SystemC programs and we illustrate that on different examples.

12.1 Formal Semantics of the Programming Language

The first step in program analysis is to study the formal semantics of the programming

language. In fact, defining a proper and detailed description of the program semantics is

mandatory in order to give a faithful abstract representation of it. Formal Semantics describes
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Figure 12.1 – Steps to automatically build the SystemC WSA

different steps when executing a program in the specific language. This can be shown by

describing the relationship between the input and output of a program, or an explanation of

how the program will execute on a certain platform, hence creating a model of computation.

To study the semantics of SystemC language, we need to properly express how the effect of the

computation is produced, i.e, how the program changes from one state to another. Changes

may include variables values, the program counter, the environment, etc. We choose to ignore

changes like use of registers and addresses for variables. This is the reason why we adopt

the operational semantics to describe SystemC programs, more particularly the structural

operation semantics (SOS) of Plotkin. They are also called small-step semantics. But before

that, let’s define first the subset of SystemC language that we will study throughout this

thesis.

12.1.1 Subset of SystemC

The goal of this thesis is to propose a global approach to model and then verify SystemC

applications from two points of view : first, to prove the correctness of the model and accor-

dingly the SystemC application up to the delta-cycle level where the anomalies generated due

to SystemC simulation must be avoided. Second, to prove the correctness of the application

on a high level like TLM where details about system behavior are hidden. In this context, Sys-

temC combines both the simulation aspect due to its scheduler and the modeling at different

levels of abstractin including the TLM.

Globally, a SystemC component, or module, is an encapsulated piece of code that contains

different software structures. Inside such a component, processes may share variables and

events in order to synchronize with each other. Communications between modules proceed
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mainly by communication channels (for instance bus models). SystemC provides built-in pri-

mitive communication channels such as sc signal to model hardware signals at the Register

Transfer Level of abstraction. Synchronization associated with the communications is perfor-

med by events and shared variables inside modules and/or channels.

Throughout this thesis, we consider the previous aspects : communications via channels,

events and shared variables, synchronization within a delta cycle, primitives structures, pa-

rallel communication.

The previous subset is quit enough to study the correctness of the parallel composition of

parallel components, we also capture most information about either low level communication

between components using events or the transaction level communication. This restriction is

sufficient for us to study SystemC behavior using the SystemC waiting-state automata.

12.1.2 SystemC Operational Semantics

The idea behind the structural operational semantics [Plo04] is to describe how to execute

the program and not merely what the results of execution are. More precisely, we are interested

in how the states are modified during the execution of the statements.

The operational semantics represent the program as a transition system. The transition

system is a structure < Γ,→> where Γ is a set of elements, it is also called configuration

and →⊆ Γ× Γ is a binary relation called the transition relation.

Example To illustrate how the SOS are executed, we take as an example the IMP language

as presented in [Win93], it is a small imperative language. We suppose the syntax below of

the language :

• Variables x ∈ V ar = {x0, x2, ..., xn}.

• Numbers : m, n are meta variables over Z.

• Arithmetic expressions AExp : a0, a1, ....

• Boolean expressions BExp : b0, b1, ....

• The configuration Conf : c0, c1, ....
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Variables
<x,σ>−→ aσ[x]

Arithmetic Reductions
<n⊕m,σ>−→ a p

where p = n⊕m

Other arithmetic
<a1,σ>→a<a′1,σ>

<a1⊕a2,σ>−→ a a′1⊕a2
expressions

<a2,σ>→a<a′2,σ>

<n⊕a2,σ>−→ a n⊕a′2

Assignement <x:=n,σ>→<skip,σ[x/n]>
<a,σ>→aa′

<x:=a,σ>→<x:=a′,σ>

Sequences
<c0,σ>→<c′0,σ′>

<c0;c1,σ>→<c′0;c1,σ′>

<skip;c1,σ>→<c1,σ>

If statements

<b,σ>→bb
′

<if b then c0 else c1,σ>→<if b′ then c0 else c1,σ>

<if true then c0 else c1,σ>→<c0,σ>

<if false then c0 else c1,σ>→<c0,σ>
While statements <while b do c,σ>→<if b then (c;while b do c)else skip,σ>

Table 12.1 – SOS for IMP language

(AExp) a : := n|x|a0 ⊕ a1

(BExp) b : := true|false|a0 � a1|b0 � b1|¬b

(Conf) c : := skip|x := a|c0; c1|if b then c1 else c2|while b do c

⊕ : := +| ∗ |−

� : := < | > | ≥ | ≤ | =

� : := ∧|∨

We use the notation σ to represent the store, it is a function over variables such as :

σ : V ar → Z. The SOS of the IMP language use a set of rules to define the set of configurations

as below :

< c, σ >→< c′, σ′ > (12.1)

The notation 12.1 is used to describe how a statement changes the configuration from c to

c’ in one step. To describe different syntactic configurations of IMP language, we use the

following notations :

→ : (Conf × Γ)→ (Conf × Γ)

→a : (AExp× Γ)→ AExp

→b : (BExp× Γ)→ BExp
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12.2 Symbolic Execution

The main idea behind symbolic execution [Kin76, Dar88] is to use symbolic values, instead

of actual data to represent the values of program variables as well as the input values. As

a result, the output values computed by a program are expressed as a function of symbolic

values. Evaluation of assignments is done naturally ; the left-hand sided variable receives the

resulting symbolic expression, which should be a polynomial.

Evaluation of alternatives is a bit more complicated. It requires that a path condition PC

-a Boolean expression over the symbolic inputs- is added to the execution state. The path

condition PC is a (quantifier free) boolean formula over the symbolic inputs. It accumulates

constraints which the inputs must satisfy in order for an execution to follow the particular

associated execution path.

At program start, each symbolic execution begins with PC initialized to true. When en-

countering an alternative, evaluation first starts with the evaluation of the associated boolean

expression by replacing variables by their values. Since the values of variables are polynomials

over the symbols, the condition is an expression of the form : P > 0, where P is a polynomial.

Call such an expression R. Then we can have three cases :

• PC ⊃ R and PC 6⊃ ¬R : In this case, the expression is always true, the execution

continues with the conditional code sequence.

• PC ⊃ ¬R and PC 6⊃ R : In this case, the expression is always false, the execution

continues with the else code sequence if an else block is available or simply ignore the

conditional code sequence.

• Otherwise, the boolean condition may be true or false. In this case, we split the path

condition into two paths conditions PCtrue = PC ∧ R and PCfalse = PC ∧ ¬R and

we continue the concurrent execution of the condition code sequence with PCtrue and

the else code sequence or the code located after the conditional code sequence with the

path condition PCfalse.

Example If we consider the program below :

1 ASSUME( true ) ;

2 DECLARE X, Y INTEGER;
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3 IF (X < 0)

4 THEN Y := −X

5 ELSE Y := X

6 RETURN(Y) ;

Figure 12.2 – Symbolic execution of a the example

As mentioned in Figure 12.2, symbolic execution generates all possible execution of the pro-

gram with accumulation of formulas.

In our approach, we use symbolic execution to generate all possible execution traces using

symbolic values instead of real ones. Besides, SE is one of the common methodologies in static

program analysis. It generates a control flow graph (CFG) : an abstract representation of the

behavior of the program. Then, we use abstraction techniques like predicate abstraction to

analyze and optimize the graph (as we will present in next Section).

12.3 Abstract Analysis and Traces Merging

Abstraction techniques like predicate abstraction [FQ02], which is a special variant of

abstract interpretation [CC77, CC92], are widely used for semantics based static analysis of

software. These techniques are based on two main key-concepts : the correspondence between

the concrete and the abstract semantics through the Galois connections, and the feasibility

of a fixpoint computation of the abstract semantics, through the fast convergence of widening
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operators.

In the previous section, we enumerate the usefulness of symbolic execution to generate

the set of the execution traces by generating the control flow graph of the SystemC program.

However, the symbolic execution is itself not approximative, but as precise as possible (which

corresponds to generating abstract formulas instead of real ones). Instead, the necessary

approximation is performed by explicit abstraction operations, which make use of an arbitrary

finite set of predicates over the variables of the program. Let us briefly recall some basic

definitions.

12.3.1 Galois Connection

A Galois connection is a pair of functions (α, γ) defined over a set of partially ordered sets

(Posets). The abstraction function is denoted α and the concrete function is denoted γ.

Definition 1 Let 〈C,≤〉 and 〈D,v〉 be two posets, and consider two monotonic functions

α : C → D and γ : D → C. The tuple GCD = (γDC , C,D, αCD) is a Galois connection if :

∀X ∈ C and ∀Y ∈ D : α(X) v Y ⇒ X ≤ γ(Y )

In a Galois connection or GCD, the functions γDC and αCD are called the concretization

and the abstraction function, respectively. The following are well-known properties of these

functions (see [CC92]).

Lemma 1 〈C,≤〉
α
�
γ
〈D,v〉 is a Galois connection if and only if :

• γDC ◦ αCD is extensive : ∀c ∈ C, c ≤ γDC(αCD(c));

• αCD ◦ γDC is reductive : ∀d ∈ D,αCD(γDC(d)) v d

Lemma 2 LetGGCD be a Galois connection,

• if αCD and γDC form a Galois connection, then one of the two functions determines

the other one. More precisely, for d ∈ D, γDC(d) = tC{c ∈ C | αCD(c) vD d}, and

similarly, for c ∈ C,αCD(c) = uD{d ∈ D | c vC γDC(d)}. Each function is called the

adjoint of the other one.
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• αCD ◦ γDC ◦ αCD = αCD, and γDC ◦ αCD ◦ γDC = γDC .

12.3.2 Fixed points Computation

Traditionally, in abstract interpretation, abstract and concrete semantics are defined as

the computation of the fixpoint of monotonic functions. The goal behind fixpoint computing

is to prove that the abstract semantics are faithful to the concrete semantics and vis versa,

i.e, we verify that the concretization of the abstract results is an over-approximation of the

concrete semantics.

We use the following two lemma to prove that a fixpoint exists in the abstract semantics.

Lemma 3 (Kleene [kle38]) Let 〈L,v,t〉 and 〈L,v,t〉 be two complete lattice and consider

two monotone functions F : L → L and F : L → L respecting respectively v and v. We

consider α a morphism on the concatenation such that : α◦FvF ◦α. Let a ∈ L a prefix point

in F, then the following property is true :

α
(
lfpva F

)
vlfpvα(a)F .

Lemma 4 (Knaster-Tarski [Tar55] Let 〈L,v,⊥,>,t,u〉 be a complete lattice and ϕ : L→

L be a monotone function. ϕ has a fixpoint :

lfpϕ= u postfp(ϕ)

= u{x ∈ L|ϕ(x) v x}

We do the same for the greatest fixpoint :

gfpϕ= t prefp(ϕ)

= t{x ∈ L|x v ϕ(x)}

12.3.3 Widening Operators

In Abstract Interpretation, the collecting semantics of a program is expressed as a least fix-

point of a set of equations. The equations are solved over some abstract domain that captures

the property of interest to be analyzed. Typically, the equations are solved iteratively ; that is,

successive approximations of the solution is computed until a fix-point is reached. However,
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for many useful abstract domains, such chains can be either infinite or too long to let the

analysis be efficient. To make use of these domains, abstract interpretation theory provides

very powerful tools, the widening operators, that attempt to predict the fix-point based on

the sequence of approximations computed on earlier iterations of the analysis on a cpo or on

a (complete) lattice. The degradation of precision of the solution obtained by widening can

be partly restored by further applying a narrowing operator.

Definition 2 (Widening [CC92]). Let (P,≤) be a poset. A set-widening operator is a partial

function
`

: A→ A such that :

i) Covering : Let S be an element of P. If
`

(S) is defined, then ∀x ∈ S, x ≤
`

(S).

ii) Termination : For every ascending chain {xi}i≥0, the chain defined as :

y0 = x0, yi =
`

({xj | 0 ≤ j ≤ i}).

is ascending too, and it stabilizes after a finite number of terms.

The definition above has been used recently in [DP90, D’S06], for fix-point computations over

sets represented as automata in a model checking approach.

Example Consider a lattice of intervals [Cor08] L = {⊥} ∪ {[l, u] | l ∈ Z ∪ {+∞}, l ≤ u},

ordered by : ∀x ∈ L,⊥ ≤ x and [l0, u0] ≤ [l1, u1] if l0 ≤ l1 and u0 ≤ u1. Let k be a fixed

positive integer constant, and I be any set of indices. Consider the threshold widening operator

defined on L by :

`k({⊥}) = ⊥
`k({⊥} ∪ S) =

`k(S)
`k({[li, ui] : i ∈ I}) = [h1, h2]

where :

h1 = min{li : i ∈ I} if min{li : i ∈ I} > −k, else −∞

h2 = max{ui : i ∈ I} if max{ui : i ∈ I} < k, else +∞

Observe that for all k,
`k is associative, and monotone. However, it is not reflexive. For

instance, we get
`7({[−8, 4]}) = [−∞, 4]
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12.3.4 Traces merging

Traces merging encodes first the set of feasible traces according to the semantics of the

programming language and then transfoms them into paths with respect to the control flow

graph. We will use traces merging to generate the set of transitions in the SystemC waiting-

state automata from the control flow graph generated during symbolic execution.

During symbolic execution : the program begins in some initial state, and each execution

step transforms the current state into a new state until it reaches (or not) a final state.

We note S the set of states that might be encountered during executions. An execution of

a program generates a countably infinite ( or finite) sequence of states called an execution

trace.

Definition 3 We consider an automaton A = (S, T ), where S is a finite set of states and T

a finite set of transitions. We will formally write a trace π as a sequence of states such as :

π = s0
t0−→ s1

t1−→ s2 . . .
tn−→ sn Where s0 ∈ S and sn ∈ S represent respectively the first state

and the final state in the trace π and t0 ∈ T and tn ∈ T .

The notion of trace can be adapted to display the set of inputs or events that activate the

transition from one state to another in the trace. We consider a sequence, π = s0
l0−→ s1

l1−→

s2 . . .
ln−→ sn, where each label li triggers a transition from si to si+1. The label can be either

an event ei, a predicate pi or an effect function (or an action) fi.

The program might be executed with different start states, s0, and a non-deterministic

program might generate different execution traces from the same initial state s0 to the same

final state sn in the case of a finite system. For this reason, one execution might generate a

set of traces. Or, the traces generated by different executions can be grouped into one trace

set.

To remove the previous ambiguity we resort to traces merging ; this step consists in abs-

tracting the set of traces that starts from the same intial state and leads to the same final

state into one transition. That is why, we define a galois connexion (α, γ) that transforms the

set of concrete traces into a set of abstract traces. We consider the following definition :
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Definition 4 We consider respectively ΣC and ΣA the set of the concrete and the abstract

traces. We relate abstract traces to concrete traces by defining the galois connexion as below :

〈
ΣC ,⊆

〉 αTrace
�

γTrace

〈
ΣA,v

〉
• γTrace(πa) = {πc ∈ Σc|γTrace(πa) = πc}

• αTrace(πc) =
⋃
{α(πc)|πc ∈ ΣC}

Example In paper [MHP09], authors propose a counterexample-guided abstraction refine-

ment approach. The approach refines an over-approximation of the set of possible traces

generated from the control flow graph. Each refinement step introduces a finite automaton

that spot a set of infeasible traces. They use interpolants to extract automata that they

call interpolant automata. The idea of the approach over this example is to abstract the

set of feasibale traces from the set of all the traces generated in the control flow graph.

Figure 12.3 – An Example with Traces Merging [MHP09]
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In this chapter, we define the behavioral semantics of a subset of SystemC language. This

analysis can be extended to handle all components of SystemC language. The goal of develo-

ping SystemC formal semantics is to provide a complete and unambiguous specification of the

language. It also contributes significantly to information sharing, to description portability,

and to integration of various applications in simulation, synthesis, and formal verification.

Over the last ten years or so, research in formal semantics in electronic design community

mainly focused on Verilog, VHDL and SystemC. Quite often, their definitions were based on
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Abstract State Machine (ASM) specifications [BS03, AGT04] or on the Denotational Seman-

tics (DSs) [Sal03]. But, it was generally believed that SOS provide more intuitive descriptions

especially to describe the dynamic behavior of the system than ASM specifications and de-

notational semantics.

13.1 Motivations and Related Works

To formalize concurrency on programming languages such as SystemC, we need to define

formally its semantics. This problem has already been studied for other languages such as

Java [HP00, Hav00], with the aim of performing formal verification.

Several attempts were made in order to formalize SystemC semantics, some of them target

the RTL (Register Transfer Level) subset of SystemC and lately few works studied the TLM

subset of SystemC. But none of them stresses on the correctness of SystemC at the delta-cycle

level. There is only one interesting approach that studies the semantics of SystemC at the

RTL, the TLM and the delta-cycle level : the approach of R.K. Shyamasundar, F. Doucet,R.

Gupta, and I.H. Kruger in [RSK07]. Authors in [RSK07] propose a global framework that

presents the behavioral semantics of SystemC. Those semantics succinctly capture the reactive

features, clock and time references of SystemC. Their semantics allow the specification of a

network of synchronous and asynchronous components communicating through either high-

level transactions or low-level communications. Our semantics are based on those in [RSK07],

but we do more here. Indeed, we use first different notations to express transformations on

transitions : we express transformations on environment events, on global variables and on

request updates for channels. The latter notation was not expressed in [RSK07], although it is

obvious and essential to study and manage updates on channels. Second, during the definition

of the simulation semantics of SystemC scheduler, we distinguish between the three phases

of the simulation semantics of the scheduler which was not addressed in [RSK07].

Among existing works, we can identify two different approaches :

The first one is to provide a simulation semantics, that have to take into account the

scheduler itself and model its different simulation phases. In work of [WRM01, AGT04],

SystemC semantics are expressed in terms of abstract state machines. A separate process

is used to represent the scheduler. Unfortunately, this is not conform to the cooperative

aspect of SystemC scheduler since processes are executing concurrently. In [Sal03], authors
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use denotational semantics to formalize SystemC Models and model separately the scheduler.

