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Titre : Analyse de sensibilité en fiabilité des structures 
 
Résumé : Cette thèse porte sur l'analyse de sensibilité dans le contexte des études de 
fiabilité des structures. On considère un modèle numérique déterministe permettant de 
représenter des phénomènes physiques complexes. 
L'étude de fiabilité a pour objectif d'estimer la probabilité de défaillance du matériel à partir 
du modèle numérique et des incertitudes inhérentes aux variables d'entrée de ce modèle. 
Dans ce type d'étude, il est intéressant de hiérarchiser l'influence des variables d'entrée et 
de déterminer celles qui influencent le plus la sortie, ce qu'on appelle l'analyse de 
sensibilité. Ce sujet fait l'objet de nombreux travaux scientifiques mais dans des domaines 
d'application différents de celui de la fiabilité. Ce travail de thèse a pour but de tester la 
pertinence des méthodes existantes d'analyse de sensibilité et, le cas échéant, de proposer 
des solutions originales plus performantes.  Plus précisément, une étape bibliographique 
sur l'analyse de sensibilité puis sur l'estimation de faibles probabilités de défaillance est 
proposée. Cette étape soulève le besoin de développer des techniques adaptées. Deux 
méthodes de hiérarchisation de sources d'incertitudes sont explorées. La première est 
basée sur la construction de modèle de type classifieurs binaires (forêts aléatoires). La 
seconde est basée sur la distance, à chaque étape d'une méthode de type subset, entre les 
fonctions de répartition originelle et modifiée.  Une méthodologie originale plus globale, 
basée sur la quantification de l'impact de perturbations des lois d'entrée sur la probabilité 
de défaillance est ensuite explorée. Les méthodes proposées sont ensuite appliquées sur 
le cas industriel CWNR, qui motive cette thèse.  
 
Mots clés : Analyse de sensibilité ; Fiabilité; Incertitudes ; Expériences numériques; 
Perturbation des lois 

 

Title : Reliability sensitivity analysis 
 
Abstract : This thesis' subject is sensitivity analysis in a structural reliability context. The 
general framework is the study of a deterministic numerical model that allows to reproduce 
a complex physical phenomenon. The aim of a reliability study  is to estimate the failure 
probability of the system from the numerical model and the uncertainties of the inputs. In 
this context, the quantification of the impact of the uncertainty of each input parameter on 
the output might be of interest. This step is called sensitivity analysis.  Many scientific works 
deal with this topic but not in the reliability scope. This thesis' aim is to test existing 
sensitivity analysis methods, and to propose more efficient original methods.  A 
bibliographical step on sensitivity analysis on one hand and on the estimation of small 
failure probabilities on the other hand is first proposed.  This step raises the need to 
develop appropriate techniques.  Two variables ranking methods are then explored. The 
first one proposes to make use of binary classifiers (random forests). The second one 
measures the departure, at each step of a subset method, between each input original 
density and the density given the subset reached. A more general and original methodology 
reflecting the impact of the input density modification on the failure probability is then 
explored. 
The proposed methods are then applied on the CWNR case, which motivates this thesis.  
 
Keywords : Sensitivity Analysis; Reliability; Uncertainties; Computer experiments; Input 
perturbations 
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Résumé étendu

Introdution

Analyse d'inertitudes et expérienes numériques

On présente ii brièvement le adre général de ette thèse : l'exploitation d'un modèle numérique.

Un modèle est ii une représentation mathématique d'un phénomène physique et son traitement est

e�etué au travers d'un système de alul.

Ce modèle possède des entrées et des sorties (ou réponses). Ii, toutes es quantités seront

onsidérées salaires mais d'autres types pourraient être envisagés, modales par exemple. En fontion

d'un jeu de données d'entrée, le ode de alul va produire un jeu de réponses après un ertain temps

de alul. Le adre des odes déterministes est utilisé : un même jeu d'entrée produira toujours le

même jeu de sortie. Dans e rapport, il sera parfois fait un abus de langage en assimilant le ode au

modèle, pour des raisons de lisibilité.

Une notion essentielle est la quantité d'intérêt. Il est en e�et possible que e ne soit pas une valeur

de sortie qui intéresse l'expérimentateur, mais plut�t une plage de valeurs ou une quantité dé�nie

à partir des sorties. Il est don primordial avant toute étude de dé�nir quelle est la quantité d'intérêt.

L'analyse de sensibilité est dé�nie par Saltelli et al. [89℄ omme l'étude de la façon dont

l'inertitude sur une quantité de sortie du modèle peut être attribuée aux di�érentes soures d'inertitudes

dans les variables d'entrée.

L'analyse de sensibilité d'un modèle numérique peut servir à déterminer les variables d'entrée qui

ontribuent le plus à un ertain omportement d'une sortie, déterminer elles sans in�uene ou elles

qui vont interagir à travers le modèle. Le but peut être de omprendre le modèle, de le simpli�er, ou

enore de prioriser le reueil de données pour mieux modéliser une variable d'entrée. Une approhe

réente est l'approhe dite globale. L'ensemble du domaine de variation des variables d'entrée est

alors étudié. La plupart des tehniques sont développées dans une approhe indépendante du modèle

("model free"), 'est-à-dire sans émettre d'hypothèses sur le omportement du modèle omme par

exemple la linéarité ou la monotonie.

Fiabilité des strutures

On herhe à répondre au problème industriel de savoir si une struture ou un omposant peut résister

à des ontraintes qui lui sont appliquées. L'approhe basée sur des essais et mesures est possible,

mais peut s'avérer di�ile pour des raisons de oûts ou de risques. Parfois, l'expérimentation est

impossible. Des modèles numériques sont alors utilisés omme représentation approhée de la réalité

inluant ertains méanismes (omme par exemple eux de la dégradation, de la propagation des

�ssures...).

A�n d'exploiter omplètement le modèle, les inertitudes sur les paramètres d'entrées du ode

(essentiellement des grandeurs physiques) sont modélisées par des variables aléatoires. Le modèle
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Résumé étendu

représente don la struture, dotée d'une ertaine résistane, et l'environnement, qui engendre une

solliitation. Le alul pour un jeu d'entrées �xées permet d'obtenir un ritère de défaillane qui

amène à une réponse binaire : la struture est défaillante pour es entrées ou non défaillante.

Le fait d'inlure les inertitudes omme des variables aléatoires permet de modéliser le risque

omme une probabilité de défaillane. Cette approhe est plus �ne qu'une approhe déterministe où

les grandeurs sont �xées à des valeurs nominales.

Soit X = (X1, ...Xd) le veteur aléatoire d−dimensionnel (dont la densité fX est onnue) des

variables d'entrée (salaires) du modèle numérique. On s'intéresse à e que la valeur salaire Y ∈ R

renvoyée par la fontion de défaillane G du modèle (ou fontion d'état-limite du modèle) soit plus

faible qu'un ertain seuil k (usuellement 0) : 'est le ritère de défaillane. La struture est défaillante
pour un jeu d'entrée x si y = G(x) ≤ k (où x = (x1, ..., xd) ∈ Rd

est une réalisation de X et k un

seuil usuellement �xé à 0). L'ensemble de l'espae sur lequel et évènement se produit est appelé

domaine de défaillane Df . La surfae dé�nie par {x ∈ Rd, G(x) = k} est dite surfae d'état-limite.

La probabilité que l'évènement se produise est notée Pf , probabilité de défaillane. On a :

Pf = P(G(X) ≤ k)

=

�

Df

fX(x)dx

=

�

Rd

1G(x)≤kfX(x)dx

= E[1G(X)≤k]

La omplexité des modèles et le possible grand nombre de variables d'entrée fait que, dans le as

général, on ne peut pas aluler la valeur exate de la probabilité de défaillane. On peut epen-

dant estimer ette quantité (qui est une espérane mathématique) à l'aide de diverses méthodes

numériques. La base de la �abilité des strutures est de fournir une estimation de Pf et une inerti-

tude autour de ette estimation. Cette estimation permet ensuite de répondre à la question initiale

de la résistane de la struture.

Objetifs de la thèse

Le but de ette thèse est le développement de tehniques d'analyse de sensibilité quand la quantité

d'intérêt est une probabilité de dépassement de seuil (e qui équivaut à une probabilité de défaillane

dans le ontexte de la �abilité des strutures). Les ontraintes du ode CWNR qui a motivé le travail

de thèse doivent être prises en ompte. La probabilité de défaillane dans le as le moins pénalisant

(7 variables) a un ordre de grandeur attendu de 10−5
. Si possible, les méthodes développées doivent

être en relation ave l'estimation de Pf et doivent produire une estimation de l'erreur faite lors de

l'estimation des indies de sensibilité et de Pf .

Organisation de la thèse

La thèse est divisée en quatre hapitres.

Le premier hapitre est une revue des stratégies existantes pour estimer des probabilités de

défaillane et des tehniques d'analyse de sensibilité.

Le seond hapitre est onsaré à la dé�nition de mesures de sensibilité ave pour but la produ-

tion d'un lassement de variables (variable ranking).
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Le troisième hapitre présente une méthode originale pour estimer l'importane de haune des

variables d'entrée sur une probabilité de défaillane. Cette méthode se onentre sur l'impat d'une

modi�ation de densité d'entrée sur la probabilité de défaillane produite en sortie.

Le quatrième hapitre présente une appliation des méthodes étudiées sur le as CWNR, as réel

qui a motivé la thèse.

Méthodes de lassement de variables

Le seond hapitre présente deux méthodes permettant de lasser les variables d'entrée en fontion

de leur in�uene sur la sortie (binaire). De plus, es méthodes sont des sous-produits de l'estimation

de la probabilité de défaillane Pf .

En e�et la première tehnique propose de faire usage de mesures dérivées de l'ajustement de

forêts aléatoires sur un éhantillon de type Monte-Carlo. Un rappel sur les arbres binaires puis sur

les forêts aléatoires est proposé, puis l'étude de deux indies (Gini Importane et Mean Derease

Auray) mesurant l'importane des variables sur la quantité d'intérêt binaire est proposé.

La seonde tehnique mesure l'éart, à haque étape d'une méthode de type subset simulation,

entre les densités d'entrée et les densités sahant que le sous-ensemble est atteint.

La dé�nition informelle est la suivante : l'indie de sensibilité est dé�ni pour la variable i et
l'étape du subset k omme la distane entre la fontion de répartition (f.d.r.) empirique et la f.d.r.

théorique de la variable. Considérant M étapes de subset ave k = 1 . . .M ; et en notant :

F k
n,i = Fi(x|Ak),

la f.d.r. empirique de la ième

variable sahant que le seuil Ak a été dépassé. L'indie proposé s'érit

omme suit :

δSSi (Ak) = d(F k
n,i, Fi),

où Fi est la f.d.r. de la ième

variable, et d est une distane. Une variable in�uente aura un grand

éart en f.d.r alors qu'une variable non-in�uente aura un faible éart en f.d.r., don un faible indie.

Des travaux sont menés sur le hoix de la distane d en fontion du besoin de l'analyste.

Ces deux méthodes peuvent don être vues omme des sous-produits de tehniques d'estimation

de la probabilité de défaillane.

Méthode basée sur une perturbation des densités (DMBRSI)

Dans le troisième hapitre, de nouveaux indies de sensibilité pour la �abilité sont proposés. Cet

indie de sensibilité est basé sur une modi�ation des densités et est adapté aux probabilités de

défaillane. Une méthode pour estimer de tels indies est proposée.

Ces indies re�ètent l'impat d'une modi�ation d'une densité d'entrée sur la probabilité de

défaillane Pf . Ils sont indépendants de la perturbation dans le sens où l'utilisateur peut hoisir la

perturbation adaptée à son problème.

Pour des raisons de simpliité, un shéma d'éhantillonnage Monte-Carlo lassique est onsid-

éré par la suite, bien que le proessus d'estimation a été étendu aux méthodes subset et tirages

d'importane. Les indies de sensibilité peuvent être estimés en utilisant seulement le jeu de simu-

lations déjà utilisé pour estimer la probabilité de défaillane Pf . Cei limite le nombre d'appels au

ode de alul, omme mentionné dans les ontraintes du as industriel CWNR.

Le hapitre est organisé de la façon suivante : en premier lieu, les indies et leurs propriétés

théoriques sont présentées ainsi qu'une méthode d'estimation. En seond lieu, plusieurs méthodes
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Résumé étendu

de perturbation des densités sont présentées. Ces modi�ations peuvent être lassées en deux grandes

familles : minimisation de Kullbak-Leibler et perturbation des paramètres. Le omportement des

indies proposés est testé sur des as tests, puis les avantages et problèmes restants sont �nalement

disutés.

Le hapitre 3 est une version étendue du papier par Lemaître et oauteurs [63℄.

Indie DMBRSI

Soit une entrée unidimensionnelle Xi de densité fi, on appelle Xiδ ∼ fiδ l'entrée perturbée orre-

spondante.

La probabilité de défaillane modi�ée devient :

Piδ =

�

1{G(x)<0}
fiδ(xi)

fi(xi)
f(x)dx

où xi est la i
ème

omposante du veteur x.

L'indie DMBRSI a la forme suivante.

Dé�nition On dé�nit les indies de sensiblité basés sur une modi�ation des lois (Density Modi-

�ation Based Reliability Sensitivity Indies - DMBRSI) omme la quantité Siδ :

Siδ =

[
Piδ

Pf
− 1

]
1{Piδ≥Pf} +

[
1− Pf

Piδ

]
1{Piδ<Pf} =

Piδ − Pf

Pf · 1{Piδ≥Pf} + Piδ · 1{Piδ<Pf}
.

Estimation

Un estimateur P̂N de Pf peut être alulé en utilisant un plan d'expériene de N points. Par la

suite, N est onsidéré omme étant assez grand pour que le ontexte de la théorie asymptotique

s'applique. Par ailleurs, un éhantillonnage de type Monte-Carlo standard est utilisé pour simpli�er

les aluls. On érit alors

P̂N =
1

N

N∑

n=1

1{G(xn)<0}

où x1, · · · ,xN
sont des réalisations indépendantes de X. La loi forte des grands nombres et le

théorème limite entrale (TLC) assurent que pour presque toutes les réalisations, P̂N −−−−→
N→∞

Pf et

√
N

Pf (1− Pf )
(P̂N − Pf )

L−−−−→
N→∞

N (0, 1).

Le adre Monte-Carlo permet d'estimer Piδ de façon onsistante sans nouvel appel au ode de

alul G, grâe à une tehnique de tirage d'importane "inverse" (reverse importane sampling):

P̂iδN =
1

N

N∑

n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(x
n
i )
.

Cei est très intéressant quand le ode de alul G est oûteux en temps de alul ( Bekman and

MKey, Hesterberg [8, 45℄).

Dans la thèse, les propriétés asymptotiques des estimateurs de Pf et Siδ sont étudiées.
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Stratégies de perturbation

La Setion 3.3 propose plusieurs méthodes de perturbations. On insiste sur le fait que les DMBRSI

et les tehniques d'estimation présentées restent valides pour toute perturbation tant que des on-

traintes sur le support sont respetées. Ii on se foalise sur deux familles de méthodes. Dans la

première, la densité perturbée est elle minimisant la divergene de Kullbak-Leibler sous des on-

traintes �xées par l'utilisateur. Plusieurs ontraintes sont proposées (perturbation de la moyenne,

de la variane et des quantiles). L'usage de la seonde méthode est onseillé quand l'utilisateur veut

tester la sensibilité de Pf aux paramètres des distributions. Chaque setion est introduite par un

exemple jouet.

Cette setion illustre la apaité des DMBRSI à traiter des objetifs d'analyse de sensibilité

di�érents. L'utilisateur est invité à proposer de nouvelles perturbations qui répondraient à ses

objetifs.

Appliation au as CWNR

Le quatrième hapitre présente l'appliation des méthodes développées au as CWNR. Ce as est

présenté dans l'organisation de la thèse, page 24. On rappelle que e modèle de type "boîte-noire"

onstitue la motivation initiale de e travail.

Pour estimer Pf , la méthode FORM (voir Setion 1.2.2.2) et un Monte-Carlo naïf (voir Setion

1.2.1.1) ont été utilisées. Les résultats produits par la méthode Monte-Carlo sont onsidérés omme

étant la référene dans e hapitre.

La partie analyse de sensibilité est onsarée à la mise en ÷uvre de trois méthodes : premièrement,

les fateurs d'importane FORM (voir Setion 1.3.2.2). Ensuite, des forêts aléatoires (voir Setion

2.2) sont onstruites sur l'éhantillon Monte-Carlo et des mesures de sensibilité sont dérivées. Pour

�nir, les DMBRSI (voir Chapitre 3) sont utilisés. Plusieurs perturbations (moyenne, quantile et

paramètres) sont testées.

Ce hapitre est divisé en trois setions prinipales, se onentrant haune sur des as de dimen-

sion roissante (3, 5 et 7 variables probabilisées), où plus la dimension est petite, plus le as est

pénalisant.

Les onlusions de e hapitre sont les suivantes :

� en e qui onerne la partie estimation de Pf , la méthode de Monte-Carlo reste la référene

sur un ode industriel. Le désavantage majeur est bien entendu le temps de alul néessaire.

� En e qui onerne la partie analyse de sensibilité, les forêts aléatoires produisent des résultats

ontestables, ar les modèles ajustés sont de mauvaise qualité. La méthode est don peu

onluante pour l'instant.

� Les DMBRSI semblent une méthode adaptée pour e�etuer une analyse de sensibilité sur une

probabilité de défaillane. Plusieurs ajustements et on�gurations ont été testées.

Axes de reherhes futures

Les méthodes présentées dans le Chapitre 2 peuvent être améliorées. Plus spéi�quement, il y a un

besoin d'améliorer les lassi�eurs binaires (forêts aléatoires). Les indies MDA ouplés à la subset

simulation doivent être implémentés. Une autre perspetive d'amélioration, en utilisant les indies

δSSi (Ak), est de mener un travail inluant la théorie des opules.
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Résumé étendu

Les DMBRSI introduits dans le Chapitre 3 présentent eux aussi plusieurs perspetives d'amélioration.

La grande partie des travaux sera onsarée à l'amélioration des indies Siδ en termes de rédution

de variane et d'appels au ode de alul. Le ouplage des estimateurs ave la subset simulation

doit aussi être perfetionné. Une perturbation basée sur l'entropie pourrait également être proposée,

mais des aluls plus poussés doivent être menés pour obtenir une solution du problème de minimi-

sation de la divergene de Kullbak-Leibler. Un autre axe serait de hanger la métrique/divergene.

Par ailleurs, une autre idée pourrait être la prise en ompte des dépendanes entre variables et de

perturber ette dépendane entre marginales via la théorie des opules.

Des perspetives plus larges sont à onsidérer, en partiulier l'utilisation de méthodes séquen-

tielles ouplées ave des méta-modèles (Bet et al. [9℄) est à étudier.

Réemment, Fort et al. [35℄ ont introduit de nouveaux indies de sensibilité pouvant être onsid-

érés omme une généralisation des indies de Sobol'. La notion de fontion de ontraste adaptée au

besoin est introduite. Cet indie doit être testé et omparé ave les DMBRSI dans un travail futur.
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Context, objetives and outline

On omputer experiments

Numerial simulation is the proess that allows to reprodue a physial phenomenon with a omputer.

This phenomenon is represented via a mathematial model, and this model is solved during a

omputation time.

The numerial simulation an be ostly, due to the time needed to prepare the set of inputs or

to the possibly large number of alulations needed. Moreover, the result of the simulation may

be unertain, thus this sienti� topi is often referred to as numerial experiments. The use of

simulation in oneption and safety of an industrial system equipment - two appliative domains of

interest in this thesis - has grown over the last deades.

Unertainty quanti�ation and sensitivity analysis

We brie�y present the general framework of our work: the study of a deterministi numerial model.

As explained before, a model is a mathematial representation of a omplex physial phenomenon.

This model reeives inputs and produes outputs (or responses). For the sake of simpliity, these

quantities will be onsidered as salar and ontinuous but other types ould be onsidered, modal

for instane. Given a ertain input value, the model produes a ertain output after omputation.

The deterministi framework is onsidered here, that is to say that a given set of input values always

produes the same output values.

Consider the quantity of interest. It might be possible that the experimenter is interested in a

quantity de�ned from one or several outputs. It is therefore of outmost importane to �rst de�ne

above all study the quantity of interest.

Some parameters (suh as physial values) are not preisely haraterized due to a lak of data

or variability for instane, therefore these parameters an be seen as random variables. Some

other inputs will be onsidered as known and modelled by deterministi values. Let us denote

X = (X1, ...Xd) the d−dimensional random vetor (with known density fX) of random (salar)

input variables of the numerial model. Let us also denote by t the p-dimensional vetor of de-

terministi input. Let us onsider without loss of generality, a single output Y ∈ R de�ned as

Y = G(X, t) where G is the deterministi model. The quantity of interest is Z or a funtion of

it. In the following, we will denote Y = G(X). Also, it is important to notie that in the whole

thesis, independent inputs will be onsidered, although the study of models with dependent inputs

is a major �eld of researh.

Figure 1 summarizes the referene framework for unertainty treatment (de Roquigny et al.

[30℄). The breakdown of the study in several steps is done as follows:
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Context, objetives and outline

Figure 1: Unertainty study referene framework

� Step A, problem spei�ation: the objetives are de�ned, as well as the model used, the

quantity of interest and the input variables (some of whih are onsidered unertain).

� Step B, quanti�ation of unertainty soures: the input variables onsidered unertain are

modelled by random distributions. This step is done ollaborating with experts and olleting

data points.

� Step C, propagation of unertainty soures: the quantity of interest is evaluated aording to

the unertainty on the input variables de�ned in step B.

� Step C', sensitivity analysis: the relative unertainty ontribution of eah input on the output's

unertainty is evaluated.

The generiness allows this framework to address numerous problems. This thesis will mainly fo-

uses on Step C', even if this step annot easily be separated from Step C.

Sensitivity analysis (SA) is de�ned by Saltelli et al. [89℄ as �the study of how the unertainty in

the output of a model an be apportioned to di�erent soures of unertainty in the model input�. It

may be used to determine the most ontributing input variables to an output behaviour. It an also

be used to determine non-in�uential inputs, or asertain some interation e�ets within the model.

The objetives of SA are numerous; one an mention model understanding, model simplifying or

fator prioritisation.

There are many appliation examples, for instane Makowski et al. [67℄ analyse, for a rop

model predition, the ontribution of 13 geneti parameters on the variane of two outputs. Another
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example is given in the work of Varet [99℄ where the aim of SA is to determine the most in�uential

inputs among a great number (around 60), for an airraft infrared signature simulation model.

In nulear engineering �eld, Auder et al. [5℄ study the in�uential inputs on thermohydraulial

phenomena ourring during an aidental senario, while Iooss et al. [50℄ and Volkova et al. [100℄

onsider the environmental assessment of industrial failities.

The �rst historial approah to sensitivity analysis is known as the loal approah. The impat of

small perturbations of the inputs on the output is studied. These small perturbations our around

nominal values (the mean of a random variable for instane). This is a ounterpart to the partial

derivatives of the model in ertain points of the input spae. Most of these methods (some of them

will be itemized in setion 1.3.2) make strong assumptions on the model and/or on the inputs (in

terms of linearity, normality, ...).

A seond approah, more reent due to the development of omputational power is known as

the global approah. The whole variation range of the inputs is therein onsidered. An appliative

introdution an be found in Iooss [49℄. Most tehniques (some of them will be de�ned in setion

1.3.1 and tested in setions 1.4 and 1.5) are developed in an independent approah (�model free�),

without making assumptions suh as linearity or monotony.

Strutural reliability

Consider the industrial problem of knowing if a struture, subjet to physial loads or onstraints,

goes undamaged or goes to a state of failure. This will be referred as strutural reliability. A

�trial and measures� approah might be possible, but an be di�ult to manage for safety or osts

reason. Within this ontext, omputer models are used in order to assess the safety of omplex

systems. These models are then used as an approximate representation of the reality, inluding

some mehanisms suh as �aw propagation, frition laws...

In order to ompletely use the model, unertainties on the model inputs (essentially physial

values) are modelled by random variables. The model is therefore representing the struture gifted

with a ertain toughness and the environment providing a load. Computation for a �xed set of

inputs allows to obtain a failure riterion leading to a binary response: for this set of inputs, the

struture fails or behaves soundly.

The fat that unertainties are modelled by random variables enables risk modelling as a failure

probability. This approah is more subtle than a deterministi approah where inputs are �xed to

nominal values (generally penalized).

One is interested in the fat that the value Y ∈ R given by the failure funtion G is smaller than

a given threshold k (usually 0): it is the failure riterion. The struture is failing for a given set of

input x if y = G(x) ≤ 0, where x = (x1, ..., xd) ∈ Rd
is a realization of X. The part of spae in whih

this event ours is alled failure domain, denoted Df . The surfae de�ned by {x ∈ Rd, G(x) = 0}
is alled limit-state surfae. The probability for the event to our is denoted Pf , failure probability.

One has:

Pf = P(G(X) ≤ 0) (1)

=

�

Df

fX(x)dx (2)

=

�

Rd

1G(x)≤0fX(x)dx (3)

= E[1G(X)≤0] (4)
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The omplexity of models and the possible great number of inputs make di�ult, in a general

ase, to ompute the exat value of Pf . However, it an be estimated (sine written under the form

of a mathematial expetation) with the help of several methods that will be itemized in setion 1.2.

The primer of strutural safety is to provide an estimation of Pf and some unertainty surrounding

this estimation. It an be used to answer the original question of the struture supporting the loads.

Context: omponent within nulear reator (CWNR)

This ase-study provided the initial motivation for this work. It fouses on the reliability and risk

analysis of a nulear power plant omponent. However the results of this thesis must be onsidered

as textbook exerises, whih an not be used to draw onlusions about the integrity or safety

assessment of nulear power plants.

During the normal operation of a nulear power plant, the omponent within nulear reator

(CWNR) is exposed to ageing mehanisms. In order to assess the integrity of the omponent, it has

been demonstrated that a postulated manufaturing �aw an withstand severe mehanial loads.

The CWNR mehanial model inludes three parts. Firstly, a simpli�ed representation of the

loading event, whih analytially desribes as funtions of the time, the temperature T , the pressure
and the heat transfer oe�ient between the environment and the surfae of the CWNR. Seondly,

a thermo-mehanial model of the CWNR thikness, inorporating the CWNR material properties

depending on the temperature. Lastly, an integrity model allowing to evaluate the noivity of a

manufaturing �aw, inluding di�erent variables: (a) a variable, h, summarizing the dimension of

the �aw, (b) a stress intensity fator, () the toughness depending on the temperature at the �aw

and the level of deterioration, whose disrepany with operation time is evaluated with some odi�ed

foreasting formulas. In pratie, the modelling of the CWNR may assign probabilisti distributions

to some physial soures of unertainty. In this manusript, a maximum of 7 input physial variables

will be onsidered as random. Table 1 summarizes the distributions of the independent physial

random inputs of the CWNR model. Table A.1 is a reminder of the inputs' densities.

Random var. Distribution Parameters

Thikness (m) Uniform a = 0.0075, b = 0.009

h (m) Weibull a = 0.02, sale= 0.00309, shape= 1.8

Ratio height/length Lognormal a = 0.02, ln (µ) = −1.53, ln (σ) = 0.55

Azimuth �aw (°) Uniform a = 0, b = 360

Altitude (mm) Uniform a = −5096, b = −1438

σ∆TT Gaussian µ = 0, σ = 1

σRes Gaussian µ = 0, σ = 1

Table 1: Distributions of the random physial variables of the CWNR model.

Also, for the numerial appliations over the CWNR model, the random input will be onsidered

as 3, 5 or 7 dimensional and will respetively orrespond to the 3, 5 and 7 �rst random variables

presented in Table 1.

Objetives

The aim of this dissertation is the development of sensitivity analysis tehniques when the quantity of

interest is a probability of exeedane of a given threshold (whih is equivalent to a failure probability
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in the �eld of strutural reliability). The onstraints of the CWNR ode are to be taken into aount.

The expeted magnitude of the failure probability is less than 10−5
. If possible, the methods must

be related to the estimation of Pf and must provide an estimation of the error made when estimating

sensitivity indies as well as an estimation of the error made when estimating Pf .

Outline

The following thesis is organised in four hapters.

The �rst hapter is an overview of both existing strategies for estimating failure probabilities and

methods of sensitivity analysis. In this hapter, states of the art for reliability and sensitivity analysis

(SA) tehniques will be separately developed. More preisely, three main families of reliability

tehniques will be studied: Monte-Carlo methods, strutural reliability methods and sequential

Monte-Carlo methods. Finally, two families of well-known sensitivity analysis tehniques will be put

to the proof on reliability test ases (whih are itemized in Appendix B). These tehniques show

some limitations, on�rming the need to develop SA methods foused on failure probabilities. A

table (Table 1.13) summarizing the presented methods is proposed, and a disussion on the meaning

of sensitivity analysis in the reliability ontext is onduted.

The seond hapter fouses on de�ning measures of sensitivity in order to produe a variable

ranking. More spei�ally, the use of random forests on a Monte-Carlo sample is proposed in the

�rst plae. Two importane measures derived from the random forests preditors are tested on the

usual ases. In the seond plae, a tehnique using a sample produed by sequential Monte-Carlo

methods is eliited. This last method is based on the departure between the marginal distribution

of an input and its equivalent given the step of the subset method.

The third hapter presents an original method to estimate the importane of eah variable on

a failure probability. This method fouses on the impat of perturbations upon the original input

densities fi. A general framework de�ning appropriate perturbations is elaborated, then sensitivity

indies are presented. An estimation tehnique of these indies that makes no further alls to the

model is given. The methodology is then tested on the usual ases.

The fourth hapter presents the appliation of the developed methods to the CWNR ase. Several

tunings will be studied to assess or in�rm the ability of the di�erent SA methods to identify in�uential

variables.
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Chapter 1

State of the art for reliability and

sensitivity analysis

1.1 Introdution

The outline of the hapter is the following: in Setion 1.2, a state of the art for reliability is proposed.

Several tehniques for estimating failure probabilities are presented. Then in Setion 1.3, a review

of Sensitivity Analysis (SA) is given. The appliation of a well-known SA method, Sobol' indies

(1.3.1.3) on a failure probability, is tested on numerous appliation ases in Setion 1.4. In Setion

1.5, the so-alled moment independent sensitivity measures (presented in Setion 1.3.1.4) are tested

within the reliability ontext. Next, Setion 1.6 proposes a synthesis of these states of the art.

Finally, Setion 1.7 disusses the meaning and objetives of sensitivity analysis when dealing with

failure probabilities.

1.2 State of the art: reliability and failure probability estimation

tehniques

This state of the art for reliability is widely inspired by the PhD thesis of Gille-Genest [41℄, Can-

naméla [22℄ (in Frenh) and Dubourg [33℄ (in English). In addition, monographs by Madsen et al.

[66℄ and Lemaire [60℄ have been used. In this setion, a state of the art for the estimation tehniques

of failure probabilities is detailed. Choie is set to present 3 families of methods.

� Monte-Carlo (MC) simulation methods: these tehniques are standard in statistis. The MC

methods are used to estimate an expetation. These are based upon an appliation of the

Strong Law of Large Numbers for estimation and on the Limit Central Theorem for error

ontrol. Several variane-redution tehniques are available in the literature. The most appro-

priate of them will be itemised in 1.2.1.

� Reliability methods: historially these methods ome from mehanial engineering. They

provide answers based upon a linear (FORM) or quadrati (SORM) approximation of the

failure surfae. This approximation is then used to estimate the failure probability. As far as

we know, error ontrol is not easily made. These methods are presented in 1.2.2.

� Subset simulation methods: sometimes also referred as partile methods, sequential MC or

splitting tehniques, these methods have been more reently developed. They are based upon

a deomposition of the objetive probability as a produt of onditional probabilities, that

27



1. State of the art for reliability and sensitivity analysis

are easier to estimate. These estimations are made running a large number of Monte-Carlo

Markov Chains (MCMC). Some tehniques will be presented in 1.2.3.

However, the partition must be quali�ed. In pratie, methods an be assoiated; for instane one

an �rst use FORM numerial approximation, then perform some importane sampling around the

most probable failing point. In the same way, most of Munoz-Zuniga's works [72℄ are devoted to a

strati�ed sampling tehnique (MC variane-redution method) ombined with diretional simulation.

1.2.1 Monte-Carlo methods

These methods allow the estimation of an expetation of form:

I = E[ϕ(X)] (1.1)

or on the integral form:

I =

�

E
ϕ(x)fX(x)dx (1.2)

where ϕ(.) is a funtion from E ⊂ Rd → R and X is a d−dimensional random vetor (with known

density fX). In a reliability framework, the funtion ϕ(.) is written as an indiator, 1G(X)≤k.

1.2.1.1 Crude Monde-Carlo method

Presentation of the estimator The main idea of this method is to generate a large number of

i.i.d. vetors with density fX, then to estimate I with the empirial mean of the N values. The

Strong Law of Large Numbers allows to get an unbiased estimator of I.

Î =
1

N

N∑

i=1

ϕ(xi) (1.3)

with given N and where xi
are i.i.d with fX. In the reliability ase, an unbiased estimator of Pf is:

P̂ =
1

N

N∑

i=1

1{G(xi)≤k} (1.4)

The variane of the estimator of E[ϕ(X)] is:

Var [Î ] =
1

N
Var[ϕ(X)] (1.5)

and it an be estimated by:

V̂ar [Î] =
1

N − 1

[
1

N

N∑

i=1

ϕ2(xi)− Î2

]
(1.6)

When ϕ(.) is an indiator funtion, as usual in strutural reliability studies, a simpli�ed expression

an be obtained:

Var [P̂ ] =
1

N
Pf (1− Pf ). (1.7)

Its lassial estimator is:

V̂ar [P̂ ] =
1

N
P̂ (1− P̂ ) (1.8)

Thanks to the Limit Central Theorem, one an build on�dene intervals around the estimator.
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Figure 1.1: Spae �lling omparison: Sobol's sequene (left) and uniform random sampling (right).

Advantages and drawbaks of the MC method This method makes no hypothesis on the

regularity of ϕ(.). The produed estimator is unbiased. Con�dene intervals an be obtain around

the estimator, whih are useful to quantify the preision of the latter. Furthermore, quality of the

estimation only depends on the sample size. This means that the MC method is independent of the

dimension of the problem, unlike other integration methods.

However, this tehnique needs a fair number of funtion alls to reah su�ient preision. A-

ording to the rule of thumb, to obtain a variation oe�ient of 10% on a 10−k
failure probability,

N = 10k+2
simulations are needed. This an be unrealisti in some appliations when dealing

with very low failure probabilities (< 10−6
). Furthermore, omputer models an be omplex and

time-onsuming.

Variane-redution The variane of the estimator dereases in Var[ϕ(X)]/N . Therefore a large

sample is needed to get a good estimation. Variane-redution tehniques onsist in reduing the

unertainty involved by the numerial integration tehnique, thus diminishing �utuations of esti-

mations around the searhed value.

In the referene books (see Rubinstein [85℄), numerous variane-redution tehniques an be

found. In a reliability ontext, suh methods are based on fousing the exploration of the sample

spae around the limit state (ie, the failure) surfae. In the following, we present three main methods.

1.2.1.2 Quasi Monte-Carlo Methods

Presentation of the method The idea beneath Quasi Monte-Carlo (QMC) method is to replae

the random sampling by quasi-random sequenes. These are deterministi sequenes having good

equirepartition properties. These sequenes are alled low-disrepany sequenes, or quasi-random

sequenes. Loosely speaking, disrepany is a measure of departure from the uniform distribution.

There exist a number of di�erent de�nitions (L∞, L2, modi�ed L2, . . . ). Examples of pseudo-random

sequenes as well as theoretial developments are given in Niederreiter [75℄. Figure 1.1 displays a

two-dimensional example of �better� spae �lling by a low-disrepany sequene (Sobol's sequene),

ompared with an uniform random sampling.
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QMC estimation of the desired quantity is obtained substituting in the MC estimator the random

samples by the pseudo-random samples. However, it is not possible to obtain a variane estimation of

the QMC estimator. Koksma-Hlakwa's inequality allows to bound the error made when integrating

with QMC method, depending on the hosen sequene and on ϕ(.)'s regularity.

Reliability ase QMC methods are not well adapted for strutural reliability. The main issue

when estimating small failure probabilities by MC is to get �extreme� samples (within the distribution

tail) leading to the failure event, rather than getting evenly distributed samples. However, these

methods will be applied in Setion 1.4 to derease the number of funtion alls when estimating

Sobol' indies (whih are de�ned in Setion 1.3.1.3).

1.2.1.3 Importane sampling

Presentation of the method The basi idea of importane sampling is to modify the sampling

density. The estimator is then obtained by inluding a density ratio. The aim is to foster sampling

in signi�ant regions. In a reliability ontext, this is simply inreasing the number of failure samples.

Let us denote f
X̃

a density seleted by the pratitioner. It will be referred to as the instrumental

density. The problem rewrites as follows:

I =

�

E
ϕ(x)fX(x)dx (1.9)

=

�

E
ϕ(x)

fX(x)

f
X̃
(x)

f
X̃
(x)dx (1.10)

= E
X̃

[
ϕ (X)

fX(x)

f
X̃
(x)

]
(1.11)

where E
X̃
is the expetation when X is of density f

X̃
. The estimation is then made by:

ÎIS =
1

N

N∑

i=1

ϕ(xi)
fX(x

i)

f
X̃
(xi)

(1.12)

where xi
are i.i.d with density f

X̃
. One an also get the variane of the estimator:

Var(ÎIS) =
1

N
Var

X̃

[
ϕ(X)

fX(X)

f
X̃
(X)

]
(1.13)

where Var

X̃
is the variane when X follows density f

X̃
. It should be notied that the support of f

X̃

must be inluded within the support of the initial density fX. Otherwise, the estimator is biased.

This tehnique does not onsistently provide a variane redution. A given instrumental density

f
X̃
useful only if:

Var

X̃

[
ϕ(X)

fX(X)

f
X̃
(X)

]
< VarX[ϕ(X)] (1.14)

Minimal variane is obtained with the following optimal density:

fX∗(x) =
|ϕ(x)|fX(x)

�

|ϕ(y)|fX(y)dy
(1.15)

However, the denominator on the latter is di�ult to estimate as it boils down to I in the ase of a

positive funtion ϕ(.). Choosing of a well-�tted instrumental density is a problem in itself. Chapter

2 of Cannaméla [22℄ provides a state of the art of seleting a quasi-optimal instrumental density.
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Reliability ontext The estimator of Pf is:

P̂IS =
1

N

N∑

i=1

1{G(xi)≤k}
fX(x

i)

f
X̃
(xi)

(1.16)

Thus the optimal density an be rewritten as:

fX∗(x) =
1{x∈Df }fX(x)
�

Df
fX(y)dy

=
1{x∈Df}fX(x)

Pf
= fX(x|Df ) (1.17)

This density is intratable in pratie, Pf being the quantity of interest. Choie of a good instru-

mental density is therefore a problem in reliability as well. One an quote hapter 5 of Munoz

Zuniga [72℄ in whih an adaptive and non parametri tehnique for instrumental density seletion

(adapted to this reliability ontext) is presented. Additionally, Pastel [79℄ developed an interesting

non-parametri adaptive tehnique, still within the reliability framework.

1.2.1.4 Diretional sampling

In pratie this tehnique is spei� to strutural reliability studies.

Priniple First, the random input vetor is transformed into a random vetor for whih all om-

ponents are standard Gaussian random variables. This is also referred as transforming the physial

spae into the standard Gaussian spae (sometimes referred to as U-spae). Suh an isoprobabilisti

transformation T whih turns the random vetor X of density fX into a random vetor whose all

omponents are independent standard Gaussians. Given X = (X1, ...,Xd) the random input vetor,

one obtains U = (U1, .., Ud) = T (X) where Ui, i = 1, ..., d are independent standard Gaussians. Let

us denote:

H(u) = G(T−1(u)) = G(x). (1.18)

Several isoprobabilisti transformations exist. Nataf, generalized Nataf and Rosenblatt transforma-

tions (see Lebrun and Dutfoy [58, 59℄) are the most adapted. The latter is developed in Appendix

C. One the transformation is done, the quantity of interest an be rewritten as:

Pf = P(H(U) ≤ k). (1.19)

The main idea of this method is to generate diretions from the enter of the standard Gaussian

spae in a uniform and independent way. Then, the failure funtion is omputed along the diretions.

Given the diretion, this allows a onditional estimation of the failure probability. Vetor U an be

rewritten as a produt:

U = RA

with R ≥ 0, R² following a χ2
distribution with d degrees of freedom and A an uniform random

variable on the unit sphere Ωd, independent of R. Denoting fA the uniform density on Ωd, one an

rewrite the failure probability onditionally to the diretions:

Pf =

�

Ωd

P(H(Ra) ≤ k)fA(a)da (1.20)
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Figure 1.2: 2-dimensional illustration of diretional sampling

The diretional sampling probability failure estimator thus writes:

P̂dir =
1

N

N∑

i=1

P(H(Rai) ≤ k) (1.21)

where ai are N random independent uniform diretions on Ωd. The variane of the estimator is:

Var[P̂dir] =
1

N

[
E[P(H(RA) ≤ k))2]− P 2

f

]
(1.22)

Computation of P(H(Rai) ≤ k) In pratie, one does not have an expliit expression for H(.).
It is therefore neessary to use the G(T−1(.)) form to get the roots of equation H(Rai) = k. If r is
the only root of the equation, then:

P(H(Rai) ≤ k) = 1− χ2
d(r

2)G(T (0)) ≥ 0. (1.23)

If several roots exist (ri, i = 1, . . . , n), one has:

P(H(Rai) ≤ k) =
∑

i

(−1)i+1(1− χ2
d(r

2
i )) if G(T (0)) ≥ 0. (1.24)

A root �nding method must be used (the simplest being the dihotomi method). One an �x a

bound beyond whih the failure probability is onsidered to be negligible. Figure 1.2 illustrates

diretional simulation's priniple in two dimensions. Isoprobability ontours are plotted in grey, the

limit-state surfae is plotted in red. The dashed lines staring from the enter are the diretions ai.
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1.2.2 Strutural reliability methods

1.2.2.1 Reliability indies

Reliability indies give indiations about the relative weights of input parameters in the whole

reliability of the onsidered struture(they are also sometimes alled safety index). They allow a

omparison of several setups possible. The larger the index, the safer the struture. In the following,

two indies are presented.

