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Abstract

Uncertainty quantification has been a topic of significant research in computational
engineering since early works in stochastic finite element method. Several methods
have been proposed based on classical results in analysis and approximation
theory. However for problems involving very high stochastic dimension, standard
methods are limited by the so called curse of dimensionality as the underlying
approximation space increases exponentially with dimension. Also, resolution of
these high dimensional problems non intrusively (when we cannot access or modify
model source code), is often difficult with only a partial information in the form
of a few model evaluations. Given computation and time resource constraints,
methods addressing these issues are needed.

The main idea in this thesis is to perform approximations in low rank tensor
formats which incorporates an additional sparsity structure. This methodology
exploits both low rank and sparsity structures of high dimensional functions and can
thus provide sufficiently accurate approximations with limited information in the
form of a few sample evaluations. The number of parameters to estimate in these
sparse low rank tensor formats is linear in the stochastic dimension with few non
zero parameters that can be estimated efficiently by sparse regularization techniques.

In this thesis, we define sparse low-rank tensor subset in a general setting
and propose method based on discrete least-squares for the approximation of a
multivariate function from random, noisy-free observations. Sparsity inducing
regularization techniques are used within classical algorithms for low-rank approx-
imation. We also detail statistical cross validation techniques for the selection
of optimal model parameters (tensor rank, regularization parameters). We then
propose algorithms to perform approximation in canonical tensor formats and
illustrate them on numerical examples. Due to certain limitations of canonical
tensor formats, we propose to extend the method to tree based formats, more
specifically Tensor Train (TT) format. Manifolds of low rank TT tensors have
favourable properties and dimension of parametrization still scales linearly with
stochastic dimension thus making them attractive for high dimensional uncertainty
quantification problems. Algorithms based on Density Matrix Renormalization
Group combined with sparse regularization for adaptive selection of optimal ranks
is proposed. Numerical results indicate considerable advantage of this technique
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d Abstract

over other low rank approximation methods.

We finally propose first ideas on combining sparse low rank tensor approximation
with clustering and classification techniques to be able to approximate discontinuous
or irregular functions. The idea is to cluster the samples in such a way that in each
cluster, we can find sufficiently accurate low rank approximation using a few model
evaluations. We test this strategy on a toy function and an application example.
The results indicate that if the parameters are properly chosen, the method offers
considerable advantage than a direct sparse polynomial or low rank approximation.

Keywords: Uncertainty quantification, High dimensional approximation, low rank,
sparsity, clustering, classification
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Chapter 1

Approximation of High Dimensional
Stochastic Functions

In this chapter, we briefly present the basics of probabilistic mod-
elling of uncertainties and their propagation in numerical models
in a functional setting. We then present a survey of state of the
art methods for high dimensional uncertainty propagation problems.
More specifically, a brief description of methods based on structured
approximations, i.e. methods that exploit specific structures of high
dimensional functions, are presented.
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Uncertainty quantification in scientific computing 3

1 Uncertainty quantification in scientific computing
Uncertainty quantification has emerged as a crucial field of research over the
last decade across various branches of science and engineering. With the expo-
nential increase in available computing resources to model physical phenomena
of scientific and engineering interest, there is a growing interest in performing
‘virtual’ experiments to better understand natural phenomena and predict their
outcomes. New findings in research are contributing in the improvement of available
numerical tools. These tools are increasingly taking into account the uncertainties
in representation of numerical models. Consequently, uncertainty quantification
and propagation in physical systems appear as a critical path for the improvement
of the prediction of their response.

Uncertainty in prediction is usually classified under two categories: intrinsic
uncertainties, associated with the natural variability of the considered physical
phenomenon, and epistemic uncertainties which result from a lack of knowledge
and hence, are reducible. However, due to the complexity of physical phenomena
or lack of observations, addressing epistemic uncertainty also appears essential in
order to improve predictability of the model.

1.1 General framework of uncertainty propagation

The probabilistic framework is the most well established way to model uncertainty.
The general methodology of an uncertainty study in this framework involves 3 steps
as described below:

1. Specification of the case study. It involves identification of the model or
series of model, associated input variables, quantities of interest and criteria
that should be used to assess the physical system under consideration. A
quantity of interest denotes the output variable on which uncertainty is to
be quantified. A model denotes a mathematical function that enables the
computation of the quantity of interest when giving several input variables.
The associated criteria could be probability of exceeding a threshold, measure
of central dispersion, quantiles, sensitivity indices (e.g. Sobol indices for global
sensitivity analysis).

2. Quantifying the sources of uncertainty. It involves parametrization of
input variables as random variables. In some cases, possible dependencies
between the input variables also needs to be investigated thus requiring a
multidimensional analysis. The description of the time/space variability of
parameters requires the introduction of random processes.

3. Propagating the uncertainty. This step consists of propagating the un-
certainty in the input through the model, i.e. characterizing the random re-

Sparse low rank approximation of multivariate functions - Applications in uncertainty
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4 Approximation of High Dimensional Stochastic Functions

sponse appropriately with respect to the assessment criteria defined in the
first step. Methods to carry out this task are usually classified as intrusive
and non-intrusive. Intrusive methods require the modification of the model to
incorporate probabilistic framework whereas in non-intrusive methods classical
deterministic numerical codes can be used.

1.2 Probabilistic modelling of uncertainties

In the probabilistic framework, modelling the uncertainties consists of defining a
probability space (Θ,B, P ), where Θ denotes the space of elementary events, B
denotes a sigma algebra defined on Θ and P is a probability measure. The model
response is then a random variable, with value in a certain function space, that
verifies almost surely a set of equations formally denoted

F(u(θ), θ) = 0. (1.1)

The choice of the probability space is crucial in the modelling step. The mathemat-
ical study of problem (1.1) depends on the nature of uncertainty which determines
the representation of the solution and solution methods.

1.3 Discretization of uncertainties

We consider that the uncertainty in the input can be correctly modelled with a finite
set of random variables ξ : θ ∈ Θ 7→ ξ(θ) ∈ Ξ, defining a new finite dimensional
probability space (Ξ,BΞ, Pξ), where Ξ = ξ(Θ), BΞ is a σ-algebra on Ξ and Pξ is a
probability measure associated with ξ. This case is encountered when the uncertain-
ties in the model are represented as real valued random variables or stochastic fields.
In case of stochastic fields, spectral decomposition techniques (such as Karhunen-
Loeve decomposition) can be used for discretization. The model output is then
searched as a function of ξ satisfying almost surely the set of equations

F(u(ξ), ξ) = 0. (1.2)

2 Functional representation and choice of approxi-
mation bases

Several methods are available in the literature for solving (1.2). The selection of
a particular method depends on the problem under consideration, the quantity of
interest (e.g. statistical moments, probability of an event etc.), availability of com-
putation resources etc. In this section, we introduce methods based on functional
representation of random variables. A function of random variables u(ξ) can be
written under the form

u(ξ) =
∑
α∈Λ

uαφα(ξ), (1.3)

Sparse low rank approximation of multivariate functions - Applications in uncertainty
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Functional representation and choice of approximation bases 5

where uα are the coefficients on a certain basis {φα}α∈Λ and Λ is an index set.
A sufficiently accurate representation of u(ξ) under the form (1.3) enables rapid
post-processing studies by performing fast evaluations of u(ξ). Since the work of
Ghanem and Spanos [35], there was an increase in interest in this type of approaches
often referred to as “spectral stochastic approaches”.

For a given physical model, when uncertainties are characterized by a finite
set of random variables ξ = (ξ1, . . . , ξd), we work in associated finite dimensional
probability space (Ξ,BΞ, Pξ), where Ξ ⊂ Rd. The quantity of interest is then
interpreted as a random variable defined on (Ξ,BΞ, Pξ). A large class of problems
often encountered in physical applications can be characterised by finite variance
of the uncertain inputs and model outputs. This leads to introduce the space of
square integrable functions L2.

L2(Ξ, dPξ) =

{
v : ξ ∈ Ξ 7→ v(ξ) ∈ R; E(v2) :=

∫
Ξ

v(y)2dPξ(y) <∞
}
, (1.4)

which is a Hilbert space endowed with the following inner product

〈v, w〉L2(Ξ,dPξ) = E(vw) =

∫
ξ

v(y)w(y)dPξ(y), (1.5)

where E is the mathematical expectation. A Hilbertian basis {φα}α∈Λ of L(Ξ, dPξ)
is a complete set of orthonormal functions such that:

〈φα, φβ〉L2(Ξ,dPξ) = δαβ (1.6)

Each function u(ξ) ∈ L2(Ξ, dPξ) admits a unique decomposition on such a basis:

v(ξ) =
∑
α∈Λ

vαφα(ξ), (1.7)

vα = 〈v, φα〉L2(Ξ,dPξ) = E(vφα). (1.8)

In cases where random variables ξ are mutually independent, approximation basis
can be obtained from tensorization of univariate bases. Let us denote (Ξk,Bξk , Pξk)
as the probability space associated with random variable ξk. We have

Ξ = Ξ1 × . . .× Ξd, (1.9)

Pξ =
d⊗

k=1

Pξk , (1.10)

L2(Ξ, dPξ) =
d⊗

k=1

L2(Ξk, dPξk). (1.11)
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A basis of L2(Ξ, dPξ) can then be obtained by tensorization of basis of L2(Ξk, dPξk).
Denoting {φkαk}αk∈Λk a basis of L2(Ξk, dPξk), we let

φα(y) = φ1
α1

(y1) · · ·φdαd(yd), (1.12)

with α = (α1, . . . , αd) ∈ Λ = Λ1 × · · · × Λd. If the basis functions {φkαk}αk∈Λk

are orthonormal with respect to the natural inner product in L2(Ξk, dPξk), basis
functions {φα}α∈Λ are also orthonormal. A function of ξ = (ξ1, . . . , ξd) random
variables can then be represented as

u(ξ1, . . . , ξd) =
n∑

α1∈Λ1

· · ·
n∑

αd∈Λd

uα1...αdφ
1
α1

(ξ1) · · ·φdαd(ξd), uα1...αd ∈ R. (1.13)

Thus, the total number of parameters N = #Λ (i.e. the number of coefficients of
the multidimensional basis) needed to characterize the approximation of u is given
by N =

∏d
k=1 #Λk. Suppose #Λk = n for all k. For high dimensional functions,

d is large and hence N = nd increases exponentially with d. This is referred
to as the curse of dimensionality. Under the assumption u ∈ Cs, the accuracy
ε of approximation (1.13) is expected to be such that ε = O(n−s) = O(N−s/d)
i.e. to achieve approximation accuracy ε, the number of parameters needed is
N = O(ε−d/s) (exponential increase with d). Thus global smoothing is not enough
to beat the curse of dimensionality. Note that there is also a notion of curse of
dimensionality for high dimensional integration [42]. However, in this thesis, we are
concerned with the curse of dimensionality associated to approximation.

A natural choice of basis functions are polynomial basis. The space of multi-
dimensional polynomials with partial degree p defined on Ξ ⊂ Rd is denoted

Qp(Ξ) = span

{
d∏

k=1

yαkk : α ∈ Nd, |α|∞ := max
k∈{1...d}

αk ≤ p

}
, (1.14)

with dim(Q(Ξ))=(p+1)d. The space of multidimensional polynomials of total degree
p defined on Ξ ⊂ Rd is defined by:

Pp(Ξ) = span

{
d∏

k=1

yαkk : α ∈ Nd, |α|1 :=
d∑

k=1

αk ≤ p

}
(1.15)

with dim(Pp(Ξ)) = (d+p)!
d!p!

. If Ξ = Ξ1 × · · · × Ξd, Qp(Ξ) is a full tensorization of
unidimensional polynomial spaces of degree p:

Qp(Ξ) = Qp(Ξ1)⊗ · · · ⊗Qp(Ξd). (1.16)

The space Pp(Ξ) can be considered as a sparse tensorization of polynomial spaces
Qp(Ξk):

Pp(Ξ) =
∑

α∈Nd,|α|1≤p

Qα1(Ξ1)⊗ · · · ⊗Qαd(Ξd). (1.17)

Sparse low rank approximation of multivariate functions - Applications in uncertainty
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In polynomial chaos representation, we use classical orthogonal polynomial basis of
L2(Ξ, dPξ). For independent random variables, basis are obtained by a sparse ten-
sorization of polynomial bases of L2(Ξ, dPξk). The orthogonal family of polynomials
in L2(Ξk, dPξk) for a given probability measure of Pξk are uniquely defined. For a
general introduction to orthogonal polynomials for different probability measures,
see [82].

Another approach is to introduce a basis of interpolating polynomials [1, 33].
Considering independent random variables, on each stochastic dimension, we intro-
duce a set of points Lk = {yk,n}pn=0 ⊂ Ξk and define the associated interpolation
basis {φkn}

p
n=0;

φkn ∈ Qp(Ξk), φ
k
n(yk, l) = δnl. (1.18)

Particular interpolation points can be given by the roots of the classical orthogonal
polynomial of degree (p+ 1), i.e. (p+ 1) points associated with measure dPξk . This
choice leads to orthogonal interpolation functions:

〈φkn, φkl 〉L2(Ξk,dPξk ) = E(φknφ
k
l ) =

∫
Ξk

φkn(y)φkl (y)dPξk(y) = δnlωn, (1.19)

where ωn denote Gauss quadrature weights. Basis of Qp(Ξ) can be obtained by
a full tensorization of interpolation bases of Qp(Ξk) which are interpolation basis
on a multidimensional grid obtained by full tensorization of unidimensional grids
Lk. Basis of Pp(Ξ) can be obtained by a sparse tensorization of unidimensional
interpolation basis using Smolyak construction [33].

For representing non-smooth functions, piecewise polynomial functions [26, 78]
defined on a partition of Ξ can be used. Adaptivity on this basis can be obtained
by refining partition or increasing approximation degree [51, 79]. Another common
way consists in using polynomial multi-wavelets basis [49, 48] that allows for a
multi-scale representation of functions.

3 Methods for Computing Approximations

Several methods exist in the literature for the determination of expansion coefficients
in (1.7). In the following, we briefly introduce two specific approaches that only use
sample evaluations of functions and therefore do not require specific implementation
and the Galerkin projection method.

3.1 L2 Projection

The L2 projection method consists of defining the approximation (1.7) as the pro-
jection of u on the sub-space of L2(Ξ, dPξ) spanned by functions {φα}α∈ΛP . Thus

Sparse low rank approximation of multivariate functions - Applications in uncertainty
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8 Approximation of High Dimensional Stochastic Functions

the coefficients uα are given by

uα = 〈u, φα〉L2(Ξ,dPξ) =

∫
Ξ

u(y)φα(y)dPξ(y). (1.20)

The computation of coefficients then requires the evaluation of an integral on Ξ
with respect to measure dPξ. One of the widely used methods for evaluating these
integrals is based on tensorization of classical quadratures [64]. Suppose that a
quadrature rule is defined on each stochastic dimension

Qk(u) =

Jk∑
j=1

u(yk,j)ωk,j ≈
∫

Ξk

u(y)dPξk(y). (1.21)

A quadrature in dimension d can be obtained by full tensorization of unidimensional
quadratures:

QJ = Q1 ⊗ . . .⊗Qd,

with

QJ(u) =

J1∑
j1=1

. . .

Jd∑
jd=1

u(y1,j1 , . . . , yd,jd)ω1,j1 , . . . , ωd,jd .

For quadratures with Jk = n points on each dimension, one obtains a total number
of points J = nd, which increases exponentially with the stochastic dimension thus
manifesting the curse of dimensionality. For a function of class Cr, the integration
error verifies

|E(u)−QJ(u)| = O(J−(2r−1)/d). (1.22)

An alternative approach is Smolyak sparse grids [34, 55, 63, 67] that drastically re-
duces the number of integration points when dealing with high stochastic dimension
d. It requires the definition of a sequence of quadratures {Qk

j}lj=1 on each dimension,
where j denotes the level of quadrature. Thus Smolyak sparse grid is still based on
tensor product construction but it avoids the use of high-level quadratures on several
dimensions simultaneously. A level l quadrature in dimension d is obtained by the
following tensorization formula:

Ql
J =

∑
j∈Nd,l≤|j|≤l+d−1

(−1)l+d−1−|j|
(

l − 1
|j| − l

)
Q1
j1
⊗ · · · ⊗Qd

jd
. (1.23)

Here, if Qk
j denote j-points quadrature, one obtains a total number of integration

points J = O(2l

l!
dl). The integration error depends on the smoothness of function u.

For a r-times differential function u, the integration error is given by:

|E(u)−Ql
J(u)| ∼ O(J−rlog(J)(m−1)(r+1)), (1.24)
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that gives a better convergence rate compared to full tensorization. Tensorization
rules are more advantageous when nested quadrature points are used in each
dimension i.e. the set of integration points of a quadrature Qk

j is included in that of
Qk
j+1. This leads to significant cost reduction. Such tensor grids are called as sparse

grids [11]. One can also modify the tensorization to weight various dimensions in
accordance with their influence. Such grids are called adaptive sparse grids [10].

The Monte Carlo technique [12, 66] can be used for quadrature with Q quadrature
points sampled randomly and weights taken equal to ω = 1

Q
. However, convergence

rate is very slow. Improved convergence rates can be achieved by using more
efficient stochastic sampling techniques such as Latin hypercube sampling or
quasi-Monte Carlo method [12, 53, 71].

3.2 Interpolation

Methods based on interpolation [1] consists in choosing an interpolation basis
{Lα}α∈Λ on a set of points {yα}α∈Λ. Coefficients of the decomposition of u(ξ) is ob-
tained by solving a deterministic problem associated with yα. This method is often
called stochastic collocation. For high dimensional functions, Smolyak tensorization
of unidimensional interpolation can be used [33]. The interpolation properties of
multidimensional polynomials is preserved if nested interpolation grids are used in
the Smolyak tensorization. Recent work on interpolation techniques can be found
in [20].

3.3 Galerkin Projection

Let us consider the stochastic partial differential equation with random input pa-
rameters given by:

J (x, t, ξ;u) = f(x, t, ξ),

where u = u(x, t, ξ) is the solution and f(x, t, ξ) is the source term. J is a gen-
eral differential operator that may contain spatial derivatives, time derivatives, and
linear or non-linear terms. The ξ denotes the dependence on some random input pa-
rameter, which may be equation parameters, boundary conditions, input conditions,
or even the domain. We represent the solution as functional representation,

u = u(x, t, ξ) =
∑
α∈ΛP

uα(x, t)φα(ξ), (1.25)

where Λp ⊂ Λ. Substituting this expansion into the differential equation, we define
the approximation by cancelling the projection of the residual onto the approxima-
tion space

〈J (x, t, ξ;
∑
α∈ΛP

uαφα), φβ〉 = 〈f(x, t, ξ), φβ〉,∀α ∈ ΛP . (1.26)
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10 Approximation of High Dimensional Stochastic Functions

Since we take the projection, the error in the approximate solution is orthogonal to
the space spanned by φα. The stochastic differential equation reduces to system of
#ΛP coupled deterministic differential equations for the coefficients of polynomial
chaos expansion.

Curse of dimensionality manifests in all the methods presented above (when
standard approximation spaces are used) and hence we look for methods that
exploit specific structures of high dimensional functions. These are discussed in the
next section.

4 Methods using structured approximations

Exploiting smoothness property is not sufficient to approximate high dimensional
functions (see section above). Novak [57] showed that approximation problem
remains intractable even for u ∈ C∞ with uniformly bounded derivatives i.e.
sup
α
‖Dαu‖∞ < ∞. In the following section, we briefly describe different class of

methods that exploit certain structures of high dimensional functions thus enabling
to circumvent the curse of dimensionality.

4.1 Low order interactions

These methods approximate a high dimensional function based on the assumption
that higher order interaction terms have negligible effect on the model response. In
this approach, one employs the hierarchical expansion of the model response u(ξ)
under the form:

u(ξ) = u0 +
d∑

1≤i≤d

ui(ξi) +
∑

1≤i<j≤d

ui,j(ξi, ξj) + . . .∑
1≤i1<...<is≤d

u(i1,...,is)(ξi1 , . . . , ξis) + . . .+ u1,2,...,d(ξ1, . . . , ξd), (1.27)

which is unique upto orthogonality constraints on the functions in the expansion.
The constant function u0 is the mean response of the model, first-order univariate
functions ui(ξi) represent independent contributions of the individual parameters,
also called main effects. Similarly, the bivariate functions ui,j(ξi, ξj) quantify the
interactions of ξi and ξj on the response u and so on. Note that (1.27) can be
simply obtained from (1.7) such that

u(ξ) =
∑
n≥0

∑
|α|0=n

uαφα(ξ), (1.28)

Sparse low rank approximation of multivariate functions - Applications in uncertainty
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where
∑
|α|0=n uαφα coincides with the n-th term of expansion (1.27). Truncating

the series at a certain level n yields an approximation
∑

α∈Λn
uαφα with

Λn = {α ∈ Λ : |α|0 ≤ n}, (1.29)

the index set with interaction order at most n. The cardinality of Λn increases
slowly with d for small values of n. This a priori choice of indices delays
the introduction of high-order interactions. Approximation of u(ξ) in Mn ={
u(ξ) =

∑
α∈Λn

uαφα(ξ);uα ∈ R
}

leads to favour the main effects and low order
interaction, which are more likely to be significant than the high order interactions.
In practice, we use Λp,n = {α : |α|∞ ≤ p, |α|0 ≤ n} (bounded degree polynomial
expansions). An application of this technique using the polynomial chaos basis is
shown in [9].