However, this latter semantics does not allow expressing any control-flow between states,

which is quite limiting. These previous works have in common two limitations : First, they

rely on the assumption that components communicate through the use of sc signal channels

when modeling the scheduler. Then, the target formalism that is used does not have associated

concrete tools. It is therefore impossible to check on real and complex examples that the given

semantics does indeed correspond to SystemC. Therefore, we cannot say that those semantics

are as precise as enough to SystemC since they are not applied on real examples. Besides,

they are not faithful enough to the concrete semantics of the scheduler. In[WMR03], Muller,

et al. define the semantics of SystemC using distributed abstract state machines.

The second approach extends the first one to study SystemC semantics at the transactio-

nal level. We may mention the work of [MFM06, KMS06, NH06, Moy05] and later the work of

[PXN06, RSK07]. Although those works solve the problem of modeling the scheduler indepen-

dently from the implementation and study the properties of the transactional level, but they

still luck of granularity since they don’t stress on the delta-cycle semantics of SystemC. This

represents the main contribution of the approach using the SystemC waiting-state automata.

In fact, the SystemC waiting-state automata [YZM07, HM12] allows : (i) to decompose the

SystemC code into communicating models, each model presents a process in the SystemC

structure, this model conforms to SystemC semantics at both the delta-cycle level and the

TLM, (ii) to model the behavior of the whole system by composing the elementary auto-

mata. The waiting-state automaton solves the problem of state explosion since it considers

only states when a component is communicating with its environment, i.e, when it is visible

by other components and it ignores intermediate transitions that describe the local behavior

of the component.

We mention some recent works that study and model the formal semantics of SystemC

[DTS08, PHG08, DGeD10, ACR10]. In [DTS08], authors define a trace semantic for Sys-

temC covering abstract models. [PHG08] uses an existing representation for system analysis

to model/verify SystemC semantics based on the semantics of Uppaal models [JBU]. Work

of [DGeD10] propose a fully automatic SystemC-to-C transformation, it uses C assertions

and finite state machines to verify properties related to Transaction-Level Modeling (TLM).

Finally, [ACR10] transforms SystemC into a sequential C program and then proceeds to
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lazy abstraction techniques to deal with multi-threaded software and cooperative scheduling.

Those works have good results in term of SystemC verification and applying static analysis

techniques to verify the program but they still luck of innovation. Although, in this present

work (i) we define the formal semantics of SystemC with respect to its execution semantics

and to the semantics of the SystemC waiting-state automata, (ii) we also use new techniques

for program analysis at different stages of the approach in order to validate and automatically

abstract the formal model from the SystemC description.

We have presented several works covering the formalization of SystemC. However, they

are limited either to the RTL subset of the language or the TLM, and none of them studied

the delta-cycle level. We also need a mean to check that the semantics are faithful to SystemC.

This point is partly covered by the latest works, which analyze the SystemC code, generate the

model and connect it to existing verification tools : this provides a mean to check that the given

semantics is actually related to the SystemC simulation. In order to give an adequate semantics

to SystemC without inherent limitations on the subset supported, we have no choice than to

formalize the execution semantics of the scheduler : we have either to include the scheduler

semantics in our formalization or to use an existing formal model to represent separately

the scheduler. Besides, the target formalism (1) should be expressive enough to allow the

encoding of the program’s control flow and (2) should have connections with existing tools

for programs validation, such as model-checkers. This latter point allows to make concrete

experiments and to compare the given formal semantics to the actual behavior of SystemC.

Figure 13.1 represents the general approach for such formalization. At the beginning of the

Figure 13.1 – General Approach for Formalizing SystemC

formalizing process, the source code of the application under study is analyzed. The goal of

the analysis is to extract a formal model of the program, expressed in a chosen formalism.

156



13.2. FORMAL SEMANTICS OF SYSTEMC 157

This model contains separate unit of concurrency, that we call processes in the figure, and that

have been identified previously in the source code. These processes interact with an abstract

scheduler which is a model of the real scheduler used to execute and manage the various

processes. This abstract scheduler is not extracted from source code but rather integrated

in the abstract semantics of the language under study. Once the execution semantics of the

scheduler are formally defined and included in the abstract representation of the processes, it

may be translated to various forms, but ultimately, it has to be defined in a format that can

be exploited by a formal tool. We call this format the formal language on the figure ; it covers

both full-fledged formal programming languages such as Lustre [JLBP85] or specification

languages like PROMELA [spi]. Separately, the property to be verified on the program can

sometimes be integrated within the abstract model of processes or it can be given directly

to the formal tool. This latter is generally a model-checker, that will provide automatically

the result, and a counter-example leading to the error, if the property does not hold. Some

tool chains also provide simulators, which are useful to check that the formal description does

indeed express what was intended.

13.2 Formal Semantics of SystemC

We use a small-step semantics to define the formal semantics of a subset of SystemC

language. Our semantics are based on the work of Shyamasundar, et al. [RSK07]. But our

semantics are expressed in a different way in order to : first respect the syntax of the SystemC

waiting-state automta (as defined in Chapter 7) and second express differently the simulation

semantics of the SystemC scheduler.

In our semantics framework, we add request updates for channels which was not treated in

[RSK07] in addition to the use of environment events and to global variables. Different changes

generated during the execution of the program are expressed on transitions like in [RSK07].

We consider channels updates because they represent a mandatory step in the simulation

semantics of the scheduler. The update phase is the step that comes immediately after the

evaluation phase, where variables and channels are updated. In addition to request updates of

channels, we consider also notification of immediate, delta and timed events which is conform

to the semantics of the SystemC waiting-state automata. Besides, in our transitions, we

express the output environment in the lower part while the input environment is expressed in

157



158 CHAPTER 13. FORMAL SEMANTICS OF SYSTEMC

the upper part unlike in [RSK07]. We use this notation in order to respect the formalism of the

SystemC waiting-state automata : the abstract formal representation that we use throughout

this thesis to model SystemC designs.

We use the notation of the Structural Operational Semantics (SOS) of Plotkin [Plo04]

to define a small step semantics of a subset of SystemC language. Those semantics compo-

sitionally capture all possible behaviors computed by a SystemC program. We suppose that

each module is behaving either locally using its local variables or is communicating with the

environment through the environment variables. The local variables are output signals, inter-

nal variables, output channels, output events, and the program counter for the process. The

environment variables are input signals, input events, input channels, and global variables.

As regards to the execution semantics of SystemC scheduler [WRM01], there is at most one

process that is reacting to the environment. We can locally visualize instants during which

reactions occur by observing the state (C++ variables and program counters for each pro-

cesses) of the program, denoted σ, or the modeling environment (events, channels, signals,

processes, etc), denoted E.

To describe how a statement changes the configurations of the environment, we write the

transitions rules for processes as mentioned below :

〈stmt, σ〉 E−→
Eo

〈
stmt′, σ′

〉
where :

• stmt is a SystemC statement that corresponds to the location of the program counter,

before the reaction, and stmt’ is the statement with the location of the program counter

after the transition,

• σ and σ′ are the states before and after the reaction respectively. They represent a

function : V ∪ CH 7→ values, where V is the set of local and shared variables and CH is

the set of channels.

• E is the environment (set of events and variables that activate the process) while the

transition is executed, Eo is the output emitted during the transition. In general, an

environment is a 5-tuple E = (EI , Eδ, ET ,V,RQ) where :

158



13.2. FORMAL SEMANTICS OF SYSTEMC 159

• EI is the set of immediate events,

• Eδ is the set of next delta events,

• ET is the set of timed events,

• V is the set of next delta updates for variable.

• RQ is a sequence consisting of pending requests to update channels. A request is

a pair (ch, exp(σ)) where ch ∈ CH and exp(σ) represents the value assigned to ch.

To denote that the output environment Eo remains unchanged we use the symbol −, i.e

there is no events emitted during the transition, variables remain unchanged and channels

are not modified. Our semantics are similar to the semantics of Shyamasundar [RSK07] where

a complete behavioral semantics of SystemC is proposed. Here, we stress specifically on three

main points :

• to capture all reactive features of SystemC.

• to specify a network of synchronous and asynchronous components computing either

high-level transactions or low-level event communications.

• to specify two time scales : the delta cycle and the simulation time.

Besides, during our formalization and especially during parallel composition, we distinguish

between the three phases of the simulation process (as response to the SystemC Scheduling

algorithm (as mentioned in Figure 17.1) : this is the main contribution of our semantics. We

hide the scheduler in a special parallel composition of concurrent processes, this composition

is independent from the scheduler itself. The scheduler is then abstracted from the modeling

process but already mainly presented within the parallel composition.

Our semantics have two main benefits : First, they start from a low-level description of Sys-

temC (the delta-cycle) which puts in evidence the scalability of the global approach. Second,

we don’t need to model the scheduler using our formal model, we just build the automaton

for each process. Thus the composed automaton will be independent from the scheduling

policy and we gain in terms of modeling cost and verification cost. In this section we will

present semantics for some sequential constructs (including assignments, channel statements,

event statements, guarded statements and wait statements) and parallel composition where

we distinguish between the three steps of SystemC semantics which is the main contribution
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assignment < var v, σ >
−−→
−
< ε, σ[v] >

if
<b,σ>→<true,σ> <p,σ>→<ε,σ′>
<if b then p else q,σ>

−−→
−
<ε,σ′>

<b,σ>→<false,σ> <q,σ>→<ε,σ′>
<if b then p else q,σ>

−−→
−
<ε,σ′>

while
<b,σ>→<true,σ> <p; while (b) do p,σ>→<ε,σ′>

<while (b) do p,σ>
−−→
−
<ε,σ′>

<b,σ>→<false,σ>
<while (b) do p,σ>

−−→
−
<ε,σ>

Table 13.1 – The structural operational semantics of SystemC statements

of our work compared to existing works on formalizing SystemC semantics using the SOS

notations.

13.2.1 Basic Statements

The execution of an assignment v := exp is instantaneous. It assigns the value of the

expression exp to the variable v and keeps unchangeable the other variables and channels.

v ∈ V

〈v := exp, σ〉 E−→
−
〈ε, σ[v/exp]〉

Transition rules for the statements : skip, var v as well as conditions and iterations are defined

in the table below. These rules are similar to the rules presented in [Zhu05].

13.2.2 Channel Statements

The execution of channel statements involves two cases :

• Executing an output statement that we note ch!!exp generates a request to update the

channel ch with the expression exp and leaves other variables and channels unchanged.

All pending requests are carried out in the following update phase. The newly generated

request will remove the existing one from the request queue. We use operator \ to

represent removing all elements from the request queue. (1) shows the transition rule

of the channel output statement.

• Execution an input statement that we note ch??v assigns the current value of channel
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ch to the variable v and leaves other variables and channels unchanged. (2) shows the

transition rule of the channel input statement.

(1)
ch ∈ Channels ∧ σ(ch) 6= exp(σ)

〈ch!!exp, σ〉 EI ,Eδ,ET ,V,RQ−−−−−−−−−−−−−−−−−−→
EI ,Eδ,ET ,V,RQ\(ch,exp(σ))

〈ε, σ[v/exp]〉

(2)
ch ∈ Channels, v ∈ V

〈ch??exp, σ〉 E−→
−
〈ε, σ[v/ch]〉

13.2.3 Event Statements

The event notification statement immediately emits an event e in the next environment,

and terminates. The processes waiting on these events will unblock in either the synchroni-

zation with the next environment and the synchronization with the next delta environment

respectively. According to the way an event is notified, there are three kinds of event notifica-

tions : immediate notifications notify(), delta notifications notify δ() and timed notifications

notify t().

The execution of notify() triggers event e immediately, which will activate all processes that

are waiting for it. The immediate event notification also overrides the delayed notifications

on the same event if it will be notified in later delta cycles. The execution of notify δ() is

instantaneous, which results in some changes in Eδ and ET , not only adding a delayed no-

tification to some sets, but also overriding a delayed notification. A notification scheduled to

occur earlier will always override the one scheduled to occur later. Transition rules for events

notifications are as below :

〈e.notify(), σ〉 E−−−−−→
e,e,∅,∅,∅

〈ε, σ〉

〈e.notify δ(), σ〉 E−−−−−→
∅,e,e,∅,∅

〈ε, σ〉

〈e.notify t(), σ〉 E−−−−−→
∅,∅,e,∅,∅

〈ε, σ〉

13.2.4 Wait Statements

The behavior of the wait statement is to wait for an event e to be in the environment or

for a timeout. It works as a synchronization between parallel processes. Syntactically, rules

for wait statement must be defined as follows :

161



162 CHAPTER 13. FORMAL SEMANTICS OF SYSTEMC

• Rule 1 defines that if an event e is not in the environment, the process continues to wait

without doing anything.

• Rule 2 defines that if an event e is present in the environment, the waitstatement

terminates and reduces to nothing.

e /∈ E

〈wait(e), σ〉 E−→
−
〈wait(e), σ〉

e ∈ E

〈wait(e), σ〉 E−→
−
〈ε, σ〉

13.2.5 Function Calls

Each function f is called by one or more processes. In order to response to all functions

calls, we need to duplicate and rename functions which are called multiple times, we ignore

recursive calls. Function parameters and return values are not represented but can be taken

into account by using global variables for both.

Figure 13.2 – Function calls

For each function f, we use a global Boolean variable F. We suppose that the effects of f

are transformed as below :

• Calling f ⇔ F=1

• Returning from the call ⇔ {F==0}

• Begin of the declaration of f ⇔ {F==1}

• End of the declaration ⇔ F=0

The semantics of functions calls is defined as below : First a process P1 call the function f

declared in a process P2 by affecting value 1 to the global variable F as mentioned previously.
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Then, P1 waits for a response from the latter ; i.e, it tests if the value of F is equal to 0. The

rule (1) presents the call step and rule (2) is for the return from call.

(1) 〈call(f), σ〉 E−−−→
F=1

〈wait(), σ〉

(2) 〈f.return(), σ〉 E,F=0−−−−→
.
〈wait(), σ〉

13.2.6 Sequential Composition

If we consider two sequential processes P1 and P2, there are two cases for sequential

composition : (i) If process P1 does not terminate in the current instant, then P2 cannot start.

(ii) If P1 terminates then P2 starts in the environment in which P1 terminates. Transitions

rules are defined as follows :

〈P1, σ〉
E−−−−−−−−−−−−−→

(E1,Eδ1 ,E
T
1 ,V1,RQ1)

〈P ′1, σ′〉

〈P1;P2, σ〉
E−−−−−−−−−−−−−→

(E1,Eδ1 ,E
T
1 ,V1,RQ1)

〈P ′1;P2, σ′〉

〈P1, σ〉
E−−−−−−−−−−−−−→

(E1,Eδ1 ,E
T
1 ,V1,RQ1)

〈ε, σ′〉

〈P1;P2, σ〉
E−−−−−−−−−−−−−→

(E1,Eδ1 ,E
T
1 ,V1,RQ1)

〈P2, σ′〉

13.2.7 Parallel Composition

In this section, we consider transition rules for parallel composition. There are two kinds

of configurations for parallel processes, one representing executing processes (processes that

have been selected by the scheduler) and the other one representing processes that are not

executing (either in a state waiting for an event or in a runnable state). In this section,

we distinguish between the three phases in the simulation process of the SystemC scheduler

(Figure 17.1), which is the main contribution of our semantics compared to those of [RSK07].

The Evaluation Phase

The evaluation phase starts from a non-empty table of runnable processes (i.e, processes

that are waiting to be selected by the scheduler). Here we have two scenarios :
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Figure 13.3 – SystemC Scheduling Algorithm

1. Immediate notifications of a set of events with processes waiting for them.

2. No immediate notifications but there is a non-empty set of runnable processes.

Transition rules for the evaluation phase are presented in Table 13.2.

1. Rule (1) : The immediate composition is defined to unblock all processes that are waiting

for events present in the environment. We use the expression waiting(P,e) to denote that

the process P is waiting for the event e. In other words, we may write the process P

in a sequential form wait ;P’. It is a synchronous composition, but only for the wait

statements.

2. Rule (2) : when all current processes are hung up waiting for events. The scheduler selects

a process from the set of ready processes. This process runs until it reaches the next wait

state. The function add guarantees that next-delta events and next-delta modifications

of variables is taken into account in the process of scheduling the concurrent processes

so that non deterministic behavior can be detected, i.e, non-deterministic behavior is

possible when two or more different values can be written to a signal at the same

evaluation phase, it must guarantees that the assigned value to the signal is exactly the
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last value taken by the signal.

Update Phase

If there is no runnable processes, the scheduler updates channels (ch) with new data values

(v). Channel update is carried out in the way of FIFO (First In First Out). During this phase

some events are notified and those events may activate processes waiting for them. Rules are

defined in Table 13.2.

Delta-cycle Advancing Phase

We will define rules for synchronization on delta events to build the next micro-

environment. The rule proceeds only when there is no immediate events and there exists

some delta events. The transition makes the delta events in Eδ become the immediate events

in the next instant, and updates the state of variables. Here, we resume rules for the evalua-

tion and the update phases since we are dealing with a new delta cycle. Rules for the delta

cycle advancing phase phase are defined in Table 13.2.

Simulation Time Advancing Phase

Here, we define rules for the synchronization on timed events which builds the next envi-

ronment from time events and advance macro-time (time simulation). It is effective when all

processes are blocked, where there are no immediate events nor delta events. Timed events

are posted by wait(time) statements, timers and clocks. We define here the same rules for

the evaluation and the update phases. Rules for the delta cycle advancing phase phase are

defined in Table 13.2.
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13.3 Conclusion

In this chapter, we presented a small-step semantics of a subset of SystemC language. This

subset includes the basic constructs of the language, communications using events and chan-

nels, parallel communication between synchronous/asynchronous processes and simulation at

both the delta-cycle and transaction levels. The previous study is sufficient for our analysis

in this thesis but it can be extended for more constructs. As we previously mentioned, the

framework is based on the work of [RSK07]. But our semantics are expressed differently in

order to be first conform to the formalism of the SystemC waiting-state automta and second

in order to express differently the simulation semantics of SystemC scheduler.