Hasofer-Lind index Proposed by Hasofer and Lind in 1974 [43℄, it is an exat geometri index,

invariant with respet to the geometry of the limit state surfae. It is de�ned in the Gaussian

standard spae. Let us de�ne the most probable failure point as the losest failure point to the

origin of the standard spae (the origin of the standard spae is onsidered outside of the failure

domain). Suh a point is also referred as a design point. Assuming the design point is unique, one

an de�ne the Hasofer-Lind index as the distane between the origin and the design point:

βHL = min
H(u)=0

(uTu)1/2 (1.25)

Algorithms to �nd suh design points are numerous, one an quote the Hasofer-Lind-Rakwitz-

Fiessler algorithm [82℄ and its improved version iHLRF (Zhang and Der Kiureghian, [102℄). One an

also quote a work arried out at EDF R&D about testing the quality of a design point (Dutfoy and

Lebrun,[34℄). Further details on design point �nding algorithms are given in setion 1.2.2.2. One

should note that an estimation of the Hasofer-Lind index does not require an estimation of Pf but

only an estimated design point.

Generalized reliability index The generalized reliability index was proposed by Ditlevsen in

1979 [32℄ to take aount of the urvature of the failure surfae around the design point. De�ning

a reliability measure γ by integrating a weight funtion (in pratie the d-dimensional standard

Gaussian distribution) over the safe set S:

γ =

�

S
ϕddS. (1.26)

The generalized reliability index is de�ned as a monotonially inreasing funtion of γ:

βG = Φ−1(γ) (1.27)

where Φ−1
is the inverse umulative distribution funtion of the standard Gaussian. One an estimate

the index by:

β̂G = Φ−1(1− P̂ ) (1.28)

where P̂ is an estimation of the failure probability (obtained for instane through MC integration or

by FORM/SORM, see setion 1.2.2.2). This index equals the Hasofer-Lind one if the failure surfae

is an hyperplane in the standard Gaussian spae. Finally, the estimation of this index requires an

estimation of the failure probability Pf .

1.2.2.2 FORM-SORM methods

The First Order Reliability Method (FORM) and Seond Order Reliability Method (SORM) are

estimation tehniques for a failure probability based upon integration of an approximation of the

failure surfae. In pratie, they are onsidered as a standard solution in strutural reliability sine

they are not ostly, easy to understand and to implement.

These methods proeed in four steps:
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� transformation of the input spae;

� design point searh;

� approximation of the limit-state surfae by an hyperplane (FORM) or a quadrati surfae

(SORM);

� failure probability estimation from the limit-state approximation.

Figure 1.3 graphially summarises the ideas of FORM/SORM.

Figure 1.3: Illustration of FORM/SORM

Transformation of the input spae It is an isoprobabilisti transformation as desribed in

setion 1.2.1.4. These tehniques are reminded in appendix B.

Design point searh One within the standard Gaussian spae, �nding the design point requires

to solve the following optimization problem:

u∗ = min
H(u)=0

(utu) (1.29)

This is a ruial step sine it is needed to make as few funtion alls as possible, while it is required

to �nd all the design points. The objetive funtion is quadrati and onvex, thus the minimization

di�ulties will ome from the onstraints (H(u) = 0). Let us make a distintion between loal and

global optimization methods.
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Loal methods Loal minima searh is e�ient if one has an expliit expression of the

gradient of H. This is seldom the ase in industrial appliations and one has to use approximations

based upon �nite di�erenes. These approximations may be ostly in terms of funtion alls, and

they an lead to a loss of onvergene of the algorithms. Most algorithms searh for the optimum u∗

in an iterative way. The idea is, starting from a given point u(k), to �nd the best desent diretion

d(k) and the best length of the step α(k)
:

u(k+1) = u(k) + α(k)d(k). (1.30)

The iteration an be followed by a projetion.

Numerous methods are desribed in Lemaire [60℄, whih are divided in 4 main ategories : zero

order methods, �rst order methods, seond order methods and hybrid methods. Zero order methods

(dihotomy for instane) does not require a omputation of the gradient. However their onvergene

is slow. In the reliability ase, this implies a large number of funtion alls. Thus these zero order

methods are not adapted to reliability problems onsidered in this thesis

Here is presented the �rst order Hasofer-Lind-Rakwitz-Fiessler (HL-RF) algorithm. It has been

developed spei�ally for reliability studies. Its onvergene is not assured but the method is e�etive

in many ases. It is worth notiing that the algorithm has been adapted to led to onvergene

improvements (Abdo and Rakwitz [1℄). The iteration is as follows:

u(k+1) = (u(k)tβ(k))β(k) − H(u(k))

||∇H(u(k))||β
(k)

with β(k) =
∇H(u(k))

||∇H(u(k))|| (1.31)

Global methods If the limit-state surfae presents several design points, the previously de-

sribed algorithms may not identify these design points. Der Kiureghian and Dakessian [31℄ proposed

to fore the onvergene of the HL-RF algorithm to a new design point by disturbing the viinity of

the previously found design point.

Approximation of the limit-state surfae FORM method replaes the limit-state surfae by a

hyperplane tangent at the design point. A loss of preision depending on the form of the limit-state

surfae at the design point ours. If the limit-state surfae is lose from the hyperplane, this method

provides good preision ompared to the needed number of funtion alls. The linear approximation

writes as follows:

∇H(u)t|u=u∗(u− u∗) = 0 (1.32)

The SORMmethod replaes the limit-state surfae by a seond-order (quadrati) hypersurfae. Suh

a method requires the estimation of the urvature of the limit-state surfae at the design point u∗.
Several tehniques are provided in Lemaire [60℄. The key message is that the use of SORM over

FORM is justi�ed when it is known that the surfae is almost quadrati.

Failure probability estimation In the FORM approximation, one uses the Hasofer-Lind relia-

bility index presented in setion 1.2.2.1 and estimates Pf with:

P̂FORM = 1− Φ(βHL) (1.33)

SORM approximation is a more omplex problem, for whih an asymptoti approximation was

provided by Breitung [18℄.
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On the geometri approximations FORM/SORM tehniques are popular methods in the do-

main of strutural reliability, beause a few funtion alls are needed to get an estimation of Pf .

Also, FORM is easy to understand and to implement. However, a signi�ant error an be made

when using FORM. Consequently, these methods should only be used when it is known that the

limit-state surfae has a given geometrial shape (almost hyperplane or almost quadrati). Suh an

information is not always available.

1.2.3 Subset simulation

1.2.3.1 Introdution

Subset simulation methods are based upon a division of the failure probability in a produt of

onditional probabilities. These are larger therefore easier to estimate. Let us onsider a sequene

of M + 1 thresholds T suh as:

T = {+∞, t1, ..., tM = 0}
and let us also de�ne the sequene of nested subsets (also sometimes referred to as intermediate

failure events):

Ak = {x|G(x) < tk}.
One has:

P [x ∈ Ak] =

k∏

i=1

P [x ∈ Ai|x ∈ Ai−1]

and one an rewrite Pf as:

Pf = P [x ∈ AM ] =
M+1∏

i=1

P [x ∈ Ai|x ∈ Ai−1] (1.34)

thus the estimation of Pf is redued to the estimation of the onditional failure probabilities. The

name �subset simulation� has been introdued by Au and Bek [4℄. For the sake of simpliity, let us

denote:

P(Ak) = P [x ∈ Ak]

and

P(Ak|Ak−1) = P [x ∈ Ai|x ∈ Ai−1] .

The algorithm �rst step is to estimate P(A1) by standard Monte Carlo simulation. One has:

P̂ (A1) =
1

N

N∑

k=1

1{G(xi)<t1}

where xi
are i.i.d. to f . MCMC tehniques are thereafter used to estimate the onditional failure

probabilities P(Ak|Ak−1), k = 2, . . . ,M . Let us denote:

f(x|Ai) =
f(x)1{G(x)<ti}

P (Ai)
(1.35)

the onditional density of x given that the i−th threshold has been reahed. The goal of the

algorithms displayed in the following is to sample aording to this objetive distribution. As the

denominator is an unknown quantity, indiret sampling of the objetive distribution is needed, whih

is pratially made using Monte Carlo Markov Chains (MCMC).
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1.2.3.2 Algorithm

A so-alled modi�ed Metropolis algorithm is presented in the Au and Bek's [4℄ original artile. The

modi�ation is operated to allow the pratitioner to deal with high-dimensional densities. Let us

�rst reall the Metropolis algorithm.

Metropolis algorithm Let us denote a proposal density p∗(ǫ|x), a joint d−dimensional density,

entred in x with a symmetry property p∗(ǫ|x) = p∗(x|ǫ). We are interested in the prodution of

the sample x(i+1)
, lying in the subset Ak. It is generated starting from the initial sample x(i) ∈ Ak

as follows:

� Sampling of the andidate sample x̃: ǫ is simulated aording to p∗(ǫ|x(i)). Ratio r =
f(ǫ)/f(x(i)) is omputed. The andidate sample is x̃ = ǫ with probability min(1, r) and

stays x̃ = x(i)
with probability 1−min(1, r).

� Aeptane/rejetion of the andidate x̃: one heks that x̃ lies within the interest zone Ak.

If G(x̃) < sk then x(i+1) = x̃. Else, x(i+1) = x(i)
.

Aording to the authors, this algorithm is not robust to the large dimension, given a high rejetion

rate. This rejetion rate implies a high orrelation within the produed samples, thus reduing the

e�ieny of the simulation proess. The authors then propose a modi�ed Metropolis algorithm to

ope with the simulation of random vetors of high dimension.

Modi�ed Metropolis algorithm For all dimensions j = 1, . . . , d let us denote p∗j(ǫ|xj), a

1−dimensional proposal density, entred in xj with a symmetry property p∗j(ǫ|xj) = p∗j(xj |ǫ). The
sample x(i+1)

, lying in the subset Ak, is generated starting from the initial sample x(i) ∈ Ak as

follows:

� Sampling of the andidate sample x̃: for eah omponent j, let us sample ǫj aording to

p∗j(ǫ|x
(i)
j ). Ratio rj = fj(ǫ)/fj(x

(i)
j ) is omputed. Candidate's j−th omponent is thus x̃j = ǫj

with probability min(1, rj) and is x̃j = x
(i)
j with probability 1−min(1, rj).

� Aeptane/rejetion of the andidate x̃: one heks that x̃ lies within the interest zone Ak.

If G(x̃) < sk then x(i+1) = x̃. Else, x(i+1) = x(i)
.

The authors show that the Markov hain generated through this algorithm has stationary distri-

bution f(x|Ak). The hoie of proposal density is important, the authors state that the method is

more sensible to the spread of the proposal densities than to their strutural form (e.g., Gaussian,

gamma, et.). Based on this observation, the authors reommend to use uniform densities.

On the threshold hoie The authors aknowledge that the hoie of the threshold is essential

in the simulation proess. Thus, their advie is to hoose an adaptive hoie of the threshold so that

the onditional probabilities P(Ak|Ak−1) are �xed.

1.2.3.3 Theoretial results and strategies

Cérou et al. [23℄ present, from a theoretial point of view, two strategies to estimate small failure

probabilities. The di�erene between these two methods lies in the adaptive seletion of the threshold

for the seond.
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Fixed levels algorithm The authors onsider a transition Markov kernel K on Rd
whih is

f -symmetri (thus f -invariant):

f(dx)K(x, dy) = f(dy)K(y, dx).

A Metropolis-Hasting kernel is proposed (as in Au and Bek [4℄). The authors then onsider a

Markov hain (Xk)k≥0 suh that the initial density is f . The generation algorithm is as follows: a

partile loud of size N is sampled, one has X
(j)
0 ∼ f , j = 1, . . . , N . For eah level k = 1, . . . ,M ,

let us denote Ik+1 the indies of the partiles that reah the level of interest:

Ik+1 = {j|X(j)
k ∈ Ak+1}

onditional probability P(Ak+1|Ak) is estimated by p̂k+1 =
|Ik+1|
N . For the j of Ik+1, X̃

(j)
k+1 = X

(j)
k

is proposed. For the j that are not in Ik+1, X̃
(j)
k+1 is randomly hosen (uniformly) as a opy of one

of the partile in Ik+1. Thus eah partile of

(
X̃k+1

)
lies in Ak+1. Then for eah partile indexed

by j = 1, . . . , N , transition is twofold. First step is to mutate (or shake) the partile by applying

(potentially several times) kernel K, produing the andidate partile Z:

Z ∼ K(X̃
(j)
k+1, .)

The seond step is a post-mutation seletion X
(j)
k+1 = Z if Z ∈ Ak+1, X

(j)
k+1 = X̃

(j)
k+1 else. The partile

loud is then distributed aording to f(x|Ak+1). Failure probability Pf is then estimated by the

produt of the estimators of the onditional probabilities:

P̂ =
M∏

k=1

p̂k (1.36)

The authors show the asymptoti normality of P̂ .

√
N
P̂ − Pf

Pf

L−−−−→
N→∞

N (0, σ2) (1.37)

where σ2 has a omplex expression, given in setion 2.3 of Cérou et al. [23℄.

Adaptive levels algorithm The estimator produed by the �xed levels algorithm reahes minimal

variane when the levels are evenly spaed (in probability), see Lagnoux [56℄. The authors then

propose another algorithm �xing the levels on the �y (adaptively). Let us onsider a number

α ∈ [0, 1], suess rate between two levels. At eah step, the threshold set is the α-quantile (or the
αN partiles whih G(.) values are the smallest) of the urrent sample. The algorithm stops when

the α-quantile of the sample is lower than 0. One noties that the number of steps is a random

variable. However, for a loud size N large enough, the number of steps is:

ns = ⌊ log Pf

logα
⌋ (1.38)

The authors also show the asymptoti normality of P̂ .

√
N
(
P̂ − Pf

) L−−−−→
N→∞

N (0, σ2) (1.39)

where σ2 = P 2
(
ns

1−α
α + 1−r0

r0

)
with r0 = Pα−ns

. The estimator P̂ is biased. This bias is positive

and dereases with a

1
N rate. However, the adaptive algorithm is more e�ient than the �xed levels

algorithm, in terms of mean square error (MSE).
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1.3. Sensitivity analysis (SA)

On the tuning of parameters In the following, the adaptive algorithm presented in Cérou et

al. [23℄ will be used. Several parameters are yet to be tuned: N , α and the Markov kernel (or

proposal density) hoie. Balesdent et al. [7℄ also reommend to tune the number of appliation of

the kernel.

� For the α, authors of Cérou et al. [23℄ reommend to take α of order 0.75. On the other hand,

authors of Au and Bek [4℄ propose to take α of order 0.1. Unless otherwise mentioned, we

have hosen to take α = 0.75.

� The hoie ofN depends on the studied problem and on the omplexity of the studied numerial

model. Unless otherwise mentioned, we have hosen to take N = 104.

� The hoie of the Markov kernel (or proposal density) is the most ruial point. Both artiles

[4℄ and [23℄ let the pratitioner hoose the parameter aording to the problem. The hosen

density will be given for eah example.

1.3 Sensitivity analysis (SA)

In this setion, the main methods of SA will be developed. The motivations have been presented

in page 22. Additionally, a deeper disussion of these motivations, that proposes new guidelines for

onduting SA for failure probabilities is provided in setion 1.7.

1.3.1 Global sensitivity analysis

Global SA methods are used to identify the inputs ontributing to the output variability, onsidering

the whole input support. The methods presented in this subsetion, whih is inspired by Iooss [49℄,

are divided into four main lasses. The �rst will be the sreening methods, designed to deal with

a large number of inputs. The seond lass is omposed of the methods based on the analysis of

linear models, where a linear model is �tted and its by-produts are used to perform SA. The third

lass ontains methods based on a variane deomposition of the output. Finally, some moment-

independent methods will be presented in the fourth lass.

1.3.1.1 Sreening methods

Sreening methods are based on a disretisation of the inputs in levels, allowing a quik exploration

of the ode behaviour. These methods are adapted to a fair number of inputs; pratie has often

shown that only a small number of inputs are in�uential. The hoie has been made to present

Morris method [71℄. The aim of this type of method is to identify the non-in�uential inputs in a

small number of model alls. The model is therefore simpli�ed before using other SA methods, more

subtle but more ostly.

The method of Morris allows to lassify the inputs in three groups: inputs having negligible

e�ets; inputs having linear e�ets without interations and inputs having non-linear e�ets and/or

with interations. The method onsists of disretising the input spae for eah variable, then per-

forming a given number of OAT designs (one-at-a-time design of experiments, in whih only one

input varies). Suh designs of experiments are randomly hosen in the input spae, and the variation

diretion is also random. The repetition of these steps allows the estimation of elementary e�ets

for eah input. From these e�ets are derived sensitivity indies.

Let us denote r the number of OAT designs (Saltelli et al. [89℄ propose to set parameter r
between 4 and 10). Let us disretise the input spae in a d−dimensional grid with n levels per
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input. Let us denote E
(i)
j the elementary e�et of the j−th variable obtained at the i−th repetition,

de�ned as:

E
(i)
j =

G(X(i) +△ej)−G(X(i))

△ (1.40)

where △ is a predetermined multiple of

1
(n−1) and ej a vetor of the anonial base. Indies are

obtained as follows:

� µ∗j =
1

r

r∑

i=1

|E(i)
j | (mean of the absolute value of the elementary e�ets),

� σj =

√√√√1

r

r∑

i=1

(
E

(i)
j − 1

r

r∑

i=1

E
(i)
j

)2

(standard deviation of the elementary e�ets).

The interpretation of the indies is the following:

� µ∗j is a measure of in�uene of the j−th input on the output. The larger µ∗j is, the more the

j−th input ontributes to the dispersion of the output.

� σj is a measure of non-linear and/or interation e�ets of the j−th input. If σj is small,

elementary e�ets have low variations on the support of the input. Thus the e�et of a

perturbation is the same all along the support, suggesting a linear relationship between the

studied input and the output. On the other hand, the larger σj is, the less likely the linearity

hypothesis is. Thus a variable with a large σj will be onsidered having non-linear e�ets, or

being implied in an interation with at least one other variable.

Then, a graph linking µ∗j and σj allows to distinguish the 3 groups.

1.3.1.2 Methods based on the analysis of linear models

If a sample of inputs and outputs large enough is available, it is possible to �t a linear model

explaining the behaviour of Y given the values of the random vetor X. Global sensitivity measures

de�ned through the study of the �tted model are available and presented in the following. Statistial

tehniques allow to on�rm the linear hypothesis. If the hypothesis is rejeted, but that the monotony

of the model is on�rmed, one an use the same measures using a rank transformation. Main indies

are:

� Pearson orrelation oe�ient:

ρ(Xj , Y ) =

∑N
i=1(X

(i)
j − E(Xj))(Yi − E(Y ))

√√√√
N∑

i=1

(
X

(i)
j − E(Xj)

)2
√√√√

N∑

i=1

(Yi − E(Y ))2

. (1.41)

It an be seen as a linearity measure between variable Xj and output Y . It equals 1 or −1 if the
tested input variable has a linear relationship with the output. If Xj and Y are independent,

the index equals 0.

40



1.3. Sensitivity analysis (SA)

� Standard Regression Coe�ient (SRC):

SRCj = βj

√
Var(Xj)

Var(Y )
(1.42)

where βj is the linear regression oe�ient assoiated to Xj . SRC
2
j represents a share of vari-

ane if the linearity hypothesis is on�rmed.

� Partial Correlation Coe�ient (PCC):

PCCj = ρ(Xj − X̂−j , Y − Ŷ−j) (1.43)

where X̂−j is the predition of the linear model, expressing Xj with respet to the other inputs

and Ŷ−j is the predition of the linear model where Xj is absent. PCC measures the sensitivity

of Y to Xj when the e�ets of the other inputs have been anelled.

1.3.1.3 Funtional deomposition of variane : Sobol' indies

When the model is non-linear and non-monotoni, the deomposition of the output variane is still

de�ned and an be used for SA. Let us have f(.) a square-integrable funtion, de�ned on the unit

hyperube [0, 1]d. It is possible to represent this funtion as a sum of elementary funtions (Hoe�ding

[46℄):

G(X) = G0 +

d∑

i=1

Gi(Xi) +

d∑

i<j

Gij(Xi,Xj) + · · ·+G12...d(X) (1.44)

This expansion is unique under ondition (Sobol' [92℄):

� 1

0
Gi1...is(xi1 , ..., xis)dxik = 0 , 1 ≤ k ≤ s, {i1, ..., is} ⊆ {1, ..., d} .

This implies that G0 is a onstant.

In the SA framework, let us have X = (X1,...,Xd), a random vetor where the variables are

mutually independent and Y = G(X), output of a deterministi ode G(). Thus a funtional

deomposition of the variane is available, often referred as funtional ANOVA:

Var[Y ] =

d∑

i=1

Di(Y ) +

d∑

i<j

Dij(Y ) + · · ·+D12...d(Y ) (1.45)

where Di(Y ) = Var[E(Y |Xi)], Dij(Y ) = Var[E(Y |Xi,Xj)] − Di(Y ) − Dj(Y ) and so on for higher

order interations. The so-alled �Sobol' indies� or �sensitivity indies� (Sobol' [92℄) are obtained

as follows:

Si =
Di(Y )

Var[Y ]
, Sij =

Dij(Y )

Var[Y ]
, · · ·

These indies express the share of variane of Y that is due to a given input or input ombination.

The number of indies growths in an exponential way with the number d of dimension: there are

2d − 1 indies. For omputational time and interpretation reasons, the pratitioner should not
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estimate indies of order higher than two. Homma and Saltelli [47℄ introdued the so-alled �total

indies� or �total e�ets� that writes as follows:

STi
= Si +

∑

i<j

Sij +
∑

j 6=i,k 6=i,j<k

Sijk + ... =
∑

l∈#i

Sl (1.46)

where #i are all the subsets of (1...d) inluding i. In pratie, when d is large, only the main e�ets

and the total e�ets are omputed, thus giving a good information on the model sensitivities. Main

methods for the estimation of suh indies are presented in setion 1.4. These indies will be tested

in the reliability framework.

1.3.1.4 Moment independent importane measure

In this part, 4 indies that have a moment independene property are presented. Most of them are

based on the idea that the importane measure is a distane or a divergene between the distribution

of the output (denoted fY0) and the distribution of the output given a ondition on one or several

inputs. Suh measures are moment independent, meaning they do not require any omputation of

the moments of the output. Furthermore, suh indies might be suited when the variane poorly

represents the variability of the distribution (for instane for multimodal distributions)

Kullbak-Leibler divergene index (Park and Ahn) In order to assess the importane of

a variable, Park and Ahn [78℄ proposed to use the Kullbak-Leibler (KL) divergene between the

distribution of the output, and another distribution fYi
. Reall that between two pdf p and q the

KL divergene is de�ned as:

KL(p, q) =

� +∞

−∞
p(y) log

p(y)

q(y)
dy if log

p(y)

q(y)
∈ L1(p(y)dy). (1.47)

The proposed sensitivity index reads as follows:

I(i; 0) =

�

R

fYi
(y) log

[
fYi

(y)

fY0(y)

]
dy (1.48)

and an be interpreted as �the mean information for disrimination in favor of fYi
against fY0�. It

is lear that the larger the index, the more important the variable. The authors then propose some

input distributional hanges.

Entropy index (Krzykaz-Hausmann) Krzykaz-Hausmann [55℄ proposes a sensitivity index

based on entropy arguments that is de�ned as follows. First reall the entropy of an output:

H(Y ) = −
�

R

fY0(y) log fY0(y)dy (1.49)

that an be interpreted as �the measure of the total unertainty of Y �. Then, one an de�ne the

expetation of the onditional entropy of Y given Xi:

H(Y |Xi) = EXi
[H(Y |Xi)] (1.50)

Given these two quantities, the author de�nes the following sensitivity index:

ηi =
H(Y )−H(Y |Xi)

H(Y )
= 1− H(Y |Xi)

H(Y )
(1.51)

42



1.3. Sensitivity analysis (SA)

whih is �a representation of the information learnt on Y based on the knowledge of Xi� (Auder and

Iooss [6℄).

Relative entropy index (Liu et al.) Liu et al. [65℄ introdue an index representing how muh

the output varies in distribution when an input is �xed to its mean. Reall that the distribution of

the output Y is denoted fY0 . Then, one an �x one input Xi to its mean, namely x̄i. The pdf of

Y after suh a hange is denoted fYi
. The sensitivity index an then be de�ned as follows, using a

modi�ed version of KL divergene:

KLi(fYi
|fY0) =

�

R

fY0(y(x1, . . . , xi, . . . , xn))

∣∣∣∣log
fYi

(y(x1, . . . , x̄i, . . . , xn))

fY0(y(x1, . . . , xi, . . . , xn))

∣∣∣∣ dy (1.52)

The larger the index is, the more in�uential the input is. The authors present their index as a total

e�et of Xi. Another measure of importane is obtained by setting all the input but Xi to their

mean, but will not be presented here. It is worth notiing that the authors derived their index in

the reliability ase, where the quantity of interest is a failure probability. Denoting Pf the original

failure probability and P̄f the failure probability when Xi is �xed at x̄i, the index beomes:

KLi(P̄f |Pf ) = P̄f log
P̄f

Pf
+
(
1− P̄f

)
log

1− P̄f

1− Pf
(1.53)

A moment free importane measure (Borgonovo) The objetive of the work of Borgonovo

[13℄ was to propose an importane measure without referene to any partiular moment of the output.

Reall that the distribution of the output Y is denoted fY0 and denote fY/Xi
the onditional density

of the output given that one of the inputs (Xi) is �xed to a given value, say x∗i , one an de�ne the

density shift between these two densities:

s(Xi) =

�

|fY0(y)− fY/Xi
(y)|dy. (1.54)

This quantity an be seen as the area between the two pdfs. In order to take the whole range of

variation of Xi, one de�nes the expeted shift as follows:

EXi
[s(Xi)] =

�

fXi
(xi)

[
�

|fY0(y)− fY/Xi
(y)|dy

]
dxi. (1.55)

Thus the moment independent measure is de�ned as:

δi =
1

2
EXi

[s(Xi)] (1.56)

and it represents the normalised expeted shift in the distribution of Y due to Xi. It is worth

notiing that the author extends the de�nition of the sensitivity index to any group of inputs. Suh

an index is denoted δi1,...,ir . The sense of δi proposed by the author is to determine �the model

input that, if determined, would lead to the greatest expeted modi�ation in the distribution of Y�.

Additionally, one an present the sensitivity measure of Y to Xj onditionally to Xi as follows:

δj|i =
1

2

�

fXi
(xi)fXj

(xj)

[
�

|fY/Xi
(y)− fY/Xi,Xj

(y)|dy
]
dxidxj

whih represents the sensitivity of Y to Xj when Xi is determined.

The properties of δi are presented:
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� 0 ≤ δi ≤ 1.

� If Y does not depend on Xi, then δi = 0.

� δ1,..,d = 1.

� If Y depends on Xi but independent of Xj , then δij = δi.

� Any bidimensional index is bounded: δi ≤ δij ≤ δi + δj|i.

� The indies are invariant to any monotoni transformation of the output (sale invariant).

This index, having useful properties, will be tested in 1.5. The importane measure de�ned in

Borgonovo [13℄ has been extended in Borgonovo et al. [14℄, where a new omputation proedure

is proposed. Additionally, Caniou [21℄ proposes an index estimation proedure, based on kernel

smoothing estimation of the onditional pdfs then on a quadrature estimation of the shift. Another

proedure based on kernel smoothing of the dfs is tested as well. This index will be tested in the

reliability ontext in setion 1.5.

1.3.2 Reliability based sensivity analysis

The reliability ommunity produed spei� methods to estimate a failure probability, as seen for

instane in setion 1.2.2. The question of the sensitivity of the failure probability to the input pa-

rameters arose in this ontext. Spei� SA methods have been produed to meet these expetations.

In this subsetion methods based on partial derivatives are presented, as well as methods based on

the searh of a design point in the standard spae. The referene here is hapter 6 of Lemaire [60℄.

1.3.2.1 Sensitivity measure based on partial derivatives

The main idea of this measure is to estimate the sensitivity of the probability of failure to a parameter.

From the formulation of the Hasofer-Lind index (see setion 1.2.2.1), one has:

Pf ≃ 1− φ(βHL)

Denoting by pi the parameter (mean, standard deviation, ...) of an input distribution, then the

index is:

∂Pf

∂pi
=

∂Pf

∂βHL

∂βHL

∂pi
= −φ(βHL)

∂βHL

∂pi
|u∗

(1.57)

Suh an index annot be used to ompare parameters. Indeed, the value of the derivative depends

on the way to express the parameter pi (it depends for instane of its unit), leading to some sale

e�et. To allow a omparison between parameters, one introdues the elastiity Lemaire [60℄, whih

is a dimensionless quantity:

epi =
pi
Pf

∂Pf

∂pi
(1.58)

However, this quantity is non-informative when dealing with parameters of value 0. Moreover both

of the presented methods are very dependent on the quality of the founded design point. Sine they

onsider the impat of a variation in the viinity of the design point, these an be quali�ed as loal

SA methods.
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1.3.2.2 Global sensitivity measures

The importane fators are by-produts of the FORM/SORM methods. These sensitivity measures

aim at quantifying the importane of a variable on the failure probability. Sine they quantify the

impat of a variable on the failure probability, they an be quali�ed as global SA methods, but sine

they strongly depend on the approximation of the design point, they an also be quali�ed as loal

SA methods.

From the design point u∗ one writes:

u∗ = βHLα
∗

(1.59)

where βHL is the distane between the origin of the standard spae and u∗; and α∗
is the normalised

vetor of diretion. Then for eah variable Ui, one an obtain

� the importane fator: α∗2
i , whih sums to one and are therefore sometimes plotted as a pie

hart.

� the diretion osine: α∗
i . One gets α∗

i = ∂βHL

∂ui
|u∗

, this formula justi�es the use of α∗
i as a

sensitivity index.

However, these measures depend on the founded design point in the standard spae, therefore they

are not related to the variables in the physial spae. Consequently their interpretation in the

physial spae might be ompliated. Furthermore, they do not take the shape of the limit-state

surfae into aount.

1.4 Funtional deomposition of variane for reliability

In the ontext of global SA, a widespread tehnique is based upon the funtional deomposition of

variane, as presented in setion 1.3.1.3. This setion presents some works on the appliation of

suh a method for reliability problems. At �rst, really simple toy models will be used in 1.4.1 to

provide an intuition about the meaning of Sobol' indies applied to reliability. Then in 1.4.2, some

estimation tehniques for the Sobol' indies are presented and their properties are disussed. The

appliation on the presented test ases (Appendix B) is done in 1.4.3. Two tehniques of variane-

redution are tested in 1.4.4 and in 1.4.5, respetively Quasi Monte-Carlo tehniques (QMC) and

Importane Sampling (IS). An original work on the �rst-order indies within the failure domain is

proposed in 1.4.6. Finally, a onlusion about the use of Sobol' indies in the reliability ontext is

proposed in 1.4.7.

1.4.1 First appliations

Let us reall that:

Pf = E[1G(X)≤0]

This failure probability depends on the distribution of X. We will then onsider the funtion from

Rd
to R, so that X maps to 1G(X)≤0 as the studied funtion f(.) de�ned in setion 1.3.1.3. Therefore

the funtional deomposition of variane an be applied, provided that the omponents of X are

independent. In the following, a toy example where the indies an easily be omputed is studied.

The aim is to verify if the indies are adapted to the objetive.
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Failure retangle For this �rst toy example, the failure funtion has expression:

1G(X)≤k = 1{0,1<X1<0,2}{0<X2<0,8}(X)

where X = (X1,X2) with X1,X2 ∼ U [0, 1], the two inputs being independent. The failure

probability is Pf = E[1G(X)≤k] = 8 × 10−2
and the variane is Var[1G(X)≤k ] = Pf (1− Pf ) =

3.6× 10−3
. The onditional expetation of the output given the input is plotted on �gure 1.4.

Figure 1.4: Conditional expetations for 2 variables

This �gure provides information on the loal features of the onsidered quantity. The (exat)

Sobol' indies appear in table 1.1.

Variable or group X1 X2 X1 and X2 Total e�. of X1 Total e�. of X2

Sobol indie S1 = 0.783 S2 = 0.022 S12 = 0.196 ST1 = 0.979 ST2 = 0.218

Table 1.1: Sobol indies for the �rst failure retangle

The values of the index reads as follows: X1 explains on its own 78% of the output variane,

while X2 explains only 2%. The total e�ets on�rm that X1 is of �rst importane (98% of the

output variane explained), and show that X2 has a medium impat (22% of the output variane

explained).

These values appear to be onsistent with �gure 1.4 and with the expression of the failure fun-

tion. Indeed, the �rst order indies are the variane of the onditional expetations. The blak urve

assoiated to variable X1 varies on its support with more amplitude than the blue urve assoiated

to variable X2. It seems onsistent to have an index S1 superior to S2. Similarly, when looking at

the expression of the failure funtion, one sees that variable X1 impats the failure probability on

a small fration of its support. On the opposite, variable X2 impats the failure probability on a

broader fration of its support. The information gained by the knowledge of the �rst variable value

is then larger than the one gained by the knowledge of the seond variable value. This toy example

46



1.4. Funtional deomposition of variane for reliability

draws attention to the relatively high value of the index assoiated to the interation between the

two variables (around 20%). This interation is important: to get a failure event, both variables

need to have a ritial value jointly.

For the seond example, the failure funtion has expression:

1G(X)≤k = 1{0,15<X1<0,2}{0,4<X2<0,8}(X)

where X = (X1,X2) with X1,X2∼ U [0, 1]. The failure probability is Pf = 0.02. Sobol' indies

appear in table 1.2.

Variable or group X1 X2 X1 and X2 Total e�. of X1 Total e�. of X2

Sobol indie S1 = 0.388 S2 = 0.031 S12 = 0.582 ST1 = 0.970 ST2 = 0.613

Table 1.2: Sobol indies for the seond failure retangle

It an be seen that the impat of the interation is muh larger (58% of the share of variane),

despite the similarity of the failure funtion. The total e�ets show that both variables are important.

On the failure hyperubes More generally, one an show that for a d-dimensional failure hy-

perube where the inputs are independent uniforms that:

� Sobol' indies assoiated to a variable deays with the width of its assoiated failure indiator.

� The indies orresponding to interations grow as the failure probability diminishes.

� A variable has interation e�et with all the others, unless its assoiated failure indiator is as

wide as the support of the variable. In this last ase, the �rst order index assoiated with this

variable is null.

This basi example shows how Sobol' indies an be used to rank the impat on the failure probability,

using the total e�ets rather than the �rst order e�ets. Based on this onlusion, we will pursue

the study of Sobol' indies applied to a failure indiator.

1.4.2 Computational methods

The following setions are dediated to several estimation tehniques of the Sobol' indies. To do

so, onsistent estimators of the following quantities are required:

� Var(Y ),

� Di(Y ) = Var[E(Y |Xi)],

� Dij(Y ) = Var[E(Y |Xi,Xj)]−Di(Y )−Dj(Y ),

� and so on.

The organization is the following: �rst we will present the tehniques based upon MC sampling,

namely Sobol'; Saltelli, Mauntz, Jansen and Janon-Monod. Seondly, the tehniques based upon

Fourier transformation -namely FAST, E-FAST, RBD- will be presented.
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1.4.2.1 MC based estimation tehniques

Sobol' - Presentation of the method This method is presented in the founder artile by Sobol'

[92℄. Let us denote G the d-dimensional model. Sobol' method priniple is the following: onsider

two independent matries of N realisations of the vetor of d inputs; representing two sets of inputs.

In those matries, a realisation of the d inputs is �gured linewise. Those matries are the following:

ξ1 =




X
(1)
1,1 X

(1)
1,2 · · · X

(1)
1,d

X
(1)
2,1 X

(1)
2,2 · · · X

(1)
2,d

.

.

.

.

.

.

.

.

.

.

.

.

X
(1)
N,1 X

(1)
N,2 · · · X

(1)
N,2




and ξ2 =




X
(2)
1,1 X

(2)
1,2 · · · X

(2)
1,d

X
(2)
2,1 X

(2)
2,2 · · · X

(2)
2,d

.

.

.

.

.

.

.

.

.

.

.

.

X
(2)
N,1 X

(2)
N,2 · · · X

(2)
N,2




(1.60)

In Sobol' method, the mean of the output Y is estimated by:

D̂0 =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d) (1.61)

Conversely, the variane of the output is omputed as follows:

D̂ =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)

2 − D̂0
2

(1.62)

To ompute the Di quantities, the two data sets are onsidered, yet one olumn (i.e. i-th input) in

the seond data-set is replaed by the orresponding values of the �rst data-set. This writes:

D̂i =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)×G(X

(2)
k,1 , . . . ,X

(2)
k,i−1,X

(1)
k,i ,X

(2)
k,i+1 . . . ,X

(2)
k,d)− D̂0

2
(1.63)

In the same order of ideas, the quantities Dij are estimated by "�xing" two olumns of the seond

matrix to the orresponding values of the �rst matrix. This writes:

D̂ij =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)×G(X

(2)
k,1 , . . . ,X

(1)
k,i ,X

(2)
k,i+1 . . . X

(1)
k,j ,X

(2)
k,j+1 . . . ,X

(2)
k,d)− D̂i− D̂j− D̂0

2

(1.64)

Thus an estimation of the �rst, seond,. . . order Sobol' indies an be made:

Ŝi =
D̂i

D̂
, Ŝij =

D̂ij

D̂
(1.65)

and so on. Thus the total indies STi
an be estimated by summing all the indies ontaining

i. However, this tehnique has a prohibitive ost: to get all the �rst order sensitivity indies, one

must perform N × (d+1) funtion alls. To get all the indies (thus estimate the total indies) one

must perform N × (2d) funtion alls. Additionally, this method is known for needing a fair N to

get preise estimations, of order 10000 to get a 10% error on the indies, muh more for low value

indies.
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Saltelli - Presentation of the method Saltelli [87℄ proposed an e�ient method to ompute the

sensitivity indies. This method is popular within the engineering �elds sine it allows estimation

for eah input the �rst and total order indies, for a smaller ost than the Sobol' method.

The estimation of the quantities Di, Dij ,. . . are realised in the same way as in the Sobol' method.

The total indies are estimated as follows: onsider the quantity D∼i de�ned as the total share of

variane that does not ome from variable Xi. Then the total indies rewrite:

STi
= 1− D∼i

Var(Y )
(1.66)

Thus total sensitivity indies are omputed by estimating:

D̂∼i =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)×G(X

(1)
k,1 , . . . ,X

(1)
k,i−1,X

(2)
k,i ,X

(1)
k,i+1 . . . ,X

(1)
k,d)− D̂0

2
(1.67)

To minimize the number of funtion alls, the estimation of Di is made as in Sobol' method, but

swithing the samples:

D̂i =
1

N

N∑

k=1

G(X
(2)
k,1 , . . . ,X

(2)
k,d)×G(X

(1)
k,1 , . . . ,X

(1)
k,i−1,X

(2)
k,i ,X

(1)
k,i+1 . . . ,X

(1)
k,d)− D̂0

2
(1.68)

The number of funtion alls to estimate the �rst-order and totals sensitivity indies is N×(d+2)

Mauntz - Presentation of the method In order to improve the estimation of indies Si with
small values, Mauntz (Sobol' et al. [94℄) proposed an estimator of Di that writes:

D̂i =
1

N

N∑

k=1

G(X
(2)
k,1 , . . . ,X

(2)
k,d)×

[
G(X

(1)
k,1 , . . . ,X

(1)
k,i−1,X

(2)
k,i ,X

(1)
k,i+1 . . . ,X

(1)
k,d)−G(X

(1)
k,1 , . . . ,X

(1)
k,d)
]

(1.69)

and the numerator of STi
writes:

Var(Y )− D̂∼i =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)×

[
G(X

(1)
k,1 , . . . ,X

(1)
k,d)−G(X

(1)
k,1 , . . . ,X

(2)
k,i , . . . ,X

(1)
k,d)
]

(1.70)

For the indies lose to 0, one or two deades are gained on the indies' unertainty. The number

of funtion alls for the method of Mauntz (�rst-order and totals sensitivity indies) is N × (d+ 2).

Jansen - Presentation of the method Jansen [54℄ proposed alternative estimators for Si and
STi

.

D̂i = Var(Y )− 1

2N

N∑

k=1

[
G(X

(2)
k,1 , . . . ,X

(2)
k,d)−G(X

(1)
k,1 , . . . ,X

(2)
k,i , . . . ,X

(1)
k,d)
]2

(1.71)

and the numerator of STi
writes:

Var(Y )− D̂∼i =
1

2N

N∑

k=1

[
G(X

(1)
k,1 , . . . ,X

(1)
k,d)−G(X

(1)
k,1 , . . . ,X

(2)
k,i , . . . ,X

(1)
k,d)
]2

(1.72)

The number of funtion alls for the Jansen's method (�rst-order and totals sensitivity indies)

is N × (d+ 2).
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Janon-Monod - Presentation of the method In order to improve the estimation of the �rst-

order indies in Sobol' method, Monod et al. [70℄ have proposed new estimators for the sensitivity

indies. Janon et al. [53℄ proved the asymptoti e�ieny of these estimators.