4.2 Low effective dimensionality

In this section, methods that exploit low effective dimensionality of the function are
described. The fundamental idea in this approach is that although the function may
have a large number of random inputs, it is mainly dependent on only few of these
variables i.e.

u(ξ) ≈ u(ξK) (1.30)

where K ⊂ {1, . . . , d} and #K is small. In the following, we outline three variants
of this approach. First method is based on screening the important inputs using
Global sensitivity analysis. Second method is based on basis adaptation for
characterization of subspaces associated with low dimensional quantities of interest
[75]. The third method determines the direction of strongest variability using
gradients of u(ξ) and constructs an approximation on a low dimensional subspace
of the input parameter space [22].

Variance based method for dimension reduction [69]. In this method,
sensitivity analysis is performed to determine which variables have the most
influence on the model response. With a ranking of inputs, response surface are
then constructed that “concentrates" the approximation on the most influential
variables. A standard approach is to use variance based global sensitivity analysis
to select the most influential inputs. Let D = {1, . . . , d}. For a non empty
subset K ⊂ D, we denote ξK = {ξk}k∈K . Suppose that u admits the following
decomposition

u(ξ) = u∅ +
∑
K⊂D

uK(ξK), (1.31)

with E(uK) = 0 for all non empty K ⊂ D and E(uKuK′) = 0 for K 6= K ′.
Note that this decomposition coincides with (1.28) when writing

∑
k⊂D

=
∑
n≥1

∑
K⊂D

#K=n

Sparse low rank approximation of multivariate functions - Applications in uncertainty
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12 Approximation of High Dimensional Stochastic Functions

so that
∑
K⊂D

#K=n

uK =
∑
|α|0=n

uαφα. With this representation, the variance of u can be

decomposed as
V (u) =

∑
K⊂D

V (uK(ξK)). (1.32)

We define Sobol index SK as the contribution of uK(ξK) to the total variance

SK =
V (uK)

V (u)
,
∑
K⊂D

SK = 1. (1.33)

Thus SK can be seen as a measure of variability in the output contributed by vari-
ables K ⊂ D . For a single random variable ξk, the first order Sobol index [70, 43]
Sk and the total sensitivity index STk are given by

Sk =
V (uk)

V (u)
, STk =

∑
K⊃k

SK . (1.34)

We can then keep only those parametric inputs for uncertainty quantification studies
for which the Sobol indices are significant. Note that if one has representation of
u(ξ) on polynomial chaos basis, Sobol indices can be directly estimated as shown
in [73].

Basis adaptation [75]: In this method, the function is searched under the
form

u(ξ) ≈ v(g(ξ)) (1.35)

where g(ξ) : Rd → R is a linear function of variables ξ = (ξ1, . . . , ξd). Suppose
ξ are independent gaussian random variables. Here, we exploit the mathematical
structure of Gaussian Hilbert spaces. The method consists of two steps.
The first step consists of a change of basis in which an isometry A : Rd → Rd is
introduced, such that

η = Aξ, AAT = I (1.36)

The second step consists of reduction via projection where we project the function
in a subspace Vη of the new basis function set. The accuracy of approximation
is thus clearly dependent on choice of A and the subspace Vη. In a non intrusive
construction, quadrature based methods can be used for evaluating the inner
product (which in this case are expectations w.r.t Gaussian measure). In short,
the intuition of this method is to find the directions in which the quantity of
interest has low dimensional representation by rotating the coordinates and then to
re-project the components of this quantity of interest in the original coordinates.

Active subspace method [22]: The essential idea in this method is to de-
tect the direction of strongest variability of u(ξ) by exploiting its gradients and
separate the set of variables ξK that are aligned along the directions of the strongest

Sparse low rank approximation of multivariate functions - Applications in uncertainty
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variability from variables ξK′ along which the function is relatively invariant. The
next step is to approximate u(ξ) in low dimensional subspace (also called as active
subspace) spanned by ξK .

Briefly, the procedure to find active subspace is as follows. Denoting the
gradient of u(ξ) by the column vector ∇ξu(ξ) = [ ∂u

∂ξ1
. . . ∂u

∂ξd
]T , the covariance C of

gradient of u(ξ) and its eigen-decomposition is written as

C = E [(∇ξu(ξ))(∇ξu(ξ))] = WΥWT, (1.37)

where Υ = diag(υ1, . . . , υd), ; υ1 ≥ . . . ≥ υd ≥ 0. The first k < d eigenvectors
corresponding to k dominant eigenvalues are gathered in WK and the rest in WK′ .
The rotated coordinates ηK ∈ Rk and η′K ∈ RK′ are defined by

ηK = WT
Kξ, ηK′ = WT

K′ξ. (1.38)

Thus ηK are the variables that capture directions along which the function varies
strongly and ηK′ are variables along which the function remains relatively flat. The
function u(ξ) can then be approximated as

u(ξ) ≈ u(ξK) (1.39)

by constructing a response surface w.r.t variables ξK .
A limitation of this method is that one needs to evaluate the gradient of u(ξ) which
may not be available. Also, the covariance matrix C is constructed using sampling
approach such as Monte Carlo which may need a large number of sample evaluations.

4.3 Sparsity

Sparse approximation methods rely on the fact that a good approximation of u(ξ)
can be obtained by only considering a finite subset of functions in a dictionary
D = {φα;α ∈ Λ}:

u(ξ) ≈ un(ξ) =
∑
α∈Λn

uαφα(ξ), Λn ⊂ Λ, #Λn = n. (1.40)

LetMn be the set of n-term decompositions:

Mn =

{∑
α∈Λn

uαφα(ξ);uα ∈ R,Λn ⊂ Λ, #Λn = n}

}
. (1.41)

The best n-term approximation is the solution of

inf
v∈Mn

‖u− v‖ := σn(u). (1.42)
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14 Approximation of High Dimensional Stochastic Functions

The existence of an accurate sparse representation is related to the choice of a
dictionary which is well adapted to the class of functions considered. For the
computation of sparse approximation, we distinguish non adaptive and adaptive
methods.

Non adaptive method: Let us present these methods using least-squares.
The objective here is to obtain a sparse representation of u(ξ) on a basis set
{φα} : α ∈ ΛP} with few evaluations of u(ξ) on {yq}Qq=1 realizations of ξ such
that we obtain only n non zero coefficients. The matrix representation of
u =

∑
α∈ΛP

vαφα for sample realizations {yq}Qq=1 is given by

Φv = z, (1.43)

where z = (u(yq))Qq=1 ∈ RQ, Φ = (φα(yq)) ∈ RQ×P and v = (vα)α∈ΛP ∈ RP . The
best n-term approximation write

min
v∈RP
‖v‖0=n

‖Φv − z‖2
2, (1.44)

The above problem is non-convex and we instead solve

min
v∈RP
‖Φv − z‖2

2 + λ‖v‖1, (1.45)

where ‖v‖1 =
∑P

α=1 |vα|. Problem (1.45) is a convex optimization problem for
which several methods are readily available. If u(ξ) admits an accurate sparse
approximation, then, under some additional conditions, solving (1.45) gives a sparse
solution v [8, 28].

Adaptive Methods: The objective of adaptive methods is to select a nested
sequence of multi-index sets {Λni}Mi=1 with #Λni = ni such that Λn1 ⊂ · · · ⊂ ΛnM

[18, 20, 21].

Construction of such sets can be chosen from monotone sets i.e. sets with
monotone structure

β ∈ Λn and α ≤ β ⇒ α ∈ Λn, (1.46)
where α ≤ β ⇔ αj ≤ βj for ∀j ∈ N. Possible strategies are the bulk search and
largest neighbour.

In bulk search approach, a nested sequence of monotone sets {Λni}i≥1 is con-
structed such that

Λni ⊂ Λni+1
, Λni+1

= Λni ∪ Si, (1.47)
where Si ⊂ N (Λni) is a subset of the set of neighbours N (Λni) of Λn, also called as
the margin of Λni , such that Λni +Si is a monotone set. The margin of a monotone
set Λ is defined as

N (Λ) = {α /∈ Λ;∃j ∈ N s.t. αj 6= 0⇒ α− ej ∈ Λ}, (1.48)
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where ej is the kronecker sequence: (ej)i = δi,j for i, j ∈ N. However construction
of an optimal subset S in the margin N (Λ) is still an open question.

A modification of this strategy is to add the smallest subset S of the reduced
margin Nr(Λ) where

Nr(Λ) = {α /∈ Λ;∀j ∈ N s.t. αj 6= 0⇒ α− ej ∈ Λ}. (1.49)

In a non intrusive construction, algorithms using Least square approximation in
adaptive monotone sets can be constructed based on posteriori error estimates de-
rived in [19].

4.4 Low rank approximations

Another approach based on structured approximation is to assume that u(ξ) can
be approximated in a suitable low rank tensor subset [54, 52, 17]. In this approach,
u(ξ) is interpreted as a tensor in a tensor product space and low rank approximation
of tensors are then exploited to approximate u(ξ). Representation of u(ξ) in a low
rank tensor format requires estimation of very few parameters as compared to the
dimension of underlying tensor product space and hence one might hope that the
curse of dimensionality can be avoided using these structures.

Different notions of rank correspond to different low rank tensor formats.
For the approximation of u(ξ) in the simplest low rank format called canonical
tensor format is given by

u(ξ1, . . . , ξd) ≈
r∑
i=1

u1
i (ξ1) . . . udi (ξd), (1.50)

where the rank r of approximation is small. This representation is based on the
most basic notion of separated representation of functions [4, 5]. Another notion of
rank called multilinear rank (based on the definition of minimal subspaces) forms
the basis of more general tensor formats. For e.g. the approximation of u(ξ) in
Tucker tensor format bounded by multilinear rank r = (r1, . . . , rd) ∈ Nd is given by

u(ξ1, . . . , ξd) ≈
r1∑
i1=1

· · ·
rd∑
id=1

ui1...id

d∏
k=1

φik(ξk). (1.51)

Note that the curse of dimensionality is not circumvented in this format as
the number of terms still depend exponentially on d. Recently, other tensor
formats called hierarchical formats or tree based formats have been proposed
that are based on hierarchical separation of dimensions whose parametrization in-
creases only linearly with d [37, 60]. Such tensor formats are discussed in section 3.4.
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A particular interesting case for which theoretical results are available is when u(ξ)
is a rank one function i.e

u(ξ) = u1(ξ1) . . . ud(ξd) (1.52)

where uk : Ξ → R. In [3, 56], authors investigate how well a rank one function
can be captured from N well chosen point evaluations. They consider the set of
functions

FM =

{
u(ξ1, . . . , ξd) =

d∏
k=1

uk(ξk) : ‖uk‖∞ ≤ 1, ‖uk(s)‖∞ ≤M

}
(1.53)

where uk(s) is s-th weak derivative of the univariate function uk(ξk). Under the
assumption that M < 2ss!, the number of function evaluations N needed to obtain
an approximation error ε < 1 is given by N(ε, d) v O(d1+1/sε−1/s). This very
particular case illustrates the fact that for functions exhibiting low-rank structures,
one may expect to beat the curse of dimensionality.
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Chapter 2

Low rank tensor formats

In this chapter, basic notions associated with tensor product spaces
are introduced in section 2. The tensor structure of stochastic func-
tion spaces leads to the interpretation of a high dimensional stochas-
tic function as a high order tensor. Due to exponential increase in
dimensionality of tensor product spaces with the number of paramet-
ric inputs, we perform approximation in low rank tensor formats
which are introduced in section 3. In section 4, we present low rank
approximation algorithms based on singular value decomposition
and alternating least-squares. We finally present post-processing of
functions represented in low rank tensor formats in section 5.
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1 Introduction
Approximating a multivariate function u(ξ), ξ ∈ Rd, requires exploiting some spe-
cific structures of the function. A large class of multivariate functions can be well
approximated by a sum of r separable functions [6, 7] i.e.

u(ξ) ≈
r∑
i=1

d∏
k=1

uki (ξk). (2.1)

Such an approximation is said to have a low separation rank r ∈ N if r is small and
(2.1) is called a low rank approximation of u(ξ). Such approximations of multivariate
functions can be systematically studied in the framework of low rank tensor product
approximations. In this chapter, we present the notions associated with tensors and
their approximation. The principle references for this chapter are [40, 46, 38] and
chapter 2 of [36].

2 Tensor Spaces
In this section, we recall basic definitions related to tensors and tensor product
spaces. We then show that a high dimensional stochastic function can be seen as an
element of a tensor product space.

2.1 Tensor product space

Let V k, k ∈ D = {1, . . . , d}, d ∈ N, be d vector spaces equipped with norms ‖ · ‖k.
Let us first define elementary tensors.

Definition 2.1. (Elementary tensor) We call a tensor v an elementary tensor if
there exists vk ∈ V k, 1 ≤ k ≤ d such that

v = v1 ⊗ . . .⊗ vd. (2.2)

With this definition, we define the algebraic tensor product space as follows.

Definition 2.2. (Algebraic tensor product space) Algebraic tensor product space
V = ⊗dk=1V

k is the linear span of elementary tensors i.e.

V =
d⊗

k=1

V k = span

{
v =

d⊗
k=1

vk : vk ∈ V k, 1 ≤ k ≤ d

}
. (2.3)

Thus, an element v ∈ V can be written as finite linear combinations of elementary
tensors, i.e.

v =
m∑
i=1

v1
i ⊗ · · · ⊗ vdi , (2.4)

Sparse low rank approximation of multivariate functions - Applications in uncertainty
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for some m ∈ N and some vectors vki ∈ V k, 1 ≤ i ≤ m, 1 ≤ k ≤ d.
A tensor Banach space V‖·‖ equipped with a norm ‖·‖ is defined as the completion of
an algebraic tensor space V . If V k are Hilbert spaces with a norm ‖ · ‖k, associated
with a scalar product 〈·, ·〉k, a natural (canonical) inner product can be defined for
v, w ∈ V by

〈v, w〉 =
d∏

k=1

〈
vk, wk

〉
, (2.5)

and extended by linearity for arbitrary tensors. The norm associated with this scalar
product is called the canonical norm. The resulting space V‖·‖ is a tensor Hilbert
space.
Having defined a tensor Hilbert space, in the following we will show that a multi-
variate stochastic function u(ξ) can be interpreted as a tensor.

2.2 Tensor structure of stochastic function spaces

Let us consider that the function u(ξ) is a function of d independent random variables
ξ = {ξk}dk=1. We denote by (Ξ,B, Pξ) the probability space induced by ξ, where
Ξ ⊂ Rd and where Pξ is the probability law of ξ. We denote by (Ξk,Bk, Pξk) the
probability space associated with ξk, where Pξk is the probability law of ξk. The
probability space (Ξ,B, Pξ) associated with ξ = (ξ1, . . . ξd) has a product structure
with Ξ = ×dk=1Ξk, B = ⊗dk=1Bk and Pξ = ⊗dk=1Pξk . We denote by L2

Pξ
(Ξ) the Hilbert

space of second order random variables defined on (Ξ,B, Pξ), defined by

L2
Pξ

(Ξ) =

{
u : y ∈ Ξ 7→ u(y) ∈ R;

∫
Ξ

u(y)2Pξ(dy) <∞
}
.

L2
Pξ

(Ξ) is a tensor Hilbert space with the following structure:

L2
Pξ

(Ξ) = L2
Pξ1

(Ξ1)⊗ . . .⊗ L2
Pξd

(Ξd). (2.6)

We can introduce approximation spaces Sknk ⊂ L2
Pξk

(Ξk) with orthonormal basis
{φkj}

nk
j=1, such that

Sknk =

{
vk(yk) =

nk∑
j=1

vkj φ
k
j (yk); v

k
j ∈ R

}
=
{
vk(yk) = φk(yk)

Tvk; vk ∈ Rnk
}
,

where vk denotes the vector of coefficients of vk and where φk = (φk1, . . . , φ
k
nk

)T

denotes the vector of basis functions. An approximation space Sn ⊂ L2
Pξ

(Ξ) is then
obtained by tensorization of approximation spaces Sknk :

Sn = S1
n1
⊗ . . .⊗ Sknk .
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An element v ∈ Sn can be written

v =

n1∑
i1=1

. . .

nd∑
id=1

vi1...id

d⊗
k=1

φkik =
∑
i∈In

viφi (2.7)

where In = ×dk=1{1 . . . nk} and φi(y) = (φ1
i1
⊗ . . . ⊗ φdid)(y1, . . . , yd) =

φ1
i1

(y1) . . . φdid(yd). An element v =
∑

i viφi ∈ Sn can thus be identified with the
algebraic tensor v ∈ Rn1 ⊗ . . . ⊗ Rnd such that (v)i = vi. Denoting φ(y) =
φ1(y1)⊗. . .⊗φd(yd) ∈ Rn1⊗. . .⊗Rnd , we have the identification Sn ' Rn1⊗. . .⊗Rnd

with
Sn = {v(y) = 〈φ(y),v〉; v ∈ Rn1 ⊗ . . .⊗ Rnd} ,

where 〈·, ·〉 denotes the canonical inner product in Rn1 ⊗ . . .⊗ Rnd .

Remark 2.1 :
In the case where the random variables are not independent, L2

Pξ
(Ξ) is no longer

a tensor product space. However, we can define an orthogonal approximation
basis (φi)i∈In of L2

Pξ
(Ξ) as follows [72]

φi(y) =
d∏

k=1

φkik(yk)

√
pξk(yk)

pξ(y)
, (2.8)

where pξ and pξk are the probability density functions of ξ and ξk respectively.
We can define the approximation space Sn = span{φi; i ∈ In} which does not
have the tensor product structure but is isomorphic to Rn1 ⊗ . . .⊗ Rnd .

The dimension of approximation space Sn grows exponentially with stochastic
dimension d, since dim(Sn) =

∏d
k=1 nk. Thus one faces complexity issues when ap-

proximating a function u ∈ Sn when d is large. To reduce the complexity, we perform
approximation in low rank tensor subsets of Sn that aims at finding a representation
of the form (2.7) with a low dimensional representation of the coefficients v. In the
following, we will omit the indices n and nk in Sn and Sknk for simplicity of notations.

3 Low rank tensor formats
In this section, we briefly recall main low rank tensor formats. These formats are
associated with different notions of rank of a tensor.
We can interpret these low rank tensor formats as multi-linear maps FM : P1 ×
· · ·×Pm →M whereM is a low rank tensor subsets and P i, 1 ≤ i ≤ m, are vector
spaces of real parameters. For v ∈ M, there exists (v1, . . . ,vm) ∈ P1 × · · · × Pm
such that

v = FM(v1, . . . ,vm). (2.9)
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In the following, we will specify spaces P i, 1 ≤ i ≤ m, and FM for different low
rank tensor formats.

3.1 Canonical tensor format

The canonical rank of a tensor v ∈ S = S1 ⊗ . . .⊗ Sd is the smallest integer r ∈ N
such that

v =
r∑
i=1

⊗dk=1v
k
i , (2.10)

for vki ∈ Sk, 1 ≤ i ≤ r, 1 ≤ k ≤ d. The set of (elementary) rank-one tensors R1 is
defined by

R1 =
{
v = ⊗dk=1v

k; vk ∈ Sk
}
.

The set of tensors with canonical rank at most r is defined as

Rr =

{
v =

r∑
i=1

⊗dk=1v
k
i ; vki ∈ Sk

}
.

The setRr is not closed for d ≥ 3 and r > 1 [24]. This property is important because
the existence of best approximation is only guaranteed for closed sets. To avoid this
difficulty, we can define the set of bounded canonical tensors with bounded factors

Rc
r =

{
v =

r∑
i=1

⊗dk=1v
k
i ; vki ∈ Sk, ‖ ⊗dk=1 v

k
i ‖ ≤ c

}
,

With c > 0, Rc
r is closed whatever r and d (see Lemma 4.2 [32]).

Parametrization: For a given choice of basis of Sk, 1 ≤ k ≤ d, elements of
v ∈ Rr can be written v = FRr(v

1, . . . ,vd), where FRr is a multilinear map
parametrising the subset Rr and vk ∈ Pk = Rnk×r, 1 ≤ k ≤ d, such that
vk = (vk1 . . .v

k
r ) are the coefficients of the vectors vki ∈ Sk, 1 ≤ i ≤ r on the chosen

basis of Sk. The total number of real parameters is therefore r
∑d

k=1 nk.

3.2 Minimal subspaces and t-rank

The definition of subspace based tensor formats is linked to the concept of minimal
subspaces and t-ranks. For a fixed v ∈ ⊗dk=1Sk, the minimal subspace Uk

min(v) is the
smallest subspace Uk ⊂ Sk such that

v ∈ Uk ⊗ S [k], (2.11)

with S [k] = ⊗l 6=kS l (here we use a permutation of dimensions for ease of notations).
For t ⊂ D and tc = D \ t such that t and tc are non empty, the minimal subspace
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U t
min(v) is defined as the smallest subspace U t of St = ⊗k∈tSk such that v ∈ U t⊗Stc .