In our semantics framework, we consider request updates for channels which was not

treated in [RSK07] in addition to environment events and to global variables. All these

information are expressed on transitions like in [RSK07]. In fact, we consider channels updates

because they represent an important step in the simulation process of the scheduler. The

update phase is the step that comes immediately after the evaluation phase, where variables

and channels are updated with the final modification of global variables. In addition to request

updates of channels, we consider also notification of immediate, delta and timed events which

is conform to the semantics of the SystemC waiting-state automata. Besides, in transitions,

we express the output environment in the lower part while the input environment is expressed

in the upper part unlike in [RSK07]. This notation is also conform to the semantics of the

SystemC waiting-state automata.

To study the parallel composition of concurrent processes, we choose to not model the

scheduler separately, but to include it in the semantics of the parallel composition of the

processes. In fact, we distinguish between different steps of the SystemC simulation semantics.

Although, in work of [RSK07], authors choose to model separately the scheduler which

requires to fix in advance the simulation policy, which is avoided in our semantics. Including

SystemC simulation semantics in the formal semantics of the program, help us to express

more details about the system parallel behavior independently from the simulation policy or

without having to model separately the scheduler.

Our semantics are complete enough to handle all the simulation semantics of the SystemC

language and to express in details the concurrent behavior of parallel processes that are

locally independent but are communicating between each other through the environment
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variables. Those semantics can be extended to handle more structures like information about

the continuous time.
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(Evaluation Phase)

(1)

∀i∈{1..n},∃e∈EI ,waiting(Pi,e) ∧∀j∈{n+1..m},∀e∈EI ,¬waiting(Pj ,e)

〈P1‖···‖Pn‖···‖Pm,σ〉
E−−−−−−−−−−−→

(∅,Eδ,ET ,V δ,RQ)
〈P ′1‖...P ′n‖···‖Pm,σ′〉

(2)

∀i ∈ {1 . . . n}, waiting(Pi) ∀j ∈ {n+ 1 . . .m}, ready(Pj)

select p ∈ {n+ 1 . . .m}, 〈Pp, σ〉
E−−−−−−−−−−−−−→

(EIp ,E
δ
p,E

T
p ,V

δ
p ,RQp)

〈
P ′p, σ

′〉
add(〈Eδp,Eδ〉,〈ETp ,ET 〉,〈V δp ,V δ〉)

〈P1‖···‖Pn‖···‖Pp‖···‖Pm,σ〉
(EI,Eδ,ET ,V δ,RQ)−−−−−−−−−−−−−−−−−−−−−−−−−→

(EIp,E
δ
p∪Eδ,ETp ∪ET ,V δp ∪V δ,RQp∪RQ)

〈P ′1‖···‖P ′n‖···‖P ′p‖···‖Pm,σ′〉

(Update Phase)

∀(ch,v)∈RQ

〈P1‖···‖Pn,σ〉
(EI,Eδ,ET ,V δ,RQ)−−−−−−−−−−−−→
(EI,Eδ,ET ,V δ,∅)

〈P1‖···‖Pn,σ[v/ch]〉

(Delta Advancing Phase)

∀i∈{1..n},waiting(Pi)

〈P1‖···‖Pn,σ〉
(∅,Eδ,ET ,V δ,RQ)−−−−−−−−−−−→
(Eδ,∅,ET ,∅,RQ)

〈P1‖···‖Pn,σ[V δ/V ]〉

(Timed Advancing Phase)

∀i∈{1..n},waiting(Pi)

〈P1‖···‖Pn,σ〉
(∅,∅,ET ,RQ)−−−−−−−−−→

(ET ,∅,∅,∅,RQ)
〈P1‖···‖Pn,σ[V δ/V ]〉

Table 13.2 – Semantics for Parallel Composition
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Static analysis, consists in analyzing the program by examining its source code without

actually executing it on concrete inputs. A common paradigm in static analysis, which is also

used in program verification, is symbolic execution [Kin76, Dar88] : the analyzed program is

executed, but with symbolic instead of concrete values for the program variables. Symbolic

execution is the most effective method to generate the set of all possible traces by symbolically

executing the program. It still be not effective, but as precise as possible. Since the number of

symbolic states may be infinite, we resort to abstraction techniques for computing and storing

abstract states during symbolic execution. This enables analysis of an under-approximation

of the program behavior. We resort to abstraction techniques and more precisely to predicate

abstraction [GS97] to :

1. build the set of transitions from one wait state to another by merging the set of traces.

2. reduce unfaisable transitions from the set of transitions generated in (1).

Thus, the problem of building the SystemC waiting-state automata is reduced to the simpler

problem of guessing potentially useful predicates.

14.1 Abstracting Low Level Semantics of SystemC to High Level

Semantics

14.1.1 Introduction

A SystemC program is composed of a set of processes (or threads), each process is either

operating locally or communicating with other processes using the wait statements. The

idea as we previously presented (see Chapter 7) is to build the automaton for each process

independently and then compose all automata together. But, Before composing the automata,

we have first to symbolically execute the SystemC code.

Why we need to symbolically execute the program ? First, because symbolic execution

uses symbolic values, instead of actual data to represent the values of program variables as

well as the input values. As a result, the output values computed by a program are expressed

as a function of symbolic values. Second, symbolic execution helps to capture conditions and
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actions over transitions and it accumulates the environment effects over system variables and

events.

14.1.2 Example

As an example of SystemC threads, we take the example of the Timer program expressed

in SystemC. The structure of the thread is shown above : The process is sensitive to the clock

and to the start signal. When start is active, the counter is decremented until it reaches 0,

therefore the signal timeout is set to true. We take such an example because it is the adequate

one to show the different transformations we made during symbolic execution of the program.

In this example, we have different SystemC constructs : iteration, condition, assignment and

the wait statement.

1 #inc lude ” systemc . h”

2 SC MODULE ( Timer ) {

3 . . .

4 void t imer ( ) {

5 while ( true ) {

6 i f ( s t a r t ) {

7 count =5;

8 t imeout = fa l se ;

9 s t a r t = fa l se ;

10 } else i f ( count > 0 ) {

11 count−−;

12 t imeout = fa l se ;

13 } else {

14 t imeout = true ;

15 }

16 }

17 wait ( ) ;

18 }

19 SC CTOR( Timer ) {

20 SC METHOD ( timer ) ;

21 s e n s i t i v e << c l o ck << s t a r t ;

22 }

23 } ;
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The program is first visualized as a control flow graph (CFG). The nodes of this graph

represent the basic commands and guard expressions of the thread, and the edges stand

for flow of control between the nodes. We annotate the (CFG) with exemplary of logical

expressions defined over variables, that we call the path condition (PC). We explain it later

with more details.

14.1.3 Extended Symbolic Execution

The symbolic execution (SE) as first introduced by [Kin76, Dar88] is a natural extension

of normal execution providing normal computation as a special case. The main idea behind SE

is the use of symbolic values instead of the real ones in order to generate the set of all possible

executions for all the values of the input variables. The semantics and rules of the symbolically

executed program remain the same and need just to be extended in order to deal with the

symbolic values. Therefore, the assignment operation is fairly clear, the assigned variable

changes its interpretation by evaluating the expression to the right that consists in replacing

all the symbolic values that it contains with their corresponding symbolic expressions. As for

the conditional instructions a choice has to be made in order to decide what branch should

be taken. If we apply symbolic execution to the Timer example, then we generate the graph

in Figure 14.1.

Throughout this thesis, the program is then first visualized as a control flow graph (CFG)

(Figure 14.1). The nodes of this graph represent the basic commands and guard expressions

of the thread, and the edges stand for flow of control between the nodes. We annotate the

(CFG) with exemplary of logical expressions defined over variables : the assignment statement

is transformed into equality written between accolades and the path condition (PC) that we

define over conditional instructions. The PC is a (quantifier-free) boolean formula defined

over the symbolic inputs, it accumulates constraints which the inputs must satisfy so that

the execution follows the particular associated execution path. We suppose here that the PC

is also a first-order formulas which always hold when control flow reaches a specific program

point such as a loop entry. Therefore a path condition (PC) is also included in the state that

will keep track of all the decisions made along the execution, working as an accumulation of

assertions made on that symbolic variables, refining their values domains and helping decide

which of the then or the else branches should be taken. We can see that, by construction,
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Figure 14.1 – The control flow graph of the Timer process

the SE only generates feasible paths.

The state of a basic SE is composed of the values of the current variables in use and

the path condition (PC ) that represents the history of the choices made up to that point,

mostly present to deal with the conditional instructions. Besides, the state is composed of the

emphinput events that triggers the transition, the output events triggered during the transition

and a function f that modifies the variables. Formally, we write : S = (ein, PC, eout, f) where :

• ein is the set of events that activates the state.

• PC is the path condition.

• eout is the set of events triggered.

• f is the effect function.
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Figure 14.2 – The Symbolic State generated during Symbolic Execution

14.1.4 Abstracting Operational Semantics of a Subset of SystemC

In this section, we modify rules in Section 13 to suit the formalism of the System waiting-

state automata [HM12] : an abstract formal model used to model/verify system designs writ-

ten in the SystemC language.

A SystemC waiting-state automata A is defined as a transition system over a set V of

variables. It is a tuple A = (S;E; T ), where S is a finite set of states , E is a finite set of

the environment events and T is a finite set of transitions where every transition is a 6-tuple

(s; ein; p; eout; f ; s′) :

q s and s′ are two states in S, representing respectively the initial state and the final

state ;

q ein and eout are two sets of events : ein ⊆ E; eout ⊆ E ;

q p is a predicate defined over variables in V, i.e., FV (p) ⊆ V, where FV(p) denotes the

set of free variables in the predicate p ;

q f is an effect function over V ;

We often write s
ein,p−−−−→
eout,f

s′ for the transition (s; ein; p; eout; f ; s′). The triggering of such tran-

sition for a process P is captured by the following intuitive characterization :

If

(i) The process P is invoked in an initial state that satisfies p, and

(ii) at any moment during the computation of P the event ein exists in the input environment,

then

(iii) the event eout is triggered and we add it to the output environment,

(iv) if this computation terminates, the final state executes f.
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Therefore, during SE, we define our execution traces as follows :

〈stmt0, σ0〉
e1in,p

1

−−−−→
e1out,f

1
. . .

enin,p
n

−−−−→
enout,f

n
〈stmtn, σn〉

Where stmt0 and stmtn present the first and the final statements, {e1
in . . . e

n
in} is the set of

input events of the transitions, {e1
out . . . e

n
out} is the set of the output events, {p1 . . . pn} is the

set of predicates and {f1 . . . fn} is the set of functions. The set of path conditions determine

the set of predicates mentioned in the expression above and the set of assignment statements

is used to determine the functions. We use the input and the output environment E and Eo to

determine the input events eiin and the output events eiout, i ∈ [1..n]. During the execution of

the process from stmt0 to stmtn (or between σ0 and σn), the states are observable only from

within the process, and no other process in the environment can observe the intermediate

states. Hence, from the environment point of view, only the first and the last states are

observable. In Table 14.1, we represent new rules for the wait and the notify statements,

along with the three basic programming constructs in imperative languages : assignments,

conditional statements, and loops. In fact each transition has : (i) a set of pre-conditions : an

input event ein that triggers the transition and a predicate p over variables and (ii) a set of

post-conditions : an output event eout and a function f over predicates.

We resume the example of the Timer that we symbolically execute in order to generate

its CFG. The symbolic execution of the program as shown in Figure 14.1, begins with the

first statement : while(true), we have to deal with two cases : the loop is not entered and the

loop is unfolded at least once. Technically, we apply the while rule (Table 14.1), in this case

we don’t have two branches since the guard is usually true. The next step in the symbolic

execution is to deal with the if statement if(start), which produces two conjuncts in place

of one. The first conjunct yields to a set of assignment statements {count=5, timeout=false,

start=false} : this conjunct initializes the set of input variables, we apply the assignment rule

(Table 14.1). The effect of the assignment manifests itself in the set of following assumptions

(count = 5, timeout = false, start = false).

The second conjunct yields to the second if statement if(count > 0) which yields to two

additional branches so two additional traces : this branch constitutes two traces from the first

state to the first waiting state : the wait statement. The transition rule for the wait statement
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assignment < x := e, σ >
{},()−−−−→
{},x=e

< ε, σ[x/e] >

if
<b,σ>→<true,σ> <p,σ>→<ε,σ′>

<if b then p else q,σ>
{},(b=true)−−−−−−−→
{},id

<ε,σ′>

<b,σ>→<false,σ> <q,σ>→<ε,σ′>

<if b then p else q,σ>
{},(b=false)−−−−−−−−→
{},id

<ε,σ′>

while
<b,σ>→<true,σ> <p; while (b) do p,σ>→<ε,σ′>

<while (b) do p,σ>
{},(b=true)−−−−−−−→
{},id

<ε,σ′>

<b,σ>→<false,σ>

<while (b) do p,σ>
{},(b=false)−−−−−−−−→
{},id

<ε,σ>

wait(e)
e∈E

<wait(e),σ>
{e},()−−−→
{},id

<ε,σ>

e/∈E

<wait(e),σ>
{},()−−−→
{},id

<wait(e),σ>

e.notify() add(e,E)

<e.notify(),σ>
{},()−−−→
{e},id

<ε,σ>

Table 14.1 – The abstracted operational semantics of SystemC statements

is the same as in Table 14.1 with only one entry condition which is the clock (clk) (ein = clk)

and no exit conditions : this is the last statement in the program. Since we have a loop, we

turn back to the first state and then we build another trace from the waiting state to the first

state.

Now, we have to extract the waiting state automaton from the CFG of the Timer process :

as you notice in the control flow graph in Figure 14.1, we have just one waiting state, thus

the automaton will have just one state and contains only loops. In the CFG, we have three

traces from and to the waiting state, thus we have three loops in the automaton. Although,

there is one loop that is triggered only one time. This loop represents the trace below :

〈if(start), σ〉 {},(start=true)−−−−−−−−−→
{},id

〈true, σ〉 ; 〈count = 5, σ〉 {},()−−−−−−−→
{},count=5

〈ε, σ〉 ; 〈timeout = false, σ〉 {},()−−−−−−−−−−−→
{},timeout=false

〈ε, σ〉 ; 〈start = false, σ〉 {},()−−−−−−−−−→
{},start=false

〈ε, σ〉 .

The set of transitions that activate that trace will be triggered once, since in the last

statement start is set to false which means that we will never enter that branch next time,

which means that this trace will never be activated again. As a result, the waiting state

automata of the Timer process will have just one state and two loops as shown in Figure

14.3.

We use the conjunction ∧ to accumulate predicates and the order of predicates is preserved.
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〈if(start), σ〉 →


{},(start=true)

{},id ; {},()
{},count=5 ; {},()

{},timeout=false ;
{},()

{},start=false

{},(start=false)
{},id ;

{{},(count<=0)
{},id ; {},()

{},timeout=true
{},(count>0)
{},id ; {},(){},dec ;

{},()
{},timeout=false

〈if(start), σ〉 {},(start=true)−−−−−−−−−→
{},id

〈true, σ〉 ; 〈count = 5, σ〉 {},()−−−−−−−→
{},count=5

..

〈if(start), σ〉 {},(start=false)−−−−−−−−−−→
{},id

〈false, σ〉 ; 〈if(count > 0), σ〉 → ..

〈if(count > 0), σ〉 →

{{},(count>0)
{},id ; {},(){},dec ;

{},()
{},timeout=false

{},(count<=0)
{},id ; {},()

{},timeout=true

〈if(count > 0), σ〉 {},(count>0)−−−−−−−−→
{},id

〈true, σ〉 ; 〈count = 5, σ〉 {},()−−−−−−−→
{},count=5

..

〈if(count > 0), σ〉 {},(count<=0)−−−−−−−−−→
{},id

〈false, σ〉 ; 〈timeout = true, σ〉 {},()−−−−−−−−−−→
{},timeout=true

Table 14.2 – Operational semantics for the Timer

Figure 14.3 – The WSA for the Timer

We use also the symbol ◦ to compose functions.

14.1.5 The Abstracted Operational Semantics vs the SystemC Waiting State

Automata Semantics

The abstracted operational semantics in Section 14.1.4 are generated from the semantics

in Section 13. The latter was modified to suit the formalism of the waiting-state automata

as presented in [HM12]. Changes concern especially entry and exit conditions on transitions.

New semantics are accurate enough to give a low level representation of SystemC designs and

generate all possible traces from the original code. In fact, those semantics describe different

states of a process : (i) when it is locally behaving and (ii) when it communicates with its
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environment. The main difference between the previous semantics and those of the SystemC

waiting-state automata is that the semantics of the SystemC model is an abstraction or a high

level representation of the operational semantics, where we consider only states when a process

is visible by its environment. The advantage using the SystemC waiting-state semantics is that

the local behavior of the process is no more represented when we model the whole system

from the time it becomes not visible by the environment.

14.2 Predicate Abstraction

We resort to predicate abstraction as introduced first by [GS97] to (i) compute infer the

relations between the transitions guards and affects and (ii) reduce the control flow graph

(CFG) resulting from the symbolic execution by considering only special states that syn-

chronize between the communicating processes (See Figure 14.4). The set of path conditions

(PCs) we generate in Section 14.1.3 are ideal candidates for predicates, and thus, the path

condition will definitely be a boolean combination of predicates. In this section, we illustrate

the use of predicate abstraction on trivial examples, we define our abstraction rule to merge

traces between each two waiting states. This rule is limited to programs without loops, we

study a special case of a program with loop and we define a new methodology how to infer

invariants for loops.