D̂i =
1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d)×G(X

(2)
k,1 , . . . ,X

(1)
k,i , . . . ,X

(2)
k,d)

−


 1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d) +G(X

(2)
k,1 , . . . ,X

(1)
k,i , . . . ,X

(2)
k,d)

2



2

(1.73)

The estimator of the variane of Y (D̂) reads:

D̂ =
1

N

N∑

k=1




[
G(X

(1)
k,1 , . . . ,X

(1)
k,d)
]2

+
[
G(X

(2)
k,1 , . . . ,X

(1)
k,i , . . . ,X

(2)
k,d)
]2

2




−


 1

N

N∑

k=1

G(X
(1)
k,1 , . . . ,X

(1)
k,d) +G(X

(2)
k,1 , . . . ,X

(1)
k,i , . . . ,X

(2)
k,d)

2



2

(1.74)

Reliability ase The estimation methods based upon the priniples of MC estimation will present

the drawbaks of suh methods. Pratially, the small failure probability implies that the simulation

sets will inlude few failure points. The estimation of the indies will be impreise at best, impossible

in the worst ase (no failure point in the data set). Tests provided in setion 1.4.3 (where a large

data set is needed) will on�rm these re�etions.

1.4.2.2 Fourier analysis based tehniques

Presentation of the methods The Fourier Amplitude Sensivity Test (FAST) method was �rst

presented by Cukier et al. [27℄; and is based upon a Fourier transformation. It allows an estimation

of the indies at a smaller ost than the Sobol' method. Saltelli et al. [90℄ extended this method for

the estimation of total indies, thus giving the Extended-FAST (E-FAST) method.

Classial FAST method is based on a seletion of N points (i.e. sampling) on a spei� urve

onstruted in suh a way that it explores eah dimension (assoiated to an input variable) with

a preset frequeny (di�erent for eah input). Let us assume that the input domain is the unit

hyperube. The urve is then de�ned by:

xi(s) = Gi(sin ωis),∀i = 1, . . . , d

where s is a salar suh that −∞ < s < ∞. Gi is a funtion from [−1 : 1] to [0, 1] and de�nes the

searh-urve - it is not related to the numerial model G. ωi the frequeny assoiated to the i-th
input.

Based on the approximation of Weyl's theorem ([101℄); one has, for any d-dimensional funtion

f and for the xi(s) de�ned as previously:

�

[0,1]d
G(x)dx ≈ 1

2π

�

G(x(s))ds (1.75)
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where x(s) = (x1(s), . . . , xd(s)). Equation (1.75) is only true when the frequenies are linearly

independent. This annot be the ase in pratie. Therefore the algorithm requires that the pra-

titioner sets a maximal interation order M and selets the frequenies free of interferenes up to

M .

The funtion is then omputed on eah of theN points, then a Fourier deomposition is performed

on the sample to estimate its spetrum. Deomposing the spetrum with respet to the frequenies

allows to estimate the estimators of the parts of variane. Indeed, denoting Aj and Bj the following

Fourier oe�ients:

Aj =
1

2π

� π

−π
G(x(s)) cos(js)ds

Bj =
1

2π

� π

−π
G(x(s)) sin(js)ds

Main results from Cukier et al. [27℄ is that

Var[Y ] ≈ 2

+∞∑

k=1

(A2
k +B2

k) (1.76)

Di = Var[E(Y/Xi)] ≈ 2
+∞∑

k=1

(A2
kωi

+B2
kωi

) (1.77)

The omplexity of suh an algorithm omes from the way to generate the sampling urve, that needs

to explore eah dimension with preset frequenies avoiding interations.

Random Balane Design (RBD) method, proposed by Tarantola et al. [96℄ is a modi�ation of

the FAST tehnique. The algorithm starts exploring the input spae via a searh urve, but unlike

in FAST, eah dimension is explored with the same frequeny. Then a random permutation of the

oordinates of the sample points is performed. The funtion is alled on eah point of the new

sample, then the Fourier deomposition is arried out for the sampling frequeny and its harmonis,

up to order M of supposed maximal interation order. This allows an estimation of the indies

assoiated to eah input. Tissot et al. [97℄ proposed a way to orret the biais produed in suh

estimates.

Reliability ase It an be expeted that the FAST/E-FAST/RBD methods will not perform well

in the reliability ase. Indeed, the indies annot be omputed easily on a disontinuous funtion,

espeially on the indiator of a small set. Numerial tests have shown that a orret estimation of

the indies for a disontinuous funtion is possible, provided a high maximal interation order M is

seleted. Unfortunately, inreasing this order leads to frequeny seletion problems. Therefore the

FAST and derived methods will not be tested in the following.

1.4.3 Reliability test ases

This appliative subsetion have the following objetives:

� The �rst objetive is to hek the onsisteny of the estimators, to verify that the estimator

of the indies onverges to the true value as the sample size growths. This will be performed

on test ases for whih one an easily ompute or approximate losely the indies.

� Another objetive is to perform the sensitivity analysis on the numerial examples de�ned in

Appendix B.
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1.4.3.1 Numerial results: onvergene to the true value

In this part, we will fous on the hyperplane test ase, desribed in Appendix B.1. Let us �rst

remind the formulation of the �rst order Sobol' indies:

Si =
Var(E[Y |Xi])

Var(Y )
=

Di

Var(Y )
.

In the reliability ase, the expression of Var(Y ) is straightforward:

Var(Y ) = E(Y 2)− E(Y )2

= E(12G(X)≤0)− E(1G(X)≤0)
2

= Pf (1− Pf ).

In the hyperplane ase, the failure probability is known: it equals P = φ


−k/

√√√√
d∑

i=1

a2i



. This

allows an exat omputation of the variane. Let us denote TXi
(x) = E[Y |Xi = x], the funtion

depending solely on Xi that explains best the output Y . In the hyperplane ase with Gaussian

inputs, one has:

TXi
(x) = E[Y |Xi = x] = P




d∑

j=1;j 6=i

ajXj ≤ k − aix


 = φ




k − aix√√√√
d∑

j=1;j 6=i

a2j



. (1.78)

Then by de�nition:

Di = E[T 2
Xi
]− E[TXi

]2

with:

E[TXi
] =

�

R

TXi
(x)fXi

(x)dx = Pf

and fXi
(x) is the pdf of a standard Gaussian. In the same way,

E[T 2
Xi
] =

�

R

T 2
Xi
(x)fXi

(x)dx.

The last mono-dimensional integral does not have a simple expression, but one an estimate it using

the quadrature method. This, assoiated with the exat knowledge of Var(Y ) allows to get preise

estimations of �rst order Sobol' indies. This estimation will be used to ontrol the quality of the

estimations.

Let us verify for the hyperplane 6410 ase (desribed in Appendix B.1), where a = (1,−6, 4, 0))
that the estimations of the indies onverge to the �real� values of the indies. First, we estimate

the �real� indies with the proedure desribed above, and the results are displayed in table 1.3.
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1.4. Funtional deomposition of variane for reliability

Variable X1 X2 X3 X4

Indie Si 0.002 0.259 0.055 0

Table 1.3: First order Sobol' indies for the hyperplane 6410 ase
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Figure 1.5: Boxplots of the estimated �rst order Sobol' indies with the Sobol' method

We repeat the following operation 500 times: generating two samples of size N , with N varying

from 104 to 106, and estimating the indies on all these samples. The results of the estimation of

the �rst order Sobol' indies are shown in �gure 1.5 for the Sobol' method and in �gure 1.6 for the

Saltelli method.

The graphis show that the estimator onverges to the true value when the sample size inreases.

Additionally, it shows that the estimations of a null index (S4) with the Sobol' method an provide

results with a wider spread than the ones provided with the Saltelli method. For this reason, we will

use the Saltelli method in the following. Conerning the good sample size to orretly estimate the

Sobol' indies, the results show that obviously the larger the sample is, the better the estimation is.

For our test ases, we will use samples of size 106, sine our toy-models are not ostly. However it

should be notied that this number of funtion alls might be unrealisti for real models.

1.4.3.2 Hyperplane 6410 ase

We present on table 1.4 the estimated Sobol' indies with 2 samples of size 106, using the Saltelli

method. The total number of funtion evaluations is 6× 106.

Index S1 S2 S3 S4 ST1 ST2 ST3 ST4

Estimation 0.002 0.254 0.054 0 0.200 0.940 0.720 0

Table 1.4: Estimated Sobol' indies for the hyperplane 6410 ase
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Figure 1.6: Boxplots of the estimated �rst order Sobol' indies with the Saltelli method

The total indies assess that X2 is extremely in�uential, and that X3 is highly in�uential. X1

has a moderate in�uene and X4 has a null in�uene. This last point is interesting: it shows that

this SA method an detet the non-in�uential variables.

1.4.3.3 Hyperplane 11111 ase

This numerial example has been desribed in Appendix B.1. We present on table 1.5 the estimated

Sobol' indies with 2 samples of size 106, using the Saltelli method. The total number of funtion

evaluations is 7× 106.

Index S1 S2 S3 S4 S5 ST1 ST2 ST3 ST4 ST5

Estimation 0.015 0.013 0.014 0.009 0.015 0.677 0.673 0.695 0.674 0.685

Table 1.5: Estimated Sobol' indies for the hyperplane 11111 ase

The weak �rst order indies (less than 2% of the variane explained) and the high total indies

assess that all the variables are in�uential in interation with the others. All the total indies are

approximatively the same showing that this SA method an give the same importane to eah equally

ontributing input.

1.4.3.4 Hyperplane 15 variables ase

This numerial example has been desribed in Appendix B.1. We present on table 1.6 the estimated

Sobol' indies with 2 samples of size 106, using the Saltelli method. The total number of funtion

evaluations is 17× 106.
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Index S1 to S5 S6 to S10 S11 to S15

Estimation 0.014 to 0.018 0.001 to 0.002 0

Total Index ST1 to ST5 ST6 to ST10 ST11 to ST15

Estimation 0.655 to 0.673 0.141 to 0.150 0

Table 1.6: Estimated Sobol' indies for the hyperplane 15 variables ase

The �rst order indies are all weak, yet separated in three groups. The total indies give a

good separation between the in�uential, weakly in�uential and non in�uential variables. The Sobol'

indies SA method is able to deal with problems of medium dimension; however it has an heavy

omputational ost in this ase.

1.4.3.5 Hyperplane with same importane and di�erent spreads

This numerial example has been desribed in Appendix B.1. We present on table 1.7 the estimated

Sobol' with 2 samples of size 106, using the Saltelli method. The total number of funtion evaluations

is 7× 106.

Index S1 S2 S3 S4 S5 ST1 ST2 ST3 ST4 ST5

Estimation 0.027 0.028 0.025 0.025 0.028 0.611 0.622 0.618 0.618 0.624

Table 1.7: Estimated Sobol' indies for the hyperplane �di�erent spreads� ase

The weak �rst order indies (less than 3% of the variane explained) and the high total indies

assess that all variables are in�uential in interation with the others, and that no variable is in�uential

on its own. All the total indies are approximatively equal showing that this SA gives to eah equally

ontributing variable the same importane, despite their di�erent spread.

1.4.3.6 Thresholded Ishigami funtion

We use the example de�ned in Appendix B.2, the thresholded Ishigami funtion. The estimated

Sobol' with 2 samples of size 106, using the Saltelli method, are given in table 1.8. The total number

of funtion evaluations is 5× 106.

Index S1 S2 S3 ST1 ST2 ST3

Estimation 0.018 0.007 0.072 0.831 0.670 0.919

Table 1.8: Sobol' indies estimation for the thresholded Ishigami funtion

The �rst order indies are lose to 0. The variable with the most in�uene on its own is X3,

explaining 7% of the output variane. Total indies state that all the variable are of high in�uene.

A variable ranking an be made using the total indies, ranking X3 with the highest in�uene, then

X1 and then X2. Figure B.1 allows to understand the meaning of the total indies. Eah variable

�auses� the failure event on a restrited portion of its support. On the other hand, the knowledge

of a single variable does not allow to explain the variane of the indiator, thus the weak �rst-order

indies. The fat that the failure points are grouped in narrow strips an only be explained by the

3 variables together, thus the high 3-order index.
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1.4.3.7 Flood ase

This test ase has been desribed in Appendix B.3. The estimated Sobol' with 2 samples of size

106, using the Saltelli method, are given in table 1.9. The total number of funtion evaluations is

6× 106.

Index SQ SKs SZv SZm STQ STKs STZv STZm

Estimation 0.019 0.251 0 0 0.746 0.976 0.248 0.115

Table 1.9: Estimated Sobol' indies for the �ood ase

Most �rst order indies are small, exept the one assoiated to Ks that explains 25% of the

variane on its own. The total indies state that Ks and Q are extremely in�uential, Zv is in�uential

and Zm is little in�uential. One an see that STZv and STZm di�er from 0, meaning these variables

have an impat on the failure probability when interating with other variables.

1.4.3.8 Conlusion

In most tested ases, Sobol' indies allow distinguishing the in�uential and the non-in�uential vari-

ables. However, their evaluation is ostly. The objetive of the two next subsetions is to study

methods that allow a redution of funtion alls.

1.4.4 Reduing the number of funtion alls: use of QMC methods

This subsetion fouses on the use of Quasi Monte-Carlo methods (presented in setion 1.2.1.2) to

estimate Sobol' indies. This tehnique is presented in Sobol' [93℄.

1.4.4.1 Estimation of Sobol' indies through QMC

The main idea when using pseudo-random sequenes is to use the estimators presented in setion

1.4.2.1, replaing the random samples by samples oming from a low-disrepany sequene. In the

following, Sobol' sequene is used (see Niederreiter [75℄).

When estimating the indies with the Sobol' method, 2 samples of size N and of dimension d
i.i.d. to X are generated. These samples are then separated in omplementary sets. A generation of

two samples from the pseudo-random sequene is meaningless, sine it is a deterministi sequene.

The trik is to generate a sample of size N and of dimension 2d, then to split this sample. Suh a

separation allows to get two samples of dimension d. Sobol' sequene produes orthogonal olumns,

these pseudo-random samples an be onsidered as independent. As an example on the pseudo-

random sample generation, table 1.10 displays the 8 �rst points generated by Sobol' sequene in

dimension 4.

1.4.4.2 Illustration on the hyperplane test ase

In this part, the fous will be set on the hyperplane 6410 test ase, desribed in Appendix B.1. The

aim of this part is to assess the apability of QMC sampling to get a good estimation of Sobol'

indies at a smaller omputational ost.

First, two QMC samples of size 104 and of dimension 4 are generated (using the trik given

above). The same is done for size 105. Let us notie that the sample of size 104 is inluded in the

one of size 105, due to the determinism of the Sobol' sequene. Then the Sobol' indies are estimated
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V1 V2 V3 V4

0,5 0,5 0,5 0,5

0,75 0,25 0,75 0,25

0,25 0,75 0,25 0,75

0,375 0,375 0,625 0,125

0,875 0,875 0,125 0,6250

0,625 0,125 0,375 0,375

0,125 0,625 0,875 0,875

0,1875 0,3125 0,3125 0,6875

Table 1.10: 4 dimensional points generated through Sobol' sequene

on the samples, using resp. 6 × 105 and 6 × 104 funtion alls. The results are displayed in table

1.11 and ompared to a large sample size MC.

Index S1 S2 S3 S4 ST1 ST2 ST3 ST4

MC, size 106 0.002 0.254 0.054 0 0.200 0.940 0.720 0

QMC, size 104 0.007 0.270 0.051 0 0.175 0.934 0.730 0

QMC, size 105 0.002 0.266 0.059 0 0.195 0.944 0.720 0

Table 1.11: Estimation of Sobol indies using QMC for the 6410 hyperplane test ase

From these results, we onlude that the use of QMC for sampling allows to gain a fator 10
in the number of funtion alls. Indeed, one an see that the estimation with 104 QMC points is

less aurate than the estimation with 105 QMC points, assuming the �true� values are the ones

obtained with a MC sample of size 106. Despite this loss of preision, the variable ranking is not

hanged when using a �small� QMC sample.

1.4.4.3 Conlusion on using QMC sampling to estimate Sobol' indies

This method as presented here does not provide an estimation of the error made, due to the de-

terminism of the sampling. However, srambling tehniques have been developed (Jakubowiz et

al. [52℄) to add randomness in the sampling, thus allowing the omputation of on�dene intervals.

This might be an avenue for future researhes. As a onlusion on the use of QMC sampling to

estimate Sobol' indies, this method might be used to identify the non in�uential variables at a

smaller omputational ost.

1.4.5 Reduing the number of funtion alls : use of importane sampling

methods

The main idea in this part is to use importane sampling methods to estimate the Sobol' indies. This

is the same as to run the simulations with a modi�ed sampling density, then weight the estimations

to take this density into aount. Importane sampling is not used when estimating Sobol' indies

for a ontinuous variable, there is no sense in fostering sampling in a partiular zone. But it makes

some sense in the reliability ase: we want to obtain more failure samples. The numerial simulations

presented in this setion shows that this tehnique is e�etive if the sampling density is well hosen.

To the best of our knowledge, this is an original ontribution.
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1.4.5.1 Rewriting the estimators with an importane density

The estimators of the Sobol' method (presented in setion 1.4.2.1) are used. The aim is to estimate

the index assoiated to variables Xi1 , ...,Xis . The set of inputs X1, ..,Xd is separated, like in the

Sobol' method, into two data sets, of respetive sizes s and d − s. Let us denote these data sets v
and t, where v inludes the inputs of interest Xi1 , ...,Xis . Inputs are independent, therefore we an

rewrite the input density as a produt of two margins:

fX(x) = fv(v)ft(t).

Two sets of N points are sampled with density f
X̃
, hosen by the pratitioner. Eah is separated

into two data sets, (ṽ1, t̃1) (ṽ2, t̃2). The estimators in the reliability ase writes:

Ĝ0TI =
1

N

N∑

j=1

1G(ṽ1j ,t̃1j)<0

fX(ṽ1j , t̃1j)

f
X̃
(ṽ1j , t̃1j)

(1.79)

D̂TI = Ĝ0TI − Ĝ0
2

TI (1.80)

D̂1 +G2
0TI =

1

N

N∑

j=1

1g(ṽ1j ,t̃1j)<01g(ṽ1j ,t̃2j)<0

fX(ṽ1j , t̃2j)

f
X̃
(ṽ1j , t̃2j)

ft(t̃1j)

ft̃(t̃1j)
(1.81)

D̂2 +G2
0TI =

1

N

N∑

j=1

1g(ṽ1j ,t̃1j)<01g(ṽ2j ,t̃1j)<0

fX(ṽ2j , t̃1j)

f
X̃
(ṽ2j , t̃1j)

fv(ṽ1j)

fṽ(ṽ1j)
(1.82)

1.4.5.2 Numerial appliations

As a numerial test ase, the hyperplane 6410 de�ned in Appendix B.1 is used. Let us �rst notie

that the design point of suh a failure surfae has oordinates u∗ = (0.302,−1.811, 1.207, 0). The

sampling density will thus onsist in an independent Gaussian vetor entred in the design point.

Let us then estimate, with samples size 104 the �rst order and total indies, with MC and with

importane sampling. We repeat this estimation 100 times, the results are boxploted in �gure 1.7.

The dashed lines represent the �theoretial� values obtained with a MC sample of size 106.

One an see that the dispersion of the indies estimated with importane sampling is muh

smaller than the one assoiated with the indies estimated by MC.

The same proedure is applied with only 103 points and the results are displayed in �gure 1.8.

The MC estimators are too dispersed to onlude anything, whereas the indies estimated with

importane sampling are entred around the theoretial value.

1.4.5.3 Conlusion on using importane sampling to estimate Sobol' indies

Results are very good provided that the pratitioner sets an adapted importane density. This might

be muh more ompliated than in the example. For instane an adapted importane density might

be hard to �nd for the thresholded Ishigami funtion.

1.4.6 Loal polynomial estimation for �rst-order Sobol' indies in a reliability

ontext

In the ontext of reliability analysis, we study the tehnique proposed by Da Veiga et al. [28℄ to

deal with Sobol' indies estimation when inputs are orrelated. The variane of the failure funtion
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Figure 1.7: Comparison of �rst order and total indies, MC (left) and importane sampling (right),

with 104 points for the hyperplane 6410 test ase

within the failure domain is of interest here. The presented method is used to �nd out the �rst-order

ontribution of eah variable to this variane. The question asked in this subsetion is �How eah

variable ontributes to the variane of the failure funtion G within the failure domain? �.

1.4.6.1 Sobol' indies estimation by loal polynomial smoothing

Let us reall that for a mathematial model denoted G : Rd → R with random inputs X ∼ f and

random output Y , �rst order Sobol' indies are given by:

Sk =
Var

(
E
(
Y/Xk

))

Var (Y )
, ∀k = 1, . . . , d. (1.83)

In the ase of independent inputs, one an quote Sobol' and FAST estimation tehniques, as presented

in setion 1.4.2. These methods annot be applied when the inputs are no longer independent.

Nevertheless there is a need for sensitivity analysis methods when inputs are non-independently

distributed. Several reent works deal with this kind of problems.
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Figure 1.8: Comparison of �rst order and total indies, MC (left) and importane sampling (right),

with 103 points for the hyperplane 6410 test ase

The original tehnique proposed by Da Veiga et al. [28℄ to estimate Sk is based on loal poly-

nomial approximation of the onditional moments. More preisely the authors use a �rst sample

(Xi, Yi)i=1,...,N to �t d loal polynomial response surfae to explain the following relationship for

eah given input k:

Yi = mk(X
k
i ) + σk(X

k
i )ǫ

k
i (1.84)

where mk(x) = E
(
Y/Xk = x

)
and σ2k(x) = Var

(
Y/Xk = x

)
(x ∈ R). ǫki ∀i = 1, . . . , N are indepen-

dent errors satisfying E
(
ǫki /X

k
)
= 0 and Var

(
ǫki /X

k
)
= 1. The loal polynomial (LP) smoothing

provides estimators for mk(.) and σ
2
k(.). Two formulations for Sobol' �rst order indies are given in

the artile, we hoose to fous on the one involving mk(.). Given another sample of i.i.d. inputs(
X̃i

)
i=1,...,N ′

with same distribution as X, one an use a plug-in estimation as follow. Denoting

m̂(.) the LP estimator of the onditional expetation, �tted on the �rst sample; denoting as well
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¯̂m = 1
N ′

∑N ′

i=1 m̂(X̃k
i ), one has:

T̂k =
1

N ′ − 1

N ′∑

i=1

(
m̂(X̃k

i )− ¯̂m
)2
. (1.85)

T̂k is an empirial estimator of the variane of the expetation of Y given Xk
. Dividing T̂k by the

estimated variane of Y , one has an estimator of Sk.

1.4.6.2 Reliability ontext

When dealing with the reliability ontext, the event G(X) < 0 (system failure) and the omplemen-

tary event G(X) ≥ 0 (system safe mode) are of interest. To quantify the impat of eah input Xk

on the failure probability P =
�

1G(x)<0f(x)dx, we propose to study the �rst order Sobol' indies

in the failure domain (FOSIFD).

It is obvious that given the failure event, the inputs in the failure domain are no longer inde-

pendent. Thus the methodology proposed in Da Veiga et al. [28℄ is of interest here. It will be

studied in the following part. One should be autious with one point: sampling from the onditional

joint distribution has a strong omputational ost, sine the seond sample must be distributed as

the �rst one; that is to say aording to fG(x)<0(x) =
1G(x)<0f(x)

P . This sampling operation an be

performed by running new alls of the model G. Da Veiga et al. [28℄ propose two options in this

ase : splitting the original sample or performing a leave one out proedure. As our models are toy

funtions, our sample sizes an be large.

1.4.6.3 Hyperplane 6410 ase

This numerial example has been desribed in Appendix B.1. We perform 100 runs of the

following experiment: through simulation and funtion alls, we obtain two samples of size

N = N ′ = 106. Only one out of a hundred of these points are of interest, sine we study the FOSI

in the failure domain. From the �rst sample failure points, we build a LP response surfae and its

mean is predited through the seond sample failure points. The variane of the expetation of the

LP response surfae is estimated and divided by the variane of the �rst sample failure points; as

desribe in setion 1.4.6.1. The results are boxploted in �gure 1.9.

Aording to the �rst order sensitivity indies, the seond variable ontributes for 20% of the

failure domain variane whereas the third variable ontributes for 5% of the failure domain variane.

The two other variables provide a negligible e�et on their own. Sine the inputs are no longer

independent in the failure domain, one annot assess that the sum of all the Sobol' indies is one.

However in this ase, we strongly suspet that most of the variane in the failure domain is aused

by a higher-level interation between variables.

1.4.6.4 Hyperplane 11111 ase

This numerial example has been desribed in Appendix B.1. The aim of this example is to assess or

in�rm the apability of the FOSIFD to give to eah equally ontributing input the same importane.

The results of the experiment with the same global parameters (100 runs, two samples of size 106)
are boxploted in �gure 1.10.

The indies assess the same importane value for all the variables. However, one an see that

eah variable is said to ontribute approximatively for 2% of the failure domain variane on its own.
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Figure 1.9: Boxplot of the estimated FOSIFD for the 6410 hyperplane ase

Figure 1.10: Boxplot of the estimated FOSIFD for the 11111 hyperplane ase
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Therefore, as in the previous ase, we suspet that there is a higher-order interation that auses

most of the variane in the failure domain.

1.4.6.5 Hyperplane 15 variables ase

This numerial example has been desribed in Appendix B.1. The results of the experiment with

the same global parameters (100 runs, two samples of size 106) are boxploted in �gure 1.11.

Figure 1.11: Boxplot of the estimated FOSIFD for the 15 variables hyperplane ase

As one an see two groups of importane variables, one an onlude that the FOSIFD fails

to separate variables with a low ontribution and variables with a null ontribution. However,

the in�uential variables are deteted and ontribute for approximatively 2% of the failure domain

variane.

1.4.6.6 Hyperplane with same importane and di�erent spreads

This numerial example has been desribed in Appendix B.1. The aim of this test is to assess or in�rm

the apability of the FOSIFD to give to eah equally ontributing variable the same importane,

despite their di�erent spread. The results of the experiment with the same global parameters (100
runs, two samples of size 106) are boxploted in �gure 1.12.

One an see that the values of the FOSIFD are approximatively equal for eah variable. Thus,

eah variable explain on its own 2% of the failure domain variane. These results are the same as in

setion 1.4.6.4. Thus one an think that the spread of the variable has no impat, at least on this

test ase.

1.4.6.7 Tresholded Ishigami funtion

This numerial example has been desribed in Appendix B.2. The results of the experiment with

the same global parameters (100 runs, two samples of size 106) are boxploted in �gure 1.13.
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Figure 1.12: Boxplot of the estimated FOSIFD for the same importane di�erent spread hyperplane

ase

Figure 1.13: Boxplot of the estimated FOSIFD for thresholded Ishigami ase
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Figure 1.14: Boxplot of the estimated FOSIFD for the �ood ase

One an see from the boxplot that the FOSIFD is around 10% for variable 1, 8% for variable 2

and 25% for variable 3. The onlusion of suh a result is that �xing variable 3 would provide the

greatest variane redution in the failure domain.

1.4.6.8 Flood ase

This numerial example has been desribed in Appendix B.3. The results of the experiment with

the same global parameters (100 runs, two samples of size 106) are boxploted in �gure 1.14.

The FOSIFD assess that the variable Ks is of �rst importane to explain the variations of the

failure funtion within the failure domain, with almost 50% of the variane explained. All the other

variables have a weak in�uene, and the ranking is as follows: Q then Zv and �nally Zm.

1.4.6.9 Conlusion on FOSIFD

The FOSIFD method an be onsidered as a by-produt of MC tehnique, sine the omputational

ost of the FOSIFD is negligible ompared with the time needed to obtain the samples/responses.

This method has shown a apaity to assess whih variable needs to be �xed to get a redution of

variane within the failure domain, see for instane setion 1.4.6.7.

However, this method fouses on how does the failure domain behaves, and not on what auses

the failure. One ould possibly imagine an example in whih the variables that ause the most

variation within the failure domain are not the ones leading to failure.

This example might be the following:

G(X) = 1X1<.5 + 0.2 × sin(10X2) (1.86)
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x1
x2

G(X)

Figure 1.15: Example surfae

where X1,X2 ∼ U [0, 1] and the failure event is when G(x) < 0. The surfae pituring suh a

funtion is displayed in Figure 1.15 .

It an be seen that the failure event is only aused by variable X1 whereas the variation within

the failure domain is only aused by variable X2. The Sobol' indies of the indiator funtion are

S1 = 1 and S2 = 0 whereas the FOSIFD worth respetively 0 and 0.91 for variables X1 and X2.

Consequently, if the objetive is the variane redution within the failure domain, one should fous

on variable X2 but if the objetive is to understand what auses the failure event, one should fous

on variable X1.

As in our study we are more interested in the failure event, we will not pursue the testing of the

FOSIFD method.

1.4.7 Conlusion on Sobol' indies for reliability

Sobol' indies applied diretly on the indiator funtion have shown a apaity to separate the

in�uential and non-in�uential variables. Based on this observation, it seems an adapted method for

sensitivity analysis in the reliability ontext. However, in most tested ases, Sobol' indies behave

as follows: weak �rst order indies, strong total indies. This assesses that no variable is in�uential

on its own, and that most variables ontribute to the failure probability when interating with the

others. Unfortunately in most strutural reliability ases, this is an already known information: it

is when all the variable takes extreme values at the same time that the equipment fails. However,

Sobol' total indies onvey a strong information if the objetive is the disrimination of the in�uential

and non-in�uential variables.

One an observe that this useful information is obtained at a strong omputational ost. As

a rule of thumb we suggest to use samples of size 106 for failure probabilities of order 10−3
: with

smaller sample sizes the estimations might be too noisy. Variane redution tehnique have been

studied, QMC and importane sampling. QMC allows a redution of funtion alls of order 10.
Importane sampling might be used if the goal of the SA is to rank the variable (i.e. obtain a

qualitative information) and an lead to a redution of funtion alls of order 100. However, suh a

redution is possible only if a good importane density is available.
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If the model is not ostly we would reommend the use of suh indies, using the Saltelli [87℄

method that allows an estimation of the �rst order and total indies. Other methods an be quoted

and are ompared in Saltelli et al. [88℄. However if the model is ostly, other methods than the

Sobol' indies need to be found.

1.5 Moment independent measures for reliability

Let us study, in the reliability ase, the indies de�ned in Borgonovo [13℄ that have been presented

in setion 1.3.1.4.

1.5.1 Appliation in the reliability ase

For the reliability ase, one has:

fY ∼ B(Pf ) with Pf =

�

1G(x)≤0fX(x)dx (1.87)

where B(p) denotes the Bernoulli distribution of parameter p. When �xing the ith output to a given

value xi, one denotes:

fY |Xi=xi
∼ B(Pxi

) with Pxi
=

�

1G(x1,...,xi,...,xn)≤0fX−i
(x−i)dx−i (1.88)

Then, the shift de�ned in Equation (1.54) rewrites as follows:

s(xi) =
1∑

y=0

|fY (y)− fY |Xi=xi
(y)| = |(1 − Pf )− (1− Pxi

)|+ |Pf − Pxi
|

= 2|Pf − Pxi
|. (1.89)

Thus the sensitivity index de�ned in Equation (1.56) rewrites:

δi =
1

2
EXi

[s(Xi)] =

�

fXi
(xi)|Pf − Pxi

|dxi. (1.90)

If the quantities Pf and Pxi
are known, this is a one-dimensional integral.

1.5.2 Crude MC estimation of δi

Let us expliit here the methodology to use in order to estimate the indies δi by rude MC. First

of all, an estimation of Pf is made with N1 points:

P̂ =
1

N1

N1∑

j=1

1G(x(j))<0 (1.91)

where x(j)
, j = 1, . . . , N1 are i.i.d. realisations of fX. Then, for a given xi that lies in the support

of fXi
, let us estimate Pxi

with a rude MC:

P̂xi
=

1

N2

N2∑

j=1

1
G(x

(j)
−i ,xi)<0

fX−i
(x−i) (1.92)
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where fX−i
(x−i) is the joint pdf of X bereft of its ith omponent and (x

(j)
−i , xi) is a realisation of fX

where the ith omponent is �xed at the value xi. The ost for estimating Pxi
is N2 funtion alls.

Denoting ŝ(xi) = 2|P̂ − P̂xi
|, one an estimate the �rst order index δi by:

δ̂i =
1

2N3

N3∑

k=1

fXi
(x

(k)
i )ŝ(x

(k)
i ) (1.93)

Therefore, for d inputs the total estimation ost of all the �rst order indies is d (N3.N2)+N1. This

ost is prohibitive in our ases where at least 105 funtion alls are needed to get a orret estimation

of the quantities.

1.5.3 Use of quadrature tehniques

This tehnique is inspired by Caniou [21℄, who proposes to redue the number of funtion alls by

using a quadrature method, namely the Gauss-Legendre integration rule. Rewriting the equations

for our problem, one has:

δ̃i =
1

2M

M∑

k=1

w(k)fXi
(x

(k)
i )ŝ(x

(k)
i ) (1.94)

for M quadrature points, and where the w(k) are the weights assoiated to eah point. The om-

putational ost of the �rst order indies beomes d (M.N2) + N1, where M ≪ N3. Aording to

Caniou [21℄, 30 quadrature points are su�ient to reah a good preision.

1.5.4 Use of subset sampling tehniques

One an remark that the omputational ost of the indies omes from the estimation of the ondi-

tional and unonditional failure probabilities, namely P̂xi
and P̂ . To redue the number of funtion

alls, we an use subset sampling methods to estimate these probabilities, as presented in setion

1.2.3. Assuming that we use the adaptive-levels algorithm, the number of funtion alls beomes a

random variable, whih is expeted to take a value around N.ns = N.⌊ log Pf

logα ⌋, as desribed in Equa-

tion (1.38). One an expet that N.ns ≪ N2 and N.ns ≪ N1. Aordingly, the number of funtion

alls to estimate all the �rst order indies should be around d (M + 1) .N.ns whih is expeted to

be muh smaller than d (N3.N2) +N1.

1.5.5 Hyperplane 6410 test ase

Let us fous on the hyperplane 6410 test ase (Appendix B.1). One an rewrite an analytial

expression of s(.), as presented in Equation (1.89). One has, for input Xi set at value xj :

si(xj) = 2|Pf − Pi,xj
| (1.95)

where Pi,xj
= P (G(X < 0)|Xi = xj). This rewrites:

si(xj) = 2|φ


−k/

√√√√
d∑

p=1

a2p


−φ


(−k + xj) /

√√√√
d∑

p=1;p 6=i

a2p


| (1.96)

Consequently, one an estimate in a very preise way these quantities and thus δi. This goes the
same for indies δij and the higher order terms. These �true� values are displayed in table 1.12.

68



1.6. Synthesis

Variable X1 X2 X3 X4

δi 0.0039 0.0228 0.0154 0

Group X1X2 X1X3 X1X4 X2X3 X2X4 X3X4

δij 0.0230 0.0159 0.0039 0.0271 0.0228 0.0154

Group X1X2X3 X1X2X4 X2X3X4

δijk 1 0.0230 0.0271

Table 1.12: True values of δi for the hyperplane 6410 ase

One an see that all the �rst order indies are rather small. Aording to Borgonovo [13℄, this

result suggests that the e�ets of the variable on the failure event are non separable. This means

that following the indies δ, interations play a large role in the failure event. Indeed, one an see

that most, if not all, shift in distribution is determined by an interation between the three �rst

variables. Unfortunately, that information is already known. Additionally, the �rst order indies

an provide a variable ranking of the in�uene.

1.5.6 Conlusion

Aording to Table 1.12 and to omplementary numerial tests, one an onlude the following on

these moment-independent sensitivity measures. At �rst glane, the theoretial values shows that

they are adapted for the disrimination of in�uential and non in�uential variables. On the other

hand, the �rst order indies are all small and the estimation su�ers from a positive bias. This

drawbak means that those indies are poorly adapted for sensitivity analysis in the reliability ase,

despite their sound properties.

1.6 Synthesis

This hapter has presented an overview of existing strategies for estimating failure probabilities and

of sensitivity analysis methods.

First, the mathematial ontext for estimating failure probabilities has been set. We presented

three lasses of methods; yet it has been seen that theses lasses are not partitioned. Approahes

based on numerial approximation of the failure (limit state) surfae have not been onsidered in this

hapter. Dubourg [33℄ fouses on replaing in an adaptive way the failure surfae by a meta-model.

Li [64℄ fouses on the estimation of failure probabilities using sequential design of experiments and

surrogate models.

Then, the main existing sensitivity analysis (SA) methods have been presented. Two of these

methods (Sobol' indies and Borgonovo indies) have been tested on reliability toy examples. We

onlude the following: the moment independent tehniques are not adapted for the reliability ase,

due to a positive bias in the estimations. On the ontrary, Sobol' indies applied to a failure indiator

have highlighted a apaity to distinguish the non-in�uential from the in�uential variables. However,

tests have shown that the following on�guration -low �rst-order indies, high total order indies- is

often present. Therefore the information provided by suh indies is limited and may only on�rm

that all the variables interat to ause the failure event.

Table 1.13 is a short synthesis on the presented SA methods. In partiular are itemized the

available evaluation methods altogether with the pros and ons of the methods.
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Indie Sensitivity type Evaluation method Pros/Cons

Importane fators Global/loal �Every design point �nding + Potentially a very small

and diretion osine First order indies algorithm number of funtion alls

(1.3.2.2) − Measure depending on

α∗
i ; α

*

2

i the foudned design point

− ompliated interpretation

in the physial spae

Sobol' indies Global � Sobol' (with QMC and/ + Every order indies

applied on the Every order indies, or Importane Sampling) allowing to quantify

indiator (1.4) use of total indies. � Saltelli, Mauntz, Jansen, the in�uene of interations

Si;STi
Janon-Monod − Total indies make

� FAST/E-FAST/RBD more sense and their

� Use of meta-models omputation is ostly

(not treated here) − Limited

information provided

Borgonovo indies Global �Crude Monte-Carlo + Good properties

(1.5) Every order indies �Quadrature tehniques − Limited

δi; δij ... �Subset sampling tehniques information provided

− Positive bias

in the estimation

Table 1.13: Synthesis on the tested SA methods

In the next setion, we extend our thoughts on SA for failure probabilities.

1.7 Sensivity analysis for failure probabilities (FPs)

A ommon point of view on SA is that it is the art of determining the model inputs the most in�uential

on the output. But what does exatly "in�uential" mean, espeially in the reliability �eld where an

input an be "in�uential" on the model output but an have a small "in�uene" on Pf? The present

paragraph fouses on the meaning of SA for FPs. This is motivated by a pratitioner-friendly point

of view.

Let us ask the question: what are the reliability engineer's motivations when he/she performs

a SA on his/her blak-box model that produes a binary response? In the global introdution,

we provided an overview of the "general objetives" of SA: variable ranking, model simpli�ation,

model understanding. But from our disussions with EDF pratitioners, we have identi�ed three

"Reliability Engineer Motivations" (REM):

� REM1: the pratitioner wants to determine whih are the inputs that impat the most the

failure event - the inputs distributions being set and supposed to be perfetly known. This

amounts to an absolute ranking objetive.

� REM2: Pf will be impated by the hoie of the input distributions; the reliability engineer

wants to assess the in�uene of this hoie on Pf . Therefore the objetive here is to quantify

the sensitivity of the model output to the family or shape of the inputs, making the assumption

that the parameters of the underlying distribution are perfetly known ( thus set to �xed given

values).
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1.7. Sensivity analysis for failure probabilities (FPs)

� REM3: in pratie, input distributions are estimated from data, thus leading to unertainty

on the values of the distribution parameters. The pratitioner wants to assess the in�uene

of the distribution parameters on Pf . Therefore the objetive here is to test the sensitivity of

the model to the parameters of the inputs

Conversely, we present here what we meant by "general use" of SA.

� Variable ranking (objetive 1) is to assess whih input "most needs better determination"

(Saltelli et al. [89℄). This means that after the SA, a variable ranking is wanted in order to

know how the unertainty relative to eah input (often assimilated to the inputs' variane)

is reverberated on the output unertainty (variane). The e�ets of suh an analysis is then

researh prioritization, to ollet new data allowing to redue the unertainty on the seleted

inputs thus on the output. A typial tool for suh a need is Sobol' indies. But what exatly

is the unertainty of the output in the reliability ase? The output is a Bernoulli random

variable with parameter Pf , but does its variane (Pf (1−Pf )) re�ets well the unertainty on

the quantity of interest Pf?

� Model simpli�ation (objetive 2) would rather be determining whih inputs an be set to

a referene value or to any value of its support without a�eting the model preision. This

amounts to determine non-in�uential inputs. The use of suh a result an be model dimension

redution. In the ase of reliability, it is known (Pastel [79℄) that not all Pf estimation methods

resist well to a large dimensional problem. The aim of SA in this ase is then allowing the use

of sharper Pf estimation methods.

� Model understanding (objetive 3) inludes all information gained after the SA, for instane

whih partiular values of some inputs leads to some behaviour of the output. In the reliability

ase, this amounts to determining whih inputs/groups of inputs/spei� zones of the support

of spei� inputs lead to the failure event. After suh an analysis, the pratitioner might take

ations to avoid this spei� input behaviour (by replaing an equipment, warming injetion

water, raising a dam among others orretive ations).

� Let us add a new item: alibration sensitivity (objetive 4). In pratie the inputs of the

model are not fully determined and are alibrated with the following proedure: the family of

the input is given by the physi laws (for instane the Weibull distribution whih historially

omes from the �eld of frature mehanis) whereas the parameters of the distribution are

data-driven. But given the lak of data/knowledge, the modelled input an be far from the

"real" (physial) input. In this ase and in the reliability ontext, the pratitioner might want

to know how this distributions/parameters errors impat Pf .

Let us expliit in Table 1.14 the orrespondene between the general objetives and the engineers'

motivations.