The t-rank of v is then given by

rankt(v) = dim(U t
min(v)) (2.12)

We can define a linear mapMt : ⊗dk=1Sk → St⊗St
c , called matricisation operator,

defined for elementary tensors by

Mt

(⊗
k∈D

vk

)
=

(⊗
k∈t

vk

)
⊗

(⊗
k∈tc

vk

)
, (2.13)

and extended by linearity to ⊗
k∈D
Sk. Mt(v) is called as matricisation or unfolding

of v. The t-rank of v is given by the rank of order-two tensorMt(v) [41, 37]. Based
on these definitions, we can now define low rank subsets by considering t-rank for a
collection of subsets t.

3.3 Tucker tensor format

The Tucker (or multilinear) rank of v ∈ S is defined as the rank tuple r = (r1, . . . , rd)
where rk = rankk(v), k ∈ D. The set of Tucker Tensors of multilinear rank bounded
by r is given by

Tr = {v ∈ S; rankk(v) = dim(Uk
min) ≤ rk, k ∈ D}. (2.14)

An element v ∈ Tr can be written under the form

v =

r1∑
i1=1

· · ·
rd∑
id=1

αi1...id ⊗dk=1 v
k
ik
, (2.15)

where α ∈ Rr1×...×rd is called the core tensor and vkik ∈ S
k, k ∈ D; 1 ≤ ik ≤ rk.

The set Tr with multilinear rank bounded by r is closed.

Parametrization: An element v ∈ Tr can be written as v = FTr(v
1, . . . ,vd+1),

where FTr parametrizes the subset Tr and vk = (vk1 . . .v
k
rk

) ∈ Pk = Rnk×rk , 1 ≤
k ≤ d, parametrising the vectors vkik ∈ S

k, 1 ≤ ik ≤ rk, and vd+1 = α ∈ Rr1×...×rd .
There are therefore

∏d
k=1 rk +

∑d
k=1 rknk real parameters. Note that the number of

parameters still increases exponentially with d (in the core tensor) and hence this
format suffers from curse of dimensionality.

3.4 Tree based formats

Tree based formats are based on a more general notion of rank for a group of
dimensions associated with a dimension partition tree. Let D = {1, . . . , d} and T
be a dimension partition tree on D, which is a subset of 2D such that every vertex
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t ∈ T are non empty subsets of D. Let us denote L(T ) as the leaves of T and
I(T ) = T \ L(T ), so that L(T ) = {{k} : k ∈ D}. An element t ∈ L(T ) is defined
such that #t = 1. Let S(t) denote sons of t ∈ T . The depth of the tree is defined as
p = dlog2(d)e := min{i ∈ N|i ≥ log2(d)}. The level l of the tree is defined as the set
of all nodes having a distance of exactly l to the root D. We denote the level l of the
tree as T l := {t ∈ T |level(t) = l}. In the following, we will consider two particular
tree based tensor formats.

3.4.1 Hierarchical tensor format

Hierarchical tensor format [41] is associated with a binary tree T , such that for all
t ∈ I(t), #S(t) = 2. An example of a binary dimension tree for D = {1, 2, 3, 4} is
illustrated in figure 2.1.
The Hierarchical tensor rank of a tensor v is a tuple (rankt(v))t∈T ∈ N#T . For a rank
tuple r = (rt)t∈T , the subset of Hierarchical tucker tensors with T−rank bounded
by r is defined as

HT
r = {v ∈ S : rankt(v) = dim(U t

min(v)) ≤ rt, t ∈ T}. (2.16)

The rank r is admissible if there is at least one element in v ∈ HT
r \ {0}. For t ∈ T ,

we denote by (vti)1≤i≤rt a basis of U t
min(v). For t ∈ I(t), with S(t) = {t1, t2}, we can

write

vti =
∑

1≤j≤rt1
1≤k≤rt2

αtijkv
t1
j ⊗ v

t2
k . (2.17)

for 1 ≤ i ≤ rt. The tensor αt ∈ Rrt×rt1×rt2 , t ∈ I(t), are called the transfer tensors.
With rD = 1, an element v ∈ HT

r is represented as

v =

rD1∑
i=1

rD2∑
j=1

αDijv
D1
i ⊗ v

D2
j , (2.18)

where S(D) = {D1, D2}. A tensor v ∈ HT
r is completely determined by the transfer

tensors (αt)t∈I(T ) and the vectors (vki )k∈L(T ),1≤i≤rk .

Parametrisation: An element v ∈ HT
r can be written as v = FHTr (v1, . . . ,vm),

m = #I(T ) + #L(T ), where FHTr parametrizes the subset HT
r . Here

vk = (vk1 . . .v
k
rk

) ∈ Pk = Rnk×rk , 1 ≤ k ≤ d, parametrizes the leaf node vec-
tors {vkik}

rk
ik=1 ∈ Sk and {vd+1, . . . ,vm} = {αt : t ∈ I(T )}. There are therefore∑d

k=1 rknk +
∑

t∈I(T ) rtrt1rt2 real parameters.
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D= {1,2,3,4}

{1,2} {3,4}

{1} {2} {3} {4}

Figure 2.1: Dimension partition tree (d = 4)

3.4.2 Tensor Train tensor format

The Tensor Train format [60, 61, 59] is another particular case of tree based tensors.
The dimension partition tree of a Tensor Train format is characterised by S(t) =
(t1, t2) such that t1 = {k} and t2 = {k+ 1, . . . , d} for 1 ≤ k ≤ d− 1. An example of
dimension partition tree for Tensor Train format is shown in figure 2.2.

{1,2,3,4}

{1} {2,3,4}

{2} {3,4}

{3} {4}

Figure 2.2: Dimension partition tree for Tensor Train format (d = 4)

The tensor train rank r = (r1 . . . , rd−1) is a tuple with rk = ranktk(v) where tk =
{k, . . . , d}. The set of Tensor Train tensors of rank bounded by r is given by

T Tr =
{
v ∈ S; rankt(v) = dim(U t

min(v)) ≤ r, t ∈ I(T )
}
. (2.19)

An equivalent representation of an element v ∈ T Tr can be given under the form

v =

r1∑
i1=1

. . .

rd−1∑
id−1=1

d⊗
k=1

vkik−1ik
; vkik−1ik

∈ Sk, (2.20)

with i0 = id = 1. A more compact representation is given by

v(ξ) = G1(ξ1) · · ·Gd(ξd), G
k ∈ (Sk)rk−1×rk , (2.21)
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where Gk
ik−1ik

= vkik−1ik
. The set T Tr with tensor train rank bounded by

r = (r1 . . . , rd−1) is closed.

Parametrization: An element v ∈ T Tr can be written as v = FT Tr
(
v1, . . . ,vd

)
where FT Tr parametrizes the subset T Tr. Here vk ∈ Pk = Rrk−1×rk×nk , 1 ≤ k ≤ d,
parametrizes vkik−1ik

∈ Sk, 1 ≤ ik−1 ≤ rk−1, 1 ≤ ik ≤ rk. There are therefore∑d
k=1 rk−1rknk real parameters.

4 Tensor approximation
In this section, we present algorithms for tensor approximations. The idea is to
search for an approximation of v ∈ S in a particular tensor subset M (where M
can be Rr, Tr, HT

r or T Tr). A best approximation ur of u inM (if it exists) is such
that

‖u− ur‖ = min
v∈M
‖u− v‖. (2.22)

4.1 Singular value decomposition

4.1.1 Singular value decomposition (d = 2)

We consider the case when d = 2, thus S = S1 ⊗ S2. We denote n = min(n1, n2).
Let u ∈ S, then there exists a decreasing sequence of positive numbers σ = (σi)

n
i=1

and two orthonormal systems (v1
i )1≤i≤n ⊂ S1 and (v2

i )1≤i≤n ⊂ S2 such that

u =
n∑
i=1

σiv
1
i ⊗ v2

i . (2.23)

The expression (2.23) is called the singular value decomposition of u. The (σi)1≤i≤n ∈
(R+)

n are called the singular values, (v1
i )1≤i≤n ∈ (S1

n1
)n and (v2

i )1≤i≤n ∈ (S2
n2

)n are
called the left and right singular vectors of u. If S is endowed with a canonical
norm, a best rank-r approximation of u, solution of (2.22), is given by

ur =
r∑
i=1

σiv
1
i ⊗ v2

i (2.24)

with ‖u− ur‖2 =
∑n

i=r+1 σ
2
i . The r-dimensional subspaces

S1
r = span{v1

i }ri=1 and S2
r = span{v2

i }ri=1 (2.25)

are respectively the left and right dominant singular spaces of v. Thus, the SVD
defines increasing sequences of optimal subspaces {S1

r }r≥1 and {S2
r }r≥1 such that,

S1
r ⊂ S1

r+1 and S2
r ⊂ S2

r+1.
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4.1.2 Higher order SVD for d > 2

In this section, we consider the problem of the low rank approximation of higher
order tensors based on the generalization of the SVD.

Higher-Order Singular Value Decomposition (HOSVD). This method,
introduced in [23] for Tucker format, searches an approximation of a tensor v ∈ Sn
in the subset Tr. It relies on the use of the SVD for order-2 tensors obtained
by matricisation of v defined in section 3.2. In this algorithm, for 1 ≤ k ≤ d,
we determine the optimal rk-dimensional space Wk

rk
spanned by the left singular

vectors (vkik)1≤ik≤rk ofM{k}(u). Then, the HOSVD of rank r = (r1, . . . , rd) of u is
defined as the best approximation of u in W1

r1
⊗ · · · ⊗Wd

rd
, written as

ur =

r1∑
i1=1

· · ·
rd∑
rd=1

αi1...id
⊗
k

vkik , (2.26)

with a core tensor α given by

αi1...id =

〈
u,
⊗
k

vkik

〉
(2.27)

Algorithm 1 gives the HOSVD for the Tucker format.

Algorithm 1 HOSVD
Input: u ∈ S.
Output: ur ∈ Tr.
1: for k = 1, . . . , d do
2: Compute (vki )1≤i≤rk as left singular vectors ofM{k}(u);
3: end for
4: Update α such that αi1...id =

〈
u,
⊗
k

vkik

〉
;

We have that ur is a quasi-optimal approximation of u in Tr, such that

‖u− ur‖ ≤
√
d min
v∈Tr
‖u− v‖ (2.28)

Various alternatives to improve the approximation provided by HOSVD have been
developed including recent developments based on Newton type methods [31, 45],
Jacobi algorithms [44] and modifications of HOSVD [77].

The Hierarchical SVD (SVD) is a method introduced in [37] and is a
generalization of HOSVD for Hierarchical Tensor formats. Here, we consider the
t-matricisation Mt(u) of u and construct the optimal subspace W t

rt ⊂ S
t spanned
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Algorithm 2 HSVD
Input: u ∈ S.
Output: v ∈ HT

r .
1: for t ∈ L(T ) do
2: Calculate (vti)1≤i≤rt as left singular vectors of u{k};
3: end for
4: for l = p− 1, . . . , 0 do
5: for t ∈ I(T ) on level l do
6: Calculate (vti)1≤i≤rt as left singular vectors ofMt(u);
7: Noting t = t1 ∪ t2, calculate αt such that αtijk =

〈
vtk, v

t1
i ⊗ v

t2
j

〉
;

8: end for
9: end for

10: Noting D = t1 ∪ t2, calculate αD such that αDij = 〈u, vt1 ⊗ vt2〉

by dominant left singular vectors (vti)1≤i≤rt ofMt(u). Then, the HSVD is obtained
by applying successively projections on the subspace. A basic version of HSVD is
given by Algorithm 2. We have that ur is a quasi-optimal approximation of u in
HT
r , such that

‖u− ur‖ ≤
√

2d− 3 min
w∈HTr

‖u− w‖. (2.29)

4.2 Alternating Least-Squares Algorithm

With a parametrization v = FM(v1, . . . ,vm) of a low rank tensor formats, one
can use classical optimization techniques (conjugate gradient, line search etc) for
approximation of tensors in low rank subsets. One of the widely used algorithm,
Alternating Least-Squares (ALS), is presented below.

The best approximation problem inM can be written

Find (v1, . . . ,vm) ∈ P1
M × · · · × PmM such that

‖u− FM(v1, . . . ,vm)‖2 = min
p1,...,pm∈P1

M×···×P
1
M

‖u− FM(p1, . . . ,pm)‖2. (2.30)

The alternating minimization algorithm consists in successively minimizing over
each variable vi ∈ P iM, as shown in algorithm 3. For FM a multilinear map, FM is
linear in each variable vk, and therefore the minimization in vk is a simple quadratic
optimization problem. The ALS is easy to implement but may converge slowly to a
stationary point. The limit may also depend on the initial guess (Step 1).

4.2.1 Alternating Least Squares in low rank tensor formats

For canonical tensor format, the first question that we ask is: does a best approxi-
mation exist in Rr. Unfortunately, it is not necessarily the case for d > 2 and r > 1
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Algorithm 3 Alternating Least Squares in P1
M × . . .PmM

Input: u ∈ Sn.
Output: v ∈M.
1: Initialize (v1, . . . ,vm) randomly;
2: v = FM(v1, . . . ,vm);
3: while v has not converged do
4: for λ = 1, . . . ,m do
5: vλ = argmin

w∈PλM

‖u− FM(v1, . . . ,w, . . . ,vm)‖;

6: v = FM(v1, . . . ,vm);
7: end for
8: end while
9: return v = FM(v1, . . . ,vm);

since Rr is not closed [24]. However, ALS has proved useful for a large class of
numerical examples.

For Tucker tensor format, the ALS consists of minimizing over the parame-
ters vk, 1 ≤ k ≤ d, followed by the core tensor α. Approximating in Hierarchical
Tucker subset consists of minimizing alternately over the parameters associated to
different nodes of the tree. This leads to solving a linear system of equations for
each node under the form

Atαt = bt, ∀t ∈ I(T ) or Atvt = bt, ∀t ∈ L(T ).

For the construction of operators (At)t∈T and (bt)t∈T , we refer to [47]. In tensor train
format, the ALS consists in minimizing over the parameters vk ∈ Rrk−1×rk×nk , k ∈ D.

4.2.2 Modified Alternating Least Squares

Here presented for Tensor Train format, Modified Alternating Least Squares (also
known as Density Matrix Renormalization Group) is similar to ALS except that it
involves simultaneous minimization on parameters by performing contraction along
adjacent cores (vk,vk+1), 1 ≤ k ≤ d−1. Here, in each iteration, the parameters vk ∈
PkM and vk+1 ∈ PM are replaced by the parameter w∗ ∈ P∗M = Rrk−1×nk×rk+1×nk+1

parametrizing (Sk ⊗ Sk+1)rk−1×rk+1 . We then minimize with respect to w∗ and
perform a truncated SVD of the matricization W ∈ Rrk−1nk×rk+1nk+1 with rank
r∗ to obtain the new parameters vk ∈ PkM = Rrk−1×r∗×nk and vk+1 ∈ Pk+1

M =
Rr∗×rk+1×nk+1 . The rank r∗ is selected to achieve a prescribed accuracy. In a sampling
based setting, it can be selected through cross-validation techniques (see chapter 5).
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Remark 2.2 :
For hierarchical tensor format, this algorithm can be extended by performing con-
traction for pairs of nodes and minimizing with respect to contracted parameters
followed by an SVD [76].

5 Post processing in low rank tensor formats
Let v(ξ) denote a low rank approximation of a multivariate stochastic function
u(ξ) ∈ Sn given by

u(ξ) ≈ v(ξ) =
∑
i∈In

αi

(⊗
k

vkik

)
(ξ) (2.31)

with a possibly structured tensor α.

5.1 Estimation of moments

Solution statistics of integral form such as mean and variance can be computed
analytically. Since low rank approximations are based on separated representation,
moments of u(ξ) can be obtained using 1-D integrations. In particular, the mean is
given by

E(v(ξ)) =
∑
i

αiE

(∏
k

vkik(ξk)

)
=
∑
i

αi
∏
k

E(vkik(ξk)). (2.32)

For Sknk = span{φkj (ξk); 1 ≤ j ≤ nk}, we have

E(vki (ξk)) = E(

nk∑
j=1

vki,jφ
k
j (ξk)) =

nk∑
j=1

vki,jγ
k
j , (2.33)

with γkj = E(φkj (ξk)) usually known analytically for standard bases (e.g. polynomial)
and probability measures. Similarly, when considering orthonormal bases {φkj}

nk
j=1,

E(v(ξ)2) =
∑
i

∑
i′

αiαi′
∏
k

E(vkik(ξk)v
k
i′k

(ξk)) =
∑
i

∑
i′

αiαi′
d∏

k=1

(
nk∑
j=1

vkik,jv
k
i′k,j

)
.

(2.34)
Alternatively, we may draw random realizations of v(ξ) and obtain Monte Carlo
estimates of the statistics of u(ξ) at negligible cost.

5.2 Estimation of global sensitivity indices

Sobol indices [70, 68, 69] are good estimates of the impact of some random variables
on the variability of u(ξ). For a single random variable ξk, the first order Sobol
index Sk is defined by

Sk =
V (E(u(ξ)|ξk))

V (u)
, (2.35)
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where E(u(ξ)|ξk) is the conditional expectation of u(ξ) w.r.t. ξk. For approximations
of the form (2.31), we have

E(u(ξ)|ξk) =

rk∑
ik=1

βkikv
k
i (ξk) where βkik =

∑
1≤il≤rl
l 6=k

αi
∏
l 6=k

E(vlil(ξl)). (2.36)

Using (2.36), we can analytically estimate first order Sobol sensitivity indices.
For a group of random variables ξK , K ⊂ D, we define the total sensitivity index
STK and closed index SCK respectively by

STK =
∑

J∩K 6=∅

SJ , SCK =
∑
J⊂K

SJ . (2.37)

Denoting Kc = D \K, we have the property

SCKc + STK = 1. (2.38)

These indices can be expressed in terms of conditional expectations and variances
as

SCK =
V (E(u(ξ)|ξK))

V (u(ξ))
, STC =

E(V (u(ξ)|ξKc))

V (u(ξ))
, (2.39)

where
E(u(ξ)|ξK) =

∑
1≤ik≤rk
k∈K

βK(ik)k∈K

⊗
k∈K

vkik(ξk) (2.40)

with βK(ik)k∈K
=

∑
1≤il≤rl
l∈Kc

αi
∏
l∈Kc

E(vlil(ξl)).
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Chapter 3

Sparse low rank tensor formats

In chapter 2, we introduced several low rank tensor formats and
their parametrization. We also briefly outlined approximation of
tensors using approaches based on singular value decomposition and
alternating least squares. In this chapter, we will define the corre-
sponding sparse low rank tensor formats in section 1. Approximat-
ing a multivariate function in a sparse low rank tensor format using
sampling based approach can be obtained using least squares with
sparse regularization techniques which will be introduced in section
2. Alternating least square algorithm for performing approximation
in sparse low rank tensor formats is presented in section 3. Algo-
rithms for optimal selection of model parameters will be presented
in section 4.

Sparse low rank approximation of multivariate functions - Applications in uncertainty
quantification



Contents
1 Sparse low rank tensor formats . . . . . . . . . . . . . . . . . 35

2 Least squares methods . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Sparse regularization . . . . . . . . . . . . . . . . . . . . . . . 37

3 Approximation in sparse low rank tensor formats . . . . . . 38

3.1 ALS for sparse low rank tensor formats . . . . . . . . . . . . 38

4 Cross validation for selection of model parameters . . . . . 39

4.1 Selection of regularization coefficient λi . . . . . . . . . . . . 40

4.2 Selection of optimal tensor rank . . . . . . . . . . . . . . . . . 40

5 Approximation error and sparsity ratio . . . . . . . . . . . . 41

Sparse low rank approximation of multivariate functions - Applications in uncertainty
quantification



Sparse low rank tensor formats 35

1 Sparse low rank tensor formats

Let us consider a low rank tensor subsetM defined by

M = {v = FM(v1, . . . ,vm) : vi ∈ PM, 1 ≤ i ≤ m}, (3.1)

where FM is a multilinear map which constitutes the parametrization of the subset
M and vi, 1 ≤ i ≤ m, are the parameters (see chapter 2 section 3). We introduce
the vectorization map V : vi ∈ P iM 7→ V(vi) ∈ Rdim(PM) such that V(vi) is a vector
obtained by stacking the entries of vi in a vector.

Example 3.1. For the parametrization ofRr such that v = FRr(v
1, . . . ,vd) with

vk ∈ PkRr = Rnk×r, 1 ≤ k ≤ d, we have V(vk) ∈ Rnkr where the i + 1-th column
of vk is stacked below i-th column.

The corresponding sparse low rank tensor subsetMm-sparse is defined as

Mm-sparse = {v = FM(v1, . . . ,vm); vi ∈ P iM, ‖V(vi)‖0 ≤ mi; 1 ≤ i ≤ m}, (3.2)

where ‖ · ‖0 is the “`0-norm” counting the number of non zero coefficients. Note
thatMm-sparse may have a very small effective dimension

∑m
i=1mi �

∑m
i=1 ni.

The interest of defining sparse low rank tensor subsets is that they incorpo-
rate sparsity within the low rank structure thus enabling to exploit both low
rank and sparsity structures of multivariate functions. However, solving a best
approximation problem in Mm-sparse leads to a combinatorial problem. Therefore,
we replace the ideal sparse tensor subsetMm-sparse by

Mγ = {v = FM(v1, . . . ,vm); vi ∈ P iM, ‖V(vi)‖1 ≤ γi, 1 ≤ i ≤ m},

where we introduce a convex regularization of the constraints using `1-norm [2,
13]. In practice, optimal approximations in subset Mγ can be computed using
an alternating least squares algorithm that exploits the specific low dimensional
parametrization of the subsetMγ and that involves the solution of successive least-
squares problems with sparse `1-regularization. Note that the dimension of Mγ is
the same as the dimension of M. However, approximations in Mγ obtained by
using minimization may present sparsity.