Figure 14.4 – The use of PA to transform the CFG to the SystemC WSA

14.2.1 Background

In predicate abstraction [TBR01, SS88], the concrete system is approximated by only kee-

ping track of certain predicates over the concrete state variables. Each predicate corresponds
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to an abstract boolean variable. Any concrete transition corresponds to a change of values

for the set of predicates and it is subsequently translated into an abstract transition. Using

this technique, it is possible to not only reduce the complexity of the system under verifi-

cation, but also, for software systems, to extract finite models that are amenable to model

checking algorithms. The technique of predicate abstraction was first used for verifying low

level languages such as C. But the emergence of new languages describing systems on different

levels of abstraction such as SystemC encourages researchers to apply this technique on them,

accordingly several results were developed in this field [EC04].

Definition 1 Let A = (S, T, I) be the state graph of a program P where S is the set of states,

T is the set of transitions and I the set of initial states. Let S̃ a lattice of abstract states and

(α : P (S) 7→ S̃, γ : S̃ 7→ P (S)) a Galois connection [EC04] 1 , where the abstraction function

α associates with any set of concrete states a corresponding abstract state (the abstract state

space is a lattice where larger abstract states represent larger sets of concrete states). The

concretization function γ associates with every abstract state the set of concrete states that

it represents.

We assume that the abstract model can make a transition from a state s̃ to a state s̃′ iff

there is a transition from s to s′ in the concrete model, where s̃ is the abstract state of s and

s̃′ is the abstract state of s′ . We denote the transition relation :

R := {(s̃, s̃′)|∃s, s′ ∈ S : R(s, s′) ∧ α(s) = s̃ ∧ α(s′) = s̃′}

Definition 2 Formally, we assume that the program maintains a set of n predicates {p1, .., pn}

ordered by implication. These predicates are global, i.e., the abstract model only contains one

set which is used by all the threads. A predicate pi denotes the subset of states that satisfy

the predicate {s ∈ S|s |= pi}. The range of the abstraction consists of boolean formulas

constructed using a set of boolean variables {B1, .., Bn} defined over the set of predicates and

ordered by implication. When applying all predicates to a specific concrete state, we obtain

a vector of n boolean values, which represents an abstract state s̃. If X ranges over sets of

concrete states and Y ranges over boolean formulas in {B1, .., Bn} then the abstraction and

1. a Galois connection is a pair of functions (α, γ) satisfying α(γ(s̃)) = s̃ and ϕ ⇒ γ(α(ϕ)). Given γ, α is

implicitly defined by α(ϕ) = ∩{s̃ ∈ S̃|ϕ⇒ γ(s̃)}
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the concretization function α and γ have the following properties :

α(X) =
∧
{Y |X ⇒ γ(Y )}

γ(X) =
∨
{X|α(X)⇒ Y }

The main challenge in predicate abstraction is to identify the predicates that are necessary

for proving the given property. In work of [SO03], the predicate abstraction was applied to

C programs, the authors have defined an algorithm for inferring predicates based on branch

statements and using weakest precondition (WP). In this present work we suppose that the

abstraction is applied on transitions instead of states like in work of [AP05].

Definition 3 A predicate transformer [Dij97] is a total function between two predicates on

the state space of a statement. We distinguish two kinds of predicate transformers : the

weakest-precondition and the strongest-postcondition. Technically, predicate transfor-

mer semantics perform a kind of symbolic execution of statements into predicates : execution

runs backward in the case of weakest-preconditions, or runs forward in the case of strongest-

post-conditions.

We focus here only on the weakest-precondition transformer : Given S a statement, the

weakest-precondition of S is a function mapping any postcondition Q to a precondition. Ac-

tually, the result of this function, denoted wp(S,Q), is the weakest precondition on the initial

state ensuring that execution of S terminates in a final state satisfying Q. We show in Fi-

gure 14.5 the definition of weakest-precondition for some examples of sequential statements.

wp(skip,Q)⇔ Q
wp(abort,Q)⇔ true
wp(x := e,Q)⇔ Q[x← e]
wp(c1; c2, Q)⇔ wp(c1, wp(c2, Q))
wp(if b then c1 else c2, Q)⇔ (b⇒ wp(c1, Q)) ∧ (¬b⇒ wp(c2, Q))
wp(if b then c,Q)⇔ (b⇒ wp(c,Q)) ∧ (¬b⇒ Q)

Figure 14.5 – Rules for weakest-precondition.
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Inferring Predicates Our predicates p are defined over the path conditions PC, they are

first-order formulas defined as below :

p := n|x|p� p| 	 p

Where :

• � : is a binary relation, it is one of the following : +, ∗,− or any comparison : ≤,≥, <

,>,=, 6= or ∧,∨

• 	 : is an unary relation (it can only be ¬)

• n : is an integer

• x : is a variable

To infer relation between predicates during traces fusion, we use the standard definitions for

constructively computing weakest precondition (Figure14.5) : For all the pair of observable

points (paths from a wait statement to the next wait statement in the graph) we compute the

weakest precondition between the waiting states, and add it to the waiting state automaton

if the weakest precondition is satisfiable. Note that one cannot constructively compute the

weakest precondition for loops that cannot be unrolled. This is why we present separately

how to compute predicates for programs with loops, we illustrate this on an example.

Conclusion Our method works by analyzing the concrete model in order to make the state

space small and finite. Therefore, we abstract the system along several orthogonal dimensions :

f Control Flow Abstraction : SystemC semantics usually contain branch statements and

iterations such as the if statements. The if statement has two branches, we call the

boolean predicates that determine which branch to be executed, branch conditions or

path conditions. We intend to extract the branch conditions and use them as predi-

cates in predicate abstraction. Otherwise, we abstract the control flow representation of

the SystemC thread into an abstract model that (1) has fewer locations, and (2) over

approximates the behavior of (e.g simulates) the thread it represents. At each control

state the thread verifies a condition (c) on variables or signals and executes an action

(a) over the same set. Predicates are then defined over c and a.
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f Event Abstraction : Here we consider a special statement defined either over clock or

channel events in SystemC : this is the famous wait/notify mechanism which characte-

rizes SystemC semantics. The thread is either waiting for an activating (input) event

ein or for the notification of an (output) event eout.

f Data Abstraction : Predicate abstraction is suitable for handling variables with large

domains. Such variables are usually called data variables. For a set of predicates P (V )

and a formula ϕ over V (V the set of variables). Data abstraction consists yet in replacing

important formulas over concrete data variables with abstract predicates, it is possible

to significantly reduce the complexity of verification. This abstraction is in fact the basis

of the first abstraction where conditions are defined over variables.

14.2.2 Handling Execution Traces Without Loops

We define each execution trace generated during symbolic execution as follows : it starts

from a state that represents a wait statement and then we consider all the consecutive tran-

sitions that lead to the next wait statement in the control flow graph. Otherwise, σ0 and σn

represent wait states and all the intermediate states from σ1 to σn−1 represent the regular

sequential constructs (including assignments, channel statements, event statements, guarded

statements).

〈stmt0, σ0〉
e1in,p

1

−−−−→
e1out,f

1
〈stmt1, σ1〉 . . .

enin,p
n

−−−−→
enout,f

n
〈stmtn, σn〉

The goal of this analysis is to explain how to generate one-transition system from a set of

consecutive transitions (an execution trace). To do so, we define an abstraction rule that

starts from an initial subset of predicates and defines different transformations applied to

that subset. The purpose of this transformation is to build a candidate predicate for each

transition in the SystemC waiting-state automata.

Algorithm

We consider P the set of predicates and F the set of functions. We use the standard

definitions for constructively computing weakest precondition (wp) (Figure14.5). For all the

pairs of wait states (paths from a wait statement to the next wait statement in the control

flow graph (CFG)) we compute the weakest precondition between the points, and add it to
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the SystemC waiting-state automaton if the weakest precondition is satisfied. But first, we

consider the function FE that describes the changes in the set of output events when we merge

consecutive transitions. FEout eliminates an output event eout from the set of output events if

it figures in the following input events Ein in the forward transitions, otherwise it adds eout

to the set of output events.

FE(eout, E
out) =df


Eout\{eout} if eout ∈ Ein

Eout ∪ eout otherwise

We formally define the following abstraction rule that transforms a series of transitions in

an execution trace into a one-transition trace with only one entry state and one exit state :

〈stmt1, σ1〉
e∗in,p

∗

−−−−→
e∗out,f

∗
〈stmtn, σn〉

〈stmt1, σ1〉
e1in,p

1

−−−−→
e1out,f

1
. . .

enin,p
n

−−−−→
enout,f

n
〈stmtn, σn〉

(14.1)

where e∗in =
⋃i=n
i=1 e

i
in and e∗out =

⋃
i FE(eiout, E

out).

Now, we use predicate abstraction to infer the relation between the set of predicates pi

and the functions f i in order to define how we generate p∗ and f∗ : For each predicate pi,

we select the subset of functions F i ⊂ F that modifies pi in the transitions that are triggered

before pi. More precisely, any free variable of F i is incorporated as terms of the predicate pi,

i.e, the predicate pi is modified by F i during the execution of the trace. The goal is then to

compute for each pi the set of weakest preconditions of the last function from the subset F i

with respect to pi. Besides, we consider the same order of the functions f i as in the initial

execution trace, because in our study we will consider only the last function that modifies

each predicate since the intermediate transitions are simultaneous.

In this analysis, we garantee that for each predicate pi, it is possible to generate the

associated weakest-precondition. First, because we have a finite set of distinct predicates

defined on transitions in the SystemC waiting-state automata. Second, in our analysis, we

consider only the affect of the last function that modifies each predicate, so we garantee that

we can use the standard definition of the weakest-precondition defined in Subsection 14.2.1

to compute the weakest-precondition.

We call f iF : the last function in F i that modifies pi. We consider the following execution
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trace where we consider only parameters predicate p and the effect function f :

p1−→
f1

p2−→
f2

p3−→
f3

. . .
pn−1

−−−→
fn−1

pn−→
fn

For each predicate pi, each subset F i of functions that modifies pi and each function f iF ∈ F i

that modifies the predicate pi the last, we define the new set of predicates as follows :



p′1 = p1

p′2 =WP(f2
F , p

2)

p′3 =WP(f3
F , p

3)

..

p′n =WP(fnF , p
n)

Where WP is the weakest precondition for the function f iF that verifies the predicate pi.

The previous formulas are valid only with one condition : when the free variables FV of

the predicate pi (where pi is true in the present environment) are included in the modified

variables MV of f iF (where f iF represents the previous environment in which the transition

is taking place) ; i.e FV(pi) ⊂ MV(f iF ). We use the conjunction ∧ to accumulate predicates

and the order of predicates is preserved. We use also the symbol ◦ to compose functions.

Then, we define the predicate p∗ for the equation 1 as follows :

p∗ =
∧
i

p′i

f∗ is the composition of all the functions f iF , i.e :

f∗ = f1
F ◦ .. ◦ fnF︸ ︷︷ ︸
n times

.

We get as a result the configuration below which conforms to the SystemC waiting-state

automaton definition :

〈stmt0, σ0〉
e∗in,p

∗

−−−−→
e∗out,f

∗
〈stmtn, σn〉

We do the same for all execution traces. The abstraction rule as defined in equation (13.1) is
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only valid for program without loops.

Example

Consider the following program with two variables x and y, this program executes two tests

on x and y and modifies both variables. We illustrate the previous results on this example.

1 i f ( x = 1) {

2 x = x + 1 ;

3 y := y + 1 ;

4 } else {

5 i f ( y > 0) {

6 y := y − 1 ;

7 }}

We have two execution traces in this example :
(x=1)−−−→ −−−−→

x=x+1
−−−−→
y=y+1

(x6=1)−−−→ (y>0)−−−→ −−−−→
y=y−1

For each trace, we determine the p∗ then the f∗. But first, we fix the set of candidate predicates

and functions. For lines 1, 4 and 5, we associate respectively the set of predicates p1, p4 and

p5. For lines 2, 3 and 6, we associate respectively the set of the following functions : f2, f3

and f6. They are defined as follows :


p1 = (x = 1), p4 = (x 6= 1) and p5 = (y > 0)

f2 = (x = x+ 1), f3 = (y = y + 1) and f6 = (y = y − 1)

Let us consider the set of pairs (f2, p1) and (f6, p5). we define now : p′1 = WP(f2, p1) and

p′2 = WP(f6, p5), the goal is to infer the new predicates from the initial set of predicates

and consider functions (actions) that modify each predicate. This is the case of (p1, f2) and

(p5, f6) since f2 is the last and the only function that modifies p1 and f6 is the last and the
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only function that modifies p5. We get as a result two predicates :


p′1 =WP(x = x+ 1, (x = 1)) = (x = 2)

p′2 =WP(y = y − 1, (y > 0)) = (y ≥ 0).

Now we determine the function f∗ : let us consider first F = {x = x+1, y = y+1, y = y−1},

we consider the same order of the functions as in the execution trace and as we previously

explain. We extract from F the subsets of functions that modify the same predicate from the

initial set of predicates. Here, we have three subsets : F 1 = {x = x + 1}, F 2 = {y = y + 1}

and F 3 = {y = y − 1}. From F 1 we extract the function f ′1 = f2 since we have just one

element in this subset. From F 2 we extract the last and the only function that modifies the

variable y, we get then the following function : f ′2 = f3. As a result f∗ = f ′1 ◦ f ′2 = f2 ◦ f3.

Besides, we consider for the second execution trace the function f ′∗ = f6.

To conclude, the first trace is transformed into one transition trace of the form : s0
p∗−→
f∗

s1,

such that p∗ = (x = 1) and f∗ = (x = x+1)◦(y = y+1). The second trace is also transformed

into the following transition : s′0
p′∗−−→
f ′∗

s′1 such that p′∗ = p′2 ∧ p4 and f ′∗ = (y = y − 1).

As a result, we obtain the following transitions :


s0

(x=1)−−−−−−−−−−−→
(x=x+1)◦(y=y+1)

s1

s′0
(x6=1)∧(y≥0)−−−−−−−−→

y=y−1
s′1

14.2.3 Handling Loops

As a simple example of SystemC threads, we consider the program above, that computes

the maximal element of a table of positive integers T.

1 max=0;

2 i =0;

3 while ( i < T. l ength ) {

4 i f (T[ i ] > max) max= T[ i ] ;

5 i ++;

6 }

Since loops constructs are of a notorious difficulty in the formal verification of programs, we

will just focus on loops and how to use predicate abstraction to automatically infer invariants
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for loops. Several attempts have been made to automatically infer invariants for loops using

predicate abstraction, it was first introduced by [FQ02] and later used in [LL02]. Our method

is based on predicate abstraction, an abstract interpretation technique [CC77] in which the

abstract domain is constructed from a given set of predicates over program variables. A novel

feature of our approach is that it infers predicates by iteration and in a simple way.

Throughout this paper, the program is first visualized as a control flow graph (CFG)

(Figure 14.6). The goal of our approach is to prove that after executing the program above,

Figure 14.6 – The Control Flow Graph generated during symbolic execution

all elements of the array are less than or equal to max. The symbolic execution of the

example is as follows : we execute first the assignment statements inst.1− 2 (line 1 and 2) of
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the program example. The effect of the two assignments manifests itself in the two additional

assumptions max = 0 and i = 0. Now, the active statement of the program is the while loop.

If we consider the formula we build before entering the loop as an invariant for the loop, we

can then consider the formula ϕ0 as a first candidate for the loop invariant. Our technique

is similar to the work of [SEE07] where authors infer invariants for loops in Java programs,

they use a special version of first-order predicate logic to express the semantics of Java. Their

method is based on a combination of symbolic execution and computing fixed points via

predicate abstraction. Next step in our execution process is to enter the loop and to proceed

to symbolic execution. We execute inst.3 (line 3), here we have two cases : the loop is entered

when the condition i < T.length is true and the loop is not entered when the condition is

not true. Thus, we build two additional formulas : (max = 0) ∧ (i = 0) ∧ (i < T.length)

and (max = 0) ∧ (i = 0) ∧ (i ≥ T.length). Next step is to execute the if statement inst.4

(line 4), here we have two additional branches and so two additional formulas where each

formulas represent the abstract execution of each branch. The idea through this technique is

to accumulate the conditions during symbolic execution and each time we enter the loop we

add a new invariant. In the example above, we generate a new invariant candidate when we

enter a second time the loop : the invariant ϕ1. Naturally, we consider the disjunction of ϕ0

and ϕ1 as our new invariant candidate (ϕ0 ∨ ϕ1). We resume the symbolic execution of the

program since ϕ0 and ϕ0 ∨ ϕ1 are not equivalent, we may generate a new invariant ϕ2. This

technique using only symbolic execution may not terminate. Thus, we resort to predicate

abstraction.