Objetive 1 Objetive 2 Objetive 3 Objetive 4

REM1 × × ×
REM2 ×
REM3 ×

Table 1.14: Correspondene between the general SA objetives and the engineers' motivations
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As notied in Setion 1.4, the diret appliation of Sobol' indies on the failure indiator provides

the following pattern: very small �rst order indies, very large and similarly equal total indies. The

interpretation of this pattern is that all/most of the variables play an ative role in the failure event

(objetive 3) and we an use the total indies to provide a variable ranking (objetive 1). However

the answer to both these questions is in pratie already known (the pratitioner knows that the

equipment fails when all variables take extreme values at the same time). Aordingly, this method

an in some ases detets non-in�uential inputs (objetive 2). But from the pratitioner point of

view, Sobol' indies only ful�lls REM1.

In the following of this thesis, we propose 3 spei� methods allowing to answer the di�erent

objetives.

The two �rst methods are itemized in Chapter 2 and provide a variable ranking (objetive 1,

REM1). Spei�ally, the �rst method makes use of sensitivity indies produed by a lassi�ation

method (random forests). The seond method measures the departure, at eah step of a subset

method, between eah input original density and the density given the subset reahed.

The method presented in Chapter 3 will be referred to as Density Modi�ation Based Reliability

Sensitivity Indies (DMBSRI). These indies altogether with their estimation methods have been

initially presented in Lemaître and Arnaud [62℄ then in Lemaître et al. [63℄. They are based upon

an input pdf modi�ation, and quantify the impat of suh a modi�ation on the FP. We argue that

with an adapted perturbation, this method an ful�ll the four presented general uses (objetive 1 to

4), altogether with the three engineers' motivations (REM1 to 3). This will be developed further in

setion 3.3.3.
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Chapter 2

Variable ranking in the reliability ontext

2.1 Introdution

As stated in Setion 1.7, there is a need in SA for tehniques produing a variable ranking (REM1,

objetive 1). This hapter presents two methods allowing to rank the random inputs by their

in�uene on the output. Furthermore, these methods are thoughts as by-produts of the estimation

of the failure probability Pf . Indeed the �rst tehnique (Setion 2.2) proposes to make use of

lassi�ation trees and random forests built on a MC sample. The seond tehnique (Setion 2.3)

measures the departure, at eah step of a subset method, between eah input original density and

the density given the subset reahed. Thus both of these methods are by-produts of two sampling

tehniques. Setion 2.4 summarises the hapter and proposes a onlusion.

2.2 Using lassi�ation trees and random forests in SA

Classi�ation trees and random forests are two well-known lassi�ation tehniques. Additionally,

sensitivity measures an be derived. This setion aims at introduing these tehniques. A state of

the art on lassi�ation trees is proposed in 2.2.1. A subsetion introduing the main stabilisation

methods (suh as random forests) is then studied in 2.2.2. Variable ranking tehniques are derived in

2.2.3. The variable ranking is then tested on the usual ases in 2.2.4. A disussion is then proposed

in 2.2.5, where the main theme is the improvement of models.

2.2.1 State of the art for lassi�ation trees

This setion is widely inspired by Besse [11℄; parts 3 and 4 of Briand [19℄; but also parts 1 and

2 of Genuer [39℄ (in Frenh). All those ontributions are inspired by the founding monograph by

Breiman et al. [17℄. An introdution on statistial learning and the growing of lassi�ation tree

an also be found in Hastie et al. [44℄.

Sample Let us assume that we have an input sample of j = 1, . . . , N observations from d explana-
tory variables (or inputs) onsidered as quantitative, denoted by Xj

i , i = 1, . . . , d. A quantitative

variable Y j
with two modalities is assoiated with these realisations of the inputs. Let us assume

that the values taken by Y are in {0, 1}. In the onsidered framework, this sample might be the

result of a Monte-Carlo experiment for a omputer model where the quantity of interest is a prob-

ability of exeeding a given threshold (the events are failure/non-failure of the system). A sample

aggregating the inputs and output of a subset simulation might also be used - this ase is disussed
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2. Variable ranking in the reliability ontext

in Setion 2.2.5. The sample is divided in two parts: a training set and a test set. The training set

is used to �t the model (in the next setion, the lassi�ation tree). The test set is used to assess

the generalization error of the model (Hastie et al. [44℄).

Growing a binary tree A lassi�ation tree is built by reursive partitioning of the input spae.

Fous will be set on the CART (Classi�ation And Regression Tree) method, Breiman et al. [17℄.

Moreover, the regression ase will not be treated here.

The growth (or �tting) of a lassi�ation tree is done in seleting a sequene of nodes (binary

partition of the input spae) then in determining a subsequene (pruning) that will be optimal

aording to a given riterion A node is de�ned by an input variable (splitting variable) and a

division, allowing the separation of the sample in two subsamples. A division is de�ned by a value

(split point). At the �rst node (also referred to as root of the tree) orresponds the whole sample;

then iterations are made on the produed subsamples.

The algorithm requires :

� the de�nition of a riterion allowing to selet the best node (variable+division);

� a rule to end the algorithm and deide that a node is terminal (also referred to as leaf);

� a rule to assign a terminal node to a lass.

Division riterion Eah variable (1, . . . , d) produes N − 1 allowed splits (that is to say reating

a non-empty node). There are d × (m − 1) allowed splits in whih the optimal division must be

hosen. The division riterion is related to a node impurity measure: the aim is to obtain nodes as

homogeneous as possible with respet to the output Y . The impurity measure onsiders the mixture

of Y 's modality in a node. It is null if and only if all the individuals of the same node share the

same value of Y . It is maximal when the modalities of Y are equally present in the node.

The deviane (or heterogeneity) of a node k is denoted Dk. The redution of deviane (or

impurity redution) from splitting this node into desending nodes t and s would then be:

∆D = Dk −Dt −Ds

.

The tree is built by taking the maximum redution in deviane over the allowed splits:

max
allowed splits δ

Dk − (Dt +Ds)

Stopping rule The algorithm stops for a given node when it is homogeneous (it ontains a single

lass and therefore annot be divided no more). The algorithm an also be alibrated to avoid

useless splits: the division proess is stopped when the number of values in the node is less than a

�xed size (for instane 5 individuals).

A�etation rule If the terminal node (leaf) is homogeneous, it is a�eted to the represented

lass. If not, a majority rule is applied. If wrong-lassi�ation osts are given, the less ostly lass

is hosen.
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2.2. Using lassi�ation trees and random forests in SA

Heterogeneity riteria Let us propose two heterogeneity measures: the entropy riterion and

Gini index (in pratie this hoie is less in�uential than the pruning riterion, Besse [11℄).

De�ne plk the probability that an element of node k belongs to lass l (l = {0, 1} in our ase).

This quantity is estimated by

nl(k)
nk

where nl(k) represents the number of individuals in node k
presenting lass l and nk the number of individuals in node k.

The impurity of node k in the entropy sense is de�ned by:

Dk = −2

1∑

l=0

nkplklog(plk.)

The impurity of node k in the Gini index sense is:

Dk =

1∑

l=0

plk(1− plk).

Pruning A maximal tree might over�t the data (the training set) while a small tree might not

explain the struture of the data. The pruning step is a model seletion step. Breiman et al. [17℄

propose to selet an optimal tree in a sequene of sub-trees.

Let us de�ne the disrimination quality of a tree A: D(A) as the sum of mislassi�ed individuals.

Let us de�ne as well a ost-omplexity measure C(A) = D(A) + γ ×K where K is the number of

leaves in the tree. The pruning algorithm starts with γ = 0 then inreases the value of γ, allowing the
building of a sequene of nested trees. It is straightforward that D(A) will rise as K dereases. The

seletion of the �nal tree is done through ross-validation; or with a validation sample (or pruning

sample) if the data size N is su�ient.

Example We propose in this paragraph a simple example of binary lassi�ation tree, oming

from Mishra et al. [68℄. The data set is presented in Table 2.1. There are two inputs and one binary

output, taking the values "Safe" and "Failure".

X1 4 3 1 5 9 11 2 6 9 8 6 7

X2 5 1 3 4 2 6 7 8 9 10 11 12

Y Safe Safe Safe Failure Failure Failure Safe Safe Safe Safe Safe Safe

Table 2.1: Data set

The following tree an be onstruted (Figure 2.1), where it an be notied that all the leaves

are pure (ontaining only one ategory). On the R environment, library rpart was used to build

this tree.

2.2.2 Stabilisation methods

A lassi�ation method is said to be unstable if a small perturbation in the training set generates

a large perturbation in the �nal preditor. Tree-based methods (suh as CART method) have been

identi�ed as unstable. A review of lassi�ation tree stabilisation methods is proposed.

2.2.2.1 Prinipals overall strategies (Genuer [39℄, Setion 1.1.3)

The priniple of this family of methods is to build a olletion of preditors then aggregate their

preditions. These overall strategies might be applied with CART as preditors. In the lassi�ation
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x2 < 6.5

x1 >= 4.5

Failure Safe

Safe

yes no

Figure 2.1: Binary tree

ase, the aggregation is done with a majority vote. The aim of this lass of methods is to avoid

over�t.

Bagging Proposed by Breiman [15℄ with CART as preditors, bagging is the ontration of

bootstrap aggregating. The main idea is to build, from the training sample, a number of bootstrap

samples, then to aggregate the preditions. The generi bagging algorithm is presented in Algorithm

1. In our partiular ase, the hosen preditor is the lassi�ation tree of CART.

Algorithm 1 Bagging

Let X0
be a set of inputs for whih a foreast is wanted and Z = (Xj , Y j)j=1,...,N a training sample.

For b = 1, . . . , B do:

� Sample a bootstrap sample Zb

� Estimate the preditor hZb
on this sample

End for

Compute the mean predition hB(X
0) = argmaxj #

{
b|hZb

(X0) = j
}
.

Boosting Proposed by Freund et Shapire [36℄, this type of algorithm is widely used with CART

as preditors.

The priniple is the sequential onstrution of models in whih important weights are a�eted to

mislassi�ed individuals. The founding algorithm Adaboost (Adaptive boosting) is desribed in the

ase of a disrimination problem with two lasses {−1, 1}. An initial bootstrap sample is sampled,

where eah individual has the same probability to appear. A lassi�er (preditor) is estimated,

altogether with its lassi�ation error. A seond bootstrap sample is generated, where mislassi�ed

individuals are more likely to appear. Another preditor is �tted and the algorithm ontinues.

Eah sample is generated aording to the performane of the previous lassi�er. At the end, all
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2.2. Using lassi�ation trees and random forests in SA

the lassi�ers are aggregated in funtion of their respetive weights. A summary is presented in

Algorithm 2.

Algorithm 2 Boosting

Let X0
be a set of inputs for whih a foreast is wanted and Z = (Xj , Y j)j=1,...,N a training sample.

Initialize the weights wi = 1/N ; i = 1, . . . , N
For m = 1, . . . ,M do:

� Estimate lassi�er hZm on the bootstrap sample weighted by w

� Compute the error rate:

err =

∑N
j=1wi1{hZm(Xj )6=Y j}∑N

j=1wi

� Compute the logit lm = log
(
1−err
err

)

� Compute the new weights wi := wi exp
[
−lm1{hZm(Xj )6=Y j}

]
i = 1, . . . , N

End for

Compute the mean estimation hB(X
0) = sign

[∑M
m=1 lm1{hZm(X0)6=Y j}

]
.

2.2.2.2 Random forests

The presented algorithm is RF-RI (Random Forest - Random Input) desribed by Breiman [16℄. The

main idea is to improve CART bagging with a step of random seletion of inputs in the model. More

spei�ally, a large number of trees are grown, eah tree on a di�erent bootstrap sample. At eah

node, m inputs among d are randomly seleted, then the split is done. Setion 1.3 of Genuer [39℄

presents a omplete review for several versions of random forests. Algorithm 3 sums up the ideas.

Algorithm 3 Random Forests

Let X0
be a set of inputs for whih a foreast is wanted and Z = (Xj , Y j)j=1,...,N a training sample.

For b = 1, . . . , B do:

� Obtain a bootstrap sample Zb

� Estimate a CART on this sample with variable randomisation:

� at eah node, randomly (uniform without replaement) pik m of the d inputs;

� for eah of the m variables, �nd the best split among the possible splits for the k-th
variable;

� among the m proposed splits, selet the best one;

� split the data using the seleted best split;

� repeat the previous steps until a maximal tree is growth.

� The �nal preditor is denoted hZb
.

End for

Compute the mean predition hB(X
0) = argmaxj #

{
b|hZb

(X0) = j
}
.
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The default value for m in the lassi�ation ontext is m =
√
d. Notie that eah tree is maximal

and is not pruned. Some theoretial results on pure random forests (PRF) are available in Biau [12℄.

2.2.2.3 Struture stabilisation methods (Briand [19℄, setion 4.4)

The presented stabilisation methods suh as Bagging and Random Forests onsist in the onstrution

of a large number of lassi�ers on a randomized sample. These tehniques improve the apaity of

the preditors but the singular tree struture is lost. This singularity might be a requirement when

the aim of the lassi�ation is the proposal of a deision tree. The tehniques proposed hereafter

aims at keeping the struture of the tree by stabilizing the nodes.

The method proposed by Ruey-Hsia [86℄ onsists in inluding, for eah node, logial strutures.

For instane, a division riterion might be "2 ≤ Xi and Xk ≥ 5". The notion used to reah suh a

result is the existene of a division "almost as good" as the optimal. Briand [19℄ remarks that the

existene of a large number of logial expressions might ompliate the interpretation of the tree.

Choie is then set to use a method allowing a stabilisation of the nodes (division and variable

assoiated) of the tree. The inspiration omes from Dannegger [29℄. The main idea is to re-sample in

a bootstrap fashion for eah node. For eah sample, the optimal division is searhed. The variables

most frequently seleted are then used as a division variable for the treated node.

Briand proposed Dannegger's algorithm to build a maximal tree, then to prune the tree with

a redued error pruning method, Quinlan [81℄. The ouple tree growing/pruning is denoted REN

method. An artile by Briand et al. [20℄ proposes a similarity measure between trees - that might

be of di�erent strutures. This similarity measure is used in Briand [19℄ to ompare trees built with

CART method or with REN method. It allows to assess the stability of the REN method to build

lassi�ation trees.

2.2.3 Variable importane - Sensitivity analysis

2.2.3.1 Criteria de�nition

Tree-based lassi�ation methods are mostly used in the genomi domain, where the number of

variables is muh higher than the number of observations (N ≪ d). Thereby, di�erent importane

measures have been onsidered by several authors. These measures are presented here, reminding

that their aim is the seletion of a few inputs among a large number of explanatory variables.

CART ase A naive idea of variable ranking is that the variables most involved in the partition

(and espeially those whih nodes are lose from the root) are the most in�uential. A more re�ned

idea has been proposed by Breiman et al. [17℄. It is de�ned as the sum on the nodes of the

heterogeneity redution (for substitution divisions). An introdution on this index is presented in

Ghattas [40℄. It is also used altogether with the REN stabilisation method of Briand.

RFRI ase When building a large number of trees, and randomizing eah onstrution step, the

unique struture desribed in the CART ase is lost. Thereby, new sensitivity measures are proposed

by Breiman [16℄.

� A �rst naive estimator of a variable's in�uene is the frequeny of its apparition in the forest.

� A seond estimator is said to be "loal", it is based on the sum of the heterogeneity redution

(in the Gini index sense) on nodes where the variable is used. This riterion will be denoted

GI in the following. The importane riterion VGI is the sum of the heterogeneity derease

due to variable Xi, divided by the number of trees in the forest Ntrees.
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2.2. Using lassi�ation trees and random forests in SA

� Third measure is said to be "global" and is named MDA index (Mean Derease Auray).

It is based on a random permutation of the values of the onsidered variable. In a simpli�ed

way, if the variable is in�uential then the predition error on the perturbed sample will be

high. This predition error will be smaller/null if the perturbation is done on a non-in�uential

variable. More preisely, let us denote erroob the "Out-of-Bag" error, the predition error on

the part of the sample (OOB) that has not been used to estimate the tree (the whole sample

bereft of the bootstrap sample). The values or the ith variable are permuted in the OOB
sample; then the predition error is omputed on this sample. This error is denoted erroob,i.
The MDA index might be negative, and is de�ned as follow:

MDA(Xi) =
1

Ntrees

Ntrees∑

t=1

(
errtoob,i − errtoob

)

2.2.3.2 Review of works on SA with CART/RFRI

In this part, a historial (from the oldest to the newest) review of the use of CART/RFRI for SA is

presented. We tried to fous on the ase N ≫ d or N ≃ d.

� Mishra et al. [69℄. The topi of this artile is SA. Four methods are presented, inluding

one based upon CART lassi�ation. CART is used by lassifying "extreme" events (10 and

90 perentiles of the output). This paper quotes the following one for the methodology and

presents the same results.

� Mishra et al. [68℄. This paper's topi is SA on a binary output (10 and 90 perentiles of a salar

ontinuous output). The studied model (nulear waste repository �eld) presents 300 inputs.

The authors use 60 datas. The sensitivity measure used is the most simple ("The earliest splits

ontribute most to the redution in deviane and are onsidered to be most important in the

lassi�ation proess"). On the appliation ase, it turns out that 5 variables are used to build

the CART that lassi�es the output as "high" and "low". To the best of our knowledge, it is

the �rst paper to perform SA on binary output.

� Frey et al. [37℄. In this researh report, the authors list SA methods then apply them on

several ases where the output is a salar ontinuous value (CART is used in a regression

ontext). The used index is the redution of deviane (sum of square of the mean departure)

due to eah node.

� Frey et al. [38℄. This researh report is a review on SA. With respet to CART, the reom-

mended use is regression. For SA the authors' point of view is to onsider the variables seleted

in the tree as in�uential; then to rank them by their proximity to the root. The previous report

is quoted, advising to use the deviane redution index.

� Pappenberger et al. [77℄. To the best of our knowledge, this artile is the �rst dealing with

Random Forests (RF) to produe SA in the sense of the present work (it is notieable that this

paper quotes Sobol' and Saltelli). However, the use of RFRI is for regression, therefore the

sensitivity measures are not the same as presented in Setion 2.2.3. Two indies are presented,

one based upon an information gain and another based upon permutation of input values

(somehow lose to the MDA index). An extension of this last measure is proposed for several

variables, yet this measure is to be used with are due to an additive assumption. The point of

view of the authors is that their method an be ombined with Regional Sensitivity analysis,

(Saltelli et al. [89℄, Hornberger et al. [48℄). The �rst appliative example might be interpreted
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as a failure funtion exeeding a threshold, thus presenting an interest for the present researh.

The SA part on RFRI onsists in �tting a large number of regression trees and boxplotting the

results. The authors show the interest of their method (SARS-RT) in omparison with rank

regression SA. The ranking of the variables is the same for in�uential variables when using the

two proposed indies. However, the ranking di�ers for the weakly in�uential variables.

� Strobl et al. [95℄. This artile deals with omparison of three sensitivity measures (Seletion

Frequeny/GI/MDA, see Setion 2.2.3) for RFRI. The framework is the one of N ≪ d; and
where the output is binary {0, 1}. The trees used are then lassi�ers. The main ontribution of

this artile is to show the instability of variables ranking indies. These indies tend to show

that multi-modal inputs are in�uential when they atually are not. The strong bias of GI

measure is shown. The authors propose a tree building proedure alled subsampling, building

a tree on a sub sample without replaement of size 0.632N where N is the sample size. They

show the good behaviour of their proedure in most test ases.

� Arher et al. [3℄. This paper deals with variable ranking ("variable importane") in the

genomi framework (N ≪ d, lassi�er trees, a large number of orrelated input variables).

The authors show on simulations the similarity of the two tested sensitivity indies (GI/MDA)

and their usefulness to identify in�uential variable (even in the orrelated ase).

� Pappenberger et al. [76℄. This artile is a review then an appliation of 5 SA methods on a

�ood model. There are no use of CART or RFRI, but the paper by Frey et al. [37℄ is quoted

for the introdution of CART in SA.

� Briand [19℄. The main idea of this PhD is the use of CART for SA. The main ontribution is

a proedure of tree stabilisation, presented in 2.2.2.3. An artile by Briand et al. [20℄ dealing

with a similarity measure between trees has also been produed. This measure an be used in

a random forest to express a "median tree". A SA an then be performed on this tree.

� Genuer [39℄. This PhD proposes a omplete state of the art on the onstrution of random

forests. It also studies the properties of the MDA sensitivity indies for automati variable

seletion in the N ≪ d ase. The aim is to selet a few inputs to build a parsimonious model.

� Sauve et al. [91℄. The aim of this theoretial artile is more to selet variables rather than to

rank them by in�uene. Theoretial results on model seletion are presented, in the regression

and lassi�ation ases.

Conlusion This bibliography shows that sensitivity analysis an be performed on a binary output

using CART/RFRI as lassi�ers. Further investigation will be done in 2.2.4. From the bibliography,

Gini importane measures and MDA sensitivity indies seems promising. Additionally, the paper

from Strobl et al. [95℄ brought up an important point: there is a possible bias with the Gini

importane measure when dealing with inputs that vary in their spread. This behaviour will be

tested in the experiments to ome.

2.2.4 Appliations

On the R environment, library rpart is used to build CART models. Library randomForest, based

on Breiman's Fortran ode, is used to deal with RFRI along this report.
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2.2. Using lassi�ation trees and random forests in SA

2.2.4.1 Hyperplane 6410 Case

This numerial example is desribed in Appendix B.1. The following experiment is performed 100
times. A 105 points sample is generated; on whih a forest of 500 trees is built. At eah step of the

tree onstrution, m =
√
d = 2 variables are randomly hosen. Results obtained with MDA and GI

are boxplotted in Figure 2.2 respetively left and right.
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Figure 2.2: Boxplots of MDA indies (left) and GI indies (right) for the hyperplane 6410 test ase

Both indies give the same variable ranking, identifying a strong in�uene for variable X2 and

X3. Variable X1 is identi�ed as weakly in�uential whereas variable X4 is onsidered of very weak

in�uene for GI indies and of null in�uene for MDA indies. This ranking is relevant given the

oe�ients of the variables.

2.2.4.2 Hyperplane 11111 Case

This numerial example is desribed in Appendix B.1. In term of SA, all the variables share the

same in�uene. The following experiment is performed 100 times. A 105 points sample is generated;

on whih a forest of 500 trees is built. At eah step of the tree onstrution, m = 2 variables are

randomly hosen. Results obtained with MDA and GI are boxplotted in Figure 2.3 respetively left

and right.

Both importane measures assess the same in�uene for all the variables. This was expeted.

2.2.4.3 Hyperplane 15 variables test ase

This numerial example is desribed in Appendix B.1. The following experiment is performed 100
times. A 105 points sample is generated; on whih a forest of 500 trees is built. At eah step of the

tree onstrution, m = 3 variables are randomly hosen among the 15. Results obtained with MDA

and GI are boxplotted respetively in Figures 2.4 and 2.5.

Both importane measures separate the in�uential variables (�rst 5), the weakly in�uential (6-

10) and the non-in�uential (11-15). One again, it is notied that the GI measure does not allow

to assess that a variable is "non-in�uential" but rather that a variable is less in�uential than the

others, due to a non-null sore. The expliation of suh a phenomenon might be the following. At
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Figure 2.3: Boxplots of MDA indies (left) and GI indies (right) for the hyperplane 11111 test ase
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Figure 2.4: Boxplots of MDA indies for the hyperplane 15 variables test ase

a node onstrution step, if the randomly hosen variables are only the non-in�uential ones, then

the split will be done on one of these, thus reduing somehow the heterogeneity. This might explain

the non-null GI measures for non-in�uential variables. However, MDA has a mean null sore for

non-in�uential variables, thus assessing their null impat on the failure probability.
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Figure 2.5: Boxplots of GI indies for the hyperplane 15 variables test ase

2.2.4.4 Hyperplane with same importane and di�erent spreads test ase

This numerial example is desribed in Appendix B.1. The aim of suh an example is to test the

ability of both measures (MDA and GI) to give to eah equally ontributing variable the same

importane despite their di�erent spread. This test ase is inspired by Strobl et al. [95℄ who have

shown a strong bias for GI measure in ase of multi modal or spread variables. The following

experiment is performed 100 times. A 105 points sample is generated; on whih a forest of 500
trees is built. At eah step of the tree onstrution, m = 2 variables are randomly hosen. Results

obtained with MDA and GI are boxplotted in Figure 2.6 respetively left and right.

It is notieable that both measures show the same in�uene to all the variables, despite their

di�erent spreads. The boxplots do not present the bias of Strobl et al. [95℄. Genuer [39℄ uses the

MDA as a variable importane index over GI, due to the bias stressed by Strobl et al. [95℄. However

this "lak" of bias in our �gures might ome from the fat that these �gures show an averaging of

experiene, thus an eventual bias might be negleted.

2.2.4.5 Tresholded Ishigami funtion

This numerial example is desribed in Appendix B.2. The parameters of the experiment are the

following: 500 trees built on 105 points with m = 2 variables seleted at eah node onstrution

step. Eah experiment is reprodued 100 times. Results obtained with MDA and GI are boxplotted

in Figure 2.7 respetively left and right.

Aording to the measures, there is no non-in�uential variable. The importane ranking di�ers

with the measures. We reall that the problem raised with the GI measure is that one annot assess

that the less in�uential variable is non-in�uential. Our hypothesis on the di�erent ranking is that

binary trees do not �t e�iently separated failure surfaes. Figure B.1 is a plot of the shape of the

failure surfae for the Ishigami funtion: it seems di�ult to �t a binary partition of the spae for

variables X2 and X3.
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Figure 2.6: Boxplots of MDA indies (left) and GI indies (right) for the hyperplane di�erent spreads

test ase
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Figure 2.7: Boxplots of MDA indies (left) and GI indies (right) for the thresholded Ishigami test

ase

2.2.4.6 Flood Case

This example is desribed in Appendix B.3. The parameters of the experiment are the following:

500 trees built on 105 points with m = 2 variables seleted at eah node onstrution step. Eah

experiment is reprodued 100 times. Results obtained with MDA and GI are boxplotted in Figure

2.8 respetively left and right.

Variable ranking is the same on this test ase. Ks is seleted as the most in�uential variable, then

omes Q. Zv has a negligible in�uene while Zm has a null in�uene (aording to MDA indies).
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Figure 2.8: Boxplots of MDA indies (left) and GI indies (right) for the �ood test ase

2.2.5 Disussion

2.2.5.1 On the results of SA

Numerial experiments have shown the apaity for the proposed indies to rank the variables. This

ranking is reproduible (boxplots with few overing on 100 repetitions). Exept a omplex ase

(thresholded Ishigami funtion), this ranking was the same for both studied measures.

However, GI measure an a�et a non-null importane to a non-in�uential variable (as seen

in Setion 2.2.4.3). Even if on average, the same weight will be a�eted to all the non-in�uential

variables, this numerial noise prevents to assess that a variable has a null in�uene. This drives

us to prefer the MDA measure over the GI measure, sine it allows the detetion of non-in�uential

variables.

2.2.5.2 On the model's quality

Problem notiing The study of �tted models (RFRI) shows that their quality is not satisfying.

This might be a problem when drawing onlusions on SA with these models. More preisely, on a

MC sample, the variable to be predited presents two modalities in uneven quantities. For instane

on the �ood ase, for a sample of 105 points there are 81 failure points whereas there are 99919 safe

points. From this imbalane there is a tendeny in getting "weak" preditors that make muh more

predition error on the minority lass. The onfusion matrix (on the out-of-bag samples) of a forest

of 500 trees is presented in Table 2.2.

Observed

Class predition error

0 1

Predited

0 99912 7 7.01× 10−5

1 27 54 3.33× 10−1

Table 2.2: Confusion matrix of the forest with default parameters
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2. Variable ranking in the reliability ontext

It is notieable that the predition error is around 5000 times higher for lass 1 (failure) than

for lass 0 (safe mode). Given that the sensitivity measure hosen is an error averaging, it seems

essential to improve the model's quality. The MDA ranking for this model is presented in Table 2.3.

Ks Q Zv Zm

MDA 6.28 × 10−4 9.79 × 10−4 5.22 × 10−5 −1.96 × 10−6

Table 2.3: MDA indies of the forest with default parameters

Class penalty A �rst idea to improve the models is to put a penalisation on the lass so that the

failure event is best predited. This approah presents two drawbaks:

� making that hoie turns the problem into the hoie of the penalty;

� the model obtained might be a pessimisti one, prediting individuals of lass 0 (safe mode)

as being of lass 1 (failure point).

A test a�eting at eah lass weight proportionals to their frequeny shows a weak improvement.

The onfusion matrix is presented in Table 2.4.

Observed

Class predition error

0 1

Predited

0 99913 6 6.00× 10−5

1 25 56 3.09× 10−1

Table 2.4: Confusion matrix of the forest with di�erent weights

The MDA ranking for this model is presented in Table 2.5.

Ks Q Zv Zm

MDA 6.17× 10−4 9.74× 10−4 5.37 × 10−5 3.64 × 10−6

Table 2.5: MDA indies of the forest with di�erent weights

The small modi�ations on the ranking and on the onfusion matrix makes this solution inon-

lusive.

Inreasing the number of trees Another solution is to inrease the number of trees in the

forest. A test is done on the same sample with 2000 trees (this value omes from Genuer [39℄). The

omputing time is inreased by a fator 10 on our mahine. The onfusion matrix and the MDA

ranking are presented respetively in Tables 2.6 and 2.7.

Observed

Class predition error

0 1

Predited

0 99914 5 5.00× 10−5

1 26 55 3.21× 10−1

Table 2.6: Confusion matrix of the forest with 2000 trees
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2.2. Using lassi�ation trees and random forests in SA

Ks Q Zv Zm

MDA 6.09× 10−4 9.71× 10−4 4.61 × 10−5 4.49 × 10−6

Table 2.7: MDA indies of the forest with 2000 trees

The onfusion matrix does not present any improvement, despite the substantial inrease of the

omputing time.

Inreasing the sample size Another solution might be to inrease the sample size. A test has

been performed on a sample of size 5× 105 for a forest of 500 trees. The omputation failed due to

the size of the sample. The solution is then inonlusive.

2.2.5.3 Importane sampling

To bypass the problem of the sample size, the use of importane sampling (see Setion 1.2.1.3) is

proposed. Therefore, the minority lass will be arti�ially over-represented. For the �ood ase, the

importane densities are the following:

� Ks follows a trunated Gumbel distribution with parameters 3000, 558 and a minimum 0;

� Q follow a trunated Gaussian distribution with parameters 10, 7.5 and a minimum 1;

� Densities of Zv and Zm are not modi�ed.

Sampling 105 points aording to these densities gives 49505 failure points (almost half of the

sample). A forest of 500 trees is �tted on this sample. The onfusion matrix is presented in Table

2.8.

Observed

Class predition error

0 1

Predited

0 50001 494 9.98 × 10−3

1 498 49007 1.00 × 10−2

Table 2.8: Confusion matrix of the forest built on an IS sample

Predition error inreases for lass 0 (safe mode) with respet to Table 2.2. However predition

error dereases for lass 1 (failure), this was wanted. Furthermore, the predition errors for the two

lasses are of the same order of magnitude. The out-of-bag error on the whole model is around 1%.

MDA ranking on this model is presented in Table 2.9.

Ks Q Zv Zm

MDA 0.119 0.429 0.066 0.011

Table 2.9: MDA indies of the forest built on an IS sample

The ranking of the variables is the same, but the obtained values have a di�erent order of

magnitude. However, one annot assess anymore that variable Zm has a null in�uene.

To on�rm these results, a forest of 1000 trees have been �tted. Results are similar and are not

presented here.

However a question arises: do MDA indies omputed on a sample that is not i.i.d. to the

original densities have sense?
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2. Variable ranking in the reliability ontext

2.2.5.4 Using subset simulation

Another idea to solve the problem of unevenly represented lasses without using importane sampling

(that needs hypotheses on the importane densities) might be to use the results of a subset simulation.

The sample would then have more failing points.

However, the MDA indies based on a oordinate permutation would not have sense anymore.

Indeed, the individuals would not be i.i.d. with respet to the original densities, but blok-wise i.i.d.

to f/Dk
where Dk are the subsets. One ould then de�ne an adapted measure of sensitivity:

MDAS(Xi) =
1

Ntrees

Ntrees∑

t=1

(
errtoob,i,S − errtoob

)

where the S stands for subset. The only di�erene here is in the way to ompute erroob,i,S.
We propose the following: as the OOB sample is omposed of individuals from di�erent subsets

(D1,D2,. . . ,DK), perform the permutation of the ith variable by subset (so that individuals oming

from subset Dk are swithed with individuals from the same subset). This error would be denoted

erroob,i,S.

These indies will be developed and tested on further works.

2.2.5.5 SA from the model seletion point of view

Importane measures tested in this setion have variable seletion as primary objetive. Their seond

objetive is to �t parsimonious models (that do not use no more variables than neessary). The

framework of suh a proedure is generally the ase N ≪ d. Our studies is rather the ase of

disrimination of two lasses unevenly present in a sample with N ≫ d.

Nevertheless, this setion has brought an interesting idea. This idea is to get a model olletion

built on the bagging priniple, then to ompute a sensitivity measure for eah variable and to

aggregate these measures to insure stability. It is de�nitely of interest and has to be explored in

further works.

2.3 Using input umulative distribution funtion departure as a

measure of importane

In this setion, a novel sensitivity measure is proposed. It is thought as a by-produt of the subset

sampling estimation tehnique (Setion 1.2.3). The basi idea is to propose a sensitivity index

for eah variable at eah step of the subset. The index is obtained as a departure in umulative

distribution funtion (.d.f.) from the original. Subsetion 2.3.1 introdues the idea and proposes

some reminders. Subsetion 2.3.2 makes a summary of all the distanes analysed. The usual test

ases are proessed in Subsetion 2.3.3. Finally, Subsetion 2.3.4 sums up the ideas and onludes.

2.3.1 Introdution and reminders

As previously stated in the introdution, a sensitivity index for eah variable at eah step of the

subset is proposed. The aim of suh a proposition is to quantify step after step the in�uene of

eah variable on the failure probability. Let us give the informal de�nition: the sensitivity index is

de�ned for the variable i and the subset step k as a departure between the empirial .d.f. and the

theoretial marginal .d.f of the variable.

88
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Considering M subset steps with k = 1 . . .M ; denoting:

F k
n,i = Fi(x|Ak), (2.1)

the empirial .d.f. of the ith variable given that the subset Ak has been reahed. Thus the proposed

index writes:

δSSi (Ak) = d(F k
n,i, Fi), (2.2)

where Fi is the theoretial .d.f. of the i
th

variable, and d is a distane (de�ned further in Setion

2.3.2).

Informally, an in�uential variable will have a strong departure in .d.f. whereas a non-in�uential

variable will have a weak departure in .d.f., thus a weak index. Suh a strategy is inspired by

Monte-Carlo Filtering or Regionalised Sensitivity Analysis (RSA). However, it should be noted that

several bloking points are identi�ed:

� Information is negleted when working on the marginals. Moreover, when working with a

partiles loud, the omponents are generally no longer independent. Thus the .d.f. of the

loud is di�erent from the produt of the .d.f. of the marginals. We deide to gloss over suh

problems for now.

� The hoie of the distane measure will determine the importane ranking of the variables. It

is therefore ruial to hoose a distane adapted to the problem. The meaning of "in�uential"

must then be set in advane (di�erene in the entral tendeny, di�erene in extremes...).

Choie has been set to work with empirial .d.f. rather than with empirial densities for two

reasons:

� Denoting Fn,i an empirial .d.f., Glivenko-Cantelli's theorem states that sup
x

|Fn,i(x)− Fi(x)|
onverges almost surely to 0.

� More pragmatially, working with empirial densities (with a kernel smoothing) add an un-

neessary proessing.

2.3.2 Distanes

We propose 3 distanes oming from non-parametri statistis. These distanes are used to de�ne

statistis of usual goodness-of-�t tests (Govindarajulu, [42℄). Let us denote Fn,i the empirial .d.f.

and Fi the .d.f. to whih it is ompared (in our ase, the theoretial original marginal .d.f. of eah

variable).

2.3.2.1 Kolmogorov distane (L∞ distane)

Dn = sup
x

|Fn,i(x)− Fi(x)|

The implementation of Dn is diret. Dn is the supremum of the departure between Fn,i and Fi,

it is thus the "worst ase" distane.
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2. Variable ranking in the reliability ontext

2.3.2.2 Cramer-Von Mises distane (L2 distane)

Cn =

� +∞

−∞
(Fn,i(x)− Fi(x))

2 dFi(x)

The implementation of Cn an be done in two ways:

� Cn an be estimated using a numerial quadrature rule (suh as Simpson's one);

� or denoting Uj = Fi(Xj), j = 1, . . . , n and arranging this sample in order U∗
j then:

Cn =
1

n




n∑

j=1

(
U∗
j − 2j − 1

2n

)2

+
1

12n


 .

2.3.2.3 Anderson-Darling distane

An =

� +∞

−∞

(Fn,i(x)− Fi(x))
2

Fi(x) (1− Fi(x))
dFi(x)

As Cn, An an be implemented in two ways:

� by quadrature ;

� or onsidering the U∗
j then:

An =
1

n


−n+

1

n

n∑

j=1

(2j − 1− 2n) ln
(
1− U∗

j

)
− (2j − 1) ln

(
U∗
j

)

 .

Anderson-Darling distane is derived from the Cramer-Von Mises one but grants more weight to

the extreme values.

2.3.3 Appliations

2.3.3.1 Hyperplane 6410 test ase

This numerial example is desribed in Appendix B.1.

Subset estimation First of all, the failure probability Pf is estimated using the adaptive subset

simulation method (see Setion 1.2.3). Reall that the true failure probability is Pf = 0.014. Note
that in this ase, the subset simulation method might not be the best adapted to estimate a "not

so weak" failure probability. The parameters of the algorithm are the following:

� the proposal density is a Gaussian entred on the partile, with variane 1,

� N = 104, α = .75.

The result with 15×N funtion alls is the exat result:

P̂ = 0.014
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2.3. Using input umulative distribution funtion departure as a measure of importane

Plot of the .d.f. For this �rst example, the .d.f given that the third, the seventh and the

�fteenth subset have been reahed are plotted in Figure 2.9. One an see that whatever the distane

used, the .d.f. orresponding to the �fteenth subset is farther from the original one that the .d.f.

orresponding to the third subset (on this example).
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Figure 2.9: Several .d.f.

Distane estimation The distane are estimated with the formulas given in 2.3.2. They are

plotted in funtion of the threshold in Figures 2.10, 2.11 and 2.12. Variable X1 is plotted in blak,

X2 in blue, X3 in green and X4 in red.

91



2. Variable ranking in the reliability ontext

0.
0

0.
2

0.
4

0.
6

0.
8

Threshold

K
ol

m
og

or
ov

 d
is

ta
nc

e

21.0 17.2 14.5 12.5 10.8  9.2  6.7  4.4  2.5  0.6

Figure 2.10: Hyperplane 6410 test ase, Kolmogorov distane
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Figure 2.11: Hyperplane 6410 test ase, Cramer-Von Mises distane
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Figure 2.12: Hyperplane 6410 test ase, Anderson-Darling distane

All the distanes allow the following variable ranking: X2,X3,X1 then X4. Notie that this is

the same ranking tan the one provided by the importane fators (see Table 3.3). All the distanes

tend to separate the variables in two groups. The Anderson-Darling distane seems to minimise the

in�uene of the �rst variable (blak).

2.3.3.2 Hyperplane 11111 test ase

This numerial example is desribed in Appendix B.1. Reall that the aim of this test ase is to

assess the apability of the SA method to give the same importane to eah input.

Subset estimation The failure probability Pf is estimated using the adaptive subset simulation

method (see Setion 1.2.3). Reall that the true failure probability is Pf = 0.0036. The algorithm's

parameters are the following:

� the proposal density is a Gaussian entred on the partile, with variane 1,

� N = 104, α = .75.

The result with 20×N funtion alls is the exat result:

P̂ = 0.0036

Distane estimation The distanes are estimated with the formulas given in 2.3.2. They are

plotted in funtion of the threshold in Figures 2.13, 2.14 and 2.15. A di�erent olor is used for eah

variable.
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Figure 2.13: Hyperplane 11111 test ase, Kolmogorov distane
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Figure 2.14: Hyperplane 11111 test ase, Cramer-Von Mises distane
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Figure 2.15: Hyperplane 11111 test ase, Anderson-Darling distane

Every distane gives to the 5 variables the same importane. The distanes growth with the

threshold. So far, this SA method has proven that it an give the same in�uene to equally in�uential

variables.

2.3.3.3 Hyperplane 15 variables test ase

This numerial example is desribed in Appendix B.1. Reall that the aim of this test ase is to

lass the inputs in 3 groups: in�uential, weakly-in�uential and non-in�uential.

Subset estimation The failure probability Pf is estimated using the adaptive subset simulation

method (see Setion 1.2.3). Reall that the true failure probability is Pf = 0.00425. The algorithm's

parameters are the following:

� the proposal density is a Gaussian entred on the partile, with variane 1,

� N = 104, α = .75.

The result with 19×N funtion alls is lose from the exat result:

P̂ = 0.00454

Distane estimation The distanes are estimated with the formulas given in 2.3.2. They are

plotted in funtion of the threshold in Figures 2.16, 2.17 and 2.18. A di�erent olor is used for eah

variable. A di�erent symbol (respetively a dot, a triangle and a square) is used for eah group

(respetively in�uential, weakly-in�uential and non-in�uential).
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Figure 2.16: Hyperplane 15 variables test ase, Kolmogorov distane
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Figure 2.17: Hyperplane 15 variables test ase, Cramer-Von Mises distane
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Figure 2.18: Hyperplane 15 variables test ase, Anderson-Darling distane

All the distanes growth with the threshold. Kolmogorov distane allows a separation of the

inputs in 3 groups. On the other hand, both Cramer-Von Mises distane and Anderson-Darling

separate the inputs in two groups: in�uential and non-in�uential.

2.3.3.4 Hyperplane di�erent spread test ase

This numerial example is desribed in Appendix B.1. Reall that the aim of this test is to assess

the apability of the SA method to give to eah equally ontributing variable the same importane,

despite their di�erent spread.