2 Least squares methods

The objective of this section is to introduce notions associated with discrete
least-squares with sparsity constraint. We will first consider approximations in
classical function spaces in which we will introduce sparse regularization and the
selection of regularization coefficient. We will then use these concepts to perform
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approximations in sparse low rank tensor subsets in section 3.

We here consider the case of a real-valued model output u : Ξ → R. We denote
by {yq}Qq=1 ⊂ Ξ a set of Q samples of ξ, and by {u(yq)}Qq=1 ⊂ R the corresponding
function evaluations. We suppose that an approximation space SP = span{φi}Pi=1

is given. Classical least-squares method for the construction of an approximation
uP ∈ SP then consists in solving the following problem:

‖u− uP‖2
Q = min

v∈SP
‖u− v‖2

Q with ‖u‖2
Q =

1

Q

Q∑
q=1

u(yq)2. (3.3)

Note that ‖ ·‖Q only defines a semi-norm on L2
Pξ

(Ξ) but it may define a norm on the
finite dimensional subspace SP if we have a sufficient number Q of model evaluations.
A necessary condition is Q ≥ P . However, this condition may be unreachable in
practice for high dimensional stochastic problems and usual a priori (non adapted)
construction of approximation spaces SP . Moreover, classical least-squares method
may yield bad results because of ill-conditioning (solution very sensitive to samples).

Remark 3.1 :
The analysis in [19] indicates that for stochastic models containing uniformly
distributed random variables and when using polynomial approximation, a suffi-
cient condition to obtain a stable approximation is to choose a number of samples
scaling quadratically with the dimension of polynomial space (i.e. Q ∝ P 2).

A way to circumvent these issues is to introduce a regularized least-squares func-
tional:

J λ(v) = ‖u− v‖2
Q + λL(v), (3.4)

where L is a regularization functional and where λ refers to some regularization
parameter. The regularized least-squares problem then consists in solving

J λ(uλP ) = min
v∈SP
J λ(v). (3.5)

Denoting by v = (v1, . . . , vP )T ∈ RP the coefficients of an element v =
∑P

i=1 viφi ∈
SP , we can write

‖u− v‖2
Q = ‖z−Φv‖2

2, (3.6)

with z = (u(y1), . . . , u(yQ))T ∈ RQ the vector of random evaluations of u(ξ) and
Φ ∈ RQ×P the matrix with components (Φ)q,i = φi(y

q). We can then introduce a
function L : RP → R such that L(

∑
i viφi) = L(v), and a function Jλ : RP → R
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such that J λ(
∑

i viφi) = Jλ(v) = ‖z − Φv‖2
2 + λL(v). An algebraic version of

least-squares problem (3.5) can then be written as follows:

min
v∈RP

‖z−Φv‖2
2 + λL(v). (3.7)

Regularization introduces additional information such as smoothness, sparsity, etc.
Under some assumptions on the regularization functional L, problem (3.5) may have
a unique solution. However, the choice of regularization strongly influences the qual-
ity of the obtained approximation. Another significant component of solving (3.7)
is the choice of regularization parameter λ. In this thesis, we use cross validation
for the selection of an optimal value of λ (see section 4.1).

2.1 Sparse regularization

Over the last decade, sparse approximation methods have been extensively studied
in different scientific disciplines. A sparse function is one that can be represented
using few non zero terms when expanded on a suitable basis. If a function is known
to be sparse on a particular basis, e.g. polynomial chaos (or tensor basis), sparse
regularization methods can be used for quasi optimal recovery with only few sample
evaluations. In general, a successful reconstruction of sparse solution vector depends
on sufficient sparsity of the coefficient vector and additional properties (such as
incoherence) depending on the samples and of the chosen basis (see [14, 27] or [29]
in the context of uncertainty quantification). This strategy has been found to be
effective for non-adapted sparse approximation of the solution of some PDEs [9, 29].

More precisely, an approximation
∑P

i=1 uiφi(ξ) of a function u(ξ) is considered as
sparse on a particular basis {φi(ξ)}Pi=1 if it admits a good approximation with only
a few non zero coefficients. Under certain conditions, a sparse approximation can
be computed accurately using only Q � P random samples of u(ξ) via sparse
regularization.
Given the random samples z ∈ RQ of the function u(ξ), a best m-sparse (or m-term)
approximation of u can be ideally obtained by solving the constrained optimization
problem

min
v∈RP

‖z−Φv‖2
2 subject to ‖v‖0 ≤ m, (3.8)

where ‖v‖0 = #{i ∈ {1, . . . , P} : vi 6= 0} is the so called “`0-norm” of v which
gives the number of non zero components of v. Problem (3.8) is a combinatorial op-
timization problem which is NP hard to solve. Under certain assumptions, problem
(3.8) can be reasonably well approximated by the following constrained optimization
problem which introduces a convex relaxation of the “`0-norm”:

min
v∈RP

‖z−Φv‖2
2 subject to ‖v‖1 ≤ δ, (3.9)
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where ‖v‖1 =
∑P

i=1 |vi| is the `1-norm of v. Since `1-norm is convex, we can equiv-
alently consider the following convex optimization problem, known as Lasso [74] or
basis pursuit [16]:

min
v∈RP

‖z−Φv‖2
2 + λ‖v‖1, (3.10)

where λ > 0 corresponds to a Lagrange multiplier whose value is related to δ.
Problem (3.10) appears as a regularized least-squares problem. The `1-norm is a
sparsity inducing regularization function in the sense that the solution v of (3.10)
may contain components which are exactly zero. Several optimization algorithms
have been proposed for solving (3.10) ( see [2] for a comprehensive review).

3 Approximation in sparse low rank tensor formats

3.1 ALS for sparse low rank tensor formats

We now have all the ingredients to formulate approximation problem in sparse low
rank tensor format using least squares. We first consider approximation of a real
valued multivariate function u : Ξ → R in a low rank subsetM (such as canonical
or tree based formats). The discrete least-squares minimization problem then takes
the form

min
v1∈P1

M,...,vm∈PmM
‖u− FM(v1, . . . ,vm)‖2

Q, (3.11)

where the function to minimize is quadratic with respect to each argument vi, 1 ≤
i ≤ m. We can thus use alternating least-squares algorithm (see chapter 2 section
4.2.).
Minimization in M exploits the low rank structure of u(ξ). However, when the
number of available samples is not sufficient to obtain stable estimation of vi, 1 ≤
i ≤ m, we can perform optimization in the corresponding sparse low rank tensor
subset Mγ. Thus within ALS, we formulate least squares problem with sparse
regularization given by

min
v1∈P1

M,...,vm∈PmM
‖u− FM(v1, . . . ,vm)‖2

Q +
m∑
i=1

λi‖V(vi)‖1, (3.12)

where the regularization parameter can be selected using cross validation (see section
4). Algorithm 4 outlines the ALS algorithm for approximation in sparse low rank
tensor format.
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Algorithm 4 Alternating Least Square with sparsity inducing regularization

Input: {yq}Qq=1 samples of ξ and model evaluations {u(yq)}Qq=1.
Output: v ∈M.
1: Initialize (v1, . . . ,vm) randomly;
2: v = FM(v1, . . . ,vm);
3: while v has not converge do
4: for i = 1, . . . ,m do
5: vi = argmin

w∈PiM

‖u − FM(v1, . . . ,w, . . . ,vm)‖2
Q + λi‖V(w)‖1 with selection of

λi through cross validation .
6: v = FM(v1, . . . ,vm);
7: end for
8: end while
9: return v;

Approximation obtained by using algorithm 4 for a given number of samples of the
function u depends on the specific low rank tensor format considered. For a given
sample set, we can obtain approximations of the same function in different sparse
low rank tensor formats with varying level of accuracy.
In many practical cases, we can choose sparse canonical tensor format Rr. This
format has few real parameters to estimate and may give good approximation with
very few sample evaluations. Convergence of algorithm 4 in canonical format is
discussed in Chapter 4. Approximation in sparse Tucker tensor format T γr involves
minimization over the core tensor which may not be feasible for high dimensional
functions u or functions with high multilinear rank. Sparse Hierarchical format
HT
r is a good candidate but involves the selection of a binary tree T for which we

have combinatorial possibilities. In this case, we need a priori information about
the function u to determine optimal regrouping of variables in tree nodes, or an
adaptive strategy to construct the tree. A simple tree based representation is the
Tensor Train format T T γr , which results in good approximation in many practical
cases. In chapter 5, we study algorithm 4 in T T γ.

4 Cross validation for selection of model parameters

Approximation of functions using regularized least squares requires a selection
of model parameters. Cross validation is a standard statistical technique for the
selection of these parameters using the available information.

Cross validation consists of randomly partitioning the available samples Q
into two sub-samples, the training set and the test set. We choose several values
of model parameters and solve for their corresponding models using training set
and assess the accuracy of the solution by predicting its error on the test set. A
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refinement of this method is to use k-fold cross validation in which the samples are
randomly assigned to one of the k-sets of approximately equal size in a partition.
The training set consists of all but one of the sets of the partition which is
considered as the test set. The model error is estimated for each of the k sets and
averaged over the k sets. We then select the optimal model corresponding to the
parameter for which model error is minimum. A leave one out error is a special
case of cross validation in which k = Q.

In this thesis, we use cross validation model selection for the selection of reg-
ularization coefficient λ in solving regularised least squares problem and for the
selection of optimal tensor rank r in sparse low rank tensor format while using
algorithm 4.

4.1 Selection of regularization coefficient λi
An important component of algorithm 4 is the selection of regularization coefficient
λi in 5. A small value of λi may lead to over-fitting whereas a larger value may lead
to stronger sparsity constraint thus deteriorating the solution. Therefore optimal
value of λi can be estimated using cross validation. However, this method has a
disadvantage when several values of λi are being considered as it involves training
the model for each value of λi. Moreover in guessing these values, one can miss
optimal λi thus leading to a suboptimal solution.

In this thesis, we use the Lasso modified least angle regression algorithm
(see LARS presented in [30]). The advantage of this algorithm is that it provides a
set of Nr solutions, namely the regularization path, with increasing `1-norm. Thus it
eliminates the need to explicitly choose the values of λi. Let vj, with j = 1, . . . , Nr,
denote this set of solutions, Aj ⊂ {1, . . . , P} be the index set corresponding to
non zero coefficients of vj, vjAj ∈ R#Aj the vector of the coefficients Aj of vj,
and ΦAj ∈ RQ×#Aj the submatrix of Φ obtained by extracting the columns of Φ
corresponding to indices Aj. The optimal solution v is then selected using the
fast leave-one-out cross validation error estimate [15] which relies on the use of
the Sherman-Morrison-Woodbury formula (see [9] for its implementation within
Lasso modified LARS algorithm). Algorithm 5 briefly outlines the cross validation
procedure for the selection of the optimal solution. In this work, we have used
Lasso modified LARS implementation of SPAMS software [50] for `1-regularization.

4.2 Selection of optimal tensor rank

Let us note that algorithm 4 works in a given low rank format with fixed rank. A
simple approach can be used to select the rank. In sampling based approach, the
optimal rank may depend on the number of samples Q and the sample set. Hence
we need a model selection technique to select the optimal rank. In this work, we
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Algorithm 5 Algorithm to determine optimal LARS solution using leave-one-out
cross validation.
Input: sample vector z ∈ RQ and matrix Φ ∈ RQ×P

Output: vector of coefficients v ∈ RP

1: Run the Lasso modified LARS procedure to obtain Nr solutions v1, . . . ,vNr

of the regularization path, with corresponding sets of non zeros coefficients
A1, . . . , ANr .

2: for j = 1, . . . , Nr do
3: Recompute the non zero coefficients vjAj of vj using ordinary least-squares:

vjAj = arg minv∈R#Aj ‖z−ΦAjv‖2
2

4: Compute hq = (ΦAj(Φ
T
Aj

ΦAj)
−1ΦT

Aj
)qq.

5: Compute relative leave-one-out error εj = 1
Q

∑Q
q=1

( (z)q−(ΦAj
vjAj

)q

(1−hq)σ̂(z)

)2

, where
σ̂(z) is the empirical standard deviation of z.

6: end for
7: Return the optimal solution v such that vAj∗ = vj

∗

Aj∗
with j∗ = arg minj εj.

use a k-fold cross validation method. The overall procedure is as follows:

– Choose several values of tensor rank rj, 1 ≤ j ≤ J .

– Split sample set S = {1, . . . , Q} into k disjoint subsamples {Gi}ki=1, Gi ⊂ S,
of approximately the same size, and let Si = S \Gi.

– For each subsample Si and tensor rank rj, run Algorithm 4 to obtain (ap-
proximated) model virj . Compute the corresponding mean squared errors
{εSir1 , . . . , ε

Si
rJ
} from the test set Gi.

– Compute the k-fold cross validation error ε̄rj = 1
k

∑k
i=1 ε

Si
rj
, j = 1, . . . , J .

– Select optimal rank rop such that εrop = min
1≤j≤J

εrj .

– Run Algorithm 4 using a rank rop with the whole data set S for computing
vrop .

5 Approximation error and sparsity ratio
In the following chapters, for the purpose of estimating the approximation error in
sparse low rank formats, we introduce the relative error ε(ur, u) between the function
u and its low rank approximation ur, estimated with Monte Carlo integration with
Q′ samples:

ε(ur, u) =
‖ur − u‖Q′
‖u‖Q′

. (3.13)
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We also define the total sparsity ratio % of a low rank approximation v =
FM(v1, . . . ,vm) as:

% =

∑m
i=1 ‖V(vi)‖0∑m
i=1 dim(P iM)

, (3.14)

where ‖V(vi)‖0 gives the number of non zero real coefficients in the parameter vi

and dim(P iM) gives the total number of real coefficients in vi. In short, % is the ratio
of total number of non zero parameters to the total number of parameters in a low
rank tensor representation. We also define the partial sparsity ratio %i as

%(i) =
‖V(vi)‖0

dim(P iM)
(3.15)

which indicates the sparsity ratio of parameter vi. These values will be used for
analysing approximation and sparsity in different low rank tensor formats in the
illustrative examples.
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Chapter 4

Approximation in Sparse Canonical
Tensor Format

In this chapter, we describe the implementation of approximation
in sparse canonical tensor format. In section 1, we introduce
sparse canonical tensor format and their parametrization. We then
present Alternating Least-Squares (ALS) algorithm for construction
of sparse rank one approximation in section 2 followed by an up-
dated greedy algorithm for approximation in sparse canonical rank-
m format in section 4. We illustrate these algorithms on numerical
examples in section 5. Finally in section 6, we extend the applica-
bility of these ideas for vector valued functions.
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The aim in this chapter is to find an approximation of a function u(ξ) in the finite
dimensional tensor space Sn = S1

n1
⊗ . . . ⊗ Sdnd in sparse low rank canonical tensor

format. In the proposed method, approximations are computed in small low-rank
tensor subsets using least-squares with sparsity inducing regularization. Here, we
first present the case where successive corrections are computed in the elementary
set of rank-one tensors R1, thus resulting in the construction of a rank one canonical
approximation of the solution. We then present an updated greedy algorithm for
performing approximation in tensor subset Rm.

1 Sparse canonical tensor subsets

Let R1 denote the set of (elementary) rank-one tensors in Sn = S1
n1
⊗ . . . ⊗ Sdnd ,

defined by

R1 =

{
v(y) =

(
⊗dk=1v

k
)

(y) =
d∏

k=1

vk(yk) ; vk ∈ Sknk

}
,

or equivalently by

R1 =
{
v(y) = 〈φ(y),v1 ⊗ . . .⊗ vd〉; vk ∈ Rnk

}
,

where φ(y) = φ1(y1) ⊗ . . . ⊗ φd(yd), with φk = (φk1, . . . , φ
k
nk

)T the vector of basis
functions of Sknk , and where vk = (vk1 , . . . , v

k
nk

)T is the set of coefficients of vk in the
basis of Sknk , that means vk(yk) =

∑nk
i=1 v

k
i φ

k
i (yk).

Approximation in R1 using classical least-squares methods possibly enables to re-
cover a good approximation of the solution using a reduced number of samples.
However it may not be sufficient in the case where the approximation spaces Sknk
have high dimensions nk, thus resulting in a manifold of rank-one elements R1 with
high dimension

∑d
k=1 nk. This difficulty may be circumvented by introducing ap-

proximations in the corresponding m-sparse rank-one subset defined as

Rm-sparse
1 =

{
v(y) = 〈φ(y),v1 ⊗ . . .⊗ vd〉; vk ∈ Rnk , ‖vk‖0 ≤ mk

}
with effective dimension

∑d
k=1mk �

∑d
k=1 nk. As mentioned in section 2.1,

performing least-squares approximation in this set may not be computationally
tractable. We thus introduce a convex relaxation of the `0-“norm” to define the
subset Rγ1 of R1 defined as

Rγ1 =
{
v(y) = 〈φ(y),v1 ⊗ . . .⊗ vd〉; vk ∈ Rnk , ‖vk‖1 ≤ γk

}
,

where the set of parameters (v1, . . . ,vd) is now searched in a convex subset of
Rn1 × . . .× Rnd .
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Finally, we introduce the set of canonical rank-m tensors Rm =
{w =

∑m
i=1 vi ; vi ∈ R1} and the corresponding subset

Rγ1,...,γm

m =

{
w =

m∑
i=1

vi ; vi ∈ Rγ
i

1

}
.

In the following, we propose algorithms for the construction of approximations in
tensor subsets Rγ1 and Rγ1,...,γm

m .

2 Construction of sparse rank-one tensor approxi-
mation

The subset Rγ1 can be parametrized with the set of parameters (v1, . . . ,vd) ∈ Rn1×
. . .× Rnd such that ‖vk‖1 ≤ γk (k = 1, . . . , d), this set of parameters corresponding
to an element v = ⊗dk=1v

k where vk denotes the vector of coefficients of an element
vk. With appropriate choice of bases, a sparse rank-one function v could be well
approximated using vectors vk with only a few non zero coefficients.
We compute a rank-one approximation v = ⊗dk=1v

k ∈ Rγ1 of u by solving the least-
squares problem

min
v∈Rγ

1

‖u− v‖2
Q = min

v1∈Rn1 ,...,vd∈Rnd
‖v1‖1≤γ1,...,‖vd‖1≤γd

‖u− 〈φ,v1 ⊗ . . .⊗ vd〉‖2
Q. (4.1)

Problem (4.1) can be equivalently written

min
v1∈Rn1 ,...,vd∈Rnd

‖u− 〈φ,v1 ⊗ . . .⊗ vd〉‖2
Q +

d∑
k=1

λk‖vk‖1, (4.2)

where the values of the regularization parameters λk > 0 (interpreted as Lagrange
multipliers) are related to γk. In practice, minimization problem (4.2) is solved using
an alternating minimization algorithm which consists in successively minimizing
over vj for fixed values of {vk}k 6=j. Denoting by z ∈ RQ the vector of samples
of function u(ξ) and by Φj ∈ RQ×nj the matrix whose components are (Φj)qi =
φji (y

q
j )
∏

k 6=j v
k(yqk), the minimization problem on vj can be written

min
vj∈Rnj

‖z−Φjvj‖2
2 + λj‖vj‖1, (4.3)

which has a classical form of a least-squares problem with a sparsity inducing `1-
regularization. Problem (4.3) is solved using the Lasso modified LARS algorithm
where the optimal solution is selected using the leave-one-out cross validation pro-
cedure presented in Algorithm 5 in chapter 3. Algorithm 6 outlines the construction
of a sparse rank one approximation.
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Algorithm 6 Algorithm to compute sparse rank one approximation of a function
u.
Input: vector of evaluations z = (u(y1), . . . , u(yQ))T ∈ RQ.
Output: rank-one approximation v(y) = 〈φ(y),v1 ⊗ . . .⊗ vd〉.
1: Set l = 0 and initialize the vectors {vk}dk=1 of vl = 〈φ(y),v1 ⊗ . . .⊗ vd〉.
2: l← l + 1.
3: for j = 1, . . . , d do
4: Evaluate matrix Φj.
5: Solve problem (4.3) using Algorithm 5 for input z ∈ RQ and Φj ∈ RQ×nj to

obtain vj.
6: end for
7: Set vl = 〈φ(y),v1 ⊗ . . .⊗ vd〉
8: if ‖vl − vl−1‖ > ε and l ≤ lmax then
9: Go to Step 2.

10: end if
11: Return the rank one approximation v = vl.

Remark 4.1 (Other types of regularization) :
Different rank-one approximations can be defined by changing the type of reg-
ularization and constructed by replacing step 5 of Algorithm 6. First, one can
consider ordinary least squares by replacing step 5 by the solution of

min
vj∈Rnj

‖z−Φjvj‖2
2. (4.4)

Also, one can consider a regularization using `2-norm (ridge regression) by re-
placing step 5 by the solution of

min
vj∈Rnj

‖z−Φjvj‖2
2 + λj‖vj‖2

2, (4.5)

with a selection of optimal parameter λj using standard cross-validation (typi-
cally k-fold cross-validation). The approximations obtained with these different
variants will be compared in the numerical examples of section 5.