• inst. 1− 2

(max = 0) ∧ (i = 0)︸ ︷︷ ︸
ϕ0

→

while(i < T.length){

if(T[i] > max) max= T[i];

i++;

}

• inst.3

(max = 0) ∧ (i = 0) ∧ (i < T.length)→
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if(T[i] > max) max= T[i];

i++;

while(i < T.length){

if(T[i] > max) max= T[i];

i++;

}

∧(max = 0) ∧ (i = 0) ∧ (i ≥ T.length)→

exit

• inst.4

(max′ = 0) ∧ (i = 0) ∧ (i < T.length) ∧ (T [i] > max′) ∧ (max = T [i])→

i++;

while(i < T.length){

if(T[i] > max) max= T[i];

i++;

}

∧(max = 0) ∧ (i = 0) ∧ (i < T.length) ∧ (T [i] ≤ max)→

i++;

while(i < T.length){

if(T[i] > max) max= T[i];

i++;

}

∧(max = 0) ∧ (i = 0) ∧ (i ≥ T.length)→

exit
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⇐⇒


(max′ = 0) ∧ (i = 0) ∧ (i < T.length) ∧ (T [i] > max′) ∧ (max = T [i])∨
(max = 0) ∧ (i = 0) ∧ (i < T.length) ∧ (T [i] ≤ max)

→

i++;

while(i < T.length){

if(T[i] > max) max= T[i];

i++;

}

• inst.5

(max′=0)∧(i′=0)∧(i′<T.length)∧(T [i′]>max′)∧(max=T [i′])∨
(max=0)∧(i′=0)∧(i′<T.length)∧(T [i′]≤max)∧(i=i′+1)︸ ︷︷ ︸

ϕ1

→

while(i < T.length){

if(T[i] > max) max= T[i];

i++;

}

•

ϕ0 ∨ ϕ1 →

while(i < T.length){

if(T[i] > max) max= T[i];

i++;

}

•

0 ≤ i ∧ i ≤ T.length ∧ ∀j.(0 ≤ j < i→ T [j] ≤ max)→

while(i < T.length){

if(T[i] > max) max= T[i];

i++;

}
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•

0 ≤ i ∧ ∀j.(0 ≤ j < i→ T [j] ≤ max) ∧ i ≥ T.length→

{}

We can proceed again to symbolic execution to generate a new formula ϕ2 for the loop, and

then stop or go on accordingly. The problem with this plan is that it may not terminate

this is why we resort to predicate abstraction to over-approximate the computing of the

fixpoint for the loop and generate a set of candidate predicates that satisfies each formula

generated during symbolic execution and using the previous steps. We need first to fix a set

of predicates so we consider the following set of formulas {ϕ0, ϕ1}. Now, we generate a set of

candidate predicates CP that satisfies both ϕ0 and ϕ1. Each predicate p in CP must satisfy

(ϕ0 ∨ ϕ1)→ p. We consider the following set of predicates for this example :

CP = {i = 0︸ ︷︷ ︸
p1

, 0 ≤ i︸ ︷︷ ︸
p2

, i ≤ T.length︸ ︷︷ ︸
p3

, ∀j(0 ≤ j < i→ T [j] ≤ max)︸ ︷︷ ︸
p4

}

In general CP might be chosen by following heuristics, e.g., include all parts of the invariant

candidate accumulated before the first unfolding of the loop, the loop guard, the weakest

precondition computation and parts of the kth iteration of the loop.

For this example the set of all invariants must verify the formula below,

this formula is the conjunction of predicates p2, p3 and p4 in CP.

∀k, ∀j
0 ≤ k < T.length, 0 ≤ j < T.length

∀k.(k < j ∧ T [k] ≤ T [j])→ max = T [j]

14.2.4 Conclusion

In this section, we present how to generate the set of predicates from the control flow

graph of the program and how to infer the relations between them. First, we show how to

handle execution traces that do not contain loops and we define the appropriate abstraction

rule for them. Then, we take a trivial example that contain a loop and we enumerate steps

how to generate the set of predicates by executing stepwise the loop. The abstract formula is
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verified once a fixpoint is reached, we resort to predicate abstraction techniques to generate

the formulas. In the next section, we take an example more intricate, the example of the

simple bus where we have more properties to verify.

14.3 The Simple Bus Case Study

The Simple Bus case study is a well-known transactional level example, designed to per-

form also cycle-accurate simulation. It is made of about 1200 lines of code that implement a

high performance, abstract bus model. The complete code is available at the SystemC web

site [sys]. Figure 14.7 shows the bus structure. It uses a specific form of synchronization, where

Figure 14.7 – Simple Bus Structure

modules connected to the bus execute on the rising clock edge, and the bus itself executes on

a falling clock edge. Several masters can be attached to the bus. Each master is characteri-

zed by a unique priority, that is represented by an unsigned integer number. The lower this

priority number is, the more important the master is. Each master communicates with the

bus via an interface, which describes the communication between masters and the bus. Three

modes of communication are possible : (1) Blocking Mode where data is transmitted through

the bus in a burst mode without interruption even by a request with a higher priority. (2)

Non-Blocking Mode where the master read or write a single data word. After the transaction

is completed, the caller must take care of checking the status of the last request, which can
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#include "simple_bus_arbiter.h"

template <class T>

simple_bus_request<T>

simple_bus_arbiter<T>::arbitrate(const sc_pvector simple_bus_request<T>*> &requests)

{

int i;

simple_bus_request<T> *best_request = requests[0];

// highest priority: status==SIMPLE_BUS_WAIT and lock is set:

for (i = 0; i < requests.size(); ++i)

{ simple_bus_request<T> *request = requests[i];

if ((request->status == SIMPLE_BUS_WAIT) &&

(request->lock == SIMPLE_BUS_LOCK_SET))

{ return request;

} }

// second priority: lock is set at previous call,

for (i = 0; i < requests.size(); ++i){

if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)

{ return requests[i];

}

}

// third priority: priority

for (i = 1; i < requests.size(); ++i)

{ sc_assert(requests[i]->priority != best_request->priority);

if (requests[i]->priority < best_request->priority)

best_request = requests[i];

}

if (best_request->lock != SIMPLE_BUS_LOCK_NO)

best_request->lock = SIMPLE_BUS_LOCK_GRANTED;

return best_request;

}

Figure 14.8 – Simple Bus Arbiter Code.

be issued and placed on the queue (BUS, REQUEST), served but is not completed (BUS,

WAIT), completed without errors (BUS, OK), or finally did not complete due to an error

(BUS, ERROR). (3) Direct Mode, where the interface functions perform the data transfer

through the bus without using the bus protocol. The slave interface describes the commu-

nication between the bus and the slaves. Multiple slaves can be connected to the bus. Each

slave models some kind of memory that can be accessed through the slave interface. Two

modes are possible : (i) Direct interface where it can perform immediate read or writing of

data without using the bus protocol. (ii) Indirect interface where the slave can read or write

a single data element. The functions return instantaneously and the caller must check the
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status of the transfer. The arbiter is responsible for choosing the appropriate master when

there is more than one connected to the bus. The arbiter performs the selection according

to the following rules : (1) if the current request is a locked burst request, then it is always

selected, (2) if the last request had its lock flag set and is again requested, then it is selected

from the collection queue and returned, otherwise (3) the request with the highest priority is

selected from the collection queue and returned.

This structure includes several SystemC components and nicely makes use of the principles

of using SystemC at the transactional level. Besides some of the sample properties, e.g. liveness

and safety, cannot be verified using simulation. They require the usage of formal techniques

such as model checking.

To illustrate our method for predicate inference, we take as an example the code of the bus

arbiter. The arbiter that manage priorities between the masters each time they want access

to the bus. Figure 14.8 presents the arbiter code, the code includes three independent loops.

To analyze the arbiter process, we need to analyze each loop independently and generate the

set of abstract properties. We define abstract formulas to verify that each slave request is

served and to verify which request to serve next.

The arbiter code is composed of three loops, our goal is to analyze each loop independently

and generate the set of abstract formulas for each loop. To do so, we analyze for example

the second loop and the method will be generalized for the other loops. We define the set of

following tests generated from the loops conditions :

• test1(req) : (req → status = SB WAIT ) ∧ (req → lock = SB LOCK SET )

test1 : verifies if the parameter request is well defined and that it asks

for a lock. It verifies as well, whether it was in the WAIT state.

• test2(req) : (req → lock = SB LOCK GRANTED

test2 : verifies if the request for a lock is guaranteed.

We denote the size of the requests table such that : requests.size() = N . The goal of the

analysis is to generate an invariant for the loop, we start executing some iterations of the

loop and then we generate an abstract formula that describes the computation. We resort

to the technique of loop unrolling : a technique that consists in optimizing the program’s

execution speed by reducing or eliminating instructions that control the loop.
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We resume the example of the arbiter, and more specifically the second loop. The second

loop consists in browsing the table of requests and return the first request that satisfies test2.

We execute at most N iterations, we illustrate this on the following demonstration through

different steps of execution.

• Step1 (i=0)

i = 0 ∧ 0 < N →

if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)

{ return requests[i];

}

for (i = 0; i < requests.size(); ++i){

if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)

{ return requests[i];

}}

• Step2 (i=0)

i = 0 ∧ 0 < N ∧ test2(requests[0])→

return requests[i];

∧ i = 0 ∧ 0 < N ∧ ¬test2(requests[0])︸ ︷︷ ︸
ϕ0

→

for (i = 0; i < requests.size(); ++i){

if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)

{ return requests[i];

}}

• Step3 (i=0)

i = 0 ∧ 0 < N ∧ test2(requests[0]) ∧ request = request[0]→

exit;

• Step1 (i=1)

i = 0 + 1 = 1 ∧ 1 < N →
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if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)

{ return requests[i];

}

for (i = 0; i < requests.size(); ++i){

if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)

{ return requests[i];

}}

• Step2 (i=1)

i = 1 ∧ 1 < N ∧ test2(requests[1])→

return requests[i];

∧ i = 1 ∧ 1 < N ∧ ¬test2(requests[1])︸ ︷︷ ︸
ϕ1

→

for (i = 0; i < requests.size(); ++i){

if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)

{ return requests[i];

}}

• Step3 (i=1)

i = 1 ∧ 0 < N ∧ test2(requests[1]) ∧ request = request[1]→

exit;

• ..

• Step1 (i=N-1)

i = N − 2 + 1 ∧N − 1 < N →

if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)

{ return requests[i];

}}

for (i = 0; i < requests.size(); ++i){
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if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)

{ return requests[i];

}}

• Step2 (i=N-1)

i = N − 1 ∧N − 1 < N ∧ test2(requests[N − 1])→

return requests[i];

∧ i = N − 1 ∧N − 1 < N ∧ ¬test2(requests[N − 1])︸ ︷︷ ︸
ϕN−1

→

for (i = 0; i < requests.size(); ++i){

if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)

{ return requests[i];

}}

• Step3 (i=N-1)

i = N − 1 ∧N − 1 < N ∧ test2(requests[N − 1]) ∧ request = request[N − 1]→

exit;

• Step (i=N)

N ≥ N →

Exit;

We iterate the loop at most (N-1) times and at least once. Once we reach the N th iteration,

we exit the loop. The loop reaches a fixpoint when there exists just one request in the request

table that satisfies test2 and the set of requests before it don’t, i.e, there exists an element

i from the table requests such that test2(requests[i]) is true and for each j such that j < i,

test2(requests[j]) is false. The goal behind the loop is to search for the first request that seeks

access to the bus and serve it.
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We resume the previous iterations, as we notice each formulas from {ϕ0, ϕ1, ..., ϕN−1} presents

a candidate invariant for the loop. Using predicate abstraction, we generate a set of predicates

p such that ϕ0∨ϕ1∨ ...∨ϕN−1 → p. We proceed the same as in Section 14.2.3 : we first specify

the set Ψ of formulas that satisfy the loop and constructed by iteration, then we generate a

set of candidate predicates from the set Ψ. Let k ∈ [0;N − 1] be an integer, we suppose the

following assumptions :

i = k ∧ ¬test2(requests[0]) ∧ ... ∧ ¬test2(requests[k − 1]) ∧ ¬test2(requests[k])→

for (i = 0; i < requests.size(); ++i){

if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)

{ return requests[i];

}}

If we want to generalize the assumption above, we have just to quantify the logical expressions.

We suppose that ∃k ∈ [0;N − 1] such that :

¬test2(requests[0]) ∧ ... ∧ ¬test2(requests[k − 1]) ∧ test2(requests[k])︸ ︷︷ ︸
Ψ

Formula Ψ is equivalent to : ∀j ≤ k,¬test2(requests[j]) ∧ test2(requests[k]). Otherwise,

∃k ∈ [1;N ],∀j ∈ [1;N ], j ≤ k ∧ ¬test2(requests[j]) ∧ test2(requests[k])

We verify by induction the previous formula :

¶ for k = 0 if test2(requests[0]) then j = k = 0 and Ψ is true. If ¬test2(requests[0]) then

k = j = 0 and Ψ is true ;

· we suppose that Ψ is true for N ;

¸ we prove that it is true for N+1 ;

If it is true for N then :∀j, j ≤ N ∧ ¬test2(requests[j]) ∧ test2(requests[N ]). Here we have

two cases :

• case 1 : test2(requests[N + 1], in this case,for each k ≤ N + 1, we have necessarily

¬test2(requests[j]). Ψ is then true up to N+1.
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• case 2 : ¬test2(requests[N+1] in this case Ψ is true until N which is previously verified.

in this case we found an element from the table requests (N) that satisfies Ψ and all the

forgoing elements don’t verify test2.

Interpretation of the analysis From the previous analysis, we generate the abstract for-

mulas that describes the abstract behavior of the second loop in the arbiter example. As

we previously explained the second loop extract from the table of requests the first request

that verifies test2. We also presented steps how to analyze the behavior of the second loop

and how to use the passage to limit to generalize the final result since the size N of the

table is unknown ( how many times the loop is unrolled). As a result, we generate the

formulas P2 as follows : P2 : ∃ i,∀j, 0 ≤ i < requests.size() ∧ test2(requests[i]) ∧ 0 ≤

j ≤ i ∧ ¬test2(requests[j]) We use the same analysis to extract the abstract formulas for

the first loop and the third one, we generate the formulas P1 and P3 defined as follows :

P1 : ∃ i, ∀j, 0 ≤ i < requests.size() ∧ test2(requests[i]) ∧ 0 ≤ j ≤ i ∧ ¬test2(requests[j])

P3 :∃i,∀j, 0 ≤ i < requests.size() ∧ 0 ≤ j < requests.size()∧

i == j ∨ requests[i] < requests[j]→ priority∧

requests[i]→ lock 6= SB LOCK NO ∧ request[i]→ lock = SB LOCK GRANTED

The analysis of the SimpleBus code shows then that we browse at most three times the list

of queries in order to select what is the next request to be transmitted. The previous result

is represented using the three logical formulas P1, P2 and P3. Each formula represents a loop

in the arbiter code.
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CHAPTER 15

Conclusion

In this Part, we have presented an new automatic approach for verifying SystemC designs

based on the SystemC waiting-state automata model (WSA). We show how to generate

automatically the automaton for each component because the model used to be manually

built in work of [YZM07]. We use a stepwise approach that starts from a well-defined formal

semantics of a subset of SystemC language. Those semantics capture not only the structure of

SystemC components but also the compositional behavior of the communicating components

by including the semantics SystemC scheduler. In parallel, we proceed to symbolic execution

of SystemC programs in order to generate the set of the execution traces of the program.

During the symbolic execution, we generate the control flow graph (CFG). The nodes of this

graph represent the basic commands and guard expressions of the process, and the edges stand

for flow of control between the nodes. The control flow graph is annotated with exemplary of

logical expressions called the path condition (PC). We combine the symbolic execution with

the operational semantics and we call it the extended symbolic execution. The extended

SE is used to generate a transition system that is syntactically conform to the semantics

of the SystemC waiting state automata. Then, we explore predicate abstraction techniques

to build automatically the SystemC WSA from the control flow graph genrated during the

extended symbolic execution. Thus, we distinguish between two cases for program analysis :
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first we consider programs without loops where we define our abstract formulas using the

computation of the weakest preconditions to merge transitions and second we take a special

case of programs with loops for which we define how to symbolically infer invariants using

symbolic execution together with predicate abstraction. Finaly, we illustrate the approach on

an example more intricate : The Simple Bus cas study.

In the next Part, we enumerate different applications of our framework based on the

SystemC waiting-state model. First application is to propose a global framework based on

the SystemC WSA to model and simulate embedded software/hardware systems. Second,

we propose a conjoint work which brings together two research lines in our team unit :

hardware/software co-verification of embedded systems and Computing worst case execution

time (wcet). Hence, we propose a framework that symbolically execute the binary code on an

abstract model of the processor using the Timed SystemC waiting-state automata[HM09] and

applied an intelligent state fusion algorithm during symbolic execution as presented in [Ben11]

to reduce the state space and give an exact estimation of the wcet. The third application

propose to apply verification techniques notably model checking techniques to verify further

properties on the SystemC waiting-state automata.
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Part IV

Applications of the SystemC WSA

Model

This Part introduces three applications of the SystemC waiting-state au-

tomata (i) modeling and simulation of programs, (ii) Hardware/software

co-verification and (iii) Applying formal verification techniques to the Sys-

temC waiting-state automata.





CHAPTER 16

Introduction

During verification, we assure that the software/hardware systems meet the requirements

defined during specification. Verification includes also the functional requirements as well as

architecture and design models, test cases, etc. In the previous section, we presented our ap-

proach for specifying and modeling an abstract representation of embedded systems described

in SystemC. This representation is based on the SystemC waiting-state automaton. During

the modeling step, most designers must ensure that their formal model satisfies the following

specifications :

1. A functional specification, given as a set of explicit or implicit relations which involve

inputs, outputs and possibly internal (state) information.

2. A set of properties that the design must satisfy, given as a set of relations over inputs,

outputs, and states, that can be checked against the functional specification.

3. A set of performance indices that evaluate the quality of the design in terms of cost,

reliability, speed, size, etc., given as a set of equations over inputs and outputs

4. A set of constraints on performance indices, specified as a set of inequalities.

The purpose of validation is to prove that the global system fulfills its required function when

placed in its intended environment. There are two main techniques for system validation,
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either static or dynamic techniques. The purpose with both techniques is to identify defects

in the software. Static techniques are used to check and analyze representations of the system

such as specifications, models and source code. Dynamic techniques (simulation) involve exe-

cuting and analyzing an implementation of the software. But, simulation remains the main

tool to validate a model, but the importance of formal verification is growing, especially for

safety-critical embedded systems. During validation, designers must ensure that the abstract

model can verify/detect some safety properties (including deadlock detection).
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Modeling and Simulation of SystemC Programs using the SystemC WSA

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

17.2 Modeling and Simulation with the SystemC WSA . . . . . . . . 186

17.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

17.1 Introduction

The first step in static analysis of embedded systems is to give an abstract representation of

the application in order to model the behavior of the system : this is the modeling process.