Subset estimation The failure probability Pf is estimated using the adaptive subset simulation

method (see Setion 1.2.3). Reall that the true failure probability is Pf = 0.0036. The algorithm's

parameters are the following:

� the proposal density is a Gaussian entred on the partile, with the same variane as the

onsidered input,

� N = 104, α = .75.

The result with 20×N funtion alls is lose from the exat result:

P̂ = 0.0036

Distane estimation The distanes are estimated with the formulas given in 2.3.2. They are

plotted in funtion of the threshold in Figures 2.19, 2.20 and 2.21. A di�erent olor is used for every

variable.
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Figure 2.19: Hyperplane di�erent spread test ase, Kolmogorov distane
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Figure 2.20: Hyperplane di�erent spread test ase, Cramer-Von Mises distane
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Figure 2.21: Hyperplane di�erent spread test ase, Anderson-Darling distane

Every distane growth with the threshold. All the distanes pak the inputs variable together.

So far, we an onlude that this SA method sueeds in giving to eah equally ontributing variable

the same importane, despite their di�erent spread.

2.3.3.5 Thresholded Ishigami test ase

This more omplex numerial example is desribed in Appendix B.2.

Subset estimation The failure probability Pf is estimated using the adaptive subset simulation

method (see Setion 1.2.3). Reall that the failure probability is roughly Pf = 5.89 × 10−3
. The

algorithm's parameters are the following:

� the proposal density is a trunated Gaussian entred on the partile, with variane 1, minimum

and maximum respetively −π and π,

� N = 104, α = .75.

The result with 18×N funtion alls is lose from the exat result:

P̂ = 5.81 × 10−3

Distane estimation The distanes are estimated with the formulas given in 2.3.2. They are

plotted in funtion of the threshold in Figures 2.22, 2.23 and 2.24. A di�erent olor is used for every

variable: X1 is plotted in blak, X2 in blue and X3 in red.
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Figure 2.22: Thresholded Ishigami test ase, Kolmogorov distane
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Figure 2.23: Thresholded Ishigami test ase, Cramer-Von Mises distane
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Figure 2.24: Thresholded Ishigami test ase, Anderson-Darling distane

One an �rst omment that there is a non linearity in the growth of the distane for X1, for

the three onsidered distanes. Spei�ally, there is a raise in the growth between the threshold

8.5 and 6.7. For the three distanes, there is a rossing of the values of the indies of X2 and X3.

Considering the Anderson-Darling distane, there is also a rossing between X2 and X1.

On this test ase, the 3 distanes do not give equivalent results. Preisely, Kolmogorov and

Cramer-Von Mises distanes give the same �nal ranking (X1, X3, X2); although the gap between

variables X1 and X3 is larger with Kolmogorov distane. However, Anderson-Darling gives the

ranking (X3, X1, X2). We propose the following explanation: Anderson-Darling distane (being

a re-weighting of Cramer-Von Mises distane) is said to grant more weight to the extremes. But

in the �nal step of the subset, the third marginal of the sample of failure points onsists in points

distributed on the extrema (lose of −π and π). Notie that all the distanes give variable X2 as

the less in�uential variables.

2.3.3.6 Flood test ase

This numerial example emulating a real ode is desribed in Appendix B.3.

Subset estimation The failure probability Pf is estimated using the adaptive subset simulation

method (see Setion 1.2.3). Reall that the failure probability is roughly Pf = 7.88 × 10−4
. The

algorithm's parameters are the following:

� the proposal density is always entred on the atual partile, and the densities are:

� a trunated Gaussian with minimum 0 and standard deviation 10 for variable Q;

� a trunated Gaussian with minimum 1 and standard deviation 5 for variable Ks;
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2. Variable ranking in the reliability ontext

� a trunated Gaussian with minimum 49, maximum 51 and standard deviation 1 for vari-

able Zv;

� a trunated Gaussian with minimum 54, maximum 56 and standard deviation 1 for vari-

able Zm;

� N = 104, α = .75.

The result with 26×N funtion alls is lose from the exat result:

P̂ = 7.07 × 10−3

Distane estimation The distanes are estimated with the formulas given in 2.3.2. They are

plotted in funtion of the threshold in Figures 2.25, 2.26 and 2.27. A di�erent olor is used for every

variable: Q is plotted in blak, Ks in blue, Zv in green and Zm in red.
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Figure 2.25: Flood test ase, Kolmogorov distane
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Figure 2.26: Flood test ase, Cramer-Von Mises distane
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Figure 2.27: Flood test ase, Anderson-Darling distane

On this test ase, the 3 distanes give equivalent results. The behaviour of variable Q is the same

with the 3 distanes: the distane between the original .d.f. and the empirial one rises from the
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2. Variable ranking in the reliability ontext

beginning until the threshold reahes 2. Then the distane diminishes slowly. The behaviour is the

same for variable Zv although with muh less amplitude. The distane for variable Ks growths with

the subset. For variable Zm, the distane stagnates around the minimal value. The �nal ranking is

Ks, Q, Zv, Zm for the 3 distanes, whih is the one provided by the importane fators (see Table

3.16).

2.3.4 Conlusion

� The proposed SA tehnique allows an use of the subset simulation methods. In partiular, we

used adaptive levels algorithms.

� The omputational time is negligible with respet to the omputational time needed to obtain

the failure sample.

� The three proposed distanes bring omplementary informations on the failure sample.

� Kolmogorov distane is an L∞ one. It expresses the maximal gap between the empirial

.d.f. of the failure sample and the original distribution. As far as we have notied on

the examples, it seems the more disriminant distane (see Figure 2.16 for instane).

� Cramer-Von Mises distane is an L2 one. The indies produed using this distane answer

the question "what is the input whih distribution varies most in entral tendeny when

restrited to the failure domain?". The use of suh a distane is then reommended if the

aim of the SA is to �x the non-in�uential input variables to their entral value.

� Anderson-Darling distane grants more weight to the extreme values. The indies pro-

dued using this distane answer the question "what is the input whih distribution varies

most in the extremes when restrited to the failure domain?". The use of suh a distane

is reommended when the aim of the SA is to determine the relative in�uene of the

boundaries or extremes of input distributions.

� So far, this SA method is reommended to get a similar information as the one provided by the

Sobol' indies on the failure indiator (that is to say the detetion of variables less in�uential

than others).

� However, this method provides an interesting additional information: it shows how the thresh-

old impats eah variable. This is interesting in the sense that, in some real ases, the threshold

might not be �xed by the physis but by the regulation. A threshold given for a safety study

might not be the same for another study. This method has shown (on the Ishigami test ase)

that the ranking might be di�erent for several threshold (rossing of the urves between X2

and X3 for instane).

2.4 Synthesis

This hapter has presented two SA methods provide a variable ranking (objetive 1, REM1, see

Setion 1.7). A �rst part was devoted to lassi�ation methods for SA, with a speial attention paid

to random forests. A seond part was devoted to measuring the departure between the original and

the empirial .d.f. at several steps of a subset simulation method.

Table 2.10 is a short synthesis on the SA methods presented throughout this hapter.
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2.4. Synthesis

Indie Sensitivity type Evaluation method Pros/Cons

Gini indies Global � Random forests on a + By-produt of the MC method

MC sample − Can a�et a non-null importane

to a non-in�uential variable

MDA indies Global � Random forests on a + By-produt of the MC method

MC sample

Indies using Global � Subset +By-produt of a subset

the df departure simulation tehnique simulation tehnique

δSS
i (Ak) −Information is negleted

when working on the marginals.

Table 2.10: Synthesis on the presented SA methods

However this hapter provides some avenues for future researh:

� An adapted re�etion must be onduted on the pertinene of the random forests' sensitivity

measures when using importane sampling.

� Still in the ontext of random forests, the MDA indies when using subset simulation must be

implemented.

� The idea that onsist in getting a model olletion and aggregating their sensitivity measures

to insure stability seems promising and is to be explored.

� When dealing with the seond method proposed, a work inluding the opula theory might be

onduted. In partiular, the aim of this work ould be to quantify the total departure of the

partile loud, and to assess whih variable or interation of variables ontribute most to the

failure event.
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Chapter 3

Density Modi�ation Based Reliability

Sensitivity Indies

3.1 Introdution and overview

In most studies, sensitivity indies for failure probabilities are de�ned in strong orrespondene with

a given method of estimation (e.g. Lemaire [61℄, Munoz Zuniga et al. [73℄). Their interpretation

is onsequently limited. In this hapter, it is proposed to de�ne new generi sensitivity reliability

indies. Our sensitivity index is based upon input density modi�ation, and is adapted to failure

probabilities. A methodology to estimate suh indies is derived.

The proposed indies re�et the impat of the input density modi�ation on the failure prob-

ability Pf . The indies are independent of the perturbation in the sense that the pratitioner an

set the perturbation adapted to his/her problem. Di�erent modi�ations/perturbations will answer

di�erent problems.

For simpliity reasons, a lassial Monte Carlo framework is onsidered in the following, although

the estimation proess will be extended to the use of subset and importane sampling methods. The

sensitivity index an be omputed using the sole set of simulations that has already been used to

estimate the failure probability Pf , thus limiting the number of alls to the numerial model, as

spei�ed in the onstraints of the CWNR ase (page 24)

The outline of this hapter is the following: �rst, the indies and their theoretial properties are

presented in Setion 3.2, altogether with the estimation methodology. Seond, Setion 3.3 deals with

several perturbation methodologies. These perturbations an be lassi�ed into two main families:

Kullbak-Leibler minimization methods and parameter perturbations methods. The behaviour of

the indies is examined in Setion 3.4 through numerial simulations in various omplexity settings

(see Appendix B). Comparisons with two referene sensitivity analysis methods (FORM's impor-

tane fators and Sobol' indies, see Setion 1.3) highlight the relevane of the new indies in most

situations. In Setion 3.5, it is proposed to improve the DMBRSI estimation with importane sam-

pling and with subset simulation. The main advantages and remaining issues are �nally disussed

in the last setion of the hapter, that introdues avenues for future researh.

This hapter is the extended version of the paper [63℄.
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3. Density Modifiation Based Reliability Sensitivity Indies

3.2 The indies: de�nition, properties and estimation

3.2.1 De�nition

Given a unidimensional input variable Xi with pdf fi, let us all Xiδ ∼ fiδ the orresponding

perturbed random input. This perturbed input takes the plae of the real random input Xi, in

a sense of modelling error : what if the orret input were Xiδ instead of Xi? More about this

replaement is proposed thereafter, see Setion 3.3.1.1. Reall that we onsider that (X1, . . . ,Xd)
are mutually independent.

The perturbed failure probability beomes:

Piδ =

�

1{G(x)<0}
fiδ(xi)

fi(xi)
f(x)dx (3.1)

where xi is the ith omponent of the vetor x. Independently of the mehanism hosen for the

perturbation (see next setion for proposals), a good sensitivity index Siδ should have intuitive

features that make it appealing to reliability engineers and deision-makers. We argue that the

following de�nition an ful�ll these requirements.

De�nition 3.2.1 De�ne the Density Modi�ation Based Reliability Sensitivity Indies (DMBRSI)

as the quantity Siδ:

Siδ =

[
Piδ

Pf
− 1

]
1{Piδ≥Pf} +

[
1− Pf

Piδ

]
1{Piδ<Pf} =

Piδ − Pf

Pf · 1{Piδ≥Pf} + Piδ · 1{Piδ<Pf}
.

3.2.2 Properties

� Firstly, Siδ = 0 if Piδ = Pf , as expeted if Xi is a non-in�uential variable or if δ expresses a

negligible perturbation.

� Seondly, the sign of Siδ indiates how the perturbation impats the failure probability qualita-

tively. It highlights the situations when Piδ > Pf i.e. if the remaining (epistemi) unertainty

on the modelling Xi ∼ fi an inrease the failure risk. In this ase, the unertainty on the

onerned variable should be more aurately analysed. Conversely, if Piδ < Pf , Pf an be

interpreted as a onservative assessment of the failure probability, with respet to variations

of Xi. In suh a ase, deeper modelling studies on Xi appear less essential.

� Thirdly, given its sign, the absolute value of Siδ has simple interpretation and provides a level

of the onservatism or non-onservatism indued by the perturbation. A value of α > 0 for

the index means that Piδ = (1 + α)Pf . If Siδ = −α < 0 then Piδ = (1/(1 + |α|))Pf .

3.2.3 Estimation

The postulated ability of Siδ to enlighten the sensitivity of P to input perturbations must be tested

in onrete ases (see Setion 3.4), when an estimator P̂N of Pf an be omputed using an already

available design of N numerial experiments. In the following, N is assumed to be large enough suh

that statistial estimation stands within the framework of asymptoti theory. Besides, a standard

Monte Carlo design of experiments is assumed for simpliity (see Setion 1.2.1). This allows to write:

P̂N =
1

N

N∑

n=1

1{G(xn)<0}
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3.2. The indies: de�nition, properties and estimation

where the x1, · · · ,xN
are independent realisations of X. The strong Law of Large Numbers (LLN)

and the Central Limit Theorem (CLT) ensure that for almost all realisations P̂N −−−−→
N→∞

Pf and

√
N

Pf (1− Pf )
(P̂N − Pf )

L−−−−→
N→∞

N (0, 1). (3.2)

The Monte Carlo framework allows Piδ to be onsistently estimated without new alls to G, through
a "reverse" importane sampling mehanism:

P̂iδN =
1

N

N∑

n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )
. (3.3)

This property holds in the more general ase when P is originally estimated by importane sampling

rather than simple Monte Carlo, whih is more appealing when G is time-onsuming, Bekman and

MKey, Hesterberg [8, 45℄. This generalization is disussed further in the text (Setion 3.5). The

following lemma ensures the asymptoti behaviour of suh an estimator.

Lemma 3.2.1 Assume the usual onditions

(i) Supp(fiδ) ⊆ Supp(fi),

(ii)

�

Supp(fi)

f2iδ(x)

fi(x)
dx <∞,

then P̂iδN −−−−→
N→∞

Piδ and

√
Nσ−1

iδN

(
P̂iδN − Piδ

) L−−−−→
N→∞

N (0, 1). The exat expression of σ−1
iδN is

given in Appendix D.1, equation (D.1). It an be onsistently estimated by

σ̂2iδN =
1

N

N∑

n=1

1{G(xn)<0}

(
fiδ(x

n
i )

fi(xni )

)2

− P̂ 2
iδN .

The proof of this Lemma is given in Appendix D.1.

We stress that Equation 3.3 is valid as long as the assumptions of Lemma 3.2.1 are respeted.

This means that whatever the perturbation hosen, the estimation of P̂iδN does not require new

funtion alls.

The asymptoti properties of any estimator of Siδ will depend on the orrelation between P̂N

and P̂iδN . The next proposition summarizes the features of the joint asymptoti distribution of both

estimators.

Proposition 3.2.1 Under assumptions (i) and (ii) of Lemma 3.2.1,

√
N

[(
P̂N

P̂iδN

)
−
(
Pf

Piδ

)]
L−−−−→

N→∞
N2 (0,Σiδ)

where Σiδ is given in Appendix D.1, Equation (D.2) and an be onsistently estimated by

Σ̂iδ =

(
P̂N (1− P̂N ) P̂iδN (1− P̂N )

P̂iδN (1− P̂N ) σ̂2iδN

)
.

The proof of this Proposition is given in Appendix D.1.
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3. Density Modifiation Based Reliability Sensitivity Indies

Given (P̂N , P̂iδN ), the plugging estimator for Siδ is:

Ŝ
iδN =

[
P̂iδN

P̂N

− 1

]
1{P̂iδN≥P̂N} +

[
1− P̂N

P̂iδN

]
1{P̂iδN<P̂N}. (3.4)

In orollary of Proposition 3.2.1, applying the ontinuous-mapping theorem to the funtion s(x, y) =[ y
x − 1

]
1{y≥x}+

[
1− x

y

]
1{y<x}, ŜiδN onverges almost surely to Siδ. The following CLT results from

Theorem 3.1 in Van der Vaart [98℄.

Proposition 3.2.2 Assume that assumptions (i) and (ii) of Lemma 3.2.1 hold and further that

P 6= Piδ, we have

√
N
[
Ŝ

iδN − S
iδ

] L−−−−→
N→∞

N
(
0, dTs Σds

)
(3.5)

with ds =

(
∂s

∂x
(Pf , Piδ),

∂s

∂y
(Pf , Piδ)

)T

for x 6= y, and

∂s

∂x
(x, y) = −y1{y≥x}/x

2 − 1

y
1{y<x},

∂s

∂y
(x, y) =

1

x
1{y≥x} + x1{y<x}/y

2.

This holds when Pf = Piδ. Indeed, one has for x∗ 6= 0 :

lim
y ≥ x

(

x

y

)

→

(

x
∗

y
∗

)

∇s(x, y) = lim
y < x

(

x

y

)

→

(

x
∗

y
∗

)

∇s(x, y) =
(
− 1

x∗
,
1

x∗

)T

.

3.2.4 Framework

Figure 3.1 summarises the use of DMBRSI.
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3.2. The indies: de�nition, properties and estimation

Get a MC sample

x1, · · · ,xN ∼ f

De�ne a spei�

perturbation

(see Setion 3.3)

i = 1..d

Set perturbation

parameter δ within a

given variation range

Get an expression of fiδ

Estimate the

quantities:

P̂iδN (see Eq. (3.3))

ŜiδN (see Eq. (3.4))

Σ̂iδ (see Prop. 3.2.1)

Plot ŜiδN in funtion of δ
Plot on�dene intervals

around ŜiδN from dTs Σds

While in the variation

range, hange δ

If i < d, i = i+ 1

End

Figure 3.1: General DMBRSI framework
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The notion of perturbation is disussed in the next setion. Whih perturbation to hoose

aording to the objetive is also disussed as well as reommendations on the variation range of δ.

3.3 Methodologies of input perturbation

This setion proposes several perturbation methodologies. However the DMBRSI and its estimation

tehniques remain valid for any perturbation, as long as the support onstraints (Lemma 3.2.1) are

respeted. Here, two main families of method are presented. The �rst one determines the perturbed

density minimizing the Kullbak-Leibler divergene under some onstraints given by the pratitioner.

Several onstraints are proposed, eah one dealing with a di�erent SA objetive. The seond method

is to be used when the pratitioner wants to test the sensitivity of Pf to the parameters of the

distributions. Both subsetions will be introdued by toy-examples.

This setion illustrates the DMBRSI's apaity to deal with several SA objetives. The pra-

titioner is invited to propose new perturbation methodologies that would answer his questions.

Reommendations of perturbation regarding the objetives are itemized at the end of the setion.

3.3.1 Kullbak-Leibler minimization

The DMBRSI requires to de�ne a perturbation for eah input. In general, and espeially in prelim-

inary reliability studies, there is no prior rule allowing to eliit a speialized perturbation for eah

input variable. Thus a simple perturbation methodology is exposed -denoted KLM for Kullbak-

Leibler minimization- allowing the pratitioner to answer the questions itemized in Setion 1.7 of

the present thesis.

3.3.1.1 First example

Let us assume we have an input Xi distributed aording to fi. This random input models for

instane a physial unertain quantity. The distribution fi is known, altogether with its parameters.

This modelling was done by physi expert, engineers, pratitioners, statistial analyst from �eld

data ... Moments of Xi are also known given they exist.

We would like to fairly perturb this input to represent "the lak of ertitude" on some quantity.

This quantity might be, as a simple example, the �rst moment. Let us assume the input Xi is

distributed aording to a Gaussian, N (0, 1). What if the expetation of Xi was badly modelled?

What if the data used to alibrate fi were wrong?

We will thus suppose the existene of another random variable Xiδ (distributed aording to fiδ),
lose from Xi in some sense, and we will proess it through the model, as if input Xi was replaed

by the perturbed input Xiδ. δ represents here the perturbation, its amplitude for instane.

Thus the example is an expetation perturbation. What if the mean of the perturbed input were

2? New data an lead to suh a situation. So we want the new input to have:

E[Xiδ] = 2, (3.6)

obviously

�

fiδ(x)dx = 1 (3.7)

and Xiδ must be lose in some sense to Xi. Notie that Equation (3.6) rewrites

�

xfiδ(x)dx = 2. (3.8)
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Figure 3.2: The original density of mean 0 (full line) and several andidates densities of mean 2

Several andidates for fiδ exist. In Figure 3.2 are plotted some hoies, altogether with the

original density. Some andidates are "loser" to fi than others in some sense not yet de�ned. Let

us now fous on the needs. We would like to take fiδ as the density, among all the densities satisfying

the onstraints (in our example, onstraint (3.6)), that is the minimum argument of a departure D
between densities.

fiδ = argmin

f
mod

|onstraints holds

D(f
mod

, fi) (3.9)

Distane quantifying the departure between two densities are numerous (Cha [24℄). Information-

theoretial arguments (Cover and Thomas [25℄) led to hoose the Kullbak-Leibler divergene (KLD)

between fiδ and fi as a measure of the disrepany to minimize under onstraints (de�nition of KLD

is reminded in 3.10). This omes at "adding" as few information as possible on fiδ other than the

onstraints.

By simple alulus, it may be shown that the density minimizing the KLD from fi and satisfying

onstraints 3.6 is a Gaussian, of mean 2 and of the same variane as fi. The omputation of the

indies expressed in Setion Setion 3.2 an now be done as fiδ is provided.

Next subsetion formalises this example.

3.3.1.2 Kullbak-Leibler minimization

Here, a perturbed input density fiδ is de�ned as the losest distribution to the original fi in the

entropi sense and under some onstraints of perturbation.
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Later (see Setions 3.3.1.3, 3.3.1.4), spei� perturbations orresponding to a mean shift, a

variane shift and a quantile shift will be presented.

Reall that between two pdf p and q we have:

KL(p, q) =

� +∞

−∞
p(y) log

p(y)

q(y)
dy if log

p(y)

q(y)
∈ L1(p(y)dy). (3.10)

Let i = 1, · · · , d, the onstraints are expressed as follows in funtion of the modi�ed density f
mod

:

�

gk(xi)fmod

(xi)dxi = δk,i (k = 1 · · ·K) . (3.11)

Here, for k = 1, · · · ,K, gk are given funtions and δk,i are given real. These quantities will lead

to a perturbation of the original density. The modi�ed density fiδ onsidered in our work is:

fiδ = argmin

f
mod

|(3.11) holds

KL(f
mod

, fi) (3.12)

and the result takes an expliit form (Csiszar, [26℄) given in the following proposition.

Proposition 3.3.1 Let us de�ne, for λ = (λ1, · · · , λK)T ∈ RK
,

ψi(λ) = log

�

fi(x) exp

[
K∑

k=1

λkgk(x)

]
dx , (3.13)

where the last integral an be �nite or in�nite (in this last ase ψi(λ) = +∞). Further, set Dom ψi =
{λ ∈ RK |ψi(λ) < +∞}. Assume that there exists at least one pdf f

mod

satisfying (3.11) and that

Dom ψi is an open set. Then, there exists a unique λ
∗
suh that the solution of the minimisation

problem (3.12) is

fiδ(xi) = fi(xi) exp

[
K∑

k=1

λ∗kgk(xi)− ψi(λ
∗)

]
. (3.14)

The theoretial tehnique to ompute λ is provided in Appendix D.2.

3.3.1.3 Moments shifting

Mean shifting The �rst moment is often used to parametrize a distribution. Thus the �rst

perturbation presented here is a mean shift, that is expressed with a single onstraint:

�

xifmod

(xi)dxi = δi . (3.15)

In terms of SA, this perturbation should be used when the user wants to understand the sensi-

tivity of the inputs to a mean shift - that is to say "what if the mean of input Xi were δi instead
of E [Xi]?". Notie that for most distributions, this amounts to testing the sensitivity to the entral

tendeny.

Proposition 3.3.2 Considering onstraint (3.15), under the assumptions of Proposition 3.3.1, the

expression of the optimal perturbed density is

fiδi(xi) = exp(λ∗xi − ψi(λ
∗))fi(xi) (3.16)

where λ∗ is suh that Equation (3.15) holds.
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Notie that Equation (3.13) beomes

ψi(λ) = log

�

fi(xi) exp(λxi)dxi = log (MXi
(λ)) (3.17)

where MXi
(u) is the moment generating funtion (m.g.f.) of the i−th input. With this notation, λ∗

is suh that:

�

xi exp (λ
∗xi − log (MXi

(λ∗))) fi(xi)dxi = δi ,

whih leads to:

�

xi exp (λ
∗xi) fi(xi)dx = δiMXi

(λ∗) .

This an be simpli�ed to:

M ′
Xi
(λ∗)

MXi
(λ∗)

= δi . (3.18)

This equation is easy to solve when the expression of the mgf of the input Xi and of its derivative

is known.

Variane shifting In some ases, the expetation of an input may not be the main soure of

unertainty. One might be interested in perturbing its seond moment. This ase may be treated

onsidering a ouple of onstraints. The perturbation presented is a variane shift, therefore the set

of onstraints is: {
�

xifmod

(xi)dxi = E [Xi] ,
�

x2i fmod

(xi)dxi = V
per,i + E [Xi]

2 .
(3.19)

The perturbed distribution has the same expetation E [Xi] as the original one and a perturbed

variane V
per,i = Var [Xi] ± δi. In terms of SA, for most distributions, this amounts to testing the

sensitivity to the tails of the distribution, keeping the entral tendeny untouhed.

Proposition 3.3.3 Under the assumptions of Proposition 3.3.1, for onstraint (3.19), the expres-

sion of the optimal perturbed density is:

fiδi(xi) = exp(λ∗1x+ λ∗2x
2 − ψi(λ

∗))fi(xi)

where λ∗1 and λ∗2 are so that equation (3.19) holds.

Perturbation of Natural Exponential Family In general, when perturbing the input densi-

ties with the KLM method, the shape is not onserved. However in the spei� ase of Natural

Exponential Family (NEF), the following proposition an be derived.

Proposition 3.3.4 Assume that the original random variable Xi belongs to the NEF, i.e. its pdf

an be written as:

fi,θ(xi) = b(xi) exp [xiθ − η(θ)]

where θ is a parameter from a parametri spae Θ, b(.) is a funtion that depends only of xi and

η(θ) = log

�

b(x) exp [xiθ]dxi

is the umulant distribution funtion. Considering the assumptions of Proposition 3.3.1, the optimal

pdfs proposed respetively in Proposition 3.3.2 and Proposition 3.3.3 are also distributed aording

to a NEF.

The proof omes from Theorem 3.1 in Csiszar [26℄. The details of omputation are given for a

mean shift and a variane shift in Appendix D.3.
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Some shapes As an example, the two kinds of perturbations previously presented are provided

for two families of inputs (Gaussian and Uniform) in Figure 3.3. The perturbations are respetively

a mean and variane inreasing. It is notieable (as proven in Proposition 3.3.4) that the shape is

onserved for the Gaussian distribution when shifting the mean or the variane. On the other hand,

when inreasing its mean, the Uniform distribution is paked down on the right-hand boundary of

its support. When inreasing its variane, the density is paked down on both boundaries of its

support.

Figure 3.3: Mean shifting (left) and variane shifting (right) for Gaussian (upper) and Uniform

(lower) distributions. The original distribution is plotted in solid line, the perturbed one is plotted

in dashed line.

Some limitations, notion of equivalent perturbation In this paragraph, we fous on a mean

shift but the same problems arise for a variane shift. What if two inputs do not have the same

mean and we want to assess the impat of their mean shift on Pf? How to ondut an equivalent

perturbation on both inputs? Let us imagine an example in whih an input has mean 0 and another

has mean 100. If a perturbation is onduted on eah variable separately, the interpretation is

ompliated as the ranges of variation will be separated. It is thus ompliated or impossible to

assess the impat of an equivalent perturbation. Conversely, it is impossible in this ase to make

a "relative mean shift" as one of the input has mean 0. The following solution is proposed for the

mean perturbation: shift the mean relatively to the standard deviation, hene inluding the spread

of the various inputs in their respetive perturbation. So for any input, the original distribution
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is perturbed so that its mean is the original's one plus δ times its standard deviation and the

perturbation is onduted on δ (for instane ranging from −1 to 1). This solution is applied in

the �ood ase (Setion 3.4.7) where the inputs are not distributed aording to the same density.

However this solution might not be e�etive in every ase, for instane when inputs do not have

de�ned moments. This onsideration led us to another kind of perturbation that we though is

more equivalent: quantile shifting (see Setion 3.3.1.4). Moreover in the following of this thesis, the

perturbation will be onduted on the parameters of the input densities (see Setion 3.3.2) but this

falls outside of the KLM framework.

3.3.1.4 Quantile shifting

Based on the pratitioner's experiene, it has been notied that the values of the input leading to the

failure event seldom lies around the entral tendeny, but more in the extreme quantiles. From this

point, another way to perturb the densities is proposed, keeping the KLM framework. Compared to

the �rst two moment perturbations previously presented, we argue that this one seems more suitable

to deal with inputs that are not identially distributed (see previous paragraph for a disussion on

equivalent perturbations).

First example Let us �rst reall the de�nition of a quantile.

De�nition 3.3.1 For a given random variable X of probability density funtion f and of umulative

distribution funtion F , the α-quantile is the value qα so that:

P (X < qα) = F (qα) =

� qα

−∞
f(x)dx = α (3.20)

Then onsider a random variable, modelling for instane an unknown physial phenomena value,

de�ned as a standard Gaussian. Its 5% quantile or 5th perentile is q5% = −1.64.

As far as we notied, in most ases, the values of the input leading to the failure event omes

from the tails of the input distributions. What if these tails were badly modelled? Therefore a

perturbation based on the quantiles is proposed.

In this �rst toy example, the aim is to inrease the weight of the left tail. That is to say that

the value q5% is wished to beome for the modi�ed density, for instane the 7% quantile. This an

be written:

�

1]−∞;q5%](x)fmod

(x)dx = 7% (3.21)

In Figure 3.4 are plotted the regular (blak) and the perturbed (blue) densities. The shaded

areas worth respetively

� q0.05
−∞ f(x)dx = 0.05 in grey and

� q0.05
−∞ fδ(x)dx = 0.07 in blue. One an

remark that there is no longer a onservation of the shape with suh a perturbation, sine fδ is not
Gaussian. Additionally, the density is no longer ontinuous.

In a similar way, one ould deide to perturb the densities in suh a way that the tail is less

weighted, meaning that the extreme values beome less frequent. For instane, it an be written:

�

1]−∞;q5%](x)fmod

(x)dx = 3% (3.22)

meaning that the 5% quantile beomes the 3% quantile. The regular and the perturbed densities

are pitured in Figure 3.4. A disontinuity at q5% is present.
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Figure 3.4: Standard Gaussian and perturbed density: quantile inrease (left) and quantile derease

(right)

Methodology of input perturbation Let us denote by qr the referene quantile, e.g. the value
suh that:

� qr

−∞
f(x)dx = r, 0 < r < 1 (3.23)

The onstraint is:

� qr

−∞
f
mod

(x)dx = δ, (3.24)

meaning that f
mod

is the density suh that its δ-quantile is qr. Equivalently, the onstraint an be

written in the general fashion de�ned in Setion 3.3.1.2, Equation 3.11:

�

1]−∞;qr](x)fmod

(x)dx = δ (3.25)

Proposition 3.3.5 Under the assumptions of Proposition 3.3.1, and under the onstraint 3.25, the

expression of the orresponding perturbed density is:

fδ(x) = f(x) exp
[
λ∗1]−∞;qr](x)− ψ(λ∗)

]
(3.26)

with

ψ(λ) = log

(
�

f(x) exp
[
λ∗1]−∞;qr](x)

]
dx

)
(3.27)

and λ∗ is a real number suh that (3.25) holds.

Some shapes In Figure 3.5 are displayed the original (solid blak) and perturbed (dashed blue)

pdf for the following families: Uniform, Triangle and Trunated Gumbel. The parameters used for

these variables are the ones from the �ood ase (Appendix B.3.). In eah ase, the perturbation is:

� q0.05

−∞
f
mod

(x)dx = 0.07, (3.28)

that is to say inreasing the weight of the left-hand tail from 5% to 7%.
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Figure 3.5: Uniform, Triangle and Trunated Gumbel pdf: quantile inrease

3.3.2 Parameters perturbation

3.3.2.1 First example

Problem Assume that we have an input distribution, haraterized by its parameters whih are

data-driven. The question of interest is "how does a parametrisation error a�ets the failure prob-

ability ?". To do so, the use of the DMBRSI is proposed - although the moments perturbations

might not answer the question. Spei�ally, a perturbation based on the parameters is proposed.

The indies are then plotted in funtion of the departure in a given divergene (Hellinger, De�nition

3.3.3). Let us �rst illustrate the idea on a �rst example.

The input distributions and the model For the sake of larity the Weibull distribution ex-

pression (Rinne [83℄) is reminded here:

De�nition 3.3.2 A random variable X has a three-parameters Weibull distribution if its pdf, de�ned

on R+
is:

f(x|a, b, c) = c

b

(
x− a

b

)c−1

exp

[
−
(
x− a

b

)c]

where parameter a, de�ned on R in the same unit as x, is alled the origin. It is a loation parameter.

The seond parameter b is de�ned on R+
in the same unit as x and is alled the sale parameter.

The third parameter c bears no dimension, is de�ned on R+
and is alled the shape parameter.
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The expetation of suh a random variable writes:

E [Wa,b,c] = a+ bΓ

(
1 +

1

c

)
,

and the variane is:

Var [Wa,b,c] = b2

(
Γ

(
1 +

2

c

)
− Γ

(
1 +

1

c

)2
)
,

where Γ is the Gamma funtion. In the following it will be stated that a = 0 and this loation

parameter will be ommited.

For this �rst example, an input is distributed aording to a Weibull distribution and another

input is distributed aording to a standard Gaussian. Assume that the failure model is:

G(X) = G(X1,X2) =
1

2
X1 +

1

10
X2 + 1.5

where X1 ∼ N (µ, σ) and X2 ∼W (b, c) with µ = 0, σ = 1, b = 1.5 and c = π. The failure probability
is roughly P̂ = 4.8× 10−3

.

Use of DMBRSI for sensitivity to the parameters Let us assume that the pratitioner is

interested in testing the sensitivity of its model to the parameters of the distributions. When dealing

with the Gaussian input, a perturbation of the 2 �rst entred moments is equivalent to a perturbation

of the parameters (see Setion 3.3.1.3). On the other hand, perturbing the moments of a Weibull

distribution is far from perturbing its parameters, as proven by the expressions of suh moments.

The interpretation of the indies (see the graphs in Setion 3.4) might be hard for the pratitioner.

Therefore a new representation of the indies is proposed, in whih the parameters of the input

distributions are perturbed. For instane a parameter perturbation is presented in Figure 3.6, where

3 Weibull pdfs are plotted: the original pdf with parameters (1.5, π) and two modi�ed pdf where

eah parameter varies.

Figure 3.6: Original and perturbed Weibulls pdfs
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This graph shows that eah parameter variation produes di�erent e�ets on several parts of the

support. Preisely, inreasing the sale parameter (dotted red urve) dereases the weight of the

right-hand tail whereas inreasing the shape parameter (dashed blue urve) inreases the weight of

the tail. The e�et is reversed on the weight of the mode.

Given the input distributions, it an be inferred that inreasing the mean µ will diminish the

failure probability, inreasing the variane σ2 will inrease the failure probability. It an also be

stated that inreasing the sale parameter b will onentrate the samples in the mode, thus inreasing

the failure probability whereas inreasing the shape parameter c will inrease the weight of the tail,
thus diminish the failure probability. We are interested in the following: assuming that the true

value of the parameters might not be the ones given, whih of those 4 parameters auses the most

unertainty on the failure probability?

The use the DMBRSI is proposed, and it is suggested to plot them in funtion of the departure

in density aused by the perturbation of the parameter.

Measure of the departure aused by parameters perturbation Distane quantifying the

departure between two densities are numerous (Cha [24℄), we propose the use the square of the

Hellinger distane, whih is de�ned as follows.

De�nition 3.3.3 The Hellinger Distane H(P,Q) between two probability measures is the L2-distane

between the square roots of the orresponding pdfs (Pollard [80℄).

H2(P,Q) =

� (√
p(x)−

√
q(x)

)2
dx = 2− 2

� √
p(x)q(x) dx. (3.29)

The Hellinger distane satis�es the inequality:

0 ≤ H(P,Q) ≤
√
2. (3.30)

The reasons for using the Hellinger distane over Kullbak-Liebler divergene are:

� it is numerially pratiable to estimate (the integral might be estimated by Simpson's rule);

� it is bounded;

� it is a distane thus symmetrial.

As the pratitioner might not be familiar with the use of the Hellinger distane, tables eliiting

the relationship between a parameter perturbation and the oasioned departure will be provided.

For instane, when referring to Figure 3.6, the Hellinger distane between the original density and

the one obtained when inreasing the sale parameter (dotted red urve) is 0.0072. Conversely, the
Hellinger distane between the original density and the one obtained when inreasing the shape

parameter (dashed blue urve) is 0.0422.

Dealing with the example When dealing with the example, the parameters are perturbed and

the indies are plotted in funtion of the departure aused by the perturbation in Figure 3.7. We

must stress that these are atually two graphs onatenated, in a sense that we plot the DMBSRI in

funtion of the (square of the) Hellinger distane - yet for eah parameters there are two perturbations

that orrespond to a given departure: the one orresponding to an inrease, the other to a derease.

On Figure 3.7, the indies orresponding to an inrease of the parameters appear on the right side

of the graph, and the indies orresponding to a derease of the parameters are plotted on the left
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side. Con�dene intervals are available thanks to asymptoti formulae provided in Setion 3.2.3; yet

they are not plotted here sine it is an illustrative example.

Figure 3.7: DMBRSI with parameters perturbations

Altogether with the Figure, Table 3.1 is provided: it expresses the departure in terms of param-

eters variation. The aim of suh a table is to help the pratitioner with quantifying the departure in

terms of parameters perturbation. Note that Table 3.1 only fouses on parameters inreasing (right-

hand part of Figure 3.7). In the numerial examples of Setion 3.4, both parameters inreasing and

dereasing will be dealt with.

X1 ∼ N (µ = 0, σ = 1) X2 ∼W (b = 1.5, c = π)
µ|σ = 1 σ|µ = 0 b|c = π c|b = 1.5

H2(Xi,Xiδ) = 0 0 1 1.5 π

H2(Xi,Xiδ) = 0.05 0.450 1.378 2.102 π + 1.104

H2(Xi,Xiδ) = 0.1 0.641 1.585 2.440 π + 1.691

H2(Xi,Xiδ) = 0.15 0.790 1.773 2.753 π + 2.213

H2(Xi,Xiδ) = 0.2 0.918 1.958 3.064 π + 2.715

Table 3.1: Hellinger distane in funtion of the parameter perturbation

The indies in Figure 3.7 show some entral symmetry. This graph states that a variation in

σ has the largest e�et on the failure probability. Then omes µ, then the sale parameter b and
�nally the shape parameter c.

Conlusion, notion of equivalene This �rst example shows how the DMBRSI an be used to

assess the in�uene of eah input distributions' parameter on the failure probability.

We also argue that the perturbation is "equivalent" in the sense evoked in the last paragraph of

Setion 3.3.1.3. Indeed, when perturbing two parameters for instane expressed in di�erent units or
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di�erent orders of magnitude, the Hellinger distane allows to quantify "equivalently" the amplitude

of the departure produed by the parameter shift.

3.3.2.2 Methodology of input perturbation

In this subsetion, we formalize what has been done in the previous �rst example.

Let us suppose that the i-th variable Xi of the input vetor is distributed aording to fi. The
i-th input has pi parameters: it is parametrized by the vetor Θi = (θi,1, .., θi,pi). The perturbation
will be on the j-th parameter, and will be of the following form:

θi,j,δ = θi,j + δi,j (3.31)

where δi,j is a given real suh that Θiδ = (θi,1, .., θi,j+δi,j, ., θi,pi) is still a parametrization vetor

for the input fi (for instane a variane parameter annot beome negative). Vetor Θiδ parametrizes

the modi�ed pdf fiδ. It must be notied as well that the support of the perturbed pdf fiδ must lie
within the support of fi (for estimation purposes, see onditions of Lemma 3.2.1).

The framework given in Figure 3.1 is modi�ed in Figure 3.8 to onsider the parameters pertur-

bations.

123



3. Density Modifiation Based Reliability Sensitivity Indies

Get a MC sample

x1, · · · ,xN ∼ f

i = 1, .., d

j = 1, .., pi

Set perturbation

parameter δ within a

given variation range

fiδ ∼ fi(θi,1, .., θi,j + δi,j, ., θi,pi)

Estimate the

quantities:

P̂iδN (see Eq. (3.3))

ŜiδN (see Eq. (3.4))

Σ̂iδ (see Prop. 3.2.1)

Compute H2(fi, fiδ)

Plot the point

(H2(fi, fiδ), ŜiδN )
-on the right hand

graph for δ > 0
-on the left hand

graph for δ < 0

Produe the table

H2(fi, fiδ) in funtion

of θi,j,δ|(θi,1, .., θi,pi)

While in the

variation range,

hange δ

If i < d, i = i+ 1

If j < pi, j = j + 1

End

Figure 3.8: Spei� DMBRSI framework for parameters perturbations
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3.3. Methodologies of input perturbation

3.3.3 Choie of the perturbation given the objetives

3.3.3.1 Types of perturbations and variation ranges

The types of perturbations presented in this setion are reminded and summarized here. Some

reommendations are given on the range of the perturbations.

� Mean shifting (Eq. 3.15): if the inputs are identially distributed, then the perturbation is

straightforward (standard mean shift for all the variables). The range of the perturbation must

be hosen so that the on�dene intervals of the indies are not too spread (and if possible

separated). If the inputs are not identially distributed, the perturbation proposed in the last

paragraph of Setion 3.3.1.3 is the following: the original distribution is perturbed so that its

mean is the original's one plus δ times its standard deviation and the perturbation is onduted

on δ. For the moment, a range proposed for δ is from −1 to 1.