3 Direct construction of sparse rank-m tensor ap-
proxmation

Algorithm 7 extends algorithm 6 for direct approximation in Rm.Best approxima-
tion problem in Rm for m ≥ 2 and d > 2 is an ill-posed problem since Rm is not
closed (see e.g. [39] lemma 9.11 pg 255). However, using sparsity-inducing regu-
larization (and also other types of regularizations) makes the best approximation
problem well-posed. Indeed, it can be proven that the subset Rγ1,...,γm

m of canonical
tensors with bounded factors is a closed subset. For the construction of a rank-m
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approximation, we will however introduce another algorithm (see section 4) which
is based on progressive construction of successive rank-one corrections.

Algorithm 7 Algorithm to compute direct sparse rank-m approximation of a func-
tion u.
Input: vector of evaluations z = (u(y1), . . . , u(yQ))T ∈ RQ, rank m.
Output: A rank m approximation um(y) = 〈φ(y),

∑m
i=1 v1

i ⊗ . . .⊗ vdi 〉
1: Initialize the vectors {vki }dk=1, 1 ≤ i ≤ m and set ulm = 〈φ(y),

∑m
i=1 v1

i ⊗ . . .⊗vdi 〉
with l = 0

2: Set l← l + 1
3: for j = 1, . . . , d do
4: Evaluate the matrix Φj = [Φj

1 · · ·Φj
m], Φj

i ∈ RQ×nj , (Φj
i )qj′ =

φjj′(y
q
j )
∏

k 6=j v
k
i (yqk), 1 ≤ j′ ≤ nj.

5: Solve min
vj∈Rnj×m

‖z − ΦjV(vj)‖2
2 + λj‖V(vj)‖1 with selection of λj using cross

validation.
6: end for
7: Set ulm = 〈φ(y),

∑m
i=1 v1

i ⊗ . . .⊗ vdi 〉
8: if ‖ulm − ul−1

m ‖ > ε and l ≤ lmax then
9: Go to Step 2

10: end if
11: Return um = ulm.

4 Updated greedy construction of sparse rank-m
approximation

We now wish to construct a sparse rank-m approximation um ∈ Rm of u of the
form um =

∑m
i=1 αivi by successive computations of sparse rank-one approximations

vi = ⊗dk=1v
k
i , 1 ≤ i ≤ m.

Remark 4.2 :
A pure greedy construction may yield a suboptimal rank-m approximation but
it has several advantages: successive minimization problems in R1 are well-posed
(without any regularization), it requires the estimation of a small number of
parameters at each iteration.

We start by setting u0 = 0. Then, knowing an approximation um−1 of u, we proceed
as follows.
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4.1 Sparse rank-1 correction step

We first compute a correction v ∈ R1 of um−1 by solving

min
v∈Rγ

1

‖u− um−1 − v‖2
Q, (4.6)

which can be reformulated as

min
v∈R1

‖u− um−1 − 〈φ,v1 ⊗ . . .⊗ vd〉‖2
Q +

d∑
k=1

λk‖vk‖1. (4.7)

Problem (4.7) is solved using an alternating minimization algorithm, which consists
in successive minimization problems of the form (4.3) where z ∈ RQ is the vector
of samples of the residual (u− um−1)(ξ). Optimal parameters {λk}dk=1 are selected
with the fast leave-one-out cross-validation.

4.2 Updating step

Once a rank-one correction vm has been computed, it is normalized and the approx-
imation um =

∑m
i=1 αivi is computed by solving a regularized least-squares problem:

min
α=(α1,...,αm)∈Rm

‖u−
m∑
i=1

αivi‖2
Q + λ′‖α‖1. (4.8)

This updating step allows a selection of significant terms in the canonical decomposi-
tion, that means when some αi are found to be negligible, it yields an approximation
um =

∑m
i=1 αivi with a lower effective rank representation. The selection of param-

eter λ′ is also done with a cross-validation technique. Note that even if the `1

regularization does not yield a selection of a subset of terms, it is still useful in the
situation when a few samples are available.

Remark 4.3 :
Note that an improved updating strategy could be introduced as follows. At step
m, denoting by vi = ⊗dk=1v

k
i , 1 ≤ i ≤ m, the computed corrections, we can define

approximation spaces Vkm = span{vki }mi=1 ⊂ Sknk (with dimension at most m), and
look for an approximation of the form um =

∑m
i1=1 . . .

∑m
id=1 αi1...id ⊗dk=1 v

k
ik
∈

⊗dk=1Vkm (Tucker tensor format).
The update problem then consists in solving

min
α=(αi1...id )∈Rm×...×m

‖u−
∑
i1,...,id

αi1...id ⊗dk=1 v
k
ik
‖2
Q + λ′‖α‖1, (4.9)

where ‖α‖1 =
∑

i1,...,id
|αi1...id |. This updating strategy can yield significant im-

provements of convergence. However, it is clearly unpractical for high dimension
d since the dimension md of the core grows exponentially with d. For high di-
mension, other types of representations should be introduced, such as hierarchical
tensor representations (see chapter 5).
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Algorithm 8 details the updated greedy construction of sparse low rank approxima-
tions.

Algorithm 8 Updated greedy algorithm for sparse low rank approximation of a
function u.
Input: vector of evaluations z = (u(y1), . . . , u(yQ))T ∈ RQ and maximal rank M .
Output: Sequence of approximations um =

∑m
i=1 αivi, where vi ∈ R1 and α =

(α1, . . . , αm) ∈ Rm.
1: Set u0 = 0
2: for m = 1, . . . ,M do
3: Evaluate the vector zm−1 = (um−1(y1), . . . , um−1(yQ))T ∈ RQ

4: Compute a sparse rank-one approximation vm = ⊗dk=1v
k
m using Algorithm 6

for input vector of evaluations z− zm−1.
5: Evaluate matrix W ∈ RQ×m with components (W )qi = vi(y

q).
6: Compute α ∈ Rm with Algorithm 5 for input vector z ∈ RQ and matrix

W ∈ RQ×m.
7: end for
8: Set um =

∑m
i=1 αivi

5 Application examples

In this section, we validate the proposed algorithm on several benchmark problems.
The purpose of the first example on Friedman function in section 5.1 is to highlight
the benefit of the greedy low rank approximation by giving some hints on the number
of samples needed for a stable approximation. The three following examples then
exhibit the robustness of the `1-regularization within the low rank approximation:

– by correctly detecting sparsity when appropriate approximation space is in-
troduced as in the checker board function case presented in section 5.2,

– or just by looking for the simplest representation with respect to the number
of samples as in the examples of sections 5.3 and 5.4.

5.1 Analytical model: Friedman function

Let us consider a simple benchmark problem namely the Friedman function of di-
mension d = 5 also considered in [4]:

u(ξ) = 10 sin(πξ1ξ2) + 20(ξ3 − 0.5)2 + 10ξ4 + 5ξ5,

where ξi, i = 1, . . . , 5, are uniform random variables over [0,1]. In this section, we
consider low rank tensor subsets without any sparsity constraint, that means we do
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not perform `1 regularization in the alternating minimization algorithm. The aim
is to estimate numerically the number of function evaluations necessary in order to
obtain a stable approximation in low rank tensor format.

The analysis on the number of function evaluations is here based upon re-
sults of [19] where it is proven that, for a stable approximation of a univariate
function with optimal convergence rate using ordinary least squares on polynomial
spaces, the number of random sample evaluations required scales quadratically with
the dimension of the polynomial space, i.e. Q ∼ (p + 1)2 where p is the maximal
polynomial degree.

This result is supported with numerical tests on univariate functions and on
multivariate functions that show that indeed choosing Q scaling quadratically with
the dimension of the polynomial space P is robust while Q scaling linearly with P
may lead to an unstable approximation, depending on P and the dimension d. The
following numerical tests aim at bringing out a similar type of rule for choosing
the number of samples Q for a low rank approximation of a multivariate function
constructed in a greedy fashion according to Algorithm 8, but with ordinary least
squares in step 5 of Algorithm 6, and given an isotropic tensor product polynomial
approximation space with maximum degree p in all dimensions. We first consider
a rank one approximation of the function in Pp ⊗ · · · ⊗ Pp where Pp denotes the
polynomial approximation space of maximal degree p in each dimension from 1 to
d. Given the features above and considering the algorithm for the construction of
the rank one element of order d, we consider the following rule:

Q = cd(p+ 1)α

where c is a positive constant and α = 1 (linear rule) or 2 (quadratic rule). In the
following analyses of the current section, we plot the mean ε(um, u) (see (3.13)) over
51 sample set repetitions in order to reduce the dependence on the sample set of a
given size. In figure 4.1, we compare the error of rank one approximation ε(u1, u)
with respect to the polynomial degree p using both linear rule (left) and quadratic
rule (right) for different values of c (ranging from 1 to 20 in the linear rule and 0.5
to 3 in quadratic rule). As could have been expected, we find that the linear rule
yields a deterioration for small values of c whereas the quadratic rule gives a stable
approximation with polynomial degree. For higher rank approximations, the total
number of samples needed will have a dependence on the approximation rank m.
Thus we modify sample size estimates and consider the rule

Q = cdm(p+ 1)α

with α = 1 (linear rule) or 2 (quadratic rule). In figure 4.2, we plot approximation
error ε(um, u) using linear rule (left) and quadratic rule (right) for m = 2, 3, 4 and
different values of c. We find again that quadratic rule gives a stable approximation

Sparse low rank approximation of multivariate functions - Applications in uncertainty
quantification



52 Approximation in Sparse Canonical Tensor Format

1 2 3 4 5 6 7 8 9 10
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Polynomial degree

Er
ro

r

 

 
c=1
c=3
c=5
c=10
c=20

(a)

1 2 3 4 5 6 7 8 9 10
0.05

0.1

0.15

0.2

0.25

0.3

Polynomial degree

E
rr

o
r

 

 

c=0.5

c=1

c=1.5

c=2

c=3

(b)

Figure 4.1: Friedman function: Evolution of rank one approximation error ε(u1, u)
with respect to polynomial degree p with (a) Q = cd(p+ 1) and (b) Q = cd(p+ 1)2

samples with several values of c.

for c ≥ 1.

In order to analyse the accuracy of the rank-m approximation with respect to m,
in figure 4.3 we plot the error ε(um, u) with respect to the polynomial degree p
for different values of m using Q = dm(p + 1)2, that is c = 1. As the number of
samples Q increases with rank m using this rule, more information on the function
is given enabling for higher rank approximations to better represent the possible
local features of the solution. We thus find that the approximation is more accurate
as the rank increases. From this example, we can draw the following conclusions:

– a heuristic rule to determine the number of samples needed in order to have a
stable low rank approximation grows only linearly with dimension d and rank
m and is given by Q = dm(p+ 1)2,

– better solutions are obtained with high rank approximations, provided that
enough model evaluations are available.

Quite often in practice, we do not have enough model evaluations and hence we
may not be able to achieve good approximations with limited sample size. This is
particularly true for certain classes of non smooth functions. One possible solution
is a good choice of bases that are sufficiently rich (such as piecewise polynomials or
wavelets) and that can capture simultaneously both global and local features of the
model function. However, the sample size may not be sufficient enough to obtain
good approximations with ordinary least squares in progressive rank one corrections
due to large number of basis functions. We illustrate in section 5.2 and 5.3 that,
in such cases, performing approximation in sparse low rank tensor subsets (i.e.
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using `1 regularization in alternating minimization algorithm) allows more accurate
approximation of the model function. In addition, we illustrate in section 5.4 that
approximation in sparse low rank tensor subsets leads to a stable approximation
with limited number of samples even for high degree polynomial spaces.
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Figure 4.2: Friedman function: Evolution of approximation error ε(um, u) with
respect to polynomial degree p with Q = cd(p+ 1) ((a),(c),(e)) and Q = cd(p+ 1)2

((b),(d),(f)) with several values of c and for m = 2, 3, 4.
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Figure 4.3: Friedman function: Evolution of error ε(um, u) with respect to poly-
nomial degree p for different values of m using sample size given by quadratic rule

Q = dm(p+ 1)2.

5.2 Analytical model: Checker-board function

5.2.1 Function and approximation spaces

We now test Algorithm 8 on the so-called checker-board function u(ξ1, ξ2) in dimen-
sion d = 2 illustrated in figure 4.4. The purpose of this test is to illustrate that,
given appropriate bases, in this case piecewise polynomials, Algorithm 8 allows the
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detection of sparsity and hence construction of a sequence of optimal sparse rank-m
approximations with few samples.
Random variables ξ1 and ξ2 are independent and uniformly distributed on [0, 1].
The checker-board function is a rank-2 function

u(ξ1, ξ2) =
2∑
i=1

w
(1)
i (ξ1)w

(2)
i (ξ2)

with w(1)
1 (ξ1) = c(ξ1), w(2)

1 (ξ2) = 1− c(ξ2), w(1)
2 (ξ1) = 1− c(ξ1) and w(2)

2 (ξ2) = c(ξ2)
where c(ξk) is the crenel function defined by:

c(ξk) =

{
1 on [0, 1

6
[+2n1

6
, n = 0, 1, 2

0 on [1
6
, 2

6
[+2n1

6
, n = 0, 1, 2

.

For approximation spaces Sknk , k ∈ {1, 2}, we introduce piecewise polynomials of de-

Figure 4.4: Checker-board function.

gree p defined on a uniform partition of Ξk composed by s intervals, corresponding to
nk = s(p+1). We denote by Sknk = Pp,s the corresponding space (for ex. P2,3 denotes
piecewise polynomials of degree 2 defined on the partition {(0, 1

3
), (1

3
, 2

3
), (2

3
, 1)}). We

use an orthonormal basis composed of functions whose supports are one element of
the partition and whose restrictions on these supports are rescaled Legendre poly-
nomials.
Note that when using a partition into s = 6n intervals, n ∈ N, then the checker-
board function can be exactly represented, that means u ∈ Pp,6n ⊗ Pp,6n for all p
and n. Also, the solution admits a sparse representation in Pp,6n ⊗ Pp,6n since an
exact representation is obtained by only using piecewise constant basis functions
(u ∈ P0,6n ⊗ P0,6n). The effective dimensionality of the checker-board function is
2× 2× 6 = 24, which corresponds to the number of coefficients required for storing
the rank-2 representation of the function. We expect our algorithm to detect the
low-rank of the function and also to detect its sparsity.
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5.2.2 Results

Algorithm 8 allows the construction of a sequence of sparse rank-m approximations
um in S1

n1
⊗ S2

n2
. We estimate optimal rank-mop using 3-fold cross validation.

In order to illustrate the accuracy of approximations in sparse low rank tensor
subsets, we compare the performance of `1-regularization within the alternating
minimization algorithm (step 4 of Algorithm 8) with no regularization (OLS) and
the `2-regularization (see Remark 4.1 for the description of these alternatives).
Table 4.1 shows the error ε(umop , u) obtained for the selected optimal rank mop,
without and with updating step of Algorithm 8, and for the different types of regu-
larization during the correction step 4 of Algorithm 8.
The results are presented for a sample size Q = 200 and for different function spaces
S1
n1

= S2
n2

= Pp,s. P denotes the dimension of the space S1
n1
⊗S2

n2
. We observe that,

for P2,3, the solution is not sparse on the corresponding basis and `1-regularization
does not provide a better solution than `2-regularization since the approximation
space is not adapted. However, when we choose function spaces that are sufficiently
rich for the solution to be sparse, we see that `1-regularization within the alternat-
ing minimization algorithm outperforms other types of regularization and yields low
rank approximations of the function almost at the machine precision. This is because
`1-regularization is able to select non zero coefficients corresponding to appropriate
basis functions of the piecewise polynomial approximation space. For instance, when
P5,6 is used as the approximation space, only 3 (out of 36) non zero coefficients cor-
responding to piecewise constant bases are selected by `1 regularization along each
dimension in each rank one element (that is the sparsity ratio is %1 ≈ 0.08 for each
rank-one element), thus yielding an almost exact recovery. We also find that `1-
regularization allows recovering the exact rank-2 approximation of the function. In
fig. 4.5, we plot the sparsity pattern of the functions vki (ξk), 1 ≤ i ≤ 2, 1 ≤ k ≤ 2
using Q = 200 samples and approximation space (P2,6 ⊗ P2,6). We find that as
the alternating least squares iteration increases, non zero coefficients corresponding
to pertinent basis (i.e. constant) functions are retained whereas coefficients corre-
sponding to higher order functions are zero.
From this analytical example, several conclusions can be drawn:

– `1-regularization in alternating least squares algorithm is able to detect sparsity
and hence gives very accurate approximations using few samples as compared
to OLS and `2-regularizations,

– updating step selects the most pertinent rank-one elements and gives an ap-
proximation of the function with a lower effective rank.

5.3 Analytical model: Rastrigin function

For certain classes of non smooth functions, wavelet bases form an appropriate choice
as they allow the simultaneous description of global and local features [49]. In this
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Table 4.1: Checker-board function: Relative error ε(umop , u) and optimal rank
mop estimation of Checker-board function with various regularizations for Q = 200
samples. P is the dimension of the approximation space. (‘-’ indicates that none of

the rank-one elements were selected during the update step).

Ordinary Least Square `2 `1
Approximation space Error mop Error mop Error mop

Rm(P2,3 ⊗ P2,3), P = 92 0.527 2 0.508 2 0.507 2
Rm(P2,6 ⊗ P2,6), P = 182 0.664 2 0.061 8 2.41 10−13 2
Rm(P2,12 ⊗ P2,12), P = 362 - - 0.566 4 1.1 10−12 2
Rm(P5,6 ⊗ P5,6), P = 362 - - 0.623 3 7.93 10−13 2
Rm(P10,6 ⊗ P10,6), P = 662 - - 0.855 10 7.88 10−13 2

example, we demonstrate the use of our algorithm with polynomial wavelet bases
by studying 2-dimensional Rastrigin function. The function is given by

u(ξ) = 20 +
2∑
i=1

(ξ2
i − 10 cos(2πξi))

where ξ1, ξ2 are independent random variables uniformly distributed in [-4,4]. We
consider two types of approximation spaces Sknk , k ∈ {1, 2}:

– spaces of polynomials of degree 7, using Legendre polynomial chaos basis,
denoted P7,

– spaces of polynomial wavelets with degree 4 and resolution level 3, denoted
W4,3.

We compute a sequence of sparse rank-m approximations um in S1
n1
⊗ S2

n2
using

Algorithm 8 and an optimal rank approximation umop is selected using 3-fold cross
validation. Figure 4.6(a) shows the convergence of this optimal approximation
with respect to the sample size Q for the two different approximation spaces.
We find that the solution obtained with classical polynomial basis functions is
inaccurate and does not improve with increase in sample size. Thus, polynomial
basis functions are not a good choice to obtain a reasonably accurate estimate.
On the other hand, when we use wavelet approximation bases, the approximation
error reduces progressively with increase in sample size. Figure 4.6(b) shows the
convergence of the optimal wavelet approximation with respect to the sample size
Q for different regularizations within the alternating minimization algorithm of the
correction step. The `1 regularization is more accurate when compared to both
OLS and `2 regularization, particularly for few model evaluations. We can thus
conclude that a good choice of basis functions is important in order to fully realize
the potential of sparse `1 regularization in the tensor approximation algorithm.
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Figure 4.5: Checker-board function: Evolution of sparsity pattern of functions
vki (ξk), 1 ≤ i ≤ 2, 1 ≤ k ≤ 2 w.r.t ALS iterations using Q = 200 samples in

(P2,6 ⊗ P2,6)

Figure 4.7 shows the convergence of the approximation obtained with Algorithm
8 using different sample sizes. We find that as the sample size increases, we get
better approximations with increasing rank. Conversely, if only very few samples
are available, then a very low rank approximation, even rank one, is able to capture
the global features. The proposed method provides the simplest representation of
the function with respect to the available information.

We finally analyze the robustness of Algorithm 8 with respect to the sample
sets. We use wavelet bases. An optimal rank approximation umop is selected using
3-fold cross validation. We compare this algorithm with a direct sparse least-
squares approximation in the tensorized polynomial wavelet space (no low-rank
approximation), using `1-regularization (use of Algorithm 5). Figure 4.8 shows
the evolution of the relative error with respect to the sample size Q for these two
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(a) (b)

Figure 4.6: Rastrigin function: Evolution of error ε(umop , u) with respect to the
number of samples Q. Approximations obtained with Algorithm 8 with optimal
rank selection: (a) for the two different approximation spaces P7 ⊗ P7 (P = 64)
and W4,3 ⊗ W4,3 (P = 1600) and (b) for different types of regularizations with

approximation space W4,3 ⊗W4,3.
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Figure 4.7: Rastrigin function: Evolution of error ε(um, u) of approximations
obtained using Algorithm 8 with respect to rank m for different sample sizes on

wavelet approximation space W4,3 ⊗W4,3 (P = 1600)

strategies. The vertical lines represent the scattering of the error when different
sample sets are used. We observe a smaller variance of the obtained approximations
when exploiting low-rank representations. This can be explained by the lower
dimensionality of the representation, which is better estimated with a few number of
samples. On this simple example, we see the interest of using greedy constructions
of sparse low-rank representations when only a small number of samples is available,
indeed the problem is reduced to one where elements of subsets of small dimension
are to be estimated. The interest of using low-rank representations should also
become clear when dealing with higher dimensional problems.
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Figure 4.8: Rastrigin function: Evolution of error ε(umop , u) with respect to sample
size Q. (Red line) approximation obtained with direct least-squares approximation
with `1-regularization on the full polynomial wavelet approximation space W4,3 ⊗
W4,3, (blue line) approximation obtained with Algorithm 8 (with `1-regularization)

and with optimal rank selection.