The abstract model should be simple but also faithful to the initial system. Usually, the

abstract model is a finite or infinite transition system where states represent different system

locations and transitions represent the evolution from one state to another. The model should

respect the tradeoff between an exact and proper approximation of the real system where most

features of the system are preserved and having less complexity. Too many works for modeling

embedded systems have emerged (examples of existing works are described in Part II), some of

them are applied to purely software languages like C++ and Java and some others are used

for software/hardware languages like SystemC and System verilog. Those models are used

either to model the system at lower levels of abstraction where more details about system
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behavior are defined or they are used to model the system at higher levels where details

are hidden or are with less importance. The choice of the model must ensure the following

criteria in addition to the previous ones : it should i be modular, ii be compositional, iii

sustain refinement and iv support granularity.

Another important issue in system modeling is the model validity. Model validation tech-

niques include specifically simulating the model using known inputs and comparing the model

outputs with the system outputs. A model that is intended to be used for simulation is ge-

nerally a mathematical model developed with the help of a simulation software. Simulation is

used before the implementation of the final application in order to reduce the chances of fai-

lure to meet specifications, to eliminate system bottlenecks, to manage resource consumption,

and to optimize system performances.

17.2 Modeling and Simulation with the SystemC WSA

In this chapter, we introduce an application of the the SystemC waiting-state automata

to model and then simulate hardware/software systems. We propose a framework to design

and symbolically execute parallel components of systems. The framework allows both to take

into account the semantics of the SystemC WSA model and how to express the interactions

between the automata.

Figure 17.1 is a schematic of the modeling/simulation approach using the SystemC WSA

model. The approach starts from system specification where a detailed study of both the

hardware and the software requirements is proposed. Then, regarding to the properties we

want to verify, we precise at which level we want to model the system. It will be interesting

if we propose a model that can represent the system at different levels of abstraction. We

choose to model embedded systems using the SystemC waiting-state automata first because

it is a compositional model and second because it models SystemC programs at both the TLM

and the delta-cycle levels. The SystemC WSA is a transition system where states represent

global states of the process and transitions are symbolic paths between states. Entry and

exit conditions are defined over each transition. Once an abstract model is built for each

component of the embedded system, we generate a global automaton for the whole system

using a bottom-up approach. Next step is to validate the model which is already done during

the process of building the automata as mentioned in Chapter 14. The validation is assured
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Figure 17.1 – The Modeling and the Simulation process with the SystemC WSA
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during the step of applying symbolic execution and predicate abstraction to automatically

build the abstract model.

Once the model is developed and then validated, we proceed to the symbolic simulation of

the SystemC waiting-state automata (Figure 17.2). Hence, each SystemC automaton is consi-

dered as a black box where the internal behavior is already abstracted during the modeling

process. We consider only the interactions between the automata and their environment. Thus,

we can consider design executions as a set of abstract models which denote the observable

states of the system and the communications between components. The latter representation

provides the suitable environment to simulate symbolically systems modeled using the Sys-

temC waiting-state automata. Hence, we affect symbolic values to global variables and events

to allow the communication between the parallel processes. During symbolic simulation, we

generate a graph that we call the execution graph. Before simulation, we choose our si-

Figure 17.2 – The Simulation Framework of the SystemC WSA

mulation strategy, ie. we decide about different combinations of inputs and outputs, specify

the properties to verify and select the appropriate experimental design. Then, we proceed to

simulation Finally, we interpret and present the simulation results.

17.3 Summary

The main goal during complex system modeling is to propose an abstract representation of

the system under-study that is faithfully conform to the initial system. We should ensure that

most details about system behavior are covered by the abstract model. Besides, the model
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should abstract the system under study independently from the details of its internal imple-

mentation. The SystemC waiting-state automata, as we previously proved, provides a proper

and reliable representation of complex systems at both the delta-cycle level and the system

level. Moreover, it provides a simplified and less complex representation of SystemC models

since it represents only specific states in system behavior. The previous reasons substantiate

the SystemC WSA model to be an efficient representation to symbolically simulate complex

systems like in Figure 17.2. Indeed, we can easily and rapidly simulate the parallel behavior

of embedded systems since we garantee first that the model is remarkably reduced during the

step of the generation of the model. Second, we can symbolically simulate the model since it

represents only symbolic values of inputs, so we don’t need to use real values of inputs to si-

mulate the parallel behavior of the global framework. Accordingly, the SystemC waiting-state

automata provides the opportunity to symbolically execute and simulate complex systems in

a dynamic abstract framework which greatly helps designers to validate and implement their

application.
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Hardware/Software Co-verification (Worst Case Execution Time Estimation

Workflow Based on the Timed WSA Model of SystemC Designs)

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
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Real time systems are omnipresent in embedded systems and can be used either to opti-

mize the process performance as well as to perform humanly uncontrollable activities. When

involved in critical tasks they become hard real time systems thus the need to verify them.

Ongoing approaches and tools based on dynamic and static methods or a combination of

them, are used to either validate functional or non-functional properties. They are very few

tools that verify both. The present application is a conjoint work [VPM11, Ben11] which

brings together two research lines in our team unit at ENSTA ParisTech : hardware/software
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co-verification of embedded systems and Computing worst case execution time (wcet).

Embedded systems are growing in complexity as they integrate different types of compo-

nents including microprocessors (where pipelines and cache memory are becoming standard),

DSPs, memories, embedded software, etc. thus the need of a global approach for systems des-

cription. One of the purposes of this global approach is to fill the gap between hardware des-

cription languages (HDLs) and traditional software programming languages. SystemC offers

the hardware/software co-design capabilities while being able to model at different abstrac-

tion levels. SystemC can be seen as C++ with an added HDL layer so it provides a common

development environment for software and hardware engineers. Combining these two fea-

tures gave birth to a versatile language that takes the advantages from the object oriented

programing paradigm but also the drawback of increasing the complexity of the verification

process. In our approach, we propose a conjoint methodology based on the symbolic execution

(SE ) of an abstract model : the timed SystemC waiting- state automaton (TWSA) extrac-

ted from the SystemC model of the processor. One main advantage of using Timed WSA

is that a specified model can be analyzed. This enables the avoidance of system failure by

ensuring that certain requirements : functional as well as non-functional are fulfilled. Besides

functional errors, a common cause of failures is timing violations, e.g. an inacceptable high

response time of a critical piece of code or a control loop whose sample rate cannot be kept.

Avoiding timing violations is only possible with knowledge about the worst-case timing of

a task. The purpose of the worst-case exection time (WCET) analysis is to provide a priori

information about the worst possible execution time of a piece of code before using it in a

system. To be valid, the WCET estimates must be safe, i.e. guaranteed not to underesti-

mate the execution time. To be useful, they must be tight, i.e. provide low over estimations.

The WCET of a program is usually calculated in a two-stage process comprising a source

code level (analyzing the program flow) and an object code level (analyzing the object code

with respect to architectural factors like pipelines and caches). To obtain this WCET, three

steps are necessary : (i) the task control flow analysis, which determines the possible program

paths, (ii) the architecture effects analysis, which takes into account the various hardware

components (CPU pipeline, instruction cache, etc) to produce timings for program paths,

and (iii) the final WCET computation. In this second application of the SystemC WSA mo-

del, we propose a conjoint methodology based on the symbolic execution of the the abstract
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model of the processor described in Timed SystemC waiting-state automata and the symbo-

lic execution of the binary code of the program resulting in a control flow graph. Actually,

computing WCET with static analysis is one of the main topics of our laboratory at ENSTA

ParisTech. Bilel in [Ben11] defines a global approach that models the hardware using abstract

state machines and use an intelligent algorithm for predicate abstraction to reduce the state

space generated during symbolic execution of the model and the binary code. This approach

is very interesting especially in term of the abstract states fusion algorithm. Besides, it gives

good results in WCET estimation compared to existing approaches. But, we propose to use

the WSA to model the hardware instead of the ASM to obtain more interesting results. In-

deed, the Timed SystemC WSA is defined with less states compared to the ASM. Besides,

it is generated independently from the hardware architecture compared to the ASM. More

particularly, the Timed SystemC WSA is already annotated with timing information which

makes the estimation of time execution more easier.

18.1 Introduction

Estimating the worst-case execution time of a program is a very important task, especially

when you are dealing with real-time operating systems and programs, which have deadlines

that have to be kept. Missing a deadline can have catastrophically consequences, because

real time operating systems and programs are used in all types of time sensitive embedded

systems, e.g. in medical equipment, cars, mobile phones and airplanes.

The purpose of Worst-Case Execution Time (WCET) analysis is to provide a priori informa-

tion about the worst possible execution time of a piece of code before using it in a system. To

be valid, WCET estimates must be safe, i.e. guaranteed not to underestimate the execution

time. To be useful, they must be tight, i.e. provide low overestimations (Figure 18.1).

The worst case execution time approximation is not an easy task. Several things have to be

considered, such as how to model the caching behavior to include it in the analysis and how

to find the longest execution path in all the execution paths of the program. For dynamically

changing systems, analysis methods have to be extended to run-time. For potential modifi-

cations of the running system, an online component must analyze, whether a modification is

feasible with respect to the specified timing constraints and to the available hardware.

The WCET of a program is usually calculated in a two-stage process comprising a source code
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level (analyzing the program flow) and an object code level (analyzing the object code with

respect to architectural factors like pipelines and caches). In this work, we propose to model

the hardware behavior using the model of the SystemC waiting-state automaton extended

with time and then we symbolically execute the program on this model (conjoint symbolic

execution). The generated graph is annotated with information about the current statement

(either addition, multiplication, etc.), the task achieved during the pipeline stages (Fetcher,

Dipatcher, etc.) and different cache states (cache-miss, cache-hit). The graph is also annotated

with information about the time ( estimation about the duration that may take a task). Worst

Figure 18.1 – WCET Estimation

case execution time is also a main topic in our lab as previously presented in the work of bilel

[Ben11], our approach is based on the work in [Ben11] but we do more. In fact, the work of

bilel [Ben11] uses the abstract state machine (ASM) to model the hardware (processor) and

he has to define it manually and it differs from one processor to another, i.e, each time the

hardware changes, the specification of the ASM may change too. Nevertheless, in the case of

the SystemC waiting-state machine, the model is build independently from the architecture

of the hardware, so, we don’t need to change the specification we defined when the hardware

changes. Besides, the SystemC waiting-state automaton is largly reduced in terms of state

number compared to the abstract state machine since we consider only specific states of the
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system description. This is why when we proceed to state fusion as in [Ben11], the algorithm

we apply is much more easier to execute and then it takes less time to compute the WCET

in a accurate manner.

18.2 Related Works

Static methods use formal verification technique in order to compute the worst-case exe-

cution time. The main advantage of static methods lies in their ability to provide complete

coverage of execution traces.

Static methods use techniques for program analysis like symbolic execution (SE) to des-

cribe the behavior of the program. The approach of analyzing the intra-processor interactions

or generating all the feasible paths by symbolic execution (SE) has been used with good results

in [Lun02] but nevertheless the method suffers from the lack of a precise hardware model,

using only a simulation of the latest with no correspondence between the real hardware and

the timing model. This leads to a over-pessimistic time estimation. The lack of a good value

domain and the indiscriminating state merging further contribute to the loss of precision.

The OTAWA method as introduced by Cassé and Sainrat [CS06], makes a first step

towards adaptability as it uses a parametrized model of a generic platform that can address a

variety of architectures. On the other hand, the process is fairly difficult and the model lacks

precision while it fails to capture the precise behavior of the platform.

One of the leading WCET analyzer, aiT’s AbsInt [CFW99, Wil04], is also evolving in this

direction by looking to use a SystemC description in order to generate an abstract model.

This technique was first developped by the AbsInt group in 1999, they use series of analysis

to estimate the worst case execution time. First, they generate the control flow graph (CFG)

from the binary code, then they proceed to value analysis in order to produce an over-

approximation of the memory areas that will be accessed. The latter result is used to analyse

the bahavior of the cache memory (cache-hit, cache-miss). Next step is to use the previous

results to estimate the pipeline block at each execution point of the program. They use mainly

abstract interpretation [CC77, CC92] to analyse their program, this technique is widely used

in programs analysis. Finally, they use the previous analysis together with the source code

analysis to generate and analyse the execution traces using a technique called Integer Linear

Programming (ILP). The use of ILP help to describe the program structure as well as the
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set of the execution traces in a natural manner. Solving the set of constraints, that describes

the program structure, using ILP help determine the worst case execution time. Although its

effectiveness in WCET estimation, this technique has mainly the following drawbacks : (i) the

overlap between different stages of program analysis may lead to many errors, (ii) the over-

approximation of abstract values during abstract interpretation may affect the accuracy of the

worst case execution time estimation and (iii) the necessity to properly model the processor

(a component based representation of the Hardware, concrete and abstract semantics of the

hardware, etc.).

Further objectives in the PREDATOR [prea] program are to guide the design of future

architectures, making them more predictable in order to reduce the over approximation of the

worst case behavior. The approach adopted in this work follows an autonomous paradigm,

combining the exactitude and reliability of the hardware model being used (as we only trans-

late the same code that was used to generate the system, we obtain a precise model of the

architecture) with the ease of generating it. The advantages of our method are twofold, the

ability to verify both functional and non-functional properties and the accuracy of the worst

case behavior (in our case time related) estimation.

18.3 Modeling the Processor

Before we build the timed WSA, we need first to symbolically execute the code SystemC

of the design. We obtain a detailed description of the design that contains intermediate states

and elementary transitions : this is the control flow graph (CFG) where nodes present the

statements of the process and edges are the transitions between these statements. In order to

build the WSA, we consider only states that represent the wait statements of the process or

thread. Those waiting states represent the synchronizing points between threads. Then, we

resort to abstraction techniques to merge the transitions between each two waiting state.

Example

To illustrate our approach, we take the example of a block composed of the Icache, the

Fetcher and the Decode (see Figure 18.2). We consider three modules representing the three

stages. Each module has its own clock, its internal behavior and its local variables, but three
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of them are communicating through events, signals, channels and shared variables. Further,

modules are communicating through functions calls if we consider high level representations of

SystemC. This is one of the main advantages of Timed WSA, since it provides an early system

model plateform for software development. As it was previously explained, the Icache has no

Figure 18.2 – The Icache, the Fetcher and the Decode

processes it contains only set of instructions. The Fetcher reads an instruction from the Icache

and sends it with the next program counter PC to the Decode. The Decode determines the

instruction type and updates the PC. Figure 18.3 presents the CFG and the corresponding

Timed WSA of the Fetcher. Starting from the CFG of the Fetcher, we consider only two

special states where the Ftecher is waiting for its clock and waiting for the response from the

Icache. Therefore, the Timed WSA of the Fetcher is composed of just two states.

18.4 WCET Estimation

Having the ability to adapt to any given architecture is becoming today a major concern,

mostly because of the diversification and the growth in complexity of the platform used in

the industry. Our approach is exploiting the popularity of SystemC designs in order to create

a tool that is able to address any architecture described this way, by using a unified formal

model, the timed SystemC waiting-state automata. In this section we will describe the way

the WCET estimation technique uses the previously introduced model. In contrast with the

approach presented in [BM09], our analysis starts directly from a SystemC design and is based

on the Timed SystemC waiting-state automaton with the additional advantage that a first

part of the abstraction is done at this level generating more compact states. Compared with

the ASM based approach, the state explosion problem becomes less important. The main
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Figure 18.3 – The CFG and the WSA of the Fetcher

contribution yields from the new take on system modeling and the subsequent adaptation

of the conjoint symbolic execution and state fusions criteria. Our analysis integrates a value

analysis step that will exploit the binary of the program, followed by the conjoint symbolic

execution (SE ) of the processor model and the program information generated by the ana-

lyzer. The idea to symbolically execute the processor model has been successfully used in

[Lun02] to determine all the feasible paths as well as to capture in detail complex proces-

sor behaviors like time anomalies or data hazards. Even if SE helps reducing the generated

program states, by taking only feasible paths into account, it still generates a combinatorial

explosion without providing a method of containment. We choose to handle it using our next

analysis step - the smart fusions, described in [BBV08]. Other methods are under study,

[THS09], and give the SE approach a new justification.

Figure 18.4 describes the global approach for WCET estimation : starting from a SystemC des-

cription of the Processor components, we extract the Timed SystemC waiting-state automaton

for each unit of the processor and then we compose them using our symbolic composition/-

reduction algorithms. Then, we proceed to the conjoint symbolic execution of the program

together with our Timed WSA model as presented in [BM09]. We apply value analysis to the

program that we explain more in detail in the next subsection to extract information about

the instructions, the addresses, data values, etc. The final step is to execute state fusion on

the control flow graph (CFG), this step is explained more in details in next subsection. This

technique globally identify the identical states, i.e, they have either all the elements that are

the same. In this case, we proceed to the fusion of strongly identical states. This will be done
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by the prediction module.

Figure 18.4 – Global Architecture of the precise WCET estimation platform

18.4.1 Value Analysis

The analysis of the program starts from the binary code giving information about the

instructions order, their addresses, the loop counts and also serves to determine the memory

areas that may be reached during the program execution. This result can be exploited in

the cache analysis. This analysis is an integrated part of our tool and it was developed in

collaboration with an industrial partner. The analysis is based on abstract interpretation and

has a fast pass by default, but still giving the possibility to return at any moment at a certain

program point and request for more precise approximations. This gives us a good enough

result in a short amount of time while still keeping the possibility to be precise on demand.

18.4.2 Conjoint Symbolic Execution

In the following we will describe the main ideas behind conjoint SE. The TWSA gives us

a precise (e.g. with regard to the time matter, even after the composition of the automata,

the transition are labeled with the total duration of the respective actions) and yet compact

(composition and then reduction of the automata) representation of the system. The model

consists in a set of waiting states whose transitions represent the modification made when
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certain conditions are met after receiving certain event notifications. Our technique consists

in symbolically executing the TWSA processor model, as presented in Section 9.2 under a

certain program run in order to generate all the reachable states of the processor under that

specific context (the program whose WCET bound needs to be estimated). Symbolic execution

consists in symbolically executing each instruction of the program meaning that every variable

is replaced by a symbolic value. The succession of instruction generates a context and choices

generate branches in the CFG that are accumulated into the path condition (pc). In the same

way, the TWSA is symbolically executed, this time with the program instructions as inputs

that will guide the evolution of the circuit and generate a new context and configuration that

will also be accumulated in the pc in conjunction with the previous one.