� Variane shifting (Eq. 3.19): we argue that this perturbation is only to be used if the inputs

are identially distributed. The new varianes must be hosen so that the on�dene intervals

of the indies are not too spread.

� Quantile shifting (Eq. 3.25): the following strategy is proposed. First, �x a referene quantile

(namely q
ref

), then perturb this quantile for all the inputs. For the beginning of the study, we

propose to perturb the 1st, 2nd and 3rd quartiles altogether with the 5th and 95th perentiles.

Other quantiles might be perturbed in the following of the study if neessary.

� Parameters shifting (Eq. 3.31): this perturbation allows to deal with inputs that are not

identially distributed. Here, the strategy is to perturb all the parameters of the input dis-

tributions. The range of the perturbation is driven by the square of the Hellinger distane

between the original and the perturbed distribution. A perturbation so that this distane is

H2 = .1 seems enough to us (given our numerial tests).

3.3.3.2 Relationship between objetives and perturbations

In this paragraph are reminded the di�erent objetives presented in Setion 1.7. We propose the

adapted perturbations for any given objetive.

� REM1 (absolute ranking when the inputs are set): in this ase we propose to perform the three

KLM perturbations (mean shift, variane shift and quantile shift). For eah perturbation, an

input ranking an be produed.

� REM2 (quantify the sensitivity to the family or shape): in this ase, we propose to perform

only a quantile perturbation, as the quantiles allow to de�ne a distribution.

� REM3 (assess the sensitivity to the parameters): in this spei� ase, we propose to use the

parameters perturbation. This meets perfetly the objetive.

� Objetive 1 (variable ranking, assess whih input "most needs better determination"). In this

ase, we propose the three KLM perturbations.

� Objetive 2 (model simpli�ation). This ase is not treated in the manusript but we an

propose the following solution. A spei� perturbation an be reated, in whih the perturbed

input is a narrow distribution within the support of the original input (e.g. an input is set

to a referene value and this referene value is moved along the support). The impat on the

failure probability an be dedued from the indies thus meeting the objetive.
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3. Density Modifiation Based Reliability Sensitivity Indies

� Objetive 3 (model understanding). As the objetive is to determine whih partiular values

of some inputs leads to some behaviour of the output, we propose to perform the three KLM

perturbations. Eah perturbation provides supplementary knowledge on whih part of the

support of the input leads to the failure event.

� Objetive 4 (alibration sensitivity). In this ase we propose to perform the 4 perturbations

type. The perturbations respetively allows to test the sensitivity to the moments, the tails

and the parameters of the inputs.

Table 3.2 summarises the main ideas developed in this subsetion.

REM1 REM2 REM3 Obj. 1 Obj. 2 Obj. 3 Obj. 4

Mean shifting × × × ×
Variane shifting × × × ×
Quantile shifting × × × × ×

Parameters shifting × ×
Spei� ×

Table 3.2: Type of perturbation reommended given the objetive or the motivation

In addition with Table 3.2, we stress that the referene methods (FORM's Importane fators

and Sobol' indies) only ful�ll REM1 and Objetive 1 (variable ranking).

3.4 Numerial experiments

3.4.1 Testing methodology

In this setion, the proposed indies are tested on the numerial ases de�ned in Appendix B. A

omparison with two referenes method (FORM's Importane fators and Sobol' indies) is provided.

Importane fators and Sobol' indies are omputed using the methodologies given in Lemaire [61℄

and Saltelli [87℄, respetively. The R pakages mistral and sensitivity have been used. The Sobol'

indies are omputed using two initial samples of size 106, resulting into N = 106 × (d+2) funtion
alls (Saltelli et al. [88℄). The results of the Sobol' indies analysis were already provided in Setion

1.4.

3.4.2 Hyperplane 6410 test ase

This �rst test ase was de�ned in Appendix B.1. Remind that all variables are independent standard

Gaussian. Also reall that variable X2 is most in�uential, then omes variable X3. X1 has a small

in�uene and X4 has no in�uene at all. Finally remind that the failure probability is Pf = 0.014.

3.4.2.1 Importane fators

In this ideal hyperplane failure surfae ase, FORM provides an approximated value P̂FORM =
0.01398, whih is as expeted (Lemaire [61℄) lose to the exat value. 39 model alls have been

required. The importane fators, given in Table 3.3, provide an aurate variable ranking for the

failure funtion.
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3.4. Numerial experiments

Variable X1 X2 X3 X4

Importane fator 0.018 0.679 0.302 0

Table 3.3: Importane fators for hyperplane 6410 funtion

3.4.2.2 Sobol' indies

We reprodue here table 1.4 and the resulting onlusions.

Index S1 S2 S3 S4 ST1 ST2 ST3 ST4

Estimation 0.002 0.254 0.054 0 0.200 0.940 0.720 0

Table 3.4: Estimated Sobol' indies for the hyperplane 6410 ase

The total indies assess that X2 is extremely in�uential, and that X3 is highly in�uential. X1

has a moderate in�uene and X4 has a null in�uene. This last point is interesting: it shows that

this SA method an detet the non-in�uential variables.

3.4.2.3 DMBRSI

The method presented throughout this hapter is applied on the �rst hyperplane funtion. As

explained in setion 3.3, several ways to perturb the input distributions exist. A mean shifting, a

variane shifting, a quantile shifting and a parameters perturbation will be performed. We follow

the methodology displayed in Figures 3.1 and 3.8. We stress that all the indies are estimated with

the same MC sample. The MC estimation gives P̂ = 0.01446 with 105 funtion alls.

Mean shifting For the mean shifting (see Eq. (3.15)), the domain variation for δ ranges from

−1 to 1 with 40 points, reminding that δ = 0 annot be onsidered as a perturbation sine it is the

expetation of the original density. The results of the estimation of the indies Ŝiδ are plotted in

Figure 3.9, altogether with 95% symmetrial on�dene intervals (CI).

The indies Ŝiδ behave in a monotoni way given the importane of the perturbation. The

slope at the origin is diretly related to the value of ai. For in�uential variables (X2 and X3), the

inreasing or the dereasing is faster than linear, whereas the urve seems linear for the slightly

in�uential variable (X1). Modifying the mean with a positive amplitude slightly rises the failure

probability for X1, highly dereases it for X2 and inreases it for X3. The e�ets are reversed with

similar amplitude for negative δ. It an be seen that X4 has no impat on the failure probability

for any perturbation. Those results are onsistent with the expression of the failure funtion. One

an see that the CI assoiated to all variables are fairly well separated, exept for the small absolute

value of δ.

Variane shifting For the variane shifting (see Eq. (3.19)), the variation domain for V
per

ranges

from 1/20 to 3 with 28 points, where V
per

= 1 is not a perturbation. The estimated indies are

plotted in Figure 3.10. The 95% symmetrial CI are plotted around the indies, using the presented

asymptoti formulas in Setion 3.2.

Inreasing the variane of inputs X2 and X3 inreases the failure probability, whereas it dereases

when dereasing the variane. Modifying the variane of X1 and X4 have no e�et on the failure

probability. The inreasing of the indies is linear for X2 and X3, and the dereasing of the indies

is faster than linear, espeially for X2. Considering the CI, one an see that they are well separated
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3. Density Modifiation Based Reliability Sensitivity Indies

Figure 3.9: Estimated indies Ŝiδ for the 6410 hyperplane funtion with a mean shifting

Figure 3.10: Estimated indies Ŝi,Vf
for hyperplane funtion with a variane shifting

for variables X2 and X3, assessing the relative importane of these variables. On the other hand,

the CI assoiated to X1 and X4 are not separated and ontain 0. In�uene of X1 and X4 annot

thus be separated - but is estimated as null for both variables.

Quantile shifting

We �rst perturb the 5th perentile. The tail is perturbed in suh ways that it weights between 1%
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3.4. Numerial experiments

and 10%. The results are displayed in Figure 3.11.

Figure 3.11: 5th perentile perturbation on the hyperplane 6410 test ase

Conerning the left-hand tail, this �gure shows the dominant role of variable X2. E�ets of

variables X1 and X3 are small whereas the indies assoiated to X4 are null, assessing the non-

in�uene of the last variable - at least when perturbing the left-hand tail.

The �rst quartile or 25th perentile is then perturbed. The weight of the tail under the 25th

perentile (meaning the left-hand tail) of the input varies between 10% and 40%. The result of the

numerial experiments are displayed in Figure 3.12.

This plot shows that an inrease of the 1st quartile leads to an inrease of the failure probability

for variable X2 whereas it leads to a derease for variables X3 and X1 in order of in�uene. A

quantile perturbation on variable X4 has no e�et on the failure probability. On the other hand,

when dereasing the weight of the 1st quartile, the failure probability inreases for variable X3 and

X1, and dereases for variable X2.

We then perturb the seond quartile or median. The density is perturbed so that the left-hand

tail weight varies between 25% and 75%. The results are displayed in Figure 3.13.

This last graph shows the relative importane of X3 and X2. X1 behaves as X3, only with a

smaller e�et. This is relevant given the expression of the model.

Let us now perturb the third quartile or 75th perentile. The weight of the pdf under the 75th

perentile of the standard Gaussian varies between 60% and 90% - whih is the same as perturbing

the weight of the right-hand tail between 10% and 40%. The result of the numerial experiments

are displayed in Figure 3.14.

This shows that the most in�uential variable when perturbing the 3rd quartile is variable X3, then

omes variable X2, then variable X1. Perturbing variable X4 has no e�et on the failure probability,

as expeted. We proeed as before and perturb a more extreme quantile, namely the 95th perentile.
It varies between 90% and 99%. The results are displayed in Figure 3.15.
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3. Density Modifiation Based Reliability Sensitivity Indies

Figure 3.12: 1stquartile perturbation on the hyperplane 6410 test ase

Figure 3.13: Median perturbation on the hyperplane 6410 test ase

This shows the main in�uene of variable X3 when dealing with perturbations of the right-hand

tail.

As a onlusion on this monotoni test ase, it an be say that the input values leading to the

failure event are mostly the extremes values of the left-hand tail for variable X2 and the extremes

values of the right-hand tail for variable X3.

Parameters perturbation The methodology presented in subsetion 3.3.2 is tested here. There

are 8 parameters governing this model: the means and standard deviations of eah of 4 variables.
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3.4. Numerial experiments

Figure 3.14: 3rd quartile perturbation on the hyperplane 6410 test ase

Figure 3.15: 95th perentile perturbation on the hyperplane 6410 test ase

Based on the same 105 MC sample, Figure 3.16 an be plotted.

This �gure has to be interpreted altogether with table 3.5. Reall that all the inputs follow

standard Gaussian.

Interpreting both Figure 3.16 and table 3.5 lead us to onlude the following. The most in�uential

parameter with respet to the failure probability is the standard deviation of X2. Inreasing this

quantity so that the H2
distane between the original and the perturbed density is 0.05 triples

the failure probability. On the other side of the graph, diminishing the variane of X2 strongly

diminishes the failure probability with respet to the other parameters. Then, the other in�uential
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Figure 3.16: Parameters perturbation on the hyperplane 6410 test ase. Dots are for means, triangle

for the standard deviations. Green orresponds to X1, blak to X2, red to X3 and blue to X4.

Xi ∼ N (µ = 0, σ = 1)
µ|σ = 1 σ|µ = 0

H2(Xi,Xiδ) = 0 0 1

H2(Xi,Xiδ) = 0.01 0.200/−0.200 1.152/0.868

H2(Xi,Xiδ) = 0.025 0.317/−0.317 1.252/0.798

H2(Xi,Xiδ) = 0.05 0.450/−0.450 1.378/0.725

H2(Xi,Xiδ) = 0.1 0.641/−0.641 1.585/0.631

Table 3.5: Hellinger distane in funtion of the parameter perturbation. The �rst value is an inrease

of the parameter (right hand of the graph) whereas the seond is a derease of the parameter (left

hand of the graph). Both perturbation lead to the same H2
departure.

parameter is the mean of X2. It is slightly less important than the standard deviation of X2 yet it

is muh more in�uential than others parameters. When inreasing the standard deviation and (not

at the same time) the mean of X3, it a�ets positively the failure probability. The estimated indies

are onfounded, but the CI are slightly larger for the standard deviations. When dereasing these
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3.4. Numerial experiments

last two parameters, the failure probability dereases. Yet in this ase, the mean is more in�uential

than the standard deviation. This is an interesting result. When dealing with the parameters of

X1, it must be notied that the estimated indies for the standard deviations lie around 0 and are

onfounded with the one forX4. However the indies for the mean are slightly positive and inreasing

when inreasing this mean while they are slightly negative and dereasing when diminishing this

parameter. The indies assoiated to X4, both mean and standard deviation are null, thus assessing

the non-in�uene of this last variable.

Conlusion and disussion The DMBRSI has brought the following onlusions:

� When shifting the mean (that is to say the entral tendeny in this ase), the most in�uential

variable is X2, followed by X3. X1 is slightly in�uential while X4 is not in�uential at all.

� When shifting the variane, variable X2 is more in�uential than variable X3. Variables X1

and X4 have no impat when shifting the variane that is to say when we are interesting in

the tails behaviour.

� The many graphs assoiated with several quantiles shifts lead to the onlusion that the in�u-

ential regions leading to the failure event are the extreme left-hand tail values for variable X2

and the extreme right-hand tail values for variable X3.

� When shifting the parameters, it lead to the onlusion that the most in�uential parameters are

the standard deviation of X2, the mean of X2, then the mean of X3 followed by the standard

deviation of X3. Others parameters have a small to null in�uene.

These results are onsistent with eah other. We argue that all these information are muh

riher than the ones provided by importane fators and by Sobol' indies. Indeed, the information

is provided about regions of the input spae leading to failure event; or on parameters whose variation

will provide a broad hange on the failure probability. This is, in our opinion, more of interest to

the pratitioner than a "simple" variable ranking.

3.4.3 Hyperplane 11111 test ase

This seond test ase was de�ned in Appendix B.1. Remind that all variables are independent

standard Gaussian. Also reall that all variables have the same in�uene. Finally remind that the

failure probability is Pf = 0.0036.

3.4.3.1 Importane fators

In this ideal hyperplane failure surfae ase, FORM provides an approximated value P̂FORM =
0.0036, whih is as expeted (Lemaire [61℄) lose to the exat value. 33 model alls have been

required. The importane fators, given in Table 3.6, provide an exat variable ranking for the

failure funtion. They assess that all variables have the same importane. That was the sought after

result.

Variable X1 X2 X3 X4 X5

Importane fator 0.2 0.2 0.2 0.2 0.2

Table 3.6: Importane fators for hyperplane 11111 funtion
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3.4.3.2 Sobol' indies

We reprodue here Table 1.5 and the resulting onlusions.

On Table 3.7 the estimated Sobol indies with 2 samples of size 106, using the Saltelli 02 method.

The total number of funtion evaluations is 7× 106.

Index S1 S2 S3 S4 S5 ST1 ST2 ST3 ST4 ST5

Estimation 0.015 0.013 0.014 0.009 0.015 0.677 0.673 0.695 0.674 0.685

Table 3.7: Estimated Sobol' indies for the hyperplane 11111 ase

The weak �rst order indies (less than 2% of the variane explained) and the high total indies

assess that all the variables are in�uential in interation with the others. All the total indies are

approximatively the same showing that this SA method an give the same importane to eah equally

ontributing input.

3.4.3.3 DMBRSI

As in the previous example, all the types of perturbations proposed in setion 3.3 will be tested

on this seond numerial ase. The methodology displayed in Figures 3.1 and 3.8 is used. We

again stress that all the indies are estimated with the same MC sample. The MC estimation gives

P̂ = 0.00353 with 105 funtion alls, whih is a good order of magnitude.

Mean shifting The mean of all the variables is shifted (one variable at a time), see Eq. (3.15).

The domain variation for δ ranges from −1 to 1 with 40 points, reminding that δ = 0 annot be

onsidered as a perturbation sine it is the expetation of the original density. The result is plotted

in Figure 3.17, with a di�erent olor and di�erent sign for eah variable. 95% on�dene intervals

are plotted.

For small values (of absolute value smaller than 0.5) of new mean, the estimated indies are

similar for all the variables. When the values of the new mean get higher (in absolute value), some

numerial noise spreads the indies. However, the on�dene intervals are not disonneted. We

onlude from this graph that, when dealing with the entral tendeny, all the variables involved in

the ode have the same in�uene on the failure probability.

Variane shifting The variane of all the variables is now shifted (still one variable at a time),

see Eq. (3.19). The domain variation for Vf (the perturbed variane) ranges from 0.2 to 3 with 71
points, reminding that Vf = 1 is not a perturbation. The result is plotted in Figure 3.18, with a

di�erent olor and di�erent sign for eah variable. 95% on�dene intervals are plotted.

For small values of perturbation (variane ranging from 0.5 to 1.5), the indies are onfounded.
When inreasing the strength of the perturbation, one an see that the indies get disjointed. How-

ever the on�dene intervals are not disonneted, thus one an infer that the values of the indies

are roughly the same (they are theoretially the same in this model). An interesting fat is that

all on�dene intervals do not have the same width. A onlusion from this graph is that, when

dealing with the tails, all the variables involved in the ode have the same in�uene on the failure

probability.

Quantile shifting As previously, we perturbed the 1st, 2nd and 3rd quartiles altogether with the

5th and 95th perentiles. As all the graphs have a similar shape, only one (for the median) is displayed

in Figure 3.19.
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Figure 3.17: Estimated indies Ŝiδ for the 11111 hyperplane funtion with a mean shifting
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Figure 3.18: Estimated indies Ŝiδ for the 11111 hyperplane funtion with a variane shifting
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Figure 3.19: Median perturbation on the hyperplane 11111 test ase

This graph shows that all the variables have an equivalent behaviour when their quantiles are

perturbed.

Parameters shifting 10 parameters drive the model: a variane and a standard deviation for

eah Gaussian input. Eah of these parameters is perturbed and the estimated indies are plotted

in funtion of the Hellinger distane in Figure 3.20, as explained in Figure 3.8. 95% on�dene

intervals are provided as well.

This �gure leads to several omments and needs to be interpreted with table 3.5. Inreasing

any parameter leads to an inrease of the failure probability whereas diminishing any parameter

leads to a redution of the failure probability. When inreasing the parameters, indies are badly

separated. A loser look shows that the indies assoiated to the means (dots) are paked down to

(slightly) lower values that the indies assoiated to the standard deviations (triangles), whih are

more dispersed. The on�dene intervals (solid lines for the means, dashed lines for the standard

deviations) are smaller for the means than for the standard deviations. On the other side of the

graph, when reduing the parameters, an "equivalent" (in the H2
sense) redution of the mean has

more impat (on the redution of the failure probability) than a redution of the standard deviations.

The on�dene intervals are well separated. In all ases, there is no way to distinguish the e�ets of

several variables, whih was expeted in this model.

Conlusion and disussion When shifting the mean, for small perturbations, all the variables

are ranked with the same importane. This goes the same for a variane shift and a quantile shift.

Similarly, a parameter perturbation does not allow to say that a variable is more in�uential than
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Figure 3.20: Parameters perturbation on the hyperplane 11111 test ase. Dots are for means, triangle

for the standard deviations. A di�erent olor is used for eah variable.

another (however the parameters of a given variable does not have the same in�uene on the failure

probability).

If the objetive was a pure variable ranking, then small variations of moments and quantile

are adapted - at least on this ase it has shown the ability to a�et roughly the same indies to

equivalently in�uential variables.

If the objetive of the SA is to know whih parameters impat the most the failure probability

(and a realisti objetive would be "where to redue the unertainty in order to redue the failure

probability"), we stress here that the parameters shift has allowed to onlude that for this ase the

means of the variables have more in�uene than their standard deviations.

3.4.4 Hyperplane with 15 variables test ase

This third test ase was de�ned in Appendix B.1. Remind that all variables are independent standard

Gaussian. Also reall that the aim of this example is to test the ability of the proposed method
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Variable X1 to X5 X6 to X10 X11 to X15

Importane fator 0.192 7.69× 10−3
0

Table 3.8: Importane fators for the hyperplane 15 variables

to disriminate the variables in three lasses: in�uential, weakly-in�uential, non-in�uential. Finally

remind that the failure probability is Pf = 0.00425.

3.4.4.1 Importane fators

In this ideal hyperplane failure surfae ase, FORM provides an exat value P̂FORM = 0.00425, as
expeted. 31 model alls have been required. The importane fators, given in Table 3.8, provide

an exat variable ranking for the failure funtion. They give to eah group of variable di�erent

values of in�uene. The ranking is orret, namely the in�uential variables are deteted as suh, the

weakly-in�uential variables have a very small importane fator and the non-in�uential variables

have importane fators of 0. That was the sought after result.

3.4.4.2 Sobol' indies

We reprodue here Table 1.6 and the resulting onlusions.

On Table 3.9 are presented the estimated Sobol' indies with 2 samples of size 106, using the

Saltelli [87℄ method. The total number of funtion evaluations is 17× 106.

Index S1 to S5 S6 to S10 S11 to S15

Estimation 0.014 to 0.018 0.001 to 0.002 0

Index ST1 to ST5 ST6 to ST10 ST11 to ST15

Estimation 0.655 to 0.673 0.141 to 0.150 0

Table 3.9: Estimated Sobol' indies for the hyperplane with 15 variables ase

The �rst order indies are all weak, yet separated in three groups. The total indies give a

good separation between the in�uential, weakly in�uential and non in�uential variables. The Sobol'

indies SA method is able to deal with problems of medium dimension; however it has an heavy

omputational ost in this ase.

3.4.4.3 DMBRSI

As in the previous example, all the types of perturbations proposed in setion 3.3 will be tested on

this third numerial ase. The methodology displayed in Figures 3.1 and 3.8 is used. We stress again

that all the indies are estimated with the same MC sample. The MC estimation gives P̂ = 0.0042
with 105 funtion alls, whih is lose from the real result.

Mean shifting The mean of all the variables is shifted (one variable at a time), see Equation

(3.15). The domain variation for δ ranges from −1 to 1 with 40 points, reminding that δ = 0
annot be onsidered as a perturbation sine it is the expetation of the original density. The result

is plotted in Figure 3.21, with a di�erent olor for eah variable and di�erent sign for eah group

variable. 95% on�dene intervals are plotted.
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Figure 3.21: Estimated indies Ŝiδ for the 15 variables hyperplane funtion with a mean shifting

For the in�uential variables (big dots), inreasing the mean inreases the failure probability

whereas dereasing this parameter dereases the failure probability. However distinguish the e�ets

of the weakly-in�uential variables (triangles) from the e�ets of the non-in�uential variables (small

dots) is not possible due to the overing of the on�dene intervals. So far, DMBRSI does not allow

to separate the e�ets of the two last groups of variables. However, another test with a MC size of

106 draws (graphs non provided here) allows a good separation of the weakly and non-in�uential

variables.

Variane shifting The variane of all the variables is now shifted (still one variable at a time),

see Equation (3.19). The domain variation for Vf (the perturbed variane) ranges from 0.2 to 3 with
71 points, reminding that Vf = 1 is not a perturbation. The result is plotted in Figure 3.22, with a

di�erent olor and di�erent sign for eah variable. 95% symmetrial on�dene intervals are plotted.

The in�uential variables (big dots) are well separated from the others. As expeted for these

variables, inreasing (respetively dereasing) the variane inreases (respetively dereases) the

failure probability. However, the e�ets for the weakly-in�uential (triangles) and non-in�uential

(small dots) variables, the e�ets are hardly separable (see the on�dene intervals). As well as

previously, DMBRSI does not allow to separate the e�ets of the two last groups of variables (weakly

and non-in�uential).

However, inreasing the sample size of a fator 10 (graph not provided here) still does not allow to

separate the e�ets of the last two groups of variable. This might be due to the relative null-in�uene

of a variane shift in the last 10 variables.
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Figure 3.22: Estimated indies Ŝiδ for the 15 variables hyperplane funtion with a variane shifting

Quantile shifting As in the previous numerial experiments, the 1st, 2nd and the 3rd quartiles

altogether with the 5th and 95th perentiles were perturbed. All the graphs are similar, only the left

sale (the value of the sensitivity indies) varies, thus only one (relative to the median perturbation)

is displayed in Figure 3.23.

This graph somehow allows the ranking in in�uential, weakly-in�uential and non-in�uential

variables. This graph shows that the method allows a separation of the 15 variables into 3 groups

of in�uene: medium, small and null in�uene although the separation between the two last groups

is not straightforward.

The 10 �rst variables (2 �rst groups of 5 variables) have an equivalent behaviour when their

quantiles are perturbed: inreasing the weight of the left-hand tail inreases the failure probability

whereas it dereases this probability when inreasing the weight of the right-hand tail. The indies

assoiated to the last 5 variables have on�dene interval values that inlude 0.

Inreasing the sample size by a fator 10 allows to obtain a graph that aurately separates the

diverse groups of variables (the graph is not provided here as it is the same as Figure 3.23).

With this type of perturbation, the DMBRSI allows to separate the variables by group of in�u-

ene.

Parameters perturbation The model is driven by 30 parameters: a variane and a standard

deviation for eah Gaussian input. Eah of these parameters is perturbed and the estimated in-

dies are plotted in funtion of the Hellinger distane in Figure 3.24, as explained in Figure 3.8.

95% on�dene intervals are provided as well. As the graph gets too ompliated for an adequate

representation, only one variable per group is plotted.

Table 3.5 is needed as well to interpret this graph. From the graph with all the indies plotted
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Figure 3.23: Median perturbation on the hyperplane with 15 variables test ase

(not showed here) and from Figure 3.24, one an infer the following. The parameters related to

the �rst variable - related to the �rst in�uene group - (blak, dots for the mean, triangle for the

standard deviation) are the most in�uential, with a bigger in�uene from the mean when dereasing

the parameter. When inreasing the parameters, the e�ets of the standard deviation and of the

mean are not disernible. The on�dene interval for the standard deviations (dashed lines) is quite

wider than the one assoiated with the mean. However the indies assoiated with the means and

variane of the other groups of variables are too noisy and annot be interpreted.

Conlusion and disussion DMBRSI is not adapted to this medium dimension ase. Indeed,

only the quantile perturbation is able to distinguish the weakly from the non-in�uential variables.

The parameter perturbation method espeially leads to representation problem, with 30 urves to

plot plus the on�dene intervals. This leads to the onlusion that DMBRSI should not be used as

a sreening method.

3.4.5 Hyperplane with same importane and di�erent spreads test ase

This fourth test ase was de�ned in Appendix B.1. Remind that all variables are independent

Gaussian with mean 0 and inreasing standard deviation. Also reall that the aim of this example is

to give to equivalently in�uential variables that are not distributed similarly the same importane.

Finally remind that the failure probability is Pf = 0.0036.

3.4.5.1 Importane fators

In this ideal hyperplane failure surfae ase, FORM provides an approximated value P̂FORM =
0.0036, whih is as expeted (Lemaire [61℄) lose to the exat value. 33 model alls have been

required. The importane fators, given in Table 3.10, provide an exat variable ranking for the
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Figure 3.24: Parameters perturbation on the 15 variables hyperplane test ase. Dots are for means,

triangle for the standard deviations. Blak is for the �rst group of in�uene, red is for the seond

and blue for the third.

failure funtion. They assess that all variables have the same importane. That was the expeted

result.

Variable X1 X2 X3 X4 X5

Importane fator 0.2 0.2 0.2 0.2 0.2

Table 3.10: Importane fators for hyperplane with di�erent spreads funtion

3.4.5.2 Sobol' indies

We reprodue here Table 1.7 and the resulting onlusions.

On Table 3.11 are presented the estimated Sobol' Indies. The omputation was done with 2
samples of size 106, using the Saltelli [87℄ method. The total number of funtion evaluations is

7× 106.
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Index S1 S2 S3 S4 S5 ST1 ST2 ST3 ST4 ST5

Estimation 0.027 0.028 0.025 0.025 0.028 0.611 0.622 0.618 0.618 0.624

Table 3.11: Estimated Sobol' indies for the hyperplane with di�erent spreads ase

The weak �rst order indies (less than 3% of the variane explained) and the high total indies

assess that all variables are in�uential in interation with the others, and that no variable is in�uential

on its own. All the total indies are approximatively equal showing that this SA method gives to

eah equally ontributing variable the same importane, despite their di�erent spread.

3.4.5.3 DMBRSI

One an notie that the di�erent inputs follow various distributions (unlike the other examples), thus

the question of "equivalent" perturbation arises. Due to this non-similarity of the distributions, only

a (modi�ed) mean shift, a quantile shift and a parameter shift will be applied on this test ase. It

has been disussed further in Setion 3.3.1.3.

Mean shifting As stressed in Setion 3.3.1.3 the hoie has been made to shift the mean relatively

to the standard deviation, hene inluding the spread of the various inputs in their respetive

perturbation. So for any input, the original distribution is perturbed so that its mean is the original

one plus δ times its standard deviation, δ ranging from −1 to 1 with 40 points. The results of the

numerial experiment are displayed in Figure 3.25.
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Figure 3.25: Estimated indies Ŝiδ for the hyperplane with di�erent spreads ase with a mean shifting
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The indies have similar values for similar perturbations, thus assessing the equal impat of the

variables. However this information was obtained with a �ne tuning of the perturbations.

Quantile shifting As in the previous numerial experiments, the 1st, 2nd and the 3rd quartiles

altogether with the 5th and 95th perentiles were perturbed. As the graphs behave in a similar way,

only one is displayed in Figure 3.26.

Figure 3.26: Estimated indies Ŝiδ for the hyperplane with di�erent spreads ase with a median

shifting

The perturbation of the 2nd quantile a�ets all the variables in the same way, despite their

di�erent distributions. This shows that the quantile perturbation method gives to eah equally

ontributing variable the same importane.

Additionally, we an onlude the following on the appliation of the quantile perturbation on

monotoni ases (3.4.2 to 3.4.5):

� the graphs for the median perturbation are similar to the ones relative to a mean perturbation.

� when a left-hand quantile α1 (if α1 < 50%) is in�uent (meaning a perturbation of δ% of this

quantile produes an index superior to a threshold t) then α2 < α1 has more in�uene. In the

ase of a right-hand quantile (if α1 > 50%) then α2 > α1 has more in�uene.

Parameters perturbation The model is driven by 10 parameters: a variane and a standard

deviation for eah Gaussian input. Eah of these parameters is perturbed and the estimated indies

are plotted in funtion of the Hellinger distane in Figure 3.27 as explained in Figure 3.8. 95%
on�dene intervals are provided as well. As the graph gets too ompliated for an adequate rep-

resentation, only three variables are plotted: X1 (blak), X3 (red) and X5 (blue). As usual, the

144



3.4. Numerial experiments

indies assoiated with the means are plotted as dots and the indies assoiated with the standard

deviations are plotted as triangles.
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Figure 3.27: Parameters perturbation on the hyperplane with di�erent spreads ase. Dots are for

means, triangle for the standard deviations. Blak is for X1, red is for X3 and blue is for X5.

Xi ∼ N (µ = 0, σ = 2) Xi ∼ N (µ = 0, σ = 6) Xi ∼ N (µ = 0, σ = 10)
µ|σ = 2 σ|µ = 0 µ|σ = 6 σ|µ = 0 µ|σ = 10 σ|µ = 0

H2(Xi, Xiδ) = 0 0 2 0 6 0 10

H2(Xi, Xiδ) = 0.01 0.400/−0.400 1.736/2.299 1.193/−1.193 5.208/6.897 1.989/−1.989 8.679/11.521

H2(Xi, Xiδ) = 0.025 0.634/−0.634 1.597/2.499 1.898/−1.898 4.790/7.496 3.163/−3.163 7.985/12.526

H2(Xi, Xiδ) = 0.05 0.900/−0.900 1.451/2.748 2.695/−2.695 4.353/8.245 4.492/−4.492 7.255/13.784

H2(Xi, Xiδ) = 0.1 1.281/−1.281 1.262/3.158 3.839/−3.839 3.785/9.475 6.398/−6.398 6.308/15.853

Table 3.12: Hellinger distane in funtion of the parameter perturbation

This �gure leads to several omments and needs to be interpreted with table 3.12. Inreasing any

parameter leads to an inrease of the failure probability whereas diminishing any parameter leads to

a redution of the failure probability. When inreasing the parameters, indies are badly separated.

One an however see that the on�dene intervals assoiated to the means are narrower than the ones
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3. Density Modifiation Based Reliability Sensitivity Indies

assoiated to the standard deviations. On the other side of the graph, when reduing the parameters,

an "equivalent" (in the H2
sense) redution of the mean has more impat (on the redution of the

failure probability) than a redution of the standard deviations. The on�dene intervals (for the

means and for the standard deviations) are well separated. In all ases, the on�dene intervals

prevent from onluding that any variable is more in�uential than another. However, the indies

for the �rst variable (blak) seem a bit lower than the one assoiated to the other inputs in the

dereasing ase.

Conlusion and disussion When shifting the mean with small perturbations, all the variables

are ranked with the same importane. We must insist that this result is obtained in shifting the

mean inluding the spread of the various inputs in their respetive perturbation. All the variables

seem to have the same in�uene when shifting their quantiles. Similarly, a parameter perturbation

does not allow to say that a variable is more in�uential than another - but this might be aused by

numerial noise. Supplementary numerial experiments must be onduted on this topi.

3.4.6 Tresholded Ishigami funtion

A modi�ed (thresholded) version of the Ishigami funtion will be onsidered in this subsetion, as

de�ned in Appendix B.2. Remind that all variables are independent Uniform with support [−π, π].
Finally, the failure probability is roughly P̂ = 5.89 × 10−3

.

3.4.6.1 Importane fators

The algorithm FORM onverges to an inoherent design point (6.03, 0.1, 0) in 50 funtion alls,

giving an approximate probability of P̂FORM = 0.54. The importane fators are displayed in Table

3.13. The bad performane of FORM is expeted given that the failure domain onsists in six

separate domains and that the funtion is highly non-linear, leading to optimization di�ulties.

The design point is aberrant, therefore the importane fators results for SA are inorret. Notie

that the user is not warned that the result is inorret.

Variable X1 X2 X3

Importane fator 1e−17 1 0

Table 3.13: Importane fators for Ishigami funtion

3.4.6.2 Sobol' indies

The �rst-order and total indies are displayed in Table 3.14 whih is a reprodution of Table 1.8.

The following ommentary is also oming from Chapter 1.

Index S1 S2 S3 ST1 ST2 ST3

Estimation 0.018 0.007 0.072 0.831 0.670 0.919

Table 3.14: Sobol' indies estimation for the thresholded Ishigami funtion

The �rst order indies are lose to 0. The variable with the most in�uene on its own is X3,

explaining 7% of the output variane. Total indies state that all the variables are of high in�uene.

A variable ranking an be made using the total indies, ranking X3 with the highest in�uene, then

X1 and then X2. Figure B.1 allows to understand the meaning of the total indies. Eah variable
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3.4. Numerial experiments

�auses� the failure event on a restrited portion of its support. On the other hand, the knowledge

of a single variable does not allow to explain the variane of the indiator, thus the weakness of �rst-

order indies. The fat that the failure points are grouped in narrow strips an only be explained

by the 3 variables together, thus the high third order index.

3.4.6.3 DMBRSI

The method presented throughout this hapter is applied on the thresholded Ishigami funtion. As

previously, a MC sample of size 105 is used to estimate both the failure probability and the indies

with all the perturbations. There are 574 failing points therefore the failure probability is estimated

by P̂ = 5.74 × 10−3
. The order of magnitude here is quite good. As for the hyperplane test ase, a

mean shifting and a variane shifting are applied at �rst, followed by a quantile perturbation. The

parameters perturbation ase is then disussed.

Mean shifting For the mean shifting (see Equation (3.15)), the variation domain for δ ranges

from −3 to 3 with 60 points - numerial onsideration forbidding to hoose a shifted mean loser to

the endpoints. The results of the estimation of the indies Ŝiδ are plotted in Figure 3.28.
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Figure 3.28: Estimated indies Ŝiδ for the thresholded Ishigami funtion with a mean shifting

A perturbation of the mean for X2 and X3 will inrease the failure probability, though the

impat for the same mean perturbation is stronger for X3 (Ŝ3,−3 and Ŝ3,3 approximately equal

respetively 9.5 and 10, Figure 3.28). On the other hand, the indies onerning X1 show that a

mean shift between −1 and −2 inreases the failure probability, whereas an inreasing of the mean or

a large dereasing strongly diminishes the failure probability (Ŝ1,3 approximatively equals −7.1011).
Therefore, Figure 3.28 leads to two onlusions. First, the failure probability an be strongly redued
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3. Density Modifiation Based Reliability Sensitivity Indies

when inreasing the mean of the �rst variable X1 (this is also provided by Figure B.1 wherein all

failure points have a negative value of X1). Seond, any hange in the mean for X2 or X3 will lead to

an inrease of the failure probability. The on�dene intervals are well separated, exept in the −1
to 1 zone. One an notie that the on�dene interval assoiated to X2 ontains 0 between values

of δ from −1.5 to 1.5, thus the assoiated indies might be null in these ase. This has to be taken

into aount when assessing the relative importane of X2.

Variane shifting For variane shifting, the variation domain for V
per

ranges from 1 to 5 with 40
points. Let us reall that the original variane is Var[Xi] = π2/3 ≃ 3.29. The modi�ed pdf when

shifting the variane and keeping the same expetation is proportional to a trunated Gaussian when

dereasing the variane. When inreasing the variane, the perturbed distribution is a symmetrial

distribution with 2 modes lose to the endpoints of the support (see Figure 3.3). The results of the

estimation of the indies Ŝi,V
per

are plotted in Figure 3.29. The upper �gure is a zoom where the

Ŝi,V
per

axis lies into [−0.5, 0.5]. The lower �gure shows almost the whole range variation for Ŝi,V
per

.

The urves ross for the value of V
per

that orresponds to the original variane, namely π2/2.

Figure 3.29 (upper part) shows that a hange in the variane has little e�et on X2 and X1,

though the hange is of opposite e�et on the failure probability. However, onsidering that the

indies Ŝ2,V
per,i

and Ŝ1,V
per,i

lie between −0.4 and 0.4, one an onlude that the variane of theses

variables are not of great in�uene on the failure probability. On the other hand, Figure 3.29 (lower

part) shows that any redution of Var [X3] strongly dereases the failure probability, and that an

inrease of the variane slightly inreases the failure probability. This is relevant with the expression

of the failure surfae, as X3 is fourth powered and multiplied by the sinus of X1. A variane

dereasing as formulated gives a distribution onentrated around 0. Dereasing Var [X3] shrinks
the onerned term in G(X). Therefore it redues the failure probability. The on�dene intervals

assoiated to X3 are broadly separated from the others.

Quantile shifting First, the 5th perentile is perturbed and the result is displayed in Figure 3.30.

This graph shows that for variable X1, an inrease of the weight of the right-hand tail diminishes

the failure probability and a derease of the weight a�ets positively the failure probability. It is the

opposite for variable X2 and X3: an inrease of the weight of the left-hand tail inreases the failure

probability and a derease of the weight dereases the failure probability. The e�et is stronger for

variable X3.

Then, the �rst quartile is perturbed. The results of the experiment are plotted in Figure 3.31.
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Figure 3.29: Estimated indies Ŝi,V
per

for the thresholded Ishigami funtion with a variane shifting
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Figure 3.31:

st

quartile perturbation on the thresholded Ishigami test ase
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Figure 3.30: 5th perentile perturbation on the thresholded Ishigami test ase

This graph shows that a 1st quartile perturbation of variable X2 has no e�et on the failure

probability, for the onsidered range of variation. It also shows that variables X1 and X3 behave

the same when the 1st quartile is perturbed: an inrease of the weight of the left-hand tail inreases

the failure probability and a derease of the weight dereases the failure probability.

It is interesting to note that the impat of the 5%-quantile perturbation of X1 produes a dif-

ferent e�et than a perturbation on the 1st quartile. It means that the relationship established for

the monotoni ase is not valid in this non-monotoni ase.

The median is perturbed next and the results are shown in Figure 3.32.
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Figure 3.32: Median perturbation on the thresholded Ishigami test ase
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As it omes to a median perturbation, only variable X1 produes e�ets. A derease (inrease)

of the weight of the left-hand tail redues (inreases) the failure probability. 0 is inluded whithin

the on�dene intervals for variables X2 and X3.

The third quartile is perturbed next and the results are displayed in Figure 3.33.
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Figure 3.33: 3rd quartile perturbation on the thresholded Ishigami test ase

An inrease of the weight of the right-hand tail of variable X1 inreases the failure probability

whereas it redues the failure probability for variable X3, with the same order of magnitude. The

e�et is reversed when dereasing the weight. A perturbation of the third quartile of variable X2

has no e�et on the failure probability.

Finally, the 95th perentile is perturbed and the results are displayed in Figure 3.34.
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Figure 3.34: 95th perentile perturbation on the thresholded Ishigami test ase

This last �gure shows the higher in�uene of the right-hand quantile of X3 over the two other

variables. Preisely, inreasing the weight of the 95%-quantile (whih is equivalent to dereasing the

weight of the right-hand tail) redues the failure probability for variables X2 and X3 whereas the

failure probability inreases for X1. The e�et is the opposite when dereasing the weight of the

95%-quantile.

This non-monotoni ase shows that it is important to test several on�gurations of quantile

perturbation before assessing the importane or non-in�uene of a variable.

Parameters perturbation The methodology presented in subsetion 3.3.2 is tested here. The

model is driven by 6 parameters: a minimum and maximum boundaries for eah Uniform input.

Here, we must stress a limitation of the method. The parameters of the inputs de�ne their support.

Yet, due to the onditions in Lemma 3.2.1, the support of the perturbed input annot be broader

than the one of the initial input. On this test ase, this amounts to saying that the parameters

perturbations an only lead to a support redution, i.e. inreasing the minimum and diminishing

the maximum. Spei�ally, the parameters are perturbed so that the minimum varies from −π to 0
and the maximum varies from π to 0. The result of suh perturbations is presented in Figure 3.35

and Figure 3.36. 95% on�dene intervals are provided as well. The amplitude of the perturbation

given the Hellinger distane is given in Table 3.15.