5.4 A model problem in structural vibration analysis

5.4.1 Model problem

We consider a forced vibration problem of a slightly damped random linear elastic
structure. The structure composed of two plates is clamped on part Γ1 of the bound-
ary and submitted to a harmonic load on part Γ2 of the boundary as represented
in figure 4.9(a). A finite element approximation is introduced at the spatial level
using a mesh composed of 1778 DKT plate elements (see figure 4.9(b)) and leading
to a discrete deterministic model with N = 5556 degrees of freedom. The resulting

(a) (b)

Figure 4.9: Elastic plate structure under harmonic bending load. Geometry and
boundary conditions (a) and finite element mesh (b).
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discrete problem at frequency ω writes

(−ω2M + iωC + K)u = f,

where u ∈ CN is the vector of coefficients of the approximation of the displacement
field and M, K = EK̃ and C = iωηEK̃ are the mass, stiffness and damping matrices
respectively. The non-dimensional analysis considers a unitary mass density and
a circular frequency ω = 0.67 rad.s−1. The Young modulus E and the damping
parameter η are defined by

E =

{
0.975 + 0.025ξ1 on horizontal plate,
0.975 + 0.025ξ2 on vertical plate,

η =

{
0.0075 + 0.0025ξ3 on horizontal plate,
0.0075 + 0.0025ξ4 on vertical plate,

where the ξk ∼ U(−1, 1), k = 1, · · · , 4, are independent uniform random variables
(here d = 4). We define the quantity of interest

I(u)(ξ) = log ‖uc‖,

where uc is the displacement of the top right node of the two plates structure.

5.4.2 Impact of regularization and stochastic polynomial degree

In this example, we illustrate that the approximation in sparse low rank tensor
subsets is robust when increasing the degree of underlying polynomial approxi-
mation spaces with a fixed number of samples Q. We use Legendre polynomial
basis functions with degree p = 1 to 20 and denote by Pp the corresponding space
of polynomials of maximal degree p in each dimension. A rank-m approximation
is searched in the isotropic polynomial space Pp ⊗ · · · ⊗ Pp. Figure 4.10(left
column) shows the error ε(Im, I) as a function of the polynomial degree p for
different ranks m for three different sizes of the sample set, Q = 80, 200 and
500. The low rank approximation Im is computed with and without sparsity
constraint, i.e. we compare OLS (dashed lines) and `1 regularization (solid lines) in
correction step 4 of Algorithm 8. Figure 4.11 summarizes the error ε(Imop , I) for
different sizes of sample sets for the optimal rank mop approximation when using
`1-regularization (solid lines) and using OLS (dashed lines). We find that OLS
yields a deterioration with higher polynomial order. This is consistent with the
conclusions in section 5.1 and the quadratic rule according to which convergence
is observed for Q ≥ dm(p + 1)2 and a deterioration is expected otherwise. On the
other hand, we see that `1-regularization gives a more stable approximation with
increasing polynomial order and also gives a more accurate approximation than
the approximation obtained with OLS. This can be attributed to the selection of
pertinent basis functions obtained by imposing sparsity constraint. Indeed, we
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clearly see in figure 4.10(right column) that the sparsity ratio ρ5 for sparse low rank
approximation (solid black line) decreases with increasing polynomial degree (see
5 for definition of sparsity ratio). Along with the total sparsity ratio, the partial
sparsity ratios %(k)

5 in each dimension k = 1 to 4 are plotted in figure 4.10(right
column). We see that `1-regularization exploits sparsity especially in dimensions 3
and 4 corresponding to the damping coefficients, indeed the quantity of interest has
smooth dependance on variables ξ3 and ξ4 whereas it has a high non linear behavior
with respect to ξ1 and ξ2. Figure 4.12 shows the reference quantity of interest and
the rank-mop approximation Imop obtained using `1-regularization and polynomial
degree 3 constructed from Q = 200 samples.

This illustration also points out that when a small number of model evalua-
tions are available, for instance Q = 80, the method is able to capture correctly
global features of the function and a low rank approximation (m = 3) is selected
as the best approximation regarding the available information. As the number of
samples increases, higher rank approximation are selected that capture the local
features of the function more accurately.
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(a) Q = 80

(b) Q = 200

(c) Q = 500

Figure 4.10: Two plate structure: Left column: evolution of approximation er-
ror ε(Im, I) with respect to polynomial degree p with a fixed number of samples
Q = 80, Q = 200 and Q = 500. Polynomial approximations obtained using `1-
regularization (solid lines) and using OLS (dashed lines). Right column: total and

partial sparsity ratios with respect to polynomial degree for m = 5.
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Figure 4.11: Two plate structure: Evolution of approximation error ε(Imop , I) with
respect to polynomial degree p for different sizes of sample sets (random sampling).
Polynomial approximations obtained using `1-regularization (solid lines) and using

OLS (dashed lines).

(a) ξ3 = 0, ξ4 = 0 (b) ξ1 = 0, ξ2 = 0

Figure 4.12: (Two plate structure) Response surface : (surface) reference and
(dotted) rank-mop approximation obtained with polynomial basis p = 3, Q = 200

using l1 regularization.

5.5 A stochastic partial differential equation

In this example, we consider a stationary advection diffusion reaction equation on a
spatial domain Ω = (0, 1)2 (Fig. 4.13) where the source of uncertainty comes from
the diffusion coefficient which is a random field. The problem is:

−∇· (µ(x, ξ)∇u) + c· ∇u+ κu = f on Ω,

u = 0 on ∂Ω,

where κ = 10 is a deterministic reaction coefficient and c = 250(x − 1
2
, 1

2
− y) is

a deterministic advection velocity. The source term is deterministic and is defined
by f = 100IΩ1 , where Ω1 = (0.7, 0.8) × (0.7, 0.8) ⊂ Ω, where IΩ1 is the indicator
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Figure 4.13: Advection diffusion reaction problem: Domain and finite element
mesh

function of Ω1. µ(x, ξ) is a random field defined by

µ(x, ξ) = µ0 +
100∑
k=1

√
σkµk(x)ξk (4.10)

where µ0 = 1 is the mean value of µ, where the ξk ∼ U(−1, 1) are mutually inde-
pendent uniform random variables and where the µk are a set of L2(Ω)-orthonormal
spatial functions.
The couples (µk, σk) ∈ L2(Ω) × R+ are chosen as the 100 dominant eigenpairs of
eigenproblem T (µk) = σkµk, where T is the kernel operator

T : v ∈ L2(Ω) 7→
∫

Ω

α(x, y)v(y)dy ∈ L2(Ω)

with α(x, y) = 0.22exp(−‖x−y‖
2

l2c
) with lc the correlation length. The equation

(4.10) then corresponds to truncated version of a homogeneous random field
with mean 1, standard deviation 0.2√

3
and exponential square covariance function

with correlation length lc. The d = 100 random parameters ξ = (ξk)
d
k=1 define

a probability space (Ξ,B, Pξ), with Ξ = (−1, 1)d and Pξ the uniform probability
measure. We introduce approximation spaces Sknk = Pp(−1, 1) which are spaces of
polynomials with degree p = 3.

For this example, we plot the probability density function and first order
Sobol sensitivity indices for different sample sizes in figure 4.14. We find that the
proposed method is very effective in this very high dimensional stochastic problems.
The number of model evaluations required to obtain very accurate solution is as low
as 3d(p + 1). This is orders of magnitude less than a classical PC approximation
(which would require Q = (p + d)!/(p!d!) model evaluations. For example in this
problem for p = 3, we have Q = 176 851). Note that the efficiency of the proposed
tensor approximation methods on this particular example is due to the effective
low rank of the solution and sparse polynomial approximation method [9] also gives
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similar accuracy for the same sample size. We also illustrate that post-processing in
low rank canonical format is quite straightforward and computationally very cheap
and even with very few sample, we can obtain coarse but quite good ordering of
Sobol indices.
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(a) Q = 100
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(c) Q = 1000

Figure 4.14: Advection diffusion reaction problem: Left column: evolution of pdf
(reference dashed line) and right column: Sobol sensitivity indices Sk, 1 ≤ k ≤ 100,

for number of samples (a)Q = 100, (b)Q = 200 and (c)Q = 1000.
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6 Extension to vector valued functions: Diffusion
equation with multiple inclusions

In this section we present a simple way to extend these algorithms to vector val-
ued functions using Karhunen Loeve expansion. We consider a stationary diffusion
problem defined on a two dimensional domain Ω = (0, 1)× (0, 1) (see figure 4.15):

−∇· (κ∇u) = ID(x) on Ω, u = 0 on ∂Ω,

where D = (0.4, 0.6) × (0.4, 0.6) ⊂ Ω is a square domain and ID is the indicator
function of D. The diffusion coefficient is defined by

κ =

{
ξk on Ck, 1 ≤ k ≤ 8,

1 on Ω\(∪8
k=1Ck)

where the Ck are circular domains and where the ξk ∼ U(0.01, 1.0) are independent
uniform random variables. We define the quantity of interest

I(u)(ξ) =

∫
D

u(x, ξ)dx.

We wish to obtain a reduced model for the random field u(x, ξ) ∈ VN ⊗L2
Pξ1

(Ξ1)⊗

Figure 4.15: Diffusion problem with multiple inclusions.

. . . ⊗ L2
Pξd

(Ξd), where VN is a N -dimensional finite element approximation space
used for the discretization of the partial differential equation. A straightforward ap-
plication of the previous methodology would require to evaluate u at certain number
of realizations of the input random vector ξ and to perform least-squares approxi-
mation for each node of the finite element mesh. However, this may not be feasible
for large number of degrees of freedom N . Hence we wish to obtain a reasonably
accurate low rank representation of the random field u(x, ξ). For that purpose, we
apply an empirical Karhunen-Loeve decomposition. Let u(yq) ∈ RN , q ∈ {1 . . . Q},
represent the finite element solutions (nodal values) associated with the Q realiza-
tions of the input random vector ξ. We denote by u0 = 1

Q

∑Q
q=1 u(yq) the empirical
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mean, and by ũ(yq) = u(yq) − u0. We gather the centered realizations in a ma-
trix Ũ = (ũ(y1) . . . ũ(yQ)). We compute the Singular Value Decomposition (SVD)
Ũ =

∑N
i=1 σivi⊗zi, where the vi ∈ RN and the zi ∈ RQ are respectively the left and

right singular vectors of Ũ , and the σi are the corresponding singular values ordered
with decreasing values. Then, this decomposition is truncated by retaining only the
N? dominant singular values: Ũ ≈

∑N?

i=1 σivi ⊗ zi. It corresponds to the following
approximation of the finite element solution (truncated empirical Karhunen-Loeve
decomposition):

u(ξ) ≈ u0 +
N?∑
i=1

σivizi(ξ) (4.11)

where the zi(ξ) are random variables whose evaluations at samples {yq}Qq=1 are gath-
ered in the vectors zi. This procedure reduces the effective dimensionality of the so-
lution field, which is now a function of only N? random variables. Our least-squares-
based tensor approximation method can be applied to each random variable zi sep-
arately. We perform the above procedure for multi-inclusion problem and compare
the solution obtained for sample sets of three different sizes (Q = 100, 500, 1500).
Figure 4.16 shows the relative error v/s the rank of the SVD decompostion of Ũ
(with respect to Frobenius norm). As can be seen, the error drops significantly after
8 modes. Thus, we choose N? = 8 and we apply the least-squares-based tensor ap-
proximation method for the random variables {zi(ξ)}8

i=1, using Algorithm 8 for each
input vector zi independently. We consider the finest tensor structure S1⊗ . . .⊗S8

with polynomial spaces of total degree p = 5. Figure 4.17 shows the cross validation
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Figure 4.16: Diffusion problem: Error of the truncated SVD with respect to the
rank for different sample size.

error of the low rank approximations of {zi(ξ)}8
i=1 with different sample sizes. As

can be expected, the cross validation error reduces with increase in sample size and
we can select the best low-rank approximation (with optimal rank selection) for each
mode to construct an approximation of u(ξ) under the form (4.11). Let Ī denote
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Figure 4.17: Diffusion problem: Evolution of the 3-fold cross validation error of
the low rank approximation of the first 8 random variables {zi(ξ)}8

i=1 with the rank
(left to right) for sample size 100 (blue), 500 (red) and 1500 (green).

the approximation of quantity of interest I obtained by the post treatment of the
low rank approximation of u(ξ). Figure 4.18 shows the error on the mean value of
the quantity of interest obtained with the reduced model for different sample sizes.
The same figure also plots the error on the empirical mean of the quantity of in-
terest. We observe that, for few samples (i.e. 100), the mean value estimated from
reduced model is not good since the corresponding approximation of the stochastic
modes are inaccurate. However, as we increase the sample size, this strategy gives
better approximation of stochastic modes and hence more accurate estimation of
the quantity of interest.

7 Conclusion
In this chapter, we detailed the implementation of sparse low-rank canonical tensor
approximation method for multivariate stochastic functions. Greedy algorithms
for low-rank tensor approximation have been combined with sparse least-squares
approximation methods in order to obtain a robust construction of sparse low-rank
tensor approximations in high dimensional approximation spaces. The ability of
the proposed method to detect and exploit low-rank and sparsity was illustrated
on analytical models and on a stochastic partial differential equations. We also
presented a simple method to extend this technique for approximating vector valued
functions.
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Figure 4.18: Diffusion problem: Evolution of the error on the mean value using
low rank model and the error on the empirical mean of the quantity of interest with

the sample size Q.
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Chapter 5

Approximation in Sparse Tensor
Train Format

In this chapter, we describe the implementation of approximation
in sparse tensor train format. In section 1, we introduce sparse
low rank tensor train format and its parametrization. Alternating
Least-Squares (ALS) algorithm to perform approximation in sparse
low rank tensor train format is presented in section 2. Due to the
issue of selecting the optimal TT rank in ALS, we introduce ALS
with internal rank adaptation in 3.1 and a modified version of ALS
(DMRG algorithm) in section 3.2. Finally we illustrate the perfor-
mance of these algorithms on analytical and numerical examples in
section 4.
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Approximation of high dimensional stochastic functions in sparse canonical tensor
subsets gives the simplest sparse low rank tensor representation of a multivariate
function (see chapter 4). Although a canonical tensor based approximation is a
good candidate, it suffers from several drawbacks. The optimal canonical rank
is not known in advance and approximation with a fixed canonical rank can be
ill-posed, the set being closed only if the rank is 1 or the dimension d is 2 [25].
Numerical algorithms for computing an approximate representation in such cases
may not yield stable approximations unless using greedy procedure that usually
yields suboptimal approximations. It is thus imperative to look for alternative
tensor approximation formats, which may have more number of parameters but are
well suited for numerical approximations.

The Tensor Train (TT) format has been introduced by Oseledets [61, 59, 60]
which offers one of the simplest type of representation of a tensor in tree based
formats. Algorithms based on alternating minimization and modified alternating
minimization (proposed earlier as density-matrix renormalization group method
(DMRG) for simulating quantum systems [80, 65]) for approximation of high-
dimensional tensors in TT format have also been introduced. Here, we propose
algorithms that approximate high-dimensional functions in sparse TT subsets using
very few function evaluations, thus exploiting both low-rank and sparsity structure
of the function. In the following section, we introduce the sparse low rank tensor
train subset.

1 Sparse tensor train format

We introduce the set of multi-indices I = {i = (i0, i1, . . . , id−1, id); ik ∈ {1, . . . , rk}}
with r0 = rd = 1. The set of tensors T Tr in Sn = S1

n1
⊗ . . .⊗ Sdnd is defined by

T Tr =

{
v =

∑
i∈I

d⊗
k=1

vkik−1ik
; vkik−1ik

∈ Sknk

}
,

or equivalently

T Tr =

{
v(y) =

∑
i∈I

d∏
k=1

〈φk(yk),vkik−1ik
〉; vkik−1ik

∈ Rnk

}
,

where vkik−1ik
is the vector of coefficients of vkik−1ik

in the basis φk = (φk1, . . . , φ
k
nk

)T

of Sknk .
The coefficient vectors of rk−1 × rk functions vkik−1ik

∈ Sknk can be gathered in 3-
order tensor vk ∈ Pk = Rrk−1×rk×nk which parametrizes vk ∈

(
Sknk
)rk−1×rk . Thus,

the subset T Tr can then be parametrized by the map FT Tr : P → Sn such that
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P = P1 × . . .× Pd and

FT Tr(v
1, . . . ,vd)(y) =

∑
i∈I

⊗
k

〈vkik−1ik
,φk(yk)〉 ∈ T Tr(Sn).

The tensors vk are also called the cores of the tensor train tensor. Approximation
in T Tr using classical least squares methods possibly enables to recover a good
approximation of the solution using a reduced number of samples. However, the
samples may not be sufficient in the case where the approximation spaces Sknk have
high dimensions nk or if the components of r are too high, thus resulting in a
parametrization of T Tr with high dimension

∑d
k=1 rk−1rknk. This difficulty may

be circumvented by introducing approximations in a m-sparse tensor train subset
defined as

T T m-sparse
r =

{
v = FT Tr(v

1, . . . ,vd), ‖V(vk)‖0 ≤ mk

}
,

where V(vk) : vk ∈ Pk 7→ V(vk) ∈ R(rkrk−1nk) is the vector obtained by stacking
the coefficient vectors vkik−1ik

in a column vector. The effective dimension is thus∑d
k=1 rk−1rkmk ≤

∑d
k=1 rk−1rknk. Due to combinatorial nature of optimization

problem formulated in T T m-sparse
r , performing least squares approximation in this

set may not be computationally tractable. We thus introduce a convex relaxation
of the `0-norm to define the subset T T γr as

T T γr =
{
v = FT Tr(v

1, . . . ,vd), ‖V(vk)‖1 ≤ γk
}
.

Performing approximation in this set using least squares becomes computationally
tractable (see chapter 3 for a general introduction to sparse low rank formats). In the
following, we propose algorithms for the construction of approximations in tensor
subset T T γr , with selection of γ.

2 Construction of sparse tensor train approxima-
tion using alternating least square

We determine tensor train approximation v ∈ T T γr (S) of u by solving the least
square problem

min
v∈T T γ

r

‖u− v‖2
Q = min

v1∈P1,...,vd∈Pd
‖V(v1)‖1≤γ1,...,‖V(vd)‖1≤γd

‖u− FT Tr(v1, . . . ,vd)‖2
Q. (5.1)

Problem 5.1 is solved using ALS by successively computing the core tensor vk ∈ Pk
for fixed values of vj, j 6= k. Thus, for k = 1, . . . , d, we solve the least squares
problem given by

min
vk∈Pk

‖V(vk)‖1≤γk

1

Q

Q∑
q=1

(
u(yq)− 〈vk, αkq ⊗ βkq ⊗ φk(ykq )〉

)2
. (5.2)
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Here 〈x, y ⊗ z ⊗ t〉 =
∑rk−1

i=1

∑rk
j=1

∑nk
l=1 xijlyizjtl for all x ∈ Rrk−1×rk×nk , y ∈ Rrk ,

z ∈ Rrk and t ∈ Rnk . αkq = (αkq,ik−1
)
rk−1

ik−1=1 is such that αkq,ik−1
is a scalar given by

αkq,ik−1
=

r1∑
i1=1

. . .

rk−2∑
ik−2=1

k−1∏
µ=1

vkiµ−1iµ
(yq) (5.3)

and βkq = (βkq,ik)
rk
ik=1 is such that

βkq,ik =

rk+1∑
ik+1=1

. . .

rd∑
id=1

d∏
µ=k+1

vkiµ−1iµ
(yq). (5.4)

αkq is a vector obtained from the cores to the left of core on which minimization is
performed (i.e. the cores vj, j = 1, . . . , k − 1). Similarly βkq is a vector obtained
from the cores to the right of the core on which minimization is performed (i.e. the
cores vj, j = k + 1, . . . , d).
Problem 5.2 can be equivalently written in a lagrangian form

min
vk∈Pk

‖z−ΨkV(vk)‖2
2 + λk‖V(vk)‖1 (5.5)

where z ∈ RQ is the vector of samples of function u and the matrix has a column
block structure Ψk = [Ψk

11 . . .Ψ
k
1rk

Ψk
21 . . .Ψ

k
2rk
. . .Ψk

rk−1rk
], where each column block

Ψk
ik−1ik

∈ RQ×nk , ik−1 = 1 . . . rk−1, ik = 1 . . . rk, is given by

(Ψk
ik−1ik

)qj = αkik−1,q
φkj (y

k
q )βkik,q, (5.6)

for q = 1, . . . , Q and j = 1, . . . , nk. Problem (5.5) is solved using the Lasso modified
LARS algorithm where the optimal solution is selected using the leave-one-out cross
validation procedure presented in algorithm 5. Algorithm 9 outlines the construction
of a sparse tensor train approximation using alternating least square.
One of the drawback of alternating least square procedure is that it requires a priori
selection of rank vector r. Hence finding the optimal rank components may lead to
several resolutions of ALS with different guesses of r. To overcome this drawback,
we introduce in the next section algorithms allowing an automatic selection of the
rank.