Let ΠSE be a SE run defined as a succession of symbolic program points, ΠSE =

{p1, p2, . . . pn} where

p =

〈
(pc = Q), (xi = Ri), (Eout =

⋃̇
ejout), i = 1 . . . n

〉

and

pc :

〈⋃̇m

i=1
Qi ∧

⋃̇n

i=1
eini

〉
.

The xi, i = (1 . . . n) are program variables whose values are expressed as formal ex-

pressions, Ri, over formal symbols and whose initial values are symbolic values αi. Q

represents an assertion specifying the conditions that must be verified in order to ar-

rive in that specific program point and it’s initialized to true in the initial state p0 =

〈(pc = true), (x1 = α1), . . . , (xn = αn)〉 to which we add the out events, Eout, that were acti-

vated by the transition.

The pc works as a constraint accumulator. Each time a branching instruction is encoun-

tered in the code, the decision taken during the analysis is added to the pc. Similarly, when

a branching occurs in the TWSA, the choice that lead to the next state (that translate into

values taken by the different components of the automata), as well as the events that trig-

gered it, are added in conjunction to the pc.The evaluation rule for assignment expression is

obvious, the value of the symbolic variable at the left-side side of the assignment is replaced

from now on with the value of the symbolic expression in the right-hand side of the assign-

ment, after it’s own evaluation - that might consist in replacing the variables used with their
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corresponding symbolic expression. Let p(pc) be Q, p(xi) be Ei and p(α ← β) be the old p

where the value of α is changed to β. A special treatment is applied to conditional instructions

that use the pc to explore all the possible scenarios. The expressions conjoined in the pc are

of form Q > 0 where Q is a polynomial over symbolic values. Let R be this expression we

thus have three possible cases : we can determine starting from the pc that the condition is

always true, meaning pc ⊃ R and pc 6⊃ ¬R, therefore the execution will continue with the

then branch analogue for the else branch or we can not determine if the condition is true

or false, pc ⊃ R and pc ⊃ ¬R, therefore the execution will continue along both branches,

generating two new paths. In our case, the values of the variables represent values of the

registers or their location. Operations on this values are isomorphisms. The classic SE needs

only the current values of the program variables and a current instruction pointer, as well as

the pc, in order to generate the symbolic tree. The significance of program variables in the

case of the SE of the TWSA model would be the value of the registers, or their addresses,

and we also need to store alongside the state of the processor (such as the current state of

the pipeline). Therefore we need to keep track of the current waiting states that will give us

the precise configuration of the processor

p = 〈
(⋃̇m

i=1
Qi ∧

⋃̇n

i=1
eini

)
,(

X =

p⋃
i=1

Ri

)
,

(
W =

q⋃
i=1

Sj

)
,

(
Eout =

⋃̇r

i=1
eiout

)
〉.

Execution of the Time Model of the Processor

Let {TWSAµP , P, C(V )} be the processor model, the program and the constraints on

the program’s variable respectively. The conjoint symbolic execution consists in symbolically

explore all the feasible paths until we reach the ones corresponding to the worst case execution

time. In order to do this we have a model that is able to take into account all the possible

interactions at the interior of the processor, with regards to the execution time, guided by the

instructions of the program which are revealed by the value analysis and applied on symbolic

variables.

The temporal symbolic tree is defined as Gs = ΠSE , TR,L where ΠSE are the symbolic
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program points as previously defined, TR are the transitions between two program points,

and L is the labeling function that will associate a time with each transition from a start

program point ps until an end program point pe. Therefore we can introduce a time-accurate

model as opposed to a cycle-accurate model [] that will enable us to reduce the combinatorial

explosion that rises from the fact that we generate all the possible execution paths. For

example if two consecutive states are identical we will not use all of them but we will rather

generate only a relevant new state labeled with the time needed to obtain it.

The classic SE needs only the current values of the program variables and a current

instruction pointer, as well as the pc, in order to generate the symbolic tree. The significance

of program variables in the case of the SE of the Timed WSA model would be the value of

the registers, or their addresses, and we also need to store alongside the state of the processor

(such as the current state of the pipeline). Therefore we need to keep track of the current

waiting states that will give us the precise configuration of the processor.

Symbolic State

We can further refine the notion of state that we use to capture all the information

needed to the evolution of our system that is compact enough but can capture all the needed

informations. The classic SE needs only the current values of the program variables and a

current instruction pointer, as well as the pc, in order to generate the symbolic tree. The

significance of program variables in the case of the SE of the Timed WSA model would be

the value of the registers, or their addresses, and we also need to store alongside the state of

the processor (such as the current state of the pipeline). Therefore we need to keep track of

the current waiting states that will give us the precise configuration of the processor

p =

〈(⋃̇m

i=1
Qi ∧

⋃̇n

i=1
eini

)
,

(
X =

p⋃
i=1

Ri

)
,

(
W =

q⋃
i=1

Sj

)
,

(
Eout =

⋃̇r

i=1
eiout

)〉
.

The execution algorithm consists in the following steps that are executed while we have

not reached a final state.
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Figure 18.5 – The symbolic state

Figure 18.6 – An example of symbolic tree
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Algorithm [BM09]

1. Start from the initial state : where all the components have the unknown value and pc

is set to true

Init state = C0 ← {< (pc = true), (X = ⊥), (W = ⊥), (Eout = ⊥) >}

2. For every variable that we encounter and that we do not have the exact value, assign a

symbolic value

3. Activate the first waiting state of the Timed WSA model and then add the predicate

P and the ein to the pc

4. Add eout to the system state

5. Apply F (α), a symbolic expression representing all the modification to be made, to the

previous state of the Timed WSA model of the processor

Ci = {p(X(α))← F (α),∀p ∈ Ci−1}

6. Add the generated states to the collection of next states to be executed

7. Add the duration of the transition to the global time

8. Repeat from point 2. until the collection of next states is empty

An implementation of a similar WCET estimation method based on abstract state machines

gave promising results [BM09].

18.4.3 Intelligent States Fusion

One of the major drawbacks of the SE comes from it’s quality of generating every feasible

path, that for a real-life industrial program generates a combinatorial explosion that is not

obviously containable. What still remains challenging today is to handle this explosion while

still remaining precise enough. This translates to finding a way of eliminating some of the

states, and we choose the technique of states fusion that will try to generate an abstract state

capable of capturing the respective states features, with regards to the goal, but remain as

compact as possible.

It has been proven in [BM09] that because of the finite number of states that a processor can
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have and because of the constrains generated by the execution contexts at a certain point

we will have states that regardless of the different history, will generate identical or very

similar new states. One major step in having precise fusions is to determine when to make

them and what changes to apply. States can be of two types as mentioned in Figure 18.7 :

identical, meaning that they have either all the elements that are the same, in this case we can

suppose that an eventual fusion will not impact the precision of the analysis, or similar, some

of the components are not the same so we proceed to another analysis to determine to which

extent they are different. Therefore similar states can be strongly or weakly similar, meaning

that the impact of the fusion will be acceptable or not. For the instant this estimation is

done dynamically by our prediction module. Its goal is to evaluate the impact in the future

of a fusion by unrolling the tree for several steps (generally equal to the pipeline depth),

continuing the execution along the paths before and after fusion and comparing the result.

Further details about this technique can be found in [BM09].

Figure 18.7 – The Dynamic Fusion-snapshot of the Prediction Module

18.5 Conclusion

The world of embedded software is no longer integrating simple hardware/software, the-

refore critical systems are becoming more and more difficult to prove and certify. The growth

in complexity and variety increases the need of versatile analyze methods and adapted tools,

that can easily and as costless as possible deal with a large panel of architectures. To this

end we present a novel approach that is able to respond to the evergrowing demands and to

place itself into a real industrial context. Our platform ultimately addresses both functional
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and non-functional properties verification of systems and it could be used to compute several

worst case behaviors,WCET being just one of them.
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19.1 Anomalous Behaviors

The specific constraints that must be satisfied by embedded systems, such as timeliness,

energy efficiency of battery-operated devices, dependable operation in safety-relevant scena-

rios, short time-to-market and low cost, particularly in consumer products, coupled with the

never-ending pressure to increase the functionality, lead to an enormous growth in the com-

plexity of the design at the system level. In this chapter we investigate the notion of design

complexity. We argue that it is not the embedded system, but the models of the embedded

system that must be simple and understandable.
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The introduction of appropriate levels of abstraction in modeling and the transition bet-

ween them help to reduce the emerging complexity of today embedded systems. In fact, those

models focus specifically on the relevant properties and omit the irrelevant details, which

leads to a simpler representation of the evolving embedded system.

19.1.1 Introduction

Abstraction from low levels to high levels and vice versa, should garantee some funda-

mental properties especially those related to interactions between concurrent processes. For

example, in the case of the SystemC waiting-state automata where the degree of granularity

achieved the delta-cycle level, where interactions are more and more intricate. The proposed

model is supposed to provide the guarantee of some critical properties, among others, we cite

two properties here : liveness and determinism.

19.1.2 Liveness and Determinism

The liveness property is probably the most common one in the field of formal verification.

It simply states that the implementation must be deadlock-free, and in SystemC modeling, it

means that there is no causality waiting cycles between processes, i.e two threads should not

wait for each other at the same time. For instance, in the FIFO module, the producer and the

consumer musn’t wait for each other simultaneously. Indeed, a causality cycle can be triggered

by a corner case condition in the behavior of the composition of a system of asynchronous

components. In a simulation, one can observe a causality cycle when a computation does not

stabilize to specific output values in an instant and keeps re-triggering itself. In our semantics

rules, a causality cycle occurs when it never gets to the next delta-cycle.

Determinism is a very critical property for hardware design. In SystemC modeling, a

deterministic SystemC model should ensure that the behavior is independent of the order

of internal process executions. It stresses in particular on the determinism at the level of

delta-cycles, because nondeterministic behaviors are caused by competitions when multiple

processes are accessing shared resources at the same time, and such competitions usually

occur within a single delta cycle.

As an example, consider another implementation of FIFO (Figure 7.2) : the producer/con-

sumer does not wait for the other to release/fill the buffer when it is fullempty, and instead,
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Figure 19.1 – Non-deterministic behavior

they just return a write/read failure. It is clear that there might be a competition between the

producer and the consumer : if at the beginning of a delta-cycle, both producer and consumer

are allowed to operate on the buffer (both p clock and c clock are present), we might have

different results, as shown in Figure 19.1 (< p(3), c > means that both p clock and c clock

signals occur at the same instant, i.e. the producer and the consumer are boty ready to be

executed. The producer is ready to put the data 3 into the buffer). In this case, we have too

different scenarios :

• If the producer will execute first, then the data 3 will be lost since the buffer is already

full and consumer will read data 1.

• If the consumer will execute first, data 1 is read by the consumer and then the producer

will add data 3 to the buffer.

If the buffer is full, producing first will cause the new product to be discarded, while

consuming first will cause a successful writing to buffer.

Non-determinism is hard to detect through simulation, because the SystemC scheduler will

fix an execution order for process, though semantically, it should not be fixed. For instance,

it may always execute consumer first, then the simulation will return the same result with

the same input and we cannot see the non-deterministic behavior from the simulation.

19.2 Applying Model Checking Techniques to SystemC WSA

19.2.1 Introduction

Model checking [ECP99a] is a technique to automatically verify finite state concurrent

systems. It consists in proving if an abstract finite model M defined in a certain logic verifies

a property p expressed in the same logic. Model checking has been successfully adopted for

231



232 CHAPTER 19. APPLYING VERIFICATION TECHNIQUES TO SYSTEMC WSA

both hardware and software verification. Without loss of generality, the core techniques of

model checking rely on the analysis of reachability property of the set of states. Therefore, it

is required that the states and the corresponding transitions of the design under verification

should be clearly defined. For hardware, the states are the valuation of the flip-flops and the

transitions are the combination logic in the circuit ; for software, they are the valuations of

variables and the statements in the program, respectively.

As shown in Figure 19.2, we apply model checking on SystemC using the SystemC waiting-

state automata as follows : First, we need to translate the SystemC WSA with timed language

constructs into an intermediate model so that we can easily apply model checking techniques.

We can use either timed automata [TA90, AD94], a transition system annotated with a

set of real-valued variables called clocks that increase synchronously with time and associates

guards and update operations with every transition, or existing abstract models like Kripke

structures. Then, we use temporal logics to express the property we want to verify on the

abstract model.

Many approaches apply model checking techniques to verify SystemC. These approaches

differ on the models they use to interpret the SystemC semantics. Nevertheless, they either fail

to not handle all SystemC constructs like [eD05a], or are bound not to scale up specially when

the system require non-deterministic behavior [MFM06]. To deal with all these limitations,

we propose an efficient model checking approach based on the SystemC waiting-state automta

because :

1. the state explosion problem is already reduced in the waiting-state automaton model

since we consider only specific states to extract the automata,

2. we don’t need to model separately the SystemC scheduler since it is already included in

our formal semantics for SystemC. Thus, the scheduling of the concurrent behavior of

the system can not influence the execution paths of the design and so the waiting-state

automata,

3. the number of states in the waiting-state automata to explore is enormously reduced,

4. our predefined semantics supports all SystemC constructs and communication mecha-

nisms (channels, signals, etc.),
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Figure 19.2 – Applying MC to SystemC WSA

5. signals and variables with large domain, e.g. integers, are already taken into account and

present no problem in our modeling approach since they are symbolically modeled,

6. to deal with unbounded loops that are not supported in some model checking techniques

like the approach of [eD05a], we used predicate abstraction as shown in Section 14.2.

19.2.2 Checked properties

In the following, we enumerate the main properties to verify on the SystemC waiting-state

automata.

• Safety property : it concerns variables values which have to satisfy certain constraints.

This is already reflected during the symbolic execution of SystemC designs, since we

use symbolic values of variables instead of real ones. But, we need to prove the previous

assumption using model checking. We express this property as a set of assertions defined

over the set of predicates used in transitions. the failure of those assertions involves

refinement of the initial model. If we take the example in Section ??, we need to verify

after symbolically executing the code that all the element of the table are sorted.

• Transaction properties (TLM) : check whether a request or a response is (in)valid or

whether a transaction is successful. If we take the case of the simple bus ( Section 14.3),

we prove that each data written into the bus arrives to its destination without loss of

information.

• System level properties : check on the order of occurrence of event notifications and the

order of transactions. This property concerns the order of notification of input events

in the abstraction rule (Section14.2.2) and how to manage the set of requests in the

simple bus case study (Section 14.3).
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We express the previous properties as follows :

Safety property :

A transition from a state σi to σi+1 is called safe when it has no assertion failure. It is written

safe(si, si+1). Thus, we need to verify that each execution trace defined in Section ?? satisfy

the property defined as follows :

allSafe(σ0, σn) =
∧

0≤i≤n
safe(σi, σi+1)

The relation allSafe is used to express that all the consecutive states from σ0 to σn are safe.

Thus, we say that a state in the SystemC WSA is reachable iff all the execution traces that

lead to that state are safe. We prove this by induction over each execution trace.

Transaction property :

We label each write transaction into the bus as M WRITE DATA and each read transaction

from the bus as S READ DATA. The checked property consists in verifying whether the

number of data written into the bus is equal to the number of requets read from the bus. We

express it as follows :

assume number of(M WRITE DATA) ≤ number of(S READ DATA)

System-level property :

The first property verifies whether the abstraction rule respects the order of notification of the

input events. The second property verifies that each request in the table of requests verifies

at least one property in {P1, P2, P3}.

for each input event (Section 14.2.2) ein ∈ E ⇒ FE = true

for each request (Section 14.3) Rq ∈ requests[n]⇒ P1 ∨ P2 ∨ P3 = true
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Part V

Conclusion and Prospects

This part enumerates the main contributions of this thesis and the possible

prospects for the approach.
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20.1 Results and Discussion

Modeling reactive systems, critical systems or embedded systems is a very important issue

today, since it facilitates the verification/validation step that comes after. The increasing

complexity requires more design efforts and choosing the right architecture to guarantee

system performance and reliability requires large design space exploration.

In this thesis, we have presented an automatic compositional approach for verifying Sys-

temC designs based on the SystemC waiting-state automata (WSA). We prove that the abs-

tract model is faithful to the simulation semantics of SystemC at both the transaction level,

where details about the system implementation are hidden from the system description, and

at the delta-cycle level, where verification of temporal properties and the interactive behavior

of the system components are crucial (an overview about the global approach as well as a

comparison with existing approaches for SystemC modeling are presented in Part II).

The process of the modeling of SystemC designs is clear : First, we automatically build an
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abstract representation of SystemC components using the SystemC WSA model. The model

was firstly proposed in [YZM07], where authors need to manually build the automata for

each component. In this thesis we propose an automatic stepwise framework to generate and

extract an automaton for each component. Next, we combine the automata generated for

each component in a bottom-up approach in order to build the automaton for the global

system. In Chapter 8, we use algorithms for symbolic composition and symbolic reduction as

defined in [YZM07], where different concurrent communications between processes are taken

into account. During symbolic composition, a set of concurrent states is generated, where

possible generation of unsafe states is avoided because the presence of unsafe states creates

a deadlock situation in the whole system. During symbolic reduction, we distinguish between

different transitions generated during symbolic composition. We propose to remove impossible

transitions, to keep safe transitions and reduce redundant and reducible transitions. The goal

behind the symbolic composition and reduction is to take into account possible and reliable

interactions between system components.