At �rst in this �gure we fous on small perturbations of the parameters, so that the deviation

is no broader than 0.1 in Hellinger distane (refer to Table 3.15 for the equivalent in terms of

parameters). On the right-hand of the graph are plotted (as triangles) the indies orresponding to

an inrease of the minimum bound of the inputs. On the left-hand of the graph are plotted (as dots)

the indies orresponding to a derease of the maximal bound of the inputs.

It an be seen that the indies are symmetrial. Inreasing (diminishing) the minimum (max-

imum) for variable X1 slightly inreases the failure probability. On the other hand, inreasing

(diminishing) the minimum (maximum) for variable X2 slightly dereases the failure probability.

However shifting the parameters of variable X3 produe the following e�ets: inreasing its mini-

mum until 2.771 (Hellinger distane 0.06) diminishes the failure probability (almost dividing it by
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Figure 3.35: Parameters perturbation on the thresholded Ishigami test as. Triangles orrespond to

a minimum bound, dots to a maximum bound. X1 is plotted in red, X2 in blak and X3 in blue.

2). Then, an inreasing of the minimum is re�eted by a slightly lower diminution of the failure

probability. The e�et is symmetrial when dereasing the minimum of variable X3.

Figure 3.36 fouses on large perturbations of the parameters (at most, the minimum and the

maximum worth 0). This �gure essentially shows that an inrease of the minimum of variable X1

strongly diminishes the failure probability. On the other hand, a derease of the minimum of variable

X1 slightly inreases the failure probability. When dealing with variable X2, the symmetry of the

e�ets an be seen. When inreasing the minimum, it diminishes the failure probability at �rst

then it inreases it. Finally, setting the minimum (or maximum) to 0 has no impat on the failure

probability. Conerning variable X3, the attenuation of the derease in failure probability desribed

in Figure 3.35 goes on until the minimum (maximum) worth 0 - the impat on the failure probability

is then null.

From Figures 3.36,3.35 and Table 3.15, it an be onluded that the most in�uential parameters

when dealing with small perturbations are the ones related to X3. When dealing with large pertur-

bation of parameters, the minimum of X1 is the most in�uential parameter. This is on�rmed by

Figure B.1.

Conlusion and disussion This non-linear ase has shown that:

� When dealing with a mean perturbation, the failure probability an be strongly redued when

153



3. Density Modifiation Based Reliability Sensitivity Indies

−
4

−
3

−
2

−
1

0
1

Hellinger Distance

S
iδ^

0.6 0.5 0.4 0.3 0.2 0.1 0 0.05 0.15 0.25 0.35 0.45 0.55

Figure 3.36: Parameters perturbation on the thresholded Ishigami test ase. Triangles orrespond

to a minimum bound, dots to a maximum bound. X1 is plotted in red, X2 in blak and X3 in blue.

Xi ∼ U(min = −π,max = π)
min |max = π max |min = −π

H2(Xi,Xiδ) = 0 −π π

H2(Xi,Xiδ) = 0.01 −3.079 3.079

H2(Xi,Xiδ) = 0.025 −2.985 2.985

H2(Xi,Xiδ) = 0.05 −2.832 2.832

H2(Xi,Xiδ) = 0.1 −2.529 2.529

H2(Xi,Xiδ) = 0.3 −1.398 1.398

Table 3.15: Hellinger distane in funtion of the parameter perturbation

inreasing the mean of X1. Any hange in the mean for X2 or X3 will lead to an inrease of

the failure probability.

� When dealing with a variane perturbation, any redution of Var [X3] strongly dereases the

failure probability. The impat of the other variables is negligible in this ase.

� When dealing with a quantile perturbation, it is important to test several on�gurations before

assessing the importane or non-in�uene of a variable. In partiular, the in�uene of the

median of X1 an be notied, altogether with the tails of X3. X2 has a smaller in�uene.

� When perturbing the parameters, a limitation of the method has been highlighted (onstraint

on the support of the perturbed density). The various in�uenes of the parameters have

been notied, espeially the broad in�uene of the minimum of X1 when dealing with large

perturbations, and the parameters onduting X3 when dealing with small perturbations.
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Additionally, we argue that it is of prime importane to keep in mind the shape of the perturbed

density when interpreting the �gures.

3.4.7 Flood test ase

This test ase has been desribed in Appendix B.3. As stressed in the appendix, the inputs follows

di�erent distributions and the failure probability is roughly P̂ = 7.88 × 10−4
.

3.4.7.1 Importane fators

The algorithm FORM onverges to a design point (1.72,−2.70, 0.55,−0.18) in 52 funtion alls,

giving an approximate probability of P̂FORM = 5.8× 10−4
. The importane fators are displayed in

Table 3.16.

Variable Q Ks Zv Zm

Importane fator 0.246 0.725 0.026 0.003

Table 3.16: Importane fators for the �ood ase

FORM assesses that Ks is of extremely high in�uene, followed by Q that is of medium in�uene.

Zv has a very weak in�uene and Zm is negligible. It an be notied that the estimated failure

probability is twie as small as the one estimated with rude MC, but remains in the same order of

magnitude.

3.4.7.2 Sobol' indies

The �rst-order and total indies are displayed in Table 3.17 whih is a reprodution of Table 1.9.

The Sobol' indies are estimated with 2 samples of size 106, using the Saltelli [87℄ method. The total

number of funtion evaluations is 6× 106.

Index SQ SKs SZv SZm STQ STKs STZv STZm

Estimation 0.019 0.251 0 0 0.746 0.976 0.248 0.115

Table 3.17: Estimated Sobol' indies for the �ood ase

Considering the �rst order indies, Zv and Zm are of null in�uene on their own. Q is onsidered

to have a minimal in�uene (2% of the variane of the indiator funtion) by itself, and Ks explains

25% of the variane on its own. When onsidering the total indies, it an be notied that both Zv

and Zm have a weak impat on the failure probability. On the other hand, Q has a major in�uene

on the failure probability. Ks total index is lose to one, therefore Ks explains (with or without any

interation with other variables) almost all the variane of the failure funtion.

Let us ompare the informations provided by the Sobol' indies with the information provided by

the importane fators. One annot onlude from the total Sobol' indies that Zm is not in�uential

whereas the importane fators assess that this variable is of negligible in�uene. Additionally, the

total Sobol' index assoiated to Ks and Q state that both these variables are of high in�uene

whereas the importane fators state that Ks is of high in�uene and Q is of medium in�uene.

155



3. Density Modifiation Based Reliability Sensitivity Indies

3.4.7.3 DMBRSI

Notie that the di�erent inputs follow various distributions, thus the question of "equivalent" per-

turbation arises. Due to this non-similarity of the distributions, only a (modi�ed) mean shift, a

quantile shift and a parameter shift will be applied on this test ase. It has been disussed further

in 3.3.1.3. Additionally, a numerial trik is used to deal with trunated distributions, as stressed in

Appendix D.4.

Mean shifting The hoie has been made to shift the mean relatively to the standard deviation,

hene inluding the spread of the various inputs in their respetive perturbation. So for any input,

the original distribution is perturbed so that its mean is the original's one plus δ times its standard

deviation, δ ranging from −1 to 1 with 40 points.

Figure 3.37: Estimated indies Ŝiδ for the �ood ase with a mean perturbation

Figure 3.37 assesses that an inreasing of the mean of the inputs inreases the failure probability

slightly for Zv, strongly for Q, and diminishes it slightly for Zm and strongly for Ks. This goes

the opposite way when dereasing the mean. In terms of absolute modi�ation, Ks and Q are of

same magnitude, even if Ks has a slightly stronger impat. On the other hand, the e�ets of mean

perturbation on Zm and Zv are negligible. The CI assoiated to Q and Ks are well separated from

the others, exept in a δ = −.3 to .3 zone. The on�dene intervals assoiated to Zv and Zm

overlap. Thus even though the indies seem to have di�erent values, it is not possible to onlude

with ertainty about the in�uene of those variables.

Quantile shifting The �rst quantile to be perturbed is the extreme left-hand tail, namely the

5%-quantile. The result of suh a perturbation for all the variables is plotted in Figure 3.38.
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3.4. Numerial experiments

Figure 3.38: 5th perentile perturbation on the �ood ase

When it omes to a left-hand tail perturbation, the in�uene of Ks over the three other variables

is preponderant. In partiular, a redution of the weight of the 5th perentile to 0.015 leads to a

division by 3 of the failure probability.

The 1st quartile is then perturbed and the results are plotted in Figure 3.39.

Figure 3.39: 1st quartile perturbation on the �ood ase

One again when perturbing the left-hand tail, the in�uene of Ks is larger than the in�uene

of the other variables.

The median of the input distributions is then perturbed, the resulting indies are plotted in

Figure 3.40.

The in�uene of KS is weaker than in the two previous �gures, as Ks and Q have a similar
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Figure 3.40: Median perturbation on the �ood ase

in�uene (although the e�ets of a median perturbation of these variables is reversed). Zm has less

impat on the failure probability than Zv, when dealing with a median perturbation.

The third quartile is then perturbed and the indies are plotted in Figure 3.41.

Figure 3.41: 3rdquartile perturbation on the �ood ase

Inreasing the weight of the right hand tail (that is to say dereasing the weight of the 3rd

quartile) inreases the failure probability for Q and Zv whereas it redues the probability for Zm

and Ks. The magnitude of in�uene is the following: Q has most in�uene, then Ks and Zv have

almost the same in�uene, then omes Zm.

Finally, the extreme right-hand tail is perturbed, this omes to a perturbation on the 95th

perentile. Results are plotted in Figure 3.42.
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3.4. Numerial experiments

Figure 3.42: 95th perentile perturbation on the �ood ase

This last graph shows the strongest in�uene of Q when perturbing extreme right-hand quantiles.

More preisely, inreasing the weight of the right-hand tail of Q inreases the failure probability

whereas it is the opposite when dereasing this weight. The impat of the other variables is muh

smaller.

As a onlusion, we would say that the pratitioner needs to be areful when modelling the

right-hand tail of Q and the left-hand tail of Ks, as the failure probability is sensitive to a variation

of these two quantities. Additionally, the ode seems to behave in a monotoni fashion (the indies

of a given variable have the same sign all along the interval of variation).

Parameters perturbation The model is driven by 12 parameters:

� a loation parameter, a sale parameter and a minimum for Q;

� a mean, a standard deviation and a minimum for Ks;

� a minimum, a maximum and a mode for Zv;

� a minimum, a maximum and a mode for Zm.

However on this ase we deide to perturb only the parameters that do not a�et the support of

the densities, namely the loation, the sale, the mean, the standard deviation and the two modes.

These parameters are perturbed and the estimated indies are plotted in funtion of the Hellinger

distane in Figure 3.43 as explained in Figure 3.8. 95% on�dene intervals are provided as well.

Table 3.18, presenting the relationship between the parameter perturbation and the Hellinger

distane, is needed to interpret Figure 3.43.

Inreasing the parameters value inreases the failure probability when dealing with the standard

deviation of Ks, the sale, the loation of Q and the mode of Zv. It dereases the failure probability

when dealing with the mode of Zm and the mean of Ks. The e�et on the failure probability are

reversed when dereasing the value of the parameters. The perturbation of the parameters produes

a large perturbation of the failure probability for the parameters assoiated to Ks and for the sale
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Figure 3.43: Parameters perturbation on the �ood test ase. The indies orresponding to Q are

plotted in green: dark green for the loation parameter and light green for the sale parameter. The

indies orresponding to Ks are plotted as follows: blak for the mean, dark grey for the standard

deviation. The indies of the mode of Zv are plotted in red while the ones orresponding to the

mode of Zm are plotted in blue.

parameter of Q. The impat on the failure probability is moderate when perturbing the loation of

Q, and is quasi-null when perturbing the modes of Zv and Zm.

It is thus of prime importane to model orretly the parameters onduting Ks, and the sale

parameter of Q.

Conlusion and disussion On this test ase, we an onlude the following:

� In terms of mean perturbation, the indies assoiated to Ks and Q have a high value.

� The quantile perturbation has shown that the right-hand tail of Q and the left-hand tail of Ks

are partiularly in�uential on the failure probability. Additionally, the ode seems to behave

in a monotoni fashion.
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3.5. Improving the DMBRSI estimation

Xi ∼ GT (lo = 1013, sale = 558,min = 0) Xi ∼ NT (µ = 30, σ = 7.5,min = 1)
lo|sale = 558,min = 0 sale|lo = 1013,min = 0 µ|σ = 7.5,min = 1 σ|µ = 30,min = 1

H2(Xi, Xiδ) = 0 1013 558 30 7.5

H2(Xi, Xiδ) = 0.01 893/1128 478/661 28.49/31.50 6.51/8.65

H2(Xi, Xiδ) = 0.025 820/1194 437/736 27.62/32.38 5.99/9.42

H2(Xi, Xiδ) = 0.05 732/1269 395/838 26.62/33.38 5.44/10.40

H2(Xi, Xiδ) = 0.1 590/1377 342/1021 25.19/34.81 4.73/12.08

Xi ∼ T (a = 49, b = 51, c = 50) Xi ∼ T (a = 54, b = 56, c = 55)
c|a = 49, b = 51 c|a = 54, b = 56

H2(Xi, Xiδ) = 0 50 55

H2(Xi, Xiδ) = 0.01 49.79/50.21 54.79/55.21

H2(Xi, Xiδ) = 0.025 49.65/50.35 54.65/55.35

H2(Xi, Xiδ) = 0.05 49.49/50.51 49.49/50.51

H2(Xi, Xiδ) = 0.1 49.26/50.74 49.26/50.74

Table 3.18: Hellinger distane in funtion of the parameter perturbation

� The parameters perturbation has demonstrated that the parameters of Ks and the sale pa-

rameter of Q impat most the output.

This more realisti test ase has shown that the DMBRSI provide several omplementary infor-

mations.

3.5 Improving the DMBRSI estimation

This hapter has presented a new SA methodology based on density perturbations. For the sake of

simpliity, we have onsidered a rude Monte-Carlo framework. However, this onsideration might

be unrealisti when dealing with real appliation ases where the number of funtion alls is limited.

We thus propose in this Setion to improve the DMBRSI estimation with importane sampling

(Setion 3.5.1) and with subset simulation (Setion 3.5.2).

3.5.1 Coupling DMBRSI with importane sampling

3.5.1.1 Estimating Pf with IS

Denoting f̃ a d−dimensional importane density suh that Supp(f̃) ⊇ Supp(f). Suppose one has

an i.i.d. N-sample with pdf f̃ , denoted xn
with n going from 1 to N .

The failure probability Pf an be estimated with Importane Sampling method (see Setion

1.2.1.3) and the assoiated estimator with N funtion alls is:

P̂NIS =
1

N

N∑

n=1

1{G(xn)<0}
f(xn)

f̃(xn)
. (3.32)

One an show that:

Var

[
P̂NIS

]
=

1

N
Varf̃

[
1{G(X)<0}

f(X)

f̃(X)

]
=

1

N

(
�

1{G(x)<0}
f2(x)

f̃(x)
dx− P 2

f

)
(3.33)

NB : the variane redution from IS is not straightforward, one should ompare Varf̃

[
1{G(X)<0}

f(X)

f̃(X)

]

and Varf

[
1G(X)<0

]
to onlude, as stressed in Setion 1.2.1.3.

161



3. Density Modifiation Based Reliability Sensitivity Indies

3.5.1.2 Estimating Piδ with IS

Let us reall that

Piδ =

�

1{G(x)<0}
fiδ(xi)

fi(xi)
f(x)dx. (3.34)

Thus the expression of Piδ using IS is:

Piδ =

�

1{G(x)<0}
fiδ(xi)

fi(xi)

f(x)f̃(x)

f̃(x)
dx. (3.35)

Then supposing one has an i.i.d. N-sample with pdf f̃ , denoted xn
as previously, one an estimate

Piδ with:

P̂iδNIS =
1

N

N∑

n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )

f(xn)

f̃(xn)
. (3.36)

It is straightforward that the expetation of P̂iδNIS is Piδ.

One is obviously interested in the variane of suh an estimate, therefore one has:

Varf̃

[
1{G(X)<0}

fiδ(Xi)

fi(Xi)

f(X)

f̃(X)

]
=

�

1{G(X)<0}
f2iδ(xi)

f2i (xi)

f2(x)

f̃(x)
dx− P 2

iδ . (3.37)

Then:

Var

[
P̂iδNIS

]
=

1

N

(
�

1{G(X)<0}
f2iδ(xi)

f2i (xi)

f2(x)

f̃(x)
dx− P 2

iδ

)
(3.38)

3.5.1.3 Asymptoti results

Proposition 3.5.1 Assume the usual onditions

(i) Supp(fiδ) ⊆ Supp(fi),

(ii) Supp(f̃) ⊇ Supp(f)

(iii)

�

Supp(fi)

f2iδ(x)

fi(x)
dx <∞,

then

P̂iδNIS −−−−→
N→∞

Piδ (3.39)

and √
N
(
P̂iδNIS − Piδ

) L−−−−→
N→∞

N (0, σ2iδ). (3.40)

One has:

σ2iδ = Varf̃

[
1{G(X)<0

fiδ(Xi)}
fi(Xi)

f(X)

f̃(X)

]
=

�

1{G(X)<0}
f2iδ(xi)

f2i (xi)

f2(x)

f̃(x)
dx− P 2

iδ. (3.41)

This omes from Van der Vaart [98℄, 2.17.

σ2iδ an be onsistently estimated by:

σ̂2iδN =
1

N

N∑

n=1

[
1{G(xn)<0}

f2iδ(x
n
i )

f2i (x
n
i )

f2(xn)

f̃(xn)
− P̂ 2

iδNIS

]
. (3.42)
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Proposition 3.5.2

√
N

(
P̂NIS

P̂iδNIS
−
(
Pf

Piδ

))
L−−−−→

N→∞
N (0,ΣiδIS) (3.43)

where:

ΣiδIS =




�

1{G(X)<0}f2(x)

f̃(x)
dx− P 2

f

�

1{G(X)<0}
fiδ(xi)

fi(xi)
f2(x)

f̃(x)
dx− PfPiδ

�

1{G(X)<0}
fiδ(xi)

fi(xi)
f2(x)

f̃(x)
dx− PfPiδ

�

1{G(X)<0}
f2iδ(xi)

f2i (xi)
f2(x)

f̃(x)
dx− P 2

iδ


 . (3.44)

This omes aording to Van der Vaart [98℄, 2.18.

We propose the following estimator for ΣiδIS :

Σ̂NiδIS =





1

N

(
N∑

n=1

1{G(xn)<0}
f2(xn)

f̃(xn)

)
− P̂ 2

NIS

1

N

(
N∑

n=1

1{G(xn)<0}
f2(xn)

f̃(xn)

fiδ(xi)

fi(xi)

)
− P̂NISP̂iδNIS

1

N

(
N∑

n=1

1{G(xn)<0}
f2(xn)

f̃(xn)

fiδ(xi)

fi(xi)

)

− P̂NISP̂iδNIS
1

N

(
N∑

n=1

1{G(xn)<0}
f2(xn)

f̃(xn)

f2
iδ(xi)

f2
i (xi)

)

− P̂ 2
iδNIS




.

(3.45)

Proposition 3.5.3 Introduing the funtion s(x, y) =
( y
x − 1

)
1{y>x} +

(
1− x

y

)
1{x>y}, denoting:

(i) Siδ = s(Pf , Piδ)

(ii) ŜNiδIS = s(P̂NIS , P̂iδNIS).

As s is di�erentiable in (P,Piδ) (see Proposition 3.2.2), one has:

√
N
(
ŜNiδIS − Siδ

)
L−−−−→

N→∞
N (0, dTs ΣiδISds). (3.46)

The proof lies in Theorem 3.1 in Van der Vaart [98℄.

3.5.2 Coupling DMBRSI with subset simulation

We refer to Setion 1.2.3 for more details about subset simulation. The aim of the urrent setion

is to show that it is possible to use the results of a subset simulation algorithm to estimate the

quantity Piδ, the perturbed failure probability (see Equation 3.1).

Let us imagine, for the sake of larity, a two-step subset where the levels are �xed in advane.

Let us denote by A, B, 0 the thresholds to ross at the algorithm's steps, with A > B > 0.

We have PA =

�

1{G(x)≤A}f(x)dx; PB =

�

1{G(x)≤B}f(x)dx and Pf =

�

1{G(x)≤0}f(x)dx.

Additionally, let us remind that

Piδ =

�

1{G(x)≤0}
fiδ(xi)

fi(xi)
f(x)dx = E[1{G(Xiδ)≤0}] = P (G(Xiδ) ≤ 0) (3.47)

The algorithm starts with N points x(j),1, j = 1 . . . N distributed aording to f , the original

density. PA an be estimated by:

P̂A =
1

N

∑
1{G(x(j),1)≤A} (3.48)
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where one has:

E

[
P̂A

]
=

�

1{G(x)≤A}f(x)dx = PA. (3.49)

Then, after a mutation/seletion step, one has N points x(j),2, j = 1 . . . N distributed aording

to f(x|A) = 1{G(x)≤A}f(x)

PA
. The following estimator is proposed for PB|A =

�

1{G(x)≤B|G(x)≤A}f(x)dx =
�

1{G(x)≤B∩G(x)≤A}f(x)dx
�

1{G(x)≤A}f(x)dx
=

�

1{G(x)≤B}f(x)dx
�

1{G(x)≤A}f(x)dx
= PB

PA
:

P̂B

PA
=

1

N

∑
1{G(x(j),2)≤B}. (3.50)

One has:

E

[
P̂B

PA

]
=

�

1{G(x)≤B}
1{G(x)≤A}f(x)

PA
dx =

�

1{G(x)≤B}f(x)dx

PA
=
PB

PA
(3.51)

After a seond mutation/seletion step, one has N points x(j),3, j = 1 . . . N distributed aording

to f(x|B) =
1{G(x)≤B}f(x)

PB
. The following estimator is proposed for P0|B =

�

1{G(x)≤0|G(x)≤B}f(x)dx:

P̂0|B =
1

N

∑
1{G(x(j),3)≤0}. (3.52)

One an hek that:

E

[
P̂0|B

]
=

�

1{G(x)≤0}
1{G(x)≤B}f(x)

PB
dx =

�

1{G(x)≤0}f(x)dx

PB
=

P

PB
(3.53)

Finally, Pf = PA × PB|A × P0|B,A. Yet B ⇒ A thus P0|B,A = P0|B . P is estimated by:

P̂ = P̂AP̂B|AP̂0|B

Considering P̂A ,P̂B|A et P̂0|B as realisation of independent random variables

1

one has:

E

[
P̂
]
= E

[
P̂A

]
E

[
P̂B|A

]
E

[
P̂0|B

]
= PA × PB

PA
× P

PB
= P.

Then, it is observed that:

Piδ =
Piδ

PB

PB

PA
PA

Considering the N points x(j),3, j = 1..N distributed aording to f(x/B) =
1{G(x)≤B}f(x)

PB
.

Piδ

PB

is estimated by:

P̂iδ

PB
=

1

N

∑
1{G(x(j),3)≤0}

fiδ(x
(j),3
i )

fi(x
(j),3
i )

.

One an hek that:

E

[
P̂iδ

PB

]
=

�

1{G(x)≤0}
1{G(x)≤B}f(x)

PB

fiδ(xi)

fi(xi)
dx =

1

PB

�

1{G(x)≤0}
fiδ(xi)

fi(xi)
f(x)dx =

Piδ

PB
.

1

This is not the ase in reality, the mutation step is just performed several times
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Considering

P̂iδ

PB
,

P̂B

PA
et P̂A as realisation of independent random variables

2

one has:

E

[
P̂iδ

]
= E

[
P̂iδ

PB

]
E

[
P̂B

PA

]
E

[
P̂A

]
= Piδ .

Conlusion To ouple DMBRSI and subset simulation, one just has to perturb the points oming

from the last step of the subset. However, the variane of P̂iδ is intratable so far. This will be the

objet of further researhes.

3.6 Disussion and onlusion

3.6.1 Conlusion on the DMBRSI method

The method presented in this hapter gives relevant omplementary information in addition of

traditional SA methods applied to a reliability problem. Traditional SA methods provide variable

ranking, whereas the proposed method provides an indiation on the variation in the probability

of failure given the variation of parameter δ. This is useful when the pratitioner is interested on

whih on�gurations of the problem lead to an inrease of the failure probability. This might also

be used to assess the onservatism of a problem, if every variations of the input lead to derease in

the probability of failure. Additionally, it has three advantages:

� the ability for the user to set the most adapted onstraints onsidering his/her problem/objetive.

� The MC framework allowing to use previously done funtion alls, thus limiting the CPU ost

of the SA, and allowing the user to test several perturbations.

� They are easy to interpret.

We argue that with an adapted perturbation, this method an ful�ll the presented reliability engi-

neer's objetive (see Setion 3.3.3 for further disussions on this topi). From this point of view, the

DMBRSI are a good alternative to FORM/SORM's importane fators (as they an provide wrong

results, see the Ishigami ase) and to Sobol' indies (as they are ostly and non-informative).

3.6.2 Equivalent perturbation

The question of "equivalent" perturbation arises from ases where all inputs are not identially

distributed. Indeed, problems may emerge when some inputs are de�ned on in�nite intervals and

when other inputs are de�ned on �nite intervals (suh as uniform distributions). We have proposed

three ways to deal with these problems:

� perform a mean perturbation relatively to the standard deviation, hene inluding the spread

of the various inputs in their respetive perturbation;

� perform a quantile shifting;

� perform a parameters perturbation.

2

This is not the ase in reality
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3.6.3 Support perturbation

In most examples given throughout this hapter, the perturbations of the inputs left the support

of those variables unperturbed. However, a support modi�ation has been tested on the Ishigami

ase where the parameters de�ning the support have been perturbed. Yet, we stress that given the

estimation method (reverse importane sampling), it is mandatory that the support of the perturbed

density is inluded in the support of the original density. Thus one annot perturb the inputs so

that the perturbed support is wider than the original one.

3.6.4 Further work

Most of the further work will be devoted to adapting the estimator of the indies Siδ in term of

variane redution and of number of funtion alls. Further work will be made with importane sam-

pling methods (test the proposed estimators). The adaptation of estimators using subset simulation

must also be done.

A perturbation based on an entropy onstraint might also be proposed. The di�erential entropy

of a distribution an be seen as a quanti�ation of unertainty (Auder et al. [6℄). Thus an example

of (non-linear) onstraint on the entropy an be:

−
�

fiδ(x) log fiδ(x)dx = −δ
�

fi(x) log fi(x)dx.

Yet further omputations have to be made to obtain a tratable solution of the KL minimization

problem under the above onstraint.

Another avenue worth exploring would be to hange the metris/divergenes. That would amount

to hange the D in equation 3.9 (hoie was made to take KLD); and to take another distane than

Hellinger's in the parameter perturbation ontext. This has to be tested.
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Chapter 4

Appliation to the CWNR ase

4.1 Introdution

This fourth hapter presents the appliation of some of the developed methods to the CWNR ase.

This numerial model has been presented in the outline of the thesis, page 24. Remind that this

blak-box model provided the initial motivation for this thesis.

The software interfaing is done using the Open TURNS [2℄ software that manages the probabilist

part of the analysis. A wrapper alls the model when neessary. Conerning the sensitivity analysis

part, post-proessing of the data obtained is done using the R software.

In this thesis, fous has been set on SA methods that are separated from the sampling step (see

Chapter 2), Chapter 3), thus the separation between the estimation of Pf and the sensitivity analysis.

To estimate Pf , the failure probability, FORM (see Setion 1.2.2.2) method and rude Monte-Carlo

(see Setion 1.2.1.1) have been used. Crude Monte-Carlo is onsidered to be the referene method

in this hapter. Importane sampling (see Setion 1.2.1.3) was available but was not used due to

the lak of knowledge to set the importane densities. Subset simulation (see Setion 1.2.3) was

also available but was not used due to the fat that the Open TURNS module only provides an

estimation for Pf and not the sampling points.

The sensitivity analysis part then fouses on three methods: �rst, importane fators (see Setion

1.3.2.2) are derived from the FORM sampling. Then, random forests (see Setion 2.2) are built on

the MC sample and sensitivity measures are obtained. Finally, DMBRSI (see Chapter 3) are used.

Several perturbations (mean, quantile and parameters) are proposed.

Sobol' indies (see Setion 1.4) are not tested in this hapter due to the limited information

provided and the high omputational ost. δSSi (Ak) indies (see Setion 2.3) are not used in this

hapter sine a sampling sheme from subset simulation was not available.

This hapter is divided in three main setions, fousing respetively on random input of dimension

3 (Setion 4.2), dimension 5 (Setion 4.3) and dimension 7 (Setion 4.4). Notie that the smaller

the dimension of the input, the more penalizing the ase (sine non-probabilised variables are set to

penalizing values). Thus the failure probability diminishes as the dimensionality growths. A �nal

setion (Setion 4.5) onludes.

4.2 Three variables ase

In this �rst setion, three variables are probabilised. Table 1 is partially reprodued in Table 4.1 to

indiate whih distributions follow the variables. Table A.1 is a reminder of the inputs' densities.
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4. Appliation to the CWNR ase

Random var. Distribution Parameters

Thikness (m) Uniform a = 0.0075, b = 0.009

h (m) Weibull a = 0.02, sale= 0.00309, shape= 1.8

Ratio height/length Lognormal a = 0.02, ln (b) = −1.53, ln (c) = 0.55

Table 4.1: Distributions of the random physial variables of the CWNR model - 3 variables

4.2.1 Estimating Pf

4.2.1.1 Crude Monte-Carlo

A Crude Monte-Carlo (MC) estimation has been performed, with a sample of size 10000. 683 points

were failing points thus the failure probability is estimated by:

P̂f = 0.0683.

This will be onsidered as the referene result. The sampling sheme will be used to build random

forests (Setion 4.2.2.1) and DMBRSI (Setion 4.2.2.2).

4.2.1.2 FORM

FORM has been used. 52 funtion alls have been done. However the estimated failure probability

is here of:

P̂FORM = 3.19 × 10−16,

whih is several orders of magnitude beneath the referene value. The results of FORM are not

trustworthy in this ase, therefore no sensitivity analysis will be performed with FORM in this ase.

Notie that the user is not warned that the FORM results are wrong. This is a major drawbak of

this tehnique.

4.2.2 Sensitivity Analysis

4.2.2.1 Random Forests

The methodology presented in Setion 2.2 is used along this setion. A forest of 500 trees is �tted

on the MC sample. The referene value ⌊
√
d⌋ is used as the number of variables randomly seleted

at eah step. In this ase, it means that 1 variable is seleted as d = 3.

Variable Thikness h Ratio

Index 0.01448048 0.10574811 0.02529668

Table 4.2: MDA index - 3 variables

MDA From Table 4.2, it an be inferred that the most in�uential variable is h, with 5 times as

muh in�uene as the seondly important variable, namely the ratio. Finally omes the thikness

with an index twie as small as the one of the ratio. However from the numerial results of Setion

2.2, it an be stated that the thikness has some in�uene on its own, aording to the MDA indies.
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4.2. Three variables ase

Variable Thikness h Ratio

Index 103.473 998.0205 169.5899

Table 4.3: Gini importane - 3 variables

Gini importane Table 4.3 assesses that the variable ranking is not modi�ed when swithing the

measure. The index of h is more than 5 times higher than the one of the ratio, whih is almost twie

as large as the one of the thikness. However, due to the fat that here the Gini importane is used,

it annot be ertain that the thikness has an in�uene on its own.

Model validation The onfusion matrix (on the out-of-bag samples) of the forest is presented in

Table 4.4.

Observed

Class predition error

0 1

Predited

0 9299 18 0.001931952
1 43 640 0.062957540

Table 4.4: Confusion matrix of the forest - 3 variables

It an be seen that the lass predition error is around 30 times bigger for the failing points than

for the safe points. This is muh less than in the tests of Setion 2.2, but the model is still uneven.

4.2.2.2 DMBRSI

The methodology presented in Chapter 3 is used here. Due to the non-similarity of the distributions,

a mean shift, a quantile shift and a parameter shift will be applied on this test ase. It has been

disussed further in Setion 3.3.1.3, and the �ood ase (Setion 3.4.7) might be used as an example.

Mean shifting First, the mean is shifted relatively to the standard deviation. Thus for any input,

the original distribution is perturbed so that its mean is the original's one plus δ times its standard

deviation, δ ranging from −1 to 1 with 40 points. The result is plot in Figure 4.1.

Figure 4.1 shows two tendenies. First the thikness and the ratio behave as follows: inreasing

the mean of these variables slightly dereases the failure probability whereas dereasing their mean

slightly inreases the failure probability. The e�et is a little bit stronger for the thikness, but

the on�dene intervals are not well separated thus it is di�ult to onlude with ertainty on the

relative in�uene of these two variables. On the other hand, inreasing the mean of h inreases the

failure probability and dereasing the mean of h strongly dereases the failure probability. The e�et

is muh stronger for h than it is for the two other variables.

Quantile shifting The �rst quantile to be perturbed is the extreme left-hand tail, namely the

5%-quantile. The result of suh a perturbation for all the variables is plotted in Figure 4.2.
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Figure 4.1: Estimated indies Ŝiδ for the CWNR ase with a mean perturbation - 3 variables
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Figure 4.2: 5th perentile perturbation on the CWNR ase - 3 variables

This graph shows that a quantile weight redution for the thikness and the ratio diminishes

the failure probability, whereas it inreases the failure probability for h. The e�et is reversed when
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4.2. Three variables ase

inreasing the weight of the quantile. The in�uene is of the same order of magnitude for the three

variables, with a slightly smaller in�uene for the ratio. However, the on�dene intervals for the

ratio and the thikness are not well separated.

The 1st quartile is then perturbed and the results are plotted in Figure 4.3.
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Figure 4.3: 1st quartile perturbation on the CWNR ase - 3 variables

When perturbing less extreme values of the left-hand tail, the results are similar. In partiular,

the in�uenes are of the same order of magnitude yet h has a larger in�uene than the thikness,

whih has a larger in�uene than the ratio. The on�dene intervals are separated.

The median of the input distributions is then perturbed, the resulting indies are plotted in

Figure 4.4.

When perturbing the median, tendenies are similar to the two previous graphs. The in�uene

of h is larger than the in�uene of the other variables. The thikness has a larger in�uene than the

ratio. Con�dene intervals are well separated.

The third quartile is then perturbed and the indies are plotted in Figure 4.5.
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Figure 4.4: Median perturbation on the CWNR ase - 3 variables
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Figure 4.5: 3rd quartile perturbation on the CWNR ase - 3 variables

Tendenies are similar to the three previous graphs. The in�uene of h is muh larger than the

in�uene of the thikness and of the ratio. Con�dene intervals are well separated.
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4.2. Three variables ase

Finally, the extreme right-hand tail is perturbed, this omes to a perturbation on the 95th

perentile. Results are plotted in Figure 4.6.
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Figure 4.6: 95th perentile perturbation on the CWNR ase - 3 variables

The in�uene of h over the two other variables is tremendous. This variable is muh more

sensitive to a right-hand tail perturbation than the thikness and the ratio.

As a onlusion, the pratitioner needs to be areful when modelling the right-hand tail of h.
The left-hand tail of the three variables is equally important, but the indies are muh smaller than

for the right-hand tail. Additionally, the ode seems to behave in a monotoni fashion.

Parameters shifting 6 parameters will be perturbed on this ase:

� a minimum and a maximum for the thikness;

� a sale and a shape for h;

� a mean of the logarithm (meanlog) and a standard deviation of the logarithm (sdlog) for the

ratio.

These parameters are perturbed

1

and the estimated indies are plotted in funtion of the Hellinger

distane in Figure 4.7 as explained in Figure 3.8. 95% on�dene intervals are provided as well.

First, the two parameters driving the thikness bear a small in�uene with respet to the others.

Diminishing the maximum of the thikness inreases slightly the failure probability whereas inreas-

ing its minimum slightly diminishes the failure probability. Seond, the sale of h has the largest

in�uene over the model. Inreasing it largely inreases the failure probability whereas diminishes

it diminishes in a tremendous way the failure probability. The on�dene intervals get broader yet

1

notie that the minimum of the thikness is only inreased and the maximum is dereased
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Figure 4.7: Parameters perturbation on the CNWR ase - 3 variables

stay well separated from the others. Third, inreasing the shape of h strongly diminishes the failure

probability. Dereasing the shape of h inreases the failure probability. The e�et of this augmen-

tation is not linear, as the growing tendeny seems to vanish when dereasing strongly the shape.

This is an interesting result. Then, diminishing the meanlog of the ratio inreases slightly the failure

probability whereas inreasing it slightly diminishes the failure probability. Finally, the sdlog of the

ratio behaves in a similar manner, yet with a smaller in�uene. The �nal ranking of the parameters

in terms of in�uene is: the sale, the shape, the sdlog. Other parameters bear a quasi-null in�uene.

These results are onsistent with the ones provided by the mean and the quantile perturbation.

4.2.2.3 Conlusion

On the three variables CWNR ase, the following an be onluded:

� The ranking provided by the forest is h, ratio then thikness.

� In terms of mean perturbation, the indies assoiated to h have a high (absolute) value whereas

the ones assoiated to the two other variables are muh smaller.
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4.3. Five variables ase

� The quantile perturbation has shown that the right-hand tail of h has the more impat on the

failure probability. The left-hand tail of the three variables is equally important. Additionally,

the ode seems to behave in a monotoni fashion.

� The parameters perturbation has demonstrated that the model is mostly driven by the sale

and the shape of h and by the sdlog of the ratio.

4.3 Five variables ase

In this setion, �ve variables are probabilised. Table 1 is partially reprodued in Table 4.5 to remind

whih distributions follows the variables. Table A.1 is a reminder of the inputs' densities.

Random var. Distribution Parameters

Thikness (m) Uniform a = 0.0075, b = 0.009

h (m) Weibull a = 0.02, sale= 0.00309, shape= 1.8

Ratio height/length Lognormal a = 0.02, ln (b) = −1.53, ln (c) = 0.55

Azimuth �aw (°) Uniform a = 0, b = 360

Altitude (mm) Uniform a = −5096, b = −1438

Table 4.5: Distributions of the random physial variables of the CWNR model - 5 variables

4.3.1 Estimating Pf

4.3.1.1 Crude Monte-Carlo

A Crude Monte-Carlo (MC) estimation has been performed, with a sample of size 105. Only 81
points were failing points thus the failure probability is estimated by:

P̂f = 0.00081.

This will be onsidered as the referene result. The sampling sheme will be used to build random

forests (Setion 4.3.2.1) and DMBRSI (Setion 4.3.2.2).

4.3.1.2 FORM

FORM has been used. 106 funtion alls have been done. However the estimated failure probability

is here of:

P̂FORM = 6.28 × 10−2,

whih is two orders of magnitude above the referene value (the failure probability is overestimated).

The results of FORM are not trustworthy here, therefore no sensitivity analysis will be performed

with FORM in this ase.

4.3.2 Sensitivity Analysis

4.3.2.1 Random Forests

The methodology presented in Setion 2.2 is used along this setion. A forest of 500 trees is �tted

on the MC sample. 2 variables are seleted at eah step of the tree building.
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Variable Thikness h Ratio Azimuth Altitude

Index 3.99 × 10−5 5.16 × 10−4 5.52 × 10−5 3.91× 10−4 3.19× 10−4

Table 4.6: MDA index - 5 variables

MDA Indies are quite lose to 0, as if no variable was in�uential. The variables with the strongest
indies are h, the azimuth and the altitude.

Variable Thikness h Ratio Azimuth Altitude

Index 19.79398 53.43655 22.38101 37.72627 28.28982

Table 4.7: Gini importane - 5 variables

Gini importane Indies are smaller than in the tests. The ranking provided is the following: h,
azimuth, altitude, the ratio and the thikness.

Model validation The onfusion matrix (on the out-of-bag samples) of the forest is presented in

Table 4.8.

Observed

Class predition error

0 1

Predited

0 99917 2 2× 10−5

1 59 22 0.73

Table 4.8: Confusion matrix of the forest - 5 variables

It an be seen that the lass predition error for the failure points is above 0.7. The �tted model

is then unusable. No onlusion should be drawn from this forest, therefore the rankings provided

above are not to be onsidered. This lak of quality of the �tted model is a major drawbak of the

method.

4.3.2.2 DMBRSI

The methodology presented in Chapter 3 is used here. Due to the non-similarity of the distributions,

a mean shift, a quantile shift and a parameter shift will be applied on this test ase.

Mean shifting First, the mean is shifted relatively to the standard deviation. Thus for any input,

the original distribution is perturbed so that its mean is the original's one plus δ times its standard

deviation, δ ranging from −1 to 1 with 40 points. The result is plot in Figure 4.8.

Figure 4.8 shows three di�erent behaviours. First the thikness and the ratio behave as is the

three variables ase: inreasing the mean of these variables slightly dereases the failure probability

whereas dereasing their mean slightly inreases the failure probability. The e�et is a little bit

stronger for the thikness when inreasing the mean, while it is a little bit stronger for the ratio

when dereasing the mean. The on�dene intervals are not well separated here. Then, inreasing

the mean of h inreases the failure probability and dereasing the mean of h strongly dereases

the failure probability. The behaviour is the same for the altitude with a smaller impat. Finally,
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Figure 4.8: Estimated indies Ŝiδ for the CWNR ase with a mean perturbation - 5 variables

inreasing or dereasing the mean of the azimuth slightly inreases the failure probability. The two

more in�uential variables here are h and the altitude, yet it has to be notied that h is of primary

importane.

Quantile shifting The �rst quantile to be perturbed is the extreme left-hand tail, namely the

5%-quantile. The result of suh a perturbation for all the variables is plotted in Figure 4.9.