3 Algorithms with automatic rank adaptation

3.1 ALS with internal rank adaptation (ALS-RA)

In this method, instead of minimizing vk ∈
(
Sknk
)rk−1×rk , we minimize simul-

taneously vk and vk+1 in rank-rk canonical subset Rrk

((
Sknk
)rk−1 ⊗

(
Sk+1
nk+1

)rk+1
)
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Algorithm 9 Algorithm to compute sparse tensor train approximation of a function
u using alternating least square.
Input: vector of evaluations z = (u(y1), . . . , u(yQ))T ∈ RQ, rank vector r and

tolerance ε.
Output: sparse tensor train approximation v = FT T γr (v1, . . . ,vd).
1: Randomly initialize the cores vk, k = 1, . . . , d. Set l = 0 and vl =
FT Tr(v

1, . . . ,vd).
2: l← l + 1.
3: for k = 1, . . . , d− 1 do
4: Compute matrix Ψk.
5: Solve (5.5) to obtain vk.
6: end for
7: Set vl = FT Tr(v

1, . . . ,vd)
8: if ‖vl − vl−1‖ > ε and l ≤ lmax then
9: Go to Step 2.

10: end if
11: Return v = vl.

with adaptive selection of rank rk. Let us re-write the parametrization of T Tr as
FT Tr(v[k,k+1],v

k,vk+1). For k = {1, . . . , d− 1}, we solve

min
vk∈Rrk−1×rk×nk

vk+1∈Rrk×rk+1×nk+1

‖u− FT Tr(v[k,k+1],v
k,vk+1)‖2

Q + λkrk‖V(vk)‖1 + λk+1
rk
‖V(vk+1)‖1

(5.7)
using alternating minimization i.e. we solve alternately the following minimization
problems:

min
vk∈Rrk−1×rk×nk

‖u− FT Tr(v[k,k+1],v
k
rk
,vk+1

rk
)‖2
Q + λkrk‖V(vk)‖1 (5.8)

for fixed vk+1 and

min
vk+1∈Rrk×rk+1×nk+1

‖u− FT Tr(v[k,k+1],v
k
rk
,vk+1

rk
)‖2
Q + λk+1

rk
‖V(vk+1)‖1 (5.9)

for fixed vk, with selection of models at each step using LARS and fast leave one
out cross validation. We solve this minimization problem for several values of rk =
1, . . . , R and optimal rk is selected using K-fold cross validation. In the numerical
examples, we have used K = 3. Algorithm 10 outlines the construction of sparse
tensor train approximation using ALS-RA.

3.2 Modified alternating least-squares (MALS)

Modified alternating least square consists of performing minimization along two
adjacent cores simultaneously and then selecting the rank using truncated SVD.
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Algorithm 10 Algorithm to compute tensor train approximation of a function u
using ALS with internal rank adaptation (ALS-RA).

Input: vector of evaluations z = (u(y1), . . . , u(yQ))T ∈ RQ, initial rank vector
r ∈ Nd+1 with r0 = 1 = rd, maximum rank R and tolerance ε.

Output: sparse tensor train approximation v = FT Tr(v
1, . . . ,vd).

1: Randomly initialize the cores vk, k = 1, . . . , d. Set l = 0 and vl =
FT Tr(v

1, . . . ,vd).
2: l← l + 1.
3: for k = 1, . . . , d− 1 do
4: for rk = 1, . . . , R do
5: Solve (5.7) using alternating least squares algorithm (with model selection

in each iteration).
6: end for
7: Select optimal rk ∈ {1, . . . , R} using cross validation.
8: end for
9: Set vl = FT Tr(v

1, . . . ,vd)
10: if ‖vl − vl−1‖ > ε and l ≤ lmax then
11: Go to Step 2.
12: end if
13: Return v = vl.

For k ∈ {1, . . . , d−1}, let r[k] = (rj)j 6=k, the subset T Tr[k] is parametrized by the map
FT Tr[k] : P → Sn, P = P1 × . . .×Pk−1 ×Wk,k+1 ×Pk+2 . . .×Pd, Pj = Rrj−1×rj×nj ,
j ∈ {1, . . . , d − 1} \ {k, k + 1} and Wk,k+1 = Rrk−1×nk×rk×nk+1 such that v ∈ T Tr[k]
is written

v = FT Tr[k] (v
1, . . .vk−1,wk,k+1,vk+2, . . . ,vd),

where the supercore wk,k+1 correspond to the coefficient of bivariate functions
given by wk,k+1

ik−1ik+1
∈ Sknk ⊗ S

k+1
nk+1

. The rk−1 × rk+1 bivariate function wk,k+1
ik−1ik+1

can be represented as wk,k+1
ik−1ik+1

= 〈wk,k+1
ik−1ik+1

,φk,k+1〉, where wk,k+1
ik−1ik+1

is the set of
coefficients in the basis {φki ⊗ φk+1

j : 1 ≤ i ≤ nk, 1 ≤ j ≤ nk+1} of Sknk ⊗ S
k+1
nk+1

.

The supercore wk,k+1 thus parametrizes wk,k+1 ∈
(
Sknk ⊗ S

k+1
nk+1

)rk−1×rk+1

. For
simplicity of notation, we will denote FT Tr[k] (v

1, . . .vk−1,wk,k+1,vk+2, . . . ,vd) by
FT Tr[k] (v[k,k+1],w

k,k+1). In MALS algorithm, for each k ∈ {1, . . . , d−1}, we perform
the following two steps.

Minimization Step: For each k ∈ {1, . . . , d − 1}, we solve the minimiza-
tion problem given by

min
wk,k+1∈Wk,k+1

‖u− FT Tr[k] (v[k,k+1],w
k,k+1)‖2

Q + λk‖V(wk,k+1)‖1,
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where V(wk,k+1) ∈ R(rk−1nkrk+1nk+1) is a vectorization of wk,k+1. This gives the least
squares problem

min
wk,k+1∈Wk,k+1

‖V(wk,k+1)‖1≤γk

1

Q

Q∑
q=1

(
u(yq)−

〈
wk,k+1, αkq ⊗ φk(ykq )⊗ βk+1

q ⊗ φk+1(yk+1
q )

〉)2
. (5.10)

Problem (5.10) can be equivalently written in the form

min
ŵk,k+1∈Rrk−1×nk×rk×nk+1

‖z−Hk,k+1V
(
ŵk,k+1

)
‖2
Q + λk‖V

(
ŵk,k+1

)
‖1. (5.11)

Here the matrix has a column block structure Hk,k+1 =
[Hk,k+1

11 . . .Hk,k+1
1rk+1

Hk,k+1
21 . . .Hk,k+1

2rk+1
. . .Hk,k+1

rk−1rk+1
], where each column block

Hk,k+1
ik−1ik+1

∈ RQ×(nknk+1), ik−1 ∈ {1 . . . rk−1}, ik+1 ∈ {1 . . . rk+1}, is given by

(Hk,k+1
ik−1ik+1

)qj = αkik−1,q
φk,k+1
j (ykq , y

k+1
q )βk+1

ik+1,q
. (5.12)

Problem (5.11) can be solved using lasso modified LARS with selection of λk using
fast leave one out cross validation. We can thus obtain wk,k+1.

Low rank truncation: In this step we wish to recover the core tensors vk and
vk+1 from wk,k+1. For this purpose, we reshape wk,k+1 as a matrix Wk,k+1 ∈
R(rk−1nk)×(rk+1nk+1) such that Wk,k+1 parametrizesW k,k+1 ∈

(
Sknk
)rk−1⊗

(
Sk+1
nk+1

)rk+1

.
We then by perform a truncated singular value decomposition of this matrix:

Wk,k+1 ≈
rk∑
ik=1

σikV
k
ik
⊗Vk+1

ik
,

with adaptive selection of rank rk. {Vk
ik
}rk provides coefficient vectors of rk−1 × rk

functions vkik−1ik
∈ Sknk and rk × rk+1 functions vk+1

ikik+1
∈ Sk+1

nk+1
. The vectors

{σikVk
ik
}rkik=1,V

k
ik
∈ Rrk−1nk can be reshaped as tensor train core vk ∈ Rrk−1×rk×nk .

Similarly {Vk+1
ik
}rkik=1 ∈ (Rrk+1nk+1)rk can be reshaped as vk+1 ∈ Rrk×rk+1×nk+1 .

Algorithm 11 outlines the construction of a sparse tensor train approximation using
MALS.

The selection of rk might be based on

‖Wk,k+1 −
rk∑
ik=1

σikV
k
ik
⊗Vk+1

ik
‖F ≤ ε (5.13)

for some small ε > 0. In general, the optimal value of ε may not be known a priori.
Moreover, for a given sample size, we may not be able to achieve a given value of
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Algorithm 11 Algorithm to compute sparse tensor train approximation of a func-
tion u using MALS.

Input: vector of evaluations z = (u(y1), . . . , u(yQ))T ∈ RQ, rank vector r ∈ Nd+1

and tolerance ε ∈ R+.
Output: sparse tensor train approximation v = FT T γr (v1, . . . ,vd).
1: Randomly initialize the cores vk, k = 1, . . . , d. Set l = 0 and vl =
FT Tr(v

1, . . . ,vd).
2: l← l + 1.
3: for k = 1, . . . , d− 1 do
4: Compute matrix Hk,k+1.
5: Solve problem (5.11) for input z ∈ RQ to obtain wk,k+1.
6: Reshape vector wk,k+1 as matrix Wk,k+1. Compute truncated SVD with se-

lection of rank rk
7: Reshape {σikVk

ik
}rkik=1 to get vk and reshape {Vk+1

ik
}rkik=1 to get vk+1.

8: end for
9: vl = FT Tr(v

1, . . . ,vd).
10: if ‖vl − vl−1‖ > ε and l ≤ lmax then
11: Go to Step 2.
12: end if
13: Return v = vl.

ε. Hence, instead of choosing ε, we use K-fold cross validation to choose rk. In the
numerical examples in section 4, the optimal value of rk is chosen by 3-fold cross
validation.
Classical MALS may suffer from certain disadvantages. The total number of coeffi-
cients to be determined in solving (5.11) is given by rk−1 × nk × rk × nk+1. If few
sample evaluations are available such that Q� rk−1 × nk × rk × nk+1, we may not
be able to determine optimal sparse coefficient vector using least square with sparse
regularization. However, as will be shown in the illustrations, MALS gives better
accuracy if sufficiently enough samples are available.

4 Illustrations

4.1 Analytical model: Ishigami function

Let us first consider the so called Ishigami function which is widely used for bench-
marking in global sensitivity analysis [9]:

u(ξ) = sin(ξ1) + 7sin2(ξ2) + 0.1ξ3sin(ξ1),

where ξi(i = 1, . . . , 3) are uniformly distributed random variables over [−π, π]. We
use an orthonormal basis composed of Legendre polynomials. The Ishigami function
has sparse representation on this basis.
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4.1.1 Results using Alternating Least-Squares

We will first consider the performance of ALS (algorithm 9). As noted in section
2, one of the drawback of ALS algorithm is the selection of optimal rank r. Since
the optimal r is not known a priori, one needs to perform ALS for several guesses
of tensor train rank. This is particularly significant for high-dimensional problems
where the combinatorial problem of finding the optimal rank can be computation-
ally expensive and may not be feasible. Table 5.1 shows the approximation errors
obtained with several rank vectors using Q = 300 samples in the approximation
space ⊗3

k=1Pk10. We can compare the error ε(utt, u) obtained with optimal r, which
in this case is [ 1 3 6 1 ], with other choices of r. We find that the choice of an
optimal rank vector r (which also depends on the sample size and sample set) is
critical in obtaining an accurate approximation.

Table 5.1: Ishigami function: Relative error ε(utt, u) w.r.t different choice of rank
vector r using Algorithm 9 with Q = 300 samples in the approximation space

⊗3
k=1Pk10.

TT rank (r) Error (ε(utt, u))
[ 1 1 1 1 ] 1.0051
[ 1 2 2 1 ] 4.48× 10−1

[ 1 6 6 1 ] 6.03× 10−1

[ 1 8 8 1 ] 1.1× 10−3

[ 1 5 7 1 ] 9.2× 10−4

[ 1 3 6 1 ] 8.4× 10−4

4.1.2 Results using Modified Alternating Least-Squares

We illustrate the results obtained with Algorithm 11 in Table 5.2 for different sample
sizeQ and polynomial degree p together with the optimal r selected by the algorithm.
The approximation error ε(utt, u) reduces with increase in sample size Q. Note that
the algorithm automatically selects the rank and gives an approximation with higher
accuracy than with ALS.

4.2 Analytical model: Sine of a sum

The purpose of this example is to illustrate that for certain functions, approxima-
tions obtained in sparse TT format outperforms canonical format. We consider the
function

u(ξ) = sin(ξ1 + ξ2 + . . .+ ξ6) (5.14)
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Table 5.2: Ishigami function: Relative error ε(utt, u) and optimal rank r obtained
by Algorithm 6

Q=100 Q=200
p ε(utt, u) TT rank (r) ε(utt, u) TT Rank (r)
8 0.0304 [ 1 3 5 1 ] 0.01 [ 1 8 3 1 ]
10 0.0023 [ 1 2 3 1 ] 9.01× 10−4 [ 1 2 2 1 ]
12 0.2415 [ 1 12 13 1 ] 5.61× 10−5 [ 1 2 2 1 ]
14 0.2543 [ 1 13 13 1 ] 4.66× 10−6 [ 1 2 2 1 ]

where ξ are uniform random variables over [−1, 1]. This function is also considered
in [58] and is shown to have a low rank (rk = 2 for 1 ≤ k ≤ d − 1) tensor train
representation and thus is a good example to illustrate the applicability of this
format. In figure 5.1, we compare the solution obtained using Algorithm 10, classical
least square method using sparse regularization, greedy construction in Rm and
direct approximation in Rm (see chapter 4) using different sample size Q in the
approximation space ⊗6

k=1Pkp with selection of optimal p using cross validation. We
find that, for this function, the approximation obtained by algorithm 10 with few
samples gives very accurate approximation as compared to other algorithms using
canonical format. In figure 5.2, we plot the evolution of the ranks v/s ALS iterations
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Figure 5.1: Sine of a sum: Evolution of error v/s sample size using algorithm 10
using optimal polynomial degree p in the approximation space ⊗6

k=1Skp

using Q = 300 samples and polynomial degree p = 3. We find that with algorithm
10, after a few iterations, ALS converges to TT approximation with stabilized r. In
this benchmark example, we illustrated the following:
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Figure 5.2: Sine of a sum: Evolution of rank components ri, 1 ≤ i ≤ 5, v/s
ALS-RA iterations using algorithm 11 using Q = 300 and p = 3

– For functions having a low rank TT representation, approximation in sparse
TT format with ALS-RA gives a more accurate representation as compared to
canonical sparse tensor formats for the same sample size and approximation
space.

– Given enough samples, ALS-RA is able to recover TT rank of the function.

4.3 Application example: Borehole function

Let us consider the borehole function also considered in [81]:

f(ξ) =
2πξ3(ξ4 − ξ6)

ln(ξ2/ξ1)
(

1 + 2ξ7ξ3
ln(ξ2/ξ1)ξ21ξ8

+ ξ3
ξ5

) .
This function takes 8 parametric inputs and their distributions are indicated in Table
5.3.
In this high-dimensional example, we compare the performance of MALS (algorithm
11) and ALS-RA (algorithm 10). In fig 5.3 we plot the evolution of TT rank com-
ponents with iterations for sample size Q = 200 in the approximation space ⊗8

k=1Pp
with optimal selection of p ∈ {2, . . . , 4} using cross validation. We find that both
MALS and ALS-RA algorithms select small TT rank components. In fig. 5.4(a), we
plot the sparsity ratio of the supercores wk,k+1, 1 ≤ k ≤ 7, w.r.t MALS iterations.
Similarly, in fig. 5.4(b), we plot the sparsity ratio of the cores vk, 1 ≤ k ≤ 8 w.r.t
ALS-RA iterations. The MALS algorithm gives better sparsity ratios as compared
to classical ALS-RA. Since MALS involves computing a sparse representation of the
supercore wk,k+1 (i.e. coefficients corresponding to bivariate basis φk ⊗ φk+1), it is
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Table 5.3: Random variable inputs to Borehole function and their corresponding
distributions

RV Description Distribution
ξ1 radius of borehole (m) N(µ = 0.10, σ = 0.0161812)
ξ2 radius of influence (m) LN(µ = 7.71, σ = 1.0056)
ξ3 transmissivity of upper aquifer (m2/yr) U(63070, 115600)
ξ4 potentiometric head of upper aquifer (m) U(990, 1110)
ξ5 transmissivity of lower aquifer (m2/yr) U(63.1, 116)
ξ6 potentiometric head of lower aquifer (m) U(700, 820)
ξ7 length of borehole (m) U(1120, 1680)
ξ8 hydraulic conductivity of borehole (m/yr) U(9855, 12045)

better able to better exploit the sparsity of the function than ALS-RA in which we
still compute coefficients corresponding to univariate basis φk and φk+1 alternately.
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Figure 5.3: Borehole function: Evolution of tensor train ranks v/s iterations using
(a) MALS and (b) ALS-RA for Q = 200. Note that sparsity ratios plotted in (a)

are of supercores wk,k+1 and in (b) are of cores vk and hence not comparable.

We compare MALS and ALS-RA for different sample size in fig 5.5. We consider
both these algorithms without regularization (ordinary least square (OLS)) and with
sparse regularization. We find that, with OLS, both the algorithms give inaccurate
approximations for few samples (Q < 300). For Q ≥ 300, ALS-RA gives better
accuracy. Indeed, given enough samples, ALS-RA better estimates (comparatively)
few coefficients in each iteration as compared to MALS. However, with regulariza-
tion, MALS gives better accuracy as compared ALS-RA since it better exploits the
sparsity of the borehole function as shown in 5.4.
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Figure 5.4: Borehole function: Evolution of sparsity ratio v/s iterations using (a)
MALS and (b) ALS-RA for Q = 200
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Figure 5.5: Borehole function: Comparison of MALS and ALS-RA

4.4 Application example: A stochastic partial differential
equation (Canister)

The final example (also considered in [62]) represents the transport of pollutant
inside an active carbon filter. In this example, the transient convection-reaction-
diffusion equation ((5.15)) is solved in the simplified geometry shown in Figure
5.6(a).

∂u

∂t
−∇(κ∇u) + c(D · ∇u) = σu. (5.15)
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The random parameters in this model and their distribution are shown in Table
5.4. Boundary conditions are Neumann homogeneous due to impermeability of the

Table 5.4: Random variable inputs to Canister problem and their corresponding
distributions

RV Parameter Distribution
ξ1 u(t = 0) U(0.8, 1.2) on Ω
ξ2 σ U(8, 12) on Ω2

ξ3 σ U(0.8, 1) on Ω1

ξ4 c U(1, 5)
ξ5 κ U(0.02, 0.03)

canister wall and are given by

u = ξ1 on Γ1 × Ωt, (5.16)
u = 0 on Γ2 × Ωt. (5.17)

The concentration of pollutants u for one realization of samples is shown in Figure
5.6(b)

 

 

Ω
1

Ω
2

Γ
1

Γ
2

Ω
3

(a) Domain

time  1.34 s

(b) Finite element solution

Figure 5.6: Canister: (a)Computational domain and (b)representive finite element
solution for one realization of random inputs

The quantity of interest is the total amount of pollutant captured by the filter
domain Ω3 over the time interval. This quantity is expressed as

I(u) =

∫
t

∫
Ω3

u(x, t)dxdt.

In this numerical example, we compare the performance of TT tensor formats asso-
ciated with two different trees shown in figure 5.7. Indeed, TT format is a particular
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case of Hierarchical Tensor format and depending on ordering of variables, we can
obtain different approximations for the same sample size and sample set. However,
the selection of a suitable tree for optimal TT representation is problem dependant
and is difficult to determine a priori. Adaptive strategies for selection of optimal
trees for a given sample set is a subject of future research. As in example 4.2, in
figure 5.8, we compare the performance of different algorithms for different sample
sizes in approximation space ⊗5

k=1Pp, where optimal p ∈ {1, . . . , 4} is selected using
cross validation. In this example, we observe the following:

– We obtain two different approximations corresponding to Tree 1 and Tree 2.
This confirms that approximations have a dependence on ordering of variables.

– In this example, approximation in TT format gives better approximation as
compared to canonical tensor format (both greedy and direct rank-m approx-
imations).