In Chapter 9, we enumerate different possible extensions of the SystemC waiting-state

automata with parameters. Those parameters are used either to detect anomalies due to

concurrent access to shared resources or to verify temporal properties about the execution

time. First, we resume the extension proposed in [YZM07], where authors propose to extend

the abstract automata with counters. Counters are used to impose more constraints about the

system behavior, i.e, they are used to detect infinite behavior of the system during parallel

composition. Thus, this parameter is used more to verify functional properties about system

behavior. Regarding to the verification of the non-functional properties of the system, we

propose in latter work to extend the automata with time properties which was missing in

[YZM07]. Verifying timing properties is essential in order to study the dynamic behavior of

real-time embedded systems. Timing properties include strict deadlines, periodic execution

of processes and external event recognition based on time of occurrence. We define two types

of time parameters : the starting time and the duration for each transition. We also propose

how to infer relations between different parameters with respect to the occurrence of different

events defined on transitions and with respect to the execution time.

In Chapter 10 and later in Part III, we propose an automatic framework to generate

the SystemC waiting state automata from SystemC designs which was missing in [YZM07],
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where authors need to manually generate the automata from SystemC designs. In Chapter

10, we propose how to generate the automata from different processes where we distinguish

between threads and methods in SystemC. Methods are uninterruptible process and have no

wait statements, so their corresponding automata have only one waiting state. While, threads

have one or more wait statements. Each wait statement represents a state in the abstract

model of the process. In Part II, we propose a stepwise framework to automatically generate

the SystemC waiting state automata from SystemC designs. To build the automata, we need

first to define clear and efficient semantics of SystemC to capture the reactive behavior of

SystemC components. We use the structural operational semantics to present semantics of

a subset of SystemC. The operational semantics can increase the correct understanding of a

language and gives the possibility of formal reasoning. The formal semantics capture the (i)

synchronous and asynchronous process composition of SystemC components, (ii) all levels of

abstractions for communications, and (iii) relation between simulation correctness and logical

correctness.

In Chapter 13, we propose to use symbolic execution [Kin76, Dar88] to present the effect

of executing statements on system variables and events. The symbolic execution generates

the control flow graph (CFG) of the program where the nodes of this graph represent the

basic commands and guard expressions of the thread, and the edges stand for flow of control

between the nodes. The CFG is annotated with exemplary of logical expressions defined over

variables and the path condition (PC) defined over conditional statement which represents an

accumulation over a corresponding path of execution. We call it an extended symbolic execution

because the symbolic state is not only defined over statements and the path condition but also

defined over the input and the output events of the environment. During symbolic execution,

we generate the set of all the execution traces. Besides, we combine the operational semantics,

previously defined, with the symbolic execution.

Since the symbolic execution is itself not approximative, but as precise as possible. Instead,

the necessary approximation is performed by explicit abstraction operations, which make use

of an arbitrary, finite set of predicates over the variables of the program. The WSA model

is then build using mainly abstraction techniques. Thus, the problem of building the WSA

is then reduced to the problem of guessing potentially useful predicates. This technique is

described in details over several examples in Section 13.2, we analyze the case of programs
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without loops and then we take the example of programs with loops. In the case of programs

without loops, we define an abstraction rule for events abstraction and predicate abstraction.

For predicate abstraction, we define how to generate the weakest-preconditions from each

subset of predicates and functions. In the case of programs with loops, we propose to execute

stepwise the loop until we reach a fixpoint. We then propose to use heuristics in order to fix

a set of candidate predicates from the abstract formula previously generated. Next, we study

the simple bus program and we illustrate different steps for predicate abstractions throughout

the arbiter code.

Finally, we present three applications of the SystemC waiting-state automata to verify

both functional and non-functional properties of hard real time systems that have strict time

constraints. First in Chapter 15, we propose a global framework to model and then simulate

SystemC programs using the SystemC WSA. We propose to symbolically execute the SystemC

waiting-state automata in order to symbolically simulate the application under study without

really executing it on real inputs and to avoid exhaustive simulation due to unbounded test

cases. Second in Chapter 16, We propose a global framework based on the SystemC waiting-

state automata in order to give a precise worst-case execution time estimation. Thus, in this

work, we are focusing on the Timed SystemC WSA processor’s construction followed by the

conjoint symbolic execution of the architectural model and the running program. In this

sense we believe that the adaptability of a tool to ever changing architectural models is just

as important as a tight estimation of the worst case behavior. Moreover, given the upcoming

certification standards, being able to verify the correctness of the model that the analysis

is based on is a further reason to generate it directly from the HDL code that served to

create the system. Later in Chapter 17, we propose to use an approach based on the SystemC

waiting-state automata to detect anomalies due to concurrent behavior of parallel processes

and abstraction at different levels. We study two main properties : liveness and determinism.

In Section 17.2, we propose to use model checking techniques on the SystemC WSA model to

study for example the reachability property of the set of states. We propose to use existing

abstract models that we generate from the SystemC waiting state automata. We then propose

how to express different properties in a formal way, we stress on three main properties : the

safety property, the transaction property and system-level property.
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20.2 Prospects

The approach we propose in this thesis is basically used to model hardware/software

embedded systems in order to verify targeted functional and non-functional properties about

these embedded systems (as mentioned in Part IV). But, it can be extended to handle larger

systems and to verify further critical properties in embedded systems : this is the main purpose

of my future work for this thesis.

Future works include also case studies of large examples besides the long-term compilation

work. Also, the model itself demands probably further refinement so as to fit well in real

cases. Furthermore, we intend to make the process of building waiting-state automata fully

automatic using further abstract techniques for programs analysis. We also plan to perform

our formal semantics to handle all SystemC constructs.

Another line of future work, which is more speculative, concerns different techniques for

validation that we used during this thesis like predicate abstraction and techniques that we

intend to use in future works. One could for example investigate the use of a real application

of model checking techniques to arrive at useful relations inference between predicates, to

simulation in order to test a real application of the approach, etc. Below we describe the

techniques of systems validation and we compare possible extensions of them in our work :

what we achieved till now and what we want to do in future works.

Test The dynamic test consists in submitting the program with a set of inputs and run

it to verify if it respects the specification. The test is therefore applied at the end of the

development of the global system, to ensure that this part is correct. We can use it to validate

each component of the system separately, and can also be used to validate the whole system

[MS04]. It is the most common technique used in industry to validate programs, because of its

modular feature for validation. We distinguish between two testing cases : the functional and

the structural testing. The functional testing consists in submitting inputs to the program

and then verify if the program meets the initial specifications. The structural testing consists

in analyzing the program code in order to determine the minimal and the adequate set of

tests that cover a maximum of possible behaviors of the program under study. So, testing

program can be used to prove the presence of bugs, but never their absence (Dijkstra, 1974).

Applying simulation for embedded systems is a challenging task because they are hete-
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rogeneous. In particular, most contain both software and hardware components that must

be simulated at the same time. This is the co-simulation problem : the basic co-simulation

problem is to satisfy and verify two conflicting requirements :

• to execute the software as fast as possible, often on a host machine that may be faster

than the final embedded CPU, and certainly is very different from it ;

• to keep the hardware and software simulations synchronized, so that they interact just

as they will in the target system.

One approach, often taken in practice, is to use a general purpose software simulator (based,

e.g., on VHDL or Verilog) to simulate a model of the target CPU, executing the software

program on this simulation model. Thus, different models can be employed depending on the

abstract level, with a trade off between accuracy and performance :

• Gate-level models

These are reliable only for small validation problems, where either the processor is a

simple one, or very little code needs to be run on it, or both.

• Instruction-set architecture (ISA) models augmented with hardware interfaces

An ISA model is a standard processor simulator (often written in C) augmented with

hardware interface information for coupling to a standard logic simulator.

• Bus-functional models

These are hardware models only of the processor interface ; they cannot run any software.

Instead, they are configured to make the interface appear as if software were running

on the processor.

• Transaction-based models

These convert the code to be executed on a processor into code that can be execu-

ted natively on the computer doing the simulation. Preserving timing information and

coupling the translated code to a hardware simulator are the major challenges.

When more accuracy is required, and acceptable simulation performance is not achievable

on standard computers, designers sometimes resort to emulation. In this case, configurable

hardware emulates the behavior of the system. Another problem is the accurate modeling
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of a controlled electromechanical system, which is generally governed by a set of differential

equations. This often requires interfacing to an entirely different kind of simulator. Today,

safety in component based systems require a higher confidence criteria than tests.

Unlike the previous models for systems simulation, our approach is a suitable framework

for systems validation using tests for many reasons : (i) because the SystemC waiting- state

automata represent both the hardware and the software parts of the system so we do not need

to validate each part independently, (ii) the SystemC waiting-state automata descibes the

system at lower levels like the delta-cycle level as well as the higher levels like the transaction

level, in this case the simulation is amenable to verify further properties and to give more

precise results, and finally, (iii) the SystemC waiting-state automata contain information

about both the non-functional and the functional behavior of the system components, this

may help avoid anomalies generated during simulation such as deadlocks and gives an accurate

information about timing constraints such as the worst-case execution time (WCET).

Model Checking Model checking [EC81, QS82] is a technique based on three concepts : a

model of the system we study, a specification expressed as a property (a temporal property)

and the algorithm used to verify if the model respects the specification. The model is defined

using a kripke structure [MCBG88] that described the whole possible states of the system, the

transitions between different states and the the atomic properties that each state must satisfy.

The complex properties are given in temporal logic which can express causal relations between

states. Model checking covers the set of all states of the system, i.e, all execution cases are

considered. Moreover, model checking is deeply used in the industry now since it is one of the

fully automatic techniques for programs verification. However, one drawback of this technique

is the problem of state explosion especially when we compose complex systems together. Thus,

model checking may lead to both time and space complexity. This is why, later more works

using model checking are trying to solve this problem using symbolic methods [McM93] with

more compact representations for the states and the atomic propositions (Binary Decision

Diagram [Ran92]). Many tools that are used in industry are implementing this technology

(for example SMV [smv], SPIN [spi]).

The SystemC waiting-state automata is perfectly used for model checking as mentioned in

Chapter19.2, since the states space is substantially reduced, in fact, in the SystemC waiting-
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state automaton model we consider only specific states where the component is visible and

interacts with its environment. We apply predicate abstraction to reduce the control flow

graph and we use a symbolic algorithm to reduce the composed automaton of the global

system.

Abstract Interpretation Abstract interpretation [CC77, CC92] is a theoretical framework

that provides definitions and criteria to simplify or abstract objects while ensuring that the

abstraction is conform and accurate regarding a set of properties : if the property is not

satisfied in the abstract object then it is not in the original object. It is based on the theory of

fixpoints and sets that use approximations to reduce in a finite time calculations that may be

potentially infinitely long. In computer science, abstract interpretation is based on tools that

calculate in a finite time a sub-set of the program behavior, while the problem of computing

an exact behavior of a program is undecidable [Ric53].

Verifying a property using the abstract description of the program may lead to three

verdicts : yes the property is verified, no it is not, or perhaps my be because the abstraction

is not that precise to make us decide. In the latter, we talk about a false alarm which means

that the property is effectively verified in the program but it is not really verified in the

abstraction because of the approximations. The issue of an abstract interpreter consists in

finding the right balance between accuracy and the complexity of calculations on one hand,

and the approximation and the speed of calculations on the other hand. Many areas of varying

complexity have been developed to search a good compromise [e06]. Abstract interpretation

is now successfully used in the industry with tools like Astrée [BBR03] capable to verify

thousands of lines of an embedded critical code, but it focuses only on certain types of

properties.

In this thesis, we intend to use abstract interpretation to especially improve the algorithms

for the symbolic composition and reduction of the non-annotated automata (Chapter 8) and

for automata annotated with parameters counters, the starting time and the duration (Chap-

ter 9). We also intend to use abstract interpretation to analyze global systems written in

SystemC and modeled with the SystemC waiting-state automata. This line of research allows

us to verify more complex systems where the interactions between the parallel components

are more complex and intricate and where constraints about functional and non-functional
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behaviors are more strict.

Predicate abstraction which is a special variant of abstract interpretation is already a main

step in our modeling process. We can say that the validation of the SystemC waiting-state

automata is already proved during the generation of the automata from SystemC components.
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and X. Rival. A static analyzer for large safety-critical software. pages 196–207,

San Diego, California, USA, June 2003. ACM Press.

[BBV08] B. Monsuez B. Benhamamouch and F. Védrine. Computing wcet using symbolic
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Thèse de doctorat, UEI ENSTA-ParisTech et VERIMAG, 02 mai 2011.

[BM09] B. Benhamamouch and B. Monsuez. Computing worst case execution time

(wcet) by symbolically executing a time-accurate hardware model. International

Journal of Design, Analysis and Tools for Circuits and Systems, Vol.1(No.1),

2009.

[BS03] E. Borger and R.F. Stark. Abstract State Machines : A Method for High-Level

System Design and Analysis. Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2003.

[CC77] P. Cousot and R. Cousot. Abstract interpretation : a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In In

Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 238–252, Los Angeles, Califor-

nia, 1977. ACM Press, New York, NY.

[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic

and Computation, 2(4) :511–547, August 1992.

[CFW99] M. Langenbach F. Martin M. Schmidt J. Schneider H. Theiling S. Thesing C. Fer-

dinand, D. Kastner and R. Wilhelm. Run-time guarantees for real-time systems ?

the uses approach. In GI Jahrestagung, pages 410–419, 1999.

256



BIBLIOGRAPHY 257

[CFW01] M. Langenbach F. Martin M. Schmidt H. Theiling S. Thesing R. C. Ferdinand,

R. Heckmann and Wilhelm. Reliable and precise wcet determination for a real-

life processor. In In Proceedings of the International Conference on Embedded

Software, 2001.

[Cor08] A. Cortesi. Widening operators for abstract interpretation. pages 31–40, 2008.

[CP01] A. Colin and I. Puaut. A modular and retargetable framework for tree-based

wcet analysis. In In Proc. of the 13th Euromicro Conference on Real-Time

Systems, pages 37–44, 2001.
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Résumé : Les systèmes embarqués sont de plus en plus intégrés dans les applications temps réel actuelles. Ils sont
généralement constitués de composants matériels et logiciels profondément intégrés mais hétérogènes. Ces composants
sont développés sous des contraintes très strictes. En conséquence, le travail des ingénieurs de conception est devenu
plus difficile. Pour répondre aux normes de haute qualité dans les systèmes embarqués de nos jours et pour satisfaire
aux besoins quotidiens de l’industrie, l’automatisation du processus de développement de ces systèmes prend de plus en
plus d’ampleur. Un défi majeur est de développer une approche automatisée qui peut être utilisée pour la vérification
intégrée et la validation de systèmes complexes et hétérogènes.

Dans le cadre de cette thèse, nous proposons une nouvelle approche compositionnelle pour la modélisation et la
vérification des systèmes complexes décrits en langage SystemC. Cette approche est basée sur le modèle des SystemC
Waiting State Automata (WSA). Les SystemC Waiting State Automata sont des automates permettant de modéliser
le comportement abstrait des systèmes matériels et logiciels décrits en SystemC tout en préservant la sémantique de
l’ordonnanceur SystemC au niveau des cycles temporelles et au niveau des delta-cycles. Ce modèle permet de réduire
la complexité de la modélisation des systèmes complexes due au problème de l’explosion combinatoire tout en restant
fidèle au système initial. Ce modèle est compositionnel et supporte le raffinement. De plus, il est étendu par des pa-
ramètres temps ainsi que des compteurs afin de prendre en compte les aspects relatifs à la temporalité et aux propriétés
fonctionnelles comme notamment la qualité de service.
Dans le cadre de cette thèse, nous proposons une châıne de construction automatique des WSAs à partir de la descrip-
tion SystemC. Cette construction repose sur l’exécution symbolique et l’abstraction des prédicats. Nous proposons un
ensemble d’algorithmes de composition et de réduction de ces automates afin de pouvoir étudier, analyser et vérifier les
comportements concurrents des systèmes décrits ainsi que les échanges de données entre les différents composants. Nous
proposons enfin d’appliquer notre approche dans le cadre de la modélisation et la simulation des systèmes complexes.
Ensuite l’expérimenter pour donner une estimation du pire temps d’exécution (worst-case execution time (WCET)) en
utilisant le modèle du Timed SystemC WSA. Enfin, on définit l’application des techniques du model checking pour
prouver la correction de l’analyse abstraite de notre approche.
Mots clés : SystemC, Méthodes Formelles, Automates, Exécution Symbolique, Abstraction des prédicats, Sémantiques
des langages, Model Checking.

Abstract : Embedded systems are increasingly integrated into existing real-time applications. They are usually compo-
sed of deeply integrated but heterogeneous hardware and software components. These components are developed under
strict constraints. Accordingly, the work of design engineers became more tricky and challenging. To meet the high
quality standards in nowadays embedded systems and to satisfy the rising industrial demands, the automatization of the
developing process of those systems is gaining more and more importance. A major challenge is to develop an automated
approach that can be used for the integrated verification and validation of complex and heterogeneous HW/SW systems.

In this thesis, we propose a new compositional approach to model and verify hardware and software written in
SystemC language. This approach is based on the SystemC Waiting State Automata (WSA). The SystemC Waiting
State Automata are used to model the abstract behavior of hardware or software systems described in SystemC, they
preserve the semantics of the SystemC scheduler at the temporal and the delta-cycle level. This model allows to reduce
the complexity of the modeling process of complex systems due to the problem of state explosion during modeling while
remaining faithful to the original system. The SystemC waiting state automaton is also compositional and supports
refinement. In addition, this model is extended with parameters such as time and counters in order to take into account
further aspects like temporality and other extra-functional properties such as QoS.
In this thesis, we propose a stepwise approach on how to automatically extract the SystemC WSAs from SystemC
descriptions. This construction is based on symbolic execution together with predicate abstraction. We propose a set
of algorithms to symbolically compose and reduce the SystemC WSAs in order to study, analyze and verify concurrent
behavior of systems as well as the data exchange between various components. We then propose to use the SystemC
WSA to model and simulate hardware and software systems, and to compute the worst cas execution time (WCET)
using the Timed SystemC WSA. Finally, we define how to apply model checking techniques to prove the correctness of
the abstract analysis.
Keywords : SystemC, Formal Methods, Automata, Symbolic Execution, Predicate Abstraction, Semantics of Program-
ming Languages, Model Checking.
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