This graph shows two opposite behaviours. First, dereasing the weight of the 5th perentile

dereases the failure probability for the thikness, the ratio and the azimuth. For these variables,

inreasing the weight of the onsidered quantile inreases the failure probability. Then, the behaviour

is reversed for h and the altitude. Conerning the variable ranking, the azimuth has the more

in�uene, while the altitude and h have the same small in�uene. The ratio has a larger in�uene

than the thikness, but the on�dene intervals are not well separated here.

The 1st quartile is then perturbed and the results are plotted in Figure 4.10.

When perturbing less extreme values of the left-hand tail, the behaviour are similar, but the

order of in�uene is modi�ed. In partiular, the azimuth that was the most in�uential variable in

Figure 4.9 is now the less in�uential. Then omes the thikness, and the three remaining variables

have an equivalent in�uene.

The median of the input distributions is then perturbed, the resulting indies are plotted in

Figure 4.11.

When perturbing the median, tendenies are similar to the two previous graphs for the thikness,

h, the ratio and the altitude. However, the tendeny is modi�ed for the azimuth: inreasing the

weight of the median slightly dereases the failure probability whereas dereasing the weight inreases
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Figure 4.9: 5th perentile perturbation on the CWNR ase - 5 variables
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Figure 4.10: 1st quartile perturbation on the CWNR ase - 5 variables
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Figure 4.11: Median perturbation on the CWNR ase- 5 variables

the failure probability. The in�uene of h is the largest, then omes the altitude, followed by the

ratio and the thikness. The azimuth has the smallest in�uene.

The third quartile is then perturbed and the indies are plotted in Figure 4.12.

Tendenies are similar to the previous graphs. The in�uene of h and of the altitude is larger

than the one of the other variables. Con�dene intervals are well separated exept for the ratio and

the thikness.

Finally, the extreme right-hand tail is perturbed, this omes to a perturbation on the 95th

perentile. Results are plotted in Figure 4.13.
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Figure 4.12: 3rd quartile perturbation on the CWNR ase - 5 variables
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Figure 4.13: 95th perentile perturbation on the CWNR ase - 5 variables

The in�uene of h over the other variables is tremendous. The azimuth is also more in�uential
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4.3. Five variables ase

than the three remaining variables.

As a onlusion, the pratitioner needs to be areful when modelling the right-hand tail of h,
and the tails of the azimuth. In terms of value of the indies, the right-hand tails have muh more

impat than the left-hand tails. Additionally, this analysis revealed the non-monotoni behaviour of

the azimuth.

Parameters shifting 10 parameters will be perturbed on this ase:

� a minimum and a maximum for the thikness;

� a sale and a shape for h;

� a mean of the logarithm (meanlog) and a standard deviation of the logarithm (sdlog) for the

ratio.

� a minimum and a maximum for the azimuth;

� a minimum and a maximum for the altitude;

These parameters are perturbed so that the support is not inreased: the minimums are only

inreased and the maximums are dereased. The estimated indies are plotted in funtion of the

Hellinger distane in Figure 4.14 as explained in Figure 3.8. 95% on�dene intervals are provided

as well.

Due to the large number of parameters perturbed, the image is di�ult to read. However, the

in�uene of the parameters driving h (plotted in red) is tremendous. The indies assoiated to the

sale are larger than the ones assoiated to the shape, however the width of the on�dene intervals

grows quite large, thus it is di�ult to onlude on these two parameters. Then, the maximum of

the altitude seems to have the most in�uene over the failure probability. Diminishing the maximum

of the altitude leads to a derease of the failure probability. It is followed by the meanlog of the

ratio. The indies assoiated with other parameters are too noisy and staked around 0.

4.3.2.3 Conlusion

On the �ve variables CWNR ase, the following an be onluded:

� The ranking provided by the forest is not to be onsidered as the model is badly �tted.

� In terms of mean perturbation, the indies assoiated to h have the highest (absolute) value.

Then omes the altitude, followed by the ratio, the azimuth and the thikness. Notie that

the relative in�uene of the ratio, the azimuth and the thikness is hardly separable.

� The quantile perturbation has shown that the right-hand tail of h, and the tails of the azimuth

are more in�uential than the tails of others variable. The right-hand tails have muh more

impat than the left-hand tails though. Additionally, this analysis revealed the non-monotoni

behaviour of the azimuth.

� The parameters perturbation has demonstrated that the model is mostly driven by the sale

and the shape of h. Then, the maximum of the altitude seems to have the most in�uene over

the failure probability, followed by the meanlog of the ratio.

It is notieable that the ranking di�ers from the three variables ase, yet the dimension of the

�aw h is still the most in�uential variable. Additionally, it seems interesting to notie that the

altitude is in�uential, but mostly in the right-hand tail (see Figure 4.12).
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Figure 4.14: Parameters perturbation on the CNWR ase - 5 variables

4.4 Seven variables ase

In this setion, seven variables are probabilised. Table 1 is reprodued in Table 4.9 to remind whih

distributions follows the variables. Table A.1 is a reminder of the inputs' densities.

Random var. Distribution Parameters

Thikness (m) Uniform a = 0.0075, b = 0.009

h (m) Weibull a = 0.02, sale= 0.00309, shape= 1.8

Ratio height/length Lognormal a = 0.02, ln (b) = −1.53, ln (c) = 0.55

Azimuth �aw (°) Uniform a = 0, b = 360

Altitude (mm) Uniform a = −5096, b = −1438

σ∆TT Gaussian µ = 0, σ = 1

σRes Gaussian µ = 0, σ = 1

Table 4.9: Distributions of the random physial variables of the CWNR model - 7 variables
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4.4. Seven variables ase

4.4.1 Estimating Pf

4.4.1.1 Crude Monte-Carlo

A Crude Monte-Carlo (MC) estimation has been performed, with a sample of size 7 × 106. Notie
that this samples took several weeks to be omputed. 468 points were failing points thus the failure

probability is estimated by:

P̂f = 6.68 × 10−5.

This will be onsidered as the referene result.

4.4.1.2 FORM

FORM has been used. 183 funtion alls have been done. The estimated failure probability is here

of:

P̂FORM = 4.23 × 10−7,

whih is two orders of magnitude under the referene value (the failure probability is underestimated).

The results of FORM are not trustworthy in this ase.

4.4.2 Sensitivity Analysis

4.4.2.1 Random Forests

The methodology presented in Setion 2.2 is used along this setion. We tried to �t a forest of 500
trees on the MC sample whih dimension was 7× 7000000, with 2 variables seleted at eah step of

the tree building. However the �tting step failed due to the size of the sample (as in Setion 2.2.5.2,

paragraph "inreasing the sample size").

4.4.2.2 DMBRSI

The methodology presented in Chapter 3 is used here. Due to the non-similarity of the distributions,

a mean shift, a quantile shift and a parameter shift will be applied on this test ase.

Mean shifting First, the mean is shifted relatively to the standard deviation. Thus for any input,

the original distribution is perturbed so that its mean is the original's one plus δ times its standard

deviation, δ ranging from −1 to 1 with 40 points. The result is plot in Figure 4.15.

Three di�erent behaviours an be observed. When inreasing the mean of h, of the altitude

and of σ∆TT it inreases the failure probability while when dereasing their means it dereases the

failure probability. The e�et is reversed for the thikness, the ratio and σRes. Finally, inreasing or
dereasing the mean of the azimuth slightly inreases the failure probability. In terms of amplitude,

three variables di�erentiate themselves from the others: h, σ∆TT and σRes. Others variables have
a smaller in�uene and their on�dene intervals ontains 0.

Quantile shifting The �rst quantile to be perturbed is the extreme left-hand tail, namely the

5%-quantile. The result of suh a perturbation for all the variables is plotted in Figure 4.16.

It �rst should be noties that the indies for h and for σ∆TT oinide. This graph shows

two opposite behaviours. First, dereasing the weight of the 5th perentile dereases the failure

probability for the thikness, the ratio, the azimuth and for σRes. For these variables, inreasing

the weight of the onsidered quantile inreases the failure probability. Then, the behaviour is reversed

for h, the altitude and σ∆TT . Conerning the variable ranking, σRes has the more in�uene. Then
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4. Appliation to the CWNR ase
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Figure 4.15: Estimated indies Ŝiδ for the CWNR ase with a mean perturbation - 7 variables

omes the azimuth that has a medium in�uene, while the rest of the variables have the same small

in�uene.

The 1st quartile is then perturbed and the results are plotted in Figure 4.17.

The indies for h and for the altitude oinide. When perturbing less extreme values of the left-

hand tail, the behaviour are similar, but the order of in�uene is modi�ed. The azimuth that was

an in�uential variable in Figure 4.16 is now the less in�uential. The two most in�uential variables

are σ∆TT and σRes.

The median of the input distributions is then perturbed, the resulting indies are plotted in

Figure 4.18.

When perturbing the median, tendenies are similar to the two previous graphs for all the

variables but the azimuth. Indeed inreasing or dereasing the weight of the median for this variable

does not impat the failure probability. The in�uene of σ∆TT is the largest, followed by h and

σRes that have a similar impat (but a di�erent behaviour). Then omes the ratio and the thikness.

The two other variables have a small to null impat.

The third quartile is then perturbed and the indies are plotted in Figure 4.19.

Tendenies are similar to the previous graphs exept for the altitude and the thikness. The

in�uene of h and of σ∆TT is larger than the one of the other variables. The impat of the ratio

and of σRes is similar.

Finally, the extreme right-hand tail is perturbed, this omes to a perturbation on the 95th

perentile. Results are plotted in Figure 4.20.

This �gure shows learly the impat of the following variables (for whih inreasing the weight

of the quantile dereases the failure probability), ordered by in�uene: h, σ∆TT , the azimuth. The
others variables have a small to null impat.
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4.4. Seven variables ase
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Figure 4.16: 5th perentile perturbation on the CWNR ase - 7 variables
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Figure 4.17: 1st quartile perturbation on the CWNR ase - 7 variables
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Figure 4.19: 3rd quartile perturbation on the CWNR ase - 7 variables
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Figure 4.20: 95th perentile perturbation on the CWNR ase - 7 variables

As a onlusion, the pratitioner needs to be areful when modelling the right-hand tail of h
and σ∆TT altogether with the left-hand tail of σRes. The tails of the azimuth need aution too.

Additionally, this analysis revealed the non-monotoni behaviour of the azimuth for the 7 variables

ase.

Parameters shifting 14 parameters will be perturbed on this ase:

� a minimum and a maximum for the thikness;

� a sale and a shape for h;

� a mean of the logarithm (meanlog) and a standard deviation of the logarithm (sdlog) for the

ratio.

� a minimum and a maximum for the azimuth;

� a minimum and a maximum for the altitude;

� a mean and a standard deviation for σ∆TT ;

� a mean and a standard deviation for σRes.

These parameters are perturbed so that the support is not inreased: the minimums are only

inreased and the maximums are dereased. The estimated indies are plotted in funtion of the

Hellinger distane in Figure 4.21 as explained in Figure 3.8. 95% on�dene intervals are provided

as well.

Due to the large number of parameters perturbed, the image is very di�ult to read.
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Figure 4.21: Parameters perturbation on the CNWR ase - 7 variables

However, the in�uene of the parameters driving h (plotted in red), of σ∆TT and of σRes is

tremendous. The impat of a parameter perturbation for other variables is muh smaller. In parti-

ular for h, inreasing the sale or dereasing the shape inreases the failure probability. Conerning

σ∆TT , inreasing the mean and the standard deviation inreases the failure probability while de-

reasing these parameters has a muh smaller impat. Finally when shifting the parameters of σRes
it an be seen that dereasing the mean or inreasing the standard deviation strongly inreases the

failure probability. However the width of the on�dene intervals grows quite large.

4.4.2.3 Conlusion

On the seven variables CWNR ase, the following an be onluded:

� The forest model ould not be �tted due to the size of the sample.

� In terms of mean perturbation, the indies assoiated to h, σ∆TT and σRes have the highest
(absolute) value.
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4.5. Conlusion

� The quantile perturbation has shown that the right-hand tail of h and σ∆TT altogether with

the left-hand tail of σRes and the tails of the azimuth are more in�uential than the tails

of others variable. Additionally, this analysis revealed the non-monotoni behaviour of the

azimuth.

� The parameters perturbation has demonstrated that the model is mostly driven by the pa-

rameters of h of σ∆TT and of σRes . This on�rms the onlusion of the mean perturbation.

It is notieable that the ranking di�ers from the three and the �ve variables ase. However the

dimension of the �aw h is still an in�uential variable.

4.5 Conlusion

Conerning the Pf estimation part, the MC method is still the referene method on an industrial

ode. The major drawbak is of ourse the omputational time needed. FORM is wrong in all the

ases and should not be used.

Conerning the sensitivity analysis part, the random forest tehnique provides questionable re-

sults, sine the �tted models are uneven or bad. This method is inonlusive at the moment.

DMBRSI seems an adapted method to perform sensitivity analysis on a failure event. Several

tunings for several problems have been tested. However, if a single graph had to be provided to

deision makers, we would present the mean perturbation one, as it arries most of the information.

In all the on�guration studied, h is a priority variable. This is also the ase for σ∆TT and

σRes in the 7 variables ase.

The improvement perspetives of this study are:

� to ombine subset simulation with the DMBRSI. To do so, an implementation of subset sim-

ulation that provides the sampling sheme must be performed;

� to ombine importane sampling with the DMBRSI, now that the priority zones are known.
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Conlusion

Summary and ontributions

This thesis' �rst objetive was to perform a sensitivity analysis on a blak-box model, the CWNR

ase. Beause the quantity of interest is a (small) failure probability, appropriate methods had to

be used. Thus this thesis foused on two �elds: strutural reliability in one hand, and sensitivity

analysis on the other hand.

First step was a bibliographial hapter (Chapter 1). This hapter aimed at larifying the main

existing tehniques to estimate a failure probability (Setion 1.2) and the main sensitivity analysis

methods (Setion 1.3). Then one of the most used sensitivity analysis tehnique (Sobol' indies)

was tested on reliability toy-ases (Setion 1.4). Sobol' indies applied to a failure indiator have

highlighted a apaity to distinguish the non-in�uential from the in�uential variables. However, tests

have shown that the following on�guration -low �rst-order indies, high total order indies- is often

present. Therefore the information provided by suh indies is limited and may only on�rm that all

the variables interat to ause the failure event. Next, a moment-independent method (Borgonovo's

δi indies) was tested on reliability toy-ases (Setion 1.5). However, the produed indies were

rather small with a positive bias in the estimations. The onlusion is that moment independent

tehniques are not adapted within the reliability ontext. A synthesis of the tested methods was

proposed in Setion 1.6. Finally, a disussion on the meaning and objetives of sensitivity analysis

when dealing with failure probabilities, that we argue might be of use for the pratitioner, was

onduted in Setion 1.7.

The onlusion of this bibliographial hapter is that there is a need for new sensitivity analysis

methods in the reliability ontext. The next two hapters aimed at reahing this objetive.

The seond hapter foused on sensitivity analysis tehniques with a variable ranking objetive.

Two sensitivity analysis methods were presented, thought as by-produts of two sampling tehniques

(Monte-Carlo and subset simulation). The �rst part of the hapter (Setion 2.2) was devoted to

importane measures derived from random forests.

Reminders on spei� binary lassi�ers (random trees) were proposed altogether with a review

on stabilisation methods, inluding random forests. The importane measures (Gini importane and

Mean Derease Auray importane) were eliited. Then a bibliographial step was performed on

the "sensitivity analysis using random forests" theme. Then the importane measures have been

tested on reliability toy-ases. The onlusions were that the Mean Derease Auray importane

indies seemed more adapted sine the Gini importane indies ould a�et a non-null importane

to a non-in�uential variable. However, it must be stressed that the �tted models' quality is not

satisfying. Indeed, from the imbalane of the lasses in the original sample, there is a tendeny in

getting "weak" preditors that make muh more predition error on the minority lass. This is a

problem when drawing onlusions on sensitivity analysis with these types of models. The seond
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part of the hapter (Setion 2.3) proposed a new sensitivity measure based upon the departure, at

eah step of a subset method, between eah input original density and the density given the subset

reahed. Several tunings of the departure an be used. However this sensitivity analysis method

gives a similar information that the one provided by the Sobol' indies on the failure indiator.

The third hapter presented an original sensitivity analysis method, alled Density Modi�ation

Based Reliability Sensitivity Indies (DMBRSI). This sensitivity index is based upon input density

modi�ation, and is adapted to failure probabilities. The proposed indies re�et the impat of

an input density modi�ation on the failure probability. One needs to di�erentiate the proposed

index and the perturbations. The indies are independent of the perturbation in the sense that

the pratitioner an set the perturbation adapted to his/her problem. The sensitivity index an

be omputed using the sole set of simulations that has already been used to estimate the failure

probability, thus limiting the number of alls to the numerial model.

First, the indies and their theoretial properties have been presented in Setion 3.2, altogether

with the estimation methodology. For the sake of simpliity, a Monte-Carlo sampling sheme was

onsidered. Seond, Setion 3.3 dealt with several perturbation methodologies. These perturbations

an be lassi�ed into two main families: Kullbak-Leibler minimization methods and parameter

perturbations methods. The behaviour of the indies was examined in Setion 3.4 through numerial

simulations. In Setion 3.5, it was proposed to improve the DMBRSI estimation with importane

sampling and with subset simulation.

This hapter presented an original method designed for failure probabilities. One of the main

advantage is the possibility to modify the perturbation applied without new alls to the model.

However a major drawbak persists: when there are too many parameters to perturb, the results

may be ompliated to interpret.

The fourth hapter presented the appliation of some of the developed methods to the CWNR

ase. Remind that this blak-box model provided the initial motivation for this thesis.

To estimate Pf , two methods were used: rude Monte-Carlo and FORM. It appeared that FORM

was wrong in every ase, thus Monte-Carlo stays the referene method.

The sensitivity analysis part then foused on two methods: random forests (Chapter 2), and

DMBRSI (Chapter 3). Sobol' indies (see Setion 1.4) were not tested in this hapter due to the

limited information provided and their high omputational ost. δSSi (Ak) indies (see Setion 2.3)

were not used either sine a sampling sheme from subset simulation was not available.

This hapter is divided in three main setions, fousing respetively on random input of dimension

3 , dimension 5 and dimension 7. Notie that the smaller the dimension of the input, the more

penalizing the ase (sine non-probabilised variables are set to penalizing values). Thus the failure

probability diminishes as the dimensionality growths.

DMBRSI appeared as an adapted method to perform sensitivity analysis on a failure event. In

all the on�gurations studied, h (the dimension of the �aw) is a priority variable. This is also the

ase for σ∆TT and σRes in the 7 variables ase.

Future avenues for researh and appliation

The methods presented in Chapter 2 an be improved. Spei�ally, there is a need to improve the

binary lassi�ers (random forests). The MDA indies when using subset simulation must be imple-

mented Another perspetive of improvement, when using the δSSi (Ak) indies, is to ondut a work
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inluding the opula theory.

The DMBRSI introdued in Chapter 3 have several ways of improvement. Most of the further

work will be devoted to adapting the estimator of the indies Siδ in terms of variane redution and

of number of funtion alls. The adaptation of estimators using subset simulation must also be done.

A perturbation based on an entropy onstraint might also be proposed. Yet further omputations

have to be made to obtain a tratable solution of the KL minimization problem. Another avenue

worth exploring would be to hange the metris/divergenes. That would amount to hange the

D in equation 3.9 (hoie was made to take KLD); and to take another distane than Hellinger's

in the parameter perturbation ontext. Another avenue might be the introdution of a strutural

dependeny between the marginals of the input vetor, and to perturb this dependeny via the

opula theory.

Further work an be done in Chapter 4. The main improvement perspetives of this study is

to use subset simulation, to improve the estimation of Pf and to redue the omputational time.

A oupling with the random forests via adapted MDA indies might be of interest as well. This

ould also allow the use of the .d.f. departure measures δSSi (Ak). Still to redue the variane of the
estimators, importane sampling must be tested.

Broader perspetives have to be onsidered. In partiular, the use of sequential methods oupled

with meta-models (Bet et al. [9℄) is to be tested.

Reently, Fort et al. [35℄ introdued a new sensitivity index as a generalisation of Sobol' indies.

They propose an adapted ontrast funtion for eah statistial purpose. It is interesting to notie

that the ontrast adapted to a threshold exeed is presented. This index then has to be tested and

ompared with DMBRSI in further work.
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Communiations

Publiations

� P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa, and B. Iooss. Density modi�-

ation based reliability sensitivity analysis. Journal of Statistial Computation and Simulation,

In press, 2014

� E. Sergienko, P. Lemaître, A. Arnaud, D. Busby and F. Gamboa. Reliability sensitivity analysis

based on probability distribution perturbation with appliation to CO2 storage. Aepted with

minor reviews in Strutural Safety, 2014

Oral presentations

� P. Lemaître and A. Arnaud. Hiérarhisation des soures d'inertitudes vis à vis d'une proba-
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Software developments

� P. Lemaître. Density modi�ation based reliability sensitivity indies (DMBRSI Funtion). R
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Appendix A

Distributions formulas

Distribution Parameters pdf Support

Uniform a,b f(x) = 1
b−a [a, b]

Weibull a, b, c f(x) = c
b

(
x−a
b

)c−1
exp

[
−
(
x−a
b

)c]
x ≥ a

Lognormal µ, σ f(x) = 1
xσ

√
2π
e−

(lnx−µ)2

2σ2 x > 0

Gaussian µ,σ f(x) = 1
σ
√
2π
e−

1
2(

x−µ
σ )

2

]−∞,+∞[

Table A.1: Distributions of the random physial variables taken for the CWNR models.
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Appendix B

Test ases

In the present subsetion, usual sensitivity test ases will be presented. They will be used as

benhmark ases for the sensitivity analysis methods. One should note that these test ases return

binary values, failure or non-failure of the studied system. One should notie that the fous is set

on the probability Pf = P(G(X) ≤ 0).

B.1 Hyperplane test ase

For the �rst ase, X is set to be a d−dimensional vetor, with d independent marginals normally

distributed. Unless otherwise mentioned (that is to say for the last ase), one has fi ∼ N (0, 1) for
i = 1, .., d. The failure funtion G(.) is de�ned as:

G(X) = k −
d∑

i=1

aiXi (B.1)

where k is a threshold and a = (a1, . . . , ad) are the parameters of the model. One an see that

the model is solely linear. What an be expeted in terms of SA is that the in�uene of eah variable

on Pf depends on its oe�ient, namely ai. The greater the absolute value of the oe�ient is, the

bigger the expeted in�uene is. One an, by adjusting k, set the failure probability Pf to a value

of interest. An expliit expression for Pf an be given as the sum of the d variables behaves like a

Gaussian distribution with parameters 0 and standard deviation

√√√√
d∑

i=1

a2i , unless in the last ase.

In table B.1 the usual test ases that will be employed throughout the doument are detailed.

Number of variables Values of ai Value of k Value of P

4 (1,−6, 4, 0) 16 0.014

5 ai = 1 ∀i = 1 : 5 6 0.0036

15
ai = 1 ∀i = 1 : 5
ai = 0.2 ∀i = 6 : 10
ai = 0 ∀i = 11 : 15

6 0.00425

5 a = (12 , ...,
1
10) 5 0.0036

Table B.1: Usual hyperplane test ases
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B. Test ases

In the �rst test ase, with the spei� values of a, the in�uene of X2 is greater than the in�uene

of X3 whih is greater than X1's. X4 has no impat on the output. It should be noted that X1 and

X3 The aim of hoosing one non-in�uential variable is to assess if the SA methods an identify this

variable as non-in�uential on the failure probability.

In the seond test ase, with all the omponents equally in�uential, the aim is to assess or in�rm

the apability of the SA method to give the same importane to eah input.

In the third ase, the SA method is put to the test of determining the in�uential from the

little-in�uential and non-in�uential variables.

In the last test ase, the impat of having variables with the same importane, but distributed

with a di�erent spread is studied. Preisely, variables are suh that fi ∼ N (0, σ = 2i) for i = 1..5.
Thus given the ai, the variables have the same impat on the failure probability. The aim of this test

is to assess or in�rm the apability of the SA method to give to eah equally ontributing variable

the same importane, despite their di�erent spread.

B.2 Tresholded Ishigami funtion

The Ishigami funtion (Ishigami [51℄) is a ommon test ase in SA sine it has a omplex expres-

sion, with interations between the variables. A modi�ed version of the Ishigami funtion will be

onsidered here. A threshold is added to the value obtained with the regular expression and this is

onsidered as the failure funtion. Therefore:

G(X) = sin (X1) + 7 sin2 (X2) + 0.1X4
3 sin (X1) + k (B.2)

where k = 7. X is a 3−dimensional vetor of independent marginals uniformly distributed on

[−π, π] . In �gure B.1, the failure points (where G(x) < 0) are plotted in a 3-d satterplot.

Figure B.1: Ishigami failure points from a MC sample
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B.3. Flood ase

The failure probability here is roughly P̂ = 5.89 × 10−3
(estimated by Monte-Carlo tehnique,

see setion 1.2.1). The omplex repartition of the failure points an be notied. Those points lay in

a zone de�ned by the negative values of X1, the extremal and mean values of X2 (around −π, 0 and
π), and the extremal values of X3 (around −π and π)

B.3 Flood ase

The goal of this test ase is to assess the risk of a �ood over a dyke for the safety of industrial

installations (Bernardara [10℄). This omes down to model the level of a �ood. As a funtion

of hydraulial parameters, many of them being randomized to aount for unertainty. From a

simpli�ation of the Saint-Venant equation, a �ood risk model is obtained.

The quantity of interest is the di�erene between the level of the dyke and the height of water. If

this quantity is negative, the installation is �ooded. Hydrauli parameters are the following: Q the

�ow rate, L the waterourse setion length studied, B the waterourse width, Ks the waterourse

bed frition oe�ient (also alled Strikler oe�ient), Zm and Zv respetively the upstream and

downstream bottom waterourse level above sea level and Hd the dyke height measured from the

bottom of the waterourse bed. The water level model is expressed as:

H =


 Q

KsB
√

Zm−Zv

L




3
5

. (B.3)

Therefore the following quantity is onsidered:

G = Hd − (Zv +H). (B.4)

Among the model inputs, the hoie is made that the following variables are known preisely:

L = 5000 (m), B = 300 (m), Hd = 58 (m), and the following are onsidered to be random. Q
(m

3.s−1
) follows a positively trunated Gumbel distribution of parameters a = 1013 and b = 558

with a minimum value of 0. Ks (m
1/3

s

−1
) follows a trunated Gaussian distribution of parameters

µ = 30 and σ = 7.5, with a minimum value of 1. Zv (m) follows a triangular distribution with

minimum 49, mode 50 and maximum 51. Zm (m) follows a triangular distribution with minimum

54, mode 55 and maximum 56.
The failure probability here is roughly P̂ = 7.88× 10−4

(estimated by MC tehnique, see 1.2.1).
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Appendix C

Isoprobabilisti transformations

Here, we brie�y introdue the notion of opula, whih is needed for the presentation of isoprobabilisti

transformations. Copulas are a mathematial objet desribing the dependenies in a random vetor

without referring to the marginal distributions. Nelsen's monograph [74℄ presents suh objets.

C.1 Presentation of the opulas

De�nition C.1.1 A d dimensional funtion f is said d−inreasing if:

2∑

i1=1

· · ·
2∑

id=1

(−1)i1+···+idf(x1,i1 , . . . , x2,id) ≥ 0

where xj,1 = aj and xj,2 = bj ∀j ∈ {1, . . . , d} and aj , bj ∈ [0, 1], aj ≤ bj∀j ∈ {1, . . . , d}

De�nition C.1.2 A d−dimensional opula C is a d−dimensional umulative distribution funtion

de�ned over [0, 1]d, whose marginal distributions are uniform over [0, 1]:

� C is d−inreasing;

� for all u ∈ [0, 1]d whih have at least one omponent equal to 0, C(u) = 0;

� for all u ∈ [0, 1]d whih have all their omponents equal to 1 exept one, uk, C(u) = uk.

Theorem C.1.1 (Sklar 1959)

Let F be a d−dimensional umulative distribution funtion with F1, . . . , Fp the marginal distri-

bution funtions. There exists a d−dimensional opula, C, suh that for all x ∈ Rd
we have:

F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)). (C.1)

If the marginal distributions F1, . . . , Fp are ontinuous, then the opula C is unique, otherwise it

is uniquely determined over Im(F1) × · · · × Im(Fp). In the ontinuous ase, for all u ∈ [0, 1]d we

have:

C(u) = F (F−1
1 (u1), . . . , F

−1
p (up) (C.2)

if absolutely ontinuous

f(x) = c ((F1(x1), . . . , Fp(up))

d∏

i=1

fi(xi) (C.3)
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C. Isoprobabilisti transformations

with c the probability distribution funtion assoiated to C, f the probability distribution funtion

assoiated to F and fi the marginal distributions funtion assoiated to F .

De�nition C.1.3 Let us denote SOd(R) the rotation group over Rd
and supp(X) the set of the val-

ues that an be taken by a random vetor X. An isoprobabilisti transformation T of a d−dimensional

random vetor X is a di�eomorphism from supp(X) into Rd
suh that the random vetors U = T (X)

and rU have the same distribution for all r ∈ SOd(R).

C.2 Objetives, Rosenblatt transformation

We wish to transform a random vetor X of pdf fX and of opula C in a Gaussian vetor U of same

dimension but with independent, standard Gaussian as omponents.

If the variables are independent and that the marginals are known, the transformation is straight-

forward :

ui = φ−1(Fi(xi))

If there is a dependeny struture in the variables, Rosenblatt and Nataf transformations are

possibilities [?℄.

We present here the Rosenblatt [84℄ transformation. This transformation is not unique if the

variables are orrelated: it depends on the order in whih the variables are transformed

1

.

Transformation is done as follows:

u1 = φ−1(F1(x1))

u2 = φ−1(F2(x2|X1 = x1))

...

ud = φ−1(Fd(xd|X1 = x1, ...,Xd−1 = xd))

where Fi(.|X1, ...Xi−1) is the df of variable Xi given the realisations of the previous variables.

1

It has been shown in Lebrun and Dutfoy [57℄ that if the opula of X is Gaussian, the order in whih the variables

are transformed does neither impat the norm of the design point, nor the derivatives of the failure surfae in this

point. In other words, the following quantities use in FORM/SORM methods do not depend upon the order of

transformation: βHL,P̂FORM , P̂SORM .
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Appendix D

Appendies for Chapter 3

D.1 Proofs of asymptoti properties

Proof of Lemma 3.2.1

Under assumption (i), we have

�

Supp(fiδ)
1{G(x)<0}

fiδ(xi)

fi(xi)
f(x) dx ≤

�

Supp(fiδ)
fiδ(xi) dxi = 1.

So that, the strong LLN may be applied to P̂iδN . De�ning

σ2iδ = Var

[
1{G(X)<0}

fiδ(Xi)

fi(Xi)

]
, (D.1)

one has

σ2iδ =

�

Supp(fi)
1{G(x)<0}

f2iδ(xi)

fi(xi)

d∏

j 6=i

fj(xj) dx− P 2
iδ < ∞ under assumption (ii).

Therefore the CLT applies:

√
Nσ−1

iδ

(
P̂iδN − Piδ

)
L−→ N (0, 1) .

Under assumption (ii), the strong LLN applies to σ̂2iδN . So that, the �nal result is straightforward
using Slutsky's lemma.

Proof of Proposition 3.2.1

First, note that

E

[
P̂ P̂iδ

]
− PPiδ = E

[
1

N2

(
N∑

n=1

1{G(xn)<0}

)(
N∑

n=1

1{G(xn)<0}
fiδ(x

n
i )

fi(xni )

)]
− PPiδ

=
1

N2
E




N∑

n=1

[
1{G(xn)<0}

]2 fiδ(xni )
fi(xni )

+

N∑

n=1

N∑

j 6=i

1{G(xn)<0}1{G(xj)<0}
fiδ(x

j
i )

fi(x
j
i )




−PPiδ

=
1

N2
[NPiδ +N (N − 1)PPiδ]− PPiδ

=
1

N
(Piδ − PPiδ) .
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Assuming the onditions under whih Lemma 1 is true, the bivariate CLT follows with

Σiδ =

(
P (1− P ) Piδ(1− P )
Piδ(1− P ) σ2iδ

)
.

Eah term of this matrix an be onsistently estimated, using the results in Lemma 1 and Slutsky's

lemma.

D.2 Computation of Lagrange multipliers

Let H be the Lagrange funtion:

H(λ) = ψi(λ)−
K∑

k=1

λkδk.

Thus, using the results of Csizar [26℄, one has

λ
∗ = argminH(λ).

The expression of the gradient of H with respet to the jth variable is

∇jH(λ) =

�

gj(x)fi(x) exp(
∑K

k=1 λkgk(x))dx

expψi(λ)
− δj .

Similarly, the expression of the seond derivative of H with respet to the hth and the jth variables

is

DhjH(λ) =

�

gh(x)gj(x)fi(x) exp(
∑K

k=1 λkgk(x))dx

expψi(λ)

−
�

gj(x)fi(x) exp(
∑K

k=1 λkgk(x))dx

expψi(λ)

�

gh(x)fi(x) exp(
∑K

k=1 λkgk(x))dx

expψi(λ)
.

This method has been used in this paper for omputing the optimal vetor λ
∗
when a variane

shifting was applied. The integrals were evaluated with Simpson's rule.

D.3 Proofs of the NEF properties

In this Appendix, the details of the alulus for the Proposition 3.3.4 are provided.

NEF spei�ities : If the original density fi(x) is a NEF, then under a set of K linear onstraints

on f(x), one has :
f(x) = b(x) exp [xθ − η(θ)] ,

thus :

fδ(x) = f(x) exp

[
K∑

k=1

λkgk(x)− ψ(λ)

]

The regularization onstant from (3.13) an be written as:

ψ(λ) = log

�

b(x) exp

[
xθ +

K∑

k=1

λkgk(x)− η(θ)

]
dx (D.2)

If the integral on (D.2) is �nite, fδ exists and is a density.
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Mean shifting With a single onstraint formulated as in (3.15), (D.2) beames :

ψ(λ) = log

�

b(x) exp [xθ + λx− η(θ)] dx

= log

�

b(x) exp [x (θ + λ)− η(θ) + η(θ + λ)− η(θ + λ)] dx

if η(θ + λ) is well de�ned.

ψ(λ) = (η(θ + λ)− η(θ)) + log

[
�

b(x) exp [x (θ + λ)− η(θ + λ)]

]
dx

= η(θ + λ)− φ(θ)

sine

b(x) exp [x (θ + λ)− η(θ + λ)] = fθ+λ(x)

with notation from (3.3.4), is a density of integral 1. Thus

fδ(x) = b(x) exp [xθ − φ(θ)] exp [λx− η(θ + λ) + η(θ)]

= b(x) exp [x [θ + λ]− η(θ + λ)] = fθ+λ(x)

Thus the mean shifting of a NEF of CDF η(.) results in another NEF with mean η′(θ + λ) = δ
(onstraint) and variane η′′(θ + λ).

Variane shifting With a single onstraint formulated as in (3.19), using (D.2), the new distri-

bution has for density:

fδ(x) = b(x) exp
[
xθ + xλ1 + x2λ2 − ψ(λ)− η(θ)

]

Sine λ is known or omputed, and θ is also known, onsider the variable hange z =
√
λ2x assuming

λ2 is stritly positive (the variable hange is z =
√−λ2x if λ2 is stritly negative). Thus,

fδ(x) = b(
z√
λ2

) exp
[
z2
]
exp

[
z√
λ2

(θ + λ1)− ψ(λ)− η(θ)

]

= exp

[
η

(
(θ + λ1)√

λ2

)
− η(θ)− ψ(λ)

]
c(z) exp

[
z
(θ + λ1)√

λ2
− η

(
(θ + λ1)√

λ2

)]

with

c(z) = b(
z√
λ2

) exp
[
z2
]
.

By (3.13),

ψ(λ) = log

�

b(x) exp
[
xθ + xλ1 + x2λ2 − η(θ)

]
dx

= log

�

b(
z√
λ2

) exp
[
z2
]
exp

[
(θ + λ1)√

λ2
z − η(θ) + η

(
(θ + λ1)√

λ2

)
− η

(
(θ + λ1)√

λ2

)]
dx

=

(
η

(
(θ + λ1)√

λ2

)
− η(θ)

)
+ log

�

c(z) exp

[
(θ + λ1)√

λ2
z − η

(
(θ + λ1)√

λ2

)]
dx

= η

(
(θ + λ1)√

λ2

)
− η(θ)

Thus one has :

fδ(x) = c(z) exp

[
z
(θ + λ1)√

λ2
− η

(
(θ + λ1)√

λ2

)]

thus the variane shifting of a NEF results in another NEF parameterized by

(θ+λ1)√
λ2

.
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D.4 Numerial trik to work with trunated distribution

In the ase where a mean shifting is onsidered on a left trunated distribution. We present a tip

that an help to ompute λ
∗
.

The studied trunated variable YT has distribution fY T . Let us denote Y ∼ fY the orresponding

non-trunated distribution. The trunation ours for some real value a. This trunation may

happen for some physial modelling reason. One has:

fY T (y) =
1

1− F (a)
1[a,+∞[(y)fY (y).

The formal de�nition of MY T (λ) the mgf of YT for some λ is:

MY T (λ) =
1

1− FY (a)

� +∞

a
fY (y) exp [λy] dy.

Let us reall that we are looking for λ
∗
suh as:

δ =
M ′

Y T (λ
∗)

MY T (λ
∗)

=

� +∞
a yfY (y) exp [λy] dy
� +∞
a fY (y) exp [λy] dy

. (D.3)

When the expression does not take a pratial form, one an use numerial integration to es-

timate the integral terms. Unfortunately, for some heavy tailed distribution (for instane Gumbel

distribution), this numerial integration might be omplex or not possible. This is due to the multi-

pliation by an exponential of y. The following tip helps to avoid suh problems. Denoting MY (λ)
the mgf of the non-trunated distribution, one an remark that:

MY (λ) =

� +∞

−∞
fY (y) exp [λy] dy =

� a

−∞
fY (y) exp [λy] dy +

� +∞

a
fY (y) exp [λy] dy

Thus another expression for MY T (λ) is:

MY T (λ) =
1

1− FY (a)

[
MY (λ)−

� a

−∞
fY (y) exp [λy] dy

]
.

The integral term is muh smaller in the left heavy tailed distribution ase. Therefore the numerial

integration (for instane using Simpson's method) is muh more preise or beame possible.

The same goes for M ′
Y T (λ) whih has alternative expression:

M ′
Y T (λ) =

1

1− FY (a)

[
M ′

Y (λ)−
� a

−∞
yfY (y) exp [λy] dy

]
.

Finally, another form of D.3 is:

δ =
M ′

Y (λ)−
� a
−∞ yfY (y) exp [λy] dy

MY (λ)−
� a
−∞ fY (y) exp [λy] dy

. (D.4)

This alternative expression may lead to more preise estimations of λ
∗
when MY (λ) and M

′
Y (λ)

are known (whih is the ase for most usual distribution) sine the integral term are muh smaller

than in the �rst expression.
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Résumé

Cette thèse porte sur l'analyse de sensibilité dans le ontexte des études de �abilité des strutures. On

onsidère un modèle numérique déterministe permettant de représenter des phénomènes physiques

omplexes. L'étude de �abilité a pour objetif d'estimer la probabilité de défaillane du matériel à

partir du modèle numérique et des inertitudes inhérentes aux variables d'entrée de e modèle. Dans

e type d'étude, il est intéressant de hiérarhiser l'in�uene des variables d'entrée et de déterminer

elles qui in�uenent le plus la sortie, e qu'on appelle l'analyse de sensibilité. Ce sujet fait l'objet de

nombreux travaux sienti�ques mais dans des domaines d'appliation di�érents de elui de la �abilité.

Ce travail de thèse a pour but de tester la pertinene des méthodes existantes d'analyse de sensibilité

et, le as éhéant, de proposer des solutions originales plus performantes. Plus préisément, une étape

bibliographique sur l'analyse de sensibilité d'une part et sur l'estimation de faibles probabilités de

défaillane d'autre part est proposée. Cette étape soulève le besoin de développer des tehniques

adaptées. Deux méthodes de hiérarhisation de soures d'inertitudes sont explorées. La première

est basée sur la onstrution de modèle de type lassi�eurs binaires (forêts aléatoires). La seonde est

basée sur la distane, à haque étape d'une méthode de type subset, entre les fontions de répartition

originelle et modi�ée. Une méthodologie originale plus globale, basée sur la quanti�ation de l'impat

de perturbations des lois d'entrée sur la probabilité de défaillane est ensuite explorée. Les méthodes

proposées sont ensuite appliquées sur le as industriel CWNR, qui motive ette thèse.

Mots-lés Analyse de sensibilité ; Fiabilité; Inertitudes ; Expérienes numériques ; Perturbation

des lois

Abstrat

This thesis' subjet is sensitivity analysis in a strutural reliability ontext. The general framework

is the study of a deterministi numerial model that allows to reprodue a omplex physial phe-

nomenon. The aim of a reliability study is to estimate the failure probability of the system from

the numerial model and the unertainties of the inputs. In this ontext, the quanti�ation of the

impat of the unertainty of eah input parameter on the output might be of interest. This step

is alled sensitivity analysis. Many sienti� works deal with this topi but not in the reliability

sope. This thesis' aim is to test existing sensitivity analysis methods, and to propose more e�ient

original methods. A bibliographial step on sensitivity analysis on one hand and on the estimation

of small failure probabilities on the other hand is �rst proposed. This step raises the need to develop

appropriate tehniques. Two variables ranking methods are then explored. The �rst one proposes to

make use of binary lassi�ers (random forests). The seond one measures the departure, at eah step

of a subset method, between eah input original density and the density given the subset reahed.

A more general and original methodology re�eting the impat of the input density modi�ation

on the failure probability is then explored. The proposed methods are then applied on the CWNR

ase, whih motivates this thesis.

Keywords Sensitivity Analysis; Reliability; Unertainties; Computer experiments; Input pertur-

bations
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