ξ1 . . . ξ5

ξ1 ξ2 . . . ξ5

ξ2 ξ3ξ4ξ5

ξ3 ξ4ξ5

ξ4 ξ5

(a) Tree 1

ξ1 . . . ξ5

ξ1 ξ2 . . . ξ5

ξ5 ξ2ξ3ξ4

ξ2 ξ3ξ4

ξ3 ξ4

(b) Tree 2

Figure 5.7: Canister: Two different trees associated with TT representation

5 Conclusion
In this chapter, we detailed the implementation of sparse tensor train approximation.
Algorithms based on ALS and MALS for approximation in sparse low rank tensor
subsets were presented and their performance was illustrated on analytical and nu-
merical examples. Particularly, it was illustrated that inducing the sparsity in TT
representation leads to selection of smaller TT ranks with small components thus
leading to better approximation with available information. Also, the TT format
is more promising compared to canonical tensor format as illustrated in numerical
examples. Note that the TT format is based on separated representation and hence
calculation of statistical quantities like mean, standard deviation and Sobol sensitiv-
ity indices from TT format is straightforward. One of the future work is to select an
optimal tree for TT approximation with available sample based information. Also,
more general tree based formats could be considered.
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Figure 5.8: Canister: Evolution of error v/s sample size using different algorithms
with optimal polynomial degree p in the approximation space ⊗6

k=1Pp

Sparse low rank approximation of multivariate functions - Applications in uncertainty
quantification



90 Approximation in Sparse Tensor Train Format

Sparse low rank approximation of multivariate functions - Applications in uncertainty
quantification



Chapter 6

Clustering and Classification based
on Low Rank Approximation

In this chapter, we combine ideas of clustering and classification
with structured approximation (sparse polynomial or low rank ap-
proximation) to be able to approximate discontinuous and irregular
functions. The method relies on a clustering scheme in which the
sample points are sorted based on geometric distance in a set of clus-
ters. We then perform a re-partition of points within clusters based
on an iterative scheme that minimizes residuals in each cluster. Fi-
nally we perform merging of clusters based on an error criterion.
A new sample point is distributed in one of the final clusters based
on a classification algorithm.
Initial approach has been suggested by O. Le Maitre and O. Knio.
Here, we bring two additional contributions. The first contribution
is the use of fast leave one out cross validation error for the estima-
tion of residuals and the second is the use of sparse polynomial and
low rank approximation methods instead of classical least squares
based polynomial approximation.
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1 Introduction
Our aim is to approximate a function u : ξ ∈ Ξ 7→ u(ξ) ∈ R. We wish to devise a
strategy that can identify L sub-domains Ξl such that Ξ = ∪lΞl, Ξl ∩ Ξl′ = ∅ for
l 6= l′ over which we can obtain good approximations of u. The function u can then
be approximated locally by means of approximations v̂l, 1 ≤ l ≤ L such that

u(y) ≈
L∑
l=1

v̂l(y)1Ξl(y), (6.1)

where 1Ξl is the indicator function of the set Ξl:

1Ξl(y) =

{
1, y ∈ Ξl

0, otherwise.
(6.2)

If u is non-smooth across the sub-domains boundary, the approximation error of
(6.1) is expected to be smaller than direct approximation over Ξ using standard
approximations (e.g. polynomial).

2 Clustering Method
To construct piecewise approximation of u, we consider a set of Q samples consisting
of distinct couples {yq, u(yq)}, whereQ = {1, . . . , Q} is the set of observation indices.

2.1 Cluster Initialization

Since the actual minimal number L of sub-domains over which u can be well ap-
proximated is not known a priori, the first step is to partition the sample set into
subsets or clusters. We denote by K the initial number of clusters. Each cluster
contains a subset of samples, Kk ⊂ Q, while a sample belongs to a unique cluster.
That is

∪Kk=1 Kk = Q and Kk ∩ Kk′ = ∅ for k 6= k′. (6.3)

We will denote kq the membership of yq, q ∈ Q : ki = k ⇔ q ∈ Kk. The initial clus-
tering of the observations is based on minimizing the overall geometric (Euclidean)
intra-cluster distance G, defined by

G2 =
K∑
k=1

G2(Kk), G2(Kk) =
∑
q∈Kk

‖yq − Yk‖2, Yk =
1

#Kk

∑
q∈Kk

yq. (6.4)

Here Yk is the barycentric center of the cluster k. The exact minimization of G2 is a
combinatorial problem whose solution can be approximated by a classical iterative
algorithm consisting of sequence of updates in the sample memberships, affecting
each of them to the cluster having the closest centroid Yk, followed by updates of
cluster centroids. Algorithm 12 outlines the geometric clustering scheme.
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Algorithm 12 Geometric Clustering
Input: K, {yq, q ∈ Q}. {Number of Clusters and samples}
Output: Clusters Kk, 1 ≤ k ≤ K.
1: for k = 1, . . . , K do
2: Set at random Yk ∈ Ξ {Random initialization of centroids}
3: end for
4: while Not converged do
5: for k = 1, . . . , K do
6: Kk ← ∅ {Initialization of clusters}
7: end for
8: for q = 1, . . . , Q do
9: k ← argminl‖yq − Yl‖2 {Find closest centroid}

10: Kk ← Kk ∪ {q} {Affect observation to its clusters}
11: end for
12: for k = 1, . . . , K do
13: Yk ← 1

#Kk

∑
q∈Kk y

q {Recompute Centroids}
14: end for
15: end while

2.2 Approximation models

For the sample set and its K−clustering, we construct approximation model in
each cluster. In this work, for each cluster k, we have considered two choices for
constructing cluster models v̂k:

– Sparse polynomial model

– Sparse low rank model

In section 3, we will illustrate both these approaches. Let us define

R2 =
K∑
k=1

R2(Kk), R2(Kk) =
∑
q∈Kk

|u(yq)− v̂k(yq)|2, (6.5)

as the total (squared) residual error associated with the K− clustering of the sam-
ples.

2.3 Clustering scheme

We now wish to update the clusters {Kk} such that in each cluster, we can obtain
sufficiently accurate approximation model. The geometric clustering algorithm 12
aims at minimizing the inter-cluster distance, it is likely that it results in some
clusters overlapping with irregularities in u, with consequently significant residual
error. However, we seek clusters that minimize the sum of squared residuals, but

Sparse low rank approximation of multivariate functions - Applications in uncertainty
quantification



Clustering Method 95

at the same time, are distinct and do not overlap with each other. Thus to prevent
cluster overlapping, we introduce a penalty term accounting for the inter-cluster
distance G2. The functional considered for minimization is therefore

R̂2 = R2 + γG2 =
K∑
k=1

(∑
q∈Kk

|u(yq)− v̂k(yq)|2 + γ‖yq − Yk‖2

)
, (6.6)

for some γ > 0. The largest γ the tightest is the constraint on the cluster geometry,
with lower chance of obtaining clusters belonging to single sub-domain Ξl over which
we can obtain accurate approximation. A smaller value of γ allows clusters to adapt
the features of u, but γ → 0 can lead to mixing of clusters. Re-writing (6.6) using
sample memberships, we have

R̂2 =
∑
q∈Q

(
|u(yq)− v̂kq(yq)|2 + γ‖yq − Ykq‖2

)
, (6.7)

and it will be convenient to introduce the squared residual r2
q,k as a short-hand

notation for
r2
q,k = |u(yq)− v̂k(yq)|2 + γ‖yq − Yk‖2. (6.8)

Based on (6.6), a basic iterative scheme would be to sequentially a) update the
observation memberships and b) update the cluster models using the updated mem-
berships. For the update of the memberships, we consider the following rule

if min
k∈{1,...,K}

r2
q,k < r2

q,kq , then kq ← arg min
k∈{1,...,K}

r2
q,k. (6.9)

That is, the membership of an observation is updated to a new cluster only if it
has a (strictly) lower squared residual.

It should be noted that, due to over-fitting rq,k will in general have lowest
value for cluster kq. The way to circumvent this problem is to use fast leave one out
error estimate for each q in Kk. For a given q ∈ Q, if k 6= kq, we use the formula
(6.8) (the estimated model did not use sample q) but for k = kq, we replace (6.8) by

r2
q,k = |u(yq)− v̂\qk (yq)|2 + γ‖yq − Yk‖2, (6.10)

where v̂\qk (yq) is the model estimated using samples Kk \ {q}. In practice, |u(yq) −
v̂
\q
k (yq)| is computed using fast leave one out (see chapter 3, section 4). However,
due to oscillatory nature of the polynomial basis, we can obtain low squared residual
values, |u(yq) − v̂k(y

q)|, at observation points that are not close to the cluster k.
Hence, direct application of the rule (6.9) may lead to disconnected clusters with
isolated members. This can be avoided by constraining the membership updates
to some neighbourhood of the clusters, such that their shapes evolve progressively
through changes at their boundaries. Thus, we can store the indices of m−nearest
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sample points to yq and check that at least one of this point belong to Kk to accept
an update to k of the membership. The complete rule for membership update is
finally:

if min
k∈Nm(yq)

r2
q,k < r2

q,kq , then kq ← arg min
k∈Nm(yq)

r2
q,k, (6.11)

whereNm(yq) is the set of cluster memberships ofm−neighbours of yq. The resulting
model clustering iterative scheme is outlined in Algorithm 13.

Algorithm 13 Model-Based clustering algorithm
Input: {(yq, u(yq)), q ∈ Q}, {Kk, k = 1, . . . , K}, γ > 0 and m > 0 {Observations

and initial clusters sets}
1: for k = 1, . . . , K do
2: Compute approximation v̂k using samples Kk {Set cluster models}
3: for all q ∈ Kk do
4: kq ← k {Set observation memberships}
5: end for
6: end for
7: while Not converged do
8: for all q ∈ Q do
9: Find k ∈ Nm(yq), minimizing r2

q,k

10: if r2
q,k < r2

q,kq
then

11: kq ← k {Update memberships}
12: end if
13: end for
14: for k = 1, . . . , K do
15: K ← ∅ {Reset Clusters}
16: end for
17: for all q ∈ Q do
18: Kkq ← Kkq ∪ {q}
19: end for
20: for k = 1, . . . , K do
21: Compute approximation v̂k using samples Kk {Update cluster models}
22: Yk ← 1

#Kk

∑
q∈Kk y

q {Update centroids}
23: end for
24: end while

2.4 Cluster merging

Algorithm 13 sorts the observations into K clusters, each hopefully belonging
to region where u can be accurately approximated. It may happen that more
than one cluster belong to the region where a single cluster can give an accurate
approximation. In such cases, merging of two clusters should be possible without a
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significant increase in the approximation error.

For this purpose, we use the following iterative algorithm where at each step, we
detect a couple of neighbouring clusters that can be merged. Let K(l) denote
the number of clusters after l−th iteration of the procedure. For a cluster index
k < K(l), we find the neighbouring cluster k′ (determined by the distance between
cluster centroids) and consider the following indicator:

∆l(k, k′) = R̂2(Kk ∪ Kk′)− R̂2(Kk)− R̂2(Kk′). (6.12)

the indicator ∆l(k, k′) measures the change in the sum of squared residuals if the
distinct clusters k and k′ are merged. Here R̂2(Kk ∪ Kk′) is the residual obtained
using model v̂k,k′ constructed by merging points in clusters Kk and Kk′ . The two
distinct clusters are merged if the indicator ∆l(k, k′) < 0 i.e. the squared residual
of the merged cluster is less than the sum of squared residuals of individual clusters
k and k′. Hence, we have Kk ← Kk ∪ Kk′ and the model v̂k is updated accordingly
(i.e. v̂k ← v̂k,k

′). Clearly, the merging procedure stops after at most lf ≤ K − 1
iterations and in the end we have K(lf ) as the final number of clusters.

2.5 Resampling

It remains to construct the global approximation û of u. Specifically, given a point
in Ξ, we need to decide to which cluster domain it belongs. This is a classifica-
tion problem and in this work we simply rely on Nearest-Neighbour strategy. Let
Nn(y) ⊂ Q be the set of n observations the closest to yq (in the sense of Euclidean
distance). One can then poll memberships kq for q ∈ Nn(y) to decide which cluster
yq belongs to. We can then select the cluster having the most frequent membership
among Nn(yq) and eventually breaks ties by taking the membership of the closest
point. In the examples in section 3, we consider n = 5. Let k(Nn(y)) denote the
cluster selected using the Nearest-Neighbour classification procedure in the follow-
ing.
We can then consider the global approximation

u(y) ≈ û(y) =
∑

k∈{1,...,Klf }

1k(y)v̂k(y), 1k(y) =

{
1, if k = k(Nn(u)).

0, otherwise.
(6.13)

In the following section, we will illustrate this strategy on two examples.

3 Illustrations

3.1 2D vibration problem

We consider a forced vibration problem of a slightly damped linear elastic beam
defined on a spatial domain Ω = [0, 1] where the source of uncertainty comes from

Sparse low rank approximation of multivariate functions - Applications in uncertainty
quantification



98 Clustering and Classification based on Low Rank Approximation

the modulus of elasticity. The problem writes: find u(x, ξ) such that

∂2

∂x2

(
E(ξ)I

∂2u

∂x2

)
− ρSω2u = 0 for x ∈ Ω,

u = 0,
∂u

∂x
= 0 at x = 0,

∂2u

∂x2
= 0 ,

∂

∂x

(
E(ξ)I

∂2u

∂x2

)
= 1 at x = 1,

where ρ = 7800 is the density mass, S and I are respectively the area and second
moment of the area of the beam’s circular cross-section of radius 0.1, E = E0(1− iη)
is the modulus of elasticity with loss factor η = 0.001 and E0 modelled as a uniform
random variable: E0 ∼ U(1011, 3 1011) which is expressed as a function of a uniform
random variable ξ1 ∼ U(−1, 1). The circular frequency ω is here considered as a
parameter of the problem that varies on [2π.10, 2π.104] and is expressed as a function
of parameter ξ2 ∈ [−1, 1]. We define the set of parameters ξ = (ξ1, ξ2) ∈ [−1, 1]2.
The variable of interest of the problem is defined as follows:

I(u)(ξ) = log ‖u(1, ξ)‖.
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Figure 6.1: 2D vibration problem: The plot in (a) compares the error obtained
with and without clustering and classification approach with sample size. Plot (b)
shows the number of initial clustersK corresponding to minimum error with different

sample sizes

Results We consider the approximation spaces S1
n = S2

n = Pn−1 for n ∈ {2, . . . , 5}.
We use sparse polynomial approximation for constructing model approximations v̂k.
For each sample set, we consider several values of initial clusters K ∈ {2, 4, 5, 6, 10}
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and γ ∈ {10−1, 10−2, 10−3, 10−4, 10−5} and in each cluster and the optimal model
(w.r.t to K and γ) is selected using cross validation. In fig. 6.1(a), we compare the
performance of clustering and classification approach with direct sparse polynomial
approximation. We find that the error obtained with approximations using cluster-
ing and classification approach reduces with increase in sample size where as direct
approximations ceases to improve. Also, for small sample size (Q = 100, 200), low
rank approximations are more accurate as compared to polynomial approximations.
We also plot initial number of cluster K that corresponds to minimum error for each
sample size in fig. 6.1(b). We observe that, for smaller sample sets, small values
of K are chosen whereas one can afford high values of K for large sample sets (or
for moderate number of samples when using low rank approximations). Indeed, for
high sample size, enough points are available in each cluster to construct a more
accurate model approximation.

3.2 Manhattan function

Let us consider a manufactured function (named Manhattan function) given by:

u(ξ) =


checkerboard(ξ1, ξ2) 0 ≤ ξ1 ≤ 1, −1 ≤ ξ2 ≤ 1

sin(7ξ1)sin(4ξ2) −1 ≤ ξ1 < 0, 0 ≤ ξ2 ≤ 1
1
2

+ 2
7
(2ξ1 + 1)2 + (2ξ2 + 1)2 −1 ≤ ξ1 < 0, −1 ≤ ξ2 < 0

(6.14)

Figure 6.14 illustrates this function. In each subdomain, this function is of low rank
and hence is ideal to test the proposed approach with low rank approximation. As
in section 5.2, we consider piecewise polynomials of degree 2 defined on a uniform
partition of Ξk composed by 8 intervals i.e. S1

n = S2
n = P2,8. Note that this basis is

suitable to exactly approximate the checkerboard function in (6.14). We consider
approximation models v̂k ∈ Rmk with optimal value of rank mk selected using cross
validation. We consider K ∈ {4, 5, 6} with values of γ ∈ {10−2, 10−3, 10−4}. Figure
6.3 illustrates the evolution of clusters at different steps of this approach using 2000
samples.

Results: Figure 6.3 shows the distribution of points in several clusters at
different steps of the strategy. In fig 6.4(a), we compare the performance of
clustering and classification approach with direct sparse low rank approximation.
We find that, as in example 3.1 the error obtained with low rank approximation
using clustering and classification approach reduces with increase in sample size
where as the accuracy of direct sparse low rank approximation does not significantly
improve with increase in sample size. In fig 6.4(b), we plot the initial cluster size
K and final cluster size K(lf ) (selected using cross validation) that corresponds to
minimum error for each sample set. Again, as in previous example, we find that
a more accurate model approximation is obtained if initial cluster size K is more
than the number of sub-domains corresponding to three conditions in (6.14). Also,
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Figure 6.2: Manhattan function

the optimal number of final cluster K(lf ) = 3 is obtained for large samples set
(Q > 1000).

3.3 5D vibration problem

We here consider the model problem presented in section 3.1 with E0(x, ξ) and
η(x, ξ) defined as follows:

E0(x, ξ1) ∼ U(1.6 1011, 2.4 1011) and η(x, ξ2) ∼ U(0.001, 0.05) for x ∈ [0, 0.5[,

E0(x, ξ4) ∼ U(1.6 1011, 2.4 1011) and η(x, ξ5) ∼ U(0.001, 0.05) for x ∈]0.5, 1].

The circular frequency ω is a parameter that varies on [2π.10, 2π.104] expressed as
a function of parameter ξ3 ∈ [−1, 1]. We define the set of parameters ξ = (ξk)

5
k=1 ∈

[−1, 1]5.
The variable of interest of the problem is: I(u)(ξ) = log ‖u(1, ξ)‖. In order to
demonstrate the irregularity of the function u, in fig. 6.5 we plot (logarithm of) u
with respect to different variables.

Results: We construct sparse low rank canonical models v̂k ∈ Rm in ap-
proximation space ⊗5

i=1P5 in each cluster. In fig. 6.6, we compare the performance
of clustering and classification approach with direct sparse low rank approximation.
We draw the same conclusion as in previous illustrations that the accuracy of
approximation obtained with clustering and classification is better as compared to
direct sparse low rank construction.

4 Conclusion
The clustering and classification approach offers an improvement in accuracy for dis-
continuous and irregular functions provided enough sample evaluations are available.
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Figure 6.3: Manhattan function: The plot in (a) shows the initial clustering of
2000 samples into 5 clusters after application of algorithm 12. Plot (b) shows the
clustering after application of algorithm 13. Plot (c) and (d) shows the merging of

clusters to obtain the final clustering

The illustrations in section 3 are promising and more analysis is required to further
improve this strategy. One possible improvement could be to use cross validation
based error indicator to identify clusters with inaccurate models and improve their
accuracy by adaptive sampling or choice of appropriate basis. A selection between
different types of models (polynomial, low rank) approximation models in different
clusters can give better accuracy for few samples.
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Figure 6.4: Manhattan problem: The plot in (a) compares the error obtained with
and without clustering and classification approach with sample size. Plot (b) shows
the number of initial cluster (K) and final cluster (K(lf )) corresponding to minimum

error with different sample size
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Figure 6.5: 5D vibration problem
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Figure 6.6: 5-D vibration problem: Comparison of the error obtained with and
without clustering and classification approach with sample size.
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Conclusions and Perspectives

Uncertainty quantification has now emerged as an important field of research for
improving the predictability and robustness of numerical models. Approaches
based on functional representation gives a framework based on classical results in
functional analysis. In many cases, it may not be possible to access or modify ex-
isting deterministic computational codes. In such cases, sampling based approaches
provide a viable option for the resolution of uncertainty quantification problems.
However, as in other functional representation based approaches, these approaches
are limited to low dimensional problems due to the curse of dimensionality.

Recently, a number of methods have been introduced that exploit certain
structures of high dimensional functions. One such method is based on the
interpretation of high dimensional functions as tensors in a tensor product space.
Such interpretation has the advantage of drawing from the recent results in low rank
approximation of tensors. At the same time, methods exploiting sparsity based
on compressed sensing theory has recently been introduced with encouraging results.

In this thesis, we have combined both these approaches. More specifically,
we have exploited sparsity within low rank structure for high dimensional functions.
It is based on the observation that a large class of functions encountered in practical
applications are found to have sufficiently accurate low rank representations and
hence can be parametrized with few parameters in appropriate tensor product
subsets. This leads to introduce sparse low rank tensor formats. These subsets are
characterised by the associated notion of rank. Algorithms based on alternating
least-squares are used to perform approximation in these subsets. We introduced
algorithms to perform approximation in two specific low rank tensor formats
(canonical and tensor train) and illustrated their application on several examples.
Finally, we introduced strategies to combine these approaches with clustering and
classification techniques for approximating discontinuous and irregular functions.

This approach opens doors for further theoretical and practical developments
which are outlined below:

1. The present work consisted of considering isotropic approximation of tensors
i.e. we used the same type (polynomial, multi-element, wavelet...) and number
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of function basis in each dimension. A possible improvement could be to devise
strategies for adaptive selection of basis functions in each stochastic dimension.

2. The present work is based on random sampling of input random variables.
Theoretical estimates of the number of samples necessary to obtain stable low
rank approximation for a given class of functions remains an area of further re-
search. Sampling strategies that better exploit sparsity and low rank structure
can also be introduced. Also, adaptive sampling that favours better estima-
tion of the most influential parameter or estimation of the probability of a
particular event can be a subject of further improvement.

3. We can evaluate the quality of approximation of a sparse tensor subset with
respect representation of function and devise strategies to select more suitable
tensor subsets (selection of trees in tree based tensor format) that could be
based on a general hierarchical vision of grouping certain variables which are
not suitable for separation.
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